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ON THE APPROXIMATE SOLUTIONS OF 
NON-LINEAR FUNCTIONAL EQUATIONS 

UNDER MILD DIFFERENTIABILITY CONDITIONS
I. K. ARGYROS (Lawton)

Introduction. The present note concerns the examination of Newton’s 
method under assumptions different than those of L.V. Kantorovich [3] and
M. Altman [1], [2].

In [3] the Fréchet-differential must have a continuous inverse. The exam­
ination of the existence of this inverse and the estimate of its norm presents 
the greatest difficulty for the application of Kantorovich’s method.

In [2] the above difficulty is eliminated. However one of the assumptions 
made is that the norm of the second Fréchet-differential must be bounded. 
The computation of such a norm is a difficult task in general.

One can refer to [4], [5] and the references there for a further study on 
Newton’s method.

Here we generalize the above methods under the assumption that the 
Fréchet-differential is only Hölder continuous on some closed sphere S(xo, r) 
centered at the initial guess Xo and of radius r > 0. Some interesting exam­
ples are provided where our method can be applied whereas the two men­
tioned above cannot.

Let A  be a Banach space and let F (x), x £ X  be a nonlinear continuous 
functional defined on S(xo,r).

Consider the nonlinear functional equation

(1) F (x) = 0.

We suppose that F(x) is a Fréchet-differentiable on S ( xq , r) and denote 
by /(x )  = F'(x) the Fréchet-differential of F(x).

Setting /о = /(xo) = F'{xo) for some у £ X , we introduce, as in [2], the 
iteration

( 2) x\ = x0 -
F(x  q)
М у)

2/» ®n+l — ®n
f o ( y )

у, n — 0, 1, 2, . . . ,

to solve (1).
We will need the following:
Definition . Assume that F  is Fréchet-differentiable and F '(x)  is the 

first Fréchet-differential at a point x. We recall that F'(x) £ X(X, R), the 
space of bounded linear operators from X  to R. We say that the Fréchet- 
differential is Hölder continuous over a domain R  if for some c > 0, p £ [0.1],
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and all x ,y  G R

(3) И ») -  П »)1 S Ф  -  sir
In this case we say that F'(x) G Яд(с,р).

We include the following lemma for completeness [3].

Lemma. Let F  : X  —► R and D  Q X . Assume D is open and that F'( 
G Я до(с,р) fo r some convex Do Q D. Then for all x, у G Do

(4) |F (* ) -  F(y) -  F \x ) ( x  -  j/)| ^  - L - \ \ x  -  уЦН-i.
P+  1

Theorem. Suppose:
(a) that there exists xq G X  and numbers D ,B ,r  such that

(5) № o ) |  ^  D,

( 6)

and

(7)

0 <  r  <
1

l
v

,(P +  1)Яс

Bcrp+1 -  r + D B ^  0;

(b) the linear operator F '(x) G Яд(с,р) where R = S (x0,r ) .
Then the sequence defined by (2) converges to a solution x * G S(xo, r

( 1 ).
Moreover, the following estimate holds:

( 8) < (Bcrp)n 
1 -  Bcrp £>£.

P roof. By (2) we obtain 

(9) /o(*o -  ®n+i) =  F(xn);

Since,

(19) fo(x o ~  ^ n + i) == Я (х п ) — F(xn—i ) — fo{xn — xn_ j) ,

using (2), (9) and  (10)

ll*»+i -  *»ll = in*») -  n*»-i) -  -F”(*o)(*n -  * .-i)| •

A d a  M athem alica H ungarica 58, 1991



APPROXIMATE SOLUTIONS OF NONLINEAR FUNCTIONAL EQUATIONS 5

By (4) and (5)

(H ) ||*„+i -  zn|| < B - c - r p - ||xn -  xn_i||.

Therefore,

(12) ||xn+g -  xn || < [(Bcrpy  + (Б е г у - 1 +  - • • + (2?crp)]||xn -  хп_г|| ^

< 1 -  (Всгр)ч 
1 — (BcrP)

(Bcrp)n||xi -  zo|| < 1 -  (BcrpY  
1 — (BcrP)

(Bcrp)n D B.

By the choice of r  the right hand side of (12) shows that {xn} is a Cauchy 
sequence in a Banach spaces X  and as such it converges to an element 
x* £ X .

Letting q —> oo in (12) we obtain (8), from which it also follows by the 
choice of r that xn £ S(xo, r), n = 0, 1,2, ----

Note that x* £ 5(xo, r) by (8) and the fact that 5(xo, r) is a closed ball. 
Finally by (9) it follows immediately that x* is a solution of (1).

That completes the proof of theorem.
Remarks, (a) The real function g defined by

g(r) = Bcrp+1 — r + DB

is such that ^(0) =  D B  > 0 and

g'(r) = (p + l)B crp — 1 < 0.

If (6) was not satisfied then g(r) > 0 for all r  £ [0,+oo].
(b) The condition

0 < г <

is sufficient for the convergence to zero of the right hand side of (12).
(c) In practice r will be chosen to be the minimum positive number 

satisfying (5) and (6) in order to minimize the error estimate (8).
(d) For p =  1, Theorem 2 in [1] follows as special case of the above 

theorem.
Example 1. Consider the function G defined on [0,6] by

G(t) = Иt3/2 + t -  3

for some b > 0.
Let У II denote the max norm on R, then

||G"(i)|| = max11 t€[0,6]
- Г 1' 2 = oo,

Acta Mathcmatica Hungarica 58, 1991



6 I. К. ARGYROS

which implies that the basic hypothesis on ||G"(t)|| in [2] and [3] for the 
application of Newton’s method is not satisfied for finding a solution of the 
equation

(13) G (t) = 0.

However, it can easily he seen th a t G'(t) is Holder continuous on [0, b] with 
c =  1 and p =  Therefore, under the assumptions of the theorem, iteration 
(2) will converge to a solution t* of (13).

A more interesting nontrivial application is given by the following exam­
ple. However it concerns only Newton’s iteration

(14) xn+i =  xn -  F '(x n)- 1F (xn).

to solve the nonlinear equation F (x)  = 0 in X . Note that we do not pursue 
the goal of providing sufficient conditions for the convergence of (14), since 
this has already been done in [6].

E xample 2. Consider the differential equation

x" +  x1+p = 0, p  G [0,1], x(0) = x (l)  =  0.

We divide the interval [0,1] into n subintervals and we set h = Let 
{и*,} be the points of subdivision with

0 = v0 < v\ < • • • < vn =  1.

A standard approximation for the second derivate is given by 

n %i—1 2xt- -f- x,+1
h 2

-, xt- = x(vi), i =  1 ,2 , . . . ,  n — 1.

Take xo = xn = 0 and define the operator F :R n 1 —► Rn 1 by

F(x) =  H(x)  -f h?<p(x),

H  =

Then

‘ 2 
-1

-1  
2 '• 0

, <p(x) =
r ^ l
x^+P , and x =

' x x
x2

0 • -1  
-1  2 .

' x i

к +л .

0 *

X n -l.

F '(x ) = H + h \ p +  1)

‘'n -l

Acta Mathematica Hungarica 58, 1991



APPROXIMATE SOLUTIONS OF NONLINEAR FUNCTIONAL EQUATIONS 7

Newton’s method cannot be applied to the equation F (x ) =  0.
We may not be able to evaluate the second Fréchet-derivative since it 

would involve the evaluation of quantities of the form x~p and they may not 
exists.

Let x G R"-1 , H  G Rn_1 x Rn_1 and define the norms of x and H by

П — 1
\X\\ == max |x ,|, \\H\\ = max V  \hjk \.

1 b j S n —1 1 < j < n - l  f —'к=1

For all x , z  6 R "  1 for which |x,| > 0, |x,| > 0, г = 1,2, —1 we
obtain, for p = \  say,

1И * )  -  F \ z )II = diag{ ( 1 + 0 д2 (x5/2_zi /2)}
3 ,2= - h  max2 i=i^n—l x 1' 2 -  2J  3 < [max IXj -  Zj\]l /2 = h 2\\x -  z\\
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THE DEGREE OF APPROXIMATION OF 
DIFFERENTIABLE FUNCTIONS BY 

HERMITE INTERPOLATION POLYNOMIALS
R. SAKAI (Aichi Nishikamo)

1. In tro d u c tio n
We denote the zeros of the Chehyshev polynomial Tn(x) =  cos nt, x = 

= cost, by

Sn : г* = cosflfc, вк =  (2fc -  1)7г/(2 п), к =  1 ,2 , . . . ,  n.

Let /  G C[—1,1], and let Ln[f; x] be the Lagrange interpolatory polyno­
mial corresponding to the abscissas Sn. If /(x )  has the modulus of continuity 
w (e) = o(| log(£)I 1), then Ln[/;x ] —♦ /(x ), - 1  < x < 1 (see [5, p. 337]). On 
the other hand, if we consider the Hermite-Fejér interpolatory polynomial 
H2n -i[ fi x] of degree 2n — 1 such that

#2n -i[/;*Jfc] =  /(X fc), Н!2п_ 1[/-,Хк] = 0, к =  l , 2 , . . . , n ,

then we have

|/(х)-Я 2„_,1/;*]| =

= o(i)[(T„2(x)/n) (1 -  x2)1' 2/*) + •»(/: i/fc2)> + <»(/; |t„(x)|/»)]
k=l

for any continuous function /  on [—1, 1] (see [1]).
In this paper we consider an interpolation problem of the smoother func­

tions. We can show the following.
T heorem . I f  f  G Cv[ - 1 ,1 ] we have an interpolatory polynomial Lp,n[ /;  x] 

of degree n(p +  1) — 1 such that

Lpll[f’, x i\ = f (kKx i), i = 1, 2, к = 0, 1, . . . , p,

and
11/(9 -  ip .n l/; -I II =  0 (l){ lo g (n )} n -^  (/M ; n - 1)  ,

where | |/ | | is the maximum norm on [—1, 1], and w(f ; t )  is the modulus of 
continuity of f .
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2. P re lim inar ies  a n d  proof o f  t h e  theo rem

Let p be a fixed integer, and let /  G Cp[— 1,1]. Define

Hrin(x) = [Tn{x)l{T'n{xi)(x  -  x,)}]P+1 £  A rin(j)(x  -
j= T

^т1гХХч) =  firk îqi r ,k  = 0, 1, . . .  ,p, i, q = 1, 2, . . . ,  n,
where Ar,n(y) are the coefficients depending on r, i and n, and 6Tk =  1 if 
r =  к, = 0 if г ф к.

Now, we define an Hermite intepolatory polynomial by

L [ f ; x) =  x] =  É  / (fc)(* .)^ m (* )
i=l k=0

which is uniquely defined for each /  G C[—1,1], and is of degree at most 
n(p +  1) — 1. To prove our theorem we need the Gopenganz-Malozemov- 
Teliakovskii theorem (see e.g. [2]) as follows.

Lemma 1. For each f  G Cp[—1,1] we have a polynomial Pn of degree n 
such that

(l) |/<‘)(х)-р(‘>(*)| = о(1){Д„(х)}>'-1»(/('',;Дл(*)), * = o,i..... p,
where Д„(я) = n -1 { (l — x2)1/2 +  n -1 }.

The following lemma is concerned with the Lebesgue function of the 
operator Lp<n[f ].

Lemma 2. We have

( 2 )
(•X i/n Y q - 1 
( X i / n y

if 19 -  0,| ~  q/n, 
if  Iв -  0, | < 1/n,

where X,- = sin0,-, i = 1 , 2 , r = 1 , 2 , and A n ~  Bn means 
С1 < А п/ Bn < C2, n = 1, 2, . . .  fo r some positive constants C\, and C?.

P roof. By [5, (7.32.10)] we have

|TW(x,)| =  0 ( l ) (n /X ,) fc, * = 1,2, ,n,  A; =  1 ,2 , . . . ,

thus by the induction concerning j  we see

\ArinU)\ = 0 ( l ) ( X i / n y - \  
j  = r ,r  +  l , . . . , p ,  r  =  0, 1, . . .  ,p, i = l , 2, . . . , n .

Acia Mathematica Hungarica 58, 1991



APPROXIMATION OF DIFFERENTIABLE FUNCTIONS 11

If I в  — 6i \ ~  q /n  then

1/1*  -  * i| =  0 ( l ) { n / ( i X , - ) } ,

thus we have

[Тп(*)/{Т'(*.-)(* -  x,)}]p+1 A rin(j)(x  -  x ty

=  0 ( 1)
Í (X i / n ) rq 1 if 
l  (X i / n Y  if

if \в — 0,| ~  q/n, 
if \в -  0{\ <  1/n .

Consequently we have (2). □
Proof of Theorem 1. Let /  G Cp[—1,1] and let Pn satisfy (1). By 

Lemmas 1 and 2 we have

I£p,n[/; *] -  /(* ) | = l^P,n[/ -  P„; x] + Pn(x) -  /(* ) | =
n  p

= o ( i ) £ 2 > ‘- ’  w ( f ^ ; n  J)n kq 1 = O(l){log(n)}n pw ( f ^ ; n  x). □
q=1 k=0

Acknowledgement. The author wishes to thank the referee for helpful 
suggestions.
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A NOTE ON DOMINATED SPACES

C. R. BORGES (Davis)

A topological space X  is said to be (compactly) dominated by the family 
K, =  {K a}ae\  of (compact) subsets of X  provided that А  С X  is closed iff 
A  has a closed intersection with every element of some subcollection K,\ 
of K, which covers A. X  is said to have the weak topology over the family 
5  = {£*} ae д of closed subsets of X  provided that А С X  is closed iff A  has a 
closed intersection with each Sa E S . A  family C = {Ca }agr of subsets of X  
is said to be (hereditarily) closure-preserving provided that, for any Ti С Г 
(and Da C Ca, U D~ = ( (J Da)~). IJ c <* = ( U Ca)~. It is clear

абГх аСГх аеГх абГх
that locally finite collections of subsets of a space X  are hereditarily closure­
preserving. Example 2 shows that closure-preserving collections may fail 
to be hereditarily closure-preserving. (An interesting study of hereditarily 
closure-preserving collections of sets appears in [1].)

Theorem 2.10 of [2] claims that a space X  is dominated by a closed 
covering (Аа}а6л iff the natural map q : \J Aa —»> X  from the disjoint

<*ел
topological union of all the A a (precisely, \J Aa = (J A a x  {a}), is а

ar€A a£A
closed continuous map. Unfortunately, this result is false, as the following 
simple example shows.

Example 1. Let I  = [0,1] be the closed unit interval with the topology 
inherited from the real line. For each те, let An = [0, ^]. Clearly, X  is 
dominated by {А„|те E w} but the natural map q : V Ai —̂► X  is not

п£ш
closed; for example, letting A  = {(^,rc) |те = 1 ,2 ,. . .} , we get tha t A is a 
closed subset of V An but q(A) = {^|те = 1 ,2 ,...}  is not a closed subset

n£oI
Of / .

It is well-known that if A is a CW-complex of Whitehead (i.e. К  is a 
simplicial complex with the weak topology over the family {за}аел of closed 
simplexes in К ) then К  is dominated by {за}аел- However, it is still not 
always true that the natural map q : \ /  sa К  is a closed continuous map,

as the following example shows.
Example 2. Let К  be the CW-complex with (distinct) vertices i/n , n £ w , 

whose closed simplexes are sn = ( i^ , . . . ,  un)~, for n £ u . Pick a se­
quence { in} in the open 1-simplex (z î, v2) which converges to v\. Then
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А = {(ж„,п)|те =  1 ,2 ,...}  is a closed subset of V sn = (J sn x {n}, but
n£u

the natural map q : \J sn —► К  maps A  to the non-closed subset {a:n|n G w}
nGw

of К . Furthermore, К  does not have a hereditarily closure-preserving cover 
by compact spaces (we thank the referee for this simple argument): Assume 
C — {Ca}aer is a hereditarily closure-preserving cover of К  by compact 
spaces. Then each point of {v \,v f)  belongs to infinitely many Ca's (because 
К  is not locally compact at any point of ( i 'i ,^ ) ) .  Again, pick a sequence 
{ж„} in (iq,i/2) which converges to v\. Then there is a sequence {а„} С Г 
such that an ф a m if n ф m  and xn G Can. This shows that C is not 
hereditarily closure-preserving.

Example 2 shows that Corollaries 2.12 and 3.6 of [2] are false. Later, we 
will give correct versions of these results.

In light of the preceding examples, the following results are essentially 
best possible and quite useful.

P roposition 3. Let A  = {Аа }о£л be a closed cover of a space X . Then
(a) X  has the weak topology over A  iff the natural map q : \f Aa —> X

аел
is a quotient map.

(b) X  is dominated by A  iff A  is closure-preserving and, for each С C 
A , UC has the weak topology overC.

(c) A is dominated by A  iff the natural map q : V A a —> X  satisfies
а£Л

the following condition: For each Г C A, q{ \J A a) is a closed subset o f X
aer

and q\ V Aa : \J —► (J Aa is a quotient map.
абГ абГ абГ

(d) If A  is hereditarily closure-preserving then X  is dominated by A .
P roof. Part (a) is well-known (see Theorem VI. 8.5 of [3]). Part (b) 

follows immediately from the pertinent definitions. Part (c) is a restatement 
of part (b).

Part (d). Let A be a subset of X  and {Аа }а6д a subfamily of A  which 
covers A such th a t АГ\Аа is closed in Aa , for each a G Д. Then, (АПАа }аед 
is closure-preserving, which implies that

A = ( J  A n A a = ( J  (А П Aa)~ = Í ( J  А П A a j  = A.
а£Д а£Д Vor 6 A /

This proves th a t A is closed, which completes the proof.
It is noteworthy that Proposition 3(b) cannot be weakened to “X  is 

dominated by A iff A is closure-preserving and X  has the weak topology 
over A”, as the following example shows.

E xample 4. Let I  be the space of Example 1. For n =  2 ,3 ,. . . ,  let 
An = {0} U [£, l] ; let Ai = I . Clearly, {A„}„eu) is closure-preserving, and I
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has the wak topology over {An}n^w. However, (An}neu, does not dominate 
7, since the set A  = ]0 ,1] has a closed intersection with An, for n =  2 ,3 , . . . ,

OO

and A c  U A n, but A  is not closed.
n=2

The following well-known example further illustrates the subtleties of the 
concepts in Proposition 3.

Example 5. Let fl be the space of countable ordinals with the order 
topology. For each a E fi, let Aa =  {ß  £ tl\ß < a}. It is well-known and 
easily seen that X  has the weak topology over A  =  {Aa }a6n. By Theorem 
8.2 of [4], X  is not dominated by A  (because each A a is paracompact but X 
is not paracompact). No subover of A  is closure-preserving!

Theorem 6. Let A  =  (Аа}аел be a closed cover of a space X . The 
natural map q : V A a —+ X  is a closed continuous map iff A  is hereditarily

a£A
closure-preserving.

P roof. The “only i f ’ part is obvious. The “if ’ part is trivial.
The following result corrects Corollary 2.12 of [2].

P roposition 7. A space X  is a closed continuous image of a disjoint 
topological union of compact spaces iff X  has a hereditarily closure-preserving 
cover by compact subspaces.

P roof. Immediate from Theorem 6.

Lemma 8. Let f  : X  —*■ Y  be a closed continuous map from X  into Y . I f  
a£\ is a hereditarily closure-preserving collection o f subsets o f X  then 

{ f ( A a)} аел is a hereditarily closure-preserving collection of subsets o f Y .

P roof. Let Ai С Л and pick Ba C f ( A a), for each a  6 Ai. Next, for 
each a  6 Ai, pick Ca C A a such that f { Ca) = Ba. Since, by hypothesis,

U C~ = 1  U C„ and /  is closed continuous (equivalently, f ( A ~ ) = 
<*€Лх yoreAi )
= f (A) ,  for any subset A  of X ), we get that

U  = U  7 Ш  = U  / т а  = / ( и  с . )  =
orgAi or€Ai абЛ х aG Ai

= / (  U  c - )  =  Ц П . .
qí€Ai ck̂ Ai

This proves that {/(А а )}аел is hereditarily closure-preserving, which com­
pletes the proof.

The following result corrects Corollary 3.6 of [2].
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T heorem 9. A space Y  has a hereditarily closure-preserving cover by 
compact sets iff Y  is the closed continuous image of a locally compact para- 
compact space.

P roof. The “only if” part follows immediately from Theorem 6.
The “if” part. Let X  be a locally compact paracompact space and /  : 

X  —► Y  be a closed continuous map onto У. Let U be an open cover of X  
such that, for each U € U, U~ is a compact subspace of X .  Let {Аа}аел be 
a locally finite closed refinement of U. Then, by Lemma 8, { f ( A a)}a^ \  is a 
hereditarily closure-preserving cover of Y  by compact sets. This completes 
the proof.

Our last result yields a correct proof of Theorem 3.3(a) of [2].
T heorem 10. Let f  : X  —► Y be a closed continuous function onto Y . I f  

X  is dominated by {Ха}аел then Y  is dominated by { /(Х а )}аел-
P roof. First note that each f ( X a) is a closed subset of Y. Now, let 

В  C U  f ( X a), Г C A, such that В  П f ( X a) is closed, for each a  6 Г. Then
а£Г

f ~ x(B П f { X a )) is closed in X , for each a G Г; therefore f ~ 1(B) П X a = 
= f ~ x(B П f ( X a)) П X a is closed in X a, for each a E Г. Let A = f ~ 1(B)d  
fl( (J Xa). Then A is closed in X  (because A  D X a = / - 1(5 )  ПХа , for each 

aer
a e Л) and f ( A )  = В  П/ (  (J X a) = (J (ВП / ( X a )) = B,  which shows that

с*€Г а£Г
В  is closed and completes the proof.
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ATTRACTORS OF SYSTEMS CLOSE TO 
AUTONOMOUS ONES HAVING A 

STABLE LIMIT CYCLE
N. V. MINH and T. V. NHUNG (Hanoi)

1. Introduction. M. Farkas [2] has obtained useful explicit estimates for 
the radius of attractivity of systems close to periodic ones by using quadratic 
forms as Lyapunov functions. One of his main assumptions is that periodic 
unperturbed systems have a uniform asymptotically stable nonconstant pe­
riodic solution. This condition is needed for applying Yoshizawa’s theorem 
[11, p. 134] to get the estimates mentioned above. The case of systems 
close to autonomous ones having an asymptotically stable equilibrium state 
is also considered by Farkas [4]. As interesting illustrations, Farkas’ results 
are applied to some important second order nonlinear differential equations, 
e.g. Duffing equation [3] and van der Pol equation in case time tends to — oo
[4].

In this paper we consider the case in which unperturbed systems are 
assumed to be autonomous and to have an asymptotically, orbitally stable 
non constant periodic solution (a stable limit cycle), e.g. van der Pol equa­
tion in case time tends to -f oo. Unfortunately, Farkas’ estimates in [2] are 
inapplicable to this case, because now the graph of the periodic solution is 
not a uniform asymptotically stable set. However, if we note that the orbital 
stability of the closed path of the periodic solution in R", say Г, is equivalent 
to the stability of the cylinder R x Г, then R x Г is a uniform asymptotically 
stable set of the autonomous unperturbed system. Therefore, by applying 
Lyapunov functions and the theorems due to Yoshizawa and La Salle respec­
tively, we can get the inequalities characterizing a uniform asymptotically 
stable invariant set around the cylinder R x Г (but not around the graph of 
the periodic solution as in Farkas’ case, [2]!) and its region of attractivity. 
To use Farkas’ idea of construction of Lyapunov functions in the quadratic 
forms [2, 41, we shall introduce a local coordinate system [5, 10] into a small 
“tube” around Г.

2. Let us consider the autonomous system
(2.1) x = g(x)
where • = d/dt,  t £ R, x = co l(xi,. . .  ,x„) £ Cl C R", fl is some open 
region of R", g : fi —♦ Rn is smooth enough, e.g. g £ C2[fI,R"]. Assume 
further that the system (2.1) has a nonconstant periodic solution x = p(i) of 
(least) period r  > 0 such that its path Г lies in ÍI, and n — 1 characteristic 
multipliers of the variational system
(2.2) ir = g'(p(t))z
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are in modulus less than one: |A,j < 1, i = 1 , . . . ,  n — 1 (A„ = 1). Under these 
conditions it is well-known by the theorem of Andronow and W itt (see, e.g., 
[7, 11]) that the solution x = p(t) is then asymptotically, orbitally stable with 
asymptotic phase. Some im portant generalizations of this theorem can be 
seen in Hale [5], Hale and Stokes [6], Yoshizawa and Kato [12] and Aulbach 
[11-

In conjunction with the system (2.1) let us consider the following “neigh­
bouring” system:

(2.3) x = f ( t , x )

where t € R, x  € fi, /  € C° [R X íí, R"] and f'x 6 C° R X fl, R"2 . Suppose 
th a t for any compact set Q C Í1 there exists an rj > 0 such that

(2.4) II f{t ,  x ) -  sr(z)|| < 77, (f, x) e  R x Q

where ||.|| is the Euclidean norm.
Let a sufficiently small p \ -neighbourhood U(T,pi)  of Г be taken such 

tha t its closure U(T,pi) C Í2 and a local coordinate system (0,yi,  • ■ ■ ,yn- i )  
(see, e.g., Hale [5] or Pliss [10]) can be introduced into the tube U(T,pi)  
instead of the old (®j,. . . ,  x n). The new coordinates are related to the old 
ones by the formula

(2.5) x = p(0) + ф(6)у

where у =  c o l( j / i , . . ., yn- \ )  and  ф is an n X (n  — 1) dimensional m atrix.
Differentiating (2.5) with respect to t and solving the system of equations 

thus obtained for в and y, from (2.1) we get the following new system of 
differential equations:

( 2 .6 )
( 0 = a(0,y),
I  У = К в ,у)

where a(0, у) =  1 + дг(0, у ), Ь(0, у) = D(0)y + д2(0, у),

D{0) =  ФТ(0)
с1ф(0) дд(р(0)) '

— 7 Г  +  — 1

Т  means transpose, and gi(0,y),  д2(в,у)  are continuous in 0,y,  r-periodic 
in 0, have continuous first derivatives with respect to y, and

Г lffi(0,l/)| = 0 (|MQ as H2/II 0, 
I 92(0,0) = 0, dg2(0,O)/dy = 0

(see Hale [5], p. 219).
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By (2.5), the periodic solution x = p(t) of the system (2.1) is transformed 
into the solution 9 = t, у = 0 of the system (2.6). By our assumptions, it is 
possible to find a sufficiently small p? > 0 such that in the domain 9 6 R, 
IMI < P2 we have

(2.8) 1/2 < 9 = а(в,у) < 2.

It follows from (2.8) that the map taking t to 9(t) has an inverse t : R —► R, 
t = t(9), and for 9 € R, |M| < pi

(2.9) 1/2 < dt/d9 = 1/a < 2 

(see Hale [5], p. 221-222).
Let us consider the variational system of у = b(9(t),y) with respect to 

the solution 9 = t, у = 0 of the system (2.6), i.e.

(2.10) й = D(t)u

which is clearly a linear system of order n — 1 having a continuous coefficient 
matrix r-periodic in t. From our assumption that |A, | < 1, г = 1 , . . . ,  ra — 1, 
and Lemma 2.1 in Hale [5], p. 220, it follows that the characteristic exponents 

of the system (2.10) are /3,- = (logA,)/r, i = 1 , . . . ,n  -  1, so 
max Re /3, = -/3 < 0. By Floquet’s theory the periodic linear system (2.10)
is reducible, i.e. we can find a continuously differentiable, regular, r-periodic 
matrix function S(t ) such that the transformation v = S(t)u carries (2.10) 
into the linear system

(2.11) v = Bv  (u e Rn_1)

with constant coefficients where by our assumptions all the eigenvalues of B, 
namely ß i , . have negative real parts. For (2.11) it is possible to find
a positive definite quadratic form (with constant coefficients)

n—1
У(и) = vTAv — ^  dijViVj 

i,j-l

such that its derivative with respect to (2.11) is negative definite

(2.12) V{2Al)(v) Í  -ß \ \v \ \ \  v e Rn_1.

The form V(t ,u) = V(S( t )u) = uT(ST(t)A S(t))u is clearly a Lyapunov 
function for (2.10). Putting

W(9, y) = V(t(9), y) = yT (STA S ) y, S = S(t(9)),

we are going to show that W(9, y) is a Lyapunov function for (2.6) in a 
sufficiently small neighbourhood of the line 9 € R, у = 0 in the (0, y)-space.
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Taking into account (2.9) and the estimates

(2.13)

(2.14)

d W
дв

< 2
d W
dt <4CC'\\A\\\\y\\2 (0 € R ,||y || < p2),

Ilg rad^H  < 2||A ||(C)2||y|| (0 e  R, ||y|| < p2),

where C := max ||5 (í)||, C  := max ||5 ,(i)||,
t6 [0 ,r )  t€[0.T)

(2.15) Ififil ^ K\\y\\, К  = const (0 e  R, \\y\\ < рз),
(2.16) 1Ы1 ^ M\\y\\2, M  = const (0 <E R, \\y\\ < p3),

we get
. BW

(2.17) W (2.6)(0, y) = -QQ-a(e’ У) + (gradyIY, ь(0> у)) =

= Ж  +  (gradvW> D (0)y) + ^ - 9 1  + (gradykF, g2) = 
dt BW

= V(2.11 )(S(t)y) ■ — + -QQ-gx + (gradyW ,g2) <

-? ± + 2 C \\A \\.\\y \\(2 C 'K  + M C )

for аД 0 6 R  and \\y\\ < гшп(р2,Рз) where Л := min As(/) > 0, As(t)te[o,r)
denotes the least eigenvalue of the r-periodic positive definite matrix function 
S T(t)S(t). Therefore

(2.18) W {2.6)(0, y ) < 0

in the domain 0 € R and

||г/|| < mm ( р 2,Рз, Щ щ 2С'К + M C ) )  '

3. In this last part, by using the stationary Lyapunov function 
W ( t , 6,y) = W ( 6,y), t 6 R, where W  is constructed above, and the theo­
rems of Yoshizawa and La Salle, we shall construct a uniform asymptotically 
stable invariant set for (2.3) in R x R" (as t —> +oo) containing the cylinder 
R x Г, and its region of attractivity for tj small.

Suppose that the system corresponding to (2.3) in the local coordinate 
system is of the form

(3.1) Í 6 = h ( t , 6,y),
\  У = f i i t , 6, у)
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where /1 : R x R x {\\y\\ < p2) -* R /2 : R x R x {\\y\\ < p2} R"-1 (see
the explicit form of /1 and / 2 in Hale [5], p. 233). By our assumption (2.4), 
for each set N  of the form N  = R x Ny, where Ny is a closed set contained 
in (IIj/H < p2}, there exists an 771 > 0 such that

f \ f i ( t ,0, y ) ~  а(в,у)\ < 771,
l Wf2( t ,0, y ) - b ( 6,y)\\ < 771

for all (f, в, у) € R x R X Ny.
Taking the derivative of the Lyapunov function W  with respect to the 

system (3.1) we get

(3.3)
dW

where

(3.4)

% ! ) ( * , » )  =  - Q f h  +  (grad yW, f2) =

= ~два + (sradvW>6) +  ~ д в ^ 1 -  a )+

+  (gradyJF, / 2 -  b) =  W(2.6)(0, y) +  <5(0, У)

fiw
6(0, У) = - ß f i f 1 -  «) + (gradytT, /2 -  b) = 

= ( A ^ )  +  ( g r W - ^

As in (2.13), we have the estimate

(3.5)
d W
dt (o,y) < 2CC'||A|| ||t/||2 (0 e R, Нг/U < P2).

From (2.9), (2.14), (3.2), (3.4) and (3.5) it follows that 

(3.6) |i(*, v)| < 2 „ С |И || llsll (2C'||»|| + 77)

for every в € R and ||j/|| < p2/ 2 where 771 is the positive constant correspond­
ing to the set N  = R x {||t/|| < p2/ 2}.

Thus, by (2.17), (3.3) and (3.6) we get

t f w * .  У) < IMI2 [ -  Y  +  2С||Л|1 w l  ( +  M C )

+ 2щ С М 11||!/|1(2С '||у ||+ С )

for all в £ R and ||т/|| < т т ( / 9 2/2 ,р з), so

ß 4 y \ \ 2W(3.i)(0,y) < + 3t71(C)2||A|| \\y\\
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for all в € R and

\\y\\ < d2 .= min ^p 2/ 2,p3, — , g q i^ n  p c ,K  + j  • 

Therefore

(3.7) r i w * , y ) < 0

in the domain

(3.8) в 6 R, dx < lli/ll < d2

where d\ := 12771(С)2||А||/(/ЗЛ). The set of y's satisfying condition (3.8) is 
not empty if d\ < d2, i.e. if

(3.9) 0 < щ < т/o 

where

/ЗА ■ (  ,o С  /ЗА
V° ‘ 12(C )2||A|| mm ,P3’ 4С '  8С||Л|| (2C K  +  MC)

Let us denote the least and the largest eigenvalue of the r-periodic pos­
itive definite matrix S T(t)AS(t )  by Aj(f) and A2(t), respectively, and let

a t := min W{9, y),
6<ER,||y||=d2

a 2 := max W(e,y) .  
eeR,||y|Mi

Then it is easy to see that

Ai := min Ai(f) > 0,
te[o,r)

A2 := max A2(t) > 0, te[o,r)

and a i = Aid%, a 2 = A2d\. Let us denote

Am = {(в, у) e R x Rn-X : W(0, у) < q2},
В = {(Ö, 2/) € R x Rn_1 : W ( 6,y) < c*i}.

Now we are in a position to formulate the following
Theorem. Suppose that all conditions mentioned before are satisfied and 

rji is such that

(3.10) 0 < m  < ( A j / A ^ / V

Then the set R  x A m is a uniform asymptotically stable invariant set o f (3.1) 
(a s t —> +oo)  and its region of attractivity contains the set R x B. Returning
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to the original variables x \ , . . . , x n (see (2.5)), from the sets R x A m and 
R x  В we get, respectively, a uniform asymptotically stable invariant cylin­
drical set A n in R x R" for the system (2.3) around the cylinder R x Г and 
a cylindrical set В contained in the domain of attractivity of A^.

To prove our theorem let us first note that Ai ^ Л2, hence (3.10) implies 
(3.9) and oi2 < <*1, thus A ni С B. Then В  — Am is contained in the domain 
defined by (3.8), so (3.7) holds in B —Am . After that, to establish the uniform 
asymptotic stability of the set R X Am , we can use the stationary Lyapunov 
function W(t,  в, у) = W(0,  у) for t € R and the proof of Yoshizawa’s theorem 
[11, p. 134].

Remarks. 1. R x Г C A^ and An —► R x Г as 77 —>• 0.
2. Unlike in Farkas’ case, we can only construct a uniform asymptotically 

stable invariant set An around the cylinder R X Г, but not around the graph 
of the periodic solution x =  p(t) of (2.1).

R eferences

[1] B. Aulbach, J. Diff. Eqs., 39 (1981), 345-377.
[2] M. Farkas, Nonlinear Analysis, 5 (1981), 845-851.
[3] M. Farkas, Ann. Mat. Рига Appl., 128 (1981), 123-132.
[4] M. Farkas, Acta Sei. Math. (Szeged), 44 (1982), 329-334.
[5] J. K. Hale, Ordinary Differential Equations, 2nd edition, Robert E. Krieger Publishing

Company (Malabar, Florida, 1980).
[6] J. K. Hale and A. D. Stokes, Arch. Rational Mech. Anal., 6 (I960), 133-170.
[7] H. W. Knobloch and F. Kappel, Gewöhnliche Differentialgleichungen, Teubner (Stutt­

gart, 1974).
8] J. P. La Salle, Nonlinear Analysis, 1 (1976), 83-90.
9] N. V. Minh and T. V. Nhung, The attractor of van der Pol equation under bounded

perturbation (to appear).
[10] V. A. Pliss, Non-local problems in the theory of oscillations (in Russian) Nauka (Mos­

cow, 1964). English edition by Academic Press (New York, 1966).
[11] T. Yoshizawa, Stability theory by Lyapunov’s second method, Math. Soc. Japan, (Tokyo,

1966).
[12] T. Yoshizawa and J. Kato, in Differential Equations and Dynamical Systems, Academic

Press (New York-London, 1967).

(Received October 29, 1987)

FACU LTY  O F M ATHEM A TICS AND M EC H A N IC S 
U N IV E R SIT Y  OF H A N O I
KHOA T O A N , DAI H O C TO N G  H O P H A N O I,
V IETN A M

Acta Mathematica Hungarica 58, 1991





Acta Math. Hung. 
5 8  (1 - 2 )  (1991), 25-29.

ON THE MEANS OF THE ARGUMENT OF THE 
RIEMANN ZETA-FUNCTION 

ON THE CRITICAL LINE
L. GROENEWALD (Bloemfontein)

1. Let C(-s) denote the Riemann zeta-function and put

*S(t) = A LargC(5)

where A l denotes the variation in the argument of £(s) along the polygonal 
line L extending from 2 to 2 + it and then to |  + it. Since arg£(2) = 0, we 
can express 5(f) in the form 7r5 (f) = arg£ ( |  + it) provided the argument 
is defined by continuous variation along L ([1], p. 98).

In [2] Ghosh proved for к = 1 and к an even number that

T + H  к  к
(1) J  |Í ( Í ) |‘ </1 ~  ^ r ( ^ ± i )  ( T )  tf( lo g lo g r)‘ / ! , oo

T

with an error term which holds uniformly in к <  (log log T)1/6.
Ghosh’s main theorem in [2] on sign changes of 5(f) in the interval 

(T , T  + H ) is deduced from these latter estimates. For recent conditional 
results on sign changes of 5(f), see [3].

Ghosh [2] mentions without proof that the asymptotic relation (1) can 
be extended to all integral values of It is the aim of this paper to prove 
Ghosh’s claim.

Theorem. Let H be a function of T  such that T a < H (T ) < T , where 
^ < a 1 for all T  ^  1. Then, for any positive integer к

T + H  .

J  ) ( s )  —* oo.
T

2. We shall need the following: 

Lemma 2.1.

( — l)’+1(2 u)24 2 k + 2j)l 
(2j ) l  (k + j)\

du =  22k+1k\y/ir, k = 0 ,1 ,2 , . . . .
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Proof. Since

(2 к + 2j)\
(2j)\(k  +  j) \

= (2fe + 2j ) ( 2fe + 2j - 2) .. .(2j  +  2)(2j)!(2fc +  2j -  l)(2fc + 2j  - 3 ) .  ■ ■ (2j  + l)  _ 
(к + j ) ( k  +  j  -  1). • • ( j  +  l) (2j)!j!

2fc(2к + 2j  -  l)(2fe + 2j  -  3 ) ..  .(2j  + 1)
j!

if к > 1, it follows, on substituting г for 2u, that the integral above can be 
written as OO

2k+1 J  ^ F 2k_1(z )dz

oo 2j
(2) r - i W  =  J 3 ( - i y + ,^ -  =  i - e - !’

3=1 3 '

and
OO 2j

F2k- i { z )=  ] £ ( - l ) J+1^ ( 2 f c  +  2 i - l ) ( 2 f c  +  2 j - 3 ) . . . ( 2 i  +  l) , fc > 1. 
i= i J '

Note that

(3) F2k+1( z ) = ± ; - ^ ( z 2k+1F2k- 1(z))  if k >  0.

Every F2fc- i ( 2r) can be written in the form

к
(4) F2k_1(z) = Y / ak,z iF ^ ( Z)

> '= o

where the ak, are constants. Indeed, (4) is obvious if к = 0. If (4) holds for 
к = n, then

* W iM  = é  Vfl £
\  «=0

= Ё ( 2 п  + 1 + г)ап;г*р[‘}(2) + £  aniz i+1 F ^ 1](z) 
i=0 *=0

i c i a  Mathematica Hungarica 58, 1991
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so that (4) holds for к = n +  1. It follows by induction that (4) holds for 
every k.

If i ^ 1, then F^l(z)  can be written as Pi(z)e~z2 for some polynomial 
Pi(z). Therefore, it follows from (4), that for к ^ 0,

limz-> 0
Fik-\(z)

z
F2k-\{z)

z = 0.

Consequently, by (3) integration by parts yields for к > 1
oo oo oo

A k := J ± F 2k-i( z)dz  = J ( z 2k- ' F 2k- Z{z)) dz = 2k f  ± F 2k_3(z)dz. 
0 0 0 

We iterate the identity A k — 2kAk- i  for к = 1 ,2 ,... to show that

A k = 2kk'.A0 = 2 kk\ 

The result follows on noting that

dz.

OO OOJ ~ 2  (1 — e_z2) dz = 2 J е~*2 dz = y/n.
3. P roof of the T heorem . Write W(t) = 27r(loglog Г ) *S(t). If we 

put /(T ) = (log log log T )?, it follows from Ghosh [2] that

Т+Я

(5) /  \w{t)\2j dt = Ш и  + о  ( —
J ]\ Ulo:

Я
(log log T) 5

uniformly in 1 < j  < f (T ) .  In view of (1), it suffices to show that for fixed 
к > 1

( 6)

T +H

/ Qlk+1
\W(t)\2k+1 dt = — у ^ к ' . н  + Ofc(tf),

V7r
oo.

Following Ghosh [2], we note that

du

Acta M athematica Hungarica 58, 1991
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so that the left hand side of (6) can be written as 
T + H  A T + H

( 7 ) \  f  m t ) \ 2 t J  i u + o  i  j  \ w ( t )\2kdt
T O  \  T  )

for every A > 0.
Let N  = N ( T ) be such that N ( T ) —* oc as T  —* oo and N(T)+  

+k < f (T )  for all T  sufficiently large. Put 2A3 = N.  Since 2 sin2 г  =
OO

=  1)-,+1(2x)2j / ( 2j ) \ ,  we can write
i - 1

* •  =  i  £  t i m M i  +  0  ( Ж )

and (7) becomes

(8) I I ^  I  1 mopitiu+
о T  j - 1

(  N  X T + H  \

+0( ЩТ ЩI u™ I  1и/(‘)12(л,+1+‘)л ) +o(H).
By (5), the main term in (8) can be written as

H }  1 (—1)j+1(2u)2j (2k -f 2ji)!
(k + j)'.

Л  AT

-  f - y7Г J “2о 1—1 (2j)l
du + Ok(H) =

[ H l b

oo

У  a j ( t t )
\  J и
\  0 j = N + 1

du + ок(Н)
о ]=l

where aj(u) is the j th  term under summation.
By Lemma 2.1, the above can be written as

o2fc+l
—j=-k\H + Ok(H), oo.

v f
It remains to estimate the error term in (8). By (5), this is

4tv A27V+i (2iV + 2 +  2Ar)! X3N TT
<  TTT— r  - у ;.- . . . . J  И <  — ttt#  <(2iV)!

/  a3\  NЫ H = 0 ( H) -(2N + 2)! 2N  +  1 (Я  + 1 +  fc)!
The proof of the theorem is complete.

Acknowledgement. I thank Professor W. L. Fouché for suggesting this 
method of proof and for several helpful discussions.
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WHICH TRIANGULAR NUMBERS ARE 
PRODUCTS OF THREE CONSECUTIVE 

INTEGERS?
S. P. MOHANTY (Kanpur)

In tro d u c tio n
Mordell [2] has shown that all integer solutions of the equation y(y+ 

+ 1) = x(x  + l)(z  + 2) are x = 0 , - 1 , - 2 ,  у = 0 ,-1 ;  x = 1, у = 2 ,-3 ;  
x = 5, у = 14 ,-15 . To find all tetrahedral numbers which are triangular, 
Avanesov [1] solved the equation 3y{y + 1) = x(x  + l)(z  + 2) and obtained 
all positive integer solutions given by ar = 1, 3/ = 1; ж = 3, j/ =  4; ar =  8, 
у = 15; x = 20, у = 55; and x =  34, у = 119. In this paper we try to 
solve the diophantine equation y{y + 1) = 2x(x  + l)(x  + 2) in order to get 
all triangular numbers which are products of three consecutive integers. The 
result is contained in the following theorem.

T heorem 1. Let the nih triangular number n n̂2+1  ̂ be denoted by Tn. 
Then T3, T15, T20, T44, Tgo8, and T22736 are the only triangular numbers 
that are products of three consecutive integers.

P roof. We consider the diophantine equation

(1) y ( y  + 1) =  2x(x  + 1)(ж + 2),

where x and у are positive integers. Substituting Y  = 2y + 1, X  = 2x + 2 in
(1) we get

(2) Y 2 = X 3 -  4 X  + 1, X > 4 ,  У > 3.

From Delone and Fadeev’s “The theory of irrationalities of the third degree” 
we note the following facts in Q{6) given by

(3) f { 6) = в3 -  40 + 1 = 0.

(i) The integers in Q(6) are a + Ьв + cO2, where a, b, c are rational 
integers.

(ii) The class number h — 1 and hence unique factorization exists in
Q(0).

(iii) The discriminant D(0) being 229 > 0, /(0 ) =  0 has three real roots. 
Hence there are two fundamental units.

Using Billevich’s algorithm we find the two fundamental units to be в 
and 0 - 2 .  Since ^ = —02 +4, - 0 2 + 4  and 0 -  2 are taken as the fundamental 
units for simplifying the calculations.
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Equation (2) can be written as

(4) Y 2 = ( X  -  0 ) (X2 + в Х  + в2 -  4).

Let ж be a common prime factor of X  — в and X 2 + в Х  +  в2 — 4. Then 
X  = 0(mod 7Г) and hence 302 — 4 =  0(mod x). Since |iV(302 — 4)| = 229 is 
a prime, 302 — 4 is the only possible common prime divisor and we have

(5) X  -  в =  ±(302 -  4)n£ V (o  + Ьв +  св2)2,

where £ = в — 2, p = —в2 + 4 and n,p,q  € {0,1} as the other powers can be 
absorbed in the square term.

Taking norm on equation (5) with n = 1 we see that У2 =  X 3 — 4X +1 = 
=  229Z2 which is clearly impossible. Hence

(6) X - 9  = ±£pvq(a + Ь6 + св2)2

has four possibilities (p, q) =  (0,0), (1,0), (0,1), (1,1). We consider each 
case separately.

Case 1: (p ,q ) = (0,0). Using (3) and expanding the right hand side of
(6) we get

(7) a2 -  2be = ± X ,
(8) 2ab + 8be -  c2 = q=l,
(9) b2 +  4c2 + 2ac = 0.

From (7) a is even as X  is even. From (8) c is odd. From (9) b is even. 
Substituting a =  2oi, b = 2bi in (8) and taking congruence mod 4, we see 
th a t the positive sign on the right hand side is impossible. Hence,

(10) a2 — 2 be = X ,
(11) 2ab +  86c — c2 =  —1.

From (9) we get ( | ) 2 =  —c ( c +  | ) .  Since (§,c) = 1 implies (c, |  + c) = 1, 
we take - c  =  u2, |  -f c = v2 or c = u2, |  + c = —v2 and b = ±2uv. Then
(11) yields ± 8uv(v2 -  u2) — u4 =  — 1 or ±8uv(u2 — v2) — u4 = —1.

In either case и divides the left hand side whence и = ±1. Hence 
±8v(v2 — 1) =  0. Either v = 0 or v = ±1. Taking v = 0, и = ±1 we 
get c = ±1, a = =f2, 6 =  0. Again v = ±1 and и = ±1 yield c = —1, a = 4 
or c = 1, a = —4; 6 = ±2. Hence (a, b, c) = (2 ,0 ,—1), ( -2 ,0 ,1 ) , (4 ,2 ,-1 ), 
(4, - 2 ,- 1 ) ,  ( —4,2,1), (—4, —2,1). Then X  = a2 — 26c implies X  = 4,12,20 
or x = 1,5,9. Correspondingly у = 3, 20, and 44.

Case 2: (p ,q ) = (0,1). Using (3) and expanding the right hand side of 
X  — в = ±(4 — 02)(a + Ьв +  св2)2 we get

(12) 4a2 — c2 + 2ab = ±X ,
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(13) b2 + 4c2 + lac -  :pl,

(14) a2 — 2 be = 0.

From (12), (13) and (14) it is clear that a,b,c are even, odd and even, 
respectively. Therefore negative sign is not possible on the right hand side 
of (13). Hence we have

(15) b2 +  4c2 + 2ac = 1,
(16) 4a2 — c2 + 2ab = —X.

Using (14), (15) and (16) we see that
(i) а ф 0, с ф 0.

(ii) b and c have same sign while a and c have opposite sign.
(iii) if (a,b,c) is a solution so is ( - a , - 6 , — c) and they yield the same 

value for X.
Hence without loss of generality we may assume b and c to be positive. 

Therefore a is negative. Since a2 = 2c-b and (2c,b) = 1, take 2c = u2, b = v2 
and a = —uv, where и and v are of same sign. Substituting now the value 
of a,b,c  in terms of и and v in (15) we get

(17) u4 + v4 — u3v = 1, u /  0.

Taking и and v to be positive and writing (17) in two different ways as 
u3(u — v) -f v4 =  1 and u4 + v(v3 — u3) = 1 we see that neither и > v nor 
v > u. Again и = v is impossible because и is even and v is odd. If и 
and v are both negative, then setting и = —щ ,  v = — in (17) we obtain 
u4 + v4 — u3vi = 1 with ui,v \  positive which is the same equation as (17). 
Thus, (17) has no integral solutions и ф 0.

Case 3: (p,q ) =  (1,1). We have X  -  в = ±(0 -  2)(4 -  в2)(а + Ьв + c62)2 
or

(18) в Х - в 2 = ± ( в - 2  )(а + Ь6 + с02)2.

Expanding the right hand side of (18) and using в3 -  АО + 1 = 0 we get

(19) a2 + 4ft2 + 18c2 — 4a6 -  186c + 8ac = ±X ,

(20) —2b2 -  9c2 + 2ab + 8be — 4ac = ^1,

(21) 2a2 + b2 + 4c2 -  4be +  2ac = 0.

Since a is even, c is odd and b is even, the positive sign on the right hand 
side of (20) is impossible by congruence modulo 4. So we have

(22) a2 -  2bc = X  -  2,
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(23) 4a2 — c2 +  2 ab = — 1,

(24) (6 — 2c)2 =  —2a(a + c).

Using the fact that a +  c is odd we have a = 0 if and only if b = 2c. In
this case (o, 6, c) = (0,2,1) or (0, —2, —1) and X  = —2, i.e., x = —2. Suppose
а ф 0 i.e., b ф 2c. Then from (23), (a,c) = 1. Now (ft — 2c)2 = —2a(a + c) 
with (a, a + c) =  1 yielding

—2a = и2, a +  c =  v2, b — 2c = ±uv

or
2a = u2, a + c' = —v2, b -  2c = ±uv.

Substituting the values of a, b, c in (23) we get

(u2 ± 2 u v f  +  8 u 2v 2 + 4u4 =  4,

which is impossible for и ф 0 and у ф  0.
Case 4•' (p, g) =  (1,0). Expanding the right hand side of X  — в =

=  ±(0 — 2)(a +  6^-1- св2)2 and equating the coefficients of like powers as
before we get

(25) - 2 a 2 -  b2 -  4c2 + 46c -  2ac = ± X ,
(26) a2 +  462 + 18c2 -  4ab -  18be +  8ac =  ^1 ,
(27) —262 — 9c2 +  2ab -f 86c -  4ac = 0.

We see that b is even, a is odd and c is even from (25), (26) and (27), 
respectively. Taking congruence mod 4 in (26) negative sign on the right 
hand side of (26) is ruled out. Therefore, we have

(28) a2 — 2bc = 1,
(29) - 4 a 2 +  c2 -  2ab = - 2 X

and

(30) c\ = (2ci -  & i)(-a + 2bi -  4ci), where b = 2bi and c =  2c\.

From (28) we see that b and c are of the same sign. Since (a, 6, c) and 
( —a, — b, — c) appear as solutions we can take b and c to be both positive. 
Since (2ci — fci, —a + 2b\ — 4ci) = 1 we have

(31) 2ci — bi =  u2, —a + 2b\ — 4 сг = v2, c\ =  ±uv  

or

(32) &i — 2ci = u2, a — 2bi +  4 c\ = v2, ci = ±uv.
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We note that и and v have opposite sign if c\ = —uv and и and v are of 
same sign if c\ = uv.

Using (31) and (32) with c\ — —uv or uv the equation (28) reduces to

(33) 4 u4 + v4 — \2u2v2 + 8u3v = 1 

and

(34) 4u4 + v4 — 12u2v2 — 8u3v = 1.
Since equation (34) is obtainable from (33) by taking и = —и, v = v от 
и = и, v = —v it is enough to consider the equation (33). We note that if 
(u, v) is a solution of (33) then so is (—u, —v).

The diophantine equation (33) can be written as

2/.  4, v v2 + 1 v2 -  1
u2(3v + u)(v -  u) = — --------- —  •

If v2 = 1, then u2(3v + u)(v -  u) = 0, whence u = 0 от u = v от u — -3v.  
Then we have (u, v) = (0,1), (0 ,-1 ) , (1,1), ( - 1 , - 1 ) ,  (-3 ,1 ) , (3 ,-1 ) . If 
u2 = 1, then (u,v)  = (1)1), (1,3), ( - 1 , - 1 ) ,  ( - 1 , - 3 )  are also solutions. 
Suppose и2 > 1 and v2 > 1. Now u2 divides one of *4p- and but not 
both. Again writing 4u4 + v4 -  12u2v2 + 8u3v = 1 as (2u2 + 2uv)2 4- v2(v2-  
—16u2) = 1 we see that v2 > 16u2 is impossible. Therefore v2 < 16u2.

If и2\^-^-,  then is positive integer, less than — = 8 — ^ .
Hence ^ 1  = 1,2 ,3 , . . . ,  7 or v2 = 2u2 +  1, 4u2 + 1 , . . . ,  14u2 +  1.

We consider (3v + u)(v — u) = for = 1 ,2 , . . . ,  7. For
example, when — 3 our equation 3u2 -  2uv — u2 = becomes
3(6u2 + 1) — 2uv — u2 = 3(3u2 + 1), or v = 4u, a contradiction. If we take 

= 4, then we have 3(8u2 +1) — 2uv — u2 = 4(4u2 + 1). On simplification

we get 7u2 -  2uv — 1 = 0 or v = . Then (- “2;f- ) = v2 = 8u2 + 1 yields
(17u2 — l)(w2 — 1) = 0, whence и = ±1 and v = ±3. We solve 3v2 — 2uv— 
—u2 = as above for every value of v2 as listed above. Similarly,
if u2!2̂ ^  then is a positive integer < 8. We solve 3u2 — 2uv -  u2 =
— i2̂  ' ôr = 1 ,2 , . . . , 8. We do not get any new solution for 
(u,v).  Hence all solutions (u, v) are as above. Thus the positive integral 
solutions for 4u4 + v4 — 12u2v2 +  8u3v = 1 and 4u4 +  v4 — 12u2v2 — 8u3v = 1 
are given by (u,v)  = (1,1), (1,3) and (3,1) respectively. They in turn give 
(a, b, c) = (—3,2,2), (—11,10,6) and (19,30,5). Substituting these values in 
(29), we get X  = 10, 114, 1274. Hence this case gives x = 4, 56 and 636. 
Corresponding to x = 4,56 and 636 we have у = 15, 608, and 22736. We 
get three more triangular numbers T15, Teos and Т22736- Thus the theorem 
is established.
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ON DARBOUX FUNCTIONS IN HONORARY 
BAIRE CLASS TWO

I. POKORNY (Kosice)

1. In tro d u c tio n
In [5] R. J. O’Malley introduced and developed the idea of selective 

differentiation theory.
In [1], Bagemihl and Piranian defined a function g as honorary Baire 

class two if there exists a B\ (Baire class one) function h such that the set 
{z : h(x) ф g(x)} is at most countable. See also [3], [9].

We know that the class of selective derivatives is a proper subclass of 
the class of Darboux functions in honorary Baire class two (see [5, Theorem 
11] and [6, Proposition 3]). Hence it is interesting to investigate this class, 
because this class plays the same role for the selective derivatives as the class 
VB  1 for the derivatives.

Our main results are the following.
1) Every VHB2 function is point wise discontinuous.
2) For every /  6 V H B 2 there exists a g e B\ such that the points of 

continuity of /  and g coincide and {z : /(z )  ф £r(z)} is countable (i.e. at 
most countable).

3) The maximal additive class for VKB2 is the class of all constant 
functions.

4) VH B 2 is not closed under the uniform convergence.
The last two results show that, as for the maximal additive class and 

uniform convergence, the class VH B 2 behaves similarly to the class V.  On 
the other hand, it is well-known that the maximal additive class for VB\  
is the class of continuous functions, and VB\  is closed under uniform limits 
([2], pp 14, 15).

In [7], T. Radakovic proved that the maximal additive class for V  (but 
not HB2) is the class of constant functions.

In [8], J. Smital proved that the class VB2 is not closed under uniform 
limits. In his proof, functions from B2 \  HB2 are used in an essential way.

Our approach is different.

2. P relim inaries

Throughout this article, the functions under consideration are usually 
real valued functions defined on the closed interval /  =  (0,1).

The class of all Darboux functions on I  is denoted by V.
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Let Q be a class of functions defined on an interval I .  A subclass T  
of Q is called the maximal additive class for Q provided T  is the set of all 
functions in Q such that f  + g £ G whenever f  £ T  and g £ Q.

Further, [x, y] will denote the closed interval having endpoints x and у 
regardless of whether x < у or у < x.

We frequently refer to certain other classes of functions: the Baire class 
a functions, the honorary Baire class two functions and the continuous func­
tions. We denote these classes by Ba , HB2 and C, respectively.

Let /  be a function. We denote the set of points of discontinuity, resp. 
continuity by D f ,  resp. C f .

We say tha t f  is pointwise discontinuous if C f  is a dense set in I.
Let I  be a point of I. By the cluster set of /  at x, denoted by C(f,  x), 

we mean the set of numbers у such that there exists a sequence xn —► x 
such that xn ф x  and / ( x n) —*■ y. The one-sided cluster sets C (/, x ,+ ) and 
C ( f , x , —) are defined in the obvious way.

It A is a set, then int A,  cl A  and A' denote the interior, closure and the 
set of accumulation points of the set A, respectively.

3. VHB2 functions and  con tin u ity  points

Lemma 1. Let f  £ V  and let g be a function such that the set A = 
= {x : f ( x )  ф <7 ( x ) }  is countable. Then C g C  C f  \  A and A  U  D f  C  Dg.

P roof. Let xq £ C g be fixed. Let e >  0 be given and let 6 > 0 be 
such that |</(x) — ff(xo)| < £ for |x — xo| < 6. Therefore, by assumption, 
|/(x ) -< 7(xo)| < £ holds for every x £ (xq — 6 , x0 +  <5) apart from a countable 
set. Since /  is Darboux, this implies that |/ (x )  — <7(xo)| < £ holds for every 
x £ (xo — 6 , xo +  £). This obviously implies that /(xo) = <7(xo) and x0 £ C f .  
Hence we obtain C g С  С/ \  A  and, taking the complements, A  U  Dj  C  Dg. 
□

Corollary 2. Let f , g  £ V. I f  the set A  =  {x : / ( x )  ф <?(х)} is count­
able, then A  C  D j  — D g .

P roof. By Lemma 1 ,  A l l  D f  C  D g and A  U  D g C  D f  from which the 
assertion follows. □

T heorem 3. Each f  £ V H B 2 is a pointwise discontinuous function.
P roof. Let /  £ VH B2 and let g £ B\ be such that {x : / ( x )  ф <?(x)} 

is countable. Since g £  Bi, C g is everywhere dense. By Lemma 1 ,  C g C  C f  
and hence С / is also everywhere dense. □

Remark. Theorem 8 in [4] follows immediately from this theorem, be­
cause each selective derivative belongs to the class VHB2 ■

Our next aim is to prove that for each function /  G VH B 2 there is 
a function g £ B\ for which the set {x : /(x )  ф g(x)} is countable and 
D f  =  Dg.
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Lemma 4. Let f  G VHBi.  Then there is a function h E В i with the 
following properties:

1) The set {x : /(x )  ф h{x)} is countable;
2) For each x E /  : h(x) G C (/, x).
P roo f . If /  G VB\  then we can take h =  / ,  because f ( x )  G C (/, x) for 

each /  G V.
Let /  G VKBi \  B\. Then there is a function g G B\ for which the set 

A  = {x : /(x ) ф fif(x)} is countable (by the definition of the class HBi).
Define

h<x \ _  /  ff(x); if 9( x ) e C ( f , x ) ,
 ̂ \  t G C (f ,  x); otherwise,

where |i — <7(x)| =  dist(</(x), C (/,x )) .
We prove that h has all the required properties.
From the definition of h it follows that for each x G I  we have h(x) G 

G C (/, x) and that the set {x : /(x ) ф fi(x)}, being a subset of A, is 
countable.

To prove that h G B\ we proceed as follows.
We prove that for each non-empty perfect set P  С I  the restriction of h 

to P  has a point of continuity.
Let P  be a non-empty perfect set in I. Since g G B\,  there is a point 

x G P  \  A  at which g\P is continuous, because the set of continuity points 
of g\P is of second category in P  and A is countable. Then we have /(x )  =  
= g{x) = h(x).

We show that h\P is also continuous at x.
Let £ > 0 be given, let J = (g(x)-£ ,g (x) + e), and let 6 > 0 be such that 

g{y) E J  holds for every у G P  П (x — 6 , x + 6). Let у G P  П (x — 6 , x + S) be 
fixed. Since every portion of P  is of cardinality of the continuum and A  is 
countable, there is a sequence yn G P П(х — 6 , x + 6) \ A ,  yn —*• у, yn ф у. For 
every n we have f ( y n) = д ( Уп)  E J  and hence we can select a subsequence 
such that f ( y nk ) —► z G J. This shows that C ( f ,y )  Л J ф 0. Since /  G T>, 
C ( f , y ) is an interval. As g{y) G / ,  it follows from the definition of h that 
h(y) E J. Therefore h(y) G J  holds for every у G P í l ( x - Í , x  + Í)  and 
hence h\P is continuous at x. □

T heorem 5. For every f  E VTLBi there is h G B\ such that the set 
{x : / (x )  ф h(x)} is countable and Cf = Ch-

P roof. Let /  G VHB2 be given, and let h be the function defined in 
Lemma 4. Since h(x)  G C ( f , x ) holds everywhere, it follows that Cf  C Ch,. 
On the other hand, by Lemma 1, we have Ch C Cf  and hence Cf = Ch- □

4. O n th e  m axim al additive class o f VTiB2
In this section we prove that the maximal additive class of VHB2 is the 

class of all constant functions.
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Lemma 6. Let P be a non-empty, bounded and nowhere dense perfect 
subset of R. Let a = min P and b = max P. Let c,d E R, c < d. Then there 
is a function g : (a, b) —+ (c, d) in the class TIB2 \  (B\ U V) such that

1) the cluster set C (g ,x ) = (c,d), for each x E P;
2) the set {x E (a, b) : g(x)  = (c +  d) /2} = 0.
Proof. Let all assumptions of this lemma be satisfied. Let e =  (c-f d)/2. 

We decompose the class of all contiguous intervals of P  (on the interval (a, b)) 
into two classes A  and В with the following property: For each two elements 
of one of these classes there is an element of the other class which is located 
between them.

I. Let (и , v) E A  and let A u>v be an arbitrary subset of (и, v) such that 
{u, v} = AU}V П A'uv . Then we can define a function g on the interval (u, v) 
with the following properties:
(1.1) the function g is continuous on (u,v),
(1.2) the range of = (e, d),
(1.3) C(g ,u ,+) = C (g ,v , - )  = (e,d),
C1-4) 9\a u,v = d.

II. Let (u, v) E В and let B uv be an arbitrary subset of (и , v) such that 
{u,u} = П B'u v. Then we can define a function g on the interval (u,v) 
with the following properties:
(II. 1) the function g is continuous on (u,v),
(11.2) the range of g\(u<v)\B u = (c, e),
(11.3) C(g,u ,+)  = C (g ,v ,~ )  = (c,e),
(П.4) g\Bu,v = c.

III. At the points of P \  UB u v we define g by g(x) = d.
We show that this function g has all the required properties.
1) From the definition of g we have that
a) g : (a, b) -► (c,d),
b) (x E {a, b) : g(x) = e} =  0, where e = (c + d) /2.
2) Since each x E P is a limit point of elements of the class A  and a limit 

point of elements of the class В , we have

C ( g ,x )= ( c ,d )  for each x E P -

(Properties (1.3) and (II.3).)
3) From properties (1.4) and (II.4) it follows that the function g\P does 

not have a point of continuity and therefore g £ B\.
4) The classes A  and В are non-empty. Since for x E (u, v) E A  and 

у E {u',v') E В we have g{y) < e < g(x)  and g(z) ф e for each z E [x,y] 
(Property l.b), necessarily g £ V.

5) We show that g E 'HB2■
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Let
if x £ P, 
if x e p.

Then h has the following properties:
a) the function h £ B\, because Ch = (a, 6) \  P and h\P = d. (For each 

perfect set Q the restriction h\Q has a point of continuity.),
b) the set {a: £ (a, b) : g(x ) ф h(:r)} is a set of endpoints of contiguous 

intervals in class В , which is a countable set. Then by the definition of the 
class HB2 we have g £ "HBi- □

T heorem 7. Let h be a nonconstant continuous function on I  = (0 ,1 ). 
Then there is a function g £ TiBi \  V  such that f  = g + h £ V H B 2-

Proof. Let m  =  min{h(x) : x £ 1} and M  = max{h(a;) : x £ I}; since 
h is nonconstant, m  < M. We may assume that m = 0 and M  — 1. We 
prove first that there is a non-empty perfect set P such tha t h is strictly 
monotonic on P. Let ao, bo € /  he such that h(ao) — 0 and fi(bo) = 1. We 
may assume, without loss of generality, that ao < bo- Let x r = min{a: £ 
£ (ao, 60) : h(x) = r )  for each r £ (0,1). It is easy to check tha t h is strictly 
increasing on the set Q = (z r : r  £ (0,1)}, and that Q is uncountable and 
Gs■ Therefore we can select a non-empty, perfect and nowhere dense subset 
P  C Q. Now we apply Lemma 6 with this perfect set P and with c = —1, 
d = 1. Let g denote the function constructed in the proof of Lemma 6. The 
function g is defined on (a ,b), where a = min P  and b = m ax i5. We extend 
g to /  by defining g(x)  = 5(a) for x £ (0,a) and g(x) = g(b) for x £ (6, 1). 
It is easy to see that g £ HB2 \  T).

Let f  = g + h, then /  £ 'H.B2 since g £ Л В 2 and h is continuous. We 
shall prove that /  £ V.  Since /  is continuous on the intervals (0, a) and 
(b, 1), it is enough to show that /  is Darboux on (a, b).

Let Lr (Lt) denote the set of right (left) endpoints of the intervals con­
tiguous to P. First we prove that
(А) Л (* ,У »  Э [ /(* ) ,/Ы ]
whenever x < у, x £ P \  Lf  and у £ P \  Lr. Let (u, u) be an inter­
val contiguous to P  and suppose that (u,v)  belongs to the class Л. Then 
C(g, и , + ) = (0,1) and, as both g and h are continuous in (и , v ) and h is con­
tinuous at и , it follows that f ( (u ,v ) )  D (h(u),h(u)  + 1). Similarly, if (u, v) 
belongs to the class В then f ( (u ,v ) )  Э (h(u) — 1 ,h(u)). Since x £ P \  L/ , 
every right hand side neighbourhood of x contains elements of both classes 
A  and В , and hence

Ш Х,У)) Э (h(x) -  1 ,h(x)) U (h(x),h(x ) + 1).
We also have h(x) £ f( (x,y)) .  Indeed, if (u,v)  C (x ,y ) is an element of the 
class В then h(u) — 1 < h(x) < h(u), since h is strictly increasing on P. 
Therefore we have

f( (x ,y ))  D (h (x)~  l ,h (x ) +  1).
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Similar argument shows that

Д(х,г/)) Э (h(y ) -  1 ,h (y)+  1).

Since 0 < h(x) < h(y) < 1,

(h (x )~  1, h(x) +  1) U {h(y) — 1, h(y) + 1) = (h(x)  -  1, h(y) + 1),

and hence /( ( z ,  y)) D (h(x ) -  1, h(y) +  1). Now, \g\ < 1 implies / ( z ) ,  f (y )  G 
G (h(x) — 1 ,h(y) +  1) which proves (A).

Let a < x < у < b be arbitrary. If x £ P  \  Lt  then let x' =  x. If 
x £ P \  L( then let x' G Lr be such that (z ,z ')  П P = 0. Similarly, we 
put у' = у if у 6 P  \  Lr, and if у ^ P \  LT then we take y' e Li  such 
tha t (y',y) П P = 0. It is easy to check that f ( ( x , x ' ) )  Э int [ /(z ) , f(x')] 
and f {{y ' , y )) D int [f(y ') , f(y)\ .  Since, by (A), f([x' ,y '\)  D [f(x'), f ( y %  we 
have f{{x,y))  D [ f (x ) , f (y ) \  and this proves the Darboux property of / .  □

It is well-known that the maximal additive class for VBi  is C. (Viz. 
Theorem 3.2 on p. 14 in [2].)

In [7], Radakovic proved that the maximal additive class for V  is the 
class of all constant functions. The same holds for the class V 7iB 2, too.

C orollary 8. The maximal additive class for V H B 2 is the class of all 
constant functions.

P roof. Let h be a constant function. Then trivially h + g G V H B 2 for 
each g G VTLB2. Let h G VTIB2 be a discontinuous function. Let zo be a 
point of discontinuity of h , and suppose h is discontinuous from the right at 
zq. Choose yo ф /i(zq) in the interval C(/i, zo ,+). Define g by

It is easy to verify that g G VH B2. But h + g vanishes for z G (zo, 1), and 
h{x0) + 5f(z0) Ф 0, so h + g does not have the Darboux property. Let h 
be a nonconstant continuous function. Then — h is a nonconstant continu­
ous function, too. By Theorem 7 there is /  G W#2 \  P  for - h  such that 
g = f  — h G V H B 2. But h + g = f  £ V.  □

In this section we prove that the class VH B2 is not closed under the 
uniform convergence.

T heorem 9. There is a sequence of V H B 2 functions such that

P roof. Let C be the well-known Cantor set on the interval I. We use 
Lemma 6 and the notation of its proof, where P  = C, c = — 1 and d = 1.

if z G (z0, 1), 
if z G (0 ,zo).

5. O n th e  uniform  convergence in  Т>НВ2

f n = t f ? V .
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Our function /  will be the function g (from Lemma 6) and the functions f n 
will be the following modifications of g (n = 1 ,2 ,. . .) :

1) Let (u,v) E A,  let {(x,-,t/,) : i = 1 ,2 ,...}  be a sequence of disjoint 
closed subintervals of (u,v) such that AUfV П (х,-,у,-) = 0, let u ,v  E {x, : i = 
= 1 ,2 ,. . .} ' and let g(zi) —► 0, where Z{ = (x,- + y ,)/2 for i — 1 ,2 ,----Let

/n(z)
9(x),

. 9(x) -  hn}i ( x ) ,

if x G (u ,t ; ) \  U (**.»*).
«=x

if x G (x,-, yi) for some natural i,

where

h “  x«)/(n(z«' -  *»)) > for x e (xb z»>> ,• = 1 о
l  (i/i -  x)/(n(yi  -  X,)), for x e ( z i , y i ) ,

2) Let (u, v) G This case is analogous to the case 1). The difference 
between these cases is the sign of in the definition of /„ .

3) f n(x) = g(x) otherwise.
We show that these functions /  and f n have all the required properties.
a) Of course, |/(x )  — / n(x)| < 1/n for each x G I  and therefore /„ =t / .
b) The functions / , / „  E for n = 1 ,2 ,---- Indeed, let

and

if x g C, 
if x G C,

if x £ C ,  
if x GC,

for n = 1 ,2 ,__
The set {x : f ( x )  ф F(x)} and the sets {x : / п(х) ф Fn(x)} are count­

able, because they are subsets of the set of endpoints of elements of B. The 
functions Fn and F  are obviously Baire 1.

c) For each n — 1 ,2 ,•••: /„  E T>. Since /„  takes the value zero in every 
interval contiguous to P, it is easy to verify that f n is Darboux.

d) Finally, /  ^ V  follows from Lemma 6. □
We finish this paper with the following problem:
Problem. W hat is the maximal multiplicative class for VFíB-p.
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1. In tro d u c tio n

An almost tangent structure on a 2n-dimensional manifold N  is a tensor 
field J  of type (1.1) of rank n such that J 2 = 0 (N  is said to be an almost 
tangent manifold). Also, an almost tangent structure J  may be interpreted 
as a type of G-structure, where G is some Lie subgroup of G l(2n, R). Al­
most tangent structures were introduced by Clark and Bruckheimer [2] and 
Eliopoulos [61 around 1960 and have been studied by several authors (see ill, 
[3], [4], [9], [13]).

As it is well-known the tangent boundle TM  of any manifold M  carries 
a canonical integrable almost tangent structure. Moreover, any integrable 
almost tangent structure is locally equivalent to this canonical almost tangent 
structure. But not every integrable almost tangent manifold N  is globally 
isomorphic to the tangent bundle T M  of a manifold M .  Recently, Crampin 
and Thompson [4] proved that an integrable almost tangent manifold N  
which defines a fibration (that is, the space of leaves M  of the foliation 
defined by the integrable distribution V  = Im /)  with certain additional 
hyphotheses is an affine bundle modelled on TM.

In [10], we have introduced and studied a new type of geometric struc­
tures (called p-almost tangent structures) which are a natural generalization 
of almost tangent structures. A p-almost tangent structure consists of a 
p-tuple of tensor fields (J \ , . . . ,  Jp) of type (1.1) on a (p + l)n-dimensional 
manifold N  satisfying some compatibility conditions (A  is said to be a p- 
almost tangent manifold). The tangent bundle T ^M  of ^-velocities of any 
n-dimensional manifold M  carries an integrable canonical p-almost tangent 
structure (hence the name). In [10] we have proved that any integrable p- 
almost tangent manifold N  is locally equivalent to the canonical p-almost 
tangent structure on T^M.

In this paper we consider the global problem of equivalence. Then we 
consider an integrable p-almost tangent manifold N  which defines a fibration 
(that is, the space of leaves M  of the foliation defined by the integrable 
distribution V  = (Im J\)  ® • • • ® (Im Jp)) have the structure of differentiable 
manifold. In such a case, under certain hypotheses on the leaves of the 
foliations defined by the integrable distributions V, Va = ImJa, 1 < a < p, 
we prove th a t N  is an affine bundle modelled on T * M . Obviously, when 
p = 1, we reobtain the result of Crampin and Thompson.
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2. T he ta n g en t bundle o f  p1-veIocities

Let M be an n-dimensional manifold. By Tp M  we denote the tangent 
bundle of p1 -velocities of M, th a t is, the manifold of all 1-jets of mappings 
from Rp to M at the origin 0 í  F  (see [5], [11]). The manifold TpM  is 
locally characterized as follows: if (ж’) is a coordinate system on M then the 
coordinates (ж*, y\ , . . . ,  yp) on Tp M  are defined by

z ’Oo«7) = z’(<7(0)),

y 'a U la ) =  (0 (®* 0 ° ) / d t a ) |t=o, 1 ^ г <  n,  l < a < p ,

where j^cr is the 1-jet at 0 6 Rp of the map a : Rp —> M and t = (t1, . . .  , tp) € 
€ Rp■ Clearly, Tp M  is a manifold of dimension (p + l)n . We denote by 
7Г: Tp M  —» M  the canonical projection given by 7r(jg<r) = cr(0).

Remark. When p = 1, then Tp M  is the tangent bundle T M  of M.
Next, we shall prove that n : TpM  —> M  has the structure of vector 

bundle with standard fibre the vector space Rpn. To do this, we proceed as 
follows. We have a canonical diffeomorphism

A : Tp M —»• TM® .Г. ®TM

of TpM with the Whitney sum of TM  with itself p times; Л is given by

M i o 0 - )  =  U o° u - - - J o° p ), 

where oa : R —► M  is the curve on M  defined by

cra{t) = < r (0 ,. . . ,f , . . . ,0 ) ,

with t placed at the ath position. Then each element и € (Tp M ) x = 7г_1(ж), 
ж G M may be identified, via Л, with ap-tuple ( « i , . . . ,  up) of tangent vectors 
ua € TXM,  1 < a < p. If we now define

и + v = (ui + v i , . . . ,  up + Up), Ли = (Лиь . . . ,  Aup),

where и = ( u j , . . . ,  up), v = ( v i , . . . ,  vp) € (T^M )X, X e R, then it is easy to 
prove that ж: Tp M  —> M is a vector bundle over M, isomorphic, as vector 
bundles, with the Withney sum of TM  with itself p times.
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Now, if и G TXM, x  G M ,  we may define a vertical tangent vector to 
TpM  at a point у = (p i,. . . ,  yp) G (T ^M )X, for each a, 1 ^ a < p, by setting

= the tangent vector at f = 0 to the curve t —► ( j/ i , . . .  ,ya + t u , . . .  ,yp)).

Locally, if и = и'(д/дх')  then we have = u’(d/öp*).
Next, we may define p tensor fields J i , . . . , J p of type (1.1) on T ^ M  as 

follows:
(•Ja)y X  = (Tir(y)X)(a\  1 <a<,p .

We locally have

(2.1) Ja = (д/ду'а) ® (dxl), l ^ a ^ p .

From (2.1) we deduce the following properties:

( 2 . 2 )  J aJb =  JbJa =  0 ,

(2.3) rank(Ja) = n,
(2.4) Im J a П (  +  Im Jb) — 0 for all a.

Ьфа

Moreover, if we put Va = Im J a, it is easy to prove that the (a)-vertical 
lift mapping

и G TXM  —+ и G Vy, у G (TpM)x for each x G M,  

is a linear isomorphism.

3. p-alm ost tan g en t s tru c tu re s

Bearing in mind the geometric structure of the tangent bundle of pl- 
velocities T * M  of an n-dimensional manifold M,  we have introduced in [10] 
the following definition.

Definition 3.1. Let N  be a (p+ l)n-dimensional manifold endowed with 
p tensor fields (J i . . . , J p) of type (1.1) satisfying (2.2), (2.3) and (2.4). 
Then ( J i , . . . , J p) is said to be a p-almost tangent structure on N  and 
(N , ( J 1 , . . . ,  Jp)) is said to be a p-almost tangent manifold.

Remark. When p =  1, then a 1-almost tangent structure is an almost 
tangent structure.

If we put Va = Im Ja, 1 й a ^ p, then Va is an n-dimensional distribution 
on N.  Therefore,

V  = ® Va
a = l
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is a pn-dimensional distribution on N.  In [10] we have interpreted a p-almost 
tangent structure as a type of G-structure. We briefly recall this definition 
and its relation to  the tensorial one.

Let x be a point of N.  Then Vx is a pn-dimensional subspace of TXN . 
Choose a complement Hx in TXN  to Vx and let {e*} be a basis of Hx. Then 
{e,, e\ = (Ji)xe ' , . . . , e p = (Jp)xel} is a frame at x (called an adapted frame). 
If {(? ,e[, . . .  ,e?p} is another such frame, where {e1} is a basis for a differ­
ent complement to  Vx, then there are n x n matrices A, A i , . . .  ,Ap, with 
A  G Gl(n,R),  such that

?  = А^е’ + ( А 1))4  + . - .  + (Ар))4 ,
and hence

К  = А ) ею 1 % a < p .
The two frames are therefore related by the (p -f l)n  X (p +  l)n  matrix

( A  0 . . .  0
A i  A . . .  0

\ A P 0 . . .  A

The set of such matrices is a Lie subgroup G of Gl((p + l)n , R ) and the set 
of adapted frames at all points of N  defines a G-structure on N.

Conversely, let Bq(N)  be a G-structure on N.  Since the group G may 
be described as the invariance group of the matrices

(■Mo =

/ 0  0 . 
I  0 . 
0 0 .

. 0 \  

. 0 

. 0 , . . . ,  (jp)о —

/ 0  0 . 
0 0 . 
0 0 . о

 о
 о

\ o  о . • 0 ) \ I  0 . . 0 /
where I  is the n  X n identity matrix, the tensor field J0, 1 ^  a < p, may be 
defined as the tensor field of type (1.1) on N  which has the matrix represen­
tation ( / a)o at any point.

The fundamental problem of the theory of G-structures is to decide 
whether a given G-structure is equivalent to the standard flat G-structure 
on Д(р+1)п. In [10] we have proved the following theorem.

Theorem. A  p-almost tangent structure (J i , . . ., Jp) on N  is intregrable 
i f  and only if {Ja, Jb} = 0, 1 < a, b ^ p, where {Ja,Jb} is a tensor field of 
type (1.2) on n given by

{Ja, J b} { X , Y ) = [JaX , J bY] = Ja[ X ,J bY] -  Jb[JaX,Y} .

To end this section, we establish (for an integrable p-almost tangent 
structure on N )  the existence of a symmetric linear connection V  on N
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with respect to which the covariant derivatives V J a are zero, for any a, 
1 = a = P- In fact, this follows from the general theory of G-structures, since 
if ( J i , . . . ,  Jp) is integrable, then the first structure tensor of the G-structure 
vanishes (see [7]).

4. In teg rab le  p-alm ost tan g en t s tru c tu re s  which define fib rations

Let (J \ , . . . ,  Jp) be an integrable p-almost tangent structure on a (p-f l)n- 
dimensional manifold N.  Then the distributions V, V\ , . . . ,  Vv are involutive. 
Therefore V, V\ , . . . ,  Vp define p + 1 foliations such that each leaf of V  is 
foliated by the leaves of Va, 1 < a < p; in fact, each leaf of V  is locally a 
product of p leaves of the foliations defined by Vi , . . . ,  Vp. Now, we define an 
equivalence relation on N  as follows: two points of N  are equivalent if they 
lie on the same leaf of the foliation defined by V.  We say that (J \ , . . . ,  Jp) 
define a fibration if the quotient of N  by this equivalence relation (that is, 
the space of leaves) has the structure of a differentiable manifold. This will 
be the case if for every leaf one can find an embedded local submanifold 
of N  of dimension n through a point of the leaf which intersects each leaf 
which it does in only one point. In this case, the space of leaves M  is a pn- 
dimensional manifold and the canonical projection 7r: N  —► M  is a surjective 
submersion (that is, M  is a quotient manifold of TV). Then 7r: N  —>• M  is a 
fibred manifold and

Vy = Ty(ir_1(x)), у e N, x = я-(р), 

for each point у & N.
Example. The canonical p-almost tangent structure on the tangent bun­

dle TpM  of p1-velocities of any manifold M  is integrable and defines a fibra­
tion.

Bearing in mind the example above, we may define the (a)-vertical lift 
of tangent vectors on M  to N ,  1 ^ a < p, when N  is an integrable p-almost 
tangent manifold which defines a fibration.

If и G TXM  and у £ 7г-1 (а;) we define £ TyN  by и(“) = (Ja)y(u), 
where й  £ TyN  and Тж(и) = й. Since Кег{Т7г: TyN  —► TXM }  = Vy and 
(Ja)yVy = 0, then is well-defined. Moreover, u(°) £ (Va)y, and the map 
и -* is a linear isomorphism of TXM  with (Va)^. If X  is a vector field on 
M, we may define its (a)-vertical lift on N  given by = JaX , where X  is 
any vector field on N  which is 7r-related to X .  Clearly, X ^  £ Va, 1 ^ a ^ p.

Proposition 4.1. Let X, У be two vector fields on M. Then we have:

(1) [x (o), y (6)] = 0,
( 2 )  L x (a)Jb — 0
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for every a,b, 1 < a, b < p.
P roof. (1) Let X , Y  be vector fields on N  7r-related to X , Y . Then 

[X (<0 y (b)] = [jax , J bY] = Ja \ X , J bY] +  Jb [JaX , Y ]  =

= Ja [х,У<6>] +  J + .

But X  is 7r-related to X  and y (b) is 7r-related to 0; thus T n [ X , Y ^ ]  = \ТжХ, 
T ttYW]  = 0 and similarly Гтг[Х(а),У] = 0. Then [Х,У(6)], [Х(а),У] G V. 
So [Х(“),У(6)] = 0.

(2) For any vector field Z  on N  we have

(■Lx(a)Jb) Z =  [ x ( a\ j bZ - J b [x<e\ z  .

Now, supppose tha t Z  = У(с) for some vector field У on M.  Then both 
terms on the right-hand side vanish by part (1). Moreover, if Z  is тг-related 
to a vector field У on M,  that is, Z  = Y ,  then we have

i.LX (a)Jb) Y  =  [*<•>, J by ] - J b [Х(“),У] =

= [ х ( а\ у ( ь>] -  Jb [x<e) - J b [ l W ,y  .

But as was proved above, [Х(а^,У] € V. This ends the proof. □
Now, let V be a symmetric linear connection on N  such that V Ja = 0, 

1 < a < p. Then we have
P roposition 4 .2. V  induces by restriction a connection on each leaf of 

V, V i , . . . ,Vp  which is flat.
P roo f . In fact, for any vector fields X, Y  on M  we have

V * (o)y (6) = V*(.) (JbY) = Jb (V * (o)y )  = Jb ( V y X W  + [x (“\ y ] )  =

=  Jb ( y v x(a))  = VF ( ^ * (a))  = 0,

У is any vector field on N>-related to У. This establishes the result. □ 
Before proceeding further, let us recall some well-known definitions and 

properties of affine bundles (a beautiful and brief exposition about this sub­
ject can be found in [4]).

Definition 4.1. An affine bundle consists of a fibred manifold ж :  A — > M  
and a vector bundle т : E —> M ,  together with a morphism g : А х м Е  —► A  
of fibred manifolds over idд/, such tha t for each x £ M,

дх : ж 1(ж) X т x(x) —► ж x(x)
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is a free transitive action of the vector space r _1(x) on 7r-1 (x). So, each fibre 
7r''x(x) of the affine bundle 7r: A —*■ M  is an affine space modelled on the 
vector space r _x(x). We say that the affine bundle 7r: A  —> M  is modelled 
on the vector bundle т: E  —> M.

We have the following result (see [4]).

Proposition 4.3. Let n : A M  be an affine bundle modelled via a 
morphism g of fibred manifolds, on the vector bundle т : E  —► M . Then 
7Г : A  —► M  is a fibre bundle with standard fibre; the standard fibre F of 
E regarded as an affine space, and with structure group the group of affine 
automorphisms of V .

Remark. Let т : E  —► M  be a vector bundle. Then one may form an 
affine bundle with the same total space E  by taking g : E x \ jE  —► M  to be 
the additive action of r _x(x) on itself, for each x £ M.  This affine bundle 
will be denoted by AE.

Next, we prove our main theorem.

Theorem. Let (N , (J j , . . . ,  Jp)) be an integrable p-almost tangent struc­
ture which defines a fibration n : N  —> M. Let V be any symmetric linear 
connection on N  such that V /„ = 0, 1 < a ^ p, and suppose that with respect 
to the flat connection induced on it by V, each leaf of the foliations defined 
by V, V i,. . . ,  Vp is geodesically complete. Suppose further that each leaf of the 
foliation defined by V  (that is, the fibres of n : N  —+ M ) is simply connected. 
Then N  is an affine bundle modelled on T*M .

Proof. We shall define a morphism

в : NXMTpM  -  N

of fibred manifolds over idм  such that for each x £ M.

gx : tt- 1( x )  X (T*M)X -* n ^ f x )  

is a free, transitive action of the vector space

et ip m )x = © (t xm )
p times

on 7T1(x). To do this, we proceed as follows. For any

и = ( « 1 , .  . . , u p), ua £  TXM,  1 ^a<Lp,  

we may define p  vertical vector fields Ua, 1 ^ a < p, on 7T-1(x) given by

и м  = ( M w) s .
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for every у £ 7r~1(x). Then Vf/aZ7b = 0, l < a ,  b<p. Particularly, V{/0f7a = 0, 
and therefore Ua is a geodesic field for every a, 1 ^ a < p. Consequently, Ua 
is a complete vector field on 7T-1 (x), that is, it generates a one-parameter 
group

Фиа : Ä x  7r-1 (x) -*■ 7г-1 (х).

Let t —► фи a (  ̂1 У) be the integral curve of Ua such that фиа(®, у) — У• We 
define g by

9 x ( y ,u )  =  Фи„ ( ! , - •  • ,Ф и 3 (1 ,Ф и2 (1» J/))) *• • •»)»

where и = ( u i , . . . ,  up). Now, we shall prove tha t gx defines an action which 
is transitive and free. First, for any и = ( щ , . . . ,  up), v = ( v i , . . .  ,vp) £ 
£ (Tp M )x, the corresponding vector fields Ua, Vj, on 7г- 1(х) satisfy [Ua,Vb] = 
— 0 (by Proposition 4.1). Thus their one-parameter groups commmute:

(4-1) (Фиа){в,фуь{Ь,у)) = (фуь^ ,ф и а(з,у))).

Furthermore, we know that if two complete vector fields commute then the 
composition of their one-parameter groups is a one-parameter group whose 
generator is their sum. So, we have

(4.2) №ua) ( t ^ v b{t,y)) = (фуь)(ф,фиа(*,У)) =  Фиа+уь^ ,у ) .

Since и + v = (Ui -P Vi, . . . ,  up -f Up) £ (T^M )X, a simple computation using
(4.2) shows that

вх(вх(у, и), v) = gx(gx(y, v), и) = gx(y, и + v).

Then gx define an action of {T^M)X on 7г- 1(я). Next, we shall prove that 
this action is transitive. Let ( , ) be any scalar product on TXM . We define 
a Riemannian metric on each leaf of the foliation Va, 1 < a < p, as follows:

(4.3) ga (Ua, Va) = (ua,v a).

(Let us remark th a t the vector fields Ua,Va, . . .  span the distribution Va and 
are tangent to each leaf of the foliation defined by Va.) From Proposition 4.2 
and (4.3) we deduce that the vector fields Ua,Va are covariant constant and 
have constant inner product. Then V is the Riemannian connection for ga. 
Therefore, each leaf of the foliation defined by Va is a geodesically complete 
Riemannian manifold. Now, since each leaf of the fohation defined by V  is 
a local product of p leaves of the foliations defined by V i,. . . ,  Vp we deduce, 
by the Hopf-Rinow theorem, tha t any two points of 7r- 1(x) may be joined 
by a piecewise differentiable curve 7 with a finite number of geodesic arcs 
{71, . . .  , 7g} in such a way that 7Г, 1 ^ u < q, is a geodesic arc on a leaf of 
the foliation defined by the distributions Va, for some a. We may suppose
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that 7 (0) =  у and 7(1) = г. Moreover, from (4.1) and (4.2) one can find an 
element и =  ( u j , . . . ,  up) 6 T^M X such tha t

7(0) = (u i)(1), and z = фир (1, • ..,</>[/2(1,</>í7i ( 1,2/)), . . . ) .  

Consequently, we have

-г = ffi(í/,(«i,--.,«p))-

Finally, we prove that the action gx is free. Let T(y) be the isotropy group 
of у G 7T_1(x) under the action of (T p M )x, that is

Г (у) = {u = ( u i , . . . ,  Up) <= (TpM)x/gx(y , u) = y} .

From the definition of gx, one can easily prove that the following diagram

TXM@ .Г. ®TXM  ---- ——♦ ж~г(х)

T y ( * - \ x ) )

is commutative, where expy denotes the exponential map of V restricted to 
7T- 1(x) and ф is the linear isomorphism given by

ф(и) = ф(иъ  . . . ,  up) = (u i) (1) + • • • + (up)(p).

Since exp у is a local diffeomorphism, then so is gx. Therefore

Г (у) = ы ~ \ у )

must be a discrete (additive) subgroup of (TpM)x. Then the elements of 
Г(у) are integer linear combinations of some к linearly independent vectors 
c*i,. . . ,  Ofc, where 1 ^ к < pn. So we have

(T 'M )  /T(y) Si ( Rk x / Z k S T k x Rpn~k,

where T k is a /г-torus. But, since (T pM )x acts transitively on tt- 1(x), then 
7T- 1(x) is diffeomorphic to the coset space (TpM)x/T ( y ). Thus, if T(j/) is 
non-trivial, then 7r- 1(x) is diffeomorphic to T k x Rpn~k , which is not simply 
connected. Consequently, Г(г/) must be trivial and then the action is free. □
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Corollary 4.1. I f  (N , (/ 1, . . . ,  Jp)) verifies all the hypotheses of the the­
orem and in addition n : N  —* M  admits a global section (fot instance, if 
M  is paracompact), then N  is isomorphic (as a vector bundle) to T M . This 
isomorphism depends on the choice of section. □

Corollary 4.2. I f  (N , (J \ , . . . ,  Jp)) verifies all the hypotheses of the the­
orem except the hypothesis that the leaves of the foliation defined by V  are 
symply connected and this leaves assumed to be mutually homeomorphic, then 
TpM  is a covering space of N  and the leaves o f V  are of the form Tk x R pn~k , 
where T k is a k-dimensional torus, 0 ^  к ^  pn. Moreover, if it is assumed 
that the leaves of V  are compact, then T ) M  is a covering space of N  and 
the fibres are diffeomorphic to T pn.
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CO N SEJO  S U P E R IO R  D E IN V E ST IG A C IO N E S CIEN TÍFICA S 
SERRA N O , 1 2 3 ,  2 8 0 0 6  M A D R ID , SPAIN

D EPA RTA M EN TO  D E G E O M E T R ÍA  Y TO PO L O G ÍA  
FACULTAD D E M ATEM Á TICA S 
UNIV ERSID AD  D E SA N TIA G O  D E C O M PO STELA  
SAN TIA G O  D E C O M P O S T E L A , SPAIN
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ON THE EQUICONVERGENCE OF THE 
RIESZ MEANS WITH EXACT ORDER

N. H. LOI (Hanoi)

Developing a fruitful method of V. A. D’in [1], members of his school 
proved some equiconvergence theorems with exact order ([2], [3], [5] and 
[6]). In this paper we shall prove an equiconvergence of the Riesz means 
with exact order for functions with given integral modulus of continuity. 
The theorem of S. A. Alimov and I. Joó [2] is only a special case of our 
result when 5 = 0.

Let u>(t) be a continuous function on [0,oo) satisfying the following con­
ditions:

(i) u>(0) = 0,u;(i) > 0 if t > 0;
(ii) u>(21) ^ Cu{t)-,

(iii) oj(t) is not decreasing;
(iv) uj(t)/t is not increasing.
Denote by H “[0,1] = H “ the set of those functions /  £ L i[0,1] for which 

the integral modulus of continuity

l - h

uq( /, := sup /  | f ( x  + h) -  / ( z ) | dx
Ш<5 J 0

satisfies the condition 6) < Cu>(6).
Define

II /  IluHI /  11 Z/i [0,1] + sup •
5>0 ш{°)

We consider the Schrödinger operators

Lu := —u" +  q(x) u(x), Lu := - u "  + q(x) u(x).

where q(x), q(x) £ LP[0,1] (p > 1) are arbitrary real functions. Let 
and be complete orthonormal systems of eigenfunctions of the cor­
responding operators in Тг[0,1]; further denote {A*;}^ and {AjJ^lx the 
positive eigenvalues (0 < Ai < A2 ^ , 0 < Ai < Ä2 • • •)• For brevity we
use the notation Hk ■— V^k-
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For any /  G £ i[0 ,l], p > 0, 5 G [0, ^) consider the partial sums of the 
Riesz means of the spectral expansion of / :

<(/>*):= Y  U,uk)uk{x) ( l  -  4 )  ,
Uk<U '  ^  '

KU'x):= Y  (/>**)**(*) í 1 -  Őt) ■
£*</* '  ^ '

The aim of the present paper is to prove the following

Theorem. Given any compact subset К  C (0,1), for any f  G # “ [0,1], 
x G К , p > 1, s G [0,1) we have

(1) < ( /» * ) - * £ ( /> * )  = 0  ( w

The order of (1) cannot be improved in the sense that о (̂ u> cannot be
written on the right hand side o / ( l ) .

We recall some well-known results which are necessary for our proof:

(2) M * ) |S C  ( 0 g * < l ,  * =  1 ,2 ,. . .)

(cf. [3]);

(3) |(/>ufc)| ^  C(q) II /  ||o, u> ( /€ Я Г [0 ,1 ) , * =  1 ,2 ,. . .)

and

(4)

(cf. [2]);

oo OJ \ —  )
\ P k J

1 +  (M -  Mfc)2
< Cw (m > 1)

( 5 )
__ l

P k , x , t ) t  5 2 J  i ( p t ) d t  
s+2

< C  min

where
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and

x+t
. f  S

go{Uk,Hk,x,t) := / -
X — t

sin Hk(t -  |x -  fl)
Pk <1(ОииО<%

( 6 ) <

where

K£k(R) := /x2 J  t~*~ 2 J3+ i (fit) cosnktdt;
R

К  С (0,1) is an arbitrary compact subset, 0 < Ro < |  dist (К, д(0,1)),
Rc

v R ° g := j  a ^ dR
0 Bn 

2

(cf. [8]).
The proof of our theorem is based on some lemmas. Introduce the no­

tations

(7)

and
k=i

(8) / Ш , * ) :

where
*=i

я/
Lo

go{uk,Bk,x,t)t * 2 J  1 (fit) dt
5 г «- Л .

(9) /* := (/»«* )•
Lemma 1. For any /  E Я "[0 ,1] and x E К ,

(10) M / , * ) I S  <?(*,»>») II / I I - " Q )  ((* > !)•

Proof. Applying (2), (3), (6) and (9) we have 

l« „ (/,x ) | < C(K,q ,s )  II /  ||„ g w  ( L )

Hence, using (4), the estimate (10) follows at once. Lemma 1 is proved. □
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Lemma 2. For any f  £ Я “ [0,1] and x E K,

( и )  l / W , * ) l s c | | / | | „ w ( i )  (/i > l).

P roof. Using (5) and  (3) we get

Ш М \  Í  С  II / £ " ( » )  raini Jk=1 VFfc/ /X

1 //2
3 ’ ..2 2 f k̂

Hence (11) follows by the method used in the proof of Lemma 2 in [2]. 
Lemma 2 is proved. □

Now we return to the proof of our theorem.
Given any compact К  С (0,1) denote R  an arbitrary number from the 

interval (0, dist (К, д(0,1))). Now fix ж £ Я  arbitrarily and define the func­
tion WR : (0 ,1) —» R by

(12) W k (x  + t):= a(s)ß Г s I-Л 8 о2 j s+i W A )  ^  1*1 й я ,
0 otherwise,

where
a(s) := 2s(27t)“ 2 T(s + 1).

P roof of the Theorem . We consider the Fourier coefficients of the func­
tion Н д (x + t ) with respect to the system {ttfc}. An easy calculation shows

x+R

W£ = (uk, W r ) — J W aR { \ x - y \ ) u k{y)dy =
x—R

R

= J W R(t) [uk{x -  t) +  uk(x +  f)] dt.

Applying the Titchmarsh formula [9], we obtain
x+t

uk(x + t) +  uk(x -  t) =  2uk(x)  cos ßkt + J q(OMO sin n k(t - \ x -  f |)

x —t
Hk

R oo oo
and using the integral transformation f  = f  -  J  we get

о о я
я  я

(13) W£ =  2ик(х) J W fá t )  cosHkt dt + J Wb(t) д0(ик, fj.k,x, t)  dt =
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= Uk(x)2a(s)n 3 <
°r I

/Д  У c o s  V k t  d t  -  K £ k ( R )  > +
о

R

I dt+a(s)n 3 J t 3 a Js+i(nt)go(uk,fik,x, t) i  

It is well-known (cf. [10, p. 107, (34)]) that

°? / 2 4 *
(14) 2a(s)n*~3 I  r s~2 Js+i_(nt) cosHktdt = ő£ í 1 -  ^ f j  ,

о

where

K , : = ( '  ! 
I 0 i

if flk < 
if Hk > Ц.

Substituting (14) into (13) we obtain

, 2  \  *

W  = Ц кик(х) ( l  -  -  2a ( s ) p - u k(x)K»k{R)+

+a(s)n 3
RJ t 5 * g0(uk, Hk,x,t) dt

Since for any fixed x G К  and fi > 0, W^(|x — y|) as function of у belongs 
to f/2[0, 1], we have the following equality in L^[0, l]-convergence in у :

Щ ( \*  -2/1)- M k) Mv )  ( l  -  4 )  =

OO

= ~2a(s)n~3 ^ и к{х)ик(у)К£к(К)+
h=l

+а(а)ц 3 J 2
k=l

я
^ J t * *Jt+L(nt)go(uk,Hk,x,t)dt М у)-

Apply the operation term by term on both sides of the last equality to 
get

(15) V r^ W ^ I x -  y\) -  ] T  uk(x )uk(y) ( l -  =
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= -2a(s)n a ^ 2 u k(x )u k(y)VR<>K ^ ( R ) +  
k=1

+ 2a(a)fi
fc=i

R

^  j t 3 *Js+\.{nt)go{uk,n k, x , t ) d t uk(y)-

It is easy to  prove that after multiplication of both sides of (15) by any 
/  G #"[0,1]) one can integrate the resulting equality term by term over [0,1] 
in y. Introducing the notations

Si := -2a(s )n~’ Y , u k{x) fkV HoK£k(R), 
k=i

S2 := a(s)n
k=l

R

ц* J t 3 2 Js+i_(fit)g0(uk,n k,x , t ) d t fk

and taking into consideration (2), (10) and (11) we have the following esti­
mates:

\ S i \ Z C ( K , q , s ) \ \ f \ \ u u ( ± y p - '  ( / i > l ,  * =  1>2).

Therefore

lJ V ^ W 3R{\x -  J/|) f (y )  dy — cr*(/, x) Í  C(K,q ,3)  || /  ||„ u, ( £ )  -ц~3,

similarly

1J V ^ W & l x  -  y\) f{y )dy  -  <тЩ,х) Z C ( K , q , s ) \ \ f \ \ „ u ( ^ \  • ц~

After this preparation we obtain (1) by the triangle inequality.
Now we have to prove that the estimate (1) is not refinable in the sense

th a t о û> can not be written on the right hand side of (1). This was
proved in [2] for the case s = 0.

Theorem is proved. □
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INTERPOLATION BETWEEN DYADIC HARDY 
SPACES Hp: THE COMPLEX METHOD

V. ECHANDIA (Caracas)

P relim inaries
1.1. Dyadic Hardy spaces Hp. In what follows Lp will denote Lv[0,1], 

0 < p < oo. In this section, following [2], we shall introduce the dyadic 
Hardy spaces.

Definition 1 . For each /  G L1, let

E nf  = S2n f  ( n e N ) ,
where S2n f  is the 2nth partial sum of the Walsh-Fourier series of f .  The 
dyadic maximal function E * f  is defined by

E * f  = sup \Enf \  ( / G I 1).
neN

Definition 2. For /  G L1, set

and for n G P, also define
E0f = \ E 0f\ ,

~Enf =  sup (|J5„(/)| + \Em( f - r m)\)
0 < r a < n

where rm is the m-th Rademacher function.
For each /  G L 1 set

It is easy to see that

E f  = sup Enf.  
neN

( 1 ) E * f  й E f  <: 3E*f.

The following lemma is proved in [2].

Lemma 1. I f  f  G L1 has zero mean and we define f n — Enf  (n  G N), 
and for к G Z we put

f lk) =  E  ^ { 2fc <  É " f  $  2 fc+1K / n +1 -
n=0

f n ) ,
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then we have
JET(/(fc)) < 2k+2x { E f  > 2k)

and
OO

/ =  E  f (k)
fc=—oo

a.e. on [0,1]. Moreover, if  E * f  G L1, then this series converges to f  in L 1 
norm. denotes the characteristic function of the set {...}.,)

The above series will be called the canonical decomposition of / .  
Definition  3. The dyadic Hardy spaces are defined as

(0 < p < oo).

Notice that the set of dyadic step functions L is dense in Hp (0 < p < oo). 
For a detailed study of these spaces see [2].

1.2. The complex method of interpolation. In this section we define the 
interpolation spaces Ащ,  in the same way as in [1].

Given a couple A = (Ao ,A \ ) of Banach spaces, we shall consider the 
space T  — JF(j4) of all functions /  with values in which are bounded
and continuous in the strip 5 =  { ^ 6 C : 0 ^ R e z <  1} and analytic in 
the open strip So = {z  G C : 0 ^ R ez < 1}. Moreover, the functions 
t —► f ( j  +  it) (j  = 0,1 i =  л/—T) are continuous from the real line into Aj  
and tend to zero as |f| —► oo. F(A)  is a vector space. We provide T  with 
the norm

\\f\\r = m ax(sup||/(*i)|U 0, sup ||/(1  + »0IU J.
(The supremum is taken over all real numbers t.)

We have the following result.
Lemma 2. The space T  is a Banach space.
For a proof see [1].
Definition  4. Given a couple A  = (j4o,A i ) of Banach spaces and 

0 < 9 < 1, the space Ащ  is defined as

Ащ = {a 6 E ( ^ )  : a = Я 0), for some /  G П А ) } .

The space Ащ  is a Banach space with the norm

M[*\ =  in f{ ||/ ||^  : m  = a, f e  T j .
(See [1]0

For Ащ we have the following
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P roposition 1. The space Ащ is an interpolation space with respect to 
A.

For a proof and for a detailed study see [1].

2. C harac te riza tio n  o f in te rm ed ia te  spaces betw een
HPo and  HPl (1 ^ pj < oo, j  = 0,1)

In this section we shall use the idea of [2], to prove the following result. 

T heorem . Assume that Po ^  1, Pi ^  1 and 0 < в < 1. Then

(H Po, HPl)[0] =  Hp (equivalent norms),

if
1 1 - 0  0— —--------1-----.
P Po Pi

that
P r o o f . It is sufficient to prove that there exist constants ci,C2 > 0 such

Ci IMIhp й lla ll[0] й c2|M|hp>
for all functions a G L. 

For any a £ f  define

a2 = 2kp'p‘a<~kh - k, z e S
k=—oo

where a = ^2 is the canonical decomposition of a, and
oo

— — -------- 1- —, z e S .
Pz Po Pi

Clearly, ag = a. Moreover there exists a Ci > 0 such that, for j  = 0,1,

1К+ч/11н'> S eilkllH?’ (9 e R).
In fact, by Lemma 1 we have that

E*(az) < J 2  \2kp /pz\ 2 ~ k E * ( a ^ ) < 4  2kpl p ix  { -É fl >  2 fc j
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where z = j  + iy. Applying Abel’s transformation we obtain that
OO

E*(aj+iy) Í  4 2kp/P]X { Ё а > 2 к} =
к——oo

= 2p/p} 1 S  (2(k+l )p/Pj _  2fcp/p>) X > 2fc} =
k=—oo

=  f )  2*»/«x {2* < < 2fc+1} .
к——oo

We can conclude from (1) that

I K + í#IIh '< =  l | S > i + * ) l l  p,S 7p l|É (< .)ll? /p' S  3 7p | | £ - ( « ) l |  =  c l k l t ó '
where 7P > 0 depends only on p.

Now let £ > 0 and define

/(z )  = a2 • exp(£z2 — £02), for all г G So.

Assuming that ||а ||н р = 1» we have that f(0) — a, f  € F,  and 
We conclude that

INI[0] = ci e') for aii £ > o.
Hence ||a||[0] £ Ci||a||Hp.

The converse inequality follows from the relation (see [3])

T ^  cxe '.

|a ||Hp = sup {|(a,6)| : ||6||(Hp)* = 1\ b € L}

where

< a,b> = <

l
f  a-h,
о

if p > 1

lim /  Em(a)Em(b), if p = 1

and (Hp)* stands for the dual space of Hp. In fact, given b € L, e > 0 and 
1 > b > 0 put

g(z) = bz • exp(£z2 -  ев2) for z € S.

Pick an h 6 F(A)  such that h(6) = a and

\\Цт ^  I M I [ 0 ]  +  Ö-
If we define

F(z) = (h(z),g(z )) for z € S,
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then applying Holder’s or Fefferman’s inequality and supposing tha t ||a||[0] = 
= 1 and ||6||HP/ = 1, we get for у E R

\ \ F ( i y ) \ \  й  |1М*2/)11нРо||5(гу)||нР- < c0e£||/i(iy)||Hpo <

й с0ег|Н М  < (||a ||[0] + 6)c0ee < 2c0ec,

where
---- 1- — = 1-
Po P0

Similarly, we obtain that there exists a constant c2 > 0, with

|-F(1 + iy)\ й c2<? (У É R-).

Since h E F(A)  and g E L, the function F  is holomorphic on So and 
continuous on S. Consequently, the three lines theorem imphes

I < a, b > I = |F(0)| < с2(е')в • (в')*1- 0) < с2ег.

Hence we obtain that

IMIhp й  сгс', for all e >  0.

Therefore
IMIhp ^  c2||a||[0].

The proof is complete.
I am grateful to Professor F. Schipp for calling my attention to the 

problem and for his helpful comments.
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WEIGHTED SIMULTANEOUS APPROXIMATION BY 
ALGEBRAIC PROJECTION OPERATORS

E. VAN WICKEREN (Aachen)

1. In tro d u c tio n
The present note originates in work on simultaneous approximation by 

projection operators, given in [6] for trigonometric approximation. Here the 
corresponding algebraic problems are considered in the frame of appropriate 
weighted Sobolev spaces. In fact, the direct estimates are established is 
terms of the error of best weighted approximation which then turns out to 
be sharp.

Let C = C[—1,1] be the space of functions, continuous on the compact 
interval [—1 ,1 ], and let [C] be the space of linear bounded operators of 
C into itself, endowed with the sup-norm || • | |c  and operator norm || • ||[c], 
respectively. An operator Ln G [C] is called a polynomial projection operator 
on Vn , the set of algebraic polynomials of degree at most n > 0, if

(1 .1 ) Lnf  G Vn ( /  G C), Lnpn = pn (pn G Vn).

In terms of the error of best approximation

(1 .2 )  E n( f ) := inf {Ц/ -  pn\\c : pn G Vn} 

it is well-known that

\\Lnf  -  f\\c < K\\Ln\\[C]En( f )  ( f e e ) .

It is the purpose of this paper to give an analogous result for the remainder 
of the simultaneous approximation of /  by Lnf ,  i.e., for the r-th  derivative 
(.f ~ L nf t \ x ), as well as to discuss the sharpness of the relevant estimates. 
It turns out that one has to consider the weighted Sobolev space CTV of func­
tions /  G C, which are r-times differentiable on ( - 1 , 1 )  such th a t <prf ^  G C, 
<p(x) := V l  — x2 (C° := C[—1,1]). In terms of the error of best weighted 
approximation

(1 .3 )  E f ( f )  :=  inf (II<pT( f  -  Pn)\\c : Pn G Vn}  

the main result is given by (n ^  r)

(1 .4 )  № ' ( /  -  £ „ / ) (r || |c  S  * П |£ „ И и  U  e  с ; ) ,
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which is quite analogous to the estimates in the periodic case (see [6], also 
Theorems 2.6,7). This can then be extended to error bounds for 
II<p'(f — L n f p W c  simultaneously for each 0 < i < r given in Corollary 
2.5. Essential for the proofs are some facts on weighted approximation, re­
cently published in [4], which allow to strengthen the result on simultaneous 
approximation by the polynomial of best approximation, given in [5] (see 
Lemma 2.2).

Concerning the sharpness of (1.4) only those Ln are considered which are 
optimal in the sense of the theorem of Harsiladze-Lozinski, i.e., the norm 
||Ln||[c] behaves like logn. The proof is based on a quantitative extension 
of the uniform boundedness principle (see [3] and the literature cited there) 
and is reduced to arguments concerned with trigonometric approximation.

2. D irect estim ates

Let us first recall some facts on algebraic best approximation in the 
weighted Sobolev space C£,, given in [4, Theorems 2.1.1, 7.2.1, 7.3.1].

Lemma 2.1. Let f  G C£ and let pn G Vn denote its polynomial of best 
approximation. Then

(2.1) ll/-Pn||cStf»-lv>7wllc,

(2.2) I lo i lo  S A-||97(r)l|c.

The following lemma is the key to derive (1.4) and improves the result 
given in [5].

Lemma 2.2. Let f  G and let pn G Vn denote its polynomial of best 
approximation (with regard to (1.2)). Then for n > r

(2.3) uz -  j>„iic < к п

(2.4) W U - P ^ W c i  K E t r U " ) .

Proof. Since Vn is finite dimensional and (prf G C, there exists 
Qn-r € Vn-r  with (cf. (1.3))

n ^ ( / w  -  o » -r) iic  =  e : : , ( / w ).
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Then
X  U r-1

971(2-) := J • • • J Qn- r(ur) duT . . .  du\
о 0

belongs to Vn with = Qn- r • Setting F f  — qn, one therefore has

(2.5) l l v ' ^ l l c  =  E f - r U ^ ) -

Let tn £ Vn denote the polynomial of best approximation of F, i.e., 
\\F — tn\\c = En(F). In view of (2.2) one obtains

(2.6) lkr4r)llc  ̂K\\<pTF^\\c .

Now qn £ Vn so that

II/ - q n -  tn\\c = En(F) = En( f  -  qn) = En( f ), 

thus pn = qn + tn, since pn is unique. This implies by (2.1,5)

Wf-PnWc = \ \ F - t n\\c < K n - r \\q>rF ^ \ \c  = K n - rE f _ Á f (r)),

thus (2.3). Moreover, (2.4) is a consequence of (2.5, 6) and 

\\<Рги - Р п П с  ^  M ^ W c + W v ' W W c  ^ K\\vrF ^ \ \ c  = K E f _ r( f V ) .  □

Now, we are in the position to establish the main result.
T heorem 2.3. Let Ln £ [C] be polynomial projection operators on Vn. 

Then (1.4) holds true for each r > 0.
P roof. Let pn £ Vn denote the polynomial of best approximation of 

/  £ C£. In view of (1.1), (2.3,4) one obtains

(2.7) II V'(f-  i „ / ) ('* ||c < ы и  -  Pn){r,||c  +  -  p„)||c  S

S k e C , U {,]) + Kn’ W U f  -  P„)\\c <

< K K U f " )  +  K n ’ \\Ln\\ic]n - E t M M
upon applying the Bernstein-inequality

(2.8) l l v ^ H c  ^ K n r\\qn\\c  (?„ G Vn). □

To extend Theorem 2.3 to error bounds for ||v?’( /  — Lnf ) ^ \ \ c ,  0 < i < r, 
let us first establish
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Lemma 2.4. Let 0 < i ^  r. Then С£ С C^ and 

(2.9) K - Á f (i)) й K n - ^ E t r{ f (T)) ( /  € C ;).

P roof. To show C£ C CJ, it is enough to consider i = r — 1 > 1. For 
/  G and 0 й x < 1 one has

X

V>r"1(* )/(r_1)(*) = J VT-\x)f(T\t)dt + vr-\x)f(T-'\0).
о

Since y>r-1 (a;) < <̂r-1 (t) for 0 < t <j x the integrand is bounded by 
Ц ^ /И Ц с  /y>(i) and converges to zero for a: —► 1 — and fixed i. Thus by 
dominated convergence one obtains

lim <£>г-1(®)/(г-1)(ж) =  0. x—>i—

Similarly, this result is vahd for x —> — 1+ so that <̂r“ 1/ ( r-1) £ C[—1,1], thus 
/  G C£-1 . To establish (2.9) it is again enough to consider i =  r — 1 > 0. 
Then an iterative application of (8.2.1), (6.2.6), (6.1.1) (with weight w = 
= p T~x) of [4] yields the Jackson-type inequality

^ - 7 + i< / (r_1)) S K v . - ' W  ( /  6 CJ).
Now let /  G be fixed and let qn as in the proof of Lemma 2.2. Then 

G Vn-r+i so that
С ;! ,« / ''- 1»)= к s

S K n - ' W 4 ' T' -  eW )||c  =  K n - ' E t A l [r'),
hence (2.9). □

The following corollary is an immediate consequence of Theorem 2.3 
applied to 0 < i < r and Lemma 2.4.

Corollary 2.5. Let Ln G [C ] be polynomial projection operators on Vn- 
Then (те ^ r)

(2.10) 1 И /  -  i ~ / ) (,)llc S A '"-(' - i)l|inl|[01£ ? : . ( / <r>) ( /  € c y ,
simultaneously for each 0 < i < r.

Let us remark that the proofs still work if, instead of (1.1), for some 
fixed q G N

(2.11) Lnf  G T*qn ( /  G C), Lnpn = pn (pn G Tn).
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Such an operator is given by the algebraic version of the de la Vallée Poussin 
means. To be more precise, let C?n be the space of functions, 2;r-periodic 
and continuous on R, endowed with the sup-norm || • ||c , and let C^r be 
the subspace of even functions. The latter one is isometric to C via the 
transformation Uf(x)  := /(cos я), /  G C. The de la Vallée Poussin means 
are defined by (g G C ^ )

1 2n—l к 1
5 » , ( * ) : = £ « « ' -

k=n j ——k

It is well-known, that Vng G for g G and 

(2.12) Vng G Пгп-г (9 £ C)> Vntn = tn (tn G Пп),

J g(u)e ,Jtt du.
— 7Г

(2.13) l |v . | | [ a j  < 3,

where Пп is the set of trigonometric polynomials of order at most n. Then 
W n := U~^VnU fulfills (2.11) so that one obtains

(2.14) 1И / -  W./)Wllo S К*£ ,(/« ) (/ 6 с у .

Let us also mention the analogous result in the trigonometric case itself. 
Denote by the space of functions g G Civ which are r-times continuously 
differentiable on R.

T heorem 2.6. Let M n G [CW] be such that

(2.15) M ng G Пп (9 € Civ), M ntn = tn (ín G Пп).

Then with E n(g) := inf{||5 -  tn\\c : tn G Пп)

(2.16) ||(M„S -s)< i)||c < ír n - |' - i)||Mn|||C;s, )É„(JW) (9 € с;»),

simultaneously for each 0 ^  г ^ r.

The proof works parallel to (2.7) applying the inequalities in [8, 5.6(27), 
8.4(60)] instead of Lemma 2.2,4. One may also compare (2.16), i = r with

ll(M„9 -  *)<'»||с S К  [Ё„(9<'>) +  Ё„(9)||М<'>|||С„

given in [6] (for a similar treatment in C see [7]).
Let us conclude this section with the analógon of Theorem 2.6 to even 

functions.

Acta M athematica Hungarica 58, 1991



74 E. VAN WICKEREN

T heorem  2.7. Let M n G [C^.] be such that
(2.17) Мп 5 е П + := П п ПС+ (g G C + ), Mntn = tn {tn G П+). 
Then for

(2.18) ||(Mn5 -  ( /)« ||c  ^ ^ п- ^ - ) | | м п||[с+]£;п(«7(г)), 

simultaneously for each 0 ^  i £ r.
The only difference in the proof is the observation tha t for even function 

5 6 C^. the polynomial of best approximation is also even, i.e.,
(2.19) En(g) = E+(g) := inf {\\g -  tn \\c  : tn G П +}.

3. T he sh arp n ess

The sharpness of the estimate (1.4) can be established for those Ln, the 
norm of which behave like logn. To this end, let e = {£„} be a positive 
decreasing nullsequence satisfying
(3.1) £„ =  0(£2n).

Theorem 3.1. Let Ln G [C] be polynomial projection operators on Vn . 
Then for each e subject to (3.1) there exists a counterexample f c G C£ such 
that
(3.2) E t T(ÚT]) = 0{e n),

(3.3) \\ipTU '  -  Lnf ' ) ^ \ \ c  ф o{en \ogn).

This result follows as an application of the subsequent quantitative ex­
tension of the uniform boundedness principle (see [3] and the literature cited 
there). Let X  be a Banach space with norm || ■ ||x  and X*  the space of 
sublinear, bounded functionals on X .

T heorem 3.2. Let фп be a decreasing nullsequence and crn > 0. Suppose 
that for Un, R n G X* there are elements hn G X  satisfying (m ,n  G N)
(3.4) I\hn\\x Í  К ,

(3.5) \Umhn\ ^ К  m in{l,ат/фп},

(3.6) \Rnhn\ ф o(l).
Then for each 0 < a  < 1 there exists f a E X  with
(3.7) \Unf a \ = 0 ( 0 ,

(3.8) \Rnf a \ ф o (C ) .

The proof of Theorem 3.1 is now divided via the following lemmas.
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Lemma 3.3. is a Banach space under the norm

(3.9) | | / | |w  := E  1/Ш(°)1 + Il9r / (,)I|C.
i=0

Moreover, for f  6

(зло) ll/llo s  f  ll/L ,

Proof. The first assertion may be shown as usual, applying the repre­
sentation

(TTTjT J(X~UY xf(T\u)du 
0

( N  < !)•

To obtain (3.10) set ^x(u) := (x — u)/ip(u). Then

|/*»(ц)Г~1
<p(u) <pr(u)\f(r\u)\du 4>,r ( l x l <  1)

since |/rx(u)| 1 and j" du/<p(u) < 7 r / 2 .  □

lo
In view of (1.3), (2.8), (3.10) the functionals (n ^ r)

(3.11) Unf  = E f_ r (/<r>), R nf  = Иt p \ f  -  W ) (r)||c/log(2n)

belong to X * where X  is the Banach space C£. To construct the test elements 
hn, some results on trigonometric approximation are needed.

Lemma 3.4. For the partial sums 5 2n one has the inequality

(3.12) ||$ -  S2n$||c  ^  4En(g -  S2„$) ($ 6 C27r). 

Moreover, there exists rn £ such that (со > 0)

(3.13) lk„ ||c  ^ 3, ||rn -  52nrn||c  ^ c0log(2n).

P ro o f . Let I  be the identity operator. In view of (2.12,13)

\ \ ( I - V n)g\\c < 4 E n(g),
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thus (3.12) since I  — S2n = ( /  — Vn)(7 — 5гп)- To establish (3.13) note first 
tha t the Dirichlet kernel is even, thus

(3.14)
[ S2n(g(-u))(x)  =  S2ng ( - x ) (g e C2ir),i

Since the norm of the functional 5гп<7(0) behaves like log(2ri) there exists 
hn 6 C2ir with

I IM c  ^ 1. l-?2nh„(0)| > c0log(2n) +  3.

Setting rn V2ngn, gn(x) := (hn(x ) + hn( - x ) ) / 2 it follows that rn £ П |п 
with ||rn||c ^  3 and

IK  -  S2nrn\\c ^  |52nrn(0)| -  |rn(0)| > c0log(2ra) 
in view of (3.14) and

•S^n^níO) =  T^n'S'níníO) — §2пдп( 0) =  *S'2nhn(0). D

For t £ R let Tt £ [Сгтг] be the translation operator Ttg(x) := g(x + t) 
which is an isometry.

Lemma 3.5. Suppose that for í  G R  there are functions ht £ С%ж satisfy­
ing

(3.15) ht = h_t ,

(3.16) hm \\h3 -  ht ||c  = 0.

Let rnt £ Пп denote the polynomial of best approximation of ht. Then
7Г

(3.17) *„(*) : = I J  Ttrnt(x) d t £  П+.

P roof. Since the operator of best approximation is continuous, it follows 
that

hm  ||rns -  r nt||c  =  0

П
by (3.16). Let akn(t) be the coefficients of rnt, i.e., rnt(x) -  £  akn(t)e,kx.

k = - n
Then akn{t) are continuous in t since for fixed n £ N

E  ikxa ke
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is a norm on R2n+1, equivalent to m ax|ajt|. Therefore the integral in (3.17) 
exists and

Sn(x) = E  -  У Ofcn(t)eiktdteikx G Пп.
k= -n

In view of (2.19) the polynomials rnt are even and satisfy rn - t = r nt by 
(3.15) and the uniqueness of rnt. Therefore Ttrnt( - x )  -  T_tr n)_t(a;) so that 
sn is even, too. □

Lemma 3.6. If  M n G [C^.] satisfies (2.17), then

(3.18) \\g -  S2ng\\c  < 8 m ax£+  (T+g -  M 2nTt+g) {g G C + )Í6B-

with T+ := (:Tt + T-t)/2  G [C+\.
Proof. For fixed g G C set ht := Tt+ g -  M2nT f  g G C ^ .  Obviously, 

(3.15,16) follow since \\Tsg -  Ttg\\c converges to zero for s —* t, and M 2n is 
linear and bounded. Let rnt G П+ be the polynomial of best approximation 
of ht, and let sn be defined as in (3.17). Then the Faber-Marcinkiewicz- 
Berman identity (cf. [2, p. 214])

7Г
(3.19) ( I  -  S2n)g(x) = ± J  Tt( I  -  M2n)T+g(x) dt

and (3.12) imply the estimate

||5 -  S2ng\\c  й 4Ёп(д -  S2ng) ^ 4\\g -  S2ng -  a„ ||c  =

= 4
7Г

\  J Tt(ht -  rnt) dt < 8 sup \\ht -  rnt\\c = 8 sup E„(ht). 
t e R  t e R

Since ht+2ir = ht, the supremum is attained, and (3.18) follows. □
L e m m a  3 .7 .  If  Ln G [C] satisfies ( 1 .1 ) ,  there exists pn G V\n such that 

(ci > 0)
( 3 .2 0 )  I b n l l c  ^  3 ,

(3.21) ||v>r(i>n -  L2npn)(T)\\c £ C\nr log(2n).

Proof. Since UVn = П+, the operator M n = ULnU~x G satisfies
(2.17). Now let rn G be the polynomials, satisfying (3.13). Then Lemma 
3.6 implies that there exists i„ G R such that

8£+ (T +rn -  M 2nT+rn) > Colog(2n).
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W ith pn U 1Tf* rn Е V^n this yields

8En(pn -  L2nPn) ^  c0log(2n)

since E+(Uf)  =  En(f) .  Thus (3.20,21) follow by (2.1) and (3.13). □
Proof of T heorem 3.1. For the functionals (3.11) the conditions (3.4-6) 

have to be verified for

hn(x) := n

where pn is given via Lemma 3.7. One obtains (3.4) in view of (2.8), (3.20) 
and

ll^nllv.r — П < к .
С -

Moreover, Umhn = 0 for m > 4n since E V^n- r . If m < 4n, then 
£„ < Ke^n й K e m by (3.1) so that

thus (3.5) with <rn

Umhn <\\hn\ \ v , r < K i K e 2m / e l n 

= e l ,  Фп = e\n. Since

5

L2nhn — (JPn L2nPn)
it follows that R nhn > c\ by (3.21) and therefore (3.6). The assertion of 
Theorem 3.2 with a — 1/2 then yields (3.2,3). □

Let us mention that one may deduce the sharpness of Theorem 2.6,7 in 
a similarly way.

Theorem 3.8. (i) Let M n E [ C 2 * ]  satisfy (2.15). Then for each £  subject 
to (3.1) there exists gc E C\T such that

(3.21) É n(gW) = 0 ( e n), \\{Mng -  g p W c  ф o{en \ogn).

(ii) If  M n E [C^] satisfies (2.17), then for each £ subject to (3.1) there 
exists де E П CJ*. with (3.21).

Note that the proof of (ii) (and similarly for (i)) may be simplified in 
view of (3.19) and (Drg := g(r))

7Г
9И (х) -  S £ g ( x )  1 7) ( V  -  M%>) T+g(x) dx,

— 7Г

Р £ \ \ ы  ^ C0nr logn  

(for the latter inequality see [1]).
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BOUNDS FOR EXTENDED LIPSCHITZ CONSTANTS

J. ANGELOS, E. KAUFMAN, Jr., T. LENKER (Mount Pleasant)
a n d

M. S. HENRY (Norfolk)

1. In tro d u c tio n

Let X  be a closed subset of I  = [—1,1] with cardinality at least n -(-2, 
and suppose /  € C[X], the space of continuous real-valued functions on X  
endowed with the uniform norm || • ||. Denote the set of all polynomials of 
degree n or less by П„, and let B n(f)  be the best uniform approximation to 
/  from П„. The global (classical) Lipschitz constant is defined to be

(1.1) Л„ ( /)  = sup{||5n( / )  -  Bn(g)\\/\\f - g \ \ : g e  C[X], f  ф g}, 

and the local Lipschitz constant is

( 1.2 )

Á„ ( /)  = lim sup{|| Д „(/) -  B n(g)\\/\\f -  g\\ : g € C[X], 0 < Ц/ -  g\\ < 6}. 
o+

Global and local Lipschitz constants have been the subject of several recent 
papers [1, 2, 3], and figure prominently in the current paper.

For /  € C[X], let

(1.3) e„(/)(z) =  f ( x )  -  £ „ (/)(* ) , x £  X .

Then the extremal set of the error function en( /)  is

(1.4) En(f )  = { x G X :  |en( /) (* ) | = ||en( /) ||) .

An alternant of the error function is any set

x n = » ^ n + l}  = En(f)
with x0 < xi < . . .  < z„+i for which en(f)(xi) = 7 ( - l ) ’llen (/) ||, 
i =  0,1 , . . .  , n +  1, where 7 =  sgn е„ (/)(г0)-

When the cardinality |.E„(/)| of En( f )  is n + 2, then the local Lipschitz 
constant can be explicitly displayed and is equal to the norm of a certain 
“derivative” of the best approximation operator Bn, [1]. In contrast, even 
when |£ n( /) | = n + 2, precise estimates of the global Lipschitz constant have 
proved to be somewhat elusive. To facilitate the investigation of the behavior 
of the global Lipschitz constant, the authors and A. Kroó [3] introduced the
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extended global Lipschitz constant (EGLC), a constant of interest in its own 
right. Specifically, the EGLC is defined to be

(1.5) Gn( f )  = sup{An(h) : h £ C[X\, E n(h) = En{ f ) ,  and
sgn en(h)(x) = 7 sgn en(/)(x ), x £ £ „ ( /) ,  where 7 =  +1 or -  1}.

It is clear from (1.5) that An( /)  < Gn(f ) .  Of particular interest is the 
relationship between Gn{ f ) and the classical strong unicity constant given 
in Theorem 2 below. First, if /  £ C[X], then the strong unicity constant is 
defined as

( 1.6)
M M )  =  « ч>{||р -  Д „ ( /) ||/ ( | |/  -  p H -  II/ -  Bn(f)W) : р е п „ , Р /  £ „ (/)}•

T heorem 1. [3]. For any f  £ C[I],

(1.7) М М )  й G M )  й Ш М У
It can be shown [13, 3 (Lemma 1)] that any two functions possessing 

the same extremal set and sign orientation generate the same strong unicity 
constant. The upper bound in (1.7) follows from this observation and the 
well-known inequality [7, p. 82], An( / )  < 2M n(f )  for f  £ C[X\. The proof 
of the lower bound in (1.7) is somewhat technical and is given in [3].

A rather natural and equally interesting companion to the extended 
global Lipschitz constant can be defined. Specifically, the extended local 
Lipschitz constant (ELLC) is defined to be

( 1.8)
Ln( f )  = inf{An(/i) : h £ C[X], En{h) = En(f) ,  and sgnen(h)(x) =

= 7 sgn e„(/)(x ), x G £ „ ( /) ,  where 7 = +1 or -  1).

From (1.8) it is clear that Ln( f ) ^ An( /) .  The main objective of the remain­
der of this paper is to establish the ELLC analogue to Theorem 1.

2. Lem m as

The definitions of both the EGLC and ELLC can be simplified. In par­
ticular, the modified form of the ELLC displayed in the lemma below will 
be used throughout the remainder of the paper.

Lemmma 1 [2]. For f  £ C[X], f  ф 0, suppose En( f ) =  X n = {xo, x \ , . . .  , 
xn+i}. Then

( 2 .1)

Gn( f )  =  sup{An(h) : E n(h) = X n and h(xt) = ( -1 ) ',  * =  0, 1, . . .  , n + 1},
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and

( 2-2)
Ln( f )  = inf{A„(/i) : En(h) = X n and h(Xi) = (-1)*, * =  0 ,1 ,...  , n  +  1}.

P roof. We first observe for h E C[X] that An(h — Bn{h)) =  An(h). 
Therefore we may assume in (1.5) and (1.8) that Bn{h) =  0, which in turn 
implies that

en(h)(xj) = h(xi) = (sgn en(/i)(xo))(-l)’||en(/i)|| =
= (sgn h(x0))( —l) ‘||/i||, i = 0, 1, . . .  , n  +  1.

It can also be shown that An(ah) = An(/i) for а  ф 0. Thus, without loss of 
generality the requirement that sgn en(h)(x) = 7 sgn en(/)(x ), x E En(f) ,  
in (1.5) and (1.8) can be replaced by /i(x,) = ( -1 ) ’, i = 0 ,1 ,...  ,n  +  1, 
whenever En( f )  = X n. □

The next theorem is the main theorem of this paper.
T heorem 2. Suppose f  E C[X], and suppose that E n( f ) = X n =  {x0, *1, 

• •• Then

(2.3) Än( / ) < T n( / ) < 6  + 4Än(/) .

If X  = X n in Theorem 2, then we actually have A„ ( /)  = Ln( f )  =  An( /) ,  
[1]. Thus hereafter we assume X  -  X n is nonempty (note that this implies 
f  ф 0). In this setting the proof of Theorem 2 depends on a series of 
sometimes technical lemmas and will follow the statements and proofs of 
these lemmas. Before proceeding, it is worth emphasizing that the strong 
unicity and local Lipschitz constants do not depend on /  when En( f ) = X n, 
but rather only on X n [1, Theorem 2]. In this case the notation M n( X n) 
and An(Xn) is employed.

Lemma 2. Let X n = {xo, x j , . . .  , xn+i}. For 6 sufficiently small choose t  
large enough to insure that (x,+1 -  1/Í)  —(x, + l/^) = x,-+i - x ,  -  2/£ > S > 0, 
i = 0 ,1 , . . .  ,n . For any g E C[X] with error function en(g) and alternant 
{ 2/0 , Í/1, — , 1/n+i} satisfying y{ E (х,- -  1 /I ,  x,- + 1 / t )  П X ,  i = 0 ,1 ,. . .  , n +  1, 
there exists a constant p depending only on X n such that for any g E C[X],

(2.4) \\Bn(g) -  Bn(g)\\ ^  p\\g -  g\\.

P roof. Clearly y,+i — Vi ^ 6, i =  0 ,1 ,. . .  ,n . Thus the error function 
en(g) has an alternant with separation greater than or equal to 6. Let Fg Q 
Q C[X ] be the subset of C[X] such that if /  E Fg, then en( /)  has an alternant 
with separation greater than or equal to 6. Then the arguments of Dunham 
[8, Theorem 2] with X  replacing I  imply that there exists a constant p  such 
that for every /  E Fg and д E C[X\,

l | S n ( 9 ) - B » ( / ) I I S H l 9 - / l | .
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Since g E Fs, (2.4) is established. □
Inequality (2.4) is essentially a uniform Lipschitz constant result for 

changing / .  The interested reader is referred to the survey papers [4, 9] 
for a discussion of other uniform Lipschitz constant results.

Prior to stating the next lemma we define a set Ut and a function hi, 
both of which will be utilized in several of the proofs that follow.

First, let
, _  /  x0 + 1 if z 0 > -1  
° “  t  2 if x0 =  - 1,

and
/  1 -  xn+i if xn+1 < 1

41+1 = \  2 = 1.

Then let d =  min{do,dn+i, (1 /3 )min{x,+i — x,-; t = 0 ,1 , . . .  ,n}}. Now let 
i o  =  [1/d] +  1, and for l  > I q, define

n + l

(2.5) Ut = ( \ J ( x i - l / t , X i + l / l ) ) n X .
i= 0

By definition, d < (l/3 )m in{x,+i -  x,; i = 0 , . . .  ,n}, and 1 / I  < d. There­
fore, the intervals (x, -  1 / I , x,- +  1 / i ), t = 0 ,1 , . . .  , n + 1, are disjoint. Since 
by assumption X  — X n is nonempty, there exists an Iq ^  Iq such that for 
Í  ^  Iq, X  -  Ut is nonempty. Hereafter, we assume that l  > I q. Define 
he e C[X] by h e ( - l )  = 0 if - 1  g X n, ht ( 1) =  0 if 1 g X n, ±  1 / / )  = 0, 
and ht(xi) = ( — 1)*, г = 0, 1, . . .  , n + 1; let hi be linear between the points 
where hi has ju s t been defined.

Because of the manner in which he has been constructed, Bn(ht) =  0 
and En(he) = X n. Thus hi is one of the functions considered in Lemma 1. 
Let Hi = {g G C[X]\ g—Bn(g) possesses no alternant (j/oií/ъ -- - >2/n+i} with 
Vi e (xí -  1 / i ,X i  + l / t )  П X  and sgn (g -  Bn(g))(yi) = (-1)*', 
г = 0 ,1 ,...  ,n  +  1). This set will be utilized in subsequent arguments.

Lemma 3. For l  ^  Iq, let ße =  inf{ ||^  -  hi\\ : g G Hi}.  Then there 
exists a g e E C[X] and xt G X  with \\gt -  h^|| < ßt> \{gt -  Bn(gt ))(xe)\ > 
> | |^ - ^ n ( 5 r ) | |  -  1/^, and either ц  E X - U t  or xt E (xj -  \ j t ,  x,- + l / i ) n l  
for some i and sgn (gt -  Bn(ge))(xe) = ( - 1 ) ’+1.

P roof. We first show that ßt  > 0. For suppose that ße =  0. Then there 
exists a sequence {<7j}?i0 Q Hi  such that lim \\g; -  hi\\ = 0. This in turn

imphes that lim \\Bn(gj) -  B n(h t )|| = 0. Thus lim \\Bn(gj) -  gj || = ||ht -J —►oo J—►OO
—B n{hi)У = 1. In this case we assert that for j  sufficiently large gj -  Bn(gj) 
must possess an alternant {y0, , yn+i} with G (x{ -  1 /£, x,- + l/£) П X  
and with sgn(<7j -  Вп(д,))(у{) = sgn h/(x.) =  ( - 1)’, г =  0 ,1 , . . .  , n +  l ,  a
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contradiction of the definition of Hi. This assertion follows because gj — 
— Bn(gj) must have some alternant and Bn(hi) = hi =  0 on X  — Ui (thus no 
point from the alternant for g2 -  Bn(g3) can be in X — Ui since gj — B n(g3) is 
too small there), and because the sign of gj—Bn(g2) at a point of the alternant 
in (ж,- — must be (—1)', so no two consecutive points from
the alternant for gj — B n(gj) can lie in the same (ж,- — l / f , i i  + l / ! ) ( l X .

Now let {sfj}jl0 = H* and {x(j)} j l0 i  x  satisfy \\gj-hi\\ |  ßt > 0 , x ^  E 
E En(gj), and either E X  — Ui or x(J) E (ж,- -  l / t ,  X i  + l / £ ) f \ X  for some 
i and sgn (gj -  Bn(gj))(x&) = (-1)*+1. Let \ j  = j ß i / ( ( j  + l)\\gj -  Л/Ц). 
Clearly 0 < Xj < 1 for all j .  Let gj = Xjgj +  (1 -  Aj)hi. Then \\gj — ht\\ < ßt. 
Now A j —> 1 as j  —y -f oo, and hence

(2.6) Um У gj -  gj\\ = 0.
►OO

Therefore

(2.7) IIgj -  Bn(gj)|| -  |(fe -  Bn(~gj))(хЩ \  =

= II9j ~ Bn(gj)\\ — Híj — Bn(gj)II + \\gj — Bn(gj)\\—

- I  (9J -  Bn(9:))(x^)\  + I (gj -  Bn(9j))( ж «)| -  I (gj -  В Д ;Ж * 0 ))| ^

= 119j~9j+Bn (gj )—Bn (ffj ) |1+6+1 gj(x^B )—gj ( ж ̂  У\-Вп (g j ) ( x ^  )—Bn (<7j ) ( ж ̂  ) | ^ 

^ 2II~9j -  9j\\ + 2 ||5„(Sj) -  Bn(gj)||.
Inequality (2.7) and Lemma 2 (with l  > Iq) now imply that

(2.8) И gj -  Bn(~gj) II -  I (gj -  Bn(~g j ) ) (x^) \  < 2(1 +  /r)|| gj -  gj\\.

From (2.6) and (2.8) we may now infer for j  sufficiently large that

(2.9) \(~gj -  B n(gj))(x^ )I  > IIgj -  Bn(gj)\\ -  l/£.

Also either x(B E X  — Hi, or E (xi — \ / i ,  ж,- + 1 / I)  П X  for some i and

(2.10) (g, -  В„(Л)Х*И) = (-l)i+‘ll» -  Д.ЫН-
In the latter case, assume there exists a 6 > 0 such that for all j  sufficiently 
large \\gj — Bn(gj)\\ > 6. (This fact will be established in the next lemma.) 
Then from (2.6) we also have lim \\Bn(gj) — Bn(gj)\\ = 0.j—KX>

Therefore, for j  sufficiently large (2.10) implies sgn (gj — Bn( g j ) ) ( x ^ )  = 
= sgn (gj — Bn(gj))(x^B) = (—1)*+1. Thus in either case, for j  sufficiently 
large gj and x(B will serve as g( and жi, completing the proof. □
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Lemma 4. Let {<7j}yi0 Q Ht be such that \\gj -  ht\\ j. ßt. Then there 
exists a 8 > 0 such that \\gj — B n(gj)\\ > 8 for all j  sufficiently large.

Proof. Assume the conclusion of Lemma 4 is not true. Then without 
loss of generality we may assume that

(2.11) Jim \\gj — Bn(gj)\\ = 0.J—*oo

Therefore for j  sufficiently large, ||5„(<7j)|| ^  2 ||^ || ^ 2(ßt + 2). This implies 
by going to subsequences if necessary that lim Bn(gj) = P £ Пп, and hence

j — Ю О

(2.11) implies that lim gj =  P. But then ßt  = lim \\h( — g f  \ = \\h( -  P ||.J—+00 j—+oo
Thus ßt > 1, for otherwise ||fi* -  P|| < ||fi/ — B n(ht)||, which is not possible.

We now construct a g £ H / satisfying ||<7 — < 1. Such a construction
would contradict the definition of ßt. We first select any point x* £ X  — Ut. 
To illustrate how to proceed in the construction it is sufficient to assume 
that x* £ [x,* +  \ / l ,  x,-.+i — 1/Í] for some г*, 1 < г* £ n. The cases where 
x* < X o -l/A  x* > xn+i -f 1 /f, or x* £ [xo -P l / f ,x i  - 1  /I] are similar. Define 
g as follows:

( ( i / 2) ^ 1 )̂  x e  [- i,x ,-. -  i /£ ]u  [x,-.+1,i]
g ( x )  =  < ( 1 / 2 ) h t ( x i * ) ,  X =  X*

l. bnear on [x,> — l/f,x*] and on [x*,x,-.+1].

From the definitions of g and hf , it is clear that max{|/i*(x) -  g(x)|: x £ 
£ [ 1, Xj* — 1 /I] U [x,.+i ,l ]}  = 1/2. For x £ [x,-. — l/£ , x,-.+i], it can be 
shown that |fi/(x) -  $f(x)| < 1. Therefore, ||/i* — 5 Ц < 1. On the other hand, 
g is constructed to insure tha t Bn(g) = 0. It is clear that En(g) = X nL) 
U{x*} -  {x,*}. Since x* £ [x,-* + l /^ ,x ,-.+1 — 1/^j, g possesses no alternant 
{l/о, 2/1, - •• ,2/n+i} with yi £ (x ,- l /£ ,X j +  l /£ ) n X  and sgn (g -  Bn(g))(yi) = 
= ( —1)’, i =  0 , . . .  ,n + 1. Thus we have constructed a g £ Hi such that 
\\h( -  gII < ß i ■ This contradicts the definition of ßt. Therefore, the proof of 
Lemma 4 is complete. □

Earlier it was noted tha t A„ (/)  = An(X n) when En( f )  = X n. Let 
{'frlTJo = Пп be determined by

(2.12) 9.(x j) =  ( -1 ) ’, i =  0 ,1 , . . .  , n +  1; i ф j, j  =  0 ,1 , . . .  , n + 1.

The explicit representation for An(X„) [1, Theorem 2] mentioned in Section 1 
is then

(2.13) A„(X„)
n + l
E
1=0

i* i / ( i  +  !«(*.•)I) •

Both (2.12) and (2.13) are used in the next lemma, a lemma which is stated 
without proof in [2].
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Lemma 5. If  g G C[X) is such that g -  Bn(g) possesses an alternant 
{yo,Vi,--- , 2/n+i} with yi £ (xi -  1 /£,Xi + 1 /0  П X  for i = 0 ,1 , . . .  , n  +  1 
and sgn (g -  Bn(g))(yi) = (-1 )’, * =  0 ,1 ,. . .  , n +  1, then there is a constant 
К independent of g and t  such that

(2.14) |ДПУ = (1 + К / £УХп(Хп).
11$ -  M

Proof. For h G C [X ] with alternant X„, it can be shown [1, Lemma 1]
that

Thus

"( ) ~ U  1 + lü(*j)l
9i-

Bn(ht) -  Bn(g) =
n+l

E
j =о

( - i y +1[ht (xj)  -  Bn(g)(xj) -  (g -  fln(g))(yj)]gj
1 + |?»(*j)l

П+1
( -1  y+,(i -  B .(»))(w )

!>•
у u/

^  1 + ii;(*j)i

But using [1, Lemma 2],

( - l) i+1(ff -  Bn(g))(yj) _ и R i'n'lllV' qj - n
g ------ — * -  - | l s  -  B”(s)l1 g T T t e M i= °-

Let tj =  -  p(yj) + Bn(g)(yj) -  Bn(£f)(zj). Then

П+1

(2.15) Д ,<ад s .(s )  -  E ! + л«-

We now claim there is a function R(j,  g) with

(2.16) W , 9 ) \  й \ \ g - h t \ \ - K / l

for some constant К  independent of j ,  £, and g such that

(2.17) (he -  g)(yj) + R(j ,g) < tj < (ht -  g)(xj) if (he -  Bn(he))(xj) > 0, 

and

(2.18) (he -  g)(xj) Ü tj й (ht -  g)(yj) + R(j,g)  if (he -  Bn(he))(xj) < 0.

Act a Mathcmatica Hungarica 58, 1991



8 8 J .  ANGELOS, E. KAUFMAN, JR . ,  T . LENKER and M. S. HENRY

Since the proof of (2.17) is very similar to a proof appearing in [1, expressions 
(4.7) through (4.16)], we focus our attention on establishing (2.18). In this 
case j  is odd, so that

~(g -  Bn(g))(yj)  ̂ -(g -  Bn(g))(Xj).

Thus

tj = he(xj) -  g(xj) + (g -  B n(g))(xj) -  (g -  Bn(g))(yj) > ht (xj) -  g(xj). 

Also (hi -  Bn(he))(xj) < (he -  Bn(he))(yj), so

tj = (he -  g)(Vj) +  (he -  Bn(ht ))(xj) -  (ht -  Bn(ht))(yj)+ 

+(Bn(he) -  Bn(g))(x3) -  (Bn(he) -  B a(g))(yj) <. 
й (he -  g)(yj) + (Bn(he) -  Bn(g))(Xj) -  (Bn(he) -  Bn(g))(y j ) =

= ( h e -  g)(yj) + R(j,g),
where

(2.19) R ( j , g ) = (Bn(ht ) -  Bn(g))(Xj) -  (Bn(ht ) -  Bn(g))(y j).

We have established (2.18).
From (2.19),

\R(j ,g)I = \*j -  У: I • I(Bn(he) -  Bn(g))'(f) |, 

where |  is between Xj and yj. Hence by Markoff’s inequality [7, p. 91],

\R(i,g)\ й  (1/011 (Bn(he) -  Bn(g)Y\\ < (n2/£)\\Bn(hi) -  Hn(ff)||.

Now Lemma 2 implies that

(2.20) T O , <7)1 ^ (n2/£)n\\he-g\\  = (K/£)\\he -  g\\,

which establishes (2.16). From (2.16) and either (2.17) or (2.18) we see that

(2.21) \ t j \ < ( l  + K / l ) \ \ g - h t \\.

Utilizing (2.21) in (2.15) yields

\\Bn(g) -  Bn(he)\\ 
\\9 -  heII

< (1 +  K/£)
71+1

Ы
fr'o 1 + Ы *]) \

and thus (2.13) now implies (2.14). □
The last lemma of this section provides a useful lower bound for ||<7 — h(\\ 

for functions g 6 Hi.
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Lemma 6. Let g 6 Ht . Then \\g -  he\\ > 2(1+дJ x 'w + m y  where aS in 
(2.20), К  — п2ц.

Proof. From Lemma 3, there is a gf and x/ with ||<̂  -  h/|| <  ßt,

(2.22) 1(5/ -  Bn(ge))(x£)| > ||gt -  Bn(ge)|| -  1/1,

and either X /  G X  — Ut or X /  G (x; -  l/^,x,- +  1/Í) П X  for some i and

(2.23) sgn (gt -  B n(gt ))(xt ) = (-1)*+1.

We note that \\ge~ht\\ < ßt implies that g  ̂— Bn(ge) has an alternant {yo,yi, 
, t/n+i} with yi e (xí -  l/£,  X,- +  l / £ ) r X  and with sgn (ge -  B n (ge))(yi) = 

=  (—1)’, г = 0 ,1 , . . .  ,n  + 1. Now

\ \9 i-Bn{gt)\\ Z |(5/-Яп(5/))(*о)| ^  |Л/(*0)--вп(Л /)(хо)|-|5 /(*о)-Л /(хо)|-

-|-Bn(Ä/)(x0) -  Яп(5/)(*о)| > 1 -  II5/ -  ht\\ -  ||Дг(5/) -  B n{ht)||.
The the conclusion of Lemma 5 implies that

(2.24) ||<7z -  Вя(5/)II ^ 1 -  115/ -  41(1 +  (1 +  K/£)Xn( X n)).

Now if X/ € X  — Ut, then by definition, Zi/(x/) = 0. Therefore from Lemma 5

(2.25) 1(5/ -  Bn(gt )){xt)| < |5/(*/)| +  |Яп(5/)(*<)| =

=  \(gt -h t ) (x t ) \  + \(Bn(gt ) - B n(ht))(xt)\ й \\дг - ht \\ + \\Bn(ge) -  B n(ht)\\ <

< \ \ g t - h t \ \ ( l  +  (l  + K / l ) \ n(Xn)).
On the other hand, suppose X/ G (х,- -  l/f!,x,- +  l / f ) i l X  for some i, i = 
=  0 ,1 , . . .  , n + 1. Without loss of generality we may assume that i in (2.23) 
is even, so that (gt — 5 n(^ ))(x /) < 0 and h/(x,) — 5 n(h/)(x,) =  /i/(x,) = 1. 
Now ht(xe) > 0. Thus if 5*(x/) < 0, then |5*(x/)| < |<7*(x/) -  h/(x/)|. 
Therefore

1(5/ -  Sn(5/))(^/)l ^ l5/(*/)l + |5 n(^ )(x /) | <
^ l5/(*/) -  ht{xe)I +  \Вп(де)(хг) -  B n{ht)(xt)\ <

^ ii5/ -  4 i +  п а д л  -  -M M II-
Consequently when 5^(x/) < 0, we again obtain (2.25). If 5^(x/) ^  0, then 
(2.23) implies that 5^(x/) < Bn(ge)(xt). Therefore

l(5 /-tfn (5 /)X ^/)l ^  |5 n(5/)(*/)| < \(ge -h t ) (x t ) \  + \(Bn(ge) - B n(ht))(xt)\.

Thus in this last case we also obtain (2.25). Now (2.22) implies in all of the 
above cases that

(2.26) ||5/ -  а д / ) II < ( !  +  (! +  K /£ ) \n( X n))\\ge -  ht \\ +  1/i .
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By utilizing (2.24) and (2.26) we see that

1 -  (1 + (1 + К / t )  A„(X„))||& -  Л/Ш1 + (1 + К/е)Хп(Хп))\\де -  Ml + 1/1.

From this inequality we obtain

(2.27) b t  -  Ml ^ _______ 1 -  l / l _______
2(1 + (1  + K / t ) \ n( X n))‘

Now if g e Hi, then Ц5 -  hi\\ > ßi  > ||</* -  hi ||. This inequality and (2.27) 
imply the conclusion of Lemma 6. □

3. T heorem

We are finally in a position to  prove Theorem 2. The conclusions of 
Lemmas 5 and 6 will play prominent roles in the proof of the Theorem. 

P roof of Theorem 2. For fixed l  > C0, let g G C[X ] satisfy ||<7 — hi\\ ф 0.

11 <7 -  Ml < ----------- l ~ l l i .----------,
" 2(1 + (1 + K / l ) \ n( X n))

then the contrapositive of Lemma 6 implies that g — Bn(g) has an alternant 
{ у о , У \ , у  ,yn+i}, where у,- G ( x i ~ l / £ , X i + l / l ) n X  and sgn ( g - B n(g))(yi) = 
= ( — 1)*, г = 0,1 , . . .  , n + 1. In this case Lemma 5 implies that (2.14) holds. 
Now assume that

(3.1) \\g -  ht\\ г
1 -  1Ц

2(1 +  (1 + K / £ ) \ n( X n))

We observe that

Il5 -  5 n(ff)|| < 1Ы 1 < IIg -  hi\\ + \\ht \\ =  \\g -  Ml + 1-

Therefore

(3.2) \\Bn(g) -  Bn(h t )И < IIBn(g) -  g\\ + \\g -  Лг|| +  \\ht \\ < 2(||g -  ht \\ + 1). 

For l  > l0, (3.1) and (3.2) imply th a t

(3.3)
\\Bn( g ) - B n(ht )\ \^  (  1 \

Ilff-MI = V \ \ 9 - h i \ \ )
<2 /  2(1 +  (1 + К  /  l ) \ n( X n))\

V l - i / *  )

Thus from (2.14) and (3.3) we have that
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(3.4)

An(hf) < max

The definition of hi, (2.2), and (3.4) combine to imply that

(3.5)

L „(/) < max I (1 + tf/£)Ä„(Xn),2 2(1 + (1 + K / t ) \ n(X n)) 
1 -  1 / I

Letting t  —► oo in (3.5) yields

(3.6) Ln( f)  < 6 + 4Xn(X n).

To establish the lower bound, let

g € V = {h € C[X) : En{h) = X„ and h(Xi) = (-1)*', г = 0 ,1 , . . .  ,n  +  1}.

Clearly for all g € V, An(g) < A„(<7). But since for any g € V, En(g) = X n, 
K{g) = An(X„). Thus Xn(X n) < Xn(g) for all g € V. Therefore

(3.7) Xn(X n) < inf{An(5) : g e V }  = ! „ ( / ) .

Inequalities (3.6) and (3.7) imply the conclusion (2.3) of Theorem 2. □ 
Corollary 1. Let f  6 C[X), and suppose that En( f )  = X n. Then

(3.8) Xn(X n) < Ln{ f)  ± 10A„(X„).

Proof. Inequality (3.8) follows immediately from (2.3) and the observa­
tion that An(AL„) > 1. □

We conclude this paper with some other observations. If X  is dense in 
I,  the results of Theorem 2 and Corollary 1 can be sharpened. In particular, 
inequality (2.3) can be replaced by the inequality

(3.9) Xn(X n) ^ Ln( f )  < 4 + 2An(X„).

The proof of (3.9) uses much of the machinery developed in Section 2, as 
well as some constructions that depend on X  being dense in an interval.

We also note that although the first inequality in (3.8) can be an equality 
(as in the case where X  = X n), it can also be a strict inequality. To see 
this, observe that if n =  1 and X n = {—1,0,1}, then direct computation 
using (2.12) and (2.13) gives A„(X„) = 3/2, but if X  = [—1,1] then for
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every n > 1 we have An(/i) ^  2 for all h £ C [ - 1,1], which implies Ln( f ) > 2 
from (1.8). The statement An(h) > 2 for all h € C[—1,1], n > 1, follows 
from the fact that ||5„(/i) — Bn(gm)\\/\\h — <7m|| can be made arbitrarily 
close to 2 by choosing m  large, where gm( — 1 + i / m ) = i + ( —l)n_,m for 
i = 0, . . .  ,n , gm( 1) = m, and gm is linear in between these points; note 
tha t En(gm) =  { - 1 , - 1  + 1 /m ,. . .  , - 1  + n /m ,  1), Bn(gm)(x) = m(x + 1), 
| | - 0 n ( < 7 m ) | |  = 2m, and ||firm|| =  m  -f n. It can also be derived from the results 
in [5].

Let / (я )  =  ex, x € / .  Then it can be shown [3, 10, 11] that \E„(f)\ = 
=  n + 2 and that \ n(X n)/M n{X n) = 0  ■■■*) .  Thus Theorems 1 and 2

imply that lim br¥A — 0 when /(я )  = ex. Hence in an asymptotic sense, 
the ELLC and EGLC can be very different. It would be of interest to find
functions /  € C [X ] — П„ for which either j  } *s bounded above by 

a  constant not depending on n, or for which j  bounded above
by a constant not depending on n.
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STRONG NEGATIVE PARTITION RELATIONS 
BELOW THE CONTINUUM

S. SHELAH (Jerusalem)1

0. In tro d u c tio n
Definition 1. If A is a cardinal, Pr+(A) means that there is a function 

c: [A]2 -> A such that if 1 < n < w and the sets { (° ,. . .  , C2-1 } are disjoint 
for a < A and C£ < • • • < C£-1 then for every h: n X n -* A there are a < ß  
such that c(Cq,C^) =  h(i,j)  for i , j  < n.

Definition 2. Pr(A) is the same but only for every h: n x  n —> A with h 
constant, i.e. h ( i , j ) = 7 for i , j  < n.

Lemma 1. I f  X is regular, not strong limit, then Pr(A) implies P r+(A).
P roof. We use the idea in the proof of the Engelking-Karlowitz the­

orem. Assume that p < A and > A. Let {Aa : a < A} be different 
subsets of p. Assume that c~ witnesses Pr(A). Put G = {(w ,g) : w £ [р\<ш, 
g: P(w)2 —¥ A}. Clearly, |G| =  A, so we can enumerate it as {(гса , ga) : a < 
< A}. Now put c(a ,ß ) = g~y(Aa П w1,Ap  П tn7), where 7  = c~(a,ß).

Assume that : г < n, a < A) are given as in Definition 1, h : nXn —► A. 
For a < X, i < j  < n, pick 7 'd3 G Ar  A  A . , , and let wa = {7 : i < j  < n}.4a
As wa C p < A, we may assume that there exist w, Bi C w (г < гг), such 
tha t wa = w, A ^  П w = Bi for a < X. Let g: P(w)2 —► A be a function 
satisfying g(B{,Bj) = h(i,j) .  There is a 7  < A with (w ,g) = (гс7,^7), and 
by Pr(A) there are a < ß < X such that if i < j  < n, then c“ (Cá,C^) = 7 - 
But then с(Са>Сд) = 9-у(-^са n n wi )  = 9{^ i ,B j)  = h(i ,j ) ,  and we
are done.

We now state the main result of this paper. We remind the reader that 
S  Q X is a non-reflecting stationary set if it is stationary and S  П a is non- 
stationary in a  for every limit a  < A.

T heorem. Pr(A) holds whenever there exists a nonreflecting stationary 
set S  in X with cf(a) > u \ for every a £ S.

This work is continued in [10] (see also [11]).

1 Research partially supported by the United States-Israel Binational Science Foun­
dation (BSF), Publ. 327.
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1. C o n stru c tio n  o f th e  coloring

For a < A limit let Ca Q a  be a closed unbounded set of order type 
cf(a) disjoint from S. For a  = ß  +  1 we let Ca = {/3}. For 0 < a  < ß < A 
let 7 (/3, a ) = voxafCß — a). Obviously, a ^  7 (/3,a )  < /3. We now define 
7t(ß ,a )  for t  ^  k ( ß ,a ) as follows: 7o(/3,a) = /3, 7/+i(/3,a )  = 7(7*(/3,a),a). 
If 7*(/3, a ) = a  then we terminate the definition and put к = fc(/3, a )  = 
= l. Clearly, a = 7*(/3, a ) < . . .  < 7o(/3, a ) =  /3. The string p(/3, a )  = 
= (7o(/3, a ) , . . .  , 7fc(/3, a )) is the Todorcevic walk from ß  to a.

Fix a decomposition S = U{57 : 7 < A) into stationary sets (possible, 
by Solovay’s theorem). Let H : A —* uj\ be a mapping such that for every 
i < и  1 the set 5,- =  5П Я -1 ({г}) is stationary in A. Let = U{Än : n < ш} 
be a partition into stationary sets. For 0 < a  < ß < A we let

u>i(/3,a) = {p > к / 2: for every q < к/2, Я (7Р) > Я (7,)}

and pi = min(u>i). Here and in several cases later, we omit (/3,a )  after 
w i,p i ,k  etc. if it is obvious what we are speaking of. We now define

f к к
w2 =  s q < 2 : for every -  < p ^  k ,p  £ wi implies Я (7,) > Я (7p)

Let p2 be such that т т { Я ( 7,)  : q E w2} E RP2. Now if 0 ^ pi -  p2 < it and 
7Pl_P2(/3,a )  E 57 we put c(ß ,a ) =  7 otherwise c(/3,a) is chosen arbitrarily.

2. P re lim inaries

D efinition 3. If si = (s i(0 ) ,. . .  , s i(ti)), s2 = (s2(0 ),. . .  , s2(t2)) are 
strings, their concatenation si Л s2 is (s i(0 ),. . .  s i(ti  — 1), s2(0),. . .  , s2(t2)).

The reason why we are removing the border element is that in our ap­
plications Si(fi) = s2(0) holds, so we only remove an immediate repetition.

Lemma 2. I f  6 E S , ß > 6 then there exists a x ( ß ^ )  < ^ such that 
for every a with x(ß iä)  ^ 01 < 6, g(ß,6) is an initial segment of p(/3, a). 
Moreover, p(/3,a) =  g(ß,6) h g(6,a).

P roof. If a  < 6 is large enough, 7 (/3,a )  = 7 (/3, 6). Therefore, if a  > 
= x(7(/3 ,i),£) also holds, the statement is true. We get, therefore, a proof 
by induction on /3.

Lemma 3. I f  А, В  E [A]A, к < и , then there exist a  E A, ß E B, a  < ß 
with k(ß, a) > k.

P roof. We define Co =  A ', and by induction, C,+i = (5 П C,)'. Pick 
7к e Ck n 5, then ß E В with /3 > 7*, Xk =  x(0,7*)- If 7.'+b X.+i are 
found, pick 7,- E S  П C, with x.+i < 7. < 7«+i and Xi with Xi > х(7«+ь7«),
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X«'+1 < Xi < 7t- Given 7o, Xo let a  £ A satisfy Xo < <* < 70, then by 
Lemma 2, for l  < к there exists an m  < k (ß ,a ) such tha t 7m(/?,a) =  7/, so 
k(ß ,a )  > к.

Definition  4. p # ( /3 ,a ) = {H (jt(ß , <*))'■ f < k(ß ,a)) .  If a £ i.e. is 
a finite string of countable ordinals, then for i < 07 o' is the following string 
\o'\ = |cr|, and

if o(i) < i, 
if o{l) > i.

Definition  5. If T  £ A, 6 < A, R  £ 07 stationary, then U (6 ,T ,R ) 
denotes the set of those g £ (07 + 1)<W such that for every i < 07 there
exists a ß > Ó, ß £ T  with gH^ß/h)' =  Q an(l min{p#(f!) : Ql{£) =  ^ 1} G R- 
g £ U (6 ,T ,R ,x ) denotes that ß even satisfies x(/M ) < X-

Lemma 4. If  T  £ [A]a, then there is a 6(T) < Л such that for 6(T) < 
< 6 < X, U(6,T,R) ф 0. I f  cf(6) > 07, then there is a x  < 6 such that 
Я ( й , г , д , х ) # 0 .

P roof . For i < и i we let А,- =  {6 < A: if ß > 6,ß E T, then i $

Claim . |A ,| < A for i < 07.

P roof of Claim. Suppose that |A,| = A for some i < 07 and select a
6 £ Si П A$, ß £ T  with ß > 6. Choose an a £ A,, x ( ß ^ )  < ct < 6. Then
6 G g(ß ,a),  and i = H (6) £ gH(ß,ot), a contradiction.

Now we define S(T) with U{A,- : i < 07} £ h(T). Assume th a t 6(T) < 
^ 6 < A. For every i < 07, there is a ßi > Ó, ßt £ T  such that i £ g//(ßi,S).

Consider {p#(/3;,£) • * G Ä}. There exist a stationary Ri Q R  and a 
к < и  such that for i £ Ri,  = k, where p, = We even assume
that for every t  < к either for every i £ R\ gt(I) < i or for every i G Äi
gi(£) ^  i. Applying Fodor’s theorem we can find a stationary й 2 £  R\  and 
an 77 £ (u7 + 1)<W -  such that ря(А ,^)’ = V (i G Ä2). For i £ Ä2,
min{p*(£) : 77(f) = 07} = г £ Д2 £ Ä, so 77 £ Í7(ó, T, R).

If cf(£) > w\, {x(ßi,f>) • * G R2} is bounded below S, so 77 £ U(S,T, R,X), 
if A > A ( /M i  (* G R e ­

d ef i n i t i o n  6 . If T  £ A, 6 < A, then L(6,T) consists of those g £ 
£ (07 +  1)<ш — и ^ ш for which for every a < 6, and large enough i < 07 
there is a ß & T , a < ß < 6  such that ря(^,/3)’ = g■ For T  £ [А]л we let 
С(Т) =  П { (£ П Г ') ':г < и 7 } .

Obviously, C (T ) is closed unbounded in
Lemma 5. I f  6 £ C(T), cf(£) > u>\, then L(6,T) ф 0.

P r o o f . Case 1: cf(£) = 07. Let {Ó, : г < 07} converge to 6. For i < 07 
pick an а , £ 5, ПТ', Í, < Oj < 6 (possible, as 6 £ C{T)). Now choose /3, £ T,
6i < ßi < oti with x(Ä»«i) < ßi- Then * = H(oti) £ gH(6,ßi).
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As in Lemma 4, there is a stationary 1 5 ц  and a p e  + 1)<U; — 
such that p#(6, /?,)’ = p (t G X ), so p G L(6,T).

Case 2: cf(<5) > u>i. Let {<Sa : a  < cf(<5)} converge to S. For a  < cf(<5), 
i < u i,  pick ß f  G T  with 6a <i ß? < 6 as in Case 1. For a  < cf(£), there 
is a p" G (wi +  1)<W — such that there exist an X a G [wi]"1 with 
ен (6 ,% ) '  = p" for i G X a. There is a p with ga = p for cf(£) many a ’s. 
Clearly, p G L(S,T).

3. P r o o f  o f the  th e o re m

Assume that the sets >C£-1} are disjoint (a < \ , n  < u). We
may assume that a < < ■ • ■ < C - 1  • There is a closed unbounded
set C £ A such that if a < 6, 6 G C,  then Ca- 1  <

For S G S  П C,  as cf(i) > there are { i/ | : l  < n} such that sup{a < 
< 8 ■ =  t'f} = 6. For a stationary 7 \ £  S П C, v \  — vt (6 G Ti).
By Lemma 5, for 6  G S  П C(Ti),  L(6,Ti) ф 0, so there is a stationary 
T2 £  5 flC (T i), and r G (wi +  1)<W— such that r G L(6,Ti ) for 6 G T2. 
We put l* =  min{^ : r(f) =  u i } .  Again, by Lemma 5, for 6 G S  П C(T2), 
L(6, T2 ) ф 0, so there is a stationary T3  £ 5 7 nC (T 2 ), and p with p G L(6 , T2) 
(« € T3).

Since Л > u i ,  there is a stationary T 1 £  S  and {1/  : Í  < n) such that
Ря(С|,<5) =  v* (S G T1). By Fodor’s theorem, there is a T 2  £  T1, and
X2  < A, with x(C|> < X2  f°r  ̂ € T2. By Lemma 4, if S G S  -  6(T2), then
there is a x <  ̂ such that U(6,T2, Re.+\e\ ,x)  ф 0, so there are 7 7, x 3  > X2» 
and T 3  £ S -  6 (T2) stationary with 77 G U(6,T2, Ä/>+|e|, X3) £ T3).

We now apply Lemma 2 with A = T3  — (x 3  +  1), В  =  T 3  to get a 
/З 3  G T3  -  (x 3  +  1), and ß3 G T 3  such that /З3  > /З3  and

Kß^ißz)  >  max{|i//| : f  <  Ti) +  |r| + |p| +  \v\ +  m ax{|i/| : l  < n}.

Choose г'о < u>i which is larger than every countable ordinal in p#(/33 ,/33), 
r],vt ,vt (£ < n). Since p G L(ß3,T 2), there is a ß2 G T2 with X3  < < ßz,
X(ß3,ß3) < ß2 such that ßH(ßз,/? 2 )’° = £»• Pick a X2  with X3  < X2  < /?2 , 
X(ß3,ß3) < X2  such that х(/?з,Аг) < X2 -

Next fix an н  < which is larger than the ordinals in ря(Дз,/?2 ) and
г0. Then, as ß 3 G T 3 and 77 G Z7(/?3 ,T 2, 12**+|C|>X3)> there exists a ß G T2,
ß  > ß3 with ßH(ß ,ß3)4 = »7 and x{ß,ß3) < X3- Since /3 G T 2  we have 
ßH(Cß,ß) = V* and х(Сь»£) < x 3  (t  < n).

Finally, choose i2 < u>\ which is larger than the countable ordinals in 
ßH(ß,ß3) and i and use r G L(ß2,T \ ) to find ß x 6  T\ with X2 < ßi < ß2 , 
e i i iß 2 ,ßi)'2 = T. Also, fix Xi > x(ß 2 ,ßi), X2 < Xi < ßi- Since ßx G Tb  
there is an a , Xi <  й < ßi, such that for i  < те, ßH(ßu(i )  =  vi-
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Fig. 1. The sequence 0н(Сд<(а) -

Now, by Lemma 2, as a <

X((ß,ß) < X3 < X2 < Xi < implies p(Cp, C )  = QÍQß,ß) A e(ß, C ) i  

X(ß,ß3) < X3 < a  implies g(ß,Ca) = g (ß ,ß 3) A p(/?3, C ) ;
X{ß3,ßz) < X2 < a  implies p(/33, C ) = /3з) Л g(ßз ,С ) ;
x(ß3,ß2) < X2 < 0 implies p(/?3, C )  = e(ß3,ßi)  A e(/?2 ,C« );
X(ßi,ß\)  < Xi < a  implies p(/?2, C )  = Q(ß2,ßi) A ß(ßi,Ca),

i.e.

e( (ß , (a)  = g(Co,ß) Л e(ß ,ß3) л g{ß3,ßs) л g(ß3,ß2) л g(ß2,ßi)  л p(/Ji,C )-
A similar identity holds for ря-

Now it is obvious that the middle, i.e. the &(C/3> C ) / 2-th element of the
string lies in the g(ß3,ß3) portion — selected to be so long for this purpose. 
By the respective selections of *i,*2 the largest p# value of the first half of 
the string is at least i'i but less than i2. It follows that consists
of those indices p in the p(/32, ßi) portion where д н ^ г ,  ß\)(p) ^ г2> so, in 
particular, pi = s + |p| + l* where s = |р(С^,/?з)|. w2(C ,̂ CT) then consists 
of those indices q in the g (ß ,ß 3) portion where ря(/?, ß 3)(q) ^ *i. By the 
choices of tj and g(ß,ß3) we have that the minimum of {H (7,) : <7 £ m2} 
is in i.e. p2 = l* +  |p|. From this, 7Pl-p2 = 7« = ßz € 5 7, so
c(Cp,Ca ) = 7 , as required.
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4. C orollaries

Corollary. I f  к > ui\ is regular, then
(a) P r+(/c+ ) holds;
(b) K+-c.c.-ness is not a productive property of Boolean algebras;
(c) there is a k+ -separable not k+ -Lindelöf Hausdorff-space;
(d) there is a -Lindelöf not k+ -separable Hausdorff-space.
Proof, (a) From the Theorem and Lemma 1.
(b) See [6].
(c) -(d) See [1].
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0-ORTHOGONALLY ADDITIVE MAPPINGS. I

Gy. SZABÓ (Debrecen)

1. In tro d u c tio n

The representation of orthogonally additive functionals on the Hilbert- 
space Z2[0,1] has been studied by Pinsker [2]. In the recent decades several 
other authors have dealt with the same problem on vector spaces using some 
kind of bilinear forms for defining orthogonality. Thus in [8], Vajzovic con­
sidered the A-orthogonality ±.A on a (real or complex) Hilbert-space H, i.e. 
x 1_л  у <=$■ (Ax, у) = 0, where A: H —> H  is a continuous selfadjoint op­
erator. He gave the general form of the continuous A-orthogonally additive 
functionals. Also, Fochi [1] has studied the same question for non-continuous 
functionals, proving the odd solutions to be additive, while the even ones to 
be quadratic. Sundaresan and Kapoor [7] defined the T-orthogonality _LT 
on a real Hausdorff topological vector space E  with the aid of a (non-con­
tinuous) linear mapping T: E  —► E*, by x _LT у A=> T x (y ) =  0. They 
described in (almost) full details the class of all continuous T-orthogonally 
additive functionals.

A different approach was given by Rätz [3] for arbitrary orthogonally 
additive mappings from a real inner product space X  with the ordinary 
orthogonality, into an abelian group Y .  Later in [4], he turned these results 
into a more general context, namely for «/»-orthogonality on a vector space 
X  over a euclidean ordered field, i.e. x у <£=>■ ф(х,у) = 0, where ф is a 
non-isotropic bilinear functional.

In the present work we offer a common generalization of the above men­
tioned results into three directions:

1) we allow vector spaces over a quite arbitrary field rather than over R 
or C;

2) we use orthogonality based on an arbitrary sesquilinear form with 
respect to an automorphism of the field;

3) we study arbitrary orthogonally additive mappings with values in an 
ab eh an group.

This is the first part of our investigations in which we consider the case 
of symmetric orthogonality. The non-symmetric case and other related top­
ics will be dealt with in some forthcoming papers. Here we can apply the 
abstract theory of orthogonally additive mappings developed in [5], thus we 
use the same notation and terminology. Namely, throughout the paper, Ф 
will denote a field of char Ф /  2, I  a Ф-vector space with dim$ X  ^  2 and
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(У, + ) an abelian group. Also V  or lin V  stand for the family of all 2-di- 
mensional linear subspaces of X  or the Unear hull of V  С X ,  respectively. 
Assuming that _L is a binary relation (caUed orthogonality) on X ,  for P  E V  
let i .p  denote the set of aU (u ,v)  E-L such that Un{u,u} = P (the set of all 
orthogonal bases in P). The mappings A,Q  and F: X  —» У are said to be 
additive, quadratic or orthogonally additive {А-additive), if they satisfy the 
equations:

A(x + y) = A{x)  + A{y), x , y £ X ,
Q{x + y) + Q(x -  y) = 2Q{x) + 2Q(y), x ,y  e l ,  or 

F{x + y) = F(x)  + F(y), x , y £ X , x A y ,  
respectively. We shall use the notation:

Hom(X,Y) = {A: X  -+ Y  \ A  is additive},
Q uad(X ,y) = {Q : X  —► Y  \ Q is quadratic},

Н о тх (Х ,У ) = {F: X  -> Y  \ F  is A -additive},
(o)H om i(X ,У) = {D : X  —► У | D is odd and A -additive},
(e)Homj_(X, Y) = {E: X  —► У | E  is even and JL -additive}.

Finally, R is the real Une, C is the complex field, 0 denotes the scalar zero,
the zero vector as weU as the identity element of the group У. The actual
meaning of 0 always wiU be clear from the context. The sign 0  stands for 
the constant zero mapping.

Now we remind the reader of some useful concepts and results known for 
an abstract orthogonahty I o n a  Ф-vector space X:

Definition 1.1 ([5], Definition 1.2). a) We say P  E V  to be a A-normal 
plane, if there are (ui,v;) E-Lp  (i = 1, 2) with

2

P|(Un{u1} U Un{u,}) = {0}.
t=i

The subfamily of all -L-normal planes in V  will be denoted by Vn.
b) The vector x  E X  is said to be a

-  Т о - e l e m e n t ,  if x  E Un{u, v} for some u, v E X  such that ( i l u o r u i i : )  
and (x JL v or v A x);

-  T i - e l e m e n t ,  if it is contained in a .L-normal plane: x E P  € Vn;
-  T-element, if it is a To- or ri-element.

Let Xo, X \  or X T denote the set of all tq-, t\- or r-elements in X ,  respectively.
c) We consider the foUowing subfamilies in V:

Vo = {P  E V  |JLP n(X 0 x X 0) ф 0},
Vi = {P  E V  |-Lp D(X0 x l i U l i X  X 0) ф 0},
V , = { P £ V  \AP D(XT X Х т) ф 0},
V3 = Vo U Vx U Vn.
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Clearly, V'a С V,.
d) Finally, consider the axioms

(03) x ,y  e X , x 1  y, a ,ß  e Ф = >  ax ± ßy  (homogeneity);
(08) V  = V  

(0 8 ’) V  = V's.
Obviously, (0 8 ’)=>’(08).

T heorem 1.2 ([5], Theorem 2.7). I f  (X ,A )  satisfies axioms (03) and 
(08) (or even more (0 8 ’),), then

i) (о)Н от±(Х ,У ) = Нош(Х,У);
ii) (e)Homx (X ,y )  C Q uad(X ,y);

iii) Homx (X, У) =  Hom(X,У) ^  (е)Ношх (Х ,У ) =  {0}.

2. T he  sym m etric  (^-orthogonality

In this section we examine the properties of a ^-orthogonality relation 
showing that it satisfies axioms (03) and (0 8 ’) under some natural assump­
tions.

Definition 2.1. Consider a sesquilinear functional ф: X  x X  —► Ф with 
respect to an automorphism T: Ф —► Ф. Now define the ф-orthogonality 
relation l 1̂ on X  by

-L*= {(*,!/) G X  x X  I ф(х,у) = 0}.

A vector z 6 X  is said to be isotropic, if ф(г, z ) = 0. It will be fundamental 
in the sequel the condition

(*) there exist vectors uo,Vo € X  such that ф(ио,ио) ф 0 ф ф(ио,г>о) 
and ф(ио, vo) = 0.

Lemma 2.2. Assume that the automorphism of Ф is involutory, i.e. a  = 
= a  for all a 6 Ф. I fV  С X  is a linear subspace such that the ф-orthogonality 
on V  is symmetric and there is a non-isotropic vector t 6 V, then

Ф(у,х) = 'гФ{х,у), x , y e V ,

where 7 =  (£(t, í)/<£(í,í) and so 77 =  1. Thus for any couple x ,y  £ V  
with non-isotropic у, ф(х, x) / ф(у, у) =  'уф(х,х)/[‘уф(у, у)] =  ф(х, x ) / ф(у, у) 
is a fix element of Ф with respect to its automorphism. Moreover, in the 
particular case of~ = id$, i.e. if ф is bilinear, then it is symmetric on V.

Proof. Let x ,y  £ V  be arbitrary vectors and f  =  <£(a;,i)/<£(i,f) and 
г) = ф(у, f)/<£(t, t). Then for и = x — £t and v = у — T]t, we have

ф{и,1) — ф(х, t )  -  № ( t , t )  = 0 and ф(и,1) = ф(у,1) — 77</>(f,t) =  0,
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whence, regarding the symmetry of ±Ф, 4>(t,u) = 0 = </>(i, v). Now for 
£ = ф{и, v)/<t>(t,t), it follows that

ф(и -  £f, v + t) = ф(и, v) -  Сф(Ь, t) = 0

and so again by the symmetry of ±^,

ф(у, и) -  (ф(г, t) =  Ф(у + t , u -  (t)  = 0,

i.e. ф(г,и) =  £<£(f, f) = 7 ф(и,у). Finally,

Ф(У, x) = Ф(ъ + r]t,u + £t) = ф(у, и) + г)£ф(г, t ) =

= 7 {ф(и, v ) + Í70(t, t)) = 7 ф(и + £t,v + rjt) = "уф(х, у).

Lemma 2.3. f f  the ф-orthogonality on X  is symmetric and condition (*) 
is satisfied, then the automorphism of Ф is involutory.

Proof. Let a  G Ф\{0) be arbitrarily fixed, ß = ф(аио,аио)/ф(ьо,ио) 
and 7 = Ф(уо,Уо)/Ф(уо, уо), where uo,vo G X  are defined by (*). Then we 
have

ф(аи0 -  ßv0, au0 + v0) =  Ф(аи0, au0) -  ßф(vo, v0) = 0,
whence, by the symmetry of J_^,

ф(аи0, au0) -  &Ф(у0, vq) = ф(аи0 + v0, au0 -  ßv0) = 0,

i.e. ф(аио,аио) =  (Зф(ьo,vo) =  -уф(аио,аио). Now, using this equality also 
for a  = 1, we have

'уааф(и0,и 0) =  7ааф(и0,и 0) = 'уф(аи0,а и 0) =

= <£(сш0, au 0) = ааф(и0,и 0) = аа^ф(и0,и 0),

i.e. а  = а.
Now defining for х G X  the linear functional фх : X  —*■ Ф by фх{Т) = 

= ф{ф,х), we can present a more familiar condition instead of (*) in terms 
of a subspace of the conjugate space:

x ;  = {фх I x g x )  c  x* .

Proposition 2.4. f /- the ф-orthogonality on X  is symmetric, then the 
following assertions are equivalent:

i) Condition (*) holds true;
ii) There exist x , y , z  G X  with ф(х, x) /  0, ф(г, x) = 0 and </>(z, у) ф 0;

iii) There is a non-isotropic vector in X  and dim Хф > 2.

Proof. i)=>iii): Obviously фУо ф 0 and фио £ lin{<£„0}.
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iii)=>-ii): Choose a non-isotropic vector x G X . Since dimX^ > 2, 
there is у G X such that фу G X^\lin{<^2}. On the contrary, suppose that for 
any t G X , <{>(t,x) = 0 implies 4>(t,y) = 0, or equivalently, <f>(ti,x) =  ф(ф2,х)  
makes ф(Ь,у) = ф(Ь,у)  whenever f i , t2 G X . Let now Л = ф(х, у) / ф(х, x) 
and t G X be arbitrarily fixed. Then for p = ф{ф,х)/ф{х,х), we have 

x) = ф(рх,х) and so

Ф(Ф, У) = Ф(и*, у) = рф{х, у) = р\ф(х, х) = Аф(рх, х) = A<£(í, х).

This means that фу =  Афх, which is a contradiction.
ii)=>i): There may occur exactly the possibilities below:
a) ф(г, z ) ф 0: Then let uq = x and Vo = z.
b) ф(г,г) = 0: Then we have to deal with the following cases: 
b/1) ф{х,у) ф 0: Then
b / l / i )  either ф{у,у) Ф 0: Let a = ф(х, у)/ ф(г, у) and define uo = 

= x -  az, v0 = у. Then ф(и0,и0) = ф(х,х) ф 0 ф Ф(у,у) = ф(ь0, г 0) and 
Ф(и0,у 0) = ф{х,у) -  аф{г,у) = 0.

b/1/ii) or ф(у,у) = 0: Let а = ф(х,у)/ф(г,у) and и0 = х -  az. For 
non-isotropic у + z  let Vo = у + z. Then ф(ио, uo) = ф(х, x) ф 0 ф ф{ио, vq) 
and ф(ио, Vo) = ф(х, у) — аф(г, у) = 0. Now suppose that у + z is isotropic. 
Then 7 ф id ,̂, since otherwise, by Lemma 2.2, ф would be symmetric and so 
ф(у+г, y+ z) = 2ф(у, z) ф 0. Thus choosing ß G Ф with ß ф ß, we can define 
v0 — у +  ßz. The only thing to show is ф(иo,vo) = ф (у ^ г )  + ф ^ г ,у )  =
= (ß -  ß )4 iv ,z) ф 0.

b/2) ф(х,у) =  0: Then
b /2 /i) either ф(у, у) ф 0: Let uq = x, t>o =  y.
b/2 /ii) or ф(у,у) = 0: Let uq = x and vq be chosen according to the 

same process as described in case b /l/ii) .

P roposition 2.5. Suppose that Ф ф GF{3) and the ф-orthogonality 
on X  is symmetric. I f  u ,v  G X  are such that ф(и,и) ф 0 ф ф(г,и) and 
ф(и,и) =  0, then и and v are linearly independent and P  =  lin(u, v) is a 

-normal plane. In particular, и and v are Ti-elements.

Proof. For v = Xu we would have

0 ф ф(и, v) = ф(Хи,и) = Аф(и,и) = 0.

Similarly, и ф pv, i.e. P  = lin{u, bJ g P  and (u, v) G 1-^p.
Next we show the existence of a ^-orthogonal base (x ,y ) G L ^p  such 

that x, у £ lin{u) U lin{u}. Since _L̂  is homogeneous, it suffices to look for 
x and у in the form x = au +  v, у = и — ßv with a ,ß  ф 0. Then these x 
and у are linearly independent if

(2.1) <*0ф-1,

Acta Mathematica Hungarica 58, 1991



1 0 6 GY. SZABÓ

and x A.^ у if

(2.2) a = ß<t>(v,v)/<j>(u,u),

which is obtained from the condition <f>(au-\-v, u —ßv) = аф(и, и)—/3ф(и, v) = 
=  0. Substituting (2.2) into (2.1) we reduced the problem to looking for a 
solution of the inequalities

ßß  Ф -Ф (и ,и ) /ф ^ ,у ) ,  / М О ,

which is always solvable if Ф ф G F (3). This means that P  is a (/»-normal 
plane with («i,Vi) =  (u ,v ) and (u2^ 2) = (x ,y)-

P roposition 2.6. Suppose that Ф ф GF{3) and the ф-orthogonality on 
X  is symmetric while condition (*) holds true. Then every non-isotropic 
vector t £ X  is a Ti-element; namely, there is a non-isotropic и £ X  with 
ф(и, t ) =  0.

P roof. We are to deal with the three cases below:
а) </>(u0, uo)</>(M) ф ф(и0,г )ф ^ ,и о): Then for ß = ф(и0, f)/</»(f, t), и = 

— uq — ßt, v = t, we have

ф(и, и) =  ф(и0 — ßt, Uq -  ßt) =

=  Ф{иО , Uq) -  ßф(t,  Uq) -  ßф(uo, t) + ßßф{t, t) =

=  ф(и0, U o )  -  t ( u o ^ ) H t ,  uo) ^  0 ^  ^  ^  ^  ^

and ф(и, v) = ф(ио, t) — ßф{t, t) =  0. Thus by Proposition 2.5, t £ lin{u, v} £ 
£ V n, i.e. via the definition, t is a rj-element.

b) </>(vo, uo)</»(t, t) ф </>(vo, <)</>(*, vo): See case a).
c) ф(и0, и0)ф(t, t) = ф(и0, t)4>{t, Uq), ф{уо, u0)</>(/, t) = ф{уо, f)^(í, u0): 

It follows immediately that </>(it0j i)» ф(ф,ио), ф(иo,t), <f>(t,vq) ф 0. Let ß = 
= </>(uo,t)/(/>(uo,f), и = и о -  ßvQ, V = t. Then

ф(и, и) = ф(и0 -  ßvQ, Uq -  ßv0) =

= ф(и0, Uq) -  ßф(VQ, U q )  -  ßß(u0, V q )  +  ßßф{vQ, V q )  =

= Ф(и0,и 0)+
</>(u0,t)(/>(uo,f)
ф(ъ0^)ф(иo,t)

Ф(У 0,u0) = ф(и0,и 0) +
</>(u0, *)</>(*, Up)
ф(и0^)ф^,ио)

Ф{?0, Vq )  =

= 2ф(и0,и 0) Ф О Ф ф1ф,1) = ф(у, и).

Also we have ф(и,и) = ß(uo,t) — ßф{vQ,t) — 0, and so by Proposition 2.5 
t £ lin{u, u) £ Vn, i.e. t is a rj-element as well.
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P roposition 2.7. Suppose that Ф ф GF(3) and the ф-orthogonality on 
X  is symmetric while condition (*) holds true. I f  P  E V is such that every 
z E P  is isotropic, then ф is identically zero on P, and so P  E Vo-

P roo f . Let x ,y  E P be arbitrarily fixed. Then ф(х,у) +  ф{у,х) = 
= ф(х +  у, х + у) = 0, i.e. ф(х, у) = -ф(у, х ) = - 7 ф(х, у). Now, if “ = id$, 
then ф{х,у) = —ф(х,у), i.e. ф(х,у) = 0. Otherwise, choose a scalar a E Ф 
with a / ö  and take ax for x:

аф(х, у) = ф(ах, у) = - 7ф(ах, у) =

= - 7аф(х,у) =  а ( - 7  ф(х,у)) = аф(х,у).
Then clearly ф(х, у) = 0 again.

T heorem 2.8. Assume that Ф ф GF(3). I f  the ф-orthogonality on X  is 
symmetric and condition (*) holds true, then _L̂  satisfies axioms (03) and 
(08 ’).

P roof. The validity of (03) is obvious. Now we are going to show 
(08 ’). For this reason, let P E V  be arbitrarily fixed. Then there may occur 
exactly the possibilities as follows:

a) Every z  E P  is isotropic: Then Proposition 2.7 implies P  E Vo■
b) There exists non-isotropic v E P: Then by Proposition 2.6, v is a 77- 

element. Also, for a fixed x £ P\lin{v}, we define и = х — [ф(х, и)/ф(ь, v)]v E 
E P. Then clearly (u, v) E -L^p and

b/1) either ф(и,и) = 0, when и is a то-element and so (u ,v )  E J-^рП 
П(Хо X A i), i.e. P  E V\,

b/2) or ф(и, и) ф 0, when by Proposition 2.5, P  = lin{u, v} E Vn.
C orollary 2.9. Assume that Ф ф GF(3). I f  the ф-orthogonality on X  

is symmetric and condition (*) holds true, then
i) (о)Нотх*(А ,У ) = Н от(А ,У );

ii) (е)Н отх*(А ,У ) C Q uad(A ,y);
iii) Н отх*(А ,У ) = Н от(А ,У ) (е)Н отх*(А,У) = {О}.

R emark 2.10. The condition Ф ф GF(3) cannot be omitted from the 
previous statements. To check this, let Ф = GF(3) = {—1,0,1}, X  = Ф2 
and define ф: X  x X  —► Ф by

0 ((^i;^2), (771; »72)) = -  bV2 , (Í i;6 ),(»n;»i2) € A.
Then for uo = (1; 0) and vq — (0;1), we have ф(ио,ио) = 1 ф 0 ф — 1 = 
= ф{уо, vo), ф(щ, vo) = 0, however V  = {A} and

±-фХ = {(buo,pv0),(p.vo,\u0) I А, /а Е Ф \{0»,
showing X  ф Vo W n = V's. Actually, (е)Нотх*(А ,У) C Q uad(A ,y) holds 
no longer in general. E.g., define E: X  —> R to be even and satisfying

£(1;0) =  1, £(0;1) =  -1 ,  £ ( ! ; ! )  =  0, E( 1 ;-1 )  =  0.
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Then it can be shown easily tha t E  G (e)Hom±*(X, R), however

Д((1;0) +  (1;1)) +  £ ((1 ;0 )- ( ! ; ! ) )  =

= E { - 1; 1) +  E ( 0; -1 )  = 0 +  ( - 1 )  = -1  ф 
^ 2  =  2 - l +  2 - 0 =  222(1; 0) +  2£ (1 ; 1).

3. E v en  solutions

The previous section has left open the question how to select the even 
solutions from among the quadratic functions. Now we answer this question 
under the following assumptions on the field Ф:

Throughout this section, using the notations Í1 = (a  G Ф | a  = a}, 
= {yft I y, € Ф} and fl_ =  —Í2+, we assume that

ÍI+ -|- c  íí = il_ U Í2+ = {w2 \ or 6 ÍI-).}.
These conditions are motivated by the natural properties of the complex 
field C, but they are valid e.g. for the subfield of the algebraic complex 
numbers, too. More generally, starting from a euclidean ordered field ÍI, i.e. 
an ordered field in which every nonnegative element has a square root, it is 
quite evident tha t the cartesian product Ф = fl X  Q turns into a field of the 
above type just as C = R X R. In each example given till now, the particular 
automorphism should be chosen to be the usual conjugation. Notice that 
the first condition excludes the possibility of Ф = GF(3). However, any 
euclidean ordered field or fields having only square elements, meet all of the 
conditions with the identical automorphism. For more information see e.g. 
[6].

Also, further on, the (^»-orthogonality on X  is supposed to be symmetric 
and satisfying condition (*). Then by Lemmas 2.2 and 2.3, there is a scalar 
7 G Ф such that 77 =  1 and ф (у,х ) =  7ф(х,у) for all x ,y  G X .

Lemma 3.1. There is a sesquilinear and Hermite-symmetric functional 
фо: X  x X  —► Ф such that ±Фо= ±Фш

Proof. Since ф ( ь 0 ,  и о ) ф ( и 0 , v 0 )  G ÍI+, we have o>0 G ÍI+ with Wq = 
=  ф ( и о ,  uo) • Ф(ъо, Vo). Hence for x  =  ф { у o , v o ) / u > o ,  it follows that xx  = 1 and 
X2 = 7 - Let define фо: X  X X  —► Ф by

Фо(х,у) = хФ(х,у), x , y  e x .

Clearly, фо is sesquilinear and the Hermite-symmetry can be verified as fol­
lows:

Фо(у, x) =  хФ(У, x) = XTФ(х,у) = хХ2Ф{х,у) = хФ{х, у) =
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=  х Ф { х 1 У )  =  Фо ( х , у ) .

Finally, ±Фо=±Ф is trivial from the definiton.

Lemma 3.2. I f  ф is Hermite-symmetric and E  G (е)Нотх<*>(Х, Y), then 
for each non-isotropic t G X

E (r t ) = E(t), r G Ф, TT — 1.

Proof. Let t G X  be non-isotropic. By Proposition 2.6, one can choose 
a non-isotropic и G X  with </>(f, u) = 0. Then ф(ф, Ф)/ф(и, u) G Í1 and so it is 
equal to E pp  for some p G Ф, i.e. <̂>(t, t) = ±ф(ри, pu). This implies that 
either </>(i -}- pu, t — pu ) = 0, whence

m
m E (

t + pu t — pu
2 '  2

= 4 ^ ) + № ) = e (
or 4>{t + pu, t -F pu) = 0, whence

) = E ( t ± p ) + E ( l ^ )  =

t + pu t — pu
= E(pu),

E ( t ) +  E{pu) = E(t + pu) = E + E  =

4 ^ H № H 0) = 0'
Now applying this for r t (t G Ф, r f  = 1), we have by the above argument 
that either

E (rt)  = E(pu) or E (rt) =  —E(pu).

This means that in both cases E ( r t ) = E(t).
Corollary 3.3. I f  ф is Hermite-symmetric, then for any E  G 

G (е)Н отх*(Х ,У ) we have

E(x)  = E(y), x, у G X, ф(х, x) = ф(у, у).

P roo f . If ф(х,у) = 0, then ф{х + y,x  -  y) = 0 and so E (x )  = E(y). 
Otherwise, we can choose и  G fl+ such that и 2 = ф(х,у)ф(х,у). Then for 
rj = ф(х, y)/u> we have 7777 = 1 and ф{х + rjy, x — py) = 0. Thus Lemma 3.2 
implies that E(x) = E(py) = E(y).

Theorem 3.4. Suppose that ф is Hermite-symmetric. Then E  G
G (е)Н отх,*>(Х, У) if and only if

E(x) = а(ф(х,х)), i G l ,
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for some a G Hom (il,Y).
Proof. By Corollary 3.3, E ( x ) depends only on ф(х,х):

E{x) — а(ф(х,х)), i £ l

for some a: ÍÍ —* Y .  Now we have only to show th a t a is additive. For this 
reason, first observe that choosing any u, v G X  with ф(и, и) ф 0 /  ф(и, и), 
ф(и,х) = 0, then for all a ,ß  G Í1+ and Л = ф(аи, au), p = </>(/?н,/Зн), we 
have

a(A 4- /х) = а(ф(аи, au) + ф(Ри, ßv )) = а(ф(аи + ßv , an  -f /?н)) =

=  ,E(au+/3n) =  E(au) + E(ßv ) = a(</>(au,au)) +  a(^>(/?n,/?n)) =  a(A)+a(/x).
Since for the vectors uo,vo G X  given by (*), ф(ио, no), d>(no, ho) G П, 

there are exactly the following possibilities:
a) ф(ио, no), <£(ио, no) £ Í1+: Then for each Л, ц  G Í1+ there exist a, /3 G 

G Í1+ such that а 2 =  X/ф{щ,ио) and ß 2 = ц/ф(иo,vo). Thus by the above 
observation

a(X + /x) = a(A) +  a(/x), A,/x G Í1+
follows, i.e. a is additive on ÍÍ+, and choosing a to  be odd, it is additive on 
the whole ft.

b) ф(ио, uo), ф(ио, vo) G ii_ : See case a).
c) ф(иo, uq) G ÍÍ+, </>(ио,по) G íí_ : Then for each A,^ G ÍI+ there exist 

a ,ß  G Í1+ suchthat а 2 = Х/ф(ио, «о) and /?2 = —р/ф( но, Но). Thus referring 
again to the above observation, we have

а(А -  ц) = a(A) +  a (—/x), X, /x G Í1+.

Now letting A =  /х, a(—p) = — a(/x) follows, i.e. a is an odd function. Finally, 
for any p, er G ÍÍ+, defining А = р +  ст, x̂ = <rG ÍÍ+, we obtain

a(p +  tr) = a(A) =  a(A — /x) + a(/x) =  a(p) + a(<r).

This means that a is additive on ÍÍ+, and because of its oddness, a G 
G Hom(íl,Y).

d) ф(ио,щ) G ÍÍ - , ф(ио ,no) G ÍÍ+: See case c).
Corollary 3.5. Under the general assumptions on the field Ф and on 

the orthogonality _L̂  at the beginning of this section, we have

(e)Homx*(X, Y )  = {a о A* | a G Нот(Ф ,У)},

where Д^(х) = ф(х,х) for all x G X .
Proof. This follows immediately from Lemma 3.1 and Theorem 3.4 

above.
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Remark 3.6. Now the result of Vajzovic [8], Theorems 1, 2, Fochi [1], 
Theorems 1, 3 and Corollaries 1, 2, Sundaresan-Kapoor [7], Theorems 2, 
3, Ratz [3], Theorem 9, Corollary 10 and [4], Theorem 3.8 c) can be de­
rived in an obvious way from our theory, actually from Proposition 2.4 and 
Corollaries 2.9, 3.5 above.

Acknowledgement. The author wishes to thank the referee for his valu­
able remarks on the manuscript of this paper.
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REPRESENTATION OF COMPLEX NUMBERS 
IN NUMBER SYSTEMS

B. KOVÁCS (Debrecen)1

In tro d u ctio n
Let R be an integral domain (with unit element), a  G R and AÍ = 

= ,kn} a finite subset of the set of rational integers Z. {a,Af}  is
called a number system in R if every 7 G R can be uniquely written in the 
form

(1.1) 7 = a0 + ага  +  . . .  + afcC*fc, a; G Я  (0 < г < fc), ak Ф 0 if к ф 0.

If AÍ = { 0 ,1 ,...  , n} then the number system {a,Y } is called a canonical 
number system.

This concept is a natural generalization of negative base number systems 
in Z considered by several authors. The canonical number systems were 
completely described by Kátai and Szabó [1], Kátai and Kovács [2], [3], if R 
is the ring of integers of a quadratic number field. Kovács [4] gave a necessary 
and sufficient condition for the existence of canonical number systems in R. 
It is proved in Pethö and Kovács [5] that for any q < — 1, q G Z, {a,Y }  is а 
number system in Z with infinitely many AT C Z. In [6] Pethö and Kovács 
characterized all those integral domains which have number systems and gave 
necessary and sufficient conditions for {a, Af} to be a number system in an 
order в. Furthermore they characterized effectively the base of all canonical 
number systems of в and computed the representatives of all classes of bases 
of canonical number systems in rings of integers of some totally real cubic 
fields.

In [1] Kátai and Szabó proved that if {a,Y } is a canonical number 
system in the ring of Gaussian integers, then any complex number 7 can be 
written in the form
( 1.2 )

7 = a,kOtk + ak~\OLk 1 + .. . + a0 +  a_ ia  1 + . . . ,  a,- G AT (* = k , k - 1 , . . . ) .

This result was extended for the ring of integers of imaginary quadratic fields 
in Kátai and Kovács [3]. In connection with this Daróczy and Kátai proved 
that for every complex number a , |a | > 1, there exists a set { 0 ,1 ,... , n} = Af 
such that any complex number 7 is representable in the form (1.2) ([7]).

1 Research supported in part by Grants 273 and 400 from the Hungarian National 
Foundation for Scientific Research.
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In this paper we first give a necessary and sufficient condition for a 
number system {а,Л/*} that any complex number 7 can be written in the 
form (1.2). Using this theorem we describe a family of number systems with, 
the property above, further we prove th a t every number system in the ring 
of integers of any cubic imaginary field has this property.

R esu lts

In the sequal R will denote an integral domain of characteristic 0, Z the 
ring of integers, Q the field of rationale. If a is an algebraic integer over Q, 
Z[a] denotes the subring of Q(a), generated by Z and a .

If { a ,N }  is a number system in Z[/3] and

7 = a0 + a i á  -f . . .  a,kak, a{ G AS (0 < i < к), а* ф 0 if к ф 0

then the exponent к is denoted by £(7 , a ). With this notation we have

Theorem 1. Let be a number system in Z[/3], (ß is an algebraic
integer over QJ. A real or complex number 7 can be written in the form  (1.2) 
— according as a is real or non-real — i f  and only i f  there exist sequences 
7 (k), S(k) with the following properties:

1. 7 • a k = ~/(k) + 6(k) for every positive integer k,
2. 7 (k) G Z[/3] and Ь(~/(к),а) <: к +  c\ where c\ is an appropriate 

constant which does not depend on k,
3. 6(k)/ak —> 0 if к —► oo.

This theorem is rather general because if an integral domain R of char­
acteristic 0 has a number system then R = Z[a], where a  is an algebraic 
element over Q (see Theorem 1, [6]). Using Theorem 1 we prove

Theorem 2. Let {a,AT} be a number system in Z[/3], where ß is an al­
gebraic integer of degree n > 1 over Q and let us suppose that |a | < |а^^| 
for every conjugate of a over Q. Then every complex number z has a rep­
resentation in the form (1.2) if a is not real and every real number r has a 
representation in the form ( 1.2) if a is a real.

From this result one can deduce the already mentioned results of Kátai 
and Szabó [1] and Kátai and Kovács [3], moreover in our case this theorem 
is stronger than the result of Daróczy and Kátai [7].

Finally, with the aid of Theorem 1 and Theorem 2 we get

Theorem 3. Let a be a non-real algebraic integer of degree 3 (over Q^. 
I f{a ,A f}  is a canonical number system in a Z[/3] then every complex number 
7 has a representation in the form (1.2).
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Proofs

In order to prove our theorems we need three lemmas.
Lemma 1. I f  {a, AT} is a number system in Z[ß], where ß is an algebraic 

integer over Q, then |a(’)| > 1 holds for every conjugate of a.
Proof. This is one of the statements of Theorem 3 in [6].
Lemma 2. Let ß be an algebraic integer over Q of degree n ^ 1 and let 

{a ,M } be a number system in Z[/3]. Then there exist effectively computable 
constants ci(a,Af), с2{а,Л1) depending only on a and AÍ such that

max
1 < г < n

log It 0)I
log |a(‘)|

+ ci(a,Af) <: I (t, a) < max
l<t'Sn

log 1t (,)I
log |a(‘)|

+  c2(ot,Af)

where 7^) and a(’) are the i-th conjugates of 7 and a, respectively.
Proof. See [8].

Lemma 3. Let a be an algebraic integer over Q. I f  > — 1 holds for 
some real conjugate of a then {a ,M } is not a canonical number system in
Z[a].

Proof. See Lemma 6 in [6].
Proof of Theorem 1. First let us assume that 7 can he written as

( 2.1)
7 = a ^ a N + . . .  + a\a  4- a0 + a ^ a  1 +  . . .  , a,- 6 AÍ (i =  N, N  — 1 , . . . ) .

For every positive integer к let
— OO

7 (k) = aivaN+k+aiv_iaN+k~1+ . . .+a_jt+ia+a_fc and 6(k) = ak• ^  a,Q*.

It is easy to verify that these sequences ~f(k), S(k) satisfy the conditions 
of our theorem because |a | > 1 by Lemma 1.

Of course, we may assume that 7 ф 0.
Let us now suppose that for a 7 ф 0 there exist sequences 7 (к), 6(к) 

with properties 1, 2, 3. Let N(k)  = L(')/(k),a) -  к and

7 {к) = ЬЬЫк)<а)а 1Ык)’а) + . . .  + Ьга  + Ь0, 6,- G ЛГ and i>z,(7(fc),a) ф 0.

We write

z {k) =  l ( k ) / a k = +  • • • +  bk+iot +  bk +  bk-iot x +  . . .  +  6oa k.

Since, by assumption, L(7 (fc),a) -  к is bounded above and N (k ) is bounded 
from below because of 7 (k ) /a k —► 7 ф 0 (|a | > 1), hence there exists
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an infinite set Spftk) of those indices к for which ki, k2 E 5jv(fc) implies 
Щ к г) = N ( k 2).

Let Cjv(fc) be such a value (in AT) for which Cjsf(k) =  ^Ц^(к),а) where
6 £ 'S'jV(Ar)-

Consider now the set of those k's in f°r which — CV(fc)-i
holds infinitely many times.

Let this index set be denoted by •S'iv(Jb)—x- Repeating this argument we 
get a monotone index set, all of which have infinitely many elements, and a 
chain Cjv(fc)-i, • • • {Cj E AT).

Let W  = CN(k)aN'<*> +  . . .  +  Cxa +  C0 + C - Xa ~ 1  +  . . . .
Let furthermore k(r) E &]V(k)-r+i, &(1) < &(2) < • • • • Then hm z(k (r )) =  

=  W, but limz(fc) = 7  because of lim 6(к) /ак = 0 and 7  = ( 7  • а к) / а к = 
= (7 (к) +  6(к)) /ак, and so

7  =  CN(k)aNW  +  . . .  +  Cxa +  C0 +  C - Xa~l +  . . .  , Cj EAT.

This completes the proof of our theorem.
Proof of T heorem 2. Let 7  be a real number if a  is real and a complex 

number otherwise. Of course we can suppose that 7  7  ̂ 0 .
Let C, — ■{A  -f- ßot I A , В  E Zj.
i) If a is a non-real complex number, then C is a lattice in the complex 

plane. For every positive integer k, let 7 k = A k + Bka  be one of the lattice 
points of that fundamental parallelogram of C which contains the number
7  ■ a k. One can readily verify that for every к

(3.1) \ j  ■ a k — 7 fc| < c i, |Ajt| < C2  • |a fc| and \Bk\ < c3  ■ |oifc|

hold with suitable constants сх,С2 ,Сз not depending on k.
ii) If a is a real algebraic integer with degree > 2, then £  is a dense set 

and so it is easy to see that for every positive integer к we can choose a 
7 fc =  Ak -f B ka  such that 7  ̂ satisfies (3.1).

iii) If a is a rational number then the existence of a sequence j k with the 
property (3.1) is also evident.

In the sequel let 7  ̂ be as above.
From (3.1) we can simply deduce that

(3.2) |7 « |  < c4 |a |*

holds for every positive integer к and for every conjugate 7^  of 7*, with an 
appropriate constant С4 which does not depend on k.

From (3.2) we get

(3.3) lo g b ^ l  < logc4 + b l o g | a |
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and so 

(3.4) max 
1=г=n

log iTfe }|
log |aM |

< log 4̂ +  к ■ log |a| 
log |a |

^ к + c5

where the constant C5 does not depend on k.
Further because of Lemma 1 |a | > 1 holds, consequently

(3.5) ^k/oLk —► 0 if к —► oo

where 6k = 7 • a fc — 7*.
(3.1), (3.4) and (3.5) show that the sequences 7*, 6k defined above satisfy 

the conditions of Theorem 1. This proves the theorem.
Proof of T heorem 3. The case of 7 = 0 is trivial, so we assume that

7 /O .
Let a^1) be the real conjugate of a, = a and =  á.
a) We begin our proof with the case arg(a(2)) ф (2ттг)/п (m ,n  E Z, 

n / 0 ) .  For every positive integer к let

(4.1) B k = l7(a(2))fel 
||aW | + a ( 2)|

where [ ] and | | denote the integer part and the absolute value, respec­
tively.

By Lemma 1, |a(*)| > 1 (t =  1,2,3). Further 7 /  0, and so if к is large 
enough then

(4.2) (1 /Bk)\y ■ (a(2))fc| = \\aM\ + a<2)| + C(k)/B k

where c{k) > 0 and bounded from above.
Since arg(o42)) ф (2rmr)/n (m, n E Z, n ф 0), the set {arg(o42))fc|0 < 

< к E Z} mod 2w is dense. Consequently, we can choose an infinite sequence 
k( 1) < k{2) < . . .  of positive integers such that

(4.3) arg(7 • (a(2))fc(1)) -* arg(|a^^| + a^2)) if k(i) —*■ 00.

From (4.2) and (4.3), it follows that

(4.4) (1 / B k{i)) • 7 • ( a (2))fc(i) =  | а ^ |  + a<2> + 6k{i) 

such that 6k(i) —* 0 if i —*■ 00. And so

(4.5) 7 • (o (2))fc(0 = BfcWla(1)l +  B W * W + % ;)«*« =

+ Bk(i)a(2) + Bk(i)6k(i) + rk(i)
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where 0 <i гкщ  < 1.
Let А кщ  = [-Bfc(,) |] and дкщ = В кщ6кщ +  rk^y
By (4.4) and (4.5) we can deduce that

(4.6) dk(i)!Bk(i) =  <5fc(,-) + r*(t)/#*(,) -c 0 if i -> oo.

Because of (4.1) Вщ )  =  Ci|(al2))*4')|, where Ci is bounded and so by
(4.6) we get

(4.7) Őfc(i)/ ( a (2))fc(<) -► 0 if i —*■ oo.

Now we shall prove that

(4.8) L(Afc(t) + flfc(i)a<2>, а<2)) < fc(t) +  c2,

where c2 is a constant not depending on k(i).
It is evident that for every k(i)

(4.9) l°g l"4fc(i) +  B k{i)gW  1 _  log |v4A.(t) + Bfc(t)Q(3)| 
lo g |a (2)| log |o;(3)I

We shall prove that the following inequality holds for every k(i)

(4.10) log \Ak(i) +  £fc(,')<*(1)l < logHfc(,) + -gfc(ptt(2)l
log I«!1)! log |q(2)| + w

where w is a constant not depending on k(i).
(4.10) holds if and only if

(4-11) + Bfc(,)a(2l |“ • v

where и =  (log la ^ D /^ o g  |a l2l|) and v = ||a!1l|‘‘/. Since IqI1̂  = — q!1) by 
Lemma 3 and

+  в кц)<*{1) = [ % ) l« (1)l] + ß k(i)<*{1\

hence the left hand side of (4.11) is bounded from above.
But la l1̂  > 1 (i = 1,2 ,3), and so и > 0. From this it follows immediately

(4.12) ( ^ Л в д Л А ц ^ Л в д а ^ Ь О ,  if i -> oo.

But —► IqI1!] if i —* oo and q!21 ф a l1!, consequently

(4.13) \(AHi)/ B k{i) + aW \u / 0
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and it is bounded.
From (4.12) and (4.13) we get that if v is large enough, then

(4.14) ( l /B k(i)r \ A k(i) + ^ I(Ak(i)/ B k{i)) + a(2)|“ • и

holds for every k(i).
Because of Iq:̂ 1̂ | > 1 and by definition we can choose v such tha t (4.14) 

holds. Since (4.14) holds if and only if (4.11) holds, consequently (4.10) also 
holds.

By .'Uio =  [В ед |а<1)|] and в е д  =  ci|a<2>|4<‘> we have

(4.15) |Л ед  + веда<!>| < с6|а<г>|*«,

where the constant does not depend on k(i), and this means that

(4.16) + < C7 +  t ( i )
log I а.уг> I log I

where C7 is a constant which does not depend on k(i).
(4.8) follows immediately from (4.9), (4.10) and (4.16). By (4.7) and

(4.8) the sequences 7^,) = and satisfy the conditions
of Theorem 1. Consequently, in the case under consideration the proof of 
our theorem is complete.

b) Let now arg(a(2)) =  (2mir)/n (m ,n  £ Z, n > 3). It is easy to see 
that a ^ / a W  is a root of unity of degree 3 or 6 because a(2) and аД3) are 
conjugate elements of degree 3. We can readily verify by this statement that 
(of1))3 = 77 and (а(2))3 =  r 2 = (а (3))3 =  Г3, where iq and r2 = Г3 are real 
algebraic numbers of degree 1 or 3. But the latest case is impossible because 
r i , r 2 and Г3 are conjugate elements and r2 = Г3. Consequently, r i  is a 
rational number. Since a  is an algebraic integer, hence a3 =  n where n £ Z.

But if a  is a root of the polynomial x3 + n where n < 0, then a  has a 
positive conjugate, and so {а,Л/”} can not be a number system in Z[/3] by 
Lemma 3.

If n = 1, then |а| = 1 and so {а, Л/"} also does not form a number system 
in Z[/3] (see Lemma 1).

If n > 1, then all the conjugates of a have the same absolute value, 
consequently we can apply Theorem 2 to complete the proof of the theorem 
in Case b). Thus the theorem is proved.
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I. KÁTAI1 (Budapest), member of the Academy

1. Let Í1 be the set of all arithmetical functions having complex values. 
Sometimes a function /  G ÍÍ is considered as an infinite-dimensional vector, 
the nth coordinate of which is /(n ) . We write f  = (/(1 ), / ( 2 ) , . . . ) .  Let x = 
= (zi, z2>. . . )  be a general element of ÍI. The operators I, E, Д, Ab (fl —♦ Í1) 
are defined according to the following rules: the nth coordinate of lx ,  Ex, 
AX, Двх are zn, zn+i, zn+i - x n, z n+ß- x n, respectively. Let Д* = (E - I )k, 
A g  = (E B — I )k. If P G C[z] is a polynomial, P(z) = a0 + a\z  + . . .  + a,kZk, 
then the nth coordinate of P(E)x  equals

ttO't'n T aiXn+i T . . .  T

Let a > 1 be a constant, g: [l,oo) —> [l,oo) a slowly varying function,
i.e. such that

( 1. 1) lim max
Х-Ч-0О i< y< x

e(y)
g(x) = 0.

Let ííQ>e (C ft) denote the set of those x G fl for which

( 1.2) sup
x il

1
xg(x)a £ 1**1

is finite.
It is clear that ila ,p is a linear space, i.e. for f, g G Па,е> Cj,C2 G C we 

have cif + c2g G tta,e.
Let M. (resp. M*) denote the set of complex-valued multiplicative (com­

pletely multiplicative) functions. Let Ca ê = M. П £* B = M .* П
In our preceding paper [1] we proved that if /  G M  and Дд-f G holds 

for some К  G N, then either /  G Ca,e or /(n ) = n*u(n), where 0 < Re s ^ 1 
and u(n + К ) = u(n) for every n G N.

Our purpose is to prove the following

l The research is financially supported by the Hungarian Research Foundation No.
907.



122 K .-H. INDLEKOFER and  I. KATAI

Theorem. I f  f  £ M ,  P £ C [z], P  ф 0, к = deg P, and

(1.3) P (E )  f € i l a ,e

then either I  £ E a,e or f (n )  =  nsu(n), where 0 < Re s < к and

(1.4) P (P )u  = 0.

Remark. We shall not determine the solutions of (1.4). From the proof 
of the theorem it will follow that there exists an integer В  such that u(n) = 
=  X s (n) whenever (B ,n ) = 1, and \B  is a suitable character mod B.

2. Notations. For an n £ N let p(n) be the smallest prime factor of 
n. For a prime p  and an integer n let £p(n) be the exponent of p in n, i.e. 
р*р(п)\\п. For an arbitrary sequence x, L(xn, . . .  , xn+k) or L j(xn, . . .  , xn+k) 
denote fixed linear combinations of the variables xn, . . .  , x n+k. For а к £ N 
let Xo,k(n) be the principal character mod к.

3. Let f  £ M  and A j — A  be the set of those polynomials P £ C[z] 
for which P {E )I £ Sla<e. Assume that A  contains a nonzero element. Then 
Р\,Ръ  €  A  imply that ciPi +  C2P2 6  A , furthermore, if P (z ) £ A  then 
zP (z)  £ A. Thus, if P £ A  and Q £ C[z], then QP £ A. Hence we get that 
A  is an ideal.

Observe furthermore that if zQ (z) £ A, then Q(z) £ A  as well.
The ideal A  is generated by its least degree monic element P i . All the 

other elements P  £ A  can be written as P  = Q ■ P1? Q £ C[z].
It is enough to  prove the Theorem in the case when P  is the generator 

element of A.
Let P be the generating element of А , к = deg P. If к = 0, then 

/  G Ca,e- We may assume from now on that к > 1. If P(0) = 0, then 
P {z ) = zQ(z) £ A ,  and Q £ A .  This cannot occur, since P  was assumed to 
be the generator element.

к
Let 0 i , . . .  , 0fc be the roots of P , P (z) = П  (z ~ ®j)- Let m ^ 1 be an

i=i
integer,

к
Qm(z) := J^[(z -  071) =  60 + biz + . . .  +  bkzk, bk = 1. 

j=i

P (z) is a divisor of Qm(zm), so Qm(E m)i £ ila,e- Then

(3.1) Y ,  IQm(Em)f(m n)\“ «  xe(x)a.

Let
Tn =  Qm(Em)f(rnn), Zn = f (m )Q m(E )f(n ) ,
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к
(3.2) Д(п) = Yn -  Zn = b j  {/(m (n +  j ) )  -  / (m ) /(n  +  j ) } .

j=о

Since Y = (Yi ,Y2> • ••)€  e? therefore P (E )Y  G Since P (E ) f  e ila,e,
tЪ PTpforp

P (E )Z = f (m )Q m(E )P (E )f G il«,ef
consequently

(3.3) P (E )A  G Д = (Д (1 ),Д (2 ),...) .

Let m = pa, where p is a prime larger than 2k -f 2. Observe that

(3.4) P (E )A (n) = b0 ( f (m n )  -  f (m ) f (n ) )P (0) if p|n.

Let n be running over the integers n = where b > 1, pb is fixed and 
v is coprime to p.

Then, from (3.3), (3.4) we infer that

(3.5) |/(р “+ь) - / ( Л / ( Л Г  E  1 /М Г  <  **“(*)•
1/<X

(í',p)=i

Let

(3.6) s , ( * ) =  E  l/M I"-
Í/Sl 

(",p)=1

Now we prove that

(3-7) = 00 (* -*• oo)
X Q 0, { X )

which will imply that

(3.8) f ( p a+b) = f (p a)f(pb)

for every a, 6 G N.
Assume that (3.7) is not true, i.e.

(3.9) 5p(x) <  xg(x)a.

Let us choose a large constant c. Then

(3.10) |/ (n ) |“ <  xß(x)a
n<x

tp (n )< C
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holds as well.
For an n satisfying £p(n) > c we consider

tn := / (» )  -  - щ Р { Е ) ! { п ) .

It is clear that tn is a linear combination of f ( n  +  1 ) ,. . .  , / ( n  + к ), tn = 
= c i / ( n + l )  + - . . +  Cfc/(n+fc) with suitable constants c\ , . .. , c*,, furthermore 
fp(u +  j )  ^ c for every j  = 1 , . . .  , k. Thus ^  |<n|" <  xga(x), which by

n ^ x
lp ( n ) > c

our assumption P { E ) i  £ gives that

£  l / (» ) |“ < i e ( x ) “
tp(n)>C

n ^ x

and so by (3.10) we get f  £ This contradicts the minimality of P  in A. 
We proved the following
Lemma 1. Let P ( E ) f  £ Qaie да'Й some polynomial P(z) of degree k. 

Let P  he the smallest degree polynomial with this property. Assume that 
f  £ A4 and к > 1. Then f{ m n ) =  /(m )/(n )  whenever p(m) > 2k +  2 or 
p(n) > 2k -f 2.

Assume now th a t m is such an integer for which p(m) > 2k + 2. Then 
Д(п) = 0 identically. Consequently Yn = Zn, and from (3.1) we obtain

(3.11) If (m ) \a \Qm{E)\f{n)\a <  xg(x)a.
n ^ x

(3.11) implies th a t either f (m )  =  0 or Qm(z) £ A.  Assume that /(m ) ф 
Ф 0. Since Qm(z) £ A ,  deg Qm(z) = к , therefore it is a minimal degree 
monic element of A ,  so P(z) = Qm(z), consequently

(3.12) { 0 b . . . ,  0*} =  { 0 Г , . . . , 0 П -

From (3.12) we infer that { 0 j , . . .  , 0jt} = {0™r , . . .  , 0™r) holds for every
r =  1 ,2 ,---- Since 0 j  ф 0, therefore 10y| =  1 for every root Qj. Let
<Pj =  ar^ ; • If were an irrational number for some j ,  then all the numbers 
0™r would be pairwise distinct, which cannot occur. Consequently (pj ( j  = 1, 
. . .  , k) are rational numbers. Let (fj = with ( a i , . . .  , a*, B) = 1, В > 0. 
Then 0 ^  = 1 for every j ,  i.e. Qj are P th  roots of unity. Since the multiplicity 
of the occurrence of some root of unity in the system {0 г, . . .  , 0 ^} is at most 
k, therefore P(z) is a divisor of (zB — l ) k and so

(3.13) (E B - I ) k f £ i l e ,e.
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We deduced the relation (3.13) under the assumption that there exists 
m £  N with p(m) > 2k + 2, /(m ) ф 0. We shall prove now th a t this is 
true, whenever P{E)I  G Qa,e, f  Ca,e- Indeed, if f ( m )  = 0 were satisfied 
for every such m, then /(n )  < 0 could occur at most in the case when n is 
composed of primes less than 2k +  2 -f 1. Let ßi < <12 < . . .  be the whole 
sequence of such integers. It was proved by G. Pólya that a„+i — a„ —► oo 
as и —► oo. By this we get

/ М  = щ В Д / W

if is a large element. Hence we get

£  I/MI“ = £  l/MI* < 1 + £  IW /M I*  «  *»*(*)■

i.e. /  G This is a contradiction.
So we proved
Lemma 2. Assume that f  E M , f  £ Ca,e an  ̂ ^ere ezisis a polynomial 

P of degree к such that P (E )f  G Assume that P  is a minimal degree
polynomial with this property. Then there exists a suitable integer В such 
that P(z)\(zB — l ) fc, and so (E B — I ) ki  G

4. Assume that the conditions of our theorem hold; furthermore let к 
be minimal, к > 1. This implies that f ^ СауВ. If the assertion of Lemma 2 
is true with В , then it is true with B r (r = 1 ,2 , . . . )  as well. Therefore we 
may assume that all the primes up to 2k + 2 divide B. Let us assume this. 
Let
(4.1) /*(п) =  Хо,в(п)/(п).

It is clear that

(4.2) (E B -  1)кГ  G 

furthermore /* G Л4*.
Since хо,в{п) = 1 for (n, B) = 1, therefore / (n )  = /* (n) whenever 

(тг, В ) = 1. We want to prove that /*  ^ CaiB. This will follow from
Lemma 3. I f  there exists an integer D such that

(4.3) Y ,  1ДП)Г  <
nix

(n,D)=1

then f  G Ca,e-
P roof. For an arbitrary n let a{n) be the product of the prime factors 

of n composed from the prime divisors of [D, B], and let b{n) be defined by 
n = a(n)b(n). Let H be an arbitrary large but fixed integer.
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From (4.3) we get

(4.4) ^ 2  1/(п)Г  <  xßa(x) (x -*• oo).
n<x

a(n)<H

Let p i , . . .  ,p r be the set of the prime divisors of [D ,B ]. Let В = 
=  p“1 .. ,p“r , &j ^  0. Let , ßr and 5 be large positive integers. For an
arbitrary n G N let df := n + I’В  ( /  =  0 , . . .  , S — 1). Then the cardinality of
di satisfying Pjj+a*\di is at most s / p + 1. Assume that ß i , . . .  ,ß r, S are 
so large that

5 ( ? + - + ^ ) + r < [ s / t + 1 ’
holds. Then there exists an integer sn G [0, S — к ) for which

Ipj (*» +  (en + v)B) < ß j  + <* j  (j =  1 , . . .  , r; u = 0 , . . . , k )

holds. Assume tha t H  is so large tha t Пр^1+аз ^  H.
Let Q(z) =  (zB — l ) fc. It is clear that

\f(n)\ й \Q(E)f(n)\ +  L x ( |/ ( n  + 5 ) | , . . .  , |/(n  + к В ) I) .

Iterating this inequality, we get th a t

S „ - l  S n + k

l/(» )l < d  £  |Q (5 ) /(n  + /5 ) | + c2 5 3  |/(n  + /5 ) | ,
r=0 i=s„

with suitable constants cj,C2, which may depend only on S. By using the 
Holder inequality, hence we deduce that

|/(п )Г  ^  C3 £  \Q (E )f(n  + IB)\° +  c4 £  |/(n  +  /6)1“ .
1 - 0  t = S n

It is important tha t a(n + /5 )  ^  H  is satisfied for the integers occurring in 
the last sum on the right hand side. Summing up for n, taking into account
(4.4) and Q (E )f G we get our assertion immediately.

Corollary. We have f* ^ £ ai(?.

5. Assume that В contains all the primes up to 2fc +  2, /* G AT*, 
f* (p ) = 0 if p |5 , furthermore th a t

(5.1) (E B -  I f f  G ila .e,
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(5.2) Г  I  Ca,8.

From these conditions we shall deduce that f* (n ) = nsv(n), 0 ^ Re s <
< k,

(5.3) (EB — I)  v  = 0 identically.

We shall use induction on k. The case к — 1 was treated in [1]. We shall 
assume that the assertion is proved for к — 1 instead of k. We may assume 
furthermore that the condition is not true for к — 1 instead of k.

Let
H (n ) := (E B -  I ) k~l f*(n).

Let q be a fixed positive integer coprime to B, q > 1. From (5.1) we have

(5.4) ^ 2  max \H(n + £B) — H(n)\a xga(x) ( x o o )
n<x = =

(n,B)=l

for every fixed K .  Let h = (q— l) ( fc - l) , and let ßo, . . .  ,ßh be the coefficients 
of the polynomial (1 + z + . . .  + z q~l )k \

( l  + z + . . .  + zq- 1)k- 1 = ßo + . . .  + ßhzh.

It is clear that ßo + . . .  + ßh = qk~1, furthermore that
(5.5)
(EBq -  J ) fc_1/* (9n) = ( /  + E B + . . .  + Е ^ - ^ У  1 (E B -  7 )fc_1/*(gn) =

h
= ^2 ßjH(qn + jB ) .  

j =о
Let (n, В ) = 1. The left hand side of (5.5) is f*(q)H(n). Let К  be a large 
constant, l n any integer, 0 < i n < K. From (5.4) we get that

(5.6) H(qn + £nB) = t y i H (n) + en<(n, 

where

(5.7) £  |£ .,i„ r  <  x
n i x  

(n,B)=1

Let

(5.8) E(x)-.= Y ,  1я (")1°-
n<x

(n,B)=l
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For an integer N  let a (N ) 6 { 0 ,1 ,...  , q -  1} be the integer for which 
N  — a(N )B  is a multiple of q. Let N i  be defined by the equation N  = 
=  qNi + a(N)B .  It is clear that

, 4 iV „  ^ Ar ^ N(5.9) ------В < N 1 < —.
q -  -  q

Some fixed integer M  plays the role of N\ for q distinct values of N, 
namely for qM  + ÍB  (£ = 0 ,1 , . . .  , q — 1).

From (5.6) we obtain (for N  > qB, (N , B ) = 1)

(5.10) H (N ) = ^ H ( N l ) + eNlMN).

Let 0  = Qq C M From (5.10) we get that

(5.11) \H(N)\ = 0\H(Nx)\ + QNlta(N), IPAq.aiAOl ^ клГ!,а(Л01- 

If c and d are positive numbers, then

(5.12) \ca -  da \ = a\J ua~l du\ < a\c -  ^ (c“" 1 +  da~l ). 

Furthermore, the Holder inequality gives that

(5.13) ЕК1КГ1 < (£k.r)1A"(I>..i“)v
n = l

is true for all complex numbers щ , . . .  , u x , V \ , . . .  , v x . Thus for positive 
c i, . . .  , cx, d i , . . .  , dx we obtain

(5.14)

We shall apply this inequality with

cjv = dN = Q\H(N1)\.
Taking into account (5.7) we get rapidly that

(5.15) E{x) -  QaqE ( ^ \  < cx1/ag (x )E (x )^~ 1̂ a.
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with a suitable positive c.
Similarly, summing up for every such N  for which N\ ^ у holds, we 

obtain

(5.16) QaqE(y) -  E(qy + qB) <i cy1/a g(y)E(qy +  qB)(a~xV a .

Let us assume first that there exists a q, (q, В) =  1 for which 0  = 
= 0 ,  < 1, i.e. |/*(<j')| < qk~1 ■ From this assumption we shall deduce that 
(E B — I )k~1 f*  G contrary to our hypothesis that к was the least number
satisfying (5.1).

Let e(x) = j -̂ y , and let q be such an integer for which (q ,B ) = 1,
0 g < 1. Assume that lime(x) = oo. From (5.15) we get that

e(x)xga(x ) < Qaq -g a ^ e ^ + cxga(x)e(x)~z~,

and after dividing by xga(x) and taking into account that -» 1 as
x —» oo, we obtain that

(5.17) e(x) — ce(x)~^~ < 0 " ( l  + £)e

is valid for each large x. Here e > 0 is an arbitrary constant. Let us choose 
it so that 0 а (1 + e) < 1 — e. Then,

(5.18) e(x) -  ce(x)~z~ ^ ( i _ £)e ^ - ^

holds for every large x. From (5.18) we deduce that e(x) is bounded in 
[1, oo). Indeed, let У be a large value which is taken on by e(y) at the point 
x, so that e(y) < У whenever у < x. From (5.18) we obtain that

У — сУ(“-1)/“ < (1 -е )У ,

and so eY < сУ^“" 1)/“ , У1/" < c/e. Y  is bounded. From now on we may 
assume that |/*(n)| > nk~x holds for every n, (n , B ) =  1. On the other 
hand, it is easy to see that |/*(n)| < nk if (n, B) = 1. Indeed, ga(x) = 0 ( x e) 
is true for every e > 0. From (5.1) we get that

(5.19) \(EB -  / r v » |  S £  |( £ в  -  W » l  +  0 (1 ) (j = 1.........k)
l/<n

5 2 1 (e b -  i ) kf M \  < »,+'-
l / < n

and

(5.20)
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Hence we get that (E B — I ) k */*(v) =  0 ( v 1+e), and by (5.19) that 
( E B -  I ) k~2f* (n ) = 0 (n 2+e). Repeating this argument, we get that

(5.21) |/*(n)| < Cen k+‘

holds for every £ > 0 with a suitable positive constant Ce whenever (n, B) = 
=  1. Let us write now n = q* into (5.21). Since /*(?*) =  /*(д)‘, we obtain 
that

l/* (i)l ^ С ] ' \ к+‘ .
Setting t —► oo, we get |/*(g)| ^  qk.

Let now q be fixed, (q ,B ) = 1, q > 1, 0
be defined by 0  = qv. Then 0 й q < 1. We shall prove now that for every
£  >  0 ,

0 , = & , and let rjq — rj

(5.22)
x—̂ooxrjâ 'c

< OO,
e(z)

limr- to o ll0 e =  OO.

This will imply that |/*(n)| =  nk~1+r> for every n coprime to В , and that 
rj — rjn — constant.

First we prove the first assertion in (5.22). Let e, ei be small positive 
numbers, and let xo be so large that (5.17) is true with £\ instead of e, for 
every x > xq. Then

(5.23) e(x) -  ce(x)(a 1^°' ^ ^ “ (l +  £i)e , if x > x0.

Let s(z) = From (5.23) we obtain

s(z)z,,“+£ -  cz(’,a+e) ^ - s ( z ) 2̂  < ^ « (1  +  £l) s

and after dividing by x‘na+e,

(5.24) s(x) -  cx~°(va+e) s ( x ) ~  < q~e( 1 + £i)s ^  .

Let £i be so small that q~e( 1 +  £i) < 1 — £j, say. Repeating the argument 
used earlier, we deduce immediately that s(z) is bounded.

Let us prove the second assertion in (5.22). If rj = 0 then this follows 
from the assumption E (x ) ф 0 (x g a(x)). Let rj > 0, £ > 0 be fixed. Let Fo 
and xo be large values such th a t e(xo) ^ Fo- Starting from (5.16), dividing 
by yg{y)a we obtain

(5.25) 1I+’"M ») < ( l + — )  e(?!l +  t B ) e'‘( n + ? B) +
\  У J в (y)
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+C
g(qy + qB)

ß{y)
and for every large у

+ ( q + q- ~
(«-!)/«

(5.26) q1+r>ae

+cq

(У) < q ( l  + ^ j ( l +  £i)e(qy + qB) +

( d \  (ar-l)/or
1 + - J  (1 + e1)e(qy+qB)(a-1Va.

Substitute now у = zq. From (5.26) we obtain that

e{qxо + qB) > qva *e(z0),

assuming that xq was so chosen for which x0 and e(zo) were large enough. 
Let now xi = qxo + qB, z„+i — qxv + qB (i/ = 1 ,2 ,. . .) .  Then e ^ + i )  > 
> qr>a~ee(xl/), and so e(x„) > (q‘/)r,a~e. Observe that x^/q^xо is bounded. 
This proves the second assertion.

Consequently, /*(ra) = nk~1+vt(n), where 0 < q < 1, t E M *, |f(ra)| = 1 
for (n, В)  =  1 and |f(n)| = 0 for (n , В ) > 1.

Since

Д в Г (п ) = E  ( - ^ " ' ( T )  (n +  iB)k~1+vt(n + IB) =
i=o '  '

= (д |* ( л ) )  nk- 1+T> + 0 (nk~i+v),

therefore

|Д&<(»)| s
|Ab / '( " ) I  , £

n*;-l+7) n '

Hence, by (5.1), and p(z) <  xe, к > 2 we obtain that

(5.27) E
(n,B)=l

1Лв*(га)1
n

< 00.

In [2] it was proved that t(n) = п,тхв(п ) ,  with some real number r  and 
a suitable character mod B. (See Theorems 2 and 3.)

6. Now we finish the proof of our theorem. Starting from the conditions
(1.3) and /  ^ Ca<e we deduced that there exist positive integers l, В, 1 < l  ^ 
< k, such that the function f*(n) = Хо,в(гс)/(п) E M *, (E B -  I )ef* E i ia ,e 
and {EB — I)l~l i*  ̂ &а,е and /* (n) = га*~1+т,+,тхв(п)> with some real
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number r , 0 < 77 < 1. Let now u(n) be defined by f (n )  =  n3u(n), s = t — 
—l + rj+ir. Let the coefficients of P(z) be ao ,. . .  ,a*;, P (z ) =  ao + . .. + dkzk,

к
S(n ) =  aju{n + j )  =  P(E)u(n).

j=o
We shall prove that (1.4) is true. Assume the contrary: there exists an 
n0 € N for which 5(no) Ф 0. For an arbitrary n let b(n) be the maximal 
divisor of n which is coprime to B, and let a(n) be defined by n = a(n)b(n). 
Let now n\ < П2 < . . .  be the sequence of those integers for which
b(rij + 1) = b(n0 +  £) mod B , a(rij +  i )  = a(n0 + i )  {I = 0 , . . .  , k).
It is obvious th a t S(nj) = 5(no) and {n,} has a positive density. Further­
more,

к
P (E ) f (n )  = ^ 2  a,ju(n + j ) ( n  +  j ) s = naS(n)+  

j =о
к

+ ^ 2  ai u (n + Ж ( п +  ЗУ -  га4)- 
з=о

Since (n + j ) s — n3 = 0 ( n cr~1), <t = l  — 1 +  77, and u(n  -f j ) are bounded 
on the sequence {n(}, therefore (t ^ t0, A  > 0) |P (£ ;)/(n t)| > A n° . This 
contradicts (1.3) if a > 0.

Let us consider the case a = 0. Then l  = 1, 77 = 0. Consequently 
|/(ra)| = |u(n)| =  1 for (n, В ) =  1. By using Lemma 3, we obtain f  6 iia>e 
which is a contradiction.

The proof of the theorem is complete.

1 3 2  K .-H .  INDLEKOFER and I. KÁTAI: MULTIPLICATIVE FUNCTIONS

R eferences
[1] K.-H. Indlekofer and I. Kátai, Multiplicative functions with small increments. II, Acta

Math. Hung., 56 (1990), 159-164.
[2] I. Kátai, Multiplicative functions with regularity properties. I ll, Acta Math. Hung.,

43 (1984), 259-272.

(Received January 16, 1989)

U N IV ERSITY  O P P A D E R B O R N  
D—4 7 9 0  PAD ERBO RN  
W ARBURGER ST R A SS E  1 0 0  
B R D

C O M P U T E R  C E N T E R  O F  
EÖ TV Ö S LORÁND U N IV E R S IT Y  
B U D A P E S T , H—1 1 1 7  
B O G D Á N FY  Ú T 1 0 / В  
HUNGARY

A cta  Mathematica Hungarica 58, 1991



Acta Math. Hung. 
58 (1 -2 ) (1991), 133-140.

ON HIGHER ORDER HERMITE-FEJÉR 
INTERPOLATION IN WEIGHTED 

Lp-METRIC

J. SZABADOS* (Budapest) and A. K. VARMA (Gainesville)

Let

(1) (1 > )x i > Xi > . . .  > z„(> —1), Xk = cos0fc (k = l , . . . , n )

be the roots of the ultraspherical Jacobi polynomials Р„а\ х )  (a  > —1) 
normalized such that P,ia ^(l) = (n^a ). For an arbitrary continuous function 
f ( x )  6 C[—1,1] and integer m > 1, consider the mth order Hermite-Fejér 
interpolating polynomial H nm( f , x ) defined by

H n m ( f i x k) = t o j f ( x k ) { k  =  1 , . . .  ,n;  j  =  0 , 1 , . . .  , m -  1).

Hnm{f,x) is a uniquely determined polynomial of degree at most m n  — 1.
The case m  even has been extensively investigated by P. Vértesi [7, 8]. 

(Actually, he considered the procedure under more general conditions.) His 
main results restricted to  our particular situation state that for m =  2 ,4 , . . .  ,

(a) if max ( - ^  -  — l)  < a < ^  then Hnm{f ,x )  converges uni­
formly in [—1,1];

( b)  i f  ~ \  +  m =  a ’ a  >  — 0 <  P  <  m(2cH-l) —2 th e n

1
fim [  \ f (x )  -  Hnm( f ,x ) \p(l -  x2)adx = 0

n->oo J
-1

for all f ( x )  £ C [ - l , l ] .
We also note that for the special case m — 2, P. Vértesi and Y. Xu [9] 

gave an error estimate for the mean convergence.
Our purpose here is to  settle the corresponding problems for m  =  1 ,3 ,__

(At this point we mention that for m  = 1 (i.e. Lagrange interpolation) the 
problem has been completely solved by P. Nevai [1], [2].) Although in stating 
our Theorem 1 we will not restrict ourselves to odd m ’s, this case will be of 
main interest because of the above quoted results of P. Vértesi.

* This paper was completed while the first named author visited the University of 
Florida in Gainesville. Research partially supported by Hungarian National Foundation 
Research Grant No. 1801.



134 J. SZABADOS and A. K. VARMA

In case m  odd we cannot expect uniform convergence (see P. Vértesi 
[7, Theorem 2.7]). In fact, we proved in [4] that for m = 3, there is no 
uniform convergence for any system of nodes. This justifies that we turn to 
investigating mean convergence.

Let us introduce the notation

for an arbitrary /  G C[—1,1], and let w (f,h )  be the ordinary modulus of 
continuity of f ( x ) .

T heorem 1. We have for m  = 1 ,2 , . . . ,  a > — 1 and f  e C[—1,1]

P roof. From the notion of Hermite interpolation it follows that there 
exist numbers e,£ such that with

(p > 0, a > -1 )

provided one o f the following two conditions holds:

( 2 )

(j = 0 ,1 , . . .  , m -  1; к = 1 ,...  ,n )

(£fc(x) are the fundamental polynomials of Lagrange interpolation based on 
the roots (1)) we have

m —1 n
(3) * >  =  E  E  p(J\ x k)hjk(x)

for any polynomial of degree at most пт — 1, and
П

(4) ^   ̂f  (xk^hpk(x').
k=1

Here

(г = 0,1, — ; к =  1 ,. . .  ,n )

A cta  Mathematica Hungarica 58, 1 9 9 1



ON HIGHER ORDER HERMITE—FEJÉR INTERPOLATION 1 3 5

(see P. Vértesi [7, Lemma 3.11]).
Now let p(x) be the polynomial of best approximation to /(x )  of degree 

at most nm  — 1; then by Jackson’s theorem

(6) g a x |/ ( x ) - p ( x ) |  = О («*>(/» ^ ) )  *

and by a well-known result of S. B. Steckin (see A. F. Timan [6], p. 252)

(7)
|p(j)(x)| =  0  min ( n \ ( l  -  x2)-j/2 )  (|x| < 1, j  = 0 ,1 , . . . ) .

Thus we obtain by (2)-(4)

771 — 1 71 771 — 1 71

p(x) -  Hnm(p ,x ) =  ^ 2  ^ 2 p b 4 Xk)hjk(x) = ^ 2  a 'k(X ~ Xk)'tk(x)m 
j=1 k=1 «=0 k=1

where by (5) and (7)

m —1

(S) о .  = E  е < - , м  -  О ( u ( f ,  I ) )  E  ( = 5 ) " ’ Ш ’ -

= 0 ("(/ ' s ) ) ( ^ )  (i=0...... m~ 1;* =1.......n)
with the understanding that e,--,-,* =  0 if г < j .  Hence and by (6) and (2)

(9) f (x )  -  Я п т( /, x) = /(x ) -  p(x) + p(x) -  Hnm(p, x) + Hnm{p -  / ,  x) =

( 1 \  n m —1

w (/ ,  - )  ) +  ^ 2  X^ а«'*(ж -  xk) 'h(x)m+
П '  k=l i=0

71 771 — 1

+ \P(Xk) -  f ( x k)] ^ 2  e«'*(X _  x k)'t-k{x)m =
k=l i=0( 1 4 71 771 — 1

w ( / , - ) )  + E  E  a *(* -  « M * ) ”
'  k=l i=o

where by (8), (5) and (6)

(10) ßik = a ik +  e,jt[p(xfc) -  / ( x fc)] = О ^ w (/,

Acia Mathematica H ungáriái 58, 1991



1 3 6 J. SZABADOS and A. K. VARMA

(i = 0 , . . .  , m  — 1; fc = l , . . . , » ) .
Now using the estimates

(И )  р Ы (х ) = 0 (Д „ (а :)-0' - 1/ 2п - 1/ 2) (а  > - 1 ,  |*| < 1)

(where Дп(х) = y/l  -  x2 + 1 /n ),

kit
(* = !,••• »«),6k ~  —

n
and

(12) (х*) ~  n 1̂ 2 sin'' а_3/20* (k =

(cf. G. Szegő [5], (7.32.5), (8.9.1) and (8.9.2)), as well as the notation

\9 -  6j \ =  min \в -  0*|,

we obtain from (10) and (a  +  l/2 )m  + 2 > 0 (see condition (i) in Theorem 1)

Iftfcl-  *k) = | -̂n —
T=i

+(13) =
*=1 кфз l̂ n (x*)|m|x -  x*|"—

+0« >  -  , / )  = О ( . - д I ) )  £  ( & = £ ) '
кф]

s'"' + П  9k + О ( ш ( / ,  = О ^n-2An(x)-(Q+1/2Kv(7, •
\ x  -  x k \' 

sin(a+1/2)m+2 9k 
sin2 e--^k- sin2

E
sin6(c<sin0

+ О (w(/, i) j = О (п-2Дп(х)-(“+1/2)"Ц/, I))

+  О ( n - 2A n(x )-(a+1'V mu ( f ,  •
sin(a + 1/2)m + 2 ek

(в -  eky

E
sin6fc >sin в

sin(“+1/2),n вк
{ в - в ку + О L ( f ,  - ) )  = О L ( f ,  - ) )  V  — 7,+V V n )  /  V \ n )  /  ' (k — 7)2

кф]

+ <

' fc=lv ' 
кф]

if a  < -1 /2

Л „ (* Г (а+1/2)т £  if a > -1 /2
кф]
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=0 ( " ( л ; ) ) - { ? - ^ г - < « ^ и « г " й  ( 0 S i S "*-2' |I|S1)-
Thus in case a < — |  the quantity (13) is of the required order even in the 
uniform norm. When a > — then by condition (ii)

f l £ ß ik( x - x k)% (x)mlP( l - x 2)adx = o(ui(f, I ) P) / ( l - x 2r ^ 2“+1W  = 
J fc=l П _!

= О ^ /, — j  ^ (0 < i < m  -  2, m  > 2).

All that remained to estimate is
(14)

An(x) = Y ^ ß m- i , k ( x - x k)m Ч к( х Г  = р ( ° \ х Г  1n m21u ( f ,  ^ ) Х л * 4 ( ж )  
fc=l fc=l

where by (10) and (12)
(15)

ßm—l,fc
7*

Here

^ a)'(z*)" 2 w (/,A J

7A: =  О ( n 12m(2o,+1)) f̂c =  l , . . . , n ;  a < - 0 ,  

whence and by (11)

K (* ) | = О (|Р<“> (* )Г - Ц /Д ) » ° <1_” ')  t w ‘ )l =
'  '  k=\

= o ( w ( / , i ) l o g „ )  ( a < - i ,  1 - * 2 s £ )

(see G. Szegő [5, the proof of Theorem 14.4]). Therefore

J |A„(x)|p(l -  x2)adx = О ^ ) Plogpn^ J (1 — x 2)adx =
l-x 2< A-— n ‘ 1—x2<A— n*

( " ( ' • = ) ' )  ( « s - D -
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This shows that instead of estimating (14) we can estimate the quantity

(16) B„(x) = (1 , ! ) £ > < » ( * )
k=1

obtained from (14) by using the estimate

= 0  ((1 -  ( |X| <  !)

valid for a  > —1/2 (see (11)). Here we apply the following special case of a 
more general theorem of P. Nevai [2, Theorem 1]:

Let a > — 1 , 0 < р < о о , 6 > — 1 and c an arbitrary real number. If

/л , 2a + 1  2a  +  5(17) 6 + c p > - l ,  b>  -----— p — 1 and c > -----------
4 4

then

(!8) sup У ЯпД ((1 -  x 2f f ( x ) ,  ■) ||р,ь <; constll/Hoo
Tl> 1

for every bounded function / (x ) ,  with some constant independent of / .  
Now apply this with

z'm'i l 2 a + 1 2a + 1(19) b = a ------ -— (m  -  l)p, c — — -— (m — 1)

and

(20) f(x) = {  “  x |) (1“ m)(2a+1)/4 if x = xh (k = 1 ,. . .  ,n)
( 0 otherwise.

Then by (i)-(ii) of Theorem 1, conditions (17) are satisfied; moreover, by
(15), ||/||oo = 0 (1 ). Thus we obtain by (16), (19) and (18)

1 1 Д . М 1 и = " ( / . 1 ) | |5 > Л М | |  = » ( / i ) | | f f n>1( ( i - x 2)7 (* ),
k=1 P’

Ip,ь

which proves Theorem 1.
We now prove that the restriction (ii) in Theorem 1 cannot be essentially 

loosened.
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T heorem 2. Let m > 1 be an odd number, a > —1/2 , a > — 1 and 
assume that

( 21)

Then

P >
4 (a+  1) 

m(2a + 1)’

lim sup \\Hnm(f,  я)||р,о = oo. 
n^°°H/||cSi

Proof. Using (3.11) from R. Sakai and P. Vértesi [3], we obtain with a 
certain ко = ko{m)

( 22) ( — )\sm  Ok J

m — 1

(ко < к < n — fco).

Now choose an f ( x ) € C[—1,1] such that | | / | |c  = 1 and

Í 0 if 1 < fc ^ fc0 or n -  fco < fc ^  n
Xk \  ( —l) fc if ко < к ^  n — k0.

Then we obtain from (4), (2), (22) and (5)

n —ko 771 —  1

h „m ,i ) =  E
k=ko t'=0

n—ko m—2
ä E  i « 1)!" -  **)"■* -  E  i

k = k 0 l  1 = 0  )

Z E  К*(1)Г | ^ ü t i ( n sin Ok)171-1 -  О ((n sin0fcr - 3) |  >
k=ko

n - k o

I4 ( i) lm(n sin ek)m- 1
k=ko

with some cm > 0, if only fco is chosen large enough (independently of n). 
Hence and by (11), (12)

Hnm( f , l ) > c 'm E
k=ko

, \A °  nam sin(a+t ) m ek
c~ nm/ 2

(n sin вк)771 —  1

[n/2]

> c^nm(“+^ )-1 E  sinm(a+2) - 1 0k > c" 
k = k 0
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since sinöfc ~  k /n  (к < n/2). Applying Lemma 5 from Nevai [1], we obtain 
by (21)

I Hntm (f,x ) Ip,a = СП oo

as n —* oo.
Acknowledgement. The authors are indebted to Dr. P. Vértesi whose 

valuable suggestions made the proof of Theorem 1 much shorter, and ex­
tended the validity of Theorem 2.
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GENERAL ABSOLUTES OF TOPOLOGICAL SPACES

Á. CSÁSZÁR (Budapest), member of the Academy

0. Introduction. This paper is a continuation of [2]. Terminology and 
notation are, unless explicitly mentioned, taken from there; however, many 
of the definitions and results are recalled below.

A Ponomarev absolute of a topological space is an extremally disconnect­
ed (= the closure of an open set is open) (briefly: EDC) space of which the 
given space is the image under an ultraperfect map ([7] for 7Vspaces, [11] 
for the general case). A map /  is ultraperfect iff it is continuous, closed, irre­
ducible, compact, and separated (xi ф x2, f ( x  1) = /(х г ) imply that x \  and 
X2 have disjoint neighbourhoods) (in [2], separatedness is not included in the 
definition). An Iliadis absolute of a space is a regular EDC space of which the 
given space is the image under a ^-perfect map ([5] for TVspaces, [2] for the 
general case). A map /  is d-perfect iff it is ^-continuous ( /(x )  £ V, V  open 
imply that there is an open U with x £ U, f (Ü)  С V"), closed, irreducible, 
compact, and separated (without separatedness in [2]).

A Ponomarev absolute of X  can be constructed (see [8]) as follows. Let 
U X  denote the set of all maximal open filters in X ,  equipped with the 
topology for which the sets

(1) s(H)  = (s € U X : H £ 5 )  ( H C X  open)

constitute a base. U X  is a compact T^-space, and the sets (1) are clopen 
in UX.  Now take the product space X  X U X  and its subspace P X  on the 
subset

(2) a X  = { ( X , s ) £ X  x U X :  s - +x in X }.

Then P X  is EDC and the map

(3) k x '-o tX -+ X ,  kx (x ,s )  = x 

is ultraperfect from P X  onto X .
In order to obtain an Iliadis absolute a similar construction can be ap­

plied (see [2]). We take X  x U X  equipped with the product of the indiscrete 
topology on X  and the above topology on U X,  and the subspace E X  on the 
set a X .  Then E X  is regular, EDC, and kx  ■ E X  —> X  is i?-perfect.

If X  is EDC then k x : P X  —► X  is a homeomorphism, and the same 
holds for k x  ■ E X  —> X  if X  is regular and EDC.
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Now P X  and E X  are essentially the unique Ponomarev and Iliadis ab­
solutes of X ,  respectively. More precisely, if / :  Z  —► X  is ^-perfect, then 
there is a unique map / * : a Z  —► a X  tha t is continuous from PZ  to E X  and 
satisfies

(4) f o k z  = kx of*;

/* :  E Z  —► E X  is a homeomorphism. Thus, if Z  is regular and EDC, then 
/*  о kg1: Z  —► E X  is a homeomorphism such that /  =  kx  ° (/* о kg1).

If /  is ultraperfect then, by [8], / * : P Z  —* P X  is a homeomorphism. 
Consequently, if in addition Z  is EDC, then /* о kg1: Z  —* P X  is a homeo­
morphism satisfying /  =  kx  о (/* ° kg1).

The main purpose of this paper is to study a generalization of the con­
cepts of Ponomarev and Iliadis absolutes, and to illustrate this generalization 
by a concrete special case.

1. Absolutes of regular spaces. For regular spaces, the Ponomarev and 
Iliadis absolutes coincide:

Theorem 1.1. For a topological space X ,  the following statements are 
equivalent:

(a) X  is reqular,
(b) P X  = E X ,
(c) P X  is regular.
Proof. (a)=>-(b): kx : E X  —► X is ^-perfect. As a ^-continuous map 

to a regular space is continuous, kx  is ultraperfect as well. Hence there is a 
homeomorphism h : E X  —*■ P X  such that kx  = kx  о h. Since h~l : P X  —► 
—► E X  and idax : P X  —► E X  are both continuous and

id* о kx  = kx  о /Г 1 = kx  о id**,

necessarily h _1 = idax  so th a t P X  = E X .
(b) =i>(c): obvious.
(c) =Ф-(а): see Lemma 1.2. □
Lemma 1.2. If  f :  Y  —► Z  is ultraperfect and Y  is regular then Z  is 

regular, too.

Proof. Let V  be an open neighbourhood of z £ Z. Since / _1(z) is 
compact and / -1(F ) is open in the regular space У, there is an open set 
U C Y  such th a t

f - \ z )  C U C Ü C  r \ v ) .
Then

z e Z - f ( X - U ) C  f ( U ) C f (Ü)  C V, 
and Z -  f ( Y  — U) is open, f ( Ü)  is closed in Z.  □
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Remark 1.3. The proof remains valid if /  is continuous, surjective, closed, 
and compact (i.e. perfect according to the usual terminology), cf. [3], 3.7.20.

2. The categories rTop and 6Top. It is well-known that the regular 
open (briefly: r-open) subsets of a topological space X  constitute a base 
for a coarser topology. Thus we obtain a space r X  ( R X  in [2]), the semi­
regularization of X .  The terminology is motivated by the fact that r X  is 
always semi-regular (i.e. the r-open sets in rX  constitute a base for r X ) 
because X  and r X  have the same r-open subsets; in fact, for any open 
subset G С X ,  we have cl^ G = clrx  G (and dually in t^  F  = intr^  F  for 
any closed set F С X ) .  Hence cly G =  cly G for any set G С X  open in X ,  
inty F  =  in tx  F  for any set F  С X  closed in X, and for any space Y  lying 
between X  and rX  (i.e. having the same underlying set and a topology finer 
than that of rX  and coarser than tha t of X); in this case X and Y  contain 
the same r-open sets, consequently r Y  = rX .

A regular space is obviously semi-regular. Observe that, in an EDC 
space, r-open sets coincide with clopen sets, thus an EDC space is semi- 
regular iff it is regular. Conversely:

Example 2.1 (cf. [10], p. 100). Let У = {p} U Q where Q is the unit 
square (0,1) X (0,1) and p £ Q. For z  G Q, let the Euclidean plane neigh­
bourhoods constitute a neighbourhood base in У, while the neighbourhood 
filter of p is generated by the filter base composed of the sets

(2.1.1) Vc = {p} u ( ( o , 0  x ( 0 , o )  ( e > 0 ) .

The space is clearly T2, the sets Ve are r-open, but V\ does not contain any 
closed neighbourhood of p; hence У is semi-regular without being regular. 
□

The fact that rrX  = rX  makes plausible the conjecture that the semi­
regular spaces constitute a bireflective subcategory in Top, rX  being the 
reflection of X . However, this is not true because there exist a semi-regular 
space У and a closed subspace X С У that is not semi-regular; then the 
embedding / : X  -*■ У is continuous without / : rX  —► r Y  being continuous 
(see [3], 2.7.6). The example below produces a similar phenomenon with a 
bijective map / :

Example 2.2. Let У be the space in 2.1 and X be a space with the same 
underlying set and the same neighbourhoods of p, but, for z = (a, b) € Q, 
let a neighbourhood base be composed of the sets

(a-e,a] x (b-e,b + e) c Q (e > 0).
Then id: X  —► У is continuous but the r-open set V\ С У is not open in 
rX , i.e. it is not a union of r-open sets in X. In fact, one of the members 
of this union, say G, would contain p and then a set Vs C G. But d y  Ve =
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= (p) U ( ( о ,  x (0,e]) C cl* G, and any point ( | ,  у) £ cl* Ve (0 < у < e) 
belongs to in tx  cl* Ve C in t*  cl* G. Thus G cannot be r-open in X , and 
id : rX  —> r Y  fails to be continuous. □

However, the character of r X  as a reflection can be saved if we replace 
the category Top by another one. For this purpose, let us say that a map 
/ :  X  -> Y  is r-continuous (Ä-map in [1]) iff / -1 (G) is r-open in X  whenever 
G is r-open in Y .  It is said to be <5-continuous [6] iff / -1 (G) is a union of 
r-open sets in X  whenever G is r-open in Y .  We also recall that /  is said to 
be almost continuous [9] iff / -1 (G) is open in X  whenever G  is r-open in Y .

Lemma 2.3 ([4]). / :  X  —*■ Y  is 6-continuous iff f :  r X  —* rY  is continu­
ous, and almost continuous iff  f  '■ X  — rY  is continuous. □

Lemma 2.4. The following implications hold for any map:

continuous
r-continuous =}► ^-continuous ^alm ost continuous =>• ^-continuous.

Proof. Only the last implication is not obvious. (Cf. [9], Remark 3.3.) 
Let f : X —* Y  be almost continuous, x £ X , V  C Y  an open neighbourhood 
of f(x).  Then U = / -1 (intV') is an open neighbourhood of x, and Ü C 
C / -1(У) because V  C Y  is r-closed and / -1(V) is closed. Thus /  is 
•^-continuous. □

None of the above implications can be reversed.
Example 2.5. Let X  = Y  = R, and let X  be equipped with the Sor- 

genfrey topology, Y  with the Euclidean one, f :  X  -* Y  =  idß . Then /  is 
(continuous and) ^-continuous because X  is regular, hence every open set is 
a union of r-open sets. However, the interval (0,1) is r-open in У without 
being so in X . Thus /  is not r-continuous. □

In 2.2, id is continuous without being ^-continuous. If X  is not semi- 
regular, then id: rX  —► X  is r-continuous without being continuous. In [9], 
Example 2.3, a ^-continuous map / :  X  —* Y  is defined th a t is not almost 
continuous; however, У is not T\ in this example. In the following one, X  
can be chosen to be

Example 2.6. Let X  be a semi-regular, non-regular space. Then k x  '■ 
E X  —► X  is 1?-continuous. We show that it is not almost continuous.

By 1.1, we have P X  ф E X .  Thus there is a set open in P X  but 
not in E X .  We can choose this set in the form Uq = (G X s(H)) П a X  
where H  is open and G is r-open in X  (since X is semi-regular). Then 
Uo is not a union of sets of the form (X x s(Hi)) Л a X , Hi open in X . If 
kf(1(G) — (G X  U X ) П a X  were a union of sets of the above form, then 
the same would hold for Uo (because s(H{) Л s(H)  = s(Hi П Я)). Hence 
kx  '• E X  —► X  is not almost continuous. □

In the opposite sense, we can say:
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Lemma 2.7. An almost continuous map to an EDC space is r-continuous.

P roof. If / :  X  —у Y  is almost continuous, У is EDC, and G C Y  is 
r-open, then it is clopen and r-closed, hence f ~ 1(G) is clopen and r-open in 
X. □

Lemma 2.8. id^  : X  —► rX  and idx : rX  —*■ X  are both r-continuous. □

Lemma 2.9. I f  f :  X  —► Y  and g : Y  —y Z  are both r-continuous or 6- 
continuous, then so is g о / : X  —у Z . □

Lemma 2.10. I f  f :  X  —* Y  is r-continuous or 6-continuous, then so is 
f :  r X  —► Y , too. □

Proof. 2.8. □
By 2.9, we obtain two categories rTop and £Top with the topological 

spaces as objects and the r-continuous or <5-continuous maps as morphisms, 
respectively. Now 2.8 and 2.10 furnish:

T heorem 2.11. The semi-regular spaces constitute a bireflective subcat­
egory with the reflection r X  of X  in any of the following categories:

rTop, £Top, rTop П Top, <5Top П Top.

Proof. For the two last mentioned categories, observe that an almost 
continuous map to a semi-regular space is continuous. □

3. General absolutes. Let us call absolute of a topological space every 
EDC space of which the given space is the image under a ^-perfect map. 
Thus the Ponomarev and Hiadis absolutes are special cases of this general 
concept.

Our purpose is to find all possible absolutes of a given space.

Lemma 3.1. I f  X  is an EDC space, then every space lying between X  and 
r X  is EDC.

Proof. Let У be a space lying between X  and rX .  If G is open in У, it 
is open in X , hence clj^ G = cly G. Now cl* G is clopen in X , hence r-open, 
so that it is r-open in Y . □

T heorem 3.2. I f Y  is a space lying between P X  and E X  then Y  is EDC 
and k x  '■ Y  —у X  is d-perfect. Therefore Y  is an absolute of X .

Proof. By [2], 6.3, E X  = r PX.  Hence У is EDC by 3.1. k x ' - Y  —y X  
is ^-continuous and separated because so is k x  '■ E X  —► X , and it is closed, 
irreducible, and compact because so is kx'. P X  —* X .  □

The following theorem says that the converse is essentially true:
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T heorem 3.3. Let Z  be an EDC space and f : Z  —» X  д-perfect. Then 
there exists a unique space Y  lying between P X  and E X  and a unique home- 
omorphism h: Z  —► Y  such that f  =  k x  ° h.

Proof. There is a homeomorphism /* : E Z  —* E X  such that /  о kz  = 
=  k x  ° /* . Since Z  is EDC, k z ’- P Z  —► Z  is a homeomorphism, and h = 
=  /*okg1: Z  —*■E X  is bijective and continuous. Define Y  to have the under­
lying set a X  and the quotient topology with respect to /i; then h: Z  -+ Y  
is a homeomorphism. Since h: Z  —► E X  is continuous, the topology of Y  is 
finer than that of E X .

Now let F  C atX be closed in Y ,  (x ,s) € a X  — F. By 

kx  = f  о kz  о Г ~1 = / о / Г 1,

k x  '• Y  —*• X  is closed and compact. Now kj f ( x)  is compact in Y  and T2 in 
E X  (it is homeomorphic to a subspace of UX),  consequently the topologies 
of Y  and E X  coincide on the subspace kfc1(x). Therefore there is an open 
set H С X  such that

(3.3.1) s e s ( H ) ,  ( 1 х « ( Я ) ) п ^ п ^ ( х )  =  | .

As s(H ) is closed in U X , ( X xs(H))C\F  is closed in Y  and k x ( (X  xs ( H) )DF)  
is closed in X .  By (3.3.1), x does not belong to the latter set, and there is 
an open set G С X  such that

x e G ,  G Г) kx ( ( X X  s(H))  П F ) = 0,

hence (G X  s (H )) П a X  is a PX-neighbourhood of (x,s) disjoint from F. 
Thus F  is closed in P X , and the topology of Y  is coarser than that of PX.  

The uniqueness statement can be formulated more precisely as follows: 
(*) I f  Z  is EDC, f : Z - * X  1?-perfect, h' : Z —* E X  continuous, and 

f  =  kx  о h', then necessarily hi = h (constructed above). Hence, i f  h' is a 
homeomorphism from Z  onto a space Y '  over a X  having a topology finer 
than that of E X , then Y '  = Y  (constructed above).

In fact, the map h' о k z ’. P Z  —► E X  is continuous and satisfies /  0 kz  = 
= kx  о (h1 0 kz) .  Therefore

h 'o k z  = f \  h' = /*  0 k~z x = h. □

4. The absolute R X . We illustrate the above theory by a special case. 
For a topological space X ,  let us denote by R X  the set a X  equipped 

with the subspace topology of the product rX  x U X . Then R X  lies between 
P X  and E X , and it is an absolute of X  according to 3.2.

Lemma 4.1. k x : R X  —► X  is almost continuous. □
The map kx  • R X  —► X  is not always i-continuous (see 4.3).
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Lemma 4.2. R X  = P X  iff X  is semi-regular.

Proof. If X  is semi-regular, then r X  = X  and R X  = P X . Conversely, 
let G С X  be open but not a union of r-open sets. Then (G x U X ) П a X  is 
open in P X  but not in R X .

In fact, assume

(G x UX)  П qX = (J((G, x s(Hi)) П a X) ,  
iei

where Gi С X  is r-open, Hi С X  is open. Let Xq G G. Then s G UX,  
s —* xо imply (xo,s) G a X ,  hence (xo,s) G G, x s(Hi) for some i, i.e. 
xo G Gi, Hi G s. By [2], 2.2, there is a finite subset Iq С. I  such that |J Hi

i e i0
is a neighbourhood of xo in X .  Therefore V  = f | G; flint |J  Hi is an r-open

<€/o »'e/o
neighbourhood of xo, and V  C U (Gi П Я,) C G. In fact, G, П H, C G for

_»e/o
each i G I, because x G G,- П Я, implies the existence of s G UX  such that 
Hi G s, s —s- x, whence

(x, s) G (Gi x s(Hi)) П a X  C (G x UX)  Л a l ,

so that x G G. Now xo G V  C G contradicts the choice of G. □

Lemma 4.3. If  X  is semi-regular but non-regular, then kx'- R X  —* X  is 
not 6-continuous.

Proof. By 4.2, R X  = P X  and, by 1.1, P X  ф- E X .  Let the r-open set 
G С X  and the open set Я  С X  be chosen such that (G X s(H))  П a X  is 
not open in E X  = r P X  ([2], 6.3) i.e. not a union of r-open sets in P X . 
Then (G X UX)  Л a X  is not a union of r-open sets in P X  either, because 
( X  X s ( H) ) n  a X  is clopen in P X . Hence kZ^iG) is not a union of r-open 
sets in R X  = P X .  □ *

From 4.2, we can obtain spaces satisfying R X  ф P X .  Our next purpose 
is to construct a T2-space such that E X  ф R X  ф P X .

Lemma 4.4. Let Y  be a T2-space, Gq C Y  r-open, xq G Go, X  D Y  a 
space such that the neighbourhoods of у G У constitute a neighbourhood base 
for у in X , and let the trace s(p) in Y  of the neighbourhood filter of any 
p G X  — Y  fulfil the following conditions:

(a) s(p) does not have a cluster point in Y ,
(b) p ф q, p,q  G X —Y  imply that s(p) and s(q) contain disjoint elements,
(c) G0 i  s(p),
(d) if  G C Y  is open and xq G G then there is a p G X  — Y  such that G 

intersects every element of s(p).
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Then, i f  the sets {p} U S, S £ s(p) constitute a neighbourhood base of 
p £ X  — Y , X  is a T^-space such that R X  ф E X .

Proof. X  is T2 by (a) and (b). The set G0 is r-open in X ,  too, since 
x £ cly Go — Go implies either x =  у G У and then the open neighbourhoods 
of у in У (open in X )  are not contained in cly Go and not in cl* Go either, 
or x = p G X  — Y  and then no open element of s(p) can be contained in 
cly Go since then it would be included in cly Go and in Go (r-open in У) in 
contradiction with (c).

Thus U =  (Go x U X ) П a X  is open in R X .  Let So £ U X , s0 -> xo £ Go. 
We show th a t (xo,«o) does not lie in the interior of U in E X .  In fact, a 
neighbourhood base of this point is composed of the sets (X  X s(V )) П a X  
where V  £ So is open in X .  Now G =  V  П Go 6 «о and xo £ cly G 
follow from So —► xo» whence xo £ cly G. Choose p according to (d); then 
p £ cly G C cly V, so that there is an s £ U X  such that V  £ s, s -* p, and

(p, s) G (X  x a(V)) П aX , (p, s) i  (Go x U X)  П a X  = U. □

Example 4.5. There exists a space Y  fulfilling the conditions in 4.4 such 
that X is not semi-regular. Then, by 4.4 and 4.2, X is T2 and E X  ф R X  ф 
ф PX.

Let У =  Q be equipped with the topology inherited from the Euclidean 
topology of R. Put G0 =  ( — 1 ,1 )0  Q, x0 = 0. Consider a well-ordering 
of the open subsets of У in the type 7 where 7 is the initial ordinal of 2Ы; 
choose Go to  be the Oth element in this well-ordering. Select y0 £ (— 1,1) — Q, 
xo G (1,2) — Q.

Suppose ?/£ and z£ are defined for £ < a  (<  7 ). Let Ha be an open subset 
of R such th a t Ga = Ha П Q, and ya £ H a — Q be chosen distinct from all 
yt and (£ < a). If Ga C G0, let za G (1,2) -  Q be distinct from all у  ̂ and 
zf, if Ga -  Go ф 0, let za G (Ha -  ( - 1, 1)) -  Q again be distinct from all 
у£ and previously chosen. Let X  ID У be chosen such that |X — У| = 2",
X  — Y  — {p£ : £ < 7}, and, for p^ G X  — У, define s(p^) to be the filter in 
У generated by the sets

((% -  e, Pi +  e)  U (zf. -  e,  z (  +  e ) )  П Q (e > 0).

Then (a), (b), (c) are clearly true. If G С У is open, say, G = Ga (and 
0 G cly Ga), then pa £ X  — Y  fulfils (d). X  is not semi-regular because, if 
Ga ~ Go ф 0, then pa £ cly Ga — Ga is interior to cly Ga so that Ga is not 
r-open and У is not a union of r-open sets. □

It is well-known that oX  is closed in X  X Í7X while it is dense in I X  X Í7X 
where I X  is the underlying set of X equipped with the indiscrete topology 
([2], 2.1). In this respect, R X  is similar to P X :

Theorem 4.6. a X  is closed in r X  x  U X .
Proof. For (x0,fio) € (rX  x UX)  — a X , choose an open Go С X such 

that xq G Go ^ So- Then there is an open So С X  satisfying So 6 So,
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Go П 5o = 0. Hence Но = int Go is r-open in X  and H od So = 0, xq £ Ho, so 
that Но x s(5o) is a neighbourhood of (жо,5о) in rX  x U X  not intersecting 
a X .  In fact, (ж, в) £ (H0 x .s(5o)) П a X  would imply x  £ So, x  ^ Ho: a 
contradiction. □

Thus R X  is a closed subspace of a semi-regular space (namely of r X  X 
x UX) .  Unfortunately, this statement does not contain any restriction on 
the quality of RX:

Lemma 4 .7. Every topological space is homeomorphic to a closed subspace 
of a suitable semi-regular space.

Proof. For a space X ,  let Y  =  X  x [0,+oo). Let the points (ж,у), 
у > 0 be isolated in Y,  and let a base in Y  be composed of the corresponding 
singletons and the sets

B{ f ) = {(ж,у): x £ X,  0 <y  < /(ж)}

where f :  X  —*-[0,+00) is a function such that

Z( f )  = { x e X :  /(ж) = 0}

is closed in X .  This is in fact a base as B ( f ) П B(g)  =  B(h) for h = 
=  min(/,<7), Z (h ) = Z( f )  U Z(g). The set X* = X  x {0} is closed in Y  
and the subspace topology on X* coincides with that of X  (more precisely, 
pr^ |X * is a homeomorphism) because

VTx ( B ( f )  П X*) =  X  -  Z(f ) .

The singletons in Y  -  X* are clopen, and the sets B { f ) are r-open as well. 
In fact,

Ж Г ) =  ß ( / ) U ( F x  {о})

where F  = c lx (X  — Z(f ) ) ,  and г £ F  П Z{ f )  implies th a t every neighbour­
hood B(g)  of (ж,0) contains points (ж, y)  satisfying у > 0, not belonging to
ЖГ). □

It would be interesting to know a non-trivial subclass of topological 
spaces that contains all spaces RX.  Semi-regular spaces do not do; in fact, 
if R X  is semi-regular then it is regular and R X  = E X  (which fails to hold 
in general).

Similarly, the fact that kx  '■ R X  —► X  is almost continuous does not 
characterize R X :  R X  ф P X  can happen and kx:  P X  —► X is (almost) 
continuous. However, it is not difficult to see that R X  has a kind of extremal 
character with respect to this property. For this purpose, let us call almost 
ultraperfect an almost continuous г?-perfect map.
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Theorem 4.8. I f Y  is a space lying between P X  and R X  then it is EDC  
and kx  ■ Y  X  is almost ultraperfect. Conversely, let Z  be an EDC space 
and f : Z —* X b e  almost ultraperfect. Then there is a homeomorphism 
h: Z Y  onto a space Y  lying between P X  and R X  such that f  = kx  ° h. 
Z and f  uniquely determine h and Y .

Proof. The first statement is obvious by 3.2 and 4.1. If Z is EDC and 
f : Z —> X  is almost ultraperfect, then, by 3.3, there is a homeomorphism 
h: Z  —► Y  onto a space lying between P X  and E X  such that /  = kx  ° h. 
If G С X  is r-open, then kf^{G)  = ( G x  UX)  П a X  is open in Y  and 
so is (X X s(H))  П a X  for any open set H  С X.  Thus the topology of 
Y  is finer than that of R X . The uniqueness statement can be formulated 
more precisely similarly to (*) given in the proof of 3.3: if h ': Z —> E X  is 
continuous and fulfils /  = k x  0 h' then h' =  h. □

Corollary 4.9. The space Y  = R X  and the map к = kx have the 
following properties:

(a) Y  is EDC,
(b) k: Y  —> X  is an almost ultraperfect map,
(c) whenever Z  is EDC and f : Z  —» X  is almost ultraperfect, there exists 

a bijective and continuous map g: Z —> Y  such that f  = к о д .
Conversely, if Y  and к satisfy (a), (b), (c), then there is a homeomor­

phism h: Y  —» R X  such that к = kx о h.

Proof. The first part follows from 4.1 and 4.8. Conversely, if Y  and к 
satisfy (a), (b), (c), then by 4.8 there is a homeomorphism h: Y  -+ Y' onto a 
space Y '  lying between P X  and R X  such tha t к = kx  о h. Applying (c) for 
Z  =  R X  and /  = kx ,  we obtain a bijective and continuous map g : R X  —*■ Y  
such that k x  =  к о g. Now Y '  is EDC, k x  — к о fi“1 : Y '  —> X  is almost 
ultraperfect and k x  = kx°hog : Y '  —* X  where hog: Y '  —► E X  is continuous, 
while kx  = k x  0 idax : Y '  —> X ,  idax : Y '  —> E X  is continuous as well. 
Hence, by (*) in 3.3, h о g =  idax : otX —> a X ,  and ho g = ida^ : R X  —> Y '  
is continuous, showing Y '  = R X . □
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ON SOME PROBLEMS OF I. JOO

A. BOGMÉR, M. HORVÁTH and A. SÖVEGJÁRTÓ (Budapest)

In [3] Joó raised the following problem. Let 1 < q < 2 and consider the 
expansion of the number 1 of the form

where {n,} is a subsequence of { 1 ,2 ,3 ,...} . For fixed q such an expansion 
is not necessarily unique, so the problem of unicity or that of finding the 
number of solutions of (1) arises. On the other hand we can investigate the 
problem of finding an expansion (1) for a fixed q, satisfying

Both questions are investigated in the papers [3], [4], [5], [7]. While preparing 
these publications, I. Joó raised (among others) the following two questions: 

(A) Does there exist an expansion (1) satisfying (2) for every 1 < q < 
< l + \ / 5  ?
4  О

(В) Does the following statement hold for every 1 < q < 2: there exists 
an expansion (1) satisfying (2) if and only if there exist 2N° many different 
expansions?

In this paper we give negative answers to both problems. Our considera­
tions have number-theoretic character, so we start with recalling some known 
facts and notions from algebraic number theory. A number a 6 C is called 
algebraic if it is the zero of a polynomial with entire (or rational) coefficients. 
If the polynomial is irreducible over the field Q of rationale, then its other 
zeros are called the conjugates of a; we denote them by aq = a,c*2, . . .  , a s. 
If a is the zero of a polynomial with entire coefficients and the leading coef­
ficient is 1 then we call a an algebraic integer. The Pisot numbers ([1], [6]) 
are algebraic integers a  satisfying

OO

( 1 )
t—l

( 2) sup(n,+i — n,) = 00.

(3) a > 1, |a,j < 1 , 2 < i < s.

We shall prove the following
T heorem . Let 1 < q < 2 and

OO

( 4 )
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I f  q is a Pisot number, then the numbers

■— £k +
g J k + 1

Я
+ £к+2 + . . .

give only finitely many different values.
This theorem answers negatively the problems (A) and (B). Indeed, we 

can first see easily that there are Pisot numbers less than for example
the real zero of the polynomial q3 — q2 — 1 is such a number. By the theorem 
the Xk are bounded from below, xjt > £ > 0, but then there exists t = t(6) > 0 
independent of к such that among £ j k , £ j k + i , . . .  , £ k + t  there must be a digit 1 ,  

hence with the notation of (1)

SUp(n;+i — Ui) ^  t < oo.

So (A) is answered. In [1] the authors proved that for all 1 < q < ^ еге
exist 2K° different expansions (1) of 1, so the answer for (B) is also negative.

P roof of the  T heorem . The numbers Xk = qk ^1 — 53 are alge-

braic and are contained in the field extension Q(g) of Q, Xk G Q(q). We shall 
prove that the numbers Xk and all their conjugates have a common upper 
bound and the Xk are algebraic integers. In this case all Xk are the zeros 
of polynomials with entire coefficients whose order and coefficients have a 
bound independent of k, hence the set {x*,} is indeed finite.

Let the number q have s conjugates qx =  q, q^, . . .  , q3. Since q is a Pisot 
number, we have

1921»• • • , Ы  < I-
As it is known ([2], p. 42-43), there are s monomorphisms

•' Q(<z) C, * = i , . . . , s
and cr, satisfies crfiq) = ft. We know further that if у £ Q(<?) then у = ox(y ), 
<t2(j/), . . .  , cr3(y) run over the conjugates of у (may be with multiplicity). By 
definition, Xk and x*+i are linked by the relation

(5) x k+i -  q(xк -  £k)

and Xi = q. Since the product of two algebraic integers is an algebraic 
integer ([2], p. 47), we get by induction on к that Xk are algebraic integers. 
Applying <7,' to the recursion (5) we get

= qfixk.i -  £k)

and consequently

(6) l*fc+i,i|  ̂ IftK1 + kjt.il), *  ̂2.
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Let now
6 := max|g,| < 1, M k := т а х |х ^ |  

then (6) implies Mjt+i ^ 6(Mk + 1), whence we get by induction that 

Mk+l <: 6kM X + 6k + 6к- Х + . . . +  6

and then
6

Mfc+i ^ Mi  + ^ 3 7 -

So the conjugates of xk are indeed bounded. On the other hand the sequence 
x k itself is obviously bounded:

x k ^  l  +  q - 1 + q ~ 2 +  . . . = - ^ - r .q - 1

By the above arguments we see that {xk} is indeed a finite set, so the proof 
is complete.

Remark. The Pisot numbers form a closed subset of (1 ,00), see [1], hence 
there exists a least Pisot-number qo > 1. So the following modification of 
(A) remained open:

Problem. Does there exist an expansion (1) satisfying (2) for every 1 <
< q < go?

R eferences

[1] J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge Univer­
sity Press, 1957.

[2] I. N. Stewart and D. O. Tall, Algebraic Number Theory, Chapman and Hall (London,
1979).

[3] I. Joó, On Riesz bases, Annales Univ. Sei. Budapest., Sectio Math., 31 (1988), 141-153.
[4] P. Erdős and I. Joó, On the expansion 1 =  ^ 2 я ~ п', Per. Math. Hung., 23 (1991).
[5] P. Erdős, M. Joó and I. Joó, On a problem of Tamás Varga (to appear).
[6] J. Dufresnoy, C. Pisot, Sur un ensemble fermé d’entiers algébriques, Ann. Sei. Éc.

Norm. Sup. Paris, 70 (1953), 105-134.
[7] I. Joó and M. Joó, On an arithmetical property of \/2, Publ. Math. Debrecen, 37

(1990).

(Received March 10, 1989)

EÖ TV Ö S LO RÁ ND  UNIV ERSITY  
C H A IR  FOR ANALYSIS 
MÚZEUM К R T. 6 - 8  
H - 1 0 8 8 B U D A P E S T , HUNGARY

Acta M athematica Hungarica 58, 1991





SOME SATURATION THEOREMS FOR CLASSICAL 
ORTHOGONAL EXPANSIONS. II
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The famous theorem of G. Alexits [6] states that the Fejér means of 
the Fourier expansion of a continuous and 27r-periodic function /  converge 
uniformly to /  in the order О (£) if and only if the trigonometric conjugate f
of /  belongs to the Lip 1 class, i.e. /  is absolutely continuous and f  £ L°°. It 
was I. Joó who initiated the extension of this theorem for classical orthogonal 
expansions. He obtained Alexits type results for Hermite expansions ([7],
[8], [9]) and one of the implications of the Alexits theorem for Laguerre 
expansions in [7]. In [8] he also derived a saturation theorem for the Abel- 
Poisson means of Hermite expansions. A. Bogmér [10] proved an Alexits 
type theorem for Jacobi expansions. In [11] we gave another Alexits type 
theorem and a saturation theorem in the Jacobi case.

In what follows we obtain similar results for Laguerre expansions of non­
negative parameter. In all these investigations the norm estimates of the 
Abel-Poisson means and of the conjugate function are essential; see Stein 
and Muckenhoupt [2] and Muckenhoupt [3], [4], [5]. We shall modify these 
results in order to adapt them for our purposes; see later.

Let a > -1  and define the weight

ua(x)-, = xae~x (x > 0).

The normed Laguerre polynomials 11“* of order a  are defined by
OO

(i)  J ̂nah[a)ua = sn,k.
0

The connection with the notation used by Szegő [1] is

d “' = ( - i r ^ r ( 0 + i ) ( n + “ )<il“).

We shall need the differentiation formulas

and

(3) [ v i t l 11]' =
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Remark that (2) is explicitly given in [1] in terms of L1°̂  and (3) follows 
from the Rodrigues formula ([1], (5.1.5))

« . 4 *1 =  Л [«»+ .](’,)nl

which implies that
1_
n

and this, in turn, implies (3).
Consider a function /  defined on (0, oo). Its Laguerre-Fourier series (if 

exists) is defined by

(4) /  ~ J 2 ak i'
( « )  
к ’

k = 0

Let 1 ^  p < oo and define the weighted spaces

Lp(y/v^) := < /  : W f V ^ L  ■=

if 1 < p < oo,

L Z : = L ° ° ( 0,oo); Ц/ l k «  :=  | | / | | o c

If a > 0 then G Lx(0,oo) П L°°(0 , oo) hence the Fourier series of
any /  G Lp(y/v^) exists. If -1  < a < 0 then G Lp(y/uZ) if and only if 
p < — consequently, using the Holder inequality we see that the Fourier 
series exists for all /  G Lp(y/u^) if and only if

2
2 + a

< p < oo.

Denote by anf  and Rnf  the Fejér and Riesz means of parameter 4 of the 
expansion of / ,  resp.:

° n f  ■=
к

n +  1 RnS  := £
к - 0

V k  \
V n +  1 )
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Lemma 1. The Riesz means R n are uniformly bounded in the Lp(y/üä)
norm. In other words, let 1 < p ^  oo if a  > 0 and < p < if
-1  < a  < 0. Then for f  6 Lv{y/u^) we have

(5) \\V̂ Rnf\\p й c(p)\Ŵ f\\r
with a constant c(p) > 0 independent of f  and n.

P r o o f . As Poiani proved in [15], p. 11, the estimate

(6) l l ^ n / l l p  ^ c ( p ) | |v ^ / | |p

holds for 1 <[ p < \  in case a  > 0 and for < p < — ̂  if — 1 < a  < 0.
Now if a  > 0, we can extend (6) from p = 1 to p = oo since

oo oo

l lv ^ n / l lo o  =  sup /  an(f)gua = sup /  (rn(g ) fu a <

й WV^fWoo sup \\y/v^(Tng\\i < cWy/v^fWoo

and for 1 < p < oc the same result follows from the Marcinkiewicz interpo­
lation theorem. Denote

к
Sk := Sk(f) :=

j=o

the к-th  partial sum operator, then

у/к - f l  — \/Т y/k + 1 — V k (n  ч , лRnf = > ---- r—T Sk = > ---- r — j- ((fc + l)̂ Jt -  k<Tk-1) =
to to

/-------, /-------  A  ,, N2V F + l  - y / k -  V k  + 2
= V n  + 1 (y/n +  1 -  \/n)cr„ +  V  ok(k + 1)------------ r —r f ----------- •

to
Using the trivial estimates

y/n + 1 - y / n  = О (  2 \ /k+  1 - s / k - V k  + 2 = О ( ------— r  )Ŵ TTJ V(Jfc + l ) l /

we get that

\WÜaRnf\\p ^  c \ \ ^ ( 7 nf\\p + c J 2  7 = 4 \\'/*°<ТЛ  = C\W ^ f \ \ v
f r í  Vn + 1
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which proves Lemma 1.
Remark. It is shown in [16], p. 222 that the Fejér means (and in general 

any (C,j)-means, j  E N) are not bounded in LvUa norm unless p = 2 (when 
H/lh.a = H/v/^öjb)- The norm estimates given in [3], [5] for the Abel- 
Poisson means and the conjugate function are proved for the LvUa norm; 
th a t is why we give first their Lp(y/u^)-variant. We mention that references 
concerning the boundedness of Cesaro means of some expansions can be 
found in [17]. We shall need the following

P roposition . Let 7 > 0, ß  > 0 and consider the system

a) Ф is complete in Lp(0, 00), 1 < p ^  00.
b) The linear hull of Ф is dense in Lp(0,oo), 1 < p < 00.
P roof, a) We shall use some ideas of Stone [19], p. 74-79, see also [20], 

p. 131-132. Suppose that the function /  E Xp(0,oo) satisfies

Ф := {xn+^e~ßx :: n E N ,z  > 0}.

OO

J f ( x )xn+'ye~ßxdx = 0, n E N.
0

Define the function
X

0

Since t^e E Lq(0,oo), |  ^ =  1, hence

|p(x)| < ce~*x

and then g E L2(0, 00). On the other hand

OO OO OO

0 x 0
where the polynomial pn(x) is defined by

OO

X
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Since the polynomials multiplied by e- 2, the square root of the Laguerre 
weight of parameter 0, are dense in L 2{0, oo) (see [1], Theorem 5.7.1), we get 
that g(x ) =  0 a.e. and then f ( x ) =  0 a.e.

b) Denote V  = У(Ф) the closed linear hull of Ф in Lp(0,oo). Suppose 
indirectly that there exists /  G Lp(0,oo), /  ^ V.  By p /  oo there exists a 
function g G L?(0,oo), i  -f L = 1 so that

OO OO

J  f g  ~  1> J hg = 0, g G V.
о о

But this contradicts a), so V  = Lp(0,oo). The proof is complete. 
The Poisson kernel for Laguerre expansion is given by

OO

K ( r , y , z ) = Y ^ i(n )(y)i(n )(z)rn, x , y >  0, 0 < r < 1.
n = 0

It is known ([1]) the Mehler type formula

(7) 1 -  г la{yzr)l
Introduce the notation

for a, b > 0; this means that there exist positive constants c,C which may 
depend only on a and p but not on other quantities so that

ca < b < Ca.
Using (7) we can easily obtain (see [3]) that

(8) K(r ,y ,z )
(1-7-V+1

e-(v+*)r^

1 exp{-(v+z)ir7+2^ }
v̂ 1-r (3/zr)£+*

if Z < i l n l i
Ayr

i f  Z  > ilzr)!
Ayr

Consequently for fixed r and у > 0 we have
y/ü^(z)K(r ,y ,z)  G Lx(0,oo) П L°°(0,oo)

and hence for 1 < p < oo, /  G Lp(y/uÖ) the Poisson integral of / ,  defined to 
be

OO

(9) g(r,y):= J K(r ,y ,  z )f(z)ua(z)dz
о

exists. To prove the Tp(A/ü^)-boundedness of g(r, y) we need the following 
variant of [3], Corollary 1.
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Lem m a  2 . Let I  be a finite or infinite interval, dp an absolute con­
tinuous (positive) measure on I .  Let L(y ,z )  ^  0 be a function for which 
z  >->■ p'(z)L(y,z)  is monotone increasing for z  ^  y, decreasing for z > у and

(10) p \ y )  J L(y,  z)dp(z) <,B (y e  I).
I

Define further g(y) := J K ( y , z ) f ( z ) p ,2(z)dz
I

where the kernel function K ( y , z )  is measurable and satisfies

\K(y,z)\  <; L(y, z).

Then we have

(И) и'(у)\д(у)\ й B(p'f)*(y).

Here
F*{y) := sup yi- Í  |F | 

y e J d  \J \ Jj
denotes the Hardy-Littlewood maximal function of F  ([13],), where the Supre­
mum runs over the closed segments J  containing y.

Proof, a) Suppose first tha t p'(z)L(y,z) ,  as a function of z , is a step- 
function of the form

p \ z ) L ( y , z ) = a»'X(y;,v!')(z)

where
a. ^ 0, у - <у " ,  у-,у" G / ,  Vi.

Then we have

Л М з /)1  ^ в\у) J L(y,z)\f(z)\p'2(z)dz =
I

У

=  p '(y )  2 a* /  =  /Л з / Х / м ' Г М  ^ 2 ai ( y "  -  y'i) =

y'i

=  p ' ( v ) W ) * ( y )  J B(y, z)dp(z) < B(fp')*(y).
I
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Ъ) In the general case we can give a sequence 

4>\ ^  V’n+i ^ •
of stepfunctions of the form given in a) which converge a.e. to p '( z )L(y , z). 
Using twice the Beppo-Levi theorem we obtain

H'(y)\g(y)\üß'(y) Í L{y,z)\f{z)\pr2{z)dz = p \ y )  lim Í <pn(z)\ f(z)\dp(z)<J n - » o o  J
I  I

<p'(y)(fp.')*(y) J<pn(z)dz = p'(y)(fp,,)*(y)J L(y ,z )dp(z )^B( fp ' )* (y )
I I

as we asserted.
Lemma 3. Suppose a ^ 0. Then

( 12)

oo

0
< c

where c is independent of r and y.
P roo f . Denote by H (r ,y , z ) the function on the right hand side of (8); 

we have to prove that
OO

(13) V ^ ( y )  j  H ( r , y , z ) ^ ( z ) d z < c .
о

Let

T a. - Í
h  := У2е 2

О-г)2
try

J -
а

Z  2

(1 -  r ) “ +i

h  :=
2. _EУ2e 2

oo

/
(1-r)2iry

it is enough to show the boundedness of I\ and 12. Consider first I\ .  We 
distinguish some cases.

Case a: r < \ .  Then we have by a > 0

h  %
a _a Cy 2 € 2

OO

/ z 2 e 2dz < c.
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Case b: r > j> 1. Then у is bounded by -Цр hence

g -o 2

h  ^  c y ? ( l — r )- " -1 J z^e~ZTr^dz.
о

Substituting и =  z j ^  we get
1 —T*
4S/ Q

/ l  ^  cy^(l -  r) - “-1-— - J u%e~udu-(̂ ---- - J  <
о

Q OO

H ^ ) 4
и 2 e Udu < c.

Case c: r > ^ 1. Then, repeating the arguments of Case b, we
can write

1 —r
а а с» OO

Д < c ( 3̂ 7 )  2 e"* /  u f  е~“^  ^ c ( 7 3 7 )  2 ( ^ )  2 /  ^ c-
о 0

Now consider / 2. The exponent figuring in /2 can be written in the form

У z - y r  + 2y/yrz -  zr _  (y/yr -  y/z)2 + (y/y -  y/rz)2 
2 2 ' 1 — r ~  2(1 - r )

and hence applying the substitution z = u2 we get
OO

т (л 4_I _ “ _ i  _1 f  _1 /  ( v ^  -  v ^ ) 2 +  (-v/y -  \ / ^ ) 2 1 ,/ 2 = (1 -г )  2Г 2 4J, 4  J  z  4 exp I — ^ ----------2^ -_  ^ --------------*jdz =

t1—)a4r«

= 2(1 -  r) 2 r 2
OO

I _ i  Г I Í (у/ y r -  u)2 +  ( u v T -  4/i/)2 'l
. у  u3 exp ( -------------- $ (ь Г 7 )—

1 — r  
2\/rV

We shall use the following estimate. If 7 > 1 and a: > -/7  — 1 or if 7 < 1 and 
x > 0, then

(14)
OO
J y'ye~y2 dy < x'y~1e~x2.
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Indeed, equality holds in (14) for x = oo, and differentiating both sides the 
converse inequality holds. Return to the estimate of / 2.

Case a: r  < | .  Since r  < |  implies ( y/ry -  u )2 +  (uy/r -  y/y)2 ^  c(u2 -f у ) 
hence by (14)

OO
/ 2  = c r - 2 -íy -T  J u 2 e_c(u du <

(1 -  г)2

1 - г

, _ a _ i _ I (ry) < er 2 <1/ * -^7=
л/Т = r xp{ “c ( ü ^ r +!' ) } s

^ er 2 exp 

1 1 - г

Ary

cr~ie~r  < с.
а с

Case b: г > | ,  < 1. Then the substitution v = gives

T ^  „  N- I  -1  [  I  f ( V r » - « ) :2 +  (v/y -  ]  J „/ 2 < c ( l - r )  2 у 4 j  и 2 exp I — - ----------------------------------j d u <
1 —г27?»

Scy ‘ / « i ( l - r ) * e x p | - i ( y ^ ' - » )  - 1 ( » ^ - ^ 4 t )  } d c S
1 / 1~Г
2 у  ry

Now

1_ OO /• ____  о N

о  ̂ J

Irr)' /  Vt̂ t) } dcS
2V ^

<c

2

and

/  ( ” -  / г ? т )  ®Xp ] Í (” ~ / п ^ ) 2 dv < c

/ ч i v ;- r 1Г „ / ,----- . ? 1
( ) /  U2 exp J ~2 (u-V\  У J J 0 [ 2 V V 1 — г/ J

dv =
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-(^ )! Í'U5- ) ‘*№?И
In
2

е г dv <

I  ' - * * * ' и
2 dv < с.

Case с: г > > 1. As we have seen in Case b

i2 Sc(Lr)* 7  I* 8
1 / 1-Г '  '
2 V rV

Lemma 3 is proved.
Define the function L ( r , y , z ) by

y/u^(z)L(r ,y ,z)  := <
sup y/v^(z ')H(r ,y ,z ' )

0 <z’<z

sup y/uZ(z')H(r,y,z')
z<z'

if г % у 

if z > у.

Obviously K ( r , y , z ) £ c L ( r , y , z ) and the function z  i-+ y/u^(z)L(r, y, z) 
increases for z  ^ У and decreases for z > y. We assert that the third 
requirement given in Lemma 2 also fulfils:

Lemma 4. Let a > 0, then

(15)
OO

V ^ ( y )  j  L(r,y,z)y/v^(z)dz  ^ c.

Proof. By Lemma 3 we can restrict the integration to the union of 
the segments in which L(r, y , z )  > H(r ,y ,z ) .  Of course, in these segments 
L(r,y,z)y/u^(z)  will be constant. Define
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and in case у  > l-r-* 
2 r let

л/ z i ä  := 2
y / y f ±  y j y r -

1 + r

The investigation of the sign of the derivative J^[y/u^(z)H(r, y, z)\ easily 
gives the following statements. For 0 < z < min j  z0, j  the func­

tion y/v^(z)H(r ,y ,z)  increases and in case zq < it decreases in z £

zo, Í1zLil
4ту

it decreases in

; in case у ^ it decreases in
ib r lf

^4ry~' °°) an(  ̂ case У >
1 —f

2r

Remark that
4 ту , Z \

(16)

, increases in [z \ , z i ] and decreases in [z2, 00). 

(1 - r )2
4 ту

= z\ < у.

Indeed, z\ < у follows from ^ 1 and < y/z[ can be proved as follows

< y r -1 - r  < 2V y r -  \ J y ' r ~ 4 1  b -
2 у/ y f  = 1 + r ’ 4

(  l - r 2\  , ,2 1 - r 2 / l - r 2\ 2yr  I y r --------—  1 ^  ( yr )  -  yr  — +  I — —  1 .

Finally remark that

(17) * ( г ' * й # + )  Х Й ( Г’ *’ (Л^ Г - )

and the implicit constants do not depend on r and y. Investigate two cases,
1 —Г*denoted by A and B, namely у < 2 

A.
and у > -2r -. Consider first the case

(An)

2r

(1 — r )2 1 — Г2 (1 -  r )2
----------— < у < ----------, --------- -

Ary ~ 2r Ary S  Z0 .

Then y/uZ(z)H(r,y,  z)  increases for z < ^4jJ and decreases for z > ^4rrJ  . 
Consequently

Vu^(z)L(r ,y ,z )  = <
ИV ^ ( z ) H ( r , y , z )

H {r^ y ^ 4 ^P ) if ^iry~ < Z = У
. ^ b ( z ) H { r , y , z ) if у  <  Z
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and by Lemma 3 we have only to show that 

(1 - r ) 2\  /(1  - r ) 2'
(» -  ü i r )  ^  ( ^ ) " (^ ■ Ü^ )  s

Putting here the definition of ua and H we have to prove that

« _at A 1 -  е - Ц #  1 1 рт( 1 - Г );У ; " ?
V 4rj/ )  V 4 гу у  л/1 -  г V 4гу  /

2/2 е 2 у _

ехр <
- у г  +  2 \ / у г ^ ^  -  

1 — г

, _ а  1 _ а< суе 2------ г 2 ехр
1 — г

- у г  + 1 -  г -
1 — г <

< Стх _ е х р { - !, ( 1  + т ^ _ ) }

is bounded. But this is true since in case r < ^ it is bounded by eye _ 
and in case r ^  ^ by

У
1 — r

e 2 i - г  <  Cm

(A i 2) _ < C1 - r )2 < „ < 1 - r
0 = 4ry = y = 2 r

In this case y/ü^(z )H(r ,y ,z )  increases in [0,zo], decreases in 

in

zo i i z l l
Ary and

^ 4rTJ  , oc j . Taking (17) into account we have to show that

V ^ ( y ) ( y ~  zo)y/uä(zo)H(r,y,  Zo) < c.

Using Zq < c{\ — r) we get

y f i ^( y) ( y -  zo)y/v^(zo)H(r,y , z0) <

< cy%+1e~ 2(1 — r)?  ------ e~T̂ r — c (  —- —^ g ^ íi+ T ^r) <
-  y v ’ (1 — v )ar-t 1 \ l - r j

by the same reasoning as in (A n).

(A2i )
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Now we have to show again that

yfi£(y)(y -  z0)y/v^(z0)H(r,y,zo) £ c, 

which can be proved as in (A12).

(1 -  r f
(A22) У ^ z 0  <

Ary

In this case we have to verify that

y/ü^{y){zQ -  y)y/üI(z0)H(r,y,zo) ^  c.

Using that z0 % c(l -  r) we get

y/v^{y){zo -  y)y/v^(z0)H(r,y,z0) ^

< c(l -  r ) f +1(l — r ) f  —— Í— —e-5'13'  < ce~y137 < c. 
-  v ’ v (1 -  г)а+х

„ (1 -  O ’ ^
У й —:------ ^ *o-4 ту(А2з)

Now the inequality to be proved is

-  » )  ^  ( ^ ) я  ( r - »• s  *■ 

Since у ^  Zq < c(l — r), the left hand side can be estimated by

c(l — r ) 2+1(l — r )2 1
( l_ r ) ° + i

So (15) is proved in case A. Take now the case B.

< c.

(B n) ( 1 - 0 ’ ( ! - 0 2 <z  <f f < z= zo, ---“ — = zi = У = z1-Ary Ary

Then the function л/й^'(г)Я(г, у, z) increases in |o, , decreases in

, increases in [zi, z-j\ and decreases in [гг, 00), so we have to proveilz ill Zl4ry '
that

a) V b W  ( У -  “ i f )  V b  ( “ i f )  H (г. У, “ i f )  S с
and

Ъ) y/üZ(y){zi -  у)л/й^(г2)Н(г,у,гз)  < с.
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Since у > ^2r~ implies that ^ c(l — r), hence a) becomes

cji^+1e- 2( l  — r ) f ----- í _ —_-e~yьгг — c (  —-—^ e-y (2 + ~ )  <
v ’ ( l - r ) ^ 1 \ l - r j

and from z2 Ж yr we see that b) can be estimated by

a+i _* . . 2. _£2. ( ry)_a_? /  ~П/  + 2 ^ 2 /2 2  -  rz2 1
V l  — r { 1 - r J

5 )2 + M
2(1 - r )V t V W  exp .

Now у й z2 ^  cyr implies 0 < с ^  г hence the term r 2+2 can be omitted. 
The estimate

e x p l - ^ T ^ S c\ / г Ь “ р { - 2 ( 1 - r )

obviously holds for у ^ and if у > then yr -  > y^ > cy, so

( 7 ^ 7  -  1 )  +  ]f:
2  \  2 /  1 - r 2

-  1 1 + — — \ / r y ----------  > Cy/y

and then

V r b exp{~
( У г у - У ъ У

2 ( 1 - r ) № -e"ci -  < c.

(1 — r ) 2 ( 1 -  r ) 2
V ^ г0, ■-  . ’ < z 1 < z 2 <y.4ry 4ry(B1 2 )

We have to prove that

a) V̂ (v) (г/ -  “ i f )  ( “ i f )  » f . ». “ i f )  S c,
b)  V̂ (y)(y - zl)y/ÜZ{z2)H(r,y,Z2) ^  c.

Now a) was proved in (B n); b) becomes by 1 ^ cy ^

_ « ± i  r 2 nr i (vn-v̂r + (va-v̂)2) ,
\  I -  T \  2(1 — r)

< c f+‘ S
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If г ^  г0 < 1 and r0 is small enough then (v/у -  y/rz2)2 X  у and then 

f+ i(*)
and if r0 < r then

(A)
follows as in (B n).

(B2 1 )

exp

f +1
exp

{ -

2(1 - r )

(yfry -  y/i^)2 +  (yfy -  y/rziY 
2(1 -  r)

(1 — r )2
ZQ < — л------< Zi < у < z2.~ Ary

Then we need

a) у/й^{у)(у -  z0)y/v^(z0)H(r,y,zo)  ^ c,
b) y/v^(y)(z2 -  y)y/v^(z2)H(r ,y ,z2) ^  c.

Now b) can be proved as in (B n) and a) as in (A n).

(B22)
(1 -  r )2

г0 < 1 ....... -  ^ гх < z2 ^ y.Ary

Then we need again

a) у/й^(у)(у -  z0)y/v^(z0)H(r ,y ,z0) < c 
proved in (A12) and

b) у/й^(у){у -  z2)y/u^(z2)H(r ,y ,z2) % c.

Since = z2 ^  cry implies that 1 < c j ^ ,  b) follows just like in (B12).
Lemma 4 is completely proved.
Introduce the function

U(x,r)
x exp I log г I

2-v/x r(—lo g r)2
3 ’

then ([3]) 

(18)
1

J U(x,r)rndr = e ~ ^ x, x > 0, n € N.
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Define the alternate Poisson integral of /  by
l

(19) f ( x ,  y) := J U(x,r)g(r,y)dr
0

then
OO 1

f ( x , y ) =  J ( У  U (x ,r )K(r ,y , z )dr \  f ( z ) u a(z)dz.
о 0

o o

It follows from (18) that if /  has the expansion /  X) ак1к then
k=o

OO

(20) f ( x , y ) ~ ' £ a ke- 'rkxlla\ y ) .
k=0

Theorem 1. Let a > 0 ,  l < p < o o  and f  £ Ьр(у/й2). Then
a) y/v^(y)  sup I f ( x ,  y)| <; с(у/й2/)я(у) a.e.,

x>0

b) \\л/й^(у)[/(х,у) -  /(y)]||p о ( x - > 0+), P ^  1, 00,
c) bm f ( x , y )  = f ( y )  a.e., р ф  oo,

x —> 0+

d) l l \ /^ ( í/)  SUP I f ( x ,  y)\\\p й C{p)\\y/ääf\\vi P #  1, 00.
x>0

Proof, a) Define the function
1

L ( x ,y , z )  = J L(r ,y ,z )U(x ,r )dr ; 
о

then lJ K (r ,y , z )U (x ,r )d r  <cL(x,y,z)-,
0

further the function z * y/u2(z)L(x,y,  z) increases for z <y,  decreases for 
z > у and

OOy/v̂ (y) J L(x,y,z)y/u2(z)dz  =
0
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hence a) follows from Lemma 2.
b), c), d). We know that the set of polynomials is dense in Lp(y/v^), 

1 < p < oo. Taking (19) into account, b) follows from a) and d) by the 
Banach-Steinhaus theorem, and c) follows from the Banach-Steinhaus type 
theorem related to the convergence in measure ([14]). Finally d) follows from 
the estimate

WiV^fTWv й c(p )I I \/^ /I Ip> 1 < p й 00
see in [13]. Theorem 1 is proved.

In what follows , following Muckenhoupt [5], we shall investigate the 
conjugate function. Let

-----  ---------- , ----- -—Ö— — dr.
r ( l  — r)\ /— log ria(ryz) 2

It is not hard to see that

( 22 )

and

(23)

J q{x,y,z)l(° X \ y ) u a+ lb )dz  = e ^ xl ^ \ z )  
0

oo

n=l

(meant pointwise). Further it is proved in [5] that

(24) |g(a;, y, z)\ < c — c(y, z, a) for y, z > 0 and x > a > 0, 

consequently the conjugate Poisson integral
OO

(25) f ( x , y ) : =  J q(x ,y ,z) f (z)ua(z)dz
о

exists for all x, у > 0.
Remark. The norm estimate of f ( x , y ) was proved by majorizing it by 

the maximal function operator. To prove norm estimate for f ( x ,  y) we have 
to decompose it into two parts one of which is majorized by the maximal 
function and the other one by the maximal Hilbert transform. Let 1 ^  p < oo 
and /  6 Lv{R ) .  The maximal Hilbert transform of /  is defined by

H*f(x)  := — sup
ff>0 /

x-t  |>e

M
X - t

dt i £ R .
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It is known ([13], p. 133) that

(26) /  £ L'(R) s .  |(Я * / > Л)| < | | | / | | „

(27) 1  £ £ ' ( R), 1 < p  < °o а . ||Я * / ||,  S «WII/II,.

We shall use the following result from [4]:

Lemma 5 ([4]). I f  K(z )  = —K ( —z ) and if zK ( z )  (defined as 0 for z = 0) 
has total variation V  on [0, m ] then

sup /  f ( y  — z)K(z)dz0<a<f><m| J
a i  |z|S(>

^ V  sup 
0<a<6<m I / f ( y  -  z) dz

Let now I  be an arbitrary (finite or infinite) interval 
w E L X(I). As in [4], we say that a partition

and let w > 0,

i =  L I ' -
nez

of /  into disjoint segments In has property A if for all n E Z
a) In stands left to / п+ъ
b) |In| < 2|/n+1|, |In | £ 2|In_1|,
c) sup w/'mi w 5í В  < oo.

In
We need the following modification of Lemma 3 of [4].

Lemma 6. Let I  be an interval, w > 0 о weight and (In) a partition of I  
having property A. Let a function f  be defined in I  and denote

g(y) := sup* I Í — — — dz
a ,b I  J %

a< |г|<Ь

where sup* runs over the pairs 0 < a < b < where n is defined by у E In- 
Then

a) /  E L 1( w , I )  =4 { y E l :  w ( y ) g ( y )  > A}| < f  ||/w||if
b) /  € LP(w, / ) ,  1 < p < oo => 11 mp I |p  ̂c(p)\\w f\\p.

P roof. Denote

E x :={y  E l :  w(y)g(y) > A}, Jn := 7n_x U /„ U J„+i, /„ := f \ j n-
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It follows from the definition of the property A that for у G /„

dz w(y) <w(y)g(y) = sup I f M -L .J 1  
0< . < ^ ¥ 'а< |1|<Ь

S c  sup /
0<a<b- LT1a<|.|Sb

S csup  /  № z l M t z l l d z ü c H -UnW)is). 
0<a J z

Hence for /  € i 1(w,7) we have

|Ял| = £ | Я АП /п| < £  ( V ( / n w ) > ^ )  < £ y | | / „  
nez nez 4

«Hi S
nez

and for /  G Lp(w,I) , 1 < p < oo

M S  = E  /  i” « i ' s  с E  /  y n /» « o i ’ s
n^Z r Tl̂ Z tin

=c s  / [#*(/nw)]p = c s  ll/"wllp = cll/'u7llp*
n€Z j- tiGZ

Lemma 7. i e t  a  > 0, x , г/ >  0. Then there exists a partition

(28) q(x,y,z)  = j ( x , y , z )  + u~1(z)k(x ,y ,z )  

satisfying the following properties:
a) Ij ( x iViz )\ = c^{Viz ) where the function z >-* y /v^(z )J (y ,z )  increases 

for z  < y, decreases for z  > у and

OO

(29) >/t£(y) J  J ( y , z ) ^ ( z ) d z < c - ,
о

b) k ( x , y , z ) = 0 if \y -  z\ > m  := min

k (x ,y ,y  + h )=  - k ( x , y , y -  h), V ( ( y - z ) k ( x , y , z ) ) ^ c
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(here V  denotes the total variation).
Proof. It is shown in the Lemma of [5] that there exists a decomposition 

of the form (28), where к satisfies b) and \ j (x,y,z)\  ^ cn(y,z)  if n(y , z ) is 
defined as follows. For 0 < у  < 1 let

—ot—1 
-1

n(y,z) =

( y~a
I V~a 
{ 1 

y 2 Z

- Í/2

if 0 < z < \ y  
b g  if \ y < z < \ y

if \ y < z ^ 2  

if 2 < z

and for у > 1
_ 1

У 2
у 2 z  2 ег

n( y , z ) =  - y - " - V  ( l  + —
V 8 ( y - z ) t j

У~аеу( 1 -  log \y -  z\)
у - аеУ

if 0 < z < min {a + 2, | y] 

if a + 2 < гг < \ y

if I  y < z ^ y - \

if y ~ \ < z < y + \  
if у + \  < z.

Remark that
n(y , z+)  X  n ( y , z - ) ,  y , z >  0.

We distinguish two cases: 0 < у < 1, denoted by A and у > 1, denoted by 
B.

(Ai) 0 < z ^ ^ y .

Then y/v^n = za/2e~z/ 2y~a~x. It increases in case z ^  a  and decreases for 
z > a so let

z a/ 2e z/ 2y a 1 if 0 < z 5Í min {a, |y}
a a / 2e - a / 2y - a - l  jf Q < z < | y .

Here (29) is obvious.

(Aa) ■̂У < z й у

Then
J T a n  =  z “ / 2 e - * / 2  - o r - 1 ! _ y _

У - z
У

У - z
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hence we can define for large c

= cy “ 1 log
У - г

Now
у У

л/й^Ы J J ( y , z ) y / ^ { z ) d z <  ^ J [log у — log(y — z)\dz =

У fy

= \  (log у + 1 -  log = ^(1 + log 4).

\v

(Аз) 2 < z, a < 2.

Then let
^ J  := y1l 2zal2e~zl2

(A4) 2 < z, a > 2,

у /  II Qf d  . — ^
l/2 Qo/2g a/2 jf 2 <  Z <  a

y1l2za/2e 2/2 if a < z. 

In both cases (29) fulfils and y/u^(2) J(y,  2+) X y1/ 2.

(As) - y < Z < : 2 .

_ Q-f 3
Then y/u^n X  t/a z 2 , so for large c define

and

/— j — — 2dhy/uQJ : = c y * z  2 

2
q-fl f  _<*

у 4 Z~~
2 dz < c

\y

proves (29). Finally у/й^  (§y) J  (2/, f  2/+) X  У * x.

У < z < -y.  4(As)

In this case X  у- 2--1 log hence we can set

:= cy 2 log У
z ~ У
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for large c. Now (29) follows as in (A2). The case у < 1 being ready, 
investigate the case у > 1. We shall use the estimate

OO

J  z%e~%dz ^  4a;?e_ t  (a; > 2a).
X

Indeed, for x — 00 equality holds and the derivatives of both  sides fulfil the 
converse inequality. We also get that

(30)
OO

/ z ° e  2d z < c ( a ) x ° e  2 (® > 1).

(B i) 0 < z < min ^a  + 2, '^y'j .

Then у/й^п Ж y- 1/2W 2, so let

1---  r - i s .y/uaJ  := cy *z 2

iv
for large c. By y/v^(y) J  у » dz ^ cy*e 2 ^  c (29) fulfils.

0
I _it

(B2) a  + 2 < z < - y .  ~ 4

Then у/й^п X  } b  ^ e f , hence we can define

/---  T - i  -2±2 £y/ua J  := cy *z 2 e 2

and

a  _  ü. _  1
y i e  2г/ -

!v fv
1 [ _ “±i £ , . [ _ 2± i ,2 z 2 e * d z< y  * e » z * dz
a+2 --+2

a — 1  q—1 _у
which is < cy~*~ y ~ ~  = c for ű / 1  and < cy log ye- « < c for a = 1.

(Вз)

Now

3 ^ 1 - y < 2 < y - - .

uan = e
( '  +  8(i, -  z )3 /0  S ( ! + 8(y-z)3 /2 ) •
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So let
y/ü^J := ce*y “ 1 ^ 1 + 8(y-z)3 /2 )

and (29) follows from 
y ~ \

j  ( l + 8(i, Лрл)
У - Г

b b

(B4)
Then 

and since

У -  - <  z % y .

u^n  X  - lo g ( y -  z ))

( у. у -  -  У~
a a. г ег

hence we can write a у
:= cy"2 e2 (1 _  log(y -  z))

У+ 4 < z -

and (29) is obvious.

(Bs)

Then y/u^n = zal'2e~zl'2eyy~a. Now in case a < у + |  let

y/v̂ J := z%e~%eyy~a
and in case у + |  < о let

— —z л / w  a _ i \  ..z i e  5 ey у a l ^ s Z 2e 2 j if a < z 
y/u^J  := < N '

af e~ 2  eyy~a( X 1) if У + j  < z ^ a.
Now in case a < у + |  the integral condition (29) follows from (30) and in 
case a  > у + |  it is trivial. In both cases we have

(y  +  ^  J  ^ У, У +  X  У
_ a  и.2 €2 .

(Be) У < z = У + 7- 4
Then у/й^п X  ey!2y " /2(1 -  log(z — y)), hence we define

Qt у
s fu^J  cy~2e 2{\ — log(z — y))

and the integral condition is obvious. The proof of Lemma 7 is complete.
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{у ■ у/й£{у) sup \ f(x,y)\  > А}
х>0

х > 0

T heorem 2. Suppose а  >  0. Then

a) f y / ü ^  G I x(0,oo) =>

S iW V ^ fW i ,
b) fy/üff  G Lp{0,oo), 1 < p < oo => |lv/^ ( í / ) suP l/(a;)í/)lllp ^

^ cípJIIv^ / I I p »
c) f y /ü ^  G Lp(0, oo), 1 Sí p  < oo implies that the limit

(31) Я »  := lim f ( x , y )x—>0+
exists for a.e. у > О,

d) fyfüZ £_Lp(0,oo), 1 < p < oo => \\y/ü^f\\p ^  c(p)\\y/ü^f\\p and
lim IIу/Щ;(у)[?(у) -  f  (x, 2/)]||P = 0.x —►u-f-

° 0  . V

e) If fy/uff  € Lp, 1 < p < oo and f ( y ) ~  J2 akl[ ЛУ) then
к-о

OO OO

(32) f ( y )  ~  J ^ a k y / j j i t ^ y ) ,  f ( x , y )  ~  Y ^ a^ XV y t V \ y )
k=1 f c = l

(this means that y~1̂ 2f(y)  G Lp(y/ua+1) has the expansion 

oo ~

Y l aklk ‘- l \ y ) - '  ak = J ( y ) y ^ t - l ( y ) UM dy)-
k=l J0

Proof. By Lemma 7
o o  OO

f ( x ,  У) = J j(x,  у , z ) f ( z ) u a(z)dz+ J k(x, y, z ) f{z )dz  =: 
о о

=: T1( f , x , y )  + T2( f , x , y ) .
From Lemma 2 we see that a) and b) hold when replacing f ( x ,  y) by T i(/, x, y). 
On the other hand define the partition

(0 \  _  I I г J [n ,n+  i
’ ) ~ U 7" ’ 7" -  \  [2" - 1, 2nnez 4 L ’

[ n , n + l ]  if n 1 
] if n < 0;

this partition has property A with respect to the weight w := у/й^. By 
Lemma 5 we have

< c sup [  l b ~ Z)dz < c sup* [  f { y - Z)dz
0 < a < 6 < m J z

a<|z|<b a,b J z
a< | z |< 6
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since у £ In implies m  =  min (5, 4) ^  Now Lemma 6 states that a)
and b) hold with Тг(/, x, у ) instead of / (x , y). So a) and b) are proved. The 
statement c) holds if /  is a polynomial. Since the polynomials are dense in 
Lp{yfüa), 1 ^ p < 00 hence c) follows from a) and b) by the Banach theorem 
mentioned in proving Theorem 1. The statement d) is an immediate corollary 
of b), c) and the Banach-Steinhaus theorem. Finally e) is easy to check for 
polynomials; in general (32) follows by Proposition b).

Now we prove an Alexits type theorem.
T heorem 3. Let a > 0 ,  1 < p <  00 and f  £ Lp(y/v^). The following 

statements are equivalent:

(34)
/  is locally absolutely continuous and

< „л /
Ua+i f J u - 1 £ Lp(y/u^), limx_>o+ ua+i ( x ) f ( x )  = 0.

Remark. The implication (34)=>(33) is essentially stated in [7] for Fejér 
means. The proof of the converse implication does not work for Fejér means 
because the corresponding variant of the Alexits Lemma does not hold. That 
is why we use Riesz means instead of Fejér means (see [8] for more details).

Proof. (33)=S-(34). By the Alexits Lemma (33) is equivalent to

(see [8]). This last estimate implies the existence of a function g £ Lp(y/u^) 
such that

9 ~  ^ 2  v W [ a).

From (3) it follows that

ua4_ L Än j |̂ — — uaRng.

This can be rewritten as

(35)

OO

J uaRng = uQ_^i(x)Дп/(х )

since both sides tend to zero as x —* 00. From Lemma 1 it follows that
00

j J ua(g -  Rng) I < -  Än5)||Pllv/^ l | g 0 (n -* °o);
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hence the uniform limit 

(36) /  uag = lim /  ua R ng = lim и , i  (x)Rnf ( x )
J  П -+00 J  П—+00 ~  2

exists. Again by Lemma 1 (used with a+1 instead of a) we get that y/v^Rnf  
tends to y / v ^ f  in Lp(0,oo), hence

OO

/  Ua9 = J f e ,  Ua+$(X)Rn l (x ) = Ua+l ( x ) f ( x )

which proves (34).
(34)=^(33). Let g := 

cients by (2):
1+ l / j  Ua1 G Lp(y/v^)  and compute its coeffi-

OO OO

bk = j  gtla)ua = J [ua+if] t[a) =
oo

=  Jií3o tí« + i(x )A/®)4Q)(a;) - ^  J / 4 - t 1)ua+ i-
0

It is not hard to see that g G Lp(y/v^)  implies

(37) lim и , i ( x ) f ( x ) x k = 0, к =  0 ,1 ,2 ,...  .
X — ►OO ' 2

Indeed, for x > 1 we have by (30)

OO

i ( x ) f ( x )  + c0 = IJ  [ua+ i / ]  I ^

OO 1

^ l l v ^ l l P( / « « J *  ^ A W ^ g \ \ pV ^ ( x )
x

and this is compatible with y / v ^ f  G Lp(0,oo) only in case c0 =  0 and then 
for x —► oo

xk\ua+i(x) f(x) \ 0 .
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It follows from (37) that

g ~  -  Vkuki[a)

and then Lemma 1 implies

\\y/v^Rng\\p =  0 (1 )

which is equivalent to (33) as we mentioned above. The proof is complete. 
T heorem 4. Let a  > 0, 1 <  p < oo and f  £ Lp(y/üä ). Then

(38) \\y/v^(y)[f(x,y) -  f(y)]\\p = o(x) ( * - > 0 + ) o /  =  0,

(39) II\ f a ( y ) [ f ( x ,  у) -  /(y)]||p = 0(x)  о

О K + l/l'w ä1 € Lp(y / ^) ,  Urn ua+i (*)/(*) = 0.
2 X —►U-f- 2

Proof. The operators Txf ( y ) := f ( x ,y ) ,  x > 0, Tof(y)  =  f (y )  have the 
semigroup property

(40)

Indeed

and

TX1TXJ  = TX1+XJ .

oo
TXlTxJ ( y )  = j  K ( x 1,y , z )u a(z)TX2f(z )dz  =

0

oo oo

= J K (x i , y , z ) u a(z) J K (x 2,z , t ) f ( t )ua(t)dtdz = 
о 0

OO OO

= J f( t )ua(t) J K ( x l , y , z ) K ( x 2,z , t)ua(z)dzdt

J K ( x i , y , z ) K ( x 2, z , t )u a(z)dz =
0

OO

Q 7̂1 = 0 J 4  = 0 J
oo

= 2 е' ^ (Х1+Х2)4 а)(у)4а)(0  = + x?,y,  t)
n=0
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which proves (40). The continuity of this semigroup is proved in Theorem 1. 
It is known [12] that the saturation class of an operator semigroup is the 
domain of its infinitesimal generator and the saturation order is O(x), x > 0. 
Hence all we have to prove is that the domain D ( A ) of the infinitesimal 
generator A  of the semigroup {Tx : x > 0} consists of the functions /  £ 
£ Lp(y/v^)  satisfying (34). Denote D i(A) the set of these / .  As we have 
seen in proving Theorem 3,

Di(A) = { /  : 3g £ Lp(y/ü^),g  ~  Ekaki[a)} =: D2(A).

We shall prove D(A) = D 2(A). Let first /  £ D(A). By definition

A f- Txf - f 0 (x -> 0+);

hence
OÜ oo /T
[ V  f T xf - f M)  e - ^ - 1  / 7 -/ A ( f ) i \  'ua = lim / ---------- 'ua -  hm ----------------- a* = - VÁa

у x—»0+ у X x—>0+ X
о о

A f ~ - J 2 k a  4 a)

and then /  £ I^fA).  Conversely suppose /  £ D2(A). We know that

A(Rnf) -  - Rng■
Since IIy /v^ (Rnf  -  f) \ \P -* 0, \\y/u^(A(Rn{f) + £f)||p -► 0 and A is closed 
([12]), hence A f  = —g, f  £ D(A). Theorem 4 is proved.

In this final section of the present paper we prove another Alexits and 
Abel-Poisson type saturation theorems.

T heorem  5. Let q > 0, l < p < o o  and f  £ Lp(y/v^). The following 
statements are equivalent:

(42) /  is locally absolutely continuous and f ' y x/ 2 £ Lp(y/v^).

Here R nf  denotes the Riesz means of the series

Proof. A s in Theorem 3 we see tha t (41) is equivalent to the existence 
of a function g £ Lp{ y/uZ) having the expansion

g(y) ~ y1/2 X  V^afcfK1̂ ) .
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It follows from (2) that

(43)
X

J y - 5 R ng(y)dy = R nf(x)  -  Дп/ ( 1).

We know that
X

j J y  * ( g { y )  -  R ng ( y ) ) d y  S \ W ^ ( g  -  Rn g) \ \ P ( ^ J [ y  ^ е Ц Ч у ^ 4 -, 
1 1 

here the second term can be estimated by

C( ^ J  y ~~^~ 4 d y )  =  c  + l )

for x < 2 and by

x ^  ( / e*4d y Sj  ^ cx ex/ 2 +  cex/4 ^ cx ex!2
x/2 1

for x > 2. It follows from Lemma 1 and from the Proposition that
X  X

J y~*Rng{y)dy -* J y~%g(y)dy (x > 0),
г 1

and that y/u^Rnf  converges to y /u^ f  in Lp(0, oo). Taking a subsequence 
rik we can suppose that Rnkf ( x )  —► f ( x )  a.e. By (43) the series R nk/(1 ) 
converges to a constant Co; taking the limit к —► oo (43) becomes

X

J y~*g(y)dy = A*) -  Cb
1

which proves (42). Conversely suppose (42) and prove (41). Let g =  f ' y G 
€ Lp(y/u^). Then

9(У) ~ У * '5 2  b^ k +1)
k=0

where, by (3)
OO OO

bk = J g(y)y*lk*+1\ y ) u a(y)dy = J / 4 + 1 4 “+1) =

x/2 \  !/?
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= lim f ( x ) u a+1(x)í[a+1\ x ) -  lim f ( x )u a+1(x)£^+1\ x )  + y / k ^ l a k+1.
X - + 0 0  X —►О

We shall show th a t f ' y l/2 £ L p(y/v^) implies

(44) lim f ( x ) u a+i(x) = lim f (x )ua+i(x)xk = 0 (k = 0,1, . . . )-x—►O x —►oo

Indeed, we can suppose /(1 ) =  0 and then

/О ) =

hence
1_g-f 1 1 . g-f-1

\f(x)ua+1(x)\ й  c\\gy/v^\\pu a+i(x)x4 2 ^  cx<*+ 2 -*•0 (x

for x < 2 and

x k \f (x) \ua+i(x) <; cllöv^llpU^+^a:)®*-2^ ex/2 <

^ ce~x/ 2x k+ 2 —> 0 (x —► oo) 
for x > 2. The statement (44) being proved we obtain that

OO

g(y) ~  У5 ' ^ 2 ak'/k£[â 1)(y)
Jt=l

0)

and this implies (41). Theorem 5 is proved.
T heorem 6 . Let a  > 0, 1 <  p  <  oo and f  £ Lp(y/v^). Then

a) W V ^ i f  -  f ( x , -)]|Ip = ° (x ) (x ~>0+ ) « » /  = c.
b) \ \ ^ [ f  — /(z,-)]||p  =  O(x)  /  is locally absolutely continuous and

f y x/2 e lp(v^ ) .
P roof. Consider the operators

Tx : Lp(y/u~) -*• 1 /(0 1 ^ ) ,
OO

Txf ( y ) - =  J M ( x ,y , z ) f ( z ) y / y z u a(z)dz  (x > 0),
0

1
T0f  := f, M ( x , y , z ) : =  J U(x ,r )K(r ,y ,z )dr

о
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where К  (г, у, z ) is the Abel-Poisson kernel corresponding to the weight ua+1:
OO

í r ( r , s ,z) =  X ; r 4 “+I)(!íKÍ.“+1,W -
71=0

Now
OOJ Txf(y)y/yi[a+1\ y ) u a(y)dy =

0
OO OO

= J j  M (x ,y ,z ) f ( z )y /zu a( z ) d z i ^ +1\ y ) u a+l(y)dy =
0 0
oo oo

= J f(z )y /zu a(z) J M ( x ,y , z ) i ^ +1\y ) u a+1(y)dydz = 
о о

OO

= J f(z)y /zua( z ) e ~ ^ xi[a+1)(z)dz 
о

which shows that
(45) Txf(y )  = f ( x ,y ) ,  x > 0.
The semigroup property for the system {Tx : x > 0} can be proved the same 
way as (40). Now Theorem 1 states the continuity of this semigroup (with 
a  +  1 instead of a and y~ 1̂ 2f(y )  instead of f{y)).

Denote by A  the infinitesimal generator of this semigroup; then its sat­
uration class is D{A) and the saturation order is 0(x).  This implies that a) 
and b) will follow if we show that

(46) /  £ D(A) f  is locally absolutely continuous and f ' y 2 E Lp(y/u^). 

Taking Theorem 5 into account, we have to prove that

(47) /  G D(A) О  3g E Lp(y/u~), g(y) ~  у» V k a kl (k^ \ y ) .

Let first 7 E D(A). This means that the Lp(y/u^)-limit

A j  = lim Ь Ы
i - » 0 +  X

exists. Now it follows from (45) and (32) that
OO

J  A f ( y ) y ^ k ‘- i 1)(y)u°‘(y)dy =
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ос

= lim fx—*0+ J
Txf{y) f(y) 1 „(а+1 )̂  / \j T-------- --------- y 2Ík-\ ’{y)ua(y)dy = hm+

e - V k x  _  1
-------------au =  - V k  IOfc

hence
A f ( y )  ~  - J /2 1}(У)

which proves the “only if” part of (47). To see the “if” part, take g G 
G Lp(y/v^) with the expansion

<7(2/) — 2/" X )

We can check from the definition of A  that

A (Rnf ) = R ng.

It follows from Lemma 1 that

\ \ V ^ ( R n f - f ) \ \ P -+0, \\y/v^(Rng -  sOHp -» 0 (n -> oo).

Since the operator A is closed, we get that /  G D(A) and A f  = g. Theorem 6 
is proved.

Remark 1. Theorems 3 and 5 hold also for p =  00. We give briefly the 
needed modifications in the proofs. In proving (33)=S-(34) we showed that 
(33) implies the existence of a function g G L°°(y/v^) having the expansion

g ~  ^ 2 V k a k4 “J.

In particular the 0-th coefficient vanishes, i.e.
OO

J gua = 0.
0

Now

(48)

OO
H a l l o o  J  у / й ^  й  C y / Ü ^ ( x )  if X  > 1

X

X

H-vAäS'lloo /  y/ÜZ <i СЖТ+1 if X  <  1 
о

which implies that
OO
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Compute the coefficients of this function by the aid of (48):

oo oo oo oo

/  и— 7 ( z j ( / = J (̂ J uag^ji[â 1\ x ) d x  =
0 x

= ( /  иа9̂ ~^~ +-̂= J ua(x )g (x)£^ \x )dx  = ak.

So we have
OO

- J — Í
иа+'ЛХ) J

uag = /(x ) G L°°{y/ü2)

and lim f ( x )u Q+ i(x ) = 0 follows again from (48). Analogously, in proving 
(41)=>-(42) we have a function g € Ь°°{у/й^) with

g(y) ~ у* X)

Now
(49)

_ Qt 1 x/2 cx 2 e '
J  У * g { y ) d y  ^ H v ^ l l o o  J y  Ф  e*dy<:

l I

implies that
X

J  y ~ * g ( y ) d y e  ь ° ° ( у /й 7 )

1
and the coefficients are, by (49)

OO X

/  ( /  y~ ^9^ dySj i k ')^ Ua^ dx =

^ c ^1 + x1 ^  ̂  if x < 2

if X > 2

о 1

1
x

+
x=0

oo

+ ̂ =  J = ak (k> 1)
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■*' 2
and then Proposition a) implies f ( x )  = f  y~*g(y)dy +  c. The proof of the

l
converse implications remains the same.

Remark 2. During the preparation of this paper we raised the following 
problem. Do there exist orthogonal systems, different from the classical ones, 
for which an Alexits type theorem holds? Recently I. Joó answered this in 
the positive sense proving an Alexits theorem for the Walsh system; see [18].
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ORTHONORMAL SYSTEMS ON VILENKIN GROUPS

Gy. GÁT (Nyíregyháza)

1. Introduction. Let m  := (m*,,i 6 N := { 0 ,1 ,...} )  be a sequence such 
that N  Э rrik ^ 2 (k G N). Denote by Gm the direct product of discrete 
cyclic groups Zmk := { 0 ,1 ,... , m*, — 1} (k G N). Thus Gm is a compact 
Abelian group. The direct product ц of the measures ftk({j}) ■— 1 /m k  
U € z mk,k  G N) is a Haar measure on Gm, fi(Gm) = 1. If M0 1, 
Mk+1 := mkMk (к G N), then every n G N can be uniquely expressed

OO

as n = Yj щМ{ (Пк £ Zmk, к G N). Denote r*,(x) := exp(2nixk/mk) 
i=o

OO

(x = (x0, X i,. . . )  G Gm, к G N) and ф„ := {] TT  (n G N). If x, у G Gm,
k=о

n, 5 G N and
OO

ra0  5 ;= ST((rik + Sk) mod m k) M k,
k=0

then фп(х + у) = фп(х)фп(у), фп = 1/фп and фпфз =  фпфа. It is known 
that the system (фп, n G N) is the character system of Gm and also th a t it 
is orthonormal and complete. Let * € Gm and denote

fn(®) ' {У £ Gm . J/o =  ®0> • • • ,Уп—1 = З'п—l} i fn •■— / n ( 0 )  (Io(x) (?m).

Denote by A n the cr-algebra generated by the system {In(z) : z G Gm} and 
by En the conditional expectation operator with respect to A n. Suppose 
that there are given functions a k- (j , k  G N) on Gm such that a k- is A j-  
measurable and |a*| = 1, = a° = a k(0) = 1 (j, к G N). If j , n  G N, then

00 00 i(n)let j (n )  := Y, a n := П and x„ := фпап.
i=j j=0

This paper deals with the system (xn : n G N). It is obvious that 
Xn(x + У) ф Xn(x)xn(y) (x ,y  G Gm, n G N) in general, i.e. Xn is not 
a character of Gm and similarly Xn©m Ф XnXm (n ,m  G N). The systems 
(Xn : n G N) and (фп : n G N) = Gm differ. A good property of (xn : n G N) 
which enables us to use the techniques known in Vilenkin system theory is 
that if у G Ik, n < Affc+1, then

Xn(z +  y) =  Xn(x)Xn(y) (x G Gm, n G N).
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2. Results on (x„ : n G N). T heorem  1. The system (xn : те G N) is 
orthonormal and complete in L(Gm).

Let n ,s  € N and
П —1

K„,e(x ,y)  := ^ X k + ,(x )x k + s (y )  ( x , y e  Gm).
k=0

We need the following lemma very often. This lemma is the base of several 
results.

Le m m a  2 .

K\it,pM,(x +  У,у) =  I
0 (x Í  It) (P ,t€  N).M tapM,(x + y)cxpMt(y) (x G I t)

Denote by Dn(x,y)  := K ni0(x ,y)  (x ,y  G Gm, те G N) the Dirichlet 
kernels. The following corollary is one of the basic and most often used 
results in the theory of generalized Vilenkin systems.

Corollary 3.
' 0  ( x - y  £ It )

Пм,(х,у)  =  < (t G N).
. M t (x -  у G I t)

The following proposition is the third basic result which is used all over 
the rest of this paper.

Proposition  4. If  n ^  M k (те, A; G N), у G Gm, then

/ Xn(z + y)dp(x) = 0.

Let /  G L p(Gm) {I й P й  oo). Denote
U n \ f )  := sup ||/(- + h ) ~  / ( • ) ||p (те G N)

ле/п
the Lp modulus of continuity of /  on Lp(Gm), and let

/ ( » ) : =  J fxn, Snf : = j : m x k (n G N , f 6 L(Gm))-
k=0

Theorem 5. 7 /те (те, A: G N), /  G L(Gm), then

l /M I  s
Theorem 6. 7 / /  G L2(Gm), к G N, then

The following theorem gives an upper bound for the Lebesgue constant
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Theorem 7. We have

Ln \Dn(x,y)\d^(x) <
OO

(n € N).

Let
П—1

EÍPX f )  ■= ,inf, f ~ ^ 2 akXk 
{ak} ыо

(1 < p < oo, űfc G C, A;,n 6 N, /  G Lp(Gm)).

The following theorem is a generalization of the well-known Efimov’s theorem 
on the best approximating Vilenkin polynomial.

Theorem 8. We have

E%\U) ^  4 P)( / )  ^ 2£& >(/) (1 < p < oo, n G N, /  € Lv(Gm)).

Next we give a generalization of Zantlesov’s convergence theorem with 
respect to the generalized system. Corollaries 10 and 11 show that a certain 
convergence condition on the L2 and L°° moduli of continuity, resp., imply 
the absolute convergence of Snf  with respect to every system discussed in 
this paper, not only to the original Vilenkin system.

T heorem 9. Let f  G Lp(Gm), 1 < p ^  2, ^ |  =  1, 0 < ß ^  q,
- 1  < 7 < 0. Put 0  = 0 if ß ф 1 and 0  = 1 if  ß = 1. If

°°  в
Q := 4mßk{\nmk)e (u j^ \ f ) ) ß < oo,

k=o
then

OO

£  l/W I '’*’  < c r.eQ-
k=l

C orollary 10. If  f  G L2(Gm) and J2 M f  m^ln \ f )  < oo, then
k=o

Snf  absolutely converges.
OO 1 / ч

C orollary 11. I f  f  £ C(Gm) and Jf, M* ( / )  < oo, then
k=0

Snf  absolutely converges as n —* oo

(u(r \ f )  ■= sup sup If { x  + h )~  / ( * ) I (k G N, /  G C(Gm))).
h£lk xGGm

Lemma 12. Let у G Gm, 0 < j  E N, n 6 N and x £ /j(y ) be /ixed. Then 
Dn(x , t )x n(x )Xn(t) is constant as t ranges over Ij(y).

This lemma is needed in the proof of the following theorem.
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Theorem 13. Let f  G Lp(Gm), 1 < p < oo, l < n £ N  and sup m < oo. 
Then there exists a constant Ap depending only on p such that ||5n/ | |p < 
^  A pII f||p. Moreover | |5 „ / ||p =  | | / | |pO(j») (n ->• oo).

3. Proofs. Theorem 1 can be proved in the following way. If n =
OO OO

= гцМ{ < S  = Yj N) and к := max{,7 G N : nj ф 5j} , then
t'=0 i=0

XxXn = $ rkkpkk where Ф is .^-m easurable. Hence

J XsX„d/x = Eo(xsXn) = E0(Ek(xsXn)) = Е0(ФЕк(гккгпкк)) =  0,
Gm

because nk ф S k. The completeness of the system (xn : n G N) can be 
proved by Corollary 3 and the method used in the case of a* = 1 (j, к G N),
[3].

The proof of Lemma 2 in the case of x G It is trivial. If a; ^ 7t , then 
x G It \  Ii+i for some t  — 0 ,1 , . . .  , t — 1. Thus

mi—1
К м (,рМ,(х + y ,y) = Фр,г(х,у) rt ( x ) = °-

t=0
Corollary 3 is a simple consequence of Lemma 2.

Proof of Proposition 4. Let S  := max{j G N : nj ф 0}.Ek(Xn(- + У)) = Ek(Es(x n(- + y))) = Ek(<bEs(rs(- + y))) = 0,
where Ф is ,4s-measurable. Theorems 5, 6, 7, 8 can be proved by similar 
techniques usual in the theory in the case of a* = 1 (j, к G N), [1] and by 
means of Theorem 1, Lemma 2, Corollary 3 and Proposition 4.

Proof of Theorem 9. Let к G N, у G h  and F ( i )  := f (x  + y) — f ( x )  
(x G Gm). Thus if n = M k,M k +  1 , . . .  , M k+1 -  1, then

F(n) = J f{ x )x n{x -  y )dp (x )- f(n )  = V’n(y) J f ( x )rpn(x)atn(x -  y)dp(x) -  /(n ) ,
Gm Gm

к к
<*n(* -  у) =  П  a j (n)(a; -  у) =  a j(n)(x) =  a n(x). 

i=0 j=o
This implies that F (n ) = (ipn(y) — l) / (n ) .  The Hausdorff-Young inequality 
gives

( £  (1 /(» )П л ,(! /)-1 |)? ) '  =  ( £  ( M o r i ' s
n=jMk '  '  n=jMk
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( OO ч I
D ^ w i '  s  m i - - " ? ’( / )  w = i ........ 1).
n=0 '

The rest of the proof is as Zantlesov’s proof in the case of aj  = 1 (j, к G N),
[6].

Corollaries 10, 11 follow from Theorem 9.
P roof of Lemma 12. We have

K n,qMt(y 4" X, ®) = Kn—ríjMj,njAij -f qMi(У 4" X, ®)
(У i  Ij, X G Gm , n,q  G N, M j  < n < Mj+1, j  < t). 

x — t £ Ij and
D n(x ,t)xn(x)xn(t) = K np{x, t)xn(x)xn(t) =

~ Kn—njMj,njMj{X, t)Xnix )Xn{t)•
This completes the proof of Lemma 12.

Theorem 13 can be proved by the method of Gosselin [3] used in the case 
of a* — 1 (j, к G N). The main difference between the proofs is that (21) of
[3] is proved by Lemma 12.

4. Application. An arithmetical function g is called even mod к if
g((n ,k )) = g(n) for each n G p N \  {0}. The set of these functions is
denoted by Bk■ В U Bk is the set of even arithmetical functions. The 

keP
limit M(g) := lim n -1 g(j) ,  if it exists, is called the mean value of g. The

j=n
upper limit M(g) := lim n-1 g(j) gives rise to a semi-norm

j<n

M p :=  m \ 9 \ P))’ (1 < p < 0°).
The closure of В with respect to || -||p is the set of f?p-almost-even arithmetical 
functions [4]. The Ramanujan function Cr is defined by

Г

Cr (n) := ^ 2  ехр(27ггап/г).
a = l

( a , r ) = l

It is known that if g G B"1 (g G B1 bounded) and M(gcr) =  0 for each r G P, 
then Ц5Ц2 = 0 (||</||i = 0), [5]. The techniques of this paper enable us to 
prove that if g G Bp (1 ^  p < 00) and M (gCT) = 0 for every r G P , then 
M\p = 0, [2].

If g G Bp (1 < p < 00) and g(r) := <p 1(r)M(gCr) (r G <p, is the 
Euler function), then Lsg := X) 9{r)CT (S  G P) || • ||p converges to g , [2].

j|S!
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ON THE DISTRIBUTION OF THE SET
: £i £ {0, l } , n  e  N }

t=i

I. JOÓ (Budapest)

Let 1 < q < л/2 be arbitrary fixed and

H  := { X > W 2(n"°  : £»' € {0, l} ,n  = 1 ,2 , . . .}  =
t=i
= {2/n(g)> = {»n> /  oo (n -*■ oo).

We shall prove the following
T heorem . I f  yn+i — yn —>* 0 (n -> oo) then there exists an expansion
OO

1 = ^ 3  <Z-n * such that sup(nj+i — nt) =  oo. 
i=1 i
In [1] it is proved that if q is a Pisot number, then there is no such 

expansion of 1, further it is well known that the smallest non-zero Pisot 
number is between 1 and \/2. Hence we obtain

Corollary. For any Pisot number 1 < q < \/2, yn+1 — yn -*♦ 0, n  —> oo. 
For the proof of the Theorem we need the following
Lemma . Let 1 < q < \ /2  be any fixed number and let N  6 N be arbitrary. 

Then there exists an expansion 1 = ]T) g_n’ such that sup(rij+i — n;) > 2N, 
whenever yn+\ — yn —► 0 as n —* oo.

Proof. Let 0 < x <  1 and expand the numbers x and (1 — x ) / q  by the 
system (q~2n). If we have N  consecutive zeros at the same places in these 
expansions, then adding these expansions we get a desired expansion of 1.

n n
Let x = ^2 £iq~2'. We have to find such values e[, for which ^  <

.=1 i=i
< l=s < Í > ; .g - 2‘ + < r2(n+^ , i . e .

q i'=i

(1) 0 < g2n -  ^ £ , д 2(п_,) -  g ^ £ Í g 2(n_,) < q~2N ■
i=i t=i

Let e := 10-1 • q~2N. We show first that for every n there exist £ \ , . . .  ,£n £ 
6 {0,1} such that 1

1 < q2n -  J^eii2(n_i) < {q2 -  1)_1 + 1 =
i=i ^

(A)
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Indeed, expand q2n by the system  q2(n l\ q 2(n 2\ ___ If we “cut” such an
expansion at non-negative exponents, then the error is smaller than q~2+ 
+q~ 4 + . . .  =  (q2 -  l ) -1 i.e.

0 < q2n -  j S . g 2*""0 <  (?2 -  I)"1- 
»=1

If the difference is larger than 1 then we are ready, if not, then consider 
the largest i w ith £,• = 1, and replace the corresponding term g2(n_‘) by the 
non-negative part of its expansion in terms of smaller exponents. Then the 
error resulting from the modification is < (q2 — l ) -1 , hence the total error is 
<  1 + (q2 -  l ) - 1 . If this error is >  1 then we are ready, if not, then continue 
this process (replace the smallest exponent by the non-negative part of its 
expansion in terms of the smaller exponents).

If there is no such a step when the error is > 1 , then en = 1 and we omit 
enq° and arrive to an expansion with an error between 1 and 2 . Statement
(A) is proved. Multiplying (A) by q2k we get: for every к and n > к there 
exist £ i , . . .  , £n G (0 ,1} such that

n 2(fc+l)
(B) qU < q 2 n ~ f l  ^ 2(n"‘) <  q~TZГ '

<=l q

Choose к =  k(e)  so that yn > q2k~1 -  1 implies yn+j — yn < £■
Taking (B) into account there exist £ i , . . .  ,£n such that

and then for n  >  n(e,q) there exist £[,.■■ ,£ rn such that 

П q2n _ g  q2(n-0 n
£ '92(n- ,) + £ < --------— --------- < Y  £Í92(n“°  + 2£

(=1 ? 1=1
which means that (1 ) is fulfilled. The Lemma is proved. □

Proof of the Theorem. Let к = k(q) be such that

(2) (1 +  q)(q~2k + 9- ( 2fc+2) + . . .  ) <  1 +  q~ 2 +  q~ 4 + . . .  .

We use induction. Suppose there exists a segment In  such that for x £ In  
the numbers x , (1 — x)/q  have the expansions

x = + ••■■> i 1 - * ) /?  =  Y £'iq 2j +  •••
j - 1 i= l
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where there are 1 ,2 ,. . .  , N  — 1, N  + к consecutive 0’s at the same places 
and N  + к zeros at the end. Suppose 7/v is the maximal segment with this 
property for fixed ( £ j )  and ( £ ' • ) .  Let Iм  be the maximal segment, where the 
last к zero coefficients are omitted. We extend the sequences (£_,), {e'-) to an 
index n such that

(3) 0 < 92" -  £  £;g2(n_,) -  q • ^  £ 'У (п_,) < g~2(iV+fc+1)
i=i i=i

be fulfilled. Let

q ■= я2п - J 2 £iq2(n~3) ~q •'52e'jq2{n~3)-
j = i  i = l

For any a; € we have

Y  ч ч ' 1’ < * < Y  + i ‘ 2(' +1)+ «_2(' +2) +  • ■ ■.
j = 1 i = i

Y  < —  < Y  e3r b  + +  <T2(‘+2) + • ■ • •
j = l  9  j = l

Multiplying these inequalities by q2n resp. q2n+1 and adding them we obtain

0<g2" - x ;  4 4 2{n~j) -  9 • S  <92(n~j) = Q <
3-1 j=i

<  (q + 1 +  9 2( " - * - 2) + . . . ) <  g 2 ( n - , + * - l )  +  g 2 ( n - .+ * - 2 )  +  _ # _

(We have used (2).) This means that we can expand Q by the system 
q2 ( n - s + k - 1)̂  ^ 2 ( n - i + f c - 2 )  ^  hence by the idea used in the proof of (A),
expanding Q instead of q2n we get: for every n > s there exist £„_fc+i,. . .  ,£„ 
such that

(A’) K Q -  £  £3q2{n~j) < q2/ ( q2~ !)•
j = s - k + 1

Let £ := 10-1g_2(;v+fc+1) and do = do(s) be such that yn > do implies 
2/n+i -  Уп < £• Let £ ~  £(q,e) be such that d0 < q2e_1 -  1. Multiplying (A’) 
by q2t we obtain for another n (for n + £ in place of n)

<Г1(92п - 1 > 9 2(п- ,')
i=i
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On the other hand, according to the assumptions of the Theorem, for suffi­
ciently large n the points of the set

A „-,+ t =  { £  e ííJ(n-'>}
1 = 4 — fc+1

fill the interval ^g2<~*, ) with an error < £ (i.e. the distance between
these points is < e). Instead of (3) we can ensure

(3’) 10-iq-W + b+ i)  <
X=1

? - E ei92(n" i ) < 5 " 1«"2(JV+fc+1)-i=i

Hence we can finish the induction in the following way. If we start from s = 
=  s n , then s n +i =  n+iV+fc+l, £j =  £'■ = 0 (n < j  < n+iV+fc+l) and /лг+i,
In +i are maximal intervals for which the expansions of x and (1 — x)/q  start 

«ЛГ+ 1  »лг+i *jv+i-fc . »лг+1 -fc
with X) £.9_2‘ and ^  e'g-2’ resp. ^  £tg-2', ]£ £iQ~2'- Obviously,
In +i C In - The remaining difficulty is the fact that the intervals In  are 
open. Consider the following statements:

a) among £e_fc+i>. . .  ,£ n+N + k+ i there exist 0 and 1 too,
b) the same holds for e '_ fc+1, • • • ,e'n+N+k+1-

If a) and b) hold then both endpoints of the maximal interval move in the
direction of the interior of the interval, i.e. In + i C In  and hence f]lN Ф

N
ф 0. The statement b) is trivial. If a) does not hold, we can ensure the 
occurrence of a new term 1 in the following way: we consider Q := Q- 
■q2r > q2/(q2 — 1) in place of Q and expand this number by the system 
r̂2(n-4+fc-i+r)^2(n-4-i-fc-2+r)) ___In this case we set s n +i = n-f r + iV + fc + 1

and let In + \,In +i be the maximal intervals for which the expansion of x
*JV+ l-fc *N+ l_fc

and (1 — x)/q  can be extended with £,g-2' and ^  Cl
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ON ^-CONVERGENCE OF 
WALSH-FOURIER SERIES. II

F. MÓRICZ (Szeged)

A cta  Math. Hung.
58 (1-2) (1991), 203-210.

1. Introduction. We consider the Walsh orthonormal system {tu*(x) : 
к = 0 ,1 ,. . .}  defined on the interval [0,1) in the Paley enumeration (see, 
e.g. [1, p. 60]). Our goal is to study the X1-convergence behavior of the 
Walsh-Fourier series

( 1 ) У! akWkjx), 
k=о

of an integrable function /(x ) , in sign /  E Xx(0,1). In this note, integral is 
meant in the Lebesgue sense.

2. Previous results. We denote by

sn( f ,x )  := ^ a * u ;* (x )  (n = 0 , l , . . . )
k=0

the partial sums of the series (1). Concerning pointwise convergence, in [4] 
we proved the following.

Theorem A. I f  f  E XX(0,1) and the condition

[An]
(2) limlimsup V '|A mafc| =  0

All n—*oo k=n

is satisfied for m  = 1 or 2, then

lim s „ ( /,x )  = /(x )  a.e.
n—► oo

and
l

|sn( /, x) —/( x ) |rdx = 0 for 0 < r < l / m .  
о

Here and in the sequel, we use the notations

Д 1̂  := Да* = а* -  а*+1,
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A 2ak := Д (A a k) = ak -  2ak+1 + ak+2 (fc =  0,1, — ).
Furthermore, [•] denotes the integral part.

In order to conclude the convergence of the series (1) in L1-norm, we 
need a slightly stronger condition than (2). Namely, in [5] we proved the 
following.

T heorem B. I f  f  £ L x(0 ,1 ) and for some p > 1

[An]
(3) lim lim sup kp 1|Да*|р = 0,

î.1 n—►OO ,
k = n

then

1
r

(4) lim /  |s „ ( / ,x )  -  f(x)\dx  =  0n—►OO /J0
i f  and only if

l
r

(5) lim on /  \Dn(x)\dx = 0.71—►OO /J0

Here

Dn(x) :='^Г™к(х ) (n = 0 , 1, . . . )
fc=o

is the Walsh-Dirichlet kernel. As is known [2],

l
J \Dn(x)\dx = 0(ln n). 
о

Thus, under condition (3),

lim an In n = 0
П—Ю О

is a sufficient condition for the L1-convergence of the series (1).
The Tauberian condition of Hardy-Karamata kind expressed in (3) is 

well-known in the literature. Since the fulfillment of (3) for some p > 0 
implies its fulfillment for any p, 0 < p < p, we may always assume that 
1 < p Í  2 in (3).
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3. Main result. If condition (3) is satisfied, then
[An]

(6) Я(А) := lim sup V 'fcp_1|Aajt|p
n~*°° 1л—TL

is finite for some A > 1. The converse is not true in general. However, (6) 
must be finite for all A > 1 if it is finite for some A > 1. This follows from 
the inequality Я ( A2) < 2Я(А), which can easily be proved. In fact, for any 
n > 0 we have

[A2n] -  [A[An]] < [A + 1] 
and recall that /  £ i 1(0 ,l) implies

(7) lim a t = 0.k—*oо
Now we improve Theorem В as follows.
T heorem 1. I f  f  £ X1( 0 ,1) and Я (A) defined in condition (6) is finite 

for some A > 1 and p > 1, then conditions (4) and (5) are equivalent.

4. Auxiliary results. In [6] we proved the following Sidon type inequality.
Lemma A. For every 1 < p $ 2, sequence {a^} of real numbers, and 

integer n > 0, we have

dx < — (n + 
-  p - 1 " H i H "  G + H -

Unfortunately, this inequality is not enough to prove Theorem 1. There­
fore, we prove a modified version.

Lemma 1. For every 0 < 7 < 1, 1 < P ^ 2 ,  sequence {ajt} of real 
numbers, and integer n > 0, we have

(9) I 5~^akDk(x )
k=0

dx < 2 p
-7

-1/9

Clearly, (9) is superior to (8) in the case when 7 = 7n and (n + 1)7„ is 
bounded from below.

P roof of Lemma 1. It follows in great lines that of [6, Lemma 1], w ith  
the warning that n +  1 should stand in place of n there. Taking into account 
[6, formulas (3.6)-(3.9)] we arrive at

I  : =

1 n

/  \ ^ 2 akDk(x)
^ 4=0

dx ^
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1/P

s ( í > * r )  £ > ’ { !  № ) К * ) т А  .
4=0 ' j=0 '  '  '

where m is defined by the condition 2m < n + 1 < 2m+1, and

h(x ) := sign ^ 2  akDk(x). 
k=о

Now assume 2 J'° 1 < 7 < 2 J0 with some jo ^ 0. Then

2 - i  a/ p

^ |r j ( a ; ) h ( x ) |pdx^ =  { Г ^  '  = 2 '
if 0 ü j <  jo,
if j  > jo-

Consequently,

2j/q,

whence (9) follows through a simple computation. In fact, observing that the 
auxiliary function z(t) =  f(l — 2- t )-1 is increasing for t > 0 and z(l) = 2, it 
follows immediately that

jo
У  у ' *  <
i=0

2 Ü0 + 1 )/q

2 V« -  1 < 1 -  2 -1/?
< 2q7"1/9.

Next, we consider the so-called generalized de la Vallée-Poussin means 
defined by

(10) r*(/,A,z) :=  ---- l——y Sj(f,x),л п — n + \ ]=n

where A > 1 and An = [An] (n = 0 ,1 , . . . ) .  The following lemma is an easy 
consequence of a result by Morgenthaler [3] on the (C, l)-summability of 
Walsh-Fourier series (see also [5]).

Lemma 2. I f  f  £ T 1( 0 ,1) and A > 1, then

limП—►OO/M /,A ,z )  -  f(x)\dx = 0.
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5. Proof of Theorem 1. Sufficiency. We assume that (5) is satisfied and 
prove

l
(11) limlimsup / |тп( / ,  А,г) -  sn( f ,  x)\dx = 0.

Ail n—+oo J 
0

Clearly, (11) implies (4) via Lemma 2.
To this effect, we use the representation

^ An j
Tn(/ , A, x) -  sn(f ,  x) =  _ S  akWk(x)

n j= n + l  fc=n+l

(cf. (10)) and split the integral in (11) into two parts: one extended over 
(0, l/7n) and the other over (1 / j n , 1), where 7n := Лп -  n + 1.

First we apply a trivial estimate to obtain

An j An

7 n  j= n + 1 f c = n + l

l/'Yn

f c = n + l

An

E
A;=n+1

|т„(/,Л ,ж )-зп(/,а ;) |< ^ - ^  5 ^  1“*1 = “ “ ^ ( К ~ к + 1 ) \ а к\^  ^  |а*|.
7 п  _•___, ,  L____ , ,  7 п

ВУ (7),

(12) Л  := J k n ( / ,A ,® )-e „ ( / ,x ) |d x  <

Ап
^ ^  la Jfc| 0 as п —► оо.

7 п  f c = n + l

Second, by summation by parts, we get 

(13) Tn( f ,X ,x )  — sn( f ,x )  =

A„ /  j —1

whence

1 " /  3 \
= — f -ß n £ )n(a:) +  5^L>jt(a:)Aa*: -(-aj£):,(x )J ,

7 n  j = n + l  '  Ic=n '

1
J2 -= /  |Чп(/» А, ж) -  sn( f ,  x)\dx < 

ihn

Г  I f i  *  п ^
< / |onL»„(x)|dx +  —  /  ^  ^ 2  Dk(x)Aak\dx+

l / 7 n  ih n  ’=п+ 1к=п
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say.

By Lemma 1,

owing to (7) again.
We interchange the summations with respect to j  and k, then apply 

Lemma 1 to obtain

I — 1
(15) J22 = — /  V '  (An -  k)Dk(x)Aak  

7n J
1 ы  k- n

O n  /  АП —1 \

1)1/1 ( " '■ 1 D |A e*1' )  ’

dx <

i/p

whence, by (6), 

(16)

Finally, by (5),

(17)

limlim sup J22 = 0.
Ail n—*-oo

lim J21 = 0.

Combining (12)—(17) yields (11) to  be proved.
Necessity. This time we assume the fulfillment of (4). Then, by Lemma 2, 

for any A > 1,

(18)
1

lim /  Ы / ,  A, x ) -  sn(f, x)\dx  =  0.n-*oo J
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Using the notations introduced in the sufficiency part, we can write that 

l
J  Irn( / ,  A, x) -  sn(f ,  x)\dx > J 2i -  h  -  J22 -  J23- 
0

On the basis of (12), (14), (16), and (18), we conclude that

1
(19)

Since

limlimsup / \anDn(x)\dx = 0. 
All n-+oo J

1/7n

limП—► OO
n + 1

I n

1
А -  Г

by (7), we have for every A > 1,

l / 7 n

(20) J \anDn(x)\dx <
0

(n + l) |a n|
7n

0 as n —» 00.

Obviously, (19) and (20) imply (5) to be proved.
6. Concluding remarks. Analysing the proof of Theorem 1 (see especially 

(15)), we can achieve the following more general result.

T heorem 2. I f  f  G T1( 0 ,1) and for some p > 1 and A > 1,

ü m s u p E  ( x ^ T ) PF - 1|A a ,rn—»oo , \  An n T 1J
k = n

is finite, then conditions (4) and (5) are equivalent.
Note added in proof (July 11, 1991). After having submitted the manu­

script, it came to the author’s knowledge that Stanojevic [7] had announced 
an analogous result on the V -convergence of trigonometric Fourier series.
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ON THE NUMBER OF PRIME FACTORS OF t p { t p { n ) )

I. KÁTAI* (Budapest), member of the Academy

1. Let <p(n) be the Euler-totient function, a{n ) the sum of positive 
divisors of n, u(n)  the number of distinct prime divisors of n, and i)(n) the 
number of prime divisors of n counted them with multiplicity. Let y?2(n) = 
=  yj(v?(n)), and in general <pk+i(n) = tp{tpk{n)). Similarly, <r2(n) = <т(сг(п)), 
<7k+i(n) = <r(<Tk(n)).

Our purpose in this paper is to prove the following 
Theorem 1. We have

lim - #X—+00 x n < x
w(V2( n ) ) -  i(loglogn)3 < У > = *(v ) ,^=(loglog n f !2

for every real number y, where Ф is the standard Gaussian law.

Earlier, P. Erdős and C. Pommerance [1] and M. Ram Murty and V. 
Kumar Murty [7], [8] proved that

( 1. 1)
u>(<p(n))~ \(log log n)2 

^ ( lo g lo g n ) 3/2

and the author [2] that

o ;(< r(p + l))-  i(loglogp)2 
^ (lo g lo g p )3/2

are distributed according to the standard Gaussian law.
M. Ram Murty and N. Saradha [9] proved the existence of the limit 

distribution of (1.1) by using only the Eratosthenian sieve.
2. Let A, A*, A , be the set of additive, completely additive and strongly 

additive functions, respectively. The letters c ,ci,c2, . . .  will denote suitable 
positive constants, not necessarily the same at every occurrence. We shall

* This work had been done while the author was a visiting professor at Temple Uni­
versity, Philadelphia. It was financially supported by the Hungarian Research Fund No. 
907.



2 1 2 I. KÁTAI

use the following abbreviations: x\ = logx, a^+i = logx* (к = 1 ,2 ,. . .) .  
The letters p ,p i,p 2, • • •, 9 ,4i, 92, • • •, P, Pi, P2, • • •, Q, Qi, Q 2, • • •, will denote 
primes. P (n) and p(n) denote the largest and the smallest prime divisor 
of n, respectively, тг(x ,k ,£)  is the number of primes p up to x satisfying 
p = t  (mod k).

The main idea of the proof is to approximate ш(<р2(п)) by an additive 
function. Hence, by using the Bombieri-Vinogradov mean-value theorem, 
some sieve results and Kubilius theory for the distribution of additive func­
tions, we shall get our theorem.

Lemma 1 (Bombieri-Vinogradov). We have

E
к < yß! (log x)A

max max(r,fc)=l zix
li z

<p(k)
X

(logx)B ’

where A and В  are arbitrary positive constants satisfying the inequality A  > 
> 4B  + 40 (see [6];.

Lemma 2. Let Ф(х, у) be the number of integers n < x satisfying the 
condition P (n) £ y. Then

Ф(ж, у) < c\x exp

uniformly for all у ^ x. 

For the proof see [3] 

Lemma 3. We have

7r(x, k , l ) <
3x

<p(k) lo g x /k '

if t  ^ к < x and (к, l ) = 1.

For the proof see Halberstam-Richert [4], Theorem 3.8.

Lemma 4. The number of solutions of the equation p — l  =  aq in prime 
variables p and q, where p runs in the range £ < p < x, is less than

cx
v ( a) l°g2(x /a )

for every positive integer a. The constant c is an absolute one.

See [4], Theorem 2.3.
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L e m m a  5 .  The number of solutions of the equation p — t  = A-y where p 
runs over the primes in the range [t, x ] and 7 over the integers satisfying 
P(l)  = У *s less than cx

V?(A)(logx)(logj/) 
uniformly if A < x3/4, l  < у < x.

See [4].
L e m m a  6 .  Let

cr(x,k,t):= Y  V~l -
k^p<x 

p = l  ( m o d  k)

Then
a(x,k,£) < c-% ?

¥>(*)
if i <  к < x  and (l , к) = 1.

P r o o f ,  This is an immediate consequence of Lemma 3. Since 
ж(к ■ 2‘, k ,i)  < therefore ^  \ /p  for the primes in [fc • 2t_1, к ■ 2‘] is
less than cy^ t , ^  t > 1. Summing up for t up to 2f < k, we have

o(k2, k ,i)  < log log к
C~ W T '

In the range x > k2, the inequality in Lemma 3 can be replaced by 7г(х, к , l)  <
< ^ fc)fógx- This §ives raPidly that

o(x ,k ,£ ) -  o(k2,k,£) < C i - j -
<f(k)

L e m m a  7 .  Let 11 be a set of primes Q with the property that

# { Q  € [»,2»]} < « 1 (^ 1
holds for every j /  > 2 .  Here A  > 2  is a constant. Let V z be the set o f those 
primes P for which there exists at least one Q в 71, Q > z, such that Q \P —1. 
Then

s x ,z := И Р  й  x\P  e  Vz} Í  Cl
/  7r(x)

A - 1 
1

+
_ 7 Г ( Х ) _ \

(log z)A~x )  '
P r o o f .  It is clear that

Q>z
Q en

A da M athematica Hungarica 58, 1991
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Since tt(x ,Q,£) < с - ф  if Q < y /x , and < x /Q  if Q < x, therefore

S*,z<

Q€K

£
y/x<Q<x

Q€H

1_
Q'

By using the assumption for the number of primes of TZ in intervals of type 
[M, 2M] we get the assertion of our lemma immediately.

As an immediate consequence, we have

Lemma 8 . Assume that the conditions o f Lemma 7 are satisfied. Then 
the number of integers n < x having a divisor P  £ Vz is less than (log**3Li •

Lemma 9 (Turán-Kubilius inequality). I f  f  £ A,, then

Y ^ ( f ( n ) - A x)2 < c x B x,

where

p=x

f (p )

and c is an absolute constant. [5]

S* = E
pSx

I M
p

Lemma 10. Let x >  100. Then the number of primes p up to x satisfying 
ш(р — 1) > 2k is less than c (J2+0(i)) . je.. Especially, the number of primes

p < x satisfying u (p  -  1) > 15 loglogp is less than О •

Proof. If u>(p— 1) ^ 2k, then the product d of the first к smallest distinct 
prime divisors of p  — 1 is less than  y/x. Thus the number of primes p with 
w(p — 1) > 2k is less than

^ 2  7 r ( M , l M d)|.
d<^/x

w(d)=k

By using Lemma 3, and that

v  —  < -
h i  ̂  “ k -

the first assertion follows rapidly. The second assertion is an immediate 
consequence of the first one and the Stirling formula for k\.
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Lemma 11. I f  p runs over the set of primes, then

$ > ( p  — 1) = li X • log log x + 0(li x), 
p = x

У ] u 2{p -  1) = li X ■ (log log x )2 + 0 (x 2li x)
p = n

^ ( u ( p  -  1) -  log log p)2 <  x2li X.
p = n

Lemma 11 can be proved by routine application of the Bombieri-Vino- 
gradov mean value theorem.

3. Proof of the theorem. It is clear that d\n implies <p(d)\<p(n) and 
u(d) < ui(n). Consequently y?2(d)|<^2(n), and w(<y?2(d)) < a>(y?2(n)). Let J  
be an interval, and let u{n\J)  denote the number of distinct prime divisors 
of n belonging to J. If J  = [y, oo] then we simply write u>(n\y) instead of 
u(n\J). Furthermore, let uiz(n) denote the number of prime divisors of n 
which are not greater than z.

Let us consider the integers n < x. For an n let n — A(n)B(n), where 
A(n) and B (n ) are defined such that P(A(n)) < x\, p(B(n)) > x\. Observe 
that for A(n) < exp(x2)5

и  (<p2(A(n))) ^  c
log у>2(Л(п)) 

log log <p2(A{n))
< c x \ f x 3

and that the cardinality of n ^  x satisfying A(n) > exp(x2) is 0 ( x /z 2). 
Indeed, let us count the integers n with some fixed A(n) =  A. All these 
integers can be written as 7 x), where 7 runs over the integers 1 ^ 7 ^ 
^ x /A , p(7 ) > x i. So, by using known sieve results, this is less than

x < ClX 
= A x2

if A  ^  x /x i. If A > x /x i, then only 7 = 1 can occur. Now we consider the 
sum j  extended for those A  for which exp(x2) ^ A < x, P(A) < x \  is 
satisfied. By using Lemma 2 we can get easily that this sum is hounded as 
x —► 00. Thus, for a non-exceptional n,

v(<P2(n)) = ш(<р3(В(п)) + 0 ( x 2/x 3)

holds. The number of integers n < x for which there is a q > Xi such th a t 
q2\n is less than x /q 2.

Summing up for Xi < q, we have that

X T , - 2 $ X/ Xl-
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Thus for all but at most 0 (x /x i )  integers n < x, B(n)  is a square free 
number.

Let us estimate now u xi (</>2(B(n))). We shall prove tha t this is less than
0 ( x 2xs) for all but o(x) integers n < x. Since the to tal number of primes 
p  ^  x2 is less than О ^ / х з ) ,  it is enough to estimate u(tp2(B{n))\J), where 
J  = [x \ , x \ |.

Let us consider the sum

E :=
n i x

where J  is an arbitrary interval Q [x2, x].
If ?|v?2(n)» then either q2\<p{n) or there exists a prime Q = 1 (mod?) such 

that Q\ip(n). In the second case either Q 2\n or there exist a prime P  =  1 
(modQ) such that P\n. Let us fix a q £ J.

The contribution of the second case to the sum is less than

<  г

By using Lemma 6, this is less than

x
q + * E

0 = 1(9)

cx2
~Q < Cixx]

q

Let us consider the first case. If q2\<p(n), then either q2\n, or there exist 
distinct primes P i,P 2 such th a t Pi = 1 (mod?), P2 =  1 (mod?), P iP 2|n. 
Thus the contribution of the first case is less than

E
P l,P 2= l  (m odg)

Summing up for ? £ 7, we have

(3.1) ^ « ( й ( В ( п ) ) |7) <  x x \  \ 1/?
n < x  \ g £ J

Especially, for the choice J  = X) 1/? = 0 (1 ), thus the right hand
side is О(ххз), consequently our assertion is true.

Thus, for all but o(x) integers n ^ x, we have

(3.2) 4v>2(n)) =  u(<p2(B(n))  |x£) + 0 (x ] x 5).
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We shall prove that

(3.3) и(ч>2(В(п))\х\) = Y  Y  “  11ж2) + 0(х]х5)
p | n  <3|p—1

p>X!

for all but o(x) of the integers n ^  x. Let

(3.4) f ( n ) : = Y  Y  ~  11*з) - w(v>a(^(n))l*4).
p |n  Q | p - 1  

P > X  1

Assume that B (n ) = P1P2 . . .  Pi is a square free number. In <p2(B(n))  every 
q > x 2, q|y>2(P (^)) is counted once.

If q\<p-2(B(n))  then either q2\tp(B(n)) or there exists a prime Q, 
Q\<p(B(n)), such that Q = 1 (modq).

Let Bx be the set of integers n < x for which there exists a q > x\, 
q2\<p(B(n)). If n G Bx, then either q2\n or there exists a prime divisor P  
of n such that q2\P — 1 or a couple of primes Р ьР г, such th a t P\P2\n, 
Pi =  1 (mod <7), P2 = 1 (modq). Thus

card (Bx) < x Y ,  l  + x Y  Y
PS 1 (Р Г  9>x|Pi,P2=l(<j)

1
PlP2 <  x x \ Y  1/ ?2 =

q>x\

Assume now that n (£ Bx. Let Cx be the set of those integers n <[ x for 
which there exists Q, Q > x\  which divides P, -  1 and Pj -  1 (t ф j )  (where 
P ,P ,|P (n )). It is clear that

card (Cx) < x Y  Y  p V  < < И 2 E  ^2 = 0 { x / x 3).
Q>x\P i= H Q ) 1 2 Q>x* 4

Pi=\(Q)

Let now Dx be the set of those integers n < x for which B(n ) is square-free, 
n (£ В x l> Dx. Let us consider / (n )  ((3.4)) for n 6 Dx. In the double sum 
some q,q\ifi2(B(n)) is counted only once, if there exists no more than one Q 
such that Q = 1 (mod 5). But this q is counted in u>{tp2{B{n))\x^) its well. 
So, the multiplicity of some q, q\ip2(B(n)) occurring on the right hand side 
of (3.4) is not greater than the occurrence of Qi ф Qj, Pu, Pv such that 
q\Qi — 1, q\Qj — 1; Pu =  1 (Qi), Pv =  1 (Qj)- Here Pu = P„ is not excluded. 
Thus, by applying Lemma 6,

Y f ( n ) ^ x Y  Y  Y  p^p2 + x Y  Y  Y  \ < xx l-
n  = x  Я>х* Q i = l ( ? )  P l = l ( < 3 l )  9 > x *  £ ? i = l ( g )  P = 1 ( Q i Q 2 )

n£Dx Q 2 = 1 ( 9 ) P 2= 1 ( Q 2 ) Q 2 = l ( g )
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Now we shall substitute each u>(Q — \\x\)  by (Q — 11 »Q1̂ 16]) on the right 
hand side of (3.3). The error is 0 (1 ) for every Q , the total error is less than

<  E w(p_1)-
p \n

Averaging this for n  < x,

n ^ X  p | n  pin

from which we get tha t the error is less than 0(x%Xs) for all but 0 ( x / x 5) 
integers n й x.

Let us consider the sum

Ln := E  E  " ( Q - l \ [ * i Q 1/16])-
p | n  < ? | p — 1

X 1 / 1 6 < p < X

Let R  be the set of those primes Q for which Q > x\  and w(Q — 1) > 
> 15 log log p. Then, by Lemma 10

#{Q 6 [y,2y]\Q e R} < cij//(logy)n
and by Lemma 7,

#{Р£[у,2,]\ P e J > ,} < C2^ L .

The number of integers n ^  x for which there exists p E 5X>Z, p|n, a:1/ 16 < 
< p < x is less than

ж E  1/Р = 0(х/ж I).
X1/ 16< p < X

If n has a prime divisor p E 5X)Z; p > г 1/16 then

*n<15 E  E  loglogQ =  Tn.
p |n  Q Ip —1 

P > x 1/16

Averaging the right hand side, we get

£ r » s *  £  i E w s «  £  ^ i ) .
n = x  x 1 / 1 6 < p < x  Q | p —1 x 1 / 1 6 < p < x
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But

E
x1/16 <p<x

Ц Р  -  1)
P <  * 3 ,

which comes from the estimation w(p — 1) <  f-x?  (see Lemma 11), and
p < x  1

so £  Tn <  I Í J .
n i l

Collecting our inequalities we conclude

w(v>a(n)) = X I  E  W(Q -  1|[*з> Q1/16]) +  0(x^x3).
p | n  Q | p - 1  

Xl  < p < x 1/ 16

Let us consider now

bП £  W(G “  11[*2>01/16])-
p | n  <3|p—1

x i < p < x 1/ l e  Q > p 1/ 16

We split ftn into two parts, 6n = &11' +  6 ^ ,  where in b!1̂  we sum over those
pairs (p, Q) for which u(Q  -  1) < 15 log log Q, and in over the others. 
Since for every p at most 16 distinct Q occur, therefore

й c i^ lo g lo g p
p | n

and
6<„4

L '  p
Furthermore

X X 2) = x £  S
n ^ x  p < x l/1 6  Q |p - 1  Q  Q < p « 3 ie

p1/16« ?  p=l (modQ)

-  i)(iogiog(?)
<  ^  Q

where Q is summed only over those Q for which u>(Q — 1) > 15 log log Q 
is satisfied. Since for every y, the number of such Q in [p, 2y\ is less than 
7r(p)/(logp)5 and u(Q  — 1) log log Q ^  clog y, therefore

^ o>(Q -  1) log logQ ^  i
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So we have

(3.5) u>(y?2(n ))=  5 ^  ^ 2  u(Q  -  l|[*2»Q1/16]) +  0(*2*3),
p \ n  Q \ p - \

X\  < P < X 1/ 16 Q < p 1/ 16

for all but at most o(x) integers n ^  x.
Let now u(p) = ux(p ) be defined as

UÁP) := 2  w (P  -  !|[*2»Q1/16]) -  ^ (b g lo g p )2
<3|p - i

Q < p 1/ 16

if Xi < p < x1/ 16, and let ux(p) = 0 if p ^ X\ or p > x1/ 16. We shall consider 
ux(n ) as a strongly additive function. Similarly, let

\  (log log p )2 
0

if Xi < p  < X1/ 16
otherwise

and let vx{ri) be a strongly additive function. Thus,

(3.6) ш(<р2(п)) = vx(n ) +  ux(n ) + 0(xjX 3)

holds for all but o(x) integers n < x.
4. Completion of the proof. We can see easily that after normalizing, 

vx(n) is distributed in limit according to the Gaussian law. Let us consider

, , 4  M n)tx[n) .— 2 •
*2

Then tx(p) is bounded on the set of primes, furthermore

p < x pix 20

as easy to calculate them. Thus, by the well-known Erdös-Kac theorem

| n  ^  x
2̂,(71) Ax 

Bx
(x —► 00)

for every real number y. Since Bx —► 00 and Ф is a continuous function, 
therefore we may substitute Ax by | x 2, and by -y/xj. After doing
this and multiplying by x2, we have that

(4.1) lim - #  < 
x  x

f

n  < X V* ( n )  -  И  , ..
1 X 5 /2  <  У

к T20X2
= Ф (y).
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Finally, we shall prove that for all but o(x) integers n < x, ux(n ) is bounded
by a function of x growing as slowly as o(xbJ 2). This can be done by the rou­
tine application of Turán-Kubilius inequality and the Bombieri-Vinogradov 
mean-value theorem.

Starting from the inequality,

(4.2) Y  u- ( n ) -  Y
2

< c x Y
pSx

“KP)
P

we shall estimate the quantities

(4.3) E M p)
p 'p=x p=x

«■KP)
P

For this reason, we shall estimate

aH := Y U x d (w) = Y
where in these sums p runs over the set of primes belonging to the interval 
J(ui) = [w, ü/] , и/ = w(logu;)10. Assume that ex* < u> < и ' < ж1/16. Let us 
write ux(p) as

where

Then

K (i>) =) -  ^(loglogp)2 + ti(p) + t2{p)

h(p) = Y “(Q- i | [ 4 Q 1/16D,
Q |p - i

x*<Q«A/le

h  (p)=  Y u ( Q - l \[AyQl,16\)-
Q\p-1

u;1/ i e ^ Q < p 1/ 16

(4.4) a(u>) = Y  - ^ ( 1о§ 1оёР)2 +  X /i(i> ) + Y * 2^  =
шйр< w'

= ax{ijj) + a2(U>) -f a3(u>).
We have a3(w) > 0 and

a3(w )^  Y  w(Q -  1)(тг(и;',д,1) -  7r(w ,g,l)).
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Choosing a large В, В = 50, say, in Lemma 1 and observing that u(Q  — 1) C  
<  logQ, we get

( 4 . 5 )  a 3 M S ( W  —  l i e , )  £  +

о ,1 /1««э< и Л /1в  V  V t 6  W

Furthermore,

аз И  =  u(Q  -  1|[z 2,<91/16D ( * V , < ? , 1 )  -  7 r ( w ,g , l ) )
*«<Q<u4/ie

and by Lemma 1, choosing В — 50, we get

(4.6) E
о - 1

Let

(4.7) S(u) := J 2
x^Q Ku1/16

u{Q -  l\ [xj ,Q't '*\)  
Q -  1

Since w(Q -  l|[x j, Q1/16]) = u>(Q -  1) + 0 (1 ), by using Lemma 1, after partial 
summation we have

(4.8)

Thus

S(u>) = ^Q°glogu>)2 + О (log log w) + 0 {x  l).

(4.9) o2(w) =  ^(loglog o)2(li u/ — li u ) 0  ^  ^  (loglog u  + a2)^ .

Since (log log u /)2-  (log logo;)2 ^  1, therefore, by the prime number theorem,

J 2  “ ^(1оё 1о§Р)2 = -^ (b g lo g u ;)2( lia ; '- l iw )  +  О •
w<p<w' 4 6 /

Collecting our results, we have

(4.10) a(uj) = 0 ( liu / -  liw)(loglogu; + 0 (я 2)).

Hence we can get easily that

(4.10) A x = 0 {x \).
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To do this we have to split the summation interval [xi,x] of p into intervals 
of type [u>,u/] and use the relation (4.10). The contribution of the terms
ш < ex* can be estimated roughly, the denominator p in ^  Ux̂  can be

p£j(w)
substituted by и  at the expense of the total error 0 (£ 2)-

We can estimate Б 2 similarly. We split the interval [xi,x] into subinter­
vals of type [w,u/] as earlier. Thus we have

B 2X < £  ^]d{u) + 0 (x \) ,-- ÜJLU
2

where on the right hand side we consider only those w for which exi < u> 
holds. To estimate d{u;), first we observe

UX(P)2 й 2 ^ i(p )  -  ^(bg logp)2^ + 2t](p),

whence we have
d(u>) ^ 2 (£ j — £2 + S3) + £ 4,

where
Si = £  ^ ( jO. = £ 0 ° g b g p ) 2ti(p),

p p

s 3 = \  5 ^(iogiogp)4, £4 = Y 1̂ -
V

Since (log log p)2, (log log p)4 are very slowly growing in J(u>), therefore 

Ез =  i(loglogw )4( W  -  liw) +  ( f j“ l )  ,

S2 = (loglogo.)2 ( l  + O ( p ^ j i T i ) )  "2M .

To estimate £ 1, we observe that

S i =  £  ^ ( Q - i \ [ x i Q 1/16] ) - ^ Q 2 - i \ [ x i Q 1/16] ) - L Ql>Q2,
Qi 1Q2

where
LQuQ2 = я-(^'Л<Эь<?2],1)- 7r(w,[<5i,Q2],l)- 

By Lemma 1, we get

Sx = (lW-lia,)(E — 1 |H . 0 1/16]) , .2
Q - i

T s (u;)-f
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+ ° ( E  1}) )  +  O ("/(logo .)“ ) .

Furthermore, we have

E4 <  -  1 )u (Q2 -  1)(7г(сУ,[<2ь <22],1) -  7Г(с/, [Qx,Q3], 1)),

where Q2 run over the primes of the interval [w1/ 16,« /1/ 16], independent­
ly. It is clear that £ 4 «С (liu/ —liu;)/(logw), say. Collecting our inequalities, 
taking into account (4.8), (4.9) we infer

d{u)  <  (log iogw)3(ii<*/ -  l iu o x ;  ~ ^ ~ g - i Q1/16]) +

TO((loglogu>)3(liL)1 -  liw)) + ° ( ^ og^  )̂- 

By using Lemma 11, we get

d(u>) <  (loglogu>)3(lio/ — liw).

Now, summing up for the intervals J(u ), we conclude that

(4.11) s 2 < E Ö E * í ^ ) i  +  0 ( l } ) < 4
P < X  ”

Thus, by (4.2) we have, for all but 0 (x \x l) integers n < x, the inequality 
\ux(n)\ < C x \x \  holds true.

By this the proof of our theorem is finished.
5. Remarks. By this method we can prove tha t

lim —
x x # n < X / ( * ( » ) ) - и .

I .« /2  <  У
{ 7 2 0 х *

• = Ф(у)

for any choice of / (n )  = w(n), / (n )  = Щп), g (n ) = a(<p(n)), <p(a(n)),
° И « ) ) ,  ¥>(v>(n))-

We hope that by a refinement of this method we can prove that

ш(<Рк(п)) -  ckx*+1
j *+!/2dk%2

is distributed in limit according to the standard Gaussian law, for every fixed 
к.
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INTERVAL FILLING SEQUENCES AND 
COMPLETELY ADDITIVE FUNCTIONS

J. C. PARNAMI (Chandigarh)

1. In tro d u c tio n
OO

A sequence {An} of reals with An > An+i > 0 (n G N) and An = L <
n=l

< oo is said to be interval filling if every number x G [0, X] can be written
OO

as x = £„An with en — 0 or 1. For example, { l/qn} is interval filling iff
n=l

1 < q ^ 2 (see [1]).
A function F: [0,L] —► R is said to be completely additive with respect 

to an interval filling sequence {A„} if

(OO \  OO

X > n A „) =
n=l '  n=l

for every sequence {£„} in (0,1}.
In [1] Daróczy, Járai and Kátai proved that for 1 < q < q(2), a completely 

additive function F  with respect to {1 /q n} is of the type F(x) = cx for all
OO

x € [0,1] where L = ^/яп — ^ /(q ~  1) ап^ q{k) denotes the root of the
n=l

equation L — 1 = \ /q k lying between 1 and 2.
In this paper an attempt is made to determine interval filling sequences 

for which every completely additive function is linear. In the process it has 
been possible to extend the result of Daróczy, Járai and Kátai to all q in 
(1, 2].

2. In terval filling sequences

Definition 1. A sequence {An} with A„ > An+1 > 0 (n G N) and
OO

^2 An = L < oo is said to be interval filling if every number x G [0, L]
П — 1
can be written as

OO

^ ] £nAn,
ri — l

( 2 . 1) x = £„ = 0 or 1.



2 3 0 J. C. PARNAMI

Interval filling sequences have another characterization as given in Satz 2.1 
of [1], namely:

OO

A sequence {An} with An > An+i > 0 (n G N) and L = An < oo is
fl = l

interval filling iff
OO

(2.2) A„ < ^  A j for all n.
j=n+1

We write down some immediate consequences of this result, which will 
be useful in our investigation.

Corollary 2.1. I f  {A„) is an interval filling sequence and m is a natural 
number, then {An}n>m is also interval filling.

Corollary 2.2. I f  {An} is an interval filling sequence and 1 < щ  < 
< П2 < • • • < n r is a finite sequence of natural numbers, then a number x 
can be written as

x — Ani A„2 +  • ■ ■ +  АПг + ^   ̂ £пАП) £n ~  0 or 1
n>nr

iff
0 ^ x — Ani A„2 • • • A„r ^  ^   ̂ An.

n>nr

Corollary 2.3. Let {An}, n i ,n 2, . . .  ,n r be as in Corollary 2.2, then 
x = Ani + • • • +  A„r has a representation

x — Ani + • • • +  A„r_l -j- )  ' £«АП, cn — 0 or 1.
n>nr

3. A b o u t the  n u m b ers  q(k)

For a natural number k, the equation

(3.1) qk+1 — 2qk + 9 — 1 =  0

has a unique root lying between 1 and 2 [see 1]. We denote it by q(k).
Proposition 3.1. a) The sequence (g(fc)} is strictly monotone and con­

verges to 2.
b) For q(k) < q < q(k + 1), we have

OO

(3.2)
j =1
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Proof, a) Let 2  > q > q{k + 1 ), then qk+2 -  2 qk+1 — 1 > 0  and so

(qk+1 - 2 q k +  q - l )  =  (qk+2 -  2 qk+l + q -  1 )/q  + (q -  l ) 2 /  q > 0.

Hence q > q(k) and in particular q(k + 1 ) > q(k). By the equation (3 .1 ) for 
q(k), we have

0 < (2 -  q(k))/(q(k) -  1) = (1 M *))*  < ( l /q ( l ) ) fc -  0 as к -> oo.

Hence (q(fc)} converges to 2 .
b) For q(k) < q < q(k + 1 ), we have

qk+1 -  2qk + q -  1 > 0 and qk+2 -  2qk+1 + q -  1 < 0.

These inequalities can be rewritten as 1 /qk+1 ^ ( 2  — q) / (q— 1 ) < 1 / qk i.e.
OO

j=1

4. Som e special interval filling sequences 
and unam biguous num bers

For a fixed natural number k, we denote by A* the set of interval filling 
sequences {A„} satisfying the property that

OO

(4.1) An+fc-)_i 5; ^   ̂A„4-j — A„ < An+fc
i=i

for every natural number n. By Proposition 2.1, Part b) it follows that 
{ l/q n} is in Л* whenever q(k) < q ^ q(k + 1). By Corollary 2.1, it follows 
that for any sequence {An} in Ajt and a natural number m, the subsequence 
{An}„>m is also in Afc-

P roposition 4.1. For any interval filling sequence {A„} in A*,, we have, 
for any natural n,

(4.2) An < 2An+i,

(4.3) A„+i + • • • + An+jt < A„,

OO

(4.4) ^   ̂An+j < Ar»)
J=2

Acta Mathematica Hungarica 58, 1991
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(4.5) ^n+l T -̂ n+fc+2 An.

P roof. By (4 .1), we have

oo oo

^  ̂An+l+J — -̂ n+1 ^ -̂ n+fc + 1 = ^ ] ^n+i — An
j=1 >=1

and therefore -A „+i < A„+i — An i.e. A„ < 2A„+i. This proves (4.2).
By (4.1), we obtain on using (2.2)

OO OO

^ ' An+j — An < An+  ̂  ̂ ^ ' An+k+j 
i—1 j=i

к
i.e. An+J- — An < 0. This proves (4.3). 

j =1
Now to prove (4.4). By (4.1), we have

oo

 ̂  ̂An+i An < An+k = An _̂i
j=i

oo
and so ^  A„+j — An < 0. 

i=2
Finally to prove (4.5), we obtain from (4.1)

OO

An+fc+2 = ^   ̂An-j-i.|.j An_(_i < An An _̂i
i=1

on using (4.4), and so
An+fc+2A„+i <C An.

Definition 2. For a given interval filling sequence {An}, a number x £
oo

€ [0, T], L — Y  A„, is said to be unambiguous if there is a unique represen-
n = l

oo
tation of x as Y  £nA„, £„ = 0 or 1; otherwise we say that x is ambiguous.

n = l
Now we prove some results about unambiguous numbers which will be 

useful in our investigation.
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P roposition 4.2. Let {A„} be an interval filling sequence in A k . Suppose 
that a number

X  — A „  -|- A n + i  +  • • • +  A n + t  4 ” ^  , £ m A m , £ m  =  О О Г 1
m>n+t+2

t > 0, n > 1, is unambiguous relative to the sequence {A„}. Then t ^ к — 1 
and x — An is unambiguous.

Proof. First we claim that x < An=1. Suppose on the contrary, that
OO

x > An_ i. Then 0 £ x — A„_i < x  < ^  Aj and by Corollary 2.2, x has a
j=n

OO

representation of the type x = A„_i +  ^  EjXj, Ej =  0 or 1. This is impossible
j=n

as x is unambiguous. Hence x < An_ j.
OO

Now we assert tha t x > A„ + - • •+A„+f_1+ ^  An+t+J-. Suppose otherwise,
j=i

OO

then 0 ^  x -  An — • • • — A„+t_i й ^2 An+f+j and by Corollary 2.2, x  has a
i - 1

OO

representation of the type x = A„ + -----b An+t_i + ^2 £jK+t+j, with £j = 0
j =1

or 1. This is impossible as x is unambiguous.
By the above considerations, we have

OO

An + ---- b An+t_i +  E  An+t+j < A„_i
j=1

OO

i.e. Aj — A„+t < An_i. On using (4.1), we obtain that
i = n

OO

A n + fc  ^  У  '  A  j  A n _ i  <  A n + t ,
j= n

which implies that t < к i.e. t < к — 1.
Now suppose that

OO

x An — )  ' rjrn Arn, rjm — 0 or 1.
m = l

Since x < An_i, therefore x -  A„ < A„_i — A„ < An on using (4.2). Thus we 
have r)m = 0 for m ^ n and

x = An + У ]  4mAm = A„ +  • • • + An+t +  £mAm
m > n  m ^ n + t + 2
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as expressions, because x is unambiguous. Hence x -  An has unique repre­
sentation of the type (2.1), namely

x — \ n = A n + i  - f - - - - - h A „ + t  +  smXm-
min+t+2

This proves th a t x  — A„ is unambiguous.
P roposition 4.3. Let {An} he an interval filling sequence in  Л* and x = 

=  Ai -f • • • + A* +  Y  £mXm be unambiguous with respect to {An}. Then
m^t+2

у  =  x — Ai — • • • — At is unambiguous.
OO

Proof. Suppose that у — Y  VnXn, rjn = 0 от 1. Since
n = l

У = ^ ' r̂rjArn = У , Xm < A(
m^t+2 m>t+2

on using (4.4), therefore r)n = 0 for all n < t and hence x = Aj +  • • • + At+ 
T Y  VnXn- Since a; is unambiguous, therefore Y  VnXn and Y  £mAm

n^t+l n^t+1 m^t+2
are the same representations. Thus у has a unique representation of the type
(2.1) i.e. у is unambiguous.

Proposition 4.4. Let {An} be an interval filling sequence in Л* and x =  
=  An + A„+u -f Y  £mAm> £m = 0 or 1 be unambiguous. Then we have

m>n+u+l
и < к T 1.

Proof. Since x is unambiguous, therefore so is 

L — x = Ai +  • • • -f An_i -f An+i +  • • • + An+U_i + ^  (1 — £m)Xm.
m ^ n-f-ti-f-1

By Proposition 4.3,

An+i + ---- b Xn+U_i + L  a -
m > n-f ti-f 1

is unambiguous and by Proposition 4.2 we have и -  2 < к — 1 i.e. и ^ к + 1. 
Proposition 4.5. Let {An} be an interval filling sequence in Ak. For a

OO

number x G (C, Aj), x = Y  Xn> with n,+i > n, for all i to be unambiguous
i—i

with respect to {An}, it is necessary that < n,- + к + 1 for all i.
OO

Proof. Suppose that x G (0,Ai), x = Y  Xn, with nt+j > n,- for all i is
»=1

unambiguous. Then щ  > 1 and by repeated application of Proposition 4.2,
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for every fixed j ,  Y  is unambiguous. By Proposition 4.4, we have nJ+j — 
•Zj

—rij < к +  1. Since n I+1 -  n,- > 1, therefore n j+ k  — rij > к and equality 
holds iff rij+j = rij+i-i + 1 for 1 ^ i ^ к, which is not possible in view of 
Proposition 4.2. Thus we have nj+k > nj + к + 1.

Note. If Ai ^ a; ^ L — Ai = Y  then hy Corollary 2.2, x is ambiguous.
J = 2

Moreover a number у lying between L — Ai and L is unambiguous iff x = 
=  L -  у is unambiguous and 0 < x < Ai. So the condition x 6 (0,Ai) in 
Proposition 4.5 is virtually not a restriction.

Proposition 4.6. Let {A„} be an interval filling sequence in Л*. Suppose
OO

that £ 6 (0,T), £ = Y  £nAn> £„ = 0 or 1, is unambiguous with respect to
U= 1

{A„}. Then there exists a natural number N  with the following properties:
i) For every m  > TV, £ra = Y  £n^n is unambiguous.

n > m
ii) For every m > N , at least one of em+1, . . .  ,£m+fc+i is 1.
Proof. Let P = {n : £„ = 1} and Q = {n : e„ — 0}. Since 0 < £ < L 

therefore P  and Q are both non-empty. Since f  is unambiguous, therefore 
by Corollary 2.3, P is infinite. Find a natural number M  € Q and a natural 
number N  G P  such that N > M  and N > 3. By Proposition 4.2 and 4.3, 

= Y  £nAn is unambiguous, moreover й Y  < Ai on using (4.4).
n>N n>3

Again using Proposition 4.2, we obtain that fm is unambiguous for every 
m >  N . This proves (i).

Now let m  > N . Find maximal n\ < m  such that £ni = 1 and least 
П2 > m such that = 1. Then £j = 0 for all j  satisfying ni + l < j  < П2-1. 
By Proposition 4.5, П2 ^  ni + fc + 1 < т + к + 1, also «2 ^ m +1 and £„2 = 1. 
This proves (ii).

5. C om pletely  additive functions

OO

Let {A„} be a given interval filling sequence and L = Y  An.
n=l

Definition 3. We call a function F: [0,L] —»■ R completely additive if 
for every sequence {£n} in {0,1} we have

(5.1) = $ > " F (A")-
n=l

In this section we find some interval filling sequences for which every 
completely additive function is linear.
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T heorem 5.1. Let 1 < q < 2 and F: [0,1/] —► R be completely addi­
tive with respect to the interval filling sequence {1 /<?"}. Then there exists a 
constant c such that F (x ) = cx fo r  all x in [0, L\. We shall use the following:

Lemma 5.1. Let к be a fixed natural number and {A„} be an interval 
filling sequence in A*.. Suppose that F: [0, L] —*■ R is a completely additive 
function with respect to {An}, satisfying F(L) — 0, F ф 0. Then there exists 
a natural number N  such that

(5.2) 2F(A„) < —JF(AX) -------- F (A„_j)

for all n > N .

P roof. Consider P = {n £ N : a„ = F(An) > 0} and £ = A„. If
n € P

OO

P  = 0, then an < 0 for all n and since an = 0, therefore an = 0 for
П = 1

all n and F  = 0. If P  = N then we would have F(L) > 0. Hence P ф 0, 
N i.e. £ € (0,1/). By Satz 3.2 of [1], £ is unambiguous. Let N  be as in 
Proposition 4.6. Fix any j  > N , then by Proposition 4.4

(5.3) r]j = A j  +  ^  Am
m £ P

m>j+k+2

is ambiguous. Since £ is unambiguous, therefore by Proposition 4.2, iij — A j 
is unambiguous and in view of Corollary 2.1, we have rjj — A j < Aj+fc+i. 
Hence

(5.4) Tjj К A j -j- Aĵ .̂ .̂1 < Aj_i

on using (4.5). Since ry is ambiguous and r/j — Aj  is unambiguous, therefore 
it follows from (5.3) and (5.4) that

(5.5) ту < 'У ] A„.
n > j + l

Moreover, we have

(5.6) T]j > A j  > Aj+i P • ■ • 4" A j+k

on applying (4.3). By using Corollary 2.2, we obtain from (5.5) and (5.6) 
that

(5.7) ту = AJ+1 P • • • P  Aj_|_/j P У ' ímAra
m>j+k
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for suitable £m’s in {0,1}. Since F is  completely additive, therefore it follows 
from (5.3) and (5.7) that

cij -)- ^   ̂ am
m >j+ k+ 2  

rneP

— dj+1 - f ----- (- dj+k +  £j+k+lO,j+k+l + “ m &m
m>j+A;+2

and SO

(5.8) cij < dj+i +  • • • + dj+к + Sj+k+idj+k+i ■

Thus, we have

(5 9) /  = flj+1 -----^ ai+k + ai+fc+i if j  + к + 1 e P,
l aj  S aj+1 + • • • + aj+k if j  + к +  1 ^ P.

In both the cases, we have

( 5 . 1 0 )  d j  <  d j + i  - f  •  •  •  +  d j l

where j \  is the largest integer in P  such that j -f 1 < j i  < j  +  к +1. (Existence 
of such a j i  is guaranteed by Proposition 4.6.) Set j 0 = j , and define j , +i 
to be the largest integer in P  such that ji + 1 < < ji  +  к + 1. By (5.10)
we obtain

aj, = aj.+i d------b aj,+1
and adding over all t = 0 ,1 ,2 , . . . ,  we get

aio + ah  +  aj2 H-----^ aio+i + aio+2 + • • • = - ( a i  + a2 + ------h aj0)

and therefore dj = aJ0 < - ( a !  + a2H------\-dj) i.e. 2aj < - a i  — a2--------d j- i-
C o r o l l a r y  5 . 1 .  Let F  be a completely additive function with respect to 

an interval filling sequence {An} in Aк such that F(L) = 0 .  Then F = 0.
Proof. Suppose that F ф 0. By Lemma 5.1, there exists a natural 

number N  such that

(5.11) 2F(A„) < - F ( A j ) -------- F(An_1} for all n > N .

Replacing F  by — F, we obtain that there is a natural number M  such tha t

2 (-F (A n)) < - ( - F ( A i ) ) -------- (-F (A „_i)) for all n > M

i.e.

(5.12) 2F(An) > - F ( A i ) -------- F(An_j) for ah n > M.

(5.11) and (5.12) contradict each other if we take n > Max (M ,N ). Hence 
F  = 0.
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Corollary 5.2. Let F  be a completely additive function with respect to 
an interval filling sequence {A„} in Л ь Then there exists a constant c such 
that

F(x) =  cx for all x in the domain of F.

Proof. Define F: [0,T] —► R by F (x)  = F(x) — F ( L ) f ,  L = ^n-
n=l

Then F is completely additive with F (L )  =  0 and by Corollary 5.1, F  = 0 
i.e. F(a:) = cx for all x € [0, L\, where c =

Proof of Theorem 5.1. For 1 < q < q( 1), the result has been proved 
in [1, Korollar 3.1]. For a natural number к and q(k) < q < q(k +  1), 
the sequence {1 /qn] is in Л* and the result follows by Corollary 5.2. By 
Proposition 3.1, Part a)

С1»2) =  u ( q ( k ) , q ( k +  l ) ] U ( l , g ( l ) ] ,k> 1

therefore it only remains to  prove the theorem in case q = 2.
Now let F  be a completely additive function with respect to interval

OO

filling sequence {2-n }. Since 2-n = ^2 2~m for all n > 1, therefore
m = n + 1

(5.13) F(2_n) =  Y j F {2-m ) forafi n > 1.
m=n+l

Changing n to n + 1 we obtain
OO

(5.14) F (2 -(n+1))=  Y
m=n+2

Subtracting (5.14) from (5.13) we obtain that

F{2~n) =  2F(2~(n+1)) for аП n > 1 

and by induction we have

F(2~") = 2_(n_1)F (l/2 ).

Hence for en G {0,1}

( OO \  OO

"J  =
n=l '  n=l

where c = 2 F (l/2 ). This completes the proof.

OO / OO \
F (2 "n) = 2 F ( l / 2 ) ^ e n2 -"  = c ^ „ 2 -

n=l V=1 '
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6. In te rv a l filling sequences for which every  
com pletely  ad d itiv e  function is linear

We denote by A to be the set of interval filling sequences {A„} such that 
every completely additive function with respect to {A„} is linear. We have

( 6 . 1) Afc C A for every natural number к

(Corollary 5.1),

(6.2) {1/?"} £ A for every q in (1,2]

(Theorem 5.1),
(6.3) Any plentiful interval filling sequence (i.e. an interval fill­

ing sequence {A„} such that every number between 0 and
OO

L — A„ is ambiguous) is in Л (Satz 3.1 of [1]).
n=l

Now we describe a property of A.
T heorem 6.1. I f  an interval filling sequence has a subsequence which is 

in A, then the original sequence is in A.
P roof. Let {An} be an interval filling sequence and {/xn} be a subse-

OO OO

quence of {A„} which lies in A. Set L = 53 A„ and L\ =  53 /Ь>- Let
П=1 n=l

F: [0,1] -> R  be completely additive with respect to {A„}. Define 
F i: [0,Li] —> R by setting F\(x) = F(x) for all x 6 [0, Lf\. Then F\ is com­
pletely additive with respect to {/r„} and hence there exists a constant c such 
that (m) = cx for all x 6 [0,Xi]. Since A„ —► 0 as n —► oo, therefore there 
exists an integer N  : A„ < L\ for all n ^ N  and so F{A„) = F\{An) =  cAn for 
all n  ̂N . In case IV > 1, we have \ n - i й X) An and so Ayv-i = 53 £«An,

n>N n>N
£„ € {0,1} and in turn

F(Xn - i ) = £" A" )  =  E  £" F (A") =
'n > N  '  n>N

= 5   ̂ ^ncA„ =  c ( ^   ̂ £nAn j = cAai_i . 
n>N \ > N  '

We conclude th a t F (A„) = cAn for all n > 1 and consequently for any
oo

X =  53 V n K ,  Vn €  {0,1} we have
n=l

✓ OO ч OO OO
F(x) =  Л  J > „ A n ) = J2 vn F (X n ) = = cx.

' n = l  '  n = 1 n = 1
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This proves that F (x ) = cx for all x € [0, L\.
Added in proof (July 18, 1991). Theorem (5.1) has also been proved 

independently by T . Szabó, Publ. Math. (Debrecen), 36 (1989/90). In the 
meantime Z. Daróczy, I. Kátai and T. Szabó, Arch. Math. (Basel), 54 
(1990), have extended the result to an arbitrary interval filling sequence.
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ON THE UNIFORM APPROXIMATION 
BY GENERALIZED BERNSTEIN-MEANS

R. GÜNTTNER (Osnabrück)

1. Let 5„[<7] denote the trigonometric polynomial of degree at most n 
interpolating the function g € C2* at m — 2n + 1 equidistant nodes

(1) ( '” > = r + — , «„tíK íí" ') =  s(<!m)). 1 =  0, ± 1 ,± 2 ........m
Let us focus attention on the generalized Bernstein-means

(2) к — 0 ,1 ,2 ,...  ,

which for к = 1 and к =  2 were first introduced by S. N. Bernstein. If not 
otherwise stated we take m  > к to ensure that the arguments of 5„[^] in (2) 
lie within a period of length 2ir. Bkn[g] can also be written in the form

о )  вы Ы (1) = Ё  ä(«!m)) ■»!"’(!)
i=—П

/т \
for certain functions s- ; £ C2ж (cf. [10]).

Cin is made into a normed linear space by setting

1Ы1 := sup |$(f)|.
t

The norm or Lebesgue constant ||5^п|| of the bounded linear operator Bkn 
can be determined as the norm of the so called Lebesgue function

(4) Bkn(t) := sup |5/tn[ff](0l = ^ 2  ls!m)(0l-
IWN1 it? n

It is known that (see [2] or [4])

(5) |£o„[ff](*) -  g{t)I ^ ^(1 + B0n(t)) • u(g, h),

where u>(g,-) denotes the modulus of continuity of g and h =  2-к/т. More 
generally Kis and Névai [20] investigated

( 6) l-BfcntaKO -  ff(0l ^ Mkn(t) ■ u(g, h), g £ C2jr,
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M k„(f) being optimal (for fixed к and n). Numerical evaluations of
(7) ckn := \\Mkn\\ 
are given in [10] and [7], for example we have

(8) c,„ = 1 + ±  ( c o s e c ^  -  l )  < 1 +  i ,  =  jj.

Of course (6) and (7) imply that
(9) \\Bkn[g]~ g \ \ ^ c k n -uj(g,h).
From a result of Gavriljuk (cf. [5], proof of Theorem 2) we derive that

(1 0 )  l # i n b ] ( 0  -  <7(01 i  | ( !  +  B l n ( t ) )  ■ и  ( g ,  h j  .

More generally we shall prove the following 
Theorem 1. For к = 0 ,1 ,2 ,. . .  we have

(11) -  í(OI S |(1 + Вы(<))•<•>(«. •
This estimation in some sense seems to be natural. First for every fixed 

t ф it is easy to construct a function gt € C2n, ||<7t|| = 1, gt{t) = — 1, 
gt ф const., such that B kn[gt](t) -  gt( t) = 1 + Bkn(t). Considering 2 
^ u(gt,(k  + 2)h/2) it follows that

(12) IB kn[gt](t) -  gt{t)I > ^(1 + Bkn(t)) ■ и  ^gt , ,

which means that (11) is optimal (for fixed к and n ) , t  ф t\m\  Furthermore 
as a corollary of Theorem 1 we note that

(13) ||Я*п[0] -  g\\ S ^(1 +  IIBh.ll) -w (g,  •

Now comparing this with the estimate given by (9) we prove that (13) is 
even asymptotically optimal which seems not to be true for (9).

T h e o r e m  2 .  Let к be fixed. For every e > 0 there exists a function 
gc G СУ and an infinite sequence n i(e ) ,n 2(e), ■.. such that

(14) \\Bkn[ge] - g e\\ > ^ - y ^ i l  + lltfjtnlD-w { 9c,~ ^ ~ h)  » n = nu n2, -----

2. Proofs. We omit the superscript (m). To prove Theorem 1 for arbi­
trary g (E C2я- it is sufficient to focus our attention on the interval to ^  t < 
^ to + h/2 . This is an easy consequence of the facts that if gk(t) := := g(t+h) 
then likewise Bkn[gh](t) = Bkn[g){t + h ), and if /(to  — t ) := g(to + t ) then 
Bkn[f](to — t) = Bkn[g](to + t). The proof is based upon two lemmas due to 
Kis and Névai [10]. Setting v = (к + l) /2 , к odd, we obtain
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Lemma 1. We have

3i(t) > 0 , —v ^ i < v, ( - l ) ‘+t' • S{(t) >0, v < \ i \ <n  (t0 < t  <:t0 + h/2).

Of course we have from (2) and (3)

П
(15) =

i=—n

thus
—V V—1 n

Bkn[g](t) -  g(t) = Y  +  £  + “  $(*)] • * (0 -
i= — n t= —v -f 1 *=v

Now we apply Abel’s transformation to the first and the last sum to obtain

- v - l

Bkn[g](t) -  g(t) = Y  [$(*•') -  0(f.-+i)] • ci{t) +  [g(t-v -  g(t)] ■ <t_„(í )+
i = —n

v - l

t= —ti+1 i=u+l
where

(16) <7i(t) ■■= <

Ё  sj (0  for t = 1 ,2 ,. . .  ,n ,
J=‘

E 3j(i) for г = - n ,  — n + 1 ,... ,0.
j= - n

But looking at the largest difference in the arguments we find

2u +  1(
I g(t-v) -  sr(OI ^ «  [g, h ,

thus

(17) |Bt„ M ( < ) - s ( < ) I S " ( j , ^ ^ '> ) - { l < ’- » « l +  E  M 0 I + M ') I +
i=-u+l

+ Í E  + E  n o i) } .
..j-i '  'l = — n i = ti+l
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Lemma 2. Putting <7,(t) instead o f S{(t) in Lemma 1, the corresponding 
statements remain true.

Lemma 2 together with (15) and (16) allows us to conclude that
v— 1

(18)

and

k-„(<)l + Y  ls*'(OI + M * ) l  = l '
i= -v + 1

— V— 1

(i9) y  k (oi + Y  moi = [s-„-i(t)- s-v-3(t)-5_„_5(о-...]+
i=u+l

+  [-S„+l(<) -  Sv+3(t) -  Sv+5(t) - . . . ] =  Y s  (“ «.(О) =
I = —n 
j t <0

*=—n
Si< 0

*=—n «»>0
Ё  (-».-(О) + Ё  *<(<> + 1 E  (-•< (*»  -  E  *•■(«)

l = —П 
5 ,<0

t=—n
S t >  о

= 5 E  W * ) l - 5  É  =
*=—n *=—n

From (17), (18), (19) and u = (A: +  1)/2, we have proved Theorem 1, к odd. 
The case even can be proved quite similarly, the ‘non-alternating p art’ now 
consisting of (cf. [10])

s _ * ( 0  = 0> s _ * +1( 0  > 0 , . . .  , Sk( t )  > 0, Sk+1(t) > 0,

and the largest difference in the arguments that must be taken into account 
now being

\9 (< |+ i) -  5(01 ^  <*> (g,  +  1^ h j  .

To prove Theorem 2 we only have to consider the functionals

rn(g) ■■= \\Bkn[g] -  g\\ / (\\Вкп\\ + 0 ,  qn(g) := ^  (̂ g, ,

which both fulfil the properties of a seminorm p with norm ||p|| =  1 in the 
Banach space In particular this means for p that

P( g)^  0, p ( a - g ) =\ a \ - p ( g ) ,  p( f  + g) < p(f)  + p(g),

IIp II = inf{M|p($) ^  M  ■ ||5 ||,(? € C2„} = 1.
Now Theorem 2 is an easy consequence of the following lemma proved in [8].
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Lemma 3. Let rn, qn be seminorms, ||r„|| =  ||gn || = 1, defined on a 
Banach space X  and satisfying rn(g) £ qn(gt), g e X . I f  qn(g) -* 0 (n —► oo), 
for every fixed g 6 X , then given t  > 0 there exists an infinite sequence 
П\,П2,Пз,. . .  and an element g € X  such that qnk(g) > 0 and

rn(g) > (1 -  e)-qn{g) (n = n i ,n 2,n 3, . . . ) .

3. Remarks. Theorems 1 and 2 remain valid for discrete operators 
(3) defined by symmetric kernel functions satisfying the analogue of (15), 
Lemma 1 and Lemma 2. This is discussed in further details in [9] with 
emphasis on the case к = 0.

The norms ||Ron|| of the trigonometric interpolation operator Bon =  Sn 
at m = 2n +  1 equidistant nodes are well known, see [3]:

11 Bqxi 11 = -m
, / 2 г ' + 1 т г \ 1  1 ^  /2г + 1 т Л
1 + 2 у cosec -------  — I = — > cot ( —--------- )

4—* \  m 2 J m 4-^ V m 4 )
i = 0 1=0

These numbers coincide with the norms Am_i(T) of the algebraic interpola­
tion operator at the Chebyshev nodes T.  For the asymptotic expansion of 
the norms see Giinttner [6]. Bernstein [1] has shown that ||Bi„|| < А/ж.
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A PÁI-TYPE LACUNARY 
INTERPOLATION PROBLEM

M. R. AKHLAGHI (Prestonsburg)

1. Introduction. For a fixed positive integer n > 2, let гun(x) be a 
polynomial of degree n with real distinct zeros in [-1,1]. If m  is any non­
negative integer less than n, let

(1.1) X n<m := {xkj  : u;Ü\xk,j) =  0, k = l  j  = 0 , 1 , . . .  , m).

We first consider the interpolation problem of finding a polynomial P(x ) 
of degree (m + l)(n  — у )  -  1 such that

(1.2) P (]\ x k<j) = ak}j ,  k = l , . . . , n - j ,  J = 0 ,1 ,. . .  , m,

where s are arbitrary real numbers. This interpolation problem, which 
may be called the problem of (0; 1; . . .  ; m) interpolation, is singular for any 
m > 1, i.e., for any positive integer m, 1 < m < n — 1, there exists no unique 
polynomial P(x)  of degree (m +  l)(n  -  у )  — 1 satisfying (1.2) on the set 
of nodes X niTn. For if P(x) is such a polynomial, then P(x) + cu>n(x), for 
any constant с ф 0, is another such polynomial. To insure the regularity 
we consider the modified (0; 1; , . . .  ; m) interpolation problem, and add the 
condition

(1.3) P ' ( - l )  = «o

to (1.2) where ao is an arbitrary real number. We shall call this lacunary 
interpolation problem, the problem of modified (0; 1; . . .  ; m)  interpolation.

The case m  = 1 was studied by Pál [6], where he used the condition 
P(a) = 0, а ф Хк,о, к = 0 ,1 , . . .  ,n , instead of (1.3). Eneduanya [1] has 
proved some convergence results for the case m = 1, using conditions ( 1.2) 
and (1.3) on Х пд, with

(1.4) u n(x) = П„(а;) = - n ( n  -  1) J Pn-i ( t)d t  = (1 -  x ^ P ^ - i i x ) ,
- l

where Pn(x) is the Legendre polynomial of degree n with normalization 
_P„(1) = 1. Eneduanya [2] and Szili [8] have also investigated (0; 1) prob­
lem for c j „ ( x )  = Tn(x ) and H„(x), respectively.
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In this paper we study the problem of modified (0; 1; 2) interpolation on 
for ш„(г) =  Пп(х). Section 2 deals with the statements of the main 

results and some preliminaries. In Section 3 we prove the regularity of this 
problem and in Section 4 we obtain the fundamental polynomials. Section 5 
is devoted to the convergence problem.

2. Preliminaries and main results. Let xjt = xj^o, 1 = к = Щ 4  = £jt,ъ 
1 ^  к < n — 1, and Xfc,2, к = 1 , . . .  , n — 2, be the zeros of П„(х), П(,(х), and 
П "(х), respectively. The following relations are valid:
( 2 . 1)

1 — Í n —2 ^  ®n—1 í n —1 ^ 3 - n  — I ;  — 2 , 3 , . . . .

It is known that the polynomials P„_i(x) and Пп(х) satisfy the differential 
equations

(2.2) (1 -  x2)P"_!(x) -  2х Р '_ г(х) + n(n -  1 )Pn. 1(x) = 0

and

(2.3) ( 1 - х 2)П"(х) + тг(п -1 )П п(х) = 0 

respectively. (2.3) leads to

(2.4) % к t2 — к — 1 , 2 , . . . ,7i 2.

Let tk(x) and 4 ( г ) denote the fudamental polynomials of Lagrange in­
terpolation such that

.  .  '  4 ( X j )  =  Skj : =  {  0  f  ^  3(2.5) j l  k] I  i k = j

. n ( t i )  =  h j  ( f c , i  =  i , . . . , n - i )

These polynomials can be represented as

П„(х)

(fc,j =  !,••• ,n)

( 2 .6 )

and

(2.6a)

We recall that

4 ( x )  =

5 0 0  =

(x -  xjt)IT„(xjt)

Пп ( 0  ^n -l(x )
(х-4)П"(4) (x-4)P '_a(4)'

(2.7)
' P „ _ i(i)  = l = ( - í r - ^ ^ í - i ) ,

p//_ i ( 1 ) =  (n+l)n(n-l)(n-2) =  ( _ 1) n - l p " _ i ( _ 1)
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We shall require the following:

Г п'„(1) = - n ( n  - 1) = ( - i ) n+1n ; ( - i )
( 2 .8 )

n{i(l) = —üiílLiIll = (—1)пП "(-1).

From (x — xjt)^it(x) = , on differentiating once and twice we get

(2.9)

( 2 .10)

4 ( i )  =  ^ ( - i ) " +1 =  - 4 ( - i ) ,

< ; ( - ! )  =  _ 5 Í 5 - i l  =  - < ( i )

respectively. The known orthogonal property

l
( 2 .11) J Pk(x)Pj{x)dx = 2АД  l Sk,j 

-1

and the known identities

K - i ( * )  -1
n—1

Ex -  xk Fn_i(xfc) "  2j( j  -  1)J— ̂
2j 1 PJ,_1(xfc)FJ/_1(x), 2 < /г < n — 1

and
П—1

т г г  = 1Щ) Effi - w-.(&)e,-. w. 1 s * <. -1
lead to

l
(2.12)

/- l

and
1

(2.13) Г"-1

t -  Xk
dt — 0, 2 < A: < n -  1

< -

Our main results are:

-dt =
1 - f í *

1 < Jfc < n -  1.
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T heorem 1. The modified (0 ;1 ;2 ) interpolation on X nt2 with w „ ( i)  = 
= Пп(х) is regular.

If we denote the fundamental polynomials of modified (0; 1; 2) interpola­
tion by Lkto(x), Lk,i(x) and Lk^{x),  then we shall prove

T heorem 2. The fundamental polynomials of modified (0; 1; 2) interpo­
lation are given by

(2.14) Lk<0(x) = An_fc+1(x) + n n(x)£ffc(a;), 1 < к n,

where Ak(x), 1 £ к < n are the explicit formulae of the fundamental polyno­
mials in the paper of Eneduanya [1], and

(2.15) -

* ( * ) = I  .

f f t ( x )  =  J  n f i f e h “  з а У / ^ l )  '  2  Í  1 ,

9n(x) f Пп(Д) ,  (  l-<n(j)-Kx + l)C(l) I n(n-l) n2 (ri—l)2 у (1—ar)2 ' 2 1—x J ’

(2.16) I M (z )  =
П„(х) P n - i ( t ) r n _  i (0

(1 - e k) p £
x) f  F n - i ( i )

( Ш  t -  -1 &
dt, 1 < к ^ n — 1

and
(2.17)

L k,2(x) =
( 1 - х р П п(х) f  Pn^ ( t ) P '_ f i t )

2 n2(n -  1У P i
n{x) f
n-Axk) J-1 t -  xk dt, 2 < к й n — 1.

For /  € C(r) ( [ -1 ,1]), r > 2, set

П

(2.18) <Эзп-з(а;; / )  := f { x k)Lkfi(x) + ^  /'(& )£*д(*)+
n —1

k=l k~\

+ E
fc=2

Г (* * )Г м (* )  +  Л - 1 ) щ ^ у

We shall prove

i d a  Mathemaiica Hungarica 58, 1991
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T heorem 3. If f  € C(r)([—1,1]), г > 2, then for every x € [—1,1] and 
n > | ( r  + 2) we have

(2.20) \ f ( x )~  Qn(x;f )\  = O ( l ) n t_ r lo g n w ( i ; / (r)),

where lj(-; f ^ )  is the modulus of continuity of f ( r\ x ) .
Remark. For r = 2, the Theorem 3 implies convergence only if

y /n \ognw(-]  f " )  = o(l). 
n

This relation obviously holds if for example f "  € Lip a , ^ < a  ^ 1.

3. Proof of Theorem 1. Set
Q(x)  = фзп-з(я) = П„(х)д(х), degg(x) < 2n -  3.

We shall show that Q(x) =  0 is the only polynomial of degree 3n-3  satisfying
(1.2) and (1.3) with

q0 = 0 and ak,j = Q ^ i x k j )  = 0, k = l , . . . , n - j ,  j  = 0 ,1 ,2 .

Q(x) satisfies Q(xk,o) =  Q(xk) = 0. Q'(xk,i) = Q'itk)  = 0,1 < fc < n —1 
and Q"(xk, 2 ) = Q"(x к) = 0, l < к < n — 2 implies q'(£k) ==0, 1 < / с < п  — 1 
and q'(xk) = 0, 2 < к ^  n — 1 respectively. Hence q \x )  = cFn_i(x)P^_1(x). 
But degg(x) < 2 n - 3, therefore, c = 0 and hence q(x) =  Ci for some constant 
Ci. Using (1.3) we get ci =  0. Therefore Q(x) = 0 and this completes the 
proof of Theorem 1. □

4. Explicit formulae for {Lk,o(x)}^=1, {Lk,i(x )}£ lj and {Lk,2{x )}kZr  
Let us denote the fundamental polynomials of the modified (0; 1; 2) interpo­
lation problem by {L*:,o(x )}£=i> {Lfc,i(x )}/c=i and {bfc,2(x )}£=2 respectively. 
Every polynomial P(x) of degree 3n — 3 has a representation of the form

П П — 1

(4.1) P(x) = P ( xk)Lk,o(x) + £  PXtk)Lk, i(x )+
k=i k=1

+ E  P ’\ x k)Li3 (x)  +

P roof of T heorem 2. (i) The fundamental polynomials Lfc,o(x), 1 ^ 
^ к < n are determined by the condition

IJk,o{,x j') — йk,ji j  — 1 ,... ,Tl
=  j  =  1,  • • • ) П — 1

Lk,o(x i)  = °< j  = 2 ,. . .  , n —1

. 4 o ( - 1) = 0-
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Set
(4.3) Lkio(x) = А„_^+1(ж) +  n„(*)rfc(x), deg rk(x)  < 2n -  3
where Ak(x), 1 ^  к ^ n are the exphcit formulae of the fundamental poly­
nomials given in [1]. (These are used with suitable corrections, since there 
are some misprints in the text in [1]. It may be remarked that our no­
tations are slightly different from his. Thus while we are listing nodes as 
— 1 = zi < Ж2 < • • • < Zn-i < x n =!, the nodes he uses are numbered in the 
reverse order.) These polynomials satisfy

A?+l(*Ej) — ^kj •> k , j  = 1 , . . .  ,n ,
(4.4) < 4 ..Ц + ,« ,-) =  0, A: = 1,. . ,n , j  = 0 ,1 ,.. • ,n  -  1,

/с = 1,. . , 71.

Lk,o(x) satisfies the conditions (4.2), if

(4.5) »•*(&) =  ° , J = 1 , . . .  , n -  1,

(4.6) r k ( x j )
A n - k + l ( X j )

2П'„(*;) ’
j  = 2, ,n  -  1,

(4.7) r * ( - l )  = 0.
For к -  n, we see from [1], th a t

A "(X л _  ~ 2 n n (* j)  Л  , _  я Л
Al( (1 -  жу)2П^(1) V +  2 1 J7 ’

for 2 < к < n — 1

А П - к + \ { Х ] )  =

and, for к = 1, we obtain

-2П?(Х,) , , ,

2n(n—1)
3 (T ^ ) ’

< i * i )  =
-2П 'п2(х ,)

1 +

j  = k

n(n -  1)
( 1  +  X j )  .

(1 + xi ) 2n „  (—1)
From (4.6) it follows that

' Пп(̂ >) ( 1 I "(n-i) l \ и _  1
n 2 ( n - l ) i V ( l + X j ) 2 +  2 1 + X ; / ’ -  t )

___ n.n>A___ к ф  j(хк- Х])2П*(хк)' K r  ■>
(4.8) r'k(xj)  =  <

-»С"-1) к -  73(1-х|)Пк(х*)’ J
к = 2 , . . .  ,n  — 1

п'»(*>) ( 1 I «(«-I) 1 \ г ,___n*(n-i)s I (l-x .P  + 2 1 -x jh  к -  n.
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From using (4.5) and (4.8) we get (2.15). From (2.15) and (4.7), the formula
(2.14) for Lkfi(z), 1 £ к < те, is now evident.

(ii) Fundamental polynomials Lkii(x),  1 ^ к n — 1 are determined by 
the conditions

' Lk,i(xj) = 0, j  = l , . . . , n ,
~ j  = 1 ,...  , n — 1,

L'k,i(x j) = j  = 2 ,. . .  , n — 1,

. 4 i ( - 1) = °-
Set, for 1 ^  к < n — 1,

(4.10) Ькл(х) = n „ ( í) í |t ( i ) ,  degsjt(x) < 2n -  3.

Lk,i(x ) satisfies the conditions (4.9), if

(4-11) = n ^ & j ,  i  =

( 4 . 1 2 )  4 ( x j )  =  0 ,  j  =  2 , . . .  ,  n  —  1 ,

(4.13) ifc (-l) = 0.

From (4.11), (4.12) it follows that

/ / \ _  П п (» Х -1 (» ) 1 Fn_ i(x )P '_ i( j)
^  '  ( * - ífc)n"(& )^_x(efc)n„(& ) ( i - a ^ - i U f c ) ’

Using (4.13), we get

(4.14) sjt(ai) 1 Г pn - i ( t ) K - i ( t ) ,
( i - a e i f c ) i

From (4.10) and (4.14) we get the formula (2.16) for Lk,i(x), 1 < A: < n — 1. 
Proof of (2.17) is very similar to the proof of (2.16). We omit the details.

5. Some estimates. To find some estimates for the fundamental polyno­
mials we need the following facts (see [4], [1]):

( 5 .1 )  | P „ ( x ) |  <  1,

(5.2) |П„(*)| <

Acta M athem atica  Hungarica 58, 1991
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(5.3)
Cl ^  < y /l  -  *2 < c2==t, [ * ] < * < » - ! ,

(5.4)

(5.5)

_J__
f 8 -як ’ 2 < fc ^  [f]

= f = ,  [ f ] <  л < « - 1,
y/8n(n-k)  ’ 2

fc=l

(5.6) E  j n \ t ) d t  < E  /  n a( o *
fc=l_x fc=l_i

(5.7) |n„(i*)l ^  слД , 1 < fc < n

(5.8)
n —1
E  Hfe(®)| = o (n ) ,
fc=2

where ci, C2 and c are positive constants independent of n and k. Further
[5]

П— 1
(5.9) £  IC W I = 0 ( B).

Jt=l

From Theorem 7.3.1 of Szegő [7] one may conclude that

( l - ^ n 2- i ( 6 ) ^ 2- i ( 0 ) >

n —1 n—1
We now estimate Ло(х) = |Tjfc,o(x)l> ^ i (x ) = Z  |Ffc,i(x )l and A2(x) =

k=2 k=1

= Z  \Lk,2 (x)\.
k=2
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Lemma 5.1. For - 1  < x < 1 we have

(5.11) A0(x) = 0 ( n 2\/n  log n).

Proof. It is enough to prove this inequality for x ^  Xk, к = 1 , . . .  ,те 
since (2.14) implies Ao(xfc) = 1, A: = 2 , . . .  ,n  — 1 and Ao(±l) = 0. From
(2.14), (2.15) and (5.8), for 2 < к < n -  1, we have

Ti — 1
(5.12) A0(x) < O(n) + |П„(х)| (/fc,i(x) + 4 ,2(x ) ) ,

where
k=2

h , i ( x )  = [ 3
1 nii
-1

K ( t )  1 - 4  (0

and

4,2(з;) =

n(,2(xfc) (t -  xfc)2 

7l(n -  1)

dt

3 ( 1 - * 2 )

From (1.4) and (5.5), for — 1 < x < х/t, we have
-1

X

1кЛ ^  =  П (П  -  l ) P 2_ ! ( x fc) /  ( Í  -  Xfc) 2 ^

( - 1 ----------- Ц-  x 1 + Xi,/n(n -  l ) P 2_x(xfc) Vxjt 

and hence, for -1  < x < Xfc, we get

4д(з;) <
1

n { n  -  l ) P 2_ x(Xfc) x k -  x '

1
For Xk < x < 1, since 4 , i ( l )  = 0 by (2.11), and since f  dt < we

X
obtain the same estimate as above with Xfc — x instead of x — Xfc. Hence for 
— 1 = x = 1, we have

5̂' 13  ̂ 4,i(a;) = n ^ n  _  i)p a_ i (Xfc) |x -  xfc| '

On using (1.4), (5.1) and (5.5), for -1  ^  x ^ 1, we also get

1
(5.14) 4,2(з;) ^

(! - х к)Рп -Л ХкУ
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Therefore, using (5.12), (5.13) and (5.14) we see that

- 1 1Пп(х)|

fc=2 k=2

Moreover (1.4), (2.6), (5.2), (5.3) and (5.4) show that
П —1

A o W S O № _ g _ ^ + ,n „ ( l ) | S l T 3 ^ ^ .

(5.15) Л0(х) < 0 ( n ) +  2 ^ |  A + 0 (n 2л А log n).
k=2 Гп~1УХк>

The Schwarz inequality and relations (5.4) and (5.5) imply that

and hence, from (5.15), we get (5.11). □
Lemma 5.2. For — 1 < x й 1, we have

(5.16) Ai(x) = O(n).

X P (t)P' (t)
Proof. We first estimate J  n_1 t _ ^ ~ l—-dt. By partial integration, for 

— 1 < x < £jfc, we have
- l

X

I
- l t -  £k

dt =
t -  £k 

so that (2.7) yields

(5.17) < !«-,<*>
J t

Xw-1

Pn- i №  -  tk) -  Pn-i(p
(< -  & )2

Pn-l( t)d t

dt = P L  i(*) + +
-1 ffc '  2 ( * - & )  2(1 + a )

- l
From (2.6a) and (5.6), we have

/  P 2 m  r
(5Л8) J  = ^ - i(a)  /  d t=

1 [ P L i(0
2 J ( < - a ) 2

dt.

- l - l

so that in view of (2.6a) (5.17), (5.18), for -1  < x < £*, we obtain
XI/- l (* -  6 )

dt
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For < x < 1, using (2.13), we have
X

I- l
t -  Zk

dt
1 1 t -  €k

dt

where the last integral does not exceed 2 
Hence for all x ф £l>

X

(5.19) 1J
-1

Pn-l(t)P^-l(t)  
t -  ik

dt s + +
Applying (2.16) and (5.19), for -1  < x < 1, we obtain

\Lk,Ax)\ < 3
|П„(®)|

( i - ^ ) ^ 2- i ( 6 ) | n „ ( 6 ) l
+

П„(х)
n „ (& )

1 |П „(х)^(х)|

Therefore we obtain (5.16), for — 1 < x < 1, from (5 .2), (5.7), (5.9) and
(5.10). □

Lemma 5.3. For — 1 < x ^  1, we have

(5.20) A2(x) =  0 ( - y .

P roof. It is sufficient to verify (5.20) only in the case when x ф x k, 
к = 2 , . . .  , n — 1. Let -1  < x < x;t, we first estimate

X

h(x) = J
-1

Pn-l(t)P^_x(t)
t Xjt

dt.

By partial integration, we get

2/fc(x) = P L  A * )  , 1+X — Xfc 1 -f Xfc 4 L-1

r j -  .(«I
Zk)2

dt.

The absolute value of the last term does not exceed
X

1 4-1

, 1 1
<2dt = ----------- П ----- 'ХкУ XL- -  x 1 +  XL

Therefore

1Д0О1 ^ X k  — X
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For xk < x < 1, by (2.12), we have

dt
x k

and the integral, on the right, does not exceed |^ ~ f -  Hence for all x ф x k,

(5.21) 14001 < \X -  Xfcl

Using (2.17), (5.21) and (2.6), we obtain

ir fr ll ^ C1 -  x l ) M x ) \  
k'2 = n ( n -  l)p 2 _ i (Ifc)'

Therefore

I4(*)|
(x k) 'k=2 4" ’ k=2

Applying Schwarz inequality and relations (5.4) and (5.5), we get

^ ) s ^ ( E 4 w ) 1/2( E ^ ) ,/2S
k=2 k=2

which completes the proof of Lemma 5.3. □
P roof of T heorem 3. If f ( x ) € ( 0 r )[— 1,1], then by a result of Gopen- 

gaus [3], there exists a polynomial Gm(x; f )  of degree m  > 4r + 5, such that 
for all x G [—1,1]
(5.22)

a = 0,1,... ,r,| / ( % ) - G W ( x ; / ) |  = 0 ( l ) ( ^ ^ ) r" i ( } / L l Z ; / W )i

where w (-;/(r)) is the modulus of continuity of the function f ( r\ x ) .  From
(5.22), we see that

/ ( l )  -  с 3п - з ( 1; / )  =  / ( - i )  -  G 3n - 3( - i ;  / )  =  Л - i )  -  Gí,n- 3( - i ;  Я  =  о.

Therefore, for r > 2 and 3n — 3 > 4r + 5, using (2.18) we conclude that
n -l

1/00 -  Q(x; f ) I ^ 1/00 -  G3n -3(x; / ) |  +  Y ,  ^ « - з Я * ;  / )  -  f ( x k)\\Lk,0(x)\+
к—2
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n—1 n - 1

+ E  lGW & ; /) -  /'(6)l|£*,iWI + E  /) -  /"UUP jmMI,
k= 1 k=2

for 1 < x < 1. Using (5.11), (5.16), (5.20) and (5.22) we see that 

|/(x ) -  « ( . ;  / ) I =  Ö ( l ) ( ^ f  И с т + ° )  +

+ 0 ( 1)

/ \ / l  -  x 2 
l  3n -  3

for n  ^ Since и ( х \  f )  is a non-decreasing function we obtain (2.20).
Thus Theorem 3 is proved. □

The author would like to express his appreciation to Professor A. Sharma 
for many helpful suggestions.
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GRADED RADICALS OF GRADED RINGS

M. BEATTIE (Sackville) and P. STEWART (Halifax)

Let G be a group and A a radical property in the category of associative 
rings. Using the generalized smash product of [1], we introduce a method for 
defining a corresponding radical property Aref in the category of associative 
G-graded rings and grade-preserving ring homomorphisms. We investigate 
the properties of these new radicals and compare them with graded radicals 
which have been previously studied.

For A = J,  the Jacobson radical, Aref is the usual graded Jacobson radical. 
(See for example [2], [7].) If A is the prime radical, then for G finite and R  a 
G-graded ring, Aref(Ä) is the graded prime radical of [3], i.e. the intersection 
of the graded prime ideals of R. However, this intersection of graded ideals 
may be properly contained in Aref(Ä) for G infinite. If A is the strongly prime 
radical, then Aref is the graded strongly prime radical of [8] for G finite, but 
again may properly contain this ideal for G infinite. We also discuss the 
cases of A equal to the Levitzski, Brown-McCoy and von Neumann regular 
radicals, and compare Aref to suitable intersections of graded ideals. 1

1. Prelim inaries and  definition o f  the reflected  radical

Let G be a group with identity e. A ring R is called G-graded if R = 
= ® Rg, and RgRh Q Rgh for all g, h £ G. The elements of Rg are called the

g£G
homogeneous elements of grade g. If r £ R, rg denotes the pth homogeneous 
component of r. If RgRh — Rgh for all g ,h  € G, then R  is called strongly 
graded. A left R-module M  is G-graded if M  -  ® Mg, and RgMh Q M gh

g£G
for all g,h £ G. Ideals of R  are called G-graded if they are graded left and 
right submodules of R. (Ideal will always mean two-sided ideal.) A graded 
ideal P  of R  is called a graded prime ideal of R if I J  Q P  for graded ideals 
/ ,  J  of R implies that I  Q P  or J  C p.  For I  any ideal of a graded ring R, 
I g  will denote the largest graded ideal of R contained in I , i.e. I q  is the 
graded ideal generated by the homogeneous elements of R  contained in I.

For R a G-graded ring, we define the associative ring Ä#G* to be the 
left Д-module ®Rpg, g € G, with multiplication defined by (rpg)(sph) = 
= rsgh~iQh [1]. If R has an identity, 1, and G is finite, then Ä#G* is also 
a ring with identity, namely £  Pg where we write pg for 1 pg. The group G

g £ G
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acts as a group of automorphisms on the right of R#G*  by (rph)a = rphg.
If J  is a graded ideal of R, then we define J#G * to be all finite sums of 

elements xpg, x G J, g G G. J#G*  is an ideal of R#G*  invariant under the 
action of G.

If /  is an ideal of R#G *,  define ideals In  and /1 of R  by 
In  = { r : r G R,rpg G I  for all g G G},

and
I 1 =  ( I r ) g ,

i.e., /f  is the largest graded ideal in In- Note that contains any graded 
ideal L such that L#G* Q / ,  for if К  is a graded ideal of R  with 7f#G* Q I,  
then К  Q In, and therefore К  Q (/ r ) g  = /■*■• If P  is a prime ideal of R#G*,  
F l is a graded prime of R  since if IJ Q P* where I and J are graded ideals, 
(/#G*)(</#G*) Q P. Note that if J  is a graded ideal of R , then (J#G*)* =

t
= J. If R  has an identity, then x = riPg, £ I  implies xp9x = r,pgi G I  for

«=1
each i. Also rpg G /  for all g € G implies that Phg(rpg) = rhpg G I  for all 
g,h  G G, and therefore In  is a graded ideal of R , i.e. In  = /*. Thus if I  is 
invariant under the action of G on R#G*, I  = I^#G*.

The next lemma will show that this equality holds for any ring R if I  is 
a G-invariant intersection of prime ideals or a radical.

A graded ring R without identity may be embedded in a graded ring 
R 1 with identity in the following way. Let R 1 = R X  Z,  with addition and 
multiplication defined by

(r, n) + (s, m)  = (r + s, n + m) and (r ,n)(s,m) = (rs + mr + ns ,nm)  
for r,s G R  and n ,m  G Z.  Now define

( R 1)e = {(r,n) : r G Re,n  G Z)
and

( R 1)g = { ( r , 0 ) : r e R g)
for q different from e. R = R x  {0) is a graded ideal of R 1, and R#G* is an 
ideal of R X# G \

Throughout this paper, for R  a G-graded ring not necessarily with iden­
tity, R 1 will be used to denote the G-graded ring with identity containing R 
as a graded ideal as constructed above.

Lemma 1.1. Let R be a G-graded ring and I  an ideal of R#G*. Suppose 
that I  is either an intersection of prime ideals of R#G * or \ (R#G*) for  A 
a radical in the category of  associative rings. Then In  is a graded ideal of  R 
and if I  is G-invariant, I  — I^#G*.

P r o o f . Embed R  in a graded ring R 1 with identity as described above. 
Then R#G* Q R 1#G*.  Suppose that an ideal I  of R#G *  is also an ideal of 
Äa#G*. Then by the discussion above, if I  is G-invariant, I  — /^#G*.

A da  M aihematica Hungarica 58, 1991



GRADED RADICALS OF GRADED RINGS 2 6 3

But if I  is an intersection of prime ideals of R#G*,  then by Andrunakie- 
vic’s Lemma [4, Lemma 61], I  is an ideal of R1#G*. Also if I  = \ (R # G * )  
for some radical A, then I  is an ideal of R 1#G* by [4, Theorem 47]. □

We now define the reflected radical. Recall that a nonempty class A of 
associative rings is a radical class if

(i) A is homomorphically closed;
(ii) if А / В  and В are in A, then A is in A;

(iii) if Ia , a  € Д, is an ascending chain of ideals of A with each Ia in A, 
then UI  a is in A.

Ot

We denote by A(A) the largest ideal of A which is in A. Recall tha t a 
radical A is called hereditary if A(/) =  A(A) П I  for any ideal /  of A.

Now let F  be the functor from the category of associative G-graded 
rings to the category of associative rings such that F(R) = R#G*  and for /  
a grade-preserving ring homomorphism from R to S, F ( f )  : R#G* —> S#G * 
is defined by F(f)(rpg) =  f( r)pg. The functor F  is exact and preserves 
unions of ascending chains of ideals. Thus we have the following:

Proposition 1.2. If  A is a radical class in the category of associative 
rings, then

Aref = {R: R is a G-graded ring with R#G*  € A}

is a radical class of G-graded rings.
Proof. This follows directly from the above discussion or see [5, The­

orem 1]. □
P roposition  1.3. I f  A is a radical in the category of associative rings, 

then for R a G-graded ring, Aref(Д) = (A(72#G*))1, and thus Aref(72)#G* = 
=  A(Ä#G*).

2. The reflected  Jaco b so n , p rim e and strongly  p rim e rad icals

In this section, we discuss Aref for three radicals A for which a definition 
of a graded version of A already exists, namely for A the Jacobson, prime 
or strongly prime radical, and compare the reflected radical to the existing 
graded versions of these radicals.

2.1. The reflected Jacobson radical. Recall that a (graded) left R- 
module M  is (graded) irreducible if R M  = M , and (0) and M  are the 
only (graded) submodules of M.  The graded Jacobson radical of R, Jg ( R ) 
has been defined as the set of elements of R which annihilate all G-grad­
ed irreducible left (or all graded irreducible right) 72-modules. (Equivalent 
definitions and a discussion of the graded Jacobson radical may be found 
in [2] or [7].) In [1], it is shown that for R a G-graded ring with identity,
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Jq(R)#G* =  J(Ä #G *), so that Jg( R ) = JTei(R)- A modified version of 
the argument in [1] will yield the same result for a G-graded ring R, not 
necessarily with identity.

We show first that every irreducible left Ä#G*-module is a graded 
irreducible left Ä-module and vice versa.

First note that any G-graded left Д-module M  has a left Ä#G*-module 
structure via

(1) (rpg)m = rm g.

Let M  be an irreducible G-graded Д-module, and write M '  for M  with the 
Ä#G*-module structure above. Since R M  = M,  (Ä #G *)M / = M ' . Let V

t
be an Ä#G*-submodule of M '  and let i  = xg, be a nonzero element of L'.

i=i
t

Then (Ä #G *)x = R xgi. Since M  is an irreducible G-graded Ä-module,
i=i

t
the submodule {m : m 6 M , R m g = (0)} = (0); thus R xgn as a nonzero

i=i
G-graded Д-submodule of M ,  must equal M.  Therefore V  = M ' , and M'  is 
irreducible.

Let M  be an irreducible left Ä#G*-module. For each g € G, let Mg =
= Y, {Rgh-iPh) M.  Since (Ä#G*)M  = M , M  is the sum of the M"  and 

heG
we must show that this sum is direct. Suppose x € Mg П МЦ, with g 
and h different elements of G. Since (Rpa) M " = (0) for s different from 
t, (R#G*)x = (0). But since M  is irreducible, the submodule {m  : m  € 
€ M, (Ä#G*)m  = (0)} — (0), and thus x = 0.

Define a left Д-module structure on M "  = ® M " by
g€G

(2) rx = (rpg)x

for r 6 Д, x G Mg . As in [1], it is easy to verify that M "  is a G-graded 
left Ä-module, and since (Ä#G*)M  = M , RM " = M " . A little checking 
shows that the left R # G *~module structure defined by (1), when applied to 
M " , will agree with the original Ä#G*-module structure on M.  Thus, M "  
is irreducible.

Again, it is straightforward to check that if we start with an irreducible 
G-graded Д-module M  and apply (1) and then (2), the resulting G-graded 
Д-module structure is that of the original.

Thus we have the following.
Proposition 2.1. The categories of irreducible left R#G*-modules and 

irreducible left G-graded R-modules are isomorphic.
We can now see that JTe{ = Jq -
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P roposition 2.2. For R a G-graded ring, JIe{(R) = =
= Jg (R) .

P roof. Suppose r € (J(Ä#G*))*, r homogeneous of grade g. To show 
that r € J G(Ä), we show that r annihilates M ,  for M  any irreducible G- 
graded left Д-module. But since rp^ 6 J(Ä #G *) for all h € G, (rph)M' = 
= (0) for all h £ G, and thus r M  = (0). Therefore JTef g / G(Ä).

To complete the proof, we show that Jg ( R ) # G * g J{R#G*).  Let 
rpg € Jg(R )# G *; since JG(Ä) is graded, we may assume r is homogeneous. 
Let M  be an irreducible left Ä#G*-module. Then M"  is an irreducible G- 
graded left Д-module so rM" = (0) and гМЦ = (0) for all h G G. Since 
(Ä#G*)M  = M,

(rpg)M  = (rpg) Rhf- 'PfM  g rMg = (0)
f,hec

and rpg annihilates M . □

2.2. The reflected prime radical. We now consider A = N ,  the prime 
radical. Recall that for a ring A, N(A)  is the intersection of the prime ideals 
of A and contains every nilpotent ideal of A. In [3], the ideal N g ( R )  is defined 
to be the intersection of the graded prime ideals of Д, for G finite and Ä a 
G-graded ring with identity. Let us denote by N g ( R )  the intersection of the 
graded primes of Д for any group G and G-graded ring Д.

Theorem 2.3. (i) N g ( R )  % N Te{(R).
(ii) If  G is finite, N g{R) = Nie((R).
(iii) If  G is infinite, the inclusion in (i) may be proper.

Proof. If P  is a prime ideal of Ä#G*, then P 1 is a graded prime of Д 
and thus N g{R)#G*  C iV(Ä#G*) so that NG(R)  g 7Vref(Ä).

Now suppose G is finite. If Ä has an identity, then (ii) follows from [3, 
Theorem 5.3]. Otherwise recall tha t the prime radical is a hereditary radical 
so that
jV(Ä#G*)= N (Ä : #G*) П Ä#G* since N  is hereditary 

= (Ng(ä 1)#G*) П Ä#G* by [3, Theorem 5.3]
= (iV(Ä1)G#G*) П R#G*  by [3, Lemma 5.1] which holds for all 
groups G

= (iV(Äx)G П Ä)#G*
= (N ( R x) П ä )g#G* since Д is a graded ideal of Д1 
= N ( R ) g # G *  since N  is hereditary.

The fact that the inclusion may be proper for infinite G follows from 
the next example. □

Example 2.4. Let A: be a field and Д = k[t], the polynomial ring graded 
by G = Z  in the usual way. Since (0) is a graded prime ideal, N g ( R )  = (0). 
Let I  be the principal left ideal (Ä#G*)ipo of Ä#G*. Then / 2 = (0),
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J  = I  + I(R#G*)  is a nilpotent two-sided ideal of P#G*, and therefore 
N (R # G * )  = Nre{(R)#G* is nonzero. □

2.3. The reflected strongly prime radical. A third example of a radical 
for which a graded version has been defined is the strongly prime radical. 
Recall that if I  is an ideal of a ring A, a (right) insulator for I  is a finite 
subset F Q I  such that if Fa = 0 for a € A, then a = 0. The ring A is said 
to be (right) strongly prime if every nonzero (two-sided) ideal of A  contains 
an insulator. An ideal P  is called strongly prime if А/P  is a strongly prime 
ring. The strongly prime radical of A is

s(A) = n{P : P  is a strongly prime ideal of A}.

If R  is a G-graded ring, then R  is said to be (right) graded strongly prime 
if each nonzero graded ideal of R  contains an insulator [8]. The following 
definition is also from [8]:

Definition 2.5. The graded strongly prime radical of a G-graded ring 
R  is defined to be

sg(R ) = fl{P: P  is a graded strongly prime ideal of Ä}.

From [8, Corollary 1], sg{R) =  ( s ( R ) ) q .

Theorem 2.6. For R a G-graded ring, the graded strongly prime radical 
defined above is related to the reflected radical sref in the following way.

(i) For all G, sq(R) Q sre{(R).
(ii) If G is finite, sg(R) = sre{(R).

(iii) For G infinite, the inclusion in (i) may be proper.
Proof, (i) To prove the required inclusion, we show that sg(P)#G* C 

Q s(R#G*)  = sref(P)#G *. Let P  be a strongly prime ideal of RffG*.  It suf­
fices to show that P^ is graded strongly prime in R,  since then sg(R)#G* C 
Q P^#G* C p  for all strongly prime ideals P  of RffG*.

Suppose that P^ is properly contained in I  where I  is a graded ideal 
of R. Then /# G *  is an ideal of RfiG*  and I#G *  is not contained in P, so 
th a t (7#G* + P ) /P  contains an insulator F  and we may assume that F = 
=  {a\pgi + P , . . .  , anpgn + P )  where a \, . . .  , an are homogeneous elements of
I .  We will show that {ai + P ^ ,. . .  , a n -f-P*}is an insulator in I  /  PK Assume 
th a t for some r e  R, a ,r e P* for all i = 1 , . . .  , n. Since P* is graded and 
the a,- are homogeneous, a ,r9 6 P* for all i = 1 , . . .  , n and all homogeneous 
components rg of r. It follows th a t а{Гдрь в P  for all i = 1 , . . .  , n and all 
g ,h  £ G, and therefore (a,pflj) (rph) € P  for all i = 1 ,...  , n and all h € G. 
Since F is an insulator, rph 6 P  for all h G G. Thus r € P* and the proof 
of (i) is complete.

Now assume that G is finite and Q is a graded strongly prime ideal 
of R. Using Zorn’s lemma, we may choose P  maximal in the set of ideals
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I  of R#G*  containing Q#G*,  and such that I / Q # G * does not contain an 
insulator in R#G*/Q#G*.  By [9, p. 1101], P is a strongly prime ideal of 
ß#G *.

We wish to show that = Q. Suppose p i properly contains Q. 
Let {ai + + Q} be an insulator with o i , . . .  , a* G P*, and let

F  =  {aipg +  <?#G*: i =  1 ,. . .  ,k, g G G} . If (a,pg) £  bjpg] G Q#G*
i = 1

for all i = 1 , . . .  ,k  and all g G G, then by summing over </, we see that
t

53 a;bjPgj G Q#G* for all г =  1 ,... , fc. Thus, afij G £? for all i = 1 , . . .  , fc, 
i=i
j  =  1 ,...  , < so that b \ , . . .  ,bt G Q■ It follows that F  is an insulator in 
P/Q#G*,  contradicting our choice of P; therefore P* =  Q. By Lemma 1.1 
and the fact that P is strongly prime, we see that

s(Ä#G*) = s(R#G*)[#G* Q P j #G* = Q # G \

Intersecting over all graded strongly prime ideals Q, we obtain s(R#G*) Q 
£  sg (R)#G*.  Thus for G finite, sg = sief.

The last statement follows from Example 2.8. □
Lemma 2.7. Let R be a strongly graded ring with 1, G an infinite group. 

Then if I  is an ideal of R#G* containing some pg, I  — R#G*.
Proof. Let h be any element of G. Since R is strongly graded, there

t
exist X{  G R h g - 1 »  Vi  £  R g h - l > t  =  1 , . . .  , f ,  such that 53 x iVi =  ! •  But then

i=i
t

Pg e I  implies ph = 53 ix tPg)(yiPh) e l .  a
i=i

Example 2.8. Let R  be a strongly graded ring with identity and G an 
infinite group. By Lemma 2.7, if I  is an ideal of R#G*  containing any pg 
then /  is all of R#G*.

Let P  be a strongly prime ideal in P#G*. Since R # G * / P has a fi­
nite insulator but the pg, g G G, are an infinite set of mutually orthogonal 
idempotents, ph G P for some h G G. Thus P  = P #G *, s(R#G*) — RffG*  
and sTef(R) = R. However, since maximal graded ideals are graded strongly 
prime [8], sa (R)  is not R. □

3. M ore exam ples o f reflected rad icals

In this final section we discuss the reflected Levitzki, Brown-McCoy 
and von Neumann regular radicals.

3.1. The reflected Levitzki radical. Recall that an ideal /  of a ring A 
is called locally nilpotent if every finitely generated subring of I  is nilpotent.
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The Levitzki radical of A, L(A),  is the intersection of the prime ideals P  of 
A  such that А / P  has no nonzero locally nilpotent ideals. Equivalently, L(A)  
is the union of the locally nilpotent ideals of A  [4, Chapter 6].

Definition 3.1. For R  a graded ring, L q(R) is the intersection of the 
graded prime ideals P of R  such that R / P  has no nonzero graded locally 
nilpotent ideals.

Proposition 3.2. For R  a G-graded ring, Lq{R) =  (X (P))g-
Proof. If P  is a prime ideal of R , then it is easy to see that Pq is 

a graded prime ideal of R. Furthermore, if R /P  has no nonzero locally 
nilpotent ideals, then R /P g has no nonzero locally nilpotent graded ideals. 
For if I  is a locally nilpotent graded ideal in R/Pg , then ( /  + P ) /P  is a 
nonzero locally nilpotent ideal in R/P.  Thus Lg(R) g (L(R))g■

Conversely, since L(R),  and hence (L(R))g , is a locally nilpotent ideal, 
(L(R))g g Q for all graded prime ideals Q such that R / Q  has no nonzero 
locally nilpotent graded ideals. Thus L(R)g Я Lg(R). □

We now compare Lg and LTef.
Theorem 3.3. (i) For any group G, L g (R ) § Lref(i£).

(ii) If  G is locally finite, L g {R) = Lie[(R).
(iii) For infinite G, the inclusion in (i) may be proper.

Proof. Let P  be a prime ideal of Ä#G* such th a t R#G*/ P has no 
nonzero locally nilpotent ideals. Then, P* = Er is a graded prime ideal of 
R, and we show that R / P * has no nonzero locally nilpotent graded ideals.

Let /  be a graded ideal containing P * such that J / p t  is locally nilpo- 
tent. We will show that the ideal (/#G * + P ) /P  is a locally nilpotent ideal

of R#G*/P .  Let W  = I  ^2 aijp9t: j  = 1 ,. . .  ,m j  be a finite subset of

I#G*.  The set {(a,y)3 : i = 1 , . . .  ,n , j  = 1 ,...  ,m , g € G} is a finite 
subset of I  and so the subring S it generates satisfies S k g P* for some 
positive integer k. Thus, if T  is the subring of R#G* generated by W,  then 
T k g S k# G m g  g P. It follows that (7#G* + E ) /E  is alocally nilpo-
tent ideal and so /#G *  g P. Thus /  g P* and hence L g (R) g P*. This 
completes the proof that Lg (P )#G * g L (P # (j *) so tha t Lg{R) í  Lie{(R).

To prove (ii), we show that Lre{(R) is locally nilpotent and then the 
statement follows from Proposition 3.2. Let W  = {bi , . . .  ,bs} be a finite 
subset of Lre{(R). The subring generated by W  is contained in the subring 
S  generated by the homogeneous components of the elements of W; call 
this set V = { a i , . . .  ,a n}. Let H  be the (finite) subgroup of G generated by 
elements h of G such that a, € Rh for some a, (E V . The finite set {a,p/,: i = 
=  1 ,. . .  ,n , h € H]  is in L(P#G *), and hence the subring T it generates 
is nilpotent, say T m = 0. Now if , cm are (not necessarily distinct)
elements of V  with с,- € Rh,, then c i . . .  crnpgm = Cjpgi c2pg2 . . .  cmpgm G T m 
where gm can be any element of H and the g, are defined inductively by
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<7,_ 1 =  higi. Since T m =  0, c \ . . . c m =  0; thus the subring S  of LTef is 
nilpotent.

Example 2.4 shows that the containment Lq g Lref may be proper. 
For here, R = A:[t] has no proper locally nilpotent graded ideals, so that 
Lg ( R ) = (0) although L(R#G*)  2 N(R#G*)  is nonzero. □

3.2. The reflected Brown-McCoy radical. Recall that G(A), the Brown- 
McCoy radical of a ring A, is the intersection of the ideals M  of A  such that 
A / M  is a simple ring with identity.

Definition 3.4. For R a G-graded ring, define Qg{R) to be the inter­
section of the graded ideals of R  such that R / M  is a graded simple ring with 
identity.

P roposition 3.5. For all G-graded rings R, G(R)g g  Gg (R)> and this 
containment may be proper.

Proof. Let M  be a graded ideal of R such that R /M  is a graded simple 
ring with identity e + M.  We wish to show that G(R)g g M  for all such M.

Suppose not. Then G{R)g A M  = R and e = i  + m for some x 6 G{R)gi 
m  G M.  Also R / M  has an identity so we may choose Q = A +  M , a maximal 
proper ideal of R / M . Then G(R) Q Q and hence e 6 Q. This is impossible 
since Q was a proper ideal of R /M .

The example following [2, Lemma 12] shows that the inclusion may be 
proper; here R  is a commutative ring with 1 so G(R) = J(R)  and Gg(R ) =
= J g ( R ) .  □

T heorem 3.6. (i) For all G, Gg{R) g  GTei(R)- 
(Ü)  I f  G ÍS  finite, Gg(R ) =  GrefiR)- 

(iii) The inclusion in (i) may be proper.
Proof. Assume first that R  has an identity 1. To prove (i), we show 

that £g(ä )#G* g G(R#G*) = Gret(R)#G\
Let M  be an ideal of Ä#G* such that R # G * /М  is a simple ring with 

identity w -(- M . We will now show that R / M f is a graded simple ring with 
identity and it will then foDow that Gg(R)#G* Q M^fiG* Q M  for all such 
M.

Suppose there is a graded ideal T  of R which properly contains M  
Then T#G* is not contained in M  and T#G * + M  — R # G * . Therefore

t
there exist a{ € T, gi G G, m  € M  such that ^  а,рЭ1 + m  — w. Since

i=i
wpgk -  Pgk e M, akpgk -  Pgk € M , we have

Pgk (a kPgk — Pgk ) =  ( a k)ePgk ~  Pgk € M .

t
Therefore [(afc)e — 1 ]p9k € M  for к = 1,. . .  , t and if we let к = П N e - 1 ] ,

k=1
then крдк 6 M  for к = Since w -f M  is the identity in
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wph -  Ph € M  for all h but if h £ {gi , . . .  ,gt}, wp^ = mph G M  and so 
Ph G M . Thus крд G M  for all g G G; therefore к G M * С T.

By the definition of к , к = (—l )4 +  7 where 7 G T. Therefore T  = Ä, 
is a maximal graded ideal of R as required and Gg {R)Í^G* Q G(R#G*)  

for R a ring with identity.
Now suppose th a t R  does not have an identity and embed R  in R 1 as 

usual. Suppose that M  is a maximal graded ideal of R 1. Then (Ä-f M ) / M  is 
a graded ideal of R 1 / М  and so is either (0) or Я 1 / М .  If (Ä + M ) / M  = (0), 
then Gg(R) Я R Я M . If (Я + M ) / M  -  R 1 / М ,  then since R 1 / М  = 
= (Ä + M ) / M  = R / ( R  П M), R n  M  is a maximal graded ideal of R, and 
Gg{R) Q R Г\ M.  Hence in either case, Qg{R) Я M  for all such M  and
Ga(R) Я Gg{R1).

Therefore we have

Gg(R )#G -=  {Gg{R)#G*)  П (Я # С * )
Я (Gg(R1) # G *) n (R#G*)  by the above argument 
Q Q(R}#G*)  П (Ä#G*) since Ä1 has an identity 
= Q(R#G*)  since Q is hereditary [4, p. 125].

To see that this inclusion may be proper, let k be a field, (x ) the in­
finite cyclic group and R  = k(x) the group ring. R  is strongly Z-graded 
and so, since s(A) Q Q(A) for all rings A, by Example 2.8, ^ref(Ä)#Z* = 
= Q(R#Z*) = R # Z * .  However, because (0) is a maximal graded ideal, 
Qg {R) =  (0). Therefore Qg{R) is properly contained in Qie{(R), and state­
ments (i) and (iii) are proved.

Now suppose th a t G is finite and let /  be a graded ideal of R such 
that R / I  is a simple graded ring with identity. Then is an ideal of

and since Ä #G *//#G *  = (Я //)# С *  has a 1, we may choose an 
ideal M  of R#G*  maximal in the set of ideals containing I#G*.  Since
I#G*  is invariant under the action of G , IftG* Q N  = П M 9, where M 9g£G
is the image of M  under the automorphism g G G. Therefore (/# С * )д  = 
= I  Q N r . By the maximally of 1 , 1  — N r , and so by Lemma 1.1, N  = 
— I#G*.  Since R # G * / М 9 is a simple ring with 1 for all g , Q(R#G*) Q N  = 
I#G*.  Intersecting over all maximal graded ideals I ,  we obtain Q(R#G*)  c 
Q Qg (R)#G*,  and thus Qg{R) = Grei(R).  □

3.3. The reflected von Neumann regular radical. Recall tha t, for any 
ring A , the regular radical of A, r(A) ,  is the unique largest von Neumann 
regular ideal of A, where an ideal I  of A is regular if and only if every 
finitely generated right (left) ideal of /  is generated by an idempotent [6, 
Theorem 1.1]).

Definition 3.7. For R a G-graded ring, let t g { R )  be the unique largest 
graded von Neumann regular ideal of R. Clearly r c ( R ) = t(R)g -
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Lemma 3.8. Let R be a G-graded ring with identity. I f  x i , . . . , x n 
are homogeneous elements of R of degree <q,... ,gn respectively and Rx\-\- 
+  . . .  + R x n = Ru for some idempotent u, then for each g £ G, there is an 
idempotent v = v(g) £ Ä#G* such that (aq -f . . .  4- xn)pgR#G*  = v(R#G*).

Proof. Direct calculation shows that (xpg)(bipgig+ .. •+bnpgng)(xpg) = 
= xpg where x = aq +  . • . + ®n and b\ , . .. ,bn are such that bixi+.. ,+bnx n = u. 
Then v = (xpg)(bipgig + . . .  + bnpgng) is the required idempotent. □

T heorem 3.9. (i) For all G, ro{R) 4 rTe{(R).
(ii) R#G* is a von Neumann regular ring if and only if for all g £ G, 

x £ Rg, there is a у £ Rg-1 such that xyx  = x. Thus, even for finite G, the 
inclusion in (i) may be proper.

Proof. To prove (i), we assume first that R has a 1.
Let F = { u i,. . .  ,Ufc} be a finite set of elements of гс(Л )#С * and let 

I  be the right ideal generated by F. Then, since 1 pg = pg is in R#G *,  we 
may assume that the elements of F  are of the form (aq + . . .  + xn)pg where 
the x, are homogeneous elements of rc{R).

From Lemma 3.8, we see that Ui(72#G*) = tq (R#G*)  for some idem- 
potent tq, and (u2 -  VjU2)Ä#(?* = uq-K#G* for some idempotent uq. More­
over, since tqtiq(Ä#G*) = 0, iquq = 0. Therefore tq and iq = w2 — W2vi 
are orthogonal idempotents and ui(R#G*)  + U2(R#G*) = (iq -f )R#G*.  
Since v\ tq is an idempotent, we can repeat the argument with 1x3 and 
tq +  V2- Continuing, we obtain I  = w(R#G*)  for some idempotent w. Thus 
rG{R)#G* is a regular ideal of and so ro{R)#G * Q r(Ä #G *) and
r a ( R )  Я riet(Ä).

If R does not have an identity, embed R in Д1, and argue as in the proof 
of Theorem 2.3, using the fact that r is a hereditary radical and r o ( R l ) = 
= r (R1)a-

Now assume that R#G*  is regular. Then for each g £ G, r £ R g, there 
is a z — xpgi £ R#G*  such that rpg = (rpg)xpg2(rpg) = rxg- irpg and so 
r = rxg—ir.

To prove the converse, we show that the subring T  of R l #G*  which 
is generated by Ä#G* and {pg : g £ G} is regular, and then use the fact 
that every two-sided ideal in a regular ring is regular. Let H  be a finite 
set of elements of G, w = ^  ph, and let S be the subring of T  generated

heH
by w(R#G*)w  and {p/,: h £ H } .  Then by [6, Lemma 1.6], S  is regular if 
and only if for each g,h  £ H  and for each x £ pgSph, there is a у £ PhSpg 
such that xyx  = x. But it is easily checked that the condition in (ii) then 
guarantees S  is regular. Since T  is the union of such subrings S , T  is regular 
and thus so is Ä#G*.

The last example shows that the inclusion (i) may be proper. □
Example 3.10. Let R = Z2[X ]/(X 2) be G = Z/2Z  graded by Rq = 

= {0,1} and R\ = {0, £+1} where x = X + (X 2). It follows from Theorem 3.9
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(ii) that is regular, so tha t rref(Ä) =  R,  but since R  has only one
proper ideal, namely the nilpotent principal ideal generated by x, r(R) = (0) 
so that r(R)o = tg (R) = (0). □
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COMMUTATIVITY RESULTS FOR PERIODIC RINGS

H. ABU-KHUZAM (Beirut)

A theorem of Herstein [8] states that a ring R which satisfies the identity 
(xy)n = xnyn , where n is a fixed positive integer greater than 1, must have 
nil commutator ideal. In [1], the author proved that if n is a fixed positive 
integer greater than 1, and R  is an n(n — l)-torsion-free ring with identity 
such that (xy)n = xnyn for all x ,y  in R,  then R is commutative. In [7], 
Gupta proved that if R is a semiprime ring satisfying (xy)2 -  x2y2 € Z  for 
all x ,y  in R , where Z is the center of R, then R is commutative. Recently 
[3], it was proved that a semiprime ring R  such that for each x in R  there 
exists a positive integer n = n(x) > 1 such that (xy)n -  xnyn 6 Z  and 
(x 2y)n -  x2nyn 6 Z  for all у in R, then R  is commutative. In this direction 
we prove Theorem 1 and Theorem 2 below.

R is called periodic if for every x in R, there exists distinct positive 
integers m = m(x),  n = n(x) such that x m = i n, By a theorem of Chacron 
(see [6, Theorem 1]), R is periodic if and only if for each x 6 R, there exists 
a positive integer к = k(x)  and a polynomial /(A) = f x(A) with integer 
coefficients such that xk = xk+1f(x).

Throughout this note, R  is an associative ring, Z  denotes the center 
of R, N  denotes the set of nilpotent elements of R, and [x,y] denotes the 
commutator xy  — yx.

We start with the following lemmas. Lemma 1 is well known, Lemma 2 
is proved in [5], Lemma 3 is proved in [4], and Lemma 4 is a result proved 
in [2].

Lemma 1. I f  [x,[x,j/]] =  0, then [xfc,y] = kxk-1[x,y] for all integers 
к  > 1.

Lemma 2. I f  R  is a periodic ring, then R has each of the following prop­
erties:

(a) For each x  € R, some power of x is idempotent.
(b) For each x  € R, there exists an integer к = k(x) such that x — x k is 

nilpotent.
(c) If f :  R  —► R* is an epimorphism, then f ( N )  coincides with the set 

of nilpotent elements of R*.
(d) If  N  is central, then R is commutative (Herstein).

Lemma 3. Let R be a periodic ring. I f  N  is commutative, then the com­
mutator ideal of R  is nil, and N  forms an ideal of R.
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Lemma 4. Let R  be a periodic ring such that N  is commutative. Suppose 
that for each x in R and a in N ,  there exists an integer n = n(x, a) ^ 1 such 
that [zn, [ in, a]] = 0 and [жп+1, [xn+1, a]] = 0. Then R is commutative.

Now we will state and prove our first theorem.
T heorem 1. Let n be a positive integer and let R be an n(n  + ^-torsion- 

free periodic ring such that (xy)n — ynxn £ Z  and (xy)n+1 — j/n+1xn+1 £ Z.  
If N  is commutative, then R  is commutative.

P ro o f . By Lemma 3, the set N  of nilpotent elements of R is an ideal of 
R , and since N  is commutative, we have

(1) n 2 q z .

Let e be an idempotent element of R, and let x be any element in R. From 
the hypothesis

(e(e + ex -  exe))n — (e + ex -  exe)nen £ Z

thus
(e +  ex — exe) — (e + ex — exe)e £ Z

and hence (ex — exe) £ Z. This implies that e(ea: — exe) = (ex — exe)e and 
hence ex = exe. Similarly, xe = exe. Thus ex = xe, and

(2) the idempotent elements of R  are central.

Let x and у be any two elements of R. Then by the hypothesis,

(3) (xy)n — ynxn — Z\ £ Z  and (yx)n — xnyn = z? £ Z.

Now (xy)nx = x(yx)n and using (3), this implies that (ynxn + Zi)x = 
= x(xnyn + Z2 ). So Xn+1yn — ynXn + 1 = (z\ — Z2)x. Thus,

(4) [хп+1,[хп+1,Л ]  = 0 for all x , y  in R.

Let a £ N,  put у = a + 1 in (4), and use the fact that N 2 S Z  in (1) to get 
that n[a:n+1, [xn+1, a]] = 0. Since R is n-torsion-free, this implies that

(5) [ in+1, [zn+1,a]] = 0 for all x £ R, a £ N.

Repeating the above process from (3) using the hypothesis (xy)n+1 — 
—yn+1xn+1 £ Z  we get

(6) [xn+2,[a:"+2,a]] = 0 for all x £ R, a £ N.

Now, using (5), (6), and Lemma 4, we see that R must be commutative. 
This completes the proof of Theorem 1.

A d a  Maihematica Hungarica 58, 1991



COMMUTATIVITY RESULTS FOR PERIODIC RINGS 2 7 5

The following example shows that the analogue of Theorem 1 is not true 
if the condition “(xy)n - y nx n G Z and (ij/)n+1 - i /" +1x"+1 G Z” is replaced 
by the condition “(xy)n — xnyn G Z  and (xy)"+1 -  xn+1y"+1 G Z” .

Example. Let Ä = j  (Ц q) | a, b G G F (3 ) |. Clearly, R  is periodic since
it is finite, and the set of nilpotent elements N  is commutative. It is easy to 
verify that (x y )4 = x4y4 and (xy )5 = x5y5. R  is also (4) (5)-torsion-free but 
not commutative.

In Theorem 2 below, we prove that if only the condition “(xy)n+1-  
- y n+1xn+1 G Z ” is replaced by the condition “(xt/)n+1 — xn+1j/n+1 G Z” 
in Theorem 1, then the result still holds. In preparation for the proof of 
Theorem 2, we need to prove the following lemma.

Lemma 5. Let R be a ring with characteristic q ф 0  and let n be a positive 
integer. Let f : R —» R* be an epimorphism. If  R is n-torsion-free, then R* 
is n-torsion-free.

Proof. Let d be the greatest common divisor of q and n. This implies 
that q = k\d  and n = k2d for some positive integers k\ and k2• If d ф 1, 
then Char R — q ф k\, and hence there exists an element у G R such that 
k\y  /  0. Now

n(kiy) = (k2d)kxy = k2qy = 0.
This contradicts the hypothesis that R is n-torsion-free. So d = 1 and 
(g, n) = 1. Since / : R —> R* is an epimorphism, then for each x * G R * there 
exists an element x G R such that x* = f (x ) .  Now

qx* = qf(x) = f(qx)  = /(0 ) = 0  for all x* G R*.

So Char R* = q', where q' divides q. Hence (q',n) = 1 since (g, n) = 1. This 
implies that rq' -f sn = 1 for some integers r and s. If ny* = 0  for some 
y* G Ä*, then

У* = (rq' + sn)y* = r(q'y*) + s(ny*) = 0.

So R* is n-torsion-free.
Theorem 2. Let n be a positive integer and let R be an n(n + l)-iorsion- 

free periodic ring such that (xy)n — ynxn G Z and (xy)n+1 — x"+1yn+1 G Z . 
If  N  is commutative, then R is commutative.

Proof. A s in Theorem 1, since A is a commutative ideal, we have

(7) N 2 g Z.

Also, since (xy)n — ynxn G R and R is n-torsion-free, the proofs of (2) and 
(5) in Theorem 1 still hold, and so

(8) the idempotents of R  are central,
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and

(9) [x"+1,[x"+1,a]] = 0 for all x € R, a € N.

R  is isomorphic to a subdirect sum of subdirectly irreducible rings Ra . Since 
R a is a homomorphic image of R , it is easy to verify that
(10) each R a satisfies all the hypotheses of R  except possibly that 

Ra may not be n(n +  l)-torsion-free.
We now distinguish two cases.

Case 1: R a does not have an identity. Then, since Ra is periodic, 
Lemma 2(a) implies that for each xa € R a, there exists a positive inte­
ger t = t(xa ) such that x^ is idempotent. By (10), the proof of (8) holds for 
R a, and x„ is a central idempotent. But R a is subdirectly irreducible and 
has no identity in this case. So x^ =  0 and R a is a nil ring. This implies that 
R a is commutative since the set of nilpotent elements of R a is commutative 
from (10).

Case 2: R a has an identity element l a . Since Ra is periodic, (2.1a )‘ = 
=  (2.1a)J for distinct positive integers i and j , and hence Char Ra — qa /  0. 
So by Lemma 5, Ra is n(n +  l)-torsion-free. This implies, using (10), that
(11) Ra satisfies all the hypotheses of R , and thus we may assume 

that R  is subdirectly irreducible with identity 1.
Again as in Case 1, for each x 6 R, there exists a positive integer t = f(x) 
such that x1 is a central idempotent. Using (11), we have x l = 0  or xf = 1. 
Thus,

(12) every element of R  is either nilpotent or invertible.

Let x and у be any two elements of R. Then by the hypothesis,

(13) (xy)n+1 -  xn+V +1 = г € Z  and (yx)n+1 -  yn+1x n+1 = z' <E Z.

Now (xy)"+1 x =  x(yx)"+1 and using (13), this implies tha t (х"+1уп+1 + г)х = 
=  x(yn+1xn+1 +  z1). So xn+1yn+1x -  xyn+1x n+1 = (z ' — z)x.  Thus,

(14) x(xn+V +1x -  xyn+1x n+1) = (xn+V +1x -  x y n+1xn+1)x.

If x is invertible, then (14) implies that [x, [x", j/n+1]] =  0 and hence,

(15) [xn , [xn, yn+1]] = 0, where x is invertible and у G R.

If x is nilpotent, then since N  is commutative and the commutator ideal is 
nil, we have,

(16) [xn ,[x " ,y n+1]] = 0 where x is nilpotent and у £ R.
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Now, using (12), (15), and (16) we have,

(17) [xn, [x", yn+1]] = 0 for all x ,y  in R.

Let a £ N , put у = a + 1 in (17), and use the fact that N 2 Q Z in (7) to  get 
that (n +  l)[x", [xn, a]] =  0. Since R  is (те +  l)-torsion-free, this implies that

(18) [xn,[xn,a]] = 0 for all x £ R,  a e N .

Now, using (9), (18), and Lemma 4, we see that R  must be commutative. 
This completes the proof of Theorem 2.
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UMKEHRSÄTZE FUR RIESZ-VERFAHREN 
ZUR SUMMIERUNG VON DOPPELREIHEN

S. BARON (Ramat-Gan) und H. TIETZ (Stuttgart)

1. E in leitung
Es seien p und q zwei nichtnegative reelle Zahlen, Л = {A^} und p  = {pt} 

zwei streng monoton gegen oo strebende Folgen nichtnegativer Zahlen. Bei 
vorgegebener Doppelreihe

( 1. 1) 2  Ukt
k,t=о

mit komplexen Gliedern und der Teilsummenfolge {smn} mit smn 

sei für alle x, у > 0

7/4 ,7t

:=  S  u ki
k ,t= 0

(1.2) R ( x , y ) : = - J ^  ( z -A * )p{y -  p t )quH

und für alle m, n = 0, 1, . . .

^ m ,n

(1*3) R m n  *= Tp q ^  ̂ (^m + 1 1
Лт+1^п+1 kt=0

Wir verwenden schon jetzt die Bezeichnungen aus Abschnitt 2. Die Reihe
(1.1) heißt beschränkt R-summierbar zum Wert er, kurz bR-£) ukt = er, wenn 
gilt R ( x ,y ) = 0(1) Л R(x ,y )  —> er für x ,y  —> oo; sie heißt beschränkt R*- 
summierbar zum Wert er, kurz bR*-£) = er, wenn gilt Rmn = 0(1)A
AÄmn —> er für m ,n  —> oo. Die Reihe (1.1) heißt absolut R-summierbar 
zum Wert a, kurz aR-]T) u^i = er, wenn gilt R(x,y) — i i ( l )  Л R(x,y) —» er für 
x, у —► oo; sie heißt absolut R*-summierbar zum Wert er, kurz aR*-X) u^t = er, 
wenn gilt Rmn = 0(1) Л —► er für m, n —> oo.

Für p = q = 1 ist durch (1.3) das Verfahren der bewichteten Mittel 
definiert, das für А = (fc) und p = {t} gerade das (C, 1 ,1)-Mittel

1
(m + l)(n + 1)

m , n

£
k,(=0

(1.4)
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der Folge {smn} ergibt.
Außer einem “high indices theorem” für R von Mears [8], auf das wir 

in Abschnitt 4 zurückkommen, und einigen Resultaten von Burljai [3, 4] für 
bewichtete Mittel, wurden für Riesz-Verfahren unseres Wissens Umkehrsätze 
nur für die speziellen (C, 1 ,1)-Mittel (1.4), meist in allgemeinerem Rahmen, 
behandelt. Neben Knopp [6] und Meyer-König [9] (sowie den bei diesen Au­
toren genannten Arbeiten) sind hier zum Beispiel noch Agnew [1], Topuriya
[19], Celidze [5], Obrechkoff [13] und Slepencuk [15, 16, 17] zu nennen.

Ausgangspunkt unserer Untersuchungen ist der folgende Umkehrsatz von 
Knopp [6], S. 575-578, für beschränkte (C, 1 ,1)-Summierbarkeit.

Satz K. A us b(C, 1 ,1 ) -^  %  = о folgt b-^2 u^i = er, wenn die folgenden 
zwei Bedingungen erfüllt sind:

m  n

2 2  ^ Ukl = °b(m + *)>
A r= l 1 = 0  

n m

= °fc(n + !)•
(=1 k=о

In Abschnitt 3 wird Satz К für beschränkte und für absolute R*-Sum- 
mierbarkeit verallgemeinert. Durch Spezialisierung ergeben sich außer Satz 
К Resultate von Young [20] und Obrechkoff [13]. In Abschnitt 4 beweisen 
wir ein “high indices theorem” für beschränkte und für absolute R-Summier- 
barkeit. Unsere Methoden sind neben beschränkter und absoluter Summier- 
barkeit auch auf andere Summierbarkeitsbegriffe für Doppelfolgen anwend­
bar. Wir werden darauf allerdings nicht näher eingehen.

2 . B ezeichnungen
Wenn nichts Besonderes gesagt ist, sollen alle Indizes von 0 an laufen. 

Terme mit einem negativen Index sind gleich 0 zu setzen.
Ist { in} eine Folge komplexer Zahlen, so sei A x n := xn — z„_i für alle 

n. Ist {yn} eine weitere Folge komplexer Zahlen mit yn /  0 für alle n, so 
bedeute xn = o(y„), xn = 0 ( y n ) und xn = il(yn) beziehentlich xn/yn —* 0, 
sup \xn/yn\ < oo und £  IА(ж„/т/„)| < oo.

Ist {xmn} eine Doppelfolge komplexer Zahlen, so sei A mxmn := xmn — 
A nxmn . xmn х ГП'П—\ und A mnxmn Д т (Дпхтп ) — 

= Дп(Дт жт п ). Ist {ym„} eine weitere Doppelfolge komplexer Zahlen mit 
Утп Ф 0 für alle m ,u, so bedeute xmn — o(t/mn), xmn — ö(yrnn)i %mn ■— 
= оь(утп) und xmn = ü ( y mn) beziehentlich xmn/ ymn -> 0 für m, n ->■ oo (im 
Pringsheimschen Sinne), sup \xmn/ ymn\ < oo, xmn = o(ymn) Axmn = 0 ( y mn)
Und ^  |Amn(®mn/j/mn)| ^  OO.

Für die Reihe (1.1) bedeute b-^2 um =  ff so viel wie smn = 0 (  1)A 
Asmn —*■ a und bedeute a - ^  = er dasselbe wie smn = f l( l)  Л smn —> о .

(1.5)

( 1.6)
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Auch für jede auf (0,oo) X  (0,oo) definierte Funktion /  ist f ( x , y ) —► а 
für x, у —► oo im üblichen (“Pringsheimschen”) Sinne gemeint, bedeutet 
f (x ,y ) — 0 (1) dasselbe wie su p |/(x ,i/) | < oo und f ( x ,y )  = i l ( l ) ,  daß 
für jede Wahl der Indexfolgen {xm}, {j/n} und mit tmn := / ( x m,y„) gilt 
tmn =  Í2(l) .

3. U m kehrsätze für R*
Wenn nichts Besonderes gesagt ist, sollen die Zahlen p und q immer ganz 

sein. Aus (1.3) ergibt sich dann durch Anwendung der binomischen Formel

P.9

Rn = E
r , s = 0

( - 1)
r+Ä

\ r  ..8 /  vm + l^n+l /^/_0
Xk t i ukt-

Spalten wir hier den Term für (r, s) = (0,0) ab, so erhalten wir für die 
Teilsummen der Reihe (1.1) die Gleichung

P><7 /  \  /  \  1 m ,n

S m n  =  R m n -  ír) + XI
r , s = 0  W  W  A m  +  l / i n + l  k l = Q

( r , j ) 5Í ( 0 , 0 )

aus der man (bei Teil b) wegen der absoluten Permanenz von R*) folgenden 
Hilfssatz abliest.

H ilfssatz 3.1. a) Aus  bR*-Y) ukt — a folgt b-T' Ukt =  а , wenn für alle
M 6 { 0 ........?}x{0....... j}\fo,0)} gilt

m ,n

(3-1) Xkp(Ukt =  0ь(Ага+1/^п+1).
k , t= 0

b) Aus aR *-^ujt/ = er folgt а-^2uk( = а , wenn für alle (r , s ) £ 
G ( 0, . . .  ,p} x {0, . . .  ,?} \{ (0,0)} gilt

m ,n

(3.2) £  AM u ke =  0 (A ;+i/x*+1).
k,t=0

Mit Hilfssatz 3.1 läßt sich folgender Umkehrsatz für R* beweisen.
Satz 3.2. a) Aus bR *-£) и** =  <j folgt b-£) uki = a, wenn für  jedes 

r £ { 1 ,... ,p} und jedes s £ { 1 ,... ,q} die folgenden zwei Bedingungen 
erfüllt sind:

m  n

(3.3) E Ai E “‘' =  0‘(AU . ) .
k=0 /=0
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(3.4) 53^' 53 Ukt = °b(̂ n+l )•
1=0 k=О

b) Aus aR *-J) Ukt =  о folgt a-]T) Ukt =  er, wenn für jedes r G { 1 , . . .  ,p }  
und jedes s G { 1 ,. . .  ,q} die folgenden zwei Bedingungen erfüllt sind:

m  n

(3.5) E aí E “«  = !!(a™+i )-
k=o e=o

(3.6)
71 771

5 3 ^ ?  5 3 ujw = fi(/*n+i)-
1=0 /c=0

B e w e i s ,  a) Nach Hilfssatz 3.1 genügt es zu zeigen, daß (3.1) erfüllt ist. 
Für die Fälle r  > О Л s = 0 und r = О Л s > 0 ist dies (3.3) bzw. (3.4). 
Also bleibt zu zeigen, daß (3.1) auch für (r, s) G { 1 ,... ,p) X { 1 ,... , q) gilt. 
Dazu sei

m  n

(^•7) Tjmn ■= ^m+l 5 3  Xк 5 3  Ukt'k=0 1=0
nach (3.3) also 77mn = 0(,(1). Da die Folge ц monoton gegen oo strebt, ergibt 
sich hieraus

71

(3-8) M~+i 5 3 ( ^ + i _  A O w  = ob(l),
i/=0

also auch
71

(3-9) T)mn — $ 3 ( ^ 1  ~ tLu)r}mi> — °б(1)-
v=О

Die mit Ajn+1/r*+1 multiplizierte linke Seite in (3.9) ist aber gerade
m n n m v

< + i  E A* E -  Е м + -  -  л) E  Aí E  “«  =
k=0 *=0 t/=0 fc=0 *=0

771 Z' 71 71 'j  771,71

= 5 3  ли  ^n+i 5 3 ujw -  5 3 ( ^ + i  ~ А*?)«*/ [ = 5 3k=0 l /=0 /=0 J k,l=0
so daß (3.1) erfüllt ist.

b) In Analogie zum Beweis von a) ist nur zu zeigen, daß (3.2) für (r, s) G 
G { 1 ,... ,p} X { 1 ,. . .  ,<?} gilt. Mit rjrnn aus (3.7) ist wegen (3.5) zunächst 
rjmn = ft(l), und hieraus folgt in Analogie zu (3.8) wegen der absoluten
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Permanenz der bewichteten Mittel (vgl. Mohanty fill, Lemma 4, oder [21, 
Korollar 17.1) jetzt

UMKEHRSÄTZE FÜR RIESZ-VERFAHREN

Fn+i “  »Ihm»  = il( l) ,
i /= 0

wenn man о = fi( l)  beachtet. Damit ergibt sich der Rest des Beweises 
wie bei a).

Wegen der Monotonieeigenschaften von R* (vgl. Mears [8] und Obrech- 
koff [12]) ist Satz 3.2 auch anwendbar, wenn p und q nicht ganz sind. Ist etwa 
p nicht ganz, so muß man nur (3.3) und (3.5) für jedes r 6 { 1 ,... , [p -f 1]} 
fordern. Entsprechend ist zu verfahren, wenn q nicht ganz ist.

Für R* = (C, 1,1) ergibt Satz 3.2.a) gerade den Satz K, während Satz 
3.2.b) folgende Verallgemeinerung eines Resultats von Obrechkoff [13], Satz 
4, liefert.

Korollar 3.3. Aus a(C, 1 ,1)-X) ukt — о folgt a - J ju ^  = a, wenn die 
folgenden zwei Bedingungen erfüllt sind:

m n

Y  к им = Щт +1),
fc=i t=o

n m

Y*Y ukt = ri(n +1)-
r=l fc=0

Durch (3.3) und (3.4) bzw. (3.5) und (3.6) sind jeweils p+q Bedingungen 
gegeben. Die im folgenden Satz angegebenen stärkeren Umkehrbedingungen 
haben den Vorteil, von p und q unabhängig zu sein und damit für jedes 
Verfahren R* zu gelten.

Satz 3.4. a) Aus b R = & folgt b-^2uht — o, wenn die folgenden 
zwei Bedingungen erfüllt sind:

П
(3.12)

/=0

(3.13)
m

M  X / Ukt ~
k=0

(3.10)

(3.11)

b) Aus  aR*-£jttfcf =  er folgt a-J3 u^t = <J, wenn die Folgenden drei 
Bedingungen erfüllt sind:

(3.14) А*, = D(Afc+i), = fi(/xm ),
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(3.15) Xk Y .  Uki = ft(AAfc),
t=0

(3.16)
m

^ l ^ Z Ukl = ÍÍ(A Ul)-
k= О

Beweis, a) W ir verwenden Satz 3.2 und zeigen, daß aus (3.12) für jedes 
r  > 0 die Bedingung (3.3) folgt. Sei also r > 0 und

m

Lm := ^ (Д Л О Л Г 1.
k= 0

Für Tjmn aus (3.7) erhalten wir dann 

(3.17) Vmn = 5 ^(A A a;)A  ̂ 1 • Y T \ ~ r  ^ т лтп+1>

wobei der Ausdruck in der geschweiften Klammer wegen (3.12) und Lm —> oo 
von der Form 0^(1) ist, und wegen der Monotonie der Folge A noch AmA~’+1 = 
=  0(1) gilt. Damit ist (3.3) gezeigt. Analog folgt aus (3.13) für jedes s > 0 
die Bedingung (3.4).

b) Wieder verwenden wir Satz 3.2 und zeigen, daß aus (3.15) und dem 
ersten Teil von (3.14) für jedes r > 0 die Bedingung (3.5) folgt. Jetzt ist 
in (3.17) der Ausdruck in der geschweiften Klammer wegen (3.15) und der 
absoluten Permanenz der bewichteten Mittel von der Form fl(l), und wegen 
des ersten Teils von (3.14) gilt AmA“r+1 = il( l)  nach einem Resultat von Pati 
[14], Lemma 2 (vgl. [18], Hilfssatz 5.3). Damit ergibt sich rjmn = fl(l) aus 
dem nachfolgenden Hilfssatz 3.5. Analog folgt aus (3.16) und dem zweiten 
Teil von (3.14) für jedes s > 0 die Bedingung (3.6).

Hilfssatz 3 .5 . Aus x mn =  Í7( 1) und ym = f l ( l )  folgt x mnym — i l ( l ) .
B e w e i s .  Es ist

A m n ( ^ m n l / m )  —  ( A n X m n ) A l / m  4 "  ( А г а п ^ г а п ) У г а - Ь  

und da Ут-i  — 0 ( 1) aus ym =  S7( 1) folgt, genügt es, noch
OO

Y  lAn^mnl = 0 (1) für m —► oo
n = 0

zu zeigen. Dies folgt aber wegen x mn = fl( l) aus

E F  n%mn I = Afc(A„zfcn)| s E  F
n=0 k=0 m,n=0

m n ^ m n  I
n = 0

Für R* = (C , 1,1) ergibt Satz 3.4.a) ein Ergebnis von Young [20], Ab­
schnitt 17, während Satz 3.4.b) folgende Verallgemeinerung eines Resultats 
von Obrechkoff [13], Satz 5, liefert.
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Korollar 3 .6. Aus a(C, 1 , l ) - £ )  ukt = er folgt а-^tífc/ =  er, wenn die 
folgenden zwei Bedingungen erfüllt sind:
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( 3 .1 8 )  к ^ 2  ukt =  f i ( l ) ,
t=o
m

( 3 .1 9 )  / J ^ u fc/ =  f i(  1).
k=О

Da aus bR-£) Ukt = о immer bR*-£)ujtr = о und aus a R - ^  = о 
immer aR*-^2ukt = er folgt, darf in Hilfssatz 3.1 sowie in Satz 3.2 und 
Satz 3.4 jeweils R* durch R ersetzt werden.

4. Ein “high indices th e o re m ”
In diesem Abschnitt beweisen wir ein “high indices theorem” für das Ver­

fahren R und übertragen dabei eine Beweismethode von Minakshisundaram
[10] (vgl. auch [18]) von Einfachfolgen auf Doppelfolgen.

S a tz  4 .1 .  Sind die Bedingungen

hm inf ■ "1+1 > 1 und lim inf > 1

erfüllt, so gilt:
a) A u s  bR-£) Ukt  = er folgt b-J^ Ukt = er.
b) Aus aR-£) Ukt = er folgt a-£) Ukt = er.

Beweis. Wir zeigen zunächst, daß

OO

(4.1) Y . U k l  = er
k,t=0

gilt. Dazu wählen wir p + 1 Zahlen r \ , . . .  , r p+i mit

(4.2) 1 < n  < . . .  < rp+1 < lim inf(Am+1/Ara)

und (7 + 1  Zahlen s i , . . .  , mit

(4.3) 1 < si < . . .  < sq+1 < lim inf(/x„+1 / p n).

Ferner wählen wir m 0 mit Am+1/Am > rp+1 für alle m > m0 und n0 mit 
Mn+i/^n > sq+1 für alle n > n0. Dann gilt Am < Amrj < . . .  < Amrp+i < 
< Am+1 für alle m  > m 0, pn < Рп$г < . . .  < pnSq+i < Mn+i für ahe n > n0,

Acta Matkematica Hungarica 58, 1991



286 S. BARON und H. TIETZ

und wir erhalten mit (1.2) für alle i =  1 ,. . .  , p +  1, alle j  = 1 , . . .  , g + 1 , alle 
m  > то und alle n > nQ das lineare Gleichungssystem

р,ч
(4.4) r?^Ä(ATOr.-,M ) =  J 2  ^ Ä (p- “^ )(Am,/Zn)

a , ß = 0

mit

und

da ß := ( n - l ) a(sj -  l ) ß

1 m’n
R ( p - ^ - ß ) {  Am,p n) := £  (Am -  Afc)p- “(Mn -  M<)9-/W

Am /in k , l = Q

Um das zu sehen, wende man im Ausdruck für Ä(Amr,,/ins_,) auf [(Amr,— 
— Am) + (Am-Ajt)]p die binomische Formel an und verfahre entsprechend mit 
HnSj — щ . Damit haben wir bei festen m > то, n > по ein lineares Glei­
chungssystem für die Unbekannten R^p~a'q~ß\ \ m, ц п) mit а  = 0 , . . .  ,pund 
ß  =  0 , . . .  ,q, das wir nach R(°’° \ Am,p„) = smn auflösen wollen. Eine ele­
m entare Rechnung zeigt, daß die Koeffizientendeterminante dieses Systems 
den Wert

(4 .5 ) Dq+1Dp+1 f l
er,/3=0

P+l

ha t, wobei Dr und D a die Vandermondeschen Determinanten der Zahlen 
,rp+1 bzw. S i, . . .  ,59+x sind. Insbesondere ist die Koeffizientende­

terminante des Systems also von 0 verschieden, und es gibt somit komplexe 
Zahlen c,j (i = 1 , . . .  , p +  1; j  = 1 , . . .  , q + 1) mit

p+1 ,9+1

(4.6) «mn = ^  cijr?sq:jR ( \ rTlri,finsJ) für m  > m0, n > n0.
*.i=1

Hieraus liest man, da R beschränkt permanent ist, (4.1) ab. 
Für a) ist jetzt noch zu zeigen:

(4 .7 ) Smn =  0 ( 1 ) (m —► oo) für alle n e  { 0 , . . .. , n 0) ,

(4 .8 ) Smn =  0 ( 1 ) (n —у oo) für alle m e  ( 0 , . . . , то}.

W ir beweisen (4.7): Es sei n e  { 0 ,. . .  ,no) fest und pn > 0. Zu den p + l 
Zahlen r \ , . . .  , rp+i mit (4.2) wählen wir jetzt q +  1 Zahlen <j\,. . .  , mit

(4.9) fJ-n < H„(Ti <Z . . .  K. Hn<Jq+l <C /ín+1 •
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Damit läuft, mit cj  an Stelle von Sj, formal alles wie oben. Es gibt also 
komplexe Zahlen 7 (i = 1 , . . .  ,p +  1; j  — 1 ,... ,q +  1), mit denen in 
Analogie zu (4.6) jetzt

p+l,g+l
(4.10) smn = 7 i j ^ ^ R iX m r i^ n C T j )  für m > r n 0

«\i=1

gilt. Hieraus liest man (4.7) ab. Ist n = 0 und po — 0, so gilt mit den p + 1 
Zahlen , rp+x mit (4.2) für alle i = 1 ,. . .  ,p + 1 und alle m > то jetzt

P /  \ 1 m

r?R ( a m r, -,—  ̂ (  ) ( r* -  ~  a-Ufc0’
Z o=0 ^ '  Äm k=0

und hieraus folgt sm0 = 0(1) wie im Falle des Riesz-Verfahrens zur Limi­
tierung von Einfachfolgen (vgl. Minakshisundaram [10] und [18]). Die Be­
hauptung (4.8) wird wie (4.7) bewiesen.

Für b) ist jetzt noch zu zeigen:
OO

(4.11) Y 2  lAmnSmn| < 00 für alle n e { 0 ,... ,n 0),
m = m o

OO
(4.12) ^  |Amnsmn| < 00 für alle m € { 0 ,... , m0},

n = f l o

Um (4.11) zu beweisen, geht man wie beim Beweis von (4.7) vor und (4.12) 
beweist man wie (4.8).

Der erste Teil des Beweises von Satz 4.1 liefert das in der Einleitung 
erwähnte “high indices theorem” von Mears [8], Theorem XII. Auch zwei 
dazu ähnliche Ergebnisse von Mears [8], Theorems X und XI, lassen sich mit 
unserer Methode beweisen.

Daß man in Satz 4.1 das Verfahren R durch R* ersetzen darf, ist nicht zu 
erwarten, da das “high indices theorem” , wie Kuttner [7] gezeigt hat, schon 
für das “unstetige” Riesz-Verfahren zur Summierung von Einfachfolgen nicht 
uneingeschränkt gilt.
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THE SPACE OF DENSITY CONTINUOUS 
FUNCTIONS

K. CIESIELSKI (Morgantown) and L. LARSON (Louisville)

We denote by R j the set of real numbers, R, endowed with the density 
topology. A function / :  Rd —*■ Rj is said to be density continuous, if it 
is continuous with respect to the topology on Rj in both the domain and 
range. The set of density continuous functions has been studied in several 
limited ways. Bruckner [1] and Niewiarowski [3] have studied density con­
tinuous functions which are homeomorphisms under the standard topology 
on R. Ostaszewski has investigated the local behavior of density continuous 
functions [4] and has investigated their behavior as a semigroup [5].

In this paper, we consider the composition of the set of density contin­
uous functions. The structure of this set seems to be quite complicated. 
Ostaszewski [5] has noted that it is not closed under uniform convergence. 
In Example 2 we show that it is not a vector space. Corollary 3 shows tha t 
each real-analytic function is density continuous, but Example 1 is a C°° 
function which is not density continuous. It is not difficult to construct a 
density continuous function which is not continuous. On the other hand, 
every density continuous function must be approximately continuous.

In what follows, the right (left) unilateral derivatives of a function /  are 
represented as / + ( / “ ). The Lebesgue measure of a set A is denoted by 
\A\ and the Lebesuge density (right, left Lebesgue density) of A at a point 
x is written as d(A, z)(d+(A ,x),d“ (A,x)). The set of functions which are 
infinitely differentiable on R is written as C°°. Finally, if A and В are two 
sets such that sup A ^ inf В , then we write A < B .

Before stating the main result, we first present the following lemma.

Lemma 1. Suppose I  is a compact interval and f : I  —» R. If there exist 
numbers a and ß such that

(1) 0 < a  < ^ < ß < oo, for all x ,y  € I ,  x ф у,
x -  у

then f  is density continuous on I.

P roof. From (1) it is easy to see that /  is strictly increasing and con­
tinuous on I.  If g = / -1 , then it follows from (1) that

0 < LW  .- £ ( » ) < I f o r a U  „ , „ € / ( / ) ,
ß u — v a t i / t .( 2) и — v
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The right-hand inequality in (2) implies that g is a Lipschitz function on 
/ ( / )  and hence g is absolutely continuous and g1 is bounded above a.e. The 
left-hand inequality in (2) shows that g' is bounded away from 0 on / ( / )  
a.e. Now a result of Bruckner [1, Corollary 1] shows tha t g preserves density 
points. This implies the density continuity of / .

Theorem 1. If  I  is an open interval and / : / —>• R is convex, then f  is 
density continuous.

Proof. Fix a point a & I. It will be shown th a t /  is right density 
continuous at a. To do this, we lose no generality in supposing that / ( a )  = 
= a = 0, because the translation of a density continuous function is obviously 
density continuous.

According to [6, Theorem 10.11], there exists a nondecreasing function 
h: I  R such that

(3) / (* )  =  J  h(t)dt, for all x £ / .
о

Because of this, it is easy to  see that there must exist a real number b > 0 
such that /  is monotone on [0,6]. We may assume that /  is strictly monotone 
on [0,6] because if it is not, /  must be constant on some right neighborhood 
of 0, and right density continuity at 0 follows at once. W ith this assumption, 
/  is a homeomorphism from [0,6] onto /([0,6]). Denote g =  (/|[o,b])_1-

There are now two cases to consider, depending upon whether /  is strictly 
increasing or strictly decreasing on [0,6].

Assume first that /  is strictly decreasing on [0,6]. Then by (3), h < 0 
on [0,6). There is no generality lost in assuming h{b) < 0 .  If 0 < x < у <j 6, 
then considering the average value of h  on (x, y) and recalling that h is 
nondecreasing, it is obvious that

о > h ( b ) > h = M ^ m > h(0) .
~ у -  x у — X

This implies

0 < - h(b) < -— ^ < —h(0) < oo, for all x,y  € [0,6]. 
у — x

(h(0) is finite because h is monotone on a neighborhood of 0.) Lemma 1 
now shows tha t - / i s  density continuous on [0,6]. Since density continuity 
is easily shown to be preserved under constant multiplication, it follows that 
/  is density continuous on [0, 6] and therefore right density continuous at 0.
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Next, assume that /  is strictly increasing on (0,6) and that /„  = [a„,6n] 
is a sequence of disjoint intervals from (0 ,/(6)) such that /„ decreases tQ 0 
and

(4)
U /яп(о,о

n = l

t > q > 0, for all t € (0, /(b)).

Let S = U In,Jn
n = l

g{In) and Gn = (6n+i ,a „ ). From (4), it follows that

(5)
U h

k=n
o o

U Gk
k=n—l

for all n > 1.

Before proceeding with the proof, we make the following useful observa­
tions. From (3) and the assumption that /  is increasing we see that h > 0 
on (0,6). Let A  and В be intervals contained in (0,6) such tha t A <C В . 
Then because h is nondecreasing,

\f(A)\
\A\

f h
y -  < sup h(t) < inf h(t) < 
|Л | t£A

f h
в
\B \

I m \
\ B \  '

This implies the statement

(6) li(C )| i  |9( B ) | |§ |

for all intervals C and D from (0 ,/(6)) such that C <C D, and this estimate 
immediately extends to the case when C, D are finite unions of disjoint 
intervals.

We define an infinite partition Sn of S  as follows. Let c*i = aj. By (5), 
there exists an a'2 < ot\ such that

K a^Q l) П S\ _  Q 
|Gil 1 - Q '

Let a 2 = min{ö2, a2). Assume that ak has been chosen for к — 1 ,2 , . . . ,  n —1 
so that either a k > ak or ak < ak and

| ( a f c , q f c - i )  П  S I _  q 

ICct-il 1 — q '
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and equality holds if a* < a*. Choose a'n < a n_! such that

| « , g n- i ) n 5 1  _  g
|<jn_ i| 1 — Q

To see that such a choice is possible, there are two cases to consider, depend­
ing on a„_i. If a„_ i = a„_i, it can be seen immediately from (5). In case 
Otn-l <'- i, löt

m  = max{& < n : otk — ajt}.
Then |(afc,afc_i) П 5 | = p |G jt_ i|/(l — g) for m +  1 < A: < n -  1 so that

П —1
(7) |(Qn_1, a fB) n 5 |  =  - ^ - ^ | G fc_1|.1 -  g ьк=т
According to (5), there is a t < a „_ i such that

П
(8) | ( i , a „ ) n S |  =  T4 - ^ | G i t - , | .

C I _k = m

Subtracting (7) from (8) gives

| ( t , a n _ i )  П  S |  =  ——— | С „ _ х | .
1 -  g

We set a'n = t in this case. Then let an = m in{o^,an}. Define Sn = 
= [a„+i ,a „ ) n S .  From the choice of a„ < a„, and the fact that a„ ^ 5„, we 
see supS„ < 6„+i. So 5„ <  Gn =  (&„+i,an) and

\Sn[ > _ g _
|G„| = \ - e

Finally, we use (6) and the preceding inequality to see

£ ls(S»)l £ Ij(G„)||§4
n=l_______ > n=l_______ > в

£ i s ( G n ) i = £ w c n ) i  = 1 _ e ’

Hence,

|p((0, аг))| ^ в-

Because g can be made as close to 1 as desired, we see that /  is right density 
continuous at 0.

Similar arguments show that /  is left density continuous at every point 
of I . This completes the proof of the theorem.
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C orollary 1. If  g: [a, b] —> R is convex on (a, 6) and {g+(a),g  (6)} C 
C R, then g is density continuous.

P roof . Define

and apply Theorem 1.
By using g = —/  in Theorem 1 and Corollary 1 we arrive at the following 

corollary.
C orollary 2. If  g is concave downward on an open interval I , then g is 

density continuous on I. Further, if g is concave downward on the interval 
[a,b] with both g+(a) and g~{b) finite, then g is density continuous on [a, 6].

Ostaszewski [5, Question 4] asked whether polynomials are density con­
tinuous. The following corollary provides an affirmative answer to this ques­
tion.

C orollary 3. Real analytic functions are density continuous.
P roof . If /  is real analytic, then f  is finite everywhere and f "  has only 

a finite number of zeroes in every interval, so applications of Corollaries 1 
and 2 suffice to establish this corollary.

C orollary 4. If  f ( x )  = xa for a € R, then f  is density continuous on 
its domain.

P ro o f . If a ^ 0, then this follows directly from Theorem 1. If a > 1, 
then this corollary is a consequence of Corollary 1.

Suppose 0 < a < 1. It is clear that Theorem 1 implies /  is density con­
tinuous on Dom(/) \  {0}. So, it must be shown that /  is density continuous

Let h > 0 and suppose A C (0,/i). Then, we use the fact tha t ( f ~ 1)' is 
an increasing function to see

It follows from this inequality that /  is right density continuous at 0. A 
similar argument holds from the left.

Example 1. There is a function /  G C°° which is not density continuous. 
Choose any sequence of disjoint intervals Jn = [an, 6„] C [0,1] decreasing 

to 0 such that

at 0.

А о

( 9)
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and let h be a C°° function satisfying

(10) h(0) =  0, h( 1) = 1, and /i(n)(0) = h (n)( l )  = 0, for all n € N. 

(An example of such a function is
X

h{x) = g J e x p ( - l / t2 -  1 /(< — 1 )2)dt, 
о

for suitable g.) Let

( И )

( 12)

and

q„ =  max {I ( a r ) 1 : 0 < к ^ n and 0 ^  x < 1} > 1,

hn(x)

' 0
a-(b" —a")" x-an A < Olri \bn—Cln J
O'n (bn fln)n

k Oc n

if x < a„, 

if x e Jn,

if x > bn

f ( x ) = J ^ bn(x )-
71 =  1

From the choice of h, we see th a t hn 6 C°° for each n. Obviously, using (9) 
and (11), it follows that

(13)
n=l a " П —1

so that /  exists everywhere. Moreover, because the /„  are pairwise disjoint, 
it follows that /  is infinitely differentiable on R  \  0 and continuous on R.

To prove th a t / ( fc+1)(0) exists and equals 0, let us assume that / ^ ( 0 )  = 0 
and choose an < s < a„_\ for some n > k. Then it follows from (11) and
(12) that

/<*>(з) -  / (fc)(0)
s - 0

j  E  hi(s) й E ° l n(bj -  aj Y  < bn
i=n

if к = 0, 

if к > 0.

Since s —* 0 implies bn —> 0, this shows / ( fc+1)(0) = 0. Therefore, /  is a C°° 
function.

But, /  cannot be density continuous because of (9) and the fact that

is countable.

/ ( * \ I U )
4  7 1 = 1  '
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E x a m p l e  2 .  There is a continuous, density continuous function 
/ :  R —> R such that f ( x ) + x is not density continuous.

To construct such a function, we first choose two differentiable functions 
h\ and /12 satisfying:

(i) 0 < hi < h2 on (0,oc);
(ii) hi(x) = h,2(x ) = x for x < 0; and,

(iii) 1/2 < h[(x ) < 1 < h'2(x ) < 2 when x > 0.
Let an and bn be any two sequences converging to 0 such that 1 =  b\ > a\ > 
£>2 > 0 2  > .. •, and both

^ (^ n ) M Gn)  2 and M£>n+i)   1/2
bn bn+i

Define a piecewise linear function / 0 by letting fo(an) = hi(an), fo(b„) = 
= Л2(Ь„) and /о(х) = ж -f /o(£>i) — £<i when x > 1 and /o(x) =  x when 
x < 0. The function /о is easily seen to be continuous because hi and /12 are 
continuous and have value 0 at 0. Equation (14) implies

1 < Щ  -  foia) < for aU b e

It follows from Lemma 1 that /  must be density continuous.
OO OO

Denote A( 1/ 2) = (J [6n+i,a„] and A{2) = |J  [a„bn]. Either
П=1 n=l

( — oo,0] U A( \ /2 )  or (—оо,0)иЛ (2)

has positive upper density at 0. Without loss of generality we assume that 
it is the former. Then /i(x ) = / 0(2:) -  x/2 is constant on each compo­
nent of A( 1/2). But this implies that |/ i( / l( l /2 ) ) | = 0 and >1(1/2) = 
= / г-1 ( /i(T (l/2 )))  has positive density at 0. Therefore, Д is not densi­
ty continuous at 0. So, it is enough to define /(x )  = —2/o(x) to obtain the 
desired function.

We note that the /  in Example 2 can actually be constructed as a C°° 
function by a method analogous to the construction in Example 1.

This example answers questions posed by Ostaszewski [5, Questions 5 
and 6].

We wish to thank Krzysztof Ostaszewski for bringing to our attention 
several of the questions we have considered here.
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CONVOLUTION RINGS OF MULTIPLICATIONS 
OF AN ABELIAN GROUP

J. R. CLAY (Tucson)

1. In tro d u c tio n
For an abelian group (A ,+ ), the group of left and right distributive 

multiplications, Mult A, and the group of left distributive multiplications, 
M ulti A, have been a source of interesting abelian groups [1, 2, 4, 5, 6, 7, 
8, 9, 10, 14, 15, 16, 17, 18], and were first suggested for study by Baer
[7]. Regarding the related question as to whether Mult A, or M ultiA , could 
themselves be the additive group of interesting rings, it is natural to take 
motivation or direction from the ring of C\ functions from the reals R to R 
with respect to convolution *, where

+ o o

f * g ( x ) =  J f ( x  - t )g{t)dt .
— OO

For an arbitrary but fixed finite subset X  Q A,  this convolution operation 
motivates the following two operations for Multi,A and/or Mult A.

(1) q -ß{a,b) = ^ 2  a(x,ß(.a,b));
x£ X

(2) a ■ ß(a,b) = Y ^ a(a,ß(x,b)).
xex

In addition to these two operations being closed binary operations, it 
is straightforward, but tedious, to show that they are i) associative, ii) left 
distributive over + , and iii) right distributive over -f, In short, if • is op­
eration (1) or (2), then (M ultiA ,+ ,-) is an associative ring with subring 
(Mult A, +, •).

Since the structure M ulti A =  Map(A,End A), the group of all mappings 
from A to the endomorphisms of A, End A [2], it is considerably easier to 
study the rings on Mult^A. We have Mult A =  Hom(A, End A), the ho- 
momorphisms from A to End A [7], but the rings on Mult A will not be 
considered much in this work.

Numerous interesting and amusing properties will be exhibited for the 
rings on the M ulti A with operations (1) and (2). It will also be shown



298 J .  R. CLAY

th a t operations (1) and (2) are but special cases of a more general and 
powerful construction method. This more general method will provide ways 
of making rings on Ä-modules M , and some unusual Д-modules will be used 
to illustrate this method. See Theorem 1 and the examples following it.

The elements of Mult A are the left and right distributive multiplications 
on A. That is, mappings a: A x  A  —> A such tha t a(a, b -f c) — a(a,b)+ 
+ a (a ,c )  and a(a -f b,c) = a(a,c) + a(b,c) for all a,b,c E A. The elements 
of M ulti A are the left distributive multiplications on A, so they are the 
mappings a: A X  A  —» A such th a t a(a, b + c) =  a(a,b) -f a(a, c) for all 
a, b,c E A.

Most of our results will be about Mult^A, with operation (1). We note in 
Examples 5 that Mult^A, with operation (2), is an opposite ring. Hence, the 
results relative to Mult^A, and operation (1), should have companion results, 
like Propositions 3 and 4, and like Proposition 14 with its Corollary 15. This 
is somewhat surprising if one only takes a superficial look at the definitions 
of operations (1) and (2).

2 . R ings from  m odules, and app lications

Examples 4 and 5 below show that the multiplications (1) and (2) for 
Mult^A, or Mult A, are special cases of the more general case described in

T h e o r e m  1. Let R be a ring with left R-module M. Fix an f  E 
E Н отд(М , R), and define • = •/ on M  by a •/ b = f(a)b. Then (M , +, •/) 
is a ring.

The proof is direct.
Our subsequent work will be centered about the following five types of 

examples.
E x a m p l e s  1 .  For an Ä-module M ,  suppose we have something like a 

bilinear map ( , ) :  M  X  M  —► Ä, but really, all we require is a) ( , ) :  M x  
x M  —yR- b) ( ,) (a ,x  + y) = ( ,)(a ,x )+ (,)(a ,y ); and c) (, )(a, rx)  =  r ( , )(a, x), 
for all a ,x ,y  E M  and for all r E R.  Define F(a .y. M -+ Д by F(a .)(b) = 
= ( ,) ( a ,6) = (a, 6). Then each Е(а,.) £ Н отя(М , Д). Let •„ be the multipli­
cation on M  defined via Theorem 1. So (M, + , -a) is a ring. For с E M, let 
Ic =  {rc|r E G Ä}. Then Ic is a left ideal, and Ic is an ideal if (a ,c) = 0.

For Д = R, the field of real numbers, and M  = Rn, the n-dimensional 
vector space over R, let ( ,)  be the usual inner product. For a fixed a = 
= (аь . . .  ,а„), then x ■ у = (aiXi +  . . .  + anxn)y. For c = (cb  . . .  ,cn) E M, 
Ic is an ideal if and only if (a, c) = 0.

If Ic is such an ideal, then M / I c = R. For n = 2, it is interesting to 
determine the identity in M / I c and the isomorphism.

E x a m p l e s  2. These are really special cases of Examples 1, but we single 
them  out because of their unifying effect and because they are related also to

Acta Mathematica Hungarica 58, 1991
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Examples 3 and Examples 4. Let M  = be the free 12-module on the set S
[13]. For a finite subset X  C S,  define Fx - M  —* R b y  Fx(a) — ^  ax . Then

Fx  £ Н отя(М , R), and defines a ring (M, + , •*) with a x  b = ( Y  ax)b.
\ x ex  )

The map Fx is an epimorphism.
Examples 3. Let (Y ,A ,^ )  be a measure space. (The terminology and 

notation used here will be influenced by that of Hewitt and Stromberg [11].) 
Fix an X  £ A.  Let Ml be the family of all functions a: Y  x R —> R which 
satisfy:

a) for each b £ R, a ( . ,6) e £ i ( y ,A / r ) , i .e . ,

J a(y,b)dfi(y)
Y

exists;
b) for /  € and a £ Y,

J ot(a,f(y))dfi(y) = a i a , J f(y)dfi(y)^;
Y  Y

c) for each у £ Y , a(y, •) £ Homfi(R, R), i.e.,
a(y, sa + tb) = sa(y, a) + ta(y, b)

for all a, b, s, t € R.
Now (Rrx R , +) is an abelian group, and Ml is a subgroup. It is di­

rect to see that M l is an R-module. Define F x : Ml —» R by Fx(a)  = 
= J  a(x, l)dn(x). Then Fx  € Homfi(Mi,,R) and defines via Theorem 1, a

ring (Ml , + , \y) where for a, ß £ Ml , one gets

a ■ ß(a,b) = J a(x, ß(a,b))dfi(x).
X

One should be assured that there are nontrivial M l 's.
Let У = X  = {0 ,1 ,2 ,...}  with /z({t}) =  1 for each г £ У. If a(i, b) = 

= b/i\, then a £ M l -
Let У = X  = [0,1] with the usual Riemann integral. If ф: [0,1] —► R is 

continuous, and lm(a) = та, then a(x,a) = ф(х)1т(а) defines an element of
M L-

Let (Y , A , P ) denote a probability space. Fix X  £ A,  and let /  : У —> R 
be a random variable with finite expectation. Define a: Y  X  R —> R by 
a(y ,a) = f(y)a.  Then a £ Ml - Here,

P i X y ' F x i a )  = P ( X ) - 1 J a(x , l )dP(x)
X

Acta Mathematica Hungarica 58, 1991



3 0 0 J. R. CLAY

is exactly the conditional expectation of the random variable /  = a(-, 1) 
given X  [12, p. 338].

Proposition 2. Suppose X  has a binary operation -f and let M  = 
=  {a € Mi\ for  each a £ R, a(x  + y,a) = a(x, a) + a(y, a) for all x, у £ X }. 
Then M is a left ideal of M l -

Proof. It is direct to see that (M,  +) is a subgroup of (Ml , A ). For 
a £ M  and 7 £ M l , we get

7 -a(x + y,a) = J i ( t , a ( x  + y ,a))dp(t)  = J 7 (t, a(x, a) + a(y, a)) dp{t) =
X  X

= J 7 (i, a (x , a)) dp(t) + j  ' i { t ,a(y,a))dp(t )  = 7 • a (x ,a )  + 7 • a(j/, a).
X  X

So 7 ■ a £ M .
Examples 4. We now consider Mult^A, or Mult A, for an abelian group 

(A ,+ ). Fix a finite subset X  Q A. For operation (1), we have

a  ’ ß ( a, b) = a(x ,ß(a ,b))  = f  a x) o ß )(a ,b )
xex '  xex '

where a x(c) =  a(x,c).
Now define Fx - Mult^A —> End .A by Fx(ot) = ^  a x. Now Mult^A,

x € X
or Mult A, is an EndA-module and Fx  £ HomEndA(Mult^A, End A) is an 
epimorphism. Thus, Theorem 1 shows that (Mult£,A,+ , •) is a ring with 
subring (Mult A, +, •) if ■ is defined by 1).

P r o p o s i t i o n  3 .  (Mult A ,-f, • )  is a left ideal in (Mult^A, +  , • ) .

Proof. For a £ Mult^A and p £ Mult A, we get

а -р (а  + Ь,с) = a  (x, p(a + 6, c)) =
16X

= ^ 2  &(x,p(a,c))  + a (x ^ ( b^c)) = a  -M(a ,c) + a-p(b,c).
X E X  X E X

Thus, a ■ p £ Mult^A.
E x a m p l e s  5 .  Consider operation ( 2 )  for Mult^A and Mult A. Then a *

*ß(a,b) = ^2 a(a, ß(x,b))  =  a ( a, ( /3x)(a ) j . Let £(A) be the oppo-
x E X  \  x E X  J

site ring of End A. Then Mult^A and Mult A are £(A)-modules, where /*  
*a(a,b) = a ( a , f ( b )). The Fx - Mult^A —> £(A) defined in Examples 4 is 
also in Hom£(^)(Multx,A, £(A)). Define * on Mult£,A by a * ß = Fx(ß)  * a , 
the opposite ring of Mult^A defined by Fx  via Theorem 1. That is, from 
Theorem 1, we would have ß  ■ a = Fx{ß) * a , and the opposite ring is 
a * ß — ß • a = Fx{ß)  * a.
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Proposition 4. (Mult A ,+,*) is a right ideal in (Mult^A, +, *).

P roof . For a  G Mult^A and p  G Mult A, we get p * a(a  + b,c) = 
= E  K a +  b,a(x,c)) = E  p (a ,a (x ,c)) + E  <*(*>c)) = T * a (a> c)+

xe* xex xex
+p * a(b, c), so p * a £ Mult A.

As far as the construction of rings (M, +,■) via Theoreml, only the 
elements of the image of /  are involved, and the image of /  is a subring R' 
of Ä, and certainly M  is an Ä'-module. So, there is no loss in assuming that 
/  G Н отя(М , R) is an epimorphism.

We have (M, +) as an M-module and also an Д-module. Let Annm M  = 
= {a G M  I ax = 0 for each x G M]  and АппдМ = {t G Ä | rx = 0 for each 
x G M}.

T heorem  5. Let M  be a left faithful R-module. Fix f  G Н отд(М , Ä). 
Then the kernel of f  is ker /  = Annm ^ í  .

Pr oof . It is direct to see that к е г /  C Ann m M  . For a G А п п м М ,  
we have a ■ b = 0 for each b G M , so f(a)b = 0 for each b G M ,  thus 
/(a ) G Annr M. This means that f (АппмМ) Q А ппяM.  Since M  is a 
faithful Ä-module, Аппя-М = {0}, so /(a )  = 0 and Annл/М С к ег /.

Rem a rk . Examples 3, 4, and 5, have the modules as unitary and faithful. 
Many cases from Examples 1 and 2 are also unitary and faithful.

T heorem 6. Let M  be a faithful R-module and let f  G Н отя(М , Д) be 
an epimorphism. Then

Аппд/М

P r o o f . f(a  ■ b) = f( f(a)b)  = / ( a ) / ( 6 ) .  Now apply Theorem 5.

Corollary 7. Let M  -  Multx,A. Then М / А п п м М  = End A, and

Ann д/M  = I a  G M I E  Qx = 0 
l xex

P r oof . As seen in Examples 4, Fx  € HomEndyi(Mult£/A, End A) is an 
epimorphism. Now apply Theorem 6.

Let Ä be a ring with identity 1, and suppose M  is a unitary left Ä-module 
with epimorphism /  G Н отя(М , Ä). If /(e) = 1, then e • b — f(e)b = b, 
so, /(e )  = 1 means tha t e is a left identity. For a left identity e, we define 
Re = {a £ M  \ ae = a} and Be = {ae \ a G Mj.

P roposition 8. R e =  Be.

P r oof . For ae G Be, (ae)e = a(ee) = ae, so Be Q Re. If a G R e, then 
ae = a. But ae G Be, hence Re Q Be.
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Theorem 9. (f?e,- f ,- )  is a subring o / ( M , + ,• ) .

P roof. Define фе: M  —y Be by фе{а) =  ae. It is direct to see that фе is 
a group epimorphism. Now ipe(ab) = (ab)e = (a(et))e = ((ae)6)e = (ae)(i>e). 
Thus, фе is a ring epimorphism.

Theorem 10. (Be, +  , •) =  (R, + ,•).

Proof. We have Be = М /  ker^>e. By Theorem 4, М / А п п м М  = R. We 
now proceed to show that ker^e = Annm M .  For a € кетфе, 0 = фе{а) = 
=  a • e, so for 6 € M, a ■ b = a • (e ■ b) = (a • e) • b =  0. Thus ker фе Q Аппд/M . 
The reverse inclusion is trivial.

Corollary 11. If e and e' are left identities, then the subrings Be and 
B ei are isomorphic.

P roof. A s an alternate to the obvious proof, let Vv.e =  Фе I Bei, the 
restriction of V’e to Be>. Then фе^е is an isomorphism.

P roposition 12. If e and e' are left identities, then Be =  Bei if and only 
i f  e = e'.

P roof. If B e = Bei for left identities e and e', then ae = be' implies 
(ae)e' = (be')e' , or ae' = be1. So ae -  ae'. This being true for each a € M , 
we get ее = ее', or e = e'.

P roposition 13. For a ring R with identity 1, let M  be the ring on R(s  ̂
of Examples 2 for a fixed finite subset X  Q S.  Then M  has at least 
subrings each isomorphic to R.

P roof. To m ake 1 = Fx(a)  = ^  ax , we can choose | |  — 1 of the ax ’s
xex

arbitrarily , and th e  |A"|th one suitably.

P roposition 14. For an abelian group A and a finite subset X  C A, 
consider the ring (Mult£,A, + , •) from Examples 4. The ring Mult^A has 
|End left identities, and at least |End A\\x \~l subrings isomorphic to
End A.

P roof. To m ake 1 =  Fx(cn) = 

Proposition 13.
E  a *,

xex
we proceed as in the proof of

Corollary 15. For an abelian group A and a finite subset X  Q A, con­
sider a ring (Mult^A, +, *) of Examples 5. This ring has |End right
identities, and at least this number of subrings isomorphic to End A.

One of the remarkable consequences of studying Mult A is that there are 
nontrivial abelian groups (A ,+ ) for which Mult A = {0}. Such groups are 
called nil groups [7]. This will not happen for Mult^A, since a i ( a ,6) = 6
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defines a i  € Mult^A, as does oto(a,b) =  0. Further, for any subset S
Я А \ {  0},

a s {a,b) 0, if a £ S; 
b, if a € 5,

C

defines a s  € Multi,A [3]. Thus, | M u l t > 2^l_1 +  1. It is unknown if 
there is a group, abelian or nonabelian, of order greater than 2, for which 
these are the only elements of Multi, A, i.e., are there any “nil groups” for 
MultLA?

T heorem  16. For an abelian group (A, +), if  |Multf,A| > 1, then 
(M ult^A,+) is not a nil group. In particular, Mult^A is not a torsion 
divisible group.

P roo f . Mult^A = M ap(A,EndA), so А ф {0}. So there is a finite 
X  Q A with X  ф 0. The multiplications • = -x defined in Examples 4 are 
not trivial. Thus, Mult^A is not a nil group. Torsion divisible groups are 
nil groups [7, Theorem 71.1].

Corollary 17. If  (A ,+ ) is a notrivial abelian group, then M ult^A is 
not a nil group.

T heorem 18. Let ф € Sa where Sa denotes the group of permutations 
on A. Suppose Y  = ф(Х), where X  Q A is a finite subset, and con­
sider the multiplications -x and -y defined as in Examples 4. The map 
Фф: Multi,A —► Mult/,A defined by Фф(а) = afi, where a^(a,b) — а(ф(а),Ь), 
is an isomorphism from (Mult^A, +, -y) onto (M ult^A,+ , -х).

P roof. Certainly each a^ € Mult^A, and a t  = а^(а). Ф<£ is easily seen
to be a group homomorphism. Фф(а^ 1) = a , so Ф  ̂ is surjective. If a^  = 0, 
then а(ф(а),Ь) = 0 for all a,b 6 A, making a = 0. Thus Ф  ̂ is injective. 

Consider Фф(а -у ß) = (а  -у ß)^ and Ф ^а) ~х Фф{ß) = -А' ß ^ • For any
finite T  Q А, (а-т ß)(c, d) = ( E  a t) 0 ßc(d). So (a -T ß )c = ( Е  at) 0 ßc- So,

teT ter
{a-yß)t  = (a -y ß)ф(a) = ( E <*y)°ß<t>(a), and (a ^ -x ß ^ a  = ( E at)°ß<t>(a) =

y e Y  x £ X

= ( E a y) 0 ß<t>(a)• Thus, for each а е А,
y e Y

(а -у  ß)+ = (a* ■х  ß*)a,
hence (a  - у  ß )* = а* ■x  ß <t>- This means Фф is also a ring isomorphism.

Corollary 19. For |X | = |У|, (Mult^A, +, -x) =  (M ult^A,+ , -y). If  
|EndA| < oo, then (Mult^A, +, -x) — (M ult^A ,+ , -y) i f  and only i f  \X\ = 
= \Y\.

P roof. If |X | = |У |, then there is a permutation ф € Sa such that 
ф{Х) = Y .  If |EndA| < oo, and (Mult^A, +, -x) = (M ultiA , +, -y), then 
each has the same number of left identities, so by Proposition 14, |X | =  |У|.
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Remark. It is not known if |EndA| < oo in Corollary 19 is needed.
For ф, A G S a , with ф(Х) =  Y  and А(У) =  Z,  then о Фл = Ф\оф- We 

then have
T heorem 20. Fix an abelian group A. The following describes two cat­

egories F(A)  and Л4(А). The objects of IF(A) are the finite subsets of  
A, and the objects of M (A )  are the rings TZ{X) = (Mult^A, +, -x) where 
■x = • is defined in Examples 4. Morphisms in F(A) are hom(X, Y)  =  
= {Ф €. Sa I Ф(Х) = У}, and morphisms in M (A)  are just  the ring ho- 
momorphisms. Define Ф by Ф(Х) = Tl(X) and Ф(ф) — Фф of Theorem 18. 
Then Ф is a contravariant functor [13].

N ote. For a finite X  C A ,  \ a  € hom (X ,X ) is the identity morphism for 
X ,  where 1д G S a is the identity permutation.

The proof of the theorem is easy and shows no new techniques.
The finite subsets of an abelian group (A, +) form a boolean algebra 

with respect to U and П. For finite subsets У and Z, and X  = Y  U Z, we 
have for the multiplications of Example 4,

a- x ß = a - Y ß- \ - a- z ß - a  ■Ynz  ß,

for arbitrary a , ß  G Mult^A. Thus -x = -y +  'Z ~ ‘Ynz- This leads to
T heorem 21. The objects 7Z(X) of the category A4 (A) form a boolean 

algebra where Щ У )  V K(Z) = 7Z(Y U Z) and 7Z(Y) Д K (Z )  =  7г(У П Z ).

Certainly Annm M  is an ideal of M.  We now construct further ideals 
of the examples defined in Examples 2, 3, and 4. For the rings defined in 
Examples 2, 3, and 4, a set A  plays a role in the definition of the product. 
For a suitable subset T, there is a left ideal /(T ) . For R\ =  and T Q 5 , 
let I{T) = {a G R I at = 0 for each i G T}. For R\ = Mult^A and T  ^  A, 
let I{T) = {a G Mult£,A | a ( i ,- )  = 0 for each t G T}. And for R\ = M l 
and T  G A,  let I { T ) = {a G M l  \ a(i, •) = 0 for each i G T}. The following 
theorem shows why we use the notation I (T )  for all three cases.

T heorem 22. Let R\ G {R^s \  Ml , Mult^A}, and consider the corre­
sponding I (T) as defined above. Then:

1) I ( T ) is a left ideal.
2) As groups, R f  = / (Т )+ ф 7(ГС)+, where T c denotes the complement 

of T  in S, in Y ,  or in A, as is appropriate.
3) In each case, for the appropriate X ,  if  X  С T, then I{T) is an ideal 

in R lt and R i / I ( T )  a  I (T C).
4a) If I (T )  is an ideal and R\ ф Ml , then X  QT.
4b) Suppose R \  = Ml and p (X )  < oo. Then I(T) is an ideal if and only 

if  p (X  П T c) = 0.
5a) Suppose R\ ф Ml - Then I{T{) Q /(T 2) if and only 1/T 2 Q T\.
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5b) Suppose Ri  = Ml and p ( X )  < oo. Then I{T\) Q I(T2) i f  and only 
i f T 2 Q T x.

P roof . We shall sketch the proof for R\ =  M l - The other two cases 
have proofs very similar, hut simpler.

For 1), take a , ß  £ /(T ), and t £ T. Then (a  — ß)(t,b) =  a(t ,b) -  
—ß ( t ,b ) = 0 -  0 = 0, so a — ß £ I{T).  For 7 £ R\  = Ml , and t £ T, 
(7 • a)(t,b)  = /  7 (x,a(t,b))dp(x)  = J  ~/(x,0)dp(x) — f  Odp(x) = 0 . Hence, 

X  X X
7 • a £ I(T),  and so I ( T ) is a left ideal.

For 2), let a £ R\ = Ml and define

and

aT(t,b) = j
l o(t, a),

i(, M /  o (i.a ).

if t £ T; 
if t i  T,

if t £ T ;  
if t i  T.

Certainly a = a' +  ap,  and a' £ I ( T C), and ap  G I(T),  if a ' , a p  £ M l - 
If one is in Ml , the other is also, and we shall shortly demonstrate that 
a p  £ M l - Assuming a p  £ Ml , we certainly have М £  = I (T )+ +  / (T c)+, 
and if ß £ /(Т )П /(Т С), then ß = 0. So we need only to show that a p  £ M l - 

Take b £ R. Then /  ap(y ,b)dp. {y)  =  f  a(y ,  b )dp(y )  exists, since a  £  M l - 
y  T

For /  £ Ci(Y ,A ,p)  and a £ Y ,  if a £ T,  then f  a p ( a ,  f(y))dp(y)  = 0 =
К

= a p ( a ,  f  f(y)dp(y)).  If a £ T, then 
Y

J ap(a,f{y))dp(y)  = J a(o, f(y))d/i(y) =
Y  Y

= a ( ° ’ /  = а т(а, j  f ( y )dp (y )Sj ,
Y  Y

since a £ M l - Finally, for у £ T ,  ap(y, sa + tb) = 0 = sap(y, a) + t a p ( y , b), 
and for у £ T ,  ap(y, sa-\-tb) = a(y, sa+tb) = sa(y , a)+ ta(j/, 6) = sap(y ,  a)+ 
+tap(y,b).  So, cur € Mr, as promised.

We also assume X  Q T  for 3). Take a £ I(T)  and 7 £ R\ = M l - Then 
for t £ T ,  (a  • 7 ){t, b) = J  a(x, 7(t, b))dp(x) = /  0dp(x) — 0, so a • 7 £ /(T ),

x  x
and /(T )  is an ideal. As groups, from 2), we have R+ / /(T )+ =  / ( T c)+. 
The map a  a' is certainly a group epimorphism. We will show now that 
(a • ß)'  = a 1 ■ ß1, thus completing the proof of 3).
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For t € т, (а' ■ ß')(t, b)= f  at'(x, ß'(t, b))dp(x) = f  a(x, ß(t, b))dy.(x) =
X X

= (a  • ß)(t,b). For t £ T,

( a ' • ß')(t,b) =  J a'(x,ß'(t,b))dn(x) =
X

= J a(x,0)d/j.(x) = J 0d[x(x) = 0,
x  x

and (a  • ß)'(t, b) =  0, also. Thus (a  • ß)' = a ' • ß ' .
For 4b), we also assume ц ( Х )  < oo. If ц ( Х ПТС) = 0, а Е /(Т ), 7 Е Ml , 

and / € Т, then

( a - 7 )(í,6) =  j  Oí{x,i(t,b))dn(x) = 
x

= /  t*(*,7{t,b))dn(x)
XnT

+ J a (x ,7(t,b))dfit(x) = J
Xr\Tc XnT

0 d/j,(x) + 0 = 0,

since Ii(X П T c) =  0. Hence I ( T )  is an ideal.
For the converse, we assume /(T ) is an ideal. If a  € /(T ) , 7 E Ml and 

í G T , then
0 = (a - j) ( t ,b )  =  J a(x,i( t ,b))dp(x) = 

x

= J a(x,y(t,b))dfi(x)+ J ot(x, j( t ,  b))dy,(x)
XnT Xn Tc

Define a by

=  J a(x , ‘y(t,b))dfi(x) = (\).
XnTc

, r 6, if
a ( <>6) ={ 0, о

Choose а 7 and a b so that 7 (£, 6) 7̂  0. If a  E M l , then a  E /(T ), and

if t e X  П T c; 
otherwise.

( t ) =  J 7 М Ж * )  = 7 М М * П Г ) .
XnTc

Since 7(t, 6) 7Í 0, we have /г(Х П T c) = 0.
Let us now show that a E M l - For a), f  a(y,b)dy(y) =  J  bdfi(y) =

Y XnTc
=  П Tc) exists. For b), take /  E £ 1(1̂ , А ,ц ) .  Then for a E X  П Tc, 
/  a (a , f(y))dn(y) = J  f(y)dfj,(y) = a(a, J  f ( y ) d fx(y)). For a g X П Tc,
К у У
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/  ot(a, f(y))dp(y)  = 0 = a (a , f  f(y)dp(y)).  Finally, for c), let у G ХП  
Y  Y
ПТС. Then a(y,  sa + tb) = sa -f tb = sa(y, a) + ta(y, b). For у ф X  C\ T c, 
a(y,sa + tb) = 0 = s- 0 + t -  0 = sa(y ,a ) +  ta(y,b). Hence, a  € M l as 
promised.

Finally, for 5b), we suppose that I(T\)  £ /(T2), and that there is a 
<2 € T2 \  T\. Define a by a ( i2,b) = b and a(t,b) = 0 if t2 ф t. Then, if 
a  € Ml , we have a 6 I(T\) but a £ /(T2), a contradiction. So we need only 
see that a  € M l -

It is direct to see that b) and c) requirements for being in M l are satisfied. 
For a), let b e  R. Then

J a(y, b ) M y ) = { l
Y

if {t2} i  A; 
if {i2} € A.

So a  e M l -
The converse is trivial.
Corollary 23. a) Suppose R\ ф Ml - Then /(T j) C I(T2) if  and only if 

T2 C Tj.
b) Suppose R\ = Ml and p{X)  < oo. Then I(T \ ) C I{T2) if and only if 

T2 C T\.
P roof. Suppose I(T\) C I{T2). Then I{T\)  c  I{T2). From the theorem, 

T2 Q T\. If T2 = Ti, then T\ Q T2 and the theorem gives us that I{T2) Q 
Q I(T\),  which cannot be. Conversely, suppose T2 C T\. Then T2 Q T\ and 
so 1(Т\) Q I{T2). If /(T j) = /(T 2), then I(T2) C /(T j), which forces Tx Q T2.

Corollary 24. For the appropriate case for R x, assume that S, A, or 
Y  is infinite. Then neither the descending chain condition (d.c.c.) for left 
ideals nor the d.c.c. for ideals holds.

P roof. For the ideal case, there is an infinite chain

X  C T X C T 2 C ■■■ C T n C ■■■ -
So

I ( X ) D l ( T 1) D l ( T 2) D - - - D l ( T n) D - - - .
The definition of Ml depends upon a measure space (У, A,p ) ,  and this 

point could be emphasized by writing M l ( Y , A , p ) ,  if necessary, for M l - For 
a /г-measurable set T  € A,  one gets the measure space (Т,Ат,рт)  where 
the cr-algebra A t  = {F e A  \ F  Q T}, and рт = M | Ат [11, 11.22, 11.37, 
12.31].

T heorem 25. Let R x = M l {Y ,A ,p ) and fix X , T  6 A  with X  Q T ,  and 
let X  define the multiplication in the M l  ’s . Then

Ml ( Y , A , p ) 
I (T) -  M l ( T , A t , p t )-
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P roof. From Theorem 22, we have M l (Y,A,[ i ) / I ( T ) = I ( T C), so we 
shall show that I { T C) =  Ml ( T ,A t , Ht )- Define Л: I ( T C) —» Ml ( T ,A t , Ht ) 
by A(a) = a \ T  X R = a*, the restriction of a  to T x R. Certainly, 
A(a + ß) = Л (а) +  Л(Ь), or (а  + /?)* = а* + ß*- If а* = 0, then a*(í, •) =  0 
for each t G T,  so a(t, •) = 0 for each t G T.  Since а  G /(T c), then a(f, •) =  0 
for each t G T c, making a(t, •) = 0 for each t G T  U T c = Y . So a — 0 and Л 
is injective.

Take any a* G Ml (T,At ,Ht ), and define

if У e T; 
if у € T c.

If a G Ml ( Y , A , /i), then a G I {TC) and A (a) = a*, making A surjective.
To see that a  G M l ( Y , A , h), take b e  R, and note that f  a(y,b)d/u(y) =

v
= I  a(y, b)dn(y) +  f  a(y, b)dn(y) = /  a*(y, b)d^T(y).

T тс T
For /  G £ i(y , А ,ц )  and a G У, we have J  a(a, f (y))dn(y)  = 0 =

Y
= a(a, J  f(y)d(i(y)), if a G Tc, and if a G T, then f  a(a, f(y))d/j,(y) =

= J a*(aJ ( y ) ) M y )  = f f ( y ) a e(a,l)dfi(y) = If f ( y)My)]a*(a,  1) =

= <x*(a,f f(y)d/t(y))  = a(a, f  f(y)dfi(y)).
Y  Y

Certainly a(y, sa + tb) = sa(y, a) + ia(j/, 6) if у G Tc, and a(y, sa + tb) = 
= а*(у, «а + = sa*(y, a) + ta*(y, b) = sa(y, a) +  ta(y, b), if у G T. In
summary, cc G M l ( Y , A , h), and to see that A is a ring isomorphism, one 
needs only now to see that (a • ß)* = а* • ß*.

Now a*-ß*(a ,b)  = f  a*(x,ß*(a,b))d/iT(x) = /  a(x, ß(a,b))d[i(x) = 
X  X

— (a-ß)(a,b) = (a-ß)*(a,b), for each (а, 6) G T  x R. Hence (a -ß )* =  а* •/?*. 
This completes the proof of Theorem 25.

Recall that can be thought of as all functions r: S  —> R with finite 
support [13]. The proof of Theorem 25 can be easily modified to give a proof 
of

C orollary 26. For R x = R (5) and X  Q T  Q S , we have R ^ / I ( T )  =
S  д (т ).
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ON THE UNIQUE EXISTENCE OF ALMOST 
PERIODIC SOLUTIONS OF VOLTERRA 
INTEGRO-DIFFERENTIAL EQUATIONS

K. WANG (Changchun)*

This paper deals with the uniqueness and existence of almost periodic 
solutions of Volterra integro-differential equations of the form

t

(1) x'(t) = A(t)x(t)  + J C(s -  t)x(s)ds + f ( t ) ,
— OO

and
t

(2) x'(t) = A(t)x(t) + J  D(s -  t, x(s))ds + r(t,  x(<)),
— OO

where A , C  are continuous matrices; D , f , r  are continuous n-dimensional 
vectors; and A(t  + T)  = A(t), T  > 0.

The existence and uniqueness of almost periodic solutions of Volterra 
integro-differential equations have been studied by many authors, see [1-4]. 
Using the technique of [5], we present some new unique existence criteria for 
(1) and (2).

If x = ( z i ,X 2 ,. . .  ,x „ )  (E Rn, A = (a,y) is ап n X n m atrix , then define

1*1 = i t ,  Iх*!’ И  = Y j M -
* = 1 IJ=1

Let AP denote the set of almost periodic functions, define ||g|| = sup |g(t)|,
te R

for g € AP. The space (AP, || • ||) is a Banach space.
Definition 1. A m atrix  A(t) is said to be noncritical with respect to  AP 

if the only solution in AP of the equation x' = A(t)x  is the zero solution 
x = 0.

Lemma 1 [5]. If A(t  +  T)  =  A(t), T  > 0, then the equation

(3) x ' =  A(t)x  +  f( t)

Supported by the National Natural Science Foundation of China.



3 1 2 К. WANG

has a solution К  f  in AP for every f  £ AP if  and only if  A ( t ) is noncritical 
with respect to AP.

Lemma 2 [5]. If  A(t + T )  =  A(t), and A is noncritical with respect to AP 
then K f  is the only solution of  (3) in AP, and К f  is continuous and linear 
in f ,  and there is a constant

k = T  sup { ( X - ' i t  + T A ) -  I ) ' 1 X { t , t  + s)
0 <s,t<T 1

such that (ITif/Ц < k\\f\\, where I  is the unit matrix, X ( t , s ) ,  X(s ,s )  = I, is 
the principal matrix solution of  x'  = A(t)x.

Lemma 3. I f  A(t + T) = A{t), then A( t ) is noncritical with respect to AP 
i f  and only i f  all characteristic exponents of  x' = A(t)x have nonzero real 
parts.

def °Lemma 4. I f  G = J \C(u)\du < +oo, then the function
— OO

t

(Qg)(t) =f J C(s -  t)g(s)ds
— OO

is almost periodic, for any g £ AP.
Proof. Suppose {a*,} is a sequence in R. Since g £ AP, so there is а 

continuous function g*(t) and a subsequence {a,} C {a*.-} such that 
uniformly converges to g*{t) on R , that is, for any given e > 0, there is a 
N  > 0 such th a t

|<7(i + a,) — <7*(i)| < £, for t £ R and i > N.
Since

t+ak t
+  Ofc) = J C(s -  t -  ak)g(s)ds = J C(s -  t)g(s + ak)ds,

— OO — OO

therefore,
t

\(Qg)(t + a{) -  (Qg')(t)\ й J \C (s - t ) \ \g (s  + a i ) -g* (s ) \d s<
—  OO

0
< £ J \C{u)\du, for t £ R  and i > N .

— OO

This implies th a t {(Qp)(t + a,)} uniformly converges to (Qg*){t) on R, thus 
(Qg)(t) is almost periodic.
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Theorem 1. If
1° A(t) is noncritical with respect to AP;
2° kG < 1;

then (1) has one and only one almost periodic solution for every f  £ AP.

Proof. Suppose /  £ AP is given, we define maps P, Q : AP —► AP by 
the following way

t
{Qg)(t) = J C(s -  t)g(s)ds, for g £ AP,

—oo

and Pg =  K(Qg + /)• It is easy to see that P, Q are well defined and 
continuous in g, and ||£?<7|| ^ G||<7||.

Take M  > 0 so large that (1 -  kG)M  > k, if /  ф 0. Let

5  = {5 £АР:|Ы|<АГ|| / | |} .

Then for g £ 5,

Ш  = II*W * + / ) II < k(WQg\\ + ll/ll) < kG\\g\\ =
= k\\ f \ \<MkG\\f \ \  + k\\ f \ \<M\\f \ \ .

Therefore P  is a map of S  into itself.
If g, h £ 5, then

IIPg -  Ph II = IIK(Qg + f )  -  K(Qh  + / ) у < IIKQg -  KQh\\ £ 
< k \ \Q (g - h ) \ \< k G \ \g - h \ \ .

From condition 2°, the map P is a contraction of S. The contraction principle 
implies there is a unique fixed point g* of P on S, that is,

t
j t g V )  = A ( t )g \ t )  + (Qgm + f)(t)  = A(t)g*(t)+ J C(s -  t )g \ s )d s  +  f( t) ,

— OO

and g*(t) is an almost periodic solution of (1). If there is another almost 
periodic solution h*(t) of (1), take M  > 0 so large tha t \\h*\\ < M ||/ | | ,  then 
h* is a fixed point of P  on S, from the uniqueness of fixed point of P  on 
5, h* = g*. This implies the uniqueness of almost periodic solution of (1).

If /  = 0, let
S = { g e  AP: |Ы |< М } .

The remaining argument proceeds as in case /  ф 0.
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Corollary 1. If  A is a real constant matrix, and 
1° all characteristic roots of  A have nonzero real parts;

2° f  \C(u)\du < (T \{e~AT — / ) -1 | е\А\т) ~1;
— OO

then equation (1) has one and only one almost periodic solution.

C orollary 2. If  n = 1 and
T

1° f  A(s)ds ф 0; 
о

T

— f  A ( s ) d s

1 — e 0
— OO

then equation (1) has one and only one almost periodic solution.

Corollary 3. If
1° A(i)A(s) =  A(s)A(i) for all t ,s  € R, and all characteristic roots of  

T
the matrix f  A(z)dz  have nonzero real parts; 

о

2° J \C(u)\du < T -1

t+i
inf  Г Л(г)4«

0 < j , t < T  J

f /

T

V V

-  J A ( z ) d z  

e о - /

\ - x \
e U \ \ T

/ /

- l

2° /  |C(u)|cJu<

where ||A|| =  sup |A(i)|, then equation (1) has one and only one almost 
о < t < T

periodic solution.
Now let us consider the more complicated nonlinear Volterra integro- 

differential equation

( 2 )

t

c' (t ) = A(t)x(t) +  I  D(s -  t , x(s))ds + r(i, x(t)),

where D : ( — oo, 0] x Rn —> R n and r : R x R n —* R n are continuous functions,
t

D(-, 0) =  0, from g € AP it follows that J D(s — t,g(s))ds is continuous on
— OO

R,  moreover there are real constants c > 0, L > 0 and a continuous function 
C \ : (-oo,0] —► [0,oo) such that

|D (u ,x) -  D ( u ,y )I < Ci(u)|x -  y\, |r(t,x )| < c,

|r( f ,x )  -  r(t,y)\ < L\x -  y\ 

for all и ^ 0, x, у € R n, t € R.
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Lemma 5. If
о

F d= J  |Ci(u)|<fo < oo,
— OO

then the function
t

(Qg){t)d= J D(s -  t ,g(s))ds
— OO

is almost periodicfor any g 6 AP.
Proof. Suppose {a*J is a sequence in R. Since g € AP, so there is а 

continuous function g*(t) and a subsequence {a,} C {a*,} such tha t {p(f+a,)} 
uniformly converges to g*(t) on R, that is, for any given £ > 0, there is an 
iV > 0 such that

Ig(t + a,) -  g*(t)\ < s, for i 6 R  and i > N.

Since

(Qg)(t + ak) =
t + <*k t

g(s))ds = J
— OO

D(s  -  t,g(s +  ak ))ds,

therefore,
t

\(Qg)(t + a i ) -  (Qg*)(t)\< J  |D(a -  t,g(s + a,)) -  D(s -  t , g m(s))\ds <
— OO

t 0
^ J  Ci(s -  Olffis +  a<) -  <7*(s)|ds < £ J  |C i(u)|du, for t € R  and г > N.

— OO — OO

This implies that {(Q<7)(i + a,)} uniformly converges to (Qgm)(t) on R. The 
lemma is proved.

T heorem 2. If
1° r(t,g(t)) is almost periodic for any g 6 AP;
2° A is noncritical with respect to AP; 

о
3° kL < 1, and J  |Ci(«)|dtt < A:"1 -  L;

— OO

then (2) has one and only one almost periodic solution.
Proof. Let о

F =  J  |Ci(tt)|du.
— OO
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It is easy to see that kF  < 1. Take M  > 0 so large that (1 — kF)M  > k. 
Define maps P, Q : AP —> AP by the following way

tJ D(s -  t,g(s))ds, for g € AP,
—oo

and
(P*)(t) = * ( ( $ * ) ( . ) + r(.,* (.))).

It is easy to see that P, Q are well defined and continuous.
Let

S = { g e A P : \ \ g || £ Me}.
Then, for g £ S,  we have

||p5|| = ||A((Qp)(.) + K-,5(-)))ll^
t

= k J C\(s -  t)\g(s)\ds + kc ^  k F M c  + kc < Me.
— OO

Therefore, P  is a map of S into itself.
Suppose g,h  € S,  then

||P<7 -  Ph\\ = IIK{{Qg){-) + r ( - ,ff(.))) -  K «Q h)( . )  + r(-, Л(.)))|| ^

^ IIKQg -  KQh\\ + IIKr{-,g{-)) -  ATr(-, A(-))|| ^  k\\Qg -  Qh\\ + kL\\g -  fi|| <
t

= k J |D(s — t,g(s)) — D(s -  t, h(s))\ds + kL\\g — /i|| <
— OO

t

й к  J Ci(s -  t)\g(s) -  h(s)\ds +  kL\\g -  A|| < kF\\g -  ЛЦ +  kL\\g -  ЛЦ.
— OO

From 3°, kF-\-kL < 1, and P is a contraction on S.  The contraction principle 
implies there is a unique fixed point g* € S of P,  that is,

j t g*{t) =  A(t)g*(t) +  (Qg*)(t) + r ( t ,g9{t)) =

t
— A(t)g*(t) -f- J D (s - t ,g * ( s ) ) d s  + r(t,g*(t)).

—  OO

Therefore, g*(t) is an almost periodic solution of (2). The uniqueness of 
almost periodic solution of (2) can be proved by the same way as in the 
proof of Theorem 1.
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C orollary 4. If  A is a real constant matrix and 
1° all characteristic roots of A have nonzero real parts;
2° ( T \{e~AT -  / ) " г| e ^ lr ) _1 > L + F ;  

then equation (2) has one and only one almost periodic solution.
C orollary 5. If  n = 1, and

T
1° J A(s)ds ф 0; 

о
T

-  J A(z)dz
2° F + L < Г " 1 1 -  e о

t+e
0<inf f  A(z)dz 

s , t <T  J

then equation (2) has one and only one almost periodic solution.
C orollary 6. If
1° .A(f).A(s) = A(s)A(t) for all t ,s  G R, and all characteristic roots of 

T
the matrix J A{z)dz have nonzero real parts; 

о

(
2° F  + L < T

\ \

- l
-  /  A(z)dz

e ° - I
\

then equation (2) has one and only one a

\ - l

plWir

'most periodic solution.
C orollary 7. I f n  = l and
1° A(t) = А ф 0, where A is a constant;
2° F + L <  \A\;

then equation (2) has one and only one almost periodic solution. 
P roof. If A  > 0, by Corollary 5 we have,

к < T (  1 -  e~AT)~x d= К (T),

where T  is any positive constant.
Since

И т  =  l  +  A T + l- ( A T ) 2 +  . . .  >  1 +  A T ,  j K { T )  = > o,

and
к < lim К  (Г) = А~х.

If А < 0, we have

к < Т(е~АТ -  \ ) - 1е~АТ = Г(1 -  еАТ)~х.

The rest of the argument proceeds as in case A > 0.

Acta Mathcmatica Hungarica 58, 1991



318 К. WANG: VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

E xample 1. The equation
l

x'(t) = 3x(t)  +  J e‘~tx(s)ds  + arctan(sin t  +  cos жt + x(t))
— OO

has one and only one almost periodic solution.
Remark. For each /  £ AP, there is a corresponding Fourier series

akei \ kt

k=0

with frequencies Xk in R  and coefficients ak in C n. The requirement A* > 
> q > 0 for к = 1,2, • • •, is needed in [4], while in this paper we do not need 
such kind of conditions at all.

E xample 2. The equation

(4) c'(t) = 5x(i) + J - x(s)ds
+ ( t - s y

°° 1 [Y

+ Е * С05п 1

has one and only one almost periodic solution.
P roof . We have A  =  5, F = ^7r, L -  0. By Corollary 7, this example

is obvious. But, since inf j^ /T }  =  0? it is difficult to determine the unique 
existence of almost periodic solutions for (4) by the results in [4].
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ON THE RIEMANNIAN CURVATURE 
OF A TWISTOR SPACE

J. DAVIDOV and O. MUSKAROV (Sofia)*

§ 1. Introduction. The twistor space of an oriented Riemannian 4- 
manifold M  is the 2-sphere bundle Z  on M  consisting of the unit (—1)- 
eigenvectors of the Hodge star operator acting on A2TM .  The 6-manifold Z  
admits a natural 1-parameter family of pseudo-Riemannian metrics ht , t ф 0. 
For t > 0, these metrics are definite and have been studied by Friedrich 
and Kurke [4] in connection with the classification of self-dual Einstein 4- 
manifolds with positive scalar curvature. In [3], Friedrich and Grünewald 
have given the geometric conditions on M  ensuring that ht , t > 0, is an 
Einstein metric. In the case t < 0, ht is indefinite and has been studied by 
Vitter in [10] where local formulas for the curvature and Ricci forms have 
been obtained. K. Sekigawa [8] has considered the metrics ht , t > 0, on the 
twistor space of an oriented Riemannian 2n-manifold.

The main purpose of this paper is to give a coordinate-free formula for 
the sectional curvature of the pseudo-Riemannian manifold (Z , h t) in terms 
of the curvature of M.  This is achieved by means of the O’Neill formulas [6] 
for Riemannian submersions. As applications we discuss the Ricci curvature 
of ( Z , ht) and the holomorphic sectional curvatures with respect to the almost 
complex structures on Z  introduced by Atiyah, Hitchin and Singer [1] and 
Eells and Salamon [2], respectively.

§ 2. Preliminaries. Let M  be an oriented Riemannian 4-manifold with 
metric g. Then g induces a metric on the bundle of 2-vectors A2T M  by the 
formula

g( Ax  Л A 2, A3  Л Aa) = -  det (р(А,, A j ) ) .

The Riemannian connection of M  determines a connection of the vector 
bundle Л2T M  (both denoted by v )  and the respective curvatures are related
by

R(A  Л B)(C Л D) = R(A, B)C A D  + С л  R(A, B)D

for A ,B ,C ,D  G X(M )\  X (M )  stands for the Lie algebra of smooth vector 
fields on M.  (For the curvature tensor R of M  we adopt the following

* This project has been completed with the financial support of the Committee for 
Science at the Council of Ministers of Bulgaria under contract N 402.



3 2 0 J. DAVIDOV and  O. MUSKAROV

definition: R(A, B)  = V[a,b] -  [Va , V b ]-) The curvature operator 7Z is the 
self-adjoint endomorphism of A2T M  defined by

g (7Ц А А В), С A D) = g(R(A, B)C, D)

for all A ,B ,C ,D  € X(M ).  The Hodge star operator defines an endomor­
phism * of A2T M  with *2 = Id. Hence

A 2TM  = a \ T M @ A 2_ T M

where A\ T M  are the subbundles of A2T M  corresponding to the (±l)-eigen- 
vectors of *. Let (E\,  E2, E3, £ 4) be a local oriented orthonormal frame of 
T M .  Set

( 2 . 1)

51 =  E\ A E2 — E 3 A E4,
52 = E\ A E3 — E\ А Ег,
53 = E\ A £4 — E 2 A E3,

Si = Ei A E 2 + E3 A E4, 
«2  =  £ 1  A  £ 3  +  £ 4  Л  E2, 
S3 =  £ 1  A  £ 4  +  £ 2  Л  E3.

Then (s i , S2)S3) (resp. (si,S2,S3)) is a local oriented orthonormal frame of 
A Í T M  (resp. A+TM).  The matrix of 7Z with respect to the frame (s,-,s,) 
of A2T M  has the form

where the 3 x 3  matrices A and C are symmetric and have equal traces. Let 
B, W4. and W_ be the endomorphisms of Л2Т M  with matrices

В = 0
tß

A -  XI 0 
0 0 ’

0
C -  XI

where A = |Trace C and I  is the unit 3x3 matrix. Then 71 = Aid -f # + W++ 
+W _ is the irreducible decomposition of 7Z under the action of SO(4) found 
by Singer and Thorpe [9]. Note that A = 1/6 scalar curvature; Aid + В and 
VV = W+ + W_ represent the Ricci tensor and the Weyl conformal tensor, 
respectively. The manifold M  is called self-dual (anti-self-dual) if W_ = 0 
(W+ = 0). It is Einstein exactly when В = 0.

The twistor space of M  is the submanifold Z  of A2_ T M  consisting of all 
unit vectors. The Riemannian connection V of M  gives rise to a splitting 
T Z  = H ® V of the tangent bundle of Z  into horizontal and vertical compo­
nents. More precisely, let тг: A 2_ T M  —► M  be the natural projection. By 
definition, the vertical space at a 6 Z  is

v . = {v e T.z/ir.iv) = 0}

(T^Z  is always considered as a subspace of Ta{A2_TM ).)  Note that W con­
sists of those vectors of T„Z which are tangent to the fibre Zp = 7г- 1 (р) П Z ,
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p = 7г(сг), of Z  through the point a. Since Zp is the unit sphere in the vector 
space л !Т рМ, Va is the orthogonal complement of a in A2_TPM .

Let i  be a local section of Z  such that s{p) — a. Since s has constant 
length, G V<r for all A £ TPM.  Given A £ TPM,  the vector

Ah = St.A -  s/ as e TaZ

depends only on p and cr. By definition the horizontal space at a is

H,, = {Ah/A  £ TPM}.

Note that the map A  —► Ah is an isomorphism between TPM  and 'Ha.
Each point cr £ Z  defines a complex structure S on TPM ,  p = ж(<т), by

(2.2) g(SA ,B)  = 2д(ст,АА B), A , B £  TPM.

Note that S is compatible with the metric g and the opposite orientation of 
M  at p. The 2-vector 2a is dual to the fundamental 2-form of 5.

Denote by X  the usual vector product in the oriented 3-dimensional 
vector space A2_TpM , p £ M . Then it is easily checked that

(2.3) g(R(a)b, c) = -g(Jl(b x c), a) 

for a £ A2TpM , b,c £ A2_TpM  and

(2.4) g(o x V , A A S B )  = g(a x V, SA A B )  — -g(V, A A B)  

for V  £ V,,, A, В £ TPM.
Following [1] and [2] define two almost complex structures J\ and Ji on 

Z  by
JnV = ( - l ) na x V  for V e v „ ,

JnAh = (5Л )Л for A £ TPM, p = jt((t).
It is well-known ([1]) that J\ is integrable (i.e. comes from a complex struc­
ture on Z) iff M  is self-dual. Unlike J j, the almost complex structure J2 is 
never integrable [2].

As in [4] define a pseudo-Riemannian metric ht on Z  by

ht = ж*д + tgv

where t ф 0, g is the metric of M  and gv is the restriction of the metric of 
A2T M  on the vertical distribution V. Then ht is a pseudo-Hermitian metric 
with respect to the almost complex structures J\ and J2.

§ 3 . The sectional curvature of a twistor space. In this section we derive 
an explicit formula for the sectional curvature of the pseudo-Riemannian 
manifold (Z ,h t). We shall use the O’Neill formulas for the Riemannian
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submersion n: (Z ,h t) —> (M ,g ). Following [6] denote by T  and A  the tensor 
fields on Z  defined by

T(E, F ) = HDv e VF + V D v e H F , A(E, F ) =  V D nEHF + H D n E VF

where D(= Dt) is the Levi-Civita connection of ( Z , h t) and Ji (resp. V) 
denote the horizontal (resp. vertical) component. Since the fibres of the 
Riemannian submersion 7r: (Z ,h t) —» (M ,g ) are totally geodesic submani­
folds of (Z , h t), it follows that T = 0.

Now we obtain some useful formulas which will be needed later. Let 
(U,x i , x i ,X 3 , x 4) be a local coordinate system of M  and let (E\, E 2 , E 3 , E4) 
be an oriented orthonormal frame of T M  on U. If (51, 02, 53) is the local 
frame of K f T M  defined by (2.1) then х,- = x, о ir, yj(cr) = g(cr,(sj о 7r)(<7)), 
1 ^ i ^ 4, 1 < j  ^ 3, are local coordinates of A2_ T  M  on ж For each 
vector field

i—i

_a_
dx{

on U the horizontal lift X h of X  on n 1(U) is given by

(3.1) x h £ (x ' 07r)á r•=! ’ j,k=1

Hence
3 Q

(3.2) [Xh, Y h) - [ X , Y ] h = £  y} ( 9 W X A Y ) Sj, s k) o ^ )  —
Jyk — 1

for all X , Y  £ X(U).  Let a £ Z  and 7г(сг) = p. Using the standard identifi- 
cation T ^ A l T p M )  = A l T pM  this formula can be written as

(3.3) [Xh, Y h]<r- [ X , Y t  = RP( X  AY)cr.

Lemma 3.1. I f X , Y  € X(M ) and V  is a vertical vector field on Z then

(3.4) ( D x b Y ^ ^ C v x Y t + ' - R l X  A Y ) v ,

(3.5) (Dv X h) .  = H ( D X bV)„ = |(Др(<г ж

for all и € Z.
Proof. The equality (3.4) follows from (3.3) using the standard formula 

for the Levi-Civita connection in terms of inner products and Lie brackets.
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To prove (3.5) note that D y X h is a horizontal vector field since T  = 0. On 
the other hand [V, X h] is a vertical vector field, hence D y X h = 7iDXhV. 
Then

ht(Dv X \ Y h) = ht ( Dxh V ,Y h) = - h t ( V,Dx »Yh)

and (3.5) follows from (3.4) and (2.3).
Denote by XjlZ the covariant derivative of TZ on the vector bundle 

End(A 2TM).
Lemma 3.2. I f V  £ V, and X ,  Y  £ X ( M ) then

2Ы ((Dx h A ) (X h, Y \ , V)  = - tg  ((v * pft)  (X  Л У ), «г x V)  

where p = тг(сг).
P roof. Let s be a local section of Z  such that s(p) =  a and (V 5)p =  0. 

First we shall prove that if W  is a vertical vector field on Z  then

(3.6) VDxh W  = S7X (W os)

where W  os is considered as a section of Л2_TM.  In the local coordinates of 
Л2_ T M  introduced above,

w  = with = 
;=i Уз i=i

Then

VDxhW  = [X
j= i v

x h
’ dy3

+ X'
u ) 4 ) ■

It follows from (3.1) that

x \ 4 -
dy:

^ 2 ( g ( S 7 X S j , S k )  О 7Г) 

k=l

d
dyk

Considering V {DXhW)(r as an element of Л2_TPM  gives

3 / 3
7A<r)9p(VxSj,Sk) + X p(fk о s))sk(p) =V (DXhW)c

O /  о

- E ( E a<
Jt=i vj=i

=  2  V x P +  X A f j  0 5 )) 5j (p ) =  V x p( w  0 5 )
j=i
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W o s  = ^ 2 ( f j os)sj .
j=1

Now, to prove the lemma, note that 2A ( X h, Y h) = V[Xh, Y h\ (c.f. [6]). 
Extending У to a section of A2_ T M  one gets by (3.3) and (3.6) that

2ht ( D x h A ( X \  Y h), y )  = tg(V x R ( X  A Y)s,  V ) =

= tX (g ( R ( X  A Y )s ,  V )) -  tg(R(X  A Y)s,  y x V)  =
= - t X ( g ( s  x V,K (X  Л У))) + tg(s x S7xV,K{X  А У)) =

= - t g  (s x У, Y/ х Щ Х  Л У)) + tg  (a x улг^ -  Vx(« x V), ft(X  А У )). 
Since

Vxp(5 x У) = v x p5 x V  + s(p) x = 5(p) x VXp^
one obtains

2ht (D x h A ( X h, Y h), у ) ^  = - tg  (a x У, V*P̂ ( *  А У)) •

On the other hand by (3.4) and (2.3) one gets

2Ы ( л  ( d x „ Y \  Y h) ^  + A ( X h, D x h Y h) a , v )  =

= - tg  (a x У ,7 г (у * р (* Л У )))
and the lemma is proved.

Lemma 3.3. I f V , W  € V<r and X , Y  £ TPM , p = 7r(a), then

ht (A { X h,V ) ,A { Y h, W ))  = j S(Ä(or x У)Л\ Д(а x W )Y) .

P roof. Let (E\,  E2, E3, E 4) be a local oriented orthonormal frame of 
T M  near the point p. Then by (3.5) one has

ht (л (Х \У ),Л (У \Т У )) = ht (7~tDX hV,HDYhW) =
4

= ( d x hV , E?) ht ( Dyhw ., E?) =
»=1 

/2 4
= j ^ j ( Ä ( a  x V ) X , E i ) g ( R ( a  x РУ)У,E.) =

^ «=1

= j p (E(ct x V)X,R{(t x W)y).
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Lemma 3.4. I f V , W  £ Va and X ,  Y  £ TPM, p = 7г(и), then 

ht({Dv A ) ( X h, Y h),W)  =  - t g ( K ( a ) ,X  A Y)g(a  x V, W ) — 

t2
— —(g(R(cr x V ) X ,  R(a X W ) Y )  + g(R(a x W )X ,  R(a X V)Y)) .

Proof. First we prove that

(3.7) Dv A ( X h, Y h) = -± g (T l (o ) ,X  Л Y)(a  x V)

for аИ X , Y  £ X(M).
Let (^1, 52, 53) be a local frame of Л2_ Т М  defined by (2.1) such that 

Si(p) =  a. Set

Then

J ' V  =  (1 -  V l ) " n  +  ~  ( 1  '  Vl) 4 )
and (U,J\U) is a g-orthonormal frame of the vertical distribution V on a 
neighbourhood of the point a. It is enough to check (3.7) for V  — U„ and 
V  = J\Ua . Since DuU  and DuJ\U  are vertical vector fields and [17, JXU]„ = 
= 0 it follows from the standard formula for the Levi-Civita connection that 
(DuU)„ = (DuJiU)a = 0. Hence

2DUaA { X \ Y h) = Ua (g([Xh, Y h], U)) Ua + Va (g([Xh, Y h], JXU)) JXU„.

A direct computation using (3.2) shows that

2DUvA ( X \  Y h) = gp (R(X  A Y ) s 2, s3) s3(p)

since y\{a)  = 1, y2{cr) = y3(a) = 0. Now (3.7) follows from (2.3). A similar 
reasoning yields (3.7) for V  = J\U„.

To prove the lemma note that

ht(A(Dv X h, Y h), W )  =  —ht(A(Yh, D v X h), W)  =
= ht(Dv X h ,HDYhW) = ht(HDx h V , n D YhW ) = ht(A (X h, V ) , A ( Y h,W)).  
Similarly

ht( A ( X h, D v Y h),W) = - h t{ A { Y \ V ) , A { X \ W ) )
and the lemma follows from (3.7) and Lemma 3.3.

Denote by Rz  the Riemannian curvature tensor of the twistor space 
(Z ,h t). Combining Lemmas 3.1-3.4 and the O’Neill formulas [6] we obtain 
the following:
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P roposition 3.5. Let E , F  € TaZ and X  =  7r .F ,  Y  =  tt. F ,  V = VE,  
W  = VF. Then

ht (RZ(E A F )E ,  F ) = <?(Я(Х Л У)Х, У) -  tg (( \ / х П)(Х  А У), er х W)  +

+tg (('V y K ) ( X  А У), a x V)  -  3tg(7г(а), X Л У)5(а х У, VP)-
í2

-*2р(Я(ст х У )*, Я(ст х W ) Y ) + — ||Ä(<r х W ) X  + R(o х У)У||2-

- f  IIR ( X  А У)а||2 + t (||У||2||ИЛ||2 -  g(V ,W )2) .

In the case when M  is self-dual and Einstein this formula takes an ap­
parently simple form.

Corollary 3.6. Let M  be a self-dual Einstein manifold with scalar cur­
vature s. Then

ht (R Z(E A F )E ,  F) = g (R (X  A Y ) X ,  Y) -  j g ( a ,  X  A Y)g(a  x V, W ) -

- ( l / 2 ) ( t s / l 2 ) 2g(X ,Y)g(V,  W)  + 3(fs/12)25(X Л У, У x W)+  

+(ts/24)2 {\\X\\2\\W\\2 + \\Y\\2\\V\\2) -  

—6i(s/24)2 (||X  Л У У2 -  2g(a, X  Л У)2) + 

+t{\\V\\2\\W\\2 - g ( V , W ) 2) .

P roof. In this case 1Z = (s/6)Id + W+. Since W+ maps f\2T M  into 
A \ T M  and V  preserves A\ T M  one gets

(3.8) g ( ( s7 x K ) (X  A Y ) , o x W )  = 0.

Now we shall show that
(3.9)
g(R(<r x V )X ,  R(a  X W )Y )  = (s/12)2(g(X, Y)g(V, W) -  2g(X  А У, У x 1У)).

Recall that each о G Z  defines a complex structure Sa on TPM , p = 7r(<r) 
via (2.2). It is easy to check tha t for а, т € Z  with 7г(ст) = 7r(r) one has

S<, о Sr = -g(<r, T)Id -  ScXT (So = 0).

To prove (3.9) we may assume that ||У|| = ||1У|| = 1. Then by (2.4) one has 

g(R(a x V ) X ,  R(a x W ) Y )  = (s/6)g(a x V , X  A R(a x W ) Y )  =

= ( s / \ 2 ) g ( S ^ v X ,  R(o x W ) Y )  = (s2П2)д(а  x VP, У A SaxVX )  =

= - ( s / l 2 ) 2g ( S ^ v S ^ w Y , X )  =
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= (s l \ 2 ) \ g (X, Y)g(V, W) -  2g(X  Л У, V  x W)).
Let U € К  and ||t/|| = 1. Then

IIR ( X  Л У)ст||2 = g(R (X  A Y)a, U f  + g(R(X  A Y)a,  a x U)2 =

= ( s /6)2 (<?(X Л У ,(тх { /)2 + ff(X Л У, U)2) .
Since the projection of X  Л У on V,,. is |( X  А У — S^X Л ^ У )  one obtains

(3.10) ||Д(Х Л У)ст||2 = 2(s/12)2 (||X  Л У ||2 -  2g(cr,X А У)2) .

Now the corollary follows from Proposition 3.5 and formulas (3.8)-(3.10).
§ 4 . The Ricci curvature of a twistor space. Let M  be an oriented 

Riemannian 4-manifold with Ricci tensor сд/. Denote by 7Z- the restriction 
of the curvature operator 1Z: Л 2Т М  —> f\2T M  on A2_ T M .

Proposition 4.1. Let cz be the Ricci tensor of the twistor space (Z ,h t). 
If  Е е  TvZ, X  = 7Г , E  and V = VE then

cz(E,  E) = см(Х , X) f Тгасе(Л —> (\7аД)(ст x У, X))T

+ (i2/4)||TC(a X F ) ||2 -  (Í/2) |K* о П .  III  +  (t /2) ||( i*  о 7г)(ст)||2 +  ||У ||2

where г* : / \ 2Т М  —> T M  is the interior product.
Proof. Let (E\, Е^, E3, E4) be an oriented orthonormal basis of TPM,  

p — 7t(c7), and U a 0-unit vertical vector at a. Then (E {*, Elf, E%, E%, U ,uxU)  
is an ht-orthogonal basis of TaZ  and Proposition 3.5 gives:

(4.1) cz ( E , E ) = сд/(Х, X) T t Trace(A —» (удЛ)(ст x У, X ))+
4  4

+ (*2/4) £  IIÄ(a x V ) E {\\2 -  (3Í/4) ^  ||Ä(X A Et)a \\2 + (t/4 )(||R(U)X\\2+ 
•=i 1-1

+ ||Ä(<r x Í7)X||2 + ||У||2.
Further one has 

4

(4.2) WR(°-x V)E'W2 = 2 E ^ ( ct x f )’£ « л £ ;) = ll^(CT x n i l 2-
1=1 *<i

Since Ä(X A Ei)a is a vertical vector at a it follows that 
4  4

(4.3) ^  ИÄ(X A £ > | | 2 = ^ ( g ( R ( U ) X ,  E{)2 + g(R(* x U)X, E ,)2 =
i=l i—1

= ( \ \ m ) X \\2 + \\R(a x U ) X II2) = \\ix  о7г_ ||2 -  ||(i*  о7г)(а)||2 .
Now the proposition is a consequence of (4.1)-(4.3).
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Corollary 4.2. The scalar curvature s z  of  the twistor space (Z ,h t) is 
given by

4 M  = *WÜ>) + (í/4) (\\K(a)\\2 -  IIR-IIJ) + 2/f
where p = тг(<т) and sa/ is í/ie scalar curvature of M .

Proof. Since

£ | | ( * e ,  o K ) ( r ) f  =  £  =  IIK(r)||!
fc=l jj,fc = l

for each r  6 Л2 TM , the result is a direct consequence of Proposition 4.1.
Corollary 4.3. Let M  be a self-dual Einstein 4-manifold with scalar 

curvature s. Then the Ricci tensor cz and the scalar curvature sz  of (Z ,h t) 
are given by

cz (E , E)  = (»/4 -  t ( s /  12)2) ЦЛ-Ц2 +  (1 + (is/12)2) ||C ||2, 

s z  — 2 / t  + s -  (i/7 2 )s2
where X  = n+E, V  -  VE.

Proof. These formulas follow from Proposition 4.1 and Corollary 4.2 
since

П = (s/6)Id +  W+, TZ- =  (s/6)Id
and

g((VYR)(W, X ), Y )  = g{(Vy K ) ( X  a  Y),  W )  =  0
for X ,Y  e X ( M ) and w  e v .

As an application of Proposition 4.1 we prove the following
Proposition 4.4. The pseudo-Riemannian manifold (Z , ht ) is Einstein if 

and only if M  is a self-dual Einstein manifold with scalar curvature s — 6 /i 
or s = 12/t.

Proof. Suppose that (Z , h t ) is Einstein. Then by Proposition 4.1 one
gets

(4.4) t | | ( ú  о 7г)(а)||2 =  cM( X , X )  -  (sz / 6)||X ||2,

(4.5) i2||7e(a)||2 = (2i/3)sz - 4

for each о G Z , X  € TPM , p = n (a). Let (E i,  E2, E3, Ef)  be an oriented 
orthonormal basis of TpM  and (5,-,s,) the basis of A2TpM  defined by (2.1). 
Then (4.4) is equivalent to the identity

4 4

t y i f lW * 7)) EiAEj)g(R(0),  EiAEk)  = g(7Z(E{AEj), EiAEk)-(sz /6)6jk ,
« '= 1  1 = 1
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which implies that

(4.6) tg( 71(a), sj)g(n(a), sk) = g ^ s - j ) ,  sk)

for о 6 Z, 1 ^  j ,  к < 4. For a fixed j ,  take a point a such that g(E,(o),Sj) = 
= 0. Then (4.6) gives g(TZ(sj),sk) = 0 for 1 < к < 4. Hence M  is an Einstein 
manifold. Now TZ(a) € h2_TpM  and by (2.2) one has

IK* о 7г)(а)||2 = Х > ( а д , х  Л е ,)2 = ||7г(а)Ц2ц х ||2/4.
1=1

This together with (4.4) and (4.5) implies

(4.7) \\Щст)\\2 = ' s t - 4 ) / 2 t 2

for each a € Z. Since M  is Einstein, there exists a basis (E\,  E2, £ 3, £ 4) of 
TPM  such that g(Tl(si),Sj) = <!>,•_, r,, 1 ^ г,у < 3, for some constants r, [9]. 
Then (4.7) gives

r\ = r\  = r\ = (st — 4)/212.

Since rx + Г2 + Г3 = s/2 and (s /2 )2 ф (st -  4)/212 one concludes that 
П = Г2 = Г3 = s / 6. Therefore M  is self-dual and s2/36 = (st — 4)/2f2. The 
last equation shows that st = 6 or si = 12.

The “if” part of the proposition follows at once from Corollary 4.3.
Remarks. 1. Proposition 4.4 is due to Friedrich and Grünewald [3] for 

t > 0.
2. A complete, connected self-dual Einstein 4-manifold with positive 

scalar curvature is isometric to the sphere 5 4 or the complex projective 
space CP2 with their standard metrics [4], [5] (cf. also [7]). In the case of 
negative scalar curvature a complete classification is not available and the 
only known examples are quotients of the unit ball in C2 with the metric of 
constant negative curvature or the Bergman metric [10].

3. (Z ,h t,J i )  is a Kähler-Einstein manifold iff M  is self-dual, Einstein 
and s = 12/ t  (cf. [4] for t > 0 and [10] for t < 0).

§ 5 . The holomorphic sectional curvature of a twistor space. One can
compute the holomorphic sectional curvature Hn of the almost Hermitian 
manifold (Z ,h t, J n), n = 1,2 by means of Proposition 3.5. The respective 
formula simplifies significantly when the base M  of Z  is self-dual and Ein­
stein. More precisely, by Corollary 3.6 and (2.4) one gets the following:

Proposition 5.1. Let M  be a self-dual Einstein manifold with sectional 
curvature К  and scalar curvature s. Let E  G TaZ be an ht -unit vector and 
S  the complex structure on TpM , p = 7t(ct), defined by a. Then

Hn(E) = K (X ,  S X ) \ \X \\4 + t | |P ||4 + (2(sf/24)2(3( —1)" + 1)+

Acta Matkematica Hungarica 58, 1991



3 3 0 J. DAVIDOV and  O. MUSKAROV

+ ( - l ) " + ,( í l / 4 ) ) |M 2||V||2 
where X  = жшЕ  and V  = VE.

Now we describe the twistor spaces of constant holomorphic sectional 
curvature.

P roposition 5.2. The almost Hermitian manifold (Z ,h t, J \ ) has a con­
stant holomorphic sectional curvature X  if and only if M  is of constant 
sectional curvature X  — l / t .

The holomorphic sectional curvature of (Z ,h t , J2) is never constant.
Proof. Assume that Hn =  X.  By Proposition 3.5 it follows that for 

every о £ Z  and X  € TpM , p = 7г(сг), ||X || = 1, one has

(5.1) X  = g ( R ( X , S X ) X , S X )  -  (3t/4)||Ä(X Л £ X )a ||2

where S  is the complex structure on TpM  defined by a. Let s1? S2, s3 be the
3  3

local sections of Z  given by (2.1) and о — A,s,, $3 A2 = 1. Denote by S;
» = 1  í - i

the complex structure on TpM  determined by s,(p). Set

Then

Oij = g(n(s,) ,  X  л S jX ) ,  btJ = g(Щ Х  A S i X ) , X  A SjX).

IIR ( X  A SA> | | 2 = Y 9 (Щ*  X Si), X  A S X ) 2 =
i=i

3 /  3 \  2 /  3 X 2

=  Y / í ' Y  Aj ü i j  j — ( Y^, X i X j ü i j  J 
,=1 4j=i X \ j = i  y

and

g ( R ( X , S X ) X , S X )  = Y  x ix j bij-
i,j=l

Varying (Ai ,A2, A3) over the unit sphere S 3 one gets from (5.1)

3

a„ -  (3i/4) £  bkt + (3í/4)62 = X ,
k=l

an + ajj — (3í/4) Y, {bli + b\j) + 3tb]3 + (3t/2)b,lbJJ -  2 X ,
k=l

3

+ o,ji -  (3í/2) Y  bkibkj + 3*6,A y = 0
k= 1
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for 1 < i ф j  < 3. These identities imply 6,-, = b-jj and 6,j  — 0 for г /  j ,  i.e. 

g(Щ Х  A S i X ) , X  A S,X) = g(7Z(X A SjX) ,  X  A SjX) ,

g ( K ( X  A S i X ) , X  A S jX )  = 0, i ф j.
Now varying X  over the unit sphere of TPM  gives

g(K(si) ,Sj )  = Sijg(TZ(3i),8i),

g{T^{si)i Sj) = 6ijg(7Z(si), Si),
g(K(si),Sj) = 0, l < i , j < 3 .

This together with the identity ац  = X  shows that M  is of constant sectional 
curvature X.  Now by Proposition 5.1 one has

(5.2)
X  = X\\X\\4 +  t\\V\\4 = {{X2t2/ 2)(3( —1)" + 1) + 3 ( - l )n+1Xt) ||X ||2||F ||2

for all X  € X ( M)  and V  £ V with ||X ||2 + t\\V\\2 = 1 .  For n = 1 (5.2) 
is equivalent to t = 1/ X,  while for n — 2, (5.2) is impossible. Thus the 
proposition is proved.

Assume that M  is complete and simply connected. If t > 0, M  is the 
sphere and it is well-known that the twistor space Z  is CP3 with a
multiple of the Fubini-Study metric. If t < 0, M  is the unit 4-ball and the 
twistor space Z  is an open subset of CP3. The precise description of Z  and 
the indefinite metric ht is given in [10, p. 119].
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ON THE UNIQUENESS OF THE EXPANSIONS
1 =  E  <?■"'

P. ERDŐS, member of the Academy, M. HORVÁTH and I. JOÓ (Budapest)

Consider a number 1 < q < 2 and take an expansion

( 1 ) i = E £"/9">
n=1

Such an expansion is not unique in general. There exist two particular 
expansion algorithms, the greedy and the lazy algorithm. The digits of the 
greedy resp. lazy algorithm are defined inductively as follows:

( 2)

П—1

£n(z) := <
1 if E ^  + *

i= l 4

о if “e  =£* +  £ >  *,
1=1

(3) £n(x) := <

П —1 _

1 if E  ' - P  +  +  • • • < *
1 =  1 

П —1 _
0 if + T̂FT + -dpr + • • • ^  x -

t=i
In this paper we shall investigate the unicity of the expansions of 1 and the 
boundedness of the series formed by consecutive 0 or 1 digits in (1). First 
we prove

T heorem 1 (uniqueness) 1. For 1 < q < A := there exist 2K°
expansions (1) of 1.

2. There exist (at least) countably many 1 < q < 2 for which 1 has 
precisely countably many expansions.

3. There exist 2K° many q for which the expansion of  1 is unique.
4. The following expansions are unique:

OO

(4) +  +
1=1

where к > 2, 2 < щ — к < к, 1 < n,+x — n, < к, n,+fc_i — n, > к. In other 
words, the expansion starts with к consecutive 1 ’s and in the further digits
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there do not exist к consecutive 0 ’s or 1 ’s. Conversely, if  an expansion (4) 
is unique then

(4’) fc ^ 2, 2 < ni -  к < к, 1 < n,+i — п,- < к + 1, n ,+fc -  п,- > к +  1.

Proof 1. The number A  is a solution of x2 = x +  1 hence 1 < q < A 
means that

(5) q~n < q~n~2 + q n 3 + . . .  , n £  N.

This implies th a t for some к : q~n < q~n~2 +  . . .  + q~n~k . Take a sequence 
nj  with nj+1 — nj > к then the sequence {q~n : n /  n j } = {Ax > A2 > . . .}  
satisfies

( 6 ) A« < A„+i -f An+2 + • • •
OO

and hence the subsums of X̂  A„ run over the segment 0 ,£ A n If П\ is
OO

large enough then £  An
71=1

OO
sum X) £j / q nC £j = 

i= 1

n=i L 1 JOO
> 1 + X) 4~n’ • This implies that for any sub- 

j=1
Í 0 00

there exist <5„ =  < satisfying X̂  £j / q n]Jr 
{ 1 j= 1

+  X} bn\n = 1 s°  the desired 2N° expansions are constructed.
n=l

2. Consider first the case q = A. It has precisely the following expan­
sions:

1 = <T2 + <T3 +  <T4 + ■ ■ ■,
1 = q-1 + q ~ \
1 = q - '+  q - 4 + q - 5 + q -6 + . . .  ,
1 = ?-1 + q~3 + q ~ \
1 = q -1 + q - 3 + q-6 + q -7 + q-* + . . . ,
1 = q - 1 + q~3 + q~5 + q~6,
1 = q ~ 1 + q~3 + q~5 + q~8 + q~9 + q~W + . . . ,

1 = q~l + q~3 + q~b + ••• •

It is easy to see that q = A  satisfies these expansions. Consider an expansion 
(1) of 1 with q = A. If £1 = 0 then the only possibility is 1 = q~2 + q~3 + q~4 + 
+  . . .  since all the other terms must be used. If £1 = £2 = 1 then we must 
have 1 = <7-1 +<7-2 . If £1 =  1, £2 = £3 = 0 then by 1 = q~l +q~2 -  q_1+q~4 + 
+q~5 + q~6 + . . .  we see that the only possibility is 1 = q~l + q~4 + q~5 + . . . .
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If £i — 1, £2 = 0, £3 =  1, £ 4  = £5 = 0 then 1 = q-1 + q~3 + q~6 + q~7+
+q~8 + ___ We can continue in this way the discussion with the digit
sequences 101011, 1010100 etc. Finally, there remains the sequence 10101010
...  which corresponds to the expansion 1 = q~x + q~3 + q~5 +  q~7 + ----
Now take another q satisfying 1 = q~l + q~2 + . . .  +  q~k with some к > 3. 
For different values к the values q are also different and we have q > A, 
consequently

(7) q~n > q-n~2 + q -n~3 + q-n~4 + . . .

for all n. Using this property we can prove as above that the only expansions 
of 1 with this q are

ON THE UNIQUENESS OF THE EXPANSIONS 1 =  3 35

1 =  9 1 +  . . .  +  q k,
1 =  + . . .  + 9“ l+1 + +  . . .  + ?■“ ,

1 =  +  <T‘ +1 + Я~к- '  + ■ ■ • + Г " +1 +  Г “ ’ 1 + • • • +  9 '“ ,

1 = E  «""•
n> 1 
kfn

For example, the first к — 1 digits must be 1 because

q - 1 + . . .  + 9- fc+2 + q~k + q-1' - 1 + q~k~2 + . .. < 1 = q~X + . . .  +  q~k.

If £\ = . . .  = £jt_i = 1 and £fc = 0 then we must have £^+i = . . .  = £2fc_i = 1 
because by (7)

q~l +  - . .  + q~k+1 + 9_fc_1 + •. ■ +  q~2k+2 + q~2k + q~2k~l + q~2k~2 + . . . <

< 1 = q ' 1 +  . . .  + q~k+1 + q~k~l + . . .  + q~2k, and so on.
3. As we proved in Parts 1 and 2, the unique expansions may occur only 

for q > A, hence 1 > q-1 + q~2. Let к be the number satisfying

q -1 +  . . .  + q~k < 1 < q - 1 + . . .  + q~k + g"*“1.

Equality can not occur since the finite expansions are never unique. Since 
the first к digits can not be changed, we must have

(8) q - 1 +  . . .  + q~k+1 +  q~k~X + q~k~2 +  . . .  < 1.

So £i = . . .  = £k = 1 is ensured. Suppose that £*+1 = . . .  = £2fc =  0. This 
means that

(9) q~l + . . .  + q~k + q~2k > 1.
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B ut (8) and (9) are in contradiction. Indeed, let q\ be defined by 1 = 
=  9Г1 + •. ■ + ? r fc+1 + +  9Г*"2 + . . . ,  then

1 -  (g r1 + . . .  +  q ik +  g f 2fc) =  - g f *  + (Qik~1+- ■ -+4i2k+1 +  g r 2fc_1 + •••) =

= - g f * [ i  -  (g f1 +  . . .  +  gf*+1 +  g f* -1 + •••)] =  o,

1 =  g f1 + . . .  +  gj~* + q^2k and so (8) implies g > gi, further (9) implies 
q < gi. This proves that between £*,+2,--- ,£2к there exists a digit 1, i.e. if

OO

we denote the expansion by 1 =  g-1 + .. . + q~k + ^  q~n‘ then 2 < щ - к  ^  к
«'= 1

is proved.
Next we show that there are no к + 1 consecutive 0 or 1 digits. Indeed, 

suppose that 1 =  g_1 + .. .-f g- * +  g- "' + 0-g~"-’~1 + .. . + 0 ■q~ni~k~1 + . . . .

Since g- "1 can not be omitted,

1 > g_1 +  . . .  + q~k +  я~п' + g_nj_1 + q~n’~2 + ■ ■ •;
i<j

£n_,+fc+i can not be substituted by 1, hence

1 < g -1 + . . .  +  q~k + £  g-" ' +  q~n>- J f c - i

Subtracting the inequalities we get

q~n) > g- "-»-1 +  . . .  +  q~ni~k + q~n>~k~2 + . . .  

i.e. 1 > g-1 +  . . .  +  q~k + q~k~2 +  q~k~3 + . . .  in contradiction with the
OO

expansion 1 = g-1 + . . .  + q~k +  g-n*. Analogously, if there are к -f 1
«=i

consecutive 1 digits, i.e.

i =  g - 4 . . .  +  g- 4 X ^ g - " 1 + g ~ nj_1+ --- +  ?~"J" fc+ £  g"ni
«>i+fc+i

and £П]-\  = 0 then 1 < g-1 + . . .  +  q~k + £  Q~n' + g“"J-1,
•<j

1 > g“4 . • -+g-fc+ ]r  g-n4g-ni_1+.. . + g - ^ - fc+1+ g _nj_fc_1+ g _nj_fc_2+ . ..

and subtraction gives a contradiction. Conversely, consider an expansion (4) 
w ith no к consecutive 0’s or l ’s in the digits £*+1 = 0, £jt+2, ___Then q~k
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can not be omitted since it is larger than the sum of the subsequent not used 
members:

Y  (1 - £ n )q ~ n S +. • .+ q - 2k+1+q-2k~1+ .. .+g"3fc+1̂ "3fc_1+... < q~k
n>k+l

because 1 > q~x + . . .  + q~k implies 1 > g-1 + . . .  +  q~k+1 + q~k~x + .. .+
+g~2fc+1 +  q~2k~l + ___By the same argument, no 1 can be changed with
0 in the expansion (4 ). On the other hand, no 0  can be changed by 1 : if 
£„•_I =  0, then q~ni +1 is larger than the sum ^  9- "*) because

Y 9"ni  ̂(?"n> + • • • + <Tnj_fc+2) • (1 + q~k + q~2k + •■•) =

= g-"J+1(9_1 +  • • • + 9“fc+1) ( l  +  q~k + Я~2к + ■■■)< ?“n>+1.
So the uniqueness is proved.

4 . We need two lemmas.
Lemma 1. Let ei , . . . , £ „  € {0,1}, £i + . . .  +  £ n  ^ 1 be given and con­

sider the interval I  of all values q for which the expansion of 1 begins with 
£ \ , . .  . and contains further 1 ’s and 0 ’s, i.e.

Y 6^ ^  < 1 < ^ £ ,g _1 +Г"-1 + q~n~2 + ■■■
i=l  1=1

and the subinterval J  С I  described by

Y  e.-g-' +  q■n" 1 < 1 < Y  + <T"~2 +  (T "~ 3 + . . . ,
1=1 1=1

for this q the expansion of l can start with the digits , £„,0 and also
with £ } ,...  ,£„,1. Now if I  C (1 + 6,2 —6) for some 6 > 0, then | / |  < C((5)|J|, 
where C(6) > 0 is independent of n and £ i , . . .  ,£„.

Proof. Define gi,g2,gí,g2 by the relations
П П

1  =  Y, £ i 9 r ' i  1  =  Ys £ * ^ 2  '  +  ^ 2  "  1 + ? 2 П  2  +  - -  - i
1=1 1=1

n n
1 _  \  ' - i I л- l  I _  \  ' - i I n—2 I _*-n—3 I
1 — /  y £i-gi +  g i  ) 1 -  2 +  ?2 +  ?2 +  • • • •

i=i i=i
Then we have obviously I  = (дъдг), J  = (д^дг)» gi < gí < g | <  92- The 
inequality 1 + 6 < q\ means the existence of к = k(q) € N such that the
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digits 2) • • • , can not vanish at the same time. Consequently for some 
1 = j  = к we have

Í2 " 1 +  92 " 2 +  • • • = 2  £«'(il ’ -  92 *) ^  9l 3 -  ?2 J ^
«=1

92 -  9i 
9192

i.e.

(10) 92 -  9l ^  2<7^Г_1(1 -  92-1 )-1 ^ 2g2- ”+fc(92 -  l ) " 1 ^ C(S)q^n.

On the other hand,

Е £.(«г ‘ -  « г ' ) + ( « г - 1 -  « г " -1) =
•=i

— n — 1 I _*
—  - 9 2  + 9 2

and hence
2 + q ; - " - 3 + . . .  =  b - ' - ' l - i  +  (92 - 1)-1] ä

c(e)ú-"-‘ S 1 > (9 ,* -‘ -  яГ‘) = (9Г1 -  «Г')[1 + (9Г1 + ?Г ‘)+
1=1

^ (9
*-l
1

+ • • • +  (9i*-n+1 + 9 Г " +29 Г 1 + • • • +  9 Г П+1)]  ̂

92*- 1 ) [ l  +  2<7Í_1 +  З д р 2 +  - - - +  n 9 i_ "+1] ^ О Д ( д Г Х

(11) 92* -  9Í ^ С (% Г " -  

The estimates (10) and (11) prove Lemma 1.

Lemma 2. Let 6 > 0, tj > 0 and let I  be an interval satisfying

П П
(12) ^ 2  Siq < 1 < ^ 2  £»'9 1 + 9 " 1 + 9 n 2 + • • • (q £ I).

i=i i=i

7 /(1 + <5,2-6 )  D 7 then there exists a system 7i, I 2, ■ of disjoint subintervals 
of I  such that

OO

a) (J Ij is dense in I, 
j=i
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c) for all Ij there exist two different continuations £n+1, . . .  ,£n+k and 
e'n+\ > • • • 1 £n+k ° f  el > • • • »£n (here к and the £ ’s may depend on j ) such that 
for all q £ Ij

n+fc n+k
(13) E  F,'<r < 1 < E  £,•?-■ + q-n- k~1 + q~n~k~2 + . . . ,

i=l «=1

(14)
] * > ? - '+  E  < 1 < E  e'iq~i+4~n~k~1+q~n~k~2+ —
i=l t = n + l 1 = 1 i=n+l

P roof. Choose a number N  £  N and consider the intervals of all q satis­
fying

n+7V n+N

E  £,■?-■ < 1 < E  + <rn~7V- 1 + + . . .
i = l  i r r  1

where £n+ i , . . .  ,£п+дг is any (fixed) continuation of the digits £1?. . .  , £„. 
The 2n  intervals so constructed cover I  and if N > N ( 6) then the length 
of these intervals is bounded by C(6)q^n~N . Applying Lemma 1 for these 
2n  intervals we get a system of intervals { J i , . . .  , / 2̂ } =  J n  such tha t
|J/| > C(S)q1 " N (the constants C(S) may be different at different occur­
rences). Every subinterval of I  of length C(6)qfn~N has an intersection of
measure > C(6)q^n~ with Uj7)v and in every Ji there exist two different ex­
pansions of 1 starting with £ i , . . .  ,£n+N, 0 and £ i ,. . .  ,£n+N, 1. If we repeat 
the above construction with 2N,  3N, . . .  instead of N ,  we get the systems
JiN, J z N , ----By the Lebesgue density theorem \

\  U u J7,tv
' 1=1

= 0 whence,

for large j  the finite interval system U satisfies the conditions b) and c)

of Lemma 2. In order to ensure a) it is enough to show the following fact: 
For any interval l c ( l  + i , 2 - i )  for which (12) holds for all q £ J,  there 
exists a subinterval К  C J  and two different continuations £„+i , . . .  , £n+k 
and £(,+1>. . .  ,£'n+k such that (13) and (14) hold for all q £ K . But this is

OO

easy: take q £ J  such that 1 = £i/ql contains infinitely many 0 and 1
i=i

digits (only countable q are so excluded) and take a large к with £„+* =  1.
n+fc—1

Then £i9_* + q~n~k < 1. Define qi and <72 by
i*=i

n + f c - l n + f c - l

E  ei<h ’ + <?1" k = 1 = E  e'q2 ‘ + Ь n * 1 + <72~ " -fc- 2 + . . .  ,
t=i 1 = 1
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then gi < g <  92 and in the interval К  =  (51, 92) the expansion of 1 can be 
started with ,£n+jt_i, 0 and £1, . . .  ,£„+jt_i, 1. As we have seen in the
proof of Lemma 1, we have 92 -  9i ^ C (6)q2 n~k = C (^)(l + 8)~n~k, so for 
large к we have К  C J ■ Lemma 2 is proved.

We return  to the proof of Theorem 1, Part 4. It is enough to prove 
that for any 6 > 0 in the segment (1 +  y/E)/2 =: A < 9 < 2 for a.e. 9 
and for every 9 except for a set of first category there are 2K° expansions 
of 1. Let n € N he fixed and apply Lemma 2 with 77 = 2~N, n =  1,OO
£i = l , / =  (A, 2 -  8). Denote A\ := (J Ij, then A\  is open and dense

7 = 1

in I  further IA  Ai| < 2~N . For every interval Ij apply again Lemma 2 
with one expansion £ 1 ,... , £n+fc! we get the intervals A n ; then for all A n  
we apply Lemma 2 with the other expansion £1 ,... ,e„,e'n+1, . . .  , A +Jk to 
obtain the system Ij,jltj2. Denote A2 := U A n.n  then Ai  is open, dense

7,71,72

in I  and we can ensure |/ \А г | < 2~N +  2-ЛГ-1, further in every interval 
А л  ,72 there exist four different beginnings of the expansion of 1, common 
for all 9 € A i i ,72• the third step Lemma 2 applies for А л л  with the first 
expansion, for all A n .72 .is with the second one, for all А л л  >73,74,7 s with the 
fourth one, further define A3 as the union of all the intervals Ал ,72,73,74,75 л* 
Continuing this process we obtain the open and dense sets An with |A A „| < 
< 2~n  + 2~n ~1 + . . .  + 2-ЛГ-п+1. By the construction for every 9 in theOO
set A := P| A„, 1 has 2N° many expansions further I \ A  is of first category

n=l
and \I\A\ < 2~n+1. Since N  can be arbitrarily large, Part 4 is proved. The 
proof of Theorem 1 is complete.

Remark. In Part 3 we formulated a necessary and another sufficient 
condition for the uniqueness. The sufficient condition does not contain all 
unique expansions as the following example shows:

(15) 1 =  9-1 + 9~2 +  9-4 + 9-5 + 9~7 + q~9 + q~U + ...  .

This is a unique expansion. Indeed, q~2 can not be omitted because 1 > 
> 9-1 + 9-4 +  9-6 + 9~8 + . . . ;  £3 can not be substituted by 1 since 1 > 9-1 + 
+ 9-2 + 9-4 +  q~6 + 9-8 + . . . ;  £5, £7, £ 9 ,  • • • can not be omitted, £6, £g, £10, • • • 
can not be changed because 1 > 9-1 -f q-3 -f q~5 + q~7 + . . .  holds by 
1 > 9“1 + q- 2 . So (15) is unique indeed. On the other hand the necessary 
condition is not sufficient as the following example shows: in the expansion 
1 = 9-1 + q-2  + q~4 -|- q~7 +  q~9 + 9-11 +  q~13 + . . . ,  q-4 can be omitted, 
because 1 < 9-1 + q-2 + g-4 +  g-6 + . . .  hence

0 < 1 -  9_1 -  g-2 < q~5 + q~6 + g~7 + g-9 + g-11 + 9"13 + . . .  .

The following questions arise.
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P roblem 1. Determine the unique expansions.
P roblem 2. Does there exist q such that 1 has precisely two (or n) 

expansions? Describe them.
P roblem 3. Do there exist precisely Ho numbers q for which 1 has pre­

cisely Ho expansions? Characterize these numbers.
In what follows we consider the problem of the boundedness of the length 

of О-sequences in the expansions of 1. Remark that quantitative and quali­
tative results on this topic are published in [2-5].

T heorem 2. 1. If the expansion (1) is unique then its zero sequences are 
bounded.

2. For 1 < q < (1 -(- y/E) /2 there exists an expansion (1) where the zero 
sequences are bounded.

P roof. 1. Suppose that £„ = 1, En+\ = . . .  = £n+k = 0 is a unique 
expansion. Since q~n can not be omitted, we must have q~n > q~n~x +  . . .  + 
+ < T " -fc,

1 .. _—1 I „—2 I I ..—к  ̂ ^ „—к ч о1 > q  + q + - - -  + q = ------ —, q > 2 - q .q -  1

This can not hold for infinitely many к since for large k,q  must be close to
2 .

2. For q = such an expansion is 1 = q~x + q~ 3 + q~ 5 + ___ If
q < (1 -p Vb ) / 2  then 1 < q~2 + q~3 + q~5 +  . . .  and hence for some large r, 
1 < q~ 2 -f ..  . +  q~r. On the other hand for large r we have 1 > q~l + q~r~x +
+q~2r~x + ---- Now let x := 1 — (q_1 + q~r~l + q~2r~x +  . . . ) ,  then 0 < x <
< q-2 + . . .+q~r+q~ r~ 2 + . . .+q~2r-\-----The members on the right hand side
form a sequence Ai > Л2 > . . .  > 0 satisfying An < A„+i -f An+2 + . . .  for all

n. Consequently the sums £n^n, £n = |  ^ fill in the segment [0, £  An];

in particular x = £n\ n and then 1 = q~x + 9-r_1 + q-2r_1  + . . .  + £n^n 
is the desired expansion of 1.

Finally we formulate some open problems. Prove or disprove:
P roblem 4. If 1 = Yi Q~n' and sup(n,+i -  n,) = 00 then there exist 2H° 

expansions of 1.
P roblem 5. Conversely, if there exist 2K° expansions then there is an 

expansion with sup(n,+i — n,) = 00.
P roblem 6 . If there exist precisely Ho expansions of 1 then for any ex­

pansion 1 = YlQ~n' (with infinitely many 1 digits) sup(n,+i -  n.) < 00 .
P roblem 7. If there exist precisely Ho expansions of 1 then there is a 

finite expansion (with finitely many 1 digits).
P roblem 8 . There exists 1 < q < 2 which has 2**° expansions and has a 

finite expansion.
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MULTIPLICATIVE FUNCTIONS WITH 
REGULARITY PROPERTIES. VI

I. KÁTAI* (Budapest), member of the Academy

Dedicated to F. Schipp on his fiftieth birthday

1 . Recently A. Hildebrand proved the following theorem [1].
There exists a positive constant c with the following property. If g £ M* 

(the set of completely multiplicative functions), |p(n)| = 1 for every n £ N, 
and Ig(p) -  1 | < c for every prime p, then either g(n) — 1 identically, or

Our purpose in this short paper is to Drove the following
T heorem 1 There exist positive constants 1/2) and 6 with the fol­

lowing property. If g £ M* and |<?(n)| = 1 for every n £  N, furthermore

then g(n) = 1 .
R emark To prove the theorem we shall use some ideas due to Hildebrand 

[1], and apply a theorem of Halász on the existence of the mean value of 
multiplicative functions, furthermore some sieve results.

2 . Proof of the theorem, first case. Assume that g £ M* and |ff(n)| = 1 
holds for every n £ N. In [2] Hildebrand proved that

( 1. 1)

and

( 1.2 )

2 =

2

( 2 . 1)

* This work has been done during the term the author was a visiting professor at Tem­
ple University (Philadelphia). Research is supported by Hungarian Research Foundation
No. 907.
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implies that

(2 .2 ) I  5(n + lM « ) - »  П Фр >
f  < n < *

where
Ф = 1 —-  + 2 [1  — — ]Re 

P \  P,
g(p)p'a 

p -  g{p)pia '
(1.2) and (2.2) together imply that Фр = 1 holds for each prime p, i.e. 
g{p) = p~lT. If T  = 0 we get the function g{n) = 1. Assume that т ф 0. We 
shall show that in this case (1.1) cannot be satisfied if S is small enough and 
/3 ^ 1/2. Indeed, by using the prime number theorem,

E
y / x < p < X

|1 ~ P - ,V1
P 2 E

sin flog  p\
r*l

- I I sin Л|
dX -f ox(l) ,

TX1

x\ = logx. Since the limit superior of

/
I sin ЛI 

Л
dX

is bounded below by an absolute positive constant, therefore (1.1) cannot 
hold if 6 is small.

From now on, we may assume that for every т £ R,

( 2 . 1) Ц -  9(p )p'tI2
2—/ p

= 00.

But in this case, by Halász’ theorem,

X > ( » )  = o(z)>
n f í x

which implies easily that

(2.2) L(x) := = o(log®).
n < x

Let us consider the sum

(2.3) L(x\m) := ^ -
n < x  

(n,m) = 1
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for every m in [l,x]. Then, by the Moebius formula,

(2.4) а д » )  -  E  E  m  = £  E  ájjr1
n < x  c / |(n ,m) d \ m k < x / d

d\ Pi
where

and so 

(2.5)

d\m

i,x| = 2
logd

d|m

Doing the same for the function <?(n) = 1, we have

, „ 1 <^(m)
( 2 .6 ) ^  >

E l \p\ m \ ,
=  ------~bgx + Tm)I

rc mn S i  
( n , m ) = l

where 

(2.7)

Let us consider now the sum

w i s 2 E ^ -
d | m

( 2 .8 )

It is clear that

E
| f f ( u ) - f f ( u ) |

(«.«) = !
u v

£  ! / v -  Д »!“ ) ^ r (2/)’
t l < y v^V 

(«.“)=1

and so, by (2.4)-(2.7) we get that

( M )
p |u

s t (S) + 4 E - E
u S j y  d|u

1 ^  log d
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The second sum on the right hand side has the order O(logy). Since L(y) = 
=  o(logy), and

therefore, from (2.9) we obtain th a t for every positive £ > 0 and for every 
large у > y0(£),

(log у) — ■г  ^  T(y) + e(log y f L .u
n S y

It is known that
= A lo g y + 0 ( 1)

n S y

with some absolute constant A(> 0). Thus we have

(2.10) T(y)  > (A -  2£)(logt/)2 if у > yi(e).

3. Let p(n) and P(n) be the smallest and the largest prime factor of 
n, resp. Let iV ^(x |u ,u ) denote the number of solutions of Qv — Ru = 1 in 
integers Q,R  satisfying the conditions Ru £ ( f ,x ] ,  P(Q) > x^, P(R) > x 

One can deduce from sieve results that

(3.1) N 0 (x \u ,v )> cßT----- ^ -----  if x > x 0(ß)(lo g x ^ u -u

with some positive constant Cß, whenever ß  is small enough, and u, v are 
coprime integers satisfying the conditions 1 < u, v ^ х@.

Let us consider the sum

(3.2) Y2 \9 {n) -  g(v)\Nß(x\u,v).
l$u,u<x^

(“.")=!

From (3.1) we get that

(3.3) S > c 0  - 4 - T ( x 0 ).
log X

Now we want to give an upper estimation for S in terms of

U ( x )  ■■= Y 2  1Д0(п)1-
§ < n < x

j4c<a Mathcmatica Hungarica 58, 1991



MULTIPLICATIVE FUNCTIONS WITH REGULARITY PROPERTIES. VI 347

We can observe that in (3.2) |р(и) -  p(u)| occurs as many times as many 
solutions the equation Qv — Ru = 1 has. Let n = Ru, n + 1 = Qv. It is clear 
that some n (and n +  1) can be represented as Ru (and Qv) at most once. 
Furthermore,

(3.4) |5 (u) -  5 (v)| = Iff(uM^) -  1| = \9 {R)9 (Q)9 {n)g(n + 1) -  1| <

< Ig(n)g(n + 1) -  1| + Ig(R)g(Q) -  1|  ̂ |Aff(«)| + \g{Q) -  1| + \g(R) -  1|. 
Let A(n) be the product of the prime factors larger than aA Let

V = J2 1<7И»))-1| -
§<n<I+l

From (3.4) we obtain that
(3.5) 5 ^ U(x) + TV.
The contribution of the integers n for which Л(п) is not a square-free number 
is small, <  a:/log a;, say. Thus

V < 2xH + с/зх/lo g x , Я := Y ] — — L,L—' m
1 < m < x

where m  runs over those square-free integers greater than 1, the prime factors 
of which belong to [х^,х]. Let t(p) = g(p) -  1, and let t be extended as a 
multiplicative function. Since

g(m) -  1 = J J (1 +  t{q)) -  1 = ^  t(d),
g\m d\m

d> 1
therefore

So we have

(3.6) S < ^(es -  l)x +  2cpx/\ogx + U(x).

From (2.10), (3.3), (3.6) we have

(3.7) с / ( 3 - 2 с ) а (, < - 1 1 +  ^  +  ^

for each large x. If 6 is chosen so that Cßß2(A -  2e) > | ( e 5 -  1), then 
has to be bounded below by a positive constant.

By this the proof is finished.
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4. T heorem 2. Let f ,g  G M , |/(n ) | = |<7(n)| = 1 for every n, further­
more

(4.1) lim in f- X  \g(n + 1) -  / (n ) | = 0.
x x n S x

Then f(n ) = g{n) for every n, and f  € M*.
This leads immediately to the following generalization of Theorem 1.
T heorem 1’. There exist positive constants ß  (< 1/2) and 6 with the 

following property. If f ,g  € M,  |<7(n)| = 1 and |/(n ) | = 1 for every n € N  
furthermore (1.1) and (4.1) hold true, then f ( n ) = g{n) = 1 for every n € N.

P roof of T heorem  2. If (4 .1 ) holds tru e , then  there exist sequences 
—> oo, £„ —► 0 such that

(4.2)

Let

X  b ( n +  ! )  -  Л п )1 ^ «*/*!/•
n<xu

r{n) := £ (= + -1), t f ( „ )  := 9{П)
/(*») ’

D := 5 ( 4 )
ff(2)/(2)’

Let us observe th a t

(4.3) Н (Ш  + ll)r(16A + 10)r(16fc + 11) = 7 7? ^  V !!! = Dr(8k + 5)-
j  { l o / c  +  l U j

From (4.2) we have

X  ir(n) -  M =
n$xnu

and so by (4.3) we deduce that

(4.4) X  \DH(lQk  + 11) — 1| < с£„г„
16fc+ll<x„

where c is an absolute positive constant. (4.4) can be written as

(4.5) £
П<Х I/

nEE 11 (mod 16)

H(n)
T)

^  CSi/Xi/,

Let us choose now some odd m, and substitute n by nm. Then we have

(4.6) X  |Я ( т ) Я ( п ) -  1/D\ < ceuxu.
n^xu/m 
(n,m)=1

nm = 11 (mod 16)
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Since IH(m) -  1| = |(Я (т )  -  1)Я(п)| ^  |Я (т )Я (п )  -  + |Я (п) -  £ \ ,
from (4.6) we obtain that

\H(m) -  ^  cevxv,
n<Xi//m

n m = l l ( m o d  16)
(n ,m )= l

which implies that Я (т )  = 1. So we proved that Я (т )  = 1 holds for every 
odd m. Then, from (4.5) we get that D — 1. Let тп = 1 + 2E, (i, 2) = 1. By 
the triangle inequality,

|1 -  Я (2)| = Ifif(m) -  Я (2)/(m)| = |g(m) - f(m - 1) + f(2)f(i)~
- / ( 2)</(i +  1) + f ( 2 )g(i + 1) -  g(2 )f (2 )f(m)\ < |^(m) -  f {m  -  1)| + 

+ |p(^ + 1) -  f { l )I + Ig(m +  1) -  f(m)\.

Summing up for odd Vs up to 21 < xu, we can deduce that /(2 ) = <7(2 ). 
This together with D = 1, gives that g(4) = g(2)2. Since

7 i | ^ L  =  , ( 2 . - l ) r ( 2 » - 2 ) ,

therefore

u - u  £
2п^х1/

p(2n)
/ ( 2 ( n - l ) )

-  1 <  C£nUXn.

Let s > 1, n =  2sk, (k, 2) = 1. Then 

(4.8) ^ 2 п )  -  ^(2S+1) r(n  -  1),
/ ( 2 ( n - l ) )  s(2s)/(2)

and so by (4.2) and (4.7) we get easily that 

(4-9) д(Г +1) = g(2°)f(2) = g(2°)g(2).

Similarly summing up the summands of (4.4) only for the integers n = 1+2“k, 
we get

(4.10) /(2 S+1) = f(2s)g(2) = / ( 2 s)/(2).

Consequently / ( 2 s) = /(2 )s = <7(2 )s = g(2s).
So /(n )  = p(n) holds for every n E N.
It remains to prove that /  € M*. This is easily seen from

(4.11) ^ 2  lA/(n)l  ̂svxv.
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Let m > 1 be arbitrary, Д т /(п ) = f (n  + m) -  /(n ) . From (4.11) we have 

(4-12) £  |{7(m,n)| <
n<x„/2m

where

(4.13) Í7(m, n) = (/(m (n  + 1)) -  / ( m ) / ( n  + 1)) -  (/(m n) -  /(m )/(n )) .

Let P  be an arbitrary prime, m = P , and let n in (4.12) run over only the 
integers satisfying Pa \\n. Since the set of these integers n has a positive 
density, and \U(P,n)\ = | / ( P " +1) — f ( P ) f ( P a)\ for them, we obtain that
f ( P a+1) = f ( P ) f ( P a)-

This completes the proof of our theorem.

R eferences
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2] A. Hildebrand, An Erdös-Wintner theorem for differences of additive functions, Pre­
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A HAAR-TYPE THEORY OF BEST UNIFORM 
APPROXIMATION WITH CONSTRAINTS

A. KROÓ1’2 (Budapest) and D. SCHMIDT2 (Rochester)

In tro d u c tio n
The literature of approximation theory contains numerous results con­

cerning best approximation under a variety of constraints. These results 
mainly concentrate on investigating problems in Z-oo-norm, see, e.g., pa­
pers by Chalmers [1] and Chalmers and Taylor [2]. Since in most cases 
existence can be easily established the truly interesting question consists in 
studying the uniqueness of best approximants. In [1] Chalmers introduced 
a general method of investigating uniqueness of best approximations with 
constraints, which provided a unified approach to the problem. However, 
this approach essentially provided only sufficient conditions for uniqueness 
of best constrained approximation. In this paper we shall be concerned with 
developing a Haar-type theory for constrained Loo-approximation, th a t gives 
necessary and sufficient conditions for uniqueness. In this sense our paper 
is closer in spirit to a recent paper by Pinkus and Strauss [8] where neces­
sary and sufficient conditions for uniqueness were given in the special case 
of best Loo-approximation with coefficient constraints. Our goal is to pro­
vide similar characterizations of uniqueness in the general setting of linear 
constraints. In order to impose the constraints we shall use linear operators, 
instead of linear functionals used in [1]. This approach, while preserving 
generality of constraints, will provide us with a convenient tool leading to 
technically simple characteristics of uniqueness.

Let us recall now the classical theorem of A. Haar [5]. Let U„ be an 
n-dimensional subspace of C[a, 6], the space of real-valued continuous func­
tions with Loo-norm. Then the Haar theorem states that every /  € C[a,b] 
possesses a unique best approximant out of Un if and only if each p € Un\  {0} 
has at most n -  1 distinct zeros in [a, b]. (Throughout this paper subspaces 
Un satisfying the above property will be called Haar spaces.)

Let L: Un —► C ( K ) be a linear operator mapping Un into C (K ) ,  where 
К  is a finite union of intervals and points in R. For given u, u € C ( K ) 
such that v < и on К  set Űn(v,u) =  {p € Í7„ : v < Lp < u, x G K } .  We

1 Research supported in part by the Hungarian National Foundation for Scientific 
Research, Grant #  1801.

2 Prepared while both authors were visiting Old Dominion University, Norfolk, Vir­
ginia 23529.



3 5 2 A. KROÓ and D. SCHMIDT

shall say that Int Ün(v, и) ф 0 if there exists p G Un satisfying v < Lp < и 
(x G К).  Now we consider the problem of approximating in norm Ц5 Ц = 
=  max |<7(x)| (g G C [a ,6]) by elements of Un(v,u). We say that p0 Ga^x<b
G Un(v, u) is a best approximant of /  G C[a, b\ if | | / - p o | | = in f { | |/ - p | |: p G 
G Un(v,u)}. Throughout the paper we shall study best approximation on 
the interval [a, 6] and impose restrictions on the compact set К . Uniqueness 
of best approximation by elements of Un(v ,u ) depends, of course, on Un, L 
and v and u. In order to get simple and elegant descriptions of unicity we 
shall he interested in boundary independent uniqueness, i.e., uniqueness for 
every v, u. This leads us to the following central question.

P roblem A. Given U„ C C[a,b] and L: U„ —*• C (K )  find a necessary 
and sufficient condition so tha t for every /  G C[a,b] and v ,u  G C(K)  with 
Int Un(v,u) ф 0 the best approximant of /  from Un(v,u) is unique.

We shall give a complete solution of Problem A and, in particular show 
that corresponding subspaces’ Un and operators L are somewhat rare. It 
turns out that requiring uniqueness for every continuous boundary is too 
restrictive. On the other hand working with smooth C'-boundaries leads to 
much more meaningful results. Therefore we also investigate the next

P roblem B. Given Un C C [a ,6] and L: Un —> C '(K ) find a necessary 
and sufficient condition so tha t for every /  G C[a,b\ and t , a G  C'(K) with 
Int Un(v,u) ф 0 the best approximant of /  in U„(v,u) is unique.

As it was mentioned above the variety of subspaces U„ and operators 
L providing positive solution to Problem В is essentially wider than for 
Problem A.

Our method of solving Problems A and В will be based on the notion 
of extremal sets, which is frequently used in the literature. A set of at most 
n + 1 points *1, . . .  , xr G [a, 6] (1 ^  r < n +  1) is called an extremal set for 
Un if there exist nonzero numbers c j , . . .  ,c r so that

Г

( l)  X > ( * , )  = o, p e u n.
1 = 1

Using this notion one can easily give the following equivalent form of the 
Haar Theorem: Un C C[a,b] is a Haar subspace if and only if no nontrivial 
element of Un vanishes on an extremal set of Un. Moreover, Un is Haar if 
and only if every extremal set of Un consists of exactly n +  1 points.

We shall give similar solutions to Problems A and В using the notion of 
L-extremal sets, which is a natural extension of extremal sets defined by (1).

Our paper is organized in the following way. Section 1 contains the gener­
al uniqueness theory, i.e., solutions to Problems A and В and related results. 
In the next section we include the complete theory of strong uniqueness re­
lated to Problems A and B. The final part contains different applications of
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our results. We shall show how the theory can be applied in order to dis­
tinguish the “good” and “bad” subspaces and operators. Since our results 
provide not only sufficient, but also necessary conditions of uniqueness, we 
shall be able to characterize completely those spaces of lacunary algebra­
ic polynomials which satisfy the requirements of Problem В with L — Dk 
(differentiation operator). Furthermore, we shall consider Problem В for op­
erator L -  D — a l  (a £ R, I  is identity operator) and show that algebraic 
polynomials of degree < n — 1 provide a positive solution to Problem В if and 
only if |a | < It will be also shown that subspaces of rational functions 
with a fixed denominator, in general, fail to satisfy requirements of Problem 
В for L = D, if the degree of denominator is at least two. With regard 
to Problem A we shall give a precise constructive description of spaces Un 
providing uniqueness and show that they are very scarce unless int К — 0 .

1. U niqueness o f  b est constrained approxim ation

In order to obtain solutions to the problems outlined in the introduction 
we shall need some standard characterizations of best approximations from 
Ű„(v,u). For any /  £ C[a, 6] we denote E ( f ) =  {x £ [a,6] : |/ (x ) | = ||/ || = 
= max |/(a:)|}, while for g £ C(K),  Z(g) = { iG  К : g(x) = 0}.

a < x ^ b

T heorem 1.1. Suppose that for given v,u £ C (K ) and L: Un —*• C(K),  
Int Un(v,u) ф 0. Then po € Un(v ,u ) is a best approximant to f  £ C[a,b] 
from Un(v,u) if and only if for every p £ Un satisfying Lp < 0 on Z ( u -  Lpo) 
and Lp > 0 on Z(v — Lpo) we have

(2 ) min ( /  -  p0)p ^ 0 .
x e E ( f - p o )

P r o o f . Sufficiency. For any p £ Un(v, u) we have L(p — po) < 0 on 
Z(u — Lpo) and Lfp — po) > 0 on Z{v — Lpo), and thus by (2)

min i f  -  Po)(p -  Po) = ( /  -  Po){p -  Po)(z) ^ 0 
x e E ( f - p o )

for some x £ E ( f  — po). Now

II/ -  Poll = ( /  -  Po)sgn ( /  -  po)(x) =
= ( /  -  P)sgn ( /  -  Po)(x) + { p -  Po)sgn ( /  -  p0 )(x) <; II/ -  p||.

Necessity. Suppose po is a best approximant to /  from Un(v,u), and 
assume that for p £ Un Lp < 0 on Z(u -  Lpo), Lp > 0 on Z{v — Lpo) but 
(2) fails. Then sgnp = sg n (/ — p0 ) on E (f  — p0 ) and for t > 0 sufficiently 
small po + tp £ U„(v, и) and

II/ -  (Po + *p)|| =  IK/ -  Po) -  tp\\ < II/ -  Poll,
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a contradiction. Thus (2) should hold if Lp < 0 on Z{u -  Lpo), Lp > 0 on 
Z(v — Lpo). Let now p (z Un he such that Lp < 0 on Z(u -  Lpo), Lp > 0 on 
Z(v — Lpo) and choose p G U„ satisfying v < Lp < и on K.  (This choice is 
possible because Int Ű„(v,u) ф 0.) Then for every t  > 0 L(p + t(p — p0)) < 0 
on Z(u -  Lpo) and L(p + t(p -  p0 )) > 0 on Z(v -  Lp0) and applying (2) to 
p +  t{p — po) and letting f —* 0+ we obtain the needed statement. □

T heorem  1.2. Suppose that Int Űn(v,u) ф 0. Then po G Űn(v ,u ) is a 
best approximant to f  G C[a, b] from Un(v,u) if and only if there exist points 
X!, . . . ,XS G E (f  -  Po) (s > 1), 1/1, . . . , Ут e Z(u -  Lpo), l/m+l, • . . , Ут € 
G Z(v — Lpo) with s +  r ^ n -f 1, and constants c i , . . .  , c,, d \ , . . .  , dr, where 
sgn c, = sgn ( /  — po)(xi) (1 ^ i ^  s), di < 0  ( 1  < i < m) and d{ > 0 
( m + l < i < r )  such that for every p G Un

3 Г
(3) Y c,p{xi) +  Y  di(Lp)(yi) =  0.

1 =  1 « = 1

S _
P r o o f . Sufficiency. We may assume that ^  |'c,| = 1. Let p G Un(v,u),

i=i
i.e., v < Lp < u. Then by (3)

8 8 Г

и / -  poii = Y Ci(f ~ **>)(*•■) =  Y  c>/(x*) +  Y di(Lpo)(yi) =
1 = 1 * = 1 1 = 1

8 m r

= Y  c«/(x*)+Y diu(ŷ  + Y  =
i=l i=l i=m+l

< y  <*/(*••) + Y d<(Lp)(yi) = Y ~ ?)(*•■) = II/ -  pil­
isi 1=1 i=i

Necessity. Assume that po is a best approximant of /  from Un(v,u). 
Consider a basis { p i,. . .  ,pn} in Un and let P C Rn be given by

p  =  { ( ( /  -  Po)Pi(*))"=i : * e E { f  -  Po)} u

U {(-(Lp,)(z))"=1: x G Z(u -  Lp0 )} U {((Lp,)(x))"=1 : x G Z(v — Lp0) } .

Denote by Q the convex hull of P. If Ö ^ Q then using that Q is closed 
there exists a i =  (/,)"=1 € Rn such that (t, h) > 0 for every h G Q. Then

П
for p* = 2̂ tiPi we have Lp* < 0 on Z(u -  Lp0), Lp* > 0 on Z{v — Lpo) and

i=i
( /  ~ Po)p* > 0 on E { f  — po), contradicting Theorem 1.1. Thus 0 G Q and 
Caratheodory’s Theorem yields the existence of proper z,-s, у,-s, с,-s and 
di-s for which (3) holds, except possibly for condition s > 1. But if s = 0
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then (3) fails to hold for p = p — po, where v < Lp < и (Int Űn(v, и) ф 0). 
Thus s > 1. □

Now we shall give an extension of the notion of extremal sets given in 
the introduction (see (1)), for the case of constrained approximation.

Definition  1. Let Un C C[a,b] and L: Un —*■ C ( K ) be as above. Then 
the set of points ({zi}*=1 , where x,- £ [a, 6], 1 < i < s; у,- £ К ,
l < i ^ r ; s > l , r > 0  and r - f s < n  + l , is  called an L-extremal set for Un 
if there exist nonzero constants {c,}*=1, {d,}f=1 such that

8  Г

U) £  Cip(xi) + ^  di(Lp)(yi) = 0, p £ Un.
i=i i=i

Moreover, we call an X-extremal set nondegenerate if dim L(Un) |{у>}г =  г.
R e m a r k . Nondegeneracy of the L-extremal set essentially means that

(4) can not hold for a proper subset of the extremal set which does not 
contain x,-s. This, in turn, is equivalent to saying that linear functionals 
tiy.L, 1 S ^ r, are linearly independent on Un (by, denotes the point 
evaluation functional related to yt). Furthermore, if ({а:,}*_г, {y,-}J_i) is a 
degenerate L-extremal set, then for some Ei,...£r (not all of them zero) we

Г
have on {/„: JZ '̂by,L = 0. Thus by (4) for every t £ R 

1 = 1

8  Г

(5) + 0
i=i i=i

on Un- Choosing t = dj/ l j  (tj  ф 0 ) we drop out at least one term in 
(5). Thus repeating this process we shall obtain a nondegenerate L-extremal 
subset of the original L-extremal set.

Defin itio n  2. We say that p £ Un L-vanishes on the L-extremal set 
({xi'},4=ii iyiYi=i) for U" ifp(xi) = 0 0  ^  i й s) and {Lp){Vi) = 0 (1 < * < r).

As we have seen in the Introduction the Haar property, which is necessary 
and sufficient for uniqueness of unconstrained Chebyshev approximation, is 
equivalent to the requirement that no element of the subspace vanishes on 
an extremal set of this subspace. Now we give an analogous description of 
uniqueness of constrained approximation, thus providing a complete solution 
to Problem A.

Theorem 1.3. Let Un C C[a,6]; L: U„ —> C { K ) be a linear operator. 
Then in order that for every f  £ C[a, b] and v ,u£ C ( K ) with Int Űn{v, и) ф 0 
the best approximant of f  in U„(v,u) be unique it is necessary and sufficient 
that no p £ Un \  {0} L-vanishes on a nondegenerate L-extremal set for Un.

P r o o f . Sufficiency. Assume that for some v,u € C ( K ) with 
Int Un{v, n) Ф 0 and /  £ C[a,6] there are two distinct best approximants
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PuP 2 G U„(v,u) for / .  Then (pi +  P2 ) /2 is also a best approximant,„and 
setting for a g £ C[a,b], E+(g) =  {z £ [a, 6] : g(x) = ||£f||}, E.(g )  = \x £ 
6  [a, b] : g(x) =  - |Ы 1) we have

£ + ( /
Pl +  P2 >

2 t
) g E + ( f  -  pi) П E +(f  -  p2) g Z{pi -  p2),

E - { f Pi + P 2> 
2 >) i  E - ( f  -  pi) П E - ( f  -  p2) g Z(pi -  p2),

z(u-L\ g Z(u -  Lpt) П Z{u -  Lp2) g Z{L{p\ -  p2)),

z ( v  -  L\№ ) ) g Z(v  -  Lpi) П Z(v -  Lp2) g Z(L(pi -  p2))-

By Theorem 1.2 applied to po = (p\ + P2) / 2 , £ ( /  -  Po) and Z(u -  Lp0)U 
UZ(v  -  Lpo) contain an L-extremal set for Un, and pi -  P2 G Un \  {0} 
L-vanishes on this L-extremal set. By the remark made after Definition 1 
an Z,-extremal set contains a nondegenerate L-extremal set completing the 
proof of sufficiency in Theorem 1.3.

Necessity. Assume that some p* £ Un \  {0} L-vanishes on a nondegen­
erate L-extremal set ({z,}'_1, {i/,}?=1) satisfying (4), that is p*(a:t) = 0, 1 <
< i ^  s, (Lp*)(yi) =  0, 1 < г <  r .  We may assume that ||p‘ || =  1. Evidently, 
we can construct /  £ C[a,b] so that /(a;,•) =  sgn с,- (1 ^ i < 5) and | / |  <
< l - |p * | on [a ,6]. Then | | / - tp * | |  = 1 and E ( f - t p * )  = E(f)  2 { x i , . . .  ,x ,} 
for all |t| < 1.

Assume th a t d, < 0 (1 < г < m) and d,- > 0 (m + 1 < i < r). The 
nondegeneracy of the L-extremal set implies th a t (Lp)(yt) = — 1(1 = г = rn)» 
{Lp){yi) = 1 (m  +  1 < г ^ r) for some p £ Un. Set v = m in(-|Lp*|, Lp -  1), 
и — max(|Lp*|, Lp + 1), v,u £ C(K).  Since v < Lp < u, Int Ű„(v,u) ф 0. 
Set pt = tp* £ Un (|i| < 1). Then u(y,-) = 0 = (Lpt)(yi) (1 < i ^ m); 
v(yt) = 0 = (Lpt ){yi) (m-fl < i < r) and, evidently, pt £ Un(v,u). Moreover, 
by Theorem 1.2 pt is best approximant for /  for |t| ^ 1. □

Since the condition of Theorem 1.3 characterizes C-boundary indepen­
dent uniqueness of constrained approximation related to L we introduce the 
following natural notion.

Definition 3. Let Un C C[a,b], L : Un —» C(K) .  Then Un is called L- 
Haar if no p £ U „ \  {0} L-vanishes on a nondegenerate L-extremal set for 
Un.

It turns out that the L-Haar property can be characterized without in­
volving the notion of L-extremal sets. In fact, it can be reduced to the study 
of Haar property. Let us mention that L-Haar spaces, are in particular Haar 
spaces, since any extremal set for Un is also a nondegenerate L-extremal set. 
For A g К  denote Ga = {p G U„ : Lp = 0 on A }.
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T heorem  1.4. The following statements are equivalent:
a) Un is an L-Haar space;
b) every L-extremal set for Un contains n + 1 points;
c) Ga is a Haar space for every A £  К ;
d) Gsk is a Haar space for every Sk = {yi , . . .  ,yk} Q К (0 ^ к < n) 

such that dim LUn\sk = k.
P r o o f . a)=>b). Assume that there is an L-extremal set ({x,}"=1, {y,}]Lx) 

for Un with s +  r < n. Then the matrix of linear system p(x;) = 0, 1 < i ^  s; 
(Lp)(y,) =  0 (1 < г < r, p £ Un) has rank less than r + s ^ n, i.e., the 
system has a nontrivial solution, contradicting the L-Haar property.

b)=>-c). Assume that c) fails, that is Ga is not Haar for some A Q K. 
Let dimGyi =  к, where 1 < к < n. (If к = n then Ga — Un is not Haar, 
yielding that Un possesses an extremal, and thus L-extremal, set of fewer 
than n -f- 1 points.) Let V be a complementary subspace of Ga in Un. Then 
dimV = dimL(i/„)|.4 = n -  k. Let V = span [ s i , a n d  choose 
yx,. . .  , Уп—к € A so that det [(Ly,)(yj)]"“^1 ф 0. Since Ga is not Haar there 
exists an extremal set {ж,}*=1 for Ga with s < k, i.e., for some c i , . . .  , са ф 0

S

(6 ) ^ 2  CiP(xi) =  0 , p e G A-
1=1

We can find . . .  , d„_fc so that

n—k s

(7) Yl, di(L9j){Vi) = -  Y2 c'9Áxi)i 1 < j < n - k .
i=i i=i

Obviously, by (6) and (7) ({art}*=1, {y*}^T’1fc) is an L-extremal set for Un, 
where s +  n — к < n.

c) =>-d) is trivial.
d) =>a). Assume that a) fails. Then some p € Un \  (0) L-vanishes 

on a nondegenerate L-extremal set ({*i}*=1,{y«}i=1) satisfying (4), where 
dim L(17„)|{sa}'=i = r. Set ST = {y,}-=1. Then p £ GSr, and by (4) for every

8

g € Gsr , ^2 Cig(xi) = 0 . Evidently, 1 < dim Gsr = n — r and s < (n — r) -(-1.
i=i

Hence {aj,}*=1 is an extremal set for Gsr, while p £ Gsr \  {0} vanishes on 
xi> 1 = i = s - Thus Gsr is not a Haar space. □

Statements c), d) of Theorem 1.4 show that the study of uniqueness of 
constrained approximation for C-boundaries can be reduced to investigat­
ing the Haar properties of certain subspaces. This observation leads to an 
interesting result concerning constraints given by linear functionals.

Let Un C C[a,b], Qi,. . .  ,gr £ U*, and a = {a,} -=1,6  = {6,}-=1 6  Rr 
be such that a < b (i.e. a, < 6,, 1 < i ^ r). Set Ün(ä,b) = {p £ U„ :
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а, й f?i(p) = bi, 1 ^  * й r }- Evidently, Ü„(ä,b) = Ün(v,u),  where Ün(v,u)  
is defined as above by L: Un —► C(K)  with К  = { 1 ,2 ,... ,r} , v(i) =  a,-, 
u(i) = bi, (Lp){i) =  Qi(p) (1 < г 5= r). Furthermore, for A =  { s i , . . .  ,s m} Q 
C { 1 ,2 ,... ,r}  =  К , Ga = {p e Un : Lp =  0 on А) = П Ker p, (G0 = Í7n).l=J = m
Thus Theorem 1.4 c) implies the following.

C orollary 1.5. Let U„ C C[a,b], Pi € Í7* (1 ^ i < r). Then in order 
that for every f  £ C[a,b] and a,b £ Дг with Int Un(a,b) 0 the best
approximant of f  from Un(ä,b) be unique it is necessary and sufficient that 
Un and П Ker ga .be  Haar spaces for every { s i , . . . ,  sm} Q { 1 ,2 ,. . . ,  r ) .

1 = J = m 1
In the special case of approximation with coefficient constraints when

П
Un = span[pi,. . .  ,pn] and for p = Y  d iPi €  Un, p,(p) =  d,- (i £ J C

1 = 1

C {1 ,2 ,... , n}) the above statement is due to Pinkus and Strauss [8].
Now we turn our attention to Problem В raised in the introduction. To 

this end we assume that L is a linear operator mapping Un C C[a, 6] into 
C \ K ) .

Definition  4. We say th a t p £ Un L'- vanishes on an L-extremal set 
for Un if p(xi) = о (1 < i < s), (Lp)(yi) =  0 (1 < г < r)  

and (Lp)'(yi) = 0 whenever г/,- € Int К.
Our next result gives an answer to the Problem B.
T heorem  1.6. In order that for every f  6  C[a,b] and v,u £ C ' (K ) 

with Int Un(v ,u ) ф 0 the best approximant of f  in Un(v ,u ) be unique it is 
necessary and sufficient that no p £ Un \  {0} L'-vanishes on a nondegenerate 
L-extremal set for Un-

P r o o f . Sufficiency follows by the same argument used in proof of The­
orem 1.3. However, we also have to observe here, that if pi,P2 are best 
approximants of /  from Un(v ,u ) then

Z ( tt-  L * ■■■?■■) )  Hint C Z(L'(P l- p 2)), z ( v - b ( p  ^ P2))n ln tJv  C

C Z(L'(P l - P2)).
Necessity. Again we follow the lines of the proof of Theorem 1.3. In 

particular, we consider the same /  £ C [a ,6] and p*,p £ Un, and construct 
suitable v,u £ C'(K).

Since (Lp){yi) = — 1 (1 ^  г < m) we can choose closed disjoint intervals 
[a ,,/?,] С К , 1 < г < m, such that y, £ [a,-,/?,•]; Lp < 0 on [a,-,/?,•]; о,- < ß, if 
yi £ Int К  and yi £ (a,-,/?,•) if y, £ Int К  (1 ^  г < m). Define и on [a,,/?,] by

у

«(у) =  (sgn(y -  у,*)) J [1(£Р*)'К0  +  (t -  lli)2]dt, 1 < i < m.
V i
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Evidently, и € C"( | j  [a,-, /?,■]), Lp* <[ и on (J[a,-,/3t] and (Lp*)(y.-) =  u(y,-) = 0 
1 = 1  1=1

(1 < i < m). Furthernaore, 0 < u(q ,-) unless а,- = у,- and u(/3,) > 0 unless 
ft = Vi-

Now we can extend и to К  so that и € C '(K ) and ti > 0 on A'\ 
\ ( U K , /?,]). Since и > 0 for у G К  \  {j/;}™! and Lp* ^ и in a neigh-

i = l
borhood of {j/ilJlj (relative to К ), it follows that L(6p*) < и on К  for 
6 > 0 small enough. Similarly, L(6p ) < и for <5 small enough. We can re­
peat this construction for v, yielding a pair of functions v,u G C'(K)  with 
Int Űn(v,u) ф 0 satisfying v < L(6p*) < и (0 < 6 < <5o) and such that 
L(6p*)(Vi) = иЫ)  = 0, 1 < i < m; L(6p*)(yi) = v(yt) = 0, m +  1 < i < r. 
Hence 6p* (0 < <5 ^ <5o) is a best approximant of /  in Un(v,u). □

In view of Theorem 1.6 it is natural to introduce the following
D efinition  5. Let Un C C[a,b\\ L: Un -» C'{K).  Then Un is called 

V -Haar if no p € Un \  {0} can L'-vanish on a nondegenerate L-extremal set 
for Un.

Theorem 1.4 provides some useful criteria for a subspace to be L-Haar. 
Unfortunately, there do not appear to be corresponding criteria for L'-Haar 
spaces; however, we give a useful necessary condition for a subspace to be 
L'-Haar. For A Q K,  define G'A = {p G Un : Lp = 0 on A and (Lp)' — 0 on 
А П Int К } .  Note that G \  Q Ga-

C orollary 1.7. If, for some A Q К , Ga is not a Haar space and G'A = 
= Ga , then Un is not an L'-Haar space.

P r o o f . The proof carries on as in the proof of b)=»c) in Theorem 1.4. 
We choose {2/;}"_Г* C A as in b)=»c), and since Ga is not a Haar space 
we choose an extremal set {xj}*=1 for Ga on which some p € Ga \  {0} 
vanishes. As in b)=>-c), ({®i}*_i, {i/i}i=i) is an L-extremal set for Un, and 
since p G Ga — G'A, p L'-vanishes on this L-extremal set. Hence, Un is not 
L'-Haar.

Rem ark . If A C B d yK , then G'A = Ga- It follows immediately from 
Corollary 1.7 that if Un is L'-Haar, then Ga is Haar for all A Q BdyK.  In 
particular, we see that if Un is L'-Haar, then Un — Gq, is Haar.

The results of this section lead to the conclusion that L-Haar and L'- 
Haar properties are necessary and sufficient for uniqueness of constrained 
approximation with C- and C'-boundaries, respectively. Let us note that the 
development above does not require that the underlying topological space on 
which approximation is conducted, be an interval [a, 6]. We can replace it by 
any Hausdorff compact set, however L-Haar and L'-Haar spaces necessarily 
satisfy the Haar property, yielding (Mairhuber [7]) that the compact set 
should be homeomorphic to the circle or a subset of it.
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On the other hand replacing К  by a circle leads to a slight difference 
in definition of periodic V-Haar spaces, because К  has no boundary in this 
case and thus in Definition 4 we have to require that (Xp)'(p,) =  0 for every 
1 < i < r. The rest of notations and results given above extend to the case 
when [a, b] is replaced by any compact set or К  is replaced by a circle.

2. Strong uniqueness o f  best constrained  approxim ation

In this section we develop the theory of strong uniqueness for X-Haar and 
X'-Haar spaces. Let us recall the corresponding definition. If /  6 C[a,b], 
К  C C[a, 6] and po is the unique best approximant of /  from K ,  then we say 
th a t po is strongly unique of order 7 (0 < 7  ^  1) if there exists a positive 
constant c depending only on /  and К  so tha t for every p G К  satisfying 
II/ -  P|| ^ II/ -  Poll +  1 we have
(8) IlPo -  P|| ^ c ( ||/  -  p|| -  11/ -  poll)7-
In case when 7  =  1 we simply say that po is strongly unique. Since X- 
Haar and X'-Haar properties are characteristic for uniqueness with C- and 
C'-boundaries it is natural to raise the question of strong uniqueness for X- 
and X'-Haar spaces. Our first result here asserts that Х-Haar property is 
sufficient for strong uniqueness for constrained approximation.

T heorem 2.1. Let U„ be an L-Haar space. Then for every u,v  G C[a, 6] 
with Int Un(v, и) ф 0 and f  G C[a, b], the best approximant to f  from Un(v, u) 
is strongly unique.

P ro o f . Assume that Un is X-Haar and let po G Un(v ,u ) be the best 
approximant of /  6  C[a,f>], where v,u  £ C [a,6] and Int Un(v,u) ф 0. Con­
sider the X-extremal set ({zt'}i= i> {j/i}[=x) and numbers {c,}®=1, as

in Theorem 1.2 for which (3) holds |c,-| = lV  Since Un is X-Haar
4 = 1  '

N(p) =  max |p(*i)| +  max |(Xp)(y,)| (p e Un)1<*<S 1Slbr
is a norm on Un.

Let pi G Un(v, и) be such tha t Ц/ -  pi|| = Ц/ — po|| + £ with some £ > 0. 
Since ( /  -ро)(ж ,) =  (sgnc,)||/ — po|| (1 ^ i ^  s) it follows that
(9) (sgnc,)(p0 -  p i )(*,•) ^ £ (1 ^  i й s).
Furthermore, p i, . . .  , ym € Z(u -  Xp0), ym + 1 , . . .  , yr G Z(v -  Xp0) yield
( 10 ) X(p0-p i)(p .)  ^  0 ( l ^ i ^ m ) ,  L{p0 —pi)(yi) ^ 0 (m + 1  < i < r). 
Thus by (3) and (9) applied to p* =  p0 -  pj

s r r
(И )  0 = 5 ^ c t-p*(x.-) + 5^d,-(Xp*)(y,-) ^ +  ^d ,(X p * )(p ,).

1 — 1 1 =  1 1 =  1
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Moreover, (10) yields that d{(Lp*)(?/,■) < 0 for every 1 < i < r. Taking also 
into account (11) we have

(12) | ( V ) M I  ^ MXE (1 < i < r),

where M\ — m ax{l/|d ,|, 1 < i ^ r}.  Using (9) and (11) we obtain for every 
1 < j  < s

8  Г

CjP*{xj) =  -  Cip*(xi) -  M LP*)(Vi) ^
1=1

8  8= - Y  c'P*(x‘) = -£ Y  ic*i = ~ e-
*'=i лФз *=i .«¥i

Combining this with (9) yields

(13) |p*(*i)| ^ M2e ( l ^ i ^  s),

with M2 = m ax { l/|c i|,l < i < 5}. Hence by (12) and (13) N(p*) < 
^ (M\ +  M2)e, and by equivalence of norms in finite dimensional spaces

I bo -  Pill = lb ’ ll ^  M3 N(p*) < ce  = c{\\f - Pl\ \ -  II/ -  poll}- □

In the special case of coefficient constrained approximation, the above re­
sult was proven by Pinkus and Strauss [8]. (Strong uniqueness of constrained 
approximation was also studied by Chalmers and Taylor [3].) Fletcher and 
Roulier [4] showed that strong uniqueness fails in case of monotone polyno­
mial approximation, although uniqueness is known to hold in this situation. 
This turns out to be an example of T'-Haar space for which strong unique­
ness fails. Our next result shows that strong uniquness fails for every Z/-Haar 
space which does not satisfy the T-Haar property; in fact, strong uniqueness 
of arbitrarily small degree 7  fails to hold.

T heorem 2.2. Assume that Un is an L'-Haar space which does not satisfy 
the L-Haar property, and let 0 < 7  Sí 1 be arbitrary. Then there exist v, и € 
€ C '(K ) with Int Un(v,u) ф 0 and f  € C[a,b] such that its best approximant 
from Un(v ,u ) is not strongly unique of order 7 .

P r o o f . Let p* G Un \  {0} be such that it L-vanishes on a nondegenerate 
L-extremal set ({x,}^=1, {y,}®=1) satisfying (4) and let /  be chosen as in the 
proof of necessity in Theorem 1.3. We may assume that \(Lp*)\ < 1 on 
Int К,  and d{ < 0 (1  < i % m ), d,- > 0 (m + 1 < г < r) in (4). For a 
given a  > 0 we can construct v,u  G C'{K ) such that u{y) = |у — p ,|1+a in 
a neighborhood of г/,- if 1 < г < m, v(y) = — \y — y, |1+° in a neighborhood of 
y, if m  + 1 < i < r, and и > 0 , v <  0 for у ф yi, 1 < i < r (neighborhoods 
are relative to К ). As usual, nondegeneracy of the T-extremal set implies
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existence of p € U„ such th a t ( Lp)(yi) = — 1 (1 ^ г < m), {Lp){yi) — 1 
(m  + 1 ^ i ^ r). Choose A > 2 a ( l  + We claim that for £ > 0 small
enough ep* + A e^ ~ p  £ Űn(v, и). Assume that, on the contrary, there exist 
Ek I 0 and tk £ К  such that, say

(14) ek( L p * ) ( t k) + Ae^ ~ ( L p ) ( t k ) > u ( t k ) (k = 1 ,2 , . . . ) .

W ithout loss of generality, tk —* yj(k —> oo) for some 1 < у < m. Then for к 
large enough u(tk) = \yj — tfc|1+0!, (Lp)(tk) < —1/ 2 , and, in addition,

\(Lp*)(tk)\ = I( L p - ) ( t k) -  ( L p - ) ( y j ) I < It k -  yj\.

Thus using (14) we have
<3+1

IVj -  *Jfc|1+Q! < £k\tk -  Vj\ -  —J —y

i.e.,

^ £k^~ < £fc|tfc -  yj\ -  \yj -  ffc|1+a < т а xUkh — h1+a) = £ . a a ( l  + a ) '  
-  h>о *

Q-f 1 _
B ut this, obviously, contradicts our choice of A. Thus pe = ep* + Ae » p € 
€ Űn(v,u) for E > 0 small enough. Moreover, Int Un(v ,u ) ф 0 and 0 
is the unique best approximant of /  in Un(v ,u ) (by Theorem 1.2 and L'-
H aar property of Un). On the other hand ||рг || > £r||p*|| -  Ае^ЦрЦ > c\E 
(0  < £ < £o), while by construction of /  ( | / |  ^ 1 — |p’ |)

II/ -  Pc II ^ II/ -  £P* II +  ^  ll/ll +  C2£ ^ r .

Since the choice of a  > 0 is arbitrary  the statement of the theorem follows.
R emark. It can be easily seen from the proof of Theorem 2.2 that we 

can choose и and v such tha t v',u'  € Lip a  (a  > 0), while the degree of 
strong uniqueness of the proper /  £ C[a,b] can not be larger than This
indicates that for v,u e C2( K )  ( a  = 1) strong uniqueness of degree p might 
hold. Our next theorem provides this result.

T heorem 2.3. Let Un C C[a,b] be an L'-Haar space with L: Un —*■ 
—*• C 2(K), and let v,u £ C 2 ( K ) be such that Int C/n(v, u) /  0. Then for 
every f  € C [a ,6] its best approximant in Un(v ,u ) is strongly unique of de­
gree

P roof. Throughout the proof we shall denote by M i, М2, . . .  , posi­
tive constants depending only on /  and Un(v,u).  Let po £ U„(v,u) be
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the best approximant of /  and consider the corresponding A-extremal set 
({x*}i=i>{2/«)i=i) f°r which (3) holds. For an arbitrary pi G Űn(v ,u ) such 
that I I / - p i|| = I I / -poll +  £ with some 0 < e < 1 set p* = p0 -  p\. Then as 
in the proof of Theorem 2.1

(15) |p*(x,)| ^ M2e (1 < i < s ) ,  |(Ap*)(p,)| < M\£ (1 < i < r)

(see (12) and (13)). Let yj G Int К , where without loss of generality we 
may assume yj G Z(u -  Lp0). Set u4 = Lp0 -  u. Since Lp* G C 2 ( K ) 
and ||p*|| ^ 2 | | /  -  po|| + 1 we have on Int К  |u"|, |(Ap*)"| ^ M3. Set M4 = 
= max{Mi, М 2 , М3}, M5 = min{dist(p,, B d y K ) : p,- G Int A'}.

Now we claim that

(16) l(£p*)'(%)l ^ M4 ( 2M 5 + ^ ) v ^ -

Assume to the contrary that

(17) \(Lp*)'(yj )\ = {(Lp*)'(yj) > M4 (2M5 + - щ ) , Д  (f = ±1).

Using Ap* ^ ui we have by (15)

(18) (Lp*)(x)  —  (Lp*)(yj )  ^ Ui(x) -  M4e (x G A').

Set xe = yj — where every point between pj and x£ belongs to A'.
For some 7/ G Int К  between x£ and pj we have

(19) (Ap*)(x£) -  (Ap*)(pj) = {Lp*)\r]){xc -  p,) = -Z M 5 y/e(Lp~y(r)). 

Furthermore,

|(Ap*)'(p) -  (Ap*)'(pj)| <; M4|p -  pj| £ М4 М 5Л/ё.

Hence (17) yields that sgn (Ар*)'(т/) = sgn (Ар*)'(ру) = £. Therefore (18) 
and (19) imply

'< WMI - -мЬ̂̂- s
On the other hand Ui(pj) =  u'^yj)  = 0 hence |ui(x£)| <  M4 |xe — y j \2 <  

< M4 M\e. Applying this in the last estimate we obtain

\{LpmY(v)\ $M4e + M4M 2£
M bs/ l = м<(м’ + ж
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Finally, this implies that

\(Lp-)'№\ Í \(LpmY(v)\ + \(Lp*)'№ -  {Lp')\r,)\ ±
< M 4 ( M s + y/e + M4\yj -  7/1 <

^ M4 у/Ё +  МАМЬуД  = M4 ( 2 М5 +

contradicting (17). Hence (16) holds, implying that for every yj G Int К

(20 ) \{Lp*)\yi)\ Í M,V~e-
By the V - Haar property of Un no element of Un can Z/-vanish on the 

L-extremal set of Un, i.e.,
N(p) = max |p(ar,-)| +  max \(Lp*)(yi)\ + max \(Lp*)'(yt)\

l < i i < s  1 < * < r  y , 6 l n t A

is a norm on Un. By (15) and (20) we have N(p*) < (M\ + М2 + Мб)у/е, 
hence by equivalence of norms in finite-dimensional spaces

l b - P i l l  =  1И1 ^ M7N(p•) < Mgy/s =  M8( | | / - P l|| -  I I / -poll)". □ 
Let us conclude this section by noting tha t in the special case of monotone 

polynomial approximation Theorem 2.3 is verified in [10].

3. A pplications

We give several applications of our theory in Section 1. The first results 
given in 3.1 primarily follow from Theorem 1.4 and demonstrate that L-Haar 
spaces are rather scarce. On the other hand, applications of Theorem 1.6 and 
Corollary 1 in 3.2 and the existing literature show that L'-Haar spaces are not 
so rare. In the case of restricted derivative approximation (that is, L =  Dk 
where к > 1 and К  = [—1,1]), Roulier and Taylor [9] proved that the space 
7Tn_i of polynomials of degree n — 1 or less is L'-Haar (see also [6 , p. 127]). 
In 3.2, we shall completely determine those lacunary polynomial spaces that 
are L'-Haar in this context. Furthermore, the negative result of 3.1 clarifies 
the necessity of using smooth boundary functions in the constraints. Further 
in 3.3, we consider the differential operator L = D — a l  where К  = [a, b] = 
= [-1,1] and a  is constant. We shall find that 7rn_j is L'-Haar precisely 
when |a | < (n — 1 )/2. Finally, in 3.4, we examine rational function spaces 
with the operator L — D and К  = [—1,1]. We shall see that introducing 
quadratic denominators these spaces can alter the L'-Haar property.

3.1. Some negative results concerning L-Haar spaces. Throughout this 
section, К  =  [a, 6]. We say that a linear operator L: S —> C[a,b] is a k- 
Rolle operator (к > 0) if whenever /  G S and /  has к +  1 distinct zeros 
* ! < . . . <  Xk+i in [a,6], we have that L f  has a zero in [xi,x/..+i]. Evidently, 
Dk : Ck[a,b] —> C[a,b] is a fc-Rolle operator. We shall give a wider class of 
differential operators that are /с-Rolle.
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T heorem  3.1. Let L: U —► C[a,b] be a nontrivial k-Rolle (к ^  0) oper­
ator where U is a finite dimensional subspace of C[a,b\. If dim i/ > к +  2, 
then V cannot be L-Haar.

Proof. Let n = dim V к + 2. Choose p G U where Lp ф 0 and an 
open interval (a , ß ) C [a, b] on which Lp never vanishes. Now select n — 1 
points xi < . . .  < xn_x in (a , ß ) and find p G U \  {0} so that p(x ,) =  0 
(1 < i < n — 1). Since n — 1 > к + 1 and L is a fc-Rolle operator, Lp{y)  =  0 
for some у G [xx,x„_x] Q (a , ß ). Since Lp(y) ф 0, dimC?^} = n — 1. But 
Р € G{y} \  {0} and has n — 1 zeros. So G{y} is not a Haar space and by 
Theorem 1.4, U is not L-Haar. □

We shall use the next lemma both to demonstrate a family of Rolle 
operators and to establish positive results in 3.3 and 3.4.

Lemma  3.2. Let L: C '[a ,6] —> C [a,6] be given by L = D + a(x)I  where 
a € C[a,b], and let a < x < у < b. If f  6  C'[a,b] and f (x )  = f(y) = 0, then 
L f  = 0 on [x, y\ or L f  changes sign in (x, y).

t
P r o o f . Let A(t) = f  a(s)ds. Then

a

= eAW(Lf)(t)

so that уJ eA^(Lf) ( t )d t  = eAM f(y )  -  eA^ f ( x )  =  0 ,
X

and the conclusion follows readily. □
It follows that the operator L in Lemma 3.2 is 1-Rolle. If L: C*[a, 6] —> 

—*• C[a, b] is given by

(21) L = (D + ak( x ) I ) . . . ( D  + a i (x)I)

where a,- G Cfc_1[a,6] (1 < i < к), repeated apphcations of Lemma 3.2 show 
that L is L-Rolle. Moreover, Ker L has dimension к so that the restriction 
of L to any space of dimension к + 2 or greater is nontrivial. We thus have 
the following

C orollary  3.3. Let L: Ck[a,b] —► C[a,b] be given by (21). Then there 
are no L-Haar spaces of dimension к -f 2 or greater.

Re m a r k . For restricted range approximation, the operator is the identity 
operator I. A consequence of Theorem 3.1 is that there are no /-Haar spaces 
of dimension 2 or greater, since I is 0-Rolle. The situation is even worse as 
there are no /'-Haar spaces of dimension 2 or greater. Let Un be a subspace 
of C'[a,b\ of dimension n > 2. Then G{Q} is not Haar since it is nontrivial
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and all of its elements vanish at a. By Corollary 1.7, Un is not /'-H aar. 
We note that for restricted range approximation by polynomials uniqueness 
of best approximations requires the additional condition that the function 
being approximated also satisfies the constraint (see [9]). Our observation 
shows that this condition is essential.

Remark. In the case of approximation with restrictions on the deriva­
tives of order 0 < k\ < . . .  < ki, we take К  to be the union of l disjoint copies 
of [a, 6] and Lp represents D kip on the г-th copy of [a, b]. The methods above 
show that there are no X-Haar spaces of dimension k\ or greater, and when 
ki = 0 there are no X'-Haar spaces of dimension 2 or greater.

As was noted at the end of Section 1, our theory has direct analogs in the 
periodic cases. Specifically, if a and b were identified (or, equivalently, [a, 6] 
were replaced with a circle), we would restrict our attention to C*[a,b\ = 
=  { /  £ C[a, b]: / ( a ) = f(b)}.  We have the following

Theorem 3.4. Let X: U —► C (K ) be a nontrivial operator where U is 
a finite dimensional subspace of C*[a, 6]. If dim U > 2, then U cannot be 
L-Haar.

Proof. Suppose dim U — n  > 2  and U is X-Haar. Choose у £ [a, 6] so 
th a t (Lq)(y) ф 0 for some q £ U. By the periodic analog of Theorem 1.4, 
U would be an n-dimensional Haar space in C*[a,b] and G{yy would be 
an (n -  1)-dimensional Haar space in C*[a,b]. But it is well known that 
nontrivial periodic Haar spaces can only have odd dimension and we reach 
a contradiction. □

We next consider two brief examples to show that Corollary 3.3 is sharp.
Example 1. We take X =  D k and note tha t 7Г* is a (k +  l)-dimensional 

X>fc-Haar subspace of C[a,b]. On nk,Dk reduces to a linear functional, and 
by Corollary 1.5 that nк is Z?fc-Haar follows from 7Tjt and Kk-\ = Ker D k 
being Haar spaces.

Example 2. As an example that does not reduce to a linear functional, 
take X = Dk and Uk+i = sp an { i,2 2, . . .  ,x fc+1} as a subspace of C [a ,6] 
where 0 < a < b and |  To check th a t Uk+i is X)fc-Haar, Theorem 1.4
(d) and DkUk+1 = яч having dimension 2 imply that we need only check 
th a t Uk+1, G{a }, and G[a ßy are Haar spaces for a,ß  £ [a, b]. Clearly, Uk+1 
is Haar.

M-i
For p(x) =  ^2 c,x‘, D kp (x ) = Ck+i(k +  l)!x + Ckk\. For distinct a , ß  £

i=i
£ [a, 6],

G{a,0 } =  span{x,. . .  , x*-1}

is Haar. For a  £ [a, 6], G{0} = span{x,. . .  , x fc_1, xk+1 — (k +  l)ax fc}. To see 
th a t this space is Haar suppose q £ \  {0} has к distinct zeros in [a, 6].
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Then q £ span{z,. . .  ,xk *} and we may assume that
к— 1

q(x) =  xk+1 -  (k + l)az*  + c,x'.
i=i

Letting Z i j . . .  , Zk be the zeros of q in [a, 6] (0 is the other zero), we have 
that

(к + l)a  = Z\ -f • • • + Zk.
Since a , Z i , . . .  ,Zk £ [a, 6], we have (к + l)a  < kb and g < a contra­
diction. Thus G{a} is Haar. Hence, Uk+i is Z^-Haar.

3.2. Lacunary polynomials. Let P„ =  span{l = xkl,x k2, . . .  ,xkn = xN} 
where 0 = ki < кг < . . .  < kn = N.  We take К  = [a, 6] = [—1,1] and 
L = Dk. We assume that к < N -  1 so that L is not a linear functional over
Pn.

T heorem  3.5. P„ is V -Haar with L = Dk (1 < к < N — 1) if and only 
if ki+i — к; is odd (1 < г < п  — 1) and either xk $ Pn or xk, xk+1 € Pn-

Before proving Theorem 3.5, we note that Corollary 1.7 implies that L'- 
Haar spaces are Haar spaces. The condition that each j -  k{ is odd is 
equivalent to Pn being Haar on [-1,1] (see [6 , p. 132]).

The proof of sufficiency uses Birkhoff interpolation. We refer the read­
er to Chapter 1 of the text [6] for the appropriate terminology involving 
interpolation matrices and regularity theorems.

P roof of T heorem 3.5. Sufficiency. Assume that each fc1+i -  ki is 
odd and tha t either xk Pn or xk,x k+1 € Pn. Let ({®»}*=1, {y»}i=i)  be a 
nondegenerate Z>fc-extremal set for Pn where s > 1,

a  r

(22) $ > ( * , )  + J 2  diP(k)(Vi) = 0 (p e Pn)
»=1 i=i

with all с,- and d{ nonzero, and DkPn has dimension r on (г/ i , . . .  , y r}- Let 
r' = #{г : 1 < г < r and г/,- G (—1, 1)}, r" = r - r ' ,  and l = s + 2 r '+r"+N  — n.

Consider the Birkhoff interpolation problem of finding a polynomial p £ 
G 7Г/ satisfying the t  + 1 conditions

(23)

’ a) p<r)(0) =  0,
b) p(xi) = 0 ,
c) pW{yi) =  0,

. d) p{k+1){yi) =  0 ,

1 < r < N  -  1, г ф k{, 2 < i < n -  1, 
1 < i < s,
1 < * < r,
1 ^ г < r, |y,| < 1.

We first note that conditions (23a) and (23cd) do not overlap. If у,- =  0 
for some 1 < г < r, then xk G Pn• Otherwise, dim DkPn\[yi....Vr} £ r — 1

Acia M athtm atica Hungarica 58, 1991



368 A. KROÓ and  D. SCHMIDT

which contradicts the nondegeneracy of the Dfc-extremal set at hand. By 
hypothesis, xk+1 £ Pn• So (23a) does not impose conditions on p(fc)(0 ),
p(k+1)( 0).

Let E be the interpolation matrix for (23). (E has £+1 columns indexed 
from 0 to £.) Since each fc,+i — A:,- is odd and the conditions (23a) and (23cd) 
do not overlap, E has no odd supported sequences of “ones”.

We now establish th a t l  > N  and tha t E satisfies the Pólya condition 
(that is, the number of “ones” in columns indexed 0 to j  is at least j + 1 for 
0 ^ j  < £). Let E' be the matrix formed by augmenting E with infinitely 
many zero columns. The number of “ones” in the О-indexed column of E' is 
s > 1. Let j  be the smallest index for which the number of “ones” in columns 
indexed 0 to j  of E' is less than j  + 1. Evidently, j  > 1, the j -indexed column 
of E' contains only “zeros” , the columns indexed 0 to (j  — 1) of E' contain 
j  “ones” , and the matrix E" consisting of the columns indexed 0 to (j  — 1) 
of E' satisfies the Pólya condition and has no odd supported sequences. It 
suffices to prove that j  > N.  In this case, all í-\-1 “ones” in E' are in columns 
indexed 0 to (j  -  1) so tha t i  + 1 = j .  Thus l  = j  -  1 > N  and E = E". Now 
assume th a t j  < N. By the Atkinson-Sharma-Ferguson Theorem [6 , p. 10], 
E" is order regular so that there is a unique polynomial p 6 7Ty_i satisfying

(24)

' a) p<r)(0) = 0 ,
b) p{xi) =  c,,

< and if к < j  — 1 ,
c) p^(y i )  =  0 ,

. d) p(fc+1)(?/,) = 0 ,

1 < r < j  — 1 , г ф hi, 2  < i < r — 1 , 
1 < i < s,

1 й i = r,
Ы  < 1 , 1  ̂ i й r-

Since =  0 if r > j ,  p satisfies all of the conditions (23a) and (23c). Since 
j  — 1 < TV, (23a) implies that p £ Pn and (24b) and (23c) contradict (22). 
Thus j  > N ,  hence £> N  and E satisfies the Pólya condition.

We thus have that E  is order regular, and thus if p € satisfies (23) 
then p = 0 . Finally, if p £ Pn and p L'-vanishes on the extremal set 
({x«}i=i> {2/*}Г = l )» ^ еп P € Kt and satisfies (23) and therefore p = 0. By 
Theorem 1.6, P„ is ZZ-Haar.

Necessity. Assume that Pn is L'-Haar. Then since Pn is Haar, each 
ki+i -  ki is odd. Suppose that xk G Pn and xk+1 ^ Pn. Consider G{o} = 
= {p £ Pn : p(fc)(0) = 0} =  span {xfc‘ : 1 < i < n, ki /  k}. Now there are two 
consecutive powers in G{o} with differences of their exponents being even.
Thus G^o} is not Haar. Moreover, C'{0) =  IP € C(o> : p̂ 0) = 0} = G ,„, 
since xk+1 £ Pn. By Corollary 1.7, Pn is not L'-Haar. □

3.3. The operator L = D — a l .  In the literature on constrained approx­
imation, constraints involving derivatives have involved the operator D k. 
However, other differential operators can certainly come into play. In this
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section, we consider Un = 7r„_i (n > 4) and L = D — a l  (a real) with 
[a, 6] = К  = [-1 ,1]. From 3.1 and 3.2, тг„_х is .D'-Haar but not V-Haar. We 
shall see that D is the dominant operator precisely when |a | < (n — l)/2 .

T heorem 3.6. 7rn_ i is L'-Haar if and only if |a | < (n — l ) / 2 .
n—1

P roo f . Necessity. Suppose that |a | > (n—1)/2. Let q(x) =  П (x~ xi) €
i'=i

£ 7Tn_i where - 1  < ®i < . . .  < xn_i < 1. We can choose ,x„_i so
that

q'{ sgn a ) =  у ____1____  =  a
V ; (?(sgn a ) “  Sgn a — x i

and thus (Lq)(sgna)  = 0. Now С{58па} = {p € 7rn_! : (Lp)(sgna) = 0} has 
dimension n — 1 and is not Haar since q £ G{sgnaj has n -  1 zeros in [-1 ,1 ]. 
Since {sgna} Í  { — 1 ,1 ), Corollary 1.7 implies that 7rn_i is not L'-Haar. 

Before proving sufficiency, we establish a lemma.
Lemma 3.7. i) If a > - m / 2  and p £ 7rm \  {0} has m zeros in ( -1 ,1 ]  with 

at least one zero in ( — 1,1), then (L p ) ( -1) ф 0.
ii) If a < m /2 and p £ :rm \  {0} has m zeros in [ -1 ,1 )  with at least one 

zero in ( — 1,1), then (Lp)(l) ф 0 .
iii) If |q | < m /2  and p £ тст \  {0} has m — 1 zeros in ( — 1,1), then 

(£p)(l) Й 0 or ( L p ) ( - 1) Ф 0 .
m

Proof. For i), write p(x) = с Ц ( 1 -  zf) where с ф 0, each z,- £ ( — 1,1],
i=i

and some z,- £ ( — 1,1). Then

p ' ( - l )  _  1

? ( - ! )  t i - 1 " 2*

so (Lp)( — 1) ф 0. The proof of ii) is similar.
m —1

For iii) suppose deg p = m — 1 and write p(x) = с П (* — zi ) where с ф 0
i=i

and each z, £ ( — 1,1). Then

P \ - 1) 
P ( - 1) E < » <  E

1

1 -  Zi
^ ( 1)
P ( l )

and the conclusion holds. Suppose now that degp = m and write
m —1

p(x) =  c(x -  z) (x -  Zi) 
1 = 1
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where с ф 0 and each Z{ £ ( -1 ,1 ) . If z £ [-1 ,1 ], then i) or ii) yields 
the conclusion. W ithout loss of generality, z < —1. If p ' ( - l ) / p ( - l )  = 
= p '(l)/p(l)>  then

m —1

(26)

and

(27)

К - 1) - I  -  z ^  “  - 1 -  Zi

P'0 )
P ( l )

1 ^  1= -------- h > ------- = a.
1 -  * ~  1 -  1 =  1

Equating the expressions (26) and (27) and using z < — 1, we see that 
z = —yj  1 +  1/A where

m —1 m —1I f * --- А »I*--- A 1 . Ч

Substituting into (26) and (27) and averaging the resulting expressions yields

_________ m - l  ________  m - l  1

a = \ j Ä1 + A + У2 - — 2 =  V  A2 + A -  A + V '  ------ .
1 -  t í  1 -  Z*

Letting В = A + V A 2 + A, we see that В > 2A > > jAj- (1 < i < n -2 ).
I

Thus we have that
m —1» » • A  1

ТП f~Tn 7 л \ '  1 Tila - -  =  ^ Ж Т Л - А +  £  —  -  у  =
1 =  1

A 1 y w  1 1\
_ A + v/A ^+T 2 +  ^ l l - Z i  2/:=1

1 /  A — \ /A2 +  A i у ч  1 +  Z{  ̂ _  1 { 1 + Z{ A ^
“  2 \ T Z j W n + A í  1 -  Zi) ~ 2 \ ^ i  1 - Z i ~  B2)2 VA + VÄ2 + Ä

m —1
-  1 Í S "  n2 1 +  z i _  у '  ( 1 +  г Л  _

2Я2 \ ^  1 -  Z{ ^ V l - V ( l  +  z,)2/«=i «=i
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This is a contradiction since |a | ^ m /2.
Sufficiency. Assume that |a | S. (n — l)/2 . Let ( { z ,} ^ ,  {t/,-} г) be an 

L-extremal set for 7r„_i where s > 1 and

with all C| and d, nonzero. Let r' = #{г : 1 ^ i < r and |y,| < 1} and 
r" — r — r'. (Evidently, r" = 0,1, or 2.) We may assume that |y,-| < 1 for 
1 <; г < r'. ■

We prove that s + 2 r' -\- r" > n. Assume, to the contrary, that s+2r'-\-r" ^ 
^ n. Consider the interpolation problem of finding p 6 7r„_i so tha t

In case some X{ and j/, (г = r ' + 1) coincide, we remove them  from a) 
and c) and put them in b). Further, by inserting additional points a;, and 
removing others, we may assume that s + 2r ,+ r ,/ = n and that no у,- coincides 
with an X{. (This may change s and r ', but we can still insist on |j/,| = 1 for 
r ' 1 < г < r.) We claim that if s + 2r' + (r — r') = n, the x ,’s are different 
from the у,-’s, and |г/,| = 1 for r' + 1 < i ^ r, then (29) has only the trivial 
solution. Then an appropriate choice of evaluations in a nonhomogeneous 
counterpart of (29) would contradict (28).

There are three cases. If r — r' = 0, then (29) is a Hermite problem and 
our claim is obvious. If r — r' = 1, suppose that p (E 7rn_i \  {0} is a solution 
of (29) with yr — 1. Then p has n — 1 zeros in [—1,1) counting multiplicities 
up to order 2, and since n > 4, at least one of these zeros is in ( — 1,1). By 
Lemma 3.7 ii), {Lp)( 1) ф 0, a contradiction. If r — r' = 2, suppose that 
P € 7rn_! \  {0} is a solution of (29). By Lemma 3.7 iii), (Lp){ 1) ф 0 or 
(Lp)( — 1) ф 0, a contradiction. Thus the claim is established.

We conclude that s + 2r' r" > n. To complete the proof of sufficiency, 
suppose that p € 7Tn- i  L'-vanishes on the extremal set ({zi}*=i , {r/,}^_i). 
Let x\ < . . .  < xs. For 1 < i < s -  1, Lemma 3.2 implies th a t Lp has 
a sign change, say £, in (x,-,x1+1). If £ = yj for some j ,  then ( Lp)(yj) = 
= (Lp)'(yj) = (Lp)"(yj) = 0 since Lp changes sign at yj. In any case, we 
have that Lp has at least n zeros counting multiplicites since +  > n.
Since Lp € TTfi—l ? Lp = 0 and therefore p = 0 (because s > 1). Thus no 
p € 7T„_i \  {0} V -vanishes on an L-extremal set for 7Tn_i, and by Theorem 
1.6, is L'-Haar. □

R em a rk . When n =  2 or 3, Пп- i  is L'-Haar if and only if |a | <  (n -1 )/2 . 
In these cases, when |a | = ( n -  l) /2  and G{_x,i} fail to be Haar spaces, 
respectively.

8 Г
(28)

(29)
a) p{ii)  = 0 , 1 < i < s,

< b) p(y,) = р'(уг) = 0 , 1 ^ г < r1,
. c) (Lp)(yi) = 0, r' + 1 < i < r.
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The situation is much simpler in the periodic case. It was noted ..at 
the end of Section 1 that if К  is a  circle then in order that a function V -  
vanish on an X-extremal set ({x;}*=1, {2/,}^=1) we require that (Хр)'(г/,) = 0 
for all 1 < i < r in addition to the other conditions. Specifically, let Un = 
= span{l, cosx, sin x , .. .,cos kx, sin kx} he taken as a subspace of C*[0,2л-] = 
= { /  € C[0, 27t] : / (0 )  = / ( 2?r)} and L = D — a l .  For an Z-extremal set, 
proving that s + 2r  > n follows as in the case for r" = 0 in the proof of 
Theorem 3.6. The proof that no p 6  Un \  {0} X'-vanishes on an X-extremal 
set for U„ follows exactly as in Theorem 3.6. Thus we have

T heorem 3.8. Let L = D — a l .  Then Un =  span {1,cosx, s in x ,.. .  , 
cos kx, sin kx] is L'-Haar (in C*[0,27т],) for all real a.

3.4. Rational spaces. With [a, 5] = К  = [—1,1] and L — D, the space 
7Tn_i is D'-Haar (see Theorem 3.6 or [6]). In this section we consder the space 
Un — ~j7rn—l where и  is a fixed polynomial and co(x) > 0 for all x € [—1, 1]. 
We find that if со is linear, then j7Tn- i  is D '-Haar. However, even using a 
quadratic denominator can destroy the D'-Haar property.

T heorem 3.9. If co(x) = (x -  1 + е)г + e2 where 0 < e < 2 /(n  — 1), then 
^ 7T„_i is not D'-Haar.

P r o o f . Choose — 1 < xi < . . .  < xn_i < 1 so that

g '(i) _  1 _ 1 _
9Í1) ~ 1 -  x> ~ £ ~  " ( ! )

П—1
where q(x) = П (x — x,). Then (q/u;)'(l) = 0 and q/co has n — 1 zeros in

i'=i
( —1,1). Now =  jp/u; € ~;7rn_i : (p/w)'( 1) =  0} has dimension n -  1
and is not Haar since q 6 G{i}- Corollary 1.7 then implies that ^Kn-i is not 
.D'-Haar. □

T heorem  3.10. If и  € 7Ti and со > 0 on [— 1,1], then ^ 7rn_i is a D'-Haar 
space (n > 1).

P r o o f . We may assume that o>(x) = x — 7 , where 7 < — 1. Furthermore 
^ 7Tn_i is D'-Haar if and only if nn- i  is Z/-Haar with L = D — ^-I = D — j j^ I ,  
thus it suffices to show that 7T„_i is T'-Haar. Let n > 3. Let ({x,}®=1, {y,}f=1) 
be an X-extremal set for xn_i (s > 1) and set r' = #{г : 1 ^  i ^ r and 
12/,I < 1}. We claim that s + 2r ' +  (r — r') > n. Assume, to the contrary that 
s+ 2 r ' + ( r - r ')  < n, and consider the interpolation problem (29) for p € 7rn_i. 
We can again assume without loss of generality that s + 2r' + (r — r') = n, 
Di ф Xj, and |y,| = 1 for r'-f 1 ^ i < r . As in Theorem 3.5, we need only show
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that (29) has only the trivial solution. Suppose then that p £ 7r„_i \  {0} 
satisfies (29) and further that r — r' > 1.

Case 1. r — r' = 1. Then by (27) p has n — 1 zeros z \ , . .. , zn_1 £ [—1,1] 
counting with multiplicities up to order 2 (|yr | = l,z ; ф yr, 1 ^  i < n — l)  
and

(31)

If yr — -1 , then 0 >
П— 1
X) ■ z ,  , contradicting (31). If yT = 1, then
.'=i Уг ’

1
1 -  7 E > n — 1

2 ’

contradicting again (31).
Case 2. r — r' — 2. Then by (27) p has n — 2 zeros Z\ , . . .  , zn_2 £ ( — 1,1) 

(counting with multiplicities up to 2) and for yr — ±1, ^ ( yr ) = (note
that p( — l)p (l)  Ф 0). If p £ 7Tn_2 or p has an additional zero in ( — 1,1) then 
we obtain a contradiction as in Case 1. Let p have an extra zero zq outside 
of [—1,1]. Then

(32)
1

Уг -  Zq + E
1=1

1
Уг -  Zi

1
Уг - 7

(Уг = ±1).

If Zo > 1 then for yr = — 1 right and left sides of (32) have different signs. If 
Zq < — 1 then setting yr = 1 in (32) we have

2 >  1 -  7 1 -  z0 + ^  1 -  Z i  > ^  1 -  z, >  2 ’
1 u 1 = 1  1 1 = 1  1

a contradiction.
Thus s +  2r' +  (r -  r') > n. Suppose now that p £ 7rn_i L'-vanishes on 

the L-extremal set ({x,}^=1, {yi}[=1). Applying Lemma 3.2 to L = D — ^3 ^ / 
implies that Lp has a sign change £, in (x,-,x1+1) for every 1 < i < s — 1. 
If = i/j for some j  then (Lp)(yj) = (Lp)'(yj) = (Lp)"(yj) = 0 since Lp 
changes sign at yr  Thus counting with multiplicities we obtain at least n 
zeros of Lp (because s + 2r/ - | - ( r - r ,) > n), i.e., p'(x)(x — 7) — p(x) 6 тгп-1 has
at least n zeros. This yields, that p'(x)(x — 7) -  p(x) = 0, i.e., p = c(x — 7).
But since s > 1, p has a zero in [—1,1], a contradiction. This completes the 
proof for n > 3. If n = 1 the claim of Theorem follows from the fact that 
s > 1 for any Zl-extremal set ({x,}*=1, {у,}’_1), while p £ ^7r0, p = does
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not vanish. If n = 2 and p 6 is not a constant function, then p' does not 
vanish. Thus p € ^iri \  {0} can not D1-vanish on a D-extremal set if r > 1. 
On the other hand if r = 0 then, obviously, s > 2 and no p € \  {0} can
have two zeros. □
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UBER DIE BANACH-EIGENSCHAFT 
VON MATRIZEN

К. TANDORI (Szeged), Mitglied der Akademie

1. Die Klasse von allen orthonormierten Systemen cp =  { ^ ( z ) } ^  im 
Intervall (0,1) bezeichnen wir mit fl. (Die folgenden Betrachtungen bleiben 
auch für die in einem endlichen und nichtatomischen Maßraum orthonormier­
ten Systeme gültig, nur einfachkeitshalber betrachten wir den Fall (0,1) mit 
dem gewöhnlichen Lebesgueschen Maß.)

Es sei В = ||&n,fc||£jt=o e*ne Matrix mit
OO

(n -+ o o ).
k = 0

Für jedes System cp в fl existieren die Summen
OO

bn(<p; x) = ^  bn,kcpk{x) (n = 0 ,1 ,. . .)  
k=0

in der Metrik von F2(0,1).
Man sagt, daß die Matrix В  die Banach-Eigenschaft (B £ BE) besitzt, 

wenn für jedes cp £  f l
lim bn(cp-,x) = 0n—►OO

in (0,1) fast überall gilt.
Verf. und F. Móricz [1], [3] haben eine notwendige und hinreichende 

Bedingung dafür angegeben, daß В £ BE ist. Diese Bedingung lautet fol­
genderweise.

Satz А. В £ BE gilt dann und nur dann, wenn

l
ЦЯЦ = sup{ (s\ipbl(<p-,x))dx) <oo. 

v^env n >о

2. Diese Bedingung ist notwendig und hinreichend; leider ist es in 
speziällen Fällen schwer zu entscheiden, ob sie für eine M atrix В erfüllt 
ist.

In dieser Note werden wir hinreichende, aber brauchbarere Bedingungen 
für die Banach-Eigenschaft angeben.
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Für positive ganze Zahlen M , N ( M  < N ) setzen wir

l
11-8; M ,N \\  = sup j [ ( sup b2n((p;x))dx\ 

M <n<N >

1/2

Man kann leicht zeigen, daß für beliebige Matrizen В, В

IIB + B-, M, ЛГ|| < ЦЯ; M, N || + ||В; M , iV||

gilt. (Hier ist В + В = ||6n,fc + 6„,fc| | ~ =0.)
Erstens beweisen wir den folgenden Satz.

Satz 1. Es sei { N eine monoton wachsende Folge von positiven 
ganzen Zahlen. Gilt

( 1 ) - 1 | | 2 < oo,
v-\

so ist В £ BE.

Beweis. Es sei B ^  = | |^ i l l nJk_0> wobei

bn l ~ bNv,k (tz, к — 0 ,1 , . . . ) ,

und Bu = В -  B W  (o =  1 ,2 ,. . .) .  Dann gilt

(2) У BV\N V,N V+X -  1|| < \\B;NU,N „+1 -  1|| + \\B^-, N„, Nu+1 -  1|| =

r “  „ л 1/2
= | | Б ; ^ , ^ + 1 -  l|| + { X ; ^ , f c } (iz = 1 ,2 ,...) .

k—o
Es sei ip £ il. Es ist klar, daß

oo ,
(3) Y b̂ , k  = /  b2Nv^ \ x ) d x  ^  \\B;NU, 

fc=o l

ist. Aus (1) und (3) erhalten wir

N u + i-  1||2 (iz = 1 ,2 , . . . )

oo .Y  /  bN Á W x )dx < 00»
V = \ {
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und so folgt, daß die Reihe

OO

i / = i

in (0,1) fast überall konvergiert, woraus sich ergibt, daß fast überall in (0,1) 

(4) lim bN„(<p;x) = 0.
v —>oo

Es sei

<$„(x) = шах \bn(tp-x) -  bNl/(tp;x)\ (v = 1 ,2 ,...) . 
Nv < n< N l/+i

Offensichtlich gilt

l
J  Sl{x)dx< \\Bv-,Nu,N v+x - \ \ \ 2 (i/ = 1 ,2 ,...) .
о

Daraus und aus (1), (2), und (3) erhalten wir

oo 1
X ] /  sl(x)dx < °°-
l/=1 о

So folgt, daß die Reihe
СЮ

I/-1
in (0,1) fast überall konvergiert, und daher

lim <5j/(x) = 0
IS—►OO

in (0,1) fast überall besteht. Daraus und aus (4) ergibt sich В 6 BE.
Da

ll-S; N u,N v+\ -  1||  ̂ №„-,N„,N„+1 — 1II + \\B ^]  N,y, N„+i -  1|| =

oo 1/2
= \\B„; N„,N^+1 -  1|| + { J 2 bk , k }  (^ =  1 ,2 ,. . .)

fc=о
ist, folgt aus Satz I unmittelbar:

ÜBER DIE В AN ACH-EI GENS CH AFT VON MATRIZEN 3 7 7
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S a t z  II. Wenn
oo oo

+  \\B v ‘,N v , N v+x -  1 | | 2 }  <  o o

ist, so gilt ß  £ BE.
Um eine brauchbarere Bedingung zu bekommen, müssen wir \\BU]NU, 

N„+\ -  1|| mit den Zahlen bn>k abschätzen. In folgenden werden wir zwei 
einfachen Abschätzungen angeben.

Abschätzung I. Es gilt

Beweis. E s sei ip 6 ÍI. Dann gilt für ein beliebiges по {N„ < по < N„+1)

Da diese Ungleichung für jedes tp € fi besteht, ergibt sich unsere Abschät­
zung.

«=N„+1 k-о

n=Nv+l

Nv+i —1

n=Nu+ l

und so ist

sup
Nv<n<Nv + i n=Nu+1

Daraus folgt
l

{/< sup
Nv<n<N„+10

n=Nu+ 1 q

nrriV̂  + 1 к—0
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A bschätzung II. Es gilt

\\Bv'i Nu, N„+i -  1|| <

= 53 53 {53(b̂ +(/+1)2<-1-fc - ̂ +«*,*:)2}
0<«<log(7V1/+1- A 1/) _ x fc=0

(l/ = 1 ,2 ,... ).
(log a  bezeichnet den Logarithmus zur Basis 2.)

B eweis. Es sei <p £  П. Für jedes nо (N„ <  щ  <  N^+i) gilt

710 =  2 *  +  . . .  +  2 *  +  N u

mit nichtnegativen ganzen Zahlen u\ , . . .  , ur (0 < vT < . . .  < ^  log(Nu+i~
-N „ )).  So gilt

K o  (v>;*)-fcjV„(v>;a)| = \(b2‘'i+...+2"r+N„ ( w x ) -

-bri+...+2''T-y+NS W X)) +  • • • +  (b2n+Nu(<fi‘, x )  -  bN„(Wx ))\ ^

S E  E  1̂ЛГ1У + (Л-1)2я —1 x) ~ bNl/-\-l2‘ { ,p \  x )l)
0<«<log(N„+i -N „) qs1<n‘'+i - n‘' t

woraus sich

sup (bn(<p;x) -  bNv((p;x)y
N„<n<Nu+i

dx
1/2

<

= 5 3  5 3  {/(Ы,+и+1)2--1(<^; *)-
0 < j < l o g ( A I l / + l - 7 V „ ) 0 < / < i E d ^ J I Í E _ x  О

1 / 22 1 V*
-Ы .+ ю-Су’;*))

= E
0 < « < l o g ( I V l/+ i  —Л Г„)

oo

5 3  { £ ( Ы + « + 1 ) а - - 1 . *  -  ь^ + п *,fc)2 }
k=0

1/2

ergibt. Da diese Ungleichung für jedes ip £ Sl besteht, folgt unsere Ab­
schätzung.

Aus den Sätzen I—II und aus den Abschätzungen I—II erhalten wir die 
folgenden Kriterien.
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S a t z  III. G i l t

oo C oo JV1/+1 — 1 00 „1

E |  E 6^ . *  + ( E  { E ( ön-fc -  ь«-1.*)2} ) I < oo’
1 /= 1 lfc=0 n=N„+l  fc=0 )

so ist В G BE. 
Satz IV. Gilt

OO f OO

E  { е ^„ ,*+
1/=1 U=o

+ E

00
E  ( E ( W + 1 ) 2 ‘-U- -  ^ + < 2 ‘,(:)2)

1/2

0 < * < l o g ( iV 1/4 i  — N u ) — — 1 k ~ °

so gilt В G BE.

3. Anwendungen. A. Es sei Л =  {A„}£° eine monoton nichtabnehmende 
Folge von positiven Zahlen mit

( 5 )

Es sei weiterhin

00

E - in=0
< OO.

^n,k = I  4 ( l - s í i ) .  * =  0 , . . . , n ,
[ 0, к — 71-|“ l ,7l- (-2, . . . .

W ir wünschen zu zeigen, daß В — ||önijt||^°fc_0 G BE.
Es sei <p G iE Jetzt ist

b„(v?;a:) = ~n. ^  (n =  0 , l , . . . ) ,

wobei n ^
М ж) = 5 3 ( l  -  ^ y ) v > * ( * )  (те = 0 ,1 ,. . .) .

fc=o
Es sei

/,* _  J A2m°n,Jk -  <
f e ( l - i á r ) .  2m < те < 2m+1 (m = 0 ,1 ,. . .) ,  * = 0 , . . . , n ,

0, 2m < те < 2m+1 (m = 0 ,1 , . . . ) ,  * = n + l , . . . .

Offensichtlich genügt es zu zeigen, daß ß* = ||6* fc||“ fc_o G BE gilt.
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Aus (5) folgt

( 6 )
A  2m
2 2  —  < °°-— A2 n /'2m m=0 L

Wir werden den Satz III mit der Folge N„ = 2" (i/ =  1 ,2 ,. . .)  an wenden. 
Jetzt gilt auf Grund von (6)

oo oo Nl/+1— 1 n
E { E < ^ ) 2 +  ( E  { Е « и - ‘- и = ) 2} 1/г) г} =

k=0 n=7Vi, + l fc=0
2*'+1 n

= E i { ( E ( i - 4 r ) ^ ( E ( E ^ ) ' T ) } s
v=l 2 fc=0 --------- ' " v 'n=2"+l fc=0

^ C1 Y j  T T  < 00 •1 л 2и l/=l z
Auf Grund des Satzes III bekommen wir В * € BE. 

Das bedeutet, daß für jedes System p  £ Sl

k—0
fast überall in (0,1), wenn für die Folge А (5) erfüllt ist. (In [2] haben wir 
gezeigt, daß diese Abschätzung genau ist.)

B. Es sei А = {An}o° eine monoton nichtabnehmende Folge von positiven
Zahlen mit

(7) V ' log2 n

n=l n
Es sei

/  аЬ  к = ° ’ --- ’n
\  0, к = n + 1 , . .

Wir wünschen zu zeigen, daß в  e b e .
Für ein System ip 6 ÍÍ ist jetzt

Es sei

1 n
bn(<P',x) = y  (n = 0, ! , . . . )■

*=i

Ä^T, 2m < n < 2m+1 (m = 0 ,1 , . . . ) ,  k =  0 , . . . , n ,
0, 2m < n <  2m+1 (m = 0, 1, . . . ) ,  к = n+  1 ,...  .
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Offensichtlich genügt es B* -  ||h* fc|| °̂fc_0 € BE zu zeigen. Aus (7) folgt

( 8) E
m2 2m

< oo.

Wir werden den Satz IV mit der Folge N„ = 2" (i/ = 1,2 , . . .  ) an wenden. 
Jetzt gilt auf Grund von (8)

OO (  OO

E i Е ( ^ . * ) 2+
u=l lfc=o

+ ( E E  {Х](^+(<+1)2*-1Л“ ^ + < 2 * л )2} ) =
O O C lo g íM + i  - N u ) 0 s t < N ‘' + i ~ N ‘'  ! fc=0

^ E
2" +  1 1 2 c\is

A2..l/=l L + äT 2
< oo.

Auf Grund des Satzes IV erhalten wir B* G BE. 
Das bedeutet, daß für jedes System tp G Í1

E  Vk{x ) = Ox(logn)
fc= 0

in (0,1) fast überall, wenn für die Folge А (7) erfüllt wird. (In [2] haben wir 
gezeigt, daß diese Abschätzung genau ist.)
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ON AN ASSERTION OF RIEMANN CONCERNING 
THE DISTRIBUTION OF PRIME NUMBERS

J. PINTZ* (Budapest)

1. Riemann [8] stated in his famous memoir in 1859 without proof for 
the number of primes < x the inequality

X

(1.1) n(x) < Li (ar) d= J (x > 2)
о

or more precisely he wrote the following lines (with the notation x(x) = 
= F(x)):  “Thus the known approximation F(x)  = Li (ж) is correct only 
to an order of magnitude of x1/ 2 and gives a value which is somewhat too 
large, because the nonperiodic terms in the expression of F(x)  are, except 
for quantities which remain bounded as x increases,

Li(*)- l u (*■/*)_ i Li (*1/3) - jh i  (*l/!) + ju  (*1/6H Li (*,/7) ~ -
In fact the comparison of Li (x) with the number of primes less than x 

which was undertaken by Gauss and Goldschmidt and which was pursued 
up to x = three million shows th a t the number of primes is already less 
than Li (x) in the first hundred thousand and that the difference, with minor 
fluctuations, increases gradually as x  increases.”

The assertion of Riemann was the starting point for a number of inter­
esting and deep investigations. So it was proved e.g. by E. Schmidt [9] in 
1903 tha t (1.1) implies the truth of the famous Riemann hypothesis on the 
zeros of the zetafunction. Riemann’s assertion seemed to be supported by 
the calculation of D. N. Lehmer [4] who showed its validity for x < 107. 
But Littlewood [5] disproved it in 1914, i.e. in the same year, showing that 
7г(х) — Li (x) changes sign infinitely often as x —* oo.

Later even the number V( Y)  of sign changes of x(x) -  Li (x) in the in­
terval [2,Y] could be estimated from below using Turán’s method. Thus
S. Knapowski [2] proved for У(У) the lower bound cloglogF in 1961 and 
this was improved by Knapowski-Turán [3] in 1974 to c(s) log1/4 - '  Y.  The 
present author [6] improved this estimate to c logy /(log logF )3. Later Kac- 
zorowski (Acta Arith. 45(1985), 65-74) improved this result further to

* Research supported by Hungarian National Foundation for Scientific Research Grant 
No 1811.
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c log У. This shows on the one hand that Riemann’s assertion is very far 
from being true.

On the other hand we may quote (with minor changes) some lines from 
the book of Ingham [1]:

“The above remarks relate only to individual values of x. But the in­
equality 7г(х) < Li (x) and Riemann’s formula acquire some significance when 
considered from the point of view of averages, at any rate if the Riemann hy­
pothesis is true. Thus (assuming the Riemann hypothesis in what follows)... 
we can show that

x

(1.2) J ( i r ( x ) - U ( x ) ) d x  < 0 ( X  > X 0),
2

so that 7г(х) — Li(x) is ‘negative on the average’.”
But one can show by standard methods that the inequality (1.2) is true 

if and only if the Riemann hypothesis is true. (We may note here that in 
the book of Prachar [7] on p. 260 the truth of the formula (1.2) is mentioned 
but the words ‘under the Riemann hypothesis’ are unfortunately missing.)

The above assertion suggests th a t to decide the weaker version of (1.1), 
i.e. the assertion l7r(x) — Li(x) is negative on the average’ is hopeless at 
present. This is really the case if we use the most direct interpretation
(1.2) (which, under the Riemann hypothesis is probably true even for every 
X  > 2). The aim of the present work is to show at the same time that it 
is possible to find a relatively simple type of averaging procedure for which 
the assertion ‘7г(ж) — Li (x) is negative on the average’ is true without any 
unproved hypothesis. This will show that the assertion (1.1) of Riemann is 
by far not so wrong as indicated earlier. So we can assert rightly that in a 
precisely formulated sense 7r(x) — Li (x) is negative on the average.

2. We shall prove the following

T heorem. For у > c\ the inequality

( 2 . 1) Li (ж)) exp dx <

where C\,C2 are explicitly calculable positive absolute constants.
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In the course of proof we shall use the notations

(2.2) n ( x ) t f V  1 = V  л(п
“  m  log тp in  <х  ТП ^Х

(2.3) lg х =f У  ------  (lg х = 0 for
2 < n S i  b

(2.4) д 2(х) = П(аг) -  lgx,
(2.5) Ai(x) = 7r(ar) -  Li (г),
(2.6) у — Au > A.

In the proof c,' will denote explicitly calculable absolute constants with 
c, > 0 except perhaps C5.

By partial integration we get for <7 > 1

00 00 3
(2.7) -  J ВД A(*-)  ̂* + ca,

1 n=1 2
0 0  ___ 3

/ d  1 г

lg X - ( X - ,  A  =  -  £  =  / (C M  -  1) *  -  c4.

Adding the above two inequalities we have

(2.9)
oc

/
Д 2(я) , 1ax = -  {r s + l ^r(z) + C(z) -  1 ) dz + c5

i.e.
00

(2.10) J 1
5 - 1

s  —  1

J ^ ( * )  + C(*)- dz + c5
d e f  , v
= ¥>(*)

being valid for a > 2.
Further we shall use the formula (A > 0, В arbitrary complex)

(2 .П , ^ / И * г« - Л  = е х р ( - ^ )  . A y e ( ^ ' + * ) ' *  =

( 3 ) (3 )

= exp ( ~ f í )  'TS'éiJ= 5^ 3 ех» ( -
( 0 )

4А /
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(2.10) and (2.11) together give

( 2 . 12) dx =

OO

4 AÁX)-hi- X *ds dx = —  /
2жг J

eua ip(s) ds.

(3) (3)

by
Instead of а = 3 we can integrate on the broken line i  defined for t > 0

(2.13)
' Ii : а — 3 for t > 3

< /2 : 1.1 ^  a  ^  3 for t =  3
, /3  : о =  1.1 for 0 <  t <: 3

and for t < 0 by reflection on the  real axis since <p(s) is obviously regular 
right of l and on i .  Further we have

(2.14) I¥>(i)| ^  c6 for s £ l  

and

(2.15) |eUi2| < e i “ for s e i .

Thus we have

(2.16) \ U \ <

10elu + 2 J e(9" <2)udi < 2c6e8u.

3. On the o ther hand by Chebyshev’s theorem

(3.1) П(&) -  тг(ж) > ^ tt(V Í) > c7 ^ -

and by the trivial remark

(3.2) lga: =  Li(z) + 0 (1 )

we have 

(3.3) Д 2(х) -  A i(x ) > c8
y/x

log X
for X >  С9.
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From this we get

00 2

(3.4) J ( & 2(x) -  A i(x))exp f^—)  dx >
1

>1 Câ exp{ - 4 r ) dz+ow>
eg

> s / v/Jexp ( “ i ] T i ) ‘i l  + 0(1) =  5
C9

Now (2.16) and (3.4) together prove our Theorem.

I H “ * 0 « -
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