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ON THE APPROXIMATE SOLUTIONS OF
NON-LINEAR FUNCTIONAL EQUATIONS
UNDER MILD DIFFERENTIABILITY CONDITIONS

I. K. ARGYROS (Lawton)

Introduction. The present note concerns the examination of Newton’s
method under assumptions different than those of L.V. Kantorovich [3] and
M. Altman [1], [2].

In [3] the Fréchet-differential must have a continuous inverse. The exam-
ination of the existence of this inverse and the estimate of its norm presents
the greatest difficulty for the application of Kantorovich’s method.

In [2] the above difficulty is eliminated. However one of the assumptions
made is that the norm of the second Fréchet-differential must be bounded.
The computation of such a norm is a difficult task in general.

One can refer to [4], [5] and the references there for a further study on
Newton’s method.

Here we generalize the above methods under the assumption that the
Fréchet-differential is only Holder continuous on some closed sphere S(xo, r)
centered at the initial guess Xo and of radius r > 0. Some interesting exam-
ples are provided where our method can be applied whereas the two men-
tioned above cannot.

Let A be a Banach space and let F(x), x £ X be a nonlinear continuous
functional defined on S(xo,r).

Consider the nonlinear functional equation

Q) F(x) = 0.
We suppose that F(x) is a Fréchet-differentiable on S(xq,r) and denote
by /(x) = F'(x) the Fréchet-differential of F(x).

Setting /o = /(x0) = F'{x0) for some y £ X, we introduce, as in [2], the
iteration

y, n—0,12,...,

|
o
2
&)
S
)
|
<)

(2) x\ =
My) fo(y)

to solve (1).
We will need the following:

Definition. Assume that F is Fréchet-differentiable and F'(x) is the
first Fréchet-differential at a point x. We recall that F'(x) £ X(X, R), the
space of bounded linear operators from X to R. We say that the Fréchet-
differential is Holder continuous over a domain R if for some ¢ > 0, p £ [0.1],
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and all x,y GR

(3) N»)-T»SP - sir

In this case we say that F'(x) G Aa(c,p).
We include the following lemma for completeness [3].

Lemma. LetF : X —R and D Q X. Assume D is open and that F'(
G Apo(c,p) for some convex Do Q D. Then for all x,y G Do

(4) IF(*) - F(y) - F\xX)(x - jO * -L-\\x - yLH-i.
P+ 1

Theorem. Suppose:
(a) that there exists xg GX and numbers D ,B,r such that

(5) Ne 0)| ~ D,
|
(6) 0<r< ' !
J(P+ 1)dAc
and
(7) Berptl - r+ DB * 0

(b) the linear operator F'(x) G Apa(c,p) where R = S(x0,r).
Then the sequence defined by (2) converges to a solution x* G S(xo,r

(1).
Moreover, the following estimate holds:

Bcrp)n
(8) < (Berp) £>£

1- Bcerp
Proof. By (2) we obtain
(9) fo(*o - ®n+i) = F(xn);
Since,
(19) fo(xo~ *n+i)=4d(xn) —F(xn—) —fo{xn —xn_j),
using (2), (9) and (10)
I*»+H - *»ll = in*») - n*»-1) - FFo)*n- *.-i)| *

Ada Mathemalica Hungarica 58, 1991



APPROXIMATE SOLUTIONS OF NONLINEAR FUNCTIONAL EQUATIONS 5

By (4) and (5)

(H) |[*,+1 - zn|| <B-c-rp-|xn- xn_i||.

Therefore,

(12)  [xntg - xnf| < [(Berpy + (Bery-1+ -ee+ (Zcrp)]ixn- xn_rf| *

1- (Becrp) 1- (BerpY
1—(BcrP) 1—(BcrP)

By the choice of r the right hand side of (12) shows that {xn}is a Cauchy
sequence in a Banach spaces X and as such it converges to an element
x* £ X.

Letting g — 00 in (12) we obtain (8), from which it also follows by the
choice of r that xn £ S(xo,r), n =0,1,2, -

Note that x* £ 5(xo, r) by (8) and the fact that 5(xo, r) is a closed ball.
Finally by (9) it follows immediately that x* is a solution of (1).

That completes the proof of theorem.

Remarks, (a) The real function g defined by

(Berp)n||xi - zo|| < (Bcrp)n DB.

g(r) = Berptl—r + DB
is such that ~(0) = DB > 0 and
g'(r) =(p+ )Becrp—1< 0.
If (6) was not satisfied then g(r) > 0 for all r £ [0,+00].
(b) The condition

0O<r<

is sufficient for the convergence to zero of the right hand side of (12).

(c) In practice r will be chosen to be the minimum positive number
satisfying (5) and (6) in order to minimize the error estimate (8).

(d) For p = 1, Theorem 2 in [1] follows as special case of the above
theorem.

Example 1. Consider the function G defined on [0,6] by
G(t) = 32 +t- 3

for some b > 0.
Let ¥l denote the max norm on R, then

oIl = gy T L2 = oo

Acta Mathcmatica Hungarica 58, 1991



6 I. K. ARGYROS

which implies that the basic hypothesis on [|G"(t)|| in [2] and [3] for the
application of Newton’s method is not satisfied for finding a solution of the
equation

(13) G(t)= 0.

However, it can easily he seen that G'(t) is Holder continuous on [0, b] with
c=1landp= Therefore, under the assumptions of the theorem, iteration
(2) will converge to a solution t* of (13).

A more interesting nontrivial application is given by the following exam-
ple. However it concerns only Newton’s iteration

(14) Xn+i = xn - F'(xn)- 1F(xn).

to solve the nonlinear equation F(x) = 0in X . Note that we do not pursue
the goal of providing sufficient conditions for the convergence of (14), since
this has already been done in [6].

Example 2. Consider the differential equation
X"+ x1+p =0, p G[01], x(0)=x(l)=0.

We divide the interval [0,1] into n subintervals and we set h = Let
{v*} be the points of subdivision with

0=Vv0< v\ < see<yn= 1
A standard approximation for the second derivate is given by

%—3  2xtfx,+1 _ _
n % :2 X, - Xt=x(vi), i=1,2,...,n—1L

Take xo = xn = 0 and define the operator F :Rn 1—Rn 1by
F(x) = H(x) -f h?<p(x),

2 -1
-1 2 e 0 r~od XX
H = , <pX) = X" 4P , and x = x2
0 ¢ 1 -12 K #. Xn-1.
Then
"XIi 0 *
F'(x) = H+h\p+ 1)
‘n-1

Acta Mathematica Hungarica 58, 1991
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Newton’s method cannot be applied to the equation F(x) = 0.
We may not be able to evaluate the second Fréchet-derivative since it

would involve the evaluation of quantities of the form x~p and they may not
exists.

Let x GR"-1, H GRn_1 x Rn_1 and define the norms of x and H by

-
YW\ = max |x,|, WH\= max V \hjk\.
lbjSn—1 1< _1
For all x,z 6 R" 1for which |x,|] > 0, |x,] > 0, r= 1,2, —1 we

obtain, for p =\ say,

=) - FAON= diag{ (1+0 @ (x52_zil2)}

3,2 o _
-2h .:rp\ar%(_|r Xp'2- .2 < [max IXj - Z)\]I/2=h 2\« - Z\
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THE DEGREE OF APPROXIMATION OF

DIFFERENTIABLE FUNCTIONS BY
HERMITE INTERPOLATION POLYNOMIALS

R. SAKAI (Aichi Nishikamo)

1. Introduction

We denote the zeros of the Chehyshev polynomial Tn(x) = cosnt, x =
= cost, by

Sn:r* = cosflfc, Bk = (2fc- 1)7r/(2n), k= 1,2,...,n.

Let / GC[—1,1], and let Ln[f; x] be the Lagrange interpolatory polyno-
mial corresponding to the abscissas Sn. If /(x) has the modulus of continuity
w(e) = o(| log(£)! 1), then Ln[/;x] —&/(x), -1 <x < 1(see [5, p. 337]). On
the other hand, if we consider the Hermite-Fejér interpolatory polynomial
H2n-i[fi x] of degree 2n —1 such that

#2n-i[/;*Jfc] = /(Xfc), H2n_1[/-Xk] =0, K= 1,2,...,n,
then we have
[/(x)-A2,_1*]| =
= o()[(T,,Ax)/n) (1 - XL 2*) + ox»(/: i/fc2)> + <»(/; |t,,(X)|/»)]
k=1

for any continuous function / on [, 1] (see [1]).
In this paper we consider an interpolation problem of the smoother func-
tions. We can show the following.

Theorem. Iff G Cv[-1,1] we have an interpolatory polynomial Lp,n[/; x]
of degree n(p + 1) —1 such that

LplI[f;xi\ = f kKxi), i= 1,2, K=0,1,...,p,

and
12/(9 - ip.nl/; 4= 0 (D{log(M)}n-~ (/M;n-1 ,

where ||/|| is the maximum norm on [, 1], and w(f;t) is the modulus of
continuity of f.
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2. Preliminaries and proof of the theorem

Let p be a fixed integer, and let / GCp[—1,1]. Define

Hrin(x) = [Tn{X){T'n{xi)(x - x,)}IP+tL £ Arin(j)(x -
=T
AMTIXXY) = firkdigi r,k =0,1,...,p, i,9=1,2,...,n,

where Ar,n(y) are the coefficients depending on r, i and n, and 61k = 1 if
r=«k, =0ifr ¢k
Now, we define an Hermite intepolatory polynomial by

L[f;x) = x]=  E [{)(*.)"m(*)
i=l k=0

which is uniquely defined for each / G C[—L,1], and is of degree at most
n(p + 1) —1. To prove our theorem we need the Gopenganz-Malozemov-
Teliakovskii theorem (see e.g. [2]) as follows.

Lemma 1. For each f G Cp[—L,1] we have a polynomial Pn of degree n
such that

() <)(X)-p(*>) =0({A.P-»> (/(;4n(%), *=0,l.....p
where A,,(9) = n-1{(l —x2)¥2+ n-1}.

The following lemma is concerned with the Lebesgue function of the
operator Lp<[f].
Lemma 2. We have

) (.XI/an_l |f D - O,|~q/n!
(2) (Xi/ny if B- 0,]< 1n,

where X- =sin0,-, i=1 ,2 ,r =1 , 2 , and An ~ Bn means
Cl< An/Bn<C2 n =1,2,... for some positive constants C\, and C?.

Proof. By [5, (7.32.10)] we have
[TW(x,)| = 0()(n/X))Ic *=1,2, ,n, A=1,2,...,

thus by the induction concerning j we see

\ArinUN\ =0 (I)(Xi/ny-\
j=rr+1,...p, r=0,1,...,p, i=1,2,...,n.

Acia Mathematica Hungarica 58, 1991



APPROXIMATION OF DIFFERENTIABLE FUNCTIONS 11

If & —6i\~ g/n then

1/1* - *i| = o(){n/(iX,-)},

thus we have
[Tn(*)AT'(*.-)(* - x,)}p+l Arin(j)(x - xty

i (Xi/n)rqg 1 if \B8B—0] ~ g/n,

=0 (1
O()| (Xi/ny if \s- 00\ < 1/n.

Consequently we have (2). O

Proof of Theorem 1. Let / G Cp[—1,1] and let Pn satisfy (1). By
Lemmas 1 and 2 we have

l£p,nl/;*] - /(*)] = I"Pnl/ - P,; X+ Pn(x) - /(*)] =

n o p
=0 (i)E£2> “->w(f*;n In kg 1= O(D){log(n)}n pw(f*;n x). O
=1k=0

Acknowledgement. The author wishes to thank the referee for helpful
suggestions.
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A NOTE ON DOMINATED SPACES

C. R. BORGES (Davis)

A topological space X is said to be (compactly) dominated by the family
K, = {Ka}ae\ of (compact) subsets of X provided that A C X is closed iff
A has a closed intersection with every element of some subcollection K\
of K, which covers A. X is said to have the weak topology over the family
5 = {£*}aep of closed subsets of X provided that A C X is closed iff A has a
closed intersection with each Sa ES. A family C = {Ca}agr of subsets of X
is said to be (hereditarily) closure-preserving provided that, for any Ti c I

(and Da C Ca, U D~ = ( éI_XDa) ). elgxcdfz (a6Urx Ca)~. It is clear

that locally f|n|te collectlons of subsets of a space X are hereditarily closure-
preserving. Example 2 shows that closure-preserving collections may fail
to be hereditarily closure-preserving. (An interesting study of hereditarily
closure-preserving collections of sets appears in [1].)

Theorem 2.10 of [2] claims that a space X is dominated by a closed
covering (Aa}a6n iff the natural map q : <\’%nAa —>X from the disjoint

topological union of all the Aa (precisely, \J Aa = (J Aax {a}), is a
aréA afA
closed continuous map. Unfortunately, this result is false, as the following

simple example shows.

Example 1. Let | = [0,1] be the closed unit interval with the topology
inherited from the real line. For each T let An = [0,”]. Clearly, X is
dominated by {A,|tfe E w} but the natural map q : n)E/LuAi —X is not

closed; for example, letting A = {(*rc) = 1,2,...}, we get that A is a
closed subset of }S/IAn but q(A) = {MN1e = 1,2,...} is not a closed subset
nEo

Of /.

It is well-known that if A is a CW-complex of Whitehead (i.e. K is a
simplicial complex with the weak topology over the family {3a}aen of closed
simplexes in K) then K is dominated by {3a}aen- However, it is still not
always true that the natural map g: \/ sa K is a closed continuous map,

as the following example shows.

Example 2. Let K be the CW-complex with (distinct) vertices iln, n£w ,
whose closed simplexes are sn = (i*,..., un)~, for n £ u. Pick a se-
quence {in} in the open 1-simplex (zM,v2) which converges to v\. Then
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A = {(x,,n|te = 1,2,...} is a closed subset of \£/ sn = (J snx {n}, but
nf£u

the natural map q : n\C\;Nsn —»K maps A to the non-closed subset {an|n Gw}

of K. Furthermore, K does not have a hereditarily closure-preserving cover
by compact spaces (we thank the referee for this simple argument): Assume
C — {Ca}aer is a hereditarily closure-preserving cover of K by compact
spaces. Then each point of {v\,vf) belongs to infinitely many Ca's (because
K is not locally compact at any point of (i'i,")). Again, pick a sequence
{x,.} in (iq,i/2) which converges to v\. Then there is a sequence {a,,} C I
such that an ¢ am if n @ m and xn G Can. This shows that C is not
hereditarily closure-preserving.

Example 2 shows that Corollaries 2.12 and 3.6 of [2] are false. Later, we
will give correct versions of these results.

In light of the preceding examples, the following results are essentially
best possible and quite useful.

Proposition 3. Let A = {Aa}ofn be a closed cover of a space X. Then
(a) X has the weak topology over A iff the natural map q: \f Aa —X
aen
iS a quotient map.
(b) X is dominated by A iff A is closure-preserving and, for each C C
A, UC has the weak topology overC.
(c) A is dominated by A iff the natural map g :ai\S/J'IAa —X satisfies

the following condition: For each ' c A, gf \J Aa) is a closed subset of X
aer

and g\ V Aa: \J —»(()J Aa is a quotient map.
aélr a6l aol

(d) If A is hereditarily closure-preserving then X is dominated by A.

Proof. Part (a) is well-known (see Theorem VI. 8.5 of [3]). Part (b)
follows immediately from the pertinent definitions. Part (c) is a restatement
of part (b).

Part (d). Let A be a subset of X and {Aa}a6a a subfamily of A which
covers A such that AMAa is closed in Aa, foreach a G. Then, (AlAa}aeg
is closure-preserving, which implies that

A= (J AnAa= (J (AnAa)- =1 (J AMAaj =A
ag] atf WI6A /

This proves that Ais closed, which completes the proof.

It is noteworthy that Proposition 3(b) cannot be weakened to “X is
dominated by A iff A is closure-preserving and X has the weak topology
over A”, as the following example shows.

Example 4. Let | be the space of Example 1. For n = 2,3,..., let
An = {0} UIE, I]; let Ai = 1. Clearly, {A,.}..,eu) is closure-preserving, and |
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has the wak topology over {An}n*w. However, (An}neu, does not dominate
7, since the set A =]0,1] has a closed intersection with An,forn = 2,3,...,
00

and Ac U An, but A is not closed.
n=2
The following well-known example further illustrates the subtleties of the
concepts in Proposition 3.

Example 5. Let fl be the space of countable ordinals with the order
topology. For each a E fi, let Aa = {B £ tI\B < a}. It is well-known and
easily seen that X has the weak topology over A = {Aa}a6n. By Theorem
8.2 of [4], X is not dominated by A (because each Aa is paracompact but X
is not paracompact). No subover of A is closure-preserving!

Theorem 6. Let A = (Aa}aen be a closed cover of a space X. The

natural map g: V Aa —+X is a closed continuous map iff A is hereditarily
atA
closure-preserving.

Proof. The “only if’ part is obvious. The “if’ part is trivial.
The following result corrects Corollary 2.12 of [2].
Proposition 7. A space X is a closed continuous image of a disjoint

topological union of compact spaces iff X has a hereditarily closure-preserving
cover by compact subspaces.

Proof. Immediate from Theorem 6.

Lemma 8. Letf :X —@Y be a closed continuous map from X into Y . If
a£\ is a hereditarily closure-preserving collection of subsets of X then
{f(Aa)}aen is a hereditarily closure-preserving collection of subsets ofY.

Proof. Let Ai C J1 and pick Ba C f(Aa), for each a 6 Ai. Next, for
each a 6 Ai, pick Ca C Aa such that f{Ca) = Ba. Since, by hypothesis,

Uu CcC~=1 UC, and / is closed continuous (equivalently, f(A~) =
<*€J1IX yoreAi )

= f(A), for any subset A of X), we get that

U =uUu 7w =U /ta =/(n c.) =
orgAi or€Ai a6/ix aGAi

IS 0

This proves that {/(Aa)}aen is hereditarily closure-preserving, which com-
pletes the proof.

The following result corrects Corollary 3.6 of [2].
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Theorem 9. A space Y has a hereditarily closure-preserving cover by
compact sets iff Y is the closed continuous image of a locally compact para-
compact space.

Proof. The ‘only if” part follows immediately from Theorem 6.

The *if” part. Let X be a locally compact paracompact space and / :
X —»Y be a closed continuous map onto ¥. Let U be an open cover of X
such that, for each U € U, U~ is a compact subspace of X. Let {Aa}aen be
a locally finite closed refinement of U. Then, by Lemma 8, {f(Aa)}a™\ is a
hereditarily closure-preserving cover of Y by compact sets. This completes
the proof.

Our last result yields a correct proof of Theorem 3.3(a) of [2].

Theorem 10. Letf : X —»Y be a closed continuous function onto Y. If
X is dominated by {Xa}aen then Y is dominated by {/(X a)}aen-

Proof. First note that each f(Xa) is a closed subset of Y. Now, let
B c u f(Xa), ' c A such that B INf(Xa) is closed, for each a 6 I'. Then
aflr

f~x(B Mf{Xa)) is closed in X, for each a G I; therefore f~1(B) NXa =
= f~x(B Mf(Xa)) MXa is closed in Xa, foreach a ET. Let A =f~1(B)d
fI( (J Xa). Then A'is closed in X (because A DXa =/-1(5) NXa, for each

aer
ae/land f(A) =B I'I/(C%_X a) = aSSJF(BI‘I /(X a)) = B, which shows that

B is closed and completes the proof.
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ATTRACTORS OF SYSTEMS CLOSE TO
AUTONOMOUS ONES HAVING A
STABLE LIMIT CYCLE

N. V. MINH and T. V. NHUNG (Hanoi)

1. Introduction. M. Farkas [2] has obtained useful explicit estimates for
the radius of attractivity of systems close to periodic ones by using quadratic
forms as Lyapunov functions. One of his main assumptions is that periodic
unperturbed systems have a uniform asymptotically stable nonconstant pe-
riodic solution. This condition is needed for applying Yoshizawa’s theorem
[11, p. 134] to get the estimates mentioned above. The case of systems
close to autonomous ones having an asymptotically stable equilibrium state
is also considered by Farkas [4]. As interesting illustrations, Farkas’ results
are applied to some important second order nonlinear differential equations,
e.g. Duffing equation [3] and van der Pol equation in case time tends to —eo
4].
X In this paper we consider the case in which unperturbed systems are
assumed to be autonomous and to have an asymptotically, orbitally stable
nonconstant periodic solution (a stable limit cycle), e.g. van der Pol equa-
tion in case time tends to -foo. Unfortunately, Farkas’ estimates in [2] are
inapplicable to this case, because now the graph of the periodic solution is
not a uniform asymptotically stable set. However, if we note that the orbital
stability of the closed path of the periodic solution in R", say I', is equivalent
to the stability of the cylinder R x I, then R x I" is a uniform asymptotically
stable set of the autonomous unperturbed system. Therefore, by applying
Lyapunov functions and the theorems due to Yoshizawa and La Salle respec-
tively, we can get the inequalities characterizing a uniform asymptotically
stable invariant set around the cylinder R x I' (but not around the graph of
the periodic solution as in Farkas’ case, [2]!) and its region of attractivity.
To use Farkas’ idea of construction of Lyapunov functions in the quadratic
forms [2, 41, we shall introduce a local coordinate system [5, 10] into a small
“tube” around T.

2. Let us consider the autonomous system

(2.1) X = g(x)

where « = d/dt, t £ R, x = col(xi,... ,x,,) £ A C R", fl is some open
region of R", g : fi —e Rn is smooth enough, e.g. g £ C2[fl,R"]. Assume
further that the system (2.1) has a nonconstant periodic solution x = p(i) of

(least) period r > 0 such that its path I lies in il, and n —1 characteristic
multipliers of the variational system

(2.2) ir=g'(p(t))z
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are in modulus less than one: |Aj < 1,i=1,...,n—1(A, = 1). Under these
conditions it is well-known by the theorem of Andronow and Witt (see, e.g.,
[7, 11]) that the solution x = p(t) is then asymptotically, orbitally stable with
asymptotic phase. Some important generalizations of this theorem can be
seen in Hale [5], Hale and Stokes [6], Yoshizawa and Kato [12] and Aulbach

[11-
In conjunction with the system (2.1) let us consider the following “neigh-

bouring” system:

(2.3) x = f(t,x)

wheret € R, x € fi,/ € C° [R X ii, R"]and fx 6 C° R X fl, R"2 . Suppose
that for any compact set Q C Il there exists an rj > 0 such that

(2.4) IF{t, x) - sr@2)|| < 7 (f,x) e R x Q

where ||.|| is the Euclidean norm.
Let a sufficiently small p\-neighbourhood U(T,pi) of I' be taken such

that its closure U(T,pi) C i2 and a local coordinate system (0,yi, *mmyn-i)
(see, e.g., Hale [5] or Pliss [10]) can be introduced into the tube U(T,pi)
instead of the old (®j,..., xn). The new coordinates are related to the old
ones by the formula

(2.5) x =p(0) + p(B)y

where y = col(j/i,...,yn-\) and ¢pis an n X (n —1) dimensional matrix.
Differentiating (2.5) with respect to t and solving the system of equations

thus obtained for B and y, from (2.1) we get the following new system of
differential equations:

26, (0=a(0y),
I Y=KaB,y)

where a(0,y) = 1+ ar(0,y), b(0,y) = D(0)y + £2(0, y),
dcp(0)  AA(p(0)) '

D{O) = @T(0) _ L. .

T means transpose, and gi(0,y), a2(s,y) are continuous in 0,y, r-periodic
in 0, have continuous first derivatives with respect to y, and

CIfi(0,1/)] = 0 (MQ as HIl 0,
| 92(0,0) = 0, dg2(0,0)/dy = 0

(see Hale [5], p. 219).
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By (2.5), the periodic solution x = p(t) of the system (2.1) is transformed
into the solution 9 = t, y = 0 of the system (2.6). By our assumptions, it is
possible to find a sufficiently small p? > 0 such that in the domain 9 6 R,
IMI < P2 we have

(2.8) 1/2 <9 =a(sy) <2

It follows from (2.8) that the map taking t to 9(t) has an inverse t : R —R,
t=1(9), and for 9 € R, |M| < pi

(2.9) 1/2 < dt/d9 = 1/a< 2

(see Hale [5], p. 221-222).
Let us consider the variational system of y = b(9(t),y) with respect to
the solution 9 = t, y = 0 of the system (2.6), i.e.

(2.10) i = D(t)u

which is clearly a linear system of order n —1 having a continuous coefficient
matrix r-periodic in t. From our assumption that |A/|< 1, r=1,..., a—1,
and Lemma 2.1 in Hale [5], p. 220, it follows that the characteristic exponents

of the system (2.10) are 3- = (logA)/r, i = 1,...,n - 1, s0
max Re /3, = -/3 < 0. By Floquet’s theory the periodic linear system (2.10)

is reducible, i.e. we can find a continuously differentiable, regular, r-periodic
matrix function S(t) such that the transformation v = S(t)u carries (2.10)
into the linear system

(2.11) v=Bv (ueRn.)

with constant coefficients where by our assumptions all the eigenvalues of B,
namely Ri,. have negative real parts. For (2.11) it is possible to find
a positive definite quadratic form (with constant coefficients)

n—
Ym) = vTAv —*  dijviVj
ij-1
such that its derivative with respect to (2.11) is negative definite
(2.12) VAN (V) T -B\\W\\  ve Rn_1.

The form V(t,u) = V(S(t)u) = uT(ST(t)A S(t))u is clearly a Lyapunov
function for (2.10). Putting

W(9,y) = V(t(9),y) =yT (STAS)y, S = 3(t(9)),

we are going to show that W(9, y) is a Lyapunov function for (2.6) in a
sufficiently small neighbourhood of the line 9 € R, y = 0 in the (0, y)-space.
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Taking into account (2.9) and the estimates

dw dw
(2.13) e <2 g SACCVAWWR (©ERlI < p2),

(2.14) ligrad™H < 2[|A[|(C)2llyl (0 e R, |yl < p2),

h = i = i
where C := max JIS(MI, € == max 15,0,

(2.15) ififil ~ K\\Wy\\, K =const (0 e R, \W\ < p3),
(2.16) 1bll A~ M\\WW\2, M = const (0 €R, \W\ < p3),
we get

(2.17) W (26)(0,y) = -Bch\S-a(e’n + (gradylY, b(0>y)) =

= XX + (gradvw>D(0)y) + *-91 + (gradykF,g2) =
dt  BW
= V1) (S(t)y) m— + -QQgx + (gradyW,g2) <
-2+ 2C\A\W\\\WW\(2C'K + MC)

for g 0 6 R and W\ < rwn(p2,P3) where /1 := tgf(ianr) As(/) > 0, As(t)

denotes the least eigenvalue of the r-periodic positive definite matrix function
ST(t)S(t). Therefore

(2.18) W{26)(0,y)< 0

in the domain 0 € R and

[/l <mm (p2,P3, W w 2C'K +MC)) '

3. In this last part, by using the stationary Lyapunov function
W(t,6,y) = W(6,y), t 6 R, where W is constructed above, and the theo-
rems of Yoshizawa and La Salle, we shall construct a uniform asymptotically
stable invariant set for (2.3) in R x R" (as t —+00) containing the cylinder
R x I, and its region of attractivity for 4§ small.

Suppose that the system corresponding to (2.3) in the local coordinate
system is of the form

I h(t,6,y),

(3.1) \ Y= fiit,6,y)
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where /1 :RXx R X {\W <p2) -*R /2 :R xR x {\W\ < p2} R"-1 (see
the explicit form of /1 and /2 in Hale [5], p. 233). By our assumption (2.4),
for each set N of the form N = R x Ny, where Ny is a closed set contained
in (IljH < p2}, there exists an 771 > 0 such that

f \fi(t,0,y)~ a(,y)\ < 77,
| WE2(t,0,y)-b(6,y)\ < 71

for all (f,B,y) € R x R XNy.
Taking the derivative of the Lyapunov function W with respect to the
system (3.1) we get

dw
(3.3) % )(*,») = -Q fh + (gradyW,f2) =

= ~aBa+ (sradvw>6) + ~aB"1- a)+
+ (gradyJF,/2- b) = W(26)(0,Y) + <50, Y)
where

Iw
(3.4) 6(0,Y) = -Rfifl- «) + (gradytT,/2- b) =
= (A”) +(grw -~
As in (2.13), we have the estimate
dw ,
(3.5) gt (@y) < 2CC'||Al [1€]]2 (0 e R, HU< P2).

From (2.9), (2.14), (3.2), (3.4) and (3.5) it follows that
(3.6) [i(*, V)| <2,C|A]|| lIsll 2C'||»|| + 77)
for every B € R and |j/|| < p2/ 2 where 7L is the positive constant correspond-

ing to the set N = R x {||¥|]| < p2/ 2}.
Thus, by (2.17), (3.3) and (3.6) we get

tfw * . V) <IMI2[- Y + 2C||IML wl (
+2uw, CM 1|i/j12C "y [[+C)
for all B £ R and ||1/]] < TT7(/92/2,p3), so

WE)Oy) < PAYN2 4 3a(c)2Al WA
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for all B8 € R and
W\ < d2.=min *p2/2,p3,— ,gqi®*n pc,K + j e

Therefore

(3.7) riw *,y)<o0

in the domain

(3.8) B6 R, dx< il <d2

where d\ := 12771(C)2||Al|/(/31). The set of y's satisfying condition (3.8) is
not empty if d\ < d2,i.e. if

(3.9 O<w < 70
where
/3A m( 0 C 13A
Vo 12(C)2llA|l mm ,P374C ' 8C||N|| RCK + MC)

Let us denote the least and the largest eigenvalue of the r-periodic pos-
itive definite matrix ST(t)AS(t) by Aj(f) and A2(t), respectively, and let

at := 6<EFSf|9||=d2W{9’ y), az2:= eeanMi W(e.y).

Then it is easy to see that

Ai = tgrﬂol,r}) Ai(f) > 0, A2 : tgﬂ(% A2(t) > 0,

and ai = Aid% a2 = A2d\. Let us denote

Am = {(8,y) e Rx Rn-X : W(0, y) < g2},
B ={06,2) € RxRnl1l: :W(6,y) <c*i}.

Now we are in a position to formulate the following

Theorem. Suppose that all conditions mentioned before are satisfied and
rji is such that

(3.10) O<m< (Aj/ANIV

Then the set R x Amis a uniform asymptotically stable invariant set of (3.1)
(ast—+00) and its region of attractivity contains the set R x B. Returning
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to the original variables x\,...,xn (see (2.5)), from the sets R x Am and
R x B we get, respectively, a uniform asymptotically stable invariant cylin-
drical set An in R x R" for the system (2.3) around the cylinder R x I and

a cylindrical set B contained in the domain of attractivity of A”.

To prove our theorem let us first note that Al * J12, hence (3.10) implies
(3.9) and 0i2 < <4, thus Ani C B. Then B —Am is contained in the domain
defined by (3.8), so (3.7) holds in B—Am . After that, to establish the uniform
asymptotic stability of the set R X Am, we can use the stationary Lyapunov

function W(t, B, y) = W(0, y) fort € R and the proof of Yoshizawa’s theorem
[11, p. 134].

Remarks. 1. Rx T C A* and An—R x I as 7—0.
2. Unlike in Farkas’ case, we can only construct a uniform asymptotically

stable invariant set Anaround the cylinder R XTI, but not around the graph
of the periodic solution x = p(t) of (2.1).
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ON THE MEANS OF THE ARGUMENT OF THE
RIEMANN ZETA-FUNCTION
ON THE CRITICAL LINE

L. GROENEWALD (Bloemfontein)

1. Let C(s) denote the Riemann zeta-function and put
*S(t) = ALargC(5)

where A1 denotes the variation in the argument of £(s) along the polygonal
line L extending from 2 to 2+ it and then to | + it. Since arg£(2) = 0, we

can express 5(f) in the form #5(f) = argf (| + it) provided the argument
is defined by continuous variation along L ([1], p. 98).
In [2] Ghosh proved for k = 1and k an even number that

T+H K K
(1) J |i(D]*9A~~rr(~+i) (T) tf(loglogr)/!, 00
T

with an error term which holds uniformly in k < (loglog T)1/6.

Ghosh’s main theorem in [2] on sign changes of 5(f) in the interval
(T,T + H) is deduced from these latter estimates. For recent conditional
results on sign changes of 5(f), see [3].

Ghosh [2] mentions without proof that the asymptotic relation (1) can
be extended to all integral values of It is the aim of this paper to prove
Ghosh’s claim.

Theorem. Let H be a function of T such that Ta < H(T) < T, where
N<a l1forallT ~ 1. Then, for any positive integer K

T+H

J ) (s) —*00.
;

2. We shall need the following:
Lemma 2.1.

(—)’+1(2u)24 2k + 2))I

_ _ du = 22k+1K\y/ir, k=0,1,2,....
@)1 (k+ )\
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Proof. Since

(2k + 2))\
(2)\(k + A
= (2f+2))(2fe+ 2] - 2).. .(2) +2)()!(2fc+ 2j - I)(2fc+2) -3 ). mm(2j +1) _
(K+J)(k+]j - 1). =+ D(2)4!
2f2k + 2 - DN(2fe+2j - 3).. .(2j + 1)
j!
if kK > 1, it follows, on substituting r for 2u, that the integral above can be
written as @®

2k+lJ ~F X _1(z)dz

0 3
(2) r-iw =J3(-iy+,*- =i-e-0
3:1 3
and
D 2
FX-i{z)= 1£(-1)J+1r(2fc + 2i-1)(2fc + 2j-3)...(2i + I), f> 1.
i=i J'
Note that
3) F&k+1(z)=+;-"(z X+1FX%- 1(z)) if k> 0.

Every F2fci(2) can be written in the form

K
(4) FX_1(z) =Y /akziF~(2)

>'=o

where the ak, are constants. Indeed, (4) is obvious if k = 0. If (4) holds for
K = n, then

*WiM = é Mff
<0

<

= E(2n + 1+ namr*p[}(2) + £ anizi+lF " 1(2)
i=0 =0
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so that (4) holds for k = n + 1. It follows by induction that (4) holds for
every k.

If i ~ 1, then F7I(z) can be written as Pi(z)e~z2 for some polynomial
Pi(z). Therefore, it follows from (4), that for k ~ 0,

. ik- FX-\{z
limy Flkz\(z) Z{ ) _ o
Consequently, by (3) integration by parts yields for k > 1
00 00 0
Ak =) F X-i(z)dz =) ( z X-'FX-Zz))dz =2kf +F 2k_3(z)dz.
0 0 0

We iterate the identity Ak —2kAk-i for k = 1,2,... to show that
Ak = 2kk'.A0 = 2kk\ dz.

The result follows on noting that
J (e - 268y

3. Proof of the Theorem. Write W(t) = 27r(loglog ') *S(t). If we
put /(T) = (logloglog T)?, it follows from Ghosh [2] that

T+4

(5) J/ \w{t)\2j dt = LI]I\ nm +o {J(_mglogT)S

uniformly in 1 <j < f(T). In view of (1), it suffices to show that for fixed
K>1

Y Ik-+1
(6) /H\W(t)\2k+1 dt = —y~K'.H + Ofc(tf), 00.
Vi
Following Ghosh [2], we note that

du
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so that the left hand side of (6) can be written as

T+H A T+H
G) \ f mt)\2td iu+o0 i | \w(t)\2kdt
T o) \VOT )

for every A> 0.

Let N = N(T) be such that N(T) —* oc as T —* oo and N(T)+
+k®§ f(T) for all T sufficiently large. Put 2A3 = N. Since 2sin2r =

= 1»+1(2x)2j /(2))\, we can write
i-1

* =i £ tim M i +0( X

and (7) becomes

(8) A 1 mopitiu+
0 T j-1
( N X T+H \
6 LT L uM  w/()en+

By (5), the main term in (8) can be written as

Hj 17 (—)i+12u)3 (2K -F 2ji)!
T "‘231

_ 27 du+ Ok(H) =
4 @) (k+J)"

00
' du + ok(H
(Hyb @ (H)
0 ]:| \ 0 j=N+1
where aj(u) is the jth term under summation.
By Lemma 2.1, the above can be written as
o2fcHl
—j=-k\H + Ok(H), 00.
v f

It remains to estimate the error term in (8). By (5), this is

4w AINVH(2V + 2+ 2A)! X3N 1T E)’o’\l\l
(2N + 2)!E'Kf_+r1'3(ﬂ'+'1+ 'fé! < TZi\Vﬂ# ) H =0(H)-

The proof of the theorem is complete.
Acknowledgement. | thank Professor W. L. Fouché for suggesting this
method of proof and for several helpful discussions.
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WHICH TRIANGULAR NUMBERS ARE
PRODUCTS OF THREE CONSECUTIVE
INTEGERS?

S. P. MOHANTY (Kanpur)

Introduction

Mordell [2] has shown that all integer solutions of the equation y(y+
+1) = x(x+ I(z +2)arex =0,-1,-2,y=0,-1; x =1,y = 2,-3;
x =5y =14,-15. To find all tetrahedral numbers which are triangular,
Avanesov [1] solved the equation 3y{y + 1) = x(x + I)(z + 2) and obtained
all positive integer solutions given by a= 1, 3= 1, x= 3, j/ = 4, a = §,
y = 15; x = 20, y = 55; and x = 34, y = 119. In this paper we try to
solve the diophantine equation y{y + 1) = 2x(x + I)(x + 2) in order to get
all triangular numbers which are products of three consecutive integers. The
result is contained in the following theorem.

Theorem 1 Let the nih triangular number nY@&1" be denoted by Tn.

Then T3, T15 T20, T44, Tgo8, and T227/%6 are the only triangular numbers
that are products of three consecutive integers.

Proof. We consider the diophantine equation
1) y(y + 1) = 2x(x + 1)k + 2),

where x and y are positive integers. Substituting Y = 2y + 1, X = 2x+ 2in
(1) we get

) Y2=X3-4X+1 X>4,Y>3

From Delone and Fadeev’s “The theory of irrationalities of the third degree”
we note the following facts in Q{6) given by

3) f{6) = 83- 40+ 1= 0.

_ (i) The integers in Q(6) are a + bs + cC2, where a, b, ¢ are rational
integers.

(i) The class number h —1 and hence unique factorization exists in

0).

« ziii) The discriminant D(0) being 229 > 0, /(0) = 0 has three real roots.
Hence there are two fundamental units.

Using Billevich’s algorithm we find the two fundamental units to be B
and 0-2. Since * = —02+4, -02+4 and 0- 2 are taken as the fundamental
units for simplifying the calculations.
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Equation (2) can be written as
(4) Y2=(X - 0)(X2+BX + B2- 4).

Let >xbe a common prime factor of X —B and X 2+ BX + B2 —4. Then
X = 0(mod T) and hence 302 —4 = 0(mod x). Since |iV(302—4)| = 229 is
a prime, 302 —4 is the only possible common prime divisor and we have

(5) X - B= +(302- 4)nEV (0 + bB+ cB2)2,

where £=B8—2, p= —82+ 4 and n,p,q € {0,1} as the other powers can be
absorbed in the square term.

Taking norm on equation (5) with n = 1we see that ¥2= X3—4X+1 =
= 22972 which is clearly impossible. Hence

(6) X -9 = xfpvg(a + 5 + cB2)2

has four possibilities (p, q) = (0,0), (1,0), (0,1), (1,1). We consider each
case separately.

Case 1: (p,q) = (0,0). Using (3) and expanding the right hand side of
(6) we get

(7) a2- 2be = £X,
(8) 2ab + 8be - ¢2 = ¢,
(9) b2 + 4c2+ 2ac = 0.

From (7) a is even as X is even. From (8) c is odd. From (9) bis even.
Substituting a = 20i, b= 2bi in (8) and taking congruence mod 4, we see
that the positive sign on the right hand side is impossible. Hence,

(10) a2 —2be = X,
(1D 2ab + 86c —c2= —1.

From (9) we get (|)2= — (c+ |). Since (8,c) = limplies (c,| +¢) = 1,
we take -¢c = u2, | fc=v2orc=u2 | + c= —v2and b= £2uv. Then
(11) yields £8uv(v2- u2) —u4 = — or x8uv(u2—v2) —u4 = —.

In either case u divides the left hand side whence n = 1. Hence

+8v(v2—1) = 0. Either v = 0 or v = +1. Takingv = 0, n = +1 we
getc=4x1,a==2,6=0. Againv=zxlandun=zlyieldc=—,a=4
orc=1a= —4;, 6= 2. Hence (a bc) =(2,0,), (-2,0,1), (4,2,-1),

4,-2,-1), (—4,2,1), (—4,—2,1). Then X = a2—26¢c implies X = 4,12,20
or x = 1,5,9. Correspondingly y = 3, 20, and 44.

Case 2: (p,q) = (0,1). Using (3) and expanding the right hand side of
X —B = +(4 —02)(a+ b+ cB2)2 we get

(12) 4a2 —c2+ 2ab = £X,
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(13) b2 + 4c2+ lac - :pl,

(14) a2 —2be = 0.

From (12), (13) and (14) it is clear that a,b,c are even, odd and even,
respectively. Therefore negative sign is not possible on the right hand side
of (13). Hence we have

(15) b2+ 4c2+ 2ac = 1,
(16) 432 —c2 + 2ab = —X.
Using (14), (15) and (16) we see that

(M a0, co 0.

(ii) band c have same sign while a and c have opposite sign.

(iii) if (a,b,c) is a solution so is (-a,-6,—€) and they yield the same
value for X.

Hence without loss of generality we may assume b and c to be positive.
Therefore a is negative. Since a2 = 2c-b and (2c,b) = 1, take 2c = u2, b=v2
and a = —uv, where n and v are of same sign. Substituting now the value
of a,b,c in terms of n and v in (15) we get

a7 ud+v4—u3dv=1 u/ 0.

Taking un and v to be positive and writing (17) in two different ways as
u3(u —v) -fvd = 1 and u4 + v(v3—u3) = 1 we see that neither u > v nor
v > u. Again n1 = v is impossible because un is even and v is odd. If un
and v are both negative, then setting n = —u, v = — in (17) we obtain
u4 + v4 —udvi = 1 with ui,v\ positive which is the same equation as (17).
Thus, (17) has no integral solutions n ¢ 0.

Case 3: (p,q) = (1,1). We have X - B = £(0 - 2)(4- B2)(a+ bB+ C62)2

or

(18) BX-B2=x(B-2)(a+ 6+ c02)2.

Expanding the right hand side of (18) and using B3- A0+ 1= 0 we get
(19) a2+ 4f2 + 18c2—4a6 - 186c + 8ac = £ X,

(20) —2b2 - 9¢c2 + 2ab + 8be —4ac = "1,

(21) 2a2+ b2 + 4c2- 4be+ 2ac = 0.

Since a is even, c is odd and b is even, the positive sign on the right hand
side of (20) is impossible by congruence modulo 4. So we have

(22) a2- 2bc=X - 2,
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(23) 4a2 —c2+ 2ab = 4,

(24) (6 —2c¢)2= —2a(a + c).

Using the fact that a+ ¢ is odd we have a = 0 if and only if b = 2c. In
this case (o, 6,¢c) = (0,2,1) or (0,—2,—1)and X = —2,i.e.,, x =—2. Suppose
a®O0ie, bd 2c. Then from (23), (a,c) = 1. Now (ft —2c)2 = —2a(a + c)
with (a,a + c) = 1 yielding

—2a=Mu2, a+ c=v2 b—2c=+uv
or

2a=Uu2, a+Cc=—2, b- 2c = +uv.
Substituting the values of a,b, ¢ in (23) we get

(u2+ 2uvf + 8u2v2 + 4ud = 4,

which is impossible for n ¢ 0 and y¢ O.

Case 4¢ (p,g) = (1,0). Expanding the right hand side of X —B =
=+(0 —2)(a + 6™1- cB2)2 and equating the coefficients of like powers as
before we get

(25) -2a2- b2- 4c2+ 46c- 2ac = =X,
(26) a2+ 462+ 18c2- 4ab - 18be+ 8ac = "1,
(27) —262 —9c2 + 2ab -f 86¢c - 4ac = 0.

We see that b is even, a is odd and c is even from (25), (26) and (27),
respectively. Taking congruence mod 4 in (26) negative sign on the right
hand side of (26) is ruled out. Therefore, we have

(28) a2—2bc = 1,
(29) -4a2+ c2- 2ab =-2X
and

(30) c\ = (2ci - &i)(-a + 2bi - 4ci), where b= 2bi and c= 2c\.

From (28) we see that b and c are of the same sign. Since (a, 6,¢) and
(—a, —h, —€) appear as solutions we can take b and c to be both positive.
Since (2ci —fci, —a + 2b\ —4ci) = 1 we have

(31) 2ci —bi = u2, —a+ 2b\ —4cr=v2, c\ = tuv
or
(32) & —2ci = u2, a—2bi + 4c\ = v2, ci = tuv.
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We note that n and v have opposite sign if c\ = —uv and u and v are of
same sign if c\ = uv.
Using (31) and (32) with ¢\ ——uv or uv the equation (28) reduces to

(33) 4ud + v4—\2u2v2+ 8uldv = 1
and
(34) 4ud +v4 —12uv2—8u3v = 1

Since equation (34) is obtainable from (33) by taking 1 = —, v = v or
n=wu v=—vitis enough to consider the equation (33). We note that if
(u, v) is a solution of (33) then so is (—u, —v).

The diophantine equation (33) can be written as
3/_ v2+1 v2- 1.

u%(i%v + ui‘(v - U) = — e —
If v2= 1, then u2(3v+u)(v- u) =0, whence u =00TuU =V OTU —-3V.
Then we have (u,v) = (0,1), (0,-1), (1,1), (-1,-1), (-3,1), (3,-1). If
u2 = 1, then (u,v) = (11), (1,3), (-1,-1), (-1,-3) are also solutions.
Suppose 12 > 1and v2 > 1. Now u2 divides one of *4p- and but not
both. Again writing 4u4+ v4- 12u2v2+ 8u3v = 1as (2u2+ 2uv)24-v2(v2-
—16u2) = 1 we see that v2 > 16u2is impossible. Therefore v2 < 16u2.

If n2\*-~-, then is positive integer, less than — = 8-
Hence 1 =1,2,3,...,70rv2=2u2+ 1,4u2+ 1,..., 14u2+ 1.

We consider (3v + u)(v —u) = for =1,2,...,7. For
example, when —3 our equation 3u2- 2uv —u2 = becomes

3(6u2+ 1) —2uv —u2 = 3(3u2+ 1), or v = 4u, a contradiction. If we take
= 4, then we have 3(8u2+1) —2uv —u2 = 4(4u2+ 1). On simplification

we get 7u2- 2uv—1=0orv = . Then (-*2f-) =v2=8u2+ lyields

(17u2 —I)(w2—1) = 0, whence n = =1 and v = +3. We solve 3v2 —2uv—
—u2 = as above for every value of v2 as listed above. Similarly,

if u212 ~ then is a positive integer < 8. We solve 3u2—2uv - u2 =

—i “or =1,2,...,8. We do not get any new solution for
(u,v). Hence all solutions (u, v) are as above. Thus the positive integral
solutions for 4u4+ v4—12u2v2+ 8u3v = land 4u4+ v4 —12u2v2—8u3v =1
are given by (u,v) = (1,1), (1,3) and (3,1) respectively. They in turn give
(a, bc)=(3,2,2), (—1,10,6) and (19,30,5). Substituting these values in
(29), we get X = 10, 114, 1274. Hence this case gives x = 4, 56 and 636.
Corresponding to x = 4,56 and 636 we have y = 15, 608, and 22736. We
get three more triangular numbers T15, Teos and T22736- Thus the theorem
is established.
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ON DARBOUX FUNCTIONS IN HONORARY
BAIRE CLASS TWO

I. POKORNY (Kaosice)

1. Introduction

In 5] R. J. O’Malley introduced and developed the idea of selective
differentiation theory.

In [1], Bagemihl and Piranian defined a function g as honorary Baire
class two if there exists a B\ (Baire class one) function h such that the set
{z :h(x) ¢ g(x)} is at most countable. See also [3], [9].

We know that the class of selective derivatives is a proper subclass of
the class of Darboux functions in honorary Baire class two (see [5, Theorem
11] and [6, Proposition 3]). Hence it is interesting to investigate this class,
because this class plays the same role for the selective derivatives as the class
VB 1for the derivatives.

Our main results are the following.

1) Every VHB?2 function is pointwise discontinuous.

2) For every / 6 VHB?2 there exists a g e B\ such that the points of
continuity of / and g coincide and {z : /(z) & £r(2)} is countable (i.e. at
most countable).

3) The maximal additive class for VKB2 is the class of all constant
functions.

4) VHB?2 is not closed under the uniform convergence.

The last two results show that, as for the maximal additive class and
uniform convergence, the class VHB2 behaves similarly to the class V. On
the other hand, it is well-known that the maximal additive class for VB\
is the class of continuous functions, and VB\ is closed under uniform limits
(2 pp 14, 15). _ N

In [7], T. Radakovic proved that the maximal additive class for V (but
not HB2) is the class of constant functions.

In [8], J. Smital proved that the class VB2 is not closed under uniform
limits. In his proof, functions from B2\ HB2 are used in an essential way.

Our approach is different.

2. Preliminaries

Throughout this article, the functions under consideration are usually
real valued functions defined on the closed interval / = (0,1).
The class of all Darboux functions on | is denoted by V.
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Let Q be a class of functions defined on an interval I. A subclass T
of Qs called the maximal additive class for Q provided T is the set of all
functions in Q such that f + g £ Gwhenever f £T andg £ Q.

Further, [x, y] will denote the closed interval having endpoints x and y
regardless of whether x <y ory <x.

We frequently refer to certain other classes of functions: the Baire class
a functions, the honorary Baire class two functions and the continuous func-
tions. We denote these classes by Ba, HB2 and C, respectively.

Let / be a function. We denote the set of points of discontinuity, resp.
continuity by Df, resp. Cf.

We say that f is pointwise discontinuous if Cf is a dense set in 1.

Let I be a point of I. By the cluster set of / at x, denoted by C(f, x),
we mean the set of numbers y such that there exists a sequence xn —»Xx
such that xn ¢ x and /(xn) —my. The one-sided cluster sets C (/, x,+) and
C (f,x,—) are defined in the obvious way.

It Alis a set, then int A, clA and A' denote the interior, closure and the
set of accumulation points of the set A, respectively.

3. VHB2 functions and continuity points

Lemma 1. Let f £ V and let g be a function such that the set A =
= {x :f(x) ¢ 4(x)1 is countable. Thencgc Cf\ A and Auv Df ¢ Dg.

Proof. Let xq £ Cg be fixed. Let e > 0 be given and let 6 > 0 be
such that |</(x) —ff(x0)| < £ for |[x —xo| < 6. Therefore, by assumption,
|/(x)-<7(x0)| < £ holds for every x £ (xqg—6, X0+ <& apart from a countable
set. Since / is Darboux, this implies that |/(x) —<7(x0)| < £ holds for every
X £ (xo—6, x0+ £). This obviously implies that /(x0) = <7(x0) and x0 £ Cf.
Hence we obtain cg ¢ C/\ A and, taking the complements, A u Dj ¢ Dg.
O

Corollary 2. Let f,g £ V. If the set A = {x :/(x) ¢ <?(x)} is count-
able, then A ¢ Dj —Dg.

Proof. By Lemma 1, All Df ¢ Dg and Au Dg c Df from which the
assertion follows. O

Theorem 3. Each f £ VHB?2 is a pointwise discontinuous function.

Proof. Let / £ VHB2 and let g £ B\ be such that {x : /(x) & <X}
is countable. Since g £ Bi, Cg is everywhere dense. By Lemma 1, Cg c Cf
and hence C/ is also everywhere dense. O

Remark. Theorem 8 in [4] follows immediately from this theorem, be-
cause each selective derivative belongs to the class VHB2m

Our next aim is to prove that for each function / G VHB2 there is
a function g £ B\ for which the set {x : /(x) ¢ g(x)} is countable and
Df = Dg.

Acta Mathematica Hungarica 58, 1991



ON DARBOUX FUNCTIONS 39

Lemma 4. Let f G VHBIi. Then there is a function h E Bi with the
following properties:

1) The set {x :/(x) o h{x)} is countable;

2) For each x E/ :h(x) GC(/, x).

Proof. If/ GVB\ then we can take h = /, because f(x) GC(/, x) for
each / GV.

Let / GVKBi \ B\. Then there is a function g G B\ for which the set
A = {x :/(x) ¢ fif(x)} is countable (by the definition of the class HBIi).

Define

h\ _ / ff(x); if 9(x)eC(f,x),
A \ t GC(f, x); otherwise,
where |i —(x)| = dist(</(x), C (/,x)).

We prove that h has all the required properties.

From the definition of h it follows that for each x G 1 we have h(x) G
G C(/,x) and that the set {x : /(x) & fi(x)}, being a subset of A, is
countable.

To prove that h G B\ we proceed as follows.

We prove that for each non-empty perfect set P C | the restriction of h
to P has a point of continuity.

Let P be a non-empty perfect set in I. Since g G B\, there is a point
x GP \ A at which g\P is continuous, because the set of continuity points
of g\P is of second category in P and A is countable. Then we have /(x) =
= g{x) = h(x).

We show that h\P is also continuous at x.

Let £ > 0be given, let J = (g(x)-£,9(x) +e), and let 6 > 0 be such that
g{y) E J holds for every y GP N (x —6,x+ 6). Lety GP IN(x —6,x + S) be
fixed. Since every portion of P is of cardinality of the continuum and A is
countable, there is a sequence yn GP N(x —6,x +6)\A, yn =5y, yn o y. For
every n we have f(yn) = g(¥n) E J and hence we can select a subsequence
such that f(ynk) —»z GJ. This shows that C(f,y) /1J ¢ 0. Since / G T3
C(f,y) is an interval. As g{y) G/, it follows from the definition of h that
h(y) E J. Therefore h(y) GJ holds for every y GP il(x-1,x + 1) and
hence h\P is continuous at x. O

Theorem 5. For every f E VTLBi there is h G B\ such that the set
{x :/1(x) dh(x)} is countable and Cf = Ch-

Proof. Let / G VHB2 be given, and let h be the function defined in
Lemma 4. Since h(x) G C(f,x) holds everywhere, it follows that Cf C Ch,.
On the other hand, by Lemma 1, we have Ch C Cf and hence Cf = Ch- O

4. On the maximal additive class of VTiB2

In this section we prove that the maximal additive class of VHB2 is the
class of all constant functions.
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Lemma 6. Let P be a non-empty, bounded and nowhere dense perfect
subset of R. Leta=minP and b= maxP. Letc,d ER, c<d. Then there
is a function g : (a, b) —+(c, d) in the class TIB2\ (B\ UV) such that

1) the cluster set C(g,x) = (c,d), for each x E P;

2) the set {x E (a,b) :g(x) = (c+ d)/2} = 0.

Proof. Let all assumptions of this lemma be satisfied. Let e = (c-fd)/2.
We decompose the class of all contiguous intervals of P (on the interval (a, b))
into two classes A and B with the following property: For each two elements
of one of these classes there is an element of the other class which is located
between them.

I. Let (n,v) E A and let Awv be an arbitrary subset of (1,v) such that
{u, v} = AUQVI Auv. Then we can define a function g on the interval (u, v)
with the following properties:
(1.1) the function g is continuous on (u,v),
(1.2) the range of = (e, d),
(13) C(g!u!+) = C(g,V,-) = (e’d)a
a-4) Qauv = d.

I. Let (u,v) E B and let Buv be an arbitrary subset of (#,v) such that

{u,u} = MBuv. Then we can define a function g on the interval (u,v)
with the following properties:
(1.1) the function g is continuous on (u,v),

(11.2) the range of g\(u<\B u = (c, e),
(11.3) C(g,u,+) = C(g,v,~) = (c.e),
(r.4) g\Buy = c.
1. At the points of P\ UBuv we define g by g(x) = d.
We show that this function g has all the required properties.
1) From the definition of g we have that
a)g:(ab -» (c,d),
b) (x E{a, b) :g(x) =e} = 0, where e = (c+ d)/2.
2) Since each x E P is a limit point of elements of the class A and a limit
point of elements of the class B, we have

C(g,x)=(c,d) foreach XEP-

(Properties (1.3) and (11.3).)

3) From properties (1.4) and (I1.4) it follows that the function g\P does
not have a point of continuity and therefore g £ B\.

4) The classes A and B are non-empty. Since for x E (u,v) E A and
y E {u',v') E B we have g{y) < e < g(x) and g(z) ¢ e for each z E [x,y]
(Property 1.b), necessarily g £ V.

5) We show that g E 'HB2m
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Let .
if x £ P,
if xep.
Then h has the following properties:
a) the function h £ B\, because Ch = (a,6)\ P and h\P = d. (For each
perfect set Q the restriction h\Q has a point of continuity.),
b) the set {a £ (a, b) :g(x) ¢ h(:r)} is a set of endpoints of contiguous
intervals in class B, which is a countable set. Then by the definition of the
class HB2 we have g £ "HBi- O

Theorem 7. Let h be a nonconstant continuous function on I = (0,1).
Then there is afunction g £ TiBi \ V such that f =g+ h £ VHB2-

Proof. Let m = min{h(x) : x £ 1} and M = max{h(a;) : x £ 1}; since
h is nonconstant, m < M. We may assume that m = 0 and M — 1. We
prove first that there is a non-empty perfect set P such that h is strictly
monotonic on P. Let ao, bo € / he such that h(ao) —0 and fi(bo) = 1. We
may assume, without loss of generality, that ao < bo- Let xr = min{a: £
£ (a0, 60) : h(x) = r) for each r £ (0,1). It is easy to check that h is strictly
increasing on the set Q = (zr : r £ (0,1)}, and that Q is uncountable and
GsmTherefore we can select a non-empty, perfect and nowhere dense subset
P C Q. Now we apply Lemma 6 with this perfect set P and with ¢ = —,
d = 1. Let g denote the function constructed in the proof of Lemma 6. The
function g is defined on (a,b), where a = min P and b= maxi5. We extend
g to / by defining g(x) = 5(a) for x £ (0,a) and g(x) = g(b) for x £ (6, 1).
It is easy to see that g £ HB2\ T).

Let f =g+ h, then/ £ 'HB2 since g £ /IB2 and h is continuous. We
shall prove that / £ V. Since / is continuous on the intervals (0, a) and
(b, 1), it is enough to show that / is Darboux on (a, b).

Let Lr (Lt) denote the set of right (left) endpoints of the intervals con-
tiguous to P. First we prove that
(A) NEY» 3[/(%),/bl]
whenever x <y, x £ P\ Lf and y £ P\ Lr. Let (u,u) be an inter-
val contiguous to P and suppose that (u,v) belongs to the class /1. Then
C(g,un,+) = (0,1) and, as both g and h are continuous in (u,v) and h is con-
tinuous at u, it follows that f((u,v)) D (h(u),h(u) + 1). Similarly, if (u, v)
belongs to the class B then f((u,v)) 3 (h(u) —1,h(u)). Since x £ P\ L/,
every right hand side neighbourhood of x contains elements of both classes
A and B, and hence

LU X,Y)) 3 (h(x) - 1,h(x)) U (h(x),h(x) + 1).

We also have h(x) £ f((x,y)). Indeed, if (u,v) C (x,y) is an element of the
class B then h(u) —1 < h(x) < h(u), since h is strictly increasing on P.
Therefore we have

f((x,y)) D (h(x)~ I,h(x)+ 1).
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Similar argument shows that
A(x.r/)) 3 (h(y) - Lh(y)+ 1).
Since 0 < h(x) < h(y) < 1,
(h(x)~ L, h(x) + Y U{h(y) —1,h(y) + 1) = (h(x) - LNh(y) + 1),

and hence /((z,y)) D (h(x)- 1,h(y) + 1). Now, \g\ < 1implies /(z), f(y) G
G (h(x) —1,h(y) + 1) which proves (A).

Let a < X <y < bbe arbitrary. If x £ P\ Lt then let x' = x. If
X £ P\ L( then let x* G Lr be such that (z,z') MP = 0. Similarly, we
put y' = yify 6 P\ Lr,and ify ~ P\ LTthen we take y' e Li such
that (y',y) MP = 0. It is easy to check that f((x,x")) 3 int[/(z), f(x')]
and f{{y',y)) Dint [f(y'),f(y)\. Since, by (A), f([x',y'\) D [f(x"), f(y% we
have f{{x,y)) D [f(x),f(y)\ and this proves the Darboux property of /. O

It is well-known that the maximal additive class for VBi is C. (Viz.
Theorem 3.2 on p. 14 in [2])

In [7], Radakovic proved that the maximal additive class for V is the
class of all constant functions. The same holds for the class V7iB2, too.

Corollary 8. The maximal additive class for VHB?2 is the class of all
constant functions.

Proof. Let h be a constant function. Then trivially h +g GVHB2 for
each g GVTLB2. Let h GVTIB2 be a discontinuous function. Let zo be a
point of discontinuity of h, and suppose h is discontinuous from the right at
zg. Choose yo o /i(zqg) in the interval C(/i, zo,+). Define g by

if zG(z0,1),

if zG(0,zo).
It is easy to verify that g GVHB2. But h + g vanishes for z G (zo, 1), and
h{x0) + 5(z0) ® 0, so h + g does not have the Darboux property. Let h
be a nonconstant continuous function. Then —h is a nonconstant continu-

ous function, too. By Theorem 7 there is / G W#2 \ P for -h such that
g=f —-hGVHB2. But h+g=f £V. O

5. On the uniform convergence in T>HB2
In this section we prove that the class VHB2 is not closed under the
uniform convergence.

Theorem 9. There is a sequence of VHB2 functions such that
fn=tf?V.

Proof. Let C be the well-known Cantor set on the interval I. We use
Lemma 6 and the notation of its proof, where P = C, c= —land d = 1
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Our function / will be the function g (from Lemma 6) and the functions fn
will be the following modifications ofg (n = 1,2,...):

1) Let (u,v) E A, let {(x-t/,) :i=1,2,...} be a sequence of disjoint
closed subintervals of (u,v) such that AW (x-y,-) =0, let u,v E {x, :i =
=1,2,...}" and let g(zi) —»0, where A= (x-+ vy,)/2fori —1,2,—Let

9(x), if x G(u,t;)\ U (**»*).
In(z) «“X
. 9(x) - hrli(x), if x G(x-yi) for some natural i,
where
h “ x«)/(n(z&- *»))> for xe (xbzs> e=10

I @i - x)/(n(yi - X)), for xe(zi,yi),

2) Let (u,v) G  This case is analogous to the case 1). The difference
between these cases is the sign of in the definition of /,,.

3) fn(x) = g(x) otherwise.

We show that these functions / and fn have all the required properties.

a) Of course, |/(x) —/n(x)| < 1/n for each x G| and therefore /,, =t /.

b) The functions /,/,, E forn = 1,2,----Indeed, let
if xg C,
if x GC,
and
if xEC,
if x GC,
forn=1,2,

The set {x : f(x) ¢ F(x)} and the sets {x :/n(x) d Fn(x)} are count-
able, because they are subsets of the set of endpoints of elements of B. The
functions Fn and F are obviously Baire 1.

c) For each n —1,2,eee: / E T= Since /,, takes the value zero in every
interval contiguous to P, it is easy to verify that fn is Darboux.

d) Finally, / ~ V follows from Lemma 6. O

We finish this paper with the following problem:
Problem. What is the maximal multiplicative class for VFiB-p.
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1. Introduction

An almost tangent structure on a 2n-dimensional manifold N is a tensor
field J of type (1.1) of rank n such that J2= 0 (N is said to be an almost
tangent manifold). Also, an almost tangent structure J may be interpreted
as a type of G-structure, where G is some Lie subgroup of GI(2n, R). Al-
most tangent structures were introduced by Clark and Bruckheimer [2] and
Eliopoulos [61 around 1960 and have been studied by several authors (see ill,
[31. [4]. [9], [13)). _ _

As it is well-known the tangent boundle TM of any manifold M carries
a canonical integrable almost tangent structure. Moreover, any integrable
almost tangent structure is locally equivalent to this canonical almost tangent
structure. But not every integrable almost tangent manifold N is globally
isomorphic to the tangent bundle TM of a manifold M. Recently, Crampin
and Thompson [4] proved that an integrable almost tangent manifold N
which defines a fibration (that is, the space of leaves M of the foliation
defined by the integrable distribution V = Im/) with certain additional
hyphotheses is an affine bundle modelled on TM.

In [10], we have introduced and studied a new type of geometric struc-
tures (called p-almost tangent structures) which are a natural generalization
of almost tangent structures. A p-almost tangent structure consists of a
p-tuple of tensor fields (J\,..., Jp) of type (1.1) on a (p + I)n-dimensional
manifold N satisfying some compatibility conditions (A is said to be a p-
almost tangent manifold). The tangent bundle TA"M of ~-velocities of any
n-dimensional manifold M carries an integrable canonical p-almost tangent
structure (hence the name). In [10] we have proved that any integrable p-
almost tangent manifold N is locally equivalent to the canonical p-almost
tangent structure on T"M.

In this paper we consider the global problem of equivalence. Then we
consider an integrable p-almost tangent manifold N which defines a fibration
(that is, the space of leaves M of the foliation defined by the integrable
distribution V. = (Im J\) ® «++® (Im Jp)) have the structure of differentiable
manifold. In such a case, under certain hypotheses on the leaves of the
foliations defined by the integrable distributions V, Va = ImJa, 1 < a <p,
we prove that N is an affine bundle modelled on T*M. Obviously, when
p = 1, we reobtain the result of Crampin and Thompson.
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We wish to thank J. Gancarzewicz and M. Saralegui for several useful
conversations.

2. The tangent bundle of pl-velocities

Let M be an n-dimensional manifold. By TpM we denote the tangent

bundle of pl-velocities of M, that is, the manifold of all 1-jets of mappings
from Rpto M at the origin 0 i F (see [5], [11]). The manifold TpM is

locally characterized as follows: if (x’) is a coordinate system on M then the
coordinates (Ox* y\,..., yp) on TpM are defined by

2°00«7) = z2’(<7(0)),

y'aUla) = (0@®F0°)/dta)|t=0, 1”~r<n, I<a<p,

where jcr isthe 1-jet at 0 6 Rpofthe mapa: Rp—=Mandt = (t1,... ,tp) €
€ Rpm Clearly, TpM is a manifold of dimension (p + I)n. We denote by
m: TpM —» M the canonical projection given by 7r(jg<r) = cr(0).

Remark. When p = 1, then TpM is the tangent bundle TM of M.

Next, we shall prove that n: TpM — M has the structure of vector
bundle with standard fibre the vector space Rpn. To do this, we proceed as
follows. We have a canonical diffeomorphism

A:TpM -»TM® .. ®TM
of TpM with the Whitney sum of TM with itself p times; /1 is given by
M ioo-) = Uo®u ---Jo°p),
where oa: R —»M is the curve on M defined by
aaft) = <r(0,...,f,...,0),

with t placed at the ath position. Then each element n € (TpM)x = T_1(x),
X G M may be identified, via /1, with ap-tuple («i,..., up) of tangent vectors
ua€ TXM, 1< a < p. If we now define

m+v=(ui+vi,..,up+ Up), Jin= (Inb ..., Aup),

where n = (uj,..., up), v =(vi,..., vp) € (T*M)X Xe R, then it is easy to
prove that >x TpM —M is a vector bundle over M, isomorphic, as vector
bundles, with the Withney sum of TM with itself p times.
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Now, if » GTXM, x G M, we may define a vertical tangent vector to
TpM at a point y = (pi,..., yp) G(TAM)X, for each a, 1~ a <p, by setting

= the tangent vector at f=0 to the curve t —(j/i,... ,ya+tu,... ,yp)).

Locally, if u = n'(g/gx') then we have = u’(d/6p™).
Next, we may define p tensor fields Ji,...,Jp of type (1.1) on T"M as
follows:
@a)yx = (Tir(y)X)(a 1l<a<,p.

We locally have
(2.2) Ja= (g/py'a) ® (dxI), I*a”"p.

From (2.1) we deduce the following properties:

(2.2) JaJb = JbJa = o,

(2.3) rank(Ja) = n,

(2.4) ImJal¢+ ImJpb) —0 forall a
ba

Moreover, if we put Va = Im Ja, it is easy to prove that the (a)-vertical
lift mapping

MGTXM —+n  GVy, yG(TpM)x for each x GM,

is a linear isomorphism.

3. p-almost tangent structures

Bearing in mind the geometric structure of the tangent bundle of pl-
velocities T*M of an n-dimensional manifold M, we have introduced in [10]
the following definition.

Definition 3.1. Let N be a (p+ I)n-dimensional manifold endowed with
p tensor fields (Ji...,Jp) of type (1.1) satisfying (2.2), (2.3) and (2.4).
Then (Ji,...,Jp) is said to be a p-almost tangent structure on N and
(N,(Jd1,..., Jp)) is said to be a p-almost tangent manifold.

Remark. When p = 1, then a 1l-almost tangent structure is an almost
tangent structure.

If we put Va=ImJa, 1 a” p, then Vais an n-dimensional distribution
on N. Therefore,

V =® Va

a=|
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is a pn-dimensional distribution on N. In [10] we have interpreted a p-almost
tangent structure as a type of G-structure. We briefly recall this definition
and its relation to the tensorial one.

Let x be a point of N. Then Vx is a pn-dimensional subspace of TXN .
Choose a complement Hx in TXN to Vx and let {&*} be a basis of Hx. Then
{e,, e\ = (Ji)xe',...,ep= (Ip)xel}is aframe at x (called an adapted frame).
If {(?,e[,... €p} is another such frame, where {el} is a basis for a differ-
ent complement to Vx, then there are n x n matrices A, Ai,... ,Ap, with
A GGI(n,R), such that

? =A% + (A1)4 +.-. + (Ap)4,
and hence
K =A)ew 1%a<p.
The two frames are therefore related by the (p -f I)n X(p + 1)n matrix

(A0 ... 0
Ai A .. 0
\AP 0 ... A

The set of such matrices is a Lie subgroup G of GI((p + I)n, R) and the set
of adapted frames at all points of N defines a G-structure on N.

Conversely, let Bq(N) be a G-structure on N. Since the group G may
be described as the invariance group of the matrices

/0 0 .. 0\ /0 0 o

I 0 .. O 00 o

mMo= 0 0 0 ,..., (jpo— 0 O o
\o 0o .. 0) \l 0 .. 0/

where | is the n X n identity matrix, the tensor field JO, 1 * a < p, may be
defined as the tensor field of type (1.1) on N which has the matrix represen-
tation (/a)o at any point.

The fundamental problem of the theory of G-structures is to decide
whether a given G-structure is equivalent to the standard flat G-structure
on AO(ptDn. In [10] we have proved the following theorem.

Theorem. A p-almost tangent structure (Ji,...,Jp) on N is intregrable
if and only if {Ja,Jb} =0, 1 < a, b” p, where {Ja,Jb} is a tensor field of
type (1.2) on n given by

{Ja, B} {X,Y) = [JaX ,IbY] = Ja[X,JbY] - Jb[JaX,Y}.

To end this section, we establish (for an integrable p-almost tangent
structure on N) the existence of a symmetric linear connection V on N
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with respect to which the covariant derivatives VJa are zero, for any a,
1 =a = P- In fact, this follows from the general theory of G-structures, since
if (Ji,..., Jp) is integrable, then the first structure tensor of the G-structure
vanishes (see [7]).

4. Integrable p-almost tangent structures which define fibrations

Let (J\,..., Jp) be an integrable p-almost tangent structure on a (p-fI)n-
dimensional manifold N. Then the distributions V, W, ..., W are involutive.
Therefore V, W,..., Vp define p + 1 foliations such that each leaf of V is
foliated by the leaves of Va, 1 < a <p; in fact, each leaf of V is locally a
product of p leaves of the foliations defined by Vi, ..., Vp. Now, we define an
equivalence relation on N as follows: two points of N are equivalent if they
lie on the same leaf of the foliation defined by V. We say that (J\,..., Jp)
define a fibration if the quotient of N by this equivalence relation (that is,
the space of leaves) has the structure of a differentiable manifold. This will
be the case if for every leaf one can find an embedded local submanifold
of N of dimension n through a point of the leaf which intersects each leaf
which it does in only one point. In this case, the space of leaves M is a pn-
dimensional manifold and the canonical projection 7r: N —»M is a surjective
submersion (that is, M is a quotient manifold of TV). Then 7 N —M is a
fibred manifold and

Vy = Ty(ir_1(x)), yeN, x=sa-(p),

for each point y &N.

Example. The canonical p-almost tangent structure on the tangent bun-
dle TpM of pl-velocities of any manifold M is integrable and defines a fibra-
tion.

Bearing in mind the example above, we may define the (a)-vertical lift
of tangent vectors on M to N, 1" a<p, when N is an integrable p-almost
tangent manifold which defines a fibration.

Ifu GTXM and y £ 7-1(a;) we define £ TyN by n(*) = (Ja)y(u),
where 1 £ TyN and T>k(n) = . Since Ker{T7r: TyYN —»TXM} = Vy and

(Ja)yVy = 0, then is well-defined. Moreover, u(®) £ (Va)y, and the map
n-* is a linear isomorphism of TXM with (Va)*. If X is a vector field on
M, we may define its (a)-vertical lift on N given by = JaX , where X is

any vector field on N which is 7r-related to X. Clearly, X # £ Va, 1" a”p.
Proposition 4.1. Let X, Y be two vector fields on M. Then we have:

1) [x(0).y ] = 0,

(2) Lx (a)Jb —o
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for every a,b, 1< a, b<np.
Proof. (1) Let X,Y be vector fields on N 7r-related to X ,Y . Then

[jax,J bY] = Ja\X,Jbv] + Jb[Jax,Y] =

X @y b)]

Ja[x,Y<6] + J +
But X is 7r-related to X and y (b) is 7r-related to O; thus Tn[X,Y"] = \T>KX,
TuYW] = 0and similarly I'tr[X(a),¥] = 0. Then [X,¥(6)], [X(d),Y] G V.

So [X(),Y (6] = 0. _
(2) For any vector field Z on N we have

@x(a)Ib)Z= [x(a\jbZ -Jb[x<e\z

Now, supppose that Z = ¥(¢ for some vector field ¥ on M. Then both
terms on the right-hand side vanish by part (1). Moreover, if Z is m-related

to a vector field ¥ on M, thatis, Z =Y, then we have
i.LX(@)Jb)Y = [*<e>,Jby] - I b[X(),Y] =

= [x(aly (5] - Jb[x<e) -Jb[IW .y

But as was proved above, [X(a",Y] € V. This ends the proof. O
Now, let V be a symmetric linear connection on N such that VJa = 0,

1< a <p. Then we have
Proposition 4.2. V induces by restriction a connection on each leaf of

V, Vi,...,Vp which is flat.
Proof. In fact, for any vector fields X, Y on M we have

V*0)y @ =V*() (IbY) = b (V*©y) = o (VyXW + [x(y]) =

= Jb(yvx(a)) = VF (" * (@) =0,

Y is any vector field on N>-related to ¥. This establishes the result. O
Before proceeding further, let us recall some well-known definitions and
properties of affine bundles (a beautiful and brief exposition about this sub-

ject can be found in [4]).
Definition 4.1. An affine bundle consists of a fibred manifold x. A -. M

and a vector bundle 7 : E —M, together with a morphism g: AXME —pA
of fibred manifolds over idg/, such that for each x £ M,
OXIOK10K) X T x(X) —»>K x(X)
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is a free transitive action of the vector space r _1(x) on 7r-1(x). So, each fibre
7r"x(x) of the affine bundle 7 A —aM s an affine space modelled on the

vector space r _x(x). We say that the affine bundle 7 A —M is modelled
on the vector bundle T: E —M.

We have the following result (see [4]).

Proposition 4.3. Letn : A M be an affine bundle modelled via a
morphism g of fibred manifolds, on the vector bundle T: E —M . Then
T:A —M is a fibre bundle with standard fibre; the standard fibre F of
E regarded as an affine space, and with structure group the group of affine
automorphisms of V.

Remark. Let T : E —M be a vector bundle. Then one may form an
affine bundle with the same total space E by taking g : EX\JE —»M to be
the additive action of r _x(x) on itself, for each x £ M. This affine bundle
will be denoted by AE.

Next, we prove our main theorem.

Theorem. Let (N,(Jj,..., Jp)) be an integrable p-almost tangent struc-
ture which defines a fibration n : N —M. Let V be any symmetric linear
connection on N such that V/,, = 0, 1< a” p, and suppose that with respect
to the flat connection induced on it by V, each leaf of the foliations defined
by V, Vi,..., Vp is geodesically complete. Suppose further that each leaf of the
foliation defined by V (that is, the fibres ofn : N —+M) is simply connected.
Then N is an affine bundle modelled on T*M.

Proof. We shall define a morphism
B:NXMTpM - N
of fibred manifolds over idm such that for each x £ M.
OX e Lx) X (T*M)X-* nnfx)
is a free, transitive action of the vector space

etpm )X= © (txm)
p times

on 7T(x). To do this, we proceed as follows. For any
N=(«1, ..,up), uate TXM, 1" a<Lp,
we may define p vertical vector fields Ua, 1" a < p, on 7F1(x) given by

n m :(|\/| W)S.
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for every y £ 7r~1(x). Then Vf/lazb=0, I<a, b<p. Particularly, V{/0f7a = 0,
and therefore Ua is a geodesic field for every a, 1~ a < p. Consequently, Ua
is a complete vector field on 7F-1(x), that is, it generates a one-parameter
group

dva: Ax 7r-1(x) “m7-1(x).

Let t —»dma(”\Y) be the integral curve of Ua such that qma(® y) — Y= We
define g by

IX(y,u) = O, r,-« -, 0u3 (1,002 2 D)) *eeen)»

where n = (ui,..., up). Now, we shall prove that gx defines an action which
is transitive and free. First, for any n = (w,..., up), v = (vi,...,vp) £
£ (TpM)x, the corresponding vector fields Ua, \j, on #- 1(x) satisfy [Ua,Vo] =
—O0 (by Proposition 4.1). Thus their one-parameter groups commmute:

(4-1) (Pua){B,dpybib,y)) = (dyp",pua(s,y))).

Furthermore, we know that if two complete vector fields commute then the
composition of their one-parameter groups is a one-parameter group whose
generator is their sum. So, we have

(4.2) Neua) (t*v b{t,y)) = (cbyb)(ch.dma(*,¥)) = Dvatys",y).

Since n+ v = (Ui PVi,..., up-f Up) £ (T*M)X, a simple computation using
(4.2) shows that

BX(BX(Y, 1), V) = gx(gx(y, v), n) = gx(y, n+ v).

Then gx define an action of {T*M)Xon #-1(s). Next, we shall prove that
this action is transitive. Let (, ) be any scalar product on TXM . We define
a Riemannian metric on each leaf of the foliation Va, 1< a <p, as follows:

(4.3) ga(Ua, Va) = (ua,va).

(Let us remark that the vector fields Ua,Va, ... span the distribution Vaand
are tangent to each leaf of the foliation defined by Va.) From Proposition 4.2
and (4.3) we deduce that the vector fields Ua,Va are covariant constant and
have constant inner product. Then V is the Riemannian connection for ga.
Therefore, each leaf of the foliation defined by Va is a geodesically complete
Riemannian manifold. Now, since each leaf of the fohation defined by V is
a local product of p leaves of the foliations defined by Vi,..., Vp we deduce,
by the Hopf-Rinow theorem, that any two points of #- 1(x) may be joined
by a piecewise differentiable curve 7 with a finite number of geodesic arcs
{71,... ,7g}in such a way that 7, 1~ u < g, is a geodesic arc on a leaf of
the foliation defined by the distributions Va, for some a. We may suppose
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that 7(0) = y and 7(1) = r. Moreover, from (4.1) and (4.2) one can find an
element u = (uj,..., up) 6 T"MXsuch that

7(0) = (ui)(@), and z = dmp(1, .. <P2LS0(1,21)), ...).
Consequently, we have

1= fi(i/,(«i,--.,«p))-

Finally, we prove that the action gx is free. Let T(y) be the isotropy group
of y GM_1(x) under the action of (TpM)x, that is

F(y) = {u= (ui,..., U) <(TpM)x/gx(y,u) =y} .

From the definition of gx, one can easily prove that the following diagram

TXM@ . ®TXM  ——-——¢>1(X)

Ty(*-\x))

is commutative, where expy denotes the exponential map of V restricted to
7 1(x) and o is the linear isomorphism given by

B(n) = (b ..., up) = (Ui)(Q) + eo++ (up)(p)-

Since expy is a local diffeomorphism, then so is gx. Therefore

r(y)=»b ~\y)

must be a discrete (additive) subgroup of (TpM)x. Then the elements of
"(y) are integer linear combinations of some K linearly independent vectors
c*i,..., Ofc, where 1 k <pn. So we have

(T'M) /T(y) Si (Rk X /1Zk'S Tk x Rpn~k,

where Tk is a /-torus. But, since (TpM)x acts transitively on t= 1(x), then
7 1(x) is diffeomorphic to the coset space (TpM)X/T(y). Thus, if T(j/) is
non-trivial, then #- 1(x) is diffeomorphic to Tk x Rpn~k, which is not simply
connected. Consequently, I'(r/) must be trivial and then the action is free. O
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Corollary 4.1. If (N,(/1,..., Jp)) verifies all the hypotheses of the the-
orem and in addition n : N —=* M admits a global section (fot instance, if
M is paracompact), then N is isomorphic (as a vector bundle) to TM. This
isomorphism depends on the choice of section. O

Corollary 4.2. 1f (N, (J\,..., Jp)) verifies all the hypotheses of the the-
orem except the hypothesis that the leaves of the foliation defined by V are
symply connected and this leaves assumed to be mutually homeomorphic, then
TpM is a covering space of N and the leaves ofV are of the form TkxR pn~k,

where Tk is a k-dimensional torus, 0~ Kk ™ pn. Moreover, if it is assumed
that the leaves of V are compact, then T)M is a covering space of N and
the fibres are diffeomorphic to Tpn.
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ON THE EQUICONVERGENCE OF THE
RIESZ MEANS WITH EXACT ORDER

N. H. LOI (Hanoi)

Developing a fruitful method of V. A. D’in [1], members of his school
proved some equiconvergence theorems with exact order ([2], [3], [5] and
[6]). In this paper we shall prove an equiconvergence of the Riesz means
with exact order for functions with given integral modulus of continuity.
The theorem of S. A. Alimov and I. Jod [2] is only a special case of our
result when 5= 0.

Let u>(t) be a continuous function on [0,00) satisfying the following con-
ditions:

(i) u>©0) = O,u;(i) > 0ift> 0

(i) uv>(2) ™ Cu{t)-,

(iii) oj(t) is not decreasing;

(iv) uj(t)/t is not increasing.

Denote by H*“[0,1] = H* the set of those functions / £ Li[0,1] for which
the integral modulus of continuity

1-h
uq(/, :=sup [/ [f(x +h)- /(z)|dx
LLK5
satisfies the condition 6) < Cu>(6).

Define

I/ HuHI/ ]]Z"[OJ]*%EB ) .
We consider the Schrédinger operators
Lu ;= —u" + gq(x)u(x), Lu:=-u"+ qg(x) u(x).

where q(x), q(x) £ LP[0,1] (p > 1) are arbitrary real functions. Let
and be complete orthonormal systems of eigenfunctions of the cor-

responding operators in Tr[0,1]; further denote {A*;}" and {AjJ*Ix the

positive eigenvalues (0 < Ai < A2~ ,0 < Al < A2 «ee)e For brevity we
use the notation Hk m—V"k-
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For any / G £i[0,I], p > 0, 5 G[0,") consider the partial sums of the
Riesz means of the spectral expansion of /:

<(/>*):= Y U, tk)uk{) (I - 4)

KUX) Y (ERRR(*) - AQ) i

The aim of the present paper is to prove the following

Theorem. Given any compact subset K C (0,1), for any f G# “[0,1],
x GK,p>1, s G[0,1) we have

(1) <(/»*)-*£(/>*) =0 (w

The order of (1) cannot be improved in the sense that o (u> cannot be
written on the right hand side o/(l).

We recall some well-known results which are necessary for our proof:

(2) M*)ISC (0g*<I, *=1,2,.)

(cf. [3])

(3) |(/>ufc| ~ C(q) N/ |o, v (/€4rjfo,1), *=1,2,...)
and

00 a\— )

\PkJ
(4) < Cw (m> 1)
1+ (M- M2
(cf. [2]);
| _ .
(5) Pk,x,t)t 5 2JS+2|(pt)dt < C min
where
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X+t
sin Hk(t - |x - fl
go{Uk,Hk,x,t) := J ( Pkl ) HOunO<%
and )
(6) <
where
KEK(R) := /x2J t~*~2J3+i(fit) cosnktdt;
R
K C (0,1) is an arbitrary compact subset, 0 < Ro < | dist (K, 4(0,1)),
Re
vR°g:= j a® dR
0Bn
2
(cf. [8D).

The proof of our theorem is based on some lemmas. Introduce the no-
tations

(7 .
k=
and
(8) /W *): ' 7go{uk,Bk,x,t)t * 2J5r(}(fit) da 5.
*:I LO
where
(9) /*::(/»«*)-

Lemma 1. Forany / E A"[0,]] and x E K,
(10) M /,*)IS <?2(*»>) I/11-"Q )  ((*>!)e
Proof. Applying (2), (3), (6) and (9) we have
l«, (/,x)] < C(K,q,s) I/ ||,gw (L)
Hence, using (4), the estimate (10) follows at once. Lemma 1 is proved. O
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Lemma 2. Forany f £ 4“[0,1] and x E K,

(1) W %) Isc||/|[.w (i) (i> 1),

Proof. Using (5) and (3) we get

12
E1' (ery raini &3 vk

Hence (11) follows by the method used in the proof of Lemma 2 in [2].
Lemma 2 is proved. O

Now we return to the proof of our theorem.

Given any compact K C (0,1) denote R an arbitrary number from the
interval (0, dist (K, 4(0,1))). Now fix x £ A arbitrarily and define the func-
tion WR :(0,1) —-»R by

w ™M\ iciu/

a(s)B " S & BiciwA) A Mids,
0 otherwise,

(12) Wk(x +1t):=

where
a(s) :==2s(2m)“2T(s + 1).
Proof of the Theorem. We consider the Fourier coefficients of the func-
tion Ha(x + t) with respect to the system {ttfc}. An easy calculation shows

xXYR
WE = (l,kwr)_\] WR{\x-y\)uk{y)dy =

x—R
= \]WR(t) [uk{x - t) + uk(x + f)] dt.

Applying the Titchmarsh formula [9], we obtain

sinnk(t-\x - f|)

t
uk(x + t) + uk(x - t) = 2uk(x) cosBkt + j g(OMO e

X—t
00
- J we get

R o0
and using the integral transformation f = f
0O 0 1

(13) WE = 2uk(X) \] Wfat) cosHkt dt + \] Whb(t) p0(uk, fik,x,t) dt =
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r I
= Uk(x)2a(s)n 3</0 Y cosVktdt  K:kR, >+

0
R

+a(s)n 3 Jt 3 als+i(nt)go(uk,fik,x,t)ldt

It is well-known (cf. [10, p. 107, (34)]) that
°? /24 *
(14) 2a(s)n*~3 | r s~2Js+i_(nt) cosHktdt = 6£ i1- ~fj
0

where
if flk <

K= 0 o>
Substituting (14) into (13) we obtain

2\

W = L kuk(x) (I - - 2a(s)p-uk(x)K»k{R)+

+a(s)n 3 Jt 5* go(uk, Hk,x,t) dt

Since for any fixed x G K and fi > 0, W”(Jx —y|) as function of y belongs
to f/2[0, 1], we have the following equality in L7[O, I]-convergence in y:

L, (\x -2/1)- M K)Mv) (I - 4) =

= ~2a(s)n~3"ool/l K{x)nk(y)KEK(K)+
h=l

|
+aa)y 392 N JUF IRk HX D dt m oy
k=

Apply the operation term by term on both sides of the last equality to
get
(15) Vi*WAIx - y\) - ]T uk(x)uk(y) (I- =
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= -2a(s)n a2 uk(x)uk(y)VRKA(R)+
k=1

R

+2a(a)fi Ajot 3 *IsH\{nt)go{uk,nk,x,t)dt uk(y)-
fc=i

It is easy to prove that after multiplication of both sides of (15) by any

/ G#"[0,1]) one can integrate the resulting equality term by term over [0,1]
in y. Introducing the notations

Si :=-2a(s)n~" Y, u k{x)fkV HoKEk(R),
k=i

S2:= a(s)n u* \]t 3 2Js+i_(fit)gO(uk,nk,x,t)dt fk

and taking into consideration (2), (10) and (11) we have the following esti-
mates:

\SINZC(K,q,s)\f\uu (£yp-' (/i>], *= 152).

Therefore

\]V"W B{\x - J)f(y)dy —cr*(/,x) 1 C(K,q,3) ||/ |l.u (£) -u~3,
similarly

JVAW&|X - y) f{y)dy - <tll,x) ZC(K,q,s)\\f\\,,u("\ eu~

After this preparation we obtain (1) by the triangle inequality.
Now we have to prove that the estimate (1) is not refinable in the sense

that o v can not be written on the right hand side of (1). This was

proved in [2] for the case s = 0.
Theorem is proved. O
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INTERPOLATION BETWEEN DYADIC HARDY
SPACES Hp THE COMPLEX METHOD

V. ECHANDIA (Caracas)

Preliminaries

1.1. Dyadic Hardy spaces Hp. In what follows Lp will denote Lv[0,1],
0 < p < o0o. In this section, following [2], we shall introduce the dyadic
Hardy spaces.

Definition 1. For each / GL1, let

Enf =S2nf (neN),

where S2nf is the 2nth partial sum of the Walsh-Fourier series of f. The
dyadic maximal function E*f is defined by

E*f = sup \Enf\ (/G 11),
ne

Definition 2. For/ GL1, set

EOf = \ E Of\,
and for n GP, also define
~nf= sup (|J5,,(/)] + \Em(f-rm)\)
0<ra<n

where rm is the m-th Rademacher function.
For each / G L1 set

Ef = sup Enf.
ne
It is easy to see that
(1) E*f il Ef < 3E*f.

The following lemma is proved in [2].

Lemma 1. If f G L1 has zero mean and we define fn — Enf (n G N),
and for Kk G Z we put

flk) = E ~{2fc< E"f $ 2fc+lK /n+1 - fn),
n=0
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then we have
JET(/(f)) < 2k+2x{Ef > 2Kk)

and w
/= E fK
fc=e0
a.e. on [0,1]. Moreover, if E*Xf G L1, then this series converges to f in L1
norm. denotes the characteristic function of the set {...}.,)

The above series will be called the canonical decomposition of /.
Definition 3. The dyadic Hardy spaces are defined as

(0 < p < 00).

Notice that the set of dyadic step functions L is dense in Hp (0 < p < 00).
For a detailed study of these spaces see [2].

1.2. The complex method of interpolation. In this section we define the
interpolation spaces Auy, in the same way as in [1].

Given a couple A = (Ao,A\) of Banach spaces, we shall consider the
space T —JF(j4) of all functions / with values in which are bounded
and continuous in the strip 5 = {*"6C:0"Rez< 1} and analytic in
the open strip So = {z G C : 0 » Rez < 1}. Moreover, the functions
t —f(j +it) § = 0,1 i = n/—) are continuous from the real line into Aj

and tend to zero as |f| —»00. F(A) is a vector space. We provide T with
the norm
WA\r = max(sup||/(*1)|UO,sup ||/(1 + »01UJ.

(The supremum is taken over all real numbers t.)
We have the following result.

Lemma 2. The space T is a Banach space.
For a proof see [1].

Definition 4. Given a couple A = (j4o,Ai) of Banach spaces and
0 < 9 < 1, the space Awy is defined as

Aw ={a6E (") :a=4d0), forsome / GIA)}.
The space Auy is a Banach space with the norm
M[*\ = inf{||/|* :m =a, fe Tj.

(See [1]0
For Aw, we have the following
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Proposition 1. The space Aul is an interpolation space with respect to

A.
For a proof and for a detailed study see [1].
2. Characterization of intermediate spaces between
HRo and HPl (1~ pj <oo, j =0,1)
In this section we shall use the idea of [2], to prove the following result.
Theorem. Assume thatPo 1, Pi # 1 and 0 < B < 1. Then
(HPo,HPD[0] = Hp (equivalent norms),
if
t 10,0
P Po Pi

Proof. It is sufficient to prove that there exist constants ci,C2 > 0 such
that

G IMIhp # llall[g] i c2|M|hp>

for all functions a G L.
For any a £ f define

az2= 2kp'p'akh -k, zeS
k=—e0

where a = "2 is the canonical decomposition of a, and
00

Clearly, ag = a. Moreover there exists a G > 0 such that, forj = 0,1,

Iy 11H> SeilkIH? - Qe R)

In fact, by Lemma 1 we have that
E*(az) < 32 \2kp/pz\2~KE *(a’r)<4 2kplpix {-Efl > 2fj
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where z = j + iy. Applying Abel’s transformation we obtain that

E*(aj+iy) | 4 2kp/PIX {Ea>2k} =
K—0

=2p/p} 1S (2(k+H)p/Fj _ 2fpp>) X > 2fc} =
k=—e0

= f) 2*»/«x {2* < < 2fc+1} .

K——o0

We can conclude from (1) that

IK+7#lIn'< = 1]S> i+ %) nS TpllE(<)I20p" S 37pllE-()I| = clk |

where 7P > 0 depends only on p.
Now let £ > 0 and define

/(z) = a2+exp(Ez2—£02), forall r G So.

Assuming that |la|]|[Hp = 1»we have that f(0) —a, f € F, and T ™ cxe'.

We conclude that _ .
INI[Q = cie') foraii £>o0.
Hence |jal|[0] £ Ci|la||Hp.
The converse inequality follows from the relation (see [3])
|lallHp = sup {|(a,6)| : [|6]|(Hpy* = N\ b€ L}
where

f a-h, if p>1
<ab>=«<
lim / Em(a)Em(b), if p=1

and (Hp)* stands for the dual space of Hp. In fact, given b€ L, e > 0 and
1>b>0put
g(z) = bz *exp(Ez2- eB2) for z € S.

Pick an h 6 F(A) such that h(6) = a and
I T e

If we define
F(z) = (h(z),9(z)) for z £ S,
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then applying Holder’s or Fefferman’s inequality and supposing that ||al|[ =
= 1 and ||6]|HP/ = 1, we get fory ER

WF(iy)\ i1 |IM*2/)11HPol||5(ry)||HP- < cOef||/i(iy)||HmD <
i cOer|[HM < (||a||[d] + 6)cOee < 2cQec,

where

P tpo -t

Similarly, we obtain that there exists a constant c2 > 0, with
|-F(L + iy)\ 1 c2< (YER-).
Since h E F(A) and g E L, the function F is holomorphic on So and
continuous on S. Consequently, the three lines theorem imphes
I<ab> 1= |F(0)] <c2e")Be*(B)*1-0) < cer.
Hence we obtain that
IMIhp 1 crc', forall e > 0.

Therefore
IMIhp ~ ¢2||a)|[0].

The proof is complete.

| am grateful to Professor F. Schipp for calling my attention to the
problem and for his helpful comments.
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WEIGHTED SIMULTANEOUS APPROXIMATION BY
ALGEBRAIC PROJECTION OPERATORS

E. VAN WICKEREN (Aachen)

1. Introduction

The present note originates in work on simultaneous approximation by
projection operators, given in [6] for trigonometric approximation. Here the
corresponding algebraic problems are considered in the frame of appropriate
weighted Sobolev spaces. In fact, the direct estimates are established is
terms of the error of best weighted approximation which then turns out to
be sharp.

Let C = C[—1,1] be the space of functions, continuous on the compact
interval [—1,1], and let [C] be the space of linear bounded operators of
C into itself, endowed with the sup-norm || ¢||c and operator norm || ||[c],
respectively. An operator Ln G [C] is called a polynomial projection operator
on Vn, the set of algebraic polynomials of degree at most n > 0, if

(1.1) Lnf GVn (/1 GC), Lnpn=pn (pnGVn).
In terms of the error of best approximation
(1.2) En(f) :=inf {U/- pn\\c :pn GVn}
it is well-known that
\\Lnf - f\\c < K\LN\[JEn(f) (fee).

It is the purpose of this paper to give an analogous result for the remainder
of the simultaneous approximation of / by Lnf, i.e., for the r-th derivative
(f~Lnft\x ), as well as to discuss the sharpness of the relevant estimates.
It turns out that one has to consider the weighted Sobolev space CV of func-

tions / G C, which are r-times differentiable on (-1,1) such that qxf* GC,
<p(x) := VI —x2 (C° := C[—1,1]). In terms of the error of best weighted
approximation

(1.3) Ef(f) .= infm<pr(f - Pn)\\c : Pn G Vn}
the main result is given by (n ” r)

(1.4) Ne "(/ - £, /)(rlllc S *M|E,Vn Uec:,
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which is quite analogous to the estimates in the periodic case (see [6], also
Theorems 2.6,7).  This can then be extended to error bounds for

lI<p'(f —LnfpWc simultaneously for each 0 < i < r given in Corollary
2.5. Essential for the proofs are some facts on weighted approximation, re-
cently published in [4], which allow to strengthen the result on simultaneous
approximation by the polynomial of best approximation, given in [5] (see
Lemma 2.2).

Concerning the sharpness of (1.4) only those Ln are considered which are
optimal in the sense of the theorem of Harsiladze-Lozinski, i.e., the norm
[ILn||[c] behaves like logn. The proof is based on a quantitative extension
of the uniform boundedness principle (see [3] and the literature cited there)
and is reduced to arguments concerned with trigonometric approximation.

2. Direct estimates

Let us first recall some facts on algebraic best approximation in the
weighted Sobolev space C£,, given in [4, Theorems 2.1.1, 7.2.1, 7.3.1].

Lemma 2.1. Let f G C£ and let pn G Vn denote its polynomial of best
approximation. Then

1) I1/-Pn||cStf»-Iv>7wlic,

22 loilo SA97()lc.

The following lemma is the key to derive (1.4) and improves the result
given in [5].

Lemma 2.2. Letf G and let pn G Vn denote its polynomial of best
approximation (with regard to (1.2)). Thenforn >r

(2.3) uz - j>,jic < Kn
(2.4) WU-P*"Wci KEtru").

Proof. Since Vn is finite dimensional and (prf G C, there exists
Qn-r € Vn-r with (cf. (1.3))

n™(/w - o»-r)iic = e::,(/w).
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Then UL
g 2) = \] \] Qn-r(ur)duT... du\
0 0
belongs to Vn with = Qn-re Setting F f —qn, one therefore has
(2.5) [lv'~Allc = Ef-rUn)-

Let tn £ Vn denote the polynomial of best approximation of F, i.e.,
\WF —tn\\c = En(F). In view of (2.2) one obtains

(26) Ikrdr)lic A KipTEA\C.
Now gn £ Vn so that
Il/-qn- tn\\c = En(F) = En(f - gn) = En(f),
thus pn = gn + tn, since pn is unique. This implies by (2.1,5)
WF-PnWc = \\F -tn\\c < Kn-r\grF~\c = Kn-rEf_Af(r)),
thus (2.3). Moreover, (2.4) is a consequence of (2.5, 6) and

WAM-PnMlc A~ MAWc+WVv'WWce ~ K\WrFAM\\c = KEf_r(fv). O

Now, we are in the position to establish the main result.

Theorem 2.3. Let Ln £ [C] be polynomial projection operators on Vn.
Then (1.4) holds true for each r > 0.

Proof. Let pn £ Vn denote the polynomial of best approximation of
/ £ CE. In view of (1.1), (2.3,4) one obtains

@7 VE i, )(*lc<bl u - P)rflc+ - plcS

SkeC,U{])+ Kn"WUT - P)\\c <

KKUTf")+ Kn’WLn\icln -E tM M
upon applying the Bernstein-inequality

(2.8) lHvAHc » Knr\\gn©\e  (?,, GVn). O
To extend Theorem 2.3 to error bounds for |v?”(/ —Lnf)"\\c, 0 <i <,
let us first establish
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Lemma 2.4. LetO< i~ r. Then CE C CA and

(2.9) K-Af@) i K n-~E tr{fM) (/€C:).

Proof. To show CE C CJ, it is enough to consider i = r —1 > 1. For
/ G and 0¥ x < 1one has

e 1(*)/(r_1)*) = J VRX)F(R)dt +w-\X)f(F '\ o).
0

Since yr-1(a;) < <r-1(t) for 0 < t 9 x the integrand is bounded by
L~/ Lc /y>(i) and converges to zero for & —»1—and fixed i. Thus by
dominated convergence one obtains

Jim €-1(@)/(r-1)(%) = 0.

Similarly, this result is vahd for x ——1+ so that <r“1/(r-1) £ C[—1,1], thus
[/ G CE-1. To establish (2.9) it is again enough to consider i = r —1 > Q.
Then an iterative application of (8.2.1), (6.2.6), (6.1.1) (with weight w =
= pT~x) of [4] yields the Jackson-type inequality

N-T+i</(r 1) S Kv.-"W (/ 6 CJ).
Now let / G be fixed and let gn as in the proof of Lemma 2.2. Then
G Vn-r+i S0 that

C:l «/"-D)=« S

SKn-"W4'T- eW)|c =Kn-"EtAI[r),
hence (2.9). O

The following corollary is an immediate consequence of Theorem 2.3
applied to 0 <i <r and Lemma 2.4.

Corollary 2.5. Let Ln G[C] be polynomial projection operators on Vn-
Then (te 1)

(2.10) 1N/ - i~)Olic SA™-C-DIjinl|[01£?:.(/<) (/ €cy,
simultaneously for each 0 <i <r.

Let us remark that the proofs still work if, instead of (1.1), for some
fixed g GN

(2.11) Lnf GTopn (/ GC), Lnpn =pn (pn GTn).
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Such an operator is given by the algebraic version of the de la Vallée Poussin
means. To be more precise, let C?n be the space of functions, 2;r-periodic
and continuous on R, endowed with the sup-norm || «||c, and let C”r be
the subspace of even functions. The latter one is isometric to C via the
transformation Uf(x) := /(cos d), / G C. The de la Vallée Poussin means

are defined by (g GC*)

1 2n— K 1
5» ,(*):=£««'- Jg(u)e Jtt du.
k=n j—k o

It is well-known, that Vng G forg G and

(2.12) Vng GIrn-r (9 £ C)> Vntn =tn (tn G n),

(2.13) llv.]|[aj <3,

where Tn is the set of trigonometric polynomials of order at most n. Then
Wn = U~"VnU fulfills (2.11) so that one obtains

(2.14) 11/ - W.)Wlo s RE,(/«) (/

Let us also mention the analogous result in the trigonometric case itself.
Denote by the space of functions g G Civ which are r-times continuously
differentiable on R.

Theorem 2.6. Let Mn G [CW] be such that
(2.15) Mng GIn (9 € Civ), Mntn = tn (in Gn).
Then with En(g) := inf{]|5 - tn\\c :tn G In)
(216)  [(M,S-s)<i)lle<irn-|"-i)[Mn[IGS)E.AW) (9 € c;»),

simultaneously for each 0 * r”~ r.

The proof works parallel to (2.7) applying the inequalities in [8, 5.6(27),
8.4(60)] instead of Lemma 2.2,4. One may also compare (2.16), i = r with

[I(M,,9 - *)<'»||c S K [E,,(9<">) + E,,(9)||M<">|||C,

given in [6] (for a similar treatment in C see [7]).
Let us conclude this section with the analégon of Theorem 2.6 to even
functions.
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Theorem 2.7. Let Mn G [C™] be such that
(217) MnbSel+:=NMnMNC+ (gGCH+), Mntn = tn  {tn GT+).
Then for
(2.18) I(Mn5 - (/)«|lc » * n-"-) [[m nll[c+]£;n(<(T)),
simultaneously for each 0 i £ r.

The only difference in the proof is the observation that for even function
5 6 C/. the polynomial of best approximation is also even, i.e.,

(2.19) En(g) = E+(g) :=inf {\\g- tn\\c :tn GM+}.

3. The sharpness

The sharpness of the estimate (1.4) can be established for those Ln, the
norm of which behave like logn. To this end, let e = {£,} be a positive
decreasing nullsequence satisfying

(3.1) £, = 0(£2n).

Theorem 3.1. Let Ln G [C] be polynomial projection operators on Vn.
Then for each e subject to (3.1) there exists a counterexample fc G C£ such

that
(3.2) E t T(UT]) = 0{en),
(3.3) \iptU* - Lnf")*\\c ¢ o{en\ogn).

This result follows as an application of the subsequent quantitative ex-
tension of the uniform boundedness principle (see [3] and the literature cited
there). Let X be a Banach space with norm | m||x and X* the space of
sublinear, bounded functionals on X.

Theorem 3.2. Let ¢pn be a decreasing nullsequence and an > 0. Suppose
that for Un,Rn GX* there are elements hn GX satisfying (m,n GN)

(3.4) An\\x T K,

(3.5) \Umhnm\~* K min{l,aT/dn},
(3.6) \Rnhn\ ¢ o(l).

Then for each 0 < a < 1 there exists fa E X with
(3.7) \Unfa\=0 (0,

(3.8) \Rnfa\ g o(C).

The proof of Theorem 3.1 is now divided via the following lemmas.
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Lemma 3.3. is a Banach space under the norm

(3.9) I/]lw := E  1/WE)L + 19r/ (,)I[C.

Moreover, for f 6

(3n0) Wio s £ II/L,

Proof. The first assertion may be shown as usual, applying the repre-
sentation

amTT I~ X(Mu)du (N < 1)-
0
To obtain (3.10) set *x(u) := (x —LMF(@ Then

|/*>%~1<p(u)\f(r\u)\dj Bro(Ixl< 1)

since |/rx(u)] 1and Ij" du/<p(u) <7r2. o
0
In view of (1.3), (2.8), (3.10) the functionals (n ~ r)
(3.11) Unf = Ef_r(/<r>), Rnf = Wp\f- W ) (r)|c/log(2n)

belong to X *where X is the Banach space C£. To construct the test elements
hn, some results on trigonometric approximation are needed.

Lemma 3.4. For the partial sums 52n one has the inequality

(3.12) I$ - S2n$|jc ~ 4En(g - S2,$) ($6 C2n).
Moreover, there exists rn £ such that (co > 0)
(3.13) Ik,|lc 3, [|rn- 52nrn|lc * cOlog(2n).

Proof. Let | be the identity operator. In view of (2.12,13)
\\(1-Vn)o\\c <4En(g),
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thus (3.12) since | —S2n = (/ —Wh)(7 —5rn)- To establish (3.13) note first
that the Dirichlet kernel is even, thus

ESN(g(-u))(x) = S2ng (-x) (g e Ca),
(3.14)

Since the norm of the functional 5rn<7(0) behaves like log(2ri) there exists
hn 6 C2r with

[MMc ~ 1. 1-72nh,,(0)] > cOlog(2n) + 3.

Setting rn V2ngn, gn(x) := (hn(x) + hn(-x))/2 it follows that rn £ M|n
with ||rn|lc ~ 3 and

IK - S2arn\\c ~ [52nrn(0)| - |rn(0)| > cOlog(2ra)
in view of (3.14) and

*SANMNIO) = TAN'S'nini0) —82nan(0) = *S'2nhn(0). D

Fort £ R let Tt £ [Cm] be the translation operator Ttg(x) := g(x + t)
which is an isometry.

Lemma 3.5. Suppose that for i G R there are functions ht £ CYksatisfy-
ing

(3.15) ht = h_t,

(3.16) hm \\h3 - ht|jc = 0.

Let rnt £ I'n denote the polynomial of best approximation of ht. Then
T

(3.17) *,(*) 1 =17 Ttrnt(x) dt€ MN+.

Proof. Since the operator of best approximation is continuous, it follows
that
hm ||rns - rnt|jlc = 0

M
by (3.16). Let akn(t) be the coefficients of rnt, i.e., rnt(x) - £ akn(t)e kx.
k=-n

Then akn{t) are continuous in t since for fixed n £ N

E akeikx
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IS a norm on R2n+1, equivalent to max|ajt|. Therefore the integral in (3.17)
exists and

Sn(x) = E - Y Ofn(t)eiktdteiks Gn.
k=-n

In view of (2.19) the polynomials rnt are even and satisfy rn-t = rnt by
(3.15) and the uniqueness of rnt. Therefore Ttrnt(-x) - T_trn)_t(a) so that
sn is even, too. O

Lemma 3.6. If Mn G[C~] satisfies (2.17), then
(3.18) \\g - S2ng\\c < 8%§x£+ (T+g - M2nTtlg) {g GC+)

with T+ = (Tt + T-t)/2 G[C+\.

Proof. For fixed g GC set ht := Tt#g- M2nTfg G C”~. Obviously,
(3.15,16) follow since \Tsg - Ttg\\c converges to zero for s —*t, and M 2n is
linear and bounded. Let rnt G+ be the polynomial of best approximation
of ht, and let sn be defined as in (3.17). Then the Faber-Marcinkiewicz-
Berman identity (cf. [2, p. 214])

T
(3.19) (1- S20)g(x) = £ J Tt(l - M2n)T+g(x) dt

and (3.12) imply the estimate
II5- S2ng\\c i 4En(n- S2ng) ~ 4\g- S2ng - a,llc =
T

=4 \ JTt(ht- rt)dt  <8sup\Wht- rnt\c = 8sup E,,(ht).
teR teR

Since ht+2ir = ht, the supremum is attained, and (3.18) follows. O

Lemma 3.7. If Ln G [C] satisfies (1.1), there exists pn G V\n such that
(ci >0)

(3.20) Ilbnllc ~ 3,
(3.22) [v>r (i>n - L2npn)(T\c £ C\nrlog(2n).
Proof. Since UVn = I+, the operator Mn = ULnU~x G satisfies

(2.17). Now let rn G be the polynomials, satisfying (3.13). Then Lemma
3.6 implies that there exists i,, GR such that

8E£+ (T+rn- M2nT+rn) > Colog(2n).
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With pn U ITfrn E V”n this yields

8En(pn - L2nPn) ~ cOlog(2n)

since E+(Uf) = En(f). Thus (3.20,21) follow by (2.1) and (3.13). O

Proof of Theorem 3.1. For the functionals (3.11) the conditions (3.4-6)
have to be verified for

hn(x) := n

where pn is given via Lemma 3.7. One obtains (3.4) in view of (2.8), (3.20)
and

™ \nllv.r —MM < K.
C -

Moreover, Umhn = 0 for m > 4n since E VM-r. If m < 4n, then
£, < Ke™n i# Kem by (3.1) so that

Umhn <\\hn\\v,r<KiKet/elng

thus (3.5) with <m = ¢|, @n = e\n. Since

L2nhn — P L2nPn)

it follows that Rnhn > c\ by (3.21) and therefore (3.6). The assertion of
Theorem 3.2 with a — 1/2 then yields (3.2,3). O

Let us mention that one may deduce the sharpness of Theorem 2.6,7 in
a similarly way.

Theorem 3.8. (i) Let Mn E C.., satisfy (2.15). Then for each . subject
to (3.1) there exists gc E C\T such that
(3.21) En(gW) =0(en), \{Mng- gpWc ¢ ofen\ogn).
(i) 1If Mn E [C7] satisfies (2.17), then for each £ subject to (3.1) there
exists ge E MCr*. with (3.21).
Note that the proof of (ii) (and similarly for (i)) may be simplified in
view of (3.19) and (Drg :=g(r))
T
9M (x) - SEg(x) 17)(V - M%>) T+g(x) dx,
-x
P £\\u ~ Mnrlogn
(for the latter inequality see [1]).
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BOUNDS FOR EXTENDED LIPSCHITZ CONSTANTS

J. ANGELOS, E. KAUFMAN, Jr., T. LENKER (Mount Pleasant)
and

M. S. HENRY (Norfolk)

1. Introduction

Let X be a closed subset of I = [—,1] with cardinality at least n (-2,
and suppose / € C[X], the space of continuous real-valued functions on X
endowed with the uniform norm | ¢|. Denote the set of all polynomials of
degree n or less by IM,,, and let Bn(f) be the best uniform approximation to
/ from IM,,. The global (classical) Lipschitz constant is defined to be

(1.1) N, (/) = supq{||5n(/) - Bn(g)\\V\\f -g\\:ge C[X], f ¢ g},
and the local Lipschitz constant is

(1.2)
A,(/) = IingH_ sup{|| 4., (/) - Bn(@)\W\f- g\ :g € C[X], 0< /- g\ <6}

Global and local Lipschitz constants have been the subject of several recent
papers [1, 2, 3], and figure prominently in the current paper.
For / € C[X], let

(1.3) e,(N(z) = f(x) - £,()(*), xE X.
Then the extremal set of the error function en(/) is
(1.4) En(f) = {xGX: len(/)(*)| = llen(/)I]).
An alternant of the error function is any set

Xn= »n+l} = En(f)

with x0 < xi < ... < z,+i for which en(f)(xi) = 7(-1)’llen(/)|],
i=0,1,...,n+ 1 where 7 = sgne, (/)(r0)-

When the cardinality |.E,,(/)| of En(f) is n + 2, then the local Lipschitz
constant can be explicitly displayed and is equal to the norm of a certain
“derivative” of the best approximation operator Bn, [1]. In contrast, even
when |En(/)| = n+ 2, precise estimates of the global Lipschitz constant have
proved to be somewhat elusive. To facilitate the investigation of the behavior
of the global Lipschitz constant, the authors and A. Kro6 [3] introduced the
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extended global Lipschitz constant (EGLC), a constant of interest in its own
right. Specifically, the EGLC is defined to be

(1.5) Gn(f) = sup{An(h) :h £ C[X\, En(h) = En{f), and
sgnen(h)(x) = 7sgnen(/)(x), x £ £,,(/), where 7 = +1 or - 1}.

It is clear from (1.5) that An(/) < Gn(f). Of particular interest is the
relationship between Gn{f) and the classical strong unicity constant given
in Theorem 2 below. First, if / £ C[X], then the strong unicity constant is
defined as

(1.6)
MM) = «u>{|lp- 4., DI/ - pH 1I/- Bn(f)W) :pen,,,P/ £,,(/)}
Theorem 1. [3]. For any f £ C[I],

1.7) MM) nGM) n lUWMY

It can be shown [13, 3 (Lemma 1)] that any two functions possessing
the same extremal set and sign orientation generate the same strong unicity
constant. The upper bound in (1.7) follows from this observation and the
well-known inequality [7, p. 82], An(/) < 2Mn(f) for f £ C[X\. The proof
of the lower bound in (1.7) is somewhat technical and is given in [3].

A rather natural and equally interesting companion to the extended
global Lipschitz constant can be defined. Specifically, the extended local
Lipschitz constant (ELLC) is defined to be

(1.8)
Ln(f) = inf{An(/i) :h £ C[X], En{h) = En(f), and sgnen(h)(x) =
=7sgne,(/)(x), x GE,(/), where 7=+1 or - 1).

From (1.8) it is clear that Ln(f)  An(/). The main objective of the remain-
der of this paper is to establish the ELLC analogue to Theorem 1.

2. Lemmas

The definitions of both the EGLC and ELLC can be simplified. In par-
ticular, the modified form of the ELLC displayed in the lemma below will
be used throughout the remainder of the paper.

Lemmma 1[2]. Forf £ C[X], f & 0, suppose En(f) = Xn = {xo, x\,... ,
xn+i}. Then

(2.1
Gn(f) = sup{An(h) : En(h) = Xn and h(xt) = (-1)', *=0,1,... ,n + 1},
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and

(2-2)
Ln(f) = inf{A,(/i) : En(h) = Xn and h(Xi) = (-1)*, *=0,1,... ,n + 1}.

Proof. We first observe for h E C[X] that An(h —Bn{h)) = An(h).
Therefore we may assume in (1.5) and (1.8) that Bn{h) = 0, which in turn
implies that

en(h)(xj) = h(xi) = (sgn en(/i)(x0))(-1)’|len(/))|| =
= (sgn h(x0)(=)“Ifill, i =0,1,... ,n+ 1.

It can also be shown that An(ah) = An(/i) for a ¢ 0. Thus, without loss of
generality the requirement that sgn en(h)(x) = 7 sgn en(/)(x), x E En(f),
in (1.5) and (1.8) can be replaced by /i(x,) = (-1)’,i = 0,1,... ,n + 1,
whenever En(f) = Xn. O

The next theorem is the main theorem of this paper.

Theorem 2. Suppose f E C[X], and suppose that En(f) = Xn = {x0,*1,
Then

(2.3) An(/)<Tn(/)<6 + 4An()).

If X = Xnin Theorem 2, then we actually have A, (/) = Ln(f) = An(/),
[1]. Thus hereafter we assume X - Xn is nonempty (note that this implies
f ¢ 0). In this setting the proof of Theorem 2 depends on a series of
sometimes technical lemmas and will follow the statements and proofs of
these lemmas. Before proceeding, it is worth emphasizing that the strong
unicity and local Lipschitz constants do not depend on / when En(f) = Xn,
but rather only on Xn [1, Theorem 2]. In this case the notation Mn(Xn)

and An(Xn) is employed.

Lemma 2. Let Xn = {xo0, Xj,... ,xn+i}. For 6 sufficiently small choose t
large enough to insure that (x,+1- 1/1) —(x, + I/*) = x,-+i -x, - 2/£ > S > 0,
i=20,1,... ,n. For any g E C[X] with error function en(g) and alternant
{z/o,ill,— , In+i} satisfying y{ E (x-- /1, x-+ Yt) NX, i=0,1,... ,n+ 1,
there exists a constant p depending only on X n such that for any g E C[X],

(2.4) \\Bn(g) - Bn(g)\\ » p\\g - g\\.

Proof. Clearly y,+i —Mi ~ 6, i = 0,1,... ,n. Thus the error function
en(g) has an alternant with separation greater than or equal to 6. Let Fg Q
Q C[X]be the subset of C[X]such that if / E Fg, then en(/) has an alternant
with separation greater than or equal to 6. Then the arguments of Dunham
[8, Theorem 2] with X replacing | imply that there exists a constant p such
that for every / E Fg and g E C[X\,

S 03] 1) 1ISH18-11].
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Since g E Fs, (2.4) is established. O
Inequality (2.4) is essentially a uniform Lipschitz constant result for
changing /. The interested reader is referred to the survey papers [4, 9]
for a discussion of other uniform Lipschitz constant results.
Prior to stating the next lemma we define a set Ut and a function hi,
both of which will be utilized in several of the proofs that follow.
First, let
, _ 1 x0+1 ifz0> -1
°rt 2 if x0= -1,
and
/[ 1- xn+i ifxml<1

4141 =\ 2 =1

Then let d = min{do,dn+i, (1/3)min{x,+i —x-; t=0,1,... ,n}}. Now let
io = [Ud] + 1, and for I > 1q, define

n+l

(2.5) w=>NJ(xi-l/t,Xi+1/1))nX.

i=0
By definition, d < (I/3)min{x,+i - x,; i =0,... ,n}, and 1/1 <d. There-
fore, the intervals (x, - 1/1,x-+ 1/i),t=0,1,... ,n+ 1, are disjoint. Since

by assumption X —Xn is nonempty, there exists an Iq * Iq such that for
[ ~lg X - Utis nonempty. Hereafter, we assume that | > 1q. Define
he € C[X] by he(-1) =0if -1 g Xn, ht(1) = 0if 1g Xn, + Ul =0,
and ht(xi) = (1) r=20,1,... ,n+ 1; let hi be linear between the points
where hi has just been defined.

Because of the manner in which he has been constructed, Bn(ht) = 0
and En(he) = X n. Thus hi is one of the functions considered in Lemma 1.
Let Hi = {g G C[X]\ g—Bn(g) possesses no alternant (j/oii/b-- - >2n+i} with
M e (xi - 1/i,Xi + I/t) M X and sgn (g - Bn(g)(yi) = (-1)*,
r=0,1,... ,n + 1). This set will be utilized in subsequent arguments.

Lemma 3. For | ~ Iq, let Re = inf{||* - hi\ : g G Hi}. Then there
exists age E C[X] and xt G X with gt - h%| < Bt>\gt - Bn(gt))(xe)\ >
> ||M-An(5r)|| - /7, and eithery EX-Ut orxt E(xj- \jt, x-+1/i)n |
for some i and sgn (gt - Bn(ge))(xe) = (-1)’+1.

Proof. We first show that Bt > 0. For suppose that Be = 0. Then there
exists a sequence {Z}?i0 Q Hi such that lim \W\g; - hi\\ = 0. This in turn

imphes that ji_rpm\\Bn(gj) - Bn(ht)|| = 0. Thusj%\\Bn(gj) - gjll = |Iht-

—Bn{hi)Y= 1. In this case we assert that for j sufficiently large gj - Bn(gj)
must possess an alternant {yO0, Jynti} with  G(x{- VE, x-+ I/£) MX
and with sgn(<j - Bn(g,))(y{) = sgn h/(x.) = (-1)’,r=0,1,... ,n+1, a
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contradiction of the definition of Hi. This assertion follows because gj—
—Bn(gj) must have some alternant and Bn(hi) = hi = 0 on X —Ui (thus no
point from the alternant for g2- Bn(g3) can be in X —Ui since gj —Bn(g3) is
too small there), and because the sign of gj—Bn(g2) at a point of the alternant
in (k- — must be (—1)', so no two consecutive points from
the alternant for gj —Bn(gj) can lie in the same (k- —I/f,ii + 1/1)(1X .

Now let {sfj}jl0 = H* and {x(j)}jl10 i x satisfy \\gj-hi\\ | Bt > 0,x" E
E En(gj), and either E X —Uior x(J) E (k-- I/t, xi + I/£)f\X for some
i and sgn (gj - Bn(gj))(x&) = (-1)*+1. Let \j =jBi/((j + D\\gj - JILY).
Clearly 0 < Xj < 1forallj. Letgj = Xjgj + (1- A)hi. Then \\gj —ht\\ < Bt.
Now A —1asj —y-foo, and hence

(2.6) Um Xj - gi\\ = 0.
Therefore
(2.7) ligj - Bn(gj)ll - [(fe - Bnegj))(xL\ =

= 19 ~ Bn(gj))\\ —Hij —Bn(gj)ll + \\gg —Bn(gj)\\—
-1(Q3 - Bn(9:))(x™M)\ + K(gj - Bn(9)))(k«)| - I(gj - B A XK =*0)) "
= 10j~9j+Bn(gj Bn (ff]) | 1+6+19j (x"B )—gj (x* N-Bn(gj) (x*)—Bn(F)(x )| *
A 219 - 9\ + 2]|5,,(Sj) - Bn(gj)]l-
Inequality (2.7) and Lemma 2 (with | > Iqg) now imply that
(2.8) Wj - Bnegj)ll- Kgj - Bnfgj))(x")\ <2(1 + /nligj - gi\.

From (2.6) and (2.8) we may now infer for j sufficiently large that
(2.9) \cgj - Bn(gj))(x*)1 > ligj - Bn(gj)\\ - I/£.
Also either x(B EX —Hi, or E (xi —\/i, %+ 1/1) NX for some i and

(2.10) (0 B X*) = (1) i+ll» - O.blH-

In the latter case, assume there exists a 6 > 0 such that for all j sufficiently
large \gj —Bn(gj)\\ > 6. (This fact will be established in the next lemma.)
Then from (2.6) we also have jIirig(_m\\Bn(gj) —Bn(gj)\\ = 0.

Therefore, for j sufficiently large (2.10) implies sgn (gj —Bn(gj))(x") =
= sgn (gj —Bn(gj))(x"B) = (—4y=+1. Thus in either case, for j sufficiently
large gj and x(B will serve as g( and x4, completing the proof. O
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Lemma 4. Let {<7j}yi0 Q Ht be such that W\gj - ht\\ j Rt. Then there
exists a 8 > 0 such that \\gj —Bn(gj)\\ > 8 for all j sufficiently large.

Proof. Assume the conclusion of Lemma 4 is not true. Then without
loss of generality we may assume that

(2.11) Jim \gj —Bn(gi\ = 0.

Therefore for j sufficiently large, ||5,,(<7))|| ~ 2]|*|| ~ 2(Bt + 2). This implies
by going to subsequences if necessary that lim Bn(gj) = P £ In, and hence

(2.11) implies that ‘]I%gj = P. But then Rt = jl'j&)\\h( —gf\= \\h( - P||.

Thus Bt > 1, for otherwise ||fi* - P|| < ||fi/ —Bn(ht)]||, which is not possible.

We now construct a g £ H/ satisfying |</— < 1. Such a construction
would contradict the definition of Rt. We first select any point x* £ X —UL.
To illustrate how to proceed in the construction it is sufficient to assume
that x* £ [x,* + \/I, x-+i —1/I] for some r*, 1< r* £ n. The cases where
x* < Xo-l/A x* > xn+i -f1/f, or x* £ [xo-P1/f,xi -1 /1] are similar. Define
g as follows:

( (i/2)~ 1y x e [-1,X,-. - I/E]u [x-+1,i]
g(x) = < (1/2)ht(xi*), X = X*
l. bnear on [x> —I/f,x*] and on [x*X,-.+1].
From the definitions of g and hf, it is clear that max{|/i*(x) - g(x)|: x £
£ [ L, ¥*—11] U[x,.+i,11} = 1/2. For x £ [x-. —I/£, x,-.+i], it can be
shown that [fi/(x) - $f(x)] < 1. Therefore, |[/i* —5Li< 1. On the other hand,
g is constructed to insure that Bn(g) = 0. It is clear that En(g) = Xnb
Ut} - {x,*}. Since x* £ [x-* + I/~ x -+l —1/7j, g possesses no alternant
{l/o,21,- s 2/n+i} with yi £ (x,-1/£,Xj+ I/E)nX and sgn (g- Bn(g))(yi) =
= (),i=0,...,n+ 1 Thus we have constructed a g £ Hi such that
\\n( - gll < BimThis contradicts the definition of Bt. Therefore, the proof of
Lemma 4 is complete. O
Earlier it was noted that A,(/) = An(Xn) when En(f) = Xn. Let

{frITJo = Nn be determined by
(212) 9.(xj) = (-1)’, i=0,1,... ,n+ 1 idj, j=0,1,... ,n+ 1

The explicit representation for An(X,,) [1, Theorem 2] mentioned in Section 1
is then
n+l

(2.13) A.(X.) %:Oi*i/(i + l(*0)l) o

Both (2.12) and (2.13) are used in the next lemma, a lemma which is stated
without proof in [2].
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Lemma 5. If g G C[X) is such that g - Bn(g) possesses an alternant
{yo,Vi,--- ,2n+i} with yi £ (xi - /£ Xi + 1/0 NX fori=0,1,... ,.n+1
andsgn (g- Bn(g))(yi) = (-1)’, *= 0,1,... ,n+ 1 then there is a constant
K independent of g and t such that

(2.14) Im_/M = (1 + K/E¥n(Xn).

Proof. For h G C[X] with alternant X,,, it can be shown [1, Lemma 1]
that
(Y- U 1+ lae) T
Thus

Bn(ht) - Bn(g) = :rl (-iy +1[ht(xj) - Bn(g)(xj) - (9- fIn(e))(yD)]gi

E, 1+ [P»(5j)l

"y - B.oYwW)
R 1+ ii;(*j)i |

But using [1, Lemma 2],

(- 1) i+1(ff - Er(g))(yj) n RinlvV' g -n

g - - . B'OIgTTteM i=>°
Let tj = - p(yj) + Bn(g)(yj) - Bn(Ef)(zj). Then
n+1
(2.15) N <ap s.(s)- E '+ M-

We now claim there is a function R(j, g) with

(2.16) W,9)\ i \\g-ht\\-K/I

for some constant K independent of j, £ and g such that

(2.17) (he- 9)(yj) + R(j.9) <tj <(ht- g)(xj) if (he - Bn(he))(xj) > 0,

and

(2.18) (he - g)(xj) Utj i (ht - 9)(yj) + R(j,9) if (he - Bn(he))(xj) <O.
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Since the proof of (2.17) is very similar to a proof appearing in [1, expressions
(4.7) through (4.16)], we focus our attention on establishing (2.18). In this
case j is odd, so that

~9- B(@)M) ™-(9 - Bn(@)Xi).
Thus
tj = he(xj) - g(xj)+ (g- Bn(9))(xj) - (g - Bn(9))(yi) >ht(xj) - g(xj).
Also (hi - Bn(he))(xj) < (he- Bn(he))(yj), so
tj = (he - g)(Vj) + (he - Bn(ht))(xj) - (ht - Bn(ht))(yj)+
+(Bn(he) - Bn(9))(x3) - (Bn(he) - Ba(g))(yj) <
i (he - g)(yj) + (Bn(he) - Bn(g))(Xj)- (Bn(he) - Bn(g))(yj) =
= (he- QM) + R(j,9),

where
(2.19) R(j.9) = (Bn(ht) - Bn(9))(X]) - (Bn(ht) - Bn(g))(y)).
We have established (2.18).

From (2.19),

\R(j,g)l = \*j - ¥1<I(Bn(he) - Bn(g))"(f)I,
where | is between Xj and yj. Hence by Markoff’s inequality [7, p. 91],
\R(i,g)\ # (1/011(Bn(he) - Bn(g)Y\\ < (n2/£)\\Bn(hi) - Hn(ff)]|.
Now Lemma 2 implies that
(2.20) TO, " (n2/£)n\\he-g\\ = (K/E)\\he- g\\,
which establishes (2.16). From (2.16) and either (2.17) or (2.18) we see that
(2.21) \tj\< (1 + K/1)\\g-ht\
Utilizing (2.21) in (2.15) yields

\Bn(g) - Bn(he)\ e
9 (he) < 1+ K/£) bl
\\9 - hell fr'o 1+ bl*])\

and thus (2.13) now implies (2.14). O

The last lemma of this section provides a useful lower bound for [<7—h(\\
for functions g 6 Hi.
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Lemma 6. Let g 6 Ht. Then \g- he\ > 2(1+pJ x 'w + my where &S in
(2.20), K —nau.
Proof. From Lemma 3, there is a gf and x/ with ||<*- h/|| < Rt,
(2.22) 1(5/ - Bn(ge))(x£E)| > |lgt - Bn(ge)| - 1/1,
and either xs GX —Ut or x; G(x; - I/*Xx,- + 1/I') M X for some i and
(2.23) sgn (gt - Bn(gt))(xt) = (-1)*+1.
We note that \\ge~ht\\ < Rt implies that g*—Bn(ge) has an alternant {yo,yi,
,tn+i} with yi e (xi - I/E, X-+ |/£)rX and with sgn (ge- Bn(ge))(yi) =
= (1), r=0,1,... ,n+1 Now
W\9i-Bn{gt)\ Z |(5/-An(5/))(*0)| ~ |1/(*0)--Bn(/1/)(x0)|-|5/(*0)-/1/(x0)|-
-|-Bn(AN(x0) - An(5/)(*0)| > 1- 15/ - ht\ - ||Ar(5/) - Bn{ht)]|.
The the conclusion of Lemma 5 implies that
(2.24) <z - Ba(5/H)I™ 1- 15- 41(1 + (1 + K/E)Xn(Xn)).
Now if X/ € X —Ut, then by definition, Zi/(x/) = 0. Therefore from Lemma 5

(2.25) 15/ - Bn(gt)){xt)| < [5/(*)| + |1An(5/)(*<)| =
= \(gt -ht)(xt)\ +\(Bn(gt) - B n(ht))(xt)\ 1 \ar - ht\+\\Bn(ge) - Bn(ht)\\ <
<\\gt-ht\\(I + (I + K/I)\n(Xn)).

On the other hand, suppose X/ G (x- - I/fl,)x,- + I/f)ilX for some i, i =
=0,1,... ,n+ 1 Without loss of generality we may assume that i in (2.23)
is even, so that (gt —5n("))(x/) < 0 and h/(x,) —5n(h/)(x,) = /i/(x,) = 1.
Now ht(xe) > 0. Thus if 5*(x/) < 0, then [5*(x/)| < [K*(x/) - h/(x/)|.
Therefore

15/ - Sn(BH)NHE A IS/CNH1+ |5n(M)(x))] <

AI5/(*]) - ht{xe)l + \Bn(ae)(xr) - Bn{ht)(xt)\ <

Ngib/ - 4 i+nagn - -MMII-
Consequently when 57(x/) < 0, we again obtain (2.25). If 5*(x/) ™ 0, then
(2.23) implies that 5*(x/) < Bn(ge)(xt). Therefore

1(5/-tfn(5/)X~)1 A |5n(E/)(*/)] < \(ge-ht) (xt)\ +\(Bn(ge) - B n(ht))(xt)\.

Thus in this last case we also obtain (2.25). Now (2.22) implies in all of the
above cases that

(2.26) 5/ - ap/)h<(!+ (! + K/E)\n(Xn))\\ge- ht\+ 1/i.
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By utilizing (2.24) and (2.26) we see that

1- A+ @+t ALK)DI&E- N/ L + @+ kre)yxn(xn)Wae- Ml +1/1,
From this inequality we obtain

1- /1
_ nN——— NN
(2.27) bt - M 2(1 +(1 + K/t)\n(Xn))*

Now if g e Hi, then L§ - hi\\ > Ri > |<*- hi|. This inequality and (2.27)
imply the conclusion of Lemma 6. O

3. Theorem

We are finally in a position to prove Theorem 2. The conclusions of
Lemmas 5 and 6 will play prominent roles in the proof of the Theorem.

Proof of Theorem 2. For fixed | > @, let g G C[X]satisfy [<—hi\\ i O.

19- MI < zmoemeees R —

then the contrapositive of Lemma 6 implies that g —Bn(g) has an alternant
{yo,¥\,y ,yn+i}, wherey- G (xi~I/£,Xi+1/1)nX and sgn (g-Bn(g))(yi) =
=(—D*r=0,1,... ,n+ 1 In this case Lemma 5 implies that (2.14) holds.
Now assume that

(3.1) \g- ht\ r b
2(1 + (1 + K/E)\n(Xn))
We observe that
II5- 5n(ff)]| < bIl< lig - hi\\ + \ht\ = \g- MI + 1-
Therefore
(3.2) \\Bn(g) - Bn(ht)M< IIBn(g) - g\ + \g- Jir|| + \nt\ <2(]|]g- ht\+ 1).
For | >10, (3.1) and (3.2) imply that

(3.3)
\Bn(g)-Bn(ht)\\* ( 1o\, 2(1+ @+ K/D\n(Xm)\
[Iff-M = V \\9-hi\\)) Vv l-i/* )

Thus from (2.14) and (3.3) we have that
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(3.4)
An(hf) < max

The definition of hi, (2.2), and (3.4) combine to imply that

(3.5
20+ 1+ K/t)\n(Xn))

L,.(/) < max | (1 + tf/£)A,,(Xn),2 LUl

Letting t —»00 in (3.5) yields

(3.6) Ln(f) <6+ 4Xn(Xn).

To establish the lower bound, let

g€V ={h €C[X):En{h) = X,, and h(Xi) = (-1)*, r=0,1,... ,n + 1}.

Clearly for all g € V, An(g) < AJ(<7). But since for any g € V, En(g) = Xn,
K{g) = An(X,,). Thus Xn(Xn) < Xn(g) for all g € V. Therefore

(3.7) Xn(Xn) <inf{An(5) :geV} =1, (/).

Inequalities (3.6) and (3.7) imply the conclusion (2.3) of Theorem 2. O
Corollary 1 Let f 6 C[X), and suppose that En(f) = Xn. Then

(3.8) Xn(Xn) < Ln{f) + 10A,(X,,).

Proof. Inequality (3.8) follows immediately from (2.3) and the observa-
tion that An(AL,) > 1. O

We conclude this paper with some other observations. If X is dense in
I, the results of Theorem 2 and Corollary 1 can be sharpened. In particular,
inequality (2.3) can be replaced by the inequality

(3.9) Xn(Xn) A Ln(f) <4+ 2A(X,,).

The proof of (3.9) uses much of the machinery developed in Section 2, as
well as some constructions that depend on X being dense in an interval.
We also note that although the first inequality in (3.8) can be an equality
(as in the case where X = Xn), it can also be a strict inequality. To see
this, observe that if n = 1 and Xn = {—1,0,1}, then direct computation

using (2.12) and (2.13) gives A,(X,) = 3/2, but if X = [,1] then for
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every n > 1 we have An(/i) » 2 for all h £ C[-1,1], which implies Ln(f) > 2
from (1.8). The statement An(h) > 2 for all h € C[—1,1], n > 1, follows
from the fact that ||5,,(/i) —Bn(gm)\W\\h —<n| can be made arbitrarily
close to 2 by choosing m large, where gm(—1+ i/m) = i + (—)n_,m for
i = 0,...,n, gm(l) = m, and gm is linear in between these points; note
that En(gm) = {-1,-1 + 1/m,... ,-1 + n/m, 1), Bn(gm)(x) = m(x + 1),
l-on(<7m)) = 2m, and |[fim|| = m -f n. It can also be derived from the results
in [5].

Let /() = ex, x € /. Then it can be shown [3, 10, 11] that \E,,()\ =

= n+ 2and that \n(Xn)/Mn{Xn) =0 m). Thus Theorems 1and 2

imply that lim br¥A —O0 when /() = ex. Hence in an asymptotic sense,
the ELLC and EGLC can be very different. It would be of interest to find
functions / € C[X]—TI1,, for which either j } % bounded above by

a constant not depending on n, or for which j bounded above
by a constant not depending on n.
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STRONG NEGATIVE PARTITION RELATIONS
BELOW THE CONTINUUM

S. SHELAH (Jerusalem)1

0. Introduction

Definition 1. If Ais a cardinal, Pr+(A) means that there is a function
c: [Al2-> Asuch that if 1 < n <w and the sets {(°,... ,C2-1} are disjoint
for a < Aand C£ < eee< (£-1 then for every h: n x n -* Athere are a <R

such that ¢(Cq,C") = h(i,j) fori,j <n.

Definition 2. Pr(A) is the same but only for every h: nx n —=Awith h
constant, i.e. h(i,j)=7fori,j <n.

Lemma 1. If X is regular, not strong limit, then Pr(A) implies Pr+(A).

Proof. We use the idea in the proof of the Engelking-Karlowitz the-
orem. Assume that p < Aand > A Let {Aa:a < A} be different
subsets of p. Assume that c~ witnesses Pr(A). Put G = {(w,g) :w £ [p\<w,
g: P(w)2—¥ A}. Clearly, |G| = A so we can enumerate it as {(rca,ga) :a <
< A}. Now put c(a,R) = g~y(Aa Mwl,Ap Mtn7), where » = c~(a,R).

Assume that :r<n,a < A)are given as in Definition 1, h: nXn —»A
Fora <X i<j <n,pick 763 GAr a A4a,and letwa={7 :i<j<n}
As wa Cp < A we may assume that there exist w, Bi C w (r < rr), such
that wa = w, A® Mw = Bi for a < X. Let g: P(w)2 —»Abe a function
satisfying g(B{,Bj) = h(i,j). Thereisa . < Awith (w,g) = (rc7,A7), and
by Pr(A) there are a < < X such that ifi <j <n, then c*(C4C») = 7-
But then c(Ca>Cp) = 9-y(-"ca n nwi) = 9{"i,Bj) = h(i,j), and we
are done.

We now state the main result of this paper. We remind the reader that
S Q Xis a non-reflecting stationary set if it is stationary and S Ma is non-
stationary in a for every limit a < A

Theorem. Pr(A) holds whenever there exists a nonreflecting stationary
set S in X with cf(a) > u\ for everya £ S.

This work is continued in [10] (see also [11]).

1Research partially supported by the United States-lsrael Binational Science Foun-
dation (BSF), Publ. 327.
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1. Construction of the coloring

For a < Alimit let Ca Q a be a closed unbounded set of order type
cf(a) disjoint from S. Fora = B+ 1welet Ca= {/3}. ForO0<a <R <A
let 7(/3,a) = voxafCR —a). Obviously, a ~ 7(/3,a) < /3. We now define
7t(R,a) fort » k(R,a) as follows: 70(/3,a) = /3, 7/+i(/3,a) = 7(7*(/3,a),a).
If 7%(/3,a) = a then we terminate the definition and put k = fc(/3,a) =
= |. Clearly, a = 7*(/3)a) < ... < 70(/3,a) = /3. The string p(/3,a) =
= (70(/3,a),... ,7fc(/3,a)) is the Todorcevic walk from R to a.

Fix a decomposition S = U{57 : 7 < A) into stationary sets (possible,
by Solovay’s theorem). Let H : A —=* uj\ be a mapping such that for every
i <ulthe set 5-= 5M A-1({r}) is stationary in A Let = U{An:n < w}
be a partition into stationary sets. For 0 < a < 3 < Awe let

u>i(/3,a) = {p > k/2: forevery q<k/2, A(7P) > A(7,)}

and pi = min(u>i). Here and in several cases later, we omit (/3,a) after
wi,pi,k etc. if it is obvious what we are speaking of. We now define
f K K Lo
w2=sq<2: forevery - <p” k,p £wi implies A(7,) > A(7p)

Let p2 be such that TT{ A (7,) :qEw2} ERP2 Now if 0 * pi - p2< it and
7P1_P2(/3,a) E 57 we put c(,a) = 7 otherwise c(/3,a) is chosen arbitrarily.

2. Preliminaries

Definition 3. If si = (si(0),... ,si(ti)), s2 = (s2(0),... ,s2(t2)) are
strings, their concatenation si J1s2is (si(0),... si(ti —1),s2(0),... ,s2(t2)).
The reason why we are removing the border element is that in our ap-
plications Si(fi) = s2(0) holds, so we only remove an immediate repetition.

Lemma 2. If6 E S, B > 6 then there exists a x(R”") < ~ such that
for every a with x(Rigd) » @ < 6, g(B,6) is an initial segment of p(/3, a).
Moreover, p(/3,a) = g(,6) h g(6,a).

Proof. If a < 6 is large enough, 7(/3,a) = 7(/3,6). Therefore, if a >
= x(7(/3,i),£) also holds, the statement is true. We get, therefore, a proof
by induction on /3.

Lemma 3. If A, B E [AJA k <wu, then there exista EA, BREB, a <R
with k(B, a) > k.

Proof. We define Co = A’', and by induction, C,+i = (5 NC,)". Pick
7k e Ckn 5, then B E B with 3> 7* Xk = x(0,7*)- If 7.'+b X.+i are
found, pick 7-E S MC, with x.+i < 7. < 7«+i and Xi with Xi > x(7«+b7«),
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Xl < Xi < 7t- Given 70, Xo let a £ A satisfy Xo < < < 70, then by
Lemma 2, for | < k there exists an m < k(3,a) such that 7m(/?,a) = 7/, so
k(B,a) > k.

Definition 4. p#(/3,a) = {H(jt(B, <)mf < k(B,a)). Ifa £ i.e. is
a finite string of countable ordinals, then for i <07 o' is the following string
\o\ = |cr|, and

ifo(i) <1,

if o{l) > i.
Definition 5. If T £ A 6 < A R £ 07 stationary, then U(6,T,R)
denotes the set of those g £ (07 + 1)<V such that for every i < 07 there

exists a B > QR £ T with gH*R/h)" = Qan(l min{p#(f!) : Q{f) = ~ 1} GR-
g£ U(6,T,R,x) denotes that R even satisfies X(/M) < X-

Lemma 4. If T £ [Ala, then there is a 6(T) < J1 such that for 6(T) <
<6< X U(6,T,R) b 0. Ifcf(6) > 07, then there is a x < 6 such that
A(h,r,g,x)#0.

Proof. For i < uni welet A-= {6 <A ifB >6,R8 ET, theni $

Claim. |A,| < Afori <o07.

Proof of Claim. Suppose that |A,| = A for somei < 07 and
6£SiMAS, R £T with 8 > 6. Choose ana £ A,, x(B”) <c < 6. Then
6 Gg(lR,a), and i = H(6) £ gH(B,ot), a contradiction.

Now we define S(T) with U{A- :i < 07} £ h(T). Assume that 6(T) <
AN 6< A Forevery i <07, there is a Ri > Q Rt £ T such that i £ g//(Ri,S).

Consider {p#(/3;,£) » * G A}. There exist a stationary Ri Q R and a
K <wu such that for i £ Ri, = k, wherep, = We even assume
that for every t < k either for every i £ R\gt(l) < i or for every i G Ai
gi(E) ~ i. Applying Fodor’s theorem we can find a stationary 2 £ R\ and
an 7£ (u7 + 1)W- such that pa(A,2)’ = V(i G A2). For if A2
min{p*(£) : 7(f) =07} = r£ O2£ A, so 7£ 17(6, T, R).

If cf(E) > w\, {x(Bi,f>) «*GR2} is bounded below S, so 7£ U(S,T, R,X),
if A> A(/Mi (*GRe -

definition 6. If T £ A 6 < A, then L(6,T) consists of those g £
£ (07 + 1)<wu—un"w for which for every a < 6, and large enough i < 07
there isa R & T,a< B <6 such that pa(®,/3)’ = gmFor T £ [A]n we let
CM=nN{ENrH:r<unt}.

Obviously, C(T) is closed unbounded in

Lemma 5. If6 £ C(T), cf(E) > v\, then L(6,T) ¢ 0.

Proof. Case 1: cf(£) = 07. Let {0, :r< 07} converge to 6. For i <07
pick an a, £ 5, MNT', I, <Oj < 6 (possible, as 6 £ C{T)). Now choose /3, £ T,
6i < Bi < oti with x(A»«i) < Bi- Then *= H(oti) £ gH(6,Ri).
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As in Lemma 4, there is a stationary 1 5 4 andape + 1)U —
such that p#(6,/?,)’ = p(t GX), so pGL(6,T).

Case 2. cf(<B) > uwi. Let £ : a < cf(<B)} converge to S. For a < cf(<b),
i <ui, pick Bf GT with 6a 94 R? <6 as in Case 1. For a < cf(£), there
isap"G(w+ 1)N— such that there exist an X a G [wi]"l with
eH(6,%)" = p" for i GXa. There isa p with ga = p for cf(E) many a’s.
Clearly, p GL(S,T).

3. Proofofthe theorem

Assume that the sets >CE-1} are disjoint (a < \,n <u). We
may assume that a < < mm< C .. * There is a closed unbounded
set C £ Asuch that ifa <6, 6 GC, then Ca: <

For SGS MC, as cf(i) > there are {i/| :1 < n} such that sup{a <

<8m = t'f} = 6. For a stationary 7\ £ STIC, v\ —vt (6 GTi).
By Lemma 5, for ¢ G S MC(Ti), L(6,Ti) ¢ 0, so there is a stationary
T2 £ 5fIC(Ti), and r G (wi + 1)<W— such that r GL(6,Ti)for 6 GT2.

We put I* = min{® : r(f) = ui}. Again, by Lemma 5, for 6 G S MC(T2),
L(6, T2) ¢ O, so there is a stationary Ts £ s » nC(T:), and pwith p GL(s,T2)
(« € T3). i

Since 1> ui, there is a stationary T1 £ S and {{ :1 < n) such that
PA(C|,<5) = v*(SG T1). By Fodor’s theorem, there is a T. £ T1, and
Xo < Awith x(C|> < X f°r "€ T2. By Lemma 4, ifSGS - 6(T2), then
there is a x < ~ such that U(6,T2,Re.+e\,x) & 0, so there are 7,xs > X2»
and T: £ S - 6(T2) stationary with » GU(6,T2, A/>+e, X3) £ T3).

We now apply Lemma 2 with A = T —(xs + 1), B = Ts to get a
133 GTs - (xs + 1), and B3 G T such that /3 > /3 and

KR7iBz) > max{|i//| :f < Ti) + |r] + |p] + W\ + max{|i/| :| <n}.

Choose ro< U which is larger than every countable ordinal in p#(/3:,/33),
r],vt,vt (E < n). Since p GL(R3,T2), there is a B2 GT2 with Xs < < fz,
X(R3,83) < B2 such that BH(R3,/?.)° = & Pick a X with Xs < X < /%,
X(R3,R3) < X, such that x(/?3,Ar) < X -

Next fix an H < which is larger than the ordinals in psa(43,/?:) and
r0. Then, as B3 GT3 and » G Z/(/%, T 2, 12**+{G>X3)> there exists a R G T2,
B > R3 with RH(R,83)4 = ,; and x{B,R3) < X3- Since /3 G T. we have
RH(CR,R) = V* and x(Cb»£f) < xs (t <n).

Finally, choose i2 < WA which is larger than the countable ordinals in
RH(BR,R3) and i and use r GL(R2,T\) to find BRx s« T\ with X2 < Ri < 32,
eiiifR2,Ri)'2 = T. Also, fix Xi > x(B2,Bi), X2 < Xi < Bi- Since Bx GTh
there is an a, Xi < i < Ri, such that fori < 18, BH(Bu(i) = vi-
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the the the
left middle right
mountain marsh mountain
W2 Ut
heaven »2
sky «l
OH atmo-
sphere
0
earth {
Y Q r Vim
0 03 Or o7 Oi &

Fig. 1. The sequence OH(Cpa<(a)-

Now, by Lemma 2, as a <

X((B,R) <X3< X2 <Xi < implies p(Op,C) = QIQR,R) Ae(B, C)i

X(R,83) < X3 < aimplies g(B,Ca) =g(R,83) A p(/?3,C);
X{R3,R8z) < X2 < aimplies p(/33,C ) = 13B) Ng(R3,C);
X(B3,82) < X2 < Qimplies p(/?3,C) =e(R3,Bi) A e(/?2,C« );
X(Ri,B\) < Xi < aimplies p(/?2,C) =Q(R2,Ri) A B(Bi,Ca),

e

e((B,(a) = g(Co,R) Ne(R,R3) n g{R3,Rs) n g(R3,82) ng(R2,Ri) np(/Ji,C)-

A similar identity holds for ps-

Now it is obvious that the middle, i.e. the &CG3>C )/2-th element of the

string lies in the g(3,83) portion — selected to be so long for this purpose.
By the respective selections of *i,*2 the largest p# value of the first half of
the string is at least i'i but less than i2. It follows that consists
of those indices p in the p(/32,3i) portion where gu”r, B\)(p) * r2>so, in
particular, pi = s+ |p| + I* where s = |p(C",/?3)|. w2(CH, CT) then consists
of those indices g in the g(,R3) portion where pa(/?,83)(q) * *i. By the
choices of g and g(i3,83) we have that the minimum of {H(7,) : £ m2}
IS in i.e. p2 = I*+ |p|. From this, 7Pl-p2 = 7« = Rz € 57, so

c(Cp,Ca) = 7, as required.
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4. Corollaries

Corollary. If k > ui\ is regular, then

(a) Pr+(/ct+) holds;

(b) K+-c.c.-ness is not a productive property of Boolean algebras;
(c) there is a k+-separable not k+-Lindeldf Hausdorff-space;

(d) there is a  -Lindel6f not k+-separable Hausdorff-space.

Proof, (a) From the Theorem and Lemma 1
(b) See [6].
(c) -(d) See [1].

Acknowledgement. The author is grateful to I. Juh&sz for his help in
rewriting the paper.
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0-ORTHOGONALLY ADDITIVE MAPPINGS. |

Gy. SZABO (Debrecen)

1. Introduction

The representation of orthogonally additive functionals on the Hilbert-
space Z2[0,1] has been studied by Pinsker [2]. In the recent decades several
other authors have dealt with the same problem on vector spaces using some
kind of bilinear forms for defining orthogonality. Thus in [8], Vajzovic con-
sidered the A-orthogonality +.A on a (real or complex) Hilbert-space H, i.e.
x 1ny <% (Ax,y) =0, where A: H —H is a continuous selfadjoint op-
erator. He gave the general form of the continuous A-orthogonally additive
functionals. Also, Fochi [1] has studied the same question for non-continuous
functionals, proving the odd solutions to be additive, while the even ones to
be quadratic. Sundaresan and Kapoor [7] defined the T-orthogonality LT
on a real Hausdorff topological vector space E with the aid of a (non-con-
tinuous) linear mapping T: E —»E*, by x LTy A=> Tx(y) = 0. They
described in (almost) full details the class of all continuous T-orthogonally
additive functionals.

A different approach was given by Ratz [3] for arbitrary orthogonally
additive mappings from a real inner product space X with the ordinary
orthogonality, into an abelian group Y. Later in [4], he turned these results
into a more general context, namely for «/»-orthogonality ~ on a vector space
X over a euclidean ordered field, i.e. x y E=m d(x,y) = 0, where ¢pis a
non-isotropic bilinear functional.

In the present work we offer a common generalization of the above men-
tioned results into three directions:

1) we allow vector spaces over a quite arbitrary field rather than over R
or C,

2) we use orthogonality based on an arbitrary sesquilinear form with
respect to an automorphism of the field;

3) we study arbitrary orthogonally additive mappings with values in an
abehan group.

This is the first part of our investigations in which we consider the case
of symmetric orthogonality. The non-symmetric case and other related top-
ics will be dealt with in some forthcoming papers. Here we can apply the
abstract theory of orthogonally additive mappings developed in [5], thus we
use the same notation and terminology. Namely, throughout the paper, ®
will denote a field of char ®/ 2,1 a ®-vector space with dim$ X ~ 2 and



102 GY. SZABO

(Y, +) an abelian group. Also V or linV stand for the family of all 2-di-
mensional linear subspaces of X or the Unear hull of V C X, respectively.
Assuming that _Lis a binary relation (caUed orthogonality) on X, for P EV
let i.p denote the set of aU (u,v) E-L such that Un{u,u} = P (the set of all
orthogonal bases in P). The mappings A,Q and F: X —» Y are said to be
additive, quadratic or orthogonally additive {A-additive), if they satisfy the
equations:
A(x +y) = A{x) + A{y), X, yEX,
Qix+y) +Q(x-y) =2Q{x) + 2Q(y),  x,yel, or
F{x +y) = F(x) + F(y), X, YEX XAy,
respectively. We shall use the notation:
Hom(X,Y) = {A: X -+ Y \A is additive},
Quad(X,y) = {Q: X —»Y \Q is quadratic},
Hotx(X,¥) ={F: X ->Y \F is A -additive},

(0)Homi(X,¥) = {D: X —»Y | D is odd and A -additive},
(e)Homj_(X,Y) = {E: X —»Y | E is even and J -additive}.
Finally, R is the real Une, C is the complex field, O denotes the scalar zero,
the zero vector as weU as the identity element of the group ¥. Theactual

meaning of 0 always wiU be clear from the context. The sign 0 stands for
the constant zero mapping.
Now we remind the reader of some useful concepts and results known for
an abstract orthogonahty 1o na ®-vector space X:
Definition 1.1 ([5], Definition 1.2). a) We say P EV to be a A-normal
plane, if there are (ui,v;) E-Lp (i = 1,2) with
2
Pl((Un{ul} UuUn{u}) = {0}.
t=i
The subfamily of all -L-normal planes in V will be denoted by Vn.
b) The vector x E X is said to be a
- To-element, if x E Un{u, v} for some u,v E X such that (iluoruii:)
and (x Lv or v A X);
- Ti-element, if it is contained in a .L-normal plane: x EP € Vn;
- T-element, if it is a To- or ri-element.
Let Xo, X\ or X T denote the set of all t, t\- or r-elements in X, respectively.
c) We consider the foUowing subfamilies in V:

Vo = {P EV [ILP n(X0x X 0) ¢ 0},

Vi ={P EV |-Lp D(X0x iU IiX XO0) o},
V, = {P£V \AP D(XTXXT) (oo},

V3= VoUVxUVn.
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Clearly, VaCV,.
d) Finally, consider the axioms
(03) x,ye X, x1y,a,B e d=> ax £ By (homogeneity);
(08) v=yV
(087) V = Vs.
Obviously, (087)=>"(08).
Theorem 1.2 ([5], Theorem 2.7). If (X,A) satisfies axioms (03) and
(08) (or even more (087),), then
i) (0)HoTx(X,Y) = How(X,Y);
ii) (e)Homx(X,y) C Quad(X,y);
i) Homx(X,Y) = Hom(X,¥) *  (e)Howx(X,¥) = {0}.

2. The symmetric (“~-orthogonality

In this section we examine the properties of a ~-orthogonality relation
showing that it satisfies axioms (03) and (08°) under some natural assump-
tions.

Definition 2.1. Consider a sesquilinear functional g: X x X —»® with
respect to an automorphism T. ® —»®. Now define the d-orthogonality
relation | T on X by

L*= {(5,1) GX x X 1th(x,y) = O}.

A vector z 6 X is said to be isotropic, if d(r,z) = 0. It will be fundamental
in the sequel the condition

(*) there exist vectors uo,Vo € X such that g(no,mo) ¢ 0 ¢ d(no,r>0)
and t(vo, vo) = 0.

Lemma 2.2. Assume that the automorphism of @ is involutory, i.e. a =
= aforalla 6 ®. IfV C X is alinear subspace such that the d-orthogonality
on V is symmetric and there is a non-isotropic vectort 6 V, then

d(y,x) = TP{x,y), x,yeV,

where 7 = (£(t, i)/<£(i,i) and so 77 = 1. Thus for any couple x,y £ V

with non-isotropic y, t(x,x)/d(y,y) = "'y (x,x)/[yd(y, y)] = d(x,x)/ d(y,y)
is a fix element of ® with respect to its automorphism. Moreover, in the
particular case of~ = id$, i.e. if ¢ is bilinear, then it is symmetric on V.

Proof. Let X,y £ V be arbitrary vectors and f = <£(a;,i)/<£(i,f) and
N = gy, f)/<E(t, t). Then for n = x —£t and v = y —T]t, we have

d{n,1) —d(x, t) - Ne(t,t) = 0 and  p(n,1) = th(y,1) —T&I>(FL) = O,
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whence, regarding the symmetry of +®, 4>(tu) = 0 = <Xjv). Now for
£ = d{un, v)/<t>(t,t), it follows that

h(n - £f,v+ 1) = dn,v)- Cab,t) =0
and so again by the symmetry of £,
By, n) - ((r, t) = @@y +t,u- (1) =0,

i.e. g(r,m) = £<£(f, f) = 7dp(n,y). Finally,
DY, x) = (b + rJt,u + £t) = d(y, n) + DEN(r, t) =
= 7{dw, v) + 170(t, 1)) = 7 + £t,v + rjt) = "yd(X, y).
Lemma 2.3. ff the ¢p-orthogonality on X is symmetric and condition (*)
is satisfied, then the automorphism of ® is involutory.

Proof. Let a G ®\{0) be arbitrarily fixed, B = tp(ano,ano)/th(-0,10)

and 7 = ®(yo,Yo)/P(yo, yo), where uo,vo G X are defined by (*). Then we
have
d(an0 - Rv0,aul+ v0) = d(an0,au0) - Bd(vo, v0) = 0,

whence, by the symmetry of J #,
d(an0,aul) - &P(y0,vqg) = h(an0 + v0,aul - Bv0) = 0,

i.e. p(amo,amo) = (3d(k0,v0) = -yh(ano,ano). Now, using this equality also
for a = 1, we have

'yvaatp(n0,n0) = 7aad(n0,n0) = 'ygp(an0,an0) =
= <f(cw0,au0) = aap(n0,n0) = aa”p(n0,n0),

ie. a = a.
Now defining for x G X the linear functional dx: X —a® by qx{T) =

= ¢{,x), we can present a more familiar condition instead of (*) in terms
of a subspace of the conjugate space:

X; = {dx Ixgx) c x*.

Proposition 2.4. f/-the ¢p-orthogonality on X is symmetric, then the
following assertions are equivalent:
i) Condition (*) holds true;
i) There exist x,y,z GX with p(x,x)/ 0, ¢(r,x) = 0 and <>z y) ¢ 0;
iii) There is a non-isotropic vector in X and dim Xd > 2.

Proof. i)=>iii): Obviously d ¢ 0 and dwo £ lin{<E,0}.
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iii)=>-ii): Choose a non-isotropic vector x G X. Since dimX" > 2,
there is y G X such that dy G X™Mlin{<~2}. On the contrary, suppose that for
any t G X, {X(tx) = 0 implies 4>(t,y) = 0, or equivalently, <f>(ti,x) = dqi(d®,x)
makes d(b,y) = d(b,y) whenever fi,t2 GX. Let now /1= t(x,y)/ P(x,X)
and t G X be arbitrarily fixed. Then for p = d{d,x)/dp{x,x), we have

X) = d(px,x) and so

ARY) = d(n*,y) = pd{x, y) = p\d(x, X) = Ab(px, X) = AE(i, X).

This means that oy = Adx, which is a contradiction.

i1)=>i): There may occur exactly the possibilities below:

a) ¢(r,z) p 0: Then let ug= x and Vo = z.

b) d(r,r) = 0: Then we have to deal with the following cases:

b/1) d{x,y) d 0: Then

b/1/i) either p{y,y) ® 0. Let a = d(x,y)/p(r,y) and define uo =
=X - az, v0=y. Then ¢pu0,n0) = p(x,x) p 0 ¢ ®(y,y) = d(60,r0) and
®10,y0) = d{x.y) - adp{r.y) = 0.

b/1/ii) or p(y,y) = 0: Let a = d(x,y)/dp(r,y) and n0 = x - az. For
non-isotropic y + z let =y + z. Then (o, uo) = d(x, X) ¢ 0 ¢ ¢{uno, vq)
and t(no, Vo) = d(x, y) —ad(r, y) = 0. Now suppose that y + z is isotropic.
Then 7 ¢ id®, since otherwise, by Lemma 2.2, dp would be symmetric and so
b(y+r, y+z) = 2t(y, z) p 0. Thus choosing B G dwith & ¢ 8, we can define
v0 —y + 8z. The only thing to show is p(no,vo) = d(y”r) + g r,y) =
= (R - R)4iv,z) ¢ 0.

b/2) d(x,y) = 0: Then

b/2/i) either db(y,y) d 0: Let ug= X, to=y.

b/2/ii) or p(y,y) = 0: Let ug = x and vq be chosen according to the
same process as described in case b/l/ii).

Proposition 2.5. Suppose that ® ¢ GF{3) and the d¢rorthogonality
on X is symmetric. Ifu,v G X are such that dgp(n,n) 0 ¢ dp(r,n) and
(n,m) = 0, then n and v are linearly independent and P = lin(u,v) is a

-normal plane. In particular, n and v are Ti-elements.

Proof. For v = Xu we would have
0 ¢ t(n, v) = p(Xu,n) = Ap(u,u) = 0.

Similarly, n @ pv, i.e. P =1lin{u, bJ gP and (u,v) G1-"p.

Next we show the existence of a ~-orthogonal base (x,y) G L*p such
that x,y £ lin{u) Ulin{u}. Since _L*is homogeneous, it suffices to look for
x and y in the form x = au + v, y = n —v with a,8 ¢ 0. Then these x
and y are linearly independent if

(2.1) <*0p-1,
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and x Ary if
(2.2) a = R<t>(v,v)/<g>(u,u),

which is obtained from the condition <>(au-\-v, u—v) = ad(n, n)—3d(u, v) =
= 0. Substituting (2.2) into (2.1) we reduced the problem to looking for a
solution of the inequalities

BR ®-D(n,m)lpry), IMO,
which is always solvable if ® ¢ GF(3). This means that P is a (/»-normal
plane with («i,Vi) = (u,v) and (u2" 2) = (x,y)-

P roposition 2.6. Suppose that ® ¢ GF{3) and the ¢r-orthogonality on
X is symmetric while condition (*) holds true. Then every non-isotropic
vector t £ X is a Ti-element; namely, there is a non-isotropic u £ X with

h(n, t) = 0.

Proof. We are to deal with the three cases below:
a) X0, uo)</>(M) & dp(n0,r)cp”,mo): Then for B = p(n0, Hi</»F,t), n =
—ug —Rt, v = t, we have

th(n, v) = (M0 —RBt, Ug - Bt) =

= ®{uo, Ug) - RBep(t, Ug) - Rap(uo, t) + BRp{t, t) =
= o, uo0) - t(uo™)Ht,u0) » 0~~~ ~ A~ A

and (n, v) = d(no, t) —Bd{t, t) = 0. Thus by Proposition 2.5, t £ lin{u, v} £
£ Vn, i.e. via the definition, t is a rj-element.

b) <>\, o)</t t) b <>(wo, Q<I>(* vo): See case a).

c) p(n0, nO)dh(t, t) = p(nO, t)4>{t, Ug), P{yo, u0)<>(,t) = dyo, f)"(i, u0):
It follows immediately that <X(it0ji)» d(c,n0), p(no,t), FXtvg) p 0. Let B =
= </>(uot)/(/>(uo,f), n = no- RvQ, V=1t. Then

dhun, n) = gm0 - RvQ, Ug- RvO) =
= (10, Ug) - BA(VQ, Uq) - BR(uO,vq) + BRIYVQ, Vaq) =

<>0,1)(/>(uo,f) _ AW, )", Up)
0N b (O.) ®(Y0,u0) = t(n0,n0)+ B0~ ) A, noy PO Va)
= 2p(M0,n0) ® O P dilch1) = p(y, n).

Also we have t(u,m) = B(uo,t) —Rp{vQ,t) — 0, and so by Proposition 2.5
t £ lin{u,u) £Vn,ie. tisarj-element as well.

= ®(no,n0)+
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P roposition 2.7. Suppose that ® ¢ GF(3) and the drorthogonality on
X is symmetric while condition (*) holds true. If P E V is such that every
z E P is isotropic, then ¢ is identically zero on P, and so P E Vo-

Proof. Let x,y E P be arbitrarily fixed. Then d(x,y) + p{y,x) =

= p(x+y,x+y) =0, ie dxy) =-db(y,x)=-7dXYy). Now, if “= id$,
then p{x,y) = —p(x,y), i.e. dp(x,y) = 0. Otherwise, choose a scalar a E ®
with a /6 and take ax for x:

ad(x,y) = dp(ax, y) = - 7d(ax,y) =

= - Tap(xy) = a(-7 d(x.y)) = ad(x.y).
Then clearly (x, y) = 0 again.

Theorem 2.8. Assume that ® ¢ GF(3). If the ¢r-orthogonality on X is
symmetric and condition (*) holds true, then _L" satisfies axioms (03) and
(08").

Proof. The validity of (03) is obvious. Now we are going to show
(08°). For this reason, let P E'V be arbitrarily fixed. Then there may occur
exactly the possibilities as follows:

a) Every z E P is isotropic: Then Proposition 2.7 implies P E Vom

b) There exists non-isotropic v E P: Then by Proposition 2.6, vis a 77-
element. Also, for a fixed x £ P\lin{v}, we define u = x—{d(x, n)/dh (b, V)]v E
E P. Then clearly (u,v) E -L"p and

b/1) either dp(n,n) = 0, when u is a To-element and so (u,v) E J-"pll
MN(Xo X Ai), i.e. P EV\,

b/2) or dp(n, n) b 0, when by Proposition 2.5, P = lin{u, v} EVn.

Corollary 2.9. Assume that ® o GF(3). If the cp-orthogonality on X
is symmetric and condition (*) holds true, then

i) (0)Hotx*(A,Y) =HoT1(A)Y);

ii) (e)Hotx*(A,Y) C Quad(Ay);

i) Hotx*(A,Y) = HoT1(A)Y) (e)HoTtx*(AY) = {O}.

Remark 2.10. The condition ® ¢ GF(3) cannot be omitted from the
previous statements. To check this, let ® = GF(3) = {—1,0,1}, X = ®2
and define gx X x X —®hy

0 ((™M;72), (71 %12) = - sz, (Ti;6 ),(>n;»i2) € A.

Then for W= (1;0) and \g—¢0;1), we have Cm/QI/D =1 Cbo Cb—l—:
= d{yo, vo), t(w, vo) = 0, however V = {A} and

+(X = {(buo,pv0),(p.vo,\u0) I A JaE ®\{0»,

showing X VoW n = Vs. Actually, (e)Hotx*(A,¥Y) C Quad(A,y) holds
no longer in general. E.g., define E: X —R to be even and satisfying

£(1;0) = 1, £(0;1) = -1, £(!;!) =0, E(1;-1) = 0.
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Then it can be shown easily that E G (e)Homz*(X, R), however

A((1;0) + (1;1)) + £((L1;0)-('; 1)) =
= E{-1;1)+E(0;-1) =0+ (-1) = -1 o
N2 = 2-1+ 2-0=222(1;0) + 2£(1; 1).

3. Even solutions

The previous section has left open the question how to select the even
solutions from among the quadratic functions. Now we answer this question
under the following assumptions on the field &:

Throughout this section, using the notations i1 = (a G ® | a = a},

= {yft ly, € ®} and fl_ = —2+, we assume that

+4+ c ii=il_ U 2+ = (w2\a6 i)}

These conditions are motivated by the natural properties of the complex
field C, but they are valid e.g. for the subfield of the algebraic complex
numbers, too. More generally, starting from a euclidean ordered field Il, i.e.
an ordered field in which every nonnegative element has a square root, it is
quite evident that the cartesian product ®= fl x Q turns into a field of the
above type just as C = R XR. In each example given till now, the particular
automorphism should be chosen to be the usual conjugation. Notice that
the first condition excludes the possibility of ® = GF(3). However, any
euclidean ordered field or fields having only square elements, meet all of the
conditions with the identical automorphism. For more information see e.g.
[6].

Also, further on, the (*»-orthogonality on X is supposed to be symmetric
and satisfying condition (*). Then by Lemmas 2.2 and 2.3, there is a scalar

7 G ®such that 77 = 1and d(y,x) = 7d(x,y) for all x,y GX.

Lemma 3.1. There is a sesquilinear and Hermite-symmetric functional
o: X x X —»d such that +Po=+dwWw

Proof. Since (50, no)h(u0,v0) G i1+, we have 08 G i1+ with Wy =

= ((no, U0) *®(10, V0). Hence for x = ¢ {yo,vo)/u>o, it follows that xx = 1land
X2 = 7- Let define ¢o: X XX —»® by

®o(x,y) = xP(x,y), X,y ex.

Clearly, do is sesquilinear and the Hermite-symmetry can be verified as fol-
lows:

Po(y, X) = XP(Y, X) = XTP(X,y) = xX2D{x,y) = xP{X, y) =
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= X0 {x 1Y) = ®o(x,y).
Finally, £+®o=+® is trivial from the definiton.

Lemma 3.2. Ifd is Hermite-symmetric and E G (e)Hotx<*>(XY), then
for each non-isotropic t GX

E(rt)=E(t), rG® TT—1

Proof. Let t G X be non-isotropic. By Proposition 2.6, one can choose
a non-isotropic n G X with <&f u) = 0. Then dth ®)/dp(1, u) G i1 and so it is
equal to Epp for some p G &, i.e. < t) = £d(pu, pu). This implies that
either <X(i -} pu, t —pu) = 0, whence
m LYpu t—PUy =g (txp)+E(I17) =

t+pu t—pu
=4 ") +Ne ) = e
or &t + pu, t Fpu) = 0, whence

= E(pu),

E(t) + E{pu) = E(t +pu) = E +E =

. "H Ne H

Now applying this for rt (t G ®, rf = 1), we have by the above argument
that either
E(rt) = E(pu) or E(rt)= —E(pu).

This means that in both cases E (rt) = E(t).

Corollary 3.3. If @ is Hermite-symmetric, then for any E G
G (e)Hotx*(X,¥) we have

E(x) = E(Y), X,y GX, d(x, x) = d(y, ).

Proof. If db(x,y) = 0, then p{x + y,x - y) = 0 and so E(x) = E(y).
Otherwise, we can choose n G fl+ such that n2 = gp(x,y)d(x,y). Then for
1j = (x, y)/u>we have 777= 1 and d{x + rjy,x —py) = 0. Thus Lemma 3.2
implies that E(x) = E(py) = E(y).

Theorem 3.4. Suppose that ¢ is Hermite-symmetric. Then E G
G (e)Hotx,*>X Y) if and only if

E(x) = a(d(x,x)), iG 1,
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for some a GHom(il,Y).
Proof. By Corollary 3.3, E (x) depends only on ¢ (x,X):

E{x) —a(h(x,x)), £ I

for some a: Il =Y. Now we have only to show that a is additive. For this
reason, first observe that choosing any u,v GX with ¢, 1) o 0/ dn, n),
(n,x) = 0, then for all a,# G I1+ and /1= t(au, au), p = </>(/H,/3H), we
have

a(A 4- ) = a(db(amn, au) + ¢(Pu, Bv)) = a(dp(an + Bv,an -f /?7H)) =

= ,E(au+/3n) = E(au) + E(Bv) = a(</>(au,au)) + a(™>(/?n,/?n)) = a(A)+a(/x).

Since for the vectors uo,vo G X given by (*), ¢(1o, no), d>(no, ho) G I,
there are exactly the following possibilities:

a) (1o, no), <€mo, no) £ 11+: Then for each /1,4 G i1+ there exist a, /3 G
G [1+ such that a2 = X/d{w,no) and B2 = u/h(no,vo). Thus by the above
observation

aX + i) = a(A) + a(/x), AJ/x Gli1+

follows, i.e. a is additive on ii+, and choosing a to be odd, it is additive on
the whole ft.

b) d(no, uo), (no, vo) Gii_: See case a). .

) P(Mo, ug) G I+, <>umono) Gii_: Then for each A/ G I+ there exist
a,R Gil+ suchthat a2= X/t(no, «0) and /22 = —p/d(Ho, Ho). Thus referring
again to the above observation, we have

a(A- 1) =a(A) +a(—k), X, XGIl+

Now letting A= /x, a(—p) = —a(/x) follows, i.e. a is an odd function. Finally,
for any p, er G i+, defining A= p + cr,’x= <G [i+, we obtain

a(p + tr) = a(A) = a(A —X) + a(/x) = a(p) + a(<r).

This means that a is additive on [i+, and because of its oddness, a G
G Hom(il,Y). B -
d) dp(vo,uw) Gil-, duo,no) G ii+: See case c).

Corollary 3.5. Under the general assumptions on the field ® and on
the orthogonality _L~ at the beginning of this section, we have

(e)Homx*(X,Y) = {ao0A* |aGHoT1(?9,Y)},

where A™N(X) = d(x,x) for all x GX.

Proof. This follows immediately from Lemma 3.1 and Theorem 3.4
above.
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Remark 3.6. Now the result of Vajzovic [8], Theorems 1, 2, Fochi [1],
Theorems 1, 3 and Corollaries 1, 2, Sundaresan-Kapoor [7], Theorems 2,
3, Ratz [3], Theorem 9, Corollary 10 and [4], Theorem 3.8 c¢) can be de-
rived in an obvious way from our theory, actually from Proposition 2.4 and
Corollaries 2.9, 3.5 above.

Acknowledgement. The author wishes to thank the referee for his valu-
able remarks on the manuscript of this paper.
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REPRESENTATION OF COMPLEX NUMBERS
IN NUMBER SYSTEMS

B. KOVACS (Debrecen)1

Introduction

Let R be an integral domain (with unit element), a G R and Al =
= ,kn} a finite subset of the set of rational integers Z. {a,Af} is
called a number system in R if every 7 GR can be uniquely written in the
form

(1.1) 7=a0+ara+...+aCft a GA ((O0<r<fc), ak dPOif kO

IfAl = {0,1,... ,n} then the number system {a,Y} is called a canonical
number system.

This concept is a natural generalization of negative base number systems
in Z considered by several authors. The canonical number systems were
completely described by Kéatai and Szab¢ [1], Katai and Kovécs [2], [3], if R
is the ring of integers of a quadratic number field. Kovécs [4] gave a necessary
and sufficient condition for the existence of canonical number systems in R.
It is proved in Pethd and Kovécs [9] that for any q<—,q9GZ {a,Y} isa
number system in Z with infinitely many AT C Z. In [6] Pethd and Kovécs
characterized all those integral domains which have number systems and gave
necessary and sufficient conditions for {a, Af} to be a number system in an
order B. Furthermore they characterized effectively the base of all canonical
number systems of B and computed the representatives of all classes of bases
of canonical number systems in rings of integers of some totally real cubic
fields.

In [1] Kétai and Szabd proved that if {a,Y} is a canonical number
system in the ring of Gaussian integers, then any complex number 7 can be
written in the form
(1.2)

7 = akOk+ ak~\OLk 1+ ...+a0+a_ia 1+..., a-GAT (*=k,k-1,..).

This result was extended for the ring of integers of imaginary quadratic fields
in Kétai and Kovacs [3]. In connection with this Daréczy and Kétai proved
that for every complex number a, |a| > 1, there exists aset {0,1,... ,n} = Af
such that any complex number 7 is representable in the form (1.2) ([7]).

1Research supported in part by Grants 273 and 400 from the Hungarian National
Foundation for Scientific Research.



114 B. KOVACS

In this paper we first give a necessary and sufficient condition for a
number system {aJ1/*} that any complex number 7 can be written in the
form (1.2). Using this theorem we describe a family of number systems with,
the property above, further we prove that every number system in the ring
of integers of any cubic imaginary field has this property.

Results

In the sequal R will denote an integral domain of characteristic 0, Z the
ring of integers, Q the field of rationale. If a is an algebraic integer over Q,
Z[a] denotes the subring of Q(a), generated by Z and a.

If {a,N} is a number system in Z[/3] and

7 =a0+ aia -f... akak, af GAS (0<i<k), a*pOifkp0

then the exponent k is denoted by £(7,a). With this notation we have

Theorem 1. Let be a number system in Z[/3], (B is an algebraic
integer over QJ. A real or complex number 7 can be written in the form (1.2)
— according as a is real or non-real — if and only if there exist sequences
7 (k), S(k) with the following properties:

1. 7 eak = ~/(k) + 6(k) for every positive integer k,

2. 7(k) G /3] and b(~/(k),a) < K + ¢\ where c\ is an appropriate
constant which does not depend on Kk,

3. 6(k)/ak —=0 if Kk —»00.

This theorem is rather general because if an integral domain R of char-
acteristic 0 has a number system then R = Z[a], where a is an algebraic
element over Q (see Theorem 1, [6]). Using Theorem 1 we prove

Theorem 2. Let {a,AT} be a number system in Z[/3], where 3 is an al-
gebraic integer of degree n > 1 over Q and let us suppose that |a| < |a™}|
for every conjugate of a over Q. Then every complex number z has a rep-
resentation in the form (1.2) if a is not real and every real number r has a
representation in the form (1.2) ifa is a real.

From this result one can deduce the already mentioned results of Katai
and Szab6 [1] and Katai and Kovacs [3], moreover in our case this theorem
is stronger than the result of Dardczy and Katai [7].

Finally, with the aid of Theorem 1 and Theorem 2 we get

Theorem 3. Let a be a non-real algebraic integer of degree 3 (over QM
If{a,Af} is a canonical number system in a Z[/3] then every complex number
7 has a representation in the form (1.2).
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Proofs

In order to prove our theorems we need three lemmas.

Lemma 1. If {a, AT} is a number system in Z[], where B is an algebraic
integer over Q, then |a(’)| > 1 holds for every conjugate of a.

Proof. This is one of the statements of Theorem 3 in [6].

Lemma 2. Let B be an algebraic integer over Q of degree n ~ 1 and let
{a,M} be a number system in Z[/3]. Then there exist effectively computable
constants ci(a,Af), c2{a,/11) depending only on a and Al such that

log Ol 4 ci(a,Af) < I(t,a) < max 199 EO L o0t af
2% og jay) * &1 @AD S 162 < B g o * HOVAD
where 77) and a(’) are the i-th conjugates of 7 and a, respectively.

Proof. See [8].

Lemma 3. Let a be an algebraic integer over Q. If > — holds for
some real conjugate of a then {a,M} is not a canonical number system in

Z[a].
Proof. See Lemma 6 in [6].

Proof of Theorem 1. First let us assume that 7 can he written as
(2.1
7=a”aN+ ...+a\a4a0+a”a 1+ ..., a-6Al (i=N,N—1,...).

For every positive integer K let

—00

7(k) = aivaN+k+aiv_iaN+k~1+...+a_jt+ia+a_fc and 6(k) = ake™ a,Q*.

It is easy to verify that these sequences ~f(k), S(k) satisfy the conditions
of our theorem because |a] > 1 by Lemma 1.

Of course, we may assume that 7 ¢ 0.

Let us now suppose that for a 7 ¢ O there exist sequences 7(K), 6(k)
with properties 1, 2, 3. Let N(k) = L(')/(k),a) - k and

7{k) = EbbK)<a)alblk)a) + ... + bra + B0, 6;GJI and iz(7(fc)a) ¢ O.
We write
z{k) = I(k)/ak = + eee+ pk+iot + bk+ bk-iot x+ ... + 60a k.

Since, by assumption, L(7(fc),a) - k is bounded above and N (k) is bounded
from below because of 7(k)/ak —7 o 0 (J]a] > 1), hence there exists
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an infinite set Spftk) of those indices K for which ki, k2 E 5jv(fc) implies

L kr) = N(k2).

Let Cjv(fc) be such a value (in AT) for which Cjsf(k) = "L\(k),a) where
6 £ 'S]MAY)

Consider now the set of those k's in fer which —CV(fc)-i

holds infinitely many times.

Let this index set be denoted by SiMJ)—» Repeating this argument we
get a monotone index set, all of which have infinitely many elements, and a
chain Cjv(fc)-i, === {Cj E AT).

Let W = CN(k)jaN'?>+ ... + Cxa+ CO+C-Xa-. + ....

Let furthermore k(r) E &WUK)-r+i, &(1) < &(2) < s¢e¢ Then hmz(k(r)) =
= W, but limz(fc) = - because of im6(k)/ak = 0and - = (- *akK)/ak
= (- (K) + 6(k))/ak, and so

7 = CN(klaNW + ... + Cxa + CO+ C-Xa~l + ... , Cj EAT.

This completes the proof of our theorem.

Proof of Theorem 2. Let - be areal number ifa is real and a complex
number otherwise. Of course we can suppose that » "o .

Let G —wA fRot 1A,B E Zj.

i) If a is a non-real complex number, then C is a lattice in the complex
plane. For every positive integer k, let - k = Ak + Bka be one of the lattice
points of that fundamental parallelogram of C which contains the number
; mak. One can readily verify that for every K

(3.1) \j mak—fd <ci, |Ajtf<Celafd and \Bk\< c: moifg

hold with suitable constants cx,C.,C3 not depending on k.

ii) If a is a real algebraic integer with degree > 2, then £ is a dense set
and so it is easy to see that for every positive integer K we can choose a
; ©£= Ak -f Bka such that ; ~ satisfies (3.1).

iii) If a is a rational number then the existence of a sequence j k with the
property (3.1) is also evident.

In the sequel let - ~ be as above.

From (3.1) we can simply deduce that

(3.2) |7 «| < calal*
holds for every positive integer k and for every conjugate 7 of 7% with an

appropriate constant G} which does not depend on k.
From (3.2) we get

(3.3) logb”™l <logcd+blog|al
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and so

log e} . log”™ + k mog [a]

N K+ €S
1=r=nlog |aM | log |a|

(3.4)

where the constant G does not depend on k.
Further because of Lemma 1 |a| > 1 holds, consequently

(3.5) AkloLk —»0 if K —»00

where 6k = 7 eaft—7*

(3.1), (3.4) and (3.5) show that the sequences 7*, 6k defined above satisfy
the conditions of Theorem 1. This proves the theorem.

Proof of Theorem 3. The case of 7 = 0 is trivial, so we assume that
710.

Let a™1) be the real conjugate of a, = a and = a.

a) We begin our proof with the case arg(a(2) ¢ (2rTr)/n (m,n E Z,
n/0). For every positive integer K let

- (a2
(4.1) Bk =
llaw| +a(2)
where [ ]and | | denote the integer part and the absolute value, respec-
tively.

By Lemma 1, |a(*)| > 1 (t = 1,2,3). Further 7 / 0, and so if K is large
enough then

(4.2) (1/BK)\y ma(2))fd = \aM\ + a<2)| + qk)/Bk

where c{k) > 0 and bounded from above.

Since arg(042)) ¢ (2rmr)/n (m,n E Z, n ¢ 0), the set {arg(042))fd0 <
< K E Z} mod 2w is dense. Consequently, we can choose an infinite sequence
k(1) < k{2) < ... of positive integers such that

(4.3) arg(7 «(a(2)m?d) -* arg(lar”| + a*2)) if k(i) —m00.
From (4.2) and (4.3), it follows that

(4.4) (L/BK{i)) 7 *(a(Q)fcl) = |a™| + a<2>+ 6k]i)

such that 6k(i) —*0 if i —m00. And so

(4.5) 7 +(0(2)f00 = BfcWla(1)l+ BW *W + % ;)«*« =
+ Bk(i)a(2) + Bk(i)6k() + rk)
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where 0 < rkw, < 1.

Let Akw, = [-Bf() [] and gk, = BKuw6kuw + rky
By (4.4) and (4.5) we can deduce that

(4.6) dk(i)!Bk(i) = () + re(O)/#*() -c 0 if i->oo.

Because of (4.1) Bw) = Ci|(al2)*4")|, where Ci is bounded and so by
(4.6) we get

4.7) Ofciy/ (a (2)f -» 0 if i —moo.
Now we shall prove that
(4.8) L(Aft) + flfc()a<2>, a<?)) < fc(t) + c2,

where c2 is a constant not depending on k(i).
It is evident that for every k(i)

[°g I"4fc(i) + Bk{i)gW 1_ log [V4AL) + BTt)Q(3)|

(4.9) logla(2) log [o;(3)

We shall prove that the following inequality holds for every k(i)
log\Ak(i) + £fc(,)<(1)l < logHfc(,) + -gfc(ptt(2)! N
log l1«!1)! log |a (2)| W

where w is a constant not depending on k(i).
(4.10) holds if and only if

(4.10)

(4-11) + BR(,)a(|* v

where 1 = (log la*D/?og |al2]|) and v = |[alll|¥. Since Igl* = —g!1) by
Lemma 3 and

+ B KDY = [% )1« (DI + RK{)<{L

hence the left hand side of (4.11) is bounded from above.
But lal1 > 1(i = 1,2,3), and son > 0. From this it follows immediately

(4.12) (*"NsBpgNAu~nepa”~boO, if i->o0.
But —»lgIl!] if i =00 and q!21 alll, consequently
(4.13) \(AHi)/BKi) + aW\u /0
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and it is bounded.
From (4.12) and (4.13) we get that if v is large enough, then

(4.14) (1/B k(i)r \A k(i) + A I(AKG) B k{i)) + a(2)|* *u

holds for every k(i).

Because of Ig™} > 1 and by definition we can choose v such that (4.14)
holds. Since (4.14) holds if and only if (4.11) holds, consequently (4.10) also
holds.

By .'Uio = [Bepgla<l)] and Bep = cila<2>4<>we have

(4.15) |Mepn + Bepa<!y < cbla<r>|*«,

where the constant  does not depend on k(i), and this means that

(4.16) + < C7+ t(i)
log layr= log I

where (7 is a constant which does not depend on k(i).

(4.8) follows immediately from (4.9), (4.10) and (4.16). By (4.7) and
(4.8) the sequences 77,) = and satisfy the conditions
of Theorem 1. Consequently, in the case under consideration the proof of
our theorem is complete.

b) Let now arg(a(2) = (2mir)/n (m,n £ Z, n > 3). It is easy to see
that a~/aW is a root of unity of degree 3 or 6 because a(2) and af3) are
conjugate elements of degree 3. We can readily verify by this statement that
(0f1)3 = 77 and (a(2)3 = r2= (a(3))3 = I3, where iq and r2 = I3 are real
algebraic numbers of degree 1 or 3. But the latest case is impossible because
ri, r2 and I3 are conjugate elements and r2 = 3. Consequently, ri is a
rational number. Since a is an algebraic integer, hence a3 = n where n £ Z

But if a is a root of the polynomial x3+ n where n < 0, then a has a
positive conjugate, and so {a,/1/’} can not be a number system in Z[/3 by
Lemma 3.

If n =1, then |a] = 1and so {a, JI"} also does not form a number system
in Z/3] (see Lemma 1).

If n > 1, then all the conjugates of a have the same absolute value,
consequently we can apply Theorem 2 to complete the proof of the theorem
in Case b). Thus the theorem is proved.
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MULTIPLICATIVE FUNCTIONS
WITH SMALL INCREMENTS. 11l

K.-H. INDLEKOFER (Paderborn)
and
I. KATAI1 (Budapest), member of the Academy

1 Let 1 be the set of all arithmetical functions having complex values.

Sometimes a function / G il is considered as an infinite-dimensional vector,
the nth coordinate of which is /(n). We write f = (/(1),/(2),...). Let x =
= (zi, z2>...) be ageneral element of iI. The operators I, E, [, Ab (fl — 1)
are defined according to the following rules: the nth coordinate of Ix, Ex,
AX, ABXx are zn, zn+i, zn+i-xn,zn+R-xn, respectively. Let 4* = (E - 1)k,
Ag = (EB—I)k. If P GCJ[z] is a polynomial, P(z) = a0+ a\z + ... + akz,
then the nth coordinate of P(E)x equals

toOtn T aiXn+i T... T

Let a > 1 be a constant, g: [I,00) —[l,00) a slowly varying function,
i.e. such that

(1.1 lim_ . max e(y) = 0.
XUY0i<y<x g(x)

Let ii(e (C ft) denote the set of those x G fl for which

(12) £ T

Su
Xl xg(x)a

is finite.

It is clear that ila,p is a linear space, i.e. for f,g GMae> Cj,C2 G C we
have cif + c2g Gtta.e.

Let M. (resp. M*) denote the set of complex-valued multiplicative (com-
pletely multiplicative) functions. Let Ca’e = M. I £*B=M.*1N

In our preceding paper [1] we proved that if/ GM and Aa-f G holds
for some K G N, then either / GCa,eor /(n) = n*u(n), where 0 < Res” 1
and u(n + K) = u(n) for every n G N.

Our purpose is to prove the following

IThe research is financially supported by the Hungarian Research Foundation No.
907.



122 K.-H. INDLEKOFER and |. KATAI

Theorem. Iff £EM, P £ CJ[z], P ® 0, kK = deg P, and
(1.3) P(E)f€ilae
then either | £ Ea,e or f(n) = nsu(n), where 0 < Re s <k and
(1.4) P(P)u = 0.

Remark. We shall not determine the solutions of (1.4). From the proof
of the theorem it will follow that there exists an integer B such that u(n) =
= Xs(n) whenever (B,n) = 1, and \B is a suitable character mod B.

2. Notations. For an n £ N let p(n) be the smallest prime factor of
n. For a prime p and an integer n let £o(n) be the exponent of p in n, i.e.
p*p(M\\n. For an arbitrary sequence x, L(xn,... ,xn+k) or Lj(xn,... ,xn+k)
denote fixed linear combinations of the variables xn,... ,xn+k. Forak £ N
let Xo,k(n) be the principal character mod k.

3. Letf £ M and Aj — A be the set of those polynomials P £ C[z]
for which P{E)I £ Sla<e. Assume that A contains a nonzero element. Then
P\,Pb ¢ A imply that ciPi + @P2 6 A, furthermore, if P(z) £ A then
zP(z) £A. Thus, if P £ A and Q £ C[z], then QP £ A. Hence we get that
A is an ideal.

Observe furthermore that if zQ(z) £ A, then Q(z) £ A as well.

The ideal A is generated by its least degree monic element Pi. All the
other elements P £ A can be written as P = Q wP1? Q £ CJ[z].

It is enough to prove the Theorem in the case when P is the generator
element of A.

Let P be the generating element of A, k = degP. If k = 0, then
/| G Cae We may assume from now on that k > 1. If P(0) = O, then
P{z) = zQ(z) £ A, and Q £ A. This cannot occur, since P was assumed to
be the generator element.

K
Let Oi,... ,0Ofc be the roots of P, P(z) = M (z ~ ®)- Let m ~ 1be an
i=i
integer,

K
Qm(z) ;= M(z- 07) = 60+ biz + ... + bkzk, bk=1.
j=i
P(z) is a divisor of Qm(zm), so Qm(Em)i £ ila,e- Then

(3.1) Y, IQm(Em)f(mn)\*“ « xe(x)a.

Let
Tn = Qm(Em)f(rnn), Zn = f(m)Qm(E)f(n),
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K
(3.2) O(m) =Yn- Zn = bj {/(m(n+j)) - /(m)/(n+ j)3.

j=o
Since Y = (Yi,Y2>eee)E g? therefore P(E)Y G Since P(E)f e ilasg,
tHPTpforp

P(E)Z=f(m)Qm(E)P(E)f Gil«,ef
consequently

(3.3) P(E)A G A= (4(1).4(02)...).
Let m = pa, where p is a prime larger than 2k -f 2. Observe that
(3.4) P(E)A(n) =b0(f(mn) - f(m)f(n))P(0) if p|n.
Let n be running over the integers n = where b > 1, pbis fixed and

v is coprime to p.
Then, from (3.3), (3.4) we infer that

(3.5) () -/ (N /(N T E 1/IMT < **(*)e
1/<X
(fp)=i
Let
(3.6) s,(*)= E_ lUMI"-
1/SI
("p=1

Now we prove that

(3-7) x00(x) = 00 (* = 00)

which will imply that
(3.8) f(pa+b) = f(pa)f(pb)

for every a, 6 GN.
Assume that (3.7) is not true, i.e.

(3.9) 5p(x) < xg(x)a.
Let us choose a large constant c. Then

(3.10) I/(n)]“ < xR(x)a
n<x
tp(n)<C
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124 K.-H. INDLEKOFER and |I. KATAI

holds as well.
For an n satisfying £p(n) > ¢ we consider

tn:=/(») - -wP{E)!{n).

It is clear that tn is a linear combination of f(n + 1),... ,/(n + K), tn =

= ci/(n+1) + -. .+ Cfc/(n+fc) with suitable constants c\,... ,c*, furthermore

fp(u +j) ~cforeveryj = 1,... ,k. Thus ~ |<|" < xga(x), which by
Ipr(]n)x>c

our assumption P{E)i £ gives that

£ )| <ie(x)"

tp(n)>C
n~x

and so by (3.10) we get f £ This contradicts the minimality of P in A.
We proved the following

Lemma 1 Let P(E)f £ Qaie gall some polynomial P(z) of degree k.
Let P he the smallest degree polynomial with this property. Assume that
f £ Adandk > 1. Then f{mn) = /(m)/(n) whenever p(m) > 2k + 2 or
p(n) > 2k -f 2.

Assume now that m is such an integer for which p(m) > 2k + 2. Then
A(n) = 0 identically. Consequently Yn = Zn, and from (3.1) we obtain

(3.11) f(m)\a \Qm{E)\f{n)\a < xg(x)a.

n"x
(3.11) implies that either f(m) = 0or Qm(z) £ A. Assume that /(m) ®

® 0. Since Qm(z) £ A, degQm(z) = K, therefore it is a minimal degree
monic element of A, so P(z) = Qm(z), consequently

(3.12) {0b...,0*} = {Oor,...,oMn -
From (3.12) we infer that {0j,... ,0jt} = {0™r,... ,0™r) holds for every
r = 1,2, Since 0j ¢ O, therefore 10y| = 1 for every root Qj. Let

< = a™ ;«If were an irrational number for some j, then all the numbers
0™r would be pairwise distinct, which cannot occur. Consequently (pj (j = 1,

... , k) are rational numbers. Let (fj = with (ai,... ,a*,B) = 1, B > 0.
Then 0"~ = 1foreveryj, i.e. Qj are Pth roots of unity. Since the multiplicity
of the occurrence of some root of unity in the system {Or,... ,0"} is at most

k, therefore P(z) is a divisor of (zB —I)k and so
(3.13) (EB-1)kfEilege.
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We deduced the relation (3.13) under the assumption that there exists
m £ N with p(m) > 2k + 2, /(m) ¢ 0. We shall prove now that this is
true, whenever P{E)I G Qae, f Ca,e- Indeed, if f(m) = 0 were satisfied
for every such m, then /(n) < 0 could occur at most in the case when n is
composed of primes less than 2k + 2 -f 1. Let Bi < <@ < ... be the whole
sequence of such integers. It was proved by G. Polya that a,+i —a,, —»00
as 1 —»00. By this we get

IM =w B [ /W

if is a large element. Hence we get
£ I/MI“=£ I/IMI* < 1+ £ IW/MI* « »(*)m

ie./ G This is a contradiction.
So we proved

Lemma 2. Assume thatf EM, f £ Cae an”™ "ere ezisis a polynomial
P of degree k such that P(E)f G Assume that P is a minimal degree
polynomial with this property. Then there exists a suitable integer B such
that P(z)\(zB —I)fc and so (EB —I)ki G

4, Assume that the conditions of our theorem hold; furthermore let K
be minimal, k > 1. This implies that f ~ CaB If the assertion of Lemma 2
is true with B, then it is true with Br (r = 1,2,...) as well. Therefore we
may assume that all the primes up to 2k + 2 divide B. Let us assume this.
Let

(4.1) /*(n) = Xo,s(n)/(n).
It is clear that
(4.2) (EB- L)xI' G

furthermore /* GJi4*.
Since xo,8{n) = 1 for (n,B) = 1, therefore /(n) = /*(n) whenever
(i, B) = 1. We want to prove that /* ~ CaiB. This will follow from

Lemma 3. If there exists an integer D such that
(4.3) Y, 14mr <
nix
(n,D)=1
then f GCa,e-

Proof. For an arbitrary n let a{n) be the product of the prime factors
of n composed from the prime divisors of [D, B], and let b{n) be defined by
n = a(n)b(n). Let H be an arbitrary large but fixed integer.
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From (4.3) we get

(4.4) A2 1/(n)l < xBa(x) (x -* 00).
n<x
a(n)<H
Let pi,... ,pr be the set of the prime divisors of [D,B]. Let B =
= p“l..,p“r, & " 0. Let ,Br and 5 be large positive integers. For an
arbitrary n GN let df :=n+I'B (/ = 0,... ,S —1). Then the cardinality of
di satisfying Pjj+a*\di is at most s / p + 1. Assume that Ri,... ,Br, S are

so large that

5(? +- +7n ) +r<[s/t+1’
holds. Then there exists an integer sn G [0, S —k) for which

Ipj ®»+ (en+ v)B) <Bj +<*j G=1,...,r; u=0,...,k)

holds. Assume that H is so large that Mp*l+a3 ™ H.
Let Q(z) = (zB —I)fc It is clear that

\f(N\ i \Q(E)f(n\ + Lx(|/(n + 5)|,... ,|/(n + kB)I).

Iterating this inequality, we get that

S,,-| Sn+ k
()l <d £ |Q(5)/(n +/5)] +c253 |/(n +/5)],
r=0 i=S,,

with suitable constants cj,C2, which may depend only on S. By using the
Holder inequality, hence we deduce that

(M~ GBE \Q(E)(n +IB)\° + c4 £ |/(n + /6)1.

1-0 t=Sn

It is important that a(n + /5) ~ H is satisfied for the integers occurring in
the last sum on the right hand side. Summing up for n, taking into account
(4.4) and Q(E)f G we get our assertion immediately.

Corollary. We have f* ~ £ ai(?.

5. Assume that B contains all the primes up to 2fc + 2, /* G AT*,
f*(p) = 0if p|5, furthermore that

(5.1) (EB- | ff Gilae,
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(5.2) [ 1 Cag.

From these conditions we shall deduce that f*(n) = nsv(n), 0 Res <
<Kk,

(5.3) (EB —I1)v = 0 identically.

We shall use induction on k. The case k — 1 was treated in [1]. We shall
assume that the assertion is proved for k —1 instead of k. We may assume
furthermore that the condition is not true for k —1 instead of k.

Let

H(n) := (EB - I)k~If*(n).

Let qbe a fixed positive integer coprime to B, g > 1. From (5.1) we have
(5.4) A2 max \H(n + £B) —H(n)\a  xga(x) (xo00)

n<x = =
(n,B)=I

for every fixed K. Let h = (q—I)(fc-I), and let Ro, ... ,Bh be the coefficients
of the polynomial (1 + z+ ... + zg~1)k \

(Il +z+... +zg0)k-1=Ro + ... + Bhzh.
It is clear that Bo + ... + Bh = gk~1, furthermore that
(5.5)
(EBg- J)fc ¥*(9n) = (/ + EB+ ...+ E"*-~Y 1(EB- 7)fc U*(gn) =

h
= "2 BjH(gn +jB).
j=o0
Let (n, B) = 1. The left hand side of (5.5) is f*(q)H(n). Let K be a large
constant, In any integer, 0 < in < K. From (5.4) we get that

(5.6) H(gn +£nB) =ty i H(n) + endn,
where
(5.7) £ |£.,0i,,r <
nix
(n,B)=1
Let
(5.8) E(x)-.= Y, I (")1°-
n<x
(n,B)=I
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For an integer N let a(N) 6 {0,1,... ,q- 1} be the integer for which
N —a(N)B is a multiple of g Let Ni be defined by the equation N =
= gNi + a(N)B. It is clear that

1 N N
(5.9§1r ly---B”< < —N
q - - q
Some fixed integer M plays the role of N\ for q distinct values of N,

namely for gM + iB (E=0,1,... ,q—1).
From (5.6) we obtain (for N >qB, (N,B) = 1)

(5.10) H(N)= AH (N I)+eNIMN).
Let 0 = Qq CM  From (5.10) we get that

(5.11) \H(N)\ = O\H(Nx)\ + QNIta(N),  IPAGaiAOl A Knl,a(/I0L-

If c and d are positive numbers, then
(5.12) \&- da\= a\Jua~Idu\ < &C- ~(c“" 1+ da-~I).

Furthermore, the Holder inequality gives that

63  EKIKII<(Ek.NK(>.i*)v

is true for all complex numbers w ,... ,ux,v\,... ,vx. Thus for positive
ci,... ,cx, di,... ,dx we obtain
(5.14)

We shall apply this inequality with

civ = dN=QH(ND\

Taking into account (5.7) we get rapidly that
(5.15) E{x) - QagE ("\ <cxVag(x)E(x)*~1"a.
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with a suitable positive c.

Similarly, summing up for every such N for which N\ ~ y holds, we
obtain
(5.16) QagE(y) - E(qy + gB) < cyl/ag(y)E(ay + gB)(a~XVva.

Let us assume first that there exists a ¢, (q,B) = 1 for which 0 =
=0, <1 ie [*(<9 < gk~1mFrom this assumption we shall deduce that
(EB-)k~1f* G contrary to our hypothesis that k was the least number
satisfying (5.1).

Let e(x) = j2y, and let g be such an integer for which (q,B) = 1,
0g< 1. Assume that lime(x) = oo. From (5.15) we get that

e(x)xga(x) <Qag-ga e ™ +cxga(x)e(x)~z~,

and after dividing by xga(x) and taking into account that -» 1 as
X —» 00, we obtain that

(5.17) e(x) —ce(x)~"~ <0" (I + E)e

is valid for each large x. Here e > 0 is an arbitrary constant. Let us choose
it so that Oa(l+e) <1—e. Then,

(5.18) e(x) - ce(X)~z~ " (i_ E)er-n

holds for every large x. From (5.18) we deduce that e(x) is bounded in
[1, 00). Indeed, let ¥ be a large value which is taken on by e(y) at the point
X, so that e(y) < ¥ whenever y < x. From (5.18) we obtain that

Y —cY(*-1)/ < (1-e)Y,

and so eY < cy™"D/*, YU" < cle. Y is bounded. From now on we may
assume that |/*(n)|] > nk~x holds for every n, (n,B) = 1. On the other
hand, it is easy to see that |/*(n)| < nkif (n,B) = 1. Indeed, ga(x) = 0(xe)
is true for every e > 0. From (5.1) we get that

(5.19) (EB-/rv » | SE |(EB-W » 1 +0(1) (=1.... k)
l/I<n

and

(5.20) 52%eb- i)kfM \ < »+'-

I/<n
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Hence we get that (EB — 1)k */*(v) = O0(v1l+e), and by (5.19) that
(EB- 1)k~2f*(n) = 0(n2+e). Repeating this argument, we get that

(5.21) /*(n)| < Cenk+*

holds for every £ > 0 with a suitable positive constant Ce whenever (n, B) =
= 1. Let us write now n = g* into (5.21). Since /*(?*) = /*(n)‘, we obtain
that
I/*(i)Il ~ C]'\k+".
Setting t —»00, we get |/*(g)| " gk.
Let now q be fixed, (q,B) =1,9q>10 0,= g ,andletng—uy

be defined by 0 = gqv. Then 0 i1 g < 1. We shall prove now that for every
£> 0,

e(z)
110 e ~

0O0.

(5-22) x—Looxrja™c < rl-'p?)o
This will imply that |/*(n)| = nk~X#>for every n coprime to B, and that
Ij —rnn —constant.

First we prove the first assertion in (5.22). Let e, ei be small positive
numbers, and let xo be so large that (5.17) is true with £\ instead of e, for
every x > xq. Then

(5.23) e(x) - ce(x)(a " AN+ £i)e , if x >x0.
Let s(z) = From (5.23) we obtain
s(z)z,“+£ - cz(Cate)N-s(z)20 <"«(1 + £I) S

and after dividing by xha+te,
(5.24) s(x) - cx~°(vate)s(x)~ <qg~e(l+£i)s .

Let £i be so small that g~e(1 + £i) < 1 —£j, say. Repeating the argument
used earlier, we deduce immediately that s(z) is bounded.

Let us prove the second assertion in (5.22). If § = 0 then this follows
from the assumption E(x) ¢ 0(xga(x)). Let rj > 0, £> 0 be fixed. Let Fo
and xo be large values such that e(xo) » Fo- Starting from (5.16), dividing
by yg{y)a we obtain

(5.25) L+7M») < (1+ — Je(ll+ tB)e'(n +28) +

)

Acta Mathematica Hungarica 58, 1991



MULTIPLICATIVE FUNCTIONS WITH SMALL INCREMENTS. Il 131

(«-D/«
L9y + gB)

’y) + (a+a~

and for every large y
(5.26) qlHae(Y) <q(l +2j(1+ E£ie(qy + qB)+

d\ (ar-l)/or

+cq (1+ -3 q +ele(ay+B)(a Ma

Substitute now y = zg. From (5.26) we obtain that
e{gxo+ gB) >qva *e(z0),

assuming that xg was so chosen for which x0 and e(zo) were large enough.
Let now xi = gxo + gB, z,+i —gxv+qgB (i/ = 1,2,...). Thene”+1i) >
> gra~ee(xl/), and so e(x,,) > (g7)r,a~e. Observe that x"*/g”xo0 is bounded.
This proves the second assertion.

Consequently, /*(ra) = nk~1+vt(n), where 0<q<1,t EM * |f(ra)] = 1
for (n,B) = 1and |f(n)] = 0 for (n,B) > 1

Since

Asr(n) =g (-~""(T) (n+ iB)k=1+vt(n + IB) =
i=0 b

= (a]*(n)) nk- 147>+ 0 (nk~i+v),

therefore
Ab/'(")I |, £
ne<e) s et h

Hence, by (5.1), and p(z) < xe, K >2 we obtain that

(5.27) e UENEL <o
(nB)=l

In [2] it was proved that t(n) = n,7xB(n), with some real number r and
a suitable character mod B. (See Theorems 2 and 3.)

6. Now we finish the proof of our theorem. Starting from the conditions
(1.3) and / ™ Ca<e we deduced that there exist positive integers I, B, 1 <[ *
< k, such that the function f*(n) = Xo,s(rc)/(n) EM*, (EB - I)ef* E iiae
and {EB —1)I~li* ™ &a,e and /*(n) = r@~1+1,+TXB(N)> with some real
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number r, 0 < 7 < 1. Let now u(n) be defined by f(n) = n3u(n), s = t—
— +rj+ir. Let the coefficients of P(z) be ao,... ,a*;, P(z) = ao+ ... +dkzk,
K
S(n)= aju{n+j) = P(E)u(n).
j=o0
We shall prove that (1.4) is true. Assume the contrary: there exists an
n0 € N for which 5(no) ® 0. For an arbitrary n let b(n) be the maximal
divisor of n which is coprime to B, and let a(n) be defined by n = a(n)b(n).
Let now n\ < M2 < ... be the sequence of those integers for which
b(rij +1) = b(n0+ £) mod B, a(rij + i) = a(n0+ i) {I=0,... ,k.

It is obvious that S(nj) = 5(no) and {n,} has a positive density. Further-
more,

K
P(E)f(n) =72 aju(n+j)(n +j)s=naS(n)+
j=o0
K
+ /72 aiu(n + XK (n+ 3Y - &)
3=0
Since (n+j)s —n3=0(na~1), €=1—1+ 7/ and u(n -fj) are bounded

on the sequence {n(}, therefore (t ~ t0, A > 0) |P(£;)/(nt)] > An°. This
contradicts (1.3) ifa > 0.

Let us consider the case a = 0. Then | = 1, 7 = 0. Consequently
|/(ra)] = |u(n)] = 1for (n,B) = 1. By using Lemma 3, we obtain f 6 iiae
which is a contradiction.

The proof of the theorem is complete.
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ON HIGHER ORDER HERMITE-FEJER
INTERPOLATION IN WEIGHTED
Lp-METRIC

J. SZABADOS* (Budapest) and A. K. VARMA (Gainesville)

Let
(@) @>)xi >Xi>...>z,(> ), Xk =cosOfc (k=1,...,n)

be the roots of the ultraspherical Jacobi polynomials P,a\x) (a > —1)

normalized such that P,ia”(l) = (n*a). For an arbitrary continuous function
f(x) 6 C[—L1,1] and integer m > 1, consider the mth order Hermite-Fejér
interpolating polynomial Hnm(f,x) defined by

Hnm (fixk) = tojf(xk) {k=1,... n; j=0,1,... ,m- 1).

Hnm{f,x) is a uniquely determined polynomial of degree at most mn —1.
The case m even has been extensively investigated by P. Vértesi [7, 8].
(Actually, he considered the procedure under more general conditions.) His
main results restricted to our particular situation state that form = 2,4,... ,
(@) if max (-™ - —) <a< N then Hnm{f,x) converges uni-
formly in [—1,1];

(b) if~\ + m=a’a > — 0< P < m2cH-1)—2 then
1
fim [ \f(x) - Ham(f,x)\p(l - x2)adx =0
n->00
-1

for all f(x) £ C[-1,1].

We also note that for the special case m —2, P. Vértesi and Y. Xu [9]
gave an error estimate for the mean convergence.

Our purpose here is to settle the corresponding problems form = 1,3,
(At this point we mention that for m = 1 (i.e. Lagrange interpolation) the
problem has been completely solved by P. Nevai [1], [2].) Although in stating
our Theorem 1 we will not restrict ourselves to odd m’s, this case will be of
main interest because of the above quoted results of P. Vértesi.

*This paper was completed while the first named author visited the University of
Florida in Gainesville. Research partially supported by Hungarian National Foundation
Research Grant No. 1801.
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In case m odd we cannot expect uniform convergence (see P. Vértesi
[7, Theorem 2.7]). In fact, we proved in [4] that for m = 3, there is no
uniform convergence for any system of nodes. This justifies that we turn to
investigating mean convergence.

Let us introduce the notation

(>0 a>-1)

for an arbitrary / G C[—,1], and let w(f,h) be the ordinary modulus of
continuity of f(x).

Theorem 1. We havefor m =1,2,..., a>— andf e C[—1,1]

provided one of the following two conditions holds:

Proof. From the notion of Hermite interpolation it follows that there
exist numbers e,£ such that with

(2)
G=0,1,... , m- 1 k=1,.. ,n)

(Efc(x) are the fundamental polynomials of Lagrange interpolation based on
the roots (1)) we have

m— n
(3) *> = E E p@\xk)hjk(x)

for any polynomial of degree at most nT —1, and

.
4) A AF (xKPhpk (X).
k=1

Here

r=01,—; k=1,...,n)
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(see P. Vértesi [7, Lemma 3.11]).
Now let p(x) be the polynomial of best approximation to /(x) of degree
at most nm —1; then by Jackson’s theorem

(6) gax|/(x)-p(x)] = O (")) *

and by a well-known result of S. B. Steckin (see A. F. Timan [6], p. 252)
(M) . _ . . .
PG)X)| =0 min (n\(Il - x2)-j/2) (x| <1, j=0,1,...).

Thus we obtain by (2)-(4)

mm—1 7 71 7
p(x) - HAm(p,x) = "2 ~2pbaXk)hjk(x) = 72 a'k(X~ Xk)'tk(x)m
j:]. k=1 «0 k=1
where by (5) and (7)
m —1
S)o.=E e< -,m -O0O(u(f,1)) E (=5)""1 -

=0("(/"s)) (™) (i=0....m~1;*=1.... n)
with the understanding that e—-* = 0 if r<j. Hence and by (6) and (2)

(9) f(x) - dAnt(/,x) =/(x) - p(X) + p(X) - Hhm(p, x) + Hhm{p- /, x) =

1\ n m—1

6(/, 2) ) + A2 XN adk- xk)'h(x)m+
n: k=l i=0

n m—

+ 0 \R(XK) - F(xK)] A2 e (X_ xK)'t-k{x)m =
( %

1 4 n m—i
W(/,-)) +E E a*(*- «M *)”

‘ k=l i=o0
where by (8), (5) and (6)
(10) Bik = aik + e,jt[p(xf) - /(x®)] = O *w(/,
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(i=0,..,m—1 £t=1,..., »).
Now using the estimates
(n) pbl(x)=0(4,(a:)-0-Y2n-12) (a > -1, |*| <1
(where An(x) = y/l - x2+ 1/n),

6k ~ — (* = !,uoo ))((),

and

(12) (x*) ~ n1"2sin"a_3/20%  (k =

(cf. G. Szegd [5], (7.32.5), (8.9.1) and (8.9.2)), as well as the notation
\9- 6j\= min B- 0%,

we obtain from (10) and (a + 1/2)m + 2 > 0 (see condition (i) in Theorem 1)

(13) - *K) = Pn __ Iftfel
T=l kg o (XF)|mx -
+0« > - /) =0( : - il 1)) £ (& = £)°
k]
s"" +N %K +0 (w(/, = 0 ™-2An(X)-(QH/ K v(7, .

SR IR D
sin(a+1/2)m+2ek

B - eky + O (n-2An(x)-(a+1'Vmu (f, .

e (
sin6(c<sin0

sin(“+1/2),nBK+Ob(f, _%) :O\},( Y 74
{B-BKY V' n)7 n)/ (k—7)2
K]

E
sin6t>sin B
' o= ifa<-1/2

=lv
<
N, (*r(@a+l/2)t £ ifa>-1/2
K]
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=0("(n;))-{?-"r-<«™n«r”nm (0SiS™-2 [1|S1)-
Thus in case a < —} the quantity (13) is of the required order even in the
uniform norm. When a > — then by condition (ii)

fIE R ik(x-xk)% (x)mIP(I-x 2adx =0(UI(f, 1) P /(1-x 2r ~ 2+1W =
J fcd n !

=0 M, 4 "~ (O<i<m-2,m>2).

All that remained to estimate is

(14)
An(x) =Y ABm-i,k(x-xk)m Uk(xl =p (°\xI' Inm21u (f, ") Xn*4(x)
fc=l fc=
where by (10) and (12)
(15)
- Rm—kfc
A a)'(z%)" 2 w(/,Al
Here
7A= O (n12n(20,+1)) Mc=1,...,n; a< -0,

whence and by (11)

K =0 (P<*>(*)r-u/0)»°<1"") tk_\(v =
=o(w(/,i)log,) (a<-i, 1-*2s £)

(see G. Szegd [5, the proof of Theorem 14.4]). Therefore
J A, x)p(l - x2adx =0 AYPlogpn®  J (1 —x2)adx =

[-X2<Ac 1x2<A

("("e=)") («s-D -
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This shows that instead of estimating (14) we can estimate the quantity
(16) B,,(X):(l ,!)£><»(*)
k=1
obtained from (14) by using the estimate
=0 ((1- (X<
valid for a > —1/2 (see (11)). Here we apply the following special case of a

more general theorem of P. Nevai [2, Theorem 1]
Leta> —1,0<p<o00,6>—1and can arbitrary real number. If

ﬁ?) 6+cp>-1, b> ?-g-;—lp—l and c¢> ---2--3--5-5
then
('8) §nu>p1}‘r'lnﬂ, ((1L - x2ff(x), ®|p,b s constll/Hoo

for every bounded function /(x), with some constant independent of /.
Now apply this with

ng b=a ----2--a-+—1(m - Dp, c —@f—l(m —1)
and

20  f(X¥) = “ x)(1“m)2a+l)4 ifx =xh (k= 1,... ,n)
(0 otherwise.

Then by (i)-(ii) of Theorem 1, conditions (17) are satisfied; moreover, by
(15), ||//]joo = 0(1). Thus we obtain by (16), (19) and (18)

T1A.M1u="(11)[|5>AMI]|| =» ([i)[|[Ffrl (i-x 2)7(*),
k=1 P

Ip,b

which proves Theorem 1.
We now prove that the restriction (ii) in Theorem 1cannot be essentially
loosened.
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Theorem 2. Let m > 1 be an odd number, a > —1/2, a > — and
assume that
4(a+ 1)

(21) P> m(2a + 1)’

Then
lim sup \\Hnm(f, 9)||p,0 = oo.
n~°°H/||cSi

Proof. Using (3.11) from R. Sakai and P. Vértesi [3], we obtain with a
certain ko = ko{m)

m- 1

(22) (sm ) (ko < Kk <n —fco).
Now choose an f(x) € C[—1,1] such that ||/||c = 1and
io ifl<ftArfDorn- fo<ft™n

Xk \ ()t ifko<k”™ n—KkO0.
Then we obtain from (4), (2), (22) and (5)

n—ko 1
h,n j)= E
k=ko =0
n—o m—2 .
a E i« m - xEymx . E I
|

k=kO0 ) )
Z E K*L)r|~dati(nsinOki1- O ((nsinOfxr - 3) | >
k=ko
n-ko
14 (i)Im(n sin ek)m- 1
k=ko
with some cm > 0, if only foo is chosen large enough (independently of n).
Hence and by (11), (12)

nam sin(a+t)mek
nm/2

77— 1

\A° .
Hnm(f,l)>c(':irp é (n sin BK)

k=ko

[n/2]
>crnm(“+”)-1E  sinm(a+2)-10k > c"
k=k0
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since sindfc ~ k/n (k < n/2). Applying Lemma 5 from Nevai [1], we obtain
by (21)

IHntm (f,X) |p,a = Ccn 00

as n —* oo.

Acknowledgement. The authors are indebted to Dr. P. Vértesi whose
valuable suggestions made the proof of Theorem 1 much shorter, and ex-
tended the validity of Theorem 2.
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GENERAL ABSOLUTES OF TOPOLOGICAL SPACES

A. CSASZAR (Budapest), member of the Academy

0. Introduction. This paper is a continuation of [2]. Terminology and
notation are, unless explicitly mentioned, taken from there; however, many
of the definitions and results are recalled below.

A Ponomarev absolute of a topological space is an extremally disconnect-
ed (= the closure of an open set is open) (briefly: EDC) space of which the
given space is the image under an ultraperfect map ([7] for 7Vspaces, [11]
for the general case). A map / is ultraperfect iff it is continuous, closed, irre-
ducible, compact, and separated (xi ¢ x2, f(x 1) = /(xr) imply that x\ and
X2 have disjoint neighbourhoods) (in [2], separatedness is not included in the
definition). An lliadis absolute of a space is a regular EDC space of which the
given space is the image under a "-perfect map ([5] for TVspaces, [2] for the
general case). A map / is d-perfect iff it is ~-continuous (/(x) £V, V open
imply that there is an open U with x £ U, f(U) C V"), closed, irreducible,
compact, and separated (without separatedness in [2]).

A Ponomarev absolute of X can be constructed (see [8]) as follows. Let
UX denote the set of all maximal open filters in X, equipped with the
topology for which the sets

(1) s(H) = (s€ UX:H £ 5) (HCX open)

constitute a base. UX is a compact T"-space, and the sets (1) are clopen
in UX. Now take the product space X X UX and its subspace P X on the
subset

(2) aX = {(X,s)EX xUX: s-+x in X}.
Then PX is EDC and the map
3) kx'-otX-+X, kx(x,s) =X

is ultraperfect from P X onto X.

In order to obtain an Iliadis absolute a similar construction can be ap-
plied (see [2]). We take X x UX equipped with the product of the indiscrete
topology on X and the above topology on UX, and the subspace E X on the
set aX. Then EX is regular, EDC, and kx mEX —X is i?-perfect.

If X is EDC then kx: PX —»X is a homeomorphism, and the same
holds for kx mEX —X if X is regular and EDC.
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Now P X and EX are essentially the unique Ponomarev and lliadis ab-
solutes of X, respectively. Maore precisely, if /: Z —»X is "-perfect, then
there is a unique map /*:aZ —»aX that is continuous from PZ to E X and
satisfies

(4) fokz = kx of*;

[*: EZ —»E X is a homeomorphism. Thus, if Z is regular and EDC, then
/* okgl: Z —»E X is a homeomorphism such that / = kx ° (/* okgl).

If / is ultraperfect then, by [8], /*: PZ —= PX is a homeomorphism.
Consequently, if in addition Z is EDC, then /* okgl: Z —*PX is a homeo-
morphism satisfying / = kx o (/* ° kgl).

The main purpose of this paper is to study a generalization of the con-
cepts of Ponomarev and lliadis absolutes, and to illustrate this generalization
by a concrete special case.

1. Absolutes of regular spaces. For regular spaces, the Ponomarev and
lliadis absolutes coincide:

Theorem 1.1. For a topological space X, the following statements are

equivalent:
(@) X is reqular,
(b) PX = EX,

(c) PX is regular.

Proof. (a)=>-(b): kx : EX —»X is "*-perfect. As a ~-continuous map
to a regular space is continuous, kx is ultraperfect as well. Hence there is a
homeomorphism h:EX —#P X such that kx = kx oh. Since h~l : PX —»
—»E X and idax : PX —»E X are both continuous and

id* okx =kx o/l =kx oid**,

necessarily h_1 = idax so that PX = EX.

(b) =i>(c): obvious.

(c) =®-(a): see Lemma 1.2. O

Lemma 1.2. If f: Y —»Z is ultraperfect and Y is regular then Z is
regular, too.

Proof. Let V be an open neighbourhood of z £ Z. Since / _1(z) is
compact and / -1(F) is open in the regular space ¥, there is an open set
U CY such that

f-\z) CUCUC r\v).

Then
zeZ-f(X-U)C f(U)CFU) CV,
and Z - f(Y —U) is open, f(U) is closed in Z. O
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Remark 1.3. The proofremains valid if/ is continuous, surjective, closed,
and compact (i.e. perfect according to the usual terminology), cf. [3], 3.7.20.

2. The categories rTop and 6Top. It is well-known that the regular
open (briefly: r-open) subsets of a topological space X constitute a base
for a coarser topology. Thus we obtain a space rX (RX in [2]), the semi-
regularization of X. The terminology is motivated by the fact that rX is
always semi-regular (i.e. the r-open sets in rX constitute a base for rX)
because X and rX have the same r-open subsets; in fact, for any open
subset G C X, we have cl® G = cIrx G (and dually int® F = intr® F for
any closed set F C X). Hence cly G = cly G for any set G C X open in X,
inty F = intx F for any set F C X closed in X, and for any space Y lying
between X and rX (i.e. having the same underlying set and a topology finer
than that of rX and coarser than that of X); in this case X and Y contain
the same r-open sets, consequently rY = rX.

A regular space is obviously semi-regular. Observe that, in an EDC
space, r-open sets coincide with clopen sets, thus an EDC space is semi-
regular iff it is regular. Conversely:

Exampte 2.1 (cf. [10], p. 100). Let ¥ = {p} U Q where Q is the unit
square (0,1) X (0,1) and p £ Q. For z G Q, let the Euclidean plane neigh-
bourhoods constitute a neighbourhood base in ¥, while the neighbourhood
filter of p is generated by the filter base composed of the sets

(2.1.1) Ve={p}u((o,0 x(0,0) (e>0).

The space is clearly T2, the sets Ve are r-open, but V\ does not contain any
closed neighbourhood of p; hence ¥ is semi-regular without being regular.
O

The fact that rrX = rX makes plausible the conjecture that the semi-
regular spaces constitute a bireflective subcategory in Top, rX being the
reflection of X. However, this is not true because there exist a semi-regular
space Y and a closed subspace X C ¥ that is not semi-regular; then the
embedding / : X “mY is continuous without / : rX —»rY being continuous
(see [3], 2.7.6). The example below produces a similar phenomenon with a
bijective map /:

Example 2.2. Let Y be the space in 2.1 and X be a space with the same
underlying set and the same neighbourhoods of p, but, for z = (8, b) € Q
let a neighbourhood base be composed of the sets

(a-e,a] x (b-e,b+e)c Q (6>0).

Then id: X —»Y is continuous but the r-open set VI C Y is not open in
rX, i.e. it is not a union of r-open sets in X. In fact, one of the members
of this union, say G, would contain p and then a set Vs C G. But dy Ve =
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= (p) U(o, x (0,e]) Ccl* G, and any point (|,y) £Ecl*Ve(0 <y <e)
belongs to intx cl* Ve C int* cl* G. Thus G cannot be r-open in X, and
id: rX —rY fails to be continuous. O

However, the character of rX as a reflection can be saved if we replace
the category Top by another one. For this purpose, let us say that a map
/: X ->Y isr-continuous (A-map in [1]) iff/ -1(G) is r-open in X whenever
G is r-open in Y. It is said to be &continuous [6] iff / -1(G) is a union of
r-open sets in X whenever G is r-open in Y. We also recall that / is said to
be almost continuous [9] iff / -1(G) is open in X whenever G is r-open in Y.

Lemma 2.3 ([4]). /: X —@Y s 6-continuous ifff: rX —*rY is continu-
ous, and almost continuous iff f ®X —rY is continuous. O

Lemma 2.4. The following implications hold for any map:

continuous

r-continuous F»"-continuous "*almost continuous == ~-continuous.

Proof. Only the last implication is not obvious. (Cf. [9], Remark 3.3.)
Let f : X —=*Y be almost continuous, x £ X ,V CY an open neighbourhood
of f(x). Then U = /-1(intV') is an open neighbourhood of x, and U C
C /-1(Y) because V C Y is r-closed and /-1(V) is closed. Thus / is
*A-continuous. O

None of the above implications can be reversed.

Example 2.5. Let X =Y = R, and let X be equipped with the Sor-
genfrey topology, Y with the Euclidean one, f: X -* Y = idR. Then / is
(continuous and) ~-continuous because X is regular, hence every open set is
a union of r-open sets. However, the interval (0,1) is r-open in ¥ without
being so in X . Thus / is not r-continuous. O

In 2.2, id is continuous without being "-continuous. If X is not semi-
regular, then id: rX —»X is r-continuous without being continuous. In [9],
Example 2.3, a ~-continuous map /: X —*Y is defined that is not almost
continuous; however, ¥ is not T\ in this example. In the following one, X
can be chosen to be

Example 2.6. Let X be a semi-regular, non-regular space. Then kx =
E X —»X is P-continuous. We show that it is not almost continuous.

By 1.1, we have PX ¢ EX. Thus there is a set open in PX but
not in EX. We can choose this set in the form Ug = (G x s(H)) MaX
where H is open and G is r-open in X (since X is semi-regular). Then
Wo is not a union of sets of the form (X x s(Hi)) 1aX, Hi open in X. If
kf(1(G) — (G x UX) MaX were a union of sets of the above form, then
the same would hold for Uo (because s(H{) 1s(H) = s(Hi M4#)). Hence
kx *EX —»X is not almost continuous. O

In the opposite sense, we can say:
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Lemma 2.7. An almost continuous map to an EDC space is r-continuous.

Proof. If /: X —y Y is almost continuous, ¥ is EDC, and G C Y s
r-open, then it is clopen and r-closed, hence f~ 1(G) is clopen and r-open in
X. O

Lemma 2.8. id”™ : X —»r X and idx : rX —aX are both r-continuous. O

Lemma 2.9. If f: X —»Y and g:Y —y Z are both r-continuous or 6-
continuous, then so isgo/ : X —yZ. O

Lemma 2.10. If f: X =Y is r-continuous or 6-continuous, then so is
f: rX —»Y, too. O

Proof. 2.8. O

By 2.9, we obtain two categories rTop and £Top with the topological
spaces as objects and the r-continuous or <5-continuous maps as morphisms,
respectively. Now 2.8 and 2.10 furnish:

Theorem 2.11. The semi-regular spaces constitute a bireflective subcat-
egory with the reflection rX of X in any of the following categories:

rTop, £Top, rTopMNTop, <SToplTop.

Proof. For the two last mentioned categories, observe that an almost
continuous map to a semi-regular space is continuous. O

3. General absolutes. Let us call absolute of a topological space every
EDC space of which the given space is the image under a ~-perfect map.
Thus the Ponomarev and Hiadis absolutes are special cases of this general
concept.

Our purpose is to find all possible absolutes of a given space.

Lemma 3.1. IfX is an EDC space, then every space lying between X and
rX is EDC.

Proof. Let ¥ be a space lying between X and rX. If G is openin Y, it
is open in X, hence clj®* G = cly G. Now cl* G is clopen in X, hence r-open,
so that it is r-open in Y . O

Theorem 3.2. IfY is aspace lying between PX and EX thenY is EDC
and kx mY —yX is d-perfect. Therefore Y is an absolute of X .

Proof. By [2], 6.3, EX = rPX. Hence Y is EDC by 3.1. kx'-Y —y X
is ~-continuous and separated because so is kx mE X —»X, and it is closed,
irreducible, and compact because so is kx'. PX —=*X. O

The following theorem says that the converse is essentially true:
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Theorem 3.3. Let Z be an EDC space and f : Z —» X p-perfect. Then
there exists a unique space Y lying between PX and EX and a unique home-
omorphism h: Z —»Y such that f = kx ° h.

Proof. There is a homeomorphism /*: EZ —*E X such that / okz =
kx °/*. Since Z is EDC, kz2PZ —»Z is a homeomorphism, and h =
/*okgl: Z — X is bijective and continuous. Define Y to have the under-
lying set aX and the quotient topology with respect to /i; then h: Z -+Y
is a homeomorphism. Since h: Z —»E X is continuous, the topology of Y is
finer than that of EX.

Now let F C atX be closed in Y, (x,s) € aX —F. By

kx =f okzol ~1=/0/T1,

kx *Y —#X is closed and compact. Now kjf(x) is compact in Y and T2in
E X (it is homeomorphic to a subspace of UX), consequently the topologies

of Y and E X coincide on the subspace kfcl(x). Therefore there is an open
set H C X such that

(3.3.1) ses(H), (Ix«(A))nrnr(x) = |

As s(H)is closed in UX, (X xs(H))C\F is closed in Y and kx((X xs(H))DF)
is closed in X. By (3.3.1), x does not belong to the latter set, and there is
an open set G C X such that

xeG, GNkx ((X x s(H)) MF) =0,
hence (G x s(H)) MaX is a PX-neighbourhood of (x,s) disjoint from F.
Thus F is closed in P X, and the topology of Y is coarser than that of PX.

The uniqueness statement can be formulated more precisely as follows:

(*) IfZ is EDC, f:Z-*X D-perfect, h': Z —= EX continuous, and
f = kx oh’', then necessarily hi = h (constructed above). Hence, if h' is a
homeomorphism from Z onto a space Y' over aX having a topology finer
than that of E X, then Y' =Y (constructed above).

In fact, the map h* okz! PZ —»E X is continuous and satisfies / Okz =
= kx o0 (h10kz). Therefore

h'okz = f\ h'=/* Okzx= h. O

4, The absolute R X. We illustrate the above theory by a special case.

For a topological space X, let us denote by RX the set aX equipped
with the subspace topology of the product rX x U X. Then RX lies between
PX and E X, and it is an absolute of X according to 3.2.

Lemma 4.1. kx: RX —»X is almost continuous. O
The map kx «RX —»X is not always i-continuous (see 4.3).
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Lemma 4.2. RX = PX iff X is semi-regular.

Proof. If X is semi-regular, then rX =X and RX = P X. Conversely,
let G C X be open but not a union of r-open sets. Then (G x UX)MaX is
open in PX but not in RX.

In fact, assume

(G x UX) MgX = (J((G, x s(Hi)) NaX),
iei
where Gi C X is r-open, Hi C X is open. Let Xq G G. Then s G UX,
s —* xo imply (xo0,s) G aX, hence (xo0,s) G G, x s(Hi) for some i, i.e.
X0 G Gi, Hi Gs. By [2], 2.2, there is a finite subset 1q C | such that |J Hi
iei0
is a neighbourhood of xo in X. Therefore V = f| G;flint |J Hi is an r-open
<€/o »elo
neighbourhood of xo, and V C U (Gi N4, CG. In fact, G, NMH, C G for
_»efo

each i G I, because x G G- M4, implies the existence of s GUX such that
Hi Gs, s —s x, whence

(x,s) G(Gi x s(Hi)) MaX C (G x UX) Nal,

so that x GG. Now xo GV C G contradicts the choice of G. O

Lemma 4.3. If X is semi-regular but non-regular, then kx'- RX —=* X is
not 6-continuous.

Proof. By 42, RX = PX and, by 1.1, PX ¢ EX. Let the r-open set
G C X and the open set A4 C X be chosen such that (G Xs(H)) MaX is
not open in EX = rPX ([2], 6.3) i.e. not a union of r-open sets in P X.
Then (G X UX) MaX is not a union of r-open sets in P X either, because
(X Xs(H))n aX is clopen in PX. Hence kZ"lG) is not a union of r-open
setsin RX =PX. O

From 4.2, we can obtain spaces satisfying RX ¢ P X. Our next purpose
is to construct a T2-space such that EX ¢ RX o PX.

Lemma 4.4. LetY be a T2-space, GqC Y r-open, xq GGo, X DY a
space such that the neighbourhoods of y GY constitute a neighbourhood base
for y in X, and let the trace s(p) in Y of the neighbourhood filter of any
p GX —Y fulfil the following conditions:

(a) s(p) does not have a cluster point in'Y,

(b)p P g, p,g GX —Y imply that s(p) and s(g) contain disjoint elements,

(c) GOi s(p),

(d) if G CY isopen and xg GG then there isap GX —Y such that G
intersects every element of s(p).
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Then, if the sets {p} US, S £ s(p) constitute a neighbourhood base of
p£X —Y, X isaT"space such that RX ¢ EX.

Proof. X is T2Dby (a) and (b). The set GO is r-open in X, too, since
x £ cly Go—Go implies either x = y GY and then the open neighbourhoods
of y in ¥ (open in X) are not contained in cly Go and not in cl* Go either,
or x =p GX —Y and then no open element of s(p) can be contained in
cly Go since then it would be included in cly Go and in Go (r-open in ¥) in
contradiction with (c).

Thus U = (Gox UX)MaX isopenin RX. Let So£ UX,s0->xo £ Go.
We show that (xo,«0) does not lie in the interior of U in EX. In fact, a
neighbourhood base of this point is composed of the sets (X Xs(V)) MaX
where V. £ Sois open in X. Now G = V NGo 6 «w and xo £ cly G
follow from So —»xo» whence xo £ cly G. Choose p according to (d); then
p£clyGCcCclyV, sothat thereisans £ UX such that V £, s -* p, and

(p,s) G (X xa(V)) MaX, (p,s)i (Gox UX)MNaX =U. O

Example 4.5. There exists a space Y fulfilling the conditions in 4.4 such
that X is not semi-regular. Then, by 4.4 and 4.2, X is T2and EX @ RX ¢
h PX.

Let Y = Q be equipped with the topology inherited from the Euclidean
topology of R. Put GO = (—1,1)0 Q, x0 = 0. Consider a well-ordering
of the open subsets of ¥ in the type 7 where 7 is the initial ordinal of 2b]|
choose Go to be the Oth element in this well-ordering. Select yO £ (—,1) —Q,
xo G(1,2) —Q.

Suppose %£ and z£ are defined for £ < a (< 7). Let Ha be an open subset
of R such that Ga = HalQ, and ya £ Ha —Q be chosen distinct from all
ytand (£ < a). IfGa C GO, let za G (1,2) - Q be distinct from all y* and
zf, ifGa- Go (p O, let za G (Ha- (-1,1)) - Q again be distinct from all
yEand previously chosen. Let X IDY be chosen such that | X —Y| = 2",
X —Y —{pE : £ < 7}, and, for p*» GX —Y, define s(p”) to be the filter in
Y generated by the sets

(% - e,Pi+e) U@ - e z(+e)MQ (e > 0).

Then (a), (b), (c) are clearly true. If G C ¥ is open, say, G = Ga (and
0 Gcly Ga), then pa £ X —Y fulfils (d). X is not semi-regular because, if
Ga~ Go ¢ 0, then pa £ cly Ga—Ga is interior to cly Ga so that Ga is not
r-open and Y is not a union of r-open sets. O

It is well-known that 0X is closed in X XI7X while it is dense in I X XI7X
where 1 X is the underlying set of X equipped with the indiscrete topology
([2], 2.1). In this respect, R X is similar to PX:

Theorem 4.6. aX is closed in rX x UX.
Proof. For (x0,fio) € (rX x UX) —aX, choose an open Go C X such
that xg G Go ™ So- Then there is an open So C X satisfying So 6 So,
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GoTll50 = 0. Hence Ho = int Go is r-open in X and Hod So = 0, xg £ Ho, so
that Ho x s(50) is a neighbourhood of (k0,50) in rX x U X not intersecting
aX. In fact, (x,B) £ (HO x .s(50)) MaX would imply x £ So, x * Ho: a
contradiction. O

Thus RX is a closed subspace of a semi-regular space (namely of rX X
xUX). Unfortunately, this statement does not contain any restriction on
the quality of RX:

Lemma 4.7. Every topological space is homeomorphic to a closed subspace
of a suitable semi-regular space.

Proof. For a space X, let Y = X x [0,+00). Let the points (X,y),
y > Obeisolated in Y, and let abase in Y be composed of the corresponding
singletons and the sets

B{f) = {(xy): x £ X, 0<y </(x)}
where f: X —*-[0,+00) is a function such that
[ )
Z(f) = {xeX: [(x) = 0}

is closed in X. This is in fact a base as B(f) MB(g) = B(h) for h =
= min(/,<7), Z(h) = Z(f) U Z(g). The set X* = X x {0} is closed in Y
and the subspace topology on X* coincides with that of X (more precisely,
pri|X* is a homeomorphism) because

VIX (B (f) MX*) = X - Z(f).

The singletons in Y - X* are clopen, and the sets B{f) are r-open as well.
In fact,

XT)=r(/Hu(Fx {o}

where F = cIx(X —Z(f)), and r £ F M Z{f) implies that every neighbour-
hood B(g) of (k,0) contains points (k,y) satisfying y > 0, not belonging to
). O

It would be interesting to know a non-trivial subclass of topological
spaces that contains all spaces RX. Semi-regular spaces do not do; in fact,
if RX is semi-regular then it is regular and RX = EX (which fails to hold
in general).

Similarly, the fact that kx mRX —»X is almost continuous does not
characterize RX: RX ¢ PX can happen and kx: PX —»X is (almost)
continuous. However, it is not difficult to see that RX has a kind of extremal
character with respect to this property. For this purpose, let us call almost
ultraperfect an almost continuous r-perfect map.
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Theorem 4.8. IfY is a space lying between PX and R X thenit is EDC
and kx mY X is almost ultraperfect. Conversely, let Z be an EDC space
and f : Z —= Xbe almost ultraperfect. Then there is a homeomorphism
h: Z Y onto aspace Y lying between P X and RX such that f =kx ° h.
Z and f uniquely determine h and Y .

Proof. The first statement is obvious by 3.2 and 4.1. If Z is EDC and
f: Z —=X is almost ultraperfect, then, by 3.3, there is a homeomorphism
h: Z —Y onto a space lying between PX and EX such that / = kx ° h.
If G C X is r-open, then kf*{G) = (Gx UX) MaX is open in Y and
so is (X X s(H)) MaX for any open set H C X. Thus the topology of
Y is finer than that of R X. The uniqueness statement can be formulated
more precisely similarly to (*) given in the proof of 3.3: if h':Z —=EX is
continuous and fulfils / = kx Oh' then h' = h. O

Corollary 4.9. The space Y = RX and the map k = kx have the
following properties:

(@ Y is EDC,

(b) k: Y —X is an almost ultraperfect map,

(c) whenever Z isEDC and f : Z —» X is almost ultraperfect, there exists
a bijective and continuous map g: Z —Y such that f = kog.

Conversely, if Y and k satisfy (a), (b), (c), then there is a homeomor-
phism h: Y —»RX such that k = kx oh.

Proof. The first part follows from 4.1 and 4.8. Conversely, if Y and k
satisfy (a), (b), (c), then by 4.8 there is a homeomorphism h: Y -+Y' onto a
space Y' lying between P X and RX such that k = kx oh. Applying (c) for
Z = RX and / = kx, we obtain a bijective and continuous map g: RX —aY
such that kx = kog. Now Y' is EDC, kx —kofi“l:Y' —X is almost
ultraperfect and kx = kx°hog :Y"' —=*X where hog:Y' —»E X is continuous,
while kx = kx Oidax :Y' — X, idax : Y' — EX is continuous as well.
Hence, by (*) in 3.3, hog = idax : otX —aX, and ho g = ida® : RX —Y'
is continuous, showing Y' = RX. O
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ON SOME PROBLEMS OF I. JOO

A. BOGMER, M. HORVATH and A. SOVEGJARTO (Budapest)

In [3] Jod raised the following problem. Let 1< g < 2 and consider the
expansion of the number 1 of the form

0o

(1)

t—
where {n,} is a subsequence of {1,2,3,...}. For fixed g such an expansion
IS not necessarily unique, so the problem of unicity or that of finding the
number of solutions of (1) arises. On the other hand we can investigate the
problem of finding an expansion (1) for a fixed g, satisfying

(2) sup(n,+i —n,) = 00.

Both questions are investigated in the papers [3], [4], [5], [7]. While preparing
these publications, 1. Joo raised (among others) the following two questions:

(A) Does there exist an expansion (1) satisfying (2) for every 1 < gq <

< 1+\/5 ?
4

o

(B) Does the following statement hold for every 1 < q < 2: there exists
an expansion (1) satisfying (2) if and only if there exist 2N many different
expansions?

In this paper we give negative answers to both problems. Our considera-
tions have number-theoretic character, so we start with recalling some known
facts and notions from algebraic number theory. A number a 6 C is called
algebraic if it is the zero of a polynomial with entire (or rational) coefficients.
If the polynomial is irreducible over the field Q of rationale, then its other
zeros are called the conjugates of a; we denote them by ag = a,c*2,... ,as.
If a is the zero of a polynomial with entire coefficients and the leading coef-
ficient is 1 then we call a an algebraic integer. The Pisot numbers ([1], [6])
are algebraic integers a satisfying

(3) a>1 Jaj<l, 2<ic<s.
We shall prove the following
Theorem. Let1< gq< 2 and

[e]e]

4
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If g is a Pisot number, then the numbers

= £k + glket + £K+2 +

give only finitely many different values.

This theorem answers negatively the problems (A) and (B). Indeed, we
can first see easily that there are Pisot numbers less than for example
the real zero of the polynomial g3—g2—1 is such a number. By the theorem
the Xk are bounded from below, xjt > £ > 0, but then there existst = t(6) > 0

independent of k such that among ¢ i+ .£k+t there must be a digit -
hence with the notation of (1)

SUp(n;+i —Ui) * t < oo.

So (A) is answered. In [1] the authors proved that for all 1 < q < " ere
exist 2K different expansions (1) of 1, so the answer for (B) is also negative.

Proof of the Theorem. The numbers Xk = gk "1 — 53 are alge-

braic and are contained in the field extension Q(g) of Q, Xk G Q(qg). We shall
prove that the numbers Xk and all their conjugates have a common upper
bound and the Xk are algebraic integers. In this case all Xk are the zeros
of polynomials with entire coefficients whose order and coefficients have a
bound independent of k, hence the set {x*} is indeed finite.

Let the number g have s conjugates gx = g, q",... ,0g3. Since qis a Pisot
number, we have

02beee bl < I-
As it is known ([2], p. 42-43), there are s monomorphisms
Q) C, *=i,.s

and a, satisfies crfiq) = ft. We know further that ify £ Q(<?) then y = ox(y),
€2(j/), ... ,a3(y) run over the conjugates of y (may be with multiplicity). By
definition, Xk and x*+i are linked by the relation

(5) Xk+i - g(xk- £k)

and Xi = g Since the product of two algebraic integers is an algebraic
integer ([2], p. 47), we get by induction on K that Xk are algebraic integers.
Applying < to the recursion (5) we get

= gfixk.i - £k)
and consequently

©) PR A KL+ Kitil),  *A2
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Let now
6 := max|g,| < 1, Mk ;= Tax|x”"|

then (6) implies Mjt+i » 6(Mk + 1), whence we get by induction that

Mk+l < 6kMX+ 6k + 6k- X+...+ 6

and then 6
MfeHi A Mi + A3 7 -

So the conjugates of xk are indeed bounded. On the other hand the sequence
xk itself is obviously bounded:

xk A1+ q-1+q~2+ ...=-"-r.

q q Q-
By the above arguments we see that {xk} is indeed a finite set, so the proof
is complete.

Remark. The Pisot numbers form a closed subset of (1,00), see [1], hence
there exists a least Pisot-number qo > 1. So the following modification of
(A) remained open:

Problem. Does there exist an expansion (1) satisfying (2) for every 1 <

<qQ<g®
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SOME SATURATION THEOREMS FOR CLASSICAL
ORTHOGONAL EXPANSIONS. 11

M. HORVATH (Budapest)

The famous theorem of G. Alexits [6] states that the Fejér means of
the Fourier expansion of a continuous and 27r-periodic function / converge

uniformly to / in the order O (£) if and only if the trigonometric conjugate f

of / belongs to the Lip 1class, i.e. / is absolutely continuous and f £ L°°. It
was |. Jod who initiated the extension of this theorem for classical orthogonal
expansions. He obtained Alexits type results for Hermite expansions ([7],
[8], [9]) and one of the implications of the Alexits theorem for Laguerre
expansions in [7]. In [8] he also derived a saturation theorem for the Abel-
Poisson means of Hermite expansions. A. Bogmér [10] proved an Alexits
type theorem for Jacobi expansions. In [11] we gave another Alexits type
theorem and a saturation theorem in the Jacobi case.

In what follows we obtain similar results for Laguerre expansions of non-
negative parameter. In all these investigations the norm estimates of the
Abel-Poisson means and of the conjugate function are essential; see Stein
and Muckenhoupt [2] and Muckenhoupt [3], [4], [5]. We shall modify these
results in order to adapt them for our purposes; see later.

Let a > -1 and define the weight

ua(x)-, = xae~x (x > 0).

The normed Laguerre polynomials 11**of order a are defined by
(1) j H |a»a_s k
0
The connection with the notation used by Szeg6 [1] is
d*“ =(-ir*r(0+1i)(n+ “)<il).
We shall need the differentiation formulas

and

(3) [v itl1=
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Remark that (2) is explicitly given in [1] in terms of L1** and (3) follows
from the Rodrigues formula ([1], (5.1.5))

«.4*1= [i[«»+.]()

which implies that
1
n

and this, in turn, implies (3).
Consider a function / defined on (0, 00). Its Laguerre-Fourier series (if
exists) is defined by

(4) | ~ 32 akik -
k: ¢

Let 1~ p < oo and define the weighted spaces

Lp(y/v?) == </ :WfVAL m=

if 1 <p < oo,
Lz:=L°°(0,00); Wik« := ||/[loc
If a > 0 then G Lx(0,00) M L°°(0,00) hence the Fourier series of
any / GLp(y/v®) exists. If -1 < a < 0 then G Lp(y/uz) if and only if
p < — consequently, using the Holder inequality we see that the Fourier

series exists for all / G Lp(y/u”) if and only if

<p <oo0.
2+ a P

Denote by anf and Rnf the Fejér and Riesz means of parameter 4 of the
expansion of /, resp.:

K RnS = £ Vk \
n+1 > = Vn+ 1)

K-

°nf m=
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Lemma 1. The Riesz means Rn areuniformly bounded inthe Lp(y/ld)

norm. In other words, let 1 < p ~ oo ifa > Oand <p < if
-1 <a <0. Then for f 6 Lv{y/u*) we have
(5) \WARNAA\p 1 c(p)\WM\r

with a constant c(p) > 0 independent of f and n.
Proof. As Poiani proved in [15], p. 11, the estimate

(6) HAn/Hp " c(p)llvr/Ip
holds for 14 p <\ in case a > 0 andfor <p<—" if-dA<acx<o
Now if a > 0, we can extend (6) from p=1to p =00 since
00 00}
llvAn/lloo =  sup [ an(f)gua=sup [/ (m(g)fua <

W WVAfWoo  sup  \WANTng\i < cWy/vfWoo

and for 1 < p < oc the same result follows from the Marcinkiewicz interpo-
lation theorem. Denote

K
K= K(f) =
J=o
the k-th partial sum operator, then

Raf=> V¢l /Tg=> Ykl Vk%&c+l)‘j‘.]t Ik 1) =

to to

to
Using the trivial estimates

In+ 1-y/n =0 2\/k+ 1-s/k-Vk +2=0 ( ----—--
yin+ 1y WATTI (il

we get that

\WUaRnf\\p » ¢\\" (7 nf\\p + c% \7/ 4 \'/*egn = QW Ay
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which proves Lemma 1.

Remark. It is shown in [16], p. 222 that the Fejér means (and in general
any (C,j)-means, j E N) are not bounded in L norm unless p = 2 (when
H/lh.a = H/v/"6jb)- The norm estimates given in [3], [5] for the Abel-
Poisson means and the conjugate function are proved for the Lk norm;
that is why we give first their Lp(y/u”)-variant. We mention that references
concerning the boundedness of Cesaro means of some expansions can be
found in [17]. We shall need the following

Proposition. Let 7 >0, B > 0 and consider the system
®:= {xn+'e~Rx :n EN,z > 0}.

a) ® is complete in Lp(0,00), 1 <p * 00.
b) The linear hull of @ is dense in Lp(0,00), 1 <p < 00.

Proof, a) We shall use some ideas of Stone [19], p. 74-79, see also [20],
p. 131-132. Suppose that the function / E Xp(0,00) satisfies

J f(x)xn+ye~Rxdx =0, n EN.
0
Define the function

0
Since t"e E Lg(0,00),| " = 1, hence

IP(X)| < ce~*x

and then g E L2(0, 00). On the other hand

® ® @
0 X 0
where the polynomial pn(x) is defined by
®

X
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Since the polynomials multiplied by e- 2, the square root of the Laguerre
weight of parameter 0, are dense in L2{0, 00) (see [1], Theorem 5.7.1), we get
that g(x) = 0 a.e. and then f(x) = 0 a.e.

b) Denote V = Y(®) the closed linear hull of ® in Lp(0,00). Suppose
indirectly that there exists / G Lp(0,00),/ ~V. By p/ oo there exists a
function g GL?(0,00), i -f L= 1so that

I fg~1>Jdhg=0 gGV
0 0

But this contradicts a), so V = Lp(0,00). The proof is complete.
The Poisson kernel for Laguerre expansion is given by

K(r,y,z)=\o(o"i(n )(Y)i(n )(z)rn, X,y> 0, 0<r< 1
n=0

It is known ([1]) the Mehler type formula

(7) L

Introduce the notation

r la{yzr)l

for a, b > 0; this means that there exist positive constants ¢,C which may
depend only on a and p but not on other guantities so that

ca <b<Ca.
Using (7) we can easily obtain (see [3]) that
(V)N i ilnli
(1-7-V+1e (V+ )r ifz<! Ayr I
8 K(r,y,z .
(8) (r.y.z) 1 ep{-(v+2)ir7+2* } s ilzrr)!
V-1 (dzr)E+* AY

Consequently for fixed r and y > 0 we have
y/a~(z)K(r,y,z) G Lx(0,00) IML°°(0,00)

and hence for 1< p <00, / GLp(y/uO) the Poisson integral of /, defined to
be

(9) g(r,y):= J K(r,y, 2)f(z)ua(z)dz
0

exists. To prove the Tp(Ai”)-boundedness of g(r, y) we need the following
variant of [3], Corollary 1.
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Lemma 2. Let | be a finite or infinite interval, dp an absolute con-
tinuous (positive) measure on I. Let L(y,z) ~ 0 be afunction for which
z >mp'(z)L(y,z) is monotone increasing for z ~ vy, decreasing for z >y and

(10) p\y) JL(y, 2)dp(z) <,B  (ye I).

I
Define further
qw:z \] K(y,z)f(z)p,2(z)dz
I

where the kernel function K(y,z) is measurable and satisfies
\K(y,2)\ s L(y, 2).
Then we have

n) O\ 74 B(p'H)*(y).

Here

s

F* = su | |F
{y) yej)d IF|

i-
J\J
J

denotes the Hardy-Littlewood maximal function of F ([13],), where the Supre-
mum runs over the closed segments J containing y.

Proof, a) Suppose first that p'(z)L(y,z), as a function of z, is a step-
function of the form

p\z)L(y,z) = a»X(y;, v (2)

where
a ™o, y-<y", vy y'G/, Vi.

Then we have
nmsn1 ~ BY)J Ly 2@\ 4z =
I

y
= p'(y)2 a*/ = nsixmerm M2aiy" - i) =
i
= (V)W )*(y) JB(y, 2)dp(z) < B(fp")*(y).
|
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b) In the general case we can give a sequence

23 A Vh+i A e

of stepfunctions of the form given in a) which converge a.e. to p'(z)L(y, z).
Using twice the Beppo-Levi theorem we obtain

H' (\g\UB'(y) J L{y.2)\{{z)\pr{z)dz=p\y) lim ;T n(2)\f(2)\dp(z)<
| |

<p'(y)(fp.")*(y) Jm@)dz=p'(y)(Fp,.)* () L(y,2)dp(2)"B(fp’)*(y)
I |
as we asserted.

Lemma 3. Suppose a ™ 0. Then
00
(12 <c
0
where c is independent of r and y.

Proof. Denote by H(r,y,z) the function on the right hand side of (8);
we have to prove that

0o

(13) VA(y)j H(r,y,z)"(z)dz<c.
0
Let
.
T - z2
h=Y22 3 e
h = }’ﬁejz

(G2
it is enough to show the boundedness of I\ and 12. Consider first I\. We
distinguish some cases.

Case a: r <\. Then we have by a >0

h %Q/%’é—% z2e 2dz <c.
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Case b: r > > 1. Then y is bounded by -Llp hence
g-02
h ~cy?2(l —r)-"-1 J zre~ZTrdz.
0
Substituting n = zj* we get
1—F
43 Q
NnA ey - r)-«-1-—- J WewH™—-1 <
0
Q@
n2e Wu <c.
H ~ ) 4
Casec r > A 1. Then, repeating the arguments of Case b, we
can write
1—+
a a o @
O <c(3»r 7) 2e"™* [/ ufe~"r ~c(737)2( "™ ) 2/ A c-
0 0

Now consider /2. The exponent figuring in /2 can be written in the form
Y z  -yr +2ylyrz - zr _  (ylyr - ylz)2+ (yly - ylrz)2
2 2 1—r ~ 2(1-r)

and hence applying the substitution z = u2 we get

[e]e]

B rfbr it oF 2 b exp f (W22 VR kw28, -

tlga
@ -
_ I i 1 I (yyr- u)2+ (uvT- 4i/)21
=21-1) 2r 2 RTINS N (e — $(bl7)—
AV

We shall use the following estimate. If 7 > 1and & > -/7 —lorif7 < land
x > 0, then
@

(14) J y'ye~y2dy < x'y~1le~x2.
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Indeed, equality holds in (14) for x = oo, and differentiating both sides the
converse inequality holds. Return to the estimate of /2.
Casea: r <|. Sincer < | implies (y/ry - u)2+ (uy/r - yly)2~ c(u2-fy)
hence by (14)
)
2 =Cr-2-iy-T J u-e_c(u du<

1-r

¢ er-d-Ly- L ARY) w (L- )2 .
ar=rxp{“c(UAYr +!")}s
Ner 2exp cr~€ile~rC <cC
Caseb: r > [, ' < 1. Then the substitution v = gives
PIeS

SCY “ J«i(l-r)*expl|-i(y~'-») -1 (»"~-"~4 ) }dcS

L%
1® p _____ON
0 A J
Now
Irr)" / VD) IS
2V A
L o(-Ir2T) ®] T("~InN) 2dv<c
and

yi Vv;-r r./ .71

/
() é)/ Ue)m["%(}ﬂ'\(/l—r/ )T
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(M) UB)*Ne2U ¢

2dv <c.

| I

Casec:. r > > 1. As we have seen in Case b

s,

Lemma 3 is proved.
Define the function L(r,y,z) by
sup y/vA(z")H(r,y,z") if r %y
0<z’<z
fur(z)L(r,y,z) ;= <
yur@L(r.y.2) sup yIuZ(Z)H(ry.2') itz >y
<7’

Obviously K(r,y,z) £ cL(r,y,z) and the function z i+ y/u®(z)L(r,Y, 2)
increases for z N ¥ and decreases for z > y. We assert that the third
requirement given in Lemma 2 also fulfils:

Lemma 4. Let a >0, then
@
(15) VA(y) j L(ry,z)ylv*(z)dz ~ c

Proof. By Lemma 3 we can restrict the integration to the union of
the segments in which L(r,y,z) > H(r,y,z). Of course, in these segments
L(r,y,z)y/u”(z) will be constant. Define
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. -r-*
and in case y > 5" let
dzi4 2y/yft yiyr-
zia =
1+

The investigation of the sign of the derivative JMy/u®(z)H(r, y, 2)\ easily

gives the following statements. For 0 < z < min j z0, i the func-
tion y/v~(z)H(r,y,z) increases and in case zq < it decreases in z £
20, 1Ll Gincasey” it decreases in Ay~ %) an(* case Y> o

it decreases in ig%f 7\, increases in [z\,zi] and decreases in [z2, 00).

Remark that
(1-r)2
=z\ <y.
(16) 41y y

Indeed, z\ <y follows from A 1and <y/z[ can be proved as follows

1-r <2Vyr- \Jyr~ 41 b-

< -
2yyf = 1+ g ST
VN GO L AV O S S N e A%
Finally remark that
(17) *(r'*n# +) X N (= r -)

and the implicit constants do not depend on r and y. Investigate two cases,

denoted by A and B, namely y < 2" and y > -2r-. Consider first the case
A.

Z0.

Q-2 , 112 -2
Then y/uZ(z)H(r,y, z) increases for z < ~4J and decreases for z > "4rg .
Consequently

VA(z)H(r,y,z) U
Vur(z)L(ry.z) = < H {r y747rP)  if Airy- <Z=Y
. Mb(z)H{r,y,z) if y<z
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and by Lemma 3 we have only to show that
T-r)2n (1 -r)2
(»>-dir) ~ (7~ ) " ("mU” ) s

Putting here the definition of ua and H we have to prove that

2/56‘35\)/_ : Al- e-U # 1 1pt(l- M)y ;"2
arj/ ) V 4ry 'y nl-rv ary "/
-yr + 2\/yr~ A
<

exP 1—r

-yr+1-r-

<oye-botor-Boxp <
1—r 1—r

<Cmx _exp{-,(1 +1_)}

is bounded. But this is true since in case r < it is bounded by eye
and in case r ® N by
Yy e 2i-r < Qn
1—r

_<C-r)2<,<1l-r

(Ai2) 0= 4ry =y= or

In this case y/i"(z)H(r,y,z) increases in [0,z0], decreases in 7o 112!l and
in "4&7T ,ocj . Taking (17) into account we have to show that

VA(y)(y~ zo)y/ud(zo)H(r,y, Z0) <c.
Using Zg<c{\ —r) we get

yfi~r(y) (y- zo)y/v*(z0)H(r,y,z0) <
0, ~ N B R ~ — N N N
_<C/o+1€ 2\(/1 r)? y e~Tr C(I- / ghii+TAr) <
by the same reasoning as in (An).
(A2i)
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Now we have to show again that
yfif(y)(y - z0)y/v*(z0)H(r,y,z0) £ c,
which can be proved as in (A12).

(A22) Yhees (1A-ryr |
In this case we have to verify that

yluM{y){zQ - y)y/il(z0)H(r,y,z0) ~ c.
Using that z0 %c(l - r) we get

yivMy){zo - y)y/v*(z0)H(r,y,z0) »

<c(l - r)f+1(l —r)f — I— —e-5'13 < ce~yl37 <c.
<ol - N 1 eSS < ey <c
- AN
(A23) yii —14'i'y9'“ 0

Now the inequality to be proved is

- ») A (« » ) a8 (r-»e S m
Since y * Zq < c¢(l —), the left hand side can be estimated by

1

c(l —r)2+1(l —r)2 (I_ry°+i <c

So (15) is proved in case A. Take now the case B.

(1-0" _ 1-02<z. <ff<z
Then the function A/u™'(r)A(r,y, z) increases in |o, , decreases in

i%iy” .24 increases in [zi, z4\ and decreases in [rr, 00), so we have to prove
that
a VbW ( Y “if) Vb (“if) H(rY“i
and
b) y/uZ(y){zi - y)n/ir(r2)H(r,y,r3) <c
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Since y > "2r~ implies that A ¢(l —r), hence a) becomes
jin+1e- 2(1 f-—- i —-e~ — — A -y2+~) <
cjint+le \(/—r) (I_lr_)/\_leybrr C(\I-rj e-y( )

and from z2 XX yr we see that b) can be estimated by

ati _* . 2. fa(ry)_a ? [~/ + 2™ 2122 - rz21
VI —r { 1-r J

5)2+ M

vV tV W exp 21 -r)

Now y i z2 ™ cyr implies 0 < ¢ * 1 hence the term r 2+2 can be omitted.
The estimate

_ A A
Vb BFR AT, 8 e
obviously holds for y » and ify > then yr - > yM >y, so
2 \ 2 1-r2
(7~7 = Hlf —— Yy - > Cyly

and then
(Yry-Ybvy
V rbexp{~ 2(1-r) 9 el <

1—r)2 - )2
{/ r)"rO, (.1 r)

(B“) 4ry 4ry

<z1l<z2<Yy.
We have to prove that

a) VV) (7 - “itf) (“if) »f.»“if) Sc,
b) VNY)(Y - ZDYUZE22HTrY,Z) " «

Now a) was proved in (Bn); b) becomes by 1~ cy”

o Nr 1 (MY

V=T 2(1 —r '
<C f+° S
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Ifr ~ r0O< land r0is small enough then (v/y - y/rz2)2 X vy and then

f+i
(*) "exp
2(1-r)

and if rO < r then
f+1

(yfry - ylin)2+ (yfy - ylrziY
(A) 7P y- 21- 1)

follows as in (Bn).

(B21) ZQ<E'£E§/Q?< Zi <y <z2

Then we need
a) y/aN{y)(y - z0)y/v*(z0)H(r,y,z0) " ¢,
b) yIvr(y)(z2- y)y/v*(z2)H(r,y,z2) * c.
Now b) can be proved as in (Bn) and a) as in (An).

0< 1-n2, < 79 A
(B22) r Ay rx<z2”y.

Then we need again

a) y/in(y)(y - z0)y/v*(z0)H(r,y,z0) <c
proved in (Al2) and

b) y/ar(y){y - z2)y/ur(z2)H(r,y,z2) %c.

Since = z2 " cry implies that 1 < cj”, b) follows just like in (B12).
Lemma 4 is completely proved.
Introduce the function

xexpl logrl
u(x,r) ,
2er(—|ogr)§
then ([3])
1
(18) J U(x,r)rndr = e ~"x, x>0, n€N.
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Define the alternate Poisson integral of / by

(29) f(x,y):= \] u(x,r)g(r,y)dr
0
then

f(x,y)= j(y U((x,r)K(r,y,z)dr\ f(z)ua(z)dz.
o O

It follows from (18) that if / has the expansion / k)() akkk then
=)

[e]e]

(20) f(x,y)~"£ake-"rkxlla\y).
k=0

Theorem 1. Leta>0, I<p<oo andf £ bp(y/12). Then
a) y/Ivi(y) sup If(x, y)| < c(y/n2/)a(y) ae,
X>

b) \\n/ir(Y)[/(x,y) - I(Y)lll[p o (x->0+), P~ 1,00,
c)Xkl%f(x,y) =f(y) ae, pdh oo,

d) 1V (/) P IF(x, y)\p it p)\y/aaivi P # 1, 00.

Proof, a) Define the function

L(x,y,z) = \] L(r,y,2)U(x,r)dr;
0
then

\] K(r,y,2)U(x,r)dr <cL(x,y,z)-,
0
further the function z *y/u2(z)L(x,y, z) increases for z <y, decreases for

z >y and
WjL(x,y,z)yIUZ(z)dz =
0
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hence a) follows from Lemma 2.

b), c), d). We know that the set of polynomials is dense in Lp(y/v"),
1 < p < oo. Taking (19) into account, b) follows from a) and d) by the
Banach-Steinhaus theorem, and c) follows from the Banach-Steinhaus type
theorem related to the convergence in measure ([14]). Finally d) follows from
the estimate

WiVATWV i1 c(p) [N/ 1 Tp> 1<pin 0
see in [13]. Theorem 1is proved.

In what follows , following Muckenhoupt [5], we shall investigate the
conjugate function. Let

""" r(I' —r)\/—log ri’a’(?&ﬁg_ —

It is not hard to see that

(22) \]q{x,y,z)l(°X\y)ua+Ib)dz =e " xIM\z)
0
and
09)
(23)

n=|
(meant pointwise). Further it is proved in [5] that
(24) l9(a;,y, 2\ <c—c(y,z,a) fory,z>0and x >a > 0,

consequently the conjugate Poisson integral

(25) f(x,y):= J g(x,y,z)f(z)ua(z)dz
0

exists for all x,y > 0.

Remark. The norm estimate of f(x,y) was proved by majorizing it by
the maximal function operator. To prove norm estimate for f(x, y) we have
to decompose it into two parts one of which is majorized by the maximal

function and the other one by the maximal Hilbert transform. Let 1~ p < 00
and / 6 Lv{r). The maximal Hilbert transform of / is defined by

* = M dt i :
H*f(x) —%L:g /X-t i £R

x-t|>e
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It is known ([13], p. 133) that

(26) I £ R s. [(A*/ > < [lI/]].,

(27) 1££'(R), 1< p< °0a. [|A*/|], S «WII.

We shall use the following result from [4]:

Lemma 5 ([4]). If K(z) = —K (—z) and ifzK(z) (defined as 0 for z = Q)
has total variation V on [0, m] then

_ f(y - 2)
S [/ f 2)K(z)dz *V su dz
(ka$<m J (y —2)K(2) O<a<beml /

ai [zS(>

Let now | be an arbitrary (finite or infinite) interval and let w > 0,
w E LX). As in [4], we say that a partition

of / into disjoint segments In has property A if for all n EZ
a) In stands left to /m+b
b) |In|< 2|/n+1], [In|£ 2|In_1]|,
c) supw/'miw 5 B < oo.
In
We need the following modification of Lemma 3 of [4].

Lemma 6. Let | be an interval, w >0 o weight and (In) a partition of |
having property A. Let afunction f be defined in I and denote

g(y) :=sup*I — ——dz
ab 1+ J %
a<|r|<b
where sup* runs over the pairs0 < a < b< where n is defined by y E In-

Then
a) [ eLiw.) =4iyer: wiay) > AY < f|l/wl|if
b) / € LP(w,/), 1< p < 00 = Implp ™ c(p)\\wf\p.
Proof. Denote

Ex :={y EI: w(y)g(y) > A}, JIn:=7n_xU/, UJ,+, /[, :=f\jn-
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It follows from the definition of the property A that fory G/,

w(y)g(y) = sup | f M-L.J1dz w(y) <
O< .<"M¥'a<fli<b

Sc  sup /
O<a<b- LT1a<|.|Sb

Scsup / Ne zIM tzlldzicH-UnW)is).
0<a J z

Hence for / € i 1(w,7) we have
Qa
[An= £ |49 All/nj< £ (V (/Inw)>") <Evy]||/, «Hi S
nez nez 4 nez
and for / GLp(w,l), 1<p < o0

MS =E [ i"«i'scE_/yn/»«o0i’s
n"Zi, TZt

= c§€z j{ #<(InwW)]p= CEGZ 117 wlip = cll/'udip*

Lemma 7. ieta >0, x, /> 0. Then there exists a partition

(28) q(x,y,z) =j(x,y,z) + u~Lz)k(x,y,z)

satisfying the following properties:

a) h(xiViz)\ =c{Viz) where the function z >*y/v”*(z)J(y,z) increases
for z <y, decreasesfor z >y and

(29) >NHE(y)Jd J(y,z)M(z)dz<c-,
0

b) k(x,y,z)=0ifly- 2\ >m := min

k(x,y,y +h)= -k(x,y,y- h), V((y-z)k(x,y,z))"c
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(here V denotes the total variation).

Proof. It isshown in the Lemma of [5] that there exists a decomposition
of the form (28), where k satisfies b) and \j(x,y,z)\ ~ cn(y,z) if n(y,z) is
defined as follows. For 0 <y < 1let

(y:_g—l if 0<z<\y
o |V~a_1b9 if \y<z<\y
n(y,z) =
{yzlz if \y<zr2
-2 it 2<z
and fory > 1
1
3 if 0<z<min{a+2|y]
y 2z 2er if a+2<m<\y
n(y,z)= - y-"-V (I + — if ly<z”y-\

\Y 8(y-z)tj
Y~aey(1l- logly - z\) if y~\<z<y+\
y-aey if y+\ <z

Remark that
n(y,z+) X n(y,z-), y,z> 0.

We distinguish two cases: 0 < y < 1, denoted by A and y > 1, denoted by
B.

(A1) 0<znMhy.

Then y/v*n = zal2e~z/2y~a~x. It increases in case z * a and decreases for
z >a so let

zal2e z/2y a 1 if 0<z 9 min{a, |y}
aal2e-al2y-a-I| jf Q<Z<|y.

Here (29) is obvious.

(A wY<ziy

Then
JTan = z“/2e-*/2 -or-1! Yy _ Yy
Y-z Y-z
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hence we can define for large c

=cy llog Vot
Now
y Yy
ntiinbl  I(y,2)y/r{z)dz< ~ Jlogy —log(y —2)\dz =
\v fy
=\ (logy+ 1- log = (1 + log 4).
(A3) 2<z, a<2
Then let
N Y =yllZzal2e~z12
(A4) 2<1z, a>2,

1/2Qo/2g al2 jf 2< Z< a
" ylUzalze 22 if a<z
In both cases (29) fulfils and y/u®(2)J(y, 2+) X yl2.

y/ingd .—

(As) -y<Z<:2.
_Qf3 .
Then y/u*n X tlaz™ 2 , so for large c define
y/u_Qf::cyTz an,

2
gfl f <

y 4 Z~~
\y
proves (29). Finally y/i® (8y) J (2,f2+) X Y * x.

and

2 dz <c

(As) Y<z< Zly'
In this case X y- 2-1log hence we can set
=cy 2 log Y
z~Y
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for large c. Now (29) follows as in (A2). The case y < 1 being ready,
investigate the case y > 1. We shall use the estimate

J z%e~%dz ™ 4a;?%e t (& > 2a).

Indeed, for x — 00 equality holds and the derivatives of both sides fulfil the
converse inequality. We also get that

(30) 7jz°e 2dz<c(a)x°e 2 @®>1).

(Bi) 0<z<min”"a+ 2, '"Yj.
Then y/i™n X y-1U2W 2, so let
yiiad :=cy” S¥
\Y% L _
for large c. By y/v*(y) (J) y » dz”"cy e—5 A ¢ (29) fulfils.

(B2) a+2<z< nE
Then y/ii*n X } b " e f, hence we can define

y/UéJT =cy L,-282 o5
and
v _ fv _
yie by % [, - f'eﬁd’z<'y x o » L-Fly,
a+2 —2

o a- g3 Y
which is < cy~*~y~~ =cfor /1 and <cy logye-«< ¢ fora = 1.

(B3) 3y <2%y--1
Now
uan = ¢ (" + 8(i, - 2)3/0 S (1+ 8(y-2)3/2)e
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So let

(Nl = * “ N
y/an] = ce*y 171+ 8(y-z)3/2)
and (29) follows from

y~\ y-r
j (I-I-a,m-l)
b
(B4) Y- -< z%y.
Then
utn X -log(y- z))
and since
(y.y- - yﬁe'a

hence we can write a
= oy'Sed (1 logly - 2))
and (29) is obvious.

(Bs) Y+ 4 <z-
Then y/u*n = zal2e~zl2eyy~a. Now in case a <y + | let

W= 28%)a

and in case y + | < o let
27e Beyy gf’wszie—ﬁ\j if a<z
N )
afe. eya(x 1 if y+j<zra

Now in case a <y + | the integral condition (29) follows from (30) and in
case a > y + | it is trivial. In both cases we have

y/urd = <

(y + A JAY, Y+ x y-2€.

(Be) Y<z=Y+}
Then y/ii*n X ey!l2y "/2(1 - log(z —Y)), hence we define

sfurd  cy~2e2{\ —log(z —y))
and the integral condition is obvious. The proof of Lemma 7 is complete.
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Theorem 2. Suppose a > 0. Then
a) fy/ir G 1x0,00) = {y q//VE{y)igB\f(x,y)\ > A}
S IWVAfWi,
b) fy/uff G Lp{0,00), 1 < p < 00 = |Iv/"(i/)sug’l/(a;)i/)lllp A
x>

N ocipdINM /1] p» L .
c) fy/u” G Lp(0,00), 1 S p < oo implies that the limit

(31) A» = Jig, f(x.y)

exists for a.e. y >Q
d) fyfidZz £ Lp(0,00), 1< p < oo = \\y/UM\\p * c(p)\\y/0"M\\p and

Jime /L (D [2(y) - f(x, DIIP = 0.
e) If fy/uff € Lp, 1<p < oo and f(y) ~ J2 aklt }IY) then
K-0

(e]e] 0o

(32)  f(y) ~ Jraky/jjitty), f(xy) ~Y”"a®  XVytV\y)

—1 fc=1

(this means that y~1"2f(y) G Lp(y/ua+1) has the expansion

00 ~

E_Ilaklkil\y)-' ak:0 J(y)yrt-1(y)WM  dy)-

Proof. By Lemma 7

f(x,¥)=J j(x,y,z)f(z)ua(z)dz+J k(x,y,z)f{z)dz =:
0 0

= TL1(f,x,y) + T2(f,x,y).
From Lemma 2 we see that a) and b) hold when replacing f(x, y) by Ti(/, x, y).
On the other hand define the partition
0 Voo J[am#l] if n 1
0. - T T R if n<o;
this partition has property A with respect to the weight w := y/ii*. By
Lemma 5 we have

<C Su Ib ~2Z)dz < csup* f{y- 2)d
0<a<6p<m J[ z ) a,B J[ {yZ )Z

a<|Z|<b a<|z|<6
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since y £ In implies m = min (5,4) » Now Lemma 6 states that a)

and b) hold with Tr(/, x,y) instead of /(x, y). So a) and b) are proved. The
statement c) holds if / is a polynomial. Since the polynomials are dense in
Lp{yfia), 1~ p < 00 hence c) follows from a) and b) by the Banach theorem
mentioned in proving Theorem 1. The statement d) is an immediate corollary
of b), ¢) and the Banach-Steinhaus theorem. Finally e) is easy to check for
polynomials; in general (32) follows by Proposition b).

Now we prove an Alexits type theorem.

Theorem 3. Leta>0, 1< p < 00 andf £ Lp(y/v*). The following
statements are equivalent:

/s locally absolutely continuous and

(34) < L : :
Ua+ifJ u-1£ Lp(y/ur), limx >otua+i(x)f(x) =0.

Remark. The implication (34)=>(33) is essentially stated in [7] for Fejér
means. The proof of the converse implication does not work for Fejér means
because the corresponding variant of the Alexits Lemma does not hold. That
is why we use Riesz means instead of Fejér means (see [8] for more details).

Proof. (33)=S-(34). By the Alexits Lemma (33) is equivalent to

(see [8]). This last estimate implies the existence of a function g £ Lp(y/u®)
such that

9~ "2 VvW [a).
From (3) it follows that

ua4 LAnjy ——waRng.

This can be rewritten as

[e]e]

(35) J uaRng = uQ Mi(x)a4n/(x)

since both sides tend to zero as x —=00. From Lemma 1 it follows that

[o]e]

jJ ua(g - Rng)l< - An5)|IPIM~1lg 0 (n -* °0);
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hence the uniform limit

(36) J/ uag = HI_i[gO J/ uaRng = nILngo " ~,iz (X)Rnf(x)

exists. Again by Lemma 1 (used with a+1 instead of a) we get that y/v*Rnf
tends to y/v~f in Lp(0,00), hence

[e]e]

/ Ua9 = Jfe, Ua+$(X)Rnl(x) = Ua+l(x)F(x)

which proves (34).
(34)="(33). Let g := 1+l1/j Ual GLp(y/v*) and compute its coeffi-
cients by (2):

[o]

bk = gtla)ua = J [LeHf] 9=

= Jii3o tic+i(X)A/®)4Q)(&) - \T/4 -t1)ua+i-
0
It is not hard to see that g G Lp(y/v”) implies

(37) Iimoom I,Zi(x)f(x)xk =0, kK=0,1,2,....

Indeed, for x > 1 we have by (30)

i(x)f(x) +¢c0 = 1 [ua+i/] 17

® 1
ATIVATIP(f«« 3% A AWAG\\pV A (X)

X
and this is compatible with y/v~f G Lp(0,00) only in case cO = 0 and then
for x —»00

xk\ua+i(x)f(x)\ 0.
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It follows from (37) that

g~ - Vkuki[a)
and then Lemma 1 implies

\Wy/vARng\\p = 0(1)

which is equivalent to (33) as we mentioned above. The proof is complete.
Theorem 4. Leta >0, 1< p< oo andf £ Lp(y/ta). Then

(38) WAy [FyY) - f(y)INp=o0(x) (*->0+)o/ =0,

(39) INfa(y) [f(x, y)- /(¥)]llp = 0(x) o
O K+/I'wal€ Lp(y/?),  Um uati(*)/(*) = 0.

Proof. The operators Txf(y) := f(x,y), x >0, Tof(y) = f(y) have the
semigroup property

(40) TXITX) = TXI4XJ .

Indeed -

TXITXJ(y) =j K(xLly,2)ua(z2)TXX(z)dz =

0

= \TK(xi,y,z)ua(z) jK(xZ,z,t)f(t)ua(t)dtdz =
0 0

= jf(t)ua(t) J K(xl,y,z)K(x2,z,t)ua(z)dzdt

and

J K(xi,y,2)K(x2,z,t)ua(z)dz =
0

0o

Q 1=0 J 4 =0 J
00

=2 e'N (X+X2)4 a)(y)da)(0 = +X?,y, 1)

n=0
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which proves (40). The continuity of this semigroup is proved in Theorem 1.
It is known [12] that the saturation class of an operator semigroup is the
domain of its infinitesimal generator and the saturation order is O(x), x > 0.
Hence all we have to prove is that the domain D (A) of the infinitesimal
generator A of the semigroup {Tx : x > 0} consists of the functions / £
£ Lp(y/v™) satisfying (34). Denote Di(A) the set of these /. As we have
seen in proving Theorem 3,

Di(A) = {/ :3g £ Lp(y/i™),g ~ Ekaki[a)} =: D2(A).
We shall prove D(A) = D2(A). Let first / £ D(A). By definition

Af- -1 0 (X ->0+);
hence
Q IT
I[A(f)l\ ua= Tlm f X1 IMI - hm —-illogr = - VAa
Xx—»0+y X x—>0+ X
0 0

Af~-J2ka4 a
and then / £ I*fA). Conversely suppose / £ D2(A). We know that
ART) - - R
Since lly/v~(Rnf - f)\\P -* 0, \\y/ur(A(Rn{f) + £f)||p -» 0 and A is closed
([12]), hence Af = —g, f £ D(A). Theorem 4 is proved.

In this final section of the present paper we prove another Alexits and
Abel-Poisson type saturation theorems.

Theorem 5. Letq > 0, I<p<oo andf £ Lp(y/v"). The following
statements are equivalent:

(42) [ is locally absolutely continuous and f'yx'2 £ Lp(y/v").

Here Rnf denotes the Riesz means of the series

Proof. Asin Theorem 3 we see that (41) is equivalent to the existence
of a function g £ Lp{y/uZ) having the expansion

g(y) ~ yI2X vAafcfki).
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It follows from (2) that
(43) J y-5Rng(y)dy = Rnf(x) - An/(1).

We know that

X

By *(ofy) - Rng(y))dy S\W"(g - Rng)\P("J[y ~ell Yy"4;
1 1
here the second term can be estimated by

C(MN y~~"~4dy) =c¢ +1)

for x < 2 and by

x/2 \ 1/2
x N | / e*ddyp " cx ex/2+ cex/4 ™ cx ex!2

x/2 1

for x > 2. It follows from Lemma 1 and from the Proposition that

Jy~*Rngfy)dy -* J y~%g(y)dy  (x >0),
r 1

and that y/u”Rnf converges to y/u~f in Lp(0, 00). Taking a subsequence
rik we can suppose that Rnkf(x) —»f(x) a.e. By (43) the series Rnk/(1)
converges to a constant Co; taking the limit kK —»00 (43) becomes

f ygly)dy =A%) - @

which proves (42). Conversely suppose (42) and prove (41). Letg=f 'y G
€ Lp(y/u™). Then
9Y) ~y*'52 b k +))
k=0
where, by (3)

00 0o

bk = J g(y)y*Ik*+1\y)ua(y)dy = J /4 + 14 “+1) =
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= !im f(x)ua+l(x)i[atl\x ) - I_|@ f(x)ua+l(x)Er+1\x) +y/k lak+l
We shall show that f'yl/2£ Lp(y/v") implies
(44) )I(iﬂ;of(x)ua+i(x) :Xﬂmmf(x)uaﬂ(x)xk: 0 (k=0,1,...)-

Indeed, we can suppose /(1) = 0 and then
/10) =

hence

1 1.gf1
g-2

1
\f(X)ua+1(x)\ 1 c\\gy/v"\\pu a+i(x)x4_g-2 Noox<t+ -*e0 (X 0)

for x <2 and
xk\f(x)\ua+i(x) < cllovrlpUr+ra:)®@*-2n ex/2 <

Nce~xI2xk+ 2 —0 (X —»00)
for x > 2. The statement (44) being proved we obtain that

0o

g(y) ~ Y5'r2ak'/kE[& 1)(y)
J=l
and this implies (41). Theorem 5 is proved.
Theorem 6. Leta >0, 1< p < oo andf £ Lp(y/v"). Then
a) WVAIf - f(x,9)]lp=°(x) (x ~>0+)«»/ =cC.
b) WA —/(z,-)]llp = O(x) / is locally absolutely continuous and
fy x/i2e 1p(v?).
Proof. Consider the operators
Tx: Lp(y/u~) *1/(01"),
Txf(y)-= J M(x,y,z)f(z)y/yzua(z)dz (x > 0),

0
1

TOf :=f, M(x,y,z):= J U(x,r)K(r,y,z)dr
0
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where K (r,y, z) is the Abel-Poisson kernel corresponding to the weight ua+1:

0o

ir(r,s,z) = X ;ra “+)(iKL“+1,W-
71=0

Now

JTxf(y)y/yi[a+1\y)u a(y)dy =
0

= \}I M (x,y,z)f(z)y/zua(z)dzi*+l\y)ua+l(y)dy =
00

= Jf(z)y/zua(z) \] M (x,y,z)i"+1\y)ua+l(y)dydz =
0 0

= Jf(z)y/zua(z)e~"xi[a+1)(z)dz
0
which shows that

(45) Txf(y) = f(x,y), x> 0.

The semigroup property for the system {Tx :x > 0} can be proved the same
way as (40). Now Theorem 1 states the continuity of this semigroup (with

a + linstead of a and y~1"2f(y) instead of f{y)).

Denote by A the infinitesimal generator of this semigroup; then its sat-
uration class is D{A) and the saturation order is 0(x). This implies that a)
and b) will follow if we show that

(46) / £ D(A) f islocally absolutely continuous and f'y2 E Lp(y/u®).
Taking Theorem 5 into account, we have to prove that

(47) | GD(A) O 3g E Lp(y/lu~), a(y) ~ y» Vkaklk*\y ).
Let first 7 E D(A). This means that the Lp(y/u”)-limit
Aj = lim b bl
i-»0+ X

exists. Now it follows from (45) and (32) that

00

J Af(y)y~k:iD(y)u*(y)dy =
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= Xli__;ga+ Jf Iﬁ{}{)____f_(_y_)yé[’k(?\-h){/:;)ua(y)\(jy = f;l;n_,_ ?_-_\_/_lf_x__f___l au=-Vk g

hence
Af(y) ~ -J/2 1Y)

which proves the “only if” part of (47). To see the “if” part, take g G
G Lp(y/v") with the expansion

42 — 2" X)
We can check from the definition of A that
A(Rnf) = Rng.
It follows from Lemma 1 that
WVA(RNf-f)WWP-+0, \\y/vA(Rng- sOH-» 0 (n->00).

Since the operator A is closed, we get that / GD(A) and Af = g. Theorem 6
is proved.

Remark 1. Theorems 3 and 5 hold also for p = 00. We give briefly the
needed modifications in the proofs. In proving (33)=S-(34) we showed that
(33) implies the existence of a function g G L°°(y/v*) having the expansion

g~ "2Vkak4*“l.

In particular the O-th coefficient vanishes, i.e.

0o

Jgua:O.
0
Now
()]
Halloo J y/inr it cylUr(x) if x> 1
(48) ;

HvAsSlloo/ y/UZ < OKT+1 if x<1
0

hich implies that
which impli ®
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Compute the coefficients of this function by the aid of (48):

/ M-?( z i / :J(/guag"ji[al‘l\x)dx:

0 X
A ]
= (/ ua(x)g(x)EMx)dx = ak.
So we have o
-J —  Tuag=/(x) GL{yli2)
na+1x) J

and lim f(x)uQ+i(x) = 0 follows again from (48). Analogously, in proving
(41)=>-(42) we have a function g € b°°{y/i") with

9y) ~ y* X)
Now
(49)

NooeM+ExI A N if <2
J Y *g{y)dy ~ Hv~llooJy & e*dy<:
| | ox— 31X if X>2

implies that

X

Joy~*g(y)dye b°°(y/i7)
1
and the coefficients are, by (49)

00 X

(/ y~"9n dg ik')» Ua dx =

[ (/
o 1
X

+

. & (o,
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¥ 2
and then Proposition a) implies f(x) = 1; y~*g(y)dy + c. The proof of the

converse implications remains the same.

Remark 2. During the preparation of this paper we raised the following
problem. Do there exist orthogonal systems, different from the classical ones,
for which an Alexits type theorem holds? Recently I. Jo6 answered this in
the positive sense proving an Alexits theorem for the Walsh system; see [18].
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ORTHONORMAL SYSTEMS ON VILENKIN GROUPS

Gy. GAT (Nyiregyhaza)

1. Introduction. Let m := (m*,,i 6 N := {0,1,...}) be a sequence such
that N 9 rrik » 2 (k G N). Denote by Gm the direct product of discrete
cyclic groups Zmk := {0,1,... ,m* —1} (k G N). Thus Gm is a compact
Abelian group. The direct product u of the measures ftk({j}) = 1/mk
U € zmk,k G N) is a Haar measure on Gm, fi(Gm) = 1. If MO 1,
Mk+1 := mkMk (k G N), then every n G N can be uniquely expressed

as n = YjwM{ (Tk £ Zmk, kK G N). Denote r*,(x) := exp(2nixk/mk)
i=0

(x = (x0,Xi,...) GGm, Kk GN) and o, := lgo'l'l' (n GN). Ifx,y GGm,
n,5GN and

ra0 5 ;= ST((rik + Sk) mod mk) MKk,
k=0

then dn(x + y) = dpn(x)dn(y), cdn = 1/cpn and dnds = dnda. It is known
that the system (¢n, n G N) is the character system of Gm and also that it
is orthonormal and complete. Let * € Gm and denote

fn®) "{YE£ Gm.Jo= @>eee Y1 = 34} fn ®—no) (l0(X) (?m).

Denote by An the cr-algebra generated by the system {In(z) :z GGm} and
by En the conditional expectation operator with respect to An. Suppose
that there are given functions ak (j,k G N) on Gm such that ak is Aj-

measurable and [a*| = 1, =a°=ak(0)=1(,kGN). Ifj,n GN, then
let j(n) = \(p an ::q)l i) and x,, = dnan.
3 =0

This paper deals with the system (xn : n G N). It is obvious that
Xn(x + YY) d Xn(x)xn(y) (x,y G Gm, n G N) in general, i.e. Xn is not
a character of Gm and similarly Xn©@m ® XnXm (n,m G N). The systems
(Xn :n GN) and (¢ :n GN) = Gm differ. A good property of (xn :n GN)
which enables us to use the techniques known in Vilenkin system theory is
that if y G 1k, n < Affct+l, then

Xn(z +y) = Xn(x)Xn(y) (x GGm, n GN).
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2. Results on (X,, : n G N). Theorem 1. The system (xn : ® G N) is
orthonormal and complete in L(Gm).

Let n,s € N and
4

K,..e(X,y) := "Xk+,(x)xk+s(y) (x,ye Gm).

We need the following lemma very often. This lemma is the base of several
results.

Lemma 2.

KNtPM.(x + Yy) = | XTI o Ny
MO+ YY) = 1 \apMmy(x + yyopMey)  (x g1ty e N

Denote by Dn(x,y) := KniO(x,y) (x,y G Gm, ® G N) the Dirichlet
kernels. The following corollary is one of the basic and most often used
results in the theory of generalized Vilenkin systems.

Corollary 3.
‘0 (x-y £11)
Mm,(x,y) = < (t GN).
.Mt (x- y GlIt)
The following proposition is the third basic result which is used all over
the rest of this paper.

Proposition 4. Ifn ~ Mk (te, AGN), y GGm, then
Xn(z + y)dp(x) = 0.

Let / GLp(Gm){l 1 P 00). Denote
Un\f) = su}) [//(-+h)~ /(*)|lp (eGN)
ne/n

the Lp modulus of continuity of / on Lp(Gm), and let
I(»):= Jfxn Sf:=j:mxk (nen, f6LGCM)
k=0

Theorem 5. 7/® (te, AGN), / G L(Gm), then

/M1 s
Theorem 6. 7// GL2(Gm), K GN, then

The following theorem gives an upper bound for the Lebesgue constant
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Theorem 7. We have

(e]e]

Ln \Dn(x,y)\d*(x) < (n € N).
Let
n—1
EIPXf) m=nf, f~ "2 akxXk (I<p<oo Gfc GC, An6 N,/ GLp(Gm)).
{ak} blO

The following theorem is a generalization of the well-known Efimov’stheorem
on the best approximating Vilenkin polynomial.

Theorem 8. We have

E%\U) A 4 P)(/) ~ 2£&>(/) (1 <p <00, n GN, / € Lv(Gm)).

Next we give a generalization of Zantlesov’s convergence theorem with
respect to the generalized system. Corollaries 10 and 11 show that a certain
convergence condition on the L2 and L°° moduli of continuity, resp., imply
the absolute convergence of Snf with respect to every system discussed in
this paper, not only to the original Vilenkin system.

Theorem 9. Let f G Lp(Gm), 1<p 2, ~ | =1, 0<RB ™ q
-1 <7<0 Put0O=0ifBpland0 =1ifR =1 If

Q:= AmR{\nmk)e (UjA\f))R < oo,
k=0
then o
£ /WI"™ < cr.eQ-
Corollary 10. Iff GL2(Gm) and kJZ M f m~In \f) < oo, then
=0
Snf absolutely converges.
@ 1 /.
Corollary 11. Iff £ C(Gm) and I;]f’OM* (/) < oo, then

Snf absolutely converges as n —* oo
ut\f) m=sup sup If{x +h)~/(*)I (k GN, / GC(Gm))).
(ug\f) Sup b { )~ 1)1 ( (Gm)))

Lemma 12. Lety GGm, 0<j EN, n 6 N and x £ /j(y) be/ixed. Then
Dn(x,t)xn(x)Xn(t) is constant as t ranges over Ij(y).

This lemma is needed in the proof of the following theorem.
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Theorem 13. Letf GLp(Gm), 1<p <o0o0, <n£N andsupm < oo.
Then there exists a constant Ap depending only on p such that [|5n/||p <
AN Aplif|p. Moreover ||5,,/||p = ||/||pO(») (n ->= 00).

3 Proofs. Theorem 1 can be proved in the following way. If n =
= :On_l,M{ <S = Y_]O N) and Kk := max{7 G N : nj ¢ 5j}, then

XxXn = $ rkkpkk where ®is .*-measurable. Hence

because nk ¢ Sk. The completeness of the system (xn : n G N) can be
proved by Corollary 3 and the method used in the case of a* = 1 (j, Kk GN),

[3].
The proof of Lemma 2 in the case of x G It is trivial. If g ~ 7t, then
x GIt\ li+i for somet —0,1,... ,t—1. Thus

mi—2
Km(pM,(x +y,y) = ®p,r(x.y) 0 re(x) = -
Corollary 3 is a simple consequence of Lemma 2.

Pr fPr p si et S := max .
%(( ) —H{‘EE(TS(W»)— 0,

where CD is ,4s-measurable. Theorems 5, 6, 7, 8 can be proved by similar
techniques usual in the theory in the case of a* = 1 (j, Kk GN), [1] and by
means of Theorem 1, Lemma 2, Corollary 3 and Proposition 4.

Proof of Theorem 9. Let K GN,y Gh and F (i) := f(x +y) —f(x)
(x GGm). Thus if n = Mk,Mk+ 1,... ,Mk+l - 1, then

F(n) =Jf{x)xn{x- y)dp(x)-f(n) = Vn(y)J f(x)mn(x)atn(x - y)dp(x) - /(n),
Gm Gm
K K

<nC-y)= N ajm@E-y) = aj)(x) = an(x).
i=0 j=0

This implies that F(n) = (ipn(y) —I)/(n). The Hausdorff-Young inequality
gives

( £ (L/(»)0n,(1NH-1?)' = ( £ (M ori's
n=jMk ' ' n=jMk
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(C(D yl

D *"w i’ Smi--"?2(/) w=i.... 1).
n=0 '
The rest of the proofis as Zantlesov’s proofin the case of aj = 1 (j, Kk G N),
[61.

Corollaries 10, 11 follow from Theorem 9.

Proof of Lemma 12. We have

Kn,gMt(y 4' X, ® = Kn—HjMj,njAij-fgMi(Y 4' X, ®)
(Yi 1j, xGGm, n,g GN, Mj <n <Mj+1,j <t).
x —t £ 1j and
Dn(x,t)xn(x)xn(t) = Knp{x, t)xn(x)xn(t) =
~ Kn—jMj,njMj{X, t) Xnix)Xn{t)e

This completes the proof of Lemma 12.

Theorem 13 can be proved by the method of Gosselin [3] used in the case
of a* —1(j, Kk GN). The main difference between the proofs is that (21) of
[3] is proved by Lemma 12.

4. Application. An arithmetical function g is called even mod K if

g((n,k)) = g(n) for each n Gp N\ {0}. The set of these functions is
denoted by Bkm B k(leJPBk is the set of even arithmetical functions. The

limit M(g) := limn-1  g(j), ifit exists, is called the mean value ofg. The
J=n
upper limit M(g) :=limn-1  g(j) gives rise to a semi-norm
J<n

Mp:=m\9\P)” (A<p<0).
The closure of B with respect to | -||pis the set of f2p-almost-even arithmetical
functions [4]. The Ramanujan function Cr is defined by
r
Cr(n) := "2 exp(27rran/r).

a=|
(a,r)=1

It is known that if g GB'1 (g G B1bounded) and M(gcr) = 0 foreachr GP,
then LBLR = O (||</|li = 0), [5]. The techniques of this paper enable us to
prove that if g GBp (1 ~ p < 00) and M(gCT) = O for every r GP, then
M\p =0, [Z
Ifg GBp (1 <p <00)andg(r) ;=< Lr)M(gCr) (r G is the
Euler function), then Lsg := T() 9{r)CT (S GP) || *||p converges to g, [2].
jls!

Acknowledgement. | wish to thank Professors F. Schipp and P. Simon
for their helpful advice.
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ON THE DISTRIBUTION OF THE SET

“£i £ {0,13,n e N}
t=i

1. JOO (Budapest)

Let 1 < q < n/2 be arbitrary fixed and

H = {X>W2n"° :88€ {0,1},n=1,2,...} =
t=i
= {2In(@)>= {»n>/ oo (n “mo0).
We shall prove the following

Theorem. If yn+i —yn —0 (n -> oo0) then there exists an expansion

a
1=7"3 <n=*such that sup(nj+i —nt) = oo.

i= i

In [1] it is proved that if qis a Pisot number, then there is no such
expansion of 1, further it is well known that the smallest non-zero Pisot
number is between 1 and \/2. Hence we obtain

Corollary. For any Pisot number 1< g <\/2, yn+1—yn 0, n — 00.
For the proof of the Theorem we need the following

Lemma. Let 1< g < \/2 beanyfixed number and let N 6 N be arbitrary.
Then there exists an expansion 1= JT)g_n’ such that sup(rij+i —n;) > 2N,
whenever yn+\ —yn —»0 as n —* oo.

Proof. Let 0 < x < 1 and expand the numbers x and (1 —x)/q by the

system (g~2n). If we have N consecutive zeros at the same places in these
expansionsri then adding these expansions we get a desired ex%ansion of 1

Let x = "21 £ig~2. We have to find such values e[, for which " <
= 1=1
< l=s < [>;.g-2 + <r2(n+"i.e.
q i'=i

(1) 0<gn- "£,02(n,)- gr£ig2(n.) < qg~2Nm

i=i t=i
Let e := 10-1 *g~2N. We show first that for every n there exist £\,... ,En £
6 {0,1} such thatl

(A) 1< h- J_’}eiiln_i) <{R- D1+1=
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Indeed, expand g2n by the system g2(n Nq 2(n 22 ___ If we “cut” such an
expansion at non-negative exponents, then the error is smaller than gq~2+

+Q~4+ ... = (q2 - |)-l i.e.

O<gin- jS.g2¥"0 < (?2- )"1-
»=1
If the difference is larger than 1 then we are ready, if not, then consider
the largest i with £¢= 1, and replace the corresponding term g2(n_°) by the
non-negative part of its expansion in terms of smaller exponents. Then the
error resulting from the modification is < (g2 —I)-1, hence the total error is
< 1+ (qz- 1)-1. Ifthis error is > 1then we are ready, if not, then continue
this process (replace the smallest exponent by the non-negative part of its
expansion in terms of the smaller exponents).

If there is no such a step when the error is > 1, then en = 1 and we omit
eng°® and arrive to an expansion with an error between 1 and 2. Statement
(A) is proved. Multiplying (A) by g we get: for every Kk and n > K there
exist £i,... ,En G (0,1} such that

n 2(fcHl)
(B) qQuU <g2n~ f I ~ 2(n") < gTZI''
<= q

Choose k = k(e) so that yn > g2k~1- 1 implies yn+j —yn < fm
Taking (B) into account there exist £i,... ,£nsuch that

and then for n > n(e,q) there exist £],.mm ,£n such that
R gn _ g qn0 n

£'92(n-) + £< — <Y Eig2mn“° + 2¢
(=1 ? 1=

which means that (1) is fulfilled. The Lemma is proved. O
Proof of the Theorem. Let K = k(q) be such that

(2) 1+ g)(g~k+9-(2fc+2) + ...) < 1+ Q-2+ 0Q~4 + ... .

We use induction. Suppose there exists a segment In such that for x £ In
the numbers x, (1 —x)/q have the expansions

X = + wm> j1- *)/2 =Y £iq 2 + oo
j-1 i=
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where there are 1,2,... ,N —1, N + K consecutive 0’s at the same places
and N + k zeros at the end. Suppose 7Av is the maximal segment with this
property for fixed (¢j) and (¢'-). Let Im be the maximal segment, where the
last k zero coefficients are omitted. We extend the sequences (£_,), {¢'-) to an
index n such that

(3) 0<92'- £ £g20.)- g+ £'Y(n.) < g=2iV+cH)
i=i i=i
be fulfilled. Let

q m=5n-J 2 £ o3 ~ g'52ejqn-3-

For any g € we have

Y yy'l <*<Y +i°2(+1)+ « 2('+2) + emm.
j=1 i=i

Y <— <Y e3r b+ + <T2('42) + omp o

j=1 9 j=1

Multiplying these inequalities by g2n resp. g2n+1 and adding them we obtain

0<g2'-X; 442{n~j) - 9°S <9A) =qQ <
31 j=i
< (q+1 + 92("-*-2)+...)< g2(n-,+*-1) + g2(n-.+*-2) + _#_

(We have used (2).) This means that we can expand Q by the system
ga(n-s+k-DN ~2(n-ivfc-2) ™ hence by the idea used in the proof of (A),

expanding Q instead of g2n we get: for every n > s there exist £,,_fc+i,... £,
such that
(A) KQ- £  £302{nj) <gZ(q2~ 1)

j=s-k+1

Let £ := 10-1g_2(v+fc+l) and do = do(s) be such that yn > do implies
2Inti - Yn < £ Let £~ £(g,e) be such that d0 < g2e_1- 1. Multiplying (A’)
by g2t we obtain for another n (for n + £ in place of n)

<r1(92n- 1> 9 2(n-))
1=1
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On the other hand, according to the assumptions of the Theorem, for suffi-
ciently large n the points of the set

A,-+t={ £ eiiJ(n->}
F4Hfetl

fill the interval "g2<*, ) with an error < £ (i.e. the distance between
these points is < e). Instead of (3) we can ensure

(37) 10-ig-W+b+i) < 2 - E ei92(n"i)< 5" 1«"20V4fcHl)-
x1 =1
Hence we can finish the induction in the following way. If we start from s =
= sn,thensn+i = n+iV+fc+l, £ = £m= 0(n <j < n+iV+fc+l) and /nr+i,
In +i are maximal intervals for which the expansions of x and (1 —x)/q start
ITo1 Wr+i *jv+i-fc .+ -fc
with X) £9 2and ~ e'g-2’resp. "~ £tg-2', ]E £iQ~2- Obviously,
In+i C In- The remaining difficulty is the fact that the intervals In are
open. Consider the following statements:

a) among £e_fc+i>... ,£n+N+k+i there exist 0 and 1 too,
b) the same holds for e'_fctl, eee e'n+N+k+1-

If a) and b) hold then both endpoints of the maximal interval move in the
direction of the interior of the interval, i.e. In+i C In and hence T\]IIN O

® 0. The statement b) is trivial. If a) does not hold, we can ensure the

occurrence of a new term 1 in the following way: we consider Q = Q-

mpPr > g2/(q2 —1) in place of Q and expand this number by the system

N2(n-4+fc-i+r)"2(n-4-i-fc-2+r)) ___In this case we set sn+i = n-fr+iV+ft+ 1

and let In+\,In+i be the maximal intervals for which the expansion of x
*\H-fe NH_TT

and (1 —x)/q can be extended with £,9-2' and ~ da
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ON "-CONVERGENCE OF
WALSH-FOURIER SERIES. 11

F. MORICZ (Szeged)

1. Introduction. We consider the Walsh orthonormal system {tu*(x) :
K = 0,1,...} defined on the interval [0,1) in the Paley enumeration (see,

e.g. [1, p. 60]). Our goal is to study the Xl-convergence behavior of the
Walsh-Fourier series

(1) Yl akWkjx),
k=0

of an integrable function /(x), in sign / E Xx(0,1). In this note, integral is
meant in the Lebesgue sense.
2. Previous results. We denote by

sn(f,x) := ~a*u;*(x) (n=20,1,...)
k=0

the partial sums of the series (1). Concerning pointwise convergence, in [4]
we proved the following.

Theorem A. Iff E XX0,1) and the condition

[An]
2 limlimsup V'|A mafc] = 0
All  n—*o0 k=n

is satisfied for m = 1 or 2, then
r]Il_r.rg)os,,(/,x) =/(x) ae.

and

Isn(/, x) —/(x)|rdx =0 for O<r<I/m.
0
Here and in the sequel, we use the notations

010 o= [la* = a* - a*+l,
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A2ak := O(Aak) = ak - 2ak+l + ak+2 (fc= 0,1, —).

Furthermore, [ denotes the integral part.

In order to conclude the convergence of the series (1) in L1-norm, we
need a slightly stronger condition than (2). Namely, in [5] we proved the
following.

Theorem B. Iff £ Lx(0,1) and for some p > 1

[A]
(3) ui(gligni;puzn kp 1lAa*p= 0,
then

1

(4) nI|_rpooé s, (/,x) - f(x)\dx = 0
if and only if

!
(5) 7]im on / \Dn(x)\dx = 0.

0

Here

Dn(x) ="~ ™k(x) (n=o0,1,...)
fco

is the Walsh-Dirichlet kernel. As is known [2],

I
J \Dn(x)\dx = 0(In n).
0
Thus, under condition (3),

lim aninn =0
M—oo0

is a sufficient condition for the L1-convergence of the series (1).

The Tauberian condition of Hardy-Karamata kind expressed in (3) is
well-known in the literature. Since the fulfillment of (3) for some p > 0
implies its fulfillment for any p, 0 < p < p, we may always assume that
1<pi 2in (3).
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3. Main result. If condition (3) is satisfied, then

[An]
(6) A(A) = lim sup V 'fcp_l|Aajtp
n~>*° A
is finite for some A > 1. The converse is not true in general. However, (6)
must be finite for all A> 1ifit is finite for some A> 1. This follows from

the inequality A (A2) < 24(A), which can easily be proved. In fact, for any
n > 0 we have

[A2n] - [AAN]] < [A+ 1]
and recall that / £ i 1(0,1) implies

@) kI|_r_pmat =0.
Now we improve Theorem B as follows.

Theorem 1. Iff £ X1(0,1) and A (A) defined in condition (6) is finite
for some A> 1 and p > 1, then conditions (4) and (5) are equivalent.

4. Auxiliary results. In [6] we proved the following Sidon type inequality.

Lemma A. For every 1 < p $ 2, sequence {a"} of real numbers, and
integer n >0, we have

dx < (n+

p-1 "H iH " G+ H -

Unfortunately, this inequality is not enough to prove Theorem 1. There-
fore, we prove a modified version.

Lemma 1. For every 0 < 7 < 1, 1 <P "2, sequence {ajt} of real
numbers, and integer n > 0, we have

(9) 5~rakDk(x) dx < 2p e
k=0

Clearly, (9) is superior to (8) in the case when 7 = 7n and (n + 1)7,, is
bounded from below.

Proof of Lemma 1. It follows in great lines that of [6, Lemma 1], with
the warning that n + 1 should stand in place of n there. Taking into account
[6, formulas (3.6)-(3.9)] we arrive at

1 n
| := [ \"2akDk(x) dx "
A 4=0
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1/P

s(i>*r £>{1 N )K*)TA
(420 ) J:> t ) )T A

where m is defined by the condition 2m < n + 1< 2m+1, and
h(x) := sign *2 akDk(x).
k=0
Now assume 2 J° 1< 7 < 2 )0 with some jo » 0. Then
2-i alp r
it 0ui< jo,
Alrj(anh()lpdxt = { nov=g o TS

if j >jo-

Consequently,
2j/q,
whence (9) follows through a simple computation. In fact, observing that the
auxiliary function z(t) = f(I —2-t)-1 is increasing for t > 0 and z(l) = 2, it
follows immediately that
jo 2 Uo+1)/q

x <
iy_oy V- 1< 1-2-17

< 2q7"1/9.

Next, we consider the so-called generalized de la Vallée-Poussin means
defined by

(10) r(A2) = n'n'-_'m?—/ X

where A> 1 and Ar = [An] (n = 0,1,...). The following lemma is an easy
consequence of a result by Morgenthaler [3] on the (C, I)-summability of
Walsh-Fourier series (see also [5]).

Lemma 2. Iff £ T1(0,1) and A> 1, then

I.II%/M /A ,z) - f(x)\dx = 0.
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5. Proof of Theorem 1. Sufficiency. We assume that (5) is satisfied and
prove
I
11 limlimsup / |tn(/, A,r) - sn(f, x)\dx = 0.
(11) Ailn—+mpJ|( ) - sn(f, x)

Clearly, (11) implies (4) via Lemma 2.
To this effect, we use the representation

n An j

T(/, AX) - sn(f, x) = _ S akWk(x)
n j=n+1 fc=n+l

(cf. (10)) and split the integral in (11) into two parts: one extended over
(0, I/7n) and the other over (1/jn,1), where 7n:= Jin- n+ 1.
First we apply a trivial estimate to obtain

A j An An
[T,,(/,Ax)-3n(/,a;)|<™- ~ SN ¥ =" AM(K~k+1)\ak\M £ |a*.
I L S TN fe=n+ A+l
BY (7),
IJn
(12) n o= kn(/,A,®)-e,(/,x)|dx <
An
A N lad 0 as n —poo.
7n fc=n+l
Second, by summation by parts, we get
(13) Tn(f,X,x) —sn(f,x) =
1 A ( %‘1 _ o
= — -Bnf)n(a) + 5°L>jt(a)Aa*: -(-aj£): (x)Jd,
7n j=n+1 " Ic=n '
whence 1
J2-= [ |Un(/»AX) - sn(f, x)\dx <
ihn

*oph

< T jonboldx + =11 A" a2 Dk(x)AaK\dx+

1/7n ihn ’=n+1k=n
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say.

By Lemma 1,

owing to (7) again.
We interchange the summations with respect to j and k, then apply
Lemma 1 to obtain

[
(15) J2 = - J/ V' (An- k)Dk(x)Aak dx <
i k-n

ilp

On / AN—1 \
D1 ("'m1D |Ae*1)
whence, by (6),

(16) limlim sup J2 = 0.
Ail n—=@
Finally, by (5),
a7 lim J2 = 0.

Combining (12)—17) yields (11) to be proved.
Necessity. This time we assume the fulfillment of (4). Then, by Lemma 2,
for any A> 1,

1
(18) i /bl 1, AX) - sn(f, )\dx = 0
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Using the notations introduced in the sufficiency part, we can write that

|
JIm(/, Ax) - sn(f, x)\dx >J2i - h - J2- J23

0
On the basis of (12), (14), (16), and (18), we conclude that
1
19 limlimsup / \anDn(x)\dx = 0.
(19) All n-+oop J )
1/7n
S
ince nw 1 1
MR, AT
by (7), we have for every A> 1,
1/7n |
n+ l)]an
(20) J \anDn(x)\dx < hlant e o0,
0
Obviously, (19) and (20) imply (5) to be proved.
6. Concluding remarks. Analysing the proof of Theorem 1 (see especially

(15)), we can achieve the following more general result.
Theorem 2. Iff GT1(0,1) andfor some p > 1 and A> 1,

Urqn_»goup; (2&%‘ nTT1?JPF -1JAa,r

=n
is finite, then conditions (4) and (5) are equivalent.

Note added in proof (July 11, 1991). After having submitted the manu-
script, it came to the author’s knowledge that Stanojevic [7] had announced
an analogous result on the V -convergence of trigonometric Fourier series.
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ON THE NUMBER OF PRIME FACTORS OF tp{tp{n))

I. KATAI* (Budapest), member of the Academy

1. Let <p(n) be the Euler-totient function, a{n) the sum of positive
divisors of n, u(n) the number of distinct prime divisors of n, and i)(n) the
number of prime divisors of n counted them with multiplicity. Let y2(n) =
= yj(v?(n)), and in general <pk+i(n) = tp{tpk{n)). Similarly, <2(n) = <t(cr(n)),
<kH(n) = <r(<Tk(n)).

Our purpose in this paper is to prove the following

Theorem 1. We have

. w(V2(n))- i(loglogn)3
W5 N <X A=z(loglognflz <Y >= (),

for every real number y, where @ is the standard Gaussian law.

Earlier, P. Erdés and C. Pommerance [1] and M. Ram Murty and V.
Kumar Murty [7], [8] proved that

11 u>(<p(n))~ \(log log n)2
(=5 N(loglogn)3/2

and the author [2] that

0;(<r(p+1))- i(loglogp)2
N(loglogp)3/2

are distributed according to the standard Gaussian law.
M. Ram Murty and N. Saradha [9] proved the existence of the limit
distribution of (1.1) by using only the Eratosthenian sieve.

2. Let A, A*, A, be the set of additive, completely additive and strongly
additive functions, respectively. The letters c,ci,c2 ... will denote suitable
positive constants, not necessarily the same at every occurrence. We shall

*This work had been done while the author was a visiting professor at Temple Uni-
versity, Philadelphia. It was financially supported by the Hungarian Research Fund No.
907.



212 I. KATAI

use the following abbreviations: x\ = logx, a™+i = logx* (k = 1,2,...).
The letters p,pi,p2, e, 9,4i, 92, ¢e¢, P, Pi, P2,0¢¢ Q, Qi, Q2, e*+, will denote
primes. P(n) and p(n) denote the largest and the smallest prime divisor
of n, respectively, (x,k,E) is the number of primes p up to x satisfying
p =t (mod k).

The main idea of the proof is to approximate w<p2(n)) by an additive
function. Hence, by using the Bombieri-Vinogradov mean-value theorem,
some sieve results and Kubilius theory for the distribution of additive func-
tions, we shall get our theorem.

Lemma 1 (Bombieri-Vinogradov). We have

liz X

ey dogon (1O 20X M (logx)B”

where A and B are arbitrary positive constants satisfying the inequality A >
>4B + 40 (see [6];.

Lemma 2. Let ®(x,y) be the number of integers n < x satisfying the
condition P(n) £ y. Then

DOK, y) < c\x exp

uniformly for all y » x.
For the proof see [3]
Lemma 3. We have

ko)< X
Y <pK) logx/k'

ift "k<xand(k,I)=1
For the proof see Halberstam-Richert [4], Theorem 3.8.

Lemma 4. The number of solutions of the equation p —I = aq in prime
variables p and g, where p runs in the range £ <p < x, is less than

CX
v(a)l°g2(x/a)

for every positive integer a. The constant ¢ is an absolute one.

See [4], Theorem 2.3.
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L.« s The number of solutions of the equation p —t = A-y where p
runs over the primes in the range [t,x] and 7 over the integers satisfying
P(l) =¥ less than

cX
V?2(A)(logx)(logj/)
uniformly if A < x3/4,1 <y < x.
See [4].
Lenn a [} Let
cr(x,k,t):= Y V~I-
kMp<x
p=l(no¢ k)
Then

a(x,k,£) < c-%f

ifi< Kk <x and (I,k) = 1.

» ... This is an immediate consequence of Lemma 3. Since
XK m2° K,i) < therefore ~ \/p for the primes in [fce2t 1,k m2‘] is
less than cy”™ t,~ t > 1. Summing up for t up to 2f < k, we have

log log k
CWT®
In the range x > k2, the inequality in Lemma 3 can be replaced by #(x, k,1) <
< M fo)fégx- This Sives raPidly that

o(k2k,i) <

o(x,k,£) - o(k2,k,£) <C i<'f{k-)
oo+ 1 Let 11 be a set of primes Q with the property that

#{Q EP<«1 (M1

holds for every ; >: Here A > is a constant. Let Vz be the set of those
primes P for which there exists at least one Q B 71, Q > z, such that Q\P—L

Then
WP X\PeV I,CI/W(X)+_;r[x\_u
$X,Z 1= n x\P e Vz} ,i_l (log 2)A~X)

v oo It is clear that

Ada Mathematica Hungarica 58, 1991



214 I. KATAI

Since u(x,Q,£) < c-¢ ifQ < y/x,and <x/Q if Q <X, therefore

1

S*.z< £ iy
y/x<?_|<x Q
Q€K Qe
By using the assumption for the number of primes of TZin intervals of type
[M, 2M] we get the assertion of our lemma immediately.
As an immediate consequence, we have

Lemma 8. Assume that the conditions of Lemma 7 are satisfied. Then
the number of integers n <x having a divisor P £ Vz is less than (log**3Li ¢

Lemma 9 (Turdn-Kubilius inequality). Iff £ A,, then

YA(f(n)-Ax)2<cxBx,

where

f I M
P e p
p=x psx P
and c is an absolute constant. [5]

Lemma 10. Let x > 100. Then the number of primes p up to x satisfying
w(p —1) > 2k is less than c(J2+0(i)) .je. Especially, the number of primes
p <x satisfyingu(p - 1) > 15loglogp is less than O .

Proof. Ifu>(p—1) ~ 2k, then the product d of the first k smallest distinct

prime divisors of p —1 s less than y/x. Thus the number of primes p with
w(p —1) > 2k is less than

N2 T7r(M,IM d)].
d<™x
w(d)=k

By using Lemma 3, and that

v — <-
h i A “ k-

the first assertion follows rapidly. The second assertion is an immediate
consequence of the first one and the Stirling formula for k\.
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Lemma 11. If p runs over the set of primes, then

$>(p —1) = lixeloglog x + 0(li x),

p=x

Ylu2{p- 1) = li xmloglog x)2+ 0(x2i x)
p=n
A(u(p - 1)- loglogp)2 < x2i X
p=n
Lemma 11 can be proved by routine application of the Bombieri-Vino-
gradov mean value theorem.

3. Proof of the theorem. It is clear that d\n implies <p(d\<p(n) and
u(d) < ui(n). Consequently y2(d)|<*2(n), and w<?2(d)) < a>y?2(n)). Let J
be an interval, and let u{n\J) denote the number of distinct prime divisors
of n belonging to J. If J = [y, oo] then we simply write u>(n\ly) instead of
u(n\J). Furthermore, let uiz(n) denote the number of prime divisors of n
which are not greater than z.

Let us consider the integers n < x. For an n let n — A(n)B(n), where
A(n) and B(n) are defined such that P(A(n)) < x\, p(B(n)) > x\. Observe

that for A(n) < exp(x2)5

log y2(/1(n))
log log <2(A{n))

and that the cardinality of n ~ x satisfying A(n) > exp(x2) is 0(x/z2).
Indeed, let us count the integers n with some fixed A(n) = A. All these
integers can be written as 7 X), where 7 runs over the integers 1~ 7 »
N xIA, p(7) > xi. So, by using known sieve results, this is less than

<cx\fx3

n (§2(A(n))) ~ ¢

X < ClX
= AX2

if A~ x/xi. If A >x/xi, then only 7 = 1 can occur. Now we consider the
sum j extended for those A for which exp(x2) » A < x, P(A) < x\ is
satisfied. By using Lemma 2 we can get easily that this sum is hounded as
x —»00. Thus, for a non-exceptional n,

V(<P2(n)) = w(<p3(B(m)) + 0(x2x3)

holds. The number of integers n < x for which there is a g > Xi such that
g2\n is less than x/q2.
Summing up for Xi < g, we have that

XT,-28$ X/IXI-
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Thus for all but at most 0(x/xi) integers n < x, B(n) is a square free
number.

Let us estimate now uxi (¢*2(B(n))). We shall prove that this is less than
0 (x2xs) for all but o(x) integers n < x. Since the total number of primes
p ™ x2is less than O ~/x3), it is enough to estimate u(tp2(B{n))\J), where
J = [x\,x\|.

Let us consider the sum

E =

where J is an arbitrary interval Q [x2,x].

If 2v?2(n)» then either g2\<p{n) or there exists a prime Q = 1(mod?) such
that Q\ip(n). In the second case either Q2\n or there exist a prime P = 1

(modQ) such that P\n. Let us fixaq€£ J.
The contribution of the second case to the sum is less than

By using Lemma 6, this is less than
X +* E cx2<Cixx]
0 0-9Q 4

Let us consider the first case. If g2\<p(n), then either g2\n, or there exist
distinct primes Pi,P2such that Pi = 1 (mod?), P2 = 1 (mod?), PiP2|n.
Thus the contribution of the first case is less than

E
PI,P2=1 (modg)

Summing up for ? £ 7, we have

(3.1) N« (R(B(n))|7) < xx\ \ 1/?
n<x \g£J
Especially, for the choice J = X) 1/? = 0(1), thus the right hand

side is O(xx3), consequently our assertion is true.
Thus, for all but o(x) integers n * x, we have

(3.2) 4v>2(n)) = u(<p2(B(n)) [xE) + 0(X]x5).
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We shall prove that

(3.3) nu=>2(B(n)\x\) = vy Y “ 1) + 0(x]x5)

pin  <3lp—1
p>X!
for all but o(x) of the integers n ™ x. Let

(3.4) f(n):=Y Y ~ 11%3) - w(v>a(™(n))I*4).

pin Qlp-1
P>X1

Assume that B(n) = P1P2... Pi is a square free number. In g2(B(n)) every
g > x2, qy>2(P (")) is counted once.

If gp2(B(n)) then either g2\tp(B(n)) or there exists a prime Q,
Q\<p(B(n)), such that Q = 1 (modq).

Let Bx be the set of integers n < x for which there exists a q > x\,
g2\<p(B(n)). If n G Bx, then either g2\n or there exists a prime divisor P
of n such that g2\P —1 or a couple of primes PbPr, such that P\P2\n,
Pi = 1 (mod <), P2= 1(modq). Thus

1
card (Bx) <x Y, | +xY Y pIp2 < xx\'Y 1U?2-=

PS1(PI 9>x|Pi,P2=1(<j) g>x\

Assume now that n (E Bx. Let Cx be the set of those integers n q x for
which there exists Q, Q > x\ which divides P, - 1and Pj- 1(t ¢ j) (where
P,P,IP(n)). It is clear that

card(Cx) <x Y Y pV <<U2E 72 =0{x/x3).
Q>x\Pi=HQ) 1 2 Q>x* 4
Pi=\(Q)

Let now Dx be the set of those integers n <x for which B(n) is square-free,
n € Bx I>Dx. Let us consider /(n) ((3.4)) for n 6 Dx. In the double sum
some @,q\ifi2(B(n)) is counted only once, if there exists no more than one Q
such that Q = 1 (mod5). But this q is counted in w{t2{B{n))\x") its well.
So, the multiplicity of some g, q\ip2(B(n)) occurring on the right hand side
of (3.4) is not greater than the occurrence of Qi ¢ Qj, Pu, Pv such that
g\Qi —1, q\Qj —1; Pu = 1(Qi), Pv = 1(Qj)- Here Pu = P,, is not excluded.
Thus, by applying Lemma 6,

Yf(n)rxY Y Y prp2+XxY Y Y \ < xxl-
n=x A>X* Qi=1(?) PI=1(<31) 9>x* £2i=1(g) P=1(QiQ2)
n£Dx Q2=1(9)P2=1(Q?2) Q2=1(g)
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Now we shall substitute each u>Q —\\x\) by (Q —11 »QI*6]) on the right
hand side of (3.3). The erroris 0(1) for every Q, the total error is less than

<E wp_1)
p\n

Averaging this for n < x,

n~"X pln pin

from which we get that the error is less than 0(x%Xs) for all but 0(x/x5)
integers n i Xx.
Let us consider the sum

ln:= E E "(Q-N[*iQ 116))-

pin <?lp—1
X1/16<p<X

Let R be the set of those primes Q for which Q > x\ and w(Q —1) >
> 15loglogp. Then, by Lemma 10

#{Q 6 [y.2y1\Q e R} < cij//(logy)n

and by Lemma 7,

Pel> < L

The number of integers n » x for which there exists p E 5XZ p|n, al/16 <
< p <X is less than

X E  UP=0(x/xI).

X1/16<p<X

If n has a prime divisor p E5XZ p > r1/16 then

*n<15 E E loglogQ = Tn.
pin Qlp—
P>x1/16
Averaging the right hand side, we get
Er»s* £ i E w s « £ Nd) .

n=x x1/16<p<x Qlp—1 x1/16<p<x
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But
E ”PF; Vo
X1/ 16<p<x
which comes from the estimation w(p —1) < f-x? (see Lemma 11), and
p<x 1
so £ Tn< IiJ.
nil

Collecting our inequalities we conclude

wvsa(n) = X1 E WQ - 1[*3>Qu16]) + 0(x"x3).

pin Qlp-1
Xl <p<x1/16
Let us consider now
by £ WG “ 11[*2>01/16])-
pin <3|p—1

xi<p<xl/le Q>p1/16

We split fin into two parts, 6n = &1 + 67, where in b!1*we sum over those

pairs (p, Q) for which u(Q - 1) < 15loglog Q, and in over the others.
Since for every p at most 16 distinct Q occur, therefore

Wcirloglogp

pin
and
6<4
L' p
Furthermore
XX2=x £ S
nn™x p<xl/16 Qlp-1 Q Q<p«3ie
pl/ 16« ? p=1 (modQ)
- 1)(iogiog(?)
< N Q

where Q is summed only over those Q for which u>(Q —1) > 15loglog Q
is satisfied. Since for every y, the number of such Q in [p, 2y\ is less than
7r(p)/(logp)5and u(Q —1)loglog Q ™ clogy, therefore

Noox(Q- 1)loglogQ M i
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So we have

35  wy2n))= 5" "2 u(Q - 1[*2»QU/16]) + 0(*2*3),

p\n Q\p-\
X\ <P<X1/16 Q<pl/16

for all but at most o(x) integers n N x.
Let now u(p) = ux(p) be defined as

UAP):= 2 w(P - !|[*2»Q116]) - ~(bglogp)2
<3p-i
Q<pl/i6

if Xi <p <x116 and let ux(p) =0ifp ™ X\ or p > x1/16. We shall consider
ux(n) as a strongly additive function. Similarly, let

\(loglogp)2 if Xi <p < XU/16
0 otherwise

and let vx{ri) be a strongly additive function. Thus,

(3.6) w(<p2(n)) = vx(n) + ux(n) + 0(xjX3)
holds for all but o(x) integers n < x.

4. Completion of the proof. We can see easily that after normalizing,
vx(n) is distributed in limit according to the Gaussian law. Let us consider

[y —M 2.
*2

Then tx(p) is bounded on the set of primes, furthermore

p<x pix 20

as easy to calculate them. Thus, by the well-known Erdés-Kac theorem

2(7  Ax

[n " x
Bx

(x —»00)

for every real number y. Since Bx —»00 and ® is a continuous function,
therefore we may substitute Ax by |x 2, and by -y/xj. After doing

this and multiplying by x2, we have that
f

(4.1) lim-# <n<x V-V gy
« T20X22 < ¥
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Finally, we shall prove that for all but o(x) integers n < x, ux(n) is bounded

by a function of x growing as slowly as o(xB 2). This can be done by the rou-
tine application of Turan-Kubilius inequality and the Bombieri-Vinogradov
mean-value theorem.

Starting from the inequality,

(4.2) Y u-(n) - Y <cxY “KPP)

pSx
we shall estimate the quantities
(4.3) E Mp) «aKP)
p=x P p=x P

For this reason, we shall estimate

aH ::YU x d (W):Y

where in these sums p runs over the set of primes belonging to the interval
J(ui) = [w,d], n/ = w(logu;)10. Assume that ex* <u>< un' < xU/16. Let us
write ux(p) as

K(i>) =) - *(loglogp)2 + ti(p) + t2{p)

where (11
h(p) = Y (Q' i|[4Q 116D,

Qlp-i
x*<Q«A/le
h(p)= u (Q -1\[AyQl,16Y)-
Q\p-1
u;l/ierQ<pl/16
Then
(4.4) au>) = -A(108108P)2+ X/i(i>)+ Y * 20 =

Y
Lp<w
= ax{ijj) + a2(W -f a3(»).
We have a3(w) > 0 and

a3(w)” Y w(Q - 1)(tr(»n;,a,1) - 7r(w,g,l)).
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Choosing a large B, B = 50, say, in Lemma 1 and observing that u(Q —1) C
< logQ, we get

(4.5 a i § (W - e i +

0,1/1««3<n/l/1B \4 vV t 6 W

Furthermore,

asll = u(Q - 1|[z2,<91/16D (*V ,<?,1) - 7r(w,g,l))
*«<Q<udlie

and by Lemma 1, choosing B —50, we get

(4.6) E
o-1
Let
(4.7) S(u) == J2  wQ- N[x,Qt™)
x"QKuYB Q-1

Since w(Q - I|[x]j, Q1/16]) = u>(Q- 1)+ 0(1), by using Lemma 1, after partial
summation we have

(4.8) S(u=>) = *Q°glogu>)2+ O(log logw) + 0{x1).
Thus
(4.9) o2(w) = ~(loglog 0)2(liu/ —iu)0 ~ A (loglogu + a2)" .

Since (loglogu/)2- (loglogo;)2 ™ 1, therefore, by the prime number theorem,

J2 “A(108 108P)2 = -~(bglogu;)2(lia;"-liw) + O .

w<p<w' 4 6 |/
Collecting our results, we have
(4.10) a(uj) = 0(liu/ - liw)(loglogu; + 0(52)).
Hence we can get easily that
(4.10) Ax = 0{x\).
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To do this we have to split the summation interval [xi,x] of p into intervals
of type [u>u/] and use the relation (4.10). The contribution of the terms

W < ex* can be estimated roughly, the denominator p in ~ W can be
pEj(w)
substituted by n at the expense of the total error 0(£ 2)-
We can estimate b 2 similarly. We split the interval [xi,x] into subinter-
vals of type [w,u/] as earlier. Thus we have

BX<£ 2ld + 0(x\),
2 LOREIC)

where on the right hand side we consider only those w for which eX|2 <w
holds. To estimate d{u;), first we observe

WX(P)21n 27i(p) - ~(bglogp)2™ + 2t](p),
whence we have
du>) N 2(£] —£2 + S3) + £4,
where

Si= £ 7(jO = £0°gbgp)2i(p),
p p

s3=\ 57(iogiogp)4, £4=Y I -
v

Since (loglogp)2, (loglogp)4 are very slowly growing in J(u>), therefore

Ez = i(loglogw)4W - liw) + (fj* 1),

S2= (loglogo.)2(l + O(p™jiTi)) "2M.
To estimate £1, we observe that
Si= £ ~(Q-i\[xiQ1/16])-~Q2-i\[xiQ 1/16])-L QI>Q2,
Q1R
where
LQu@ = a-("1<3b<?2],1)- 7r(w,[<5i,Q2],)-
By Lemma 1, we get

SE(WHia)E— o'V T
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+ °(E 1})) + O ("/(logo.)“).

Furthermore, we have
E4< - Du(Q2- D(MY[<A1) - 10, [Qx 3, 1)),

where Q2run over the primes of the interval [wl/16,«/1/ 16], independent-
ly. It is clear that £4 «C (liu/ iu;)/(logw), say. Collecting our inequalities,
taking into account (4.8), (4.9) we infer

d{u) < (logiogw)3(ii<*/ - liuox; ~ ~ ~ g -i Ql/16]) +

TO((loglogu>)3(liL)1- liw)) + ° (~ og™ -
By using Lemma 11, we get
du>) < (loglogu>)3(lio/ —liw).

Now, summing up for the intervals J(u), we conclude that

(4.11) s2<EOE*iN)i+0(1})<4

P<X

Thus, by (4.2) we have, for all but 0(x\xl) integers n <x, the inequality
\ux(n)\ < Cx\x\ holds true.

By this the proof of our theorem is finished.

5. Remarks. By this method we can prove that

: I
II)I;nX_# n<x | .«/2 <Yy _cb(y)

{ 720x*

for any choice of /(n) = w(n), /(n) = LWn), g(n) = a(<p(n)), <p(a(n)),
° U «)), ¥>(n)-
We hope that by a refinement of this method we can prove that

Ww(<Pk(n)) - ckx*+1
S e
dk0/02+/2

is distributed in limit according to the standard Gaussian law, for every fixed

K.
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INTERVAL FILLING SEQUENCES AND
COMPLETELY ADDITIVE FUNCTIONS

J. C. PARNAMI (Chandigarh)

1. Introduction

(e]e]

A sequence {An} of reals with An > An+i > 0 (n GN) and Ah=1L <
n=|
< 00 is said to be interval filling if every number x G [0, X] can be written

as x = | £,,An with en —O0 or 1. For example, {I/gqn} is interval filling iff
n=
1< qg” 2 (see [1]).
A function F: [0,L] —R is said to be completely additive with respect
to an interval filling sequence {A,} if

X>nA,) =
=l ' n=I

for every sequence {£,.} in (0,1}.

In [1] Daréczy, Jarai and Kétai proved that for 1 < q < q(2), a completely
additive function F with respect to {1/qn} is of the type F(x) = cx for all
x € [0,1] where L = | Aan —" (g~ 1) an” g{k) denotes the root of the

n=
equation L —1 = \/gk lying between 1 and 2.

In this paper an attempt is made to determine interval filling sequences
for which every completely additive function is linear. In the process it has
been possible to extend the result of Dar6czy, Jarai and Katai to all g in
(1,2]

2. Interval filling sequences

Definition 1. A sequence {An} with A, > An+l1 > 0 (n G N) and
F‘ElAn = L < oo is said to be interval filling if every number x G [0, L]

can be written as

(2.1 X = A ]£nAn, £,=0o0r 1
n—
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Interval filling sequences have another characterization as given in Satz 2.1
of [1], namely:
[e]e]

A sequence {An} with An > An+i > 0(n GN) and L = An < 00 is

interval filling iff

0o

(2.2) A, < ~ A foralln.
j=n+1

We write down some immediate consequences of this result, which will
be useful in our investigation.

Corollary 2.1. If{A,) is an interval filling sequence and m is a natural
number, then {An}n>m is also interval filling.

Corollary 2.2. If {An} is an interval filling sequence and 1 < W <
< R < ees < nr is afinite sequence of natural numbers, then a number x
can be written as

X —Ani A2+ emm+ AT+ "NEnA) £n~0 orl
n>nr
iff
0MX—Ani A2 eee Ar ™ NAA,

n>nr

Corollary 2.3. Let {An}, ni,n2,... ,nr be as in Corollary 2.2, then
X = Ani + eee+ A r has a representation

X — AN + e+ Ar |4 ) " £«AlN, cn—0or L

n>nr

3. About the numbers qk)
For a natural number k, the equation
(3.1) gk+l —20k+9—1=0

has a unique root lying between 1 and 2 [see 1]. We denote it by q(k).

Proposition 3.1. a) The sequence (g(fc)} is strictly monotone and con-
verges to 2.
b) Forq(k) < g<gq(k + 1), we have

(o]0

(3.2)
j=1
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Proof, a) Let 2 > g>qg{k+ 1), then gk+2 - 2gk+l —1 > 0 and so
(qk+1l -2gk+ g-1) = (gk+2- 2gk+l + g- 1)/q + (- 1)2/g> 0.
Hence q > q(k) and in particular q(k + 1) > g(k). By the equation (3.1) for

q(k), we have
0< (2- qk)/(ak) - 1) = @AM*))* < (l/q(l))k- O0as Kk -> oo.
Hence (q(fc)} converges to 2.
b) For q(k) < g <q(k + 1), we have
gk+l - 20k + - 1>0 and gk+2- 20k+l +qg- 1<0.

These inequalities can be rewritten as 1/gk+1 ~ (2 —q)/(g—1) < 1/0gK i.e.

[e]e)

=1

4. Some special interval filling sequences
and unambiguous numbers

For a fixed natural number k, we denote by A* the set of interval filling
sequences {A,} satisfying the property that

(4.2) Anic) i 5 N "AL] —A, < A+t
i=i
for every natural number n. By Proposition 2.1, Part b) it follows that

{l/gn} is in JT* whenever q(k) < q ~ q(k + 1). By Corollary 2.1, it follows
that for any sequence {An} in Ajt and a natural number m, the subsequence

{An},,>mis also in Afc

P roposition 4.1. For any interval filling sequence {A,} in A*, we have,
for any natural n,

(4.2) An < 2An+i,

(4.3) Al + seet+ Antt < A,

(4.4) N NARH) < A
J=2

Acta Mathematica Hungarica 58, 1991
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(4.5) Al T A2 An.

Proof. By (4.1), we have

00 00
A AANHE] —Mtl A nifetl = A 1+ —An
J=1 >]

and therefore -A,,+i < A+i —An i.e. A, < 2A,+i. This proves (4.2).
By (4.1), we obtain on using (2.2)

N PAH —AN < AN AN T Atk
i— j=i
K
i.e. Ant)-—An < 0. This proves (4.3).
j=1

Now to prove (4.4). By (4.1), we have

00
A+ An < AvK = At

J

00
and so * A+ —An < 0.
i=2
Finally to prove (4.5), we obtain from (4.1)

AHc2 = A AAnHil] An(i< An AN
i=1

on using (4.4), and so
An+fc+2A,,+i CAn.

Definition 2. For a given interval filling sequence {An}, a number x £
00
€0, T, L—Y A, is said to be unambiguous if there is a unique represen-

n=1

00
tation of x as Y £nA,, £, = 0or 1; otherwise we say that x is ambiguous.
n=1
Now we prove some results about unambiguous numbers which will be
useful in our investigation.
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Proposition 4.2. Let {A,} be an intervalfilling sequence in Ak. Suppose
that a number

X — A, --An+i+ oot Aptt 4” A~ fmAm, fm=00r1
m>n++2

t >0, n > 1 is unambiguous relative to the sequence {A,}. Thent » Kk —1
and x —An is unambiguous.

Proof. First we claim that x < An=1. Suppose on the contrary, that
[e]e]

X >An_i. Then0 £ x —A,_i < x < * A and by Corollary 2.2, x has a
J=n
representation of the type x = A,,_i+ * EjXj, Ej = 0 or 1L This is impossible
J=n
as x is unambiguous. Hence x < An_j.
Now we assert that x > A,+-ee+A +f 1+~ An+t+J- Suppose otherwise,
j=i
then 0 * x - An—eee—A +t i 1 "2 An+f+j and by Corollary 2.2, x has a
i-1
representation of the type x = A, + ----- bAn+t i + "2 £jK+t+j, with £j = 0
L . : : j=1
or 1. This is impossible as x is unambiguous.
By the above considerations, we have

AN+ ——bAN i + E AnttH < A,
=1

ie. A —A+ < An_i. On using (4.1), we obtain that

Antfc A~ Y "Aj  An_i < An+t,

j=n

which implies that t < kK i.e. t<k —1.
Now suppose that
X Ar—) 'fmAm, rfm—O0 or 1.

m=I
Since X < An_i, therefore x - A, < A,,_i —A, < An on using (4.2). Thus we
have Nm = 0 for m ~ n and

X =A+ Y] dmAm= A, + eee+ Antt + £mAm

m>n mAn+t+2
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as expressions, because x is unambiguous. Hence x - An has unique repre-
sentation of the type (2.1), namely

X —\n=An+i -f----- h A+t + smXm-
min+t+2
This proves that x —A,, is unambiguous.

Proposition 4.3. Let {An} he an interval filling sequence in JT* and x =

= Al feeet+t A+ Y £mXm be unambiguous with respect to {An}. Then
m~t+2
y = X —AI —ee*—At is unambiguous.

Proof. Suppose that Y— Y VnXn, fjin = 0 or 1. Since

Y= A" MAn= Y, Xm < A
m~t+2 m>t+2

on using (4.4), therefore nn = 0 for all n <t and hence x = Aj + see+ At+

T Y VnXn- Since g is unambiguous, therefore Y VnXnand Y £mAm
n~t+| n~\t+1 m”/t+2

are the same representations. Thus y has a unique representation of the type
(2.1) i.e. y is unambiguous.

Proposition 4.4. Let {An} be an interval filling sequence in J1* and x =

= An+ A, +u -f Y £mAm>£m = 0 or 1 be unambiguous. Then we have
m>n+u-+l

n<kT1l
Proof. Since x is unambiguous, therefore so is

L—X=Ai+ soofA i fAMH + oost AU i + A (1 —Em)Xm.

ma n-f-ti-f-1

By Proposition 4.3,

Anti + —bXntU i + L a -
m>n-fti-f1

is unambiguous and by Proposition 4.2 we have n- 2<k—1ie. n”™ K+ 1

Proposition 4.5. Let {An} be an interval filling sequence in Ak. For a

number x G (C, Aj), x = Y X with n,+i > n, for all i to be unambiguous
i—

with respect to {An}, it is necessary that <n-+K+1 for all i.

Proof. Suppose that x G (0,Ai), x = Y1Xn, with nt+j > n- for all i is

=,
unambiguous. Then w > 1 and by repeated application of Proposition 4.2,

Acta Mathematica Hungarica 58, 1991



INTERVAL FILLING SEQUENCES 235

for every fixed j, Y is unambiguous. By Proposition 4.4, we have nJ+j—
.Zj

—rij < K+ 1. Since nl+l - n- > 1, therefore nj+k —rij > K and equality

holds iff rij+j = rij+i-i + 1 for 1 ~ i ~ K, which is not possible in view of

Proposition 4.2. Thus we have nj+k >nj + K + 1L

Note. IfFAIi » g » L—AI = JY2 then hy Corollary 2.2, x is ambiguous.

Moreover a number y lying between L —Ai and L is unambiguous iff x =
= L - y is unambiguous and 0 < x < Ai. So the condition x 6 (0,Ai) in
Proposition 4.5 is virtually not a restriction.

Proposition 4.6. Let {A,} be an interval filling sequence in J1*. Suppose
that £ 6 (0,T), £ = l)(:1£n,6n>£,, = 0 or 1, is unambiguous with respect to

{A,.}. Then there exists a natural number N with the following properties:
i) For everym > TV, fra= Y £n”n is unambiguous.

n>m

ii) For every m > N, at least one of em+l,... . £m+fcti is 1.

Proof. Let P = {n :£, =1} and Q = {n : \443—0} Since 0<E£<L
therefore P and Q are both non-empty. Since f is unambiguous, therefore
by Corollary 2.3, P is infinite. Find a natural number M € Q and a natural
number N G P such that N > M and N > 3. By Proposition 4.2 and 4.3,

= Y £nAn is unambiguous, moreover ny < Ai on using (4.4).
n>N n>3

Again using Proposition 4.2, we obtain that fm is unambiguous for every
m> N. This proves (i).

Now let m > N. Find maximal n\ < m such that £ni = 1 and least
2 > m such that = 1 Then £j = 0for all j satisfyingni+1 <j <T2-1.
By Proposition 4.5, 2" ni+ftc+ 1< T+K+1 also «<2 * m+1 and £,2= 1
This proves (ii).

5. Completely additive functions

Let {A,} be a given interval filling sequence and L = YI An.
n=

Definition 3. We call a function F: [0,L] —mR completely additive if
for every sequence {£n} in {0,1} we have

(5.1) =$>"F(A"-
n=I

In this section we find some interval filling sequences for which every
completely additive function is linear.
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236 J. C. PARNAMI

Theorem 5.1. Let 1 < g < 2 and F: [0,1/]] —»R be completely addi-
tive with respect to the interval filling sequence {1/<?"}. Then there exists a
constant c such that F(x) = cx for all x in [0, L\. We shall use the following:

Lemma 5.1. Let k be a fixed natural number and {A,} be an interval
filling sequence in A*. Suppose that F: [0, L] —aR is a completely additive
function with respect to {An}, satisfying F(L) —0, F ¢ 0. Then there exists
a natural number N such that

(5.2) 2F(A,) < —IF(AX -------- F(A,_J)
for all n > N.
Proof. Consider P = {n £ N :a, = F(An) > 0} and £ = A, If

n€p

0o

P = 0, then an < 0 for all n and since an = 0, therefore an = 0 for

all nand F = 0. If P = N then we would have F(L) > 0. Hence P ¢ O,
N i.e. £ € (0,1/). By Satz 3.2 of [1], £ is unambiguous. Let N be as in
Proposition 4.6. Fix any j >N, then by Proposition 4.4

(5.3) li=A+ ~ An
P
m>j+k+2

is ambiguous. Since £ is unambiguous, therefore by Proposition 4.2, iij —A
is unambiguous and in view of Corollary 2.1, we have rjj —A < Aj+fcH.
Hence

(5.4) Ti KA 4 AN < AL

on using (4.5). Since ry is ambiguous and rfj —A is unambiguous, therefore
it follows from (5.3) and (5.4) that

(5.5) y< Y] A,

n>j+1
Moreover, we have
(5.6) T>A > Ajt+i P em4" A+k

on applying (4.3). By using Corollary 2.2, we obtain from (5.5) and (5.6)
that

(5.7) Ty = AHLP «««P A|fP Y' imAn

m>j+k
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for suitable £m’sin {0,1}. Since Fis completely additive, therefore it follows
from (5.3) and (5.7) that

aj-r "N am —dj+l-f—-(dj+k + Ej+kHOj+kH + “m&m
m=>j+k. 2 m>j+A;+2
rneP
and O
(5.8) Cij < dj+i + eee+ dj+K + Sj+k+idj+k+im

Thus, we have

59 / =flj+l - Naitk + aitfc+i if j+Kk+ 1le P,
| aj S aj+1+ eee+ gj+k if j+k+ 1~P.
In both the cases, we have

(5.10) dj <« dj+i -+« djl

where j\ is the largest integer in P such that j -f1<ji <j + k+1. (Existence
of such a ji is guaranteed by Proposition 4.6.) Set jO = j, and define j,+i
to be the largest integer in P such that ji + 1< <ji + k+ 1 By (5.10)
we obtain

aj, =aj.+i d-----b aj,+1
and adding over allt=0,1,2,..., we get
aio + ah + aj2H----" aio+i + alo+2 + eee= -(ai + a2+ --——-- haj0)

and therefore dj = a0 < -(a! + a2H-----\-dj) i.e. 23 < -ai —a2-------- dj-i-

torvi1sy 1 Let F be a completely additive function with respect to
an interval filling sequence {An} in Ak such that F(L) =: Then F = 0.

Proof. Suppose that F ¢ 0. By Lemma 5.1, there exists a natural
number N such that

(5.12) 2F(A,) < -F(Aj) - F(An_Zforall n>N.

Replacing F by —F, we obtain that there is a natural number M such that
2(-F(AN)) < -(-F(Ai)) - (-F(A,,_i)) for all n >M

ie.

(5.12) 2F(An) > -F(Ai)-—-——-- F(An_j) forah n > M.

(5.11) and (5.12) contradict each other if we take n > Max(M,N). Hence
F=0.
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Corollary 52. Let F be a completely additive function with respect to
an interval filling sequence {A,} in /1o Then there exists a constant ¢ such
that

F(x) = cx for all x in the domain of F.

Proof. Define F: [0,T] —R by F(x) = F(x) —F(L)f, L = I’\n-
n=
Then F is completely additive with F(L) = 0 and by Corollary 5.1, F = 0
i.e. F(a:) = cx for all x € [0, L\, where ¢ =

Proof of Theorem 5.1. For 1 < g < q(1), the result has been proved
in [1, Korollar 3.1]. For a natural number k and q(k) < g < q(k + 1),
the sequence {l/qn] is in J/1* and the result follows by Corollary 5.2. By
Proposition 3.1, Part a)

@2) = | (ak),ack+ DU g()],

therefore it only remains to prove the theorem in case q = 2.
Now let F be a completely additive function with respect to interval
(o]0

filling sequence {2-n}. Since 2-n = "2 2~m for all n > 1, therefore
m=n+1
(5.13) F(2_n)= Yj F{2-m) forafi n> 1
m=n-+I

Changing n to n + 1 we obtain

(5.14) F(2-(n+1))= Y

m=n+2
Subtracting (5.14) from (5.13) we obtain that
F{2~n) = 2F(2~(n+1)) forall n >1
and by induction we have
F(2~") = 2_(n_1)F(l/2).

Hence for en G {0,1}

(e]e] \ 0o @ /@ \
( "] o= F(2"'n)=2F(l/2)"en2-" =¢c ~ , 2 -
n=I ' n=I n=I V=1 '

where ¢ = 2F(1/2). This completes the proof.
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6. Interval filling sequences for which every
completely additive function is linear

We denote by A to be the set of interval filling sequences {A,} such that
every completely additive function with respect to {A,} is linear. We have

(6.1) Afc C A for every natural number K
(Corollary 5.1),
(6.2) {1/?"} £ A for every qin (1,2]

(Theorem 5.1),
(6.3) Any plentiful interval filling sequence (i.e. an interval fill-
ing sequence {A,} such that every number between 0 and

L— A, is ambiguous) is in J1 (Satz 3.1 of [1]).
n=
Now we descnbe a property of A.

Theorem 6.1. If an interval filling sequence has a subsequence which is
in A, then the original sequence is in A.

Proof. Let {An} be an interval filling sequence and {/xn} be a subse-

quence of {A,} which lies in A. Set L = |‘5|31A and L\ = 5\;3 B> Let
. n

F: [0,1] -> R be completely additive with respect to {A,}. Define

Fi: [0,Li] =R by setting F\(x) = F(x) for all x 6 [0, Lf\. Then F\ is com-

pletely additive with respect to {/r,,} and hence there exists a constant ¢ such

that  (m) = cx for all x 6 [0,Xi]. Since A, —0 as n —»00, therefore there

exists an integer N : A, < L\ for all n # N and so F{A,) = F\{An) = cAn for

all n N. In case V> 1, we have \ n-i i XLAnandsoAyv—iz 53 £«An,
n> n>N

£, € {0,1} and in turn

F(xn-i) = £'A") = E E£"F(A") =
‘n>N ' n>N

= 5/™ncA, =c( ™ "EnAnj = cAai_i.
n>N \> N '
We conclude that F(A,) = cAn for all n > 1 and consequently for any

X = 53vm< vn € {0,1} we have
o

@ u @ (1)
F(x) =1 J>,An) =J2vnF(Xn) = = CX.
‘n=1 ' n=1 n=1
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This proves that F(x) = cx for all x € [0, L\.

Added in proof (July 18, 1991). Theorem (5.1) has also been proved
independently by T. Szab6, Publ. Math. (Debrecen), 36 (1989/90). In the
meantime Z Dar6czy, |. Kéatai and T. Szab6, Arch. Math. (Basel), 54
(1990), have extended the result to an arbitrary interval filling sequence.
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ON THE UNIFORM APPROXIMATION
BY GENERALIZED BERNSTEIN-MEANS

R. GUNTTNER (Osnabriick)

1. Let 5,[<7] denote the trigonometric polynomial of degree at most n
interpolating the function g € C2*at m —2n + 1equidistant nodes

(1) (7>= 4 — KT = s(<im). 1= 0,£1,22.......

Let us focus attention on the generalized Bernstein-means
(2) k—0,1,2,...,

which for k = 1and k = 2 were first introduced by S. N. Bernstein. If not
otherwise stated we take m > K to ensure that the arguments of 5,,[*] in (2)
lie within a period of length 2ir. Bkn[g] can also be written in the form

0) Bbibl (1) = E  4(«!m)) m!"’(1)
i=—F1

T\
for certain functions s- ; £ C2xk(cf. [10]).
Cin is made into a normed linear space by setting

bl = sup |$(F)|.

The norm or Lebesgue constant ||5”n|| of the bounded linear operator Bkn
can be determined as the norm of the so called Lebesgue function

(4) Bkn(t) := sup [SAN[ffJOI = ~2 Isim)(0l-
IWNL it2n

It is known that (see [2] or [4])

(5) [£0,,[ff](*) - g{t)l * ~(1 + BOn(D)) *u(g, h),

where u>(g,-) denotes the modulus of continuity of g and h = 2-k/T. More
generally Kis and Névai [20] investigated

(6) I-BfcntakKO - ff(01 ~ Mkn(t) mu(g, h), g£ C2jr,
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Mk,,(f) being optimal (for fixed k and n). Numerical evaluations of
(7 ckn := \\Mkn\

are given in [10] and [7], for example we have

(8) C,y = 1+ = (CcOsSec™ - 1) <1+, = jj.

Of course (6) and (7) imply that

9) \\Bkn[g]~ g\\*ckn-uj(g,h).

From a result of Gavriljuk (cf. [5], proof of Theorem 2) we derive that
(10) I#inb](0 - <7001 i |(! + BlIn(t)) m (g, hj .

More generally we shall prove the following
Theorem 1. Fork =0,1,2,... we have

(11) - {(O1 S |(1 + BbI(<)e<ex{« .
This estimation in some sense seems to be natural. First for every fixed
t it is easy to construct a function gt € C2n, |<| = 1, gt{t) = —,

gt ¢ const.,, such that Bkn[gt](t) - gt(t) = 1+ Bkn(t). Considering 2
N u(gt,(k + 2)h/2) it follows that

(12) IBkn[gt](t) - gt{t)l > ~(1 + Bkn(t)) m “gt, ,

which means that (11) is optimal (for fixed k and n),t ¢ t\m\ Furthermore
as a corollary of Theorem 1 we note that

(13) [|9*n[0] - g\ S ~(1 + 1IBh.II) -w (g, .

Now comparing this with the estimate given by (9) we prove that (13) is
even asymptotically optimal which seems not to be true for (9).

Theorem 2. Let K be fixed. For every e > 0 there exists a function
gc GCY and an infinite sequence ni(e),n2(e), m.. such that

(14) \Bkn[ge]-ge\ > ~A-y il + lltfjinID-w {9¢c,~*~h) » n=nun2, -----

2. Proofs. We omit the superscript (m). To prove Theorem 1 for arbi-
trary g E C2% it is sufficient to focus our attention on the interval to * t <
A to+h/2. This is an easy consequence of the facts that if gk(t) := := g(t+h)
then likewise Bkn[gh](t) = Bkn[g){t + h), and if /(to —t) := g(to + t) then
Bkn[f](to —t) = Bkn[g](to + t). The proof is based upon two lemmas due to
Kis and Névai [10]. Setting v = (k + 1)/2, K odd, we obtain
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Lemma 1. We have
3i(t) >0, v Mi<v, (-1)+tS{(t) >0, v <\i\<n (t0<t <:t0+ h/2).

Of course we have from (2) and (3)

M
(15) =
i=—h
thus
—V V—1 n
Bkn[gl() - g(t) = Y + £ + “ $(*)] +*(0-

i=——n  t=—vfl *=v
Now we apply Abel’s transformation to the first and the last sum to obtain

-v-l

Bkn[g](® - o(t) = ¥ [§(*) - O(f-+)] ~ci{t) + [g(t-v- g(v)] me_,(D)+

i=—n
v-I

t=—ti+1 i=u+l
where

E sj(0 fort=1,2,... ,n,
(16) <i(t) m=<

“E 3j@) forr=-n,—+1,. 0.
j=-n
But looking at the largest difference in the arguments we find

E 2u+ 1
b(t-v) - A~ « [0, h

thus

(17) |Bt,M (<)-s(<)IS"(j,Ar'>)-{I<’-»«l+ E MOI+M")I+

i=-u+l

+IE + E noi)}.

I=—n i=tiHi
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Lemma 2. Putting <7,t) instead of S{(t) in Lemma 1, the corresponding
statements remain true.

Lemma 2 together with (15) and (16) allows us to conclude that
v—l1

(18) k-, ()1 + Y Is*Ol+ M*)l =1

i=-v+1

and

9y k@+ Y moi =[5e,,7i(0)- S35, o-.. ]+

+[-S,+1(<) - SvH3(t) - Sv+5(t) -...]= Ys (“«(0) =
I=—
jt<0
*E_H(-».-(O)+ *E o + 1 IE—FI(-.<(*» . tE_H *om(q)
Si<0 <03 5.<0 -0

=5 E W*)I-5E =
*=_n *=—n

From (17), (18), (19) and u= (A+ 1)/2, we have proved Theorem 1, k odd.
The case even can be proved quite similarly, the ‘non-alternating part’ now
consisting of (cf. [10])

s_*(0 =0 s_*+1(0 > 0,... ,Sk(t) >0, Sk+1(t) >0,

and the largest difference in the arguments that must be taken into account
now being

\9 (<|+i) - 5001 ~ &(g, + 1~ hj .

To prove Theorem 2 we only have to consider the functionals

(g m\Br(g - g\/ (\Be+o,  qig) =~ (Y ,

which both fulfil the properties of a seminorm p with norm |p|| = 1in the
Banach space In particular this means for p that

P(g)" 0, p(a-g)=\a\-p(g), p(f+9g) <p(f) +p(g),
oIl = inf{M[p($) » M m|5[,(? € C2,} = 1.

Now Theorem 2 is an easy consequence of the following lemma proved in [8].
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Lemma 3. Let rn, gn be seminorms, |r,.J| = |lgn|| = 1, defined on a
Banach space X and satisfying rn(g) £ ogn(gt), ge X . Ifgn(g) -* 0 (n —»00),
for every fixed g 6 X, then given t > 0 there exists an infinite sequence
M,MN2,Ms,... and an element g € X such that gnk(g) > 0 and

rn(g) > (1 - e)-gn{g) (n=ni,n2,n3,...).

3. Remarks. Theorems 1 and 2 remain valid for discrete operators
(3) defined by symmetric kernel functions satisfying the analogue of (15),
Lemma 1 and Lemma 2. This is discussed in further details in [9] with
emphasis on the case Kk = 0.

The norms ||Ron|| of the trigonometric interpolation operator Bon = Sn
at m = 2n + 1 equidistant nodes are well known, see [3]:

/2r'+1T1r\l 1~ 2r + 1T
IBgill= - 1+ 2y cosec ------- — == > cot\é— -------
¥ =TT 20 T l}
These numbers coincide with the norms Am_i(T) of the algebraic interpola-
tion operator at the Chebyshev nodes T. For the asymptotic expansion of
the norms see Giinttner [6]. Bernstein [1] has shown that ||Bi,|| < Abk
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A PAI-TYPE LACUNARY
INTERPOLATION PROBLEM

M. R. AKHLAGHI (Prestonsburg)

1. Introduction. For a fixed positive integer n > 2, let un(x) be a
polynomial of degree n with real distinct zeros in [-1,1]. If m is any non-
negative integer less than n, let

(1.1) Xnem:= {xkj :u;U\xk,j) =0, k=I j=0,1,...,m).

We first consider the interpolation problem of finding a polynomial P(x)
of degree (m + 1)(n —y) - 1such that

(1.2) PO\xkg)=akj, k=1I,....,n-j, J=0,1,...,m,
where s are arbitrary real numbers. This interpolation problem, which
may be called the problem of (0;1;... ;m) interpolation, is singular for any

m > 1, i.e., for any positive integer m, 1 < m < n —I1, there exists no unique
polynomial P(x) of degree (m + I)(n - y) —1 satisfying (1.2) on the set
of nodes XniTn. For if P(x) is such a polynomial, then P(x) + aen(x), for
any constant ¢ ¢ 0, is another such polynomial. To insure the regularity

we consider the modified (0;1;,... ;m) interpolation problem, and add the
condition
(1.3) P'(-1) = «o

to (1.2) where ao is an arbitrary real number. We shall call this lacunary
interpolation problem, the problem of modified (0;1;... ;m) interpolation.

The case m = 1 was studied by Pal [6], where he used the condition
P(a) =0, ad Xko, K =0,1,... ,n, instead of (1.3). Eneduanya [1] has
proved some convergence results for the case m = 1, using conditions (1.2)
and (1.3) on Xng, with

(1.4) un(x) = My@&) = -n(n - 1)J Pn-i(t)dt = (1 - x*P"-iix),
-1
where Pn(x) is the Legendre polynomial of degree n with normalization

_P,(1) = 1. Eneduanya [2] and Szili [8] have also investigated (0; 1) prob-
lem for <, (x) = Tn(x) and H,,(x), respectively.
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In this paper we study the problem of modified (0; 1;2) interpolation on

for w,,(r) = Mn(x). Section 2 deals with the statements of the main

results and some preliminaries. In Section 3 we prove the regularity of this

problem and in Section 4 we obtain the fundamental polynomials. Section 5
is devoted to the convergence problem.

2. Preliminaries and main results. Let xjt = xj*0, 1=k =W 4 = £jtb
1M kK<n—1, and Xc2, k= 1,... ,n—2, be the zeros of M,,(x), M(,(x), and
M"(x), respectively. The following relations are valid:

(2.1
1— in—2 " ®&— in—173-n —I; —2,3,....

It is known that the polynomials P,,_i(x) and Mn(x) satisfy the differential
equations

(2.2) (1- x2)P" _(x)- 2xP'_r(x) + n(n - 1)Pn. 1(x) =0
and
(2.3) (1-x2N"(x) + Tr(n-1)MNn(x) =0

respectively. (2.3) leads to
(2.4) Y2 — K—1,2,....,71 2

Let tk(x) and 4 (r) denote the fudamental polynomials of Lagrange in-
terpolation such that

(2.5) U S i k=F 0 (fe) = teeen)
Son(ti) = hj o (fei= i, ..., n-i)
These polynomials can be represented as
M..(x)

(2.6) OO = iOIT.(Y
and
(2.6a) At P

2007 (x-4)N"(4)  (x-4)P'_a(4)
We recall that
"P,_i(i)=l=(-Tr-~"i-i),
(2.7)
p//_i(1) = (n+)n(n-1)(n-2) = (_L)n-1p"_i(_1)
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We shall require the following:

rn, =-n(n- 1)=(-i)n+tln;(-i)

(2.8) . et s
n{i(l) = —aiilLilll = (—)nn"(-1).
From (x —xjt)nit(x) = , on differentiating once and twice we get
(2.9) 4(i) = A(-i)"+l = -4 (-i),
(2.10) <(-1) = _5105-il = -<(i)

respectively. The known orthogonal property

(2.11) \]Pk(x)Pj{x)dx = 2A0 |
-1
and the known identities
K-i(*) 1 n—4
-i(* - .
1 P] 1(xfc)FJ 1 2<fr<n—1
x- xk  Fn_i(xfc) &, o) - 4y - LKIOR_100, </r<n

and

rrr =1U) Effi-we(&)e-w,  15*<.-1

lead to
I
(2.12) / R dt —0, 2<A<n-1
and
1

1

(2.13) -dt = l<k<n- 1
) <- 1-fi*

Our main results are:
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Theorem 1. The modified (0;1;2) interpolation on Xnt2 with w,, (i) =
= Mn(x) is regular.

If we denote the fundamental polynomials of modified (0; 1;2) interpola-
tion by Lkio(x), Lk,i(x) and Lk*{x), then we shall prove

Theorem 2. The fundamental polynomials of modified (0; 1;2) interpo-
lation are given by

(2.14) LkO(x) = An_fc+l(x) + n n(x)Effu(a;), 1<k n,

where Ak(x), 1 £ k < n are the explicit formulae of the fundamental polyno-
mials in the paper of Eneduanya [1], and

*(*):|
(215) Tttt 2 ) aieh: 3ayY [N |) 1 1,

oG o, (FnOFENCO Lneyh)

,,(x) f En-igiyra_i(0

(2.16) I M (z) = dt, 1<k~ n—1
(L-ek)pt (LLI_1 t- &
and
(2.17)
3 (1-xpMaAfx) f Pnr(t)P'_fit) .
Lk2(x) = 2n2(n - 1Y PP I§g - xk dt, 2<Kunn—L
For/ € C(r)([-1,1]), r > 2, set
n n—1
(2.18) <o3n-3(a; /) = f{xk)Lkfi(x) + » ['(&)E*p(*)+
k=l k~\

+E TCH)Im)+ 1 -1)w "y
fc=2
We shall prove
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Theorem 3. Iff € C(r)([—4,1]), r > 2, then for every x € [—1,1] and
n>|(r +2) we have

(2.20) \f(x)~ Qn(x;H\ =0 (hnt_rlognw (i:/(r)),

where 1j(-; f~ ) is the modulus of continuity of f(r\x).
Remark. For r = 2, the Theorem 3 implies convergence only if

y/n\ognw(h] ") = o(l).

This relation obviously holds if for example f" € Lipa, *<a " 1
3. Proof of Theorem 1. Set
Q(x) = d3n-3(a) = M, (xX)a(x), degg(x) < 2n - 3.
We shall show that Q(x) = 0is the only polynomial of degree 3n-3 satisfying
(1.2) and (1.3) with
g0=0 and akj=0Q"ixkj)=0, k=1I,...,n-j, j=0,1,2.

Q(x) satisfies Q(xk,0) = Q(xk) = 0. Q'(xk,i) = Q'itk) = 0,1 <fc<n—1
and Q"(xk,-) = Q"(xK) = 0, | <k <n —2 implies q'(£k) ==0, 1</c<n —1
and q'(xk) = 0, 2 <k ”™ n —1respectively. Hence gq\x) = cFn_i(x)P"_1(x).
But degg(x) < 2n -3, therefore, c = 0and hence g(x) = Ci for some constant
Ci. Using (1.3) we get ci = 0. Therefore Q(x) = 0 and this completes the
proof of Theorem 1 O

4. Explicit formulae for {Lk,o(x)}*=1, {Lk,i(x)}£1lj and {Lk,2{x)}kZr
Let us denote the fundamental polynomials of the modified (0; 1, 2) interpo-

lation problem by {L*,o(x)}£=i> {Lfc,i(x)}/c=i and {bfc,2(x)}£=2 respectively.
Every polynomial P(x) of degree 3n —3 has a representation of the form

n n—1
(4.1) P(x) = P(xk)Lko(x) + £ PXtk)Lk,i(x)+
k=i k=1

+E PAxk)Li3(x) +
Proof of Theorem 2. (i) The fundamental polynomials Lfc,o(x), 1 *
N K <n are determined by the condition
ko{xj) —ikji j —1,... T
= j = 1,eee)—1
Lk,o(xi) = < j=2,...,n—1
.40(-1)=0
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Set
(4.3) Lkio(x) = A,,_"1(k) + n,,(*)rfc(x), degrk(x) <2n- 3

where Ak(x), 1~ kK ™ n are the exphcit formulae of the fundamental poly-
nomials given in [1]. (These are used with suitable corrections, since there
are some misprints in the text in [1]. It may be remarked that our no-
tations are slightly different from his. Thus while we are listing nodes as
—1 = zi << eee< Zn-i < xn =!, the nodes he uses are numbered in the
reverse order.) These polynomials satisfy

AHCE) —kj & k,j = 1,... .0,

(44)  <4.l+)=0, A=L..n, j=0l.en-1
=1, ., 7L
Lk,o(x) satisfies the conditions (4.2), if
(4.5) » &) = °, J=1,...,n-1
An-k+1(Xj) . )
(4.6) rk(xj) oM, (%) j =2 n- 1
4.7) r=(-1) = 0.
For Kk - n, we see from [1], that
A"(Xn_ ~2nn(*)) N, _an
Al( (1- xy)2M~ (1) V + 2 1 J7
for2<k<n-—1
-2M?(X,) s
A M-k+\{X]) = 2n(n—9) .
3(TA) ] =K

and, for Kk = 1, we obtain
-2M'2(x, n(n - 1
(x,) 1 ( ),

ixi) — (1 o+ Xj)
<) = 1+ xi)an,, (—3) :
From (4.6) it follows that
s (1 1 "(n-i) 1\ om 1
n2(n-1)iv({l+Xj)2 + 2 1+X; /1’ - t)
Q05 : L
4.8)  rk(xj) = < )y K K=2,.. n—1

sgrikdey K
nuflé?}sf(l-%.P 4 «lgh) 1-}<ji\1 k'=—n.
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From using (4.5) and (4.8) we get (2.15). From (2.15) and (4.7), the formula
(2.14) for Lkfi(z), 1£ k < T is now evident.

(i) Fundamental polynomials Lkii(x), 1~ k n —1 are determined by
the conditions

"Lk,i(xj) =0, j=1,...,n,
~ j=1,...,n—1,
L'k,i(xj) = j=2,...,n—1,
A (-1) =0
Set, for 1 K <n —1,
(4.10) bkn(x) = n,, (1)i]t(i), degsjt(x) < 2n - 3.

Lk,i(x) satisfies the conditions (4.9), if

(4-11) = n"&j, i =
(e o)t s oo

(4.13) ifc(-1) = 0.

From (4.11), (4.12) it follows that

11\ _ Mn(»X-1(») 1 Fn_i(x)P'_i())
At (* - ife)n" (&) _x(efe)n,, (&) (i-a”-iU fc)’

Using (4.13), we get

(4.14) sjt(ai) 1 Cpn-i()K-i(t) ,
(i-aeifc)i

From (4.10) and (4.14) we get the formula (2.16) for Lk,i(x), 1< A< n —L
Proof of (2.17) is very similar to the proof of (2.16). We omit the details.

5. Some estimates. To find some estimates for the fundamental polyno-
mials we need the following facts (see [4], [1]):
(5.1) [P, (x)| < 1,
(5.2) M., ()| <
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(5.3)
an <yl - *2 <c2==t, [*]<*<»-1I,
- 2< fcn[f]
(5.4) f8-ak’
y/8n:nf-f)” [5] <n<«- L
(5.5)
fc=
(5.6) E jn\t)dt <E /na(o*
fc=l_x fe=li
(5.7) In,,(i*)I ~ cnd, 1<f<n
n—1
(5.8) E Hfe(®) = o(n),
fc=2

where ci, @ and c are positive constants independent of n and k. Further
[5]

-
(5.9) £ ICWI =0(B).

Jt=l

From Theorem 7.3.1 of Szeg6 [7] one may conclude that

(1-~n 2i(6 )" 2i(0)>

n—i1 n—
We now estimate Jlo(x) = [Tjfc,o()> i (x) :kZl |Ffc,i(x)l and A2(x) =
2 =

= Z \Lk2(X)\.
2, \Hea(x)
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Lemma 5.1. For -1 <x < 1 we have
(5.11) A0(x) = 0(n2\/nlog n).

Proof. It is enough to prove this inequality for x » Xk, k = 1,... ,Te
since (2.14) implies Ao(xfc) = 1, A= 2,... ,n —1 and Ao(zl) = 0. From
(2.14), (2.15) and (5.8), for 2 < Kk <n - 1, we have

=
(5.12) AO(x) < O(n) + M, (X)) (/fc,i(x) + 4,2(x)),
k=2
where
. _ K(t) 1-4(0
h,i(x) = 3 dt
(x) 11 AER(XT) (t - xf)2
and
7I(n- 1
4,2(3;) = o=
3(1-*10) 1
From (1.4) and (5.5), for — < x < x/t, we have
X
1kNA = M- )P 2_1(xfo) / (I- Xfe)2~

and hence, for -1 < x < X, we get

1

ARG < 1P 2 XM xk - 1

1
For Xk < x < 1, since 4,i(l) = 0by (2.11), and since f dt < we

X
obtain the same estimate as above with Xt —x instead of x —Xt. Hence for
—1 = x = 1, we have
5'130 4,i(a;) = nmn _ i)pa_i (X |x - xfd’

On using (1.4), (5.1) and (5.5), for -1 ~ x ~ 1, we also get
1

(5.14) 4,2(3;) © (I - XK)P-JIXKY
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Therefore, using (5.12), (5.13) and (5.14) we see that

AOW SONe _ g b st 3 A
fc=2 k=2
Moreover (1.4), (2.6), (5.2), (5.3) and (5.4) show that

-
(5.15) JO(x) <0(n)+ 2 ™| A+ 0(n2nAlogn).
k=2 'n~1¥Xk>

The Schwarz inequality and relations (5.4) and (5.5) imply that

and hence, from (5.15), we get (5.11). O
Lemma 5.2. For —4 < x 1 1, we have

(5.16) Ai(x) = O(n).

) . P (P (t - .
Proof. We first estimate jl( n_lt(_)" - IQ-dt. By partial integration, for

—1 < x < fijfc we have

dt = W INe - tk) - Pn-i(p py_ ) gt
) t- £k t- £k <- &)2

-1
so that (2.7) yields

(5.17) <l«-,<*> g = PLI(Y) | L LIPLI(O 4
9 t fic ©o2(*-&) 2t+a) 2 (<-a)2

From (2.6a) and (5.6), we have

P2 m r
(5/18) J =r-i(a)/ dt=

so thatfginview of (2.6a) (5.17), (5.18), for -1 < x < £*, we obtain

dt
(*- 6)
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For < x <1, using (2.13), we have

X

dt dt
t- Z 1 1 t- €k

where the last integral does not exceed 2
Hence for all x ¢ £1>

s IO a S+ +
-1
Applying (2.16) and (5.19), for -1 < x < 1, we obtain
M 1 |n,x»
\Lk,AX)\ < 3 Im.(@)l . MK M, ()" ()l

(1-~)"™2i(6)|n,,(6)I1 n.,(&)

Therefore we obtain (5.16), for —4 < x < 1, from (5.2), (5.7), (5.9) and
(5.10). O

Lemma 5.3. For 4 < x ~ 1, we have
(5.20) A2(x) =0 (-vy .

Proof. It is sufficient to verify (5.20) only in the case when x ¢ xKk,
K=2,... ,n—1. Let -1 <x < x:t, we first estimate

l,()() J Pn- |(t)PA X(t) ot

By partial integration, we get

X | 1 X 4 L 202

The absolute value of the last term does not exceed

X

1 1
I Xk§2dt = sgzse- T ¢

Therefore
10001 » X

k — X
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For xk < x < 1, by (2.12), we have

<k dt

and the integral, on the right, does not exceed |*~f- Hence for all x ¢ xk,
5.21
(5.21) 14001 < o
Using (2.17), (5.21) and (2.6), we obtain

ir fril ~ Q- xI)Mx)\

k'2 =n(n- )p2_i(lfc)’
Therefore
14(%)|

k=2 k=2 (xk)’

Applying Schwarz inequality and relations (5.4) and (5.5), we get

N )sh (E 4 w)UAE N ) /28

which completes the proof of Lemma 5.3. O

Proof of Theorem 3. If f(x) € (0r)[—L,1], then by a result of Gopen-
gaus [3], there exists a polynomial Gm(x; f) of degree m > 4r + 5, such that
for all x G [1,1]

(5.22)

/(% )-GW (x;/)| =0 (1) (~")ri(F/LIZ;IW)i g=0,1,... I,

where w (-;/(r)) is the modulus of continuity of the function f(r\x). From
(5.22), we see that

(1) - ¢3n-3(1;/) =/(-i) - G3n-3(-i; /) =N -i) - Gi,n-3(-i; A = o.
Therefore, for r > 2. and 3n —3 > 4r + 5, using (2.18) we conclude that
n-I

1/00 - Q(x; f) I~ 1/00 - G3n-3(x; /)| + Y, M«-3A*; /) - f(xK)\\LK,O(x)\+
K—2
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n— n-1
+E IGW &: /) - I'(B)I|E*,iWI +E /) - I"UUPjmMII,
k=1 k=2

for 1< x < 1. Using (5.11), (5.16), (5.20) and (5.22) we see that

X)) - «(:D1=0 (1) (~fU ¢ 1 +°)+

+0(D
I\ - x2
| 3n- 3
for n Since u(x\ f) is a non-decreasing function we obtain (2.20).

Thus Theorem 3 is proved. O

The author would like to express his appreciation to Professor A. Sharma
for many helpful suggestions.
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GRADED RADICALS OF GRADED RINGS

M. BEATTIE (Sackville) and P. STEWART (Halifax)

Let G be a group and Aa radical property in the category of associative
rings. Using the generalized smash product of [1], we introduce a method for
defining a corresponding radical property Aref in the category of associative
G-graded rings and grade-preserving ring homomorphisms. We investigate
the properties of these new radicals and compare them with graded radicals
which have been previously studied.

For A= J, the Jacobson radical, Arefis the usual graded Jacobson radical.
(See for example [2], [7].) If Alis the prime radical, then for G finite and R a
G-graded ring, Aef(A) is the graded prime radical of [3], i.e. the intersection
of the graded prime ideals of R. However, this intersection of graded ideals
may be properly contained in Aref(A) for G infinite. If Ais the strongly prime
radical, then Aref is the graded strongly prime radical of [8] for G finite, but
again may properly contain this ideal for G infinite. We also discuss the
cases of Aequal to the Levitzski, Brown-McCoy and von Neumann regular
radicals, and compare Aref to suitable intersections of graded ideals.1

1. Preliminaries and definition of the reflected radical

Let G be a group with identity e. A ring R is called G-graded if R =
= g?GRg’ and RgRh QRgh for all g, h £ G. The elements of Rg are called the

homogeneous elements of grade g. If r £ R, rg denotes the pth homogeneous

component of r. If RgRh — Rgh for all g,h € G, then R is called strongly

graded. A left R-module M is G-graded if M - ?GMQ’ and RgMh Q Mgh
Y

for all g,h £ G. Ideals of R are called G-graded if they are graded left and
right submodules of R. (ldeal will always mean two-sided ideal.) A graded
ideal P of R is called a graded prime ideal of R if 1J Q P for graded ideals
[, J of R implies that | Q P or J C p. For | any ideal of a graded ring R,
Ig will denote the largest graded ideal of R contained in I, i.e. 1q is the
graded ideal generated by the homogeneous elements of R contained in 1.
For R a G-graded ring, we define the associative ring A#G* to be the
left A-module ®Rpg, g € G, with multiplication defined by (rpg)(sph) =
= rsgh~iQh [1]. If R has an identity, 1, and G is finite, then A#G* is also

a ring with identity, namely £ Pg where we write pg for 1pg. The group G
g£G
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acts as a group of automorphisms on the right of R#G* by (rph)a = rphg.
If J is a graded ideal of R, then we define J#G* to be all finite sums of
elements xpg, x GJ, g GG. J#G™ is an ideal of R#G* invariant under the
action of G.
If / is an ideal of R#G™*, define ideals In and /1 of R by

In={r:r GR,rpg G1 for all g GG},
and
11= (Ir)g,
i.e., /T is the largest graded ideal in In- Note that contains any graded
ideal L such that L#G™* Q/, for if K is a graded ideal of R with 7f#G* Q I,
then K Q In, and therefore K Q (/r)g = mm If P is a prime ideal of R#G*,

Fl is a graded prime of R since if 1J Q P* where I and J are graded ideals,
(/#G*)(</#G*) QP. Note that if J i? a graded ideal of R, then (J#G*)* =

= J. If R has an identity, then x = riPg, £ 1 implies xp% = r,pg G 1 for

(=
each i. Also rpg G/ for all g € G implies that Phg(rpg) = rhpg G 1 for all
g,h GG, and therefore In is a graded ideal of R,i.e. In =/*. Thusifl is
invariant under the action of G on R#G™*, | = I"#G™*.

The next lemma will show that this equality holds for any ring R if | is
a G-invariant intersection of prime ideals or a radical.

A graded ring R without identity may be embedded in a graded ring
R1 with identity in the following way. Let R1= R x Z, with addition and
multiplication defined by

(r,n)+(s,m)=(r+s,n+m) and (r,n)(s,m) = (rs +mr +ns,nm)
forr,s GR and nm G Z. Now define
(RDe = {(r,n) :r GRe,n G2)
and
(R)g={(r,0):reRg)

for g different frome. R = Rx {0) is a graded ideal of R1, and R#G* is an
ideal of RX# G\

Throughout this paper, for R a G-graded ring not necessarily with iden-

tity, R1 will be used to denote the G-graded ring with identity containing R
as a graded ideal as constructed above.

Lemma 1.1. Let R be a G-graded ring and | an ideal of R#G*. Suppose
that | is either an intersection of prime ideals of R#G* or \(R#G*) for A
a radical in the category of associative rings. Then In is a graded ideal of R
and if I is G-invariant, | —I*"#G™*.

Proof. Embed R in a graded ring R 1 with identity as described above.
Then R#G™* Q R1#G*. Suppose that an ideal | of R#G™* is also an ideal of
Aa#G*. Then by the discussion above, if | is G-invariant, | —/"#G*.
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But if | is an intersection of prime ideals of R#G*, then by Andrunakie-
vic’s Lemma [4, Lemma 61], | is an ideal of R1#G*. Also if | = \(R#G¥*)
for some radical A then | is an ideal of R1#G* by [4, Theorem 47]. O

We now define the reflected radical. Recall that a nonempty class A of
associative rings is a radical class if
(i) Ais homomorphically closed;
(i) if A/B and B are in A then A isin A
(iii) if la, a € O, is an ascending chain of ideals of A with each la in A
then Ula isin A

We denote by A(A) the largest ideal of A which is in A Recall that a
radical Ais called hereditary if A(/) = A(A) NI for any ideal / of A.

Now let F be the functor from the category of associative G-graded
rings to the category of associative rings such that F(R) = R#G* and for /
a grade-preserving ring homomorphism from Rto S, F(f) : R#G* —S#G™*
is defined by F(f)(rpg) = f(r)pg. The functor F is exact and preserves
unions of ascending chains of ideals. Thus we have the following:

Proposition 1.2. If A is a radical class in the category of associative
rings, then

Aref = {R: R is a G-graded ring with R#G* € A}

is a radical class of G-graded rings.

Proof. This follows directly from the above discussion or see [5, The-
orem 1]. O

Proposition 1.3. If A is a radical in the category of associative rings,
then for R a G-graded ring, Aref() = (A(72#G*))1, and thus Aref(72)#G* =
= A(A#G¥).

2. The reflected Jacobson, prime and strongly prime radicals

In this section, we discuss Aef for three radicals Afor which a definition
of a graded version of A already exists, namely for A the Jacobson, prime
or strongly prime radical, and compare the reflected radical to the existing
graded versions of these radicals.

2.1. The reflected Jacobson radical. Recall that a (graded) left R-
module M is (graded) irreducible if RM = M, and (0) and M are the
only (graded) submodules of M. The graded Jacobson radical of R, Jg(R)
has been defined as the set of elements of R which annihilate all G-grad-
ed irreducible left (or all graded irreducible right) 72-modules. (Equivalent
definitions and a discussion of the graded Jacobson radical may be found
in [2] or [7].) In [1], it is shown that for R a G-graded ring with identity,
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Jq(R)#G* = J(A#G*), so that Jg(R) = JRi(R)- A modified version of
the argument in [1] will yield the same result for a G-graded ring R, not
necessarily with identity.

We show first that every irreducible left A#G*-module is a graded
irreducible left A-module and vice versa.

First note that any G-graded left -module M has a left A#G*-module
structure via

1) (rpg)m = rmg.

Let M be an irreducible G-graded [-module, and write M' for M with the
A#G*-module structure above. Since RM = M, (A#G*)M/= M'. Let V
t

be an A#G*-submodule of M" and leti = _ _xg be anonzero element of L'.
i=i
t

Then (A#G*)x =  Rxgi. Since M is an irreducible G-graded A-module,
[

1=
t

the submodule {m :m 6 M,Rmg = (0)} = (0); thus
i=

~ Rxgn as a nonzero
i

G-graded A-submodule of M, must equal M. Therefore V. = M',and M" is
irreducible. )
Let M be an irreducible left A#G*-module. For each g € G, let Mg =

= Y, {Rgh-iPh) M. Since (A#G*)M = M, M is the sum of the M" and
heG

we must show that this sum is direct. Suppose x € Mg lNML, with g
and h different elements of G. Since (Rpa)M" = (0) for s different from
t, (R#G*)x = (0). But since M is irreducible, the submodule {m : m €
€ M, (A#G*)m = (0)} —(0), and thus x = 0.

Define a left A-module structure on M" = %@GM " by
g

(2) rx = (rpg)x

forr 6 A, x G Mg. As in [1], it is easy to verify that M" is a G-graded
left A-module, and since (A#G*)M = M, RM" = M". A little checking
shows that the left R#G *~module structure defined by (1), when applied to
M ", will agree with the original A#G*-module structure on M. Thus, M"
is irreducible.

Again, it is straightforward to check that if we start with an irreducible
G-graded O-module M and apply (1) and then (2), the resulting G-graded
L-module structure is that of the original.

Thus we have the following.

Proposition 2.1. The categories of irreducible left R#G*-modules and
irreducible left G-graded R-modules are isomorphic.

We can now see that JTe{ = Jqg-
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Proposition 2.2. For R a G-graded ring, Jle{(R) = =
=Jg(R).

Proof. Suppose r € (J(A#G*))*, r homogeneous of grade g. To show
that r € JG(A), we show that r annihilates M, for M any irreducible G-
graded left A-module. But since rp* 6 J(A#G*) for all h € G, (rph)M' =
= (0) for all h £ G, and thus rM = (0). Therefore JT&g /G(A).

To complete the proof, we show that Jg(R)#G* g J{R#G™*). Let
rpg € Jg(R)#G*; since JG(A) is graded, we may assume r is homogeneous.
Let M be an irreducible left A#G*-module. Then M" is an irreducible G-
graded left A-module so rM" = (0) and rML, = (0) for all h G G. Since
(A#G*)M = M,

(rpg)M = (rpg) Rhf-'"PfM g rMg = (0)
f,hec

and rpg annihilates M . O

2.2. The reflected prime radical. We now consider A= N, the prime
radical. Recall that for a ring A, N(A) is the intersection of the prime ideals
of A and contains every nilpotent ideal of A. In [3], the ideal N g (R) is defined
to be the intersection of the graded prime ideals of [, for G finite and A a
G-graded ring with identity. Let us denote by N g (R) the intersection of the
graded primes of [ for any group G and G-graded ring A,

Theorem 2.3. (i) Ng(R) % N Te{(R).
@ii) If G isfinite, Ng{R) = Nie((R).
(iii) If G is infinite, the inclusion in (i) may be proper.

Proof. If P is a prime ideal of A#G*, then P 1is a graded prime of 1
and thus Ng{R)#G* C iV(A#G*) so that NG(R) g Mef(A).

Now suppose G is finite. If A has an identity, then (ii) follows from [3,
Theorem 5.3]. Otherwise recall that the prime radical is a hereditary radical
so that
JV(A#G*)= N(A:#G*) NA#G™* since N is hereditary
(Ng(a1)#G*) MA#G* by [3, Theorem 5.3]

(iV(A1)G#G*) MR#G™* by [3, Lemma 5.1] which holds for all
groups G

(iIV(AX) G MA)#G*

(N(Rx) Ma)g#G* since [ is a graded ideal of A1

N(R)g#G* since N is hereditary.

The fact that the inclusion may be proper for infinite G follows from
the next example. O

Example 2.4. Let Abe a field and [ = K[t], the polynomial ring graded
by G = Z in the usual way. Since (0) is a graded prime ideal, Ng(R) = (0).
Let 1 be the principal left ideal (A#G*)ipo of A#G*. Then /2 = (0),
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J =1 +I(R#G™*) is a nilpotent two-sided ideal of P#G™*, and therefore
N(R#G*) = Nre{(R)#G* is nonzero. O

2.3. The reflected strongly prime radical. A third example of a radical
for which a graded version has been defined is the strongly prime radical.
Recall that if I is an ideal of a ring A, a (right) insulator for | is a finite
subset F QI such that if Fa = 0 for a € A, then a = 0. The ring A is said
to be (right) strongly prime if every nonzero (two-sided) ideal of A contains
an insulator. An ideal P is called strongly prime if A/P is a strongly prime
ring. The strongly prime radical of A is

s(A) = n{P: P is a strongly prime ideal of A}.

If R is a G-graded ring, then R is said to be (right) graded strongly prime
if each nonzero graded ideal of R contains an insulator [8]. The following
definition is also from [8g]:

Definition 2.5. The graded strongly prime radical of a G-graded ring
R is defined to be

sg(R) = fI{P: P is a graded strongly prime ideal of A}.

From [8, Corollary 1], sg{R) = (s(R))q.

Theorem 2.6. For R a G-graded ring, the graded strongly prime radical
defined above is related to the reflected radical sref in the following way.
(i) For all G, sq(R) Qsre{(R).
(if) If G is finite, sg(R) = sre{(R).
(iif) For G infinite, the inclusion in (i) may be proper.

Proof, (i) To prove the required inclusion, we show that sg(P)#G* C
Q s(R#G™*) = sref(P)#G™*. Let P be a strongly prime ideal of RffG*. It suf-
fices to show that P~ is graded strongly prime in R, since then sg(R)#G* C
Q PMG™* Cp for all strongly prime ideals P of RffG*.

Suppose that P” is properly contained in | where | is a graded ideal
of R. Then /#G* is an ideal of RfiG* and I1#G™* is not contained in P, so
that (7#G* + P)/P contains an insulator F and we may assume that F =
= {a\pgi + P,... ,anpgn+P) where a\,... ,an are homogeneous elements of
I. We will show that {ai + P”,... ,an-f-P*}is an insulator in 1/ PK Assume
that for some r e R, a,r e P* forall i = 1,... ,n. Since P* is graded and
the a- are homogeneous, a,r96 P* forall i = 1,... ,n and all homogeneous
components rg of r. It follows that &{fgpb 8 P for all i = 1,... ,n and all
g,h £ G, and therefore (a,pflj) (rph) € P forall i = 1,... ,n and all h € G.
Since F is an insulator, rph 6 P for all h GG. Thus r € P* and the proof
of (i) is complete.

Now assume that G is finite and Q is a graded strongly prime ideal
of R. Using Zorn’s lemma, we may choose P maximal in the set of ideals
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I of R#G* containing Q#G*, and such that I/Q#G * does not contain an
insulator in R#G*/Q#G*. By [9, p. 1101], P is a strongly prime ideal of
RH#EG*.

We wish to show that = Q. Suppose pi properly contains Q.

Let {ai + + Q} be an insulator with oi,... ,a* G P*, and let

F = {aipg + <?#G*: i = 1,... k, g GG} . If (a,pg) £ bjpg G Q#G*
i=1

f(%r all i = 1,... ,k and all g G G, then by summing over <, we see that

_53_ a;bjPg GQ#G* forall r=1,... ,fc Thus, afij GE£ foralli=1,... |
i=i

j = 1,...,<so that b\,... ,bt G Qm It follows that F is an insulator in
P/Q#G™, contradicting our choice of P; therefore P* = Q. By Lemma 1.1
and the fact that P is strongly prime, we see that

S(A#G*) = s(R#G*)[#G* Q Pj#G* = Q#G \

Intersecting over all graded strongly prime ideals Q, we obtain s(R#G*) Q
£ sg(R)#G*. Thus for G finite, sg = sief.
The last statement follows from Example 2.8. O

Lemma 2.7. Let R be a strongly graded ring with 1, G an infinite group.
Then if I is an ideal of R#G™* containing some pg, | —R#G*.

Proof. Let h be any element of G. Since R is s%rongly graded, there

exist x{ GRhg-1. Vi ¢ Rgh-1>1 : i, such that 53 xiVi - . But then
i=i
t

Pg e | implies ph = 53ixtPg)(yiPh) el. a
i=i

Example 2.8. Let R be a strongly graded ring with identity and G an
infinite group. By Lemma 2.7, if | is an ideal of R#G™* containing any pg
then / is all of R#G*.

Let P be a strongly prime ideal in P#G*. Since R#G*/P has a fi-
nite insulator but the pg, g G G, are an infinite set of mutually orthogonal
idempotents, ph GP for some h GG. Thus P = P#G*, s(R#G*) —RffG*
and sTef(R) = R. However, since maximal graded ideals are graded strongly
prime [8], sa(R) isnot R. O

3. More examples of reflected radicals

In this final section we discuss the reflected Levitzki, Brown-McCoy
and von Neumann regular radicals.

3.1. The reflected Levitzki radical. Recall that an ideal / of a ring A
is called locally nilpotent if every finitely generated subring of I is nilpotent.
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The Levitzki radical of A, L(A), is the intersection of the prime ideals P of
A such that A/P has no nonzero locally nilpotent ideals. Equivalently, L(A)
is the union of the locally nilpotent ideals of A [4, Chapter 6].

Definition 3.1. For R a graded ring, Lg(R) is the intersection of the
graded prime ideals P of R such that R/P has no nonzero graded locally
nilpotent ideals.

Proposition 3.2. For R a G-graded ring, Lg{R) = (X(P))g-

Proof. If P is a prime ideal of R, then it is easy to see that Pq is
a graded prime ideal of R. Furthermore, if R/P has no nonzero locally
nilpotent ideals, then R/Pg has no nonzero locally nilpotent graded ideals.
For if | is a locally nilpotent graded ideal in R/Pg, then (/ + P)/P is a
nonzero locally nilpotent ideal in R/P. Thus Lg(R) g (L(R))gm

Conversely, since L(R), and hence (L(R))g, is a locally nilpotent ideal,
(L(R))g g Q for all graded prime ideals Q such that R/Q has no nonzero
locally nilpotent graded ideals. Thus L(R)g A Lg(R). O

We now compare Lg and LTe.

Theorem 3.3. (i) For any group G, Lg(R) § Lref(if).
(i) If G is locally finite, Lg{R) = Lie[(R).
(iii) For infinite G, the inclusion in (i) may be proper.

Proof. Let P be a prime ideal of A#G* such that R#G*/P has no
nonzero locally nilpotent ideals. Then, P* = Er is a graded prime ideal of
R, and we show that R/P * has no nonzero locally nilpotent graded ideals.

Let / be a graded ideal containing P *such that J/pt is locally nilpo-
tent. We will show that the ideal (/#G* + P)/P is a locally nilpotent ideal

of R#G*/P. Let W = | "2 aijp9t: j = 1,... ,mj be a finite subset of

I#G*. The set {(ay)3:i = 1,... n, j = 1,... m, g € G} is a finite
subset of I and so the subring S it generates satisfies Sk g P* for some
positive integer k. Thus, if T is the subring of R#G* generated by W, then
Tk g Sk#Gmg g P. It follows that (7#G* + E)/E is alocally nilpo-
tent ideal and so /#G* g P. Thus / g P* and hence Lg(R) g P*. This
completes the proof that Lg(P)#G™* g L(P#(j *) so that Lg{R) i Lie{(R).

To prove (ii), we show that Lre{(R) is locally nilpotent and then the
statement follows from Proposition 3.2. Let W = {bi,... ,bs} be a finite
subset of Lre{(R). The subring generated by W is contained in the subring
S generated by the homogeneous components of the elements of W; call
this set V = {ai,... ,an}. Let H be the (finite) subgroup of G generated by
elements h of G such that a, € Rh for some a, EV. The finite set {a,p/,: i =
= 1,...,n, h€H]isin L(P#G¥*), and hence the subring T it generates
is nilpotent, say Tm = 0. Now if ,cm are (not necessarily distinct)
elements of V with ¢- € Rh,, then ci... crnpgm = Cjpgic2p@ ... cmpgm G Tm
where gm can be any element of H and the g, are defined inductively by
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<7_1 = higi. Since Tm = 0, c\...cm = 0; thus the subring S of LTe is
nilpotent.

Example 2.4 shows that the containment Lqg g Lref may be proper.
For here, R = A[f] has no proper locally nilpotent graded ideals, so that
Lg(R) = (0) although L(R#G*) 2 N(R#G™*) is nonzero. O

3.2. The reflected Brown-McCoy radical. Recall that G(A), the Brown-
McCoy radical of a ring A, is the intersection of the ideals M of A such that
A/M is a simple ring with identity.

Definition 3.4. For R a G-graded ring, define Qg{R) to be the inter-
section of the graded ideals of R such that R/M is a graded simple ring with
identity.

Proposition 3.5. For all G-graded rings R, G(R)g g Gg(R)> and this
containment may be proper.

Proof. Let M be agraded ideal of R such that R/M is a graded simple
ring with identity e + M. We wish to show that G(R)g g M for all such M.

Suppose not. Then G{R)gAM = Rand e = i +m forsome x 6 G{R)gi
m G M. Also R/M has an identity so we may choose Q = A+ M, a maximal
proper ideal of R/M. Then G(R) Q Q and hence e 6 Q. This is impossible
since Q was a proper ideal of R/M.

The example following [2, Lemma 12] shows that the inclusion may be
proper; here R is a commutative ring with 1 so G(R) = J(R) and Gg(R) =
= Jg(rR). O

Theorem 3.6. (i) For all G, Gg{R) g GEi(R)-

(U) 11 G is finite, Gg(R) = GrefiR)-
(iii) The inclusion in (i) may be proper.

Proof. Assume first that R has an identity 1. To prove (i), we show
that £g(a)#G* g G(R#G*) = Gret(R)#G\

Let M be an ideal of A#G* such that R#G*/M is a simple ring with
identity w - M. We will now show that R/Mf is a graded simple ring with
identity and it will then foDow that Gg(R)#G* Q M*fiG* Q M for all such
M.

Suppose there is a graded ideal T of R which properly contains M
Then T#G™* is not contained in M and T#G* +tM — R#G*. Therefore

there exist af € T, gi GG, m € M such that » ap@+ m — w. Since
i=i
wpgk - Pgk e M, akpgk - Pgk € M, we have

Pgk (akPgk —Pgk) = (ak)ePgk ~ Pgk € M.

Therefore [(d(ﬁ—l]p?k €M fork=1,.. ,tand if welet k = kth e-1],
then kpx 6 M for k = Since w -f M is the identity irT
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wph - Ph € M for all h but if h £ {gi,... ,gt}, wp® = mph GM and so
Ph GM . Thus kpg GM for all g G G; therefore Kk GM *C T.
By the definition of K, K = (—)4+ 7 where 7 G T. Therefore T = A,
is a maximal graded ideal of R as required and Gg{R)i*"G* Q G(R#G*)
for R a ring with identity.

Now suppose that R does not have an identity and embed R in R1as
usual. Suppose that M is a maximal graded ideal of R 1. Then (A-fM)/M is
a graded ideal of R/M and so is either (0) or A1/M. If (A+ M)/M = (0),
then Gg(R) S R AM. If (A + M)/M - RIM, then since RUM =
= (A+ M)/M = R/(RTIM), Rn M is a maximal graded ideal of R, and
Gg{R) Q RN M. Hence in either case, Qg{R) A4 M for all such M and
Ga(R) A Gg{RY).

Therefore we have

Gg(R)#G-= {Gg{R)#G*) N(A#C™)
A(Gg(RY#G*) n (R#G™*) by the above argument
Q Q(R}#G*) M (A#G*) since Alhas an identity
= Q(R#G™*) since Qis hereditary [4, p. 125].

To see that this inclusion may be proper, let k be a field, (x) the in-
finite cyclic group and R = k(x) the group ring. R is strongly Z-graded
and so, since s(A) Q Q(A) for all rings A, by Example 2.8, ~ref(A)#Z* =
= Q(R#Z*) = R#Z*. However, because (0) is a maximal graded ideal,
Qu{R) = (0). Therefore Qg{R) is properly contained in Qe{(R), and state-
ments (i) and (iii) are proved.

Now suppose that G is finite and let / be a graded ideal of R such
that R/I is a simple graded ring with identity. Then is an ideal of

and since A#G*//#G* = (A/)#C* has a 1, we may choose an
ideal M of R#G* maximal in the set of ideals containing I#G*. Since
I#G* is invariant under the action of G, IftG* Q N = gEEM 9, where M9

is the image of M under the automorphism g G G. Therefore (/#C*)ga
=1 QNr. By the maximally of 1,1 —Nr, and so by Lemma 1.1, N
—I#G*. Since R#G*/M 9 is a simple ring with 1 for all g, Q(R#G*) QN
I#G™*. Intersecting over all maximal graded ideals I, we obtain Q(R#G*)
Q Qg (R)#G*, and thus Qg{R) = Grei(R). O

c

3.3. The reflected von Neumann regular radical. Recall that, for any
ring A, the regular radical of A, r(A), is the unique largest von Neumann
regular ideal of A, where an ideal | of A is regular if and only if every
finitely generated right (left) ideal of / is generated by an idempotent [6,
Theorem 1.1]).

Definition 3.7. For R a G-graded ring, let t g {R) be the unique largest
graded von Neumann regular ideal of R. Clearly rc(R) = t(R)g-

Acta Mathematica Hungarica 58, 1991



GRADED RADICALS OF GRADED RINGS 271

Lemma 3.8. Let R be a G-graded ring with identity. If xi,...,xn
are homogeneous elements of R of degree <q,... ,gn respectively and Rx\-\-
+ ... + Rxn = Ru for some idempotent u, then for each g £ G, there is an
idempotent v = v(g) £ A#G™* such that (aq -f... 4-xn)pgR#G™* = V(R#G*).

Proof. Direct calculation shows that (xpg)(bipgig+ .. *+bnpgng)(xpg) =
= xpgwhere x = ag+ ..+ ®and b\,... ,bnare such that bixi+..,+bnxn=u.
Then v = (xpg)(bipgig + ... + bnpgng) is the required idempotent. O

Theorem 3.9. (i) For all G, ro{R) 4 rTe{(R).

(i) R#G* is a von Neumann regular ring if and only iffor all g £ G,
X £ Rg, there isay £ Rg-1 such that xyx = x. Thus, even for finite G, the
inclusion in (i) may be proper.

Proof. To prove (i), we assume first that R has a 1.

Let F = {ui,... \,Ufc} be a finite set of elements of rc(/1)#C* and let
I be the right ideal generated by F. Then, since 1pg = pgis in R#G™*, we
may assume that the elements of F are of the form (aq + ... + xn)pg where
the x, are homogeneous elements of rc{R).

From Lemma 3.8, we see that Ui(72#G*) = tq(R#G™*) for some idem-
potent tq, and (u2- VjU2)A#(?* = uq-K#G* for some idempotent ug. More-
over, since tqtiq(A#G*) = 0, iquq = 0. Therefore tq and iqg = w2 —W2vi
are orthogonal idempotents and ui(R#G*) + W2(R#G*) = (iq -f )R#G*.
Since v\ tg is an idempotent, we can repeat the argument with 23 and
tqg + V2- Continuing, we obtain 1 = w(R#G*) for some idempotent w. Thus
rG{R)#G* is a regular ideal of and so ro{R)#G* Q r(A#G*) and
ra(R) A riet(A).

If R does not have an identity, embed R in A1, and argue as in the proof
of Theorem 2.3, using the fact that r is a hereditary radical and ro(RI) =
= r(R1)a-

( N())w assume that R#G* is regular. Then for each g £ G, r £ Rg, there
isaz —xpgi £ R#G* such that rpg = (rpg)xpg2(rpg) = rxg-irpg and so
r = rxg—.

To prove the converse, we show that the subring T of RI#G* which
is generated by A#G* and {pg:g £ G} is regular, and then use the fact
that every two-sided ideal in a regular ring is regular. Let H be a finite
set of elements of G, w = h"th, and let S be the subring of T generated

e
by w(R#G*)w and {p/,: h £ H}. Then by [6, Lemma 1.6], S is regular if
and only if for each g,h £ H and for each x £ pgSph, there is a y £ PhSpg
such that xyx = x. But it is easily checked that the condition in (ii) then
guarantees S is regular. Since T is the union of such subrings S, T is regular
and thus so is A#G*.
The last example shows that the inclusion (i) may be proper. O
Example 3.10. Let R = Z2[X]/(X2) be G = Z/2Z graded by Rq =
= {0,1} and R\ = {0, £+1} where x = X +(X2). It follows from Theorem 3.9
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(i) that is regular, so that rref(A) = R, but since R has only one
proper ideal, namely the nilpotent principal ideal generated by x, r(R) = (0)
so that r(R)o = tg(R) = (0). O
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COMMUTATIVITY RESULTS FOR PERIODIC RINGS

H. ABU-KHUZAM (Beirut)

A theorem of Herstein [8] states that a ring R which satisfies the identity
(xy)n = xnyn, where n is a fixed positive integer greater than 1, must have
nil commutator ideal. In [1], the author proved that if n is a fixed positive
integer greater than 1, and R is an n(n —I)-torsion-free ring with identity
such that (xy)n = xnyn for all x,y in R, then R is commutative. In [7],
Gupta proved that if R is a semiprime ring satisfying (xy)2- x2y2 € Z for
all x,y in R, where Z is the center of R, then R is commutative. Recently
[3], it was proved that a semiprime ring R such that for each x in R there
exists a positive integer n = n(x) > 1 such that (xy)n - xnyn 6 Z and
(x2y)n - x2nyn 6 Z for all y in R, then R is commutative. In this direction
we prove Theorem 1and Theorem 2 below.

R is called periodic if for every x in R, there exists distinct positive
integers m = m(x), n = n(x) such that xm = in, By a theorem of Chacron
(see [6, Theorem 1]), R is periodic if and only if for each x 6 R, there exists
a positive integer k = k(x) and a polynomial /(A) = fx(A) with integer
coefficients such that xk = xk+1f(x).

Throughout this note, R is an associative ring, Z denotes the center
of R, N denotes the set of nilpotent elements of R, and [x,y] denotes the
commutator xy —yx.

We start with the following lemmas. Lemma 1is well known, Lemma 2
is proved in [5], Lemma 3 is proved in [4], and Lemma 4 is a result proved
in [2].

Lemma 1. If [X,[X,j/]] = 0, then [xfcy] = kxk-1[x,y] for all integers

K > 1.

Lemma 2. If R is aperiodic ring, then R has each of the following prop-
erties:

(a) For each x € R, some power of x is idempotent.

(b) For each x € R, there exists an integer K = k(x) such that x —xKk is
nilpotent.

(c) Iff: R —»R* is an epimorphism, then f(N) coincides with the set
of nilpotent elements of R*.

(d) If N is central, then R is commutative (Herstein).

Lemma 3. Let R be aperiodic ring. If N is commutative, then the com-
mutator ideal of R is nil, and N forms an ideal of R.
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Lemma 4. Let R be aperiodic ring such that N is commutative. Suppose
that for each x in R and a in N, there exists an integer n = n(x, a) 1 such
that [zn, [in,a]] = 0 and pn+1, [xn+1,a]] = 0. Then R is commutative.

Now we will state and prove our first theorem.

Theorem 1. Let n be apositive integer and let R be an n(n + ~-torsion-
free periodic ring such that (xy)n —ynxn £ Z and (xy)n+l —j/n+ixn+l £ Z.
If N is commutative, then R is commutative.

Proof. By Lemma 3, the set N of nilpotent elements of R is an ideal of
R, and since N is commutative, we have

1) n2qz.

Let e be an idempotent element of R, and let x be any element in R. From
the hypothesis

(e(e + ex - exe))n —(e + ex - exe)nen £ Z

thus
(e + ex —exe) —(e + ex —exe)e £ Z

and hence (ex —exe) £ Z. This implies that e(ea: —exe) = (ex —exe)e and
hence ex = exe. Similarly, xe = exe. Thus ex = xe, and

(2) the idempotent elements of R are central.
Let x and y be any two elements of R. Then by the hypothesis,
3) (xy)n —ynxn —2 £ Z and (yx)n—xnyn = 2z? £ Z

Now (xy)nx = x(yx)n and using (3), this implies that (ynxn + Zi)x =
= x(xnyn+ 2). So Xn+lyn —ynXn+1 = (z\ —2Z2)x. Thus,

4) [xn+1,[xn+1,1] = 0 forall x,y in R.

Let a£ N, puty = a+ 1in (4), and use the fact that N2S Z in (1) to get
that n[a:n+1, [xn+1,a]] = 0. Since R is n-torsion-free, this implies that

%) [in+l,[zn+1,a]] = 0 forall x £R, af£ N.

Repeating the above process from (3) using the hypothesis (xy)ntl—
—yn+1lxntl £ Z we get

(6) [xn+2,[a:;"+2,a]] = 0 forall x£ R, a £ N.

Now, using (5), (6), and Lemma 4, we see that R must be commutative.
This completes the proof of Theorem 1.
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The following example shows that the analogue of Theorem 1is not true
if the condition “(xy)n-y nxn GZ and (ij/)n+l -i/"+1x"+1 G Z” is replaced
by the condition “(xy)n—xnyn GZ and (xy)"+l - xn+ly"+l GZ”.

Example. Let A= j (U o |a bGGF(3)|. Clearly, R is periodic since

it is finite, and the set of nilpotent elements N is commutative. It is easy to
verify that (xy)4 = x4y4 and (xy)5= x5y5. R is also (4) (5)-torsion-free but
not commutative.

In Theorem 2 below, we prove that if only the condition “(xy)n+1-
-yn+lxn+tl G Z” is replaced by the condition “(xt/)n+l —xn+1j/n+l G Z”
in Theorem 1, then the result still holds. In preparation for the proof of
Theorem 2, we need to prove the following lemma.

Lemma 5. Let R be a ring with characteristic q ¢ : and let n be a positive
integer. Let f : R —» R* be an epimorphism. If R is n-torsion-free, then R*
IS n-torsion-free.

Proof. Let d be the greatest common divisor of g and n. This implies
that g = k\d and n = k2d for some positive integers k\ and k2¢ If d o 1,
then Char R —q ¢ k\, and hence there exists an element y GR such that
k\y / 0. Now

n(kiy) = (k2d)kxy = k2qy = 0.

This contradicts the hypothesis that R is n-torsion-free. So d = 1 and
(g,n) = L Since / : R —R* is an epimorphism, then for each x* GR* there
exists an element x GR such that x* = f(x). Now

gx* = gf(x) = f(gx) =/(0) =. forall x* GR*.
So Char R* = @', where g divides g Hence (g',n) = 1since (g, n) = 1. This
implies that rqg' -f sn = 1 for some integers r and s. If ny* =, for some
y* G A*, then

Y*=(rq" +sn)y* =r(q'y*) +s(ny*) = 0.
So R* is n-torsion-free.

Theorem 2. Let n be a positive integer and let R be an n(n + I)-iorsion-
free periodic ring such that (xy)n—ynxn GZ and (xy)n+l —x"+1yn+l G Z.
If N is commutative, then R is commutative.

Proof. As in Theorem 1, since A is a commutative ideal, we have
(7 N2g Z.

Also, since (xy)n —ynxn G R and R is n-torsion-free, the proofs of (2) and
(5) in Theorem 1 still hold, and so

(8) the idempotents of R are central,
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and
(9) [x"+1,[x"+1l,a]] =0 forall x€ R, a€N.

R is isomorphic to a subdirect sum of subdirectly irreducible rings Ra. Since
Ra is a homomorphic image of R, it is easy to verify that

(10)  each Ra satisfies all the hypotheses of R except possibly that
Ra may not be n(n + [)-torsion-free.

We now distinguish two cases.

Case 1: Ra does not have an identity. Then, since Ra is periodic,
Lemma 2(a) implies that for each xa € Ra, there exists a positive inte-
ger t =t(xa) such that x” is idempotent. By (10), the proof of (8) holds for
Ra, and x,, is a central idempotent. But Ra is subdirectly irreducible and
has no identity in this case. So x® = 0and Ra is a nil ring. This implies that
Ra is commutative since the set of nilpotent elements of Ra is commutative
from (10).

Case 2: Ra has an identity element la. Since Ra is periodic, (2.1a)‘ =
= (2.1a)J for distinct positive integers i and j , and hence Char Ra —aga / O.
So by Lemma 5, Ra is n(n + I)-torsion-free. This implies, using (10), that

(11)  Rasatisfies all the hypotheses of R, and thus we may assume
that R is subdirectly irreducible with identity 1.

Again as in Case 1, for each x 6 R, there exists a positive integer t = f(x)

such that x1is a central idempotent. Using (11), we have xI = or xf = 1.
Thus,
(12) every element of R is either nilpotent or invertible.

Let x and y be any two elements of R. Then by the hypothesis,
(13) (xy)ntl - xn+V +1=r1 € Z and (yx)ntl- yn+lxml = 7' €Z.

Now (xy)"+1x = x(yx)"+1 and using (13), this implies that (x"+1lyn+l+r)x =
= x(yn+lxn+l + z1). So xn+lyn+ix - xyn+1lxn+l = (z' —z)x. Thus,

(14) X(Xn+V +1x - xyn+lxn+l) = (xn+V +1x - xyn+lxn+1)x.
If x is invertible, then (14) implies that [x, [X", j/n+1]] = O and hence,
(15) [xn, [xn,yn+1]] = 0, where x is invertible and y GR.

If x is nilpotent, then since N is commutative and the commutator ideal is
nil, we have,

(16) [xn,[x",yn+1l]] = 0 where x is nilpotent and y £ R.
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Now, using (12), (15), and (16) we have,
an [xn, [x",yn+l]] = 0 forall x,y in R.

Leta£ N,puty=a+ 1lin (17), and use the fact that N2Q Z in (7) to get
that (n + 1)[x", [xn,a]] = 0. Since R is (te + l)-torsion-free, this implies that

(18) [xn,[xn,a]] =0 forall X£R, aeN.

Now, using (9), (18), and Lemma 4, we see that R must be commutative.
This completes the proof of Theorem 2.
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UMKEHRSATZE FUR RIESZ-VERFAHREN
ZUR SUMMIERUNG VON DOPPELREIHEN

S. BARON (Ramat-Gan) und H. TIETZ (Stuttgart)

1. Einleitung

Es seien p und g zwei nichtnegative reelle Zahlen, 1= {A"}und p = {pt}
zwei streng monoton gegen oo strebende Folgen nichtnegativer Zahlen. Bei
vorgegebener Doppelreihe

(11 2 Ukt
k,t=0

74,7t
mit komplexen Gliedern und der Teilsummenfolge {smn} mit smn .= s ki

k,t=0
sei fur alle x,y > 0

(1.2) R(x,y):=-J" (z-A*)ply - pt)quH

und fir alle m,n=20,1,...

n m,n

(1*3) rRmn = Tp q N A (Mm+1 1
NT+1”™n+1 kt=0

Wir verwenden schon jetzt die Bezeichnungen aus Abschnitt 2. Die Reihe
(1.1) heiBt beschrankt R-summierbar zum Wert er, kurz bR-£) ukt = er, wenn
gilt R(x,y) = 0(1) TR(x,y) —e fiur x,y —o00; sie heillit beschrankt R*-
summierbar zum Wert er, kurz bR*-£) = &, wenn gilt Rmn = 0(1)A
AAmn — e fir m,n —>o00. Die Reihe (1.1) heiRt absolut R-summierbar
zum Wert a, kurz aR-]T) u™i = e, wenn gilt R(x,y) —ii(l) JIR(x,y) —» er flr
X, Yy —»00; sie heilt absolut R*-summierbar zum Wert er, kurz aR*-X) ut = er,
wenn gilt Rmn = 0(1) N —»a flir m, n —o0.

Fir p = q = 1list durch (1.3) das Verfahren der bewichteten Mittel
definiert, das fur A= (fc) und P= {t gerade das (C, 1,1)-Mittel

1 m,n
m+ o+ 1) £

k,(=0

(1.4)
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der Folge {smn} ergibt.

Auler einem “high indices theorem” fiir R von Mears [8], auf das wir
in Abschnitt 4 zurickkommen, und einigen Resultaten von Burljai [3, 4] fur
bewichtete Mittel, wurden fiir Riesz-Verfahren unseres Wissens Umkehrsétze
nur fur die speziellen (C, 1,1)-Mittel (1.4), meist in allgemeinerem Rahmen,
behandelt. Neben Knopp [6] und Meyer-Konig [9] (sowie den bei diesen Au-
toren genannten Arbeiten) sind hier zum Beispiel noch Agnew [1], Topuriya
[19], Celidze [5], Obrechkoff [13] und Slepencuk [15, 16, 17] zu nennen.

Ausgangspunkt unserer Untersuchungen ist der folgende Umkehrsatz von
Knopp [6], S. 575-578, fur beschrénkte (C, 1,1)-Summierbarkeit.

Satz K. Ausb(C,1,1)-» % = o folgtb-"2 u®i = er, wenn die folgenden
zwei Bedingungen erfillt sind:

m n

(1.5) 224 WK = °b(m + *p>
r=1 1=0
An m

(16) = °Fn + De
(=l k=o B )

In Abschnitt 3 wird Satz K fur beschréankte und fur absolute R*-Sum-
mierbarkeit verallgemeinert. Durch Spezialisierung ergeben sich auller Satz
K Resultate von Young [20] und Obrechkoff [13]. In Abschnitt 4 beweisen
wir ein “high indices theorem” fiir beschrédnkte und fiir absolute R-Summier-
barkeit. Unsere Methoden sind neben beschrénkter und absoluter Summier-
barkeit auch auf andere Summierbarkeitsbegriffe fir Doppelfolgen anwend-
bar. Wir werden darauf allerdings nicht ndher eingehen.

2. Bezeichnungen

Wenn nichts Besonderes gesagt ist, sollen alle Indizes von 0 an laufen.
Terme mit einem negativen Index sind gleich 0 zu setzen.

Ist {in} eine Folge komplexer Zahlen, so sei Axn := xn —z,,_i fur alle
n. Ist {yn} eine weitere Folge komplexer Zahlen mit yn / 0O fir alle n, so
bedeute xn = o(y,,), xn = 0(yn) und xn = il(yn) beziehentlich xn/yn —=*0,
sup \xn/yn\ < oo und £ IA(X,/T/,)| < oo0.

Ist {xmn} eine Doppelfolge komplexer Zahlen, so sei Amxmn = xmn—

Anxmn . xmn XTI und Amnxmn ATt (AnxTn) —

= An(ATxrn). Ist {ym,} eine weitere Doppelfolge komplexer Zahlen mit
yrn @ O fir alle m,u, so bedeute xmn —o(t/mn), xmn — 6(yrnn)i %nn =—
= ob(yTn) und xmn = G(ymn) beziehentlich xmn/ymn -> 0 fir m, n >moo (im
Pringsheimschen Sinne), sup \xmn/ ymn\ < 0o, Xmn = o(ymn)Axmn = 0(ymn)
Und A JAmn(®mn/j/mn)| » QO

Fir die Reihe (1.1) bedeute b-"2um = ff so viel wie smn = 0(1)A
Asmn —ma und bedeute a-” = er dasselbe wie sm = fI(l) JTsmn —o0.
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Auch fir jede auf (0,00) « (0,00) definierte Funktion / ist f(x,y) —»a
fir x,y —»o00 im ublichen (“Pringsheimschen”) Sinne gemeint, bedeutet
f(x,y) — 0 (1) dasselbe wie supl|/(x,i/)] < oo und f(x,y) = il(l), daB
fur jede Wahl der Indexfolgen {xm}, {j/n} und mit tmn = /(xm,y,,) gilt
tmn = 12(1).

3. Umkehrsatze fur R*

Wenn nichts Besonderes gesagt ist, sollen die Zahlen p und g immer ganz
sein. Aus (1.3) ergibt sich dann durch Anwendung der binomischen Formel

P.9

RN = g (-1

o Xktiukt-
E. " AR+ A0

Spalten wir hier den Term fur (r,s) = (0,0) ab, so erhalten wir flr die
Teilsummen der Reihe (1.1) die Gleichung

P<7 lr I\ 1 ,
Smn = Rmn - Ir) + N

I W W Aot i+ k|=Q
(r,j)91(0,0)

aus der man (bei Teil b) wegen der absoluten Permanenz von R*) folgenden
Hilfssatz abliest.

Hilfssatz 3.1. a) Aus bR*-Y) ukt —a folgt b-T* Ukt = a, wenn fur alle
M 6{0.... ?21x{0....... J}\f0,0)} gilt

(3-1) Xkp(Ukt = Ob(Ara+1/n+1).
k,t=0
b) Aus aR*-"ujt/ = e folgt a-"2uk( = a, wenn fur alle (r,s) £
G(0,... ,p} x{0,... ,23}\{(0,0)} qilt
(3.2) £ AMuke = 0(A;+ik&+1).
k,t=0

Mit Hilfssatz 3.1 1aRt sich folgender Umkehrsatz fir R* beweisen.

Satz 3.2. a) Aus bR*-£) w=* = <4 folgt b-£) uki = a, wenn fir jedes
r £ {1,... ,p} und jedes s £ {1,... ,q} die folgenden zwei Bedingungen
erfallt sind:

m n

(3.3) EANE =0 ),
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34 537" 53 ukt = b
(34) 53" 83 Uk = "B

b) Aus aR*-J) Ukt = o folgt a-]T) Wkt = er, wenn fir jedes r G{1,... ,p}
und jedes s G{1,... ,q} die folgenden zwei Bedingungen erfillt sind:

n n

(3.5) E ai E “« = ll(a™+)-
k=0 e

(3.6) 5317 53 ujw = fi(/*n+i)-
=0 /0

v v ... @) Nach Hilfssatz 3.1 genugt es zu zeigen, dal (3.1) erfillt ist.
Fir die Félle r > ONNs = 0und r = OJ1s > 0 ist dies (3.3) bzw. (3.4).
Also bleibt zu zeigen, dalR (3.1) auch fur (r,s) G {1,... ,p) X{1,... ,q) gilt.
Dazu sei

m n
(Ne7) Tm == "m+| %XK ﬁUkt'

nach (3.3) also 7mn = 0(,(1). Da die Folge L, monoton gegen oo strebt, ergibt
sich hieraus

(3-8) M+ 53("+i_AOw = ob(l),
i/=0
also auch

71

(3-9) T —  $3( 1 ~ tl)ni>—°6(1)-

v=0

Die mit An+1r*+1 multiplizierte linke Seite in (3.9) ist aber gerade

m n n m \'
<+i E_AE -EM+--”)E NE “« =
k=0 *=0 t/=0 =0~ *=0

z 77171

= Ny An+i ujw - Ao~ AH ] =
k™ 1" R Y T} KD
so daB (3.1) erfullt ist.
b) In Analogie zum Beweis von a) ist nur zu zeigen, daR (3.2) fur (r,s) G
G {1,... ,p} X{1,... <} gilt. Mit gm aus (3.7) ist wegen (3.5) zuné&chst
rjmn = ft(l), und hieraus folgt in Analogie zu (3.8) wegen der absoluten
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Permanenz der bewichteten Mittel (vgl. Mohanty fill, Lemma 4, oder [2],
Korollar 17.1) jetzt

Fn+i “»lhm» = il(l),
i/=0

wenn man o = fi(l) beachtet. Damit ergibt sich der Rest des Beweises
wie bei a).

Wegen der Monotonieeigenschaften von R* (vgl. Mears [8] und Obrech-
koff [12]) ist Satz 3.2 auch anwendbar, wenn p und gnicht ganz sind. Ist etwa
p nicht ganz, so muB man nur (3.3) und (3.5) fir jedes r 6 {1,... ,[p-f 1]}
fordern. Entsprechend ist zu verfahren, wenn g nicht ganz ist.

Fur R* = (C, 1,1) ergibt Satz 3.2.a) gerade den Satz K, wéhrend Satz
3.2.b) folgende Verallgemeinerung eines Resultats von Obrechkoff [13], Satz
4, liefert.

Korollar 3.3. Aus a(C, 1,1)-X) ukt — o folgt a-Jju”™ = a, wenn die
folgenden zwei Bedingungen erfullt sind:

m n
(3.10) Y Kk um =T +1),
fa t=o

n * m _ .
(3.11) \:(I fL\;(Otk—n(nﬂ}

Durch (3.3) und (3.4) bzw. (3.5) und (3.6) sind jeweils p+q Bedingungen
gegeben. Die im folgenden Satz angegebenen stdrkeren Umkehrbedingungen
haben den Vorteil, von p und g unabhédngig zu sein und damit flr jedes
Verfahren R* zu gelten.

Satz 3.4. a) Ausbh R = &folgt b-"2uht —o, wenn die folgenden
zwei Bedingungen erfillt sind:
M
(3.12)
=0
m
(3.13) M X /Ukt ~
k=0

b) Aus aR*-£jttfcf = e folgt a-J3 ur = < wenn die Folgenden drei
Bedingungen erfillt sind:

(3.14) A = D(Afc+i), = fi(lxm ),
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(3.15) XkY . Wi = ft(AAfc),
t=0

(3.16) A Az W= TT(AUD-
k= o

Beweis, a) Wir verwenden Satz 3.2 und zeigen, daB aus (3.12) fur jedes
r > 0 die Bedingung (3.3) folgt. Sei also r > 0 und
m
Lm:=~(4NONT1.
K=o
Fir Tjm aus (3.7) erhalten wir dann

(3.17) Vmn = S5MNAAPAN 1e Y A1 hirl>

wobei der Ausdruck in der geschweiften Klammer wegen (3.12) und Lm —00
von der Form 07(1) ist, und wegen der Monotonie der Folge Anoch AmA~*+1 =
= 0(1) gilt. Damit ist (3.3) gezeigt. Analog folgt aus (3.13) fur jedes s > 0
die Bedingung (3.4).

b) Wieder verwenden wir Satz 3.2 und zeigen, dal aus (3.15) und dem
ersten Teil von (3.14) fir jedes r > 0 die Bedingung (3.5) folgt. Jetzt ist
in (3.17) der Ausdruck in der geschweiften Klammer wegen (3.15) und der
absoluten Permanenz der bewichteten Mittel von der Form fl(l), und wegen
des ersten Teils von (3.14) gilt AmA“#1 = il(l) nach einem Resultat von Pati
[14], Lemma 2 (vgl. [18], Hilfssatz 5.3). Damit ergibt sich fjmn = fI(l) aus
dem nachfolgenden Hilfssatz 3.5. Analog folgt aus (3.16) und dem zweiten
Teil von (3.14) fur jedes s > 0 die Bedingung (3.6).

Hilfssatz 3.5. Aus xmn = 7(1) und ym = fI(l) folgt xmnym —il(l).
B oew e is ES |St
Amoao(*noolln ) = (A aXmoaoJAlln 4" (Aran*ran )y ra-b
und da ¥1-i —O0 (1) aus ym = S7(1) folgt, gentigt es, noch
Y 1An"mnl = 0(1) fir m —»o0
n=0
zu zeigen. Dies folgt aber wegen xmn = fI(l) aus

E F neml= AAZc) S E F mosmn
n=0 n=0 k=0 m,n=0

Fur R* = (C, 1,1) ergibt Satz 3.4.a) ein Ergebnis von Young [20], Ab-
schnitt 17, wéhrend Satz 3.4.b) folgende Verallgemeinerung eines Resultats
von Obrechkoff [13], Satz 5, liefert.
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Korollar 3.6. Aus a(C,1,1)-£) ukt = er folgt a-~tifc/ = er, wenn die
folgenden zwei Bedingungen erfillt sind:

(3.18) kK~2 ukt = fi(l),
t=o
m
(3.19) 13~y fd = fi(1).
k=0
Da aus bR-£) Ukt = o immer bR*-£)ujtr = o und aus aR-* =0

immer aR*-"2ukt = o folgt, darf in Hilfssatz 3.1 sowie in Satz 3.2 und
Satz 3.4 jeweils R* durch R ersetzt werden.

4. Ein *high indices theorem”

In diesem Abschnitt beweisen wir ein “high indices theorem” flr das Ver-
fahren R und Gbertragen dabei eine Beweismethode von Minakshisundaram
[10] (vgl. auch [18]) von Einfachfolgen auf Doppelfolgen.

Satz 4.1. Sind die Bedingungen
hminfw"1#1 > 1 und liminf >1

erfillt, so gilt:
a) Aus bR-£) Ukt = erfolgt b-J™ Ukt = er.
b) Aus aR-£) Ukt = e folgt a-£) Ukt = er.

Beweis. Wir zeigen zunéchst, daB

0o

(4.1) Y. Ukl =&
k,t=0
gilt. Dazu wéhlen wir p + 1 Zahlen r\,... ,rp+ti mit
(4.2) l1<n <.. <rptl <liminf(Am+1/Ara)
und (+1 Zahlen si,... , mit
(4.3) 1< si <...<sg+l< liminf(/x,,+1/pn).

Ferner wéhlen wir m0 mit Am+1/Am > rptl fir alle m > m0 und nO mit
Mn+i/*n > sg+l fur alle n > n0. Dann gilt Am < Amrj < ... < Amrp+i <
< Am+l fir alle m > mO, pn <Pn$r < ... <pnSg+H < Mn+i fur ahe n > noQ,
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und wir erhalten mit (1.2) furallei = 1,... ,p+ 1, allej =1,... ,g+1, alle
m > 710 und alle n > nQdas lineare Gleichungssystem
P4
(4.4) r?2’AATO.-M )= J2 MA (p-“~ )(Am/Zn)
a,B=0
mit
daR:= (n-1)a(sj- R
und
1 m’n
R(p-"-6){AmpnN) := £ (Am- Alhp- “(Mh - M9-/W
Am /in =g

Um das zu sehen, wende man im Ausdruck fir A(Amr,,/ins ) auf [(Amr,—
—Am) + (Am-Ajt)]p die binomische Formel an und verfahre entsprechend mit
HnSj —uy. Damit haben wir bei festen m > 10, n > no ein lineares Glei-
chungssystem fir die Unbekannten R p~a'gq~f\ \ m,un) mita = 0,... ,pund
R =0,...,q, das wir nach R(°*\Am,p,,) = smn auflésen wollen. Eine ele-
mentare Rechnung zeigt, daR die Koeffizientendeterminante dieses Systems
den Wert
P+l
(4.5) Dg+1Dp+l fl
er,/3=0

hat, wobei Dr und Da die Vandermondeschen Determinanten der Zahlen

,rp+l bzw. Si,... ,59+x sind. Insbesondere ist die Koeffizientende-
terminante des Systems also von 0 verschieden, und es gibt somit komplexe
Zahlencj(i=1,... ,p+1j=1,...,9+ 1) mit

pti,e+1
(4.6) «am = N cijr?sgR (\riri,finsJ) fur m > m0, n > nO0.
*i=1
Hieraus liest man, da R beschrénkt permanent ist, (4.1) ab.
Fir a) ist jetzt noch zu zeigen:

(4.7) Smn = 0(1) (m —»o0) furalle ne {0,.... ,n0),

(4.8) Smn = 0(1) (n—yoo0) firalle me (0,...,To}.

Wir beweisen (4.7): Es sei n e {0,... ,no) fest und pn > 0. Zu den p + |
Zahlen r\,... ,rp+i mit (4.2) wahlen wir jetzt g+ 1 Zahlen <j\,... , mit
(4.9) fIn < HyTi <Z... KHn<IgH C/in+1e
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Damit l4uft, mit cj an Stelle von Sj, formal alles wie oben. Es gibt also
komplexe Zahlen 7 (i = 1,... ,p+ 1 j —1,...,9 + 1), mit denen in
Analogie zu (4.6) jetzt

p+l,g+l

(4.10) smn = 7ij"RiXmrirnCTj) fur m>rn0
Qi=1
gilt. Hieraus liest man (4.7) ab. Ist n = 0 und po —O0, so gilt mit den p + 1
Zahlen ,rptxmit (4.2) furallei = 1,... ,p+ 1und alle m > To jetzt
P/ \ 1 m
rR(amr,-,— » () (r*- ) ~ a-Ufc0’
4 o=0 "' Am k=0

und hieraus folgt sm0 = 0(1) wie im Falle des Riesz-Verfahrens zur Limi-
tierung von Einfachfolgen (vgl. Minakshisundaram [10] und [18]). Die Be-
hauptung (4.8) wird wie (4.7) bewiesen.

Fir b) ist jetzt noch zu zeigen:

[e]e]

(4.11) Y2 JAmnSmn| < 00 fur alle ne {0,... ,n0),
@
(4.12) A |Amnsmn| < 00 fur alle m € {0,... ,m0},

1zl

Um (4.11) zu beweisen, geht man wie beim Beweis von (4.7) vor und (4.12)
beweist man wie (4.8).

Der erste Teil des Beweises von Satz 4.1 liefert das in der Einleitung
erwahnte “high indices theorem” von Mears [8], Theorem XII. Auch zwei
dazu &hnliche Ergebnisse von Mears [8], Theorems X und XI, lassen sich mit
unserer Methode beweisen.

Dalk man in Satz 4.1 das Verfahren R durch R* ersetzen darf, ist nicht zu
erwarten, da das “high indices theorem”, wie Kuttner [7] gezeigt hat, schon
flr das “unstetige” Riesz-Verfahren zur Summierung von Einfachfolgen nicht
uneingeschrankt gilt.
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THE SPACE OF DENSITY CONTINUOUS
FUNCTIONS

K. CIESIELSKI (Morgantown) and L. LARSON (Louisville)

We denote by Rj the set of real numbers, R, endowed with the density
topology. A function /: Rd —aRj is said to be density continuous, if it
IS continuous with respect to the topology on Rj in both the domain and
range. The set of density continuous functions has been studied in several
limited ways. Bruckner [1] and Niewiarowski [3] have studied density con-
tinuous functions which are homeomorphisms under the standard topology
on R. Ostaszewski has investigated the local behavior of density continuous
functions [4] and has investigated their behavior as a semigroup [5].

In this paper, we consider the composition of the set of density contin-
uous functions. The structure of this set seems to be quite complicated.
Ostaszewski [5] has noted that it is not closed under uniform convergence.
In Example 2 we show that it is not a vector space. Corollary 3 shows that
each real-analytic function is density continuous, but Example 1is a C°°
function which is not density continuous. It is not difficult to construct a
density continuous function which is not continuous. On the other hand,
every density continuous function must be approximately continuous.

In what follows, the right (left) unilateral derivatives of a function / are
represented as /+ (/*). The Lebesgue measure of a set A is denoted by
\A\ and the Lebesuge density (right, left Lebesgue density) of A at a point
x is written as d(A, z)(d+(A,x),d“ (A,x)). The set of functions which are
infinitely differentiable on R is written as C°°. Finally, if A and B are two
sets such that sup A ~ inf B, then we write A<B.

Before stating the main result, we first present the following lemma.

Lemma 1. Suppose | is a compact interval and f : 1 — R. If there exist
numbers a and 3 such that

Q) 0O<acx< ):‘ y <R <oo, foralx,y €1, x oy,
then f is density continuous on I.

Proof. From (1) it is easy to see that / is strictly increasing and con-
tinuous on I. If g =/ -1, then it follows from (1) that

2) 0< LW - £(»)< IforaU ,,,,€/(/), ti/t.
B u—v a
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The right-hand inequality in (2) implies that g is a Lipschitz function on
/(/) and hence g is absolutely continuous and glis bounded above a.e. The
left-hand inequality in (2) shows that g' is bounded away from 0 on /(/)
a.e. Now a result of Bruckner [1, Corollary 1] shows that g preserves density
points. This implies the density continuity of /.

Theorem 1. Ifl is an open interval and / : / —»R is convex, then f is
density continuous.

Proof. Fix a point a & I. It will be shown that / is right density
continuous at a. To do this, we lose no generality in supposing that /(a) =
= a = 0, because the translation of a density continuous function is obviously
density continuous.

According to [6, Theorem 10.11], there exists a nondecreasing function
h: I R such that

(3) /(*) = J h(t)dt, forall x £ /.
0

Because of this, it is easy to see that there must exist a real number b > 0
such that / is monotone on [0,6]. We may assume that / is strictly monotone
on [0,6] because if it is not, / must be constant on some right neighborhood
of 0, and right density continuity at O follows at once. With this assumption,
/ is a homeomorphism from [0,6] onto /([0,6]). Denote g = (/|[o,b])_1-

There are now two cases to consider, depending upon whether / is strictly
increasing or strictly decreasing on [0,6].

Assume first that / is strictly decreasing on [0,6]. Then by (3), h <0
on [0,6). There is no generality lost in assuming h{b) <0. If0<x <y g 6,
then considering the average value of h on (x,y) and recalling that h is
nondecreasing, it is obvious that

o>h(b)> h =M ~m > h(0).

~y-X y —X
This implies
0<-h(b) < — y ;(‘ < —h(0) < oo, for all x,y € [0,6].

(h(0) is finite because h is monotone on a neighborhood of 0.) Lemma 1
now shows that -/is density continuous on [0,6]. Since density continuity
is easily shown to be preserved under constant multiplication, it follows that
/ is density continuous on [0, 6] and therefore right density continuous at 0.
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Next, assume that / is strictly increasing on (0,6) and that /,, = [a,,,6n]
is a sequence of disjoint intervals from (0,/(6)) such that /,, decreases tQ 0
and

U /an(o,0
@ v ) > q> 0, forall t € (0,/(b)).

Let S = UinJdn ¢{In)and Gn = (6n+i,a, ). From (4), it follows that

nel

kU h
= forall n > 1

©

[N

U ck

k=n—

Before proceeding with the proof, we make the following useful observa-
tions. From (3) and the assumption that / is increasing we see that h > 0
on (0,6). Let A and B be intervals contained in (0,6) such that A <C B.
Then because h is nondecreasing,

th th
YAV csupn) <infh@y <B M
\A (1] tEA \B\ VB

This implies the statement

(6) li(C)| i 9(B)I[8]

for all intervals C and D from (0,/(6)) such that C <CD, and this estimate
immediately extends to the case when C, D are finite unions of disjoint
intervals.

We define an infinite partition Sn of S as follows. Let ¢t = aj. By (5),
there exists an a2 < of\ such that

KarQlh NS\ Q
IGil 1-Q°

Let a2 = min{62,a2). Assume that ak has been chosen fork —1,2,..., n—
so that either ak > ak or ak < ak and

|(afc,qfc-i) m S1 _ q

ICct-il 1—q'
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and equality holds if a* < a*. Choose an < an_! such that

|« ,g n-i)n51 _ g

I<in_i] 1—Q
To see that such a choice is possible, there are two cases to consider, depend-
ing on a,,_i. Ifa, i = a,_i, it can be seen immediately from (5). In case

Otn-l &« i, 16t
m = max{& < n :ok —ajt}.

Then |(afc,afc_i) M 5] = p|Gjt_i|/(l —g) for m + 1 < A<n- 1so that

-
(7) (Qn_1,afBn5| = -~ -~ |G fc 1]
1- gt
According to (5), there isat < a,,_i such that
M
(8) |(i,a,,)nS| =T4-~|G it-,].
Ckem
Subtracting (7) from (8) gives
|(t,an_i) M S| = 1_—|C,,_x|.

We set @n = t in this case. Then let an = min{o”,an}. Define Sn =
= [a,+i,a,,)nS. From the choice of a,, < a,,, and the fact that a,, * 5,,, we
see supS,, <6,+i. So 5, < Gn = (&,+i,an) and
\Sn[ > _g_
G, =\-e
Finally, we use (6) and the preceding inequality to see

£ | £ 1G4,

£is(Gn)i= £wcn)i =1_e"

Hence,

N
p(0,an)
Because g can be made as close to 1 as desired, we see that / is right density
continuous at 0.
Similar arguments show that / is left density continuous at every point
of 1. This completes the proof of the theorem.
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Corollary 1. Ifg: [a,b] =R is convex on (a, 6) and {g+(a),g (6)} C
C R, then g is density continuous.

Proof. Define

and apply Theorem 1.
By using g = — in Theorem 1and Corollary 1 we arrive at the following
corollary.

Corollary 2. Ifg is concave downward on an open interval I, then g is
density continuous on I. Further, if g is concave downward on the interval
[a,b] with both g+(a) and g~{b) finite, then g is density continuous on [a, 6].

Ostaszewski [5, Question 4] asked whether polynomials are density con-
tinuous. The following corollary provides an affirmative answer to this ques-
tion.

Corollary 3. Real analytic functions are density continuous.

Proof. If/ isreal analytic, then f is finite everywhere and f" has only
a finite number of zeroes in every interval, so applications of Corollaries 1
and 2 suffice to establish this corollary.

Corollary 4. If f(x) = xafor a € R, then f is density continuous on
its domain.

Proof. If a » 0, then this follows directly from Theorem 1. Ifa > 1
then this corollary is a consequence of Corollary 1.

Suppose 0 < a < 1. It is clear that Theorem 1 implies / is density con-
tinuous on Dom(/) \ {0}. So, it must be shown that / is density continuous
at 0.

Let h > 0 and suppose A C (0,/i). Then, we use the fact that (f~1)'is
an increasing function to see

A 0

It follows from this inequality that / is right density continuous at 0. A
similar argument holds from the left.

Example 1 There is a function / G C°° which is not density continuous.

Choose any sequence of disjoint intervals Jn = [an,6,] C [0,1] decreasing
to 0 such that

9
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and let h be a C°° function satisfying
(10) h(0) = 0, h(1)= 1, and /i(n)(0) = h(n)(l) = 0, for all n € N.

(An example of such a function is

h{x) = gJ exp(-1/t2- 1(< —1)2)dt,

0

for suitable g.) Let

(n) d, = max{l(ar)l:0<k”nand 0" x <1} > 1,
"0 if x <a,,

(12) e < PR WS ifxe an,

On(bn fln)n ;
‘ (Ocn ) if x >bn

and

f(x) = J”bn(x)

=1

From the choice of h, we see that hn 6 C°° for each n. Obviously, using (9)
and (11), it follows that

(13)

n=I a" -
so that / exists everywhere. Moreover, because the /,, are pairwise disjoint,
it follows that / is infinitely differentiable on R \ 0 and continuous on R.

To prove that /(fctl)(0) exists and equals O, let us assume that /A (0) = 0
and choose an < s < a,, \ for some n > k. Then it follows from (11) and
(12) that

1<=>(3) - | (fc)(0) jiEn hi(s) W E°In(bj - ajY <bn ifk =0,
s-0 .
if k> 0.

Since s —=0 implies bn —0, this shows /(fc+1)(0) = 0. Therefore, / is a C°°

function. . .
But, / cannot be density continuous because of (9) and the fact that

/(*\1U)

71=1

is countable.
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¢ ... 1 There is a continuous, density continuous function
/: R —>R such that f(x) + x is not density continuous.

To construct such a function, we first choose two differentiable functions
h\ and /12 satisfying:
(i) 0<hi <h2on (0,0c);
(i) hi(x) = h2(x) = x for x <0; and,
(iii) 1/2 < h[(x) < 1< h2(x) < 2 when x > 0.
Let an and bn be any two sequences converging to 0 such that 1 = b\ > a\ >
p2 o2 > .. e, and both

A(™*n) M &) 2 and ME>n+i)  1/2
bn bn-+i

Define a piecewise linear function /0 by letting fo(an) = hi(an), fo(b,,) =
= J12(b,) and /o(x) = x-f Jo(E>1) —& when x > 1 and /o(x) = X when
X < 0. The function /o is easily seen to be continuous because hi and /12 are
continuous and have value 0 at 0. Equation (14) implies

1< W - foia)< foral be

It follows from Lemma 1that / must be density continuous.
Denote A(1/2) = (J [bn+i,a,] and A{2) = [J [a,bn]. Either
M=1 n=I

(—00,00 UA(\/2) or (—o0,0)nN1(2)

has positive upper density at 0. Without loss of generality we assume that
it is the former. Then /i(x) = /0(2) - x/2 is constant on each compo-
nent of A(1/2). But this implies that |/i(/I(1/2))] = 0 and >1(1/2) =
= [F1 (/i(T(1/2))) has positive density at 0. Therefore, [ is not densi-
ty continuous at 0. So, it is enough to define /(x) = —2/0(x) to obtain the
desired function.

We note that the / in Example 2 can actually be constructed as a C°°
function by a method analogous to the construction in Example 1.

This example answers questions posed by Ostaszewski [5, Questions 5
and 6].

We wish to thank Krzysztof Ostaszewski for bringing to our attention
several of the questions we have considered here.
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CONVOLUTION RINGS OF MULTIPLICATIONS
OF AN ABELIAN GROUP

J. R. CLAY (Tucson)

1. Introduction

For an abelian group (A,+), the group of left and right distributive
multiplications, Mult A, and the group of left distributive multiplications,
Multi A, have been a source of interesting abelian groups [1, 2, 4, 5, 6, 7,
8, 9, 10, 14, 15, 16, 17, 18], and were first suggested for study by Baer
[7]. Regarding the related question as to whether Mult A, or M ultiA, could
themselves be the additive group of interesting rings, it is natural to take
motivation or direction from the ring of C\ functions from the reals R to R
with respect to convolution *, where

frg(x)= J f(x -t)g{t)dt.
-©

For an arbitrary but fixed finite subset X Q A, this convolution operation
motivates the following two operations for Multi,A and/or Mult A.

(1) a -B{a,b) = 22 a(x,B(.a,b));
XEX

(2) a m3(a,b) = Y ~a(a,B(x,b)).
Xex

In addition to these two operations being closed binary operations, it
is straightforward, but tedious, to show that they are i) associative, ii) left
distributive over +, and iii) right distributive over -f, In short, if «is op-
eration (1) or (2), then (MultiA,+,-) is an associative ring with subring
(Mult A, +, »).

Since the structure MultiA = Map(A,End A), the group of all mappings
from A to the endomorphisms of A, End A [2], it is considerably easier to
study the rings on Mult*A. We have Mult A = Hom(A, End A), the ho-
momorphisms from A to End A [7], but the rings on Mult A will not be
considered much in this work.

Numerous interesting and amusing properties will be exhibited for the
rings on the MultiA with operations (1) and (2). It will also be shown
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that operations (1) and (2) are but special cases of a more general and
powerful construction method. This more general method will provide ways
of making rings on A-modules M , and some unusual [-modules will be used
to illustrate this method. See Theorem 1and the examples following it.

The elements of Mult A are the left and right distributive multiplications
on A. That is, mappings a: A x A —A such that a(a, b-f ¢) — a(a,b)+
+a(a,c) and a(a -f b,c) = a(a,c) + a(b,c) for all a,b,c E A. The elements
of MultiA are the left distributive multiplications on A, so they are the
mappings a: A x A — A such that a(a,b+ c) = a(a,b) -f a(a, c) for all
a, b,c EA.

Most of our results will be about Mult*A, with operation (1). We note in
Examples 5 that Mult®A, with operation (2), is an opposite ring. Hence, the
results relative to MultA, and operation (1), should have companion results,
like Propositions 3 and 4, and like Proposition 14 with its Corollary 15. This
is somewhat surprising if one only takes a superficial look at the definitions
of operations (1) and (2).

2. Rings from modules, and applications

Examples 4 and 5 below show that the multiplications (1) and (2) for
Mult*A, or Mult A, are special cases of the more general case described in

tv.0oc.+ 1 Let R be a ring with left R-module M. Fix anf E
E Hotg(M, R), and define = ¢/ on M by ae/ b= f(a)b. Then (M,+, /)
is a ring.

The proof is direct.

Our subsequent work will be centered about the following five types of
examples.

¢ ..1.. 1+ For an A-module m, suppose we have something like a
bilinear map (,): M x M —»A, but really, all we require is a) (,): Mx
xM —yR-b) (,)(a,x+y)=(.)(a,x)+(,)(a,y); and c) (, )(a rx) =r(,)(a, x),
for all a,x,y EM and for all r ER. Define F(a.y. M -+ 1 by F(a.)(b) =
= (,)(a,6) = (a, 6). Then each E(a,.) £ Hota(M, ). Let «, be the multipli-
cation on M defined via Theorem 1. So (M, +, -a) is a ring. For ¢ E M, let
Ic = {rc|r E GA}. Then Icis a left ideal, and Ic is an ideal if (a,c) = 0.

For O = R, the field of real numbers, and M = Rn, the n-dimensional
vector space over R, let (,) be the usual inner product. For a fixed a =
= (ab ... ,a,), then x my = (aiXi + ... + anxn)y. Forc= (cb ... ,cn) E M,
Icis an ideal if and only if (a,c) = 0.

If Ic is such an ideal, then M/lc = R. For n = 2, it is interesting to
determine the identity in M/Ic and the isomorphism.

¢ ... ,1.. 2. These are really special cases of Examples 1, but we single
them out because of their unifying effect and because they are related also to
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Examples 3and Examples 4. Let M = be the free 12-module on the set S
[13]. For a finite subset X C S, define Fx -M —*Rby Fx(a) — ~ ax. Then

Fx £ Hota(M, R), and defines a ring (M, +, **) with a x b= § Y axgb.
Xex
The map Fx is an epimorphism.

Examples 3. Let (Y,A,") be a measure space. (The terminology and
notation used here will be influenced by that of Hewitt and Stromberg [11].)
Fix an X £ A. Let M1 be the family of all functions a: Y x R —R which
satisfy:

a) foreach b£ R, a(.,6)e£i(y,Alr),i.e.,

a(y,b)dfi(y)
Y

exists;
b) for / € and a£ Y,

ot(a,f(y))dfi(y) = aia ‘] fly)dfi(y)";
Y Y
c) foreach y £ Y, a(y, ¢ £ Homfi(R, R), i.e.,
a(y, sa + th) =sa(y, a) + ta(y, b)

for all a,b s, t € R.

Now (RrxR,+) is an abelian group, and M1 is a subgroup. It is di-
rect to see that M1 is an R-module. Define Fx: M1 — R by Fx(a) =
= J a(x, Ddn(x). Then Fx € Homfi(Mi,R) and defines via Theorem 1, a

ring (M1, +,\y) where for a, 8 £ M1, one gets

a m3(a,b) = V a(x, R(a,b))dfi(x).
X

One should be assured that there are nontrivial M1's.

Let Y = X = {0,1,2,...} with /z({t}) = 1foreach r £ ¥Y. If a(i, b) =
= b/i\, then a £ M1 -

Let ¥ = X = [0,1] with the usual Riemann integral. If d: [0,1] —R is
continuous, and Im(a) = Ta, then a(x,a) = d(x)1T1(a) defines an element of
ML-

Let (Y,A,P) denote a probability space. Fix X £ A, and let/ : Y —R
be a random variable with finite expectation. Define a: Y x R — R by
a(y,a) =f(y)a. Then a £ M1 - Here,

PiXy'Fxia) = P(X)-l\] a(x,1)dP(x)
X
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is exactly the conditional expectation of the random variable / = a(-, 1)
given X [12, p. 338].

Proposition 2. Suppose X has a binary operation -f and let M =
= {a € Mi\ for eachaf R, a(x +y,a) = a(x,a)+a(y,a) foralx,y£ X}
Then M is a left ideal of M1 -

Proof. It is direct to see that (M, +) is a subgroup of (M1,A). For
aftMand7 £ r\\jl,weget

7-a(x+y,a) = Vi(t,a(x +y,a))dp(t) = ‘]7 (t, a(x, a) + a(y, a)) dp{t) =

= \]7 (i, a(x, a)) dp(t) +J "i{t,a(y,a))dp(t) = 7 ca(x,a) + 7 «a(j/, a).
So 7Xla £EM. '

Examples 4. We now consider Mult*A, or Mult A, for an abelian group
(A,+). Fix a finite subset X Q A. For operation (1), we have

a’'B(a,b) = a(x,B(a,b)) =f ax) oR)(a,b)
xex ' Xex '

where ax(c) = a(x,c).

Now define Fx - Mult"A — End .A by Fx(ot) = ~ ax. Now Mult"A,

x€X

or Mult A, is an EndA-module and Fx £ HomEndA(Mult*A, End A) is an
epimorphism. Thus, Theorem 1 shows that (Multf,A,+, ) is a ring with
subring (Mult A, +, ¢) if mis defined by 1).

Porogposition 3 (MUltA,-f,-] isaleft ideal in (MUItAA,¢ y 'l

Proof. For a £ Mult"A and p £ Mult A, we get

a-p(a +b,c) = a (x,p(a+ 6,c)) =
16X

= "2 &(x,p(a,c)) + a (x" (b)) = a -M(a,c) + a-p(b,c).
XEX XEX
Thus, a ® £ Mult"A.
i .01 ¢. ¢ Consider operation (., for Mult"A and Mult A. Then .-

*B(a,b) = 72 a(a, B(x,b)) = a(a,( /3x)(a)j. Let £(A) be the oppo-
XE X \ xEX

site ring of End A. Then Mult*A and Mult A are £(A)-modules, where /*
*a(a,b) = a(a,f(b)). The Fx - MultrA — £(A) defined in Examples 4 is
also in Hom£(®)(Multx,A, £(A)). Define * on Mult£,A by a *R = Fx(R) *a,
the opposite ring of Mult®A defined by Fx via Theorem 1. That is, from
Theorem 1, we would have B ma = Fx{B) *a, and the opposite ring is
a*R —Rea = Fx{R) *a.
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Proposition 4. (Mult A ,+,*) is a right ideal in (Mult*A, +, *).

Proof. For a G Mult"A and p G MultA, we get p *a(a + b,c) =
= E Ka+ b,a(x,c)) = E p(a,a(x,c)) + E <K(*>c)) =T *a(a>)+
xe* xex Xex

+p *a(b,c),sop *a £ Mult A

As far as the construction of rings (M, +,m) via Theoreml, only the
elements of the image of / are involved, and the image of / is a subring R’
of A, and certainly M is an A'-module. So, there is no loss in assuming that
/ GHoTa(M, R) is an epimorphism.

We have (M, +) as an M-module and also an -module. Let Ahnm M =
= {aGM lax = 0for each x GM] and AnngM = {t GA | rx = 0 for each
x GM}.

Theorem 5. Let M be a left faithful R-module. Fix f GHoTa(M, A).
Then the kernel of f is ker/ = Annm i .

Proof. It is direct to see that ker/ C AnnmM . For a G AnnmM,
we have a mb = 0 for each b G M, so f(a)b = 0 for each b G M, thus
/(a) G AnnrM. This means that f (AnnmM) Q AnnaM. Since M is a
faithful A-module, Anna-M = {0}, so /(a) = 0 and Annn/M C ker/.

Remark. Examples 3, 4, and 5, have the modules as unitary and faithful.
Many cases from Examples 1and 2 are also unitary and faithful.

Theorem 6. Let M be afaithful R-module and let f GHoTa(M, 4) be
an epimorphism. Then
Anng/M
Proof. f(a mb) = f(f(a)b) = /(a)/(6). Now apply Theorem 5.
Corollary 7. Let M - Multx,A. Then M/AnnmM = EndA, and

Anng/M = laGM I E Qx=0
| Xex

Proof. Asseen in Examples 4, Fx € HomEndyi(MultE/A, End A) is an
epimorphism. Now apply Theorem 6.

Let A be aring with identity 1, and suppose M is a unitary left A-module
with epimorphism / G Hota(M, A). If /(e) = 1, then e b —f(e)b = b,
so, /(e) = 1 means that e is a left identity. For a left identity e, we define
Re={a £ M \ae = a} and Be = {ae \a GMj.

Proposition 8. Re = Be.

Proof. For ae G Be, (ae)e = a(ee) = ae, so Be Q Re. If a G Re, then
ae = a. But ae GBe, hence Re Q Be.

Acta Mathematica Hungarica 58, 1991



302 J. R. CLAY

Theorem 9. (f?e,-f,-) is a subring o/(M, +,°).

Proof. Define ge: M —y Be by ge{a) = ae. It is direct to see that de is
a group epimorphism. Now ipe(ab) = (ab)e = (a(et))e = ((ae)6)e = (ae)(i>e).
Thus, de is a ring epimorphism.

Theorem 10. (Be,+,°) = (R, +,°).

Proof. We have Be = M/ ker">e. By Theorem 4, M/AnnmM =R. We
now proceed to show that ker*e = AnnmM. For a € keTge, 0 = defa) =
= aee,sofor 6 € M, amb= ae+(em)= (ase)eb= 0. Thus ker pe Q Anna/M .
The reverse inclusion is trivial.

Corollary 11. Ife and e' are left identities, then the subrings Be and
Bei are isomorphic.

Proof. As an alternate to the obvious proof, let Vv.e = de | Bei, the
restriction of Ve to Be> Then e is an isomorphism.

Proposition 12. Ife and €' are left identities, then Be = Bei if and only
ife=¢e"
Proof. If Be = Bei for left identities e and €', then ae = be' implies

(ae)e' = (be')e', or ae' = bel So ae - ae'. This being true for each a € M,
we get ee = ee',ore=¢e'".

Proposition 13. For a ring R with identity 1, let M be the ring on R(s"
of Examples 2 for afixed finite subset X QS. Then M has at least
subrings each isomorphic to R.

Proof. To make 1= Fx(a) = ™ ax, we can choose | | —1 of the ax’s
Xex

arbitrarily, and the |A"|th one suitably.

Proposition 14. For an abelian group A and a finite subset X C A,
consider the ring (Mult£, A, +, ¢) from Examples 4. The ring Mult®A has

|End left identities, and at least |[End A\\x \~l subrings isomorphic to
End A.
Proof. To make 1= Fx(cn) = g g* we proceed as in the proof of
Xex

Proposition 13.

Corollary 15. For an abelian group A and a finite subset X Q A, con-
sider a ring (Mult*A, +, *) of Examples 5. This ring has |[End right
identities, and at least this number of subrings isomorphic to End A.

One of the remarkable consequences of studying Mult A is that there are
nontrivial abelian groups (A,+) for which Mult A = {0}. Such groups are
called nil groups [7]. This will not happen for Mult*A, since ai(a,6) = 6
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defines ai € Mult®A, as does oto(a,b) = 0. Further, for any subset S C
A AN{ 0},

0, ifats;

b, ifa€h,

defines as € Multi,A [3]. Thus, | Mult>2~_1+ 1 It is unknown if
there is a group, abelian or nonabelian, of order greater than 2, for which
these are the only elements of Multi, A, i.e., are there any “nil groups” for
MultLA?

Theorem 16. For an abelian group (A, +), if |[MultfA] > 1, then
(Mult®*A,+) is not a nil group. In particular, Mult®A is not a torsion
divisible group.

Proof. Mult"A = Map(A,EndA), so A ® {0}. So there is a finite
X QA with X ¢ 0. The multiplications = -x defined in Examples 4 are
not trivial. Thus, Mult®A is not a nil group. Torsion divisible groups are
nil groups [7, Theorem 71.1].

Corollary 17. If (A,+) is a notrivial abelian group, then Mult*A is
not a nil group.

Theorem 18. Let (p € Sa where Sa denotes the group of permutations
on A. Suppose Y = (X), where X Q A is a finite subset, and con-
sider the multiplications -x and -y defined as in Examples 4. The map
@ Multi,A —»Mult/,A defined by ®g(a) = afi, where a”*(a,b) —a(tp(a),b),
is an isomorphism from (Mult®A, +, -y) onto (Mult®*A,+ ,-x).

as{a,b)

Proof. Certainly each a® € Mult*A, and at = a”(a). ®£is easily seen

to be a group homomorphism. ®g(a* 1) = a, so " is surjective. If a» = 0,
then a(¢p(a),b) = 0 for all a,b 6 A, making a = 0. Thus @" is injective.

Consider dd(a-yR) = (a-yR)* and ®"a) xdPfR) =  -AR"e For any
finite T Q A, (a-TR)(c,d) = (tETat)OBc(d). So(a-TR)c= (tE at) 0Rc- So,
e er

{a-yR)t = (a-yR)dha) = ( E <y)B<txa), and (a*-xB"a = ( E at)’’R<t>(a) =
yeyY XE£X
= (E ay) 0rtfge Thus, for each a e A,
yey

(a-y B)+ = (a* m B*)a,
hence (a -, B)* = a* m R<¢ This means & is also a ring isomorphism.

Corollary 19. For |[X| = |¥Y|, (Mult*rA, +,-x) = (Mult*A,+ ,-y). If
[EndA| < oo, then (Mult®A, +, -x) —(Mult®A,+,-y) if and only if \X\ =
= \Y\.

Proof. If |X| = |Y¥]|, then there is a permutation ¢ € Sa such that
p{X) =Y. If |EndA| < oo, and (Mult*A, +, -x) = (MultiA, +, -y), then
each has the same number of left identities, so by Proposition 14, |X| = |Y|.
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Remark. It is not known if [EndA| < oo in Corollary 19 is needed.

For @ AGSa, with p(X) = Y and A(Y) = Z, then 0 dn = Pop We
then have

Theorem 20. Fix an abelian group A. The following describes two cat-
egories F(A) and J14(A). The objects of IF(A) are the finite subsets of
A, and the objects of M(A) are the rings TZ{X) = (Mult*A, +, -x) where
mx = e« is defined in Examples 4. Morphisms in F(A) are hom(X,Y) =
= {® € Sa | &(X) = ¥}, and morphisms in M(A) are just the ring ho-
momorphisms. Define @ by ®(X) = TI(X) and ®(d) — P of Theorem 18.
Then ® is a contravariant functor [13].

Note. For a finite X C A, \a € hom(X,X) is the identity morphism for
X, where 11 G Sa is the identity permutation.

The proof of the theorem is easy and shows no new techniques.

The finite subsets of an abelian group (A, +) form a boolean algebra
with respect to U and INM. For finite subsets ¥ and Z, and X =Y UZ, we
have for the multiplications of Example 4,

a-xB =a-YR-\-a-z R -a wnzf,

for arbitrary a, GMult*A. Thus -x = -y + 'Z ~ “Ynz- This leads to

Theorem 21. The objects 7Z(X) of the category A4(A) form a boolean
algebra where W Y) VK(Z) = 72(Y UZ) and 7Z(Y) AK(Z) = Tr(¥ N Z).

Certainly Annm M is an ideal of M. We now construct further ideals
of the examples defined in Examples 2, 3, and 4. For the rings defined in
Examples 2, 3, and 4, a set A plays a role in the definition of the product.
For a suitable subset T, there is a left ideal /(T). For R\ = and T Q5,
let {T) ={aGR lat=0foreachi GT}. For R\ = Mult*rA and T * A,
let I{T) = {a G MultE, A | a(i,-) = 0 for each t GT}. And for R\ = M1
and T GA, let I{T) = {a GM1 \a(i,*) = 0 for each i GT}. The following
theorem shows why we use the notation I(T) for all three cases.

Theorem 22. Let R\ G {R”"s\ M1,Mult*A}, and consider the corre-
sponding 1(T) as defined above. Then:

1) I(T) is a left ideal.

2) As groups, Rf = /(T)+ ¢ 7(FQ+, where Tc denotes the complement
of T inS, inY, orinA, as is appropriate.

3) In each case, for the appropriate X, if X CT, then I{T) is an ideal
in RIt and Ri/I(T) a I(TQ.

4a) IfI(T) is an ideal and R\ ¢ M1, then X QT.

4b) Suppose R\ = M1 and p(X) <o0o. Then I(T) is an ideal if and only
ifp(X MTc) = 0.

5a) Suppose R\ o M1 - Then I{T{) Q/(T2) ifand only YT 2QT\.
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5b) Suppose Ri = M1 and p(X) < o0o. Then I{T\) QI(T2) if and only
ifT2QTx.

Proof. We shall sketch the proof for R\ = M1- The other two cases
have proofs very similar, hut simpler.

For 1), take a,B £ /(T), and t £ T. Then (a —B)(t,b) = a(t,b)-
—8B(t,b) =0-0=0s0a—R £ I{T). For7 £ R\ = MI,and t £T,
(7 a)(t,b) = / 7(x,a(t,b))dp(x) = J ~/(X, O)dp(x) —f Odp(x) = 0. Hence,

7ea £ I(T), and so I(T)is a left |deal
For 2), let a £ R\ = M1 and define

iftfeT;

aTUD) =) ot o), ifti T

and

i(Cb, M / o(i.a). IFtET;

ifti T.
Certainly a = a' + ap, and a' £ I(TQ, and ap G I(T), ifa',ap £ M1-
If one is in M1, the other is also, and we shall shortly demonstrate that
ap £ M1- Assuming ap £ M1, we certainly have ME = I(T)+ + /(T ¢)+,
and if B £ /(T)M/(TQ, then B8 = 0. So we need only to show that ap £ M1-
Take b £ R. Then / ap(y,b)dp.{y) = f a(y, b)dp(y) exists, since a £ M1 -

y T
For / £ Ci(Y,A,p) and a £ Y, ifa £ T, then f ap(a, f(y))dp(y) =
K
= ap(a, f f(y)dp(y)). Ifa £T, then
Y

\]ap(a,f{y))dp(y) = ‘Ja(O, f(y))d/i(y) =

Y Y

=a(°’/ = aT(a,J f(y)dp(y)h,

Y Y

since a £ M1- Finally, fory £T, ap(y, sa+ th) = 0 = sap(y, a) + tap(y,b),
and fory £T, ap(y, sa-\-tb) = a(y, sa+tb) = sa(y,a)+ta(j/, 6) = sap(y, a)+
+tap(y,b). So, cur € Mr, as promised.
We also assume X QT for 3). Take a £ I(T) and 7 £ R\ = M1- Then
fort £T, (a7){t,b) =J a(x, 7(t, b))dp(x) = / 0dp(x) —0,s0 a7 £ /(T),
X X

and /(T) is an ideal. As groups, from 2), we have R+//(T)+ = /(T c)+.
The map a  a' is certainly a group epimorphism. We will show now that
(a *B)" = al1m31 thus completing the proof of 3).
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Fort € T, (a' m3')(t, b)= )f( at'(x, B'(t, b))dp(x) =)f(a(x, B(t, b))dy.(x) =
= (a *R)(t,b). Fort £,

(a'*B")(t,b) = \] a'(x,R'(t,b))dn(x) =
X

= \]a(x,O)d/j.(x) = \] 0d[x(x) = 0,
X X

and (a B)'(t,b) = 0, also. Thus (a *R)' = a' *R".
For 4b), we also assume 1 (X) < oo. Ifu(XMNTQ =0,a E/(T), 7 EMI,
and / €T, then

(a-7)(i,6)= J Oi{x,i(t,b))dn(x) =

X

= /[ t*(*7{t,b))dn(x) *+ \] a(x,7(t,b))dfit(x) = \] 0d/j,(x) + 0 =0,
XnT Xr\Tc XnT

since 1i(X MTc) = 0. Hence I(T) is an ideal.
For the converse, we assume /(T) is an ideal. Ifa € /(T), 7 E M1 and
i GT, then

0=(a-j)(tb) = ‘]a(X,i(t,b))dp(X) =

X

= \] a(x,y(t,b))dfi(x)+ \] ot(x, j(t, b))dy,(x) = \] a(x, y(t,b))dfi(x) =(\).
XnT XnTc XnTc

Define a by
) re ifteX MTc;

a(<>6)={ 0, otherwise.
Choose a 7 and a b so that 7(£,6) 70. Ifa E M1, thena E/(T), and

(t)= \] TMX *)=7MM*NT).
XnTc

Since 7(t, 6) 71 0, we have /r(X M Tc) = 0.
Let us now show that a E M1- For a), f a(y,b)dy(y) = J bdfi(y) =
Y XnTc

MTc) exists. For b), take / E £1(1NA,u). Then for a E X MTc,
a(a, f(y))dn(y) = Jf(y)dfj.(y) = a(a,)J/f(y)de(y))- Fora g X MTc,
y

A=
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[ ot(a, f(y))dp(y) = 0 = a(a, f f(y)dp(y)). Finally, for c), let y G XI

Y Y
MTC Then a(y, sa+ th) = sa -ftb = sa(y,a) + ta(y,b). Fory ¢ X GTc,
a(y,sa+th) = 0 =s-0+t-0 =sa(y,a)+ ta(y,b). Hence, a € M1 as
promised.

Finally, for 5b), we suppose that I(T\) £ /(T2), and that there is a
R € T2\ T\. Define a by a(i2,b) = band a(t,b) = 0ift2 ¢ t. Then, if
a € M1, we have a 6 I(T\) but a £ /(T2), a contradiction. So we need only
see thata € M 1 -

It is direct to see that b) and c) requirements for being in M I are satisfied.
For a), let be R. Then

i if {t2} i A;
Ja(y,b)My)={l if {i2} € A.

Y

SoaeMI-
The converse is trivial.

Corollary 23. a) Suppose R\ ¢ M1- Then /(Tj) C I(T2) if and only if
T2 C Tj.

b) Suppose R\ = M1 and p{X) <oo. Then I(T\) C I{T2) if and only if
T2C T\

Proof. Suppose I(T\) C I{T2). Then I{T\) ¢ I{T2). From the theorem,
T2 QT\. If T2 = Ti, then T\ Q T2 and the theorem gives us that 1{T2) Q
Q I(T\), which cannot be. Conversely, suppose T2 C T\. Then T2 Q T\ and
so 1(T\) QI{T2). If/(Tj) = /(T2), then I(T2) C/(Tj), which forces Tx Q T2

Corollary 24. For the appropriate case for Rx, assume that S, A, or
Y is infinite. Then neither the descending chain condition (d.c.c.) for left
ideals nor the d.c.c. for ideals holds.

Proof. For the ideal case, there is an infinite chain
X CTXCT2C mmCTnC mm-
So
I(X)DI(T1)DI(T2D---DI(Tn)D---.

The definition of M1 depends upon a measure space (¥,A,p), and this
point could be emphasized by writing M1(Y,A ,p), if necessary, for M 1 - For
a /r-measurable set T € A, one gets the measure space (T,AT,pT) where
the cr-algebra At = {F e A\F QT}, and pT = M| AT [11, 11.22, 11.37,
12.31].

Theorem 25. Let Rx=MI{Y,A,p) andfix X, T 6 A with X QT, and
let X define the multiplication in the M1 s. Then

MI(Y,A,p)

I(T) MI(T,At,pt)-
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Proof. From Theorem 22, we have M1 (Y ,A,[i)/1(T) = I(TQ, so we
shall show that 1{TQ = MI(T,At,Ht)- Define 1: I(TQ —-»MI1(T,At,Ht)
by A(a) = a \'T XR = a*, the restriction of a to T x R. Certainly,
A(a + RB) = N(a) + Ni(b), or (a + /?)* = a* + B*- Ifa* = 0, then a*(i,¢)= 0
foreacht GT, so a(t, *) = O foreach t GT. Since a G/(Tc), then a(f,*)=10
for each t GTc, making a(t, ¢y = Oforeacht GT UTc=Y. Soa —0 and /1
is injective.

Take any a* G MI(T,At,Ht), and define

if Ye T;
ify€Tc.

Ifa GMI(Y,A,/i), then a GI{TQ and A(a) = a*, making A surjective.
To see that a GMI1(Y,A,h), take be R, and note that f a(y,b)d/u(y) =
v

= + a(y, b)dn(y) + 1fta(y, b)dn(y) = 4 a*(y, b)d"T(y).

For / G £i(y,A,y) and a G ¥, we have \J(a(a, f(y))dn(y) = 0 =
= a(a, Jf(y)d(i(y)), ifa G Tc, and if a G T, then f a(a, f(y))d/j,(y) =
= Jax(@l(y))My) = ff(y)ae(aldfiy) = Iff(y)My)Ja*(a, 1) -
= <x*(a,ff(y)d/t(y)) = a(a, f f(y)dfi(y)).

Y Y
Certainly a(y, sa + th) = sa(y, a) +ia(j/, 6) ify GTc, and a(y, sa + th) =
= a*(y,«a+ = sa*(y,a) + ta*(y, b) = sa(y, a) + ta(y, b), ify GT. In
summary, & G M1 (Y,A,h), and to see that A is a ring isomorphism, one
needs only now to see that (a *R)* = a* R*.
Now a*-B*(a,b) = f a*(x,8*(a,b))d/iT(x) = [/ a(x, B(a,b))d[i(x) =

X X
—(a-B)(a,b) = (a-B)*(a,b), for each (a, 6) GT x R. Hence (a-R)* = a* o7~
This completes the proof of Theorem 25.

Recall that can be thought of as all functions r: S —R with finite
support [13]. The proof of Theorem 25 can be easily modified to give a proof
of

Corollary 26. For Rx=RGB)and X QT QS, we have RN I(T) =
S a(1).
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ON THE UNIQUE EXISTENCE OF ALMOST
PERIODIC SOLUTIONS OF VOLTERRA
INTEGRO-DIFFERENTIAL EQUATIONS

K. WANG (Changchun)*

This paper deals with the uniqueness and existence of almost periodic
solutions of Volterra integro-differential equations of the form

1) X'(t) = A(t)x(t) + \] C(s - t)x(s)ds + f(t),
)
and
t
2 x'(t) = A(t)x(t) + \] D(s - t, x(s))ds + r(t, x(<)),
)

where A,C are continuous matrices; D,f,r are continuous n-dimensional
vectors; and A(t + T) = A(t), T > 0.

The existence and uniqueness of almost periodic solutions of Volterra
integro-differential equations have been studied by many authors, see [1-4].
Using the technique of [5], we present some new unique existence criteria for
(1) and (2).

Ifx = (zi,X2,... ,x,,) ERn, A = (a,y) is an n X n matrix, then define

H=it, X N =YjM-
=1 Isz
Let AP denote the set of almost periodic functions, define ||g|| = sup |g(t)],
teR

for g € AP. The space (AP, || ||) is a Banach space.

Definition 1. A matrix A(t) is said to be noncritical with respect to AP
if the only solution in AP of the equation X' = A(t)x is the zero solution
x=0.

Lemma 1 [5]. IfA(t+ T) = A(t), T >0, then the equation

(3) x"= A(t)x + f(t)
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312 K. WANG

has asolution Kf in AP for every f £ AP if and only if A(t) is noncritical
with respect to AP.

Lemma 2 [5]. IfA(t+T) = A(t), and A is noncritical with respect to AP
then Kf is the only solution of (3) in AP, and Kf is continuous and linear
in f, and there is a constant

k=T sup {(X-'it+TA)- 1) 1X{t,t +5)
0<s,t<T 1

such that (ITif/Ll < k\f\\, where | is the unit matrix, X(t,s), X(s,s) =1, is
the principal matrix solution of x' = A(t)x.

Lemma 3. If A(t+T) = A{t), then A(t) is noncritical with respect to AP
if and only if all characteristic exponents of x' = A(t)x have nonzero real
parts.

Lemma 4. 1f G d:Gf_j@)\C(u)\du < +00, then the function

(Qg)(1) =f \] C(s - t)g(s)ds
is almost periodic, for any g £ AP.

Proof. Suppose {a*} is a sequence in R. Since g £ AP, so there is a
continuous function g*(t) and a subsequence {a,} C {&*-} such that
uniformly converges to g*{t) on R, that is, for any given e > 0, there is a
N > O such that

IK(i +a,) —<7*()| <£ for t£ER and i>N.
Since

tmpk
+ Ofc) = T C(s - t- ak)g(s)ds = \] C(s - t)g(s + ak)ds,

therefore,

\(Qg)(t +a) - (Qg')(\ # ‘] \C(s-t)\\g(s +ai)-g*(s)\ds<

— 00

<£J)\C{u)\du, fort £ R and i > N.

This implies that {(Qp)(t+ a,)} uniformly converges to (Qg*){t) on R, thus
(Qo)(t) is almost periodic.
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Theorem 1. If
1° A(t) is noncritical with respect to AP;
2° kG < 1;
then (1) has one and only one almost periodic solution for every f £ AP.

Proof. Suppose / £ AP is given, we define maps P, Q: AP —»AP by
the following way

{Qo)(t) = \] C(s - t)g(s)ds, for g £ AP,

—00

and Pg = K(Qg + /) It is easy to see that P, Q are well defined and
continuous in g, and [E2<7| * G||<7|.
Take M >0 so large that (1- kG)M >k, if/ o 0. Let

5 = {5 £AP:|bl|<AT||/|[}.

Then for g £ 5,

W = HEW™* + /)1l < k(WQg\\ + 1I/11) < kG\g\\ =
= K\WAN<MKGWAL + K\WAW< MR,

Therefore P is a map of S into itself.
If g, h £ 5, then

IPg - Phil = IIK(Qg +f) - K(Qh +/)y< IIKQg - KQh\ £
<k\\Q(g-h)\\<kG\\g-h\\,

From condition 2°, the map P is a contraction of S. The contraction principle
implies there is a unique fixed point g* of P on S, that is,

jtgV) = A(t)g\t) + (Qgm+ f)(1) = A(t)g*(t)+ \] C(s - t)g\s)ds + f(t),
)

and g*(t) is an almost periodic solution of (1). If there is another almost
periodic solution h*(t) of (1), take M > 0 so large that \n*\ < M ||/||, then
h* is a fixed point of P on S, from the uniqueness of fixed point of P on
5, h* = g*. This implies the uniqueness of almost periodic solution of (1).
If/ =0, let
S ={ge AP: |bl|<M}.

The remaining argument proceeds as in case / @ O.
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Corollary 1. If A is a real constant matrix, and
1° all characteristic roots of A have nonzero real parts;

2° f \C(u)\du < (T \{e~AT —/)-1|e\A\T) ~1;

then equation (1) has one and only one almost periodic solution.

Corollary 2. Ifn=1 and

r
1° f A(s)ds o O;
0 .
T tH
—f a(s)ds . inf . Jrn(r)4«
2° J \C(u\du<T-1 1—e 0 <hts

— 00

then equation (1) has one and only one almost periodic solution.

Corollary 3. If
1° A(I)A(s) = A(s)A(i) for all t,s € R, and all characteristic roots of
T

the matrix f A(z)dz have nonzero real parts;

0
¢ -1
I, Y Vox \
2° /| |IC(ujcdus T e o -/ eUNT
Voo o /
where ||A|| = sup |A(i)|, then equation (1) has one and only one almost

o<t<T
periodic solution.

Now let us consider the more complicated nonlinear Volterra integro-
differential equation

t

(2) c(t) = A(x(t) + | D(s - t,x(s))ds + r(i, x(t)),

where D : (—o0, 0] x Rn —=Rn and r: R xR n —*Rn are continuous functions,
t
D(-,0) = 0, from g € AP it follows that —JGDD(S —t,g(s))ds is continuous on

R, moreover there are real constants ¢ > 0, L > 0 and a continuous function
C\: (-00,0] —»{0,00) such that

ID(u,x) - D(u,y)l < Ci(u)|x - y\, [r(t,x)] < c,

[r(f,x) - r(t,y)\ <L\x- W
foralu™ 0, x,y € Rn,t € R.
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Lemma 5. If
0

Fd& J |Ci(u)<fo < oo,
—@
then the function

(QY{D& \] D(s - t,g(s))ds
is almost periodicfor any g 6 AP.

Proof. Suppose {a*J is a sequence in R. Since g € AP, so there is a
continuous function g*(t) and a subsequence {a,} C {a*} such that {p(f+a,)}
uniformly converges to g*(t) on R, that is, for any given £ > 0, there is an
iV > 0 such that

gt + a,) - g*(t)\ <s, fori 6 R and i >N.
Since
t+<k t

(Qo)(t + ak) = g(s))ds = J D(s - t,g(s + ak))ds,

therefore,
t
\(Qo)(t +ai)- (Qg*)(tH)\< J |D(a- t,g(s+a,)) - D(s- t,gn(s))\ds <
()}

t 0

N J Ci(s - Olffis+ a<) - ¥*(s)l[ds < £J |Ci(u)|du, fort€ R and r> N.

[e]e] — 00

This implies that {(Q<7)(i + a,)} uniformly converges to (Qgm(t) on R. The
lemma is proved.

Theorem 2. If
1° r(t,g(t)) is almost periodic for any g 6 AP;

2° A is noncritical with respect to AP;
0

3°kL <1, and J [Ci(«)[dtt < A"~ L;

— 00

then (2) has one and only one almost periodic solution.

Proof. Let
0

F= J |Ci(t)du.

— 00
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It is easy to see that kF < 1. Take M > 0 so large that (1 —kF)M > k.
Define maps P,Q: AP —AP by the following way

\] D(s - t,g(s))ds, for g€ AP,

—00

and
(P*)(®) = *(($*)()+ r(.,*())).
It is easy to see that P, Q are well defined and continuous.

Let
S={geAP:\\g| £ Me}.

Then, for g £ S, we have

[IP5] = [A(QP)() + K-S

=k \] C\(s - t)\g(s)\ds + kc » kFMc + kc < Me.

Therefore, P is a map of S into itself.
Suppose g,h € S, then

[P<7 - Ph\\ = IIK{{Qg){-) + r(-.f(.))) - K«Qh)(.) +r(-, NI 7
A IKQg - KQh\W + IIKr{-,g{-)) - ATr(-, AQ)|| » k\Qg - Qh\ + KkL\\g - fil| <

=k J ID(s —t,g(s)) —D(s - t, h(s))\ds + kL\\g —/i|| <

—00

7K \] Ci(s - t)\g(s) - h(s)\ds + kL\\g - A|| < kF\\g - /U + kL\\g - J1{

From 3°, kKF-\-kL < 1, and P is a contraction on S. The contraction principle
implies there is a unique fixed point g* € S of P, that is,

jtg*{t) = A(t)g*(t) + (Qg*)(t) + r(t,g9t) =

—A(t)g*(t) £ \] D(s-t,g*(s))ds + r(t,g*(1)).

Therefore, g*(t) is an almost periodic solution of (2). The uniqueness of
almost periodic solution of (2) can be proved by the same way as in the
proof of Theorem 1.
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Corollary 4. If A is a real constant matrix and
1° all characteristic roots of A have nonzero real parts;
2° (T\{e~AT - /)"r|e~lr)_1 > L+F;
then equation (2) has one and only one almost periodic solution.

Corollary 5. Ifn=1, and
T

1° JA(s)ds ¢ O;
0

T e
SJA@)dz  inf f A@Z)dz
2°F+L<r"11-¢e o Os.t<t

then equation (2) has one and only one almost periodic solution.

Corollary 6. If
1° .A(f).A(S) = A(s)A(t) for all t,s GR, and all characteristic roots of
T

the matrix J A{z)dz have nonzero real parts;

° |
( - | A(z)dz \ _ \
2F+L< T e?° -1 pIWir

o
then equation (2) has one and only one a'most periodic solution.

Corollary 7. Ifn =1 and
1° A(t) = A ¢ 0, where A is a constant;
2° F+L< \A\|

then equation (2) has one and only one almost periodic solution.
Proof. If A > 0, by Corollary 5 we have,

K<T(1l- e~AT)~xd K (T),

where T is any positive constant.
Since

MT = I+AT+HAT)2+... > 1+ AT, jK{T) = ” o

and
K <lim K(I') = A~x.

If A <0, we have
K <T(e~AT - \)-1e~AT = I'(1 - eAT)~x.
The rest of the argument proceeds as in case A > 0.
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Example 1 The equation
I
X'(t) = 3x(t) + J e‘~tx(s)ds + arctan(sint + cos> + x(t))

—o0

has one and only one almost periodic solution.
Remark. For each / £ AP, there is a corresponding Fourier series

akei\kt
k=0

with frequencies Xk in R and coefficients ak in Cn. The requirement A* >
>(q>0fork= 1,2, is needed in [4], while in this paper we do not need
such kind of conditions at all.

Example 2. The equation

(4) ¢t) = sxqy + J - X9 ° 1 Y

+ (t-sy +E * Co5n 1

has one and only one almost periodic solution.
Proof. We have A = 5, F = ~7r, L - 0. By Corollary 7, this example

is obvious. But, since inf j~/T} = 0? it is difficult to determine the unique
existence of almost periodic solutions for (4) by the results in [4].
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ON THE RIEMANNIAN CURVATURE
OF A TWISTOR SPACE

J. DAVIDOV and O. MUSKAROV (Sofia)*

8 1. Introduction. The twistor space of an oriented Riemannian 4-
manifold M is the 2-sphere bundle Z on M consisting of the unit (—)-
eigenvectors of the Hodge star operator acting on A2TM. The 6-manifold Z
admits a natural 1-parameter family of pseudo-Riemannian metrics ht, t ¢ O.
For t > 0, these metrics are definite and have been studied by Friedrich
and Kurke [4] in connection with the classification of self-dual Einstein 4-
manifolds with positive scalar curvature. In [3], Friedrich and Griinewald
have given the geometric conditions on M ensuring that ht, t > 0, is an
Einstein metric. In the case t < 0, ht is indefinite and has been studied by
Vitter in [10] where local formulas for the curvature and Ricci forms have
been obtained. K. Sekigawa [8] has considered the metrics ht, t > 0, on the
twistor space of an oriented Riemannian 2n-manifold.

The main purpose of this paper is to give a coordinate-free formula for
the sectional curvature of the pseudo-Riemannian manifold (Z,ht) in terms
of the curvature of M. This is achieved by means of the O’Neill formulas [6]
for Riemannian submersions. As applications we discuss the Ricci curvature
of (Z, ht) and the holomorphic sectional curvatures with respect to the almost
complex structures on Z introduced by Atiyah, Hitchin and Singer [1] and
Eells and Salamon [2], respectively.

§ 2. Preliminaries. Let M be an oriented Riemannian 4-manifold with
metric g. Then g induces a metric on the bundle of 2-vectors A2T M by the
formula

g(Ax JIA2,A3 J1Aa) = - det (p(A,, Aj)).

The Riemannian connection of M determines a connection of the vector
bundle N2TM (both denoted by v) and the respective curvatures are related
by

R(A NB)(CND) =R(A,B)CAD +Cn R(A, B)D

for A,B,C,D G X(M)\ X(M) stands for the Lie algebra of smooth vector
fields on M. (For the curvature tensor R of M we adopt the following

*This project has been completed with the financial support of the Committee for
Science at the Council of Ministers of Bulgaria under contract N 402.



320 J. DAVIDOV and O. MUSKAROV

definition: R(A, B) = V[a,b]- [Va,Vb]-) The curvature operator 7Z is the
self-adjoint endomorphism of A2T M defined by

g (7LLA AB), C AD) = g(R(A, B)C, D)

for all A,B,C,D € X(M). The Hodge star operator defines an endomor-
phism * of A2TM with *2 = Id. Hence

A2TM = a\TM @ A2TM

where AT M are the subbundles of A2TM corresponding to the (xl)-eigen-
vectors of *. Let (E\, E2 E3,£4) be a local oriented orthonormal frame of
TM. Set

51 = E\AE2—E3AE4, Si=Ei AE2+ E3AE4,
(2.1 52= E\ AE3—E\ AEr, « =1 A£3 + £4 51 E2,
53=E\Af4 —E2AE3, s3=t1a£4 + £2 1 ES3.

Then (si,S2)S3) (resp. (si,52,S3)) is a local oriented orthonormal frame of
AITM (resp. A+TM). The matrix of 7Z with respect to the frame (s,-,s,)
of A2TM has the form

where the 3x3 matrices A and C are symmetric and have equal traces. Let
B, W4 and W_ be the endomorphisms of JI2ZTM with matrices

_ 0 A-XI 0 0
B= o o0’ C- XI

where A= |Trace C and | is the unit 3x3 matrix. Then 71 = Aid -f# + W++
+W _ is the irreducible decomposition of 7Z under the action of SO(4) found
by Singer and Thorpe [9]. Note that A= 1/6 scalar curvature; Aid + B and
W = W+ + W_ represent the Ricci tensor and the Weyl conformal tensor,
respectively. The manifold M is called self-dual (anti-self-dual) if W_ = 0
(W+ = 0). It is Einstein exactly when B = 0.

The twistor space of M is the submanifold Z of A2TM consisting of all
unit vectors. The Riemannian connection V of M gives rise to a splitting
TZ = H ®V of the tangent bundle of Z into horizontal and vertical compo-
nents. More precisely, let T A2TM —»M be the natural projection. By
definition, the vertical space at a 6 Z is

v. = {v eT.zlir.iv) =0}

(T~Z is always considered as a subspace of Ta{A2TM).) Note that W con-
sists of those vectors of T,,Z which are tangent to the fibre Zp= 7r-1(p) NZ,
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p = 7r(cr), of Z through the point a. Since Zp is the unit sphere in the vector
space n!TpM, Va is the orthogonal complement of a in A2TPM.

Let i be a local section of Z such that s{p) —a. Since s has constant
length, G\ for all A £ TPM. Given A £ TPM, the vector

Ah=StA- s/as e TaZ
depends only on p and o. By definition the horizontal space at a is
H,, = {Ah/A £ TPM}.

Note that the map A —»Ah is an isomorphism between TPM and 'Ha.
Each point a £ Z defines a complex structure S on TPM, p = >{<1), by

(2.2) g(SA,B) = 23(cT,AAB), A,BE TPM.

Note that S is compatible with the metric g and the opposite orientation of
M at p. The 2-vector 2a is dual to the fundamental 2-form of 5.

Denote by « the usual vector product in the oriented 3-dimensional
vector space A2TpM ,p £ M. Then it is easily checked that

(2.3) g(R(a)b, c) = -g(JI(b x c), a)
for a £ A2ZTpM , b,c £ A2TpM and
(2.4) g(o xV,AASB) =g(axV,SAAB) —-g(V,A AB)

forV £V, A, B £ TPM.
Following [1] and [2] define two almost complex structures J\ and Ji on

Z by
JnV =(-1)naxV for Vev,,,

JnAh = (51)1 for A £TPM, p = jt(v).

It is well-known ([1]) that J\ is integrable (i.e. comes from a complex struc-
ture on Z) iff M is self-dual. Unlike Jj, the almost complex structure J2 is
never integrable [2].

As in [4] define a pseudo-Riemannian metric ht on Z by

ht = >Xp + tgv

where t ¢ O, g is the metric of M and gv is the restriction of the metric of
A2T M on the vertical distribution V. Then ht is a pseudo-Hermitian metric
with respect to the almost complex structures J\ and J2.

8 3. The sectional curvature of a twistor space. In this section we derive
an explicit formula for the sectional curvature of the pseudo-Riemannian
manifold (Z,ht). We shall use the O’Neill formulas for the Riemannian
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submersion n: (Z,ht) —(M,g). Following [6] denote by T and A the tensor
fields on Z defined by

T(E,F)=HDveVF + VDveHF, A(E,F)= VDnEHF+ HDnNEVF

where D(= Dt) is the Levi-Civita connection of (Z,ht) and Ji (resp. V)
denote the horizontal (resp. vertical) component. Since the fibres of the
Riemannian submersion 7r: (Z,ht) — (M,g) are totally geodesic submani-
folds of (Z,ht), it follows that T = 0.

Now we obtain some useful formulas which will be needed later. Let
(U,xi,xi,Xs,x4) be a local coordinate system of M and let (E\, E:, Es, E4)
be an oriented orthonormal frame of TM on U. If (51,02 53) is the local
frame of KfTM defined by (2.1) then x- = x, oir, yj(cr) = g(cr,(sj o 7)(<7)),
1~inM4, 1<j N3, are local coordinates of A2ZTM on > For each
vector field

i 0
on U the horizontal lift X h of X on n 1(U) is given by

(3.1) x h Y A £
£,(x"0ma r =
Hence
3 Q
(3.2) [Xh,Yh)-[X,Y]h= £ y}(9W XAY)Sj,sk)or) —
1

for all X, Y £ X(U). Let a £Z and 7r(cr) = p. Using the standard identifi-
cation T*AITpM) = AITpM this formula can be written as

(3.3) [Xh,Yhl<-[X,Yt = RR(X AY)cr.

Lemma 3.1. 1fX,Y € X(M) and V is a vertical vector field on Z then

(3.4) (DxbYANCvxYt+'-RIX AY)v,
(3.5) (DvXh). =H (D XbV),,= |(Ap(<r x
for all m € Z.

Proof. The equality (3.4) follows from (3.3) using the standard formula
for the Levi-Civita connection in terms of inner products and Lie brackets.

Acta Mathcmatica Hungarica 58, 1991



ON THE RIEMANNIAN CURVATURE OF A TWISTOR SPACE 323

To prove (3.5) note that Dy Xh is a horizontal vector field since T = 0. On

the other hand [V, X h] is a vertical vector field, hence DyXh = 7iDXhV.
Then

ht(DvX \Y h) = ht (DxhV,Yh) = -ht (V,Dx»Yh)

and (3.5) follows from (3.4) and (2.3).
Denote by XjlZ the covariant derivative of TZ on the vector bundle
End(A2TM).

Lemma 3.2. IfV £V, and X, Y £ X(M) then
2bl ((DxhA) (X h,Y\ V) =-tg ((v*pft) (X TY),«x V)

where p = Tr(cr).

Proof. Let s be a local section of Z such that s(p) = a and (V5)p = 0.
First we shall prove that if W is a vertical vector field on Z then

(3.6) VDXhW = S7X(W os)

where W os is considered as a section of J2TM. In the local coordinates of
N2TM introduced above,

Then

VDxhW = [X x h + X'
It follows from (3.1) that

x\4 - ~2(g(STXSj,Sk) 07N
dy: = dyk
Considering V{DXhW)(r as an element of JIRTPM gives

B /i30
V (DXhW)c _ Ij:' ( E Jgr)gp(Vij,Sk) + X p(fk 05))sk(p) =
t=i v)=i

=2 vxp + XAf] 0s)sie)= VXP(W 05)
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Wos = "2(fjos)sj.
J=1
Now, to prove the lemma, note that 2A(Xh,Y h) = V[Xh,Y h\ (c.f. [6]).
Extending Y to a section of A2 TM one gets by (3.3) and (3.6) that

2ht (DxhA(X\Yh),y) =tg(VXxR(X AY)s, V) =

= tX(g(R(X AY)s, V)) - tg(R(X AY)s,y xV) =
=-tX(g(s X V,K(X Y))) +tg(s X S7TxV,K{X AY)) =
= -tg XY, ¥xLW X NMY)) + tg (axynr™ - Vx(« x V), ft(X AY)).
Since
VXpB X Y) = vXps X V + s(p) X = 5(p) x VXp~
one obtains
2ht (DxhA(Xh,Yh),y)" = -tg (a X Y,V*P*(* AY)) »

On the other hand by (3.4) and (2.3) one gets

2bl (n (dx,Y\Yh)A + A(Xh,DxhYh)a,V) =

=-tg (ax ¥Y,7r(y*p(*NY)))
and the lemma is proved.
Lemma 3.3. IfV,W €W and X,Y £ TPM, p = #(a), then

ht (A{Xh,V),A{Yh,W)) = j S(A(or X ¥)/I\ fi(a X W)Y).

Proof. Let (E\, E2,E3,E4) be a local oriented orthonormal frame of
TM near the point p. Then by (3.5) one has

ht (n(X\Y),N1(¥Y\TY)) = ht (7-DXhV,HDYhW) =
= (dxhV,E?) ht (Dyhw ,E?) =
»1
2 4
= jJN"j(A (a xV)X,Ei)g(R(a X PY)YE) =
=l

= jp (E(ax V)X, R{(t X W)y).
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Lemma 3.4. IfV,W £Va and X,Y £ TPM, p = 7(u), then
ht({DvA)(Xh,Yh),wW) = -tg(K(a),X AY)g(a x V,W)—

—tz(g(R(cr x V)X, R(a XW)Y) + g(R(a x W)X, R(a XV)Y)).

Proof. First we prove that
(3.7 DVA(Xh,Yh) = -£g(Tl(0),X NY)(a x V)

for a X, Y £ X(M).

Let (71,52,53) be a local frame of JRTM defined by (2.1) such that
Si(p) = a. Set

Then

J'V = (1 VI)" n + - a VI)4 )

and (U,J\U) is a g-orthonormal frame of the vertical distribution V on a
neighbourhood of the point a. It is enough to check (3.7) for V — U,, and
V = J\Ua. Since DuU and DuJ\U are vertical vector fields and [17, JXU],, =
= 0 it follows from the standard formula for the Levi-Civita connection that
(DuU),, = (DuJiU)a = 0. Hence

2DUaA { X\Y h) = Ua (g([Xh,Yh], U)) Ua+ Va (g([Xh,Yh],IXU)) IXU,,.
A direct computation using (3.2) shows that

2DWA (X\ Yh) = gp(R(X AY)s2,53)s3(p)
since y\{a) = 1, y2{cr) = y3(a) = 0. Now (3.7) follows from (2.3). A similar
reasoning yields (3.7) for V = J\U,,.
To prove the lemma note that

ht(A(Dv X h,Yh), W) = —ht(A(Yh,DvX h), W) =
= ht(DvX hHDYhW) = ht(HDxhV,nD YhW) = ht(A(Xh,V),A(Yh,W)).
Similarly

ht(A(Xh,DvYh),W) = -ht{A{Y\V),A{X\W))

and the lemma follows from (3.7) and Lemma 3.3.

Denote by Rz the Riemannian curvature tensor of the twistor space
(Z,ht). Combining Lemmas 3.1-3.4 and the O’Neill formulas [6] we obtain
the following:
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Proposition 3.5. Let E,F € TaZ and X = #.F, Y = wF, V = VE,
W =VF. Then
ht(RZ(EAF)E, F) = <2AXNY)X,Y)- tg (\/xM)(X AY),er X W) +

+tg (VyK) (X AY),a x V) - 3tg(7r(a), X 1Y)5(a x ¥, VP)-

F20(ACT X Y)*, AT X W)Y) + I,—2||A(<rx W)X + R(o X Y)Y||2-

S IR(X AY)all2+ t (IYI2IW12- g(V,W)2) .

In the case when M is self-dual and Einstein this formula takes an ap-
parently simple form.

Corollary 3.6. Let M be a self-dual Einstein manifold with scalar cur-
vature s. Then

ht (RZ(E A F)E, F) =g(R(X AY)X, Y) - jg(a, X AY)g(a X V, W)-

-(1/2) (ts/12)29(X,Y)g(V, W) + 3(fs/12)B(X 1Y, Y x W)+
+(ts/24)2 {\\X\\2\WWW\2 + \\Y\\2\\W\\2) -
—6i(s/24)2 (||X NY®2- 2g(a, X NY)2) +
+t{\\W\2\\W\2-g (V,W)2).

Proof. In this case 1Z = (s/6)Id + W+. Since W+ maps f\2TM into
A\TM and V preserves ATM one gets

(3.8) g((s7xK)(X AY),oxW) =0.

Now we shall show that
(3.9)
gR(<r x V)X, R(a XW)Y) = (s/12)2(g(X, Y)g(V, W) - 2g(X AY, Y x 1VY)).

Recall that each o G Z defines a complex structure Sa on TPM, p = 7r(<)
via (2.2). It is easy to check that for a, T€ Z with 7r(ct) = 7r(r) one has

SS o0Sr = -g(<r, T)ld - ScXT (So = 0).
To prove (3.9) we may assume that ||¥]| = ||1¥|| = 1. Then by (2.4) one has
g(R(a x V)X, R(axW)Y) = (s/l6)g(a x V,X AR(a X W)Y) =
= (s/\2)g(S"VvX, R(0 X W)Y) = (s2M2)a(a X WP, Y ASaxVX) =
= -(s/12)2g(SAVSAWY,X) =
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= (sI\2)\g (X, Y)g(V, W) - 29(X 1Y,V x W)).
Let U € K and ||t/]] = 1. Then
IR (X NY)T)|2= g(R(X AY)a, Uf + g(R(X AY)a, ax U)2=
= (s/6)2 (RAX NY ,(Tx{/)2+ ff(X NY, U)2).
Since the projection of X J1Y on V,. is |(X AY —S~X J1"Y ) one obtains
(3.10) IA(X NY)eT||2 = 2(s/12)2(|IX NY||2- 2g(cr, X AY)2) .
Now the corollary follows from Proposition 3.5 and formulas (3.8)-(3.10).

8 4. The Ricci curvature of a twistor space. Let M be an oriented
Riemannian 4-manifold with Ricci tensor cg/. Denote by 7Z- the restriction
of the curvature operator 12 J1ZTM —f\2TM on A2TM.

Proposition 4.1. Let cz be the Ricci tensor of the twistor space (Z,ht).
IfEe TvZ, X = T,E and V = VE then

cz(E, E) = cm(X, X) fTrace(J1 =(\7al)(ax Y, X)T
+(i24)||TC(a XF)[|2- (I/2) |[K* on . W + (t/2) ||(i* o 7TN)(CD)||12+ ||Y |2

where r*: /\2TM —TM is the interior product.

Proof. Let (E\, E® E3, E4) be an oriented orthonormal basis of TPM,
p —7&(d), and U a 0-unit vertical vector at a. Then (E{ EIf, E% E% U,uxU)
is an ht-orthogonal basis of TaZ and Proposition 3.5 gives:

(4.1) cz(E,E) = ca/(X, X) T tTrace(A —» (ya/1)(ct x ¥, X))+
+(*2/4) £ IA(ax V)EQ2- (3i/4)~  |JA(X AEt)a\2+ (t/4)(||R(U)X\\2+
o=j 1-1

+|Ar x 17)X[12+ (|Y]|2.
Further one has

(4.2) ) l\Aie/(°-x VIEVH= 2E ~ ((axf)£«n£;) = IINAx nil2-
= *<|

Since A(X AEi)a is a vertical vector at a it follows that

(4.3) " VAXAE>|[]2=~(g(R(U)X, E)2+ g(R(* x U)X, E,)2=
i=| i—1

= (\\m )X W2+ \\R(a x U)XII2) = \ix o7r_||2- ||(i* o7r)(a)]|2.
Now the proposition is a consequence of (4.1)-(4.3).
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Corollary 4.2. The scalar curvature sz of the twistor space (Z,ht) is

given by L
AM =AND + (il4) \k@w2 - NIRII) + 2/f
where p = Tr(<r) and sa/ is i/ie scalar curvature of M.
Proof. Since

El]|l(*e, oK)(r)f = £ = HK()||!
fe=l jife=1
for each r 6 JI2TM, the result is a direct consequence of Proposition 4.1.

Corollary 4.3. Let M be a self-dual Einstein 4-manifold with scalar
curvature s. Then the Ricci tensor cz and the scalar curvature sz of (Z,ht)
are given by

cz(E, E) = (»/4 - t(s/12)2) /R + (1 + (is/12)2) ||C|I2,

sz —2/t +s- (i/72)s2
where X = n+E, V - VE.

Proof. These formulas follow from Proposition 4.1 and Corollary 4.2
since
Mn=(s/6)ld + W+, TZ- = (s/6)ld
and
g((VYR)(W, X),Y) =g{(VyK)(X a Y),W) =0
for X,Y e X(M)and w ev.
As an application of Proposition 4.1 we prove the following

Proposition 4.4. The pseudo-Riemannian manifold (Z, ht) is Einstein if
and only if M is a self-dual Einstein manifold with scalar curvature s —6/i

or s = 12/t.
Proof. Suppose that (Z,ht) is Einstein. Then by Proposition 4.1 one
gets
(4.4) tl[(a o7r)(a)ll2 = cM(X,X) - (sz/6)IIX]|2,
(4.5) i2||7e(a)||2 = (2i/3)sz -4

for each o GZ, X € TPM, p = n(a). Let (Ei, E2 E3,Ef) be an oriented
orthonormal basis of TpM and (5,-,s,) the basis of AZTpM defined by (2.1).
Then (4.4) is equivalent to the identity

tyiflW *7)) EiIAEj)g(R(0), EIAEK) =  g(7Z(E{AEj), EiAEK)-(s2/6)6jk,

=1 1=1
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which implies that
(4.6) tg(71(a), sj)g(n(a), sk) = g"s-j), sk)

foro 6 Z, 1" j, Kk < 4. For a fixed j, take a point a such that g(E,(0),Sj) =
= 0. Then (4.6) gives g(TZ(sj),sk) = 0for 1 < kK <4. Hence M is an Einstein
manifold. Now TZ(a) € h2TpM and by (2.2) one has

IK*o7r)(a)||2=X > (ag,x Nle,)2=|7r(a)li2ux]||24.
=il

This together with (4.4) and (4.5) implies
4.7) \LETW\2 = 'st-4)/2t2

for each a € Z. Since M is Einstein, there exists a basis (E\, E2,£3,£4) of
TPM such that g(TI(si),Sj) = <»r,, 1~ 1,y < 3, for some constants r, [9].
Then (4.7) gives

Nn=r\=r\=(st—4)212

Since rx+ 2+ 3 = s/2 and (s/2)2 ¢ (st - 4)/212 one concludes that
M =T12=13=5s/6. Therefore M is self-dual and s2/36 = (st —4)/2f2. The
last equation shows that st = 6 or si = 12.

The “if” part of the proposition follows at once from Corollary 4.3.

Remarks. 1. Proposition 4.4 is due to Friedrich and Griinewald [3] for
t > 0.

2. A complete, connected self-dual Einstein 4-manifold with positive
scalar curvature is isometric to the sphere 54 or the complex projective
space CP2 with their standard metrics [4], [5] (cf. also [7]). In the case of
negative scalar curvature a complete classification is not available and the
only known examples are quotients of the unit ball in C2 with the metric of
constant negative curvature or the Bergman metric [10].

3. (Z,ht,Ji) is a Kahler-Einstein manifold iff M is self-dual, Einstein
and s = 12/t (cf. [4] fort > 0 and [10] for t < 0).

8 5. The holomorphic sectional curvature of a twistor space. One can
compute the holomorphic sectional curvature Hn of the almost Hermitian
manifold (Z,ht,Jn), n = 1,2 by means of Proposition 3.5. The respective
formula simplifies significantly when the base M of Z is self-dual and Ein-
stein. More precisely, by Corollary 3.6 and (2.4) one gets the following:

Proposition 5.1. Let M be a self-dual Einstein manifold with sectional
curvature K and scalar curvature s. Let E GTaZ be an ht-unit vector and
S the complex structure on TpM, p = &), defined by a. Then

Hn(E) = K(X, SX)\X\ + t||P||4 + (2(sf/24)2(3(—1)" + 1)+
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+(-D)"+,(il/4))|M 2||V]|2
where X = >xiE and V = VE.

Now we describe the twistor spaces of constant holomorphic sectional
curvature.

Proposition 5.2. The almost Hermitian manifold (Z,ht,J\) has a con-
stant holomorphic sectional curvature X if and only if M is of constant
sectional curvature X —I/t.

The holomorphic sectional curvature of (Z,ht,J2) is never constant.

Proof. Assume that Hn
every 0o £ Z and X € TpM, p

X. By Proposition 3.5 it follows that for
f(cr), ||X]| = 1, one has

(5.1) X =g(R(X,SX)X,SX) - (3t/4)||A(X NEX)al|2
where S is the complex structure on TpM defined by a. Let s1? S2, s3 be the
3

3
local sections of Z given by (2.1) and 0 — Ass,, $3 A2 = 1. Denote by S;

»=1 i
the complex structure on TpM determined by s,(p). Set

Oij = g(n(s,), X nSjX), btJ=g(LLLX ASiX),X ASjX).

Then
IR(X ASA> [[2=Y 9(lL* XSi),X ASX)2=
i=i
3/ 3 \ 2 / 3 X2
= Y /i'Y Auijj —( YA xixjuijJ
=1 4j=i X \j=i y
and

g(R(X,SX)X,SX) =Y xixjhij-
i,j=l
Varying (Ai,A2, A3) over the unit sphere S3one gets from (5.1)

3
a, - (3i/4) £ bkt + (31/4)62 = X,
k=1

an+ gj —ira) Y, {di+ b)) + 313+ 3u2)b,1bw - 2,
k=l
+ o,ji - (31/2) Y bkibkj + 36Ay = 0
k=1
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for 1<i ¢j < 3. These identities imply 6- = bjj and 6, —Oforr/ j, ie.
gl X ASiX),X AS,X) =g(7Z(XASjX), X ASjX),

g(K(X ASiX),X ASjX) =0, ij.
Now varying X over the unit sphere of TPM gives

g(K(si),Sj) = Sijg(TZ(3i),8i),

g{T™{si)i §)) = 6ijg(7Z(si), Si),
g(K(si),Sj) =0,  I<i,j<3.

This together with the identity ay = X shows that M is of constant sectional
curvature X. Now by Proposition 5.1 one has

(5.2)
X = XWX\4+ WA = {{X2t2/ 2)(3(—1)" + 1) + 3 (- )n+1Xt) [IX[|2]|F]]2

for all X € X(M) and V £ V with || X]|[2+ t\WW\2 =1. Forn = 1 (5.2)
is equivalent to t = 1/X, while for n — 2, (5.2) is impossible. Thus the
proposition is proved.

Assume that M is complete and simply connected. If t > 0, M is the
sphere and it is well-known that the twistor space Z is CP3 with a

multiple of the Fubini-Study metric. If t <0, M is the unit 4-ball and the
twistor space Z is an open subset of CP3. The precise description of Z and
the indefinite metric ht is given in [10, p. 119].
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ON THE UNIQUENESS OF THE EXPANSIONS

1=E <m"

P. ERDOS, member of the Academy, M. HORVATH and 1. JOO (Budapest)

Consider a number 1< g < 2 and take an expansion

(1) i=E £"/9">
n=1

Such an expansion is not unique in general. There exist two particular
expansion algorithms, the greedy and the lazy algorithm. The digits of the
greedy resp. lazy algorithm are defined inductively as follows:

4
llfiEIA4+ -

(2) En(z) := <
o if e =£*+ £> *
1=1
n— _
1 if E '-P + + seec*
© B0 =< R
0 |f +AT|——r+-dpr+ coe N Y-

t=i
In this paper we shall investigate the unicity of the expansions of 1 and the

boundedness of the series formed by consecutive 0 or 1 digits in (1). First
we prove

Theorem 1 (uniqueness) 1. For 1 < g < A := there exist 2K
expansions (1) of 1.

2. There exist (at least) countably many 1 < q < 2 for which 1 has
precisely countably many expansions.

3. There exist 2K many q for which the expansion of 1 is unique.

4. The following expansions are unique:

0o
4) + +

1=1
where K > 2, 2 <1, —K <K, 1<n,+x—n, <K, n,+fc i —n, > k. In other
words, the expansion starts with k consecutive 1% and in the further digits
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there do not exist k consecutive 05 or 1. Conversely, if an expansion (4)
is unique then

(4) T~ 2, 2<ni- K<K, 1<n+i—n-<k+1l n+c-n->k+ 1L

Proof 1. The number A is a solution of x2=x + 1 hence 1 < q <A
means that

(5) g-n<qg~n~2+qn 3+ ..., nE N.

This implies that for some kK : g~n < qg~n~2 + ... + g~n~k. Take a sequence
nj with nj+1 —nj > K then the sequence {g~n:n/ nj} = {Ax> A2> ...}
satisfies

(6) A<« < A+ -F An+2 + eee
()
and hence the subsums of X" A, run over the segment O0,£EAn If I\ is
n=i L 1 J
) ()
large enough then £ An > 1+ X)4~n’e This implies that for any sub-
71=1 j:]_ 3
@ . . [0 tvine Qo g
sum X) £/qnC £j = there exist §, = <{ 1 satisfying X £j/qn]Jr
I=1 J=1
+ X} bn\n = 1 s° the desired 2N expansions are constructed.
n=I
2. Consider first the case q = A. It has precisely the following expan-
sions:

1=<T2+ <T3+ <T4 + mm,

1=qg-1+qg~\

l1=q-'+ q-4+q-5+Q9-6+ ...,
1=71+qg~3+ g~\
1=09-1+9-3+q9-6+q-7+q-*+...,
1=q-1+q-3+g-5+qb,
1=9~1+q9~3+q~-5+qg~8+g~-9+qg~W+ ...,

= q~| + q~3 + q~b+ eee o

It is easy to see that q = A satisfies these expansions. Consider an expansion
(1) of 1with g = A. If£1 = 0 then the only possibility is 1 = gq~2+q~3+q~4+
+ ... since all the other terms must be used. If £1 = £2 = 1 then we must
have 1= &1+<7-2. Iffl = 1,£2 = £3=0then by 1= g~1+q~2- q_1+q~4+
+0~5+g~6+ ... we see that the only possibility is 1= q~I + g~4+ g~5+....
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IfE£i —1,£2=0,£3= 1,24 =£5 = 0Othen 1= g-1 + g~3+ g~6 + g~7+
+0~8 + __ We can continue in this way the discussion with the digit
sequences 101011, 1010100 etc. Finally, there remains the sequence 10101010

. which corresponds to the expansion 1= gq~x+ q~3+ gq~5+ q~7+ --—--
Now take another q satisfying 1 = q~l + g~2+ ... + g~k with some k > 3.
For different values k the values q are also different and we have q > A,
consequently

(7 g~n >q-n~2+ q-n~3+0g-n~4 + ...

for all n. Using this property we can prove as above that the only expansions
of 1 with this qare

1=9 1+ ...+ q k,

1= + ... +9%I+1 + + ..+
1= + <T‘+l + K-+ e+ [ "+l + [ “’1+ oo
1=E «""

n>1

kfn

For example, the first k —1 digits must be 1 because
g-1+ ... +9-fct2+ g~k + q-1-1+ g~k~2+ ... < 1= g~X+ ... + g~k

IfE\ = ... = £jt i = 1and fic = 0 then we must have £/M+i = ... = £2fci =1
because by (7)

g~l + -.. + g~k+xl + 9 fc 1 + «. m+ q~2k+2 + g~2K + q~2k~l + g~2k~2+ ... <

<1=q'l+ ...+ gk +qg~k~l +... + g~2k, and so on.

3. As we proved in Parts 1and 2, the unique expansions may occur only
for g > A, hence 1> g-1 + g~2. Let kK be the number satisfying

q-1+ ...+gk<1l<gqg-1+...+ g~k + g"*“1

Equality can not occur since the finite expansions are never unique. Since
the first k digits can not be changed, we must have

(8 g-1+ ... + g~k+l + g~k~X+ g~k~2+ ... < 1

So £i = ... = £k = 1is ensured. Suppose that £5+1 = ... = £2it = 0. This
means that

9) g~l+ ...+ g~k+g~2k > 1
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But (8) and (9) are in contradiction. Indeed, let q\ be defined by 1 =
= Ol+ o m+ ?rfcHl + + 9r*"2+ ..., then

1- (gri+... + qik+ gf2d)=-gf* + (Qik~1+- m+4iX+l + gr2fc 1 + eee) =

= -gf*[i - (gfl+ ... + gf*+l + gf*-1 + eee)] = 0,

1= gfl+ ... + g~*+ g*%k and so (8) implies g > gi, further (9) implies
g < gi. This proves that between £*+2,--- ,£2k there exists a digit 1, i.e. if

we denote the expansion by 1= g-1+.. .+q~k+ " 1q~n‘ then 2 <w -k " K
«=
is proved.
Next we show that there are no k + 1 consecutive 0 or 1 digits. Indeed,

suppose that 1= g 1+.. -fg-*+ ¢g-"+0-g~"-"~1+.. .+ Omg~ni~k~1+....
Since g-"1lcan not be omitted,

1>g1+..+0g-k+ a~n'+ g nj 1+ gq~N"~2+ mme;
i<j

£n_+fcti can not be substituted by 1, hence

l1<g-1+ ...+ g~k+ £ g-"" + g~n>’r"!

Subtracting the inequalities we get
g~n) >g-"»1+ ... + g~ni~k + g~n>k~2+ ...
ie. 1>¢91+ ...+ qgk+g~k~-2+ gk-3+ ... in contradiction with the

expansion 1= g-1 + ... + g~k + g-n* Analogously, if there are Kk -f 1

«=1
consecutive 1 digits, i.e.

i=g-4...+9g-4 Xng-"l+g~nj_1+ ---+?2~"J"fc+ £  g"ni
«>i+fc+

and £MM-\ = O0then 1<g-1+ ... +g~k+ £ Qn"+ g“"J-1,
0<J

1>g“4. e-+gfet r gndg-ni_1+.. +g-~-ferl+g_nj_fc_1+g_nj_fc_2+...

and subtraction gives a contradiction. Conversely, consider an expansion (4)
with no k consecutive 0’s or |’s in the digits £5+1 = 0, £jt+2, _ Then g~k
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can not be omitted since it is larger than the sum of the subsequent not used
members:

Y (1-£n)q~n S +. o +q-2k+1+q- A&H .. .+g"30+1""3fc_1+... <g-~k

n>k+H

because 1 > g~x+ ... + g~k implies 1 > g-1 + ... + q~k+l + g~k~x+ .. .+
+g~2fctl + g~2k~l + __ By the same argument, no 1 can be changed with
0 in the expansion (4). On the other hand, no o can be changed by 1: if
£, | = 0, then g~ni+l is larger than the sum ~ 9-"*) because

YOI A (PPt evet TN fCHD) o(L+ gk + g2k + M) =

= g-"J+1(9_1 + eeot+ 9“fctl) (I + g~k + A~2K + mmm)< ?““n>+1,
So the uniqueness is proved.
4. We need two lemmas.
Lemma 1 Letei,...,£, € {0,1}, £i + ... + £n ™ 1 be given and con-

sider the interval I of all values g for which the expansion of 1 begins with
£\, . and contains further 1% and 05, i.e.

Yy 620 <1I<NME g L1+T"-14g~n-2+ mm
i=I 1=1

and the subinterval J C | described by

Y e-g-'+(Qmn"l< 1< Y + <T"~-2+ T"~3+ ...,
1=1 1=1
for this q the expansion of I can start with the digits ,£,,,0 and also

with £},... £,,,1. Now ifl C (1+6,2—6) for some 6 > 0, then |/| < C((5)J],
where C(6) > 0 is independent of n and £i,... ,£,,.

Proof. Define gi,g2,9i,g2 by the relations

r r
L= Y,£i9r'i L= YS£*A2'+A2" Le22m 24 - -

1=1 1=1

n n

T L I\ - il n—21_*n-3 I

_y£|—g| + gi ) 1—__ ] 2+ 7?2 + 72 + eeee
=] 1=1
Then we have obviously | = (abvar), J = (8”ar)» gi < gi < g| < 9- The
inequality 1 + 6 < g\ means the existence of k = k(q) € N such that the
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digits 2)eee, can not vanish at the same time. Consequently for some
1=j =k we have

. R- 9
2" 1+ R" 2+ eee= 2 £4(3117- R*F)NM9U3- 2IN
«l 0192

(10) R- 9 N2<7AT_1(1- ®1)-1 ~2g27+Hc(92 - 1)"1~ C(S)g™n.
On the other hand,

E £(«r ‘- «r')+ («r-1- «r"-1)=

AL o g =i+ @2- 1)-]4

— -9

and hence
c(e)d-"-* S 1>(9,%-"- AC) = (9r1- «M)[1+ (90 1+ 2M )+

+ oot (i*-nHl + 9T " 4297 1+ eeet 9T MH1)] A

*_
~ 91 I 92-1)[l + 2<7i 1+ 3ap2+ ---+ n9i_"+1]~0 4 (gl X

(11) @- 9l A C(%I"-
The estimates (10) and (11) prove Lemma 1.

Lemma 2. Let 6> 0, 4> 0 and let I be an interval satisfying

M M

(12)  72Sig <1< 2£91+9" 1+9 n 2+ (q£ I).
1=1 1=1

7/(1+<82-6) D 7 then there exists a system 7i, 12, m of disjoint subintervals
of I such that

a) (J 1j is dense in I,
J=1
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c) for all Ij there exist two different continuations £n+1,... ,£n+k and

e'nt\>ee 1fn+k °f el > »fn (here k and the £ may depend on j) such that
for all g £ Ij

nfc n+k
(13) E F<r<i1< E £2m+qg-n-k~1+ g~n~k~2+ ...,
i=l «1
(14)
1*>?-'+ E <1< E e¢ig-i+t4~n~k~1+q~n~k-2+ —
i=l t=n+l =1 i=n+l

Proof. Choose a number N £ N and consider the intervals of all g satis-

fying

n+7v n+N
E £m’m< 1< E + <rn~A£1+ +...
i=1 irrl
where £n+i,... ,£n+gr is any (fixed) continuation of the digits £12... ,£,.

The 2n intervals so constructed cover | and if N > N (6) then the length
of these intervals is bounded by C(6)g”n~N. Applying Lemma 1 for these
2n intervals we get a system of intervals {Ji,... ,/2*} = Jn such that
|[J/] > C(S)gl™ N (the constants C(S) may be different at different occur-
rences). Every subinterval of I of length C(6)gfn~N has an intersection of

measure > C(6)g”*n~ with Uj7)v and in every Ji there exist two different ex-
pansions of 1starting with £i,... ,En+N, O and £i,... ,En+N, 1 If we repeat
the above construction with 2N, 3N, ... instead of N, we get the systems

JiN, JzN,----By the Lebesgue density theorem \\ 191 uJitv = 0 whence,
for large j the finite interval system U satisfies the conditions b) and c)

of Lemma 2. In order to ensure a) it is enough to show the following fact:
For any interval I ¢ (I +i,2-1i) for which (12) holds for all g £ J, there
exists a subinterval K C J and two different continuations £,,+i,... ,£n+k
and £(+1>... £'n+k such that (13) and (14) hold for all g £ K. But this is

0o

easy: take g £ J such that 1 =  £i/ql contains infinitely many 0 and 1
i=i
digits (only countable g are so excluded) and take a large k with £,+* = 1.
n+fc—1
Then " £i9_*+ g~n~k < 1. Define gi and by
=

n+fc-1 % k n+fc—lé b
E +<.7l" _1: E s n*1+ @'"'fC'Z'l'... y
t=i 1=1
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then gi < g < 92 and in the interval K = (51, 92) the expansion of 1 can be
started with En+jt_i, 0 and £1,... ,£,+jt_i, 1. As we have seen in the
proof of Lemma 1, we have 92 - 9 * C(6)g2n~k = C(*)(l + 8)~n~k, so for
large kK we have K C JmLemma 2 is proved.

We return to the proof of Theorem 1, Part 4. It is enough to prove
that for any 6 > 0 in the segment (1 + y/E)/2 =: A < 9 < 2 for a.e. 9
and for every 9 except for a set of first category there are 2K expansions
of 1. Let n € N he fixed and apply L&gma 2 with 7 = 2~N, n = 1,

£i =1,/= (A,2- 8). Denote A\ := (J Ij, then A\ is open and dense
7=1
in | further 1AAil < 2~N. For every interval Ij apply again Lemma 2
with one expansion £1,... ,£n+c! we get the intervals A n; then for all An
we apply Lemma 2 with the other expansion £1,... ,e,,.e'n+l,... ,A+k to
obtain the system 1j,jltj2. Denote A2:= U An.n then Ai is open, dense
7,71,72
in I and we can ensure |/AAr| < 2~N + 2-JIl-1, further in every interval
An 2 there exist four different beginnings of the expansion of 1, common
forall 9€ Aii,72 the third step Lemma 2 applies for A nn with the first
expansion, for all An.72.is with the second one, for all A nn >@74% with the
fourth one, further define A3 as the union of all the intervals An 727374 75n*
Continuing this process we obtain the open and dense sets An with |AA,,| <

< 2~n + &5n ~1+ ... + 2-IF-n+1. By the construction for every 9 in the
set A:= P| A,,, 1has 2N many expansions further I\A is of first category
n=I

and \I\A\ < 2~n+1. Since N can be arbitrarily large, Part 4 is proved. The
proof of Theorem 1is complete.

Remark. In Part 3 we formulated a necessary and another sufficient
condition for the uniqueness. The sufficient condition does not contain all
unique expansions as the following example shows:

(15) 1=91+9~2+ 9-4+95+9~7+q9+q-U+ ....

This is a unique expansion. Indeed, g~2 can not be omitted because 1 >
> 9-1+9-4+ 9-6+9~8+ ...; £3 can not be substituted by 1since 1 > 9-1+
+9-2+9-4+ g~6+9-8+ ...; £5 £7,: 5 e can not be omitted, £6, £g, £10, e **
can not be changed because 1 > 9-1 -f g-3 -fg~5+ g~7+ ... holds by
1> 9“1+ g-2. So (15) is unique indeed. On the other hand the necessary
condition is not sufficient as the following example shows: in the expansion
1=91+09-2+qg449g~7+ q~9+9-11 + g~13+ ..., g-4 can be omitted,
because 1< 9-1 + -2 + g-4 + g-6 + ... hence

0<1- 91-9g2<qgq~5+09-6+9g~7+9-9+g-11 + 9"13+ ... .
The following questions arise.
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Problem 1. Determine the unique expansions.

Problem 2. Does there exist q such that 1 has precisely two (or n)
expansions? Describe them.

Problem 3. Do there exist precisely Ho numbers g for which 1 has pre-
cisely Ho expansions? Characterize these numbers.

In what follows we consider the problem of the boundedness of the length
of Osequences in the expansions of 1. Remark that quantitative and quali-
tative results on this topic are published in [2-5].

Theorem 2. 1. If the expansion (1) is unique then its zero sequences are
bounded.

2. For 1 < q< (1 {-y/E)/2 there exists an expansion (1) where the
sequences are bounded.

Proof. 1. Suppose that £, = 1, En¥\ = ... = £n+k = 0 is a unique
expansion. Since g~ncan not be omitted, we must have g~n > g~n~x+ ... +
+<T"-fc,

bt g2 da¥ ="t %9 g
This can not hold for infinitely many k since for large k,g must be close to
2.

2. For q = such an expansion is 1 = g~x+ g~3 + g~-5+ ____ |If
q< (1 pVbys2 then 1< g~2+ g~3+ gq~5+ ... and hence for some large r,
1< g~2-f.. .+ g~r. On the other hand for large r we have 1 > g~I + g~r~x+
+0q~2r~x+ -— Now let x := 1—(q_1 + g~r~l + g~2r~x+ ...), then 0 < x <
< Q-2+ ...+Q~r+qg-~r~2+...+q~2r\---The members on the right hand side
form a sequence Ai > J > ... > 0 satisfying An < A+i -f An+2+ ... for all

n. Consequently the sums  £n™n, £n= | ~ fill in the segment [0, £ An];

in particular x =  £n\nand then 1= g~Xx+ 9-r_1 +g-2r_1 + ...+ £n™n
is the desired expansion of 1.
Finally we formulate some open problems. Prove or disprove:

Problem 4. If 1= Yi Q" and sup(n,+i - n,) = 00 then there exist 2H
expansions of 1.

Problem 5. Conversely, if there exist 2K expansions then there is an
expansion with sup(n,+i —n,) = 00.

Problem 6. If there exist precisely Ho expansions of 1 then for any ex-
pansion 1 = YIQ~n' (with infinitely many 1 digits) sup(n,+i - n.) < 00.

Problem 7. If there exist precisely Ho expansions of 1 then there is a
finite expansion (with finitely many 1 digits).

Problem 8. There exists 1 < g < 2 which has 2#° expansions and has a
finite expansion.
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MULTIPLICATIVE FUNCTIONS WITH
REGULARITY PROPERTIES. VI

I. KATAI* (Budapest), member of the Academy

Dedicated to F. Schipp on his fiftieth birthday

1. Recently A. Hildebrand proved the following theorem [1].

There exists a positive constant ¢ with the following property. Ifg £ M*
(the set of completely multiplicative functions), |p(n)|] = 1 for every n £ N,
and lg(p) - 1| < c for every prime p, then either g(n) —1 identically, or

Our purpose in this short paper is to Drove the following

Theorem 1 There exist positive constants 1/2) and s with the fol-
lowing property. Ifg £ M* and |<?(n)] = 1for every n£ N, furthermore

(1.1

and

(1.2)

then g(n) = 1.

Remark To prove the theorem we shall use some ideas due to Hildebrand
[1], and apply a theorem of Haldsz on the existence of the mean value of
multiplicative functions, furthermore some sieve results.

2. Proof of the theorem, first case. Assume that g £ M* and [ff(n)] = 1
holds for every n £ N. In [2] Hildebrand proved that

2
2.1

*This work has been done during the term the author was a visiting professor at Tem-
ple University (Philadelphia). Research is supported by Hungarian Research Foundation
No. 907.



344 I. KATAI
implies that

(2.2) I 5(n+ IM «)-» M dp>

f <n<=*

where
b =1— + 2[\1 ——1]Re g(p)p a_
P P, p- g{p)pia’
(1.2) and (2.2) together imply that ®p = 1 holds for each prime p, ie.
g{p) = p~IT. If T = 0 we get the function g{n) = 1. Assume that T 0. We
shall show that in this case (1.1) cannot be satisfied if Sis small enough and
f37 1/2. Indeed, by using the prime number theorem,

) r*l
|1~P- V1 sin flog p\ Isin /1
P -
ylx<p<X TXl

dX -f ox(1),

x\ = logx. Since the limit superior of

Isin J'IIdX
n

is bounded below by an absolute positive constant, therefore (1.1) cannot
hold if 6 is small.
From now on, we may assume that for every T£ R,

(21) I-||- g(p)p'tlz = 00.

2—/
But in this case, by Halasz’ theorem,

X>(») = o(2)>

nfix
which implies easily that
(2.2) L(x) := = o(log®).
Let us consider the sum
(2.3) L(x\m) := N

n<x

(nm)=1
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for every m in [I,x]. Then, by the Moebius formula,

co  aam-e e Moe e Il

n<x c/|(n,m)

o A
where
dm
and so
logd
(2.5) ix| =2 J

dim
Doing the same for the function <?(n) = 1, we have
E 1 _ )

(2.6 A = e ~bgx + Tm)l
. m
nSi
(n,m)=I
where
(2.7) w is2E N -
d|m

Let us consider now the sum
[ff(u)-ff(u)
uv

(2.8) E
(«,«):!
It is clear that
£ Vv- O»1*) ~r (2)

ti<y vAV
(«*)=1

and so, by (2.4)-(2.7) we get that

(M)
plu
1" logd
st(9+4E-E
usSjy dlu
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The second sum on the right hand side has the order O(logy). Since L(y) =
= o(logy), and

therefore, from (2.9) we obtain that for every positive £ > 0 and for every
large y > yO(£),

(logy) —m " T(y) + e(logyfL.
nsSy
It is known that
= Alogy+ 0 (1)
nsSy

with some absolute constant A(> 0). Thus we have

(2.10) T(y) > (A - 2E)(logtn2 if y >yi(e).

3. Let p(n) and P(n) be the smallest and the largest prime factor of
n, resp. Let iV~A(x|u,u) denote the number of solutions of Qv —Ru = 1in

integers Q,R satisfying the conditions Ru £ (f,x], P(Q) > x*, P(R) > x
One can deduce from sieve results that

(31) No (X\U ,V)> CB-El-(-)-é-XAA-U“--L] if x>x O(B)

with some positive constant CB, whenever 3 is small enough, and u, v are
coprime integers satisfying the conditions 1 < u, v * x@
Let us consider the sum

(3.2) Y2 e{n) - g(v)\NB(x\u,v).
1$u,u<x?
(.=

From (3.1) we get that

3.3 S>co -4 -T(x0).

(33) 4T

Now we want to give an upper estimation for S in terms of

U(x) m= Y2 ]El,O(n)ZI:

§<n<x
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We can observe that in (3.2) |p(u) - p(u)| occurs as many times as many
solutions the equation Qv —Ru = lhas. Letn= Ru, n+ 1= Qv. It is clear
that some n (and n + 1) can be represented as Ru (and Qv) at most once.
Furthermore,

(34) 5 - 5V = fUM?) - 1 = e{R)9(Qs {mg(n + 1) - 1 <
<gMgn+1- 1+ BRIYQ - 1~ A +\gQ - 4+ \oR) - 1.

Let A(n) be the product of the prime factors larger than aA Let
V= J2 1<71»))-1)-
g<n<I+l
From (3.4) we obtain that
(3.5) 57 U(x) + TV.
The contribution of the integers n for which J/1(n) is not a square-free number
is small, < a:/log a;, say. Thus

V < 2xH + c/3x/logx, A= ——,

g
l<m<x

where m runs over those square-free integers greater than 1, the prime factors
of which belong to [x~,x]. Let t(p) = g(p) - 1, and let t be extended as a
multiplicative function. Since

g(m) - 1=JJa+Hg)- 1=" (),

gim dm
d>1
therefore
So we have
(3.6) S < ~Mes- I)x + 2cpx/\ogx + U(X).

From (2.10), (3.3), (3.6) we have
(3.7) c/(3-2c)a(<-11+~n + A
for each large x. If 6 is chosen so that CRR2(A - 2e) > |(e5- 1), then
has to be bounded below by a positive constant.

By this the proof is finished.
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4. Theorem 2. Let f,g G M, |/(n)| = |<(n)]
more

1 for every n, further-

(4.1) Iin;(inf)z X \g(n+1- /(n)]

nSx

Then f(n) = g{n) for every n, and f € M*.
This leads immediately to the following generalization of Theorem 1.

I
©

Theorem 1°. There exist positive constants I (< 1/2) and s with the
following property. Iff,g € M, |K(n)| = 1and |/(n)| = 1for every n€N
furthermore (1.1) and (4.1) hold true, then f(n) = g{n) = 1for every n € N.

Proof of Theorem 2. If (4.1) holds true, then there exist sequences
—>o00, £, —»0 such that

(4.2) X b(n+ 1) - IR~ e
n<xu

Let

= E(=+- - ~ 54
r{n) : £(/(:;)1),, tf(,,) := 9{r) D= tav2)”

Let us observe that

(4.3) H@W + I)r(16A + 10)r(16fc + 11) = HI’)O;\C Ylb} = Dr(8k + 5)-
From (4.2) we have

X ir(n)- M=

n$xnu
and so by (4.3) we deduce that
(4.4) X \DH(IQk + 11) —1| < c&,r,,
16fc+li<x,,
where cis an absolute positive constant. (4.4) can be written as

(4.5) £ H(n) )~ Csind,

n<xv
rEE11 (mod 16)

Let us choose now some odd m, and substitute n by nm. Then we have

(4.6) X [A(T)A (n)- 1/D\ < ceuxu.
n~xum
(n,m)=1
nm = 11(mod 16)
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Since IH(M) - 1 = |(A (1) - DAM)| N |A(T)4(n) - + |A(n) - £\,
from (4.6) we obtain that
\H(m) - N Ccevxv,
n<Xi//m
nm=Il(mod 16)
(n,m)=1

which implies that A (1) = 1. So we proved that A (1) = 1 holds for every
odd m. Then, from (4.5) we get that D —1. Let m= 1+ 2E (i,2) = 1. By
the triangle inequality,

L- fQ) = i - 9)/(m)| = 1dgm - f(im- 1+ F)f(i)~
S(2)li+ 1)+ F(2)g(i + 1) - g@)F()F(M\ < [x(m) - F{m - 1)|+
+lp(+ 1) - F{I+ g(m + 1) - F(m)\.

Summing up for odd Vs up to 21 < xu, we can deduce that /(2) = (2).
This together with D = 1, gives that g(4) = g(2)2. Since

Ti |~ L = ,(2.-1)r(2»-2),

therefore

2n
u-u p(2n) - 1 < CEnUXn.

£
2n™xy /(Z(n-l))
Lets> 1 n= 2sk, (k,2) = 1. Then

(4.8) 23+12) r(n - 1),

AZI'I) . /\5
1(2(n-1))  s(2s)/(
and so by (4.2) and (4.7) we get easily that
(4-9) A(r+1) = g(2°)f(2) = 9(2°)9(2).

Similarly summing up the summands of (4.4) only for the integers n = 1+2k,
we get

(4.10) [(2S+1) = f(2s)g(2) = /1(25)/(2).
Consequently /(2s) = /(2)s = 4(2)s = g(2s).

So /(n) = p(n) holds for every n E N.
It remains to prove that / € M*. This is easily seen from

(4.11) ~2 IA(N)l  svxv.
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Let m > 1 be arbitrary, AT1/(n) = f(n + m) - /(n). From (4.11) we have

(4-12) £ [{7(m,n)| <

n<x,/2m
where
(4.13) 7(m,n) = (/(m(n + 1)) - /(m)/(n + 1)) - (/(mn) - /(m)/(n)).

Let P be an arbitrary prime, m = P, and let n in (4.12) run over only the
integers satisfying Pa\\n. Since the set of these integers n has a positive
density, and \U(P,n)\ = |/(P"+1) —f(P)f(Pa)\ for them, we obtain that

f(Pa+l) = f(P)f(Pa)-
This completes the proof of our theorem.
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A HAAR-TYPE THEORY OF BEST UNIFORM
APPROXIMATION WITH CONSTRAINTS

A. KROO12 (Budapest) and D. SCHMIDT2 (Rochester)

Introduction

The literature of approximation theory contains numerous results con-
cerning best approximation under a variety of constraints. These results
mainly concentrate on investigating problems in Z-oo-norm, see, e.g., pa-
pers by Chalmers [1] and Chalmers and Taylor [2]. Since in most cases
existence can be easily established the truly interesting question consists in
studying the uniqueness of best approximants. In [1] Chalmers introduced
a general method of investigating uniqueness of best approximations with
constraints, which provided a unified approach to the problem. However,
this approach essentially provided only sufficient conditions for uniqueness
of best constrained approximation. In this paper we shall be concerned with
developing a Haar-type theory for constrained Loo-approximation, that gives
necessary and sufficient conditions for uniqueness. In this sense our paper
is closer in spirit to a recent paper by Pinkus and Strauss [8] where neces-
sary and sufficient conditions for uniqueness were given in the special case
of best Loo-approximation with coefficient constraints. Our goal is to pro-
vide similar characterizations of uniqueness in the general setting of linear
constraints. In order to impose the constraints we shall use linear operators,
instead of linear functionals used in [1]. This approach, while preserving
generality of constraints, will provide us with a convenient tool leading to
technically simple characteristics of uniqueness.

Let us recall now the classical theorem of A. Haar [5]. Let U, be an
n-dimensional subspace of CJ[a, 6], the space of real-valued continuous func-
tions with Loo-norm. Then the Haar theorem states that every / € C[a,b]
possesses a unique best approximant out of Unifand only ifeachp € Un\ {0}
has at most n - 1distinct zeros in [a, b]. (Throughout this paper subspaces
Un satisfying the above property will be called Haar spaces.)

Let L: Un —C(K) be a linear operator mapping Un into C(K), where
K is a finite union of intervals and points in R. For given u,u € C(K)

such that v < non K set Un(v,u) = {p € i7, :v < Lp < ux G K}. We

1Research supported in part by the Hungarian National Foundation for Scientific
Research, Grant # 1801.

2 Prepared while both authors were visiting Old Dominion University, Norfolk, Vir-
ginia 23529.



352 A. KROO and D. SCHMIDT

shall say that Int Un(v, n) ¢ O if there exists p G Un satisfying v < Lp < u
(x G K). Now we consider the problem of approximating in norm L§ L=

= arng% IK(x)] (g GC][a,6]) by elements of Un(v,u). We say that po G

G Un(v, u) is a best approximant of / GC[a, b\if ||/-po]|| = inf{]||/-p||:p G
G Un(v,u)}. Throughout the paper we shall study best approximation on
the interval [a, 6] and impose restrictions on the compact set K. Uniqueness
of best approximation by elements of Un(v,u) depends, of course, on Un, L
and v and u. In order to get simple and elegant descriptions of unicity we
shall he interested in boundary independent uniqueness, i.e., uniqueness for
every v, u. This leads us to the following central question.

Problem A. Given U, C C[a,b] and L: U,, — C(K) find a necessary
and sufficient condition so that for every / G C[a,b] and v,u G C(K) with
Int Un(v,u) ¢ O the best approximant of / from Un(v,u) is unique.

We shall give a complete solution of Problem A and, in particular show
that corresponding subspaces’ Un and operators L are somewhat rare. It
turns out that requiring uniqueness for every continuous boundary is too
restrictive. On the other hand working with smooth C'-boundaries leads to
much more meaningful results. Therefore we also investigate the next

Problem B. Given Un C CJa,6] and L: Un —C'(K) find a necessary
and sufficient condition so that for every / G C[a,b\ and t,aG C'(K) with

Int Un(v,u) ¢ O the best approximant of / in U,,(v,u) is unique.

As it was mentioned above the variety of subspaces U,, and operators
L providing positive solution to Problem B is essentially wider than for
Problem A.

Our method of solving Problems A and B will be based on the notion
of extremal sets, which is frequently used in the literature. A set of at most
n+ 1points *1,... ,xr G[a,6] (1 ~ r <n+ 1) is called an extremal set for
Un if there exist nonzero numbers cj,... ,cr so that

(n X >(*,) =0, peun.

1=1

Using this notion one can easily give the following equivalent form of the
Haar Theorem: Un C C[a,b] is a Haar subspace if and only if no nontrivial
element of Un vanishes on an extremal set of Un. Moreover, Unis Haar if
and only if every extremal set of Un consists of exactly n + 1 points.

We shall give similar solutions to Problems A and B using the notion of
L-extremal sets, which is a natural extension of extremal sets defined by (1).

Our paper is organized in the following way. Section 1 contains the gener-
al uniqueness theory, i.e., solutions to Problems A and B and related results.
In the next section we include the complete theory of strong uniqueness re-
lated to Problems A and B. The final part contains different applications of

Acta Mathematica Hungarica 58, 1991



A HAAR-TYPE THEORY OF BEST UNIFORM APPROXIMATION 353

our results. We shall show how the theory can be applied in order to dis-
tinguish the “good” and “bad” subspaces and operators. Since our results
provide not only sufficient, but also necessary conditions of uniqueness, we
shall be able to characterize completely those spaces of lacunary algebra-
ic polynomials which satisfy the requirements of Problem B with L —Dk
(differentiation operator). Furthermore, we shall consider Problem B for op-
erator L - D —al (a £ R, | is identity operator) and show that algebraic
polynomials of degree < n—1 provide a positive solution to Problem B if and
only if |a| < It will be also shown that subspaces of rational functions
with a fixed denominator, in general, fail to satisfy requirements of Problem
B for L = D, if the degree of denominator is at least two. With regard
to Problem A we shall give a precise constructive description of spaces Un
providing uniqueness and show that they are very scarce unless int K —0.

1. Uniqueness of best constrained approximation

In order to obtain solutions to the problems outlined in the introduction
we shall need some standard characterizations of best approximations from
U,.(v,u). For any / £ CJa, 6] we denote E (f) = {x £ [a,6]: |/(Xx)| = ||/|| =
= arge%b |/(a:)|}, while for g £ C(K), Z(g9) = {iG K :g(x) = 0}.

Theorem 1.1. Suppose that for given v,u £ C(K) and L: Un —#C(K),
Int Un(v,u) ¢ 0. Thenpo € Un(v,u) is a best approximant to f £ C[a,b]
from Un(v,u) ifand only iffor every p £ Un satisfying Lp < 0 on Z(u- Lpo)
and Lp > 0 on Z(v —Lpo) we have

i _ N
@) nin (/- p0)p N 0.

Proof. Sufficiency. For any p £ Un(v, u) we have L(p —po) < 0 on
Z(u —Lpo) and Lfp —po) > 0 on Z{v —Lpo), and thus by (2)

XeEr?fi_rlmoo)if - Po)(p- Po) = (/- Po){p- Po)(z) » O

for some x £ E (f —po). Now
I/ - Poll = (/ - Po)sgn(/ - po)(x) =
= (/- P)sgn(/ - Po)(x) + {p- Po)sgn (/ - po)(x) s I/ - p|

Necessity. Suppose po is a best approximant to / from Un(v,u), and
assume that forp £ UnLp < 0 on Z(u - Lpo), Lp > 0on Z{v —Lpo) but
(2) fails. Then sgnp = sgn(/ —po) on E(f —po) and for t > 0 sufficiently
small po + tp £ U,,(v, n) and

1/ - (Po+ *p)|| = IK/- Po) - tp\\ < II/ - Poll,
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a contradiction. Thus (2) should hold if Lp < 0 on Z{u - Lpo), Lp > 0 on
Z(v —Lpo). Let now p (z Un he such that Lp < 0 on Z(u - Lpo), Lp >0on
Z(v —Lpo) and choose p G U,, satisfying v < Lp < un on K. (This choice is
possible because Int U,,(v,u) ¢ 0.) Then forevery t > 0 L(p+ t(p—p0)) < 0
on Z(u - Lpo) and L(p + t(p - po)) > 0on Z(v - LpO0) and applying (2) to
p + t{p —po) and letting f —*0+ we obtain the needed statement. O

Theorem 1.2. Suppose that Int Un(v,u) ¢ 0. Then po G Un(v,u) is a

best approximant to f G C[a, b from Un(v,u) if and only if there exist points
XL, .., XSGE(f- Po) (s >1), 1/1,...,¥Te Z(u - Lpo), I/m+l,s.. Y€
G Z(v —Lpo) withs+ r ~ n-f 1, and constants ci,... ,c,, d\,... ,dr, where
sgn ¢, = sgn(/ —po)(xi) @ ~ i N s), d <o (1 <i<m)andd >0
(m+1<i<r) such that for every p G Un

(3) Y c,pixi) + Y di(Lp)(yi) = O.
=1 «1

S _
Proof. Sufficiency. We may assume that * |'c| = 1 Let p G Un(v,u),
i=i
i.e., V< Lp<u Then by (3)

ul - poii = lYZl qf'"%)(*-) = X c>l(x%) + X d('.ﬂ%l):
Yolgragy
< Xi </(<ee) '|'1Y:1 dq.pW’) :X ) ceom) = 11/ - pil-

Necessity. Assume that po is a best approximant of / from Un(v,u).
Consider a basis {pi,... ,pn}in Un and let P C Rn be given by

p = {((/- Po)Pi(*))"'=i:*e E{f - Po)}u

U{(-(Lp,)(2))"=1: x G Z(u - Lpo)} U{((Lp,)(x))*=1 : x GZ(v —Lp0)}.

Denote by Q the convex hull of P. If O~ Q then using that Q is closed

there exists ai= (/,)"=1 € Rnsuch that (t,h) > 0 for every h G Q. Then
M

for p* = 72 tiPi we have Lp* < 0on Z(u - Lp0), Lp* > 0on Z{v —Lpo) and
i=i

(/ ~ Po)p* > 0 on E{f —po0), contradicting Theorem 1.1. Thus 0 G Q and

Caratheodory’s Theorem yields the existence of proper z,-s, y,-s, ¢,-s and

di-s for which (3) holds, except possibly for condition s > 1. But ifs = 0
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then (3) fails to hold for p = p —po, where v < Lp < u (Int Un(v, u) ¢ 0).
Thuss > 1. O

Now we shall give an extension of the notion of extremal sets given in
the introduction (see (1)), for the case of constrained approximation.

Definition 1. Let Un C C[a,b] and L: Un —&C (K) be as above. Then
the set of points ({ziy=1, where x- £ [a,6], 1 <i < s; y- £ K,
I<i?r;s>1,r>0 andr-fs<n + |,is called an L-extremal set for Un
if there exist nonzero constants {c,}*=1, {d,}f=1 such that

U) £ Cip(xi) + ~ di(Lp)(yi) = 0, p £ Un.
i=i i=i
Moreover, we call an X-extremal set nondegenerate if dim L(Un) |[{yzr =r.

Remark. Nondegeneracy of the L-extremal set essentially means that
(4) can not hold for a proper subset of the extremal set which does not
contain X,-s. This, in turn, is equivalent to saying that linear functionals
tiylL, 1 S ~ r, are linearly independent on Un (by, denotes the point
evaluation functional related to yt). Furthermore, if ({a,}* r,{y,-}J_i) is a
degenerate L-$xtremal set, then for some Ei,...£r (not all of them zero) we

have on {/,; JZ ~by,L = 0. Thus by (4) for every t £ R

(5) + 0
i=i i=i
on Un- Choosing t = dj/lj (tj ¢ 0) we drop out at least one term in

(5). Thus repeating this process we shall obtain a nondegenerate L-extremal
subset of the original L-extremal set.

Definition 2. We say that p £ Un L-vanishes on the L-extremal set
({xi}&ii iyiYi=i) for U"ifp(xi) =00 ~ i s)and {Lp){Vi)=0 (1 < *<r).

As we have seen in the Introduction the Haar property, which is necessary
and sufficient for uniqueness of unconstrained Chebyshev approximation, is
equivalent to the requirement that no element of the subspace vanishes on
an extremal set of this subspace. Now we give an analogous description of
uniqueness of constrained approximation, thus providing a complete solution
to Problem A.

Theorem 13. Let Un C C[a,6]; L: U, =C{K) be a linear operator.
Then in order that for every f £C[a, b] and v,u£ C(K) with Int Un{v, n) ¢ 0

the best approximant of f in U,,(v,u) be unique it is necessary and sufficient
that no p £ Un\ {0} L-vanishes on a nondegenerate L-extremal set for Un.

Proof. Sufficiency. Assume that for some v,u € C(K) with
Int U{v,n) ® 0 and / £ CJa,6] there are two distinct best approximants
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PuP2 G U,(v,u) for /. Then (pi + P2)/2 is also a best approximant,,and
setting fora g £ Cla,b], E+(9) = {z £ [a,6] : g(x) = |Efi}, E.(g) = \x £
6 [a, b :g(x) = -|bl ) we have

E+(/ 539 E+(F - pi) NE+(F - p2) g Z{pi - p2)
Egf SP23i E-(f - pi) NE-(F - p2) g Z(pi - p2),
z(u-L\ g Z(u - Lpt) NZ{u - Lp2) g Z{L{p\ - p2)),
2(v- Ly )y 9Z0v- Lpi) NZ(v - LpD) g Z(L(pi - p2):

By Theorem 1.2 applied to po = (p\ + P2)/2, £(/ - Po) and Z(u - LpO)U
UZ(v - Lpo) contain an L-extremal set for Un, and pi - P2 G Un\ {0}
L-vanishes on this L-extremal set. By the remark made after Definition 1
an Z,-extremal set contains a nondegenerate L-extremal set completing the
proof of sufficiency in Theorem 1.3.

Necessity. Assume that some p* £ Un\ {0} L-vanishes on a nondegen-
erate L-extremal set ({z,}'_1, {i/,}?=1) satisfying (4), that is p*(ait) = 0, 1 <
<i”s (Lp*)(yi) = 0, 1<r<r. We may assume that ||p*|| = 1. Evidently,
we can construct / £ C[a,b] so that /(a;®) = sgnc- (L ~ i <5)and |/| <
< I-|p*|on[a,6]. Then ||/-tp*|| = land E(f-tp*) = E(f) 2 {xi,... X,}
for all |t| < 1.

Assume that d, < 0O(l <r<m)andd->0(m+1<i<r) The
nondegeneracy of the L-extremal set implies that (Lp)(yt) = —(1 =r=rmp
{Lp){yi) =1(m + 1<r”r) for somep £ Un. Set v=min(-|Lp*|, Lp- 1),
n —max(|Lp*|, Lp + 1), v,u £ C(K). Since v < Lp < u, Int U,,(v,u) ¢ 0.
Set pt = tp* £ Un (Ji| < 1). Then uly,-) = 0 = (Lpt)(yi) X < i » m);
v(yt) = 0= (Lpt){yi) (m-fl < i < r) and, evidently, pt £ Un(v,u). Moreover,
by Theorem 1.2 pt is best approximant for / for |t| » 1. O

Since the condition of Theorem 1.3 characterizes C-boundary indepen-

dent uniqueness of constrained approximation related to L we introduce the
following natural notion.

Definition 3. Let Un C C[a,b], L: Un — C(K). Then Un is called L-
Haar ifnop £ U,\ {0} L-vanishes on a nondegenerate L-extremal set for
Un.

It turns out that the L-Haar property can be characterized without in-
volving the notion of L-extremal sets. In fact, it can be reduced to the study
of Haar property. Let us mention that L-Haar spaces, are in particular Haar
spaces, since any extremal set for Unis also a nondegenerate L-extremal set.
For Ag K denote Ga={pGU, :Lp=0on A}.
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Theorem 1.4. The following statements are equivalent:

a) Un is an L-Haar space;

b) every L-extremal set for Un contains n + 1 points;

c) Ga is a Haar space for every A £ K;

d) Gsk is a Haar space for every Sk = {yi,... ,yk} Q K (0 ™ K < n)
such that dim LUn\sk = k.

Proof. a)=>b). Assume that there is an L-extremal set ({x,}"=1, {y,}]Lx)
for Unwith s+ r < n. Then the matrix of linear system p(x;) =0, 1< i " s;
(Lp)ly,) = 0@ <r<r, p£ U)has rank less than r + s ~ n, i.e., the
system has a nontrivial solution, contradicting the L-Haar property.

b)=>-c). Assume that c) fails, that is Ga is not Haar for some A Q K.
Let dimGyi = Kk, where 1 < k < n. (If K = nthen Ga —Unis not Haar,
yielding that Un possesses an extremal, and thus L-extremal, set of fewer
than n 1 points.) Let V be a complementary subspace of Ga in Un. Then

dimVV = dimL(i/,)]J4 = n- k Let V =span[ s i, a n d choose
yX,... , Y« € Aso that det [(Ly,)(y))]1"“~1 ¢ 0. Since Ga is not Haar there
exists an extremal set {x}*=1 for Ga with s <k, i.e., for some ci,... ,ca 0
(6) N2 CiP(xi) = o, peGA-
1=1
We can find ... ,d, fc so that
n—k S

7 Y1, di(L9j){Vi) = - Y2 c'9AXi)i L1<j<n-k.
1=l =1

Obviously, by (6) and (7) ({arty=1, {y*}'TI is an L-extremal set for Un,
where s+ n —k < n.

c) =>d) is trivial.

d) =>a). Assume that a) fails. Then some p € Un\ (0) L-vanishes
on a nondegenerate L-extremal set ({*i}*=1,{y«}i=1) satisfying (4), where
dim L(17,,)|{sa}'=i = r. Set ST= {y,}-=1. Then p £ GSr, and by (4) for every

g € Gsr, ”2 Cig(xi) = 0. Evidently, 1 < dimGsr = n— and s < (n —r) -(-1.
i=i

Hence {a,}*=1 is an extremal set for Gsr, while p £ Gsr \ {0} vanishes on
Xi>1=1i=s- Thus Gsr is not a Haar space. O

Statements c), d) of Theorem 1.4 show that the study of uniqueness of
constrained approximation for C-boundaries can be reduced to investigat-
ing the Haar properties of certain subspaces. This observation leads to an
interesting result concerning constraints given by linear functionals.

Let Un C C[a,b], Qi,... ,gr £ U*, and a = {a,}-=1,6 = {6,}-=1 6 Rr
be such that a < b (ie. a, <6, 1 <i”r). Set Un(ab) = {p £ U, :
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a, () = bi, 1~ *i r} Evidently, U,,(4,b) = Un(v,u), where Un(v,u)
is defined as above by L: Un —»C(K) with K = {1,2,... ,r}, v(i) = a-,
u(i) = bi, (Lp){i) = Qi(p) (1 < r 5r). Furthermore, for A = {si,... ,sm} Q
C{1,2,... 1} =K,Ga={peUn:Lp=0onA) ==JL Kerp, (Go= in).

Thus Theorem 1.4 c) implies the following.

Corollary 15. Let U, C C[ab], Pi € i7* (L ~i<r). Then in order
that for every f £ C[a,b] and a,b £ Ar with Int Un(a,b) 0 the best
approximant of f from Un(&,b) be unique it is necessary and sufficient that
Un and 1:JI‘I_mKer gzi_be Haar spaces for every {si,..., sm} Q{1,2,...,r).

In the special case of approximatilc_)ln with coefficient constraints when
Un = span[pi,... ,pn] and for p = Y diPi € Un, p(p) = d- (i £ J C

C {1,2,... ,n}) the above statement is due to Pinkus and Strauss [8].

Now we turn our attention to Problem B raised in the introduction. To
this end we assume that L is a linear operator mapping Un C CJ[a, 6] into
C\K).

Definition 4. We say that p £ Un L'-vanishes on an L-extremal set

for Unifp(xi) = 0@ <i <5s), (Lp)(yi) =0 @ <r<r)
and (Lp)'(yi) = 0 whenever - € Int K.
Our next result gives an answer to the Problem B.

Theorem 1.6. In order that for every f 6 C[ab] and v,u £ C'(K)

with Int Un(v,u) ¢ O the best approximant of f in Un(v,u) be unique it is
necessary and sufficient that no p £ Un\ {0} L'-vanishes on a nondegenerate
L-extremal set for Un-

Proof. Sufficiency follows by the same argument used in proof of The-
orem 1.3. However, we also have to observe here, that if pi,P2 are best
approximants of / from Un(v,u) then

Z(tt- L  *sm) Hint C Z(L'(P1-p2), z(v-b(p » P2))nintdv C

C Z(L'(P1- P2)).

Necessity. Again we follow the lines of the proof of Theorem 1.3. In
particular, we consider the same / £ C[a,6] and p*,p £ Un, and construct
suitable v,u £ C'(K).

Since (Lp){yi) = —1 (2 » r < m) we can choose closed disjoint intervals
[a,,/?] C K, 1< r<m,such thaty, £ [a,-,/?¢]; Lp < 0on [a,-,/2¢] or < R, if
yi £Int K and yi £ (a,-/?9) ify, £ Int K (L » r< m). Define non [a,/?] by

y
«(y) = (sgn(y - y*)J [(EP*)'KO + (t - Ili)2]dt, 1<i<m.

Vi
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Evidently, n € C"(|j [a,-, /2m]), Lp* 4 non (J[a, J3tland (Lp*)(y.-) = u(y,-) =0

L<i<m). Furthernaore 0 < u(g,) unless a- = y- and u(/3,) > 0 unless
ft = -

Now we can extend u to K so that m € C'(K) and ti > 0 on A\
\(U K,/?]). Since m > 0fory G K\ {ji}™ and Lp* * uin a neigh-

borhood of {j/ildlj (relative to K), it follows that L(ep*) < n on K for
6 > 0 small enough. Similarly, L(sp) < u for $small enough. We can re-
peat this construction for v, yielding a pair of functions v,u G C*'(K) with
Int Un(v,u) o O satisfying v < L(6p*) < 1 (0 < 6 < <9 and such that
L(ep*)(Vi) = ubl) = 0, 1 <i<m; L(ep*)(yi) = v(yt) =0,m+ 1<ic<r.
Hence sp* (0 < € <& is a best approximant of / in Un(v,u). O

In view of Theorem 1.6 it is natural to introduce the following

Definition 5. Let Un C C[a,b\\ L: Un -» C'{K). Then Un is called
V-Haar if no p € Un\ {0} can L'-vanish on a nondegenerate L-extremal set
for Un.

Theorem 1.4 provides some useful criteria for a subspace to be L-Haar.
Unfortunately, there do not appear to be corresponding criteria for L'-Haar
spaces; however, we give a useful necessary condition for a subspace to be
L'-Haar. For A Q K, define GA= {p GUn:Lp=0o0n A and (Lp)' —Oon
AMInt K}. Note that G\ Q Ga-

Corollary 1.7. If, for some A Q K, Ga is not a Haar space and GA =
= Ga, then Un is not an L'-Haar space.

Proof. The proof carries on as in the proof of b)=»c) in Theorem 1.4.

We choose {Z;}' ™ C A as in b)=»c), and since Ga is not a Haar space
we choose an extremal set {xj}*=1 for Ga on which some p € Ga \ {0}
vanishes. As in b)=>-c), {®i}*_i, {i/i}i=i) is an L-extremal set for Un, and
since p G Ga —GA, p L'-vanishes on this L-extremal set. Hence, Un is not
L'-Haar.

Remark. If A C BdyK, then GA = Ga- It follows immediately from
Corollary 1.7 that if Un is L'-Haar, then Ga is Haar for all A Q BdyK. In
particular, we see that if Unis L'-Haar, then Un —Cq, is Haar.

The results of this section lead to the conclusion that L-Haar and L'-
Haar properties are necessary and sufficient for uniqueness of constrained
approximation with C- and C'-boundaries, respectively. Let us note that the
development above does not require that the underlying topological space on
which approximation is conducted, be an interval [a, 6]. We can replace it by
any Hausdorff compact set, however L-Haar and L'-Haar spaces necessarily
satisfy the Haar property, yielding (Mairhuber [7]) that the compact set
should be homeomorphic to the circle or a subset of it.
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On the other hand replacing K by a circle leads to a slight difference
in definition of periodic V-Haar spaces, because K has no boundary in this
case and thus in Definition 4 we have to require that (Xp)'(p,) = O for every
1< i <r. The rest of notations and results given above extend to the case
when [a, b is replaced by any compact set or K is replaced by a circle.

2. Strong uniqueness of best constrained approximation

In this section we develop the theory of strong uniqueness for X-Haar and
X'-Haar spaces. Let us recall the corresponding definition. If / 6 C[a,b],
K C C[a, 6] and po is the unique best approximant of / from K, then we say
that po is strongly unique of order 7 (0 < 7 ~ 1) if there exists a positive
constant ¢ depending only on / and K so that for every p G K satisfying

I/ - P||~ 11/- Poll + 1 we have

(8) IPo- P|| ™ c(]|/ - pl| - 11/ - poll)7-

In case when 7 = 1 we simply say that po is strongly unique. Since X-
Haar and X'-Haar properties are characteristic for uniqueness with C- and
C'-boundaries it is natural to raise the question of strong uniqueness for X-
and X'-Haar spaces. Our first result here asserts that X-Haar property is
sufficient for strong uniqueness for constrained approximation.

Theorem 2.1. Let U, be an L-Haar space. Then for every u,v GCJa, €]
with Int Un(v, n) ¢ 0 and f G C[a, b], the best approximant to f from Un(v, u)
is strongly unique.

Proof. Assume that Un is X-Haar and let po G Un(v,u) be the best
approximant of / 6 C[af>], where v,u £ C[a,6] and Int Un(v,u) ¢ 0. Con-
sider the X-extremal set ({zt'}i=i> {j/i}[=X) and numbers {c}®=1, as
in Theorem 1.2 for which (3) holds Ic{ = IV Since Un is X-Haar

N(p) = max [Pl + faax [(Xp)(y)l (P e Un)

is a norm on Un.
Let pi G Un(v, n) be such that U/ - pi|| = W/ —po|| + £ with some £ > 0.

Since (/ -po)(x,) = (sgnc,)||/ —po|| @~ i”" s) it follows that
(9) (sgnc,)(po- pi)(*) “£ (L~ iis).
Furthermore, pi,... ,ym€ Z(u - Xp0), ym+1,... ,yr GZ(v - XpO0) yield
(10) X(po-pi)(p.) ~ o (I™i~“m), L{po—pi)(yi) *0 (m+1 <i<r).
Thus by (3) and (9) applied to p* = p0- pj

() 0= 5"etpe) + S0P N+ "4 X))
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Moreover, (10) yields that d{(Lp*)(¥m < O for every 1 < i <r. Taking also
into account (11) we have

(12) (V)M 1 A MY (1<i<T),

where M\ —max{l/|d,|, 1 <i " r}. Using (9) and (11) we obtain for every
1<j <s

8 r

CiP*{xj) = - Cip*(xi) - M LP¥)(Vi) ~

1=1
- Y CP*(x*) —'£Y icH = ~e-
*= N3 *=j.«¥i

Combining this with (9) yields
(13) p*(*1)| » M2e (1™~ s),

with M2 = max{l/[ci|,] < i < 5} Hence by (12) and (13) N(p*) <
N (M\ + M2)e, and by equivalence of norms in finite dimensional spaces

lbo - Pill = Ib’ Il ~ MsN(p*) <ce = ¢{\f - PI\\- II/- poll}- O

In the special case of coefficient constrained approximation, the above re-
sult was proven by Pinkus and Strauss [8]. (Strong uniqueness of constrained
approximation was also studied by Chalmers and Taylor [3].) Fletcher and
Roulier [4] showed that strong uniqueness fails in case of monotone polyno-
mial approximation, although uniqueness is known to hold in this situation.
This turns out to be an example of T'-Haar space for which strong unique-
ness fails. Our next result shows that strong uniquness fails for every Z/-Haar
space which does not satisfy the T-Haar property; in fact, strong uniqueness
of arbitrarily small degree 7 fails to hold.

Theorem 2.2. Assume that Un is an L'-Haar space which does not satisfy
the L-Haar property, and let 0 < 7 S 1 be arbitrary. Then there exist v, n €
€ C'(K) with Int Un(v,u) ¢ 0 and f € C[a,b] such that its best approximant
from Un(v,u) is not strongly unique of order 7.

Proof. Let p* G Un\ {0} be such that it L-vanishes on a nondegenerate
L-extremal set ({x,}*=1, {y,J®=1) satisfying (4) and let / be chosen as in the
proof of necessity in Theorem 1.3. We may assume that \(Lp*)\ < 1 on
Int K, and d{ < 0(1 <i %m), d->0(m+ 1<r<r)in (4). Fora
given a > 0 we can construct v,u G C'{K) such that u{y) = |y —p,|1+a in
a neighborhood of - if 1 < r<m, v(y) = =y —y,|1+° in a neighborhood of
yifm+ 1<i<r,andu>0,v<oforydyi 1<i<r (neighborhoods
are relative to K). As usual, nondegeneracy of the T-extremal set implies
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existence of p € U, such that (Lp)(yi) = —1 (L ~ r < m), {Lp){yi) —1
(m+ 17i”r). Choose A > 2a(l + We claim that for £ > 0 small

enough ep* + Ae~~p £ Un(v, n). Assume that, on the contrary, there exist
Ek | 0and tk £ K such that, say

(14) ek(Lp*)(tk) + Ae™ ~ (Lp)(tk) > u(tk) (k=1,2,...).

W ithout loss of generality, tk —* yj(k —00) for some 1 <y < m. Then for K
large enough u(tk) = \yj —tfc|1+0!, (Lp)(tk) < —i/2, and, in addition,

\(Lp*)(tk\ = I(Lp-)(tk) - (Lp-)(yi) I < ltk - yj\.

Thus using (14) we have

M- Q< Ktk - j\ - —J —y

i.e.,

N £k~ < fofe - yj\ - \yj - ffoll+a < TaxUkh —hl+a) = £.a a(l +a)

f1
But this, obviously, contradicts our choice of A. Thus pe = ep*+ Ae % p €
€ Un(v,u) for E > 0 small enough. Moreover, Int Un(v,u) ¢ 0 and O
is the unique best approximant of / in Un(v,u) (by Theorem 1.2 and L'-

Haar property of Un). On the other hand ||pr|| > £rp*| - Ae”LpL, > c\E
(0 < £<£0), while by construction of / (|/| » 1 —p’|)

/- Pclb~ 11/ - E£P* 1+ NN+ QEAT.

Since the choice of a > O is arbitrary the statement of the theorem follows.

Remark. It can be easily seen from the proof of Theorem 2.2 that we
can choose n and v such that v',u’ € Lip a (a > 0), while the degree of
strong uniqueness of the proper / £ C[a,b] can not be larger than This

indicates that for v,u e C2(K) (a = 1) strong uniqueness of degree p might
hold. Our next theorem provides this result.

Theorem 2.3. Let Un C C[a,b] be an L'-Haar space with L: Un —
—% C2(K), and let v,u £ C2(K) be such that Int Gh(v,u) / 0. Then for
every f € C[a,6] its best approximant in Un(v,u) is strongly unique of de-
gree

Proof. Throughout the proof we shall denote by Mi, M2,... , posi-
tive constants depending only on / and Un(v,u). Let po £ U,(v,u) be
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the best approximant of / and consider the corresponding A-extremal set
({x*}i=i>{2/«)i=i) f°r which (3) holds. For an arbitrary pi G Un(v,u) such
that 11/-pi|| = 11/-poll + £ with some 0 < e < 1set p* = po- p\. Then as
in the proof of Theorem 2.1
(15) P*(x) * M2 (1 <i<s), [(Ap*)(p)l <M\E (1 <i<r)
(see (12) and (13)). Let yj GiInt K, where without loss of generality we
may assume yj G Z(u - Lp0). Set us = Lpo - u. Since Lp* G C2(K)
and [[p*|| ~ 2|/ - po|| + 1 we have on Int K [u"|, [(Ap*)"| » M3. Set M4 =
= max{Mi, M2, M3}, M5 = min{dist(p,, BdyK) : p- GInt A'}.

Now we claim that

(16) I(Ep*)' (%)l A M4(2M5 + A )V A -

Assume to the contrary that

(17) \(Lp*)'(yi\ = {(Lp*)"(y)) > M4 (2Ms + -w), A (f = £1).
Using Ap* N ui we have by (15)
(18) (Lp*)(x) — (Lp*)(vi) * Ui(x) - Mde (x G A).

Set xe = yj — where every point between pj and x£ belongs to A\
For some 7 G Int K between x£ and pj we have

(19)  (Ap*)(XE) - (Ap*)(p)) = {Lp*)\r]){xc- p,) = -ZMsyle(Lp~y(r)).
Furthermore,

I(Ap*)'(p) - (Ap*)'(pi)l < M4|p - pj| £ MaMsJle.
Hence (17) yields that sgn (Ap*)'(t/) = sgn (Ap*)'(py) = £. Therefore (18)
and (19) imply

WMI - £ S

On the other hand Ui(pj) = u'~yj) = 0 hence |ui(XE)|] < M4|xe —yj\2 «
< MsM\e. Applying this in the last estimate we obtain

W$M4e+ MaM 2£
M bs/ | = M<(M’ + X
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Finally, this implies that

\(Lp-)'N& T \(LprY()\ -+ \(Lp™)"Ne- {Lp")\r,)\ =

< M4(Ms + yle + M4lyj - 71 <

N Ma y/E+ MAMby [l = M4 (2Ms +
contradicting (17). Hence (16) holds, implying that for every yj GlInt K

(20) ML) T MVe-
By the V-Haar property of Un no element of Un can Z/-vanish on the
L-extremal set of Un, i.e.,

N(p) = max fp(ar)| + max \(LpX)(yi\ + max \(Lp*)'(y)
<ii<s <*<r y.,oln

is a norm on Un. By (15) and (20) we have N(p*) < (M\ + M2 + MG0)y/e,
hence by equivalence of norms in finite-dimensional spaces

Ib-Pill = 141 A~ M7N(pe) < Mgy/s = M8(||/- P1| - Il/-poll)". O

Let us conclude this section by noting that in the special case of monotone
polynomial approximation Theorem 2.3 is verified in [10].

3. Applications

We give several applications of our theory in Section 1. The first results
given in 3.1 primarily follow from Theorem 1.4 and demonstrate that L-Haar
spaces are rather scarce. On the other hand, applications of Theorem 1.6 and
Corollary 1in 3.2 and the existing literature show that L'-Haar spaces are not
so rare. In the case of restricted derivative approximation (that is, L = Dk
where Kk > 1 and K = [1,1]), Roulier and Taylor [9] proved that the space
7n_i of polynomials of degree n —1 or less is L'-Haar (see also [6, p. 127]).
In 3.2, we shall completely determine those lacunary polynomial spaces that
are L'-Haar in this context. Furthermore, the negative result of 3.1 clarifies
the necessity of using smooth boundary functions in the constraints. Further
in 3.3, we consider the differential operator L = D —al where K = [a, b] =
= [-1,1] and a is constant. We shall find that #n_j is L'-Haar precisely
when |a| < (n —1)/2. Finally, in 3.4, we examine rational function spaces
with the operator L — D and K = [,1]. We shall see that introducing
guadratic denominators these spaces can alter the L'-Haar property.

3.1. Some negative results concerning L-Haar spaces. Throughout this
section, K = [a,6]. We say that a linear operator L: S —C[a,b] is a k-
Rolle operator (k > 0) if whenever / G S and / has k + 1 distinct zeros
*1< ., .< Xk+iin [a,6], we have that Lf has a zero in [xi,x/..+i]. Evidently,
Dk: Ck[a,b] — C[a,b] is a fc-Rolle operator. We shall give a wider class of
differential operators that are /c-Rolle.
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Theorem 3.1. Let L: U —»C[a,b] be a nontrivial k-Rolle (k * 0) oper-
ator where U is afinite dimensional subspace of C[a,b\. If dimi/ > Kk + 2,
then V cannot be L-Haar.

Proof. Let n = dimV K+ 2. Choose p GU where Lp ¢ 0 and an
open interval (a,R) C [a, bl on which Lp never vanishes. Now select n —1
points xi < ... < xn x in (a,B) and find p G U\ {0} so that p(x,) = 0
(1 <i<n-—1). Since n—1>k+ 1and L is a fc-Rolle operator, Lp{y) = 0
for some y G [xx,X,,_X] Q (a,R). Since Lp(y) ¢ 0, dimC?"} = n —1. But
P € G{y} \ {0} and has n —1 zeros. So G{y}is not a Haar space and by
Theorem 1.4, U is not L-Haar. O

We shall use the next lemma both to demonstrate a family of Rolle
operators and to establish positive results in 3.3 and 3.4.

Lemma 3.2. Let L: C'[a,6] =C[a,6] be given by L = D + a(x)l where
a€C[ab], andleta<x <y<h Iff 6 C[ab] and f(x) = f(y) = 0, then
Lf =0 on [x,y\ or LT changes sign in (X, ).

t
Proof. Let A(t) = f a(s)ds. Then

= eAW(LT)(t)
so that

JeA’\(Lf)(t)dt = eAMf(y) - eAMf(X) = 0,
and the conclusion follows readily. O

It follows that the operator L in Lemma 3.2 is 1-Rolle. If L: C*[a, 6] =
—5C|[a, b] is given by

(21) L= (D + ak(x)1)...(D + ai(x)I)

where a- G Cfc 1[a,6] (1 < i < K), repeated apphcations of Lemma 3.2 show
that L is L-Rolle. Moreover, Ker L has dimension K so that the restriction
of L to any space of dimension K+ 2 or greater is nontrivial. We thus have
the following

Corollary 3.3. Let L: Ck[ab] —C[a,b] be given by (21). Then there
are no L-Haar spaces of dimension kK -f 2 or greater.

Remark. Forrestricted range approximation, the operator is the identity
operator I. A consequence of Theorem 3.1 is that there are no /-Haar spaces
of dimension 2 or greater, since | is 0-Rolle. The situation is even worse as
there are no /'-Haar spaces of dimension 2 or greater. Let Un be a subspace
of C'[a,b\ of dimension n > 2. Then G{Q} is not Haar since it is nontrivial
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and all of its elements vanish at a By Corollary 1.7, Un is not /'-Haar.
We note that for restricted range approximation by polynomials uniqueness
of best approximations requires the additional condition that the function
being approximated also satisfies the constraint (see [9]). Our observation
shows that this condition is essential.

Remark. In the case of approximation with restrictions on the deriva-
tives of order 0 < k\ < ... < ki, we take K to be the union of | disjoint copies
of [a, 6] and Lp represents Dkip on the r-th copy of [a, b]. The methods above
show that there are no X-Haar spaces of dimension k\ or greater, and when
ki = 0there are no X'-Haar spaces of dimension 2 or greater.

As was noted at the end of Section 1, our theory has direct analogs in the
periodic cases. Specifically, if a and b were identified (or, equivalently, [a, 6]
were replaced with a circle), we would restrict our attention to C*[a,b\ =
= {/ £CJ[a,b]: /(a) = f(b)}. We have the following

Theorem 3.4. Let X: U —»C(K) be a nontrivial operator where U is
a finite dimensional subspace of C*[a, 6]. If dimU > 2, then U cannot be
L-Haar.

Proof. Suppose dim U —n >2 and U is X-Haar. Choose y £ [a, 6] SO
that (Lq)(y) ¢ O for some g £ U. By the periodic analog of Theorem 1.4,
U would be an n-dimensional Haar space in C*[a,b] and G{yy would be

an (n - 1)-dimensional Haar space in C*[a,b]. But it is well known that
nontrivial periodic Haar spaces can only have odd dimension and we reach
a contradiction. O

We next consider two brief examples to show that Corollary 3.3 is sharp.
Example 1. We take X = Dk and note that 7*is a (k + I)-dimensional
XAcHaar subspace of C[a,b]. On nk,Dk reduces to a linear functional, and

by Corollary 1.5 that nk is Z?fcHaar follows from 7ljt and Kk-\ = Ker Dk
being Haar spaces.

Example 2. As an example that does not reduce to a linear functional,
take X = Dk and Uk+i = spand{i,22,... ,xfctl} as a subspace of C|[a,6]
where 0 < a < band | To check that Uk+i is X)fc-Haar, Theorem 1.4

(d) and DkUKk+1 = g4 having dimension 2 imply that we need only check
that Uk+1, G{a}, and G[a Ry are Haar spaces for a,R £ [a, b]. Clearly, Uk+1
is Haar.

M-i
For p(x) = 72 ¢, x‘, Dkp(x) = Ck+i(k + I)!x + CkK\. For distinct a,R £
i=i

£ [a, 6],
G{ao} = span{x,... ,x*-1}

is Haar. Fora £ [a, 6], G{0} = span{Xx,... ,xfc 1, xk+1 —(k + Daxfc}. To see
that this space is Haar suppose g £ \ {0} has k distinct zeros in [a, 6].
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Then g £ span{z,... ,xk *} and we may assume that

K
g(x) = xk+1 - (k + Daz* + c,x'.

i=i
Letting Zij... ,Zk be the zeros of g in [a, 6] (O is the other zero), we have
that

(k+ Na = 2\ -f eee+ Zk.

Since a,Zi,... ,Zk £ [a, 6], we have (kK + I)a < kb and g < a contra-
diction. Thus G{a}is Haar. Hence, Uk+i is Z"-Haar.

3.2. Lacunary polynomials. Let P,, = span{l = xkl,xk2,... ,xkn = xN}
where 0 = ki < kr < ... < kn = N. We take K = [a,6] = [1,1] and
L = Dk. We assume that kK < N - 1so that L is not a linear functional over
Pn.

Theorem 3.5. P, is V -Haar with L = Dk (1 < k < N —1) if and only
if ki+i —k; is odd (1 <r<n —1) and either xk $ Pn or xk, xk+1 € Pn-

Before proving Theorem 3.5, we note that Corollary 1.7 implies that L'-
Haar spaces are Haar spaces. The condition that each j - K is odd is
equivalent to Pn being Haar on [-1,1] (see [6, p. 132]).

The proof of sufficiency uses Birkhoff interpolation. We refer the read-
er to Chapter 1 of the text [6] for the appropriate terminology involving
interpolation matrices and regularity theorems.

Proof of Theorem 3.5. Sufficiency. Assume that each fa+i - ki is
odd and that either xk  Pn or xk,xk+1 € Pn. Let ({®&}*=1, {y»}i=i) be a
nondegenerate Zfcextremal set for Pn where s > 1,

a r

(22) $>(*,) +J2diPK)(Vi) =0 (p e Pn)
»=1 i=i
with all ¢- and d{ nonzero, and DkPn has dimension r on (r/i,... ,yr}- Let

r=#{r:1<r<rand - G(—, )} r" =r-r',and | = s+2r'+r"+N —.
Consider the Birkhoff interpolation problem of finding a polynomial p £
G 77 satisfying the t + 1 conditions
" a) p<n(0) = 0, 1<r<N-1 rogkf 2<i<n- 1,
b) p(xi) = o, 1<i<s,
c) pW{yi) = 0, 1< *<r,
. d) plk+){yi) =0, 17r1r<r, |y|<1l

(23)

We first note that conditions (23a) and (23cd) do not overlap. Ify- =0
for some 1 < r < r, then xk G Pne Otherwise, dim DkPn\[yi..M} £ r —1
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which contradicts the nondegeneracy of the Dfcextremal set at hand. By
hypothesis, xk+1 £ Pne So (23a) does not impose conditions on p(f9)(0),
p(k+1)(0).

Let E be the interpolation matrix for (23). (E has £+1 columns indexed
from 0 to £) Since each fc,+i —A-is odd and the conditions (23a) and (23cd)
do not overlap, E has no odd supported sequences of “ones”.

We now establish that | > N and that E satisfies the Pdlya condition
(that is, the number of “ones” in columns indexed 0 to j is at least j + 1 for
0" j <£). Let E'be the matrix formed by augmenting E with infinitely
many zero columns. The number of “ones” in the Gindexed column of E" is
s > 1 Letj be the smallest index for which the number of “ones” in columns
indexed 0 to j of E"is less than j + 1. Evidently, j > 1, the j -indexed column
of E' contains only “zeros”, the columns indexed 0to (j —1) of E' contain
j “ones”, and the matrix E" consisting of the columns indexed 0to (j —1)
of E' satisfies the P6lya condition and has no odd supported sequences. It
suffices to prove thatj > N. In this case, all i-\-1“ones” in E" are in columns
indexed Oto (j - 1)sothati+1=j. Thusl =j- 1> N and E = E". Now
assume that j < N. By the Atkinson-Sharma-Ferguson Theorem [6, p. 10],
E" is order regular so that there is a unique polynomial p 6 7Ty i satisfying

' a) pI)(0) = 0, 1<r<j—1, rohi, 2 <i<r—i,
b) p{xi) = c,, 1<ic<s,
(24) < andifk<j —1,

c) p~(yi) = 0, 1ni=r,
cd) p(fer)(?) = 0, bl <1, 17idir-

Since = 0if r > j, p satisfies all of the conditions (23a) and (23c). Since
j —1 < TV, (23a) implies that p £ Pn and (24b) and (23c) contradict (22).
Thus j > N, hence £> N and E satisfies the Polya condition.

We thus have that E is order regular, and thus if p € satisfies (23)
then p = 0. Finally, if p £ Pn and p L'-vanishes on the extremal set
({x«}i=i> {2*}=1)»" en P € Kt and satisfies (23) and therefore p = 0. By
Theorem 1.6, P,, is ZZ-Haar.

Necessity. Assume that Pnis L'-Haar. Then since Pn is Haar, each
ki+i - ki is odd. Suppose that xk G Pn and xk+1 ~ Pn. Consider G{o} =
={p £ Pn:p(f)0) =0} = span {xi : 1 <i<n, ki/ k}. Now there are two
consecutive powers in G{o} with differences of their exponents being even.

Thus G"o} is not Haar. Moreover, C{0) = IP € C(o> : pp=0}=
since xk+1 £ Pn. By Corollary 1.7, Pn is not L'-Haar. O
3.3. The operator L = D —al. In the literature on constrained approx-

imation, constraints involving derivatives have involved the operator Dk.
However, other differential operators can certainly come into play. In this
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section, we consider Un = ¥, i (n > 4) and L = D —al (a real) with

[a,6] = K = [-1,1]. From 3.1 and 3.2, m,, x is .D'-Haar but not V-Haar. We

shall see that D is the dominant operator precisely when |a| < (n —I)/2.
Theorem 3.6. #n_i is L'-Haar if and only if [a] < (n —I)/2.

n—i

Proof. Necessity. Suppose that |a] > (n—1)/2. Letqg(x) = I (x~xi) €
i=i

£ 7h_i where -1 < ®i < ... < xn_i < 1 We can choose X,,_1 S0
that

a'{sgna) =y 1L _=a
V ; (?(sgna) *  Sgna —xi

and thus (Lq)(sgna) = 0. Now C{58ma} = {p € "m_! :(Lp)(sgna) = 0} has

dimension n —1 and is not Haar since q£ G{sgnaj has n- 1 zeros in [-1,1].

Since {sgna} I {—1,1), Corollary 1.7 implies that 7mn_i is not L'-Haar.
Before proving sufficiency, we establish a lemma.

Lemma 3.7. i) Ifa >-m/2 and p £ Am\ {0} has m zeros in (-1,1] with
at least one zero in (—,1), then (Lp)(-1) ¢ O.

ii) Ifa <m/2 andp £ :m\ {0} has m zeros in [-1,1) with at least one
zero in (—1,1), then (Lp)() ¢ 0.

iii) If |g| < m/2 andp £ Tr\ {0} has m —1 zeros in (—1,1), then
(Ep)(1) MO0 or (Lp)(-1) ®o.

m
Proof. For i), write p(x) = c_Ll,_(l - zf) where ¢ ¢ 0, each z- £ (—1,1],
1=1
and some z- £ (—1,1). Then

pr(-1) _ 1
2(-1) ti-1mo2*
S0 (Lp)(—) ¢ 0. The proof of ii) is similar.
For iii) suppose degp = m—L and write p(x) = cn?l'l__l(*—zi) where c i 0
and each z, £ (—,1). Then -
P\-1) 1 " (1)

P (-1) E <»< E 4. 4 o (1)

and the conclusion holds. Suppose now that degp = m and write

m—1
p(x) = cx-2) (x- 4)

1=1
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where ¢ @ 0 and each 4 £ (-1,1). If z £ [-1,1], then i) or ii) yields
the conclusion. Without loss of generality, z < —1. If p'(-1)/p(-1) =

= p'(D/p(l)> then

m—1
(26) K'l) _I_Z/\ 13 '1-Z
and
1 l N l
(27) PO) 2 > i - a

Equating the expressions (26) and (27) and using z < —, we see that
z = —yjl+ 1/A where

m=4 m= . u

Substituting into (26) and (27) and averaging the resulting expressions yields

m-| m-1 1
a=\jA1+A+ Y2 - —2=VA2+A- A+ V' —— :
1- ti 1- z*
Letting B = A+V A2+ A, weseethat B > 2A > | > jAj-(1 <i<n-2).
Thus we have that
M ~al 1
a-M=ARTA AN E Y =
=1
A 1 yw 1 1\
_A+VIAMT 2+ A 1-Zi 2/

1/A—\A2+A iy 1+Z~ _ 1{ 1+Z A~
“ JYA+D/EWF R + Af 1- Zi) ~2\Ni 1-Zi~ B2)
m—4

-1 0S"™ n21+zi _y ' (1+7rN B
242\ ~. 1- 4 VI-V (I +2z)2

AN
«= «=
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This is a contradiction since |a] » m/2.
Sufficiency. Assume that |a| S (n —I)/2. Let ({z,}*, {t-} r) be an
L-extremal set for #,_i where s > 1 and

) r
(28)

with all g and d, nonzero. Let r' = #{r : 1~ i< rand |y| < 1} and
r'' —r —r'. (Evidently, r'" = 0,1, or 2.) We may assume that |y, < 1 for
1sr<r. m

We prove that s+2r"Ar"" > n. Assume, to the contrary, that s+2r*-\-r** »

A n. Consider the interpolation problem of finding p 6 7r,_i so that

a) p{ii) = 0, 1<i<s,
(29) <b)p(y) =p'(y) =0, 17r<rl
. €) (Lp)(yi) = 0O, r+il<ic<r

In case some X{ and j/, (r = r' + 1) coincide, we remove them from a)
and c) and put them in b). Further, by inserting additional points &, and
removing others, we may assume that s+2r,+r,/ = n and that no y- coincides
with an X{. (This may change s and r', but we can still insist on |j/,| = 1for
r 1<r<r.) Weclaim that ifs+ 2r' + (r —') = n, the x,’s are different
from the y-s, and |r/,| = 1for r' + 1 < i ™ r, then (29) has only the trivial
solution. Then an appropriate choice of evaluations in a nonhomogeneous
counterpart of (29) would contradict (28).

There are three cases. If r —r' = 0, then (29) is a Hermite problem and
our claim is obvious. If r —" = 1, suppose that p E#n_i \ {0} is a solution
of (29) with yr —1. Then p has n —1 zeros in [—,1) counting multiplicities
up to order 2, and since n > 4, at least one of these zeros is in (—1,1). By
Lemma 3.7 ii), {Lp)(1) ¢ O, a contradiction. If r —r' = 2, suppose that
P€ mn_!'\ {0} is a solution of (29). By Lemma 3.7 iii), (Lp){1) ¢ 0 or
(Lp)(—1) o O, a contradiction. Thus the claim is established.

We conclude that s+ 2r' r" > n. To complete the proof of sufficiency,
suppose that p € 7n-i L'-vanishes on the extremal set ({zi}*=i, {r/,}* ).
Let x\ < ... < xs. For 1 <i <s- 1 Lemma 3.2 implies that Lp has
a sign change, say £, in (x,-,x1+1). If £ = yj for some j, then (Lp)(yj) =
= (Lp)'(yj) = (Lp)"(yj) = 0 since Lp changes sign at yj. In any case, we
have that Lp has at least n zeros counting multiplicites since +  >n
Since Lp € TH-+? Lp = 0 and therefore p = 0 (because s > 1). Thus no
p € 7,_i\ {0} V-vanishes on an L-extremal set for 7In_i, and by Theorem
1.6, is L'-Haar. O

Remark. When n = 2or 3, Mn-i is L'-Haar if and only if |a] < (n-1)/2.
In these cases, when |a| = (n- 1)/2 and G{ x,i} fail to be Haar spaces,
respectively.
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The situation is much simpler in the periodic case. It was noted ..at
the end of Section 1 that if K is a circle then in order that a function V-
vanish on an X-extremal set ({x;}*=1, {2,}=1) we require that (Xp)'(r/,) = 0
for all 1 < i < r in addition to the other conditions. Specifically, let Un =
= span{l, cosx, sin x, .. .,cos kx, sin kx} he taken as a subspace of C*[0,2/{]=
= {/ €C[0,2d : /(0) = /(2)} and L = D —al. For an Z-extremal set,
proving that s + 2r > n follows as in the case for r'* = 0 in the proof of
Theorem 3.6. The proof that no p 6 Un\ {0} X'-vanishes on an X-extremal
set for U,, follows exactly as in Theorem 3.6. Thus we have

Theorem 3.8. Let L = D —al. Then Un = span {1,cosx, sinXx,... ,
cos kx, sin kx] is L'-Haar (in C*[0,271],) for all real a.

3.4. Rational spaces. With [a,5 = K = [1,1] and L —D, the space
7h_i is D'-Haar (see Theorem 3.6 or [6]). In this section we consder the space
Un —~7m—+ where u is a fixed polynomial and co(x) > o for all x € [, 1].
We find that if o is linear, then j7Tn-i is D'-Haar. However, even using a
guadratic denominator can destroy the D'-Haar property.

Theorem 3.9. Ifco(x) = (x- 1+ e)r+e2 where 0<e< 2/(n—1), then
AT, i is not D'-Haar.

Proof. Choose —1 < xi < ... < xn_i < 1so that

g9'(i) _ 1 _1_
9i1) ~  1- x>~ £~ "(1)

!
where q(x) = ﬂ (x —X,). Then (qg/u;)'(l) = 0 and ¢/co has n —1 zeros in
i=i

(—1,1). Now = jplu; € ~#wn_i : (p/w)'(1) = 0} has dimension n - 1

and is not Haar since q 6 G{i}- Corollary 1.7 then implies that ~Kn-i is not
.D'-Haar. O

Theorem 3.10. Ifn € 7li and o > 0 on [,1], then ~*n_i is a D'-Haar
space (n > 1).

Proof. We may assume that 0>(x) = x—7, where 7 < —1. Furthermore
ATn_i is D'-Haar if and only if nn-i is Z/-Haar with L = D—-1 = D—j"I,
thus it suffices to show that 7T,,_i is T'-Haar. Let n > 3. Let ({x,}®=1, {y,}{=1)
be an X-extremal set for xn_i(s > 1) and set r' = #{r : 1~ i ~ r and
n,I< 1} We claim that s+ 2r' + (r —') > n. Assume, to the contrary that
s+2r'+ (r-r') <n, and consider the interpolation problem (29) forp € an_i.
We can again assume without loss of generality that s+ 2r' + (r —r') = n,
O d Xj, and |y,| = L1forr'-f1” i <r. Asin Theorem 3.5, we need only show
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that (29) has only the trivial solution. Suppose then that p £ 7r,_i \ {0}
satisfies (29) and further that r —r' > 1.
Case 1. r —r' = 1. Then by (27) p has n —1 zeros z\,... ,zn 1 £ [1,1]

counting with multiplicities up to order 2 (lyr| = l,z; g yr,1” i <n —I)
and
31)

R

Ifyr —-1, then 0> X) ;z contradicting (31). If yT= 1, then
=

1 >n—l

1-7 E 2

contradicting again (31).

Case 2. r —r' —2. Then by (27) p has n—2 zeros 2\,... ,zn_2 £ (—1,1)
(counting with multiplicities up to 2) and for yr —+1, ~(yr) = (note
that p(—)p(l) ®0). Ifp £ 7_2 or p has an additional zero in (—,1) then

we obtain a contradiction as in Case 1. Let p have an extra zero zq outside
of [4,1]. Then

1 1 1

32
(32) }’I'-Zq+|15:1>/r-2i Yr-7
If 20 > 1then for yr = —1 right and left sides of (32) have different signs. If
Zq < —1 then setting yr = 1in (32) we have

2. 1.7 1. 20+~ 1-. > 1-2z . 2
1 u 11 11=1 1
a contradiction.

Thus s+ 2r' + (r - r') > n. Suppose now that p £ #n_i L'-vanishes on
the L-extremal set ({x,}*=1, {yi}[=1). Applying Lemma 3.2to L = D —"3"/
implies that Lp has a sign change £ in (X,-,x1+l) for every 1 <i <s—1
If = i/j for some j then (Lp)(yj) = (Lp)'(yj)) = (Lp)"(yj) = 0 since Lp
changes sign at yr Thus counting with multiplicities we obtain at least n
zeros of Lp (because s+ 2r/-|-(r-r,) > n), i.e., p'(X)(x —7) —p(x) 6 MM-1 has
at least n zeros. Thisyields, that p'(x)(x —7) - p(x) = 0, i.e., p =c(x —7).
But since s > 1, p has a zero in [1,1], a contradiction. This completes the
proof for n > 3. If n = 1 the claim of Theorem follows from the fact that
s > 1for any Zl-extremal set ({x,}*=1, {y,}’_1), while p £ ~7r0,p = does
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not vanish. Ifn=2andp 6 is not a constant function, then p' does not
vanish. Thus p € "iri \ {0} can not DZXvanish on a D-extremal set if r > 1.

On the other hand if r = 0 then, obviously, s > 2 and no p € \ {0} can
have two zeros. O

Acknowledgement. The authors would like to thank Professors J. J.
Swetits, S. E. Weinstein, and Y. Xu for helpful discussions in the preparation
of this manuscript.
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UBER DIE BANACH-EIGENSCHAFT
VON MATRIZEN

K. TANDORI (Szeged), Mitglied der Akademie

1. Die Klasse von allen orthonormierten Systemen @ = {~(z)}” im
Intervall (0,1) bezeichnen wir mit fl. (Die folgenden Betrachtungen bleiben
auch fir die in einem endlichen und nichtatomischen Maliraum orthonormier-
ten Systeme gultig, nur einfachkeitshalber betrachten wir den Fall (0,1) mit
dem gewohnlichen Lebesgueschen Mal.)

Es sei B = ||&n,fc||£jt=0 e*he Matrix mit

()]
(n-+o00).
k=0

Fur jedes System B fl existieren die Summen
()

bn(x) = A bnkgk{x) (0 =0,1,...)
k=0

in der Metrik von F2(0,1).
Man sagt, dall die Matrix B die Banach-Eigenschaft (B £ BE) besitzt,

wenn fir jedes @ £ fl
Ai_rwn(cp-,x) =0
in (0,1) fast Gberall gilt.

Verf. und F. Moricz [1], [3] haben eine notwendige und hinreichende
Bedingung dafiir angegeben, dak B £ BE ist. Diese Bedingung lautet fol-
genderweise.

Satz A. B £ BE gilt dann und nur dann, wenn
I

LALL = sup{ (s\ipbl(<p-,x))dx; <00.
vAien n

Vv
0

2. Diese Bedingung ist notwendig und hinreichend; leider ist es in
spezidllen Féllen schwer zu entscheiden, ob sie fur eine Matrix B erfillt
ist.

In dieser Note werden wir hinreichende, aber brauchbarere Bedingungen
fur die Banach-Eigenschaft angeben.
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Fir positive ganze Zahlen M,N(M < N) setzen wir

1/2
18 M,N\\ = supj [( sup  b24(p;x))dx\
M<n<N >
Man kann leicht zeigen, daR fiir beliebige Matrizen B, B
IB + B-, M, JT| < Uk M,N | + [B; M, iV

gilt. (Hierist B + B = ||6nf+ 6,,fd|~ =0.)
Erstens beweisen wir den folgenden Satz.

Satz 1. Es sei { N eine monoton wachsende Folge von positiven
ganzen Zahlen. Gilt

(1) -11]|2< oo,
v-\

so ist B £ BE.
Beweis. Essei B = ||*illnk_0>wobei
bn | ~ bNvk (zk —0,1,..)),
und Bu=B - BW (o= 1,2,...). Dann gilt

(2)  BWNV,NWX- 1] < \B;NUN,+1- 1] + \BA-, N,,, N+l - 1| =

re“ ., nl2 )
= ||B ;A A +1- )|+ {X;~ fc} (iz=1,2,...).
k—o
Es sei ip£ il. Es ist klar, daR
(00) '
3) Y bk =/ bRvM\x)dx » \B;NUNu+i- 1|2 (z=1,2,...)
fco |

ist. Aus (1) und (3) erhalten wir

Y / bBNAW x)dx < 00»
v=\{
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und so folgt, dall die Reihe

in (0,1) fast uberall konvergiert, woraus sich ergibt, dal fast Gberall in (0,1)
(@) VIi_r)noo bN,,(<p;x) = 0.
Es sei

<$,(x) = wax  \on(tp-x) - bNI/(tp;x)\ (v=12,.).

Nv<n<NI/+i

Offensichtlich gilt

I
J SI{x)dx<\\Bv-,Nu,Nv+x -\\\2 (ir=1,2,...).
0

Daraus und aus (1), (2), und (3) erhalten wir

q NS

IIFlo

So folgt, daR die Reihe
€O

/-1
in (0,1) fast Gberall konvergiert, und daher
i, 59 = 0
in (0,1) fast Gberall besteht. Daraus und aus (4) ergibt sich B 6 BE.
Da
IS, Nu,N v+\ - 1| ™ Ne,,-N,,,N,,+1 —10+ \\B~] Ny, N,,+i - 1| =

(00] 12
= \\B,,; N,,,N™~+1 - 1] + {J2bk,k} "n=1.2,.)
fco

ist, folgt aus Satz | unmittelbar:
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satz Il. Wenn
o0 (00]
+ WBV;NV,NvVv+x - 1}]2} < oo

ist, sogilt B £ BE.

Um eine brauchbarere Bedingung zu bekommen, missen wir \BUNU,
N,,+\ - 1| mit den Zahlen brek abschétzen. In folgenden werden wir zwei
einfachen Abschadtzungen angeben.

Abschatzung |. Es gilt

«=N,+1 k-0

Beweis. Es sei ip6 il. Dann gilt fiir ein beliebiges no {N,, < no < N,,+1)

n=Nv-+|
Nv+i —1
n=Nu+I
und so ist
sup
Nv<n<Nv+i n=Nu+1
Daraus folgt
|
sup
{]<:Nv<n<N"+l
0
n=Nu+l g
nriV*+1 k0

Da diese Ungleichung fir jedes tp € fi besteht, ergibt sich unsere Abschat-
zung.
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Abschatzung |l. Es gilt
\BViNu, N,,+i - 1| <
= + /\.|.«* *:
O<«<Iog(§/31/+1-A 1) { / :DZ:H: )2}

(I7=1,2,...).
(log a bezeichnet den Logarithmus zur Basis 2.)
Beweis. Es sei £ I Fir jedes no (N,, < w, < N~+i) gilt

70=2* + ...+ 2* + Nu

mit nichtnegativen ganzen Zahlen u\,... ,ur (0 <vT<... < " log(Nuti~
-N,,)). So gilt

Ko (\/>;*)-ij\/,,(\/>;&)| = \(b2*i+...4+2"r+N,, (W x) -

BFi+.. 42" T-y+NS W X)) + .-+ (b2n+Nu(<ficx) - bN,, (Wx))\ A

S E E WM ()22 X ~ bNIA-12¢ {p\ X)I)

0<«<log(N,,+i-N,,) gsl<n®+i-n" t

woraus sich
1/2
sup - (bn(<p;x) - bNv((p;x)y dx <
N,,<n<NuH
= 53 53 {/(bl,+n+1)2--1(<"; *)-
G log (ATl l-TV )0l cieEdnIlie 0
2
-bl . +10-Cy’;*))
00 1/2

= E 53 {E£(bl t«+1)a--1.* - M+ n*fc)2}

O<«<log(IVI/+i—nNr,) k:0

ergibt. Da diese Ungleichung fur jedes ip £ S besteht, folgt unsere Ab-
schétzung.

Aus den Satzen I-H und aus den Abschatzungen I-H erhalten wir die
folgenden Kiriterien.
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Satz IlIl. Gilt
oo C oo M1 — 00 »l
5:1|"IE;06".* + (n:E,,H {fIE;d onfc- b«-1.%)2} ) )I < 00’
so ist B GBE.
Satz IV. Gilt ot e
TR
@ 1/2
+ E E (E(W +1)2°U-- *"+<2°()2
0<*<log(iV14i—Nu) —1 k-~°
so gilt B GBE.

3. Anwendungen. A. Es sei J1= {A,}£° eine monoton nichtabnehmende
Folge von positiven Zahlen mit

00
(5) <@

fo !

Es sei weiterhin

=14 (l-sii). *=0,...,n,
[0 K—71:“1,71-(-2,....

n,k

W ir wiinschen zu zeigen, da B — ||6nijt|*°fc_ 0 G BE.
Es sei pGiE Jetzt ist

b,(v?%a) = ~n " (n=0,I,...),

wobei n A

M %) = 53(1 - Ay)v>*(*)  (e=0,1,..).
f0

Es sei

A; 1 AR (l-iar). 2m<me<2ml (m=0,1,...), *=0,...,n,

J= <
0, 2m< < 2ml (m = 0,1,...), *=n+1,....

Offensichtlich geniigt es zu zeigen, dal R* = ||6* fg|* ft o G BE gilt.
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Aus (5) folgt
A 2m
(6) 22 < °°_
szfgm

Wir werden den Satz 111 mit der Folge N,, = 2" (i/ = 1,2,...) anwenden.
Jetzt gilt auf Grund von (6)

00 00 N+l n
E E<nr)2+ E E «un-“-n=)221nNr} =
{k:O ) (nz?\/l,+l{fc=0 y2rinry
21 n

“E L () N LE L) T s

" Y47 <

Auf Grund des Satzes 111 bekommen wir B* € BE.
Das bedeutet, dalR fir jedes System p £ 9

k—0

fast Gberall in (0,1), wenn fir die Folge A (5) erfullt ist. (In [2] haben wir
gezeigt, dalR diese Abschdtzung genau ist.)

B. Es sei A= {An}o° eine monoton nichtabnehmende Folge von positiven
Zahlen mit

V' log2n
© J
n=l n
Es sei
[ & K=°"---"n
\ 0, K=n+1,..
Wir wiinschen zu zeigen, daf3 B ebe.
Fir ein System ip 6 Il ist jetzt
1 n
bn(<P'x) = y (n=0,1..)m

*=j
Es sei
AT, 2m<n<2ml (m=0,1,...), k=0,...,n,
0, 2m <n< 2mtl (m =0,1,...), k=n+ 1,.. .
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Offensichtlich genligt es B* - ||h* fd*°ic 0 € BE zu zeigen. Aus (7) folgt

m22m
<

(8) E 00.

Wir werden den Satz IV mit der Folge N,, = 2" (i/ = 1,2,... ) anwenden.
Jetzt gilt auf Grund von (8)

00 ( 00
E i E(N.%)2+
u=I Ifc=o
- E X2 <22} ) =
OOClogiM+i-Nu)ost<N“+i~N=" | fc=0

R T
= A +aT 2

Auf Grund des Satzes IV erhalten wir B* G BE.
Das bedeutet, dal fir jedes System tp G I1

< 00.

E Vk{x) = &(logn)
fc-o

in (0,1) fast Gberall, wenn fir die Folge A (7) erfullt wird. (In [2] haben wir
gezeigt, dal diese Abschdtzung genau ist.)
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ON AN ASSERTION OF RIEMANN CONCERNING
THE DISTRIBUTION OF PRIME NUMBERS

J. PINTZ* (Budapest)

1. Riemann [8] stated in his famous memoir in 1859 without proof for
the number of primes < x the inequality

(1.2) r()9 <Liar) & \] (X> 2)
0

or more precisely he wrote the following lines (with the notation x(x) =
= F(x)): “Thus the known approximation F(x) = Li(K) is correct only

to an order of magnitude of x1/2 and gives a value which is somewhat too
large, because the nonperiodic terms in the expression of F(x) are, except
for quantities which remain bounded as x increases,

Li(*)-Tu ("w™)_ il (*13-jhi (*I/N)+ju (*¥H L (*/7)~-

In fact the comparison of Li (x) with the number of primes less than x
which was undertaken by Gauss and Goldschmidt and which was pursued
up to x = three million shows that the number of primes is already less
than Li (x) in the first hundred thousand and that the difference, with minor
fluctuations, increases gradually as x increases.”

The assertion of Riemann was the starting point for a number of inter-
esting and deep investigations. So it was proved e.g. by E. Schmidt [9] in
1903 that (1.1) implies the truth of the famous Riemann hypothesis on the
zeros of the zetafunction. Riemann’s assertion seemed to be supported by
the calculation of D. N. Lehmer [4] who showed its validity for x < 107.
But Littlewood [5] disproved it in 1914, i.e. in the same year, showing that
7r(x) —Li (x) changes sign infinitely often as x —* oo.

Later even the number V(Y) of sign changes of x(x) - Li (x) in the in-
terval [2,Y] could be estimated from below using Turan’s method. Thus
S. Knapowski [2] proved for ¥ (¥) the lower bound cloglogF in 1961 and
this was improved by Knapowski-Turan [3] in 1974 to c(s) logl/4-" Y. The
present author [6] improved this estimate to clogy/(loglogF)3. Later Kac-
zorowski (Acta Arith. 45(1985), 65-74) improved this result further to

* Research supported by Hungarian National Foundation for Scientific Research Grant
No 1811.



384 J. PINTZ

clogy. This shows on the one hand that Riemann’s assertion is very far
from being true.

On the other hand we may quote (with minor changes) some lines from
the book of Ingham [1]:

“The above remarks relate only to individual values of x. But the in-
equality 7r(x) < Li (x) and Riemann’s formula acquire some significance when
considered from the point of view of averages, at any rate if the Riemann hy-
pothesis is true. Thus (assuming the Riemann hypothesis in what follows)...
we can show that

(1.2) J(ir(x)-U(x))dx <0 (X > X0),
2

so that 7r(x) —Li(x) is ‘negative on the average’.”

But one can show by standard methods that the inequality (1.2) is true
if and only if the Riemann hypothesis is true. (We may note here that in
the book of Prachar [7] on p. 260 the truth of the formula (1.2) is mentioned
but the words ‘under the Riemann hypothesis’ are unfortunately missing.)

The above assertion suggests that to decide the weaker version of (1.1),
i.e. the assertion I7r(x) —Li(x) is negative on the average’ is hopeless at
present. This is really the case if we use the most direct interpretation
(1.2) (which, under the Riemann hypothesis is probably true even for every
X > 2). The aim of the present work is to show at the same time that it
is possible to find a relatively simple type of averaging procedure for which
the assertion “7r(x) —Li (x) is negative on the average’is true without any
unproved hypothesis. This will show that the assertion (1.1) of Riemann is
by far not so wrong as indicated earlier. So we can assert rightly that in a
precisely formulated sense 7r(x) —Li (x) is negative on the average.

2. We shall prove the following

Theorem. Fory > c\ the inequality

(2.1 Li (k)) exp dx <

where C\,C2 are explicitly calculable positive absolute constants.
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THE DISTRIBUTION OF PRIME NUMBERS 385

In the course of proof we shall use the notations

(2.2) n (x)tfp%\/<X n% = T\H/AX Fo n_I_

(2.3) lgx =f ¥ - (lgx = 0 for
2<nsSi b

(2.4) 4 2(x) = Mar) - lgx,

(2.5) Ai(x) = #(r) - Li(r),

(2.6) y —Au > A

In the proof ¢ will denote explicitly calculable absolute constants with
¢, > 0 except perhaps G&.
By partial integration we get for <> 1

® 0
@7n - JBOA(*-)
n=1

1 2
/Ing-(X-,A =- £ ' =/r(CM- 1)* - c4.
Adding the above two inequalities we have
00
2.9) / AN g = e M@ +c@ - 1) dz+cs
i.e.
‘j -1
(2.10) 5_11 J (*) + C(*)- (t+ 5 i ¥>(*)

being valid for a > 2.
Further we shall use the formula (A > 0, B arbitrary complex)

2.0, AW *r«-N1 =exp(-~) A ye(r'+*)'* =
(3) 3
=exp (~fi) rmsf\ 3 ex» (- 4A/
(0)
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(2.10) and (2.11) together give

(2.12) dx =

00 V4
*gsdx = — /e i .
4 Amg_h I - x *ds dx o | R ip(s) ds

©) ©
Instead of a = 3 we can integrate on the broken line i defined fort > 0
by
"lira—3 for t>3
(2.13) </2 :11~an3 for t=3
.3 :0=11 for 0< t<3

and for t < 0 by reflection on the real axis since <p(s) is obviously regular
right of | and on i. Further we have

(2.14) (@) ~ c6 for s £
and
(2.15) leUizl<ei® for sei.

Thus we have

(2.16) VU <

10elu +2\] e(@'Qudi < 2c6e8u.

3. On the other hand by Chebyshev’s theorem
(3.1) M&) - reK) > ~w(Vi) > c7 » -

and by the trivial remark

(3.2) Iga: = Li(z) + 0(1)
we have
(3.3) O2(x) - Ai(x) > CSIc))/({;Xx for x> Q9
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From this we get

[o]e] 2

(3.4) J(&2x) - Ai(x))exp A=) dx >

LA ef-4r)dztone

>5[ vAexp (“I1T i) il +0(1) = 5 | H “*0«-

Now (2.16) and (3.4) together prove our Theorem.
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