Acta Mathematica Hungarica

VOLUME 58, NUMBERS 1-2, 1991

EDITOR-IN-CHIEF
K. TANDORI

DEPUTY EDITOR-IN-CHIEF
J. SZABADOS

EDITORIAL BOARD
L. BABAI, Á. CSÁSZÁR, I. CSISZÁR, Z. DARÓCZY, P. ERDƠS,
L. FEJES TÓTH, T. GALLAI, F. GÉCSEG, B. GYIRES, A. HAJNAL, G. HALÁSZ. I. KÁTAI, L. LEINDLER, L. LOVÁSZ, A. PRÉKOPA,
A. RAPCSÁK, P. RÉVÉSZ, D. SZÁSZ, E. SZEMERÉDI, B. SZ.-NAGY, VERA T. SÓS

ACTA MATHEMATICA
 HUNGARICA

Acta Mathematica publish papers on mathematics in English, German, French and Russian. Acta Mathematica is published in two volumes of four issues a year by AKADÉMIAI KIADÓ

Publishing House of the Hungarian Academy of Sciences H-1117 Budapest, Prielle Kornélia utca 19-35.

Manuscripts and editorial correspondence should be addressed to Acta Mathematica, H-1364 Budapest, P.O.Box 127

Orders may be placed with
KULTÚRA Foreign Trading Company
H-1389 Budapest P.O.Box 149
or with its representatives abroad.

Acta Mathematica Hungarica is abstracted/indexed in Current Contents - Physical, Chemical and Earth Sciences, Mathematical Reviews.

ACTA MATHEMATICA HUNGARICA

EDITOR-IN-CHIEF
K. TANDORI

DEPUTY EDITOR-IN-CHIEF

J. SZABADOS

EDITORIAL BOARD

L. BABAI, Å. CSÁSZÁR, I. CSISZÁR, Z. DARÓCZY, P. ERDÓS, L. FEJES TÓTH, T. GALLAI, F. GÉCSEG, B. GYIRES, A. HAJNAL, G. HALÁSZ, I. KÁTAI, L. LEINDLER, L. LOVÁSZ, A. PRÉKOPA, A. RAPCSÁK, P. RÉVÉSZ, D. SZÁSZ, E. SZEMERÉDI, B. SZ.-NAGY, VERA T. SÓS

VOLUME 58

CONTENTS

VOLUME 58

Abu-Khuzam, H., Commutativity results for periodic rings 273
Akhlaghi, M. R., A Pál-type lacunary interpolation problem 247
Angelos, J., Kaufman, E., Jr., Lenker, T. and Henry, M. S., Bounds for extended Lipschitz constants 81
Argyros, I. K., On the approximate solutions of nonlinear functional equa- tions under mild differentiability conditions 3
Baron, S. and Tietz, H., Umkehrsätze für Riesz-Verfahren zur Summierung von Doppelreihen 279
Beattie, Margaret and Stewart, P., Graded radicals of graded rings 261
Bogmér, A., Horváth, M. and Sövegjártó, A., On some problems of I. Joó 153
Borges, C. R., A note on dominated spaces 13
Ciesielski, K. and Larson, L., The space of density continuous functions 289
Clay, J. R., Convolution rings of multiplications of an abelian group 297
Császár, Á., General absolutes of topological spaces 141
Davidov, J. and Muskarov, O., On the Riemannian curvature of a twistor space 319
de León, M., Méndez, I. and Salgado, M., Integrable p-almost tangent manifolds and tangent bundles of p^{1}-velocities 45
Echandia, V., Interpolation between dyadic Hardy spaces \mathbf{H}^{p} 63
Erdős, P., Horváth, M. and Joó, I., On the uniqueness of the expansions $1=\sum q^{-n_{i}}$ 333
Gát, Gy., Orthonormal systems on Vilenkin groups 193
Groenewald, L., On the means of the argument of the Riemann zeta- function on the critical line 25
Günttner, R., On the uniform approximation by generalized Bernstein means 241
Horváth, M., Some saturation theorems for classical orthogonal expan- sions. II 157
-, see Bogmér, A.-, see Erdős, P.Indlekofer, K.-H. and Kátai, I., Multiplicative functions with small incre-ments. III121
Joó, I., On the distribution of the set $\left\{\sum_{i=1}^{n} \varepsilon_{i} q^{i}: \varepsilon_{i} \in\{0,1\}, n \in \mathrm{~N}\right\}$ 199 -, see Erdős, P.
Kátai, I., On the number of prime factors of $\varphi(\varphi(n))$ 211
-, Multiplicative functions with regularity properties. VI 343
-, see Indlekofer, K.-H.
Kaufman, E., Jr., see Angelos, J.
Kovács, B., Representation of complex numbers in number systems 113
Kroó, A. and Schmidt, D., A Haar-type theory of best uniform approxi- mation with constraints 351
Larson, L., see Ciesielski, K.
Lenker, T., see Angelos, J.
Loi, N. H., On the equiconvergence of the Riesz means with exact order 55
Méndez, I., see de Léon, M.
Minh, N. V. and Nhung, T. V., Attractors of systems close to autonomous ones having a stable limit cycle 17
Mohanty, S. P., Which triangular numbers are products of three consecu- tive integers? 31
Móricz, F., On L^{1}-convergence of Walsh-Fourier series. II 203
Muskarov, O., see Davidov, J.
Nhung, T. V., see Minh, N. V.Parnami, J. C., Interval filling sequences and completely additive functions229
Pintz, J., On an assertion of Riemann concerning the distribution of prime numbers 383
Pokorný, I., On Darboux functions in honorary Baire class two 37
Sakai, R., The degree of approximation of differentiable functions by Her- mite interpolation polynomials 9
Salgado, M., see de Léon, M.
Schmidt, D., see Kroó, A.
Shelah, S., Strong negative partition relation below the continuum 95
Stewart, P., see Beattie, Margaret
Szabados, J. and Varma, A. K., On higher order Hermite-Fejér interpola- tion in weighted L_{p}-metric 133
Szabó, Gy., Φ-orthogonally additive mappings. I 101
Tandori, K., Über die Banach-Eigenschaft von Matrizen 375
Tietz, H., see Baron, S.
Varma, A. K., see Szabados, J.Wang, K., On the unique existence of almost periodic solutions of Volterraintegro-differential equations311
van Wickeren, E., Weighted simultaneous approximation by algebraic pro- jection operators 69
Argyros, I. K., On the approximate solutions of nonlinear functional equa- tions under mild differentiability conditions 3
Sakai, R., The degree of approximation of differentiable functions by Her- mite interpolation polynomials 9
Borges, C. R., A note on dominated spaces 13
Minh, N. V. and Nhung, T. V., Attractors of systems close to autonomous ones having a stable limit cycle 17
Groenewald, L., On the means of the argument of the Riemann zeta- function on the critical line 25
Mohanty, S. P., Which triangular numbers are products of three consecu- tive integers? 31
Pokorný, I., On Darboux functions in honorary Baire class two 37
de León, M., Méndez, I. and Salgado, M., Integrable p-almost tangent manifolds and tangent bundles of p^{1}-velocities 45
Loi, N. H., On the equiconvergence of the Riesz means with exact order 55
Echandia, V., Interpolation between dyadic Hardy spaces \mathbf{H}^{p} 63
van Wickeren, E., Weighted simultaneous approximation by algebraic pro- jection operators 69
Angelos, J., Kaufman, E., Jr., Lenker, T. and Henry, M. S., Bounds for extended Lipschitz constants 81
Shelah, S., Strong negative partition relation below the continuum 95
Szabó, Gy., Φ-orthogonally additive mappings. I 101
Kovács, B., Representation of complex numbers in number systems 113
Indlekofer, K.-H. and Kátai, I., Multiplicative functions with small incre- ments. III 121
Szabados, J. and Varma, A. K., On higher order Hermite-Fejér interpola- tion in weighted L_{p}-metric 133
Császár, Á., General absolutes of topological spaces 141
Bogmér, A., Horváth, M. and Sövegjártó, A., On some problems of I. Joó 153
Horváth, M., Some saturation theorems for classical orthogonal expan- sions. II 157
Gát, Gy., Orthonormal systems on Vilenkin groups 193
Joó, I., On the distribution of the set $\left\{\sum_{i=1}^{n} \varepsilon_{i} q^{i}: \varepsilon_{i} \in\{0,1\}, n \in \mathrm{~N}\right\}$ 199
Móricz, F., On L^{1}-convergence of Walsh-Fourier series. II 203
Kátai, I., On the number of prime factors of $\varphi(\varphi(n))$ 211

ON THE APPROXIMATE SOLUTIONS OF NON-LINEAR FUNCTIONAL EQUATIONS UNDER MILD DIFFERENTIABILITY CONDITIONS

I. K. ARGYROS (Lawton)

Introduction. The present note concerns the examination of Newton's method under assumptions different than those of L.V. Kantorovich [3] and M. Altman [1], [2].

In [3] the Fréchet-differential must have a continuous inverse. The examination of the existence of this inverse and the estimate of its norm presents the greatest difficulty for the application of Kantorovich's method.

In [2] the above difficulty is eliminated. However one of the assumptions made is that the norm of the second Fréchet-differential must be bounded. The computation of such a norm is a difficult task in general.

One can refer to [4], [5] and the references there for a further study on Newton's method.

Here we generalize the above methods under the assumption that the Fréchet-differential is only Hölder continuous on some closed sphere $S\left(x_{0}, r\right)$ centered at the initial guess x_{0} and of radius $r>0$. Some interesting examples are provided where our method can be applied whereas the two mentioned above cannot.

Let X be a Banach space and let $F(x), x \in X$ be a nonlinear continuous functional defined on $S\left(x_{0}, r\right)$.

Consider the nonlinear functional equation

$$
\begin{equation*}
F(x)=0 \tag{1}
\end{equation*}
$$

We suppose that $F(x)$ is a Fréchet-differentiable on $S\left(x_{0}, r\right)$ and denote by $f(x)=F^{\prime}(x)$ the Fréchet-differential of $F(x)$.

Setting $f_{0}=f\left(x_{0}\right)=F^{\prime}\left(x_{0}\right)$ for some $y \in X$, we introduce, as in [2], the iteration

$$
\begin{equation*}
x_{1}=x_{0}-\frac{F\left(x_{0}\right)}{f_{0}(y)} y, \quad x_{n+1}=x_{n}-\frac{F\left(x_{n}\right)}{f_{0}(y)} y, \quad n=0,1,2, \ldots \tag{2}
\end{equation*}
$$

to solve (1).
We will need the following:
Definition. Assume that F is Fréchet-differentiable and $F^{\prime}(x)$ is the first Fréchet-differential at a point x. We recall that $F^{\prime}(x) \in L(X, \mathbf{R})$, the space of bounded linear operators from X to \mathbf{R}. We say that the Fréchetdifferential is Hölder continuous over a domain R if for some $c>0, p \in[0.1]$,
and all $x, y \in R$

$$
\begin{equation*}
\left|F^{\prime}(x)-F^{\prime}(y)\right| \leqq c\|x-y\|^{p} . \tag{3}
\end{equation*}
$$

In this case we say that $F^{\prime}(x) \in H_{R}(c, p)$.
We include the following lemma for completeness [3].
Lemma. Let $F: X \rightarrow \mathbf{R}$ and $\tilde{D} \subseteq X$. Assume \tilde{D} is open and that $F^{\prime}(x) \in$ $\in H_{\tilde{D}_{0}}(c, p)$ for some convex $\tilde{D}_{0} \subseteq \tilde{\tilde{D}}$. Then for all $x, y \in \tilde{D}_{0}$

$$
\begin{equation*}
\left|F(x)-F(y)-F^{\prime}(x)(x-y)\right| \leqq \frac{c}{p+1}\|x-y\|^{p+1} \tag{4}
\end{equation*}
$$

Theorem. Suppose:
(a) that there exists $x_{0} \in X$ and numbers D, B, r such that

$$
\begin{equation*}
\left|F\left(x_{0}\right)\right| \leqq D, \quad \frac{\|y\|}{\left|f_{0}(y)\right|} \leqq B \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
0<r<\left[\frac{1}{(p+1) B c}\right]^{\frac{1}{p}} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
B c r^{p+1}-r+D B \leqq 0 \tag{7}
\end{equation*}
$$

(b) the linear operator $F^{\prime}(x) \in H_{R}(c, p)$ where $R=S\left(x_{0}, r\right)$.

Then the sequence defined by (2) converges to a solution $x^{*} \in S\left(x_{0}, r\right)$ of (1).

Moreover, the following estimate holds:

$$
\begin{equation*}
\left\|x^{*}-x_{n}\right\| \leqq \frac{\left(B c r^{p}\right)^{n}}{1-B c r^{p}} D B \tag{8}
\end{equation*}
$$

Proof. By (2) we obtain

$$
\begin{equation*}
f_{0}\left(x_{0}-x_{n+1}\right)=F\left(x_{n}\right) \tag{9}
\end{equation*}
$$

Since,

$$
\begin{equation*}
f_{0}\left(x_{0}-x_{n+1}\right)=F\left(x_{n}\right)-F\left(x_{n-1}\right)-f_{0}\left(x_{n}-x_{n-1}\right) \tag{10}
\end{equation*}
$$

using (2), (9) and (10)

$$
\left\|x_{n+1}-x_{n}\right\|=\frac{\|y\|}{\left|f_{0}(y)\right|}\left|F\left(x_{n}\right)-F\left(x_{n-1}\right)-F^{\prime}\left(x_{0}\right)\left(x_{n}-x_{n-1}\right)\right|
$$

By (4) and (5)

$$
\begin{equation*}
\left\|x_{n+1}-x_{n}\right\| \leqq B \cdot c \cdot r^{p} \cdot\left\|x_{n}-x_{n-1}\right\| . \tag{11}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
& \left\|x_{n+q}-x_{n}\right\| \leqq\left[\left(B c r^{p}\right)^{q}+\left(B c r^{p}\right)^{q-1}+\cdots+\left(B c r^{p}\right)\right]\left\|x_{n}-x_{n-1}\right\| \leqq \tag{12}\\
& \leqq \frac{1-\left(B c r^{p}\right)^{q}}{1-\left(B c r^{p}\right)}\left(B c r^{p}\right)^{n}\left\|x_{1}-x_{0}\right\| \leqq \frac{1-\left(B c r^{p}\right)^{q}}{1-\left(B c r^{p}\right)}\left(B c r^{p}\right)^{n} D B .
\end{align*}
$$

By the choice of r the right hand side of (12) shows that $\left\{x_{n}\right\}$ is a Cauchy sequence in a Banach spaces X and as such it converges to an element $x^{*} \in X$.

Letting $q \rightarrow \infty$ in (12) we obtain (8), from which it also follows by the choice of r that $x_{n} \in S\left(x_{0}, r\right), n=0,1,2, \ldots$.

Note that $x^{*} \in S\left(x_{0}, r\right)$ by (8) and the fact that $S\left(x_{0}, r\right)$ is a closed ball. Finally by (9) it follows immediately that x^{*} is a solution of (1).

That completes the proof of theorem.
Remarks. (a) The real function g defined by

$$
g(r)=B c r^{p+1}-r+D B
$$

is such that $g(0)=D B>0$ and

$$
g^{\prime}(r)=(p+1) B c r^{p}-1<0 .
$$

If (6) was not satisfied then $g(r)>0$ for all $r \in[0,+\infty]$.
(b) The condition

$$
0<r<\left[\frac{1}{B C}\right]^{\frac{1}{p}}
$$

is sufficient for the convergence to zero of the right hand side of (12).
(c) In practice r will be chosen to be the minimum positive number satisfying (5) and (6) in order to minimize the error estimate (8).
(d) For $p=1$, Theorem 2 in [1] follows as special case of the above theorem.

Example 1. Consider the function G defined on $[0, b]$ by

$$
G(t)=\frac{2}{3} t^{3 / 2}+t-3
$$

for some $b>0$.
Let || || denote the max norm on \mathbf{R}, then

$$
\left\|G^{\prime \prime}(t)\right\|=\max _{t \in[0, b]}\left|\frac{1}{2} t^{-1 / 2}\right|=\infty
$$

which implies that the basic hypothesis on $\left\|G^{\prime \prime}(t)\right\|$ in [2] and [3] for the application of Newton's method is not satisfied for finding a solution of the equation

$$
\begin{equation*}
G(t)=0 \tag{13}
\end{equation*}
$$

However, it can easily be seen that $G^{\prime}(t)$ is Hölder continuous on [$0, b$] with $c=1$ and $p=\frac{1}{2}$. Therefore, under the assumptions of the theorem, iteration (2) will converge to a solution t^{*} of (13).

A more interesting nontrivial application is given by the following example. However it concerns only Newton's iteration

$$
\begin{equation*}
x_{n+1}=x_{n}-F^{\prime}\left(x_{n}\right)^{-1} F\left(x_{n}\right) \tag{14}
\end{equation*}
$$

to solve the nonlinear equation $F(x)=0$ in X. Note that we do not pursue the goal of providing sufficient conditions for the convergence of (14), since this has already been done in [6].

Example 2. Consider the differential equation

$$
x^{\prime \prime}+x^{1+p}=0, \quad p \in[0,1], \quad x(0)=x(1)=0
$$

We divide the interval $[0,1]$ into n subintervals and we set $h=\frac{1}{h}$. Let $\left\{v_{k}\right\}$ be the points of subdivision with

$$
0=v_{0}<v_{1}<\cdots<v_{n}=1
$$

A standard approximation for the second derivate is given by

$$
x_{i}^{\prime \prime}=\frac{x_{i-1}-2 x_{i}+x_{i+1}}{h^{2}}, \quad x_{i}=x\left(v_{i}\right), \quad i=1,2, \ldots, n-1
$$

Take $x_{0}=x_{n}=0$ and define the operator $F: \mathbf{R}^{n-1} \rightarrow \mathbf{R}^{n-1}$ by

$$
\begin{gathered}
\quad F(x)=H(x)+h^{2} \varphi(x), \\
H=\left[\begin{array}{rrrrr}
2 & -1 & & & \\
-1 & 2 & \ddots & & 0 \\
& \ddots & \ddots & \ddots & \\
0 & & \ddots & \ddots & -1 \\
& & & -1 & 2
\end{array}\right], \varphi(x)=\left[\begin{array}{l}
x_{1}^{1+p} \\
x_{2}^{1+p} \\
\vdots \\
x_{n-1}^{1+p}
\end{array}\right], \text { and } x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\vdots \\
x_{n-1}
\end{array}\right] .
\end{gathered}
$$

Then

$$
F^{\prime}(x)=H+h^{2}(p+1)\left[\begin{array}{cccc}
x_{1}^{p} & & & 0 \\
& x_{2}^{p} & & \\
& & \ddots & \\
0 & & & x_{n-1}^{p}
\end{array}\right]
$$

Newton's method cannot be applied to the equation $F(x)=0$.
We may not be able to evaluate the second Fréchet-derivative since it would involve the evaluation of quantities of the form x_{i}^{-p} and they may not exists.

Let $x \in \mathbf{R}^{n-1}, H \in \mathbf{R}^{n-1} \times \mathbf{R}^{n-1}$ and define the norms of x and H by

$$
\|x\|=\max _{1 \leqq j \leqq n-1}\left|x_{j}\right|, \quad\|H\|=\max _{1 \leqq j \leqq n-1} \sum_{k=1}^{n-1}\left|h_{j k}\right|
$$

For all $x, z \in \mathbf{R}^{n-1}$ for which $\left|x_{i}\right|>0,\left|z_{i}\right|>0, i=1,2, \ldots, n-1$ we obtain, for $p=\frac{1}{2}$ say,

$$
\begin{gathered}
\left\|F^{\prime}(x)-F^{\prime}(z)\right\|=\left\|\operatorname{diag}\left\{\left(1+\frac{1}{2}\right) h^{2}\left(x_{j}^{1 / 2}-z_{j}^{1 / 2}\right)\right\}\right\|= \\
=\frac{3}{2} h^{2} \max _{1 \leqq j \leqq n-1}\left|x_{j}^{1 / 2}-z_{j}^{1 / 2}\right| \leqq \frac{3}{2} h^{2}\left[\max \left|x_{j}-z_{j}\right|\right]^{1 / 2}=\frac{3}{2} h^{2}\|x-z\|^{1 / 2}
\end{gathered}
$$

References

[1] M. Altman, On the approximate solution of nonlinear functional equations, Bull. Acad. Pol. Sci. CLIII, V (1957), 457-460.
[2] M. Altman, Concerning approximate solutions of nonlinear functional equations, Bull. Acad. Pol. Sci. CLIII, V (1957), 461-465.
[3] L. V. Kantorovich and G. P. Akilov, Functional analysis in normed spaces, Pergamon Press (New York, 1964).
[4] W. C. Rheinboldt and J. M. Ortega, Iterative solution of nonlinear equations in several variables, Academic Press (New York, 1970).
[5] W. C. Rheinboldt, Numerical analysis of parametrized nonlinear equations, John Wiley Publ. (New York, 1986).
[6] J. Rokne, Newton's method under mild differentiability conditions with error analysis, Numer. Math., 18 (1972), 401-412.
(Received September 23, 1987)

[^0]
THE DEGREE OF APPROXIMATION OF DIFFERENTIABLE FUNCTIONS BY HERMITE INTERPOLATION POLYNOMIALS

R. SAKAI (Aichi Nishikamo)

1. Introduction

We denote the zeros of the Chebyshev polynomial $T_{n}(x)=\cos n t, x=$ $=\cos t$, by

$$
S_{n}: x_{k}=\cos \theta_{k}, \quad \theta_{k}=(2 k-1) \pi /(2 n), \quad k=1,2, \ldots, n
$$

Let $f \in C[-1,1]$, and let $L_{n}[f ; x]$ be the Lagrange interpolatory polynomial corresponding to the abscissas S_{n}. If $f(x)$ has the modulus of continuity $w(\varepsilon)=o\left(|\log (\varepsilon)|^{-1}\right)$, then $L_{n}[f ; x] \rightarrow f(x),-1 \leqq x \leqq 1$ (see [5, p. 337]). On the other hand, if we consider the Hermite-Fejér interpolatory polynomial $H_{2 n-1}[f ; x]$ of degree $2 n-1$ such that

$$
H_{2 n-1}\left[f ; x_{k}\right]=f\left(x_{k}\right), \quad H_{2 n-1}^{\prime}\left[f ; x_{k}\right]=0, \quad k=1,2, \ldots, n,
$$

then we have

$$
\begin{gathered}
\left|f(x)-H_{2 n-1}[f ; x]\right|= \\
=O(1)\left[\left(T_{n}^{2}(x) / n\right) \sum_{k=1}^{n}\left\{w\left(f ;\left(1-x^{2}\right)^{1 / 2} / k\right)+w\left(f ; 1 / k^{2}\right)\right\}+w\left(f ;\left|T_{n}(x)\right| / n\right)\right]
\end{gathered}
$$

for any continuous function f on $[-1,1]$ (see [1]).
In this paper we consider an interpolation problem of the smoother functions. We can show the following.

Theorem. If $f \in C^{p}[-1,1]$ we have an interpolatory polynomial $L_{p, n}[f ; x]$ of degree $n(p+1)-1$ such that

$$
L_{p, n}^{(k)}\left[f ; x_{i}\right]=f^{(k)}\left(x_{i}\right), \quad i=1,2, \ldots, n, \quad k=0,1, \ldots, p,
$$

and

$$
\left\|f(\cdot)-L_{p, n}[f ; \cdot]\right\|=O(1)\{\log (n)\} n^{-p} w\left(f^{(p)} ; n^{-1}\right)
$$

where $\|f\|$ is the maximum norm on $[-1,1]$, and $w(f ; t)$ is the modulus of continuity of f.

2. Preliminaries and proof of the theorem

Let p be a fixed integer, and let $f \in C^{p}[-1,1]$. Define

$$
\begin{gathered}
H_{r i n}(x)=\left[T_{n}(x) /\left\{T_{n}^{\prime}\left(x_{i}\right)\left(x-x_{i}\right)\right\}\right]^{p+1} \sum_{j=r}^{p} A_{r i n}(j)\left(x-x_{i}\right)^{j} \\
H_{r i n}^{(k)}\left(x_{q}\right)=\delta_{r k} \delta_{i q}, \quad r, k=0,1, \ldots, p, \quad i, q=1,2, \ldots, n
\end{gathered}
$$

where $A_{r i n}(j)$ are the coefficients depending on r, i and n, and $\delta_{r k}=1$ if $r=k,=0$ if $r \neq k$.

Now, we define an Hermite intepolatory polynomial by

$$
L[f ; x]=L_{p, n}[f ; x]=\sum_{i=1}^{n} \sum_{k=0}^{p} f^{(k)}\left(x_{i}\right) H_{k i n}(x)
$$

which is uniquely defined for each $f \in C[-1,1]$, and is of degree at most $n(p+1)-1$. To prove our theorem we need the Gopenganz-MalozemovTeliakovskii theorem (see e.g. [2]) as follows.

Lemma 1. For each $f \in C^{p}[-1,1]$ we have a polynomial P_{n} of degree n such that

$$
\begin{equation*}
\left|f^{(k)}(x)-P_{n}^{(k)}(x)\right|=O(1)\left\{\Delta_{n}(x)\right\}^{p-k} w\left(f^{(p)} ; \Delta_{n}(x)\right), \quad k=0,1, \ldots, p, \tag{1}
\end{equation*}
$$ where $\Delta_{n}(x)=n^{-1}\left\{\left(1-x^{2}\right)^{1 / 2}+n^{-1}\right\}$.

The following lemma is concerned with the Lebesgue function of the operator $L_{p, n}[f]$.

Lemma 2. We have

$$
\left|H_{\text {rin }}(x)\right|=O(1) \begin{cases}\left(X_{i} / n\right)^{r} q^{-1} & \text { if } \quad\left|\theta-\theta_{i}\right| \sim q / n \tag{2}\\ \left(X_{i} / n\right)^{r} & \text { if } \quad\left|\theta-\theta_{i}\right|<1 / n,\end{cases}
$$

where $X_{i}=\sin \theta_{i}, i=1,2, \ldots, n, r=1,2, \ldots, n$, and $A_{n} \sim B_{n}$ means $C_{1} \leqq A_{n} / B_{n} \leqq C_{2}, n=1,2, \ldots$ for some positive constants C_{1}, and C_{2}.

Proof. By [5, (7.32.10)] we have

$$
\left|T_{n}^{(k)}\left(x_{i}\right)\right|=O(1)\left(n / X_{i}\right)^{k}, \quad i=1,2, \ldots, n, \quad k=1,2, \ldots,
$$

thus by the induction concerning j we see

$$
\begin{gathered}
\left|A_{\text {rin }}(j)\right|=O(1)\left(X_{i} / n\right)^{r-j} \\
j=r, r+1, \ldots, p, \quad r=0,1, \ldots, p, \quad i=1,2, \ldots, n .
\end{gathered}
$$

If $\left|\theta-\theta_{i}\right| \sim q / n$ then

$$
1 /\left|x-x_{i}\right|=O(1)\left\{n /\left(q X_{i}\right)\right\},
$$

thus we have

$$
\begin{gathered}
\left|\left[T_{n}(x) /\left\{T_{n}^{\prime}\left(x_{i}\right)\left(x-x_{i}\right)\right\}\right]^{p+1} A_{\text {rin }}(j)\left(x-x_{i}\right)^{j}\right|= \\
=O(1)\left\{\begin{array}{lll}
\left(X_{i} / n\right)^{r} q^{-1} & \text { if } & \left|\theta-\theta_{i}\right| \sim q / n, \\
\left(X_{i} / n\right)^{r} & \text { if } & \left|\theta-\theta_{i}\right|<1 / n .
\end{array}\right.
\end{gathered}
$$

Consequently we have (2).
Proof of Theorem 1. Let $f \in C^{p}[-1,1]$ and let P_{n} satisfy (1). By Lemmas 1 and 2 we have

$$
\begin{gathered}
\left|L_{p, n}[f ; x]-f(x)\right|=\left|L_{p, n}\left[f-P_{n} ; x\right]+P_{n}(x)-f(x)\right|= \\
=O(1) \sum_{q=1}^{n} \sum_{k=0}^{p} n^{k-p} w\left(f^{(p)} ; n^{-1}\right) n^{-k} q^{-1}=O(1)\{\log (n)\} n^{-p} w\left(f^{(p)} ; n^{-1}\right)
\end{gathered}
$$

Acknowledgement. The author wishes to thank the referee for helpful suggestions.

References

[1] S. J. Goodenough and T. M. Mills, A new estimate for the approximation of functions by Hermite-Fejér interpolation polynomials, J. Approximation Theory, 31 (1981), 253-260.
[2] V. N. Malozemov, Joint approximation of a function and its derivatives by algebraic polynomials, Dokl. Akad. Nauk SSSR, 170 (1966), 1274-1276.
[3] A. F. Timan, A strengthening of Jakson's theorem on the best approximation of continuous functions by polynomials on a finite interval of the real axis, Dokl. Akad. Nauk SSSR, 78 (1951), 17-20.
[4] G. G. Lorentz, Approximation of Functions, Holt, Rinehart and Winston (1966).
[5] G. Szegő, Orthogonal Polynomials, AMS Colloq. Publications, vol. 23, third ed. (1974).
(Received October 23, 1987; revised May 26, 1988)
DEPARTMENT OF MATHEMATICS
AICHI PREFECTURAL
KAMOGAOKA SENIOR HIGH SCHOOL
OTASHIRO 1137, FUJIOKA-CHO INO
AICHI NISHIKAMO 470-04
JAPAN

A NOTE ON DOMINATED SPACES

C. R. BORGES (Davis)

A topological space X is said to be (compactly) dominated by the family $\mathcal{K}=\left\{K_{\alpha}\right\}_{\alpha \in \Lambda}$ of (compact) subsets of X provided that $A \subset X$ is closed iff A has a closed intersection with every element of some subcollection \mathcal{K}_{1} of \mathcal{K} which covers $A . X$ is said to have the weak topology over the family $\mathcal{S}=\left\{S_{\alpha}\right\}_{\alpha \in \Delta}$ of closed subsets of X provided that $A \subset X$ is closed iff A has a closed intersection with each $S_{\alpha} \in \mathcal{S}$. A family $\mathcal{C}=\left\{C_{\alpha}\right\}_{\alpha \in \Gamma}$ of subsets of X is said to be (hereditarily) closure-preserving provided that, for any $\Gamma_{1} \subset \Gamma$ (and $\left.D_{\alpha} \subset C_{\alpha}, \bigcup_{\alpha \in \Gamma_{1}} D_{\alpha}^{-}=\left(\bigcup_{\alpha \in \Gamma_{1}} D_{\alpha}\right)^{-}\right)$. $\bigcup_{\alpha \in \Gamma_{1}} C_{\alpha}=\left(\bigcup_{\alpha \in \Gamma_{1}} C_{\alpha}\right)^{-}$. It is clear that locally finite collections of subsets of a space X are hereditarily closurepreserving. Example 2 shows that closure-preserving collections may fail to be hereditarily closure-preserving. (An interesting study of hereditarily closure-preserving collections of sets appears in [1].)

Theorem 2.10 of [2] claims that a space X is dominated by a closed covering $\left\{A_{\alpha}\right\}_{\alpha \in \Lambda}$ iff the natural map $q: \bigvee A_{\alpha} \rightarrow X$ from the disjoint topological union of all the A_{α} (precisely, $\bigvee_{\alpha \in \Lambda}^{\alpha \in \Lambda} A_{\alpha}=\bigcup_{\alpha \in \Lambda} A_{\alpha} \times\{\alpha\}$), is a closed continuous map. Unfortunately, this result is false, as the following simple example shows.

Example 1. Let $I=[0,1]$ be the closed unit interval with the topology inherited from the real line. For each n, let $A_{n}=\left[0, \frac{1}{n}\right]$. Clearly, X is dominated by $\left\{A_{n} \mid n \in \omega\right\}$ but the natural map $q: \bigvee_{n \in \omega} A_{n} \rightarrow X$ is not closed; for example, letting $A=\left\{\left.\left(\frac{1}{n}, n\right) \right\rvert\, n=1,2, \ldots\right\}$, we get that A is a closed subset of $\bigvee_{n \in \omega} A_{n}$ but $q(A)=\left\{\left.\frac{1}{n} \right\rvert\, n=1,2, \ldots\right\}$ is not a closed subset of I.

It is well-known that if K is a CW-complex of Whitehead (i.e. K is a simplicial complex with the weak topology over the family $\left\{s_{\alpha}\right\}_{\alpha \in \Lambda}$ of closed simplexes in K) then K is dominated by $\left\{s_{\alpha}\right\}_{\alpha \in \Lambda}$. However, it is still not always true that the natural map $q: \bigvee s_{\alpha} \rightarrow K$ is a closed continuous map, $\alpha \in \Lambda$ as the following example shows.

Example 2. Let K be the CW-complex with (distinct) vertices $\nu_{n}, n \in \omega$, whose closed simplexes are $s_{n}=\left\langle\nu_{1}, \ldots, \nu_{n}\right\rangle^{-}$, for $n \in \omega$. Pick a sequence $\left\{x_{n}\right\}$ in the open 1 -simplex $\left\langle\nu_{1}, \nu_{2}\right\rangle$ which converges to ν_{1}. Then
$A=\left\{\left(x_{n}, n\right) \mid n=1,2, \ldots\right\}$ is a closed subset of $\bigvee_{n \in \omega} s_{n}=\bigcup_{n \in \omega} s_{n} \times\{n\}$, but the natural map $q: \bigvee_{n \in \omega} s_{n} \rightarrow K$ maps A to the non-closed subset $\left\{x_{n} \mid n \in \omega\right\}$ of K. Furthermore, K does not have a hereditarily closure-preserving cover by compact spaces (we thank the referee for this simple argument): Assume $\mathcal{C}=\left\{C_{\alpha}\right\}_{\alpha \in \Gamma}$ is a hereditarily closure-preserving cover of K by compact spaces. Then each point of $\left\langle\nu_{1}, \nu_{2}\right\rangle$ belongs to infinitely many C_{α} 's (because K is not locally compact at any point of $\left\langle\nu_{1}, \nu_{2}\right\rangle$). Again, pick a sequence $\left\{x_{n}\right\}$ in $\left\langle\nu_{1}, \nu_{2}\right\rangle$ which converges to ν_{1}. Then there is a sequence $\left\{\alpha_{n}\right\} \subset \Gamma$ such that $\alpha_{n} \neq \alpha_{m}$ if $n \neq m$ and $x_{n} \in C_{\alpha_{n}}$. This shows that \mathcal{C} is not hereditarily closure-preserving.

Example 2 shows that Corollaries 2.12 and 3.6 of [2] are false. Later, we will give correct versions of these results.

In light of the preceding examples, the following results are essentially best possible and quite useful.

Proposition 3. Let $\mathcal{A}=\left\{A_{\alpha}\right\}_{\alpha \in \Lambda}$ be a closed cover of a space X. Then
(a) X has the weak topology over \mathcal{A} iff the natural map $q: \bigvee_{\alpha \in \Lambda} A_{\alpha} \rightarrow X$ is a quotient map.
(b) X is dominated by \mathcal{A} iff \mathcal{A} is closure-preserving and, for each $\mathcal{C} \subset$ $\mathcal{A}, \cup \mathcal{C}$ has the weak topology over \mathcal{C}.
(c) X is dominated by \mathcal{A} iff the natural map $q: \bigvee_{\alpha \in \Lambda} A_{\alpha} \rightarrow X$ satisfies the following condition: For each $\Gamma \subset \Lambda, q\left(\bigvee_{\alpha} A_{\alpha}\right)$ is a closed subset of X and $q \mid \bigvee A_{\alpha}: \bigvee \rightarrow \bigcup A_{\alpha}$ is a quotient map.
$\alpha \in \Gamma \quad \alpha \in \Gamma \quad \alpha \in \Gamma$
(d) If \mathcal{A} is hereditarily closure-preserving then X is dominated by \mathcal{A}.

Proof. Part (a) is well-known (see Theorem VI. 8.5 of [3]). Part (b) follows immediately from the pertinent definitions. Part (c) is a restatement of part (b).

Part (d). Let A be a subset of X and $\left\{A_{\alpha}\right\}_{\alpha \in \Delta}$ a subfamily of \mathcal{A} which covers A such that $A \cap A_{\alpha}$ is closed in A_{α}, for each $\alpha \in \Delta$. Then, $\left\{A \cap A_{\alpha}\right\}_{\alpha \in \Delta}$ is closure-preserving, which implies that

$$
A=\bigcup_{\alpha \in \Delta} A \cap A_{\alpha}=\bigcup_{\alpha \in \Delta}\left(A \cap A_{\alpha}\right)^{-}=\left(\bigcup_{\alpha \in \Delta} A \cap A_{\alpha}\right)^{-}=A
$$

This proves that A is closed, which completes the proof.
It is noteworthy that Proposition 3(b) cannot be weakened to " X is dominated by \mathcal{A} iff \mathcal{A} is closure-preserving and X has the weak topology over \mathcal{A} ", as the following example shows.

Example 4. Let I be the space of Example 1. For $n=2,3, \ldots$, let $A_{n}=\{0\} \cup\left[\frac{1}{n}, 1\right] ;$ let $A_{1}=I$. Clearly, $\left\{A_{n}\right\}_{n \in \omega}$ is closure-preserving, and I
has the wak topology over $\left\{A_{n}\right\}_{n \in \omega}$. However, $\left\{A_{n}\right\}_{n \in \omega}$ does not dominate I, since the set $A=] 0,1]$ has a closed intersection with A_{n}, for $n=2,3, \ldots$, and $A \subset \bigcup_{n=2}^{\infty} A_{n}$, but A is not closed.

The following well-known example further illustrates the subtleties of the concepts in Proposition 3.

Example 5. Let Ω be the space of countable ordinals with the order topology. For each $\alpha \in \Omega$, let $A_{\alpha}=\{\beta \in \Omega \mid \beta \leqq \alpha\}$. It is well-known and easily seen that X has the weak topology over $\overline{\mathcal{A}}=\left\{A_{\alpha}\right\}_{\alpha \in \Omega}$. By Theorem 8.2 of [4], X is not dominated by \mathcal{A} (because each A_{α} is paracompact but X is not paracompact). No subover of \mathcal{A} is closure-preserving!

Theorem 6. Let $\mathcal{A}=\left\{A_{\alpha}\right\}_{\alpha \in \Lambda}$ be a closed cover of a space X. The natural map $q: \bigvee_{\alpha \in \Lambda} A_{\alpha} \rightarrow X$ is a closed continuous map iff \mathcal{A} is hereditarily closure-preserving.

Proof. The "only if" part is obvious. The "if" part is trivial.
The following result corrects Corollary 2.12 of [2].
Proposition 7. A space X is a closed continuous image of a disjoint topological union of compact spaces iff X has a hereditarily closure-preserving cover by compact subspaces.

Proof. Immediate from Theorem 6.
Lemma 8. Let $f: X \rightarrow Y$ be a closed continuous map from X into Y. If $\left\{A_{\alpha}\right\}_{\alpha \in \Lambda}$ is a hereditarily closure-preserving collection of subsets of X then $\left\{f\left(A_{\alpha}\right)\right\}_{\alpha \in \Lambda}$ is a hereditarily closure-preserving collection of subsets of Y.

Proof. Let $\Lambda_{1} \subset \Lambda$ and pick $B_{\alpha} \subset f\left(A_{\alpha}\right)$, for each $\alpha \in \Lambda_{1}$. Next, for each $\alpha \in \Lambda_{1}$, pick $C_{\alpha} \subset A_{\alpha}$ such that $f\left(C_{\alpha}\right)=B_{\alpha}$. Since, by hypothesis, $\bigcup_{\alpha \in \Lambda_{1}} C_{\alpha}^{-}=\left(\bigcup_{\alpha \in \Lambda_{1}} C_{\alpha}\right)^{-}$and f is closed continuous (equivalently, $f\left(A^{-}\right)=$ $=\overline{f(A)}$, for any subset A of X), we get that

$$
\begin{gathered}
\bigcup_{\alpha \in \Lambda_{1}} B_{a}^{-}=\bigcup_{\alpha \in \Lambda_{1}} \overline{f\left(C_{\alpha}\right)}=\bigcup_{\alpha \in \Lambda_{1}} f\left(C_{\alpha}^{-}\right)=f\left(\overline{\bigcup_{\alpha \in \Lambda_{1}} C_{\alpha}}\right)= \\
=\overline{f\left(\bigcup_{\alpha \in \Lambda_{1}} C_{\alpha}\right)}=\overline{\bigcup_{\alpha \in \Lambda_{1}} B_{\alpha}}
\end{gathered}
$$

This proves that $\left\{f\left(A_{\alpha}\right)\right\}_{\alpha \in \Lambda}$ is hereditarily closure-preserving, which completes the proof.

The following result corrects Corollary 3.6 of [2].

Theorem 9. A space Y has a hereditarily closure-preserving cover by compact sets iff Y is the closed continuous image of a locally compact paracompact space.

Proof. The "only if" part follows immediately from Theorem 6.
The "if" part. Let X be a locally compact paracompact space and f : $X \rightarrow Y$ be a closed continuous map onto Y. Let \mathcal{U} be an open cover of X such that, for each $U \in \mathcal{U}, U^{-}$is a compact subspace of X. Let $\left\{A_{\alpha}\right\}_{\alpha \in \Lambda}$ be a locally finite closed refinement of \mathcal{U}. Then, by Lemma $8,\left\{f\left(A_{\alpha}\right)\right\}_{\alpha \in \Lambda}$ is a hereditarily closure-preserving cover of Y by compact sets. This completes the proof.

Our last result yields a correct proof of Theorem 3.3(a) of [2].
Theorem 10. Let $f: X \rightarrow Y$ be a closed continuous function onto Y. If X is dominated by $\left\{X_{\alpha}\right\}_{\alpha \in \Lambda}$ then Y is dominated by $\left\{f\left(X_{\alpha}\right)\right\}_{\alpha \in \Lambda}$.

Proof. First note that each $f\left(X_{\alpha}\right)$ is a closed subset of Y. Now, let $B \subset \bigcup_{\alpha \in \Gamma} f\left(X_{\alpha}\right), \Gamma \subset \Lambda$, such that $B \cap f\left(X_{\alpha}\right)$ is closed, for each $\alpha \in \Gamma$. Then $\alpha \in \Gamma$
$f^{-1}\left(B \cap f\left(X_{\alpha}\right)\right)$ is closed in X, for each $\alpha \in \Gamma$; therefore $f^{-1}(B) \cap X_{\alpha}=$ $=f^{-1}\left(B \cap f\left(X_{\alpha}\right)\right) \cap X_{\alpha}$ is closed in X_{α}, for each $\alpha \in \Gamma$. Let $A=f^{-1}(B) \cap$ $\cap\left(\bigcup X_{\alpha}\right)$. Then A is closed in X (because $A \cap X_{\alpha}=f^{-1}(B) \cap X_{\alpha}$, for each $\alpha \in \Gamma$
$\alpha \in \Lambda)$ and $f(A)=B \cap f\left(\bigcup_{\alpha \in \Gamma} X_{\alpha}\right)=\bigcup_{\alpha \in \Gamma}\left(B \cap f\left(X_{\alpha}\right)\right)=B$, which shows that B is closed and completes the proof.

References

[1] D. Burke, R. Engelking and D. Lutzer, Hereditarily closure-preserving collections and metrization, Proc. Amer. Math. Soc., 51 (1975), 483-488.
[2] S. Deo and R. Krishan, On compactly dominated spaces, Acta Math. Hung., 47 (1986), 313-319.
[3] J. Dugundji, Topology, Allyn and Bacon, Inc., (Boston, 1966).
[4] E. A. Michael, Continuous selections I, Amer. Math., 63 (1956), 361-382.
(Received October 23, 1987; revised February 5, 1990)

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA
DAVIS, CALIFORNIA 95616
USA

ATTRACTORS OF SYSTEMS CLOSE TO AUTONOMOUS ONES HAVING A STABLE LIMIT CYCLE

N. V. MINH and T. V. NHUNG (Hanoi)

1. Introduction. M. Farkas [2] has obtained useful explicit estimates for the radius of attractivity of systems close to periodic ones by using quadratic forms as Lyapunov functions. One of his main assumptions is that periodic unperturbed systems have a uniform asymptotically stable nonconstant periodic solution. This condition is needed for applying Yoshizawa's theorem [11, p. 134] to get the estimates mentioned above. The case of systems close to autonomous ones having an asymptotically stable equilibrium state is also considered by Farkas [4]. As interesting illustrations, Farkas' results are applied to some important second order nonlinear differential equations, e.g. Duffing equation [3] and van der Pol equation in case time tends to $-\infty$ [4].

In this paper we consider the case in which unperturbed systems are assumed to be autonomous and to have an asymptotically, orbitally stable nonconstant periodic solution (a stable limit cycle), e.g. van der Pol equation in case time tends to $+\infty$. Unfortunately, Farkas' estimates in [2] are inapplicable to this case, because now the graph of the periodic solution is not a uniform asymptotically stable set. However, if we note that the orbital stability of the closed path of the periodic solution in \mathbf{R}^{n}, say Γ, is equivalent to the stability of the cylinder $\mathbf{R} \times \Gamma$, then $\mathbf{R} \times \Gamma$ is a uniform asymptotically stable set of the autonomous unperturbed system. Therefore, by applying Lyapunov functions and the theorems due to Yoshizawa and La Salle respectively, we can get the inequalities characterizing a uniform asymptotically stable invariant set around the cylinder $\mathbf{R} \times \Gamma$ (but not around the graph of the periodic solution as in Farkas' case, [2]!) and its region of attractivity. To use Farkas' idea of construction of Lyapunov functions in the quadratic forms [2, 4], we shall introduce a local coordinate system [5, 10] into a small "tube" around Γ.
2. Let us consider the autonomous system

$$
\begin{equation*}
\dot{x}=g(x) \tag{2.1}
\end{equation*}
$$

where $=d / d t, t \in \mathbf{R}, x=\operatorname{col}\left(x_{1}, \ldots, x_{n}\right) \in \Omega \subset \mathbf{R}^{n}, \Omega$ is some open region of $\mathbf{R}^{n}, g: \Omega \rightarrow \mathbf{R}^{n}$ is smooth enough, e.g. $g \in C^{2}\left[\Omega, \mathbf{R}^{n}\right]$. Assume further that the system (2.1) has a nonconstant periodic solution $x=p(t)$ of (least) period $\tau>0$ such that its path Γ lies in Ω, and $n-1$ characteristic multipliers of the variational system

$$
\begin{equation*}
\dot{z}=g^{\prime}(p(t)) z \tag{2.2}
\end{equation*}
$$

are in modulus less than one: $\left|\lambda_{i}\right|<1, i=1, \ldots, n-1\left(\lambda_{n}=1\right)$. Under these conditions it is well-known by the theorem of Andronow and Witt (see, e.g., $[7,11])$ that the solution $x=p(t)$ is then asymptotically, orbitally stable with asymptotic phase. Some important generalizations of this theorem can be seen in Hale [5], Hale and Stokes [6], Yoshizawa and Kato [12] and Aulbach [1].

In conjunction with the system (2.1) let us consider the following "neighbouring" system:

$$
\begin{equation*}
\dot{x}=f(t, x) \tag{2.3}
\end{equation*}
$$

where $t \in \mathbf{R}, x \in \Omega, f \in C^{0}\left[\mathbf{R} \times \Omega, \mathbf{R}^{n}\right]$ and $f_{x}^{\prime} \in C^{0}\left[\mathbf{R} \times \Omega, \mathbf{R}^{n^{2}}\right]$. Suppose that for any compact set $Q \subset \Omega$ there exists an $\eta>0$ such that

$$
\begin{equation*}
\|f(t, x)-g(x)\|<\eta, \quad(t, x) \in \mathbf{R} \times Q \tag{2.4}
\end{equation*}
$$

where $\|$.$\| is the Euclidean norm.$
Let a sufficiently small ρ_{1}-neighbourhood $U\left(\Gamma, \rho_{1}\right)$ of Γ be taken such that its closure $\bar{U}\left(\Gamma, \rho_{1}\right) \subset \Omega$ and a local coordinate system $\left(\theta, y_{1}, \ldots, y_{n-1}\right)$ (see, e.g., Hale [5] or Pliss [10]) can be introduced into the tube $U\left(\Gamma, \rho_{1}\right)$ instead of the old $\left(x_{1}, \ldots, x_{n}\right)$. The new coordinates are related to the old ones by the formula

$$
\begin{equation*}
x=p(\theta)+\phi(\theta) y \tag{2.5}
\end{equation*}
$$

where $y=\operatorname{col}\left(y_{1}, \ldots, y_{n-1}\right)$ and ϕ is an $n \times(n-1)$ dimensional matrix.
Differentiating (2.5) with respect to t and solving the system of equations thus obtained for $\dot{\theta}$ and \dot{y}, from (2.1) we get the following new system of differential equations:

$$
\left\{\begin{array}{l}
\dot{\theta}=a(\theta, y), \tag{2.6}\\
\dot{y}=b(\theta, y)
\end{array}\right.
$$

where $a(\theta, y)=1+g_{1}(\theta, y), b(\theta, y)=D(\theta) y+g_{2}(\theta, y)$,

$$
D(\theta)=\phi^{T}(\theta)\left[-\frac{d \phi(\theta)}{d \theta}+\frac{\partial g(p(\theta))}{\partial x} \phi(\theta)\right],
$$

T means transpose, and $g_{1}(\theta, y), g_{2}(\theta, y)$ are continuous in θ, y, τ-periodic in θ, have continuous first derivatives with respect to y, and

$$
\left\{\begin{array}{l}
\left|g_{1}(\theta, y)\right|=O(\|y\|) \text { as }\|y\| \rightarrow 0 \tag{2.7}\\
g_{2}(\theta, 0)=0, \partial g_{2}(\theta, 0) / \partial y=0
\end{array}\right.
$$

(see Hale [5], p. 219).

By (2.5), the periodic solution $x=p(t)$ of the system (2.1) is transformed into the solution $\theta=t, y=0$ of the system (2.6). By our assumptions, it is possible to find a sufficiently small $\rho_{2}>0$ such that in the domain $\theta \in \mathbf{R}$, $\|y\|<\rho_{2}$ we have

$$
\begin{equation*}
1 / 2<\dot{\theta}=a(\theta, y)<2 \tag{2.8}
\end{equation*}
$$

It follows from (2.8) that the map taking t to $\theta(t)$ has an inverse $t: \mathbf{R} \rightarrow \mathbf{R}$, $t=t(\theta)$, and for $\theta \in \mathbf{R},\|y\|<\rho_{2}$

$$
\begin{equation*}
1 / 2<d t / d \theta=1 / a<2 \tag{2.9}
\end{equation*}
$$

(see Hale [5], p. 221-222).
Let us consider the variational system of $\dot{y}=b(\theta(t), y)$ with respect to the solution $\theta=t, y=0$ of the system (2.6), i.e.

$$
\begin{equation*}
\dot{u}=D(t) u \tag{2.10}
\end{equation*}
$$

which is clearly a linear system of order $n-1$ having a continuous coefficient matrix τ-periodic in t. From our assumption that $\left|\lambda_{i}\right|<1, i=1, \ldots, n-1$, and Lemma 2.1 in Hale [5], p. 220, it follows that the characteristic exponents $\beta_{1}, \ldots, \beta_{n-1}$ of the system (2.10) are $\beta_{i}=\left(\log \lambda_{i}\right) / \tau, i=1, \ldots, n-1$, so $\max _{i} \operatorname{Re} \beta_{i}=-\beta<0$. By Floquet's theory the periodic linear system (2.10) is i reducible, i.e. we can find a continuously differentiable, regular, τ-periodic matrix function $S(t)$ such that the transformation $v=S(t) u$ carries (2.10) into the linear system

$$
\begin{equation*}
\dot{v}=B v \quad\left(v \in \mathbf{R}^{n-1}\right) \tag{2.11}
\end{equation*}
$$

with constant coefficients where by our assumptions all the eigenvalues of B, namely $\beta_{1}, \ldots \beta_{n-1}$, have negative real parts. For (2.11) it is possible to find a positive definite quadratic form (with constant coefficients)

$$
V(v)=v^{T} A v=\sum_{i, j=1}^{n-1} a_{i j} v_{i} v_{j}
$$

such that its derivative with respect to (2.11) is negative definite

$$
\begin{equation*}
\dot{V}_{(2.11)}(v) \leqq-\beta\|v\|^{2}, \quad v \in \mathbf{R}^{n-1} \tag{2.12}
\end{equation*}
$$

The form $\bar{V}(t, u)=V(S(t) u)=u^{T}\left(S^{T}(t) A S(t)\right) u$ is clearly a Lyapunov function for (2.10). Putting

$$
W(\theta, y)=\bar{V}(t(\theta), y)=y^{T}\left(S^{T} A S\right) y, \quad S=S(t(\theta))
$$

we are going to show that $W(\theta, y)$ is a Lyapunov function for (2.6) in a sufficiently small neighbourhood of the line $\theta \in \mathbf{R}, y=0$ in the (θ, y)-space.

Taking into account (2.9) and the estimates

$$
\begin{gather*}
\left|\frac{\partial W}{\partial \theta}\right| \leqq 2\left|\frac{\partial W}{\partial t}\right| \leqq 4 \bar{C} C^{\prime}\|A\|\|y\|^{2} \quad\left(\theta \in \mathbf{R},\|y\|<\rho_{2}\right), \tag{2.13}\\
\left\|\operatorname{grad}_{y} W\right\| \leqq 2\|A\|(\bar{C})^{2}\|y\| \quad\left(\theta \in \mathbf{R},\|y\|<\rho_{2}\right) \tag{2.14}
\end{gather*}
$$

where $\bar{C}:=\max _{t \in[0, \tau)}\|S(t)\|, C^{\prime}:=\max _{t \in[0 . \tau)}\left\|S^{\prime}(t)\right\|$,

$$
\begin{align*}
\left|g_{1}\right| \leqq K\|y\|, & K=\operatorname{const}\left(\theta \in \mathbf{R},\|y\|<\rho_{3}\right), \tag{2.15}\\
\left\|g_{2}\right\| \leqq M\|y\|^{2}, & M=\operatorname{const}\left(\theta \in \mathbf{R},\|y\|<\rho_{3}\right), \tag{2.16}
\end{align*}
$$

we get

$$
\begin{gather*}
\dot{W}_{(2.6)}(\theta, y)=\frac{\partial W}{\partial \theta} a(\theta, y)+\left(\operatorname{grad}_{y} W, b(\theta, y)\right)= \tag{2.17}\\
=\frac{\partial W}{\partial \theta}+\left(\operatorname{grad}_{y} W, D(\theta) y\right)+\frac{\partial W}{\partial \theta} g_{1}+\left(\operatorname{grad}_{y} W, g_{2}\right)= \\
=\dot{V}_{(2.11)}(S(t) y) \cdot \frac{d t}{d \theta}+\frac{\partial W}{\partial \theta} g_{1}+\left(\operatorname{grad}_{y} W, g_{2}\right) \leqq \\
\leqq\|y\|^{2}\left[-\frac{\beta \lambda}{2}+2 \bar{C}\|A\| \cdot\|y\|\left(2 C^{\prime} K+M \bar{C}\right)\right]
\end{gather*}
$$

for all $\theta \in \mathbf{R}$ and $\|y\|<\min \left(\rho_{2}, \rho_{3}\right)$ where $\lambda:=\min _{t \in[0, \tau)} \lambda_{s}(t)>0, \lambda_{s}(t)$ denotes the least eigenvalue of the τ-periodic positive definite matrix function $S^{T}(t) S(t)$. Therefore

$$
\begin{equation*}
\dot{W}_{(2.6)}(\theta, y)<0 \tag{2.18}
\end{equation*}
$$

in the domain $\theta \in \mathbf{R}$ and

$$
\|y\|<\min \left(\rho_{2}, \rho_{3}, \frac{\beta \lambda}{4 \bar{C}\|A\|\left(2 C^{\prime} K+M \bar{C}\right)}\right) .
$$

3. In this last part, by using the stationary Lyapunov function $\bar{W}(t, \theta, y) \equiv W(\theta, y), t \in \mathbf{R}$, where W is constructed above, and the theorems of Yoshizawa and La Salle, we shall construct a uniform asymptotically stable invariant set for (2.3) in $\mathbf{R} \times \mathbf{R}^{n}$ (as $t \rightarrow+\infty$) containing the cylinder $\mathbf{R} \times \Gamma$, and its region of attractivity for η small.

Suppose that the system corresponding to (2.3) in the local coordinate system is of the form

$$
\left\{\begin{array}{l}
\dot{\theta}=f_{1}(t, \theta, y), \tag{3.1}\\
\dot{y}=f_{2}(t, \theta, y)
\end{array}\right.
$$

where $f_{1}: \mathbf{R} \times \mathbf{R} \times\left\{\|y\|<\rho_{2}\right\} \rightarrow \mathbf{R} f_{2}: \mathbf{R} \times \mathbf{R} \times\left\{\|y\|<\rho_{2}\right\} \rightarrow \mathbf{R}^{n-1}$ (see the explicit form of f_{1} and f_{2} in Hale [5], p. 233). By our assumption (2.4), for each set N of the form $N=\mathbf{R} \times N_{y}$, where N_{y} is a closed set contained in $\left\{\|y\|<\rho_{2}\right\}$, there exists an $\eta_{1}>0$ such that

$$
\left\{\begin{array}{l}
\left|f_{1}(t, \theta, y)-a(\theta, y)\right|<\eta_{1} \tag{3.2}\\
\left\|f_{2}(t, \theta, y)-b(\theta, y)\right\|<\eta_{1}
\end{array}\right.
$$

for all $(t, \theta, y) \in \mathbf{R} \times \mathbf{R} \times N_{y}$.
Taking the derivative of the Lyapunov function W with respect to the system (3.1) we get

$$
\begin{align*}
& \dot{W}_{(3.1)}(\theta, y)=\frac{\partial W}{\partial \theta} f_{1}+\left(\operatorname{grad}_{y} W, f_{2}\right)= \tag{3.3}\\
& =\frac{\partial W}{\partial \theta} a+\left(\operatorname{grad}_{y} W, b\right)+\frac{\partial W}{\partial \theta}\left(f_{1}-a\right)+ \\
+ & \left(\operatorname{grad}_{y} W, f_{2}-b\right)=\dot{W}_{(2.6)}(\theta, y)+\delta(\theta, y)
\end{align*}
$$

where

$$
\begin{gather*}
\delta(\theta, y)=\frac{\partial W}{\partial \theta}\left(f_{1}-a\right)+\left(\operatorname{grad}_{y} W, f_{2}-b\right)= \tag{3.4}\\
\quad=\frac{\partial W}{\partial t} \cdot \frac{\left(f_{1}-a\right)}{a}+\left(\operatorname{grad}_{y} W, f_{2}-b\right)
\end{gather*}
$$

As in (2.13), we have the estimate

$$
\begin{equation*}
\left|\frac{\partial W}{\partial t}(\theta, y)\right| \leqq 2 \bar{C} C^{\prime}\|A\|\|y\|^{2} \quad\left(\theta \in \mathbf{R},\|y\|<\rho_{2}\right) \tag{3.5}
\end{equation*}
$$

From (2.9), (2.14), (3.2), (3.4) and (3.5) it follows that

$$
\begin{equation*}
|\delta(\theta, y)|<2 \eta_{1} \bar{C}\|A\|\|y\|\left(2 C^{\prime}\|y\|+\bar{C}\right) \tag{3.6}
\end{equation*}
$$

for every $\theta \in \mathbf{R}$ and $\|y\|<\rho_{2} / 2$ where η_{1} is the positive constant corresponding to the set $N=\mathbf{R} \times\left\{\|y\| \leqq \rho_{2} / 2\right\}$.

Thus, by (2.17), (3.3) and (3.6) we get

$$
\begin{aligned}
\dot{W}_{(3.1)}(\theta, y)< & \|y\|^{2}\left[-\frac{\beta \lambda}{2}+2 \bar{C}\|A\|\|y\|\left(2 C^{\prime} K+M \bar{C}\right)\right]+ \\
& +2 \eta_{1} \bar{C}\|A\|\|y\|\left(2 C^{\prime}\|y\|+\bar{C}\right)
\end{aligned}
$$

for all $\theta \in \mathbf{R}$ and $\|y\|<\min \left(\rho_{2} / 2, \rho_{3}\right)$, so

$$
\dot{W}_{(3.1)}(\theta, y)<-\frac{\beta \lambda\|y\|^{2}}{4}+3 \eta_{1}(\bar{C})^{2}\|A\|\|y\|
$$

for all $\theta \in \mathbf{R}$ and

$$
\|y\|<d_{2}:=\min \left(\rho_{2} / 2, \rho_{3}, \frac{\bar{C}}{4 C^{\prime}}, \frac{\beta \lambda}{8 \bar{C}\|A\|\left(2 C^{\prime} K+M \bar{C}\right)}\right) .
$$

Therefore

$$
\begin{equation*}
\dot{W}_{(3.1)}(\theta, y)<0 \tag{3.7}
\end{equation*}
$$

in the domain

$$
\begin{equation*}
\theta \in \mathbf{R}, \quad d_{1}<\|y\|<d_{2} \tag{3.8}
\end{equation*}
$$

where $d_{1}:=12 \eta_{1}(\bar{C})^{2}\|A\| /(\beta \lambda)$. The set of y 's satisfying condition (3.8) is not empty if $d_{1}<d_{2}$, i.e. if

$$
\begin{equation*}
0<\eta_{1}<\eta_{0} \tag{3.9}
\end{equation*}
$$

where

$$
\eta_{0}:=\frac{\beta \lambda}{12(\bar{C})^{2}\|A\|} \min \left(\rho_{2} / 2, \rho_{3}, \frac{\bar{C}}{4 C^{\prime}}, \frac{\beta \lambda}{8 \bar{C}\|A\|\left(2 C^{\prime} K+M \bar{C}\right)}\right) .
$$

Let us denote the least and the largest eigenvalue of the τ-periodic positive definite matrix $S^{T}(t) A S(t)$ by $\lambda_{1}(t)$ and $\lambda_{2}(t)$, respectively, and let

$$
\alpha_{1}:=\min _{\theta \in \mathbf{R},\|y\|=d_{2}} W(\theta, y), \quad \alpha_{2}:=\max _{\theta \in \mathbf{R},\|y\|=d_{1}} W(\theta, y) .
$$

Then it is easy to see that

$$
\lambda_{1}:=\min _{t \in[0, \tau)} \lambda_{1}(t)>0, \quad \lambda_{2}:=\max _{t \in[0, \tau)} \lambda_{2}(t)>0,
$$

and $\alpha_{1}=\lambda_{1} d_{2}^{2}, \alpha_{2}=\lambda_{2} d_{1}^{2}$. Let us denote

$$
\begin{aligned}
A_{\eta_{1}} & =\left\{(\theta, y) \in \mathbf{R} \times \mathbf{R}^{n-1}: W(\theta, y) \leqq \alpha_{2}\right\}, \\
B & =\left\{(\theta, y) \in \mathbf{R} \times \mathbf{R}^{n-1}: W(\theta, y)<\alpha_{1}\right\} .
\end{aligned}
$$

Now we are in a position to formulate the following
Theorem. Suppose that all conditions mentioned before are satisfied and η_{1} is such that

$$
\begin{equation*}
0<\eta_{1}<\left(\lambda_{1} / \lambda_{2}\right)^{1 / 2} \eta_{0} . \tag{3.10}
\end{equation*}
$$

Then the set $\mathbf{R} \times A_{\eta_{1}}$ is a uniform asymptotically stable invariant set of (3.1) (as $t \rightarrow+\infty$) and its region of attractivity contains the set $\mathbf{R} \times B$. Returning
to the original variables x_{1}, \ldots, x_{n} (see (2.5)), from the sets $\mathbf{R} \times A_{\eta_{1}}$ and $\mathbf{R} \times B$ we get, respectively, a uniform asymptotically stable invariant cylindrical set \tilde{A}_{η} in $\mathbf{R} \times \mathbf{R}^{n}$ for the system (2.3) around the cylinder $\mathbf{R} \times \Gamma$ and a cylindrical set \tilde{B} contained in the domain of attractivity of \tilde{A}_{η}.

To prove our theorem let us first note that $\lambda_{1} \leqq \lambda_{2}$, hence (3.10) implies (3.9) and $\alpha_{2}<\alpha_{1}$, thus $A_{\eta_{1}} \subset B$. Then $B-A_{\eta_{1}}$ is contained in the domain defined by (3.8), so (3.7) holds in $B-A_{\eta_{1}}$. After that, to establish the uniform asymptotic stability of the set $\mathbf{R} \times A_{\eta_{1}}$, we can use the stationary Lyapunov function $\bar{W}(t, \theta, y) \equiv W(\theta, y)$ for $t \in \mathbf{R}$ and the proof of Yoshizawa's theorem [11, p. 134].

Remarks. 1. $\mathbf{R} \times \Gamma \subset \tilde{A}_{\eta}$ and $\tilde{A}_{\eta} \rightarrow \mathbf{R} \times \Gamma$ as $\eta \rightarrow 0$.
2. Unlike in Farkas' case, we can only construct a uniform asymptotically stable invariant set \tilde{A}_{η} around the cylinder $\mathbf{R} \times \Gamma$, but not around the graph of the periodic solution $x=p(t)$ of (2.1).

References

[1] B. Aulbach, J. Diff. Eqs., 39 (1981), 345-377.
[2] M. Farkas, Nonlinear Analysis, 5 (1981), 845-851.
[3] M. Farkas, Ann. Mat. Pura Appl., 128 (1981), 123-132.
[4] M. Farkas, Acta Sci. Math. (Szeged), 44 (1982), 329-334.
[5] J. K. Hale, Ordinary Differential Equations, 2nd edition, Robert E. Krieger Publishing Company (Malabar, Florida, 1980).
[6] J. K. Hale and A. D. Stokes, Arch. Rational Mech. Anal., 6 (1960), 133-170.
[7] H. W. Knobloch and F. Kappel, Gewöhnliche Differentialgleichungen, Teubner (Stuttgart, 1974).
[8] J. P. La Salle, Nonlinear Analysis, 1 (1976), 83-90.
[9] N. V. Minh and T. V. Nhung, The attractor of van der Pol equation under bounded perturbation (to appear).
[10] V. A. Pliss, Non-local problems in the theory of oscillations (in Russian) Nauka (Moscow, 1964). English edition by Academic Press (New York, 1966).
[11] T. Yoshizawa, Stability theory by Lyapunov's second method, Math. Soc. Japan, (Tokyo, 1966).
[12] T. Yoshizawa and J. Kato, in Differential Equations and Dynamical Systems, Academic Press (New York-London, 1967).
(Received October 29, 1987)
FACULTY OF MATHEMATICS AND MECHANICS
UNIVERSITY OF HANOI
KHOA TOAN, DAI HOC TONG HOP HANOI,
VIETNAM

ON THE MEANS OF THE ARGUMENT OF THE RIEMANN ZETA-FUNCTION ON THE CRITICAL LINE

L. GROENEWALD (Bloemfontein)

1. Let $\zeta(s)$ denote the Riemann zeta-function and put

$$
\pi S(t)=\Delta_{L} \arg \zeta(s)
$$

where Δ_{L} denotes the variation in the argument of $\zeta(s)$ along the polygonal line L extending from 2 to $2+i t$ and then to $\frac{1}{2}+i t$. Since $\arg \zeta(2)=0$, we can express $S(t)$ in the form $\pi S(t)=\arg \zeta\left(\frac{1}{2}+i t\right)$ provided the argument is defined by continuous variation along L ($[1]$, p. 98).

In [2] Ghosh proved for $k=1$ and k an even number that

$$
\begin{equation*}
\int_{T}^{T+H}|S(t)|^{k} d t \sim \frac{2^{k}}{\sqrt{\pi}} \Gamma\left(\frac{k+1}{2}\right)\left(\frac{1}{2 \pi}\right)^{k} H(\log \log T)^{k / 2}, \quad T \rightarrow \infty \tag{1}
\end{equation*}
$$

with an error term which holds uniformly in $k \ll(\log \log T)^{1 / 6}$.
Ghosh's main theorem in [2] on sign changes of $S(t)$ in the interval $(T, T+H)$ is decuced from these latter estimates. For recent conditional results on sign changes of $S(t)$, see [3].

Ghosh [2] mentions without proof that the asymptotic relation (1) can be extended to all integral values of k. It is the aim of this paper to prove Ghosh's claim.

Theorem. Let H be a function of T such that $T^{\alpha} \leqq H(T) \leqq T$, where $\frac{1}{2}<\alpha \leqq 1$ for all $T \geqq 1$. Then, for any positive integer k

$$
\int_{T}^{T+H}|S(t)|^{k} d t \sim \frac{2^{k}}{\sqrt{\pi}} \Gamma\left(\frac{k+1}{2}\right)\left(\frac{1}{2 \pi}\right)^{k} H(\log \log T)^{k / 2}, \quad T \rightarrow \infty .
$$

2. We shall need the following:

Lemma 2.1.

$$
\int_{0}^{\infty} \frac{1}{u^{2}} \sum_{j=1}^{\infty} \frac{(-1)^{j+1}(2 u)^{2 j}(2 k+2 j)!}{(2 j)!(k+j)!} d u=2^{2 k+1} k!\sqrt{\pi}, \quad k=0,1,2, \ldots .
$$

Proof. Since

$$
\begin{gathered}
\frac{(2 k+2 j)!}{(2 j)!(k+j)!}= \\
=\frac{(2 k+2 j)(2 k+2 j-2) \ldots(2 j+2)(2 j)!(2 k+2 j-1)(2 k+2 j-3) \ldots(2 j+1)}{(k+j)(k+j-1) \ldots(j+1)(2 j)!j!}= \\
=\frac{2^{k}(2 k+2 j-1)(2 k+2 j-3) \ldots(2 j+1)}{j!}
\end{gathered}
$$

if $k \geqq 1$, it follows, on substituting z for $2 u$, that the integral above can be written as

$$
2^{k+1} \int_{0}^{\infty} \frac{1}{z^{2}} F_{2 k-1}(z) d z
$$

where

$$
\begin{equation*}
F_{-1}(z)=\sum_{j=1}^{\infty}(-1)^{j+1} \frac{z^{2 j}}{j!}=1-e^{-z^{2}} \tag{2}
\end{equation*}
$$

and

$$
F_{2 k-1}(z)=\sum_{j=1}^{\infty}(-1)^{j+1} \frac{z^{2 j}}{j!}(2 k+2 j-1)(2 k+2 j-3) \ldots(2 j+1), \quad k \geqq 1
$$

Note that

$$
\begin{equation*}
F_{2 k+1}(z)=\frac{1}{z^{2 k}} \frac{d}{d z}\left(z^{2 k+1} F_{2 k-1}(z)\right) \quad \text { if } \quad k \geqq 0 \tag{3}
\end{equation*}
$$

Every $F_{2 k-1}(z)$ can be written in the form

$$
\begin{equation*}
F_{2 k-1}(z)=\sum_{i=0}^{k} a_{k i} z^{i} F_{-1}^{(i)}(z) \tag{4}
\end{equation*}
$$

where the $a_{k i}$ are constants. Indeed, (4) is obvious if $k=0$. If (4) holds for $k=n$, then

$$
\begin{aligned}
& F_{2 n+1}(z)=\frac{1}{z^{2 n}} \frac{d}{d z}\left(z^{2 n+1} \sum_{i=0}^{n} a_{n i} z^{i} F_{-1}^{(i)}(z)\right)= \\
= & \sum_{i=0}^{n}(2 n+1+i) a_{n i} z^{i} F_{-1}^{(i)}(z)+\sum_{i=0}^{n} a_{n i} z^{i+1} F_{-1}^{(i+1)}(z)
\end{aligned}
$$

so that (4) holds for $k=n+1$. It follows by induction that (4) holds for every k.

If $i \geqq 1$, then $F_{-1}^{(i)}(z)$ can be written as $P_{i}(z) e^{-z^{2}}$ for some polynomial $P_{i}(z)$. Therefore, it follows from (4), that for $k \geqq 0$,

$$
\lim _{z \rightarrow 0} \frac{F_{2 k-1}(z)}{z}=\lim _{z \rightarrow \infty} \frac{F_{2 k-1}(z)}{z}=0 .
$$

Consequently, by (3) integration by parts yields for $k \geqq 1$

$$
A_{k}:=\int_{0}^{\infty} \frac{1}{z^{2}} F_{2 k-1}(z) d z=\int_{0}^{\infty} \frac{1}{z^{2 k}} \frac{d}{d z}\left(z^{2 k-1} F_{2 k-3}(z)\right) d z=2 k \int_{0}^{\infty} \frac{1}{z^{2}} F_{2 k-3}(z) d z
$$

We iterate the identity $A_{k}=2 k A_{k-1}$ for $k=1,2, \ldots$ to show that

$$
A_{k}=2^{k} k!A_{0}=2^{k} k!\int_{0}^{\infty} \frac{F_{-1}(z)}{z^{2}} d z=2^{k} k!\int_{0}^{\infty} \frac{1-e^{-z^{2}}}{z^{2}} d z
$$

The result follows on noting that

$$
\int_{0}^{\infty} \frac{1}{z^{2}}\left(1-e^{-z^{2}}\right) d z=2 \int_{0}^{\infty} e^{-z^{2}} d z=\sqrt{\pi}
$$

3. Proof of the Theorem. Write $W(t)=2 \pi(\log \log T)^{-\frac{1}{2}} S(t)$. If we put $f(T)=(\log \log \log T)^{\frac{1}{2}}$, it follows from Ghosh [2] that

$$
\begin{equation*}
\int_{T}^{T+H}|W(t)|^{2 j} d t=\frac{(2 j)!}{j!} H+O\left(\frac{H}{(\log \log T)^{\frac{1}{4}}}\right) \tag{5}
\end{equation*}
$$

uniformly in $1 \leqq j \leqq f(T)$. In view of (1), it suffices to show that for fixed $k \geqq 1$

$$
\begin{equation*}
\int_{T}^{T+H}|W(t)|^{2 k+1} d t=\frac{2^{2 k+1}}{\sqrt{\pi}} k!H+o_{k}(H), \quad T \rightarrow \infty . \tag{6}
\end{equation*}
$$

Following Ghosh [2], we note that

$$
|F|=\frac{2}{\pi} \int_{0}^{\infty}\left(\frac{\sin |F| u}{u}\right)^{2} d u
$$

so that the left hand side of (6) can be written as

$$
\begin{equation*}
\frac{2}{\pi} \int_{T}^{T+H}|W(t)|^{2 k} \int_{0}^{\lambda}\left(\frac{\sin |W(t)| u}{u}\right)^{2} d u+O\left(\frac{1}{\lambda} \int_{T}^{T+H}|W(t)|^{2 k} d t\right) \tag{7}
\end{equation*}
$$

for every $\lambda>0$.
Let $N=N(T)$ be such that $N(T) \rightarrow \infty$ as $T \rightarrow \infty$ and $N(T)+$ $+k<f(T)$ for all T sufficiently large. Put $2 \lambda^{3}=N$. Since $2 \sin ^{2} x=$ $=\sum_{j=1}^{\infty}(-1)^{j+1}(2 x)^{2 j} /(2 j)!$, we can write

$$
\sin ^{2}|W(t)| u=\frac{1}{2} \sum_{j=1}^{N} \frac{(-1)^{j+1}(2|W(t)| u)^{2 j}}{(2 j)!}+O\left(\frac{(2|W(t)| u)^{2 N+2}}{(2 N+2)!}\right)
$$

and (7) becomes

$$
\begin{align*}
& \frac{1}{\pi} \int_{0}^{\lambda} \frac{1}{u^{2}} \int_{T}^{T+H}|W(t)|^{2 k} \sum_{j=1}^{N} \frac{(-1)^{j+1}(2 u)^{2 j}}{(2 j)!}|W(t)|^{2 j} d t d u+ \tag{8}\\
& +O\left(\frac{4^{N}}{(2 N+2)!} \int_{0}^{\lambda} u^{2 N} \int_{T}^{T+H}|W(t)|^{2(N+1+k)} d t\right)+o(H)
\end{align*}
$$

By (5), the main term in (8) can be written as

$$
\begin{gathered}
\frac{H}{\pi} \int_{0}^{\lambda} \frac{1}{u^{2}} \sum_{j=1}^{N} \frac{(-1)^{j+1}(2 u)^{2 j}}{(2 j)!} \frac{(2 k+2 j)!}{(k+j)!} d u+o_{k}(H)= \\
=\frac{H}{\pi} \int_{0}^{\lambda} \frac{1}{u^{2}} \sum_{j=1}^{\infty} a_{j}(u) d u+O\left(H \int_{0}^{\infty} \frac{1}{u^{2}}\left|\sum_{j=N+1}^{\infty} a_{j}(u)\right| d u\right)+o_{k}(H)
\end{gathered}
$$

where $a_{j}(u)$ is the j th term under summation.
By Lemma 2.1, the above can be written as

$$
\frac{2^{2 k+1}}{\sqrt{\pi}} k!H+o_{k}(H), \quad T \rightarrow \infty
$$

It remains to estimate the error term in (8). By (5), this is

$$
\ll \frac{4^{N}}{(2 N+2)!} \frac{\lambda^{2 N+1}}{2 N+1} \frac{(2 N+2+2 k)!}{(N+1+k)!} H \ll \frac{\lambda^{3 N}}{(2 N)!} H \ll\left(\frac{\lambda^{3}}{N}\right)^{N} H=o(H) .
$$

The proof of the theorem is complete.
Acknowledgement. I thank Professor W. L. Fouché for suggesting this method of proof and for several helpful discussions.

References

[1] H. Davenport, Multiplicative Number Theory, 2nd ed., Springer-Verlag (New York, 1980).
[2] A. Ghosh, On Riemann's zeta-function-sign changes of $S(T)$, Recent Progress in Analytic Number Theory, Vol. I, edited by H. Halberstam and C. Hooley, Academic Press (London, 1981).
[3] J. Mueller, On the Riemann Zeta-function $\zeta(s)$ - gaps between sign changes of $S(t)$, Mathematika, 29 (1983), 264-269.
[4] A. Selberg, Contribution to the theory of the Riemann zeta-function, Arch. Math. Naturvid, 48 (1946), 89-155.
(Received November 2, 1987)

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF THE ORANGE FREE STATE
BLOEMFONTEIN
9300
REPUBLIC OF SOUTH AFRICA

WHICH TRIANGULAR NUMBERS ARE PRODUCTS OF THREE CONSECUTIVE INTEGERS?

S. P. MOHANTY (Kanpur)

Introduction

Mordell [2] has shown that all integer solutions of the equation $y(y+$ $+1)=x(x+1)(x+2)$ are $x=0,-1,-2, y=0,-1 ; x=1, y=2,-3$; $x=5, y=14,-15$. To find all tetrahedral numbers which are triangular, Avanesov [1] solved the equation $3 y(y+1)=x(x+1)(x+2)$ and obtained all positive integer solutions given by $x=1, y=1 ; x=3, y=4 ; x=8$, $y=15 ; x=20, y=55$; and $x=34, y=119$. In this paper we try to solve the diophantine equation $y(y+1)=2 x(x+1)(x+2)$ in order to get all triangular numbers which are products of three consecutive integers. The result is contained in the following theorem.

Theorem 1. Let the $n^{\text {th }}$ triangular number $\frac{n(n+1)}{2}$ be denoted by T_{n}. Then $T_{3}, T_{15}, T_{20}, T_{44}, T_{608}$, and T_{22736} are the only triangular numbers that are products of three consecutive integers.

Proof. We consider the diophantine equation

$$
\begin{equation*}
y(y+1)=2 x(x+1)(x+2), \tag{1}
\end{equation*}
$$

where x and y are positive integers. Substituting $Y=2 y+1, X=2 x+2$ in (1) we get

$$
\begin{equation*}
Y^{2}=X^{3}-4 X+1, \quad X \geqq 4, Y \geqq 3 . \tag{2}
\end{equation*}
$$

From Delone and Fadeev's "The theory of irrationalities of the third degree" we note the following facts in $Q(\theta)$ given by

$$
\begin{equation*}
f(\theta)=\theta^{3}-4 \theta+1=0 . \tag{3}
\end{equation*}
$$

(i) The integers in $Q(\theta)$ are $a+b \theta+c \theta^{2}$, where a, b, c are rational integers.
(ii) The class number $h=1$ and hence unique factorization exists in $Q(\theta)$.
(iii) The discriminant $D(\theta)$ being $229>0, f(\theta)=0$ has three real roots. Hence there are two fundamental units.

Using Billevich's algorithm we find the two fundamental units to be θ and $\theta-2$. Since $\frac{1}{\theta}=-\theta^{2}+4,-\theta^{2}+4$ and $\theta-2$ are taken as the fundamental units for simplifying the calculations.

Equation (2) can be written as

$$
\begin{equation*}
Y^{2}=(X-\theta)\left(X^{2}+\theta X+\theta^{2}-4\right) . \tag{4}
\end{equation*}
$$

Let π be a common prime factor of $X-\theta$ and $X^{2}+\theta X+\theta^{2}-4$. Then $X \equiv \theta(\bmod \pi)$ and hence $3 \theta^{2}-4 \equiv 0(\bmod \pi)$. Since $\left|N\left(3 \theta^{2}-4\right)\right|=229$ is a prime, $3 \theta^{2}-4$ is the only possible common prime divisor and we have

$$
\begin{equation*}
X-\theta= \pm\left(3 \theta^{2}-4\right)^{n} \varepsilon^{p} \eta^{q}\left(a+b \theta+c \theta^{2}\right)^{2} \tag{5}
\end{equation*}
$$

where $\varepsilon=\theta-2, \eta=-\theta^{2}+4$ and $n, p, q \in\{0,1\}$ as the other powers can be absorbed in the square term.

Taking norm on equation (5) with $n=1$ we see that $Y^{2}=X^{3}-4 X+1=$ $=229 Z^{2}$ which is clearly impossible. Hence

$$
\begin{equation*}
X-\theta= \pm \varepsilon^{p} \eta^{q}\left(a+b \theta+c \theta^{2}\right)^{2} \tag{6}
\end{equation*}
$$

has four possibilities $(p, q)=(0,0),(1,0),(0,1),(1,1)$. We consider each case separately.

Case 1: $(p, q)=(0,0)$. Using (3) and expanding the right hand side of (6) we get

$$
\begin{gather*}
a^{2}-2 b c= \pm X \tag{7}\\
2 a b+8 b c-c^{2}=\mp 1, \\
b^{2}+4 c^{2}+2 a c=0
\end{gather*}
$$

From (7) a is even as X is even. From (8) c is odd. From (9) b is even. Substituting $a=2 a_{1}, b=2 b_{1}$ in (8) and taking congruence $\bmod 4$, we see that the positive sign on the right hand side is impossible. Hence,

$$
\begin{gather*}
a^{2}-2 b c=X, \tag{10}\\
2 a b+8 b c-c^{2}=-1 . \tag{11}
\end{gather*}
$$

From (9) we get $\left(\frac{b}{2}\right)^{2}=-c\left(c+\frac{a}{2}\right)$. Since $\left(\frac{a}{2}, c\right)=1$ implies $\left(c, \frac{a}{2}+c\right)=1$, we take $-c=u^{2}, \frac{a}{2}+c=v^{2}$ or $c=u^{2}, \frac{a}{2}+c=-v^{2}$ and $b= \pm 2 u v$. Then (11) yields $\pm 8 u v\left(v^{2}-u^{2}\right)-u^{4}=-1$ or $\pm 8 u v\left(u^{2}-v^{2}\right)-u^{4}=-1$.

In either case u divides the left hand side whence $u= \pm 1$. Hence $\pm 8 v\left(v^{2}-1\right)=0$. Either $v=0$ or $v= \pm 1$. Taking $v=0, u= \pm 1$ we get $c= \pm 1, a=\mp 2, b=0$. Again $v= \pm 1$ and $u= \pm 1$ yield $c=-1, a=4$ or $c=1, a=-4 ; b= \pm 2$. Hence $(a, b, c)=(2,0,-1),(-2,0,1),(4,2,-1)$, $(4,-2,-1),(-4,2,1),(-4,-2,1)$. Then $X=a^{2}-2 b c$ implies $X=4,12,20$ or $x=1,5,9$. Correspondingly $y=3,20$, and 44 .

Case 2: $(p, q)=(0,1)$. Using (3) and expanding the right hand side of $X-\theta= \pm\left(4-\theta^{2}\right)\left(a+b \theta+c \theta^{2}\right)^{2}$ we get

$$
\begin{equation*}
4 a^{2}-c^{2}+2 a b= \pm X \tag{12}
\end{equation*}
$$

$$
\begin{gather*}
b^{2}+4 c^{2}+2 a c=\mp 1 \tag{13}\\
a^{2}-2 b c=0 \tag{14}
\end{gather*}
$$

From (12), (13) and (14) it is clear that a, b, c are even, odd and even, respectively. Therefore negative sign is not possible on the right hand side of (13). Hence we have

$$
\begin{gather*}
b^{2}+4 c^{2}+2 a c=1 \tag{15}\\
4 a^{2}-c^{2}+2 a b=-X \tag{16}
\end{gather*}
$$

Using (14), (15) and (16) we see that
(i) $a \neq 0, c \neq 0$.
(ii) b and c have same sign while a and c have opposite sign.
(iii) if (a, b, c) is a solution so is $(-a,-b,-c)$ and they yield the same value for X.

Hence without loss of generality we may assume b and c to be positive. Therefore a is negative. Since $a^{2}=2 c \cdot b$ and $(2 c, b)=1$, take $2 c=u^{2}, b=v^{2}$ and $a=-u v$, where u and v are of same sign. Substituting now the value of a, b, c in terms of u and v in (15) we get

$$
\begin{equation*}
u^{4}+v^{4}-u^{3} v=1, \quad u \neq 0 \tag{17}
\end{equation*}
$$

Taking u and v to be positive and writing (17) in two different ways as $u^{3}(u-v)+v^{4}=1$ and $u^{4}+v\left(v^{3}-u^{3}\right)=1$ we see that neither $u>v$ nor $v>u$. Again $u=v$ is impossible because u is even and v is odd. If u and v are both negative, then setting $u=-u_{1}, v=-v_{1}$ in (17) we obtain $u_{1}^{4}+v_{1}^{4}-u_{1}^{3} v_{1}=1$ with u_{1}, v_{1} positive which is the same equation as (17). Thus, (17) has no integral solutions $u \neq 0$.

Case 3: $(p, q)=(1,1)$. We have $X-\theta= \pm(\theta-2)\left(4-\theta^{2}\right)\left(a+b \theta+c \theta^{2}\right)^{2}$ or

$$
\begin{equation*}
\theta X-\theta^{2}= \pm(\theta-2)\left(a+b \theta+c \theta^{2}\right)^{2} \tag{18}
\end{equation*}
$$

Expanding the right hand side of (18) and using $\theta^{3}-4 \theta+1=0$ we get

$$
\begin{gather*}
a^{2}+4 b^{2}+18 c^{2}-4 a b-18 b c+8 a c= \pm X \tag{19}\\
-2 b^{2}-9 c^{2}+2 a b+8 b c-4 a c=\mp 1 \tag{20}\\
2 a^{2}+b^{2}+4 c^{2}-4 b c+2 a c=0 \tag{21}
\end{gather*}
$$

Since a is even, c is odd and b is even, the positive sign on the right hand side of (20) is impossible by congruence modulo 4 . So we have

$$
\begin{equation*}
a^{2}-2 b c=X-2 \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
4 a^{2}-c^{2}+2 a b=-1 \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
(b-2 c)^{2}=-2 a(a+c) \tag{24}
\end{equation*}
$$

Using the fact that $a+c$ is odd we have $a=0$ if and only if $b=2 c$. In this case $(a, b, c)=(0,2,1)$ or $(0,-2,-1)$ and $X=-2$, i.e., $x=-2$. Suppose $a \neq 0$ i.e., $b \neq 2 c$. Then from (23), $(a, c)=1$. Now $(b-2 c)^{2}=-2 a(a+c)$ with $(a, a+c)=1$ yielding

$$
-2 a=u^{2}, a+c=v^{2}, b-2 c= \pm u v
$$

or

$$
2 a=u^{2}, a+c=-v^{2}, b-2 c= \pm u v .
$$

Substituting the values of a, b, c in (23) we get

$$
\left(u^{2} \pm 2 u v\right)^{2}+8 u^{2} v^{2}+4 v^{4}=4
$$

which is impossible for $u \neq 0$ and $v \neq 0$.
Case 4: $(p, q)=(1,0)$. Expanding the right hand side of $X-\theta=$ $= \pm(\theta-2)\left(a+b \theta+c \theta^{2}\right)^{2}$ and equating the coefficients of like powers as before we get

$$
\begin{gather*}
-2 a^{2}-b^{2}-4 c^{2}+4 b c-2 a c= \pm X, \tag{25}\\
a^{2}+4 b^{2}+18 c^{2}-4 a b-18 b c+8 a c=\mp 1, \tag{26}\\
-2 b^{2}-9 c^{2}+2 a b+8 b c-4 a c=0 . \tag{27}
\end{gather*}
$$

We see that b is even, a is odd and c is even from (25), (26) and (27), respectively. Taking congruence mod 4 in (26) negative sign on the right hand side of (26) is ruled out. Therefore, we have

$$
\begin{gather*}
a^{2}-2 b c=1, \tag{28}\\
-4 a^{2}+c^{2}-2 a b=-2 X \tag{29}
\end{gather*}
$$

and
(30) $c_{1}^{2}=\left(2 c_{1}-b_{1}\right)\left(-a+2 b_{1}-4 c_{1}\right)$, where $b=2 b_{1}$ and $c=2 c_{1}$.

From (28) we see that b and c are of the same sign. Since (a, b, c) and $(-a,-b,-c)$ appear as solutions we can take b and c to be both positive. Since $\left(2 c_{1}-b_{1},-a+2 b_{1}-4 c_{1}\right)=1$ we have

$$
\begin{equation*}
2 c_{1}-b_{1}=u^{2}, \quad-a+2 b_{1}-4 c_{1}=v^{2}, \quad c_{1}= \pm u v \tag{31}
\end{equation*}
$$

or

$$
\begin{equation*}
b_{1}-2 c_{1}=u^{2}, \quad a-2 b_{1}+4 c_{1}=v^{2}, \quad c_{1}= \pm u v . \tag{32}
\end{equation*}
$$

We note that u and v have opposite sign if $c_{1}=-u v$ and u and v are of same sign if $c_{1}=u v$.

Using (31) and (32) with $c_{1}=-u v$ or $u v$ the equation (28) reduces to

$$
\begin{equation*}
4 u^{4}+v^{4}-12 u^{2} v^{2}+8 u^{3} v=1 \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
4 u^{4}+v^{4}-12 u^{2} v^{2}-8 u^{3} v=1 . \tag{34}
\end{equation*}
$$

Since equation (34) is obtainable from (33) by taking $u=-u, v=v$ or $u=u, v=-v$ it is enough to consider the equation (33). We note that if (u, v) is a solution of (33) then so is $(-u,-v)$.

The diophantine equation (33) can be written as

$$
u^{2}(3 v+u)(v-u)=\frac{v^{2}+1}{2} \cdot \frac{v^{2}-1}{2} .
$$

If $v^{2}=1$, then $u^{2}(3 v+u)(v-u)=0$, whence $u=0$ or $u=v$ or $u=-3 v$. Then we have $(u, v)=(0,1),(0,-1),(1,1),(-1,-1),(-3,1),(3,-1)$. If $u^{2}=1$, then $(u, v)=(1,1),(1,3),(-1,-1),(-1,-3)$ are also solutions. Suppose $u^{2}>1$ and $v^{2}>1$. Now u^{2} divides one of $\frac{v^{2}+1}{2}$ and $\frac{v^{2}-1}{2}$ but not both. Again writing $4 u^{4}+v^{4}-12 u^{2} v^{2}+8 u^{3} v=1$ as $\left(2 u^{2}+2 u v\right)^{2}+v^{2}\left(v^{2}-\right.$ $\left.-16 u^{2}\right)=1$ we see that $v^{2} \geqq 16 u^{2}$ is impossible. Therefore $v^{2}<16 u^{2}$.

If $u^{2} \left\lvert\, \frac{v^{2}-1}{2}\right.$, then $\frac{v^{2}-1}{2 u^{2}}$ is positive integer, less than $\frac{16 u^{2}-1}{2 u^{2}}=8-\frac{1}{2 u^{2}}$. Hence $\frac{v^{2}-1}{2 u^{2}}=1,2,3, \ldots, 7$ or $v^{2}=2 u^{2}+1,4 u^{2}+1, \ldots, 14 u^{2}+1$.

We consider $(3 v+u)(v-u)=\frac{v^{2}-1}{2 u^{2}} \cdot \frac{v^{2}+1}{2}$ for $\frac{v^{2}-1}{2 u^{2}}=1,2, \ldots, 7$. For example, when $\frac{v^{2}-1}{2 u^{2}}=3$ our equation $3 v^{2}-2 u v-u^{2}=\frac{v^{2}-1}{2 u^{2}} \cdot \frac{v^{2}+1}{2}$ becomes $3\left(6 u^{2}+1\right)-2 u v-u^{2}=3\left(3 u^{2}+1\right)$, or $v=4 u$, a contradiction. If we take $\frac{v^{2}-1}{2 u^{2}}=4$, then we have $3\left(8 u^{2}+1\right)-2 u v-u^{2}=4\left(4 u^{2}+1\right)$. On simplification we get $7 u^{2}-2 u v-1=0$ or $v=\frac{7 u^{2}-1}{2 u}$. Then $\left(\frac{7 u^{2}-1}{2 u}\right)^{2}=v^{2}=8 u^{2}+1$ yields $\left(17 u^{2}-1\right)\left(u^{2}-1\right)=0$, whence $u= \pm 1$ and $v= \pm 3$. We solve $3 v^{2}-2 u v-$ $-u^{2}=\frac{v^{2}-1}{2 u^{2}} \cdot \frac{v^{2}+1}{2}$ as above for every value of v^{2} as listed above. Similarly, if $u^{2} \left\lvert\, \frac{v^{2}+1}{2}\right.$ then $\frac{v^{2}+1}{2 u^{2}}$ is a positive integer $\leqq 8$. We solve $3 v^{2}-2 u v-u^{2}=$ $=\frac{v^{2}+1}{2 u^{2}} \cdot \frac{v^{2}-1}{2}$ for $\frac{v^{2}+1}{2 u^{2}}=1,2, \ldots, 8$. We do not get any new solution for (u, v). Hence all solutions (u, v) are as above. Thus the positive integral solutions for $4 u^{4}+v^{4}-12 u^{2} v^{2}+8 u^{3} v=1$ and $4 u^{4}+v^{4}-12 u^{2} v^{2}-8 u^{3} v=1$ are given by $(u, v)=(1,1),(1,3)$ and $(3,1)$ respectively. They in turn give $(a, b, c)=(-3,2,2),(-11,10,6)$ and $(19,30,5)$. Substituting these values in (29), we get $X=10,114,1274$. Hence this case gives $x=4,56$ and 636 . Corresponding to $x=4,56$ and 636 we have $y=15,608$, and 22736. We get three more triangular numbers T_{15}, T_{608} and T_{22736}. Thus the theorem is established.

References

[1] E. T. Avanesov, Solution of a problem on figurate numbers (Russian) Arithmetica, XII (1967), 409-420.
[2] L. J. Mordell, On integer solutions of $y(y+1)=x(x+1)(x+2)$, Pacific J. Math., 13 (1963), 1347-1351.
(Received November 5, 1987)
DEPARTMENT OF MATHEMATICS
I. I. T. KANPUR

208016 INDIA

ON DARBOUX FUNCTIONS IN HONORARY BAIRE CLASS TWO

I. POKORNÝ (Košice)

1. Introduction

In [5] R. J. O'Malley introduced and developed the idea of selective differentiation theory.

In [1], Bagemihl and Piranian defined a function g as honorary Baire class two if there exists a \mathcal{B}_{1} (Baire class one) function h such that the set $\{x: h(x) \neq g(x)\}$ is at most countable. See also [3], [9].

We know that the class of selective derivatives is a proper subclass of the class of Darboux functions in honorary Baire class two (see [5, Theorem $11]$ and [6, Proposition 3]). Hence it is interesting to investigate this class, because this class plays the same role for the selective derivatives as the class $\mathcal{D} \mathcal{B}_{1}$ for the derivatives.

Our main results are the following.

1) Every $\mathcal{D H B}_{2}$ function is pointwise discontinuous.
2) For every $f \in \mathcal{D H} \mathcal{B}_{2}$ there exists a $g \in \mathcal{B}_{1}$ such that the points of continuity of f and g coincide and $\{x: f(x) \neq g(x)\}$ is countable (i.e. at most countable).
3) The maximal additive class for $\mathcal{D H B}_{2}$ is the class of all constant functions.
4) $\mathcal{D H} \mathcal{B}_{2}$ is not closed under the uniform convergence.

The last two results show that, as for the maximal additive class and uniform convergence, the class $\mathcal{D H B}_{2}$ behaves similarly to the class \mathcal{D}. On the other hand, it is well-known that the maximal additive class for $\mathcal{D} \mathcal{B}_{1}$ is the class of continuous functions, and $\mathcal{D \mathcal { B } _ { 1 }}$ is closed under uniform limits ([2], pp 14, 15).

In [7], T . Radakovic proved that the maximal additive class for \mathcal{D} (but not $\mathcal{H B}_{2}$) is the class of constant functions.

In [8], J. Smítal proved that the class $\mathcal{D B}_{2}$ is not closed under uniform limits. In his proof, functions from $\mathcal{B}_{2} \backslash \mathcal{H} \mathcal{B}_{2}$ are used in an essential way.

Our approach is different.

2. Preliminaries

Throughout this article, the functions under consideration are usually real valued functions defined on the closed interval $I=\langle 0,1\rangle$.

The class of all Darboux functions on I is denoted by \mathcal{D}.

Let \mathcal{G} be a class of functions defined on an interval I. A subclass \mathcal{F} of \mathcal{G} is called the maximal additive class for \mathcal{G} provided \mathcal{F} is the set of all functions in \mathcal{G} such that $f+g \in \mathcal{G}$ whenever $f \in \mathcal{F}$ and $g \in \mathcal{G}$.

Further, $[x, y]$ will denote the closed interval having endpoints x and y regardless of whether $x<y$ or $y<x$.

We frequently refer to certain other classes of functions: the Baire class α functions, the honorary Baire class two functions and the continuous functions. We denote these classes by $\mathcal{B}_{\alpha}, \mathcal{H} \mathcal{B}_{2}$ and \mathcal{C}, respectively.

Let f be a function. We denote the set of points of discontinuity, resp. continuity by D_{f}, resp. C_{f}.

We say that f is pointwise discontinuous if C_{f} is a dense set in I.
Let x be a point of I. By the cluster set of f at x, denoted by $C(f, x)$, we mean the set of numbers y such that there exists a sequence $x_{n} \rightarrow x$ such that $x_{n} \neq x$ and $f\left(x_{n}\right) \rightarrow y$. The one-sided cluster sets $C(f, x,+)$ and $C(f, x,-)$ are defined in the obvious way.

It A is a set, then int $A, \operatorname{cl} A$ and A^{\prime} denote the interior, closure and the set of accumulation points of the set A, respectively.

3. $\mathcal{D H} \mathcal{B}_{2}$ functions and continuity points

Lemma 1. Let $f \in \mathcal{D}$ and let g be a function such that the set $A=$ $=\{x: f(x) \neq g(x)\}$ is countable. Then $C_{g} \subset C_{f} \backslash A$ and $A \cup D_{f} \subset D_{g}$.

Proof. Let $x_{0} \in C_{g}$ be fixed. Let $\varepsilon>0$ be given and let $\delta>0$ be such that $\left|g(x)-g\left(x_{0}\right)\right|<\varepsilon$ for $\left|x-x_{0}\right|<\delta$. Therefore, by assumption, $\left|f(x)-g\left(x_{0}\right)\right|<\varepsilon$ holds for every $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$ apart from a countable set. Since f is Darboux, this implies that $\left|f(x)-g\left(x_{0}\right)\right| \leq \varepsilon$ holds for every $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$. This obviously implies that $f\left(x_{0}\right)=g\left(x_{0}\right)$ and $x_{0} \in C_{f}$. Hence we obtain $C_{g} \subset C_{f} \backslash A$ and, taking the complements, $A \cup D_{f} \subset D_{g}$.

Corollary 2. Let $f, g \in \mathcal{D}$. If the set $A=\{x: f(x) \neq g(x)\}$ is countable, then $A \subset D_{f}=D_{g}$.

Proof. By Lemma $1, A \cup D_{f} \subset D_{g}$ and $A \cup D_{g} \subset D_{f}$ from which the assertion follows.

Theorem 3. Each $f \in \mathcal{D} \mathcal{H} \mathcal{B}_{2}$ is a pointwise discontinuous function.
Proof. Let $f \in \mathcal{D} \mathcal{H} \mathcal{B}_{2}$ and let $g \in \mathcal{B}_{1}$ be such that $\{x: f(x) \neq g(x)\}$ is countable. Since $g \in \mathcal{B}_{1}, C_{g}$ is everywhere dense. By Lemma $1, C_{g} \subset C_{f}$ and hence C_{f} is also everywhere dense.

Remark. Theorem 8 in [4] follows immediately from this theorem, because each selective derivative belongs to the class $\mathcal{D H} \mathcal{B}_{2}$.

Our next aim is to prove that for each function $f \in \mathcal{D} \mathcal{H} \mathcal{B}_{2}$ there is a function $g \in \mathcal{B}_{1}$ for which the set $\{x: f(x) \neq g(x)\}$ is countable and $D_{f}=D_{g}$.

Lemma 4. Let $f \in \mathcal{D} \mathcal{H} \mathcal{B}_{2}$. Then there is a function $h \in \mathcal{B}_{1}$ with the following properties:

1) The set $\{x: f(x) \neq h(x)\}$ is countable;
2) For each $x \in I: h(x) \in C(f, x)$.

Proof. If $f \in \mathcal{D} \mathcal{B}_{1}$ then we can take $h \equiv f$, because $f(x) \in C(f, x)$ for each $f \in \mathcal{D}$.

Let $f \in \mathcal{D H} \mathcal{B}_{2} \backslash \mathcal{B}_{1}$. Then there is a function $g \in \mathcal{B}_{1}$ for which the set $A=\{x: f(x) \neq g(x)\}$ is countable (by the definition of the class $\mathcal{H B}_{2}$).

Define

$$
h(x)= \begin{cases}g(x) ; & \text { if } g(x) \in C(f, x) \\ t \in C(f, x) ; & \text { otherwise }\end{cases}
$$

where $|t-g(x)|=\operatorname{dist}(g(x), C(f, x))$.
We prove that h has all the required properties.
From the definition of h it follows that for each $x \in I$ we have $h(x) \in$ $\in C(f, x)$ and that the set $\{x: f(x) \neq h(x)\}$, being a subset of A, is countable.

To prove that $h \in \mathcal{B}_{1}$ we proceed as follows.
We prove that for each non-empty perfect set $P \subset I$ the restriction of h to P has a point of continuity.

Let P be a non-empty perfect set in I. Since $g \in \mathcal{B}_{1}$, there is a point $x \in P \backslash A$ at which $g \mid P$ is continuous, because the set of continuity points of $g \mid P$ is of second category in P and A is countable. Then we have $f(x)=$ $=g(x)=h(x)$.

We show that $h \mid P$ is also continuous at x.
Let $\varepsilon>0$ be given, let $J=\langle g(x)-\varepsilon, g(x)+\varepsilon\rangle$, and let $\delta>0$ be such that $g(y) \in J$ holds for every $y \in P \cap(x-\delta, x+\delta)$. Let $y \in P \cap(x-\delta, x+\delta)$ be fixed. Since every portion of P is of cardinality of the continuum and A is countable, there is a sequence $y_{n} \in P \cap(x-\delta, x+\delta) \backslash A, y_{n} \rightarrow y, y_{n} \neq y$. For every n we have $f\left(y_{n}\right)=g\left(y_{n}\right) \in J$ and hence we can select a subsequence such that $f\left(y_{n_{k}}\right) \rightarrow z \in J$. This shows that $C(f, y) \cap J \neq \emptyset$. Since $f \in \mathcal{D}$, $C(f, y)$ is an interval. As $g(y) \in J$, it follows from the definition of h that $h(y) \in J$. Therefore $h(y) \in J$ holds for every $y \in P \cap(x-\delta, x+\delta)$ and hence $h \mid P$ is continuous at x.

Theorem 5. For every $f \in \mathcal{D} \mathcal{H} \mathcal{B}_{2}$ there is $h \in \mathcal{B}_{1}$ such that the set $\{x: f(x) \neq h(x)\}$ is countable and $C_{f}=C_{h}$.

Proof. Let $f \in \mathcal{D} \mathcal{H} \mathcal{B}_{2}$ be given, and let h be the function defined in Lemma 4. Since $h(x) \in C(f, x)$ holds everywhere, it follows that $C_{f} \subset C_{h}$. On the other hand, by Lemma 1 , we have $C_{h} \subset C_{f}$ and hence $C_{f}=C_{h}$.

4. On the maximal additive class of $\mathcal{D} \mathcal{H} \mathcal{B}_{2}$

In this section we prove that the maximal additive class of $\mathcal{D} \mathcal{H} \mathcal{B}_{2}$ is the class of all constant functions.

Lemma 6. Let P be a non-empty, bounded and nowhere dense perfect subset of R. Let $a=\min P$ and $b=\max P$. Let $c, d \in R, c<d$. Then there is a function $g:\langle a, b\rangle \rightarrow\langle c, d\rangle$ in the class $\mathcal{H B}_{2} \backslash\left(\mathcal{B}_{1} \cup \mathcal{D}\right)$ such that

1) the cluster set $C(g, x)=\langle c, d\rangle$, for each $x \in P$;
2) the set $\{x \in\langle a, b\rangle: g(x)=(c+d) / 2\}=\emptyset$.

Proof. Let all assumptions of this lemma be satisfied. Let $e=(c+d) / 2$. We decompose the class of all contiguous intervals of P (on the interval $\langle a, b\rangle$) into two classes \mathcal{A} and \mathcal{B} with the following property: For each two elements of one of these classes there is an element of the other class which is located between them.
I. Let $(u, v) \in \mathcal{A}$ and let $A_{u, v}$ be an arbitrary subset of $\langle u, v\rangle$ such that $\{u, v\}=A_{u, v} \cap A_{u, v}^{\prime}$. Then we can define a function g on the interval $\langle u, v\rangle$ with the following properties:
(I.1) the function g is continuous on (u, v),
(I.2) the range of $g_{\mid(u, v) \backslash A_{u, v}}=(e, d)$,

$$
\begin{equation*}
C(g, u,+)=C(g, v,-)=\langle e, d\rangle \tag{I.3}
\end{equation*}
$$

$$
\begin{equation*}
g_{\mid A_{u, v}} \equiv d \tag{I.4}
\end{equation*}
$$

II. Let $(u, v) \in \mathcal{B}$ and let $B_{u, v}$ be an arbitrary subset of $\langle u, v\rangle$ such that $\{u, v\}=B_{u, v} \cap B_{u, v}^{\prime}$. Then we can define a function g on the interval $\langle u, v\rangle$ with the following properties:
(II.1) the function g is continuous on (u, v),
(II.2) the range of $g_{\mid(u, v) \backslash B_{u, v}}=(c, e)$,

$$
\begin{equation*}
C(g, u,+)=C(g, v,-)=\langle c, e\rangle \tag{II.3}
\end{equation*}
$$

$$
\begin{equation*}
g_{\mid B_{u, v}} \equiv c \tag{II.4}
\end{equation*}
$$

III. At the points of $P \backslash \cup B_{u, v}$ we define g by $g(x) \equiv d$.

We show that this function g has all the required properties.

1) From the definition of g we have that
a) $g:\langle a, b\rangle \rightarrow\langle c, d\rangle$,
b) $\{x \in\langle a, b\rangle: g(x)=e\}=\emptyset$, where $e=(c+d) / 2$.
2) Since each $x \in P$ is a limit point of elements of the class \mathcal{A} and a limit point of elements of the class \mathcal{B}, we have

$$
C(g, x)=\langle c, d\rangle \quad \text { for each } \quad x \in P
$$

(Properties (I.3) and (II.3).)
3) From properties (I.4) and (II.4) it follows that the function $g \mid P$ does not have a point of continuity and therefore $g \notin \mathcal{B}_{1}$.
4) The classes \mathcal{A} and \mathcal{B} are non-empty. Since for $x \in(u, v) \in \mathcal{A}$ and $y \in\left(u^{\prime}, v^{\prime}\right) \in \mathcal{B}$ we have $g(y)<e<g(x)$ and $g(z) \neq e$ for each $z \in[x, y]$ (Property 1.b), necessarily $g \notin \mathcal{D}$.
5) We show that $g \in \mathcal{H} \mathcal{B}_{2}$.

Let

$$
h(x)= \begin{cases}g(x), & \text { if } \quad x \notin P \\ d, & \text { if } \quad x \in P\end{cases}
$$

Then h has the following properties:
a) the function $h \in \mathcal{B}_{1}$, because $C_{h}=\langle a, b\rangle \backslash P$ and $h \mid P \equiv d$. (For each perfect set Q the restriction $h \mid Q$ has a point of continuity.),
b) the set $\{x \in\langle a, b\rangle: g(x) \neq h(x)\}$ is a set of endpoints of contiguous intervals in class \mathcal{B}, which is a countable set. Then by the definition of the class $\mathcal{H B}_{2}$ we have $g \in \mathcal{H B}_{2}$.

Theorem 7. Let h be a nonconstant continuous function on $I=\langle 0,1\rangle$. Then there is a function $g \in \mathcal{H B}_{2} \backslash \mathcal{D}$ such that $f=g+h \in \mathcal{D H} \mathcal{H}_{2}$.

Proof. Let $m=\min \{h(x): x \in I\}$ and $M=\max \{h(x): x \in I\}$; since h is nonconstant, $m<M$. We may assume that $m=0$ and $M=1$. We prove first that there is a non-empty perfect set P such that h is strictly monotonic on P. Let $a_{0}, b_{0} \in I$ be such that $h\left(a_{0}\right)-0$ and $h\left(b_{0}\right)=1$. We may assume, without loss of generality, that $a_{0}<b_{0}$. Let $x_{r}=\min \{x \in$ $\left.\in\left\langle a_{0}, b_{0}\right\rangle: h(x)=r\right\}$ for each $r \in\langle 0,1\rangle$. It is easy to check that h is strictly increasing on the set $Q=\left\{x_{r}: r \in\langle 0,1\rangle\right\}$, and that Q is uncountable and G_{δ}. Therefore we can select a non-empty, perfect and nowhere dense subset $P \subset Q$. Now we apply Lemma 6 with this perfect set P and with $c=-1$, $d=1$. Let g denote the function constructed in the proof of Lemma 6. The function g is defined on $\langle a, b\rangle$, where $a=\min P$ and $b=\max P$. We extend g to I by defining $g(x)=g(a)$ for $x \in\langle 0, a)$ and $g(x)=g(b)$ for $x \in(b, 1\rangle$. It is easy to see that $g \in \mathcal{H} \mathcal{B}_{2} \backslash \mathcal{D}$.

Let $f=g+h$, then $f \in \mathcal{H B}_{2}$ since $g \in \mathcal{H B}_{2}$ and h is continuous. We shall prove that $f \in \mathcal{D}$. Since f is continuous on the intervals $\langle 0, a\rangle$ and $\langle b, 1\rangle$, it is enough to show that f is Darboux on $\langle a, b\rangle$.

Let $L_{r}\left(L_{\ell}\right)$ denote the set of right (left) endpoints of the intervals contiguous to P. First we prove that

$$
\begin{equation*}
f(\langle x, y\rangle) \supset[f(x), f(y)] \tag{A}
\end{equation*}
$$

whenever $x<y, x \in P \backslash L_{\ell}$ and $y \in P \backslash L_{r}$. Let (u, v) be an interval contiguous to P and suppose that (u, v) belongs to the class \mathcal{A}. Then $C(g, u,+)=\langle 0,1\rangle$ and, as both g and h are continuous in (u, v) and h is continuous at u, it follows that $f((u, v)) \supset(h(u), h(u)+1)$. Similarly, if (u, v) belongs to the class \mathcal{B} then $f((u, v)) \supset(h(u)-1, h(u))$. Since $x \in P \backslash L_{\ell}$, every right hand side neighbourhood of x contains elements of both classes \mathcal{A} and \mathcal{B}, and hence

$$
f((x, y)) \supset(h(x)-1, h(x)) \cup(h(x), h(x)+1) .
$$

We also have $h(x) \in f((x, y))$. Indeed, if $(u, v) \subset(x, y)$ is an element of the class \mathcal{B} then $h(u)-1<h(x)<h(u)$, since h is strictly increasing on P. Therefore we have

$$
f((x, y)) \supset(h(x)-1, h(x)+1) .
$$

Similar argument shows that

$$
f((x, y)) \supset(h(y)-1, h(y)+1)
$$

Since $0 \leq h(x)<h(y) \leq 1$,

$$
(h(x)-1, h(x)+1) \cup(h(y)-1, h(y)+1)=(h(x)-1, h(y)+1)
$$

and hence $f((x, y)) \supset(h(x)-1, h(y)+1)$. Now, $|g| \leq 1$ implies $f(x), f(y) \in$ $\in\langle h(x)-1, h(y)+1\rangle$ which proves (A).

Let $a \leq x<y \leq b$ be arbitrary. If $x \in P \backslash L_{\ell}$ then let $x^{\prime}=x$. If $x \notin P \backslash L_{\ell}$ then let $x^{\prime} \in L_{r}$ be such that $\left(x, x^{\prime}\right) \cap P=\emptyset$. Similarly, we put $y^{\prime}=y$ if $y \in P \backslash L_{r}$, and if $y \notin P \backslash L_{r}$ then we take $y^{\prime} \in L_{\ell}$ such that $\left(y^{\prime}, y\right) \cap P=\emptyset$. It is easy to check that $f\left(\left(x, x^{\prime}\right)\right) \supset \operatorname{int}\left[f(x), f\left(x^{\prime}\right)\right]$ and $f\left(\left(y^{\prime}, y\right)\right) \supset \operatorname{int}\left[f\left(y^{\prime}\right), f(y)\right]$. Since, by (A), $f\left(\left[x^{\prime}, y^{\prime}\right]\right) \supset\left[f\left(x^{\prime}\right), f\left(y^{\prime}\right)\right]$, we have $f(\langle x, y\rangle) \supset[f(x), f(y)]$ and this proves the Darboux property of f.

It is well-known that the maximal additive class for $\mathcal{D} \mathcal{B}_{1}$ is \mathcal{C}. (Viz. Theorem 3.2 on p. 14 in [2].)

In [7], Radakovic proved that the maximal additive class for \mathcal{D} is the class of all constant functions. The same holds for the class $\mathcal{D} \mathcal{H} \mathcal{B}_{2}$, too.

Corollary 8. The maximal additive class for $\mathcal{D H} \mathcal{B}_{2}$ is the class of all constant functions.

Proof. Let h be a constant function. Then trivially $h+g \in \mathcal{D} \mathcal{H} \mathcal{B}_{2}$ for each $g \in \mathcal{D} \mathcal{H B}_{2}$. Let $h \in \mathcal{D} \mathcal{H} \mathcal{B}_{2}$ be a discontinuous function. Let x_{0} be a point of discontinuity of h, and suppose h is discontinuous from the right at x_{0}. Choose $y_{0} \neq h\left(x_{0}\right)$ in the interval $C\left(h, x_{0},+\right)$. Define g by

$$
g(x)= \begin{cases}-h(x), & \text { if } \\ -y_{0}, & \text { if } \quad x \in\left(x_{0}, 1\right\rangle \\ \left.-x_{0}\right\rangle\end{cases}
$$

It is easy to verify that $g \in \mathcal{D} \mathcal{H} \mathcal{B}_{2}$. But $h+g$ vanishes for $x \in\left(x_{0}, 1\right\rangle$, and $h\left(x_{0}\right)+g\left(x_{0}\right) \neq 0$, so $h+g$ does not have the Darboux property. Let h be a nonconstant continuous function. Then $-h$ is a nonconstant continuous function, too. By Theorem 7 there is $f \in \mathcal{H} \mathcal{B}_{2} \backslash \mathcal{D}$ for $-h$ such that $g=f-h \in \mathcal{D} \mathcal{H B}_{2}$. But $h+g=f \notin \mathcal{D}$.

5. On the uniform convergence in $\mathcal{D H} \mathcal{B}_{2}$

In this section we prove that the class $\mathcal{D} \mathcal{H} \mathcal{B}_{2}$ is not closed under the uniform convergence.

Theorem 9. There is a sequence of $\mathcal{D H}_{2}$ functions such that $f_{n} \rightrightarrows f \notin \mathcal{D}$.

Proof. Let C be the well-known Cantor set on the interval I. We use Lemma 6 and the notation of its proof, where $P=C, c=-1$ and $d=1$.

Our function f will be the function g (from Lemma 6) and the functions f_{n} will be the following modifications of $g(n=1,2, \ldots)$:

1) Let $(u, v) \in \mathcal{A}$, let $\left\{\left\langle x_{i}, y_{i}\right\rangle: i=1,2, \ldots\right\}$ be a sequence of disjoint closed subintervals of (u, v) such that $A_{u, v} \cap\left\langle x_{i}, y_{i}\right\rangle=\emptyset$, let $u, v \in\left\{x_{i}: i=\right.$ $=1,2, \ldots\}^{\prime}$ and let $g\left(z_{i}\right) \rightarrow 0$, where $z_{i}=\left(x_{i}+y_{i}\right) / 2$ for $i=1,2, \ldots$. Let

$$
f_{n}(x)= \begin{cases}g(x), & \text { if } x \in(u, v) \backslash \bigcup_{i=1}^{\infty}\left\langle x_{i}, y_{i}\right\rangle \\ g(x)-h_{n, i}(x), & \text { if } x \in\left\langle x_{i}, y_{i}\right\rangle \text { for some natural } i,\end{cases}
$$

where

$$
h_{n, i}(x)=\left\{\begin{array}{ll}
\left(x-x_{i}\right) /\left(n\left(z_{i}-x_{i}\right)\right), & \text { for } \quad x \in\left\langle x_{i}, z_{i}\right\rangle, \\
\left(y_{i}-x\right) /\left(n\left(y_{i}-z_{i}\right)\right), & \text { for } x \in\left(z_{i}, y_{i}\right\rangle,
\end{array} \quad i=1,2, \ldots .\right.
$$

2) Let $(u, v) \in \mathcal{B}$. This case is analogous to the case 1$)$. The difference between these cases is the sign of $h_{n, i}$ in the definition of f_{n}.
3) $f_{n}(x)=g(x)$ otherwise.

We show that these functions f and f_{n} have all the required properties.
a) Of course, $\left|f(x)-f_{n}(x)\right| \leq 1 / n$ for each $x \in I$ and therefore $f_{n} \rightrightarrows f$.
b) The functions $f, f_{n} \in \mathcal{H} \mathcal{B}_{2}$, for $n=1,2, \ldots$. Indeed, let

$$
F(x)= \begin{cases}f(x), & \text { if } \\ 1, & \text { if } \quad x \in C,\end{cases}
$$

and

$$
F_{n}(x)= \begin{cases}f_{n}(x), & \text { if } \\ 1, & \text { if } \\ 1, & x \in C,\end{cases}
$$

for $n=1,2, \ldots$.
The set $\{x: f(x) \neq F(x)\}$ and the sets $\left\{x: f_{n}(x) \neq F_{n}(x)\right\}$ are countable, because they are subsets of the set of endpoints of elements of \mathcal{B}. The functions F_{n} and F are obviously Baire 1.
c) For each $n=1,2, \cdots: f_{n} \in \mathcal{D}$. Since f_{n} takes the value zero in every interval contiguous to P, it is easy to verify that f_{n} is Darboux.
d) Finally, $f \notin \mathcal{D}$ follows from Lemma 6 .

We finish this paper with the following problem:
Problem. What is the maximal multiplicative class for $\mathcal{D H B}_{2}$?

References

[1] F. Bagemihl, G. Piranian, Boundary functions defined in a disk, Michigan Math. J., 8 (1961), 201-207.
[2] A. M. Bruckner, Differentiation of real functions, Springer-Verlag Lecture Notes in Mathematics, 659 (Berlin-Heidelberg-New York, 1978).
[3] T. J. Kaczynski, Boundary functions for functions defined in a disk, J. of Mathematics and Mechanics, 14 (1965), 589-612.
[4] M. Laczkovich, On the Baire class of selective derivatives, Acta Math. Acad. Sci. Hung., 29 (1977), 99-105.
[5] R. J. O'Malley, Selective derivatives, Acta Math. Acad. Sci. Hung., 29 (1977), 77-97.
[6] R. J. O'Malley, Bi-selective derivatives are of honorary Baire class 2, Acta Math. Hung., 41 (1983), 111-117.
[7] T. Radakovic, Über Darbouxsche und stetige Funktionen, Monatschefte für Math. und Physik, 38 (1931), 117-122.
[8] J. Smítal, On a problem concerning uniform limits of Darboux functions, Colloq. Math., 23 (1971), 115-116.
[9] L. E. Snyder, Bi-arc boundary functions, Proc. Amer. Math. Soc., 18 (1967), 808-811.
(Received November 9, 1987; revised March 22, 1988)

[^1]
INTEGRABLE p-ALMOST TANGENT MANIFOLDS AND TANGENT BUNDLES OF p^{1}-VELOCITIES

M. DE LEÓN (Madrid), ISABEL MÉNDEZ and M. SALGADO (Santiago de Compostela)

1. Introduction

An almost tangent structure on a $2 n$-dimensional manifold N is a tensor field J of type (1.1) of rank n such that $J^{2}=0(N$ is said to be an almost tangent manifold). Also, an almost tangent structure J may be interpreted as a type of G-structure, where G is some Lie subgroup of $G 1(2 n, R)$. Almost tangent structures were introduced by Clark and Bruckheimer [2] and Eliopoulos [6] around 1960 and have been studied by several authors (see [1], [3], [4], [9], [13]).

As it is well-known the tangent boundle $T M$ of any manifold M carries a canonical integrable almost tangent structure. Moreover, any integrable almost tangent structure is locally equivalent to this canonical almost tangent structure. But not every integrable almost tangent manifold N is globally isomorphic to the tangent bundle $T M$ of a manifold M. Recently, Crampin and Thompson [4] proved that an integrable almost tangent manifold N which defines a fibration (that is, the space of leaves M of the foliation defined by the integrable distribution $V=\operatorname{Im} J$) with certain additional hyphotheses is an affine bundle modelled on $T M$.

In [10], we have introduced and studied a new type of geometric structures (called p-almost tangent structures) which are a natural generalization of almost tangent structures. A p-almost tangent structure consists of a p-tuple of tensor fields $\left(J_{1}, \ldots, J_{p}\right)$ of type (1.1) on a $(p+1) n$-dimensional manifold N satisfying some compatibility conditions (N is said to be a p almost tangent manifold). The tangent bundle $T_{p}^{1} M$ of p^{1}-velocities of any n-dimensional manifold M carries an integrable canonical p-almost tangent structure (hence the name). In [10] we have proved that any integrable p almost tangent manifold N is locally equivalent to the canonical p-almost tangent structure on $T_{p}^{1} M$.

In this paper we consider the global problem of equivalence. Then we consider an integrable p-almost tangent manifold N which defines a fibration (that is, the space of leaves M of the foliation defined by the integrable distribution $\left.V=\left(\operatorname{Im} J_{1}\right) \oplus \cdots \oplus\left(\operatorname{Im} J_{p}\right)\right)$ have the structure of differentiable manifold. In such a case, under certain hypotheses on the leaves of the foliations defined by the integrable distributions $V, V_{a}=\operatorname{Im} J_{a}, 1 \leqq a \leqq p$, we prove that N is an affine bundle modelled on $T_{p}^{1} M$. Obviously, when $p=1$, we reobtain the result of Crampin and Thompson.

We wish to thank J. Gancarzewicz and M. Saralegui for several useful conversations.

2. The tangent bundle of p^{1}-velocities

Let M be an n-dimensional manifold. By $T_{p}^{1} M$ we denote the tangent bundle of p^{1}-velocities of M, that is, the manifold of all 1 -jets of mappings from R^{p} to M at the origin $0 \in R^{p}$ (see [5], [11]). The manifold $T_{p}^{1} M$ is locally characterized as follows: if $\left(x^{i}\right)$ is a coordinate system on M then the coordinates ($x^{i}, y_{1}^{i}, \ldots, y_{p}^{i}$) on $T_{p}^{1} M$ are defined by

$$
\begin{gathered}
x^{i}\left(j_{0}^{1} \sigma\right)=x^{i}(\sigma(0)) \\
y_{a}^{i}\left(j_{0}^{1} \sigma\right)=\left.\left(\partial\left(x^{i} \circ \sigma\right) / \partial t^{a}\right)\right|_{t=0}, \quad 1 \leqq i \leqq n, \quad 1 \leqq a \leqq p,
\end{gathered}
$$

where $j_{0}^{1} \sigma$ is the 1 -jet at $0 \in R^{p}$ of the map $\sigma: R^{p} \rightarrow M$ and $t=\left(t^{1}, \ldots, t^{p}\right) \in$ $\in R^{p}$. Clearly, $T_{p}^{1} M$ is a manifold of dimension $(p+1) n$. We denote by $\pi: T_{p}^{1} M \rightarrow M$ the canonical projection given by $\pi\left(j_{0}^{1} \sigma\right)=\sigma(0)$.

Remark. When $p=1$, then $T_{p}^{1} M$ is the tangent bundle $T M$ of M.
Next, we shall prove that $\pi: T_{p}^{1} M \rightarrow M$ has the structure of vector bundle with standard fibre the vector space $R^{p n}$. To do this, we proceed as follows. We have a canonical diffeomorphism

$$
\Lambda: T_{p}^{1} M \rightarrow T M \oplus \stackrel{p}{\cdots} \oplus T M
$$

of $T_{p}^{1} M$ with the Whitney sum of $T M$ with itself p times; Λ is given by

$$
\Lambda\left(j_{0}^{1} \sigma\right)=\left(j_{0}^{1} \sigma_{1}, \ldots, j_{0}^{1} \sigma_{p}\right),
$$

where $\sigma_{a}: R \rightarrow M$ is the curve on M defined by

$$
\sigma_{a}(t)=\sigma(0, \ldots, t, \ldots, 0),
$$

with t placed at the $a^{\text {th }}$ position. Then each element $u \in\left(T_{p}^{1} M\right)_{x}=\pi^{-1}(x)$, $x \in M$ may be identified, via Λ, with a p-tuple (u_{1}, \ldots, u_{p}) of tangent vectors $u_{a} \in T_{x} M, 1 \leqq a \leqq p$. If we now define

$$
u+v=\left(u_{1}+v_{1}, \ldots, u_{p}+v_{p}\right), \quad \lambda u=\left(\lambda u_{1}, \ldots, \lambda u_{p}\right),
$$

where $u=\left(u_{1}, \ldots, u_{p}\right), v:=\left(v_{1}, \ldots, v_{p}\right) \in\left(T_{p}^{1} M\right)_{x}, \lambda \in R$, then it is easy to prove that $\pi: T_{p}^{1} M \rightarrow M$ is a vector bundle over M, isomorphic, as vector bundles, with the Withney sum of $T M$ with itself p times.

Now, if $u \in T_{x} M, x \in M$, we may define a vertical tangent vector $u^{(a)}$ to $T_{p}^{1} M$ at a point $y=\left(y_{1}, \ldots, y_{p}\right) \in\left(T_{p}^{1} M\right)_{x}$, for each $a, 1 \leqq a \leqq p$, by setting $u^{(a)}=$ the tangent vector at $t=0$ to the curve $\left.t \rightarrow\left(y_{1}, \ldots, y_{a}+t u, \ldots, y_{p}\right)\right)$. Locally, if $u=u^{i}\left(\partial / \partial x^{i}\right)$ then we have $u^{(a)}=u^{i}\left(\partial / \partial y_{a}^{i}\right)$.

Next, we may define p tensor fields J_{1}, \ldots, J_{p} of type (1.1) on $T_{p}^{1} M$ as follows:

$$
\left(J_{a}\right)_{y} X=(T \pi(y) X)^{(a)}, \quad 1 \leqq a \leqq p
$$

We locally have

$$
\begin{equation*}
J_{a}=\left(\partial / \partial y_{a}^{i}\right) \oplus\left(d x^{i}\right), \quad 1 \leqq a \leqq p \tag{2.1}
\end{equation*}
$$

From (2.1) we deduce the following properties:

$$
\begin{gather*}
J_{a} J_{b}=J_{b} J_{a}=0 \tag{2.2}\\
\operatorname{rank}\left(J_{a}\right)=n \tag{2.3}\\
\left.\operatorname{Im} J_{a} \cap \underset{b \neq a}{+} \operatorname{Im} J_{b}\right)=0 \text { for all } a . \tag{2.4}
\end{gather*}
$$

Moreover, if we put $V_{a}=\operatorname{Im} J_{a}$, it is easy to prove that the (a)-vertical lift mapping

$$
u \in T_{x} M \rightarrow u^{(a)} \in V_{y}, \quad y \in\left(T_{p}^{1} M\right)_{x} \quad \text { for each } \quad x \in M
$$

is a linear isomorphism.

3. p-almost tangent structures

Bearing in mind the geometric structure of the tangent bundle of p^{1} velocities $T_{p}^{1} M$ of an n-dimensional manifold M, we have introduced in [10] the following definition.

Definition 3.1. Let N be a $(p+1) n$-dimensional manifold endowed with p tensor fields $\left(J_{1} \ldots, J_{p}\right)$ of type (1.1) satisfying (2.2), (2.3) and (2.4). Then $\left(J_{1}, \ldots, J_{p}\right)$ is said to be a p-almost tangent structure on N and $\left(N,\left(J 1, \ldots, J_{p}\right)\right)$ is said to be a p-almost tangent manifold.

Remark. When $p=1$, then a 1 -almost tangent structure is an almost tangent structure.

If we put $V_{a}=\operatorname{Im} J_{a}, 1 \leqq a \leqq p$, then V_{a} is an n-dimensional distribution on N. Therefore,

$$
V=\underset{a=1}{p} V_{a}
$$

is a $p n$-dimensional distribution on N. In [10] we have interpreted a p-almost tangent structure as a type of G-structure. We briefly recall this definition and its relation to the tensorial one.

Let x be a point of N. Then V_{x} is a $p n$-dimensional subspace of $T_{x} N$. Choose a complement H_{x} in $T_{x} N$ to V_{x} and let $\left\{e^{i}\right\}$ be a basis of H_{x}. Then $\left\{e_{i}, e_{1}^{i}=\left(J_{1}\right)_{x} e^{i}, \ldots, e_{p}^{i}=\left(J_{p}\right)_{x} e^{i}\right\}$ is a frame at x (called an adapted frame). If $\left\{\bar{e}^{i}, \bar{e}_{1}^{i}, \ldots, \bar{e}_{p}^{i}\right\}$ is another such frame, where $\left\{\bar{e}^{i}\right\}$ is a basis for a different complement to V_{x}, then there are $n \times n$ matrices A, A_{1}, \ldots, A_{p}, with $A \in G 1(n, R)$, such that

$$
\bar{e}^{i}=A_{j}^{i} e^{j}+\left(A_{1}\right)_{j}^{i} e_{1}^{j}+\cdots+\left(A_{p}\right)_{j}^{i} e_{p}^{j}
$$

and hence

$$
\bar{e}_{a}^{i}=A_{j}^{i} e_{a}^{j}, \quad 1 \leqq a \leqq p
$$

The two frames are therefore related by the $(p+1) n \times(p+1) n$ matrix

$$
\left(\begin{array}{cccc}
A & 0 & \ldots & 0 \\
A_{1} & A & \ldots & 0 \\
\ldots & \ldots & \ldots & . \\
A_{p} & 0 & \ldots & A
\end{array}\right)
$$

The set of such matrices is a Lie subgroup G of $G 1((p+1) n, R)$ and the set of adapted frames at all points of N defines a G-structure on N.

Conversely, let $B_{G}(N)$ be a G-structure on N. Since the group G may be described as the invariance group of the matrices

$$
\left(J_{1}\right)_{0}=\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
I & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & . \\
0 & 0 & \ldots & 0
\end{array}\right), \ldots,\left(J_{p}\right)_{0}=\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & . \\
I & 0 & \ldots & 0
\end{array}\right)
$$

where I is the $n \times n$ identity matrix, the tensor field $J_{a}, 1 \leqq a \leqq p$, may be defined as the tensor field of type (1.1) on N which has the matrix representation $\left(J_{a}\right)_{0}$ at any point.

The fundamental problem of the theory of G-structures is to decide whether a given G-structure is equivalent to the standard flat G-structure on $R^{(p+1) n}$. In [10] we have proved the following theorem.

Theorem. A p-almost tangent structure $\left(J_{1}, \ldots, J_{p}\right)$ on N is intregrable if and only if $\left\{J_{a}, J_{b}\right\}=0,1 \leqq a, b \leqq p$, where $\left\{J_{a}, J_{b}\right\}$ is a tensor field of type (1.2) on n given by

$$
\left\{J_{a}, J_{b}\right\}(X, Y)=\left[J_{a} X, J_{b} Y\right]=J_{a}\left[X, J_{b} Y\right]-J_{b}\left[J_{a} X, Y\right]
$$

To end this section, we establish (for an integrable p-almost tangent structure on N) the existence of a symmetric linear connection \bar{V} on N
with respect to which the covariant derivatives $\bar{V} J_{a}$ are zero, for any a, $1 \leqq a \leqq p$. In fact, this follows from the general theory of G-structures, since if $\left(J_{1}, \ldots, J_{p}\right)$ is integrable, then the first structure tensor of the G-structure vanishes (see [7]).

4. Integrable p-almost tangent structures which define fibrations

Let $\left(J_{1}, \ldots, J_{p}\right)$ be an integrable p-almost tangent structure on a $(p+1) n$ dimensional manifold N. Then the distributions V, V_{1}, \ldots, V_{p} are involutive. Therefore V, V_{1}, \ldots, V_{p} define $p+1$ foliations such that each leaf of V is foliated by the leaves of $V_{a}, 1 \leqq a \leqq p$; in fact, each leaf of V is locally a product of p leaves of the foliations defined by V_{1}, \ldots, V_{p}. Now, we define an equivalence relation on N as follows: two points of N are equivalent if they lie on the same leaf of the foliation defined by V. We say that $\left(J_{1}, \ldots, J_{p}\right)$ define a fibration if the quotient of N by this equivalence relation (that is, the space of leaves) has the structure of a differentiable manifold. This will be the case if for every leaf one can find an embedded local submanifold of N of dimension n through a point of the leaf which intersects each leaf which it does in only one point. In this case, the space of leaves M is a $p n$ dimensional manifold and the canonical projection $\pi: N \rightarrow M$ is a surjective submersion (that is, M is a quotient manifold of N). Then $\pi: N \rightarrow M$ is a fibred manifold and

$$
V_{y}=T_{y}\left(\pi^{-1}(x)\right), \quad y \in N, \quad x=\pi(y),
$$

for each point $y \in N$.
Example. The canonical p-almost tangent structure on the tangent bundle $T_{p}^{1} M$ of p^{1}-velocities of any manifold M is integrable and defines a fibration.

Bearing in mind the example above, we may define the (a)-vertical lift of tangent vectors on M to $N, 1 \leqq a \leqq p$, when N is an integrable p-almost tangent manifold which defines a fibration.

If $u \in T_{x} M$ and $y \in \pi^{-1}(x)$ we define $u^{(a)} \in T_{y} N$ by $u^{(a)}=\left(J_{a}\right)_{y}(\bar{u})$, where $\bar{u} \in T_{y} N$ and $T \pi(u)=\bar{u}$. Since Ker $\left\{T \pi: T_{y} N \rightarrow T_{x} M\right\}=V_{y}$ and $\left(J_{a}\right)_{y} V_{y}=0$, then $u^{(a)}$ is well-defined. Moreover, $u^{(a)} \in\left(V_{a}\right)_{y}$, and the map $u \rightarrow u^{(a)}$ is a linear isomorphism of $T_{x} M$ with $\left(V_{a}\right)_{y}$. If X is a vector field on M, we may define its (a)-vertical lift on N given by $X^{(a)}=J_{a} \bar{X}$, where \bar{X} is any vector field on N which is π-related to X. Clearly, $X^{(a)} \in V_{a}, 1 \leqq a \leqq p$.

Proposition 4.1. Let X, Y be two vector fields on M. Then we have:

$$
\begin{gather*}
{\left[X^{(a)}, Y^{(b)}\right]=0} \tag{1}\\
L_{X^{(a)}} J_{b}=0 \tag{2}
\end{gather*}
$$

for every $a, b, 1 \leqq a, b \leqq p$.
Proof. (1) Let X, Y be vector fields on $N \pi$-related to X, Y. Then

$$
\begin{aligned}
{\left[X^{(a)}, Y^{(b)}\right] } & =\left[J_{a} \bar{X}, J_{b} \bar{Y}\right]=J_{a}\left[\bar{X}, J_{b} \bar{Y}\right]+J_{b}\left[J_{a} \bar{X}, \bar{Y}\right]= \\
& =J_{a}\left[\bar{X}, Y^{(b)}\right]+J+b\left[X^{(a)}, \bar{Y}\right]
\end{aligned}
$$

But \bar{X} is π-related to X and $Y^{(b)}$ is π-related to 0 ; thus $T \pi\left[\bar{X}, Y^{(b)}\right]=[T \pi \bar{X}$, $\left.T \pi Y^{(b)}\right]=0$ and similarly $T \pi\left[X^{(a)}, \bar{Y}\right]=0$. Then $\left[\bar{X}, Y^{(b)}\right],\left[X^{(a)}, \bar{Y}\right] \in V$. So $\left[X^{(a)}, Y^{(b)}\right]=0$.
(2) For any vector field Z on N we have

$$
\left(L_{X^{(a)}} J_{b}\right) Z=\left[X^{(a)}, J_{b} Z\right]-J_{b}\left[X^{(a)}, Z\right]
$$

Now, supppose that $Z=Y^{(c)}$ for some vector field Y on M. Then both terms on the right-hand side vanish by part (1). Moreover, if Z is π-related to a vector field Y on M, that is, $Z=\bar{Y}$, then we have

$$
\begin{aligned}
& \left(L_{X^{(a)}} J_{b}\right) \bar{Y}=\left[X^{(a)}, J_{b} \bar{Y}\right]-J_{b}\left[X^{(a)}, \bar{Y}\right]= \\
= & {\left[X^{(a)}, Y^{(b)}\right]-J_{b}\left[X^{(a)}, \bar{Y}\right]=-J_{b}\left[X^{(a)}, \bar{Y}\right] . }
\end{aligned}
$$

But as was proved above, $\left[X^{(a)}, \bar{Y}\right] \in V$. This ends the proof.
Now, let ∇ be a symmetric linear connection on N such that $\nabla J_{a}=0$, $1 \leqq a \leqq p$. Then we have

Proposition 4.2. ∇ induces by restriction a connection on each leaf of V, V_{1}, \ldots, V_{p} which is flat.

Proof. In fact, for any vector fields X, Y on M we have

$$
\begin{gathered}
\nabla_{X^{(a)}} Y^{(b)}=\nabla_{X^{(a)}}\left(J_{b} \bar{Y}\right)=J_{b}\left(\nabla_{X^{(a)}} \bar{Y}\right)=J_{b}\left(\nabla_{\bar{Y}^{\prime}} X^{(a)}+\left[X^{(a)}, \bar{Y}\right]\right)= \\
=J_{b}\left(\nabla_{\bar{Y}} X^{(a)}\right)=\nabla_{\bar{Y}}\left(J_{b} X^{(a)}\right)=0
\end{gathered}
$$

\bar{Y} is any vector field on $N \pi$-related to Y. This establishes the result.
Before proceeding further, let us recall some well-known definitions and properties of affine bundles (a beautiful and brief exposition about this subject can be found in [4]).

Definition 4.1. An affine bundle consists of a fibred manifold π : $A \rightarrow M$ and a vector bundle $\tau: E \rightarrow M$, together with a morphism $\varrho: A x_{M} E \rightarrow A$ of fibred manifolds over id_{M}, such that for each $x \in M$,

$$
\varrho_{x}: \pi^{-1}(x) \times \tau^{-1}(x) \rightarrow \pi^{-1}(x)
$$

is a free transitive action of the vector space $\tau^{-1}(x)$ on $\pi^{-1}(x)$. So, each fibre $\pi^{-1}(x)$ of the affine bundle $\pi: A \rightarrow M$ is an affine space modelled on the vector space $\tau^{-1}(x)$. We say that the affine bundle $\pi: A \rightarrow M$ is modelled on the vector bundle $\tau: E \rightarrow M$.

We have the following result (see [4]).
Proposition 4.3. Let $\pi: A \rightarrow M$ be an affine bundle modelled via a morphism ϱ of fibred manifolds, on the vector bundle $\tau: E \rightarrow M$. Then $\pi: A \rightarrow M$ is a fibre bundle with standard fibre; the standard fibre F of E regarded as an affine space, and with structure group the group of affine automorphisms of V.

Remark. Let $\tau: E \rightarrow M$ be a vector bundle. Then one may form an affine bundle with the same total space E by taking $\varrho: E x_{M} E \rightarrow M$ to be the additive action of $\tau^{-1}(x)$ on itself, for each $x \in M$. This affine bundle will be denoted by $A E$.

Next, we prove our main theorem.
Theorem. Let $\left(N,\left(J_{1}, \ldots, J_{p}\right)\right)$ be an integrable p-almost tangent structure which defines a fibration $\pi: N \rightarrow M$. Let ∇ be any symmetric linear connection on N such that $\nabla J_{a}=0,1 \leqq a \leqq p$, and suppose that with respect to the flat connection induced on it by ∇, each leaf of the foliations defined by V, V_{1}, \ldots, V_{p} is geodesically complete. Suppose further that each leaf of the foliation defined by V (that is, the fibres of $\pi: N \rightarrow M$) is simply connected. Then N is an affine bundle modelled on $T_{p}^{1} M$.

Proof. We shall define a morphism

$$
\varrho: N_{x_{M}} T_{p}^{1} M \rightarrow N
$$

of fibred manifolds over id_{M} such that for each $x \in M$.

$$
\varrho_{x}: \pi^{-1}(x) \times\left(T_{p}^{1} M\right)_{x} \rightarrow \pi^{-1}(x)
$$

is a free, transitive action of the vector space

$$
\left(T_{p}^{1} M\right)_{x}=\underset{p \text { times }}{\oplus}\left(T_{x} M\right)
$$

on $\pi^{1}(x)$. To do this, we proceed as follows. For any

$$
u=\left(u_{1}, \ldots, u_{p}\right), \quad u_{a} \in T_{x} M, \quad 1 \leqq a \leqq p,
$$

we may define p vertical vector fields $U_{a}, 1 \leqq a \leqq p$, on $\pi^{-1}(x)$ given by

$$
U_{a}(y)=\left(\left(u_{a}\right)^{(a)}\right)_{y}
$$

for every $y \in \pi^{-1}(x)$. Then $\nabla_{U_{a}} U_{b}=0,1 \leqq a, b \leqq p$. Particularly, $\nabla_{U_{a}} U_{a}=0$, and therefore U_{a} is a geodesic field for every $a, 1 \leqq a \leqq p$. Consequently, U_{a} is a complete vector field on $\pi^{-1}(x)$, that is, it generates a one-parameter group

$$
\phi_{U_{a}}: R \times \pi^{-1}(x) \rightarrow \pi^{-1}(x)
$$

Let $t \rightarrow \phi_{U_{a}}(t, y)$ be the integral curve of U_{a} such that $\phi_{U_{a}}(0, y)=y$. We define ϱ by

$$
\varrho_{x}(y, u)=\phi_{U_{p}}\left(1, \ldots, \phi_{U_{3}}\left(1, \phi_{U_{2}}\left(1, \phi_{U_{1}}(1, y)\right)\right), \ldots,\right)
$$

where $u=\left(u_{1}, \ldots, u_{p}\right)$. Now, we shall prove that ϱ_{x} defines an action which is transitive and free. First, for any $u=\left(u_{1}, \ldots, u_{p}\right), v=\left(v_{1}, \ldots, v_{p}\right) \in$ $\in\left(T_{p}^{1} M\right)_{x}$, the corresponding vector fields U_{a}, V_{b} on $\pi^{-1}(x)$ satisfy $\left[U_{a}, V_{b}\right]=$ $=0$ (by Proposition 4.1). Thus their one-parameter groups commmute:

$$
\begin{equation*}
\left(\phi_{U_{a}}\right)\left(s, \phi_{V_{b}}(t, y)\right)=\left(\phi_{V_{b}}\left(t, \phi_{U_{a}}(s, y)\right)\right) \tag{4.1}
\end{equation*}
$$

Furthermore, we know that if two complete vector fields commute then the composition of their one-parameter groups is a one-parameter group whose generator is their sum. So, we have

$$
\begin{equation*}
\left(\phi_{U_{a}}\right)\left(t, \phi_{V_{b}}(t, y)\right)=\left(\phi_{V_{b}}\right)\left(t, \phi_{U_{a}}(t, y)\right)=\phi_{U_{a}+V_{b}}(t, y) . \tag{4.2}
\end{equation*}
$$

Since $u+v=\left(u_{1}+v_{1}, \ldots, u_{p}+v_{p}\right) \in\left(T_{p}^{1} M\right)_{x}$, a simple computation using (4.2) shows that

$$
\varrho_{x}\left(\varrho_{x}(y, u), v\right)=\varrho_{x}\left(\varrho_{x}(y, v), u\right)=\varrho_{x}(y, u+v)
$$

Then ϱ_{x} define an action of $\left(T_{p}^{1} M\right)_{x}$ on $\pi^{-1}(x)$. Next, we shall prove that this action is transitive. Let (,) be any scalar product on $T_{x} M$. We define a Riemannian metric on each leaf of the foliation $V_{a}, 1 \leqq a \leqq p$, as follows:

$$
\begin{equation*}
g_{a}\left(U_{a}, V_{a}\right)=\left(u_{a}, v_{a}\right) \tag{4.3}
\end{equation*}
$$

(Let us remark that the vector fields U_{a}, V_{a}, \ldots span the distribution V_{a} and are tangent to each leaf of the foliation defined by V_{a}.) From Proposition 4.2 and (4.3) we deduce that the vector fields U_{a}, V_{a} are covariant constant and have constant inner product. Then ∇ is the Riemannian connection for g_{a}. Therefore, each leaf of the foliation defined by V_{a} is a geodesically complete Riemannian manifold. Now, since each leaf of the foliation defined by V is a local product of p leaves of the foliations defined by V_{1}, \ldots, V_{p} we deduce, by the Hopf-Rinow theorem, that any two points of $\pi^{-1}(x)$ may be joined by a piecewise differentiable curve γ with a finite number of geodesic arcs $\left\{\gamma_{1}, \ldots, \gamma_{q}\right\}$ in such a way that $\gamma_{r}, 1 \leqq r \leqq q$, is a geodesic arc on a leaf of the foliation defined by the distributions V_{a}, for some a. We may suppose
that $\gamma(0)=y$ and $\gamma(1)=z$. Moreover, from (4.1) and (4.2) one can find an element $u=\left(u_{1}, \ldots, u_{p}\right) \in T_{p}^{1} M_{x}$ such that

$$
\gamma(0)=\left(u_{1}\right)^{(1)}, \quad \text { and } \quad z=\phi_{U_{p}}\left(1, \ldots, \phi_{U_{2}}\left(1, \phi_{U_{1}}(1, y)\right), \ldots\right) .
$$

Consequently, we have

$$
z=\varrho_{x}\left(y,\left(u_{1}, \ldots, u_{p}\right)\right) .
$$

Finally, we prove that the action ϱ_{x} is free. Let $\Gamma(y)$ be the isotropy group of $y \in \pi^{-1}(x)$ under the action of $\left(T_{p}^{1} M\right)_{x}$, that is

$$
\Gamma(y)=\left\{u=\left(u_{1}, \ldots, u_{p}\right) \in\left(T_{p}^{1} M\right)_{x} / \varrho_{x}(y, u)=y\right\} .
$$

From the definition of $\varrho_{\boldsymbol{x}}$, one can easily prove that the following diagram

is commutative, where $\exp _{y}$ denotes the exponential map of ∇ restricted to $\pi^{-1}(x)$ and ψ is the linear isomorphism given by

$$
\psi(u)=\psi\left(u_{1}, \ldots, u_{p}\right)=\left(u_{1}\right)^{(1)}+\cdots+\left(u_{p}\right)^{(p)}
$$

Since $\exp _{y}$ is a local diffeomorphism, then so is ϱ_{x}. Therefore

$$
\Gamma(y)=\left(\varrho_{x}\right)^{-1}(y)
$$

must be a discrete (additive) subgroup of $\left(T_{p}^{1} M\right)_{x}$. Then the elements of $\Gamma(y)$ are integer linear combinations of some k linearly independent vectors $\alpha_{1}, \ldots, \alpha_{k}$, where $1 \leqq k \leqq p n$. So we have

$$
\left(T_{p}^{1} M\right) / \Gamma(y) \cong\left(R^{k} \times R^{p n-k}\right) / Z^{k} \cong T^{k} \times R^{p n-k}
$$

where T^{k} is a k-torus. But, since $\left(T_{p}^{1} M\right)_{x}$ acts transitively on $\pi^{-1}(x)$, then $\pi^{-1}(x)$ is diffeomorphic to the coset space $\left(T_{p}^{1} M\right)_{x} / \Gamma(y)$. Thus, if $\Gamma(y)$ is non-trivial, then $\pi^{-1}(x)$ is diffeomorphic to $T^{k} \times R^{p n-k}$, which is not simply connected. Consequently, $\Gamma(y)$ must be trivial and then the action is free.

Corollary 4.1. If $\left(N,\left(J_{1}, \ldots, J_{p}\right)\right)$ verifies all the hypotheses of the theorem and in addition $\pi: N \rightarrow M$ admits a global section (fot instance, if M is paracompact), then N is isomorphic (as a vector bundle) to TM. This isomorphism depends on the choice of section.

Corollary 4.2. If $\left(N,\left(J_{1}, \ldots, J_{p}\right)\right)$ verifies all the hypotheses of the theorem except the hypothesis that the leaves of the foliation defined by V are symply connected and this leaves assumed to be mutually homeomorphic, then $T_{p}^{1} M$ is a covering space of N and the leaves of V are of the form $T^{k} \times R^{p n-k}$, where T^{k} is a k-dimensional torus, $0 \leqq k \leqq p n$. Moreover, if it is assumed that the leaves of V are compact, then $T_{p}^{1} \bar{M}$ is a covering space of N and the fibres are diffeomorphic to $T^{p n}$.

References

[1] F. Brickell, R. S. Clark, Integrable almost tangent structures, J. Differential Geom., 9 (1974), 557-563.
[2] R. S. Clark, M. Bruckeimer, Sur les structures presque tangents, C. R. Acad. Sci. Paris, 251 (1960), 627-629.
[3] R. S. Clark, D. S. Goel, On the geometry of an almost tangent manifold, Tensor (N. S.), 24 (1972), 243-252.
[4] M. Camprin, G. Thompson, Affine bundles and integrable almost tangent structures, Math. Proc. Camb. Phil. Soc., 98 (1985), 61-71.
[5] Ch. Ehresmann, Les prolongements d'une variété différentiable, I, Calcul des jets, prolongement principal, C. R. Acad. Sci. Paris, 233 (1951), 589-600.
[6] H. A. Eliopoulos, Structures presque tangents sur les variétés différentiables, C. R. Acad. Sci. Paris, 255 (1962), 1563-1565.
[7] A. Fujimoto, Theory of G-structures, Publ. of the Study Group of Geometry (Tokyo, 1972).
[8] J. Gancarzewicz, Liftings of functions and vector fields to natural bundles, Dissertationes Mathematicae, CCXII (1983).
[9] J. Grifone, Structure presque-tangent et connexions, I, Ann. Inst. Fourier, 22 (1972), 287-334.
[10] M. de León, I. Méndez, M. Salgado, p-almost tangent structures, Rend. Cinc. Mat. Palermo, Ser. II, 37 (1988), 282-294.
[11] A. Morimoto, Prolongations of geometric structures, Math. Inst. Nagoya University (Nagoya, 1969).
[12] K. Yano, E. T. Davies, Differential geometry on almost tangent manifolds, Ann. Mat. Pura Appl., 103 (1975), 131-160.
[13] K. Yano, S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker (New York, 1973).
(Received November 11, 1987)
UNIDAD DE MATEMÁTICAS
CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS
SERRANO, 123, 28006 MADRID, SPAIN
departamento de geometría y topología
facultad de matemáticas
universidad de santiago de compostela
santiago de compostela, spain

ON THE EQUICONVERGENCE OF THE RIESZ MEANS WITH EXACT ORDER

N. H. LOI (Hanoi)

Developing a fruitful method of V. A. I'in [1], members of his school proved some equiconvergence theorems with exact order ([2], [3], [5] and [6]). In this paper we shall prove an equiconvergence of the Riesz means with exact order for functions with given integral modulus of continuity. The theorem of Š. A. Alimov and I. Joó [2] is only a special case of our result when $s=0$.

Let $\omega(t)$ be a continuous function on $[0, \infty)$ satisfying the following conditions:
(i) $\omega(0)=0, \omega(t)>0$ if $t>0$;
(ii) $\omega(2 t) \leqq C \omega(t)$;
(iii) $\omega(t)$ is not decreasing;
(iv) $\omega(t) / t$ is not increasing.

Denote by $H_{1}^{\omega}[0,1]=H_{1}^{\omega}$ the set of those functions $f \in L_{1}[0,1]$ for which the integral modulus of continuity

$$
\omega_{1}(f, \delta):=\sup _{|h| \leqq \delta} \int_{0}^{1-h}|f(x+h)-f(x)| d x
$$

satisfies the condition $\omega_{1}(f, \delta) \leqq C \omega(\delta)$.
Define

$$
\|f\|_{\omega}:=\|f\|_{L_{1}[0,1]}+\sup _{\delta>0} \frac{\omega_{1}(f, \delta)}{\omega(\delta)} .
$$

We consider the Schrödinger operators

$$
L u:=-u^{\prime \prime}+q(x) u(x), \quad \hat{L} u:=-u^{\prime \prime}+\hat{q}(x) u(x) .
$$

where $q(x), \hat{q}(x) \in L_{p}[0,1](p>1)$ are arbitrary real functions. Let $\left\{u_{k}\right\}_{k=1}^{\infty}$ and $\left\{\hat{u}_{k}\right\}_{k=1}^{\infty}$ be complete orthonormal systems of eigenfunctions of the corresponding operators in $L_{2}[0,1]$; further denote $\left\{\lambda_{k}\right\}_{k=1}^{\infty}$ and $\left\{\hat{\lambda}_{k}\right\}_{k=1}^{\infty}$ the positive eigenvalues $\left(0 \leqq \lambda_{1} \leqq \lambda_{2} \leqq \ldots, 0 \leqq \hat{\lambda}_{1} \leqq \hat{\lambda}_{2} \leqq \ldots\right.$). For brevity we use the notation $\mu_{k}:=\sqrt{\lambda_{k}}$.

For any $f \in L_{1}[0,1], \mu>0, s \in\left[0, \frac{1}{2}\right)$ consider the partial sums of the $s^{\text {th }}$ Riesz means of the spectral expansion of f :

$$
\begin{aligned}
& \sigma_{\mu}^{s}(f, x):=\sum_{\mu_{k}<\mu}\left(f, u_{k}\right) u_{k}(x)\left(1-\frac{\mu_{k}^{2}}{\mu^{2}}\right)^{s}, \\
& \hat{\sigma}_{\mu}^{s}(f, x):=\sum_{\hat{\mu}_{k}<\mu}\left(f, \hat{u}_{k}\right) \hat{u}_{k}(x)\left(1-\frac{\hat{\mu}_{k}^{2}}{\mu^{2}}\right)^{s} .
\end{aligned}
$$

The aim of the present paper is to prove the following
Theorem. Given any compact subset $K \subset(0,1)$, for any $f \in H_{1}^{\omega}[0,1]$, $x \in K, \mu \geq 1, s \in\left[0, \frac{1}{2}\right)$ we have

$$
\begin{equation*}
\sigma_{\mu}^{s}(f, x)-\hat{\sigma}_{\mu}^{s}(f, x)=O\left(\omega\left(\frac{1}{\mu}\right)\right) \cdot \mu^{-s} . \tag{1}
\end{equation*}
$$

The order of (1) cannot be improved in the sense that o $\left.\omega\left(\frac{1}{\mu}\right)\right)$ cannot be written on the right hand side of (1).

We recall some well-known results which are necessary for our proof:

$$
\begin{equation*}
\left|u_{k}(x)\right| \leqq C \quad(0 \leqq x \leqq 1, \quad k=1,2, \ldots) \tag{2}
\end{equation*}
$$

(cf. [3]);
(3) $\left|\left(f, u_{k}\right)\right| \leqq C(q)\|f\|_{\omega} \omega\left(\frac{1}{\mu_{k}}\right) \quad\left(f \in H_{1}^{\omega}[0,1], \quad k=1,2, \ldots\right)$
and

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{\omega\left(\frac{1}{\mu_{k}}\right)}{1+\left(\mu-\mu_{k}\right)^{2}} \leqq C \omega\left(\frac{1}{\mu}\right) \quad(\mu \geq 1) \tag{4}
\end{equation*}
$$

(cf. [2]);

$$
\begin{equation*}
\left|\int_{0}^{R} g_{0}\left(u_{k}, \mu_{k}, x, t\right) t^{-s-\frac{1}{2}} J_{s+\frac{1}{2}}(\mu t) d t\right| \leqq C \min \left\{\frac{1}{\mu^{\frac{3}{2}}}, \frac{\mu^{\frac{1}{2}}}{\mu_{k}^{2}}\right\} . \tag{5}
\end{equation*}
$$

where

$$
g_{0}\left(u_{k}, \mu_{k}, x, t\right):=\int_{x-t}^{x+t} \frac{\sin \mu_{k}(t-|x-\xi|)}{\mu_{k}} q(\xi) u_{k}(\xi) d \xi
$$

and

$$
\begin{equation*}
\left|\mathcal{D}_{R_{0}} K_{\mu_{k}}^{\mu}(R)\right| \leqq \frac{C(K, s)}{1+\left(\mu-\mu_{k}\right)^{2}} \tag{6}
\end{equation*}
$$

where

$$
K_{\mu_{k}}^{\mu}(R):=\mu^{\frac{1}{2}} \int_{R}^{\infty} t^{-s-\frac{1}{2}} J_{s+\frac{1}{2}}(\mu t) \cos \mu_{k} t d t
$$

$K \subset(0,1)$ is an arbitrary compact subset, $0<R_{0}<\frac{1}{2} \operatorname{dist}(K, \partial(0,1))$,

$$
\mathcal{D}_{R_{0}} g:=\frac{2}{R_{0}} \int_{\frac{R_{0}}{2}}^{R_{0}} g(R) d R
$$

(cf. [8]).
The proof of our theorem is based on some lemmas. Introduce the notations

$$
\begin{equation*}
\alpha_{\mu}(f, x):=\sum_{k=1}^{\infty} f_{k} u_{k}(x) \mathcal{D}_{R_{0}} K_{\mu_{k}}^{\mu}(R) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{\mu}(f, x):=\sum_{k=1}^{\infty} \mathcal{D}_{R_{0}}\left[\int_{0}^{R} g_{0}\left(u_{k}, \mu_{k}, x, t\right) t^{-s-\frac{1}{2}} J_{s+\frac{1}{2}}(\mu t) d t\right] f_{k} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{k}:=\left(f, u_{k}\right) \tag{9}
\end{equation*}
$$

Lemma 1. For any $f \in H_{1}^{\omega}[0,1]$ and $x \in K$,

$$
\begin{equation*}
\left|\alpha_{\mu}(f, x)\right| \leqq C(K, q, s)\|f\|_{\omega} \omega\left(\frac{1}{\mu}\right) \quad(\mu \geq 1) \tag{10}
\end{equation*}
$$

Proof. Applying (2), (3), (6) and (9) we have

$$
\left|\alpha_{\mu}(f, x)\right| \leqq C(K, q, s)\|f\|_{\omega} \sum_{k=1}^{\infty} \omega\left(\frac{1}{\mu_{k}}\right) \frac{1}{1+\left(\mu-\mu_{k}\right)^{2}}
$$

Hence, using (4), the estimate (10) follows at once. Lemma 1 is proved.

Lemma 2. For any $f \in H_{1}^{\omega}[0,1]$ and $x \in K$,

$$
\begin{equation*}
\left|\beta_{\mu}(f, x)\right| \leqq C\|f\|_{\omega} \omega\left(\frac{1}{\mu}\right) \quad(\mu \geq 1) \tag{11}
\end{equation*}
$$

Proof. Using (5) and (3) we get

$$
\left|\beta_{\mu}(f, x)\right| \leqq C\|f\|_{\omega} \sum_{k=1}^{\infty} \omega\left(\frac{1}{\mu_{k}}\right) \min \left\{\frac{1}{\mu^{\frac{3}{2}}}, \frac{\mu^{\frac{1}{2}}}{\mu_{k}^{2}}\right\}
$$

Hence (11) follows by the method used in the proof of Lemma 2 in [2]. Lemma 2 is proved.

Now we return to the proof of our theorem.
Given any compact $K \subset(0,1)$ denote R an arbitrary number from the interval (0 , dist $(K, \partial(0,1)))$. Now fix $x \in K$ arbitrarily and define the function $W_{R}^{s}:(0,1) \rightarrow \mathbf{R}$ by

$$
W_{R}^{s}(x+t):= \begin{cases}a(s) \mu^{\frac{1}{2}-s}|t|^{-s-\frac{1}{2}} J_{s+\frac{1}{2}}(\mu|t|) & \text { if }|t| \leqq R \tag{12}\\ 0 & \text { otherwise }\end{cases}
$$

where

$$
a(s):=2^{s}(2 \pi)^{-\frac{1}{2}} \Gamma(s+1)
$$

Proof of the Theorem. We consider the Fourier coefficients of the function $W_{R}^{s}(x+t)$ with respect to the system $\left\{u_{k}\right\}$. An easy calculation shows

$$
\begin{aligned}
W_{k}^{s} & =\left(u_{k}, W_{R}^{s}\right)=\int_{x-R}^{x+R} W_{R}^{s}(|x-y|) u_{k}(y) d y= \\
& =\int_{0}^{R} W_{R}^{s}(t)\left[u_{k}(x-t)+u_{k}(x+t)\right] d t
\end{aligned}
$$

Applying the Titchmarsh formula [9], we obtain

$$
u_{k}(x+t)+u_{k}(x-t)=2 u_{k}(x) \cos \mu_{k} t+\int_{x-t}^{x+t} q(\xi) u_{k}(\xi) \frac{\sin \mu_{k}(t-|x-\xi|)}{\mu_{k}} d \xi
$$

and using the integral transformation $\int_{0}^{R}=\int_{0}^{\infty}-\int_{R}^{\infty}$ we get

$$
\begin{equation*}
W_{k}^{s}=2 u_{k}(x) \int_{0}^{R} W_{R}^{s}(t) \cos \mu_{k} t d t+\int_{0}^{R} W_{R}^{s}(t) g_{0}\left(u_{k}, \mu_{k}, x, t\right) d t= \tag{13}
\end{equation*}
$$

$$
\begin{gathered}
=u_{k}(x) 2 a(s) \mu^{-s}\left\{\mu^{\frac{1}{2}} \int_{0}^{\infty} t^{-s-\frac{1}{2}} J_{s+\frac{1}{2}}(\mu t) \cos \mu_{k} t d t-K_{\mu_{k}}^{\mu}(R)\right\}+ \\
\quad+a(s) \mu^{-s}\left\{\mu^{\frac{1}{2}} \int_{0}^{R} t^{-s-\frac{1}{2}} J_{s+\frac{1}{2}}(\mu t) g_{0}\left(u_{k}, \mu_{k}, x, t\right) d t\right\}
\end{gathered}
$$

It is well-known (cf. [10, p. 107, (34)]) that

$$
\begin{equation*}
2 a(s) \mu^{\frac{1}{2}-s} \int_{0}^{\infty} t^{-s-\frac{1}{2}} J_{s+\frac{1}{2}}(\mu t) \cos \mu_{k} t d t=\delta_{\mu_{k}}^{\mu}\left(1-\frac{\mu_{k}^{2}}{\mu^{2}}\right)^{s} \tag{14}
\end{equation*}
$$

where

$$
\delta_{\mu_{k}}^{\mu}:=\left\{\begin{array}{lll}
1 & \text { if } \quad \mu_{k}<\mu \\
0 & \text { if } \quad \mu_{k}>\mu
\end{array}\right.
$$

Substituting (14) into (13) we obtain

$$
\begin{aligned}
& W_{k}^{s}=\delta_{\mu_{k}}^{\mu} u_{k}(x)\left(1-\frac{\mu_{k}^{2}}{\mu^{2}}\right)^{s}-2 a(s) \mu^{-s} u_{k}(x) K_{\mu_{k}}^{\mu}(R)+ \\
& +a(s) \mu^{-s}\left[\mu^{\frac{1}{2}} \int_{0}^{R} t^{-s-\frac{1}{2}} J_{s+\frac{1}{2}}(\mu t) g_{0}\left(u_{k}, \mu_{k}, x, t\right) d t\right]
\end{aligned}
$$

Since for any fixed $x \in K$ and $\mu>0, W_{R}^{s}(|x-y|)$ as function of y belongs to $L_{2}[0,1]$, we have the following equality in $L_{2}[0,1]$-convergence in y :

$$
\begin{gathered}
W_{R}^{s}(|x-y|)-\sum_{\mu_{k}<\mu} u_{k}(k) u_{k}(y)\left(1-\frac{\mu_{k}^{2}}{\mu^{2}}\right)^{s}= \\
=-2 a(s) \mu^{-s} \sum_{k=1}^{\infty} u_{k}(x) u_{k}(y) K_{\mu_{k}}^{\mu}(R)+ \\
+a(s) \mu^{-s} \sum_{k=1}^{\infty}\left[\mu^{\frac{1}{2}} \int_{0}^{R} t^{-s-\frac{1}{2}} J_{s+\frac{1}{2}}(\mu t) g_{0}\left(u_{k}, \mu_{k}, x, t\right) d t\right] u_{k}(y)
\end{gathered}
$$

Apply the operation $\mathcal{D}_{R_{0}}$ term by term on both sides of the last equality to get

$$
\begin{equation*}
\mathcal{D}_{R_{0}} W_{R}^{s}(|x-y|)-\sum_{\mu_{k}<\mu} u_{k}(x) u_{k}(y)\left(1-\frac{\mu_{k}^{2}}{\mu^{2}}\right)^{s}= \tag{15}
\end{equation*}
$$

$$
\begin{gathered}
=-2 a(s) \mu^{-s} \sum_{k=1}^{\infty} u_{k}(x) u_{k}(y) \mathcal{D}_{R_{0}} K_{\mu_{k}}^{\mu}(R)+ \\
+2 a(s) \mu^{-s} \sum_{k=1}^{\infty} \mathcal{D}_{R_{0}}\left[\mu^{\frac{1}{2}} \int_{0}^{R} t^{-s-\frac{1}{2}} J_{s+\frac{1}{2}}(\mu t) g_{0}\left(u_{k}, \mu_{k}, x, t\right) d t\right] u_{k}(y) .
\end{gathered}
$$

It is easy to prove that after multiplication of both sides of (15) by any $f \in H_{1}^{\omega}[0,1]$, one can integrate the resulting equality term by term over $[0,1]$ in y. Introducing the notations

$$
\begin{gathered}
S_{1}:=-2 a(s) \mu^{-s} \sum_{k=1}^{\infty} u_{k}(x) f_{k} \mathcal{D}_{R_{0}} K_{\mu_{k}}^{\mu}(R), \\
S_{2}:=a(s) \mu^{-s} \sum_{k=1}^{\infty} \mathcal{D}_{R_{0}}\left[\mu^{\frac{1}{2}} \int_{0}^{R} t^{-s-\frac{1}{2}} J_{s+\frac{1}{2}}(\mu t) g_{0}\left(u_{k}, \mu_{k}, x, t\right) d t\right] f_{k}
\end{gathered}
$$

and taking into consideration (2), (10) and (11) we have the following estimates:

$$
\left|S_{i}\right| \leqq C(K, q, s)\|f\|_{\omega} \omega\left(\frac{1}{\mu}\right) \cdot \mu^{-s} \quad(\mu \geq 1, \quad i=1,2)
$$

Therefore

$$
\left|\int_{0}^{1} \mathcal{D}_{R_{0}} W_{R}^{s}(|x-y|) f(y) d y-\sigma_{\mu}^{s}(f, x)\right| \leqq C(K, q, s)\|f\|_{\omega} \omega\left(\frac{1}{\mu}\right) \cdot \mu^{-s}
$$

similarly

$$
\left|\int_{0}^{1} \mathcal{D}_{R_{0}} W_{R}^{s}(|x-y|) f(y) d y-\hat{\sigma}_{\mu}^{s}(f, x)\right| \leqq C(K, q, s)\|f\|_{\omega} \omega\left(\frac{1}{\mu}\right) \cdot \mu^{-s} .
$$

After this preparation we obtain (1) by the triangle inequality.
Now we have to prove that the estimate (1) is not refinable in the sense that $o\left(\omega\left(\frac{1}{\mu}\right)\right)$ can not be written on the right hand side of (1). This was proved in [2] for the case $s=0$.

Theorem is proved.

References

[1] Š. A. Alimov, V. A. Il’in, E. M. Nikišin, Uspekhi Mat. Nauk, 32 (1977), 107-130.
[2] S.. A. Alimov, I. Joó, Equiconvergence theorem with exact order, Studia Sci. Math. Hungar., 15 (1980), 431-439.
[3] V. A. Il'in, I. Joó Diff. Uravn., 15 (1979), 1164-1174.
[4] V. A. Il'in, I. Joó Diff. Uravn., 15 (1979), 1175-1193.
[5] N. Lažetič, Diff. Uravn., 20 (1984), 61-67.
[6] I. S̀. Lomov, Diff. Uravn., 21 (1985), 903-906.
[7] I. Joó, On the summability of eigenfunction expansions II, Annales Univ. Sci. Budapest., Sectio Math., 27 (1985), 167-184.
[8] N. H. Loi, On the Riesz means of expansions by Riesz bases formed by eigenfunctions of the Schrödinger operator, Periodica Math. Hungar. (to appear).
[9] E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations, Clarendon Press (Oxford, 1958).
[10] H. Bateman, A. Erdélyi, Higher transcendental functions, McGraw-Hill Book Company (New York-Toronto-London, 1953).
(Received November 27, 1987)

DEPARTMENT OF MATH. ANALYSIS,
HANOI PEDAGOGIC UNIVERSITY II
HANOI

INTERPOLATION BETWEEN DYADIC HARDY SPACES H^{p} : THE COMPLEX METHOD

V. ECHANDIA (Caracas)

Preliminaries

1.1. Dyadic Hardy spaces \mathbf{H}^{p}. In what follows L^{p} will denote $L^{p}[0,1]$, $0<p<\infty$. In this section, following [2], we shall introduce the dyadic Hardy spaces.

Definition 1. For each $f \in L^{1}$, let

$$
E_{n} f=S_{2^{n}} f \quad(n \in \mathbf{N}),
$$

where $S_{2^{n}} f$ is the 2^{n} th partial sum of the Walsh-Fourier series of f. The dyadic maximal function $E^{*} f$ is defined by

$$
E^{*} f=\sup _{n \in \mathbf{N}}\left|E_{n} f\right| \quad\left(f \in L^{1}\right) .
$$

Definition 2. For $f \in L^{1}$, set

$$
\tilde{E}_{0} f=\left|E_{0} f\right|,
$$

and for $n \in \mathbf{P}$, also define

$$
\tilde{E}_{n} f=\sup _{0<m \leqq n}\left(\left|E_{n}(f)\right|+\left|E_{m}\left(f \cdot r_{m}\right)\right|\right)
$$

where r_{m} is the m-th Rademacher function.
For each $f \in L^{1}$ set

$$
\tilde{E} f=\sup _{n \in \mathbf{N}} \tilde{E}_{n} f
$$

It is easy to see that

$$
\begin{equation*}
E^{*} f \leqq \tilde{E} f \leqq 3 E^{*} f \tag{1}
\end{equation*}
$$

The following lemma is proved in [2].
Lemma 1. If $f \in L^{1}$ has zero mean and we define $f_{n}=E_{n} f(n \in \mathbf{N})$, and for $k \in \mathbf{Z}$ we put

$$
f^{(k)}=\sum_{n=0}^{\infty} \chi\left\{2^{k}<\tilde{E}_{n} f \leqq 2^{k+1}\right\}\left(f_{n+1}-f_{n}\right),
$$

then we have

$$
E^{*}\left(f^{(k)}\right) \leqq 2^{k+2} \chi\left\{\tilde{E} f>2^{k}\right\}
$$

and

$$
f=\sum_{k=-\infty}^{\infty} f^{(k)}
$$

a.e. on $[0,1]$. Moreover, if $E^{*} f \in L^{1}$, then this series converges to f in L^{1} norm. ($\chi\{\ldots\}$ denotes the characteristic function of the set $\{\ldots\}$.)

The above series will be called the canonical decomposition of f.
Definition 3. The dyadic Hardy spaces are defined as

$$
\mathbf{H}^{p}:=\left\{f \in L^{1}:\|f\|_{\mathbf{H}^{p}}:=\left(\int_{0}^{1}\left(E^{*} f\right)^{p}\right)^{1 / p}<\infty\right\} \quad(0<p<\infty) .
$$

Notice that the set of dyadic step functions L is dense in $\mathbf{H}^{p}(0<p<\infty)$. For a detailed study of these spaces see [2].
1.2. The complex method of interpolation. In this section we define the interpolation spaces $\bar{A}_{[\theta]}$, in the same way as in [1].

Given a couple $\bar{A}=\left(A_{0}, A_{1}\right)$ of Banach spaces, we shall consider the space $\mathcal{F}=\mathcal{F}(\bar{A})$ of all functions f with values in $\sum(\bar{A})$, which are bounded and continuous in the strip $S=\{z \in \mathbf{C}: 0 \leqq \operatorname{Re} z \leqq 1\}$ and analytic in the open strip $S_{0}=\{z \in \mathbf{C}: 0 \leqq \operatorname{Re} z<\overline{1}\}$. Moreover, the functions $t \rightarrow f(j+i t)(j=0,1 i=\sqrt{-1})$ are continuous from the real line into A_{j} and tend to zero as $|t| \rightarrow \infty$. $\mathcal{F}(\bar{A})$ is a vector space. We provide \mathcal{F} with the norm

$$
\|f\|_{\mathcal{F}}=\max \left(\sup \|f(i t)\|_{A_{0}}, \sup \|f(1+i t)\|_{A_{1}}\right)
$$

(The supremum is taken over all real numbers t.)
We have the following result.
Lemma 2. The space \mathcal{F} is a Banach space.
For a proof see [1].
Definition 4. Given a couple $\bar{A}=\left(A_{0}, A_{1}\right)$ of Banach spaces and $0<\theta<1$, the space $\bar{A}_{[\theta]}$ is defined as

$$
\bar{A}_{[\theta]}=\left\{a \in \sum(\bar{A}): a=f(\theta), \quad \text { for some } \quad f \in \mathcal{F}(\bar{A})\right\} .
$$

The space $\bar{A}_{[\theta]}$ is a Banach space with the norm

$$
\|a\|_{[\theta]}=\inf \left\{\|f\|_{\mathcal{F}}: f(\theta)=a, \quad f \in \mathcal{F}\right\} .
$$

(See [1].)
For $\bar{A}_{[\theta]}$ we have the following

Proposition 1. The space $\bar{A}_{[\theta]}$ is an interpolation space with respect to \bar{A}.

For a proof and for a detailed study see [1].

2. Characterization of intermediate spaces between
 $\mathbf{H}^{p_{0}}$ and $\mathbf{H}^{p_{1}}\left(1 \leqq p_{j}<\infty, j=0,1\right)$

In this section we shall use the idea of [2], to prove the following result.
Theorem. Assume that $p_{0} \geqq 1, p_{1} \geqq 1$ and $0<\theta<1$. Then

$$
\left(\mathbf{H}^{p_{0}}, \mathbf{H}^{p_{1}}\right)_{[\theta]}=\mathbf{H}^{p} \quad \text { (equivalent norms), }
$$

if

$$
\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}} .
$$

Proof. It is sufficient to prove that there exist constants $c_{1}, c_{2}>0$ such that

$$
c_{1}\|a\|_{\mathbf{H}^{p}} \leqq\|a\|_{[\theta]} \leqq c_{2}\|a\|_{\mathbf{H}^{p}}
$$

for all functions $a \in L$.
For any $a \in L$ define

$$
a_{z}=\sum_{k=-\infty}^{\infty} 2^{k p / p_{z}} a^{(k)} 2^{-k}, \quad z \in S
$$

where $a=\sum_{k=-\infty}^{\infty} a^{(k)}$ is the canonical decomposition of a, and

$$
\frac{1}{p_{z}}=\frac{1-z}{p_{0}}+\frac{z}{p_{1}}, \quad z \in S .
$$

Clearly, $a_{\theta}=a$. Moreover there exists a $c_{1}>0$ such that, for $j=0,1$,

$$
\left\|a_{j+i y}\right\|_{\mathbf{H}^{p_{j}}} \leqq c_{1}\|a\|_{\mathbf{H} p}^{p / p_{j}} \quad(y \in \mathbf{R}) .
$$

In fact, by Lemma 1 we have that

$$
E^{*}\left(a_{z}\right) \leqq \sum_{k=-\infty}^{\infty}\left|2^{k p / p_{z}}\right| 2^{-k} E^{*}\left(a^{(k)}\right) \leqq 4 \sum_{k=-\infty}^{\infty} 2^{k p / p_{j}} \chi\left\{\tilde{E} a>2^{k}\right\}
$$

where $z=j+i y$. Applying Abel's transformation we obtain that

$$
\begin{gathered}
E^{*}\left(a_{j+i y}\right) \leqq 4 \sum_{k=-\infty}^{\infty} 2^{k p / p_{j}} \chi\left\{\tilde{E} a>2^{k}\right\}= \\
=\frac{4}{2^{p / p_{j}}-1} \sum_{k=-\infty}^{\infty}\left(2^{(k+1) p / p_{j}}-2^{k p / p_{j}}\right) \chi\left\{\tilde{E} a>2^{k}\right\}= \\
=\frac{4 \cdot 2^{p / p_{j}}}{2^{p / p_{j}}-1} \sum_{k=-\infty}^{\infty} 2^{k p / p_{j}} \chi\left\{2^{k}<\tilde{E} a \leqq 2^{k+1}\right\} .
\end{gathered}
$$

We can conclude from (1) that

$$
\left\|a_{j+i y}\right\|_{\mathbf{H}^{p_{j}}}=\left\|E^{*}\left(a_{j+i y}\right)\right\|_{p_{j}} \leqq \gamma_{p}\|\tilde{E}(a)\|_{p}^{p / p_{j}} \leqq 3 \gamma_{p}\left\|E^{*}(a)\right\|_{p}^{p / p_{j}}=c_{1}\|a\|_{\mathbf{H}^{p}}^{p / p_{j}}
$$

where $\gamma_{p}>0$ depends only on p.
Now let $\varepsilon>0$ and define

$$
f(z)=a_{z} \cdot \exp \left(\varepsilon z^{2}-\varepsilon \theta^{2}\right), \quad \text { for all } \quad z \in S_{0}
$$

Assuming that $\|a\|_{\mathbf{H}_{p}}=1$, we have that $f(\theta)=a, f \in \mathcal{F}$, and $\|f\|_{\mathcal{F}} \leqq c_{1} e^{e}$. We conclude that

$$
\|a\|_{[\theta]} \leqq c_{1} e^{\varepsilon}, \quad \text { for all } \varepsilon>0
$$

Hence $\|a\|_{[\theta]} \leqq c_{1}\|a\|_{\mathbf{H}^{p}}$.
The converse inequality follows from the relation (see [3])

$$
\|a\|_{\mathbf{H}^{p}}=\sup \left\{|\langle a, b\rangle|:\|b\|_{\left(\mathbf{H}^{p}\right)^{*}}=1 ; b \in L\right\}
$$

where

$$
<a, b>=\left\{\begin{array}{lll}
\int_{0}^{1} a \cdot b, & \text { if } & p>1 \\
\lim _{m \rightarrow \infty} \int_{0}^{1} E_{m}(a) E_{m}(b), & \text { if } & p=1
\end{array}\right.
$$

and $\left(\mathbf{H}^{p}\right)^{*}$ stands for the dual space of \mathbf{H}^{p}. In fact, given $b \in L, \varepsilon>0$ and $1>\delta>0$ put

$$
g(z)=b_{z} \cdot \exp \left(\varepsilon z^{2}-\varepsilon \theta^{2}\right) \text { for } z \in S
$$

Pick an $h \in \mathcal{F}(\bar{A})$ such that $h(\theta)=a$ and

$$
\|h\|_{\mathcal{F}} \leqq\|a\|_{[\theta]}+\delta .
$$

If we define

$$
F(z)=\langle h(z), g(z)\rangle \text { for } z \in S
$$

then applying Hölder's or Fefferman's inequality and supposing that $\|a\|_{[\theta]}=$ $=1$ and $\|b\|_{\mathbf{H}^{p^{\prime}}}=1$, we get for $y \in \mathbf{R}$

$$
\begin{aligned}
\|F(i y)\| & \leqq\|h(i y)\|_{\mathbf{H}^{p_{0}}}\|g(i y)\|_{\mathbf{H}_{0}^{p_{0}^{\prime}}} \leqq c_{0} e^{\varepsilon}\|h(i y)\|_{\mathbf{H}^{p_{0}}} \leqq \\
& \leqq c_{0} e^{\varepsilon}\|h\|_{\mathcal{F}} \leqq\left(\|a\|_{[\theta]}+\delta\right) c_{0} e^{\varepsilon} \leqq 2 c_{0} e^{\varepsilon},
\end{aligned}
$$

where

$$
\frac{1}{p_{0}}+\frac{1}{p_{0}^{\prime}}=1
$$

Similarly, we obtain that there exists a constant $c_{2}>0$, with

$$
|F(1+i y)| \leqq c_{2} e^{\varepsilon} \quad(y \in \mathbf{R}) .
$$

Since $h \in \mathcal{F}(\bar{A})$ and $g \in L$, the function F is holomorphic on S_{0} and continuous on S. Consequently, the three lines theorem implies

$$
\left|<a, b>\left|=|F(\theta)| \leqq \tilde{c}_{2}\left(e^{\varepsilon}\right)^{\theta} \cdot\left(e^{\varepsilon}\right)^{(1-\theta)} \leqq \tilde{c}_{2} e^{\varepsilon} .\right.\right.
$$

Hence we obtain that

$$
\|a\|_{\mathbf{H}^{p}} \leqq \tilde{c}_{2} e^{\varepsilon}, \text { for all } \varepsilon>0
$$

Therefore

$$
\|a\|_{\mathbf{H}^{p}} \leqq \tilde{c}_{2}\|a\|_{[\theta]} .
$$

The proof is complete.
I am grateful to Professor F. Schipp for calling my attention to the problem and for his helpful comments.

References

[1] J. Bergh, J. Löftröm, Interpolation spaces, An introduction, Springer-Verlag (Berlin, Heidelberg, New York, 1976).
[2] F. Schipp and co-authors, Walsh Series, Akadémiai Kiadó (to appear).
[3] A. M. Garsia, Martingale inequalities, Seminar notes on recent progress, W. A. Benjamin, Inc., (Reading, Mass., 1973).
(Received December 10, 1987)
UNIVERSIDAD CENTRAL DE VENEZUELA
FACULTAD DE CIENCIAS
DEPARTAMENTO DE MATEMATICAS
APTDO 40645
CARACAS 1040-A, VENEZUELA

WEIGHTED SIMULTANEOUS APPROXIMATION BY ALGEBRAIC PROJECTION OPERATORS

E. VAN WICKEREN (Aachen)

1. Introduction

The present note originates in work on simultaneous approximation by projection operators, given in [6] for trigonometric approximation. Here the corresponding algebraic problems are considered in the frame of appropriate weighted Sobolev spaces. In fact, the direct estimates are established is terms of the error of best weighted approximation which then turns out to be sharp.

Let $C=C[-1,1]$ be the space of functions, continuous on the compact interval $[-1,1]$, and let $[C]$ be the space of linear bounded operators of C into itself, endowed with the sup-norm $\|\cdot\|_{C}$ and operator norm $\|\cdot\|_{[C]}$, respectively. An operator $L_{n} \in[C]$ is called a polynomial projection operator on \mathcal{P}_{n}, the set of algebraic polynomials of degree at most $n \geqq 0$, if

$$
\begin{equation*}
L_{n} f \in \mathcal{P}_{n} \quad(f \in C), \quad L_{n} p_{n}=p_{n} \quad\left(p_{n} \in \mathcal{P}_{n}\right) . \tag{1.1}
\end{equation*}
$$

In terms of the error of best approximation

$$
\begin{equation*}
E_{n}(f):=\inf \left\{\left\|f-p_{n}\right\|_{C}: p_{n} \in \mathcal{P}_{n}\right\} \tag{1.2}
\end{equation*}
$$

it is well-known that

$$
\left\|L_{n} f-f\right\|_{C} \leqq K\left\|L_{n}\right\|_{[C]} E_{n}(f) \quad(f \in C) .
$$

It is the purpose of this paper to give an analogous result for the remainder of the simultaneous approximation of f by $L_{n} f$, i.e., for the r-th derivative $\left(f-L_{n} f\right)^{(r)}(x)$, as well as to discuss the sharpness of the relevant estimates. It turns out that one has to consider the weighted Sobolev space C_{φ}^{r} of functions $f \in C$, which are r-times differentiable on $(-1,1)$ such that $\varphi^{r} f^{(r)} \in C$, $\varphi(x):=\sqrt{1-x^{2}}\left(C_{\varphi}^{0}:=C[-1,1]\right)$. In terms of the error of best weighted approximation

$$
\begin{equation*}
E_{n}^{\varphi^{r}}(f):=\inf \left\{\left\|\varphi^{r}\left(f-p_{n}\right)\right\|_{C}: p_{n} \in \mathcal{P}_{n}\right\} \tag{1.3}
\end{equation*}
$$

the main result is given by ($n \geqq r$)

$$
\begin{equation*}
\left\|\varphi^{r}\left(f-L_{n} f\right)^{(r)}\right\|_{C} \leqq K\left\|L_{n}\right\|_{[C]} E_{n-r}^{\varphi^{r}}\left(f^{(r)}\right) \quad\left(f \in C_{\varphi}^{r}\right), \tag{1.4}
\end{equation*}
$$

which is quite analogous to the estimates in the periodic case (see [6], also Theorems 2.6,7). This can then be extended to error bounds for $\left\|\varphi^{i}\left(f-L_{n} f\right)^{(i)}\right\|_{C}$ simultaneously for each $0 \leqq i \leqq r$ given in Corollary 2.5. Essential for the proofs are some facts on weighted approximation, recently published in [4], which allow to strengthen the result on simultaneous approximation by the polynomial of best approximation, given in [5] (see Lemma 2.2).

Concerning the sharpness of (1.4) only those L_{n} are considered which are optimal in the sense of the theorem of Harsiladze-Lozinski, i.e., the norm $\left\|L_{n}\right\|_{[C]}$ behaves like $\log n$. The proof is based on a quantitative extension of the uniform boundedness principle (see [3] and the literature cited there) and is reduced to arguments concerned with trigonometric approximation.

2. Direct estimates

Let us first recall some facts on algebraic best approximation in the weighted Sobolev space $C_{\varphi^{\prime}}^{r}$, given in [4, Theorems 2.1.1, 7.2.1, 7.3.1].

Lemma 2.1. Let $f \in C_{\varphi}^{r}$ and let $p_{n} \in \mathcal{P}_{n}$ denote its polynomial of best approximation. Then

$$
\begin{align*}
\left\|f-p_{n}\right\|_{C} & \leqq K n^{-r}\left\|\varphi^{r} f^{(r)}\right\|_{C} \tag{2.1}\\
\left\|\varphi^{r} p_{n}^{(r)}\right\|_{C} & \leqq K\left\|\varphi^{r} f^{(r)}\right\|_{C}
\end{align*}
$$

The following lemma is the key to derive (1.4) and improves the result given in [5].

Lemma 2.2. Let $f \in C_{\varphi}^{r}$, and let $p_{n} \in \mathcal{P}_{n}$ denote its polynomial of best approximation (with regard to (1.2)). Then for $n \geqq r$

$$
\begin{gather*}
\left\|f-p_{n}\right\|_{C} \leqq K n^{-r} E_{n-r}^{\varphi^{r}}\left(f^{(r)}\right) \tag{2.3}\\
\left\|\varphi^{r}\left(f-p_{n}\right)^{(r)}\right\|_{C} \leqq K E_{n-r}^{\varphi^{r}}\left(f^{(r)}\right)
\end{gather*}
$$

Proof. Since \mathcal{P}_{n} is finite dimensional and $\varphi^{r} f^{(r)} \in C$, there exists $Q_{n-r} \in \mathcal{P}_{n-r}$ with (cf. (1.3))

$$
\left\|\varphi^{r}\left(f^{(r)}-Q_{n-r}\right)\right\|_{C}=E_{n-r}^{\varphi^{r}}\left(f^{(r)}\right)
$$

Then

$$
q_{n}(x):=\int_{0}^{x} \cdots \int_{0}^{u_{r-1}} Q_{n-r}\left(u_{r}\right) d u_{r} \ldots d u_{1}
$$

belongs to \mathcal{P}_{n} with $q_{n}^{(r)}=Q_{n-r}$. Setting $F:=f-q_{n}$, one therefore has

$$
\begin{equation*}
\left\|\varphi^{r} F^{(r)}\right\|_{C}=E_{n-r}^{\varphi^{r}}\left(f^{(r)}\right) \tag{2.5}
\end{equation*}
$$

Let $t_{n} \in \mathcal{P}_{n}$ denote the polynomial of best approximation of F, i.e., $\left\|F-t_{n}\right\|_{C}=E_{n}(F)$. In view of (2.2) one obtains

$$
\begin{equation*}
\left\|\varphi^{r} t_{n}^{(r)}\right\|_{C} \leqq K\left\|\varphi^{r} F^{(r)}\right\|_{C} \tag{2.6}
\end{equation*}
$$

Now $q_{n} \in \mathcal{P}_{n}$ so that

$$
\left\|f-q_{n}-t_{n}\right\|_{C}=E_{n}(F)=E_{n}\left(f-q_{n}\right)=E_{n}(f)
$$

thus $p_{n}=q_{n}+t_{n}$, since p_{n} is unique. This implies by $(2.1,5)$

$$
\left\|f-p_{n}\right\|_{C}=\left\|F-t_{n}\right\|_{C} \leqq K n^{-r}\left\|\varphi^{r} F^{(r)}\right\|_{C}=K n^{-r} E_{n-r}^{\varphi^{r}}\left(f^{(r)}\right),
$$

thus (2.3). Moreover, (2.4) is a consequence of $(2.5,6)$ and
$\left\|\varphi^{r}\left(f-p_{n}\right)^{(r)}\right\|_{C} \leqq\left\|\varphi^{r} F^{(r)}\right\|_{C}+\left\|\varphi^{r} t_{n}^{(r)}\right\|_{C} \leqq K\left\|\varphi^{r} F^{(r)}\right\|_{C}=K E_{n-r}^{\varphi^{r}}\left(f^{(r)}\right)$.

Now, we are in the position to establish the main result.
Theorem 2.3. Let $L_{n} \in[C]$ be polynomial projection operators on \mathcal{P}_{n}. Then (1.4) holds true for each $r \geqq 0$.

Proof. Let $p_{n} \in \mathcal{P}_{n}$ denote the polynomial of best approximation of $f \in C_{\varphi}^{r}$. In view of (1.1), $(2.3,4)$ one obtains

$$
\begin{gather*}
\left\|\varphi^{r}\left(f-L_{n} f\right)^{(r)}\right\|_{C} \leqq\left\|\varphi^{r}\left(f-p_{n}\right)^{(r)}\right\|_{C}+\left\|\varphi^{\tau} L_{n}^{(r)}\left(f-p_{n}\right)\right\|_{C} \leqq \tag{2.7}\\
\leqq K E_{n-r}^{\varphi^{r}}\left(f^{(r)}\right)+K n^{r}\left\|L_{n}\left(f-p_{n}\right)\right\|_{C} \leqq \\
\leqq K E_{n-r}^{\varphi^{r}}\left(f^{(r)}\right)+K n^{r}\left\|L_{n}\right\|_{[C]} n^{-r} E_{n-r}^{\varphi^{r}}\left(f^{(r)}\right),
\end{gather*}
$$

upon applying the Bernstein-inequality

$$
\begin{equation*}
\left\|\varphi^{r} q_{n}^{(r)}\right\|_{C} \leqq K n^{r}\left\|q_{n}\right\|_{C} \quad\left(q_{n} \in \mathcal{P}_{n}\right) \tag{2.8}
\end{equation*}
$$

To extend Theorem 2.3 to error bounds for $\left\|\varphi^{i}\left(f-L_{n} f\right)^{(i)}\right\|_{C}, 0 \leqq i \leqq r$, let us first establish

Lemma 2.4. Let $0 \leqq i \leqq r$. Then $C_{\varphi}^{r} \subset C_{\varphi}^{i}$ and

$$
\begin{equation*}
E_{n-r}^{\varphi^{i}}\left(f^{(i)}\right) \leqq K n^{-(r-i)} E_{n-r}^{\varphi^{r}}\left(f^{(r)}\right) \quad\left(f \in C_{\varphi}^{r}\right) \tag{2.9}
\end{equation*}
$$

Proof. To show $C_{\varphi}^{r} \subset C_{\varphi}^{i}$ it is enough to consider $i=r-1 \geqq 1$. For $f \in C_{\varphi}^{r}$ and $0 \leqq x<1$ one has

$$
\varphi^{r-1}(x) f^{(r-1)}(x)=\int_{0}^{x} \varphi^{r-1}(x) f^{(r)}(t) d t+\varphi^{r-1}(x) f^{(r-1)}(0)
$$

Since $\varphi^{r-1}(x) \leqq \varphi^{r-1}(t)$ for $0 \leqq t \leqq x$ the integrand is bounded by $\left\|\varphi^{r} f^{(r)}\right\|_{C} / \varphi(t)$ and converges to zero for $x \rightarrow 1-$ and fixed t. Thus by dominated convergence one obtains

$$
\lim _{x \rightarrow 1-} \varphi^{r-1}(x) f^{(r-1)}(x)=0
$$

Similarly, this result is valid for $x \rightarrow-1+$ so that $\varphi^{r-1} f^{(r-1)} \in C[-1,1]$, thus $f \in C_{\varphi}^{r-1}$. To establish (2.9) it is again enough to consider $i=r-1 \geqq 0$. Then an iterative application of (8.2.1), (6.2.6), (6.1.1) (with weight $w=$ $=\varphi^{r-1}$) of [4] yields the Jackson-type inequality

$$
E_{n-r+1}^{\varphi^{r-1}}\left(f^{(r-1)}\right) \leqq K n^{-1}\left\|\varphi^{r} f^{(r)}\right\|_{C} \quad\left(f \in C_{\varphi}^{r}\right)
$$

Now let $f \in C_{\varphi}^{r}$ be fixed and let q_{n} as in the proof of Lemma 2.2. Then $q_{n}^{(r-1)} \in \mathcal{P}_{n-r+1}$ so that

$$
\begin{aligned}
& E_{n-r+1}^{\varphi^{r-1}}\left(f^{(r-1)}\right)=E_{n-r+1}^{\varphi^{r-1}}\left(f^{(r-1)}-q_{n}^{(r-1)}\right) \leqq \\
& \leqq K n^{-1}\left\|\varphi^{r}\left(f^{(r)}-q_{n}^{(r)}\right)\right\|_{C}=K n^{-1} E_{n-r}^{\varphi^{r}}\left(f^{(r)}\right)
\end{aligned}
$$

hence (2.9).
The following corollary is an immediate consequence of Theorem 2.3 applied to $0 \leqq i \leqq r$ and Lemma 2.4.

Corollary 2.5. Let $L_{n} \in[C]$ be polynomial projection operators on \mathcal{P}_{n}. Then $(n \geqq r)$

$$
\begin{equation*}
\left\|\varphi^{i}\left(f-L_{n} f\right)^{(i)}\right\|_{C} \leqq K n^{-(r-i)}\left\|L_{n}\right\|_{[C]} E_{n-r}^{\varphi^{r}}\left(f^{(r)}\right) \quad\left(f \in C_{\varphi}^{r}\right) \tag{2.10}
\end{equation*}
$$ simultaneously for each $0 \leqq i \leqq r$.

Let us remark that the proofs still work if, instead of (1.1), for some fixed $q \in \mathbf{N}$

$$
\begin{equation*}
L_{n} f \in \mathcal{P}_{q n} \quad(f \in C), \quad L_{n} p_{n}=p_{n} \quad\left(p_{n} \in \mathcal{P}_{n}\right) \tag{2.11}
\end{equation*}
$$

Such an operator is given by the algebraic version of the de la Vallée Poussin means. To be more precise, let $C_{2 \pi}$ be the space of functions, 2π-periodic and continuous on \mathbf{R}, endowed with the sup-norm $\|\cdot\|_{C}$, and let $C_{2 \pi}^{+}$be the subspace of even functions. The latter one is isometric to C via the transformation $U f(x):=f(\cos x), f \in C$. The de la Vallée Poussin means are defined by $\left(g \in C_{2 \pi}\right)$

$$
V_{n}:=\frac{1}{n} \sum_{k=n}^{2 n-1} S_{k}, \quad S_{k} g(x):=\sum_{j=-k}^{k} e^{i j x} \frac{1}{2 \pi} \int_{-\pi}^{\pi} g(u) e^{-i j u} d u
$$

It is well-known, that $V_{n} g \in C_{2 \pi}^{+}$for $g \in C_{2 \pi}^{+}$and

$$
\begin{gather*}
V_{n} g \in \Pi_{2 n-1} \quad(g \in C), \quad V_{n} t_{n}=t_{n} \quad\left(t_{n} \in \Pi_{n}\right), \tag{2.12}\\
\left\|V_{n}\right\|_{\left[C_{2 \pi}\right]} \leqq 3
\end{gather*}
$$

where Π_{n} is the set of trigonometric polynomials of order at most n. Then $W_{n}:=U^{-1} V_{n} U$ fulfills (2.11) so that one obtains

$$
\begin{equation*}
\left\|\varphi^{r}\left(f-W_{n} f\right)^{(r)}\right\|_{C} \leqq K E_{n-r}^{\varphi^{r}}\left(f^{(r)}\right) \quad\left(f \in C_{\varphi}^{r}\right) . \tag{2.14}
\end{equation*}
$$

Let us also mention the analogous result in the trigonometric case itself. Denote by $C_{2 \pi}^{r}$ the space of functions $g \in C_{2 \pi}$ which are r-times continuously differentiable on \mathbf{R}.

Theorem 2.6. Let $M_{n} \in\left[C_{2 \pi}\right]$ be such that

$$
\begin{equation*}
M_{n} g \in \Pi_{n} \quad\left(g \in C_{2 \pi}\right), \quad M_{n} t_{n}=t_{n} \quad\left(t_{n} \in \Pi_{n}\right) . \tag{2.15}
\end{equation*}
$$

Then with $\tilde{E}_{n}(g):=\inf \left\{\left\|g-t_{n}\right\|_{C}: t_{n} \in \Pi_{n}\right\}$

$$
\begin{equation*}
\left\|\left(M_{n} g-g\right)^{(i)}\right\|_{C} \leqq K n^{-(r-i)}\left\|M_{n}\right\|_{\left[C_{2 \pi}\right]} \tilde{E}_{n}\left(g^{(r)}\right) \quad\left(g \in C_{2 \pi}^{r}\right), \tag{2.16}
\end{equation*}
$$

simultaneously for each $0 \leqq i \leqq r$.
The proof works parallel to (2.7) applying the inequalities in [8, 5.6(27), 8.4(60)] instead of Lemma 2.2,4. One may also compare (2.16), $i=r$ with

$$
\left\|\left(M_{n} g-g\right)^{(r)}\right\|_{C} \leqq K\left[\tilde{E}_{n}\left(g^{(r)}\right)+\tilde{E}_{n}(g)\left\|M_{n}^{(r)}\right\|_{\left[C_{2 \pi}\right]}\right]
$$

given in [6] (for a similar treatment in C see [7]).
Let us conclude this section with the analogon of Theorem 2.6 to even functions.

Theorem 2.7. Let $M_{n} \in\left[C_{2 \pi}^{+}\right]$be such that

$$
\begin{equation*}
M_{n} g \in \Pi_{n}^{+}:=\Pi_{n} \cap C_{2 \pi}^{+} \quad\left(g \in C_{2 \pi}^{+}\right), \quad M_{n} t_{n}=t_{n} \quad\left(t_{n} \in \Pi_{n}^{+}\right) . \tag{2.17}
\end{equation*}
$$

Then for $g \in C_{2 \pi}^{+} \cap C_{2 \pi}^{r}$

$$
\begin{equation*}
\left\|\left(M_{n} g-g\right)^{(i)}\right\|_{C} \leqq K n^{-(r-i)}\left\|M_{n}\right\|_{\left[C_{2 \pi}^{+}\right]} \tilde{E}_{n}\left(g^{(r)}\right) \tag{2.18}
\end{equation*}
$$

simultaneously for each $0 \leqq i \leqq r$.
The only difference in the proof is the observation that for even function $g \in C_{2 \pi}^{+}$the polynomial of best approximation is also even, i.e.,

$$
\begin{equation*}
\tilde{E}_{n}(g)=E_{n}^{+}(g):=\inf \left\{\left\|g-t_{n}\right\|_{C}: t_{n} \in \Pi_{n}^{+}\right\} \tag{2.19}
\end{equation*}
$$

3. The sharpness

The sharpness of the estimate (1.4) can be established for those L_{n}, the norm of which behave like $\log n$. To this end, let $\varepsilon=\left\{\varepsilon_{n}\right\}$ be a positive decreasing nullsequence satisfying

$$
\begin{equation*}
\varepsilon_{n}=O\left(\varepsilon_{2 n}\right) \tag{3.1}
\end{equation*}
$$

Theorem 3.1. Let $L_{n} \in[C]$ be polynomial projection operators on \mathcal{P}_{n}. Then for each ε subject to (3.1) there exists a counterexample $f_{\varepsilon} \in C_{\varphi}^{r}$ such that

$$
\begin{gather*}
E_{n-r}^{\varphi^{r}}\left(f_{\varepsilon}^{(r)}\right)=O\left(\varepsilon_{n}\right) \tag{3.2}\\
\left\|\varphi^{r}\left(f_{\varepsilon}-L_{n} f_{\varepsilon}\right)^{(r)}\right\|_{C} \neq o\left(\varepsilon_{n} \log n\right) \tag{3.3}
\end{gather*}
$$

This result follows as an application of the subsequent quantitative extension of the uniform boundedness principle (see [3] and the literature cited there). Let X be a Banach space with norm $\|\cdot\|_{X}$ and X^{*} the space of sublinear, bounded functionals on X.

Theorem 3.2. Let ψ_{n} be a decreasing nullsequence and $\sigma_{n}>0$. Suppose that for $U_{n}, R_{n} \in X^{*}$ there are elements $h_{n} \in X$ satisfying ($m, n \in \mathbf{N}$)

$$
\begin{equation*}
\left\|h_{n}\right\|_{X} \leqq K \tag{3.4}
\end{equation*}
$$

$$
\begin{align*}
&\left|U_{m} h_{n}\right| \leqq K \min \left\{1, \sigma_{m} / \psi_{n}\right\} \tag{3.5}\\
&\left|R_{n} h_{n}\right| \neq o(1) \tag{3.6}
\end{align*}
$$

Then for each $0<\alpha<1$ there exists $f_{\alpha} \in X$ with

$$
\begin{align*}
& \left|U_{n} f_{\alpha}\right|=O\left(\sigma_{n}^{\alpha}\right) \tag{3.7}\\
& \left|R_{n} f_{\alpha}\right| \neq o\left(\psi_{n}^{\alpha}\right) \tag{3.8}
\end{align*}
$$

The proof of Theorem 3.1 is now divided via the following lemmas.

Lemma 3.3. C_{φ}^{r} is a Banach space under the norm

$$
\begin{equation*}
\|f\|_{\varphi, r}:=\sum_{j=0}^{r-1}\left|f^{(j)}(0)\right|+\left\|\varphi^{\tau} f^{(r)}\right\|_{C} \tag{3.9}
\end{equation*}
$$

Moreover, for $f \in C_{\varphi}^{r}$

$$
\begin{equation*}
\|f\|_{C} \leqq \frac{\pi}{2}\|f\|_{\varphi, r} \tag{3.10}
\end{equation*}
$$

Proof. The first assertion may be shown as usual, applying the representation

$$
f(x)=\sum_{j=0}^{r-1} \frac{x^{j}}{j!} f^{(j)}(0)+\frac{1}{(r-1)!} \int_{0}^{x}(x-u)^{r-1} f^{(r)}(u) d u \quad(|x|<1)
$$

To obtain (3.10) set $\mu_{x}(u):=(x-u) / \varphi(u)$. Then
$|f(x)| \leqq \sum_{j=0}^{r-1}\left|f^{(j)}(0)\right|+\left|\int_{0}^{x} \frac{\left|\mu_{x}(u)\right|^{r-1}}{\varphi(u)} \varphi^{r}(u)\right| f^{(r)}(u)|d u| \leqq \frac{\pi}{2}\|f\|_{\varphi, r} \quad(|x|<1)$
since $\left|\mu_{x}(u)\right| \leqq 1$ and $\left|\int_{0}^{x} d u / \varphi(u)\right| \leqq \pi / 2$.
In view of $(1.3),(2.8),(3.10)$ the functionals $(n \geqq r)$

$$
\begin{equation*}
U_{n} f=E_{n-r}^{\varphi^{r}}\left(f^{(r)}\right), \quad R_{n} f=\left\|\varphi^{r}\left(f-L_{2 n} f\right)^{(r)}\right\|_{C} / \log (2 n) \tag{3.11}
\end{equation*}
$$

belong to X^{*} where X is the Banach space C_{φ}^{r}. To construct the test elements h_{n}, some results on trigonometric approximation are needed.

Lemma 3.4. For the partial sums $S_{2 n}$ one has the inequality

$$
\begin{equation*}
\left\|g-S_{2 n} g\right\|_{C} \leqq 4 \tilde{E}_{n}\left(g-S_{2 n} g\right) \quad\left(g \in C_{2 \pi}\right) \tag{3.12}
\end{equation*}
$$

Moreover, there exists $r_{n} \in \Pi_{4 n}^{+}$such that $\left(c_{0}>0\right)$

$$
\begin{equation*}
\left\|r_{n}\right\|_{C} \leqq 3, \quad\left\|r_{n}-S_{2 n} r_{n}\right\|_{C} \geqq c_{0} \log (2 n) \tag{3.13}
\end{equation*}
$$

Proof. Let I be the identity operator. In view of $(2.12,13)$

$$
\left\|\left(I-V_{n}\right) g\right\|_{C} \leqq 4 \tilde{E}_{n}(g)
$$

thus (3.12) since $I-S_{2 n}=\left(I-V_{n}\right)\left(I-S_{2 n}\right)$. To establish (3.13) note first that the Dirichlet kernel is even, thus

$$
\left\{\begin{array}{c}
S_{2 n}(g(-u))(x)=S_{2 n} g(-x) \quad\left(g \in C_{2 \pi}\right), \tag{3.14}\\
V_{2 n} g \in \Pi_{4 n}^{+} \quad\left(g \in C_{2 \pi}^{+}\right)
\end{array}\right.
$$

Since the norm of the functional $S_{2 n} g(0)$ behaves like $\log (2 n)$ there exists $h_{n} \in C_{2 \pi}$ with

$$
\left\|h_{n}\right\|_{C} \leqq 1, \quad\left|S_{2 n} h_{n}(0)\right| \geqq c_{0} \log (2 n)+3 .
$$

Setting $r_{n}:=V_{2 n} g_{n}, g_{n}(x):=\left(h_{n}(x)+h_{n}(-x)\right) / 2$ it follows that $r_{n} \in \Pi_{4 n}^{+}$ with $\left\|r_{n}\right\|_{C} \leqq 3$ and

$$
\left\|r_{n}-S_{2 n} r_{n}\right\|_{C} \geqq\left|S_{2 n} r_{n}(0)\right|-\left|r_{n}(0)\right| \geqq c_{0} \log (2 n)
$$

in view of (3.14) and

$$
S_{2 n} r_{n}(0)=V_{2 n} S_{n} g_{n}(0)-S_{2 n} g_{n}(0)=S_{2 n} h_{n}(0)
$$

For $t \in \mathbf{R}$ let $T_{t} \in\left[C_{2 \pi}\right]$ be the translation operator $T_{t} g(x):=g(x+t)$ which is an isometry.

Lemma 3.5. Suppose that for $t \in \mathbf{R}$ there are functions $h_{t} \in C_{2 \pi}^{+}$satisfying

$$
\begin{equation*}
h_{t}=h_{-t} \tag{3.15}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{s \rightarrow t}\left\|h_{s}-h_{t}\right\|_{C}=0 . \tag{3.16}
\end{equation*}
$$

Let $r_{n t} \in \Pi_{n}$ denote the polynomial of best approximation of h_{t}. Then

$$
\begin{equation*}
s_{n}(x):=\frac{1}{\pi} \int_{-\pi}^{\pi} T_{t} r_{n t}(x) d t \in \Pi_{n}^{+} \tag{3.17}
\end{equation*}
$$

Proof. Since the operator of best approximation is continuous, it follows that

$$
\lim _{s \rightarrow t}\left\|r_{n s}-r_{n t}\right\|_{C}=0
$$

by (3.16). Let $a_{k n}(t)$ be the coefficients of $r_{n t}$, i.e., $r_{n t}(x)=\sum_{k=-n}^{n} a_{k n}(t) e^{i k x}$. Then $a_{k n}(t)$ are continuous in t since for fixed $n \in \mathbf{N}$

$$
\left\|\sum_{k=-n}^{n} \alpha_{k} e^{i k x}\right\|_{C}
$$

is a norm on $\mathbf{R}^{2 n+1}$, equivalent to $\max \left|\alpha_{k}\right|$. Therefore the integral in (3.17) exists and

$$
s_{n}(x)=\sum_{k=-n}^{n} \frac{1}{\pi} \int_{-\pi}^{\pi} a_{k n}(t) e^{i k t} d t e^{i k x} \in \Pi_{n}
$$

In view of (2.19) the polynomials $r_{n t}$ are even and satisfy $r_{n,-t}=r_{n t}$ by (3.15) and the uniqueness of $r_{n t}$. Therefore $T_{t} r_{n t}(-x)=T_{-t} r_{n,-t}(x)$ so that s_{n} is even, too.

Lemma 3.6. If $M_{n} \in\left[C_{2 \pi}^{+}\right]$satisfies (2.17), then

$$
\begin{equation*}
\left\|g-S_{2 n} g\right\|_{C} \leqq 8 \max _{t \in \mathbf{R}} E_{n}^{+}\left(T_{t}^{+} g-M_{2 n} T_{t}^{+} g\right) \quad\left(g \in C_{2 \pi}^{+}\right) \tag{3.18}
\end{equation*}
$$

with $T_{t}^{+}:=\left(T_{t}+T_{-t}\right) / 2 \in\left[C_{2 \pi}^{+}\right]$.
Proof. For fixed $g \in C_{2 \pi}^{+}$set $h_{t}:=T_{t}^{+} g-M_{2 n} T_{t}^{+} g \in C_{2 \pi}^{+}$. Obviously, $(3.15,16)$ follow since $\left\|T_{s} g-T_{t} g\right\|_{C}$ converges to zero for $s \rightarrow t$, and $M_{2 n}$ is linear and bounded. Let $r_{n t} \in \Pi_{n}^{+}$be the polynomial of best approximation of h_{t}, and let s_{n} be defined as in (3.17). Then the Faber-MarcinkiewiczBerman identity (cf. [2, p. 214])

$$
\begin{equation*}
\left(I-S_{2 n}\right) g(x)=\frac{1}{\pi} \int_{-\pi}^{\pi} T_{t}\left(I-M_{2 n}\right) T_{t}^{+} g(x) d t \tag{3.19}
\end{equation*}
$$

and (3.12) imply the estimate

$$
\begin{gathered}
\left\|g-S_{2 n} g\right\|_{C} \leqq 4 \tilde{E}_{n}\left(g-S_{2 n} g\right) \leqq 4\left\|g-S_{2 n} g-s_{n}\right\|_{C}= \\
=4\left\|\frac{1}{\pi} \int_{-\pi}^{\pi} T_{t}\left(h_{t}-r_{n t}\right) d t\right\|_{C} \leqq 8 \sup _{t \in \mathbf{R}}\left\|h_{t}-r_{n t}\right\|_{C}=8 \sup _{t \in \mathbf{R}} E_{n}^{+}\left(h_{t}\right)
\end{gathered}
$$

Since $h_{t+2 \pi}=h_{t}$, the supremum is attained, and (3.18) follows.
Lemma 3.7. If $L_{n} \in[C]$ satisfies (1.1), there exists $p_{n} \in \mathcal{P}_{4 n}$ such that $\left(c_{1}>0\right)$

$$
\begin{equation*}
\left\|\varphi^{r}\left(p_{n}-L_{2 n} p_{n}\right)^{(r)}\right\|_{C} \geqq c_{1} n^{r} \log (2 n) \tag{3.20}
\end{equation*}
$$

Proof. Since $U \mathcal{P}_{n}=\Pi_{n}^{+}$, the operator $M_{n}=U L_{n} U^{-1} \in\left[C_{2 \pi}^{+}\right]$satisfies (2.17). Now let $r_{n} \in \Pi_{4 n}^{+}$be the polynomials, satisfying (3.13). Then Lemma 3.6 implies that there exists $t_{n} \in \mathbf{R}$ such that

$$
8 E_{n}^{+}\left(T_{t_{n}}^{+} r_{n}-M_{2 n} T_{t_{n}}^{+} r_{n}\right) \geqq c_{0} \log (2 n)
$$

With $p_{n}:=U^{-1} T_{t_{n}}^{+} r_{n} \in \mathcal{P}_{4 n}$ this yields

$$
8 E_{n}\left(p_{n}-L_{2 n} p_{n}\right) \geqq c_{0} \log (2 n)
$$

since $E_{n}^{+}(U f)=E_{n}(f)$. Thus (3.20,21) follow by (2.1) and (3.13).
Proof of Theorem 3.1. For the functionals (3.11) the conditions (3.4-6) have to be verified for

$$
h_{n}(x):=n^{-r}\left\{p_{n}(x)-\sum_{j=0}^{r-1} \frac{x^{j}}{j!} p_{n}^{(j)}(0)\right\},
$$

where p_{n} is given via Lemma 3.7. One obtains (3.4) in view of (2.8), (3.20) and

$$
\left\|h_{n}\right\|_{\varphi, r}=n^{-r}\left\|\varphi^{r} p_{n}^{(r)}\right\|_{C} \leqq K .
$$

Moreover, $U_{m} h_{n}=0$ for $m \geqq 4 n$ since $h_{n}^{(r)} \in \mathcal{P}_{4 n-r}$. If $m<4 n$, then $\varepsilon_{n} \leqq K \varepsilon_{4 n} \leqq K \varepsilon_{m}$ by (3.1) so that

$$
U_{m} h_{n} \leqq\left\|h_{n}\right\|_{\varphi, r} \leqq K \leqq K \varepsilon_{m}^{2} / \varepsilon_{2 n}^{2},
$$

thus (3.5) with $\sigma_{n}=\varepsilon_{n}^{2}, \psi_{n}=\varepsilon_{2 n}^{2}$. Since

$$
h_{n}-L_{2 n} h_{n}=n^{-r}\left(p_{n}-L_{2 n} p_{n}\right)
$$

it follows that $R_{n} h_{n} \geqq c_{1}$ by (3.21) and therefore (3.6). The assertion of Theorem 3.2 with $\alpha=1 / 2$ then yields ($3.2,3$).

Let us mention that one may deduce the sharpness of Theorem $2.6,7$ in a similarly way.

Theorem 3.8. (i) Let $M_{n} \in\left[C_{2 \pi}\right]$ satisfy (2.15). Then for each ε subject to (3.1) there exists $g_{\varepsilon} \in C_{2 \pi}^{r}$ such that

$$
\begin{equation*}
\tilde{E}_{n}\left(g_{\varepsilon}^{(r)}\right)=O\left(\varepsilon_{n}\right), \quad\left\|\left(M_{n} g-g\right)^{(r)}\right\|_{C} \neq o\left(\varepsilon_{n} \log n\right) . \tag{3.21}
\end{equation*}
$$

(ii) If $M_{n} \in\left[C_{2 \pi}^{+}\right]$satisfies (2.17), then for each ε subject to (3.1) there exists $g_{\varepsilon} \in C_{2 \pi}^{+} \cap C_{2 \pi}^{r}$ with (3.21).

Note that the proof of (ii) (and similarly for (i)) may be simplified in view of (3.19) and ($D^{r} g:=g^{(r)}$)

$$
\begin{gathered}
g^{(r)}(x)-S_{2 n}^{(r)} g(x)=\frac{1}{\pi} \int_{-\pi}^{\pi} T_{t}\left(D^{r}-M_{2 n}^{(r)}\right) T_{t}^{+} g(x) d x, \\
\left\|S_{2 n}^{(r)}\right\|_{\left[C_{2 \pi}\right]} \geqq c_{0} n^{r} \log n
\end{gathered}
$$

(for the latter inequality see [1]).

References

[1] D. L. Berman, On a class of linear operators (Russian), Dokl. Akad. Nauk SSSR, 85 (1952), 13-16.
[2] E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill (New York, 1966).
[3] W. Dickmeis, R. J. Nessel, E. van Wickeren, Quantitative extensions of the uniform boundedness principle, Jahresber. Deutsch. Math.-Verein., 89 (1987), 105134.
[4] Z. Ditizian, V. Totik, Moduli of Smoothness, Springer (Berlin, 1987).
[5] D. Leviatan, The behaviour of the derivatives of the algebraic polynomials of best approximation, J. Approx. Theory, 35 (1982), 169-176.
[6] R. O. Runck, J. Szabados, P. Vértesi, On the convergence of the differentiated trigonometric projection operators, Acta Sci. Math. (Szeged), 53 (1989), 287-293.
[7] J. Szabados, On the convergence of the derivatives of projection operators, Analysis, 7 (1987), 349-357.
[8] A. F. Timan. Theory of Approximation of Functions of a Real Variable, Pergamon Press (New York, 1963).
(Received December 16, 1987; revised March 16, 1988)

[^2]
BOUNDS FOR EXTENDED LIPSCHITZ CONSTANTS

J. ANGELOS, E. KAUFMAN, Jr., T. LENKER (Mount Pleasant)
and
M. S. HENRY (Norfolk)

1. Introduction

Let X be a closed subset of $I=[-1,1]$ with cardinality at least $n+2$, and suppose $f \in C[X]$, the space of continuous real-valued functions on X endowed with the uniform norm $\|\cdot\|$. Denote the set of all polynomials of degree n or less by Π_{n}, and let $B_{n}(f)$ be the best uniform approximation to f from Π_{n}. The global (classical) Lipschitz constant is defined to be

$$
\begin{equation*}
\lambda_{n}(f)=\sup \left\{\left\|B_{n}(f)-B_{n}(g)\right\| /\|f-g\|: g \in C[X], \quad f \neq g\right\}, \tag{1.1}
\end{equation*}
$$

and the local Lipschitz constant is
$\hat{\lambda}_{n}(f)=\lim _{\delta \rightarrow 0^{+}} \sup \left\{\left\|B_{n}(f)-B_{n}(g)\right\| /\|f-g\|: g \in C[X], \quad 0<\|f-g\| \leqq \delta\right\}$.
Global and local Lipschitz constants have been the subject of several recent papers $[1,2,3]$, and figure prominently in the current paper.

For $f \in C[X]$, let

$$
\begin{equation*}
e_{n}(f)(x)=f(x)-B_{n}(f)(x), \quad x \in X . \tag{1.3}
\end{equation*}
$$

Then the extremal set of the error function $e_{n}(f)$ is

$$
\begin{equation*}
E_{n}(f)=\left\{x \in X:\left|e_{n}(f)(x)\right|=\left\|e_{n}(f)\right\|\right\} . \tag{1.4}
\end{equation*}
$$

An alternant of the error function is any set

$$
X_{n}=\left\{x_{0}, x_{1}, \ldots, x_{n+1}\right\} \cong E_{n}(f)
$$

with $x_{0}<x_{1}<\ldots<x_{n+1}$ for which $e_{n}(f)\left(x_{i}\right)=\gamma(-1)^{i}\left\|e_{n}(f)\right\|$, $i=0,1, \ldots, n+1$, where $\gamma=\operatorname{sgn} e_{n}(f)\left(x_{0}\right)$.

When the cardinality $\left|E_{n}(f)\right|$ of $E_{n}(f)$ is $n+2$, then the local Lipschitz constant can be explicitly displayed and is equal to the norm of a certain "derivative" of the best approximation operator $B_{n},[1]$. In contrast, even when $\left|E_{n}(f)\right|=n+2$, precise estimates of the global Lipschitz constant have proved to be somewhat elusive. To facilitate the investigation of the behavior of the global Lipschitz constant, the authors and A. Kroó [3] introduced the
extended global Lipschitz constant (EGLC), a constant of interest in its own right. Specifically, the EGLC is defined to be

$$
\begin{gather*}
G_{n}(f)=\sup \left\{\lambda_{n}(h): h \in C[X], E_{n}(h)=E_{n}(f),\right. \text { and } \tag{1.5}\\
\left.\operatorname{sgn} e_{n}(h)(x)=\gamma \operatorname{sgn} e_{n}(f)(x), x \in E_{n}(f), \text { where } \gamma=+1 \text { or }-1\right\} .
\end{gather*}
$$

It is clear from (1.5) that $\lambda_{n}(f) \leqq G_{n}(f)$. Of particular interest is the relationship between $G_{n}(f)$ and the classical strong unicity constant given in Theorem 2 below. First, if $f \in C[X]$, then the strong unicity constant is defined as
$M_{n}(f)=\sup \left\{\left\|p-B_{n}(f)\right\| /\left(\|f-p\|-\left\|f-B_{n}(f)\right\|\right): p \in \Pi_{n}, p \neq B_{n}(f)\right\}$.
Theorem 1. [3]. For any $f \in C[I]$,

$$
\begin{equation*}
M_{n}(f) \leqq G_{n}(f) \leqq 2 M_{n}(f) \tag{1.7}
\end{equation*}
$$

It can be shown [13, 3 (Lemma 1)] that any two functions possessing the same extremal set and sign orientation generate the same strong unicity constant. The upper bound in (1.7) follows from this observation and the well-known inequality [7, p. 82], $\lambda_{n}(f) \leqq 2 M_{n}(f)$ for $f \in C[X]$. The proof of the lower bound in (1.7) is somewhat technical and is given in [3].

A rather natural and equally interesting companion to the extended global Lipschitz constant can be defined. Specifically, the extended local Lipschitz constant (ELLC) is defined to be

$$
\begin{align*}
L_{n}(f) & =\inf \left\{\lambda_{n}(h): h \in C[X], \quad E_{n}(h)=E_{n}(f), \quad \text { and } \operatorname{sgn} e_{n}(h)(x)=\right. \tag{1.8}\\
& \left.=\gamma \operatorname{sgn} e_{n}(f)(x), \quad x \in E_{n}(f), \text { where } \gamma=+1 \text { or }-1\right\} .
\end{align*}
$$

From (1.8) it is clear that $L_{n}(f) \leqq \lambda_{n}(f)$. The main objective of the remainder of this paper is to establish the ELLC analogue to Theorem 1.

2. Lemmas

The definitions of both the EGLC and ELLC can be simplified. In particular, the modified form of the ELLC displayed in the lemma below will be used throughout the remainder of the paper.

Lemmma 1 [2]. For $f \in C[X], f \not \equiv 0$, suppose $E_{n}(f)=X_{n}=\left\{x_{0}, x_{1}, \ldots\right.$, $\left.x_{n+1}\right\}$. Then

$$
\begin{equation*}
G_{n}(f)=\sup \left\{\lambda_{n}(h): E_{n}(h)=X_{n} \text { and } h\left(x_{i}\right)=(-1)^{i}, \quad i=0,1, \ldots, n+1\right\}, \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{n}(f)=\inf \left\{\lambda_{n}(h): E_{n}(h)=X_{n} \text { and } h\left(x_{i}\right)=(-1)^{i}, \quad i=0,1, \ldots, n+1\right\} \tag{2.2}
\end{equation*}
$$

Proof. We first observe for $h \in C[X]$ that $\lambda_{n}\left(h-B_{n}(h)\right)=\lambda_{n}(h)$. Therefore we may assume in (1.5) and (1.8) that $B_{n}(h) \equiv 0$, which in turn implies that

$$
\begin{gathered}
e_{n}(h)\left(x_{i}\right)=h\left(x_{i}\right)=\left(\operatorname{sgn} e_{n}(h)\left(x_{0}\right)\right)(-1)^{i}\left\|e_{n}(h)\right\|= \\
=\left(\operatorname{sgn} h\left(x_{0}\right)\right)(-1)^{i}\|h\|, \quad i=0,1, \ldots, n+1
\end{gathered}
$$

It can also be shown that $\lambda_{n}(\alpha h)=\lambda_{n}(h)$ for $\alpha \neq 0$. Thus, without loss of generality the requirement that $\operatorname{sgn} e_{n}(h)(x)=\gamma \operatorname{sgn} e_{n}(f)(x), x \in E_{n}(f)$, in (1.5) and (1.8) can be replaced by $h\left(x_{i}\right)=(-1)^{i}, i=0,1, \ldots, n+1$, whenever $E_{n}(f)=X_{n}$.

The next theorem is the main theorem of this paper.
Theorem 2. Suppose $f \in C[X]$, and suppose that $E_{n}(f)=X_{n}=\left\{x_{0}, x_{1}\right.$, $\left.\ldots, x_{n+1}\right\}$. Then

$$
\begin{equation*}
\hat{\lambda}_{n}(f) \leqq L_{n}(f) \leqq 6+4 \hat{\lambda}_{n}(f) \tag{2.3}
\end{equation*}
$$

If $X=X_{n}$ in Theorem 2 , then we actually have $\hat{\lambda}_{n}(f)=L_{n}(f)=\lambda_{n}(f)$, [1]. Thus hereafter we assume $X-X_{n}$ is nonempty (note that this implies $f \not \equiv 0$). In this setting the proof of Theorem 2 depends on a series of sometimes technical lemmas and will follow the statements and proofs of these lemmas. Before proceeding, it is worth emphasizing that the strong unicity and local Lipschitz constants do not depend on f when $E_{n}(f)=X_{n}$, but rather only on X_{n} [1, Theorem 2]. In this case the notation $M_{n}\left(X_{n}\right)$ and $\hat{\lambda}_{n}\left(X_{n}\right)$ is employed.

Lemma 2. Let $X_{n}=\left\{x_{0}, x_{1}, \ldots, x_{n+1}\right\}$. For δ sufficiently small choose ℓ large enough to insure that $\left(x_{i+1}-1 / \ell\right)-\left(x_{i}+1 / \ell\right)=x_{i+1}-x_{i}-2 / \ell \geqq \delta>0$, $i=0,1, \ldots, n$. For any $\bar{g} \in C[X]$ with error function $e_{n}(\bar{g})$ and alternant $\left\{y_{0}, y_{1}, \ldots, y_{n+1}\right\}$ satisfying $y_{i} \in\left(x_{i}-1 / \ell, x_{i}+1 / \ell\right) \cap X, i=0,1, \ldots, n+1$, there exists a constant μ depending only on X_{n} such that for any $g \in C[X]$,

$$
\begin{equation*}
\left\|B_{n}(g)-B_{n}(\bar{g})\right\| \leqq \mu\|g-\bar{g}\| \tag{2.4}
\end{equation*}
$$

Proof. Clearly $y_{i+1}-y_{i} \geqq \delta, i=0,1, \ldots, n$. Thus the error function $e_{n}(\bar{g})$ has an alternant with separation greater than or equal to δ. Let $F_{\delta} \cong$ $\subseteq C[X]$ be the subset of $C[X]$ such that if $f \in F_{\delta}$, then $e_{n}(f)$ has an alternant with separation greater than or equal to δ. Then the arguments of Dunham [8, Theorem 2] with X replacing I imply that there exists a constant μ such that for every $f \in F_{\delta}$ and $g \in C[X]$,

$$
\left\|B_{n}(g)-B_{n}(f)\right\| \leqq \mu\|g-f\|
$$

Since $\bar{g} \in F_{\delta}$, (2.4) is established.
Inequality (2.4) is essentially a uniform Lipschitz constant result for changing f. The interested reader is referred to the survey papers [4, 9] for a discussion of other uniform Lipschitz constant results.

Prior to stating the next lemma we define a set U_{ℓ} and a function h_{ℓ}, both of which will be utilized in several of the proofs that follow.

First, let

$$
d_{0}= \begin{cases}x_{0}+1 & \text { if } x_{0}>-1 \\ 2 & \text { if } x_{0}=-1\end{cases}
$$

and

$$
d_{n+1}= \begin{cases}1-x_{n+1} & \text { if } x_{n+1}<1 \\ 2 & \text { if } x_{n+1}=1\end{cases}
$$

Then let $\bar{d}=\min \left\{d_{0}, d_{n+1},(1 / 3) \min \left\{x_{i+1}-x_{i} ; i=0,1, \ldots, n\right\}\right\}$. Now let $\bar{\ell}_{0}=[1 / \bar{d}]+1$, and for $\ell \geqq \bar{\ell}_{0}$, define

$$
\begin{equation*}
U_{\ell}=\left(\bigcup_{i=0}^{n+1}\left(x_{i}-1 / \ell, x_{i}+1 / \ell\right)\right) \cap X \tag{2.5}
\end{equation*}
$$

By definition, $\bar{d} \leqq(1 / 3) \min \left\{x_{i+1}-x_{i} ; i=0, \ldots, n\right\}$, and $1 / \ell<\bar{d}$. Therefore, the intervals $\left(x_{i}-1 / \ell, x_{i}+1 / \ell\right), i=0,1, \ldots, n+1$, are disjoint. Since by assumption $X-X_{n}$ is nonempty, there exists an $\ell_{0} \geqq \bar{\ell}_{0}$ such that for $\ell \geqq \ell_{0}, X-U_{\ell}$ is nonempty. Hereafter, we assume that $\ell \geqq \ell_{0}$. Define $h_{\ell} \in C[X]$ by $h_{\ell}(-1)=0$ if $-1 \notin X_{n}, h_{\ell}(1)=0$ if $1 \notin X_{n}, h_{\ell}\left(x_{i} \pm 1 / \ell\right)=0$, and $h_{\ell}\left(x_{i}\right)=(-1)^{i}, i=0,1, \ldots, n+1$; let h_{ℓ} be linear between the points where h_{ℓ} has just been defined.

Because of the manner in which h_{ℓ} has been constructed, $B_{n}\left(h_{\ell}\right) \equiv 0$ and $E_{n}\left(h_{\ell}\right)=X_{n}$. Thus h_{ℓ} is one of the functions considered in Lemma 1. Let $H_{\ell}=\left\{g \in C[X] ; g-B_{n}(g)\right.$ possesses no alternant $\left\{y_{0}, y_{1}, \ldots, y_{n+1}\right\}$ with $y_{i} \in\left(x_{i}-1 / \ell, x_{i}+1 / \ell\right) \cap X$ and $\operatorname{sgn}\left(g-B_{n}(g)\right)\left(y_{i}\right)=(-1)^{i}$, $i=0,1, \ldots, n+1\}$. This set will be utilized in subsequent arguments.

Lemma 3. For $\ell \geqq \ell_{0}$, let $\beta_{\ell}=\inf \left\{\left\|g-h_{\ell}\right\|: g \in H_{\ell}\right\}$. Then there exists a $\bar{g}_{\ell} \in C[X]$ and $\bar{x}_{\ell} \in X$ with $\left\|\bar{g}_{\ell}-h_{\ell}\right\| \leq \beta_{\ell},\left|\left(\bar{g}_{\ell}-B_{n}\left(\bar{g}_{\ell}\right)\right)\left(\bar{x}_{\ell}\right)\right| \geqq$ $\geqq\left\|\bar{g}_{\ell}-B_{n}\left(\bar{g}_{\ell}\right)\right\|-1 / \ell$, and either $\bar{x}_{\ell} \in X-U_{\ell}$ or $\bar{x}_{\ell} \in\left(x_{i}-1 / \ell, x_{i}+1 / \ell\right) \cap \bar{X}$ for some i and $\operatorname{sgn}\left(\bar{g}_{\ell}-B_{n}\left(\bar{g}_{\ell}\right)\right)\left(\bar{x}_{\ell}\right)=(-1)^{i+1}$.

Proof. We first show that $\beta_{\ell}>0$. For suppose that $\beta_{\ell}=0$. Then there exists a sequence $\left\{g_{j}\right\}_{j=0}^{\infty} \subseteq H_{\ell}$ such that $\lim _{j \rightarrow \infty}\left\|g_{j}-h_{\ell}\right\|=0$. This in turn implies that $\lim _{j \rightarrow \infty}\left\|B_{n}\left(g_{j}\right)-B_{n}\left(h_{\ell}\right)\right\|=0$. Thus $\lim _{j \rightarrow \infty}\left\|B_{n}\left(g_{j}\right)-g_{j}\right\|=\| h_{\ell}-$ $-B_{n}\left(h_{\ell}\right) \|=1$. In this case we assert that for j sufficiently large $g_{j}-B_{n}\left(g_{j}\right)$ must possess an alternant $\left\{y_{0}, \ldots, y_{n+1}\right\}$ with $y_{i} \in\left(x_{i}-1 / \ell, x_{i}+1 / \ell\right) \cap X$ and with $\operatorname{sgn}\left(g_{j}-B_{n}\left(g_{j}\right)\right)\left(y_{i}\right)=\operatorname{sgn} h_{\ell}\left(x_{i}\right)=(-1)^{i}, i=0,1, \ldots, n+1$, a
contradiction of the definition of H_{ℓ}. This assertion follows because $g_{j}-$ $-B_{n}\left(g_{j}\right)$ must have some alternant and $B_{n}\left(h_{\ell}\right)=h_{\ell}=0$ on $X-U_{\ell}$ (thus no point from the alternant for $g_{j}-B_{n}\left(g_{j}\right)$ can be in $X-U_{\ell}$ since $g_{j}-B_{n}\left(g_{j}\right)$ is too small there), and because the sign of $g_{j}-B_{n}\left(g_{j}\right)$ at a point of the alternant in ($\left.x_{i}-1 / \ell, x_{i}+1 / \ell\right) \cap X$ must be $(-1)^{i}$, so no two consecutive points from the alternant for $g_{j}-B_{n}\left(g_{j}\right)$ can lie in the same $\left(x_{i}-1 / \ell, x_{i}+1 / \ell\right) \cap X$.

Now let $\left\{g_{j}\right\}_{j=0}^{\infty} \cong H_{\ell}$ and $\left\{x^{(j)}\right\}_{j=0}^{\infty} \subseteq X$ satisfy $\left\|g_{j}-h_{\ell}\right\| \downarrow \beta_{\ell}>0, x^{(j)} \in$ $\in E_{n}\left(g_{j}\right)$, and either $x^{(j)} \in X-U_{\ell}$ or $x^{(j)} \in\left(x_{i}-1 / \ell, x_{i}+1 / \ell\right) \cap X$ for some i and $\operatorname{sgn}\left(g_{j}-B_{n}\left(g_{j}\right)\right)\left(x^{(j)}\right)=(-1)^{i+1}$. Let $\lambda_{j}=j \beta_{\ell} /\left((j+1)\left\|g_{j}-h_{\ell}\right\|\right)$. Clearly $0<\lambda_{j}<1$ for all j. Let $\tilde{g}_{j}=\lambda_{j} g_{j}+\left(1-\lambda_{j}\right) h_{\ell}$. Then $\left\|\tilde{g}_{j}-h_{\ell}\right\|<\beta_{\ell}$. Now $\lambda_{j} \rightarrow 1$ as $j \rightarrow+\infty$, and hence

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\|\tilde{g}_{j}-g_{j}\right\|=0 \tag{2.6}
\end{equation*}
$$

Therefore

$$
\begin{gather*}
(2.7) \quad\left\|\tilde{g}_{j}-B_{n}\left(\tilde{g}_{j}\right)\right\|-\left|\left(\tilde{g}_{j}-B_{n}\left(\tilde{g}_{j}\right)\right)\left(x^{(j)}\right)\right|= \tag{2.7}\\
=\left\|\tilde{g}_{j}-B_{n}\left(\tilde{g}_{j}\right)\right\|-\left\|g_{j}-B_{n}\left(g_{j}\right)\right\|+\left\|g_{j}-B_{n}\left(g_{j}\right)\right\|- \\
-\left|\left(g_{j}-B_{n}\left(g_{j}\right)\right)\left(x^{(j)}\right)\right|+\left|\left(g_{j}-B_{n}\left(g_{j}\right)\right)\left(x^{(j)}\right)\right|-\left|\left(\tilde{g}_{j}-B_{n}\left(\tilde{g}_{j}\right)\right)\left(x^{(j)}\right)\right| \leqq \\
\leqq\left\|\tilde{g}_{j}-g_{j}+B_{n}\left(g_{j}\right)-B_{n}\left(\tilde{g}_{j}\right)\right\|+0+\left|g_{j}\left(x^{(j)}\right)-\tilde{g}_{j}\left(x^{(j)}\right)+B_{n}\left(\tilde{g}_{j}\right)\left(x^{(j)}\right)-B_{n}\left(g_{j}\right)\left(x^{(j)}\right)\right| \leqq \\
\leqq 2\left\|\tilde{g}_{j}-g_{j}\right\|+2\left\|B_{n}\left(\tilde{g}_{j}\right)-B_{n}\left(g_{j}\right)\right\| .
\end{gather*}
$$

Inequality (2.7) and Lemma 2 (with $\ell \geqq \ell_{0}$) now imply that

$$
\begin{equation*}
\left\|\tilde{g}_{j}-B_{n}\left(\tilde{g}_{j}\right)\right\|-\left|\left(\tilde{g}_{j}-B_{n}\left(\tilde{g}_{j}\right)\right)\left(x^{(j)}\right)\right| \leqq 2(1+\mu)\left\|\tilde{g}_{j}-g_{j}\right\| . \tag{2.8}
\end{equation*}
$$

From (2.6) and (2.8) we may now infer for j sufficiently large that

$$
\begin{equation*}
\left|\left(\tilde{g}_{j}-B_{n}\left(\tilde{g}_{j}\right)\right)\left(x^{(j)}\right)\right| \geqq\left\|\tilde{g}_{j}-B_{n}\left(\tilde{g}_{j}\right)\right\|-1 / \ell . \tag{2.9}
\end{equation*}
$$

Also either $x^{(j)} \in X-U_{\ell}$, or $x^{(j)} \in\left(x_{i}-1 / \ell, x_{i}+1 / \ell\right) \cap X$ for some i and

$$
\begin{equation*}
\left(g_{j}-B_{n}\left(g_{j}\right)\right)\left(x^{(j)}\right)=(-1)^{i+1}\left\|g_{j}-B_{n}\left(g_{j}\right)\right\| \tag{2.10}
\end{equation*}
$$

In the latter case, assume there exists a $\delta>0$ such that for all j sufficiently large $\left\|g_{j}-B_{n}\left(g_{j}\right)\right\| \geqq \delta$. (This fact will be established in the next lemma.) Then from (2.6) we also have $\lim _{j \rightarrow \infty}\left\|B_{n}\left(\tilde{g}_{j}\right)-B_{n}\left(g_{j}\right)\right\|=0$.

Therefore, for j sufficiently large (2.10) implies sgn $\left(\tilde{g}_{j}-B_{n}\left(\tilde{g}_{j}\right)\right)\left(x^{(j)}\right)=$ $=\operatorname{sgn}\left(g_{j}-B_{n}\left(g_{j}\right)\right)\left(x^{(j)}\right)=(-1)^{i+1}$. Thus in either case, for j sufficiently large \tilde{g}_{j} and $x^{(j)}$ will serve as \bar{g}_{ℓ} and \bar{x}_{ℓ}, completing the proof.

Lemma 4. Let $\left\{g_{j}\right\}_{j=0}^{\infty} \cong H_{\ell}$ be such that $\left\|g_{j}-h_{\ell}\right\| \downarrow \beta_{\ell}$. Then there exists a $\delta>0$ such that $\left\|g_{j}-B_{n}\left(g_{j}\right)\right\| \geqq \delta$ for all j sufficiently large.

Proof. Assume the conclusion of Lemma 4 is not true. Then without loss of generality we may assume that

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\|g_{j}-B_{n}\left(g_{j}\right)\right\|=0 \tag{2.11}
\end{equation*}
$$

Therefore for j sufficiently large, $\left\|B_{n}\left(g_{j}\right)\right\| \leqq 2\left\|g_{j}\right\| \leqq 2\left(\beta_{\ell}+2\right)$. This implies by going to subsequences if necessary that $\lim _{j \rightarrow \infty} B_{n}\left(g_{j}\right)=P \in \Pi_{n}$, and hence (2.11) implies that $\lim _{j \rightarrow \infty} g_{j}=P$. But then $\beta_{\ell}=\lim _{j \rightarrow \infty}\left\|h_{\ell}-g_{j}\right\|=\left\|h_{\ell}-P\right\|$. Thus $\beta_{\ell} \geqq 1$, for otherwise $\left\|h_{\ell}-P\right\|<\left\|h_{\ell}-B_{n}\left(h_{\ell}\right)\right\|$, which is not possible.

We now construct a $g \in H_{\ell}$ satisfying $\left\|g-h_{\ell}\right\|<1$. Such a construction would contradict the definition of β_{ℓ}. We first select any point $x^{*} \in X-U_{\ell}$. To illustrate how to proceed in the construction it is sufficient to assume that $x^{*} \in\left[x_{i^{*}}+1 / \ell, x_{i^{*}+1}-1 / \ell\right]$ for some $i^{*}, 1 \leqq i^{*} \leqq n$. The cases where $x^{*} \leqq x_{0}-1 / \ell, x^{*} \geqq x_{n+1}+1 / \ell$, or $x^{*} \in\left[x_{0}+1 / \ell, x_{1}-1 / \ell\right]$ are similar. Define g as follows:

$$
g(x)= \begin{cases}(1 / 2) h_{\ell}(x), & x \in\left[-1, x_{i^{*}}-1 / \ell\right] \cup\left[x_{i^{*}+1}, 1\right] \\ (1 / 2) h_{\ell}\left(x_{i^{*}}\right), & x=x^{*} \\ \text { linear on }\left[x_{i^{*}}-1 / \ell, x^{*}\right] & \text { and on }\left[x^{*}, x_{i^{*}+1}\right]\end{cases}
$$

From the definitions of g and h_{ℓ}, it is clear that $\max \left\{\left|h_{\ell}(x)-g(x)\right|: x \in\right.$ $\left.\in\left[-1, x_{i^{*}}-1 / \ell\right] \cup\left[x_{i^{*}+1}, 1\right]\right\}=1 / 2$. For $x \in\left[x_{i^{*}}-1 / \ell, x_{i^{*}+1}\right]$, it can be shown that $\left|h_{\ell}(x)-g(x)\right|<1$. Therefore, $\left\|h_{\ell}-g\right\|<1$. On the other hand, g is constructed to insure that $B_{n}(g) \equiv 0$. It is clear that $E_{n}(g)=X_{n} \cup$ $\cup\left\{x^{*}\right\}-\left\{x_{i^{*}}\right\}$. Since $x^{*} \in\left[x_{i^{*}}+1 / \ell, x_{i^{*}+1}-1 / \ell\right], g$ possesses no alternant $\left\{y_{0}, y_{1}, \ldots, y_{n+1}\right\}$ with $y_{i} \in\left(x_{i}-1 / \ell, x_{i}+1 / \ell\right) \cap X$ and $\operatorname{sgn}\left(g-B_{n}(g)\right)\left(y_{i}\right)=$ $=(-1)^{i}, i=0, \ldots, n+1$. Thus we have constructed a $g \in H_{\ell}$ such that $\left\|h_{\ell}-g\right\|<\beta_{\ell}$. This contradicts the definition of β_{ℓ}. Therefore, the proof of Lemma 4 is complete.

Earlier it was noted that $\hat{\lambda}_{n}(f)=\hat{\lambda}_{n}\left(X_{n}\right)$ when $E_{n}(f)=X_{n}$. Let $\left\{q_{i}\right\}_{i=0}^{n+1} \cong \Pi_{n}$ be determined by

$$
\begin{equation*}
q_{i}\left(x_{j}\right)=(-1)^{i}, \quad i=0,1, \ldots, n+1 ; \quad i \neq j, \quad j=0,1, \ldots, n+1 \tag{2.12}
\end{equation*}
$$

The explicit representation for $\hat{\lambda}_{n}\left(X_{n}\right)$ [1, Theorem 2] mentioned in Section 1 is then

$$
\begin{equation*}
\hat{\lambda}_{n}\left(X_{n}\right)=\left\|\sum_{i=0}^{n+1}\left|q_{i}\right| /\left(1+\left|q_{i}\left(x_{i}\right)\right|\right)\right\| \tag{2.13}
\end{equation*}
$$

Both (2.12) and (2.13) are used in the next lemma, a lemma which is stated without proof in [2].

Lemma 5. If $g \in C[X]$ is such that $g-B_{n}(g)$ possesses an alternant $\left\{y_{0}, y_{1}, \ldots, y_{n+1}\right\}$ with $y_{i} \in\left(x_{i}-1 / \ell, x_{i}+1 / \ell\right) \cap X$ for $i=0,1, \ldots, n+1$ and $\operatorname{sgn}\left(g-B_{n}(g)\right)\left(y_{i}\right)=(-1)^{i}, i=0,1, \ldots, n+1$, then there is a constant K independent of g and ℓ such that

$$
\begin{equation*}
\frac{\left\|B_{n}(g)-B_{n}\left(h_{\ell}\right)\right\|}{\left\|g-h_{\ell}\right\|} \leqq(1+K / \ell) \hat{\lambda}_{n}\left(X_{n}\right) . \tag{2.14}
\end{equation*}
$$

Proof. For $h \in C[X]$ with alternant X_{n}, it can be shown [1, Lemma 1] that

$$
B_{n}(h)=\sum_{j=0}^{n+1} \frac{(-1)^{j+1} h\left(x_{j}\right)}{1+\left|q_{j}\left(x_{j}\right)\right|} q_{j} .
$$

Thus

$$
\begin{aligned}
B_{n}\left(h_{\ell}\right)-B_{n}(g)=\sum_{j=0}^{n+1} & \frac{(-1)^{j+1}\left[h_{\ell}\left(x_{j}\right)-B_{n}(g)\left(x_{j}\right)-\left(g-B_{n}(g)\right)\left(y_{j}\right)\right] q_{j}}{1+\left|q_{j}\left(x_{j}\right)\right|}+ \\
& +\sum_{j=0}^{n+1} \frac{(-1)^{j+1}\left(g-B_{n}(g)\right)\left(y_{j}\right)}{1+\left|q_{j}\left(x_{j}\right)\right|} q_{j} .
\end{aligned}
$$

But using [1, Lemma 2],

$$
\sum_{j=0}^{n+1} \frac{(-1)^{j+1}\left(g-B_{n}(g)\right)\left(y_{j}\right)}{1+\left|q_{j}\left(x_{j}\right)\right|} q_{j}=-\left\|g-B_{n}(g)\right\| \sum_{j=0}^{n+1} \frac{q_{j}}{1+\left|q_{j}\left(x_{j}\right)\right|} \equiv 0 .
$$

Let $t_{j}=h_{\ell}\left(x_{j}\right)-g\left(y_{j}\right)+B_{n}(g)\left(y_{j}\right)-B_{n}(g)\left(x_{j}\right)$. Then

$$
\begin{equation*}
B_{n}\left(h_{\ell}\right)-B_{n}(g)=\sum_{j=0}^{n+1} \frac{(-1)^{j} t_{j}}{1+\left|q_{j}\left(x_{j}\right)\right|} q_{j} . \tag{2.15}
\end{equation*}
$$

We now claim there is a function $R(j, g)$ with

$$
\begin{equation*}
|R(j, g)| \leqq\left\|g-h_{\ell}\right\| \cdot K / \ell \tag{2.16}
\end{equation*}
$$

for some constant K independent of j, ℓ, and g such that

$$
\begin{equation*}
\left(h_{\ell}-g\right)\left(y_{j}\right)+R(j, g) \leqq t_{j} \leqq\left(h_{\ell}-g\right)\left(x_{j}\right) \text { if }\left(h_{\ell}-B_{n}\left(h_{\ell}\right)\right)\left(x_{j}\right)>0, \tag{2.17}
\end{equation*}
$$ and

$$
\begin{equation*}
\left(h_{\ell}-g\right)\left(x_{j}\right) \leqq t_{j} \leqq\left(h_{\ell}-g\right)\left(y_{j}\right)+R(j, g) \text { if }\left(h_{\ell}-B_{n}\left(h_{\ell}\right)\right)\left(x_{j}\right)<0 . \tag{2.18}
\end{equation*}
$$

Since the proof of (2.17) is very similar to a proof appearing in [1, expressions (4.7) through (4.16)], we focus our attention on establishing (2.18). In this case j is odd, so that

$$
-\left(g-B_{n}(g)\right)\left(y_{j}\right) \geqq-\left(g-B_{n}(g)\right)\left(x_{j}\right) .
$$

Thus

$$
t_{j}=h_{\ell}\left(x_{j}\right)-g\left(x_{j}\right)+\left(g-B_{n}(g)\right)\left(x_{j}\right)-\left(g-B_{n}(g)\right)\left(y_{j}\right) \geqq h_{\ell}\left(x_{j}\right)-g\left(x_{j}\right) .
$$

Also $\left(h_{\ell}-B_{n}\left(h_{\ell}\right)\right)\left(x_{j}\right) \leqq\left(h_{\ell}-B_{n}\left(h_{\ell}\right)\right)\left(y_{j}\right)$, so

$$
\begin{gathered}
t_{j}=\left(h_{\ell}-g\right)\left(y_{j}\right)+\left(h_{\ell}-B_{n}\left(h_{\ell}\right)\right)\left(x_{j}\right)-\left(h_{\ell}-B_{n}\left(h_{\ell}\right)\right)\left(y_{j}\right)+ \\
+\left(B_{n}\left(h_{\ell}\right)-B_{n}(g)\right)\left(x_{j}\right)-\left(B_{n}\left(h_{\ell}\right)-B_{n}(g)\right)\left(y_{j}\right) \leqq \\
\leqq\left(h_{\ell}-g\right)\left(y_{j}\right)+\left(B_{n}\left(h_{\ell}\right)-B_{n}(g)\right)\left(x_{j}\right)-\left(B_{n}\left(h_{\ell}\right)-B_{n}(g)\right)\left(y_{j}\right)= \\
=\left(h_{\ell}-g\right)\left(y_{j}\right)+R(j, g),
\end{gathered}
$$

where

$$
\begin{equation*}
R(j, g)=\left(B_{n}\left(h_{\ell}\right)-B_{n}(g)\right)\left(x_{j}\right)-\left(B_{n}\left(h_{\ell}\right)-B_{n}(g)\right)\left(y_{j}\right) . \tag{2.19}
\end{equation*}
$$

We have established (2.18).
From (2.19),

$$
|R(j, g)|=\left|x_{j}-y_{j}\right| \cdot\left|\left(B_{n}\left(h_{\ell}\right)-B_{n}(g)\right)^{\prime}(\xi)\right|,
$$

where ξ is between x_{j} and y_{j}. Hence by Markoff's inequality [7, p. 91],

$$
|R(j, g)| \leqq(1 / \ell)\left\|\left(B_{n}\left(h_{\ell}\right)-B_{n}(g)\right)^{\prime}\right\| \leqq\left(n^{2} / \ell\right)\left\|B_{n}\left(h_{\ell}\right)-B_{n}(g)\right\| .
$$

Now Lemma 2 implies that

$$
\begin{equation*}
|R(j, g)| \leqq\left(n^{2} / \ell\right) \mu\left\|h_{\ell}-g\right\| \equiv(K / \ell)\left\|h_{\ell}-g\right\|, \tag{2.20}
\end{equation*}
$$

which establishes (2.16). From (2.16) and either (2.17) or (2.18) we see that

$$
\begin{equation*}
\left|t_{j}\right| \leqq(1+K / \ell)\left\|g-h_{\ell}\right\| . \tag{2.21}
\end{equation*}
$$

Utilizing (2.21) in (2.15) yields

$$
\frac{\left\|B_{n}(g)-B_{n}\left(h_{\ell}\right)\right\|}{\left\|g-h_{\ell}\right\|} \leqq(1+K / \ell)\left\|\sum_{j=0}^{n+1} \frac{\left|q_{j}\right|}{1+\left|q_{j}\left(x_{j}\right)\right|}\right\|,
$$

and thus (2.13) now implies (2.14).
The last lemma of this section provides a useful lower bound for $\left\|g-h_{\ell}\right\|$ for functions $g \in H_{\ell}$.

Lemma 6. Let $g \in H_{\ell}$. Then $\left\|g-h_{\ell}\right\| \geqq \frac{1-1 / \ell}{2\left(1+\hat{\lambda}_{n}\left(X_{n}\right)(1+K / \ell)\right)}$, where as in (2.20), $K=n^{2} \mu$.

Proof. From Lemma 3, there is a \bar{g}_{ℓ} and \bar{x}_{ℓ} with $\left\|\bar{g}_{\ell}-h_{\ell}\right\|<\beta_{\ell}$,

$$
\begin{equation*}
\left|\left(\bar{g}_{\ell}-B_{n}\left(\bar{g}_{\ell}\right)\right)\left(\bar{x}_{\ell}\right)\right| \geqq\left\|\bar{g}_{\ell}-B_{n}\left(\bar{g}_{\ell}\right)\right\|-1 / \ell \tag{2.22}
\end{equation*}
$$

and either $\bar{x}_{\ell} \in X-U_{\ell}$ or $\bar{x}_{\ell} \in\left(x_{i}-1 / \ell, x_{i}+1 / \ell\right) \cap X$ for some i and

$$
\begin{equation*}
\operatorname{sgn}\left(\bar{g}_{\ell}-B_{n}\left(\bar{g}_{\ell}\right)\right)\left(\bar{x}_{\ell}\right)=(-1)^{i+1} \tag{2.23}
\end{equation*}
$$

We note that $\left\|\bar{g}_{\ell}-h_{\ell}\right\|<\beta_{\ell}$ implies that $\bar{g}_{\ell}-B_{n}\left(\bar{g}_{\ell}\right)$ has an alternant $\left\{y_{0}, y_{1}\right.$, $\left.\ldots, y_{n+1}\right\}$ with $y_{i} \in\left(x_{i}-1 / \ell, x_{i}+1 / \ell\right) \cap X$ and with $\operatorname{sgn}\left(\bar{g}_{\ell}-B_{n}\left(\bar{g}_{\ell}\right)\right)\left(y_{i}\right)=$ $=(-1)^{i}, i=0,1, \ldots, n+1$. Now

$$
\begin{gathered}
\left\|\bar{g}_{\ell}-B_{n}\left(\bar{g}_{\ell}\right)\right\| \geqq\left|\left(\bar{g}_{\ell}-B_{n}\left(\bar{g}_{\ell}\right)\right)\left(x_{0}\right)\right| \geqq\left|h_{\ell}\left(x_{0}\right)-B_{n}\left(h_{\ell}\right)\left(x_{0}\right)\right|-\left|\bar{g}_{\ell}\left(x_{0}\right)-h_{\ell}\left(x_{0}\right)\right|- \\
-\left|B_{n}\left(h_{\ell}\right)\left(x_{0}\right)-B_{n}\left(\bar{g}_{\ell}\right)\left(x_{0}\right)\right| \geqq 1-\left\|\bar{g}_{\ell}-h_{\ell}\right\|-\left\|B_{n}\left(\bar{g}_{\ell}\right)-B_{n}\left(h_{\ell}\right)\right\| .
\end{gathered}
$$

The the conclusion of Lemma 5 implies that

$$
\begin{equation*}
\left\|\bar{g}_{\ell}-B_{n}\left(\bar{g}_{\ell}\right)\right\| \geqq 1-\left\|\bar{g}_{\ell}-h_{\ell}\right\|\left(1+(1+K / \ell) \hat{\lambda}_{n}\left(X_{n}\right)\right) \tag{2.24}
\end{equation*}
$$

Now if $\bar{x}_{\ell} \in X-U_{\ell}$, then by definition, $h_{\ell}\left(\bar{x}_{\ell}\right)=0$. Therefore from Lemma 5

$$
\begin{equation*}
\left|\left(\bar{g}_{\ell}-B_{n}\left(\bar{g}_{\ell}\right)\right)\left(\bar{x}_{\ell}\right)\right| \leqq\left|\bar{g}_{\ell}\left(x_{\ell}\right)\right|+\left|B_{n}\left(\bar{g}_{\ell}\right)\left(\bar{x}_{\ell}\right)\right|= \tag{2.25}
\end{equation*}
$$

$$
\begin{gathered}
=\left|\left(\bar{g}_{\ell}-h_{\ell}\right)\left(\bar{x}_{\ell}\right)\right|+\left|\left(B_{n}\left(\bar{g}_{\ell}\right)-B_{n}\left(h_{\ell}\right)\right)\left(\bar{x}_{\ell}\right)\right| \leqq\left\|\bar{g}_{\ell}-h_{\ell}\right\|+\left\|B_{n}\left(\bar{g}_{\ell}\right)-B_{n}\left(h_{\ell}\right)\right\| \leqq \\
\leqq\left\|\bar{g}_{\ell}-h_{\ell}\right\|\left(1+(1+K / \ell) \hat{\lambda}_{n}\left(X_{n}\right)\right) .
\end{gathered}
$$

On the other hand, suppose $\bar{x}_{\ell} \in\left(x_{i}-1 / \ell, x_{i}+1 / \ell\right) \cap X$ for some $i, i=$ $=0,1, \ldots, n+1$. Without loss of generality we may assume that i in (2.23) is even, so that $\left(\bar{g}_{\ell}-B_{n}\left(\bar{g}_{\ell}\right)\right)\left(\bar{x}_{\ell}\right)<0$ and $h_{\ell}\left(x_{i}\right)-B_{n}\left(h_{\ell}\right)\left(x_{i}\right)=h_{\ell}\left(x_{i}\right)=1$. Now $h_{\ell}\left(\bar{x}_{\ell}\right) \geqq 0$. Thus if $\bar{g}_{\ell}\left(\bar{x}_{\ell}\right)<0$, then $\left|\bar{g}_{\ell}\left(\bar{x}_{\ell}\right)\right| \leqq\left|\bar{g}_{\ell}\left(\bar{x}_{\ell}\right)-h_{\ell}\left(\bar{x}_{\ell}\right)\right|$. Therefore

$$
\begin{gathered}
\left|\left(\bar{g}_{\ell}-B_{n}\left(\bar{g}_{\ell}\right)\right)\left(\bar{x}_{\ell}\right)\right| \leqq\left|\bar{g}_{\ell}\left(\bar{x}_{\ell}\right)\right|+\left|B_{n}\left(\bar{g}_{\ell}\right)\left(\bar{x}_{\ell}\right)\right| \leqq \\
\leqq\left|\bar{g}_{\ell}\left(\bar{x}_{\ell}\right)-h_{\ell}\left(\bar{x}_{\ell}\right)\right|+\left|B_{n}\left(\bar{g}_{\ell}\right)\left(\bar{x}_{\ell}\right)-B_{n}\left(h_{\ell}\right)\left(\bar{x}_{\ell}\right)\right| \leqq \\
\leqq\left\|\bar{g}_{\ell}-h_{\ell}\right\|+\left\|B_{n}\left(\bar{g}_{\ell}\right)-B_{n}\left(h_{\ell}\right)\right\| .
\end{gathered}
$$

Consequently when $\bar{g}_{\ell}\left(\bar{x}_{\ell}\right)<0$, we again obtain (2.25). If $\bar{g}_{\ell}\left(\bar{x}_{\ell}\right) \geqq 0$, then (2.23) implies that $\bar{g}_{\ell}\left(\bar{x}_{\ell}\right)<B_{n}\left(\bar{g}_{\ell}\right)\left(\bar{x}_{\ell}\right)$. Therefore
$\left|\left(\bar{g}_{\ell}-B_{n}\left(\bar{g}_{\ell}\right)\right)\left(\bar{x}_{\ell}\right)\right| \leqq\left|B_{n}\left(\bar{g}_{\ell}\right)\left(\bar{x}_{\ell}\right)\right| \leqq\left|\left(\bar{g}_{\ell}-h_{\ell}\right)\left(\bar{x}_{\ell}\right)\right|+\left|\left(B_{n}\left(\bar{g}_{\ell}\right)-B_{n}\left(h_{\ell}\right)\right)\left(\bar{x}_{\ell}\right)\right|$.
Thus in this last case we also obtain (2.25). Now (2.22) implies in all of the above cases that

$$
\begin{equation*}
\left\|\bar{g}_{\ell}-B_{n}\left(\bar{g}_{\ell}\right)\right\| \leqq\left(1+(1+K / \ell) \hat{\lambda}_{n}\left(X_{n}\right)\right)\left\|\bar{g}_{\ell}-h_{\ell}\right\|+1 / \ell \tag{2.26}
\end{equation*}
$$

By utilizing (2.24) and (2.26) we see that
$1-\left(1+(1+K / \ell) \hat{\lambda}_{n}\left(X_{n}\right)\right)\left\|\bar{g}_{\ell}-h_{\ell}\right\| \leqq\left(1+(1+K / \ell) \hat{\lambda}_{n}\left(X_{n}\right)\right)\left\|\bar{g}_{\ell}-h_{\ell}\right\|+1 / \ell$.
From this inequality we obtain

$$
\begin{equation*}
\left\|\bar{g}_{\ell}-h_{\ell}\right\| \geqq \frac{1-1 / \ell}{2\left(1+(1+K / \ell) \hat{\lambda}_{n}\left(X_{n}\right)\right)} . \tag{2.27}
\end{equation*}
$$

Now if $g \in H_{\ell}$, then $\left\|g-h_{\ell}\right\| \geqq \beta_{\ell}>\left\|\bar{g}_{\ell}-h_{\ell}\right\|$. This inequality and (2.27) imply the conclusion of Lemma 6 .

3. Theorem

We are finally in a position to prove Theorem 2. The conclusions of Lemmas 5 and 6 will play prominent roles in the proof of the Theorem.

Proof of Theorem 2. For fixed $\ell \geqq \ell_{0}$, let $g \in C[X]$ satisfy $\left\|g-h_{\ell}\right\| \neq 0$. If

$$
\left\|g-h_{\ell}\right\|<\frac{1-1 / \ell}{2\left(1+(1+K / \ell) \hat{\lambda}_{n}\left(X_{n}\right)\right)},
$$

then the contrapositive of Lemma 6 implies that $g-B_{n}(g)$ has an alternant $\left\{y_{0}, y_{1}, \ldots, y_{n+1}\right\}$, where $y_{i} \in\left(x_{i}-1 / \ell, x_{i}+1 / \ell\right) \cap X$ and $\operatorname{sgn}\left(g-B_{n}(g)\right)\left(y_{i}\right)=$ $=(-1)^{i}, i=0,1, \ldots, n+1$. In this case Lemma 5 implies that (2.14) holds. Now assume that

$$
\begin{equation*}
\left\|g-h_{\ell}\right\| \geqq \frac{1-1 / \ell}{2\left(1+(1+K / \ell) \hat{\lambda}_{n}\left(X_{n}\right)\right)} . \tag{3.1}
\end{equation*}
$$

We observe that

$$
\left\|g-B_{n}(g)\right\| \leqq\|g\| \leqq\left\|g-h_{\ell}\right\|+\left\|h_{\ell}\right\|=\left\|g-h_{\ell}\right\|+1 .
$$

Therefore

$$
\begin{equation*}
\left\|B_{n}(g)-B_{n}\left(h_{\ell}\right)\right\| \leqq\left\|B_{n}(g)-g\right\|+\left\|g-h_{\ell}\right\|+\left\|h_{\ell}\right\| \leqq 2\left(\left\|g-h_{\ell}\right\|+1\right) . \tag{3.2}
\end{equation*}
$$

For $\ell \geqq \ell_{0}$, (3.1) and (3.2) imply that

$$
\begin{equation*}
\frac{\left\|B_{n}(g)-B_{n}\left(h_{\ell}\right)\right\|}{\left\|g-h_{\ell}\right\|} \leqq 2\left(1+\frac{1}{\left\|g-h_{\ell}\right\|}\right) \leqq 2\left(1+\frac{2\left(1+(1+K / \ell) \hat{\lambda}_{n}\left(X_{n}\right)\right)}{1-1 / \ell}\right) . \tag{3.3}
\end{equation*}
$$

Thus from (2.14) and (3.3) we have that
(3.4)

$$
\lambda_{n}\left(h_{\ell}\right) \leqq \max \left\{(1+K / \ell) \hat{\lambda}_{n}\left(X_{n}\right), 2\left(1+\frac{2\left(1+(1+K / \ell) \hat{\lambda}_{n}\left(X_{n}\right)\right)}{1-1 / \ell}\right)\right\}
$$

The definition of $h_{\ell},(2.2)$, and (3.4) combine to imply that

$$
\begin{equation*}
L_{n}(f) \leqq \max \left\{(1+K / \ell) \hat{\lambda}_{n}\left(X_{n}\right), 2\left(1+\frac{2\left(1+(1+K / \ell) \hat{\lambda}_{n}\left(X_{n}\right)\right)}{1-1 / \ell}\right)\right\} \tag{3.5}
\end{equation*}
$$

Letting $\ell \rightarrow \infty$ in (3.5) yields

$$
\begin{equation*}
L_{n}(f) \leqq 6+4 \hat{\lambda}_{n}\left(X_{n}\right) \tag{3.6}
\end{equation*}
$$

To establish the lower bound, let
$g \in V \equiv\left\{h \in C[X]: E_{n}(h)=X_{n}\right.$ and $\left.h\left(x_{i}\right)=(-1)^{i}, \quad i=0,1, \ldots, n+1\right\}$.
Clearly for all $g \in V, \hat{\lambda}_{n}(g) \leqq \lambda_{n}(g)$. But since for any $g \in V, E_{n}(g)=X_{n}$, $\hat{\lambda}_{n}(g)=\hat{\lambda}_{n}\left(X_{n}\right)$. Thus $\hat{\lambda}_{n}\left(X_{n}\right) \leqq \lambda_{n}(g)$ for all $g \in V$. Therefore

$$
\begin{equation*}
\hat{\lambda}_{n}\left(X_{n}\right) \leqq \inf \left\{\lambda_{n}(g): g \in V\right\}=L_{n}(f) \tag{3.7}
\end{equation*}
$$

Inequalities (3.6) and (3.7) imply the conclusion (2.3) of Theorem 2.
Corollary 1. Let $f \in C[X]$, and suppose that $E_{n}(f)=X_{n}$. Then

$$
\begin{equation*}
\hat{\lambda}_{n}\left(X_{n}\right) \leqq L_{n}(f) \leqq 10 \hat{\lambda}_{n}\left(X_{n}\right) \tag{3.8}
\end{equation*}
$$

Proof. Inequality (3.8) follows immediately from (2.3) and the observation that $\hat{\lambda}_{n}\left(X_{n}\right) \geqq 1$.

We conclude this paper with some other observations. If X is dense in I, the results of Theorem 2 and Corollary 1 can be sharpened. In particular, inequality (2.3) can be replaced by the inequality

$$
\begin{equation*}
\hat{\lambda}_{n}\left(X_{n}\right) \leqq L_{n}(f) \leqq 4+2 \hat{\lambda}_{n}\left(X_{n}\right) \tag{3.9}
\end{equation*}
$$

The proof of (3.9) uses much of the machinery developed in Section 2, as well as some constructions that depend on X being dense in an interval.

We also note that although the first inequality in (3.8) can be an equality (as in the case where $X=X_{n}$), it can also be a strict inequality. To see this, observe that if $n=1$ and $X_{n}=\{-1,0,1\}$, then direct computation using (2.12) and (2.13) gives $\hat{\lambda}_{n}\left(X_{n}\right)=3 / 2$, but if $X=[-1,1]$ then for
every $n \geqq 1$ we have $\lambda_{n}(h) \geqq 2$ for all $h \in C[-1,1]$, which implies $L_{n}(f) \geqq 2$ from (1.8). The statement $\lambda_{n}(h) \geqq 2$ for all $h \in C[-1,1], n \geqq 1$, follows from the fact that $\left\|B_{n}(h)-B_{n}\left(g_{m}\right)\right\| /\left\|h-g_{m}\right\|$ can be made arbitrarily close to 2 by choosing m large, where $g_{m}(-1+i / m)=i+(-1)^{n-i} m$ for $i=0, \ldots, n, g_{m}(1)=m$, and g_{m} is linear in between these points; note that $E_{n}\left(g_{m}\right)=\{-1,-1+1 / m, \ldots,-1+n / m, 1\}, B_{n}\left(g_{m}\right)(x)=m(x+1)$, $\left\|B_{n}\left(g_{m}\right)\right\|=2 m$, and $\left\|g_{m}\right\|=m+n$. It can also be derived from the results in [5].

Let $f(x)=e^{x}, x \in I$. Then it can be shown $[3,10,11]$ that $\left|E_{n}(f)\right|=$ $=n+2$ and that $\hat{\lambda}_{n}\left(X_{n}\right) / M_{n}\left(X_{n}\right)=O\left(\frac{\log (n+1)}{n+1}\right)$. Thus Theorems 1 and 2 imply that $\lim _{n \rightarrow \infty} \frac{L_{n}(f)}{G_{n}(f)}=0$ when $f(x)=e^{x}$. Hence in an asymptotic sense, the ELLC and EGLC can be very different. It would be of interest to find functions $f \in C[X]-\Pi_{n}$ for which either $\left\{\frac{\lambda_{n}(f)}{L_{n}(f)}\right\}_{n=0}^{\infty}$ is bounded above by a constant not depending on n, or for which $\left\{\frac{G_{n}(f)}{\lambda_{n}(f)}\right\}_{n=0}^{\infty}$ is bounded above by a constant not depending on n.

References

[1] J. R. Angelos, M. S. Henry, E. H. Kaufman, Jr., and T. D. Lenker, Local Lipschitz constants, J. Approx. Theory, 43 (1985), 53-63.
[2] J. R. Angelos, M. S. Henry, E. H. Kaufman, Jr., and T. D. Lenker, Extended Lipschitz constants, in Approximation Theory V (C. Chui, L. Schumaker, and J. Ward, Eds.), Academic Press (New York, 1986), 239-242.
[3] J. R. Angelos, M. S. Henry, E. H. Kaufman, Jr., A. Kroó, and T. D. Lenker, Local and global Lipschitz constants, J. Approximation Theory, 46 (1986), 137-156.
[4] M. W. Bartelt and D. P. Schmidt, On strong unicity and a conjecture of Henry and Roulier, in Approximation III (E. W. Cheney, Ed.), Academic Press (New York, 1980), 187-191.
[5] M. W. Bartelt and J. Swetits, On the norm of the best approximation operator, preprint.
[6] H.-P. Blatt, Lipschitz continuity and strong unicity in G. Freud's work, J. Approx. Theory, 46 (1986), 25-31.
[7] E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill (New York, 1966).
[8] C. B. Dunham, A uniform constant of strong unicity on an interval, J. Approx. Theory, 28 (1980), 207-211.
[9] M. S. Henry, Lipschitz and strong unicity constants, Colloquia Mathematica Societatis János Bolyai 49, Alfred Haar Memorial Conference (Budapest, 1985), 423444.
[10] M. S. Henry and J. J. Swetits, Lebesgue constants for certain classes of nodes, J. Approx. Theory, 39 (1983), 211-227.
[11] M. S. Henry and J. J. Swetits, Limits of strong unicity constants for certain C^{∞} functions, Acta Math. Acad. Sci. Hung., 43 (1984), 309-323.
[12] A. Kroó, The Lipschitz constant of the operator of best approximation, Acta Math. Acad. Sci. Hung., 35 (1980), 279-292.
[13] D. P. Schmidt, A characterization of strong unicity constants, in Approximation III (E. W. Cheney, Ed.), Academic Press (New York, 1980), 805-810.
(Received January 4, 1988)
DEPARTMENT OF MATHEMATICS
CENTRAL MICHIGAN UNIVERSITY
MOUNT PLEASANT, MICHIGAN 48859
USA

DEPARTMENT OF MATHEMATICS AND STATISTICS
OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA 23529
USA

STRONG NEGATIVE PARTITION RELATIONS BELOW THE CONTINUUM

S. SHELAH (Jerusalem) ${ }^{1}$

0. Introduction

Definition 1. If λ is a cardinal, $\operatorname{Pr}^{+}(\lambda)$ means that there is a function $c:[\lambda]^{2} \rightarrow \lambda$ such that if $1 \leqq n<\omega$ and the sets $\left\{\zeta_{\alpha}^{0}, \ldots, \zeta_{\alpha}^{n-1}\right\}$ are disjoint for $\alpha<\lambda$ and $\zeta_{\alpha}^{0}<\ldots<\zeta_{\alpha}^{n-1}$ then for every $h: n \times n \rightarrow \lambda$ there are $\alpha<\beta$ such that $c\left(\zeta_{\alpha}^{i}, \zeta_{\beta}^{j}\right)=h(i, j)$ for $i, j<n$.

Definition 2. $\operatorname{Pr}(\lambda)$ is the same but only for every $h: n \times n \rightarrow \lambda$ with h constant, i.e. $h(i, j)=\gamma$ for $i, j<n$.

Lemma 1. If λ is regular, not strong limit, then $\operatorname{Pr}(\lambda)$ implies $\operatorname{Pr}^{+}(\lambda)$.
Proof. We use the idea in the proof of the Engelking-Karlowitz theorem. Assume that $\mu<\lambda$ and $2^{\mu} \geqq \lambda$. Let $\left\{A_{\alpha}: \alpha<\lambda\right\}$ be different subsets of μ. Assume that c^{-}witnesses $\operatorname{Pr}(\lambda)$. Put $G=\left\{\langle w, g\rangle: w \in[\mu]^{<\omega}\right.$, $\left.g: P(w)^{2} \rightarrow \lambda\right\}$. Clearly, $|G|=\lambda$, so we can enumerate it as $\left\{\left\langle w_{\alpha}, g_{\alpha}\right\rangle: \alpha<\right.$ $<\lambda\}$. Now put $c(\alpha, \beta)=g_{\gamma}\left(A_{\alpha} \cap w_{\gamma}, A_{\beta} \cap w_{\gamma}\right)$, where $\gamma=c^{-}(\alpha, \beta)$.

Assume that $\left\{\zeta_{\alpha}^{i}: i<n, \alpha<\lambda\right\}$ are given as in Definition 1, $h: n \times n \rightarrow \lambda$. For $\alpha<\lambda, i<j<n$, pick $\gamma_{\alpha}^{i, j} \in A_{\zeta_{\alpha}^{i}} \triangle A_{\zeta_{\alpha}^{j}}$, and let $w^{\alpha}=\left\{\gamma_{\alpha}^{i, j}: i<j<n\right\}$. As $w^{\alpha} \subseteq \mu<\lambda$, we may assume that there exist $w, B_{i} \subseteq w(i<n)$, such that $w^{\alpha}=w, A_{\zeta_{\alpha}^{i}} \cap w=B_{i}$ for $\alpha<\lambda$. Let $g: P(w)^{2} \rightarrow \lambda$ be a function satisfying $g\left(B_{i}, B_{j}\right)=h(i, j)$. There is a $\gamma<\lambda$ with $\langle w, g\rangle=\left\langle w_{\gamma}, g_{\gamma}\right\rangle$, and by $\operatorname{Pr}(\lambda)$ there are $\alpha<\beta<\lambda$ such that if $i<j<n$, then $c^{-}\left(\zeta_{\alpha}^{i}, \zeta_{\beta}^{j}\right)=\gamma$. But then $c\left(\zeta_{\alpha}^{i}, \zeta_{\beta}^{j}\right)=g_{\gamma}\left(A_{\zeta_{\alpha}^{i}} \cap w_{\gamma}, A_{\zeta_{\beta}^{j}} \cap w_{\gamma}\right)=g\left(B_{i}, B_{j}\right)=h(i, j)$, and we are done.

We now state the main result of this paper. We remind the reader that $S \subseteq \lambda$ is a non-reflecting stationary set if it is stationary and $S \cap \alpha$ is nonstationary in α for every limit $\alpha<\lambda$.

Theorem. $\operatorname{Pr}(\lambda)$ holds whenever there exists a nonreflecting stationary set S in λ with $\operatorname{cf}(\alpha)>\omega_{1}$ for every $\alpha \in S$.

This work is continued in [10] (see also [11]).

[^3]
1. Construction of the coloring

For $\alpha<\lambda$ limit let $C_{\alpha} \cong \alpha$ be a closed unbounded set of order type $\operatorname{cf}(\alpha)$ disjoint from S. For $\alpha=\beta+1$ we let $C_{\alpha}=\{\beta\}$. For $0<\alpha<\beta<\lambda$ let $\gamma(\beta, \alpha)=\min \left(C_{\beta}-\alpha\right)$. Obviously, $\alpha \leqq \gamma(\beta, \alpha)<\beta$. We now define $\gamma_{\ell}(\beta, \alpha)$ for $\ell \leqq k(\beta, \alpha)$ as follows: $\gamma_{0}(\beta, \alpha)=\beta, \gamma_{\ell+1}(\beta, \alpha)=\gamma\left(\gamma_{\ell}(\beta, \alpha), \alpha\right)$. If $\gamma_{\ell}(\beta, \alpha)=\alpha$ then we terminate the definition and put $k=k(\beta, \alpha)=$ $=\ell$. Clearly, $\alpha=\gamma_{k}(\beta, \alpha)<\ldots<\gamma_{0}(\beta, \alpha)=\beta$. The string $\varrho(\beta, \alpha)=$ $=\left\langle\gamma_{0}(\beta, \alpha), \ldots, \gamma_{k}(\beta, \alpha)\right\rangle$ is the Todorcevic walk from β to α.

Fix a decomposition $S=\cup\left\{S^{\gamma}: \gamma<\lambda\right\}$ into stationary sets (possible, by Solovay's theorem). Let $H: \lambda \rightarrow \omega_{1}$ be a mapping such that for every $i<\omega_{1}$ the set $S_{i}=S \cap H^{-1}(\{i\})$ is stationary in λ. Let $\omega_{1}=\cup\left\{R_{n}: n<\omega\right\}$ be a partition into stationary sets. For $0<\alpha<\beta<\lambda$ we let

$$
w_{1}(\beta, \alpha)=\left\{p>k / 2: \text { for every } q<k / 2, H\left(\gamma_{p}\right)>H\left(\gamma_{q}\right)\right\}
$$

and $p_{1}=\min \left(w_{1}\right)$. Here and in several cases later, we omit (β, α) after w_{1}, p_{1}, k etc. if it is obvious what we are speaking of. We now define

$$
w_{2}=\left\{q<\frac{k}{2}: \text { for every } \frac{k}{2}<p \leqq k, p \notin w_{1} \text { implies } H\left(\gamma_{q}\right)>H\left(\gamma_{p}\right)\right\} .
$$

Let p_{2} be such that $\min \left\{H\left(\gamma_{q}\right): q \in w_{2}\right\} \in R_{p_{2}}$. Now if $0 \leqq p_{1}-p_{2} \leqq k$ and $\gamma_{p_{1}-p_{2}}(\beta, \alpha) \in S^{\gamma}$ we put $c(\beta, \alpha)=\gamma$ otherwise $c(\beta, \alpha)$ is chosen arbitrarily.

2. Preliminaries

Definition 3. If $s_{1}=\left\langle s_{1}(0), \ldots, s_{1}\left(t_{1}\right)\right\rangle, s_{2}=\left\langle s_{2}(0), \ldots, s_{2}\left(t_{2}\right)\right\rangle$ are strings, their concatenation $s_{1} \wedge s_{2}$ is $\left\langle s_{1}(0), \ldots s_{1}\left(t_{1}-1\right), s_{2}(0), \ldots, s_{2}\left(t_{2}\right)\right\rangle$.

The reason why we are removing the border element is that in our applications $s_{1}\left(t_{1}\right)=s_{2}(0)$ holds, so we only remove an immediate repetition.

Lemma 2. If $\delta \in S, \beta>\delta$ then there exists a $\chi(\beta, \delta)<\delta$ such that for every α with $\chi(\beta, \delta) \leqq \alpha<\delta, \varrho(\beta, \delta)$ is an initial segment of $\varrho(\beta, \alpha)$. Moreover, $\varrho(\beta, \alpha)=\varrho(\beta, \delta) \wedge \varrho(\delta, \alpha)$.

Proof. If $\alpha<\delta$ is large enough, $\gamma(\beta, \alpha)=\gamma(\beta, \delta)$. Therefore, if $\alpha \geqq$ $\geqq \chi(\gamma(\beta, \delta), \delta)$ also holds, the statement is true. We get, therefore, a proof by induction on β.

Lemma 3. If $A, B \in[\lambda]^{\lambda}, k<\omega$, then there exist $\alpha \in A, \beta \in B, \alpha<\beta$ with $k(\beta, \alpha)>k$.

Proof. We define $C_{0}=A^{\prime}$, and by induction, $C_{i+1}=\left(S \cap C_{i}\right)^{\prime}$. Pick $\gamma_{k} \in C_{k} \cap S$, then $\beta \in B$ with $\beta>\gamma_{k}, \chi_{k}=\chi\left(\beta, \gamma_{k}\right)$. If γ_{i+1}, χ_{i+1} are found, pick $\gamma_{i} \in S \cap C_{i}$ with $\chi_{i+1}<\gamma_{i}<\gamma_{i+1}$ and χ_{i} with $\chi_{i}>\chi\left(\gamma_{i+1}, \gamma_{i}\right)$,
$\chi_{i+1}<\chi_{i}<\gamma_{i}$. Given γ_{0}, χ_{0} let $\alpha \in A$ satisfy $\chi_{0}<\alpha<\gamma_{0}$, then by Lemma 2 , for $\ell \leqq k$ there exists an $m \leqq k(\beta, \alpha)$ such that $\gamma_{m}(\beta, \alpha)=\gamma_{\ell}$, so $k(\beta, \alpha)>k$.

Definition 4. $\varrho_{H}(\beta, \alpha)=\left\langle H\left(\gamma_{\ell}(\beta, \alpha)\right): \ell \leqq k(\beta, \alpha)\right\rangle$. If $\sigma \in \omega_{1}^{<\omega}$, i.e. is a finite string of countable ordinals, then for $i<\omega_{1} \sigma^{i}$ is the following string $\left|\sigma^{i}\right|=|\sigma|$, and

$$
\sigma^{i}(\ell)= \begin{cases}\sigma(\ell) & \text { if } \sigma(\ell)<i \\ \omega_{1} & \text { if } \sigma(\ell) \geqq i\end{cases}
$$

Definition 5. If $T \subseteq \lambda, \delta<\lambda, R \subseteq \omega_{1}$ stationary, then $U(\delta, T, R)$ denotes the set of those $\varrho \in\left(\omega_{1}+1\right)^{<\omega}-\omega_{1}^{<\omega}$ such that for every $i<\omega_{1}$ there exists a $\beta>\delta, \beta \in T$ with $\varrho_{H}(\beta, \delta)^{i}=\varrho$ and $\min \left\{\varrho_{H}(\ell): \varrho^{i}(\ell)=\omega_{1}\right\} \in R$. $\varrho \in U(\delta, T, R, \chi)$ denotes that β even satisfies $\chi(\beta, \delta)<\chi$.

Lemma 4. If $T \in[\lambda]^{\lambda}$, then there is a $\delta(T)<\lambda$ such that for $\delta(T) \leqq$ $\leqq \delta<\lambda, U(\delta, T, R) \neq \emptyset$. If $\operatorname{cf}(\delta)>\omega_{1}$, then there is a $\chi<\delta$ such that $\bar{U}(\delta, T, R, \chi) \neq \emptyset$.

Proof. For $i<\omega_{1}$ we let $A_{i}=\{\delta<\lambda$: if $\beta>\delta, \beta \in T$, then $i \notin$ $\left.\notin \varrho_{H}(\beta, \delta)\right\}$.

Claim. $\left|A_{i}\right|<\lambda$ for $i<\omega_{1}$.
Proof of Claim. Suppose that $\left|A_{i}\right|=\lambda$ for some $i<\omega_{1}$ and select a $\delta \in S_{i} \cap A_{i}^{\prime}, \beta \in T$ with $\beta>\delta$. Choose an $\alpha \in A_{i}, \chi(\beta, \delta)<\alpha<\delta$. Then $\delta \in \varrho(\beta, \alpha)$, and $i=H(\delta) \in \varrho_{H}(\beta, \alpha)$, a contradiction.

Now we define $\delta(T)$ with $\cup\left\{A_{i}: i<\omega_{1}\right\} \subseteq \delta(T)$. Assume that $\delta(T) \leqq$ $\leqq \delta<\lambda$. For every $i<\omega_{1}$, there is a $\beta_{i}>\delta, \beta_{i} \in T$ such that $i \in \varrho_{H}\left(\beta_{i}, \delta\right)$.

Consider $\left\{\varrho_{H}\left(\beta_{i}, \delta\right): i \in R\right\}$. There exist a stationary $R_{1} \subseteq R$ and a $k<\omega$ such that for $i \in R_{1},\left|\varrho_{i}\right|=k$, where $\varrho_{i}=\varrho_{H}\left(\beta_{i}, \delta\right)$. We even assume that for every $\ell<k$ either for every $i \in R_{1} \varrho_{i}(\ell)<i$ or for every $i \in R_{1}$ $\varrho_{i}(\ell) \geqq i$. Applying Fodor's theorem we can find a stationary $R_{2} \subseteq R_{1}$ and an $\eta \in\left(\omega_{1}+1\right)^{<\omega}-\omega_{1}^{<\omega}$ such that $\varrho_{H}\left(\beta_{i}, \delta\right)^{i}=\eta\left(i \in R_{2}\right)$. For $i \in R_{2}$, $\min \left\{\varrho^{i}(\ell): \eta(\ell)=\omega_{1}\right\}=i \in R_{2} \cong R$, so $\eta \in U(\delta, T, R)$.

If $\operatorname{cf}(\delta)>\omega_{1},\left\{\chi\left(\beta_{i}, \delta\right): i \in \overline{R_{2}}\right\}$ is bounded below δ, so $\eta \in U(\delta, T, R, \lambda)$, if $\lambda>\lambda\left(\beta_{i}, \delta\right)\left(i \in R_{2}\right)$.

Definition 6. If $T \subseteq \lambda, \delta<\lambda$, then $L(\delta, T)$ consists of those $\varrho \in$ $\in\left(\omega_{1}+1\right)^{<\omega}-\omega_{1}^{<\omega}$ for which for every $\alpha<\delta$, and large enough $i<\omega_{1}$ there is a $\beta \in T, \alpha<\beta<\delta$ such that $\varrho_{H}(\delta, \beta)^{i}=\varrho$. For $T \in[\lambda]^{\lambda}$ we let $C(T)=\bigcap\left\{\left(S_{i} \cap T^{\prime}\right)^{\prime}: i<\omega_{1}\right\}$.

Obviously, $C(T)$ is closed unbounded in
Lemma 5. If $\delta \in C(T), \operatorname{cf}(\delta) \geqq \omega_{1}$, then $L(\delta, T) \neq \emptyset$.
Proof. Case 1: $\operatorname{cf}(\delta)=\omega_{1}$. Let $\left\{\delta_{i}: i<\omega_{1}\right\}$ converge to δ. For $i<\omega_{1}$ pick an $\alpha_{i} \in S_{i} \cap T^{\prime}, \delta_{i}<\alpha_{i}<\delta$ (possible, as $\left.\delta \in C(T)\right)$. Now choose $\beta_{i} \in T$, $\delta_{i}<\beta_{i}<\alpha_{i}$ with $\chi\left(\delta, \alpha_{i}\right)<\beta_{i}$. Then $i=H\left(\alpha_{i}\right) \in \varrho_{H}\left(\delta, \beta_{i}\right)$.

As in Lemma 4, there is a stationary $X \subseteq \omega_{1}$ and a $\varrho \in\left(\omega_{1}+1\right)^{<\omega}-\omega_{1}^{<\omega}$ such that $\varrho_{H}\left(\delta, \beta_{i}\right)^{i}=\varrho(i \in X)$, so $\varrho \in L(\delta, T)$.

Case 2: $\operatorname{cf}(\delta)>\omega_{1}$. Let $\left\{\delta_{\alpha}: \alpha<\operatorname{cf}(\delta)\right\}$ converge to δ. For $\alpha<\operatorname{cf}(\delta)$, $i<\omega_{1}$, pick $\beta_{i}^{\alpha} \in T$ with $\delta_{\alpha} \leqq \beta_{i}^{\alpha}<\delta$ as in Case 1. For $\alpha<\operatorname{cf}(\delta)$, there is a $\varrho^{\alpha} \in\left(\omega_{1}+1\right)^{<\omega}-\omega_{1}^{<\omega}$ such that there exist an $X^{\alpha} \in\left[\omega_{1}\right]^{\omega_{1}}$ with $\varrho_{H}\left(\delta, \beta_{i}^{\alpha}\right)^{i}=\varrho^{\alpha}$ for $i \in X^{\alpha}$. There is a ϱ with $\varrho^{\alpha}=\varrho$ for $\operatorname{cf}(\delta)$ many α 's. Clearly, $\varrho \in L(\delta, T)$.

3. Proof of the theorem

Assume that the sets $\left\{\zeta_{\alpha}^{0}, \ldots, \zeta_{\alpha}^{n-1}\right\}$ are disjoint $(\alpha<\lambda, n<\omega)$. We may assume that $\alpha<\zeta_{\alpha}^{0}<\zeta_{\alpha}^{1}<\ldots<\zeta_{\alpha}^{n-1}$. There is a closed unbounded set $C \cong \lambda$ such that if $\alpha<\delta, \delta \in C$, then $\zeta_{\alpha}^{n-1}<\delta$.

For $\delta \in S \cap C$, as $\operatorname{cf}(\delta)>\omega_{1}$, there are $\left\{\nu_{\ell}^{\delta}: \ell<n\right\}$ such that $\sup \{\alpha<$ $\left.<\delta: \varrho_{H}\left(\delta, \zeta_{\alpha}^{\ell}\right)=\nu_{\ell}^{\delta}\right\}=\delta$. For a stationary $T_{1} \subseteq S \cap C, \nu_{\ell}^{\delta}=\nu_{\ell}\left(\delta \in T_{1}\right)$. By Lemma 5 , for $\delta \in S \cap C\left(T_{1}\right), L\left(\delta, T_{1}\right) \neq \bar{\emptyset}$, so there is a stationary $T_{2} \subseteq S \cap C\left(T_{1}\right)$, and $\tau \in\left(\omega_{1}+1\right)^{<\omega}-\omega_{1}^{<\omega}$ such that $\tau \in L\left(\delta, T_{1}\right)$ for $\delta \in T_{2}$. We put $\ell^{*}=\min \left\{\ell: \tau(\ell)=\omega_{1}\right\}$. Again, by Lemma 5 , for $\delta \in S \cap C\left(T_{2}\right)$, $L\left(\delta, T_{2}\right) \neq \emptyset$, so there is a stationary $T_{3} \subseteq S^{\gamma} \cap C\left(T_{2}\right)$, and ϱ with $\varrho \in L\left(\delta, T_{2}\right)$ $\left(\delta \in T_{3}\right)$.

Since $\lambda>\omega_{1}$, there is a stationary $T^{1} \subseteq S$ and $\left\{\nu^{\ell}: \ell<n\right\}$ such that $\varrho_{H}\left(\zeta_{\delta}^{\ell}, \delta\right)=\nu^{\ell}\left(\delta \in T^{1}\right)$. By Fodor's theorem, there is a $T^{2} \cong T^{1}$, and $\chi^{2}<\lambda$, with $\chi\left(\zeta_{\delta}^{\ell}, \delta\right)<\chi^{2}$ for $\delta \in T^{2}$. By Lemma 4 , if $\delta \in S-\delta\left(T^{2}\right)$, then there is a $\chi<\delta$ such that $U\left(\delta, T^{2}, R_{\ell^{*}+|\varrho|}, \chi\right) \neq \emptyset$, so there are $\eta, \chi^{3}>\chi^{2}$, and $T^{3} \subseteq S-\delta\left(T^{2}\right)$ stationary with $\eta \in U\left(\delta, T^{2}, R_{\ell^{*}+|\varrho|}, \chi^{3}\right)\left(\delta \in T^{3}\right)$.

We now apply Lemma 2 with $A=T_{3}-\left(\chi^{3}+1\right), B=T^{3}$ to get a $\beta_{3} \in T_{3}-\left(\chi^{3}+1\right)$, and $\beta^{3} \in T^{3}$ such that $\beta^{3}>\beta_{3}$ and

$$
k\left(\beta^{3}, \beta_{3}\right)>\max \left\{\left|\nu_{\ell}\right|: \ell<n\right\}+|\tau|+|\varrho|+|\eta|+\max \left\{\left|\nu^{\ell}\right|: \ell<n\right\} .
$$

Choose $i_{0}<\omega_{1}$ which is larger than every countable ordinal in $\varrho_{H}\left(\beta^{3}, \beta_{3}\right)$, $\eta, \nu^{\ell}, \nu_{\ell}(\ell<n)$. Since $\varrho \in L\left(\beta_{3}, T_{2}\right)$, there is a $\beta_{2} \in T_{2}$ with $\chi^{3}<\beta_{2}<\beta_{3}$, $\chi\left(\beta^{3}, \beta_{3}\right)<\beta_{2}$ such that $\varrho_{H}\left(\beta_{3}, \beta_{2}\right)^{i_{0}}=\varrho$. Pick a χ_{2} with $\chi^{3}<\chi_{2}<\beta_{2}$, $\chi\left(\beta^{3}, \beta_{3}\right)<\chi_{2}$ such that $\chi\left(\beta_{3}, \beta_{2}\right)<\chi_{2}$.

Next fix an $i_{1}<\omega_{1}$ which is larger than the ordinals in $\varrho_{H}\left(\beta_{3}, \beta_{2}\right)$ and i_{0}. Then, as $\beta^{3} \in T^{3}$ and $\eta \in U\left(\beta^{3}, T^{2}, R_{\ell^{*}+|\varrho|}, \chi^{3}\right)$, there exists a $\beta \in T^{2}$, $\beta>\beta^{3}$ with $\varrho_{H}\left(\beta, \beta^{3}\right)^{i_{1}}=\eta$ and $\chi\left(\beta, \beta^{3}\right)<\chi^{3}$. Since $\beta \in T^{2}$ we have $\varrho_{H}\left(\zeta_{\beta}^{\ell}, \beta\right)=\nu^{\ell}$ and $\chi\left(\zeta_{b}^{\ell}, \beta\right)<\chi^{3}(\ell<n)$.

Finally, choose $i_{2}<\omega_{1}$ which is larger than the countable ordinals in $\varrho_{H}\left(\beta, \beta^{3}\right)$ and i and use $\tau \in L\left(\beta_{2}, T_{1}\right)$ to find $\beta_{1} \in T_{1}$ with $\chi_{2}<\beta_{1}<\beta_{2}$, $\varrho_{H}\left(\beta_{2}, \beta_{1}\right)^{i_{2}}=\tau$. Also, fix $\chi_{1}>\chi\left(\beta_{2}, \beta_{1}\right), \chi_{2}<\chi_{1}<\beta_{1}$. Since $\beta_{1} \in T_{1}$, there is an $\alpha, \chi_{1}<\alpha<\beta_{1}$, such that for $\ell<n, \varrho_{H}\left(\beta_{1}, \zeta_{\alpha}^{\ell}\right)=\nu_{\ell}$.

Fig. 1. The sequence $\varrho_{H}\left(\zeta_{\beta}^{\ell}, \zeta_{\alpha}^{m}\right)$.
Now, by Lemma 2, as $\alpha<\zeta_{\alpha}^{m}$,

$$
\begin{aligned}
& \chi\left(\zeta_{\beta}^{\ell}, \beta\right)<\chi^{3}<\chi_{2}<\chi_{1}<\alpha \text { implies } \varrho\left(\zeta_{\beta}^{\ell}, \zeta_{\alpha}^{m}\right)=\varrho\left(\zeta_{\beta}^{\ell}, \beta\right) \wedge \varrho\left(\beta, \zeta_{\alpha}^{m}\right) \text {; } \\
& \chi\left(\beta, \beta^{3}\right)<\chi^{3}<\alpha \text { implies } \varrho\left(\beta, \zeta_{\alpha}^{m}\right)=\varrho\left(\beta, \beta^{3}\right) \wedge \varrho\left(\beta^{3}, \zeta_{\alpha}^{m}\right) \text {; } \\
& \chi\left(\beta^{3}, \beta_{3}\right)<\chi_{2}<\alpha \text { implies } \varrho\left(\beta^{3}, \zeta_{\alpha}^{m}\right)=\varrho\left(\beta^{3}, \beta_{3}\right) \wedge \varrho\left(\beta_{3}, \zeta_{\alpha}^{m}\right) \text {; } \\
& \chi\left(\beta_{3}, \beta_{2}\right)<\chi_{2}<\alpha \text { implies } \varrho\left(\beta_{3}, \zeta_{\alpha}^{m}\right)=\varrho\left(\beta_{3}, \beta_{2}\right) \wedge \varrho\left(\beta_{2}, \zeta_{\alpha}^{m}\right) \text {; } \\
& \chi\left(\beta_{2}, \beta_{1}\right)<\chi_{1}<\alpha \text { implies } \varrho\left(\beta_{2}, \zeta_{\alpha}^{m}\right)=\varrho\left(\beta_{2}, \beta_{1}\right) \wedge \varrho\left(\beta_{1}, \zeta_{\alpha}^{m}\right) \text {, }
\end{aligned}
$$

i.e.
$\varrho\left(\zeta_{\beta}^{\ell}, \zeta_{\alpha}^{m}\right)=\varrho\left(\zeta_{0}^{\ell}, \beta\right) \wedge \varrho\left(\beta, \beta^{3}\right) \wedge \varrho\left(\beta^{3}, \beta_{3}\right) \wedge \varrho\left(\beta_{3}, \beta_{2}\right) \wedge \varrho\left(\beta_{2}, \beta_{1}\right) \wedge \varrho\left(\beta_{1}, \zeta_{\alpha}^{m}\right)$.
A similar identity holds for ϱ_{H}.
Now it is obvious that the middle, i.e. the $k\left(\zeta_{\beta}^{\ell}, \zeta_{\alpha}^{m}\right) / 2$-th element of the string lies in the $\varrho\left(\beta^{3}, \beta_{3}\right)$ portion - selected to be so long for this purpose. By the respective selections of i_{1}, i_{2} the largest ϱ_{H} value of the first half of the string is at least i_{1} but less than i_{2}. It follows that $w_{1}\left(\zeta_{\beta}^{\ell}, \zeta_{\alpha}^{m}\right)$ consists of those indices p in the $\varrho\left(\beta_{2}, \beta_{1}\right)$ portion where $\varrho_{H}\left(\beta_{2}, \beta_{1}\right)(p) \geqq i_{2}$, so, in particular, $p_{1}=s+|\varrho|+\ell^{*}$ where $s=\left|\varrho\left(\zeta_{\beta}^{\ell}, \beta_{3}\right)\right| . w_{2}\left(\zeta_{\beta}^{\ell}, \zeta_{\alpha}^{m}\right)$ then consists of those indices q in the $\varrho\left(\beta, \beta^{3}\right)$ portion where $\varrho_{H}\left(\beta, \beta^{3}\right)(q) \geqq i_{1}$. By the choices of η and $\varrho\left(\beta, \beta^{3}\right)$ we have that the minimum of $\left\{H\left(\gamma_{q}\right): q \in w_{2}\right\}$ is in $R_{\ell^{*}+|e|}$, i.e. $p_{2}=\ell^{*}+|\varrho|$. From this, $\gamma_{p_{1}-p_{2}}=\gamma_{s}=\beta_{3} \in S^{\gamma}$, so $c\left(\zeta_{\beta}^{\ell}, \zeta_{\alpha}^{m}\right)=\gamma$, as required.

4. Corollaries

Corollary. If $\kappa>\omega_{1}$ is regular, then
(a) $\mathrm{Pr}^{+}\left(\kappa^{+}\right)$holds;
(b) κ^{+}-c.c.-ness is not a productive property of Boolean algebras;
(c) there is a κ^{+}-separable not κ^{+}-Lindelöf Hausdorff-space;
(d) there is a κ^{+}-Lindelöf not κ^{+}-separable Hausdorff-space.

Proof. (a) From the Theorem and Lemma 1.
(b) See [6].
(c)-(d) See [1].

Acknowledgement. The author is grateful to I. Juhász for his help in rewriting the paper.

References

[1] J. Roitman, Basic S and L, Handbook of set-theoretic topology (K. Kunen, J. E. Vaughan, ed.) North-Holland (1984).
[2] S. Shelah, Jonsson algebras in successor cardinals, Israel J. Math., 30 (1978), 70-74.
[3] S. Shelah, Proper forcing, Lecture Notes, 840, Springer (1982).
[4] S. Shelah, Was Sierpinski right? Israel J. Math., 62 (1988), 355-380.
[5] S. Shelah, A graph which embeds all small graphs on any large set of vertices, Annals of Pure and Applied Logic, 38 (1989), 171-183.
[6] S. Shelah, Strong negative partition above the continuum, J. of Symb. Logic, 55 (1990), 21-31.
[7] S. Todorcevic, Coloring pairs of countable ordinals, Acta Math., 159 (1987), 261-294.
[8] S. Todorcevic, Remarks on chain conditions on products, Comm. Math., 56 (1985), 295-302.
[9] S. Todorcevic, Remarks on cellularity on products, Comm. Math., 57 (1986), 357-372.
[10] S. Shelah, Cardinal Arithmetic, Oxford University Press (accepted).
[11] S. Shelah, Cardinal Arithmetic for Skeptics, Bull. Amer. Math. Soc. (accepted).
(Received February 9, 1988)
THE HEBREW UNIVERSITY INSTITUTE OF MATHEMATICS JERUSALEM, ISRAEL

RUTGERS UNIVERSITY
DEPARTMENT OF MATHEMATICS
NEW BRUNSWICK, NJ
U.S.A.

ϕ-ORTHOGONALLY ADDITIVE MAPPINGS. I

Gy. SZABÓ (Debrecen)

1. Introduction

The representation of orthogonally additive functionals on the Hilbertspace $L^{2}[0,1]$ has been studied by Pinsker [2]. In the recent decades several other authors have dealt with the same problem on vector spaces using some kind of bilinear forms for defining ortnogonality. Thus in [8], Vajzović considered the A-orthogonality \perp^{A} on a (real or complex) Hilbert-space H, i.e. $x \perp^{A} y \Longleftrightarrow\langle A x, y\rangle=0$, where $A: H \rightarrow H$ is a continuous selfadjoint operator. He gave the general form of the continuous A-orthogonally additive functionals. Also, Fochi [1] has studied the same question for non-continuous functionals, proving the odd solutions to be additive, while the even ones to be quadratic. Sundaresan and Kapoor [7] defined the T-orthogonality \perp^{T} on a real Hausdorff topological vector space E with the aid of a (non-continuous) linear mapping $T: E \rightarrow E^{*}$, by $x \perp^{T} y \Longleftrightarrow T x(y)=0$. They described in (almost) full details the class of all continuous T-orthogonally additive functionals.

A different approach was given by Rätz [3] for arbitrary orthogonally additive mappings from a real inner product space X with the ordinary orthogonality, into an abelian group Y. Later in [4], he turned these results into a more general context, namely for ϕ-orthogonality \perp^{ϕ} on a vector space X over a euclidean ordered field, i.e. $x \perp^{\phi} y \Longleftrightarrow \phi(x, y)=0$, where ϕ is a non-isotropic bilinear functional.

In the present work we offer a common generalization of the above mentioned results into three directions:

1) we allow vector spaces over a quite arbitrary field rather than over \mathbf{R} or \mathbf{C};
2) we use orthogonality based on an arbitrary sesquilinear form with respect to an automorphism of the field;

3) we study arbitrary orthogonally additive mappings with values in an abelian group.

This is the first part of our investigations in which we consider the case of symmetric orthogonality. The non-symmetric case and other related topics will be dealt with in some forthcoming papers. Here we can apply the abstract theory of orthogonally additive mappings developed in [5], thus we use the same notation and terminology. Namely, throughout the paper, Φ will denote a field of char $\Phi \neq 2, X$ a Φ-vector space with $\operatorname{dim}_{\Phi} X \geqq 2$ and
$(Y,+)$ an abelian group. Also \mathcal{P} or $\operatorname{lin} V$ stand for the family of all 2-dimensional linear subspaces of X or the linear hull of $V \subset X$, respectively. Assuming that \perp is a binary relation (called orthogonality) on X, for $P \in \mathcal{P}$ let \perp_{P} denote the set of all $(u, v) \in \perp$ such that $\operatorname{lin}\{u, v\}=P$ (the set of all orthogonal bases in P). The mappings A, Q and $F: X \rightarrow Y$ are said to be additive, quadratic or orthogonally additive (\perp-additive), if they satisfy the equations:

$$
\begin{aligned}
A(x+y) & =A(x)+A(y), & x, y \in X, \\
Q(x+y)+Q(x-y) & =2 Q(x)+2 Q(y), & x, y \in X, \text { or } \\
F(x+y) & =F(x)+F(y), & x, y \in X, x \perp y,
\end{aligned}
$$

respectively. We shall use the notation:

$$
\begin{aligned}
\operatorname{Hom}(X, Y) & =\{A: X \rightarrow Y \mid A \text { is additive }\} \\
\operatorname{Quad}(X, Y) & =\{Q: X \rightarrow Y \mid Q \text { is quadratic }\} \\
\operatorname{Hom}_{\perp}(X, Y) & =\{F: X \rightarrow Y \mid F \text { is } \perp \text {-additive }\} \\
(\mathrm{o}) \operatorname{Hom}_{\perp}(X, Y) & =\{D: X \rightarrow Y \mid D \text { is odd and } \perp \text {-additive }\} \\
(\mathrm{e}) \operatorname{Hom}_{\perp}(X, Y) & =\{E: X \rightarrow Y \mid E \text { is even and } \perp \text {-additive }\} .
\end{aligned}
$$

Finally, \mathbf{R} is the real line, \mathbf{C} is the complex field, 0 denotes the scalar zero, the zero vector as well as the identity element of the group Y. The actual meaning of 0 always will be clear from the context. The sign $\mathbf{0}$ stands for the constant zero mapping.

Now we remind the reader of some useful concepts and results known for an abstract orthogonality \perp on a Φ-vector space X :

Definition 1.1 ([5], Definition 1.2). a) We say $P \in \mathcal{P}$ to be a \perp-normal plane, if there are $\left(u_{i}, v_{i}\right) \in \perp_{P}(i=1,2)$ with

$$
\bigcap_{i=1}^{2}\left(\operatorname{lin}\left\{u_{i}\right\} \cup \operatorname{lin}\left\{v_{i}\right\}\right)=\{0\} .
$$

The subfamily of all \perp-normal planes in \mathcal{P} will be denoted by \mathcal{P}_{n}.
b) The vector $x \in X$ is said to be a

- τ_{0}-element, if $x \in \operatorname{lin}\{u, v\}$ for some $u, v \in X$ such that ($x \perp u$ or $u \perp x$) and $(x \perp v$ or $v \perp x)$;
- τ_{1}-element, if it is contained in a \perp-normal plane: $x \in P \in \mathcal{P}_{n}$;
- τ-element, if it is a τ_{0} - or τ_{1}-element.

Let X_{0}, X_{1} or X_{τ} denote the set of all $\tau_{0^{-}}, \tau_{1}$ - or τ-elements in X, respectively.
c) We consider the following subfamilies in \mathcal{P} :

$$
\begin{aligned}
& \mathcal{P}_{0}=\left\{P \in \mathcal{P} \mid \perp_{P} \cap\left(X_{0} \times X_{0}\right) \neq \emptyset\right\}, \\
& \mathcal{P}_{1}=\left\{P \in \mathcal{P} \mid \perp_{P} \cap\left(X_{0} \times X_{1} \cup X_{1} \times X_{0}\right) \neq \emptyset\right\}, \\
& \mathcal{P}_{s}=\left\{P \in \mathcal{P} \mid \perp_{P} \cap\left(X_{\tau} \times X_{\tau}\right) \neq \emptyset\right\}, \\
& \mathcal{P}_{s}^{\prime}=\mathcal{P}_{0} \cup \mathcal{P}_{1} \cup \mathcal{P}_{n} .
\end{aligned}
$$

Clearly, $\mathcal{P}_{s}^{\prime} \subset \mathcal{P}_{s}$.
d) Finally, consider the axioms
(O3) $x, y \in X, x \perp y, \alpha, \beta \in \Phi \Longrightarrow \alpha x \perp \beta y$ (homogeneity);
(08) $\mathcal{P}=\mathcal{P}_{s}$;
(088^{\prime}) $\mathcal{P}=\mathcal{P}_{s}^{\prime}$.
Obviously, $\left(\mathrm{O}^{\prime}\right) \Longrightarrow(\mathrm{O} 8)$.
Theorem 1.2 ([5], Theorem 2.7). If (X, \perp) satisfies axioms (O3) and (08) (or even more (08')), then
i) $(\mathrm{o}) \operatorname{Hom}_{\perp}(X, Y)=\operatorname{Hom}(X, Y)$;
ii) $(\mathrm{e}) \operatorname{Hom}_{\perp}(X, Y) \subset \operatorname{Quad}(X, Y)$;
iii) $\operatorname{Hom}_{\perp}(X, Y)=\operatorname{Hom}(X, Y) \Longleftrightarrow(\mathrm{e}) \operatorname{Hom}_{\perp}(X, Y)=\{0\}$.

2. The symmetric ϕ-orthogonality

In this section we examine the properties of a ϕ-orthogonality relation showing that it satisfies axioms (03) and (08^{\prime}) under some natural assumptions.

Definition 2.1. Consider a sesquilinear functional $\phi: X \times X \rightarrow \Phi$ with respect to an automorphism ${ }^{-}: \Phi \rightarrow \Phi$. Now define the ϕ-orthogonality relation \perp^{ϕ} on X by

$$
\perp^{\phi}=\{(x, y) \in X \times X \mid \phi(x, y)=0\} .
$$

A vector $z \in X$ is said to be isotropic, if $\phi(z, z)=0$. It will be fundamental in the sequel the condition
(*) there exist vectors $u_{0}, v_{0} \in X$ such that $\phi\left(u_{0}, u_{0}\right) \neq 0 \neq \phi\left(v_{0}, v_{0}\right)$ and $\phi\left(u_{0}, v_{0}\right)=0$.
Lemma 2.2. Assume that the automorphism of Φ is involutory, i.e. $\overline{\bar{\alpha}}=$ $=\alpha$ for all $\alpha \in \Phi$. If $V \subset X$ is a linear subspace such that the ϕ-orthogonality on V is symmetric and there is a non-isotropic vector $t \in V$, then

$$
\phi(y, x)=\gamma \overline{\phi(x, y)}, \quad x, y \in V
$$

where $\gamma=\phi(t, t) / \overline{\phi(t, t)}$ and so $\gamma \bar{\gamma}=1$. Thus for any couple $x, y \in V$ with non-isotropic $y, \phi(x, x) / \phi(y, y)=\gamma \overline{\phi(x, x)} /[\gamma \overline{\phi(y, y)}]=\overline{\phi(x, x) / \phi(y, y)}$ is a fix element of Φ with respect to its automorphism. Moreover, in the particular case of ${ }^{-}=\mathrm{id}_{\Phi}$, i.e. if ϕ is bilinear, then it is symmetric on V.

Proof. Let $x, y \in V$ be arbitrary vectors and $\xi=\phi(x, t) / \phi(t, t)$ and $\eta=\phi(\underline{2}, t) / \phi(t, t)$. Then for $u=x-\xi t$ and $v=y-\eta t$, we have

$$
\phi(u, t)=\phi(x, t)-\xi \phi(t, t)=0 \text { and } \phi(v, t)=\phi(y, t)-\eta \phi(t, t)=0,
$$

whence, regarding the symmetry of $\perp^{\phi}, \phi(t, u)=0=\phi(t, v)$. Now for $\zeta=\phi(u, v) / \phi(t, t)$, it follows that

$$
\phi(u-\zeta t, v+t)=\phi(u, v)-\zeta \phi(t, t)=0
$$

and so again by the symmetry of \perp^{ϕ},

$$
\phi(v, u)-\bar{\zeta} \phi(t, t)=\phi(v+t, u-\zeta t)=0
$$

i.e. $\phi(v, u)=\bar{\zeta} \phi(t, t)=\gamma \overline{\phi(u, v)}$. Finally,

$$
\begin{gathered}
\phi(y, x)=\phi(v+\eta t, u+\xi t)=\phi(v, u)+\eta \bar{\xi} \phi(t, t)= \\
=\gamma \overline{(\phi(u, v)+\xi \bar{\eta} \phi(t, t))}=\gamma \overline{\phi(u+\xi t, v+\eta t)}=\gamma \overline{\phi(x, y)} .
\end{gathered}
$$

Lemma 2.3. If the ϕ-orthogonality on X is symmetric and condition (*) is satisfied, then the automorphism of Φ is involutory.

Proof. Let $\alpha \in \Phi \backslash\{0\}$ be arbitrarily fixed, $\beta=\phi\left(\alpha u_{0}, \alpha u_{0}\right) / \phi\left(v_{0}, v_{0}\right)$ and $\gamma=\phi\left(v_{0}, v_{0}\right) / \overline{\phi\left(v_{0}, v_{0}\right)}$, where $u_{0}, v_{0} \in X$ are defined by (*). Then we have

$$
\phi\left(\alpha u_{0}-\beta v_{0}, \alpha u_{0}+v_{0}\right)=\phi\left(\alpha u_{0}, \alpha u_{0}\right)-\beta \phi\left(v_{0}, v_{0}\right)=0,
$$

whence, by the symmetry of \perp^{ϕ},

$$
\phi\left(\alpha u_{0}, \alpha u_{0}\right)-\bar{\beta} \phi\left(v_{0}, v_{0}\right)=\phi\left(\alpha u_{0}+v_{0}, \alpha u_{0}-\beta v_{0}\right)=0,
$$

i.e. $\phi\left(\alpha u_{0}, \alpha u_{0}\right)=\bar{\beta} \phi\left(v_{0}, v_{0}\right)=\gamma \overline{\phi\left(\alpha u_{0}, \alpha u_{0}\right)}$. Now, using this equality also for $\alpha=1$, we have

$$
\begin{aligned}
& \gamma \bar{\alpha} \overline{\bar{\alpha}} \overline{\phi\left(u_{0}, u_{0}\right)}=\gamma \overline{\alpha \bar{\alpha} \phi\left(u_{0}, u_{0}\right)}=\gamma \overline{\phi\left(\alpha u_{0}, \alpha u_{0}\right)}= \\
& =\phi\left(\alpha u_{0}, \alpha u_{0}\right)=\alpha \bar{\alpha} \phi\left(u_{0}, u_{0}\right)=\alpha \bar{\alpha} \gamma \overline{\phi\left(u_{0}, u_{0}\right)},
\end{aligned}
$$

i.e. $\overline{\bar{\alpha}}=\alpha$.

Now defining for $x \in X$ the linear functional $\phi_{x}: X \rightarrow \Phi$ by $\phi_{x}(t)=$ $=\phi(t, x)$, we can present a more familiar condition instead of (*) in terms of a subspace of the conjugate space:

$$
X_{\phi}^{*}=\left\{\phi_{x} \mid x \in X\right\} \subset X^{*} .
$$

Proposition 2.4. If the ϕ-orthogonality on X is symmetric, then the following assertions are equivalent:
i) Condition (*) holds true;
ii) There exist $x, y, z \in X$ with $\phi(x, x) \neq 0, \phi(z, x)=0$ and $\phi(z, y) \neq 0$;
iii) There is a non-isotropic vector in X and $\operatorname{dim} X_{\phi}^{*} \geqq 2$.

Proof. i) \Longrightarrow iii): Obviously $\phi_{v_{0}} \neq 0$ and $\phi_{u_{0}} \notin \operatorname{lin}\left\{\phi_{v_{0}}\right\}$.
iii) \Longrightarrow ii): Choose a non-isotropic vector $x \in X$. Since $\operatorname{dim} X_{\phi}^{*} \geqq 2$, there is $y \in X$ such that $\phi_{y} \in X_{\phi}^{*} \backslash \operatorname{lin}\left\{\phi_{z}\right\}$. On the contrary, suppose that for any $t \in X, \phi(t, x)=0$ implies $\phi(t, y)=0$, or equivalently, $\phi\left(t_{1}, x\right)=\phi\left(t_{2}, x\right)$ makes $\phi\left(t_{1}, y\right)=\phi\left(t_{2}, y\right)$ whenever $t_{1}, t_{2} \in X$. Let now $\lambda=\phi(x, y) / \phi(x, x)$ and $t \in X$ be arbitrarily fixed. Then for $\mu=\phi(t, x) / \phi(x, x)$, we have $\phi(t, x)=\phi(\mu x, x)$ and so

$$
\phi(t, y)=\phi(\mu x, y)=\mu \phi(x, y)=\mu \lambda \phi(x, x)=\lambda \phi(\mu x, x)=\lambda \phi(t, x)
$$

This means that $\phi_{y}=\lambda \phi_{x}$, which is a contradiction.
ii) \Longrightarrow i): There may occur exactly the possibilities below:
a) $\phi(z, z) \neq 0$: Then let $u_{0}=x$ and $v_{0}=z$.
b) $\phi(z, z)=0$: Then we have to deal with the following cases:
$\mathrm{b} / 1) \phi(x, y) \neq 0$: Then
$\mathrm{b} / 1 / \mathrm{i})$ either $\phi(y, y) \neq 0$: Let $\alpha=\phi(x, y) / \phi(z, y)$ and define $u_{0}=$ $=x-\alpha z, v_{0}=y$. Then $\phi\left(u_{0}, u_{0}\right)=\phi(x, x) \neq 0 \neq \phi(y, y)=\phi\left(v_{0}, v_{0}\right)$ and $\phi\left(u_{0}, v_{0}\right)=\phi(x, y)-\alpha \phi(z, y)=0$.
$\mathrm{b} / 1 / \mathrm{ii})$ or $\phi(y, y)=0$: Let $\alpha=\phi(x, y) / \phi(z, y)$ and $u_{0}=x-\alpha z$. For non-isotropic $y+z$ let $v_{0}=y+z$. Then $\phi\left(u_{0}, u_{0}\right)=\phi(x, x) \neq 0 \neq \phi\left(v_{0}, v_{0}\right)$ and $\phi\left(u_{0}, v_{0}\right)=\phi(x, y)-\alpha \phi(z, y)=0$. Now suppose that $y+z$ is isotropic. Then $\cdot \neq \mathrm{id}_{\phi}$, since otherwise, by Lemma $2.2, \phi$ would be symmetric and so $\phi(y+z, y+z)=2 \phi(y, z) \neq 0$. Thus choosing $\beta \in \Phi$ with $\bar{\beta} \neq \beta$, we can define $v_{0}=y+\beta z$. The only thing to show is $\phi\left(v_{0}, v_{0}\right)=\phi(y, \beta z)+\phi(\beta z, y)=$ $=(\bar{\beta}-\beta) \phi(y, z) \neq 0$.
$\mathrm{b} / 2) \phi(x, y)=0$: Then
$\mathrm{b} / 2 / \mathrm{i})$ either $\phi(y, y) \neq 0$: Let $u_{0}=x, v_{0}=y$.
$\mathrm{b} / 2 / \mathrm{ii})$ or $\phi(y, y)=0$: Let $u_{0}=x$ and v_{0} be chosen according to the same process as described in case $\mathrm{b} / 1 / \mathrm{ii})$.

Proposition 2.5. Suppose that $\Phi \neq G F(3)$ and the ϕ-orthogonality on X is symmetric. If $u, v \in X$ are such that $\phi(u, v) \neq 0 \neq \phi(v, v)$ and $\phi(u, v)=0$, then u and v are linearly independent and $P=\operatorname{lin}(u, v)$ is a \perp^{ϕ}-normal plane. In particular, u and v are τ_{1}-elements.

Proof. For $v=\lambda u$ we would have

$$
0 \neq \phi(v, v)=\phi(\lambda u, v)=\lambda \phi(u, v)=0
$$

Similarly, $u \neq \mu v$, i.e. $P=\operatorname{lin}\{u, v\} \in \mathcal{P}$ and $(u, v) \in \perp^{\phi}{ }_{P}$.
Next we show the existence of a ϕ-orthogonal base $(x, y) \in \perp^{\phi}{ }_{P}$ such that $x, y \notin \operatorname{lin}\{u\} \cup \operatorname{lin}\{v\}$. Since \perp^{ϕ} is homogeneous, it suffices to look for x and y in the form $x=\alpha u+v, y=u-\beta v$ with $\alpha, \beta \neq 0$. Then these x and y are linearly independent if

$$
\begin{equation*}
\alpha \beta \neq-1 \tag{2.1}
\end{equation*}
$$

and $x \perp^{\phi} y$ if

$$
\begin{equation*}
\alpha=\bar{\beta} \phi(v, v) / \phi(u, u) \tag{2.2}
\end{equation*}
$$

which is obtained from the condition $\phi(\alpha u+v, u-\beta v)=\alpha \phi(u, u)-\bar{\beta} \phi(v, v)=$ $=0$. Substituting (2.2) into (2.1) we reduced the problem to looking for a solution of the inequalities

$$
\bar{\beta} \beta \neq-\phi(u, u) / \phi(v, v), \quad \beta \neq 0
$$

which is always solvable if $\Phi \neq G F(3)$. This means that P is a ϕ-normal plane with $\left(u_{1}, v_{1}\right)=(u, v)$ and $\left(u_{2}, v_{2}\right)=(x, y)$.

Proposition 2.6. Suppose that $\Phi \neq G F(3)$ and the ϕ-orthogonality on X is symmetric while condition (*) holds true. Then every non-isotropic vector $t \in X$ is a τ_{1}-element; namely, there is a non-isotropic $u \in X$ with $\phi(u, t)=0$.

Proof. We are to deal with the three cases below:
a) $\phi\left(u_{0}, u_{0}\right) \phi(t, t) \neq \phi\left(u_{0}, t\right) \phi\left(t, u_{0}\right)$: Then for $\beta=\phi\left(u_{0}, t\right) / \phi(t, t), u=$ $=u_{0}-\beta t, v=t$, we have

$$
\begin{gathered}
\phi(u, u)=\phi\left(u_{0}-\beta t, u_{0}-\beta t\right)= \\
=\phi\left(u_{0}, u_{0}\right)-\beta \phi\left(t, u_{0}\right)-\bar{\beta} \phi\left(u_{0}, t\right)+\beta \bar{\beta} \phi(t, t)= \\
=\phi\left(u_{0}, u_{0}\right)-\frac{\phi\left(u_{0}, t\right) \phi\left(t, u_{0}\right)}{\phi(t, t)} \neq 0 \neq \phi(t, t)=\phi(v, v)
\end{gathered}
$$

and $\phi(u, v)=\phi\left(u_{0}, t\right)-\beta \phi(t, t)=0$. Thus by Proposition $2.5, t \in \operatorname{lin}\{u, v\} \in$ $\in \mathcal{P}_{n}$, i.e. via the definition, t is a τ_{1}-element.
b) $\phi\left(v_{0}, v_{0}\right) \phi(t, t) \neq \phi\left(v_{0}, t\right) \phi\left(t, v_{0}\right)$: See case a).
c) $\phi\left(u_{0}, u_{0}\right) \phi(t, t)=\phi\left(u_{0}, t\right) \phi\left(t, u_{0}\right), \phi\left(v_{0}, v_{0}\right) \phi(t, t)=\phi\left(v_{0}, t\right) \phi\left(t, v_{0}\right)$: It follows immediately that $\phi\left(u_{0}, t\right), \phi\left(t, u_{0}\right), \phi\left(v_{0}, t\right), \phi\left(t, v_{0}\right) \neq 0$. Let $\beta=$ $=\phi\left(u_{0}, t\right) / \phi\left(v_{0}, t\right), u=u_{0}-\beta v_{0}, v=t$. Then

$$
\begin{gathered}
\phi(u, u)=\phi\left(u_{0}-\beta v_{0}, u_{0}-\beta v_{0}\right)= \\
=\phi\left(u_{0}, u_{0}\right)-\beta \phi\left(v_{0}, u_{0}\right)-\bar{\beta} \phi\left(u_{0}, v_{0}\right)+\beta \bar{\beta} \phi\left(v_{0}, v_{0}\right)= \\
=\phi\left(u_{0}, u_{0}\right)+\frac{\phi\left(u_{0}, t\right) \overline{\phi\left(u_{0}, t\right)}}{\phi\left(v_{0}, t\right) \overline{\phi\left(v_{0}, t\right)}} \phi\left(v_{0}, v_{0}\right)=\phi\left(u_{0}, u_{0}\right)+\frac{\phi\left(u_{0}, t\right) \phi\left(t, u_{0}\right)}{\phi\left(v_{0}, t\right) \phi\left(t, v_{0}\right)} \phi\left(v_{0}, v_{0}\right)= \\
=2 \phi\left(u_{0}, u_{0}\right) \neq 0 \neq \phi(t, t)=\phi(v, v)
\end{gathered}
$$

Also we have $\phi(u, v)=\phi\left(u_{0}, t\right)-\beta \phi\left(v_{0}, t\right)=0$, and so by Proposition 2.5 $t \in \operatorname{lin}\{u, v\} \in \mathcal{P}_{n}$, i.e. t is a τ_{1}-element as well.

Proposition 2.7. Suppose that $\Phi \neq G F(3)$ and the ϕ-orthogonality on X is symmetric while condition (*) holds true. If $P \in \mathcal{P}$ is such that every $z \in P$ is isotropic, then ϕ is identically zero on P, and so $P \in \mathcal{P}_{0}$.

Proof. Let $x, y \in P$ be arbitrarily fixed. Then $\phi(x, y)+\phi(y, x)=$ $=\phi(x+y, x+y)=0$, i.e. $\phi(x, y)=-\phi(y, x)=-\gamma \overline{\phi(x, y)}$. Now, if ${ }^{-}=\operatorname{id}_{\Phi}$, then $\phi(x, y)=-\phi(x, y)$, i.e. $\phi(x, y)=0$. Otherwise, choose a scalar $\alpha \in \Phi$ with $\alpha \neq \bar{\alpha}$ and take αx for x :

$$
\begin{gathered}
\alpha \phi(x, y)=\phi(\alpha x, y)=-\gamma \overline{\phi(\alpha x, y)}= \\
=-\gamma \overline{\alpha \phi(x, y)}=\bar{\alpha}(-\gamma \overline{\phi(x, y)})=\bar{\alpha} \phi(x, y) .
\end{gathered}
$$

Then clearly $\phi(x, y)=0$ again.
Theorem 2.8. Assume that $\Phi \neq G F(3)$. If the ϕ-orthogonality on X is symmetric and condition (*) holds true, then \perp^{ϕ} satisfies axioms (O3) and (08').

Proof. The validity of (O3) is obvious. Now we are going to show (08'). For this reason, let $P \in \mathcal{P}$ be arbitrarily fixed. Then there may occur exactly the possibilities as follows:
a) Every $z \in P$ is isotropic: Then Proposition 2.7 implies $P \in \mathcal{P}_{0}$.
b) There exists non-isotropic $v \in P$: Then by Proposition $2.6, v$ is a τ_{1-} element. Also, for a fixed $x \in P \backslash \operatorname{lin}\{v\}$, we define $u=x-[\phi(x, v) / \phi(v, v)] v \in$ $\in P$. Then clearly $(u, v) \in \perp^{\phi} P$ and
$\mathrm{b} / 1)$ either $\phi(u, u)=0$, when u is a τ_{0}-element and so $(u, v) \in \perp^{\phi} P_{P} \cap$ $\cap\left(X_{0} \times X_{1}\right)$, i.e. $P \in \mathcal{P}_{1}$,
$\mathrm{b} / 2)$ or $\phi(u, u) \neq 0$, when by Proposition $2.5, P=\operatorname{lin}\{u, v\} \in \mathcal{P}_{n}$.
Corollary 2.9. Assume that $\Phi \neq G F(3)$. If the ϕ-orthogonality on X is symmetric and condition (*) holds true, then
i) $(\mathrm{o}) \operatorname{Hom}_{\perp \phi}(X, Y)=\operatorname{Hom}(X, Y)$;
ii) $(\mathrm{e}) \operatorname{Hom}_{\perp^{\phi}}(X, Y) \subset \operatorname{Quad}(X, Y)$;
iii) $\operatorname{Hom}_{\perp \phi}(X, Y)=\operatorname{Hom}(X, Y) \Longleftrightarrow(\mathrm{e}) \operatorname{Hom}_{\perp \phi}(X, Y)=\{\mathbf{0}\}$.

Remark 2.10. The condition $\Phi \neq G F(3)$ cannot be omitted from the previous statements. To check this, let $\Phi=G F(3)=\{-1,0,1\}, X=\Phi^{2}$ and define $\phi: X \times X \rightarrow \Phi$ by

$$
\phi\left(\left(\xi_{1} ; \xi_{2}\right),\left(\eta_{1} ; \eta_{2}\right)\right)=\xi_{1} \eta_{1}-\xi_{2} \eta_{2}, \quad\left(\xi_{1} ; \xi_{2}\right),\left(\eta_{1} ; \eta_{2}\right) \in X
$$

Then for $u_{0}=(1 ; 0)$ and $v_{0}=(0 ; 1)$, we have $\phi\left(u_{0}, u_{0}\right)=1 \neq 0 \neq-1=$ $=\phi\left(v_{0}, v_{0}\right), \phi\left(u_{0}, v_{0}\right)=0$, however $\mathcal{P}=\{X\}$ and

$$
\perp_{X}^{\phi}=\left\{\left(\lambda u_{0}, \mu v_{0}\right),\left(\mu v_{0}, \lambda u_{0}\right) \mid \lambda, \mu \in \Phi \backslash\{0\}\right\},
$$

showing $X \notin \mathcal{P}_{0} \cup \mathcal{P}_{n}=\mathcal{P}_{s}^{\prime}$. Actually, (e) $\operatorname{Hom}_{\perp^{\Phi}}(X, Y) \subset \operatorname{Quad}(X, Y)$ holds no longer in general. E.g., define $E: X \rightarrow \mathbf{R}$ to be even and satisfying

$$
E(1 ; 0)=1, E(0 ; 1)=-1, E(1 ; 1)=0, E(1 ;-1)=0 .
$$

Then it can be shown easily that $E \in(\mathrm{e}) \operatorname{Hom}_{\perp \phi}(X, \mathbf{R})$, however

$$
\begin{gathered}
\quad E((1 ; 0)+(1 ; 1))+E((1 ; 0)-(1 ; 1))= \\
=E(-1 ; 1)+E(0 ;-1)=0+(-1)=-1 \neq \\
\neq 2=2 \cdot 1+2 \cdot 0=2 E(1 ; 0)+2 E(1 ; 1) .
\end{gathered}
$$

3. Even solutions

The previous section has left open the question how to select the even solutions from among the quadratic functions. Now we answer this question under the following assumptions on the field Φ :

Throughout this section, using the notations $\Omega=\{\alpha \in \Phi \mid \alpha=\bar{\alpha}\}$, $\Omega_{+}=\{\mu \bar{\mu} \mid \mu \in \Phi\}$ and $\Omega_{-}=-\Omega_{+}$, we assume that

$$
\Omega_{+}+\Omega_{+} \subset \Omega_{+} ; \quad \Omega=\Omega_{-} \cup \Omega_{+} ; \quad \Omega_{+}=\left\{\omega^{2} \mid \omega \in \Omega_{+}\right\} .
$$

These conditions are motivated by the natural properties of the complex field \mathbf{C}, but they are valid e.g. for the subfield of the algebraic complex numbers, too. More generally, starting from a euclidean ordered field Ω, i.e. an ordered field in which every nonnegative element has a square root, it is quite evident that the cartesian product $\Phi=\Omega \times \Omega$ turns into a field of the above type just as $\mathbf{C}=\mathbf{R} \times \mathbf{R}$. In each example given till now, the particular automorphism should be chosen to be the usual conjugation. Notice that the first condition excludes the possibility of $\Phi=G F(3)$. However, any euclidean ordered field or fields having only square elements, meet all of the conditions with the identical automorphism. For more information see e.g. [6].

Also, further on, the ϕ-orthogonality on X is supposed to be symmetric and satisfying condition (*). Then by Lemmas 2.2 and 2.3 , there is a scalar $\gamma \in \Phi$ such that $\gamma \bar{\gamma}=1$ and $\phi(y, x)=\gamma \overline{\phi(x, y)}$ for all $x, y \in X$.

Lemma 3.1. There is a sesquilinear and Hermite-symmetric functional $\phi_{0}: X \times X \rightarrow \Phi$ such that $\perp^{\phi_{0}}=\perp^{\phi}$.

Proof. Since $\phi\left(v_{0}, v_{0}\right) \overline{\phi\left(v_{0}, v_{0}\right)} \in \Omega_{+}$, we have $\omega_{0} \in \Omega_{+}$with $\omega_{0}^{2}=$ $=\phi\left(v_{0}, v_{0}\right) \cdot \overline{\phi\left(v_{0}, v_{0}\right)}$. Hence for $\chi=\phi\left(v_{0}, v_{0}\right) / \omega_{0}$, it follows that $\chi \bar{\chi}=1$ and $\chi^{2}=\gamma$. Let define $\phi_{0}: X \times X \rightarrow \Phi$ by

$$
\phi_{0}(x, y)=\bar{\chi} \phi(x, y), \quad x, y \in X .
$$

Clearly, ϕ_{0} is sesquilinear and the Hermite-symmetry can be verified as follows:

$$
\phi_{0}(y, x)=\bar{\chi} \phi(y, x)=\bar{\chi} \gamma \overline{\phi(x, y)}=\bar{\chi} \chi^{2} \overline{\phi(x, y)}=\chi \overline{\phi(x, y)}=
$$

$$
=\overline{\bar{\chi} \phi(x, y)}=\overline{\phi_{0}(x, y)} .
$$

Finally, $\perp^{\phi_{0}}=\perp^{\phi}$ is trivial from the definiton.
Lemma 3.2. If ϕ is Hermite-symmetric and $E \in(\mathrm{e}) \operatorname{Hom}_{\perp \phi}(X, Y)$, then for each non-isotropic $t \in X$

$$
E(\tau t)=E(t), \quad r \in \Phi, \quad \tau \bar{\tau}=1 .
$$

Proof. Let $t \in X$ be non-isotropic. By Proposition 2.6, one can choose a non-isotropic $u \in X$ with $\phi(t, u)=0$. Then $\phi(t, t) / \phi(u, u) \in \Omega$ and so it is equal to $\pm \mu \bar{\mu}$ for some $\mu \in \Phi$, i.e. $\phi(t, t)= \pm \phi(\mu u, \mu u)$. This implies that either $\phi(t+\mu u, t-\mu u)=0$, whence

$$
\begin{aligned}
& E(t)=E\left(\frac{t+\mu u}{2}+\frac{t-\mu u}{2}\right)=E\left(\frac{t+\mu u}{2}\right)+E\left(\frac{t-\mu u}{2}\right)= \\
& =E\left(\frac{t+\mu u}{2}\right)+\left(-\frac{t-\mu u}{2}\right)=E\left(\frac{t+\mu u}{2}-\frac{t-\mu u}{2}\right)=E(\mu u),
\end{aligned}
$$

or $\phi(t+\mu u, t+\mu u)=0$, whence

$$
\begin{gathered}
E(t)+E(\mu u)=E(t+\mu u)=E\left(\frac{t+\mu u}{2}\right)+E\left(\frac{t+\mu u}{2}\right)= \\
=E\left(\frac{t+\mu u}{2}\right)+E\left(\frac{-t-\mu u}{2}\right)=E(0)=0 .
\end{gathered}
$$

Now applying this for $\tau t(\tau \in \Phi, \tau \bar{\tau}=1$), we have by the above argument that either

$$
E(\tau t)=E(\mu u) \text { or } E(\tau t)=-E(\mu u) .
$$

This means that in both cases $E(\tau t)=E(t)$.
Corollary 3.3. If ϕ is Hermite-symmetric, then for any $E \in$ $\in(e) \operatorname{Hom}_{\perp \phi}(X, Y)$ we have

$$
E(x)=E(y), \quad x, y \in X, \phi(x, x)=\phi(y, y) .
$$

Proof. If $\phi(x, y)=0$, then $\phi(x+y, x-y)=0$ and so $E(x)=E(y)$. Otherwise, we can choose $\omega \in \Omega_{+}$such that $\omega^{2}=\phi(x, y) \overline{\phi(x, y)}$. Then for $\eta=\phi(x, y) / \omega$ we have $\eta \bar{\eta}=1$ and $\phi(x+\eta y, x-\eta y)=0$. Thus Lemma 3.2 implies that $E(x)=E(\eta y)=E(y)$.

Theorem 3.4. Suppose that ϕ is Hermite-symmetric. Then $E \in$ $\epsilon(\mathrm{e}) \operatorname{Hom}_{\perp \phi}(X, Y)$ if and only if

$$
E(x)=a(\phi(x, x)), \quad x \in X,
$$

for some $a \in \operatorname{Hom}(\Omega, Y)$.
Proof. By Corollary 3.3, $E(x)$ depends only on $\phi(x, x)$:

$$
E(x)=a(\phi(x, x)), \quad x \in X
$$

for some $a: \Omega \rightarrow Y$. Now we have only to show that a is additive. For this reason, first observe that choosing any $u, v \in X$ with $\phi(u, u) \neq 0 \neq \phi(v, v)$, $\phi(u, v)=0$, then for all $\alpha, \beta \in \Omega_{+}$and $\lambda=\phi(\alpha u, \alpha u), \mu=\phi(\beta v, \beta v)$, we have
$a(\lambda+\mu)=a(\phi(\alpha u, \alpha u)+\phi(\beta v, \beta v))=a(\phi(\alpha u+\beta v, \alpha u+\beta v))=$
$=E(\alpha u+\beta v)=E(\alpha u)+E(\beta v)=a(\phi(\alpha u, \alpha u))+a(\phi(\beta v, \beta v))=a(\lambda)+a(\mu)$.
Since for the vectors $u_{0}, v_{0} \in X$ given by $(*), \phi\left(u_{0}, u_{0}\right), \phi\left(v_{0}, v_{0}\right) \in \Omega$, there are exactly the following possibilities:
a) $\phi\left(u_{0}, u_{0}\right), \phi\left(v_{0}, v_{0}\right) \in \Omega_{+}$: Then for each $\lambda, \mu \in \Omega_{+}$there exist $\alpha, \beta \in$ $\in \Omega_{+}$such that $\alpha^{2}=\lambda / \phi\left(u_{0}, u_{0}\right)$ and $\beta^{2}=\mu / \phi\left(v_{0}, v_{0}\right)$. Thus by the above observation

$$
a(\lambda+\mu)=a(\lambda)+a(\mu), \quad \lambda, \mu \in \Omega_{+}
$$

follows, i.e. a is additive on Ω_{+}, and choosing a to be odd, it is additive on the whole Ω.
b) $\phi\left(u_{0}, u_{0}\right), \phi\left(v_{0}, v_{0}\right) \in \Omega_{-}$: See case a).
c) $\phi\left(u_{0}, u_{0}\right) \in \Omega_{+}, \phi\left(v_{0}, v_{0}\right) \in \Omega_{-}$: Then for each $\lambda, \mu \in \Omega_{+}$there exist $\alpha, \beta \in \Omega_{+}$such that $\alpha^{2}=\lambda / \phi\left(u_{0}, u_{0}\right)$ and $\beta^{2}=-\mu / \phi\left(v_{0}, v_{0}\right)$. Thus referring again to the above observation, we have

$$
a(\lambda-\mu)=a(\lambda)+a(-\mu), \quad \lambda, \mu \in \Omega_{+}
$$

Now letting $\lambda=\mu, a(-\mu)=-a(\mu)$ follows, i.e. a is an odd function. Finally, for any $\varrho, \sigma \in \Omega_{+}$, defining $\lambda=\varrho+\sigma, \mu=\sigma \in \Omega_{+}$, we obtain

$$
a(\varrho+\sigma)=a(\lambda)=a(\lambda-\mu)+a(\mu)=a(\varrho)+a(\sigma) .
$$

This means that a is additive on Ω_{+}, and because of its oddness, $a \in$ $\in \operatorname{Hom}(\Omega, Y)$.
d) $\phi\left(u_{0}, u_{0}\right) \in \Omega_{-}, \phi\left(v_{0}, v_{0}\right) \in \Omega_{+}$: See case c).

Corollary 3.5. Under the general assumptions on the field Φ and on the orthogonality \perp^{ϕ} at the beginning of this section, we have

$$
(\mathrm{e}) \operatorname{Hom}_{\perp^{\phi}}(X, Y)=\left\{a \circ \Delta^{\phi} \mid a \in \operatorname{Hom}(\Phi, Y)\right\},
$$

where $\Delta^{\phi}(x)=\phi(x, x)$ for all $x \in X$.
Proof. This follows immediately from Lemma 3.1 and Theorem 3.4 above.

Remark 3.6. Now the result of Vajzović [8], Theorems 1, 2, Fochi [1], Theorems 1, 3 and Corollaries 1, 2, Sundaresan-Kapoor [7], Theorems 2, 3 , Rätz [3], Theorem 9, Corollary 10 and [4], Theorem 3.8 c) can be derived in an obvious way from our theory, actually from Proposition 2.4 and Corollaries 2.9, 3.5 above.

Acknowledgement. The author wishes to thank the referee for his valuable remarks on the manuscript of this paper.

References

[1] M. Fochi, Functional equations on A-orthogonal vectors, Aequationes Math., 38 (1989), 28-40.
[2] A. Pinsker, Sur une fonctionnelle dans l'espace de Hilbert, C. R. Acad. Sci. URSS N. S., 20 (1938), 411-414.
[3] J. Rätz, On orthogonally additive mappings, Aequationes Math., 28 (1985), 35-49.
[4] J. Rätz, On orthogonally additive mappings, II, Publicationes Math. Debrecen., 35 (1988), 241-249.
[5] J. Rätz and Gy. Szabó, On orthogonally additive mappings, IV, Aequationes Math., 38 (1989), 73-85.
[6] W. Scharlau, Quadratic and Hermitian Forms, Springer (Berlin-Heidelberg-New YorkTokyo, 1985).
[7] K. Sundaresan and O. P. Kapoor, T-orthogonality and nonlinear functionals on topological vector spaces, Can. J. Math., 25 (1973), 1121-1131.
[8] F. Vajzović, On a functional which is additive on A-orthogonal pairs, Glasnik Mat., 21 (1966), 75-81.
(Received December 21, 1988; revised September 18, 1989)

[^4]
REPRESENTATION OF COMPLEX NUMBERS IN NUMBER SYSTEMS

B. KOVÁCS (Debrecen) ${ }^{1}$

Introduction

Let \mathbf{R} be an integral domain (with unit element), $\alpha \in \mathbf{R}$ and $\mathcal{N}=$ $=\left\{k_{1}, \ldots, k_{n}\right\}$ a finite subset of the set of rational integers $\mathbf{Z} .\{\alpha, \mathcal{N}\}$ is called a number system in \mathbf{R} if every $\gamma \in \mathbf{R}$ can be uniquely written in the form

$$
\begin{equation*}
\gamma=a_{0}+a_{1} \alpha+\ldots+a_{k} \alpha^{k}, \quad a_{i} \in \mathcal{N} \quad(0 \leqq i \leqq k), \quad a_{k} \neq 0 \text { if } k \neq 0 . \tag{1.1}
\end{equation*}
$$

If $\mathcal{N}=\{0,1, \ldots, n\}$ then the number system $\{\alpha, \mathcal{N}\}$ is called a canonical number system.

This concept is a natural generalization of negative base number systems in \mathbf{Z} considered by several authors. The canonical number systems were completely described by Kátai and Szabó [1], Kátai and Kovács [2], [3], if \mathbf{R} is the ring of integers of a quadratic number field. Kovács [4] gave a necessary and sufficient condition for the existence of canonical number systems in \mathbf{R}. It is proved in Pethő and Kovács [5] that for any $q<-1, q \in \mathbf{Z},\{\alpha, \mathcal{N}\}$ is a number system in \mathbf{Z} with infinitely many $\mathcal{N} \subset \mathbf{Z}$. In [6] Pethő and Kovács characterized all those integral domains which have number systems and gave necessary and sufficient conditions for $\{\alpha, \mathcal{N}\}$ to be a number system in an order θ. Furthermore they characterized effectively the base of all canonical number systems of θ and computed the representatives of all classes of bases of canonical number systems in rings of integers of some totally real cubic fields.

In [1] Kátai and Szabó proved that if $\{\alpha, \mathcal{N}\}$ is a canonical number system in the ring of Gaussian integers, then any complex number γ can be written in the form
$\gamma=a_{k} \alpha^{k}+a_{k-1} \alpha^{k-1}+\ldots+a_{0}+a_{-1} \alpha^{-1}+\ldots, \quad a_{i} \in \mathcal{N} \quad(i=k, k-1, \ldots)$.
This result was extended for the ring of integers of imaginary quadratic fields in Kátai and Kovács [3]. In connection with this Daróczy and Kátai proved that for every complex number $\alpha,|\alpha|>1$, there exists a set $\{0,1, \ldots, n\}=\mathcal{N}$ such that any complex number γ is representable in the form (1.2) ([7]).

[^5]In this paper we first give a necessary and sufficient condition for a number system $\{\alpha, \mathcal{N}\}$ that any complex number γ can be written in the form (1.2). Using this theorem we describe a family of number systems with. the property above, further we prove that every number system in the ring of integers of any cubic imaginary field has this property.

Results

In the sequal \mathbf{R} will denote an integral domain of characteristic $0, \mathbf{Z}$ the ring of integers, \mathbf{Q} the field of rationals. If α is an algebraic integer over \mathbf{Q}, $\mathbf{Z}[\alpha]$ denotes the subring of $\mathbf{Q}(\alpha)$, generated by \mathbf{Z} and α.

If $\{\alpha, \mathcal{N}\}$ is a number system in $\mathbf{Z}[\beta]$ and

$$
\gamma=a_{0}+a_{1} \alpha+\ldots a_{k} \alpha^{k}, \quad a_{i} \in \mathcal{N} \quad(0 \leqq i \leqq k), \quad a_{k} \neq 0 \text { if } k \neq 0
$$

then the exponent k is denoted by $L(\gamma, \alpha)$. With this notation we have
Theorem 1. Let $\{\alpha, \mathcal{N}\}$ be a number system in $\mathbf{Z}[\beta]$, (β is an algebraic integer over \mathbf{Q}). A real or complex number γ can be written in the form (1.2) - according as α is real or non-real - if and only if there exist sequences $\gamma(k), \delta(k)$ with the following properties:

1. $\gamma \cdot \alpha^{k}=\gamma(k)+\delta(k)$ for every positive integer k,
2. $\gamma(k) \in \mathbf{Z}[\beta]$ and $L(\gamma(k), \alpha) \leqq k+c_{1}$ where c_{1} is an appropriate constant which does not depend on k,
3. $\delta(k) / \alpha^{k} \rightarrow 0$ if $k \rightarrow \infty$.

This theorem is rather general because if an integral domain \mathbf{R} of characteristic 0 has a number system then $\mathbf{R} \cong \mathbf{Z}[\alpha]$, where α is an algebraic element over \mathbf{Q} (see Theorem 1, [6]). Using Theorem 1 we prove

Theorem 2. Let $\{\alpha, \mathcal{N}\}$ be a number system in $\mathbf{Z}[\beta]$, where β is an algebraic integer of degree $n \geqq 1$ over \mathbf{Q} and let us suppose that $|\alpha| \leqq\left|\alpha^{(1)}\right|$ for every conjugate of α over \mathbf{Q}. Then every complex number z has a representation in the form (1.2) if α is not real and every real number r has a representation in the form (1.2) if α is a real.

From this result one can deduce the already mentioned results of Kátai and Szabó [1] and Kátai and Kovács [3], moreover in our case this theorem is stronger than the result of Daróczy and Kátai [7].

Finally, with the aid of Theorem 1 and Theorem 2 we get
Theorem 3. Let α be a non-real algebraic integer of degree 3 (over \mathbf{Q}). If $\{\alpha, \mathcal{N}\}$ is a canonical number system in a $\mathbf{Z}[\beta]$ then every complex number γ has a representation in the form (1.2).

Proofs

In order to prove our theorems we need three lemmas.
Lemma 1. If $\{\alpha, \mathcal{N}\}$ is a number system in $\mathbf{Z}[\beta]$, where β is an algebraic integer over \mathbf{Q}, then $\left|\alpha^{(i)}\right|>1$ holds for every conjugate of α.

Proof. This is one of the statements of Theorem 3 in [6].
Lemma 2. Let β be an algebraic integer over \mathbf{Q} of degree $n \geqq 1$ and let $\{\alpha, \mathcal{N}\}$ be a number system in $\mathrm{Z}[\beta]$. Then there exist effectively computable constants $c_{1}(\alpha, \mathcal{N}), c_{2}(\alpha, \mathcal{N})$ depending only on α and \mathcal{N} such that

$$
\max _{1 \leqq i \leqq n} \frac{\log \left|\gamma^{(i)}\right|}{\log \left|\alpha^{(i)}\right|}+c_{1}(\alpha, \mathcal{N}) \leqq L(\gamma, \alpha) \leqq \max _{1 \leqq i \leqq n} \frac{\log \left|\gamma^{(i)}\right|}{\log \left|\alpha^{(i)}\right|}+c_{2}(\alpha, \mathcal{N})
$$

where $\gamma^{(i)}$ and $\alpha^{(i)}$ are the i-th conjugates of γ and α, respectively.
Proof. See [8].
Lemma 3. Let α be an algebraic integer over \mathbf{Q}. If $\alpha^{(i)} \geqq-1$ holds for some real conjugate of α then $\{\alpha, \mathcal{N}\}$ is not a canonical number system in $\mathbf{Z}[\alpha]$.

Proof. See Lemma 6 in [6].
Proof of Theorem 1. First let us assume that γ can be written as
$\gamma=a_{N} \alpha^{N}+\ldots+a_{1} \alpha+a_{0}+a_{-1} \alpha^{-1}+\ldots, \quad a_{i} \in \mathcal{N} \quad(i=N, N-1, \ldots)$.
For every positive integer k let
$\gamma(k)=a_{N} \alpha^{N+k}+a_{N-1} \alpha^{N+k-1}+\ldots+a_{-k+1} \alpha+a_{-k}$ and $\delta(k)=\alpha^{k} \cdot \sum_{i=-k-1}^{-\infty} a_{i} \alpha^{i}$.
It is easy to verify that these sequences $\gamma(k), \delta(k)$ satisfy the conditions of our theorem because $|\alpha|>1$ by Lemma 1 .

Of course, we may assume that $\gamma \neq 0$.
Let us now suppose that for a $\gamma \neq 0$ there exist sequences $\gamma(k), \delta(k)$ with properties $1,2,3$. Let $N(k)=L(\gamma(k), \alpha)-k$ and

$$
\gamma(k)=b_{L(\gamma(k), \alpha)} \alpha^{L(\gamma(k), \alpha)}+\ldots+b_{1} \alpha+b_{0}, \quad b_{i} \in \mathcal{N} \text { and } b_{L(\gamma(k), \alpha)} \neq 0
$$

We write
$z(k)=\gamma(k) / \alpha^{k}=b_{L(\gamma(k), \alpha)} \alpha^{N(k)}+\ldots+b_{k+1} \alpha+b_{k}+b_{k-1} \alpha^{-1}+\ldots+b_{0} \alpha^{-k}$.
Since, by assumption, $L(\gamma(k), \alpha)-k$ is bounded above and $N(k)$ is bounded from below because of $\gamma(k) / \alpha^{k} \rightarrow \gamma \neq 0(|\alpha|>1)$, hence there exists
an infinite set $S_{N(k)}$ of those indices k for which $k_{1}, k_{2} \in S_{N(k)}$ implies $N\left(k_{1}\right)=N\left(k_{2}\right)$.

Let $C_{N(k)}$ be such a value (in \mathcal{N}) for which $C_{N(k)}=b_{L(\gamma(k), \alpha)}$ where $k \in S_{N(k)}$.

Consider now the set of those k 's in $S_{N(k)}$ for which $b_{N(k)-1}=C_{N(k)-1}$ holds infinitely many times.

Let this index set be denoted by $S_{N(k)-1}$. Repeating this argument we get a monotone index set, all of which have infinitely many elements, and a chain $C_{N(k)}, C_{N(k)-1}, \ldots\left(C_{j} \in \mathcal{N}\right)$.

Let $W=C_{N(k)} \alpha^{N(k)}+\ldots+C_{1} \alpha+C_{0}+C_{-1} \alpha^{-1}+\ldots$.
Let furthermore $k(r) \in S_{N(k)-r+1}, k(1)<k(2)<\ldots$ Then $\lim z(k(r))=$ $=W$, but $\lim z(k)=\gamma$ because of $\lim \delta(k) / \alpha^{k}=0$ and $\gamma=\left(\gamma \cdot \alpha^{k}\right) / \alpha^{k}=$ $=(\gamma(k)+\delta(k)) / \alpha^{k}$, and so

$$
\gamma=C_{N(k)} \alpha^{N(k)}+\ldots+C_{1} \alpha+C_{0}+C_{-1} \alpha^{-1}+\ldots, \quad C_{j} \in \mathcal{N} .
$$

This completes the proof of our theorem.
Proof of Theorem 2. Let γ be a real number if α is real and a complex number otherwise. Of course we can suppose that $\gamma \neq 0$.

Let $\mathcal{L}=\{A+\beta \alpha \mid A, B \in \mathbf{Z}\}$.
i) If α is a non-real complex number, then \mathcal{L} is a lattice in the complex plane. For every positive integer k, let $\gamma_{k}=A_{k}+B_{k} \alpha$ be one of the lattice points of that fundamental parallelogram of \mathcal{L} which contains the number $\gamma \cdot \alpha^{k}$. One can readily verify that for every k

$$
\begin{equation*}
\left|\gamma \cdot \alpha^{k}-\gamma_{k}\right|<c_{1}, \quad\left|A_{k}\right|<c_{2} \cdot\left|\alpha^{k}\right| \text { and }\left|B_{k}\right|<c_{3} \cdot\left|\alpha^{k}\right| \tag{3.1}
\end{equation*}
$$

hold with suitable constants c_{1}, c_{2}, c_{3} not depending on k.
ii) If α is a real algebraic integer with degree $\geqq 2$, then \mathcal{L} is a dense set and so it is easy to see that for every positive integer k we can choose a $\gamma_{k}=A_{k}+B_{k} \alpha$ such that γ_{k} satisfies (3.1).
iii) If α is a rational number then the existence of a sequence γ_{k} with the property (3.1) is also evident.

In the sequel let γ_{k} be as above.
From (3.1) we can simply deduce that

$$
\begin{equation*}
\left|\gamma_{k}^{(i)}\right|<c_{4}|\alpha|^{k} \tag{3.2}
\end{equation*}
$$

holds for every positive integer k and for every conjugate $\gamma_{k}^{(i)}$ of γ_{k} with an appropriate constant c_{4} which does not depend on k.

From (3.2) we get

$$
\begin{equation*}
\log \left|\gamma_{k}^{(i)}\right|<\log c_{4}+k \cdot \log |\alpha| \tag{3.3}
\end{equation*}
$$

and so

$$
\begin{equation*}
\max _{1 \leqq i \leqq n} \frac{\log \left|\gamma_{k}^{(i)}\right|}{\log \left|\alpha^{(i)}\right|} \leqq \frac{\log c_{4}+k \cdot \log |\alpha|}{\log |\alpha|} \leqq k+c_{5} \tag{3.4}
\end{equation*}
$$

where the constant c_{5} does not depend on k.
Further because of Lemma $1|\alpha|>1$ holds, consequently

$$
\begin{equation*}
\delta_{k} / \alpha^{k} \rightarrow 0 \text { if } k \rightarrow \infty \tag{3.5}
\end{equation*}
$$

where $\delta_{k}=\gamma \cdot \alpha^{k}-\gamma_{k}$.
(3.1), (3.4) and (3.5) show that the sequences γ_{k}, δ_{k} defined above satisfy the conditions of Theorem 1. This proves the theorem.

Proof of Theorem 3. The case of $\gamma=0$ is trivial, so we assume that $\gamma \neq 0$.

Let $\alpha^{(1)}$ be the real conjugate of $\alpha, \alpha^{(2)}=\alpha$ and $\alpha^{(3)}=\bar{\alpha}$.
a) We begin our proof with the case $\arg \left(\alpha^{(2)}\right) \neq(2 m \pi) / n(m, n \in \mathbf{Z}$, $n \neq 0$). For every positive integer k let

$$
\begin{equation*}
B_{k}=\left[\frac{\left|\gamma\left(\alpha^{(2)}\right)^{k}\right|}{\left|\left|\alpha^{(1)}\right|+\alpha^{(2)}\right|}\right] \tag{4.1}
\end{equation*}
$$

where [] and | | denote the integer part and the absolute value, respectively.

By Lemma $1,\left|\alpha^{(i)}\right|>1(i=1,2,3)$. Further $\gamma \neq 0$, and so if k is large enough then

$$
\begin{equation*}
\left(1 / B_{k}\right)\left|\gamma \cdot\left(\alpha^{(2)}\right)^{k}\right|=\left|\left|\alpha^{(1)}\right|+\alpha^{(2)}\right|+c(k) / B_{k} \tag{4.2}
\end{equation*}
$$

where $c(k) \geqq 0$ and bounded from above.
Since $\arg \left(\alpha^{(2)}\right) \neq(2 m \pi) / n(m, n \in \mathbf{Z}, n \neq 0)$, the set $\left\{\arg \left(\alpha^{(2)}\right)^{k} \mid 0<\right.$ $<k \in \mathbf{Z}\} \bmod 2 \pi$ is dense. Consequently, we can choose an infinite sequence $k(1)<k(2)<\ldots$ of positive integers such that

$$
\begin{equation*}
\arg \left(\gamma \cdot\left(\alpha^{(2)}\right)^{k(i)}\right) \rightarrow \arg \left(\left|\alpha^{(1)}\right|+\alpha^{(2)}\right) \quad \text { if } \quad k(i) \rightarrow \infty . \tag{4.3}
\end{equation*}
$$

From (4.2) and (4.3), it follows that

$$
\begin{equation*}
\left(1 / B_{k(i)}\right) \cdot \gamma \cdot\left(\alpha^{(2)}\right)^{k(i)}=\left|\alpha^{(1)}\right|+\alpha^{(2)}+\delta_{k(i)} \tag{4.4}
\end{equation*}
$$

such that $\delta_{k(i)} \rightarrow 0$ if $i \rightarrow \infty$. And so

$$
\begin{align*}
& \gamma \cdot\left(\alpha^{(2)}\right)^{k(i)}=B_{k(i)}\left|\alpha^{(1)}\right|+B_{k(i)} \alpha^{(2)}+B_{k(i)} \delta_{k(i)}= \tag{4.5}\\
& \quad=\left[B_{k(i)}\left|\alpha^{(1)}\right|\right]+B_{k(i)} \alpha^{(2)}+B_{k(i)} \delta_{k(i)}+r_{k(i)}
\end{align*}
$$

where $0 \leqq r_{k(i)}<1$.
Let $A_{k(i)}=\left[B_{k(i)}\left|\alpha^{(1)}\right|\right]$ and $\partial_{k(i)}=B_{k(i)} \delta_{k(i)}+r_{k(i)}$.
By (4.4) and (4.5) we can deduce that

$$
\begin{equation*}
\partial_{k(i)} / B_{k(i)}=\delta_{k(i)}+r_{k(i)} / B_{k(i)} \rightarrow 0 \quad \text { if } \quad i \rightarrow \infty \tag{4.6}
\end{equation*}
$$

Because of (4.1) $B_{k(i)}=c_{1}\left|\left(\alpha^{(2)}\right)^{k(i)}\right|$, where c_{1} is bounded and so by (4.6) we get

$$
\begin{equation*}
\partial_{k(i)} /\left(\alpha^{(2)}\right)^{k(i)} \rightarrow 0 \quad \text { if } \quad i \rightarrow \infty \tag{4.7}
\end{equation*}
$$

Now we shall prove that

$$
\begin{equation*}
L\left(A_{k(i)}+B_{k(i)} \alpha^{(2)}, \alpha^{(2)}\right) \leqq k(i)+c_{2} \tag{4.8}
\end{equation*}
$$

where c_{2} is a constant not depending on $k(i)$.
It is evident that for every $k(i)$

$$
\begin{equation*}
\frac{\log \left|A_{k(i)}+B_{k(i)} \alpha^{(2)}\right|}{\log \left|\alpha^{(2)}\right|}=\frac{\log \left|A_{k(i)}+B_{k(i)} \alpha^{(3)}\right|}{\log \left|\alpha^{(3)}\right|} \tag{4.9}
\end{equation*}
$$

We shall prove that the following inequality holds for every $k(i)$

$$
\begin{equation*}
\frac{\log \left|A_{k(i)}+B_{k(i)} \alpha^{(1)}\right|}{\log \left|\alpha^{(1)}\right|} \leqq \frac{\log \left|A_{k(i)}+B_{k(i)} \alpha^{(2)}\right|}{\log \left|\alpha^{(2)}\right|}+\omega \tag{4.10}
\end{equation*}
$$

where w is a constant not depending on $k(i)$.
(4.10) holds if and only if

$$
\begin{equation*}
\left|A_{k(i)}+B_{k(i)} \alpha^{(1)}\right| \leqq\left|A_{k(i)}+B_{k(i)} \alpha^{(2)}\right|^{u} \cdot v \tag{4.11}
\end{equation*}
$$

where $u=\left(\log \left|\alpha^{(1)}\right|\right) /\left(\log \left|\alpha^{(2)}\right|\right)$ and $v=\|\left.\alpha^{(1)}\right|^{\omega}$. Since $\left|\alpha^{(1)}\right|=-\alpha^{(1)}$ by Lemma 3 and

$$
A_{k(i)}+B_{k(i)} \alpha^{(1)}=\left[\beta_{k(i)}\left|\alpha^{(1)}\right|\right]+\beta_{k(i)} \alpha^{(1)}
$$

hence the left hand side of (4.11) is bounded from above.
But $\left|\alpha^{(1)}\right|>1(i=1,2,3)$, and so $u>0$. From this it follows immediately

$$
\begin{equation*}
\left(1 / B_{k(i)}\right)^{u}\left|A_{k(i)} \rightarrow B_{k(i)} \alpha^{(1)}\right| \rightarrow 0, \quad \text { if } \quad i \rightarrow \infty \tag{4.12}
\end{equation*}
$$

But $A_{k(i)} / B_{k(i)} \rightarrow\left|\alpha^{(1)}\right|$ if $i \rightarrow \infty$ and $\alpha^{(2)} \neq \alpha^{(1)}$, consequently

$$
\begin{equation*}
\mid\left(A_{k(i)} / B_{k(i)}+\left.\alpha^{(2)}\right|^{u} \neq 0\right. \tag{4.13}
\end{equation*}
$$

and it is bounded.
From (4.12) and (4.13) we get that if v is large enough, then

$$
\begin{equation*}
\left(1 / B_{k(i)}\right)^{u}\left|A_{k(i)}+B_{k(i)} \alpha^{(1)}\right| \leqq\left|\left(A_{k(i)} / B_{k(i)}\right)+\alpha^{(2)}\right|^{u} \cdot v \tag{4.14}
\end{equation*}
$$

holds for every $k(i)$.
Because of $\left|\alpha^{(1)}\right|>1$ and by definition we can choose v such that (4.14) holds. Since (4.14) holds if and only if (4.11) holds, consequently (4.10) also holds.

By $A_{k(i)}=\left[B_{k(i)}\left|\alpha^{(1)}\right|\right]$ and $B_{k(i)}=c_{1}\left|\alpha^{(2)}\right|^{k(i)}$ we have

$$
\begin{equation*}
\left|A_{k(i)}+B_{k(i)} \alpha^{(2)}\right| \leqq c_{6}\left|\alpha^{(2)}\right|^{k(i)}, \tag{4.15}
\end{equation*}
$$

where the constant c_{6} does not depend on $k(i)$, and this means that

$$
\begin{equation*}
\frac{\log \left|A_{k(i)}+B_{k(i)} \alpha^{(2)}\right|}{\log \left|\alpha^{(2)}\right|} \leqq \frac{\log c_{6}+k(i) \log \left|\alpha^{(2)}\right|}{\log \left|\alpha^{(2)}\right|} \leqq c_{7}+k(i) \tag{4.16}
\end{equation*}
$$

where c_{7} is a constant which does not depend on $k(i)$.
(4.8) follows immediately from (4.9), (4.10) and (4.16). By (4.7) and (4.8) the sequences $\gamma_{k(i)}=A_{k(i)}+B_{k(i)} \alpha^{(2)}$ and $\partial_{k(i)}$ satisfy the conditions of Theorem 1. Consequently, in the case under consideration the proof of our theorem is complete.
b) Let now $\arg \left(\alpha^{(2)}\right)=(2 m \pi) / n(m, n \in \mathbf{Z}, n \geqq 3)$. It is easy to see that $\alpha^{(2)} / \alpha^{(3)}$ is a root of unity of degree 3 or 6 because $\alpha^{(2)}$ and $\alpha^{(3)}$ are conjugate elements of degree 3 . We can readily verify by this statement that $\left(\alpha^{(1)}\right)^{3}=r_{1}$ and $\left(\alpha^{(2)}\right)^{3}=r_{2}=\left(\alpha^{(3)}\right)^{3}=r_{3}$, where r_{1} and $r_{2}=r_{3}$ are real algebraic numbers of degree 1 or 3 . But the latest case is impossible because r_{1}, r_{2} and r_{3} are conjugate elements and $r_{2}=r_{3}$. Consequently, r_{1} is a rational number. Since α is an algebraic integer, hence $\alpha^{3}=n$ where $n \in \mathbf{Z}$.

But if α is a root of the polynomial $x^{3}+n$ where $n<0$, then α has a positive conjugate, and so $\{\alpha, \mathcal{N}\}$ can not be a number system in $\mathbf{Z}[\beta]$ by Lemma 3.

If $n=1$, then $|\alpha|=1$ and so $\{\alpha, \mathcal{N}\}$ also does not form a number system in $\mathbf{Z}[\beta]$ (see Lemma 1).

If $n>1$, then all the conjugates of α have the same absolute value, consequently we can apply Theorem 2 to complete the proof of the theorem in Case b). Thus the theorem is proved.

References

[1] I. Kátai and J. Szabó, Canonical number systems for complex integers, Acta Sci. Math. (Szeged), 37 (1975), 255-260.
[2] I. Kátai and B. Kovács, Kanonische Zahlensysteme in der Theorie der quadratischen Zahlen, Acta Sci. Math. (Szeged), 42 (1980), 99-107.
[3] I. Kátai and B. Kovács, Canonical number systems in imaginary quadratic fields, Acta Math. Acad. Sci. Hung., 37 (1981), 159-164.
[4] B. Kovács, Integral domains with canonical number systems, to appear in Publ. Math. Debrecen.
[5] B. Kovács and A. Pethő, Canonical systems in the ring of integers, Publ. Math. Debrecen, 30 (1983), 39-45.
[6] B. Kovács and A. Pethő, Number systems in integral domains, especially in orders of algebraic number fields, to appear in Acta Sci. Math. (Szeged).
[7] Z. Daróczy and I. Kátai, Generalized number systems in the complex plane, Acta Math. Hung., 51 (1988), 409-416.
[8] B. Kovács and A. Pethő, On a representation of algebraic integers, to appear in Studia Sci. Math. Hungar.
(Received January 16, 1989; revised May 9, 1989)

INSTITUTE OF MATHEMATICS
L. KOSSUTH UNIVERSITY
H-4010 DEBRECEN, PF. 12
HUNGARY

MULTIPLICATIVE FUNCTIONS WITH SMALL INCREMENTS. III

K.-H. INDLEKOFER (Paderborn)
and
I. KÁTAI ${ }^{1}$ (Budapest), member of the Academy

1. Let Ω be the set of all arithmetical functions having complex values. Sometimes a function $f \in \Omega$ is considered as an infinite-dimensional vector, the nth coordinate of which is $f(n)$. We write $\mathbf{f}=(f(1), f(2), \ldots)$. Let $\mathbf{x}=$ $=\left(x_{1}, x_{2}, \ldots\right)$ be a general element of Ω. The operators $I, E, \Delta, \Delta_{B}(\Omega \rightarrow \Omega)$ are defined according to the following rules: the nth coordinate of $I \mathbf{x}, E \mathbf{x}$, $\Delta \mathbf{X}, \Delta_{B} \mathbf{X}$ are $x_{n}, x_{n+1}, x_{n+1}-x_{n}, x_{n+B}-x_{n}$, respectively. Let $\Delta^{k}=(E-I)^{k}$, $\Delta_{B}^{k}=\left(E^{B}-I\right)^{k}$. If $P \in \mathbf{C}[z]$ is a polynomial, $P(z)=a_{0}+a_{1} z+\ldots+a_{k} z^{k}$, then the nth coordinate of $P(E) \mathbf{x}$ equals

$$
a_{0} x_{n}+a_{1} x_{n+1}+\ldots+a_{k} x_{n+k}
$$

Let $\alpha \geqq 1$ be a constant, $\varrho:[1, \infty) \rightarrow[1, \infty)$ a slowly varying function, i.e. such that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \max _{\frac{x}{2} \leqq y \leqq x}\left|\frac{\varrho(y)}{\varrho(x)}-1\right|=0 \tag{1.1}
\end{equation*}
$$

Let $\Omega_{\alpha, \varrho}(\cong \Omega)$ denote the set of those $\mathbf{x} \in \Omega$ for which

$$
\begin{equation*}
\sup _{x \geqq 1} \frac{1}{x \varrho(x)^{\alpha}} \sum_{n \leqq x}\left|x_{n}\right|^{\alpha} \tag{1.2}
\end{equation*}
$$

is finite.
It is clear that Ω_{α}, ϱ is a linear space, i.e. for $\mathrm{f}, \mathrm{g} \in \Omega_{\alpha, \varrho}, c_{1}, c_{2} \in \mathbf{C}$ we have $c_{1} \mathbf{f}+c_{2} \mathrm{~g} \in \Omega_{\alpha, \boldsymbol{e}}$.

Let \mathcal{M} (resp. \mathcal{M}^{*}) denote the set of complex-valued multiplicative (completely multiplicative) functions. Let $\mathcal{L}_{\alpha, \varrho}=\mathcal{M} \cap \Omega_{\alpha, \varrho}, \mathcal{L}_{\alpha, \varrho}^{*}=\mathcal{M}^{*} \cap \Omega_{\alpha, \varrho}$.

In our preceding paper [1] we proved that if $f \in \mathcal{M}$ and $\Delta_{K} \mathbf{f} \in \Omega_{\alpha, \varrho}$ holds for some $K \in \mathbf{N}$, then either $f \in \mathcal{L}_{\alpha, \varrho}$ or $f(n)=n^{s} u(n)$, where $0 \leqq \operatorname{Re} s \leqq 1$ and $u(n+K)=u(n)$ for every $n \in \mathbf{N}$.

Our purpose is to prove the following

[^6]Theorem. If $f \in \mathcal{M}, P \in \mathbf{C}[z], P \neq 0, k=\operatorname{deg} P$, and

$$
\begin{equation*}
P(E) \mathbf{f} \in \Omega_{\alpha, \varrho} \tag{1.3}
\end{equation*}
$$

then either $\mathbf{f} \in \mathcal{L}_{\alpha, \varrho}$ or $f(n)=n^{s} u(n)$, where $0 \leqq \operatorname{Re} s \leqq k$ and

$$
\begin{equation*}
P(E) \mathbf{u}=0 \tag{1.4}
\end{equation*}
$$

Remark. We shall not determine the solutions of (1.4). From the proof of the theorem it will follow that there exists an integer B such that $u(n)=$ $=\chi_{B}(n)$ whenever $(B, n)=1$, and χ_{B} is a suitable character $\bmod B$.
2. Notations. For an $n \in \mathbf{N}$ let $p(n)$ be the smallest prime factor of n. For a prime p and an integer n let $\ell_{p}(n)$ be the exponent of p in n, i.e. $p^{\ell_{p}(n)} \| n$. For an arbitrary sequence $\mathbf{x}, L\left(x_{n}, \ldots, x_{n+k}\right)$ or $L_{j}\left(x_{n}, \ldots, x_{n+k}\right)$ denote fixed linear combinations of the variables x_{n}, \ldots, x_{n+k}. For a $k \in \mathbf{N}$ let $\chi_{0, k}(n)$ be the principal character $\bmod k$.
3. Let $f \in \mathcal{M}$ and $\mathcal{A}_{f}=\mathcal{A}$ be the set of those polynomials $P \in \mathbf{C}[z]$ for which $P(E) \mathbf{f} \in \Omega_{\alpha, \varrho}$. Assume that \mathcal{A} contains a nonzero element. Then $P_{1}, P_{2} \in \mathcal{A}$ imply that $c_{1} P_{1}+c_{2} P_{2} \in \mathcal{A}$, furthermore, if $P(z) \in \mathcal{A}$ then $z P(z) \in \mathcal{A}$. Thus, if $P \in \mathcal{A}$ and $Q \in \mathbf{C}[z]$, then $Q P \in \mathcal{A}$. Hence we get that \mathcal{A} is an ideal.

Observe furthermore that if $z Q(z) \in \mathcal{A}$, then $Q(z) \in \mathcal{A}$ as well.
The ideal \mathcal{A} is generated by its least degree monic element P_{1}. All the other elements $P \in \mathcal{A}$ can be written as $P=Q \cdot P_{1}, Q \in \mathbf{C}[z]$.

It is enough to prove the Theorem in the case when P is the generator element of \mathcal{A}.

Let P be the generating element of $\mathcal{A}, k=\operatorname{deg} P$. If $k=0$, then $f \in \mathcal{L}_{\alpha, e}$. We may assume from now on that $k \geqq 1$. If $P(0)=0$, then $P(z)=z Q(z) \in \mathcal{A}$, and $Q \in \mathcal{A}$. This cannot occur, since P was assumed to be the generator element.

Let $\Theta_{1}, \ldots, \Theta_{k}$ be the roots of $P, P(z)=\prod_{j=1}^{k}\left(z-\Theta_{j}\right)$. Let $m \geqq 1$ be an integer,

$$
Q_{m}(z):=\prod_{j=1}^{k}\left(z-\Theta_{i}^{m}\right)=b_{0}+b_{1} z+\ldots+b_{k} z^{k}, \quad b_{k}=1
$$

$P(z)$ is a divisor of $Q_{m}\left(z^{m}\right)$, so $Q_{m}\left(E^{m}\right) \mathbf{f} \in \Omega_{\alpha, \varrho}$. Then

$$
\begin{equation*}
\sum_{n \leqq x}\left|Q_{m}\left(E^{m}\right) f(m n)\right|^{\alpha} \ll x \varrho(x)^{\alpha} \tag{3.1}
\end{equation*}
$$

Let

$$
Y_{n}=Q_{m}\left(E^{m}\right) f(m n), \quad Z_{n}=f(m) Q_{m}(E) f(n)
$$

$$
\begin{equation*}
\Delta(n)=Y_{n}-Z_{n}=\sum_{j=0}^{k} b_{j}\{f(m(n+j))-f(m) f(n+j)\} . \tag{3.2}
\end{equation*}
$$

Since $\mathbf{Y}=\left(Y_{1}, Y_{2}, \ldots\right) \in \Omega_{\alpha, \varrho}$, therefore $P(E) \mathbf{Y} \in \Omega_{\alpha, \varrho}$. Since $P(E) \mathbf{f} \in \Omega_{\alpha, \varrho}$, therefore

$$
P(E) \mathbf{Z}=f(m) Q_{m}(E) P(E) \mathbf{f} \in \Omega_{\alpha, e},
$$

consequently

$$
\begin{equation*}
P(E) \Delta \in \Omega_{\alpha, \varrho}, \quad \Delta=(\Delta(1), \Delta(2), \ldots) . \tag{3.3}
\end{equation*}
$$

Let $m=p^{a}$, where p is a prime larger than $2 k+2$. Observe that

$$
\begin{equation*}
P(E) \Delta(n)=b_{0}(f(m n)-f(m) f(n)) P(0) \quad \text { if } \quad p \mid n . \tag{3.4}
\end{equation*}
$$

Let n be running over the integers $n=p^{b} \nu$, where $b \geqq 1, p^{b}$ is fixed and ν is coprime to p.

Then, from (3.3), (3.4) we infer that

$$
\begin{equation*}
\left|f\left(p^{a+b}\right)-f\left(p^{a}\right) f\left(p^{b}\right)\right|^{\alpha} \sum_{\substack{\nu \leq x \\(\nu, p)=1}}|f(\nu)|^{\alpha} \ll x \varrho^{\alpha}(x) . \tag{3.5}
\end{equation*}
$$

Let

$$
\begin{equation*}
S_{p}(x)=\sum_{\substack{\nu \leq x \\ \nu, \overrightarrow{\underline{p}}=1}}|f(\nu)|^{\alpha} . \tag{3.6}
\end{equation*}
$$

Now we prove that

$$
\begin{equation*}
\varlimsup \frac{S_{p}(x)}{x \varrho^{\alpha}(x)}=\infty \quad(x \rightarrow \infty) \tag{3.7}
\end{equation*}
$$

which will imply that

$$
\begin{equation*}
f\left(p^{a+b}\right)=f\left(p^{a}\right) f\left(p^{b}\right) \tag{3.8}
\end{equation*}
$$

for every $a, b \in \mathbf{N}$.
Assume that (3.7) is not true, i.e.

$$
\begin{equation*}
S_{p}(x) \ll x \varrho(x)^{\alpha} \tag{3.9}
\end{equation*}
$$

Let us choose a large constant c. Then

$$
\begin{equation*}
\sum_{\substack{n \leqq x \\ \ell_{p}(n) \leqq c}}|f(n)|^{\alpha} \ll x \varrho(x)^{\alpha} \tag{3.10}
\end{equation*}
$$

holds as well.
For an n satisfying $\ell_{p}(n)>c$ we consider

$$
t_{n}:=f(n)-\frac{1}{P(0)} P(E) f(n) .
$$

It is clear that t_{n} is a linear combination of $f(n+1), \ldots, f(n+k), t_{n}=$ $=c_{1} f(n+1)+\ldots+c_{k} f(n+k)$ with suitable constants c_{1}, \ldots, c_{k}, furthermore $\ell_{p}(n+j) \leqq c$ for every $j=1, \ldots, k$. Thus $\sum_{\substack{n \leq x \\ \ell_{p}(n)>c}}\left|t_{n}\right|^{\alpha} \ll x \varrho^{\alpha}(x)$, which by our assumption $P(E) \mathbf{f} \in \Omega_{\alpha, \varrho}$ gives that

$$
\sum_{\substack{\ell_{p}(n)>c \\ n \leqq x}}|f(n)|^{\alpha} \ll x \varrho(x)^{\alpha}
$$

and so by (3.10) we get $\mathbf{f} \in \mathcal{L}_{\alpha, \varrho}$. This contradicts the minimality of P in \mathcal{A}.
We proved the following
Lemma 1. Let $P(E) \mathbf{f} \in \Omega_{\alpha, e}$ with some polynomial $P(z)$ of degree k. Let P be the smallest degree polynomial with this property. Assume that $f \in \mathcal{M}$ and $k \geqq 1$. Then $f(m n)=f(m) f(n)$ whenever $p(m)>2 k+2$ or $p(n)>2 k+2$.

Assume now that m is such an integer for which $p(m)>2 k+2$. Then $\Delta(n)=0$ identically. Consequently $Y_{n}=Z_{n}$, and from (3.1) we obtain

$$
\begin{equation*}
\left.|f(m)|^{\alpha} \sum_{n \leqq x}\left|Q_{m}(E)\right| f(n)\right|^{\alpha} \ll x \varrho(x)^{\alpha} . \tag{3.11}
\end{equation*}
$$

(3.11) implies that either $f(m)=0$ or $Q_{m}(z) \in \mathcal{A}$. Assume that $f(m) \neq$ $\neq 0$. Since $Q_{m}(z) \in \mathcal{A}, \operatorname{deg} Q_{m}(z)=k$, therefore it is a minimal degree monic element of \mathcal{A}, so $P(z)=Q_{m}(z)$, consequently

$$
\begin{equation*}
\left\{\Theta_{1}, \ldots, \Theta_{k}\right\}=\left\{\Theta_{1}^{m}, \ldots, \Theta_{k}^{m}\right\} . \tag{3.12}
\end{equation*}
$$

From (3.12) we infer that $\left\{\Theta_{1}, \ldots, \Theta_{k}\right\}=\left\{\Theta_{1}^{m^{r}}, \ldots, \Theta_{k}^{m^{r}}\right\}$ holds for every $r=1,2, \ldots$. Since $\Theta_{j} \neq 0$, therefore $\left|\Theta_{j}\right|=1$ for every root Θ_{j}. Let $\varphi_{j}=\frac{\arg \Theta_{j}}{2 \pi}$. If φ_{j} were an irrational number for some j, then all the numbers $\Theta_{j}^{m^{r}}$ would be pairwise distinct, which cannot occur. Consequently $\varphi_{j}(j=1$, $\ldots, k)$ are rational numbers. Let $\varphi_{j}=\frac{a_{j}}{B}$ with $\left(a_{1}, \ldots, a_{k}, B\right)=1, B>0$. Then $\Theta_{j}^{B}=1$ for every j, i.e. Θ_{j} are B th roots of unity. Since the multiplicity of the occurrence of some root of unity in the system $\left\{\Theta_{1}, \ldots, \Theta_{k}\right\}$ is at most k, therefore $P(z)$ is a divisor of $\left(z^{B}-1\right)^{k}$ and so

$$
\begin{equation*}
\left(E^{B}-I\right)^{k} \mathbf{f} \in \Omega_{\alpha, \varrho} . \tag{3.13}
\end{equation*}
$$

We deduced the relation (3.13) under the assumption that there exists $m \in \mathbf{N}$ with $p(m)>2 k+2, f(m) \neq 0$. We shall prove now that this is true, whenever $P(E) \mathbf{f} \in \Omega_{\alpha, \varrho}, \mathbf{f} \notin \mathcal{L}_{\alpha, \varrho}$. Indeed, if $f(m)=0$ were satisfied for every such m, then $f(n) \leqq 0$ could occur at most in the case when n is composed of primes less than $2 k+2+1$. Let $a_{1}<a_{2}<\ldots$ be the whole sequence of such integers. It was proved by G. Pólya that $a_{\nu+1}-a_{\nu} \rightarrow \infty$ as $\nu \rightarrow \infty$. By this we get

$$
f\left(a_{\nu}\right)=\frac{1}{P(0)} P(E) f\left(a_{\nu}\right)
$$

if a_{ν} is a large element. Hence we get

$$
\sum_{n \leqq x}|f(n)|^{\alpha}=\sum_{a_{\nu} \leqq x}\left|f\left(a_{\nu}\right)\right|^{\alpha} \ll 1+\frac{1}{|P(0)|^{\alpha}} \sum_{a_{\nu} \leqq x}\left|P(E) f\left(a_{\nu}\right)\right|^{\alpha} \ll x \varrho^{\alpha}(x)
$$

i.e. $f \in \mathcal{L}_{\alpha, \varrho}$. This is a contradiction.

So we proved
Lemma 2. Assume that $f \in \mathcal{M}, f \notin \mathcal{L}_{\alpha, \varrho}$ and there exists a polynomial P of degree k such that $P(E) \mathrm{f} \in \Omega_{\alpha, \varrho}$. Assume that P is a minimal degree polynomial with this property. Then there exists a suitable integer B such that $P(z) \mid\left(z^{B}-1\right)^{k}$, and so $\left(E^{B}-I\right)^{k} \mathbf{f} \in \Omega_{\alpha, \varrho}$.
4. Assume that the conditions of our theorem hold; furthermore let k be minimal, $k \geqq 1$. This implies that $\mathbf{f} \notin \mathcal{L}_{\alpha, \varrho}$. If the assertion of Lemma 2 is true with B, then it is true with $\operatorname{Br}(r=1,2, \ldots)$ as well. Therefore we may assume that all the primes up to $2 k+2$ divide B. Let us assume this. Let

$$
\begin{equation*}
f^{*}(n)=\chi_{0, B}(n) f(n) \tag{4.1}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
\left(E^{B}-I\right)^{k} \mathbf{f}^{*} \in \Omega_{\alpha, \varrho} \tag{4.2}
\end{equation*}
$$

furthermore $f^{*} \in \mathcal{M}^{*}$.
Since $\chi_{0, B}(n)=1$ for $(n, B)=1$, therefore $f(n)=f^{*}(n)$ whenever $(n, B)=1$. We want to prove that $f^{*} \notin \mathcal{L}_{\alpha, \varrho}$. This will follow from

Lemma 3. If there exists an integer D such that

$$
\begin{equation*}
\sum_{\substack{n \leqq x \\(n, \bar{D})=1}}|f(n)|^{\alpha} \ll x \varrho^{\alpha}(x) \tag{4.3}
\end{equation*}
$$

then $f \in \mathcal{L}_{\alpha, \varrho}$.
Proof. For an arbitrary n let $a(n)$ be the product of the prime factors of n composed from the prime divisors of $[D, B]$, and let $b(n)$ be defined by $n=a(n) b(n)$. Let H be an arbitrary large but fixed integer.

From (4.3) we get

$$
\begin{equation*}
\sum_{\substack{n \leqq x \\ a(n) \leqq H}}|f(n)|^{\alpha} \ll x \varrho^{\alpha}(x) \quad(x \rightarrow \infty) \tag{4.4}
\end{equation*}
$$

Let p_{1}, \ldots, p_{r} be the set of the prime divisors of $[D, B]$. Let $B=$ $=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}, \alpha_{j} \geqq 0$. Let $\beta_{1}, \ldots, \beta_{r}$ and S be large positive integers. For an arbitrary $n \in \mathbf{N}$ let $d_{\ell}:=n+\ell B(\ell=0, \ldots, S-1)$. Then the cardinality of d_{ℓ} satisfying $p_{j}^{\beta_{j}+\alpha_{j}} \mid d_{\ell}$ is at most $s / p_{j}^{\beta_{j}}+1$. Assume that $\beta_{1}, \ldots, \beta_{r}, S$ are so large that

$$
S\left(\frac{1}{p_{1}^{\beta_{1}}}+\ldots+\frac{1}{p_{r}^{\beta_{r}}}\right)+r<[S / k+1]
$$

holds. Then there exists an integer $s_{n} \in[0, S-k)$ for which

$$
\ell_{p_{j}}\left(n+\left(s_{n}+\nu\right) B\right) \leqq \beta_{j}+\alpha_{j} \quad(j=1, \ldots, r ; \nu=0, \ldots, k)
$$

holds. Assume that H is so large that $\Pi p_{j}^{\beta_{j}+\alpha_{j}} \leqq H$.
Let $Q(z)=\left(z^{B}-1\right)^{k}$. It is clear that

$$
|f(n)| \leqq|Q(E) f(n)|+L_{1}(|f(n+B)|, \ldots,|f(n+k B)|)
$$

Iterating this inequality, we get that

$$
|f(n)| \leqq c_{1} \sum_{\ell=0}^{s_{n}-1}|Q(E) f(n+\ell B)|+c_{2} \sum_{\ell=s_{n}}^{s_{n}+k}|f(n+\ell B)|
$$

with suitable constants c_{1}, c_{2}, which may depend only on S. By using the Hölder inequality, hence we deduce that

$$
|f(n)|^{\alpha} \leqq c_{3} \sum_{\ell=0}^{s_{n}-1}|Q(E) f(n+\ell B)|^{\alpha}+c_{4} \sum_{\ell=s_{n}}^{s_{n}+k}|f(n+\ell b)|^{\alpha}
$$

It is important that $a(n+\ell B) \leqq H$ is satisfied for the integers occurring in the last sum on the right hand side. Summing up for n, taking into account (4.4) and $Q(E) \mathbf{f} \in \Omega_{\alpha, \varrho}$, we get our assertion immediately.

Corollary. We have $f^{*} \notin \mathcal{L}_{\alpha, e}$.
5. Assume that B contains all the primes up to $2 k+2, f^{*} \in \mathcal{M}^{*}$, $f^{*}(p)=0$ if $p \mid B$, furthermore that

$$
\begin{equation*}
\left(E^{B}-I\right)^{k} f^{*} \in \Omega_{\alpha, \varrho} \tag{5.1}
\end{equation*}
$$

$$
\begin{equation*}
f^{*} \notin \mathcal{L}_{\alpha, e} . \tag{5.2}
\end{equation*}
$$

From these conditions we shall deduce that $f^{*}(n)=n^{s} \nu(n), 0 \leqq \operatorname{Re} s \leqq$ $\leqq k$,

$$
\begin{equation*}
\left(E^{B}-I\right) \nu=0 \quad \text { identically. } \tag{5.3}
\end{equation*}
$$

We shall use induction on k. The case $k=1$ was treated in [1]. We shall assume that the assertion is proved for $k-1$ instead of k. We may assume furthermore that the condition is not true for $k-1$ instead of k.

Let

$$
H(n):=\left(E^{B}-I\right)^{k-1} f^{*}(n)
$$

Let q be a fixed positive integer coprime to $B, q>1$. From (5.1) we have

$$
\begin{equation*}
\sum_{\substack{n \leqq x \\(n, \bar{B})=1}} \max _{\substack{0 \leqq \ell \leqq K}}|H(n+\ell B)-H(n)|^{\alpha} \ll x \varrho^{\alpha}(x) \quad(x \rightarrow \infty) \tag{5.4}
\end{equation*}
$$

for every fixed K. Let $h=(q-1)(k-1)$, and let $\beta_{0}, \ldots, \beta_{h}$ be the coefficients of the polynomial $\left(1+z+\ldots+z^{q-1}\right)^{k-1}$,

$$
\left(1+z+\ldots+z^{q-1}\right)^{k-1}=\beta_{0}+\ldots+\beta_{h} z^{h} .
$$

It is clear that $\beta_{0}+\ldots+\beta_{h}=q^{k-1}$, furthermore that

$$
\begin{align*}
\left(E^{B q}-I\right)^{k-1} f^{*}(q n)=(I & \left.+E^{B}+\ldots+E^{B(q-1)}\right)^{k-1}\left(E^{B}-I\right)^{k-1} f^{*}(q n)= \tag{5.5}\\
& =\sum_{j=0}^{h} \beta_{j} H(q n+j B)
\end{align*}
$$

Let $(n, B)=1$. The left hand side of (5.5) is $f^{*}(q) H(n)$. Let K be a large constant, ℓ_{n} any integer, $0 \leqq \ell_{n} \leqq K$. From (5.4) we get that

$$
\begin{equation*}
H\left(q n+\ell_{n} B\right)=\frac{f^{*}(q)}{q^{k-1}} H(n)+\varepsilon_{n, \ell_{n}} \tag{5.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{\substack{n \leqq x \\(n, B)=1}}\left|\varepsilon_{n, \ell_{n}}\right|^{\alpha} \ll x \varrho^{\alpha}(x) \tag{5.7}
\end{equation*}
$$

Let

$$
\begin{equation*}
E(x):=\sum_{\substack{n \leq x \\(n, B)=1}}|H(n)|^{\alpha} \tag{5.8}
\end{equation*}
$$

For an integer N let $a(N) \in\{0,1, \ldots, q-1\}$ be the integer for which $N-a(N) B$ is a multiple of q. Let N_{1} be defined by the equation $N=$ $=q N_{1}+a(N) B$. It is clear that

$$
\begin{equation*}
\frac{N}{q}-B \leqq N_{1} \leqq \frac{N}{q} \tag{5.9}
\end{equation*}
$$

Some fixed integer M plays the role of N_{1} for q distinct values of N, namely for $q M+\ell B(\ell=0,1, \ldots, q-1)$.

From (5.6) we obtain (for $N \geqq q B,(N, B)=1$)

$$
\begin{equation*}
H(N)=\frac{f^{*}(q)}{q^{k-1}} H\left(N_{1}\right)+\varepsilon_{N_{1}, a(N)} \tag{5.10}
\end{equation*}
$$

Let $\Theta=\Theta_{q}=\left|\frac{f^{*}(q)}{q^{k-1}}\right|$. From (5.10) we get that

$$
\begin{equation*}
|H(N)|=\Theta\left|H\left(N_{1}\right)\right|+\varrho_{N_{1}, a(N)}, \quad\left|\varrho_{N_{1}, a(N)}\right| \leqq\left|\varepsilon_{N_{1}, a(N)}\right| \tag{5.11}
\end{equation*}
$$

If c and d are positive numbers, then

$$
\begin{equation*}
\left|c^{\alpha}-d^{\alpha}\right|=\alpha\left|\int u^{\alpha-1} d u\right| \leqq \alpha|c-d|\left(c^{\alpha-1}+d^{\alpha-1}\right) \tag{5.12}
\end{equation*}
$$

Furthermore, the Hölder inequality gives that

$$
\begin{equation*}
\sum_{n=1}^{x}\left|u_{n}\right|\left|\nu_{n}\right|^{\alpha-1} \leqq\left(\sum\left|u_{n}\right|^{\alpha}\right)^{1 / \alpha}\left(\sum\left|\nu_{n}\right|^{\alpha}\right)^{\frac{\alpha-1}{\alpha}} \tag{5.13}
\end{equation*}
$$

is true for all complex numbers $u_{1}, \ldots, u_{x}, \nu_{1}, \ldots, \nu_{x}$. Thus for positive $c_{1}, \ldots, c_{x}, d_{1}, \ldots, d_{x}$ we obtain

$$
\begin{gather*}
\left|\sum_{i=1}^{x} c_{i}^{\alpha}-\sum_{i=1}^{x} d_{i}^{\alpha}\right| \leqq \alpha \sum\left|c_{i}-d_{i}\right|\left(c_{i}^{\alpha-1}+d_{i}^{\alpha-1}\right) \leqq \tag{5.14}\\
\leqq \alpha\left(\sum\left|c_{i}-d_{i}\right|^{\alpha}\right)^{1 / \alpha}\left\{\left(\sum c_{i}^{\alpha}\right)^{(\alpha-1) / \alpha}+\left(\sum d_{i}^{\alpha}\right)^{(\alpha-1) / \alpha}\right\}
\end{gather*}
$$

We shall apply this inequality with

$$
c_{N}=|H(N)|, \quad d_{N}=\Theta\left|H\left(N_{1}\right)\right|
$$

Taking into account (5.7) we get rapidly that

$$
\begin{equation*}
E(x)-\Theta^{\alpha} q E\left(\frac{x}{q}\right) \leqq c x^{1 / \alpha} \varrho(x) E(x)^{(\alpha-1) / \alpha} \tag{5.15}
\end{equation*}
$$

with a suitable positive c.
Similarly, summing up for every such N for which $N_{1} \leqq y$ holds, we obtain

$$
\begin{equation*}
\Theta^{\alpha} q E(y)-E(q y+q B) \leqq c y^{1 / \alpha} \varrho(y) E(q y+q B)^{(\alpha-1) / \alpha} \tag{5.16}
\end{equation*}
$$

Let us assume first that there exists a $q,(q, B)=1$ for which $\Theta=$ $=\Theta_{q}<1$, i.e. $\left|f^{*}(q)\right|<q^{k-1}$. From this assumption we shall deduce that $\left(E^{B}-I\right)^{k-1} f^{*} \in \Omega_{\alpha, \ell}$ contrary to our hypothesis that k was the least number satisfying (5.1).

Let $e(x)=\frac{E(x)}{x \varrho^{\alpha}(x)}$, and let q be such an integer for which $(q, B)=1$, $\Theta_{q}<1$. Assume that $\overline{\lim } e(x)=\infty$. From (5.15) we get that

$$
e(x) x \varrho^{\alpha}(x) \leqq \Theta^{\alpha} q \frac{x}{q} \varrho^{\alpha}\left(\frac{x}{q}\right) e\left(\frac{x}{q}\right)+c x \varrho^{\alpha}(x) e(x)^{\frac{\alpha-1}{\alpha}},
$$

and after dividing by $x \varrho^{\alpha}(x)$ and taking into account that $\frac{\varrho(x / q)}{\varrho(x)} \rightarrow 1$ as $x \rightarrow \infty$, we obtain that

$$
\begin{equation*}
e(x)-c e(x)^{\frac{\alpha-1}{\alpha}} \leqq \Theta^{\alpha}(1+\varepsilon) e\left(\frac{x}{q}\right) \tag{5.17}
\end{equation*}
$$

is valid for each large x. Here $\varepsilon>0$ is an arbitrary constant. Let us choose it so that $\Theta^{\alpha}(1+\varepsilon)<1-\varepsilon$. Then,

$$
\begin{equation*}
e(x)-c e(x)^{\frac{\alpha-1}{\alpha}} \leqq(1-\varepsilon) e\left(\frac{x}{q}\right) \tag{5.18}
\end{equation*}
$$

holds for every large x. From (5.18) we deduce that $e(x)$ is bounded in $[1, \infty)$. Indeed, let Y be a large value which is taken on by $e(y)$ at the point x, so that $e(y) \leqq Y$ whenever $y \leqq x$. From (5.18) we obtain that

$$
Y-c Y^{(\alpha-1) / \alpha} \leqq(1-\varepsilon) Y
$$

and so $\varepsilon Y \leqq c Y^{(\alpha-1) / \alpha}, Y^{1 / \alpha} \leqq c / \varepsilon$. Y is bounded. From now on we may assume that $\left|f^{*}(n)\right| \geqq n^{k-1}$ holds for every $n,(n, B)=1$. On the other hand, it is easy to see that $\left|f^{*}(n)\right| \leqq n^{k}$ if $(n, B)=1$. Indeed, $\varrho^{\alpha}(x)=O\left(x^{\varepsilon}\right)$ is true for every $\varepsilon>0$. From (5.1) we get that

$$
\begin{equation*}
\left|\left(E^{B}-I\right)^{j-1} f^{*}(n)\right| \leqq \sum_{\nu<n}\left|\left(E^{B}-I\right)^{j} f^{*}(\nu)\right|+O(1) \quad(j=1, \ldots, k) \tag{5.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\nu<n}\left|\left(E^{B}-I\right)^{k} f^{*}(\nu)\right| \ll n^{1+\varepsilon} \tag{5.20}
\end{equation*}
$$

Hence we get that $\left(E^{B}-I\right)^{k-1} f^{*}(\nu)=O\left(\nu^{1+\varepsilon}\right)$, and by (5.19) that $\left(E^{B}-I\right)^{k-2} f^{*}(n)=O\left(n^{2+\varepsilon}\right)$. Repeating this argument, we get that

$$
\begin{equation*}
\left|f^{*}(n)\right| \leqq C_{\varepsilon} n^{k+\varepsilon} \tag{5.21}
\end{equation*}
$$

holds for every $\varepsilon>0$ with a suitable positive constant C_{ε} whenever $(n, B)=$ $=1$. Let us write now $n=q^{t}$ into (5.21). Since $f^{*}\left(q^{t}\right)=f^{*}(q)^{t}$, we obtain that

$$
\left|f^{*}(q)\right| \leqq C_{\varepsilon}^{1 / t} q^{k+\varepsilon} .
$$

Setting $t \rightarrow \infty$, we get $\left|f^{*}(q)\right| \leqq q^{k}$.
Let now q be fixed, $(q, B)=1, q>1, \Theta=\Theta_{q}=\left|\frac{f^{*}(q)}{q^{k-1}}\right|$, and let $\eta_{q}=\eta$ be defined by $\Theta=q^{\eta}$. Then $0 \leqq \eta \leqq 1$. We shall prove now that for every $\varepsilon>0$,

$$
\begin{equation*}
\varlimsup_{x \rightarrow \infty} \frac{e(x)}{x^{\eta \alpha+\varepsilon}}<\infty, \quad \varlimsup_{x \rightarrow \infty} \frac{e(x)}{x^{\eta \alpha-\varepsilon}}=\infty . \tag{5.22}
\end{equation*}
$$

This will imply that $\left|f^{*}(n)\right|=n^{k-1+\eta}$ for every n coprime to B, and that $\eta=\eta_{n}=$ constant.

First we prove the first assertion in (5.22). Let $\varepsilon, \varepsilon_{1}$ be small positive numbers, and let x_{0} be so large that (5.17) is true with ε_{1} instead of ε, for every $x>x_{0}$. Then

$$
\begin{equation*}
e(x)-c e(x)^{(\alpha-1) / \alpha} \leqq q^{\eta \alpha}\left(1+\varepsilon_{1}\right) e\left(\frac{x}{q}\right), \quad \text { if } \quad x>x_{0} . \tag{5.23}
\end{equation*}
$$

Let $s(x)=\frac{e(x)}{x^{7 \alpha+\varepsilon}}$. From (5.23) we obtain

$$
s(x) x^{\eta \alpha+\varepsilon}-c x^{(\eta \alpha+\varepsilon) \frac{\alpha-1}{\alpha}} s(x)^{\frac{\alpha-1}{\alpha}} \leqq q^{\eta \alpha}\left(1+\varepsilon_{1}\right)\left(\frac{x}{q}\right)^{\eta \alpha+\varepsilon} s\left(\frac{x}{q}\right),
$$

and after dividing by $x^{\eta \alpha+\varepsilon}$,

$$
\begin{equation*}
s(x)-c x^{-\frac{1}{\alpha}(\eta \alpha+\varepsilon)} s(x)^{\frac{\alpha-1}{\alpha}} \leqq q^{-\varepsilon}\left(1+\varepsilon_{1}\right) s\left(\frac{x}{q}\right) . \tag{5.24}
\end{equation*}
$$

Let ε_{1} be so small that $q^{-\varepsilon}\left(1+\varepsilon_{1}\right)<1-\varepsilon_{1}$, say. Repeating the argument used earlier, we deduce immediately that $s(x)$ is bounded.

Let us prove the second assertion in (5.22). If $\eta=0$ then this follows from the assumption $E(x) \neq O\left(x \varrho^{\alpha}(x)\right)$. Let $\eta>0, \varepsilon>0$ be fixed. Let Y_{0} and x_{0} be large values such that $e\left(x_{0}\right) \geqq Y_{0}$. Starting from (5.16), dividing by $y \varrho(y)^{\alpha}$ we obtain

$$
\begin{equation*}
q^{1+\eta \alpha} e(y) \leqq\left(q+\frac{q B}{y}\right) e(q y+q B) \frac{\varrho^{\alpha}(q y+q B)}{\varrho^{\alpha}(y)}+ \tag{5.25}
\end{equation*}
$$

$$
+c \frac{\varrho(q y+q B)^{\alpha-1}}{\varrho(y)^{\alpha-1}} e(q y+q B)^{(\alpha-1) / \alpha}\left(q+\frac{q B}{y}\right)^{(\alpha-1) / \alpha}
$$

and for every large y

$$
\begin{align*}
& q^{1+\eta \alpha} e(y) \leqq q\left(1+\frac{B}{y}\right)\left(1+\varepsilon_{1}\right) e(q y+q B)+ \tag{5.26}\\
+ & c q\left(1+\frac{B}{y}\right)^{(\alpha-1) / \alpha}\left(1+\varepsilon_{1}\right) e(q y+q B)^{(\alpha-1) / \alpha} .
\end{align*}
$$

Substitute now $y=x_{0}$. From (5.26) we obtain that

$$
e\left(q x_{0}+q B\right) \geqq q^{\eta \alpha-\varepsilon} e\left(x_{0}\right),
$$

assuming that x_{0} was so chosen for which x_{0} and $e\left(x_{0}\right)$ were large enough. Let now $x_{1}=q x_{0}+q B, x_{\nu+1}=q x_{\nu}+q B(\nu=1,2, \ldots)$. Then $e\left(x_{\nu+1}\right) \geqq$ $\geqq q^{\eta \alpha-\varepsilon} e\left(x_{\nu}\right)$, and so $e\left(x_{\nu}\right) \geqq\left(q^{\nu}\right)^{\eta \alpha-\varepsilon}$. Observe that $x_{\nu} / q^{\nu} x_{0}$ is bounded. This proves the second assertion.

Consequently, $f^{*}(n)=n^{k-1+\eta} t(n)$, where $0 \leqq \eta \leqq 1, t \in \mathcal{M}^{*},|t(n)|=1$ for $(n, B)=1$ and $|t(n)|=0$ for $(n, B)>1$.

Since

$$
\begin{aligned}
\Delta_{B}^{k} f^{*}(n) & =\sum_{l=0}^{k}(-1)^{k-l}\binom{k}{l}(n+l B)^{k-1+\eta} t(n+l B)= \\
& =\left(\Delta_{B}^{k} t(n)\right) n^{k-1+\eta}+O\left(n^{k-2+\eta}\right)
\end{aligned}
$$

therefore

$$
\left|\Delta_{B}^{k} t(n)\right| \leqq \frac{\left|\Delta_{B}^{k} f^{*}(n)\right|}{n^{k-1+\eta}}+\frac{c}{n} .
$$

Hence, by (5.1), and $\varrho(x) \ll x^{\varepsilon}, k \geqq 2$ we obtain that

$$
\begin{equation*}
\sum_{(n, B)=1} \frac{\left|\Delta_{B}^{k} t(n)\right|}{n}<\infty \tag{5.27}
\end{equation*}
$$

In [2] it was proved that $t(n)=n^{i \tau} \chi_{B}(n)$, with some real number τ and a suitable character $\bmod B$. (See Theorems 2 and 3 .)
6. Now we finish the proof of our theorem. Starting from the conditions (1.3) and $f \notin \mathcal{L}_{\alpha, \ell}$ we deduced that there exist positive integers $\ell, B, 1 \leqq \ell \leqq$ $\leqq k$, such that the function $f^{*}(n)=\chi_{0, B}(n) f(n) \in \mathcal{M}^{*},\left(E^{B}-I\right)^{\ell} \mathbf{f}^{*} \in \Omega_{\alpha, e}$ and $\left(E^{B}-I\right)^{\ell-1} \mathbf{f}^{*} \notin \Omega_{\alpha, \ell}$ and $f^{*}(n)=n^{\ell-1+\eta+i \tau} \chi_{B}(n)$, with some real
number $\tau, 0 \leqq \eta \leqq 1$. Let now $u(n)$ be defined by $f(n)=n^{s} u(n), s=\ell-$ $-1+\eta+i \tau$. Let the coefficients of $P(z)$ be $a_{0}, \ldots, a_{k}, P(z)=a_{0}+\ldots+a_{k} z^{k}$,

$$
S(n)=\sum_{j=0}^{k} a_{j} u(n+j)=P(E) u(n) .
$$

We shall prove that (1.4) is true. Assume the contrary: there exists an $n_{0} \in \mathrm{~N}$ for which $S\left(n_{0}\right) \neq 0$. For an arbitrary n let $b(n)$ be the maximal divisor of n which is coprime to B, and let $a(n)$ be defined by $n=a(n) b(n)$. Let now $n_{1}<n_{2}<\ldots$ be the sequence of those integers for which $b\left(n_{j}+\ell\right) \equiv b\left(n_{0}+\ell\right) \bmod B, \quad a\left(n_{j}+\ell\right)=a\left(n_{0}+\ell\right) \quad(\ell=0, \ldots, k)$. It is obvious that $S\left(n_{j}\right)=S\left(n_{0}\right)$ and $\left\{n_{j}\right\}$ has a positive density. Furthermore,

$$
\begin{gathered}
P(E) f(n)=\sum_{j=0}^{k} a_{j} u(n+j)(n+j)^{s}=n^{s} S(n)+ \\
\quad+\sum_{j=0}^{k} a_{j} u(n+j)\left((n+j)^{s}-n^{s}\right)
\end{gathered}
$$

Since $(n+j)^{s}-n^{s}=O\left(n^{\sigma-1}\right), \sigma=\ell-1+\eta$, and $u(n+j)$ are bounded on the sequence $\left\{n_{t}\right\}$, therefore ($t \geqq t_{0}, A>0$) $\left|P(E) f\left(n_{t}\right)\right| \geqq A n_{t}^{\sigma}$. This contradicts (1.3) if $\sigma>0$.

Let us consider the case $\sigma=0$. Then $\ell=1, \eta=0$. Consequently $|f(n)|=|u(n)|=1$ for $(n, B)=1$. By using Lemma 3, we obtain $\mathbf{f} \in \Omega_{\alpha, e}$ which is a contradiction.

The proof of the theorem is complete.

References

[1] K.-H. Indlekofer and I. Kátai, Multiplicative functions with small increments. II, Acta Math. Hung., 56 (1990), 159-164.
[2] I. Kátai, Multiplicative functions with regularity properties. III, Acta Math. Hung., 43 (1984), 259-272.
(Received January 16, 1989)

[^7]COMPUTER CENTER OF
EÖTVÖS LORÁND UNIVERSITY
BUDAPEST, H-1117
BOGDÁNFY ÚT 10/B
HUNGARY

ON HIGHER ORDER HERMITE-FEJÉR INTERPOLATION IN WEIGHTED L_{p}-METRIC

J. SZABADOS* (Budapest) and A. K. VARMA (Gainesville)

Let

$$
\begin{equation*}
(1>) x_{1}>x_{2}>\ldots>x_{n}(>-1), \quad x_{k}=\cos \theta_{k} \quad(k=1, \ldots, n) \tag{1}
\end{equation*}
$$

be the roots of the ultraspherical Jacobi polynomials $P_{n}^{(\alpha)}(x)(\alpha>-1)$ normalized such that $P_{n}^{(\alpha)}(1)=\binom{n+\alpha}{n}$. For an arbitrary continuous function $f(x) \in C[-1,1]$ and integer $m \geqq 1$, consider the m th order Hermite-Fejér interpolating polynomial $H_{n m}(\overline{f, x})$ defined by

$$
H_{n m}^{(j)}\left(f, x_{k}\right)=\delta_{0 j} f\left(x_{k}\right) \quad(k=1, \ldots, n ; j=0,1, \ldots, m-1)
$$

$H_{n m}(f, x)$ is a uniquely determined polynomial of degree at most $m n-1$.
The case m even has been extensively investigated by P. Vértesi [7, 8]. (Actually, he considered the procedure under more general conditions.) His main results restricted to our particular situation state that for $m=2,4, \ldots$,
(a) if $\max \left(-\frac{1}{2}-\frac{2}{m},-1\right)<\alpha<-\frac{1}{2}+\frac{1}{m}$ then $H_{n m}(f, x)$ converges uniformly in $[-1,1]$;
(b) if $-\frac{1}{2}+\frac{1}{m} \leqq \alpha, a>-1,0<p<\frac{4(a+1)}{m(2 \alpha+1)-2}$ then

$$
\lim _{n \rightarrow \infty} \int_{-1}^{1}\left|f(x)-H_{n m}(f, x)\right|^{p}\left(1-x^{2}\right)^{a} d x=0
$$

for all $f(x) \in C[-1,1]$.
We also note that for the special case $m=2$, P. Vértesi and Y. Xu [9] gave an error estimate for the mean convergence.

Our purpose here is to settle the corresponding problems for $m=1,3, \ldots$. (At this point we mention that for $m=1$ (i.e. Lagrange interpolation) the problem has been completely solved by P. Nevai [1], [2].) Although in stating our Theorem 1 we will not restrict ourselves to odd m 's, this case will be of main interest because of the above quoted results of P. Vértesi.

[^8]In case m odd we cannot expect uniform convergence (see P. Vértesi [7, Theorem 2.7]). In fact, we proved in [4] that for $m=3$, there is no uniform convergence for any system of nodes. This justifies that we turn to investigating mean convergence.

Let us introduce the notation

$$
\|f\|_{p, a}=\left(\int_{-1}^{1}|f(x)|^{p}\left(1-x^{2}\right)^{a} d x\right)^{1 / p} \quad(p>0, a>-1)
$$

for an arbitrary $f \in C[-1,1]$, and let $\omega(f, h)$ be the ordinary modulus of continuity of $f(x)$.

Theorem 1. We have for $m=1,2, \ldots, a>-1$ and $f \in C[-1,1]$

$$
\left\|f(x)-H_{n m}(f, x)\right\|_{p, a}=O\left(\omega\left(f, \frac{1}{n}\right)\right)
$$

provided one of the following two conditions holds:
(i) $\max \left(-\frac{1}{2}-\frac{2}{m},-1\right)<\alpha \leqq-\frac{1}{2}, p>0$;
(ii) $\alpha>-\frac{1}{2}, 0<p<\frac{4(a+1)}{m(2 \alpha+1)}$.

Proof. From the notion of Hermite interpolation it follows that there exist numbers $e_{i k}$ such that with

$$
\begin{equation*}
h_{j k}(x)=\frac{\ell_{k}(x)^{m}}{j!} \sum_{i=j}^{m-1} e_{i-j, k}\left(x-x_{k}\right)^{i} \quad(j=0,1, \ldots, m-1 ; k=1, \ldots, n) \tag{2}
\end{equation*}
$$

($\ell_{k}(x)$ are the fundamental polynomials of Lagrange interpolation based on the roots (1)) we have

$$
\begin{equation*}
p(x)=\sum_{j=0}^{m-1} \sum_{k=1}^{n} p^{(j)}\left(x_{k}\right) h_{j k}(x) \tag{3}
\end{equation*}
$$

for any polynomial of degree at most $n m-1$, and

$$
\begin{equation*}
H_{n m}(f, x)=\sum_{k=1}^{n} f\left(x_{k}\right) h_{0 k}(x) . \tag{4}
\end{equation*}
$$

Here
(5) $\left|e_{i k}\right|=O\left(\left(\frac{n}{\sin \theta_{k}}\right)^{i} \frac{1}{\left(n \sin \theta_{k}\right)^{i-2[i / 2]}}\right) \quad(i=0,1, \ldots ; k=1, \ldots, n)$
(see P. Vértesi [7, Lemma 3.11]).
Now let $p(x)$ be the polynomial of best approximation to $f(x)$ of degree at most $n m-1$; then by Jackson's theorem

$$
\begin{equation*}
\max _{|x| \leqq 1}|f(x)-p(x)|=O\left(\omega\left(f, \frac{1}{n}\right)\right) \tag{6}
\end{equation*}
$$

and by a well-known result of S. B. Steckin (see A. F. Timan [6], p. 252)

$$
\begin{equation*}
\left|p^{(j)}(x)\right|=O\left(\omega\left(f, \frac{1}{n}\right) n^{j}\right) \min \left(n^{j},\left(1-x^{2}\right)^{-j / 2}\right) \quad(|x| \leqq 1, j=0,1, \ldots) \tag{7}
\end{equation*}
$$

Thus we obtain by (2)-(4)

$$
p(x)-H_{n m}(p, x)=\sum_{j=1}^{m-1} \sum_{k=1}^{n} p^{(j)}\left(x_{k}\right) h_{j k}(x)=\sum_{i=0}^{m-1} \sum_{k=1}^{n} \alpha_{i k}\left(x-x_{k}\right)^{i} \ell_{k}(x)^{m}
$$

where by (5) and (7)
(8) $\alpha_{i k}=\sum_{j=1}^{m-1} e_{i-j, k} p^{(j)}\left(x_{k}\right)=O\left(\omega\left(f, \frac{1}{n}\right)\right) \sum_{j=1}^{m-1}\left(\frac{n}{\sin \theta_{k}}\right)^{i-j}\left(\frac{n}{\sin \theta_{k}}\right)^{j}=$

$$
=O\left(\omega\left(f, \frac{1}{n}\right)\right)\left(\frac{n}{\sin \theta_{k}}\right)^{i} \quad(i=0, \ldots, m-1 ; k=1, \ldots, n)
$$

with the understanding that $e_{i-j, k}=0$ if $i<j$. Hence and by (6) and (2)
(9) $f(x)-H_{n m}(f, x)=f(x)-p(x)+p(x)-H_{n m}(p, x)+H_{n m}(p-f, x)=$

$$
\begin{aligned}
& =O\left(\omega\left(f, \frac{1}{n}\right)\right)+\sum_{k=1}^{n} \sum_{i=0}^{m-1} \alpha_{i k}\left(x-x_{k}\right)^{i} \ell_{k}(x)^{m}+ \\
& +\sum_{k=1}^{n}\left[p\left(x_{k}\right)-f\left(x_{k}\right)\right] \sum_{i=0}^{m-1} e_{i k}\left(x-x_{k}\right)^{i} \ell_{k}(x)^{m}= \\
& =O\left(\omega\left(f, \frac{1}{n}\right)\right)+\sum_{k=1}^{n} \sum_{i=0}^{m-1} \beta_{i k}\left(x-x_{k}\right)^{i} \ell_{k}(x)^{m}
\end{aligned}
$$

where by (8), (5) and (6)

$$
\begin{equation*}
\beta_{i k}=\alpha_{i k}+e_{i k}\left[p\left(x_{k}\right)-f\left(x_{k}\right)\right]=O\left(\omega\left(f, \frac{1}{n}\right)\right)\left(\frac{n}{\sin \theta_{k}}\right)^{i} \tag{10}
\end{equation*}
$$

$$
(i=0, \ldots, m-1 ; k=1, \ldots, n) .
$$

Now using the estimates

$$
\begin{equation*}
P_{n}^{(\alpha)}(x)=O\left(\Delta_{n}(x)^{-\alpha-1 / 2} n^{-1 / 2}\right) \quad(\alpha>-1,|x| \leqq 1) \tag{11}
\end{equation*}
$$

(where $\left.\Delta_{n}(x)=\sqrt{1-x^{2}}+1 / n\right)$,

$$
\theta_{k} \sim \frac{k \pi}{n} \quad(k=1, \ldots, n),
$$

and

$$
\begin{equation*}
P_{n}^{(\alpha)^{\prime}}\left(x_{k}\right) \sim n^{1 / 2} \sin ^{-\alpha-3 / 2} \theta_{k} \quad(k=1, \ldots, n) \tag{12}
\end{equation*}
$$

(cf. G. Szegö [5], (7.32.5), (8.9.1) and (8.9.2)), as well as the notation

$$
\left|\theta-\theta_{j}\right|=\min _{1 \leqq k \leqq n}\left|\theta-\theta_{k}\right|,
$$

we obtain from (10) and ($\alpha+1 / 2$) $m+2 \geqq 0$ (see condition (i) in Theorem 1)

$$
\begin{equation*}
\left|\sum_{k=1}^{n} \beta_{i k}\left(x-x_{k}\right)^{i} \ell_{k}(x)^{m}\right|=\left|P_{n}^{(\alpha)}(x)\right|^{m} \sum_{k \neq j} \frac{\left|\beta_{i k}\right|}{\left|P_{n}^{(\alpha)^{\prime}}\left(x_{k}\right)\right|^{m}\left|x-x_{k}\right|^{m-i}}+ \tag{13}
\end{equation*}
$$

$$
+O\left(\beta_{i j}\left|x-x_{j}\right|^{i}\right)=O\left(n^{-m} \Delta_{n}(x)^{-(\alpha+1 / 2) m} \omega\left(f, \frac{1}{n}\right)\right) \sum_{k \neq j}\left(\frac{n\left|x-x_{k}\right|}{\sin \theta_{k}}\right)^{i}
$$

$$
\cdot \frac{\sin ^{(\alpha+3 / 2) m} \theta_{k}}{\left|x-x_{k}\right|^{m}}+O\left(\omega\left(f, \frac{1}{n}\right)\right)=O\left(n^{-2} \Delta_{n}(x)^{-(\alpha+1 / 2) m} \omega\left(f, \frac{1}{n}\right)\right)
$$

$$
\cdot \frac{\sin ^{(\alpha+1 / 2) m+2} \theta_{k}}{\sin ^{2} \frac{\theta-\theta_{k}}{2} \sin ^{2} \frac{\theta+\theta_{k}}{2}}+O\left(\omega\left(f, \frac{1}{n}\right)\right)=O\left(n^{-2} \Delta_{n}(x)^{-(\alpha+1 / 2) m} \omega\left(f, \frac{1}{n}\right)\right) .
$$

$$
\sum_{\sin \theta_{k}<\sin \theta} \frac{\sin ^{(\alpha+1 / 2) m+2} \theta_{k}}{\left(\theta-\theta_{k}\right)^{2}}+O\left(n^{-2} \Delta_{n}(x)^{-(\alpha+1 / 2) m} \omega\left(f, \frac{1}{n}\right)\right)
$$

$$
\cdot \sum_{\sin \theta_{k}>\sin \theta} \frac{\sin ^{(\alpha+1 / 2) m} \theta_{k}}{\left(\theta-\theta_{k}\right)^{2}}+O\left(\omega\left(f, \frac{1}{n}\right)\right)=O\left(\omega\left(f, \frac{1}{n}\right)\right) \sum_{\substack{k=1 \\ k \neq j}}^{n} \frac{1}{(k-j)^{2}}+
$$

$$
+\left\{\begin{array}{ll}
\sum_{\substack{k=1 \\
k \neq j}}^{n} \frac{1}{(j-k)^{2}} & \text { if } \alpha \leqq-1 / 2 \\
\Delta_{n}(x)^{-(\alpha+1 / 2) m} \sum_{\substack{k=1 \\
k \neq j}}^{n} \frac{1}{(k-j)^{2}} & \text { if } \alpha \geqq-1 / 2
\end{array}=\right.
$$

$=O\left(\omega\left(f, \frac{1}{n}\right)\right) \cdot\left\{\begin{array}{ll}O(1) & \text { if } \alpha \leqq-1 / 2 \\ \left(1-x^{2}\right)^{-m(\alpha+1 / 2) / 2} & \text { if } \alpha \geqq-1 / 2\end{array}(0 \leqq i \leqq m-2,|x| \leqq 1)\right.$.
Thus in case $\alpha \leqq-\frac{1}{2}$ the quantity (13) is of the required order even in the uniform norm. When $\alpha>-\frac{1}{2}$, then by condition (ii)

$$
\begin{gather*}
\int_{-1}^{1}\left|\sum_{k=1}^{n} \beta_{i k}\left(x-x_{k}\right)^{i} \ell_{k}(x)^{m}\right|^{p}\left(1-x^{2}\right)^{a} d x=O\left(\omega\left(f, \frac{1}{n}\right)^{p}\right) \int_{-1}^{1}\left(1-x^{2}\right)^{a-\frac{p m}{4}(2 \alpha+1)} d x= \\
=O\left(\omega\left(f, \frac{1}{n}\right)^{p}\right) \quad(0 \leqq i \leqq m-2, m \geqq 2) . \tag{14}
\end{gather*}
$$

All that remained to estimate is
$A_{n}(x)=\sum_{k=1}^{n} \beta_{m-1, k}\left(x-x_{k}\right)^{m-1} \ell_{k}(x)^{m}=P_{n}^{(a)}(x)^{m-1} n^{\frac{m-1}{2}} \omega\left(f, \frac{1}{n}\right) \sum_{k=1}^{n} \gamma_{k} \ell_{k}(x)$
where by (10) and (12)

$$
\begin{equation*}
\gamma_{k}=\frac{\beta_{m-1, k}}{P_{n}^{(\alpha)^{\prime}}\left(x_{k}\right)^{m-1} n^{\frac{m-1}{2}} \omega\left(f, \frac{1}{n}\right)}=O\left(\sin ^{\frac{m-1}{2}(2 \alpha+1)} \theta_{k}\right) \quad(k=1, \ldots, n) . \tag{15}
\end{equation*}
$$

Here

$$
\gamma_{k}=O\left(n^{\frac{1-m}{2}(2 \alpha+1)}\right) \quad\left(k=1, \ldots, n ; \alpha \leqq-\frac{1}{2}\right),
$$

whence and by (11)

$$
\begin{gathered}
\left|A_{n}(x)\right|=O\left(\left|P_{n}^{(\alpha)}(x)\right|^{m-1} \omega\left(f, \frac{1}{n}\right) n^{\alpha(1-m)}\right) \sum_{k=1}^{n}\left|\ell_{k}(x)\right|= \\
=O\left(\omega\left(f, \frac{1}{n}\right) \log n\right) \quad\left(\alpha \leqq-\frac{1}{2}, 1-x^{2} \leqq \frac{c}{n^{2}}\right)
\end{gathered}
$$

(see G. Szegő [5, the proof of Theorem 14.4]). Therefore

$$
\int_{1-x^{2} \leqq \frac{c}{n^{2}}}\left|A_{n}(x)\right|^{p}\left(1-x^{2}\right)^{a} d x=O\left(\omega\left(f, \frac{1}{n}\right)^{p} \log ^{p} n\right) \int_{1-x^{2} \leqq \frac{c}{n^{2}}}\left(1-x^{2}\right)^{a} d x=
$$

$$
=O\left(\omega\left(f, \frac{1}{n}\right)^{p}\right) \frac{\log ^{p} n}{n^{2 a+2}}=O\left(\omega\left(f, \frac{1}{n}\right)^{p}\right) \quad\left(\alpha \leqq-\frac{1}{2}\right) .
$$

This shows that instead of estimating (14) we can estimate the quantity

$$
\begin{equation*}
B_{n}(x)=\left(1-x^{2}\right)^{(1-m)(2 \alpha+1) / 4} \omega\left(f, \frac{1}{n}\right) \sum_{k=1}^{n} \gamma_{k} \ell_{k}(x) \tag{16}
\end{equation*}
$$

obtained from (14) by using the estimate

$$
\left|P_{n}^{(\alpha)}(x)\right|=O\left(\left(1-x^{2}\right)^{-(2 \alpha+1) / 4} n^{-1 / 2}\right) \quad(|x|<1)
$$

valid for $\alpha \geqq-1 / 2$ (see (11)). Here we apply the following special case of a more general theorem of P. Nevai [2, Theorem 1]:

Let $\alpha>-1,0<p<\infty, b>-1$ and c an arbitrary real number. If

$$
\begin{equation*}
b+c p>-1, \quad b>\frac{2 \alpha+1}{4} p-1 \quad \text { and } \quad c>-\frac{2 \alpha+5}{4} \tag{17}
\end{equation*}
$$

then

$$
\begin{equation*}
\sup _{n \geqq 1}\left\|H_{n, 1}\left(\left(1-x^{2}\right)^{c} f(x), \cdot\right)\right\|_{p, b} \leqq \text { const }\|f\|_{\infty} \tag{18}
\end{equation*}
$$

for every bounded function $f(x)$, with some constant independent of f.
Now apply this with

$$
\begin{equation*}
b=a-\frac{2 \alpha+1}{4}(m-1) p, \quad c=\frac{2 \alpha+1}{4}(m-1) \tag{19}
\end{equation*}
$$

and

$$
f(x)= \begin{cases}\gamma_{k}\left(1-x_{k}^{2}\right)^{(1-m)(2 \alpha+1) / 4} & \text { if } x=x_{k}(k=1, \ldots, n) \tag{20}\\ 0 & \text { otherwise }\end{cases}
$$

Then by (i)-(ii) of Theorem 1, conditions (17) are satisfied; moreover, by (15), $\|f\|_{\infty}=O(1)$. Thus we obtain by (16), (19) and (18)

$$
\begin{gathered}
\left\|B_{n}(x)\right\|_{p, a}=\omega\left(f, \frac{1}{n}\right)\left\|\sum_{k=1}^{n} \gamma_{k} \ell_{k}(x)\right\|_{p, b}=\omega\left(f, \frac{1}{n}\right)\left\|H_{n, 1}\left(\left(1-x^{2}\right)^{c} f(x), \cdot\right)\right\|_{p, b}= \\
=O\left(\omega\left(f, \frac{1}{n}\right)\right)
\end{gathered}
$$

which proves Theorem 1.
We now prove that the restriction (ii) in Theorem 1 cannot be essentially loosened.

Theorem 2 . Let $m \geqq 1$ be an odd number, $\alpha>-1 / 2, a>-1$ and assume that

$$
\begin{equation*}
p>\frac{4(a+1)}{m(2 \alpha+1)} . \tag{21}
\end{equation*}
$$

Then

$$
\lim _{n \rightarrow \infty} \sup _{\|f\|_{C \leqq 1}}\left\|H_{n m}(f, x)\right\|_{p, a}=\infty .
$$

Proof. Using (3.11) from R. Sakai and P. Vértesi [3], we obtain with a certain $k_{0}=k_{0}(m)$

$$
\begin{equation*}
e_{m-1, k} \sim\left(\frac{n}{\sin \theta_{k}}\right)^{m-1} \quad\left(k_{0} \leqq k \leqq n-k_{0}\right) . \tag{22}
\end{equation*}
$$

Now choose an $f(x) \in C[-1,1]$ such that $\|f\|_{C}=1$ and

$$
f\left(x_{k}\right)= \begin{cases}0 & \text { if } 1 \leqq k \leqq k_{0} \text { or } n-k_{0}<k \leqq n \\ (-1)^{k} & \text { if } k_{0} \leqq k \leqq n-k_{0} .\end{cases}
$$

Then we obtain from (4), (2), (22) and (5)

$$
\begin{gathered}
H_{n m}(f, 1)=\sum_{k=k_{0}}^{n-k_{0}}\left|\ell_{k}(1)\right|^{m}\left|\sum_{i=0}^{m-1} e_{i k}\left(1-x_{k}\right)^{i}\right| \geqq \\
\geqq \sum_{k=k_{0}}^{n-k_{0}}\left|\ell_{k}(1)\right|^{m}\left\{e_{m-1, k}\left(1-x_{k}\right)^{m-1}-\sum_{i=0}^{m-2}\left|e_{i k}\right|\left(1-x_{k}\right)^{i}\right\} \geqq \\
\geqq \sum_{k=k_{0}}^{n-k_{0}}\left|\ell_{k}(1)\right|^{m}\left\{\frac{1}{2} b_{\frac{m-1}{2}}\left(n \sin \theta_{k}\right)^{m-1}-O\left(\left(n \sin \theta_{k}\right)^{m-3}\right)\right\} \geqq \\
\geqq C_{m} \sum_{k=k_{0}}^{n-k_{0}}\left|\ell_{k}(1)\right|^{m}\left(n \sin \theta_{k}\right)^{m-1}
\end{gathered}
$$

with some $c_{m}>0$, if only k_{0} is chosen large enough (independently of n). Hence and by (11), (12)

$$
\begin{aligned}
& H_{n m}(f, 1) \geqq c_{m}^{\prime} \sum_{k=k_{0}}^{n-k_{0}} \frac{n^{\alpha m} \sin ^{\left(\alpha+\frac{3}{2}\right) m} \theta_{k}}{n^{m / 2}}\left(n \sin \theta_{k}\right)^{m-1} \geqq \\
& \geqq c_{m}^{\prime} n^{m\left(\alpha+\frac{1}{2}\right)-1} \sum_{k=k_{0}}^{[n / 2]} \sin ^{m\left(\alpha+\frac{1}{2}\right)-1} \theta_{k} \geqq c_{m}^{\prime \prime} n^{m\left(\alpha+\frac{1}{2}\right)},
\end{aligned}
$$

since $\sin \theta_{k} \sim k / n(k \leqq n / 2)$. Applying Lemma 5 from Nevai [1], we obtain by (21)

$$
\left\|H_{n, m}(f, x)\right\|_{p, a} \geqq c n^{-\frac{2(a+1)}{p}}\left|H_{n, m}(f, 1)\right| \geqq c^{\prime} n^{m\left(\alpha+\frac{1}{2}\right)-\frac{2(a+1)}{p}} \rightarrow \infty
$$

as $n \rightarrow \infty$.
Acknowledgement. The authors are indebted to Dr. P. Vértesi whose valuable suggestions made the proof of Theorem 1 much shorter, and extended the validity of Theorem 2.

References

[1] G. P. Nevai, Mean convergence of Lagrange interpolation, J. Appr. Theory, 18 (1976), 363-377.
[2] P. Nevai, Mean convergence of Lagrange interpolation. III, Trans. Amer. Math. Soc., 282 (1984), 669-698.
[3] R. Sakai and P. Vértesi, Hermite-Fejér interpolations of higher order. III, Studia Sci. Math. Hungar. (to appear).
[4] J. Szabados and A. K. Varma, On ($0,1,2$) interpolation in uniform metric, Proc. Amer. Math. Soc., 109 (1990), 975-979.
[5] G. Szegő, Orthogonal Polynomials, AMS Coll. Publ., Vol. 23 (Providence, RI, 1974).
[6] A. F. Timan Theory of Functions of a Real Variable (Moscow, 1960).
[7] P. Vértesi, Hermite-Fejér interpolations of higher order. I, Acta Math. Hung., 54 (1989), 135-152.
[8] P. Vértesi, Hermite and Hermite-Fejér interpolations of higher order II, Acta Math. Hung., 56 (1990), 369-380.
[9] P. Vértesi and Y. Xu, Order of mean convergence of Hermite-Fejér interpolation, Studia Sci. Math. Hungar., 24 (1989), 391-401.
(Received January 23, 1989; revised August 24, 1989)

```
MATHEMATICAL INSTITUTE
OF THE HUNGARIAN ACADEMY OF SCIENCES
H-1364 BUDAPEST, P.O.B. 127
HUNGARY
```

UNIVERSITY OF FLORIDA
DEPARTMENT OF MATHEMATICS
gainesville, florida 32611
U.S.A.

GENERAL ABSOLUTES OF TOPOLOGICAL SPACES

Á. CSÁSZÁR (Budapest), member of the Academy
0. Introduction. This paper is a continuation of [2]. Terminology and notation are, unless explicitly mentioned, taken from there; however, many of the definitions and results are recalled below.

A Ponomarev absolute of a topological space is an extremally disconnected ($=$ the closure of an open set is open) (briefly: EDC) space of which the given space is the image under an ultraperfect map ([7] for T_{2}-spaces, [11] for the general case). A map f is ultraperfect iff it is continuous, closed, irreducible, compact, and separated $\left(x_{1} \neq x_{2}, f\left(x_{1}\right)=f\left(x_{2}\right)\right.$ imply that x_{1} and x_{2} have disjoint neighbourhoods) (in [2], separatedness is not included in the definition). An Iliadis absolute of a space is a regular EDC space of which the given space is the image under a ϑ-perfect map ([5] for T_{2}-spaces, [2] for the general case). A map f is ϑ-perfect iff it is ϑ-continuous $(f(x) \in V, V$ open imply that there is an open U with $x \in U, f(\bar{U}) \subset \bar{V})$, closed, irreducible, compact, and separated (without separatedness in [2]).

A Ponomarev absolute of X can be constructed (see [8]) as follows. Let $U X$ denote the set of all maximal open filters in X, equipped with the topology for which the sets

$$
\begin{equation*}
s(H)=\{s \in U X: H \in \mathfrak{s}\} \quad(H \subset X \text { open }) \tag{1}
\end{equation*}
$$

constitute a base. $U X$ is a compact T_{2}-space, and the sets (1) are clopen in $U X$. Now take the product space $X \times U X$ and its subspace $P X$ on the subset

$$
\begin{equation*}
\alpha X=\{(X, \mathfrak{s}) \in X \times U X: \mathfrak{s} \rightarrow x \text { in } X\} \tag{2}
\end{equation*}
$$

Then $P X$ is EDC and the map

$$
\begin{equation*}
k_{X}: \alpha X \rightarrow X, \quad k_{X}(x, \mathfrak{s})=x \tag{3}
\end{equation*}
$$

is ultraperfect from $P X$ onto X.
In order to obtain an Iliadis absolute a similar construction can be applied (see [2]). We take $X \times U X$ equipped with the product of the indiscrete topology on X and the above topology on $U X$, and the subspace $E X$ on the set αX. Then $E X$ is regular, EDC, and $k_{X}: E X \rightarrow X$ is ϑ-perfect.

If X is EDC then $k_{X}: P X \rightarrow X$ is a homeomorphism, and the same holds for $k_{X}: E X \rightarrow X$ if X is regular and EDC.

Now $P X$ and $E X$ are essentially the unique Ponomarev and Iliadis absolutes of X, respectively. More precisely, if $f: Z \rightarrow X$ is ϑ-perfect, then there is a unique map $f^{*}: \alpha Z \rightarrow \alpha X$ that is continuous from $P Z$ to $E X$ and satisfies

$$
\begin{equation*}
f \circ k_{Z}=k_{X} \circ f^{*} \tag{4}
\end{equation*}
$$

$f^{*}: E Z \rightarrow E X$ is a homeomorphism. Thus, if Z is regular and EDC, then $f^{*} \circ k_{Z}^{-1}: Z \rightarrow E X$ is a homeomorphism such that $f=k_{X} \circ\left(f^{*} \circ k_{Z}^{-1}\right)$.

If f is ultraperfect then, by [8], $f^{*}: P Z \rightarrow P X$ is a homeomorphism. Consequently, if in addition Z is EDC, then $f^{*} \circ k_{Z}^{-1}: Z \rightarrow P X$ is a homeomorphism satisfying $f=k_{X} \circ\left(f^{*} \circ k_{Z}^{-1}\right)$.

The main purpose of this paper is to study a generalization of the concepts of Ponomarev and Iliadis absolutes, and to illustrate this generalization by a concrete special case.

1. Absolutes of regular spaces. For regular spaces, the Ponomarev and lliadis absolutes coincide:

Theorem 1.1. For a topological space X, the following statements are equivalent:
(a) X is regular,
(b) $P X=E X$,
(c) $P X$ is regular.

Proof. $(\mathrm{a}) \Longrightarrow(\mathrm{b}): k_{X}: E X \rightarrow X$ is ϑ-perfect. As a ϑ-continuous map to a regular space is continuous, k_{X} is ultraperfect as well. Hence there is a homeomorphism $h: E X \rightarrow P X$ such that $k_{X}=k_{X} \circ h$. Since $h^{-1}: P X \rightarrow$ $\rightarrow E X$ and $\mathrm{id}_{\alpha X}: P X \rightarrow E X$ are both continuous and

$$
\operatorname{id}_{X} \circ k_{X}=k_{X} \circ h^{-1}=k_{X} \circ \operatorname{id}_{\alpha X}
$$

necessarily $h^{-1}=\operatorname{id}_{\alpha X}$ so that $P X=E X$.
(b) \Longrightarrow (c): obvious.
(c) \Longrightarrow (a): see Lemma 1.2.

Lemma 1.2. If $f: Y \rightarrow Z$ is ultraperfect and Y is regular then Z is regular, too.

Proof. Let V be an open neighbourhood of $z \in Z$. Since $f^{-1}(z)$ is compact and $f^{-1}(V)$ is open in the regular space Y, there is an open set $U \subset Y$ such that

$$
f^{-1}(z) \subset U \subset \bar{U} \subset f^{-1}(V)
$$

Then

$$
z \in Z-f(Y-U) \subset f(U) \subset f(\bar{U}) \subset V
$$

and $Z-f(Y-U)$ is open, $f(\bar{U})$ is closed in Z.

REMARK 1.3. The proof remains valid if f is continuous, surjective, closed, and compact (i.e. perfect according to the usual terminology), cf. [3], 3.7.20.
2. The categories r Top and δ Top. It is well-known that the regular open (briefly: r-open) subsets of a topological space X constitute a base for a coarser topology. Thus we obtain a space $r X(R X$ in [2]), the semiregularization of X. The terminology is motivated by the fact that $r X$ is always semi-regular (i.e. the r-open sets in $r X$ constitute a base for $r X$) because X and $r X$ have the same r-open subsets; in fact, for any open subset $G \subset X$, we have $\mathrm{cl}_{X} G=\mathrm{cl}_{r X} G$ (and dually int $X_{X} F=\operatorname{int}_{r_{X}} F$ for any closed set $F \subset X$). Hence $\mathrm{cl}_{Y} G=\mathrm{cl}_{X} G$ for any set $G \subset X$ open in X, $\operatorname{int}_{Y} F=\operatorname{int}_{X} F$ for any set $F \subset X$ closed in X, and for any space Y lying between X and $r X$ (i.e. having the same underlying set and a topology finer than that of $r X$ and coarser than that of X); in this case X and Y contain the same r-open sets, consequently $r Y=r X$.

A regular space is obviously semi-regular. Observe that, in an EDC space, r-open sets coincide with clopen sets, thus an EDC space is semiregular iff it is regular. Conversely:

Example 2.1 (cf. [10], p. 100). Let $Y=\{p\} \cup Q$ where Q is the unit square $(0,1) \times(0,1)$ and $p \notin Q$. For $z \in Q$, let the Euclidean plane neighbourhoods constitute a neighbourhood base in Y, while the neighbourhood filter of p is generated by the filter base composed of the sets

$$
\begin{equation*}
V_{\varepsilon}=\{p\} \cup\left(\left(0, \frac{1}{2}\right) \times(0, \varepsilon)\right) \quad(\varepsilon>0) \tag{2.1.1}
\end{equation*}
$$

The space is clearly T_{2}, the sets V_{e} are r-open, but V_{1} does not contain any closed neighbourhood of p; hence Y is semi-regular without being regular.

The fact that $r r X=r X$ makes plausible the conjecture that the semiregular spaces constitute a bireflective subcategory in Top, $r X$ being the reflection of X. However, this is not true because there exist a semi-regular space Y and a closed subspace $X \subset Y$ that is not semi-regular; then the embedding $f: X \rightarrow Y$ is continuous without $f: r X \rightarrow r Y$ being continuous (see [3], 2.7.6). The example below produces a similar phenomenon with a bijective map f :

Example 2.2. Let Y be the space in 2.1 and X be a space with the same underlying set and the same neighbourhoods of p, but, for $z=(a, b) \in Q$, let a neighbourhood base be composed of the sets

$$
(a-\varepsilon, a] \times(b-\varepsilon, b+\varepsilon) \subset Q \quad(\varepsilon>0)
$$

Then id: $X \rightarrow Y$ is continuous but the r-open set $V_{1} \subset Y$ is not open in $r X$, i.e. it is not a union of r-open sets in X. In fact, one of the members of this union, say G, would contain p and then a set $V_{\varepsilon} \subset G$. But $\mathrm{cl}_{X} V_{\varepsilon}=$
$=\{p\} \cup\left(\left(0, \frac{1}{2}\right] \times(0, \varepsilon]\right) \subset \mathrm{cl}_{X} G$, and any point $\left(\frac{1}{2}, y\right) \in \mathrm{cl}_{X} V_{\varepsilon}(0<y<\varepsilon)$ belongs to int $X_{X} \operatorname{cl}_{X} V_{e} \subset \operatorname{int}_{X} \operatorname{cl}_{X} G$. Thus G cannot be r-open in X, and id : $r X \rightarrow r Y$ fails to be continuous.

However, the character of $r X$ as a reflection can be saved if we replace the category Top by another one. For this purpose, let us say that a map $f: X \rightarrow Y$ is r-continuous (R-map in [1]) iff $f^{-1}(G)$ is r-open in X whenever G is r-open in Y. It is said to be δ-continuous [6] iff $f^{-1}(G)$ is a union of r-open sets in X whenever G is r-open in Y. We also recall that f is said to be almost continuous [9] iff $f^{-1}(G)$ is open in X whenever G is r-open in Y.

Lemma 2.3 ([4]). $f: X \rightarrow Y$ is δ-continuous iff $f: r X \rightarrow r Y$ is continuous, and almost continuous iff $f: X \rightarrow r Y$ is continuous.
lemma 2.4. The following implications hold for any map:
continuous
r-continuous $\Rightarrow \delta$-continuous \Rightarrow almost continuous $\Rightarrow \vartheta$-continuous.
Proof. Only the last implication is not obvious. (Cf. [9], Remark 3.3.) Let $f: X \rightarrow Y$ be almost continuous, $x \in X, V \subset Y$ an open neighbourhood of $f(x)$. Then $U=f^{-1}(\operatorname{int} \bar{V})$ is an open neighbourhood of x, and $\bar{U} \subset$ $\subset f^{-1}(\bar{V})$ because $\bar{V} \subset Y$ is r-closed and $f^{-1}(\bar{V})$ is closed. Thus f is ϑ-continuous.

None of the above implications can be reversed.
Example 2.5. Let $X=Y=\mathbf{R}$, and let X be equipped with the Sorgenfrey topology, Y with the Euclidean one, $f: X \rightarrow Y=\mathrm{id}_{\mathbf{R}}$. Then f is (continuous and) δ-continuous because X is regular, hence every open set is a union of r-open sets. However, the interval $(0,1)$ is r-open in Y without being so in X. Thus f is not r-continuous.

In 2.2 , id is continuous without being δ-continuous. If X is not semiregular, then id: $r X \rightarrow X$ is r-continuous without being continuous. In [9], Example 2.3, a ϑ-continuous map $f: X \rightarrow Y$ is defined that is not almost continuous; however, Y is not T_{1} in this example. In the following one, X can be chosen to be T_{2} :

Example 2.6. Let X be a semi-regular, non-regular space. Then k_{X} : $E X \rightarrow X$ is ϑ-continuous. We show that it is not almost continuous.

By 1.1, we have $P X \neq E X$. Thus there is a set open in $P X$ but not in $E X$. We can choose this set in the form $U_{0}=(G \times s(H)) \cap \alpha X$ where H is open and G is r-open in X (since X is semi-regular). Then U_{0} is not a union of sets of the form $\left(X \times s\left(H_{i}\right)\right) \cap \alpha X, H_{i}$ open in X. If $k_{X}^{-1}(G)=(G \times U X) \cap \alpha X$ were a union of sets of the above form, then the same would hold for U_{0} (because $s\left(H_{i}\right) \cap s(H)=s\left(H_{i} \cap H\right)$). Hence $k_{X}: E X \rightarrow X$ is not almost continuous.

In the opposite sense, we can say:

Lemma 2.7. An almost continuous map to an EDC space is r-continuous.
Proof. If $f: X \rightarrow Y$ is almost continuous, Y is EDC, and $G \subset Y$ is r-open, then it is clopen and r-closed, hence $f^{-1}(G)$ is clopen and r-open in X.

Lemma 2.8. $\mathrm{id}_{X}: X \rightarrow r X$ and $\mathrm{id}_{X}: r X \rightarrow X$ are both r-continuous.
Lemma 2.9. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both r-continuous or δ continuous, then so is $g \circ f: X \rightarrow Z$.

Lemma 2.10. If $f: X \rightarrow Y$ is r-continuous or δ-continuous, then so is $f: r X \rightarrow Y$, too.

Proof. 2.8.
By 2.9, we obtain two categories r Top and δ Top with the topological spaces as objects and the r-continuous or δ-continuous maps as morphisms, respectively. Now 2.8 and 2.10 furnish:

Theorem 2.11. The semi-regular spaces constitute a bireflective subcategory with the reflection $r X$ of X in any of the following categories:

$$
r \text { Top }, \quad \delta \text { Top }, \quad r \text { Top } \cap \text { Top }, \quad \delta \text { Top } \cap \text { Top. }
$$

Proof. For the two last mentioned categories, observe that an almost continuous map to a semi-regular space is continuous.
3. General absolutes. Let us call absolute of a topological space every EDC space of which the given space is the image under a ϑ-perfect map. Thus the Ponomarev and Iliadis absolutes are special cases of this general concept.

Our purpose is to find all possible absolutes of a given space.
Lemma 3.1. If X is an EDC space, then every space lying between X and $r X$ is $E D C$.

Proof. Let Y be a space lying between X and $r X$. If G is open in Y, it is open in X, hence $\mathrm{cl}_{X} G=\mathrm{cl}_{Y} G$. Now $\mathrm{cl}_{X} G$ is clopen in X, hence r-open, so that it is r-open in Y.

Theorem 3.2. If Y is a space lying between $P X$ and $E X$ then Y is $E D C$ and $k_{X}: Y \rightarrow X$ is ϑ-perfect. Therefore Y is an absolute of X.

Proof. By [2], 6.3, $E X=r P X$. Hence Y is EDC by 3.1. $k_{X}: Y \rightarrow X$ is ϑ-continuous and separated because so is $k_{X}: E X \rightarrow X$, and it is closed, irreducible, and compact because so is $k_{X}: P X \rightarrow X$.

The following theorem says that the converse is essentially true:

Theorem 3.3. Let Z be an EDC space and $f: Z \rightarrow X$-perfect. Then there exists a unique space Y lying between $P X$ and $E X$ and a unique homeomorphism $h: Z \rightarrow Y$ such that $f=k_{X} \circ h$.

Proof. There is a homeomorphism $f^{*}: E Z \rightarrow E X$ such that $f \circ k_{Z}=$ $=k_{X} \circ f^{*}$. Since Z is EDC, $k_{Z}: P Z \rightarrow Z$ is a homeomorphism, and $h=$ $=f^{*} \circ k_{Z}^{-1}: Z \rightarrow E X$ is bijective and continuous. Define Y to have the underlying set αX and the quotient topology with respect to h; then $h: Z \rightarrow Y$ is a homeomorphism. Since $h: Z \rightarrow E X$ is continuous, the topology of Y is finer than that of $E X$.

Now let $F \subset \alpha X$ be closed in $Y,(x, \mathfrak{s}) \in \alpha X-F$. By

$$
k_{X}=f \circ k_{Z} \circ f^{*-1}=f \circ h^{-1}
$$

$k_{X}: Y \rightarrow X$ is closed and compact. Now $k_{X}^{-1}(x)$ is compact in Y and T_{2} in $E X$ (it is homeomorphic to a subspace of $U X$), consequently the topologies of Y and $E X$ coincide on the subspace $k_{X}^{-1}(x)$. Therefore there is an open set $H \subset X$ such that

$$
\begin{equation*}
\mathfrak{s} \in s(H), \quad(X \times s(H)) \cap F \cap k_{X}^{-1}(x)=\emptyset \tag{3.3.1}
\end{equation*}
$$

As $s(H)$ is closed in $U X,(X \times s(H)) \cap F$ is closed in Y and $k_{X}((X \times s(H)) \cap F)$ is closed in X. By (3.3.1), x does not belong to the latter set, and there is an open set $G \subset X$ such that

$$
x \in G, \quad G \cap k_{X}((X \times s(H)) \cap F)=\emptyset,
$$

hence $(G \times s(H)) \cap \alpha X$ is a $P X$-neighbourhood of (x, s) disjoint from F. Thus F is closed in $P X$, and the topology of Y is coarser than that of $P X$.

The uniqueness statement can be formulated more precisely as follows:
(*) If Z is EDC, $f: Z \rightarrow X$-perfect, $h^{\prime}: Z \rightarrow E X$ continuous, and $f=k_{X} \circ h^{\prime}$, then necessarily $h^{\prime}=h$ (constructed above). Hence, if h^{\prime} is a homeomorphism from Z onto a space Y^{\prime} over αX having a topology finer than that of $E X$, then $Y^{\prime}=Y$ (constructed above).

In fact, the map $h^{\prime} \circ k_{Z}: P Z \rightarrow E X$ is continuous and satisfies $f \circ k_{Z}=$ $=k_{X} \circ\left(h^{\prime} \circ k_{Z}\right)$. Therefore

$$
h^{\prime} \circ k_{Z}=f^{*}, \quad h^{\prime}=f^{*} \circ k_{Z}^{-1}=h .
$$

4. The absolute $R X$. We illustrate the above theory by a special case.

For a topological space X, let us denote by $R X$ the set αX equipped with the subspace topology of the product $r X \times U X$. Then $R X$ lies between $P X$ and $E X$, and it is an absolute of X according to 3.2.

Lemma 4.1. $k_{X}: R X \rightarrow X$ is almost continuous.
The map $k_{X}: R X \rightarrow X$ is not always δ-continuous (see 4.3).

Lemma 4.2. $R X=P X$ iff X is semi-regular.
Proof. If X is semi-regular, then $r X=X$ and $R X=P X$. Conversely, let $G \subset X$ be open but not a union of r-open sets. Then $(G \times U X) \cap \alpha X$ is open in $P X$ but not in $R X$.

In fact, assume

$$
(G \times U X) \cap \alpha X=\bigcup_{i \in I}\left(\left(G_{i} \times s\left(H_{i}\right)\right) \cap \alpha X\right)
$$

where $G_{i} \subset X$ is r-open, $H_{i} \subset X$ is open. Let $x_{0} \in G$. Then $\mathfrak{s} \in U X$, $\mathfrak{s} \rightarrow x_{0}$ imply $\left(x_{0}, \mathfrak{s}\right) \in \alpha X$, hence $\left(x_{0}, \mathfrak{s}\right) \in G_{i} \times s\left(H_{i}\right)$ for some i, i.e. $x_{0} \in G_{i}, H_{i} \in \mathfrak{s}$. By [2], 2.2, there is a finite subset $I_{0} \subset I$ such that $\bigcup_{i \in I_{0}} \bar{H}_{i}$ is a neighbourhood of x_{0} in X. Therefore $V=\bigcap_{i \in I_{0}} G_{i} \cap$ int $\bigcup_{i \in I_{0}} \bar{H}_{i}$ is an r-open neighbourhood of x_{0}, and $V \subset \bigcup_{i \in I_{0}}\left(G_{i} \cap \bar{H}_{i}\right) \subset G$. In fact, $G_{i} \cap \bar{H}_{i} \subset G$ for each $i \in I$, because $x \in G_{i} \cap \bar{H}_{i}$ implies the existence of $\mathfrak{s} \in U X$ such that $H_{i} \in \mathfrak{s}, \mathfrak{s} \rightarrow x$, whence

$$
(x, \mathfrak{s}) \in\left(G_{i} \times s\left(H_{i}\right)\right) \cap \alpha X \subset(G \times U X) \cap \alpha X
$$

so that $x \in G$. Now $x_{0} \in V \subset G$ contradicts the choice of G.
Lemma 4.3. If X is semi-regular but non-regular, then $k_{X}: R X \rightarrow X$ is not δ-continuous.

Proof. By $4.2, R X=P X$ and, by $1.1, P X \neq E X$. Let the r-open set $G \subset X$ and the open set $H \subset X$ be chosen such that $(G \times s(H)) \cap \alpha X$ is not open in $E X=r P X([2], 6.3)$ i.e. not a union of r-open sets in $P X$. Then $(G \times U X) \cap \alpha X$ is not a union of r-open sets in $P X$ either, because $(X \times s(H)) \cap \alpha X$ is clopen in $P X$. Hence $k_{X}^{-1}(G)$ is not a union of r-open sets in $R X=P X$.

From 4.2, we can obtain spaces satisfying $R X \neq P X$. Our next purpose is to construct a T_{2}-space such that $E X \neq R X \neq P X$.

Lemma 4.4. Let Y be a T_{2}-space, $G_{0} \subset Y r$-open, $x_{0} \in G_{0}, X \supset Y a$ space such that the neighbourhoods of $y \in Y$ constitute a neighbourhood base for y in X, and let the trace $\mathfrak{s}(p)$ in Y of the neighbourhood filter of any $p \in X-Y$ fulfil the following conditions:
(a) $\mathfrak{s}(p)$ does not have a cluster point in Y,
(b) $p \neq q, p, q \in X-Y$ imply that $\mathfrak{s}(p)$ and $\mathfrak{s}(q)$ contain disjoint elements,
(c) $G_{0} \notin \mathfrak{s}(p)$,
(d) if $G \subset Y$ is open and $x_{0} \in \bar{G}$ then there is a $p \in X-Y$ such that G intersects every element of $\mathfrak{s}(p)$.

Then, if the sets $\{p\} \cup S, S \in \mathfrak{s}(p)$ constitute a neighbourhood base of $p \in X-Y, X$ is a T_{2}-space such that $R X \neq E X$.

Proof. X is T_{2} by (a) and (b). The set G_{0} is r-open in X, too, since $x \in \mathrm{cl}_{X} G_{0}-G_{0}$ implies either $x=y \in Y$ and then the open neighbourhoods of y in Y (open in X) are not contained in $\mathrm{cl}_{Y} G_{0}$ and not in $\mathrm{cl}_{X} G_{0}$ either, or $x=p \in X-Y$ and then no open element of $\mathfrak{s}(p)$ can be contained in $\mathrm{cl}_{X} G_{0}$ since then it would be included in $\mathrm{cl}_{Y} G_{0}$ and in $G_{0}(r$-open in Y) in contradiction with (c).

Thus $U=\left(G_{0} \times U X\right) \cap \alpha X$ is open in $R X$. Let $\mathfrak{s}_{0} \in U X, \mathfrak{s}_{0} \rightarrow x_{0} \in G_{0}$. We show that (x_{0}, s_{0}) does not lie in the interior of U in $E X$. In fact, a neighbourhood base of this point is composed of the sets $(X \times s(V)) \cap \alpha X$ where $V \in \mathfrak{s}_{0}$ is open in X. Now $G=V \cap G_{0} \in \mathfrak{s}_{0}$ and $x_{0} \in \mathrm{cl}_{X} G$ follow from $\mathfrak{s}_{0} \rightarrow x_{0}$, whence $x_{0} \in \mathrm{cl}_{Y} G$. Choose p according to (d); then $p \in \mathrm{cl}_{X} G \subset \mathrm{cl}_{X} V$, so that there is an $\mathfrak{s} \in U X$ such that $V \in \mathfrak{s}, \mathfrak{s} \rightarrow p$, and

$$
(p, \mathfrak{s}) \in(X \times s(V)) \cap \alpha X, \quad(p, \mathfrak{s}) \notin\left(G_{0} \times U X\right) \cap \alpha X=U
$$

Example 4.5. There exists a space Y fulfilling the conditions in 4.4 such that X is not semi-regular. Then, by 4.4 and $4.2, X$ is T_{2} and $E X \neq R X \neq$ $\neq P X$.

Let $Y=\mathbf{Q}$ be equipped with the topology inherited from the Euclidean topology of \mathbf{R}. Put $G_{0}=(-1,1) \cap \mathbf{Q}, x_{0}=0$. Consider a well-ordering of the open subsets of Y in the type γ where γ is the initial ordinal of 2^{ω}; choose G_{0} to be the 0 th element in this well-ordering. Select $y_{0} \in(-1,1)-\mathbf{Q}$, $z_{0} \in(1,2)-\mathbf{Q}$.

Suppose y_{ξ} and z_{ξ} are defined for $\xi<\alpha(<\gamma)$. Let H_{α} be an open subset of \mathbf{R} such that $G_{\alpha}=H_{\alpha} \cap \mathbf{Q}$, and $y_{\alpha} \in H_{\alpha}-\mathbf{Q}$ be chosen distinct from all y_{ξ} and $z_{\xi}(\xi<\alpha)$. If $G_{\alpha} \subset G_{0}$, let $z_{\alpha} \in(1,2)-\mathbf{Q}$ be distinct from all y_{ξ} and z_{ξ}; if $G_{\alpha}-G_{0} \neq \emptyset$, let $z_{\alpha} \in\left(H_{\alpha}-(-1,1)\right)-\mathbf{Q}$ again be distinct from all y_{ξ} and z_{ξ} previously chosen. Let $X \supset Y$ be chosen such that $|X-Y|=2^{\omega}$, $X-Y=\left\{p_{\xi}: \xi<\gamma\right\}$, and, for $p_{\xi} \in X-Y$, define $\mathfrak{s}\left(p_{\xi}\right)$ to be the filter in Y generated by the sets

$$
\left(\left(y_{\xi}-\varepsilon, y_{\xi}+\varepsilon\right) \cup\left(z_{\xi}-\varepsilon, z_{\xi}+\varepsilon\right)\right) \cap \mathbf{Q} \quad(\varepsilon>0) .
$$

Then (a), (b), (c) are clearly true. If $G \subset Y$ is open, say, $G=G_{\alpha}$ (and $0 \in \mathrm{cl}_{Y} G_{\alpha}$), then $p_{\alpha} \in X-Y$ fulfils (d). X is not semi-regular because, if $G_{\alpha}-G_{0} \neq \emptyset$, then $p_{\alpha} \in \mathrm{cl}_{X} G_{\alpha}-G_{\alpha}$ is interior to $\mathrm{cl}_{X} G_{\alpha}$ so that G_{α} is not r-open and Y is not a union of r-open sets.

It is well-known that αX is closed in $X \times U X$ while it is dense in $I X \times U X$ where $I X$ is the underlying set of X equipped with the indiscrete topology ([2], 2.1). In this respect, $R X$ is similar to $P X$:

Theorem 4.6. αX is closed in $r X \times U X$.
Proof. For $\left(x_{0}, s_{0}\right) \in(r X \times U X)-\alpha X$, choose an open $G_{0} \subset X$ such that $x_{0} \in G_{0} \notin \mathfrak{s}_{0}$. Then there is an open $S_{0} \subset X$ satisfying $S_{0} \in \mathfrak{s}_{0}$,
$G_{0} \cap S_{0}=\emptyset$. Hence $H_{0}=\operatorname{int} \bar{G}_{0}$ is r-open in X and $H_{0} \cap S_{0}=\emptyset, x_{0} \in H_{0}$, so that $H_{0} \times s\left(S_{0}\right)$ is a neighbourhood of $\left(x_{0}, s_{0}\right)$ in $r X \times U X$ not intersecting αX. In fact, $(x, s) \in\left(H_{0} \times s\left(S_{0}\right)\right) \cap \alpha X$ would imply $x \in \bar{S}_{0}, x \notin H_{0}$: a contradiction.

Thus $R X$ is a closed subspace of a semi-regular space (namely of $r X \times$ $\times U X$). Unfortunately, this statement does not contain any restriction on the quality of $R X$:

Lemma 4.7. Every topological space is homeomorphic to a closed subspace of a suitable semi-regular space.

Proof. For a space X, let $Y=X \times[0,+\infty)$. Let the points (x, y), $y>0$ be isolated in Y, and let a base in Y be composed of the corresponding singletons and the sets

$$
B(f)=\{(x, y): x \in X, 0 \leqq y<f(x)\}
$$

where $f: X \rightarrow[0,+\infty)$ is a function such that

$$
Z(f)=\{x \in X: \quad f(x)=0\}
$$

is closed in X. This is in fact a base as $B(f) \cap B(g)=B(h)$ for $h=$ $=\min (f, g), Z(h)=Z(f) \cup Z(g)$. The set $X^{*}=X \times\{0\}$ is closed in Y and the subspace topology on X^{*} coincides with that of X (more precisely, $\operatorname{pr}_{X} \mid X^{*}$ is a homeomorphism) because

$$
\operatorname{pr}_{X}\left(B(f) \cap X^{*}\right)=X-Z(f) .
$$

The singletons in $Y-X^{*}$ are clopen, and the sets $B(f)$ are r-open as well. In fact,

$$
\overline{B(f)}=B(f) \cup(F \times\{0\})
$$

where $F=\operatorname{cl}_{X}(X-Z(f))$, and $x \in F \cap Z(f)$ implies that every neighbourhood $B(g)$ of $(x, 0)$ contains points (x, y) satisfying $y>0$, not belonging to $\overline{B(f)}$.

It would be interesting to know a non-trivial subclass of topological spaces that contains all spaces $R X$. Semi-regular spaces do not do; in fact, if $R X$ is semi-regular then it is regular and $R X=E X$ (which fails to hold in general).

Similarly, the fact that $k_{X}: R X \rightarrow X$ is almost continuous does not characterize $R X: R X \neq P X$ can happen and $k_{X}: P X \rightarrow X$ is (almost) continuous. However, it is not difficult to see that $R X$ has a kind of extremal character with respect to this property. For this purpose, let us call almost ultraperfect an almost continuous ϑ-perfect map.

Theorem 4.8. If Y is a space lying between $P X$ and $R X$ then it is $E D C$ and $k_{X}: Y \rightarrow X$ is almost ultraperfect. Conversely, let Z be an EDC space and $f: Z \rightarrow X$ be almost ultraperfect. Then there is a homeomorphism $h: Z \rightarrow Y$ onto a space Y lying between $P X$ and $R X$ such that $f=k_{X} \circ h$. Z and f uniquely determine h and Y.

Proof. The first statement is obvious by 3.2 and 4.1. If Z is EDC and $f: Z \rightarrow X$ is almost ultraperfect, then, by 3.3 , there is a homeomorphism $h: Z \rightarrow Y$ onto a space lying between $P X$ and $E X$ such that $f=k_{X} \circ h$. If $G \subset X$ is r-open, then $k_{X}^{-1}(G)=(G \times U X) \cap \alpha X$ is open in Y and so is $(X \times s(H)) \cap \alpha X$ for any open set $H \subset X$. Thus the topology of Y is finer than that of $R X$. The uniqueness statement can be formulated more precisely similarly to (*) given in the proof of 3.3 : if $h^{\prime}: Z \rightarrow E X$ is continuous and fulfils $f=k_{X} \circ h^{\prime}$ then $h^{\prime}=h$.

Corollary 4.9. The space $Y=R X$ and the map $k=k_{X}$ have the following properties:
(a) Y is $E D C$,
(b) $k: Y \rightarrow X$ is an almost ultraperfect map,
(c) whenever Z is $E D C$ and $f: Z \rightarrow X$ is almost ultraperfect, there exists a bijective and continuous map $g: Z \rightarrow Y$ such that $f=k \circ g$.

Conversely, if Y and k satisfy (a), (b), (c), then there is a homeomorphism $h: Y \rightarrow R X$ such that $k=k_{X} \circ h$.

Proof. The first part follows from 4.1 and 4.8. Conversely, if Y and k satisfy (a), (b), (c), then by 4.8 there is a homeomorphism $h: Y \rightarrow Y^{\prime}$ onto a space Y^{\prime} lying between $P X$ and $R X$ such that $k=k_{X} \circ h$. Applying (c) for $Z=R X$ and $f=k_{X}$, we obtain a bijective and continuous map $g: R X \rightarrow Y$ such that $k_{X}=k \circ g$. Now Y^{\prime} is EDC, $k_{X}=k \circ h^{-1}: Y^{\prime} \rightarrow X$ is almost ultraperfect and $k_{X}=k_{X} \circ h \circ g: Y^{\prime} \rightarrow X$ where $h \circ g: Y^{\prime} \rightarrow E X$ is continuous, while $k_{X}=k_{X} \circ \mathrm{id}_{\alpha X}: Y^{\prime} \rightarrow X, \mathrm{id}_{\alpha X}: Y^{\prime} \rightarrow E X$ is continuous as well. Hence, by (*) in $3.3, h \circ g=\mathrm{id}_{\alpha X}: \alpha X \rightarrow \alpha X$, and $h \circ g=\mathrm{id}_{\alpha X}: R X \rightarrow Y^{\prime}$ is continuous, showing $Y^{\prime}=R X$.

References

[1] D. Carnahan, Some properties related to compactness in topological spaces, Ph. D. thesis, Univ. of Arkansas, 1973.
[2] Á. Császár, Iliadis absolutes for arbitrary spaces, Acta Math. Hung., 57 (1991).
[3] R. Engelking, General Topology (Warszawa, 1977).
[4] D. B. Gauld - M. Mršević - I. L. Reilly - M. K. Vamanamurthy, Continuity properties of functions, Topology, Theory and Applications (Budapest - Amsterdam, 1985), 311-313.
[5] S. Iliadis, Absolutes of Hausdorff spaces (in Russian), Dokl. Akad. Nauk SSSR, 149 (1963), 22-25.
[6] T. Noiri, On δ-continuous functions, J. Korean Math. Soc., 16 (1980), 161-166.
[7] V. I. Ponomarev, The absolute of a topological space (in Russian), Dokl. Akad. Nauk SSSR, 149 (1963), 26-29.
[8] L. B. Shapiro, On absolutes of topological spaces and continuous mappings (in Russian), Dokl. Akad. Nauk SSSR, 226 (1976), 523-526.
[9] M. K. Singal - A. R. Singal, Almost continuous mappings, Yokohama Math. J., 16 (1968), 63-73.
[10] L. A. Steen - J. A. Seebach, jr., Counterexamples in topology (New York-Chicago-San Francisco-Atlanta-Dallas-Montreal-Toronto-London-Sydney, 1970).
[11] V. M. Ul'janov, Compactifications of countable character and absolutes (in Russian), Mat. Sb., 98 (1975), 223-254.
(Received February 8, 1989)
EÖTVÖS LORÁND UNIVERSITY DEPARTMENT OF ANALYSIS BUDAPEST, MÚZEUM KRT. 6-8 H-1088

ON SOME PROBLEMS OF I. JOÓ

A. BOGMÉR, M. HORVÁTH and A. SÖVEGJÁRTÓ (Budapest)

In [3] Joó raised the following problem. Let $1<q<2$ and consider the expansion of the number 1 of the form

$$
\begin{equation*}
1=\sum_{i=1}^{\infty} q^{-n_{i}} \tag{1}
\end{equation*}
$$

where $\left\{n_{i}\right\}$ is a subsequence of $\{1,2,3, \ldots\}$. For fixed q such an expansion is not necessarily unique, so the problem of unicity or that of finding the number of solutions of (1) arises. On the other hand we can investigate the problem of finding an expansion (1) for a fixed q, satisfying

$$
\begin{equation*}
\sup \left(n_{i+1}-n_{i}\right)=\infty \tag{2}
\end{equation*}
$$

Both questions are investigated in the papers [3], [4], [5], [7]. While preparing these publications, I. Joó raised (among others) the following two questions:
(A) Does there exist an expansion (1) satisfying (2) for every $1<q<$ $<\frac{1+\sqrt{5}}{2}$?
(B) Does the following statement hold for every $1<q<2$: there exists an expansion (1) satisfying (2) if and only if there exist $2^{\aleph_{0}}$ many different expansions?

In this paper we give negative answers to both problems. Our considerations have number-theoretic character, so we start with recalling some known facts and notions from algebraic number theory. A number $\alpha \in \mathbf{C}$ is called algebraic if it is the zero of a polynomial with entire (or rational) coefficients. If the polynomial is irreducible over the field \mathbf{Q} of rationals, then its other zeros are called the conjugates of α; we denote them by $\alpha_{1}=\alpha, \alpha_{2}, \ldots, \alpha_{s}$. If α is the zero of a polynomial with entire coefficients and the leading coefficient is 1 then we call α an algebraic integer. The Pisot numbers ([1], [6]) are algebraic integers α satisfying

$$
\begin{equation*}
\alpha>1, \quad\left|\alpha_{i}\right|<1, \quad 2 \leqq i \leqq s \tag{3}
\end{equation*}
$$

We shall prove the following
Theorem. Let $1<q<2$ and

$$
\begin{equation*}
1=\sum_{n=1}^{\infty} \frac{\varepsilon_{n}}{q^{n}}, \quad \varepsilon_{n}=0 \text { or } 1 \tag{4}
\end{equation*}
$$

If q is a Pisot number, then the numbers

$$
x_{k}:=\varepsilon_{k}+\frac{\varepsilon_{k+1}}{q}+\frac{\varepsilon_{k+2}}{q^{2}}+\ldots
$$

give only finitely many different values.
This theorem answers negatively the problems (A) and (B). Indeed, we can first see easily that there are Pisot numbers less than $\frac{1+\sqrt{5}}{2}$; for example the real zero of the polynomial $q^{3}-q^{2}-1$ is such a number. By the theorem the x_{k} are bounded from below, $x_{k} \geqq \delta>0$, but then there exists $t=t(\delta)>0$ independent of k such that among $\varepsilon_{k}, \varepsilon_{k+1}, \ldots, \varepsilon_{k+t}$ there must be a digit 1 , hence with the notation of (1)

$$
\sup \left(n_{i+1}-n_{i}\right) \leqq t<\infty .
$$

So (A) is answered. In [1] the authors proved that for all $1<q<\frac{1+\sqrt{5}}{2}$ there exist $2^{\aleph_{0}}$ different expansions (1) of 1 , so the answer for (B) is also negative.

Proof of the Theorem. The numbers $x_{k}=q^{k}\left(1-\sum_{n=1}^{k-1} \frac{\varepsilon_{n}}{q^{n}}\right)$ are algebraic and are contained in the field extension $\mathbf{Q}(q)$ of $\mathbf{Q}, x_{k} \in \mathbf{Q}(q)$. We shall prove that the numbers x_{k} and all their conjugates have a common upper bound and the x_{k} are algebraic integers. In this case all x_{k} are the zeros of polynomials with entire coefficients whose order and coefficients have a bound independent of k, hence the set $\left\{x_{k}\right\}$ is indeed finite.

Let the number q have s conjugates $q_{1}=q, q_{2}, \ldots, q_{s}$. Since q is a Pisot number, we have

$$
\left|q_{2}\right|, \ldots,\left|q_{s}\right|<1
$$

As it is known ([2], p. 42-43), there are s monomorphisms

$$
\sigma_{i}: \mathbf{Q}(q) \rightarrow \mathbf{C}, \quad i=1, \ldots, s
$$

and σ_{i} satisfies $\sigma_{i}(q)=q_{i}$. We know further that if $y \in \mathbf{Q}(q)$ then $y=\sigma_{1}(y)$, $\sigma_{2}(y), \ldots, \sigma_{s}(y)$ run over the conjugates of y (may be with multiplicity). By definition, x_{k} and x_{k+1} are linked by the relation

$$
\begin{equation*}
x_{k+1}=q\left(x_{k}-\varepsilon_{k}\right) \tag{5}
\end{equation*}
$$

and $x_{1}=q$. Since the product of two algebraic integers is an algebraic integer ([2], p. 47), we get by induction on k that x_{k} are algebraic integers. Applying σ_{i} to the recursion (5) we get

$$
x_{k+1, i}=q_{i}\left(x_{k, i}-\varepsilon_{k}\right)
$$

and consequently

$$
\begin{equation*}
\left|x_{k+1, i}\right| \leqq\left|q_{i}\right|\left(1+\left|x_{k, i}\right|\right), \quad i \geqq 2 . \tag{6}
\end{equation*}
$$

Let now

$$
\delta:=\max _{i \geqq 2}\left|q_{i}\right|<1, \quad M_{k}:=\max _{i \geqq 2}\left|x_{k, i}\right|
$$

then (6) implies $M_{k+1} \leqq \delta\left(M_{k}+1\right)$, whence we get by induction that

$$
M_{k+1} \leqq \delta^{k} M_{1}+\delta^{k}+\delta^{k-1}+\ldots+\delta
$$

and then

$$
M_{k+1} \leqq M_{1}+\frac{\delta}{1-\delta} .
$$

So the conjugates of x_{k} are indeed bounded. On the other hand the sequence x_{k} itself is obviously bounded:

$$
x_{k} \leqq 1+q^{-1}+q^{-2}+\ldots=\frac{q}{q-1} .
$$

By the above arguments we see that $\left\{x_{k}\right\}$ is indeed a finite set, so the proof is complete.

Remark. The Pisot numbers form a closed subset of $(1, \infty)$, see [1], hence there exists a least Pisot-number $q_{0}>1$. So the following modification of (A) remained open:

Problem. Does there exist an expansion (1) satisfying (2) for every $1<$ $<q<q_{0}$?

References

[1] J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge University Press, 1957.
[2] I. N. Stewart and D. O. Tall, Algebraic Number Theory, Chapman and Hall (London, 1979).
[3] I. Joó, On Riesz bases, Annales Univ. Sci. Budapest., Sectio Math., 31 (1988), 141-153.
[4] P. Erdős and I. Joó, On the expansion $1=\sum q^{-n_{i}}$, Per. Math. Hung., 23 (1991).
[5] P. Erdős, M. Joó and I. Joó, On a problem of Tamás Varga (to appear).
[6] J. Dufresnoy, C. Pisot, Sur un ensemble fermé d'entiers algébriques, Ann. Sci. Éc. Norm. Sup. Paris, 70 (1953), 105-134.
[7] I. Joó and M. Joó, On an arithmetical property of $\sqrt{2}$, Publ. Math. Debrecen, 37 (1990).
(Received March 10, 1989)
EÖTVÖS LORÁND UNIVERSITY Chair for analysis
múzeum Krt. 6-8
h-1088 BUDAPEST, hUNGARY

SOME SATURATION THEOREMS FOR CLASSICAL ORTHOGONAL EXPANSIONS. II

M. HORVÁTH (Budapest)

The famous theorem of G. Alexits [6] states that the Fejér means of the Fourier expansion of a continuous and 2π-periodic function f converge uniformly to f in the order $O\left(\frac{1}{n}\right)$ if and only if the trigonometric conjugate \tilde{f} of f belongs to the Lip 1 class, i.e. \tilde{f} is absolutely continuous and $\tilde{f}^{\prime} \in L^{\infty}$. It was I. Joó who initiated the extension of this theorem for classical orthogonal expansions. He obtained Alexits type results for Hermite expansions ([7], [8], [9]) and one of the implications of the Alexits theorem for Laguerre expansions in [7]. In [8] he also derived a saturation theorem for the AbelPoisson means of Hermite expansions. A. Bogmér [10] proved an Alexits type theorem for Jacobi expansions. In [11] we gave another Alexits type theorem and a saturation theorem in the Jacobi case.

In what follows we obtain similar results for Laguerre expansions of nonnegative parameter. In all these investigations the norm estimates of the Abel-Poisson means and of the conjugate function are essential; see Stein and Muckenhoupt [2] and Muckenhoupt [3], [4], [5]. We shall modify these results in order to adapt them for our purposes; see later.

Let $\alpha>-1$ and define the weight

$$
u_{\alpha}(x) ;=x^{\alpha} e^{-x} \quad(x>0)
$$

The normed Laguerre polynomials $\ell_{n}^{(\alpha)}$ of order α are defined by

$$
\begin{equation*}
\int_{0}^{\infty} \ell_{n}^{(\alpha)} \ell_{k}^{(\alpha)} u_{\alpha}=\delta_{n, k} \tag{1}
\end{equation*}
$$

The connection with the notation $L_{n}^{(\alpha)}$, used by Szegő [1] is

$$
L_{n}^{(\alpha)}=(-1)^{n} \sqrt{\Gamma(\alpha+1)\binom{n+\alpha}{n}} \ell_{n}^{(\alpha)}
$$

We shall need the differentiation formulas

$$
\begin{equation*}
\left[\ell_{n}^{(\alpha)}\right]^{\prime}=\sqrt{n} \ell_{n-1}^{(\alpha+1)} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[u_{\alpha+1} \ell_{n-1}^{(\alpha+1)}\right]^{\prime}=-\sqrt{n} u_{\alpha} \ell_{n}^{(\alpha)} \tag{3}
\end{equation*}
$$

Remark that (2) is explicitly given in [1] in terms of $L_{n}^{(\alpha)}$ and (3) follows from the Rodrigues formula ([1], (5.1.5))

$$
u_{\alpha} L_{n}^{(\alpha)}=\frac{1}{n!}\left[u_{\alpha+n}\right]^{(n)}
$$

which implies that

$$
\frac{1}{n}\left[u_{\alpha+1} L_{n-1}^{(\alpha+1)}\right]^{\prime}=u_{\alpha} L_{n}^{(\alpha)}
$$

and this, in turn, implies (3).
Consider a function f defined on $(0, \infty)$. Its Laguerre-Fourier series (if exists) is defined by

$$
\begin{equation*}
f \sim \sum_{k=0}^{\infty} a_{k} \ell_{k}^{(\alpha)}, \quad a_{k}:=\int_{0}^{\infty} f \ell_{k}^{(\alpha)} u_{\alpha} . \tag{4}
\end{equation*}
$$

Let $1 \leqq p \leqq \infty$ and define the weighted spaces

$$
\begin{gathered}
L^{p}\left(\sqrt{u_{\alpha}}\right):=\left\{f:\left\|f \sqrt{u_{\alpha}}\right\|_{p}:=\left(\int_{0}^{\infty}\left|f \sqrt{u_{\alpha}}\right|^{p}\right)^{\frac{1}{p}}<\infty\right\}, \\
L_{u_{\alpha}}^{p}:=\left\{f:\|f\|_{p, \alpha}:=\left(\int_{0}^{\infty}|f|^{p} u_{\alpha}\right)^{\frac{1}{p}}<\infty\right\}, \quad \text { if } 1 \leqq p<\infty, \\
L_{u_{\alpha}}^{\infty}:=L^{\infty}(0, \infty) ; \quad\|f\|_{\infty, \alpha}:=\|f\|_{\infty} .
\end{gathered}
$$

If $\alpha \geqq 0$ then $\sqrt{u_{\alpha}} \ell_{k}^{(\alpha)} \in L^{1}(0, \infty) \cap L^{\infty}(0, \infty)$ hence the Fourier series of any $f \in L^{p}\left(\sqrt{u_{\alpha}}\right)$ exists. If $-1<\alpha<0$ then $\ell_{k}^{(\alpha)} \in L^{p}\left(\sqrt{u_{\alpha}}\right)$ if and only if $p<-\frac{2}{\alpha}$, consequently, using the Hölder inequality we see that the Fourier series exists for all $f \in L^{p}\left(\sqrt{u_{\alpha}}\right)$ if and only if

$$
\frac{2}{2+\alpha}<p \leqq \infty .
$$

Denote by $\sigma_{n} f$ and $R_{n} f$ the Fejér and Riesz means of parameter $\frac{1}{2}$ of the expansion of f, resp.:

$$
\sigma_{n} f:=\sum_{k=0}^{n}\left(1-\frac{k}{n+1}\right) a_{k} \ell_{k}^{(\alpha)}, \quad R_{n} f:=\sum_{k=0}^{n}\left(1-\frac{\sqrt{k}}{\sqrt{n+1}}\right) a_{k} \ell_{k}^{(\alpha)} .
$$

Lemma 1. The Riesz means R_{n} are uniformly bounded in the $L^{p}\left(\sqrt{u_{\alpha}}\right)$ norm. In other words, let $1 \leqq p \leqq \infty$ if $\alpha>0$ and $\frac{2}{2+\alpha}<p<-\frac{2}{\alpha}$, if $-1<\alpha \leqq 0$. Then for $f \in L^{p}\left(\sqrt{u_{\alpha}}\right)$ we have

$$
\begin{equation*}
\left\|\sqrt{u_{\alpha}} R_{n} f\right\|_{p} \leqq c(p)\left\|\sqrt{u_{\alpha}} f\right\|_{p} \tag{5}
\end{equation*}
$$

with a constant $c(p)>0$ independent of f and n.
Proof. As Poiani proved in [15], p. 11, the estimate

$$
\begin{equation*}
\left\|\sqrt{u_{\alpha}} \sigma_{n} f\right\|_{p} \leqq c(p)\left\|\sqrt{u_{\alpha}} f\right\|_{p} \tag{6}
\end{equation*}
$$

holds for $1 \leqq p \leqq \frac{7}{4}$ in case $\alpha>0$ and for $\frac{2}{2+\alpha}<p<-\frac{2}{\alpha}$ if $-1<\alpha \leqq 0$. Now if $\alpha>0$, we can extend (6) from $p=1$ to $p=\infty$ since

$$
\begin{gathered}
\left\|\sqrt{u_{\alpha}} \sigma_{n} f\right\|_{\infty}=\sup _{\left\|\sqrt{u_{\alpha}} g\right\|_{1} \leqq 1} \int_{0}^{\infty} \sigma_{n}(f) g u_{\alpha}=\sup _{\left\|\sqrt{u_{\alpha}} g\right\|_{1} \leqq 1} \int_{0}^{\infty} \sigma_{n}(g) f u_{\alpha} \leqq \\
\leqq\left\|\sqrt{u_{\alpha}} f\right\|_{\infty} \sup _{\left\|\sqrt{u_{\alpha}} g\right\|_{1} \leqq 1}\left\|\sqrt{u_{\alpha}} \sigma_{n} g\right\|_{1} \leqq c\left\|\sqrt{u_{\alpha}} f\right\|_{\infty}
\end{gathered}
$$

and for $1<p<\infty$ the same result follows from the Marcinkiewicz interpolation theorem. Denote

$$
S_{k}:=S_{k}(f):=\sum_{j=0}^{k} a_{j} \ell_{j}^{(k)}
$$

the k-th partial sum operator, then

$$
\begin{aligned}
& R_{n} f=\sum_{k=0}^{n} \frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{n+1}} S_{k}=\sum_{k=0}^{n} \frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{n+1}}\left((k+1) \sigma_{k}-k \sigma_{k-1}\right)= \\
& =\sqrt{n+1}(\sqrt{n+1}-\sqrt{n}) \sigma_{n}+\sum_{k=0}^{n} \sigma_{k}(k+1) \frac{2 \sqrt{k+1}-\sqrt{k}-\sqrt{k+2}}{\sqrt{n+1}}
\end{aligned}
$$

Using the trivial estimates

$$
\sqrt{n+1}-\sqrt{n}=O\left(\frac{1}{\sqrt{n+1}}\right), \quad 2 \sqrt{k+1}-\sqrt{k}-\sqrt{k+2}=O\left(\frac{1}{(k+1)^{\frac{3}{2}}}\right)
$$

we get that

$$
\left\|\sqrt{u_{\alpha}} R_{n} f\right\|_{p} \leqq c\left\|\sqrt{u_{\alpha}} \sigma_{n} f\right\|_{p}+c \sum_{k=0}^{n} \frac{\sqrt{k+1}}{\sqrt{n+1}}\left\|\sqrt{u_{\alpha}} \sigma_{k} f\right\|_{p} \leqq c\left\|\sqrt{u_{\alpha}} f\right\|_{p}
$$

which proves Lemma 1.
Remark. It is shown in [16], p. 222 that the Fejér means (and in general any (C, j)-means, $j \in \mathrm{~N}$) are not bounded in $L_{u_{\alpha}}^{p}$ norm unless $p=2$ (when $\left.\|f\|_{2, \alpha}=\left\|f \sqrt{u_{\alpha}}\right\|_{2}\right)$. The norm estimates given in [3], [5] for the AbelPoisson means and the conjugate function are proved for the $L_{u_{\alpha}}^{p}$ norm; that is why we give first their $L^{p}\left(\sqrt{u_{\alpha}}\right)$-variant. We mention that references concerning the boundedness of Cesàro means of some expansions can be found in [17]. We shall need the following

Proposition. Let $\gamma \geqq 0, \beta>0$ and consider the system

$$
\Phi:=\left\{x^{n+\gamma} e^{-\beta x}: n \in \mathbf{N}, x>0\right\}
$$

a) Φ is complete in $L^{p}(0, \infty), 1 \leqq p \leqq \infty$.
b) The linear hull of Φ is dense in $\overline{L^{p}}(0, \infty), 1 \leqq p<\infty$.

Proof. a) We shall use some ideas of Stone [19], p. 74-79, see also [20], p. 131-132. Suppose that the function $f \in L^{p}(0, \infty)$ satisfies

$$
\int_{0}^{\infty} f(x) x^{n+\gamma} e^{-\beta x} d x=0, \quad n \in \mathbf{N}
$$

Define the function

$$
g(x):=e^{-\frac{\beta}{4} x} \int_{0}^{x} f(t) t^{\gamma} e^{-\frac{\beta}{4} t} d t
$$

Since $t^{\gamma} e^{-\frac{\beta}{4} t} \in L^{q}(0, \infty), \frac{1}{p}+\frac{1}{q}=1$, hence

$$
|g(x)| \leqq c e^{-\frac{\beta}{4} x}
$$

and then $g \in L^{2}(0, \infty)$. On the other hand

$$
\begin{aligned}
& \int_{0}^{\infty} g(x) x^{n} e^{-\frac{\beta}{2} x} d x=\int_{0}^{\infty}\left(\int_{0}^{x} f(t) t^{\gamma} e^{-\frac{\beta}{4} t} d t\right) x^{n} e^{-\frac{3}{4} \beta x} d x= \\
& =\int_{0}^{\infty} f(x) x^{\gamma} e^{-\frac{\beta}{4} x} \int_{x}^{\infty} t^{n} e^{-\frac{3}{4} \beta t} d t d x=\int_{0}^{\infty} f(x) x^{\gamma} p_{n}(x) e^{-\beta x} d x
\end{aligned}
$$

where the polynomial $p_{n}(x)$ is defined by

$$
\int_{x}^{\infty} t^{n} e^{-\frac{3}{4} \beta t} d t=p_{n}(x) e^{-\frac{3}{4} \beta x}
$$

Since the polynomials multiplied by $e^{-\frac{x}{2}}$, the square root of the Laguerre weight of parameter 0 , are dense in $L^{2}(0, \infty)$ (see [1], Theorem 5.7.1), we get that $g(x)=0$ a.e. and then $f(x)=0$ a.e.
b) Denote $V=V(\Phi)$ the closed linear hull of Φ in $L^{p}(0, \infty)$. Suppose indirectly that there exists $f \in L^{p}(0, \infty), f \notin V$. By $p \neq \infty$ there exists a function $g \in L^{q}(0, \infty), \frac{1}{p}+\frac{1}{q}=1$ so that

$$
\int_{0}^{\infty} f g=1, \quad \int_{0}^{\infty} h g=0, \quad g \in V
$$

But this contradicts a), so $V=L^{p}(0, \infty)$. The proof is complete.
The Poisson kernel for Laguerre expansion is given by

$$
K(r, y, z)=\sum_{n=0}^{\infty} \ell_{n}^{(\alpha)}(y) \ell_{n}^{(\alpha)}(z) r^{n}, \quad x, y>0,0 \leqq r<1 .
$$

It is known ([1]) the Mehler type formula

$$
\begin{equation*}
K(r, y, z)=\frac{1}{1-r} e^{-(y+z) \frac{r}{1-r}} \frac{J_{\alpha}\left(i \frac{2 \sqrt{y z r}}{1-r}\right)}{i^{\alpha}(y z r)^{\frac{\alpha}{2}}} . \tag{7}
\end{equation*}
$$

Introduce the notation

$$
a \asymp b
$$

for $a, b>0$; this means that there exist positive constants c, C which may depend only on α and p but not on other quantities so that

$$
c a \leqq b \leqq C a .
$$

Using (7) we can easily obtain (see [3]) that

$$
K(r, y, z) \asymp \begin{cases}\frac{1}{(1-r)^{\alpha+1}} e^{-(y+z) \frac{r}{1-r}} & \text { if } z \leqq \frac{(1-r)^{2}}{4 y r} \tag{8}\\ \frac{1}{\sqrt{1-r}} \frac{\exp \left\{-(y+z) \frac{r}{1-r}+2 \frac{\sqrt{y z r}}{1-r}\right\}}{(y z r)^{\frac{\alpha}{2}+\frac{1}{4}}} & \text { if } z>\frac{(1-r)^{2}}{4 y r} .\end{cases}
$$

Consequently for fixed r and $y>0$ we have

$$
\sqrt{u_{\alpha}}(z) K(r, y, z) \in L^{1}(0, \infty) \cap L^{\infty}(0, \infty)
$$

and hence for $1 \leqq p \leqq \infty, f \in L^{p}\left(\sqrt{u_{\alpha}}\right)$ the Poisson integral of f, defined to be

$$
\begin{equation*}
g(r, y):=\int_{0}^{\infty} K(r, y, z) f(z) u_{\alpha}(z) d z \tag{9}
\end{equation*}
$$

exists. To prove the $L^{p}\left(\sqrt{u_{\alpha}}\right)$-boundedness of $g(r, y)$ we need the following variant of [3], Corollary 1.

Lemma 2. Let I be a finite or infinite interval, $d \mu$ an absolute continuous (positive) measure on I. Let $L(y, z) \geqq 0$ be a function for which $z \mapsto \mu^{\prime}(z) L(y, z)$ is monotone increasing for $z \leqq y$, decreasing for $z \geqq y$ and

$$
\begin{equation*}
\mu^{\prime}(y) \int_{I} L(y, z) d \mu(z) \leqq B \quad(y \in I) \tag{10}
\end{equation*}
$$

Define further

$$
g(y):=\int_{I} K(y, z) f(z) \mu^{\prime 2}(z) d z
$$

where the kernel function $K(y, z)$ is measurable and satisfies

$$
|K(y, z)| \leqq L(y, z)
$$

Then we have

$$
\begin{equation*}
\mu^{\prime}(y)|g(y)| \leqq B\left(\mu^{\prime} f\right)^{*}(y) \tag{11}
\end{equation*}
$$

Here

$$
F^{*}(y):=\sup _{y \in J \subset I} \frac{1}{|J|} \int_{J}|F|
$$

denotes the Hardy-Littlewood maximal function of F ([13]), where the supremum runs over the closed segments J containing y.

Proof. a) Suppose first that $\mu^{\prime}(z) L(y, z)$, as a function of z, is a stepfunction of the form

$$
\mu^{\prime}(z) L(y, z)=\sum a_{i} \chi_{\left(y_{i}^{\prime}, y_{i}^{\prime \prime}\right)}(z)
$$

where

$$
a_{i} \geqq 0, \quad y_{i}^{\prime} \leqq y_{i}^{\prime \prime}, \quad y_{i}^{\prime}, y_{i}^{\prime \prime} \in I, \quad \forall i
$$

Then we have

$$
\begin{gathered}
\mu^{\prime}(y)|g(y)| \leqq \mu^{\prime}(y) \int_{I} L(y, z)|f(z)| \mu^{2}(z) d z= \\
=\mu^{\prime}(y) \sum a_{i} \int_{y_{i}^{\prime}}^{y_{i}^{\prime \prime}}|f| d \mu \leqq \mu^{\prime}(y)\left(f \mu^{\prime}\right)^{*}(y) \sum a_{i}\left(y_{i}^{\prime \prime}-y_{i}^{\prime}\right)= \\
=\mu^{\prime}(y)\left(f \mu^{\prime}\right)^{*}(y) \int_{I} L(y, z) d \mu(z) \leqq B\left(f \mu^{\prime}\right)^{*}(y)
\end{gathered}
$$

b) In the general case we can give a sequence

$$
\varphi_{1} \leqq \ldots \leqq \varphi_{n} \leqq \varphi_{n+1} \leqq \ldots
$$

of stepfunctions of the form given in a) which converge a.e. to $\mu^{\prime}(z) L(y, z)$. Using twice the Beppo-Levi theorem we obtain

$$
\begin{aligned}
& \mu^{\prime}(y)|g(y)| \leqq \mu^{\prime}(y) \int_{I} L(y, z)|f(z)| \mu^{\prime 2}(z) d z=\mu^{\prime}(y) \lim _{n \rightarrow \infty} \int_{I} \varphi_{n}(z)|f(z)| d \mu(z) \leqq \\
& \leqq \mu^{\prime}(y)\left(f \mu^{\prime}\right)^{*}(y) \lim _{n \rightarrow \infty} \int_{I} \varphi_{n}(z) d z=\mu^{\prime}(y)\left(f \mu^{\prime}\right)^{*}(y) \int_{I} L(y, z) d \mu(z) \leqq B\left(f \mu^{\prime}\right)^{*}(y)
\end{aligned}
$$

as we asserted.
Lemma 3. Suppose $\alpha \geqq 0$. Then

$$
\begin{equation*}
\sqrt{u_{\alpha}}(y) \int_{0}^{\infty} K(r, y, z) \sqrt{u_{\alpha}}(z) d z \leqq c \tag{12}
\end{equation*}
$$

where c is independent of r and y.
Proof. Denote by $H(r, y, z)$ the function on the right hand side of (8); we have to prove that

$$
\begin{equation*}
\sqrt{u_{\alpha}}(y) \int_{0}^{\infty} H(r, y, z) \sqrt{u_{\alpha}}(z) d z \leqq c \tag{13}
\end{equation*}
$$

Let

$$
\begin{aligned}
& I_{1}:=y^{\frac{\alpha}{2}} e^{-\frac{y}{2}} \int_{0}^{\frac{(1-r)^{2}}{4 r y}}-\frac{z^{\frac{\alpha}{2}}}{(1-r)^{\alpha+1}} \exp \left\{-\frac{z}{2}-(y+z) \frac{r}{1-r}\right\} d z \\
& I_{2}:=y^{\frac{\alpha}{2}} e^{-\frac{y}{2}} \int_{\frac{(1-r)^{2}}{4 r y}}^{\infty} \frac{z^{\frac{\alpha}{2}}}{\sqrt{1-r}} \exp \left\{-\frac{z}{2}+\frac{-y r+2 \sqrt{y r z}-z r}{1-r}\right\} d z
\end{aligned}
$$

it is enough to show the boundedness of I_{1} and I_{2}. Consider first I_{1}. We distinguish some cases.

Case a: $r \leqq \frac{1}{2}$. Then we have by $\alpha \geqq 0$

$$
I_{1} \leqq c y^{\frac{\alpha}{2}} e^{-\frac{y}{2}} \int_{0}^{\infty} z^{\frac{\alpha}{2}} e^{-\frac{z}{2}} d z \leqq c
$$

Case b: $r \geqq \frac{1}{2}, \frac{1-r}{4 y} \geqq 1$. Then y is bounded by $\frac{1-r}{4}$ hence

$$
I_{1} \leqq c y^{\frac{\alpha}{2}}(1-r)^{-\alpha-1} \int_{0}^{\frac{(1-r)^{2}}{4 r y}} z^{\frac{\alpha}{2}} e^{-z \frac{r}{1-r}} d z
$$

Substituting $u=z \frac{r}{1-r}$ we get

$$
\begin{gathered}
I_{1} \leqq c y^{\frac{\alpha}{2}}(1-r)^{-\alpha-1} \frac{1-r}{r} \int_{0}^{\frac{1-r}{4 y}} u^{\frac{\alpha}{2}} e^{-u} d u \cdot\left(\frac{1-r}{r}\right)^{\frac{\alpha}{2}} \leqq \\
\\
\leqq c\left(\frac{y}{1-r}\right)^{\frac{\alpha}{2}} \int_{0}^{\infty} u^{\frac{\alpha}{2}} e^{-u} d u \leqq c .
\end{gathered}
$$

Case c: $r \geqq \frac{1}{2}, \frac{1-r}{4 y} \leqq 1$. Then, repeating the arguments of Case b, we can write

$$
I_{1} \leqq c\left(\frac{y}{1-r}\right)^{\frac{\alpha}{2}} e^{-\frac{y}{2}} \int_{0}^{\frac{1-r}{4 y}} u^{\frac{\alpha}{2}} e^{-u} d u \leqq c\left(\frac{y}{1-r}\right)^{\frac{\alpha}{2}}\left(\frac{1-r}{4 y}\right)^{\frac{\alpha}{2}} \int_{0}^{\infty} e^{-u} d u \leqq c .
$$

Now consider I_{2}. The exponent figuring in I_{2} can be written in the form

$$
-\frac{y}{2}-\frac{z}{2}+\frac{-y r+2 \sqrt{y r z}-z r}{1-r}=-\frac{(\sqrt{y r}-\sqrt{z})^{2}+(\sqrt{y}-\sqrt{r z})^{2}}{2(1-r)}
$$

and hence applying the substitution $z=u^{2}$ we get

$$
\begin{aligned}
I_{2} & =(1-r)^{-\frac{1}{2}} r^{-\frac{\alpha}{2}-\frac{1}{4}} y^{-\frac{1}{4}} \int_{\frac{(1-r)^{2}}{4 r y}}^{\infty} z^{-\frac{1}{4}} \exp \left\{-\frac{(\sqrt{y r}-\sqrt{z})^{2}+(\sqrt{y}-\sqrt{r z})^{2}}{2(1-r)}\right\} d z= \\
& =2(1-r)^{-\frac{1}{2}} r^{-\frac{\alpha}{2}-\frac{1}{4}} y^{-\frac{1}{4}} \int_{\frac{1-r}{2 \sqrt{r y}}}^{\infty} u^{\frac{1}{2}} \exp \left\{-\frac{(\sqrt{y r}-u)^{2}+(u \sqrt{r}-\sqrt{y})^{2}}{2(1-r)}\right\} d u .
\end{aligned}
$$

We shall use the following estimate. If $\gamma>1$ and $x \geqq \sqrt{\gamma-1}$ or if $\gamma \leqq 1$ and $x>0$, then

$$
\begin{equation*}
\int_{x}^{\infty} y^{\gamma} e^{-y^{2}} d y \leqq x^{\gamma-1} e^{-x^{2}} \tag{14}
\end{equation*}
$$

Indeed, equality holds in (14) for $x=\infty$, and differentiating both sides the converse inequality holds. Return to the estimate of I_{2}.

Case a: $r \leqq \frac{1}{2}$. Since $r \leqq \frac{1}{2}$ implies $(\sqrt{r y}-u)^{2}+(u \sqrt{r}-\sqrt{y})^{2} \geqq c\left(u^{2}+y\right)$ hence by (14)

$$
\begin{gathered}
I_{2} \leqq c r^{-\frac{\alpha}{2}-\frac{1}{4}} y^{-\frac{1}{4}} \int_{\frac{1-r}{2 \sqrt{r y}}}^{\infty} u^{\frac{1}{2}} e^{-c\left(u^{2}+y\right)} d u \leqq \\
\leqq c r^{-\frac{\alpha}{2}-\frac{1}{4}} y^{-\frac{1}{4}} \frac{(r y)^{\frac{1}{4}}}{\sqrt{1-r}} \exp \left\{-c\left(\frac{(1-r)^{2}}{4 r y}+y\right)\right\} \leqq \\
\leqq c r^{-\frac{\alpha}{2}} \exp \left\{-c\left(\frac{(1-r)^{2}}{4 r y}+y\right)\right\} \leqq c r^{-\frac{\alpha}{2}} e^{-\frac{c}{r}} \leqq c
\end{gathered}
$$

Case b: $r \geqq \frac{1}{2}, \frac{1-r}{y} \leqq 1$. Then the substitution $v=\frac{u}{\sqrt{1-r}}$ gives

$$
\begin{gathered}
I_{2} \leqq c(1-r)^{-\frac{1}{2}} y^{-\frac{1}{4}} \int_{\frac{1-r}{2 \sqrt{r y}}}^{\infty} u^{\frac{1}{2}} \exp \left\{-\frac{(\sqrt{r y}-u)^{2}+(\sqrt{y}-\sqrt{r} u)^{2}}{2(1-r)}\right\} d u \leqq \\
\leqq c y^{-\frac{1}{4}} \int_{\frac{1}{2} \sqrt{\frac{1-r}{r y}}}^{\infty} v^{\frac{1}{2}}(1-r)^{\frac{1}{4}} \exp \left\{-\frac{1}{2}\left(\sqrt{\frac{r y}{1-r}}-v\right)^{2}-\frac{1}{2}\left(v \sqrt{r}-\sqrt{\frac{y}{1-r}}\right)^{2}\right\} d v \leqq \\
\leqq c\left(\frac{1-r}{y}\right)^{\frac{1}{4}} \int_{0}^{\infty} v^{\frac{1}{2}} \exp \left\{-\frac{1}{2}\left(v-\sqrt{\frac{r y}{1-r}}\right)^{2}\right\} d v
\end{gathered}
$$

Now

$$
\begin{gathered}
\left(\frac{1-r}{y}\right)^{\frac{1}{4}} \int_{2 \sqrt{\frac{r y}{1-r}}}^{\infty} v^{\frac{1}{2}} \exp \left\{-\frac{1}{2}\left(v-\sqrt{\frac{r y}{1-r}}\right)^{2}\right\} d v \leqq \\
\leqq c \int_{2 \sqrt{\frac{r y}{1-r}}}^{\infty}\left(v-\sqrt{\frac{r y}{1-r}}\right)^{\frac{1}{2}} \exp \left\{-\frac{1}{2}\left(v-\sqrt{\frac{r y}{1-r}}\right)^{2}\right\} d v \leqq c \int_{0}^{\infty} v^{\frac{1}{2}} e^{-\frac{v^{2}}{2}} d v \leqq c
\end{gathered}
$$

and

$$
\left(\frac{1-r}{y}\right)^{\frac{1}{4}} \int_{0}^{2 \sqrt{\frac{r y}{1-r}}} v^{\frac{1}{2}} \exp \left\{-\frac{1}{2}\left(v-\sqrt{\frac{r y}{1-r}}\right)^{2}\right\} d v=
$$

$$
\begin{aligned}
& =\left(\frac{1-r}{y}\right)^{\frac{1}{4}} \int_{0}^{\sqrt{\frac{r y}{1-r}}}\left[\left(\sqrt{\frac{r y}{1-r}}-v\right)^{\frac{1}{2}}+\left(\sqrt{\frac{r y}{1-r}}+v\right)^{\frac{1}{2}}\right] e^{-\frac{v^{2}}{2}} d v \leqq \\
& \\
& \leqq\left(\frac{1-r}{y}\right)^{\frac{1}{4}} \int_{0}^{\sqrt{\frac{r v}{1-r}}} 2\left(2 \sqrt{\frac{r y}{1-r}}\right)^{\frac{1}{2}} e^{-\frac{v^{2}}{2}} d v \leqq c \int_{0}^{\infty} e^{-\frac{v^{2}}{2}} d v \leqq c .
\end{aligned}
$$

Case c: $r \geqq \frac{1}{2}, \frac{1-r}{y} \geqq 1$. As we have seen in Case b

$$
\begin{gathered}
I_{2} \leqq c\left(\frac{1-r}{y}\right)^{\frac{1}{4}} \int_{\frac{1}{2} \sqrt{\frac{1-r}{r y}}}^{\infty} v^{\frac{1}{2}} \exp \left\{-\frac{1}{2}\left(v-\sqrt{\frac{r y}{1-r}}\right)^{2}\right\} d v \leqq \\
\leqq c\left(\frac{1-r}{y}\right)^{\frac{1}{4}} \int_{\sqrt{\frac{1}{4}-r}}^{\infty}|v-1|^{\frac{1}{2}} \exp \left\{-\frac{1}{2}(v-1)^{2}\right\} d v \leqq c\left(\frac{1-r}{y}\right)^{\frac{1}{4}}\left(\frac{r y}{1-r}\right)^{\frac{1}{4}} \leqq c .
\end{gathered}
$$

Lemma 3 is proved.
Define the function $L(r, y, z)$ by

$$
\sqrt{u_{\alpha}}(z) L(r, y, z):= \begin{cases}\sup _{0 \leqq z^{\prime} \leqq z} \sqrt{u_{\alpha}}\left(z^{\prime}\right) H\left(r, y, z^{\prime}\right) & \text { if } z \leqq y \\ \sup _{z \leqq z^{\prime}} \sqrt{u_{\alpha}}\left(z^{\prime}\right) H\left(r, y, z^{\prime}\right) & \text { if } z>y .\end{cases}
$$

Obviously $K(r, y, z) \leqq c L(r, y, z)$ and the function $z \mapsto \sqrt{u_{\alpha}}(z) L(r, y, z)$ increases for $z \leqq y$ and decreases for $z \geqq y$. We assert that the third requirement given in Lemma 2 also fulfils:

Lemma 4. Let $\alpha \geqq 0$, then

$$
\begin{equation*}
\sqrt{u_{\alpha}}(y) \int_{0}^{\infty} L(r, y, z) \sqrt{u_{\alpha}}(z) d z \leqq c . \tag{15}
\end{equation*}
$$

Proof. By Lemma 3 we can restrict the integration to the union of the segments in which $L(r, y, z)>H(r, y, z)$. Of course, in these segments $L(r, y, z) \sqrt{u_{\alpha}}(z)$ will be constant. Define

$$
z_{0}:=\alpha \frac{1-r}{1+r}
$$

and in case $y>\frac{1-r^{2}}{2 r}$ let

$$
\sqrt{z_{1,2}}:=2 \frac{\sqrt{y r} \pm \sqrt{y r-\frac{1-r^{2}}{2}}}{1+r}
$$

The investigation of the sign of the derivative $\frac{\partial}{\partial z}\left[\sqrt{u_{\alpha}}(z) H(r, y, z)\right]$ easily gives the following statements. For $0 \leqq z \leqq \min \left\{z_{0}, \frac{(1-r)^{2}}{4 r y}\right\}$ the function $\sqrt{u_{\alpha}}(z) H(r, y, z)$ increases and in case $z_{0}<\frac{(1-r)^{2}}{4 r y}$ it decreases in $z \in$ $\in\left[z_{0}, \frac{(1-r)^{2}}{4 r y}\right]$; in case $y \leqq \frac{1-r^{2}}{2 r}$ it decreases in $\left[\frac{(1-r)^{2}}{4 r y}, \infty\right)$ and in case $y>\frac{1-r^{2}}{2 r}$ it decreases in $\left[\frac{(1-r)^{2}}{4 r y}, z_{1}\right]$, increases in $\left[z_{1}, z_{2}\right]$ and decreases in $\left[z_{2}, \infty\right)$.

Remark that

$$
\begin{equation*}
\frac{(1-r)^{2}}{4 r y} \leqq z_{1} \leqq y \tag{16}
\end{equation*}
$$

Indeed, $z_{1} \leqq y$ follows from $\frac{2 \sqrt{r}}{1+r} \leqq 1$ and $\frac{1-r}{2 \sqrt{r y}} \leqq \sqrt{z_{1}}$ can be proved as follows

$$
\begin{aligned}
& \frac{1-r}{2 \sqrt{y r}} \leqq 2 \frac{\sqrt{y r}-\sqrt{y r-\frac{1-r^{2}}{2}}}{1+r}, \quad \frac{1-r^{2}}{4} \leqq y r-\sqrt{y r\left(y r-\frac{1-r^{2}}{2}\right)} \\
& y r\left(y r-\frac{1-r^{2}}{2}\right) \leqq(y r)^{2}-y r \frac{1-r^{2}}{2}+\left(\frac{1-r^{2}}{4}\right)^{2}
\end{aligned}
$$

Finally remark that

$$
\begin{equation*}
H\left(r, y, \frac{(1-r)^{2}}{4 r y}+\right) \asymp H\left(r, y, \frac{(1-r)^{2}}{4 r y}-\right) \tag{17}
\end{equation*}
$$

and the implicit constants do not depend on r and y. Investigate two cases, denoted by A and B, namely $y \leqq \frac{1-r^{2}}{2 r}$ and $y \geqq \frac{1-r^{2}}{2 r}$. Consider first the case A.

$$
\begin{equation*}
\frac{(1-r)^{2}}{4 r y} \leqq y \leqq \frac{1-r^{2}}{2 r}, \quad \frac{(1-r)^{2}}{4 r y} \leqq z_{0} \tag{11}
\end{equation*}
$$

Then $\sqrt{u_{\alpha}}(z) H(r, y, z)$ increases for $z \leqq \frac{(1-r)^{2}}{4 r y}$ and decreases for $z \geqq \frac{(1-r)^{2}}{4 r y}$. Consequently

$$
\sqrt{u_{\alpha}}(z) L(r, y, z)= \begin{cases}\sqrt{u_{\alpha}}(z) H(r, y, z) & \text { if } 0<z \leqq \frac{(1-r)^{2}}{4 r y} \\ \sqrt{u_{\alpha}}\left(\frac{(1-r)^{2}}{4 r y}\right) H\left(r, y, \frac{(1-r)^{2}}{4 r y}\right) & \text { if } \frac{(1-r)^{2}}{4 r y}<z \leqq y \\ \sqrt{u_{\alpha}}(z) H(r, y, z) & \text { if } y<z\end{cases}
$$

and by Lemma 3 we have only to show that

$$
\sqrt{u_{\alpha}}(y)\left(y-\frac{(1-r)^{2}}{4 r y}\right) \sqrt{u_{\alpha}}\left(\frac{(1-r)^{2}}{4 r y}\right) H\left(r, y, \frac{(1-r)^{2}}{4 r y}\right) \leqq c .
$$

Putting here the definition of u_{α} and H we have to prove that

$$
\begin{gathered}
y^{\frac{\alpha}{2}} e^{-\frac{y}{2}}\left(y-\frac{(1-r)^{2}}{4 r y}\right)\left(\frac{(1-r)^{2}}{4 r y}\right)^{\frac{\alpha}{2}} e^{-\frac{(1-r)^{2}}{8 r y}} \frac{1}{\sqrt{1-r}}\left(y r \frac{(1-r)^{2}}{4 r y}\right)^{-\frac{\alpha}{2}-\frac{1}{4}} \\
\cdot \exp \left\{\frac{-y r+2 \sqrt{y r \frac{(1-r)^{2}}{4 y r}}-r \frac{(1-r)^{2}}{4 y r}}{1-r}\right\} \leqq \\
\leqq c y e^{-\frac{y}{2}} \frac{1}{1-r} r^{-\frac{\alpha}{2}} \exp \left\{\frac{-y r+1-r-\frac{(1-r)^{2}}{4 y}}{1-r}\right\} \leqq \\
\leqq c \frac{y}{1-r} \exp \left\{-y\left(\frac{1}{2}+\frac{r}{1-r}\right)\right\}
\end{gathered}
$$

is bounded. But this is true since in case $r \leqq \frac{1}{2}$ it is bounded by $c y e^{-\frac{y}{2}} \leqq c$, and in case $r \geqq \frac{1}{2}$ by

$$
\begin{gathered}
c \frac{y}{1-r} e^{-\frac{1}{2} \frac{y}{1-r}} \leqq c \\
z_{0} \leqq \frac{(1-r)^{2}}{4 r y} \leqq y \leqq \frac{1-r^{2}}{2 r}
\end{gathered}
$$

In this case $\sqrt{u_{\alpha}}(z) H(r, y, z)$ increases in $\left[0, z_{0}\right]$, decreases in $\left[z_{0}, \frac{(1-r)^{2}}{4 r y}\right]$ and in $\left[\frac{(1-r)^{2}}{4 r y}, \infty\right)$. Taking (17) into account we have to show that

$$
\sqrt{u_{\alpha}}(y)\left(y-z_{0}\right) \sqrt{u_{\alpha}}\left(z_{0}\right) H\left(r, y, z_{0}\right) \leqq c
$$

Using $z_{0} \leqq c(1-r)$ we get

$$
\begin{gathered}
\sqrt{u_{\alpha}}(y)\left(y-z_{0}\right) \sqrt{u_{\alpha}}\left(z_{0}\right) H\left(r, y, z_{0}\right) \leqq \\
\leqq c y^{\frac{\alpha}{2}+1} e^{-\frac{y}{2}}(1-r)^{\frac{\alpha}{2}} \frac{1}{(1-r)^{\alpha+1}} e^{-\frac{r y}{1-r}}=c\left(\frac{y}{1-r}\right)^{\frac{\alpha}{2}+1} e^{-y\left(\frac{1}{2}+\frac{r}{1-r}\right)} \leqq c
\end{gathered}
$$

by the same reasoning as in $\left(\mathrm{A}_{11}\right)$.
$\left(\mathrm{A}_{21}\right)$

$$
z_{0} \leqq y \leqq \frac{(1-r)^{2}}{4 r y}
$$

Now we have to show again that

$$
\sqrt{u_{\alpha}}(y)\left(y-z_{0}\right) \sqrt{u_{\alpha}}\left(z_{0}\right) H\left(r, y, z_{0}\right) \leqq c
$$

which can be proved as in $\left(\mathrm{A}_{12}\right)$.

$$
\begin{equation*}
y \leqq z_{0} \leqq \frac{(1-r)^{2}}{4 r y} \tag{22}
\end{equation*}
$$

In this case we have to verify that

$$
\sqrt{u_{\alpha}}(y)\left(z_{0}-y\right) \sqrt{u_{\alpha}}\left(z_{0}\right) H\left(r, y, z_{0}\right) \leqq c .
$$

Using that $z_{0} \leqq c(1-r)$ we get

$$
\begin{gathered}
\sqrt{u_{\alpha}}(y)\left(z_{0}-y\right) \sqrt{u_{\alpha}}\left(z_{0}\right) H\left(r, y, z_{0}\right) \leqq \\
\leqq c(1-r)^{\frac{\alpha}{2}+1}(1-r)^{\frac{\alpha}{2}} \frac{1}{(1-r)^{\alpha+1}} e^{-y \frac{r}{1-r}} \leqq c e^{-y \frac{r}{1-r}} \leqq c . \\
y \leqq \frac{(1-r)^{2}}{4 r y} \leqq z_{0} .
\end{gathered}
$$

Now the inequality to be proved is

$$
\sqrt{u_{\alpha}}(y)\left(\frac{(1-r)^{2}}{4 r y}-y\right) \sqrt{u_{\alpha}}\left(\frac{(1-r)^{2}}{4 r y}\right) H\left(r, y, \frac{(1-r)^{2}}{4 r y}\right) \leqq c .
$$

Since $y \leqq z_{0} \leqq c(1-r)$, the left hand side can be estimated by

$$
c(1-r)^{\frac{\alpha}{2}+1}(1-r)^{\frac{\alpha}{2}} \frac{1}{(1-r)^{\alpha+1}} \leqq c
$$

So (15) is proved in case A. Take now the case B.

$$
\begin{equation*}
\frac{(1-r)^{2}}{4 r y} \leqq z_{0}, \quad \frac{(1-r)^{2}}{4 r y} \leqq z_{1} \leqq y \leqq z_{2} \tag{11}
\end{equation*}
$$

Then the function $\sqrt{u_{\alpha}}(z) H(r, y, z)$ increases in $\left[0, \frac{(1-r)^{2}}{4 r y}\right]$, decreases in $\left[\frac{(1-r)^{2}}{4 r y}, z_{1}\right]$, increases in $\left[z_{1}, z_{2}\right]$ and decreases in $\left[z_{2}, \infty\right)$, so we have to prove that
a) $\sqrt{u_{\alpha}}(y)\left(y-\frac{(1-r)^{2}}{4 r y}\right) \sqrt{u_{\alpha}}\left(\frac{(1-r)^{2}}{4 r y}\right) H\left(r, y, \frac{(1-r)^{2}}{4 r y}\right) \leqq c$ and
b) $\sqrt{u_{\alpha}}(y)\left(z_{2}-y\right) \sqrt{u_{\alpha}}\left(z_{2}\right) H\left(r, y, z_{2}\right) \leqq c$.

Since $y \geqq \frac{1-r^{2}}{2 r}$ implies that $\frac{(1-r)^{2}}{4 r y} \leqq c(1-r)$, hence a) becomes

$$
c y^{\frac{\alpha}{2}+1} e^{-\frac{y}{2}}(1-r)^{\frac{\alpha}{2}} \frac{1}{(1-r)^{\alpha+1}} e^{-y \frac{r}{1-r}}=c\left(\frac{y}{1-r}\right)^{\frac{\alpha}{2}+1} e^{-y\left(\frac{1}{2}+\frac{r}{1-r}\right)} \leqq c
$$

and from $z_{2} \asymp y r$ we see that b) can be estimated by

$$
\begin{aligned}
& c y^{\frac{\alpha}{2}+1} e^{-\frac{y}{2}} r(y r)^{\frac{\alpha}{2}} e^{-\frac{z_{2}}{2}} \frac{(r y)^{-\alpha-\frac{1}{2}}}{\sqrt{1-r}} \exp \left\{\frac{-r y+2 \sqrt{r y z_{2}}-r z_{2}}{1-r}\right\}= \\
& \quad=c \sqrt{\frac{y}{1-r}} r^{-\frac{\alpha}{2}+\frac{1}{2}} \exp \left\{-\frac{\left(\sqrt{r y}-\sqrt{z_{2}}\right)^{2}+\left(\sqrt{y}-\sqrt{r z_{2}}\right)^{2}}{2(1-r)}\right\} .
\end{aligned}
$$

Now $y \leqq z_{2} \leqq c y r$ implies $0<c \leqq r$ hence the term $r^{-\frac{\alpha}{2}+\frac{1}{2}}$ can be omitted. The estimate

$$
\sqrt{\frac{y}{1-r}} \exp \left\{-\frac{\left(\sqrt{r y}-\sqrt{z_{2}}\right)^{2}}{2(1-r)}\right\} \leqq c
$$

obviously holds for $y \leqq \frac{1-r^{2}}{r}$ and if $y \geqq \frac{1-r^{2}}{r}$ then $y r-\frac{1-r^{2}}{2} \geqq y \frac{r}{2} \geqq c y$, so

$$
\sqrt{z_{2}}-\sqrt{r y} \geqq \sqrt{r y}\left(\frac{2}{1+r}-1\right)+\frac{2}{1+r} \sqrt{r y-\frac{1-r^{2}}{2}} \geqq c \sqrt{y}
$$

and then

$$
\sqrt{\frac{y}{1-r}} \exp \left\{-\frac{\left(\sqrt{r y}-\sqrt{z_{2}}\right)^{2}}{2(1-r)}\right\} \leqq \sqrt{\frac{y}{1-r}} e^{-c \frac{y}{1-r}} \leqq c .
$$

$$
\begin{equation*}
\frac{(1-r)^{2}}{4 r y} \leqq z_{0}, \quad \frac{(1-r)^{2}}{4 r y} \leqq z_{1} \leqq z_{2} \leqq y . \tag{12}
\end{equation*}
$$

We have to prove that
a) $\sqrt{u_{\alpha}}(y)\left(y-\frac{(1-r)^{2}}{4 r y}\right) \sqrt{u_{\alpha}}\left(\frac{(1-r)^{2}}{4 r y}\right) H\left(r, y, \frac{(1-r)^{2}}{4 r y}\right) \leqq c$,
b) $\sqrt{u_{\alpha}}(y)\left(y-z_{2}\right) \sqrt{u_{\alpha}}\left(z_{2}\right) H\left(r, y, z_{2}\right) \leqq c$.

Now a) was proved in (B_{11}); b) becomes by $\frac{1}{r} \leqq c \frac{y}{1-r}$

$$
\begin{aligned}
& r^{-\frac{\alpha+1}{2}} \sqrt{\frac{y}{1-r}} \exp \left\{-\frac{\left(\sqrt{r y}-\sqrt{z_{2}}\right)^{2}+\left(\sqrt{y}-\sqrt{r z_{2}}\right)^{2}}{2(1-r)}\right\} \leqq \\
\leqq & c\left(\frac{y}{1-r}\right)^{\frac{\alpha}{2}+1} \exp \left\{-\frac{\left(\sqrt{r y}-\sqrt{z_{2}}\right)^{2}+\left(\sqrt{y}-\sqrt{r z_{2}}\right)^{2}}{2(1-r)}\right\} \leqq c .
\end{aligned}
$$

If $r \leqq r_{0}<1$ and r_{0} is small enough then $\left(\sqrt{y}-\sqrt{r z_{2}}\right)^{2} \asymp y$ and then

$$
\left(\frac{y}{1-r}\right)^{\frac{\alpha}{2}+1} \exp \left\{-\frac{\left(\sqrt{y}-\sqrt{r z_{2}}\right)^{2}}{2(1-r)}\right\} \leqq c y^{\frac{\alpha}{2}+1} e^{-c y} \leqq c
$$

and if $r_{0} \leqq r$ then

$$
\left(\frac{y}{1-r}\right)^{\frac{\alpha}{2}+1} \exp \left\{-\frac{\left(\sqrt{r y}-\sqrt{z_{2}}\right)^{2}+\left(\sqrt{y}-\sqrt{r z_{2}}\right)^{2}}{2(1-r)}\right\} \leqq c
$$

follows as in (\mathbf{B}_{11}).
(B_{21})

$$
z_{0} \leqq \frac{(1-r)^{2}}{4 r y} \leqq z_{1} \leqq y \leqq z_{2}
$$

Then we need
a) $\sqrt{u_{\alpha}}(y)\left(y-z_{0}\right) \sqrt{u_{\alpha}}\left(z_{0}\right) H\left(r, y, z_{0}\right) \leqq c$,
b) $\sqrt{u_{\alpha}}(y)\left(z_{2}-y\right) \sqrt{u_{\alpha}}\left(z_{2}\right) H\left(r, y, z_{2}\right) \leqq c$.

Now b) can be proved as in (B_{11}) and a) as in $\left(\mathrm{A}_{12}\right)$.
(B_{22})

$$
z_{0} \leqq \frac{(1-r)^{2}}{4 r y} \leqq z_{1} \leqq z_{2} \leqq y
$$

Then we need again
a) $\sqrt{u_{\alpha}}(y)\left(y-z_{0}\right) \sqrt{u_{\alpha}}\left(z_{0}\right) H\left(r, y, z_{0}\right) \leqq c$
proved in $\left(\mathrm{A}_{12}\right)$ and
b) $\sqrt{u_{\alpha}}(y)\left(y-z_{2}\right) \sqrt{u_{\alpha}}\left(z_{2}\right) H\left(r, y, z_{2}\right) \leqq c$.

Since $\frac{(1-r)^{2}}{4 r y} \leqq z_{2} \leqq c r y$ implies that $\frac{1}{r} \leqq c \frac{y}{1-r}, \mathrm{~b}$) follows just like in (B_{12}). Lemma 4 is completely proved.
Introduce the function

$$
U(x, r):=\frac{x \exp \left\{\frac{x^{2}}{4} \log r\right\}}{2 \sqrt{\pi} r(-\log r)^{\frac{3}{2}}},
$$

then ([3])

$$
\begin{equation*}
\int_{0}^{1} U(x, r) r^{n} d r=e^{-\sqrt{n} x}, \quad x>0, n \in \mathbf{N} \tag{18}
\end{equation*}
$$

Define the alternate Poisson integral of f by

$$
\begin{equation*}
f(x, y):=\int_{0}^{1} U(x, r) g(r, y) d r \tag{19}
\end{equation*}
$$

then

$$
f(x, y)=\int_{0}^{\infty}\left(\int_{0}^{1} U(x, r) K(r, y, z) d r\right) f(z) u_{\alpha}(z) d z
$$

It follows from (18) that if f has the expansion $f \sim \sum_{k=0}^{\infty} a_{k} l_{k}^{(\alpha)}$ then

$$
\begin{equation*}
f(x, y) \sim \sum_{k=0}^{\infty} a_{k} e^{-\sqrt{k} x} l_{k}^{(\alpha)}(y) \tag{20}
\end{equation*}
$$

Theorem 1. Let $\alpha>0,1 \leqq p \leqq \infty$ and $f \in L^{p}\left(\sqrt{u_{\alpha}}\right)$. Then
a) $\sqrt{u_{\alpha}}(y) \sup _{x>0}|f(x, y)| \leqq c\left(\sqrt{u_{\alpha}} f\right)^{*}(y) \quad$ a.e.,
b) $\left\|\sqrt{u_{\alpha}}(y)[f(x, y)-f(y)]\right\|_{p} \rightarrow 0 \quad(x \rightarrow 0+), \quad p \neq 1, \infty$,
c) $\lim _{x \rightarrow 0+} f(x, y)=f(y) \quad$ a.e., $\quad p \neq \infty$,
d) $\left\|\sqrt{u_{\alpha}}(y) \sup _{x>0}|f(x, y)|\right\|_{p} \leqq c(p)\left\|\sqrt{u_{\alpha}} f\right\|_{p}, \quad p \neq 1, \infty$.

Proof. a) Define the function

$$
\hat{L}(x, y, z)=\int_{0}^{1} L(r, y, z) U(x, r) d r
$$

then

$$
\int_{0}^{1} K(r, y, z) U(x, r) d r \leqq c \hat{L}(x, y, z)
$$

further the function $z \mapsto \sqrt{u_{\alpha}}(z) \hat{L}(x, y, z)$ increases for $z \leqq y$, decreases for $z \geqq y$ and

$$
\begin{gathered}
\sqrt{u_{\alpha}}(y) \int_{0}^{\infty} \hat{L}(x, y, z) \sqrt{u_{\alpha}}(z) d z= \\
=\int_{0}^{1} U(x, r) \sqrt{u_{\alpha}}(y) \int_{0}^{\infty} L(r, y, z) \sqrt{u_{\alpha}}(z) d z d r \leqq c \int_{0}^{1} U(x, r) d r=c
\end{gathered}
$$

hence a) follows from Lemma 2.
b), c), d). We knuw that the set of polynomials is dense in $L^{p}\left(\sqrt{u_{\alpha}}\right)$, $1 \leqq p<\infty$. Taking (19) into account, b) follows from a) and d) by the Banach-Steinhaus theorem, and c) follows from the Banach-Steinhaus type theorem related to the convergence in measure ([14]). Finally d) follows from the estimate

$$
\left\|\left(\sqrt{u_{\alpha}} f\right)^{*}\right\|_{p} \leqq c(p)\left\|\sqrt{u_{\alpha}} f\right\|_{p}, \quad 1<p \leqq \infty
$$

see in [13]. Theorem 1 is proved.
In what follows, following Muckenhoupt [5], we shall investigate the conjugate function. Let

$$
\begin{equation*}
q(x, y, z):=\sqrt{y} \int_{0}^{1} \frac{\partial}{\partial y}\left[\frac{\exp \left\{\frac{x^{2}}{4 \log r}-\frac{r(y+z)}{1-r}\right\} J_{\alpha}\left(i \frac{2 \sqrt{r y z}}{1-r}\right)}{r(1-r) \sqrt{-\log r} i^{\alpha}(r y z)^{\frac{\alpha}{2}}}\right] d r . \tag{21}
\end{equation*}
$$

It is not hard to see that

$$
\begin{equation*}
\int_{0}^{\infty} q(x, y, z) l_{n-1}^{(\alpha+1)}(y) u_{\alpha+\frac{1}{2}}(y) d z=e^{-\sqrt{n} x} l_{n}^{(\alpha)}(z) \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
q(x, y, z)=\sqrt{y} \sum_{n=1}^{\infty} e^{-\sqrt{n} x} l_{n-1}^{(\alpha+1)}(y) l_{n}^{(\alpha)}(z) \tag{23}
\end{equation*}
$$

(meant pointwise). Further it is proved in [5] that

$$
\begin{equation*}
|q(x, y, z)| \leqq c=c(y, z, \alpha) \text { for } y, z>0 \text { and } x \geqq a>0 \tag{24}
\end{equation*}
$$

consequently the conjugate Poisson integral

$$
\begin{equation*}
\tilde{f}(x, y):=\int_{0}^{\infty} q(x, y, z) f(z) u_{\alpha}(z) d z \tag{25}
\end{equation*}
$$

exists for all $x, y>0$.
Remark. The norm estimate of $f(x, y)$ was proved by majorizing it by the maximal function operator. To prove norm estimate for $\tilde{f}(x, y)$ we have to decompose it into two parts one of which is majorized by the maximal function and the other one by the maximal Hilbert transform. Let $1 \leqq p<\infty$ and $f \in L^{p}(\mathbf{R})$. The maximal Hilbert transform of f is defined by

$$
H^{*} f(x):=\frac{1}{\pi} \sup _{\varepsilon>0}\left|\int_{|x-t|>\varepsilon} \frac{f(t)}{x-t} d t\right|, \quad x \in \mathbf{R}
$$

It is known ([13], p. 133) that

$$
\begin{equation*}
f \in L^{1}(\mathbf{R}) \Rightarrow\left|\left(H^{*} f>\lambda\right)\right| \leqq \frac{c}{\lambda}\|f\|_{1}, \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
f \in L^{p}(\mathbf{R}), \quad 1<p<\infty \Rightarrow\left\|H^{*} f\right\|_{p} \leqq c(p)\|f\|_{p} . \tag{27}
\end{equation*}
$$

We shall use the following result from [4]:
Lemma 5 ([4]). If $K(z)=-K(-z)$ and if $z K(z)$ (defined as 0 for $z=0$) has total variation V on $[0, m]$ then

$$
\sup _{0<a<b \leqq m}\left|\int_{a \leqq|z| \leqq b} f(y-z) K(z) d z\right| \leqq V \sup _{0<a<b \leqq m}\left|\int_{a \leqq|z| \leqq b} \frac{f(y-z)}{z} d z\right| .
$$

Let now I be an arbitrary (finite or infinite) interval and let $w>0$, $w \in L^{1}(I)$. As in [4], we say that a partition

$$
I=\bigcup_{n \in \mathbf{Z}} I_{n}
$$

of I into disjoint segments I_{n} has property A if for all $n \in \mathbf{Z}$
a) I_{n} stands left to I_{n+1},
b) $\left|I_{n}\right| \leqq 2\left|I_{n+1}\right|,\left|I_{n}\right| \leqq 2\left|I_{n-1}\right|$,
c) $\sup _{I_{n}} w / \inf _{I_{n}} w \leqq B<\infty$.

We need the following modification of Lemma 3 of [4].
Lemma 6. Let I be an interval, $w>0$ a weight and $\left(I_{n}\right)$ a partition of I having property A. Let a function f be defined in I and denote

$$
g(y): \left.=\left.\sup _{a, b} *\right|_{a \leqq|z| \leqq b} \frac{f(y-z)}{z} d z \right\rvert\,
$$

where sup* runs over the pairs $0<a<b \leqq \frac{\left|I_{n}\right|}{2}$, where n is defined by $y \in I_{n}$. Then
a) $f \in L^{1}(w, I) \Rightarrow|\{y \in I: w(y) g(y)>\lambda\}| \leqq \frac{c}{\lambda}\|f w\|_{1}$,
b) $f \in L^{p}(w, I), 1<p<\infty \Rightarrow\|w g\|_{p} \leqq c(p)\|w f\|_{p}$.

Proof. Denote

$$
E_{\lambda}:=\{y \in I: w(y) g(y)>\lambda\}, \quad J_{n}:=I_{n-1} \cup I_{n} \cup I_{n+1}, \quad f_{n}:=f \chi_{J_{n}} .
$$

It follows from the definition of the property A that for $y \in I_{n}$

$$
\begin{aligned}
& \left.w(y) g(y)=\sup _{\left.0<a<b \leqq \frac{\left|I_{n}\right|}{2} \right\rvert\,} \int_{a \leqq|z| \leqq b} \frac{f_{n}(y-z)}{z} d z \right\rvert\, w(y) \leqq \\
& \leqq c \sup _{0<a<b \leqq \frac{\left|I_{n}\right|}{2}} \int_{a \leqq|z| \leqq b} \frac{\left|f_{n}(y-z)\right| w(y-z)}{z} d z \leqq \\
& \leqq c \sup _{0<a} \int_{a \leqq|z|} \frac{\left|f_{n}(y-z)\right| w(y-z)}{z} d z \leqq c H^{*}\left(f_{n} w\right)(y) .
\end{aligned}
$$

Hence for $f \in L^{1}(w, I)$ we have

$$
\left|E_{\lambda}\right|=\sum_{n \in \mathbf{Z}}\left|E_{\lambda} \cap I_{n}\right| \leqq \sum_{n \in \mathbf{Z}}\left|\left(H^{*}\left(f_{n} w\right)>\frac{\lambda}{c}\right)\right| \leqq \sum_{n \in \mathbf{Z}} \frac{c}{\lambda}\left\|f_{n} w\right\|_{1} \leqq \frac{c}{\lambda}\|f w\|_{1}
$$

and for $f \in L^{p}(w, I), 1<p<\infty$

$$
\begin{aligned}
& \|w g\|_{p}^{p}=\sum_{n \in \mathbf{Z}} \int_{I_{n}}|w g|^{p} \leqq c \sum_{n \in \mathbf{Z}_{I_{n}}} \int_{I^{\prime}}\left[H^{*}\left(f_{n} w\right)\right]^{p} \leqq \\
& \leqq c \sum_{n \in \mathbf{Z}} \int_{I}\left[H^{*}\left(f_{n} w\right)\right]^{p} \leqq c \sum_{n \in \mathbf{Z}}\left\|f_{n} w\right\|_{p}^{p} \leqq c\|f w\|_{p}^{p}
\end{aligned}
$$

Lemma 7. Let $\alpha \geqq 0, x, y>0$. Then there exists a partition

$$
\begin{equation*}
q(x, y, z)=j(x, y, z)+u_{\alpha}^{-1}(z) k(x, y, z) \tag{28}
\end{equation*}
$$

satisfying the following properties:
a) $|j(x, y, z)| \leqq c J(y, z)$ where the function $z \mapsto \sqrt{u_{\alpha}}(z) J(y, z)$ increases for $z \leqq y$, decreases for $z \geqq y$ and

$$
\begin{equation*}
\sqrt{u_{\alpha}}(y) \int_{0}^{\infty} J(y, z) \sqrt{u_{\alpha}}(z) d z \leqq c \tag{29}
\end{equation*}
$$

b) $k(x, y, z)=0$ if $|y-z|>m:=\min \left\{\frac{1}{4}, \frac{y}{4}\right\}$,

$$
k(x, y, y+h)=-k(x, y, y-h), \quad V((y-z) k(x, y, z)) \leqq c
$$

(here V denotes the total variation).
Proof. It is shown in the Lemma of [5] that there exists a decomposition of the form (28), where k satisfies b) and $|j(x, y, z)| \leqq c n(y, z)$ if $n(y, z)$ is defined as follows. For $0<y \leqq 1$ let

$$
n(y, z)= \begin{cases}y^{-\alpha-1} & \text { if } 0<z \leqq \frac{3}{4} y \\ y^{-\alpha-1} \log \frac{y}{|y-z|} & \text { if } \frac{3}{4} y<z \leqq \frac{5}{4} y \\ y^{\frac{1}{2}} z^{-\alpha-\frac{3}{2}} & \text { if } \frac{5}{4} y<z \leqq 2 \\ y^{\frac{1}{2}} & \text { if } 2<z\end{cases}
$$

and for $y>1$

$$
n(y, z)= \begin{cases}y^{-\frac{1}{2}} & \text { if } 0<z \leqq \min \left\{\alpha+2, \frac{3}{4} y\right\} \\ y^{-\frac{1}{2}} z^{-\alpha-\frac{1}{2}} e^{z} & \text { if } \alpha+2<z \leqq \frac{3}{4} y \\ y^{-\alpha-1} e^{z}\left(1+\frac{y}{8(y-z)^{\frac{3}{2}}}\right) & \text { if } \frac{3}{4} y<z \leqq y-\frac{1}{4} \\ y^{-\alpha} e^{y}(1-\log |y-z|) & \text { if } y-\frac{1}{4}<z \leqq y+\frac{1}{4} \\ y^{-\alpha} e^{y} & \text { if } y+\frac{1}{4}<z\end{cases}
$$

Remark that

$$
n(y, z+) \asymp n(y, z-), \quad y, z>0 .
$$

We distinguish two cases: $0<y \leqq 1$, denoted by A and $y>1$, denoted by B.

$$
\begin{equation*}
0<z \leqq \frac{3}{4} y \tag{1}
\end{equation*}
$$

Then $\sqrt{u_{\alpha}} n=z^{\alpha / 2} e^{-z / 2} y^{-\alpha-1}$. It increases in case $z \leqq \alpha$ and decreases for $z \geqq \alpha$ so let

$$
\sqrt{u_{\alpha}} J:= \begin{cases}z^{\alpha / 2} e^{-z / 2} y^{-\alpha-1} & \text { if } 0<z \leqq \min \left\{\alpha, \frac{3}{4} y\right\} \\ \alpha^{\alpha / 2} e^{-\alpha / 2} y^{-\alpha-1} & \text { if } \alpha<z \leqq \frac{3}{4} y\end{cases}
$$

Here (29) is obvious.

$$
\begin{equation*}
\frac{3}{4} y<z \leqq y \tag{2}
\end{equation*}
$$

Then

$$
\sqrt{u_{\alpha}} n=z^{\alpha / 2} e^{-z / 2} y^{-\alpha-1} \log \frac{y}{y-z} \asymp y^{-\frac{\alpha}{2}-1} \log \frac{y}{y-z}
$$

hence we can define for large c

$$
\sqrt{u_{\alpha}} J=c y^{-\frac{\alpha}{2}-1} \log \frac{y}{y-z}
$$

Now

$$
\begin{gathered}
\sqrt{u_{\alpha}}(y) \int_{\frac{3}{4} y}^{y} J(y, z) \sqrt{u_{\alpha}}(z) d z \leqq \frac{c}{y} \int_{\frac{3}{4} y}^{y}[\log y-\log (y-z)] d z= \\
\quad=\frac{1}{4}\left(\log y+1-\log \frac{y}{4}\right)=\frac{1}{4}(1+\log 4)
\end{gathered}
$$

$\left(\mathrm{A}_{3}\right)$

$$
2<z, \quad \alpha \leqq 2
$$

Then let

$$
\sqrt{u_{\alpha}} J:=y^{1 / 2} z^{\alpha / 2} e^{-z / 2}
$$

$\left(\mathrm{A}_{4}\right)$

$$
2<z, \quad \alpha>2
$$

$$
\sqrt{u_{\alpha}} J:= \begin{cases}y^{1 / 2} \alpha^{\alpha / 2} e^{-\alpha / 2} & \text { if } 2<z \leqq \alpha \\ y^{1 / 2} z^{\alpha / 2} e^{-z / 2} & \text { if } \alpha<z\end{cases}
$$

In both cases (29) fulfils and $\sqrt{u_{\alpha}}(2) J(y, 2+) \asymp y^{1 / 2}$.

$$
\begin{equation*}
\frac{5}{4} y<z \leqq 2 . \tag{5}
\end{equation*}
$$

Then $\sqrt{u_{\alpha}} n \asymp y^{\frac{1}{2}} z^{-\frac{\alpha+3}{2}}$, so for large c define

$$
\sqrt{u_{\alpha}} J:=c y^{\frac{1}{2}} z^{-\frac{\alpha+3}{2}}
$$

and

$$
y^{\frac{\alpha+1}{2}} \int_{\frac{5}{4} y}^{2} z^{-\frac{\alpha+3}{2}} d z \leqq c
$$

proves (29). Finally $\sqrt{u_{\alpha}}\left(\frac{5}{4} y\right) J\left(y, \frac{5}{4} y+\right) \asymp y^{-\frac{\alpha}{2}-1}$.
$\left(\mathrm{A}_{6}\right)$

$$
y<z \leqq \frac{5}{4} y .
$$

In this case $\sqrt{u_{\alpha}} n \asymp y^{-\frac{\alpha}{2}-1} \log \frac{y}{z-y}$ hence we can set

$$
\sqrt{u_{\alpha}} J:=c y^{-\frac{\alpha}{2}-1} \log \frac{y}{z-y}
$$

for large c. Now (29) follows as in (A_{2}). The case $y \leqq 1$ being ready, investigate the case $y>1$. We shall use the estimate

$$
\int_{x}^{\infty} z^{\frac{\alpha}{2}} e^{-\frac{z}{2}} d z \leqq 4 x^{\frac{\alpha}{2}} e^{-\frac{z}{2}} \quad(x \geqq 2 \alpha) .
$$

Indeed, for $x=\infty$ equality holds and the derivatives of both sides fulfil the converse inequality. We also get that

$$
\begin{equation*}
\int_{x}^{\infty} z^{\frac{\alpha}{2}} e^{-\frac{z}{2}} d z \leqq c(\alpha) x^{\frac{\alpha}{2}} e^{-\frac{z}{2}} \quad(x \geqq 1) \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
0<z \leqq \min \left(\alpha+2, \frac{3}{4} y\right) \tag{1}
\end{equation*}
$$

Then $\sqrt{u_{\alpha}} n \asymp y^{-1 / 2} z^{\alpha / 2}$, so let

$$
\sqrt{u_{\alpha}} J:=c y^{-\frac{1}{2}} z^{\frac{\alpha}{2}}
$$

for large c. By $\sqrt{u_{\alpha}}(y) \int_{0}^{\frac{3}{4} y} y^{-\frac{1}{2}} z^{\frac{\alpha}{2}} d z \leqq c y^{\frac{1}{2}} e^{-\frac{y}{2}} \leqq c$ (29) fulfils.

$$
\begin{equation*}
\alpha+2<z \leqq \frac{3}{4} y . \tag{2}
\end{equation*}
$$

Then $\sqrt{u_{\alpha}} n \asymp y^{-\frac{1}{2}} z^{-\frac{\alpha+1}{2}} e^{\frac{z}{2}}$, hence we can define

$$
\sqrt{u_{\alpha}} J:=c y^{-\frac{1}{2}} z^{-\frac{\alpha+2}{2}} e^{\frac{z}{2}}
$$

and

$$
y^{\frac{\alpha}{2}} e^{-\frac{y}{2}} y^{-\frac{1}{2}} \int_{\alpha+2}^{\frac{3}{4} y} z^{-\frac{\alpha+1}{2}} e^{\frac{z}{2}} d z \leqq y^{\frac{\alpha-1}{2}} e^{-\frac{y}{8}} \int_{\uparrow+2}^{\frac{3}{4} y} z^{-\frac{\alpha+1}{2}} d z
$$

which is $\leqq c y^{\frac{\alpha-1}{2}} y^{-\frac{\alpha-1}{2}}=c$ for $\alpha \neq 1$ and $\leqq c y \log y e^{-\frac{y}{8}} \leqq c$ for $\alpha=1$.

$$
\begin{equation*}
\frac{3}{4} y<z \leqq y-\frac{1}{4} \tag{3}
\end{equation*}
$$

Now

$$
\sqrt{u_{\alpha}} n=e^{\frac{z}{2}} y^{-\alpha-1} z^{\frac{\alpha}{2}}\left(1+\frac{y}{8(y-z)^{3 / 2}}\right) \leqq c y^{-\frac{\alpha}{2}-1} e^{\frac{y}{2}}\left(1+\frac{y}{8(y-z)^{3 / 2}}\right) .
$$

So let

$$
\sqrt{u_{\alpha}} J:=c e^{\frac{y}{2}} y^{-\frac{\alpha}{2}-1}\left(1+\frac{y}{8(y-z)^{3 / 2}}\right)
$$

and (29) follows from
(B_{4})

$$
y^{-1} \int_{\frac{3}{4} y}^{y-\frac{1}{4}}\left(1+\frac{y}{8(y-z)^{3 / 2}}\right) d z \leqq c\left(1+\int_{\frac{3}{4} y}^{y-\frac{1}{4}}(y-z)^{-\frac{3}{2}} d z\right) \leqq c
$$

$$
y-\frac{1}{4}<z \leqq y
$$

Then

$$
\sqrt{u_{\alpha}} n \smile e^{\frac{y}{2}} y^{-\frac{\alpha}{2}}(1-\log (y-z))
$$

and since

$$
\sqrt{u_{\alpha}}\left(y-\frac{1}{4}\right) J\left(y, y-\frac{1}{4}\right) \asymp y^{-\frac{\alpha}{2}} e^{\frac{y}{2}}
$$

hence we can write

$$
\sqrt{u_{\alpha}} J:=c y^{-\frac{\alpha}{2}} e^{\frac{y}{2}}(1-\log (y-z))
$$

and (29) is obvious.

$$
\begin{equation*}
y+\frac{1}{4}<z \tag{5}
\end{equation*}
$$

Then $\sqrt{u_{\alpha}} n=z^{\alpha / 2} e^{-z / 2} e^{y} y^{-\alpha}$. Now in case $\alpha \leqq y+\frac{1}{4}$ let

$$
\sqrt{u_{\alpha}} J:=z^{\frac{\alpha}{2}} e^{-\frac{z}{2}} e^{y} y^{-\alpha}
$$

and in case $y+\frac{1}{4}<\alpha$ let

$$
\sqrt{u_{\alpha}} J:= \begin{cases}z^{\frac{\alpha}{2}} e^{-\frac{z}{2}} e^{y} y^{-\alpha}\left(\asymp z^{\frac{\alpha}{2}} e^{-\frac{z}{2}}\right) & \text { if } \alpha<z \\ \alpha^{\frac{\alpha}{2}} e^{-\frac{\alpha}{2}} e^{y} y^{-\alpha}(\asymp 1) & \text { if } y+\frac{1}{4}<z \leqq \alpha\end{cases}
$$

Now in case $\alpha \leqq y+\frac{1}{4}$ the integral condition (29) follows from (30) and in case $\alpha>y+\frac{1}{4}$ it is trivial. In both cases we have

$$
\sqrt{u_{\alpha}}\left(y+\frac{1}{4}\right) J\left(y, y+\frac{1}{4}+\right) \asymp y^{-\frac{\alpha}{2}} e^{\frac{y}{2}}
$$

(B_{6})

$$
y<z \leqq y+\frac{1}{4}
$$

Then $\sqrt{u_{\alpha}} n \asymp e^{y / 2} y^{-\alpha / 2}(1-\log (z-y))$, hence we define

$$
\sqrt{u_{\alpha}} J:=c y^{-\frac{\alpha}{2}} e^{\frac{y}{2}}(1-\log (z-y))
$$

and the integral condition is obvious. The proof of Lemma 7 is complete.

Theorem 2. Suppose $\alpha>0$. Then
a) $f \sqrt{u_{\alpha}} \in L^{1}(0, \infty) \Rightarrow\left|\left\{y: \sqrt{u_{\alpha}}(y) \sup _{x>0}|\tilde{f}(x, y)|>\lambda\right\}\right| \leqq$ $\leqq \frac{c}{\lambda}\left\|\sqrt{u_{\alpha}} f\right\|_{1}$,
b) $f \sqrt{u_{\alpha}} \in L^{p}(0, \infty), 1<p<\infty \Rightarrow\left\|\sqrt{u_{\alpha}}(y) \sup _{x>0}|\tilde{f}(x, y)|\right\|_{p} \leqq$ $\leqq c(p)\left\|\sqrt{u_{\alpha}} f\right\|_{p}$,
c) $f \sqrt{u_{\alpha}} \in L^{p}(0, \infty), 1 \leqq p<\infty$ implies that the limit

$$
\begin{equation*}
\tilde{f}(y):=\lim _{x \rightarrow 0+} \tilde{f}(x, y) \tag{31}
\end{equation*}
$$

exists for a.e. $y>0$,
d) $f \sqrt{u_{\alpha}} \in L^{p}(0, \infty), 1<p<\infty \Rightarrow\left\|\sqrt{u_{\alpha}} \tilde{f}\right\|_{p} \leqq c(p)\left\|\sqrt{u_{\alpha}} f\right\|_{p}$ and $\lim _{x \rightarrow 0+}\left\|\sqrt{u_{\alpha}}(y)[\tilde{f}(y)-\tilde{f}(x, y)]\right\|_{p}=0$.
e) If $f \sqrt{u_{\alpha}} \in L^{p}, 1<p<\infty$ and $f(y) \sim \sum_{k=0}^{\infty} a_{k} l_{k}^{(\alpha)}(y)$ then

$$
\begin{equation*}
\tilde{f}(y) \sim \sum_{k=1}^{\infty} a_{k} \sqrt{y} \ell_{k-1}^{(\alpha+1)}(y), \quad \tilde{f}(x, y) \sim \sum_{k=1}^{\infty} a_{k} e^{-\sqrt{k} x} \sqrt{y} l_{k-1}^{(\alpha+1)}(y) \tag{32}
\end{equation*}
$$

(this means that $y^{-1 / 2} \tilde{f}(y) \in L^{p}\left(\sqrt{u}_{\alpha+1}\right)$ has the expansion

$$
\left.\sum_{k=1}^{\infty} a_{k} l_{k-1}^{(\alpha+1)}(y), \quad a_{k}=\int_{0}^{\infty} \tilde{f}(y) y^{\frac{1}{2}} \ell_{k-1}^{\alpha+1}(y) u_{\alpha}(y) d y\right)
$$

Proof. By Lemma 7

$$
\begin{gathered}
\tilde{f}(x, y)=\int_{0}^{\infty} j(x, y, z) f(z) u_{\alpha}(z) d z+\int_{0}^{\infty} k(x, y, z) f(z) d z=: \\
=: T_{1}(f, x, y)+T_{2}(f, x, y)
\end{gathered}
$$

From Lemma 2 we see that a) and b) hold when replacing $\tilde{f}(x, y)$ by $T_{1}(f, x, y)$. On the other hand define the partition

$$
(0, \infty)=\bigcup_{n \in \mathbf{Z}} I_{n}, \quad I_{n}:=\left\{\begin{array}{lll}
{[n, n+1]} & \text { if } & n \geqq 1 \\
{\left[2^{n-1}, 2^{n}\right]} & \text { if } & n \leqq 0
\end{array}\right.
$$

this partition has property A with respect to the weight $w:=\sqrt{u_{\alpha}}$. By Lemma 5 we have

$$
\left|T_{2}(f, x, y)\right| \leqq c \sup _{0<a<b \leqq m}\left|\int_{a \leqq|z| \leqq b} \frac{f(y-z)}{z} d z\right| \leqq c \sup _{a, b}{ }^{*}\left|\int_{a \leqq|z| \leqq b} \frac{f(y-z)}{z} d z\right|
$$

since $y \in I_{n}$ implies $m=\min \left(\frac{1}{4}, \frac{y}{4}\right) \leqq \frac{\left|I_{n}\right|}{2}$. Now Lemma 6 states that a) and b) hold with $T_{2}(f, x, y)$ instead of $\tilde{f}(x, y)$. So a) and b) are proved. The statement c) holds if f is a polynomial. Since the polynomials are dense in $L^{p}\left(\sqrt{u_{\alpha}}\right), 1 \leqq p<\infty$ hence c) follows from a) and b) by the Banach theorem mentioned in proving Theorem 1. The statement d) is an immediate corollary of b), c) and the Banach-Steinhaus theorem. Finally e) is easy to check for polynomials; in general (32) follows by Proposition b).

Now we prove an Alexits type theorem.
Theorem 3. Let $\alpha>0,1<p<\infty$ and $f \in L^{p}\left(\sqrt{u_{\alpha}}\right)$. The following statements are equivalent:

$$
\begin{equation*}
\left\|\sqrt{u_{\alpha}}\left(f-R_{n} f\right)\right\|_{p}=O\left(\frac{1}{\sqrt{n}}\right) \tag{33}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
\tilde{f} \text { is locally absolutely continuous and } \tag{34}\\
{\left[u_{\alpha+\frac{1}{2}} \tilde{f}\right]^{\prime} u_{\alpha}^{-1} \in L^{p}\left(\sqrt{u_{\alpha}}\right), \quad \lim _{x \rightarrow 0+} u_{\alpha+\frac{1}{2}}(x) \tilde{f}(x)=0}
\end{array}\right.
$$

Remark. The implication (34) \Rightarrow (33) is essentially stated in [7] for Fejér means. The proof of the converse implication does not work for Fejér means because the corresponding variant of the Alexits Lemma does not hold. That is why we use Riesz means instead of Fejér means (see [8] for more details).

Proof. $(33) \Rightarrow(34)$. By the Alexits Lemma (33) is equivalent to

$$
\left\|\sqrt{u_{\alpha}} R_{n}\left(\sum \sqrt{k} a_{k} \ell_{k}^{(\alpha)}\right)\right\|_{p}=O(1)
$$

(see [8]). This last estimate implies the existence of a function $g \in L^{p}\left(\sqrt{u_{\alpha}}\right)$ such that

$$
g \sim \sum \sqrt{k} a_{k} \ell_{k}^{(\alpha)}
$$

From (3) it follows that

$$
\left[u_{\alpha+\frac{1}{2}} R_{n} \tilde{f}\right]^{\prime}=-u_{\alpha} R_{n} g
$$

This can be rewritten as

$$
\begin{equation*}
\int_{x}^{\infty} u_{\alpha} R_{n} g=u_{\alpha+\frac{1}{2}}(x) R_{n} \tilde{f}(x) \tag{35}
\end{equation*}
$$

since both sides tend to zero as $x \rightarrow \infty$. From Lemma 1 it follows that

$$
\left|\int_{x}^{\infty} u_{\alpha}\left(g-R_{n} g\right)\right| \leqq\left\|\sqrt{u_{\alpha}}\left(g-R_{n} g\right)\right\|_{p}\left\|\sqrt{u_{\alpha}}\right\|_{q} \rightarrow 0 \quad(n \rightarrow \infty)
$$

hence the uniform limit

$$
\begin{equation*}
\int_{x}^{\infty} u_{\alpha} g=\lim _{n \rightarrow \infty} \int_{x}^{\infty} u_{\alpha} R_{n} g=\lim _{n \rightarrow \infty} u_{\alpha+\frac{1}{2}}(x) R_{n} \tilde{f}(x) \tag{36}
\end{equation*}
$$

exists. Again by Lemma 1 (used with $\alpha+1$ instead of α) we get that $\sqrt{u_{\alpha}} R_{n} \tilde{f}$ tends to $\sqrt{u_{\alpha}} \tilde{f}$ in $L^{p}(0, \infty)$, hence

$$
\int_{x}^{\infty} u_{\alpha} g=\lim _{n \rightarrow \infty} u_{\alpha+\frac{1}{2}}(x) R_{n} \tilde{f}(x)=u_{\alpha+\frac{1}{2}}(x) \tilde{f}(x)
$$

which proves (34).
$(34) \Rightarrow(33)$. Let $g:=\left[u_{\alpha+\frac{1}{2}} \tilde{f}\right]^{\prime} u_{\alpha}^{-1} \in L^{p}\left(\sqrt{u_{\alpha}}\right)$ and compute its coefficients by (2):

$$
\begin{gathered}
b_{k}=\int_{0}^{\infty} g \ell_{k}^{(\alpha)} u_{\alpha}=\int_{0}^{\infty}\left[u_{\alpha+\frac{1}{2}} \tilde{f}\right]^{\prime} \ell_{k}^{(\alpha)}= \\
=\lim _{x \rightarrow \infty} u_{\alpha+\frac{1}{2}}(x) \tilde{f}(x) \ell_{k}^{(\alpha)}(x)-\sqrt{n} \int_{0}^{\infty} \tilde{f} \ell_{k-1}^{(\alpha+1)} u_{\alpha+\frac{1}{2}}
\end{gathered}
$$

It is not hard to see that $g \in L^{p}\left(\sqrt{u_{\alpha}}\right)$ implies

$$
\begin{equation*}
\lim _{x \rightarrow \infty} u_{\alpha+\frac{1}{2}}(x) \tilde{f}(x) x^{k}=0, \quad k=0,1,2, \ldots \tag{37}
\end{equation*}
$$

Indeed, for $x \geqq 1$ we have by (30)

$$
\begin{aligned}
& \left|u_{\alpha+\frac{1}{2}}(x) \tilde{f}(x)+c_{0}\right|=\left|\int_{x}^{\infty}\left[u_{\alpha+\frac{1}{2}} \tilde{f}\right]^{\prime}\right| \leqq \\
\leqq & \left\|\sqrt{u_{\alpha} g}\right\|_{p}\left(\int_{x}^{\infty} u_{\alpha}^{\frac{q}{2}}\right)^{\frac{1}{q}} \leqq c\left\|\sqrt{u_{\alpha}} g\right\|_{p} \sqrt{u_{\alpha}}(x)
\end{aligned}
$$

and this is compatible with $\sqrt{u_{\alpha}} \tilde{f} \in L^{p}(0, \infty)$ only in case $c_{0}=0$ and then for $x \rightarrow \infty$

$$
x^{k}\left|u_{\alpha+\frac{1}{2}}(x) \tilde{f}(x)\right|=x^{k}\left|\int_{x}^{\infty}\left[u_{\alpha+\frac{1}{2}} \tilde{f}\right]^{\prime}\right| \leqq c x^{k} \sqrt{u_{\alpha}}(x) \rightarrow 0
$$

It follows from (37) that

$$
g \sim-\sum \sqrt{k} u_{k} \ell_{k}^{(\alpha)}
$$

and then Lemma 1 implies

$$
\left\|\sqrt{u_{\alpha}} R_{n} g\right\|_{p}=O(1)
$$

which is equivalent to (33) as we mentioned above. The proof is complete.
Theorem 4. Let $\alpha>0,1<p<\infty$ and $f \in L^{p}\left(\sqrt{u_{\alpha}}\right)$. Then

$$
\begin{align*}
& \left\|\sqrt{u_{\alpha}}(y)[f(x, y)-f(y)]\right\|_{p}=o(x) \quad(x \rightarrow 0+) \Leftrightarrow f=0, \tag{38}\\
& \left\|\sqrt{u_{\alpha}}(y)[f(x, y)-f(y)]\right\|_{p}=O(x) \Leftrightarrow \tag{39}\\
& \Leftrightarrow\left[u_{\alpha+\frac{1}{2}} \tilde{f}\right]^{\prime} u_{\alpha}^{-1} \in L^{p}\left(\sqrt{u_{\alpha}}\right), \quad \lim _{x \rightarrow 0+} u_{\alpha+\frac{1}{2}}(x) \tilde{f}(x)=0 .
\end{align*}
$$

Proof. The operators $T_{x} f(y):=f(x, y), x>0, T_{0} f(y)=f(y)$ have the semigroup property

$$
\begin{equation*}
T_{x_{1}} T_{x_{2}} f=T_{x_{1}+x_{2}} f \tag{40}
\end{equation*}
$$

Indeed

$$
\begin{aligned}
& T_{x_{1}} T_{x_{2}} f(y)=\int_{0}^{\infty} K\left(x_{1}, y, z\right) u_{\alpha}(z) T_{x_{2}} f(z) d z= \\
= & \int_{0}^{\infty} K\left(x_{1}, y, z\right) u_{\alpha}(z) \int_{0}^{\infty} K\left(x_{2}, z, t\right) f(t) u_{\alpha}(t) d t d z= \\
= & \int_{0}^{\infty} f(t) u_{\alpha}(t) \int_{0}^{\infty} K\left(x_{1}, y, z\right) K\left(x_{2}, z, t\right) u_{\alpha}(z) d z d t
\end{aligned}
$$

and

$$
\begin{gathered}
\int_{0}^{\infty} K\left(x_{1}, y, z\right) K\left(x_{2}, z, t\right) u_{\alpha}(z) d z= \\
=\int_{0}^{\infty}\left\{\sum_{n=0}^{\infty} e^{-\sqrt{n} x_{1}} \ell_{n}^{(\alpha)}(y) \ell_{n}^{(\alpha)}(z)\right\}\left\{\sum_{k=0}^{\infty} e^{-\sqrt{k} x_{2}} \ell_{k}^{(\alpha)}(z) \ell_{k}^{(\alpha)}(t)\right\} u_{\alpha}(z) d z= \\
=\sum_{n=0}^{\infty} e^{-\sqrt{n}\left(x_{1}+x_{2}\right)} \ell_{n}^{(\alpha)}(y) \ell_{n}^{(\alpha)}(t)=K\left(x_{1}+x_{2}, y, t\right)
\end{gathered}
$$

which proves (40). The continuity of this semigroup is proved in Theorem 1. It is known [12] that the saturation class of an operator semigroup is the domain of its infinitesimal generator and the saturation order is $O(x), x>0$. Hence all we have to prove is that the domain $D(A)$ of the infinitesimal generator A of the semigroup $\left\{T_{x}: x \geqq 0\right\}$ consists of the functions $f \in$ $\in L^{p}\left(\sqrt{u_{\alpha}}\right)$ satisfying (34). Denote $D_{1}(A)$ the set of these f. As we have seen in proving Theorem 3 ,

$$
D_{1}(A)=\left\{f: \exists g \in L^{p}\left(\sqrt{u_{\alpha}}\right), g \sim \Sigma k a_{k} \ell_{k}^{(\alpha)}\right\}=: D_{2}(A) .
$$

We shall prove $D(A)=D_{2}(A)$. Let first $f \in D(A)$. By definition

$$
\left\|\left[A f-\frac{T_{x} f-f}{x}\right] \sqrt{u_{\alpha}}\right\|_{p} \rightarrow 0 \quad(x \rightarrow 0+) ;
$$

hence

$$
\begin{gathered}
\int_{0}^{\infty} A(f) \ell_{k}^{(\alpha)} u_{\alpha}=\lim _{x \rightarrow 0+} \int_{0}^{\infty} \frac{T_{x} f-f}{x} \ell_{k}^{(\alpha)} u_{\alpha}=\lim _{x \rightarrow 0+} \frac{e^{-\sqrt{k} x}-1}{x} a_{k}=-\sqrt{k} a_{k}, \\
A f \sim-\sum k a_{k} \ell_{k}^{(\alpha)}
\end{gathered}
$$

and then $f \in D_{2}(A)$. Conversely suppose $f \in D_{2}(A)$. We know that

$$
A\left(R_{n} f\right)=-R_{n} g .
$$

Since $\left\|\sqrt{u_{\alpha}}\left(R_{n} f-f\right)\right\|_{p} \rightarrow 0, \| \sqrt{u_{\alpha}}\left(A\left(R_{n}(f)+g\right) \|_{p} \rightarrow 0\right.$ and A is closed ([12]), hence $A f=-g, f \in D(A)$. Theorem 4 is proved.

In this final section of the present paper we prove another Alexits and Abel-Poisson type saturation theorems.

Theorem 5. Let $\alpha \geqq 0,1<p<\infty$ and $f \in L^{p}\left(\sqrt{u_{\alpha}}\right)$. The following statements are equivalent:

$$
\begin{equation*}
\left\|\sqrt{u_{\alpha}}\left(\tilde{f}-R_{n} \tilde{f}\right)\right\|_{p}=O\left(\frac{1}{\sqrt{n}}\right), \tag{41}
\end{equation*}
$$

$$
\begin{equation*}
f \text { is locally absolutely continuous and } f^{\prime} y^{1 / 2} \in L^{p}\left(\sqrt{u_{\alpha}}\right) \text {. } \tag{42}
\end{equation*}
$$

Here $R_{n} \tilde{f}$ denotes the Riesz means of the series

$$
y^{1 / 2} \sum a_{k} \ell_{k-1}^{(k+1)}(y) .
$$

Proof. As in Theorem 3 we see that (41) is equivalent to the existence of a function $g \in L^{p}\left(\sqrt{u_{\alpha}}\right)$ having the expansion

$$
g(y) \sim y^{1 / 2} \sum \sqrt{k} a_{k} \ell_{k-1}^{(\alpha+1)}(y) .
$$

It follows from (2) that

$$
\begin{equation*}
\int_{1}^{x} y^{-\frac{1}{2}} R_{n} g(y) d y=R_{n} f(x)-R_{n} f(1) \tag{43}
\end{equation*}
$$

We know that

$$
\left|\int_{1}^{x} y^{-\frac{1}{2}}\left(g(y)-R_{n} g(y)\right) d y\right| \leqq\left\|\sqrt{u_{\alpha}}\left(g-R_{n} g\right)\right\|_{p}\left(\int_{1}^{x}\left[y^{-\frac{\alpha+1}{2}} e^{\frac{y}{2}}\right]^{q} d y\right)^{\frac{1}{q}}
$$

here the second term can be estimated by

$$
c\left(\int_{1}^{x} y^{-\frac{\alpha+1}{2} q} d y\right)^{\frac{1}{q}} \leqq c\left(x^{\frac{1}{q}-\frac{\alpha+1}{2}}+1\right)
$$

for $x<2$ and by
$x^{-\frac{\alpha+1}{2}}\left(\int_{x / 2}^{x}\left[e^{\frac{y}{2}}\right]^{q} d y\right)^{1 / q}+\left(\int_{1}^{x / 2} e^{\frac{y}{2} q} d y\right)^{1 / q} \leqq c x^{-\frac{\alpha+1}{2}} e^{x / 2}+c e^{x / 4} \leqq c x^{-\frac{\alpha+1}{2}} e^{x / 2}$
for $x>2$. It follows from Lemma 1 and from the Proposition that

$$
\int_{1}^{x} y^{-\frac{1}{2}} R_{n} g(y) d y \rightarrow \int_{1}^{x} y^{-\frac{1}{2}} g(y) d y \quad(x>0)
$$

and that $\sqrt{u_{\alpha}} R_{n} f$ converges to $\sqrt{u_{\alpha}} f$ in $L^{p}(0, \infty)$. Taking a subsequence n_{k} we can suppose that $R_{n_{k}} f(x) \rightarrow f(x)$ a.e. By (43) the series $R_{n_{k}} f(1)$ converges to a constant C_{0}; taking the limit $k \rightarrow \infty$ (43) becomes

$$
\int_{1}^{x} y^{-\frac{1}{2}} g(y) d y=f(x)-C_{0}
$$

which proves (42). Conversely suppose (42) and prove (41). Let $g=f^{\prime} y^{1 / 2} \in$ $\in L^{p}\left(\sqrt{u_{\alpha}}\right)$. Then

$$
g(y) \sim y^{\frac{1}{2}} \sum_{k=0} b_{k} \ell_{k}^{(\alpha+1)}
$$

where, by (3)

$$
b_{k}=\int_{0}^{\infty} g(y) y^{\frac{1}{2}} \ell_{k}^{(\alpha+1)}(y) u_{\alpha}(y) d y=\int_{0}^{\infty} f^{\prime} u_{\alpha+1} \ell_{k}^{(\alpha+1)}=
$$

$$
=\lim _{x \rightarrow \infty} f(x) u_{\alpha+1}(x) \ell_{k}^{(\alpha+1)}(x)-\lim _{x \rightarrow 0} f(x) u_{\alpha+1}(x) \ell_{k}^{(\alpha+1)}(x)+\sqrt{k+1} a_{k+1} .
$$

We shall show that $f^{\prime} y^{1 / 2} \in L^{p}\left(\sqrt{u_{\alpha}}\right)$ implies

$$
\begin{equation*}
\lim _{x \rightarrow 0} f(x) u_{\alpha+1}(x)=\lim _{x \rightarrow \infty} f(x) u_{\alpha+1}(x) x^{k}=0 \quad(k=0,1, \ldots) . \tag{44}
\end{equation*}
$$

Indeed, we can suppose $f(1)=0$ and then

$$
f(x)=\int_{1}^{x} g y^{-\frac{1}{2}}
$$

hence

$$
\left|f(x) u_{\alpha+1}(x)\right| \leqq c\left\|g \sqrt{u_{\alpha}}\right\|_{p} u_{\alpha+1}(x) x^{\frac{1}{q}-\frac{\alpha+1}{2}} \leqq c x^{\frac{1}{q}+\frac{\alpha+1}{2}} \rightarrow 0 \quad(x \rightarrow 0)
$$

for $x<2$ and

$$
\begin{gathered}
x^{k}|f(x)| u_{\alpha+1}(x) \leqq c\left\|g \sqrt{u_{\alpha}}\right\|_{p} u_{\alpha+1}(x) x^{k-\frac{\alpha+1}{2}} e^{x / 2} \leqq \\
\leqq c e^{-x / 2} x^{k+\frac{\alpha+1}{2}} \rightarrow 0 \quad(x \rightarrow \infty)
\end{gathered}
$$

for $x>2$. The statement (44) being proved we obtain that

$$
g(y) \sim y^{\frac{1}{2}} \sum_{k=1}^{\infty} a_{k} \sqrt{k} \ell_{k-1}^{(\alpha+1)}(y)
$$

and this implies (41). Theorem 5 is proved.
Theorem 6. Let $\alpha \geqq 0,1<p<\infty$ and $f \in L^{p}\left(\sqrt{u_{\alpha}}\right)$. Then
a) $\left\|\sqrt{u_{\alpha}}[\tilde{f}-\tilde{f}(x, \cdot)]\right\|_{p}=o(x)(x \rightarrow 0+) \Leftrightarrow f=c$.
b) $\left\|\sqrt{u_{\alpha}}[\tilde{f}-\tilde{f}(x, \cdot)]\right\|_{p}=O(x) \Leftrightarrow f$ is locally absolutely continuous and $f^{\prime} y^{1 / 2} \in L^{p}\left(\sqrt{u_{\alpha}}\right)$.

Proof. Consider the operators

$$
\begin{gathered}
T_{x}: L^{p}\left(\sqrt{u_{\alpha}}\right) \rightarrow L^{p}\left(\sqrt{u_{\alpha}}\right) \\
T_{x} f(y):=\int_{0}^{\infty} M(x, y, z) f(z) \sqrt{y z} u_{\alpha}(z) d z \quad(x>0), \\
T_{0} f:=f, \quad M(x, y, z):=\int_{0}^{1} U(x, r) K(r, y, z) d r
\end{gathered}
$$

where $K(r, y, z)$ is the Abel-Poisson kernel corresponding to the weight $u_{\alpha+1}$:

$$
K(r, y, z)=\sum_{n=0}^{\infty} r^{n} \ell_{n}^{(\alpha+1)}(y) \ell_{n}^{(\alpha+1)}(z) .
$$

Now

$$
\begin{gathered}
\int_{0}^{\infty} T_{x} f(y) \sqrt{y} \ell_{k}^{(\alpha+1)}(y) u_{\alpha}(y) d y= \\
=\int_{0}^{\infty} \int_{0}^{\infty} M(x, y, z) f(z) \sqrt{z} u_{\alpha}(z) d z \ell_{k}^{(\alpha+1)}(y) u_{\alpha+1}(y) d y= \\
=\int_{0}^{\infty} f(z) \sqrt{z} u_{\alpha}(z) \int_{0}^{\infty} M(x, y, z) \ell_{k}^{(\alpha+1)}(y) u_{\alpha+1}(y) d y d z= \\
=\int_{0}^{\infty} f(z) \sqrt{z} u_{\alpha}(z) e^{-\sqrt{k} x} \ell_{k}^{(\alpha+1)}(z) d z
\end{gathered}
$$

which shows that

$$
\begin{equation*}
T_{x} \tilde{f}(y)=\tilde{f}(x, y), \quad x \geqq 0 . \tag{45}
\end{equation*}
$$

The semigroup property for the system $\left\{T_{x}: x \geqq 0\right\}$ can be proved the same way as (40). Now Theorem 1 states the continuity of this semigroup (with $\alpha+1$ instead of α and $y^{-1 / 2} f(y)$ instead of $f(y)$).

Denote by A the infinitesimal generator of this semigroup; then its saturation class is $D(A)$ and the saturation order is $O(x)$. This implies that a) and b) will follow if we show that
(46) $\tilde{f} \in D(A) \Leftrightarrow f$ is locally absolutely continuous and $f^{\prime} y^{\frac{1}{2}} \in L^{p}\left(\sqrt{u_{\alpha}}\right)$.

Taking Theorem 5 into account, we have to prove that

$$
\begin{equation*}
\tilde{f} \in D(A) \Leftrightarrow \exists g \in L^{p}\left(\sqrt{u_{\alpha}}\right), \quad g(y) \sim y^{\frac{1}{2}} \sum \sqrt{k} a_{k} \ell_{k-1}^{(\alpha+1)}(y) . \tag{47}
\end{equation*}
$$

Let first $\tilde{f} \in D(A)$. This means that the $L^{p}\left(\sqrt{u_{\alpha}}\right)$-limit

$$
A \tilde{f}=\lim _{x \rightarrow 0+} \frac{T_{x} \tilde{f}-\tilde{f}}{x}
$$

exists. Now it follows from (45) and (32) that

$$
\int_{0}^{\infty} A \tilde{f}(y) y^{\frac{1}{2}} \ell_{k-1}^{(\alpha+1)}(y) u_{\alpha}(y) d y=
$$

$=\lim _{x \rightarrow 0+} \int_{0}^{\infty} \frac{T_{x} \tilde{f}(y)-\tilde{f}(y)}{x} y^{\frac{1}{2}} \ell_{k-1}^{(\alpha+1)}(y) u_{\alpha}(y) d y=\lim _{x \rightarrow 0+} \frac{e^{-\sqrt{k} x}-1}{x} a_{k}=-\sqrt{k} a_{k}$ hence

$$
A \tilde{f}(y) \sim-y^{\frac{1}{2}} \sum \sqrt{k} a_{k} \ell_{k-1}^{(\alpha+1)}(y)
$$

which proves the "only if" part of (47). To see the "if" part, take $g \in$ $\in L^{p}\left(\sqrt{u_{\alpha}}\right)$ with the expansion

$$
g(y) \sim-y^{\frac{1}{2}} \sum \sqrt{k} a_{k} \ell_{k-1}^{(\alpha+1)}(y)
$$

We can check from the definition of A that

$$
A\left(R_{n} \tilde{f}\right)=R_{n} g
$$

It follows from Lemma 1 that

$$
\left\|\sqrt{u_{\alpha}}\left(R_{n} \tilde{f}-\tilde{f}\right)\right\|_{p} \rightarrow 0, \quad\left\|\sqrt{u_{\alpha}}\left(R_{n} g-g\right)\right\|_{p} \rightarrow 0 \quad(n \rightarrow \infty)
$$

Since the operator A is closed, we get that $\tilde{f} \in D(A)$ and $A \tilde{f}=g$. Theorem 6 is proved.

Remark 1. Theorems 3 and 5 hold also for $p=\infty$. We give briefly the needed modifications in the proofs. In proving $(33) \Rightarrow(34)$ we showed that (33) implies the existence of a function $g \in L^{\infty}\left(\sqrt{u_{\alpha}}\right)$ having the expansion

$$
g \sim \sum \sqrt{k} a_{k} \ell_{k}^{(\alpha)}
$$

In particular the 0 -th coefficient vanishes, i.e.

$$
\int_{0}^{\infty} g u_{\alpha}=0
$$

Now

$$
\left|\int_{x}^{\infty} u_{\alpha} g\right| \leqq\left\{\begin{array}{lll}
\left\|\sqrt{u_{\alpha}} g\right\|_{\infty} \int_{x}^{\infty} \sqrt{u_{\alpha}} \leqq c \sqrt{u_{\alpha}}(x) & \text { if } & x>1 \tag{48}\\
\left\|\sqrt{u_{\alpha}} g\right\|_{\infty} \int_{0}^{x} \sqrt{u_{\alpha}} \leqq c x^{\frac{\alpha}{2}+1} & \text { if } & x<1
\end{array}\right.
$$

which implies that

$$
\frac{1}{u_{\alpha+\frac{1}{2}}(x)} \int_{x}^{\infty} u_{\alpha} g \in L^{\infty}\left(\sqrt{u_{\alpha}}\right) .
$$

Compute the coefficients of this function by the aid of (48):

$$
\begin{gathered}
\int_{0}^{\infty} \frac{1}{u_{\alpha+\frac{1}{2}}(x)}\left(\int_{x}^{\infty} u_{\alpha} g\right) \sqrt{x} \ell_{k-1}^{(\alpha+1)}(x) u_{\alpha}(x) d x=\int_{0}^{\infty}\left(\int_{x}^{\infty} u_{\alpha} g\right) \ell_{k-1}^{(\alpha+1)}(x) d x= \\
=\left[\left(\int_{x}^{\infty} u_{\alpha} g\right) \frac{\ell_{k}^{(\alpha)}(x)}{\sqrt{k}}\right]_{x=0}^{\infty}+\frac{1}{\sqrt{k}} \int_{0}^{\infty} u_{\alpha}(x) g(x) \ell_{k}^{(\alpha)}(x) d x=a_{k}
\end{gathered}
$$

So we have

$$
\frac{1}{u_{\alpha+\frac{1}{2}}(x)} \int_{x}^{\infty} u_{\alpha} g=\tilde{f}(x) \in L^{\infty}\left(\sqrt{u_{\alpha}}\right)
$$

and $\lim _{x \rightarrow 0} \tilde{f}(x) u_{\alpha+\frac{1}{2}}(x)=0$ follows again from (48). Analogously, in proving $(41) \Rightarrow(42)$ we have a function $g \in L^{\infty}\left(\sqrt{u_{\alpha}}\right)$ with

$$
g(y) \sim y^{\frac{1}{2}} \sum \sqrt{k} a_{k} \ell_{k-1}^{(\alpha+1)}(y)
$$

Now
(49)

$$
\left|\int_{1}^{x} y^{-\frac{1}{2}} g(y) d y\right| \leqq\left\|\sqrt{u_{\alpha}} g\right\|_{\infty} \int_{1}^{x} y^{-\frac{\alpha+1}{2}} e^{\frac{y}{2}} d y \leqq \begin{cases}c\left(1+x^{1-\frac{\alpha+1}{2}}\right) & \text { if } x<2 \\ c x^{-\frac{\alpha+1}{2}} e^{x / 2} & \text { if } x>2\end{cases}
$$

implies that

$$
\int_{1}^{x} y^{-\frac{1}{2}} g(y) d y \in L^{\infty}\left(\sqrt{u_{\alpha}}\right)
$$

and the coefficients are, by (49)

$$
\begin{gathered}
\int_{0}^{\infty}\left(\int_{1}^{x} y^{-\frac{1}{2}} g(y) d y\right) \ell_{k}^{(\alpha)}(x) u_{\alpha}(x) d x= \\
=-\frac{1}{\sqrt{k}}\left[\left(\int_{1}^{x} y^{-\frac{1}{2}} g(y) d y\right) \ell_{k-1}^{(\alpha+1)}(x) u_{\alpha+1}(x)\right]_{x=0}^{\infty}+ \\
+\frac{1}{\sqrt{k}} \int_{0}^{\infty} x^{-\frac{1}{2}} g(x) \ell_{k-1}^{(\alpha+1)}(x) u_{\alpha+1}(x) d x=a_{k} \quad(k \geqq 1)
\end{gathered}
$$

and then Proposition a) implies $f(x)=\int_{1}^{x} y^{-\frac{1}{2}} g(y) d y+c$. The proof of the converse implications remains the same.

Remark 2. During the preparation of this paper we raised the following problem. Do there exist orthogonal systems, different from the classical ones, for which an Alexits type theorem holds? Recently I. Joó answered this in the positive sense proving an Alexits theorem for the Walsh system; see [18].

References

[1] G. Szegő, Orthogonal Polynomials, AMS Coll. Publ. Vol. 23 (Providence, Rhode Island, 1959).
[2] E. M. Stein, B. Muckenhoupt, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc., 118 (1965), 17-92.
[3] B. Muckenhoupt, Poisson integrals for Hermite and Laguerre expansions, Trans. Amer. Math. Soc., 139 (1969), 231-242.
[4] B. Muckenhoupt, Hermite conjugate expansions, Trans. Amer. Math. Soc., 139 (1969), 243-260.
[5] B. Muckenhoupt, Conjugate functions for Laguerre expansions, Trans. Amer. Math. Soc., 147 (1970), 403-418.
[6] G. Alexits, Sur l'ordre de grandeur de l'approximation d'une fonction périodique par les sommes de Fejér, Acta Math. Acad. Sci. Hung., 3 (1952), 29-40.
[7] I. Joó, On the order of approximation by Fejér means of Hermite-Fourier and LaguerreFourier series, Acta Math. Hung., 61 (1988), 365-370.
[8] I. Joó, Saturation theorems for Hermite-Fourier series, Acta Math. Hung., 57 (1991).
[9] I. Joó, On the divergence of eigenfunction expansions, Annales Univ. Sci. Budapest. Sectio Math., 32 (1989), 3-36.
[10] A. Bogmér, Generalisation of a theorem of G. Alexits, Annales Univ. Sci. Budapest. Sectio Math., 31 (1988), 223-228.
[11] M. Horváth, Some saturation theorems for classical orthogonal expansions. I, Periodica Math. Hung. (to appear).
[12] P. L. Butzer, H. Berens, Semigroups of Operators and Approximation, Springer (Berlin, 1967).
[13] J. Garnett, Bounded Analytic Functions, Academic Press (New-York, 1981).
[14] S. Banach, Sur la convergence presque partout de fonctionnelles linéaires, Bull. Sci. Math., 50 (1926), 27-32, 36-43.
[15] E. L Poiani, Mean Cesàro summability of Laguerre and Hermite series, Trans. Amer. Math. Soc., 193 (1972), 1-31.
[16] P. L. Butzer, R. J. Nessel, W. Trebels, On summation processes of Fourier expansions in Banach spaces III: Jackson- and Zamansky-type inequalities for Abel-bounded expansions, Tôhoku Math. J., 27 (1975), 213-223.
[17] W. Trebels, Multipliers for (C, α)-bounded Fourier expansions in Banach spaces and approximation theory, Lecture Notes in Math. 329, Springer (Berlin, 1973).
[18] I. Joó, On some problems of M. Horváth, Annales Univ. Sci. Budapest. Sectio Math., 31 (1988), 243-260.
[19] M. H. Stone, A generalized Weierstrass approximation theorem, Studies in Modern Analysis (Studies in Math. 1, Ed. R. C. Buck), Amer. Math. Soc. Prentice Hall, 1962.
[20] P. L. Butzer, R. J. Nessel, Fourier Analysis and Approximation, Vol. I. Birkhäuser (Basel, 1971).
[21] I. Joó, On Hermite-Fourier series, Preprint of the Math. Inst. of the Hung. Acad. of Sci. No 12/1987; Per. Math. Hung. (to appear).
[22] I. Joó, On Hermite-conjugate function, Annales Univ. Sci. Budapest. Sectio Math., 33 (1990) (to appear).
(Received March 10, 1989)
EÖTVÖS LORÁND UNIVERSITY CHAIR FOR ANALYSIS
MÚZEUM KRT. 6-8
H-1088 BUDAPEST, HUNGARY

ORTHONORMAL SYSTEMS ON VILENKIN GROUPS

Gy. GÁT (Nyíregyháza)

1. Introduction. Let $m:=\left(m_{k}, k \in \mathbf{N}:=\{0,1, \ldots\}\right)$ be a sequence such that $N \ni m_{k} \geqq 2(k \in \mathbf{N})$. Denote by G_{m} the direct product of discrete cyclic groups $\bar{Z}_{m_{k}}:=\left\{0,1, \ldots, m_{k}-1\right\}(k \in \mathbf{N})$. Thus G_{m} is a compact Abelian group. The direct product μ of the measures $\mu_{k}(\{j\}):=1 / m_{k}$ $\left(j \in Z_{m_{k}}, k \in \mathbf{N}\right)$ is a Haar measure on $G_{m}, \mu\left(G_{m}\right)=1$. If $M_{0}:=1$, $M_{k+1}:=m_{k} M_{k}(k \in \mathbf{N})$, then every $n \in \mathbf{N}$ can be uniquely expressed as $n=\sum_{i=0}^{\infty} n_{i} M_{i}\left(n_{k} \in Z_{m_{k}}, k \in \mathbf{N}\right)$. Denote $r_{k}(x):=\exp \left(2 \pi i x_{k} / m_{k}\right)$ $\left(x=\left(x_{0}, x_{1}, \ldots\right) \in G_{m}, k \in \mathbf{N}\right)$ and $\psi_{n}:=\prod_{k=0}^{\infty} r_{k}^{n_{k}} \quad(n \in \mathbf{N})$. If $x, y \in G_{m}$, $n, s \in \mathbf{N}$ and

$$
n \oplus s:=\sum_{k=0}^{\infty}\left(\left(n_{k}+s_{k}\right) \bmod m_{k}\right) M_{k},
$$

then $\psi_{n}(x+y)=\psi_{n}(x) \psi_{n}(y), \bar{\psi}_{n}=1 / \psi_{n}$ and $\psi_{n \oplus s}=\psi_{n} \psi_{s}$. It is known that the system $\left(\psi_{n}, n \in \mathbf{N}\right)$ is the character system of G_{m} and also that it is orthonormal and complete. Let $x \in G_{m}$ and denote

$$
I_{n}(x):=\left\{y \in G_{m}: y_{0}=x_{0}, \ldots, y_{n-1}=x_{n-1}\right\}, I_{n}:=I_{n}(0)\left(I_{0}(x):=G_{m}\right) .
$$

Denote by \mathcal{A}_{n} the σ-algebra generated by the system $\left\{I_{n}(z): z \in G_{m}\right\}$ and by E_{n} the conditional expectation operator with respect to \mathcal{A}_{n}. Suppose that there are given functions $\alpha_{j}^{k}(j, k \in \mathbf{N})$ on G_{m} such that α_{j}^{k} is \mathcal{A}_{j} measurable and $\left|\alpha_{j}^{k}\right|=1, \alpha_{0}^{k}=\alpha_{j}^{0}=\alpha_{j}^{k}(0)=1(j, k \in \mathbf{N})$. If $j, n \in \mathbf{N}$, then let $j(n):=\sum_{i=j}^{\infty} n_{i} M_{i}, \alpha_{n}:=\prod_{j=0}^{\infty} \alpha_{j}^{j(n)}$ and $\chi_{n}:=\psi_{n} \alpha_{n}$.

This paper deals with the system ($\chi_{n}: n \in \mathrm{~N}$). It is obvious that $\chi_{n}(x+y) \neq \chi_{n}(x) \chi_{n}(y) \quad\left(x, y \in G_{m}, n \in \mathrm{~N}\right)$ in general, i.e. χ_{n} is not a character of G_{m} and similarly $\chi_{n \oplus m} \neq \chi_{n} \chi_{m}(n, m \in \mathbf{N})$. The systems $\left(\chi_{n}: n \in \mathbf{N}\right)$ and $\left(\psi_{n}: n \in \mathbf{N}\right)=\hat{G}_{m}$ differ. A good property of ($\chi_{n}: n \in \mathbf{N}$) which enables us to use the techniques known in Vilenkin system theory is that if $y \in I_{k}, n<M_{k+1}$, then

$$
\chi_{n}(x+y)=\chi_{n}(x) \chi_{n}(y) \quad\left(x \in G_{m}, n \in \mathbf{N}\right) .
$$

2. Results on $\left(\chi_{n}: n \in \mathbf{N}\right)$. Theorem 1. The $\operatorname{system}\left(\chi_{n}: n \in \mathbf{N}\right)$ is orthonormal and complete in $L\left(G_{m}\right)$.

Let $n, s \in \mathbf{N}$ and

$$
K_{n, s}(x, y):=\sum_{k=0}^{n-1} \chi_{k+s}(x) \bar{\chi}_{k+s}(y) \quad\left(x, y \in G_{m}\right)
$$

We need the following lemma very often. This lemma is the base of several results.

Lemma 2.

$$
K_{M_{t}, p M_{t}}(x+y, y)=\left\{\begin{array}{ll}
0 & \left(x \notin I_{t}\right) \\
M_{t} \alpha_{p M_{t}}(x+y) \bar{\alpha}_{p M_{t}}(y) & \left(x \in I_{t}\right)
\end{array} \quad(p, t \in \mathrm{~N})\right.
$$

Denote by $D_{n}(x, y):=K_{n, 0}(x, y) \quad\left(x, y \in G_{m}, n \in \mathrm{~N}\right)$ the Dirichlet kernels. The following corollary is one of the basic and most often used results in the theory of generalized Vilenkin systems.

Corollary 3.

$$
D_{M_{t}}(x, y)=\left\{\begin{array}{c}
0 \quad\left(x-y \notin I_{t}\right) \\
M_{t} \quad\left(x-y \in I_{t}\right)
\end{array} \quad(t \in \mathbf{N})\right.
$$

The following proposition is the third basic result which is used all over the rest of this paper.

Proposition 4. If $n \geqq M_{k}(n, k \in \mathbf{N}), y \in G_{m}$, then

$$
\int_{I_{k}} \chi_{n}(x+y) d \mu(x)=0
$$

Let $f \in L^{p}\left(G_{m}\right)(1 \leqq p \leqq \infty)$. Denote

$$
\omega_{n}^{(p)}(f):=\sup _{h \in I_{n}}\|f(\cdot+h)-f(\cdot)\|_{p} \quad(n \in \mathbf{N})
$$

the L^{p} modulus of continuity of f on $L^{p}\left(G_{m}\right)$, and let

$$
\hat{f}(n):=\int_{G_{m}} f \bar{\chi}_{n}, \quad S_{n} f:=\sum_{k=0}^{n} \hat{f}(k) \chi_{k} \quad\left(n \in \mathbf{N}, f \in L\left(G_{m}\right)\right)
$$

Theorem 5. If $n \geqq M_{k}(n, k \in \mathrm{~N}), f \in L\left(G_{m}\right)$, then

$$
|\hat{f}(n)| \leqq \omega_{k}^{(1)}(f)
$$

Theorem 6. If $f \in L^{2}\left(G_{m}\right), k \in \mathrm{~N}$, then

$$
\left(\sum_{n=M_{k}}^{\infty}|\hat{f}(n)|^{2}\right)^{\frac{1}{2}} \leqq \frac{1}{\sqrt{2}} \omega_{k}^{(2)}(f)
$$

The following theorem gives an upper bound for the Lebesgue constant L_{n}.

Theorem 7. We have

$$
L_{n}:=\sup _{y \in G_{m}} \int_{G_{m}}\left|D_{n}(x, y)\right| d \mu(x) \leqq \sum_{i=0}^{\infty} n_{i} \quad(n \in \mathbf{N})
$$

Let
$E_{n}^{(p)}(f):=\inf _{\left\{a_{k}\right\}}\left\|f-\sum_{k=0}^{n-1} a_{k} \chi_{k}\right\|_{p}\left(1 \leqq p \leqq \infty, a_{k} \in C, k, n \in \mathbf{N}, f \in L^{p}\left(G_{m}\right)\right)$.
The following theorem is a generalization of the well-known Efimov's theorem on the best approximating Vilenkin polynomial.

Theorem 8. We have

$$
E_{M_{n}}^{(p)}(f) \leqq \omega_{n}^{(p)}(f) \leqq 2 E_{M_{n}}^{(p)}(f)\left(1 \leqq p \leqq \infty, n \in \mathbf{N}, f \in L^{p}\left(G_{m}\right)\right)
$$

Next we give a generalization of Zantlesov's convergence theorem with respect to the generalized system. Corollaries 10 and 11 show that a certain convergence condition on the L^{2} and L^{∞} moduli of continuity, resp., imply the absolute convergence of $S_{n} f$ with respect to every system discussed in this paper, not only to the original Vilenkin system.

Theorem 9. Let $f \in L^{p}\left(G_{m}\right), 1<p \leqq 2, \frac{1}{p}+\frac{1}{q}=1,0 \leqq \beta \leqq q$, $-1<\gamma<0$. Put $\Theta=0$ if $\beta \neq 1$ and $\Theta=1$ if $\beta=1$. If

$$
Q:=\sum_{k=0}^{\infty} M^{\gamma+1-\frac{\beta}{q}} m_{k}^{\beta}\left(\ln m_{k}\right)^{\Theta}\left(\omega_{k}^{(p)}(f)\right)^{\beta}<\infty,
$$

then

$$
\sum_{k=1}^{\infty}|\hat{f}(k)|^{\beta} k^{\gamma}<C_{p, \beta} Q
$$

Corollary 10. If $f \in L^{2}\left(G_{m}\right)$ and $\sum_{k=0}^{\infty} M_{k}^{\frac{1}{2}} m_{k} \ln m_{k} \omega_{k}^{(2)}(f)<\infty$, then $S_{n} f$ absolutely converges.

Corollary 11. If $f \in C\left(G_{m}\right)$ and $\sum_{k=0}^{\infty} M_{k}^{\frac{1}{2}} m_{k} \ln m_{k} \omega_{k}^{(\infty)}(f)<\infty$, then $S_{n} f$ absolutely converges as $n \rightarrow \infty$

$$
\left(\omega_{k}^{(\infty)}(f):=\sup _{h \in I_{k}} \sup _{x \in G_{m}}|f(x+h)-f(x)|\left(k \in \mathbf{N}, f \in C\left(G_{m}\right)\right)\right)
$$

Lemma 12. Let $y \in G_{m}, 0<j \in \mathbf{N}, n \in \mathbf{N}$ and $x \notin I_{j}(y)$ be fixed. Then $D_{n}(x, t) \bar{\chi}_{n}(x) \chi_{n}(t)$ is constant as t ranges over $I_{j}(y)$.

This lemma is needed in the proof of the following theorem.

Theorem 13. Let $f \in L^{p}\left(G_{m}\right), 1<p<\infty, 1 \leqq n \in \mathrm{~N}$ and $\sup m<\infty$. Then there exists a constant A_{p} depending only on p such that $\left\|S_{n} f\right\|_{p} \leqq$ $\leqq A_{p}\|f\|_{p}$. Moreover $\left\|S_{n} f\right\|_{p}=\|f\|_{p} O(p) \quad(n \rightarrow \infty)$.
3. Proofs. Theorem 1 can be proved in the following way. If $n=$ $=\sum_{i=0}^{\infty} n_{i} M_{i}<S=\sum_{i=0}^{\infty} S_{i} M_{i}(\in \mathbf{N})$ and $k:=\max \left\{j \in \mathbf{N}: n_{j} \neq S_{j}\right\}$, then $\chi_{x} \bar{\chi}_{n}=\Phi r_{k}^{S_{k}} \bar{r}_{k}^{n_{k}}$ where Φ is \mathcal{A}_{k}-measurable. Hence

$$
\int_{G_{m}} \chi_{S} \bar{\chi}_{n} d \mu=E_{0}\left(\chi_{S} \bar{\chi}_{n}\right)=E_{0}\left(E_{k}\left(\chi_{S} \bar{\chi}_{n}\right)\right)=E_{0}\left(\Phi E_{k}\left(r_{k}^{S_{k}} \bar{r}_{k}^{n_{k}}\right)\right)=0
$$

because $n_{k} \neq S_{k}$. The completeness of the system ($\chi_{n}: n \in \mathbf{N}$) can be proved by Corollary 3 and the method used in the case of $\alpha_{j}^{k}=1(j, k \in \mathbf{N})$, [3].

The proof of Lemma 2 in the case of $x \in I_{t}$ is trivial. If $x \notin I_{t}$, then $x \in I_{\ell} \backslash I_{\ell+1}$ for some $\ell=0,1, \ldots, t-1$. Thus

$$
K_{M_{t}, p M_{t}}(x+y, y)=\Phi_{p, t}(x, y) \sum_{\ell=0}^{m_{\ell}-1} r_{\ell}^{j}(x)=0 .
$$

Corollary 3 is a simple consequence of Lemma 2.
Proof of Proposition 4. Let $S:=\max \left\{j \in \mathbf{N}: n_{j} \neq 0\right\}$.

$$
E_{k}\left(\chi_{n}(\cdot+y)\right)=E_{k}\left(E_{S}\left(\chi_{n}(\cdot+y)\right)\right)=E_{k}\left(\Phi E_{S}\left(r_{S}(\cdot+y)\right)\right)=0,
$$

where Φ is \mathcal{A}_{S}-measurable. Theorems $5,6,7,8$ can be proved by similar techniques usual in the theory in the case of $\alpha_{j}^{k}=1(j, k \in \mathrm{~N}),[1]$ and by means of Theorem 1, Lemma 2, Corollary 3 and Proposition 4.

Proof of Theorem 9. Let $k \in \mathbf{N}, y \in I_{k}$ and $F(x):=f(x+y)-f(x)$ $\left(x \in G_{m}\right)$. Thus if $n=M_{k}, M_{k}+1, \ldots, M_{k+1}-1$, then

$$
\begin{gathered}
\hat{F}(n)=\int_{G_{m}} f(x) \bar{\chi}_{n}(x-y) d \mu(x)-\hat{f}(n)=\psi_{n}(y) \int_{G_{m}} f(x) \bar{\psi}_{n}(x) \alpha_{n}(x-y) d \mu(x)-\hat{f}(n), \\
\alpha_{n}(x-y)=\prod_{j=0}^{k} \alpha_{j}^{j(n)}(x-y)=\prod_{j=0}^{k} \alpha_{j}^{j(n)}(x)=\alpha_{n}(x) .
\end{gathered}
$$

This implies that $\hat{F}(n)=\left(\psi_{n}(y)-1\right) \hat{f}(n)$. The Hausdorff-Young inequality gives

$$
\left(\sum_{n=j M_{k}}^{(1+j) M_{k}-1}\left(|\hat{f}(n)|\left|\psi_{n}(y)-1\right|\right)^{q}\right)^{\frac{1}{q}}=\left(\sum_{n=j M_{k}}^{(1+j) M_{k}-1}\left(|\hat{F}(n)|^{q}\right)^{\frac{1}{q}} \leqq\right.
$$

$$
\leqq\left(\sum_{n=0}^{\infty}|\hat{F}(n)|^{q}\right)^{\frac{1}{q}} \leqq\|F\|_{p} \leqq \omega_{k}^{(p)}(f) \quad\left(j=1, \ldots, m_{k}-1\right) .
$$

The rest of the proof is as Zantlesov's proof in the case of $\alpha_{j}^{k}=1(j, k \in \mathbf{N})$, [6].

Corollaries 10, 11 follow from Theorem 9.
Proof of Lemma 12. We have

$$
\begin{gathered}
K_{n, q M_{\ell}}(y+x, x)=K_{n-n_{j} M_{j}, n_{j} M_{j}+q M_{\ell}}(y+x, x) \\
\left(y \notin I_{j}, x \in G_{m}, n, q \in \mathbf{N}, M_{j} \leqq n<M_{j+1}, j<\ell\right) .
\end{gathered}
$$

$x-t \notin I_{j}$ and

$$
\begin{gathered}
D_{n}(x, t) \bar{\chi}_{n}(x) \chi_{n}(t)=K_{n, 0}(x, t) \bar{\chi}_{n}(x) \chi_{n}(t)= \\
=K_{n-n_{j} M_{j}, n_{j} M_{j}}(x, t) \bar{\chi}_{n}(x) \chi_{n}(t) .
\end{gathered}
$$

This completes the proof of Lemma 12.
Theorem 13 can be proved by the method of Gosselin [3] used in the case of $\alpha_{j}^{k}=1(j, k \in \mathbf{N})$. The main difference between the proofs is that (21) of [3] is proved by Lemma 12.
4. Application. An arithmetical function g is called even $\bmod k$ if $g((n, k))=g(n)$ for each $n \in p:=\mathbf{N} \backslash\{0\}$. The set of these functions is denoted by \mathcal{B}_{k}. $\mathcal{B}:=\underset{k \in P}{\cup} \mathcal{B}_{k}$ is the set of even arithmetical functions. The limit $M(g):=\lim n^{-1} \sum_{j \leqq n} g(j)$, if it exists, is called the mean value of g. The upper limit $\bar{M}(g):=\overline{\lim } n^{-1} \sum_{j \leqq n} g(j)$ gives rise to a semi-norm

$$
\|g\|_{p}:=\left(\bar{M}\left(|g|^{p}\right)\right)^{\frac{1}{p}} \quad(1 \leqq p<\infty)
$$

The closure of \mathcal{B} with respect to $\|\cdot\|_{p}$ is the set of \mathcal{B}^{p}-almost-even arithmetical functions [4]. The Ramanujan function C_{r} is defined by

$$
C_{r}(n):=\sum_{\substack{a=1 \\(a, r)=1}}^{r} \exp (2 \pi i a n / r)
$$

It is known that if $g \in \mathcal{B}^{2}\left(g \in \mathcal{B}^{1}\right.$ bounded $)$ and $M\left(g \bar{c}_{r}\right)=0$ for each $r \in P$, then $\|g\|_{2}=0\left(\|g\|_{1}=0\right),[5]$. The techniques of this paper enable us to prove that if $g \in \mathcal{B}^{p}(1 \leqq p<\infty)$ and $M\left(g \bar{C}_{r}\right)=0$ for every $r \in P$, then $\|g\|_{p}=0,[2]$.

If $g \in \mathcal{B}^{p} \quad(1 \leqq p<\infty)$ and $\hat{g}(r):=\varphi^{-1}(r) M\left(g \bar{C}_{r}\right) \quad(r \in \varphi, \varphi$ is the Euler function), then $L_{S} g:=\sum_{j \mid S!} \hat{g}(r) C_{r}(S \in P)\|\cdot\|_{p}$ converges to $g,[2]$.

Acknowledgement. I wish to thank Professors F. Schipp and P. Simon for their helpful advice.

References

[1] G. H. Agaev - N. Ja. Vilenkin - G. M. Dzsafarli - A. I. Rubinstein, Multiplicative systems of functions and harmonic analysis on 0-dimensional groups (in Russian), Izd. "ELM" (Baku, 1981).
[2] G. Gát, On almost even arithmetical functions via orthonormal systems on Vilenkin groups, Acta Arithmetica (to appear).
[3] J. Gosselin, Almost everywhere convergence of Vilenkin-Fourier series, TAMS, 185 (1973), 345-370.
[4] J. Knopfmacher, Fourier analysis of arithmetical functions, Ann. Mat. Pura Appl., 109 (1976), 177-201.
[5] W. Schwarz - J. Spilker, Mean-value and Ramanujan expansions of almost even arithmetical functions, Topics in Number Theory (Colloq. Math. Soc. J. Bolyai, 13), 1976, 315-357.
[6] Z. H. Zantlesov, On absolute convergence of Fourier series with respect to multiplicative systems (in Russian), Izv. AN. Kaz. SSR. Ser. fiz-mat., 3 (1986), 14-17.
(Received March 20, 1989; revised September 5, 1989)
BESSENYEI GYÖRGY COLLEGE DEPARTMENT OF MATHEMATICS NYÍREGYHÁZA, P.O.BOX 166, H-4401 HUNGARY

ON THE DISTRIBUTION OF THE SET $\left\{\sum_{i=1}^{n} \varepsilon_{i} q^{i}: \varepsilon_{i} \in\{0,1\}, n \in \mathbf{N}\right\}$

I. JOÓ (Budapest)

Let $1<q<\sqrt{2}$ be arbitrary fixed and

$$
\begin{aligned}
H:=\{ & \left.\sum_{i=1}^{n} \varepsilon_{i} q^{2(n-i)}: \varepsilon_{i} \in\{0,1\}, n=1,2, \ldots\right\}= \\
& =\left\{y_{n}(q)\right\}=\left\{y_{n}\right\} \nearrow \infty(n \rightarrow \infty) .
\end{aligned}
$$

We shall prove the following
Theorem. If $y_{n+1}-y_{n} \rightarrow 0(n \rightarrow \infty)$ then there exists an expansion $1=\sum_{i=1}^{\infty} q^{-n_{i}}$ such that $\sup _{i}\left(n_{i+1}-n_{i}\right)=\infty$.

In [1] it is proved that if q is a Pisot number, then there is no such expansion of 1 , further it is well known that the smallest non-zero Pisot number is between 1 and $\sqrt{2}$. Hence we obtain

Corollary. For any Pisot number $1<q<\sqrt{2}, y_{n+1}-y_{n} \rightarrow 0, n \rightarrow \infty$.
For the proof of the Theorem we need the following
Lemma. Let $1<q<\sqrt{2}$ be any fixed number and let $N \in \mathbf{N}$ be arbitrary. Then there exists an expansion $1=\sum q^{-n_{i}}$ such that $\sup \left(n_{i+1}-n_{i}\right)>2 N$, whenever $y_{n+1}-y_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Let $0<x<1$ and expand the numbers x and $(1-x) / q$ by the system $\left(q^{-2 n}\right)$. If we have N consecutive zeros at the same places in these expansions, then adding these expansions we get a desired expansion of 1 . Let $x=\sum_{i=1}^{n} \varepsilon_{i} q^{-2 i}$. We have to find such values ε_{i}^{\prime}, for which $\sum_{i=1}^{n} \varepsilon_{i}^{\prime} q^{-2 i}<$ $<\frac{1-x}{q}<\sum_{i=1}^{n} \varepsilon_{i}^{\prime} q^{-2 i}+q^{-2(n+N)}$, i.e.

$$
\begin{equation*}
0<q^{2 n}-\sum_{i=1}^{n} \varepsilon_{i} q^{2(n-i)}-q \sum_{i=1}^{n} \varepsilon_{i}^{\prime} q^{2(n-i)}<q^{-2 N} . \tag{1}
\end{equation*}
$$

Let $\varepsilon:=10^{-1} \cdot q^{-2 N}$. We show first that for every n there exist $\varepsilon_{1}, \ldots, \varepsilon_{n} \in$ $\in\{0,1\}$ such that

$$
\begin{equation*}
1<q^{2 n}-\sum_{i=1}^{n} \varepsilon_{i} q^{2(n-i)}<\left(q^{2}-1\right)^{-1}+1=\frac{q^{2}}{q^{2}-1} . \tag{A}
\end{equation*}
$$

Indeed, expand $q^{2 n}$ by the system $q^{2(n-i)}, q^{2(n-2)}, \ldots$. If we "cut" such an expansion at non-negative exponents, then the error is smaller than $q^{-2}+$ $+q^{-4}+\ldots=\left(q^{2}-1\right)^{-1}$ i.e.

$$
0 \leq q^{2 n}-\sum_{i=1}^{n} \hat{\varepsilon}_{i} q^{2(n-i)}<\left(q^{2}-1\right)^{-1} .
$$

If the difference is larger than 1 then we are ready, if not, then consider the largest i with $\hat{\varepsilon}_{i}=1$, and replace the corresponding term $q^{2(n-i)}$ by the non-negative part of its expansion in terms of smaller exponents. Then the error resulting from the modification is $<\left(q^{2}-1\right)^{-1}$, hence the total error is $<1+\left(q^{2}-1\right)^{-1}$. If this error is >1 then we are ready, if not, then continue this process (replace the smallest exponent by the non-negative part of its expansion in terms of the smaller exponents).

If there is no such a step when the error is >1, then $\varepsilon_{n}=1$ and we omit $\varepsilon_{n} q^{0}$ and arrive to an expansion with an error between 1 and 2 . Statement (A) is proved. Multiplying (A) by $q^{2 k}$ we get: for every k and $n \geq k$ there exist $\varepsilon_{1}, \ldots, \varepsilon_{n} \in\{0,1\}$ such that

$$
\begin{equation*}
q^{2 k}<q^{2 n}-\sum_{i=1}^{n} \varepsilon_{i} q^{2(n-i)}<\frac{q^{2(k+1)}}{q^{2}-1} . \tag{B}
\end{equation*}
$$

Choose $k=k(\varepsilon)$ so that $y_{n}>q^{2 k-1}-1$ implies $y_{n+1}-y_{n}<\varepsilon$.
Taking (B) into account there exist $\varepsilon_{1}, \ldots, \varepsilon_{n}$ such that

$$
q^{-1}\left(q^{2 n}-\sum_{i=1}^{n} \varepsilon_{i} q^{2(n-i)}\right) \in\left(q^{2 k-1}, \frac{q^{2 k+1}}{q^{2}-1}\right)
$$

and then for $n>n(\varepsilon, q)$ there exist $\varepsilon_{1}^{\prime}, \ldots, \varepsilon_{n}^{\prime}$ such that

$$
\sum_{i=1}^{n} \varepsilon_{i}^{\prime} q^{2(n-i)}+\varepsilon<\frac{q^{2 n}-\sum_{i=1}^{n} q^{2(n-i)}}{q}<\sum_{i=1}^{n} \varepsilon_{i}^{\prime} q^{2(n-i)}+2 \varepsilon
$$

which means that (1) is fulfilled. The Lemma is proved.
Proof of the Theorem. Let $k=k(q)$ be such that

$$
\begin{equation*}
(1+q)\left(q^{-2 k}+q^{-(2 k+2)}+\ldots\right)<1+q^{-2}+q^{-4}+\ldots . \tag{2}
\end{equation*}
$$

We use induction. Suppose there exists a segment I_{N} such that for $x \in I_{N}$ the numbers $x,(1-x) / q$ have the expansions

$$
x=\sum_{j=1}^{s} \varepsilon_{j} q^{-2 j}+\ldots, \quad(1-x) / q=\sum_{j=1}^{s} \varepsilon_{j}^{\prime} q^{-2 j}+\ldots
$$

where there are $1,2, \ldots, N-1, N+k$ consecutive 0 's at the same places and $N+k$ zeros at the end. Suppose I_{N} is the maximal segment with this property for fixed $\left(\varepsilon_{j}\right)$ and $\left(\varepsilon_{j}^{\prime}\right)$. Let \tilde{I}_{N} be the maximal segment, where the last k zero coefficients are omitted. We extend the sequences $\left(\varepsilon_{j}\right),\left(\varepsilon_{j}^{\prime}\right)$ to an index n such that

$$
\begin{equation*}
0<q^{2 n}-\sum_{i=1}^{n} \varepsilon_{i} q^{2(n-i)}-q \cdot \sum_{i=1}^{n} \varepsilon_{i}^{\prime} q^{2(n-i)}<q^{-2(N+k+1)} \tag{3}
\end{equation*}
$$

be fulfilled. Let

$$
Q:=q^{2 n}-\sum_{j=1}^{s-k} \varepsilon_{j} q^{2(n-j)}-q \cdot \sum_{j=1}^{s-k} \varepsilon_{j}^{\prime} q^{2(n-j)}
$$

For any $x \in I_{N}$ we have

$$
\begin{gathered}
\sum_{j=1}^{s-k} \varepsilon_{j} q^{-2 j}<x<\sum_{j=1}^{s-k} \varepsilon_{j} q^{-2 j}+q^{-2(s+1)}+q^{-2(s+2)}+\ldots \\
\sum_{j=1}^{s-k} \varepsilon_{j}^{\prime} q^{-2 j}<\frac{1-x}{q}<\sum_{j=1}^{s-k} \varepsilon_{j} q^{-2 j}+q^{-2(s+1)}+q^{-2(s+2)}+\ldots
\end{gathered}
$$

Multiplying these inequalities by $q^{2 n}$ resp. $q^{2 n+1}$ and adding them we obtain

$$
\begin{gathered}
0<q^{2 n}-\sum_{j=1}^{s-k} \varepsilon_{j} q^{2(n-j)}-q \cdot \sum_{j=1}^{s-k} \varepsilon_{j}^{\prime} q^{2(n-j)}=Q< \\
<(q+1)\left(q^{2(n-s-1)}+q^{2(n-s-2)}+\ldots\right)<q^{2(n-s+k-1)}+q^{2(n-s+k-2)}+\ldots
\end{gathered}
$$

(We have used (2).) This means that we can expand Q by the system $q^{2(n-s+k-1)}, q^{2(n-s+k-2)}, \ldots$, hence by the idea used in the proof of (A), expanding Q instead of $q^{2 n}$ we get: for every $n>s$ there exist $\varepsilon_{s-k+1}, \ldots, \varepsilon_{n}$ such that

$$
1<Q-\sum_{j=s-k+1}^{n} \varepsilon_{j} q^{2(n-j)}<q^{2} /\left(q^{2}-1\right)
$$

Let $\varepsilon:=10^{-1} q^{-2(N+k+1)}$ and $d_{0}=d_{0}(\varepsilon)$ be such that $y_{n} \geq d_{0}$ implies $y_{n+1}-y_{n}<\varepsilon$. Let $\ell=\ell(q, \varepsilon)$ be such that $d_{0}<q^{2 \ell-1}-1$. Multiplying (A') by $q^{2 \ell}$ we obtain for another n (for $n+\ell$ in place of n)

$$
q^{-1}\left(q^{2 n}-\sum_{i=1}^{n} \varepsilon_{i} q^{2(n-i)}-q \cdot \sum_{i=1}^{s-k} \varepsilon_{i}^{\prime} q^{2(n-i)}\right) \in\left(q^{2 \ell-1}, \frac{q^{2 \ell+1}}{q^{2}-1}\right)
$$

On the other hand, according to the assumptions of the Theorem, for sufficiently large n the points of the set

$$
A_{n-s+k}=\left\{\sum_{i=s-k+1}^{n} \varepsilon_{i}^{\prime} q^{2(n-i)}\right\}
$$

fill the interval $\left(q^{2 \ell-1}, \frac{q^{2 \ell+1}}{q^{2}-1}\right)$ with an error $<\varepsilon$ (i.e. the distance between these points is $<\varepsilon$). Instead of (3) we can ensure

$$
10^{-1} q^{-2(N+k+1)}<q^{2 n}-\sum_{i=1}^{n} \varepsilon_{i} q^{2(n-i)}-q \cdot \sum_{i=1}^{n} \varepsilon_{i}^{\prime} q^{2(n-i)}<5^{-1} q^{-2(N+k+1)}
$$

Hence we can finish the induction in the following way. If we start from $s=$ $=s_{N}$, then $s_{N+1}=n+N+k+1, \varepsilon_{j}=\varepsilon_{j}^{\prime}=0(n<j \leq n+N+k+1)$ and I_{N+1}, \tilde{I}_{N+1} are maximal intervals for which the expansions of x and (1-x)/q start with $\sum^{s_{N+1}} \varepsilon_{i} q^{-2 i}$ and $\sum^{s_{N+1}} \varepsilon_{i}^{\prime} q^{-2 i}$ resp. $\sum^{s_{N+1}-k} \varepsilon_{i} q^{-2 i}, \sum^{s^{N+1}-k} \varepsilon_{i}^{\prime} q^{-2 i}$. Obviously, $\tilde{I}_{N+1} \subset \tilde{I}_{N}$. The remaining difficulty is the fact that the intervals \tilde{I}_{N} are open. Consider the following statements:
a) among $\varepsilon_{s-k+1}, \ldots, \varepsilon_{n+N+k+1}$ there exist 0 and 1 too,
b) the same holds for $\varepsilon_{s-k+1}^{\prime}, \ldots, \varepsilon_{n+N+k+1}^{\prime}$.

If a) and b) hold then both endpoints of the maximal interval move in the direction of the interior of the interval, i.e. $\bar{I}_{N+1} \subset \tilde{I}_{N}$ and hence $\bigcap_{N} \tilde{I}_{N} \neq$ $\neq \emptyset$. The statement b) is trivial. If a) does not hold, we can ensure the occurrence of a new term 1 in the following way: we consider $\tilde{Q}:=Q$. $\cdot q^{2 r}>q^{2} /\left(q^{2}-1\right)$ in place of Q and expand this number by the system $q^{2(n-s+k-1+r)}, q^{2(n-s+k-2+r)}, \ldots$ In this case we set $s_{N+1}=n+r+N+k+1$ and let I_{N+1}, \tilde{I}_{N+1} be the maximal intervals for which the expansion of x and $(1-x) / q$ can be extended with $\sum^{s_{N+1}-k} \varepsilon_{i} q^{-2 i}$ and $\sum^{s_{N+1}-k} \varepsilon_{i}^{\prime} q^{-2 i}$.

Reference

[1] A. Bogmér, M. Horváth, A. Sövegjártó, On some problems of I. Joó, Acta Math. Hung., 58 (1991), 153-155.
(Received April 12, 1989)

[^9]
ON L^{1}-CONVERGENCE OF WALSH-FOURIER SERIES. II

F. MÓRICZ (Szeged)

1. Introduction. We consider the Walsh orthonormal system $\left\{w_{k}(x)\right.$: $k=0,1, \ldots\}$ defined on the interval $[0,1)$ in the Paley enumeration (see, e.g. $[1, \mathrm{p} .60]$). Our goal is to study the L^{1}-convergence behavior of the Walsh-Fourier series

$$
\begin{equation*}
\sum_{k=0}^{\infty} a_{k} w_{k}(x), \quad a_{k}:=\int_{0}^{1} f(x) w_{k}(x) d x \tag{1}
\end{equation*}
$$

of an integrable function $f(x)$, in sign $f \in L^{1}(0,1)$. In this note, integral is meant in the Lebesgue sense.
2. Previous results. We denote by

$$
s_{n}(f, x):=\sum_{k=0}^{n} a_{k} w_{k}(x) \quad(n=0,1, \ldots)
$$

the partial sums of the series (1). Concerning pointwise convergence, in [4] we proved the following.

Theorem A. If $f \in L^{1}(0,1)$ and the condition

$$
\begin{equation*}
\lim _{\lambda \downarrow 1} \limsup _{n \rightarrow \infty} \sum_{k=n}^{[\lambda n]}\left|\Delta^{m} a_{k}\right|=0 \tag{2}
\end{equation*}
$$

is satisfied for $m=1$ or 2 , then

$$
\lim _{n \rightarrow \infty} s_{n}(f, x)=f(x) \quad \text { a.e. }
$$

and

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|s_{n}(f, x)-f(x)\right|^{r} d x=0 \quad \text { for } \quad 0<r<1 / m
$$

Here and in the sequel, we use the notations

$$
\Delta^{1} a_{k}:=\Delta a_{k}=a_{k}-a_{k+1},
$$

$$
\Delta^{2} a_{k}:=\Delta\left(\Delta a_{k}\right)=a_{k}-2 a_{k+1}+a_{k+2}(k=0,1, \ldots) .
$$

Furthermore, [.] denotes the integral part.
In order to conclude the convergence of the series (1) in L^{1}-norm, we need a slightly stronger condition than (2). Namely, in [5] we proved the following.

Theorem B. If $f \in L^{1}(0,1)$ and for some $p>1$

$$
\begin{equation*}
\lim _{\lambda \downarrow 1} \limsup _{n \rightarrow \infty} \sum_{k=n}^{[\lambda n]} k^{p-1}\left|\Delta a_{k}\right|^{p}=0 \tag{3}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|s_{n}(f, x)-f(x)\right| d x=0 \tag{4}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n} \int_{0}^{1}\left|D_{n}(x)\right| d x=0 \tag{5}
\end{equation*}
$$

Here

$$
D_{n}(x):=\sum_{k=0}^{n} w_{k}(x) \quad(n=0,1, \ldots)
$$

is the Walsh-Dirichlet kernel. As is known [2],

$$
\int_{0}^{1}\left|D_{n}(x)\right| d x=O(\ln n)
$$

Thus, under condition (3),

$$
\lim _{n \rightarrow \infty} a_{n} \ln n=0
$$

is a sufficient condition for the L^{1}-convergence of the series (1).
The Tauberian condition of Hardy-Karamata kind expressed in (3) is well-known in the literature. Since the fulfillment of (3) for some $p>0$ implies its fulfillment for any $\tilde{p}, 0<\tilde{p}<p$, we may always assume that $1<p \leqq 2$ in (3).
3. Main result. If condition (3) is satisfied, then

$$
\begin{equation*}
H(\lambda):=\limsup _{n \rightarrow \infty} \sum_{k=n}^{[\lambda n]} k^{p-1}\left|\Delta a_{k}\right|^{p} \tag{6}
\end{equation*}
$$

is finite for some $\lambda>1$. The converse is not true in general. However, (6) must be finite for all $\lambda>1$ if it is finite for some $\lambda>1$. This follows from the inequality $H\left(\lambda^{2}\right) \leqq 2 H(\lambda)$, which can easily be proved. In fact, for any $n \geqq 0$ we have

$$
\left[\lambda^{2} n\right]-[\lambda[\lambda n]] \leqq[\lambda+1]
$$

and recall that $f \in L^{1}(0,1)$ implies

$$
\begin{equation*}
\lim _{k \rightarrow \infty} a_{k}=0 \tag{7}
\end{equation*}
$$

Now we improve Theorem B as follows.
Theorem 1. If $f \in L^{1}(0,1)$ and $H(\lambda)$ defined in condition (6) is finite for some $\lambda>1$ and $p>1$, then conditions (4) and (5) are equivalent.
4. Auxiliary results. In [6] we proved the following Sidon type inequality.

Lemma A. For every $1<p \leqq 2$, sequence $\left\{a_{k}\right\}$ of real numbers, and integer $n \geqq 0$, we have

$$
\begin{equation*}
\int_{0}^{1}\left|\sum_{k=0}^{n} a_{k} D_{k}(x)\right| d x \leqq \frac{2 p}{p-1}(n+1)^{1 / q}\left(\sum_{k=0}^{n}\left|a_{k}\right|^{p}\right)^{1 / p} \quad\left(\frac{1}{p}+\frac{1}{q}=1\right) \tag{8}
\end{equation*}
$$

Unfortunately, this inequality is not enough to prove Theorem 1. Therefore, we prove a modified version.

Lemma 1. For every $0<\gamma<1,1<p \leqq 2$, sequence $\left\{a_{k}\right\}$ of real numbers, and integer $n \geqq 0$, we have

$$
\begin{equation*}
\int_{\gamma}^{1}\left|\sum_{k=0}^{n} a_{k} D_{k}(x)\right| d x \leqq \frac{2 p}{p-1} \gamma^{-1 / q}\left(\sum_{k=0}^{n}\left|a_{k}\right|^{p}\right)^{1 / p} \tag{9}
\end{equation*}
$$

Clearly, (9) is superior to (8) in the case when $\gamma=\gamma_{n}$ and ($\left.n+1\right) \gamma_{n}$ is bounded from below.

Proof of Lemma 1. It follows in great lines that of [6, Lemma 1], with the warning that $n+1$ should stand in place of n there. Taking into account [6 , formulas (3.6)-(3.9)] we arrive at

$$
I:=\int_{\gamma}^{1}\left|\sum_{k=0}^{n} a_{k} D_{k}(x)\right| d x \leqq
$$

$$
\leqq\left(\sum_{k=0}^{n}\left|a_{k}\right|^{p}\right)^{1 / p} \sum_{j=0}^{m} 2^{j}\left(\int_{\gamma}^{2^{-j}}\left|r_{j}(x) h(x)\right|^{p} d x\right)^{1 / p},
$$

where m is defined by the condition $2^{m} \leqq n+1<2^{m+1}$, and

$$
h(x):=\operatorname{sign} \sum_{k=0}^{n} a_{k} D_{k}(x) .
$$

Now assume $2^{-j_{0}-1} \leqq \gamma<2^{-j_{0}}$ with some $j_{0} \geqq 0$. Then

$$
\left(\int_{\gamma}^{2^{-j}}\left|r_{j}(x) h(x)\right|^{p} d x\right)^{1 / p}= \begin{cases}\left(2^{-j}-\gamma\right)^{1 / p} \leqq 2^{-j / p} & \text { if } 0 \leqq j \leqq j_{0}, \\ 0 & \text { if } j>j_{0} .\end{cases}
$$

Consequently,

$$
I \leqq\left(\sum_{k=0}^{n}\left|a_{k}\right|^{p}\right)^{1 / p} \sum_{j=0}^{j_{0}} 2^{j / q}
$$

whence (9) follows through a simple computation. In fact, observing that the auxiliary function $z(t)=t\left(1-2^{-t}\right)^{-1}$ is increasing for $t \geqq 0$ and $z(1)=2$, it follows immediately that

$$
\sum_{j=0}^{j_{0}} 2^{j / q}<\frac{2^{\left(j_{0}+1\right) / q}}{2^{1 / q}-1}<\frac{\gamma^{-1 / q}}{1-2^{-1 / q}} \leqq 2 q \gamma^{-1 / q} .
$$

Next, we consider the so-called generalized de la Vallée-Poussin means defined by

$$
\begin{equation*}
\tau_{n}(f, \lambda, x):=\frac{1}{\lambda_{n}-n+1} \sum_{j=n}^{\lambda_{n}} s_{j}(f, x) \tag{10}
\end{equation*}
$$

where $\lambda>1$ and $\lambda_{n}=[\lambda n](n=0,1, \ldots)$. The following lemma is an easy consequence of a result by Morgenthaler [3] on the ($C, 1$)-summability of Walsh-Fourier series (see also [5]).

Lemma 2. If $f \in L^{1}(0,1)$ and $\lambda>1$, then

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|\tau_{n}(f, \lambda, x)-f(x)\right| d x=0
$$

5. Proof of Theorem 1. Sufficiency. We assume that (5) is satisfied and prove

$$
\begin{equation*}
\lim _{\lambda \downarrow 1} \limsup _{n \rightarrow \infty} \int_{0}^{1}\left|\tau_{n}(f, \lambda, x)-s_{n}(f, x)\right| d x=0 \tag{11}
\end{equation*}
$$

Clearly, (11) implies (4) via Lemma 2.
To this effect, we use the representation

$$
\tau_{n}(f, \lambda, x)-s_{n}(f, x)=\frac{1}{\lambda_{n}-n+1} \sum_{j=n+1}^{\lambda_{n}} \sum_{k=n+1}^{j} a_{k} w_{k}(x)
$$

(cf. (10)) and split the integral in (11) into two parts: one extended over $\left(0,1 / \gamma_{n}\right)$ and the other over $\left(1 / \gamma_{n}, 1\right)$, where $\gamma_{n}:=\lambda_{n}-n+1$.

First we apply a trivial estimate to obtain
$\left|\tau_{n}(f, \lambda, x)-s_{n}(f, x)\right| \leqq \frac{1}{\gamma_{n}} \sum_{j=n+1}^{\lambda_{n}} \sum_{k=n+1}^{j}\left|a_{k}\right|=\frac{1}{\gamma_{n}} \sum_{k=n+1}^{\lambda_{n}}\left(\lambda_{n}-k+1\right)\left|a_{k}\right| \leqq \sum_{k=n+1}^{\lambda_{n}}\left|a_{k}\right|$.
By (7),

$$
\begin{align*}
& J_{1}:=\int_{0}^{1 / \gamma_{n}}\left|\tau_{n}(f, \lambda, x)-s_{n}(f, x)\right| d x \leqq \tag{12}\\
& \leqq \frac{1}{\gamma_{n}} \sum_{k=n+1}^{\lambda_{n}}\left|a_{k}\right| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
\end{align*}
$$

Second, by summation by parts, we get

$$
\begin{gather*}
\tau_{n}(f, \lambda, x)-s_{n}(f, x)= \tag{13}\\
=\frac{1}{\gamma_{n}} \sum_{j=n+1}^{\lambda_{n}}\left(-a_{n} D_{n}(x)+\sum_{k=n}^{j-1} D_{k}(x) \Delta a_{k}+a_{j} D_{j}(x)\right)
\end{gather*}
$$

whence

$$
\begin{gathered}
J_{2}:=\int_{1 / \gamma_{n}}^{1}\left|\tau_{n}(f, \lambda, x)-s_{n}(f, x)\right| d x \leqq \\
\leqq \int_{1 / \gamma_{n}}^{1}\left|a_{n} D_{n}(x)\right| d x+\frac{1}{\gamma_{n}} \int_{1 / \gamma_{n}}^{1}\left|\sum_{j=n+1}^{\lambda_{n}} \sum_{k=n}^{j-1} D_{k}(x) \Delta a_{k}\right| d x+
\end{gathered}
$$

$$
+\frac{1}{\gamma_{n}} \int_{1 / \gamma_{n}}^{1}\left|\sum_{j=n+1}^{\lambda_{n}} a_{j} D_{j}(x)\right| d x=: J_{21}+J_{22}+J_{23}, \text { say. }
$$

By Lemma 1,

$$
\begin{align*}
& J_{23} \leqq \frac{2 p}{(p-1) \gamma_{n}} \gamma_{n}^{1 / q}\left(\sum_{j=n+1}^{\lambda_{n}}\left|a_{j}\right|^{p}\right)^{1 / p}= \tag{14}\\
= & \frac{2 p}{p-1}\left(\frac{1}{\gamma_{n}} \sum_{j=n+1}^{\lambda_{n}}\left|a_{j}\right|^{p}\right)^{1 / p} \rightarrow 0 \text { as } n \rightarrow \infty,
\end{align*}
$$

owing to (7) again.
We interchange the summations with respect to j and k, then apply Lemma 1 to obtain

$$
\begin{align*}
& J_{22}=\frac{1}{\gamma_{n}} \int_{1 / \gamma_{n}}^{1}\left|\sum_{k=n}^{\lambda_{n}-1}\left(\lambda_{n}-k\right) D_{k}(x) \Delta a_{k}\right| d x \leqq \tag{15}\\
& \leqq \frac{2 p}{(p-1) \gamma_{n}} \gamma_{n}^{1 / q}\left(\sum_{k=n}^{\lambda_{n}-1}\left(\lambda_{n}-k\right)^{p}\left|\Delta a_{k}\right|^{p}\right)^{1 / p} \leqq \\
& \leqq \frac{2 p}{p-1}(\lambda-1)^{1 / q}\left(n^{p-1} \sum_{k=n}^{\lambda_{n}-1}\left|\Delta a_{k}\right|^{p}\right)^{1 / p},
\end{align*}
$$

whence, by (6),

$$
\begin{equation*}
\lim _{\lambda \downarrow 1} \limsup _{n \rightarrow \infty} J_{22}=0 . \tag{16}
\end{equation*}
$$

Finally, by (5),

$$
\begin{equation*}
\lim _{n \rightarrow \infty} J_{21}=0 . \tag{17}
\end{equation*}
$$

Combining (12)-(17) yields (11) to be proved.
Necessity. This time we assume the fulfillment of (4). Then, by Lemma 2, for any $\lambda>1$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|\tau_{n}(f, \lambda, x)-s_{n}(f, x)\right| d x=0 . \tag{18}
\end{equation*}
$$

Using the notations introduced in the sufficiency part, we can write that

$$
\int_{0}^{1}\left|\tau_{n}(f, \lambda, x)-s_{n}(f, x)\right| d x \geqq J_{21}-J_{1}-J_{22}-J_{23} .
$$

On the basis of (12), (14), (16), and (18), we conclude that

$$
\begin{equation*}
\lim _{\lambda \downarrow 1} \limsup _{n \rightarrow \infty} \int_{1 / \gamma_{n}}^{1}\left|a_{n} D_{n}(x)\right| d x=0 . \tag{19}
\end{equation*}
$$

Since

$$
\lim _{n \rightarrow \infty} \frac{n+1}{\gamma_{n}}=\frac{1}{\lambda-1}
$$

by (7), we have for every $\lambda>1$,

$$
\begin{equation*}
\int_{0}^{1 / \gamma_{n}}\left|a_{n} D_{n}(x)\right| d x \leqq \frac{(n+1)\left|a_{n}\right|}{\gamma_{n}} \rightarrow 0 \text { as } n \rightarrow \infty . \tag{20}
\end{equation*}
$$

Obviously, (19) and (20) imply (5) to be proved.
6. Concluding remarks. Analysing the proof of Theorem 1 (see especially (15)), we can achieve the following more general result.

Theorem 2. If $f \in L^{1}(0,1)$ and for some $p>1$ and $\lambda>1$,

$$
\limsup _{n \rightarrow \infty} \sum_{k=n}^{\lambda_{n}-1}\left(\frac{\lambda_{n}-k}{\lambda_{n}-n+1}\right)^{p} k^{p-1}\left|\Delta a_{k}\right|^{p}
$$

is finite, then conditions (4) and (5) are equivalent.
Note added in proof (July 11, 1991). After having submitted the manuscript, it came to the author's knowledge that Stanojević [7] had announced an analogous result on the L^{\prime}-convergence of trigonometric Fourier series.

References

[1] G. Alexits, Convergence problems of orthogonal series, Pergamon Press (Oxford, 1961).
[2] N. J. Fine, On Walsh functions, Trans. Amer. Math. Soc., 65 (1949), 372-414.
[3] G. Morgenthaler, Walsh-Fourier series, Trans. Amer. Math. Soc., 84 (1957), 472-507.
[4] F. Móricz, Walsh-Fourier series with coefficients of generalized bounded variation, J. Austral. Math. Soc. (Ser. A), 47 (1989), 458-465.
[5] F. Móricz, On L^{1}-convergence of Walsh-Fourier series. I, Rend. Circ. Mat. Palermo (Ser. II), 38 (1989), 411-418.
[6] F. Móricz and F. Schipp, On the integrability and L^{1}-convergence of Walsh series with coefficients of bounded variation, J. Math. Analysis Appl., 146 (1990), 99-109.
[7] C. V. Stanojević, Structure of Fourier and Fourier-Stieltjes coefficients of series with slowly varying convergence moduli, Bull. Amer. Math. Soc. (N. S.), 19 (1988), 283-286.
(Received April 12, 1989)
UNIVERSITY OF SZEGED
BOLYAI INSTITUTE
ARADI VÉRTANÚK TERE 1
H-6720 SZEGED, HUNGARY

ON THE NUMBER OF PRIME FACTORS OF $\varphi(\varphi(n))$

I. KÁTAI* (Budapest), member of the Academy

1. Let $\varphi(n)$ be the Euler-totient function, $\sigma(n)$ the sum of positive divisors of $n, \omega(n)$ the number of distinct prime divisors of n, and $\Omega(n)$ the number of prime divisors of n counted them with multiplicity. Let $\varphi_{2}(n)=$ $=\varphi(\varphi(n))$, and in general $\varphi_{k+1}(n)=\varphi\left(\varphi_{k}(n)\right)$. Similarly, $\sigma_{2}(n)=\sigma(\sigma(n))$, $\sigma_{k+1}(n)=\sigma\left(\sigma_{k}(n)\right)$.

Our purpose in this paper is to prove the following
Theorem 1. We have

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{\begin{array}{l|l}
n \leqq x & \frac{\omega\left(\varphi_{2}(n)\right)-\frac{1}{6}(\log \log n)^{3}}{\frac{1}{\sqrt{10}}(\log \log n)^{5 / 2}}<y
\end{array}\right\}=\Phi(y)
$$

for every real number y, where Φ is the standard Gaussian law.
Earlier, P. Erdős and C. Pommerance [1] and M. Ram Murty and V. Kumar Murty [7], [8] proved that

$$
\begin{equation*}
\frac{\omega(\varphi(n))-\frac{1}{2}(\log \log n)^{2}}{\frac{1}{\sqrt{10}}(\log \log n)^{3 / 2}} \tag{1.1}
\end{equation*}
$$

and the author [2] that

$$
\frac{\omega(\sigma(p+1))-\frac{1}{2}(\log \log p)^{2}}{\frac{1}{\sqrt{3}}(\log \log p)^{3 / 2}}
$$

are distributed according to the standard Gaussian law.
M. Ram Murty and N. Saradha [9] proved the existence of the limit distribution of (1.1) by using only the Eratosthenian sieve.
2. Let A, A^{*}, A_{s} be the set of additive, completely additive and strongly additive functions, respectively. The letters c, c_{1}, c_{2}, \ldots will denote suitable positive constants, not necessarily the same at every occurrence. We shall

[^10]use the following abbreviations: $x_{1}=\log x, x_{k+1}=\log x_{k}(k=1,2, \ldots)$. The letters $p, p_{1}, p_{2}, \ldots, q, q_{1}, q_{2}, \ldots, P, P_{1}, P_{2}, \ldots, Q, Q_{1}, Q_{2}, \ldots$, will denote primes. $P(n)$ and $p(n)$ denote the largest and the smallest prime divisor of n, respectively. $\pi(x, k, \ell)$ is the number of primes p up to x satisfying $p \equiv \ell(\bmod k)$.

The main idea of the proof is to approximate $\omega\left(\varphi_{2}(n)\right)$ by an additive function. Hence, by using the Bombieri-Vinogradov mean-value theorem, some sieve results and Kubilius theory for the distribution of additive functions, we shall get our theorem.

Lemma 1 (Bombieri-Vinogradov). We have

$$
\sum_{k \leqq \sqrt{x} /(\log x)^{A}} \max _{\ell, k)=1} \max _{z \leqq x}\left|\pi(z, k, \ell)-\frac{\operatorname{li} z}{\varphi(k)}\right| \ll \frac{x}{(\log x)^{B}},
$$

where A and B are arbitrary positive constants satisfying the inequality $A \geqq$ $\geqq 4 B+40$ (see [6]).

Lemma 2. Let $\Psi(x, y)$ be the number of integers $n \leqq x$ satisfying the condition $P(n) \leqq y$. Then

$$
\Psi(x, y)<c_{1} x \exp \left(-c \frac{\log x}{\log y}\right)
$$

uniformly for all $y \leqq x$.
For the proof see [3].
Lemma 3. We have

$$
\pi(x, k, \ell)<\frac{3 x}{\varphi(k) \log x / k},
$$

if $\ell \leqq k<x$ and $(k, \ell)=1$.
For the proof see Halberstam-Richert [4], Theorem 3.8.
Lemma 4. The number of solutions of the equation $p-\ell=a q$ in prime variables p and q, where p runs in the range $\ell<p \leqq x$, is less than

$$
\frac{c x}{\varphi(a) \log ^{2}(x / a)}
$$

for every positive integer a. The constant c is an absolute one.
See [4], Theorem 2.3.

Lemma 5. The number of solutions of the equation $p-\ell=A \gamma$ where p runs over the primes in the range $[\ell, x]$ and γ over the integers satisfying $p(\gamma) \geqq y$ is less than

$$
\frac{c x}{\varphi(A)(\log x)(\log y)}
$$

uniformly if $A \leqq x^{3 / 4}, \ell<y<x$.
See [4].
Lemma 6. Let

$$
\sigma(x, k, \ell):=\sum_{\substack{k \leq p<x \\ p \equiv \ell(\bmod k)}} p^{-1}
$$

Then

$$
\sigma(x, k, \ell)<c \frac{x_{2}}{\varphi(k)}
$$

if $\ell \leqq k<x$ and $(\ell, k)=1$.
Proof. This is an immediate consequence of Lemma 3. Since $\pi\left(k \cdot 2^{t}, k, \ell\right)<c \frac{k \cdot 2^{t}}{\varphi(k) t}$, therefore $\sum 1 / p$ for the primes in $\left[k \cdot 2^{t-1}, k \cdot 2^{t}\right]$ is less than $c \frac{1}{\varphi(k) t}$, if $t \geqq 1$. Summing up for t up to $2^{t} \leqq k$, we have

$$
\sigma\left(k^{2}, k, \ell\right)<c \frac{\log \log k}{\varphi(k)}
$$

In the range $x \geqq k^{2}$, the inequality in Lemma 3 can be replaced by $\pi(x, k, \ell)<$ $<\frac{6 x}{\varphi(k) \log x}$. This gives rapidly that

$$
\sigma(x, k, \ell)-\sigma\left(k^{2}, k, \ell\right)<C_{1} \frac{x_{2}}{\varphi(k)}
$$

Lemma 7. Let \mathcal{R} be a set of primes Q with the property that

$$
\#\{Q \in[y, 2 y]\}<c_{1} \frac{y}{(\log y)^{A}}
$$

holds for every $y \geqq 2$. Here $A \geqq 2$ is a constant. Let \mathcal{P}_{z} be the set of those primes P for which there exists at least one $Q \in \mathcal{R}, Q>z$, such that $Q \mid P-1$. Then

$$
S_{x, z}:=\#\left\{P \leqq x \mid P \in \mathcal{P}_{z}\right\} \leqq c_{2}\left(\frac{\pi(x)}{x_{1}^{A-1}}+\frac{\pi(x)}{(\log z)^{A-1}}\right)
$$

Proof. It is clear that

$$
S_{x, z} \leqq \sum_{\substack{Q \geqq z \\ Q \in \mathcal{R}}} \pi(x, Q, \ell)
$$

Since $\pi(x, Q, \ell)<c \frac{x}{Q x_{1}}$ if $Q<\sqrt{x}$, and $\leqq x / Q$ if $Q<x$, therefore

$$
S_{x, z} \leqq c \frac{x}{x_{1}}\left(\sum_{\substack{z<Q<\sqrt{x} \\ Q \in \mathcal{R}}} 1 / Q\right)+x \sum_{\substack{\sqrt{x}<Q<x \\ Q \in \mathcal{R}}} \frac{1}{Q} .
$$

By using the assumption for the number of primes of \mathcal{R} in intervals of type [$M, 2 M$] we get the assertion of our lemma immediately.

As an immediate consequence, we have
Lemma 8. Assume that the conditions of Lemma 7 are satisfied. Then the number of integers $n \leqq x$ having a divisor $P \in \mathcal{P}_{z}$ is less than $\frac{c x x_{2}}{(\log z)^{A-1}}$.

Lemma 9 (Turán-Kubilius inequality). If $f \in A_{s}$, then

$$
\sum_{n \leqq x}\left(f(n)-A_{x}\right)^{2} \leqq c x B_{x}
$$

where

$$
A_{x}=\sum_{p \leqq x} \frac{f(p)}{p}, \quad B_{x}^{2}=\sum_{p \leqq x} \frac{f^{2}(p)}{p}
$$

and c is an absolute constant. [5]
Lemma 10. Let $x>100$. Then the number of primes p up to x satisfying $\omega(p-1) \geqq 2 k$ is less than $c \frac{\left(x_{2}+O(1)\right)^{k}}{k!} \cdot \frac{x}{x_{1}}$. Especially, the number of primes $p \leqq x$ satisfying $\omega(p-1) \geqq 15 \log \log p$ is less than $O\left(\frac{x}{x_{1}^{1}}\right)$.

Proof. If $\omega(p-1) \geqq 2 k$, then the product d of the first k smallest distinct prime divisors of $p-1$ is less than \sqrt{x}. Thus the number of primes p with $\omega(p-1) \geqq 2 k$ is less than

$$
\sum_{\substack{d \leq \sqrt{x} \\ \omega(d)=k}} \pi(x, d, 1)|\mu(d)| .
$$

By using Lemma 3, and that

$$
\sum_{d \leqq \sqrt{x}} \frac{1}{\varphi(d)} \leqq \frac{1}{k!}\left(\sum_{p \leqq \sqrt{x}} \frac{1}{p}\right)^{k}
$$

the first assertion follows rapidly. The second assertion is an immediate consequence of the first one and the Stirling formula for k !.

Lemma 11. If p runs over the set of primes, then

$$
\begin{gathered}
\sum_{p \leqq x} \omega(p-1)=\operatorname{li} x \cdot \log \log x+O(\mathrm{li} x), \\
\sum_{p \leqq n} \omega^{2}(p-1)=\mathrm{li} x \cdot(\log \log x)^{2}+O\left(x_{2} \mathrm{l} x\right) \\
\sum_{p \leqq n}(\omega(p-1)-\log \log p)^{2} \ll x_{2} \mathrm{l} x .
\end{gathered}
$$

Lemma 11 can be proved by routine application of the Bombieri-Vinogradov mean value theorem.
3. Proof of the theorem. It is clear that $d \mid n$ implies $\varphi(d) \mid \varphi(n)$ and $\omega(d) \leqq \omega(n)$. Consequently $\varphi_{2}(d) \mid \varphi_{2}(n)$, and $\omega\left(\varphi_{2}(d)\right) \leqq \omega\left(\varphi_{2}(n)\right)$. Let J be an interval, and let $\omega(n \mid J)$ denote the number of distinct prime divisors of n belonging to J. If $J=[y, \infty]$ then we simply write $\omega(n \mid y)$ instead of $\omega(n \mid J)$. Furthermore, let $\omega_{z}(n)$ denote the number of prime divisors of n which are not greater than z.

Let us consider the integers $n \leqq x$. For an n let $n=A(n) B(n)$, where $A(n)$ and $B(n)$ are defined such that $P(A(n)) \leqq x_{1}, p(B(n))>x_{1}$. Observe that for $A(n)<\exp \left(x_{2}^{2}\right)$,

$$
\omega\left(\varphi_{2}(A(n))\right) \leqq c \frac{\log \varphi_{2}(A(n))}{\log \log \varphi_{2}(A(n))} \leqq c x_{2}^{2} / x_{3}
$$

and that the cardinality of $n \leqq x$ satisfying $A(n) \geqq \exp \left(x_{2}^{2}\right)$ is $O\left(x / x_{2}\right)$. Indeed, let us count the integers n with some fixed $A(n)=A$. All these integers can be written as $\gamma A(\leqq x)$, where γ runs over the integers $1 \leqq \gamma \leqq$ $\leqq x / A, p(\gamma)>x_{1}$. So, by using known sieve results, this is less than

$$
c \frac{x}{A} \prod_{q<x_{1}}\left(1-\frac{1}{q}\right) \leqq \frac{c_{1} x}{A x_{2}}
$$

if $A \leqq x / x_{1}$. If $A>x / x_{1}$, then only $\gamma=1$ can occur. Now we consider the sum $\sum \frac{1}{A}$ extended for those A for which $\exp \left(x_{2}^{2}\right) \leqq A<x, P(A)<x_{1}$ is satisfied. By using Lemma 2 we can get easily that this sum is bounded as $x \rightarrow \infty$. Thus, for a non-exceptional n,

$$
\omega\left(\varphi_{2}(n)\right)=\omega\left(\varphi_{2}(B(n))+O\left(x_{2}^{2} / x_{3}\right)\right.
$$

holds. The number of integers $n \leqq x$ for which there is a $q \geqq x_{1}$ such that $q^{2} \mid n$ is less than x / q^{2}.

Summing up for $x_{1} \leqq q$, we have that

$$
x \sum \frac{1}{q^{2}} \leqq x / x_{1}
$$

Thus for all but at most $O\left(x / x_{1}\right)$ integers $n \leqq x, B(n)$ is a square free number.

Let us estimate now $\omega_{x_{2}^{4}}\left(\varphi_{2}(B(n))\right)$. We shall prove that this is less than $O\left(x_{2}^{2} x_{5}\right)$ for all but $o(x)$ integers $n \leqq x$. Since the total number of primes $p \leqq x_{2}^{2}$ is less than $O\left(x_{2}^{2} / x_{3}\right)$, it is enough to estimate $\omega\left(\varphi_{2}(B(n)) \mid J\right)$, where $J=\left[x_{2}^{2}, x_{2}^{4}\right]$.

Let us consider the sum

$$
\sum:=\sum_{n \leqq x} \omega\left(\varphi_{2}(B(n)) \mid J\right),
$$

where J is an arbitrary interval $\subseteq\left[x_{2}^{2}, x\right]$.
If $q \mid \varphi_{2}(n)$, then either $q^{2} \mid \varphi(n)$ or there exists a prime $Q \equiv 1(\bmod q)$ such that $Q \mid \varphi(n)$. In the second case either $Q^{2} \mid n$ or there exist a prime $P \equiv 1$ $(\bmod Q)$ such that $P \mid n$. Let us fix a $q \in J$.

The contribution of the second case to the sum \sum is less than

$$
\ll x \sum_{Q \equiv 1(q)} \sum_{p \equiv 1(Q)} \frac{1}{p}+x \sum_{Q \equiv 1(q)} \frac{1}{Q^{2}} .
$$

By using Lemma 6, this is less than

$$
\frac{x}{q}+x \sum_{Q \equiv 1(q)} \frac{c x_{2}}{Q} \leqq \frac{c_{1} x x_{2}^{2}}{q} .
$$

Let us consider the first case. If $q^{2} \mid \varphi(n)$, then either $q^{2} \mid n$, or there exist distinct primes P_{1}, P_{2} such that $P_{1} \equiv 1(\bmod q), P_{2} \equiv 1(\bmod q), P_{1} P_{2} \mid n$. Thus the contribution of the first case is less than

$$
\frac{x}{q^{2}}+x \sum_{P_{1}, P_{2} \equiv 1(\bmod q)} \frac{1}{P_{1}} \cdot \frac{1}{P_{2}} \ll \frac{x}{q^{2}}+x\left(\sum_{P \equiv 1(q)} \frac{1}{p}\right)^{2} \leqq \frac{x x_{2}^{2}}{q^{2}}
$$

Summing up for $q \in J$, we have

$$
\begin{equation*}
\sum_{n \leqq x} \omega\left(\varphi_{2}(B(n)) \mid J\right) \ll x x_{2}^{2}\left(\sum_{g \in J} 1 / q\right)^{2} \tag{3.1}
\end{equation*}
$$

Especially, for the choice $J=\left[x_{2}^{2}, x_{2}^{4}\right], \sum 1 / q=O(1)$, thus the right hand side is $O\left(x x_{2}^{2}\right)$, consequently our assertion is true.

Thus, for all but $o(x)$ integers $n \leqq x$, we have

$$
\begin{equation*}
\omega\left(\varphi_{2}(n)\right)=\omega\left(\varphi_{2}(B(n)) \mid x_{2}^{4}\right)+O\left(x_{2}^{2} x_{5}\right) . \tag{3.2}
\end{equation*}
$$

We shall prove that

$$
\begin{equation*}
\omega\left(\varphi_{2}(B(n)) \mid x_{2}^{4}\right)=\sum_{\substack{p \mid n \\ p>x_{1}}} \sum_{Q \mid p-1} \omega\left(Q-1 \mid x_{2}^{4}\right)+O\left(x_{2}^{2} x_{5}\right) \tag{3.3}
\end{equation*}
$$

for all but $o(x)$ of the integers $n \leqq x$. Let

$$
\begin{equation*}
f(n):=\sum_{\substack{p \nmid n \\ p>x_{1}}} \sum_{Q \mid p-1} \omega\left(Q-1 \mid x_{2}^{4}\right)-\omega\left(\varphi_{2}(B(n)) \mid x_{4}\right) . \tag{3.4}
\end{equation*}
$$

Assume that $B(n)=P_{1} P_{2} \ldots P_{t}$ is a square free number. In $\varphi_{2}(B(n))$ every $q>x_{2}^{4}, q \mid \varphi_{2}(B(n))$ is counted once.

If $q \mid \varphi_{2}(B(n))$ then either $q^{2} \mid \varphi(B(n))$ or there exists a prime Q, $Q \mid \varphi(B(n))$, such that $Q \equiv 1(\bmod q)$.

Let B_{x} be the set of integers $n \leqq x$ for which there exists a $q>x_{2}^{4}$, $q^{2} \mid \varphi(B(n))$. If $n \in B_{x}$, then either $\bar{q}^{2} \mid n$ or there exists a prime divisor P of n such that $q^{2} \mid P-1$ or a couple of primes P_{1}, P_{2}, such that $P_{1} P_{2} \mid n$, $P_{1} \equiv 1(\bmod q), P_{2} \equiv 1(\bmod q)$. Thus
$\operatorname{card}\left(B_{x}\right) \leqq x \sum_{P \equiv 1\left(q^{2}\right)} \frac{1}{p}+x \sum_{q>x_{2}^{4}} \sum_{P_{1}, P_{2} \equiv 1(q)} \frac{1}{P_{1} P_{2}} \ll x x_{2}^{2} \sum_{q>x_{2}^{4}} 1 / q^{2}=O\left(x / x_{2}^{2}\right)$.
Assume now that $n \notin B_{x}$. Let C_{x} be the set of those integers $n \leqq x$ for which there exists $Q, Q>x_{2}^{4}$ which divides $P_{i}-1$ and $P_{j}-1(i \neq j)$ (where $\left.P_{i} P_{j} \mid B(n)\right)$. It is clear that

$$
\operatorname{card}\left(C_{x}\right) \leqq x \sum_{\substack{ \\Q x_{2}^{4}}} \sum_{P_{1} \equiv 1(Q)} \frac{1}{P_{2} \equiv 1(Q)} \lll x x_{2}^{2} \sum_{Q>x_{2}^{4}} \frac{1}{P_{1}^{2}}=O\left(x / x_{3}\right) .
$$

Let now D_{x} be the set of those integers $n \leqq x$ for which $B(n)$ is square-free, $n \notin B_{x} \cup D_{x}$. Let us consider $f(n)((3.4))$ for $n \in D_{x}$. In the double sum some $q, q \mid \varphi_{2}(B(n))$ is counted only once, if there exists no more than one Q such that $Q \equiv 1(\bmod q)$. But this q is counted in $\omega\left(\varphi_{2}(B(n)) \mid x_{4}\right)$ as well. So, the multiplicity of some $q, q \mid \varphi_{2}(B(n))$ occurring on the right hand side of (3.4) is not greater than the occurrence of $Q_{i} \neq Q_{j}, P_{u}, P_{v}$ such that $q\left|Q_{i}-1, q\right| Q_{j}-1 ; P_{u} \equiv 1\left(Q_{i}\right), P_{v} \equiv 1\left(Q_{j}\right)$. Here $P_{u}=P_{v}$ is not excluded. Thus, by applying Lemma 6 ,

Now we shall substitute each $\omega\left(Q-1 \mid x_{2}^{4}\right)$ by $\left(Q-1 \mid\left[x_{2}^{4}, Q^{1 / 16}\right]\right)$ on the right hand side of (3.3). The error is $O(1)$ for every Q, the total error is less than

$$
\ll \sum_{p \mid n} \omega(p-1) .
$$

Averaging this for $n \leqq x$,

$$
\sum_{n \leqq x} \sum_{p \mid n} \omega(p-1) \leqq x \sum_{p!n} \frac{\omega(p-1)}{p} \ll x x_{2}^{2}
$$

from which we get that the error is less than $O\left(x_{2}^{2} x_{5}\right)$ for all but $O\left(x / x_{5}\right)$ integers $n \leqq x$.

Let us consider the sum

$$
\ell_{n}:=\sum_{\substack{p \mid n \\ x^{1 / 16}<p<x}} \sum_{Q \mid p-1} \omega\left(Q-1 \mid\left[x_{2}^{4}, Q^{1 / 16}\right]\right) .
$$

Let R be the set of those primes Q for which $Q>x_{2}^{4}$ and $\omega(Q-1) \geqq$ $\geqq 15 \log \log p$. Then, by Lemma 10

$$
\#\{Q \in[y, 2 y] \mid Q \in R\}<c_{1} y /(\log y)^{11}
$$

and by Lemma 7,

$$
\#\left\{P \in[y, 2 y] \mid P \in P_{z}\right\}<c_{2} \frac{\pi(y)}{(\log z)^{10}} .
$$

The number of integers $n \leqq x$ for which there exists $p \in S_{x, z}, p \mid n, x^{1 / 16}<$ $<p<x$ is less than

$$
x \sum_{x^{1 / 16}<p<x} 1 / p=O\left(x / x_{3}^{9}\right) .
$$

If n has a prime divisor $p \in S_{x, z} ; p>x^{1 / 16}$ then

$$
\ell_{n} \leqq 15 \sum_{\substack{p \mid n \\ p>x^{1 / 16}}} \sum_{Q \mid p-1} \log \log Q=T_{n} .
$$

Averaging the right hand side, we get

$$
\sum_{n \leqq x} T_{n} \leqq x \sum_{x^{1 / 16}<p<x} \frac{1}{p} \sum_{Q \mid p-1} \log \log Q \leqq x x_{2} \sum_{x^{1 / 16}<p<x} \frac{\omega(p-1)}{p} .
$$

But

$$
\sum_{x^{1 / 16}<p<x} \frac{\omega(p-1)}{p} \ll x_{2}
$$

which comes from the estimation $\sum_{p \leqq x} \omega(p-1) \ll \frac{x}{x_{1}} x_{2}$ (see Lemma 11), and so $\sum_{n \leqq x} T_{n} \ll x x_{2}^{2}$.

Collecting our inequalities we conclude

$$
\omega\left(\varphi_{2}(n)\right)=\sum_{\substack{p \mid n \\ x_{1}<p<x^{1 / 16}}} \sum_{Q \mid p-1} \omega\left(Q-1 \mid\left[x_{2}^{4}, Q^{1 / 16}\right]\right)+O\left(x_{2}^{2} x_{3}\right)
$$

Let us consider now

$$
b_{n}=\sum_{\substack{p \mid n \\ x_{1}<p<x^{1 / 16}}} \sum_{\substack{Q \mid p-1 \\ Q>p^{1 / 16}}} \omega\left(Q-1 \mid\left[x_{2}^{4}, Q^{1 / 16}\right]\right)
$$

We split b_{n} into two parts, $b_{n}=b_{n}^{(1)}+b_{n}^{(2)}$, where in $b_{n}^{(1)}$ we sum over those pairs (p, Q) for which $\omega(Q-1)<15 \log \log Q$, and in $b_{n}^{(2)}$ over the others. Since for every p at most 16 distinct Q occur, therefore

$$
b_{n}^{(1)} \leqq c_{1} \sum_{p \mid n} \log \log p
$$

and

$$
\sum b_{n}^{(1)} \ll x \sum \frac{\log \log p}{p} \ll x \cdot x_{2}^{2}
$$

Furthermore

$$
\begin{gathered}
\sum_{n \leqq x} b_{n}^{(2)} \leqq x \sum_{p<x^{1 / 16}} \sum_{\substack{Q \mid p-1 \\
p^{1 / 16}<Q}} \omega(Q-1) \leqq x \sum_{Q} \omega(Q-1) \sum_{\substack{Q<p<Q^{16} \\
p \equiv 1(\bmod Q)}} 1 / p \ll \\
\\
\ll x \sum \frac{\omega(Q-1)(\log \log Q)}{Q}
\end{gathered}
$$

where Q is summed only over those Q for which $\omega(Q-1)>15 \log \log Q$ is satisfied. Since for every y, the number of such Q in $[y, 2 y]$ is less than $\pi(y) /(\log y)^{5}$ and $\omega(Q-1) \log \log Q \leqq c \log y$, therefore

$$
\sum \frac{\omega(Q-1) \log \log Q}{Q} \ll 1
$$

So we have

$$
\begin{equation*}
\omega\left(\varphi_{2}(n)\right)=\sum_{\substack{p \mid n \\ x_{1}<p<x^{1 / 16}}} \sum_{\substack{Q \mid p-1 \\ Q<p^{1 / 16}}} \omega\left(Q-1 \mid\left[x_{2}^{4}, Q^{1 / 16}\right]\right)+O\left(x_{2}^{2} x_{3}\right) \tag{3.5}
\end{equation*}
$$

for all but at most $o(x)$ integers $n \leqq x$.
Let now $u(p)=u_{x}(p)$ be defined as

$$
u_{x}(p):=\sum_{\substack{Q \mid p-1 \\ Q<p^{1 / 16}}} \omega\left(Q-1 \mid\left[x_{2}^{4}, Q^{1 / 16}\right]\right)-\frac{1}{2}(\log \log p)^{2}
$$

if $x_{1}<p<x^{1 / 16}$, and let $u_{x}(p)=0$ if $p \leqq x_{1}$ or $p>x^{1 / 16}$. We shall consider $u_{x}(n)$ as a strongly additive function. Similarly, let

$$
v_{x}(p):= \begin{cases}\frac{1}{2}(\log \log p)^{2} & \text { if } x_{1}<p<x^{1 / 16} \\ 0 & \text { otherwise }\end{cases}
$$

and let $v_{x}(n)$ be a strongly additive function. Thus,

$$
\begin{equation*}
\omega\left(\varphi_{2}(n)\right)=v_{x}(n)+u_{x}(n)+O\left(x_{2}^{2} x_{3}\right) \tag{3.6}
\end{equation*}
$$

holds for all but $o(x)$ integers $n \leqq x$.
4. Completion of the proof. We can see easily that after normalizing, $v_{x}(n)$ is distributed in limit according to the Gaussian law. Let us consider

$$
t_{x}(n):=\frac{v_{x}(n)}{x_{2}^{2}}
$$

Then $t_{x}(p)$ is bounded on the set of primes, furthermore

$$
A_{x}:=\sum_{p<x} \frac{t_{x}(p)}{p}=\frac{1}{2 \cdot 3} x_{2}+O(1), \quad B_{x}^{2}:=\sum_{p \leqq x} \frac{t_{x}^{2}(p)}{p}=\frac{1}{20} x_{2}+O(1)
$$

as easy to calculate them. Thus, by the well-known Erdős-Kac theorem

$$
\frac{1}{x} \#\left\{n \leqq x \left\lvert\, \frac{t_{x}(n)-A_{x}}{B_{x}}<y\right.\right\} \rightarrow \Phi(y) \quad(x \rightarrow \infty)
$$

for every real number y. Since $B_{x} \rightarrow \infty$ and Φ is a continuous function, therefore we may substitute A_{x} by $\frac{1}{6} x_{2}$, and B_{x} by $\frac{1}{\sqrt{20}} \sqrt{x_{2}}$. After doing this and multiplying by x_{2}^{2}, we have that

$$
\lim _{x} \frac{1}{x} \#\left\{\begin{array}{l|l}
n \leqq x & \frac{v_{x}(n)-\frac{1}{6} x_{2}^{3}}{\frac{1}{\sqrt{20}} x_{2}^{5 / 2}}<y \tag{4.1}
\end{array}\right\}=\Phi(y)
$$

Finally, we shall prove that for all but $o(x)$ integers $n \leqq x, u_{x}(n)$ is bounded by a function of x growing as slowly as $o\left(x_{2}^{5 / 2}\right)$. This can be done by the routine application of Turán-Kubilius inequality and the Bombieri-Vinogradov mean-value theorem.

Starting from the inequality,

$$
\begin{equation*}
\sum_{n \leqq x}\left(u_{x}(n)-\sum_{p \leqq x} \frac{u_{x}(p)}{p}\right)^{2} \leqq c x \sum_{p \leqq x} \frac{u_{x}^{2}(p)}{p} \tag{4.2}
\end{equation*}
$$

we shall estimate the quantities

$$
\begin{equation*}
A_{x}:=\sum_{p \leqq x} \frac{u_{x}(p)}{p} ; \quad B_{x}=\sum_{p \leqq x} \frac{u_{x}^{2}(p)}{p} . \tag{4.3}
\end{equation*}
$$

For this reason, we shall estimate

$$
a(\omega):=\sum u_{x}(p), \quad d(\omega)=\sum u_{x}^{2}(p)
$$

where in these sums p runs over the set of primes belonging to the interval $J(\omega)=\left[\omega, \omega^{\prime}\right], \omega^{\prime}=\omega(\log \omega)^{10}$. Assume that $e^{x_{2}^{2}} \leqq \omega<\omega^{\prime}<x^{1 / 16}$. Let us write $u_{x}(p)$ as

$$
\left(u_{x}(p)=\right)-\frac{1}{2}(\log \log p)^{2}+t_{1}(p)+t_{2}(p)
$$

where

$$
\begin{aligned}
t_{1}(p) & =\sum_{\substack{Q \mid p-1 \\
x_{2}^{4}<Q<\omega^{1 / 16}}} \omega\left(Q-1 \mid\left[x_{2}^{4}, Q^{1 / 16}\right]\right), \\
t_{2}(p) & =\sum_{\substack{Q \mid p-1 \\
\omega^{1 / 16} \leqq Q<p^{1 / 16}}} \omega\left(Q-1 \mid\left[x_{2}^{4}, Q^{1 / 16}\right]\right) .
\end{aligned}
$$

Then

$$
\begin{gather*}
a(\omega)=\sum_{\omega \leqq p<\omega^{\prime}}-\frac{1}{2}(\log \log p)^{2}+\sum t_{1}(p)+\sum t_{2}(p)= \tag{4.4}\\
=a_{1}(\omega)+a_{2}(\omega)+a_{3}(\omega) .
\end{gather*}
$$

We have $a_{3}(\omega) \geqq 0$ and

$$
a_{3}(\omega) \leqq \sum_{\omega^{1 / 16} \leqq Q<\omega^{\prime 1 / 16}} \omega(Q-1)\left(\pi\left(\omega^{\prime}, Q, 1\right)-\pi(\omega, Q, 1)\right) .
$$

Choosing a large $B, B=50$, say, in Lemma 1 and observing that $\omega(Q-1) \ll$ $\ll \log Q$, we get

$$
\begin{equation*}
a_{3}(\omega) \leqq\left(\operatorname{li} \omega^{\prime}-\operatorname{li} \omega\right) \sum_{\omega^{1 / 16}<Q<\omega^{\prime 1 / 16}} \frac{\omega(Q-1)}{Q-1}+O\left(-\frac{\operatorname{li} \omega}{(\log \omega)^{48}}\right) . \tag{4.5}
\end{equation*}
$$

Furthermore,

$$
a_{2}(\omega)=\sum_{x_{2}^{4}<Q<\omega^{1 / 16}} \omega\left(Q-1 \mid\left[x_{2}^{4}, Q^{1 / 16}\right]\right)\left(\pi\left(\omega^{\prime}, Q, 1\right)-\pi(\omega, Q, 1)\right)
$$

and by Lemma 1 , choosing $B=50$, we get
(4.6) $a_{2}(\omega)=\left(\operatorname{li} \omega^{\prime}-\operatorname{li} \omega\right) \sum_{x_{2}^{4}<Q<\omega^{1 / 16}} \frac{\omega\left(Q-1 \mid\left[x_{2}^{4}, Q^{1 / 16}\right]\right)}{Q-1}+O\left(\frac{\operatorname{li} \omega}{(\log \omega)^{48}}\right)$.

Let

$$
\begin{equation*}
S(\omega):=\sum_{x_{2}^{4} \leq Q<\omega^{1 / 16}} \frac{\omega\left(Q-1 \mid\left[x_{2}^{4}, Q^{1 / 16}\right]\right)}{Q-1} . \tag{4.7}
\end{equation*}
$$

Since $\omega\left(Q-1 \mid\left[x_{2}^{4}, Q^{1 / 16}\right]\right)=\omega(Q-1)+O(1)$, by using Lemma 1, after partial summation we have

$$
\begin{equation*}
S(\omega)=\frac{1}{2}(\log \log \omega)^{2}+O(\log \log \omega)+O\left(x_{4}^{2}\right) \tag{4.8}
\end{equation*}
$$

Thus

$$
\begin{equation*}
a_{2}(\omega)=\frac{1}{2}(\log \log o)^{2}\left(\operatorname{li} \omega^{\prime}-\operatorname{li} \omega\right) O\left(\frac{\left|\omega^{\prime}-\omega\right|}{\log \omega}\left(\log \log \omega+x_{2}^{4}\right)\right) . \tag{4.9}
\end{equation*}
$$

Since $\left(\log \log \omega^{\prime}\right)^{2}-(\log \log \omega)^{2} \leqq 1$, therefore, by the prime number theorem,

$$
\sum_{\omega \leqq p<\omega^{\prime}}-\frac{1}{2}(\log \log p)^{2}=-\frac{1}{2}(\log \log \omega)^{2}\left(\operatorname{li} \omega^{\prime}-\operatorname{li} \omega\right)+O\left(\frac{\left|\omega^{\prime}-\omega\right|}{\log \omega}\right) .
$$

Collecting our results, we have

$$
\begin{equation*}
a(\omega)=O\left(\operatorname{li} \omega^{\prime}-\operatorname{li} \omega\right)\left(\log \log \omega+O\left(x_{4}^{2}\right)\right) \tag{4.10}
\end{equation*}
$$

Hence we can get easily that

$$
\begin{equation*}
A_{x}=O\left(x_{2}^{2}\right) \tag{4.10}
\end{equation*}
$$

To do this we have to split the summation interval $\left[x_{1}, x\right]$ of p into intervals of type $[\omega, \omega]$ and use the relation (4.10). The contribution of the terms $\omega<e^{x_{2}^{2}}$ can be estimated roughly, the denominator p in $\sum_{p \in J(\omega)} \frac{u_{x}(p)}{p}$ can be substituted by ω at the expense of the total error $O\left(x_{2}^{2}\right)$.

We can estimate B_{x}^{2} similarly. We split the interval $\left[x_{1}, x\right]$ into subintervals of type $\left[\omega, \omega^{\prime}\right]$ as earlier. Thus we have

$$
B_{x}^{2} \leqq \sum_{\omega} \frac{1}{\omega} d(\omega)+O\left(x_{2}^{2}\right)
$$

where on the right hand side we consider only those ω for which $e^{x_{2}^{2}} \leqq \omega$ holds. To estimate $d(\omega)$, first we observe

$$
u_{x}(p)^{2} \leqq 2\left(t_{1}(p)-\frac{1}{2}(\log \log p)^{2}\right)^{2}+2 t_{2}^{2}(p)
$$

whence we have

$$
d(\omega) \leqq 2\left(\Sigma_{1}-\Sigma_{2}+\Sigma_{3}\right)+\Sigma_{4},
$$

where

$$
\begin{aligned}
\Sigma_{1} & =\sum_{p} t_{1}^{2}(p), \quad \Sigma_{2}=\sum_{p}(\log \log p)^{2} t_{1}(p) \\
\Sigma_{3} & =\frac{1}{4} \sum(\log \log p)^{4}, \quad \Sigma_{4}=\sum_{p} t_{2}^{2}(p)
\end{aligned}
$$

Since $(\log \log p)^{2},(\log \log p)^{4}$ are very slowly growing in $J(\omega)$, therefore

$$
\begin{aligned}
& \Sigma_{3}=\frac{1}{4}(\log \log \omega)^{4}\left(\operatorname{li} \omega^{\prime}-\operatorname{li} \omega\right)+O\left(\frac{\left|\omega^{\prime}-\omega\right|}{(\log \omega)^{5}}\right), \\
& \Sigma_{2}=(\log \log \omega)^{2}\left(1+O\left(\frac{1}{(\log \omega)^{1 / 2}}\right)\right) a_{2}(\omega) .
\end{aligned}
$$

To estimate Σ_{1}, we observe that

$$
\Sigma_{1}=\sum_{Q_{1}, Q_{2}} \omega\left(Q-1 \mid\left[x_{2}^{4}, Q^{1 / 16}\right]\right) \cdot \omega\left(Q_{2}-1 \mid\left[x_{2}^{4}, Q^{1 / 16}\right]\right) \cdot L_{Q_{1}, Q_{2}},
$$

where

$$
L_{Q_{1}, Q_{2}}=\pi\left(\omega^{\prime},\left[Q_{1}, Q_{2}\right], 1\right)-\pi\left(\omega,\left[Q_{1}, Q_{2}\right], 1\right) .
$$

By Lemma 1, we get

$$
\Sigma_{1}=\left(\mathrm{li} \omega^{\prime}-\operatorname{li} \omega\right)\left(\sum \frac{\omega^{2}\left(Q-1 \mid\left[x_{2}^{4}, Q^{1 / 16}\right]\right)}{Q-1}+s^{2}(\omega)+\right.
$$

$$
\left.+O\left(\sum \frac{\omega^{2}(Q-1)}{Q^{2}}\right)\right)+O\left(\omega /(\log \omega)^{48}\right) .
$$

Furthermore, we have

$$
\Sigma_{4} \ll \sum \omega\left(Q_{1}-1\right) \omega\left(Q_{2}-1\right)\left(\pi\left(\omega^{\prime},\left[Q_{1}, Q_{2}\right], 1\right)-\pi\left(\omega,\left[Q_{1}, Q_{2}\right], 1\right)\right)
$$

where Q_{1}, Q_{2} run over the primes of the interval $\left[\omega^{1 / 16}, \omega^{\prime 1 / 16}\right]$, independently. It is clear that $\Sigma_{4} \ll\left(\operatorname{li} \omega^{\prime}-\operatorname{li} \omega\right) /(\log \omega)$, say. Collecting our inequalities, taking into account (4.8), (4.9) we infer

$$
\begin{aligned}
d(\omega) \ll & (\log \log \omega)^{3}\left(\operatorname{li} \omega^{\prime}-\operatorname{li} \omega\right) \sum \frac{\omega^{2}\left(Q-1 \mid\left[x_{2}^{4}, Q^{1 / 16}\right]\right)}{Q-1}+ \\
& +O\left((\log \log \omega)^{3}\left(\operatorname{li} \omega^{\prime}-\operatorname{li} \omega\right)\right)+O\left(\frac{\left|\omega-\omega^{\prime}\right|}{\log \omega}\right) .
\end{aligned}
$$

By using Lemma 11, we get

$$
d(\omega) \ll(\log \log \omega)^{3}\left(\operatorname{li} \omega^{\prime}-\operatorname{li} \omega\right) .
$$

Now, summing up for the intervals $J(\omega)$, we conclude that

$$
\begin{equation*}
B_{x}^{2} \ll \sum_{p<x} \frac{(\log \log p)^{2}}{p}+O\left(x_{2}^{4}\right) \ll x_{2}^{4} \tag{4.11}
\end{equation*}
$$

Thus, by (4.2) we have, for all but $O\left(x \mid x_{4}^{2}\right)$ integers $n \leqq x$, the inequality $\left|u_{x}(n)\right| \leqq C x_{2}^{2} x_{4}$ holds true.

By this the proof of our theorem is finished.
5. Remarks. By this method we can prove that

$$
\lim _{x} \frac{1}{x} \#\left\{n \leqq x \left\lvert\, \frac{f(g(n))-\frac{1}{6} x_{2}^{3}}{\frac{1}{\sqrt{20}} x_{2}^{5 / 2}}<y\right.\right\}=\Phi(y)
$$

for any choice of $f(n)=\omega(n), f(n)=\Omega(n), g(n)=\sigma(\varphi(n)), \varphi(\sigma(n))$, $\sigma(\sigma(n)), \varphi(\varphi(n))$.

We hope that by a refinement of this method we can prove that

$$
\frac{\omega\left(\varphi_{k}(n)\right)-c_{k} x_{2}^{k+1}}{d_{k} x_{2}^{k+1 / 2}}
$$

is distributed in limit according to the standard Gaussian law, for every fixed k.

References

[1] P. Erdős - C. Pommerance, On the normal number of prime factors of n, Rocky Mountain Journal, 15 (1985), 343-352.
[2] I. Kátai, Distribution of $\omega(\sigma(p+1))$, Annales Univ. Sci. Budapest. Sectio Math. (submitted).
[3] N. G. De Bruijn, On the number of positive integers $\leqq x$ and free of prime factors $>y$, Nederl. Akad. Wet. Proc. Ser. A, 54 (1951), 50-60.
[4] H. Halberstam - H. Richert, Sieve methods, Academic Press, 1974.
[5] J. Kubilius, Probabilistic methods in the theory of number, Translations of Mathematical Monographs, Vol. 11, Amer. Math. Soc. (Providence, R. I., 1964).
[6] E. Bombieri, On the large sieve, Mathematika, 12 (1965), 201-225.
[7] M. Ram Murty - V. Kumar Murty, Prime divisors of Fourier coefficients of modular forms, Duke Math. Journal, 51 (1984), 57-76.
[8] M. Ram Murty - V. Kumar Murty, Analogue of the Erdős-Kac theorem for Fourier coefficients of modular forms, Indian Journal of Pure and Applied Math., 15 (1984), 1090-1101.
[9] M Ram Murty - N. Saradha, On the sieve of Eratosthenes, Canad. J. Math., 39 (1987), 1107-1121.
(Received June 8, 1989)
EÖTVÖS LORÁND UNIVERSITY COMPUTER CENTER bUDAPEST, H-1117 bogdínfy út 10/B. hungary

Manuscripts should be typed on standard size paper (25 rows; 50 characters in each row). When listing references, please follow the following pattern:
[1] G. Szegő, Orthog*nal polynomials, AMS Coll. Publ. Vol. XXXIII (Providence, 1939). [2] A. Zygmund, Smooth functions, Duke Math. J., (1945), 47-76.

For abbreviation of names of journals follow the Mathematical Reviews. After the references give the author's affiliation.

If your manuscript is prepared by a word processor (possibly AMS or plain $T_{E} X$), please provide the floppy disk as well. This will speed up processing the paper.

Authors will receive only galley-proofs (one copy). Manuscripts will not be sent back to authors (neither for the purpose of proof-reading nor when rejecting a paper).

Authors obtain 100 reprints free of charge. Additional copies may be ordered from the publisher.

Periodicals of the Hungarian Academy of Sciences are available at the following addresses:

AUSTRALIA
C.B.D. LIBRARY AND SUBSCRIPTION SERVICE 39 East Splanade
P.O. Box 1001, Manly N.S.W. 2095
\section*{AUSTRIA}
GLOBUS, Höchstädtplatz 3, 1206 Wien XX
\section*{BELGIUM}
OFFICE INTERNATIONAL DES PERIODIQUES
Avenue Louise, 485, 1050 Bruxelles
E. STORY-SCIENTIA P.V.B.A.
P. van Duyseplein 8, 9000 Gent
BULGARIA
HEMUS, Bulvar Ruszki 6, Sofia
CANADA
PANNONIA BOOKS, P.O.Box 1017
Postal Station "B", Toronto. Ont. M5T 2 T8
\section*{CHINA}
CNPICOR, Periodical Department, P.O.Box 50 Peking

CZECH AND SLOVAK FEDERAL REPUBLIC
MAD'ARSKA KULTURA, Národni trida 22 11566 Praha
PNS DOVOZ TISKU, Vinohradská 46, Praha 2 PNS DOVOZ TLACE, Bratislava 2

DENMARK

EJNAR MUNKSGAARD, 35, Norre Sogade
1370 Copenhagen K
FEDERAL REPUBLIC OF GERMANY KUNST UND WISSEN ERICH BIEBER
Postfach 102844
7000 Stuttgart 10
FINLAND
AKATEEMINEN KIRJAKAUPPA, P.O.Box 128
00101 Helsinki 10
FRANCE
DAWSON-FRANCE SA., B.P. 40, 91121 Palaiseau OFFICE INTERNATIONAL DE DOCUMENTATION ET LIBRAIRIE 48 rue Gay-Lussac 75240 Paris. Cedex 05

GREAT BRITAIN

BLACKWELL'S PERIODICALS DIVISION
Hythe Bridge Street, Oxford OX1 $2 E T$ BUMPUS, HALDANE AND MAXWELL LTD.
Cowper Works, Olney. Bucks MK46 4BN COLLET'S HOLDINGS LTD., Denington Estate, Wellingborough. Northants NN8 2QT WM DAWSON AND SONS LTD., Cannon House Folkstone, Kent CT19 5EE

GREECE

KOSTARAKIS BROTHERS INTERNATIONAL BOOKSELLERS, 2 Hippokratous Street, Athens-143

holland

FAXON EUROPE, P.O.Box 167
1000 AD Amsterdam
MARTINUS NIJHOFF B.V.
Lange Voorhout 9-11, Den Haag
SWETS SUBSCRIPTION SERVICE
P.O.Box 830, 2160 Sz Lisse

INDIA
ALLIED PUBLISHING PVT. LTD. 750 Mount Road, Madras 600002
CENTRAL NEWS AGENCY PVT.LTD.
Connaught Circus, New Delhi 110001
INTERNATIONAL BOOK HOUSE PVT. LTD.
Madame Cama Road, Bombay 400039
ITALY
D. E. A., Via Lima 28, 00198 Roma interscientia, Via Mazzé 28, 10149 Torino LIBRERIA COMMISSIONARIA SANSONI
Via Lamarmora 45, 50121 Firenze
JAPAN
KINOKUNIYA COMPANY LTD.
Journal Department P.O.Box 55
Chitose. Tokyo 156
MARUZEN COMPANY LTD., Book Department
P.O.Box 5050 Tokyo International, Tokyo 100-31

NAUKA LTD., Import Department
2-30-19 Minami Ikebukuro, Toshima-ku, Tokyo 171
KOREA
CHULPANMUL, Phenjar

NORWAY
S.A. Narvesens Litteraturjeneste

Box 6125, Etterstad
1000 Oslo

POLAND

WEGIERSKI INSTYTUT KULTURY
Marszalkowska 80, 00-517 Warszawa
CKP I W. ul. Towarowa 28, 00-958 Warszawa
ROUMANIA
D.E.P. Bucuresti

ILEXIM, Calea Grivitei 64-66, Bucuresti

SOVIET UNION

SOYUZPECHAT-IMPORT, Moscow
and the post offices in each town
MEZHDUNARODNAYA KNIGA, Moscow G-200
SPAIN
DIAZ DE SANTOS Lagasca 95, Madrid 6

SWEDEN

ESSELTE TIDSKRIFTSCENTRALEN
Box 62, 10120 Stockholm
SWITZERLAND
KARGER LIBRI AG, Petersgraben 31, 4011 Basel
USA
EBSCO SUBSCRIPTION SERVICES
P.O.Box 1943, Birmingham. Alabama 3520°
F.W. FAXON COMPANY, INC.

15 Southwest Park, Westwood, Mass. 02090
MAJOR SCIENTIFIC SUBSCRIPTIONS
1851 Diplomat, P.O.Box 819074,
Dallas, Tx. 75381-9074
REDMORE PUBLICATIONS, Inc.
22 Cortlandt Street, New York, N.Y. 1007
YUGOSLAVIA
JUGOSLOVENSKA KNJIGA, Terazije 27, Beograd
FORUM, Vojvode Misisića 1. 21000 Novi Sad

Acta Mathematica Hungarica

VOLUME 58, NUMBERS 3-4, 1991

```
EDITOR-IN-CHIEF
K. TANDORI
DEPUTY EDITOR-IN-CHIEF
J. SZABADOS
```

EDITORIAL BOARD
L. BABAI, Á. CSÁSZÁR, I. CSISZÁR, Z. DARÓCZY, P. ERDÕS,
L. FEJES TÓTH, T. GALLAI, F. GÉCSEG, B. GYIRES, A. HAJNAL,
G. HALÁSZ, I. KÁTAI, L. LEINDLER, L. LOVÁSZ, A. PRÉKOPA,
A. RAPCSÁK, P. RÉVÉSZ, D. SZÅSZ, E. SZEMERÉDI, B. SZ.-NAGY, VERA T. SÓS

ACTA MATH. HU ISSN 0236-5294

ACTA MATHEMATICA
 HUNGARICA

Acta Mathematica publish papers on mathematics in English, German, French and Russian.
Acta Mathematica is published in two volumes of four issues a year by
AKADÉMIAI KIADÓ
Publishing House of the Hungarian Academy of Sciences H-1117 Budapest, Prielle Kornélia utca 19-35.

Manuscripts and editorial correspondence should be addressed to Acta Mathematica, H-1964 Budapest, P.O.Box 127

Orders may be placed with
KULTÚRA Foreign Trading Company
H-1389 Budapest P.O.Box 149
or with its representatives abroad.

Acta Mathematica Hungarica is abstracted/indexed in Current Contents - Physical, Chemical and Earth Sciences, Mathematical Reviews.

(C)Akadémiai Kiadó, Budapest

PUBLISHER'S NOTE

From volume 59 Acta Mathematica Hungarica will be co-published by Akadémiai Kiadó, Budapest and Kluwer Ácademic Publishers, Dordrecht, Boston and London.
Acta Mathematica Hungarica will be distributed in Albania, Bulgaria, China, Cuba, Czech and Slovak Federal Republic, Hungary, Korean People's Republic, Mongolia, Poland, Romania, U.S.S.R., Vietnam and Yugoslavia by

AKADÉMIAI KIADÓ

P.O. Box 254, 1519 Budapest, Hungary
and in all other countries by

KLUWER ACADEMIC PUBLISHERS

P.O. Box 17, 3300 AA Dordrecht, Holland

CONTENTS

Parnami, J. C., Interval filling sequences and completely additive func- tions 229
Günttner, R., On the uniform approximation by generalized Bernstein means 241
Akhlaghi, M. R., A Pál-type lacunary interpolation problem 247
Beattie, Margaret and Stewart, P., Graded radicals of graded rings 261
Abu-Khuzam, H., Commutativity results for periodic rings 273
Baron, S. and Tietz, H., Umkehrsätze für Riesz-Verfahren zur Sum- mierung von Doppelreihen 279
Ciesielski, K. and Larson, L., The space of density continuous functions 289
Clay, J. R., Convolution rings of multiplications of an abelian group 297
Wang, K., On the unique existence of almost periodic solutions of Volterra integro-differential equations 311
Davidov, J. and Muskarov, O., On the Riemannian curvature of a twistor space 319
Erdős, P., Horváth, M. and Joó, I., On the uniqueness of the expansions $1=\sum q^{-n_{i}}$ 333
Kátai, I., Multiplicative functions with regularity properties. VI 343
Kroó, A. and Schmidt, D., A Haar-type theory of best uniform approxi- mation with constraints 351
Tandori, K., Über die Banach-Eigenschaft von Matrizen 375
Pintz, J., On an assertion of Riemann concerning the distribution of prime numbers 383

INTERVAL FILLING SEQUENCES AND COMPLETELY ADDITIVE FUNCTIONS

J. C. PARNAMI (Chandigarh)

1. Introduction

A sequence $\left\{\lambda_{n}\right\}$ of reals with $\lambda_{n}>\lambda_{n+1}>0(n \in \mathrm{~N})$ and $\sum_{n=1}^{\infty} \lambda_{n}=L<$ $<\infty$ is said to be interval filling if every number $x \in[0, L]$ can be written as $x=\sum_{n=1}^{\infty} \varepsilon_{n} \lambda_{n}$ with $\varepsilon_{n}=0$ or 1 . For example, $\left\{1 / q^{n}\right\}$ is interval filling iff $1<q \leqq 2$ (see [1]).

A function $F:[0, L] \rightarrow \mathbf{R}$ is said to be completely additive with respect to an interval filling sequence $\left\{\lambda_{n}\right\}$ if

$$
F\left(\sum_{n=1}^{\infty} \varepsilon_{n} \lambda_{n}\right)=\sum_{n=1}^{\infty} \varepsilon_{n} F\left(\lambda_{n}\right)
$$

for every sequence $\left\{\varepsilon_{n}\right\}$ in $\{0,1\}$.
In [1] Daróczy, Járai and Kátai proved that for $1<q \leqq q(2)$, a completely additive function F with respect to $\left\{1 / q^{n}\right\}$ is of the type $F(x)=c x$ for all $x \in[0, L]$ where $L=\sum_{n=1}^{\infty} 1 / q^{n}=1 /(q-1)$ and $q(k)$ denotes the root of the equation $L-1=1 / q^{k}$ lying between 1 and 2 .

In this paper an attempt is made to determine interval filling sequences for which every completely additive function is linear. In the process it has been possible to extend the result of Daróczy, Járai and Kátai to all q in (1,2].

2. Interval filling sequences

Definition 1. A sequence $\left\{\lambda_{n}\right\}$ with $\lambda_{n}>\lambda_{n+1}>0(n \in \mathrm{~N})$ and $\sum_{n=1}^{\infty} \lambda_{n}=L<\infty$ is said to be interval filling if every number $x \in[0, L]$ can be written as

$$
\begin{equation*}
x=\sum_{n=1}^{\infty} \varepsilon_{n} \lambda_{n}, \quad \varepsilon_{n}=0 \text { or } 1 \tag{2.1}
\end{equation*}
$$

Interval filling sequences have another characterization as given in Satz 2.1 of [1], namely:

A sequence $\left\{\lambda_{n}\right\}$ with $\lambda_{n}>\lambda_{n+1}>0(n \in \mathrm{~N})$ and $L=\sum_{n=1}^{\infty} \lambda_{n}<\infty$ is interval filling iff

$$
\begin{equation*}
\lambda_{n} \leqq \sum_{j=n+1}^{\infty} \lambda_{j} \text { for all } n \tag{2.2}
\end{equation*}
$$

We write down some immediate consequences of this result, which will be useful in our investigation.

Corollary 2.1. If $\left\{\lambda_{n}\right\}$ is an interval filling sequence and m is a natural number, then $\left\{\lambda_{n}\right\}_{n \geqq m}$ is also interval filling.

Corollary 2.2. If $\left\{\lambda_{n}\right\}$ is an interval filling sequence and $1 \leqq n_{1}<$ $<n_{2}<\cdots<n_{r}$ is a finite sequence of natural numbers, then a number x can be written as

$$
x=\lambda_{n_{1}}+\lambda_{n_{2}}+\cdots+\lambda_{n_{r}}+\sum_{n>n_{r}} \varepsilon_{n} \lambda_{n}, \quad \varepsilon_{n}=0 \text { or } 1
$$

iff

$$
0 \leqq x-\lambda_{n_{1}}-\lambda_{n_{2}}-\cdots-\lambda_{n_{r}} \leqq \sum_{n>n_{r}} \lambda_{n}
$$

Corollary 2.3. Let $\left\{\lambda_{n}\right\}, n_{1}, n_{2}, \ldots, n_{r}$ be as in Corollary 2.2, then $x=\lambda_{n_{1}}+\cdots+\lambda_{n_{r}}$ has a representation

$$
x=\lambda_{n_{1}}+\cdots+\lambda_{n_{r-1}}+\sum_{n>n_{r}} \varepsilon_{n} \lambda_{n}, \quad \varepsilon_{n}=0 \text { or } 1
$$

3. About the numbers $q(k)$

For a natural number k, the equation

$$
\begin{equation*}
q^{k+1}-2 q^{k}+q-1=0 \tag{3.1}
\end{equation*}
$$

has a unique root lying between 1 and 2 [see 1]. We denote it by $q(k)$.
Proposition 3.1. a) The sequence $\{q(k)\}$ is strictly monotone and converges to 2 .
b) For $q(k)<q \leqq q(k+1)$, we have

$$
\begin{equation*}
1 / q^{k+1} \leqq \sum_{j=1}^{\infty} 1 / q^{j}-1<1 / q^{k} \tag{3.2}
\end{equation*}
$$

Proof. a) Let $2>q \geqq q(k+1)$, then $q^{k+2}-2 q^{k+1}-1 \geqq 0$ and so

$$
\left(q^{k+1}-2 q^{k}+q-1\right)=\left(q^{k+2}-2 q^{k+1}+q-1\right) / q+(q-1)^{2} / q>0 .
$$

Hence $q>q(k)$ and in particular $q(k+1)>q(k)$. By the equation (3.1) for $q(k)$, we have

$$
0<(2-q(k)) /(q(k)-1)=(1 / q(k))^{k} \leqq(1 / q(1))^{k} \rightarrow 0 \text { as } k \rightarrow \infty .
$$

Hence $\{q(k)\}$ converges to 2 .
b) For $q(k)<q \leqq q(k+1)$, we have

$$
q^{k+1}-2 q^{k}+q-1>0 \quad \text { and } \quad q^{k+2}-2 q^{k+1}+q-1 \leqq 0 .
$$

These inequalities can be rewritten as $1 / q^{k+1} \leqq(2-q) /(q-1)<1 / q^{k}$ i.e.

$$
1 / q^{k+1} \leqq \sum_{j=1}^{\infty} 1 / q^{j}-1<1 / q^{k} .
$$

4. Some special interval filling sequences and unambiguous numbers

For a fixed natural number k, we denote by Λ_{k} the set of interval filling sequences $\left\{\lambda_{n}\right\}$ satisfying the property that

$$
\begin{equation*}
\lambda_{n+k+1} \leqq \sum_{j=1}^{\infty} \lambda_{n+j}-\lambda_{n}<\lambda_{n+k} \tag{4.1}
\end{equation*}
$$

for every natural number n. By Proposition 2.1, Part b) it follows that $\left\{1 / q^{n}\right\}$ is in Λ_{k} whenever $q(k)<q \leqq q(k+1)$. By Corollary 2.1, it follows that for any sequence $\left\{\lambda_{n}\right\}$ in Λ_{k} and a natural number m, the subsequence $\left\{\lambda_{n}\right\}_{n \geqq m}$ is also in Λ_{k}.

Proposition 4.1. For any interval filling sequence $\left\{\lambda_{n}\right\}$ in Λ_{k}, we have, for any natural n,

$$
\begin{gather*}
\lambda_{n}<2 \lambda_{n+1}, \tag{4.2}\\
\lambda_{n+1}+\cdots+\lambda_{n+k}<\lambda_{n}, \tag{4.3}\\
\sum_{j=2}^{\infty} \lambda_{n+j}<\lambda_{n},
\end{gather*}
$$

$$
\begin{equation*}
\lambda_{n+1}+\lambda_{n+k+2}<\lambda_{n} . \tag{4.5}
\end{equation*}
$$

Proof. By (4.1), we have

$$
\sum_{j=1}^{\infty} \lambda_{n+1+j}-\lambda_{n+1}<\lambda_{n+k+1} \leqq \sum_{j=1}^{\infty} \lambda_{n+j}-\lambda_{n}
$$

and therefore $-\lambda_{n+1}<\lambda_{n+1}-\lambda_{n}$ i.e. $\lambda_{n}<2 \lambda_{n+1}$. This proves (4.2).
By (4.1), we obtain on using (2.2)

$$
\sum_{j=1}^{\infty} \lambda_{n+j}-\lambda_{n}<\lambda_{n+k} \leqq \sum_{j=1}^{\infty} \lambda_{n+k+j}
$$

i.e. $\sum_{j=1}^{k} \lambda_{n+j}-\lambda_{n}<0$. This proves (4.3).

Now to prove (4.4). By (4.1), we have

$$
\sum_{j=1}^{\infty} \lambda_{n+j}-\lambda_{n}<\lambda_{n+k} \leqq \lambda_{n+1}
$$

and so $\sum_{j=2}^{\infty} \lambda_{n+j}-\lambda_{n}<0$.
Finally to prove (4.5), we obtain from (4.1)

$$
\lambda_{n+k+2} \leqq \sum_{j=1}^{\infty} \lambda_{n+1+j}-\lambda_{n+1}<\lambda_{n}-\lambda_{n+1}
$$

on using (4.4), and so

$$
\lambda_{n+k+2} \lambda_{n+1}<\lambda_{n} .
$$

Definition 2. For a given interval filling sequence $\left\{\lambda_{n}\right\}$, a number $x \in$ $\in[0, L], L=\sum_{n=1}^{\infty} \lambda_{n}$, is said to be unambiguous if there is a unique representation of x as $\sum_{n=1}^{\infty} \varepsilon_{n} \lambda_{n}, \varepsilon_{n}=0$ or 1 ; otherwise we say that x is ambiguous.

Now we prove some results about unambiguous numbers which will be useful in our investigation.

Proposition 4.2. Let $\left\{\lambda_{n}\right\}$ be an interval filling sequence in Λ_{k}. Suppose that a number

$$
x=\lambda_{n}+\lambda_{n+1}+\cdots+\lambda_{n+t}+\sum_{m \geqq n+t+2} \varepsilon_{m} \lambda_{m}, \quad \varepsilon_{m}=0 \text { or } 1
$$

$t \geqq 0, n>1$, is unambiguous relative to the sequence $\left\{\lambda_{n}\right\}$. Then $t \leqq k-1$ and $x-\lambda_{n}$ is unambiguous.

Proof. First we claim that $x<\lambda_{n=1}$. Suppose on the contrary, that $x \geqq \lambda_{n-1}$. Then $0 \leqq x-\lambda_{n-1}<x \leqq \sum_{j=n}^{\infty} \lambda_{j}$ and by Corollary $2.2, x$ has a representation of the type $x=\lambda_{n-1}+\sum_{j=n}^{\infty} \varepsilon_{j} \lambda_{j}, \varepsilon_{j}=0$ or 1 . This is impossible as x is unambiguous. Hence $x<\lambda_{n-1}$.

Now we assert that $x>\lambda_{n}+\cdots+\lambda_{n+t-1}+\sum_{j=1}^{\infty} \lambda_{n+t+j}$. Suppose otherwise, then $0 \leqq x-\lambda_{n}-\cdots-\lambda_{n+t-1} \leqq \sum_{j=1}^{\infty} \lambda_{n+t+j}$ and by Corollary $2.2, x$ has a representation of the type $x=\lambda_{n}+\cdots+\lambda_{n+t-1}+\sum_{j=1}^{\infty} \varepsilon_{j} \lambda_{n+t+j}$, with $\varepsilon_{j}=0$ or 1. This is impossible as x is unambiguous.

By the above considerations, we have

$$
\lambda_{n}+\cdots+\lambda_{n+t-1}+\sum_{j=1}^{\infty} \lambda_{n+t+j}<\lambda_{n-1}
$$

i.e. $\sum_{j=n}^{\infty} \lambda_{j}-\lambda_{n+t}<\lambda_{n-1}$. On using (4.1), we obtain that

$$
\lambda_{n+k} \leqq \sum_{j=n}^{\infty} \lambda_{j}-\lambda_{n-1}<\lambda_{n+t}
$$

which implies that $t<k$ i.e. $t \leqq k-1$.
Now suppose that

$$
x-\lambda_{n}=\sum_{m=1}^{\infty} \eta_{m} \lambda_{m}, \quad \eta_{m}=0 \text { or } 1
$$

Since $x<\lambda_{n-1}$, therefore $x-\lambda_{n}<\lambda_{n-1}-\lambda_{n}<\lambda_{n}$ on using (4.2). Thus we have $\eta_{m}=0$ for $m \leqq n$ and

$$
x=\lambda_{n}+\sum_{m \geqq n} \eta_{m} \lambda_{m} \equiv \lambda_{n}+\cdots+\lambda_{n+t}+\sum_{m \geqq n+t+2} \varepsilon_{m} \lambda_{m}
$$

as expressions, because x is unambiguous. Hence $x-\lambda_{n}$ has unique representation of the type (2.1), namely

$$
x-\lambda_{n}=\lambda_{n+1}+\cdots+\lambda_{n+t}+\sum_{m \geqq n+t+2} \varepsilon_{m} \lambda_{m} .
$$

This proves that $x-\lambda_{n}$ is unambiguous.
Proposition 4.3. Let $\left\{\lambda_{n}\right\}$ be an interval filling sequence in Λ_{k} and $x=$ $=\lambda_{1}+\cdots+\lambda_{t}+\sum_{m \geq t+2} \varepsilon_{m} \lambda_{m}$ be unambiguous with respect to $\left\{\lambda_{n}\right\}$. Then $y=x-\lambda_{1}-\cdots-\lambda_{t}$ is unambiguous.

Proof. Suppose that $y=\sum_{n=1}^{\infty} \eta_{n} \lambda_{n}, \eta_{n}=0$ or 1 . Since

$$
y=\sum_{m \geqq t+2} \varepsilon_{m} \lambda_{m} \leqq \sum_{m \geqq t+2} \lambda_{m}<\lambda_{t}
$$

on using (4.4), therefore $\eta_{n}=0$ for all $n \leqq t$ and hence $x=\lambda_{1}+\cdots+\lambda_{t}+$ $+\sum_{n \geqq t+1} \eta_{n} \lambda_{n}$. Since x is unambiguous, therefore $\sum_{n \geqq t+1} \eta_{n} \lambda_{n}$ and $\sum_{m \geqq t+2} \varepsilon_{m} \lambda_{m}$ are the same representations. Thus y has a unique representation of the type (2.1) i.e. y is unambiguous.

Proposition 4.4. Let $\left\{\lambda_{n}\right\}$ be an interval filling sequence in Λ_{k} and $x=$ $=\lambda_{n}+\lambda_{n+u}+\sum_{m \geqq n+u+1} \varepsilon_{m} \lambda_{m}, \varepsilon_{m}=0$ or 1 be unambiguous. Then we have $u \leqq k+1$.

Proof. Since x is unambiguous, therefore so is

$$
L-x=\lambda_{1}+\cdots+\lambda_{n-1}+\lambda_{n+1}+\cdots+\lambda_{n+u-1}+\sum_{m \geqq n+u+1}\left(1-\varepsilon_{m}\right) \lambda_{m} .
$$

By Proposition 4.3,

$$
\lambda_{n+1}+\cdots+\lambda_{n+u-1}+\sum_{m \geqq n+u+1}\left(1-\varepsilon_{m}\right) \lambda_{m}
$$

is unambiguous and by Proposition 4.2 we have $u-2 \leqq k-1$ i.e. $u \leqq k+1$.
Proposition 4.5. Let $\left\{\lambda_{n}\right\}$ be an interval filling sequence in Λ_{k}. For a number $x \in\left(C, \lambda_{1}\right), x=\sum_{i=1}^{\infty} \lambda_{n_{i}}$ with $n_{i+1}>n_{i}$ for all i to be unambiguous with respect to $\left\{\lambda_{n}\right\}$, it is necessary that $n_{i+1} \leqq n_{i}+k+1 \leqq n_{i+k}$ for all i.

Proof. Suppose that $x \in\left(0, \lambda_{1}\right), x=\sum_{i=1}^{\infty} \lambda_{n_{i}}$ with $n_{i+1}>n_{i}$ for all i is unambiguous. Then $n_{1}>1$ and by repeated application of Proposition 4.2,
for every fixed $j, \sum_{i \geq j} \lambda_{n_{i}}$ is unambiguous. By Proposition 4.4, we have $n_{j+1}-$ $-n_{j} \leqq k+1$. Since $n_{i+1}-n_{i} \geqq 1$, therefore $n_{j+k}-n_{j} \geqq k$ and equality holds iff $n_{j+i}=n_{j+i-1}+1$ for $\overline{1} \leqq i \leqq k$, which is not possible in view of Proposition 4.2. Thus we have $n_{j+k} \geqq n_{j}+k+1$.

Note. If $\lambda_{1} \leqq x \leqq L-\lambda_{1}=\sum_{j \geqq 2} \lambda_{j}$ then by Corollary $2.2, x$ is ambiguous. Moreover a number y lying between $L-\lambda_{1}$ and L is unambiguous iff $x=$ $=L-y$ is unambiguous and $0<x<\lambda_{1}$. So the condition $x \in\left(0, \lambda_{1}\right)$ in Proposition 4.5 is virtually not a restriction.

Proposition 4.6. Let $\left\{\lambda_{n}\right\}$ be an interval filling sequence in Λ_{k}. Suppose that $\xi \in(0, L), \xi=\sum_{n=1}^{\infty} \varepsilon_{n} \lambda_{n}, \varepsilon_{n}=0$ or 1 , is unambiguous with respect to $\left\{\lambda_{n}\right\}$. Then there exists a natural number N with the following properties:
i) For every $m \geqq N, \xi_{m}=\sum_{n \geqq m} \varepsilon_{n} \lambda_{n}$ is unambiguous.
ii) For every $m \geqq N$, at least one of $\varepsilon_{m+1}, \ldots, \varepsilon_{m+k+1}$ is 1 .

Proof. Let $P=\left\{n: \varepsilon_{n}=1\right\}$ and $Q=\left\{n: \varepsilon_{n}=0\right\}$. Since $0<\xi<L$ therefore P and Q are both non-empty. Since ξ is unambiguous, therefore by Corollary $2.3, P$ is infinite. Find a natural number $M \in Q$ and a natural number $N \in P$ such that $N>M$ and $N \geqq 3$. By Proposition 4.2 and 4.3, $\xi_{N}=\sum_{n \geqq N} \varepsilon_{n} \lambda_{n}$ is unambiguous, moreover $\xi_{N} \leqq \sum_{n \geqq 3} \lambda_{n}<\lambda_{1}$ on using (4.4). Again using Proposition 4.2, we obtain that ξ_{m} is unambiguous for every $m \geqq N$. This proves (i).

Now let $m \geqq N$. Find maximal $n_{1} \leqq m$ such that $\varepsilon_{n_{1}}=1$ and least $n_{2}>m$ such that $\varepsilon_{n_{2}}=1$. Then $\varepsilon_{j}=0$ for all j satisfying $n_{1}+1 \leqq j \leqq n_{2}-1$. By Proposition 4.5, $n_{2} \leqq n_{1}+k+1 \leqq m+k+1$, also $n_{2} \geqq m+1$ and $\varepsilon_{n_{2}}=1$. This proves (ii).

5. Completely additive functions

Let $\left\{\lambda_{n}\right\}$ be a given interval filling sequence and $L=\sum_{n=1}^{\infty} \lambda_{n}$.
Definition 3 . We call a function $F:[0, L] \rightarrow \mathbf{R}$ completely additive if for every sequence $\left\{\varepsilon_{n}\right\}$ in $\{0,1\}$ we have

$$
\begin{equation*}
F\left(\sum_{n=1}^{\infty} \varepsilon_{n} \lambda_{n}\right)=\sum_{n=1}^{\infty} \varepsilon_{n} F\left(\lambda_{n}\right) . \tag{5.1}
\end{equation*}
$$

In this section we find some interval filling sequences for which every completely additive function is linear.

Theorem 5.1. Let $1<q \leqq 2$ and $F:[0, L] \rightarrow \mathbf{R}$ be completely additive with respect to the interval filling sequence $\left\{1 / q^{n}\right\}$. Then there exists a constant c such that $F(x)=c x$ for all x in $[0, L]$. We shall use the following:

Lemma 5.1. Let k be a fixed natural number and $\left\{\lambda_{n}\right\}$ be an interval filling sequence in Λ_{k}. Suppose that $F:[0, L] \rightarrow \mathbf{R}$ is a completely additive function with respect to $\left\{\lambda_{n}\right\}$, satisfying $F(L)=0, F \not \equiv 0$. Then there exists a natural number N such that

$$
\begin{equation*}
2 F\left(\lambda_{n}\right)<-F\left(\lambda_{1}\right)-\cdots-F\left(\lambda_{n-1}\right) \tag{5.2}
\end{equation*}
$$

for all $n \geqq N$.
Proof. Consider $P=\left\{n \in \mathbf{N}: a_{n}=F\left(\lambda_{n}\right)>0\right\}$ and $\xi=\sum_{n \in P} \lambda_{n}$. If $P=\emptyset$, then $a_{n} \leqq 0$ for all n and since $\sum_{n=1}^{\infty} a_{n}=0$, therefore $a_{n}=0$ for all n and $F \equiv 0$. If $P=\mathbf{N}$ then we would have $F(L)>0$. Hence $P \neq \emptyset$, N i.e. $\xi \in(0, L)$. By Satz 3.2 of [1], ξ is unambiguous. Let N be as in Proposition 4.6. Fix any $j \geqq N$, then by Proposition 4.4

$$
\begin{equation*}
\eta_{j}=\lambda_{j}+\sum_{\substack{m \in P \\ m \geqq j+k+2}} \lambda_{m} \tag{5.3}
\end{equation*}
$$

is ambiguous. Since ξ is unambiguous, therefore by Proposition $4.2, \eta_{j}-\lambda_{j}$ is unambiguous and in view of Corollary 2.1, we have $\eta_{j}-\lambda_{j}<\lambda_{j+k+1}$. Hence

$$
\begin{equation*}
\eta_{j}<\lambda_{j}+\lambda_{j+k+1}<\lambda_{j-1} \tag{5.4}
\end{equation*}
$$

on using (4.5). Since η_{j} is ambiguous and $\eta_{j}-\lambda_{j}$ is unambiguous, therefore it follows from (5.3) and (5.4) that

$$
\begin{equation*}
\eta_{j} \leqq \sum_{n \geqq j+1} \lambda_{n} \tag{5.5}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
\eta_{j}>\lambda_{j}>\lambda_{j+1}+\cdots+\lambda_{j+k} \tag{5.6}
\end{equation*}
$$

on applying (4.3). By using Corollary 2.2, we obtain from (5.5) and (5.6) that

$$
\begin{equation*}
\eta_{j}=\lambda_{j+1}+\cdots+\lambda_{j+k}+\sum_{m>j+k} \varepsilon_{m} \lambda_{m} \tag{5.7}
\end{equation*}
$$

for suitable ε_{m} 's in $\{0,1\}$. Since F is completely additive, therefore it follows from (5.3) and (5.7) that

$$
a_{j}+\sum_{\substack{m \geq j+k+2 \\ m \in P}} a_{m}=a_{j+1}+\cdots+a_{j+k}+\varepsilon_{j+k+1} a_{j+k+1}+\sum_{m \geqq j+k+2} \varepsilon_{m} a_{m}
$$

and so

$$
\begin{equation*}
a_{j} \leqq a_{j+1}+\cdots+a_{j+k}+\varepsilon_{j+k+1} a_{j+k+1} . \tag{5.8}
\end{equation*}
$$

Thus, we have

$$
\begin{cases}a_{j} \leqq a_{j+1}+\cdots+a_{j+k}+a_{j+k+1} & \text { if } j+k+1 \in P \tag{5.9}\\ a_{j} \leqq a_{j+1}+\cdots+a_{j+k} & \text { if } j+k+1 \notin P .\end{cases}
$$

In both the cases, we have

$$
\begin{equation*}
a_{j} \leqq a_{j+1}+\cdots+a_{j_{1}} \tag{5.10}
\end{equation*}
$$

where j_{1} is the largest integer in P such that $j+1 \leqq j_{1} \leqq j+k+1$. (Existence of such a j_{1} is guaranteed by Proposition 4.6.) Set $j_{0}=j$, and define j_{i+1} to be the largest integer in P such that $j_{i}+1 \leqq j_{i+1} \leqq j_{i}+k+1$. By (5.10) we obtain

$$
a_{j_{i}} \leqq a_{j_{i}+1}+\cdots+a_{j_{i+1}}
$$

and adding over all $i=0,1,2, \ldots$, we get

$$
a_{j_{0}}+a_{j_{1}}+a_{j_{2}}+\cdots \leqq a_{j_{0}+1}+a_{j_{0}+2}+\cdots=-\left(a_{1}+a_{2}+\cdots+a_{j_{0}}\right)
$$

and therefore $a_{j}=a_{j_{0}}<-\left(a_{1}+a_{2}+\cdots+a_{j}\right)$ i.e. $2 a_{j}<-a_{1}-a_{2}-\cdots-a_{j-1}$.
Corollary 5.1. Let F be a completely additive function with respect to an interval filling sequence $\left\{\lambda_{n}\right\}$ in Λ_{k} such that $F(L)=0$. Then $F \equiv 0$.

Proof. Suppose that $F \not \equiv 0$. By Lemma 5.1, there exists a natural number N such that

$$
\begin{equation*}
2 F\left(\lambda_{n}\right)<-F\left(\lambda_{1}\right)-\cdots-F\left(\lambda_{n-1)} \text { for all } n \geqq N .\right. \tag{5.11}
\end{equation*}
$$

Replacing F by $-F$, we obtain that there is a natural number M such that

$$
2\left(-F\left(\lambda_{n}\right)\right)<-\left(-F\left(\lambda_{1}\right)\right)-\cdots-\left(-F\left(\lambda_{n-1}\right)\right) \text { for all } n \geqq M
$$

i.e.

$$
\begin{equation*}
2 F\left(\lambda_{n}\right)>-F\left(\lambda_{1}\right)-\cdots-F\left(\lambda_{n-1}\right) \text { for all } n \geqq M . \tag{5.12}
\end{equation*}
$$

(5.11) and (5.12) contradict each other if we take $n \geqq \operatorname{Max}(M, N)$. Hence $F \equiv 0$.

Corollary 5.2. Let F be a completely additive function with respect to an interval filling sequence $\left\{\lambda_{n}\right\}$ in Λ_{k}. Then there exists a constant c such that

$$
F(x)=c x \text { for all } x \text { in the domain of } F .
$$

Proof. Define $\hat{F}:[0, L] \rightarrow R$ by $\hat{F}(x)=F(x)-F(L) \frac{x}{L}, L=\sum_{n=1}^{\infty} \lambda_{n}$. Then \hat{F} is completely additive with $\hat{F}(L)=0$ and by Corollary $5.1, \hat{F} \equiv 0$ i.e. $F(x)=c x$ for all $x \in[0, L]$, where $c=\frac{F(L)}{L}$.

Proof of Theorem 5.1. For $1<q \leqq q(1)$, the result has been proved in [1, Korollar 3.1]. For a natural number k and $q(k)<q \leqq q(k+1)$, the sequence $\left\{1 / q^{n}\right\}$ is in Λ_{k} and the result follows by Corollary 5.2. By Proposition 3.1, Part a)

$$
(1,2)=\bigcup_{k \geqq 1}(q(k), q(k+1)] \cup(1, q(1)],
$$

therefore it only remains to prove the theorem in case $q=2$.
Now let F be a completely additive function with respect to interval filling sequence $\left\{2^{-n}\right\}$. Since $2^{-n}=\sum_{m=n+1}^{\infty} 2^{-m}$ for all $n \geqq 1$, therefore

$$
\begin{equation*}
F\left(2^{-n}\right)=\sum_{m=n+1}^{\infty} F\left(2^{-m}\right) \text { for all } n \geqq 1 . \tag{5.13}
\end{equation*}
$$

Changing n to $n+1$ we obtain

$$
\begin{equation*}
F\left(2^{-(n+1)}\right)=\sum_{m=n+2}^{\infty} F\left(2^{-m}\right) . \tag{5.14}
\end{equation*}
$$

Subtracting (5.14) from (5.13) we obtain that

$$
F\left(2^{-n}\right)=2 F\left(2^{-(n+1)}\right) \text { for all } n \geqq 1
$$

and by induction we have

$$
F\left(2^{-n}\right)=2^{-(n-1)} F(1 / 2) .
$$

Hence for $\varepsilon_{n} \in\{0,1\}$

$$
F\left(\sum_{n=1}^{\infty} \varepsilon_{n} 2^{-n}\right)=\sum_{n=1}^{\infty} \varepsilon_{n} F\left(2^{-n}\right)=2 F(1 / 2) \sum_{n=1}^{\infty} \varepsilon_{n} 2^{-n}=c\left(\sum_{n=1}^{\infty} \varepsilon_{n} 2^{-n}\right)
$$

where $c=2 F(1 / 2)$. This completes the proof.

6. Interval filling sequences for which every completely additive function is linear

We denote by Λ to be the set of interval filling sequences $\left\{\lambda_{n}\right\}$ such that every completely additive function with respect to $\left\{\lambda_{n}\right\}$ is linear. We have

$$
\begin{equation*}
\Lambda_{k} \subset \Lambda \text { for every natural number } k \tag{6.1}
\end{equation*}
$$

(Corollary 5.1),

$$
\begin{equation*}
\left\{1 / q^{n}\right\} \in \Lambda \text { for every } q \text { in }(1,2] \tag{6.2}
\end{equation*}
$$

(Theorem 5.1),
(6.3) Any plentiful interval filling sequence (i.e. an interval filling sequence $\left\{\lambda_{n}\right\}$ such that every number between 0 and

$$
L=\sum_{n=1}^{\infty} \lambda_{n} \text { is ambiguous) is in } \Lambda \text { (Satz } 3.1 \text { of [1]). }
$$

Now we describe a property of Λ.
Theorem 6.1. If an interval filling sequence has a subsequence which is in Λ, then the original sequence is in Λ.

Proof. Let $\left\{\lambda_{n}\right\}$ be an interval filling sequence and $\left\{\mu_{n}\right\}$ be a subsequence of $\left\{\lambda_{n}\right\}$ which lies in Λ. Set $L=\sum_{n=1}^{\infty} \lambda_{n}$ and $L_{1}=\sum_{n=1}^{\infty} \mu_{n}$. Let $F:[0, L] \rightarrow \mathbf{R}$ be completely additive with respect to $\left\{\lambda_{n}\right\}$. Define $F_{1}:\left[0, L_{1}\right] \rightarrow \mathbf{R}$ by setting $F_{1}(x)=F(x)$ for all $x \in\left[0, L_{1}\right]$. Then F_{1} is completely additive with respect to $\left\{\mu_{n}\right\}$ and hence there exists a constant c such that $F_{1}(x)=c x$ for all $x \in\left[0, L_{1}\right]$. Since $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$, therefore there exists an integer $N: \lambda_{n} \leqq L_{1}$ for all $n \geqq N$ and so $F\left(\lambda_{n}\right)=F_{1}\left(\lambda_{n}\right)=c \lambda_{n}$ for all $n \geqq N$. In case $N>1$, we have $\lambda_{N-1} \leqq \sum_{n \geqq N} \lambda_{n}$ and so $\lambda_{N-1}=\sum_{n \geqq N} \varepsilon_{n} \lambda_{n}$, $\varepsilon_{n} \in\{0,1\}$ and in turn

$$
\begin{gathered}
F\left(\lambda_{N-1}\right)=F\left(\sum_{n \geqq N} \varepsilon_{n} \lambda_{n}\right)=\sum_{n \geqq N} \varepsilon_{n} F\left(\lambda_{n}\right)= \\
=\sum_{n \geqq N} \varepsilon_{n} c \lambda_{n}=c\left(\sum_{n \geqq N} \varepsilon_{n} \lambda_{n}\right)=c \lambda_{N-1} .
\end{gathered}
$$

We conclude that $F\left(\lambda_{n}\right)=c \lambda_{n}$ for all $n \geqq 1$ and consequently for any $x=\sum_{n=1}^{\infty} \eta_{n} \lambda_{n}, \eta_{n} \in\{0,1\}$ we have

$$
F(x)=F\left(\sum_{n=1}^{\infty} \eta_{n} \lambda_{n}\right)=\sum_{n=1}^{\infty} \eta_{n} F\left(\lambda_{n}\right)=\sum_{n=1}^{\infty} \eta_{n} c \lambda_{n}=c x .
$$

This proves that $F(x)=c x$ for all $x \in[0, L]$.
Added in proof (July 18, 1991). Theorem (5.1) has also been proved independently by T. Szabó, Publ. Math. (Debrecen), 36 (1989/90). In the meantime Z. Daróczy, I. Kátai and T. Szabó, Arch. Math. (Basel), 54 (1990), have extended the result to an arbitrary interval filling sequence.

References

[1] Z. Daróczy, A. Járai and I. Kátai, Intervallfüllende Folgen and Volladditive Funktionen, Acta Sci. Math. (Szeged), 50 (1986), 337-350.
(Received February 19, 1988)
DEPARTMENT OF MATHEMATICS
PENJAB UNIVERSITY
CHANDIGARH-160014
INDIA

ON THE UNIFORM APPROXIMATION BY GENERALIZED BERNSTEIN-MEANS

R. GÜNTTNER (Osnabrück)

1. Let $S_{n}[g]$ denote the trigonometric polynomial of degree at most n interpolating the function $g \in C_{2 \pi}$ at $m=2 n+1$ equidistant nodes

$$
\begin{equation*}
t_{i}^{(m)}=\tau+\frac{2 i \pi}{m}, \quad S_{n}[g]\left(t_{i}^{(m)}\right)=g\left(t_{i}^{(m)}\right), \quad i=0, \pm 1, \pm 2, \ldots \tag{1}
\end{equation*}
$$

Let us focus attention on the generalized Bernstein-means

$$
\begin{equation*}
B_{k n}[g](t)=\frac{1}{2^{k}} \sum_{j=0}^{k}\binom{k}{j} S_{n}[g]\left(t+\frac{k-2 j}{m} \pi\right), \quad k=0,1,2, \ldots, \tag{2}
\end{equation*}
$$

which for $k=1$ and $k=2$ were first introduced by S. N. Bernstein. If not otherwise stated we take $m>k$ to ensure that the arguments of $S_{n}[g]$ in (2) lie within a period of length $2 \pi . B_{k n}[g]$ can also be written in the form

$$
\begin{equation*}
B_{k n}[g](t)=\sum_{i=-n}^{n} g\left(t_{i}^{(m)}\right) \cdot s_{i}^{(m)}(t) \tag{3}
\end{equation*}
$$

for certain functions $s_{i}^{(m)} \in C_{2 \pi}$ (cf. [10]).
$C_{2 \pi}$ is made into a normed linear space by setting

$$
\|g\|:=\sup _{t}|g(t)| .
$$

The norm or Lebesgue constant $\left\|B_{k n}\right\|$ of the bounded linear operator $B_{k n}$ can be determined as the norm of the so called Lebesgue function

$$
\begin{equation*}
B_{k n}(t):=\sup _{\|g\|=1}\left|B_{k n}[g](t)\right|=\sum_{i=-n}^{n}\left|s_{i}^{(m)}(t)\right| . \tag{4}
\end{equation*}
$$

It is known that (see [2] or [4])

$$
\begin{equation*}
\left|B_{0 n}[g](t)-g(t)\right| \leqq \frac{1}{2}\left(1+B_{0 n}(t)\right) \cdot \omega(g, h), \tag{5}
\end{equation*}
$$

where $\omega(g, \cdot)$ denotes the modulus of continuity of g and $h=2 \pi / m$. More generally Kiš and Névai [20] investigated

$$
\begin{equation*}
\left|B_{k n}[g](t)-g(t)\right| \leqq \tilde{M}_{k n}(t) \cdot \omega(g, h), \quad g \in C_{2 \pi}, \tag{6}
\end{equation*}
$$

$\tilde{M}_{k n}(t)$ being optimal (for fixed k and n). Numerical evaluations of

$$
\begin{equation*}
c_{k n}:=\left\|\tilde{M}_{k n}\right\| \tag{7}
\end{equation*}
$$

are given in [10] and [7], for example we have

$$
\begin{equation*}
c_{1 n}=1+\frac{1}{2 m}\left(\operatorname{cosec} \frac{\pi}{2 m}-1\right) \leqq 1+\frac{1}{\pi}, \quad c_{2 n}=\frac{5}{4} . \tag{8}
\end{equation*}
$$

Of course (6) and (7) imply that

$$
\begin{equation*}
\left\|B_{k n}[g]-g\right\| \leqq c_{k n} \cdot \omega(g, h) . \tag{9}
\end{equation*}
$$

From a result of Gavriljuk (cf. [5], proof of Theorem 2) we derive that

$$
\begin{equation*}
\left|B_{1 n}[g](t)-g(t)\right| \leqq \frac{1}{2}\left(1+B_{1 n}(t)\right) \cdot \omega\left(g, \frac{3}{2} h\right) . \tag{10}
\end{equation*}
$$

More generally we shall prove the following
Theorem 1. For $k=0,1,2, \ldots$ we have

$$
\begin{equation*}
\left|B_{k n}[g](t)-g(t)\right| \leqq \frac{1}{2}\left(1+B_{k n}(t)\right) \cdot \omega\left(g, \frac{k+2}{2} h\right) . \tag{11}
\end{equation*}
$$

This estimation in some sense seems to be natural. First for every fixed $t \neq t_{i}^{(m)}$ it is easy to construct a function $g_{t} \in C_{2 \pi},\left\|g_{t}\right\|=1, g_{t}(t)=-1$, $g_{t} \not \equiv$ const., such that $B_{k n}\left[g_{t}\right](t)-g_{t}(t)=1+B_{k n}(t)$. Considering $2 \geqq$ $\geqq \omega\left(g_{t},(k+2) h / 2\right)$ it follows that

$$
\begin{equation*}
\left|B_{k n}\left[g_{t}\right](t)-g_{t}(t)\right| \geqq \frac{1}{2}\left(1+B_{k n}(t)\right) \cdot \omega\left(g_{t}, \frac{k+2}{2} h\right), \tag{12}
\end{equation*}
$$

which means that (11) is optimal (for fixed k and n), $t \neq t_{i}^{(m)}$. Furthermore as a corollary of Theorem 1 we note that

$$
\begin{equation*}
\left\|B_{k n}[g]-g\right\| \leqq \frac{1}{2}\left(1+\left\|B_{k n}\right\|\right) \cdot \omega\left(g, \frac{k+2}{2} h\right) . \tag{13}
\end{equation*}
$$

Now comparing this with the estimate given by (9) we prove that (13) is even asymptotically optimal which seems not to be true for (9).

Theorem 2. Let k be fixed. For every $\varepsilon>0$ there exists a function $g_{\varepsilon} \in C_{2 \pi}$ and an infinite sequence $n_{1}(\varepsilon), n_{2}(\varepsilon), \ldots$ such that

$$
\begin{equation*}
\left\|B_{k n}\left[g_{\epsilon}\right]-g_{e}\right\|>\frac{1-\varepsilon}{2}\left(1+\left\|B_{k n}\right\|\right) \cdot \omega\left(g_{\varepsilon}, \frac{k+2}{2} h\right), \quad n=n_{1}, n_{2}, \ldots . \tag{14}
\end{equation*}
$$

2. Proofs. We omit the superscript (m). To prove Theorem 1 for arbitrary $g \in C_{2 \pi}$ it is sufficient to focus our attention on the interval $t_{0} \leqq t \leqq$ $\leqq t_{0}+h / 2$. This is an easy consequence of the facts that if $g_{h}(t):=:=g(t+h)$ then likewise $B_{k n}\left[g_{h}\right](t)=B_{k n}[g](t+h)$, and if $f\left(t_{0}-t\right):=g\left(t_{0}+t\right)$ then $B_{k n}[f]\left(t_{0}-t\right)=B_{k n}[g]\left(t_{0}+t\right)$. The proof is based upon two lemmas due to Kiš and Névai [10]. Setting $v=(k+1) / 2, k$ odd, we obtain

Lemma 1. We have
$s_{i}(t) \geqq 0,-v \leqq i \leqq v,(-1)^{i+v} \cdot s_{i}(t) \geqq 0, v<|i| \leqq n\left(t_{0} \leqq t \leqq t_{0}+h / 2\right)$.
Of course we have from (2) and (3)

$$
\begin{equation*}
\sum_{i=-n}^{n} s_{i}(t) \equiv 1 \tag{15}
\end{equation*}
$$

thus

$$
B_{k n}[g](t)-g(t)=\sum_{i=-n}^{-v}+\sum_{i=-v+1}^{v-1}+\sum_{i=v}^{n}\left[g\left(t_{i}\right)-g(t)\right] \cdot s_{i}(t) .
$$

Now we apply Abel's transformation to the first and the last sum to obtain

$$
\begin{aligned}
& B_{k n}[g](t)-g(t)=\sum_{i=-n}^{-v-1}\left[g\left(t_{i}\right)-g\left(t_{i+1}\right)\right] \cdot \sigma_{i}(t)+\left[g\left(t_{-v}-g(t)\right] \cdot \sigma_{-v}(t)+\right. \\
+ & \sum_{i=-v+1}^{v-1}\left[g\left(t_{i}\right)-g(t)\right] \cdot s_{i}(t)+\sum_{i=v+1}^{n}\left[g\left(t_{i}\right)-g\left(t_{i-1}\right)\right] \cdot \sigma_{i}(t)+\left[g\left(t_{v}\right)-g(t)\right] \cdot \sigma_{v}(t),
\end{aligned}
$$

where

$$
\sigma_{i}(t):= \begin{cases}\sum_{j=i}^{n} s_{j}(t) & \text { for } i=1,2, \ldots, n \tag{16}\\ \sum_{j=-n}^{i} s_{j}(t) & \text { for } i=-n,-n+1, \ldots, 0\end{cases}
$$

But looking at the largest difference in the arguments we find

$$
\left|g\left(t_{-v}\right)-g(t)\right| \leqq \omega\left(g, \frac{2 v+1}{2} h\right),
$$

thus
(17)

$$
\begin{aligned}
\left|B_{k n}[g](t)-g(t)\right| \leqq & \omega\left(g, \frac{2 v+1}{2} h\right) \cdot\left\{\left|\sigma_{-v}(t)\right|+\sum_{i=-v+1}^{v-1}\left|s_{i}(t)\right|+\left|\sigma_{v}(t)\right|+\right. \\
& \left.+\left(\sum_{i=-n}^{-v-1}+\sum_{i=v+1}^{n}\left|\sigma_{i}(t)\right|\right)\right\} .
\end{aligned}
$$

Lemma 2. Putting $\sigma_{i}(t)$ instead of $s_{i}(t)$ in Lemma 1, the corresponding statements remain true.

Lemma 2 together with (15) and (16) allows us to conclude that

$$
\begin{equation*}
\left|\sigma_{-v}(t)\right|+\sum_{i=-v+1}^{v-1}\left|s_{i}(t)\right|+\left|\sigma_{v}(t)\right| \equiv 1, \tag{18}
\end{equation*}
$$

and

$$
\begin{gather*}
\sum_{i=-n}^{-v-1}\left|\sigma_{i}(t)\right|+\sum_{i=v+1}^{n}\left|\sigma_{i}(t)\right|=\left[-s_{-v-1}(t)-s_{-v-3}(t)-s_{-v-5}(t)-\ldots\right]+ \tag{19}\\
+\left[-s_{v+1}(t)-s_{v+3}(t)-s_{v+5}(t)-\ldots\right]=\sum_{\substack{i=-n \\
s_{i} \leqq 0}}^{n}\left(-s_{i}(t)\right)= \\
=\frac{1}{2}\left[\sum_{\substack{i=-n \\
s_{i} \leqq 0}}^{n}\left(-s_{i}(t)\right)+\sum_{\substack{i=-n \\
s_{i}>0}}^{n} s_{i}(t)\right]+\frac{1}{2}\left[\sum_{\substack{i=-n \\
s_{i} \leqq 0}}^{n}\left(-s_{i}(t)\right)-\sum_{\substack{i=-n \\
s_{i}>0}}^{n} s_{i}(t)\right]= \\
=\frac{1}{2} \sum_{i=-n}^{n}\left|s_{i}(t)\right|-\frac{1}{2} \sum_{i=-n}^{n} s_{i}(t)=\frac{1}{2} B_{k n}(t)-\frac{1}{2} .
\end{gather*}
$$

From (17), (18), (19) and $v=(k+1) / 2$, we have proved Theorem $1, k$ odd. The case k even can be proved quite similarly, the 'non-alternating part' now consisting of (cf. [10])

$$
s_{-\frac{k}{2}}(t) \geqq 0, s_{-\frac{k}{2}+1}(t) \geqq 0, \ldots, s_{\frac{k}{2}}(t) \geqq 0, s_{\frac{k}{2}+1}(t) \geqq 0,
$$

and the largest difference in the arguments that must be taken into account now being

$$
\left|g\left(t_{\frac{k}{2}+1}\right)-g(t)\right| \leqq \omega\left(g,\left(\frac{k}{2}+1\right) h\right) .
$$

To prove Theorem 2 we only have to consider the functionals

$$
r_{n}(g):=\left\|B_{k n}[g]-g\right\| /\left(\left\|B_{k n}\right\|+1\right), \quad q_{n}(g):=\frac{1}{2} \omega\left(g, \frac{k+2}{2} h\right),
$$

which both fulfil the properties of a seminorm p with norm $\|p\|=1$ in the Banach space $C_{2 \pi}$. In particular this means for p that

$$
\begin{gathered}
p(g) \geqq 0, \quad p(\alpha \cdot g)=|\alpha| \cdot p(g), \quad p(f+g) \leqq p(f)+p(g), \\
\|p\|=\inf \left\{M \mid p(g) \leqq M \cdot\|g\|, g \in C_{2 \pi}\right\}=1 .
\end{gathered}
$$

Now Theorem 2 is an easy consequence of the following lemma proved in [8].

Lemma 3. Let r_{n}, q_{n} be seminorms, $\left\|r_{n}\right\|=\left\|q_{n}\right\|=1$, defined on a Banach space X and satisfying $r_{n}(g) \leqq q_{n}(g), g \in X$. If $q_{n}(g) \rightarrow 0(n \rightarrow \infty)$, for every fixed $g \in X$, then given $\varepsilon>0$ there exists an infinite sequence $n_{1}, n_{2}, n_{3}, \ldots$ and an element $\tilde{g} \in X$ such that $q_{n_{k}}(\tilde{g})>0$ and

$$
r_{n}(\tilde{g})>(1-\varepsilon) \cdot q_{n}(\tilde{g}) \quad\left(n=n_{1}, n_{2}, n_{3}, \ldots\right)
$$

3. Remarks. Theorems 1 and 2 remain valid for discrete operators (3) defined by symmetric kernel functions satisfying the analogue of (15), Lemma 1 and Lemma 2. This is discussed in further details in [9] with emphasis on the case $k=0$.

The norms $\left\|B_{0 n}\right\|$ of the trigonometric interpolation operator $B_{0 n}=S_{n}$ at $m=2 n+1$ equidistant nodes are well known, see [3]:

$$
\left\|B_{0 n}\right\|=\frac{1}{m}\left[1+2 \sum_{i=0}^{n-1} \operatorname{cosec}\left(\frac{2 i+1}{m} \frac{\pi}{2}\right)\right]=\frac{1}{m} \sum_{i=0}^{m-1} \cot \left(\frac{2 i+1}{m} \frac{\pi}{4}\right)
$$

These numbers coincide with the norms $\lambda_{m-1}(T)$ of the algebraic interpolation operator at the Chebyshev nodes T. For the asymptotic expansion of the norms see Günttner [6]. Bernstein [1] has shown that $\left\|B_{1 n}\right\|<4 / \pi$.

References

[1] S. N. Bernstein, Sur l'interpolation trigonométrique par la méthode des moindres carrés, Doklady Akademii Nauk SSSR, 4 (1934), 1-8.
[2] H. Brass - R. Günttner, Eine Fehlerabschätzung zur Interpolation stetiger Funktionen, Studia Sci. Math. Hungar., 8 (1973), 363-367.
[3] H. Ehlich - K. Zeller, Auswertung der Normen von Interpolationsoperatoren, Math. Annalen, 164 (1966), 105-112.
[4] В. Т. Гаврилюк, Приближение непрерывных периодических функций тригонометрическими интерполяционными полиномами с равноотстоящими узлами. - В кн.: Вопросы теории аппроксимации функций. Киев, 1980, 21-41.
[5] V. T. Gavriljuk, Approximation of continuous periodic functions of one or two variables by Rogozinski polynomials of interpolation type, Ukrainian Math. Journ., 25 (1973), 530-537.
[6] R. Günttner, On asymptotics for the uniform norms of the Lagrange interpolation polynomials corresponding to extended Chebyshev nodes, SIAM Journ. on Numerical Analysis, 25 (1988) (to appear).
[7] R. Günttner, On an interpolation process, Acta Math. Hung., 46 (1985), 33-37.
[8] R. Günttner, Asymptotisch optimale Abschätzungen zwischen Halbnormen, Studia Sci. Math. Hungar., 8 (1973), 479-483.
[9] R. Günttner, Operatoren mit Abelscher Alternanteneigenschaft, Habilitationsschrift, Universität Osnabrück 1987, FB 6 Mathematik.
[10] O. Kiš - G. P. Névai, On an interpolational process with applications to Fourier Series, Acta Math. Acad. Sci. Hung., 26 (1975), 385-403.
(Received February 24, 1988)
FB 6 MATHEMATIK UNIVERSITÄT OSNABRÜCK POSTFACH 4469 FRG

A PÁL-TYPE LACUNARY INTERPOLATION PROBLEM

M. R. AKHLAGHI (Prestonsburg)

1. Introduction. For a fixed positive integer $n>2$, let $w_{n}(x)$ be a polynomial of degree n with real distinct zeros in $[-1,1]$. If m is any nonnegative integer less than n, let

$$
\begin{equation*}
X_{n, m}:=\left\{x_{k, j}: \omega_{n}^{(j)}\left(x_{k, j}\right)=0, \quad k=1, \ldots, n-j, \quad j=0,1, \ldots, m\right\} . \tag{1.1}
\end{equation*}
$$

We first consider the interpolation problem of finding a polynomial $P(x)$ of degree $(m+1)\left(n-\frac{m}{2}\right)-1$ such that

$$
\begin{equation*}
P^{(j)}\left(x_{k, j}\right)=\alpha_{k, j}, \quad k=1, \ldots, n-j, \quad j=0,1, \ldots, m, \tag{1.2}
\end{equation*}
$$

where $\alpha_{k, j}$'s are arbitrary real numbers. This interpolation problem, which may be called the problem of $(0 ; 1 ; \ldots ; m)$ interpolation, is singular for any $m \geqq 1$, i.e., for any positive integer $m, 1 \leqq m \leqq n-1$, there exists no unique polynomial $P(x)$ of degree $(m+1)\left(n-\frac{m}{2}\right)-1$ satisfying (1.2) on the set of nodes $X_{n, m}$. For if $P(x)$ is such a polynomial, then $P(x)+c \omega_{n}(x)$, for any constant $c \neq 0$, is another such polynomial. To insure the regularity we consider the modified $(0 ; 1 ;, \ldots ; m)$ interpolation problem, and add the condition

$$
\begin{equation*}
P^{\prime}(-1)=\alpha_{0} \tag{1.3}
\end{equation*}
$$

to (1.2) where α_{0} is an arbitrary real number. We shall call this lacunary interpolation problem, the problem of modified $(0 ; 1 ; \ldots ; m)$ interpolation.

The case $m=1$ was studied by Pál [6], where he used the condition $P(a)=0, a \neq x_{k, 0}, k=0,1, \ldots, n$, instead of (1.3). Eneduanya [1] has proved some convergence results for the case $m=1$, using conditions (1.2) and (1.3) on $X_{n, 1}$, with

$$
\begin{equation*}
\omega_{n}(x)=\Pi_{n}(x)=-n(n-1) \int_{-1}^{z} P_{n-1}(t) d t=\left(1-x^{2}\right) P_{n-1}^{\prime}(x) \tag{1.4}
\end{equation*}
$$

where $P_{n}(x)$ is the Legendre polynomial of degree n with normalization $P_{n}(1)=1$. Eneduanya [2] and Szili [8] have also investigated ($0 ; 1$) problem for $\omega_{n}(x)=T_{n}(x)$ and $H_{n}(x)$, respectively.

In this paper we study the problem of modified $(0 ; 1 ; 2)$ interpolation on $X_{n, 2}$, for $\omega_{n}(x)=\Pi_{n}(x)$. Section 2 deals with the statements of the main results and some preliminaries. In Section 3 we prove the regularity of this problem and in Section 4 we obtain the fundamental polynomials. Section 5 is devoted to the convergence problem.
2. Preliminaries and main results. Let $x_{k}=x_{k, 0}, 1 \leqq k \leqq n ; \xi_{k}=x_{k, 1}$, $1 \leqq k \leqq n-1$, and $x_{k, 2}, k=1, \ldots, n-2$, be the zeros of $\Pi_{n}(x), \Pi_{n}^{\prime}(x)$, and $\Pi_{n}^{\prime \prime}(x)$, respectively. The following relations are valid: (2.1)

$$
-1=x_{1}<\xi_{1}<x_{2}<\xi_{2}<\cdots<\xi_{n-2}<x_{n-1}<\xi_{n-1}<x_{n}=1, n=2,3, \ldots .
$$

It is known that the polynomials $P_{n-1}(x)$ and $\Pi_{n}(x)$ satisfy the differential equations

$$
\begin{equation*}
\left(1-x^{2}\right) P_{n-1}^{\prime \prime}(x)-2 x P_{n-1}^{\prime}(x)+n(n-1) P_{n-1}(x)=0 \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(1-x^{2}\right) \Pi_{n}^{\prime \prime}(x)+n(n-1) \Pi_{n}(x)=0 \tag{2.3}
\end{equation*}
$$

respectively. (2.3) leads to

$$
\begin{equation*}
x_{k, 2}=x_{k+1}, \quad k=1,2, \ldots, n-2 . \tag{2.4}
\end{equation*}
$$

Let $\ell_{k}(x)$ and $\ell_{k}^{*}(x)$ denote the fudamental polynomials of Lagrange interpolation such that

$$
\left\{\begin{array}{l}
\ell_{k}\left(x_{j}\right)=\delta_{k j}=\left\{\begin{array}{ll}
0 & k \neq j \\
1 & k=j
\end{array} \quad(k, j=1, \ldots, n)\right. \tag{2.5}\\
\ell_{k}^{*}\left(\xi_{j}\right)=\delta_{k j} \quad(k, j=1, \ldots, n-1) .
\end{array}\right.
$$

These polynomials can be represented as

$$
\begin{equation*}
\ell_{k}(x)=\frac{\Pi_{n}(x)}{\left(x-x_{k}\right) \Pi_{n}^{\prime}\left(x_{k}\right)} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\ell_{k}^{*}(x)=\frac{\Pi_{n}^{\prime}(x)}{\left(x-\xi_{k}\right) \Pi_{n}^{\prime \prime}\left(\xi_{k}\right)}=\frac{P_{n-1}(x)}{\left(x-\xi_{k}\right) P_{n-1}^{\prime}\left(\xi_{k}\right)} . \tag{2.6a}
\end{equation*}
$$

We recall that

$$
\left\{\begin{array}{l}
P_{n-1}(1)=1=(-1)^{n-1} P_{n-1}(-1) \tag{2.7}\\
P_{n-1}^{\prime}(1)=\frac{n(n-1)}{2}=(-1)^{n} P_{n-1}^{\prime}(-1) \\
P_{n-1}^{\prime \prime}(1)=\frac{(n+1) n(n-1)(n-2)}{8}=(-1)^{n-1} P_{n-1}^{\prime \prime}(-1)
\end{array}\right.
$$

We shall require the following:

$$
\left\{\begin{array}{l}
\Pi_{n}^{\prime}(1)=-n(n-1)=(-1)^{n+1} \Pi_{n}^{\prime}(-1) \tag{2.8}\\
\Pi_{n}^{\prime \prime}(1)=-\frac{n^{2}(n-1)^{2}}{2}=(-1)^{n} \Pi_{n}^{\prime \prime}(-1) .
\end{array}\right.
$$

From $\left(x-x_{k}\right) \ell_{k}(x)=\frac{\Pi_{n}(x)}{\Pi_{n}^{n}\left(x_{k}\right)}$, on differentiating once and twice we get

$$
\begin{equation*}
\ell_{1}^{\prime}(1)=\frac{1}{2}(-1)^{n+1}=-\ell_{n}^{\prime}(-1) \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
\ell_{1}^{\prime}(-1)=-\frac{n(n-1)}{4}=-\ell_{n}^{\prime}(1) \tag{2.10}
\end{equation*}
$$

respectively. The known orthogonal property

$$
\begin{equation*}
\int_{-1}^{1} P_{k}(x) P_{j}(x) d x=\frac{2}{2 k+1} \delta_{k, j} \tag{2.11}
\end{equation*}
$$

and the known identities

$$
\frac{P_{n-1}^{\prime}(x)}{x-x_{k}}=\frac{-1}{P_{n-1}\left(x_{k}\right)} \sum_{j=2}^{n-1} \frac{2 j-1}{2 j(j-1)} P_{j-1}^{\prime}\left(x_{k}\right) P_{j-1}^{\prime}(x), \quad 2 \leqq k \leqq n-1
$$

and

$$
\frac{P_{n-1}(x)}{x-\xi_{k}}=\frac{1}{\Pi_{n}\left(\xi_{k}\right)} \sum_{j=1}^{n-1}(2 j-1) P_{j-1}\left(\xi_{k}\right) P_{j-1}(x), \quad 1 \leqq k<n-1
$$

lead to

$$
\begin{equation*}
\int_{-1}^{1} \frac{P_{n-1}(t) P_{n-1}^{\prime}(t)}{t-x_{k}} d t=0, \quad 2 \leqq k \leqq n-1 \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{-1}^{1} \frac{P_{n-1}(t) P_{n-1}^{\prime}(t)}{t-\xi_{k}} d t=\frac{2}{1-\xi_{k}^{2}}, \quad 1 \leqq k \leqq n-1 . \tag{2.13}
\end{equation*}
$$

Our main results are:

Theorem 1. The modified $(0 ; 1 ; 2)$ interpolation on $X_{n, 2}$ with $\omega_{n}(x)=$ $=\Pi_{n}(x)$ is regular.

If we denote the fundamental polynomials of modified ($0 ; 1 ; 2$) interpolation by $L_{k, 0}(x), L_{k, 1}(x)$ and $L_{k, 2}(x)$, then we shall prove

Theorem 2. The fundamental polynomials of modified $(0 ; 1 ; 2)$ interpolation are given by

$$
\begin{equation*}
L_{k, 0}(x)=A_{n-k+1}(x)+\Pi_{n}(x) g_{k}(x), \quad 1 \leqq k \leqq n \tag{2.14}
\end{equation*}
$$

where $A_{k}(x), 1 \leqq k \leqq n$ are the explicit formulae of the fundamental polynomials in the paper of Eneduanya [1], and

$$
\left\{\begin{array}{l}
g_{1}(x)=\int_{-1}^{x} \frac{\Pi_{n}^{\prime}(x)}{n^{2}(n-1)^{2}}\left(\frac{1-\ell_{1}(x)+(x+1) \ell_{1}^{\prime}(-1)}{(1+x)^{2}}+\frac{n(n-1)}{2} \frac{1-\ell_{1}(x)}{1+x}\right) \tag{2.15}\\
g_{k}(x)=\int_{-1}^{x} \frac{\Pi_{n}^{\prime}(x)}{\Pi^{\prime 2}\left(x_{k}\right)}\left(\frac{1-\ell_{k}(x)}{\left(x-x_{k}\right)^{2}}-\frac{n(n-1)}{3\left(1-x_{k}^{2}\right)} \ell_{k}(x)\right), \quad 2 \leqq k \leqq n-1 \\
g_{n}(x)=\int_{-1}^{x} \frac{\Pi_{n}^{\prime}(x)}{n^{2}(n-1)^{2}}\left(\frac{1-\ell_{n}(x)+(x+1) \ell_{n}^{\prime}(1)}{(1-x)^{2}}+\frac{n(n-1)}{2} \frac{1-\ell_{n}(x)}{1-x}\right)
\end{array}\right.
$$

$$
\begin{equation*}
L_{k, 1}(x)=\frac{\Pi_{n}(x)}{\left(1-\xi_{k}^{2}\right) P_{n-1}^{\prime 3}\left(\xi_{k}\right)} \int_{-1}^{x} \frac{P_{n-1}(t) P_{n-1}^{\prime}(t)}{t-\xi_{k}} d t, \quad 1 \leqq k \leqq n-1 \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{k, 2}(x)=\frac{\left(1-x_{k}^{2}\right) \Pi_{n}(x)}{2 n^{2}(n-1)^{2} P_{n-1}^{3}\left(x_{k}\right)} \int_{-1}^{x} \frac{P_{n-1}(t) P_{n-1}^{\prime}(t)}{t-x_{k}} d t, \quad 2 \leqq k \leqq n-1 \tag{2.17}
\end{equation*}
$$

For $f \in C^{(r)}([-1,1]), r \geqq 2$, set

$$
\begin{align*}
& Q_{3 n-3}(x ; f):=\sum_{k=1}^{n} f\left(x_{k}\right) L_{k, 0}(x)+\sum_{k=1}^{n-1} f^{\prime}\left(\xi_{k}\right) L_{k, 1}(x)+ \tag{2.18}\\
& \quad+\sum_{k=2}^{n-1} f^{\prime \prime}\left(x_{k}\right) L_{k, 2}(x)+f^{\prime}(-1) \frac{\Pi_{n}(x)}{\Pi_{n}^{\prime}(-1)}
\end{align*}
$$

We shall prove

Theorem 3. If $f \in C^{(r)}([-1,1]), r \geqq 2$, then for every $x \in[-1,1]$ and $n \geqq \frac{4}{3}(r+2)$ we have

$$
\begin{equation*}
\left|f(x)-Q_{n}(x ; f)\right|=O(1) n^{\frac{5}{2}-r} \log n \omega\left(\frac{1}{n} ; f^{(r)}\right) \tag{2.20}
\end{equation*}
$$

where $\omega\left(\cdot ; f^{(r)}\right)$ is the modulus of continuity of $f^{(r)}(x)$.
Remark. For $r=2$, the Theorem 3 implies convergence only if

$$
\sqrt{n} \log n \omega\left(\frac{1}{n} ; f^{\prime \prime}\right)=o(1)
$$

This relation obviously holds if for example $f^{\prime \prime} \in \operatorname{Lip} \alpha, \frac{1}{2}<\alpha \leqq 1$.
3. Proof of Theorem 1. Set

$$
Q(x)=Q_{3 n-3}(x)=\Pi_{n}(x) q(x), \quad \operatorname{deg} q(x) \leqq 2 n-3 .
$$

We shall show that $Q(x) \equiv 0$ is the only polynomial of degree $3 n-3$ satisfying (1.2) and (1.3) with

$$
\begin{aligned}
& \alpha_{0}=0 \quad \text { and } \quad \alpha_{k, j}=Q^{(j)}\left(x_{k, j}\right)=0, \quad k=1, \ldots, n-j, \quad j=0,1,2 . \\
& Q(x) \text { satisfies } Q\left(x_{k, 0}\right)=Q\left(x_{k}\right)=0 . Q^{\prime}\left(x_{k, 1}\right)=Q^{\prime}\left(\xi_{k}\right)=0,1 \leqq k \leqq n-1
\end{aligned}
$$ and $Q^{\prime \prime}\left(x_{k, 2}\right)=Q^{\prime \prime}\left(x_{k}\right)=0,1 \leqq k \leqq n-2$ implies $q^{\prime}\left(\xi_{k}\right)=0,1 \leqq k \leqq n-1$ and $q^{\prime}\left(x_{k}\right)=0,2 \leqq k \leqq n-1$ respectively. Hence $q^{\prime}(x)=c P_{n-1}(x) P_{n-1}^{\prime}(x)$. But $\operatorname{deg} q(x) \leqq 2 n-3$, therefore, $c=0$ and hence $q(x)=c_{1}$ for some constant c_{1}. Using (1.3) we get $c_{1}=0$. Therefore $Q(x) \equiv 0$ and this completes the proof of Theorem 1.

4. Explicit formulae for $\left\{L_{k, 0}(x)\right\}_{k=1}^{n},\left\{L_{k, 1}(x)\right\}_{k=1}^{n-1}$ and $\left\{L_{k, 2}(x)\right\}_{k=2}^{n-1}$. Let us denote the fundamental polynomials of the modified ($0 ; 1 ; 2$) interpolation problem by $\left\{L_{k, 0}(x)\right\}_{k=1}^{n},\left\{L_{k, 1}(x)\right\}_{k=1}^{n-1}$ and $\left\{L_{k, 2}(x)\right\}_{k=2}^{n-1}$ respectively. Every polynomial $P(x)$ of degree $3 n-3$ has a representation of the form

$$
\begin{align*}
P(x) & =\sum_{k=1}^{n} P\left(x_{k}\right) L_{k, 0}(x)+\sum_{k=1}^{n-1} P^{\prime}\left(\xi_{k}\right) L_{k, 1}(x)+ \tag{4.1}\\
& +\sum_{k=2}^{n-1} P^{\prime \prime}\left(x_{k}\right) L_{k, 2}(x)+P^{\prime}(-1) \frac{\Pi_{n}(x)}{\Pi_{n}^{\prime}(-1)} .
\end{align*}
$$

Proof of Theorem 2. (i) The fundamental polynomials $L_{k, 0}(x), 1 \leqq$ $\leqq k \leqq n$ are determined by the condition

$$
\begin{cases}L_{k, 0}\left(x_{j}\right)=\delta_{k, j}, & j=1, \ldots, n \tag{4.2}\\ L_{k, 0}^{\prime}\left(\xi_{j}\right)=0, & j=1, \ldots, n-1 \\ L_{k, 0}^{\prime \prime}\left(x_{j}\right)=0, & j=2, \ldots, n-1 \\ L_{k, 0}^{\prime}(-1)=0 & \end{cases}
$$

Set

$$
\begin{equation*}
L_{k, 0}(x)=A_{n-k+1}(x)+\Pi_{n}(x) r_{k}(x), \quad \operatorname{deg} r_{k}(x) \leqq 2 n-3 \tag{4.3}
\end{equation*}
$$

where $A_{k}(x), 1 \leqq k \leqq n$ are the explicit formulae of the fundamental polynomials given in [1]. (These are used with suitable corrections, since there are some misprints in the text in [1]. It may be remarked that our notations are slightly different from his. Thus while we are listing nodes as $-1=x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=$!, the nodes he uses are numbered in the reverse order.) These polynomials satisfy

$$
\begin{cases}A_{n-k+1}\left(x_{j}\right)=\delta_{k j}, & k, j=1, \ldots, n \tag{4.4}\\ A_{n-k+1}^{\prime}\left(\xi_{j}\right)=0, & k=1, \ldots, n, \quad j=0,1, \ldots, n-1, \\ A_{n-k+1}^{\prime}(-1)=0, & k=1, \ldots, n .\end{cases}
$$

$L_{k, 0}(x)$ satisfies the conditions (4.2), if

$$
\begin{equation*}
r_{k}^{\prime}\left(x_{j}\right)=-\frac{A_{n-k+1}^{\prime \prime}\left(x_{j}\right)}{2 \Pi_{n}^{\prime}\left(x_{j}\right)}, \quad j=2, \ldots, n-1 \tag{4.5}
\end{equation*}
$$

$$
r_{k}(-1)=0 .
$$

For $k=n$, we see from [1], that

$$
A_{1}^{\prime \prime}\left(x_{j}\right)=\frac{-2 \Pi_{n}^{\prime 2}\left(x_{j}\right)}{\left(1-x_{j}\right)^{2} \Pi_{n}^{\prime 2}(1)}\left(1+\frac{n(n-1)}{2}\left(1-x_{j}\right)\right),
$$

for $2 \leqq k \leqq n-1$

$$
A_{n-k+1}^{\prime \prime}\left(x_{j}\right)=\left\{\begin{array}{ll}
\frac{-2 \Pi_{n}^{\prime 2}\left(x_{j}\right)}{\left(x_{k}-x_{j}\right)^{2} \Pi_{n}^{\prime 2}\left(x_{k}\right)}, & j \neq k \\
\frac{2 n(n-1)}{3\left(1-x_{k}^{2}\right)}, & j=k
\end{array},\right.
$$

and, for $k=1$, we obtain

$$
A_{n}^{\prime \prime}\left(x_{j}\right)=\frac{-2 \Pi_{n}^{\prime 2}\left(x_{j}\right)}{\left(1+x_{j}\right)^{2} \Pi_{n}^{\prime 2}(-1)}\left(1+\frac{n(n-1)}{2}\left(1+x_{j}\right)\right) .
$$

From (4.6) it follows that

$$
r_{k}^{\prime}\left(x_{j}\right)= \begin{cases}\frac{\Pi_{n}^{\prime}\left(x_{j}\right)}{n^{2}(n-1)^{2}}\left(\frac{1}{\left(1+x_{j}\right)^{2}}+\frac{n(n-1)}{2} \frac{1}{1+x_{j}}\right), & k=1, \tag{4.8}\\ \begin{cases}\frac{\Pi_{n}^{\prime}\left(x_{j}\right)}{\left(x_{k}-x_{j}\right)^{2} \Pi_{n}^{\prime 2}\left(x_{k}\right)}, & k \neq j \\ \frac{-n(n-1)}{3\left(1-x_{k}^{2}\right) \Pi_{n}^{\prime}\left(x_{k}\right)}, & k=j\end{cases} \\ \frac{\Pi_{n}^{\prime}\left(x_{j}\right)}{n^{2}(n-1)^{2}}\left(\frac{1}{\left(1-x_{j}\right)^{2}}+\frac{n(n-1)}{2} \frac{1}{1-x_{j}}\right), & k=n ., n, n-1\end{cases}
$$

From using (4.5) and (4.8) we get (2.15). From (2.15) and (4.7), the formula (2.14) for $L_{k, 0}(x), 1 \leqq k \leqq n$, is now evident.
(ii) Fundamental polynomials $L_{k, 1}(x), 1 \leqq k \leqq n-1$ are determined by the conditions

$$
\begin{cases}L_{k, 1}\left(x_{j}\right)=0, & j=1, \ldots, n \tag{4.9}\\ L_{k, 1}^{\prime}\left(\xi_{j}\right)=\delta_{k, j}, & j=1, \ldots, n-1 \\ L_{k, 1}^{\prime \prime}\left(x_{j}\right)=0, & j=2, \ldots, n-1 \\ L_{k, 1}^{\prime}(-1)=0 & \end{cases}
$$

Set, for $1 \leqq k \leqq n-1$,

$$
\begin{equation*}
L_{k, 1}(x)=\Pi_{n}(x) s_{k}(x), \quad \operatorname{deg} s_{k}(x) \leqq 2 n-3 \tag{4.10}
\end{equation*}
$$

$L_{k, 1}(x)$ satisfies the conditions (4.9), if

$$
\begin{equation*}
s_{k}^{\prime}\left(\xi_{j}\right)=\frac{\delta_{k j}}{\Pi_{n}\left(\xi_{k}\right)}, \quad j=1, \ldots, n-1 \tag{4.11}
\end{equation*}
$$

$$
\begin{equation*}
s_{k}^{\prime}\left(x_{j}\right)=0, \quad j=2, \ldots, n-1 \tag{4.12}
\end{equation*}
$$

$$
\begin{equation*}
s_{k}(-1)=0 \tag{4.13}
\end{equation*}
$$

From (4.11), (4.12) it follows that
$s_{k}^{\prime}(x)=\frac{\Pi_{n}^{\prime}(x) P_{n-1}^{\prime}(x)}{\left(x-\xi_{k}\right) \Pi_{n}^{\prime \prime}\left(\xi_{k}\right) P_{n-1}^{\prime}\left(\xi_{k}\right) \Pi_{n}\left(\xi_{k}\right)}=\frac{1}{\left(1-\xi_{k}^{2}\right) P_{n-1}^{\prime 3}\left(\xi_{k}\right)} \cdot \frac{P_{n-1}(x) P_{n-1}^{\prime}(x)}{x-\xi_{k}}$.
Using (4.13), we get

$$
\begin{equation*}
s_{k}(x)=\frac{1}{\left(1-\xi_{k}^{2}\right) P_{n-1}^{\prime 3}\left(\xi_{k}\right)} \int_{-1}^{x} \frac{P_{n-1}(t) P_{n-1}^{\prime}(t)}{t-\xi_{k}} d t \tag{4.14}
\end{equation*}
$$

From (4.10) and (4.14) we get the formula (2.16) for $L_{k, 1}(x), 1 \leqq k \leqq n-1$. Proof of (2.17) is very similar to the proof of (2.16). We omit the details.
5. Some estimates. To find some estimates for the fundamental polynomials we need the following facts (see [4], [1]):

$$
\begin{equation*}
\left|P_{n}(x)\right| \leqq 1 \tag{5.1}
\end{equation*}
$$

$$
\begin{equation*}
\left|\Pi_{n}(x)\right| \leqq \sqrt{\frac{2 n}{\pi}} \tag{5.2}
\end{equation*}
$$

$$
\begin{cases}c_{1} \frac{k}{n} \leqq \sqrt{1-x_{k}^{2}} \leqq c_{2} \frac{k}{n}, & 2 \leqq k \leqq\left[\frac{n}{2}\right] \tag{5.3}\\ c_{1} \frac{n-k}{n} \leqq \sqrt{1-x_{k}^{2}} \leqq c_{2} \frac{n-k}{n}, & {\left[\frac{n}{2}\right]<k \leqq n-1}\end{cases}
$$

$$
\left|P_{n-1}\left(x_{k}\right)\right| \geqq \begin{cases}\frac{1}{\sqrt{8 \pi k}}, & 2 \leqq k \leqq\left[\frac{n}{2}\right] \tag{5.4}\\ \frac{1}{\sqrt{8 \pi(n-k)}}, & {\left[\frac{n}{2}\right]<k \leqq n-1,}\end{cases}
$$

$$
\begin{equation*}
\sum_{k=1}^{n-1} \int_{-1}^{x} \ell_{k}^{* 2}(t) d t \leqq \sum_{k=1}^{n-1} \int_{-1}^{1} \ell_{k}^{* 2}(t) d t \leqq 2 \tag{5.6}
\end{equation*}
$$

$$
\begin{equation*}
\ell_{k}^{2}(x) \leqq \sum_{k=1}^{n} \ell_{k}^{2}(x) \leqq 1, \quad x \in[-1,1], \tag{5.5}
\end{equation*}
$$

$$
\begin{equation*}
\left|\Pi_{n}\left(\xi_{k}\right)\right| \geqq c \sqrt{k}, \quad 1 \leqq k \leqq n-1, \tag{5.7}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=2}^{n-1}\left|A_{k}(x)\right|=O(n) \tag{5.8}
\end{equation*}
$$

where c_{1}, c_{2} and c are positive constants independent of n and k. Further [5]

$$
\begin{equation*}
\sum_{k=1}^{n-1}\left|\ell_{k}^{*}(x)\right|=O(n) \tag{5.9}
\end{equation*}
$$

From Theorem 7.3.1 of Szegő [7] one may conclude that

$$
\left(1-\xi_{k}^{2}\right) P_{n-1}^{\prime 2}\left(\xi_{k}\right) \geqq P_{n-1}^{\prime 2}(0)>\frac{n}{4} .
$$

We now estimate $\lambda_{0}(x)=\sum_{k=2}^{n-1}\left|L_{k, 0}(x)\right|, \lambda_{1}(x)=\sum_{k=1}^{n-1}\left|L_{k, 1}(x)\right|$ and $\lambda_{2}(x)=$ $=\sum_{k=2}^{n-1}\left|L_{k, 2}(x)\right|$.

Lemma 5.1. For $-1 \leqq x \leqq 1$ we have

$$
\begin{equation*}
\lambda_{0}(x)=O\left(n^{2} \sqrt{n} \log n\right) \tag{5.11}
\end{equation*}
$$

Proof. It is enough to prove this inequality for $x \neq x_{k}, k=1, \ldots, n$ since (2.14) implies $\lambda_{0}\left(x_{k}\right)=1, k=2, \ldots, n-1$ and $\lambda_{0}(\pm 1)=0$. From (2.14), (2.15) and (5.8), for $2<k<n-1$, we have

$$
\begin{equation*}
\lambda_{0}(x) \leqq O(n)+\left|\Pi_{n}(x)\right| \sum_{k=2}^{n-1}\left(I_{k, 1}(x)+I_{k, 2}(x)\right) \tag{5.12}
\end{equation*}
$$

where

$$
I_{k, 1}(x)=\left|\int_{-1}^{x} \frac{\Pi_{n}^{\prime}(t)}{\Pi_{n}^{\prime 2}\left(x_{k}\right)} \frac{1-\ell_{k}(t)}{\left(t-x_{k}\right)^{2}} d t\right|
$$

and

$$
I_{k, 2}(x)=\frac{n(n-1)}{3\left(1-x_{k}^{2}\right)}\left|\int_{-1}^{x} \frac{\Pi_{n}^{\prime}(t)}{\Pi_{n}^{\prime 2}\left(x_{k}\right)} \ell_{k}(t) d t\right|
$$

From (1.4) and (5.5), for $-1<x<x_{k}$, we have

$$
\begin{aligned}
& I_{k, 1}(x) \leqq \frac{2}{n(n-1) P_{n-1}^{2}\left(x_{k}\right)} \int_{-1}^{x} \frac{1}{\left(t-x_{k}\right)^{2}} d t= \\
& \quad=\frac{2}{n(n-1) P_{n-1}^{2}\left(x_{k}\right)}\left(\frac{1}{x_{k}-x}-\frac{1}{1+x_{k}}\right)
\end{aligned}
$$

and hence, for $-1<x<x_{k}$, we get

$$
I_{k, 1}(x) \leqq \frac{1}{n(n-1) P_{n-1}^{2}\left(x_{k}\right)} \frac{1}{x_{k}-x}
$$

For $x_{k}<x<1$, since $I_{k, 1}(1)=0$ by (2.11), and since $\int_{x}^{1} \frac{1}{\left(t-x_{k}\right)^{2}} d t<\frac{1}{x-x_{k}}$ we obtain the same estimate as above with $x_{k}-x$ instead of $x-x_{k}$. Hence for $-1 \leqq x \leqq 1$, we have

$$
\begin{equation*}
I_{k, 1}(x) \leqq \frac{2}{n(n-1) P_{n-1}^{2}\left(x_{k}\right)} \frac{1}{\left|x-x_{k}\right|} \tag{5.13}
\end{equation*}
$$

On using (1.4), (5.1) and (5.5), for $-1 \leqq x \leqq 1$, we also get

$$
\begin{equation*}
I_{k, 2}(x) \leqq \frac{1}{\left(1-x_{k}^{2}\right) P_{n-1}^{2}\left(x_{k}\right)} \tag{5.14}
\end{equation*}
$$

Therefore, using (5.12), (5.13) and (5.14) we see that
$\lambda_{0}(x) \leqq O(n)+\frac{2}{n(n-1)} \sum_{k=2}^{n-1} \frac{\left|\Pi_{n}(x)\right|}{\left|x-x_{k}\right| P_{n-1}^{2}\left(x_{k}\right)}+\left|\Pi_{n}(x)\right| \sum_{k=2}^{n-1} \frac{1}{\left(1-x_{k}^{2}\right) P_{n-1}^{2}\left(x_{k}\right)}$.
Moreover (1.4), (2.6), (5.2), (5.3) and (5.4) show that

$$
\begin{equation*}
\lambda_{0}(x) \leqq O(n)+2 \sum_{k=2}^{n-1}\left|\frac{\ell_{k}(x)}{P_{n-1}\left(x_{k}\right)}\right|+O\left(n^{2} \sqrt{n} \log n\right) . \tag{5.15}
\end{equation*}
$$

The Schwarz inequality and relations (5.4) and (5.5) imply that

$$
\sum_{k=2}^{n-1}\left|\frac{\ell_{k}(x)}{P_{n-1}\left(x_{k}\right)}\right| \leqq\left(\sum_{k=2}^{n-1} \frac{1}{P_{n-1}^{2}\left(x_{k}\right)}\right)^{1 / 2}=O(n)
$$

and hence, from (5.15), we get (5.11).
Lemma 5.2. For $-1 \leqq x \leqq 1$, we have

$$
\begin{equation*}
\lambda_{1}(x)=O(n) . \tag{5.16}
\end{equation*}
$$

Proof. We first estimate $\int_{-1}^{x} \frac{P_{n-1}(t) P_{n-1}^{\prime}(t)}{t-\xi_{k}} d t$. By partial integration, for $-1<x<\xi_{k}$, we have
$\int_{-1}^{x} \frac{P_{n-1}(t) P_{n-1}^{\prime}(t)}{t-\xi_{k}} d t=\left.\frac{P_{n-1}^{2}(t)}{t-\xi_{k}}\right|_{-1} ^{z}-\int_{-1}^{x} \frac{P_{n-1}(t)\left(t-\xi_{k}\right)-P_{n-1}(t)}{\left(t-\xi_{k}\right)^{2}} P_{n-1}(t) d t$
so that (2.7) yields

$$
\begin{equation*}
\int_{-1}^{x} \frac{P_{n-1}(t) P_{n-1}^{\prime}(t)}{t-\xi_{k}} d t=\frac{P_{n-1}^{2}(x)}{2\left(x-\xi_{k}\right)}+\frac{1}{2\left(1+\xi_{k}\right)}+\frac{1}{2} \int_{-1}^{x} \frac{P_{n-1}^{2}(t)}{\left(t-\xi_{k}\right)^{2}} d t . \tag{5.17}
\end{equation*}
$$

From (2.6a) and (5.6), we have

$$
\begin{equation*}
\int_{-1}^{x} \frac{P_{n-1}^{2}(t)}{\left(t-\xi_{k}\right)^{2}} d t=P_{n-1}^{\prime 2}\left(\xi_{k}\right) \int_{-1}^{x} \ell_{k}^{* 2} d t \leqq 2 P_{n-1}^{\prime 2}\left(\xi_{k}\right) \tag{5.18}
\end{equation*}
$$

so that in view of (2.6a) (5.17), (5.18), for $-1<x<\xi_{k}$, we obtain

$$
\left|\int_{-1}^{x} \frac{P_{n-1}(t) P_{n-1}^{\prime}(t)}{\left(t-\xi_{k}\right)} d t\right| \leqq \frac{1}{2}\left|P_{n-1}^{\prime}\left(\xi_{k}\right) \ell_{k}^{*}(x)\right|+\frac{1}{2\left(1+\xi_{k}\right)}+P_{n-1}^{\prime 2}\left(\xi_{k}\right) .
$$

For $\xi_{k}<x<1$, using (2.13), we have

$$
\int_{-1}^{x} \frac{P_{n-1}(t) P_{n-1}^{\prime}(t)}{t-\xi_{k}} d t=\frac{2}{1-\xi_{k}^{2}}-\int_{x}^{1} \frac{P_{n-1}(t) P_{n-1}^{\prime}(t)}{t-\xi_{k}} d t
$$

where the last integral does not exceed $\frac{1}{2}\left|P_{n-1}^{\prime}\left(\xi_{k}\right) \ell_{k}^{*}(x)\right|+\frac{1}{2\left(1-\xi_{k}\right)}+P_{n-1}^{\prime 2}\left(\xi_{k}\right)$. Hence for all $x \neq \xi_{k}$,

$$
\begin{equation*}
\left|\int_{-1}^{x} \frac{P_{n-1}(t) P_{n-1}^{\prime}(t)}{t-\xi_{k}} d t\right| \leqq \frac{3}{1-\xi_{k}^{2}}+\frac{1}{2}\left|P_{n-1}^{\prime}\left(\xi_{k}\right) \ell_{k}^{*}(x)\right|+P_{n-1}^{\prime 2}\left(\xi_{k}\right) . \tag{5.19}
\end{equation*}
$$

Applying (2.16) and (5.19), for $-1 \leqq x \leqq 1$, we obtain

$$
\left|L_{k, 1}(x)\right| \leqq 3 \frac{\left|\Pi_{n}(x)\right|}{\left(1-\xi_{k}^{2}\right) P_{n-1}^{\prime 2}\left(\xi_{k}\right)\left|\Pi_{n}\left(\xi_{k}\right)\right|}+\left|\frac{\Pi_{n}(x)}{\Pi_{n}\left(\xi_{k}\right)}\right|+\frac{1}{2} \frac{\left|\Pi_{n}(x) \ell_{k}^{*}(x)\right|}{\left(1-\xi_{k}^{2}\right) P_{n-1}^{\prime 2}\left(\xi_{k}\right)} .
$$

Therefore we obtain (5.16), for $-1 \leqq x \leqq 1$, from (5.2), (5.7), (5.9) and (5.10).

Lemma 5.3. For $-1 \leqq x \leqq 1$, we have

$$
\begin{equation*}
\lambda_{2}(x)=O\left(\frac{1}{\sqrt{n}}\right) . \tag{5.20}
\end{equation*}
$$

Proof. It is sufficient to verify (5.20) only in the case when $x \neq x_{k}$, $k=2, \ldots, n-1$. Let $-1<x<x_{k}$, we first estimate

$$
I_{k}(x)=\int_{-1}^{x} \frac{P_{n-1}(t) P_{n-1}^{\prime}(t)}{t-x_{k}} d t
$$

By partial integration, we get

$$
2 I_{k}(x)=\frac{P_{n-1}^{2}(x)}{x-x_{k}}+\frac{1}{1+x_{k}}+\int_{-1}^{x} \frac{P_{n-1}^{2}(t)}{\left(t-x_{k}\right)^{2}} d t .
$$

The absolute value of the last term does not exceed

$$
\int_{-1}^{x} \frac{1}{\left(t-x_{k}\right)^{2}} d t=\frac{1}{x_{k}-x}-\frac{1}{1+x_{k}}
$$

Therefore

$$
\left|I_{k}(x)\right| \leqq \frac{1}{x_{k}-x} .
$$

For $x_{k}<x<1$, by (2.12), we have

$$
I_{k}(x)=-\int_{x}^{1} \frac{P_{n-1}(t) P_{n-1}^{\prime}(t)}{t-x_{k}} d t
$$

and the integral, on the right, does not exceed $\frac{1}{\left|x-x_{k}\right|}$. Hence for all $x \neq x_{k}$,

$$
\begin{equation*}
\left|I_{k}(x)\right| \leqq \frac{1}{\left|x-x_{k}\right|} . \tag{5.21}
\end{equation*}
$$

Using (2.17), (5.21) and (2.6), we obtain

$$
\left|L_{k, 2}(x)\right| \leqq \frac{\left(1-x_{k}^{2}\right)\left|\ell_{k}(x)\right|}{n(n-1) P_{n-1}^{2}\left(x_{k}\right)} .
$$

Therefore

$$
\lambda_{2}(x)=\sum_{k=2}^{n-1}\left|L_{k, 2}(x)\right| \leqq \frac{1}{2 n(n-1)} \sum_{k=2}^{n-1} \frac{\left|\ell_{k}(x)\right|}{P_{n-1}^{2}\left(x_{k}\right)} .
$$

Applying Schwarz inequality and relations (5.4) and (5.5), we get

$$
\begin{gathered}
\lambda_{2}(x) \leqq \frac{1}{2 n(n-1)}\left(\sum_{k=2}^{n-1} \ell_{k}^{2}(x)\right)^{1 / 2}\left(\sum_{k=2}^{n-1} \frac{1}{P_{n-1}^{2}\left(x_{k}\right)}\right)^{1 / 2} \leqq \\
\leqq \frac{1}{2 n(n-1)} O\left(n^{3 / 2}\right)=O\left(\frac{1}{\sqrt{n}}\right)
\end{gathered}
$$

which completes the proof of Lemma 5.3.
Proof of Theorem 3. If $f(x) \in C^{(r)}[-1,1]$, then by a result of Gopengaus [3], there exists a polynomial $G_{m}(x ; f)$ of degree $m \geqq 4 r+5$, such that for all $x \in[-1,1]$
$\left|f^{(s)}(x)-G_{m}^{(s)}(x ; f)\right|=O(1)\left(\frac{\sqrt{1-x^{2}}}{m}\right)^{r-s} \omega\left(\frac{\sqrt{1-x^{2}}}{m} ; f^{(r)}\right), s=0,1, \ldots, r$,
where $\omega\left(\cdot ; f^{(r)}\right)$ is the modulus of continuity of the function $f^{(r)}(x)$. From (5.22), we see that

$$
f(1)-G_{3 n-3}(1 ; f)=f(-1)-G_{3 n-3}(-1 ; f)=f^{\prime}(-1)-G_{3 n-3}^{\prime}(-1 ; f)=0 .
$$

Therefore, for $r \geqq 2$ and $3 n-3 \geqq 4 r+5$, using (2.18) we conclude that $|f(x)-Q(x ; f)| \leqq\left|f(x)-G_{3 n-3}(x ; f)\right|+\sum_{k=2}^{n-1}\left|G_{3 n-3}\left(x_{k} ; f\right)-f\left(x_{k}\right)\right|\left|L_{k, 0}(x)\right|+$

$$
+\sum_{k=1}^{n-1}\left|G_{3 n-3}^{\prime}\left(\xi_{k} ; f\right)-f^{\prime}\left(\xi_{k}\right)\right|\left|L_{k, 1}(x)\right|+\sum_{k=2}^{n-1}\left|G_{3 n-3}^{\prime \prime}\left(x_{k} ; f\right)-f^{\prime \prime}\left(x_{k}\right)\right|\left|L_{k, 2}(x)\right|
$$

for $1 \leqq x \leqq 1$. Using (5.11), (5.16), (5.20) and (5.22) we see that

$$
\begin{gathered}
|f(x)-Q(x ; f)|=O(1)\left(\frac{\sqrt{1-x^{2}}}{3 n-3}\right)^{r} \omega\left(\frac{\sqrt{1-x^{2}}}{3 n-3} ; f^{(r)}\right)+ \\
+O(1) \frac{\sqrt{n} \log n}{n^{r-2}} \omega\left(\frac{\sqrt{1-x^{2}}}{3 n-3} ; f^{(r)}\right)+O(1) \frac{1}{n^{r-2}} \omega\left(\frac{\sqrt{1-x^{2}}}{3 n-3} ; f^{(r)}\right)+ \\
+O(1) \frac{1}{n^{r-\frac{3}{2}}} \omega\left(\frac{\sqrt{1-x^{2}}}{3 n-3} ; f^{(r)}\right)=O(1) \frac{\sqrt{n} \log n}{n^{r-2}} \omega\left(\frac{\sqrt{1-x^{2}}}{3 n-3} ; f^{(r)}\right),
\end{gathered}
$$

for $n \geqq \frac{4 r+8}{3}$. Since $\omega(x ; f)$ is a non-decreasing function we obtain (2.20). Thus Theorem 3 is proved.

The author would like to express his appreciation to Professor A. Sharma for many helpful suggestions.

References

[1] S. A. Eneduanya, On the convergence of interpolation polynomials, Analysis Math., 11 (1985), 13-22.
[2] S. A. Eneduanya, On the modified Hermite interpolation polynomials, Demonstratio Math., 15 (1982), 1135-1146.
[3] I. E. Gopengaus, On a theorem of A. F. Timan on the approximation of functions by polynomials on a finite interval (Russian), Mat. Zametki, 1 (1967), 163-172.
[4] G. G. Lorentz, K. Jetter and S. Riemenschneider, Birkhoff interpolation, Encyclopaedia of Math., Addison Wesley (1983).
[5] I. P. Natanson, Constructive Function Theory, Frederick Ungar Publ. (New York, 1965).
[6] L. G. Pál, A new modification of the Hermite-Fejér interpolation, Analysis Math., 1 (1975), 197-205.
[7] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Coll. Publ. (New York, 1939).
[8] L. Szili, A convergence theorem for the Pal method of interpolation on the roots of Hermite polynomials, Analysis Math., 11 (1985), 75-84.
(Received March 8, 1988)

[^11]
GRADED RADICALS OF GRADED RINGS

M. BEATTIE (Sackville) and P. STEWART (Halifax)

Let G be a group and λ a radical property in the category of associative rings. Using the generalized smash product of [1], we introduce a method for defining a corresponding radical property $\lambda_{\text {ref }}$ in the category of associative G-graded rings and grade-preserving ring homomorphisms. We investigate the properties of these new radicals and compare them with graded radicals which have been previously studied.

For $\lambda=J$, the Jacobson radical, $\lambda_{\text {ref }}$ is the usual graded Jacobson radical. (See for example [2], [7].) If λ is the prime radical, then for G finite and R a G-graded ring, $\lambda_{\text {ref }}(R)$ is the graded prime radical of [3], i.e. the intersection of the graded prime ideals of R. However, this intersection of graded ideals may be properly contained in $\lambda_{\text {ref }}(R)$ for G infinite. If λ is the strongly prime radical, then $\lambda_{\text {ref }}$ is the graded strongly prime radical of [8] for G finite, but again may properly contain this ideal for G infinite. We also discuss the cases of λ equal to the Levitzski, Brown-McCoy and von Neumann regular radicals, and compare $\lambda_{\text {ref }}$ to suitable intersections of graded ideals.

1. Preliminaries and definition of the reflected radical

Let G be a group with identity e. A ring R is called G-graded if $R=$ $=\underset{g \in G}{\oplus} R_{g}$, and $R_{g} R_{h} \subseteq R_{g h}$ for all $g, h \in G$. The elements of R_{g} are called the homogeneous elements of grade g. If $r \in R, r_{g}$ denotes the g th homogeneous component of r. If $R_{g} R_{h}=R_{g h}$ for all $g, h \in G$, then R is called strongly graded. A left R-module M is G-graded if $M=\underset{g \in G}{\oplus} M_{g}$, and $R_{g} M_{h} \leqq M_{g h}$ for all $g, h \in G$. Ideals of R are called G-graded if they are graded left and right submodules of R. (Ideal will always mean two-sided ideal.) A graded ideal P of R is called a graded prime ideal of R if $I J \subseteq P$ for graded ideals I, J of R implies that $I \subseteq P$ or $J \subseteq P$. For I any ideal of a graded ring R, I_{G} will denote the largest graded ideal of R contained in I, i.e. I_{G} is the graded ideal generated by the homogeneous elements of R contained in I.

For R a G-graded ring, we define the associative ring $R \# G^{*}$ to be the left R-module $\oplus R p_{g}, g \in G$, with multiplication defined by $\left(r p_{g}\right)\left(s p_{h}\right)=$ $=r s_{g h^{-1}} \varrho_{h}$ [1]. If R has an identity, 1 , and G is finite, then $R \# G^{*}$ is also a ring with identity, namely $\sum_{g \in G} p_{g}$ where we write p_{g} for $1 p_{g}$. The group G
acts as a group of automorphisms on the right of $R \# G^{*}$ by $\left(r p_{h}\right)^{g}=r p_{h g}$.
If J is a graded ideal of R, then we define $J \# G^{*}$ to be all finite sums of elements $x p_{g}, x \in J, g \in G$. J\#G** is an ideal of $R \# G^{*}$ invariant under the action of G.

If I is an ideal of $R \# G^{*}$, define ideals I_{R} and I^{\downarrow} of R by

$$
I_{R}=\left\{r: r \in R, r p_{g} \in I \text { for all } g \in G\right\},
$$

and

$$
I^{\downarrow}=\left(I_{R}\right)_{G}
$$

i.e., I^{\downarrow} is the largest graded ideal in I_{R}. Note that I^{\downarrow} contains any graded ideal L such that $L \# G^{*} \cong I$, for if K is a graded ideal of R with $K \# G^{*} \cong I$, then $K \cong I_{R}$, and therefore $K \cong\left(I_{R}\right)_{G}=I^{\downarrow}$. If P is a prime ideal of $R \# G^{*}$, P^{\downarrow} is a graded prime of R since if $I J \cong P^{\downarrow}$ where I and J are graded ideals, $\left(I \# G^{*}\right)\left(J \# G^{*}\right) \cong P$. Note that if J is a graded ideal of R, then $\left(J \# G^{*}\right)^{\downarrow}=$ $=J$. If R has an identity, then $x=\sum_{i=1}^{t} r_{i} p_{g_{i}} \in I$ implies $x p_{g_{i}}=r_{i} p_{g_{i}} \in I$ for each i. Also $r p_{g} \in I$ for all $g \in G$ implies that $p_{h g}\left(r p_{g}\right)=r_{h} p_{g} \in I$ for all $g, h \in G$, and therefore I_{R} is a graded ideal of R, i.e. $I_{R}=I^{\downarrow}$. Thus if I is invariant under the action of G on $R \# G^{*}, I=I^{\downarrow} \# G^{*}$.

The next lemma will show that this equality holds for any ring R if I is a G-invariant intersection of prime ideals or a radical.

A graded ring R without identity may be embedded in a graded ring R^{1} with identity in the following way. Let $R^{1}=R \times Z$, with addition and multiplication defined by

$$
(r, n)+(s, m)=(r+s, n+m) \text { and }(r, n)(s, m)=(r s+m r+n s, n m)
$$

for $r, s \in R$ and $n, m \in Z$. Now define

$$
\left(R^{1}\right)_{e}=\left\{(r, n): r \in R_{e}, n \in Z\right\}
$$

and

$$
\left(R^{1}\right)_{g}=\left\{(r, 0): r \in R_{g}\right\}
$$

for g different from $e . R \cong R \times\{0\}$ is a graded ideal of R^{1}, and $R \# G^{*}$ is an ideal of $R^{1} \# G^{*}$.

Throughout this paper, for R a G-graded ring not necessarily with identity, R^{1} will be used to denote the G-graded ring with identity containing R as a graded ideal as constructed above.

Lemma 1.1. Let R be a G-graded ring and I an ideal of $R \# G^{*}$. Suppose that I is either an intersection of prime ideals of $R \# G^{*}$ or $\lambda\left(R \# G^{*}\right)$ for λ a radical in the category of associative rings. Then I_{R} is a graded ideal of R and if I is G-invariant, $I=I^{\downarrow} \# G^{*}$.

Proof. Embed R in a graded ring R^{1} with identity as described above. Then $R \# G^{*} \cong R^{1} \# G^{*}$. Suppose that an ideal I of $R \# G^{*}$ is also an ideal of $R^{1} \# G^{*}$. Then by the discussion above, if I is G-invariant, $I=I^{\downarrow} \# G^{*}$.

But if I is an intersection of prime ideals of $R \# G^{*}$, then by Andrunakievic's Lemma [4, Lemma 61], I is an ideal of $R^{1} \# G^{*}$. Also if $I=\lambda\left(R \# G^{*}\right)$ for some radical λ, then I is an ideal of $R^{1} \# G^{*}$ by [4, Theorem 47].

We now define the reflected radical. Recall that a nonempty class λ of associative rings is a radical class if
(i) λ is homomorphically closed;
(ii) if A / B and B are in λ, then A is in λ;
(iii) if $I_{\alpha}, \alpha \in \Delta$, is an ascending chain of ideals of A with each I_{α} in λ, then $\cup_{\alpha} I_{\alpha}$ is in λ.
We denote by $\lambda(A)$ the largest ideal of A which is in λ. Recall that a radical λ is called hereditary if $\lambda(I)=\lambda(A) \cap I$ for any ideal I of A.

Now let F be the functor from the category of associative G-graded rings to the category of associative rings such that $F(R)=R \# G^{*}$ and for f a grade-preserving ring homomorphism from R to $S, F(f): R \# G^{*} \rightarrow S \# G^{*}$ is defined by $F(f)\left(r p_{g}\right)=f(r) p_{g}$. The functor F is exact and preserves unions of ascending chains of ideals. Thus we have the following:

Proposition 1.2. If λ is a radical class in the category of associative rings, then

$$
\lambda_{\text {ref }}=\left\{R: R \text { is a } G \text {-graded ring with } R \# G^{*} \in \lambda\right\}
$$

is a radical class of G-graded rings.
Proof. This follows directly from the above discussion or see [5, Theorem 1].

Proposition 1.3. If λ is a radical in the category of associative rings, then for R a G-graded ring, $\lambda_{\text {ref }}(R)=\left(\lambda\left(R \# G^{*}\right)\right)^{\downarrow}$, and thus $\lambda_{\text {ref }}(R) \# G^{*}=$ $=\lambda\left(R \# G^{*}\right)$.

2. The reflected Jacobson, prime and strongly prime radicals

In this section, we discuss $\lambda_{\text {ref }}$ for three radicals λ for which a definition of a graded version of λ already exists, namely for λ the Jacobson, prime or strongly prime radical, and compare the reflected radical to the existing graded versions of these radicals.
2.1. The reflected Jacobson radical. Recall that a (graded) left R module M is (graded) irreducible if $R M=M$, and (0) and M are the only (graded) submodules of M. The graded Jacobson radical of $R, J_{G}(R)$ has been defined as the set of elements of R which annihilate all G-graded irreducible left (or all graded irreducible right) R-modules. (Equivalent definitions and a discussion of the graded Jacobson radical may be found in [2] or [7].) In [1], it is shown that for R a G-graded ring with identity,
$J_{G}(R) \# G^{*}=J\left(R \# G^{*}\right)$, so that $J_{G}(R)=J_{\text {ref }}(R)$. A modified version of the argument in [1] will yield the same result for a G-graded ring R, not necessarily with identity.

We show first that every irreducible left $R \# G^{*}$-module is a graded irreducible left R-module and vice versa.

First note that any G-graded left R-module M has a left $R \# G^{*}$-module structure via

$$
\begin{equation*}
\left(r p_{g}\right) m=r m_{g} . \tag{1}
\end{equation*}
$$

Let M be an irreducible G-graded R-module, and write M^{\prime} for M with the $R \# G^{*}$-module structure above. Since $R M=M,\left(R \# G^{*}\right) M^{\prime}=M^{\prime}$. Let L^{\prime} be an $R \# G^{*}$-submodule of M^{\prime} and let $x=\sum_{i=1}^{t} x_{g_{i}}$ be a nonzero element of L^{\prime}. Then $\left(R \# G^{*}\right) x=\sum_{i=1}^{t} R x_{g_{i}}$. Since M is an irreducible G-graded R-module, the submodule $\left\{m: m \in M, R m_{g}=(0)\right\}=(0)$; thus $\sum_{i=1}^{t} R x_{g_{i}}$, as a nonzero G-graded R-submodule of M, must equal M. Therefore $L^{\prime}=M^{\prime}$, and M^{\prime} is irreducible.

Let M be an irreducible left $R \# G^{*}$-module. For each $g \in G$, let $M_{g}^{\prime \prime}=$ $=\sum_{h \in G}\left(R_{g h^{-1}} p_{h}\right) M$. Since $\left(R \# G^{*}\right) M=M, M$ is the sum of the $M_{g}^{\prime \prime}$ and we must show that this sum is direct. Suppose $x \in M_{g}^{\prime \prime} \cap M_{h}^{\prime \prime}$, with g and h different elements of G. Since $\left(R p_{s}\right) M_{t}^{\prime \prime}=(0)$ for s different from $t,\left(R \# G^{*}\right) x=(0)$. But since M is irreducible, the submodule $\{m: m \in$ $\left.\in M,\left(R \# G^{*}\right) m=(0)\right\}=(0)$, and thus $x=0$.

Define a left R-module structure on $M^{\prime \prime}=\underset{g \in G}{\oplus} M_{g}^{\prime \prime}$ by

$$
\begin{equation*}
r x=\left(r p_{g}\right) x \tag{2}
\end{equation*}
$$

for $r \in R, x \in M_{g}^{\prime \prime}$. As in [1], it is easy to verify that $M^{\prime \prime}$ is a G-graded left R-module, and since $\left(R \# G^{*}\right) M=M, R M^{\prime \prime}=M^{\prime \prime}$. A little checking shows that the left $R \# G^{*}$-module structure defined by (1), when applied to $M^{\prime \prime}$, will agree with the original $R \# G^{*}$-module structure on M. Thus, $M^{\prime \prime}$ is irreducible.

Again, it is straightforward to check that if we start with an irreducible G-graded R-module M and apply (1) and then (2), the resulting G-graded R-module structure is that of the original.

Thus we have the following.
Proposition 2.1. The categories of irreducible left $R \# G^{*}$-modules and irreducible left G-graded R-modules are isomorphic.

We can now see that $J_{\text {ref }}=J_{G}$.

Proposition 2.2. For R a G-graded ring, $J_{\text {ref }}(R)=\left(J\left(R \# G^{*}\right)\right)^{\downarrow}=$ $=J_{G}(R)$.

Proof. Suppose $r \in\left(J\left(R \# G^{*}\right)\right)^{\downarrow}, r$ homogeneous of grade g. To show that $r \in J_{G}(R)$, we show that r annihilates M, for M any irreducible G graded left R-module. But since $r p_{h} \in J\left(R \# G^{*}\right)$ for all $h \in G,\left(r p_{h}\right) M^{\prime}=$ $=(0)$ for all $h \in G$, and thus $r M=(0)$. Therefore $J_{\text {ref }} \subseteq J_{G}(R)$.

To complete the proof, we show that $J_{G}(R) \# G^{*} \subseteq J\left(R \# G^{*}\right)$. Let $r p_{g} \in J_{G}(R) \# G^{*}$; since $J_{G}(R)$ is graded, we may assume \bar{r} is homogeneous. Let M be an irreducible left $R \# G^{*}$-module. Then $M^{\prime \prime}$ is an irreducible G graded left R-module so $r M^{\prime \prime}=(0)$ and $r M_{h}^{\prime \prime}=(0)$ for all $h \in G$. Since $\left(R \# G^{*}\right) M=M$,

$$
\left(r p_{g}\right) M=\left(r p_{g}\right) \sum_{f, h \in G} R_{h f-1} p_{f} M \subseteq r M_{g}^{\prime \prime}=(0)
$$

and $r p_{g}$ annihilates M.
2.2. The reflected prime radical. We now consider $\lambda=N$, the prime radical. Recall that for a ring $A, N(A)$ is the intersection of the prime ideals of A and contains every nilpotent ideal of A. In [3], the ideal $N_{G}(R)$ is defined to be the intersection of the graded prime ideals of R, for G finite and R a G-graded ring with identity. Let us denote by $N_{G}(R)$ the intersection of the graded primes of R for any group G and G-graded ring R.

Theorem 2.3. (i) $N_{G}(R) \subseteq N_{\text {ref }}(R)$.
(ii) If G is finite, $N_{G}(R)=N_{\text {ref }}(R)$.
(iii) If G is infinite, the inclusion in (i) may be proper.

Proof. If P is a prime ideal of $R \# G^{*}$, then P^{\downarrow} is a graded prime of R and thus $N_{G}(R) \# G^{*} \subseteq N\left(R \# G^{*}\right)$ so that $N_{G}(R) \subseteq N_{\text {ref }}(R)$.

Now suppose G is finite. If R has an identity, then (ii) follows from [3, Theorem 5.3]. Otherwise recall that the prime radical is a hereditary radical so that
$N\left(R \# G^{*}\right)=N\left(R^{1} \# G^{*}\right) \cap R \# G^{*}$ since N is hereditary $=\left(N_{G}\left(R^{1}\right) \# G^{*}\right) \cap R \# G^{*}$ by $[3$, Theorem 5.3]
$=\left(N\left(R^{1}\right)_{G} \# G^{*}\right) \cap R \# G^{*}$ by [3, Lemma 5.1] which holds for all groups G
$=\left(N\left(R^{1}\right)_{G} \cap R\right) \# G^{*}$
$=\left(N\left(R^{1}\right) \cap R\right)_{G} \# G^{*}$ since R is a graded ideal of R^{1}
$=N(R)_{G} \# G^{*}$ since N is hereditary.
The fact that the inclusion may be proper for infinite G follows from the next example.

Example 2.4. Let k be a field and $R=k[t]$, the polynomial ring graded by $G=Z$ in the usual way. Since (0) is a graded prime ideal, $N_{G}(R)=(0)$. Let I be the principal left ideal $\left(R \# G^{*}\right) t p_{0}$ of $R \# G^{*}$. Then $I^{2}=(0)$,
$J=I+I\left(R \# G^{*}\right)$ is a nilpotent two-sided ideal of $R \# G^{*}$, and therefore $N\left(R \# G^{*}\right)=N_{\text {ref }}(R) \# G^{*}$ is nonzero.
2.3. The reflected strongly prime radical. A third example of a radical for which a graded version has been defined is the strongly prime radical. Recall that if I is an ideal of a ring A, a (right) insulator for I is a finite subset $F \cong I$ such that if $F a=0$ for $a \in A$, then $a=0$. The ring A is said to be (right) strongly prime if every nonzero (two-sided) ideal of A contains an insulator. An ideal P is called strongly prime if A / P is a strongly prime ring. The strongly prime radical of A is

$$
s(A)=\cap\{P: \quad P \text { is a strongly prime ideal of } A\} .
$$

If R is a G-graded ring, then R is said to be (right) graded strongly prime if each nonzero graded ideal of R contains an insulator [8]. The following definition is also from [8]:

Definition 2.5. The graded strongly prime radical of a G-graded ring R is defined to be

$$
s_{G}(R)=\cap\{P: \quad P \text { is a graded strongly prime ideal of } R\}
$$

From [8, Corollary 1], $s_{G}(R)=(s(R))_{G}$.
Theorem 2.6. For R a G-graded ring, the graded strongly prime radical defined above is related to the reflected radical $s_{\text {ref }}$ in the following way.
(i) For all $G, s_{G}(R) \subseteq s_{\text {ref }}(R)$.
(ii) If G is finite, $s_{G}(\bar{R})=s_{\text {ref }}(R)$.
(iii) For G infinite, the inclusion in (i) may be proper.

Proof. (i) To prove the required inclusion, we show that $s_{G}(R) \# G^{*} \subseteq$ $\subseteq s\left(R \# G^{*}\right)=s_{\text {ref }}(R) \# G^{*}$. Let P be a strongly prime ideal of $R \# G^{*}$. It suffices to show that P^{\downarrow} is graded strongly prime in R, since then $s_{G}(R) \# G^{*} \cong$ $\subseteq P^{\downarrow} \# G^{*} \subseteq P$ for all strongly prime ideals P of $R \# G^{*}$.

Suppose that P^{\downarrow} is properly contained in I where I is a graded ideal of R. Then $I \# G^{*}$ is an ideal of $R \# G^{*}$ and $I \# G^{*}$ is not contained in P, so that $\left(I \# G^{*}+P\right) / P$ contains an insulator F and we may assume that $F=$ $=\left\{a_{1} p_{g_{1}}+P, \ldots, a_{n} p_{g_{n}}+P\right\}$ where a_{1}, \ldots, a_{n} are homogeneous elements of I. We will show that $\left\{a_{1}+P^{\downarrow}, \ldots, a_{n}+P^{\downarrow}\right\}$ is an insulator in I / P^{\downarrow}. Assume that for some $r \in R, a_{i} r \in P^{\downarrow}$ for all $i=1, \ldots, n$. Since P^{\downarrow} is graded and the a_{i} are homogeneous, $a_{i} r_{g} \in P^{\downarrow}$ for all $i=1, \ldots, n$ and all homogeneous components r_{g} of r. It follows that $a_{i} r_{g} p_{h} \in P$ for all $i=1, \ldots, n$ and all $g, h \in G$, and therefore $\left(a_{i} p_{g_{i}}\right)\left(r p_{h}\right) \in P$ for all $i=1, \ldots, n$ and all $h \in G$. Since F is an insulator, $r p_{h} \in P$ for all $h \in G$. Thus $r \in P^{\downarrow}$ and the proof of (i) is complete.

Now assume that G is finite and Q is a graded strongly prime ideal of R. Using Zorn's lemma, we may choose P maximal in the set of ideals
I of $R \# G^{*}$ containing $Q \# G^{*}$, and such that $I / Q \# G^{*}$ does not contain an insulator in $R \# G^{*} / Q \# G^{*}$. By [9, p. 1101], P is a strongly prime ideal of $R \# G^{*}$.

We wish to show that $P^{\downarrow}=Q$. Suppose P^{\downarrow} properly contains Q. Let $\left\{a_{1}+Q, \ldots, a_{k}+Q\right\}$ be an insulator with $a_{1}, \ldots, a_{k} \in P^{\downarrow}$, and let $F=\left\{a_{i} p_{g}+Q \# G^{*}: i=1, \ldots, k, g \in G\right\}$. If $\left(a_{i} p_{g}\right) \sum_{j=1}^{t} b_{j} p_{g_{j}} \in Q \# G^{*}$ for all $i=1, \ldots, k$ and all $g \in G$, then by summing over g, we see that $\sum_{j=1}^{t} a_{i} b_{j} p_{g_{j}} \in Q \# G^{*}$ for all $i=1, \ldots, k$. Thus, $a_{i} b_{j} \in Q$ for all $i=1, \ldots, k$, $j=1, \ldots, t$ so that $b_{1}, \ldots, b_{t} \in Q$. It follows that F is an insulator in $P / Q \# G^{*}$, contradicting our choice of P; therefore $P^{\downarrow}=Q$. By Lemma 1.1 and the fact that P is strongly prime, we see that

$$
s\left(R \# G^{*}\right)=s\left(R \# G^{*}\right)^{\downarrow} \# G^{*} \cong P^{\downarrow} \# G^{*}=Q \# G^{*}
$$

Intersecting over all graded strongly prime ideals Q, we obtain $s\left(R \# G^{*}\right) \subseteq$ $\cong s_{G}(R) \# G^{*}$. Thus for G finite, $s_{G}=s_{\text {ref }}$.

The last statement follows from Example 2.8.
Lemma 2.7. Let R be a strongly graded ring with $1, G$ an infinite group. Then if I is an ideal of $R \# G^{*}$ containing some $p_{g}, I=R \# G^{*}$.

Proof. Let h be any element of G. Since R is strongly graded, there exist $x_{i} \in R_{h g^{-1}}, y_{i} \in R_{g h^{-1}}, i=1, \ldots, t$, such that $\sum_{i=1}^{t} x_{i} y_{i}=1$. But then $p_{g} \in I$ implies $p_{h}=\sum_{i=1}^{t}\left(x_{i} p_{g}\right)\left(y_{i} p_{h}\right) \in I$.

Example 2.8. Let R be a strongly graded ring with identity and G an infinite group. By Lemma 2.7, if I is an ideal of $R \# G^{*}$ containing any p_{g} then I is all of $R \# G^{*}$.

Let P be a strongly prime ideal in $R \# G^{*}$. Since $R \# G^{*} / P$ has a finite insulator but the $p_{g}, g \in G$, are an infinite set of mutually orthogonal idempotents, $p_{h} \in P$ for some $h \in G$. Thus $P=R \# G^{*}, s\left(R \# G^{*}\right)=R \# G^{*}$ and $s_{\text {ref }}(R)=R$. However, since maximal graded ideals are graded strongly prime [8], $s_{G}(R)$ is not R.

3. More examples of reflected radicals

In this final section we discuss the reflected Levitzki, Brown-McCoy and von Neumann regular radicals.
3.1. The reflected Levitzki radical. Recall that an ideal I of a ring A is called locally nilpotent if every finitely generated subring of I is nilpotent.

The Levitzki radical of $A, L(A)$, is the intersection of the prime ideals P of A such that A / P has no nonzero locally nilpotent ideals. Equivalently, $L(A)$ is the union of the locally nilpotent ideals of A [4, Chapter 6].

Definition 3.1. For R a graded ring, $L_{G}(R)$ is the intersection of the graded prime ideals P of R such that R / P has no nonzero graded locally nilpotent ideals.

Proposition 3.2. For R a G-graded ring, $L_{G}(R)=(L(R))_{G}$.
Proof. If P is a prime ideal of R, then it is easy to see that P_{G} is a graded prime ideal of R. Furthermore, if R / P has no nonzero locally nilpotent ideals, then R / P_{G} has no nonzero locally nilpotent graded ideals. For if I is a locally nilpotent graded ideal in R / P_{G}, then $(I+P) / P$ is a nonzero locally nilpotent ideal in R / P. Thus $L_{G}(R) \subseteq(L(R))_{G}$.

Conversely, since $L(R)$, and hence $(L(R))_{G}$, is a locally nilpotent ideal, $(L(R))_{G} \subseteq Q$ for all graded prime ideals Q such that R / Q has no nonzero locally nilpotent graded ideals. Thus $L(R)_{G} \subseteq L_{G}(R)$.

We now compare L_{G} and $L_{\text {ref }}$.
Theorem 3.3. (i) For any group $G, L_{G}(R) \subseteq L_{\mathrm{ref}}(R)$.
(ii) If G is locally finite, $L_{G}(R)=L_{\mathrm{ref}}(R)$.
(iii) For infinite G, the inclusion in (i) may be proper.

Proof. Let P be a prime ideal of $R \# G^{*}$ such that $R \# G^{*} / P$ has no nonzero locally nilpotent ideals. Then, $P^{\downarrow}=P_{R}$ is a graded prime ideal of R, and we show that R / P^{\downarrow} has no nonzero locally nilpotent graded ideals.

Let I be a graded ideal containing P^{\downarrow} such that I / P^{\downarrow} is locally nilpotent. We will show that the ideal $\left(I \# G^{*}+P\right) / P$ is a locally nilpotent ideal of $R \# G^{*} / P$. Let $W=\left\{\sum_{i=1}^{n} a_{i j} p_{g_{i}}: j=1, \ldots, m\right\}$ be a finite subset of $I \# G^{*}$. The set $\left\{\left(a_{i j}\right)_{g}: i=1, \ldots, n, j=1, \ldots, m, g \in G\right\}$ is a finite subset of I and so the subring S it generates satisfies $S^{k} \subseteq P^{\downarrow}$ for some positive integer k. Thus, if T is the subring of $R \# G^{*}$ generated by W, then $T^{k} \subseteq S^{k} \# G^{*} \subseteq P^{\downarrow} \# G^{*} \subseteq P$. It follows that $\left(I \# G^{*}+P\right) / P$ is a locally nilpotent ideal and so $I \# G^{*} \subseteq P$. Thus $I \subseteq P^{\downarrow}$ and hence $L_{G}(R) \subseteq P^{\downarrow}$. This completes the proof that $L_{G}(R) \# G^{*} \cong L\left(R \# G^{*}\right)$ so that $L_{G}(R) \subseteq L_{\text {ref }}(R)$.

To prove (ii), we show that $L_{\mathrm{ref}}(R)$ is locally nilpotent and then the statement follows from Proposition 3.2. Let $W=\left\{b_{1}, \ldots, b_{s}\right\}$ be a finite subset of $L_{\text {ref }}(R)$. The subring generated by W is contained in the subring S generated by the homogeneous components of the elements of W; call this set $V=\left\{a_{1}, \ldots, a_{n}\right\}$. Let H be the (finite) subgroup of G generated by elements h of G such that $a_{i} \in R_{h}$ for some $a_{i} \in V$. The finite set $\left\{a_{i} p_{h}: \quad i=\right.$ $=1, \ldots, n, h \in H\}$ is in $L\left(R \# G^{*}\right)$, and hence the subring T it generates is nilpotent, say $T^{m}=0$. Now if c_{1}, \ldots, c_{m} are (not necessarily distinct) elements of V with $c_{i} \in R_{h_{i}}$, then $c_{1} \ldots c_{m} p_{g_{m}}=c_{1} p_{g_{1}} c_{2} p_{g_{2}} \ldots c_{m} p_{g_{m}} \in T^{m}$ where g_{m} can be any element of H and the g_{i} are defined inductively by
$g_{i-1}=h_{i} g_{i}$. Since $T^{m}=0, c_{1} \ldots c_{m}=0$; thus the subring S of L_{ref} is nilpotent.

Example 2.4 shows that the containment $L_{G} \cong L_{\text {ref }}$ may be proper. For here, $R=k[t]$ has no proper locally nilpotent graded ideals, so that $L_{G}(R)=(0)$ although $L\left(R \# G^{*}\right) \supseteqq N\left(R \# G^{*}\right)$ is nonzero.
3.2. The reflected Brown-McCoy radical. Recall that $\mathcal{G}(A)$, the BrownMcCoy radical of a ring A, is the intersection of the ideals M of A such that A / M is a simple ring with identity.

Definition 3.4. For R a G-graded ring, define $\mathcal{G}_{G}(R)$ to be the intersection of the graded ideals of R such that R / M is a graded simple ring with identity.

Proposition 3.5. For all G-graded rings $R, \mathcal{G}(R)_{G} \cong \mathcal{G}_{G}(R)$, and this containment may be proper.

Proof. Let M be a graded ideal of R such that R / M is a graded simple ring with identity $e+M$. We wish to show that $\mathcal{G}(R)_{G} \subseteq M$ for all such M.

Suppose not. Then $\mathcal{G}(R)_{G}+M=R$ and $e=x+m$ for some $x \in \mathcal{G}(R)_{G}$, $m \in M$. Also R / M has an identity so we may choose $Q=N+M$, a maximal proper ideal of R / M. Then $\mathcal{G}(R) \cong Q$ and hence $e \in Q$. This is impossible since Q was a proper ideal of R / M.

The example following [2, Lemma 12] shows that the inclusion may be proper; here R is a commutative ring with 1 so $\mathcal{G}(R)=J(R)$ and $\mathcal{G}_{G}(R)=$ $=J_{G}(R)$.

Theorem 3.6. (i) For all $G, \mathcal{G}_{G}(R) \cong \mathcal{G}_{\text {ref }}(R)$.
(ii) If G is finite, $\mathcal{G}_{G}(R)=\mathcal{G}_{\text {ref }}(R)$.
(iii) The inclusion in (i) may be proper.

Proof. Assume first that R has an identity 1. To prove (i), we show that $\mathcal{G}_{G}(R) \# G^{*} \cong \mathcal{G}\left(R \# G^{*}\right)=\mathcal{G}_{\text {ref }}(R) \# G^{*}$.

Let M be an ideal of $R \# G^{*}$ such that $R \# G^{*} / M$ is a simple ring with identity $w+M$. We will now show that R / M^{\downarrow} is a graded simple ring with identity and it will then follow that $\mathcal{G}_{G}(R) \# G^{*} \cong M^{\downarrow} \# G^{*} \cong M$ for all such M.

Suppose there is a graded ideal T of R which properly contains M^{\downarrow}. Then $T \# G^{*}$ is not contained in M and $T \# G^{*}+M=R \# G^{*}$. Therefore there exist $a_{i} \in T, g_{i} \in G, m \in M$ such that $\sum_{i=1}^{t} a_{i} p_{g_{i}}+m=w$. Since $w p_{g_{k}}-p_{g_{k}} \in M, a_{k} p_{g_{k}}-p_{g_{k}} \in M$, we have

$$
p_{g_{k}}\left(a_{k} p_{g_{k}}-p_{g_{k}}\right)=\left(a_{k}\right)_{e} p_{g_{k}}-p_{g_{k}} \in M .
$$

Therefore $\left[\left(a_{k}\right)_{e}-1\right] p_{g_{k}} \in M$ for $k=1, \ldots, t$ and if we let $\kappa=\prod_{k=1}^{t}\left[\left(a_{k}\right)_{e}-1\right]$, then $\kappa p_{g_{k}} \in M$ for $k=1, \ldots, t$. Since $w+M$ is the identity in $R \# G^{*} / M$,
$w p_{h}-p_{h} \in M$ for all h but if $h \notin\left\{g_{1}, \ldots, g_{t}\right\}, w p_{h}=m p_{h} \in M$ and so $p_{h} \in M$. Thus $\kappa p_{g} \in M$ for all $g \in G$; therefore $\kappa \in M^{\downarrow} \subset T$.

By the definition of $\kappa, \kappa=(-1)^{t}+\gamma$ where $\gamma \in T$. Therefore $T=R$, M^{\downarrow} is a maximal graded ideal of R as required and $\mathcal{G}_{G}(R) \# G^{*} \cong \mathcal{G}\left(R \# G^{*}\right)$ for R a ring with identity.

Now suppose that R does not have an identity and embed R in R^{1} as usual. Suppose that M is a maximal graded ideal of R^{1}. Then $(R+M) / M$ is a graded ideal of R^{1} / M and so is either (0) or R^{1} / M. If $(R+M) / M=(0)$, then $\mathcal{G}_{G}(R) \cong R \cong M$. If $(R+M) / M=R^{1} / M$, then since $R^{1} / M=$ $=(R+M) / \bar{M} \cong \bar{R} /(R \cap M), R \cap M$ is a maximal graded ideal of R, and $\mathcal{G}_{G}(R) \cong R \cap M$. Hence in either case, $\mathcal{G}_{G}(R) \cong M$ for all such M and $\mathcal{G}_{G}(R) \cong \mathcal{G}_{G}\left(R^{1}\right)$.

Therefore we have
$\mathcal{G}_{G}(R) \# G^{*}=\left(\mathcal{G}_{G}(R) \# G^{*}\right) \cap\left(R \# G^{*}\right)$
$\cong\left(\mathcal{G}_{G}\left(R^{1}\right) \# G^{*}\right) \cap\left(R \# G^{*}\right)$ by the above argument $\subseteq \mathcal{G}\left(R^{1} \# G^{*}\right) \cap\left(R \# G^{*}\right)$ since R^{1} has an identity $=\mathcal{G}\left(R \# G^{*}\right)$ since \mathcal{G} is hereditary [4, p. 125].

To see that this inclusion may be proper, let k be a field, $\langle x\rangle$ the infinite cyclic group and $R=k\langle x\rangle$ the group ring. R is strongly Z-graded and so, since $s(A) \subseteq \mathcal{G}(A)$ for all rings A, by Example $2.8, \mathcal{G}_{\text {ref }}(R) \# Z^{*}=$ $=\mathcal{G}\left(R \# Z^{*}\right)=R \# Z^{*}$. However, because (0) is a maximal graded ideal, $\mathcal{G}_{G}(R)=(0)$. Therefore $\mathcal{G}_{G}(R)$ is properly contained in $\mathcal{G}_{\text {ref }}(R)$, and statements (i) and (iii) are proved.

Now suppose that G is finite and let I be a graded ideal of R such that R / I is a simple graded ring with identity. Then $I \# G^{*}$ is an ideal of $R \# G^{*}$, and since $R \# G^{*} / I \# G^{*} \cong(R / I) \# G^{*}$ has a 1 , we may choose an ideal M of $R \# G^{*}$ maximal in the set of ideals containing $I \# G^{*}$. Since $I \# G^{*}$ is invariant under the action of $G, I \# G^{*} \cong N=\underset{g \in G}{\cap} M^{g}$, where M^{g} is the image of M under the automorphism $g \in G$. Therefore $\left(I \# G^{*}\right)_{R}=$ $=I \cong N_{R}$. By the maximality of $I, I=N_{R}$, and so by Lemma $1.1, N=$ $=I \# G^{*}$. Since $R \# G^{*} / M^{g}$ is a simple ring with 1 for all $g, \mathcal{G}\left(R \# G^{*}\right) \subseteq N=$ $I \# G^{*}$. Intersecting over all maximal graded ideals I, we obtain $\mathcal{G}\left(R \# G^{*}\right) \cong$ $\cong \mathcal{G}_{G}(R) \# G^{*}$, and thus $\mathcal{G}_{G}(R)=\mathcal{G}_{\text {ref }}(R)$.
3.3. The reflected von Neumann regular radical. Recall that, for any ring A, the regular radical of $A, r(A)$, is the unique largest von Neumann regular ideal of A, where an ideal I of A is regular if and only if every finitely generated right (left) ideal of I is generated by an idempotent [6 , Theorem 1.1]).

Definition 3.7. For R a G-graded ring, let $r_{G}(R)$ be the unique largest graded von Neumann regular ideal of R. Clearly $r_{G}(R)=r(R)_{G}$.

Lemma 3.8. Let R be a G-graded ring with identity. If x_{1}, \ldots, x_{n} are homogeneous elements of R of degree g_{1}, \ldots, g_{n} respectively and $R x_{1}+$ $+\ldots+R x_{n}=R u$ for some idempotent u, then for each $g \in G$, there is an idempotent $v=v(g) \in R \# G^{*}$ such that $\left(x_{1}+\ldots+x_{n}\right) p_{g} R \# G^{*}=v\left(R \# G^{*}\right)$.

Proof. Direct calculation shows that $\left(x p_{g}\right)\left(b_{1} p_{g_{1} g}+\ldots+b_{n} p_{g_{n} g}\right)\left(x p_{g}\right)=$ $=x p_{g}$ where $x=x_{1}+\ldots+x_{n}$ and b_{1}, \ldots, b_{n} are such that $b_{1} x_{1}+\ldots+b_{n} x_{n}=u$. Then $v=\left(x p_{g}\right)\left(b_{1} p_{g_{1} g}+\ldots+b_{n} p_{g_{n} g}\right)$ is the required idempotent.

Theorem 3.9. (i) For all $G, r_{G}(R) \subseteq r_{\text {ref }}(R)$.
(ii) $R \# G^{*}$ is a von Neumann regular ring if and only if for all $g \in G$, $x \in R_{g}$, there is a $y \in R_{g^{-1}}$ such that $x y x=x$. Thus, even for finite G, the inclusion in (i) may be proper.

Proof. To prove (i), we assume first that R has a 1 .
Let $F=\left\{u_{1}, \ldots, u_{k}\right\}$ be a finite set of elements of $r_{G}(R) \# G^{*}$ and let I be the right ideal generated by F. Then, since $1 p_{g}=p_{g}$ is in $R \# G^{*}$, we may assume that the elements of F are of the form $\left(x_{1}+\ldots+x_{n}\right) p_{g}$ where the x_{i} are homogeneous elements of $r_{G}(R)$.

From Lemma 3.8, we see that $u_{1}\left(R \# G^{*}\right)=v_{1}\left(R \# G^{*}\right)$ for some idempotent v_{1}, and $\left(u_{2}-v_{1} u_{2}\right) R \# G^{*}=w_{2} R \# G^{*}$ for some idempotent w_{2}. Moreover, since $v_{1} w_{2}\left(R \# G^{*}\right)=0, v_{1} w_{2}=0$. Therefore v_{1} and $v_{2}=w_{2}-w_{2} v_{1}$ are orthogonal idempotents and $u_{1}\left(R \# G^{*}\right)+u_{2}\left(R \# G^{*}\right)=\left(v_{1}+v_{2}\right) R \# G^{*}$. Since $v_{1}+v_{2}$ is an idempotent, we can repeat the argument with u_{3} and $v_{1}+v_{2}$. Continuing, we obtain $I=w\left(R \# G^{*}\right)$ for some idempotent w. Thus $r_{G}(R) \# G^{*}$ is a regular ideal of $R \# G^{*}$ and so $r_{G}(R) \# G^{*} \subseteq r\left(R \# G^{*}\right)$ and $r_{G}(R) \cong r_{\text {ref }}(R)$.

If R does not have an identity, embed R in R^{1}, and argue as in the proof of Theorem 2.3, using the fact that r is a hereditary radical and $r_{G}\left(R^{1}\right)=$ $=r\left(R^{1}\right)_{G}$.

Now assume that $R \# G^{*}$ is regular. Then for each $g \in G, r \in R_{g}$, there is a $z=x p_{g^{2}} \in R \# G^{*}$ such that $r p_{g}=\left(r p_{g}\right) x p_{g^{2}}\left(r p_{g}\right)=r x_{g^{-1}} r p_{g}$ and so $r=r x_{g^{-1}} r$.

To prove the converse, we show that the subring T of $R^{1} \# G^{*}$ which is generated by $R \# G^{*}$ and $\left\{p_{g}: g \in G\right\}$ is regular, and then use the fact that every two-sided ideal in a regular ring is regular. Let H be a finite set of elements of $G, w=\sum_{h \in H} p_{h}$, and let S be the subring of T generated by $w\left(R \# G^{*}\right) w$ and $\left\{p_{h}: h \in H\right\}$. Then by [6, Lemma 1.6], S is regular if and only if for each $g, h \in H$ and for each $x \in p_{g} S p_{h}$, there is a $y \in p_{h} S p_{g}$ such that $x y x=x$. But it is easily checked that the condition in (ii) then guarantees S is regular. Since T is the union of such subrings S, T is regular and thus so is $R \# G^{*}$.

The last example shows that the inclusion (i) may be proper.
Example 3.10 . Let $R=Z_{2}[X] /\left(X^{2}\right)$ be $G=Z / 2 Z$ graded by $R_{0}=$ $=\{0,1\}$ and $R_{1}=\{0, x+1\}$ where $x=X+\left(X^{2}\right)$. It follows from Theorem 3.9
(ii) that $R \# G^{*}$ is regular, so that $r_{\text {ref }}(R)=R$, but since R has only one proper ideal, namely the nilpotent principal ideal generated by $x, r(R)=(0)$ so that $r(R)_{G}=r_{G}(R)=(0)$.

Acknowledgement. This research was partially supported by Natural Sciences and Engineering Research Council of Canada grants A9137 and A8789.

References

[1] M. Beattie, A generalization of the smash product of a graded ring, J. Pure and Appl. Alg., 52 (1988), 219-226.
[2] G. Bergman, On Jacobson radicals of graded rings, preprint.
[3] M. Cohen and S. Montgomery, Group-graded rings, smash products and group actions, T.A.M.S., 282 (1984), 237-258.
[4] N. J. Divinsky, Rings and Radicals, University of Toronto Press, 1965.
[5] B. Gardner and P. Stewart, Reflected radical classes, Acta Math. Acad. Sci. Hung., 28 (1976), 293-298.
[6] K. R. Goodearl, Von Neumann Regular Rings, Pitman (London, 1979).
[7] C. Năstăsescu and F. Van Oystaeyen, Graded Ring Theory, Math. Library Vol. 28, North Holland (Amsterdam, 1982).
[8] C. Năstăsescu and F. Van Oystaeyen, The strongly prime radical of graded rings, Bull. Soc. Math. Belgique, Ser. B 36 (1984), 243-251.
[9] M. Parmenter, D. Passman and P. Stewart, The strongly prime radical of crossed products, Comm. in Algebra, 12 (1984), 1099-1113.
(Received March 10, 1988)

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
MOUNT ALLISON UNIVERSITY
SACKVILLE, N.B., CANADA EOA 3CO

DEPARTMENT OF MATHEMATICS, STATISTICS
AND COMPUTING SCIENCE
DALHOUSIE UNIVERSITY
HALIFAX, N.S., CANADA B3H 3J5

COMMUTATIVITY RESULTS FOR PERIODIC RINGS

H. ABU-KHUZAM (Beirut)

A theorem of Herstein [8] states that a ring R which satisfies the identity $(x y)^{n}=x^{n} y^{n}$, where n is a fixed positive integer greater than 1 , must have nil commutator ideal. In [1], the author proved that if n is a fixed positive integer greater than 1 , and R is an $n(n-1)$-torsion-free ring with identity such that $(x y)^{n}=x^{n} y^{n}$ for all x, y in R, then R is commutative. In [7], Gupta proved that if R is a semiprime ring satisfying $(x y)^{2}-x^{2} y^{2} \in Z$ for all x, y in R, where Z is the center of R, then R is commutative. Recently [3], it was proved that a semiprime ring R such that for each x in R there exists a positive integer $n=n(x)>1$ such that $(x y)^{n}-x^{n} y^{n} \in Z$ and $\left(x^{2} y\right)^{n}-x^{2 n} y^{n} \in Z$ for all y in R, then R is commutative. In this direction we prove Theorem 1 and Theorem 2 below.
R is called periodic if for every x in R, there exists distinct positive integers $m=m(x), n=n(x)$ such that $x^{m}=x^{n}$. By a theorem of Chacron (see [6, Theorem 1]), R is periodic if and only if for each $x \in R$, there exists a positive integer $k=k(x)$ and a polynomial $f(\lambda)=f_{x}(\lambda)$ with integer coefficients such that $x^{k}=x^{k+1} f(x)$.

Throughout this note, R is an associative ring, Z denotes the center of R, N denotes the set of nilpotent elements of R, and $[x, y]$ denotes the commutator $x y-y x$.

We start with the following lemmas. Lemma 1 is well known, Lemma 2 is proved in [5], Lemma 3 is proved in [4], and Lemma 4 is a result proved in [2].

Lemma 1. If $[x,[x, y]]=0$, then $\left[x^{k}, y\right]=k x^{k-1}[x, y]$ for all integers $k \geqq 1$.

Lemma 2. If R is a periodic ring, then R has each of the following properties:
(a) For each $x \in R$, some power of x is idempotent.
(b) For each $x \in R$, there exists an integer $k=k(x)$ such that $x-x^{k}$ is nilpotent.
(c) If $f: R \rightarrow R^{*}$ is an epimorphism, then $f(N)$ coincides with the set of nilpotent elements of R^{*}.
(d) If N is central, then R is commutative (Herstein).

Lemma 3. Let R be a periodic ring. If N is commutative, then the commutator ideal of R is nil, and N forms an ideal of R.

Lemma 4. Let R be a periodic ring such that N is commutative. Suppose that for each x in R and a in N, there exists an integer $n=n(x, a) \geqq 1$ such that $\left[x^{n},\left[x^{n}, a\right]\right]=0$ and $\left[x^{n+1},\left[x^{n+1}, a\right]\right]=0$. Then R is commutative.

Now we will state and prove our first theorem.
Theorem 1. Let n be a positive integer and let R be an $n(n+1)$-torsionfree periodic ring such that $(x y)^{n}-y^{n} x^{n} \in Z$ and $(x y)^{n+1}-y^{n+1} x^{n+1} \in Z$. If N is commutative, then R is commutative.

Proof. By Lemma 3, the set N of nilpotent elements of R is an ideal of R, and since N is commutative, we have

$$
\begin{equation*}
N^{2} \subseteq Z \tag{1}
\end{equation*}
$$

Let e be an idempotent element of R, and let x be any element in R. From the hypothesis

$$
(e(e+e x-e x e))^{n}-(e+e x-e x e)^{n} e^{n} \in Z
$$

thus

$$
(e+e x-e x e)-(e+e x-e x e) e \in Z
$$

and hence $(e x-e x e) \in Z$. This implies that $e(e x-e x e)=(e x-e x e) e$ and hence $e x=e x e$. Similarly, $x e=e x e$. Thus $e x=x e$, and

$$
\begin{equation*}
\text { the idempotent elements of } R \text { are central. } \tag{2}
\end{equation*}
$$

Let x and y be any two elements of R. Then by the hypothesis,

$$
\begin{equation*}
(x y)^{n}-y^{n} x^{n}=z_{1} \in Z \quad \text { and } \quad(y x)^{n}-x^{n} y^{n}=z_{2} \in Z \tag{3}
\end{equation*}
$$

Now $(x y)^{n} x=x(y x)^{n}$ and using (3), this implies that $\left(y^{n} x^{n}+z_{1}\right) x=$ $=x\left(x^{n} y^{n}+z_{2}\right)$. So $x^{n+1} y^{n}-y^{n} x^{n+1}=\left(z_{1}-z_{2}\right) x$. Thus,

$$
\begin{equation*}
\left[x^{n+1},\left[x^{n+1}, y^{n}\right]\right]=0 \quad \text { for all } \quad x, y \text { in } R . \tag{4}
\end{equation*}
$$

Let $a \in N$, put $y=a+1$ in (4), and use the fact that $N^{2} \subseteq Z$ in (1) to get that $n\left[x^{n+1},\left[x^{n+1}, a\right]\right]=0$. Since R is n-torsion-free, this implies that

$$
\begin{equation*}
\left[x^{n+1},\left[x^{n+1}, a\right]\right]=0 \quad \text { for all } \quad x \in R, a \in N \tag{5}
\end{equation*}
$$

Repeating the above process from (3) using the hypothesis $(x y)^{n+1}-$ $-y^{n+1} x^{n+1} \in Z$ we get

$$
\begin{equation*}
\left[x^{n+2},\left[x^{n+2}, a\right]\right]=0 \quad \text { for all } \quad x \in R, a \in N \tag{6}
\end{equation*}
$$

Now, using (5), (6), and Lemma 4, we see that R must be commutative. This completes the proof of Theorem 1.

The following example shows that the analogue of Theorem 1 is not true if the condition " $(x y)^{n}-y^{n} x^{n} \in Z$ and $(x y)^{n+1}-y^{n+1} x^{n+1} \in Z$ " is replaced by the condition " $(x y)^{n}-x^{n} y^{n} \in Z$ and $(x y)^{n+1}-x^{n+1} y^{n+1} \in Z$ ".

Example. Let $R=\left\{\left.\left(\begin{array}{cc}a & b \\ 0 & 0\end{array}\right) \right\rvert\, a, b \in G F(3)\right\}$. Clearly, R is periodic since it is finite, and the set of nilpotent elements N is commutative. It is easy to verify that $(x y)^{4}=x^{4} y^{4}$ and $(x y)^{5}=x^{5} y^{5} . R$ is also (4) (5)-torsion-free but not commutative.

In Theorem 2 below, we prove that if only the condition " $(x y)^{n+1}-$ $-y^{n+1} x^{n+1} \in Z$ " is replaced by the condition " $(x y)^{n+1}-x^{n+1} y^{n+1} \in Z$ " in Theorem 1, then the result still holds. In preparation for the proof of Theorem 2, we need to prove the following lemma.

Lemma 5. Let R be a ring with characteristic $q \neq 0$ and let n be a positive integer. Let $f: R \rightarrow R^{*}$ be an epimorphism. If R is n-torsion-free, then R^{*} is n-torsion-free.

Proof. Let d be the greatest common divisor of q and n. This implies that $q=k_{1} d$ and $n=k_{2} d$ for some positive integers k_{1} and k_{2}. If $d \neq 1$, then Char $R=q \neq k_{1}$, and hence there exists an element $y \in R$ such that $k_{1} y \neq 0$. Now

$$
n\left(k_{1} y\right)=\left(k_{2} d\right) k_{1} y=k_{2} q y=0 .
$$

This contradicts the hypothesis that R is n-torsion-free. So $d=1$ and $(q, n)=1$. Since $f: R \rightarrow R^{*}$ is an epimorphism, then for each $x^{*} \in R^{*}$ there exists an element $x \in R$ such that $x^{*}=f(x)$. Now

$$
q x^{*}=q f(x)=f(q x)=f(0)=0 \quad \text { for all } \quad x^{*} \in R^{*} .
$$

So Char $R^{*}=q^{\prime}$, where q^{\prime} divides q. Hence $\left(q^{\prime}, n\right)=1$ since $(q, n)=1$. This implies that $r q^{\prime}+s n=1$ for some integers r and s. If $n y^{*}=0$ for some $y^{*} \in R^{*}$, then

$$
y^{*}=\left(r q^{\prime}+s n\right) y^{*}=r\left(q^{\prime} y^{*}\right)+s\left(n y^{*}\right)=0 .
$$

So R^{*} is n-torsion-free.
Theorem 2. Let n be a positive integer and let R be an $n(n+1)$-torsionfree periodic ring such that $(x y)^{n}-y^{n} x^{n} \in Z$ and $(x y)^{n+1}-x^{n+1} y^{n+1} \in Z$. If N is commutative, then R is commutative.

Proof. As in Theorem 1, since N is a commutative ideal, we have

$$
\begin{equation*}
N^{2} \cong Z \tag{7}
\end{equation*}
$$

Also, since $(x y)^{n}-y^{n} x^{n} \in R$ and R is n-torsion-free, the proofs of (2) and (5) in Theorem 1 still hold, and so

$$
\begin{equation*}
\text { the idempotents of } R \text { are central, } \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[x^{n+1},\left[x^{n+1}, a\right]\right]=0 \quad \text { for all } \quad x \in R, a \in N \tag{9}
\end{equation*}
$$

R is isomorphic to a subdirect sum of subdirectly irreducible rings R_{α}. Since R_{α} is a homomorphic image of R, it is easy to verify that each R_{α} satisfies all the hypotheses of R except possibly that R_{α} may not be $n(n+1)$-torsion-free.
We now distinguish two cases.
Case 1: R_{α} does not have an identity. Then, since R_{α} is periodic, Lemma 2(a) implies that for each $x_{\alpha} \in R_{\alpha}$, there exists a positive integer $t=t\left(x_{\alpha}\right)$ such that x_{α}^{t} is idempotent. By (10), the proof of (8) holds for R_{α}, and x_{α}^{t} is a central idempotent. But R_{α} is subdirectly irreducible and has no identity in this case. So $x_{\alpha}^{t}=0$ and R_{α} is a nil ring. This implies that R_{α} is commutative since the set of nilpotent elements of R_{α} is commutative from (10).

Case 2: R_{α} has an identity element 1_{α}. Since R_{α} is periodic, $\left(2.1_{\alpha}\right)^{i}=$ $=\left(2.1_{\alpha}\right)^{j}$ for distinct positive integers i and j, and hence Char $R_{\alpha}=q_{\alpha} \neq 0$. So by Lemma $5, R_{\alpha}$ is $n(n+1)$-torsion-free. This implies, using (10), that R_{α} satisfies all the hypotheses of R, and thus we may assume that R is subdirectly irreducible with identity 1.
Again as in Case 1, for each $x \in R$, there exists a positive integer $t=t(x)$ such that x^{t} is a central idempotent. Using (11), we have $x^{t}=0$ or $x^{t}=1$. Thus,

$$
\begin{equation*}
\text { every element of } R \text { is either nilpotent or invertible. } \tag{12}
\end{equation*}
$$

Let x and y be any two elements of R. Then by the hypothesis,

$$
\begin{equation*}
(x y)^{n+1}-x^{n+1} y^{n+1}=z \in Z \quad \text { and } \quad(y x)^{n+1}-y^{n+1} x^{n+1}=z^{\prime} \in Z \tag{13}
\end{equation*}
$$

Now $(x y)^{n+1} x=x(y x)^{n+1}$ and using (13), this implies that $\left(x^{n+1} y^{n+1}+z\right) x=$ $=x\left(y^{n+1} x^{n+1}+z^{\prime}\right)$. So $x^{n+1} y^{n+1} x-x y^{n+1} x^{n+1}=\left(z^{\prime}-z\right) x$. Thus,

$$
\begin{equation*}
x\left(x^{n+1} y^{n+1} x-x y^{n+1} x^{n+1}\right)=\left(x^{n+1} y^{n+1} x-x y^{n+1} x^{n+1}\right) x \tag{14}
\end{equation*}
$$

If x is invertible, then (14) implies that $\left[x,\left[x^{n}, y^{n+1}\right]\right]=0$ and hence,

$$
\begin{equation*}
\left[x^{n},\left[x^{n}, y^{n+1}\right]\right]=0, \quad \text { where } x \text { is invertible and } \quad y \in R \tag{15}
\end{equation*}
$$

If x is nilpotent, then since N is commutative and the commutator ideal is nil, we have,

$$
\begin{equation*}
\left[x^{n},\left[x^{n}, y^{n+1}\right]\right]=0 \quad \text { where } x \text { is nilpotent and } \quad y \in R \tag{16}
\end{equation*}
$$

Now, using (12), (15), and (16) we have,

$$
\begin{equation*}
\left[x^{n},\left[x^{n}, y^{n+1}\right]\right]=0 \quad \text { for all } \quad x, y \text { in } R \tag{17}
\end{equation*}
$$

Let $a \in N$, put $y=a+1$ in (17), and use the fact that $N^{2} \subseteq Z$ in (7) to get that $(n+1)\left[x^{n},\left[x^{n}, a\right]\right]=0$. Since R is $(n+1)$-torsion-free, this implies that

$$
\begin{equation*}
\left[x^{n},\left[x^{n}, a\right]\right]=0 \quad \text { for all } \quad x \in R, a \in N \tag{18}
\end{equation*}
$$

Now, using (9), (18), and Lemma 4, we see that R must be commutative. This completes the proof of Theorem 2.

References

[1] H. Abu-Khuzam, A commutativity theorem for rings, Math. Japonica, 25 (1980), 593595.
[2] H. Abu-Khuzam, A commutativity theorem for periodic rings, Math. Japonica, 32 (1987), 1-3.
[3] H. Abu-Khuzam and Adil Yaqub, Commutativity of certain semiprime rings, Studia Sci. Math. Hungar. (to appear).
[4] H. E. Bell, Some commutativity results for periodic rings, Acta Math. Acad. Sci. Hung., 28 (1976), 279-283.
[5] H. E. Bell, A commutativity study for periodic ring, Pacific J. Math., 70 (1977), 29-36.
[6] H. E. Bell, On commutativity of periodic rings and near-rings, Acta Math. Acad. Sci. Hung., 36 (1980), 293-302.
[7] V. Gupta, Some remarks on the commutativity of rings, Acta Math. Acad. Sci. Hung., 36 (1980), 233-236.
[8] I. N. Herstein, Power maps in rings, Michigan Math. J., 8 (1961), 29-32.
(Received March 14, 1988)

DEPARTMENT OF MATHEMATICS AMERICAN UNIVERSITY OF BEIRUT BEIRUT LEBANON

UMKEHRSÄTZE FÜR RIESZ-VERFAHREN ZUR SUMMIERUNG VON DOPPELREIHEN

S. BARON (Ramat-Gan) und H. TIETZ (Stuttgart)

1. Einleitung

Es seien p und q zwei nichtnegative reelle Zahlen, $\lambda=\left\{\lambda_{k}\right\}$ und $\mu=\left\{\mu_{\ell}\right\}$ zwei streng monoton gegen ∞ strebende Folgen nichtnegativer Zahlen. Bei vorgegebener Doppelreihe

$$
\begin{equation*}
\sum_{k, \ell=0}^{\infty} u_{k \ell} \tag{1.1}
\end{equation*}
$$

mit komplexen Gliedern und der Teilsummenfolge $\left\{s_{m n}\right\}$ mit $s_{m n}:=\sum_{k, \ell=0}^{m, n} u_{k \ell}$ sei für alle $x, y>0$

$$
\begin{equation*}
R(x, y):=\frac{1}{x^{p} y^{q}} \sum_{\lambda_{k}, \mu_{\ell}<x, y}\left(x-\lambda_{k}\right)^{p}\left(y-\mu_{\ell}\right)^{q} u_{k \ell} \tag{1.2}
\end{equation*}
$$

und für alle $m, n=0,1, \ldots$

$$
\begin{equation*}
R_{m n}:=\frac{1}{\lambda_{m+1}^{p} \mu_{n+1}^{q}} \sum_{k, \ell=0}^{m, n}\left(\lambda_{m+1}-\lambda_{k}\right)^{p}\left(\mu_{n+1}-\mu_{\ell}\right)^{q} u_{k \ell} \tag{1.3}
\end{equation*}
$$

Wir verwenden schon jetzt die Bezeichnungen aus Abschnitt 2. Die Reihe (1.1) heißt beschränkt R -summierbar zum Wert σ, kurz bR- $\sum u_{k \ell}=\sigma$, wenn gilt $R(x, y)=O(1) \wedge R(x, y) \rightarrow \sigma$ für $x, y \rightarrow \infty$; sie heißt beschränkt R^{*} summierbar zum Wert σ, kurz $\mathrm{bR}^{*}-\sum u_{k \ell}=\sigma$, wenn gilt $R_{m n}=O(1) \wedge$ $\wedge R_{m n} \rightarrow \sigma$ für $m, n \rightarrow \infty$. Die Reihe (1.1) heißt absolut R-summierbar zum Wert σ, kurz aR- $\sum u_{k \ell}=\sigma$, wenn gilt $R(x, y)=\Omega(1) \wedge R(x, y) \rightarrow \sigma$ für $x, y \rightarrow \infty$; sie heißt absolut R^{*}-summierbar zum Wert σ, kurz $\mathrm{aR}^{*}-\sum u_{k \ell}=\sigma$, wenn gilt $R_{m n}=\Omega(1) \wedge R_{m n} \rightarrow \sigma$ für $m, n \rightarrow \infty$.

Für $p=q=1$ ist durch (1.3) das Verfahren der bewichteten Mittel definiert, das für $\lambda=\{k\}$ und $\mu=\{\ell\}$ gerade das $(C, 1,1)$-Mittel

$$
\begin{equation*}
\frac{1}{(m+1)(n+1)} \sum_{k, \ell=0}^{m, n} s_{k \ell} \tag{1.4}
\end{equation*}
$$

der Folge $\left\{s_{m n}\right\}$ ergibt.
Außer einem "high indices theorem" für R von Mears [8], auf das wir in Abschnitt 4 zurückkommen, und einigen Resultaten von Burljaĭ [3, 4] für bewichtete Mittel, wurden für Riesz-Verfahren unseres Wissens Umkehrsätze nur für die speziellen ($C, 1,1$)-Mittel (1.4), meist in allgemeinerem Rahmen, behandelt. Neben Knopp [6] und Meyer-König [9] (sowie den bei diesen Autoren genannten Arbeiten) sind hier zum Beispiel noch Agnew [1], Topuriya [19], Čelidze [5], Obrechkoff [13] und Slepenčuk [15, 16, 17] zu nennen.

Ausgangspunkt unserer Untersuchungen ist der folgende Umkehrsatz von Knopp [6], S. 575-578, für beschränkte ($C, 1,1$)-Summierbarkeit.

Satz K. Aus $\mathrm{b}(C, 1,1)-\sum u_{k \ell}=\sigma$ folgt $\mathrm{b}-\sum u_{k \ell}=\sigma$, wenn die folgenden zwei Bedingungen erfüllt sind:

$$
\begin{align*}
& \sum_{k=1}^{m} k \sum_{\ell=0}^{n} u_{k \ell}=o_{b}(m+1), \tag{1.5}\\
& \sum_{\ell=1}^{n} \ell \sum_{k=0}^{m} u_{k \ell}=o_{b}(n+1) . \tag{1.6}
\end{align*}
$$

In Abschnitt 3 wird Satz K für beschränkte und für absolute R*-Summierbarkeit verallgemeinert. Durch Spezialisierung ergeben sich außer Satz K Resultate von Young [20] und Obrechkoff [13]. In Abschnitt 4 beweisen wir ein "high indices theorem" für beschränkte und für absolute R-Summierbarkeit. Unsere Methoden sind neben beschränkter und absoluter Summierbarkeit auch auf andere Summierbarkeitsbegriffe für Doppelfolgen anwendbar. Wir werden darauf allerdings nicht näher eingehen.

2. Bezeichnungen

Wenn nichts Besonderes gesagt ist, sollen alle Indizes von 0 an laufen. Terme mit einem negativen Index sind gleich 0 zu setzen.

Ist $\left\{x_{n}\right\}$ eine Folge komplexer Zahlen, so sei $\bar{\Delta} x_{n}:=x_{n}-x_{n-1}$ für alle n. Ist $\left\{y_{n}\right\}$ eine weitere Folge komplexer Zahlen mit $y_{n} \neq 0$ für alle n, so bedeute $x_{n}=o\left(y_{n}\right), x_{n}=O\left(y_{n}\right)$ und $x_{n}=\Omega\left(y_{n}\right)$ beziehentlich $x_{n} / y_{n} \rightarrow 0$, $\sup \left|x_{n} / y_{n}\right|<\infty$ und $\sum\left|\bar{\Delta}\left(x_{n} / y_{n}\right)\right|<\infty$.

Ist $\left\{x_{m n}\right\}$ eine Doppelfolge komplexer Zahlen, so sei $\bar{\Delta}_{m} x_{m n}:=x_{m n}$ -$-x_{m-1, n}, \bar{\Delta}_{n} x_{m n}:=x_{m n}-x_{m, n-1}$ und $\bar{\Delta}_{m n} x_{m n}:=\bar{\Delta}_{m}\left(\bar{\Delta}_{n} x_{m n}\right)=$ $=\bar{\Delta}_{n}\left(\bar{\Delta}_{m} x_{m n}\right)$. Ist $\left\{y_{m n}\right\}$ eine weitere Doppelfolge komplexer Zahlen mit $y_{m n} \neq 0$ für alle m, n, so bedeute $x_{m n}=o\left(y_{m n}\right), x_{m n}=O\left(y_{m n}\right), x_{m n}=$ $=o_{b}\left(y_{m n}\right)$ und $x_{m n}=\Omega\left(y_{m n}\right)$ beziehentlich $x_{m n} / y_{m n} \rightarrow 0$ für $m, n \rightarrow \infty$ (im Pringsheimschen Sinne), sup $\left|x_{m n} / y_{m n}\right|<\infty, x_{m n}=o\left(y_{m n}\right) \wedge x_{m n}=O\left(y_{m n}\right)$ und $\sum\left|\bar{\Delta}_{m n}\left(x_{m n} / y_{m n}\right)\right|<\infty$.

Für die Reihe (1.1) bedeute b- $\sum u_{k \ell}=\sigma$ so viel wie $s_{m n}=O(1) \wedge$ $\wedge s_{m n} \rightarrow \sigma$ und bedeute a- $\sum u_{k \ell}=\sigma$ dasselbe wie $s_{m n}=\Omega(1) \wedge s_{m n} \rightarrow \sigma$.

Auch für jede auf $(0, \infty) \times(0, \infty)$ definierte Funktion f ist $f(x, y) \rightarrow \sigma$ für $x, y \rightarrow \infty$ im üblichen ("Pringsheimschen") Sinne gemeint, bedeutet $f(x, y)=O(1)$ dasselbe wie sup $|f(x, y)|<\infty$ und $f(x, y)=\Omega(1)$, daß für jede Wahl der Indexfolgen $\left\{x_{m}\right\},\left\{y_{n}\right\}$ und mit $t_{m n}:=f\left(x_{m}, y_{n}\right)$ gilt $t_{m n}=\Omega(1)$.

3. Umkehrsätze für R^{*}

Wenn nichts Besonderes gesagt ist, sollen die Zahlen p und q immer ganz sein. Aus (1.3) ergibt sich dann durch Anwendung der binomischen Formel

$$
R_{m n}=\sum_{r, s=0}^{p, q}\binom{p}{r}\binom{q}{s}(-1)^{r+s} \frac{1}{\lambda_{m+1}^{r} \mu_{n+1}^{s}} \sum_{k, \ell=0}^{m, n} \lambda_{k}^{r} \mu_{\ell}^{s} u_{k \ell}
$$

Spalten wir hier den Term für $(r, s)=(0,0) \mathrm{ab}$, so erhalten wir für die Teilsummen der Reihe (1.1) die Gleichung

$$
s_{m n}=R_{m n}-\sum_{\substack{r, s=0 \\(r, s) \neq(0,0)}}^{p, q}\binom{p}{r}\binom{q}{s}(-1)^{r+s} \frac{1}{\lambda_{m+1}^{p} \mu_{n+1}^{q}} \sum_{k, \ell=0}^{m, n} \lambda_{k}^{r} \mu_{\ell}^{s} u_{k \ell}
$$

aus der man (bei Teil b) wegen der absoluten Permanenz von R^{*}) folgenden Hilfssatz abliest.

Hilfssatz 3.1. a) Aus $\mathrm{bR}^{*}-\sum u_{k \ell}=\sigma$ folgt $\mathrm{b}-\sum u_{k \ell}=\sigma$, wenn für alle $(r, s) \in\{0, \ldots, p\} \times\{0, \ldots, q\} \backslash\{(0,0)\}$ gilt

$$
\begin{equation*}
\sum_{k, \ell=0}^{m, n} \lambda_{k}^{r} \mu_{\ell}^{s} u_{k \ell}=o_{b}\left(\lambda_{m+1}^{r} \mu_{n+1}^{s}\right) \tag{3.1}
\end{equation*}
$$

b) Aus aR*- $\sum u_{k \ell}=\sigma$ folgt $\mathrm{a}-\sum u_{k \ell}=\sigma$, wenn für alle $(r, s) \in$ $\in\{0, \ldots, p\} \times\{0, \ldots, q\} \backslash\{(0,0)\}$ gilt

$$
\begin{equation*}
\sum_{k, \ell=0}^{m, n} \lambda_{k}^{r} \mu_{\ell}^{s} u_{k \ell}=\Omega\left(\lambda_{m+1}^{r} \mu_{n+1}^{s}\right) \tag{3.2}
\end{equation*}
$$

Mit Hilfssatz 3.1 läßt sich folgender Umkehrsatz für R* beweisen.
SATZ 3.2. a) Aus $\mathrm{bR}^{*}-\sum u_{k \ell}=\sigma$ folgt $\mathrm{b}-\sum u_{k \ell}=\sigma$, wenn für jedes $r \in\{1, \ldots, p\}$ und jedes $s \in\{1, \ldots, q\}$ die folgenden zwei Bedingungen erfüllt sind:

$$
\begin{equation*}
\sum_{k=0}^{m} \lambda_{k}^{r} \sum_{\ell=0}^{n} u_{k \ell}=o_{b}\left(\lambda_{m+1}^{r}\right) \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{\ell=0}^{n} \mu_{\ell}^{s} \sum_{k=0}^{m} u_{k \ell}=o_{b}\left(\mu_{n+1}^{s}\right) \tag{3.4}
\end{equation*}
$$

b) Aus $\mathrm{aR}^{*}-\sum u_{k \ell}=\sigma$ folgt $\mathrm{a}-\sum u_{k \ell}=\sigma$, wenn für jedes $r \in\{1, \ldots, p\}$ und jedes $s \in\{1, \ldots, q\}$ die folgenden zwei Bedingungen erfüllt sind:

$$
\begin{align*}
& \sum_{k=0}^{m} \lambda_{k}^{r} \sum_{\ell=0}^{n} u_{k \ell}=\Omega\left(\lambda_{m+1}^{r}\right), \tag{3.5}\\
& \sum_{\ell=0}^{n} \mu_{\ell}^{s} \sum_{k=0}^{m} u_{k \ell}=\Omega\left(\mu_{n+1}^{s}\right) . \tag{3.6}
\end{align*}
$$

Beweis. a) Nach Hilfssatz 3.1 genügt es zu zeigen, daß (3.1) erfüllt ist. Für die Fälle $r>0 \wedge s=0$ und $r=0 \wedge s>0$ ist dies (3.3) bzw. (3.4). Also bleibt zu zeigen, daß (3.1) auch für $(r, s) \in\{1, \ldots, p\} \times\{1, \ldots, q\}$ gilt. Dazu sei

$$
\begin{equation*}
\eta_{m n}:=\lambda_{m+1}^{-r} \sum_{k=0}^{m} \lambda_{k}^{r} \sum_{\ell=0}^{n} u_{k \ell}, \tag{3.7}
\end{equation*}
$$

nach (3.3) also $\eta_{m n}=o_{b}(1)$. Da die Folge μ monoton gegen ∞ strebt, ergibt sich hieraus

$$
\begin{equation*}
\mu_{n+1}^{-s} \sum_{\nu=0}^{n}\left(\mu_{\nu+1}^{s}-\mu_{\nu}^{s}\right) \eta_{m \nu}=o_{b}(1), \tag{3.8}
\end{equation*}
$$

also auch

$$
\begin{equation*}
\eta_{m n}-\mu_{n+1}^{-s} \sum_{\nu=0}^{n}\left(\mu_{\nu+1}^{s}-\mu_{\nu}^{s}\right) \eta_{m \nu}=o_{b}(1) . \tag{3.9}
\end{equation*}
$$

Die mit $\lambda_{m+1}^{r} \mu_{n+1}^{s}$ multiplizierte linke Seite in (3.9) ist aber gerade

$$
\begin{gathered}
\mu_{n+1}^{s} \sum_{k=0}^{m} \lambda_{k}^{r} \sum_{\ell=0}^{n} u_{k \ell}-\sum_{\nu=0}^{n}\left(\mu_{\nu+1}^{s}-\mu_{\nu}^{s}\right) \sum_{k=0}^{m} \lambda_{k}^{r} \sum_{\ell=0}^{\nu} u_{k \ell}= \\
=\sum_{k=0}^{m} \lambda_{k}^{r}\left\{\mu_{n+1}^{s} \sum_{\ell=0}^{n} u_{k \ell}-\sum_{\ell=0}^{n}\left(\mu_{n+1}^{s}-\mu_{\ell}^{s}\right) u_{k \ell}\right\}=\sum_{k, \ell=0}^{m, n} \lambda_{k}^{r} \mu_{\ell}^{s} u_{k \ell},
\end{gathered}
$$

so daß (3.1) erfüllt ist.
b) In Analogie zum Beweis von a) ist nur zu zeigen, daß (3.2) für $(r, s) \in$ $\in\{1, \ldots, p\} \times\{1, \ldots, q\}$ gilt. Mit $\eta_{m n}$ aus (3.7) ist wegen (3.5) zunächst $\eta_{m n}=\Omega(1)$, und hieraus folgt in Analogie zu (3.8) wegen der absoluten

Permanenz der bewichteten Mittel (vgl. Mohanty [11], Lemma 4, oder [2], Korollar 17.1) jetzt

$$
\mu_{n+1}^{-s} \sum_{\nu=0}^{n}\left(\mu_{\nu+1}^{s}-\mu_{\nu}^{s}\right) \eta_{m \nu}=\Omega(1),
$$

wenn man $\eta_{m 0}=\Omega(1)$ beachtet. Damit ergibt sich der Rest des Beweises wie bei a).

Wegen der Monotonieeigenschaften von R^{*} (vgl. Mears [8] und Obrechkoff [12]) ist Satz 3.2 auch anwendbar, wenn p und q nicht ganz sind. Ist etwa p nicht ganz, so muß man nur (3.3) und (3.5) für jedes $r \in\{1, \ldots,[p+1]\}$ fordern. Entsprechend ist zu verfahren, wenn q nicht ganz ist.

Für $\mathrm{R}^{*}=(C, 1,1)$ ergibt Satz 3.2.a) gerade den Satz K, während Satz 3.2.b) folgende Verallgemeinerung eines Resultats von Obrechkoff [13], Satz 4 , liefert.

Korollar 3.3. Aus a $(C, 1,1)-\sum u_{k \ell}=\sigma$ folgt $\mathrm{a}-\sum u_{k \ell}=\sigma$, wenn die folgenden zwei Bedingungen erfüllt sind:

$$
\begin{align*}
\sum_{k=1}^{m} k \sum_{\ell=0}^{n} u_{k \ell} & =\Omega(m+1), \tag{3.10}\\
\sum_{\ell=1}^{n} \ell \sum_{k=0}^{m} u_{k \ell} & =\Omega(n+1) . \tag{3.11}
\end{align*}
$$

Durch (3.3) und (3.4) bzw. (3.5) und (3.6) sind jeweils $p+q$ Bedingungen gegeben. Die im folgenden Satz angegebenen stärkeren Umkehrbedingungen haben den Vorteil, von p und q unabhängig zu sein und damit für jedes Verfahren R* zu gelten.

SATZ 3.4. a) Aus $\mathrm{bR}^{*}-\sum u_{k \ell}=\sigma$ folgt $\mathrm{b}-\sum u_{k \ell}=\sigma$, wenn die folgenden zwei Bedingungen erfüllt sind:

$$
\begin{align*}
& \lambda_{k} \sum_{\ell=0}^{n} u_{k \ell}=o_{b}\left(\bar{\Delta} \lambda_{k}\right), \tag{3.12}\\
& \mu_{\ell} \sum_{k=0}^{m} u_{k \ell}=o_{b}\left(\bar{\Delta} \mu_{\ell}\right) .
\end{align*}
$$

b) Aus aR*- $\sum u_{k \ell}=\sigma$ folgt $\mathrm{a}-\sum u_{k \ell}=\sigma$, wenn die Folgenden drei Bedingungen erfüllt sind:

$$
\begin{equation*}
\lambda_{k}=\Omega\left(\lambda_{k+1}\right), \quad \mu_{\ell}=\Omega\left(\mu_{\ell+1}\right), \tag{3.14}
\end{equation*}
$$

$$
\begin{align*}
& \lambda_{k} \sum_{\ell=0}^{n} u_{k \ell}=\Omega\left(\bar{\Delta} \lambda_{k}\right), \tag{3.15}\\
& \mu_{\ell} \sum_{k=0}^{m} u_{k \ell}=\Omega\left(\bar{\Delta} \mu_{\ell}\right) .
\end{align*}
$$

Beweis. a) Wir verwenden Satz 3.2 und zeigen, daß aus (3.12) für jedes $r>0$ die Bedingung (3.3) folgt. Sei also $r>0$ und

$$
L_{m}:=\sum_{k=0}^{m}\left(\bar{\Delta} \lambda_{k}\right) \lambda_{k}^{r-1} .
$$

Für $\eta_{m n}$ aus (3.7) erhalten wir dann

$$
\begin{equation*}
\eta_{m n}=\left\{L_{m}^{-1} \sum_{k=0}^{m}\left(\bar{\Delta} \lambda_{k}\right) \lambda_{k}^{r-1} \cdot \frac{\lambda_{k}}{\bar{\Delta} \lambda_{k}} \sum_{\ell=0}^{n} u_{k \ell}\right\} \cdot L_{m} \lambda_{m+1}^{-r} \tag{3.17}
\end{equation*}
$$

wobei der Ausdruck in der geschweiften Klammer wegen (3.12) und $L_{m} \rightarrow \infty$ von der Form $o_{b}(1)$ ist, und wegen der Monotonie der Folge λ noch $L_{m} \lambda_{m+1}^{-r}=$ $=O(1)$ gilt. Damit ist (3.3) gezeigt. Analog folgt aus (3.13) für jedes $s>0$ die Bedingung (3.4).
b) Wieder verwenden wir Satz 3.2 und zeigen, daß aus (3.15) und dem ersten Teil von (3.14) für jedes $r>0$ die Bedingung (3.5) folgt. Jetzt ist in (3.17) der Ausdruck in der geschweiften Klammer wegen (3.15) und der absoluten Permanenz der bewichteten Mittel von der Form $\Omega(1)$, und wegen des ersten Teils von (3.14) gilt $L_{m} \lambda_{m+1}^{-r}=\Omega(1)$ nach einem Resultat von Pati [14], Lemma 2 (vgl. [18], Hilfssatz 5.3). Damit ergibt sich $\eta_{m n}=\Omega(1)$ aus dem nachfolgenden Hilfssatz 3.5. Analog folgt aus (3.16) und dem zweiten Teil von (3.14) für jedes $s>0$ die Bedingung (3.6).

Hilfssatz 3.5. Aus $x_{m n}=\Omega(1)$ und $y_{m}=\Omega(1)$ folgt $x_{m n} y_{m}=\Omega(1)$.
Beweis. Es ist

$$
\bar{\Delta}_{m n}\left(x_{m n} y_{m}\right)=\left(\bar{\Delta}_{n} x_{m n}\right) \bar{\Delta} y_{m}+\left(\bar{\Delta}_{m n} x_{m n}\right) y_{m-1}
$$

und da $y_{m-1}=O(1)$ aus $y_{m}=\Omega(1)$ folgt, genügt es, noch

$$
\sum_{n=0}^{\infty}\left|\bar{\Delta}_{n} x_{m n}\right|=O(1) \text { für } \quad m \rightarrow \infty
$$

zu zeigen. Dies folgt aber wegen $x_{m n}=\Omega(1)$ aus

$$
\sum_{n=0}^{\infty}\left|\bar{\Delta}_{n} x_{m n}\right|=\sum_{n=0}^{\infty}\left|\sum_{k=0}^{m} \bar{\Delta}_{k}\left(\bar{\Delta}_{n} x_{k n}\right)\right| \leqq \sum_{m, n=0}^{\infty}\left|\bar{\Delta}_{m n} x_{m n}\right|
$$

Für $\mathrm{R}^{*}=(C, 1,1)$ ergibt Satz 3.4.a) ein Ergebnis von Young [20], Abschnitt 17, während Satz 3.4.b) folgende Verallgemeinerung eines Resultats von Obrechkoff [13], Satz 5, liefert.

Korollar 3.6. Aus $\mathrm{a}(C, 1,1)-\sum u_{k \ell}=\sigma$ folgt $\mathrm{a}-\sum u_{k \ell}=\sigma$, wenn die folgenden zwei Bedingungen erfüllt sind:

$$
\begin{align*}
k \sum_{\ell=0}^{n} u_{k \ell} & =\Omega(1), \tag{3.18}\\
\ell \sum_{k=0}^{m} u_{k \ell} & =\Omega(1) . \tag{3.19}
\end{align*}
$$

Da aus bR- $\sum u_{k \ell}=\sigma$ immer $\mathrm{bR}^{*}-\sum u_{k \ell}=\sigma$ und aus aR- $\sum u_{k \ell}=\sigma$ immer $\mathrm{aR}^{*}-\sum u_{k \ell}=\sigma$ folgt, darf in Hilfssatz 3.1 sowie in Satz 3.2 und Satz 3.4 jeweils R^{*} durch R ersetzt werden.

4. Ein "high indices theorem"

In diesem Abschnitt beweisen wir ein "high indices theorem" für das Verfahren R und übertragen dabei eine Beweismethode von Minakshisundaram [10] (vgl. auch [18]) von Einfachfolgen auf Doppelfolgen.

Satz 4.1. Sind die Bedingungen

$$
\lim \inf \frac{\lambda_{m+1}}{\lambda_{m}}>1 \quad \text { und } \quad \lim \inf \frac{\mu_{n+1}}{\mu_{n}}>1
$$

erfüllt, so gilt:
a) Aus bR- $\sum u_{k \ell}=\sigma$ folgt $\mathrm{b}-\sum u_{k \ell}=\sigma$.
b) Aus aR- $\sum u_{k \ell}=\sigma$ folgt $\mathrm{a}-\sum u_{k \ell}=\sigma$.

Beweis. Wir zeigen zunächst, daß

$$
\begin{equation*}
\sum_{k, \ell=0}^{\infty} u_{k \ell}=\sigma \tag{4.1}
\end{equation*}
$$

gilt. Dazu wählen wir $p+1$ Zahlen r_{1}, \ldots, r_{p+1} mit

$$
\begin{equation*}
1<r_{1}<\ldots<r_{p+1}<\liminf \left(\lambda_{m+1} / \lambda_{m}\right) \tag{4.2}
\end{equation*}
$$

und $q+1$ Zahlen s_{1}, \ldots, s_{q+1} mit

$$
\begin{equation*}
1<s_{1}<\ldots<s_{q+1}<\liminf \left(\mu_{n+1} / \mu_{n}\right) . \tag{4.3}
\end{equation*}
$$

Ferner wählen wir m_{0} mit $\lambda_{m+1} / \lambda_{m}>r_{p+1}$ für alle $m>m_{0}$ und n_{0} mit $\mu_{n+1} / \mu_{n}>s_{q+1}$ für alle $n>n_{0}$. Dann gilt $\lambda_{m}<\lambda_{m} r_{1}<\ldots<\lambda_{m} r_{p+1}<$ $<\lambda_{m+1}$ für alle $m>m_{0}, \mu_{n}<\mu_{n} s_{1}<\ldots<\mu_{n} s_{q+1}<\mu_{n+1}$ für alle $n>n_{0}$,
und wir erhalten mit (1.2) für alle $i=1, \ldots, p+1$, alle $j=1, \ldots, q+1$, alle $m>m_{0}$ und alle $n>n_{0}$ das lineare Gleichungssystem

$$
\begin{equation*}
r_{i}^{p} s_{j}^{q} R\left(\lambda_{m} r_{i}, \mu_{n} s_{j}\right)=\sum_{\alpha, \beta=0}^{p, q} d_{\alpha \beta} R^{(p-\alpha, q-\beta)}\left(\lambda_{m}, \mu_{n}\right) \tag{4.4}
\end{equation*}
$$

mit

$$
d_{\alpha \beta}:=\binom{p}{\alpha}\binom{q}{\beta}\left(r_{i}-1\right)^{\alpha}\left(s_{j}-1\right)^{\beta}
$$

und

$$
R^{(p-\alpha, q-\beta)}\left(\lambda_{m}, \mu_{n}\right):=\frac{1}{\lambda_{m}^{p-\alpha} \mu_{n}^{q-\beta}} \sum_{k, \ell=0}^{m, n}\left(\lambda_{m}-\lambda_{k}\right)^{p-\alpha}\left(\mu_{n}-\mu_{\ell}\right)^{q-\beta} u_{k \ell} .
$$

Um das zu sehen, wende man im Ausdruck für $R\left(\lambda_{m} r_{i}, \mu_{n} s_{j}\right)$ auf $\left[\left(\lambda_{m} r_{i}-\right.\right.$ $\left.\left.-\lambda_{m}\right)+\left(\lambda_{m}-\lambda_{k}\right)\right]^{p}$ die binomische Formel an und verfahre entsprechend mit $\mu_{n} s_{j}-\mu_{\ell}$. Damit haben wir bei festen $m>m_{0}, n>n_{0}$ ein lineares Gleichungssystem für die Unbekannten $R^{(p-\alpha, q-\beta)}\left(\lambda_{m}, \mu_{n}\right)$ mit $\alpha=0, \ldots, p$ und $\beta=0, \ldots, q$, das wir nach $R^{(0,0)}\left(\lambda_{m}, \mu_{n}\right)=s_{m n}$ auflösen wollen. Eine elementare Rechnung zeigt, daß die Koeffizientendeterminante dieses Systems den Wert

$$
\begin{equation*}
D_{r}^{q+1} D_{s}^{p+1} \prod_{\alpha, \beta=0}^{p, q}\binom{p}{\alpha}^{q+1}\binom{q}{\beta}^{p+1} \tag{4.5}
\end{equation*}
$$

hat, wobei D_{r} und D_{s} die Vandermondeschen Determinanten der Zahlen r_{1}, \ldots, r_{p+1} bzw. s_{1}, \ldots, s_{q+1} sind. Insbesondere ist die Koeffizientendeterminante des Systems also von 0 verschieden, und es gibt somit komplexe Zahlen $c_{i j}(i=1, \ldots, p+1 ; j=1, \ldots, q+1)$ mit

$$
\begin{equation*}
s_{m n}=\sum_{i, j=1}^{p+1, q+1} c_{i j} r_{i}^{p} s_{j}^{q} R\left(\lambda_{m} r_{i}, \mu_{n} s_{j}\right) \quad \text { für } \quad m>m_{0}, n>n_{0} . \tag{4.6}
\end{equation*}
$$

Hieraus liest man, da R beschränkt permanent ist, (4.1) ab.
Für a) ist jetzt noch zu zeigen:

$$
\begin{array}{llll}
s_{m n}=O(1) & (m \rightarrow \infty) & \text { für alle } \quad n \in\left\{0, \ldots, n_{0}\right\}, \\
s_{m n}=O(1) & (n \rightarrow \infty) & \text { für alle } & m \in\left\{0, \ldots, m_{0}\right\} . \tag{4.8}
\end{array}
$$

Wir beweisen (4.7): Es sei $n \in\left\{0, \ldots, n_{0}\right\}$ fest und $\mu_{n}>0$. Zu den $p+1$ Zahlen r_{1}, \ldots, r_{p+1} mit (4.2) wählen wir jetzt $q+1$ Zahlen $\sigma_{1}, \ldots, \sigma_{q+1}$ mit

$$
\begin{equation*}
\mu_{n}<\mu_{n} \sigma_{1}<\ldots<\mu_{n} \sigma_{q+1}<\mu_{n+1} \tag{4.9}
\end{equation*}
$$

Damit läuft, mit σ_{j} an Stelle von s_{j}, formal alles wie oben. Es gibt also komplexe Zahlen $\gamma_{i j}(i=1, \ldots, p+1 ; j=1, \ldots, q+1)$, mit denen in Analogie zu (4.6) jetzt

$$
\begin{equation*}
s_{m n}=\sum_{i, j=1}^{p+1, q+1} \gamma_{i j} r_{i}^{p} \sigma_{j}^{q} R\left(\lambda_{m} r_{i}, \mu_{n} \sigma_{j}\right) \quad \text { für } \quad m>m_{0} \tag{4.10}
\end{equation*}
$$

gilt. Hieraus liest man (4.7) ab. Ist $n=0$ und $\mu_{0}=0$, so gilt mit den $p+1$ Zahlen r_{1}, \ldots, r_{p+1} mit (4.2) für alle $i=1, \ldots, p+1$ und alle $m>m_{0}$ jetzt

$$
r_{i}^{p} R\left(\lambda_{m} r_{i}, \frac{\mu_{1}}{2}\right)=\sum_{\alpha=0}^{p}\binom{p}{\alpha}\left(r_{i}-1\right)^{\alpha} \frac{1}{\lambda_{m}^{p-\alpha}} \sum_{k=0}^{m}\left(\lambda_{m}-\lambda_{k}\right)^{p-\alpha} u_{k 0},
$$

und hieraus folgt $s_{m 0}=O(1)$ wie im Falle des Riesz-Verfahrens zur Limitierung von Einfachfolgen (vgl. Minakshisundaram [10] und [18]). Die Behauptung (4.8) wird wie (4.7) bewiesen.

Für b) ist jetzt noch zu zeigen:

$$
\begin{equation*}
\sum_{m=m_{0}}^{\infty}\left|\bar{\Delta}_{m n} s_{m n}\right|<\infty \text { für alle } n \in\left\{0, \ldots, n_{0}\right\} \tag{4.11}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty}\left|\bar{\Delta}_{m n} s_{m n}\right|<\infty \text { für alle } m \in\left\{0, \ldots, m_{0}\right\}, \tag{4.12}
\end{equation*}
$$

Um (4.11) zu beweisen, geht man wie beim Beweis von (4.7) vor und (4.12) beweist man wie (4.8).

Der erste Teil des Beweises von Satz 4.1 liefert das in der Einleitung erwähnte "high indices theorem" von Mears [8], Theorem XII. Auch zwei dazu ähnliche Ergebnisse von Mears [8], Theorems X und XI, lassen sich mit unserer Methode beweisen.

Daß man in Satz 4.1 das Verfahren R durch R* ersetzen darf, ist nicht zu erwarten, da das "high indices theorem", wie Kuttner [7] gezeigt hat, schon für das "unstetige" Riesz-Verfahren zur Summierung von Einfachfolgen nicht uneingeschränkt gilt.

Literaturverzeichnis

[1] R. P. Agnew, On Tauberian theorems for double series, Amer. J. Math., 62 (1940), 666-672.
[2] S. Baron, Einführung in die Limitierungstheorie, Zweite, erweiterte Auflage, Verlag Valgus (Russisch) (Tallin, 1977).
[3] M. F. Burljaï, A certain property of the ($\left.\bar{R}, p_{m}, q_{n}\right)$-methods of summability of double series, and theorems of Tauberian type (Russian), Teor. Funkcii Funkcional. Anal. i Priložen., 16 (1972), 3-12, 215.
[4] M. F. Burljaï, A theorem of Tauberian type for $\left(\bar{R}, p_{m}, q_{n}\right)$-methods for the summability of double series (Russian), Teor. Funkciĭ Funkcional. Anal. i Priložen., 29 (1978), 3-9.
[5] V. G. Čelidze, Tauberian theorems for multiple series (Russian; Georgian summary), Tbiliss. Gos. Univ. Trudy Ser. Meh.-Mat. Nauk, 84 (1962), 77-92.
[6] K. Knopp, Limitierungs-Umkehrsätze für Doppelfolgen, Math. Z., 45 (1939), 573-589.
[7] B. Kuttner, The high indices theorem for discontinuous Riesz means, J. London Math. Soc., 39 (1964), 635-642.
[8] F. M. Mears, Riesz summability for double series, Trans. Amer. Math. Soc., 30 (1928), 686-709.
[9] W. Meyer-König, Zur Frage der Umkehrung des C- und A-Verfahrens bei Doppelfolgen, Math. Z., 46 (1940), 157-160.
[10] S. Minakshisundaram, A note on summability by Riesz means, Indian J. Math., 9 (1967), 473-476.
[11] R. Mohanty, A criterion for the absolute convergence of a Fourier series, Proc. London Math. Soc., 51 (1950), 186-196.
[12] N. Obrechkoff (N. Obreškov), Sur la sommation des séries multiples de Dirichlet et des séries semblables (Bulgarisch mit französischem Auszug), Annuaire Univ. Sofia, Fac. physic.-math., Livre 1, 36 (1940), 1-145.
[13] N. Obrechkoff (N. Obreškov), On double series which are absolutely summable by arithmetic means (Bulgarian, Russian and French summaries), Bülgar. Akad. Nauk Izv. Mat. Inst., 6 (1962), 61-82.
[14] T. Pati, A Tauberian theorem for absolute summability, Math. Z., 61 (1954), 75-78.
[15] K. M. Slepenčuk, Sätze vom Tauberschen Typ für einige Summierungsmethoden von Doppelreihen (Russisch), Izv. Vysš. Učebn. Zaved. Matematika, 43 (1964), 153-158.
[16] K. M. Slepenčuk, Ein Satz von Tauberschem Typus für $\left(H^{(\alpha)}, \lambda\right)$-Summierungsverfahren für Doppelreihen (Ukrainisch, russ. u. engl. Zusammenfassung), Dopovidi Akad. Nauk Ukrain. RSR, (1964), 312-314.
[17] K. M. Slepenčuk, Taubersätze für Hölderverfahren bei Doppelreihen (Russisch), Ukrain. Mat. Ż., 17 (1965), 123-126.
[18] H. Tietz, Zur $p V$-Summierung durch Riesz-Verfahren, Indian J. Math., 17 (1975), 53-69.
[19] S. B. Topuriya, On a generalization of a theorem of Knopp (Russian), Soobšč. Akad. Nauk Gruzin. SSR, 19 (1957), 385-392.
[20] W. H. Young, On multiple Fourier series, Proc. London Math. Soc., 11 (1913), 133184.
(Eingegangen am 29. März 1988.)

DEPARTMENT OF MATHEMATICS
AND COMPUTER SCIENCE
BAR-ILAN UNIVERSITY
RAMAT-GAN 52900
ISRAEL

UNIVERSITÄT STUTTGART
MATHEMATISCHES INSTITUT A
D-7000 STUTTGART-80
BUNDESREPUBLIK DEUTSCHLAND

THE SPACE OF DENSITY CONTINUOUS FUNCTIONS

K. CIESIELSKI (Morgantown) and L. LARSON (Louisville)

We denote by \mathbf{R}_{d} the set of real numbers, \mathbf{R}, endowed with the density topology. A function $f: \mathbf{R}_{d} \rightarrow \mathbf{R}_{d}$ is said to be density continuous, if it is continuous with respect to the topology on \mathbf{R}_{d} in both the domain and range. The set of density continuous functions has been studied in several limited ways. Bruckner [1] and Niewiarowski [3] have studied density continuous functions which are homeomorphisms under the standard topology on R. Ostaszewski has investigated the local behavior of density continuous functions [4] and has investigated their behavior as a semigroup [5].

In this paper, we consider the composition of the set of density continuous functions. The structure of this set seems to be quite complicated. Ostaszewski [5] has noted that it is not closed under uniform convergence. In Example 2 we show that it is not a vector space. Corollary 3 shows that each real-analytic function is density continuous, but Example 1 is a C^{∞} function which is not density continuous. It is not difficult to construct a density continuous function which is not continuous. On the other hand, every density continuous function must be approximately continuous.

In what follows, the right (left) unilateral derivatives of a function f are represented as $f^{+}\left(f^{-}\right)$. The Lebesgue measure of a set A is denoted by $|A|$ and the Lebesuge density (right, left Lebesgue density) of A at a point x is written as $d(A, x)\left(d^{+}(A, x), d^{-}(A, x)\right)$. The set of functions which are infinitely differentiable on \mathbf{R} is written as C^{∞}. Finally, if A and B are two sets such that $\sup A \leqq \inf B$, then we write $A \ll B$.

Before stating the main result, we first present the following lemma.
Lemma 1. Suppose I is a compact interval and $f: I \rightarrow \mathbf{R}$. If there exist numbers α and β such that

$$
\begin{equation*}
0<\alpha<\frac{f(x)-f(y)}{x-y}<\beta<\infty, \text { for all } x, y \in I, x \neq y \tag{1}
\end{equation*}
$$

then f is density continuous on I.
Proof. From (1) it is easy to see that f is strictly increasing and continuous on I. If $g=f^{-1}$, then it follows from (1) that

$$
\begin{equation*}
0<\frac{1}{\beta}<\frac{g(u)-g(v)}{u-v}<\frac{1}{\alpha}, \text { for all } u, v \in f(I), u \neq v . \tag{2}
\end{equation*}
$$

The right-hand inequality in (2) implies that g is a Lipschitz function on $f(I)$ and hence g is absolutely continuous and g^{\prime} is bounded above a.e. The left-hand inequality in (2) shows that g^{\prime} is bounded away from 0 on $f(I)$ a.e. Now a result of Bruckner [1, Corollary 1] shows that g preserves density points. This implies the density continuity of f.

Theorem 1. If I is an open interval and $f: I \rightarrow \mathbf{R}$ is convex, then f is density continuous.

Proof. Fix a point $a \in I$. It will be shown that f is right density continuous at a. To do this, we lose no generality in supposing that $f(a)=$ $=a=0$, because the translation of a density continuous function is obviously density continuous.

According to [6, Theorem 10.11], there exists a nondecreasing function $h: I \rightarrow \mathbf{R}$ such that

$$
\begin{equation*}
f(x)=\int_{0}^{x} h(t) d t, \text { for all } x \in I \tag{3}
\end{equation*}
$$

Because of this, it is easy to see that there must exist a real number $b>0$ such that f is monotone on $[0, b]$. We may assume that f is strictly monotone on $[0, b]$ because if it is not, f must be constant on some right neighborhood of 0 , and right density continuity at 0 follows at once. With this assumption, f is a homeomorphism from $[0, b]$ onto $f([0, b])$. Denote $g=\left(\left.f\right|_{[0, b]}\right)^{-1}$.

There are now two cases to consider, depending upon whether f is strictly increasing or strictly decreasing on $[0, b]$.

Assume first that f is strictly decreasing on $[0, b]$. Then by (3), $h<0$ on $[0, b)$. There is no generality lost in assuming $h(b)<0$. If $0 \leqq x<y \leqq b$, then considering the average value of h on (x, y) and recalling that \bar{h} is nondecreasing, it is obvious that

$$
0>h(b) \geqq \frac{\int_{x}^{y} h}{y-x}=\frac{f(y)-f(x)}{y-x} \geqq h(0) .
$$

This implies

$$
0<-h(b)<\frac{(-f(y))-(-f(x))}{y-x}<-h(0)<\infty, \text { for all } x, y \in[0, b] .
$$

($h(0)$ is finite because h is monotone on a neighborhood of 0 .) Lemma 1 now shows that $-f$ is density continuous on $[0, b]$. Since density continuity is easily shown to be preserved under constant multiplication, it follows that f is density continuous on $[0, b]$ and therefore right density continuous at 0 .

Next, assume that f is strictly increasing on $(0, b)$ and that $I_{n}=\left[a_{n}, b_{n}\right]$ is a sequence of disjoint intervals from $(0, f(b))$ such that I_{n} decreases to 0 and

$$
\begin{equation*}
\frac{\left|\bigcup_{n=1}^{\infty} I_{n} \cap(0, t)\right|}{t}>\varrho>0, \text { for all } t \in(0, f(b)) . \tag{4}
\end{equation*}
$$

Let $S=\bigcup_{n=1}^{\infty} I_{n}, J_{n}=g\left(I_{n}\right)$ and $G_{n}=\left(b_{n+1}, a_{n}\right)$. From (4), it follows that

$$
\begin{equation*}
\frac{\left|\bigcup_{k=n}^{\infty} I_{k}\right|}{\left|\bigcup_{k=n-1}^{\infty} G_{k}\right|}>\frac{\varrho}{1-\varrho}, \text { for all } n>1 \tag{5}
\end{equation*}
$$

Before proceeding with the proof, we make the following useful observations. From (3) and the assumption that f is increasing we see that $h>0$ on ($0, b$). Let A and B be intervals contained in $(0, b)$ such that $A \ll B$. Then because h is nondecreasing,

$$
\frac{|f(A)|}{|A|}=\frac{\int_{A} h}{|A|} \leqq \sup _{t \in A} h(t) \leqq \inf _{t \in B} h(t) \leqq \frac{\int_{B} h}{|B|}=\frac{|f(B)|}{|B|} .
$$

This implies the statement

$$
\begin{equation*}
|g(C)| \geqq|g(D)| \frac{|C|}{|D|} \tag{6}
\end{equation*}
$$

for all intervals C and D from $(0, f(b))$ such that $C \ll D$, and this estimate immediately extends to the case when C, D are finite unions of disjoint intervals.

We define an infinite partition S_{n} of S as follows. Let $\alpha_{1}=a_{1}$. By (5), there exists an $\alpha_{2}^{\prime}<\alpha_{1}$ such that

$$
\frac{\left|\left(\alpha_{2}^{\prime}, \alpha_{1}\right) \cap S\right|}{\left|G_{1}\right|}=\frac{\varrho}{1-\varrho} .
$$

Let $\alpha_{2}=\min \left\{\alpha_{2}^{\prime}, a_{2}\right\}$. Assume that α_{k} has been chosen for $k=1,2, \ldots, n-1$ so that either $\alpha_{k} \geqq a_{k}$ or $\alpha_{k}<a_{k}$ and

$$
\frac{\left|\left(\alpha_{k}, \alpha_{k-1}\right) \cap S\right|}{\left|G_{k-1}\right|}=\frac{\varrho}{1-\varrho},
$$

and equality holds if $\alpha_{k}<a_{k}$. Choose $\alpha_{n}^{\prime}<\alpha_{n-1}$ such that

$$
\frac{\left|\left(\alpha_{n}^{\prime}, \alpha_{n-1}\right) \cap S\right|}{\left|G_{n-1}\right|}=\frac{\varrho}{1-\varrho}
$$

To see that such a choice is possible, there are two cases to consider, depending on α_{n-1}. If $\alpha_{n-1}=a_{n-1}$, it can be seen immediately from (5). In case $\alpha_{n-1}<a_{n-1}$, let

$$
m=\max \left\{k<n: \alpha_{k}=a_{k}\right\}
$$

Then $\left|\left(\alpha_{k}, \alpha_{k-1}\right) \cap S\right|=\varrho\left|G_{k-1}\right| /(1-\varrho)$ for $m+1 \leqq k \leqq n-1$ so that

$$
\begin{equation*}
\left|\left(\alpha_{n-1}, \alpha_{m}\right) \cap S\right|=\frac{\varrho}{1-\varrho} \sum_{k=m}^{n-1}\left|G_{k-1}\right| \tag{7}
\end{equation*}
$$

According to (5), there is a $t<\alpha_{n-1}$ such that

$$
\begin{equation*}
\left|\left(t, \alpha_{m}\right) \cap S\right|=\frac{\varrho}{1-\varrho} \sum_{k=m}^{n}\left|G_{k-1}\right| \tag{8}
\end{equation*}
$$

Subtracting (7) from (8) gives

$$
\left|\left(t, \alpha_{n-1}\right) \cap S\right|=\frac{\varrho}{1-\varrho}\left|G_{n-1}\right|
$$

We set $\alpha_{n}^{\prime}=t$ in this case. Then let $\alpha_{n}=\min \left\{\alpha_{n}^{\prime}, a_{n}\right\}$. Define $S_{n}=$ $=\left[\alpha_{n+1}, \alpha_{n}\right) \cap S$. From the choice of $\alpha_{n} \leqq a_{n}$, and the fact that $a_{n} \notin S_{n}$, we see $\sup S_{n} \leqq b_{n+1}$. So $S_{n} \ll G_{n}=\left(b_{n+1}, a_{n}\right)$ and

$$
\frac{\left|S_{n}\right|}{\left|G_{n}\right|} \geqq \frac{\varrho}{1-\varrho}
$$

Finally, we use (6) and the preceding inequality to see

$$
\frac{\left|g\left(\bigcup_{n=1}^{\infty} S_{n}\right)\right|}{\left|g\left(\bigcup_{n=1}^{\infty} G_{n}\right)\right|}=\frac{\sum_{n=1}^{\infty}\left|g\left(S_{n}\right)\right|}{\sum_{n=1}^{\infty}\left|g\left(G_{n}\right)\right|} \geqq \frac{\sum_{n=1}^{\infty}\left|g\left(G_{n}\right)\right| \frac{\left|S_{n}\right|}{\left|G_{n}\right|}}{\sum_{n=1}^{\infty}\left|g\left(G_{n}\right)\right|} \geqq \frac{\varrho}{1-\varrho}
$$

Hence,

$$
\frac{\left|g\left(\bigcup_{n=1}^{\infty} S_{n}\right)\right|}{\left|g\left(\left(0, a_{1}\right)\right)\right|} \geqq \varrho .
$$

Because ϱ can be made as close to 1 as desired, we see that f is right density continuous at 0 .

Similar arguments show that f is left density continuous at every point of I. This completes the proof of the theorem.

Corollary 1. If $g:[a, b] \rightarrow \mathbf{R}$ is convex on (a, b) and $\left\{g^{+}(a), g^{-}(b)\right\} \subset$ $\subset \mathbf{R}$, then g is density continuous.

Proof. Define

$$
f(x)= \begin{cases}g^{+}(a)(x-a)+g(a) & \text { if } x<a, \\ g(x) & \text { if } a \leqq x \leqq b, \\ g^{-}(b)(x-b)+g(b) & \text { if } x>b\end{cases}
$$

and apply Theorem 1.
By using $g=-f$ in Theorem 1 and Corollary 1 we arrive at the following corollary.

Corollary 2. If g is concave downward on an open interval I, then g is density continuous on I. Further, if g is concave downward on the interval $[a, b]$ with both $g^{+}(a)$ and $g^{-}(b)$ finite, then g is density continuous on $[a, b]$.

Ostaszewski [5, Question 4] asked whether polynomials are density continuous. The following corollary provides an affirmative answer to this question.

Corollary 3. Real analytic functions are density continuous.
Proof. If f is real analytic, then f^{\prime} is finite everywhere and $f^{\prime \prime}$ has only a finite number of zeroes in every interval, so applications of Corollaries 1 and 2 suffice to establish this corollary.

Corollary 4. If $f(x)=x^{\alpha}$ for $\alpha \in \mathbf{R}$, then f is density continuous on its domain.

Proof. If $\alpha \leqq 0$, then this follows directly from Theorem 1. If $\alpha \geqq 1$, then this corollary is a consequence of Corollary 1.

Suppose $0<\alpha<1$. It is clear that Theorem 1 implies f is density continuous on $\operatorname{Dom}(f) \backslash\{0\}$. So, it must be shown that f is density continuous at 0 .

Let $h>0$ and suppose $A \subset(0, h)$. Then, we use the fact that $\left(f^{-1}\right)^{\prime}$ is an increasing function to see

$$
\frac{\left|f^{-1}(A)\right|}{f^{-1}(h)}=\frac{1}{h^{1 / \alpha}} \int_{A} \frac{x^{1 / \alpha)-1}}{\alpha} \geqq \frac{1}{h^{1 / \alpha}} \int_{0}^{|A|} \frac{x^{(1 / \alpha)-1}}{\alpha}=\frac{|A|^{1 / \alpha}}{h^{1 / \alpha}}=(|A| / h)^{1 / \alpha}
$$

It follows from this inequality that f is right density continuous at 0 . A similar argument holds from the left.

Example 1. There is a function $f \in C^{\infty}$ which is not density continuous.
Choose any sequence of disjoint intervals $J_{n}=\left[a_{n}, b_{n}\right] \subset[0,1]$ decreasing to 0 such that

$$
\begin{equation*}
d^{+}\left(\bigcup_{n=1}^{\infty} J_{n}, 0\right)=0 \tag{9}
\end{equation*}
$$

and let h be a C^{∞} function satisfying

$$
\begin{equation*}
h(0)=0, h(1)=1, \text { and } h^{(n)}(0)=h^{(n)}(1)=0, \text { for all } n \in \mathrm{~N} . \tag{10}
\end{equation*}
$$

(An example of such a function is

$$
h(x)=\varrho \int_{0}^{x} \exp \left(-1 / t^{2}-1 /(t-1)^{2}\right) d t
$$

for suitable ϱ.) Let

$$
\begin{gather*}
\alpha_{n}=\max \left\{\left|h^{(k)}(x)\right|: 0 \leqq k \leqq n \text { and } 0 \leqq x \leqq 1\right\} \geqq 1, \tag{11}\\
h_{n}(x)= \begin{cases}0 & \text { if } x<a_{n}, \\
\frac{\alpha_{n}\left(b_{n}-a_{n}\right)^{n}}{\alpha_{n}} h\left(\frac{x-a_{n}}{b_{n}-a_{n}}\right) & \text { if } x \in J_{n}, \\
\frac{\alpha_{n}\left(b_{n}-a_{n}\right)^{n}}{\alpha_{n}} & \text { if } x>b_{n}\end{cases} \tag{12}
\end{gather*}
$$

and

$$
f(x)=\sum_{n=1}^{\infty} h_{n}(x) .
$$

From the choice of h, we see that $h_{n} \in C^{\infty}$ for each n. Obviously, using (9) and (11), it follows that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{a_{n}\left(b_{n}-a_{n}\right)^{n}}{\alpha_{n}} \leqq \sum_{n=1}^{\infty}\left(b_{n}-a_{n}\right)<\infty, \tag{13}
\end{equation*}
$$

so that f exists everywhere. Moreover, because the J_{n} are pairwise disjoint, it follows that f is infinitely differentiable on $\mathbf{R} \backslash 0$ and continuous on \mathbf{R}.

To prove that $f^{(k+1)}(0)$ exists and equals 0 , let us assume that $f^{(k)}(0)=0$ and choose $a_{n} \leqq s<a_{n-1}$ for some $n>k$. Then it follows from (11) and (12) that

$$
\frac{f^{(k)}(s)-f^{(k)}(0)}{s-0}= \begin{cases}\frac{1}{s} \sum_{i=n}^{\infty} h_{i}(s) \leqq \sum_{i=n}^{\infty}\left(b_{j}-a_{j}\right)^{j}<b_{n} & \text { if } k=0 \\ \frac{1}{s} h_{n}^{(k)}(s) \leqq \frac{a_{n}\left(b_{n}-a_{n}\right)^{n}-\alpha_{k}}{s \alpha_{n}\left(b_{n}-a_{n}\right)^{k}} \leqq b_{n}-a_{n}<b_{n} & \text { if } k>0\end{cases}
$$

Since $s \rightarrow 0$ implies $b_{n} \rightarrow 0$, this shows $f^{(k+1)}(0)=0$. Therefore, f is a C^{∞} function

But, f cannot be density continuous because of (9) and the fact that

$$
f\left(\mathbf{R} \backslash \bigcup_{n=1}^{\infty} J_{n}\right)
$$

is countable.

Example 2. There is a continuous, density continuous function $f: \mathbf{R} \rightarrow \mathbf{R}$ such that $f(x)+x$ is not density continuous.

To construct such a function, we first choose two differentiable functions h_{1} and h_{2} satisfying:
(i) $0<h_{1}<h_{2}$ on $(0, \infty)$;
(ii) $h_{1}(x)=h_{2}(x)=x$ for $x \leqq 0$; and,
(iii) $1 / 2<h_{1}^{\prime}(x)<1<h_{2}^{\prime}(x)<2$ when $x>0$.

Let a_{n} and b_{n} be any two sequences converging to 0 such that $1=b_{1}>a_{1}>$ $b_{2}>a_{2}>\ldots$, and both

$$
\begin{equation*}
\frac{h_{2}\left(b_{n}\right)-h_{1}\left(a_{n}\right)}{b_{n}-a_{n}}=2 \quad \text { and } \quad \frac{h_{1}\left(a_{n}\right)-h_{2}\left(b_{n+1}\right)}{a_{n}-b_{n+1}}=1 / 2 \tag{14}
\end{equation*}
$$

Define a piecewise linear function f_{0} by letting $f_{0}\left(a_{n}\right)=h_{1}\left(a_{n}\right), f_{0}\left(b_{n}\right)=$ $=h_{2}\left(b_{n}\right)$ and $f_{0}(x)=x+f_{0}\left(b_{1}\right)-b_{1}$ when $x>1$ and $f_{0}(x)=x$ when $x \leqq 0$. The function f_{0} is easily seen to be continuous because h_{1} and h_{2} are continuous and have value 0 at 0 . Equation (14) implies

$$
\frac{1}{2} \leqq \frac{f_{0}(b)-f_{0}(a)}{b-a} \leqq 2, \text { for all } a, b \in(0, \infty)
$$

It follows from Lemma 1 that f must be density continuous.
Denote $A(1 / 2)=\bigcup_{n=1}^{\infty}\left[b_{n+1}, a_{n}\right]$ and $A(2)=\bigcup_{n=1}^{\infty}\left[a_{n} b_{n}\right]$. Either

$$
(-\infty, 0] \cup A(1 / 2) \quad \text { or } \quad(-\infty, 0) \cup A(2)
$$

has positive upper density at 0 . Without loss of generality we assume that it is the former. Then $f_{1}(x)=f_{0}(x)-x / 2$ is constant on each component of $A(1 / 2)$. But this implies that $\left|f_{1}(A(1 / 2))\right|=0$ and $A(1 / 2)=$ $=f_{1}^{-1}\left(f_{1}(A(1 / 2))\right)$ has positive density at 0 . Therefore, f_{1} is not density continuous at 0 . So, it is enough to define $f(x)=-2 f_{0}(x)$ to obtain the desired function.

We note that the f in Example 2 can actually be constructed as a C^{∞} function by a method analogous to the construction in Example 1.

This example answers questions posed by Ostaszewski [5, Questions 5 and 6].

We wish to thank Krzysztof Ostaszewski for bringing to our attention several of the questions we have considered here.

References

[1] A. M. Bruckner, Density-preserving homeomorphisms and a theorem of Maximoff, Quart. J. Math. Oxford, 21 (1970), 337-347.
[2] I. P. Natanson, Theory of Functions of a Real Variable, Vol. 2, Frederick Ungar Publishing Co. (New York, 1964).
[3] Jerzy Niewiarowski, Density preserving homeomorphisms, Fund. Math., 106 (1980), 77-87.
[4] Krzysztof Ostaszewski, Continuity in the density topology, Real Anal. Exch., 7 (198182), 259-270.
[5] Krzystof Ostaszewski, The semigroup of density continuous functions, Real Anal. Exch. (to appear).
[6] A. Zygmund, Trigonometric Series, Vol. 1, Cambridge University Press, 1952.
(Received April 8, 1988; revised March 6, 1989)

DEPARTMENT OF MATHEMATICS METHODIST COLLEGE FAYETTEVILLE, NC 28311 USA
DEPARTMENT OF MATHEMATICS UNIVERSITY OF LOUISVILLE LOUISVILLE, KY 40292 USA

CONVOLUTION RINGS OF MULTIPLICATIONS OF AN ABELIAN GROUP

J. R. CLAY (Tucson)

1. Introduction

For an abelian group $(A,+)$, the group of left and right distributive multiplications, Mult A, and the group of left distributive multiplications, $\operatorname{Mult}_{L} A$, have been a source of interesting abelian groups $[1,2,4,5,6,7$, $8,9,10,14,15,16,17,18]$, and were first suggested for study by Baer [7]. Regarding the related question as to whether Mult A, or $\operatorname{Mult}_{L} A$, could themselves be the additive group of interesting rings, it is natural to take motivation or direction from the ring of \mathcal{L}_{1} functions from the reals \mathbf{R} to \mathbf{R} with respect to convolution $*$, where

$$
f * g(x)=\int_{-\infty}^{+\infty} f(x-t) g(t) d t .
$$

For an arbitrary but fixed finite subset $X \subseteq A$, this convolution operation motivates the following two operations for $\operatorname{Mult}_{L} A$ and/or Mult A.

$$
\begin{align*}
& \alpha \cdot \beta(a, b)=\sum_{x \in X} \alpha(x, \beta(a, b)) ; \tag{1}\\
& \alpha \cdot \beta(a, b)=\sum_{x \in X} \alpha(a, \beta(x, b)) .
\end{align*}
$$

In addition to these two operations being closed binary operations, it is straightforward, but tedious, to show that they are i) associative, ii) left distributive over + , and iii) right distributive over + . In short, if \cdot is operation (1) or (2), then (Mult $\left._{L} A,+, \cdot\right)$ is an associative ring with subring (Mult $A,+, \cdot)$.

Since the structure $\operatorname{Mult}_{L} A \cong \operatorname{Map}(A$, End $A)$, the group of all mappings from A to the endomorphisms of A, End A [2], it is considerably easier to study the rings on $\operatorname{Mult}_{L} A$. We have $\operatorname{Mult} A \cong \operatorname{Hom}(A$, End $A)$, the homomorphisms from A to End A [7], but the rings on Mult A will not be considered much in this work.

Numerous interesting and amusing properties will be exhibited for the rings on the $\mathrm{Mult}_{L} A$ with operations (1) and (2). It will also be shown
that operations (1) and (2) are but special cases of a more general and powerful construction method. This more general method will provide ways of making rings on R-modules M, and some unusual R-modules will be used to illustrate this method. See Theorem 1 and the examples following it.

The elements of Mult A are the left and right distributive multiplications on A. That is, mappings $\alpha: A \times A \rightarrow A$ such that $\alpha(a, b+c)=\alpha(a, b)+$ $+\alpha(a, c)$ and $\alpha(a+b, c)=\alpha(a, c)+\alpha(b, c)$ for all $a, b, c \in A$. The elements of $\mathrm{Mult}_{L} A$ are the left distributive multiplications on A, so they are the mappings $\alpha: A \times A \rightarrow A$ such that $\alpha(a, b+c)=\alpha(a, b)+\alpha(a, c)$ for all $a, b, c \in A$.

Most of our results will be about $\operatorname{Mult}_{L} A$, with operation (1). We note in Examples 5 that $\mathrm{Mult}_{L} A$, with operation (2), is an opposite ring. Hence, the results relative to $\mathrm{Mult}_{L} A$, and operation (1), should have companion results, like Propositions 3 and 4, and like Proposition 14 with its Corollary 15. This is somewhat surprising if one only takes a superficial look at the definitions of operations (1) and (2).

2. Rings from modules, and applications

Examples 4 and 5 below show that the multiplications (1) and (2) for $\operatorname{Mult}_{L} A$, or Mult A, are special cases of the more general case described in

Theorem 1. Let R be a ring with left R-module M. Fix an $f \in$ $\in \operatorname{Hom}_{R}(M, R)$, and define $\cdot=\cdot \cdot_{f}$ on M by $a \cdot f b=f(a) b$. Then $(M,+, \cdot f)$ is a ring.

The proof is direct.
Our subsequent work will be centered about the following five types of examples.

Examples 1. For an R-module M, suppose we have something like a bilinear map $\langle\rangle:, M \times M \rightarrow R$, but really, all we require is a) $\langle\rangle:, M \times$ $\times M \rightarrow R ; \mathrm{b})\langle\rangle,(a, x+y)=\langle\rangle,(a, x)+\langle\rangle,(a, y)$; and c) $\langle\rangle,(a, r x)=r\langle\rangle,(a, x)$, for all $a, x, y \in M$ and for all $r \in R$. Define $F_{\langle a, \cdot\rangle}: M \rightarrow R$ by $F_{\langle a,\rangle}(b)=$ $=\langle\rangle,(a, b)=\langle a, b\rangle$. Then each $F_{\langle a, \cdot\rangle} \in \operatorname{Hom}_{R}(M, R)$. Let ${ }_{a}$ be the multiplication on M defined via Theorem 1. So $\left(M,+,{ }_{a}\right)$ is a ring. For $c \in M$, let $I_{c}=\{r c \mid r \in \in R\}$. Then I_{c} is a left ideal, and I_{c} is an ideal if $\langle a, c\rangle=0$.

For $R=\mathbf{R}$, the field of real numbers, and $M=\mathbf{R}^{n}$, the n-dimensional vector space over \mathbf{R}, let \langle,$\rangle be the usual inner product. For a fixed a=$ $=\left(a_{1}, \ldots, a_{n}\right)$, then $x \cdot y=\left(a_{1} x_{1}+\ldots+a_{n} x_{n}\right) y$. For $c=\left(c_{1}, \ldots, c_{n}\right) \in M$, I_{c} is an ideal if and only if $\langle a, c\rangle=0$.

If I_{c} is such an ideal, then $M / I_{c} \cong \mathbf{R}$. For $n=2$, it is interesting to determine the identity in M / I_{c} and the isomorphism.

Examples 2. These are really special cases of Examples 1, but we single them out because of their unifying effect and because they are related also to

Examples 3 and Examples 4. Let $M=R^{(S)}$ be the free R-module on the set S [13]. For a finite subset $X \subseteq S$, define $F_{X}: M \rightarrow R$ by $F_{X}(a)=\sum_{x \in X} a_{x}$. Then $F_{X} \in \operatorname{Hom}_{R}(M, R)$, and defines a ring $\left(M,+, \cdot_{X}\right)$ with $a \cdot{ }_{X} b=\left(\sum_{x \in X} a_{x}\right) b$. The map F_{X} is an epimorphism.

Examples 3. Let (Y, \mathcal{A}, μ) be a measure space. (The terminology and notation used here will be influenced by that of Hewitt and Stromberg [11].) Fix an $X \in \mathcal{A}$. Let M_{L} be the family of all functions $\alpha: Y \times \mathbf{R} \rightarrow \mathbf{R}$ which satisfy:
a) for each $b \in \mathbf{R}, \alpha(\cdot, b) \in \mathcal{L}_{1}(Y, \mathcal{A}, \mu)$, i.e.,

$$
\int_{Y} \alpha(y, b) d \mu(y)
$$

exists;
b) for $f \in \mathcal{L}_{1}(Y, \mathcal{A}, \mu)$ and $a \in Y$,

$$
\int_{Y} \alpha(a, f(y)) d \mu(y)=\alpha\left(a, \int_{Y} f(y) d \mu(y)\right)
$$

c) for each $y \in Y, \alpha(y, \cdot) \in \operatorname{Hom}_{R}(\mathbf{R}, \mathbf{R})$, i.e.,

$$
\alpha(y, s a+t b)=s \alpha(y, a)+t \alpha(y, b)
$$

for all $a, b, s, t \in \mathbf{R}$.
Now $\left(\mathbf{R}^{Y \times \mathbf{R}},+\right)$ is an abelian group, and M_{L} is a subgroup. It is direct to see that M_{L} is an \mathbf{R}-module. Define $F_{X}: M_{L} \rightarrow \mathbf{R}$ by $F_{X}(\alpha)=$ $=\int_{X} \alpha(x, 1) d \mu(x)$. Then $F_{X} \in \operatorname{Hom}_{R}\left(M_{L}, \mathbf{R}\right)$ and defines via Theorem 1, a ring $\left(M_{L},+, \cdot X\right)$ where for $\alpha, \beta \in M_{L}$, one gets

$$
\alpha \cdot \beta(a, b)=\int_{X} \alpha(x, \beta(a, b)) d \mu(x)
$$

One should be assured that there are nontrivial M_{L} 's.
Let $Y=X=\{0,1,2, \ldots\}$ with $\mu(\{i\})=1$ for each $i \in Y$. If $\alpha(i, b)=$ $=b / i!$, then $\alpha \in M_{L}$.

Let $Y=X=[0,1]$ with the usual Riemann integral. If $\phi:[0,1] \rightarrow \mathbf{R}$ is continuous, and $l_{m}(a)=m a$, then $\alpha(x, a)=\phi(x) l_{m}(a)$ defines an element of M_{L}.

Let (Y, \mathcal{A}, P) denote a probability space. Fix $X \in \mathcal{A}$, and let $f: Y \rightarrow \mathbf{R}$ be a random variable with finite expectation. Define $\alpha: Y \times \mathbf{R} \rightarrow \mathbf{R}$ by $\alpha(y, a)=f(y) a$. Then $\alpha \in M_{L}$. Here,

$$
P(X)^{-1} F_{X}(\alpha)=P(X)^{-1} \int_{X} \alpha(x, 1) d P(x)
$$

is exactly the conditional expectation of the random variable $f=\alpha(\cdot, 1)$ given X [12, p. 338].

Proposition 2. Suppose X has a binary operation + and let $M=$ $=\left\{\alpha \in M_{L} \mid\right.$ for each $a \in \mathbf{R}, \alpha(x+y, a)=\alpha(x, a)+\alpha(y, a)$ for all $\left.x, y \in X\right\}$. Then M is a left ideal of M_{L}.

Proof. It is direct to see that $(M,+)$ is a subgroup of $\left(M_{L},+\right)$. For $\alpha \in M$ and $\gamma \in M_{L}$, we get

$$
\begin{aligned}
& \gamma \cdot \alpha(x+y, a)=\int_{X} \gamma(t, \alpha(x+y, a)) d \mu(t)=\int_{X} \gamma(t, \alpha(x, a)+\alpha(y, a)) d \mu(t)= \\
& =\int_{X} \gamma(t, \alpha(x, a)) d \mu(t)+\int_{X} \gamma(t, \alpha(y, a)) d \mu(t)=\gamma \cdot \alpha(x, a)+\gamma \cdot \alpha(y, a)
\end{aligned}
$$

So $\gamma \cdot \alpha \in M$.
Examples 4. We now consider $\operatorname{Mult}_{L} A$, or Mult A, for an abelian group $(A,+)$. Fix a finite subset $X \subseteq A$. For operation (1), we have

$$
\alpha \cdot \beta(a, b)=\sum_{x \in X} \alpha(x, \beta(a, b))=\left(\left(\sum_{x \in X} \alpha_{x}\right) \circ \beta\right)(a, b)
$$

where $\alpha_{x}(c)=\alpha(x, c)$.
Now define $F_{X}: \operatorname{Mult}_{L} A \rightarrow$ End A by $F_{X}(\alpha)=\sum_{x \in X} \alpha_{x}$. Now $\operatorname{Mult}_{L} A$, or Mult A, is an End A-module and $F_{X} \in \operatorname{Homend}_{A}\left(\operatorname{Mult}_{L} A\right.$, End $\left.A\right)$ is an epimorphism. Thus, Theorem 1 shows that $\left(\operatorname{Mult}_{L} A,+, \cdot\right)$ is a ring with subring (Mult $A,+, \cdot$) if \cdot is defined by 1).

Proposition 3. (Mult $A,+, \cdot)$ is a left ideal in $\left(\operatorname{Mult}_{L} A,+, \cdot\right)$.
Proof. For $\alpha \in \operatorname{Mult}_{L} A$ and $\mu \in \operatorname{Mult} A$, we get

$$
\begin{gathered}
\alpha \cdot \mu(a+b, c)=\sum_{x \in X} \alpha(x, \mu(a+b, c))= \\
=\sum_{x \in X} \alpha(x, \mu(a, c))+\sum_{x \in X} \alpha(x, \mu(b, c))=\alpha \cdot \mu(a, c)+\alpha \cdot \mu(b, c)
\end{gathered}
$$

Thus, $\alpha \cdot \mu \in$ Mult $_{L} A$.
Examples 5. Consider operation (2) for $\operatorname{Mult}_{L} A$ and Mult A. Then $\alpha *$ $* \beta(a, b)=\sum_{x \in X} \alpha(a, \beta(x, b))=\alpha\left(a,\left(\sum_{x \in X} \beta_{x}\right)(a)\right)$. Let $\mathcal{E}(A)$ be the opposite ring of End A. Then Mult $L_{L} A$ and Mult A are $\mathcal{E}(A)$-modules, where f_{*} $* \alpha(a, b)=\alpha(a, f(b))$. The $F_{X}: \operatorname{Mult}_{L} A \rightarrow \mathcal{E}(A)$ defined in Examples 4 is also in $\operatorname{Hom}_{\mathcal{E}(A)}\left(\operatorname{Mult}_{L} A, \mathcal{E}(A)\right)$. Define $*$ on $\operatorname{Mult}_{L} A$ by $\alpha * \beta=F_{X}(\beta) * \alpha$, the opposite ring of $\operatorname{Mult}_{L} A$ defined by F_{X} via Theorem 1. That is, from Theorem 1, we would have $\beta \cdot \alpha=F_{X}(\beta) * \alpha$, and the opposite ring is $\alpha * \beta=\beta \cdot \alpha=F_{X}(\beta) * \alpha$.

Proposition 4. (Mult $A,+, *)$ is a right ideal in $\left(\operatorname{Mult}_{L} A,+, *\right)$.
Proof. For $\alpha \in$ Mult $_{L} A$ and $\mu \in$ Mult A, we get $\mu * \alpha(a+b, c)=$
$=\sum_{x \in X} \mu(a+b, \alpha(x, c))=\sum_{x \in X} \mu(a, \alpha(x, c))+\sum_{x \in X} \mu(b, \alpha(x, c))=\mu * \alpha(a, c)+$ $+\mu * \alpha(b, c)$, so $\mu * \alpha \in \operatorname{Mult} A$.

As far as the construction of rings $(M,+, \cdot)$ via Theorem1, only the elements of the image of f are involved, and the image of f is a subring R^{\prime} of R, and certainly M is an R^{\prime}-module. So, there is no loss in assuming that $f \in \operatorname{Hom}_{R}(M, R)$ is an epimorphism.

We have $(M,+)$ as an M-module and also an R-module. Let $\mathrm{Ann}_{M} M=$ $=\{a \in M \mid a x=0$ for each $x \in M\}$ and $\operatorname{Ann}_{R} M=\{r \in R \mid r x=0$ for each $x \in M\}$.

Theorem 5. Let M be a left faithful R-module. Fix $f \in \operatorname{Hom}_{R}(M, R)$. Then the kernel of f is ker $f=\operatorname{Ann}_{M} M$.

Proof. It is direct to see that ker $f \subseteq \operatorname{Ann}_{M} M$. For $a \in \operatorname{Ann}_{M} M$, we have $a \cdot b=0$ for each $b \in M$, so $f(a) b=0$ for each $b \in M$, thus $f(a) \in \mathrm{Ann}_{R} M$. This means that $f\left(\mathrm{Ann}_{M} M\right) \subseteq \mathrm{Ann}_{R} M$. Since M is a faithful R-module, $\operatorname{Ann}_{R} M=\{0\}$, so $f(a)=0$ and $\operatorname{Ann}_{M} M \subseteq \operatorname{ker} f$.

Remark. Examples 3, 4, and 5, have the modules as unitary and faithful. Many cases from Examples 1 and 2 are also unitary and faithful.

Theorem 6. Let M be a faithful R-module and let $f \in \operatorname{Hom}_{R}(M, R)$ be an epimorphism. Then

$$
\frac{M}{\operatorname{Ann}_{M} M} \cong R .
$$

Proof. $f(a \cdot b)=f(f(a) b)=f(a) f(b)$. Now apply Theorem 5 .
Corollary 7. Let $M=\operatorname{Mult}_{L} A$. Then $M / \operatorname{Ann}_{M} M \cong$ End A, and $\operatorname{Ann}_{M} M=\left\{\alpha \in M \mid \sum_{x \in X} \alpha_{x}=0\right\}$.

Proof. As seen in Examples $4, F_{X} \in \operatorname{Hom}_{E n d}^{A}\left(\operatorname{Mult}_{L} A\right.$, End $\left.A\right)$ is an epimorphism. Now apply Theorem 6.

Let R be a ring with identity 1 , and suppose M is a unitary left R-module with epimorphism $f \in \operatorname{Hom}_{R}(M, R)$. If $f(e)=1$, then $e \cdot b=f(e) b=b$, so, $f(e)=1$ means that e is a left identity. For a left identity e, we define $R_{e}=\{a \in M \mid a e=a\}$ and $B_{e}=\{a e \mid a \in M\}$.

Proposition 8. $R_{e}=B_{e}$.
Proof. For $a e \in B_{e},(a e) e=a(e e)=a e$, so $B_{e} \subseteq R_{e}$. If $a \in R_{e}$, then $a e=a$. But $a e \in B_{e}$, hence $R_{e} \subseteq B_{e}$.

Theorem 9. $\left(B_{e},+, \cdot\right)$ is a subring of $(M,+, \cdot)$.
Proof. Define $\psi_{e}: M \rightarrow B_{e}$ by $\psi_{e}(a)=a e$. It is direct to see that ψ_{e} is a group epimorphism. Now $\psi_{e}(a b)=(a b) e=(a(e b)) e=((a e) b) e=(a e)(b e)$. Thus, ψ_{e} is a ring epimorphism.

Theorem 10. $\left(B_{e},+, \cdot\right) \cong(R,+, \cdot)$.
Proof. We have $B_{e} \cong M / \operatorname{ker} \psi_{e}$. By Theorem $4, M / \operatorname{Ann}_{M} M \cong R$. We now proceed to show that $\operatorname{ker} \psi_{e}=\operatorname{Ann}_{M} M$. For $a \in \operatorname{ker} \psi_{e}, 0=\psi_{e}(a)=$ $=a \cdot e$, so for $b \in M, a \cdot b=a \cdot(e \cdot b)=(a \cdot e) \cdot b=0$. Thus ker $\psi_{e} \subseteq \operatorname{Ann}_{M} M$. The reverse inclusion is trivial.

Corollary 11. If e and e^{\prime} are left identities, then the subrings B_{e} and $\boldsymbol{B}_{\boldsymbol{e}^{\prime}}$ are isomorphic.

Proof. As an alternate to the obvious proof, let $\psi_{e^{\prime}, e}=\psi_{e} \mid B_{e^{\prime}}$, the restriction of $\psi_{\boldsymbol{e}}$ to $B_{e^{\prime}}$. Then $\psi_{e^{\prime}, e}$ is an isomorphism.

Proposition 12. If e and e^{\prime} are left identities, then $B_{e}=B_{e^{\prime}}$ if and only if $e=e^{\prime}$.

Proof. If $B_{e}=B_{e^{\prime}}$ for left identities e and e^{\prime}, then $a e=b e^{\prime}$ implies $(a e) e^{\prime}=\left(b e^{\prime}\right) e^{\prime}$, or $a e^{\prime}=b e^{\prime}$. So $a e=a e^{\prime}$. This being true for each $a \in M$, we get $e e=e e^{\prime}$, or $e=e^{\prime}$.

Proposition 13. For a ring R with identity 1 , let M be the ring on $R^{(S)}$ of Examples 2 for a fixed finite subset $X \subseteq S$. Then M has at least $|R|^{|X|-1}$ subrings each isomorphic to R.

Proof. To make $1=F_{X}(a)=\sum_{x \in X} a_{x}$, we can choose $|X|-1$ of the a_{x} 's arbitrarily, and the $|X|$ th one suitably.

Proposition 14. For an abelian group A and a finite subset $X \subseteq A$, consider the ring (Mult $\left._{L} A,+, \cdot\right)$ from Examples 4. The ring Mult ${ }_{L} A$ has \mid End $\left.A\right|^{|X|-1}$ left identities, and at least \mid End $\left.A\right|^{|X|-1}$ subrings isomorphic to End A.

Proof. To make $1=F_{X}(\alpha)=\sum_{x \in X} \alpha_{x}$, we proceed as in the proof of Proposition 13.

Corollary 15. For an abelian group A and a finite subset $X \subseteq A$, consider a ring $\left(\operatorname{Mult}_{L} A,+, *\right)$ of Examples 5. This ring has \mid End $\left.A\right|^{|\bar{X}|-1}$ right identities, and at least this number of subrings isomorphic to End A.

One of the remarkable consequences of studying Mult A is that there are nontrivial abelian groups $(A,+)$ for which Mult $A=\{0\}$. Such groups are called nil groups [7]. This will not happen for Mult ${ }_{L} A$, since $\alpha_{1}(a, b)=b$
defines $\alpha_{1} \in \operatorname{Mult}_{L} A$, as does $\alpha_{0}(a, b)=0$. Further, for any subset $S \leqq$ $\subseteq A \backslash\{0\}$,

$$
\alpha_{S}(a, b)= \begin{cases}0, & \text { if } a \notin S ; \\ b, & \text { if } a \in S,\end{cases}
$$

defines $\alpha_{S} \in \operatorname{Mult}_{L} A$ [3]. Thus, $\left|\operatorname{Mult}_{L} A\right| \geqq 2^{|A|-1}+1$. It is unknown if there is a group, abelian or nonabelian, of order greater than 2 , for which these are the only elements of $\mathrm{Mult}_{L} A$, i.e., are there any "nil groups" for $\mathrm{Mult}_{L} A$?

Theorem 16. For an abelian group $(A,+)$, if $\left|\operatorname{Mult}_{L} A\right|>1$, then (Mult L_{L},+) is not a nil group. In particular, $\mathrm{Mult}_{L} A$ is not a torsion divisible group.

Proof. $\operatorname{Mult}_{L} A \cong \operatorname{Map}(A$, End $A)$, so $A \neq\{0\}$. So there is a finite $X \subseteq A$ with $X \neq \emptyset$. The multiplications $\cdot=\cdot_{X}$ defined in Examples 4 are not trivial. Thus, Mult $_{L} A$ is not a nil group. Torsion divisible groups are nil groups [7, Theorem 71.1].

Corollary 17. If $(A,+)$ is a notrivial abelian group, then $\operatorname{Mult}_{L} A$ is not a nil group.

Theorem 18. Let $\phi \in S_{A}$ where S_{A} denotes the group of permutations on A. Suppose $Y=\phi(X)$, where $X \subseteq A$ is a finite subset, and consider the multiplications $\cdot X$ and \cdot_{Y} defined as in Examples 4. The map $\Phi_{\phi}: \operatorname{Mult}_{L} A \rightarrow \operatorname{Mult}_{L} A$ defined by $\Phi_{\phi}(\alpha)=\alpha^{\phi}$, where $\alpha^{\phi}(a, b)=\alpha(\phi(a), b)$, is an isomorphism from $\left(\mathrm{Mult}_{L} A,+,{ }_{Y}\right)$ onto $\left(\operatorname{Mult}_{L} A,+, \cdot X\right)$.

Proof. Certainly each $\alpha^{\phi} \in \operatorname{Mult}_{L} A$, and $\alpha_{a}^{\phi}=\alpha_{\phi(a)} . \Phi_{\phi}$ is easily seen to be a group homomorphism. $\Phi_{\phi}\left(\alpha^{\phi^{-1}}\right)=\alpha$, so Φ_{ϕ} is surjective. If $\alpha^{\phi}=0$, then $\alpha(\phi(a), b)=0$ for all $a, b \in A$, making $\alpha=0$. Thus Φ_{ϕ} is injective.

Consider $\Phi_{\phi}\left(\alpha \cdot{ }_{Y} \beta\right)=\left(\alpha \cdot{ }_{Y} \beta\right)^{\phi}$ and $\Phi_{\phi}(\alpha) \cdot X \Phi_{\phi}(\beta)=\alpha^{\phi} \cdot{ }_{X} \beta^{\phi}$. For any finite $T \cong A,(\alpha \cdot T \beta)(c, d)=\left(\sum_{t \in T} \alpha_{t}\right) \circ \beta_{c}(d)$. So $(\alpha \cdot T \beta)_{c}=\left(\sum_{t \in T} \alpha_{t}\right) \circ \beta_{c}$. So, $(\alpha \cdot Y \beta)_{a}^{\phi}=\left(\alpha \cdot{ }_{Y} \beta\right)_{\phi(a)}=\left(\sum_{y \in Y} \alpha_{y}\right) \circ \beta_{\phi(a)}$, and $\left(\alpha^{\phi} \cdot{ }_{X} \beta^{\phi}\right)_{a}=\left(\sum_{x \in X} \alpha_{x}^{\phi}\right) \circ \beta_{\phi(a)}=$ $=\left(\sum_{y \in Y} \alpha_{y}\right) \circ \beta_{\phi(a)}$. Thus, for each $a \in A$,

$$
\left(\alpha \cdot{ }_{Y} \beta\right)_{a}^{\phi}=\left(\alpha^{\phi} \cdot X \beta^{\phi}\right)_{a}
$$

hence $\left(\alpha_{Y} \beta\right)^{\phi}=\alpha^{\phi} \cdot{ }_{X} \beta^{\phi}$. This means Φ_{ϕ} is also a ring isomorphism.
Corollary 19. For $|X|=|Y|,\left(\operatorname{Mult}_{L} A,+, \cdot X\right) \cong\left(\operatorname{Mult}_{L} A,+, \cdot{ }_{Y}\right)$. If $|\operatorname{End} A|<\infty$, then $\left(\operatorname{Mult}_{L} A,+, \cdot X\right) \cong\left(\operatorname{Mult}_{L} A,+, \cdot Y\right)$ if and only if $|X|=$ $=|Y|$.

Proof. If $|X|=|Y|$, then there is a permutation $\phi \in S_{A}$ such that $\phi(X)=Y$. If $|\operatorname{End} A|<\infty$, and $\left(\operatorname{Mult}_{L} A,+, \cdot X\right) \cong\left(\operatorname{Mult}_{L} A,+, \cdot Y\right)$, then each has the same number of left identities, so by Proposition $14,|X|=|Y|$.

Remark. It is not known if \mid End $A \mid<\infty$ in Corollary 19 is needed.
For $\phi, \lambda \in S_{A}$, with $\phi(X)=Y$ and $\lambda(Y)=Z$, then $\Phi_{\phi} \circ \Phi_{\lambda}=\Phi_{\lambda \circ \phi} . \mathrm{We}$ then have

Theorem 20. Fix an abelian group A. The following describes two categories $\mathcal{F}(A)$ and $\mathcal{M}(A)$. The objects of $\mathcal{F}(A)$ are the finite subsets of A, and the objects of $\mathcal{M}(A)$ are the rings $\mathcal{R}(X)=\left(\right.$ Mult $\left._{L} A,+, \cdot{ }_{X}\right)$ where $\cdot X=\cdot$ is defined in Examples 4. Morphisms in $\mathcal{F}(A)$ are $\operatorname{hom}(X, Y)=$ $=\left\{\phi \in S_{A} \mid \phi(X)=Y\right\}$, and morphisms in $\mathcal{M}(A)$ are just the ring homomorphisms. Define Φ by $\Phi(X)=\mathcal{R}(X)$ and $\Phi(\phi)=\Phi_{\phi}$ of Theorem 18. Then Φ is a contravariant functor [13].

Note. For a finite $X \subseteq A, 1_{A} \in \operatorname{hom}(X, X)$ is the identity morphism for X, where $1_{A} \in S_{A}$ is the identity permutation.

The proof of the theorem is easy and shows no new techniques.
The finite subsets of an abelian group $(A,+)$ form a boolean algebra with respect to \cup and \cap. For finite subsets Y and Z, and $X=Y \cup Z$, we have for the multiplications of Example 4,

$$
\alpha \cdot X \beta=\alpha \cdot Y \beta+\alpha \cdot Z \beta-\alpha \cdot Y \cap Z \beta
$$

for arbitrary $\alpha, \beta \in \operatorname{Mult}_{L} A$. Thus $\cdot X=\cdot Y+\cdot{ }_{Z}-\cdot Y \cap Z$. This leads to
Theorem 21. The objects $\mathcal{R}(X)$ of the category $\mathcal{M}(A)$ form a boolean algebra where $\mathcal{R}(Y) \bigvee \mathcal{R}(Z)=\mathcal{R}(Y \cup Z)$ and $\mathcal{R}(Y) \wedge \mathcal{R}(Z)=\mathcal{R}(Y \cap Z)$.

Certainly $\mathrm{Ann}_{M} M$ is an ideal of M. We now construct further ideals of the examples defined in Examples 2, 3, and 4. For the rings defined in Examples 2, 3, and 4, a set X plays a role in the definition of the product. For a suitable subset T, there is a left ideal $I(T)$. For $R_{1}=R^{(S)}$ and $T \leqq S$, let $I(T)=\left\{a \in R^{(S)} \mid a_{t}=0\right.$ for each $\left.t \in T\right\}$. For $R_{1}=\operatorname{Mult}_{L} A$ and $T \cong A$, let $I(T)=\left\{\alpha \in \operatorname{Mult}_{L} A \mid \alpha(t, \cdot)=0\right.$ for each $\left.t \in T\right\}$. And for $R_{1}=M_{L}$ and $T \in \mathcal{A}$, let $I(T)=\left\{\alpha \in M_{L} \mid \alpha(t, \cdot)=0\right.$ for each $\left.t \in T\right\}$. The following theorem shows why we use the notation $I(T)$ for all three cases.

Theorem 22. Let $R_{1} \in\left\{R^{(S)}, M_{L}, \operatorname{Mult}_{L} A\right\}$, and consider the corresponding $I(T)$ as defined above. Then:

1) $I(T)$ is a left ideal.
2) As groups, $R_{1}^{+}=I(T)^{+} \oplus I\left(T^{c}\right)^{+}$, where T^{c} denotes the complement of T in S, in Y, or in A, as is appropriate.
3) In each case, for the appropriate X, if $X \subseteq T$, then $I(T)$ is an ideal in R_{1}, and $R_{1} / I(T) \cong I\left(T^{c}\right)$.

4a) If $I(T)$ is an ideal and $R_{1} \neq M_{L}$, then $X \subseteq T$.
4b) Suppose $R_{1}=M_{L}$ and $\mu(X)<\infty$. Then $I(T)$ is an ideal if and only if $\mu\left(X \cap T^{c}\right)=0$.

5a) Suppose $R_{1} \neq M_{L}$. Then $I\left(T_{1}\right) \subseteq I\left(T_{2}\right)$ if and only if $T_{2} \subseteq T_{1}$.

5b) Suppose $R_{1}=M_{L}$ and $\mu(X)<\infty$. Then $I\left(T_{1}\right) \subseteq I\left(T_{2}\right)$ if and only if $T_{2} \subseteq T_{1}$.

Proof. We shall sketch the proof for $R_{1}=M_{L}$. The other two cases have proofs very similar, but simpler.

For 1), take $\alpha, \beta \in I(T)$, and $t \in T$. Then $(\alpha-\beta)(t, b)=\alpha(t, b)-$ $-\beta(t, b)=0-0=0$, so $\alpha-\beta \in I(T)$. For $\gamma \in R_{1}=M_{L}$, and $t \in T$, $(\gamma \cdot \alpha)(t, b)=\int_{X} \gamma(x, \alpha(t, b)) d \mu(x)=\int_{X} \gamma(x, 0) d \mu(x)=\int_{X} 0 d \mu(x)=0$. Hence, $\gamma \cdot \alpha \in I(T)$, and so $I(T)$ is a left ideal.

For 2), let $\alpha \in R_{1}=M_{L}$ and define

$$
\alpha_{T}(t, b)= \begin{cases}0, & \text { if } t \in T \\ \alpha(t, a), & \text { if } t \notin T\end{cases}
$$

and

$$
\alpha^{\prime}(t, b)= \begin{cases}\alpha(t, a), & \text { if } t \in T \\ 0, & \text { if } t \notin T\end{cases}
$$

Certainly $\alpha=\alpha^{\prime}+\alpha_{T}$, and $\alpha^{\prime} \in I\left(T^{c}\right)$, and $\alpha_{T} \in I(T)$, if $\alpha^{\prime}, \alpha_{T} \in M_{L}$. If one is in M_{L}, the other is also, and we shall shortly demonstrate that $\alpha_{T} \in M_{L}$. Assuming $\alpha_{T} \in M_{L}$, we certainly have $M_{L}^{+}=I(T)^{+}+I\left(T^{c}\right)^{+}$, and if $\beta \in I(T) \cap I\left(T^{c}\right)$, then $\beta=0$. So we need only to show that $\alpha_{T} \in M_{L}$.

Take $b \in \mathbf{R}$. Then $\int_{Y} \alpha_{T}(y, b) d \mu(y)=\int_{T} \alpha(y, b) d \mu(y)$ exists, since $\alpha \in M_{L}$. For $f \in \mathcal{L}_{1}(Y, \mathcal{A}, \mu)$ and $a \in Y$, if $a \in T$, then $\int_{Y} \alpha_{T}(a, f(y)) d \mu(y)=0=$ $=\alpha_{T}\left(a, \int_{Y} f(y) d \mu(y)\right)$. If $a \notin T$, then

$$
\begin{aligned}
& \int_{Y} \alpha_{T}(a, f(y)) d \mu(y)=\int_{Y} \alpha(a, f(y)) d \mu(y)= \\
= & \alpha\left(a, \int_{Y} f(y) d \mu(y)\right)=\alpha_{T}\left(a, \int_{Y} f(y) d \mu(y)\right),
\end{aligned}
$$

since $\alpha \in M_{L}$. Finally, for $y \in T, \alpha_{T}(y, s a+t b)=0=s \alpha_{T}(y, a)+t \alpha_{T}(y, b)$, and for $y \notin T, \alpha_{T}(y, s a+t b)=\alpha(y, s a+t b)=s \alpha(y, a)+t \alpha(y, b)=s \alpha_{T}(y, a)+$ $+t \alpha_{T}(y, b)$. So, $\alpha_{T} \in M_{L}$ as promised.

We also assume $X \subseteq T$ for 3). Take $\alpha \in I(T)$ and $\gamma \in R_{1}=M_{L}$. Then for $t \in T,(\alpha \cdot \gamma)(t, b)=\int_{X} \alpha(x, \gamma(t, b)) d \mu(x)=\int_{X} 0 d \mu(x)=0$, so $\alpha \cdot \gamma \in I(T)$, and $I(T)$ is an ideal. As groups, from 2), we have $R_{1}^{+} / I(T)^{+} \cong I\left(T^{c}\right)^{+}$. The map $\alpha \mapsto \alpha^{\prime}$ is certainly a group epimorphism. We will show now that $(\alpha \cdot \beta)^{\prime}=\alpha^{\prime} \cdot \beta^{\prime}$, thus completing the proof of 3$)$.

For $t \in T,\left(\alpha^{\prime} \cdot \beta^{\prime}\right)(t, b)=\int_{X} \alpha^{\prime}\left(x, \beta^{\prime}(t, b)\right) d \mu(x)=\int_{X} \alpha(x, \beta(t, b)) d \mu(x)=$ $=(\alpha \cdot \beta)(t, b)$. For $t \notin T$,

$$
\begin{gathered}
\left(\alpha^{\prime} \cdot \beta^{\prime}\right)(t, b)=\int_{X} \alpha^{\prime}\left(x, \beta^{\prime}(t, b)\right) d \mu(x)= \\
=\int_{x} \alpha(x, 0) d \mu(x)=\int_{X} 0 d \mu(x)=0
\end{gathered}
$$

and $(\alpha \cdot \beta)^{\prime}(t, b)=0$, also. Thus $(\alpha \cdot \beta)^{\prime}=\alpha^{\prime} \cdot \beta^{\prime}$.
For 4 b$)$, we also assume $\mu(X)<\infty$. If $\mu\left(X \cap T^{c}\right)=0, \alpha \in I(T), \gamma \in M_{L}$, and $t \in T$, then

$$
\begin{gathered}
(\alpha \cdot \gamma)(t, b)=\int_{X} \alpha(x, \gamma(t, b)) d \mu(x)= \\
=\int_{X \cap T} \alpha(x, \gamma(t, b)) d \mu(x)+\int_{X \cap T^{c}} \alpha(x, \gamma(t, b)) d \mu(x)=\int_{X \cap T} 0 d \mu(x)+0=0,
\end{gathered}
$$

since $\mu\left(X \cap T^{c}\right)=0$. Hence $I(T)$ is an ideal.
For the converse, we assume $I(T)$ is an ideal. If $\alpha \in I(T), \gamma \in M_{L}$ and $t \in T$, then

$$
\begin{gathered}
0=(\alpha \cdot \gamma)(t, b)=\int_{X} \alpha(x, \gamma(t, b)) d \mu(x)= \\
=\int_{X \cap T} \alpha(x, \gamma(t, b)) d \mu(x)+\int_{X \cap T^{c}} \alpha(x, \gamma(t, b)) d \mu(x)=\int_{X \cap T^{c}} \alpha(x, \gamma(t, b)) d \mu(x)=(\dagger)
\end{gathered}
$$

Define α by

$$
\alpha(t, b)= \begin{cases}b, & \text { if } t \in X \cap T^{c} \\ 0, & \text { otherwise }\end{cases}
$$

Choose a γ and a b so that $\gamma(t, b) \neq 0$. If $\alpha \in M_{L}$, then $\alpha \in I(T)$, and

$$
(\dagger)=\int_{X \cap T^{c}} \gamma(t, b) d \mu(x)=\gamma(t, b) \mu\left(X \cap T^{c}\right) .
$$

Since $\gamma(t, b) \neq 0$, we have $\mu\left(X \cap T^{c}\right)=0$.
Let us now show that $\alpha \in M_{L}$. For a), $\int_{Y} \alpha(y, b) d \mu(y)=\int_{\cap T^{c}} b d \mu(y)=$ $=b \mu\left(X \cap T^{c}\right)$ exists. For b), take $f \in \mathcal{L}_{1}(Y, \mathcal{A}, \mu)$. Then for $a \in X \cap T^{c}$, $\int_{Y} \alpha(a, f(y)) d \mu(y)=\int_{Y} f(y) d \mu(y)=\alpha\left(a, \int_{Y} f(y) d \mu(y)\right)$. For $a \notin X \cap T^{c}$,
$\int_{Y} \alpha(a, f(y)) d \mu(y)=0=\alpha\left(a, \int_{Y} f(y) d \mu(y)\right)$. Finally, for c), let $y \in X \cap$ $\cap T^{c}$. Then $\alpha(y, s a+t b)=s a+t b=s \alpha(y, a)+t \alpha(y, b)$. For $y \notin X \cap T^{c}$, $\alpha(y, s a+t b)=0=s \cdot 0+t \cdot 0=s \alpha(y, a)+t \alpha(y, b)$. Hence, $\alpha \in M_{L}$ as promised.

Finally, for 5 b), we suppose that $I\left(T_{1}\right) \subseteq I\left(T_{2}\right)$, and that there is a $t_{2} \in T_{2} \backslash T_{1}$. Define α by $\alpha\left(t_{2}, b\right)=b$ and $\alpha(t, b)=0$ if $t_{2} \neq t$. Then, if $\alpha \in M_{L}$, we have $\alpha \in I\left(T_{1}\right)$ but $\alpha \notin I\left(T_{2}\right)$, a contradiction. So we need only see that $\alpha \in M_{L}$.

It is direct to see that b) and c) requirements for being in M_{L} are satisfied. For a), let $b \in \mathbf{R}$. Then

$$
\int_{Y} \alpha(y, b) d \mu(y)= \begin{cases}0, & \text { if }\left\{t_{2}\right\} \notin \mathcal{A} ; \\ b \mu\left(\left\{t_{2}\right\}\right), & \text { if }\left\{t_{2}\right\} \in \mathcal{A} .\end{cases}
$$

So $\alpha \in M_{L}$.
The converse is trivial.
Corollary 23. a) Suppose $R_{1} \neq M_{L}$. Then $I\left(T_{1}\right) \subset I\left(T_{2}\right)$ if and only if $T_{2} \subset T_{1}$.
b) Suppose $R_{1}=M_{L}$ and $\mu(X)<\infty$. Then $I\left(T_{1}\right) \subset I\left(T_{2}\right)$ if and only if $T_{2} \subset T_{1}$.

Proof. Suppose $I\left(T_{1}\right) \subset I\left(T_{2}\right)$. Then $I\left(T_{1}\right) \cong I\left(T_{2}\right)$. From the theorem, $T_{2} \subseteq T_{1}$. If $T_{2}=T_{1}$, then $T_{1} \subseteq T_{2}$ and the theorem gives us that $I\left(T_{2}\right) \subseteq$ $\subseteq I\left(T_{1}\right)$, which cannot be. Conversely, suppose $T_{2} \subset T_{1}$. Then $T_{2} \subseteq T_{1}$ and so $I\left(T_{1}\right) \cong I\left(T_{2}\right)$. If $I\left(T_{1}\right)=I\left(T_{2}\right)$, then $I\left(T_{2}\right) \cong I\left(T_{1}\right)$, which forces $T_{1} \cong T_{2}$.

Corollary 24. For the appropriate case for R_{1}, assume that S, A, or Y is infinite. Then neither the descending chain condition (d.c.c.) for left ideals nor the d.c.c. for ideals holds.

Proof. For the ideal case, there is an infinite chain

$$
X \subset T_{1} \subset T_{2} \subset \cdots \subset T_{n} \subset \cdots
$$

So

$$
I(X) \supset I\left(T_{1}\right) \supset I\left(T_{2}\right) \supset \cdots \supset I\left(T_{n}\right) \supset \cdots
$$

The definition of M_{L} depends upon a measure space (Y, \mathcal{A}, μ), and this point could be emphasized by writing $M_{L}(Y, \mathcal{A}, \mu)$, if necessary, for M_{L}. For a μ-measurable set $T \in \mathcal{A}$, one gets the measure space $\left(T, \mathcal{A}_{T}, \mu_{T}\right)$ where the σ-algebra $\mathcal{A}_{T}=\{F \in \mathcal{A} \mid F \cong T\}$, and $\mu_{T}=\mu \mid \mathcal{A}_{T}[11,11.22,11.37$, 12.31].

Theorem 25. Let $R_{1}=M_{L}(Y, \mathcal{A}, \mu)$ and fix $X, T \in \mathcal{A}$ with $X \subseteq T$, and let X define the multiplication in the M_{L} 's. Then

$$
\frac{M_{L}(Y, \mathcal{A}, \mu)}{I(T)} \cong M_{L}\left(T, \mathcal{A}_{T}, \mu_{T}\right) .
$$

Proof. From Theorem 22, we have $M_{L}(Y, \mathcal{A}, \mu) / I(T) \cong I\left(T^{c}\right)$, so we shall show that $I\left(T^{c}\right) \cong M_{L}\left(T, \mathcal{A}_{T}, \mu_{T}\right)$. Define $\Lambda: I\left(T^{c}\right) \rightarrow M_{L}\left(T, \mathcal{A}_{T}, \mu_{T}\right)$ by $\Lambda(\alpha)=\alpha \mid T \times \mathbf{R}=\alpha^{*}$, the restriction of α to $T \times \mathbf{R}$. Certainly, $\Lambda(\alpha+\beta)=\Lambda(\alpha)+\Lambda(b)$, or $(\alpha+\beta)^{*}=\alpha^{*}+\beta^{*}$. If $\alpha^{*}=0$, then $\alpha^{*}(t, \cdot)=0$ for each $t \in T$, so $\alpha(t, \cdot)=0$ for each $t \in T$. Since $\alpha \in I\left(T^{c}\right)$, then $\alpha(t, \cdot)=0$ for each $t \in T^{c}$, making $\alpha(t, \cdot)=0$ for each $t \in T \cup T^{c}=Y$. So $\alpha=0$ and Λ is injective.

Take any $\alpha^{*} \in M_{L}\left(T, \mathcal{A}_{T}, \mu_{T}\right)$, and define

$$
\alpha(y, b)= \begin{cases}\alpha^{*}(y, b), & \text { if } y \in T \\ 0, & \text { if } y \in T^{c}\end{cases}
$$

If $\alpha \in M_{L}(Y, \mathcal{A}, \mu)$, then $\alpha \in I\left(T^{c}\right)$ and $\Lambda(\alpha)=\alpha^{*}$, making Λ surjective.
To see that $\alpha \in M_{L}(Y, \mathcal{A}, \mu)$, take $b \in \mathbf{R}$, and note that $\int_{Y} \alpha(y, b) d \mu(y)=$ $=\int_{T} \alpha(y, b) d \mu(y)+\int_{T^{c}} \alpha(y, b) d \mu(y)=\int_{T} \alpha^{*}(y, b) d \mu_{T}(y)$.

For $f \in \mathcal{L}_{1}(Y, \mathcal{A}, \mu)$ and $a \in Y$, we have $\int_{Y} \alpha(a, f(y)) d \mu(y)=0=$ $=\alpha\left(a, \int_{Y} f(y) d \mu(y)\right)$, if $a \in T^{c}$, and if $a \in T$, then $\int_{Y} \alpha(a, f(y)) d \mu(y)=$ $=\int_{Y} \alpha^{*}(a, f(y)) d \mu(y)=\int_{Y} f(y) \alpha^{*}(a, 1) d \mu(y)=\left[\int_{Y} f(y) d \mu(y)\right] \alpha^{*}(a, 1)=$ $=\alpha^{*}\left(a, \int_{Y} f(y) d \mu(y)\right)=\alpha\left(a, \int_{Y} f(y) d \mu(y)\right)$.

Certainly $\alpha(y, s a+t b)=s \alpha(y, a)+t \alpha(y, b)$ if $y \in T^{c}$, and $\alpha(y, s a+t b)=$ $=\alpha^{*}(y, s a+t b)=s \alpha^{*}(y, a)+t \alpha^{*}(y, b)=s \alpha(y, a)+t \alpha(y, b)$, if $y \in T$. In summary, $\alpha \in M_{L}(Y, \mathcal{A}, \mu)$, and to see that Λ is a ring isomorphism, one needs only now to see that $(\alpha \cdot \beta)^{*}=\alpha^{*} \cdot \beta^{*}$.

Now $\alpha^{*} \cdot \beta^{*}(a, b)=\int_{X} \alpha^{*}\left(x, \beta^{*}(a, b)\right) d \mu_{T}(x)=\int_{X} \alpha(x, \beta(a, b)) d \mu(x)=$ $=(\alpha \cdot \beta)(a, b)=(\alpha \cdot \beta)^{*}(a, b)$, for each $(a, b) \in T \times \mathbf{R}$. Hence $(\alpha \cdot \beta)^{*}=\alpha^{*} \cdot \beta^{*}$. This completes the proof of Theorem 25.

Recall that $R^{(S)}$ can be thought of as all functions $r: S \rightarrow R$ with finite support [13]. The proof of Theorem 25 can be easily modified to give a proof of

Corollary 26. For $R_{1}=R^{(S)}$ and $X \cong T \cong S$, we have $R^{(S)} / I(T) \cong$ $\cong R^{(T)}$.

References

[1] R. A. Beaumont, Rings with additive group which is the direct sum of cyclic groups, Duke Math. J., 15 (1948), 367-369.
[2] J. R. Clay, The group of left distributive multiplications on an abelian group, Acta Math. Acad. Sci. Hung., 19 (1968), 221-227.
[3] J. R. Clay, The near-rings definable on an arbitrary group and the group of left distributive multiplications definable on an abelian group, Doctoral Dissertation, Univ. of Washington (Seattle, 1966).
[4] S. Feigelstock and A. Klein, A functorial approach to near-rings, Acta Math. Acad. Sci. Hung., 34 (1979), 47-57.
[5] L. Fuchs, Ringe und ihre additive Gruppe, Publ. Math. Debrecen, 4 (1956), 488-508.
[6] L. Fuchs, On quasi nil groups, Acta Sci. Math. (Szeged), 18 (1957), 33-43.
[7] L. Fuchs, Abelian Groups, Pergamon (New York, 1960).
[8] L. Fuchs, Infinite Abelian Groups, vol. II, Academic Press (New York, 1973).
[9] L. Fuchs and T. Szele, On Artinian rings, Acta Sci. Math. (Szeged), 17 (1956), 30-40.
[10] F. L. Hardy, On groups of ring multiplications, Acta Math. Acad. Sci. Hung., 14 (1963), 283-294.
[11] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag (New York, 1965).
[12] M. Loève, Probability Theory, 3rd Ed., Van Nostrand (Princeton, 1963).
[13] S. MacLane and G. Birkhoff, Algebra, Macmillan (New York, 1967).
[14] L. Rédei, Über die Ringe mit gegebene Modul, Acta Sci. Math. (Szeged), 15 (1954), 251-254.
[15] L. Rédei and T. Szele, Die Ringe "ersten Ranges", Acta Sci. Math. (Szeged), 12A (1950), 18-29.
[16] R. Ree and R. J. Wisner, A note on torsion-free nil groups, Proc. Am. Math. Soc., 7 (1956), 6-8.
[17] T. Szele, Zur Theorie der Zeroringe, Math. Ann., 121 (1949), 242-246.
[18] T. Szele, Nilpotent Artinian rings, Publ. Math. Debrecen, 4 (1955), 71-78.
(Received April 8, 1988; revised July 5, 1989)
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ARIZONA
TUCSON, ARIZONA 85721
USA

ON THE UNIQUE EXISTENCE OF ALMOST PERIODIC SOLUTIONS OF VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

K. WANG (Changchun)*

This paper deals with the uniqueness and existence of almost periodic solutions of Volterra integro-differential equations of the form

$$
\begin{equation*}
x^{\prime}(t)=A(t) x(t)+\int_{-\infty}^{t} C(s-t) x(s) d s+f(t) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{\prime}(t)=A(t) x(t)+\int_{-\infty}^{t} D(s-t, x(s)) d s+r(t, x(t)) \tag{2}
\end{equation*}
$$

where A, C are continuous matrices; D, f, r are continuous n-dimensional vectors; and $A(t+T)=A(t), T \geqq 0$.

The existence and uniqueness of almost periodic solutions of Volterra integro-differential equations have been studied by many authors, see [1-4]. Using the technique of [5], we present some new unique existence criteria for (1) and (2).

If $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R^{n}, A=\left(a_{i j}\right)$ is an $n \times n$ matrix, then define

$$
|x|=\sum_{i=1}^{n}\left|x_{i}\right|, \quad|A|=\sum_{i, j=1}^{n}\left|a_{i j}\right| .
$$

Let AP denote the set of almost periodic functions, define $\|g\|=\sup _{t \in R}|g(t)|$, for $g \in \mathrm{AP}$. The space ($\mathrm{AP},\|\cdot\|$) is a Banach space.

Definition 1. A matrix $A(t)$ is said to be noncritical with respect to AP if the only solution in AP of the equation $x^{\prime}=A(t) x$ is the zero solution $x=0$.

Lemma 1 [5]. If $A(t+T)=A(t), T>0$, then the equation

$$
\begin{equation*}
x^{\prime}=A(t) x+f(t) \tag{3}
\end{equation*}
$$

[^12]has a solution $K f$ in AP for every $f \in \mathrm{AP}$ if and only if $A(t)$ is noncritical with respect to AP.

Lemma 2 [5]. If $A(t+T)=A(t)$, and A is noncritical with respect to AP then $K f$ is the only solution of (3) in AP, and $K f$ is continuous and linear in f, and there is a constant

$$
k=T \sup _{0 \leqq s, t \leqq T}\left|\left(X^{-1}(t+T, t)-I\right)^{-1} X(t, t+s)\right|
$$

such that $\|K f\| \leqq k\|f\|$, where I is the unit matrix, $X(t, s), X(s, s)=I$, is the principal matrix solution of $x^{\prime}=A(t) x$.

Lemma 3. If $A(t+T)=A(t)$, then $A(t)$ is noncritical with respect to AP if and only if all characteristic exponents of $x^{\prime}=A(t) x$ have nonzero real parts.

Lemma 4. If $G \stackrel{\text { def }}{=} \int_{-\infty}^{0}|C(u)| d u<+\infty$, then the function

$$
(Q g)(t) \stackrel{\text { def }}{=} \int_{-\infty}^{t} C(s-t) g(s) d s
$$

is almost periodic, for any $g \in \mathrm{AP}$.
Proof. Suppose $\left\{a_{k}\right\}$ is a sequence in R. Since $g \in \mathrm{AP}$, so there is a continuous function $g^{*}(t)$ and a subsequence $\left\{a_{i}\right\} \subset\left\{a_{k}\right\}$ such that $\left\{g\left(t+a_{i}\right)\right\}$ uniformly converges to $g^{*}(t)$ on R, that is, for any given $\varepsilon>0$, there is a $N>0$ such that

$$
\left|g\left(t+a_{i}\right)-g^{*}(t)\right|<\varepsilon, \quad \text { for } \quad t \in R \quad \text { and } \quad i \geqq N
$$

Since

$$
(Q g)\left(t+a_{k}\right)=\int_{-\infty}^{t+a_{k}} C\left(s-t-a_{k}\right) g(s) d s=\int_{-\infty}^{t} C(s-t) g\left(s+a_{k}\right) d s
$$

therefore,

$$
\begin{aligned}
&\left|(Q g)\left(t+a_{i}\right)-\left(Q g^{*}\right)(t)\right| \leqq \int_{-\infty}^{t}|C(s-t)|\left|g\left(s+a_{i}\right)-g^{*}(s)\right| d s \leqq \\
& \leqq \varepsilon \int_{-\infty}^{0}|C(u)| d u, \text { for } t \in R \text { and } i \geqq N .
\end{aligned}
$$

This implies that $\left\{(Q g)\left(t+a_{i}\right)\right\}$ uniformly converges to $\left(Q g^{*}\right)(t)$ on R, thus $(Q g)(t)$ is almost periodic.

Theorem 1. If
$1^{\circ} A(t)$ is noncritical with respect to AP;
$2^{\circ} k G<1$;
then (1) has one and only one almost periodic solution for every $f \in \mathrm{AP}$.
Proof. Suppose $f \in \mathrm{AP}$ is given, we define maps $P, Q: \mathrm{AP} \rightarrow \mathrm{AP}$ by the following way

$$
(Q g)(t)=\int_{-\infty}^{t} C(s-t) g(s) d s, \quad \text { for } \quad g \in \mathrm{AP}
$$

and $P g=K(Q g+f)$. It is easy to see that P, Q are well defined and continuous in g, and $\|Q g\| \leqq G\|g\|$.

Take $M>0$ so large that $(1-k G) M>k$, if $f \neq 0$. Let

$$
S=\{g \in \mathrm{AP}:\|g\| \leqq N\|f\|\}
$$

Then for $g \in S$,

$$
\begin{aligned}
\|P g\| & =\|K(Q g+f)\| \leqq k(\|Q g\|+\|f\|) \leqq k G\|g\|= \\
& =k\|f\| \leqq M k G\|f\|+k\|f\| \leqq M\|f\| .
\end{aligned}
$$

Therefore P is a map of S into itself.
If $g, h \in S$, then

$$
\begin{gathered}
\|P g-P h\|=\|K(Q g+f)-K(Q h+f)\| \leqq\|K Q g-K Q h\| \leqq \\
\leqq k\|Q(g-h)\| \leqq k G\|g-h\| .
\end{gathered}
$$

From condition 2°, the map P is a contraction of S. The contraction principle implies there is a unique fixed point g^{*} of P on S, that is,

$$
\frac{d}{d t} g^{*}(t)=A(t) g^{*}(t)+\left(Q g^{*}+f\right)(t)=A(t) g^{*}(t)+\int_{-\infty}^{t} C(s-t) g^{*}(s) d s+f(t)
$$

and $g^{*}(t)$ is an almost periodic solution of (1). If there is another almost periodic solution $h^{*}(t)$ of (1), take $M>0$ so large that $\left\|h^{*}\right\| \leqq M\|f\|$, then h^{*} is a fixed point of P on S, from the uniqueness of fixed point of P on $S, h^{*}=g^{*}$. This implies the uniqueness of almost periodic solution of (1). If $f=0$, let

$$
S=\{g \in \mathrm{AP}:\|g\| \leqq M\}
$$

The remaining argument proceeds as in case $f \neq 0$.

Corollary 1. If A is a real constant matrix, and 1° all characteristic roots of A have nonzero real parts;
$2^{\circ} \int_{-\infty}^{0}|C(u)| d u<\left(T\left|\left(e^{-A T}-I\right)^{-1}\right| e^{|A| T}\right)^{-1} ;$
then equation (1) has one and only one almost periodic solution.
Corollary 2. If $n=1$ and
$1^{\circ} \int_{0}^{T} A(s) d s \neq 0 ;$
$2^{\circ} \int_{-\infty}^{0}|C(u)| d u<T^{-1}\left|1-e^{-\int_{0}^{T} A(s) d s}\right| e^{\inf _{s, t \leqq T} \int_{t}^{t+s} A(z) d s} ;$
then equation (1) has one and only one almost periodic solution.
Corollary 3. If
$1^{\circ} A(t) A(s)=A(s) A(t)$ for all $t, s \in R$, and all characteristic roots of the matrix $\int_{0}^{T} A(z) d z$ have nonzero real parts;

$$
2^{\circ} \int_{-\infty}^{0}|C(u)| d u<\left(T\left|\left(e^{-\int_{0}^{T} A(z) d z}-I\right)^{-1}\right| e^{\|A\| T}\right)^{-1}
$$

where $\|A\|=\sup _{0 \leqq t \leqq T}|A(t)|$, then equation (1) has one and only one almost periodic solution.

Now let us consider the more complicated nonlinear Volterra integrodifferential equation

$$
\begin{equation*}
x^{\prime}(t)=A(t) x(t)+\int_{-\infty}^{t} D(s-t, x(s)) d s+r(t, x(t)) \tag{2}
\end{equation*}
$$

where $D:(-\infty, 0] \times R^{n} \rightarrow R^{n}$ and $r: R \times R^{n} \rightarrow R^{n}$ are continuous functions, $D(\cdot, 0) \equiv 0$, from $g \in \mathrm{AP}$ it follows that $\int_{-\infty}^{t} D(s-t, g(s)) d s$ is continuous on R, moreover there are real constants $c>0, L \geqq 0$ and a continuous function $C_{1}:(-\infty, 0] \rightarrow[0, \infty)$ such that

$$
\begin{gathered}
|D(u, x)-D(u, y)| \leqq C_{1}(u)|x-y|, \quad|r(t, x)| \leqq c \\
|r(t, x)-r(t, y)| \leqq L|x-y|
\end{gathered}
$$

for all $u \leqq 0, x, y \in R^{n}, t \in R$.

Lemma 5. If

$$
F \stackrel{\text { def }}{=} \int_{-\infty}^{0}\left|C_{1}(u)\right| d s<\infty
$$

then the function

$$
(Q g)(t) \stackrel{\text { def }}{=} \int_{-\infty}^{t} D(s-t, g(s)) d s
$$

is almost periodicfor any $g \in \mathrm{AP}$.
Proof. Suppose $\left\{a_{k}\right\}$ is a sequence in R. Since $g \in A P$, so there is a continuous function $g^{*}(t)$ and a subsequence $\left\{a_{i}\right\} \subset\left\{a_{k}\right\}$ such that $\left\{g\left(t+a_{i}\right)\right\}$ uniformly converges to $g^{*}(t)$ on R, that is, for any given $\varepsilon>0$, there is an $N>0$ such that

$$
\left|g\left(t+a_{i}\right)-g^{*}(t)\right|<\varepsilon, \quad \text { for } t \in R \text { and } i \geqq N .
$$

Since

$$
(Q g)\left(t+a_{k}\right)=\int_{-\infty}^{t+a_{k}} D\left(s-t-a_{k}, g(s)\right) d s=\int_{-\infty}^{t} D\left(s-t, g\left(s+a_{k}\right)\right) d s
$$

therefore,

$$
\begin{aligned}
& \left|(Q g)\left(t+a_{i}\right)-\left(Q g^{*}\right)(t)\right| \leqq \\
\leqq & \int_{-\infty}^{t}\left|D\left(s-t, g\left(s+a_{i}\right)\right)-D\left(s-t, g^{*}(s)\right)\right| d s \leqq \\
& C_{1}(s-t)\left|g\left(s+a_{i}\right)-g^{*}(s)\right| d s \leqq \varepsilon \int_{-\infty}^{0}\left|C_{1}(u)\right| d u, \quad \text { for } t \in R \text { and } i \geqq N .
\end{aligned}
$$

This implies that $\left\{(Q g)\left(t+a_{i}\right)\right\}$ uniformly converges to $\left(Q g^{*}\right)(t)$ on R. The lemma is proved.

Theorem 2. If
$1^{\circ} r(t, g(t))$ is almost periodic for any $g \in \mathrm{AP}$;
$2^{\circ} A$ is noncritical with respect to AP;
$3^{\circ} k L<1$, and $\int_{-\infty}^{0}\left|C_{1}(u)\right| d u<k^{-1}-L ;$
then (2) has one and only one almost periodic solution.
Proof. Let

$$
F=\int_{-\infty}^{0}\left|C_{1}(u)\right| d u
$$

It is easy to see that $k F<1$. Take $M>0$ so large that $(1-k F) M>k$. Define maps $P, Q: \mathrm{AP} \rightarrow \mathrm{AP}$ by the following way

$$
(Q g)(t) \int_{-\infty}^{t} D(s-t, g(s)) d s, \quad \text { for } g \in \mathrm{AP}
$$

and

$$
(P g)(t)=K((Q g)(\cdot)+r(\cdot, g(\cdot))) .
$$

It is easy to see that P, Q are well defined and continuous.
Let

$$
S=\{g \in \mathrm{AP}:\|g\| \leqq M c\} .
$$

Then, for $g \in S$, we have

$$
\|P g\|=\|K((Q g)(\cdot)+r(\cdot, g(\cdot)))\| \leqq
$$

$$
\leqq k \int_{-\infty}^{t} C_{1}(s-t)|g(s)| d s+k c \leqq k F M c+k c<M c .
$$

Therefore, P is a map of S into itself.
Suppose $g, h \in S$, then

$$
\begin{gathered}
\|P g-P h\|=\|K((Q g)(\cdot)+r(\cdot, g(\cdot)))-K((Q h)(\cdot)+r(\cdot, h(\cdot)))\| \leqq \\
\leqq\|K Q g-K Q h\|+\|K r(\cdot, g(\cdot))-K r(\cdot, h(\cdot))\| \leqq k\|Q g-Q h\|+k L\|g-h\| \leqq \\
\leqq k \int_{-\infty}^{t}|D(s-t, g(s))-D(s-t, h(s))| d s+k L\|g-h\| \leqq \\
\leqq k \int_{-\infty}^{t} C_{1}(s-t)|g(s)-h(s)| d s+k L\|g-h\| \leqq k F\|g-h\|+k L\|g-h\| .
\end{gathered}
$$

From $3^{\circ}, k F+k L<1$, and P is a contraction on S. The contraction principle implies there is a unique fixed point $g^{*} \in S$ of P, that is,

$$
\begin{aligned}
& \frac{d}{d t} g^{*}(t)=A(t) g^{*}(t)+\left(Q g^{*}\right)(t)+r\left(t, g^{*}(t)\right)= \\
= & A(t) g^{*}(t)+\int_{-\infty}^{t} D\left(s-t, g^{*}(s)\right) d s+r\left(t, g^{*}(t)\right)
\end{aligned}
$$

Therefore, $g^{*}(t)$ is an almost periodic solution of (2). The uniqueness of almost periodic solution of (2) can be proved by the same way as in the proof of Theorem 1.

Corollary 4. If A is a real constant matrix and 1° all characteristic roots of A have nonzero real parts;
$2^{\circ}\left(T\left|\left(e^{-A T}-I\right)^{-1}\right| e^{|A| T}\right)^{-1}>L+F ;$
then equation (2) has one and only one almost periodic solution.
Corollary 5. If $n=1$, and
$1^{\circ} \int_{0}^{T} A(s) d s \neq 0$;
$2^{\circ} F+L<T^{-1}\left|1-e^{-\int_{0}^{T} A(z) d z}\right| e^{e^{\inf _{\Omega, 1 \leqq T}} \int_{t}^{t+\infty} A(z) d z} ;$
then equation (2) has one and only one almost periodic solution.
Corollary 6. If
$1^{\circ} A(t) A(s)=A(s) A(t)$ for all $t, s \in R$, and all characteristic roots of the matrix $\int_{0}^{T} A(z) d z$ have nonzero real parts;

$$
2^{\circ} F+L<\left(T\left|\left(e^{-\int_{0}^{T} A(z) d z}-I\right)^{-1}\right| e^{\|A\| T}\right)^{-1}
$$

then equation (2) has one and only one almost periodic solution.
Corollary 7. If $n=1$ and
$1^{\circ} A(t) \equiv A \neq 0$, where A is a constant;
$2^{\circ} F+L<|A|$;
then equation (2) has one and only one almost periodic solution.
Proof. If $A>0$, by Corollary 5 we have,

$$
k \leqq T\left(1-e^{-A T}\right)^{-1} \stackrel{\text { def }}{=} K(T),
$$

where T is any positive constant.
Since
$e^{A T}=1+A T+\frac{1}{2}(A T)^{2}+\ldots>1+A T, \quad \frac{d}{d t} K(T)=\frac{1-(1+A T) e^{-A T}}{\left(1-e^{-A T}\right)^{2}}>0$, and

$$
k \leqq \lim _{T \rightarrow 0} K(T)=A^{-1}
$$

If $A<0$, we have

$$
k \leqq T\left(e^{-A T}-1\right)^{-1} e^{-A T}=T\left(1-e^{A T}\right)^{-1} .
$$

The rest of the argument proceeds as in case $A>0$.

Example 1. The equation

$$
x^{\prime}(t)=3 x(t)+\int_{-\infty}^{t} e^{s-t} x(s) d s+\arctan (\sin t+\cos \pi t+x(t))
$$

has one and only one almost periodic solution.
Remark. For each $f \in \mathrm{AP}$, there is a corresponding Fourier series

$$
f \sim \sum_{k=0}^{\infty} a_{k} e^{i \lambda_{k} t}
$$

with frequencies λ_{k} in R and coefficients a_{k} in C^{n}. The requirement $\lambda_{k} \geqq$ $\geqq q>0$ for $k=1,2, \cdots$, is needed in [4], while in this paper we do not need such kind of conditions at all.

Example 2. The equation

$$
\begin{equation*}
x^{\prime}(t)=5 x(t)+\int_{-\infty}^{t} \frac{x(s) d s}{1+(t-s)^{2}}+\sum_{k=1}^{\infty} \frac{1}{2^{k}} \cos \sqrt{\frac{1}{k}} t \tag{4}
\end{equation*}
$$

has one and only one almost periodic solution.
Proof. We have $A=5, F=\frac{1}{2} \pi, L=0$. By Corollary 7, this example is obvious. But, since $\inf \left\{\sqrt{\frac{1}{k}}\right\}=0$, it is difficult to determine the unique existence of almost periodic solutions for (4) by the results in [4].

References

[1] C. Corduneanu, Integrodifferential equations with almost periodic solutions, in Volterra and Functional Differential Equations (K. B. Hannsgen, T. L. Herdman, H. W. Stech, and R. L. Wheeler, Eds), pp. 233-243 (New York/Basel, 1982).
[2] A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Math. Vol. 377, Springer-Verlag (Berlin, 1974).
[3] G. Seifert, Almost periodic solutions for delay-differential equations with infinite delays, J. Differential Equations, 41 (1981), 416-425.
[4] C. E. Langenhop, Periodic and almost periodic solutions of Volterra integral differential equations with infinite memory, J. Differential Equations, 58 (1985), 391-403.
[5] J. K. Hale, Ordinary Differential Equations, Wiley-Interscience (New York, 1969).
(Received April 18, 1988; revised August 25, 1988)

DEPARTMENT OF MATHEMATICS
NORTHEAST NORMAL UNIVERSITY
CHANGCHUN, JILIN
PEOPLE'S REPUBLIC OF CHINA

ON THE RIEMANNIAN CURVATURE OF A TWISTOR SPACE

J. DAVIDOV and O. MUSKAROV (Sofia)*

§ 1. Introduction. The twistor space of an oriented Riemannian 4manifold M is the 2 -sphere bundle Z on M consisting of the unit (-1)eigenvectors of the Hodge star operator acting on $\wedge^{2} T M$. The 6 -manifold Z admits a natural 1-parameter family of pseudo-Riemannian metrics $h_{t}, t \neq 0$. For $t>0$, these metrics are definite and have been studied by Friedrich and Kurke [4] in connection with the classification of self-dual Einstein 4manifolds with positive scalar curvature. In [3], Friedrich and Grunewald have given the geometric conditions on M ensuring that $h_{t}, t>0$, is an Einstein metric. In the case $t<0, h_{t}$ is indefinite and has been studied by Vitter in [10] where local formulas for the curvature and Ricci forms have been obtained. K. Sekigawa [8] has considered the metrics $h_{t}, t>0$, on the twistor space of an oriented Riemannian $2 n$-manifold.

The main purpose of this paper is to give a coordinate-free formula for the sectional curvature of the pseudo-Riemannian manifold (Z, h_{t}) in terms of the curvature of M. This is achieved by means of the O'Neill formulas [6] for Riemannian submersions. As applications we discuss the Ricci curvature of $\left(Z, h_{t}\right)$ and the holomorphic sectional curvatures with respect to the almost complex structures on Z introduced by Atiyah, Hitchin and Singer [1] and Eells and Salamon [2], respectively.
§ 2. Preliminaries. Let M be an oriented Riemannian 4-manifold with metric g. Then g induces a metric on the bundle of 2 -vectors $\wedge^{2} T M$ by the formula

$$
g\left(A_{1} \wedge A_{2}, A_{3} \wedge A_{4}\right)=\frac{1}{2} \operatorname{det}\left(g\left(A_{i}, A_{j}\right)\right)
$$

The Riemannian connection of M determines a connection of the vector bundle $\wedge^{2} T M$ (both denoted by ∇) and the respective curvatures are related by

$$
R(A \wedge B)(C \wedge D)=R(A, B) C \wedge D+C \wedge R(A, B) D
$$

for $A, B, C, D \in \mathcal{X}(M) ; \mathcal{X}(M)$ stands for the Lie algebra of smooth vector fields on M. (For the curvature tensor R of M we adopt the following

[^13]definition: $R(A, B)=\nabla_{[A, B]}-\left[\nabla_{A}, \nabla_{B}\right]$.) The curvature operator \mathcal{R} is the self-adjoint endomorphism of $\wedge^{2} T M$ defined by
$$
g(\mathcal{R}(A \wedge B), C \wedge D)=g(R(A, B) C, D)
$$
for all $A, B, C, D \in \mathcal{X}(M)$. The Hodge star operator defines an endomorphism $*$ of $\wedge^{2} T M$ with $*^{2}=$ Id. Hence
$$
\wedge^{2} T M=\wedge_{+}^{2} T M \oplus \wedge_{-}^{2} T M
$$
where $\wedge_{ \pm}^{2} T M$ are the subbundles of $\wedge^{2} T M$ corresponding to the (± 1)-eigenvectors of $*$. Let ($E_{1}, E_{2}, E_{3}, E_{4}$) be a local oriented orthonormal frame of TM. Set
\[

$$
\begin{cases}s_{1}=E_{1} \wedge E_{2}-E_{3} \wedge E_{4}, & \bar{s}_{1}=E_{1} \wedge E_{2}+E_{3} \wedge E_{4}, \tag{2.1}\\ s_{2}=E_{1} \wedge E_{3}-E_{4} \wedge E_{2}, & \bar{s}_{2}=E_{1} \wedge E_{3}+E_{4} \wedge E_{2}, \\ s_{3}=E_{1} \wedge E_{4}-E_{2} \wedge E_{3}, & \bar{s}_{3}=E_{1} \wedge E_{4}+E_{2} \wedge E_{3} .\end{cases}
$$
\]

Then $\left(s_{1}, s_{2}, s_{3}\right)$ (resp. $\left(\bar{s}_{1}, \bar{s}_{2}, \bar{s}_{3}\right)$) is a local oriented orthonormal frame of $\wedge_{-}^{2} T M$ (resp. $\left.\wedge_{+}^{2} T M\right)$. The matrix of \mathcal{R} with respect to the frame $\left(\bar{s}_{i}, s_{i}\right)$ of $\wedge^{2} T M$ has the form

$$
\mathcal{R}=\left[\begin{array}{cc}
A & B \\
t_{B} & C
\end{array}\right]
$$

where the 3×3 matrices A and C are symmetric and have equal traces. Let $\mathcal{B}, \mathcal{W}_{+}$and \mathcal{W}_{-}be the endomorphisms of $\wedge^{2} T M$ with matrices

$$
\mathcal{B}=\left[\begin{array}{cc}
0 & B \\
t_{B} & 0
\end{array}\right], \quad \mathcal{W}_{+}=\left[\begin{array}{cc}
A-\lambda I & 0 \\
0 & 0
\end{array}\right], \quad \mathcal{W}_{-}=\left[\begin{array}{cc}
0 & 0 \\
0 & C-\lambda I
\end{array}\right]
$$

where $\lambda=\frac{1}{3}$ Trace C and I is the unit 3×3 matrix. Then $\mathcal{R}=\lambda \mathrm{Id}+\mathcal{B}+\mathcal{W}_{+}+$ $+\mathcal{W}_{-}$is the irreducible decomposition of \mathcal{R} under the action of $\mathrm{SO}(4)$ found by Singer and Thorpe [9]. Note that $\lambda=1 / 6$ scalar curvature; λ Id $+\mathcal{B}$ and $\mathcal{W}=\mathcal{W}_{+}+\mathcal{W}_{-}$represent the Ricci tensor and the Weyl conformal tensor, respectively. The manifold M is called self-dual (anti-self-dual) if $\mathcal{W}_{-}=0$ $\left(\mathcal{W}_{+}=0\right)$. It is Einstein exactly when $\mathcal{B}=0$.

The twistor space of M is the submanifold Z of $\wedge_{-}^{2} T M$ consisting of all unit vectors. The Riemannian connection ∇ of M gives rise to a splitting $T Z=\mathcal{H} \oplus \mathcal{V}$ of the tangent bundle of Z into horizontal and vertical components. More precisely, let $\pi: \wedge{ }^{2} T M \rightarrow M$ be the natural projection. By definition, the vertical space at $\sigma \in Z$ is

$$
\mathcal{V}_{\sigma}=\left\{V \in T_{\sigma} Z / \pi_{*}(V)=0\right\}
$$

($T_{\sigma} Z$ is always considered as a subspace of $T_{\sigma}\left(\wedge_{-}^{2} T M\right)$.) Note that \mathcal{V}_{σ} consists of those vectors of $T_{\sigma} Z$ which are tangent to the fibre $Z_{p}=\pi^{-1}(p) \cap Z$,
$p=\pi(\sigma)$, of Z through the point σ. Since Z_{p} is the unit sphere in the vector space $\wedge_{-}^{2} T_{p} M, \mathcal{V}_{\sigma}$ is the orthogonal complement of σ in $\wedge_{-}^{2} T_{p} M$.

Let s be a local section of Z such that $s(p)=\sigma$. Since s has constant length, $\nabla_{A} s \in \mathcal{V}_{\sigma}$ for all $A \in T_{p} M$. Given $A \in T_{p} M$, the vector

$$
A^{h}=s_{*} A-\nabla_{A} s \in T_{\sigma} Z
$$

depends only on p and σ. By definition the horizontal space at σ is

$$
\mathcal{H}_{\sigma}=\left\{A^{h} / A \in T_{p} M\right\} .
$$

Note that the map $A \rightarrow A^{h}$ is an isomorphism between $T_{p} M$ and \mathcal{H}_{σ}.
Each point $\sigma \in Z$ defines a complex structure S on $T_{p} M, p=\pi(\sigma)$, by

$$
\begin{equation*}
g(S A, B)=2 g(\sigma, A \wedge B), \quad A, B \in T_{p} M . \tag{2.2}
\end{equation*}
$$

Note that S is compatible with the metric g and the opposite orientation of M at p. The 2 -vector 2σ is dual to the fundamental 2 -form of S.

Denote by \times the usual vector product in the oriented 3 -dimensional vector space $\wedge_{-}^{2} T_{p} M, p \in M$. Then it is easily checked that

$$
\begin{equation*}
g(R(a) b, c)=-g(\mathcal{R}(b \times c), a) \tag{2.3}
\end{equation*}
$$

for $a \in \wedge^{2} T_{p} M, b, c \in \wedge_{-}^{2} T_{p} M$ and

$$
\begin{equation*}
g(\sigma \times V, A \wedge S B)=g(\sigma \times V, S A \wedge B)=-g(V, A \wedge B) \tag{2.4}
\end{equation*}
$$

for $V \in \mathcal{V}_{\sigma}, A, B \in T_{p} M$.
Following [1] and [2] define two almost complex structures J_{1} and J_{2} on Z by

$$
\begin{gathered}
J_{n} V=(-1)^{n} \sigma \times V \text { for } V \in \mathcal{V}_{\sigma}, \\
J_{n} A^{h}=(S A)^{h} \text { for } A \in T_{p} M, p=\pi(\sigma) .
\end{gathered}
$$

It is well-known ([1]) that J_{1} is integrable (i.e. comes from a complex structure on Z) iff M is self-dual. Unlike J_{1}, the almost complex structure J_{2} is never integrable [2].

As in [4] define a pseudo-Riemannian metric h_{t} on Z by

$$
h_{t}=\pi^{*} g+t g^{v}
$$

where $t \neq 0, g$ is the metric of M and g^{v} is the restriction of the metric of $\wedge^{2} T M$ on the vertical distribution \mathcal{V}. Then h_{t} is a pseudo-Hermitian metric with respect to the almost complex structures J_{1} and J_{2}.
§ 3. The sectional curvature of a twistor space. In this section we derive an explicit formula for the sectional curvature of the pseudo-Riemannian manifold (Z, h_{t}). We shall use the O'Neill formulas for the Riemannian
submersion $\pi:\left(Z, h_{t}\right) \rightarrow(M, g)$. Following [6] denote by T and A the tensor fields on Z defined by

$$
T(E, F)=\mathcal{H} D_{\mathcal{V} E}{ }^{\mathcal{V} F}+\mathcal{V} D_{\mathcal{V E}}{ }^{\mathcal{H} F}, \quad A(E, F)=\mathcal{V} D_{\mathcal{H} E}^{\mathcal{H} F}+\mathcal{H} D_{\mathcal{H} E}{ }^{\nu F}
$$

where $D\left(=D_{t}\right)$ is the Levi-Civita connection of $\left(Z, h_{t}\right)$ and \mathcal{H} (resp. \mathcal{V}) denote the horizontal (resp. vertical) component. Since the fibres of the Riemannian submersion $\pi:\left(Z, h_{t}\right) \rightarrow(M, g)$ are totally geodesic submanifolds of $\left(Z, h_{t}\right)$, it follows that $T \equiv 0$.

Now we obtain some useful formulas which will be needed later. Let ($U, x_{1}, x_{2}, x_{3}, x_{4}$) be a local coordinate system of M and let ($E_{1}, E_{2}, E_{3}, E_{4}$) be an oriented orthonormal frame of $T M$ on U. If $\left(s_{1}, s_{2}, s_{3}\right)$ is the local frame of $\wedge_{-}^{2} T M$ defined by (2.1) then $\tilde{x}_{i}=x_{i} \circ \pi, y_{j}(\sigma)=g\left(\sigma,\left(s_{j} \circ \pi\right)(\sigma)\right)$, $1 \leqq i \leqq 4,1 \leqq j \leqq 3$, are local coordinates of $\wedge_{-}^{2} T M$ on $\pi^{-1}(U)$. For each vector field

$$
X=\sum_{i=1}^{4} X^{i} \frac{\partial}{\partial x_{i}}
$$

on U the horizontal lift X^{h} of X on $\pi^{-1}(U)$ is given by

$$
\begin{equation*}
X^{h}=\sum_{i=1}^{4}\left(X^{i} \circ \pi\right) \frac{\partial}{\partial \tilde{x}_{i}}-\sum_{j, k=1}^{3} y_{j}\left(g\left(\nabla X s_{j}, s_{k}\right) \circ \pi\right) \frac{\partial}{\partial y_{k}} . \tag{3.1}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left[X^{h}, Y^{h}\right]-[X, Y]^{h}=\sum_{j, k=1}^{3} y_{j}\left(g\left(R(X \wedge Y) s_{j}, s_{k}\right) \circ \pi\right) \frac{\partial}{\partial y_{k}} \tag{3.2}
\end{equation*}
$$

for all $X, Y \in \mathcal{X}(U)$. Let $\sigma \in Z$ and $\pi(\sigma)=p$. Using the standard identification $T_{\sigma}\left(\wedge_{-}^{2} T_{p} M\right) \cong \wedge_{-}^{2} T_{p} M$ this formula can be written as

$$
\begin{equation*}
\left[X^{h}, Y^{h}\right]_{\sigma}-[X, Y]_{\sigma}^{h}=R_{p}(X \wedge Y) \sigma . \tag{3.3}
\end{equation*}
$$

Lemma 3.1. If $X, Y \in \mathcal{X}(M)$ and V is a vertical vector field on Z then

$$
\begin{gather*}
\left(D_{X^{h}} Y^{h}\right)_{\sigma}=\left(\nabla_{X} Y\right)_{\sigma}^{h}+\frac{1}{2} R(X \wedge Y) \sigma, \tag{3.4}\\
\left(D_{V} X^{h}\right)_{\sigma}=\mathcal{H}\left(D_{X^{h}} V\right)_{\sigma}=\frac{t}{2}\left(R_{p}(\sigma \times V) X\right)_{\sigma}^{h} \tag{3.5}
\end{gather*}
$$

for all $\sigma \in Z$.
Proof. The equality (3.4) follows from (3.3) using the standard formula for the Levi-Civita connection in terms of inner products and Lie brackets.

To prove (3.5) note that $D_{V} X^{h}$ is a horizontal vector field since $T=0$. On the other hand $\left[V, X^{h}\right]$ is a vertical vector field, hence $D_{V} X^{h}=\mathcal{H} D_{X^{h}} V$. Then

$$
h_{t}\left(D_{V} X^{h}, Y^{h}\right)=h_{t}\left(D_{X^{h}} V, Y^{h}\right)=-h_{t}\left(V, D_{X^{h}} Y^{h}\right)
$$

and (3.5) follows from (3.4) and (2.3).
Denote by $\nabla \mathcal{R}$ the covariant derivative of \mathcal{R} on the vector bundle $\operatorname{End}\left(\wedge^{2} T M\right)$.

Lemma 3.2. If $V \in \mathcal{V}_{\boldsymbol{\sigma}}$ and $X, Y \in \mathcal{X}(M)$ then

$$
2 h_{t}\left(\left(D_{X^{h}} A\right)\left(X^{h}, Y^{h}\right)_{\sigma}, V\right)=-\operatorname{tg}\left(\left(\nabla x_{p} \mathcal{R}\right)(X \wedge Y), \sigma \times V\right)
$$

where $p=\pi(\sigma)$.
Proof. Let s be a local section of Z such that $s(p)=\sigma$ and $(\nabla s)_{p}=0$. First we shall prove that if W is a vertical vector field on Z then

$$
\begin{equation*}
\mathcal{V} D_{X^{h}} W=\nabla_{X}(W \circ s) \tag{3.6}
\end{equation*}
$$

where $W \circ s$ is considered as a section of $\wedge_{-}^{2} T M$. In the local coordinates of $\wedge_{-}^{2} T M$ introduced above,

$$
W=\sum_{j=1}^{3} f_{j} \frac{\partial}{\partial y_{j}} \quad \text { with } \quad \sum_{j=1}^{3} f_{j} y_{j}=0
$$

Then

$$
\mathcal{V} D_{X^{h}} W=\left[X^{h}, W\right]=\sum_{j=1}^{3}\left(f_{j}\left[X^{h}, \frac{\partial}{\partial y_{j}}\right]+X^{h}\left(f_{j}\right) \frac{\partial}{\partial y_{j}}\right)
$$

It follows from (3.1) that

$$
\left[X^{h}, \frac{\partial}{\partial y_{j}}\right]=\sum_{k=1}^{3}\left(g\left(\nabla X s_{j}, s_{k}\right) \circ \pi\right) \frac{\partial}{\partial y_{k}}
$$

Considering $\mathcal{V}\left(D_{X^{h}} W\right)_{\sigma}$ as an element of $\wedge_{-}^{2} T_{p} M$ gives

$$
\begin{gathered}
\mathcal{V}\left(D_{X^{h}} W\right)_{\sigma}=\sum_{k=1}^{3}\left(\sum_{j=1}^{3} f_{j}(\sigma) g_{p}\left(\nabla x s_{j}, s_{k}\right)+X_{p}\left(f_{k} \circ s\right)\right) s_{k}(p)= \\
=\sum_{j=1}^{3}\left(f_{j}(\sigma) \nabla x_{p} s_{j}+X_{p}\left(f_{j} \circ s\right)\right) s_{j}(p)=\nabla X_{p}(W \circ s)
\end{gathered}
$$

since

$$
W \circ s=\sum_{j=1}^{3}\left(f_{j} \circ s\right) s_{j}
$$

Now, to prove the lemma, note that $2 A\left(X^{h}, Y^{h}\right)=\mathcal{V}\left[X^{h}, Y^{h}\right]$ (c.f. [6]). Extending V to a section of $\wedge_{-}^{2} T M$ one gets by (3.3) and (3.6) that

$$
\begin{gathered}
2 h_{t}\left(D_{X^{h}} A\left(X^{h}, Y^{h}\right), V\right)=\operatorname{tg}\left(\nabla_{X} R(X \wedge Y) s, V\right)= \\
=t X(g(R(X \wedge Y) s, V))-\operatorname{tg}\left(R(X \wedge Y) s, \nabla_{X} V\right)= \\
=-t X(g(s \times V, \mathcal{R}(X \wedge Y)))+\operatorname{tg}\left(s \times \nabla_{X} V, \mathcal{R}(X \wedge Y)\right)= \\
=-\operatorname{tg}\left(s \times V, \nabla_{X} \mathcal{R}(X \wedge Y)\right)+\operatorname{tg}\left(s \times \nabla_{X} V-\nabla_{X}(s \times V), \mathcal{R}(X \wedge Y)\right)
\end{gathered}
$$

Since

$$
\nabla x_{p}(s \times V)=\nabla x_{p} s \times V+s(p) \times \nabla x_{p} V=s(p) \times \nabla x_{p} V
$$

one obtains

$$
2 h_{t}\left(D_{X^{h}} A\left(X^{h}, Y^{h}\right), V\right)_{\sigma}=-\operatorname{tg}\left(\sigma \times V, \nabla x_{p} \mathcal{R}(X \wedge Y)\right)
$$

On the other hand by (3.4) and (2.3) one gets

$$
\begin{gathered}
2 h_{t}\left(A\left(D_{X^{h}} Y^{h}, Y^{h}\right)_{\sigma}+A\left(X^{h}, D_{X^{h}} Y^{h}\right)_{\sigma}, V\right)= \\
=-\operatorname{tg}\left(\sigma \times V, \mathcal{R}\left(\nabla X_{p}(X \wedge Y)\right)\right)
\end{gathered}
$$

and the lemma is proved.
Lemma 3.3. If $V, W \in \mathcal{V}_{\sigma}$ and $X, Y \in T_{p} M, p=\pi(\sigma)$, then

$$
h_{t}\left(A\left(X^{h}, V\right), A\left(Y^{h}, W\right)\right)=\frac{t^{2}}{4} g(R(\sigma \times V) X, R(\sigma \times W) Y)
$$

Proof. Let $\left(E_{1}, E_{2}, E_{3}, E_{4}\right)$ be a local oriented orthonormal frame of $T M$ near the point p. Then by (3.5) one has

$$
\begin{gathered}
h_{t}\left(A\left(X^{h}, V\right), A\left(Y^{h}, W\right)\right)=h_{t}\left(\mathcal{H} D_{X^{h}} V, \mathcal{H} D_{Y^{h}} W\right)= \\
=\sum_{i=1}^{4} h_{t}\left(D_{X^{h}} V, E_{i}^{h}\right) h_{t}\left(D_{Y^{h}} W, E_{i}^{h}\right)= \\
=\frac{t^{2}}{4} \sum_{i=1}^{4} g\left(R(\sigma \times V) X, E_{i}\right) g\left(R(\sigma \times W) Y, E_{i}\right)= \\
=\frac{t^{2}}{4} g(R(\sigma \times V) X, R(\sigma \times W) Y)
\end{gathered}
$$

Lemma 3.4. If $V, W \in \mathcal{V}_{\sigma}$ and $X, Y \in T_{p} M, p=\pi(\sigma)$, then

$$
\begin{gathered}
h_{t}\left(\left(D_{V} A\right)\left(X^{h}, Y^{h}\right), W\right)=-\operatorname{tg}(\mathcal{R}(\sigma), X \wedge Y) g(\sigma \times V, W)- \\
-\frac{t^{2}}{4}(g(R(\sigma \times V) X, R(\sigma \times W) Y)+g(R(\sigma \times W) X, R(\sigma \times V) Y))
\end{gathered}
$$

Proof. First we prove that

$$
\begin{equation*}
D_{V} A\left(X^{h}, Y^{h}\right)=-\frac{1}{2} g(\mathcal{R}(\sigma), X \wedge Y)(\sigma \times V) \tag{3.7}
\end{equation*}
$$

for all $X, Y \in \mathcal{X}(M)$.
Let $\left(s_{1}, s_{2}, s_{3}\right)$ be a local frame of $\wedge_{-}^{2} T M$ defined by (2.1) such that $s_{1}(p)=\sigma$. Set

$$
U=\left(1-y_{3}^{2}\right)^{-1 / 2}\left(-y_{2} \frac{\partial}{\partial y_{1}}+y_{1} \frac{\partial}{\partial y_{2}}\right)
$$

Then

$$
J_{1} U=\left(1-y_{3}^{2}\right)^{-1 / 2}\left(y_{1} y_{3} \frac{\partial}{\partial y_{1}}+y_{2} y_{3} \frac{\partial}{\partial y_{2}}-\left(1-y_{3}^{2}\right) \frac{\partial}{\partial y_{3}}\right)
$$

and $\left(U, J_{1} U\right)$ is a g-orthonormal frame of the vertical distribution \mathcal{V} on a neighbourhood of the point σ. It is enough to check (3.7) for $V=U_{\boldsymbol{\sigma}}$ and $V=J_{1} U_{\sigma}$. Since $D_{U} U$ and $D_{U} J_{1} U$ are vertical vector fields and $\left[U, J_{1} U\right]_{\sigma}=$ $=0$ it follows from the standard formula for the Levi-Civita connection that $\left(D_{U} U\right)_{\sigma}=\left(D_{U} J_{1} U\right)_{\sigma}=0$. Hence

$$
2 D_{U_{\sigma}} A\left(X^{h}, Y^{h}\right)=U_{\sigma}\left(g\left(\left[X^{h}, Y^{h}\right], U\right)\right) U_{\sigma}+U_{\sigma}\left(g\left(\left[X^{h}, Y^{h}\right], J_{1} U\right)\right) J_{1} U_{\sigma}
$$

A direct computation using (3.2) shows that

$$
2 D_{U_{\sigma}} A\left(X^{h}, Y^{h}\right)=g_{p}\left(R(X \wedge Y) s_{2}, s_{3}\right) s_{3}(p)
$$

since $y_{1}(\sigma)=1, y_{2}(\sigma)=y_{3}(\sigma)=0$. Now (3.7) follows from (2.3). A similar reasoning yields (3.7) for $V=J_{1} U_{\sigma}$.

To prove the lemma note that

$$
\begin{gathered}
h_{t}\left(A\left(D_{V} X^{h}, Y^{h}\right), W\right)=-h_{t}\left(A\left(Y^{h}, D_{V} X^{h}\right), W\right)= \\
=h_{t}\left(D_{V} X^{h}, \mathcal{H} D_{Y^{h}} W\right)=h_{t}\left(\mathcal{H} D_{X^{h}} V, \mathcal{H} D_{Y^{h}} W\right)=h_{t}\left(A\left(X^{h}, V\right), A\left(Y^{h}, W\right)\right)
\end{gathered}
$$

Similarly

$$
h_{t}\left(A\left(X^{h}, D_{V} Y^{h}\right), W\right)=-h_{t}\left(A\left(Y^{h}, V\right), A\left(X^{h}, W\right)\right)
$$

and the lemma follows from (3.7) and Lemma 3.3.
Denote by R_{Z} the Riemannian curvature tensor of the twistor space $\left(Z, h_{t}\right)$. Combining Lemmas 3.1-3.4 and the O'Neill formulas [6] we obtain the following:

Proposition 3.5. Let $E, F \in T_{\sigma} Z$ and $X=\pi_{*} E, Y=\pi_{*} F, V=\mathcal{V} E$, $W=\mathcal{V} F$. Then

$$
\begin{gathered}
h_{t}\left(R_{Z}(E \wedge F) E, F\right)=g(R(X \wedge Y) X, Y)-\operatorname{tg}((\nabla x \mathcal{R})(X \wedge Y), \sigma \times W)+ \\
+\operatorname{tg}((\nabla Y \mathcal{R})(X \wedge Y), \sigma \times V)-3 \operatorname{tg}(\mathcal{R}(\sigma), X \wedge Y) g(\sigma \times V, W)- \\
-t^{2} g(R(\sigma \times V) X, R(\sigma \times W) Y)+\frac{t^{2}}{4}\|R(\sigma \times W) X+R(\sigma \times V) Y\|^{2}- \\
-\frac{3 t}{4}\|R(X \wedge Y) \sigma\|^{2}+t\left(\|V\|^{2}\|W\|^{2}-g(V, W)^{2}\right)
\end{gathered}
$$

In the case when M is self-dual and Einstein this formula takes an apparently simple form.

Corollary 3.6. Let M be a self-dual Einstein manifold with scalar curvature s. Then

$$
\begin{gathered}
h_{t}\left(R_{Z}(E \wedge F) E, F\right)=g(R(X \wedge Y) X, Y)-\frac{t s}{2} g(\sigma, X \wedge Y) g(\sigma \times V, W)- \\
-(1 / 2)(t s / 12)^{2} g(X, Y) g(V, W)+3(t s / 12)^{2} g(X \wedge Y, V \times W)+ \\
+(t s / 24)^{2}\left(\|X\|^{2}\|W\|^{2}+\|Y\|^{2}\|V\|^{2}\right)- \\
-6 t(s / 24)^{2}\left(\|X \wedge Y\|^{2}-2 g(\sigma, X \wedge Y)^{2}\right)+ \\
+t\left(\|V\|^{2}\|W\|^{2}-g(V, W)^{2}\right)
\end{gathered}
$$

Proof. In this case $\mathcal{R}=(s / 6)$ Id $+\mathcal{W}_{+}$. Since \mathcal{W}_{+}maps $\wedge^{2} T M$ into $\wedge_{+}^{2} T M$ and ∇ preserves $\wedge_{+}^{2} T M$ one gets

$$
\begin{equation*}
g((\nabla x \mathcal{R})(X \wedge Y), \sigma \times W)=0 \tag{3.8}
\end{equation*}
$$

Now we shall show that
$g(R(\sigma \times V) X, R(\sigma \times W) Y)=(s / 12)^{2}(g(X, Y) g(V, W)-2 g(X \wedge Y, V \times W))$.
Recall that each $\sigma \in Z$ defines a complex structure S_{σ} on $T_{p} M, p=\pi(\sigma)$ via (2.2). It is easy to check that for $\sigma, \tau \in Z$ with $\pi(\sigma)=\pi(\tau)$ one has

$$
S_{\sigma} \circ S_{\tau}=-g(\sigma, \tau) \mathrm{Id}-S_{\sigma \times \tau} \quad\left(S_{0} \equiv 0\right)
$$

To prove (3.9) we may assume that $\|V\|=\|W\|=1$. Then by (2.4) one has

$$
\begin{gathered}
g(R(\sigma \times V) X, R(\sigma \times W) Y)=(s / 6) g(\sigma \times V, X \wedge R(\sigma \times W) Y)= \\
=(s / 12) g\left(S_{\sigma \times V} X, R(\sigma \times W) Y\right)=\left(s^{2} / 72\right) g\left(\sigma \times W, Y \wedge S_{\sigma \times V} X\right)= \\
=-(s / 12)^{2} g\left(S_{\sigma \times V} S_{\sigma \times W} Y, X\right)=
\end{gathered}
$$

$$
=(s / 12)^{2}(g(X, Y) g(V, W)-2 g(X \wedge Y, V \times W))
$$

Let $U \in \mathcal{V}_{\sigma}$ and $\|U\|=1$. Then

$$
\begin{gathered}
\|R(X \wedge Y) \sigma\|^{2}=g(R(X \wedge Y) \sigma, U)^{2}+g(R(X \wedge Y) \sigma, \sigma \times U)^{2}= \\
=(s / 6)^{2}\left(g(X \wedge Y, \sigma \times U)^{2}+g(X \wedge Y, U)^{2}\right)
\end{gathered}
$$

Since the projection of $X \wedge Y$ on \mathcal{V}_{σ} is $\frac{1}{2}\left(X \wedge Y-S_{\sigma} X \wedge S_{\sigma} Y\right)$ one obtains

$$
\begin{equation*}
\|R(X \wedge Y) \sigma\|^{2}=2(s / 12)^{2}\left(\|X \wedge Y\|^{2}-2 g(\sigma, X \wedge Y)^{2}\right) \tag{3.10}
\end{equation*}
$$

Now the corollary follows from Proposition 3.5 and formulas (3.8)-(3.10).
\S 4. The Ricci curvature of a twistor space. Let M be an oriented Riemannian 4-manifold with Ricci tensor c_{M}. Denote by \mathcal{R}_{-}the restriction of the curvature operator $\mathcal{R}: \wedge^{2} T M \rightarrow \wedge^{2} T M$ on $\wedge_{-}^{2} T M$.

Proposition 4.1. Let c_{Z} be the Ricci tensor of the twistor space $\left(Z, h_{t}\right)$. If $E \in T_{\sigma} Z, X=\pi_{*} E$ and $V=\mathcal{V} E$ then

$$
\begin{gathered}
c_{Z}(E, E)=c_{M}(X, X)+t \operatorname{Trace}\left(A \rightarrow\left(\nabla_{A} R\right)(\sigma \times V, X)\right)+ \\
+\left(t^{2} / 4\right)\|\mathcal{R}(\sigma \times V)\|^{2}-(t / 2)\left\|i_{X} \circ \mathcal{R}_{-}\right\|_{p}^{2}+(t / 2)\left\|\left(i_{X} \circ \mathcal{R}\right)(\sigma)\right\|^{2}+\|V\|^{2}
\end{gathered}
$$

where $i_{X}: \wedge^{2} T M \rightarrow T M$ is the interior product.
Proof. Let $\left(E_{1}, E_{2}, E_{3}, E_{4}\right)$ be an oriented orthonormal basis of $T_{p} M$, $p=\pi(\sigma)$, and U a g-unit vertical vector at σ. Then $\left(E_{1}^{h}, E_{2}^{h}, E_{3}^{h}, E_{4}^{h}, U, \sigma \times U\right)$ is an h_{t}-orthogonal basis of $T_{\sigma} Z$ and Proposition 3.5 gives:

$$
\begin{equation*}
c_{Z}(E, E)=c_{M}(X, X)+t \operatorname{Trace}\left(A \rightarrow\left(\nabla_{A} R\right)(\sigma \times V, X)\right)+ \tag{4.1}
\end{equation*}
$$

$$
+\left(t^{2} / 4\right) \sum_{i=1}^{4}\left\|R(\sigma \times V) E_{i}\right\|^{2}-(3 t / 4) \sum_{i=1}^{4}\left\|R\left(X \wedge E_{i}\right) \sigma\right\|^{2}+(t / 4)\left(\|R(U) X\|^{2}+\right.
$$

$$
+\|R(\sigma \times U) X\|^{2}+\|V\|^{2}
$$

Further one has

$$
\begin{equation*}
\sum_{i=1}^{4}\left\|R(\sigma \times V) E_{i}\right\|^{2}=2 \sum_{i<j} g\left(\mathcal{R}(\sigma \times V), E_{i} \wedge E_{j}\right)=\|\mathcal{R}(\sigma \times V)\|^{2} \tag{4.2}
\end{equation*}
$$

Since $R\left(X \wedge E_{i}\right) \sigma$ is a vertical vector at σ it follows that

$$
\begin{align*}
& \sum_{i=1}^{4}\left\|R\left(X \wedge E_{i}\right) \sigma\right\|^{2}=\sum_{i=1}^{4}\left(g\left(R(U) X, E_{i}\right)^{2}+g\left(R(\sigma \times U) X, E_{i}\right)^{2}=\right. \tag{4.3}\\
= & \left(\|R(U) X\|^{2}+\|R(\sigma \times U) X\|^{2}\right)=\left\|i_{X} \circ \mathcal{R}_{-}\right\|^{2}-\left\|\left(i_{X} \circ \mathcal{R}\right)(\sigma)\right\|^{2}
\end{align*}
$$

Now the proposition is a consequence of (4.1)-(4.3).

Corollary 4.2. The scalar curvature s_{Z} of the twistor space $\left(Z, h_{t}\right)$ is given by

$$
s_{Z}(\sigma)=s_{M}(p)+(t / 4)\left(\|\mathcal{R}(\sigma)\|^{2}-\left\|\mathcal{R}_{-}\right\|_{p}^{2}\right)+2 / t
$$

where $p=\pi(\sigma)$ and s_{M} is the scalar curvature of M.
Proof. Since

$$
\sum_{k=1}^{4}\left\|\left(i_{E_{k}} \circ \mathcal{R}\right)(\tau)\right\|^{2}=\sum_{j, k=1}^{4} g\left(\left(i_{E_{k}} \circ \mathcal{R}\right)(\tau), E_{j}\right)^{2}=\|\mathcal{R}(\tau)\|^{2}
$$

for each $\tau \in \wedge_{-}^{2} T M$, the result is a direct consequence of Proposition 4.1.
Corollary 4.3. Let M be a self-dual Einstein 4-manifold with scalar curvature s. Then the Ricci tensor c_{Z} and the scalar curvature s_{Z} of $\left(Z, h_{t}\right)$ are given by

$$
\begin{gathered}
c_{Z}(E, E)=\left(s / 4-t(s / 12)^{2}\right)\|X\|^{2}+\left(1+(t s / 12)^{2}\right)\|V\|^{2} \\
s_{Z}=2 / t+s-(t / 72) s^{2}
\end{gathered}
$$

where $X=\pi_{*} E, V=\mathcal{V} E$.
Proof. These formulas follow from Proposition 4.1 and Corollary 4.2 since

$$
\mathcal{R}=(s / 6) \mathrm{Id}+\mathcal{W}_{+}, \quad \mathcal{R}_{-}=(s / 6) \mathrm{Id}
$$

and

$$
g\left(\left(\nabla_{Y} R\right)(W, X), Y\right)=g\left(\left(\nabla_{Y} \mathcal{R}\right)(X \wedge Y), W\right)=0
$$

for $X, Y \in \mathcal{X}(M)$ and $W \in \mathcal{V}$.
As an application of Proposition 4.1 we prove the following
Proposition 4.4. The pseudo-Riemannian manifold $\left(Z, h_{t}\right)$ is Einstein if and only if M is a self-dual Einstein manifold with scalar curvature $s=6 / t$ or $s=12 / t$.

Proof. Suppose that $\left(Z, h_{t}\right)$ is Einstein. Then by Proposition 4.1 one gets

$$
\begin{gather*}
t\left\|\left(i_{X} \circ \mathcal{R}\right)(\sigma)\right\|^{2}=c_{M}(X, X)-\left(s_{Z} / 6\right)\|X\|^{2}, \tag{4.4}\\
t^{2}\|\mathcal{R}(\sigma)\|^{2}=(2 t / 3) s_{Z}-4
\end{gather*}
$$

for each $\sigma \in Z, X \in T_{p} M, p=\pi(\sigma)$. Let $\left(E_{1}, E_{2}, E_{3}, E_{4}\right)$ be an oriented orthonormal basis of $T_{p} M$ and (\bar{s}_{i}, s_{i}) the basis of $\wedge^{2} T_{p} M$ defined by (2.1). Then (4.4) is equivalent to the identity
$t \sum_{i=1}^{4} g\left(\mathcal{R}(\sigma), E_{i} \wedge E_{j}\right) g\left(\mathcal{R}(\sigma), E_{i} \wedge E_{k}\right)=\sum_{i=1}^{4} g\left(\mathcal{R}\left(E_{i} \wedge E_{j}\right), E_{i} \wedge E_{k}\right)-\left(s_{Z} / 6\right) \delta_{j k}$,
which implies that

$$
\begin{equation*}
\operatorname{tg}\left(\mathcal{R}(\sigma), s_{j}\right) g\left(\mathcal{R}(\sigma), \bar{s}_{k}\right)=g\left(\mathcal{R}\left(s_{j}\right), \bar{s}_{k}\right) \tag{4.6}
\end{equation*}
$$

for $\sigma \in Z, 1 \leqq j, k \leqq 4$. For a fixed j, take a point σ such that $g\left(\mathcal{R}(\sigma), s_{j}\right)=$ $=0$. Then (4.6) gives $g\left(\mathcal{R}\left(s_{j}\right), \bar{s}_{k}\right)=0$ for $1 \leqq k \leqq 4$. Hence M is an Einstein manifold. Now $\mathcal{R}(\sigma) \in \wedge_{-}^{2} T_{p} M$ and by (2.2) one has

$$
\left.\| i_{X} \circ \mathcal{R}\right)(\sigma)\left\|^{2}=\sum_{i=1}^{4} g\left(\mathcal{R}(\sigma), X \wedge E_{i}\right)^{2}=\right\| \mathcal{R}(\sigma)\left\|^{2}\right\| X \|^{2} / 4
$$

This together with (4.4) and (4.5) implies

$$
\begin{equation*}
\|\mathcal{R}(\sigma)\|^{2}=(s t-4) / 2 t^{2} \tag{4.7}
\end{equation*}
$$

for each $\sigma \in Z$. Since M is Einstein, there exists a basis ($E_{1}, E_{2}, E_{3}, E_{4}$) of $T_{p} M$ such that $g\left(\mathcal{R}\left(s_{i}\right), s_{j}\right)=\delta_{i j} r_{i}, 1 \leqq i, j \leqq 3$, for some constants r_{i} [9]. Then (4.7) gives

$$
r_{1}^{2}=r_{2}^{2}=r_{3}^{2}=(s t-4) / 2 t^{2} .
$$

Since $r_{1}+r_{2}+r_{3}=s / 2$ and $(s / 2)^{2} \neq(s t-4) / 2 t^{2}$ one concludes that $r_{1}=r_{2}=r_{3}=s / 6$. Therefore M is self-dual and $s^{2} / 36=(s t-4) / 2 t^{2}$. The last equation shows that $s t=6$ or $s t=12$.

The "if" part of the proposition follows at once from Corollary 4.3.
Remarks. 1. Proposition 4.4 is due to Friedrich and Grunewald [3] for $t>0$.
2. A complete, connected self-dual Einstein 4-manifold with positive scalar curvature is isometric to the sphere S^{4} or the complex projective space $\mathbf{C P}^{2}$ with their standard metrics [4], [5] (cf. also [7]). In the case of negative scalar curvature a complete classification is not available and the only known examples are quotients of the unit ball in \mathbf{C}^{2} with the metric of constant negative curvature or the Bergman metric [10].
3. $\left(Z, h_{t}, J_{1}\right)$ is a Kähler-Einstein manifold iff M is self-dual, Einstein and $s=12 / t$ (cf. [4] for $t>0$ and [10] for $t<0$).
§ 5. The holomorphic sectional curvature of a twistor space. One can compute the holomorphic sectional curvature H_{n} of the almost Hermitian manifold (Z, h_{t}, J_{n}), $n=1,2$ by means of Proposition 3.5. The respective formula simplifies significantly when the base M of Z is self-dual and Einstein. More precisely, by Corollary 3.6 and (2.4) one gets the following:

Proposition 5.1. Let M be a self-dual Einstein manifold with sectional curvature K and scalar curvature s. Let $E \in T_{\sigma} Z$ be an h_{t}-unit vector and S the complex structure on $T_{p} M, p=\pi(\sigma)$, defined by σ. Then

$$
H_{n}(E)=K(X, S X)\|X\|^{4}+t\|V\|^{4}+\left(2(s t / 24)^{2}\left(3(-1)^{n}+1\right)+\right.
$$

$$
\left.+(-1)^{n+1}(s t / 4)\right)\|X\|^{2}\|V\|^{2}
$$

where $X=\pi_{*} E$ and $V=\mathcal{V} E$.
Now we describe the twistor spaces of constant holomorphic sectional curvature.

Proposition 5.2. The almost Hermitian manifold $\left(Z, h_{t}, J_{1}\right)$ has a constant holomorphic sectional curvature \mathcal{X} if and only if M is of constant sectional curvature $\mathcal{X}=1 / t$.

The holomorphic sectional curvature of $\left(Z, h_{t}, J_{2}\right)$ is never constant.
Proof. Assume that $H_{n} \equiv \mathcal{X}$. By Proposition 3.5 it follows that for every $\sigma \in Z$ and $X \in T_{p} M, p=\pi(\sigma),\|X\|=1$, one has

$$
\begin{equation*}
\mathcal{X}=g(R(X, S X) X, S X)-(3 t / 4)\|R(X \wedge S X) \sigma\|^{2} \tag{5.1}
\end{equation*}
$$

where S is the complex structure on $T_{p} M$ defined by σ. Let s_{1}, s_{2}, s_{3} be the local sections of Z given by (2.1) and $\sigma=\sum_{i=1}^{3} \lambda_{i} s_{i}, \sum_{i=1}^{3} \lambda_{i}^{2}=1$. Denote by S_{i} the complex structure on $T_{p} M$ determined by $s_{i}(p)$. Set

$$
a_{i j}=g\left(\mathcal{R}\left(s_{i}\right), X \wedge S_{j} X\right), \quad b_{i j}=g\left(\mathcal{R}\left(X \wedge S_{i} X\right), X \wedge S_{j} X\right)
$$

Then

$$
\begin{aligned}
\| R(X & \wedge S X) \sigma \|^{2}=\sum_{i=1}^{3} g\left(\mathcal{R}\left(\sigma \times s_{i}\right), X \wedge S X\right)^{2}= \\
& =\sum_{i=1}^{3}\left(\sum_{j=1}^{3} \lambda_{j} a_{i j}\right)^{2}-\left(\sum_{i, j=1}^{3} \lambda_{i} \lambda_{j} a_{i j}\right)^{2}
\end{aligned}
$$

and

$$
g(R(X, S X) X, S X)=\sum_{i, j=1}^{3} \lambda_{i} \lambda_{j} b_{i j} .
$$

Varying ($\lambda_{1}, \lambda_{2}, \lambda_{3}$) over the unit sphere S^{3} one gets from (5.1)

$$
\begin{gathered}
a_{i i}-(3 t / 4) \sum_{k=1}^{3} b_{k i}+(3 t / 4) b_{i i}^{2}=\mathcal{X} \\
a_{i i}+a_{j j}-(3 t / 4) \sum_{k=1}^{3}\left(b_{k i}^{2}+b_{k j}^{2}\right)+3 t b_{i j}^{2}+(3 t / 2) b_{i i} b_{j j}=2 \mathcal{X} \\
a_{i j}+a_{j i}-(3 t / 2) \sum_{k=1}^{3} b_{k i} b_{k j}+3 t b_{i i} b_{i j}=0
\end{gathered}
$$

for $1 \leqq i \neq j \leqq 3$. These identities imply $b_{i i}=b_{j j}$ and $b_{i j}=0$ for $i \neq j$, i.e.

$$
\begin{gathered}
g\left(\mathcal{R}\left(X \wedge S_{i} X\right), X \wedge S_{i} X\right)=g\left(\mathcal{R}\left(X \wedge S_{j} X\right), X \wedge S_{j} X\right) \\
g\left(\mathcal{R}\left(X \wedge S_{i} X\right), X \wedge S_{j} X\right)=0, \quad i \neq j
\end{gathered}
$$

Now varying X over the unit sphere of $T_{p} M$ gives

$$
\begin{gathered}
g\left(\mathcal{R}\left(s_{i}\right), s_{j}\right)=\delta_{i j} g\left(\mathcal{R}\left(s_{1}\right), s_{1}\right), \\
g\left(\mathcal{R}\left(\bar{s}_{i}\right), \bar{s}_{j}\right)=\delta_{i j} g\left(\mathcal{R}\left(\bar{s}_{1}\right), \bar{s}_{1}\right) \\
g\left(\mathcal{R}\left(s_{i}\right), \bar{s}_{j}\right)=0, \quad 1 \leqq i, j \leqq 3
\end{gathered}
$$

This together with the identity $a_{11}=\mathcal{X}$ shows that M is of constant sectional curvature \mathcal{X}. Now by Proposition 5.1 one has

$$
\begin{equation*}
\mathcal{X}=\mathcal{X}\|X\|^{4}+t\|V\|^{4}=\left(\left(\mathcal{X}^{2} t^{2} / 2\right)\left(3(-1)^{n}+1\right)+3(-1)^{n+1} \mathcal{X} t\right)\|X\|^{2}\|V\|^{2} \tag{5.2}
\end{equation*}
$$

for all $X \in \mathcal{X}(M)$ and $V \in \mathcal{V}$ with $\|X\|^{2}+t\|V\|^{2}=1$. For $n=1$ (5.2) is equivalent to $t=1 / \mathcal{X}$, while for $n=2$, (5.2) is impossible. Thus the proposition is proved.

Assume that M is complete and simply connected. If $t>0, M$ is the sphere $S_{1 / \sqrt{\mathcal{X}}}^{4}$ and it is well-known that the twistor space Z is $\mathbf{C P}{ }^{3}$ with a multiple of the Fubini-Study metric. If $t<0, M$ is the unit 4 -ball and the twistor space Z is an open subset of $\mathbf{C P}^{3}$. The precise description of Z and the indefinite metric h_{t} is given in [10, p. 119].

References

[1] M. F. Atiyah, N. J. Hitchin and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. R. Soc. Lond. Ser. A, 362 (1978), 425-461.
[2] J. Eells and S. Salamon, Constructions twistorielles des applications harmoniques, C. R. Acad. Sc. Paris, 296 (1983), 685-687.
[3] Th. Friedrich and R. Grunewald, On Einstein metrics on the twistor space of a fourdimensional Riemannian manifold, Math. Nachr. 123 (1985), 55-60.
[4] Th. Friedrich and H. Kurke, Compact four-dimensional self-dual Einstein manifolds with positive scalar curvature, Math. Nachr., 106 (1982), 271-299.
[5] N. J. Hitchin, Kählerian twistor spaces, Proc. Lond. Math. Soc., III Ser., 43 (1981), 133-150.
[6] B. O'Neill, The fundamental equations of a submersion, Mich. Math. J., 13 (1966), 459-469.
[7] S. Salamon, Topics in four-dimensional Riemannian geometry, in Geometry Seminar Luigi Bianchi, Lecture Notes in Mathematics 1022, Springer (1983), 33-124.
[8] K. Sekigawa, Almost hermitian structures on twistor bundles (preprint).
[9] I. M. Singer and J. A. Thorpe, The curvature of 4 -dimensional Einstein spaces, in Papers in Honor of K. Kodaira, Princeton University Press (Princeton, 1969), 355-365.
[10] A. Vitter, Self-dual Einstein metrics, in Nonlinear Problems in Geometry, Contemporary Mathematics, vol. 5, AMS, Princeton (1986), 113-120.
(Received April 25, 1988)

INSTITUTE OF MATHEMATICS
bULGARIAN ACADEMY OF SCIENCES Ul. "ACAD. G. BONTCHEV"
1090-SofiA
bulgaria

ON THE UNIQUENESS OF THE EXPANSIONS

$$
1=\sum q^{-n_{i}}
$$

P. ERDŐS, member of the Academy, M. HORVÁTH and I. JOÓ (Budapest)

Consider a number $1<q<2$ and take an expansion

$$
1=\sum_{n=1}^{\infty} \varepsilon_{n} / q^{n}, \quad \varepsilon_{n}=\left\{\begin{array}{l}
0 \tag{1}\\
1
\end{array} .\right.
$$

Such an expansion is not unique in general. There exist two particular expansion algorithms, the greedy and the lazy algorithm. The digits of the greedy resp. lazy algorithm are defined inductively as follows:

$$
\begin{gather*}
\varepsilon_{n}(x):=\left\{\begin{array}{lll}
1 & \text { if } & \sum_{i=1}^{n-1} \frac{\varepsilon_{i}(x)}{q^{i}}+\frac{1}{q^{n}} \leqq x \\
0 & \text { if } & \sum_{i=1}^{n-1} \frac{\varepsilon_{i}(x)}{q^{i}}+\frac{1}{q^{n}}>x,
\end{array}\right. \tag{2}\\
\tilde{\varepsilon}_{n}(x):=\left\{\begin{array}{lll}
1 & \text { if } & \sum_{i=1}^{n-1} \frac{\bar{e}_{i}(x)}{q^{i}}+\frac{1}{q^{n+1}}+\frac{1}{q^{n+2}}+\ldots<x \\
0 & \text { if } & \sum_{i=1}^{n-1} \frac{\bar{\varepsilon}_{i}(x)}{q^{i}}+\frac{1}{q^{n+1}}+\frac{1}{q^{n+2}}+\ldots \geqq x .
\end{array}\right.
\end{gather*}
$$

In this paper we shall investigate the unicity of the expansions of 1 and the boundedness of the series formed by consecutive 0 or 1 digits in (1). First we prove

Theorem 1 (uniqueness) 1. For $1<q<A:=\frac{1+\sqrt{5}}{2}$ there exist $2^{\aleph_{0}}$ expansions (1) of 1.
2. There exist (at least) countably many $1<q<2$ for which 1 has precisely countably many expansions.
3. There exist $2^{\kappa_{0}}$ many q for which the expansion of 1 is unique.
4. The following expansions are unique:

$$
\begin{equation*}
1=q^{-1}+q^{-2}+\ldots+q^{-k}+\sum_{i=1}^{\infty} q^{-n_{i}}, \tag{4}
\end{equation*}
$$

where $k \geqq 2,2 \leqq n_{1}-k \leqq k, 1 \leqq n_{i+1}-n_{i} \leqq k, n_{i+k-1}-n_{i} \geqq k$. In other words, the expansion starts with k consecutive 1's and in the further digits
there do not exist k consecutive 0 's or 1 's. Conversely, if an expansion (4) is unique then
(4') $k \geqq 2, \quad 2 \leqq n_{1}-k \leqq k, \quad 1 \leqq n_{i+1}-n_{i} \leqq k+1, \quad n_{i+k}-n_{i} \geqq k+1$.
Proof 1. The number A is a solution of $x^{2}=x+1$ hence $1<q<A$ means that

$$
\begin{equation*}
q^{-n}<q^{-n-2}+q^{-n-3}+\ldots, \quad n \in \mathrm{~N} . \tag{5}
\end{equation*}
$$

This implies that for some $k: q^{-n}<q^{-n-2}+\ldots+q^{-n-k}$. Take a sequence n_{j} with $n_{j+1}-n_{j}>k$ then the sequence $\left\{q^{-n}: n \neq n_{j}\right\}=\left\{\lambda_{1}>\lambda_{2}>\ldots\right\}$ satisfies

$$
\begin{equation*}
\lambda_{n}<\lambda_{n+1}+\lambda_{n+2}+\ldots \tag{6}
\end{equation*}
$$

and hence the subsums of $\sum_{n=1}^{\infty} \lambda_{n}$ run over the segment $\left[0, \sum_{1}^{\infty} \lambda_{n}\right]$. If n_{1} is large enough then $\sum_{n=1}^{\infty} \lambda_{n}>1+\sum_{j=1}^{\infty} q^{-n_{j}}$. This implies that for any sub$\operatorname{sum} \sum_{j=1}^{\infty} \varepsilon_{j} / q^{n_{j}}, \varepsilon_{j}=\left\{\begin{array}{l}0 \\ 1\end{array} \quad\right.$ there exist $\delta_{n}=\left\{\begin{array}{l}0 \\ 1\end{array} \quad\right.$ satisfying $\sum_{j=1}^{\infty} \varepsilon_{j} / q^{n_{j}}+$ $+\sum_{n=1}^{\infty} \delta_{n} \lambda_{n}=1$ so the desired $2^{\aleph_{0}}$ expansions are constructed.
2. Consider first the case $q=A$. It has precisely the following expansions:

$$
\begin{aligned}
& 1=q^{-2}+q^{-3}+q^{-4}+\ldots, \\
& 1=q^{-1}+q^{-2}, \\
& 1=q^{-1}+q^{-4}+q^{-5}+q^{-6}+\ldots, \\
& 1=q^{-1}+q^{-3}+q^{-4}, \\
& 1=q^{-1}+q^{-3}+q^{-6}+q^{-7}+q^{-8}+\ldots, \\
& 1=q^{-1}+q^{-3}+q^{-5}+q^{-6}, \\
& 1=q^{-1}+q^{-3}+q^{-5}+q^{-8}+q^{-9}+q^{-10}+\ldots, \\
& \cdots \cdots \\
& 1=q^{-1}+q^{-3}+q^{-5}+\ldots .
\end{aligned}
$$

It is easy to see that $q=A$ satisfies these expansions. Consider an expansion (1) of 1 with $q=A$. If $\varepsilon_{1}=0$ then the only possibility is $1=q^{-2}+q^{-3}+q^{-4}+$ $+\ldots$ since all the other terms must be used. If $\varepsilon_{1}=\varepsilon_{2}=1$ then we must have $1=q^{-1}+q^{-2}$. If $\varepsilon_{1}=1, \varepsilon_{2}=\varepsilon_{3}=0$ then by $1=q^{-1}+q^{-2}=q^{-1}+q^{-4}+$ $+q^{-5}+q^{-6}+\ldots$ we see that the only possibility is $1=q^{-1}+q^{-4}+q^{-5}+\ldots$.

If $\varepsilon_{1}=1, \varepsilon_{2}=0, \varepsilon_{3}=1, \varepsilon_{4}=\varepsilon_{5}=0$ then $1=q^{-1}+q^{-3}+q^{-6}+q^{-7}+$ $+q^{-8}+\ldots$ We can continue in this way the discussion with the digit sequences 101011,1010100 etc. Finally, there remains the sequence 10101010 \ldots which corresponds to the expansion $1=q^{-1}+q^{-3}+q^{-5}+q^{-7}+\ldots$ Now take another q satisfying $1=q^{-1}+q^{-2}+\ldots+q^{-k}$ with some $k \geqq 3$. For different values k the values q are also different and we have $q>A$, consequently

$$
\begin{equation*}
q^{-n}>q^{-n-2}+q^{-n-3}+q^{-n-4}+\ldots \tag{7}
\end{equation*}
$$

for all n. Using this property we can prove as above that the only expansions of 1 with this q are

$$
\begin{aligned}
& 1=q^{-1}+\ldots+q^{-k} \\
& 1=q^{-1}+\ldots+q^{-k+1}+q^{-k-1}+\ldots+q^{-2 k} \\
& 1=q^{-1}+\ldots+q^{-k+1}+q^{-k-1}+\ldots+q^{-2 k+1}+q^{-2 k-1}+\ldots+q^{-3 k} \\
& \cdots \cdots \cdots \\
& 1=\sum_{\substack{n \geqq 1 \\
k \not n}} q^{-n} .
\end{aligned}
$$

For example, the first $k-1$ digits must be 1 because

$$
q^{-1}+\ldots+q^{-k+2}+q^{-k}+q^{-k-1}+q^{-k-2}+\ldots<1=q^{-1}+\ldots+q^{-k}
$$

If $\varepsilon_{1}=\ldots=\varepsilon_{k-1}=1$ and $\varepsilon_{k}=0$ then we must have $\varepsilon_{k+1}=\ldots=\varepsilon_{2 k-1}=1$ because by (7)

$$
\begin{gathered}
q^{-1}+\ldots+q^{-k+1}+q^{-k-1}+\ldots+q^{-2 k+2}+q^{-2 k}+q^{-2 k-1}+q^{-2 k-2}+\ldots< \\
<1=q^{-1}+\ldots+q^{-k+1}+q^{-k-1}+\ldots+q^{-2 k}, \text { and so on. }
\end{gathered}
$$

3. As we proved in Parts 1 and 2, the unique expansions may occur only for $q>A$, hence $1>q^{-1}+q^{-2}$. Let k be the number satisfying

$$
q^{-1}+\ldots+q^{-k}<1<q^{-1}+\ldots+q^{-k}+q^{-k-1}
$$

Equality can not occur since the finite expansions are never unique. Since the first k digits can not be changed, we must have

$$
\begin{equation*}
q^{-1}+\ldots+q^{-k+1}+q^{-k-1}+q^{-k-2}+\ldots<1 \tag{8}
\end{equation*}
$$

So $\varepsilon_{1}=\ldots=\varepsilon_{k}=1$ is ensured. Suppose that $\varepsilon_{k+1}=\ldots=\varepsilon_{2 k}=0$. This means that

$$
\begin{equation*}
q^{-1}+\ldots+q^{-k}+q^{-2 k}>1 \tag{9}
\end{equation*}
$$

But (8) and (9) are in contradiction. Indeed, let q_{1} be defined by $1=$ $=q_{1}^{-1}+\ldots+q_{1}^{-k+1}+q_{1}^{-k-1}+q_{1}^{-k-2}+\ldots$, then

$$
\begin{gathered}
1-\left(q_{1}^{-1}+\ldots+q_{1}^{-k}+q_{1}^{-2 k}\right)=-q_{1}^{-k}+\left(q_{1}^{-k-1}+\ldots+q_{1}^{-2 k+1}+q_{1}^{-2 k-1}+\ldots\right)= \\
=-q_{1}^{-k}\left[1-\left(q_{1}^{-1}+\ldots+q_{1}^{-k+1}+q_{1}^{-k-1}+\ldots\right)\right]=0
\end{gathered}
$$

$1=q_{1}^{-1}+\ldots+q_{1}^{-k}+q_{1}^{-2 k}$ and so (8) implies $q>q_{1}$, further (9) implies $q<q_{1}$. This proves that between $\varepsilon_{k+2}, \ldots, \varepsilon_{2 k}$ there exists a digit 1 , i.e. if we denote the expansion by $1=q^{-1}+\ldots+q^{-k}+\sum_{i=1}^{\infty} q^{-n_{i}}$ then $2 \leqq n_{1}-k \leqq k$ is proved.

Next we show that there are no $k+1$ consecutive 0 or 1 digits. Indeed, suppose that $1=q^{-1}+\ldots+q^{-k}+\sum_{i \leqq j} q^{-n_{i}}+0 \cdot q^{-n_{j}-1}+\ldots+0 \cdot q^{-n_{j}-k-1}+\ldots$. Since $q^{-n_{i}}$ can not be omitted,

$$
1>q^{-1}+\ldots+q^{-k}+\sum_{i<j} q^{-n_{i}}+q^{-n_{j}-1}+q^{-n_{j}-2}+\ldots ;
$$

$\varepsilon_{n_{j}+k+1}$ can not be substituted by 1 , hence

$$
1<q^{-1}+\ldots+q^{-k}+\sum_{i \leqq j} q^{-n_{i}}+q^{-n_{j}-k-1}
$$

Subtracting the inequalities we get

$$
q^{-n_{j}}>q^{-n_{j}-1}+\ldots+q^{-n_{j}-k}+q^{-n_{j}-k-2}+\ldots
$$

i.e. $1>q^{-1}+\ldots+q^{-k}+q^{-k-2}+q^{-k-3}+\ldots$ in contradiction with the expansion $1=q^{-1}+\ldots+q^{-k}+\sum_{i=1}^{\infty} q^{-n_{i}}$. Analogously, if there are $k+1$ consecutive 1 digits, i.e.

$$
1=q^{-1}+\ldots+q^{-k}+\sum_{i \leqq j} q^{-n_{i}}+q^{-n_{j}-1}+\ldots+q^{-n_{j}-k}+\sum_{i \geqq j+k+1} q^{-n_{i}}
$$

and $\varepsilon_{n_{j}-1}=0$ then $1<q^{-1}+\ldots+q^{-k}+\sum_{i<j} q^{-n_{i}}+q^{-n_{j}-1}$,

$$
1>q^{-1}+\ldots+q^{-k}+\sum_{i \leqq j} q^{-n_{i}}+q^{-n_{j}-1}+\ldots+q^{-n_{j}-k+1}+q^{-n_{j}-k-1}+q^{-n_{j}-k-2}+\ldots
$$

and subtraction gives a contradiction. Conversely, consider an expansion (4) with no k consecutive 0 's or 1 's in the digits $\varepsilon_{k+1}=0, \varepsilon_{k+2}, \ldots$. Then q^{-k}
can not be omitted since it is larger than the sum of the subsequent not used members:
$\sum_{n \geqq k+1}\left(1-\varepsilon_{n}\right) q^{-n} \leqq q^{-k-1}+\ldots+q^{-2 k+1}+q^{-2 k-1}+\ldots+q^{-3 k+1}+q^{-3 k-1}+\ldots<q^{-k}$
because $1>q^{-1}+\ldots+q^{-k}$ implies $1>q^{-1}+\ldots+q^{-k+1}+q^{-k-1}+\ldots+$ $+q^{-2 k+1}+q^{-2 k-1}+\ldots$. By the same argument, no 1 can be changed with 0 in the expansion (4). On the other hand, no 0 can be changed by 1: if $\varepsilon_{n_{j}-1}=0$, then $q^{-n_{j}+1}$ is larger than the sum $\sum_{i \geqq j} q^{-n_{i}}$, because

$$
\begin{aligned}
& \sum_{i \geqq j} q^{-n_{i}} \leqq\left(q^{-n_{j}}+\ldots+q^{-n_{j}-k+2}\right) \cdot\left(1+q^{-k}+q^{-2 k}+\ldots\right)= \\
& =q^{-n_{j}+1}\left(q^{-1}+\ldots+q^{-k+1}\right)\left(1+q^{-k}+q^{-2 k}+\ldots\right)<q^{-n_{j}+1} .
\end{aligned}
$$

So the uniqueness is proved.
4. We need two lemmas.

Lemma 1. Let $\varepsilon_{1}, \ldots, \varepsilon_{n} \in\{0,1\}, \varepsilon_{1}+\ldots+\varepsilon_{n} \geqq 1$ be given and consider the interval I of all values q for which the expansion of 1 begins with $\varepsilon_{1}, \ldots, \varepsilon_{n}$ and contains further 1 's and 0 's, i.e.

$$
\sum_{i=1}^{n} \varepsilon_{i} q^{-i}<1<\sum_{i=1}^{n} \varepsilon_{i} q^{-1}+q^{-n-1}+q^{-n-2}+\ldots
$$

and the subinterval $J \subset I$ described by

$$
\sum_{i=1}^{n} \varepsilon_{i} q^{-i}+q^{-n-1}<1<\sum_{i=1}^{n} \varepsilon_{i} q^{-i}+q^{-n-2}+q^{-n-3}+\ldots
$$

for this q the expansion of 1 can start with the digits $\varepsilon_{1}, \ldots, \varepsilon_{n}, 0$ and also with $\varepsilon_{1}, \ldots, \varepsilon_{n}, 1$. Now if $I \subset(1+\delta, 2-\delta)$ for some $\delta>0$, then $|I| \leqq C(\delta)|J|$, where $C(\delta)>0$ is independent of n and $\varepsilon_{1}, \ldots, \varepsilon_{n}$.

Proof. Define $q_{1}, q_{2}, q_{1}^{*}, q_{2}^{*}$ by the relations

$$
\begin{gathered}
1=\sum_{i=1}^{n} \varepsilon_{i} q_{1}^{-i}, \quad 1=\sum_{i=1}^{n} \varepsilon_{i} q_{2}^{-i}+q_{2}^{-n-1}+q_{2}^{-n-2}+\ldots \\
1=\sum_{i=1}^{n} \varepsilon_{i} q_{1}^{*-i}+q_{1}^{*-n-1}, \quad 1=\sum_{i=1}^{n} \varepsilon_{i} q_{2}^{*-i}+q_{2}^{*-n-2}+q_{2}^{*-n-3}+\ldots
\end{gathered}
$$

Then we have obviously $I=\left(q_{1}, q_{2}\right), J=\left(q_{1}^{*}, q_{2}^{*}\right), q_{1}<q_{1}^{*}<q_{2}^{*}<q_{2}$. The inequality $1+\delta<q_{1}$ means the existence of $k=k(q) \in \mathbf{N}$ such that the
$\operatorname{digits} \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k}$ can not vanish at the same time. Consequently for some $1 \leqq j \leqq k$ we have

$$
q_{2}^{-n-1}+q_{2}^{-n-2}+\ldots=\sum_{i=1}^{n} \varepsilon_{i}\left(q_{1}^{-i}-q_{2}^{-i}\right) \geqq q_{1}^{-j}-q_{2}^{-j} \geqq \frac{q_{2}-q_{1}}{q_{1} q_{2}^{j}}
$$

i.e.

$$
\begin{equation*}
q_{2}-q_{1} \leqq 2 q_{2}^{j} q_{2}^{-n-1}\left(1-q_{2}^{-1}\right)^{-1} \leqq 2 q_{2}^{-n+k}\left(q_{2}-1\right)^{-1} \leqq C(\delta) q_{2}^{-n} . \tag{10}
\end{equation*}
$$

On the other hand,

$$
\begin{gathered}
\sum_{i=1}^{n} \varepsilon_{i}\left(q_{1}^{*-i}-q_{2}^{*-i}\right)+\left(q_{1}^{*-n-1}-q_{2}^{*-n-1}\right)= \\
=-q_{2}^{*-n-1}+q_{2}^{*-n-2}+q_{2}^{*-n-3}+\ldots=q_{2}^{*-n-1}\left[-1+\left(q_{2}-1\right)^{-1}\right] \geqq C(\delta) q_{2}^{*-n-1}
\end{gathered}
$$

and hence

$$
\begin{align*}
& C(\delta) q_{2}^{*-n-1} \leqq \sum_{i=1}^{n} \varepsilon_{i}\left(q_{1}^{*-i}-q_{2}^{*-i}\right)=\left(q_{1}^{*-1}-q_{2}^{*-1}\right)\left[1+\left(q_{1}^{*-1}+q_{2}^{*-1}\right)+\right. \\
& \left.+\ldots+\left(q_{1}^{*-n+1}+q_{1}^{*-n+2} q_{2}^{*-1}+\ldots+q_{2}^{*-n+1}\right)\right] \leqq \\
& \leqq\left(q_{1}^{*-1}-q_{2}^{*-1}\right)\left[1+2 q_{1}^{*-1}+3 q_{1}^{*-2}+\ldots+n q_{1}^{*-n+1}\right] \leqq C(\delta)\left(q_{1}^{*-1}-q_{2}^{*-1}\right), \\
& 11) \tag{11}\\
& \quad q_{2}^{*}-q_{1}^{*} \leqq C(\delta) q_{2}^{*-n} .
\end{align*}
$$

The estimates (10) and (11) prove Lemma 1.
Lemma 2. Let $\delta>0, \eta>0$ and let I be an interval satisfying

$$
\begin{equation*}
\sum_{i=1}^{n} \varepsilon_{i} q^{-i}<1<\sum_{i=1}^{n} \varepsilon_{i} q^{-1}+q^{-n-1}+q^{-n-2}+\ldots \quad(q \in I) . \tag{12}
\end{equation*}
$$

If $(1+\delta, 2-\delta) \supset I$ then there exists a system I_{1}, I_{2}, \ldots of disjoint subintervals of I such that
a) $\bigcup_{j=1}^{\infty} I_{j}$ is dense in I,
b) $\left|I \backslash \bigcup_{j=1}^{\infty} I_{j}\right|<\eta$,
c) for all I_{j} there exist two different continuations $\varepsilon_{n+1}, \ldots, \varepsilon_{n+k}$ and $\varepsilon_{n+1}^{\prime}, \ldots, \varepsilon_{n+k}^{\prime}$ of $\varepsilon_{1}, \ldots, \varepsilon_{n}$ (here k and the ε 's may depend on j) such that for all $q \in I_{j}$

$$
\begin{equation*}
\sum_{i=1}^{n+k} \varepsilon_{i} q^{-i}<1<\sum_{i=1}^{n+k} \varepsilon_{i} q^{-i}+q^{-n-k-1}+q^{-n-k-2}+\ldots \tag{13}
\end{equation*}
$$

$\sum_{i=1}^{n} \varepsilon_{i} q^{-i}+\sum_{i=n+1}^{n+k} \varepsilon_{i}^{\prime} q^{-i}<1<\sum_{i=1}^{n} \varepsilon_{i} q^{-i}+\sum_{i=n+1}^{n+k} \varepsilon_{i}^{\prime} q^{-i}+q^{-n-k-1}+q^{-n-k-2}+\ldots$.
Proof. Choose a number $N \in \mathrm{~N}$ and consider the intervals of all q satisfying

$$
\sum_{i=1}^{n+N} \varepsilon_{i} q^{-i}<1<\sum_{i=1}^{n+N} \varepsilon_{i} q^{-i}+q^{-n-N-1}+q^{-n-N-2}+\ldots
$$

where $\varepsilon_{n+1}, \ldots, \varepsilon_{n+N}$ is any (fixed) continuation of the digits $\varepsilon_{1}, \ldots, \varepsilon_{n}$. The 2^{N} intervals so constructed cover I and if $N>N(\delta)$ then the length of these intervals is bounded by $C(\delta) q_{1}^{-n-N}$. Applying Lemma 1 for these 2^{N} intervals we get a system of intervals $\left\{J_{1}, \ldots, J_{2^{N}}\right\}=\mathcal{J}_{N}$ such that $\left|J_{\ell}\right| \geqq C(\delta) q_{1}^{-n-N}$ (the constants $C(\delta)$ may be different at different occurrences). Every subinterval of I of length $C(\delta) q_{1}^{-n-N}$ has an intersection of measure $\geqq C(\delta) q_{1}^{-n-N}$ with $\cup \mathcal{J}_{N}$ and in every J_{ℓ} there exist two different expansions of 1 starting with $\varepsilon_{1}, \ldots, \varepsilon_{n+N}, 0$ and $\varepsilon_{1}, \ldots, \varepsilon_{n+N}, 1$. If we repeat the above construction with $2 N, 3 N, \ldots$ instead of N, we get the systems $\mathcal{J}_{2 N}, \mathcal{J}_{3 N}, \ldots$. By the Lebesgue density theorem $\left|I \backslash \bigcup_{i=1}^{\infty} \cup \mathcal{J}_{i N}\right|=0$ whence, for large j the finite interval system $\bigcup_{i \leqq j} \mathcal{J}_{i N}$ satisfies the conditions b) and c) of Lemma 2. In order to ensure a) it is enough to show the following fact: For any interval $J \subset(1+\delta, 2-\delta)$ for which (12) holds for all $q \in J$, there exists a subinterval $K \subset J$ and two different continuations $\varepsilon_{n+1}, \ldots, \varepsilon_{n+k}$ and $\varepsilon_{n+1}^{\prime}, \ldots, \varepsilon_{n+k}^{\prime}$ such that (13) and (14) hold for all $q \in K$. But this is easy: take $q \in J$ such that $1=\sum_{i=1}^{\infty} \varepsilon_{i} / q^{i}$ contains infinitely many 0 and 1 digits (only countable q are so excluded) and take a large k with $\varepsilon_{n+k}=1$.
Then $\sum_{i=1}^{n+k-1} \varepsilon_{i} q^{-i}+q^{-n-k}<1$. Define q_{1} and q_{2} by

$$
\sum_{i=1}^{n+k-1} \varepsilon_{i} q_{1}^{-i}+q_{1}^{-n-k}=1=\sum_{i=1}^{n+k-1} \varepsilon_{i} q_{2}^{-i}+q_{2}^{-n-k-1}+q_{2}^{-n-k-2}+\ldots,
$$

then $q_{1}<q<q_{2}$ and in the interval $K=\left(q_{1}, q_{2}\right)$ the expansion of 1 can be started with $\varepsilon_{1}, \ldots, \varepsilon_{n+k-1}, 0$ and $\varepsilon_{1}, \ldots, \varepsilon_{n+k-1}, 1$. As we have seen in the proof of Lemma 1, we have $q_{2}-q_{1} \leqq C(\delta) q_{2}^{-n-k} \leqq C(\delta)(1+\delta)^{-n-k}$, so for large k we have $K \subset J$. Lemma 2 is proved.

We return to the proof of Theorem 1, Part 4. It is enough to prove that for any $\delta>0$ in the segment $(1+\sqrt{5}) / 2=: A<q<2$ for a.e. q and for every q except for a set of first category there are $2^{\aleph_{0}}$ expansions of 1 . Let $n \in \mathrm{~N}$ be fixed and apply Lemma 2 with $\eta=2^{-N}, n=1$, $\varepsilon_{1}=1, I=(A, 2-\delta)$. Denote $A_{1}:=\bigcup_{j=1}^{\infty} I_{j}$, then A_{1} is open and dense in I further $\left|I \backslash A_{1}\right|<2^{-N}$. For every interval I_{j} apply again Lemma 2 with one expansion $\varepsilon_{1}, \ldots, \varepsilon_{n+k}$; we get the intervals $I_{j, j_{1}}$; then for all $I_{j, j_{1}}$ we apply Lemma 2 with the other expansion $\varepsilon_{1}, \ldots, \varepsilon_{n}, \varepsilon_{n+1}^{\prime}, \ldots, \varepsilon_{n+k}^{\prime}$ to obtain the system $I_{j, j_{1}, j_{2}}$. Denote $A_{2}:=\bigcup_{j, j_{1}, j_{2}} I_{j, j_{1}, j_{2}}$ then A_{2} is open, dense in I and we can ensure $\left|I \backslash A_{2}\right|<2^{-N}+2^{-N-1}$, further in every interval $I_{j, j_{1}, j_{2}}$ there exist four different beginnings of the expansion of 1 , common for all $q \in I_{j, j_{1}, j_{2}}$. In the third step Lemma 2 applies for $I_{j, j_{1}, j_{2}}$ with the first expansion, for all $I_{j, j_{1}, j_{2}, j_{3}}$ with the second one, for all $I_{j, j_{1}, j_{2}, j_{3}, j_{4}, j_{5}}$ with the fourth one, further define A_{3} as the union of all the intervals $I_{j, j_{1}, j_{2}, j_{3}, j_{4}, j_{5}, j_{6}}$. Continuing this process we obtain the open and dense sets A_{n} with $\left|I \backslash A_{n}\right|<$ $<2^{-N}+2^{-N-1}+\ldots+2^{-N-n+1}$. By the construction for every q in the set $A:=\bigcap_{n=1}^{\infty} A_{n}, 1$ has $2^{\aleph_{0}}$ many expansions further $I \backslash A$ is of first category and $|I \backslash A|<2^{-N+1}$. Since N can be arbitrarily large, Part 4 is proved. The proof of Theorem 1 is complete.

Remark. In Part 3 we formulated a necessary and another sufficient condition for the uniqueness. The sufficient condition does not contain all unique expansions as the following example shows:

$$
\begin{equation*}
1=q^{-1}+q^{-2}+q^{-4}+q^{-5}+q^{-7}+q^{-9}+q^{-11}+\ldots \tag{15}
\end{equation*}
$$

This is a unique expansion. Indeed, q^{-2} can not be omitted because $1>$ $>q^{-1}+q^{-4}+q^{-6}+q^{-8}+\ldots ; \varepsilon_{3}$ can not be substituted by 1 since $1>q^{-1}+$ $+q^{-2}+q^{-4}+q^{-6}+q^{-8}+\ldots ; \varepsilon_{5}, \varepsilon_{7}, \varepsilon_{9}, \ldots$ can not be omitted, $\varepsilon_{6}, \varepsilon_{8}, \varepsilon_{10}, \ldots$ can not be changed because $1>q^{-1}+q^{-3}+q^{-5}+q^{-7}+\ldots$ holds by $1>q^{-1}+q^{-2}$. So (15) is unique indeed. On the other hand the necessary condition is not sufficient as the following example shows: in the expansion $1=q^{-1}+q^{-2}+q^{-4}+q^{-7}+q^{-9}+q^{-11}+q^{-13}+\ldots, q^{-4}$ can be omitted, because $1<q^{-1}+q^{-2}+q^{-4}+q^{-6}+\ldots$ hence

$$
0<1-q^{-1}-q^{-2}<q^{-5}+q^{-6}+q^{-7}+q^{-9}+q^{-11}+q^{-13}+\ldots .
$$

The following questions arise.

Problem 1. Determine the unique expansions.
Problem 2. Does there exist q such that 1 has precisely two (or n) expansions? Describe them.

Problem 3. Do there exist precisely \aleph_{0} numbers q for which 1 has precisely \aleph_{0} expansions? Characterize these numbers.

In what follows we consider the problem of the boundedness of the length of 0 -sequences in the expansions of 1 . Remark that quantitative and qualitative results on this topic are published in [2-5].

Theorem 2. 1. If the expansion (1) is unique then its zero sequences are bounded.
2. For $1<q<(1+\sqrt{5}) / 2$ there exists an expansion (1) where the zero sequences are bounded.

Proof. 1. Suppose that $\varepsilon_{n}=1, \varepsilon_{n+1}=\ldots=\varepsilon_{n+k}=0$ is a unique expansion. Since q^{-n} can not be omitted, we must have $q^{-n}>q^{-n-1}+\ldots+$ $+q^{-n-k}$,

$$
1>q^{-1}+q^{-2}+\ldots+q^{-k}=\frac{1-q^{-k}}{q-1}, \quad q^{-k}>2-q
$$

This can not hold for infinitely many k since for large k, q must be close to 2.
2. For $q=\frac{1+\sqrt{5}}{2}$ such an expansion is $1=q^{-1}+q^{-3}+q^{-5}+\ldots$ If $q<(1+\sqrt{5}) / 2$ then $1<q^{-2}+q^{-3}+q^{-5}+\ldots$ and hence for some large r, $1<q^{-2}+\ldots+q^{-r}$. On the other hand for large r we have $1>q^{-1}+q^{-r-1}+$ $+q^{-2 r-1}+\ldots$ Now let $x:=1-\left(q^{-1}+q^{-r-1}+q^{-2 r-1}+\ldots\right)$, then $0<x<$ $<q^{-2}+\ldots+q^{-r}+q^{-r-2}+\ldots+q^{-2 r}+\ldots$ The members on the right hand side form a sequence $\lambda_{1}>\lambda_{2}>\ldots>0$ satisfying $\lambda_{n}<\lambda_{n+1}+\lambda_{n+2}+\ldots$ for all n. Consequently the sums $\sum \varepsilon_{n} \lambda_{n}, \varepsilon_{n}=\left\{\begin{array}{l}0 \\ 1\end{array}\right.$ fill in the segment $\left[0, \sum \lambda_{n}\right]$; in particular $x=\sum \varepsilon_{n} \lambda_{n}$ and then $1=q^{-1}+q^{-r-1}+q^{-2 r-1}+\ldots+\sum \varepsilon_{n} \lambda_{n}$ is the desired expansion of 1 .

Finally we formulate some open problems. Prove or disprove:
Problem 4. If $1=\sum q^{-n_{i}}$ and $\sup \left(n_{i+1}-n_{i}\right)=\infty$ then there exist $2^{\aleph_{0}}$ expansions of 1 .

Problem 5. Conversely, if there exist $2^{N_{0}}$ expansions then there is an expansion with $\sup \left(n_{i+1}-n_{i}\right)=\infty$.

Problem 6. If there exist precisely \aleph_{0} expansions of 1 then for any expansion $1=\sum q^{-n_{i}}$ (with infinitely many 1 digits) $\sup \left(n_{i+1}-n_{i}\right)<\infty$.

Problem 7. If there exist precisely \aleph_{0} expansions of 1 then there is a finite expansion (with finitely many 1 digits).

Problem 8. There exists $1<q<2$ which has $2^{\aleph_{0}}$ expansions and has a finite expansion.

References

[1] I. Joó, On Riesz bases, Annales Univ. Sci. Budapest. Sect. Math., 31 (1988), 141-153. [2] I. Joó and M. Joó, On an arithmetical property of $\sqrt{2}$, Publ. Math. Debrecen.
[3] I. Joó, On the distribution of the set $\left\{\sum_{i=1}^{n} \varepsilon_{i} q^{i}: \varepsilon_{i} \in\{0,1\}, n \in \mathbf{N}\right\}$, Acta Math. Hung., 58 (1991).
[4] P. Erdős, M. Joó and I. Joó, On a problem of Tamás Varga (to appear).
[5] P. Erdős and I. Joó, On the expansions $1=\sum q^{-n_{i}}, 1<q<2$, Per. Math. Hung., 23 (1991).
(Received June 1, 1989)
MATHEMATICAL INSTITUTE OF THE hUNGARIAN ACADEMY OF SCIENCES REÁLTANODA U. 13-15
H-1053 BUDAPEST
EÖTVÖS LORÁND UNIVERSITY
MATHEMATICAL INSTITUTE
MÚZEUM KRT. 6-8
H-1088 BUDAPEST

MULTIPLICATIVE FUNCTIONS WITH REGULARITY PROPERTIES. VI

I. KÁTAI* (Budapest), member of the Academy
Dedicated to F. Schipp on his fiftieth birthday

1. Recently A. Hildebrand proved the following theorem [1].

There exists a positive constant c with the following property. If $g \in M^{*}$ (the set of completely multiplicative functions), $|g(n)|=1$ for every $n \in \mathbf{N}$, and $|g(p)-1| \leqq c$ for every prime p, then either $g(n)=1$ identically, or

$$
\liminf \frac{1}{x} \sum_{n \leqq x}|g(n+1)-g(n)|>0 .
$$

Our purpose in this short paper is to prove the following
Theorem 1 There exist positive constants $\beta(\leqq 1 / 2)$ and δ with the following property. If $g \in M^{*}$ and $|g(n)|=1$ for every $n \in \mathbf{N}$, furthermore

$$
\begin{equation*}
\limsup _{x} \sum_{x^{\beta}<p<x} \frac{|g(p)-1|}{p}<\delta \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\liminf _{x} \frac{1}{x} \sum_{\frac{x}{2} \leq n \leqq x}|g(n+1)-g(n)|=0, \tag{1.2}
\end{equation*}
$$

then $g(n)=1$.
remark To prove the theorem we shall use some ideas due to Hildebrand [1], and apply a theorem of Halász on the existence of the mean value of multiplicative functions, furthermore some sieve results.
2. Proof of the theorem, first case. Assume that $g \in M^{*}$ and $|g(n)|=1$ holds for every $n \in \mathbf{N}$. In [2] Hildebrand proved that

$$
\begin{equation*}
\sum_{p} \frac{\left|1-g(p) p^{i \tau}\right|^{2}}{p}<\infty \tag{2.1}
\end{equation*}
$$

[^14]implies that
\[

$$
\begin{equation*}
\frac{2}{x} \sum_{\frac{x}{2} \leqq n<x} \overline{g(n+1)} g(n) \rightarrow \prod \Phi_{p} \tag{2.2}
\end{equation*}
$$

\]

where

$$
\Phi_{p}=1-\frac{2}{p}+2\left(1-\frac{1}{p}\right) \operatorname{Re} \frac{g(p) p^{i \alpha}}{p-g(p) p^{i \alpha}}
$$

(1.2) and (2.2) together imply that $\Phi_{p}=1$ holds for each prime p, i.e. $g(p)=p^{-i T}$. If $T=0$ we get the function $g(n) \equiv 1$. Assume that $\tau \neq 0$. We shall show that in this case (1.1) cannot be satisfied if δ is small enough and $\beta \leqq 1 / 2$. Indeed, by using the prime number theorem,

$$
\sum_{\sqrt{x} \leqq p<x} \frac{\left|1-p^{-i \tau}\right|}{p}=2 \sum \frac{\left|\sin \frac{\tau}{2} \log p\right|}{p}=\int_{\frac{\tau}{4} x_{1}}^{\frac{\tau}{2} x_{1}} \frac{|\sin \lambda|}{\lambda} d \lambda+o_{x}(1)
$$

$x_{1}=\log x$. Since the limit superior of

$$
\int_{y / 2}^{y} \frac{|\sin \lambda|}{\lambda} d \lambda
$$

is bounded below by an absolute positive constant, therefore (1.1) cannot hold if δ is small.

From now on, we may assume that for every $\tau \in R$,

$$
\begin{equation*}
\sum_{p} \frac{\left|1-g(p) p^{i \tau}\right|^{2}}{p}=\infty \tag{2.1}
\end{equation*}
$$

But in this case, by Halász' theorem,

$$
\sum_{n \leqq x} g(n)=o(x)
$$

which implies easily that

$$
\begin{equation*}
L(x):=\sum_{n \leqq x} \frac{g(n)}{n}=o(\log x) \tag{2.2}
\end{equation*}
$$

Let us consider the sum

$$
\begin{equation*}
L(x \mid m):=\sum_{\substack{n \leqq x \\(n, m)=1}} \frac{g(n)}{n} \tag{2.3}
\end{equation*}
$$

for every m in $[1, x]$. Then, by the Moebius formula,

$$
\begin{align*}
& L(x \mid m)=\sum_{n \leqq x} \frac{g(n)}{n} \sum_{d \mid(n, m)} \mu(d)=\sum_{d \mid m} \mu(d) \sum_{k \leqq x / d} \frac{g(d) g(k)}{k d}= \tag{2.4}\\
& =\sum_{d \mid m} \frac{\mu(d) g(d)}{d} L\left(\frac{x}{d}\right)=\prod_{p \mid m}\left(1-\frac{g(p)}{p}\right) L(x)+\sigma_{m, x}
\end{align*}
$$

where

$$
\sigma_{m, x}=\sum_{d \mid m} \frac{\mu(d) g(d)}{d}\left(L\left(\frac{x}{d}\right)-L(x)\right),
$$

and so

$$
\begin{equation*}
\left|\sigma_{m, x}\right| \leqq 2 \sum_{d \mid m} \frac{\log d}{d} \tag{2.5}
\end{equation*}
$$

Doing the same for the function $g(n) \equiv 1$, we have

$$
\begin{equation*}
\sum_{\substack{n \leq x \\(n, m)=1}} \frac{1}{n}=\frac{\varphi(m)}{m} \log x+\tau_{m, x} \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\left|\tau_{m, x}\right| \leqq 2 \sum_{d \mid m} \frac{\log d}{d} L \tag{2.7}
\end{equation*}
$$

Let us consider now the sum

$$
\begin{equation*}
T(y):=\sum_{(u, v)=1} \frac{|g(u)-g(v)|}{u v} . \tag{2.8}
\end{equation*}
$$

It is clear that

$$
\sum_{u \leqq y} \frac{1}{u}\left|g(u) \sum_{\substack{v \leqq y \\(v, u)=1}} 1 / v-L(y \mid u)\right| \leqq T(y),
$$

and so, by (2.4)-(2.7) we get that

$$
\begin{gather*}
\sum_{u} \frac{1}{u}\left|g(u) \frac{\varphi(u)}{u} \log y-\prod_{p \mid u}\left(1-\frac{g(p)}{p}\right) L(y)\right| \leqq \tag{2.9}\\
\leqq T(y)+4 \sum_{u \leqq y} \frac{1}{u} \sum_{d \mid u} \frac{\log d}{d} .
\end{gather*}
$$

The second sum on the right hand side has the order $O(\log y)$. Since $L(y)=$ $=o(\log y)$, and

$$
\left|\prod_{p \mid u}\left(1-\frac{g(p)}{p}\right)\right| \leqq \prod_{p \mid u}\left(1+\frac{1}{p}\right)
$$

therefore, from (2.9) we obtain that for every positive $\varepsilon>0$ and for every large $y>y_{0}(\varepsilon)$,

$$
(\log y) \sum_{n \leqq y} \frac{\varphi(u)}{u^{2}} \leqq T(y)+\varepsilon(\log y)^{2} L .
$$

It is known that

$$
\sum_{n \leqq y} \frac{\varphi(u)}{u^{2}}=A \log y+O(1)
$$

with some absolute constant $A(>0)$. Thus we have

$$
\begin{equation*}
T(y)>(A-2 \varepsilon)(\log y)^{2} \quad \text { if } \quad y>y_{1}(\varepsilon) \tag{2.10}
\end{equation*}
$$

3. Let $p(n)$ and $P(n)$ be the smallest and the largest prime factor of n, resp. Let $N_{\beta}(x \mid u, v)$ denote the number of solutions of $Q v-R u=1$ in integers Q, R satisfying the conditions $R u \in\left(\frac{x}{2}, x\right], P(Q)>x^{\beta}, P(R)>x^{\beta}$.

One can deduce from sieve results that

$$
\begin{equation*}
N_{\beta}(x \mid u, v)>c_{\beta} \frac{x}{(\log x)^{2} u \cdot v} \quad \text { if } \quad x>x_{0}(\beta) \tag{3.1}
\end{equation*}
$$

with some positive constant c_{β}, whenever β is small enough, and u, v are coprime integers satisfying the conditions $1 \leqq u, v \leqq x^{\beta}$.

Let us consider the sum

$$
\begin{equation*}
\sum_{\substack{1 \leqq u, v \leqq x^{\beta} \\(u, v)=1}}|g(n)-g(v)| N_{\beta}(x \mid u, v) \tag{3.2}
\end{equation*}
$$

From (3.1) we get that

$$
\begin{equation*}
S \geqq c_{\beta} \frac{x}{\log ^{2} x} T\left(x_{\beta}\right) \tag{3.3}
\end{equation*}
$$

Now we want to give an upper estimation for S in terms of

$$
U(x):=\sum_{\frac{x}{2} \leqq n \leqq x}|\Delta g(n)|
$$

We can observe that in (3.2) $|g(u)-g(v)|$ occurs as many times as many solutions the equation $Q v-R u=1$ has. Let $n=R u, n+1=Q v$. It is clear that some n (and $n+1$) can be represented as $R u$ (and $Q v$) at most once. Furthermore,

$$
\begin{equation*}
|g(u)-g(v)|=|g(u) \overline{g(v)}-1|=|\bar{g}(R) g(Q) g(n) \overline{g(n+1)}-1| \leqq \tag{3.4}
\end{equation*}
$$

$$
\leqq|g(n) \overline{g(n+1)}-1|+|\overline{g(R)} g(Q)-1| \leqq|\Delta g(n)|+|g(Q)-1|+|g(R)-1|
$$

Let $A(n)$ be the product of the prime factors larger than x^{β}. Let

$$
V=\sum_{\frac{x}{2} \leqq n \leqq x+1}|g(A(n))-1| .
$$

From (3.4) we obtain that

$$
\begin{equation*}
S \leqq U(x)+2 V \tag{3.5}
\end{equation*}
$$

The contribution of the integers n for which $A(n)$ is not a square-free number is small, $\ll x / \log x$, say. Thus

$$
V \leqq 2 x H+c_{\beta} \chi / \log x, \quad H:=\sum_{1<m \leqq x} \frac{|g(m)-1|}{m} L
$$

where m runs over those square-free integers greater than 1 , the prime factors of which belong to $\left[x^{\beta}, x\right]$. Let $t(p)=g(p)-1$, and let t be extended as a multiplicative function. Since

$$
g(m)-1=\prod_{g \mid m}(1+t(q))-1=\sum_{\substack{d \mid m \\ d>1}} t(d)
$$

therefore

$$
\begin{gathered}
H \leqq \sum_{d>1} \frac{|t(d)|}{d} \prod_{x^{\beta} \leqq q \leqq x}\left(1+\frac{1}{q}\right) \leqq \frac{2}{\beta}\left\{\prod_{x^{\beta} \leqq p \leqq x}\left(1+\frac{|t(p)|}{p}\right)-1\right\} \leqq \\
\leqq \frac{2}{\beta}\left\{\exp \left(\sum \frac{|t(p)|}{p}\right)-1\right\} \leqq \frac{2}{\beta}\left(e^{\delta}-1\right) .
\end{gathered}
$$

So we have

$$
\begin{equation*}
S \leqq \frac{8}{\beta}\left(e^{\delta}-1\right) x+2 c_{\beta} x / \log x+U(x) \tag{3.6}
\end{equation*}
$$

From (2.10), (3.3), (3.6) we have

$$
\begin{equation*}
c_{\beta} \beta^{2}(A-2 \varepsilon) \leqq \frac{8}{\beta}\left(e^{\delta}-1\right)+\frac{2 c_{\beta}}{\log x}+\frac{U(x)}{x} \tag{3.7}
\end{equation*}
$$

for each large x. If δ is chosen so that $c_{\beta} \beta^{2}(A-2 \varepsilon)>\frac{8}{\beta}\left(e^{\delta}-1\right)$, then $\frac{U(x)}{x}$ has to be bounded below by a positive constant.

By this the proof is finished.
4. Theorem 2. Let $f, g \in M,|f(n)|=|g(n)|=1$ for every n, furthermore

$$
\begin{equation*}
\liminf _{x} \frac{1}{x} \sum_{n \leqq x}|g(n+1)-f(n)|=0 . \tag{4.1}
\end{equation*}
$$

Then $f(n)=g(n)$ for every n, and $f \in M^{*}$.
This leads immediately to the following generalization of Theorem 1.
Theorem 1'. There exist positive constants $\beta(\leqq 1 / 2)$ and δ with the following property. If $f, g \in M,|g(n)|=1$ and $|f(n)|=1$ for every $n \in \mathbf{N}$, furthermore (1.1) and (4.1) hold true, then $f(n)=g(n)=1$ for every $n \in \mathbf{N}$..

Proof of Theorem 2. If (4.1) holds true, then there exist sequences $x_{\nu} \rightarrow \infty, \quad \varepsilon_{\nu} \rightarrow 0$ such that

$$
\begin{equation*}
\sum_{n \leqq x_{\nu}}|g(n+1)-f(n)| \leqq \varepsilon_{\nu} x_{\nu} . \tag{4.2}
\end{equation*}
$$

Let

$$
r(n):=\frac{g(n+1)}{f(n)}, \quad H(n):=\frac{g(n)}{f(n)}, \quad D:=\frac{g(4)}{g(2) f(2)} .
$$

Let us observe that
(4.3) $\bar{H}(16 k+11) r(16 k+10) r(16 k+11)=\frac{g(16 k+12)}{f(16 k+10)}=\operatorname{Dr}(8 k+5)$.

From (4.2) we have

$$
\sum_{n \leqq x_{n} u}|r(n)-1| \leqq \varepsilon_{\nu} x_{\nu}
$$

and so by (4.3) we deduce that

$$
\begin{equation*}
\sum_{16 k+11 \leqq x_{\nu}}|D H(16 k+11)-1|<c \varepsilon_{\nu} x_{\nu} \tag{4.4}
\end{equation*}
$$

where c is an absolute positive constant. (4.4) can be written as

$$
\begin{equation*}
\sum_{\substack{n \leq x_{\nu} \\ 11(\bmod 16)}}\left|H(n)-\frac{1}{D}\right|<c \varepsilon_{\nu} x_{\nu} . \tag{4.5}
\end{equation*}
$$

Let us choose now some odd m, and substitute n by $n m$. Then we have

$$
\begin{equation*}
\sum_{\substack{n \leqq x_{\nu} / m \\(n, m)=1 \\ \vdots \equiv 11(\bmod 16)}}|H(m) H(n)-1 / D|<c \varepsilon_{\nu} x_{\nu} . \tag{4.6}
\end{equation*}
$$

Since $|H(m)-1|=|(H(m)-1) H(n)| \leqq\left|H(m) H(n)-\frac{1}{D}\right|+\left|H(n)-\frac{1}{D}\right|$, from (4.6) we obtain that

$$
\sum_{\substack{n \leqq x_{\nu} / m \\ m \equiv 11(\bmod 16) \\(n, m)=1}}|H(m)-1| \leqq c \varepsilon_{\nu} x_{\nu},
$$

which implies that $H(m)=1$. So we proved that $H(m)=1$ holds for every odd m. Then, from (4.5) we get that $D=1$. Let $m=1+2 \ell,(\ell, 2)=1$. By the triangle inequality,

$$
\begin{aligned}
&|1-\overline{H(2)}|=|g(m)-\overline{H(2)} f(m)|=\mid g(m)-f(m-1)+f(2) f(\ell)- \\
&-f(2) g(\ell+1)+f(2) g(\ell+1)-\overline{g(2)} f(2) f(m)|\leqq|g(m)-f(m-1)|+ \\
&+|g(\ell+1)-f(\ell)|+|g(m+1)-f(m)|
\end{aligned}
$$

Summing up for odd ℓ 's up to $2 \ell \leqq x_{\nu}$, we can deduce that $f(2)=g(2)$. This together with $D=1$, gives that $g(4)=g(2)^{2}$. Since

$$
\frac{g(2 n)}{f(2(n-1))}=r(2 n-1) r(2 n-2)
$$

therefore

$$
\begin{equation*}
\sum_{2 n \leqq x_{\nu}}\left|\frac{g(2 n)}{f(2(n-1))}-1\right|<c \varepsilon_{n} u x_{n} \tag{4.7}
\end{equation*}
$$

Let $s \geqq 1, n=2^{s} k,(k, 2)=1$. Then

$$
\begin{equation*}
\frac{g(2 n)}{f(2(n-1))}=\frac{g\left(2^{s+1}\right)}{g\left(2^{s}\right) f(2)} r(n-1) \tag{4.8}
\end{equation*}
$$

and so by (4.2) and (4.7) we get easily that

$$
\begin{equation*}
g\left(2^{s+1}\right)=g\left(2^{s}\right) f(2)=g\left(2^{s}\right) g(2) \tag{4.9}
\end{equation*}
$$

Similarly summing up the summands of (4.4) only for the integers $n=1+2^{s} k$, we get

$$
\begin{equation*}
f\left(2^{s+1}\right)=f\left(2^{s}\right) g(2)=f\left(2^{s}\right) f(2) \tag{4.10}
\end{equation*}
$$

Consequently $f\left(2^{s}\right)=f(2)^{s}=g(2)^{s}=g\left(2^{s}\right)$.
So $f(n)=g(n)$ holds for every $n \in \mathbf{N}$.
It remains to prove that $f \in M^{*}$. This is easily seen from

$$
\begin{equation*}
\sum_{n \leqq x_{\nu}}|\Delta f(n)| \leqq \varepsilon_{\nu} x_{\nu} \tag{4.11}
\end{equation*}
$$

Let $m>1$ be arbitrary, $\Delta_{m} f(n)=f(n+m)-f(n)$. From (4.11) we have

$$
\begin{equation*}
\sum_{n \leqq x_{\nu} / 2 m}|U(m, n)|<c \varepsilon_{\nu} x_{\nu} \tag{4.12}
\end{equation*}
$$

where

$$
\begin{equation*}
U(m, n)=(f(m(n+1))-f(m) f(n+1))-(f(m n)-f(m) f(n)) \tag{4.13}
\end{equation*}
$$

Let P be an arbitrary prime, $m=P$, and let n in (4.12) run over only the integers satisfying $P^{\alpha} \| n$. Since the set of these integers n has a positive density, and $|U(P, n)|=\left|f\left(P^{\alpha+1}\right)-f(P) f\left(P^{\alpha}\right)\right|$ for them, we obtain that $f\left(P^{\alpha+1}\right)=f(P) f\left(P^{\alpha}\right)$.

This completes the proof of our theorem.

References

[1] A. Hildebrand, Multiplicative functions at consecutive integers II. Preprint.
[2] A. Hildebrand, An Erdös-Wintner theorem for differences of additive functions, Preprint.

[^15]
A HAAR-TYPE THEORY OF BEST UNIFORM APPROXIMATION WITH CONSTRAINTS

A. KROO ${ }^{1,2}$ (Budapest) and D. SCHMIDT ${ }^{2}$ (Rochester)

Introduction

The literature of approximation theory contains numerous results concerning best approximation under a variety of constraints. These results mainly concentrate on investigating problems in L_{∞}-norm, see, e.g., papers by Chalmers [1] and Chalmers and Taylor [2]. Since in most cases existence can be easily established the truly interesting question consists in studying the uniqueness of best approximants. In [1] Chalmers introduced a general method of investigating uniqueness of best approximations with constraints, which provided a unified approach to the problem. However, this approach essentially provided only sufficient conditions for uniqueness of best constrained approximation. In this paper we shall be concerned with developing a Haar-type theory for constrained L_{∞}-approximation, that gives necessary and sufficient conditions for uniqueness. In this sense our paper is closer in spirit to a recent paper by Pinkus and Strauss [8] where necessary and sufficient conditions for uniqueness were given in the special case of best L_{∞}-approximation with coefficient constraints. Our goal is to provide similar characterizations of uniqueness in the general setting of linear constraints. In order to impose the constraints we shall use linear operators, instead of linear functionals used in [1]. This approach, while preserving generality of constraints, will provide us with a convenient tool leading to technically simple characteristics of uniqueness.

Let us recall now the classical theorem of A. Haar [5]. Let U_{n} be an n-dimensional subspace of $C[a, b]$, the space of real-valued continuous functions with L_{∞}-norm. Then the Haar theorem states that every $f \in C[a, b]$ possesses a unique best approximant out of U_{n} if and only if each $p \in U_{n} \backslash\{0\}$ has at most $n-1$ distinct zeros in $[a, b]$. (Throughout this paper subspaces U_{n} satisfying the above property will be called Haar spaces.)

Let $L: U_{n} \rightarrow C(K)$ be a linear operator mapping U_{n} into $C(K)$, where K is a finite union of intervals and points in \mathbf{R}. For given $v, u \in C(K)$ such that $v<u$ on K set $\tilde{U}_{n}(v, u)=\left\{p \in U_{n}: v \leqq L p \leqq u, x \in K\right\}$. We

[^16]shall say that $\operatorname{Int} \tilde{U}_{n}(v, u) \neq \emptyset$ if there exists $\tilde{p} \in U_{n}$ satisfying $v<L \tilde{p}<u$ $(x \in K)$. Now we consider the problem of approximating in norm $\|g\|=$ $=\max _{a \leqq x \leqq b}|g(x)| \quad(g \in C[a, b])$ by elements of $\tilde{U}_{n}(v, u)$. We say that $p_{0} \in$ $\in \tilde{U}_{n}(v, u)$ is a best approximant of $f \in C[a, b]$ if $\left\|f-p_{0}\right\|=\inf \{\|f-p\|: p \in$ $\left.\in \tilde{U}_{n}(v, u)\right\}$. Throughout the paper we shall study best approximation on the interval $[a, b]$ and impose restrictions on the compact set K. Uniqueness of best approximation by elements of $\tilde{U}_{n}(v, u)$ depends, of course, on U_{n}, L and v and u. In order to get simple and elegant descriptions of unicity we shall be interested in boundary independent uniqueness, i.e., uniqueness for every v, u. This leads us to the following central question.

Problem A. Given $U_{n} \subset C[a, b]$ and $L: U_{n} \rightarrow C(K)$ find a necessary and sufficient condition so that for every $f \in C[a, b]$ and $v, u \in C(K)$ with Int $\tilde{U}_{n}(v, u) \neq \emptyset$ the best approximant of f from $\tilde{U}_{n}(v, u)$ is unique.

We shall give a complete solution of Problem A and, in particular show that corresponding subspaces U_{n} and operators L are somewhat rare. It turns out that requiring uniqueness for every continuous boundary is too restrictive. On the other hand working with smooth C^{\prime}-boundaries leads to much more meaningful results. Therefore we also investigate the next

Problem B. Given $U_{n} \subset C[a, b]$ and $L: U_{n} \rightarrow C^{\prime}(K)$ find a necessary and sufficient condition so that for every $f \in C[a, b]$ and $v, u \in C^{\prime}(K)$ with Int $\tilde{U}_{n}(v, u) \neq \emptyset$ the best approximant of f in $\tilde{U}_{n}(v, u)$ is unique.

As it was mentioned above the variety of subspaces U_{n} and operators L providing positive solution to Problem B is essentially wider than for Problem A.

Our method of solving Problems A and B will be based on the notion of extremal sets, which is frequently used in the literature. A set of at most $n+1$ points $x_{1}, \ldots, x_{r} \in[a, b](1 \leqq r \leqq n+1)$ is called an extremal set for U_{n} if there exist nonzero numbers c_{1}, \ldots, c_{r} so that

$$
\begin{equation*}
\sum_{i=1}^{r} c_{i} p\left(x_{i}\right)=0, \quad p \in U_{n} . \tag{1}
\end{equation*}
$$

Using this notion one can easily give the following equivalent form of the Haar Theorem: $U_{n} \subset C[a, b]$ is a Haar subspace if and only if no nontrivial element of U_{n} vanishes on an extremal set of U_{n}. Moreover, U_{n} is Haar if and only if every extremal set of U_{n} consists of exactly $n+1$ points.

We shall give similar solutions to Problems A and B using the notion of L-extremal sets, which is a natural extension of extremal sets defined by (1).

Our paper is organized in the following way. Section 1 contains the general uniqueness theory, i.e., solutions to Problems A and B and related results. In the next section we include the complete theory of strong uniqueness related to Problems A and B. The final part contains different applications of
our results. We shall show how the theory can be applied in order to distinguish the "good" and "bad" subspaces and operators. Since our results provide not only sufficient, but also necessary conditions of uniqueness, we shall be able to characterize completely those spaces of lacunary algebraic polynomials which satisfy the requirements of Problem B with $L=D^{k}$ (differentiation operator). Furthermore, we shall consider Problem B for operator $L=D-\alpha I(\alpha \in \mathbf{R}, I$ is identity operator) and show that algebraic polynomials of degree $\leqq n-1$ provide a positive solution to Problem B if and only if $|\alpha| \leqq \frac{n-1}{2}$. It will be also shown that subspaces of rational functions with a fixed denominator, in general, fail to satisfy requirements of Problem B for $L=D$, if the degree of denominator is at least two. With regard to Problem A we shall give a precise constructive description of spaces U_{n} providing uniqueness and show that they are very scarce unless int $K=0$.

1. Uniqueness of best constrained approximation

In order to obtain solutions to the problems outlined in the introduction we shall need some standard characterizations of best approximations from $\tilde{U}_{n}(v, u)$. For any $f \in C[a, b]$ we denote $E(f)=\{x \in[a, b]:|f(x)|=\|f\|=$ $\left.=\max _{a \leqq x \leq b}|f(x)|\right\}$, while for $g \in C(K), Z(g)=\{x \in K: g(x)=0\}$.

Theorem 1.1. Suppose that for given $v, u \in C(K)$ and $L: U_{n} \rightarrow C(K)$, Int $\tilde{U}_{n}(v, u) \neq \emptyset$. Then $p_{0} \in \tilde{U}_{n}(v, u)$ is a best approximant to $f \in C[a, b]$ from $\tilde{U}_{n}(v, u)$ if and only if for every $p \in U_{n}$ satisfying $L p \leqq 0$ on $Z\left(u-L p_{0}\right)$ and $L p \geqq 0$ on $Z\left(v-L p_{0}\right)$ we have

$$
\begin{equation*}
\min _{x \in E\left(f-p_{0}\right)}\left(f-p_{0}\right) p \leqq 0 . \tag{2}
\end{equation*}
$$

Proof. Sufficiency. For any $p \in \tilde{U}_{n}(v, u)$ we have $L\left(p-p_{0}\right) \leqq 0$ on $Z\left(u-L p_{0}\right)$ and $L\left(p-p_{0}\right) \geqq 0$ on $Z\left(v-L p_{0}\right)$, and thus by (2)

$$
\min _{x \in E\left(f-p_{0}\right)}\left(f-p_{0}\right)\left(p-p_{0}\right)=\left(f-p_{0}\right)\left(p-p_{0}\right)(\tilde{x}) \leqq 0
$$

for some $\tilde{x} \in E\left(f-p_{0}\right)$. Now

$$
\begin{gathered}
\left\|f-p_{0}\right\|=\left(f-p_{0}\right) \operatorname{sgn}\left(f-p_{0}\right)(\tilde{x})= \\
=(f-p) \operatorname{sgn}\left(f-p_{0}\right)(\tilde{x})+\left(p-p_{0}\right) \operatorname{sgn}\left(f-p_{0}\right)(\tilde{x}) \leqq\|f-p\| .
\end{gathered}
$$

Necessity. Suppose p_{0} is a best approximant to f from $\tilde{U}_{n}(v, u)$, and assume that for $p \in U_{n} L p<0$ on $Z\left(u-L p_{0}\right), L p>0$ on $Z\left(v-L p_{0}\right)$ but (2) fails. Then $\operatorname{sgn} p=\operatorname{sgn}\left(f-p_{0}\right)$ on $E\left(f-p_{0}\right)$ and for $t>0$ sufficiently small $p_{0}+t p \in \tilde{U}_{n}(v, u)$ and

$$
\left\|f-\left(p_{0}+t p\right)\right\|=\left\|\left(f-p_{0}\right)-t p\right\|<\left\|f-p_{0}\right\|,
$$

a contradiction. Thus (2) should hold if $L p<0$ on $Z\left(u-L p_{0}\right), L p>0$ on $Z\left(v-L p_{0}\right)$. Let now $p \in U_{n}$ be such that $L p \leqq 0$ on $Z\left(u-L p_{0}\right), L p \geqq 0$ on $Z\left(v-L p_{0}\right)$ and choose $\tilde{p} \in U_{n}$ satisfying $v<L \tilde{p}<u$ on K. (This choice is possible because Int $\tilde{U}_{n}(v, u) \neq \emptyset$.) Then for every $t>0 L\left(p+t\left(\tilde{p}-p_{0}\right)\right)<0$ on $Z\left(u-L p_{0}\right)$ and $L\left(p+t\left(\tilde{p}-p_{0}\right)\right)>0$ on $Z\left(v-L p_{0}\right)$ and applying (2) to $p+t\left(\tilde{p}-p_{0}\right)$ and letting $t \rightarrow 0^{+}$we obtain the needed statement.

Theorem 1.2. Suppose that Int $\tilde{U}_{n}(v, u) \neq \emptyset$. Then $p_{0} \in \tilde{U}_{n}(v, u)$ is a best approximant to $f \in C[a, b]$ from $\tilde{U}_{n}(v, u)$ if and only if there exist points $x_{1}, \ldots, x_{s} \in E\left(f-p_{0}\right)(s \geqq 1), y_{1}, \ldots, y_{m} \in Z\left(u-L p_{0}\right), y_{m+1}, \ldots, y_{r} \in$ $\in Z\left(v-L p_{0}\right)$ with $s+r \leqq n+1$, and constants $c_{1}, \ldots, c_{s}, d_{1}, \ldots, d_{r}$, where $\operatorname{sgn} c_{i}=\operatorname{sgn}\left(f-p_{0}\right)\left(x_{i}\right)(1 \leqq i \leqq s), d_{i}<0(1 \leqq i \leqq m)$ and $d_{i}>0$ $(m+1 \leqq i \leqq r)$ such that for every $p \in U_{n}$

$$
\begin{equation*}
\sum_{i=1}^{s} c_{i} p\left(x_{i}\right)+\sum_{i=1}^{r} d_{i}(L p)\left(y_{i}\right)=0 \tag{3}
\end{equation*}
$$

Proof. Sufficiency. We may assume that $\sum_{i=1}^{s}\left|c_{i}\right|=1$. Let $p \in \tilde{U}_{n}(v, u)$, i.e., $v \leqq L p \leqq u$. Then by (3)

$$
\begin{aligned}
& \left\|f-p_{0}\right\|=\sum_{i=1}^{s} c_{i}\left(f-p_{0}\right)\left(x_{i}\right)=\sum_{i=1}^{s} c_{i} f\left(x_{i}\right)+\sum_{i=1}^{r} d_{i}\left(L p_{0}\right)\left(y_{i}\right)= \\
& =\sum_{i=1}^{s} c_{i} f\left(x_{i}\right)+\sum_{i=1}^{m} d_{i} u\left(y_{i}\right)+\sum_{i=m+1}^{r} d_{i} v\left(y_{i}\right) \leqq \\
& \leqq \sum_{i=1}^{s} c_{i} f\left(x_{i}\right)+\sum_{i=1}^{r} d_{i}(L p)\left(y_{i}\right)=\sum_{i=1}^{s} c_{i}(f-p)\left(x_{i}\right) \leqq\|f-p\| .
\end{aligned}
$$

Necessity. Assume that p_{0} is a best approximant of f from $\tilde{U}_{n}(v, u)$. Consider a basis $\left\{p_{1}, \ldots, p_{n}\right\}$ in U_{n} and let $P \subset R^{n}$ be given by

$$
\begin{gathered}
P=\left\{\left(\left(f-p_{0}\right) p_{i}(x)\right)_{i=1}^{n}: x \in E\left(f-p_{0}\right)\right\} \cup \\
\cup\left\{\left(-\left(L p_{i}\right)(x)\right)_{i=1}^{n}: x \in Z\left(u-L p_{0}\right)\right\} \cup\left\{\left(\left(L p_{i}\right)(x)\right)_{i=1}^{n}: x \in Z\left(v-L p_{0}\right)\right\} .
\end{gathered}
$$

Denote by Q the convex hull of P. If $\overline{0} \notin Q$ then using that Q is closed there exists a $\bar{t}=\left(t_{i}\right)_{i=1}^{n} \in R^{n}$ such that $\langle\bar{t}, \bar{h}\rangle>0$ for every $\bar{h} \in Q$. Then for $p^{*}=\sum_{i=1}^{n} t_{i} p_{i}$ we have $L p^{*}<0$ on $Z\left(u-L p_{0}\right), L p^{*}>0$ on $Z\left(v-L p_{0}\right)$ and $\left(f-p_{0}\right) p^{*}>0$ on $E\left(f-p_{0}\right)$, contradicting Theorem 1.1. Thus $\overline{0} \in Q$ and Caratheodory's Theorem yields the existence of proper $x_{i}-\mathrm{s}, y_{i}-\mathrm{s}, c_{i}-\mathrm{s}$ and d_{i}-s for which (3) holds, except possibly for condition $s \geqq 1$. But if $s=0$
then (3) fails to hold for $p=\tilde{p}-p_{0}$, where $v<L \tilde{p}<u\left(\operatorname{Int} \tilde{U}_{n}(v, u) \neq \emptyset\right)$. Thus $s \geqq 1$.

Now we shall give an extension of the notion of extremal sets given in the introduction (see (1)), for the case of constrained approximation.

Definition 1. Let $U_{n} \subset C[a, b]$ and $L: U_{n} \rightarrow C(K)$ be as above. Then the set of points ($\left\{x_{i}\right\}_{i=1}^{s},\left\{y_{i}\right\}_{i=1}^{r}$), where $x_{i} \in[a, b], 1 \leqq i \leqq s ; y_{i} \in K$, $1 \leqq i \leqq r ; s \geqq 1, r \geqq 0$ and $r+s \leqq n+1$, is called an L-extremal set for U_{n} if there exist nonzero constants $\left\{\bar{c}_{i}\right\}_{i=1}^{s},\left\{d_{i}\right\}_{i=1}^{r}$ such that

$$
\begin{equation*}
\sum_{i=1}^{s} c_{i} p\left(x_{i}\right)+\sum_{i=1}^{r} d_{i}(L p)\left(y_{i}\right)=0, \quad p \in U_{n} \tag{4}
\end{equation*}
$$

Moreover, we call an L-extremal set nondegenerate if $\left.\operatorname{dim} L\left(U_{n}\right)\right|_{\left\{y_{i}\right\}_{i=1}^{r}}=r$.
Remark. Nondegeneracy of the L-extremal set essentially means that (4) can not hold for a proper subset of the extremal set which does not contain x_{i}-s. This, in turn, is equivalent to saying that linear functionals $\delta_{y_{i}} L, 1 \leqq i \leqq r$, are linearly independent on $U_{n}\left(\delta_{y_{i}}\right.$ denotes the point evaluation functional related to y_{i}). Furthermore, if $\left(\left\{x_{i}\right\}_{i=1}^{s},\left\{y_{i}\right\}_{i=1}^{r}\right)$ is a degenerate L-extremal set, then for some $\ell_{1}, \ldots \ell_{r}$ (not all of them zero) we have on $U_{n}: \sum_{i=1}^{r} \ell_{i} \delta_{y_{i}} L=0$. Thus by (4) for every $t \in R$

$$
\begin{equation*}
\sum_{i=1}^{s} c_{i} \delta_{x_{i}}+\sum_{i=1}^{r}\left(d_{i}-t \ell_{i}\right) \delta_{y_{i}} L=0 \tag{5}
\end{equation*}
$$

on U_{n}. Choosing $t=d_{j} / \ell_{j}\left(\ell_{j} \neq 0\right)$ we drop out at least one term in (5). Thus repeating this process we shall obtain a nondegenerate L-extremal subset of the original L-extremal set.

Definition 2 . We say that $p \in U_{n} L$-vanishes on the L-extremal set $\left(\left\{x_{i}\right\}_{i=1}^{s},\left\{y_{i}\right\}_{i=1}^{r}\right)$ for U_{n} if $p\left(x_{i}\right)=0(1 \leqq i \leqq s)$ and $(L p)\left(y_{i}\right)=0(1 \leqq i \leqq r)$.

As we have seen in the Introduction the Haar property, which is necessary and sufficient for uniqueness of unconstrained Chebyshev approximation, is equivalent to the requirement that no element of the subspace vanishes on an extremal set of this subspace. Now we give an analogous description of uniqueness of constrained approximation, thus providing a complete solution to Problem A.

Theorem 1.3. Let $U_{n} \subset C[a, b] ; L: U_{n} \rightarrow C(K)$ be a linear operator. Then in order that for every $f \in C[a, b]$ and $v, u \in C(K)$ with $\operatorname{Int} \tilde{U}_{n}(v, u) \neq \emptyset$ the best approximant of f in $\tilde{U}_{n}(v, u)$ be unique it is necessary and sufficient that no $p \in U_{n} \backslash\{0\} L$-vanishes on a nondegenerate L-extremal set for U_{n}.

Proof. Sufficiency. Assume that for some $v, u \in C(K)$ with Int $\tilde{U}_{n}(v, u) \neq \emptyset$ and $f \in C[a, b]$ there are two distinct best approximants
$p_{1}, p_{2} \in \tilde{U}_{n}(v, u)$ for f. Then $\left(p_{1}+p_{2}\right) / 2$ is also a best approximant, , and setting for a $g \in C[a, b], E_{+}(g)=\{x \in[a, b]: g(x)=\|g\|\}, E_{-}(g)=\{x \in$ $\in[a, b]: g(x)=-\|g\|\}$ we have

$$
\begin{gathered}
E_{+}\left(f-\frac{p_{1}+p_{2}}{2}\right) \cong E_{+}\left(f-p_{1}\right) \cap E_{+}\left(f-p_{2}\right) \cong Z\left(p_{1}-p_{2}\right), \\
E_{-}\left(f-\frac{p_{1}+p_{2}}{2}\right) \cong E_{-}\left(f-p_{1}\right) \cap E_{-}\left(f-p_{2}\right) \cong Z\left(p_{1}-p_{2}\right), \\
Z\left(u-L\left(\frac{p_{1}+p_{2}}{2}\right)\right) \cong Z\left(u-L p_{1}\right) \cap Z\left(u-L p_{2}\right) \cong Z\left(L\left(p_{1}-p_{2}\right)\right), \\
Z\left(v-L\left(\frac{p_{1}+p_{2}}{2}\right)\right) \cong Z\left(v-L p_{1}\right) \cap Z\left(v-L p_{2}\right) \cong Z\left(L\left(p_{1}-p_{2}\right)\right) .
\end{gathered}
$$

By Theorem 1.2 applied to $p_{0}=\left(p_{1}+p_{2}\right) / 2, E\left(f-p_{0}\right)$ and $Z\left(u-L p_{0}\right) \cup$ $\cup Z\left(v-L p_{0}\right)$ contain an L-extremal set for U_{n}, and $p_{1}-p_{2} \in U_{n} \backslash\{0\}$ L-vanishes on this L-extremal set. By the remark made after Definition 1 an L-extremal set contains a nondegenerate L-extremal set completing the proof of sufficiency in Theorem 1.3.

Necessity. Assume that some $p^{*} \in U_{n} \backslash\{0\} L$-vanishes on a nondegenerate L-extremal set $\left(\left\{x_{i}\right\}_{i=1}^{r},\left\{y_{i}\right\}_{i=1}^{s}\right.$) satisfying (4), that is $p^{*}\left(x_{i}\right)=0,1 \leqq$ $\leqq i \leqq s,\left(L p^{*}\right)\left(y_{i}\right)=0,1 \leqq i \leqq r$. We may assume that $\left\|p^{*}\right\|=1$. Evidently, we can construct $f \in C[\bar{a}, b]$ so that $f\left(x_{i}\right)=\operatorname{sgn} c_{i}(1 \leqq i \leqq s)$ and $|f| \leqq$ $\leqq 1-\left|p^{*}\right|$ on $[a, b]$. Then $\left\|f-t p^{*}\right\|=1$ and $E\left(f-t p^{*}\right)=E(f) \supseteqq\left\{x_{1}, \ldots, x_{s}\right\}$ for all $|t| \leqq 1$.

Assume that $d_{i}<0(1 \leqq i \leqq m)$ and $d_{i}>0(m+1 \leqq i \leqq r)$. The nondegeneracy of the L-extremal set implies that $(L \tilde{p})\left(y_{i}\right)=-1(1 \leqq i \leqq m)$, $(L \tilde{p})\left(y_{i}\right)=1(m+1 \leqq i \leqq r)$ for some $\tilde{p} \in U_{n}$. Set $v=\min \left(-\left|L p^{*}\right|, L \tilde{p}-1\right)$, $u=\max \left(\left|L p^{*}\right|, L \tilde{p}+1\right), v, u \in C(K)$. Since $v<L \tilde{p}<u$, Int $\tilde{U}_{n}(v, u) \neq \emptyset$. Set $p_{t}=t p^{*} \in U_{n}(|t| \leqq 1)$. Then $u\left(y_{i}\right)=0=\left(L p_{t}\right)\left(y_{i}\right)(1 \leqq i \leqq m)$; $v\left(y_{i}\right)=0=\left(L p_{t}\right)\left(y_{i}\right)(m+1 \leqq i \leqq r)$ and, evidently, $p_{t} \in \tilde{U}_{n}(v, u)$. Moreover, by Theorem $1.2 p_{t}$ is best approximant for f for $|t| \leqq 1$.

Since the condition of Theorem 1.3 characterizes C-boundary independent uniqueness of constrained approximation related to L we introduce the following natural notion.

Definition 3. Let $U_{n} \subset C[a, b], L: U_{n} \rightarrow C(K)$. Then U_{n} is called L Haar if no $p \in U_{n} \backslash\{0\} L$-vanishes on a nondegenerate L-extremal set for U_{n}.

It turns out that the L-Haar property can be characterized without involving the notion of L-extremal sets. In fact, it can be reduced to the study of Haar property. Let us mention that L-Haar spaces, are in particular Haar spaces, since any extremal set for U_{n} is also a nondegenerate L-extremal set. For $A \cong K$ denote $G_{A}=\left\{p \in U_{n}: L p=0\right.$ on $\left.A\right\}$.

Theorem 1.4. The following statements are equivalent:
a) U_{n} is an L-Haar space;
b) every L-extremal set for U_{n} contains $n+1$ points;
c) G_{A} is a Haar space for every $A \subseteq K$;
d) $G_{S_{k}}$ is a Haar space for every $\overline{\bar{S}}_{k}=\left\{y_{1}, \ldots, y_{k}\right\} \leqq K(0 \leqq k \leqq n)$ such that $\left.\operatorname{dim} L U_{n}\right|_{S_{k}}=k$.

Proof. a$) \Rightarrow \mathrm{b})$. Assume that there is an L-extremal set $\left(\left\{x_{i}\right\}_{i=1}^{s},\left\{y_{i}\right\}_{i=1}^{r}\right)$ for U_{n} with $s+r \leqq n$. Then the matrix of linear system $p\left(x_{i}\right)=0,1 \leqq i \leqq s$; $(L p)\left(y_{i}\right)=0\left(1 \leqq i \leqq r, p \in U_{n}\right)$ has rank less than $r+s \leqq n$, i.e., the system has a nontrivial solution, contradicting the L-Haar property.
$\mathrm{b}) \Rightarrow \mathrm{c}$). Assume that c) fails, that is G_{A} is not Haar for some $A \subseteq K$. Let $\operatorname{dim} G_{A}=k$, where $1 \leqq k<n$. (If $k=n$ then $G_{A}=U_{n}$ is not Haar, yielding that U_{n} possesses an extremal, and thus L-extremal, set of fewer than $n+1$ points.) Let V be a complementary subspace of G_{A} in U_{n}. Then $\operatorname{dim} V=\left.\operatorname{dim} L\left(U_{n}\right)\right|_{A}=n-k$. Let $V=\operatorname{span}\left[g_{1}, \ldots, g_{n-k}\right]$ and choose $y_{1}, \ldots, y_{n-k} \in A$ so that $\operatorname{det}\left[\left(L g_{i}\right)\left(y_{j}\right)\right]_{i, j=1}^{n-k} \neq 0$. Since G_{A} is not Haar there exists an extremal set $\left\{x_{i}\right\}_{i=1}^{s}$ for G_{A} with $s \leqq k$, i.e., for some $c_{1}, \ldots, c_{s} \neq 0$

$$
\begin{equation*}
\sum_{i=1}^{s} c_{i} p\left(x_{i}\right)=0, \quad p \in G_{A} . \tag{6}
\end{equation*}
$$

We can find d_{1}, \ldots, d_{n-k} so that

$$
\begin{equation*}
\sum_{i=1}^{n-k} d_{i}\left(L g_{j}\right)\left(y_{i}\right)=-\sum_{i=1}^{s} c_{i} g_{j}\left(x_{i}\right), \quad 1 \leqq j \leqq n-k \tag{7}
\end{equation*}
$$

Obviously, by (6) and (7) $\left(\left\{x_{i}\right\}_{i=1}^{s},\left\{y_{i}\right\}_{i=1}^{n-k}\right)$ is an L-extremal set for U_{n}, where $s+n-k \leqq n$.
c) \Rightarrow d) is trivial.
d) \Rightarrow a). Assume that a) fails. Then some $p \in U_{n} \backslash\{0\} L$-vanishes on a nondegenerate L-extremal set $\left(\left\{x_{i}\right\}_{i=1}^{s},\left\{y_{i}\right\}_{i=1}^{r}\right)$ satisfying (4), where $\left.\operatorname{dim} L\left(U_{n}\right)\right|_{\left\{y_{i}\right\}_{i=1}^{r}}=r$. Set $S_{r}=\left\{y_{i}\right\}_{i=1}^{r}$. Then $p \in G_{S_{r}}$, and by (4) for every $g \in G_{S_{r}}, \sum_{i=1}^{s} c_{i} g\left(x_{i}\right)=0$. Evidently, $1 \leqq \operatorname{dim} G_{S_{r}}=n-r$ and $s \leqq(n-r)+1$. Hence $\left\{x_{i}\right\}_{i=1}^{s}$ is an extremal set for $G_{S_{r}}$, while $p \in G_{S_{r}} \backslash\{0\}$ vanishes on $x_{i}, 1 \leqq i \leqq s$. Thus $G_{S_{r}}$ is not a Haar space.

Statements c), d) of Theorem 1.4 show that the study of uniqueness of constrained approximation for C-boundaries can be reduced to investigating the Haar properties of certain subspaces. This observation leads to an interesting result concerning constraints given by linear functionals.

Let $U_{n} \subset C[a, b], \varrho_{1}, \ldots, \varrho_{r} \in U_{n}^{*}$, and $\bar{a}=\left\{a_{i}\right\}_{i=1}^{r}, \bar{b}=\left\{b_{i}\right\}_{i=1}^{r} \in R^{r}$ be such that $\bar{a}<\bar{b}$ (i.e. $a_{i}<b_{i}, 1 \leqq i \leqq r$). Set $\tilde{U}_{n}(\bar{a}, \bar{b})=\left\{p \in U_{n}\right.$:
$\left.a_{i} \leqq \varrho_{i}(p) \leqq b_{i}, 1 \leqq i \leqq r\right\}$. Evidently, $\tilde{U}_{n}(\bar{a}, \bar{b})=\tilde{U}_{n}(v, u)$, where $\tilde{U}_{n}(v, u)$ is defined as above by $L: U_{n} \rightarrow C(K)$ with $K=\{1,2, \ldots, r\}, v(i)=a_{i}$, $u(i)=b_{i},(L p)(i)=\varrho_{i}(p)(1 \leqq i \leqq r)$. Furthermore, for $A=\left\{s_{1}, \ldots, s_{m}\right\} \cong$ $\leqq\{1,2, \ldots, r\}=K, G_{A}=\left\{p \in \overline{\bar{U}}_{n}: L p=0\right.$ on $\left.A\right\}={ }_{1 \leqq j \leqq m} \operatorname{Ker}_{\varrho_{j}}\left(G_{\emptyset}=U_{n}\right)$. Thus Theorem 1.4 c) implies the following.

Corollary 1.5. Let $U_{n} \subset C[a, b], \varrho_{i} \in U_{n}^{*}(1 \leqq i \leqq r)$. Then in order that for every $f \in C[a, b]$ and $\bar{a}, \bar{b} \in R^{r}$ with $\operatorname{Int} \tilde{U}_{n}(\bar{a}, \bar{b}) \neq \emptyset$ the best approximant of f from $\tilde{U}_{n}(\bar{a}, \bar{b})$ be unique it is necessary and sufficient that U_{n} and ${ }_{1 \leqq j \leqq m}^{\cap}$ Ker $\varrho_{s_{j}}$ be Haar spaces for every $\left\{s_{1}, \ldots, s_{m}\right\} \cong\{1,2, \ldots, r\}$.

In the special case of approximation with coefficient constraints when $U_{n}=\operatorname{span}\left[p_{1}, \ldots, p_{n}\right]$ and for $p=\sum_{i=1}^{n} d_{i} p_{i} \in U_{n}, \varrho_{i}(p)=d_{i}(i \in J \subset$ $\subset\{1,2, \ldots, n\}$) the above statement is due to Pinkus and Strauss [8].

Now we turn our attention to Problem B raised in the introduction. To this end we assume that L is a linear operator mapping $U_{n} \subset C[a, b]$ into $C^{\prime}(K)$.

Definition 4. We say that $p \in U_{n} L^{\prime}$-vanishes on an L-extremal set $\left(\left\{x_{i}\right\}_{i=1}^{s},\left\{y_{i}\right\}_{i=1}^{r}\right)$ for U_{n} if $p\left(x_{i}\right)=0(1 \leqq i \leqq s),(L p)\left(y_{i}\right)=0(1 \leqq i \leqq r)$ and $(L p)^{\prime}\left(y_{i}\right)=0$ whenever $y_{i} \in \operatorname{Int} K$.

Our next result gives an answer to the Problem B.
Theorem 1.6. In order that for every $f \in C[a, b]$ and $v, u \in C^{\prime}(K)$ with Int $\tilde{U}_{n}(v, u) \neq \emptyset$ the best approximant of f in $\tilde{U}_{n}(v, u)$ be unique it is necessary and sufficient that no $p \in U_{n} \backslash\{0\} L^{\prime}$-vanishes on a nondegenerate L-extremal set for U_{n}.

Proof. Sufficiency follows by the same argument used in proof of Theorem 1.3. However, we also have to observe here, that if p_{1}, p_{2} are best approximants of f from $\tilde{U}_{n}(v, u)$ then

$$
\begin{gathered}
Z\left(u-L\left(\frac{p_{1}+p_{2}}{2}\right)\right) \cap \operatorname{Int} K \subset Z\left(L^{\prime}\left(p_{1}-p_{2}\right)\right), \quad Z\left(v-L\left(\frac{p_{1}+p_{2}}{2}\right)\right) \cap \operatorname{Int} K \subset \\
\subset Z\left(L^{\prime}\left(p_{1}-p_{2}\right)\right) .
\end{gathered}
$$

Necessity. Again we follow the lines of the proof of Theorem 1.3. In particular, we consider the same $f \in C[a, b]$ and $p^{*}, \tilde{p} \in U_{n}$, and construct suitable $v, u \in C^{\prime}(K)$.

Since $(L \tilde{p})\left(y_{i}\right)=-1(1 \leqq i \leqq m)$ we can choose closed disjoint intervals $\left[\alpha_{i}, \beta_{i}\right] \subset K, 1 \leqq i \leqq m$, such that $y_{i} \in\left[\alpha_{i}, \beta_{i}\right] ; L \tilde{p}<0$ on $\left[\alpha_{i}, \beta_{i}\right] ; \alpha_{i}<\beta_{i}$ if $y_{i} \in \overline{\operatorname{Int} K}$ and $y_{i} \in\left(\alpha_{i}, \beta_{i}\right)$ if $y_{i} \in \operatorname{Int} K(1 \leqq i \leqq m)$. Define u on $\left[\alpha_{i}, \beta_{i}\right]$ by

$$
u(y)=\left(\operatorname{sgn}\left(y-y_{i}\right)\right) \int_{y_{\mathbf{i}}}^{y}\left[\left|\left(L p^{*}\right)^{\prime}\right|(t)+\left(t-y_{\mathbf{i}}\right)^{2}\right] d t, \quad 1 \leqq i \leqq m .
$$

Evidently, $u \in C^{\prime}\left(\bigcup_{i=1}^{m}\left[\alpha_{i}, \beta_{i}\right]\right), L p^{*} \leqq u$ on $\bigcup_{i=1}^{m}\left[\alpha_{i}, \beta_{i}\right]$ and $\left(L p^{*}\right)\left(y_{i}\right)=u\left(y_{i}\right)=0$ $(1 \leqq i \leqq m)$. Furthermore, $0<u\left(\alpha_{i}\right)$ unless $\alpha_{i}=y_{i}$ and $u\left(\beta_{i}\right)>0$ unless $\beta_{i}=y_{i}$.

Now we can extend u to K so that $u \in C^{\prime}(K)$ and $u>0$ on $K \backslash$ $\backslash\left(\bigcup_{i=1}^{m}\left[\alpha_{i}, \beta_{i}\right]\right)$. Since $u>0$ for $y \in K \backslash\left\{y_{i}\right\}_{i=1}^{m}$ and $L p^{*} \leqq u$ in a neighborhood of $\left\{y_{i}\right\}_{i=1}^{m}$ (relative to K), it follows that $L\left(\delta p^{*}\right) \leqq u$ on K for $\delta>0$ small enough. Similarly, $L(\delta \tilde{p})<u$ for δ small enough. We can repeat this construction for v, yielding a pair of functions $v, u \in C^{\prime}(K)$ with Int $\tilde{U}_{n}(v, u) \neq \emptyset$ satisfying $v \leqq L\left(\delta p^{*}\right) \leqq u\left(0<\delta \leqq \delta_{0}\right)$ and such that $L\left(\delta p^{*}\right)\left(y_{i}\right)=u\left(y_{i}\right)=0,1 \leqq i \leqq m ; L\left(\delta p^{*}\right)\left(y_{i}\right)=v\left(y_{i}\right)=0, m+1 \leqq i \leqq r$. Hence $\delta p^{*}\left(0<\delta \leqq \delta_{0}\right)$ is a best approximant of f in $\tilde{U}_{n}(v, u)$.

In view of Theorem 1.6 it is natural to introduce the following
Definition 5. Let $U_{n} \subset C[a, b] ; L: U_{n} \rightarrow C^{\prime}(K)$. Then U_{n} is called L^{\prime}-Haar if no $p \in U_{n} \backslash\{0\}$ can L^{\prime}-vanish on a nondegenerate L-extremal set for U_{n}.

Theorem 1.4 provides some useful criteria for a subspace to be L-Haar. Unfortunately, there do not appear to be corresponding criteria for L^{\prime}-Haar spaces; however, we give a useful necessary condition for a subspace to be L^{\prime}-Haar. For $A \subseteq K$, define $G_{A}^{\prime}=\left\{p \in U_{n}: L p=0\right.$ on A and $(L p)^{\prime}=0$ on $A \cap$ Int $K\}$. Note that $G_{A}^{\prime} \subseteq G_{A}$.

Corollary 1.7. If, for some $A \subseteq K, G_{A}$ is not a Haar space and $G_{A}^{\prime}=$ $=G_{A}$, then U_{n} is not an L^{\prime}-Haar space.

Proof. The proof carries on as in the proof of $b) \Rightarrow c$) in Theorem 1.4. We choose $\left\{y_{i}\right\}_{i=1}^{n-k} \subset A$ as in $\left.b\right) \Rightarrow \mathrm{c}$), and since G_{A} is not a Haar space we choose an extremal set $\left\{x_{i}\right\}_{i=1}^{s}$ for G_{A} on which some $p \in G_{A} \backslash\{0\}$ vanishes. As in b$) \Rightarrow \mathrm{c}),\left(\left\{x_{i}\right\}_{i=1}^{s},\left\{y_{i}\right\}_{i=1}^{r}\right)$ is an L-extremal set for U_{n}, and since $p \in G_{A}=G_{A}^{\prime}, p L^{\prime}$-vanishes on this L-extremal set. Hence, U_{n} is not L^{\prime}-Haar.

Remark. If $A \subseteq B d y K$, then $G_{A}^{\prime}=G_{A}$. It follows immediately from Corollary 1.7 that if U_{n} is L^{\prime}-Haar, then G_{A} is Haar for all $A \subseteq B d y K$. In particular, we see that if U_{n} is L^{\prime}-Haar, then $U_{n}=G_{\emptyset}$ is Haar.

The results of this section lead to the conclusion that L-Haar and L^{\prime} Haar properties are necessary and sufficient for uniqueness of constrained approximation with C - and C^{\prime}-boundaries, respectively. Let us note that the development above does not require that the underlying topological space on which approximation is conducted, be an interval $[a, b]$. We can replace it by any Hausdorff compact set, however L-Haar and L^{\prime}-Haar spaces necessarily satisfy the Haar property, yielding (Mairhuber [7]) that the compact set should be homeomorphic to the circle or a subset of it.

On the other hand replacing K by a circle leads to a slight difference in definition of periodic L^{\prime}-Haar spaces, because K has no boundary in this case and thus in Definition 4 we have to require that $(L p)^{\prime}\left(y_{i}\right)=0$ for every $1 \leqq i \leqq r$. The rest of notations and results given above extend to the case when $[a, b]$ is replaced by any compact set or K is replaced by a circle.

2. Strong uniqueness of best constrained approximation

In this section we develop the theory of strong uniqueness for L-Haar and L^{\prime}-Haar spaces. Let us recall the corresponding definition. If $f \in C[a, b]$, $K \subset C[a, b]$ and p_{0} is the unique best approximant of f from K, then we say that p_{0} is strongly unique of order $\gamma(0<\gamma \leqq 1)$ if there exists a positive constant c depending only on f and K so that for every $p \in K$ satisfying $\|f-p\| \leqq\left\|f-p_{0}\right\|+1$ we have

$$
\begin{equation*}
\left\|p_{0}-p\right\| \leqq c\left(\|f-p\|-\left\|f-p_{0}\right\|\right)^{\gamma} \tag{8}
\end{equation*}
$$

In case when $\gamma=1$ we simply say that p_{0} is strongly unique. Since L Haar and L^{\prime}-Haar properties are characteristic for uniqueness with C - and C^{\prime}-boundaries it is natural to raise the question of strong uniqueness for L and L^{\prime}-Haar spaces. Our first result here asserts that L-Haar property is sufficient for strong uniqueness for constrained approximation.

Theorem 2.1. Let U_{n} be an L-Haar space. Then for every $u, v \in C[a, b]$ with Int $\tilde{U}_{n}(v, u) \neq \emptyset$ and $f \in C[a, b]$, the best approximant to ffrom $\tilde{U}_{n}(v, u)$ is strongly unique.

Proof. Assume that U_{n} is L-Haar and let $p_{0} \in \tilde{U}_{n}(v, u)$ be the best approximant of $f \in C[a, b]$, where $v, u \in C[a, b]$ and $\operatorname{Int} \tilde{U}_{n}(v, u) \neq \emptyset$. Consider the L-extremal set $\left(\left\{x_{i}\right\}_{i=1}^{s},\left\{y_{i}\right\}_{i=1}^{r}\right)$ and numbers $\left\{c_{i}\right\}_{i=1}^{s},\left\{d_{i}\right\}_{i=1}^{r}$ as in Theorem 1.2 for which (3) holds $\left(\sum_{i=1}^{s}\left|c_{i}\right|=1\right)$. Since U_{n} is L-Haar

$$
N(p)=\max _{1 \leqq i \leqq s}\left|p\left(x_{i}\right)\right|+\max _{1 \leqq i \leqq r}\left|(L p)\left(y_{i}\right)\right| \quad\left(p \in U_{n}\right)
$$

is a norm on U_{n}.
Let $p_{1} \in \tilde{U}_{n}(v, u)$ be such that $\left\|f-p_{1}\right\|=\left\|f-p_{0}\right\|+\varepsilon$ with some $\varepsilon>0$. Since $\left(f-p_{0}\right)\left(x_{i}\right)=\left(\operatorname{sgn} c_{i}\right)\left\|f-p_{0}\right\|(1 \leqq i \leqq s)$ it follows that

$$
\begin{equation*}
\left(\operatorname{sgn} c_{i}\right)\left(p_{0}-p_{1}\right)\left(x_{i}\right) \leqq \varepsilon \quad(1 \leqq i \leqq s) . \tag{9}
\end{equation*}
$$

Furthermore, $y_{1}, \ldots, y_{m} \in Z\left(u-L p_{0}\right), y_{m+1}, \ldots, y_{r} \in Z\left(v-L p_{0}\right)$ yield (10) $L\left(p_{0}-p_{1}\right)\left(y_{i}\right) \geqq 0 \quad(1 \leqq i \leqq m), \quad L\left(p_{0}-p_{1}\right)\left(y_{i}\right) \leqq 0 \quad(m+1 \leqq i \leqq r)$.

Thus by (3) and (9) applied to $p^{*}=p_{0}-p_{1}$

$$
\begin{equation*}
0=\sum_{i=1}^{s} c_{i} p^{*}\left(x_{i}\right)+\sum_{i=1}^{r} d_{i}\left(L p^{*}\right)\left(y_{i}\right) \leqq \varepsilon+\sum_{i=1}^{r} d_{i}\left(L p^{*}\right)\left(y_{i}\right) . \tag{11}
\end{equation*}
$$

Moreover, (10) yields that $d_{i}\left(L p^{*}\right)\left(y_{i}\right) \leqq 0$ for every $1 \leqq i \leqq r$. Taking also into account (11) we have

$$
\begin{equation*}
\left|\left(L p^{*}\right)\left(y_{i}\right)\right| \leqq M_{1} \varepsilon \quad(1 \leqq i \leqq r), \tag{12}
\end{equation*}
$$

where $M_{1}=\max \left\{1 /\left|d_{i}\right|, 1 \leqq i \leqq r\right\}$. Using (9) and (11) we obtain for every $1 \leqq j \leqq s$

$$
\begin{gathered}
c_{j} p^{*}\left(x_{j}\right)=-\sum_{i=1, i \neq j}^{s} c_{i} p^{*}\left(x_{i}\right)-\sum_{i=1}^{r} d_{i}\left(L p^{*}\right)\left(y_{i}\right) \geqq \\
\geqq-\sum_{i=1, i \neq j}^{s} c_{i} p^{*}\left(x_{i}\right) \geqq-\varepsilon \sum_{i=1, i \neq j}^{s}\left|c_{i}\right| \geqq-\varepsilon .
\end{gathered}
$$

Combining this with (9) yields

$$
\begin{equation*}
\left|p^{*}\left(x_{i}\right)\right| \leqq M_{2} \varepsilon \quad(1 \leqq i \leqq s), \tag{13}
\end{equation*}
$$

with $M_{2}=\max \left\{1 /\left|c_{i}\right|, 1 \leqq i \leqq s\right\}$. Hence by (12) and (13) $N\left(p^{*}\right) \leqq$ $\leqq\left(M_{1}+M_{2}\right) \varepsilon$, and by equivalence of norms in finite dimensional spaces

$$
\left\|p_{0}-p_{1}\right\|=\left\|p^{*}\right\| \leqq M_{3} N\left(p^{*}\right) \leqq c \varepsilon=c\left\{\left\|f-p_{1}\right\|-\left\|f-p_{0}\right\|\right\} .
$$

In the special case of coefficient constrained approximation, the above result was proven by Pinkus and Strauss [8]. (Strong uniqueness of constrained approximation was also studied by Chalmers and Taylor [3].) Fletcher and Roulier [4] showed that strong uniqueness fails in case of monotone polynomial approximation, although uniqueness is known to hold in this situation. This turns out to be an example of L^{\prime}-Haar space for which strong uniqueness fails. Our next result shows that strong uniquness fails for every L^{\prime}-Haar space which does not satisfy the L-Haar property; in fact, strong uniqueness of arbitrarily small degree γ fails to hold.

Theorem 2.2. Assume that U_{n} is an L^{\prime}-Haar space which does not satisfy the L-Haar property, and let $0<\gamma \leqq 1$ be arbitrary. Then there exist $v, u \in$ $\in C^{\prime}(K)$ with $\operatorname{Int} \tilde{U}_{n}(v, u) \neq \emptyset$ and $f \in C[a, b]$ such that its best approximant from $\tilde{U}_{n}(v, u)$ is not strongly unique of order γ.

Proof. Let $p^{*} \in U_{n} \backslash\{0\}$ be such that it L-vanishes on a nondegenerate L-extremal set $\left(\left\{x_{i}\right\}_{i=1}^{r},\left\{y_{i}\right\}_{i=1}^{s}\right)$ satisfying (4) and let f be chosen as in the proof of necessity in Theorem 1.3. We may assume that $\left|\left(L p^{*}\right)\right| \leqq 1$ on Int K, and $d_{i}<0(1 \leqq i \leqq m), d_{i}>0(m+1 \leqq i \leqq r)$ in (4). For a given $\alpha>0$ we can construct $v, u \in C^{\prime}(K)$ such that $u(y)=\left|y-y_{i}\right|^{1+\alpha}$ in a neighborhood of y_{i} if $1 \leqq i \leqq m, v(y)=-\left|y-y_{i}\right|^{1+\alpha}$ in a neighborhood of y_{i} if $m+1 \leqq i \leqq r$, and $u>\overline{0}, v<0$ for $y \neq y_{i}, 1 \leqq i \leqq r$ (neighborhoods are relative to \bar{K}). As usual, nondegeneracy of the L-extremal set implies
existence of $\tilde{p} \in U_{n}$ such that $(L \tilde{p})\left(y_{i}\right)=-1(1 \leqq i \leqq m),(L \tilde{p})\left(y_{i}\right)=1$ $(m+1 \leqq i \leqq r)$. Choose $A>2 \alpha(1+\alpha)^{-\frac{1+\alpha}{\alpha}}$. We claim that for $\varepsilon>0$ small enough $\varepsilon p^{*}+A \varepsilon^{\frac{\alpha+1}{\alpha}} \tilde{p} \in \tilde{U}_{n}(v, u)$. Assume that, on the contrary, there exist $\varepsilon_{k} \downarrow 0$ and $t_{k} \in K$ such that, say

$$
\begin{equation*}
\varepsilon_{k}\left(L p^{*}\right)\left(t_{k}\right)+A \varepsilon_{k}^{\frac{\alpha+1}{\alpha}}(L \tilde{p})\left(t_{k}\right)>u\left(t_{k}\right) \quad(k=1,2, \ldots) . \tag{14}
\end{equation*}
$$

Without loss of generality, $t_{k} \rightarrow y_{j}(k \rightarrow \infty)$ for some $1 \leqq j \leqq m$. Then for k large enough $u\left(t_{k}\right)=\left|y_{j}-t_{k}\right|^{1+\alpha},(L \tilde{p})\left(t_{k}\right)<-1 / 2$, and, in addition,

$$
\left|\left(L p^{*}\right)\left(t_{k}\right)\right|=\left|\left(L p^{*}\right)\left(t_{k}\right)-\left(L p^{*}\right)\left(y_{j}\right)\right| \leqq\left|t_{k}-y_{j}\right| .
$$

Thus using (14) we have

$$
\left|y_{j}-t_{k}\right|^{1+\alpha}<\varepsilon_{k}\left|t_{k}-y_{j}\right|-\frac{A \varepsilon_{k}^{\frac{\alpha+1}{\alpha}}}{2}
$$

i.e.,

$$
\frac{A}{2} \varepsilon_{k}^{\frac{\alpha+1}{\alpha}}<\varepsilon_{k}\left|t_{k}-y_{j}\right|-\left|y_{j}-t_{k}\right|^{1+\alpha} \leqq \max _{h \geq 0}\left(\varepsilon_{k} h-h^{1+\alpha}\right)=\varepsilon_{k}^{\frac{\alpha+1}{\alpha}} \alpha(1+\alpha)^{-\frac{\alpha+1}{\alpha}}
$$

But this, obviously, contradicts our choice of A. Thus $p_{\varepsilon}=\varepsilon p^{*}+A \varepsilon^{\frac{\alpha+1}{\alpha}} \tilde{p} \in$ $\in \tilde{U}_{n}(v, u)$ for $\varepsilon>0$ small enough. Moreover, Int $\tilde{U}_{n}(v, u) \neq \emptyset$ and 0 is the unique best approximant of f in $\tilde{U}_{n}(v, u)$ (by Theorem 1.2 and L^{\prime} Haar property of U_{n}. On the other hand $\left\|p_{\varepsilon}\right\| \geqq \varepsilon\left\|p^{*}\right\|-A \varepsilon^{\frac{\alpha+1}{\alpha}}\|\tilde{p}\| \geqq c_{1} \varepsilon$ $\left(0<\varepsilon \leqq \varepsilon_{0}\right)$, while by construction of $f\left(|f| \leqq 1-\left|p^{*}\right|\right)$

$$
\left\|f-p_{\varepsilon}\right\| \leqq\left\|f-\varepsilon p^{*}\right\|+A \varepsilon^{\frac{\alpha+1}{\alpha}}\|\tilde{p}\| \leqq\|f\|+c_{2} \varepsilon^{\frac{\alpha+1}{\alpha}}
$$

Since the choice of $\alpha>0$ is arbitrary the statement of the theorem follows.
Remark. It can be easily seen from the proof of Theorem 2.2 that we can choose u and v such that $v^{\prime}, u^{\prime} \in \operatorname{Lip} \alpha(\alpha>0)$, while the degree of strong uniqueness of the proper $f \in C[a, b]$ can not be larger than $\frac{\alpha}{\alpha+1}$. This indicates that for $v, u \in C^{2}(K)(\alpha=1)$ strong uniqueness of degree $\frac{1}{2}$ might hold. Our next theorem provides this result.

Theorem 2.3. Let $U_{n} \subseteq C[a, b]$ be an L^{\prime}-Haar space with $L: U_{n} \rightarrow$ $\rightarrow C^{2}(K)$, and let $v, u \in \bar{C}^{2}(K)$ be such that $\operatorname{Int} \tilde{U}_{n}(v, u) \neq \emptyset$. Then for every $f \in C[a, b]$ its best approximant in $\tilde{U}_{n}(v, u)$ is strongly unique of degree $\frac{1}{2}$.

Proof. Throughout the proof we shall denote by M_{1}, M_{2}, \ldots, positive constants depending only on f and $\tilde{U}_{n}(v, u)$. Let $p_{0} \in \tilde{U}_{n}(v, u)$ be
the best approximant of f and consider the corresponding L-extremal set $\left(\left\{x_{i}\right\}_{i=1}^{s},\left\{y_{i}\right\}_{i=1}^{r}\right)$ for which (3) holds. For an arbitrary $p_{1} \in \tilde{U}_{n}(v, u)$ such that $\left\|f-p_{1}\right\|=\left\|f-p_{0}\right\|+\varepsilon$ with some $0<\varepsilon \leqq 1$ set $p^{*}=p_{0}-p_{1}$. Then as in the proof of Theorem 2.1

$$
\begin{equation*}
\left|p^{*}\left(x_{i}\right)\right| \leqq M_{2} \varepsilon \quad(1 \leqq i \leqq s), \quad\left|\left(L p^{*}\right)\left(y_{i}\right)\right| \leqq M_{1} \varepsilon \quad(1 \leqq i \leqq r) \tag{15}
\end{equation*}
$$

(see (12) and (13)). Let $y_{j} \in \operatorname{Int} K$, where without loss of generality we may assume $y_{j} \in Z\left(u-L p_{0}\right)$. Set $u_{1}=L p_{0}-u$. Since $u_{1}, L p^{*} \in C^{2}(K)$ and $\left\|p^{*}\right\| \leqq 2\left\|f-p_{0}\right\|+1$ we have on Int $K\left|u_{1}^{\prime \prime}\right|,\left|\left(L p^{*}\right)^{\prime \prime}\right| \leqq M_{3}$. Set $M_{4}=$ $=\max \left\{M_{1}, M_{2}, M_{3}\right\}, M_{5}=\min \left\{\operatorname{dist}\left(y_{i}, B d y K\right): y_{i} \in \operatorname{Int} K\right\}$.

Now we claim that

$$
\begin{equation*}
\left|\left(L p^{*}\right)^{\prime}\left(y_{j}\right)\right| \leqq M_{4}\left(2 M_{5}+\frac{1}{M_{5}}\right) \sqrt{\varepsilon} \tag{16}
\end{equation*}
$$

Assume to the contrary that

$$
\begin{equation*}
\left|\left(L p^{*}\right)^{\prime}\left(y_{j}\right)\right|=\xi\left(L p^{*}\right)^{\prime}\left(y_{j}\right)>M_{4}\left(2 M_{5}+\frac{1}{M_{5}}\right) \sqrt{\varepsilon} \quad(\xi= \pm 1) \tag{17}
\end{equation*}
$$

Using $L p^{*} \geqq u_{1}$ we have by (15)

$$
\begin{equation*}
\left(L p^{*}\right)(x)-\left(L p^{*}\right)\left(y_{j}\right) \geqq u_{1}(x)-M_{4} \varepsilon \quad(x \in K) \tag{18}
\end{equation*}
$$

Set $x_{\varepsilon}=y_{j}-\xi M_{5} \sqrt{\varepsilon}$, where every point between y_{j} and x_{ε} belongs to K. For some $\eta \in \operatorname{Int} K$ between x_{ε} and y_{j} we have

$$
\begin{equation*}
\left(L p^{*}\right)\left(x_{\varepsilon}\right)-\left(L p^{*}\right)\left(y_{j}\right)=\left(L p^{*}\right)^{\prime}(\eta)\left(x_{\varepsilon}-y_{j}\right)=-\xi M_{5} \sqrt{\varepsilon}\left(L p^{*}\right)^{\prime}(\eta) \tag{19}
\end{equation*}
$$

Furthermore,

$$
\left|\left(L p^{*}\right)^{\prime}(\eta)-\left(L p^{*}\right)^{\prime}\left(y_{j}\right)\right| \leqq M_{4}\left|\eta-y_{j}\right| \leqq M_{4} M_{5} \sqrt{\varepsilon}
$$

Hence (17) yields that $\operatorname{sgn}\left(L p^{*}\right)^{\prime}(\eta)=\operatorname{sgn}\left(L p^{*}\right)^{\prime}\left(y_{j}\right)=\xi$. Therefore (18) and (19) imply

$$
\left|\left(L p^{*}\right)^{\prime}(\eta)\right|=-\frac{1}{M_{5} \sqrt{\varepsilon}}\left(\left(L p^{*}\right)\left(x_{\varepsilon}\right)-\left(L p^{*}\right)\left(y_{j}\right)\right) \leqq \frac{M_{4} \varepsilon-u_{1}\left(x_{\varepsilon}\right)}{M_{5} \sqrt{\varepsilon}}
$$

On the other hand $u_{1}\left(y_{j}\right)=u_{1}^{\prime}\left(y_{j}\right)=0$ hence $\left|u_{1}\left(x_{\varepsilon}\right)\right| \leqq M_{4}\left|x_{\varepsilon}-y_{j}\right|^{2} \leqq$ $\leqq M_{4} M_{5}^{2} \varepsilon$. Applying this in the last estimate we obtain

$$
\left|\left(L p^{*}\right)^{\prime}(\eta)\right| \leqq \frac{M_{4} \varepsilon+M_{4} M_{5}^{2} \varepsilon}{M_{5} \sqrt{\varepsilon}}=M_{4}\left(M_{5}+\frac{1}{M_{5}}\right) \sqrt{\varepsilon}
$$

Finally, this implies that

$$
\begin{gathered}
\left|\left(L p^{*}\right)^{\prime}\left(y_{j}\right)\right| \leqq\left|\left(L p^{*}\right)^{\prime}(\eta)\right|+\left|\left(L p^{*}\right)^{\prime}\left(y_{j}\right)-\left(L p^{*}\right)^{\prime}(\eta)\right| \leqq \\
\leqq M_{4}\left(M_{5}+\frac{1}{M_{5}}\right) \sqrt{\varepsilon}+M_{4}\left|y_{j}-\eta\right| \leqq \\
\leqq M_{4}\left(M_{5}+\frac{1}{M_{5}}\right) \sqrt{\varepsilon}+M_{4} M_{5} \sqrt{\varepsilon}=M_{4}\left(2 M_{5}+\frac{1}{M_{5}}\right) \sqrt{\varepsilon}
\end{gathered}
$$

contradicting (17). Hence (16) holds, implying that for every $y_{j} \in \operatorname{Int} K$

$$
\begin{equation*}
\left|\left(L p^{*}\right)^{\prime}\left(y_{j}\right)\right| \leqq M_{6} \sqrt{\varepsilon} . \tag{20}
\end{equation*}
$$

By the L^{\prime}-Haar property of U_{n} no element of U_{n} can L^{\prime}-vanish on the L-extremal set of U_{n}, i.e.,

$$
\tilde{N}(p)=\max _{1 \leqq i \leqq s}\left|p\left(x_{i}\right)\right|+\max _{1 \leqq i \leqq r}\left|\left(L p^{*}\right)\left(y_{i}\right)\right|+\max _{y_{i} \in \operatorname{Int} K}\left|\left(L p^{*}\right)^{\prime}\left(y_{i}\right)\right|
$$

is a norm on U_{n}. By (15) and (20) we have $\tilde{N}\left(p^{*}\right) \leqq\left(M_{1}+M_{2}+M_{6}\right) \sqrt{\varepsilon}$, hence by equivalence of norms in finite-dimensional spaces

$$
\left\|p_{0}-p_{1}\right\|=\left\|p^{*}\right\| \leqq M_{7} \tilde{N}\left(p^{*}\right) \leqq M_{8} \sqrt{\varepsilon}=M_{8}\left(\left\|f-p_{1}\right\|-\left\|f-p_{0}\right\|\right)^{\frac{1}{2}} .
$$

Let us conclude this section by noting that in the special case of monotone polynomial approximation Theorem 2.3 is verified in [10].

3. Applications

We give several applications of our theory in Section 1. The first results given in 3.1 primarily follow from Theorem 1.4 and demonstrate that L-Haar spaces are rather scarce. On the other hand, applications of Theorem 1.6 and Corollary 1 in 3.2 and the existing literature show that L^{\prime}-Haar spaces are not so rare. In the case of restricted derivative approximation (that is, $L=D^{k}$ where $k \geqq 1$ and $K=[-1,1]$), Roulier and Taylor [9] proved that the space π_{n-1} of polynomials of degree $n-1$ or less is L^{\prime}-Haar (see also [6, p. 127]). In 3.2 , we shall completely determine those lacunary polynomial spaces that are L^{\prime}-Haar in this context. Furthermore, the negative result of 3.1 clarifies the necessity of using smooth boundary functions in the constraints. Further in 3.3, we consider the differential operator $L=D-\alpha I$ where $K=[a, b]=$ $=[-1,1]$ and α is constant. We shall find that π_{n-1} is L^{\prime}-Haar precisely when $|\alpha| \leqq(n-1) / 2$. Finally, in 3.4, we examine rational function spaces with the operator $L=D$ and $K=[-1,1]$. We shall see that introducing quadratic denominators these spaces can alter the L^{\prime}-Haar property.
3.1. Some negative results concerning L-Haar spaces. Throughout this section, $K=[a, b]$. We say that a linear operator $L: S \rightarrow C[a, b]$ is a k Rolle operator ($k \geqq 0$) if whenever $f \in S$ and f has $k+1$ distinct zeros $x_{1}<\ldots<x_{k+1}$ in $[a, b]$, we have that $L f$ has a zero in $\left[x_{1}, x_{k+1}\right]$. Evidently, $D^{k}: C^{k}[a, b] \rightarrow C[a, b]$ is a k-Rolle operator. We shall give a wider class of differential operators that are k-Rolle.

Theorem 3.1. Let $L: U \rightarrow C[a, b]$ be a nontrivial k-Rolle ($k \geqq 0$) operator where U is a finite dimensional subspace of $C[a, b]$. If $\operatorname{dim} U \geqq k+2$, then U cannot be L-Haar.

Proof. Let $n=\operatorname{dim} U \geqq k+2$. Choose $\tilde{p} \in U$ where $L \tilde{p} \neq 0$ and an open interval $(\alpha, \beta) \subseteq[a, b]$ on which $L \tilde{p}$ never vanishes. Now select $n-1$ points $x_{1}<\ldots<x_{n-1}$ in (α, β) and find $p \in U \backslash\{0\}$ so that $p\left(x_{i}\right)=0$ $(1 \leqq i \leqq n-1)$. Since $n-1 \geqq k+1$ and L is a k-Rolle operator, $L p(y)=0$ for some $y \in\left[x_{1}, x_{n-1}\right] \subseteq(\alpha, \beta)$. Since $L \tilde{p}(y) \neq 0, \operatorname{dim} G_{\{y\}}=n-1$. But $p \in G_{\{y\}} \backslash\{0\}$ and has $n-1$ zeros. So $G_{\{y\}}$ is not a Haar space and by Theorem 1.4, U is not L-Haar.

We shall use the next lemma both to demonstrate a family of k-Rolle operators and to establish positive results in 3.3 and 3.4.

Lemma 3.2. Let $L: C^{\prime}[a, b] \rightarrow C[a, b]$ be given by $L=D+\alpha(x) I$ where $\alpha \in C[a, b]$, and let $a \leqq x<y \leqq b$. If $f \in C^{\prime}[a, b]$ and $f(x)=f(y)=0$, then $L f \equiv 0$ on $[x, y]$ or $L \bar{f}$ changes sign in (x, y).

Proof. Let $A(t)=\int_{a}^{t} \alpha(s) d s$. Then

$$
\frac{d}{d t}\left(e^{A(t)} f(t)\right)=e^{A(t)}(L f)(t)
$$

so that

$$
\int_{x}^{y} e^{A(t)}(L f)(t) d t=e^{A(y)} f(y)-e^{A(x)} f(x)=0
$$

and the conclusion follows readily.
It follows that the operator L in Lemma 3.2 is 1 -Rolle. If $L: C^{k}[a, b] \rightarrow$ $\rightarrow C[a, b]$ is given by

$$
\begin{equation*}
L=\left(D+\alpha_{k}(x) I\right) \ldots\left(D+\alpha_{1}(x) I\right) \tag{21}
\end{equation*}
$$

where $\alpha_{i} \in C^{k-1}[a, b](1 \leqq i \leqq k)$, repeated applications of Lemma 3.2 show that L is k-Rolle. Moreover, Ker L has dimension k so that the restriction of L to any space of dimension $k+2$ or greater is nontrivial. We thus have the following

Corollary 3.3. Let $L: C^{k}[a, b] \rightarrow C[a, b]$ be given by (21). Then there are no L-Haar spaces of dimension $k+2$ or greater.

Remark. For restricted range approximation, the operator is the identity operator I. A consequence of Theorem 3.1 is that there are no I-Haar spaces of dimension 2 or greater, since I is 0 -Rolle. The situation is even worse as there are no I^{\prime}-Haar spaces of dimension 2 or greater. Let U_{n} be a subspace of $C^{\prime}[a, b]$ of dimension $n \geqq 2$. Then $G_{\{\alpha\}}$ is not Haar since it is nontrivial
and all of its elements vanish at a. By Corollary 1.7, U_{n} is not I^{\prime}-Haar. We note that for restricted range approximation by polynomials uniqueness of best approximations requires the additional condition that the function being approximated also satisfies the constraint (see [9]). Our observation shows that this condition is essential.

Remark. In the case of approximation with restrictions on the derivatives of order $0 \leqq k_{1}<\ldots<k_{l}$, we take K to be the union of l disjoint copies of $[a, b]$ and $L p$ represents $D^{k_{i}} p$ on the i-th copy of $[a, b]$. The methods above show that there are no L-Haar spaces of dimension k_{1} or greater, and when $k_{1}=0$ there are no L^{\prime}-Haar spaces of dimension 2 or greater.

As was noted at the end of Section 1, our theory has direct analogs in the periodic cases. Specifically, if a and b were identified (or, equivalently, $[a, b]$ were replaced with a circle), we would restrict our attention to $C^{*}[a, b]=$ $=\{f \in C[a, b]: f(a)=f(b)\}$. We have the following

Theorem 3.4. Let $L: U \rightarrow C(K)$ be a nontrivial operator where U is a finite dimensional subspace of $C^{*}[a, b]$. If $\operatorname{dim} U \geqq 2$, then U cannot be L-Haar.

Proof. Suppose $\operatorname{dim} U=n \geqq 2$ and U is L-Haar. Choose $y \in[a, b]$ so that $(L q)(y) \neq 0$ for some $q \in U$. By the periodic analog of Theorem 1.4, U would be an n-dimensional Haar space in $C^{*}[a, b]$ and $G_{\{y\}}$ would be an $(n-1)$-dimensional Haar space in $C^{*}[a, b]$. But it is well known that nontrivial periodic Haar spaces can only have odd dimension and we reach a contradiction.

We next consider two brief examples to show that Corollary 3.3 is sharp.
Example 1. We take $L=D^{k}$ and note that π_{k} is a $(k+1)$-dimensional D^{k}-Haar subspace of $C[a, b]$. On π_{k}, D^{k} reduces to a linear functional, and by Corollary 1.5 that π_{k} is D^{k}-Haar follows from π_{k} and $\pi_{k-1}=\operatorname{Ker} D^{k}$ being Haar spaces.

Example 2. As an example that does not reduce to a linear functional, take $L=D^{k}$ and $U_{k+1}=\operatorname{span}\left\{x, x^{2}, \ldots, x^{k+1}\right\}$ as a subspace of $C[a, b]$ where $0<a<b$ and $\frac{a}{b}>\frac{k}{k+1}$. To check that U_{k+1} is D^{k}-Haar, Theorem 1.4 (d) and $D^{k} U_{k+1}=\pi_{1}$ having dimension 2 imply that we need only check that $U_{k+1}, G_{\{\alpha\}}$, and $G_{\{\alpha, \beta\}}$ are Haar spaces for $\alpha, \beta \in[a, b]$. Clearly, U_{k+1} is Haar.

For $p(x)=\sum_{i=1}^{k+1} c_{i} x^{i}, D^{k} p(x)=c_{k+1}(k+1)!x+c_{k} k!$. For distinct $\alpha, \beta \in$ $\in[a, b]$,

$$
G_{\{\alpha, \beta\}}=\operatorname{span}\left\{x, \ldots, x^{k-1}\right\}
$$

is Haar. For $\alpha \in[a, b], G_{\{\alpha\}}=\operatorname{span}\left\{x, \ldots, x^{k-1}, x^{k+1}-(k+1) \alpha x^{k}\right\}$. To see that this space is Haar suppose $q \in G_{\{\alpha\}} \backslash\{0\}$ has k distinct zeros in $[a, b]$.

Then $q \notin \operatorname{span}\left\{x, \ldots, x^{k-1}\right\}$ and we may assume that

$$
q(x)=x^{k+1}-(k+1) \alpha x^{k}+\sum_{i=1}^{k-1} c_{i} x^{i} .
$$

Letting Z_{1}, \ldots, Z_{k} be the zeros of q in $[a, b]$ (0 is the other zero), we have that

$$
(k+1) \alpha=Z_{1}+\ldots+Z_{k} .
$$

Since $\alpha, Z_{1}, \ldots, Z_{k} \in[a, b]$, we have $(k+1) a<k b$ and $\frac{a}{b}<\frac{k}{k+1}$, a contradiction. Thus $G_{\{\alpha\}}$ is Haar. Hence, U_{k+1} is D^{k}-Haar.
3.2. Lacunary polynomials. Let $P_{n}=\operatorname{span}\left\{1=x^{k_{1}}, x^{k_{2}}, \ldots, x^{k_{n}}=x^{N}\right\}$ where $0=k_{1}<k_{2}<\ldots<k_{n}=N$. We take $K=[a, b]=[-1,1]$ and $L=D^{k}$. We assume that $k \leqq N-1$ so that L is not a linear functional over P_{n}.

Theorem 3.5. P_{n} is L^{\prime}-Haar with $L=D^{k}(1 \leqq k \leqq N-1)$ if and only if $k_{i+1}-k_{i}$ is odd $(1 \leqq i \leqq n-1)$ and either $x^{k} \notin P_{n}$ or $x^{k}, x^{k+1} \in P_{n}$.

Before proving Theorem 3.5, we note that Corollary 1.7 implies that L^{\prime} Haar spaces are Haar spaces. The condition that each $k_{i+1}-k_{i}$ is odd is equivalent to P_{n} being Haar on $[-1,1]$ (see [6, p. 132]).

The proof of sufficiency uses Birkhoff interpolation. We refer the reader to Chapter 1 of the text [6] for the appropriate terminology involving interpolation matrices and regularity theorems.

Proof of Theorem 3.5. Sufficiency. Assume that each $k_{i+1}-k_{i}$ is odd and that either $x^{k} \notin P_{n}$ or $x^{k}, x^{k+1} \in P_{n}$. Let $\left(\left\{x_{i}\right\}_{i=1}^{s},\left\{y_{i}\right\}_{i=1}^{r}\right)$ be a nondegenerate D^{k}-extremal set for P_{n} where $s \geqq 1$,

$$
\begin{equation*}
\sum_{i=1}^{s} c_{i} p\left(x_{i}\right)+\sum_{i=1}^{r} d_{i} p^{(k)}\left(y_{i}\right)=0 \quad\left(p \in P_{n}\right) \tag{22}
\end{equation*}
$$

with all c_{i} and d_{i} nonzero, and $D^{k} P_{n}$ has dimension r on $\left\{y_{1}, \ldots, y_{r}\right\}$. Let $r^{\prime}=\#\left\{i: 1 \leqq i \leqq r\right.$ and $\left.y_{i} \in(-1,1)\right\}, r^{\prime \prime}=r-r^{\prime}$, and $l=s+2 r^{\prime}+r^{\prime \prime}+N-n$.

Consider the Birkhoff interpolation problem of finding a polynomial $p \in$ $\in \pi_{\ell}$ satisfying the $\ell+1$ conditions

$$
\begin{cases}\text { a) } p^{(r)}(0)=0, & 1 \leqq r \leqq N-1, r \neq k_{i}, 2 \leqq i \leqq n-1, \tag{23}\\ \text { b) } p\left(x_{i}\right)=0, & 1 \leqq i \leqq s, \\ \text { c) } p^{(k)}\left(y_{i}\right)=0, & 1 \leqq i \leqq r, \\ \text { d) } p^{(k+1)}\left(y_{i}\right)=0, & 1 \leqq i \leqq r, \quad\left|y_{i}\right|<1 .\end{cases}
$$

We first note that conditions (23a) and (23cd) do not overlap. If $y_{i}=0$ for some $1 \leqq i \leqq r$, then $x^{k} \in P_{n}$. Otherwise, $\left.\operatorname{dim} D^{k} P_{n}\right|_{\left\{y_{1}, \ldots, y_{r}\right\}} \leqq r-1$
which contradicts the nondegeneracy of the D^{k}-extremal set at hand. By hypothesis, $x^{k+1} \in P_{n}$. So (23a) does not impose conditions on $p^{(k)}(0)$, $p^{(k+1)}(0)$.

Let E be the interpolation matrix for (23). (E has $\ell+1$ columns indexed from 0 to ℓ.) Since each $k_{i+1}-k_{i}$ is odd and the conditions (23a) and (23cd) do not overlap, E has no odd supported sequences of "ones".

We now establish that $\ell \geqq N$ and that E satisfies the Pólya condition (that is, the number of "ones" in columns indexed 0 to j is at least $j+1$ for $0 \leqq j \leqq \ell$). Let E^{\prime} be the matrix formed by augmenting E with infinitely many zero columns. The number of "ones" in the 0 -indexed column of E^{\prime} is $s \geqq 1$. Let j be the smallest index for which the number of "ones" in columns indexed 0 to j of E^{\prime} is less than $j+1$. Evidently, $j \geqq 1$, the j-indexed column of E^{\prime} contains only "zeros", the columns indexed 0 to $(j-1)$ of E^{\prime} contain j "ones", and the matrix $E^{\prime \prime}$ consisting of the columns indexed 0 to $(j-1)$ of E^{\prime} satisfies the Pólya condition and has no odd supported sequences. It suffices to prove that $j>N$. In this case, all $\ell+1$ "ones" in E^{\prime} are in columns indexed 0 to $(j-1)$ so that $\ell+1=j$. Thus $\ell=j-1 \geqq N$ and $E=E^{\prime \prime}$. Now assume that $j \leqq N$. By the Atkinson-Sharma-Ferguson Theorem [6, p. 10], $E^{\prime \prime}$ is order regular so that there is a unique polynomial $p \in \pi_{j-1}$ satisfying

$$
\begin{cases}\text { a) } p^{(r)}(0)=0, & 1 \leqq r \leqq j-1, r \neq k_{i}, 2 \leqq i \leqq r-1 \\ \text { b) } p\left(x_{i}\right)=c_{i}, & 1 \leqq i \leqq s \\ \text { and if } k \leqq j-1, & \tag{24}\\ \text { c) } p^{(k)}\left(y_{i}\right)=0, & 1 \leqq i \leqq r \\ \text { d) } p^{(k+1)}\left(y_{i}\right)=0, & \left|y_{i}\right|<1, \quad 1 \leqq i \leqq r\end{cases}
$$

Since $p^{(r)} \equiv 0$ if $r \geqq j, p$ satisfies all of the conditions (23a) and (23c). Since $j-1 \leqq N$, (23a) implies that $p \in P_{n}$ and (24b) and (23c) contradict (22). Thus $j>N$, hence $\ell \geqq N$ and E satisfies the Pólya condition.

We thus have that E is order regular, and thus if $p \in \pi_{\ell}$ satisfies (23) then $p=0$. Finally, if $p \in P_{n}$ and $p L^{\prime}$-vanishes on the extremal set $\left(\left\{x_{i}\right\}_{i=1}^{s},\left\{y_{i}\right\}_{i=1}^{r}\right)$, then $p \in \pi_{\ell}$ and satisfies (23) and therefore $p=0$. By Theorem 1.6, P_{n} is L^{\prime}-Haar.

Necessity. Assume that P_{n} is L^{\prime}-Haar. Then since P_{n} is Haar, each $k_{i+1}-k_{i}$ is odd. Suppose that $x^{k} \in P_{n}$ and $x^{k+1} \notin P_{n}$. Consider $G_{\{0\}}=$ $=\left\{p \in P_{n}: p^{(k)}(0)=0\right\}=\operatorname{span}\left\{x^{k_{i}}: 1 \leqq i \leqq n, k_{i} \neq k\right\}$. Now there are two consecutive powers in $G_{\{0\}}$ with differences of their exponents being even. Thus $G_{\{0\}}$ is not Haar. Moreover, $G_{\{0\}}^{\prime}=\left\{p \in G_{\{0\}}: p^{(k+1)}(0)=0\right\}=G_{\{0\}}$ since $x^{k+1} \notin P_{n}$. By Corollary 1.7, P_{n} is not L^{\prime}-Haar.
3.3. The operator $L=D-\alpha I$. In the literature on constrained approximation, constraints involving derivatives have involved the operator D^{k}. However, other differential operators can certainly come into play. In this
section, we consider $U_{n}=\pi_{n-1}(n \geqq 4)$ and $L=D-\alpha I$ (α real) with $[a, b]=K=[-1,1]$. From 3.1 and $3.2, \pi_{n-1}$ is D^{\prime}-Haar but not I^{\prime}-Haar. We shall see that D is the dominant operator precisely when $|\alpha| \leqq(n-1) / 2$.

Theorem 3.6. π_{n-1} is L^{\prime}-Haar if and only if $|\alpha| \leqq(n-1) / 2$.
Proof. Necessity. Suppose that $|\alpha|>(n-1) / 2$. Let $q(x)=\prod_{i=1}^{n-1}\left(x-x_{i}\right) \in$ $\in \pi_{n-1}$ where $-1<x_{1}<\ldots<x_{n-1}<1$. We can choose x_{1}, \ldots, x_{n-1} so that

$$
\begin{equation*}
\frac{q^{\prime}(\operatorname{sgn} \alpha)}{q(\operatorname{sgn} \alpha)}=\sum_{i=1}^{n-1} \frac{1}{\operatorname{sgn} \alpha-x_{i}}=\alpha \tag{25}
\end{equation*}
$$

and thus $(L q)(\operatorname{sgn} \alpha)=0$. Now $G_{\{\operatorname{sgn} \alpha\}}=\left\{p \in \pi_{n-1}:(L p)(\operatorname{sgn} \alpha)=0\right\}$ has dimension $n-1$ and is not Haar since $q \in G_{\{\operatorname{sgn} \alpha\}}$ has $n-1$ zeros in $[-1,1]$. Since $\{\operatorname{sgn} \alpha\} \subseteq\{-1,1\}$, Corollary 1.7 implies that π_{n-1} is not L^{\prime}-Haar.

Before proving sufficiency, we establish a lemma.
Lemma 3.7. i) If $\alpha \geqq-m / 2$ and $p \in \pi_{m} \backslash\{0\}$ has m zeros in $(-1,1]$ with at least one zero in $(-1,1)$, then $(L p)(-1) \neq 0$.
ii) If $\alpha \leqq m / 2$ and $p \in \pi_{m} \backslash\{0\}$ has m zeros in $[-1,1)$ with at least one zero in $(-1,1)$, then $(L p)(1) \neq 0$.
iii) If $|\alpha| \leqq m / 2$ and $p \in \pi_{m} \backslash\{0\}$ has $m-1$ zeros in $(-1,1)$, then $(L p)(1) \neq 0$ or $(L p)(-1) \neq 0$.

Proof. For i), write $p(x)=c \prod_{i=1}^{m}\left(x-z_{i}\right)$ where $c \neq 0$, each $z_{i} \in(-1,1]$, and some $z_{i} \in(-1,1)$. Then

$$
\frac{p^{\prime}(-1)}{p(-1)}=\sum_{i=1}^{m} \frac{1}{-1-z_{i}}<-\frac{m}{2} \leqq \alpha
$$

so $(L p)(-1) \neq 0$. The proof of ii) is similar.
For iii) suppose $\operatorname{deg} p=m-1$ and write $p(x)=c \prod_{i=1}^{m-1}\left(x-z_{i}\right)$ where $c \neq 0$ and each $z_{i} \in(-1,1)$. Then

$$
\frac{p^{\prime}(-1)}{p(-1)}=\sum_{i=1}^{m-1} \frac{1}{-1-z_{i}}<0<\sum_{i=1}^{m-1} \frac{1}{1-z_{i}}=\frac{p^{\prime}(1)}{p(1)}
$$

and the conclusion holds. Suppose now that $\operatorname{deg} p=m$ and write

$$
p(x)=c(x-z) \prod_{i=1}^{m-1}\left(x-z_{i}\right)
$$

where $c \neq 0$ and each $z_{i} \in(-1,1)$. If $z \in[-1,1]$, then i) or ii) yields the conclusion. Without loss of generality, $z<-1$. If $p^{\prime}(-1) / p(-1)=$ $=p^{\prime}(1) / p(1)$, then

$$
\begin{equation*}
\frac{p^{\prime}(-1)}{p(-1)}=\frac{1}{-1-z}+\sum_{i=1}^{m-1} \frac{1}{-1-z_{i}}=\alpha \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{p^{\prime}(1)}{p(1)}=\frac{1}{1-z}+\sum_{i=1}^{m-1} \frac{1}{1-z_{i}}=\alpha . \tag{27}
\end{equation*}
$$

Equating the expressions (26) and (27) and using $z<-1$, we see that $z=-\sqrt{1+1 / A}$ where

$$
A=\sum_{i=1}^{m-1} \frac{1}{1-z_{i}^{2}}=\sum_{i=1}^{m-1}\left(\frac{1+z_{i}}{1-z_{i}}\right) \frac{1}{\left(1+z_{i}\right)^{2}} .
$$

Substituting into (26) and (27) and averaging the resulting expressions yields

$$
\alpha=\sqrt{A^{2}+A}+\sum_{i=1}^{m-1} \frac{z_{i}}{1-z_{i}^{2}}=\sqrt{A^{2}+A}-A+\sum_{i=1}^{m-1} \frac{1}{1-z_{i}} .
$$

Letting $B=A+\sqrt{A^{2}+A}$, we see that $B>2 A>\frac{2}{1-z_{i}^{2}}>\frac{1}{1+z_{i}}(1 \leqq i \leqq n-2)$. Thus we have that

$$
\begin{gathered}
\alpha-\frac{m}{2}=\sqrt{A^{2}+A}-A+\sum_{i=1}^{m-1} \frac{1}{1-z_{i}}-\frac{m}{2}= \\
=\frac{A}{A+\sqrt{A^{2}+1}}-\frac{1}{2}+\sum_{i=1}^{m-1}\left(\frac{1}{1-z_{i}}-\frac{1}{2}\right)= \\
=\frac{1}{2}\left(\frac{A-\sqrt{A^{2}+A}}{A+\sqrt{A^{2}+A}}+\sum_{i=1}^{m-1} \frac{1+z_{i}}{1-z_{i}}\right)=\frac{1}{2}\left(\sum_{i=1}^{m-1} \frac{1+z_{i}}{1-z_{i}}-\frac{A}{B^{2}}\right)= \\
=\frac{1}{2 B^{2}}\left(\sum_{i=1}^{m-1} B^{2} \frac{1+z_{i}}{1-z_{i}}-\sum_{i=1}^{m-1}\left(\frac{1+z_{i}}{1-z_{i}}\right) \frac{1}{\left(1+z_{i}\right)^{2}}\right)= \\
=\frac{1}{2 B^{2}} \sum_{i=1}^{m-1} \frac{1+z_{i}}{1-z_{i}}\left(B^{2}-\frac{1}{\left(1+z_{i}\right)^{2}}\right)>0 .
\end{gathered}
$$

This is a contradiction since $|\alpha| \leqq m / 2$.
Sufficiency. Assume that $|\alpha| \leqq(n-1) / 2$. Let $\left(\left\{x_{i}\right\}_{i=1}^{s},\left\{y_{i}\right\}_{i=1}^{r}\right)$ be an L-extremal set for π_{n-1} where $s \geqq 1$ and

$$
\begin{equation*}
\sum_{i=1}^{s} c_{i} p\left(x_{i}\right)+\sum_{i=1}^{r} d_{i}(L p)\left(y_{i}\right)=0 \quad\left(p \in \pi_{n-1}\right) \tag{28}
\end{equation*}
$$

with all c_{i} and d_{i} nonzero. Let $r^{\prime}=\#\left\{i: 1 \leqq i \leqq r\right.$ and $\left.\left|y_{i}\right|<1\right\}$ and $r^{\prime \prime}=r-r^{\prime}$. (Evidently, $r^{\prime \prime}=0,1$, or 2.) We may assume that $\left|y_{i}\right|<1$ for $1 \leqq i \leqq r^{\prime}$.

We prove that $s+2 r^{\prime}+r^{\prime \prime}>n$. Assume, to the contrary, that $s+2 r^{\prime}+r^{\prime \prime} \leqq$ $\leqq n$. Consider the interpolation problem of finding $p \in \pi_{n-1}$ so that

$$
\begin{cases}\text { a) } p\left(x_{i}\right)=0, & 1 \leqq i \leqq s, \tag{29}\\ \text { b) } p\left(y_{i}\right)=p^{\prime}\left(y_{i}\right)=0, & 1 \leqq i \leqq r^{\prime}, \\ \text { c) }(L p)\left(y_{i}\right)=0, & r^{\prime}+1 \leqq i \leqq r .\end{cases}
$$

In case some x_{i} and $y_{i}\left(i=r^{\prime}+1\right)$ coincide, we remove them from a) and c) and put them in b). Further, by inserting additional points x_{i} and removing others, we may assume that $s+2 r^{\prime}+r^{\prime \prime}=n$ and that no y_{i} coincides with an x_{i}. (This may change s and r^{\prime}, but we can still insist on $\left|y_{i}\right|=1$ for $r^{\prime}+1 \leqq i \leqq r$.) We claim that if $s+2 r^{\prime}+\left(r-r^{\prime}\right)=n$, the x_{i} 's are different from the y_{i} 's, and $\left|y_{i}\right|=1$ for $r^{\prime}+1 \leqq i \leqq r$, then (29) has only the trivial solution. Then an appropriate choice of evaluations in a nonhomogeneous counterpart of (29) would contradict (28).

There are three cases. If $r-r^{\prime}=0$, then (29) is a Hermite problem and our claim is obvious. If $r-r^{\prime}=1$, suppose that $p \in \pi_{n-1} \backslash\{0\}$ is a solution of (29) with $y_{r}=1$. Then p has $n-1$ zeros in $[-1,1)$ counting multiplicities up to order 2, and since $n \geqq 4$, at least one of these zeros is in $(-1,1)$. By Lemma 3.7 ii), $(L p)(1) \neq 0$, a contradiction. If $r-r^{\prime}=2$, suppose that $p \in \pi_{n-1} \backslash\{0\}$ is a solution of (29). By Lemma 3.7 iii$),(L p)(1) \neq 0$ or $(L p)(-1) \neq 0$, a contradiction. Thus the claim is established.

We conclude that $s+2 r^{\prime}+r^{\prime \prime}>n$. To complete the proof of sufficiency, suppose that $p \in \pi_{n-1} L^{\prime}$-vanishes on the extremal set $\left(\left\{x_{i}\right\}_{i=1}^{s},\left\{y_{i}\right\}_{i=1}^{r}\right)$. Let $x_{1}<\ldots<x_{s}$. For $1 \leqq i \leqq s-1$, Lemma 3.2 implies that $L p$ has a sign change, say ξ, in $\left(x_{i}, x_{i+1}\right)$. If $\xi=y_{j}$ for some j, then $(L p)\left(y_{j}\right)=$ $=(L p)^{\prime}\left(y_{j}\right)=(L p)^{\prime \prime}\left(y_{j}\right)=0$ since $L p$ changes sign at y_{j}. In any case, we have that $L p$ has at least n zeros counting multiplicites since $s+2 r^{\prime}+r^{\prime \prime}>n$. Since $L p \in \pi_{n-1}, L p=0$ and therefore $p=0$ (because $s \geqq 1$). Thus no $p \in \pi_{n-1} \backslash\{0\} L^{\prime}$-vanishes on an L-extremal set for π_{n-1}, and by Theorem $1.6, \pi_{n-1}$ is L^{\prime}-Haar.

Remark. When $n=2$ or $3, \pi_{n-1}$ is L^{\prime}-Haar if and only if $|\alpha|<(n-1) / 2$. In these cases, when $|\alpha|=(n-1) / 2 G_{\{1\}}$ and $G_{\{-1,1\}}$ fail to be Haar spaces, respectively.

The situation is much simpler in the periodic case. It was noted at the end of Section 1 that if K is a circle then in order that a function L^{\prime} vanish on an L-extremal set $\left(\left\{x_{i}\right\}_{i=1}^{s},\left\{y_{i}\right\}_{i=1}^{r}\right)$ we require that $(L p)^{\prime}\left(y_{i}\right)=0$ for all $1 \leqq i \leqq r$ in addition to the other conditions. Specifically, let $U_{n}=$ $=\operatorname{span}\{1, \cos x, \sin x, \ldots, \cos k x, \sin k x\}$ be taken as a subspace of $C^{*}[0,2 \pi]=$ $=\{f \in C[0,2 \pi]: f(0)=f(2 \pi)\}$ and $L=D-\alpha I$. For an L-extremal set, proving that $s+2 r>n$ follows as in the case for $r^{\prime \prime}=0$ in the proof of Theorem 3.6. The proof that no $p \in U_{n} \backslash\{0\} L^{\prime}$-vanishes on an L-extremal set for U_{n} follows exactly as in Theorem 3.6. Thus we have

Theorem 3.8. Let $L=D-\alpha I$. Then $U_{n}=\operatorname{span}\{1, \cos x, \sin x, \ldots$, $\cos k x, \sin k x\}$ is L^{\prime}-Haar (in $C^{*}[0,2 \pi]$) for all real α.
3.4. Rational spaces. With $[a, b]=K=[-1,1]$ and $L=D$, the space π_{n-1} is D^{\prime}-Haar (see Theorem 3.6 or [6]). In this section we consder the space $U_{n}=\frac{1}{\omega} \pi_{n-1}$ where ω is a fixed polynomial and $\omega(x)>0$ for all $x \in[-1,1]$. We find that if ω is linear, then $\frac{1}{\omega} \pi_{n-1}$ is D^{\prime}-Haar. However, even using a quadratic denominator can destroy the D^{\prime}-Haar property.

Theorem 3.9. If $\omega(x)=(x-1+\varepsilon)^{2}+\varepsilon^{2}$ where $0<\varepsilon<2 /(n-1)$, then $\frac{1}{\omega} \pi_{n-1}$ is not D^{\prime}-Haar.

Proof. Choose $-1<x_{1}<\ldots<x_{n-1}<1$ so that

$$
\frac{q^{\prime}(1)}{q(1)}=\sum_{i=1}^{n-1} \frac{1}{1-x_{i}}=\frac{1}{\varepsilon}=\frac{\omega^{\prime}(1)}{\omega(1)}
$$

where $q(x)=\prod_{i=1}^{n-1}\left(x-x_{i}\right)$. Then $(q / \omega)^{\prime}(1)=0$ and q / ω has $n-1$ zeros in $(-1,1)$. Now $G_{\{1\}}=\left\{p / \omega \in \frac{1}{\omega} \pi_{n-1}:(p / \omega)^{\prime}(1)=0\right\}$ has dimension $n-1$ and is not Haar since $q \in G_{\{1\}}$. Corollary 1.7 then implies that $\frac{1}{\omega} \pi_{n-1}$ is not D^{\prime}-Haar.

Theorem 3.10. If $\omega \in \pi_{1}$ and $\omega>0$ on $[-1,1]$, then $\frac{1}{\omega} \pi_{n-1}$ is a D^{\prime}-Haar space ($n \geqq 1$).

Proof. We may assume that $\omega(x)=x-\gamma$, where $\gamma<-1$. Furthermore $\frac{1}{\omega} \pi_{n-1}$ is D^{\prime}-Haar if and only if π_{n-1} is L^{\prime}-Haar with $L=D-\frac{\omega^{\prime}}{\omega} I=D-\frac{1}{x-\gamma} I$, thus it suffices to show that π_{n-1} is L^{\prime}-Haar. Let $n \geqq 3$. Let $\left(\left\{x_{i}\right\}_{i=1}^{s},\left\{y_{i}\right\}_{i=1}^{r}\right)$ be an L-extremal set for $\pi_{n-1}(s \geqq 1)$ and set $r^{\prime}=\#\{i: 1 \leqq i \leqq r$ and $\left.\left|y_{i}\right|<1\right\}$. We claim that $s+2 r^{\prime}+\left(r-r^{\prime}\right)>n$. Assume, to the contrary that $s+2 r^{\prime}+\left(r-r^{\prime}\right) \leqq n$, and consider the interpolation problem (29) for $p \in \pi_{n-1}$. We can again assume without loss of generality that $s+2 r^{\prime}+\left(r-r^{\prime}\right)=n$, $y_{i} \neq x_{j}$, and $\left|y_{i}\right|=1$ for $r^{\prime}+1 \leqq i \leqq r$. As in Theorem 3.5, we need only show
that (29) has only the trivial solution. Suppose then that $p \in \pi_{n-1} \backslash\{0\}$ satisfies (29) and further that $r-r^{\prime} \geqq 1$.

Case 1. $r-r^{\prime}=1$. Then by (27) p has $n-1$ zeros $z_{1}, \ldots, z_{n-1} \in[-1,1]$ counting with multiplicities up to order $2\left(\left|y_{r}\right|=1, z_{i} \neq y_{r}, 1 \leqq i \leqq n-1\right)$ and

$$
\begin{equation*}
\frac{p^{\prime}}{p}\left(y_{r}\right)=\sum_{i=1}^{n-1} \frac{1}{y_{r}-z_{i}}=\frac{1}{y_{r}-\gamma} . \tag{31}
\end{equation*}
$$

If $y_{r}=-1$, then $0>\sum_{i=1}^{n-1} \frac{1}{y_{r}-z_{i}}$, contradicting (31). If $y_{r}=1$, then

$$
\frac{1}{2}>\frac{1}{1-\gamma}=\sum_{i=1}^{n-1} \frac{1}{1-z_{i}} \geqq \frac{n-1}{2}
$$

contradicting again (31).
Case 2. $r-r^{\prime}=2$. Then by (27) p has $n-2$ zeros $z_{1}, \ldots, z_{n-2} \in(-1,1)$ (counting with multiplicities up to 2) and for $y_{r}= \pm 1, \frac{p^{\prime}}{p}\left(y_{r}\right)=\frac{1}{y_{r}-\gamma}$ (note that $p(-1) p(1) \neq 0)$. If $p \in \pi_{n-2}$ or p has an additional zero in $(-1,1)$ then we obtain a contradiction as in Case 1. Let p have an extra zero z_{0} outside of $[-1,1]$. Then

$$
\begin{equation*}
\frac{1}{y_{\mathrm{r}}-z_{0}}+\sum_{i=1}^{n-2} \frac{1}{y_{r}-z_{i}}=\frac{1}{y_{r}-\gamma} \quad\left(y_{r}= \pm 1\right) \tag{32}
\end{equation*}
$$

If $z_{0}>1$ then for $y_{r}=-1$ right and left sides of (32) have different signs. If $z_{0}<-1$ then setting $y_{r}=1$ in (32) we have

$$
\frac{1}{2}>\frac{1}{1-\gamma}=\frac{1}{1-z_{0}}+\sum_{i=1}^{n-2} \frac{1}{1-z_{i}}>\sum_{i=1}^{n-2} \frac{1}{1-z_{i}}>\frac{n-2}{2}
$$

a contradiction.
Thus $s+2 r^{\prime}+\left(r-r^{\prime}\right)>n$. Suppose now that $p \in \pi_{n-1} L^{\prime}$-vanishes on the L-extremal set $\left(\left\{x_{i}\right\}_{i=1}^{s},\left\{y_{i}\right\}_{i=1}^{r}\right)$. Applying Lemma 3.2 to $L=D-\frac{1}{x-\gamma} I$ implies that $L p$ has a sign change ξ_{i} in $\left(x_{i}, x_{i+1}\right)$ for every $1 \leqq i \leqq s-1$. If $\xi_{i}=y_{j}$ for some j then $(L p)\left(y_{j}\right)=(L p)^{\prime}\left(y_{j}\right)=(L p)^{\prime \prime}\left(y_{j}\right)=0$ since $L p$ changes sign at y_{j}. Thus counting with multiplicities we obtain at least n zeros of $L p$ (because $\left.s+2 r^{\prime}+\left(r-r^{\prime}\right)>n\right)$, i.e., $p^{\prime}(x)(x-\gamma)-p(x) \in \pi_{n-1}$ has at least n zeros. This yields, that $p^{\prime}(x)(x-\gamma)-p(x) \equiv 0$, i.e., $p \equiv c(x-\gamma)$. But since $s \geqq 1, p$ has a zero in $[-1,1]$, a contradiction. This completes the proof for $n \geqq 3$. If $n=1$ the claim of Theorem follows from the fact that $s \geqq 1$ for any D-extremal set $\left(\left\{x_{i}\right\}_{i=1}^{s},\left\{y_{i}\right\}_{i=1}^{r}\right)$, while $p \in \frac{1}{\omega} \pi_{0}, p \equiv \frac{c}{x-\gamma}$ does
not vanish. If $n=2$ and $p \in \frac{1}{\omega} \pi_{1}$ is not a constant function, then p^{\prime} does not vanish. Thus $p \in \frac{1}{\omega} \pi_{1} \backslash\{0\}$ can not D^{\prime}-vanish on a D-extremal set if $r \geqq 1$. On the other hand if $r=0$ then, obviously, $s \geqq 2$ and no $p \in \frac{1}{\omega} \pi_{1} \backslash\{0\}$ can have two zeros.

Acknowledgement. The authors would like to thank Professors J. J. Swetits, S. E. Weinstein, and Y. Xu for helpful discussions in the preparation of this manuscript.

References

[1] B. L. Chalmers, A unified approach to uniform real approximation by polynomials with linear restrictions, Trans. Amer. Math. Soc., 166 (1972), 309-316.
[2] B. L. Chalmers and G. D. Taylor, Uniform approximation with constraints, Jahresber. Deutsch. Math.- Verein., 81 (1978/79), 49-86.
[3] B. L. Chalmers and G. D. Taylor, A unified theory of strong uniqueness in uniform approximation with constraints, J. Approx. Theory, 37 (1983), 29-43.
[4] Y. Fletcher and J. A. Roulier, A counterexample to strong unicity in monotone approximation, J. Approx. Theory, 27 (1979), 19-33.
[5] A. Haar, Die Minkowskische Geometrie und die Annäherung an stetige Funktionen, Math. Ann., 78 (1918), 294-311.
[6] G. G. Lorentz, K. Jetter, and S. D. Riemenschneider, Birkhoff Interpolation, AddisonWesley (Reading, MA, 1983).
[7] J. C. Mairhuber, On Haar's theorem concerning Chebyshev approximation problems having unique solutions, Proc. Amer. Math. Soc., 7 (1956), 609-615.
[8] A. Pinkus and H. Strauss, Best approximation with coefficient constraints, IMA J. on Numer. Anal., 8 (1988), 1-22.
[9] J. A. Roulier and G. D. Taylor, Approximation by polynomials with restricted ranges on their derivatives, J. Approx. Theory, 5 (1972), 216-227.
[10] D. Schmidt, Strong unicity and Lipschitz conditions of order $1 / 2$ for monotone approximation, J. Approx. Theory, 27 (1979), 346-354.
(Received July 6, 1989)

MATHEMATICAL INSTITUTE OF THE
HUNGARIAN ACADEMY OF SCIENCES
H-1364 BUDAPEST, P.O.B. 127

DEPARTMENT OF MATHEMATICS
OAKLAND UNIVERSITY
ROCHESTER, MI 48063
USA

ÜBER DIE BANACH-EIGENSCHAFT VON MATRIZEN

K. TANDORI (Szeged), Mitglied der Akademie

1. Die Klasse von allen orthonormierten Systemen $\varphi=\left\{\varphi_{k}(x)\right\}_{0}^{\infty}$ im Intervall $(0,1)$ bezeichnen wir mit Ω. (Die folgenden Betrachtungen bleiben auch für die in einem endlichen und nichtatomischen Maßraum orthonormierten Systeme gültig, nur einfachkeitshalber betrachten wir den Fall $(0,1)$ mit dem gewöhnlichen Lebesgueschen Maß.)

Es sei $B=\left\|b_{n, k}\right\|_{n, k=0}^{\infty}$ eine Matrix mit

$$
\sum_{k=0}^{\infty} b_{n, k}^{2} \rightarrow 0 \quad(n \rightarrow \infty) .
$$

Für jedes System $\varphi \in \Omega$ existieren die Summen

$$
b_{n}(\varphi ; x)=\sum_{k=0}^{\infty} b_{n, k} \varphi_{k}(x) \quad(n=0,1, \ldots)
$$

in der Metrik von $L^{2}(0,1)$.
Man sagt, daß die Matrix B die Banach-Eigenschaft ($B \in \mathrm{BE}$) besitzt, wenn für jedes $\varphi \in \Omega$

$$
\lim _{n \rightarrow \infty} b_{n}(\varphi ; x)=0
$$

in $(0,1)$ fast überall gilt.
Verf. und F. Móricz [1], [3] haben eine notwendige und hinreichende Bedingung dafür angegeben, daß $B \in \mathrm{BE}$ ist. Diese Bedingung lautet folgenderweise.

Satz A. B $\in \mathrm{BE}$ gilt dann und nur dann, wenn

$$
\|B\|=\sup _{\varphi \in \Omega}\left\{\int_{0}^{1}\left(\sup _{n} b_{n}^{2}(\varphi ; x)\right) d x\right\}^{1 / 2}<\infty .
$$

2. Diese Bedingung ist notwendig und hinreichend; leider ist es in speziällen Fällen schwer zu entscheiden, ob sie für eine Matrix B erfüllt ist.

In dieser Note werden wir hinreichende, aber brauchbarere Bedingungen für die Banach-Eigenschaft angeben.

Für positive ganze Zahlen $M, N(M \leqq N)$ setzen wir

$$
\|B ; M, N\|=\sup _{\varphi \in \Omega}\left\{\int_{0}^{1}\left(\sup _{M \leqq n \leqq N} b_{n}^{2}(\varphi ; x)\right) d x\right\}^{1 / 2}
$$

Man kann leicht zeigen, daß für beliebige Matrizen B, \bar{B}

$$
\|B+\bar{B} ; M, N\| \leqq\|B ; M, N\|+\|\bar{B} ; M, N\|
$$

gilt. (Hier ist $B+\bar{B}=\left\|b_{n, k}+\bar{b}_{n, k}\right\|_{n, k=0}^{\infty}$.)
Erstens beweisen wir den folgenden Satz.
SATZ 1. Es sei $\left\{N_{\nu}\right\}_{1}^{\infty}$ eine monoton wachsende Folge von positiven ganzen Zahlen. Gilt

$$
\begin{equation*}
\sum_{\nu=1}^{\infty}\left\|B ; N_{\nu}, N_{\nu+1}-1\right\|^{2}<\infty \tag{1}
\end{equation*}
$$

so ist $B \in \mathrm{BE}$.
Beweis. Es sei $B^{(\nu)}=\left\|b_{n, k}^{(\nu)}\right\|_{n, k=0}^{\infty}$, wobei

$$
b_{n, k}^{(\nu)}=b_{N_{\nu}, k} \quad(n, k=0,1, \ldots)
$$

und $B_{\nu}=B-B^{(\nu)}(\nu=1,2, \ldots)$. Dann gilt

$$
\begin{align*}
& \left\|B_{\nu} ; N_{\nu}, N_{\nu+1}-1\right\| \leqq\left\|B ; N_{\nu}, N_{\nu+1}-1\right\|+\left\|B^{(\nu)} ; N_{\nu}, N_{\nu+1}-1\right\|= \tag{2}\\
& \quad=\left\|B ; N_{\nu}, N_{\nu+1}-1\right\|+\left\{\sum_{k=0}^{\infty} b_{N_{\nu}, k}^{2}\right\}^{1 / 2} \quad(\nu=1,2, \ldots)
\end{align*}
$$

Es sei $\varphi \in \Omega$. Es ist klar, daß

$$
\begin{equation*}
\sum_{k=0}^{\infty} b_{N_{\nu}, k}^{2}=\int_{0}^{1} b_{N_{\nu}}^{2}(\varphi ; x) d x \leqq\left\|B ; N_{\nu}, N_{\nu+1}-1\right\|^{2} \quad(\nu=1,2, \ldots) \tag{3}
\end{equation*}
$$

ist. Aus (1) und (3) erhalten wir

$$
\sum_{\nu=1}^{\infty} \int_{0}^{1} b_{N_{\nu}}^{2}(\varphi ; x) d x<\infty
$$

und so folgt, daß die Reihe

$$
\sum_{\nu=1}^{\infty} b_{N_{\nu}}^{2}(\varphi ; x)
$$

in $(0,1)$ fast überall konvergiert, woraus sich ergibt, daß fast überall in $(0,1)$
(4)

$$
\lim _{\nu \rightarrow \infty} b_{N_{\nu}}(\varphi ; x)=0
$$

Es sei

$$
\delta_{\nu}(x)=\max _{N_{\nu}<n<N_{\nu+1}}\left|b_{n}(\varphi ; x)-b_{N_{\nu}}(\varphi ; x)\right| \quad(\nu=1,2, \ldots)
$$

Offensichtlich gilt

$$
\int_{0}^{1} \delta_{\nu}^{2}(x) d x \leqq\left\|B_{\nu} ; N_{\nu}, N_{\nu+1}-1\right\|^{2} \quad(\nu=1,2, \ldots)
$$

Daraus und aus (1), (2), und (3) erhalten wir

$$
\sum_{\nu=1}^{\infty} \int_{0}^{1} \delta_{\nu}^{2}(x) d x<\infty
$$

So folgt, daß die Reihe

$$
\sum_{\nu=1}^{\infty} \delta_{\nu}^{2}(x)
$$

in $(0,1)$ fast überall konvergiert, und daher

$$
\lim _{\nu \rightarrow \infty} \delta_{\nu}(x)=0
$$

in $(0,1)$ fast überall besteht. Daraus und aus (4) ergibt sich $B \in \mathrm{BE}$. Da

$$
\begin{aligned}
\| B ; & N_{\nu}, N_{\nu+1}-1\|\leqq\| B_{\nu} ; N_{\nu}, N_{\nu+1}-1\|+\| B^{(\nu)} ; N_{\nu}, N_{\nu+1}-1 \|= \\
& =\left\|B_{\nu} ; N_{\nu}, N_{\nu+1}-1\right\|+\left\{\sum_{k=0}^{\infty} b_{N_{\nu}, k}^{2}\right\}^{1 / 2} \quad(\nu=1,2, \ldots)
\end{aligned}
$$

ist, folgt aus Satz I unmittelbar:

Satz II. Wenn

$$
\sum_{\nu=1}^{\infty}\left\{\sum_{k=0}^{\infty} b_{N_{\nu}, k}^{2}+\left\|B_{\nu} ; N_{\nu}, N_{\nu+1}-1\right\|^{2}\right\}<\infty
$$

ist, so gilt $B \in \mathrm{BE}$.
Um eine brauchbarere Bedingung zu bekommen, müssen wir $\| B_{\nu} ; N_{\nu}$, $N_{\nu+1}-1 \|$ mit den Zahlen $b_{n, k}$ abschätzen. In folgenden werden wir zwei einfachen Abschätzungen angeben.

Abschätzung I. Es gilt

$$
\left\|B_{\nu} ; N_{\nu}, N_{\nu+1}-1\right\| \leqq \sum_{n=N_{\nu}+1}^{N_{\nu+1}-1}\left\{\sum_{k=0}^{\infty}\left(b_{n, k}-b_{n-1, k}\right)^{2}\right\}^{1 / 2} \quad(\nu=1,2, \ldots)
$$

Beweis. Es sei $\varphi \in \Omega$. Dann gilt für ein beliebiges $n_{0}\left(N_{\nu}<n_{0}<N_{\nu+1}\right)$

$$
\begin{gathered}
\left|b_{n_{0}}(\varphi ; x)-b_{N_{\nu}}(\varphi ; x)\right|=\left|\sum_{n=N_{\nu}+1}^{n_{0}}\left(b_{n}(\varphi ; x)-b_{n-1}(\varphi ; x)\right)\right| \leqq \\
\leqq \sum_{n=N_{\nu}+1}^{N_{\nu+1}-1}\left|b_{n}(\varphi ; x)-b_{n-1}(\varphi ; x)\right|
\end{gathered}
$$

und so ist

$$
\sup _{N_{\nu}<n<N_{\nu+1}}\left|b_{n}(\varphi ; x)-b_{N_{\nu}}(\varphi ; x)\right| \leqq \sum_{n=N_{\nu}+1}^{N_{\nu+1}-1}\left|b_{n}(\varphi ; x)-b_{n-1}(\varphi ; x)\right|
$$

Daraus folgt

$$
\begin{gathered}
\left\{\int_{0}^{1}\left(\sup _{N_{\nu}<n<N_{\nu+1}}\left|b_{n}(\varphi ; x)-b_{N_{\nu}}(\varphi ; x)\right|\right)^{2} d x\right\}^{1 / 2} \leqq \\
\leqq \sum_{n=N_{\nu+1}}^{N_{\nu+1}}\left\{\int_{0}^{1}\left(b_{n}(\varphi ; x)-b_{n-1}(\varphi ; x)\right)^{2} d x\right\}^{1 / 2}= \\
=\sum_{n=N_{\nu}+1}^{N_{\nu+1}}\left\{\sum_{k=0}^{\infty}\left(b_{n, k}-b_{n-1, k}\right)^{2}\right\}^{1 / 2} .
\end{gathered}
$$

Da diese Ungleichung für jedes $\varphi \in \Omega$ besteht, ergibt sich unsere Abschätzung.

Abschätzung II. Es gilt

$$
\begin{gathered}
\left\|B_{\nu} ; N_{\nu}, N_{\nu+1}-1\right\| \leqq \\
\leqq \sum_{0<s<\log \left(N_{\nu+1}-N_{\nu}\right)} \sum_{0 \leqq \ell<\frac{N_{\nu+1}-N_{\nu}}{2^{s}}-1}\left\{\sum_{k=0}^{\infty}\left(b_{N_{\nu}+(\ell+1) 2^{s}-1, k}-b_{N_{\nu}+\ell 2^{s}, k}\right)^{2}\right\}^{1 / 2} \\
(\nu=1,2, \ldots) .
\end{gathered}
$$

($\log \alpha$ bezeichnet den Logarithmus zur Basis 2.)
Beweis. Es sei $\varphi \in \Omega$. Für jedes $n_{0}\left(N_{\nu}<n_{0}<N_{\nu+1}\right)$ gilt

$$
n_{0}=2^{\nu_{1}}+\ldots+2^{\nu_{r}}+N_{\nu}
$$

mit nichtnegativen ganzen Zahlen $\nu_{1}, \ldots, \nu_{r}\left(0 \leqq \nu_{r}<\ldots<\nu_{1} \leqq \log \left(N_{\nu+1}-\right.\right.$ $\left.-N_{\nu}\right)$). So gilt

$$
\begin{gathered}
\left|b_{n_{0}}(\varphi ; x)-b_{N_{\nu}}(\varphi ; x)\right|=\left\lvert\,\left(b_{2^{\nu_{1}}+\ldots+2^{\nu_{r}}+N_{\nu}(\varphi ; x)-} \begin{array}{c}
\left.-b_{2^{\nu_{1}}+\ldots+2^{\nu_{r-1}}+N_{\nu}}(\varphi ; x)\right)+\ldots+\left(b_{2^{\nu_{1}}+N_{\nu}}(\varphi ; x)-b_{N_{\nu}}(\varphi ; x)\right) \mid \leqq \\
\leqq \sum_{0<s<\log \left(N_{\nu+1}-N_{\nu}\right)} \sum_{0 \leqq \ell<\frac{N_{\nu+1}-N_{\nu}}{2^{s}}-1}\left|b_{N_{\nu}+(\ell+1)^{s}-1}(\varphi ; x)-b_{N_{\nu}+\ell 2^{s}}(\varphi ; x)\right|,
\end{array}, .\right.\right.
\end{gathered}
$$

woraus sich

$$
\begin{gathered}
\left\{\int_{0}^{1} \sup _{N_{\nu}<n<N_{\nu+1}}\left(b_{n}(\varphi ; x)-b_{N_{\nu}}(\varphi ; x)\right)^{2} d x\right\}^{1 / 2} \leqq \\
\leqq \sum_{0<s<\log \left(N_{\nu+1}-N_{\nu}\right)} \sum_{0 \leqq \ell<\frac{N_{\nu+1}-N_{\nu}}{2^{s}}-1}\left\{\int _ { 0 } ^ { 1 } \left(b_{N_{\nu}+(\ell+1) 2^{s}-1}(\varphi ; x)-\right.\right. \\
\left.\left.-b_{N_{\nu}+\ell 2^{s}}(\varphi ; x)\right)^{2} d x\right\}^{1 / 2}= \\
=\sum_{0<s<\log \left(N_{\nu+1}-N_{\nu}\right)} \sum_{0 \leqq \ell<\frac{N_{\nu+1}-N_{\nu}}{2^{s}}-1}\left\{\sum_{k=0}^{\infty}\left(b_{N_{\nu}+(\ell+1) 2^{s}-1, k}-b_{N_{\nu}+\ell 2^{s}, k}\right)^{2}\right\}^{1 / 2}
\end{gathered}
$$

ergibt. Da diese Ungleichung für jedes $\varphi \in \Omega$ besteht, folgt unsere Abschätzung.

Aus den Sätzen I-II und aus den Abschätzungen I-II erhalten wir die folgenden Kriterien.

Satz III. Gilt

$$
\sum_{\nu=1}^{\infty}\left\{\sum_{k=0}^{\infty} b_{N_{\nu}, k}^{2}+\left(\sum_{n=N_{\nu}+1}^{N_{\nu+1}-1}\left\{\sum_{k=0}^{\infty}\left(b_{n, k}-b_{n-1, k}\right)^{2}\right\}^{1 / 2}\right)^{2}\right\}<\infty,
$$

so ist $B \in \mathrm{BE}$.
Satz IV. Gilt

$$
\sum_{\nu=1}^{\infty}\left\{\sum_{k=0}^{\infty} b_{N_{\nu}, k}^{2}+\right.
$$

$$
\left.+\sum_{0<s<\log \left(N_{\nu+1}-N_{\nu}\right)} \sum_{0 \leqq \ell<\frac{N_{\nu+1}-N}{2^{s}}-1}\left(\sum_{k=0}^{\infty}\left(b_{N_{\nu}+(\ell+1)^{s}-1, k}-b_{N_{\nu}+\ell 2^{s}, k}\right)^{2}\right)^{1 / 2}\right\}^{2},
$$

so gilt $B \in \mathrm{BE}$.
3. Anwendungen. A. Es sei $\lambda=\left\{\lambda_{n}\right\}_{0}^{\infty}$ eine monoton nichtabnehmende Folge von positiven Zahlen mit

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{1}{\lambda_{n}^{2}}<\infty \tag{5}
\end{equation*}
$$

Es sei weiterhin

$$
b_{n, k}= \begin{cases}\frac{1}{\lambda_{n}}\left(1-\frac{k}{n+1}\right), & k=0, \ldots, n, \\ 0, & k=n+1, n+2, \ldots\end{cases}
$$

Wir wünschen zu zeigen, daß $B=\left\|b_{n, k}\right\|_{n, k=0}^{\infty} \in \mathrm{BE}$.
Es sei $\varphi \in \Omega$. Jetzt ist

$$
b_{n}(\varphi ; x)=\frac{\sigma_{n}(x)}{\lambda_{n}} \quad(n=0,1, \ldots),
$$

wobei

$$
\sigma_{n}(x)=\sum_{k=0}^{n}\left(1-\frac{k}{n+1}\right) \varphi_{k}(x) \quad(n=0,1, \ldots) .
$$

Es sei
$b_{n, k}^{*}= \begin{cases}\frac{1}{\lambda_{2} m}\left(1-\frac{k}{n+1}\right), & 2^{m} \leqq n<2^{m+1}(m=0,1, \ldots), \quad k=0, \ldots, n, \\ 0, & 2^{m} \leqq n<2^{m+1}(m=0,1, \ldots), \quad k=n+1, \ldots .\end{cases}$
Offensichtlich genügt es zu zeigen, daß $B^{*}=\left\|b_{n, k}^{*}\right\|_{m, k=0}^{\infty} \in \mathrm{BE}$ gilt.

Aus (5) folgt

$$
\begin{equation*}
\sum_{m=0}^{\infty} \frac{2^{m}}{\lambda_{2^{m}}^{2}}<\infty \tag{6}
\end{equation*}
$$

Wir werden den Satz III mit der Folge $N_{\nu}=2^{\nu}(\nu=1,2, \ldots)$ anwenden.
Jetzt gilt auf Grund von (6)

$$
\begin{gathered}
\sum_{\nu=1}^{\infty}\left\{\sum_{k=0}^{\infty}\left(b_{N_{\nu}, k}^{*}\right)^{2}+\left(\sum_{n=N_{\nu}+1}^{N_{\nu+1}-1}\left\{\sum_{k=0}^{n}\left(b_{n, k}^{*}-b_{n-1, k}^{*}\right)^{2}\right\}^{1 / 2}\right)^{2}\right\}= \\
=\sum_{\nu=1}^{\infty} \frac{1}{\lambda_{2^{\nu}}^{2}}\left\{\left(\sum_{k=0}^{2^{\nu}}\left(1-\frac{k}{2^{\nu}+1}\right)^{2}+\left(\sum_{n=2^{\nu}+1}^{2^{\nu+1}}\left(\sum_{k=0}^{n} \frac{k^{2}}{n^{2}(n-1)^{2}}\right)^{1 / 2}\right)^{2}\right)\right\} \leqq \\
\leqq c_{1} \sum_{\nu=1}^{\infty} \frac{2^{\nu}}{\lambda_{2^{\nu}}^{2}}<\infty .
\end{gathered}
$$

Auf Grund des Satzes III bekommen wir $B^{*} \in \mathrm{BE}$.
Das bedeutet, daß für jedes System $\varphi \in \Omega$

$$
\sum_{k=0}^{n}\left(1-\frac{k}{n+1}\right) \varphi_{k}(x)=o_{x}\left(\lambda_{n}\right)
$$

fast überall in $(0,1)$, wenn für die Folge $\lambda(5)$ erfüllt ist. (In [2] haben wir gezeigt, daß diese Abschätzung genau ist.)
B. Es sei $\lambda=\left\{\lambda_{n}\right\}_{0}^{\infty}$ eine monoton nichtabnehmende Folge von positiven Zahlen mit

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\log ^{2} n}{\lambda_{n}^{2}}<\infty \tag{7}
\end{equation*}
$$

Es sei

$$
b_{n, k}= \begin{cases}\frac{1}{\lambda_{n}}, & k=0, \ldots, n \\ 0, & k=n+1, \ldots\end{cases}
$$

Wir wünschen zu zeigen, daß $B \in \mathrm{BE}$.
Für ein System $\varphi \in \Omega$ ist jetzt

$$
b_{n}(\varphi ; x)=\frac{1}{\lambda_{n}} \sum_{k=1}^{n} \varphi_{k}(x) \quad(n=0,1, \ldots)
$$

Es sei

$$
b_{n, k}^{*}= \begin{cases}\frac{1}{\lambda_{2^{m}}}, & 2^{m} \leqq n<2^{m+1}(m=0,1, \ldots), \quad k=0, \ldots, n \\ 0, & 2^{m} \leqq n<2^{m+1}(m=0,1, \ldots), \quad k=n+1, \ldots\end{cases}
$$

Cffensichtlich genügt es $B^{*}=\left\|b_{n, k}^{*}\right\|_{n, k=0}^{\infty} \in \mathrm{BE}$ zu zeigen. Aus (7) folgt

$$
\begin{equation*}
\sum_{m=1}^{\infty} \frac{m^{2} 2^{m}}{\lambda_{2^{m}}^{2}}<\infty . \tag{8}
\end{equation*}
$$

Wir werden den Satz IV mit der Folge $N_{\nu}=2^{\nu}(\nu=1,2, \ldots)$ anwenden.
Jetzt gilt auf Grund von (8)

$$
\begin{gathered}
\sum_{\nu=1}^{\infty}\left\{\sum_{k=0}^{\infty}\left(b_{N_{\nu}, k}^{*}\right)^{2}+\right. \\
+\left(\sum_{0<s<\log \left(N_{\nu+1}-N_{\nu}\right)} \sum_{0 \leqq \ell<\frac{N_{\nu+1}-N_{\nu}}{2^{s}}-1}\left\{\sum_{k=0}^{\infty}\left(b_{N_{\nu}+(\ell+1) 2^{s}-1, k}^{*}-b_{N_{\nu}+\ell 2^{s}, k}^{*}\right)^{2}\right\}^{1 / 2}\right)^{2} \leqq \\
\left.\leqq \sum_{\nu=1}^{\infty} \frac{2^{\nu}+1}{\lambda_{2^{\nu}}^{2}}+\frac{1}{\lambda_{2^{\nu}}^{2}} \nu^{2} 2^{\nu}\right\}<\infty .
\end{gathered}
$$

Auf Grund des Satzes IV erhalten wir $B^{*} \in \mathrm{BE}$.
Das bedeutet, daß für jedes System $\varphi \in \Omega$

$$
\sum_{k=0}^{n} \varphi_{k}(x)=o_{x}(\log n)
$$

in $(0,1)$ fast überall, wenn für die Folge λ (7) erfüllt wird. (In [2] haben wir gezeigt, daß diese Abschätzung genau ist.)

Schriftenverzeichnis

[1] F. Móricz - K. Tandori, A characterization of the Banach property for summability matrices, Studia Math., 83 (1986), 263-274.
[2] K. Tandori, Über die orthogonalen Funktionen. I, Acta Sci. Math. (Szeged), 18 (1957), 57-130.
[3] K. Tandori, Über die Mittel von orthogonalen Funktionen. III, Acta Math. Hung., 53 (1989), 23-42.
(Eingegangen am 30. August 1989.)

```
JÓzSEF ATTILA UNVERSITÄT
bolyai institut
H-6720 SZEGED
ARADI VÉRTANÚK TERE 1
```


ON AN ASSERTION OF RIEMANN CONCERNING THE DISTRIBUTION OF PRIME NUMBERS

J. PINTZ* (Budapest)

1. Riemann [8] stated in his famous memoir in 1859 without proof for the number of primes $\leqq x$ the inequality

$$
\begin{equation*}
\pi(x)<\operatorname{Li}(x) \stackrel{\text { def }}{=} \int_{0}^{x} \frac{d t}{\log t} \quad(x>2) \tag{1.1}
\end{equation*}
$$

or more precisely he wrote the following lines (with the notation $\pi(x)=$ $=F(x)$): "Thus the known approximation $F(x)=\operatorname{Li}(x)$ is correct only to an order of magnitude of $x^{1 / 2}$ and gives a value which is somewhat too large, because the nonperiodic terms in the expression of $F(x)$ are, except for quantities which remain bounded as x increases,
$\operatorname{Li}(x)-\frac{1}{2} \operatorname{Li}\left(x^{1 / 2}\right)-\frac{1}{3} \operatorname{Li}\left(x^{1 / 3}\right)-\frac{1}{5} \operatorname{Li}\left(x^{1 / 5}\right)+\frac{1}{6} \operatorname{Li}\left(x^{1 / 6}\right)-\frac{1}{7} \operatorname{Li}\left(x^{1 / 7}\right) \ldots$.
In fact the comparison of $\operatorname{Li}(x)$ with the number of primes less than x which was undertaken by Gauss and Goldschmidt and which was pursued up to $x=$ three million shows that the number of primes is already less than $\operatorname{Li}(x)$ in the first hundred thousand and that the difference, with minor fluctuations, increases gradually as x increases."

The assertion of Riemann was the starting point for a number of interesting and deep investigations. So it was proved e.g. by E. Schmidt [9] in 1903 that (1.1) implies the truth of the famous Riemann hypothesis on the zeros of the zetafunction. Riemann's assertion seemed to be supported by the calculation of D. N. Lehmer [4] who showed its validity for $x \leqq 10^{7}$. But Littlewood [5] disproved it in 1914, i.e. in the same year, showing that $\pi(x)-\mathrm{Li}(x)$ changes sign infinitely often as $x \rightarrow \infty$.

Later even the number $V(Y)$ of sign changes of $\pi(x)-\mathrm{Li}(x)$ in the interval $[2, Y]$ could be estimated from below using Turán's method. Thus S. Knapowski [2] proved for $V(Y)$ the lower bound $c \log \log Y$ in 1961 and this was improved by Knapowski-Turán [3] in 1974 to $c(\varepsilon) \log ^{1 / 4-\varepsilon} Y$. The present author [6] improved this estimate to $c \log Y /(\log \log Y)^{3}$. Later Kaczorowski (Acta Arith. 45(1985), 65-74) improved this result further to

[^17]$c \log Y$. This shows on the one hand that Riemann's assertion is very far from being true.

On the other hand we may quote (with minor changes) some lines from the book of Ingham [1]:
"The above remarks relate only to individual values of x. But the inequality $\pi(x)<\operatorname{Li}(x)$ and Riemann's formula acquire some significance when considered from the point of view of averages, at any rate if the Riemann hypothesis is true. Thus (assuming the Riemann hypothesis in what follows)... we can show that

$$
\begin{equation*}
\int_{2}^{X}(\pi(x)-\operatorname{Li}(x)) d x<0 \quad\left(X>X_{0}\right) \tag{1.2}
\end{equation*}
$$

so that $\pi(x)-\operatorname{Li}(x)$ is 'negative on the average'."
But one can show by standard methods that the inequality (1.2) is true if and only if the Riemann hypothesis is true. (We may note here that in the book of Prachar [7] on p. 260 the truth of the formula (1.2) is mentioned but the words 'under the Riemann hypothesis' are unfortunately missing.)

The above assertion suggests that to decide the weaker version of (1.1), i.e. the assertion ' $\pi(x)-\operatorname{Li}(x)$ is negative on the average' is hopeless at present. This is really the case if we use the most direct interpretation (1.2) (which, under the Riemann hypothesis is probably true even for every $X>2$). The aim of the present work is to show at the same time that it is possible to find a relatively simple type of averaging procedure for which the assertion ' $\pi(x)-\mathrm{Li}(x)$ is negative on the average' is true without any unproved hypothesis. This will show that the assertion (1.1) of Riemann is by far not so wrong as indicated earlier. So we can assert rightly that in a precisely formulated sense $\pi(x)-\mathrm{Li}(x)$ is negative on the average.
2. We shall prove the following

Theorem. For $y>c_{1}$ the inequality

$$
\begin{equation*}
\int_{1}^{\infty}(\pi(x)-\operatorname{Li}(x)) \exp \left(-\frac{\log ^{2} x}{y}\right) d x<-\frac{c_{2}}{y} e^{\frac{9}{16} y} \tag{2.1}
\end{equation*}
$$

where c_{1}, c_{2} are explicitly calculable positive absolute constants.

In the course of proof we shall use the notations

$$
\begin{gather*}
\Pi(x) \stackrel{\text { def }}{=} \sum_{p^{m} \leqq x} \frac{1}{m}=\sum_{m \leqq x} \frac{\Lambda(n)}{\log n}, \tag{2.2}\\
\lg x \stackrel{\text { def }}{=} \sum_{2 \leqq n \leqq x} \frac{1}{\log n} \quad(\lg x=0 \text { for } x<2), \tag{2.3}\\
\Delta_{2}(x)=\Pi(x)-\lg x \tag{2.4}\\
\Delta_{1}(x)=\pi(x)-\operatorname{Li}(x) \tag{2.5}\\
y=4 u \geqq 4 . \tag{2.6}
\end{gather*}
$$

In the proof c_{i} will denote explicitly calculable absolute constants with $c_{i}>0$ except perhaps c_{5}.

By partial integration we get for $\sigma>1$

$$
\begin{equation*}
-\int_{1}^{\infty} \Pi(x) \frac{d}{d x}\left(x^{-s}\right) d x=\sum_{n=1}^{\infty} \frac{\Lambda(n)}{\log n \cdot n^{s}}=\int_{2}^{s} \frac{\zeta^{\prime}}{\zeta}(z) d z+c_{3} \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
\int_{1}^{\infty} \lg x \frac{d}{d x}\left(x^{-s}\right) d x=-\sum_{n=2}^{\infty} \frac{1}{\log n \cdot n^{s}}=\int_{2}^{s}(\zeta(z)-1) d z-c_{4} . \tag{2.8}
\end{equation*}
$$

Adding the above two inequalities we have

$$
\begin{equation*}
\int_{1}^{\infty} \frac{\Delta_{2}(x)}{x^{s+1}} d x=\frac{1}{s}\left\{\int_{2}^{s}\left(\frac{\zeta^{\prime}}{\zeta}(z)+\zeta(z)-1\right) d z+c_{5}\right\} \tag{2.9}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\int_{1}^{\infty} \frac{\Delta_{2}(x)}{x^{s}} d x=\frac{1}{s-1}\left\{\int_{2}^{s-1}\left(\frac{\zeta^{\prime}}{\zeta}(z)+\zeta(z)-1\right) d z+c_{5}\right\} \stackrel{\text { def }}{=} \varphi(s) \tag{2.10}
\end{equation*}
$$

being valid for $\sigma>2$.
Further we shall use the formula ($A>0, B$ arbitrary complex)

$$
\begin{align*}
& \frac{1}{2 \pi i} \int_{(3)} e^{A s^{2}+B s} d s=\exp \left(-\frac{B^{2}}{4 A}\right) \cdot \frac{1}{2 \pi i} \int_{(3)} e^{\left(\sqrt{A} s+\frac{B}{2 \sqrt{A}}\right)^{2}} d s= \tag{2.11}\\
& =\exp \left(-\frac{B^{2}}{4 A}\right) \cdot \frac{1}{\sqrt{A}} \cdot \frac{1}{2 \pi i} \int_{(0)} e^{z^{2}} d z=\frac{1}{2 \sqrt{\pi A}} \exp \left(-\frac{B^{2}}{4 A}\right) .
\end{align*}
$$

(2.10) and (2.11) together give

$$
\begin{gather*}
U \stackrel{\text { def }}{=} \frac{1}{2 \sqrt{\pi u}} \int_{1}^{\infty} \Delta_{2}(x) \exp \left(-\frac{\log ^{2} x}{4 u}\right) d x= \tag{2.12}\\
=\int_{1}^{\infty} \Delta_{2}(x) \cdot \frac{1}{2 \pi i} \int_{(3)} e^{u s^{2}} \cdot x^{-s} d s d x=\frac{1}{2 \pi i} \int_{(3)} e^{u s^{2}} \varphi(s) d s .
\end{gather*}
$$

Instead of $\sigma=3$ we can integrate on the broken line ℓ defined for $t \geqq 0$ by

$$
\left\{\begin{array}{lll}
I_{1}: \sigma=3 & \text { for } t \leqq 3 \tag{2.13}\\
I_{2}: 1.1 \leqq \sigma \leqq 3 & \text { for } t=3 \\
I_{3}: \sigma=1.1 & \text { for } & 0 \leqq t \leqq 3
\end{array}\right.
$$

and for $t \leqq 0$ by reflection on the real axis since $\varphi(s)$ is obviously regular right of ℓ and on ℓ. Further we have

$$
\begin{equation*}
|\varphi(s)| \leqq c_{6} \quad \text { for } \quad s \in \ell \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|e^{u s^{2}}\right| \leqq e^{\frac{9}{8} u} \quad \text { for } \quad s \in \ell \tag{2.15}
\end{equation*}
$$

Thus we have

$$
\begin{align*}
& |U|=\left|\frac{1}{2 \pi i} \int_{(\ell)} \varphi(s) e^{u s^{2}} d s\right| \leqq \frac{c_{6}}{2 \pi} \int_{(\ell)}\left|e^{u s^{2}}\right||d s| \leqq \tag{2.16}\\
& \leqq \frac{c_{6}}{2 \pi}\left(10 e^{\frac{9}{8} u}+2 \int_{3}^{\infty} e^{\left(9-t^{2}\right) u} d t\right) \leqq 2 c_{6} e^{\frac{9}{8} u} .
\end{align*}
$$

3. On the other hand by Chebyshev's theorem

$$
\begin{equation*}
\Pi(x)-\pi(x) \geqq \frac{1}{2} \pi(\sqrt{x})>c_{7} \frac{\sqrt{x}}{\log x} \tag{3.1}
\end{equation*}
$$

and by the trivial remark

$$
\begin{equation*}
\lg x=\operatorname{Li}(x)+O(1) \tag{3.2}
\end{equation*}
$$

we have

$$
\begin{equation*}
\Delta_{2}(x)-\Delta_{1}(x)>c_{8} \frac{\sqrt{x}}{\log x} \quad \text { for } \quad x>c_{9} \tag{3.3}
\end{equation*}
$$

From this we get

$$
\begin{gather*}
\int_{1}^{\infty}\left(\Delta_{2}(x)-\Delta_{1}(x)\right) \exp \left(-\frac{\log ^{2} x}{4 u}\right) d x> \tag{3.4}\\
>\int_{c_{9}}^{e^{3 u}} c_{8} \frac{\sqrt{x}}{\log x} \exp \left(-\frac{\log ^{2} x}{4 u}\right) d x+O(1)> \\
>\frac{c_{8}}{3 u} \int_{c_{9}}^{c^{3 u}} \sqrt{x} \exp \left(-\frac{3 \log x}{4}\right) d x+O(1)=\frac{4}{3} \cdot \frac{c_{8}}{3 u} \cdot e^{\frac{9}{4} u}+O(1) .
\end{gather*}
$$

Now (2.16) and (3.4) together prove our Theorem.

References

[1] A. E. Ingham, The distribution of prime numbers, Cambridge, University Press, 1932.
[2] S. Knapowski, On the sign changes in the remainder term in the prime number formula, Journ. London Math. Soc., 36 (1961), 451-460.
[3] S Knapowski and P. Turán, On the sign changes of $(\pi(x)-\operatorname{li} x)$, I, Topics in Number Theory, Coll. Math. Soc. János Bolyai, 13., North-Holland P. C. (Amster-dam-Oxford-New York, 1976), pp. 153-169.
[4] D. N. Lehmer, List of primes from 1 to 10006 721, Carnegie Inst. Wash., Publ. No. 165 (Washington D. C., 1914).
[5] J. E. Littlewood, Sur la distribution des nombers premiers, C. R. Acad. Sci. Paris, 158 (1914), 1869-1872.
[6] J. Pintz, On the remainder term of the prime number formula IV, Sign changes of $\pi(x)$ - li x, Studia Sci. Math. Hung., 13 (1978), 29-42.
[7] K. Prachar, Primzahlverteilung (Berlin-Göttingen-Heidelberg, 1957).
[8] B. Riemann, Über die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsh. Preuss. Acad. Wiss. (Berlin, 1959), pp. 671-680.
[9] E. Schmidt, Über die Anzahl der Primzahlen unter gegebener Grenze, Math. Ann., 57 (1903), 195-204.
(Received September 26, 1989)

[^18]

Manuscripts should be typed on standard size paper (25 rows; 50 characters in each row). When listing references, please follow the following pattern:
[1] G. Szegő, Orthogonal polynomials, AMS Coll. Publ. Vol. XXXIII (Providence, 1939). [2] A. Zygmund, Smooth functions, Duke Math. J., (1945), 47-76.

For abbreviation of names of journals follow the Mathematical Reviews. After the references give the author's affiliation.

If your manuscript is prepared by a word processor (possibly AMS or plain $T_{E} X$), please provide the floppy disk as well. This will speed up processing the paper.

Authors will receive only galley-proofs (one copy). Manuscripts will not be sent back to authors (neither for the purpose of proof-reading nor when rejecting a paper).

Authors obtain 100 reprints free of charge. Additional copies may be ordered from the publisher.

Periodicals of the Hungarian Academy of Sciences are available at the following addresses:

AUSTRALIA
C.B.D. LIBRARY AND SUBSCRIPTION SERVICE 39 East Splanade
P.O. Box 1001, Manly N.S.W. 2095

AUSTRIA

GLOBUS, Höchstädtplatz 3, 1206 Wien XX

BELGIUM

OFFICE INTERNATIONAL DES PERIODIQUES
Avenue Louise, 485, 1050 Bruxelles
E. STORY-SCIENTIA P.V.B.A.
P. van Duyseplein 8, 9000 Gent

BULGARIA
HEMUS, Bulvar Ruszki 6, Sofia
CANADA
PANNONIA BOOKS, P.O.Box 1017
Postal Station " B ", Toronto. Ont. M5T 2 T8

CHINA

CNPICOR, Periodical Department, P.O.Box 50 Peking

CZECH AND SLOVAK FEDERAL. REPUBLIC

 MAD'ARSKA KULTURA, Národni trida 22 11566 PrahaPNS DOVOZ TISKU, Vinohradská 46, Praha 2
PNS DOVOZ TLAČE, Bratislava 2

DENMARK

EJNAR MUNKSGAARD, 35, Norre Sogade 1370 Copenhagen K

FEDERAL REPUBLIC OF GERMANY KUNST UND WISSEN ERICH BIEBER
Postfach 102844
7000 Stuttgart 10
FINLAND
AKATEEMINEN KIRJAKAUPPA, P.O.Box 128 00101 Helsinki 10

FRANCE

DAWSON-FRANCE SA., B.P. 40, 91121 Palaiseau OFFICE INTERNATIONAL DE DOCUMENTATION ET LIBRAIRIE 48 rue Gay-Lussac 75240 Paris, Cedex 05

GREAT BRITAIN

BLACKWELL'S PERIODICALS DIVISION
Hythe Bridge Street, Oxford OX1 2ET BUMPUS, HALDANE AND MAXWELL LTD. Cowper Works, Olney. Bucks MK46 4BN COLLET'S HOLDINGS LTD., Denington Estate, Wellingborough, Northants NN8 2QT WM DAWSON AND SONS LTD., Cannon House Folkstone, Kent CT19 5EE

GREECE

KOSTARAKIS BROTHERS INTERNATIONAL
BOOKSELLERS, 2 Hippokratous Street, Athens-143

HOLLAND

FAXON EUROPE, P.O.Box 167
1000 AD Amsterdam
MARTINUS NIJHOFF B.V.
Lange Voorhout 9-11, Den Haag
SWETS SUBSCRIPTION SERVICE
P.O.Box 830, 2160 Sz Lisse

INDIA
ALLIED PUBLISHING PVT. LTD.
750 Mount Road, Madras 600002
CENTRAL NEWS AGENCY PVT.LTD.
Connaught Circus. New Delhi 110001
INTERNATIONAL BOOK HOUSE PVT. LTD.
Madame Cama Road, Bombay 400039

ITALY

D. E. A., Via Lima 28, 00198 Roma INTERSCIENTIA, Via Mazzé 28, 10149 Torino LIBRERIA COMMISSIONARIA SANSONI
Via Lamarmora 45, 50121 Firenze
JAPAN
KINOKUNIYA COMPANY LTD.
Journal Department P.O.Box 55
Chitose, Tokyo 156
MARUZEN COMPANY LTD., Book Department P.O.Box 5050 Tokyo International, Tokyo 100-31 NAUKA LTD., Import Department
2-30-19 Minami Ikebukuro, Toshima-ku, Tokyo 171
KOREA
CHULPANMUL, Phenjan

NORWAY

S.A. Narvesens Litteraturjeneste

Box 6125, Etterstad
1000 Oslo
POLAND
WĘGIERSKI INSTYTUT KULTURY
Marszalkowska 80, 00-517 Warszawa
CKP I W. ul. Towarowa 28, 00-958 Warszawa
ROUMANIA
D.E.P. Bucuresti

ILEXIM, Calea Grivitei 64-66, Bucuresti

SOVIET UNION

SOYUZPECHAT-IMPORT, Moscow
and the post offices in each town meZhDunarodnaya kniga, Moscow G-200

SPAIN
DIAZ DE SANTOS Lagasca 95, Madrid 6

SWEDEN

ESSELTE TIDSKRIFTSCENTRALEN
Box 62, 10120 Stockholm

SWIT ZERLAND

KARGER LIBRI AG, Petersgraben 31, 4011 Basel

USA

EBSCO SUBSCRIPTION SERVICES
P.O.Box 1943, Birmingham, Alabama 35201 F.W. FAXON COMPANY, INC.

15 Southwest Park, Westwood. Mass. 02090
MAJOR SCIENTIFIC SUBSCRIPTIONS
1851 Diplomat, P.O.Box 819074,
Dallas, Tx. 75381-9074
REDMORE PUBLICATIONS, Inc.
22 Cortlandt Street, New York, N.Y. 1007
YUGOSLAVIA
JUGOSLOVENSKA KNJIGA, Terazije 27. Beograd
FORUM, Vojvode Misicića 1. 21000 Novi Sad

[^0]: DEPARTMENT OF MATHEMATICS
 CAMERON UNIVERSITY
 LAWTON, OK 73505
 USA

[^1]: KATEDRA RIADENIA VÝROBNÝCH PROCESOV
 BANÍCKEJ FAKULTY TECHNICKEJ UNIVERZITY
 B. NĚMCOVEJ Č. 3 .

 04200 коšice
 CZECHOSLOVAKIA

[^2]: LEHRSTUHL A FÜR MATHEMATIK
 DER RWTH AACHEN
 D-5100 AACHEN
 TEMPLERGRABEN 55

[^3]: ${ }^{1}$ Research partially supported by the United States-Israel Binational Science Foundation (BSF), Publ. 327.

[^4]: institute of Mathematics
 L. KOSSUTH UNIVERSITY

 EGYETEM TÉR 1
 H-4010 DEBRECEN, PF. 12
 HUNGARY

[^5]: ${ }^{1}$ Research supported in part by Grants 273 and 400 from the Hungarian National Foundation for Scientific Research.

[^6]: ${ }^{1}$ The research is financially supported by the Hungarian Research Foundation No. 907.

[^7]: UNIVERSITY OF PADERBORN
 D-4790 PADERBORN
 WARBURGER STRASSE 100
 BRD

[^8]: *This paper was completed while the first named author visited the University of Florida in Gainesville. Research partially supported by Hungarian National Foundation Research Grant No. 1801.

[^9]: EÖTVÖS LORÁND UNIVERSITY
 MATHEMATICAL INSTITUTE
 MÚZEUM KRT. 6-8
 H-1088 BUDAPEST, HUNGARY

[^10]: * This work had been done while the author was a visiting professor at Temple University, Philadelphia. It was financially supported by the Hungarian Research Fund No. 907.

[^11]: DIVISION OF PHYSICAL SCIENCES
 AND RELATED TECHNOLOGIES
 PRESTONSBURG COMMUNITY COLLEGE
 UNIVERSITY OF KENTUCKY PRESTONSBURG, KY 41653
 U.S.A.

[^12]: *Supported by the National Natural Science Foundation of China.

[^13]: * This project has been completed with the financial support of the Committee for Science at the Council of Ministers of Bulgaria under contract N 402.

[^14]: * This work has been done during the term the author was a visiting professor at Temple University (Philadelphia). Research is supported by Hungarian Research Foundation No. 907.

[^15]: UNIVERSITY COMPUTER CENTER
 BUDAPEST, BOGDÁNFY U. 10/B H-1117

[^16]: ${ }^{1}$ Research supported in part by the Hungarian National Foundation for Scientific Research, Grant \# 1801.
 ${ }^{2}$ Prepared while both authors were visiting Old Dominion University, Norfolk, Virginia 23529.

[^17]: * Research supported by Hungarian National Foundation for Scientific Research Grant No 1811.

[^18]: MATHEMATICAL INSTITUTE
 OF THE HUNGARIAN ACADEMY OF SCIENCES
 H-1053 BUDAPEST, REÁLTANODA U. 13-15 HUNGARY

