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ALMOST TACHIBANA RECURRENT MANIFOLDS

S. K. D . DUBEY* (Bhatpar Rani)

1. Introduction

We consider an и-dimensional differentiable manifold M  of class C“ covered by 
a system of coordinate neighbourhoods {U, x*}, where U denotes a neighbourhood 
and xi denote the local coordinates in U with the indices i,j, k, ... having the range
1,2,3, ..., n. We choose the Jacobian determinant in M  in such a way that

of the coordinate transformation ([1], [3])

xv = xl'(xL, x 2, ..., x")
occurring in every non-empty intersection of two coordinate neighbourhoods {£/, xh} 
and {U', xh'} is always positive, then the manifold is said to be orientiable.

An almost Tachibana manifold is first of all an almost Hermite manifold, i.e., 
a 2n-dimensional manifold with an almost complex structure F(Yano [8])
(1.1) F/Fth = —Ajh 
and with Reimannian metric gtj satisfying

(2.2) F/F/gls =  gji, 
where
(1 -3) FJt =  -  F,j,, FJt =  Fj gti.

The skew-symmetric tensor Fih is a killing tensor if

(1.4) VjFih+ViFjh — 0>
where

(1.5)
ry ,F ,4V ,F / =  0,
Mjih = VjFih + ViFhj + VhFji

and
(1.6) Ft = —VjFiJ =  0.

* Thanks are due to University Grants Commission, New Delhi, for providing the financial 
assistance.

1»



4 S. К . D . D U BEY

In an almost Tachibana manifold, the Nijenhuis tensor Nj* is given in the form
(1.7) Njih = —4(VjFi)Fth+ 2Gt/ Fth+F/Gtih -  F‘GtJ\

GJ\ =  VjFf+ViF},
or

(1.8) N}t = - 4  (VjFftF*
and consequently VjFj, is pure in j  and i. When the Nijenhuis tensor vanishes, the 
almost Tachibana manifold is called a Tachibana manifold, i.e.,
(1.9) VjF* = 0,
which yields that a Tachibana manifold is a Kaehler manifold ([4], [6]). The Nijenhuis 
tensor NJih, NJitFh' and Vy Fih are skew-symmetric in all their corresponding indices 
and satisfy the following identities:
( 1. 10) a) 3 VjFih--Fjih — Gjih~-Gjhi,

b) 3 VjF№- F  - _ 1l Jih 4 NJitFi,

c) NJih = j F JUFi,

d) V.VjF? II 1 5

e) Njih = —2 0 ,f i('VtFtr --VSF/)F„

The Ricci-tensors K}i and Kj* are hybrid in an almost Tachibana manifold. 
A necessary and sufficient condition that an almost Tachibana manifold reduces to a 
Kaehler manifold is that
( 1 . 11)

where
Kjh = Kjh

Hkj — j  KkJih F‘h.

For a conformally flat almost Tachibana manifold, the curvature tensor has the form

( 1. 12)

where

(1.13)

(1.14)

(1.15)
(1.16)

K-kijh I S k h ^ j i  8 j h  ̂ ~ki  kh 8 j  i C j h g k i l

K g j i

Cji 2n — 2K* И--2(2n— l)(2u —2) ’

Hji = F/Cti-F fC tj,

Zf, = - H j . f i  = -2 * O l/iCu, 
Oji=Cts = Cji, Kfi = -2 C Ji

Acta Mathematica Hungarica 56, 1990



ALM OST TACHIBANA R ECU RRENT M ANIFOLDS 5

2n —4 1
and

<U 7) Kji~Kji =  (2n— 1)(2и —2) K8]i’

The Ricci identity having the tensor F/1, we can write (Yano [8])
(1.18) W / ’- V ^ F / ' =  KkJthF !-K kJ?Ft\  
from which
(1.19) VtVjF‘ =  KjtF'—Hj,.

2. Almost Tachibana recurrent manifold of first order

D efinition (2.1). An almost complex structure F  is recurrent o f  first order i f  it 
satisfies the relation

(2.1) VjFih =  Vj(OFih
where Vj(£) is a non-zero recurrence vector field in an almost Tachibana manifold. 

Equations (1.4), (1.6) and (2.1) yield
(2.2)  =  0
which implies that
(2.3) vJFih+viFjh = 0 
and
(2.4) Ft+VjF/= 0.

Theorem (2.1). For a recurrent complex structure o f first order, the Nijenhuis 
tensor satisfies the following identities

(2.5) Njih+4vjF?Fth—2Gji F,h—FfG,/1+FtihGtJh = 0,
(2.6) NJih+4vj Fi,Flh = 0; N j  = 4vj Aih, 
and
(2.7) N jt+ lO'ffv, Frs—vs F,r) Frh.

Proof. In view o f  (2.1), equations (1.7), (1.8) and (l.lOe) yield the theorem. 
Using (1.10b), (2.1) for an almost complex recurrent structure, we can write

Fjth = 3v]Fih
for skew-symmetric in all its indices.

D efinition (2.2). An almost Tachibana manifold is called recurrent of first order 
if the Nijenhuis tensor satisfies the relation
(2.8)

where vk(x) is a non-zero recurrence vector field.

Acta Mathematica Hungarica 56, 1990



6 S. К . D. DUBEY

Let us take the coordinate system in almost Tachibana manifold
(2.9) x{ = хЧО,
the recurrence vector field vk(x) can be expressed as vk(£).

Theorem (2.2). In an almost Tachibana recurrent manifold o f first order, the com­
plex structure should be recurrent o f first order but the converse is not true, in general.

Proof. The equations (1.7), (2.1), (2.8) and (2.9) prove the theorem.
Theorem (2.3). In an almost Tachibana recurrent manifold the following identity 

holds:

(2.10) vk (iV_,a -  j FJitFh‘j - 4 (VkVj+VjVk)Fit =  0.

Proof. The equations (1.10b), (1.10c) and (2.1) yield the theorem.
The hybrid tensors Kjh and K*h in an almost Tachibana recurrent manifold, cor­

responding to recurrence vector fields wt and w*, can be expressed as
(2.11) ViKJk = wiKjh 
and
(2.12) К%У,К% =  w*

which yield the following by using (1.11).
T heorem  (2.4). A necessary and sufficient condition for an almost Tachibana recur­

rent manifold to reduce to a Kaehler manifold is that the recurrence vector fields, cor­
responding to hybrid tensors, are equal, i.e. wt =  w*.

Theorem (2.5). I f  the differential form
Fjffi&Ad?

is closed in an almost Tachibana recurrent manifold, then an almost Kaehler manifold, 
in which the complex srtucture is recurrent, satisfies
(2.13) VjFih+viFhj+ vhFji = 0.

P roof. Equations (1.5), (2.1) and the expression Fjih = 0 will give the result. 3

3. Almost Tachibana bi-recurrent manifold

D efinition  (3.1). An almost Tachibana manifold is recurrent of second order,
i.e., almost Tachibana bi-recurrent manifold if it satisfies the relation
(3.1) VffijF? = akjF>'
where akJ is a non-zero recurrence tensor field.

Using equations (2.1) and (3.1), the recurrence tensor field can be expressed in 
terms of recurrence vector fields, i.e.,
(3.2) akJ =VkVj+vkVj.

Acta Mathematica Hungarica 56, 1990



ALM OST TACHIBANA RECU RRENT M A N IFO LD S 7

Theorem (3.1). Every almost Tachibana bi-recurrent manifold implies that there 
exists an almost Tachibana recurrent manifold o f first order.

Proof. Equations (2.1), (3.2) give the above conclusion.
Theorem (3.2). The recurrence tensor field is symmetric, i f  in almost Tachibana 

recurrent manifold the recurrence vector field is gradient, i.e.,
(3.3) \v j - V jV k =  0.

P ro o f . Interchanging the indices к  and j  in (3.2), we get the result.
In an almost Tachibana bi-recurrent manifold, the Nijenhuis tensor yields the 

recurrence tensor field such that
(3.4) V,VkNjih =  bklNjih 
in which
(3.5) bkl = akl
under the coordinate system х‘=х'(^).

Equations (2.1), (2.6), (2.8), (3.1) and (3.5) yield the following identity:
(3.6) aklN / +4 (VtVk V f A*+8 (V* vfi vt A? + 

+S[(V,Vj)vk+(Vlvk)vJ]Aih+16vkVjV,Aih =  0.
A killing vector is defined as a vector field vh (£) (Yano [8]) which satisfies
(3.7) VjVt+VtVj = 0 and Vtvl =  0.

In a recurrence vector field, equations (3.2) and (3.7) yield

(3.8) akJ + aJk = 2vjvk, 
from which it follows:

T heorem  (3.3). A recurrence vector field as a killing vector generates a local 
one-parameter group o f motions, i f

(3.9) vjvk = j ( a kj+ajk).

Theorem (3.4). I f  the recurrence tensor field is symmetric in an almost Tachibana 
bi-recurrent manifold, the recurrence vector field is a harmonic vector.

P ro o f . A harmonic vector is defined (Yano [8]) as a vector field which 
satisfies

Vj- V̂ vj — 0 and V y  =  0.

Thus, Theorem (3.2) gives that recurrence vector field is a harmonic vector.
If recurrence vector field «*(£) is treated as a killing vector field (Yano [7], [8])

(3.10) & giJ= V Jvi+VivJ = 0.V

Acta Mathematica Hungarica 56,1990



8 S. К . D. DUBEY

Equations (3.8) and (3.10) give
(3.11) Segtj = akJ+ a jk-2vjVk =  0, 

which yields the following:
Theorem (3.5). A necessary and sufficient condition that an almost Tachibana 

bi-recurrent manifold admits a transtitive group of motions i f  it satisfies the relation
(3.12) akJ+ ajk—2vjvk — 0.

Theorem (3.6). In an almost Tachibana bi-recurrent manifold, the Ricci identity 
relating to recurrence tensor field can be expressed as

(3.13) akjFih+KkJitFth = ajkF?+FkJthFit.
Proof. Equations (1.18) and (3.1) yield (3.13).
Applying the conctraction with respect to к and h in equation (3.13), equa­

tions (1.19) and (1.1 Od) yield
(3.14) a, j F* = KJt FI—Hn 
and
(3.15) OfjF* =  (KJt—K*t)F‘, 

which gives the following:

Theorem (3.7). In order that Kjt =  Kft in an almost Tachibana bi-recurrent mani­
fold, it is necessary and sufficient that

a,jF‘ =  0 (a,j jí 0),

i.e., it reduces to an almost Kaehler manifold.

The Ricci-recurrence identity (3.13) can be expressed as

(3.16) akjFih =  ajk Fih -  Kkj< Flh -  KkJh' Fit, 

that is,
(3.17) akjFih =  aJt Ftlk + KkJlt Fh{ -  Kkjht F? 
which yield the following:

Theorem (3.8). I f  the recurrence tensor field is an almost Tachibana bi-recurren 
manifold, the following identity holds

(3.18) Kkj itFh = KkjhtFi.

We take a contravariant almost analytic vector field wh, in such a way that 
(Yano [7], [8])
(3.19) F£Fi = w* V, Fb—Ff* V, w*+ F,h V,- w‘ = 0.

V

Acta Mathematica Hungarica 56, 1990



ALMOST TACHIBANA R EC U RR E N T M ANIFOLDS 9

Using the recurrence vector field of equation (2.1) in (3.19), we have

(3.20) ■SfF/1 = w‘vtFih- F i,\',wh+FthViw‘ = 0
V

or
(3.21)

T heorem  (3.9). I f  a recurrence vector field can be expressed as a contravariant 
almost analytic vector field in an almost Tachibana recurrent manifold, then it satisfies

Proof. We take w'=rf in equation (3.21). Thus, in a 2/i-dimensional almost 
Tachibana recurrent manifold, equation (3.21) and v,v,=2n give the required 
expression.

Theorem (3.10). I f  the recurrence vector field can be expressed as a contravariant 
almost analytic vector field in an almost Tachibana bi-recurrent manifold, then

P ro o f . Equations (3.1) and (3.22) yield the identity.

4, Point-wise constant type almost Tachibana recurrent manifold

An almost Tachibana manifold has pointwise constant type (Yamaguchi, Chu- 
man and Matsumoto [6], Gray [2]) if and only if there exists a scalar function a such 
that

Now, we have
Theorem (4.1). An almost Tachibana recurrent manifold has point-wise constant 

type i f  and only i f

Proof. Equations (2.1) and (4.1) yield the required result.
The almost complex structure F in  a special almost Tachibana manifold is a 

special killing 2-form with constant a (^ 0 ) if

(3.22)

(4.1) VfcF/V.F^+V.F/VtF,,,. = a (2gklgjh -  gkh gJt -  glh gJk + Fkh Fyi + Fih Fjk).

(4.2) vkv,Ff Fhr-^ -(2 g kigjh- g khgji-g ihgjk+FthFji+FihFjk) =  0.

(4.3) VkVjFih =  -  a (gkj Flh -  gk Fjh ~  gkh Fjfi

Equations (3.1) and (4.3) give

(4.4)
Now, we have

ak j Fih+ a (gk j Fih — gkiFJh + gkh Fji) =  0.

Acta Mathematica Hungarica 56, 1990



10 S.K. D . DU BEY : ALMOST TACHIBANA R E C U R R E N T  M ANIFOLDS

T heorem  (4.2). A special almost Tachibana bi-recurrent manifold is a special kill­
ing 2-form with a non-zero constant a. i f  it satisfies
(4-5) (VfcWj+ v kVj)Fih+ a (gkJ Fih -  gkiFjh+ gkh Fß)  = 0,
i.e. it is o f point-wise constant type.

P ro o f . Equations (3.2), (4.1), (4.2) prove the theorem. The equations (Gray [2])
(4.6) VjF„VtF” = R ji-R ß  
and (2.1), give
(4.7) vfljF .F - = RJt-R%  = 2(n— l)<xgji, 
which can be written as
(4.8) VjFihv>Fih = R — R* = 4n(n-l)oc 
where R* = RjigJi.

Takamatsu [5] has obtained the following identities
(4.9) (RJt -  R%) (Rji -  5 R*J‘) =  0, 
and
(4.10) (Rß-RjiH RF-R**) = 4RkjihOishrRkjsr.
Thus, we have

T heorem  (4.3). A special almost recurrent Tachibana manifold (non-Kaehlerian) is 
an almost Tachibana recurrent manifold (n>  1) with point-wise constant type whose non­
zero scalar function has the form
(4.11) a =  R/5n(n— 1).

P roof. Equations (4.8), (4.9) and (4.10) prove the theorem.
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LIMITING DISTRIBUTIONS OF ADDITIVE 
FUNCTIONS IN SHORT INTERVALS

K.-H. INDLEKOFER (Paderborn)

1. Introduction. In this paper we investigate the question of what choice of y = 
—y(x) insures that the real-valued functions f y(n) possess a limiting distribution in 
the interval x —y ^ tv ^ x  (>^x). Here we consider the two cases

(1) fy(n) = f(n ),
where /  is an additive function, and

f ( n ) - A ( y )
(2) fy O ) B(y) ’
where/is strongly additive and

(3)
If we put

(4) FXlJ(z) :=y-*  Z  1>x—y<n^x

A { y ) : = Z ^ - ,  B4y):=  Zpsy P рву
P(P)

P

then the question about the (weak) convergence of the distribution functions FXyy to 
a limit distribution F is equivalent to the question concerning the convergence of the 
characteristic functions 5

(5) <Px,y(t):= Г*1 Z  e“fy{n)X—ycn^X
to the characteristic function cp{t) of Fas у tends to infinity. Then <p(t) is continuous 
in a neighbourhood of (=0 and <p(0)=l. Therefore the problem we have posed is 
equivalent to the investigation of the y’s for which the sum in (5) converges to a non­
zero limit for all sufficiently small t.

Letf y—f  be an additive function. We show that one may choose y= xh(x\  where 
/z(x) =  l — e(x) with e(x)>0 and s(x)=o( 1) as x ->-<», so that the limiting distribu­
tion of an arbitrary real-valued additive function f(ri) in the interval x —y < n ^ x  
exists if and only if the limiting distribution of f  in the usual sense exists, i.e. if the 
conditions of Erdős—Wintner hold (Corollary 1). An example given by Bábu [1], 
p. 102, shows that this result is best possible. For, if г>0 is given, one can construct 
an additive function /  which fulfils the Erdős—Wintner conditions but possesses no 
limiting distribution in the interval x —x1~e< n ^ x .  Assuming that / ( p m)—0 as 

(m =l, 2, ...) we choose h(x)=o( 1) where о(1) depends on / (Corollary 2). 
Cases in which h(x) lies between these extremes are treated in Corollary 3.
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One of the few contributions in this area is due to Babu [2]. He showed that under 
the assumption

(6)

where

y~r ^  1 =  o(l) (у  -*-°°) for each в >  0,
р т Я х

l/(P m)l* £

(7) хя <  у  S  х for a fixed a >  0,
the limiting distribution in the interval x —y < n S x  exists if and only if the condi­
tions of Erdős—Wintner hold.

If у is chosen as in Corollary 1 then the assertion holds without condition (6). 
For smaller у  an obvious modification of our proof gives a sharper result (Corollary
4 ).

In the case f y= ( f—A(y))/B(y) we restrict ourselves to strongly additive functions 
belonging to the Kubilius class H  (see Kubilius [8], Chapter IV) and characterize the 
cases in which the limit distribution has variance 1 (Theorem 4). Again one may 
choose y(x)=x1_£(x) with s(x)> 0, and lim s(x)=0. Under further restrictionsJC—► 00
on f  (e.g. Lindeberg condition or max |/(p)|=o(B (x))) we obtain stronger results.V p^x V J
As a corollary we prove a result of Babu [3] concerning the limiting distribution of
co{ri) = 2, 1.

pin
For the proof of the results we investigate the asymptotic behaviour of cpxy (t). 

The methods used are elementary (sieve methods) and most of them were developed 
in the author’s paper [6] to characterize uniformly summable multiplicative functions. 
The results and proofs of this paper also give a characterization of multiplicative 
functions g of modulus of at most 1 whose mean-value in the interval x —y ^ n S x  
differs from zero (Corollary 4).

N o t a t io n . We say that a  strongly additive function / :  N -*  R belongs to the 
Kubilius class Я  if B(x)->»  as x-*°° and if there exists an unbounded, increasing 
function r= r(x) such that

log r(x) 
lo g *

0 and B(r(x))
B(x) 1.

2. Results. Theorem 1. (i) Let f y—f \  N — R be an additive function. I f  the distri­
bution functions Fxy possess a limit distribution as y=y(x)->-°°, then the series

(8) 2
i/(p)i=-i

9
P 2

i/(p)isi

P ip )
p 2

l / ( p ) l s l

f ip )
P

converge.
(ii) Let f y be defined by (2) and (3), where /<Е H. Further, let y=y(x)ssx! where 

e >  0. I f  the distributions Fx y possess a limi t distribution as у -*• со, then the distribution 
functions

Fx(z):= x  1 jn  ^  x: 
possess a limiting distribution.

f(n ) -A (x )  \\
B(x) "  II

Acta Mathematica Hungarica 56, 1990



LIM ITIN G  DISTRIBUTIONS O F ADDITIVE FUNCTIONS 13

In the following theorem we assume that the additive function / :  N —R satisfies 

f (p m) -* 0 as p m s l ,
This means that
{9) <5(x):= sup |/(p m) | \ 0  as x-*-°°.

iSp
Mow we determine a positive function A*(x), which is monotonic and tends to zero as 
x tends to infinity, by

(10) A*(x) = max (<5(х>/‘- '<>-), •
Then obviously

(11) <5(хл*(*)) s  A*(x).
Further we put

(12) A (x)e(x)A *(x), where A (x)\0  and q(x)-»°°  (x — °°), 

and choose

(13) h(x) >- 2ß1(x)A(x) where h(x) — 0 and £h(x) —► с о  (x —► ° ° ) .

T heorem  2. Let / :  N —R be additive, f  (pm)~*0 as p-»°°, N, and let the
series

(14) and 2 f ( p )

p
be convergent. I f  y ^ x hix\  where h(x)^2g1(x)X(x) is defined in (12) and (13), then,
as

(15) 2  eUfW = П fl ( 1 + 2  p-meû ) + o {  1).' P' m = lx—y<n^x

In the general case let f \  N —R be additive, and let the series (8) be convergent. 
Then there exists a sequence e ( /0 \0  (/? —» ), suchthat

Put

Then

2
l / ( p ) |S I

P(p)
p

1
£(P)

ST:= {pm: |/(p m)|2 >  £(/>)}.

( 16) 2pmi r

and \f(p m)\2<£(p) for рт$_вГ. Now define an additive function f  * by

_  m4 f/(Pm) if PmÍ ^
f  (pM o  otherwise

Acta Mathematica Hungarica 56, 1990
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and a multiplicative function gt by the Dirichlet convolution
(17) =  gt( '

Obviously, by (16),

2 --------------■= °°-„=1 n

If we determine <5 (x) as above (see (9)) by <5(x) :=sup \ f  *(pm)\ (i.e. <5(p)S(/'e(/))),
x S p

and if we put

\ m )  x-y _ x

then we prove the following
Theorem 3. Let f:  N ->- R be additive, and let the series (8) be convergent. With the 

same notations as above let y £ x A(x) such that, for every fixed t£ R,

(18)

Then

Z  = (y
--hi

°°).

(19) y-1 2  eitf(n) =  П fl (1 +  2  Р~те«^)+о{ 1).
x —y < n ^ x  p V p )  m = 1

The proof of Theorem 3 also shows that for y/m Sx6 (e>0) the estimation

с , ( Л ) « Л е х р (  2  M £ f c I U z / log 
\m )  m p ) m l

У_
mt psylm P

holds. Putting y ^ x 1_a*w with <5*(x)>0, lim <5*(x)=0, we obtain
X -* -o o

0% x)

i M i ) <= у

This leads to
m<--- hi

У

log x/y 
log y2/x У \ - 0 % x )

= o(y).

Corollary 1. Let f y=f: N ^ -R  be additive, and let уш х1̂ 0* ^  with (5*(x)>0  
and lim <5*(x) =  0. Then the distribution functions Fx y possess a limiting distribution

X-*- ° o

i f  and only i f  the series (8) converge.
Corollary 2. Let /  = /  and y ^ x h(x\  lim  h(x)= 0 as in Theorem 2. Then the

X -* -  o o

distribution functions Fxy converge to a limit law i f  and only i f  the series (8) converge. 
For a given sequence e (p ) \0  (p-+°°) let

(20) 2
I/Cp ’")I= 'c(p )

ptn oo.

Acta Mathematica Hungarica 56, 1990
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Further, let, if q, is defined as in (17),

(21)

for some (5>0. Then we have

\

Corollary 3. Let f y=f: N-*-R be additive, and assume that (20) and (21) hold 
for some sequence {г(р)} and some <5>0. Let y>o(x)x1''2 where g (x)-► <» as x —°°. 
Then the distribution functions Fxy tend to a limit law i f  and only i f  the series (8) con­
verge.

The proof of Corollary 3 follows immediately from Theorem 3 and the estimate

mJ  G\ i )  = y(Q(x)y 2 = °<y>-
У

Corollary 1 and the following result sharpen the cited result of Babu [2].

Corollary 4. Let f y=f'. N —R be additive, and assume that

(22) 2  1 = o(z) (z -*■ со) for each e >  0
pm̂ x

l/0>m) l s e
where z satisfies
(23) í̂/iogiogs ^  2  ^  х1-£(д:) (e(x) -► 0 as x -*■<»).

Then there exists a function h (x ) \0  (x-*■«>), such that for all у ̂ max (z, xh(x)) the 
distribution functions Fx y possess a limiting distribution i f  and only i f  the series (8) 
converge.

Next we consider strongly additive functions / of the Kubilius class H. We show
T heorem  4. Let f£ H  be strongly additive, and let y= y(x) as in Corollary 1. 

Further, let f y be defined by (2) and (3). Then in order that the distribution functions 
Fx y converge to a limit law with variance 1, it is necessary and sufficient that there 
exists a nondecreasing function K(u) o f unit variation such that at all points at which 
K(u) is continuous

1
BHx)

у  Z!M 
Д  p

Лр)сиВ(дг)

- K(U)

as x
It is not difficult to characterize the limit law in Theorem 4 under further asssump- 

tions, for example, if the analogue of the Lindeberg-condition holds. We restrict 
ourselves to the following special case.

Corollary 5. Let f :  N —R be strongly additive with the property

B(x) (max \f(p)\)(B{x)) 1 =  e(x)p^x

Acta Mathen:atica Hungaricy 56, 1990



16 K .-H . IN D LEK O FER

as x-+°°, where lim s(x)=0. Put h(x) = e2(x) q(x) with q(x) —*-00 —►oo ), and let
X -+ 0 0

f  be defined by (2) and (3). Then, i f  у  the distribution functions Fxy converge to
the normal limit law

F(z) =  -™L=- f  e~u*/2 du
\'2n

as y-~oo.

Remark. In the case f(ri)=a>(n)=2 1, we choose A(x)=(log log x) 1g(x)
P In

(e W  —*"00 ) and obtain a result of Babu [3]. For multiplicative functions our proofs give
Corollary 6. Let g: N — C be multiplicative with |g| = l. Further, let y ^  

^ x h(x\  where h(x) is defined as in Corollary 1. Then the following assertions hold:
(i) I f  the series

(24)
converge, then

(25) lim y~ 2 ^(«) = 77 C1 + 2  P~mg(pm)).
p V P '  m= 1

(ii) I f  the limit in (25) exists and is different from zero, then the series (24) con­
verges.

For the proof of Corollary 6 one observes that the convergence of (24) implies 
the convergence of

|Re g{p)—\\
P P

i.e. for “almost all p” g(p)-*T (cf. (16)).
3. Proof of Theorem 1. By laying the intervals

О с-уО ),*], ( x - y ( y ) ,  (х -у (х )~ У (х -у (х ) ) ,х - у (хУ \ ,  
etc. end to end, one sees at once that the asymptotic relation

2  e‘,m  =  (1 +o(l))y(x)cp(t)x~y(x)<.n̂ x
ensures that the relation

2 e u' M =(l+o(l))jc<p(/)
n^x

holds. By the well-known theorem of Erdos—Wintner (see, for example, Kubilius 
[8], Theorem 4.5) the series (8) converge. This proves (i).1 For the proof of (ii) one only 
has to show that

2  (ei,fy(n) — e^/M-acxD/BU)) _
x—y<n^x

1 The proof which we had originally for (i) was an easy consequence o f a large sieve inequality. 
The above proof was then suggested by Professor Kátai.
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holds for But this is an easy consequence of the facts that f£ H  and that f y
possesses a limiting distribution.

R emark. It is not difficult to prove a sharper result than (ii).
4. Proofs of Theorems 2 and 3. For the proof we use the methods from Indlekofer 

[6]. We put
{a„} =  {[x-y] + n: n S  y)

and an= bnd„ with
p(b„) == х;(л), q(d„) >  xx(xK

Here p(m) and q(jn) denote the largest and the smallest prime divisor of m, respec­
tively. We formulate the main steps of the proof as lemmata.

Lemma 1. Let ^  (Pi prime) and ][  pf‘^ix. Let t£ R.
i = 1

Then, i f  f  satisfies (9),

Я (1  + 0 , - «  =  1+0i = 1 (п(л-)) ’
where G fiC anc/|6),|^l (/=1, ...1).

P ro o f . It is obvious that, if л' is large enough,

Ж 1 + = exp ( 2  log (l + ®itf(pV)) =
i= l i=I

= exp ( I  i  Gitf(pV)\)+0  ( i  Itf(p?\*)).
i = 1 i = 1

The last two sums are
з*(уЛ

because of

(*«->)' and

Now, exp (—(log A)(logp)_1)/(log/i) increases monotonically. Therefore we have 
Lemma 2. For all x  the estimate

2  Р~г exp
P S I

log A'~|

logp J «  1

Lemma 3. Let z =xpi(*M(*). Then there exists a constant c such that

2  1
z < mp(ni)̂ w TM

<sc exp

holds with u= log z
log w for log X<W<XA(x).

2 Acta Mathematica Hungarica 56, 1990
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Proof. By an idea of Rankin [9] one shows, if £€(0,1/3) (cf. Indlekofer [6], p.
268)

p(m)̂ w Wl р(т)Ш\у

With a suitably chosen c we put

2  1 2  1 ( ^  1 , , )'T m -----= zTm — — « e x p  2 , - + Cly f - e  logz .
m)^w m Hml^vv \  z )  /71 'p g w  P )

logzlog-log W log IV

suchthat 0 < £ < l/3 , and the assertion of Lemma 3 holds.

Lemma 4. Let  y  = xh(x\  z = x e ^ < z 3/2 and p < xxix\  Then

2  1 = — П f l - —) { l+ 0 (ex p (-u (lo g -lo g lo g 3 n -2 )) +
n s y  P  q s p  v 4 )
*l*n

log y/p
+ O (exp(-\'\ogy/p)}

where u -
lo gp

Proof. This “fundamental lemma” follows from Theorem 2.5 of Halberstam— 
Richert [5]. We observe that

p  ~c ^ O )  ^  xei(x)Mx)/2 y j

Proof of Theorem 2. By Lemma 1 we obtain

2 e,v(a") =  2 е“/(Ьп) {1 +  0 0 ) }  =  ly + oiy).n^y n^y
We divide into two parts, with z= xe»(»WM. In I 12 we sum over divisors p of b„, 
where z<g-=z3/2 and q(bjp)>p(p). Then we have

^12 — 2 1.

"|Ь"’q (тг)

If we put p=ppx, where p=p(p), we obtain

T i2  =  2. , 2 2 12 2z z3/2— ----
P P

P(/*l) =

n^y
PiP\bn

and, by Lemma 4,
,(-5=-)

V f*l P )

1
^ 1 2  ^ y {  2  + 2  , 2  ~ — y(£  1 2 + ^ 12).

p^ log .x  logJC z z3/2 j^ l—-p ppillj^p

Acta Mathematlca Hungarica 56, 1990
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Concerning the first sum we use a method of Rankin (cf. Lemma 3) and get

v l l o g *  „  1
12<<Z (log logx)2 Д  <<:

p ( f i ) S l o g x

exp I -  д1 (x) Л (x) log x + lo g  log x —2 log log log x + c «

<<exn io g lo g x
as x —°°. For the second sum we use Lemma 2 and Lemma 3. Then

£1 2 «  2  P xexp c' — log —-p— -----1 <sclog<jĉ p^xa(x) '  log p  log p )

v  - 1  Í / ( e iW - i)  l o g x ^  л«  2 „ . p  1 exPI —c  --------1 -7 ----------- í o g ^ M - i )log P )

„  - i f  log xAW 1 ( logxA(x) 1
log V logp ) ( logp )

<кехр(—pj(x)) =  o(l) as
Next we prove an upper estimate for Zn . We have

I n =  2  e “m  2  1-
n^y

an,q  ^ - ^ - j > ; c A(Ä:)

log zp 1 logzp 1
)

<$c

b^z 
р(Ь)Шхл х̂^

b\an

Because of h(x)^-2g1(x)A(x) Lemma 4 implies

^ i  =  t  Д  , 2P̂  vA(x) V p ) ĥ Z
0i t f ( b )

P J  b^z b
p{b)^x^x)

{ 1 + 0 (1 )} .

For the innermost sum on the right side we obtain, using Lemma 3,

2b^z b

p i t f ( b )  p i t  f i b )

=  { 2 - 2  ) £ T -  
b z < b  0

р(Ь)^хл х̂  ̂ р(Ь)^хл х̂^

= Я . 0 +  2  P meUf<pm>) \ 0  iexp { Д  ~ - c ß 1(x) log Pi(x))}.

Hence, since F1 = L'11 +  2'12=Z11 + <9(>'(Ll2 + Lf2)) = .£l l+o(>’), we have

(26) cpx,y(t)=  П  í l - - ) ( l +  Í  p - meû ) + o ( \ ) .
р ^ х я(х) \  p )  m = l

Now, the product in (26) converges because of the convergence of the series (14), and 
Theorem 2 is proved.

2* Acta Mathematica Hungarica 56, 1990
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P roof of T heo rem  3. We use the decomposition (17). Then 

< P x ,y (0  =  У ~ г 2  g , { n ) e i , f 4 m )  =  Г ’ ( 2 й ( и )  2  ^ ( , )  +
x —y ^ n m ^ x  n ^ y  x  — y x

-------------—n n

+  2 e“f4m) 2 gt(n) =  t _1(^ i + ^ 2)-
д: „ x  — y  xm <----1  <n^ —у m m

In view of the assumption of the theorem we have X2=o(y). Concerning we use 
for n-cK the result of Theorem 2 and, for /г >77, the trivial esetimate

Then

2
e i t f* (m )

x  — y
n

X
—n

y_
n

У - г . =  ( ‘ - 7 ) 0 +  Íр ^ л- я ( х )  v  p  J  m = l
p - meitfHP-)) 2  - i ^ L  + o( 2

nsK гг
lg ,(« )h  

n á  и J 0 ( 1).

Letting 77—со we obtain

р^д-я(х) V p  J  m —1

which implies the assertion of Theorem 3 because of the convergence of the series (8).

5. Proof of Corollary 4. We assume that x(loBlog;0 1< р ^ х 1_£<х) holds with 
lim e(x)=0. By the assumption (22) there exists a function <5(x)\0 such that

7C -*- o o

(27) 2  1 = o(y) (y -«>).
l/(p™ )|S«(x)

Let be the set of all prime powers which are counted in (27) (y —<»). 
partial summation,

(28) 2 — í t

P»e** P
<  oo.

Then, by

If we use the above mentioned function <5 (x) in the proof of Theorem 2, and if we 
substitute the values /( / /" )  with pm̂ 3P* and x;(x)< p ^ x  by 0, we make an error of 
at most

<  2" 2 ” > = y 2  P~m+ t . 2  1 =o(y).X — у-<П=£х xA(x)<pm^y < pm̂ x
Pme&* n=o(Pm) Pme^*

This proves Corollary 5.

6. Proof of Theorem 4. The proof is about the same as in § 3. We only point out 
the necessary modifications, the rest of the proof is left to the reader. Further, we use 
Theorem 1, (ii), and Theorem 4.1 in Kubilius’s book [8]. Put

g(n) =  gi'/M/AM

Acta Mathematica Hungarica 56, 1990
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and define a strongly multiplicative function g* by
+ 1 1 if X c(-x)  <  P  ^  X

= tg(p) if prsxe(x),
where a(x)=o(l) as will be chosen later. Let yx \—xt(x). By the same methods 
as above we get

(29) y-1 2 g*(n) e- UA(̂ / B(̂  =  / 7  е- ьАгЖрХл»  [ l  +  1 ]  + 0 (1).
x—у<л^х Р=Уг '  P '

On the other hand

(30)
x—y<n^x

— 2 Я  s (p ) -e ‘, i t (A(y)/B(y)  —A(y1)/B(y1)) I

x —y- <n^x  p\n
Ух ^ Р—Х

If / £ / /  and if у and yx are larger than r(.x), we have A(y)/B(y) — A (y1)/B(y1)=o(l) 
(cf. Kubilius [8], Chapter IV). Thus the right side of (30) is at most

2  I П  g(p )-i\+ o{y)  <
x —y < « ^ x  p |«

У х ^ р ^ х

<  2  | Я £ ( р) - 1 | +  2 2  \ + o{y)= :I1+ I2 + o(y).
X — V < » =  x  р|и x —y < n ^ x

р(и)=У Ух-ср p\n for some p > y

For the first sum we use the estimate \е1Х — 11S |a| (a£ R) and obtain by the Cauchy— 
Schwarz-inequality

i i s l d  2  2^Ш«\*\у 2  ^
x —y < n ^ x  p\n & \ У )  У х ^ Р —У P  * * \ У )

р(пЫу Ух^р

Now, B 2(yx)B 2(у) = 1 +о( 1), and therefore, by a suitable choice of c(x), we obtain

(31) I t = o(y).
For the estimate of Z2 we observe that, if y > x 2/3, each n, which is counted in T2, has 
exactly one prime divisor p>y. Thus

(32) S  2
iSxty

1 <sc У
logy 2  i-

i S x l y log у (log x  log y) =  o(y)

if log x —logy=o(logx).
By the mentioned result of Kubilius and by Theorem 1, (ii), we only have to 

show that the condition in Theorem 4 is sufficient. Now, this condition implies (see 
[6], pp. 70—71), that the limit in (29) exists as y —°° and determines the limiting 
distribution. Thus, by (31) and (32), the theorem is proved.
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N ote. The author gave a talk on the results of this paper during the Oberwol- 
fach-conference on “Elementare und analytische Zahlentheorie” (September 21— 
September 27, 1986), and there he was informed by A. Hildebrand that a different 
proof of Corollary 1 is given in a forthcoming paper of Hildebrand on multiplicative 
functions.

References

[1] G. J. Babu, On the distribution of arithmetic functions, Acta Arith., 29 (1976), 97— 104.
[2] G. J. Babu, On the mean values and distributions o f arithmetic functions, Acta Arith., 40

(1981) , 63—77.
[3] G. J. Babu, Distribution o f  the values o f  со in short intervals, Acta Math. Acad Sei. Hung., 40

(1982) , 135— 137.
[4] P. D . T. A. Eliot, Probabilistic Number Theory, I. Springer (New York—Heidelberg—Berlin

1979).
[5] H. Halberstam, H.-E. Richert, Sieve methods. Academic Press (London—New York, 1974).
[6] K.-H. Indlekofer, A mean-value theorem for multiplicative functions, Math. Z., 172 (1980), 255—

271.
[7] K.-H. Indlekofer, Limiting distributions and mean-values o f  multiplicative arithmetical functions,

J. Reine Angew, Math., 328 (1981), 116—127.
[8] J. Kubilius, Probabilistic Methods in the Theory o f  Numbers, Amer. Math. Soc. Translations of

Math. Monographs No. 11. Providence, 1964.
[9] R. A. Rankin, The difference between consecutive prime numbers, J. London Math. Soc., 13

(1938), 242— 247.

( Received November 12; 1986)

UNIVERSITÄT — GH  PA D ER B O RN  
FA CH BEREICH  M ATHEM ATIK-INFORM ATIK 
W A RBU RGER STR. 100 
D —4790 PADERBORN

Acta Mathematica Hungarica 56, 1990



Acta Math. Hung. 
56 (1—2) (1990), 23—28.

ON SOME ULTRAPARACOMPACT SPACES

F. G. LUPIANEZ (Madrid)*

The following definitions are necessary in this paper:
a) A topological space X  is called zero-dimensional if X  has a base consisting of 

clopen sets ([6]).
b) A topological space X  is called perfectly zero-dimensional if X  is zero-dimen­

sional and every open cover of X  has a refinement consisting of open pairwise disjoint 
sets ([6]).

c) A topological space X  is called ultraparacompact if X  is T2 and every open 
cover of X is refined by some locally finite clopen cover ([2]).

It is known that a 7j or regular space is perfectly zero-dimensional if and only if 
every open cover of the space is refined by some discrete open cover ([6]), then a T2 
space is perfectly zero-dimensional if and only if it is ultraparacompact ([2]).

The Sorgenfrey line S (the set of real numbers topologized by the base — 
= {[a, b)\a, b£ R, ж 6}) is ultraparacompact. Moreover every base for S  has a dis­
crete subfamily covering S  (see 1.1 in [1]). Nevertheless, there exists bases for S  with­

out discrete subcovers, for example, the base ^*=j[n , h ) \j-^ 4 ^ j|[ű , .
This motivates the study of some classes of ultraparacompact spaces.

D efinition  1. We will say that a topological space X  verifies property (P0) if 
X  is T2 and every base for X  has a discrete subfamily covering X.

R em ark s. l .A  T2 space X  verifies property (P0) if and only if given any base 
& for X, every open cover of X  has a discrete subfamily of SA refining it and cov­
ering X.

2. If X  verifies property (P0) then X  is ultraparacompact. The Sorgenfrey line 
is ultraparacompact and does not verify property (P0).

3. There exist spaces which are not discrete and verify property (P0). In
fact, let A(m) be the space (X, T ) where Zis a set of cardinal m s l i0, r 0 a point in X  
and T  the family consisting of all subsets of X  that do not contain x0 and of all sub­
sets of X  that have finite complement. <

4. If a space X  verifies property (P0) then X  is totally paracompact. (A topol­
ogical space is said to be totally paracompact [4] if every base contains a locally 
finite covering.)

* The results in this paper are contained in the author’s Doctoral Dissertation, written under the 
direction of Professor E. Outerelo.
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5. If a space X is T2, totally paracompact andultraparacompact, in general, X  
does not verify property (P0). In fact let Q be the space of all rational numbers; 
the base 38={(a, h)lTQ|a, bdQ, of Q does not have discrete subcovers.

D efinition 2. We will say that a topological space X  verifies property (Px) if X  
is T2, zero-dimensional and every base 38 for X such that for each Bd38 В is open, has 
a discrete subfamily covering X.

R emarks. 1. Clearly all spaces that verify property (P0) also verify property (P,), 
and all spaces that verify property (P,) are ultraparacompact.

2. A T2 space X  verifies property (Px) if and only if it is zero-dimensional and 
given any open cover Ü of X, every base 38 for X  such that for each Bd38 В is open, 
has a discrete subfamily refining }U and covering X.

3. If a space X  verifies property (Pj), in general, X  is not extremally discon­
nected. In fact, in A(m) let U be an open set which does not contain x„ and has 
infinite complement; then U = U U {x0}.

Proposition 1. I f  a space X  verifies property (Pi), then for every base &  o f X  such 
that for each Bd38, В is open, there exists a base 38' o f X, contained in 38, such that for 
each В 'сЖ  is B '=B'.

Proof. Let 38 be a base of X  such that for each Bd38 В is open. Then, since X  is 
regular, 38* — {B\Bd38} is a base of X. Let Ж  = 38C\38* = {Bd38\B=B). 38' is a base 
of X, in fact: let Bd38 and x0dB then there is B f38  such that x0dB1a B 1czB.

= {Л } U {Х\Л,} covers X, then there exists "fez 38 which refines aU and is discrete 
(then Hence there exists B ' d f  suchthat x0dB' = B'. Since'C refines °U, we
have that B'czB  or B 'c z X \B 1, and since x0dB', there is x 0dB'<zB and B'd38'.

Theorem 1. I f  a space X  verifies property (Pj) then X  is locally compact or X  has 
infinitely many isolated points.

Proof. Since X  is zero-dimensional, there is a base 38 of X  consisting of clopen
sets.

Let Bd38, then, since В is closed in X, we have that В is compact or is not count­
ably compact (because X  is paracompact).

Let Bd 38 not countably compact then there exists a sequence S = (x„)„ f, N in В 
without cluster points in X  (because В is closed). Let Cs be the set of all cluster po­
ints of S.

Let 38f = {B% =B\S\Bd38  is not compact and there exists a sequence S  f  В 
with Cs =  0}, 38Z = {Bd38\B is compact} and 38* = 38%\338? .

We will prove that 38* is a base of X.
38* is a family of open sets because, if S  does not have cluster points, then .S is 

closed in B, and Bg is open in X.
Let A be an open set of X  and let xdA. Then there exists Bd38 such that В is 

compact and x d B ^ A  (and so Bd38£a38*) or В is not compact for every Bd38 such 
that x d B c A .  In this case, there exists В d 38 and S = (xn)niN<^B suchthat Cs = 0, 
{x„|h£N}?í .8 and xdBe:A. If x£{x„|/z£N} then there exists nx=max {n|x„=x} 
(because x$Cs). Let ym=xm+„x, then .S'= (>’„ ) „ is a sequence in B, Cs, = 0, 
x${y„|n£N} and xdBg.czB (where ß y c J f c f * ) .

If x${x„|n£N} then xdBgCiB (and Bsd38f(z38*).
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Thus, 38* is a base of X.
For every /?*£ 38*, B* is open in X:
If B*£38 q then B* = B£38 and В is compact. Then B*~B= B  isopen.
If B*^38k then B*—B s ,  where B£38, В is not compact, SczB and Cs =  0. 

We have that S  is closed in В (and also in X). Let S1 = { x fS \x k is an isolated point 
of В } and S2 — { x fS \x k is an accumulation point of B}; clearly S = SkU S2 and 
5’1П5,2=0. Then B \ S = B \ S 1; in fact, if x £ B \S  then x£B=B; if x is in S lt 
then {x} is open in X and x $ B \S ,  thus x £ B \ S \ . Conversely B \ S 1= (B \S )C  S2 
and B \ S a B \ S ;  letxdS^ then, for each open neighbourhood Ux of х,(С/х\{х})П  
П2М0; since S  is closed in X, Cfx\(*S'\{x}) is an open neighbourhood of 
x in I  and we have that (C/x\.S )n fM 0  and Ux C l(B \S )F 0; then x £ B \S  and 
S2czB \S . Thus B \ S = B \S 1. Since Sk is closed in В then B \ S  = B’ is open in В 
(and also in X).

By the hypothesis X  verifies property (P,), then there exists a discrete subfamily 
У* of 38* which covers X. If for each В*£У*, B*£38g, then X is locally compact. If 
there exists В*5СУ* then for every xk£S, xkdB, hence there is В*£У* such that 
xkdB*. Since У* is discrete, we have that В*Г).В£ = 0 and xk£B* (ABcS. Thus xk 
is an isolated point of X  (for every k£ N).

R emark. The Sorgenfrey line, the space of rational numbers and the space o f 
irrational numbers are ultraparacompact spaces and do not verify property (Pi).

Proposition 2. (a) Every closed subspace o f a space which verifies property (P0), 
also verifies property (P0).

(b) All spaces which verify property (P0) are C-scattered.
Proof, (a) Let X  be a space which verifies property (P0) and let F be a closed of X, 

Let 38 be a base for F. Then 38* — {G\G is open in X  and G D F=0 or GC\F£38} 
is a base for X, and let У* be a discrete subcovering of 38*. Clearly, y={BC\G\B^y*, 
B D F f Q} is a discrete subcovering of 38. Thus F verifies property (P0).

(b) Let X  be a space which verifies property (P0). From (a) it follows that all 
closed subspaces of X  verify property (P,) and, by Theorem 1, every closed subspace 
of X  is locally compact or has infinite many isolated points. Then X is C-scattered.

Theorem 2. For each cardinal number m S  K0 there exists a base 380 o f the Cantor 
cube o f weigth rtt, Dm, such that for every B^380 we have B — B\ for all Bk, B f3 8 {) 
such that Bk\ B 2 F 0 we have that BL\ B 2 is the union o f a discrete family o f members 
o f 38o, andfor every open cover °U o f Dm there exists a discrete refinement consisting o f  
members o f380.

Proof. Let /  be a set of cardinality m and D the two-point discrete space.
We define 380 = ( JJ AAAjCzD for all jfiJ, A-=D for each j £ j \F ,  where 

1 j€JFczJ is finite). 380 is a base of Dm.
For every JJ Aj of 380 we have JJ Aj= JJ Aj.

j i J  j i J  j i J
1. For all JJ Aj, JJ Aj£380 such that JJ A j \J J  Aj F 0, where Aj = D for

J C J  j i J  j C J  j i J
each j£ J \F ,  F is a finite set, Aj —D for each j £ J \H  and H  is a finite set, we have
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that JJ A j \  JJ Aj is the union of a discrete family of members of á?0. In fact, if 
iZJ jeJ

x=(x,-);t j€ JJ A j \ J J  Aj then there exists k£H  such that xk$A'k. Let for each 
j z j  j e J

j f J ,
Ia j , if J ^ k

j U M ,  if j  = k

thus [J A j \  JJ A'j= U ( /7 Ckj).
j Z J  j £ J  k £ H  j i J
Let P= U ( JJ Cj) > clearly P is finite.

к 6 H  j  6 J
For every p=(pj)JiHil-P* let

We have

if M H  
if jdH.

и  ( П  c )) =  U ( JJ Mf),
k Z H  j Z J  p € P  3 C J

because, if x  = (Xj)Jfj£ J] C) for some k f j l ,  then Xj£C) for all j f J  and Xj f Aj  
J C J

for all / (  H  (for some k£H).  Therefore (Xj)Jeli£ JJ C)cz P and XjfAj  for each
3ÍH

j$H,  thus there exists p£P such thatp=(pJ)j(H= (xj)j€H and Xj^Aj for eachy'iH  
and finally JJ MJ for some pP P. 

jcj
Conversely, if x = (M /M  JJ MJ for some p=(Pj)j£nc P, then there exists

j iJ
k f l i  such that PjZC) for each j£H,  and so there exists k cJ l  suchthat PjdAj for 
each j ^ H  and {pk} = Ak\A 'k. Since xf_MPj for each j f J,  we have that Xj fAj  for 
each Д Я  and {.v,} = {pjf for each j£H,  thus there exists k f H  such that {xk} = 
=  {pk\ — Ak\ A k and Xj£Aj for each jf.T, hence there exists k£H such that
xe П et­je J

Therefore we have
П  A j \  JJ A'j = u  ( I JMJ)

j £ J  j C J  p £ P  J C J

Now { JJ M f i piP is a discrete subfamily of 3&й. In fact, if p, p'£P are distinct,
jCJ

there exists j 0dH  such that pJOAPjo, and so M?0C\M%=0 and ( JJ М?)П( JJ M f )  —
JCJ JCJ

= 0; thus, the family {JJ  consists of clopen pairwise disjoint sets. Since
jcJ . ,

JJ A J \J J  A'j is clopen, we have that [JJ M?jpeP is discrete.
J C J  J CJ  j £ j

2. For any finite subfamily Bk, (where пШ 2) suchthat Z?i\U #,-И0
i =  2П

we have that B { \[J  Bt is the union of a discrete family of members of &0.
i =  2
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In fact, we proceed by induction: if n= 2 the assertion is proved above. Suppos­
ing the assertion is true for n — 1 members of 380, then

5 x 4 0  в, =  ( ß x X  U  Bt) \B n = (  u Bd) \B n = и  (Bd\ B n) =  и  (  и  в.)
i= 2  i = 2 <f£ß d £ 0  d € D  о € а й

where {Bd)dcn and {Ba}aiAd (for each d£ D} are discrete subfamilies of 360, thus 
{Ba\a£Ad, dc D) is a discrete subfamily of 36 a.

Finally, let °U be an open covering of Dm. Since 360 is a base, there exists a finite 
refinement {By, B„}cz360 of aU. Then

z>m =  Ű Bt =  LI (Bt\  и  Bj)
1 =  1 i =  l

and from paragraph 1 it follows that there exists a discrete refinement of °ll consisting 
of members of 380.

R em ark . For every cardinal number m § ü 0, the Cantor cube of weight m 
does not verify property (P0) :

Let /  be a set of cardinality m, let 380 be the base of Dm defined in Theorem 2 
and let

® = {  П  ^ \ W | - v €  П  Aj, ]J Aj-e^oj-
jiJ  h j  jeJ

Clearly, 36 is a base for Dm and does not have discrete subcovers.
This motivates introduction of a new class of ultraparacompact spaces.

D efinition 3. If Xis a zero-dimensional T2 space, we will say that X  verifies 
property (P2) if for every open cover ÚU of X  and for every base 36 of Z  such that

(i) for each В £36 we have B —B,
(ii) for all B1,B 2£36 suchthat BL\ B 2 ̂  0 we have that B ^B ,, is the union of 

a discrete family of members of 36;
there exists a discrete refinement "V of °U, consisting Mf members of 36.

R em ark . If X  is a zero-dimensional T1 space, there exists a base verifying asser­
tions (i) and (ii).

P roof. 1. If w(X) is finite there exists a finite base of X; since X  is Ty it follows 
that X  is finite and discrete. The base consisting of all subsets of X  verifies assertions
i) and ii).

2. If n '( f ) = m s s 0 then X  is embeddable in Dm. Let 360 be the base for Dm 
defined in Theorem 2. 360 verifies assertions i) and ii). Let 361={ВПХ\В£360, 
2?nTV0}, Clearly 36x verifies assertions i) and ii).

Proposition 3. Let Xbe a C-scattered and ultraparacompact space, then X  verifies 
property (Pa).

Proof. The proof is completely analogous to the proof of Theorem 3.1 in [7].

Proposition 4. Let X  be a zero-dimensional T„ second-countable space, then X  
verifies property (P2).
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P roof. From the above remark it follows that there exists a countable base 
verifing assertions (i) and (ii). Let Ш be an open cover of X. Let U for
some C/€^} = {jBn}„eN. Then X=  U B„= (J { B ,\  U Bt). For every u£N, B „ \ U F,

n £ N  n ( | N  i- cn  i< n
is the union of a discrete family of members of Xfi. Thus |J (F „ \ (J /?,) is the union

w£N i</j
of a discrete family "Vc  33 x (because Bn is clopen for each n£N). Finally, from the 
definition of {5„}„eN it follows that У  refines aU.

P roblems. 1. If X  is a space which verifies property (Pj) and F is  a closed sub­
space of X, does F verify property (Pi)?

2. Is every space which verifies property (Pj) C-scattered?

References

[1] E. K. van Douwen and W. P. Pfeffer, Some properties o f the Sorgenfrey line and related spaces,
Pacific J. Math., 81 (1979), 371— 377.

[2] R. L. Ellis, Extending continuous functions on zero-dimensional spaces, Math. Ann., 186 (1970),
114— 122.

[3] R. Engelking, General Topology, Polish Scientific Publishers (Warszawa, 1977).
[4] R. M. Ford, Basis properties in dimension theory. Doctoral Dissertation; Auburn Univ. (Auburn,

1963).
[5] P. Nyikos and H. C. Reichel, On the structure o f zero-dimensional spaces, Indag. Math., 37 (1975),

120— 136.
[6] A. R. Pears, Dimension Theory o f General Spaces, Cambridge Univ. Press (Cambridge, 1975).
[7] R. Telgársky, C-scattered and paracompact spaces, Fund. Math., 73 (1971), 59—74.

( Received November 13, 1986)

DEPARTAM ENTO DE G EO M ETRIA  Y TOPOLÓGIA 
FACULTAD DE M ATEM ATICAS 
UN1VERSIDAD CO M PLU TENSE DE M AD RID  
28040 M ADRID 
SPAIN

Acta Mathematica Hungarica 56, 1990



Acta Math. Hung. 
56 (1—2) (1990), 29—37.

ON THE CLASSES OF ALMOST HERMITIAN 
STRUCTURES ON THE TANGENT BUNDLE 

OF AN ALMOST CONTACT METRIC MANIFOLD

A. BONOMÉ, L. M. HERVELLA (Santiago de Compostela) and I. ROZAS
(Pais Vasco)

§ 1. Introduction

If (M , tp, £, t]) is an almost contact manifold, its tangent bundle T(M) is an 
almost Hermitian manifold with the Sasaki metric gD and the almost complex struc­
ture J defined by

J  =  cpH+rjv ®t;v — цн®£,н.

In this paper following the classifications of Gray—Hervella [2] and Oubina [3] 
for almost Hermitian an almost contact manifolds respectively, we study the type 
of almost contact structure M  acquires when we consider a particular almost Hermi­
tian structure on T(M) and conversely.

In § 2 we give the results that will be needed in the sequel. In § 3 we define the 
Kjqj -curvature identities. Taking into account that if M is an almost contact (almost 
Hermitian) manifold, M x R  is an almost Hermitian (almost contact) manifold, 
we prove that if M satisfies the A^-curvature (AT,-curvature) identity, then M X R  
satisfies the A) -curvature (A),,-curvature) identity. This fact allows us to obtain new 
subclasses of almost contact manifolds.

In § 4 we study the relationship among the different types of almost contact 
-structures on (M, tp, £, rj) and almost Hermitian structures on (T(M ),gD, J).

§ 2. Almost contact structures

We recall here the necessary results from the theory of almost contact structures.
A (2n+ l)-dimensional real differentiable manifold M of class C“ is said to have 

a (<p, C, ^-structure or an almost contact structure if it admits a field tp of endomor- 
phisms of the tangent spaces, a vector field £ and a 1 -form i] satisfying

íf(<Ü)= 1 » <р2 = - / + »

where I  denotes the identity transformation. Then rpc = 0 and tjcp=0; moreover the 
endomorphism tp has rank 2 n.

Denote by 3E (M) the Lie algebra of C“ -vector fields on M. If a manifold M 
with a (tp, «J, //)-structure admits a Riemannian metric g such that

g (cp X ,(p Y )^g (X ,Y )-t1(X)r,(Y)

where X, Y^3C(M), then M is said to havea(<p, <J, t], g)-structureor an almost contact 
metric structure and g is called a compatible metric. A manifold with a (tp, i ,  tj)-
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structure admits a compatible metric g. The 2-form Ф on M  defined by Ф(Х, Y) = 
= g(X , (pY) is called the fundamental 2 -form of the almost contact metric structure.

If V is the Riemannian connection of g, the exterior derivatives of ц and Ф are 
given by

2dr, (X ,Y ) = (V*r,) Y —(Vrr{)X, Зс!Ф(Х, Y , Z) = a (Vx Ф)(Y, Z

where a denotes the cyclic sum over X, Y, (M).
If {Xt, (pX{, £; i= l, 2, ..., n) is a local orthonormal basis, defined on an open 

subset of M, the coderivative of r, and Ф are computed to be

S f l = - 2  { ( V x r f X i  +  i K x r f v X i li = 1

0Ф(Х) = -  2  {(Ух.ФХЪ, x )+ (K x ^ X (p X h АГ)-(У4 ФЖ, x )).
>=i

On the other hand, being M  an almost contact metric manifold, M x R  is an 
almost Hermitian manifold with the almost complex structure J  defined by

and the metric

where X, Y ^ ^ (M )  and a, b are C“ -functions on M x R ■ Bearing this fact in mind 
and the classification of A. Gray and L. M. Hervella [2] for almost Hermitian mani­
folds, J. A. Oubina [3] gives a classification of almost contact manifolds. Mis said to 
be

1) Cosymplectic (C) if M x R  is Kahler (К),
2) Nearly-K-cosymplectic (N —K —C ) i f  M x R  is nearly-Kähler (NK=W1),
3) Almost-cosymplectic (A —C) if M x R  is almost-Kähler (AK=W2),
4) Semi-cosymplectic normal (S —C — N ) if M x R  is W3,
5) Trans-Sasakian (T —S )  if M x R  is Wt ,
6 ) Quasi-K-cosymplectic (Q — K —C ) if M x R  is quasi-Kähler (OK=W!®lV2),
7) Normal (N) if M x R  is Hermitian (H =W 3®WX,
8 ) Gy-semi-cosymplectic (Gx — S —C) if M x R  si I¥163lV3,
9) Almost-trans-Sasakian (A —T —S) if M x R  is W2®W4,

10) Nearly-trans-Sasakian (N —T —S ) if M x R  is W1@Wi ,
11) Gy-semi-cosymplectic (G2— S —C) if M x R  is W2 @W:i,
12) Semi-cosymplectic ( S —C) if M x R  is semi-Kähler (SK=W 1®W ,® lf 3),
13) Quasi-trans-Sasakian (Q — T —S) if M x R  is W1@W2@Wi ,
14) Gy-Sasakian (Gy — S )  if M x R  is G1 = W1®W3®Wi ,
15) G2-Sasakian (G2 — S )  if M x R  is G2=W 2®W3(BWi .
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On the other hand, if (M, h, J)  is an almost Hermitian manifold, M x R  can be 
endowed with an almost contact metric structure defining

„ ( * , 4 ) = W °); { - ( o , 4 ) ;  n{x , a ± ) - a ,

g{{x,a±),{y,b±]]-HX,YHab
and we have the same relations between almost Hermitian and almost contact mani­
folds that we pointed out above.

§ 3. AT,v -curvature identities

Let (M , (p, q, g) be an almost contact metric manifold and (A, / )  the almost 
Hermitian structure on M X R  previously defined. We shall represent by V and V 
the metric connections on M  and M X R  respectively and R and R their curvature 
tensors.

D efinition 3.1. We shall say that M  satisfies the K;9-curvature identity, i= 
= 1,2,3 if for all X,Y,Z ,W ^3C (M )

K1<p: R(X, Y, Z, 1V)= R(q>X, cpY, Z, W)
К : R(X, Y, Z, W) = R(tpX, <pY, Z, W)+R(q>X, Y, cpZ, W) + R(<pX, Y, Z, cpW)
K39 : R(X, Y, Z, W) = R(cpX, <pY, <pZ, <pl-V).
Theorem 3.1. M  satisfies the Kiq>-curvature identity, i f  and only i f  M X R  satis­

fies the К j-curvature identity (1=  1 , 2 , 3 ) .

Proof. Let {Z1, Z 2, . . . , Z 2„+1} be a local basis in a coordinate open set U in M,
then

{(Z l5 0), (Z2, 0), ..., (Z 2„+1, 0), (0 , -^-)} 

is a local basis on U xR  in M xR .
Because of the tensorial character of R, to prove the case 1 =  1, it will be suffi­

cient to show the equivalence for the elements of the basis. Thus, to prove that M x R  
satisfies the Kx -curvature identity, it will suffice to prove:

a) R (JX ,jT )(Z „ 0)= ii(X , Y)(Zi, 0), i = l,2 , ..., 2и+1
b) R(JX,JY)[o, -J^) = .R(£ У)(о, -^-j

where X  = ̂ Z, , Z=^Z, й-^-j are arbitrary vector fields on M X R.
Now, the curvatures R and R are related as follows:

# • 4 ) '  (r' 4 ) -  ( z . 4 ) ) - ( * ( T , T ) Z ,  ( ь х { ^ ) - ау { § ) +

+ a d(Y (cj) 
dt - b d(X(cj) db dc da dc\ d \

dt a dt dt dt dt j  dt J
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Taking into account this relation, we have

R(JX, JY )(Z t, 0) =  (R(<pX, q>Y)Zi~ a R ( f  <pY)Zi-bR(<pX, f)Z„  0).

R(X, f)(Z „  0) =  (В Д  Y)Zh 0).

But since M  satisfies the ^-curvature identity, R(£, X) = 0 for all X fX (M ) and 
then a) follows.

Case b) is verified trivially because both members are zero as a consequence of 
the relation between R and R mentioned above.

Conversely, let us suppose now that M x R  satisfies the ^-curvature identity, 
then setting X  — (X, 0), T=(Y, 0) for arbitrary vector fields X  and Y on M, and 
using again the above mentioned relation between R and R, the result follows.

The remaining cases (7=2, 3) are obtained through a straightforward computa­
tion like in the case / =  1 .

Bearing in mind that K^>K^>K3, this theorem leads us to the following
Corollary 3.1. Klip-curvature^>-K2ip-curvature^>-K3(p -curvature.

Now let (M, Я, / )  be an almost Hermitian manifold and consider on M X R  the 
associated almost contact metric structure (<p, £, i], g).

The following theorem is obtained similarly to Theorem 3.1.

Theorem 3.2. M  satisfies the Кr curvature identity i f  and only i f  M X R  satisfies 
the Kitp -curvature identity.

In the sequel we shall represent with the subindex up (/=1, 2, 3) the class of 
almost contact structures that satisfies the Kt,,-curvature identity. Using this notation, 
subclasses of almost contact manifolds appear and their relation with some of the 
already known is given in the following

Theorem 3.3. In the lattice o f almost contact structures the following relationships 
are true:

(i) C =C-íq>=C2q>—C3(p = {N К C)lip=(A C)lip,
(ii) N - K - C  = ( N - K - C ) 3<p= ( N - K - C ) 2<p^ C ,

(iii) N2<p = N3(pczN,
(iv) ( ^ с - ^ а д - с - а д
(v) C a N

(vi) N - K - C c ( Q - K - C ) 3„,
(vii) C c ( Q - K - C ) lv ,

(viii) { Q -K -C )3q>Q Q -K -C ,
(ix) (A -C ) i<fc z (Q -K -C ) iv (i = l, 2,3).

P roof. It is a consequence of Theorems 3.1 and 3.2 and the relation among the 
different kinds of almost Hermitian and almost contact manifolds, [2], [3], [4].
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§ 4. The tangent bundle of an almost contact manifold

d_
dx‘Let X = X Ч - 7-, со= со fix' be the expressions in local coordinates of a vector

field X  and a 1-form со defined in local charts (U, x ‘) on M  and let (x‘, y l) be the local 
coordinates induced naturally by (U, x‘) on T(M). Then the vertical lift of functions, 
vector fields and 1-forms is given by, [5]

df v = fon; X V = X ‘dx‘ ’ COУ - CO; dx‘

and the vertical lift of a tensor field can be defined using the formula (S® T )V= 
= S V® T V.

The horizontal lift is defined with respect to a given connection V on the base 
manifold by

/ н =  0; X H = X ‘ — rjsX hYs-jjL-; со* = rlsfco idx!'+coi dyi

where T ‘hs are the components of V, and the horizontal lift of a tensor field can be 
given using the formula

(S® T)B =  SV® TB+SH® T V.

Furthermore, if M  is a Riemannian manifold with metric tensor g  and metric 
connection V, T(M ) is also Riemannian and this with respect to the diagonal lift 
gD (or Sasaki metric) which is defined by

gD(XB, Y B) = gD(X v, Y v) = g(X, Y )v, gD(Xv, Y B) = gD(XB, Y v) =  0 

for all X, YeX(M).
Now we consider the metric connection VD of gD and we have

Theorem 4.1. The connection VD is determined by the following relations

(i) gD{WDxrYv, Z v)= gD(VxvYv, Z H)= gD(WxyYB, Z H) = 0,
(ii) gDV x»Y v, Z v)= gD(V ^ Y B, Z B) = {g(VxY, Z )Y ,

(iii) gD(V?vYn, Z B)= — 1/2 gD(yR(Z, Y), X v),
(iv) gD(VDx*YY, Z B) =  — 1 /2gD(yR(Z, X), Yv),
(v) gDY Dx»YB, Z v)= -H 2 g D(yR(X, 7), Z v), 

where yR(X, Y) is the vertical vector field given by

yR{X,Y) = [X,Y)B-[ X B, Y B}.

Let now (M, cp, tj,g) be an almost contact metric manifold (2n +  ^-dimen­
sional with metric connection V. Then, if we consider the (1,1) tensor field J  defined 
by

J = cpB+ i f  ® Y  -  чн ® t;H

the Sasaki metric gD is a Hermitian metric with respect to J  and we may conclude 
that (T(M ), gD, J ) is an almost Hermitian manifold.
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Taking into account the relationship between the curvature tensors RD and R 
of VD and V respectively, we may state the following

Proposition 4 .1. I f  (T(M), gD, J )  satisfies the Kr curvature identity, then 
' (M, (p, £, r\, g) satisfies the Krcurvature identity, for i=  1,2,3.

Next we study the relations among the different kinds of almost Hermitian struc­
tures on T(M) and almost contact structures on M, considering on T(M ) and M  the 
structures mentioned above.

Theorem 4.2. Let us suppose that the almost Hermitian manifold (T(M), gD, ,7) 
satisfies the K -curvature identity ( /= 1 ,  2, 3). Then

a) ifT(M ) is a Gx-manifold, then M  is a Ni(p-manifold,
b) ifT(M ) is a C?2  -manifold, then M  is a (G., — S )i(p -manifold,
c) ifT(M ) is a Wy © Wi -manifold, then M is a cosymplectic manifold,
d) ifT(M ) is a Q-K-manifold, then M is a {Q—K —C )i9-manifold.
Proof. It should be noted first that since M  satisfies the ^-curvature identity, 

we have
gD(yR (X ,Y ),iv) = 0, for all X ,Y £X (M ).

a) Since T(M) is a G^-manifold
g°{Vg(J) Y, Z ) + gD{V”(J)X, Z )  =  gD(yfx (J)JY, Z )T g D{V»fiJ)JX, Z)

for all X, Y, Z£IT(T(M)); in particular for X= Y=cH, Z = Z H weobtain У̂ ((?>)̂  =  0 
and setting now X = X H, Y—YV, Z = Z V the result follows.

b) By hypothesis

c{gDW (J )  к  Z ) —gD(Vfx(J)JY, Z )j = 0 
for all X, Y, Z^9C(T{M)).^

Then, setting X = X H, Y = YH, Z  = Z !1 in this expression we obtain that M  is a 
(G2 — S)-manifold through a straightforward computation.

c) Using a) we may deduce that M  is a normal manifold and therefore
Vfi(p)Y =  0, for Y id fM ).

On the other hand, since T(M ) is a Wy ©IT^-manifold we may write

gD( K x M J ) Y v,Z v) + gD{ V ^ x)H(J )J Y v, Z v) = 0.

and this together with the fact of being Vficp)Y= 0 and Theorem 4.2 leads to

g(VM<P)Y, Z )  — g (yx((p)q>Y, Z)-r,(X )r,(Y)g(V£, Z ) + t](Y)g(Vxf  Z ) = 0.

Substituting X  by <pX in this expression we obtain that M  is a Q—K —C-manifold, 
which together with being M  a normal manifold leads to the result.

d) From the definition of Q- К -manifold we obtain

g»(VxDn(J)Yv, Z v) =  - g D(V?(x»)( J ) jY v,Z v) 
and the result follows from theorem 4.1.
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Theorem 4.3. I f  (T{M), gD, J) is a (W1®W2®Wi)i-manifoId, then M  is a 
(Q — К ~ C )iip-manifold i f  and only i f  V ^  = 0.

Proof. The definition condition of (Wl ®W2®W4)i-mamf'o\d for vector fields 
((pX)H, Y v, Z v leads to the expression

g(VipX(q>)Y,Z)-g{Wx (<p)<pY,Z)+r,(X)g(Vt ((p)(PY,Z)+  
+*l(T)g<yxZ,Z)-ti(X)ri(r)g<ysS ,Z ) = o.

Substituting X  by cpX in this expression, we have
g((Vx (cp)Y,Z) + g ( V,*(cp)cpY, Z )-tj(Y )g (V vX f Z ) - n(X )g (V4 (<p)Y, Z ) = 0. 

Now
t](X)g(V4(cp)Y, Z) =  0 if and only if V(ij = 0.

Since T(M) is a (W1®Wi ®Wt)i-manifold g(Vfcp)(pY, cpZ) = 0 which is equivalent 
to

g{Wi (cp)Y,Z)+rl(Y)g((pV^,Z)+ t1(Z)gC7i Q,Y) = 0 
and the result follows inmediately.

Now, in order to study the case when M  is an 5 —/Г-manifold, we need the follow­
ing lemma.

Lemma 4.1. The coderivative o f the Kahler 2-form F o f (T(M ),gD, J )  is deter­
mined by

(i) дР(Хн)={0Ф (Х)}\

(ii) ^ F ) = { l ( W +  2  gD(yR(Eh <pEj), X V ) - { g ( y £ ,  X)Y,
i = l

where X  is a vector field on M  and {E2, <pEl , ..., <pE„, <?} is a local ortho­
normal tp-basis on M.

The proof follows directly from the definition of the coderivative and Theo­
rem 4.1.

Using this lemma we may state
Theorem 4.4. I f  (T(M ),gD, J) is an (S —K)r manifold then XI is an (S -C ) iip- 

manifold.
As a consequence of this theorem and Proposition 4.1 we have
Corollary 4.1. Let (T(Xf),gD, J) be an almost Hermitian manifold satisfying 

the Ki-curvature identity (i— 1, 2, 3).
a) I f T (M ) is a W1 © W3 -manifold, then XI is an (S —C — N)iv -manifold.
b) I fT {M )isa  W2 © W2 -manifold, then XI is a(G2—S —C )iip -manifold.
Finally, we point out some results about lifts of almost contact structures.
Theorem 4.5. I f  (XI, cp, c, tj,g) is a normal manifold satisfyng the Klv-cuvature 

identity, then (T(M ), gD, j )  is a Hermitian manifold.
Proof. (T(M), gD, J ) is a Flermitian manifold if and only if 

gDW ( J )  Y - \ f s{J)JY, Z) =  0 
for all JF, Y, Z^9C(T{M)\
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In order to prove this identity it will be sufficient to do it in the following cases:
(i) X = X V, Y = Y V, Z = Z V,
(ii) X = X V, Y  =  Y v, Z = Z " ,

(iii) 1 = X V, Y = Y H,Z = Z H,
(iv) X = X H, Y = Y V, Z = Z V,
(v) X = XH, F = F F, Z = Z H,

(vi) X = XH, Y —YH, Z = Z H.
(i) In this case £rD(v £ r(/)F F, Z v)=0 and the other term is also zero, because 

since M  satisfies the Klq> -curvature identity,

gD{Vjx-{J)JYv, Z v) = — (t](X))v {g( (cp) cpY, Z )Y +
+ {r1(X))v{g(Vi r1( Y ^ ,Z ) - f1(Z)g(V i r](Y )^

and since M  is normal V?<p=0 and V ^= 0  .
The proof in cases (ii) and (iii) is totally analogous to case (i).
(iv) Taking into account what we pointed out in case (i) we have

g ° y ° H( J ) Y \ Z v) =  {g(Vx (<p)Y,Z)Y, 

gDY ^ J ) J Y v, Z v) =  {g(V(<p)<pF, Z) — )i(Y)g(VlpX£, Z )Y
and the result follows from the fact that M  is normal.

(v) Using Theorem 4.1 and since M  satisfies the Klip -curvature identity, one can 
deduce that

gDY ^ ( J ) Y v, Z H) - g D(V?x» ( j ) J Y v, Z H) = n{Y)v {-g(VxZ, Z)+g(VvXZ, cpZ)Y
and since M  is normal the result follows.

(vi) In this case we obtain
g » y y { J ) Y H,Z H) = {g(Vx (v )Y ,Z )Y ,

gD(VjDx » (J )J Y H,Z H) =  {g(VvX(<p)cpY, Z )~ ,1(Y)g(V<pX£, Z)}v
and since M  is normal the proof is finished.

Therefore, we have
Corollary 4.2. I f  (M, cp, £, rj, g) is a cosymplectic manifold, then (T(M ), gD, J) 

is a Hermitian manifold.
Furthermore,
Theorem 4.6. I f(M , cp, £, i], g) is an almost contact manifold, the tangent bundle 

T (M ) with the almost Hermitian structure (gD, J) is an almost Kahler or a nearly Kühler 
manifold i f  and only i f  it is Kühler.

' -■--Я9
Proof. I f  (T (M ), gD, J ) were a nearly Kähler manifold, then it would also be 

a Wi 0  IVi-manifold and by Theorem 4.2, M  would be cosymplectic.
On the other hand, if (T (M ),g D, J ) were almost Kähler, we would have 

vgDYn(J)Y, Z) =  0 which for X й, Y v, Z v, is reduced to {g(Vx(r/))F, Z)}F=0 and 
M  would be cosymplectic. Then the result follows using the last corollary.
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T heorem  4.7. Let {Ег, ..., En, (pEx, ..., cpE„, <;} be a local orthonormal tp-basis 
on M. I f  (M, <jo, !;, r], g) is a semi-cosymplectic manifold such that V ^= 0  and
2  R(Et, cpE;)=0, then (T(M ),gD, J ) is a semi-Kähler manifold.
i — 1

P r o o f . Since M  is a semi-cosymplectic manifold, 5Ф=дг\=0 and Lemma 4.1 
leads to the result.
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QUASI-CONTINUITY OF MULTIVALUED MAPS 
WITH RESPECT TO THE QUALITATIVE TOPOLOGY

J. EWERT (Slupsk)

A subset A of a topological space X is said to be:
— semi-open, if there exists an open set U such that Ucz A c  Ü [8 ],
— semi-closed, if Х \Л  is semi-open [2, 3].
The union of any family of semi-open sets is semi-open [8 ]. The union of all 

semi-open sets which are contained in A is called the semi-interior of A; we denote it 
by s-Int A [2, 3]. From the definition it immediately follows that each semi-open 
(semi-closed) set has the Baire property.

Let F  be a multivalued map which assigns a non-empty subset F(x) of a top­
ological space Y  to each point x€X (for simplicity we will write F: X—F). For any 
sets A c X , B e  Y  we will denote [1]: F(A)= U (F(x): x£A}, F+(B) = {x£X:F(x)c 
cB ), F~(B) = {x£X: В(х)ПВ^0).

A multivalued map F: X—F is said to be:
— upper (lower) quasi-continuous at a point x0£X, if for each open set F c F  

suchthat F(x0) c F  (resp. F(x0) DV A0) and for each neighbourhood U of x() there 
exists an open non-empty set U ^ U  such that F(x)czF (resp. F (x)H V ^0) for 
each xeU x [1 0 , 1 2 [,

— quasi-continuous at x0 £X, if for any open sets V1, F2c  F such that F(x0) c
c F j  and F(x0) П F 2 A 0 and for each neighbourhood U of x0 there exists an open 
non-empty set t/ jC t/ suchthat F(x)<^Vy and F(x) ПК2^ 0  for [13].

Any single valued map f :  X —Y  can be considered as a multivalued map with 
values {/ (x)}. In this case each of the above three definitions gives the definition of 
quasi-continuity in the sense of Kempisty [6 ].

In the sequel the symbol EU(F), Et(F) and E,(F) will be used to denote the sets 
of all points at which a multivalued map F is upper quasi-continuous, lower quasi- 
continuous or quasi-continuous respectively. It follows from the definitions that 
F*(F )cFu(F)nF ,(F ); the equality does not hold in general [4].

A multivalued map F is called upper quasi-continuous (lower quasi-continuous, 
quasi-continuous) if it has this property at each point Equivalently F is upper (lower) 
quasi-continuous iff for each open set F c F  the set F+(V) (resp. F~(V)) is semi­
open. Similarly Fis quasi-continuous iff for any open sets V1, F2czY the set F + iF ^ n  
C]F~(V2) is semi-open [13].

Let X be a topological space and let Tq =  {U \H : U is open, H  is of the first 
category). Then Tq is a topology on X [5] which sometimes is called the qualitative 
topology.

L em m a  1 . Let X  be a Baire space.
(1) A set AczX is o f the first category i f  and only i f  it is nowhere dense in (X, Tq).
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(2) A set A d  X  is o f the first category i f  and only i f i t  is o f the first category in 
(X, Tq).

(3) A set A d X  has the Baire properly i f  and only i f  it has this property in (X, Tq).
(4) (X, Tq) is a Baire space.
(5) A set A d X  is Tq-semi-open (Tq-semi-closed) i f  and only i f  it is o f the form 

A = AX\ B  (A = AX UB), where Ax is semi-open (semi-closed ) and В is o f the first cate­
gory.

Proof. (1) follows from [5, Theorem 4]; (2) and (3) are consequences of (1). 
Property (4) follows from the assumptions and the definition of Tq. Thus we will 
prove (5). If A is Tq -semi-open, then there exists a set V fT q suchthat V d A d V (q) 
where Vм  denotes the 7^-closure of F. Thus F  =  U \H , U is an open set and H  is 
of the first category. The set Нг= Н С\и  is Tq-closed, so we have U dA \JH xd  
d  U \H (q)0 H X= (U \H )UH[q) =  Ü(q)d  Ü what means that is semi-open.
Assuming B = H f\A , Ax=AUHx we have A —A f\B ,  Ax is semi-open and В is of 
the first category. Conversely, let A = A X\ B  where Ax is semi-open_and В of the 
first category. Then there exists an open set U such that U dA xd  U. Since U— 
= JJ(q) = U \B <q'> and U \B d A 1\ B d U ,  the set A X\ B  is Tq-semi-open. For Tq- 
semi-closed sets the statement follows from above and the definition of a semi-closed 
set.

For a multivalued map F: X-+Y  by EU(F, Tq), EX(F, Tq) and E*(F, Tq) will 
be denoted the sets of all points at which Fis upper F4 -quasi-con tinuous, lower Tq- 
quasi-continuous or Tq-quasi-continuous respectively.

Theorem 2. Let X  be a Baire space and Y a regular one. I f  F: X-+Y is a multi­
valued map with compact values, then

Int (F„(F, Tq)C\EfiF, Tq)) d  EU(F)C]EX(F).

Proof. Assume that x0 6 lnt (EU(F, Fe)D Fi(F, Tq)) \E u(F). Then there exist 
opensets U0d X  and V d Y  suchthat F(x0)d V , х 0в C/0dIn t (EJF, Tq)C\Ex(F, Tfi) 
and each open non-empty set U dU 0 contains a point xu for which F(xu) П 
D (F \F )? í0  holds. Let us takean open set W d Y  satisfying F(x0)d lV d W d V . Since 
x0 6 F„(F, Tq) we have F (U \H )d  W  for some non-empty open set U dU 0 and a set 
of the first category H. The set U contains a point x u satisfying F(x„ )D (T \F )F 0 . 
Hence x fiH  and F(x„)П(T \ Í T ) 0. The lower Tq-quasi-continuity of F a t  xu 
implies the existence of a Tq-open set Q A A d U  such that

(* )  F (x ')n (F \lF )  *  0 for x'eA .

On the other hand because A is of the second category we have А Г )(Ц \Н )^0  and 
F(A П (U \H ))d  W, what is a contradiction to ( * ). Thus we have shown

Int (EU(F, Tq)ClEx(F, Tq)) d  EU{F).

Now let us assume x0£lnt (F„(F, F4)n F 1(F, T fi) \E 1(F). Then there exist open 
sets V d Y  and U0d X  suchthat Т(хо)П К ^0, x0 6 C0cIn t (F„(F, TfiD EfF , Tq)) 
and each open non-empty set U d U 0 contains a point xu satisfying^ F(xu)d  Y \ f .  
Let y0 6 F(x0) n F  and let Vxd Y  be an open set such that yo^VxdVxdV. Since F
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is lower Гв-quasi-continuous at x0 there exist a non-empty open set UxczU0 and a 
set M  of the first category such that

The set Ux contains a point x x for which the inclusion F(xx) c  y \ F t holds. The con­
dition x ^ E u(F, Tq) implies that there exists a T^-open set 09i A c U 1 such that 
JX ^cT X T i. The set A is of the second category so АС\(Ух\М)т±0 and 
f (a C](U1\ M ) ) c:Y \V 1. But this is a contradiction to (** '). Hence we have 
Int (E fF , T^ClEfF , T ^ c zE fF ) ,  what finishes the proof.

Corollary 3. Let X  be a Bab e space and Y a regular one. A multivalued map 
F: X-»Y with compact values is lower and upper quasi-continuous i f  and only i f  it is 
simultaneously lower and upper Tq-quasi-continuous.

For single valued maps we obtain a known result:
Corollary 4. Let X  be a Baire space and Y a regular one. A single valued 

map f :  Х—У is quasi-continuous i f  and only i f it  is Tq-quasi-continuous.
Let us observe that the regularity of the space Y in Theorem 2 is essential.
Example 5. Let X  be the set of real numbers with the natural topology, О the set 

of rational numbers and let Y  be the set of real numbers with the topology т = 
= {(a, со): aí7}U {0, 7}. A multivalued map F: X —Y  is defined as

Then F has compact values and it is upper and lower Tq-semi-continuous. Bur 
F _((l, ° ° ) )= A \g , F +((—2, 2)) =  <9 are not semi-open, so F is neither lower not 
upper quasi-continuous.

Theorem 6. Let X  be a Baire space and Y a regular one. I f  F: X-+Y is a multi­
valued map with compact values, then Int E,(F, Tq)c:E*(F).

Proof. Suppose x0£lnt E*(F, Tq)\E*(F). Then there exist open sets U0crX

open non-empty set UczU0 contains a point x u for which F(xu) \ V 1 or F(xu) П 
ПК2= 0 holds. Let y0€F(x0)fl V2; we can choose open sets Wx, W2c  Y  satisfying 
the inclusions F(x0)c lV 1c:W1(=V1 and y0 6 W2aW2c V 2. Since F is Tq-quasi- 
continuous at x0 there exist an open non-empty set Uc  U0 and a set H  of the first 
category such that F(x)cz Wx and F(x) П IV2 A 0 for xd U \H .  For some x ±f  U 
we have F(x1)n (F \lT 1)7i 0 or F lx^cyxJF ,. Assume that Е(х1)П (Т\И 71)^ 0 . 
It follows from the condition x x£E*(F, Tq) that there exists a non-empty Tq-open 
set A a U  suchthat Е (х)П (У \1У1)И 0  for x£A. The set H is of the second cate­
gory, so 0 A \ H c  U \H . Thus we have F(x) П (T\lFi) ̂  0 for x £ A \H  and 
F (A \H )czW 1, what is impossible. If F(xx)а У\РЁ2, then there exists a non­
empty Tg-open set Av<zU such that F(Aj)c: Y \W 2. The set A, is of the second 
category, so 07i A1\ H c U \ H  and F(A1\ H ) a Y \ f y i . On the other hand we 
have F(x)f]W 29i 0 for x £ A ^ \H  and this is the contradiction finishing the proof.

(* *) F(x) П И ^  0 for x£ UX\M .

F W = { .
[0 , 1] for x£Q 
[0 , 2 ] for x f X \ 0 .
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As Example 5 shows, the assumption of regularity of Y  in Theorem 6  cannot be 
omitted.

C o r o lla r y  7. Let X  be a Baire space and Y a regular one. A multivalued map 
F: X-*Y with compact values is quasi-continuous i f  and only i f  it is Tq-quasi-continuous.

If X  is not a Baire space, then the above theorems are not true.
Exa m ple  8 . In the set R of real numbers we denote by T  the natural topology, 

J f  — the cr-ideal of all subsets of Lebesgue measure zero and Т(Л') — {Ц \В  : U£T, 
Bd*V}\ then T(.Ar) is a topology on R, [5]. A set AczR is of the first category in 
(R, T(JA)) if and only if it is the union of a set of the first category and a set belonging 
to J i  [5, Corollary 1, Lemmas 3 and 5]. Every subsets of R can be represented as the 
union of a set of Lebesgue measure zero and a set of the first category [11, p. 5], so 
(R, T(jV)) is not a Baire space and (T(Ar))q contains all subsets of R. Therefore each 
multivalued map F:R-*R  is lower and upper (7’(A/'))i!-semicontinuous. Moreover 
for F given by

r[0 , 1] for x€[0 , l]fi£?
F(X) =  1[-1 ,0] for x£R \[0 , \]C\Q

we have F + = F ((0, 1)) = [0, 1 ] П Q& JC, so F is neither lower nor upper
F(^C)-quasi-continuous.

For lower or upper quasi-continuity only the theorem similar to Theorem 2 is 
not true. We will formulate some sufficient conditions under which lower (upper) 
Tq-quasi-continuity implies lower (upper) quasi-continuity. To begin with, we give 
some definitions.

Let ^  be the family of all non-empty open subsets of X, the family of all sets
of the second category with the Baire property and let U

A multivalued map F: X —Y  is said to be и-áí-continuous (/-Jf-continuous) 
at x0£X  if for each open set Vcz Y  such that F(x0) c F  (resp. Е(хо)П К ^0) and 
for each neighbourhood U of x0 there exists a set BZ& such that ß c  U ^and F(x) с. V 
(resp. F(x)lTF?i0) for x^B  [9].

A multivalued map F is said to be «-^-continuous (/-^-continuous) if it has this 
property at each point.

We use the symbols C„(F) and C,(F) to denote the sets of all points at which F 
is upper or lower semicontinuous respectively.

T heorem  9 [9, Theorems 1 and 2]. Let F be a multivalued map defined on a top­
ological spac X  assuming compact values in a metric space Y. I f  F is u-M-continuous 
(/-á?-continuous), then the set X \C ,(F ) ( X \C U(F)) is o f the first category.

For a set AczX  we denote by D(A) the set of all points at which A is not of the 
first category [7, p. 8 8 ].

T heorem  10. Let X  be a Baire space, (Y, d) a metric one and let F: X-*-Y be a 
multivalued map with compact values. I f

(a) F is upper (lower) T„ -quasi-continous,
(b) F - (F )c f i(F - (F ) )  (resp. F + (K )c /)(F ! (K))) for each open set F c  Y, 

then F is upper quasi-continuous (lower quasi-continuous).
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P roof. Let 36 be the family of all sets of the second category with the Baire prop­
erty in X  and let F be upper 7^-quasicontinuous. For each open set VczY the set 
F +(F) is Tq-semi-open. Thus for each open set UczX if F +(F)fl then accord­
ing to Lemma 1(5) it is of the second category and has the Baire property. From this 
it follows that F is и-áFcontinuous and by Theorem 9 the set X \C ,(F ) is of the first 
category. Let us take a point xd X, a neighbourhood U of x and an open set VczY
suchthat F(x)C\V^0. Then V=  (J Mn, where the M„ are closed sets and F~(V) =

n = 1

= (J F~(M„). The sets F~(Mn) are F9 -semiclosed, so they have the Baire property. 
/1 =  1

Thus F~(F) is a set with the Baire property; moreover the assumption (b) implies 
that UП F~(F) is of the second category. Hence F is /-.^-continuous and from Theo­
rem 9 the set X \ C U(F) is of the first category. So we have shown
(1) X\C„(F)C\Cl(F) is of the first category.
For each open set VczY the set F+(V) is Tq -semi-open, so F +(V) = A \H ,  where 
A is semi-open and Я  is of the first category. Since X  is a Baire space we have A \ H  = 
= Л is semi-open [2], thus s-Int F +(F) = s-Int í = I d F +(F). We have obtained

(2) F +(V) cz s-Int F +(F) for each open set V czY .

Now we are going to show that Fis upper quasi-continuous. Let x0dX  be any point, 
U0 a neighbourhood of x0, e0>0 and 0<2e<£0. We denote K(F(x0), s) = 
= U {K(y, a): y€F(x0)}, where K(y, e) is the open ball with center у  and radius s. 
Then it follows from (2) that x 0dA1 = U0C\s-Int F ' (K(F(xa), a)). Since A1 is a semi­
open set the condition (1 ) implies that there exists a non-empty open set UczAx 
such that

(3) F(x')czK(F(x"),s) for x',x"€U .

From the inclusion UczF+(K(F(x0), e)) we have F(xx)<zK(F(x0), e) for some xx<~U. 
This fact and (3) give F(x)czK(<F(x1), e)<zK(F(x0), e0) for xdU, i.e. F is upper 
quasi-continuous at x0. Now let F be lower Tq-quasi-continuous. Using similar 
arguments as in the first part of the proof we obtain that F is /-^-continuous. So 
from Theorem 9 the set X \ C U(F ) is of the first category. For an open set VczY  
such that F +(F)?í0 we denote:

К  = \ydV-. d(y, Y \ V ) >  1}  Mn = [ydV: d(y, Y \ V )  ^

where d(y, Y \ V )  is the distance of у from Y \V .  Then MnczW„+1ciM„+1(zV, 
for n ] and F =  (J W„= (J Mn. Moreover there exists n0 1 suchthat !Vn 0

n —1 n = l
for n ^ n 0. Let us take x 6 F +(F). The increasing sequence {1F „ :« ^ 1 } is an open 
cover of the compact set F(x), so F(x)czWnczMn for some n. Hence we obtain
F+(F )=  (J F +(Mn). The sets F +(Mn) are Tq-semi-closed, hence F +(F) has the 

/1 =  1
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Baire property. This fact and the assumption (b) imply that F  is и-á^-continuous. 
According to Theorem 9 the set X \ C 1(F ) is of the first category and consequently
(4) X \ C U(F)C\C1(F) is of the first category.
By the same way as (2) we can prove

(5) F _(F) c  s-Int F~(F) for each open set F c h
The conditions (4) and (5) imply the lower quasi-continuity of F, what finishes the 
proof.

In Theorem 10 the assumption (b) cannot be omitted.
E xa m ple  11. Let Fx, F2 : R-+R be multivalued maps given by

f[0, 1] for x£Q f[0, 1] for x £ R \Q
Fl(x) = l[0 , 2 ] for x £ R \Q , = l[0, 2] for xdQ.

Then F, is lower F(J-semicontinuous and F2 upper F()-sem icontinuous. Assuming 
F = ( —1, 2) and W =( 1,2) we have F+(V)c\lD{FÍ{V)), F2" {W)(tD(F^{W)). 
The sets F f (W) and F£(V) are not semi-open, thus Fx is not lower quasi-continuous 
and F2 is not upper quasi-continuous.
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AN INVARIANCE PRINCIPLE FOR DEPENDENT 
RANDOM VARIABLES

I. SZYSZKOWSKI (Lublin)

1. Introduction and notations

Let {X„,nS 1} be a sequence of random variables on a probability space 
(Q, F, P). Let F™ = g(Xí : Define two measures of depend­
ence by

<p(m) = sup {\P(B\A)-P(B)\: A£F", P(A) *  0, BdF~+m, n is 1},

i//(m) — sup I P(AOB)
1 P(A)P(B) AdF{, BeF„~m, P(A)P(B) ^ 0 , n S l j .

The sequence {Xn, й ё  1} is said to be /р-mixing or (//-mixing according as cp(n)-»0 
ori//(«) — 0, respectively, as Clearly a (//-mixing sequence is ^-mixing.

Assume EXn=0, for every n is i and let Sn= ^  X-t and sl=ES%.
i= 1

We will always assume that л2—°° as n—°°. Consider a sequence {/c„, /г=0} of 
real numbers satisfying 1

(1 ) 0  =  k 0 <  <  k 2 <  lim max (A:f—Ä:,-_X)/A:n =  0 ,
П oo

and for each й ё 1 define
— Sm„(t)/sn’ *£[0 , 1],

where m„(7)=max {7^0: fc;s?k„}. The function со->-)Т„((, co) is a measurable 
map from (Í2, F) into (Z>[0, 1], /?), where D[0, 1] is the set of all functions, defined 
on the interval [0 , 1], which have left hand limits and are continuous from the 
right at every point, and В is the Borel /т-field on D[0, 1] induced by the Skorohod 
topology (cf. [I]).

In this paper we present some sufficient and necessary conditions for the weak 
convergence, in D[0, 1], of the random elements {Wn, й ё  1} to the standard Brow­
nian process on D[0, 1], denoted by W  in the sequel. We give the invariance principle 
for nonstationary, mixing-type sequences under Lindeberg’s condition. This result 
improves the moment conditions used by McLeish and Peligrad in [6 ]—[11]. For 
example, we do not assume that lim sHn=a2>() and {T|, n ^ l}  is uniformly 
integrable. Moreover, we consider the processes {SmnW/s„, O s t s l ) ,  while the 
authors of the above mentioned papers have investigated the processes {S ^ /a n 112, 
O ^f^ l} . Thus we obtain a version for the dependent case of an invariance principle 
of Prohorov which treats the independent case under Lindeberg’s condition (cf. 
[1, Problem 1, p. 77]).
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2 . Results

The main results of this paper are given in the following three theorems:

Theorem 1. Let {X -t, / £ l}  be a centered ф-mixing sequence o f random variables 
having finite second moments, satisfying

(2) lim .VjT2 2  EXfI(\Xi\ >  £.9„) =  0 for every s =- 0
i =  l

and

(3) lim ŷ ~1( max E\Xj\) 2  <А(0 =  0.
П - + о о  1^  J = n  i _ i

Then
(4) W„ -► W weakly in £>[0, 1], n — <=>, 

provided the sequence {kn, n gt 0} satisfies (1) and

(5) s\ =  k„h(k„), where h: R + -* R + is a slowly varying function.

Theorem 2. Let {Xh /=1} be a centered ф-mixing sequence o f random variables 
having finite (2 + S)-th moments for some <5 >0,

(2') lim sk2- 5 2  В Д |2+г =  0
i = i

and

(3') 2 \^ ( i ) ] (2+mi+6)
1=1

Then, for every sequence {k„, n S 0} satisfying (1) and (5), W „ W  weakly hi D[0, 1],
as и-*-«>.

Theorem 3. Let {Xh /S i}  be a centered cp-mixing sequence o f random variables 
having finite second moments satisfying

(2") lim sy2(L 2  \Xi\I(\Xi\ >  £-0)2 =  0 for every e >  0,
i = i

and

(3'0 2  <P(0  <  °°-;=i

Then, for every sequence {kn, nSO} satisfying (1) and (5), the invariance principle 
(4) holds.

Remark 1. (i) If <p(l)<l, then condition (2) is necessary for the invariance 
principle. The proof of this fact is essentially the same as that given by Peligrad [11, 
Proposition 2.2].

(ii) Condition (5) (with {kn, nsO} satisfying (1)) is necessary for (4), too. In 
fact it is enough to apply the method presented by Herrndorf in [2, Remark 2.3]
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with some modifications (for a detailed proof see [12]). It is also worth noticing that 
condition (1 ) is equivalent (under kk/ ° ° )  to lim kn+1/kn = 1 .

R em ark  2. Let us observe that in our theorems we do not assume that lim s2/n = 
=  cr2 > 0. This condition, which seems to be very restrictive even in the stationary 
case, was considered by many authors as basic one (cf. [9], [8 ]). We also show that the 
mixing-rate conditions presented in [1, Theorem 20.1], [6 ], [7] and [8 ] may be wea­
kened. Out theorems extend all the above mentioned results ([2], [4], [6 ], [8 ]—[11]) 
to “essentially nonstationary” sequences of weakly dependent random variables.

3. Proofs

In what follows we need the following lemmas:
L em m a 1 ([11, Lemmas 3.1 and 3.2]). Let {X„, 1} be a sequence o f  random

П

variables, S„= 2  Xt. Suppose that for some b> 0, p£N , and a0> 0
i=l

(6 ) 4>{p)+ max P(|Sm- S ;| >  2~1ba0) S  if <  1.

Then for every a S aQ and m>p the following relations hold:

(7)
P( max |S,I > ( l  +  b)a) ^  P(|SJ >  a)/(l-r,)+ P (m ax \Xt\ >  b a /2 (p -1))/(1 - i ,)  

and for every Аша„

(8 ) ES2mI(S l >  (1 +2bfA) ^  (l-r i)- 'r ,( l + 2bfE S2mI(S i >  A) +
+ 4b~2( l —ri)~1p2(l+2b)2E  max X f l ( max X f >  (2p)~2Ab2).

L em m a  2 ([11, Proposition 2.1]). Let {Xn, nS 1} be a centered cp-mixing sequence 
o f random variables. Then, {max S2f s 2, nS l}  is uniformly integrable i f  and only
i f  {max Xf/sl, nS l}  is uniformly integrable.

L em m a  3. Let {Xh г =  1) and {{k„, nSO} be two sequences which satisfy the 
assumptions o f Theorem 1, 2 or 3. Then there exists a sequence {e„, n S l)  o f  positive 
numbers tending to zero which satisfies each o f the relations

(9) lim s - 4 - 1 2  EX?I(\X,I >  ensn) =  0 ,
;= 1

(10) lim j - 2 max E( 2  ХО(\Х,\ >  sns„)2 =  0,
П— oo I r S j & n  4 i =  1

( П ) max s ' 1I 2  Е(Х,Ц\X,\
i=k +1 = 7?) = <5„ for all n S  1

and for some sequence o f positive const ans —0 .
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Proof. It is easy to choose (using (2), (2') or (2"), respectively) a sequence e„iO, 
satisfying (9). Note that, by Lemma (1.2) [9]

j - 2 max E( 2  XtI(\Xi\ >  ens„)2 ^  s~2E( 2  |ATf|/(|A’i| >  ens„))2 rS ls jsn i=1 ;= i

S  г“ 2 Í  EXfI(\X,\ >  £„.v„) +  (l + ^ (l))(iB- 1 2  ВД1 I(\X,\ >  e„vj) 2 ^

and

Z E X f i m  >  e ,jJ + ( l  +  ̂ ( l» ( j . -4 - 1 ^£2Г?/(|ЛГг| > £„5„))2,
1= 1 1 = 1

max j - 1 1 2 ” =  ensn)Fi) S
i—h+ 1

S  max , - 1 2  а д /d ^ íl S  £„0 1 ^ ? ) - ^ / ( | 2 Г,.| s  £„vn)l +
i = k + 1

+4Г1 Í  |ЯВД|ЛГ,| e„J„)| =S max 2 s “ 1 ±  1К / - * ) В Д В Д | = M„)+
i =  l  1 ' i s i c s n  i = fc +  1

+ J .-4 - 1 2 E X fI { |2f;| >£„5„). 
1 =  1

Moreover, by Holder’s inequality and Lemma 1.1.8 [5]

max 2  xl>(i~F)E\Xi\lsn ==
I S k S n  i+ 1

^  ^ - ( 2 +г) ^  £,|Л';|2 +г)1/(2 +а)( 2 [iK0 ](2+a)/(1+á))(1+á)/(2+<5)
and

max i “ 1isten i  | t f ( * , / ( | * i |
í =  f c + l

£,^„))-£(2 Гг/( |2 Г;| ensn)F{\ = 2e„ 2  <P(0-
i =  1

Finally, taking into account the above inequalities, (9) and the assumptions of Theo­
rem 1, 2, or 3, respectively, we obtain (10) and (11).

P roof of t h e  T heorem s. We will apply Theorem 19.2 of Billingsley [1]. From 
the rp-mixing condition, by induction, it follows that Wn(t) has asymptotically inde­
pendent increments. (See the proof of Theorem 20.1 of [1].) Clearly EW„(t)= 0 and 
E W l(t)= s lJ s l^ t  as fl -►OOj according to (1), (5) and the Karamata representa­
tion of slowly varying functions (cf. Theorem 1.2 [13]). To complete the proof, we 
have to verify that {Wl(t), 1} is uniformly integrable and W„ is tight. But by
(2) it follows that {max Xf/s2, 1} is uniformly integrable, whence by Lemma 2,
we get the uniform integrability of {lF2(i), n s l}  for each t.
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Let {г„ n a  1 } be the sequence from Lemma 3. For every n ^ l ,  let
us put

JTni =  XtI(\X,\ == Ensn)/sn, Yni =  XJsn- X ni,

X'ni = Xni-E X ni, Z t(n) =  2  E(X'j\ Fj),
j =1

Útin) =  Í  Д ( В Д 0 ,
J =  i+ 1

and define the random functions

K it)  =  z m„w(n), i/ ; ( 0  =  u mjf)(ri),
m„{t)

K ( 0 = 2 x ni, w:{t) = wn(t)-w ;(t) , t€[o, 1].
=i

Obviously, for every tf[0, 1]

Wn(t) =  K it) -U 'n(t)+EWZ(t)+W"(t) 

and, for each n, Z'n(t) is a martingale. Let us observe that by Lemma 3

( 12)

(13)

(14)

sup \EW'(0| V 1 2  Е Щ К Щ  >  e„ 5 „ )  -  0,
O^r^l £=1

sup E {w :( t) -w :(s ) f  ^  4 sup £ (1C (0 )2 S  

4.vn- 2 max E{ ±  Ш \X,\ >  ад,))2 -  0,
1 - - / - П i =  l

sup E(U'M-U'„(s)Y  =£ 4 sup E(U'n(t)Y ^

S  80*+8(s-1 2 E \ X i\I(\Xi\> a nsn) Y ^ 0 .
i—1

Therefore on account of (12), (13) and (14) we get

(15) sup F(1F„(0-Z;(0)2 - 0  as и — ,
O á íS l

so that, for every ?6[0, 1] by the already proved relation EW2(t)-»t,

(16) E[Z'n(t))2 — t as n —

Now we show that the sequence {W„, h^ I}  is tight in £)[0, 1]. As 
P(lL„(0)=0) = 1, for the tightness of this sequence it is enough to prove (cf. Theo­
rems 19.2, 8.2 and 8.3 [1]) that for every e>0

(17)
U S - 1

lim lim sup 2  P( max
i ( 0 ; l /ä € t f  jT o  v i ä g s s ( i  + l)ä

\W.is)-Wn№ \> B ) = 0.
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Using (15), (16), the martingale property of Z'n(t) and the Markov inequality we have 
for any 0 , b > 0

(18) limlimsup max P((W„((i+1)<5)—Wn{s)y =- 4_1 b2 a) = 0.
<5 JO n-+ со O ^ i ^ l / ő  — 1 4 7

i ő ^ s ^ ( i  + 1)<5

Choose b, p, b0, and n0 such that for every <5<<5„ and n>n 0

(19) <p(p)+ ogmax_i Р((Ж„((/+ 1)<5)-1ВД) 2 >  4 ^ b 2«) =

=  rf (n, S, a) = rf <  1 and (1 + 2 Ь) 2 ; ; ' ( 1  — t/ ' ) _ 1  <  1 .
From (19) and (8 ) we obtain for every O s /s  l/<5 — 1
( 20)

£(i+ 2b).a№ ((/+ i)b)-ik„(/b) ) 2 == ( 1 + 2 b)V (i - ч ,) - 1£ .(» ;( ( /+ 1) г ) - ^ и(«))*+
m„((i +  l)3 )

+ (2 p ( l+ 2 b))2 b - 2 ( l - f? ' ) - 1 2  Ea m XZ/sl
k =  mn(id) + 1

where EaX=EXI(X>A). Moreover by (5), (15) and (16), for sufficiently small 
<5 > 0  we get

1 /3 - 1  1 /3 - 1

limsup 2  E(Wn((i+ l)ő )-W n(iő)y = 0 (  2  -5) = 0(1 ).
i= 0  i= 0

By (20), (5) and (2) it follows that
1 / 3 - 1

Hmsuphmsup 2  E(x+uvj j¥ a{{i+ \)ö)-W n{iö)f SÖjü i = o
1 / 0 - 1

^  lim sup Hm s u p ( l + ^ / j ' i 1 - ^ ) - 1  2  Ea(Wn((i+l)0)~W n(iS))2.3 |0  И—оо “ q 4

Because both sides of the preceding inequality are decreasing functions in a, and 
( 1  + 2 b)V(l —17')_1< 1 we obtain (a—0 ), for every s > 0

1 /3 - 1
(21) ljm limsup % P(\Wn({i+ l)$)-W n(i8)\ > a) =  0.

Now (17) is a simple consequence of (7), (2), (5), (18) and (21). Thus the proof of the 
theorems is complete.

Acknowledgement. I am indebted to the referee for many valuable comments.
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ON SOME DENSE COMPACT OPERATOR RANGE 
SUBSPACES IN SEPARABLE FRÉCHET SPACES

J. KAKOL (Poznan)

Introduction

Let E  be a (Hausdorff) topological vector space (tvs) and X, Y two closed sub­
spaces of E  with XD Y=0. If X + Y  is dense in £  (and X + Y ^ E ),  then X, Y are 
called (proper) quasi-complements [4]. In [2] Drewnowski obtained some extensions 
to F-spaces, i.e. metrizable and complete tvs, of results concerning the existence and 
properties of quasi-complements in Banach spaces. Among other things he obtained 
the following results:

(a) Every closed non-minimal infinite codimensional sub space in a separable 
F-space has a proper quasi-complement (an analogue of the Murray—Mackey theo­
rem).

b) I fX ,Y  are proper quasi-complements in a Fréchet space E, i.e. a locally convex 
F-space, then there exist quasicomplements M z^Y to X  such that dim (W/Y)=°°.

To obtain (b) Drewnowski first proved that whenever T  is a continuous not rela­
tively open linear operator from a Fréchet space F into a Fréchet space E, then E  
contains a closed infinite dimensional subspace N  with N f]T(F) = 0. Based on this 
result and inspired by Shevchik’s Theorem 1 of [5] we prove the following: If T: F— E 
is a continuous not relatively open linear operator from a Fréchet space F into a sepa­
rable Fréchet space E  with dense range, then for every infinite dimensional separable 
Banach space Z  there exists a compact injective linear operator Q -.Z ^E  such that 
Q(Z) is dense and Q(Z)C\T(F)=0 (a generalization of a result of Shevchik [5]). 
Making use of this we establish some property of quasi-complements in separable 
Fréchet spaces: If X, Y  are proper quasi-complements in a separable Férchet space 
E, then E  contains a dense subspace G zdY  with GniF=0.

Results

The following result extends Theorem 1 of [5].
P ro po sitio n . Let T be a continuous not relatively open linear operator from a 

Fréchet space F into a separable Fréchet space E with dense range. Then for every 
infinite dimensional separable Banach space Z  there exists a compact injective linear 
operator Q: Z^-E  such that Q(Z)=E and O(Z)f)T(F) = 0 .

It is known (cf. e.g. [6 ], pp. 253—254) that whenever G is a dense non-barrelled 
subspace in a Fréchet space E, then E  contains a dense non-barrelled subspace H 
(containing G) with a strictly finer metrizable and complete locally convex topology; 
hence the proposition has an equivalent formulation:
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(*) Let Z  be an infinite dimensional separable Banach space. Then for every dense 
поп-barrelled subspace G in a separable Fréchet space E  there exists a compact injec­
tive linear operator 0 \Z -~ E  such that Q(Z) is dense and G(~)Q(Z)=0.

We observe also (using a similar argument as in [1]) that the assumption “non- 
barrelled” cannot be replaced by “codim G=°°” .

P roof. By || . || we denote on E  an F-norm defining the original topology о IE. 
Using Drewnowski’s result (mentioned above, [2], Theorem 5.6) we find in F a  closed 
infinite dimensional subspace N  such that NC]T(F)=(). Choose in N  a linearly 
independent sequence (y„) with T|| yn\\ which is ш-independent, i.e. if (an)fl°° 
and Xa„yn= 0, then (»„)=() (this is possible by Theorem 1 of [3]). Let (xn: nf N) 
be a dense linearly independent subset in T(F). Since T  is not relatively open, T(F) 
admits a strictly finer metrizable and complete locally convex topology; by | . | we 
denote an F-norm definining this topology. We find a sequence 0-=c„S 1 such that

T|c„x„|-<°° and X\\cn(xn+ yn)\\ <°o.

Take 0 and b„>0 suchthat |a„xn|< 2 _n and ||h„(x„+y„)|| < 2 _n, »£N. It is 
enough to put

c„ =  anbn{\ + an) - \ \  + bnГ 1.
Since ||(x„+y„)—x j —0 and E  is without isolated points, lin (zn : nc N) is dense 
in E, where zn=c„x„ + cnyn, »£N. By the assumption concerning Z  there exists 
a biorthogonal system (un,f„), »€N, where (w JcZ , ( / J c Z '  ( =  the topological 
dual of Z), ( f n) is equicontinuous and total over Z. Define a compaO linear operator 
O ; Z^-E  putting

Q(x) = Xfn{x)zn.
Observe Q is injective: Since jVH F(F)=0, then Xfn(x)cny„ = 0 provided 0(x)^0 . 
Hence x= 0  (because (yn) is /»-independent). Clearly Q(Z)C\T(F) = () and Q(Z) 
is dense in E; this completes the proof.

C o ro llary  1. Let X, Ybe proper quasi-complements in a separable Fr echet space 
E. Then E contains a dense subspace G such that Gz>Y and G(~)X= 0.

Proof. Let T: E-~E/Y be the quotient map. Since the restricted map T\X  
is not relatively open and T(X) is dense in E/Y, we apply Proposition to find in E/Y  
a dense subspace S’such that S'DF(Ar) = 0. Then G = T ~ \S )  is as required.

Corollary 2. Let X  be a closed infinite dimensional [non-minimal] subspace 
in a separable Banach [Fréchet] space E. I f  dim (F/W)=°°, then E  contains a dense 
subspace G such that dim D=2*a and GC\X. =0.

Corollary 3. Let T  be a continuous not relatively open linear operator from 
a separable Banach space E into a tvs W. I f  dim Ker F=°°, then T\G is injective 
for some dense subspace G o f E.

We shall say that a subspace V  in a tvs E  is a compact operator range if there 
exist an infinite dimensional separable Banach space Z  and a compact linear operator 
defined on Z  whose range is V.
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Making use of Proposition (in its equivalent form ) we note the following
Corollary 4. Every infinite dimensional separable Fréchet space contains two 

dense поп-barrelled compact operator range subspaces V and W such that VT\W =0.
It is known that every Fréchet space E  with dim E —2**» contains a dense barrel­

led subspace G of infinite codimension such that for every linearly independent sequen­
ce (x„) с  E  which is subseries summable there exists a subsequence (yn) o f (x„) with 
0 y„£G, [1]. Hence E  does not contain an infinite dimensional subspace V that 
is a continuous linear image of another Fréchet space and such that Gfl F = 0 . Thus 
the assumption “G is non-barrelled” in Proposition (in its equivalent form) cannot be 
replaced by “codim G =°°” .
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SYMMETRY FACTORS FOR DIFFERENTIAL 
EQUATIONS WITH APPLICATIONS 
TO ORTHOGONAL POLYNOMIALS

L. L. LITTLEJOHN (Logan)

§ 1. Introduction: Motivation and previous results

The classical orthonormal polynomials of Jacobi, Laguerre and Hermite are 
well known to share many common properties (e.g. three-term recurrence relations, 
generating functions, Rodrigues formulas, solutions of second order differential 
equations etc.). One rather intriguing fact about these three polynomial sets is that 
their orthogonalizing weight function is also a symmetry factor for the differential 
equation that the polynomials satisfy. More precisely, if w(x) is the weight function 
and L (y)= 0 is the second order differential equation, then w(x)L(y) is symmetric.

Recently, there has been a renewed and increasing interest in finding nonclassical 
orthogonal polynomial solutions to higher order differential equations. In fact, at the 
present time, there are ten sets of orthogonal polynomials known to satisfy differen­
tial equations of the form:

(1 .1) 2  ak(x)yw (x) = Xny(x).
k =  0

The search is continuing to find all differential equations of the form (1.1) that have 
a sequence of orthogonal polynomial solutions. The interested reader is encouraged 
to consult [3], [6 ], [7], [11], [13], [14] for indepth discussions of this work as well as 
applications of this work. Observing that all ten known differential equations can 
be made symmetric, Littlejohn set out to find conditions for when a differential expres­
sion of the form

(1-2) L(y) =  2  ak{x)yw {x)
k = 0

can be made symmetric. Here we are assuming that ak(x) is real valued, x £ l  where 
/is  some interval of the real line and ar(x)?±0 for all x£l.

The Lagrange adjoint of (1.2) is

L +(y)=  2 (-'Ук)Ых)у(х)Ук).
k =  0

The expression L(y)is said to be symmetric (or formally self adjoint) if L(y) = L + (y). 
In [12], we defined a symmetry factor for L(y) to be a function f  (x) such that f  (x)L(y)- 
is symmetric. It is well known that every second order differential expression

a2 (x)y"(x) + a, (x)y' (x) + a0 (x)y (x) (at € C‘)
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can be made symmetric when multiplied by

(1.3) f( x )  =
exp L L  fli(0 /q2(Q <7f)

0 2 W
In fact, such an / (x) can be found by solving the first order equation
(1.4) afx)y'(x)+(a'2(x )-a 1(x))y(x) = 0 .
Until recently, however, very little was known on the existence and determination of 
symmetry factors for higher order differential expressions. It is apparent, though, 
that in order for a real differential expression to be symmetric, it must have even order. 
Henceforth, we shall assume r=2n. In [12], Littlejohn proved the following theorem:

Theorem 1. A function f  (x) is a symmetry factor for
2 n

(1.2) L(y) =  2  ak(x)yw (x)k= 0
i f  and only i f  f  (x) simultaneously satisfies the following system of n homogeneous differ­
ential equations:

(1.5)
n 2s — 2k +  l

2  2
’ 2s \ (2 s -2 k + \\  2 2s" 2 t + 2 — 1 

2 k — ij l j  ) s —k + 1
BZs - 2*+a<4 2s - 2k+1~j) (x) (x)

- a 2k_1(x)y(x) = 0 , к — 1 , 2 , ..., n,

where Bn is the Bernoulli number defined by:

x  _  1 Л' “ B2ix 2i 
ex- l  2 + Á  (2 /)! ‘

Observe that the orders of the equations above are 1, 3, ..., 2n —1. When k=n,
(1.5) becomes
( 1 .6 ) n a.ln (x) у' (x) +  (п a'2n (x) — a2n_1 (x)) у  (x) = 0 .
If  и=1, notice that equations (1.4) and (1.6) are identical. Solving (1.6), we find that 
(up to a constant multiple):

(1.7) f(x ) =
eXP()T /  fla»-i(0/öan(0*]

ű2„(x)

Hence /(x ), given by (1.7), is a symmetry factor for (1.2) if and only if /(x )  simulta­
neously satisfies the system (1.5) for fc =  l, 2, ..., n— 1. We name the equations (1.5) 
the symmetry equations for L(y).

Examples. 1. Let L1(y)=(x2—x)2y(4)+2x(x—l)(5x—2)y(3)+x(26x—2 0 )/'+  
+  (18x—2)y'+6y. In this case, the symmetry equations are:

(i) x2(x — 1 )2y' +  x2( 1 — x)у  =  0 ,
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(ii) x 2(x — 1 )2y(3)+(12x3 — 18x2+ 6x)y"+ (10x2— 16x+ 6)y'+ ( —10x+ 6)y=0.
It is easy to see that y (x)= l —x  satisfies (i) and (ii) so it is a symmetry factor for L(y).

2. L fiy )= y(-6) —5 / s)+2y(3)— y"+6y'+3y. From (1.5), the symmetry factor 
must necessarily be e~5x/s. However, e~5x,a does not satisfy the other symmetry equa­
tions so L 2(y) cannot be made symmetric.

§ 2. Orthogonal polynomials

In 1929, S. Bochner [1] solved the following classification problem: (up to a linear 
change of variable), find all orthogonal polynomials {Фп(х)} that satisfy the second 
order differential equation

a2(x)y"(x) + a1(x)y'(x) =  Át OO-
Bochner solved this problem showing that there are four such polynomial sets. Besides 
the three sequences of classical orthogonal polynomials, Bochner realized the exist­
ence of a fourth set: these polynomials were subsequently named the Bessel poly­
nomials and studied by H. L. Krall and O. Frink [10]. Bochner’s proof relied on his 
observation that if (1.1) has a polynomial solution of degree m, m = 0 ,1, ...r, then 
a fix) must be a polynomial of degree S i .  By considering the possible locations of the 
roots of afix), he was able to obtain his classification result. In his work, Bochner 
implicitly posed the following problem: classify all differential equations of the form
(1.1) that have a sequence of orthogonal polynomial eigenfunctions. Some early 
success on this problem was obtained by Hahn [2] and especially by H. L. Krall [8], 
[9]. In 1938, Krall proved his “classification” theorem:

Theorem 2. Let Фт(х), — o o < x < °° , be a polynomial o f degree m, m=0, 1, 2 , . . . .  
Then [Фт(х)} is an orthogonal polynomial sequence and Фт(х) satisfies

2  2 h Jxi / ,4x)  = 2my(x)
i = l  j =  o

i f  and only i f  the moments {pm) associated with { Фт(х)} satisfy:

(i)

(2.1) (ii)

h o  h i  ■■■ h m  

h i  h i  h m  + 1

h m  h m  + 1 h im

9^0, m =  0, 1, ... ,

Sk(m) = У, 2 , [ l n i - 2 n -  1)/г.,_в/хт _и =  0,
i =  2 n + l  u = 0 V /

2 n + l S r ,  m =  2 n + l, 2n+2, ... 
where P(n, k)= n(n—l)...(n—k+ l).

As a corollary to his theorem, Krall showed under the same hypotheses that r 
must be even. The proof of this theorem is very difficult and long. In the next section,
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we will show how easy the recurrence relations follow from our results. We call sys­
tem (2.1) the moment equations for {Фт(х)}.

In 1940, Krall [9] illustrated his theorem by classifying all differential equations- 
of order four having orthogonal polynomial solutions. Besides rediscovering the four 
previously known orthogonal polynomial sets, Krall discovered three fourth order 
equations having nonclassical orthogonal polynomial solutions. Properties of these 
polynomials, including their weight functions, were not discussed until 1978 when 
A. M. Krall and R. D. Morton [4] found their weights and then in 1981, A. M. Krall 
studied the polynomials [3] and their appropriate boundary value problems.

From the recurrence relations (2.1), Krall and Morton found the moments {gm} 
associated with the polynomials { Фт(х)}. They then showed that the formal series

( 2 .2) w(x) 2  ( -  i)mp„,^(m)(-v)

acts as a formal weight function for {Фт(х)}. By using the Fourier transform, they- 
were able to obtain classical representations of (2.2).

Using Theorem 1, Littlejohn offered [13] an alternative for determining the weight- 
function. We illustrate this alternative by considering one of the fourth order equa­
tions discovered by H. L. K rall:

Exa m ple . The Laguerre type polynomials [3] satisfy:

(2.3) L,(y) =  x 2y(4) — (2.v2—4л')У3) + (x2 — (2R + 6)x)y"+((2R + 2)x—2R)y' = Amy. 

By Theorem 1, the symmetry equations are:

(2.4) x2y' + x2y  = 0 

and
(2.5) х У 3) + 6xy"+ ( -  л2 +  (2 R + 6)x+6 ) /  + (2 Rx + 6) у  =  0.

It is easy to check that y(x) = e~xsimultaneously satisfies (2.4) and (2.5) and hence is ai 
symmetry factor for L4(y). Unfortunately, e~x is not a weight function for the Lagu­
erre type polynomials. However, if we solve (2.4) and (2.5) distributionally over po­
lynomials and require that the solution vanishes as |x| ->-°o, we do arrive at a weight 
function for the Laguerre type polynomials: Rewrite(2.4)asx 2(exy)'=0. Dividing 
by x2 introduces the Dirac delta function and its derivative: (exy)' = c,ó(x) + c2d'(x). 
Integrating this latter equation yields: exy(x)=c1H(x)+c2ö(x)+c3, where JI(x) is 
Heaviside’s function. Multiplication by e~x yields y(x)=cle~xH(x) + c1ö(x)+xie~x. 
Since we require y(x)-*0 as |х]—оо we must have c3 = 0. Substitution of y(x) 
into (2.5) yileds c2R=c1. Choosing ^  = 1, gives us y(x)=e~xH(x)+(\/R)d(x). 

This example illustrates the following theorem of Littlejohn [13]:

Theorem 3. Suppose {Фт (x)} is a sequence o f orthogonal polynomial solutions to 
the differential equation:

2 n i

2  2  lijXJy (i)(x) =  Xmy(x).£=1j =0
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Suppose A is a nontrivial solution to the system o f distributional differential equations

<2.6)

n 2s- 2k+i r 2s \ (2s — 2k + 11
Ä  Д  b f c - i J l  j  )

2s — 2k+  11 22s~2t+2— 1
s — k + 1 , 4 f - 2k+1--')(x)A(J\  Ф) =

= (aik-i(x)A , Ф), к = 1, 2 n,

for all polynomials Ф, where

a f  x) = 2  
i =о

Then A is an orthogonalizing weight distribution for (Фт (х)}.

The equations (2.6), when solved in the above distributional sense, are called the 
weight equations for A.

§ 3. New results

Unfortunately, the symmetry equations given by (1.5) are quite complicated; 
the appearance of the Bernoulli numbers is intriguing on the one hand yet bother­
some and cumbersome on the other hand. The following new result gives a very suc­
cinct characterization of an equivalent set of symmetry equations.

T heorem  4. Let
2 n

Ц у )  =  2  ak(x)yw (x),k=0

where akdCk(I) is real valued and abl (x) ̂  0 for all xdl, I  being some interval o f the 
real line. Then f  (x)L(y) is symmetric i f  and only i f  f  (x) simultaneously satisfies the n 
homogeneous differential equations

2 n

(3.1) 2  (-1 )4  к (««W /W )(,- s‘- 1) =  0, £ = 0, 1, ...» n — 1.
i = 2 k + l  V /

P roof (sketch). By definition, f  (x)L(y) is symmetric if and only if f  (x) simul­
taneously satisfies the following system of 2n equations:

A + i =: Д  ( -  l)k+J (k / ’) (f(x)ak+J(x )p ~ f(x )a k(x) =  0, к = 0, 1, ..., 2 n - 1.

Define

c k+1=: 2  ( - 1 ) 4  к I (« iW /W )(i_2fc_1). к =  0 , 1, ..., я - l .
i =  2fc +  l  \  /
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It is easy to see that C'1 = A1, C2' +2C1= A 2 and it is not too difficult to establish for
3==A:==2rt-l:

Ф  +kC2L-12) +  Д   ̂ к(к m  2 /+3) С<*_-/Л+2) =  Ak,

where Ck= 0 if k> n  and [ .]  is the greatest integer function. From these relations, 
it is clear that Ak+1=0, k = 0, 1, ...,2 n —1, if and only if Ck+1 =0, k = 0, 1, '

N ote. As one can see, proving this theorem is not very difficult finding the con­
ditions (3.1) was much harder.

§ 4. An application of Theorem 4: A glance at a new proof of Krall’s 
classification theorem

A. M. Krall and Littlejohn have recently [5] found a new proof of H. L. Krall’s 
Theorem 2. We shall not reproduce it here; rather, we shall show how naturally the 
moment equations (2.1) follow from distributionally solving the sytem (3.1).

Assume then that {Фт(х)}, — is an orthogonal polynomial sequence 
of solutions to

2/J i
L2„(y) = 2 2  hjxJy(i)(x) = Ят т(х).i = l j =o

Assume a symmetry factor/(x) exists for L2n(y). By Theorem 4,/(x ) satisfies

(4.1) У ( - 1), i / _ t _ 1 ) ( eiW /W )(l_“ "1) =  °, * =  0 , i , . . . , n - i ,
Í =  2fc +1 '  '

i
where ű,(jc) = 2  hjx l- Let w(x) be the general distributional solution (found

j=о
weakly on polynomials, as in Theorem 3) to the system (4.1). Then for any polyno­
mial 4'(x), we have

(4.2) 0 =  (  2  ( -  1 У(1~ кк~  *) (aiWf - * k- ' \  ф ) =

-  (w, 2
\  i = 2k + l  \  К  J  /

Let AKV= 2  \ ~  j so (w, Ak4,)=0. Then, it is easy to see that
i= 2 k + l \  к )

0 =  2  (~ ф'.г'-к) ф(п-к-1) _ф(п-к) ф(.п-к-1)) =
fc =  0

=  <w, Фт 12„(Фр) -Ф рТ2„(Фт)> = (2P-A m)<w, ФрФт)
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so w is an orthogonalizing weight for {Фт(х)}. Now let Ч/ (х)= хт~2к~1, тШ2к+\, 
and substitute into

/  2 n i f t  V

=  \ w > 2  2 \  к \ Р ( т - 2 к - \ , 1 - 2 к - \ ) 1 ихп- ^ П .
\  i= 2 k + l j  = О V л  /  /

Letting u = i—j, this latter equation becomes

= (" . 2  Í [ ~ kk~l)p(r>i-2k-\,i-2k-\)lu_ux”-u) =
'  i = 2k + l  u = О V /  /

2« i ( i — k — \ \
=  2  2 \  к \ Р { т - 2 к - \ , 1 - 2 к - \ ) 1 ^ и11т_и = 8к{т).

These calculations clearly show the explicit relationships that exist among the sym­
metry equations (1.5), (3.1), the weight equations (2.6), (4.2) and the moment equa­
tions (2.1).
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CIRCLES, HOROCYCLES AND HYPERCYCLES 
IN A FINITE HYPERBOLIC PLANE

C. W. L. GARNER (Ottawa)*

1. Introduction

Let P be a projective plane of order n=3 (mod 4), and n a regular polarity 
whose absolute points form a conic (suitably defined in the finite case — see [5]). 
As in the real projective plane, there are two disjoint classes of nonabsolute points:

I =  {inner points, or points having 0 absolute lines};
О =  {outer points, or points having 2 absolute lines}; 

and their dual classes of non-absolute lines:
0 =  {outer lines, or lines having 0 absolute points};
1 =  {inner lines, or lines having 2 absolute points}.
The incidence structure HA(n) whose points are I and lines are i, with inci­

dence as given in P, has been investigated as a finite analogue of the classical hy­
perbolic plane ([4]). One of its most interesting features is the existence of parallel 
points -— points with no common line. In [6] we have studied the types of motions 
which exist in HA(n) when defined over certain desarguesian planes, and in this 
paper we continue this study by investigating the finite analogues of circles, ho- 
rocycles and hypercycles. Like those of the classical hyperbolic plane, these are 
shown to be conics.

In this paper the words “point” and “line” always refer to elements of HA(n) 
unless the adjective “outer” or “absolute” is explicitly inserted. In the figures, lines 
of HA(ri) are represented by solid lines, absolute lines by dotted lines.

2. Finite analogue of a circle

If HA(n) is defined over a desarguesian projective plane P of non-square order 
n=3 (mod 4), then P is pappian ([3], p. 160) and also fanonian, i.e. the diagonal 
points of a quadrangle are not collinear ([7], pp. 190—194). Thus P  satisfies the axi­
oms of projective geometry as enunciated by Coxeter ([2], p. 25), and in particular we 
can exploit the properties of harmonic conjugates and involutory homologies.

D efinition 1. In P, <тЛ;Я denotes the involutory homology with centre A, axis 
a=An. Since only one of A, a is an inner element, oAa is called a point reflection oA 
or line reflection ca according as A or a belongs to HA(n).

Many properties of point- and line-reflections are derived in [6], and a list of 
all possible products of reflections is given in Table 1 ([6], p. 493).

* Supported by grant A809 from NSERC o f Canada.
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66 C. W. L. G A RN E R

D efinition 2. A pencil o f  lines in HA (n) is the set of all lines incident with a com­
mon point, having a common absolute point (called an end) or having a common 
perpendicular. Such a pencil is called an intersecting, parallel or ultraparallel pencil 
respectively. See figure 1.

As usual, two lines are perpendicular if they are conjugate; that is, each is incident 
with the other’s pole ([7], p. 222, [1], p. 157, [4], p. 137).

The three reflection theorem holds for these pencils, just as in the classical planes 
([4]. pp. 326—329 and [6], p. 292). Recalling a standard definition of a circle in the 
Euclidean plane as the locus of a point by reflection in all the lines of a pencil, we are 
led to the following three generalizations of circle, just as in the classical hyperbolic 
plane ([]], p. 213):

D efinition 3. In HA(n), let G be a pencil of lines and X  any point incident with 
a line of G. Then C^(G) =  {F=(Ta(Z): a£G) is called a circle, horocycle or ultra-

Pencil of intersecting lines 
and associated circle

Pencil of intersecting lines 
and associated horocycle

о

Pencil of ultraparallel lines and associated  
ultracycle

Fig. I
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cycle according as G is a pencil of intersecting, parallel or ultraparallel lines. See 
figure 1.

Note that CX(G) is a subset of points of HA(n) ([6], p. 487). Moreover, since X  
lies on a line of G, any point of CX(G) must also line on a line of G.

D efinition 4. The unique line of G through any point of CX(G) is called a dia­
meter through that point.

To generate a horocycle, it is unnecessary to require that X  lie on a line of G, 
because any inner point in P is joined to an absolute point by an inner line. Thus 
through any point of HA(n) there passes a unique line of the parallel pencil G.

Theorem 1. I f  Y f  CX(G), then Cy(G) = CX(G), i.e. any circle, horocycle or 
ultracycle associated with a given pencil is determined by any o f its points.

P r o o f . Let Cx(G) = {<rß(Z): a<EG}, Cy(G)={o-„(T): a£G} where Y=o„(X) 
for some b£G, is a member of CX(G). Let Z  be any element of Cy(G), so that Z =  
= <jc(Y) for some c£G. Then Z = o c{Y) = ocob{X) and we wish to show Z6C X(G).

Denoting by d the line through X  belonging to G (see figure 2), Z  = ocob(X) = 
— <jc(jbod(X) = Of(X) where/, the fourth reflection line of c,b,d, also belongs to G 
([6], p. 492). Thus Z£ CX(G) and so CX(G)5 Cy(G). In the same way we can show 
that Cy(G )3 CX(G), since ob(d) is a line of G incident with Y. □

Fig. 2

Since CX(G) is independent of the choice of point X, but depends upon the line 
pencil G, we shall refer to CX(G) as CG.

3. Finite hyperbolic circles

Theorem 2. In HA (n), the number o f points on a circle is n + 1.
Proof. There are (n+ 1)/2 lines through O, the common point of G ([4], p. 319). 

Suppose oa(X)=ob(X) for some a,b£G. Then oaob(X )= X  which implies X = 0  
(Table 1 of [6]). This contradiction shows there are at least (n+l)/2 points in CG.

5» Acta Mathematica Hungarica 56, 1990



68 C. W. L. GA RN ER

But each diameter intersects CG in exactly two points. To see this, consider, 
without loss of generality, the diameter OX. Now rr0 = omad where d is the line OX 
and m is the unique perpendicular to d through О ([6], Result 8, p. 488). Thus a0(X) = 
= GmaJ(X) = am(X ) which is not X, since crm(Z) = X  would imply both m and d inci­
dent with both О and X. Thus since m£G, X  and Gm{X) are two distinct points of 
CG on the diameter OX. Hence every diameter contains two points of CG, giving 
precisely n+ ! points on CG. □

We note as an interesting corollary that the (и —3)/2 points distinct from О on 
any diameter determine (n—3)/4 concentric circles about O.

Theorem 3. Any circle is a conic.

Proof. Since any oval in a desarguesian projective plane o f odd order is a conic 
by Segre’s theorem ([8]), we need only prove that CG is an oval, a set o f  n + 1  points, 
no three collinear.

Suppose there exist points X, Y, Zg CG which are incident with a common line c. 
Without loss of generality, we can assume Y= oa(X), Z —oh(X) for some a, b~G. 
Then Y=oa(X) implies A, X, Y  collinear and similarly В, X, Z  are collinear. 
Since X, Y, Z  are incident with c, we must have c=AB. Thus c is the polar of the 
point a ■ b, and so an outer line, which contradiction proves that X, Y, Z  are not 
collinear.

4. Finite hyperbolic horocycles

Theorem 4. In НА (и), the number o f points on a horocycle is n.
Proof, Let

CG = {oa (X ): a£ G, a pencil of parallel lines with a common end O)
be a horocycle. Through О there are n lines (and one absolute line o, in P), and no 
two images of X  can be equal since oa(X) — ob(X) implies obaa(X)—X, a contradic­
tion, for ob<ja is a parallel displacement ([6], p. 489). Moreover, no diameter of CG has 
two points of the horocycle. For if Z and  Y=oa(X) are on the diameter OX=XY, 
then A, X, Y  are collinear so that A£XY. But since a£G, O^a and so A£o. Thus 
A — XV ■o = 0 , a contradiction, and so CG has exactly n points, one on each dia­
meter. □

Again, an interesting corollary is that the (я —1)/2 distinct points on any line 
of G yield (11 —1)/2 “concentric” horocycles, i.e. horocycles with the same end.

Theorem 5. Any horocycle with its end is a conic.

Proof. As in Theorem 2, we need only prove that no three of these n + 1 points 
are collinear. Clearly no three are incident with a diameter, so we need only consider 
the possibility that X ,Y = o a(X) and Z = ob(X) (where a, bc_G) have a common 
line c. But Y = oa(X) and Z = a b(X ) imply c = AB as in Theorem 3. Since a, b£G 
a pencil of parallels with end О in P, a -b = 0  and so AB=o, an absolute line. This 
is the required contradiction. □
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5. Finite hyperbolic hypercycles

Theorem 6. In HA(ri), the number o f points on an ultracycle is (n—1)/2.

Proof. Let CG = {oa(X): afG} be an ultracycle generated by the point X  belong­
ing to the pencil G of ultraparallels. G has cardinality (n — 1 )/2 (dual of [4], Theorem 
3) and arguments similar to those used in Theorem 4 show that there is precisely one 
point of CG on each diameter through O. □

Now if X  be chosen on the line o, the ultracycle is simply the line o. For if Y= 
= <Ja(X) for some a£G, then A, X, Y  are collinear. But ű£G (i.e. Oda in P) 
which implies Afo, and so this common line of A, X, Y  is o. Thus we have:

Theorem 7. For each pencil o f ultraparallels G, there is one ultracycle which is also 
a line. □

We wish to extend an ultracycle to a hypercycle (analogous to the classical equi­
distant curve) and show that it is also a conic.

Lemma 1. Let о be the common perpendicular o f a pencil G, and let о intersect the 
absolute A in absolute points M  and N. Then M and N  are not collinear with any point 
o f an ultracycle CG ̂  o, nor are any two points o f CG ^  о collinear with either M  or N.

Pr o o f . Since M  and N  are incident with o, the first part of the theorem is obvious. 
Now suppose that X  and Y=cra(X )f CG are collinear with M: X, Y, M d lineq. 
Since Y= oa{X) implies A, X, Y are collinear in P, X, Y, M, A alliq. But a£G 
implies A£o, and so A=q • o=M. Thus A is an absolute point, which is a contra­
diction. □

Lemma 2. Let CG be an ultracycle belonging to the pencil G of ultraparallel lines 
with common perpendicular o. Then c0(CG) is also an ultracycle belonging to G

P ro o f . See Figure 3. Let X  and Y —ca{X), for some űdG, be points of CG. 
Then o0(Y)=<T0oa(X)=oao0(X) since a and о are perpendicular ([4], p. 321). Thus 
Y '= o0{Y) — oa(X') where X '= o0(X) is a point incident with the line of the pencil

Fig-3
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G throueh Y. Since Y  was arbitrary in CG, we have a new ultracycle C'G= 
= {Y ' = aa(X'): a£G}. If X$o, X ' also $o. □

D efinition 5. A hypercycle belonging to the pencil G of ultraparallel lines with 
common perpendicular о is a set of points CG U CG U {M, N} where M, N  are the 
points of intersection of о with the absolute A, provided CG^ 0 .

T heorem  7. Any hypercycle which is not a line is a conic.
P roof. Since a hypercycle has 2(n — 1)/2+2=и +  1 points, we again need only 

prove that no three are collinear. Because of Lemma 1, we must show it is impossible 
for M  (or N) to be collinear with two points of the hypercycle, one from each of the 
ultracycles. Suppose M  is collinear with X and Y '=  oa(X ') = oao0(X) for some acG. 
But as before, Y ' = oa(X') implies A, X ', Y ' are collinear. Since A£o, A and M  
are both incident with the distinct lines о and Y'X ', so that A —M, a contradiction. 
Thus a hypercycle is an oval, and so a conic by Segre’s theorem ([8]). □

The ultracycle described here is analogous to the two-branched equidistant curve 
of the classical hyperbolic plane ([1], pp. 216—217). Again we note that since any 
diameter of a hypercycle cuts the hypercycle twice, once in each branch, the (n—1)/2 
distinct points on each line of G yield (n—1)/4 concentric hypercycles.
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SINGULARITIES OF THE STABILITY FRONTIER 
OF GENERIC FAMILIES OF LINEAR 

DIFFERENTIAL EQUATIONS

Ih OANG HUU DUONG! and NGUYEN VAN MINH (Hanoi)

I. Introduction

Let us consider the family of linear dilferential equations

(1) a„ (A)y(n) + a„ - i (A) / " - 1) + ... + a1 (A )/+ a0 (X)y = 0

where A, A is a C“ -manifold, afiC “(A, R ),/= 0 , 1, The set of values of the 
parameter X in which the greatest real part of the roots of the characteristic poly­
nomial is annulled, is called stability frontier.

For arbitrary dj, j= 0 ,1, ..., n the stability frontier has a very complicated 
structure, even locally speaking [1], [2]. But under some conditions we are going to 
define below, its local structure can be classified. For the case an(X) = 1 L. V. Levan- 
tovsky [3] has shown that the stability frontier of the generic families has only a finite 
number of local models.

In this paper we shall give a list of local models to which the stability frontier of 
an arbitrary generic family is locally equivalent.

II. Stratification of the space of polynomials

Let M  be the space of polynomials anr" + ... + a1r+ a0 where al+ al_ !+ ...+  
+ af r^O, and let F be the stability frontier of this space, i.e. the set of polynomials 
whose greatest real parts of the roots is annulled.

D efinition 2.1. We denote by L,(k; ky, ..., kr) the subset of F in which the 
greatest real part is reached at one real root with multiplicity k, r pairs of complex 
roots with multiplicities k1, . . . , k r, respectively and a„=a„_1 = ... =  a„_,+1=0, 

0 where a} are coefficients of the polynomials in M, j — 0, 1, ..., n.

Theorem of D ecomposition (see [4]). Each polynomial 2  aj{j whose coeffi-
J=0

dents belong to the ring of germs of smooth functions at p can be decomposed into 
factors as follows:

n
2j =0 ajd = П  Pj(t) ■ П  Q M  ■ П  Q M  • m

j =1 k =1 k =1
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where a ^C ^, the ring o f germs o f smooth function at p, Л, y'= 0,1, ...и,

Pj(0 = (t-CCj)kJ+ 2  Ujh(t-Zj)kJ-h, 
h — 1

Qk( 0  = ( t - ß k—iw jl*+ 2  vkh(t-ßk-iWk)‘k~ \h=l
h

Q M  = ( t - ß k+iwk)l*+ 2  Vkh(t-ßk+iwk) f - h,h=1

R(t) = 2 ” L = n- 2  kj- 2 2  4,
4 = 0  j  =  l  4 =  1

ujh£Mp, the ideal o f  germs of smooth functions being annulled at the point p ,h = \, 2,
..., k j ; y‘= l , 2, /■, vJhdJ/p, the ideal o f germs o f complex valued smooth functions
being annulled at the point p, h = 1,2, . . . , l j ,  7= 1 ,2 , qh£Mp, h = 1,2, ...L,
9oe c “\ M p.

L emma 2.1. L fk ,  kk, . . . ,k r) is a submanifold o f  M  whose codimension equals 

l+ k  + 2 2  k{—r.i=1
P roof. By using the Theorem of Decomposition we have

2  x f  = P(t) ■ f f  Ok(тк) ■ f l  Qk(тк) ■ R(t) • 5(0
i = 0 k = l k = l

where x t :(x09xl9 ...xn)£Rn+1y-+Xi (/=0, 1,

2  kr),
i  =  l

P(0 = ( t - a ^ -  2  ah(t-~a1)k~h,
h = l

h
Qá tj) =  (Tj— bj i ) -  2  bjh{i-bjl)kj - h, -tj = t-iW j, h = 2

s(t)= 2 chth.
h = 0

This polynomial will become constant at the point p. R (t)= R 1(t)...Rs(t) where the 
factors Rj{t) ( j =  1, ..., л) have the form

m
Rj(t) = ( t - y j )m+ 2  dh{ t-y j)m- h

h = l

where the real parts of jj  are negative.
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It is clear that in a neighbourhood ofp, the set Lfik; ky, ...kr) is determined by 
the following equations:

ah =  0,

<4II*5! • к
Re bjh = 0, A = 1,2,. . .,k j; j  =  1 ,2 ,..., r

Im bj h = 0, h = 2,3 , .• k}\ у = 1, 2, ..., r
Ch =  0, A =  1,2,.

Besides, it is not difficult to show that the system (1) is composed of independent 
equations. So we have the conclusion of the lemma.

From this lemma and the definition of Lfik; kk, ..., kr) it follows that
F = \jL ,(k ; k l7 ..., kr) (disjoint union)

where l, k, k±, kr run throughout the set of natural numbers, each Lt(k; k l7 ..., 
kr) is a submanifold. It is not difficult to prove that this decomposition of F is in 

fact a stratification of F. But in what follows we need only the decompositionin to 
disjoint submanifolds of F.

III. Local models of singularities

D efinition 3.1. Every mapping A ^ M  transversal to every stratum L,(k; kk, ..., 
..., kr) is called a generic family.

Corollary 3.1. The generic families form an everywhere dense set in C°°(A, M)> 
more precisely a Baire set in C°°(A, M).

Theorem 3.1. For every generic family o f differential equations

an(X)y(n) + . . .  +  ű i(A )/ +  öoWy =  0
the stability frontier is locally equivalent to one o f the following surfaces:

0 =  max (* i+ /i(*2, ... x k), y n + Vj(y J3, y j t , . . . ,  у j2kj), £(y01, y02, ... y0,))

where xl5 x 2, ■ ■■, xk, уд, y,-3, yjt , • ■■,yj2kj, У0 1 » Уо2> •••» То/ 5./=1» 2, ..., r areГ
the к + 1+2 f f  k j—r fist coordinates o f Rdim/1, p(x2, ..., xk) is the greatest real 

7=i
к

part o f all the roots o f the polynomial tk— **/*“ *, Vj(yJ39 yj&l) *s *he
i = 2

k j
greatest real part o f all the roots o f the polynomial tkj — 2  (Уял-г+Ф/ы)****

h = 2
C(>’oi, у02, --Ум) is the greatest real part o f all the roots of the polynomial

i
Toií! + To2Íí_1 +  --+ yod+ l i f  2 уЬ ^ 0’

7=1

£ =  i f  2  ylj = °-
7=1
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Proof. Let us consider the generic family in a neighbourhood of p£ 
L,(k; kx, ..., kr). From the transversality of the family to Ьг(к; ku .... kr) and the 
equations (1) determining L,(k\ /q, kr) it follows that the stability frontier in a 
neighbourhood of ?.0 where the family belongs to the submanifold L,(k; /q, kr) 
is equivalent to the surface mentioned above by a local diffeomorphism. Besides, we 
have the inequality

I+ k + 2 2  kj — r S. dim A.
7 = 1

Remark. From Theorem 3.1 it is easy to see that there is only a finite number of 
local models for every fixed n and fixed dim A (see L. V. Levantovsky [3] for the case 
the generic family having the form

y U) + al (?.)y{n -1) + ... + a„ (;.)y = 0 
and the surface mentioned above can be modified as follows

0 = max (агх+ р Са-з, ... xk), yn  + Vj(yj3, ... yJ2kj))
r

and k+ 2 2  k j—r= dim A).
7=1

IV. List of local models of the stability frontier

Codimer.sion Number o f strata Strata

0 0 Z„(l); L R O l)
1 2
2 5 £„(2); i .0(0 1, 1), 7-0(l 1)

Z.i(l); L ,(0 1)
3 10
4 17

Proposition 4.1. The stability frontier o f generic families o f \ ,  2, 3, 4 parameters 
posseses exactly 1, 4, 11, 23 different local normal forms.

Proof. By calculating concretely we obtain the conclusion.
A. The case dim A = l. The stability frontier is composed of isolated points in 

the space of parameters.
B. The case dim Л=2. The local models are germs at 0 of the following curves 

in R2:

у

X

{ ° : x } [o  = *.;u<y)} = max.(x,y)J

У

(°
,max.(x,y)if . .

1  V* 0 ]}
max.(x,-со) if 

У — о
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C. The case dim A = 3. The local models are germs at 0 of the following sur­
faces in R3

L0( 1), L0( 0, 1) {0 = a-}
L0(l, 1), Z,0(0, 1, 1) {0 = max (a, y)}

LoV)

Li(l ),  LAO, 1)

jo — A + j ! у  if у ^  0
0 if у < 0

0 = max ̂ a ,  — -j if У ^  0

max ( a ,  — с о ) if y = o

L0(3) {0 =  x + ju(y, z)}

i„ (2 ,l)  {o =  m a x (* + {^

L0( 1, 1, 1), L0(0, 1, 1, 1) {0 = max (a, y, z)}

^ ( 1, 1), LAO, 1, 1)

LA 2)

max

max

0 =  ■
Í - nmax 1 a ,  y , -----1 if z pí 0

max ( a , y, —“ ) if z =  0

H I
if
if

7 ^ 0  П 
o ’ zi if z pi 0

HUfy
0

if
if

7 ^ 0  )
у  <  O’ )

if z =  0

LA  1), LA0, 1) 0 = max (a, £0 , z))}.
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ON THE CONSTRUCTION OF A CLASS 
OF ABUNDANT SEMIGROUPS

A. EL-QALLALI (Tripoli)

0. Introduction

On a semigroup S, the relation üf* (á?*) is defined by the rule that a £ ’*b {affl*b) 
if and only if the elements a, b of S  are related by Green’s relation ££ (Ж) in some 
oversemigroup of S. Following Fountain [7] we say that a semigroup in which each 
J5?*-class and each ,^*-class contains an idempotent is abundant. When the idempo- 
tents commute in an abundant semigruop, then it is called an adequate semigroup. 
An adequate semigroup .S’in which eS  П aS= eaS and Se П Sa = Sae for any e2=e, 
ad S  is called a type A semigroup. Adequate semigroups as well as type A semigroups 
have been studied by Fountain [6]. Inverse semigroups are contained properly in the 
class of type A semigroups. Some properties of inverse semigroups were extended to 
type A semigroups (see Fountain [6]).

Recall that regular semigroups are abundant semigroups and in this case Jz?* = 
=  ££ and 0L*—01. Blyth and McFadden [2] described a contruction of all regular 
semigroups S that possess a normal medial idempotent u. It follows in that case that 
uSu is an inverse monoid. The “building bricks” in that construction are the idem- 
potent-generated regular semigroups with a normal medial idempotent and the inverse 
monoids.

In this paper we extend that construction to a class of abundant semigroups S 
in which the idempotents generate a regular subsemigroup and possess a normal me­
dial idempotent и such that uSu is a type A semigroup. Clearly, this class of abundant 
semigroups contains the class of regular semigroups considered by Blyth and McFad- 
den [2]. The “building bricks” of this construction are the idempotent-generated 
regular semigroups with a normal medial idempotent and the type A monoids. The 
approach adopted closely follows that used by Blyth and McFadden [2].

In the first section we introduce the basic concepts. In Section 2 we give some 
properties of abundant semigrioups that possess a normal medial idempotent. Sec­
tions 3 and 4 are concerned with the general construction which includes a struc­
ture theorem for the class of semigroups under consideration. In the final section we 
indicate how this construction can be put to use.

1. Preliminaries

We begin by recalling some of the basic facts about the relations ££* and Sk*. 
As stated in the introduction, the relation (t%*) is defined on a semigroup S  by 
the rule that a3?*b (аЖ*Ь) if and only if the elements, a, b of S  are related by Green’s 
relation ££{Ж) in some oversemigroup of S. Evidently (á?*)is a right (left) con-
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gruence on S. We put Ж *=3?* C\0l*. An alternative description of i f ’ (3#*) is pro­
vided by the following lemma.

Lemma 1.1 [6]. Let S  be a semigroup and let a, b f S. Then the following conditions 
are equivalent:

1) a£T*b (aSt*b);
2) for any x, y ^ S 1, ax = ay (xa—ya) i f  and only i f  bx=by (xb=yb).
As an easy consequence of Lemma 1.1 we have:
Corollary 1.2. Let S be a semigroup, a£S and e be an idempotent o f  S. Then 

the following conditions are equivalent:
1) aL*e (aR*e);
2) ae=a(ea = a) and, for x, y d S 1, ax=ay (xa=ya) implies ex=ey (xe=ye).
Obviously, on any semigroup S, we have ITQJT*, SIQSt*. It is well-known 

and easy to see for regular elements a, b in S, that a£T*b (aSt*b) if and only if 
a ifb  (аЫЪ). In particular, if S' is a regular semigroup, then if* = i f  and £%*=8t 
on S.

Let S be an abundant semigroup with the set E  o f idempotents and let U be an 
abundant subsemigroup of S. We say that £/ is a left (right) *-subsemigroup if for any 
ad U, there exists edUC\E suchthat a ^ * se (a.M*se). U is called a *-subsemigroup 
if it is left and right *-subsemigroup. From El-Qallali [3] we have the following.

Proposition 1.3. Let S be an abundant semigroup and U be an abundant subsemi­
group o f S. U is a *-subsemigroup i f  and only if

£f*v =  if« n (C /x C /) and Sl*u =  ®*s n(U xU ).
Corollary 1.4. Let S be an abundant semigroup and e an idempotent o f S. Then 

eSe is a *-subsemigroup.
If the set of idempotents of S forms a band B, then S is called quasi-adequate. 

For any element a in S, let
a+£R*OB, a*£L*nB

and E(e) as in [8] be the -class in В that contains the idempotent e. Define the 
relation ö on S by the rule (x, y)dS if and only if x = e y f  for some e fE (y +), f£E(y*).

A  semigroup homomorphism and a congruence relation on S are good if they 
preserve the relations £g* and St*. The properties of good homomorphisms and the 
relation ő have been examined in [5]. One of the main properties of ö is included in the 
following proposition:

Proposition 1.5 [5]. I f  S is a quasi-adequate semigroup and S is a congruence on S 
then 6 is the minimum adequate good congruence on S.

A quasi-adequate semigroup S  is idempotent-connected when for each element a 
of S, there is a bijection a: (a+>—(a*) satisfying xa=a(xa) for all x ß a +). A type 
A semigroup is an idempotent-connected adequate semigroup. This is equivalent to the 
definition given in the introduction (cf. [4]).

A quasi-adequate semigroup S  with band of idempotents В is split when 8 is 
a congruence on S  and the natural homomorphism 8^: S-»S/8 is split in that there
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is a good homomorphism n: S /ö ^ S  such that 71 • S ^ ls /á -  In [3] we studied the 
split quasi-adequate semigroups which satisfy the following condition: There is a 
splitting homomorphism л: S /ő ^ S  such that for any a flm u , there is an T’-preserv- 
ing bijection 0: a+Ba+-*-a*Ba* with ха=а(хв) for any x£a+Ba+, where F is the 
set of idempotents of Im л.

It turns out that the semigroup which will be considered in Section 5 can be de­
composed into two semigroups each one of them lies in the class of split quasi-ade­
quate semigroups which was described in [3].

2. Normal medial idempotents

Let S  be an abundant semigroup and E  the set of its idempotents. Let (E) be the 
subsemigroup generated by E. Following Blyth and McFadden [2], we say that an 
idempotent и in S  is medial if it is such that x —xux for any л: in (E). A medial 
idempotent и will be called normal if the subband u{E)u is a semilattice. Now assume 
throughout this section that S  is an abundant semigroup with a normal medial idem- 
potent u. As a generalization of Theorem 2.2 in [2] we have the following:

Proposition 2.1. (i) S is quasi-adequate i f  and only i f  и is a middle unit.
(ii) S is adequate i f  and only i f  и is an identity element.

Proof, i) If и is a middle unit then x= xux= xx  for any x  in <E ). Therefore 
(E )= E  and S  is quasi-adequate. Conversely, let S  be quasi-adequate. Írben E  is a 
band, S  is conguence on E  and the ^-classes of E are the rectangular bands E(e) 
where e£E. Now, since

E (x) = E(xux) = E(uxu)
we have xSiuxu. Then uxyuSxySuxu -uyu for any х,у£Е. Thus uxyu=uxu • uyu, 
and

xy = xuxyuy =  x  • их и • uyu ■ у  -- xuy.
Hence и is a middle unit for E  and hence also for S because for any a, b~ S, there 
exist e, f£ E  suchthat a££*e and bM 'f whence

ab =  aefb = aeufb = aub.

(ii) If S’is adequate and e£E then

e = eue = e2u =  eu = ue.

Therefore, au = aeu=ae = a and ua = ufa=fa = a for any a£S  where e£L*ПЕ and 
Я  К  П E. Hence и is an identity element. Conversely, if и is the identity element of S  
then E is a band by (i) and

e f  = ueu ■ ufu =  ufu • ueu = fe  

for any e,f(z E. Hence S  is adequate.
Proposition 2.2. uSu is an adequate *-subsemigroup with и as an identity element.
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Proof. uSu is an abundant *-subsemigroup by Corollary 1.4 and u(E)u is a 
semilattice. Hence uSu is adequate. Obviously и is the identity element of uSu.

S  is said to be locally adequate if eSe is an adequate subsemigroup for any idem- 
potent e in S. By a similar proof as in [2] we have the following.

Proposition 2.3. S is locally adequate.

3. Construction

In this section we consider the abundant semigroups satisfying the following 
conditions:

A) The set of idempotents E  of S  generates a regular subsemigroup (E).
B) S  contains a normal medial idempotent u.
C) uSu is a type A semigroup.
It is easy to see that this class of abundant semigroups properly contains the class 

of regular semigroups that possess a normal medial idempotent. Therefore, the con­
struction of the class of semigroups considered in this section extends that considered 
in [2]. Indeed, our approach is inspired by that in [2]. In particular, the “building 
bricks” in this construction will be idempotent-generated regular semigroups with 
normal medial idempotent which are characterized in [2] and type A semigroups which 
are analogues of inverse semigroups.

Suppose then that (E ) is an idempotent-generated regular semigroup with a nor­
mal medial idempotent u. Let E° be the semilattice u(E)u and suppose that S  is an 
adequate semigroup whose semilattice of idempotents is isomorphic to E°. For nota- 
tional convenience, we shall identify this semilattice with E°. In doing so, we shall see 
that и becomes the identity element of S  as well as that of E ° ; for, if af: S  then we 
have e£L*(S)C\E° so that e=eu  and it follows by Corollary 1.2 that a=an and 
likewise a=ua.

Now let TEo be the set of all isomorphisms between the principal ideals of E°. 
Given 0, (p€ Trß with d:egE ° ^ feE° and <p: е(рЕ(>̂ [ рЕа we recall (see [8]) that 
6(p: ев„,Е°-*/в(рЕ° where ce„ =  ( / fle,,)0-1 and / ^  =  (/e<)<A

Moreover, TEo is an inverse semigroup. Observe that if x£(E) and в£Тв0
then

евхев =  (e0 и)х(иев) = ee(uxu)ee£eeE°e0 =  e0E°.

Consequently, if 1Г((Е)) denotes the full transformation semigroup on (E ) then we 
can extend any 06 Te0 to a mapping 0 6 3T((E)) by defining

xO =  (cqXCq) 0 for any x£(E).

Then we know from [2] that the mapping TE о -»^{{E)) described by 0—0 is a homo­
morphism.

For any element a in S  there is a unique idempotent e in L* and a unique idem- 
potent / in  R* (cf. [6]), so let the idempotent in L* be denoted by a* and the idempotent 
in R* be denoted by a+. Suppose now that S  is a type A semigroup. From [6] we have 
a homomorphism a: s - t e0 defined by aoc—<xa where aa : a+E°— a*E° such that 
eaa=(ea)*, foc~1= (af)+ for any a£S, e£a+E°, f£a*E°.
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Thus, for any a, b£S, we have
<xaoib = zab: (ab)+E° -  (ab)*E°

where (ab)+ =(a*b+)tx~1 and (ab)* = (a*b+)txb.
In what follows a. denotes the composite homomorphism S'— Г 0- ^ « £ ) )  

described by a —aa —aa.
Continuing with the above hypotheses on (E), E° and S, let Л? and Я  denote 

Green’s relations on (E). Then, as in Blyth and McFadden [2] and in El-Qallali [3] 
we have the following fundamental result.

P roposition  3.1. Given a,b£S, let g ,h ,v ,w d(E ) besuchthat
g& a+, ИЯа*, vSeb+, w®b*.

Then hv£E° and
g(hv)otä1£P (ahvb)+, (hv)äb ■ wM(ahvb)*.

P ro o f . Notice that

hv =  a*hvb+ = ua*hvb+u£u(E)u =  E°
and

g(hv)ccä1(ahvb)+ =  g(a*hva*)aL1(a*hvb+)x~1 = g(a* hva* hvb+) a“1 =

=  g(a*hva*)tx~1= g(hv) a“1,

(ahvb)+g(hv) a“1 =  (a*hvb+)a~1a+g(a*hva*)a~1 = (a*hvb+a*hva*)<x„ 1 =
=  (a*hvb+) a“1 =  (ahvb+)+ = (ahvb)+.

Consequently, we see that g-(hv)a~1£'(ahvb)+. Similarly, we can show that 
(hv)öTb ■ wM(ahvb)*.

Now, since gu=ga+u=ga+ =g and uh=ua*h=a*h=h, we have gd(E)u 
and h£u(E). Also we notice that (E)u is a subband since, for any y£(E)u, y=xu  
for some xd(E) and у  ■ y —xu ■ xu= xu—y. Similarly u(E) is a subband. There­
fore Proposition 3.1 shows that if we define

W =W(E, S, a) =  {(g, a, h)£(E)uXSXu(E); gJz?a+, 1гЯа*}
then the expression

(g, a, h)(v, b, iv) = (g ■ (hv)a~ \ ahvb, (hv)öTb ■ w)

defines a binary operation on W. The following sequence of results provides consid­
erably more information.

P ro po sitio n  3.2. W is a semigroup.

P r o o f . Let (g, a, h), ( v, b, w) and (x, c, y) be in W. Then

[(g, a, h)(v, b, w)\(x, c, y) = (g ■ ( h v ) a h v b ,  (hv)Tb ■ w)(x, c, y) =

=  ( g W ^ ' C W v ^ i ,  ahvb(hv)Tb-wxc, ((hv)yTb ■ wx)öTc ■ y)
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and

(g, a, h)[(v, b, w)(x, c, jO] =  (g, a, h)(v(w x)af\ bwxc, (w xfäy) =

— (g(hv(wx)ab*))а~г, ahv(wx)y.fbwxc, (hv(wx)cG1)<xbwsc • (wx)al • >').
Notice that

g(hv)a~1 ■ ((hv)Tbwx)aählb = g (hv) y~1 ((hv) f  wx) a f 1 ал~1 a ~1 =

=  g [hv((hv) (wx) a t1) a^1] aä 1 =  g[hv(wx)ab1](x-1.
Similarly

(hv(wx)ab1)ccbwxc ■ (wx)äcy  =  [(hv)Tbwx]Tc ■ y.
Since S is type A, then

b(/m)c^ =  b(b+hvb+)ab = b+hvb+b = hvb
and

bwx = bb*wxb* — (b*wxb*)yb 1bwx = (wx)ub1bwx.
Therefore

ahvb(hv)oTbwxc =  ahvbwxc — ahv (wx) аь гЬ wxc
and the associativity holds.

P ro po sitio n  3 .3 . The set o f  idempotents o f W is

E(W) = {(g, a, h): a-a = a, g =  ghg, h = hgh}.
P roof. For any (g, a, h) in W  we have

(g, a, h) • (g, a, h) = (g(hg)oc~1, ahga, (hg)öTah) =
= (g(a*hga*)a“1, a/iga, (a+/iga+)a0 • h) = (g(a/ig)+, ű/igű, (hgafh).

Thus, if (g, a, /г) is an idempotent, then a = ahga which by Corollary 1.2 implies 
a+=ahga+ = ahg and a* = a*hga = hga. Consequently, as h g fE n is an idempotent, 
we have

a =  ahga =  ahg ■ hga =  a+a*£E°.
Thus a is an idempotent. It follows that a+=a=a* and so

(g, a, h)(g, a, h) =  (gahg, ahga, hgah) =  (ghg, a, hgh).

Thus g=ghg and h=hgh.
Suppose, conversely, that (g, a, h)dW is such that a-a=a, ghg=g and hgh =  

=h. Then a+ = a=a*. Since gT£a, therefore ug=ua=a and hu = au = a ([2], 
Theorem 2.1).

Now, since ah=h and a = ug, we see that ugh=h and hu-ugh =huh which 
imply hugh=h. Therefore

hg =  hugh • g = hughg =  hug.
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Thus

ahga = ahuga =  (ahu)(uga) — (a • a)(a ■ a) =  a - a = a
and

(g, a, h)(g, a, h) = (g(ahg)+, ahga, (hga)*h) =  (ga, a, ah) = (g, a, h).
Hence (g, a, h) is an idempotent.

Proposition 3.4. W is abundant.

Proof. Given (g, a, h)dW. Consider (g ,a+,a +). We conclude from Propo­
sition 3.3 that (g, a+, a+) is an idempotent in W. Also

(g, a+, a+)(g, a, h) = (g(a+g)cc~f a+a+ga, (a+g)Tah) = (g, a, h).

Now let (v, b, tv) and (x, c, y) be in W so that
(v, b, w)(g, a, h) = (x, c, y)(g, a, h)

i.e. (v(wg)a^1, bwga, (wg)YJi) = ( x ( y g ) x c y g a ,  (yg)Ta-h). Then we have

v iw g )^ 1 = x(ygK " 1,
bwga = cyga which by Corollary 1.2 implies bwga+ = cyga+. Similarly, (wg)Wah — 
= (ygWah implies a+wga+=a+yga+, i.e. (wg)ö&=(yg)x^.

However,

(v, b, w)(g, a+, a+) = (v iw g )^ 1, bwga+, (wg)aa+ • a+)
and

(x, c, y)(g, a+, a+) =  (x(yg)ay1, cyga+, (yg)a,^  ■ a+).
Thus we conlude

(t, b, w)(g, a+, a+) =  (x, c, y)(g, a+, a+).
Now by Corollary 1.2, we get (g, a, h)£%*(g, a+, a+). Similarly, the idempotent 

(a*, a*, h) is ü?*-related to (g, a, h). Hence the result.
Corollary 3.5.For any (g, a, h) and (v, b, tv) in E(W) we have
1) (g, a, h)£F(v, b, tv) i f  and only i f  a = b and h = w;
2) (g, a,h)0t(v,b,w) i f  and only i f  a=b and g = v.
Proof. 1) From the proof of Proposition 3.4, we have

(g, a, h)L*(a*, a*, h) and (v, b, w)&*(b*, b*, tv).

If a = b and h = w, then a*=b* and we have
(a*, a*, h) =  (b*, b*, tv) and (g, a, h)SF*(v, b, tv).

Since they are regular elements, we obtain
(g, a, h):S?0, b, tv).
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Suppose, conversely that (g, a, h)Sf(v, b, tv). Then

(g, a, h) (v, b, tv) =  (g , a, h)

and
0 , b, w)(g, a, h) =  (v, b, tv),

that is

(g(hi0 a “1, ahvb, (hv)¥bw) =  (g,a , h)
and

(v(wg)oib1, bwga, (wgWah) =  (v, b, tv). 

Since a and b are idempotents, hence we get

(,gahva, ahvb, bhvbw) =  (g, a, h)

and
(vbwgb, bwga, awgah) - (r, h, tv).

Thus
(g/iv, hv, hvw) = (g, a, h) and (nvj, tvg, tv/tg) = (v, b, tv).

It follows that hv = a, hvw — h whence aw=h. Similarly, wg=b and bh = w. Now 
aw=h, bh =  w imply abh = aw = h, whence ф а= а. On the other hand, ba\v = bh — 
=  tv implies bab — b. Since a,b£E°, we obtain a = b and hRa=bRw. Notice that 
aw=h implies hw=h and bh = w implies wh = w so that wLh. Thus hHw and 
h = w.

2) is proved similarly to (1).

C o ro llary  3.6. The relations S£*, 3/1* and H* on W are given by
1) (g, a, h.)£T*(v, b, tv) i f  and only i f  aST*b and h=w;
2) (#, a, h)3$*(v, b, tv) i f  and only i f  a3i*b and g= v;
3) (g, a, h)j^f*(v, b, tv) i f  and only i f  аЖ*Ь, h = w and g — v.

Proof. Since (3) is an immediate consequence of (1) and (2), and (2) is the dual 
о f (1), it suffices to prove (1).

From the proof of Proposition 3.4, we have

(g, a, h)£P*(a*, a*, h), (v, b, w)J?*(b*, b*, tv).
Then

(g, a, h)&*(v, b, tv) о  (a*, a*, h)Se(b*, b*, tv)

«=> a* = b* and h =  tv (Corollary 3.5) <=> a3T*b and h = tv. 

From [2] we have
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Proposition 3.7. I f  {E(W )) denotes the subsemigroup o fW  generated by the set 
o f idempotents E(W), then

<■E(W)) = {(g, a ,h)eW : a-a = a}.
Proposition 3.8. (и, и, и) is a normal medial idempotent in W.
Proof. The same as in Blyth and McFadden [2].
Also from [2] we have
Proposition 3.9. (E(W)') is isomorphic to (E).
Now consider the subsemigroup (u, u, u)W(и, и, и) of W. Notice that, for any 

(g, a, h)£W, we have a*=ha*—hua*=a*hu=hu and ug = a+. Then we obtain that

(и, и, u)(g, a, h)(u, и, и) = (и, и, u)(g(hu)<xä1, ahu, (h u • и) =

= (и, и, u)(g(a*)a^1, ahua*, uhu) = {и, и, u)(ga+, аа*, a*hu) =

= О, и, u)(g, а, а*) = (u(ug)a“1, uga, (ugfaa*) =

=(п(а+)ос“1, а, (а+)ссаа*) = (а+, а, а*).

It is now clear that we can define a bijection

9: (u, u, u)W (u, u, u) -* S
by (a+, a, a*)9=a. Notice that

(a+, a, a*)(b+, b, b*) = (a+(a*b+ )^1, aa*b+b, (a*b+)Thb*) =

= {a+(ab)+, ab, (ab)*b*) = ((ab)+, ab, (ab)*).
Therefore

((a+, a, a*)(b+, b, b*))9 =  ((ab)+, ab, (ab)*)9 = ab =  (a+, a, a*)9(b+, b, b*)9. 

Thus we see that 9 is an isomorphism and the following result is established. 

Proposition 3.10. (u, u, u)W(u, u, u) is isomorphic to S.

Summing up, we have the following theorem:

Theorem 3.11. Let (E) be an idempotent-generated regular semigroup with a nor­
mal medial idempotent u, and S  be a type A semigroup whose semilattice o f idempotents 
is u(E)u. Then W  = W(E, S, a) is an abundant semigroup which satisfies the following 
conditions:

(i) the set o f idempotents o fW  generates a regular subsemigroup;
(ii) W  contains a normal medial idempotent (u, u, u) and;

(iii) (u, u, u)W(u, u, u) is a type A semigroup.

In fact, the converse of this theorem is also true as the subsequent section (Theo­
rem 4.5) will show.
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4. Characterization

The aim of this section is to prove that every abundant semigroup which satisfies 
the conditions (A), (B) and (C) stated at the beginning of Section 3 is isomorphic to 
some semigroup ÍV(E, S, a) constructed in that section. For this purpose, let S be 
an abundant semigroup with set of idempotents E  that generates a regular subsemi­
group (E) which possesses a normal medial idempotent и such that uSu is a type A 
semigroup. Denote the set of idempotents of uSu by E°. Clearly, we have E°=u(E')u.

For any x£ S , uxuduSu. Since uSu is a *-subsemigroup by Corollary 1.4, then 
for any e f E such that eR*xu, we get

ueM* uxu and (uxu)1 Mue.

Then ue=(uxu)+ue. Thus

ueu =  (uxu)*ueu =  ueu (uxu)+ =  ue(uxu)* = (мхи) A

Observe that eu is an idempotent and euMe. Therefore euM*xu. Also ueui£eu.
On the other hand, for any fd E  with fS£*ux, ufS£f and ufS£*ux. Then 

(uxu)*=ufu, also ujWtufu.
However eu and u f are uniquely determined by x  because if there exist e’u, u f' 

such that (uxu)+ =ue'u and (uxu)* =uf'u , then euSA*xuSk*e'u and cuifeue =  
=  (uxu)+ = ue’u ^ e 'u .  Thus еиЖе'и and hence eu = e'u. Similarly u f= u f.

In this case let eu be denoted by ex and ufbe denoted by f x.

Lemma 4.1. For any x ,y £ S  we have
(i) e j t x , f x&*x,

(ii) exy=ex(uxey)+,
(iii) Л у = ( /х У и ) * /у

Proof, (i) Since exxu=xu, then it follows that for any gd L* П E, exxgug= 
=xgug. Therefore exx=x. Now, for any s ,t£S , we have

sx =  tx=>sxu = txu=> sex =  tex (ex'M*xu).

Hence exiM*x. Similarlyf x <£*x.
(ii) exfó *xyu3t*xey=exuxeyM*ex(uxey)+ so that

ex(uxey)+ • exy = exy => uex(uxey)+uexy = uexy =>

=> uexyuex(uxey)+ =  uexy => exyuexyex(uxey) + =  exyuexy => exyex(uxey)+ =exy.

But ex(uxey)* (tkexy. Hence exy=ex(uxey)+.
(iii) is similar to (ii).
Consider the semigroup W = W (E, uSu, a). Clearly (ex,u xu ,fx)dW  for any 

x d S  and we have a mapping 0 :S -» W  defined by хв=(ех, uxu,fx).

Lemma 4.2. в is injective.
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P roof. If хв=ув, then ex=ey, uxu=uyu and f x=fy. Thus

UX U f x = uyu fy => uxfx =  uyfy => их = uy =>
=>exux = eyuy =>exx = eyy  =>x = у  (Lemma 4.1 (i)).

Hence the result.
L emma 4.3. в is surjective.
P roof. Let (g, x, h)£W. Then x = uxu, g£?x+, hMx*. Notice that gxh£S  and 

(gxh)6 = (egxh, ugxhu,fgxh).
Also

ugxhu = ugu • x + • xx*uhu — x + ■ ugu • x  ■ uhu ■ x* = x +gxhx* =  x +xx* = x.

Consequently, g £ fx+ =(ugxhu)+ =ug(xhu)+ so that gug(xhu)+ —g, i.e. g(xhu)+ = 
=g. Therefore

egxhM* gxhu 2%* g(xhu)+ = g.
Thus egxh-g=g  so that

uegxhugu = ug=> ugu ■ uegxh = ug => gug egxh = gug => gegxh = g.

But egx,ß g  and hence g ■ egxh=egxh. Thus egxh-g . Likewise f gxh=h. Hence (gxh)9 = 
=(g, x, h) and 0 is surjective.

L emma 4.4. в is a homomorphism.

P roof. Let x, yf_ S. Then
xOyO = (ex, uxu,fx)(ey, uyu jj)  =

= (ex(fxey)a-ju, uxufxeyuyu, ( fxey)ä^u-fy).

Since ufx=fx, eyu =ey, f x3?*ux and eyR*yu, we obtain

uxufxeyuyu = uxyu.
Also

ex{ f^ yK"*u =  ex ((uxu ffx ey(uxu f) a~x\  = ex(uxufxey)+ =

— ex(uxfxey)+ =  ex(uxey)+ = exy (Lemma 4.1 (ii)).

Similarly, ( f xey)ajj~u -fy=fxy. Therefore

x0 • yO =  (exy, uxyu,fxy) = (xy)0

and в is a homomorphism.
Thus we have proved the following.
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T heorem  4 .5 . I f  S is an abundant semigroup with set o f idempotents E such that
(i) E generates a regular subsemigroup (E);

(ii) S contains a normal medial idempotent u, and
(iii) uSu is a type A semigroup;

then S is isomorphic to the semigroup W(E, uSu, a).

5. Decomposition

Let S' be an abundant semigroup which satisfies the conditions A), B) and C) 
stated at the beginning of Section 3. Retain the notations of Section 4 about S, E, 
(E), и and ex, f x for any x f S .  Our objective in this section is to obtain a decompo­
sition of S which is similar to that in Blyth and McFadden [1]. For this reason we 
need the following lemma:

Lemma 5 .1 . F or any x, yd S , i f  uxu=uyu, then eyx= yfx .
Proof. Since

therefore
у  =  eyuyufy = eyuxufy = eyxfy

y(uyu)* =  eyxfy(uyu)* =  eyx(uxu)* =  eyxu.
Thus

uy(uyu)* = ueyxu  => uyu = ueyxu ==> eyuyu =  eyueyxu =>
=> eyyu = eyxu => yu = eyxu => yufx - eyxufx => y fx =  eyx.

Recall (see [2]) that F„ and „F are the equivalences associated with the translations
2„: x  и-*- их and q u : x ^ x u

respectively. Equivalently, we have (x, y)£ Fu if and only if ux=uy, and (x, y)(zuF 
if and only if x u —yu. If we denote by F the relation on S  that is given by

xFy <=> их и =  uyu
then we have the following proposition which is similar to Theorem 6.1 [2]. 

P ro po sitio n  5.2. F„ • UF = F = „ F  • F„.

Proof. Suppose that (v, y ) f  F„ • UF. Then there exists z£ S  suchthat ux=uz 
and zu=yu. Then uxu = uzu — uyu and so (x, y)c F. Conversely, suppose that 
(x, y)€F. Then uxu = uyu and, by Lemma 5.1, eyx= yfx= t(say). Notice that

ut =  uyfx =  uyufx = uxu -fx = uxfx =  их, 
tu = eyuxu = eyuyu = ey - yu — yu

and hence (x, y)£Fu ■ „F. Thus F„-„F=F. Similarly, we can show that UF ■ F„ =  F. 
If we now define 5w| X |FuS={(xu, uy); xFy} then we have the following result.
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Proposition 5.3. There is a one-to-one correspondence between S  and 5и| X IpMS1.
Proof. It is clear that we have a map в: S'—Su\ X \FuS defined by xO= (xu, их) 

for any xCS. Now, if x, ydS such that хв=ув, then xu=yu. It follows that 
uxu = uyu and we get

exMxu = yuM*ey, ex У(ихи)+ = (uyu)+ Z£ey 
Then ex=ey. Similarly f x=fy. Therefore

x = exuxufx =  ey uyufy =  у
and 9 is injective. In order to see that 0 is also surjective, let (хм, му)6 S m| X \FuS. 
Then xFy, that is, uxu=yuy. By Lemma 5.1, xfy=exy= s  (say), s£S  and

us = uxfy =  uxufy = uyufy = uy, su = exyu = exuyu = exuxu =  xu.
Therefore

s6 — (su, us) = (xu, uy).
Hence the result.

Now let S be quasi-adequate. By Proposition 2.1, и is a middle unit and for any 
(xu,uy), (x'u, uy'), (zu,ut), (z'u,ut') in Su\X\FuS, the equalities (xu,uy) — 
= (x'u, uy'), (zu, ut) = (z'u, ut') imply

xzu = xuzu = x'uz’u = x'z'u
and

uyt =  uvut = uy'ut' = uy't'.
Hence, we can define a binary operation on Sm| X \FuS  by the following ru le:

(xu, uy) • (zu, ut) = (xzu, uyt) for any (xu, uy), (zu, ut)
in S m| X IfmS.

It is clear that this binary operation is associative and 9: S —Sm| X |/.m5’ defined 
by хв=(хи, их) is a homomorphism.

It follows by Proposition 5.3 that 0 is an isomorphism, and the following result 
is established.

Theorem 5.4. I f  S  is a quasi-adequate semigroup which contains a normal medial 
idempotent и and uSu is a type A semigroup, then S is isomorphic to £м| X l^uS.

The significance of this result relies heavily on the structure of each of the sub­
semigroups Su and uS. We now retain the hypotheses of Theorem 5.4 and proceed to 
investigate the main properties of Su and uS.

Lemma. 5.5. Su and uS are quasi-adequate.
Proof. Since S  is quasi-adequate, then (E)= E  and the set of idempotents of 

Su is Eu which is a band. Let x be an element in Su, say, x=yu  for some y£S. 
Notice that

y +ux =  y +uyu = y +uy+yu = y +yu = yu = x
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and for any s, í í  Su,
sx =  tx => syu =  tyu =>• syy*uy* = tyy*uy* =>sy =  ty =>sy+ = ty+ =>

=>sy+u = ty+u.

Therefore, by Corollary 1.2, x3t*y+u in Su. Since ySf*y*, then yuS?*y*u and 
x cg*y*u in Su. Hence Su is quasi-adequate. Similarly uS is quasi -adequate.

From the proof of Lemma 5.5, it is clear that each of the semigroups Su and uS 
is a *-subsemigroup of S. It is easily verified that Su and uS satisfy the hypotheses of 
Theorem 5.4. In what follows we shall prove some more properties for uS and the dual 
argument shows the same properties for Su.

Lemma 5.6. Let the relation S on uS be as defined in Section 1. Then (x, y)£<5 i f  
and only if  xu=yu for any x,y£uS .

P roof. For any x and у in uS, we have (x,y)£ő if and only if x= ey f for some 
e£uS(~)E(y+) and f£uS(~)E(y*), which implies xu=eyfu; But

xu = eyfu (in uSu)
= yfu(eyfu)* (uSu is type A)

=yy*ufu(ey+uyy*ufu)* = yfuy*u(y+ueyfuy*uf = yy*fy* (y+ey+yy*fy*uf =

=  У(уиТ (f£E(y*), eeE(y+))
=  yu(yu)* ((yu)* = u (yu f)

— yu.
On the other hand, let xu=yu. Then we have x*u=(xu)*=(yu)*=y*и whichimplies 
x*ux* =y*ux* i.e., x*=y*x*, and x*uy*=y*uy*, i.e., x*y*—y*. Therefore x*3iy*, 
in particular x*£E(y*). But also

xu =  yu^> xux* =  yux* => x  = y +yx*
where y +£E(x+), x*ZE(y*). Hence (x, y)(L5.

C orollary  5.7. S is a congruence on uS.

P roof. It is an immediate consequence of Lemma 5.6 that 5 is a left congruence. 
To show that (5 is also right compatible, let x, y, cduS. Then we get

(x, y)£ő =>xu = yu  =>• xuc = yuc =>• xc =  yc (c£uS) =>

=> xcu = ycu =>■ (xc, yc)£ő.
Hence the result.

Now it follows by Proposition 1.5 that ő is the minimum adequate good congru­
ence on uS. Difine t z : uS/S-*S by (xd)n=xu for any xőZuS/ö. Since x<5=y<5<=>- 
<=>(x, y)döoxu= yu  and for any x<5, yö^uS/ő,

(xö • у5)к = (ху)дк = xyit = хиуи =  (хд)п • (уд)п,
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therefore л is a monomorphism. To verify the goodness of л, let xb and yd be elements 
in uS/ö such that xbf£*yb in iiS/ö. Since x, yZuS, uS is a *-subsemigroup of 
S, xSe*x*, yf£*y* and á is good then xbf£*x*b in uS/д and ybJ£*y*b in uS/b 
and we get x*bSC*y*b in uS/Ь which is an adequate semigroup. Thus, x*b =y*b 
which implies x*u—y*u. But x*uf£*xu, y*uM*yu in .S'. Therefore xuSE*yu in S  i.e., 
(хЬ)л£?*(уЬ)л and л  preserves the relation f£*. To show that л preserves also the 
relation ét*, let xb and yb be elements in uS/Ь such that xb3t*yb in uS/Ь. Then 
we get x +bét*xb, y +b3t*yb in the adequate semigroup uS/Ь. Therefore x +d =y+b 
which implies x +u= y+u. Since x +uxu—xu and

ахи = txu => sx =  tx => sx+u =  tx+u

for any s, t£S, therefore x +u3t*xu. Similarly y+uMyu. Therefore xu3t*yu i.e., 
(хЬ)л£Я*(уЬ)л. Hence л is good. Moreover, we notice that (хЬ)л • b^ =(xu)b=xb 
which means л ■ <5̂ =  l uS/i. Thus the following result is proved:

Theorem 5.8. uS is a split quasi-adequate semigroup.

Notice that Im л = {хи: x£ uS }= uSu which is a type A semigroup whose semi 
lattice of idempotents is uEu. For any aglm л, choose a+ and a* to be in uEu. Then

a+uEa+ — a+uEua+ - a+uEu, a*uEa* = a*uEua* = a*uEu

and we have the bijection aa : a+uEa+-»a*uEa* defined by ea.a=(eä)*. Hence we 
conclude that uS is a split quasi-adequate semigroup which satisfies the required con­
dition for the class of semigroups considered in [3], and therefore uS can be described 
as in [3].

The author would like to thank the referee for his valuable suggestions.

References

[1] T. S. Blyth and R. McFadden, Naturally ordered regular semigroups with a greatest idempotent,
Proc. Roy. Soc. Edinburgh, 91A (1981), 107— 122.

[2] T. S. Blyth and R. McFadden, On the construction o f a class o f  regular semigrouos, J. Algebra,
81 (1983), 1—22.

[3] A. El-Qallali, Split quasi-adequate semigroups, The Libyan Journal o f  Science, 14 (1985), 55—66.
[4] A. El-Qallali and J. B. Fountain, Idempotent connected abundant semigroups, Proc. Roy. Soc.

Edinburgh, 91A (1981), 79—90.
[5] A. El-Qallali and J. B. Fountain, Quasi-adequate semigroups, Proc. Roy. Soc. Edinburgh, 91A

(1981), 91—99.
[6] J. B. Fountain, Adequate semigroups, Proc. Edinburgh Math. Soc., 22 (1979), 113— 125.
[7] J. B. Fountain, Abundant semigroups, Proc. London Math. Soc.; 44 (1982), 103— 129.
[8] J. Howie, An introduction to semigroup theory, London Math. Soc. Monographs 7, Academic Press

(1976).
[9] D. B. McAlister and T. S. Blyth, Split orthodox semigroups, J. Algebra, 51 (1978), 491—525.

( Received January 22, 1987; revised October 9, 1987)

D EPARTM ENT O F M ATHEM ATICS 
AL-FATEH UNIVERSITY 
TRIPOLI 
LIBYA

Acta Mathematica Hungarica 56,1990



У- -



Acta M ath. Hung. 
56 (1—2) (1990), 93—99.

EXTENSIONS OF DISCRETE AND EQUAL BAIRE
FUNCTIONS

Á. CSÁSZÁR (Budapest)*, member o f the Academy

0. Introduction In the paper [3], two stronger kinds of pointwise convergence of 
sequences of real-valued functions, discrete and equal convergence, have been intro­
duced. [3], [4], [5] have investigated the Baire classes based on these convergence types; 
the respective definitions (in their final form) can be found in [5], Sections 1 and 3. 
Our present purpose is to study extension theorems corresponding to these classes, 
similar to those valid for Baire classes based on pointwise convergence.

The author is thankful to Dr. M. Laczkovich for valuable remarks.

1. Perfect, normal ^-lattices. Let J l  be a system of subsets of a set X. We say 
that J l  is normal iff M ,, M J J 4 , M, П M , = 0 imply the existence of Nlt N2£ J l c =  
=  [ X—M : M £ J l }  such that

Mt c  Nt, Nxn N t = 0.
Lemma 1.1. I f  Ф is a subtractive lattice ([4], 1.3) on X, then 9(Ф) ([4], 1.4) is a 

perfect, normal lattice ([4], 1.1) on Xsuch that О, Х£9(Ф).

Proof. According to [4], 3.2, we only have to prove the normality of 9(Ф). 
If Px, Ро£9(Ф), P1(TP2=0- lei f t  f i  be taken from Ф such that Pt= X ( f= 0) and 
/iSO  ([4], 3.1). Now

Öi =  * ( / i - / 2> 0), Qz =  X l f - f  >  0)

belong to 9(Ф )С and satisfy Р2с.Ох, Qt^Qi=V>- □
Lemma 1.2. Let 9  be a perfect, normal b-lattice ([4], 1.1) on X  such that 0, X £9. 

Then Ф =  Ф(9) ([4], \ .4) is a complete, ordinary class ([4], 1.2,1.3) such that 9  = 9(Ф).
Proof. By [4], 3.3, Ф is a complete, ordinary class. Clearly 9 (Ф )с9 >, so we 

have to prove 9с.9{Ф ).
For this purpose, we introduce a binary relation <  on the power set o f X  by 

putting A c B  iff there are P4.9, Q £9C suchthat

A cz P a  Q a  В.

It is easy to see that <  is a topogeneous order ([2], p. 12) on X, and {<} is a topoge-

* Research supported by Hungarian National Foundation for Scientific Research, Grant 27— 
3—232.
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nous structure ([2]. (7.7)) because A<^P(zQ(zB, P d3 , Q £3C implies
A c z P c z Q 'c P 'c z Q c z B

for suitable sets P '£ 3 , O' £3° (by the normality o f IP), hence A<Q'<B.
Now let /*!, P2̂ 3 ,  Л П F2 =  0 be given. By [2], (12.41), there is a function 

/ :J F —[0, 1] such that f(x )= 0  for x^Px, f(x )  — 1 for x£P2, and a ,bdR, a<b 
imply

X ( f S  f l)< 2T (/<  b).
This function belongs to Ф. In fact, for c£R, there are P„€3, Q„£3C such that 

^ s c ) c P , c ß , c J r ( / < c  +  -i)
so that

X ( f ^  c) = n  P n&1
because & is a ^-lattice. X (f^c)£gP  is proved in a similar manner: 

x ( f *  C— i )  c i . c f t c  * ( / <  c),

0„€ ^c, hence * ( /« ? )  =  U1
CO

For a given we write, by the perfectness of 3 , X —P= (J P„, P„€.3,
1

and choose functions f„cФ such that f„(x)—0 for x£P, f n(x)=2~" for x£Pn, 
0^f„ ^2~ n. Then f = 2 f n  belongs to Ф, and Р = Х (/^0 )£3 (Ф ). □

l
2. Restriction of Baire and Bore! classes. Let Ф be a complete, ordinary class 

onasetT , 3  = 3(Ф ), and let 3 X, 2 X be defined as in [4], 2, Фх as in [4], 3.11.
For a given subset A cX , consider the trace

3(A ) = 3 \A  = {P ^ A : P£3}
of the system 3 .  Since 3  is a perfect d-lattice ([4], 3.2), it is easily seen that 3(A ) is a 
perfect ó-lattice on A, 0, A £3(A ), so that we can define

3 0(A) = 0 (A ), 2.0(A) =  {А - P :  PZ3(A)},
3 J A )  = ( U 2 ß(A)f, 2 X(A) = ( U 3 ß(A)Y,

ß<ot ß<%
^ ( A )  =  З х( А )П 2 а(А).

Then all propositions in [4], Section 2 hold for these classes with A instead of X. 

Proposition 2.1. For O s a <&>!, we have

3a(A) = РДА, 2x(A) = 2JA.
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Proof. Transfinite induction. □
Proposition 2.2. We have

rf&A c  J*a(A)
for I f  А£0*а and 1 then = holds instead o f  c .

Proof. The first part follows from 2.1. If B^sdfA), then 2?=РПТ = бГЫ  for 
suitable sets P^SPa, Q£&x- Since Bdi?x, provided А^ЗРЛ, and BaQ , by [4], 2.8, 
there are sets Q', Q’fsd^  such that

Q' с  X —B, Q" c  Q, Q'DQ" = 0, Q'UQ" = X.
Thus B d Q "d Q , B=Q"nA€sdJA. □

By [4], 3.3,
Ф(А) =  Ф(&(А))

is a complete, ordinary class, and 0>(А) = 0>(Ф(А)). In fact, 0>(А)^>&>{Ф(А)) by 
definition, and Ф\АсФ(А) implies

0>(А)с0>(Ф\А)с0>(Ф(Л).)
Thus we can define, starting from Ф(А) and according to [4], 3.11, [5], Section 1, and 
[5], Section 3, respectively, the pointwise, discrete, and equal Baire classes

ФЛА), Ф?(А), Ф<?>(А)
with the underlying set A.

Proposition 2.3. We have, for 0s a < c o 1, Ф^АаФ^Л), Ф ^ \А с Ф ^(А ), 
Ф<£)ИсФ<е) (A).

Proof. By [4], 3.14, Фв=Ф (0у, hence /€Ф Я implies f \A £  Ф(&>я\А)=Фа(А). 
From this, the statement concerning Ф[е) follows by [5], 3.3 (or immediately for limit 
ordinals a). For the case of Ф ^\[5], 1.2 applies. □

For pointwise Baire classes, the following classical theorem holds:
Theorem 2.4. I f  0 / f  Ф„(А), then there are a set A*£0,a+1, A*d>Ay 

and a function g£Óa(A*) suchthat f —g\A\ i f  А^ЗРЛ, then A* = X  can be chosen.
Proof. Consider first a bounded function f  say | / |  ̂ c ,  and the sets 

A* = A [ f S S ) ,  A - = A [ f * - ! L ) .

Since /£Ф а(Л), we have А + = А П Р +, A~ = ADP~  for suitable sets P +, P~£iPx. 
Choose functions g, h t Фх such that g, hsO, T(g = 0) = P +, X{h—0)=P~. Define 
Qi = X(g+h>0). Then A d Q x̂ ß x, and the function

c 2c g 
81 3 +  3 g + h

satisfies

f t€ * .(ß i) , |gil S  j ,  \ f ( x ) - g l(x)\ s  Ц -
for x£A.
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We can repeat the construction for / —(g^A) instead of/because gl \A£0JA); 
2cthen c is repleaced by — . In this way we obtain sets Qni2.x such that Ac:Qn and 

functions g,,€<Px(Q„) satisfying

2"-ir n 2nr
\gn\ = —^7—, I/ ( * ) -  2  s.(*)| = -ъ г

D f = l  Э
for x£A.

Now

^  =  A c: a *,1
and g„\A*£ ФХ(А*) implies

g  =  2  in£Ф*(А*)l
because the series converges uniformly. Clearly f=g\A .

For an arbitrary /£Ф Х(А), we consider / ' , =  tanho/. Clearly / '^ Ф Х(А). Choose 
a set A'ZD A, A f£?x+1 suchthat f '= g '\A  for a suitable function ^£Ф Х(А'). Define

A* = A'(\g'I < 1 )e£a(A') c  P '+1,

g =  artanho (g'\A*)£ ФХА*),
then Ac:A*, f=g\A .

In the case A££PX, we have A +, A~cSPx, so that we can choose P + = A +, 
P~ = A~, and we obtain Q0 = X. In the sequel Qn = X, A* = X, and the second part 
of the statement turns out to be valid for a bounded /£ФХ(А). For an unbounded 
/ ,  we define f ' £  ФХ(А) as above and take g fФ x suchthat f ' —g'\A. Let Ь'£ФХ be 
chosen such that \h'\-s\, h '(x)= l for x£A, h'(x) = 0 for x£X(\g'\^l)£3?x. Then 
£К^Ф Х and \g'h'\<\, g 'h '\A = f'. Hence

g =  artanho g'£Ф0C

is the function looked for. □

The reader has certainly observed that the method of proof is taken from the 
classical theorem of Tietze—Urysohn. In [6], §35, VI, Theorem, a quite different 
method has been applied for the case a S l ,  while, for a = 0, the case Ф=С(А), X  
a metric space, has been treated by an elementary method that cannot be generalized 
for the case of an arbitrary complete ordinary class ([6], §35,1, Theorem 1).

C o r o lla r y  2.5 (see [1]; [6], §35, VI, Corollary). I f  0 / £Фа(Т), then 
there is a function g£Фx+-í suchthat f= g\A . □

3. Extension of discrete Baire functions. The second part of 2.4 says that the 
first inclusion in 2.3 can be replaced by equality provided A £ ^ x. For the second 
inclusion, an essentially weaker statement can be proved:
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T heorem  3.1. The equality
ФР\А =  Ф<“>(А)

holds i f  A£ZPо and or i f  A ^ä t and a^2 .
P roof. We have to show that the sign z> holds. The case А$_0*й, a = 0  is con­

tained in 2.4. Assume а ё 1 .
Let /<ЕФ<«(Л). Then, by [5], 1.2,

A = (JAi, A f l x(A), f\A i = gilAi, &€Ф(А).
1

If Ad&o, then A f  £a(A)=£JAc:£x, and £-;=А,|/4, Л;£Ф by 2.4 (for a=0). 
Hence we can define

(3.1.1) £(*)=/ ( x) for x£A, g (x) = 0 for x £ X —A,

and X —A£<&0c á ,  implies g£Ф<f ) by [5], 1.2.
00

If A^2,i ,  then T =  !J Bj, BfSP0. We introduce again the sets At and the
1

functions gi. By 2.4 gi\Bj=hij\Bj where Ф. Thus

A =  [J OiAiDBj), A ^ B j e ^ ,
i=ij=i

further g\AiC\Bj=hij\Air\Bj. If a&2, then and g£ф(d'>. □
Another very weak result is the following:
P roposition  3.2. I f  A £s/X, then

Ф^\А = Ф«ЦА).
P roof. By [5], 1.2 a ga in ,

A = \J A t, A fM A ) ,  / I Ai = g i\Ai, g f Ф(А).
l

Now Af2.i= & >a so that we can suppose A^SP. Then by 2.4 f \ A i=gi\Al=hi\Ai 
for suitable functions h f  Ф. By defining g according to (3.1.1), [5], 1.2 yields g£ Ф[*> 
because Х - А а ^ .  □

The hypothesis A£SP0 in 3.1 cannot be replaced by А£8Рг :
E xa m ple  3.3. Let Ф=С(11), an d /b e  a monotone function that has a jump at 

every xC Q and is continuous on R —Q =  QC.
If A —Qc, then AC_2PX, f \ A f ^ 0(A) (because SP(A) is composed of the sets rela­

tively closed in A, hence Ф(А) consists of the functions continuous on A). However, 
if g: R-^R satisfies g\A = f\A  then g cannot belong to any class Ф(/К  In fact, if

oo

R = U At, for g /C (R ), then, by Baire’s category theorem, Л;П Qc
X

is dense in Qcf) / for an open interval I  and for at least one i; this leads to a contra­
diction at a point rdQC\I. □
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Similarly, in 3.2, A ^ s f  cannot be replaced by \  or A^2.x; the first asser­
tion follows from 3.3, the second one from 3.4:

E xam ple  3.4. Let Ф, / ,  Qc be the same as in 3.3, and A be a countable dense 
subset of Qc. Now AZ.2,l5 f \ А£Ф0(А), and f\A = g \A  is impossible for any g£ .

00
In fact, if R = (Jv4 f, A f ^ ,  g lA — g^Ai, gt€C (R), then we can suppose А£(?0

1
so that at least one At contains an open interval 7. For Q П7, we obtain a contra­
diction again. □

We have better results concerning the analogue of 2.5:
Theorem 3.5. I f  /£Ф ^(А ), a&2, then there is a set A*z>A suchthat A*€£>x, 

f= g\A , g W 'M A * ) .
P roof. By [5] ,1.2,

Л = С Ы « , A t€ ^ (A ) ,  f lA i = gi\Ai, Е£Ф(А).
1

According to [4], 2.8, we can suppose that the sets At are pairwise disjoint. Set
A, =  Q,nA, Q £ 2 a,

further
Bi =  Q -  U QjZ-sf'+i-

j^i
Clearly

Ai = Bin A ,  л  = и а  =  и л д -1 1
By 2.4, there exist sets Ctz^A  satisfying

gi = h\A, Ь,€Ф(Сд
for suitable functions Ä;. Define

А* = Я П П С ( 3  A.
l

Then A*££x (because a^2), А*Г\В£л/а+1. Since the sets B{ are pairwise disjoint, 
we can define a function g on A* such that

g\A*C[Bt =  Ь\А*С[В{.

By we get g€ Ф^+1(А*), and clearly f=g\A. □
C o r o lla r y  3.6. I f  z = l, then the statement o f  3.5 holds for a set A ' f s f .
Proof. The above construction applies with the only change A*£s/2 (because 

B ^ C ^ S P f ) ,  A*O Bfsd2. □
In 3.6, л/2 cannot be replaced by In fact, let Ф,/, A be the same as in 3.3. Now 

if Qc=A<zA*££l1 and f= g\A , then g cannot belong to any class 0<d)(A*). Assume
A* = {JAi, g\Ai=gi\At, g f  Ф(А*). Then by the Baire category theorem, Л;ПС>С 

1
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is dense in QCH7 for an i and an open interval 7. Since A*C\l£&x, A*C\Ia QcC\I 
because the right hand side is not an F„ (by the category theorem again). At a point 
*6(A* f) I )—A, we obtain a contradiction.

4. Extension of equal Baire functions. For the classes Ф<е), there exists a better 
analogue of the second part of 2.4:

T heorem  4.1. I f  fa  Ф̂ е)(А), 0^a<co1, and A f s f , then f= g\A  for some 
g£ Ф<с), and Ф<е>|Л = Ф<е>(Л).

P roof. If oe = 0 or a is a limit ordinal, then Ф[е)(А)—Фх(А), Ф<е) =  Ф1, hence 
2.4 can be applied. Assume ct=ß+1.

By [5], 3.6,

A = {JAt, A f £ x(A), f \A i = gi\Ai, gf<Pß(A).
1

By 2.1, A fQ x so that we may suppose A f ^ ß. Then, by 2.3, gi\A f Фр{А1), 
and, by 2.4, g ^A -h ^A j, h£<P„. By putting g(x)= f(x) for x£A, g(x) = 0 for 
x ^ X —A, [5], 3.6 yields □

Observe that 3.2 is a particular case of 4.1 according to Ф[й) =  Ф[е> ([5], 3.3). 
For the same reason, 3.3 and 3.4 show that, in general, Adjt?x cannot be replaced by 
AfSPa or A£ J a in the hypothesis.

The following theorem is the analogue of 2.5:
T heorem 4.2. I f  /6  Ф̂ е\А ), AczX, a= j9+l<cu1, then f= g\A ,
P roof. As in the previous proof,

A = {JAt, A f £ x(A), f \A i = gi\Ai, g i^p(A ).
1

Now we can proceed like in the proof of 3.5. We define Qi,Bh then С; з  A satisfying 
C f& >ß+!=&<,> gt=hi\A, А^ФДС,). Now we construct A* as above and conclude 
A*£s/a+1, A * n B f^ /x+1; finally we define g on A*, and h]A*C Фр(А*)а ФХ(А*) 
implies g^Q ^iiA*). By 4.1, we can extend g to be an element of Ф^Д. □

3.3 shows that the statement of 4.2 is not valid for a =0.
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ON THE DIVERGENCE OF SOME FUNCTION SERIES

I. JOÓ (Budapest)

This paper is devoted to the study of the divergence of Fourier series. In the four 
sections below we deal with the a.e., resp. the norm divergence of SßJ — S Vnf  where 
fi„— 0(1); the a.e. divergence for signed Toeplitz summations and another norm 
divergence problem. We also formulate two corresponding problems.

1. Investigate first the pointwise divergence of a sequence of type S^nf — S Vnf.
Lemma 1. Suppose {p„} and {v„} are natural numbers such that pn— +°°, v„->- 

— + o o  (n —>-oo ) and define

( 1) S,K s , = 2  cnehWsjv

1
2 n J  f(x )e  mx dx.

Suppose that there exists fifL^O , 2 л) such that

lim sup IT„ffix)\ > 0

on a set o f positive measure. Then there exists <5>0 and for any 0 there exists 
a polynomial f= fM satisfying \\f\\x^ K  with a constant К  independent o f  M  and ö; 
further

(2) sup \TJ{x)\ >  M  (x£E)П
where 7?cz[0, 2л] is a set o f Lebesgue measure \E\><5.

Proof. We can suppose that

lim sup 17;/!(x)| & c0 >  0 (xeE j
n —► oo

for a set F j, IFj Î -O. Fix an arbitrary M*>0. Let1

f (x ) := M * .9 H{f1- a M ) ( x )

where N  and m will be specified later and SN denotes the N-th de la Vallée-Poussin 
means. If m is large enough, т>т0(М *,^), then

ll/Hi cM*||/1-<xra(/1)||1 S  K.

9n := +i~\~... + S2] S0+ ... + S N
N

, gn
N + l
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Suppose now that m, M* are fixed and vary the number N. Clearly

We know that
n >  Nt (m) =>vn, p„ >  m.

lim sup |Г„/1(х)| & C|)> 0  (x€£i)

\jr I
so there exists a set E, |Я| >  ^ ami a number iV2 such that

sup l^/iOOl S  c j 2 (x£ E ).
Nl<ncNi

Here N2 depends only on ,/i, p„, v„. Let N  be so large that N>/un, v„ if Nx < n <  N2 ■ 
Then

T J  =  М*{[5,пЛ  -  a M  -  [SVnA  -  amf ] }  =

consequently

sup |Г„/(х)| =  M* sup |ГпЛ(х)| ^  M* (x€£)
and then

М : = ^ - М \  5 : = Щ  2 2

satisfies the statement of Lemma 1.
Lemma 2. Suppose that tu„,v„ —+<=° are natural numbers and \p„—v„| -*■ +°°. 

Then there exists 0 and for any M >  0 there exists a polynomial g with ||g'||1=37r 
and such that

sup |T„g(x)| >  MП
in a set o f x  o f measure £<5.

Proof. We can suppose p„>v„. Fix n£N and define

and

where

4 ni 
2n+  1 (* =  0, 1, n)

g(x) := - i  X  V„ (x -a i)
n i — l 1

06 О

1 ** 2fl /  j— 1 'l
Vß(x) = у  +  Z  cos /* +  2  1 - - 7ГГТ cos^x2 j = i j=/<+1 V /Г+1/

is the de la Vallée-Poussin kernel and I '  means that the summation is restricted to 
the indices id I, where the set I  will be given later. Define a sequence k t with the prop­
erties

и4 <  v*0, (pkl > K ,  >  2pk._1 (i =  L 2, ...).
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Let ls jo ^ n ,  then

S„k (g)—SVk ( g ) = ~  2  (A«*. ( x ~ a , ) - D Vk' (x-Of))  =
Jo Jo i £ I  Jo Jo

i—Jo

( ч  + t ) (x“ a‘)_sin ( ч + т )  ( x - fl**>
= -  2  n ia  

* — ■1*0

sin

2 sin X --- Cl:

J sin у  (fikja -  vk.) (x -  at) ■ cos у  (nkj' +vkja + l ) ( x - a t)

~  Tl «fl sin ( * - ßi)iSJo Sln 2

We can suppose that the sequence kt is chosen such that

Hki—vki = 2к (mod 2 n + 1) 1
/ifc»

This means that
,+ V jt+ l= 2 / (m od2n+l)J » V/.

1 А'/стс
у  (f*kj0 -  vk j) at =  i r  (mod 2я),2и+ 1

1 , . 4/тг , , „ .
2 К . + Ч + 1)fl‘ 55 1Ъ ГТГ (mod n)-

Let jo ^ n -Y n ,  then

(*) In n
i= j0+ l  1 Jo

In n
~T~ •

Let £>0 be a fixed number and — be some multiple of e. Divide [0, 2л] into disjoint 
segments of length e. Then there exists a pair of segments [гг, (r+l)e], [je, (j+ l)e] 
with the following property. Let

/  =  I(k, l, e, r, s ) : = { l S i 'S / i :  ка£  [гг, (r+  l)e], mod 2л; 
lafclse, (y+ l)e], mod 2л},

then

Д  —-1- -  s  сг2 In n.
■ er I-Jo

This follows from ( *) and from the fact that there is (2л/е)2 such pair. Let

/  := [(r -  l)e, (л+2)е] U [(г -  l)e + n, (r+ 2)e+ л] U

U[(j —l)e, (s+ 2)e]u[(i—l ) e ± y , (j +  2 )e± y ] ,
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then |/|^1 6 e  and then |[0, 2 л ] \ / |  ^2 (я  —8г). Denote

^Jo [ajo9 ay0 + ii>

AJo := {x£AJt: j  (jik]o- vkj<)x$ 1}, BJo := jx£Ah : j (цк.̂  + v*y# + l)x<f / } , 

then, for £<1/100, say, we have

\Bh \ ^ \ A h \
and hence

W U y s - J - M J .

Take the partition of [0, 2 л ] \ /  into segments of length s, then there exists r', s' such 
that the measure of the set

Cjä := jx€d ;0: ~  (nk. - v k j)x£[ r'e, (r'+ l)e] mod 2л,

\(H k: +vk. +  l)x£|>'e, (x'+l)£]mod 2n\
z  J0 J o  J

satisfies \ C Jo\ ^ c e 2\A Jo\ (further the segments [ r ' s ,  (r'+ l/e], [ x'e, ( /  +  1)г] are disjoint 
from /). Clearly /£ / and x fC Jo imply that

1 \
^ 2 ßklo~Vkj ) {X~ ai) ^  cs, cos — (nkjo+ vkjo +  1) (x -  a,)

and the sign of the above sin and cos is independent if i£l. Summarizing all our ob­
servations we can estimate from below the difference

\s„k. (g )-S v k . (,?)l ^  cr,-~ 2  -  C £ 2 4  2  - - - - -
Jo Jo П  i £ I  X Q( n i€I at d j Q

l —Jo »Jo
£2 _  2и+1 1

=  c — 2, —*------ •—-n it! 471 1-J0
»ja

& csi In n (j0 <  n -  ]/n, x£Cj0).

n — j n
So the measure of the set C := Q Cia satisfies

Л=1

and

1 J ()- •  И  - -  У  О J o

which proves Lemma 2.

|C| s  r f  JJXÍJL ,

max _ IS„,. (g) -  S,., (g)| ~ ce4ln n, x£ C
Jo
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L emma 3. Let T„: L1 -*Ln be a transformation for which there exists 6 > 0  and 
for any M=~0 there exists a polynomial g such that

llslli ^  Зтг, sup \Tng(x)\ ^  M  (xeE)n

with |.E| ̂ <5. Then there exists fd L 1 with

sup \Tnf(x)\ = oo a.e.• n

P roof. Suppose indirectly that for all fd L 1, su p |r„ /|< o °  on a set of positiven
measure. Saks’ theorem [3] states that there exists a measurable set E c :[0, 2n] 
such that

a) sup \T„f(t)\ <  °o for a.e. tdE, V fdL1,n
b) sup \Tnf(t)\ = oo for a.e. t$E, Vfd L r\ BП

with some set B c L 1 of first category. In particular, if for all fd L 1, sup | Tn f  \ 
is bounded on a set of positive measure then |.Е|>0. Since Tn commutes with the 
translations, i.e.

Т Ж -  +L)](0 =  [TJ](y+t)

where the addition is meant mod 2n, hence fsc:[0, 2л] must be translation-invariant, 
so E=[0, 2л]. Consequently

sup \Tnf \  <  °° a.e. for all fd L 1.n
Now the Banach theorem on a.e. convergence ([4]) states that T„ is uniformly bounded 
with respect to the metric inducing the convergence in measure on L°(0,1). In other 
words, for any e, a> 0  there exists 0 suchthat

(3) !l/lli = >7 =»|(sup |Г„/| > a)|^e-

Define T*f:=sup \Tnf \ .  The assumptions of Lemma 3 yield the existence of a 
sequence (f^czL^O , 2n), ||./tlli"*0 and of a sequence Mk-~ +°° suchthat T* f k> 
>  Mk holds on a set of measure ё<5. But this contradicts (3) and this contradiction 
proves Lemma 3.

L emma 4. Let z<2n, M >0. Suppose that there exists N dN and
a ( trigonometric) polynomial g such that the level set

A := ( sup \Tng(x)I =  M)
ISnSJV

satisfies \A\Se. Then there exists another polynomial g'with ||£/||1s4Me and a num­
ber N'd N such that

sup \Tn(g + r}g')(x)\>-5-M, Vx€[0,2л].
l^n^N' 1 z
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P roof. We shall prove that we can define the polynomial g' such that for some 
N'yi>degg we have SN{g')=0. Then, of course,

swp\Tn(g+r\g')(x)\> M  (x$ A).П
Further we have

A =  Ú Ij
i=i

where every set Ij is either a point or a (closed) segment. Let Ar2»deg  g be a number 
:so large that v„>degg (n>N2). Introduce the functions

fj(x)
M  if xZ Ij 
0 if x$2Ij (mod 2л) 
f j  is linear if x £ 2 I j \ I j .

The partial sums of the Fourier series of f j  converge uniformly to f j ,  consequently 
for sufficiently large n0>Ar2 we obtain

||(S„n - S v„) (e‘t(4 +v"o>/2l* v„o/2]( / ) ) - f é « 4 +4 :)/2] jell

where f \ — 2 f j -  Denote 
i=i

_ /  . _  „ '[O '»  +V» )/2]ле f  f \g .= e о "o a [(%_4 )/2](/)

and N':=n0. Then g' and N ' fulfil the requirements of Lemma 4. 
T heorem  1. Let and v„ be given natural numbers satisfying 

kn -~°°> vn — °°. l/i,. —v„| — “  (h -° ° ) .
Then there exists fZ  L \0, 2n) such that

sup \T„f(x)\ =  + “  for every x£[0, In],
П

P roof. We showed the existence of f 2£ L i (0 , 2 n )  with 
sup \T„ffx)\ =+oo a.e.

For any k > 0 we shall give numbers N'kZN, ek>~0 and polynomials gk such that

l l a l l i  =  o ( i ) ,  £* =  o ( i )
and

sup \t „ Í 2  ^i) 0')j Vx.
ISnsAr' I 0=1 2 ) I

Suppose that Nj, 8j, gj is given for l s j ^ k  and consider the index fc +  l. If Ek+1<scek 
is small enough and for some hZL1,

£*+i>
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then

<4) sup \T„h(x)\ >  k — 1, Vx.
lS n S lV '

: oo a.e.,

In what follows we shall make use of this property. We know that

sup |r„ ( Í  gj + - J r f / 2 , x)j

hence for any e=-0 there exists Nk=Nk(e) suchthat

sup W i | f g , -  + | ^ / 2)(x)
l^n^Nk I V=1 Z Z S

holds outside a set of measure If lk is large enough, then

sup U i ^  + l ^ a J / A x )
l^n^Nk I Vj=l z z '

e 1•outside a set of measure <ce. Use Lemma 4 with и := , JV:=— to show thee
existence of a polynomial gk+1 with

IlS'i+illi =  4 ~  • e =  4,

and of a number N'k+1 satisfying

, sup \т п [ 2 % ъ + Ш (° ы Ш + £ + 1 )) (х )1 s«aivfc+11 \ j =i z /

Since e>0 can be arbitraly small, hence we obtain

„ 1 £k + l

J_ £t+i 
E 2k + 1 '

2<и k+1.

Hence we can define indeed N'k+1, ek+1, gk+1, with the indicated properties. Finally 
define

Now

On the other hand

/■= 2 ^ r g k -k = l Z

W f W i ^ c Z ^ - c -

f - Z - Z - g jj =1 z j=k+1 z ■k +1?
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whence (4) ensures that
sup \T„f(x)\ > k — 1, Vx\/k,

and this proves Theorem 1.
2. Next we investigate the phenomenon of the local norm divergence of Fourier 

series.
Lemma 5. Let and F cL °(0,1) be an arbitrary function set. Then

there exists a partition (0, \ )—Ex U *E2 such that
a) For any о  0 there exists a set E, with IF Jc s  and

{II/[]li’(e1\ e)<:: /€F}
is bounded.

b) For any E c E ,,  |F| >0 there exists (f„)czF with

sup ||/„||l<-(e) =  °°-
П

Moreover, i f  we know that F is translation-invariant, i.e. f£ F  imples / ( • - r t f  F  
(the summation meant periodically), then either Ex = 0 or Ex =  (0,1) and in the 
latter case in part a) we can take \Ег\ =0, i.e. F is bounded in L \ 0, 1).

P roof. We call a set Ea(0, 1) a good set if

{II/IIlp(e): f€F }
is bounded. Let

ő := sup {IFI: E is good}.
There are good sets En such that \En\ — <5. Let

Ex:— Ü E", E2 := (0, l ) \ E x.
n = 1

Since the union of finitely many good sets is also good, hence |i?i|=<5, so a) holds.. 
On the other hand Ex contains any good sets (up to a set of measure 0) by the same 
arguments. So E2 can not contain any good set, and then b) also holds.

Consider the case when F is invariant under translations. Suppose there exists a 
good set E, |F |> 0 . It is enough to prove that F c:=(0, 1 ) \F  is also good. Suppose- 
indirectly that for any M M ) there exists / = / vfG F suchthat

II/II£p(eo= f \ f \ p > M .
Ec

Applying Fubini’s theorem we obtain

/  ( /  \ m \ p dx) d t=  f  ( / / E+t(x)\ f(T)\" dr) dt =
0 E c C\(E + t) 0 Ec

= f  \fW \p{ f  XE+t(T)dt)dr = \E\- J  | / ( tF  dx >  M \E\.
Ec 0 E c
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Hence there exists tf[Q, 1] with

M \ E \ ^  f  \ f \ " ^  / | / | p =  f \ f ( x  + t0)\pdx.
Ec n ( E + t0) E + f0 E

Since f  (• +t0)£F and M  can be taken arbitrarily large independently of E, hence E 
can not be a good set. The contradiction proves Lemma 5.

As a corollary we get the following statement.
T heorem  2. Let Ln: 12(0, l)->-L0(0, 1) be a sequence o f continuous linear and 

translation-invariant operators. Suppose that there exists /£12(0, 1) suchthat

sup ||L„/|[t i(0,i) =°o.
П

Then for every set E, \E\>0 we have

sup l|L„/|h(E) =°°П
for every Д Ь \ 0, 1) except for a set offirst category.

C o ro llary  .L e t  pn, v„fN satisfy

v„->°o, sup|/i„-v„| =°o.П
Then for an arbitrary set E, \E\>0, there exists Д Ь \ 0, 2n) such that the sequence 
(Sßnf —S Vnf )  is not bounded in 12(E).

P r o o f . The operators Tn :=Sßn—SVn are translation invariant. By Theorem 2 
it is enough to prove the existence of Д  22(0, 1) with sup ||7,n/ | | i i(0,2^)=00- SupposeП
indirectly that there is no such f  then the Banach—Steinhaus theorem implies that 

\\TJ\\l4 o,2x) S  C||/||x,i(0,ajt) ( y fd L f  0 ,2nj).
In particular, for every analytic trigonometric polynomial p we have

I I ^ W  — v„ |P I I l 1(0.27i) =S C | | p  II 1.1(0,2 rt),

with C > 0  independent of n and p. But this implies

(* )  Ĥ kPlUHo.it) — С||р||ь1(о,Я) (fc =  0, 1,...)
for arbitrary analytic polynomial. Indeed, if n is chosen so that \pn — v„| >  k, then let

p  ;= e;[max0in,vn)-k\xp^
whence

Н^р Нечо̂ ю =  ll>S'iíí„-v„iPllE1(o,2)t) S  СЦрЦу^г^) = C||p||x,i(0j2̂ )-

But (* ) is not true, see ([11], p. 599).
We raise here a problem concerning Theorem 2.
P roblem  1. Does there exist a set A of first category in 12(0, 1) such that for 

every set E,\E\>0,
sup I|L„/||l4 E) =°° (Д А )?П
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For the trigonometrical partial sums L„ = S„ the answer is positive and we return 
to this in a next paper of the same journal.

Lemma 5 shows that the classical Saks theorem [3] has an analogy also for the 
norm convergence. Indeed, we can prove the

Lemma 6. Let X  be an arbitrary set, 1 and let Ln : X -* /ДО, 1) be an
arbitrary sequence o f mappings. Then there exits a decomposition (0, l)=fsjU*Fa 
such that

a) Vx£XMe>0 32j£c (0, 1), |£j,|<e satisfying

sup ||L„x ||li>(£\ec) <0°-

b) WEczE2, |.Ej > 0  3x =  x E: sup \\Ь„х \\ЬрШ =°°.
n

Moreover i f  for every h£R there exists a mapping x  -»xh on X  such that L„xh — 
=  thLnx then either Ел =0 or jEj =  (0, 1) and in the latter case a) holds with |i?,|=0, 
i.e.

sup ||Lnx||iP(0,i) < “ , Vx^X.
n

Proof. We say that the set E  is good if

sup IIZ.„XII£.<.(£) <°°, Vx€Z
n

and apply the proof of Lemma 5.

3. Next we investigate the a.e. divergence for signed Toeplitz summations.

Lemma 7. Let 0<e<27r, 0<??<1, 0<  M, and denote by T  an arbitrary Toeplitz 
summation whose coefficients satisfy

a )  0 < c 0 s | 2  *„д| =  2  K J  <  00 (V и),k=1 k=1
b) lim /яД =  0 (Vk).

Let

TJg, x) := 2  ‘n,kSk(g, x).
k  =  1

Suppose
lying

that there exists N£ N and an analytic trigonometric polynomial g satis- 

|( sup \Ta(g, x ) |S M ) |< £ .
l a n s J V

Then there exists another trigonometric analytic polynomial g' and N f N  satisfying 
Wg'W^AMr. and

sup
ián*«'

\Tn(g + r]g'Xx)\ >  m in jy Vx€[0, 2n\.
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P ro o f. Let N ^ N x ^ N ^ N z ,  degg< N lt then by a) and b) we get

Jv.
fc = A1, + l

hence in case |g(x)|>i/ M/3 we obtain
N.

2k = l

2

IT%(g, *)l =  12  <N[k s k(g, x)\ ё  I 2  4 * 1  • l*(*)l -
k = N x+ 1

12  4 * 1 1Sk(g, л)I ё  1, T*(g, x) := 2  tnkSk(g, x)
k = 1 2 2  J  * = i

(in the last estimate we used b) again). If the polynomial g' will be given such that it 
has zero coefficients of order =N2, then on the set

Í Ы >  4 U ( sup \Tn{g)\> M )  
v J '  l^n^N

we have

sup \Tn(h+t]g',x)\ ё  m a x ÍM ,-^ - i j^ - l ) .
l ^ n ^ N t  V Z J  /

The set of x  not yet considered has the form

i | g | = M ^ ) n (  sup \Tn{ g ) \ ^ M ) a

c  í|g| S  sup |Z»(g)| s m ) = Ú  Ij ,

where Ij are closed segments and 2  I Ij\ <  £• Take the function f mj  defined on I} 
as the following figure shows (the interval /,■ is divided into m equal parts):
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This function was used also in Totik [2]. Take the sum

fm 2fm ,j-
7 = 1

If x  is a point of discontinuity off m then

ISk( fm, x)| 1  \fm(x -0 )+ fm(x+0)\ ш M  (k — ~),

hence for N3̂ >m we have
Sk(g+nfm,x )  = g(x) + 1if*(x) + ok(\), к ё  N3

and then

I 2  ks k(g + 4fn, x)| = -y-1̂  W + r)fm Ml -
'k= N 3+ l  3 1 2

- % a(l) 2 '  Urv'/cl ^С йГ]Ц--Оц3{\)

holds if N3<zN'3<z:Ná. Let
h := <r„(fm) ~ S Nian( f j ,  g' := P+h,

where P+ denotes the Riesz projection i.e. the transform of taking the analytic part 
o f the Fourier series. The constant n will be given later. We know that

ReSkg' = j  {S0(h) + Sk(h)} = j S k(h),

since h is a real polynomial. Consequently
Ni
2k = 1

N.

\TN'*(g+4g\x)\ =  \ 2  tN'k (Skg(x) +  nSk(g\  *))| ^k = 1

— |Re( 2  tN(ik{Skg{x)+r}Sk(g \ x)) =
k= 1 2

2  4 '* ( Re SkS (x)+ j Sk(h, x ) |  ё

^  I 2  \ t N’h „max1 fc=iVa+l 3 N37Sk̂ Nt
Reg(x) + j - S k(h ,x)\-í/2 .

|M < b ,( /m))||~ = om(l)
Now if N2<scm, then 

and if N ^ n  then

||S*(<7n(/m) ) -  Sk( fm)\\„ = %i,m(l) (к ^  K )  

Sk(h) =  Sk( fm) + oNiim(i) (к ё  NJ.
SO
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Since m<szN3 hence

Sk(h, x) = fi(x )+ o St'Nt.m( 1) (N3^ k S  N J
and then

\T%T(g+tlg ' ,x ) \> ^ - n^ — l (xZU)

holds for an open set U =  U(N4) containing all discontinuity points off m. Outside U 
the sequence Sk( f m) converges uniformly to f m hence for iV5»iV4 we obtain

Sk(f„, x) = fm(x)+oNl(l) (k s  N6, x i  U).

On the other hand, let N5<ztN's<szN6<s:n, then

l|5fc(<r„(/m) ) -S ,( /m)|U =  °ve(l) (k == Ne),
hence

HS*(A )-S*(/J||-=  oWi(l) ( k s N 6) 

and (taking real parts) we get

\ T N ' ( g + n g \ x ) \  2  <лг'* ( Re +  -5- S'* СЛ, лг)11—о (i) ==
5 k = N K+ 1 5 V X  )  I

— 1 . - 2  fN'k\
k = N .  + l

R eg(x) + j fn ( x )

Lemma 7 is proved.

Theorem 3. Let T  be a summation process satisfying a) and b) from Lemma 7. 
Suppose that there exists a power type /613(0, 2 л) satisfying

sup \Tn( f  x)| =  0 0  a.e.П

Then there exists a power type / 6 13(0, 2 л) such that

sup IT„(f x)\ =  00 vx6[0, 2л].П

The proof repeats the ideas from Totik [2], Lemma 4, so we omit the details.

R e m a r k . We have proved in Theorem 1 the statement of Theorem 3 for the op­
erator

Tn -= S , - S Vn.

This operator, meant as a signed Toeplitz summation, does not satisfy condition a) 
of Lemma 7. Here the following question arises.

P roblem  2. Give a common generalization of Theorems 1 and 3.
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CHARACTERIZATION OF SUBPROJECTION 
SUBOPERATORS

Z. SEBESTYÉN* (Budapest)

Introduction

After P. R. Halmos [2], a suboperator is a bounded linear transformation from 
a subspace of a Hilbert space into the whole space. A couple of problems initiated 
also by Halmos in the paper just mentioned arises when one asks for a characteriza­
tion of subpositive, subprojection e.t.c. suboperators, that is for ones there are posi­
tive, projection e.t.c. operators that extend these suboperators. Of course, subselfad- 
joint suboperators are, in view of the now classical theorem of M. G. Krein, symmetric 
suboperators. A simple proof of this fact (together with extension not increasing the 
norm as usual) can be found in Z. Sebestyén [3]. Here an independent characteriza­
tion of subpositive suboperators is proved as a starting point for the selfadjoint case. 
This turned out to be the natural approach.

As a matter of fact the so called Schwarz inequality is proved to be characteristic 
for subpositive suboperators in the author’s paper [3]. In the present note we show 
that the Schwarz identity (with constant one) characterizes precisely the subprojection 
suboperators (Theorem 1).

As a corollary we get the characterization of Halmos [2, Proposition 3] and in 
a remark we prove the same result of Halmos for subpositive suboperators [2, Corol­
lary 2] using our result.

Factorizations through projection are proved in Corollaries 2 and 3.

Characterization of suhprojections

Given a (complex) Hilbert space H, a (closed) subspace H0 in it and a subopera­
tor Q: H0~>H, we are interested in searching for a (selfadjoint) projection P on H  
which restricted to H0 is Q itself.

Theorem 1. Let Q : H0-*H be a suboperator. Q is a subprojection i f  and only i f  
the identity

(1) IIS*||2 = (Qx, x) (*<ЕЯ0) 
holds true.

Proof. An operator P on a Hilbert space H  is an orthogonal projection if  and only 
if  it is selfadjoint and idempotent:
(2) P* = P =  P~.

* Partly supported by National Scientific Research Funds (OTKA) N o. 1816.
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116 Z. SEBESTYÉN

In other words
||Лс||2 =  (Px, Px) =  (P2X, X) = (Px, x)

holds true for any x  in H. In the case when Q is the restriction of P to Ha this reduces 
to (1).

On the other hand if we assume (1) to hold for Q, the approach of [3], [4] applies: 
define a semi-inner product (,) опЯ 0 by

(3) (x, y) := (Qx, у ) (x, y£H0).
Then another Hilbert space К  arises by taking completion of the quotient space 
H JN  with respect to the norm inherited from the inner product (denoted by the same 
symbol) on this space, where N  is the nullspace of ( ,  ) in H0. For x in H0, (x+ N ) 
is the corresponding vector in H0/N  so that

(4) V (x+ N )  := Qx (x6tf„)

defines on the dense subset H0/N  of AT a map V : H0/N-*H  which is an isometry 
as well. Indeed,

||F(x+lV)ll2 =  IIÖ*II2 =  (Qx, x) £  (x+N, x+ N )

holds true for all x in H0. Here we use step by step (4), (1) and (3) respectively. We 
have thus a unique isometry, denoted also by V, of К into H  as an extension of the 
former V. The desired projection of II  will be P:=VV*. First, this is selfadjoint 
(moreover positive) and idempotent since V*V  is the identity operator on К  by the 
isometry of V  so that

P z = v(V*V)V* =  VV* = P.

That P restricted to H0 is Q is a consequence of the characteristic identity

(5) V*x = x + N  (x£H0),

we have discovered in our previous works. It is implied by the identity (for any у  in
#„):

(y+ N ,V *x) = (V (y+ N ), x) =  (Qy, x) = (y+N, x + N ) (yiH 0).

Indeed (5) implies (using (4))

Px = V(V*x) ^  V (x+ N ) В  Qx 

as desired. The proof is complete.

C o r o l l a r y  1 (Halmos). Q : H0 -+I1 is a subprojection i f  and only if  A*= A and 
A — A2=B*B hold true for the operators A: H 0^ H 0, В : H0^ H  Q H0 that represent
Q as a “column matrix”

Proof. In the representation just mentioned

(6) Qx — Ax®Bx, AxdH 0, Bx£HQH0
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holds uniquely for all x in H0. Therefore

\\QxV =  ||Лх||2 +  ||Вх||2 = ((.A*A+B*B)x, x)
and

(Qx, x) =  (Ax+Bx, x) =  (Ax, x)
hold also true for any x  from H0. Thus (1) is (easily shown to be) equivalent to the 
requirements

A* = A and A = A*A+B*B =  A2+B*B.
This is nothing but the properties stated by Halmos.

Characterization of subpositive suboperators

Remark 1 (Halmos). Q: H0 ->-H is subpositive if and only if A ==0 and ran B *a  
c ran  YA holds true for the operators A, В defined in Corollary 1.

Proof. Theorem in [3] says that ß  is subpositive if and only if there exists M ^O  
with the property

llßx||2 =5 M(Qx, x) (x € # 0).
This implies (as before) A*=A and

\\Ax\I2 == M x||2+||ßx||2 =  llßxll2 == M(Qx, x) =  M(Ax, x) (х€Я0).
That is A^O  and

(B*Bx,x) = \\Bx\\2 ^ M (A x ,x )  (х€Я0).

But this last inequality implies ran B * c ran YA [1, Theorem 1]. Moreover the last 
requirement is equivalent to the existence of M SO with the property

||5x||2 = (B*Bx, x) S  M(Ax, x) (х6Я0).
This means that for any x in H0

llßxll2 = ||Лх||2+||Вх||2^  \\A\\(Ax,x)+M (Ax,x) =  (M ||+M )(ßx, x) 
holds, therefore ß  is subpositive.

Remark 2. For a subprojection suboperator Q : H0-*H and a projection R of 
Я  such that R extends ß  we have P s R ,  where P is the projection in the proof of 
Theorem 1.

Proof. By an argument of [4] we have another Hilbert space L by taking a semi- 
inner product on Я  using R as follows:

<x, у)о :=  (R x , у) (x, у  e H ),

and the procedure as before (using ß  on Я0). The identity map Я 0-*Я induces an 
isometry T: H0/N-*H/N0, where N0 is the nullspace of ( , )0. Indeed

||7Чх+Я)||2 =  ||x+iV0||2 =  (Rx, x) = (ßx, x) =  llx+ЯЦ2 (х€Я0)
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holds true since R extends Q. Taking W  as a counterpart of V by defining
W (x+ N 0) ■- Rx (*€#)

we get the characteristic identity V=W T, where T : K-+H is the unique isometric 
extension of the former isometry, since

W T(x+ N ) =  W (x+ N 0) =  Rx = Qx =  V(x+N) 
holds for any x  in H0.

Finally we have thus the desired inequality as follows:
P = vv* = WT(WT)* = W(TT*)W* Ä WW* =  R.

Factorization

Corollary 2. Let A, В be bounded linear operators on the Hilbert space H. There 
exists a projection P such that
(7) A = PB 
i f  and only i f
(8) A* A = B*A.

Proof. Assuming (7) we get (8) easily:
A* A = (B*P)(PB) =  B*P~B = B ’ (PB) = B'A.

Conversely, (8) implies (7) by Theorem 1 since the map Q(Bx):—Ax, x ^H  is well- 
defined and satisfies (1). Indeed, for any x£H  we have

WÁBxW =  \\AxV = (A*Ax, x) И  (В*Ax, x) =  (Ax, Bx) = (Q(Bx), Bx),

where B x= 0 implies Q(Bx) = Ax = 0. Q is defined on the range of B, a not neces­
sarily closed subspace. Of course, this is not essential in Theorem 1.

Corollary 3. Let A be a bounded linear operator on the Hilbert space H. There 
exists a projection P and a positive operator В on H such that
(9) A =PB  
i f  and only i f
(10) (A*A)2 s  M  ■ A*A2 =  M(A*)2A for some M  ^  0.

Proof. In view of (9) we arrive at (10) at once:

A* A = (B*P)(PB) = B*P2B = BPB,

(A*A)2 = (BPB)(BPB) = (BP)B2(PB) ^  BP(\\B\\B)PB = \\B\\- A*A-А, ||Я|| = M.

Conversely, (10) implies by [3, Corollary 1] that there exists a positive operator B onH  
suchthat A*A=BA. But Corollary 2 applies to get (9).
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THE SPECTRAL SINGULARITIES OF INJECTIVE 
WEIGHTED SHIFTS

K.-H. FÖRSTER (Berlin) and B. NAGY (Budapest)

1. Introduction

The set o f the spectral singularities of a (closed) operator in a Banach space was 
defined in Nagy [5; Definition 1, p. 319]. It is the intersection of all closed subsets 
S  in the (extended) complex plane such that the operator Г is ^-spectral ([5; Theorem 
5]). It will be denoted here by S, (T), and is, loosely speaking, the smallest subset of 
the spectrum sp (T ), “outside which” the operator behaves like a spectral operator 
in the sense of Dunford and Bade (cf. [2]). The set of the spectral singularities in the 
strict sense S2(T) will be defined here as the smallest set in the class {K=Kczsp (T): T  
is an /((Ai)-scalar operator} ([5; Theorem 6]), and may be thought of as the smallest 
set, “outside which” T  behaves like a spectral operator of scalar type ([2]). Clearly, 
S1(T)c:St (T).

Using the basic results of R. Gellar [3], [4] and the survey of A. Shields [6], in 
this note we determine these sets for the injective unilateral and bilateral weighted 
shifts on the spaces l2(N) and / 2(Z), respectively (N., Z  and C will denote the set of 
all positive integers, integers and complex numbers, respectively). As it is well-known 
(cf. e.g. [6; pp. 56—57] and [1; pp. 25—26]), general weighted shifts are direct sums 
of injective ones, and their spectral behaviour can be quite complicated. Since any 
weighted shift is unitarily equivalent to another one with weight sequence consisting 
of the moduli of the original one, we may and shall assume that all weights wn are 
positive. Our basic reference and source of most notations will be [6]. We mention 
explicitly that if {ß (m)} is a two-sided sequence of positive numbers with ß (0) = 1, then 
the Hilbert space L 2(ß) and the commutative Banach algebra L“=•(/?) are defined on 
[6; pp. 58 and 61], respectively. In this note operator will always mean a bounded 
linear operator in a Hilbert space, and r(T) will stand for the spectral radius of the 
operator T.

2. The results

T heorem  1. Let T be an invertible bilateral weighted shift on l2(Z) with weight 
sequence {w„: n£Z} with positive weights and such that 0<R = (r(T~1))~1 = r(T). 
The following are equivalent:

1° T is a spectral operator.
2° T  is spectral o f scalar type.
3° T/R is similar to the (unitary) bilateral shift (for which all weights are 1). 
4° There are positive numbers Ct , C2 such that for all m^=n, m, n£Z we have 

C,R"~m+1̂ w m.. w„^CtRn- m+1.
5° With the notation ßR(n) = ß(n)R~" (ndZ) the spaces L2(ßR) and L2( 1) are
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identical, and their (Hilbertian) norms (see [6; p. 58]) are equivalent. \Here 1 denotes 
the particular sequence ß( . )  satisfying ß(n) = l for every n£Z.

Proof. Assume 1° and let A be a quasinilpotent operator commuting with T. 
By [6; Theorem 3(a)], then N —UMf U -1 with some unitary U, where My denotes the 
operator of multiplication by f= { f(n ):  n f Z )  in L°°(ß). For any positive integer r 
thenf ' d L°°(ß) and N r=UMfrlI~ \  by [6; Proposition 9]. According to [4; Theo­
rem 3], f (z)  = 2  f ( n)z" is the “Fourier series” of a bounded measurable function

11= — oo
/  on the set {z: \z\ = R} (in the sense that for z=ReUf the Fourier series of /  is 

2  /(n)f?|n,c,"',>). Similarly, 2  / r(«)z" is the “Fourier series” of the function/r
n = — OO n=  — CO

for every positive integer r, and we have

\N r\ = \Mr \ sr esssup|/(z)|r.
| Г |  — К

Hence |iVr|1/raess sup |/(z)|. If the right-hand side is positive, then N is not quasinil­
potent, a contradiction. Otherwise N = 0, which shows that the quasinilpotent part 
of T vanishes, i.e. T  is scalar. Therefore 1° implies 2°.

Assume now 2°. The spectrum of T  is the circle {z: \z\ —R} (cf. [6; Theorem 5 
(a)]). Hence there is such that for every function / continuous on this
circle CR we have |/(Г )| ^ К  max {\ f (z) \: zdCR}, where the operator f ( T )  is meant 
in the sense of the functional calculus for scalar operators. For every ndZ  let 
f n(z')=zn on CR. Then f„(T) = T"= UMf XJ~x with some unitary U: L2(ß)-*l2(Z). 
Applying [6; formulas (21) and (28)], we obtain that

R"K  -  \Г \ -  f UP {iß(n + j)lß (J)]: m  for n = ° ’ 1’ -
1 1 “  t sup {(ß(j)lß(j-n)]: jez} n = - 1, - 2 , . . . .

From this and [6; Proposition 7] we have for JdZ, n —1,2, ...

0 <  WjWj+1... wJ+n- 1 =§ KRn

and also R~nK ^ ß ( j ) / ß (  j+n)>0. From this we obtain

0 < K -'R " = ß(j+n)/ß( j )  = WjWJ+1... wJ+„_1.

Hence for every mSn,  m ,n £ Z  we have Rn~mK~1Sw m...w„^KRn~m, i.e. 4° holds.
Assume now 4°. By [6; Theorem 2 (a)], T/R  is then similar to the ordinary bilat­

eral shift, i.e. 3° follows. The implications 3°=>-20=>l0 are clear. Finally, 5° is equiv­
alent to the existence of A ,B > 0 such that for every f£ L 2(ßR)= L 2( 1)

A2Z\?(n)\2 I \ f (nWßR(n)2 ^  B2I\ f (n)\2,

or, equivalently, A ^ ß R(n )^B  for every n£Z.  By [6; Proposition 7], this means 
that

A "  R -nw0 ... Wn-!, R"(w_1... w_„)-1 g ß  (n =- 0)
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or, equivalently, the existence of a, 0 such that
aR" S  vv0... wn-i, w_x... w_n ^  bR" (n >  0).

5° is therefore equivalent to 4°, and the proof is complete. □
If T  is an injective bilateral weighted shift, then 0 s R 2 = (r(T~1))~1̂ r (T )  = R1 

(in the sense that R.2= 0 if and only if Ogsp (T), cf. [3, Theorem 3]). With these 
notations we have

Theorem 2. Let T be an injective weighted shift on l \Z )  or on l2(N) with positive 
weight sequence {tv„}. J fT  is unilateral and r(T)>0, then the set o f the spectral sin­
gularities ( in both senses) is the spectrum {z$C : 0 ^ |z |^ r(T)}. I fT  is bilateral and 
Л ,<0, then both sets o f the spectral singularities are void exactly when the conditions 
o f Theorem 1 hold, otherwise both sets are identical with the spectrum (z£C: i?2— \z \ — 

I f  in either case r(T)=0, then S1(T) = 0 and S2(T) — {()}.
Proof. If T is unilateral, then [6; Corollary 2 to Theorem 3] shows that there is no 

nontrivial projection commuting with T. If T  is bilateral and R2-=R1, then [3; Cor­
ollary 2 to Theorem 4] yields the same conclusion. If T is bilateral and 0<R., = Rl , 
then the spectrum of T  is the circle {z£C: 121=2?!} (cf. [6; Theorem 5 (a)]). It is 
clear that (for any operator T) for any complex number z^O we have S fz T )  = 
—z S fT )  (i =  l, 2). On the other hand, if |z| =  l, then the bilateral weighted shifts 
T  and zT  are unitarily equivalent (cf. [6; Corollary 2 to Proposition 1]), hence 
zSi(T )—Si(zT)==Si(T). Since S fT )  is a closed subset of the circle above, this 
implies either St(T) = 9 or St(T)=sp (T) (/=1,2). By Theorem 1, S fT )= 0  for 
i= l  or 2 implies that all the (equivalent) conditions there hold. Finally, r(T) = 0 
means that Г is a (nonzero) quasinilpotent, hence the last assertion in Theorem 2 is 
valid. □

Example. We give an example of a bilateral weighted shift T  for which R = R X = 
=  2?2=~0> but T is not spectral. Let the corresponding weight sequence {vv„: n fZ }  be
...1 1 1 2 13!-^ 2 2 2 16!... where the first 2 is on the 1st place
(n = 1), and the notation l n! will mean that n\ copies of 1 follow after each other. It is 
clear that (cf. [3; Theorem 3])

R2 =  lim (infwm+1... wm+„)1/" = 1,
n —oo m

and we claim that
(1) J?! =  lim (supwm+1... u’m+„)1/n = 1.

n — oo m

For a fixed n£N  consider an m such that wm+1=-■—- . Then

wm+i ... wm+„ =  n+1.
By Theorem 1, this fact and 2?2= ^ i = 1 show that T  is not spectral. If у is greater 
than mx, the first such m, then clearly

(2) wj+1...wJ+n зэ n+1.
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If  0 t hen the first nonunit factor of wJ+i...wj+n comes, say, from the /cth 
“nonunitary subsequence” of the weight sequence, whereas the last nonunit one from 
the rth such subsequence ( k s r ) .  Then

wJ+1... wJ+n 3 S (к+1)(к+2) ... (r+1) s  (r + i)i.
Now if k<r, then the construction of the weight sequence shows that (r+ l)!< n , 
hence

wJ+1...wj+n <  n.
On the other hand, if k=r, then the estimation (2) holds again. Hence in all cases 
for any j£Z , ndN

l ^ ( w J+1...Wj+ny 'n ^ ( n + i y / \
Therefore (1) holds, and the operator T  has the stated properties. By Theorem 2, 
the sets of the spectral singularities S t(T) (/=1, 2) coincide with sp (T)=CR, the 
circle with radius R. □
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ON Л-STRONG CONVERGENCE OF DOUBLE 
NUMERICAL SEQUENCES AND FOURIER SERIES

F. MÓRICZ (Szeged)*

§ 1. Notation of Л-strong convergence

Let S=>{smn: m, n=0, 1, ...} be a double sequence of complex numbers. In 
this paper we will use the notation
(1.1) lim vm„ = t

oo

if smn converges to t as both m and n tend to °° independently of one another (that is, 
smn converges to t in Pringsheim’s sense) and, in addition, smn is bounded:

0-2) IISIU =  sup |vm„| <°°.
m,nS0

We shall use the backward differences

^ lO ^ m n  S mn Sm _ l n , ^ 0 1  Smn =  s mn —

Лц Smn =  A10[A01Smn] =  A01[A10Smn] = Smn—Vm_1>B— 1

defined for all m,n=0, 1, ..., with the agreement that

(1-3) s-i,„ =  vm,- i  = s - 1, - i  =  0.

Let A = {kmn=A%)ff l : m ,n =  0,1,...}, where {A<11)} and {Я̂ 2)} are two single 
sequences of positive numbers, both nondecreasing and tending to =». Thus, we have

((•4) A10?.mn=^0, A01Xmn = 0, A11Am„ = 0
and

(1.5) lim 4 ^  = °’ ]im 4 ^ = 0 ,},mn m,n-=o Am„

where p and q are fixed. We note that we actually need the product representation 
only in the proof of Lemma 2 in Section 2.

We say that S  converges Л-strongly to t if

1 m n
(1-6) lim ——  2  2  Hii[^pe(sp4- 0 ] |  =0 .

т ,и - о о  Amn p = о q=Q

* This research was completed while the author was a visiting professor at the Syracuse Univer­
sity, New York, U.S.A., in the academic year 1986/87.
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The notion of Л-strong convergence was introduced by Hyslop [1] and Tanovic— 
Miller [6] for single sequences in the special case Я„=п+1. (See also [3].)

The significance of conditions (1.4) and (1.5) is illustrated by the following.
L em m a 1. I f  conditions (1.1), (1.4) and (1.5) are satisfied, then

1 mlim - —  2  [Л10А ] |j  - t |  =  0,
т,п~~> Amn p=0  

1 "lim —  2 [ AoiKq]\smq~t\ =  0, 
m’n~ ~ « = 0

1 m n
lim - — 2  2 [ An^pq]\^pq-t\

Xm„ p = 0 q = 0

with the agreement that

<l-7) ^-l,n  =  ^m,-1 =  ^-1,-1 = 0.
Proof. It is routine.
We remind the reader that a sequence S  =  { sm„} is said to be of bounded variation 

if

<l-8) IIS|lbv= 2
m =  0  n = 0

(cf. agreement (1.3)). It will turn out in Section 2 that Л-strong convergence is an 
intermediate notion between bounded variation and convergence in Pringsheim’s 
sense.

We denote by bv and c the well-known Banach spaces of the double sequences 
of complex numbers that are of bounded variation or converge in Pringsheim’s 
sense and bounded, respectively.

§ 2. Auxiliary results

First we characterize Л-strong convergence as follows.
Lemma 2. A sequence S  ={.?„,„} o f complex numbers converges Л-strongly to a 

number t i f  and only i f
(i) lim smn =  t,

m, n — oo

1 m n
(ii) lim - — 2  2  H o iV i,4]Mio.vP,l =  0,

m ,n-*°° A mn p = l  4 =  0

1 m n
(iii) lim - — 2  2  Hio^p,4 -i] MoiJpil = 0 >m,n-*-oo A mn p= 0  € =  1 1

1 m n
(iv) lim - — 2  2  =  °-

m ,n—oo A mn p = i  q = i
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P roof. Necessity. Dropping the absolute value bars in definition (1.6), we can 
write

1 m n
<2.1) - r - 2  2  Лц[*„(*„-')] =  sM- t .

' “mil p —0 q = 0

Thus, (1.6) implies (i) in an obvious way.
Next, a simple algebraic manipulation shows that

2 ^11 \^ 'pq (S pq 0 ] =  d 10[}.p„ ( s pn 0 ] =  [ A  w  /-p„] { s  p n 0  +  ^-p - l , n [ d  10
4 = 0

(cf. (1.7)), whence
1 m 1 m

-----  2  ^ p - l , n \ ^ 1 0 S pn\ —  ~ 2  2  [ ^ 1 0 ^ p n \ \ s p n ~ 'A  +
'*mn p =  1 p =  0

+~j— 2  2 \AiA^pq(sp t~ 0]l-
'"mn p =  0 q — 0

By Lemma 1 and (1.6), we have

(2.2) lim 2  A p n l  =0.
m-n- “  Amn p=i

Using the product representation Am„=A£)A<2), we can write (2.2) as follows:
1 m

,im t ö t  2 ’;-p1-iH ioj:p«l =  °-m.n-oo AW p=1
Forming the weighted means of the expression occurring here by means of the 
sequence {A<2)}, an elementary calculation yields

lim
m, n— o°

l
;(i);(«)'“m ли

2 1 Z 2 ? > i W„i Aí»]M10ími = o,
p = i  a = o

which is identical with (ii).
Relation (iii) can be derived in an analogous way. 
Finally, we apply the identity

(2.3) 

to get

^ 1 1  \.^'pq(^pq  0 ] [ ^ 1 1  ^-pq\(Spq ^  01^-p — 1, q\ ^  10^ pq

+  I ^ 1 0 ^ p , q - l ]  ^ 0 1  Sp q T —1 , 4  — l ^ u Spq 

1 m n 1 m n
7 — 2 2  2 p - i , 4 - i M u s pq\ ш  - j —  2  2  М ц [ А и ( ^ р , - 0 ] 1  +
' umn p = 1  q = 1 Лтп p = 0  q=  0

1 m n 1 m n
+ 7— 2  2 1|+ 7 — 2  2  MoiAp-i,JMioJPi| +

'•mil p = 0 q = 0 '-mn p = l  i  = 0
m n

+  7 ----- 2  2  [ ^ 1 0 ^ p , q - l ] \ ^ 0 1 S pq\-
'•mn p = 0  4=1

Now, relation (iv) follows from (1.6), (i), (ii), (iii) and Lemma 1.
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Sufficiency. It is an immediate consequence of (2.3) and Lemma 1.
Next, we reformulate conditions (ii) and (iii).

Lemma 3. Under (iv), conditions (ii) and (iii) are equivalent to the following two 
conditions:

(Ü0 Um -j— 2  Vi.nMioJpJ = ° .
K n  p = l  

1 "(ill') lim - --  2  *m,q-l№oiSm \ = 0-
Á mn q = 1

Proof. By performing a summation by parts,

2  t ^ o i ^ p  —1, 9]  M lO ^p g l — ^ p - l , n M lO ^ p n l +  2  ^ p - l , q [ \ ^ 1 0 s pq\ \^ 1 0 s p ,q  + l \ ]  —
q= 0 9 = 0

and similarly
^ p - l , n  M 1 0 Spn ! +  2  ^ p - l , t - l \ ^ u s pq\9 = 1

2 [ ^ O l ^ p - 1, 9] M lO ^pe l  —  ^ - p - l , n \ ^ 1 0 s pn\ 2 ^ - p - l . q - l  M i l ' l l  •
9 = 0  9 = 1

Hence it follows that 

(2.4)
1 m n

■J 2  2  [^Ol -̂p-l.g] HlÔ pgl Ш 
^m n  p = 1 9 = 0

J m 2 ш "
— ”2 .^7 ^p—i,n l̂ iô pnl i  , 2  2  ^p—1 ,9 —1

where “ s ” corresponds to “ + ” and “ & ” corresponds to “ — respectively. Now., 
the equivalence of (ii) and (if) follows from (2.4) and (iv).

The equivalence of (iii) and (iii7) under (iv) can be verified in a similar manner. 
It is important to observe that condition (i) can be weakened in Lemma 2. To 

this effect, we introduce a Fejér type mean as follows 1

1 H I И

(2-5) <Tmn =  -----  2  2№ll*pq]Spq-
'*mn p — 0  q =  0

Lemma 4. The condition 

(i7) lim omn=t
т,п~* со

together with (ii)—(iv) are equivalent to (i) — (iv).

Proof. On the one hand, it is well-known that for a bounded sequence S  con­
dition (i) implies (i7), without any additional assumption.
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On the other hand, due to (ii)—(iv) the converse implication is also true. In fact, 
it is easy to see that

I  m n

3 mn &тп ~т 2 2 11  ^ p q \  C^mn ^ p q )‘
^m n p = 0  q = 0

Using the representation

$тп Spq m̂q $pn p̂q\ \Smq p̂q\ ”b t̂ pn p̂q\
m n m n

2  2  ^11 2  ^ 10 Sjq “Ь" 2  0̂1 Spk
j  = P + 1 k= q + 1 j  = p + 1 k = q  + 1

m n
(the empty sums 2  anc* 2  are ta^en to be zero), we get

j= m + 1  k = n + 1

(2 .6)
J  m n m n

s m n~~a m n — ~i 2  2  №  11 A pq\ 2  2  ^ n S jk +
A m„ n =  n a = 0 j = v  + 1 k  = q + 1'"mn p = 0  q =  0

1 m n m 1 m

+  "J—  2  2\.A-n^p<^ 2  ^io-yja +  _3— 2 2  [^u am] 2  ^  oispk —
q = 0  k = q + 1

= Ij^+ Iz+ Is, say.
Interchanging the summations yields

m n j  — 1 k  — 1

2  2  Vnsjk) 2  2  duA
A mn 1 = 1 1 = 1  p = 0 4 = 0

By (iv), Zx tends to zero as m,
Similarly,

P4

J m n

“7  2  2 ̂ j - l , k - l ^ l l s j k -
A mn j = l  k = l

1 m n j —1 1 m n

A- 2  =  2  2  [ ^ 1 0 s jq] 2  ^ l l ^ p q  ~  2  2  l ^ O l ^ j - l , q ] ^ 1 0 S jq
A mn j = 1 q =  0  p = 0  A mn j —1 q =  0

also tends to zero as m, n—°°, due to (ii). The same is true for I 3, due to (iii). 
Combining these with (2.6) results in the relation

Um K n - o J  =  0m, n—► со

and (i') obviously implies (i) in this case.

§ 3. Main results on numerical sequences

Denote by c(A) the class of double sequences S  =  of complex numbers 
that converge Л-strongly. Clearly, c(A) is a linear space. We endow с(Л) with the 
norm

1 m n
(3.1) \\S\\cU)=  sup — 2  2  Ии[Ар̂ и]|,

m ,n ^ 0  A mn p = 0  <j =  0

which is obvionsly finite for every S^c(A).
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R emark 1. On the basis of Lemmas 2 and 3, the norm ]|| . |||с(Л) defined by

1 m
111-SlllcM) = IISIU+ sup —  2  ).p- iJ A i0sp„\ +

m.n^O ' lmn p = 1

J  n I  m n
+ sup - —  2  L ,q-i\A 0iSmq\+ sup - —  2, Z  *p-i,q- i\Au spq\

m ,n ^ 0  ' lmn q = 1 m,n§ 0  '-тп p  =  1  4  =  1

is equivalent to || . ||с(л) in the sense that there exist two positive constants Kx and Kz 
such that for every S'éc(yl),

^ ilIS L u )^  IIIS||Uo ^ * 2||SL(/1).
We remind the reader of definitions (1.2) and (1.8).

Lemma 5. For any sequence S,

(3.2) ||S|U ^  ||S||cU) ^  6||S||bv 
and, consequently,

(3.3) bv с  с(Л) c  c.

Proof. The first half of (3.2) follows from (2.1) on putting /=0. The second half 
can be verified by using (2.3) also with t = 0 and the identities

p  q n m
$pq =  jS *  2  ^ 1 1  S jk i  A 10S pn ^  А ц Spq*  - ^ 0 1  Smq ^  ^ l l^ jw j*

j = 0 k—Q 4 = 0  p =  0

Our main result reads as follows.

Theorem 1. The class с(Л) endowed with the norm (3.1) is a Banach space.

Proof. The only thing we have to prove is completeness. To this effect, let 
{5<r): r=  1, 2,...} be a Cauchy sequence in the norm || . ||с(л). Then by (3.2), {S’00} 
is a Cauchy sequence in the norm || . ||„ , as well. Thus, there exists a sequence S fc  
such that
(3.4) lim ||5W —S|U = 0 .Г~*" °°

We will prove that Sdc(A ) and

(3.5) lim | |S « —S||cU) =  0.Г~*~ 00
To see this, let an a>0 be given. By assumption, there exists a v =  v(e) such

that
(3.6) IIS^-S^llcoo ^  £ if h r ^ v .

Let j ,  fc=0, 1, ...} and 5,= { j;t}. We fix (m, n) temporarily. Using (2.3)
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with /= 0  , it is not hard to see that

1 m 41 f 2 m
(3-7) - y -  2  2  ^  II5W-SIU 1 + -J -  2  V i , - +

' lmn p =  0  q =  0  L Лтп p =  1

2  n 4  m n 1

+  ■7“  2  9 - 1  +  1- - - - -  2  2  ^ p - 1 , 9 - 1  —  £ >
^mn 5 =  1 '-mn p =  l  q = l  J

provided r is large enough, due to (3.4). We apply the triangle inequality and take
(3.6) and (3.7) into account to obtain

1 m n 1 m n

1 —  2  2  MiiUp«(4?)_yP«)]l - 1 —  2  2  H ii[^e(4 « -4 e ) ] l+
'-mn p =  0  4  =  0  ^m n p — 0  5  =  0

1 m n
+  - T -  2  2 M n [ A J 4 ( ^ ) - J M) ] | S | | S t I ) - S W | | e M )+ e s 2 e  i f  / i = v .

' L/?m p  =  0  5 = 0

Since this is valid for all (m, ri), by definition

||S(,>-S ||cU, s 2 e  if / — v,
which proves (3.5).

One can check the fulfillment of З'бс(Л) along the same lines. This completes 
the proof of Theorem 1.

P roblem  1. We conjecture that there is no Schauder basis in с(Л).

P roblem  2. What is the conjugate space to с(Л)?

§ 4. Application to Fourier series

One can apply the notion of Л-strong convergence to sequences of complex-valued 
functions, in particular to Fourier series, while using C-metric or Lp -metric. For the 
sake of concreteness, here we present in full details the results on the uniform Л- 
strong convergence of double Fourier series of continuous functions on the two-di­
mensional torus T 2={(x, y): —n S x ,  у<я}.

Denote by C the Banach space of the complex-valued continuous functions 
f  (x, y), 2rc-periodic in each variable and endowed with the norm

||/ | |c = max |/(x ,y )|.
(x, y)€ r 2

Let

(4.1) 2  2 V j k 4 jk(x , y)
j= 0 k = 0

be the double Fourier series of the function /€C , where we systematically use the
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following notations:
Ajk(x, у ) =  aJk cos jx  cos ky + bjk sin jx  cos ky + 

+cJk cos jx  sin ky+ dJk sin jx  sin ky,
j  re íz

ajk = —  J  J  f(x , y) cos jx  cos ky dx dy,
— 7t —K

and analogous representations for bJk, cjk, dJk, and
'

djk = ’

1
j  if j  = к —0,

1 if j  — 0 and к  =£ 1 or j  ^  1 and к =  0,

1 if  j  ä  1 and /с =£ 1. 
We will consider the rectangular partial sums

P 9
sPi( f )  =  spq(f; x ,y )=  2  2  ßjkAjkix, у)

j = 0 k = 0

and, following (2.5), the Fejér type means

(4.2) X,y) =
1 m n

у - 2  2  [ A k iK M D
л mn d =  0  a = 0

of the series (4.1).
Denote by U, A and S(A), respectively, the classes of functions /  whose Fourier 

series converge uniformly with uniformly bounded rectangular partial sums, converge 
absolutely, and converge uniformly Л-strongly on T-. Clearly, in each case it follows 
that /  must belong to C. To be more specific, we say that a function /belongs to .S/zl) 
if (cf. (1.6))

lim
1 m n

2  2  М Аи ( ъ С Я - / ) ] |
-mn p = 0  ^ =  0

=  o.

It is a common place that U and A are Banach spaces with the norms

ll/llu =  sup ||jmn(/)||c and ll/IL =  2  2  VjkQjk,
m, n ^ O  J  =  0 к =  0

respectively, where
Qjk = la% + brjk + clk + djk]1/2.

Both statements can be proved along the same lines as the corresponding one-dimen­
sional statements are proved (see, e.g. [2, pp. 6—8]).

According to (3.1), we introduce a norm in S(A) as follows

(4.3) ll/llsu) =  supm,n̂ 0
1 m n

2  2  Иц[АрЛв(/)]|
•mn p  =  0  q = 0
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The norm inequalities corresponding to (3.2) are
ll/lln ^  ll/llsu) s  6 II/L ,

which imply in turn (cf. (3.3)) A c S (A )d U .
The following results are the counterparts to Lemmas 2—4 and Theorem 1.
Lemma 6. A function f  belongs to 5'(Л) i f  and only i f  the following four conditions 

are satisfied:

(v)

(vi)

(vii)

(viii)

lim
m, л-»-«»

lim
m, n-+eo

lim
m, n-*-oo

lim
m,n-*-oo

[ K „ ( / ) - / l l c  =  o ,

4 -  2  AP-x.nMloJpn(/) | =«= c
л mn p — 1 c

l *
j 2  ^ m , q - i \ d o \ S m qi J  )\ =  0
'■mn « = 1 C

1 m n

- J - 2  2 K - i„ - iM ii^ ( / ) l
''m n  p —1 q = l

=  0 .

Theorem 2. The class 5"(Л) endowed with the norm (4.3) is a Banach space.

We note that the Banach space 5" (Л) for one-dimensional Fourier series was 
introduced by Szalay [5] in the special case X„—n + 1.

Lemma 7 below indicates that Л-strong convergence exhibits some of the charac­
teristic properties of absolute convergence. Namely, an analogue o f the Denjoy— 
Luzin theorem holds true (cf. the original one-dimensional theorem in [8, pp. 232— 
233]).

Lemma 7. I f  the trigonometric series (4.1) converges Л-strongly fo r  all (x, y) belong­
ing to a set o f positive measure, then

(4.4) lim
m,n-*oо ■j 2  2  ^-j-i.k-iejk — 0-ЛЮ1 j=l* = l

Here and in the sequel, we mean the Lebesgue measure on the plane and denote 
it by I . |.

P r o o f . We shall imitate the proofs of [4, Theorems 1 and 2], at least in the first
part.

We may dismiss the AJk(x ,y )  for which QJk= 0 . Otherwise, let BJk(x ,y ) be 
defined by

AJk(x, У) -  QjkBJk{x, y),

while let uJk^ 0, ГдёО, <Pjk and &jk, —п^Ф ]к, 0 Jk̂ n , be defined by 

(4.5) aJk =  uJk cos Ф}к, bJk =  uJk sin Ф]к,

cjk =  Vjk cos 0 Jk, dJk =  vjk sin 0 Jk,

AJk(x, у ) — и]k cos ( j x —Фл ) cos k y + v Jk cos (j x —0 Jk) sin ky,

Then

(4.6)
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whence, applying the Schwarz inequality yields
\4jk(x, y)I ^  [u%+v%]U> = QJk.

Consequently,
\Bjk( x , y ) \ ^ \  for all (x,y).

According to the argument occurring in [4], in order to prove (4.4) it is enough 
to show that
(4.7) lim inf IJk > 0,

where
Ijk = / / Щк(х, У) dx dy

E

and E is a set of positive measure.
Actually, the weaker relation

(4.8) lim inf I,k >  0
/-►со and k-*oo J

is proved in [4]. Now, ifj  is fixed and k —<=>, then we make use of the representation

1 ifi(4.9) B)k (x, y) = —+ [cos 2 (jx  -  Ф)+ cos 2k y + cos 2 ( jx —Ф) cos 2ky] +
** ^Qjk

+ ■■■ ■Ji ~ [cos 2 (jx  — 0 ) —cos 2ky  — cos 2(y'x — 0 ) cos 2ky] +
^Qjk

+  ̂ J L  Sin 2ky  [cos (2kx -  Ф -  0 ) + cos (0  -  Ф)], 
d-Qjk

where Ф=Фд and 0  =  0 jfc. Taking into account the well-known fact that the Fou­
rier coefficients of any integrable function converge to zero whenever at least one of 
the indices tends to °° (see, e.g. [8, p. 301]), it follows from (4.9) that for fixed j

Ijk = 4- \E\ + j 4 -  f  f  cos 2(Jx-Ф ) dx dy+

Vjk /• л
+ 4 ^  J J  cos 2 ( jx -0 )d x d y + o ( l)  as k — °°.

It is easy to verify that for any fixed j,  we have
J у  cos 2(jx—Ф) dx dy <  [E|.

Consequently, (4.7) holds true as k—°°.
On the other hand, if к is fixed and у —°°, we can rely on the symmetric coun- 

terparts of (4.5), (4.6) and (4.9). To be more specific, let itJk, vJk, <Pjk and 0  Jk be 
defined by

aik = üjk cos $ lk, cJk =  a,k sin $ ik,

bjk — Vjk cos 0 Jk, djk — Vjk sin 0 jk.
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Then

and
AJk (x, у ) = üjk cos jx  cos (ky—Ф)+ vJk sin jx  cos (k y —0 )

Щк(х, у) = - ^  + ujk
*Q%

[cos 2/x+cos 2 (ky— Ф)+ cos 2jx  cos 2 (ky— Ф)] +

+ [—cos 2/x+cos 2(ky—0 ) —cos 2jx  cos 2(ky—Q)] +

+ ~íkV2Jk sin 2jx  [cos (2ky — Ф — 0 ) + cos (0 —Ф)],
2Qjk

where $  =  $ Jk and 0  = &jk. Hence one can deduce that (4.7) holds true as j-*°° 
and this completes the proof of Lemma 7.

In the special case where /,*=(_/+ l)(k+ l), the mean <imn( f )  defined by (4.2) 
is the ordinary Fejér mean (in other words, the first arithmetic of the rectangular 
partial sums) of the Fourier series (4.1). By [8, p. 304], condition (v) is satisfied for 
every /£ C . Using the corresponding special case of Lemmas 6 and 7, we arrive at 
the following.

Theorem 3. Let Л =  {(у+1)(к+1)}. I f  f£C , then the Fourier series (4.1) con­
verges uniformly Л-strongly to f  (x, y) on T2 i f  and only i f

(vi') lim
m, n-*-oo

(vii') lim

(viii') lim

1
m + 1 f t i 

1

2  j \ A M Sj n (  f ) \

— r  2 k\A01smk(f)\
n + l  Jt =  l

= 0,

= 0,

(m + l)(n + l) j= ik=i 
We note that the conditions

2  2  fiQjk = o.

ТП со I  CO n

lim I i 2 2 JQjk = 0 and lim ——r 2 2 kßjk =  0777+1 j =kk- 0 n—co 77+1 j =0 k- k
are sufficient for the fulfillment of (vi') and (vii'), respectively. But each of them is 
stronger than (viii').

Problem 3. How to characterize conditions (vi') and (vii') in terms of Qjk2

§ 5. Final observations

We finish our study with two more remarks.
R emark 2. All results in Section 4 can be reformulated by substituting Lp -met­

ric for C-metric where 1 ̂ p-«=°. It is well-known that Lp endowed with the norm

11/11,= [ /  f  \ f ( x ,y r d x d y ] llp
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is a Banach space. We say that a function /£ L p belongs to the class £Р(Л) if

lim
m,n-+co

and introduce the norm

m it 

"mn p= 0 q =  0
—  2  Д М и * Р, ( / ) - / ) ] | | |  = °

ll/llspU )=  supm,n̂ 0
1 ni n

j—  2  2  И11[;-рЛ , ( / ) ] I
mn p = 0  4 = 0

The analogues of Lemma 6 and Theorems 2,3 hold true in the case of Lp -metric, 
too. Their proofs are based on the results of Section 3 and the following two more 
auxiliary results. First, if /€ L P for somep, then

l™ K „ „ ( / ) - / | |p =  0
m, n~*- °°

(see, e.g. [8, p. 304]). Second, if the trigonometric series (4.1) converges Л-strongly 
in the Lp-metric restricted to a set of positive measure, then (4.4) holds true (which 
is the Lp-metric version of Lemma 7).

Remark 3. The notion of Л-strong convergence and the methods described in 
this paper clearly apply to multiple numerical sequences and higher dimensional 
Fourier series. The extension of these results to ^-multiple and Ldimensional cases, 
where d is an integer greater than 2, is straightforward. As to the auxiliary results, in 
[8, Ch. 17] the whole presentation is done in this general setting, and concerning 
Lemma 7 we refer to [7] instead of [4].
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ON AFFINELY EMBEDDABLE SETS IN THE 
PROJECTIVE PLANE

I. BÁRÁNY (Budapest)

In this note we prove a conjecture of Bisztriczky and Schaer [1] about convex 
sets in the real projective plane P-. It will be simpler to formulate the result for convex 
cones in R3 and then show that it implies the conjecture. A cone CczR3 is called point­
ed if it contains no line, i.e., when x €C and —x£C  imply x=0. Here is the result :

Theorem 1. Assume u=s3 and Cl , ...,C nczR3 are closed, pointed, convex cones 
with common apex the origin O. Assume that for iA j  (i, j —h  2 ,..., n) there is an 
<?(/,/ )£{ —1, +1} such that for all k = l , , . . ,n ,  k A i , j  and for both e = l,  — 1

(/, j; k, e) (eC'k) П(C1+e(i, j)C j) =  {O}.
Then there is a plane P through О such that for all i =  1, ..., n, Pfj C; =  {0}.

We will now translate this theorem from R3 to P1. For a convex pointed cone 
С е й 3 set 5'(C) =  iS2nC  where S'2 is the unit sphere of R3. P2 is obtained from S 2 by 
identifying antipodal points. With this identification the points of S(C) and —S(C) — 
= S (—C ) give rise to a set P (C )cP 2. Clearly, P(C) = P (—C).

A set A a P 2 is called convex if there exists a line L in P1 disjoint from A and A 
is convex in the affine plane P2\ L  (cf. [2] or [1]). A convex set A in P1 gives rise to 
two connected subsets S +(A) and S~(A)= —S +(A) of S 2, whose cone hulls are 
C +(A) and C~(A), respectively. Evidently, C +(A) = —C~(A). In this way one can 
see that A a P 2 is convex if and only if A = P(C) for some pointed convex cone 
C tzR3.

Now let Ax, A2cz P-be convex. We want to define the convex hull of their union. 
Then Aj = P(Cj) for some pointed convex cone CjCzR3 and also Aj = P(—Cj) 
(y'=l, 2). So the union of Ал and Аг will have, in general, two convex hulls: 
H1(A1, A 2) = P(conv(C1,C 2)) and H2(A1, A2) —P(con\ (Cx, —C,)). Of course, 

and H2 will be convex only if Cx—C2=conv (Cl , — C2) and C1-bC2=conv(C1, C2) 
are pointed cones.

We can now formulate Theorem 1 in P 2.

Theorem 2. Let Aly ..., A„ be closed convex sets in P2 (nS 3). Assume that for 
iA j  (/,7=1, ..., ri) either Akf)H 1(Ai, Aj)=0 for all k A i ,j  or AkDH2(Ai, A f —Pl 
for all k A i,j .  Then there is a line LrzP2 disjoint from each At.

In [1], the collection of the sets Al t ..., A„ is called affinely embeddable when 
the conclusion of Theorem 2 holds.

In the proof of Theorem 1 we will use standard techniques from the theory of 
convex cones in finite dimensional spaces (cf. [3], [4] or [5]).
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When proving Theorem 1 we will obtain its dual form which seems to be worth 
mentioning:

Theorem 3. Assume Dx, ..., DnczR3 (nS3) are closed, pointed, convex cones 
with common apex the origin. Suppose that for i ^ j  (/,./= 1, ■■■, n) there is an 
e (i,j )£ {— 1, +1} such that for all k = l , . . . ,n ,  к  ̂  i, j  and for both e= 1 and —1 
(eDk)n D ir\{e(iJ)D J) 7^{0}. Then there are signs ex, (<?; = +1 or —1) and
a vector p£R3\ { 0 }  such that p fe iDi for all /=1, n.

P roof of T h eo rem  1. Assume the theorem is false and take a counterexample 
Cx, ..., CnczR3 of closed, convex, pointed cones satisfying condition (i,j; k, e) such 
that for all planes P through the origin there is an /€{1, ..., n} with РГ)Сг̂ {0}.

We will modify this counterexample. We claim first that for zVy both C;-f С,- 
and Ci — Cj are pointed and closed convex cones. We prove this for Ct +  C j, the 
proof for Ci—Cj is identical. By condition (i , k ; j , —1)

( —Cj)C\Ci c  (-C j)n{C i+ e(i, k)C k) = {O},

so Cj and (—Cj) can be separated (strictly, because they are closed), i.e,. there exists 
v£R3 such that tz-x-=0 for all х£С ;\{0} and v - y > 0 for all y£( —Cy)\{0}. 
(Here v ■ x  denotes the scalar product of v, x£ R3.) Then v • z<0 for all z£(C; + C j) \  
\{ C }  proving that (Ci+Cj) is pointed.

Now we prove that Ci+Cj is closed. Assume it is not, then there are elements 
xm€C; and y„fCj with xm,y m£ S 2 and positive numbers am, ßm suchthat zm= 
= ocmx m + ßmym isin  (Ci + C j)f)S2 but z=lirnzm is not. By the compactness of S'2 
we may assume that x = lim x m and y —lim ym exists. Then am and ßm must tend to 
infinity and so zm£ S 2 is possible only if x+ y= 0. This implies that Ci+Cj con­
tains the line through x  and —x= y  which is impossible because it is a pointed cone.

We define, for a closed pointed cone C c R 3 and for a>0 the set

Cx — {x£R3: there is y£C with <ZxOy S  a},
where <  xOy denotes the angle of the triangle xOy at vertex O. C“ is clearly a con­
vex, pointed cone with nonempty interior provided a. is small enough.

Condition (i,j; k, e) says that the two closed and pointed cones C; +  e(/,y ) Cj 
and eCk are disjoint (except for the common apex). Then there is «(/, /; k, e) =>0 such 
that for 0 < a < a  (/,_/; k, e)

(eC t)n(C?+e(i,j)Q ) =  {O};

and Cl, Cj, Ck, C* + e(i,j)C j are all pointed, convex, closed cones. Set ß = 
= min a (/,./'; k, e) and take a closed polyhedral cone /?, with nonempty interior satis­
fying

С,-c  5; c; Cf for i = l ,  . .. ,n .

We may choose the finitely many halflines generating the cones Bt to be in general 
position. We will clarify later what is meant by general position here.

This is what we have now: The cones B, are convex, closed, pointed and poly­
hedral with nonempty interior, and they satisfy condition (i,j; k, e). Moreover, for 
each plane P through the origin PPlint В ^ { 0 )  for some /=1, ...,n .
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Consider now the polars 79,=7?* of 7J, defined as

79; = {x£R3: x- у  ^  0 for y>£7?,}.

The Di s are convex, closed, pointed, polyhedral cones in R3 with nonempty 
interior. We claim now that condition (/,/; k, e) implies the following condition:

(i,j; k, e f  ( -  eDk) П79; П (e(i, j )  Dj) *  {O},

and the last condition in the theorem implies this one: For each p f R3\  {0} there is an 
i€{1, ...,«} suchthat

(* ) p$Di and p i —Di-

We prove this claim using standard techniques from the theory of convex poly­
hedral cones (cf. [4] or [5]). Condition (i , j ; k ,e ) for the cones 7?, is of the form 
Bkr\(B; + Bj) = {0} (here we dropped the signs) that has polar form 79,.+ (79,079;) = 
= R3. Assume now that ( — 79*)П(79гП79;) =  {0}, then the cones — 79,, and (79,079;) 
can be separated, i.e., there is vfR :l\ { 0 }  such that v -x^O  for all x£ —Dk and 
a-ysO  for all y679,079;. But then a-zSO for all z^.Dk+(Dif]Dj), a contra­
diction. Let us see now the last condition:

Pflint ВI {O},

and consider POint 7?,- with q ^  O. Write p for a normal of the plane P. Then 
q-p = 0 and q -x < 0 for all x^B * \{0 }  = D \{ 0 } ,  so indeed, ±p^D t.

(As a matter of fact, from now on we will give the proof of Theorem 3 in the case 
when the sets 79; are polyhedral cones in R3 with nonempty interior. The general case 
follows by a standard continuity argument.)

Choose a point d ^in t 79, now for / =  1, ..., n and shrink each set 79, to the 
point dt linearly and simultaneously with a parameter [0, 1], so that the shrinking 
set 79,(r) equals D; when t= 1 and dL when 1=0. Write 7 for the set of indices 
/, /, k, eh Cj, ek and set

DA 0 = (eiDi(t))r\(ej Dj( t)) fl (ek Dk{t))

when ?€[0, 1]. We assume that the cones Bt and the points dt are in general position 
to ensure that Dj( 1)+ {O} implies that int 79/(1) is nonempty. Moreover, as the cones 
79,(0 shrink, the cones 79/(0 shrink as well and 79/(0 = {0} for /<?0(7) where 
t0(7) is the smallest t for which 79/(0 is different from {O}. (If, for some, 79/(1) =  
=  {0} already, then t0(I)  is not defined.) We assume that the cones 77,• and the points 
dt are in general position to ensure that 79/(t) is a halfline when t= t0(I) and that 
int79/(f) + 0 for ?>/0(7).

As t decreases, condition (*) remains true because the cones 79; get smaller and 
smaller. But conditions (/, j;  k, e)* will fail for each (i,j; k, e) for some t because 
79/(0) = {(9} for all 7. The condition (i , j ; k, e)* holds for all t> t(i,j; k, e) and fails 
for all t^ t ( i , j ; k ,e )  where t( i,j;k ,e )  is uniquely determined. Write t0 for the 
largest k, <?), then t0= t(i,j; k, e) for some (/,/; k, e). We may assume with­
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out loss of generality that i =  l ,  /= 2 , k=3  and e(l,2 ) = l and e= — l. So con­
dition (1, 2; 3, —1)* fails, i.e.,

D M n D M O D M  =  К

where if is a halfline of the form {oca: a^O} with v d R ^ fö } .  We know that Dx(t)C\ 
P\D.2(t)r\Ds(t) is {0} for and has nonempty interior for t> t0. We claim
now that for each j = \ , 2 , n ,  vf  Dj(t0) or a€ — Dj(t0). This will contradict 
condition (* ) and so prove the theorem.

The claim is evident when /  =  1, 2 and 3. We are going to prove it with notation 
j —4. There are two cases to consider.

l.yf case. When the intersection of two of the cones Dj(t0) ( /=  1, 2, 3) is equal 
to K, i?i('o)n Aj(f0)=-K, say. From condition (2, 4 ; l , e =  —1) we get for i= t0that

Di(t0)ПD2(t0) П(e(2, 4 )О М )  *  {О}.

But K=D1(t0)(~)D2(t0) and so v£Kcze{2, 4)ö4(í0) indeed.
2nd case. When the intersection of any two cones Dj(t0) have nonempty interior 

( /= 1 , 2, 3). Then, by a wellknown theorem (see [3], for instance), there are vectors 
Uj£R3 suchthat üj-x S  0 for all xdDj(t0) ( /= 1 ,2 ,3 )  and О is in the convex hull 
of ax, a., and as. The case when some is parallel with some other at has been dealt 
with in the first case. So we assume that every aj is nonzero and 0 = axax + a2a.2 + a3a3 
and every 0. Then e;- x s 0  ( /= 1 ,2 ,3 )  implies that x=ßv for some real 
number ft Moreover, aj -v=0 for /= 1 ,2 ,3.

Assume now that ±v$Dx(t0). Then L, the line through v and —v can be sepa­
rated from Dx(t0), i.e., there exists a nonzero a4P R3 such that ax • x <  0 when 
xP A ,/„)\{0}  and ai -x= 0  when xP L. T his shows that the vectors at (/ =  1,2, 3,4) 
are all orthogonal to v and so ai = ßxax + ß2a2 for some real numbers f t  and f t .  
We show now that f t  and f t are both different from zero. Assume that f t  = 0, say. 
Then ax and a.x are parallel and, then Dx(t0) is separated cither from £>4(t0) or from 
— Z)4(t0), contradicting condition ( l , / ;4 ,  ±1)*.

Consider now condition (1,2; 4, e)*: there exists an x£R3\ L  suchthat

x t i - e D ^ n D M n D M

Then — eax • x< 0 , ax • xSO and a2 ■ xSO. This implies that f t and f t  cannot be of 
the same sign. We may assume that f t> 0  and f t< 0 .

Suppose now that e(3, 4)= 1 and consider condition (3, 4; 2, — 1)*. In the same 
way as above this implies the existence of an x ^ R ^ L  with a2 ■ xsO, ax • x<0 and 
a2-x s0 .  Now ax is a positive linear combination of a2 and ax, so ax-x< 0. But 
ax-x < 0, a2- x s 0, u3-x ^ 0 is  impossible. Assume now that e(3, 4)= — 1 and con­
sider condition (3,4; 1, —1)*. Again, this implies the existence of an x£R3\ L  
with a3 • x ^0 , a4 • x > 0  and ax ■ x ^ 0 .  Now a2 is a positive linear combination of ax 
and - a 4,s o a a-x< 0 . But a ,-x S 0 , a2 • x< 0  , ая • x ^ 0  is impossible.

We mention finally that it is possible to extend these results to higher dimensional 
spaces but, unfortunately, the conditions in the theorems become rather unintelligible.
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DYADIC MARTINGALE HARDY AND VMO SPACES
ON THE PLANE

F. WEISZ (Budapest)

1. Introduction

It is well-known that in case 1 + “  the classical Hardy space Hp corre­
sponds to LP, furthermore the dual space of I I1 is BMO and the dual space of VMO is 
H 1 ([2], [4]). The analogue of the first two parts were shown both in case of martin­
gale Hardy (Hp, + °°) and BMO spaces ([5]). The analogue of these third part
of the theorem is also true for special type of Hardy and VMO spaces ([7]). In these 
last results the stochastic basis the definition of the spaces based on is linearly 
ordered.

In this paper we are going to investigate the dyadic Hardy and VMO space on 
the plane. We shall introduce an atomic Hardy space with respect to the two dimen­
sional dyadic stochastic basis and it will be shown that its duális the adequate BMO)1" 
space. The dual space of VMO belonging to this BMO)1' space will be investigated 
minutely and it will be proved that it contains strictly the above mentioned dyadic 
atomic Hardy space.

Moreover, an H “ space will be defined and its dual space will be found in case 
of one and two dimensional dyadic martingale. (Exact definitions are given later.)

2. Preliminaries and notations

i) In this paper some well-known definitions and theorems will be needed. The 
theorems will be stated without proof; the proofs can be found in [3] and [7].

Let (X, stf, P) be an arbitrary probability measure space. Denote by L°°(s4, la) 
the set of functions f= (f„ ,n £ N) such that /„ : X -*R are .^-measurable for all 
n£N and

sup ess ||/(x ) | | , 2  <+=°.
x Z X

Endowe this space with the following norm:

II /II г») := sup ess \\f{x) || ,* (/€ L°° (s4.12)).
x £ X

Now we introduce a subspace of L°°(s4, l2) whose dual has already been known. 
Denote by Lq(s4,12) the set of functions / = ( / , ,  I2) suchthat

lim \\(fN, f N+1, ...)II!.”(,*,!<) =0.N-+00

To give the dual space of L^(s4, l2), the space of totally continuous additive set 
functions of bounded variation mapping into l2 is needed. This space will be denoted
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by BA(X, si, P, l2)=:BA(si). Let p: si-+12 be a set function. The total variation 
of p will be defined as follows:

r ( A i ) : = s o p { Í | | j i № ) | | i « :  Ű  E t  =  X ,  E £  , E i D E J  =  0 ,  i * j ) .
i=l i=X

p is a function of bounded variation if v(/r)< +°° and it is totally continuous with 
respect to P if  p(A) = 0 €/2 for all A £si that satisfies P(A) = 0. Define the follow­
ing norm on BA (si):

il PII ваы) := v (p) (p f  BA (si)).
It is easy to see that BA (s i)  is complete. Denoting the coordinate functions of 
p^B A (si)  by/r„,i.e. p = (p„,n(.|N), g„: it follows easily that all pnis addi­
tive, totally continuous relative to P and it is of bounded variation.

The function / =  (f n, n£N)£L(f(si, l2) is said to be a stationary О-sequence if 
for all n large enough we have f„ = 0. It can be proved that the space of stationary 
О-sequences is dense in L f( s i ,  l 2). On stationary О-sequences an integral can be de­
fined:

J f  dp ■= 2  f  fn dpn (p =  (Pn> n£N)£BA (si)), 
x n=0 x

This integral is a bounded linear functional on a dense subspace of L^(si, I2) and its 
norm is \\р \\Ваы )- Conversely, if / i s  a bounded linear functional on L f (s i, l2) then 
there exists a p = (p„, nfiN)£BA (si) such that /  has the following form on station­
ary 0-sequences:

U f ) =  f /d p .
x

Thus the following theorem holds:
Theorem A [3]. The dual space o f I f  (si, l2) is BA (si).
The following concept of orthogonality will be used ([6]). Let Wczsi be an 

arbitrary u-algebra. We say that Ф = {(р1: ifI}czL 2 is a ^-orthogonal system ('ii-o.s.) 
if for every i,j£ l, i Aj, E<̂ ((pi(pj) = 0 where Ev denotes the operator of conditional 
expectation with respect to the rr-algebra <€ and Lp denotes the space LP(X, s i, P) 
( 0 + “ ). Moreover, if for all /£/, .£V(|<P;|2)=  1 then Ф is said to be a ^-ortho- 
normal system («-o. n. s). Suppose that E y ( f  • <p()=0 for all г'£/ where fd L 2; if 
this implies / = 0  then the 'ii-o. n. s. Ф is complete in L2. The following space is 
also needed. Denote by L<v. P, q) the set of functions /£  Lp such that

IKjET*.|/|/’)1/p||e < » .

Let us have a norm on this space like

ll/ll(«.P,„) := \\(Е«\ЛРУ% ( 1 ^ < » , I S 9 S») .
Then the following theorem holds:

T heorem  В ([3], [7]). I f  the о-algebra is genereted by finite atoms then the dual
space o f /-(«•, 2,«o is Е(<с,г,\у
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Suppose that there exists a countable, ^-complete o. n. s. Ф in ZA Then L^ t2j0°) 
is isometrically isomorphic to L“ (^ , /2). The isometrical isomorphism is given by

V: Z(*,2>„  -  Z~(<V, Г-), 4>(f) =  (/„, л€N)

where /„ := E<g(f • <pn) denotes the ^-Fourier coefficient (.see [3]).
It is easy to give a space that is isomorphic to L^{^, l2) by the isometric iso­

morphism above. Let us denote by 2,00),о the set of functions such that

Jim II\f~ 2  j>„||(«,2,<») = 0./1 = 0

Then T(*>,2,co),o is isometrically isomorphic to l2). Therefore the following
theorem holds:

Theorem C [3]. The dual space o f „ > ,0  is BA (T).
ii) Further on let Í2:= [0, 1)X[0, 1), let Si be the class of Borel sets of the unit 

square and let A be the Lebesgue measure on the unit square. We consider the proba­
bility measure space (Í2, Si, A). We are going to use the following notations:

® =  №n,m; /«€N),

sdn,m:= o {[k -2 -”, ( * + l ) .2 - ) x [ / - 2 —,( /+ l ) .2 —):

k, /€N, 0 ^  k < 2", 0 ^  / <  2m),

• < « ,:=  <j {5x [ /-2 -" ,( /+ 1 )-2 -b): B^SS, /€N, O s  1 <  2"},

^ ,„ : = f f { [ L 2 - " , ( H l ) - 2 - " ) x 5 :  A:€N, 0 s ü < 2 " }  (и, m€N)

where cr(^) denotes the ст-algebra generated by s i  for an arbitrary set system s i .  
Moreover, let LP:=LP(Q, Si, A),

Lp0 := {feL p: f /d X  = 0} ( 0 < p S ~ )
n

and let the operator of conditional expectation relative to si„tm be denoted by En m 
(n, m€NU {“>}).

To define the two dimensional dyadic Hardy space we need the concept of the 
atoms with respect to Q). The function a£L°° is said to be an atom if there exist 
n, m£ N and an atom H  of si„,m such that

(i) {a A 0} g  H

* 7 ( 7 7 ) “  2‘ -2'
(iii) J  adX = 0. 

a
Let the set of £A-atoms in Z“ be denoted by 21.
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Denote by Ж = Ж (S>) the set of functions /£  U  for which there exist a sequence 
of numbers (A„, n£N) and a sequence of atoms (a„, n f N) satisfying

(i) 2  \K\ < 00
n = 0

(l)
(ii) / =  2

n =  0

Let the following norm be introduced:

\\f\U  := inf { Z \ U - f =  2  К  an}
n = 0  /1 = 0

where the infimum is taken over all decompositions of f  described in (1).
As for all atom aZ 21, H allal, the series (1) (ii) is convergent in L’-norm and 

also A-a.e. and ||/ | |iS ||/ | |,* ’ (/£Ж ). It is easy to show that Ж  is complete and Ж . 
the series (1) (ii) is convergent in Ж -norm, thus the linear envelop of 21 is dense in 

It can be proved (see [8]) that Ь%<^Ж ( l< p S + ° ° )  and | | / | | jf= C p| | / | |p 
(/£Ж , l-= /7^+°°) where Cp depends only on p\ moreover, an upper estimate of 
Ж- norm can be given by C-fold Lj-norm of the maximal function f* := sup \E„>mf\ .

n,m(L N
The converse estimate does not hold (see [8]).

To give the dual space of Ж, it is necessary to introduce the space BMO; 
(/=1, 2), as the set of functions (p£L\, such that

SUP ll(£„>m lp -£ 'n,m<P|i)1/i|U < 0 °
n,m £ N

with the following norm:

M Ibmo, :=  sup ll№,jJ<p-£„,m<p|i)1/ill~-
n,m£ N

It can be seen that BM O ^BM O , and || • ||BMOl~|l • IIbmo2 where ~  denotes the 
equivalence of norms ([8]).

Note that spaces like this are usually called BMOl" in the theory of martingales. 
It is easy to prove that L^ c  BM02.

Now the dual space of Ж  can be given:
T heorem  D. The dual o f Ж  is В MO,.
Under more general conditions the proof can be found in [8].

3. The dual of VMO

Define the concept of the space VMO in the following way: let the set of dyadic 
step functions be denoted by L  and the dyadic step functions with О-value integral be 
denoted by La. Let us close the space L0 in BM 02 -norm and call it VMO. It is obvious 
that if <p£VMO then 2
(2) lim K E ^ J c p - E ^ c p m U  = 0
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where the meaning of “lim” is the following throughout this paper: for every e>0 
there exists a number К  such that for all n, m ^K

\\(En,m\(p--En,m(p\2)llloo <  £.
To apply the theorems in 2. i, it is important to show that there exist for all 

ugN a complete and an j / noo-o.n.s. They are constructed from the one di­
mensional Haar-system in the following way:

У) := X*(2" • x) (k£N)
where Xk denotes the one dimensional, one periodic Haar-system. xHfl can be defined 
analogously. It is easy to show that { / f y : k£ N} is an -complete o.n.s. and 
E°°,„(\Xn]l\2)~ l-  One can also easily see that the -Fourier series of every dyadic 
step function is formed by finite terms, thus L0c L (̂ >ni2,co),o- Obviously, the anal­
ogues of these statements hold for the system { y f l : к у N}. Then Theorem C can be 
applied: the dual space of 2,«,),о is BA and the dual of L ^ n ^ 2,~),o
is o). The following notations will be useful:

П'Чср) := {E -A v iP Y , keN).
n*4<p) ■= keN) (n€N).

A lemma is needed to give the dual of the space YMO.

L em m a  [8]. Suppose that f = 2 f n  k-a.e., f n̂ J t and \\f„\\je<+°°- Then
n=0 n=0

f t  те and II/IIjtS  2  WfnWx-n=0
Now the dual of VMO can be presented:

T heorem  1. Suppose that Д  Ж, p f B A  v f B A  /L,o =  b.,o = 0
(n£N) and

(3) 2  (11̂п11ва(дг„ „) + I|v„||bx(̂ „ „)) < 00n = 0
hold. Then

(4) Ф(<р)= ff<pdX+ 2  { f  'P«4<P)dfi„+ f  Y™((p)dvn) ((pPL0)
fi "=° Q (1

is a bounded linear functional on a dense subspace o/'VMO. Conversely, i f  ФР VMO* 
then there exist fPTf,  p ,f  BA(,rfm iI), v„£BA (sf„t0a), /i„iO =  r„j0 = 0 such that (3) 
holds, moreover Ф takes the form (4) on the subspace L0 and

(5) ^ - f t l / I U + i  (IIa W ^ J + J  Уп\\вА(д/ 00)) — ,0 * C2 L n = 0

= \\Ф\\ — C1 [11/11.* + 2  (\\Рп\\вА№„ п) + \\Уп\\вА&п то))]-n — 0
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While proving Theorem 1 a duality theorem will be used which is very interesting 
in itself. Introduce some notations as follows: let Xnm:=L,

H\\xn,m := ll(£n.J £ l2n i ~  (и, m€N,
By Theorem В

(6) \ fZ -r iM \^ K \\x „ 'J (E n ,M 2Y'2\\i ( t ,* ltxa.m,n ,m s  N).
ß

Moreover, if A  £ ЛГ* m then there uniquely eixsts an /£ L 2 such that

ß
and

MU =  ||(£n. J / | 2)1/2||1.

Now let T :=  x  T„m. Let the space T be endowed with the following norm:
n, m £N

for £=(£„ „,; И,
IICIIX— SUp ||én,mllx„>m- n,mí N

Denote by T0 the set of elements £6 T  for which

lim lk„.m||x„,M =  0

and for every fixed m there exists к such that if n ^ k  then c„,ra = Cjt,m and for all fixed 
n there exists / satisfying if тШ1. The dual of X0 is going to be given.

T heorem 2 . Suppose that f k,i£ L 2 (k, l£ N ), ц ' „ £ В А у ' £ В А ( л / п оо) and

(7) C : = Ü  |1№д1У;д|2)1/2||1 + i  „)+I|vÍIIbx( ^  j ) <  -k=0l=0 k=0
hold. Thpn

(8) Л(£) =  lim 2 ( 2  f  f,kZi,kM + f  4'k1)(Z~.k)dn'k +
i = o  4 = *  £  5

+  Í  f/k .m Ík.m M  +  f n t>( M d V í )
m=k+l a  я

(£€*„ and := lim := lim £*,„)
П-*-оо П-*-00

is a bounded linear functional on X 0. Conversely, i f  A £X ,„* then there exist f ktf L 2 
(к , /€N), f n£BA Vn£B A (s/„ya>) such that (7) holds, furthermore, Л can be
written as in (8) and

(9 ) C ^ U W ^ j C .
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P roof of T heorem 2. The first part of Theorem 2 and the left side of (9) follow 
from (6) and Theorem C.

In order to prove the converse statement some notations will be needed: for 
■t€X0 let £*:=(££„ N)gT0 where

fO if n ё  N  and m ^  N
£N := \" ’m li„,m otherwise.

For i£ Z 0 let n , m £ N )£ X 0 (/'=1, 2) where

and

i„,m if m =  N  and 
0 otherwise

i„,m if n = N  and 
0 otherwise.

n ^  N  

m >  N

In this case if N  tends to <=° then i N—i  in Z-norm. Thus

Л(^) — lim Л(£л) =  lim Z  (Л(£*(1))+Л(£*(2))).

Therefore it is enough to give A(£k,i)) ( /=  1, 2). The restriction of Л to the subset 
which has elements of the form (/=1, 2) will be denoted by Л£°. Then

( 10)

and it follows that
Mil =  Z ( M H + M H I )

л^Ч о, о , ..., l , N, o , ...) =  f f n,Nzn,Nca (n s  n , f , ,Nev-, i„,Neц .
n

Let Zk'N be an j / , m-step function where l=kk (Ic^N). Then
к t + i

||(0, 0, ..., 0, £k'N, %k,N, ...)lljr = llíjt,ivlljffcf „
therefore there exists a function gktN£L2 which satisfies

к

Л&Ч0, ••• , 0, iit,jv, Ífc,lV, •••) = f  g k . N ^ k . N d k
Si

and

(11) M ^ll = sup { "z  ll№.ivlA,A|2)1/2|ll + li(£n,Algn,)v|2)1/2||1}.n==iV k = N

If i tiJV is an ,r/i>m-step function (l^k )  then
к к

Л#>(0,...,0, í* .w, & .»,...) =  Лф(0, ..., 0, ifc.iv» о, ...,0 )+
к + 1

+ (0, ..., 0, it.iv, iifc.iv, •••)•
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Hence
jS k .n ík .N ^ — J fk,ník.N^k + J  gk+l,N Qk,N (& =  N).
n si si

Applying induction we get

(12) f  Sk.N^k, f idA= ^  ffj,N tk,N cW-+ fS n  + l,fl£-k,H dX.
Si j=k S2 Si

But
I I A n I I i  ^  \\(Ej,N\fj.N\2y,2\\i

and (11) indicates that 2 / j,n converges in Lj-norm and A-а. e. By (12) it follows
j=k

that J g„'N£dA converges for all t£ L  if л tends to +°°.

(£€£). Since
ll(£’„,1vlil2n U ^ ( £ '~ , ivl^l2)1/2ll

thus

I / g ^ t d k I ^  II( £ „ , *  | g „ ,  *  I2) 1 / 2 II 1  • 1 К Д . , w l í 12) 1 / 2 I I ~  ^  Ы П  • И С Е ~ . Л |£ 1 2) 1 /2 1 1 ~ .
Si

Consequently, В is a bounded linear functional on a subspace of г,m o ­
using Banach—Hahn’s theorem, preserving its norm it can be extended onto the 
whole space i.e. there exists n'N£BA  that satisfies

B{Q) = f  П х)Ю Ф л and Ш в л ы ^ я) ^  1И£>||.
-Q

Similar statements can be said on A(N2\  too. Indeed, (10) and (11) imply (8) and (9). 
The proof Theorem 2 is completn.

Note that В can be written in the form B(£)= J £dv where v is a ст-additive
Si

measure but is not necessarily totally continuous with respect to A.

P roof o f  T heorem  1. By Theorem D it follows that 

\ f f - ( p d k \ s c 1 \ \ f \ \ j e . M bmo2 (<p<zL0,

Si
and by Theorem C we have

I / I / ^ { q > —E^„(p)dn„I =  ||junIUa(^,„)ll<P - jE:~,n<Pll(^,n.2>o=)S
D Í2

— НМлИвлОС», „j II'PIIbmOj -

The same inequality holds for v„. Obviously, if Ф is of the form (4) then Ф is a 
bounded linear functional on a dense subspace of VMO and the right side of (5) is 
satisfied.

To show that if <f£VMO* then Ф is of the form (4) and the left side of (5) 
holds, we embed (£„> II • IIbmo2) into X0, R :L 0-~X0, R(p:=(<p-En m(p; m, n€N).

Let B(!;) := lim f  g„tN^dl
П- + 0 0  J

Acta Mathematica Hungarica 56, 1990



DYADIC M ARTIN G A LE H A RD Y  A ND VMO SPACES 151

From (2) we get that the range of R is in X0. By the definition we have ||<р||вмо2 = 
=  \\R(p\\x((p£L0). Choose an arbitrary functional Ф£ VMO*. It is easy to see that 
Фоi?-1 is a bounded linear functional on the range of R. Applying Banach—Flahn’s 
theorem ФoR~1 can be extended onto X0 preserving its norm so by Theorem 2 
it follows that there exist А2 (л, N), fi'n£BA(sJm n), v'n£BA(sdn ^)  such
that (7) and 2||Фо/?_1|| =2||Ф|| are satisfied and

(13) Ф(ср) =  lim 2 ( 2  ff t ,k ( (P-Ei,k(p)d^+ f  4,P ( (p -E ^ 'k<f>)dn'k +
и-“ А = о'/=)£д Q

+ 2  ffk,m ((P -E k,„,<p)d).+ J  4Jik2)((p-E k̂ <p)dv'k} (f/»€T0)
m = k +1 q ß

holds. Let цп=(цп<к; &£N), v„ =  (vn>*; fc€N),

_ Wn.k if к >  0 _  (v'n,k if * >  0
Ип’к 10 if к = 0, V" ' * 10 if к =  0.

Then nniBA(jd„ n), vn£BA(s/„'J) and

( 1 4 )  \\Ип\\вА(.я/Х' П) =  I I  h n  II  B X ( „ )  j  I | v „ | | b a ( j / „ _ „ )  S  | | v ' | | B x ( j r f n j „ )  •
Since

J  f,k(<P-Ei,k<P)M =  f  ( f ,k -E i ,kf,k)<pdk,
ÍÍ ß

(13) can be written as follows:

(15) Ф (<р)=1т1 J ’ i J ’ f ( i , k - Ei.kf,id<pdX +
л- ~  &=o т = л q

+  f4'P(<p)dlik+  2  f ( f k , m- E k,mf k,Jcpd?.+ f  n 2)(<P)dvk) (?€£„).
Si m = k + l n  я

We show that the series

(16) 2 (2(/,k--E',k/,k)+ 2 (fk,m-Ek,mfk,J)
k = 0 1=0 т = к + 1

converges to a function / Zd f  which satisfies

(17) ll/rll ^ 6 с 2||Ф|| 

in Z.j-norm and A-а. e. if л—+°°. Indeed, as

(is) \\E,,kf i J i  s  ш и  ^  ii№,fciy;,j2)i/2ii1,
the series converges in Lj-norm and A-а. e. Let the limit be denoted by/. To prove 
(17) let d£uk<̂ Q) be a series of non-decreasing c-algebras such that ,s/0j0, sdltkC^i,k 
and for every fixed N£ N, d£Uk contains at least one of and one of sdN,m ■ Then

ll/i,fc Et,kf , k\\je — \\f,k~Ei'k/ ' k\\jif’(sel'k) = c2 Ц /д  —Ei,kf .  kIIhcs?, )̂
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where Ж(£С,<к) is the atomic Hardy space, is the martingale Hardy space
defined by the maximalfunction with respect to JSf,jt and c2 is an absolute constant. 
Using (18) and the well-known Doob’s inequality

llsup |Д,/|11р
w€N

T  ll/ll, ( i < / > ^ )

where (E„ftiZ N) is an arbitrary martingale, we have

II/,k —El,kfl,Áw.Xi,J — llsup •í3Í|r„,mC^/,fc}||1 =n, m

^  llsup m f ,k\^/n,m) \ : 3  < Л Н 1 +  ||£ /,* /,д ||1 s  3 ||(£ i,Jt|y;itl2)1/2lli.

Thus
^ З . с 1||(£|д1Л1кМ 1-

By the lemma it follows that / £ Ж  and (17) hold. Taking (14) into consideration we 
get the left side of the inequality (5). Since the series (16) converges in L} -norm, too, 
(15) implies (4). This completes the proof of Theorem 1,

Note that there is an exact but rather complicated way to give the subset of the 
space in Theorem 1 that maps all functions (pZL0 into zero i.e. the set of elements 
f  ц„, v„ (nZN) for which (4) takes zero for all (pZL0. The space of Theorem 1. 
factorized by this subspace is the dual space ofVMO.

It is obvious that Theorem 1 implies VMO*Z5^f and VMO* ^  if.

4. The dual space of H “

(i) First we consider the case of one dimensional dyadic martingales. Further on 
denote by & the Borel sets of the interval Í2 = [0, 1), by ), the Lebesgue measure on 
the unit interval and by L the set of one dimesional dyadic step functions. Let

s4n := u{[A: • 2~", (kT 1) ■ 2-n) : fceN, 0 ^  k <  2"}

and En be the conditional expectation operator relative to s4n. Interpreting H“ -norm, 
the concept of quadratic variation is needed:

e / : = ( i l 4 / l 2)1/2 ( /€ U )n = 0

where A„f=E„f—En_1f  (n = 0, Z7_,/:=()). Let the H“ -norm be introduced as 
follows

Il/П н - := IIÖ/IU ( f U 1).

Obviously, if fZ L  then | | / | |H~< +°°. Let H “ be the closure of L  in H°°-norm. The 
other way to define H“ is the following: let H“ be the set of functions fZ  L1 for which
lim |l( У. M „ /|2W2|L = 0  holds. It is easy to see that these two definitions are equiv-
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alent. H~ can be embedded in the space L ^(ß , /2) isometrically:

R: H “ -* Lq{£8, P), Rf:= (Anf, n£N).

Applying Theorem A if Фб(Н“ )* is arbitrary then there exists ß = (/(„, n£N)£BA (0$) 
such that ЦФЦ =  M \baw  and

* ( f )  = f  R(f )dß  =  2  f  d jd ß n ( f ib ) .
я  " = ° f l

Now we give the subspace M  of BA(3$) in the following way: let ß£M  if the bound­
ed linear functional Ф belonging to ß maps every function j+ L  into 0. It is enough 
to consider those functionals which map all Haar-functions into 0. But Anf=

2" - l
=  2  f(k)xk where %k denotes the ka' Haar function and f (k)  denotes the /cth

k=a»-1
Haar—Fourier coefficient. Consequently,

Ф(Хк) = f  Xkdß„ (2п~г 2").
ß

Therefore, if Ф(Хк)= 0 for all k £N then

ßn{\21 ■ 2-", (21+1) • 2-")) =  ßn([(2l+1) ■ 2 -”, 2(1+1) • 2 - ) )

(ибN, n >  0, К N, 0 =  / = 2я- 1- 1)

and /i0([0, 1))=0. Denote by M  the space of set functions ß=(pn, n+N)£BA (33) 
with the above mentioned property. A well-known theorem of functional analysis 
implies

Theorem 3. The dual space o/ Н “ is the factor-space BA (38) jM.

(ii) Let us see the two dimensional dyadic case and use the notations described 
in Sections 2 and 3 again. Quadratic variation is now defined as follows:

Qf = { 2  M„.m/I2)1/2 Í /U 1)
n,m € N

where

A „ E n , mf ~E „ - i , mf —E„tm̂ 1f + E n- ltm- 1f  F_ljn/ : =  0 (n, miEN).

We define J'f “ -norm with the help of L“ -norm of Q f  We call H” the closure of 
the space L  in H“ norm Similarly as in the one dimensional case H°° can also be 
defined here by limit. Denote by H“ the set of functions /6 L 1 for which

/ l 2)1/2||~= 0.

It is easy to show again that these two definitions are equivalent. Then the analogue of 
Theorem 3 can be proved in a similar way to the one in part i.
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INTEGER SETS CONTAINING NO ARITHMETIC 
PROGRESSIONS

E. SZEMERÉDI (Budapest), corresponding member o f the Academy

Introduction

K. F. Roth [1] proved 1953 using analytic methods that if a strictly increasing 
sequence of natural numbers fl1< a i< ...< flt S n  contains no three term arithmetic 
progression then

log log n '
Very recently Heat—Brown [2] could improve considerably (1) by showing

(2) k c*n 
(log n)c3 (c3 >  0).

The aim of the present work is to show that Roth’s analytic method combined 
with some combinatorial ideas is are useful in the study of such type problems. Apply­
ing the method to the present problem the resulting inequality will be (2) whilst in [3] 
it was shown that if a1<a2<...-=tak^ n  is a sequence sä of natural numbers such 
that sä—sä does not contain any positive square then

lc < ______ 112______
(log n)logloglo8lo8"/12 '

It is possible that the present approach leads to new results in other problems of 
additive number theory too.

N o tations. Let
jrw  = {1,2, ..., n},

— { iq + j ’ 0 + 1  )?+y> (i +  S— l)?+y},

Let \sä\ be the number of elements in sä,

/■*00 = 2  «(«*). e(tx) = e27tix, у = П
Let г be a sufficiently small positive number and n=~n0(e). We suppose

у >  -—+— otherwise the theorem is trivially true for sä. logC3 n J
Let us assume the assertion is proved for every m ^ n .  Choosing c2 sufficiently 

small it is clearly true for и<с4. It is easy to see that either
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a) Ü  has a subset л-/'c: H, / /  +  ■■- - - g ] wi 
loe  rr i th

\s i ' \  >  (1 + e ) y dog и)3 ’ Sí / /  И,
or

b) the total number of solutions of the equations ai+ a ;=2a*+w0 and at+aj - 
-2ak — n0 is at most

(3) • ( 1  - t - 4 s ) y 3 « 0

for some number и06^«, « + —  ̂ j. The case a) can be settled easily (cf. the end of
the proof). Now we are dealing with the case b). In the following we work with n0 
instead of n.

We write y0= y -— . Now n0
n „ - l

is the number of solutions of the equation at+aj=2ak (mod n0). In view of (3) this 
is less than ^  + 3£|уои0> since there is no 3-term arithmetic progression in s i . 

Because the main term (corresponding to t= 0) is yjj • n% it follows that

” o -■ { j - 3eW -

Let us assume that for t^O, / Í — ] with a fixed sufficiently large.I \ Hq ) I 2*°
There must be an i= ik with 2‘o<2ii<(log и)1/3 such that there exist tk, t2, tq 

[? = ?0'i):= [ ^ - ]  + 1)> (mod n0) with Otherwise we would
have

—  2 2
, l °  2 < s l ? g ? / 3 n | r f | - * - ' e m « ( | / ^ ( ^ ) | 7 ( / r f ( - ~ ) | ) e l Y I . - *

\ / J — )Г 1 /Л - — )
. , - i J  K i l l  l «oj

l^ l3
10«,,

while it follows from Parseval’s identity that 

«0 ( M i ) H ' - ( - ) l ) - « ' » . - » . 1 U J I 1 1 ”“ j

<sc \s i\  ■ log1/3n a i m .К «о )
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We shall show the existence of a set

such that
Я = {Ь,2Ь, . . . ,№ b }  = {bk}[%

jb tv =  li.j (mod n0), | / J  <  -^og n),

for all \^ jS \@ \,l= v S q  = q(i1). Dividing the set Ж(„о) into /?o/(e+1) equal inter­
vals /j, I2, /„j/(,+и, there must exist b' and b" (1 suchthat
b'tv (mod и0) lies in the same interval as b"tv for all v (i.e.|(h' — b")tv — kvn0\ ^ng/(i+1) 
with integer kv). The choise b = \b"—b'\ satisfies our requirements.

Now the number of solutions of ai—aj =bk—bi (mod n0) is

i . I
which is at least и>и0(г))

1 l^ l2 23i 2}
(4) а - e ) — y - i « i a T = ( i - e ) Ä i f 4 .n0 Z l l

On the other hand the number of solutions of ai—aj =bk—bl (mod n0) (with 
the notation В '—Щ}-, T  a large constant) is

Ь nIB’ T  (  \u \  \

(5) ( i+ i ( f ) ) 2  2 W u M 'l  2  K ( í+»u »,b'I 1--У- 1̂ 1
j = 1 i = 0 л = - г  v 7 /

where S(T)-+ 0 as T  —*-co #

There exists a set л/в vj,b,B' with

(6) К , , м , » - |ё ( 1 - 2 £ ) |5 'у 0

since otherwise the sum in (4) would be with a fixed T= T0(e)

S  (1 + e )M  Г —  (1 -2в)Я 'у0|Я| < (1 -  e) t8«oI^I2

in contradiction to (5).
Similarly if we have at*  with

/ - ( n |  ,
l n0 J r  2io2‘o
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then the same argument (with q = 1) shows the existence of a

~  ПЦ n0/\og3n withlogzn

(60 I I  (1—2e) 1̂ +"22/rj ^  fő­

in both cases (6) and (60, using the set siB-v • b B- we obtain a new set s/'cz 
Г  и 1/(4 +  1) 1 ’ ’ ’

c { l ,  B') with ]0g3 ,; ”1/<4+1)J such that s i '  contains no 3 terms arith­
metic progressions and \si'\ >c(q)B'y0. Here either

1
i ) q = \ ,  c(q) >  l +  2 2 fiTT

or
23'o „1/3

It is easy to see that we have in both cases

c(q)
W \ logC3 n B' c2B ' 

log C*B'
if c3 was chosen sufficiently small. This contradicts our induction hypothesis and so 
proves the theorem,

for all í=  1, 2, , n— 1 withRemark. It is easy to see that if 2-0
a sufficiently large /„, (i.e. we have case b) preceding (3)) then c0 can be chosen near 
1/3. (c0=l/3 —e is admissible if /„>c0(e))- A more careful computation concerning 
case a) shows that c0 >  1 /4 can be chosen in the formulation of the Theorem.
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1. Let J t  (resp. Jt*) denote the set of complex-valued multiplicative (comple­
tely multiplicative) functions. Let q: [1 , со) be a slowly varying function, i.e.
such that

<U ) if i 3 ' “ 2*
with a suitable function ex(>0) tending to zero as x-+°=. Let a s l  be a constant, 
i?a>e the set of those /€  J i  for which

(1.2) 2  l/(«)l" «
n ^ x

holds.
Let K£ N, /£  J t  be such that

(1.3) 2  AKf(n ) = f(n + K )-f(n ) .
n ^ x

Our purpose in this paper is to characterize all these functions.
Theorem. I f  for f f J t  (1.3) holds, then either f(n )= nsu(n), Re.?^ 1, 

u(n + K) = u(n) (Vn€N) or
Remark. The special case a = l ,  o(x) =  1 has been considered in [2].

2. Lemmata. In this section we assume that fa J t ,  ,/4 £t?ae and that (1.3) is true. 
Lemma 1. I fH  is an arbitrary positive constant, then

(2.1) 2  max И;„к/(и)1а «*е°Ч*)-
naSx  la=i„aSH

P r o o f . It is clear; use only Holder’s inequality. □
Lemma 2. I f  there exists an integer D such that

(2.2) 2  |/(я)Г <sc x q * ( x )  (x — со),
n ^ x  

(", I>) = 1
then / € ^ , г.

P r o o f . For an arbitrary n, let a{n) be the product of prime factors of n composed 
from the prime divisors of D and K, and let b(n) be defined by n = a(n) ■ b(n). From 
the elementary theory of congruences we get that there are suitable constants H1, H2
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such that a(n+lnK )^ H 1 for a suitable /„, Furthermore, \f(n)\ =
S \ f ( n + lnK)\ + \AlnkKf(ri)\, and so, by Lemma 1,

2  1/ 001* «  2  If ( n + t nK)\x+xQx(x).
n ^ x  n ^ x

Since f(a (n  + lnK)) is bounded, the number of integers n with b(n) = v, a(n)sH 1, 
is bounded as well, therefore the sum on the right hand side is

«  2  l/(v)l“.
v S x + H j K  

(v, D ) = l
This completes the proof. □

Lemma 3. For each prime p coprime to K ,f(p a)= f{p )a.
Proof. From (2.1) we infer

2  \ÁK pf(pn)-f(p)AKf(n)\x «  xq*(x).
n ^ x

Consequently, by summing over the integers n of the form n=pav, (v,p) = l, we 
have

2  \ f (p)f (P°v) -f(pa + 1v)\'1 «XQ*(X),
V̂ X

(v, p ) = l
which leads to

\ f (p)f (pa) ~ f ( p a + 1)\* 2  I/(V)|* «  XQ*(X).V̂JC
( v ,p )= l

Then f ( p ) f ( p a)= f(pa+1), since in the opposite case (2.2) would be satisfied with 
p=D, and by Lemma 2 this would imply that /£=5?^. Hence the assertion immedi­
ately follows. □

Let fi(n)=Xo(n) \ f ( n)U where y(l is the principal character mod K. It is clear 
that (1.3) holds for /i instead of /  as well, furthermore that / i i  =S?a,e (see
Lemma 2).

Let g(n) :=fi(n),

(2.3) S(x ) := 2  Sin).
n ^ x

It is clear that
/i(m)

(2.4) \g{n)-g(m)\ = \oc f  tP '1 du\ Ш
fiM

consequently we have

(2.5) 2  \g (n + K )-g (n)\ «  2  M i/i(«)l•(/i0,-1(« + ^ )+ /iI - 1(«)).
t l^ X  n ^ x

Hence, by Holder’s inequality,

(2.6) 2  |g(n +  Â ) -  ?(«)l «  ( 2  M r/iW r)1/’ (s (;f+ i ))(' ' 1>,‘ «
n ^ x  n ^ x

«  x1/*e(x)(s(x+K))(*-1)/\
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Since
g(m) ^  \g (m )-g (m -K )\ + \g (m -K )-g (m -2 K )\ + ..., 

therefore, by (2.6),
g(m) -sc m1/x Q(m)S(mf* 1)/a.

Hence we infer that
S ( x + H ) - S ( x )« H x1!« Q(x)S(x+Hy*-»l°, 

which implies easily that
(2.7) S(x+H ) <s z h x q i, ( x )  +  S ( x )

for each fixed H.
L emma 4 . I f  H is an arbitrary positive constant, then

(2.8) 2  max M i,n l(« )l« x 1/*iW S(x)(‘
n s x  1* / „ й Н

P roof. This is an obvious consequence of (2.6) and (2.7) . □
Let q be an arbitrary natural number coprime to K. For each n, let / be the least 

nonnegative integer for which q\n + lK, and let =  Then n determines /
and «!, furthermore a fixed n f^ K )  occurs exactly for q distinct n. From (2.8), we get

12 (g(n)~g(qni))\«  xQ1,'t(x)S(xy,I- 1)/*+xefx).
n^x

Observing that

we get 

(2.9)
Let

2  g(qni) =  4g(4)s ( 4 )+ ° (xVa QM s (*)<а-1)/“),n^x '  4. '

S(x) — qg(q)S  <k x 1,aQ(x)S {хУа~1)!* +  XQa(x).

Then, from (2.9),

(2. 10)

A(x):= S(x)
хвЧх) '

«A<“-i>/“(x)+L

L emma 5. I f  there exists some q, (q, K )= l, suchthat g(q)<\, then 2 (x )= 0 (  1), 
consequently fi£HPa,e-

Proof. Since e(x/q)e~\x)-*-\, as x —°°, therefore, from (1.10) we get:

(2.11) A(x) -c (1— e)l(x/q)+A,

whenever x is larger than a constant y0, with suitable positive constants e, A. The 
deduction of A (x)= 0(l), from (2.11), is immediate. Indeed, let X j< x2< ... be

11 A d a  Mathematica Hungarica 56, 1990
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such a sequence for which A(xv) =  max A(x) is not bounded, then there exists such anX^XV
infinite sequence xv, and A(xv)—°°. But from (2.11),

A(xv) <  (1—£)А(х„) + Л,
which implies that sA(xfi<A, a contradiction. □

Lemma 6. For q > \ and (q, K) = 1, let = be defined by g(q) = q']- Then
(2.12) A(x) «  x4+E, 
and for rj =*0,
(2.13) A (x )» x "-£ 
for every £>0.

P roof. First we prove (2.12). Assume that x is large enough, х ё ^ 0, suchthat 
q(x/q) • (é?(x))-1-=<7ei/a. Then, from (2.10), with a suitable constant c,

Ц х)-с1 (х-»/*(х) <  qn+c4  {^ )+ c ,

whence we have

(2.14) A (x) < qn+2El A Í—j +  c1

with some constant сг. Starting from some x0,wedefine x v=qvx0. Then, from (2.14),

A(xv + 1) <  q’lt-2Clk(xv)+ c1,
which gives that

A(xv) <sc q ',<-n+2El) (v — °°),

i;e. that A(xv)<s;xJ+2El. Since for x, xv< x < x v+1, we have A(x)«:xJ|iei<'<x''+2El, 
therefore (2.12) is true with 2£x=£. So (2.12) is true.

Let us prove now (2.13).
Let £i>0 be an arbitrary constant, so large that q ( x / q ) Q ~ 1( x ) > q - ei l* 

whenever x> yx. Then, from (2.10),

(2.15) A(x)+cA(iI_1)/,z(x )+ c >■ q”~n A ( x  >  yx).

Let l e ^ q .  There exists a constant A such that A(x/q)^A  implies that A(x)^ 
sA(x/#). From (2.15) we obtain

(2.16) A(x) >  94_2eia(-^)

assuming that x > y x and that A (x/q)^A x, At is a suitable constant. Since A(x) 
is not bounded, therefore there exists x0, x0>y1? such that A(x0)=~A1. Let xv = 
=qvx0. From (2.16) we obtain that А(ху) > ^  (v =  l,2 , ...) holds as well, conse­
quently

A(xv) >  q ^ - ^ Ц х „),
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and so
A(xv) »  x1~'ге' (v-oo).

Since for x ,x v^ x < x v+1, A(x)»A(xv), therefore (2.13) is true with e=2e1. 
By this the proof is complete. □

3. Completion of the proof of the Theorem. If g (q )^l for each q, then A(x) = 
=  0(1), i.e. /6JSfa>p (see Lemma 2). If g(q)< 1 for at least one q coprime to K, then 
the same is true, see Lemma 5. Assume that g (q )^ l  whenever (q, K) = 1.

Let qt ,q 2 be arbitrary integers, coprime to K, ^ > 1 , #2>1, g(qi) = q\l, g(q2) = 
—q22. Assume that >0. From Lemma 6 we obtain that

log /(x) 
log x ^  1,1 (x -  »).

Then rj2 = 0 cannot occur, since this would imply

log A(x) 0 
logx

If ijo^O, then Lemma 6 gives
logA(x)

logx
consequently ih=q2.

We proved that g{q)=qn for each (q, K )= 1, with some positive constant q. 
Then \f(ri)\=Tf, (n,K)=  1, a = q/cc. Since (1.3) holds for | / |  instead o f /a s  well, 
furthermore (n + K)a—rf ~сКпа~г, therefore (1.3) implies <rSl.

Let f 2(n):=Xo(n)f(n), and /(и) be defined by f 2(n)=nat(n). It is clear that 
\t(ri)\ =  1 if (и, AT) = 1, and t(ri) = 0 if («, АГ)> 1. Since

^ k/ 2(”) = (n+ /Q ffd Ki(n) + i(n)((n+.K)<’- < ) ,
therefore

(3.1) 2  (n+ K Y\AKt(n)I ^  2  MK/ 2(«)I+ 2 l'(« )l[0»+ *)<r- « ' l  = ^ + T 2.
n ^ x  л ^ х  n ^ x

We have
T2 <Si 2j к" 1 x a <z x .n^x

Furthermore, \ÁKf 2{n)\-^\ÁKf{rí)\, consequently by (1.3)

* i  s ( Z  1 ) (a- 1)/a( 2  IД к Ш ? ) 1 ' * « x q ( x ) ,ĤX n̂ kx
and so

2  (п+Я/И к/О О! <<xe(x).
n ^ x

This implies
2  |d Ki(n)| «  x 1_<Tß(x) <k x1*

x /2 ^ n ^ x
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with some constant <5< 1. Hence we obtain

(3.2) 2 — -— < ” •
П =  1 П

In [1] it was proved that such a function t has the form

t(n) = Хк(п)п‘\
where %k is a suitable character mod K. Consequently A(n) = n°+izyK(n). Let us 
define u{ri) by f(ri)=na+iTu(ri). It is clear that / 2(«)=./(«) if ( n ,K ) = l .  Then, 
from (1.3),
(3.3) 2  \(n+K)e+iTu (n + K )-n °+iTu(n)\*<zcxQ(xy.

n^x
Repeating the argument used in [2] one can deduce that u ( n + K ) —u(n) (Vи€ N). 

The proof is finished. □
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INEQUALITIES FOR SUMS OF MULTIPOWERS

ZS. PÁLES (Debrecen)

1. Introduction

For x= (xk, ..., x„)£R+, ű=(űb  the multipower xa is defined
by

xa =  (xlt ..., X k) (at’ ’ak> = A'“ i ... X ° k .

Using this notation, the Holder inequality (see [5])

( 1)

(where tif N, xl5 ..., x„, yl5 x„>0, p, q=~l, l/p + l/q= l) can be rewritten as 

The following inequality obviously generalizes (2):

(3) 1 s  ( 4 ,1  l i s  7-)'

where a0, ..., am£R, a0, . . . , a m£ R k are fixed parameters and n£N, Xj, x„£R + 
are arbitrary variables. (Indeed, letting m = 2, k = 2, a0=  —1, a1= ] / p ,  х2 =  Уц, 
a0= (l, 1), at = ( p ,  0), ű2=(0, q), we can see that (3) is equivalent to (2).) However
(3) includes other important inequalities, for instance let m = 2, k = l, a0= c —b, 
ax= a  — c, a2 = b —a, a0=a, at =b ,  a2=c ,  where a ^ b ^ c  are arbitrary real values. 
Then (3) reduces to

which is called Lyapunov’s inequality (see [5, p. 27, Theorem 17]).
The key result of this paper is an approximation theorem for convex functions. 

Using this theorem, we obtain necessary and sufficient conditions for (3) to be valid 
for all n£ N, х г, ..., x„£ R+. (See the Corollary below.) Then we give new and sim­
pler proofs for theorems obtained by Daróczy and Losonczi [3] and by the author
[7], [8]. We note that our results also include those of Reznick [9] and Ursell [11].
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2. Main results

L em m a . Let nZ N, x x, ..., x„€:R+ be fixed. Then the function

(p{a):= In i— 2  *?]> a£Rk V n i=1 )
is convex.

Pro o f. Since/is continuous, it is enough to show that it is Jensen-convex, i.e.

y ( ^ t ± ) s  v M  + v W ' 0,KR*.

This inequality is equivalent to

Í x ? / * .4 /2^ ( Í ^ ? ) 1/2( Í 4 ) 1/2-i = l i = l i = l
which is an easy consequence of the Cauchy—Bunyakovsky—Schwartz inequality* 

The following theorem is the key result of this paper.
T heorem  1. (Approximation theorem for convex functions.) Let / :  Rk-*-R be 

an arbitrary convex function with f (  0)=0. Then, for all compact sets D cz Rfc and for 
all e>0, there exist 0 < a < l ,  N, х г, ..., x f  R^ suchthat

(4) /(a )  — a Ini— 2  *?) <  £ for v n ; = 1  J\ a£D.

Pro o f . Let e > 0  and a* f  Rk be arbitrarily fixed. Then, using the convexity 
of/ and the Hahn—Banach theorem, we can find a vector u(a*)£Rk and a constant 
v(a*)£R suchthat
(5) f(a )s(u (a * ),a )+ v(a * )  for a£Rk 
and

f(a*) =  (u(a% a*)+v(a*).
(Here (,)) denotes the inner product on Rfc.) Write

G(a*) := {u6R*1|(M(a’l‘), a)+v(a*) >  f (a )—e/4j.
Clearly, G(a*) is a neighbourhood of a*. Since D is compact, there exist al5 ..., amc R'1 
such that

m
(6) D c  U G(a,).

i =  1
Write a() = 0 and

u, = u(al), vt =  v ( a f  i = 0, 1, ..., m.
Since / ( 0 ) = 0 ,  we have v„= 0  and t\, ..., vm^0 . Using these notations, (6) and 
(5) yield
(7) max «М;, a)+vt) > / ( a ) —e/4 for acD.
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Putting a* = a; (i=0, 1, ..., m) into (5) we also find that 
(8) f(a) ^  max (<м;, а)+ь\)  for all uf R\

Now let iv0=0 and w.-Glhj—e/4, e;] (/ =  1, be arbitrary. Then by (7) and (8)
we have

|/(a) ^  max «и„ a> + w;)| > /(a ) -e /2
i.e.
(9) |/(a) — max (<м;, a)+w,)| <  e/2 for af/X

On the other hand, for t>(ra+1)4/E, we have the following estimate
m m \

in ( 2  t<u‘-a>+wtl 2  H
i= 0  i =  0 /

Ini max (<Mi, a)+w(.)

1
In t

I m '
lln .2  *

<Mf, a) +  wi —max ((uJt a) +  w^)
- In  2 H ^

i = 0

s ^ y ( i n  i ;  i+ in  2 1)
i=0 i= 0

Let f0>max((m +  l)4,'E, e) be fixed and write 
and (9) yield

✓ m .
^  f ”i’â +Wi

( 10) f ( a ) -a  In
2  to1i = 0

In (m + 1)2
-----;--------- e £/2.In t '
a =  l/ln t0. Then the above estimate

<  e for a£D.

This inequality is satisfied for all wt€[Cj—e/4, vt], i — 1, ...,k . Therefore we can find 
values Wi€|T;—e/4, vt] suchthat to1 is rational for /=1, (С 0 =  ?0=1 is also
rational.) Choose qCzN so that pi = qtoi is an integer for all г =  0, к. If иг =  
=  (Чц, • • •, Щк) then write уг = (70“, й‘к). Clearly, yf = t(0'“’a). Therefore

f ( u>ia> +  Wi

i= 0

2 q to ‘-Úu‘-a)

“ i s -
i = 0

m
Let n:= 2  Pi and define . . . ,x nfR+ by 

г=о
(*i> ...,x„) := (y0, . . . ,у 0,у и  ..., л ,

Po Pi

m

2  AX;
m

2  л

l nThen A can be rewritten as — 2  xf- Putting this expression of A into (10), we seen l=i
that (4) is satisfied.
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Theorem 2. Let F: R”+1 —R be a continuous function satisfying the following 
condition:

(C) I f  for some t0, . . . , t m> 0, F(t0, ..., /m) s 0  then Г“)ё 0  for al1
1.

Let further a0, ..., amf a mf  Rk be given vectors. Then

(11) F [ - Z  ■■■’ - 2  x°r) =  oV Л i = i /i j=i /
holds for all nd N, , ..., x„€ R+ z/ and only i f
(12) F (e W ,.. . ,e № J )s O
ы satisfied for all convex functions/ :  R* — R with f  (0) =  0.

Proof. If (12) is satisfied for all convex functions/ with /(0 )= 0 , then it is satis­
fied by

f(a) = In ( 4  2  *?) -

which is convex by the Lemma and obviously satisfies f  (0) =  0. Thus we obtain (11) 
and have proved the “if” statement.

We prove the “only if” part of the theorem indirectly. Suppose that (11) holds 
for all ndN. х г, . . . ,x n£R k but there exists a convex function / * :  R* — R with/*(0) = 
=  0 such that (12) is not satisfied. Then, by the continuity of G(u0, ..., wm) = 
=  F(eu», ..., eu"l), we can find an e> 0  such that |иг—/*(я,)|<£ (z = 0, ..., m) 
implies F(euc, ..., e“")<0 . By Theorem 1, we can find 0 < a < l ,  nd N, xlf ..., x nd R+ 
such that

/* (« ()-«  In I

for z=0, m. Therefore we have

4 " ) ')

By the properties of F, this inequality implies

which is a contradiction. □
Corollary. Let a0, ..., amd R+ and a0, . . . ,  am£ R be given parameters. Then (3) 

holds for all nd N, хг, ..., x„£R+ i f  and only i f

(13) 0 =S a0/(ű 0)+ ...  + am/(ű m)

is satisfied for all convex functions f  with f  (0)=0.
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P roof. The function F(t0, ..., im)=fo°...Cn—1 obviously satisfies the condi­
tions of Theorem 2. Thus (3) is equivalent to (12) which reduces to (13). □

R em ark s. (1) There are important functions other than that used in the 
proof of Corollary, which satisfy the condition (C) of Theorem 2, for instance 
F(t0, . . . ,tJ := tll + ... + fn" - f 0\  (Indeed, if for some i then F(iJ, rf,...,
^ 0  holds for a> 0; if t*‘<t%0 for all / then F(t0, tlt ..., ?m) = 0 yields

4-
£r|€?

VII . + K J j n \ . . .+ [ — ) for 0 <  a < 1

Thus we obtain F(/g, .. • ,C )S 0 .)
(2) In the investigation of the inequality (13) the determination of the set 

H .= {(n0, ..., nm)|3 /: R* — R convex with /(0 ) = 0 
such that и I = / ( а г), i = 0, ..., m)

is a crucial point. This set turns out to be polyhedral, i.e. it is the intersection of a 
finite number of closed half spaces. Any polyhedral set is determined by its extreme 
points and extremal rays. (See Rockafellar Г101.) Thus (13) holds for all convex f  with 
f  (0) =  0 if and only if

0 is a0u0 + ...+ccmum
for all extreme points and extreme rays (m0 , ..., um) of H.

In the next section we give some applications of the Corollary.

3. Applications

First we consider the one dimensional case, i.e. when к — 1.
T heorem  3 (cf. Theorem 1 of [8]). Let a0, ...,a m,a0, ..., ятс R be given para­

meters with a0 + ...+ a m = 0. Then

(14) 1 ^  ( 2  x f  О*0 • • ■. ( 2  x1mYm
i = 1 i = 1

holds for all n£ N, xl9 ..., x„>0 i f  and only i f

(15) 0 S a 0|a0- a i| + . . .+ a J a m- f l i| 
is valid for /=0, ..., m.

P roof. Since a0 + ...+ a m=0, (14) is equivalent to

/ 1  n / 1  n \*m

- h « ' )  •
By Corollary 1 this holds for all n ,x1, . . . ,  x„ if and only if 

(16) 0 =s ct0f(a 0)+...+ctmf( a J
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is satisfied for all convex / :  R-*-R with /(0 )  =  0. However, using a0 + ... + am = 0 
again, we see that the restriction /(0 )= 0  can be omitted, i.e. (14) is valid for all 
n ,x 1,...,x„  if and only if (16) holds for all convex / :  R —R. Taking J  (a) = \a—ai\ 
we find that (15) is a necessary condition.

To prove the sufficiency, assume that (15) holds for /=0, ..., m and let / :  R-*R 
be an arbitrary convex function. Without loss of generality we can assume that 
u0< űi< ... < am and that/is linear on the intervals (—°°, a j, [a2, a3] , ..., [űm_2,um_1], 
[«„,_!, °°). Then f  can be expressed in the form
(17) f(a )  = рй+р1\а - а 1\ + ...+рт- г \а - а т- 1\+рта.
By the convexity of/ ,  we have that the left derivative /  _ (a) is not greater than the 
right derivative /  + (a) at any point af_ R, calculating these derivatives at a = 
=  Ox, ..., em_l5 we find that p lt рт- гШ0. Putting / = 0 into (15) we have

0 ä  <x0(a0- a 0)+... + c(m(am- a 0).

Since a0 + . . .+ a m =  0, this reduces to
0 s  oc0a0+... + xmam.

Similarly, letting i=m  in (15) we find

0 s  a0a0+ ... +amam.

Thus
(18) 0 =  a 0a0+... + amam.

Now we can prove (16). Using (17), we have

m m m — 1 m m
2  <Xjf(aj) = Po 2  *j+ 2  Pi 2  <Xj\aj - ai\+Pm 2  <XjaJ■j = 0 j = 0 i=l j = 0 7 = 0

Applying (15) for /=1, 1, (18), ao+ ... + am = 0 and р 1, . . . , р т̂ ш 0 we
can see that (16) holds true. □

To formulate a corollary of Theorem 3, introduce the following notation: 
For a, bi R let

Ма.ь(х) =  Ma>b(xu  ... ,  x„)
(2 * 1 /  2  x°Yl(a- b\  if a * b ,
i = l  i=1

exp (2? x? ln Xi/ j?  xf), if a = b,
i — X > =  1

where u£N, x = (x l5 ..., x„)€R+ are arbitrary. These means are sometimes called 
Gini means [4]. Putting b = 0, M a<b reduces to a power means [5]. The means Ma+1>a 
were investigated by Beckenbach [1]. Several authors (e.g. Brenner [2], Gini [4] found 
sufficient conditions for the comparison inequality

(19) M 00'b0( x ) ^ M aubl(x).
The following necessary and sufficient condition is due to Daróczy and Losonczi [3].)
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T heorem  4. Let o0, b0, ax, bxf  R. Then (19) holds for all N, x€R+ i f  and 
only i f
(20) min (a0, b0) ^  min (al5 bj) and max (a0, b0) ^  max (ax, bx).

P r o o f . We may assume that a0s h 0, axS b x because МаЪ = МЬа. First we deal 
with the case a0<b0, ax<bx. Then (19) can be rewritten as

l g ( 2  T" i y / ( " l - f > l )  . (  x b l y / ( b l - a 1)  .  ̂ £  j ^ o y / t e o - b o )  . (  £  x a 0y i ( b 0 - a 0 )^  

i = l  i = l  i ~ l  i =  l

By Theorem 3, this inequality is satisfied for all N, xx, x„>0 if and only if

(21) o < { U~bx\ | U -b 0\ [f-flol
a1 — b1 bx- a x a0- b 0 b0- a 0

holds for t£{a0, ax, b0, bx}.
Putting t=bx into (21) we have

p <  I I \bx- b 0\ I lfei ao

whence we obtain
a0- b 0 b0- a 0

\b i-b 0\ + \b0- a 0\ S  I&í - űoI.

However this relation is the opposite of the triangle inequality. Therefore, this holds 
with equality and thus a0< h0 implies b1^ b 0.

Similarly, the substitution t = a0, yields a0S a x. Thus the necessity of (20) is 
proved. The proof of the sufficiency is a trivial computation, so we omit it.

To extend the theorem to the case a0=b0 or a1=b1, observe that (a,b)-+ 
Mab(x) is a continuous function on R2 for all fixed at. Furthermore it is an increasing 
function of both variables. (Indeed, if then, for all b£ R, min (a, h)^m in (a', b),
max (a, 6)sm ax (a', b) and this implies Mab(x )^M â b(x) for all b<i {a, a'}. How­
ever, using the continuity, this hold true for b=a and b=a'.)

Let h0—a0, bxS a x and assume that Ma0}bo(x )^ M aitbl(x) for all x. Then, using 
the monotonicity of M0j6 ,we have M„0_b(x)síMa<bl(x) for all x and b<b0, ax<a. 
Thus necessarily b ^ b x and a0s a .  Taking the limits h —h0 — 0, a-~ax + 0 we obtain 
that b0^ b x and a0^ a x, i.e., (20) is necessary.

To prove the converse, assume that a0S a x and b0^ b x. Then for all b<b0, 
ax<a we have e(ls a  and b ^ b x, whence we obtain M0aib(x)^M a,6, (x) for all x. 
Taking the limits b-»b0 — 0, a —Uj +  0, we find that Maothf x ) ^ M aubl(x), i.e., 
(20) is also sufficient. □

The next result is a generalization of Holder’s inequality for the M a>b means. If 
Х; = (ха , ..., x j f  R 'f, / = 1 ,  ...,m  then write

Xi ... xm = (xxx ... x ml, ..., x Xn ... xmn).

Theorem 5 (cf. Theorem 3 of [8]). Let k ^ 2  and let b0^ a 0, ..., bk =5ak be given 
parameters. Then
(22) M _a0'_bf x x ... xk) Mai'bl(xx) ... Makibf x k)
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holds for all n£ N, , ..., xk£ R". i f  and only if

(23) a, 0 and c, + = 0
holds for all i=0, , k, where

( 2  Vöj)“ 1, i f  / /  /  И 0,
7=o 7= 07*0 7* 0

к
0 , i f  П7=07*o

P r o o f . First we prove the theorem assuming that b0<a0AO, . .. ,b k<akA 0. 
Then (22) can be rewritten as

Applying the Corollary, this holds for all n£N, (x1{, ,  xki)c R + ,  i = l , . . . , n  if
and only if
(24)

/ ( - a , - д 0) | f ( - b 0, . . . , - b 0) ___
b о — ao ao b0

/(0, ..., aj, ..., 0) / (0 , . . . , f c j , . . . ,0 ) l
“j - b j  bJ - ° j  -I

is satisfied for all convex functions / :  R*1 —R with /  (())=(). Since constant functions 
satisfy (24) with equality, therefore the condition f(0 )  = 0 can be omitted.

For the sake of convenience, write

•••> Я0), Bo ■— ( b0, ..., b0),

Aj := (0, ..., aj, ...,0), Bj -.= (0, j = l , . . . , k .
Thus (24) is equivalent to

(25) 4  f(Bj)  ... j .  / W
7=0 Яу-Ьу 7=0 /  -  bj ■

Now we have to show that (25) is valid for all convex functions/if and only if (23) 
is satisfied for all i=0, k.

Assume first that (25) holds. Then we prove that Bt is in the convex hull of 
{A0, ..., Ak} for all i. If this were not so then, by the Hahn—Banach separation
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theorem, there would exist a linear functional Ф : Rfc—R and a constant c such that 
(26) Ф{А]) -^ с ,  j  = 0 , . . . ,k  and Ф (£,)>с.
Define /b y

/(n) = max(0, Ф(и) — с), u£R*.
T hen/is obviously a nonnegative convex function, furthermore, by (26), 

f(A j) = 0, j  = 0 ,..., к  and f(B t) >  0.
Putting this /  into (25) we find that the right hand side vanishes, however the z'th 
term on the left hand side is positive and the others are nonnegative. This contra­
diction shows that the Bt (i=0, k) belong to the convex hull of {A0, ..., Ak}.

к
This means that there are nonnegative values Ay^O (/,/=0, ..., k) with Z  Ay =  1

7=o
such that

Bt = Z h j A j  (i = 0 ,.. . ,k ) .
7 = o

For /= 0 , we have the following equations

b0 =  A0j Oj A0o ( j  — 1, • • •, k).
к

Thus A0,=(A00a0—b0)/aj. Substituting this into Z  A0 .•=1, we get
7=o

Aooa o (  Z  1 /<*j) = l + b0(Z l /aj \
7=o 7=1

If c:= Z  l /яу were zero then
7=o

0 =  l + b0( Z  1 /aj) =  l +  h0( - l / a 0) =  (a0- b 0)/a0,
7=1

which is a contradiction. Therefore

A00 =  (1  + b0( Z  1 /а у ) )а о _ 1 с _ 1 .
7=i

Now a simple computation yields

1 A00 a0—b0 a0 — bn , ,,
Л0у   ~ *“ — л л л 9 J   1, ... 9 fC.

In the cases / = 1, ..., к we have the following equations:

0 = A0- üj -  Ai0 a0 ( j ^ O  and bi = kti a - l Maa.
Therefore

A„ =  (У 7̂  0 and Afi =  bi+Xioa°
aj a.
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к
Substituting these values into £  Áj =  1, we find that

j=0

Thus we obtain

at—bj 
a„atc '

Á,

Oj-bj 
a i ajC  ’

(1+ь{( 2  i /Ч ))«i_1c \j=о j^i

if i ^7 , 

if /=7>

and we can observe that these formulae are valid for all /,7 = 0 , ..., k.
The conditions Ay SO (1V 7 ) imply й;й/ > 0 for all iV/. If c were negative 

then ű0fli, a0a2, öj a2 would be also be negative, however their product is posi­
tive. This contradiction shows that c > 0. Thus the numbers a„, ak have the

к
same sign. Since c =  ^  l/a7 >0 therefore a0, ..., are positive. The inequalities

j=о
2i;s 0  yield

/ = 0, ...,&.
j=0
j* i

Rearranging this inequality we get hf +  c.^O. Thus we have proved that (23) is a 
necessary condition.

To prove the converse, let / :  R* -»• R be an arbitrary convex function. Then

№ )  = / (  i  XijAj)  ̂ i  Xuf(A j).
j=0 j=0

Therefore

(27) ^  f(B,) ... * ‘ Á V W
i = 0 i^OjTo flj—Ь,-

A simple calculation yields

y _ i u _
i = o  f l i - h , -

, 7 = A:,

hence (27) is equivalent to (25), which was to be proved.
Thus we have shown that Theorem 5 is valid if  bo< a o?±0, ..., bk< a k?£0. Let 

a0^ b 0, ..., ak^ b k be arbitrary values. Assume that (22) holds for all indicated values. 
If а^а\т ±0, then, by Theorem 4,

A/_e; ,_ fcoW  == M_O0, _(,„(*) and (х) £  4<

is valid for all x. Therefore it follows from (22) that

(28) M _a>v „4о(х, ... xk) =  Ma[_ (jq )... Mâ K(xk)
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for all N, jcj , ..., xkf  R". . However, then it is necessary that 

(29) 0, bi + ( Z l / a j ) - 1 SO, i = 0 , . . . ,k .
i =0
jvo

Now, taking the limits « •-> -« ,+ 0 (/=0, ..., k ) ,  we find that (23) is a necessary con­
dition.

To prove the converse, assume that (23) is valid. Then for all values 
(/=  0, ..., к) we have (29). Thus (28) is also satisfied. Letting a'; ->-0 ;+0 we obtain 
(22).

The proof of the theorem is complete. □
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ON ORTHOGONALITY SPACES ADMITTING 
NONTRIVIAL EVEN ORTHOGONALLY ADDITIVE

MAPPINGS

GY. SZABÓ (Debrecen)

Introduction

In this paper we consider a real orthogonality space {X, _L) in the Rätz sense 
(cf. [5]) and orthogonally additive mappings F: X-*Y  with values in an arbitrary 
abelian group (Y , +). The general odd solution consists of all additive functions, 
while the even orthogonally additive mappings are quadratic (cf. [5]). The main 
problem is to select the even solutions from the class of quadratic functions.

The only known example of ortogonality spaces admitting nonzero even solu­
tions is a real inner product space. For the Birkhoff—James orthogonality on a nor- 
med linear space (cf. [3], [4]) this example has proved to be unique (cf. under regu­
larity conditions e.g. [2], [7] and in general e.g. [8]), while in the abstract case it is 
known only that such an orthogonality _L is necessarily symmetric and unique, as
J. Rätz showed recently (cf. [6]).

Our purpose with this note is to continue this investigations. We obtain also the 
additivity of JL, and show that any even orthogonally additive mapping is constant 
on concentric “spheres” if dim ХшЗ (see Section 3 below). This makes it possible to 
define a real valued positive homogenous and positive definite “quasi norm” on X  
having the property that the values of an even orthogonally additive mapping in 
points of equal “quasi norm”, are the same. This structure is now very close to the 
inner product space. Namely, our main result states that if dim X ^ 3  and there exists 
a not identically zero even orthogonally additive mapping, then X  is an inner product 
space with the well known solutions (see Section 4 below).

Throughout the paper, R and R+ denote the set of real and nonnegative real 
numbers, respectively. Also, dim X  and lin V stand for the linear dimension of X  
and the linear hull of a subset V c X , respectively. The constant mapping with values 
c is denoted by c. Finally, we use 0 for the zero vector, the number zero and for the 
identity element of the group Y.

1. Preliminaries

D efinition 1.1. Let (X, + ) and (Y, + ) be abelian groups. The mappings 
A, Q: X-<-Y are said to be additive and quadratic, respectively, if they satisfy the 
Cauchy- and the Jordan—von Neumann functional equations:

(1.1) A(x+y) = A(x)+A(y) for all x, y£X,

(1.2) Q (x+ y)+ Q (x-y)  =  2Q(x)+2Q(y) for all x, y£X.
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Lemma 1.2 (Aczél [1], Theorem 2). For any abelian groups (X, + ) and (Y, + ) and 
any quadratic function Q : X - Y  there exists a mapping В : XXX-+Y with the prop­
erties:

(i) symmetric: B(x, y)= B(y, x) for all x, y£ X ;
(ii) biadditive: B(x, y+z) = B(x, y)+B(x, z) for all x ,y ,z£ X ;

(iii) representative: 4Q(x) = B(x, x) for all x f  X.

The mapping В is uniquely determined by Q and we call it the biadditive represen­
tation of 4Q. Notice that when X  is a real space, then

д а  =  с ( 2 ^ ) = 4 0 (А ) =  л ( А , А ) ,  *елг,

i.e. in this case every quadratic mapping has a biadditive representation, namely 
B ': X x X -^ Y  defined by B'(z, у ) =  B(x/2, у/2, z, у £X.

D efinition  1.3 (Rätz [5], Definition 1). Let X  be a real vector space of dimension 
S 2  and X a binary relation on X  with the properties:
(01) total for zero: x lO .O i x  for every x£X;
(02) independent: if x, y€T\{0}, x ± y ,  then x and у  are linearly independent;
(03) homogeneous: if x,y£X , x ± y ,  then a x X fly for all a., /?£R;
(04') thalesian: if P is a 2-dimensional linear subspace of X, x£ P and R+, then 

there exists y£P  such that x ± y  and (x+y) _L(/.x—y).
Then X is said to be an orthogonality relation on X  and (X, X) is called an ort­

hogonality space.

E x a m p l e s  1.4 (Ratz [5], Examples А, В, C). Each of the following relations satisfy 
the axioms (Ol)—(04') of orthogonality:

(i) The “ trivial” orthogonality on X, defined by (Ol) and for x, у^А\{0}, 
x±y<=>x, у  are linearly independent.

(ii) The ordinary orthogonality on the inner product space (X, (• , • )) defined 
by x_L yo{x, y)=0. In this case we refer to (X, X) as an inner product 
space.

(iii) The Birkhoff—James orthogonality on the normed vector space (X, || • ||) 
given by л'Ху<=>||х +  Яу||s ||x || for all A£R.

Defnition 1.5 (Rätz [5], Definition 2). Let (X, X ) be an orthogonality space, 
(Y, +) an abelian group. A mapping F: X — Y  is called orthogonally additive if it 
satisfies the conditional Cauchy functional equation:

(1.3) F(x+y) = F(x) + F(y) for all x, y£X  with x ± y .

Further in this paper X  and Y  will denote an orthogonality space and an abelian 
group, respectively. Introduce the following notations:

Acta Mathematica Hungarica 56, 1990



O N  ORTHOGONALITY SPACES 179

Н о т  (X, F) = {A: X  Y\A is additive},
Quad (X, Y) = {Q: X— Y\Q is quadratic},
Homx (X, F) = {F: X— XI/7 is orthogonally additive},

(o) Homx (X, F) = {D: X -«- F|D is odd orthogonally additive},
(e) Homx (X, Y) = {E : X — Y\E is even orthogonally additive}.

Theorem 1.6 (Rätz [5], Theorems 5, 6; Szabó [8], Theorem 1.8). For any ortho­
gonality space (X, X) and any abelian group (F, +), we have

(i) (o) Homx(X, F) =  Н от (X, F);
(ii) (e) Homx(X, F)cQ uad (X, F);
(iii) Homx (X, F) = Hom (X, F)«*(e) Homx(X, F) = {0}.
Example 1.7 (Rätz [5], Theorems 9, 16; Szabó [8], Corollary 1.7). If (X, || .||) 

is a real normed linear space of dimension with the Birkhoff—James orthogo­
nality X , then (e) Homx (X, F)x{0}=>X is an inner product space, and in this latter 
case we have

Ее (e) Homx (X ,Y) о  E (x) =  a(||x|[2) for all x£X 
with some agHom (R, F).

Theorem 1.8 (Rätz [6], Theorem 2.3). For any orthogonality space (X, X) and 
any abelian group (Y, + ) such that (e) Homx (X, F) ̂  {0}, we have

(i) X is symmetric;
(ii) X is right unique.

2. Basic properties of orthogonality and mappings

The following properties of orthogonality will play an important role in the rest 
of the paper.

D efin itio n  2.1. Let L  be a real vector space of dimension =s2. The binary relation 
t- on L  is said to be

(i) symmetric, if x ,y£ L , x\-y=>y 1-x;
(ii) right dense, if for any 2-dimensional linear subspace P ~ L  and any 

x6E\{0} there exists yf_ Е\{0} with xl— y;
(iii) rigth additive, if x ,y ,zd L , x l-y , xh z^ fx h (y + z);
(iv) right homogeneous, ii x, ye L, x\~y=>x\~ßy for all ß e  R;
(v) right projective, ii  x, ye Luthere is oX R with xK (y—ax);

(vi) right unique, if x,ye.L, x^0=>there exists at most one cX R for which 
x h (y -a x ) ;

R emark 2.2. In a similar way, one can define the corresponding “ left sided” 
properties of the relation In the “two sided” case the attributes “left” and “right” 
are omitted.

It will be fundamental in our considerations the following

Lemma 2.3. Suppose that L is a real vector space o f dimension and \— is a 
right projective binary relation on L. I f  Н 'э Н  is a right unique relation on L, 
then 1—/ — I—.
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Proof. Let x,y£L , x \ - 'y —(y —0x). Because of the right projectivity of 1-, 
there exists oc£R suchthat x \ - ( y —a.x). Hence by the inclusion I—' гз I—, we have 
also x \- '(y —ccx). Now if x = 0 , then x = 0 \- ( y —ct0)=y, else regarding the right 
uniqueness of a=0, i.e. also x\-y . Thus I—'c l -  holds, proving the lemma.

L emma 2A. For any orthogonality space (X, J_), we have
(i) _L is right dense and, what is more, for any 2-dimensional linear subspace 

P a X  and P \{0} there exists v£ P \{0} suchthat uX v and {u + v)X{u — v);
(ii) X is right projective.
Proof, ( i)  I f  Pis a 2-dimensional linear subspace of X  and u£ P\{0}, then using 

axiom (04') for x= u  and 2 = 1 ,  we get v£P suchthat uX v  and (u + v) X(u — v). 
Here v=0 would imply и Xu  that contradicts (02).

(ii) Let x, y£X . For x = 0  we have by (Ol) that x = O ly = (y - lx ) .  Other­
wise, for X7±0, take a 2-dimensional linear subspace x, yd Pc. X. The first part of 
the proof assures the existence o f v f P\{0} with x ± v ,  whence by (02) x and v 
are linearly independent. Since y£P =  lin {x, n}, we have y = y.x + ßv for some, a, f f  
£R and so by (03) x X ßv= (y — ax).

Lemma 2.5. Suppose the orthogonality X on X  is right unique. I f  u, T \{0} 
such that M i r ,  then

(i) for any Hn {и, и}, и X y  wehave y= ßv with some ß£R;
(ii) for any )A R there exists p f  R with (u+pv) X(/.u — pv).
Proof, (i) Let y£\in{u,v}, и X y = (y —Qu). Then y —yu+ßv, whence uXßv=  

= (y —au) and because of the right uniqueness of 1 ,  we have oc =  0, i.e. y=ßv.
(ii) With respect to axiom (02), we have dim (lin {u, n})=2, thus by (04') 

there exists y€lin {u, r} such that u X y  and (u+y) X (h i—y). Finally part (i) 
completes the proof.

Lemma 2.6. Let QcQuad (X, Y ) and let В be the biadditive representation o f 
E=4Q. Then E  is even and

(i) P€Homx (T, F)<=>2ß(x, v) = 0 for all x, y£X, xX y ;
(ii) P(£Homx (X, Y)=>E(hu)=E(?.v) for any u, v£X such that (u + v)x(u — v) 

and every / 1 R ;
(iii) E(ju) = E(2v) for some u, v£X and every 2 í R => В (Xu, pu) =  В (Xv, pv) for 

all 2, p£ R.
Proof, (i) For all x, yf^X we have

E{x + y) = B(x+y, x+ y) = B(x, x)+B(x, y) + B(y, x) + B(y, y) =
=  E(x)+ E(y) + 2B(x, y).

(ii) Since £€(e)H om i (T, Y), thus for any 2£R we get

E(au) = E ^ [ u + v ] + ^ - [ u - v ] j  =  £ ^ [ i /  +  r - ] j + P ^  =

= E ^ [ u + v ] ^ + E ^ - ^ -  [и—i>]) = р [у [м  + г‘] - у  =  E(kv).
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(iii) For any A, p£R we have

В (Xu, ни ) =  В u, и) - B  (-А—p А—ц
“)

. £ ( i ± ü „ ) _ £ ( i i £ „ ) . £ ( i ± ü , . ) - £ ( i z ü l.)

+  /I Я +  p  w— —-— ' ) - 4
А —/I А —/I ) =  B(Av,pv).

3. Orthogonality spaces with (e) Hom± (X, Y) ^  {0}

L emma 3.1. I f  Ed(e) Н о т ±(ЛГ, У)\{0}, then2Ed(é) Н о т х(У, У)\0} holds, too.
P ro o f . Of course 2E  is even and orthogonally additive. If it happened 2£=0, 

then for all xdX  we have E(x)+E(x)=0, i.e. E (—x)=E(x)=  — E(x). Thus £  
is odd and so by Theorem 1.6, part (i), E  is additive. This means for any xd X  that

E(x) =  E(x/2+x/2) = E(x/2)+E(x/2) = 2E(x/2) = 0 
i.e. £ = 0 , which is a contradiction.

L emma 3.2. Suppose В is the biadditive representation o f a mapping Ed 
(е)Нот^(Т, У)\{0}. I f  x ,y d X  are linearly independent and 2B(Ax, py) — 0 for 
all A,/r£R, then x ± y .

P ro o f . By Lemma 2.4, part (ii), _L is right projective. Now let us define a new 
relation on X  by

JL' = 1  U {(Ax, py)\A, /i£R}.
We have to show that _L' =  _L. To do this, regarding the inclusion _L' z> _L and 
Lemma 2.3, we need only the right uniqueness of _L'.

First observe that _L'  is an orthogonality relation on X. Indeed, all of the axioms, 
but (02), are satisfied trivially, while (02) can be verified as follows: for x', y'd  X\{0}, 
x' _L 'y', we have

— either x '± y '  and so due to (02) for _!_, x' and y' are linearly independent;
— or x'=Ax and y'= py  with some A, pc R\{0}, whence by our hypothesis, 

x' and у' are linearly independent, too.
Next we show that the mapping E?± 0 is also _L '-orthogonally additive. Indeed 

for x ',y 'dX , х '± У  we have
— either x '± y ',  which implies E (x’+y’)=E(x’) + E(y')\
— or x'=Ax and y' = py with some A, pd R, whence 2B(x', y') = 2B(Ax, py)=0 

and by the proof of Lemma 2.6, part (i), E(x'+y')=E(x')+E(y'). Thus we 
have proved that (e) Hom±.(Z, У)и{0}.

Finally, we can refer to Theorem 1.8, part (ii), to obtain the right uniqueness of 
± '.  This completes the proof.

C o ro llary  3.3. I f  (e) Hom±(T, У)^{0} and x, ydX  are such that x± y , 
(y.x+y) _L (ßx—y) with some oc, ßd R. then (ax—y)±(ßx+ y) holds as well.
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Proof. Let £T(e) Homx (X, F)\{0} with a biadditive representation В (see 
Lemma 3.1 above). Suppose x ,yd X , a, ßd R with x ± y  and (ax+y) ± (ßx—y). 
Of course we may assume that y?±0 and so by axiom (02) also x^O. Thus x and у 
are linearly independent. Hence (ax+y), (/?хТу)+0, therefore using again (02), 
(ax— y) and (ßx+y) are linearly independent, too.

On the other hand, regarding Lemma 2.6, part (i), we have for all 1, pd R

2Я(А[ах-у], lAßx+y]) =
= 2 В (lax, pßx) + 2B(lax, цу)—2В(1у, pßx) — 2 B(ly, jiy )  =
= 2B(l<xx, nßx) — 2B(lax, цу)+2В(1у, pßx)-2B (ly , py) =

= 2B(l[ctx+y], n[ßx-y]) =  0.
Then Lemma 3.2 completes the proof.

C orollary  3.4. I f  (e) Hom±(.T, Y )^{0}. then the orthogonality ±_ is (right) 
additive.

P roof. Let В be the biadditive representation of a mapping Ed(e) Н от (X, Y ) \  
\{0}. Now suppose x ,y ,z d X  are suchthat x _L у  and x i z .  We may and do 
assume that x, y, z, y +  z+0. Then x and y + z are linearly independent. Indeed, 
for if y+z=ax , a£R, we would have у —a x = — z, i.e. x_L (—z)= (y—ax) and 
x +  y = (y —Ox) simultaneously. Thus the right uniqueness of J_ gives a = 0 that 
contradicts y + z^O.

On the other hand, for all l ,  pd R, Lemma 2.6, part (i), implies 

2 В (lx, p[y+z\) =  2 В (lx, цу)+2В(1х, pz) = 0.

Finally Lemma 3.2 completes the proof.
T heorem 3.5. I f  d im T s3  and (e)Hom _(I, Р)^{0}, then there exists a 

functional ß :Z —R with the following properties:
(i) e(0) =  0, q ( x ) = ~ 0 for all x£2f\{0};

(ii) q(Ix) = \1\q(x ) for all xd X  and l -  R;
(iii) E(x)=E(y) for any Ed(e) Hom (T, Y) and every x, y~X  such that

Q(x)=Q(y)-
P roof. Remember that under our hypothesis, the orthogonality _L is symmetric, 

uniquely projective and additive, besides (Ol)—(04').
Let n£T \(0}  be arbitrarily fixed. First we show that for any i£ Z \lin  {гг}, 

there are zGA'XjO} and cr£R\{0} suchthat
(3.1) nj_z, (u +  z)_L(u — z) and z i i ,  (z + os)±(z — (rs)

whence by Lemma 2.6, part (ii), for any Ed(s) Hom± (U, Y) and R it follows 
that
(3.2) Е(Ы ) =  E(Hz) = E(t;[os]).

By the assumption d im Z s3 , we can choose td X  \ l i n  {и, л-}. Using Lemma 2.4,
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part (i), we obtain
—r£lin [u, a}\{0} suchthat Hi® and (u+ v)L(u—v);
—iv(Tin {u, t}\{0} suchthat и + w and (u + w)±(u —wj;
— z£iin {?;, tt’}\{0} suchthat v_Lz and (v + z )±(v—z).

Since z —ccv+ßw for some a, ßf_ R and the orthogonality is linear, therefore u± z. 
Similarly, s=yu+Sv implies z_Ls. Next we show that (u+z) +(u—z). For this 
purpose choose В to be the biadditive representation of a mapping 
E£(e) Нотх(1, У)\{0}. By axiom (02), и and z are linearly independent and 
hence so are u+z and и—z. Furthermore, for all X, p£R, using Lemma 2.6, we 
gain

2B(X[u + z], p[u — z]) =  2B(Xu, pu)—2B(lu, pz) +
+ 2B(Xz, pu) — 2B(Xz, fiz) = 2B(Xv, fiv) — 2B(/.v, pv) = 0.

Thus Lemma 3.2 assures (u+z)l_(u—z). Finally by Lemma 2.5, part (ii) with 
1=1, there exists a scalar cr£R\{0} suchthat (z+os) ±.(z—os), proving (3.1).

Now we are able to define the functional q . The axiom of choice enables us to 
select a homogeneous basis S'from X, i.e. S a X  such that for any xgX\{0} there 
is a unique s£S  and ££R\{0} with x=Lv. By the first part of the proof, we can 
fixforeach s£S  ascalar of- R\{0} satisfying(3.2)(if луНп {и), then let os besuch 
that oss=u). Since 5,, = {f7sj|s,g5} is also a homogeneous basis, we may assume 
that (t5= 1 for all s£S. Lettben g: X=- R be well defined by

0 if a- =  0
|£| if x =  fr, siS , ^ R \{ 0 } .

The desired properties of g can be verified as follows:
(i) Obvious.
(ii) Let x f X  and /. R. The case x = 0 is trivial, while for x + 0 there is a 

unique s£S  and £GR\{0} suchthat л' = cv and so X x=(X£)s, whence by defi­
nition

Q(Xx) = \Ц\ = |A| |£| = |A|e(*).
(iii) Let E^(e) Hom± (X. Y) and x, ydX  with g(x)=g(y). Then either x = 

=y = 0, when E(x) = 0=E(y), or x ,y  + 0, when x=£s and y=qt for some unique 
■s,t£S and £ ,/;£R\{0} with \b\ = \q\. Hence

E(x) = E(£s) = E(bu) = E(\£,\u) = E(\t)\u) = E(tiu) = E(r\t) = E(y).

4. Inner product on orthogonality spaces

L em m a 4 .1 . Let L  be a real vector space o f dimension S 2  and suppose that |— is 
a binary relation on L having the properties:
(PI) right additive;
(P2) right homogeneous;
(P3) right uniquely projective;
(P4) symmetric.
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I f  <p: JL-*-R is a functional with 
(N1) cp(0)=0, <p(x)>0 for all x£L\{0};
(N2) ср(Лх)=Щ(р(х) for all x£L , AfR;
(PN) u, v£X, <p(u) = <p{v)= 1 with u \-(v—au)=>(u — av)\-v, 
then there exists an equivalent inner product Z.XL--R, i.e.

(i) x \~ y o (x , y )= 0  for all x ,y£L ;
(ii) cp2(x) = (x, x) for all x f L.
Proof. Let ( • , • ): L x L —R be well defined by

(x, y) =  oup2(x) for all x ,y£ L  with x \-(y  — ax).
We show that ( • ,  • ) is an inner product on L:

Right additive: Let x ,y ,z£ L  and a, /if. R besuchthat x h ( y —ax) and x l-  
(z—ßx). Then, regarding the right additivity of I—, we have x\~([y+z]—[ot+ß]x).. 
This means that

(x, y  + z > =  [a+ß](p2(x) =  cup2(x)+ßcp2(x) =  (x, y) + (x, z).
Right homogeneous: Let x ,y £ L  and /if R. If x\—(y —y.x) for some afR , then 

by the right homogeneity of Ь , we have x\-{ßy —ß<xx), i.e.
<x, ßy) = ßct(p2(x) = ß[cup2(x)] = ß(x, у).

Positive definite: If xf L\{0}, then there exists yf R such that x\-(x  — yx) 
and by the right homogeneity of I—, it follows that jcl—0(jc—yx)=(x — lx). Thus, 
regarding the right uniqueness of 1—, we have y = 1 and so

(x, x> =  ycp2(x) = (p2(x) >  0,

proving also the assertion (ii).
Symmetric: Let x ,y£ L  and x \ - ( y —ax). We may and do assume that x , y ^ 0. 

Then regarding the homogeneity of 1-, we obtain

X Í у  ссф(х) X )
<p(x) v (p(y) <p(y) (p(x)}'

Hence, using property (PN), we have

( x acpjx) у ) у
{(p(x) <p(y) (p(y)) cp(y)

and therefore, regarding once more the homogeneity and symmetry,

Thus
y \ -

сарЦх) 1  
<РЧУ) Г

( x ,  У ) =  * (р Ч х )  =  f i j i f y - f  <Р2(У ) =  (У, х >.

Acta Mathematica Hungarica 56, 1990



ON O RTHOGONALITY SPACES 185

Finally, for x = 0  or y —0 it holds clearly (x, y>=0 and x h y ,  while for 
x, y£\{0} the definition implies

0 = (x, y) = a<p2(x) <=> a. =  0 о  x \-y ,
where a£R is the unique scalar for which x \ - ( y —<xx).

Theorem 4.2. (Main result.) I f  á \m X ^3  and (e) Hom^A", У)^{0}, then 
there exists an equivalent inner product (• , • ): AfXF—R, i.e. x_Ly o ( x ,  y ) = 0 for 
all x, y<E X, and

(e) Hom±(A; Y) = { ű o || • ||2|a6Hom (R, У)}.
P r o o f . Let E£(e) Ногть (X, F)\{0} be fixed with ist biadditive representation 

B. Under the hypothesis of our Theorem, the orthogonality ±  is symmetric, additive, 
homogeneous and uniquely projective, i.e. properties (PI)—(P4) are satisfied. 
Also, by Theorem 3.5, we can define a functional q : X -*R with properties (N1), (N2) 
and

E(x) = E(y) for all x, yf_X with g(x) =  g(y).
Thus, with respect to the just proved lemma and Example 1.7, we have only to show 
that (PN) holds as well.

For this purpose let u,v£X, q(u) = q(v) = \ and u±(v — au) with some agR. 
We may assume that a^O and v—ctu^O, since otherwise (PN) would hold trivially 
(for instance v=oiu=s- £>(г)=|а|£>(м) =*■ |а| =  1 =»■ av=u=> и—ai;=0j_t>). Hence by 
axiom (02), и and v are linearly independent, i.e. dim P= 2 for P=Iin (и, i>}.

Since q(au) = q(2v) and so E(/.u) = E(lv) for all Af R, therefore Lemma 2.6 
implies

0 =  2B(u, v — оси) = 2B(u, v) — 2B(u, оси) — 2B(u, v) — 2B(v, txv) =
=  2B(u, v) — 2B{olv, v) =  2B(u—otv, v).

Hence by the proof of Lemma 2.6, part (i), we obtain, using the notation z= k — 
— av + v£P, that
(4.1) E(z) =  E (z—v)+E(v).
Here zxO and, what is more, lin {t),z} = P, since otherwise и and v would be line­
arly dependent.

Now choose a vector w£P with g(w) =  l and z± w . Of course lin (z, \v} — P, 
thus v=£z+cow for some £, co£R. We may assume that 0, since — cowith— w 
suit as well and co=0 would imply i>=£z contradicting lin {v,z) = P. Now the 
relation z L vv and formula (4.1) implies
(4.2) [E(z—£z)+E( — (ow)] + [E(£z)+E(oiw)] =

= E(z — Cz—cow)+E(Cz+cow) =  E (z—v)+E(v) = E(z).
Next we observe that due to axiom (04') and Corollary 3.3, there exists y€ P 

such that z L y  and
(|C|z±y)-L(|l—Clz +  y)

(for £= 0  take y=0, otherwise apply (04') for x=|£|z and the scalar A = 
= 11 —CI/ICI)- There may be two cases:
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Case C(l—0  =  0. Then (fz±j>)±([l—f]z-FjO follows. Because of the right 
uniqueness of J_, Lemma 2.5, part (i), implies y=ßw  for some /?£R. Hence we 
obtain with n = \ß \^0  the relation (£z+pw)_L([l — £]z—gw) and thus
(4.3) [E (z-tz )+ E (-n w )]  + [E(L,z)+E(iLw)\ =

=  E (z—£z —ixw)+E(£z+iiw) = E(z).
(4.2) and (4.3) give
(4.4) 2 E(cow) = E (z )-E (z -£ z )-E (i;z )  = 2 EQjw).
Now we have only to prove that со= g, i.e.

U — O.V = z —v = ([1 — £]z—cow) ±(Cz+a)w) =  v.
Namely, if e.g. then by the above argument we could choose y£R
with (/ov+ yz) _L ([со—ji]w—yz). Hence

2E(eow) = 2 E([jj.wJryz\ + [(o3~n)w—yz\) =
= 2E(yw+yz) + 2E([(o—/.i]w — yz) =  2E(nw) + 2E(yz) + 2E([co—n]w—yz)

and thus with respect to (4.4), we have
2E(yz)+2E([a> — y]w—yz) =  0.

Finally, choosing a vector s f P with s _L([a> — y]w+yz), Q ( s ) = g ( y z ) ,  we obtain 
for t=s+[(o — n]w + y z ? ± 0

2 E(t) = 2E{s) + 2E([a>—^]w-\-yz) =  0.
Using homogeneity properties, one can readily check that all of our considerations 
involved above are valid for vectors being a fixed scalar multiples of the original ones. 
Thus 2E=0 on lin {r}, therefore Theorem 3.5 leads to the contradiction 2E=0.

In a similar way, one can exclude the possibility of / i> 0 )> 0.
Case £(1— i)< 0 . We are going to derive a contradiction. Here (£z±y)_L 

([£ —1 ]z+y) follows. By the above argument, we can take a scalar 0 with 
(fz +  pw )±([i— l]z—few). Then
(4.5) [E(z -  Cz) + EQiw)] + [E(Cz) + EQiw)] =

— E (z—Cz+fiw)+E(£z + nw) =  E(z + 2y.w) —
= E(z)+E(2fiw) = £'(z) + 4£(juvv) 

whence with the aid of (4.2), we have
(4.6) 2 E(cow) =  E (z ) -E (z - tz ) -E (C z )  = - 2  E{yw),
i.e. 2E(cow)+2E(fiw)=0. Let v= h/q(z). Then p(vz)=p=p(/nv) and therefore 

2£(ow + vz) =  2E(cow) + 2E(vz) =  0.
Thus, using the above mentioned homogeneity considerations, we have got 2E=0 
on lin {(ow+vz). Here, because of co^O, also cow+ v z^ 0 holds, and so Theorem 
3.5 implies that 2E=0, which is a contradiction.
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MULTIPLICATIVE SEMIGROUPS OF CONTINUOUS
MAPPINGS

Á. CSÁSZÁR (Budapest), member of the Academy and E. THÜM M EL (Greifswald)

0. Introduction For a topological space Z, we denote by C(Z) the set of all con­
tinuous real-valued functions on X, and by C*(X) the subset of C(X) composed of 
bounded functions. Both C(Z) and C*(X) can be considered to be semigroups if the 
semigroup operation is the pointwise multiplication of functions.

A classical theorem [6] states that, if Zl5 X2 are compact Hausdorff spaces, then 
the isomorphy of the semigroups C(ZX) and C(X2) implies the homeomorphy of Xt 
and Z2. The paper [8] contains the statement that the same holds if X1 and X,, are 
realcompact spaces.

It is easy to deduce from these statements two slightly more general ones in 
which the conclusion is the homeomorphy of the Cech—Stone compactifications 
ßXx and ß>X2 and of the Hewitt realcompactifications oZ, and uZ2, respectively (cf. 
[5]):

A. Let Xx and X2 be Tikhonov spaces.
(a) I f  the semigroups С*(Хг) and C*(X2) are isomorphic then ßXr and ßX2 are 

homeomorphic;
(b) i fC (Zj) and C (Z2) are isomorphic then uZ, and oZ2 are homeomorphic.
In some recent papers, generalizations of these statements can be found. The 

generalization goes in two directions: instead of C(Z)or C*(Z), one considers semi­
groups composed of continuous mappings from Z  into suitable topological semi­
groups (not necessarily commutative), and semigroup isomorphy is replaced by weaker 
conditions.

In order to formulate the generalizations in question, let us recall the definitions 
of quasi-real and segment-like semigroups. In the following, R, [0, +°°), (0, +  °°), 
and [0, 1] are considered to be topological semigroups equipped with the multiplica­
tion of real numbers and the Euclidean topology of R (or the subspace topology 
inherited from it, respectively).

(0.1) S is said to be a quasi-real semigroup [2] iff
(a) S is a topological semigroup containing [0, + « )  as a topological subsemi­

group,
(b) 0 is a zero element and 1 is a unity element in S,
(c) there is a continuous mapping xi-»-— from S — {0} into S such that x • — = 

=  — -x = l for x£S, x^O,
X

(d) there is a continuous homomorphism xi-*-|x| from S onto [0, +°°) such 
that |x |= x  for x6[0, +°°),

l*
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(e) the sets k^={x6S: |x|<e} (e>0) constitute a neighbourhood base of 0
in S.

(0.2) S is said to be a segment-like semigroup [3] iff
(a) S is a topological semigroup containing [0, 1] as a topological subsemigroup,
(b) 0 is a zero element and 1 is a unity element in S,
(c) there exists a continuous homomorphism from S into R such that

|x| = x  for x€[0, 1],
(d) |a |=0 implies ű= 0 for a£S,
(e) ab—a implies either a = 0 or h = l for a, b£ S.
It is easily seen that every quasi-real semigroup is segment-like (cf. also 5.3).
We introduce the concept of a weakly segment-like semigroup; by this, we unde­

stand a semigroup fulfilling (0.2) (a)—(d). By [3], (2.9), a weakly segment-like semi­
group need not be segment-like.

If Zis a topological space, S is a weakly segment-like semigroup, let us denote by 
S(X)  the set of all continuous mappings / :  ,T-*S, equipped with the semigroup ope­
ration of pointwise multiplication. We denote by S0(X) and SC(X)  the subsemigroups 
of S(X) composed of the mappings into [0, 1] and of those with a compact support, 
respectively, where, for f£S(X),

Z ( f )  = {x£X: f(x)  =  0}, Z ' ( f )  = X - Z ( f ) ,  supp/  =  Z f f ) .

In a semigroup S, we introduce, for/ ,  gf  S, the following relations according to 
[2] and [3]:

f> ig  iff there is an h £ S  suchthat f=hg, 
f>uS  iff f= fg -

A bijection (p from a semigroup S L onto a semigroup S2 is said to be a d-isomorphism 
or a и-isomorphism iff

f  <=>(p(f) >d<P(g) 
or

f  >u<p(g)
for f  g^Slt where the relations on the left hand side are understood in Slt those on 
the right hand side are taken in S 2. S x and S,z are said to be d-isomorphic (u-isomorphic) 
iff there exists a ^-isomorphism (м-isomorphism) from onto S2 ■ Semigroup 
isomorphy clearly implies d- isomorphy and n-isomorphy; the converses do not hold. 

Now the generalizations mentioned above can be formulated as follows:
В ([3], Theorem 4.1). Let Xx and X2 be Tikhonov spaces, Sj and S2 segment-like 

semigroups, S, a subsemigroup o f  SfX^) (i.e. of S(X)  for X = X t, S = S;) satisfying

S i0(Xd c 5 ; c  SfXi).

I f  Sx and S2 are u-isomorphic then ßXx and ßX2 are homeomorphic.
C ([2], Theorem 3). Let X t and X2 be Tikhonov spaces, S, and S2 quasi-real semi­

groups and let SiiXj) be defined as in B. I f  W (^i) and S2(X2) are d-isomorphic then 
vXx and vX2 are homeomorphic.

A further result, similar to B, is contained in [4]. In order to formulate it, let us 
denote, if X  is a locally compact Hausdorff space, by Sm(X) the subsemigroup of
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S(X ) composed of the mappings vanishing at infinity, i.e. of those S(X)  that pos­
sess a continuous extension /*  to the one-point compactification XU {=*=} of X  such 
that /*(°°)=0. Now we have:

D ([4], Theorem 9). Let X} and X2 be locally compact Hausdorjf spaces, Sx and S2 
segment-like semigroups, S ; a subsemigroup o f SfX>) satisfying

S i0( ^ .)n 5 ic№ ) c S f cr S ^ X f

JfS± and S 2 are u-isomorphic then Xx and X2 are homeomorphic.
Our main purpose is to prove theorems similar to В and D, in which n-isomorphy 

is replaced by another condition; the method of the proof furnishes also a result simi­
lar to C. Finally some remarks follow concerning semigroups of semicontinuous real­
valued funtions.

1. /-isomorphic semigroups. Let S be a semigroup with zero element 0, and define, 
fo r/, ges ,

f> ,g  iff there is h^S  such that gh=g  and f k = 0  implies hk —0 for k€_S.
Lemma 1.1 . I f  f > tg then f k = 0  implies gk= 0 for kdS.
Proof. If h£S is chosen according to the definition, and f k = 0, then gk = 

=ghk=g-  0=0. □
Lemma 1.2. The relation > , is transitive in S.
Proof. Assume / > ,  g and g> tm, and choose h .p fS  suchthat

gh = g, f k  = 0 implies hk = 0 for kcS,

mp = m, gk = 0 implies pk — 0 for kd S.

Then mp=m  and k£S, f k =0 implies gk=0  by 1.1, hencepk= 0  so that /> ,m . □
Lemma 1.3. /> ,0  for any f£S.
Proof. 0-0= 0  and f k = 0 implies 0-k=0.  □
If iS*! and .S'2 are semigroups with zero elements, then a bijection cp from Sx onto 

S2 will be said to be a t-isomorphism iff

/  for f.g<r S l

(where, as above, > , is to be taken in on the left hand side, in S2 on the right hand 
side). Sy and S2 are said to be t-isomorphic iff there exists a /-isomorphism from 5) 
onto S2. Semigroup isomorphy implies /-isomorphy.

The converse of the last statement does not hold. Moreover, и-isomorphy and 
/-isomorphy are independent of each other.

Lemma 1.4. Let S be a totally ordered set, 0 its least element, and fg = min ( /, g) 
for f  g f  S. Then, in the semigroup S,
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(a)  /> „ £  W  M g ,
(b)  M ,g  f f  /> 0  or g= 0 .
Proof, (a) is obvious. f f S ,  g = 0 implies f > , g  by 1.3. If # > 0 , then g h ^g  

implies 0, hence f k = 0 implies hk=0  iff f k = 0 implies /c= 0 , i.e. iff / > 0 .  □

E x a m p l e  1.5. Let 5'1 = {0, 1,2, ...} and 5,2 = Qn[0, +<») be equipped with the 
order relation inherited from R and with the semigroup operation fg=m'm (f  g). 
By 1.4 iSj and S 2 are not и-isomorphic, but a bijection cp: ,S\ -* S 2 suchthat (p( 0) = 0 
is a /-isomorphism. □

E x a m p l e  1.6. Let 5'1= R  be equipped with the multiplication of real numbers,
and

S2 =  {(*,y)€R2: 0 g r < l ,  0 s  у  <  1}U{(1, 1)} 
be equipped with the semigroup operation

■ (gl,g2) = (figi-Agz)-
Clearly /> „ g  iff /= 0  or g = l  both for / ,  g i S l and / ,  g€S? (in S2, 0=(0, 0), 
1=(1, 1)). Hence (p: Sx-*-S2 is a м-isomorphism provided it is bijective and cp(0) =
=  ( 0 , 0 ) ,  c p {  1 )  =  ( 1 ,  1 ) .

However, S x and S2 are not /-isomorphic. In fact, f f  S{, 0 implies / > ,g for
every g£S1: g - l = g ,  and f k = 0 implies k = l - k = 0  for k£Sx.

On the other hand, in S2, there is, for every f={a, 0)£S2, 0 ^ a < l ,  an element
g-=^0, -ijcS'a such that f > tg does not hold: if h£S2, gh=g,  then necessarily
h=(l , \ ) ,andfg=0,  hg?±0. □

In a semigroup S  with zero-element, a subset Icz S will be said to be a t-ideal 
iff
(1.7.1) 0 ^ / ^ S ,

(1.7.2) f f S ,  g e l , M , g  imply / € / ,

(1.7.3) f g £ l  implies the existence of hi I  such that /=-,//, g >-,//.
I f /is  a /-ideal, then, in particular, f f j  implies the existence of h í I  such that

A /-isomorphism (p: S1-»S2 carries the /-ideals of S t to the /-ideals in S2-
2. /-ideals and /-filter bases. The following lemmas will be formulated in two 

variants; the first of them will be denoted by a) and the second one with ß).
Let X  be
a) a locally compact Hausdorlf space, 
ß) a Tikhonov space,

S a weakly segment-like semigroup, S  a subsemigroup of S(X)  satisfying 
a) S0(T )n S c( * ) c S c S c(A), 
ß) S0(X) cz S  c  S(X), 

finally T the set of all subsets of X  that are
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a) compact closures of cozero-sets,
ß) closures of cozero-sets.

A cozero-set in Zis, of course, a set of the form Z c( f )  for some Д С (1 ).
For f£S(X),  we define

\f\(x) = l/M I (x£X).
Obviously \J'\£C(X).

L emma 2.1. T ^ X i f f  T =supp /  for some f i  S.

P ro o f . If: Z C( / ) = Z C(I/I). Only if: T=ZÜJ), giC(X)  implies T= ZÜ J), 
where / =  max (min (g, 1), 0)б50(А); in case a), we also have f d S c(X). □

Lemma 2.2. Assume f  h£S; f k =0 implies hk= 0 for every k£ S  iff supp/z) 
zisupp h.

P ro o f . Suppose supp/bsupp A, fk = 0, k£S,  and indirectly A(x ) £ ( x ) f O 
for some x£X. Then |A(x)| • |£(x)| FÖ by (0.2) (c) and (d), x€supp Acsupp/. 
Since |А(х)|иО, there is a neighbourhood V of x such that \к(у)\т±0 for y£V; 
by x£supp/ there is a y£V  suchthat f ( y ) ^ 0 .  Then \ f ( y ) \^0 ,  \f(y)k(y)\ AO, 
f (y )k (y)? i 0: a contradiction.

Conversely suppose x£supp A—supp/  for some x£X. Then there is a neigh­
bourhood V of x such that Fflsupp/= 0  and a z£int F  such that h(z)?±0; in case 
a) we can assume that F  is compact. There is a continuous k : Z-*-[0,1] satisfying 
A(z)=1, k(y)=0 for y$V. Clearly k£S0(X), in case a) kdSc(X), hence k£S,  
and f k = 0, A(z)A(z)^0. □

Observe that the statement remains valid if X  is a locally compact Hausdorff 
space and

S0(L)nSc( I ) c S c S ( L ) .
The following lemma will motivate the somewhat strange definition of the rela­

tion In order to formulate it, let us denote by <5 the Cech—Stone proximity of 
X, i.e., if we write 5 for non-<5, let us put ASB iff there is a continuous s: Z-<-[0, 1] 
such that л(х) =  1 for x€A and ,v(x)=0 for x€B (A, BcX) .  Let us further write, 
for P, QaX, P<Q  iff PS(X-Q).  Then it is easy to check (cf. [1], (4.1.1)):
(2.3.1) Q implies X - Q  <  X - P ,

(2.3.2) 0 < 0, X,

(2.3.3) P ' a P < ß c ß ' implies P'  < Q\
(2.3.4) Pi< Qi for i = ! , . . . ,«  implies

1 Пбг1

(2.3.5) Q implies the existence of R c
R < 0 ,

(2.3.6) Q implies P c  int Q.

Acta Mathematica Hungarica 56, 1990



194 Á. CSÁSZÁR and  E. THÜM M EL

L emma 2.4. For fi  ge S, we have f > tg iff

supp g <  supp/.

Proof. Suppose suppg<supp/, and let h: Л’—[0, 1] be continuous, satisfying 
h(x)= 1 for xésuppg, h(x) — 0 for x e X — supp / Then heS0(X), in case a) 
heSf fX)  because supp hcsupp/  f e S f fX ) ,  hence hfS.  Clearly gh=g, and f k = 0 
implies hk= 0 by 2.2 for keS.

Conversely suppose gh=g forsome h eS  such that f k  = 0, k£S  implies hk=0,
i.e., by 2.2, such that supp hesupp /. For v=max (min (|/г|, 1), 0) we have jeS'oW* 
and g ( x ) ^ 0 implies \g(x)\7i 0  by (0.2)(d), hence |/г(сс)| =  1, j (x) = 1 for x £ Z c(g) 
and also for xesuppg. Finally x £ X — supp /implies x$ supp h, h{x) = 0, í (a) =  0. □

Let us now call a t-filter base a system t of subsets of X  such that
(2.5.1) t  0 , 0?±т ех  for r e t ,

(2.5.2) r e t ,  r c r ' e z  imply r 'e t ,
(2.5.3) Г1;Г2е t implies the existence of r e t  suchthat T < T 1f]T2.

The terminology is justified by the fact that a Milter base is a filter base by (2.5.1),
(2.5.3) , and (2.3.6).

Lemma 2.6. I f  I  is a t-ideal in S then supp 7 =  {supp / :  fie l) is a t-filter base in X.
Proof. Denote t=supp 7. Then 7 ^ 0  implies Ы 0, and by 2.1 T£% for re t. 

If g e l  andsuppg were empty, then g = 0, and by 1.3 f > t g for f e S  sothat7=5 ' 
would follow by (1.7.2).

If r e t ,  T c T ' e X ,  then r= su p p g  forsome gel, r '= s u p p /  for some 
f e S  by 2.1, and there is he i suchthat g> ,h  by (1.7.3), so that supp h<supp g by 
2.4. Hence supp /z<-supp/ by (2.3.3), /> ,/г  by 2.4, and fie7, supp/et by (1.7.2).

Suppose r l5 r 2et, r (—su p p /, f é l .  By (1.7.3) there is g e l  satisfying / > ,  g 
for /= 1 ,2 , hence supp g < su p p / =  r ; by 2.4, and r= su p p g e t, by
(2.3.4) . □

L em m a  2.7. I f t  is a t-filter base in X  then

supp-1 1 =  {feS:  supp/et}
is a t-ideal in S.

Proof. Ы 0  implies 7= su p p - 1 t? í0  by (2.5.1) and 2.1. Clearly suppO =0C t 
implies I ^ S .

If f e S ,  gel, f=~,g, then by 2.4 supp g<supp/, hence supp get implies 
supp /et, f e l  by (2.3.6), 2.1 and (2.5.2).

Iff  gel, supp f  supp get, then by (2.5.3) there is r e t  suchthat r< su p p /H  
(Tsuppg. By 2.1 r= su p p h  for some heS, and clearly h e l■ By 2.4 /> ,/г, 
g>,h. □

Corollary 2.8. The mappings

t = supp 7 and I  =  supp-1 1
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are inverses o f each other and establish a bijection from the set o f all t-ideals in S onto 
the set o f all t-filter bases in X.

Proof. For a /-ideal 7, define t = supp 7, 7 '=supp-1 t. Then clearly Iczl'. 
If / £ / ' ,  then supp/€t=supp 7, hence supp/=supp,g for some g£l.  By (1.7.3) 
there is h£l  suchthat g > th, i.e. by 2.4 supp /i<supp g=supp/i f > th, and /£ /  
by (1.7.2). Thus V = I.

Conversely if t is a Milter base and 7=supp-1 t, then supp7=t because, by 
2.1, each T£t has the form T =supp /  for some f f S ,  and/clearly belongs to 7. □

Lemma 2.9. For t-ideals f , 72 in S, f e l l ,  iff supp /, csupp 72. Hence I is a 
maximal t-ideal iff supp 7 is a maximal t-filter base. □

Lemma 2.10. For x£X, the neighbourhoods o f x  belonging to X constitute a 
neighbourhood base o f x  and a maximal t-filter base. Conversely, i f  V is a maximal 
t-filter base and x£ П t', then t' is composed o f all neighbourhoods o f x  belonging to X.

Proof. If V is a neighbourhood of x, let IF be a closed neighbourhood of x such 
that W a V  and, in case a), let IF be compact. Then there is f f S f iX )  such that

/(x )  = 1, f ( y )  =0 for y £ X —W, and T —Ü, C /= jz€A ':/(z)>yJ yield a neigh­
bourhood TdX ofxsuch that T a W a V .

The collection of all neighbourhoods T^X  of x is a Milter base t; (2.5.1) and
(2.5.2) are obvious, and if 7), T2£t, then {x}<7t for 7=1, 2, hence {х}<7’1ПГ2 
by (2.3.4), {x}<F for some V by (2.3.5), and V is a neighbourhood of x,
hence there is T£ t suchthat TczV, 7’< 7 ’1П7’2 by (2.3.3).

If t 'o t  is a/-filter base, let T '6t', and suppose Choose by (2.5.3) T'fit' 
suchthat 7’"<7’,. x$T "  would imply the existence of T£ t such that Tf)T"=Q 
which is impossible since T, T"dt'  and F is a filter base; hence x£T " and T '£ t by
(2.3.6). Thus t is a maximal /-filter base.

If F is a maximal /-filter base and хбПТ, then T fit ' implies T"<-T' for 
some T "dF, and x£T "  yields T '£ t by (2.3.6) again. Thus F c t  and F = t. □

3. Locally compact spaces. We continue by studying the consequences of the 
hypotheses a).

Lemma 3.1. In X, every t-filter base is fixed (i.e. it has non-empty intersection), 
hence every maximal t-filter base coincides with the collection of all neighbourhoods 
belonging to X o f some point x£X.

Proof. A /-filter base is a filter base composed of compact sets hence it has a 
non-empty intersection. Then 2.10 applies. □

Corollary 3.2. For xdX, let t(x) denote the maximal t-ideal supp- 1 1 in S, 
where t is the collection o f all neighbourhoods belonging to X of x. Then t is a bijection 
from X  onto the set o f all maximal t-ideals in S.

Proof. 2.10, 3.1 and 2.8 can be completed by the observation that, if x, y£X, 
xX^y, then t(x)Xt(y)  because there are neighbourhoods T, T f i X  of x and y, 
respectively, such that ТГ\Т'=&. □
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Lemma 3.3. For f £  S, let B ( f ) denote the set o f all maximal t-ideals I  in S such 
that fa  I. Then

Г 1 (£ (/))  =  intsupp/.
Proof. t (x )£B(f)  iff supp/is a neighbourhood of x. □
Corollary 3.4. Let the set Y o f all maximal t-ideals in S be equipped with the 

topology for which the sets B ( f )  ( f f S )  constitute a base. Then t is a homeomorphism 
from X  onto Y.

Proof. By 2.1 and 2.10, the sets int supp/ ( f f S )  constitute a base in X. Hence 
3.2 and 3.3 apply. □

Theorem 3.5. Let X 1 and X., be locally compact Hausdorff spaces, Sj and S2 
weakly segment-like semigroups, SfX^) the semigroup o f all continuous mappings from 
Xt into S Si0(Xi) and S ic(Xj) the subsemigroups o f S f X J  composed o f all mappings 
into [0,1] and o f those with compact support, respectively, and S, a subsemigroup of 
SAX,) satisfying

S J X ^ n S ^ X A  c  St c  Sic(X().

I f  S i and S2 are t-isomorphic then Xj and X2 are homeomorphic. □
This theorem does not precisely correspond to Theorem D (because Si<zSic(Xj) 

is supposed instead of S t<zS,„ (T,)). However, we can prove a stronger result quite 
analogous to D.

Lemma 3.6. Let X  be a locally compact Hausdoiff space, S a weakly segment-like 
semigroup, and S a subsemigroup o f S  (X) such that

S0(T)nSc( T ) c S c S „ ( T ) .

Then g t S belongs to S C(X) iff there is an f f  S satisfying f > tg.
Proof. If f f S ,  f > , g ,  then there exists h£S  suchthat gh=g, Since g(x)^0  

implies \h{x)\ = \, and h f S m(X), supp g has to be compact. Conversely, if supp g 
is compact, we can construct an h£C(X)  such that supp h is compact, 0 ^ h ( x ) ^ l  
for x£X, h(x)= 1 for xgsupp^(see, e.g., [4], Lemma 1). Clearly 
h£S,  and h>-tg becausegh—g. □

Lemma 3.7. Under the hypotheses oj 3.6, set S ' = SC\Sc(X). Then S ' is a sub­
semigroup ofS(X), and, for f  g f S', f > tg holds relative to S ' iff it holds relative to S.

Proof. If f > , g  relative to S', then there is h£S'<zS  such that gh=g, and, 
for f f S ’, f k  = 0 implies hk=0. However, according to the remark following 2.2, 
the latter condition means supp/z>supp h, and then f k  =  0 implies hk — 0 for every 
k£S.  Thus f > tg relative to S'.

Assume, conversely, f > tg relative to S. Then there is hrS  such that gh=g 
and, if f k =0, k£S,  then hk =0. By 3.6 supp g is compact, hence there is 
n S c( I )  suchthat h0(x) = 1 for x^suppg. Clearly hh0f_S', ghh0=g, and fk = 0, 
k £ S '  implies hh0k = 0; therefore f > , g  relative to S' .  □

Theorem 3.8. Let Xx, X2 be locally compact Hausdorff spaces, Sl5 S2 weakly
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segment-like semigroups, and St a subsemigroup o f S f Xß  satisfying
S ^ X ^ S - J X i )  c s iC  S M )

(/=  1, 2). I f  S1 and S2 are t-isomorphic then X1 and X2 are homeomorphic.
P ro o f . By 3.6, a/-isomorphism (p: 5,1-^5'2 carries .S'i =  .<?in.S’lc(A'i) to S 2=  

= 5,2П5'гс(А'2). By 3.1, (p\S[: S[-*S2 is a/-isomorphism. Since S'i0(A',)n5',(.(A'i)c; 
cz5,- c 5 'ic( X f  3.5 applies. □

Thus, in Theorem D, segment-like semigroups can be replaced by weakly seg­
ment-like ones, and w-isomorphy by /-isomorphy.

4. Construction of ßX. Now we adopt the hypotheses ß), and our next purpose 
is to show that the knowledge of the relation in S  enables us to construct the 
Cecil—Stone compactification ßX  of X. For this purpose, let us recall the following 
construction of ßX  for a Tikhonov space X.

Let <5 denote, as above, the Cecil—Stone proximity in X  and <  the correspond­
ing order for the subsets of X. A filter s in X  is said to be round iff S f s  implies the 
existence of SV6 5 suchthat S ^ S ' ,  and 5 is said to be compressed iff S 'O A/-  

for every S f i s  implies AŐB (see e.g. [1], pp. 250 and 186).
Now let Z d I  be a set such that there exists a bijection s from Z —X  onto the 

set of all nonconvergent, round, compressed filters in X. For x(LX, let s(x) denote 
the neighbourhood filter of x  in X. Equip Z  with the topology for which a base is 
composed of the sets s(G), where G is open in X  and

Then Z = ß X  and, for z£Z, s(z) is the trace in X  of the neighbourhood filter of z 
in Z.

It is well-known that (in general, in every proximity space) round, compressed 
filters coincide with maximal round filters, In fact, if s is round and compressed, and 
s' ids is a round filter, then, for S f i  s', thereis S f s '  suchthat S[<S' ,  S^SiX— S'), 
and iS,+ nSÍ7í0 for every S*£s implies S*<^S' for some S*£s, so that s. 
On the other hand, if s is a maximal round filter, S'C) A ^ d A S ' ( I B  for every S"£s, 
and we assume indirectly ABB, A < X —B=C,  then, by (2.3.5), there exist sets C, for 
zTN suchthat Л <С ;+1<С ;< С  for every/. The filter s'generated by the filter base 
composed of the intersections 5"ПС; for S f i  s, i£ N, is easily seen to be round and 
s' d s , hence s '= s , and S 'nC jE s implies Cf s: a contradiction.

Lemma 4.1 . A t-filter base t generates a round filter s in X, and t =  2  П s.
P roof. For S 'd s, choose T£t, T aS ' ,  and T'£t, T '<T.  Then T f i s, 

T '< S ' .  Hence s is a round filter. Clearly t c ^ f l s .  Conversely, if T'£%C\s, there 
is T£i  suchthat TczT', and T fi t  by (2.5.2). □

Lemma 4.2. I f  5 is a round filter in X, then 2  Pis is a t-filter base that generates s.
P ro o f . If S'£s,  s, then choose s£S0(X) such that л(х)=1 for

s(G) = {z€Z: G€s(z)}.

xiS^, j (x) = 0 for x £ X —S'. Then
implies G^Tfls, GczS'. Hence t = 2  П s generates s.
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t is composed of non-empty elements of 2, and (2.5.2) is clearly fulfilled. For 
7\, T2£t, we have 7\ П T f s .  Choose 5 '£ s , 5 '< 7 ’1П7’2, and Tf t  such that 
T a S ’. Then T£t, Т < Т гПТ2. □

Corollary 4.3. The constructions contained in 4.1 and 4.2 establish a bijection 
from the set o f all t-filter bases in X  to all round filters in X. In particular, maximal 
round filters are generated by maximal t-filter bases. □

C o ro lla ry  4.4. Let Z —ßX,  s(z ) be the trace in X  o f the neighbourhood filter o f 
zCzZ, t(z) =  2 f i s ( z ) ,  /(z )= su p p - 1 t(z). Then t is a bijection from Z  onto the set Y  o f 
all maximal t-ideals in S.

Pr o o f . 2.10, 4.3, 2.8, and the observation that implies s (z1) ^ s ( z 2). □
L emma 4.5. The sets .v (int T), 7T 2 , constitute abase in Z = ßX.

Pr o o f . For z£Z and a neighbourhood V of z, let G be open in X, z£s(G)aV.  
Then G£s(z) and by 4.3 there is Tdt(z) suchthat TczG. Choose T f t ( z ) ,  T '<T,  
then T ' d i n t T  by (2.3.6), and int T£s(z), z£s(int T )ds(G )cV .  □

Lemma 4.6. For f£  S, B ( f ) = { l £ Y : f £ l } ,  wehave 
r 1(B(fj)  =  ^(intsupp/).

Pr o o f. t ( z)£B( f )  iff f fJ(z)  iff supp/£t(z). Now int supp/£s(z) clearly 
implies supp/€ 2 f)s(z)=t(z), while supp/£t(z) implies the existence of TfA(z), 
T<suppf  hence T cintsupp j j s (Z ) .  □

C o ro lla ry  4.7. I f  we equip Y  with a topology for which a base is composed o f the 
sets B( f ) ,  f d S ,  then t: Z ^ Y  is a homeomorphism. □

T heorem  4.8. Let Xx, X2 be Tikhonov spaces, Sl5 S2 weakly segment-like semi­
groups, S f X j  and Sj0(Xt) be defined as in 3.5, S, a subsemigroup o f S f X j  satisfying

S J X j  ci s ,  c  5,(2,).

I f  5, and 5o are t-isomorphic, then ßXx and ßX, are homeomorphic. □
This theorem corresponds to Theorem В; segment-like semigroups are replaced 

by weakly segment-like ones, and n-isomorphy is replaced by /-isomorphy.
5. Pseudo-real semigroups. Now we look for a theorem analogous to Theorem C. 

It turns out that the method based on f-ideals can be applied if we replace quasi-real 
semigroups by a slightly more general concept.

For this purpose, let us say that S is a pseudo-real semigroup iff it fulfils (0.1)
(a) — (d) (i.e. condition (e) is omitted). The argument used in the proof of [2], 
Theorem 1, easily furnishes:

Lem m a  5.1. Let G be a topological group that contains (0, +°°) as a topological 
subgroup; suppose there is a continuous homomorphism a: G->-(0, +<=<=) such that 
ot(a)—a for a£( 0, +°°). Let S = GU{w} where w(fG, and define

а-со = со ■ a = со (a£G), со • со = со, oc(o>) = 0.
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Equip S with a topology such that G is a subspace of S and the neighbourhood filter o f со 
is composed o f sets f/U {со}, where U£s, and s is an open filter in G satisfying
(a) for Uds, there is U fis  suchthat U'-U'czU,
(b) for [/£s, agG, there are Uads and a neighbourhood V o f a in G such that 

UaVUVUa<zU,
(c) for e >0, there is U£s such that

a(x) <  e for x£U,

(d) for Ufs,  there is t> 0  such that

0 <  x <  £ implies x£ U.

After having identified со with the real number 0, S will be a pseudo-real semigroup 
(with |x| =oc(x)).

Conversely, every pseudo-real semigroup can be obtained from a topological group 
G with the help o f this construction. □

Now we can show that the concept of a pseudo-real semigroup is strictly more 
general than that of a quasi-real semigroup:

E xam ple  5.2 (J. Gerlits). Let G=(0, + °°)xR  be equipped with the group 
operation

(x, y) ■ (x ,  / )  = (xx\ у + / )

and with the product topology of the topology on (0, +°°) inherited from the 
Euclidean topology of R and of the discrete topology of R. Denote by Ф the collection 
of all positive solutions of the functional equation

f(y+y') = /00 /00-
For a finite subset Ф 'сФ  and£=-0, define

U0.,e = {(x,y) : 0 <  x <  ef(y) for /6Ф'}.

The open subsets U0, c of G generate an open filter s in G. Define a(x, y)=x  for 
(x,y)6G, and let us identify (x, 0)£G with x^(0,+°°).

Now the hypotheses of 5.1 are fulfilled. In fact, 0 < e < l implies С/ф->е • С/ф-_ес
с [ / ф.1(, further, for (a,b)£G, С/ф-_й • ЕсС/ф. е provided 2ajx{b}  and

ő mi n {f(b):feФ'},  finally, if £>0, f 1(y)=ey, f-fiy)=e~y, we have a(x,y) =
= x< £  whenever (x, y)6L{/l,/2}iE, and, since /(0 ) =  1 for any Д Ф , 0<x<£ 
implies (x, 0)£ tV jC for any finite Ф'сФ.

Hence 5.1 furnishes a pseudo-real semigroup S. In S, 0 does not possess any 
countable neighbourhood base. In fact, it is well-known that there is an infinite sub­
set Bcz R (a Hamel base) such that the values of an /6  Ф taken on at the elements 
bdB can be quite arbitrarily prescribed positive numbers. Hence, if II is a countable 
system composed of sets of the form 1/ф.>Е, and <p is an injection from U into B, we
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can find a g£ Ф such that
g(b) <  e min {/(h): /<ЕФ'}

for b=(p{U0.f), and then £/ф-1(,с: £/{9}д does not hold for any U0.^X \.
Therefore S is not quasi-real, not only for the above embedding of (0, +<*>) into 

G and the above definition of a, but for any possible embedding and absolute 
value. □

Lemma 5.3. Every quasi-real semigroup is pseudo-real and every pseudo-real semi­
group is segment-like. □

We know from [2], Theorem 2, that, for every topological group T, G=TX 
X(0, +°o) satisfies the hypotheses of 5.1 provided (e, y) is identified with y>0 (e is 
the unity element of T), and a (x,y)=y.  It is worth while to observe that the con­
verse is true if G is commutative:

Lemma 5.4. Let G be a commutative topological group satisfying the hypotheses in 
5.1, and T the topological subgroup o f  G composed o f  the elements a fG  such that 
a(a) = ). Then G is isomorphic to TX(0, +«=).

Proof. Define (p(t,x)=tx for /£T, x£(0, +°°). Obviously cp: TX(0, +°o)~* 
-<-G is a continuous homomorphism. It is bijective because a£G implies a=

where and t1x 1 = t2x2, a(h)= a(r2) =  L xlt x2£

€(0, +°°) imply x x= x2, f i= /2. 
<p_1 is continuous, as well. □

Since a>-+ , . a and a>-*a(a) are continuous, a(a)

We know from [2], p. 135 that the condition of commutativity is essential in 5.4.
6. Construction of vX. We shall show that, under a suitable restriction of con­

ditions ß), the knowledge of the semigroup S(X)  determines the space uX. First we 
assume ß) only.

Lemma 6.1. A t-ideal in S is a subsemigroup.
Proof. Let 

i.e. by 2.4

Put

/  be a /-ideal in S, / ,  g£l. Choose hdl  such that /> ,й , g>,h, 

supp h <  supp f  supp h <  supp g.

G = Z c(h), Gi — Z c(f), Go =  Z c(g).

Then G, Glt G2 are open sets, and GczG1C\G2. For every open set 0X ifcG , we 
have tfiTG^xfi, then //iTG^nG^Xfi, hence GczGiClGo and GcGjDG,. 
Since Gl C\Go=Zc(fg), we obtain supp//csupp/g  and supp/g£supp/ by 2.6, 
f g e l  by 2.8. “ □

From now on we suppose that S is a pseudo-real semigroup that is commutative 
or, more generally, quasi-commutative in the sense that ab=ba for a£[0, +°°), 
b£S. Let A'be a Tikhonov space, S = S ( X ); by 5.3, the conditions ß) are fulfilled.

Acta Mathematica Hungarica 56, 1990



M ULTIPLICATIVE SEM IGROUPS O F CONTINUOUS MAPPINGS 201

We recall that, if .S' is a semigroup,

S* = {h e S : h f —f h  for f f S } ,

/is  a subsemigroup of S  such that /П  S *^ 0, and we define, for f , g£S ,

f  ~  g iff there is IU/If)S* such that f h  =  gh,

then ~  is an equivalence relation, and the equivalence classes constitute a semigroup 
S/I provided [f]i[g]i=[fg]i where [h\, is the equivalence class containing IiC-S.

If G is a semigroup with unity element e, an element f£G  is said to be a unit iff 
there are g, h£G such that fg=hf=e.

L em m a  6.2. Let I  be a t-ideal in S, f d S .  Then S/Iexists, and[ /] ,  is a unit in S/I 
iff there exists k f l  such that supp k ( z Z c( f ) .

P r o o f . By 2.8, h£l  implies |/z|£/, hence IH S*^0 .  Assume [/]/[5 ']/= [1]/for 
some g£S  (1 denotes the constant 1; [1]7 is a unity element in S/I). Then there is 
k£ l  such that fgk=k.  If k(x)?±0, then \k(x)\^0 , hence \f(x)\ • |#(x)| = 1, 
\f{x)\?±0. By continuity, this is still valid for vGsupp k. Thus supp k a Z c{f ) .

Conversely, suppose supp k c Z c( f ) ,  k£l, and choose he I  such that k>,h,  
i.e. by 2.4 supp /z<supp k. By 2.8, we can assume /г(х)6[0, +<») for x £ X  (replace 
h by \h\). There is m£S0(X) satisfying m(x) = 1 for x£supp/z, m(x)—0 for x £ X — 
—supp k. Define

g(x) = m(x) • for x£Zc(f),

g(x) = 0 for x f Z( f ) .

Then g\Zc( f )  is continuous, and the same is true for g\X—supp k. Finally g is con­
tinuous, gdS(X),  and fg h —h, since h(x)?±0 implies x£Z c( f ) ,  m(x) = 1. Simi­
larly gfh=h,  so that [/]/[g]i=[l]/, [g ]/[/]/= [l]i. □

Let us now introduce the spaces Y, Z,  and the homeomorphism t: Z-+Y  just 
as in 4.

L em m a 6.3. Let I  be a maximal t-ideal in S, and f£  S. Then t 1 ( I )eZ(  f )  (the 
closure is taken in Z) iff [ / ] ,  is not a unit in S/I.

P r o o f . z = t ~ \ I )  belongs to the closure of Z ( / )  iff each element of s(z) inter­
sects Z ( / ) ,  i.e., by 4.4, iff each element of t(z) = supp I  intersects Z ( / ) ,  i.e., by 6.2, 
if f [ /] , >s not a unit in s /i. □

Let us now recall that uX is the subspace of Z =  ßX  composed of all points z fZ  
suchthat lim/z(x) exists and is finite for every h£C(X). For f f S ,  denote by Z'(f)cz

X  —  Z

c  Y  the set of all maximal f-ideals I  such that [f]t is not a unit in S/I.
L em m a  6.4. For z(/Z, we have z£vX iff, for any gC-C(Y) such that g(t(z))=0, 

there is f f S  suchthat 0 ^ z ' ( f ) c zZ (g ) .
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P roof. Suppose z£oX and g€C(Y), g(t{z)) = 0. Now t ( X )a Z c(g) would 
imply, for h(x) = -j—, — (x£X), h£C(X)  and lim h(x)= +°°. Hence there is

|£(/(*))| x~*-z
x()£X  such that <?(/(xo))=0, so that f  (x)=\g(t(x))\ (x£X)  defines a function 
f £ S (X )  suchthat t(x0)£Z '( f)c :Z(g) ,  because Z '( / )  = /(Z (/)) by 6.3.

Conversely, suppose z£ Z —vX. Then there is hf C(X)  such that lim |/;(.v)| =
=  +°° (observe that any hfC(X)  can be considered to be a continuous mapping 
from X  into the one-point compactification R* of R, hence it has a continuous exten­
sion h*: Z -  R ). By taking max (\h\, 1) instead of h, one can suppose A s 1. Then
there is a continuous extension k*:Z-*R of k=-^-£C*(X), and g=k*ot~1̂ C(Y)
satisfies g(t(z)) = 0 and t(T )D Z(g)=0, so that 0 ^ Z '( / ) c Z (g )  is impossible 
for f e S  (use again Z ' ( f )  = t(Z(f))) .  □

If we know, for a quasi-commutative pseudo-real semigroup S, the semigroup 
S'CZ), then we can construct Y  by 4.7, the set Z ' ( f ) c Y  for any f £S(X) ,  hence, 
according to 6.4, the subspace t(vX) which is homeomorphic to vX.

Theorem 6.5. Let X1 and X2 be Tikhonov spaces, Si and S2 quasi-commutative, 
pseudo-real semigroups, and SfXj) the set o f all continuous mappings from Xt into S;, 
equipped with pointwise nultiplication. I f  SfX^) and S 2(X2) are isomorphic, then 
vXx and uX2 are homeomorphic. □

This theorem corresponds to Theorem C; quasi-real semigroups are replaced 
by pseudo-real ones, but we assumed quasi-commutativity and isomorphy instead of 
rf-isomorphy.

Let us remark that /-isomorphy of C(Xx) and C(X2) does not imply homeo- 
morphy of vXy and oX2 in general. In fact, in [3], Theorem 1.5, it is shown that, if X  
is a non-compact, realcompact space, then there is a bijection q>: C(X)-»C*(X) 
such that

Z(<p(f))=Z{f) , Z ( l  — (p (/)) =  Z( 1 —f )
for f£C(X).  From this, we easily deduce that C(X)  and C*(X) are /-isomorphic, i.e. 
the same holds for C( X) and C(ßX).

7. Semigroups of semicontinuous functions. We add a remark on the multiplica­
tive semigroup U(X)  (or L(X), respectively) of nonnegative upper (lower) semicon­
tinuous functions on a topological space X.

The following theorem strengthens the corresponding result on rings, which was 
established in [7].

Theorem 7.1. Let Xx and X2 be Tx-spaces. I f  U{Xx) and U(X2) (or L(Xx) and 
L(X2), respectively) are u-isomorphic, then Xx and X2 are homeomorphic.

Proof. We construct a space homeomorphic to X  from the set U(X)  equipped 
with the relation For this purpose, let I  denote the subset of U(X) composed of 
all elements f ^ U( X)  such that / > „ /  (i.e. / = / 2). Clearly /  consists of all characte­
ristic functions x(F)  of closed subsets of F, and, for closed sets Fx, F2cxX, Fxc  F2 
iff x (Fi)>ux(F2). H ence/ o = x(0) is the unique element / 0£/ such that f 0>ug for
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every g£l. Let F c 7  be composed of all elements gdl  suchthat g^fo  and f a ,  
f > ug imply /= /o  or f=g.  Then Y  consists of the functions y({x}) for x £ X .  
Therefore ш(д;)=у({х}) defines a bijection co:X-+Y, and oi(F) = {g(Y: g > uy(F)} 
for any closed set FcX.  Hence со is a homeomorphism from X  onto Y provided the 
latter is equipped with the topology for which the closed sets are those having the form {giY-.g>j} (/ay

A similar construction applies to L(X). □
The authors express their gratitude to Dr. J. Deák for valuable remarks.
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ÜBER EINE ZWEIPARAMETRIGE FAMILIE VON 
MITTELWERTEN

H. ALZER (Waldbröl)

1. Definition von E(r, s; x, y)

In einer Note aus dem Jahre 1975 hat К. B. Stolarsky [11] für positive reelle 
Zahlen x und у (mit x ^ y )  und für reelle Parameter /• und .v folgende Familie von Mit­
telwerten eingeführt:

E(r, s; x, y) = 's  x ' - f \1K' - s) 
.r  Xs- / J r J*. s, rs И 0,

E(r, 0; x, y) = lim E(r, s;
s - 0

X ,
xr- y r 

r ln (x/y) r *  0,

E(r, r; x, y) =  lim E(r, v; x, y) = e 1/r(xx"/yyr)1/^r-yr\  r ^  0,
s-*-r

£ (0 ,0 ; х ,у )  =  (ху)г'2.

Die Mittelwertfamilie E  enthält neben den drei klassischen Mittelwerten: 
dem geometrischen Mittel: G(x,y) = E(r, —r;x,y)  =  (xy)1/2,
dem arithmetischen Mittel: A(x, y) =  E(l,  2; x, y) = (x+y)/2,
und dem harmonischen Mittel: H(x,y) — E(— 2, — l ; x ,y) = 2xy/(x+y),

auch das logarithmische Mittel:

£(*,>) = £<1,0 ; * . г )  = ^ Е 7
als Spezialfall.

Dem Mittelwert L  kommt bei praktischen Problemen aus den Gebieten Physik 
und Wirtschaftswissenschaft eine besondere Bedeutung zu (siehe [8—10]). Darüber 
hinaus ist er Gegenstand zahlreicher rein-mathematischer Untersuchungen. Insbe­
sondere sind eine Reihe bemerkenswerter Ungleichungen für das logarithmische Mittel 
veröffentlicht worden; siehe [3; Chapter VI] und die dort angegebene Literatur.

Außer Stolarsky haben sich vor allem E. B. Leach und M. C. Sholander [5—7] 
mit E  beschäftigt. Während sie sich sich in [5] vor allem mit Monotoniefragen befassen, 
behandeln sie in [6] das Problem, für welche Parameterpaare (r, .v) und (r', s') die 
Ungleichung

E(r, s; x, y) s  E(r', s'; x, y)

erfüllt ist; und in [7] untersuchen die beiden Autoren eine verallgemeinerte Mittel­
wertfamilie der Form E(r,s;x0, ...,x„). Von Leach/Sholander ist für den Mittel-
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wert

I(x, у) =  E(l,  1; X, у) = ~ ( x x/yy)1/(x~y)

die Bezeichnung „identric mean“ gewählt worden. Auf Grund der (von Stolarsky [11] 
gefundenen) Integralformel

1 r 1E(r, s; x, y) =  exp ——  J — ln /(л / f )  dt
r

spielt I  eine „central role“ [5, p. 209] innerhalb der Mittelwertfamilie E. Ungleichun­
gen für I  findet man außer in den erwähnten Arbeiten [5—7, 11] auch in [3, Chapter 
VI].

In dieser Note wollen wir die Untersuchungen über E  fortsetzen. Unser Ziel ist 
es, den von Stolarsky bewiesenen Satz, daß n-+E(r, s; x, y) in R monoton steigt, zu 
verallgemeinern, indem wir nachweisen, daß es sich bei

/• и- E(r, s; x, y)/E(r, s; u, v)
um eine in R streng monoton steigende Funktion handelt, wenn die positiven reellen 
Zahlen x, у, и und v der Bedingung x /y> «/c= 1 genügen.

Mit Hilfe dieses Resultats werden wir anschließend zeigen, wie sich die von Ky 
Fan stammende Ungleichung

77 (**/(!-*ft))1/B =s 2  xkj  Z  0 < r t U / 2 ,  к — 1, ..., n,
k = 1 k = 1 k  =  1

für den Sonderfall n = 2 verschärfen läßt.

2. Die Funktion E(r, s\ x,y)/E(r, u, v)

Im ersten Teil dieses Abschnitts beweisen wir eine Ungleichung zwischen dem 
geometrischen und dem logarithmischen Mittel, die wir zum Beweis von Satz 2 benö­
tigen.

Satz 1. Für alle positiven reellen Zahlen x, у, и und v mit x/y>u/v>l und für  
alle reellen Zahlen r^O  gilt:
(1) G(xr, yr)/G(ur, V)  <  L(xf  y) /L(ur, vr).

Beweis. Wenn wir a=x/y und b —ifv setzen und m it/die Funktion
/0 9  = / ( r ;  a, b) = (b/a)ri2(ar— l)/(hr- 1), г А 0,
/(0) = / ( 0; a, b) =  ln д/ln b,

bezeichnen, dann sind die beiden Ungleichungen: (1) und /0 ) > / ( 0 )  für r ^ 0  
einander äquivalent.

Differentiation von /  ergibt für r?± 0:

2r y ^ -  = g(ci )-g(br) mit: g(z) = ln (z).
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Für z >  1 gilt:

g '(z )(z -l)2 =  -2 1 n (z )+ z - l /z  = 2  Í 1 ) (1 -2 /0  > 0 ;
i = 3 \  z  j

somit ist g im Intervall (1, » )  streng monoton steigend und wir erhalten wegen ar>  
1 (r>0) die Abschätzung g(ar)='^№r)- Auf Grund von /( r )> 0  g ilt/'(/-)> 0  

für /->0. Da/ eine gerade Funktion ist, fo lg t:/ist in R+ streng monoton steigend 
und in R streng monoton fallend; insbesondere gilt für alle rAO: /(/■)>/(()). □

Bemerkung. Die Ungleichung (1) ist auch für u=v  gültig. In diesem Fall ist 
(1) mit der Carlson Ungleichung

G{a,b) <  L(a,b), a , b >  0, a Ab ,
identisch (siehe [4]).

Wir beweisen nun folgenden Monotoniesatz.
Satz 2. Es seine x, у, и und v positive reelle Zahlen mit x/y >u/v & 1. Dann ist die 

Funktion
E(r, 5 ; x, y)/E(r, s; u, v)

bezüglich r in R streng monoton steigend,
Beweis. Für den Spezialfall u=v ist Satz 2 (wie im ersten Abschnitt erwähnt) 

von Stolarsky bewiesen worden, so daß wir ohne Einschränkung u/v>~ 1 voraussetzen 
können.

Wir bezeichnen mit h die Funktion
o? — Yh(r) =  h(r; x, y, u, v) = ln— — —, г A0,и — v

h(0) =  h(0; x, у, и, v) =  ln 
Eine kleine Rechnung ergibt für rA  0:

ln (x/y) 
ln (u/v) '

Г1 G(ur, V-) l 2 ( Г L(if, vr) G(x-, / )  
I r  L{tZ,Tf)\ 1 V L { ^ , y )  G(i/,vr)

Nach Satz 1 erhalten wir /г"(/*)>0 für r A 0. Also ist h in R streng konvex und auf 
Grund von

j E(r,s-, x, y) 
E(r, u, v)

h(r) — h(s) 
r—s r A s,

h\r), r — s,

folgt, daß ln ^ ' A’-’' \ und somit auch ^  ’ S ’ ~Y’ 11 bezüglich r in R streng mo- E(r, s; u, v) E(r, s; u, v)
noton steigt.

Da h' in R streng monoton steigt, haben wir insbesondere bewiesen, daß die 
Funktion

E(r, r\ x, y)/E(r, r\ u, v) = exp li'(r)

dieselbe Monotonieeigenschaft besitzt. □
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3. Verschärfung einer Ungleichung von Ky Fan

In ihrem Buch „Inequalities“ haben E. F. Beckenbach und R. Bellman das fol­
gende „unpublished result due to Ky Fan“ [2, p. 5] angegeben:

Wenn mit U fa , ..., x„) das geometrische und mit A(xlt ..., x n) das arithme­
tische Mittel von X i , . . . ,  л:,, bezeichnet wird, dann gilt für 0<xk^\/2,  k = \, ...,n:

p ,  U fa , x„) __ A(xlt ..., x„)
U (l—x1; 1— x„) ~  A( l - x l5 l-x „ )  '

Das Gleichheitszeichen gilt in (2) genau dann, wenn x1= ...= x„ . Die Ungleichung
(2) läst sich, wie Beckenbach/Bellman erwähnen, leicht durch „forward and back­
ward induction“ beweisen (vgl. [2]). Neue Beweise sowie Verallgemeinerungen und 
Verschärfungen der Fan Ungleichung sind in [1], [3] veröffentlicht worden.

Wir sind nun in der Lage, die Abschätzung (2) für den Sonderfall n = 2 zu 
verschärfen, denn nach Satz 2 folgt:

U fa  У) _ E(r,s; x ,y)  ^  А (x, у)
G ( l - x ,  l —y) *' E(r,s; l - x , \ - y )  ' A ( l - x ,  l - y )  ’

0 -= X, у  у ; X y, 

für alle Parameterpaare (r, ,v) mit:

—1 = — í  <  r S  2, (r,s)?*( 2,1) oder — l ^ —r < s ^ 2 ,  1,2).

Insbesondere erhalten wir als Gegenstück zu den in [5] und [11] bewiesenen Un­
gleichungen :

U fa y) <  L(x, у) <  у  (U fa y) + A (x, y)) <  l(x, y) <  A(x, y), x ^  y, 

die folgenden Abschätzungen (man beachte: E( 1/2, l; x, y)=-^-(G(x, y) +A(x,  y)):

U fa y) L(x, y) U fa y) + A(x,y)
U(1 —x, 1 —y) L ( l - x , l —y) U (l—x, l —y ) + A ( l —x, l —y)

I(x, У) A(x ,y)
1(1 - x ,  1 - у )  A( 1 - X ,  1 - y) ’ 0 <  x, у  S. 1/2, x ^  y.
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FONCTIONS ARITHMÉTIQUES TRONQUÉES
J. M. DE KONINCK (Québec) et A. MERCIER (Chicoutimi)

1. Introduction

Soit mëO un entier. Pour « s i  un entier, on dénote par a>(n) la fonction 
arithmétique qui désigne le nombre de nombres premiers distincts qui divisent n et 
par fi (ri) la fonction de Möbius. Pour obtenir une approche générale de la méthode 
du crible combinatoire [3], on doit, par exemple, utiliser l’identité

2  ri(d) = ( -  1Г
d\n(o(d)̂ m

(O (ti) — 1

m

D ’une façon générale toutefois, il n’est pas facile de trouver une formule fermée 
pour les sommes 2  g(d), où g(n) est une fonction arithmétique arbitraire.

d\nco(d)̂ m
Par exemple, pour g(n)= 1, on a pour п=р(1 ... plk

2  1 = 1+ 2  a; + 2  aiaj+  2  ctiOCjOir+ ...
d\n l ^ i ^ k  1 ̂  t <  j ^ kœ(d)̂ m

•■• + 2

к к
En posant / 7  (1+аг?) = 1+ 2" •••, aik) f  et en définissant le polynôme

Î= 1  1= 1
qm(i*i, ..., a*; () de degré m (тШк) par

m

4m( ^ 1  ? * * * 9  ? 0  1  “ b  &i(C£i ,  • • • 5 &k)t\
i= 1

on obtient
1 =  !)•d|n

œ ( d ) ^ m

Dans le cas où n est libre de carrés, cette dernière identité devient

2  1 — F •••» U i) — i o l _*_i i l ^ ' " ' _*_(w) ~d\n \  /  V /  \  /
(o(d)̂ m

=  2 " ' +
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d’après ([5, p. 130]). Ceci nous amène à poser 

( 0  gm(») = 2  g(»U0d\nco(d)̂ m

où g(ri) est une fonction arithmétique connue. Les résultats que nous obtiendrons 
concernant gm(n) vont nous permettre de généraliser quelques résultats d’Alladi [1] 
lesquels sont utiles pour obtenir des informations sur le plus petit et le plus grand 
facteur premier de n. De plus, quelques généralisations de certains théorèmes de la 
théorie élémentaire des nombres seront obtenues.

2. Quelques lemmes

Lemme 1. Soit m, r et к des entiers non-négatifs satisfaisant à r ’S.k+m. Alors
on a

2  > = ( '* ’")•

D émonstration. Puisque le nombre de « r—m » objets pris к  à la fois est 
le résultat est immédiat.

( ' Г ) .

Lemme 2. Etant donnés m, r et к des entiers non-négatifs satisfaisant à r ^ k  + m, 
et soit (a,) une suite d'entiers telle que at 2 pour chaque i. Alors

2 2 (J k1, V
~ 1  ^  i-!  <  i 2  <  — ' i k  — r j  = k + m ^  '

D émonstration. On utilise un raisonnement par induction sur k. Pour k = 1, 
le résultat est trivial. Pour k + 1, on a

(2) 2— -=ik + i 2  [ 2
-1  ̂ if^r—k + •••<*& + !—r )

et en utilisant l’hypothèse d’induction, la somme de droite peut s’écrire sous la forme

2  ( i  ( V f ,  ’ Ь ) -
\ - l S i i S r - k \ j  = k + i f  > )

Ainsi (2) devient

(3) 2 aik+1= 2 (Y-Г 2b+ 2 (Y-r3b+-
-  + .2 [ J aj.

Soit 0= n= r—к —m — 1, alors le coefficient qui multiplie ak+n+m+1 est égal à

! ?  î v m * î 1 -
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Dans ce cas, (3) devient

' - ‘ -»-JfA  +  iA _  S, ( j - m - l )
2j alk +1 ~  I k  I ak+n + m + l 2j I /с I ai '

m  +  l ^ i 1 < - - < i k  +  1 ^ r  / 1 = 0  '  7  j = k  + m + 1 '  7

ce qui démontre le résultat.
Lemme 3. Soit k et r des entiers positifs tels que r>k. Alors pour chaque entier 

i€[l, k], on a

. . .  ?  T ( / - Ш ~ Д а>-
D émonstration. D’après le lemme 1, on peut écrire

2  « ,.=  z  t zl^i1< - <is< - <ik̂ r --CJŝ r + S —/с 4 7

et en utilisant le lemme 2 , on obtient le résultat.
Lemme 4. Soit n et m des entiers non-négatifs. Alors pour tout entier positif k,

on a

Д (-1)' (J) [k+J )  = I- D" (m _ „) -

D ém o nstra tio n . Puisque

Ж(- ,y(‘î  ’) Í*í0 - Ж(- ■>'íí")+0-.)K*í/) -
- Д (- 1У(”) ( * ^ - у | (- 1>'(")(‘ +»+1)

alors en utilisant cette égalité ainsi que l’induction sur n, on obtient le résultat.

3. Séries de Dirichlet

(4)

Si dans (1), on remplace g (ri) par gin) alors il s’ensuit que

r i m ( n )  =  2  k ( n / d ) -
d\nco(d)̂ m

Il est immédiat que pour m ^ co(n ),  (4) devient g m(n) = 2  n (d ) ,  tandis que si
d\n

m = 0, p0(ri)=p(ri). Cependant, l’équation (4) peut s’écrire sous la forme

k m { n )  =  2  p ( n / d ) ß ( d )
d\n

qui est équivalent à

(5) 2 k m(d) =  ß ( n ) = {
d I n l 1

1 si co(ri) m 

0  si со (ri) >  m.
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Remarque. Lorsque m = 0, (5) se réduit à un résultat connu:
ri si n =  1

d\n l 0  si n >- 1 .
Soit a0 l’abscisse de convergence absolue des séries de Dirichlet, alors pour Re 5 > a 0 

on a
' 2

(  y  / ',„ (« )  1 $

l à  ns ) ns ) „-à
d\n 00 1

= 2  - г -
n t l  n s

co(n)^m

1On définit maintenant formellement Çm(t) comme étant la série J>7 — ce qui
n = l n

co(n)^m
nous permet d’écrire

(6) 2 - ^ =  i 4 r - U i ) -
n = l  И n“ l  И

Il est facile de voir que Ç0(s) = 1 et que lim £m( s')=£(■?) où Ç(s) désigne la fonc-
m-*- oo

tion zêta de Riemann. Généralisons l’identité obtenue en (6 ).
Theoreme 1. Pour Re s x x 0, on a

^  gm(n) ̂  g (n) y ,„л
2  = 2 —= r ‘ZmW>

n = l n  n = l  n
OÙ

gm(n) = 2  g(n/d).
d\n

co(d)^m

D émonstration. Ceci est immédiat d’après l’identité gm(n)—(g*ß)(n), où 
* désigne le produit de Dirichlet et ß(n) la fonction définie en (5).

Corollaire. Pour Re л > 1 , on a

00 d (ri)
2 3 ÿ L = P(*)U s),

n = 1 n

où dm(ri)= _ 2  d(n/d) et d(ri) = 1 .
d\n d\n

co(d)^m

Corollaire. Soit f  et g des fonctions arithmétiques arbitraires et soit h(ri) = 
— 2  g(d) f(n/d). Alors pour Rei>oe0, on a

2  gJd)f(n /d )
d\n2

OÙ gm(n)= 2  g(n/d)-
d\n

= CnO) 2
h(n)

n ~ l  «
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D émonstration. En utilisant le théorème 1, on obtient

„  ( 2  gm(à)f(n/d) j
2 \ - ------- :-------- =nti I ns )

ce qui démontre le résultat.
n = 1 n n = 1 n /1 = 1

g(n) /(« )
Z--n = 1

4. La fonction pm(n)
Théorème 2. Soit n î ï  1 un entier. Alors pour tout entier m^O, on a

Ит(п) = ( -  1 )'" P(n).

D émonstration. D’après (5), il suffit de montrer que

(o j(d )-\\ Í1 si «  («) =  m
i  (-')■ ( m M H o  ri

Puisque l)m, alors pour л=1 on a le résultat. Soit и>1 et supposons

que 1 So(ii)Sm . Si 1 <d|n, alors 1 ) = 0  et ainsi ^  ("~  ^  ^  k(d) =
/=L"i

=0. Cela prouve le résultat pour 0^a>(ri)^m. Supposons maintenant que w(n)>m. 
En posant n=pl1...p lk, k ^ m + l,  alors pour l< d |n , il suffit de considérer les 
diviseurs « d» ayant la forme d=p1...pJ, m + lS jä k .  Ainsi, on peut écrire

2  ( -  i)m 1
d\n ' 

1

'œ(d) - l ï
, и* J /*M) =

, (m +l)
2  1 + 1 „7  

1 ^im + 1sfc V >
et d’après le lemme 1 , on obtient

$  <- D ' ( " ( m“  ’) " M  = “ { ( Л  1) - ( * : '
d>l

fc —m —1 ( V
. (k — m — D

• —k\ »  1 i )
m \(k—m — 1)! i= 0 m + l +  /

Mais en utilisant les fractions partielles, il est facile de montrer que

(k—m — 1 )!
m + 1  +  i (m + l)(m+2) ... к ’

et ainsi on obtient le résultat pour co(n)>w. Ceci achève la démonstration du 
théorème 2 .
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Théorème 3. Pour chaque couple d'entiers r ^ 0, пгшО on a

2  ' ‘. ( ‘0  =  ( - D - Í < - i
co(d)^r

D émonstration. Puisque

^  M ^ )  =  ( - i r +rf"m1) 2  1 ,
d\n V J  -

co(d) = r

où k=co{ri), alors d’après le lemme 1 on obtient

2  а .(«0 - ( - 1Г - ( г - * )(“ « )
cù(d)= r

et ceci démontre le résultat.
R em arques. 1) Lorsque m = 0, on obtient l’identité déjà mentionnée dans 

l’introduction, à savoir
(со ( n )  Il

2  n { d )  =  ( - \ y [ œ{n)r  ! ) .
din V ' /d\ra(d)Sr

2) En utilisant l’identité (Шу^) = Г 
théorème précédent devient

па i t o ( n ) 'l _ ( 'c u ( n ) - l ' |  , ( œ { n ) - \\ (co(n)— Г) „I +  ̂ j _  j 1 , 1 expression du

2  t*m(d)
d\nco(d)̂ r

/ > - П k-m-
1Г+' 'Ч  «  ) £

,  ( " Г ]

D ’après le corollaire 2, on peut écrire

(7) 2 1

' 2  g m ( d ) f ( n / d ) ’dl/l
( 2  h(n/d)

d\ncû(d)̂ m
tr

si r ^  m

si r >■ m.

y  M » )
£  „S

/1=1  n

et ceci nous permet d’énoncer le résultat suivant.

Théorème 4. Soit n ë l  et soit f  une fonction airthmétique arbitraire. Alors 
pour tout entier mëO, on a

où g(n) = 2  p(d)f(n/d).
d\n

2  h Jd )f(n ld ) = 2  g(n/d)
d\n d\nœ(d)̂ m
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Théorème 5 (Inversion de Möbius). Soit n ^ \  et soit f  et g deux fonctions 
arithmétiques arbitraires. Alors pour tout entier h is O, on a

où

2  hm(d)f(n/d) = gm(n) o f m(n) = 2  gm(d),
d\n d\n

f m(n) = 2  f(n/d) et gm{n) = 2  g(n/d).
d\n d\ncû(d)̂ m co(d)̂ m

D émonstration. Soit l(n) et fl(n) deux fonctions arithmétiques définies par

/(/i) = l, pour tout n ë l  et /?(и)={о si Alors on a (^m* /)(« )=  Яш(»)
ou encore

( ( 1  * /Ü  */)(«) =  ( 1  *gj(n)-

En utilisant (5), cette dernière identité est équivalente à

Cß*f)(n ) = (1 *Яш) 0 0
ou encore

2  f(nld) = 2 gmid)
d\n d\ncù(d)̂=m

ce qui donne le résultat.

5. Identités contenant la fonction цт{п)

L’objet de cette section est centré sur l’étude des sommes de la forme 
2  pm(d )f(d )  dans le cas où /  est une fonction arithmétique choisie. Si О^со(и)—
d\n
il est immédiat que 2  tlm(d)f(d)=f(l). Supposons maintenant que a>(ri)>m.

d\n
En posant n=Pi1 ... plk, k s m  + l, alors pour d\n, d>  1, il suffit de considérer les 
diviseurs «d»  ayant la forme d=p1...pJ, m + \S jS k .  Donc

(8) 2  d Jd )f(d )  =  -  2  f(Ph - P i m J  +
1 ̂  it -< ■ ■ • < im +d\n 

d>  1

+ { nm X) 2  / ( A v T ,„ t!) + - + ( - i r P „ I1 k - A ) .'  ' —<im + 2rêk 4 '

Dans le cas où f(n)=pr(n), (r^ l) , où pr(n) désigne le «r» ièmeplus petit facteur 
premier de n. L’équation (8 ) nous permet d’obtenir une relation intéressante qui 
lie 2  ilm(d)pr(d) avec une expression impliquant la fonction Pr(ri), qui désigne

d\n
le «r » ième plus grand facteur premier de n. Plus précisément, on démontre le résultat 
suivant :
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T héorème 6 . Soit « S i  et k=a>(n) alors pour tout entier m ë O , on a

2  km(d)Pr(d) =
d\tl

( -  Dm+r+* ‘+rÿ " -x r_  1V Í '- 1 ) Í k - i  U  m ïj  i = max-ft-m) ^  \ Г ~  1 J l  ™ ~  Г +  ] J U  +  »' “  k )  +
si 1 S  r S  m + 1

(_ JVn+r+k
1 1 ) 1  t - \ ) { mr- k +,■)«-<«("> *  г г '” +1-

Démonstration. Soit 1= ёг«т + 1 et posons f(n)=pr(n). Puisque pr{ 1)=0, 
alors pour (o{ri)^~m, l’équation (8 ) devient

Znm(d)pr(d)=- 2  Р-л{тт )  2d\n î ̂  • • • <  im + V /  — c / 

et en utilisant le lemme 3, on peut écrire

1 s /, «c. •. < !r < im + 2 S S

2  A v + - - - + ( - i r +‘ ( V UlSi1<-.<ir<...<im+,Si V /

/ V

.Z  Pm( d) Pr( d )  =  
d\n

. . .+(- i ) . +— ■ (*+ r “ ' _  J) Д  (^r!) (* z-i) Pj+ . . .+<- d ‘— ( * - 1 ) л .

Or le coefficient d e ph l ^ r S i ^ k  + r - m - 2  est égal à

k-\-r — i —\ \ ( i —\ 
m. . . + ( - i)*t+r—m- ‘- 1 ['

= - ( ' I 1,)  “ ' T ' " 1 c - iy
k — i 

m + j+ 1 — r

( i - î ) Í k - ‘ )\m + \—r)

(
m ï 

r ~ 4 !

k + r  — m — i — 1
Д  ( - » ' U - d l

I (m + j\ (k + r —m — i — 1 ]
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( r - î ) Í k ~,‘ )

(
m ï

г - Ц !

1J.+— .•

^  „ , (k+ r—m — 2\ .De plus, le facteur de pk+r_m_1 est —I I, d ou pour l ë r ë m + 1  on a

2  n J J ) P r ( d )  =  -  ( k + r r Z ”! ~ 2 ) p k + r - m- 1 +

Ĵ k+m + r

+  ( , "  ) '

k+r-m-2 f .  ,ч
2  ( - D T  ï= ma x{r,k — m} V V (m+T-,)lr m  \  

j n + i — k ) J

Г ^k + m+r 

"  ( / - ■ )

k +r—m—1 /• ï
2  С-  D' (г~ 1i=max{r,fc — m} V/ JJU tí,]i i  m1 + к

et ceci est le résultat de la première partie.
Supposons maintenant m + 1 ^ r^ w (n )= k , alors (8 ) devient

2  Pm(d)PÀd) =
d\n

=  ( - 1Г +' М  2  A v + (-i)m+r+1( ^ )  2  pir+ -

. . .+ С - 1Г +‘ (*“ 1 ) л -

En utilisant le lemme 3, cette dernière identité devient

2  P n , ( d ) P À d )  =  ( -  D m+r 4  2  f c  Í )  P j  +
d\n '  '  j=r '  '

+<- í r « «  ( ; )  I  ( / :  !) ( V ) * , + - + < -  D” * f »  ) л -

Par conséquent le facteur qui multiplie ph r S i ^ k — 1 est 

et en utilisant le lemme 4, ce coefficient est égal à

(- ' y mkti('_!) U+/Ifc)-
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Ainsi on obtient
2  ^m(d)PÁd) =
d\n

- ( -  ■>"' (T ,1) (Î : ! )  * + „  Д  <- 0—  (r-i)

et ceci achève la démonstration de ce résultat.
Le prochain résultat est un cas particulier du théorème 6  et a été énoncé par 

Alladi [1].
Corollaire. Soir /-s i un entier. Alors pour tout entier m^O, on a

Zfi(d)PrUl) =  ( -1  y  (w^ 7  *) PAn)

et
2  Pm(d)pAd) =  - P m+1(u).
d\n

Inversant les rôles du plus grand facteur premier et du plus petit facteur premier, 
le théorème 6  devient

Théorème 7. Pour tout entier b iè O, on a

2  Pm(d)Fr(d) =
dln

^__i y n + r + k  k + r — m —1

( - 1)I m + r + k

( i - l A ( k - i H m )
[ r - \ ) \ m + \ —r) { m + i - k j

7 - 1 H r ~ 1 ) Pk+1-;(«)r — 1) {m+i—kj

P k + l - i ( n )

si 1 S m+1 

si r S m +1

où k —œ{n).

Encore une fois, le résultat suivant déjà obtenu par Alladi [1] découle immédia­
tement du théorème 7.

Corollaire. Soit /■&! un entier. Alors pour tout entier mêO, on a

et
X) p M

2  Pm(d)Pi(d) =  - p m+1(n).
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Théorème 8 . Pour tout entier mêO, on a

2  Pm(d)p(d) =
d\n

1

(  IV fl , ( -  l)m+1((0(n))!_ % 1 , r  m  Л
( m\(co(n) — m— 1)! /ri lw+l J)

si w(n) S  m
2  m № + J — m - l __J
co(n)  +  j — m  — 1

si œ(n)>m.

d\n d> 1

D ém onstration . D ’ap rès (8), on  a p o u r  k = a > ( n ) > ? n

2  Pm(d)n(d) = — 2  + 2  ( -
I S iT * : + =l'm + 2Sfc

- ( m^ 2) 2  ( - D - w + . - . + f - i r p “ 1) ,V ) ÎSÎ^.. -=im + 3s t V ’

et en u tilisan t le lem m e 1, on  a

Z  « . № / • < ‘ 0  = <- l ) - ‘T  (m, ^ )  ( „ + ) + 1 ) =

l )w  +  2 _

d\n d> 1

( - 1)"

= ( - i  Г

k\

k\ k - m -

m\(k — m — 1)! j?0
■ t r ' )

m + l - j

m+i ( m \ 2k~m~1+j-  y  (_ n »  + l-É m \± ----------
l! J=1 1 \m+l—j) k — m—l

2 k - m - l  + j _  J

+ 7m l(k—m — 1)! / r i

où cette dernière égalité a été obtenue en utilisant l’identité (1.12) de [4].
R em arque. Il est intéressant de remarquer que dans le cas où m = 0, on 

retrouve la relation bien connue 2  k2(d)=2 w(n).
d\n

6. Autres fonctions arithmétiques

Considérons maintenant le cas où g(n)—(p(n), la fonction cp d’Euler. Alors (1) 
devient

<Pm(n) = 2 9(n/d).
d\nto(d)̂ m

T héorème 9. Pour chaque entier mëO, on a

<Pm(n) = 2  !•l^k^n co((/c, n))̂ m

D ém onstration . Soit A = {k\\-^k^n , oj((k, ri))=m}. Séparons les entiers de 
A de la façon suivante : Si d est un diviseur de n tel que oj{d)Sm, alors l’entier
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«a»  appartient à Cd si (a, n)= cl, c’est-à-dire,

Cd = {a\(a, n) =  d, 1 ^  n, m(d) si m} =

= =  1 , 1 œ(d) S  ти|.
Ainsi, on obtient

# C d =  (p(n/d) tel que <u(r/) S  m.
Puisque chaque entier de A appartient à exactement une classe Cd, alors

# A =  2  <?OAO,
d\nCù(d)̂ m

ce qui termine la preuve de ce résultat. 
Définissons les fonctions suivantes

1 (n) =  1 et I(n) = n
Puisque

K »  = 2  k(d)d(n/d)
d\n

pour chaque n s  1 . 

où d(n) = 2  1
d\n

l(n) = 2  n(d)cr(n/d) où
d\n

J(k; n) =  2  k(d) ( 4 )  ,
d\n \ C U

o(n) = 2  d
d\tl

k = \ ,

elle est appelée la fonction de Jordan.
Pour k = 1, on obtient

/ ( 1 ;  n )  =  c p ( n ) =  2  k ( d ) ^
d|n «

a fonction d’Euler. En utilisant la notation de (1) et le théorème 4, on à le résultat 
suivant.

Théorème 10. Soit n=ël, alors pour chaque entier m^O, on a 

1 m(n) = 2 km (d) d(n/d), Im(n) = 2 km (d) o(n/d),
d\n d\n

Jm( k ; n) = 2 km(d) i^) . <PmO) = 2 1 k m (d )~ -
d  j n  \  a  j  d|„ a

En utilisant ce théorème, on peut à l’aide du théorème 5 énoncer le résultat 
qui suit.

T héorème 11. Soit n ê  1, alors pour chaque entier m ë O , on a

dm(n) =  2  1,„(î/), = 2  4 0 ) ,
d\n d\n

( 4 O))* = Z  4, O ; (0, 4  (n) = 2  O)-d|n d|n
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Remarque. Ces trois derniers résultats sont des identités connues lorsque m=0 
(voir [2]). Nous terminerons cette section par une généralisation des sommes de 
Ramanujan. Soit к et n des entiers positifs. Il est bien connu que

(9) 2 *:
r = 1

iïniinrlk) = { °
si k\n  
si k\n.

Pour chaque entier mëO, posons

( 1 0 ) ck(m\ ri) = 2
r  =  1

co((r, k))^=m

Lorsque m=0, on obtient les sommes de Ramanujan. De plus, on observe que 
lorsque k\n, (10) devient ck(m; n) = (pm(Je), d’après le théorème 9.

Théorème 12. Soit k = l et пш 1 des entiers. Alors pour chaque entier mëO
on a

ck(m ; ri) = 2  ilm(k/d) d.
d |(fc. n)

D émonstration. En utilisant (5), on peut écrire

ck(nv, ri) =  2  e27l,(-rntk) = 2  e2n,(rn/k) 21 pm(d) =
r =  l  r = l  dl(r,/c)

co((r, k))^m

= 2  Pm(d) 2  e2ni(rn/k).
d\k r  =  0 (mod d)l^r^k

Soit r =  jd, 7 = 1 ,2, ..., k\d, alors

ck(m; n) = 2  km(d) 2  e2niUndk/d» =
d\k 7 = 1

2  km(d)~7  
d\k a s i  T 1"

0
к „

81

d’après (9). Soit L/d=r, alors d=k/r et ainsi on obtient le résultat. 
Corollaire. Pour chaque entier mëO, on a ck(m; l)= pm(k). 
Théorème 13. Pour chaque entier mëO, on a

2  ck(m; d) =
d\n

D émonstration. Posons

M  =  {,

An(”) • n i; 
"  #

0 ■ n ri„ 4 \k.

d si d\k
0  si d\k,

alors le théorème 1 2  peut s’écrire sous la forme
ck(m; ri) =  (pm*ôk)(ri)
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ou encore
(1 *ck(m; n))(n) =((1 *fim)*Sk)(n) = (ß*Sk)(n) 

où ß(n) a été définie dans (5). Ainsi on obtient

2  ck(m; d) = 2  ôk(n/d)
d\n d\nco(d)̂ m

ce qui établit le résultat.
Lorsque m = 0, on obtient le résultat suivant bien connu 
Co ro llaire . Soit и & 1 , alors

2  ck(0, ci) = {
d\n lU
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SUMMEN UNABHÄNGIGER ZUFALLSVARIABLEN, 
DIE DURCH DIE MAXIMALTERME DOMINIERT

WERDEN
R. WITTMANN (Eichstätt)

A c ta  M a th . Hung.
56 (3—4) (1990), 225—228.

Im folgenden sei (Xn) stets eine Folge von unabhängigen, symmetrisch verteilten 
Zufallsvariablen mit gemeinsamer Verteilungsfunktion F auf einem Wahrscheinlich­
keitsraum (Q, sd, P). Wir benützen die Bezeichnungen

s n'— 2i = 1
max |5,|, SJ:=0.

Ziel dieser Arbeit ist der folgende
Sa t z . Es gilt

genau dann wenn E(X*) — 00 .

limsup
П-*- oo

=  OO f s .

Für positive Zufallsvariablen wurde obiges Phänomen zuerst von Darling [2] 
beobachtet. Als Hauptresultat für positive Zufallsvariablen (insbesondere gilt S* = 
= S„) kann die folgende unmittelbare Folgerung aus Kesten [5], Theorem 5 angesehen 
werden:

limsup — °° f. s. о  E{Xj) = oo.

Dieser Fall unterscheidet sich also stark vom Fall symmetrisch verteilter Zufallsva­
riablen. Im symmetrischen Fall wurden die ersten Beispiele mit E ^X f)«™  in 
Feiler [4] entdeckt. Unser Beweis ist dem in [1], S. 202 gegebenen Beweis des obigen 
Satzes von Kesten ähnlich.

Wir benötigen drei Lemmata.
L em m a  1 .Für alle x s O  sei

H(x):= f  2tP{\XJi > t}d t,
0 .

Tx(co):= inf{n€N: |S„(w)| > x} (a>££2).

x2 _ ,  9x2
~Щ2х) -  E{Tx) -  H(2x) ‘

Dann gilt für alle x^O
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Beweis. Sei e > 0  gegeben. Für alle n£N sei

X n I { \ x n\ S Z x  + c} X n  +  ( 2 x  +  fi) ( I {  X„ > 2x  +  e} ~  *{Xn < -  i x  -  c})>

Sn:= 2  %i-
i  =  1

Ist |S'„_1(co)|^x, Sn-.1(w) = Sn- 1((ú) und S„(a>)*S„((0 ), dann gilt ^„(to)!, 
|5í„(ca)|s(2x + e) —|>S„_1(g))|>x. Daraus folgt

Tx(a>) = inf{n£N: |S„(«)| ==-x} (ы£(2).
Insbesondere gilt

(1) x2 ^ S tx ^ ( Зх +  e)2, §txan S  (3r + s)2 («6N).
Wegen (1) und der 2. Identität von A. Wald (siebe [1], S. 139) gih

E{Txl\n)E{X2) = Е(§тхАп) S  (3x+e)2
und folglich

E(Tx)E(X!) = E (S } j  <
Zusammen mit (1) und H(2x +  e) = E(X[) folgt daraus schließlich

x2 ^  E(Tx)H(2x + e) = (3x+e)2.
Da e>0 beliebig klein wählbar ist, folgt die Behauptung. □

Das nächste Lemma ist eine Variante des Borei—Cantelli—Lemmas. Einen 
Beweis hierfür kann man in [1], S. 95 finden.

Lemma 2. Seien (A„) und (Bn) zwei Folgen in sd mit

P{AгП Ü Ai+Jk) == P(At)P( G Bj) (i, fc€N).
J = 1  j —k

Dann sind die folgenden beiden Aussagen äquivalent

(i) Z P { A n) =  со,
71 =  1

(ii) p ( n  Ü Bj) = 1-
k=1j=k

Lemma 3. Für alle £>0 gilt

f

Beweis. Wenden wir Erickson [3], S. 375 auf X 2 an, so folgt die Behauptung für 
e = l .  Daraus folgt der allgemeine Fall, denn x

x2 ___ x2 _2 x2 
H(x) ~  Я  (ex) “  E Я(х)
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falls 0 < £ ä l ,  und

H(x) -  H(ex) ш  E H(x)
falls e >  1. □

B ew eis  des Sa t z e s . Sei £ > 0  gegeben. Wir definieren

An-.= {S„*_x s  e\Xn\}, B„:= {S*_x s  2e\Xn\).

Indem wir die bedingte Verteilung bezüglich Xn bilden, folgt

(1) P(An)=E(P(S*n_1 ^ e |V„|||V„))= /

Andererseits gilt

E(TX) =  2  P W  (x ^  °)-
л =  0

Zusammen mit (1) folgt daraus
oo 00 oo 00

2  P(An) = 2 f  2  F{S*n-i ^  ex} dF(x) = 2 f  E (T J  dF(x). 
"=1 о n_1 о

Wenden wir nun Lemma 1 an, so erhalten wir

2/  77?Й ) dF M  s  . 1 P W  m x F

Zusammen mit Lemma 3 folgt daraus

(2) Z P { A n)=~>*>E{Xl)=~>.
П = 1

Für alle und c o £ A j  gilt

2  2fm(co)[ S  I 2  X m( a > ) \ + \  Í  X J c o )I ^  2 e \X j ( c o ) \  (/ ^ p ^ j )
P
2

m =  i +  l

und somit

А,П А - с  Л(П {тах  I 2  x J^2 e \X j\} .
N<P-=7'm=i +1

Da die Zufallsvariablen außerdem unabhängig und identisch verteilt sind, gilt für 
alle /, /c£N

Р(Л-П Ü ü  {max i 2  * m| ^  2e|Z,|}) =
j = i + k  j  — i + k  m = i +  l

= Р(А;)Р{ G {.max I 2  Xm\^2 B \X j\} )= P (A tP { \J  Bj).
j = i + k  1<P ^ J  m = i + 1 j = k
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Also sind die Voraussetzungen von Lemma 2 erfüllt, und wir erhalten

(3) 2 а д = - « р ( п  и  Bj) = i-
и—1 k = l j = k

Fassen wir (2) und (3) zusammen, so ergibt sich

Wegen
ü  Bj) = 1 *>E(X*) =oo.

k = l j = k

{lim sup -J jP - a { [ c  П Ü Bj c  {lim sup £  Ц
l  n-oo S „ _ 1 £ j  k = l j = k  i  "-*00 Ол-1  e j

und da wir e > 0 beliebig klein wählen können, folgt die Behauptung. □
Danksagung. Dem Referenten möchte ich für das gründliche Durchlesen des 

Manuskriptes und insbesondere für die Entdeckung eines nicht-trivialen Fehlers im 
Beweis des Satzes danken.

Literaturverzeichnis

[1] Y. S. Chow, H. Teicher, Probability theory: Independence, Interchangeability, Martingales
Springer Verlag (New York—Heidelberg—Berlin, 1978).

[2] D. A. Darling, The influence of the maximum term in addition o f independent random variables,
Trans. Amer. Math. Soc., 73 (1952), 95— 107.

[2] К. B. Erickson, The SLLN when the mean is undefined, Trans. Amer. Math. Soc., 185 (1973), 
371— 381.

[4] W. Feller, An extension o f  the law of the iterated logarithm to variables without variance, J. Math.
Mech., 18 (1968), 342—355.

[5] H. Kesten, The limit points of random walk, Ann. Math. Stat., 41 (1970), 1173— 1205.

( Received January 27, 1987; revised M ay 22, 1987)

INSTITUT FÜ R  M ATHEM ATISCHE STOCHASTIK 
GEORG—A UGUST—UN IV ERSITÄ T GÖTTINGEN 
LOTZESTRASSE 13 
D—3400 G Ö TTIN G EN  
FEDERAL REPUBLIC O F G ERM AN Y

Acta Mathematica Hungarica 56, 1990



A cta  M a th . H ung.
56 (3—4) (1990), 229—238.

A GENERALIZATION OF BOUNDED VARIATION
H. KITA and K. YONEDA (Osaka)

§1. Introduction. The concept of bounded p-variation was first introduced by 
N. Wiener [4] in 1924. Afterwards, Waterman [3] defined Л-bounded variation and 
Chanturiya [2] introduced the concept of the modulus of variation.

In this paper, we shall define a new generalization of bounded variation and study 
some of its fundamental properties. We also consider the inclusion relations between 
Chanturiya’s class and our class,

L e t/b e  a function defined on (—°°, °°) with period 1. A is said to be a partition 
with period 1, if
(1.1) A: ...<  t2 < . . .<  lm <  rm+1 < ...

satisfies tk+m=tk+ 1 lor A:=0, ±1, ±2, ..., where m is a positive integer.
We shall generalize the concept of bounded variation.
D efinition 1.1. When lS p „ tp  as n-»°°, where 1 ^ p ^  +«>, / i s  said to be a 

function of BV{pn\p) if and only if

V ( f  \ pn\p) = sup sup {( 2  |/(i*)—/(t*-i)|p")1/p": q{A)jél 1/2"} < + oo,
nsl k = 1

where e ^ )= in f |(k- / k_1|.
к

When pn—p  for all n, it is easy to see that BV(pn\p) coincides with BVP which 
is the Wiener’s class of bounded p-variation. When p= + °°, the space BV(pn f°°) is 
especially useful and plays an important role in the uniform convergence of Fourier 
series.

§2. Preliminary results. Let 5[0, 1] denote the space of real valued functions /  
of period 1 such that

Il/Ив = sup (|/(-v)|: *€[0, 1]} <  + °°.

Lemma 2.1. We have
U BV„QBV(pn\~ )Q B [  0,1]

1 ̂  p <  +  со

u  BVq QBV(pn\p )^ B V p ( l < p <  +  ~).
ls « < p

Pr o o f . If Д 5 [ 0 , 1], then there exists a sequence of real numbers { x j  ; y ^ l }  of

(2 . 1)

and
(2.2)
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the interval [0, 1] such that
f )im \f(Xj)\ =  + «>, lim xj =  x0£[0, 1],

(2.3) w -~ •/-*“
l|Xj-—Xq\ <  1/4 for j  =  1,2,3,__

Put t0=x0—1/2, tx=Xj and f2 =  x0+l/2. Then we get
min {xj—10, t2—Xj: 1} S  1/2" for n = 2, 3, 4, ... .

From (2.3) we get

v ( /; A,t°°) S  { l / ( ^ ) - / ( ío )k " + l/( ^ - /( ^ ) IM 1/p" s
=  1Д*/)-/(*<>) I ^  |/(xj)| -  1У(/о)1 ^°° as

Hence /^5F(/7„t°°). Therefore 5F(/?„t°°)^ß[0, 1] holds.
Next we prove 5f^£SF(p„t°=>) for all lS p < + ° ° .  For any there

exists an integer n0 such that p<p„ =P„ + i =  ••• for all n = n„. Let fdBVp and A be 
an arbitrary partition defined by (1.1) such that p (d )s l/2 ”. When п>и0, we have

m m

{ 2  l / ( 0 - / ( ^ - i ) l p-}1/̂  s  { 2  \ f ( Q - fO k- i ) \ T p = К (Л  <  + ».
Ä = 1 A =1

When 1 S n S /i0, we get
m

{ Z \ f « k) - f { t k^ Y ^  == 2 ||/ ||B(m)vP„ ^  2 ||/|,2*ft. s  '211/11,2*.
jt=i

Therefore f£ B V (p nt°°) holds and (2.1) is proved.
Let l< p < + c o  and 1 = pjp- We prove (2.2). Since 1 =/>„=/>, it follows that

m m

{ 2  l / ( 0 - / ( í k-i)lp}1/p ^  { 2  l / (0 - /( i* - i) lp-}1/Pn
fe = l  A: = 1

for all d for which g(d)^l/2". Therefore we get BV(pn\p)QBVp. Let lSq< p . 
Then there exists an integer n0 such that q<pnSp,l+1S ...-^p  for all пШщ. The 
proof of (2.2) can be finished similarly as that of (2.1).

Let A be an arbitrary partition of the interval [0, 1], namely,
(2.4) A : 0 =  ( ( )< ( [< .. .<  im =  1.
It is clear that f£ B V (p n\p) ifandon ly if

m _
(2.5) sup sup {( 2  |/(a + i* )- /(a + i* - i) |p")1/p-: q(A) ё  1/2", a£R} <+=».

e i  t=i
Lemma 2.2. Let A be an arbitrary partition defined by (2.4). I f  for some 0 < pn 

(« = 1,2,...)
m _

(2.6) sup sup {( 2  \f( tk )~ f( tk-i)\PnY/Pn'- q(A) s  1/2"} <+oo,
n ä l  fc=l

then f£B[0, 1] holds.
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The proof of this lemma can be accomplished in the same way as that of (2.1).
L emma 2.3. Let \-&pn\p as «-►+«>, where and let f  be any func­

tion satisfying (2.6). Then f£B V (pn\p).
P r o o f . Let A be an arbitrary partition defined by (2.4). And suppose q(2) £  1 /2". 

We consider any partition
a = a + t0-< a + ? !< ...<  a+tk < ...< « + ?„  = я+1

of the interval [a, a + 1], where a is any real number and a f  0 (mod 1). Then there 
exist integers /0 and k„ such that a + tko<l0< a+ tko+1. (Without loss of generality, 
we may suppose that /0^ а + 4 0 and /0^ а + 4 о+1.) Then it follows that

m
{ 2 !/(«+  tk) - f(a +  fic-i)H 1/p" =

k  — 1

=  {\f(a+tk0)~ f(a +tk0-l)\Pn + \f(a+tk0 + l)~~-/ ( ö+ ^ 0)lPn +

+ \f(a+tko+.fd—f ( a+tkQ + l)\P*+ 2 '  l / (a + ^ )~ /(ö+ ^ - i) lPn}1/Pnik = 1 m
where 2 '  denotes the sum for к и  k0, k0+ 1, k0+ 2. Since /6  В [0, 1] by Lemma 2.2, 

a=i
we get

m
{ 2  1Дя+  '* ) - /(« + fit-i)lp"}1/p" ^

k = l
m

^  {3(211/11^-+ 2 ' \f(a+ tk) - f ( a + tk^ y i p ^
k = 1 

m
s  б и л  „+{ 2 '  l/(« + ik) - / ( « + ^ - i ) lp"}1/p" s

k =  1

^  6 ||/ ||B+ { |/(/0) - f ( a + t ^ n  + 1Д а  + tk0+2)- Д /o)lp- +
m

+ 2 '  1Д в+Ь)-Д в+'*-1)1р"}1/*.t=i
We obtain a partition of the interval [0, 1]; namely,

3 1 : 0 <  ct +  tko+ 2— 10 <  . . . <  a + 1  — /0 <  fl+ tj. — (/0— 1) < . . . <  Я+ tk0- i ~  U o ~  1) ^  1

which satisfies p(di)^l/2". Hence and from (2.6) we get (2.5) and fd_BV(pn\p).
§3. Main results. T heorem  3.1. Let 1 =</=/?s +«=. When 1 =pn\p, 1 Sq„iq as 

и—+°°, and p jn \0, q„/n\0 as и— +°o, BV(pn\p) = BV(q„\q) ifandonlyif
(3.1) \nlq„-nlp„\ = 0 (1 )  öí /1 -  + 00.

P roof. We note that (3.1) implies p — q. First, we shall prove the sufficiency. 
Let A be a partition with period 1 such that p (d )s  1/2" and

(3.2) ...<  ifn—i <  l S f , ^ . . .
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Let fZBV(pJp). When l^q„<p„, we have from (3.1)
m

{ 2  l / ( ' * ) - / ( ' * - i H 1/e" =k = 1
m m

s  [ { 2 1 \f 0k) - f 0k- i)\p''}q"/p"{2  i }(1- ,"/p")]1/4" ^к =1 k=l
m

S  { 2  l /( !k)~ f(h - i)lp'1} 1/p" ■ m^n-i/Pn) ~
k = 1

^  K</; Pn\p).2"W*»-VpJ =  F ( /;  A t/»)0(1).

When \ ^ p nS q n, it is obvious that
ill in

{  2  I Ж ) - Ж - l H 1 /," =  {  2  l / ( h b / ( h - i H 1/p" S  F ( / ;  p jp ) .k = 1 * = 1

Therefore we proved that BV(pn\p)QBV(q„\q). Similarly we have BV(qn\q)Q 
QBV(pJp) and consequently we get BV(pn\p) = BV(qn\q).

Next, we shall prove the necessity. Assume that ffin \n/qn— n/p„\= +co. Without
П-*- ®o

loss of generality we may assume that hm n{\/q„— \/p„}= +  <=>. Then we constructП-► со
f£BV{p„\p) such that j \  BV(qn\q) holds. We shall define a sequence of functions 
{ f„ ;n ^  1} as follows. Set dn= (l/2)"/pn. Since n/p„\°° as « — + » , dnjO as n — +°°. 

First, set
2cl1x,
( -2 d d (x - \) ,

if O S x s  1/2, 
if 1/2 S  x 3  1.

Next, we shall define / 2(x) on [0, 1/2] as follows:

r22(c/i- d 2)x, if 0=£х=з1/22
fi(x) = [2i d2(x-l/2)+d1, if 1 / 2 2  s  x ^  1/2.

Weextend / 2(x)on [1/2, 1] as follows: / 2(x )= /2( l —x) for 1 /2s x ^  1.
When /„(x) is defined, /„+x(x) will be defined as follows: When n is even, if 

f n(k/2*)>f„{(k+l)/2”), set "

-  2"+1 {/„ (к/2") - /„  ((Л +1 )/2") -  d„+x} (x -  Л/2") +/„ (k/2n),
, = if k/2n ^  x ^ (2 k + \) /2 n+\

Jn+lW | —2n+1 i/„+1{x—(fe+1)/2”} +/,((& +  l)/2"),
if (2k+ \)/2n+1 i x s  (k+  l)/2n,

for A:=0, 1, 2, ..., 2" — 1, and, if /„(fc/2n)</„((& +l)/2"), set

/»+iW  =
2n+1 dn+1(x -k /2 ")+ fn(k/2n), if /с/2" r S x ^  (2k+])/2"+\
2 "+1{ fn((k+ 1 )/2 n) - /„  (/c/2 ") -  dn +1} (x - ( * + 1 )/2 ") +/„ ((& + 1 )/2"),

if (2A:+l)/2B+1^xS (A :+ l)/2",
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for k = 0 ,1,2, . . . ,2 n- l .  When n is odd, if /„(fc/2") >■/„((&+1)/2"), set

/ ,+ iW
-2 "+ 1 dn+1(x-k /2 n)+ fn(k/2n), if k/2" Ш х ^  (2k+\)/2"+\
-  2"+1 {/„ (Л/2") - /„  ((* +1 )/2") -  dn + 1}(x -(k+ ]  )/2") +/„ ((fc + 1)/2"),

if (2k+l)/2n+1 Ш хЩ к+1)/2п,

for ft=0, 1,2, . . . ,2 " - l ,  and, if / в(Л/2") </»((* + l)/2"), set

2"+1 {/„ ((* +1 )/2") - / „  (*/2*) - d n+1} ( x -  k/2") +/„ (fc/2"),
if к /2 "Ш х^(2 к  + 1)/2"+\

Jn+liX) ~ 2"+1 dn+1(x-(k+ \)/2")+ fn{(k+\)/2'%
if (2fc +1)/2',+1 ^  x ^  (k+  l)/2",

for fc=0,1, 2, 2я — 1. Continuing in this way, we get a sequence of functions
{ /n;n S l} . Since Pn\P and dn=(\/2)n/pn,

d jd n+l = 2 №,+1)/p„+!-«/?„} g.2{(n+i)/i>n-n/p„} =  2!/Pn S 2 .

Therefore we get
(3 3) dn ^ 2 d n+1 for и S i .

From (3.3) and dn\0, it follows that

(3.4) \fn( x ) - fn+N( x ) \ ^ d n for all n, N *  1, *€[0,1].

Since { /,; n s l}  is a Cauchy sequence by (3.4), there exists a function/ such that 
Шп/„(*)=/(*) and
(3.5) \ f ,( x ) - f (x ) \^ d „  for all п й  1 and *€[0,1].

We shall prove that f£BV(pn\p). Let A be an arbitrary partition satisfying (3.2) such 
that e(d)Sl/2" and set

Гк = {1 s y s i f i :  l/2*+1 == Ю -0 -il <  l/2k} for к = 0, 1,2, ... .

If 1/2"+1ä |x—j ’|-=l/2", it follows from (3.5) that

I/M -/OOI S |/(*) (*)| + |/„ (*) -/„  (y)|+ 1/„ (y) -/OOI ^
— d„ + \f„{x) —f„ 0 ; ) l  + d„ = 4d„.

Then we get
m n — 1

2  l / ( 0 ) - / ( 0 - i ) l p -  = 2 2  l / ( 0 b / ( 0 - i ) l p "  si=i k—o jerk

= 2  2  (4<4)Pn = 4P- 2  (1 /2 )^  2  1 -
k=o j e r k  k = o  j t r k

^4"»  2(1/2)* 2  2  lO-O-il =  2 -4'" =  8p-.t = o  ; e r fc )c=o / 6 r fc
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Therefore it follows that
m

{ 2  l / ( 0 ) - / ( 0 - i ) l p " } 1 / P n  -  8  f o r a 1 1  ” = l -3=1
Hence we get f(LBV(pn]p).

Last we prove f\B V {qn\q). From the definition of/,
\f((2k+\)/2")-f(2k/2'-)\ = dn 

or
|/((2*+2)/2")-Д(2*+1)/2")| =  4, for и S i .

Then we get

{ 2 \ f ( k / 2n) - f ( ( k - \ ) / 2n) \ ^ „  ш {2- 1 . = (l/2)v.B • 2n/i" • /  =
=  (1/2)1/9- ■ 2п̂ п-УРп).

We have already assumed that lim n{l/q„— 1 /рЛ= +°°. Therefore it follows thatП-*- oo
f^BV(qn\q). We proved the theorem.

T heorem  3.2. Let \-^p„\°° as и — +°°. Then BV(pn\^)=B[Q,\] i f  and only 
i f  the sequence {pn; и = 1} satisfies the following condition:
(3.6) n/p„ S  C for all n Ш 1, 
where C >0 is a constant.

Proof. Suppose that {pn ; n ^ l}  satisfies (3.6). We prove B[0, 1]QBV{p„\°°). 
Let A be an arbitrary partition defined by (2.4) which satisfies д(А)ш 1/2". From
(3.6) and m s 2 n, we get

m m

{ 2  l / ( h ) - / ( h - i ) H 1/p" =  { 2  (2 ||/И вН 1/р- =
k = 1 & =  1

=  2 ||/ ||B • mVFn == 2II/IU • 21*. S  2C+1||/ ||B <  +  - .
Therefore fd B V (p nt°°) holds.

Next we suppose that {/;„; и ayi} does not satisfy (3.6). As an example we con­
struct a bounded function which is not in BV(pnt°°). Since {n/p„;n^ 1} is not 
bounded by hypothesis, there exists a sequence of integers {nk; k ^  1} such that
(3.7) lim n jp  =  -I-» .Л-*- со

We define two dense subsets Ex and E.z of the interval [0, 1] as follows. The set Ex 
contains all the points of the form m/2" where n and m are nonnegative integers; 
£ 2=[0, l ] \E x. Put

f0 if xdE,
/ w = { i  if xeE ^

Let A be a partition of the interval [0, 1], namely,
A . 0 —  t0 < - t% t%n — 15
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where t2k=2lc/2n, t2k+i£E2 and Q(A)^l/2n+1. If we put n=nk—1, we get from
(3.7) that

{ Д  l / ( 0 ) - / ( 0 - i ) l p " +1} 1 /p " +1
2 и/г-.+1 =  2("k'Pnk>(1 1/"k)- . +  oo as к — + °°.

Therefore M BV(pn\°°) and proof is complete.
Wiener [4] showed that functions of the class BVP could only have simple dis­

continuities. For functions of the class BV(p„\°°) we have the following result.
Theorem 3.3. For the class BV(pnt°°), there exists a function which has a dis­

continuity not o f the first kind.
Proof. We consider the following example. Since lsp „ t° °  as we can

choose a monotone increasing sequence of positive integers {nk \ k ^ \ }  such that 
nk = \ and
(3.8) Рпк-г — log к for all кш: 2.

We construct a function/ as follows. Set

(3.9)
rl if (1 /2){(1 /2"fc) +(1 /2”fc-!)} <  x ^ГД "*-1) for k = 1 ,2 ,3 ,..., 
lo otherwise.

Clearly,/is a bounded function defined on [0, 1] and/ has a discontinuity not of the 
first kind at x=0.

We prove th a t/is  a function of the class BV(p„t°°). Let A be an arbitrary parti­
tion defined by (2.4) such that о(Л)ё 1/2". Then, for every fixed index n, there exists 
a positive integer к such that
(3.10) 2 \ - .  s  2" <  2V

Hence we get 1 /2"  ̂<  1 /2” ̂  1 /2"^-• and p„k_l =p„=p„k- From (3.8), (3.9) and (3.10), 
it follows that

m
{ 2  \fU j)-f( tj-i) \p"}l/p" ^  (2kf/Pn ^  2 • к1'?* S  2 • kVp"«-, == 2 • к1/108*1 = 2e <  + °°. 
j =г

Therefore we get f£BV(p„t°°) and Theorem 3.3 is proved.
Corollary 3.1. We have

U BVp %BV{Pn\~>).

Let со ( / ;  h) be the modulus of continuity in the space C(0, 1). We have the follow­
ing theorem.

Theorem 3.4. Let l ^ p n\°° as n — +°°, f£C (0 ,1 )  and | | / | | B< l /2 .  I f  pns  
S n /lo g 4(l/cü„), и’Асгс co„=co(f; 1/2"), thenweget f£B V (pnt°°).

4 Лс/а Mathematica Hungarica 56, 1990



236 H . K IT A  and К . YONEDA

P roof. Let A be an arbitrary partition defined by (3.2) such that t>(d)sl/2” 
holds. Then we have

m n — 1

{ 2 l / ( 0 ) - / ( 0 - i ) l p " } 1 / p -  =  { 2  2  l / ( 0 ) - / ( 0 - i ) l p " } 1 / P n  ^
j  =  1 У €Гк

^  { 5 1 2k+1 • ojMVr,, s  2 { 5 12k copA 1'pn 2 { 2 '1 21cüM i/p„.
4=o 4=o 4=o

Since /jt ^fc/log4(l/a>t), we get 2kco%kS \/2 k. Therefore it follows that

m n —1

{ 2  l / ( 0 ) - / ( 0 - i ) lp”}1/p" ^ 4 2  (i/2k)}1/p" s  4.
j = l  4 = 0

Hence we have f€.BV(pJ°°).

§4. Relations between F[v] and Z?F(/>„t°°)- In this section we consider the inclu­
sion relations between Chanturiya’s class F[v] and our class BV(pn\̂ >).

D efinition  4.1. The modulus of variation of a function/is the function

v (/: n) =  sup 2  1/(Л)1 
л„ t=l

where f ( I k)= f(bk) —f( a k) and П„ is an arbitrary system of n non-overlapping inter­
vals Ik=[ak, bk] (i[0, 1]. Suppose v is a nondecreasing, convex upwards function on 
[0, + 0 0) and v(0)=0. If v is given, then F[v] denotes the class of functions for which 
v(f:n)= 0(v(n )) as n -»+ 00.

We have the following theorem.
Theorem 4.1. Let l</>„t°° as n->-+°°. When р„ш log v(2") for n ^ l ,  we have 

V[V]QBV(pn too).

Proof. Let A be a partition defined by (1.1) such that q(A)s I/2". Since v(n)t°° 
as n-<- + 0 0 , there exists an integer n0 such that p„^log v(2")> 1 for all n-^nu. When 
/€l^[v], there exists a constant 1 such that \ f ( x ) \^ M  for all x€[0,1]. There­
fore we get

m

{  2  1 / ( 4 ) —/ ( 4 - i ) l Pn} 1/Pn * = 1
m

{  2  l / ( 4 ) - / ( 4 - i ) l ,08v(2n)} 1/l0gv(2n) s
k = 1

m
^  { ( 2 M ) lo g v ( 2 " ) - i  2  | / ( 4 ) - / ( 4 - i ) l } 1/l08v(2n) s

k = 1

m
^ 2M { 2 1 / ( 4 ) — / ( 4 - i ) l } 1 / l 0 B v ( 2 " )  S  2M{ v ( / :  w ) } v i < > * v ( 2 " )  ^

/c = 1

=  0((v(2"))1/logv(2,,)) = 0 (1 ) as n -  + °o.
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When 1 ёиёйо, we get
m

{ 2  l / ( 0 - / ( h - i ) l M 1/p" =  2 M m  2 M -  2 " ° .
*=i

Therefore we have f£BV{pnt°=).
T heorem  4.2. F[v]=2?[0, 1] / / and on/у /

lim n/v(ri) <  +  »>.
«-► oo

P roof. Suppose that n^C v(n) (и&1) for some constant C>0. When /£5[0,1],
we get

.Z l/(4)l — 2 ||/||ви =  2C ||/||B • v(n).
k = l

Therefore we have v (/: n )^ 2 C ||/ ||B• v(/i) and /£F[v] holds.
Conversely, we assume that F[v]=.B[0, 1]. We prove that Ilin n/v(n)<

L e t/b e  a function defined in Theorem 3.3. Set ak = \/2"« and /?k = 1/2"*+2/(3 •2"*) 
for k—1 ,2 ,3 ,..., and consider a system of intervals 7fc=[afc, for fc = l ,2 ,3 , ...

П
...,n . Then we get n= 2  l / ( 4 ) l—v( / : »)• By our assumption, /£F[v]. Therefore

*=i
we have v(f: n)^Cv(n). Hence nSCv(n) holds and the proof is complete.

T heorem  4.3. Let lim n/v(n)=+°° and l<p„\°° as n-++°°. Then there 
exists a function /£ЛК(р„1°°)ПС(0, 1) such that f% F[v].

P ro o f . Since lim n/v(n)= +°°, there exists a sequence 0< c„< l, c„|0 as
W-*-oo

n—+°° suchthat lim ncjvfji)— +°°. We shall construct a function / a s  follows.
M со

We choose a monotone increasing sequence of positive integers {nk; /с & 1} such that 
/?! = 1 and (3.8) hold. Set

' 2nk+1ck(x—1/2"«), if 1/2"« s r s  (l/2n« + l/2"k~1)/2,
— 2"k+1ck(x—l/2"k-1), if {1/2"«+112"«-1)1 2 ^ х ^ 1 1 2 " « - \

1{X) -  for k = 1 ,2 ,3 ,...,
0, otherwise.

We get a function /£С (0, 1) and extend it periodically with period 1 on (—°°, °°).
Next we show that/£BF(/7„t°°). Let Л be an arbitrary partition of the interval 

[0, 1] defined by (2.4) such that q{A)^1/2". For this fixed n, we can choose integers 
and nk for which иЬ 1 ё и < и к holds. Then it follows that p„k_x=pn =P„k and 

l/2"«<l/2"^\/2"k-i. Hence we get from (3.8)
m к

{  2  \ f ( t j ) - f ( í j ~ i ) \ p" } 1/p" =  í 2 2  c H 1/p" 2  • к 1 р" к - 1 s i  2  • к 1/1оек ^  2 с  <  +  со .
7=1 7=1

Therefore f£B V (pn 1°°) holds.
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Finally, we prove that Д  V[v], Set ak = l/2nk and Ьк=(\/2лк+\/2пк~1)/2. We 
consider a system of intervals Ik=[ak,bk] for k — 1,2,3, .... Since c„|0, we get

Í  1/(4)I =  2  I f(b k) - f ( a k)\ = 2  ^  ncn.
k = 1 k = 1 k — 1

Assume that /£F[v]. Then it follows that

2  l/(4)l =  v(/: n) = 0(v(n)) as n -  + °°,
k = l

which means lim nc„/v(ri)^C. We arrive at a contradiction. Therefore we get Д  F[v]
Tl-*-oo

and the proof is complete.
Let Л =  {Л„;и& 1} be an increasing sequence of positive numbers such that

oo
2, (1Д„) =  +°°. A function/is said to be of Л-bounded variation (f£ABV), if for
П = 1
every choice of nonoverlapping intervals {7„;nfel} we have

2  1 / ( 4 ) 1 Д и  <  +  “ •
n =  l

M. Avdispahic [1] showed the inclusion relation between Waterman’s class ABV and 
Chanturiya’s class F(v). Our class BV(pnt°°) plays an important role with respect to 
the problems of uniform convergence of Fourier series. We describe some results for 
the applications of Fourier series in another paper.
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GREEN’S THEOREM ON A FOLIATED 
RIEMANNIAN MANIFOLD AND ITS 

APPLICATIONS
S. YOROZU and T. TANEMURA (Kanazawa)

1. Introduction

Our main aim is to prove the following theorems that are well-known ([4]) in the 
cases of the foliations by points:

T heorem  A. Let (M , gM, F )  be a closed, oriented, connected Riemannian mani­
fold with a transversally orientable foliation F  o f codimension q and a bundle-like met­
ric gM with respect to F . Let Q be the normal bundle o f F . Then

f  divB v dM =  «т, V»
M

for all v£T(Q), where divD v denotes the transverse divergence o f v with respect to the 
transverse Riemannian connection D o f F  and x denotes the tension field o f F .

Let E  be the integrable sub-bundle of the tangent bundle TM  given by F . We 
noticethat Q=TM/E, and F  is minimal if t= 0. Let V(F) = {v£T(Q)\Dx v=0 for 
all Х£Г(Е)}.

T heorem  B. Let (M, gM, F ) be as in Theorem A. Suppose that F  is minimal. I f  
v€ V(F) satisfies

Av = qd(v) and divBv =  0,

then v is a transverse Killing field of F . Here qb is the Ricci operator with respect to D.

Theorem A is analogous to the well-known Green’s Theorem on a Riemannian 
manifold with or without boundary. Theorem В is proved by the integral formulas 
induced from Theorem A.

We shall be in C°° -category and deal only with connected and oriented manifolds 
without boundary. We use the following convention on the range of indices: I s / ,  
j S p  and p + l^ a ,  b, c, d^p+ q. The Einstein summation convention will be used.

2. Preliminaries

Let (M ,gM,F )  be a (p+ ^-dimensional compact Riemannian manifold with 
a transversally orientable foliation F  of codimension q and a bundlelike metric gM 
with respect to F  in the sense of Reinhart [7]. Let V be the Levi-Civita connection 
with respect to gM. The foliation F  defines an integrable sub-bundle E  of the tan­
gent bundle TM  over M. Let Q=TM/E  be the normal bundle of F .  The m e tr ic ^
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gives a splitting a of the exact sequence

0 E  - ~ T M ^ Q  - 0a

with o(Q)=E± (the orthogonal complement bundle of E). Then gM induces a metric 
S q on Q:

S ö O ,  ju) =  g M ( f f ( v ) ,  a ( n ) )
for all v, fier(Q).

In a flat chart U(x‘, xa) with respect to S r ([7]), a local frame {Xh Xa} = 
= {д/дх\ d/dxa—AJad/dxj} is called the basic adapted frame to S'. Here are 
functions on U with gM(Xh Xa)=0  ([7], [8]). We notice that {T,} and {Xa} span 
Г(Е \и) and r(E±\U ) respectively. We set

gij guW i, ^j)> gab g\í I Aa ' A),),

(gtJ) =  (g ij)-\ (gab) = (gab)-1- 
A connection D in Q is defined by

Dx v = n(yX,Yv]) for all Х£Г(Е), v£T(Q) with Yv = cr(v),

Dx v = 7t(Vx Yv) for all А^ГСЕ-1-), v^T(Q) with Fv = a(v).

Then we have
Pro po sitio n  1 ([2]). The connection D in Q is torsion free and metric with respect 

to gQ.
Thus we have
D efin itio n  2 ([2], [3], [5], [6]). The connection D is called the transversal Rieman- 

nian connection of S '.
The curvature RB of D is defined as follows: R D(X, Y ) v = D x D y v —D y D x v — 

—D[x ,Y]V for all X ,Y£T(TM )  and v£T (0 . We notice that i(X )RD= 0 for all 
Х£Г(Е), where / denotes the interior product ([2]). The Ricci operator qd : r(Q)-+ 
-*r(Q) of S r is defined by
(1) qd(v) = g°bRD(<r(v), Xa)n(Xb) 
for all v£T(®.

Let V(S^) be the space of all vector fields Ton M satisfying [F ,Z ]€ r(£ ) for all 
Z ^r(E ). An element of V(2E) is called an infinitesimal automorphism of S' ([3], [6]). 
We set
(2) V(S-) = {veT(0)|v = n(Y), YeV(jr)}.

L emma 3. An element v o f VIS') satisfies Dx v — 0 for all Х£Г(Е).

The transverse Lie derivation 0(F) with respect to Y^V (S') is defined by

0(F)v =  ti([F,Fv])

for all v^r(Q ) with Fv=cr(v). Then we have
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D efinition 4 ([3], [5], [6], [9]). I f Y£ V (S )  is metrical, that is, 0(Y)ga=0, then 
v —7t(7) is called a transverse Killing field o f  S'.

For YdV(S'), we define an operator AD(Y): r (Q )—T(Q) by

(3) Ad(Y) v = 0(Y)v—DyV 
for all v£T(Q). Then we have

(4) AD(Y )v = -D Yvn(Y)
where Yv=a(v). This formula shows that (i) AD(Y ) depends only on v= n(Y),
(ii) AffiY) is a linear operator on r(Q). Thus we may use AD(v) instead o f AD(Y)
([3]).

D efinition5 ([3]). I f Yf^V(S) preserves the connection D in Q, that is, 
9(Y)D=0, then v = n(Y) is called a transverse affine field o f  S'.

Then we have

Proposition 6 ([3]). Let v£ VIS'). Then the following conditions are equivalent:

(i) v is a transverse Killing field o f S'.
(ii) AD(v)gQ=0.

(hi) gaiAoiv)^, p2)+gQ{Hi, Ad(v)h2) = 0 for all pu g2eT(Q).
Proposition 7 ([3]). Let Y ^V (S ’) with v=n(Y). Then the following conditions 

are equivalent:
(i) Y preserves D.

(ii) Da(ll)AD(v)=RD(o(p), Y) for all gf.T(Q).
L emma 8 ([3]). A transverse Killing field o f S' is a transverse affine field o f S'.
Let O'(M, Q) be the space o f  all Q-valued r-forms on M. The inner product 

( ,  )  on Q?(M, Q) is defined by

(5) «7, Ч'У) = f  gQ(n^*n’)
M

([2]). For example, if  i/ =  <í;®v, r \ ' Q ) ,  then g Q(»jA*ij') =
--=gQ(v, v')£A * f  ■ We notice that the bundle projection n .TM ^-Q  is an element o f  
Q \M , Q).

The Q-valued bilinear form a on M  is defined by

(6) « (X ,Y )= -(D x Tt)(Y)
for all X, Y£T(TM ) ([2]). Since <x(X, Y) = n(Vx Y) for all X, Y£T(E), we call a 
the second fundamental form o f  S' ([2]). The tension field т o f  S' is defined by

(7) г =  gucc(Xj, Xj).

D efinition 9. The foliation S' is minimal i f  all the leaves o f  S' are minimal sub­
manifolds.

Then we have

P ro po sitio n  10 ([2]). The foliation S' is minimal i f  and only i f  t= 0 .
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Let dD: Qr(M, Q)-+ Qr+1(M, Q) be the exterior differential operator, and let 
dß be the adjoint operator of dD with respect to ( , ) ([2]). The Laplacian A acting 
on Q'(M, Q) is defined by
(8) A = dDdg + d£dD.

An element v of r(Q) is regarded as an element of Q°(M, Q), that is, v£ Q°(M, Q). 
Then we have

Proposition 11 .A  transverse Killing field v ofS ' satisfies the equation:

dv = DaMv+QD(v).
Proof. We first remark that DXiv=0. Thus we have

Av =  d£ dD v = - g iJ(DXiDXjv -D VxXjv ) -g ab(DXaDXbv -D v xj bv) =

= g'1DaWsrXi Xj)) V -  gab (DXa DXb v -  Da(n(Xxj b)) v) =

=  DaM v + gab (.Dx Ad (v)) (ti (Xb)).
By Proposition 7, we have

(Dx AD(v))(n(Xb)) = RD(o(v),Xa){n(Xb)).
Thus we have, by (1),

dv =Da(t)v + gabRD((t ( v) , Xa)(n(Xb)) =  D„(t)v+ Qd(v).
Q.E.D.

D efinition 12 ([10]). An operator divD : r(Q)-+R is defined by 

divD v = gahgQ(DXav, n(Xb)).
We call divD v the transverse divergence of v with respect to D.

By Proposition 6, we have
Proposition 13 ([10]). I f  v is a transverse Killing field of , then divfl v=0.

3. Proof of Theorem A

Let divv X  be the divergence of Х£Г(ТМ ) with respect to V. For any v£F(Q), 
we have

divv ф )  = giJgM(Vx.o(v), Xj) + gahgM(VXao(v), Xb) =

= -£°>м(<Ф), a(n(yx Xjjj)XgabgM{°(DXa\), a{n(Xb))) =
=  ~ g Q(v, r)+gabgQ(DXav, n{Xh)) =  ~ g Q(v, t) + divB v.

By Green’s Theorem, we have

0 = /  divv o(v) dM =  f  divfl v dM «v, т».
M M

This completes the proof of Theorem A.
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As Corollary of Theorem A, we have
Corollary 14 ([10]). Let (M , gM, F )  beás in Theorem A. I f  F  is minimal, then

f  divD v dM = 0
M

for all v£T(Q).

4. Integral formulas and proof of Theorem В

We consider an element £ of T(Q) given by 
(9) £ = gcdgQ(DXcv, n)n{Xd),
where ju, V{F). Then we have

DXaQ = X Jgcd)gQ(DXc\\ fi)n(Xd) + gcdgQ(DXaDXcv, n)n(Xd) +

+ gcdgQ(DXc v> DXaц) n(Xd) + gcdgQ(DXc v, f)D Xa7z(Xd)
and

divß £ = gacgQ(DXaDXov, n)+gacgQ(DXc\\D xj i ) -  
-  gab gcigQ (n(Xd), DXa n (Xb)) gQ (DXc v, ц) =

=  gacgQ(DXaDXcv, ц) + gacgQ(DXav,DXcfi ) -g Q(DaMv, ц), 
where 4  = gabn(WXaXb).

Since Av=Da(z)v - g abDXaDXbv + DaMv, we have
- g a(Av, ц) = gabgQ(DXaDXbv, n ) - g Q(DMn)v, n ) - g Q(Da(t)v, ц).

Thus we have
diVß £ = -  gQ (A v, ц) + gQ (D„(t) v, ц) + gab gQ (DXa v, DXb ц).

If we set x=zdii(Xd), then o(z)=rdXd. Thus we have

gQ(Z, t )  =  gcdga(DXcv, n)gQ(n(Xd), t )  =

= t dgQ(DXdv, ц) =  gQ(Da(r)v, if).
Therefore, by Theorem A, we have

T h e o r e m  15. Let ( M , gM, F ) be as Theorem A. For ц, v£ V(F), we have

«41 v, ц)) =  «Dv, Df}), 

where ((Dv,Dp))= f  gabgQ{Dx \, DXbg)dM.
M

If v is a transverse Killing field of F ,  then, by Proposition 11 and Theorem 15, 
we have

<<en(v), v» + «D„(t)v, V »  = «Dv, Dv)) S  0.
Thus we have
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T heorem 16 ([3]), [9]). Let (M , gM, F ) be as in Theorem A. Suppose that F  is 
minimal and that the Ricci operator qd o f  F  is non-positive everywhere and negative for 
at least one point o f  M. I f  v is a transverse Killing field o f F , then v=0.

By direct calculation, we have, for all vdT(Q),
(10) divD ((divD v) v) =  v (divD v) + (div;j v)2.
(И ) divD Ad(v)v =  - g abgQ(DXaDa(v)v, n(Xb)).
(12) Tr Ad(v)Ad(v) = gabgQ(Da(vXev) v, n(Xh)), 

where Tr denotes the trace operator.
(13) v(divß v) =  v(gab)gQ(DXav, n(Xb)) +

+ gabgQ{Da(v)DXav, n(Xb))+gabgQ(DXa\,D aWn(Xb)).
Then we have

-d ivfl^ B(v)v-divB((divD v)v) =

= gabgQ(RD(Xa, ff(v))v, n(Xb))+Tt Ad(v) Ad(v) — (divß v)2—

~ g abg Q ( D o ( D a M n(Xa) ) V > 71 № ) )  +  g abg Q ( A y „ ff(v)]E 71 № > ) )  —

~ v(gab)ge(DXav, n(X„))-gabgQ(DXav,Da(v)n(Xb)),
where [, ]£ denotes the T-component of [, ]. Since we have

~ v(g ab)gQ(DXav, n(Xbj) = gacgQ(DXav,Da(v)n(Xc)) +

_  +gdbgQ(Da(D',MK(X))V’ n (Xb))>
if vC V(F), then

— divB v4d(v) v —divD ((divD v)v) = eD(v) + Tr AD(v) AD(v)-(d i\Dv)2. 
Therefore, we have

_ T heorem 17. Let (M , gM, F )  be as in Theorem A. Suppose that F  is minimal. I f  
v€ V(F), then

f  {R'cn (V) + Tr AD(v)AD(v) — (divDv)2} dM = 0 ,
M

where RicB(v)=gQ({?B(v), v).
By Theorem 17 and the fact that

Tr Ad(v)A d(v) = —Tr ‘Ad(v) Ad(v) 4 (1/2) lv {AD(v) + ‘AD(v))\ 

where 43 denotes the transpose of B, we have
T heorem 18. Let (M , gM, IF) be as Theorem A. Suppose that F  is minimal. Then

f  {RicB (v)—Tr ‘Ad(v) Ad(v) + (1/2)Tt (Ad(v)+ *AD(v))2—(divD v)2} dM = 0
M

for all v£ V(^).
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A proof of Theorem В is given as follows: We remark that 
Tr ‘Ad(v)A d(v) = gabgQ(DXav,DXbv),

RicB(v) = gQ(Av, v).
Thus, by Theorem 18, we have

{{Av, v»-«£>v,£>v» +  (l/2) f  Tr(AD(v)+‘AD(v))2dM = 0.
M

By Theorem 15, the above equality implies

/  Tr (Ad (v) + *Ad(v))2 dM =  0.
M

Since AD(v) + tAD(v) is symmetric, it follows that

■Ad(v)+ ‘Ad(v) = 0
([4]). Thus Proposition 6 implies that v is a transverse Killing field of :W.

Finally, we have some coments: If M  is complete and noncompact, then L 2- 
transverse Killing fields of JF ([9]) on M  are discussed by [1]. We have prepared 
the discussion of another geometric transverse fields of OF. In [10], the first author 
ought to have made reference to Molino’s papers ([5], [6], etc.) that are concerned with 
the transversal Riemannian connection of 3F and transverse Killing fields of 3F
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HARDY’S INEQUALITY FOR 
ORLICZ—LUXEMBURG NORMS

E. R. LOVE (Melbourne)

1. Introduction

( 1 )

The original Hardy’s Inequality [1: Theorem 326] may be written
\\Ax\\^C\\x\\

where x= (xn) is a sequence treated as a column matrix, || . || is the /p-norm with 
/>>1, C is independent of x, and A = (amn) is the Cesaro matrix

In this paper I propose to generalize this inequality, replacing A by a much more gene­
ral matrix operator and || . || by an Orlicz-type norm which is essentially due to 
Luxemburg [2]. This norm is defined below.

References [3] and [4] are related to this paper. In [3] the norms are weighted 
/p-norms only. In [4] the norms are Orlicz—Luxemburg; but the dominance condi­
tion on the elements of A has a more complicated character and, except in one the­
orem, A is lower triangular.

Orlicz function is any continuous convex cp: (0, °°)->-(0, °°) for which ф(0+)=0. 
Such a function is strictly increasing, and consequently has a continuous inverse 
ф -Е ( 0, oo )+ ( 0 ,oo). As usual in Orlicz theory the domain of (p is extended to the 
complex plane by <p(z) =  <p(|z|) and <p(0)=0.

Orlicz—Luxemburg norm of a complex-valued sequence s=(s„) is

for a fixed Orlicz function tp and fixed 2„>0. Besides having the properties of a norm 
it has the monotonic property that if | л-„| ̂  |/„| for all «then ||j ||s ||t ||.

Example. If cp(t) = tp and p s l ,  the condition in (2) can be written

( 'lo
\/m  if 0 <  n Ш m, 
0 otherwise.

(2)

2  k l p —
and consequently

N1 = { Z W ) yp,n = \
a weighted /p-norm
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2. Preliminaries

Lemma 1. T /O c  || v|| < ° °

P r o o f . S u p p o s e  th a t  fcmt | | j | |  a s  w t° ° .  T h e n  fo r  e a c h  m a n d  N

Since cp is continuous,

N

2  K<p s  l.

N

2  K<pn —1
1.

T h e  lem m a fo llo w s  f ro m  th is  by m a k in g  N -+°°,

Lemma 2. Let each function sn(t) be non-negative and measurable on E, a measu­
rable subset o f the real axis. I fs ( t  ) denotes the sequence (,v„(/)), and J s ( t  )dt the se-

E

quence ( fs„ (t)d t} , then ||j (/)|| is measurable on E and

(3) '  \\fs (t)d t\\rs f\\s (t)W d t.
E E

The same conclusions hold i f  each s„ (t) is complex-valued and integrable on E.
Proof, (i) To prove that || j ( /) || is measurable on E, consider the function

g(x, o =  2 ^ р { ^ Щ -
n = l  \  X  J

Since q> is continuous, g is plane-measurable on {x: x>0}X{t: t£E}; thus 
{(x, t): g(x, t) >  1, x >  0 & t£E}

is plane-measurable. So the measures of its sections /-constant form a measurable 
function of t on E. But g is a decreasing function of x for each fixed t, so these sections 
are line-segments 0<x< ||i(/) |[ or 0 < xS ||j (/)||. Thus ||i(/)|| is measurable on E.

(ii) Suppose that the right side of (3) is zero. Consider the null set N= 
— {t^E: | | . v ( / ) l l  >0}. For t£E—N, sn(t)= 0  for all и, and so

° -  f  snO )dt=  f  s„(t)dt = 0.
E E - N

Thus
Wfs(t)dt\\ =  0=5 f\\s(t)\\ dt = 0,

E E

and the required inequality is just an equality.
(iii) Suppose that the right side of (3) is not zero. Denote its value by x; we can 

suppose that 0-=%-=°°. Let

N  =  {teE : 1И011 = - } .  S = {t£E: 0 <  \\s(t)\\ < -}•
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For t£(E—N) — S, ||i(r)||=0  and so Nn(7)=0 for all и. Thus 

(4) 2 7 '-n<p / s„(t)dt] = y , Xn(p í v  /  s"0)dt] =
" = 1  Vх  £  /  „ =  1 V *  E —N )

= i  ^  f v  /  y»(?) л ) = 2  ^  f /" = 1 Vй s / n = l Vs
lk(011 J,(0

% и о н
dt)

_  “  , г  lk(OII ( *n(t) \ ,u г И0И ~ , „ ( sn(t) \ u
<5) s  ж  ■ * ( iw orjл  = / —  2  ^  llw ö i)

lk(OII ■уи(0

(6 ) ^  г M Ú L
J X

(It = 1.

In (4) we have used the fact that N  is a null set; in (5) the convexity of q> and the 
fact that

/
K O I

X
dt =  /  d t ^ - f  IKOH dt =  1;

S U N  X  X  E

and the last has been used again in (6), as well as Lemma 1.
Now (3), whose right side is x, follows at once from (2) and (6).
(iv) For any complex-valued sequence s=(s„) write |s|==(|s„|). Then by (2) 

INI =11 kill. So if each s„(t) is complex-valued and integrable on E we obtain, using 
the monotonic property and (3),

I I / S(t) dt\\ = | | | / 5 ( 0 Л | | |  s  I I /  k ( O I  dt\\ ^  /  H k C O I I I  dt =  / l k ( O I I  dt.
E E E E E

This completes the proof of Lemma 2, which is of course an extension of Minkowski’s 
Inequality.

Lemma 3. I f  s\r denotes the sequence sl r, s2 r, s3 r, ... fo r  r = 1, 2, ..., ° ° , and 
for each fixed m and all positive integers r

0  —  *Ут>г L:: + j  ”*■ Snlt00 OS I °° ,

then Ik J - lk .- l l  as / • - °°.
Proof. By the monotonic property o f  the norm,

Ikrll =  lk.r+ill =  Ik .-II
for all r\ and consequently the following limit exists and

lim |k J  ^  lk.-ll-Г-+ ©о

There is nothing further to prove unless there is inequality here. 
Suppose there is inequality here. Then there is x such that

(7) lim Ik.rll <  « <  lk.-ll-
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It follows that

holds for every positive integer n, since by (2) it holds with n replaced by «>. Since it also 
holds for all r, and cp is continuous,

Making n —►CO 5

whence, by (2), ||j<oe|| Sn. This contradicts (7), so proving Lemma 3.

3. Hardy’s Inequality generalized

T h eorem . Let <p(t) be Orlicz and supermultiplicative. Let a(t) be non-negative and 
measurable and have a decreasing rearrangement a(t), all on (0, °°). For all positive

m
integers m and n let 2„>0 and Am= ^ A „ ;  also T0=0. I f  A = (am„) and x= (xm)

П = 1
are complex matrices,

AJAm “
\amn\is, f  a(t) dt and C =  f  ä(t)(р~1( Г г) dt, 

л„-,/лт о
then \\Ах\\ ^С||л:||.

I f  the sequence (|х„|) is decreasing, this inequality holds with C reduced in value to

(8) /  a(t)(p-\t-*)dt,
0

and a need not have a decreasing rearrangement.

Pr o o f . We may suppose that a(t) is not null, and consequently C>0; for other­
wise яшп=0 and the left side of the inequality would be zero. We may suppose also 
that 0< ||x ||< °°; for if ||лг|| = 0  the left side would again be zero, while if 11x11=°° 
the right side would be infinite.

(i) Suppose that amn and x„ are non-negative, and that ,y= (.v„) has a decreasing 
rearrangement. For all n let

(9) g(u) =  xn for Лп_1 < м ^ л „ ,

and let g(u) = 0  otherwise. Then g(u) has a decreasing rearrangement g(u) on (0, °°),
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whether lim Лп is finite or infinite. We have

( 10)
AJA„

0 3= 2? amnXn ^ 2  J  «(0X„ dt =
n =  1 Л п . 11Лтn = l

2n=l / ,  лт /  \ Лт) л т
n — I

oo CO

=  /  a ( í) f( /lffl< )á íS  /  а(0г(Лт 0Л»

using [1: Theorem 378] in the last step.
Now take norms of the sequences in (10). Using the monotonic property of the 

norm, and Lemma 2,

( П )

I I  2  amnXn\\ ^  I /  ä(t)g(Amt)dt\\ s  f  \\ä(t)g(Amt)\\dt =  /  5 ( / ) | | | ( / l m i ) l l  dt;
Я=1 о о 0

here the mth member of each sequence concerned is written instead of the sequence 
itself.

(ii) By (2), for all /> 0,

(12) \\g(Ant)\\ =  inf {k > 0 : 2K < P  ( ^ r ]  s  i};

accordingly we estimate the sum in this for all k> 0  and />-0.

(13, J  Д.,  ( « £ » ) -  J  /  *  ( ^ )  *  -  Д  /  *  ( - T ) *  -
•̂ n-1

s  fо ( « f * ) *  _  /  „  ( i f i t )  r -  d  -  / ,  ( i f i t )  s

(14) r/м;

in (13) we have used the (opposite) monotonies of q> and of g, and at (14) the super- 
multiplicativity of cp. Writing k'=k/(p~1(t~ 1),

using rearrangement invariance in (15), and (9) in (16).
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In the above, к and t are independent positive variables. Since 0<||x||<°° we 
may impose the relation k=k(t)=\\x\\q>~1(t~ 1). This makes k' =  ||x||, so that (16) 
and Lemma 1 give

The required inequality follows from (11), (12) and (17), since they give
«50 OO

(18) \\Ax\\ ^  J  öL(t)\\g(Amt)\\ dt Щ f  ä(t)k(t) dt =
О О

=  /  “ ( O N I Ч> Hí 1)dt = C\\x\\.
О

This proves the inequality in the situation laid down in (i).
(iii) Suppose that amn and xn are still non-negative, but (cf. (i)) that (x„) has no 

decreasing rearrangement; for instance, x„>0 for all but a finite set of n. Let хшГ be 
the rth segment of x, that is,

x„r = x„ for n S  r, xnr = 0 for n >  r.
Since each sequence x r has a decreasing rearrangement, (18) gives, for each r,

(19) II 2  amnX„II =  II 2  amnxm\\ S  C||xmr||;n=1 n=l
here again the mth member of each sequence concerned is written instead of the se­
quence itself. Making Lemma 3 applied to the extreme members of (19) gives
the required inequality.

(iv) Suppose that amn and xn may be complex. For any complex-valued sequence 
.y=(.y„) we have ||.у|| = ||И ||, where |.v| is the sequence ([.?„!). This, together with the 
monotonic property and the outcome of (i), (ii) and (iii), gives

(20)
=  1

= 1112 II lx.„III = C  \\xK

This completes the proof of the first paragraph, the main part, of the theorem.
(v) Suppose that amn and x n are non-negative and that (x„) is decreasing. Then 

g(u) in (9) is decreasing, and the steps in (10), omitting the last, give
oo

0 — 2  amnXn — /  a(t)g(/\mt)dt. 
i=l n

The rest of the argument in (i) and (ii) now applies with a and g replaced by a and g. 
At the end of this (18) becomes

WAXII ^  /  «m xW v-H t-H dt.
0

This proves the second paragraph of the theorem in the case where a,m and xn are
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non-negative. It will be noticed that no rearrangement of a is required. The claim that 
replacement of C by (8) reduces it is a consequence of [1: Theorem 378], because 
<p~l ( i_1) is its own decreasing rearrangement.

(vi) Suppose that amn and x n may be complex, and that (|x„|) is decreasing. 
Then (20) applies, except that use of (i), (ii) and (iii) is replaced by use of (v), and 
consequently C may be replaced by (8). This completes the proof.

Remark. In the theorem it is supposed that (p is both Orlicz and supermultiplica- 
tive. That there are such functions is evident from the example (p(t) = tp with p>  1. 
This example is actually multiplicative; but there are others which are not, for ins­
tance

P̂ + 1
<P(Ű =  with

m m
Corollary. I f  p > \ ,  1„=>0 and Xm =  Z  К  x „/ 2  Л1> r^en/1 = 1 /1 = 1

( Z  =  ~ T  ( 2  U*nV)VP-m=1 P  1 m=1

This is the case of the theorem in which (p(t) =  ip,

a(/) = 1 for 0 < i S l ,  a( t)  = 0 otherwise,
am„ = Х„/Лт for 0 <  n s  m, amn = 0 otherwise.

It is essentially [1: Theorem 332], and includes the original Hardy’s Inequality as the 
case 2 = 1 .
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STRONGLY REGULAR RINGS
C. JAY ARAM (Madras)

1. Introduction

Rings (all of which are assumed to be associative) with no nonzero nilpotent ele­
ments will be called reduced rings. In this note we prove that a ring R with identity, 
is Noetherian strongly regular if and only if R satisfies the following three conditions:
(i) R is reduced, (ii) every non right unit in R is a zero divisor and (iii) 0 is the product 
of a finite number of prime elements.

2. Strongly regular rings

Throughout this paper R denotes an associative ring with identity. For any R, 
the principal ideal (principal right ideal) generated by ‘a’ is denoted by (a)aR. An 
ideal P of R is prime if and only if P ^ R  and aRb^P  implies that a€_ P or b£ P, 
for all a, bdR. An element a f R is said to be a prime element, if (a) is a prime ideal. 
All ideals are assumed to be proper. For undefined terms in this paper, the reader 
may refer to [1] and [4].

If R is a reduced ring, then x y = 0 if and only if yx= 0, for all x,y£R  (see[3]).
Lemma 1. Let R be a reduced ring. For any x, y, zf_R, i f  xyz= 0, then x zy=0.
Proof. Suppose xyz=0. Then (yx)(yz)= 0, so that by hypothesis, (yz)(yx)= 0 

and hence (yz)(yxz)=0. Again since y(zyxz)—0, it follows that 0—(zyxz)y=  
= (zy) (xzy)=(xzy) (xzy)=(xzy)2. As R is reduced, we have xzy= 0. Hence proof of 
the lemma.

Lemma 2. Let R be a reduced ring. I f  a1az...a„=0 (a fR ), then а{1а1а.. ,ain=0 
for every permutation i\,i%, of 1, 2, ..., n.

Proof. The proof o f  the lemma follows from Lemma 1.

D efinition. A nonzero element a£R is said to be an atom if, for any xf_R, 
either xnam = 0 for some n ,m d Z +, or xy= a  for some y£R.

Lemma 3. Suppose R is a reduced ring in which every non right unit is a zero divisor. 
Let xbe a prime element o f R. I f  xy = 0 ( y ^  0), then xR+ yR=R. Moreover у  is an 
atom.

Proof. Suppose xR + yR ^R . Then x+ y  is a non right unit, so that there is 
df R such that (x+y)d= 0 and d^0 . Observe that x d = —yd. We show that 
yRdQ(x). Let a be any element of R. Then by Lemma 1, (x+y)da=0=(x+y)ad\ 
so xad= —yad and hence yadf (x). Since (x) is a prime ideal, we have either y€(x)
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п п
or d£(x). Suppose y€(x). Then y= 2  rixst and so by Lemma 2, y2=y( 2  r i x s i ) =

i = 1 i = 1
n

= ^  ^ ^  =  0. Again since is reduced, it follows that y = 0, a contradiction.
i = l

n n
Hence y(((x). If df(x), then d= 2! aiXbt; so that y d = y ( 2  =0 and

i = 1 i = 1
therefore xd=  0. Since xd= 0, by Lemma 2, a^bid^O  for i= l,2 ,. . . ,n .  Con-

П
sequently 0 = (  2  aixbl)d = d 2. As 7? is reduced, d —0, a contradiction. This shows

i =  1
that xR+ yR = R .

Now we prove that у is an atom. Suppose zy^O  for some z£R. Using Lemma 2, 
it can be easily shown that, zmy"r60 for all n ,m d Z +. Since zy?±0, by above argu­
ment, xR+zyR = R\ so that 1 = xx l +zyyl forsome xl5 y fR -  Therefore y = l- y  = 
=(xx1+zyy1)y = x x 1y+ z(yy1y)= z(yy1y). Hence у  is an atom. This completes the 
proof of the lemma.

A ring R is called regular if for each af R there exists x£R  suchthat a=ax a. 
R is called strongly regular if for every a£R, there exists x€_ R such that a=a2x. 
It is well known that every strongly regular ring is a regular ring (see [1], Theorem 3.2) 
and in a strongly regular ring every one sided ideal is an ideal (see [1], Theorem 3.4) 
and every idempotent is a central idempotent (see [4], Proposition 4 and Corollary 5). 
Therefore by Theorem 9.5 of [2 page 186], we get that in a Noetherian strongly regular 
ring R, every maximal right ideal is a principal right ideal generated by some central 
idempotent. Now we prove the converse part.

Lemma 4. I f  every maximal right ideal o f R is a principal right ideal generated by 
some central idempotent, then R is a Noetherian strongly regular ring.

Proof. First we prove that every right ideal is a principal right ideal generated by 
some central idempotent. Suppose not. Let J^ — {I\I is a right ideal which is not 
a principal right ideal generated by some central idempotent}. By Zorn’s lemma, £  
has a maximal element say I. By hypothesis 7 is not a maximal right ideal. So IczM  
(properly) for some maximal right ideal M  of R. By hypothesis M=eR  for some 
central idempotent. Observe that 1— e^I  and so 7+(l — e)R=fR  for some central 
idempotent f£ R .  Obviously I^eR C \fR = efR . Since /67+ (l —e)R, we have/= 
=  i + ( l— e)a for some /$7 and a£R; so that ef= ei+ e(l—e)a=ei=ie£l and 
hence efRQI. This shows that I= efR , a contradiction. Therefore every right ideal 
is a principal right ideal generated by some central idempotent. Now we prove that 
R is a strongly regular ring. Let a£R. By the above argument, aR=eR forsome 
central idempotent e f R. So a=ea=ae and e — ax forsome x£R. Consequently, 
a=ae=a2x and hence R is a strongly regular ring. Again since R is a strongly regular 
ring, right ideals and ideals coincide (see [1], Theorem 3.4) and hence R is a Noethe­
rian strongly regular ring.

Lemma 5. R is a Noetherian strongly regular ring i f  and only i f  R is reduced and 
for every maximal right ideal M  o f  R, there is some idempotent atom ef R such that 
e$M.

P roof. The “only if” part is obvious. Now we prove the ‘if’ part. Since R is 
reduced, every idempotent is a central idempotent. Let M  be any maximal right ideal
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of R. Choose an idempotent atom e£R suchthat e$M. We claim that M = (l— e)R. 
As e$M  and e is an idempotent atom, it follows that em=0 for every m£M. So 
that, for any m =(l —e)m+em=(\ —e)m, and therefore M Q (l— e)R.
Again since (1— e)R?£R, we get M = (l— e)R, and therefore by Lemma 4, R is 
Noetherian strongly regular.

We characterize Noetherian strongly regular rings as follows.
T heorem . R is Noetherian strongly regular i f  and only i f  R satisfies the following 

conditions:
(i) R is reduced.

(ii) Every non right unit in R is a zero divisor.
(iii) 0 is the product o f a finite number ofprime elements.
P r o o f . The “only if” part is obvious. Now we prove the “if” part. Suppose 

О=аг - a2...an where a/s are prime elements. As each at is a non right unit, there 
exist b f R ( \ s i ^ n )  suchthat а Д = 0 and b ^O  for 1 á iS n . As R  is reduced, by 
Lemma 2, we have (а;)П(й,)=(0) for /= 1 ,2 , ...,« . Also by Lemma 3, (a;)+  
+(bj)=R, so that (a;)=(e/) and (b,)= (f) for some idempotents {<?,}, {/;} E ̂  
( l s /^л ). Observe that e;/j= 0  and f ^ O  for /=1,2, ...,n . Since each et 
is a prime element, е>(/ г= 0  and f ^ 0 for /= 1 ,2 ,. . . ,« ;  by Lemma 3, each f  is an

П
atom. As ( 2  (/•)) +  (ei)=R for every /£{1, 2, n}9 we have

i=1

R = ( 2  W )+ (e 1 , .... en) = ( 2  ( /;)) + (0) = i  ( f) .
i = l  i =  1 1 =  1

n
Without loss of generality, we can assume that for /V / Again since 2  ( f ) ~

i =  1 
n

= R and fiS  are pairwise disjoint idempotents, it follows that ( 2  = R and there-
t=i

n
fore 2 f i = \ .  Now the result follows from Lemma 5. This completes the proof of

i = l
the theorem.

It is not hard to show that the conditions (i), (ii), and (iii) of the above theorem, 
are independent.
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UNIFORM BOUNDEDNESS FOR DELAY EQUATIONS
T. A. BURTON (Carbondale)*

1. Introduction. Let DtzR" be an open set with 0£D and let / :  [0, °°)X D —R" 
be continuous. Then
(0) x '= f( t ,x )

is a system of differential equations. The classical theory of Liapunov’s direct method 
concerns a Liapunov function V: [0, °°)xD —R which is continuous and locally 
Lipschitz in x, together with continuous strictly increasing functions : [0, <=°) — 
—'[0, °=>) satisfying W f0)=0. Two of the main theorems may be stated as follows.

T heorem  0x. I f

(i) W1(\x \)^ V ( t,x )^ W ,( \x \)
and

(ii) L('0)(i, x ) ^ - W f \ x \ )
then x= 0 is uniformly asymptotically stable.

T heorem  02. I f  D = Rn and

(i) W1{ \x \) ^ V ( t ,x )^ W f\x \) ,
(ii) V(a){ t , x ) ^ - W 3{\x\)+M, M >  0,

(iii) Wfr) -*■ °° as r -*■ °°,
(iv) W fU ) =► M  for some U >  0,

then solutions o f (0) are uniformly bounded ( U. B.) and uniformly ultimately bounded 
for bound В (U. U .B.).

When these theorems were extended to delay equations, serious problems were 
encountered which we briefly describe after we present the setting for delay equations.

Let (С, II • II) denote the Banach space of continuous functions tp : [—h, 0] — Rn 
with the supremum norm: ||^|| =  sup |ф(у)| and | • | is any convenient norm on

— A S s S O
R", while h is a positive constant. If 0 and x: f—h, A)-+Rn is continuous, then 
0 ^ t< A  implies that x fC ,  where x,( í)= x(í + j).

* This research was supported in part by an NSF grant with number NSF—D M S—8 521 408.



260 T. A. BURTON

If F: [0, °°)X C—Rn is continuous and takes bounded sets into bounded sets,
then
(1) x ' = F(t,x,)

is a system of functional differential equations with finite delay which satisfies the 
following properties. For each /0ёО  and each cpdC, there is a solution x(t0, <p) 
of (i) with value x(t, t0, cp) which satisfies x,0(t0, cp) = cp and satisfies (1) on 
[t0, fo + a) for some ooO. If x(t, t0, cp) remains bounded, then oc=°°.

If V: [0, o = )x C -[0, oo) is continuous, the derivative of V along a solution of
(1) can be defined by

<P) = limsup[F<7+(5, xt + ö(t, <p)]-V(t, cp)/ő.d-*-0 +

Details may be found in [9], for example. In the same reference one may see the classi­
cal extension of Liapunov theory from (0) to (1). In that presentation we see that in 
extending Theorem 0, to (1), investigators were forced to require that |F(t, cp)| be 
bounded for ||ф|| bounded when V satisfies the relation

Щ<р(0)\)zsv.(t,

But it was noted in [2] that if we ask that

Wi(l9>(0)|) S  V(t, cp) S  W2(\<p(0)\) + Wa(\\\cp\\\),

where |||<p||| is the ZAnorm, then the boundedness of |F(t, cp)| for ||<уэj| bounded may 
be dropped, making a clean generalization of Theorem 0, to (1).

But when it came to extending Theorem 02 to (1), Hale [9; p. 139] lists none at all. 
He complains that, though Yoshizawa [11; p. 206] gives such a generalization, it 
depends on the size of h. We point out the additional difficulty that it requires F(t, cp) 
periodic in t.

In this paper we again use an ZAnorm and obtain a very clean generalization of 
Theorem 02 to (1). That is the content of our Theorem 3. But some progress has been 
made since the presentation in [9] and we now survey those results. To be definite 
here, we first give some definitions.

D efinition. Solutions of (1) are uniformly bounded (U. B.) if for each Bx> 0 
there exists Л2>  0 suchthat [t„s0, ||<p|| S 5 X] imply that \x(t, t0, cp)\^B2. Solutions 
of (1) are U. U. B. for bound В if for each 5 3>-0 here exists T > 0 such that 
[fo^ 0 , ||<р||=гЯ3, t ^ t 0 + T] imply that \x(t, t0, cp)\<B.

An early result by Yoshizawa [11; p. 202] shows that if there is a V with

(i) »i(l<K0)Q s  V(t, cp) S  w2(\cp(0)1)+»',(M l),
(ii) V{1)( t ,c p )^ 0  for M 0)| large, 

and with
(iii) Щ(г) — W3(r) -*-oo as r -►oo, 

then solutions of (1) are U.B.
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Burton—Zhang [8] show that if
о

(0 »i(i4»(o)i) ^  v o , <p) s  щ \ч > т )+ т  ( /  ^ 4(i^ ( í )i) ds) ,
- f t

(ii) *£)(/, <p) si - fF 4(|<p(0)|)+M , м >  о,

(iii) WAO, WA г) -►со as г
then solutions of (1) are U.B. and U.U.B.

This result has two main faults: Щ must be the same in (i) and (ii), and Щ in (ii) 
must be unbounded.

Burton [4] proves that if there are positive constants ц, U, ß, and C with

(i) 0 ^ v ( t ,< p )s W A M ) ,
(ii) ^ - fi \F ( t ,(p ) \-c  for 1 ф (0)I =  £/,

(iii) V'(t, <P) = ß if l<p(0)| <  U,
then solutions of (1) are U.B. and U.U.B.

Burton—Hatvani [6] show that if M > 0 and U>0 with
о

(i) И'ЛИО)!) =? V(t, cp) S  W2(\cp(0)\)+W3 { f  |ф(л)| ds) ,
- f t

0

(ii) <p)^~  [и̂ 4(|ф(0)|) + W 5 ( f  \cp(s)\ ds)]+M,
- f t

(iii) W AU )> M , WAV) >  M, WAr) * ° о as r
then solutions of (1) are U.B. and U.U.B.

Burton—Huang—Mahfoud [7] show that for general delay equations some type 
of fading memory is required in the functional V. The pair

t

F ( t ) S a ( i ) +  f  a(s)ds, V '( t)= — tx(t)+l 
0

has an unbounded solution V(t). Fading memory can take the form
t

V(t)Soc(t)+ f  <x(s)ds,
t - h

for example.
While Theorem 3 is our most direct generalization of Theorem 02 to (1), the other 

results require much less on the growth of W .
2. Boundedness. The result of Burton—Hatvani just quoted asks that 

V ' = — [lT5 ( /  |v (j) |* ) ]  + FF4(|?(0)|)+M
- f t

making the derivative, in fact, a function of V. We begin by separating this into two 
results which overcome that objection.
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In most examples the integral of x, appears in V (and frequently in V'). We 
express that in Theorem 1 by the L 2-norm, denoted by |||x(|||, and in Theorems 2 and

t

3 by J  |x(i)| ds. These, and many others forms, are completely interchangeable.
t - h

T heorem 1. I f  there is a continuous functional V : [0, ~ ) x C —[0,» )  with
(i) Щ\ср(0)1) S V(t, cp) ^  W2{\q>m) + Wz(\\\(p\\\),
(ii) V'(t,(p)^-WÁ\\\<P\\\) + M, M >  0,
(iii) IfiO' ) - * - “ 3 ns /'~>oo, Wi (U /2)^]2M  for some U>0, then solutions o f (1) 

are U.B. and U.U.B.

Proof. Let B ^ U /y l i  be given and set

P  =  W2(U /fh)+ W 3(U) 
and _

P* = I V M  + W ^ B ^ h ) .
Then we will show that

B2 =  W ffP *  +4Mh+\]
and

В =  W il [P+4Mh+\].
Let i0 &0, ll<p|| Ij=[t0+jh, t0+(j+l)h], x(t)= x(t, t0, (p), and V{t) =

= V(t,x,).
If V(t)<P*  for all t ^ t 0, there is nothing to be proved. Thus, we let 4  be the 

first value of t past t0 with V(t^) = P*. (This is the place referred to later as the 
beginning of our argument.) Now t f l k for some k. Since V \ t) s M ,  it follows that

V (t)^P * + 4 M h  on Ik* = 4 U 4 +1 U/*+1 U 4 +3.

I. Suppose there is a first t2£ lk +2 with |||x,J|| ^U . Then elementary properties 
of the integral show that |||x,||| SC/ / 2  on an interval Ik of length h/2 lying in Ik* = 
= Ik+1UIk+2UIk+3. Thus, V '( t ) s  — Wi (U/2) + M  on Ik and"so V decreases by at 
least [ll^(C//2) — M ]h /2 ^ \ \Mh/2>5Mh units on Ik. Thus, at the right end-point of 
•4+3 we have V(t)< P* — Mh and V(t)< P* on Ik+i. The argument begins all 
over again with the search for the first ?! past Ik+i with F(4 )=P*.

II. Suppose |||x(|||<C/ on all of Ik+2. This means that there is a t$£lk+2 with 
\x(tH)\<U/fh- otherwise, \x { t)\^U j]fi on all of 4  + 2 so that at the right end-point 
of 4 + 2  we have |||x,|||^C/. Hence,

V (?o) ^  W2(JJ\{h) + WfU) = P ^ P \

and the argument begins again with /„ replaced by t f  
Because of (I) and (II) it is true that

fVk(}x(t)\) S  V(t) <  P*+4Mh+ 1 for t s  t0

and this is the uniform boundedness.
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For the U.U.B., let В3> 0 be given, t0sO, |]<p||^.83, x(t)= x(t, t0, cp), V(t) = 
= V (t,x t), and V{t0)^ W 2{Bs)+W2{B2fh )^ P * * .  If P**^P, then the U.B. argu­
ment yields \x(t)\<B for t ^ t 0. Thus, we suppose P**>P.

Arguing as before, either F ( i)< P  at some point in [r0, г0+3/г] (so that V(t)<  
<P+4Mh + l for t ^ t 0 + 4h) or V (t)^ P  on [t0, t0+3h], If there is a t2 in that 
interval with |||x(J ||& i/  then V decreases by at least 5Mh units and increases at 
most 4M/i units on [/„, t0 + 4/;], so that V(t0+4h)<V(t0)—Mh. If P ^V (t)  on 
[t0, t0 + 3h] and there is no t2 with |||jc(|| | |SU , then \x (t) \^U fth  on all of 
[t0, t 0+3h], a contradiction. Hence, there is a t£[t0, t0+3h] with V(t)< P  or 
V(t0 + 4li)<V(t0) — Mh. If N>P**/Mh, then there is a t£[t0, t0+4Nh\ with V(t)<

so that V(t)<P+4Mh + l for t ^ t 0+4Nh. This completes the proof.
The proof of the next result centers on three lemmas which go well beyond Theo­

rem 2, which is itself simply an example illustrating how the three lemmas can be 
satisfied. When V '^  — W4 (\x\) + M  with W4 convex downward, then the three 
lemmas are readily satisfied without the seemingly complicated form of (iii) in Theo­
rem 2. That convexity is assumed in Theorem 3 and it results in a clean generalization 
of Theorem 0, to (1); but the price is moderately high since convexity requires that 
Ш г)  ->-oo as г—►оо (among other things). Theorem 2 reduces the requirement 
through (iii) which allows us to construct a convex function under W4 on short inter­
vals.

Properties of convex functions and Jensen’s inequality are found in Natanson 
[10; pp. 36—46]. Other applications of Jensen’s inequality to stability theory are found 
in [1] and [5]. The three properties we use are:

(a) W  is convex downward if

W ([h+tJ/2) S  [W(h)+W{Q]ß,

(b) If W  is convex downward, then

t 1
f W  f  I-v(t)| ds/hj,

t - h  t —h

and
Г

(c) If W  is increasing, then J  W(s) ds is convex downward.
о

Theorem 2. Let V : [0, °°)xC-<-[0, °°) be continuous and suppose there are po­
sitive constants U< / 0, E/-=/0/i, and M  with

о
(i) JPi(HO)l) s  V(t, cp) =i W2( \ ( p m ) + W 3 ( /  Ip COI a ) ,

- h

Ш г)  °° as г-*-«»,
(ii) F(í)(í, q>) Ш -\У 4(\<рЩ)Л-М, Wt (U )^ 5 M ,
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(iii) / 0 — ^ implies that
j

f  Wfis) ds/Wf'[W2(U)+5Mh + U'fiJh)] >  5M.
«

Then solutions are U.B. and U. U.B.
The proof proceeds by way of three lemmas.
L emma 1. Let J  be defined by №1(J) =  W'2(U) +  W3(J0h) +  5Mh and suppose 

that x(t) is a solution o f  (1) with |x(Y,)| =  U and |.v(h)| =||.vi2|j with t1d[t2—h, /»]. 
I f  v(t) = V(t, x t), then V(t2)S V (ti —h)—4Mh.

Proof. Suppose first that V(t1) ^ V ( t2)+5Mh. Then 

Жх(|х(Ь)|) ^  V ih) == V(t2)+5Mh ш W2(U) + W3 ( /  |x(í )| ds) +5Mh.
t t - h

Since |л:(Ь)|^/, we have X ~  J  \x(s)\ds^J0h. Now for 0S/-Ä|x(tj)| define
t2-/i

Щ by

Wfir) = f  [WfisfiUitfiWds.
0

Since Щ is increasing we have
W5(r) S  Wi(r)r/|x(fi)| ^  IVfir).

Moreover, W& is convex downward. Hence,
*2

V(t2) — V(t2- h ) ~  f  IF4(|x (í )|) ds +  Mh ^
t2 — h

h *г
^ V ( t 2- h ) ~  f  W5(\x(s)\) ds+Mh ^ V ( t 2-h ) -h W 5[ f  \x(s)\ ds/h) +Mh =

U ~ h h - h
(by Jensen’s inequality)

X/h

= V(t2-lr )-h W fX /h )  + Mh = V(t2 — h) — h [ f  Wfis) ds/Uitfi] +Mh +
0

X/h

S  Mh + V(t2 — h) — h [ f  Wfis) dsjW f1 [Wt(U) + W f X) v5Mh\ sS
о

sá Mli+V(t2 — h) — 5Mh =  V(t2—h)—4Mli.
The last conclusion is based on V f ^ ^ V i t f i  + SMh. If F (h )^F (/2) + 5M/?, then 
V(t1) s V ( t2—h) + Mh since V '( t)^ M  and so

yielding 

as required.

V(t2-h )  + Mh ~  F(fi) 3s V(t2) + 5Mh 

V(t2- h ) ^ V ( t 2) + 4Mh,
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L emma 2. Let J be defined in Lemma 1 and let x(t) be a solution o f (1). Denote 
V(t) = V(t, xt) and suppose there is a t with

V(t) ё  W2(J) + WfiJh) tL  P0;

then there is a pair t2, t2—h£[t—2h, t+h] with

V(t2) tS V (t2-h )-4 M h .
P roof. Either

(a) ix(/)| — d
or

(ß) f  |*C0l ds ё  Jh.
t-h

If (a) holds, then because of J>U, either
(ai) |jc(j )| =- С/ on [t, t+h] so that V(t+hi) Ш V(t)—4Mh, 

or
(aii) there is a first t2€[t, t+h] with |x(/2)| =  U

so that by Lemma 1 we have the desired conclusion.
If (ß) holds, then there is an £б[Г—h, /] with

f  \x (s ) \d s = \x (0 \h ^ J h ,
t-h

so that (a) holds for t=i; and, again, the desired conclusion is obtained. This proves 
Lemma 2.

L emma 3. I f  x(t) is a solution o f (1), V(t) = V(t, x,), and P ^ P 0=W2(J) + 
+ W f Jli), then the inequality V(t)< P  on [/„, t0+h] implies that V (t)< P  for all 
t^to-

P ro o f . If this lemma is false, then there is a first /x > tu with У(1г) = Р. Thus, 
|x (ii) |< J  because F '(b)sO . Hence,

r'J  \x(s)\ ds = \x(£)\h ^  Jh for some ^ ( h —h, /х);
*i-*

this yields |х(<!;)| ёУ. Since F (£ )< P  and F(i1) = P, there exists f26[í, b] with 
F '(r2)> 0 so that |x(r2) |< t /  and there is a A2€[<i, b] with \x(t2)\ = U. By Lemma 1, 
F  decreases by at least 4M/i units on [t2—h, /J. But V(t2—h)<P  so

V(t2) ^  V (t2 — h)—4Mh <  P —4Mh.

b
This means that F (b )< P  because V '(t)^M . Hence, J  \x{s)\ds<Jh and F (t)< P

tx — h
for all /ё /„ . This proves Lemma 3.
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C o ro lla ry . Given Вг>3, ?0йО, i f  \\(p\\sB1, then for x(t)= x(t, t0, q>) we
have

l*(OI <  W r 'iW fB ^ + w f t i ^ i - n  áfL  B2,
so solutions are U.B.

To complete the proof of U.U.B., let B3> J  be given and for Г0ёО and ||<p||S 
^ B 3 let x(t)= x(t, t0, cp) and V(t) = V(t, xt). By Lemma 2 if V (t)^ P 0 on an 
interval of length 3h, then V decreases at least 4Mh units, while increasing at most 
3Mh units. Hence, there is a T = T(B S) such that V(t)<P0 at some point 
h€|/o, t0+T\. Thus, V(t)< P0 + Mh on [h, h+h]. By Lemma 3, F (7 )< P0 + Mh 
for all t ^ t 0 + T+h so that

|x(í)| S  W f^Po+M h) ~  B.
This completes the proof.

In the following example, when a function is written without its argument, that 
argument is t.

E xa m ple  2. Let f  (x)=x/(l +  |x|) and consider the scalar equation 
(3) x'(t) =  — (l + tsin2/)/(x) — a(t)f(x(t — h))+p cos t
where a(/) is continuous on [0, со), \a (t)\^k , &<1—a,&>0, p>  0, a/6>/>, and 
ka/3h>5p. Then the conditions of Theorem 2 will be satisfied when we define

V(t, xt) = \x \+ k  J  |/(-\'(.v))| ds
t - h

so that
v v ,  x.) ^ - \A x ) \+ k \f( x ( t -h ) ) \+ k \ f( x ) \ - k \ f ( x ( t -h ) ) \+ p  

tá-cc\f(x)\+p = - W i (\x\) + M.

Here, W1 = W2=(l/k)Ws and W4(r)=af(r). Thus, if 17=2, then ILj(£/) = 2a/3>
J

>4p. For large/, J  lfi(s) ds^aJ/2  so that for fixed U, M, and h, the left side of (iii)
Ü

in Theorem 2 exceeds /са/2/z for large/ .  And ky./3h>5p so (iii) is satisfied. Hence, 
solutions are U.B. and U.U.B.; yet, none of the cited results apply to this problem.

T heorem  3. Let V: [0, o°)xC —[0, ■») be continuous with

(i) J*í(|p(0)|) V(t, cp) X W2(\(p(0)\) + W3 { f  \<p(s)\ ds) ,
— h

lVi(r)~+°° as /•-*• °°, and
(ii) ср)^-Щ (\ср{Щ  + М

where W4 is convex downward and 0. Then solutions o f  (1) are U.B. and U.U.B.
P r o o f . Following Lemma 1 we first note that convex implies that Щ(г)-+°° 

as г -«о ; hence, there is a U with W^(lJ)=bM. Next, we note that there is a / 0>0
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such that J= J0 implies that hWi (J)>5M. Define J by W1{J)=W2{U)+ 
+ W3(J0h)+5Mh.

Suppose there is a solution x(t)  and a t2 with \x(t2)\ = U, [|x,J| =
= |x(71)| with t2—]v^1-p^t2. If V(t1)^V(to)+~5Mh, then

IVfJ) =5 Щ(|л-(/,)|) зё V(h) s= V(Q+5Mh ^

*2
з» lV,a/) + lV:,( f  \x(s)\ds) + 5Mh

t2 — h

so that J \x(s)\ds^Juli. Thus,
f2 — h

F (/ä) § K ( / r A) +  M / i -  /  W ^ x f s ^ d s  =5
f9 —/i

S  V(tz— h)+Mh — hWi ( J  |a (y)| f/i/h ) =

~  V(t2 — h) + Mh — hЩ(/„) 35 V(tt -h )-4 M h ,

as claimed in Lemma 1. This depends on If V(t1) ^ V ( t2)+5Mh,
then V(t1)S V (t2—h) + Mli and so F(Aj—hí + M / i s F ^ & F ^  +  SM/z or V(t2) ^  
— V(t2—h)—4Mh, as required. Hence, for these choices of U,J0, and J, then Lemma 
1 is satisfied.

We now consider Lemma 2 and suppose that V (t)^W 2(J) + W3(Jh) = P0. 
We must show that there is a pair t2, t2 —h€\t — 2/i, t+h] with V(t2)= V(t2—h) — 
—4Mh. In fact, the proof is identical to that of Lemma 2.

Lemma 3 claims that if V (t)< P  on [f0, t0 + h], then F (?)< P  for all t ^ t 0. 
Again, the proof is precisely the same as the one already given.

Note added in proof (January 2, 1991). The final version of reference [6] did 
not contain the material on U. B. and U. U. B. mentioned this paper because of 
the length.
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SOME PARTITION RELATIONS FOR IDEALS ON PxX
C. A . J O H N S O N  (K ee le )

The problem of lifting theorems about a regular uncountable cardinal x to an 
analogue about PxX has always been a troublesome one, especially in the case where 
ideal theory is concerned (see [19]). In this paper we develop techniques whereby some 
partition relations for ideals on PxX may be proved.

In §1 we introduce the class of seminormal ideals on PxX and in §§1, 3 and 5 
show that for ideals belonging to this class, the distributivity of the quotient algebra is 
strongly related to some ideal theoretic partition relations. In particular we prove 
(Theorem 5.3) that for a normal ideal I  on PxX, the partition relation 7+ -<-(/+)\ may 
be characterised in terms of distributivity, thus extending a result of Menas [15].

We also consider some well known ineffability properties of PxX. For many of 
our results the cardinality of Px X will play an important role, and hence in §2 we 
adapt a theorem of Solovay [17] to show that if с Д ё х  and x is A-Shelah then 
X<x=X.

In [11, 12] we introduced a property of ideals on uncountable cardinals, WC, 
which may be regarded as an ideal theoretic analogue of the “strong inaccessibility 
and tree propert y” equivalent of weak compactness. In § 3 we introduce an analogous 
concept for ideals on Px X, and show it to be related to NShxX (the ideal induced by the 
Я-Shelah property) and mild Я-ineffability. An interesting corollary of our results here 
is that if cfA^x, x is Я-Shelah, A£NShxX and ( f x\x£A) is a sequence such that 
(V x£ A )(fx: x-»x), then there is a function f :  X--X suchthat (У y£PxX)({xdA\x^>y 
and f x\y = f  \y}£NShxX). We also prove that the property WC is related to partition 
relations of the form I +-*(I+, x)%.

In §4 we extend results of Carr [6a], Kunén [14] and Baumgartner [1] to show that 
ineffable and almost ineffable subsets of PxX may be characterised in terms of regres­
sive partition relations.

§0. Notation and terminology

Throughout x will denote a regular uncountable cordinal and X a cardinal ёх . 
PxX = {xczX ||x|<x} and X<x is the cardinality of this set. For x£PxX, x= {y£PxX |x c  
cry}, х1=хП х and x denotes the order type of x.

For XQPxX and n<co, [Z]"={(x1, x2, ..., х„)€Л'"|0^д:1с х 2сг...с;д:„} and 
[T]"< =  {(x1,x 2, ..., x„)6[4r],,|V lS i< n , |х ,|< |хП хг+1|}. If f\[X ]n^X , then (i) /  
is said to be regressive iff for each (хг, x2, ..., x„)€[T]", f ( x y, x2, ..., and(ii)
a set НЯ;Х is said to be homogeneous for/  iff \f"[H]n\ = \. T is said to be unbo­
unded iff x(LPxX)(XC\xA$). Throughout Ix) will denote the ideal of not unbounded
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270 С. А. JOHNSON

subsets of PxX and /, a proper, non principal, и-complete ideal on PxX extending Li- 
Furthermore I + = {X <XXPxX\X$_I} and I* denotes the filter dual to /.

If A £ l+ then ЦА = {ХЯ^РхХ\ХПА£1} and an /-partition of A is a maximal 
collection W^XP(A)C\I+ suchthat ХГ) Y £ l whenever X, Y£IV, XV T . The /- 
partition W is said to be disjoint if distinct members of W are disjoint, and in this 
case for x£ U W, W (x) denotes the unique member of W containing л\ If W and T 
are /-partitions of A, we say W  refines T  (and write W ^ T )  iff for each X£ W there 
is a Y£T  such that XQY.

/is said to be (/r, v)-distributive iff whenever A £ l+ and (lF.|y is a sequence 
of /-partitions of A, each of cardinality Sv, there is а В£Р(А)Г\1+ and a sequence 
(Xy\y<fi) such that for each X .f Wy and B - X yf l .  (Hence /  is (/(, redistri­
butive iff the quotient algebra P(PX A)// is (p, v)-distributive in the usual sense.)

/is  said to be normal iff whenever A fJ + and f :  A ^X  is regressive, there is a 
В£Р(А)Г\1+ such that f \B  is constant. NSxX denotes the non stationary ideal on 
Px X and

SNSxX = {X  <= PxX\(3f: X  -* X) ( /  is regressive and Va <  X, / -1({а})е/хЛ)}.
Clearly all these conceps could be similarly defined for Px A where A is any set of 

ordinals of cardinality &и.

§1. Seminoimality

A simple but important fact concerning /-partitions is that (by и-completeness) 
any /-partition of cardinality S n  has a disjoint refinement (see for instance [10, 
Theorem 1.4.1.]). An interesting intermediate between и-completeness and normality, 
which enables us to obtain a similar results for /-partitions of carchnality ^X  is the 
following.

D efinition 1.1. / is said to be seminormal iff whenever A £ l+, /« A  and 
f :  A-*p is regressive, there is a B £P (A )f]I+ such thatf  \В is constant.

Seminormal ideals may be regarded as А-complete in that
Proposition 1.2. I f  I  is seminormal then P(PxX)/I is X-complete.
Proof. Given {Аа\х ^р ^ Х }^ Р (Р хХ) then by seminormality, in P(PxX)/I, 

[{х€Р*А|Зае/1 Пх, x£ Aj] = V{[AJ|a</i}. □
Lemma 13 . I f  I  is seminormal, A f J + and W А Р(А)Г\Т+ is predense below A in 

I + and of cardinality SA, then there is a disjoint I-partition o f A, T, o f cardinality s /  
such that (4 X£T)(3YeW){X<jAY).

Proof. Suppose W={Ya\ix<pSX} then by induction on a< /i define Xa-= 
=  {х£Га|а£х and V/?<a, x^X ß} and let T={Aa|a*=/t andZa£ /+}.

Clearly distinct members of T  are disjoint and every element of T  is contained in 
some element of W. Suppose B£P(A)C\I+ and a is the least ordinal such that 
B(3Ya€ l+. If ВГ\Хх£1 then {х€/?П FJ 3/?<a, x£X ß}£ l+, and hence by semi­
normality (3ß^a)(B C \X ßc j +), contradicting our choice of а. □

Lemma 1.3 enables us to push through some well known arguments concerning 
ideals on и. For instance
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T h e o r e m  1.4 (cf. [10, Theorem 1.4.1]). I f  I  is seminormal and X+-saturated then I 
is precipitous.

We leave the proof to the reader.
In [3, p. 59] Baumgartner, Taylor and Wagon showed that (for an ideal J  on x) 

the partition property /  + ->-(/+, со+ 1)1 is related to weak selectivity and weak p- 
pointness. Using seminormality we may obtain a PxX analogue of this result. First the 
PxX analogues of the notions concerned.

D e f in it io n  1.5. (a) /  is a weak /»-point (weak (/-point) iff whenever A fJ + and 
{Ax\xZA}QP(A)C)I (P(A)i]IxX), there is a B£P(A)C\I+ such that for each x£B,
ВС\АхГ)хС.1хХ(=®)-

I  is weakly selective iff /is  a weak /»-point and a weak (/-point.
(b) If P, Q, RQP(PxX) and n<co, then P-*{Q,R)n2 denotes the assertion 

“whenever X£P and / :  [X]n->-2, either there is a Y(Q  homogeneous for 0 or a Z f  R 
homogeneous for l". If oc^x and R={ZQPxX\ the order type (with respect to c )  
of Z is a}, we write P-*(Q, a)!], and if Q=R we write P-*(Q)

(c) /is  weakly lean iff for each A d l+ there is a B£P(A)C\I+ suchthat |B|=A 
(it is easy to show that if /?€/+я then |Z?|sA).

T h e o r e m  1.6. Suppose I  is seminormal and weakly lean. Consider the following 
assertions:

(a) /  is weakly selective.
(b) /+ - ( /+ ,  сот 1)5.
(C) /  + - ( /  + , 0 3 ) \ .
(d) I  is a weak p-point.
Then (a) — (b)-*-(c)-»(d).
P r o o f . (a)->(b). Suppose A £ l+ and / :  [A]2-*2 is a function having no homo­

geneous set for 0 i n /+ . Since / is weakly lean we may assume that |T|=A, and for 
each x£A  let Ax= {yd A f)x \f(x , y) = l}.

Define a sequence of /-partitions of A, (W„\«<co) such that ...
by induction as follows. Let Щ, = {А}. Given W„ and X(fVn, {Xf)Ax\x£X  and 
XC\Ay0 +} is predense below X  in /+ (for if Y£P(X)O I+ is such that (Vy€F) 
(YDAyCl), then by weak selectivity there is a Z f  P(Y)P \I! such that for each 
(y, z)e[Z]\ z iA y, and so Z  is homogeneous for 0), and hence by Lemma 1.3 we 
may find a disjoint /-partition of A, W„+1 refining W„ such that whenever Y£Wn+1, 
ATIV„ and YQX, there is an x£X  suchthat YQ A X.

Since each Wn is an /-partition of A, A — \JW„kl, hence by ^-completeness, 
(J [A — UWn]= A — П U Wn£ l  and in particular p| UWB?*0. Pick x€ f) U lVn,

И -С О ) И < 0 )  И -C O ) n  <  f t)

then since W0 ..., W0(x)^JV1(x)^W 2(x )^ ... and for each n<co there 
is an x„£W„(x) suchthat Wn+1(x)QAXn. Clearly {x„|n<cu}U{x} is the required 
homogeneous set for 1.

(b) -»-(c) is trivial.
(c) ->-(d). Suppose A £ l+ and {Ax\xCA}^P(A)f)I. Since I  is weakly lean and 

extends Lx we may assume that \A\=X and y4^{0}. Let c: X—{0}-»A be a bijec- 
tion and for each x£A  let f ( x )  be the least ordinal a£x—{0} such that x£A cM; 
f ( x ) = 0 if no such a exists. Define g:[A]2-+2 by g(x,y) = 0 iff f ( x ) s f ( y ) ,  then
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since / +—( / +, w)| there is а B£P(A)C\I + such that for each (x, y)£[ß]3, / ( x ) s  
=f(y)- Suppose ß£X — {0}, c(ß)=x, say, and B f ] A f I j x, then for each y£B 

f{ y )^ f{ z )S ß  whenever г£ВГ\АхГ\уГ\{$}. But then by seminormality there is a, 
C£P(B)C\I+ suchthat f \ C  is constant, hence f"C = {  0} and so for each а£Я--{0}, 
С П Ac(x) П {«} = 0. This proves the weak p-point property. □

As in [11], distributivity is related to partition relations.
T heorem  1.7. Suppose I  is seminormal, weakly lean and t\ is a cardinal, ;/<x. 

Consider the following assertions:
(a) I  is weakly selective and (/<, /^-distributive for each /го /.
(b) / + - ( / + ,  4 + 1)1.
(c) /  + - ( /+ ,  I,)*.
(d) I  is (u, XYdistributive for each it <  и.
Then (a )-(b )-(c )-(d ) .
The proof of (a)—(b) is similar to that of Theorem 1.6 (a)—(b), using the distri­

butivity of I  to continue the construction of the /-partitions (B£|ao/) at limit stages. 
The proof of (c)—(d) is similar to the corresponding proof for ideals on x ([11, Theo­
rem 7]) using Lemma 1.3.

§2. The Я-Shelah property

The following inelfability property of I f f  was introduced by Carr [4] as the PxX 
analogue of a combinatorial equivalent of weak compactness due to Shelah [16]. Let 
NShxX be the set of all X f P xX which do not have the property “for any sequence 
( f x\x£X) such that ( \/x d X )( fx: x —x), there is a function / :Л —Я such that 
(Уу£РхХ) ({x£_XC\y\fx\y = f  1у}€/хл)”- is said to be Я-Shelah iff PxX$NShxX, and
in this case Carr [4, Theorem 2.3] showed that NShxX is a normal ideal on PxX. In this 
section we wish to prove (Corollary 2.7 below ) that if cfX S x  and x is Я-Shelah, then 
Я<*=Я.

If A is a set, a function F:mX->-X is co-Jónsson for X  if (V YQX)(\Y\ =  \X\ — 
— F"01 Y=X). Erdős and Hajnal [8] showed that every infinite set has an co-Jónsson 
function and Solovay (see [17] ) used this concept to show that if U is a normal mea­
sure on PxX and Я is regular, then the function (sup (x)\xCPxЯ) is injective on a set 
in U. We first show that Solovay’s proof extends to yield the following.

Theorem 2 .1. Suppose X=fi+ and x is X-Shelah, then the function (sup (x)|x€ PxX) 
is injective on a set in NShx) .

Proof. Let F: “Я—Я be an co-Jónsson function for Я.
Lemma 2.2. {x£PxX\V ge"x, F(g)£x}£NSh$x.
Proof of Lemma 2.2. Suppose not then A = {x£PxX|хзсо and 3gx€ax, 

F(gx)$x}£NSh+x. For each x€A  pick g f wx  suchthat F(gx)$x, then by the Я- 
Shelah property there is a function / :  со—Я such that В = {x£A\ gx = /  } £ I f . But then 
for each x£B, F (f)= F (g x)$x, contradicting B f l f .  □

Lemma 2.3. {x£ PxX\F\c>x  is an co-Jónsson function for x}£NSh*x.
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P ro o f  of Lemma 2.3. Suppose not, then by Lemma 2.2, {хС/^АКЗос/л:) 
(3 ö xg x ) ( |ű J  =  |x| and aAF"»ax)}dNShix . By normality of NShxX, there is an 
a<A suchthat A = {x£Px A| 3axQx, |n j =  |x| and a.^F"ma^^N Sh ix. For each хвА  
let ax Q x  witness that x£A  and f x: x-+ax be a bijection. By the A-Shelah property 
there exists a function / :А —A such that (^уС.РхХ) {{xCAC\y\fx\y = f\y } 0 £ x). 
But th e n /is  injective and so there exists an j€ “(im (/)) such that F (s)= a. Let 
j={y<A|/(y)€im(i)}, then у is countable and so there is an x£AC\y such that 
f x\y = f \y . Hence sCl®(im (f x)) = a,ax contradicting F(j) =  a$ F"°‘ax. □

L em m a 2.4. {x^PxX\x=(xr\y)+}£N Shlx.

P ro o f  of L emma 2.4. Suppose А = {х£РхЦ х<(хГ\n)+}dNShtx. For each 
x£A  let f x : х -^х П/í be injective, then applying the A-Shelah property yields an 
injective function contradiction.

Suppose {xiPx/.\x>(xC\p)+}£NShix, then by normality of NShxX there exists 
a у such that /i<y<A and {x£PxX\xr\y=(xf)ii)+}(LNSh+x. However if g'.y-^y. 
is bijective, then by normality, {x^PxX\g"xC]y=xC]fi}^NSh*x; contradiction. □

As in Lemma 2.2 we may also prove.
L em m a  2.5. {x^PxX\x is closed under co-limits}^ NShxX.
The proof of Theorem 2.1 is now similar to that of [17, Theorem 3.4]: Let X= 

= {x£PxX\x is regular, 3c>cw, x is closed under co-limits and F\ax  is ю-Jónsson for 
x}, then X£NSh*x. Suppose x, y£X  with sup (x)=sup (y)=c>. As Зс, у are regular 
and л: and у  are closed under ю-limits sup(xHy)=<5 and hence |х| =  |хПу| = |у|. 
But then by the co-Jónsson property, x= F "<0(xC\y)=y. □

C o ro lla ry  2.6. I f  A=/i+ and x is X-Shelah then X<x=X.
P r o o f . By a result of Carr ([5, Proposition 1.2)], x is strongly inaccessible and 

hence if A£NSh*xX with \A\=X, ihcn \PxX\ = \\J{P(x)\xdA}\^2<x-\A\=X. □
C o ro lla ry  2.7. I f  c fX ^ x  and x is X-Shelah then X<x=X.
P r o o f . The case for successor cardinals is proved in Corollary 2.6, hence suppose 

A is a limit cardinal. By a result of Carr ([5, Proposition 1.1]), x is /i-Shelah whenever ц 
is a cardinal such that and hence cfX^x and Corollary 2.6 yield |ilA| =
= |U {i^+ |x^<A }|=A . □

§3. WC Ideals

In [11, 12] we introduced a property of ideals on x, WC, which may be regarded 
as an ideal theoretic analogue of the “strong inaccessibility and tree property” equi­
valent of weak compactness. The following seems to be the natural Px X analogue of 
this notion.

D efinition 3.1. For g.sX, J is ( /, v)~WC  iff whenever A £ l+ and (Wy\y<ii) 
is a sequence of /-partitions of A, each of cardinality Sv, there is a sequence 
(Aylyc/i) such that for each y</i, XyC.Wy andforeach yCPxX, 1Л{Ху\у£у [T/i}£/+.
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In [12, §3] we mentioned that if x is weakly compact and /  is a normal ideal on x, 
then /  is WC (in the sense of [12]) iff /  extends the IJ\ -indescribable ideal on x. Ana­
logously we have.

T h eo rem  3.2. I f  Px 2 carries a normal (2 ,k)-lVC ideal I, then x is k-Shelah and 
/ i  NShxX.

P r o o f . Suppose A ( f + and ( f x\x£A) is a sequence such that (Vx£A) 
(f x :x-+x). For each a, g£k let X ‘ = {x^AC\{ót}\ f x(at) = o), then by normality, 
Wa={Xg\Q<k and X®£/+} is an /-partition of A. Since I  is (2, k)-tVC there is a 
function /:2->-2 such that for each y€Pxk, П {Т /(а:)|а£у}£/+. In particular, 
{х£АС\у\/х\у=/\у}£1+1. □

Before we can prove the converse we need the following preliminaries, the first of 
which may be regarded as the Px 2 analogue of [11, Theorem 2].

T h eorem  3.3. Suppose I  is normal and p< x then I  is (p, 2)-distributive iff whe­
never A(U+ and f :  A "2 issuchthat (Vxc A — {0})(/(x)é'bí), there is a BtP(A)D  
П /+ such that f  \B is constant.

P r o o f . (-*-). Let A and / b e  as given. For each oc< / j and £><2 let =  
= {x£ A \f (x)(a) =  <?}, then by normality lVx={X£\g<k and X££l+} is an/-partition 
of A. By (g, 2)-distributivity there is a set B£P(A)C\I + and a function g: 2 such 
that for each a< /j, B —X ^ ^ I ,  and hence by x-completeness, C =  П {Т|(°')|а</(}£/+. 
Clearly for each x£C, f(x )= g .

(-<-). Suppose A d l+ and (Wy\y<p) is a sequence of /-partitions of A, each of 
cardinality s2 . By Lemma 1.3 we may assume that each Wy is disjoint. Let h : 
U {Wy\y<n} ^ 2 be injective, then by ^-completeness, B = {x£A\Vy<p, x£ UW., 
and h(lVy(x))€x\€(I\A)*. By hypothesis there is a g (/2  such that 
{x£B |Vy<g, Wy(x)= h~l(g{y))}^I+, and hence П{/г_1(^(у))1у< ^}€2+, thus 
proving (p, 2)-distributivity. □

C o r o ll a r y  3.4. ( c f  k^x ). I f  x is k-Shelah and I  is normal and extends NShxX, 
then I  is (p, 2)-distributive for each p <  x.

P r o o f . Using Theorem 3.3, suppose p<x, A £ l+ and / :  A —^k issuchthat 
(Vx£A  — {0})(/(лг)£"л:). By Corollary 2.7, 2" = 2 and as in the proof of Lemma 2.2, 
if c: "2-*-2 is bijective then {xdPxk\c"'1x1^x}£NShxXQI*. Hence

{x£A \c(f(x)X x}el+ ,

and by normality/is constant on a set i n / +. □
L emma 3.5 (Carr [6], 2<x = 2). I f  x  is k-Shelah and c: Pxk-+k and b : 22—2 are 

bijective then {x£Pxk\xx is an inaccessible cardinal, c"PXxx —x andb"x2 = x}£NSh*x.
T heorem  3.6. ( c f  2ёх). I f  x is k-Shelah and I  is normal and extends NShxX, then 

I  is (k ,k)-W C .
P r o o f . Suppose A ^ I + and (Wy\y<k) is a sequence of /-partitions of A, each 

of cardinality S2. By Lemma 1.3 we may assume that each Wy is disjoint. By Corol­
lary 2.7, 2<x=2 and by Lemma 3.5, if c: k-*Pxk is bijective then
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В =  {xdPxA\xx is an inaccessible cardinal and c"x =  PXxx}dNSh*k Я. I*.

For each a<A let ^ = { 0  {A'ylyCc(a)}|'iyfc(oC), X fW y}C \I+, then since /  is 
(|c(a)|, ^-distributive, Tx is a disjoint /-partition of A. Since A<x — A, |7]JsA, and by 
normality, if h: U {7]Ja<A}->-A is injective then

C =  {xC^nfilVaex, x€U Tx and h(Tx(x))dx}d(I/A)*.

Hence by the A-Shelah property there is a function / :  A-»-A such that for each y(Ei^ A, 
{x^Cflyl Vady, /(а)=/г(Га(х))}€/^я. In particular for each a<A, /г_1(/(а))€Г а 
and П{/г_1(/(а))|а€у}е/^л-

Suppose y€P*A and П{й 1(/(а))|а£}>}б/. Choose <5<Л such that c(c))6 
ZBC\y, then yU{<5}£i^A and hence n{h~1(/(a))|a€yU{(5}}€/+A. Now h~\f{d))dTx 
and for each ady, с(а)£с(<5) (since c(ö)dB), hence T0̂ T X and we may find a set 
FaC7̂  suchthat h_1(/(d ))^ 7 a. But then there is a ßdy such that YßAh~1(f(ß ))  
(for otherwise П {h~1(f(a))\oidy} = П {Yx\ady} Afhr!( f(ö ))£ l+), and hence since Tß 
is disjoint, h ~ \f(ö ))n C \\fi~ 1(f(ci))\ix£y}QYßr\h~1(f(ß )) = Q, a contradiction.

Finally since each IF, is refined by some Tx, this proves the (A, /.) — WC 
property. □

Immediately from (the proof of) Theorem 3.2 we now have.
C o ro llary  3.7. (cf Аёх). Suppose x is A-Shelah, A d N S h f and { fx\xdA) 

is a sequence such that (Vx€ A )(fx : x-+x). Then there is a function f:  A-*-A such that 
for each ydPxA, [xd A fly| f x\y = f\y }d N S h f.

The Я-Shelah property is ideal theoretically strong in that the associated ideal is 
normal. An ideal theoretically weak Px A generalisation of weak compactness due to 
DiPrisco and Zwicker [7] is the following. Let NMInx) be the of all X ^P xA which do 
not have the property “for any sequence (S'JxCAf) such that f i  xdX )(Sx Qx), 
there is an SQA suchthat (Vy£-P*A) ({x£ АПу|5^Пу = 5'Пу}£/+;1)'/. x is said to be 
mildly Я-ineífable iff PxA^NMInxX, and in this case Carr ([4, Proposition 1.4]) 
showed that NMInxk = Lx- Mild A-inefifability is related to the property WC by the 
following theorem whose (easy) proof we leave to the reader.

Theorem 3.8. The following are equivalent:
(a) Px A carries a (A, 2) — ITC ideal.
(b) x is mildly A-ineffable.
(c) Ixx is (Я, 2)—WC.
In [ 11, Corollary 2] we showed that if x is weakly compact then Ix (the ideal on x 

dual to the Fréchet filter) is (x, x)-distributive. This result suggests the following 
question which we have been unable to answer: if x is midly Я-ineffable, is it the case 
that Lx is (A, 2)-distributive?

As in [11, Theorem 8], the property WC is related to partition relations.
Theorem 3.9. Suppose I  is seminormal, weakly lean and weakly selective, then I is 

(x ,A )-W C  iff /+ - ( /+ ,  x)l.
The proof is similar to that of Theorem 1.6 and [11, Theorem 7], hence we leave 

the details to the reader.
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In [1, Theorem 3.2], Baumgartner showed that if xis weakly compact an d /is  the 
П \ -indescribable ideal on x, then (in the terminology of [1]), /  + -*(/+, x)\. Baum­
gartner and Carr [6] generalised this result to the Px X context: if X<X=X, x is A-Shelah, 
AdNSh+i and f:[A ]2—2, then either there is a set B^P(A)C\NSh^x such that 
f"[Bf< = {0} or a function h: Px X-~A such that (V (y, x)€[i^A]<)((y, h(y), h(x))£ 
€[^Д]< ar|d f(h (y),h (x)) = 1). The property (X,X) — WC is related to a natural 
variant of this partition relation by the following.

T heorem  3.10. Suppose I  is seminormal and weakly lean. Consider the following 
assertions:

(a) /+ - ( /+ ,4 )1 .
(b) 1+ - ( /+ ) ! .
(c) 7 is weakly selective and (X, X)-distributive.
(d) I is weakly selective and (X, X) — WC.
(e) whenever A £ l+ and f :  [A]2->-2, either there is a set Bf_ P(A)C\I+ such 

that f"[B]2= { 0} or a set C f P(A)C\IxX and a function h: C A suchthat

(V (у, -*)€[С]а)(у c  h(y) с  h(x) and f(h{y), h(x)) = 1).

Then (a)-—(b)—*-(c)->-(d)->-(e).
Proof. The implication (a)->-(b) is proved exactly as in [1, Theorem 6.2]. The 

proofs of (b)->-(c) and (c) — (a) are similar to those of Theorems 5.3 (d)->-(a) and 6.2
(a)—(b) respectively. (c)->-(d) is trivial.

(d)->-(e). Suppose Ad_I+ and f\[A ]2-*2 is a function having no homogeneous 
set in 7+ for 0. Since 7 is weakly lean we may assume that \A\ =X, and since x is 
strongly inaccessible (by Theorem 3.8 and [5, Proposition 1.2]) and 7 is weakly selec­
tive we may assume that |у|<|л:| whenever (y, x)i[A]2. For each xd_A let Ax = 
= {z£AC\x\f(x, z) = l}, then as in the proof of Theorem 1.6, given B£P(A)C\I+ 
and r£PxX, {BC\Aw\wO.BC\f}CM+ is predense below В in 7+.

For each x£A  we define, by induction on |x|, a disjoint 7-partition of A, Wx, 
and a function gx :Wx-*AC\x such that for each XdWx, X Q A gx(X) as follows. 
Suppose x£A  and Wy and gy have been defined for each y£A  suchthat \y\< |x| 
(and in particular for each y£ А П P(x) -{*})■ As in the proof of Theorem 3.6, since 7 
is (|P(x)|, A)-distributive we may find a disjoint 7-partition of A,TX, such that TxsW y 
whenever у£АГ)Р(х)—{х}. Given Z£TX, {ZC\Aw\w£ZC\x}ífI+ is predense 
below Z in 7+, and hence by lemma 1.3 we may find a disjoint 7-partition of A, Wx, 
and a function gx : Wx-*Af)x  such that for each XfWx there is a Z£TX with 
gx(X K Z  and хдгплвх(Х).

Since 7 is (Я, X) — WC we may find a sequence (Xx\xf__ A) such that for each 
хвА, XxdWx and for each s£A, Г\{Хх\х£АГ\ P(s)}dl+. Let h: A-»A be given 
by h(x)=gx(Xx), then clearly h(x)£x. Suppose (y, x)£[A]2 and ZCTX is such that 
h(x)£Z and Xx Q Zr\A h(x). Since XxC\Xyf I + and Tx^Wy we must have Z^A ^, 
and since Xy C Ah(y), h(x)f Ah(y). Hence h is our required function. □
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§4. Inefl'ability

In [9], Jech defined the following generalisations of ineffability and almost 
ineffability. A set X ^ P xX is said to be A-ineffable (almost A-ineffable) iff for any 
sequence (SlJxeA) such that (Vx£X)(Sx^ x ) ,  there is an SQ.X such that 
{ x e x \s x= sn x } e N S i,( i: x).

NInxX = {XQPx X\X is not A-ineffable}
NAInxX={XQPx X\X is not almost A-ineffable} 

and by a result of Carr [4, Corollary 1.3], NShxXQNAInxX̂ N InxX. x  is said to be 
A-ineffable (almost A-ineffable) iff PxX$NInxX(NAInxX), and in this case Carr [4, 
Theorem 1.2] showed that NInxX (NAInxX) is a normal ideal on Px A.

In this section we generalise results of Baumgartner [1] and Kunén [14] to show 
that A-ineffable and almost A-ineffable subsets of PxX may be characterised in terms 
of regressive partition relations.

T h e o r e m  4.1. (cf Аёх). Suppose x is almost X-ineffable and A£NAIn+x, then 
for every regressive function f:  [A]2-»X thereisa B<E P(A)C\IxX such that |/"[ß]<| = 1.

P r o o f . By Corollary 2.7, X<X=X and by Lemma 3.5, if c:PxX-*X and h:A2-*-A 
are bijective and

M  = {xfPyX\xx is an inaccessible cardinal, c"PXxx  = x  and b"x2 = x}, 
then M£ NAIn*x.

Suppose now that A£NAIn+x and f\[A ]2-*X is regressive. Clearly we may 
assume that A ^ M .  For each x£A  let

S* =  {b{c(y),f(y,x))\yiPXxx r A } (Q x )  and Bx =  {yiPXxxf)A \Sy = ^П у}.
Let E={xdA\Bx£SNSZxX}, then

L em m a  4.2. A —E£NAInxX.
P r o o f . Suppose A —E£NAIn+x and x £ A —E. Since Bx£SNS„xX there is a  

regressive function f x : Bx-+x such that (VaCv)(,/C1({x})r/ZrX), and hence for e a c h  
<x£x there is a g(x, y)fPXxx  such that f x 1({a})(f.PXxx —g(x , " a). Let Gx= 
= {fe(a, c(g(x, a)))|a£x} then Gxf x  and by coding (Gx, Sx) as a single subset of x 
(using b) and applying almost A-ineffability, we may find subsets of A, G and S  such 
that Z = {x£ A —E\Gx=GC\x and Sx=SC\x}£l+x .

Pick (y,x)€[Z]2< then Sy= SxC\y and hence y£Bx. Suppose Л (у)=а(€у) 
then y ^ f f 1({oi))Q,PXxx —g(x'i «). Also Gy—GxC\y lienee (since Gx codes a func­
tion), g(x, a)=g(y, a) and so yig{y~, a), contradicting our definition o fg. □

For each x£E  we may (unambigously) define a regressive function gx : Bx-*x 
by gx(y)=y iff there is a г£ВхГ)у such that \y\<xz and f(y ,z )= y .  Since 
Bx£SNS+xX there is a 3x€x such that gx \{b ft)^J ixX, and hence by normality of 
NAInxX there is a <5<A suchthat F={x£E\öx = ő}dNAIn+x. For each x£Flet7}.=  
=c"g-j1({<5}), then TxQx and by almost A-ineffability there is a set TQX such that
H ={xiF\Tx= T r x } a ; x.

Let B = c~v'T, then claim В is the required “homogeneous” set for / .  Firstly 
suppose v£PxX, then pick x fH H v  suchthat \v\-<xx. Since gx \{b})CiIXxX we may
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find a y^gx 1({0})Dv and hence с(у)£Тх Я^Т; thus B £ l+я. Suppose (y, z)£[l?]<, 
then pick x£H D z  suchthat |z|<x*. Since x£M, c(y), c(z)£T(lx=Tx, hence 
(y, z)C.[BxYK and gx(y )—ő. But then by our definition of gx, f ( y ,  z)=<5. □

Conversely we have
T h e o r e m  4.3. I f  AQPXA and satisfies the conclusion o f Theorem 4.1, then 

A<t NAInxX.

P r o o f . Suppose is a sequence such that (VxiT)(Sx£x). Define a
function / :  [d]2—Я by / (x ,y )= min (S^ d(S^flx)) if S^d (5}1Пх)^0; f(x ,y )=  
=min (x) otherwise, then f  is regressive and hence we may find an a<  Я and a set 
В£Р(А)Г\1+Х such that f"[B]2< = {a}. Pick С£Р(В)П1£Х such that either 
(Vx£C)(a£Sx) or (Vx£C)(a$ Sx), then Sx = Sj,rix whenever (x,y)€[C]<. 
Hence if S =  U {S^x^C}, then Sx= S D x  for each x€C. □

For ineffability we have the following
T h e o r e m  4.4. (cf. Яёх.) Suppose x is /.-ineffable and Ac N In f ,  then for every 

regressive function f:  [A]2—-A there is a B f F(A)C\N S xX such that \ f" \B f i \  = 1.
P r o o f . Suppose A£NIn+x and / :  [A]2-*A is regressive. Let b, c and M  be 

as in the proof of Theorem 4.1, then MC_NInxX and А ПMd NInxX. For each 
x£ А ПM  let Sx= {b(c(y), f (у, x))|y£ PXxxC\A} then SxQ x  and by Я-ineffability 
we may find an SAA  suchthat C — {x£A DM\SX= S  r\x}€NS£x.

We may (unambiguously) define a regressive function g: C-+A by g(y)=y 
iff there is an x£CO y suchthat |y| <  xx and f(y , x)=y. Hence by normality of 
NSxX there is а <5<Я such that and clearly x({<5})] < =  {<5}. □

T h e o r e m  4.5. I f  AQPXA and satisfies the conclusion o f Theorem 4.4, then 
AiNInxX.

The proof is similar to that of Theorem 4.3 and we leave the details to the reader.
In order to obtain a version of Theorem 4.4 in which the set В is homogeneous 

for/ ,  we may redefine Я-ineífability as in the following
T h e o r e m  4.6 (cf Яе̂ х). Suppose AQPXA, then the following are equivalent:
(a) For every sequence {Sx\x£A) such that ('•/ xf_ A)(Sxfx ) ,  there is a set 

//€ Р(А)П NS+X such that for each (х,у)С[Щ2, |х |< |хП у| and Sx—SyC\x.
(b) For every regressive function /: [/I]2-»A, there is a set Bc P(A)C) NSxX such 

hat | / W I  = 1-
The proof is similar to that of Theorem 4.4. We do not know if a version of 

Theorem 4.6 holds for “almost Я-ineffability” .
Alternatively we may turn to Menas’combinatorial principle у (see [15, p. 228]): 

Let x(I) denote the statement “for every A £ l+ there is a function / :  x —x such 
that {x£A\J (\xC\x\)=\x\ and (\/а< |х П х |)(/(а )< |х П х |)} £ /+”. As in [15, 
Lemma 5] we may show (using Lemma 2.3) that if x is almost Я-ineffable and 
X(NAInxX) holds then {d£NAIn+x\y(x, y)£[d]2, |х|<|хГ)у|} is dense in NAInxX, 
and hence if cf A ^x , Ac NAInxX and f  : [А]--*A is regressive, then there exists a 
В сP(A)C]IxX homogeneous for/ .  Also as in the case of normal measures (see [15,
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p. 228]), for certain cardinals A>x, y_(NAiny>) will always hold. For instance (by 
Lemmas 2.4 and 3.5) if A=%+ and x is almost A-ineffable, then the function 
f \x -* x  given by (V a< x)(/(a ) = a+) witnesses that x(NAInx!i) holds.

Similar remarks may be made for A-ineffability.

§5. Complete ineffability

In [11. Corollary 3], we showed that x is completely ineffable iff x carries a nor­
mal (x, x)-distributive ideal. Analogously let us define x to be completely л-ineffable 
iff Pxk carries a normal (A, A)-distributive ideal.

Theorem 5.1. The following are equivalent:
(a) I  is normal and (A, 2)-distributive.
(b) Whenever A d l + and {Sx\xdA) is a sequence such that ( f  xd A)(Sxf x ) ,  

there is an S f k  such that {xf_A\Sx = S(  \x}f l  + .
(c) I  is normal and (A, /^-distributive.
P r o o f . (a)-*(b). Let A and (S^xC: A) be as given. For each a<A let X£= 

= {x£/i|a([ S’*} and Л'а1 =  {х€Л|а€5'.с}, then l^ = {A'(j|i<2 and X [d l+) is an/-par­
tition of A. By (A, 2)-distributivity we may find а BdP(A)CM+ and a function 
/ :  A—2 such that for each a<A, B —X [w dl- By normality, C={xdB\\/a.dx, 
x£A'/(a)} £ /+ and hence for each xdC, =у “x({1}) Оxr.

(b) -«-(c). Normality is clear. Suppose A d l+ and (lF,|a<A) is a sequence of 
/-partitions of A, each of cardinality S  A. By Lemma 1.3 we may assume that each Wa 
is disjoint. Let h: U {lFJot<A}-^A be injective, then by normality, B = 
— {xdA\Va€x, x£ U W„ and h(Wa(x))dx}d(I\A)*. For each xdB  let Sx= 
={h(Wx(x))\ot£x\, then Sx Qx, and by our hypothesis there is an S f k  such that 
С={х€5|5 'х = 5,Пл-}€/+. Suppose oc<A, X, YdWa with СПХ, С П Г6/+ . Pick 
x,y, z C C ( T { a }  such that xdX, yd Y  and zz>{h(X), h(Y)}. Then h(X) = 
=h{Wx(x))dSxQS, h (Y )—h(Wx(y))fSyQ S, hence {li(X),h(Y)}Q SHz = Sz and 
so zdXf] Y. But then since If) is disjoint X=Y, thus proving (A, A)-distributivity.

(c) -»(a) is trivial. □
Theorem 5.2. I f  x is completely k-ineffable and p is a cardinal such that x ^ /i< A , 

hen x is completely g-ineffable.
P r o o f . Suppose /  is a normal (A, A)-distributive ideal on Px A and for each 

x£Pxk, h(x)=xf]p. Then h: Pxk-+Pxg and it is easy to check that /z*(/)= 
g\h~ \X )dI} is an ideal on Pxp. Using Theorem 5.1 we show that /i*(/) 

is normal and (p, /^-distributive. Suppose X y h f l ) ' and (Tr\rdX) is a sequence 
suchthat rdX) (TrQr). Then h~1(X )dI+ and for each xdh~ \X )  let Sx=Th(xy  
By Theorem 5.1 we may find an S ^ k  (indeed S ^ p )  suchthat J5 = {xC/z_1(^)|5’;t = 
=SC\x}dI+. But then h"Bdh*(I)+ and for each xdB, Tĥx-) = Sx = SC]x=Sr\ 
r\pf]x=SC]h(x). □

In [15, Proposition 1], Menas showed that if I  is normal and prime, then /  is a 
weak g-point iff there exists a set Adi*  suchthat (V(x, у)ёИ]2)(|х |< |хП у|) iff 
/ +-*-(/+)§. As in [11]] this latter partition relation is related to distributivity.
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Theorem 5.3. (c f  Я ёк ). The following are equivalent:
(a) I  is normal, (A, X)-distributive and a weak q-point.
(b) I  is normaI, (X, ) f  distributive and {/?£ /+ | V (x, j’)€[Я?]2, |x| <  |иПу|} is 

dense in I +.
(c) Whenever A £ l+, n<co and is regressive, there is a Bf_ P(A) П/  +

such that \ f V m  =  I •
(d) I  is norma! and / +->(/+)|.
Proof. (a)-»(b). As in [15, Proposition 1], given A £ l+ let q: A —PxX be any 

function such that ( \/^ Я )(х £ ? (х ))  and |з<П#(л:)| > |х|). by the weak «/-point 
property we may find a В£Р(А)Г)1+ such that for each {x, y)C[B]-, q(x)czy and 
hence |л‘|<|з<Пу|.

The proof of (b)->-(c) is similar to that of Theorem 4.4.
(c) -*(d) is trivial.
(d) —(a). Firstly the weak (/-point property. As in [15, Proposition 1], if A fJ  + 

and {A Jx£A }Q P (A )n ixi, define /:[Л ]2-*-2 by f ( x ,y )  = 0 iff y6Ax. Clearly if 
В£Р(А)П1+ is homogeneous for /  then /"[/?]2 = {1}, and hence for each x f  B, 
ВПАХП)c=0.

Now suppose A £ l+ and (WJo k A) is a sequence of /-partitions of A, each 
of cardinality шХ. By Lemma 1.3 we may assume that each Wx is disjoint. Let 
h: U {WJo k X}-►A be injective, then by normality, B = {x^A\Ma^x, xC U Wx}£ 
£(I\A)*. Define g:[Z?]2 — 2 by g(x ,y) = 1 iff (3a£x) (Wa(x)7±W0l(y)) and if a 
is the least such ordinal then h(Wx(x))>h(Wx(y)).

Suppose C£P(B)C\I+ is homogeneous for g, say g"[C]2 = {l}, ß<X and for 
each u<ß there is a set Xx£Wa such that C —Xa£l. By normality, D= 
= {x£C\\f adßCix, ккх(х)—Хх}^(1\С)*, and hence if X  and Y are distinct members 
of Wß, say h(X)< h(Y), such that С П А //+  and С П Т £ /+, then f ( x ,  y)=0 
whenever x^D O XD  {/1} and y f ű í lF f lx ,  a contradiction. A similar argument 
carries through when g"[C]2 = {0}, and hence this proves (A, A)-distributivity. □

§6. Non seminormal ideals

To date we have restricted ourselves to considering mainly seminormal weakly 
lean ideals. In this section we briefly mention two results relating distributivity to 
partition relations which hold for ideals in general. Since /  may not be weakly lean we 
first make the following definitions. Let L = {A£l + \\/B£P(A)C\I+, |В| =  |Л|}, then 
clearly L is dense in /  + and so /  may be broken down into ideals which are lean in the 
following sense.

D efinition 6.1. Foracardinal ij=A, /is  said to be (/-lean iff there is an Adi* 
such that \A\=rj and (d B £ l+)(\B\ =//).

Theorem 6.2. Suppose /  is rj -lean, then the following are equivalent:
(a) I  is weakly selective and (rj, 2)-distributive.
(b) For each n <  oj and /к% , /  + -»(/ +)".
Proof, (a)-►(b). Firstly note that (by Theorem 3.8 and [5, Proposition 1.2]) 

since q^X  and /is  (//, 2)-distributive, x is weakly compact (and in particular strongly 
inaccessible).

Acta Mathematica Hungarica 56, 1990



SOME PARTITION RELATIONS FOR IDEALS ON P x X 281

By induction on и now; the case n—1 is immediate from %-completeness, hence 
suppose p<x, A d l+ and / :  [H]',+1 — y. Since 7 is ij-lean we may assume that 
\A\=q and for each a= (x l5 x2, x„)£[A]n and let

f ( x 1, x2, xn, y) = e}- By (i/, 2)-distributivity there is a B£P(A)C\I+ suchthat 
for each a£[A]n and B — or ВГ\Х%£1, and hence by ^-completeness
there is a unique function g: [A]"— /t such that for each a£[A]", B — X%M£l. By 
inductive hypothesis there is a у and а С бР(В )П /+ such that g"[C\' = {y}. 
For each x£C  let

Ax = {ycC tfx IBfo.Xg, f ( x lt x2, . . . ,x „ ^ ,x ,y )  ^  y}

then Ax£ l  (since | P(x)\-=x and 7 is ^-complete), and hence by weak selectivity we 
may find an EE P (C )f)I+ such that for each (x, )>)c-\E\l, yt{ Ax. Clearly f '\E ]n+1 =
=  W-

(b)-*-(a). Weak selectivity is proved as in Theorem 5.3 (d)-*-(a).
Suppose A £ l+ and (Wy\y<q) is a sequence of 7-partitions of A, each of car­

dinality s 2 . By ^-completeness we may assume that each Wy is disjoint and since 7 
is iplean we may suppose that \A\=q. Hence reindex (Wy\y<q) as (YVJxfA), 
and for each x£A  let ГХ =  {П {Ху\у£Р(х)Г\А}\Уу£Р(х)Г\А, Ху(Ц¥у}Г\Г1. 
Straightforward arguments show that x  is weakly compact (and in particular strongly 
inaccessible), and hence by ^-completeness, 7 is (|P(x)|, 2)-distributive. Thus Tx is a 
disjoint 7-partition of A.

Define h:[A]3--2 by h (x ,y ,z )= 0 iff y, z£Ö Tx and Tx(y) = Tx(z). If 
В£Р(А)Г\1+ is homogeneous for h, then clearly we must have /г"[ Zip = {()}, and 
hence for each xdB there is a YXETX suchthat B —Yx£l.

Finally, given y€A, Wys T x whenever x f  BTly, and so this proves (tj,2)- 
distributivity. □

Note that in proving the implication (b)-<-(a) we have used 7+->-(7+)2 rather 
that 7+->-(7+)|. To obtain (q, 2)-distributivity from this latter partition relation we 
(seem to) need q many such partitions.

Theorem 6.3. Suppose I  is ц-lean, then the following are equivalent:
(a) 7 is weakly selective and (q, 2)-distributive.
(b) whenever A £ l + and f y: [A]2->-2 (у < q) is a family o f functions, there is a 

BC P(A)C\I+ and a function t\y-+IxX suchthat for each y<q, \ f f[ B  — t(y)]2| =  l.
The proof is similar to that of [12, Theorem 4.7] and we leave the details to the 

reader.
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ON ALMOST NILPOTENT RINGS AND IDEALS
G. A. P. HEYM AN (Bloemfontein)

1. Introduction

An associative ring A is said to be almost nilpotent if every nonzero ideal of 
A strictly contains some power of A (cf. [2]). This concept is a generalization of ‘nil- 
potent’ and it was shown in [2] that an almost nilpotent ring is either a prime ring or a 
nilpotent ring.

The purpose of this note is in the first instance, to characterize prime almost nil- 
potent rings. Some properties analogous to those of nilpotent ideals of a ring are being 
investigated in the rest of the paper.

All rings to be considered will be associative and 7<i A will mean ‘7 is an ideal 
of A \

2. Prime almost nilpotent rings

For our first theorem we will need the following lemma:

L emma !. I f  A is an almost nil potent ring then p) Am=0 for all f c s l .
m =k

Proof. I f  П AmA0  there is a positive integer n such that An(f  f)  Am and we
m = k m = k

may obviously choose n ^ k .  But then AnT A", which is absurd.
Theorem 1. The following are equivalent for the ring R :
(1) R is a prime almost nilpotent ring.
(2) R is a semiprime ring with a proper essential almost nilpotent ideal P and R/P 

is nilpotent.
(3) R is a semiprime ring such that every proper homomorphic image o f R is nil- 

potent.
Proof. (l)=>-(2). Let R be a prime almost nilpotent ring. By definition R cannot 

be a simple ring, so it must have a proper nonzero ideal P, and the rest is obvious.
(2)=>(3). Let We want to show that R/A is nilpotent. If A = P there is

nothing to prove. So assume A A P. We consider three cases:
R/P(a) PQA. Then

(b) AQP. Then
A/P
R/A
P/A

^R /A  is nilpotent since R/P  is.

^  R/P so that R/A is nilpotent since both R/P  and P/A

is.
(c) X= PD A  with A ^ P  and P%A. Now P/X  is nilpotent since P is almost

7
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nilpotent, and R/X/P /X= R/P  is nilpotent so that R /X is nilpotent. Then R/X/A/X=  
ssR/A is nilpotent.

(3)=ф-(1) For any two nonzero ideals I  and . /o f  R wc have RkQ I and Rlf J .  
So if 77=0 then R k+l=0, a contradiction. Hence R is prime. Furthermore, if X  
is any nonzero ideal of R then RP^ X ,  p£N and if no power of R is strictly contained 
in X  then RP=X. But RnQP for certain n £N, so that by Lemma 1,

П  (R T  Ü  П  Pm = 0 for к  Sr 1.
m —k m = k

This means that X =  f] (Rp)m= 0, a contradiction which implies that R is almost
m = k

nilpotent.

3. Almost nilpotent ideals of a ring

It is well known that the sum of two nilpotent ideals in a ring is a nilpotent ideal 
but that the sum of all nilpotent ideals need not be nilpotent (see Example 3 in [1]). 
We now investigate the almost nilpotent analogue of this property.

First of all, by the very example mentioned above, we already know that the sum 
of all almost nilpotent ideals need not be almost nilpotent. Furthermore it is easy to 
show that the sum of a prime almost nilpotent ideal and a nilpotent ideal of a ring R 
need not be almost nilpotent.

Let for instance

W = 2x
2 y - \ (2x, x y + 1) = 1 and x,

(cf [1], p. 103), and consider the ring R = W® N, where N  is any nilpotent ring. 
It is well known that IF is a prmie almost nilpotent ring and that the only nonzero 
ideals of W are of type (2)", n = 1, 2, ..., and W —{2). So obviously R is neither 
prime nor nilpotent, so cannot be almost nilpotent.

For our next result let us assume that R is a subdirectly indecomposible ring, 
that is a ring in which the intersection of any two nonzero ideals always is nonzero 
(cf [3]). Clearly every prime ring is subdirectly indecomposible.

Theorem 2. I f  P and Q are two prime almost nilpotent ideals o f a subdirectly 
indecomposable ring R, then P+ Q is almost nilpotent.

Proof. Let 0^X< iP+ Q . Then X ^ O  for Ajf =  0 would imply that P has a 
nonzero nilpotent ideal АЛПР. Hence 0 ^ 1 |П Р Ё Т П Р < /  so that PrczX, r£N. 
Analogously Qsd X , s£N, and so (P+Q)r+SQX. The inclusion is strict for if no 
power of (P+ Q)r+S is strictly contained in X  then all powers of (P+ Q)r+S equals X,

so that П [(P + ß )r+T i  П (P+QY  for кш  1. But (P+Q)PQP  so that
n=k n=k

n  [(f’+ 6 )p]m= n  P"'=0 for any кш  1. This obiously implies that T=0,
m = k  m =  k
a contradiction which proves the theorem.
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Corollary. Let P and Q be two either nilpotent or prime almost nilpotent ideals 
o f a subdirectly indecomposable ring R. Then P+Q is almost nilpotent i f  and only i f  
P+ Q is either a nilpotent or a prime ring.

To close our discussion, one last observation. A class M  of rings is said to satisfy 
the extension property if R /A ^M  and A£M  imply RcM.

While we know that nilpotent rings satisfy this property we offer the following.
Theorem 3. I f  R is a semiprime ring, R/A a nilpotent ring and A a prime ring which 

is a nonzero almost nilpotent ideal o f R, then R is a prime almost nilpotent ring.
Proof. R“QA, n£N, so Rn is almost nilpotent. Let then 0 ̂ X < tR . Then 

0 ^ Х " о  Rn and since Rn is almost nilpotent we have RntczXnQX, which proves that 
R is almost nilpotent.

Remark. One cannot expect R/A and A prime almost nilpotent rings to imply R 
prime almost nilpotent. In fact R almost nilpotent implies R/A nilpotent which im­
mediately gives a contradiction.

Example. Consider the ring R — W ® N  mentioned earlier. Then R/W =N, so 
R/W  and also W is almost nilpotent but R is not.
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THE INFLUENCE OF л-QUASINORMALITY 
OF SOME SUBGROUPS ON THE STRUCTURE 

OF A FINITE GROUP
AYESHA SHAALAN (Fayum)

1. Introduction

Throughout this paper, only finite groups are considered and our notation is 
standard.

Ito, Buckley, Van der Waall and Asaad have proved the following theorems for 
a finite group G.

Theorem (Ito [6]). Suppose that G is o f odd order and that every subgroup of G' 
o f prime order is normal in G. Then G' is nilpotent.

Theorem (Buckley [2]). Suppose that G is of odd order and that every subgroup of 
G o f prime order is normal in G. Then G is supersolvable.

Theorem (Van der Waall [9]). Suppose that every subgroup of G o f prime order is 
normal in G. Then the following two assertions are equivalent:

(1) G is supersolvable.
(2) G is 2-nilpotent.
Theorem (Asaad [1]). Suppose that every subgroup o f G o f prime order is 

quasinormal in G, and that every cyclic subgroup o f G o f order 4 is quasinormal in G. 
Then G is supersolvable.

The object here is to improve these results.

2. Definitions and assumed results

D efinitions. Subgroups H  and К  of G permute if (H, K)=HK=KH. A sub­
group of G is called 7t-quasinormal in G if it permutes with all Sylow subgroups of G.

The group G is said to have an ordered Sylow Tower property, that is to say 
there is a series 1 =  G0 <  Gx <  G2 < ...<<?„=G of normal subgroups of G such that for 
each /= 1 ,2 , ...,n , G J G i-^ to  a Sylowp t-subgroup of G wherepx,p 2, ...,p„ are 
the distinct prime divisors of G and p l > p 2 > . . . > p n.

We now list for an easy reference some known results which are frequently used 
later:

(2.1) [7]. A n-quasinormal subgroup of G is subnormal in G.
(2.2) [7]. I f  H QKQ G  and H is n-quasinormal in G, then H is n-quasinormal in K.
(2.3) [7]. I f  H is  n-quasinormal Hall subgroups o f G, then H<tG.
Proof. By (2.1), H  is subnormal subgroup of G. Hence H  is subnormal Hall 

subgroup of G. This implies that Я < С ,
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(2.4) [4]. I f  A is a p ' -group o f automorphisms o f the abelian p-group P which acts 
trivially on Q fP ), then A = 1.

(2.5) [5]. I fH  is a normal Hall subgroup ofG, then there exists a subgroup K ofG  
such that G/H—K.

(2.6) [8, exercise, 7.2.22, p. 159]. IfG /H  and G/К  are super solvable, then G/HP\K 
is supersolvable.

P r o o f . G / H D K s z G / H x G / K .

(2.7) [8]. I f  Я < 6 ,  then Ф (Я )^  Ф(С).
(2.8) [5]. G is supersolvable iff GfP(G) is supersolvable.
(2.9) [4]. I f  G =  (p(G)H for some subgroup H ofG, then G = H.
(2.10) (Burnside Basis Theorem [8]). I f  G is a finite p-group, where p is a prime, 

\G/<P{G)\ =pn,
G/<P(G) = (X l<P(G),x2<P(G), ...,x,fP(G)), 

then G=(xi, x2, ..., x„).
(2.11) [5]. Suppose that G is a group which is not p-nilpotent but whose proper sub­

groups are all p-nilpotent. Then G is a group which is not nilpotent but whose proper 
subgroups are all nilpotent.

Proof. See [5, IV, 5.4, p. 434]

(2.12) [5]. Suppose that G is a group which is not nilpotent but whose proper sub­
groups are all nilpotent. Then

(i) G has a normal Sylow p-subgroup P for some prime p and G/P—Q, where Q 
is a non-normal cyclic q-subgroup for some prime qXp.

(ii) Р/Ф(Р) is a minimal normal subgroup o f С/Ф(Р).
(iii) I f  Pis non-abelian andpX2, then the exponent o f  P isp.
(iv) I f  Pis non-abelian and p=  2, then the exponent i f  Pis 4.
(v) I f  P is abelian, then P is o f exponent p.

Proof, (i), (ii), (iii) and (iv): see [5, III, 5.2, p. 281].
(v) We argue that QX(P)=P. If  not, Q1(P)Q is a proper subgroup of G. 

Clearly, I21(P)Q= Q1(P)XQ. Now applying (2.4), it follows that G=PXQ, a cont­
radiction. Hence Q1(P)=P.

(2.13) [8]. I f  G is supersolvable, then.
(i) G possesses an ordered Sylow tower.

(ii) G is p„-nilpotent, where p„ is the smallest prime dividing |G|.
(iii) G has a normal Sylow px -subgroup, where px is the largest prime dividing |G|.
Proof, (i) See [8, 7.2.19, p. 158].

(ii) and (iii) are immediate consequences of (i).
(2.14) [7]. I f  N Q H Q G  and N is normal in G, then H  is n-quasinormal in G i f  and 

only i f  H/N is n-quasinormal in G/N.
(2.15) [3]. Suppose that G is a group which is not supersolvable but whose proper 

subgroups are all supersolvable. Then

(i) G has a normal Sylow p-subgroup P for some prime p.
(ii) Р/Ф(Р) is a minimal normal subgroup o f С/Ф(Р).
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(iii) I f  p X  2, then the exponent of P isp.
(iv) I f  P is non-abelian and p —2, then P is o f exponent 4.
(v) I f  P is abelian, then the exponent o f P isp.

P r o o f , ( i) , (ii), (iii) a n d  ( iv ): See [3].
(v) If p X 2, then the exponent of P is p by (iii). We may, therefore, assume that

P = 2-
By Hilfssatz C [3 (b), p. 198—199], G is 2-nilpotent or G is a group which is not 

nilpotent but all of whose proper subgroups are nilpotent. If G is 2-nilpotent, then 
there exists a normal 2/-Hall subgroup К  of G such that G = PK and РГ\К= 1. 
Since P < G  and K cG , it follows that G = PxK . Therefore, G is supersolvable. 
This is impossible as G is not supersolvable. Thus G is a group which is not nilpotent 
but whose proper subgroups are all nilpotent. Then Q fP ) = P by (2.12, v). Therefore, 
the exponent of P is 2.

3. Generalized results

In this section, we prove the following results:
T h e o r e m  3 .1 . Suppose that H is a normal p-subgroup o f G, and that G/H is 

supersolvable. Suppose further that every subgroup o f H o f order p is n-quasinormal in G 
and that one o f the following conditions holds:

(i) H is abelian.
(ii) p ^ 2 .

(iii) p = 2, and every cyclic subgroup o f H o f order 4 is n-quasinormal in G.
Then G is supersolvable.
P r o o f . Suppose that the theorem is false and let G be a counter-example of 

smallest order. Clearly, the hypotheses are inherited by all proper subgroups of G. 
Thus G is a group which is not supersolvable but whose proper subgroups are all 
supersolvable. Then by (2.15, i), there exists P cG , where Pis a Sylow subgroup of G. 
By (2.5), there exists a subgroup Я of G such that G/P=AT. Clearly, К  is supersol­
vable. If ( |P |, |Я |)=1, then by (2.6), G = G /P n # < iG /P x G /tf . Since G/PX G/H 
is supersolvable, it follows that G is supersolvable, a contradiction. Thus H g P . 
By (2.15, ii), Р/Ф(Р) is a minimal normal subgroup of GfP(P). Now it follows that 
either ЯФ(Р) = Ф(Р) or ЯФ(Р) = Р. If ЯФ(Р) = Ф(Р), then Я ^ Ф (Р ) and so 
С/Ф(Р) is supersolvable. By (2.7), Ф(Р)Q Ф(С). Hence 0/Ф(С) is supersolvable 
and so G is supersolvable by (2.8), a contradiction. If ЯФ(Р) = Р, then Я = Р  by
(2.9) ,and so His a Sylowp-subgroup of G.

Suppose first that Я  is abelian. Let A be a subgroup of Я  of order p. Let Q be a 
Sylow ^-subgroup of G, where qXp. By hypothesis, AQ is a subgroup of G. By (2.2), 
A is 7r-quasinormal in AQ. Hence by (2.3), A c  AO and so QQNG(A). Thus 
Op(G)QNg(A), where Op(G) is the subgroup of G generated by all //-elements of G. 
Since A c H  and Op(G)QNc(A), it follows that A cG . By (1.15), iii) and (2.15, v), 
Ф(Я)= 1. By (1.15, ii), A=H. Since G/H is supersolvable and |Я | =  prime, it 
follows that G is supersolvable, a contradiction.

Suppose next that H is nonabelian. Set \Н/Ф(Н)\=рп and Я/Ф(Я) =  (х1Ф(Я), 
х2Ф(Н), ..., х„Ф(Я)). Then by (2.10), H = (x1,x 2, ..., x„). By (2.15, iv) and (2.15,
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v), the exponent of H is p or 4. Then |(x;) |= p  or 4 for all /=  1, 2, «. We argue
that (xt) are nonnormal subgroups of G for all /= 1 ,2 ,.. . ,« .  If not, there exists 
(x j)cG  for some l ^ / s a  Now it follows from (2.15, ii) that (xj)<P(H)=H and 
so (xj)=H. This is impossible as Я  is nonabelian. Thus (xf) are all nonnormal 
subgroups of G for all /= 1 ,2 , . . . ,« .  Let Q be a Sylow ̂ -subgroup of G, where q^p . 
By hypothesis, (xt)Q is a subgroup of G. Now it follows from (2.2) and (2.3), that 
(x,)<i(x()ß  and so QC А<-;((х,-)). Thus Op(G)QNg((xí)). Since Ng((x,))<^G, it 
follows that Op(G)c:G. Since G/H is supersolvable and G/Op(G) is a p-group, it 
follows that G/HC\Op(G) is supersolvable. Clearly, Я ГIOp(G)<zH. Then by 
(2.15, ii), H r\O p(G)Q(P(H). Thus С/Ф(Я) is supersolvable and so G is supersol­
vable, a final contradiction.

Theorem  3.2. Let p be the smallest prime dividing \G\. Suppose that every subgroup 
o f order p is n-quasinormal in G and that one o f the following conditions holds:

(i) The Sylow p-subgroups o f G are abelian.
(ii) P7± 2.

(iii) p = 2, and every cyclic subgroup o f G o f order 4 is n-quasinormal in G.
Then G is p-nilpotent.

Proof. Suppose that the theorem is false and let G be a counter-example of 
smallest order. The hypotheses are inherited by all proper subgroups of G. Thus G is a 
group which is not p-nilpotent but whose proper subgroups are all p-nilpotent. Now 
(2.11), implies that G is a group which is not nilpotent but whose proper subgroups 
are all nilpotent. Then by (2.12), G has a normal Sylow p-subgroup P and G/P= Q, 
where Q is a nonnormal cyclic Sylow ^-subgroup of G. We consider the following 
three cases:

Case 1. P is abelian. Let Г be a subgroup of P of order p. By hypothesis, T  is n- 
quasinormal in G. Then TQ is a subgroup of G. We argue that T-cG. If not, TQ 
is a proper subgroup of G. Then TQ is nilpotent subgroup of G, and so T<iTQ. Also 
T c P  as Pis abelian. Thus P c G , But by (2.12, iii), Pis a minimal normal subgroup 
of G, and so T —P, Since |Aut (P )|=p  —1, it follows that q/p— 1. This is a contra­
diction as q>p.

Case 2: p?c2 and P is nonabelian. Set |Р/Ф(Р)|=р" and Р/Ф(Р) = 
=< x^(P ), ..., х„Ф(Р)>. Then by (2.10), P = (x x, x2, ..., x„). By (2.15, iii), P has 
exponent p, so |(x,)|=p for all /= 1 ,2 , ...,« . We argue that (x,) are nonnormal 
subgroups of G for all / = 1, 2, . .. ,« . If not, there exists ( x f ,  for some l s / s « ,  such 
that (xj) is normal subgroup of G. By (2.12, ii), Р/Ф(Р) is a minimal normal sub­
group of G/<P(P), and so (ху)Ф(Р) = Р. By (2.15, ii), P=(xj]>] and so |P| = 
=  l(xj)|. By (2.12, iii), P has exponent p, and so |P | = Kxj)|=p. Since |Aut(P)| = 
= p  — 1, it follows that q/p — l. This is a contradiction as q>p. Thus (x;) are non­
normal subgroups of G for all /= 1 ,2 , . . . ,  «. By hypothesis, (x;) are 7r-quasinormal 
subgroups of G for all /=1, 2, ..., «. Then (xt)Q are subgroups of G for all /=  
=  1,2, ...,« . In fact (Xi)Q are proper nilpotent subgroups of G, and so (x;)ß  = 
=  (x,-)XQ. Therefore, P f C Cr(Q) and that is a contradiction as О is nonnormal 
Sylow ^-subgroup of G.

Case3: p =  2 and P is nonabelian. Set |Р/Ф(Р)|=2" and Р/Ф(Р) = (хгФ(Р), ..., 
...,х„Ф(Р)> By (2.10), P = (x j, x2, ..., x„). By (2.15, iv), P has exponent 4, and so

Acta Mathematica Hungarica 56,1990



TH E IN FL U EN C E O F  л-QUASINORMALITY 291

|(x;) |= 2  or 4 for all i= l ,  2, n. By hypothesis, (x;) are я-quasinormal in G, and 
so {Xi)Q are subgroups of G for all /= 1 ,2 , n. Since P is nonabelian, it follows 
that (X[)Q are proper subgroups of G for all /=1,2, n. Then (x;)ß  are nil- 
potent subgroups of G, and so (x-)0 = (x )XQ, for all /= 1 ,2 ,.. . ,  n. Now it fol­
lows that P ^ C g(Q), a contradiction as Q is not normal Sylow ^-subgroup of G. 
This proves case 3, and the Theorem.

T h e o r e m  3.3. Set n(G) = {pl , p2, ..., p„}, where px> p 2>  ■ • • >P„■ Suppose that 
every subgroup o f G o f prime order рг, where i—2, 3, ..., n, is n-quasinormal in G. 
Suppose further that one o f the following conditions holds:

(0  A, 5*2.
(ii) pn=2, and the Sylow 2-subgroups o f G are abelian.
(iii) pn=2, and every cyclic subgroup o f G o f order 4 is n-quasinormal in G.
Then G possesses an ordered Sylow tower.
P r o o f . By Theorem 3 .2 , G is pn-nilpotent. Then G—PnK, where P„ is a  Sylow 

pn-subgroup of G, and К is a normal p'-Hall subgroup of G. By induction on |G|, 
К  possesses an ordered Sylow tower. Therefore, G possesses an ordered Sylow tower. 
This completes the proof.

T h e o r e m  3.4. Let H be a proper normal subgroup o f G. Suppose that G/H is super- 
solvable and that every subgroup o f H  o f prime order is n-quasinormal in G. Suppose 
further that one o f the following conditions holds:

(i) 2\ \H\.
(ii) 2| I H| and the Sylow 2-subgroups o f are abelian.
(iii) 2| \H\ and every cyclic subgroup o f H of order 4 is n-quasinormal in G.
Then G is supersolvable.
P r o o f . If Я  is a group of prime power order, then G is supersolvable by Theorem 

3.1. Now we consider the case where |Я | is divisible by at least two distinct primes.

By Theorem 3.3, Я possesses an ordered Sylow tower- Then by (2.13), P<\H, 
where P is a Sylow p-subgroup of Я  and p is the largest prime dividing \H\. Since 
Pchar H<iG, we have P<G . By (2.14), every subgroup of Я /P of of prime order 
is 7r-quasinormal in G/P. Also, G/P/H/P s  G/H is supersolvable. Now by induction 
on |G|, G/P, is supersolvable. Thus by Theorem 3.1, G is supersolvable. This 
completes the proof.

T h e o r e m  3.5. Under the assumptions o f Theorem 3.3, G possesses an ordered 
Sylow tower and G/fj is supersolvable, where P1 is a Sylow p1 -subgroup o f G, and p, is 
the largest prime dividing |G|.

P r o o f . By Theorem 3.3, G possessses an ordered Sylow tower. Then by (2.13, 
iii), Pi-=aG, where Px is a Sylow px -subgroup of G, and px is the largest prime dividing 
|G|. By (2.5), G=PXK, where Я is a pi-Hall subgroup of G. By Theorem 3.3, К pos­
sesses an ordered Sylow tower. Then by (1.13, ii), K=QL, where Q is a Sylow q- 
subgroup of K, q is the smallest prime dividing |Я|, and L  is a normal ^r'-Hall sub­
group of K. Clearly, K/L—Q. It follows now from Theorem 3.4, that К  is supersol­
vable. Therefore, G /P ^K  is supersolvable. This completes the proof.

As an immediate consequence of Theorem 3.1 and 3.5, we have:

Acta Mathematica Hungarica 56,1990



292 A. SHAALAN

C o r o l l a r y  3 .6 . I f  G is a finite group o f odd order and all subgroups of G ofprime 
order are n-quasinormal in G, then G is supersolvable.

C o r o l l a r y  3.7 (Asaad [1]). Suppose that every subgroup o f prime order is 
quasinormal in G, and that every cyclic subgroup o f order 4, is quasinormal in G. Then 
G is supersolvable.

C o r o l l a r y  3.8. Let p„ be the smallest prime dividing |G|. Suppose that every sub­
group o f G ofprime order is n-quasinormal in G, then the following two conditions are 
equivalent:

(1) G is supersolvable.
(ii) G isp„-nilpotent.
P r o o f . (l)->-(2). Suppose that G is supersolvable. Then by (2.13, i), G possesses an 

ordered Sylow tower, and by (2.13, ii), G is pn-nilpotent.
(2) —(1). Let G=P„K, where P„ is a Sylow pn -subgroup of G, p„ is the smallest 

prime dividing |G|, and К is a normal /r'-Hall subgroup of G. Clearly, G/K=P„. 
Now applying Theorem 3.4, it follows that G is supersolvable.

C o r o l l a r y  3 .9 . Suppose that G' QH, where G' is the commutator subgroup ofG  
and H is a subgroup o f G, and that every subgroup o fH  o f prime order is n-quasinormal 
in G. Suppose further that one o f the following conditions holds:

(i) 2 ||Я |.
(ii) 2| \H\ and the Sylow 2-subgroups o f H are abelian.
(iii) 2| I#  I and every cyclic subgroup o f H o f order 4, is n-quasinormal in G.
Then G is supersolvable.

P r o o f . If H=G, then G is supersolvable by Theorems 3.5 and 3.1. Now we 
consider the case where H aG . Clearly, G/H is abelian. Applying Theorem 3.4, it 
follows that G is supersolvable.

As an immediate consequence o f Corollary 3.8, we have:
I t o ’s T h e o r e m  [5, 177, 5 .3  ( b ) ,  p .  2 8 2 ; see a ls o  6]. Suppose that G is a group o f 

odd order and that every subgroup o f  G' o f prime order is normal in G. Then G' is nil- 
potent.

T heorem  3.10. Suppose that p = q for every prime q dividing |G|, Op(G) = 1, and 
every subgroup ofprime order qy^p is n-quasinormal in G. Suppose further that one o f 
the following conditions holds:

(i) 2f|G|.
(ii) 2| |G| and the Sylow 2-subgroups ofG are abelian.
(iii) 2| |G| and every cyclic subgroup o f G of order 4 is n-quasinormal in G.
Then G is supersolvable p'-group.

P r o o f . We argue that G is a //-group. If not,/? dividing |G|. Now Theorem 3.3 , 
implies that G possesses an ordered Sylow tower, and so PcG , where Pis a Sylow 
,p-subgroup of G and p is the largest prime dividing |G|. Since Op{G)~ 1, we have 
P =  1. Thus G is a //-group. Theorem 3.5, implies that G/P1 is supersolvable, where Д 
is a Sylow Д -subgroup of G andp 1 is the largest prime dividing |G|. Thus by Theo­
rem 3.1, G is supersolvable. This completes the proof.
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REPRESENTING COMPLETELY BOUNDED 
MULTILINEAR OPERATORS

K. YLINEN (Turku)

In an important recent article [1] Christensen and Sinclair introduced the notion 
of a completely bounded multilinear operator Ф: Ak-*L(H), where A is a C*- 
algebra and L(H) the space of bounded linear operators on a Hilbert space Я. They 
showed that Ф is completely bounded if, and only if, Ф is representable in the sense 
that there are Hilbert spaces *-representations Oj : A-*L(1Ij) for j —
= 1 and bounded linear operators Vj: Hj+i-*Hj (notation: Vj£L(Hj+1, Hjj) 
for y = 0 , k, where H0=Hk+1=H, suchthat

for all ak, ..., ak£A. Moreover, the so-called completely bounded norm ||Ф||сЬ equals 
the representation norm ||Ф||гер defined as the infinum of ||U[ • IIKII---IÍLII over all 
representations of Ф in the form (1) (see [1, Theorem 5.2]).

This note contains an elementary proof of the fact, arrived at in [3] via a different 
route, that a representable Ф always has also a representation of a simpler type, na­
mely,

where all the *-representations 0'- act on the same Hilbert space K, and 
V0'£L(K, H ), Vk £L(H, К ). Moreover, if in (1) the operators V0, ..., Vk are so nor­
malized (by multiplying by suitable constants) that IIb̂ ll = 1 for j= l,  ..., к  — 1, then 
we may take ||) '̂|| =  ||J |̂| and \\Vk'\\ = 111*11 in (2). This shows that || ФЦrep equals the 
infimum of Ill'll • Ill'll over the representations of Ф in the form (2).

The following lemma is the key ingredient of the proof.
Lemma. Let Hj for j= 0,1,2, 3 be Hilbert spaces and Vj€L(HJ+1, Hj) for 

j= 0 ,\,2 ,w ith  ll^jl^l. Let Aj for i= 0 ,.. . ,n  be C*-algebras, and let 00:A0— 
-*L(Hk) and bi'. Ai-*L(H2) for i= l , . . . ,n  be * -representations. Then there exist 
a Hilbert space K, bounded linear operators V0' : K-»H0, V2 : H3-*K, and *-repre­
sentations O'i : Ai~+L(K) for i= 0 , ..., n such that Ill'll =||loll> WK'W =  IIРг||> ond

for all a fA i,  i= 0 ,...,n .
P r o o f . Denote Я = Я 1ф Я 2 for short and define V fL (H )  by the formula 

i 2)= (L (?2 > 0)- Borrowing a trick from the proof of [2, Theorem 2.4] (see 
also [7, p. 638]) we note that since ||í^ ||s l ,  Vy has a unitary dilation, i.e.^ there is a 
Hilbert space KzrH  such that for some unitary operator U: K^-K V1=PHU\H

( 1) Ф(п1, ..., ak) — V061(a1)V162(a2)V2...6k(ak)Vk

(2)
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where PH is the orthogonal projection of К  onto Я  (see [6, Problem 177] or [5]). Write 
K = H 1Q)H2(QHa-. Define V{ : Я 3- Я  by the formula K2'(£)=(0, Fa£, 0), write 
0i(a;)=O®0j(a;)©O for / =  0Ó(a„) = U*(()„(я0) ® 0 ® 0)С/, and finally denote
V0' =V0PHlU: K ^ H 0. Then

V0'6'o(ao)e'1(a1)...0'n(a„)V2'S  =

= [^о7я1ЯЯ*(0о(ао)®О®О)/н1Я(О® / /  0,(в,)®0)](0, F2£, 0) =
i =  l

=  Voeo(a0)PHlU(0, ( f f  et(a,))V^, 0) = V{A ( a a) P „ ( П  =
i = 1 i = l

= г м а о Щ п в м ж и
for all □

We formulate the main result in slightly greater generality than the situation 
described at the beginning would require.

T h e o r e m . Let H0, Hlt Hk+1 be Hilbert spaces and Alt ..., Ak C*-algebras. 
Suppose that Vj£L(Hj+1, Hj) for j= 0 , . . . ,k  and [ |f j ||s l for j= \ ,  — 1.
Let Qj : Aj-*L(Hj) be *-representations for /  = 1, ..., k. Then there exist a Hilbert 
space K, two operators V0fL (K , H0) and Vk £L(H k+1,K ) with \\V/\\ =||fj|| for 
y'=0, k, and for each j = l , . . . , k  a *-representation 0j : Aj-*L(K) suchthat

(3) V0 O M V M a jr ,  ... 0k(ak )Vk = V '{ j )
j = 1

for all a fA i,i=  1, . . . ,k .
P r o o f . The proof is by induction on k. The claim is trivial for k = \. Suppose the 

theorem is true for к —1. Then the left-hand side of (3) equals V(i0x(aL)V1'/02(a2)... 
...6k(ak)Vk", where for some Hilbert space K \ VkfL { K ',  Hk), \\VfW = ||F||(=1), 
Vk"£L(Hk, K'), \\Vk"\\ =  ||F J, and 0y : Aj-*L(K') is a ^-representation for each j — 
=2, k. Applying the Lemma we see that this has the type of form indicated by the 
right-hand side. □

R e m a r k , (a) After completing the above arguments the author found out from 
E. G. Effros that [2] also contains an inductive dilation proof which shows that in the 
Christensen—Sinclair representation the '-representations Oj can be replaced by ones 
acting on the same Hilbert space, and the bridging maps Vf, j=  1, ..., к —1 can be 
removed. Our proof is more elementary in the sense that it does not depend on the 
existence of the square root of a positive operator. Indeed, in [9, Proposition 3.1] 
a square root free proof of the type of dilation theorem we used above is given.

(b) Paulsen and Smith [8] have proved a representation theorem for completely 
contractive multilinear operators on the product of subspaces of C'-algebras, ana­
logous to (1) with ||P j||^ l for /= 1 , ..., fc—1, Vk an isometry, and V0 the adjoint of 
an isometry in L(H 0, Hf) [8, Theorem 3.2]. The above proofs (and the argument in
[2] referred to above) show that there (and in [8, Theorem 2.9 and Corollary 2.10]) 
the appropriate bridging maps can also be removed.
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A DECOMPOSITION OF CONTINUITY
M. GANSTER (Graz) and I. L. REILLY (Davis)

In 1922 Blumberg [1] introduced the notion of a real valued function on Euclidean 
space being densely approached at a point in its domain. Continuous functions satisfy 
this condition at each point of their domains. This concept was generalized by Ptäk
[7] in 1958 who used the term nearly continuous, and by Husain [3] in 1966 under the 
name of almost continu ty. More recently, Mashhour et al. [5] have called this pro­
perty of functions between arbitrary topological spaces precontinuity.

In this paper we define a new property of functions between topological spaces 
which is the dual of Blumberg’s original notion, in the sense that together they are 
equivalent to continuity. Thus we provide a new decomposition of continuity in 
Theorem 4 (iv) which is of some historical interest.

In a recent paper [10], Tong introduced the notion of an si-set in a topological 
space and the concept of ̂ /-continuity of functions between topological spaces. This 
enabled him to produce a new decomposition of continuity. In this paper we improve 
Tong’s decomposition result and provide a decomposition of s i  -continuity.

Let S  be a subset of a topological space (X, ST). We denote the closure of S  and 
the interior of S with respect to 9~ by ST cl S and 2Г int S  respectively, often suppress­
ing the IT when there is no possibility of confusion.

D efinition  1. A subset S of (X, &~) is called
(i) an а-set if S(Z&~ int [ST cl {ST int S )),
(ii) a semiopen set if SaST  cl {ST int S ),

(iii) a preopen set if ScST  int {.T cl S),
(iv) an si-set if S=UP\F  where U is open and F is regular closed,
(v) locally closed if S=  С/П F where U is open and F is closed.
Recall that S' is regular closed in (X, !X) if S=3F cl (2Г int S). We shall denote 

the collections of regular closed, locally closed, preopen and semiopen subsets of 
(X, ЗГ) by RC(X, ЗГ), LC (X, ST), PO (X, ЗГ) and SO (X, ST) respectively. The 
collection of ,c/-sets in (X, ST) will be denoted si(X , FT). Following the notation of 
Njástad [6], will denote the collection of all а-sets in (X, 9~).

The notions in Definition 1 were introduced by Njástad [6], Levine [4], Mashhour 
et al. [5], Tong [10] and Bourbaki [2] respectively. Stone [9] used the term FG for a lo­
cally closed subset. We note that a subset S  of (X, ST) is locally closed iff S=  C/flcl S 
for some open set U ([2], I. 3.3, Proposition 5).

Corresponding to the five concepts of generalized open set in Definition 1, we 
have five variations of continuity.

D efinition  2. A function f :  X -*Y  is called а-continuous (semicontinuous, pre- 
continuous, ^/-continuous, LC-continuous respectively) if the inverse image under /

8
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of each open set in Y  is an а-set (semiopen, preopen, si-set, locally closed respectively) 
in X.

Njástad [6] introduced а-continuity, Levine [4] semicontinuity and Tong [10] 
^/-continuity, while LC-continuity seems to be a new notion. It is clear that s i-  
continuity implies LC-continuity. We now provide an example to distinguish these 
concepts.

E xam ple 1. Let (X, У) be the set N  of positive integers with the cofinite topology. 
Define the function f :  X->-X b y / ( l )  =  l and / ( x ) = 2 for all x ^ L  Then V= 
— X —{2} is open and f  ~J(V) = {\) which is (locally) closed but not an s i - set. Note 
that the only regular closed subsets of (X, ST) are 0 and X. For any subset V of X, 
f ~ \ V )  is {1}, X — {1}, 0 or X, and these are all locally closed subsets of X. Hence/is 
LC-continuous but not ^/-continuous.

Our first two results improve Theorems 3.1 and 3.2 of Tong [10].

T heorem  1. Let S  be a subset o f  a topological space (X , ST). Then S  is an si-set 
i f  and only i f  S is semiopen and locally closed.

P ro o f . Let S^s4(X,ST), so S= U f]F  where U£.T and F£RC(X,2T). 
Clearly S is locally closed. Now int S=  С/flint F, so that S=  t / f c l  (int F )c  
c e l  (C/flint F )=cl (int S), and hence S is semiopen.

Conversely, let S be semiopen and locally closed, so that S c  cl (int S) and 
S=  C/flcl S where U is open. Then cl S=cl (int S) and so is regular closed. Hence S 
is an jZ-set.

T heorem  2. For a subset S  o f a topological space (X, ST) the following are equi­
valent.

(1) S is open.
(2) S is an а-set and locally closed.
(3) S is preopen and locally closed.
Proof. (1) implies (2) and (2) implies (3) are obvious. (3) implies (1): Let S be 

preopen and locally closed, so that S c  int (cl S) and S=t/lT clS . Then ScUf ]  
flint (cl S)=int (t/flc l S )=int S, hence S is open.

T heorem  3. For a topological space (X, ,T) the following are equivalent.
(1) s4(X,3T)=3T.
(2) s4 (X, ST) is a topology on X.
(3) The intersection o f any two si-sets in X  is an s i  -set.
(4) SO(X, £F) is a topology on X.
(4) (X, S') is extremally disconnected.
Proof. (1) implies (2) and (2) implies (3) are clear.
(3) implies (4): Let Sx, S .f  SO(X, 3F). We wish to show S, n S /S O (X , 3~). 

Suppose there is a point xfSiH Sg such that x$cl (int (Sj^flSa)). So there is an 
open neighbourhood U of xsuch that С/П int Sifl int S2=0. Thus C/flcl S1lTintS2=0, 
and hence we have UC\ int (cl Sx) П cl S2 = 0. Therefore U П int (cl S, П cl S2) = 0, so 
that x$cl (int (cl S t П cl S2)). But, on the other hand we have cl Sx, cl S f  RC (X, 3~), 
so that clS j, cl S f s i ( X ,  £T)czSO (X, .X). Then xfcl S1flcl S2 implies 
x fc l (int (cl SiDcl S2)), which is a contradiction. Thus no such point x  exists, and so
Si n S 2<=S0(X,.Z'). "
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(4) implies (5) is due to Njástad [6].
(5) implies (1): If^4is an jaf-set then A = UC\F where UC.FT and F£RC(X, ST). 

Since (X, FT} is extremally disconnected F^FT. Hence A^FT.
Theorem 1 and 2 show that in any topological space (X, FT) we have the follow­

ing fundamental relationships between the classes of subsets of X  which we are con­
sidering, namely

(i) sd{X, FT) = SO(X, FT)<fLC(X, FT).
(ii) ST = FT* fl LC (X, FT).

(iii) FT = PO(X, 5Г)(ЛЬС(Х,ЗГ) .
(i) and (iii) immediately imply.

(iv) FT = PO{X,FT)F)sd(X,FT).
(v) 2Г* = PO(X, FT)C\SO(X, FT) is due to Reilly and Vamanamurthy [8].

These relationships provide immediate proofs for the following decompositions.
We note that (ii) of Theorem 4 is an improvement of Tong’s decomposition of con­
tinuity [10, Theorem 4.1], and that (iii) of Theorem 4 is due to Reilly and Vamana­
murthy [8]. Theorem 4 (i), (iv) and (v) seem to be new results and provide new decom­
positions of continuity.

Theorem 4. Let f:  X-+Y be a function. Then
(i) f  is sd-continuous i f  and only i f f  is semicontinuous and LC-continuous.

(ii) f  is continuous i f  and only iffis  ос-continuous and LC-continuous.
(iii) f  is oc-continuous i f  and only i f f  is precontinuous and semicontinuous.
(iv) f  is continuous i f  and only i f f  is precontinuous and LC-continuous.
(v) f i s  continuous i f  and only i f f is  precontinuous and sd-continuous.
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A GENERAL SADDLE POINT THEOREM 
AND ITS APPLICATIONS

Z. SEBESTYÉN (Budapest)

Let X  and Y be nonempty sets,/and g be real-valued functions on the Cartesian 
product X X Y  of these sets. A point (x, y) in XX Y  is said to be a saddle point of the 
functions / ,  g if
(SP) g(u,y) ^ f ( x ,v )  for every (u,v) in X x Y
holds true. For a single function / the well-known notion of saddle point follows here 
by letting g = f  in (SP). It should also be noted that the existence of a saddle point 
implies the following minimax inequality
(MMI) inf sup g(x, у ) ё  sup inf /(x , y).

y i Y x e X  x í X y é Y

In the case when f= g , especially when g equals/ ,  the latter property is known as the 
statement of the two variable generalized version of the celebrated von Neumann’s 
minimax theorem, namely
(MME) inf sup g(x, y) = sup inf f(x , y).

y í Y x t X  x í X y í Y

Our aim is to prove a general but rather elementary theorem first on the existence 
of saddle points (Theorem 1), secondly, as a consequence, on the existence of mini­
max inequality and equality respectively — giving necessary and sufficient conditions 
for them. Our condition is general enough and not only of convexity type. The results 
so obtained are a common generalization of our previous ones and many other known 
theorems of concave-convex type. Our approach is essentially the same as our earlier 
one. We use the finite dimensional separation argument for disjoint convex sets in 
a similar but essentially simpler way as in [1, Theorem 2.5.1] and Riesz’s well-known 
theorem concerning a common point of compact sets with finite intersection property. 
The compactness here follows by Alexander’s subbase theorem [6].

Concerning minimax type inequalities see S. Simmons [10], J. Kindler [5] and 
Z. Sebestyen [8, 9]. Minimax theorems are e.g. in Belakrishnan [1], Z. Sebestyen 
[7, 8, 9], I. Joó [3] and I. Joó—L. L. Stachó [4].

Let now / ,  g be two real-valued functions defined on the Cartesian product X x Y  
of two nonempty sets X, Y. As a notation, for a nonemty set K tzX x Y ,  for a point 
(и, v) in X x Y  and for a positive real number c let

K u , v  = {(x, >>)€/£: 0 =  /(x , v)-g(u ,y)+ c}.
This is why for a point (x, y) in X x Y  to be a saddle point is nothing else but each 

„ being nonempty for the one point set K={(x, y)}.
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T heorem 1. Let f , g  be real-valued functions on XxY.  There exists a saddle 
point for f ,  g i f  and only if  there exists a nonempty set K d Y X Y  such tha t:

(1) min 2  K x ,y ) [ f{ x ,v ) -g (u ,y ) ] ^  sup min [f(x, v )-g (u , y)]
(u, v ) £ G  (x , y ) £ F  O , y)  £ К  (и, v)  £ G

for all finite sets F d  K, G d X x Y  and a probability measure X on F;
(2) 0s= inf sup [f{x, v )-g (u ,v)]  ~  sup 2  H (u,v)[f(x,v)-g(u,y)]

(H.oezxY ( х , У) е к  ( х , у ) е к  ( и , v > e a

for every finite set G d X X Y  and a probability measure ponG;
(3) i f  D d (0, +°°)Х AX Y has the property that for any (x, y) in К there exists 
(c, u, v) in D with f ( x ,  v) — g(u, >’) +  c<0, then a finite subset o f D exists with the 
same property.

Proof. Assume first that a point (x, y) in X x Y  is a saddle point for the func­
tions/, g on XxY.  The one point subset K={(x, y)} of X x Y  clearly satisfies con­
ditions (1), (2) and (3)

To prove the sufficiently let К be as in the assumption. Let further U^V = K \K ^  „ 
bo the complements in К  of the subsets K^ v introduced before.

Topologize К  by taking {{/„% : (c, u, i>X(0, + = °)x T x  Y} as a family of open 
subbase for this topology. Condition (3) says that if К  is covered by a subfamily 
{£/£„: (c, u, v)dD} then К is also covered by a finite subcollection of the family 
indexed by D. By Alexander’s well-known subbase lemma К  is thus compact in the 
topology so introduced. But the subsets КЦ „of К are thus closed hence compact with 
respect to this topology on K. Now a point (x, y) in X X Y  satisfies (SP) if and only if

0 = f(x , v) — g(u, y) + c holds for all (c, u, v)£(0, + °°)xXxY,

in other words (x, y) belongs to each of K„ v. To prove that a saddle point exists is 
therefore nothing else but to prove that the sets КЦ v have a common point. But the 
compactness of J s allows us, refering to Riesz, to prove the finite intersection 
property of the family КЦv. Let 0< c ;, (г/;, v ^ X x Y  for i= l ,2 , . . . ,n  have a 
finite family of subsets K„‘tv. in К  indexed by г= 1 ,2 , ...,n . Since with c= 
=  {min Ci: l s / s n}

Ku.,Vi d  K cf  Vi for / = 1 ,2 ,..., 77,
n
П К will imply the desired nonvoid intersection property for the chosen
i = 1

n
finite family {K%tVt: i= l,2 ,...n } .  Assume the contrary: П  KŰ.}V.=0. Then we

7 =  1
conclude that for any (x, y) in К there exists a natural number /, \ d i d n  such that 
(x, y )ÍK cu,'Ci, i.e. f ( x ,  vD-giiii, y) +  c<0.

This implies the following property:
(4) min [f{x, V ^-g iu i, у)] < —c for any (x, y) in K.

1 =  i и

Let now Фс be the /^''-valued function on К defined as follows:
Фс(х, у) := (f(x ,v1) - g ( u 1,y )  + c, ...,f(x ,v„ )-g (u 1,y) + c).
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We have thus that ФС(Х, Y ), the range of <PC, does not meet

R+:= {t = (h, OCR": O s  tt for / =  1,2,
the positive cone in R". But we state more that this, namely that the convex hull of 
ФС(Х, Y) also does not meet but the interior of R'V. Otherwise there would be a finite 
set F czX xY , probability measure X on F such that

0 <  2  y)[f(x, Vi)-g(Ui, y)+c] for / = 1, 2, n.
( x , y ) € F

But then, in view of (1) and (4), we have
- c <  min 2  *(х ’ y)lf(x, v j -g iu i ,  y) S  sup min [f(x, v ^ -g (u t, y)] S - c ,

1 ^ ‘ Ш п  ( x , y ) £ F  ( x . j o e x 1 - 1- "

a contradiction. The separation argument thus applies: there exists a nonzero vector 
g=(g1, ...,p,,)£Rn separating the mentioned two convex sets in R”. This can be 
expressed by the following property

2  Fi[f(x,vt) -g (u i,y)+c] r§ 2  Fitt for (x, y) in К, 0 S  tf, / = 1 , 2 ,  n.
i = 1 i = 1

As an easy consequence we have for i =  l, 2 , We  can thus assume
n

2  h i~ 1> i.c. that Ц is a probability measure on the finite set G = {(uh vf. i —
i = l
= 1,2, But (2) thus gives us the following contradiction

П
0s= inf sup [f(x ,v )-g (u ,y)]tB  sup 2  ^i[{f(x,v^-g{U i, y))] S - c .

( u , v ) Z X X Y  (x , y ) Í K  (.x,y)£K i = 1

The proof of the theorem is now complete.
C o ro llary  1. Let X, Y be convex subsets o f real linear spaces, and let f ,  g be 

real-valued functions on X x Y  suchthat (5) f ( —g) is concave in its first (second), 
and convex in its second (first) variable.

Then there exists a saddle point in X x Y  for f  g i f  and only i f  there exists a non­
empty subset К in X x Y  with (3) and such that

t
(6) 0 s  sup [f{x,v)—g(u, y)] for every (u, v fi X x Y .

( , х , у ) е к

P r o o f . For concave-convex functions / ,  — g, as (5) assumes, we have for every 
finite sets F, G czX xY  and probability measures 2, p on them, respectively, such 
that

2  H x ,y )[ f(x ,v ) -g (u ,y )] r s f(  2  M x ,y )x ,v )-g (u , 2  4x ,y)y),
f c j ) £ F  ( x , y ) € F  ( x , y ) £ K

f ( x ,  2  l fu ,v ) v ) - g (  2  p (u ,v)u ,y)-^  2  h(4>v)[f(x,v)-g(u ,v)].
( u ,  v ) £ G  ( u ,  y ) 6 G  ( m, v) 6 G

Properties (1), (2) are easy consequences of these and (6). Therefore Theorem 1 
applies.
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Remark 1. A known result is a consequence of Corollary 1 in the case when X, Y 
are compact convex subsets of real topological linear spaces and f= g  is continuous 
(or at least f ( x ,  v)—g(u, у) is upper semicontinuous in (x, y) for every (и, v)j con- 
cave-convex real-valued function on X x Y .

Theorem 2. Let g , f  be real-valued functions on the Cartesian product X x Y  o f 
the nonempty sets X, Y. The minimax inequality (MMI) holds true for f  g i f  and only 
iffor each positive real number e there exists a nonempty subset Kl of X x Y  such that 
conditions (l), (2), (3) ofTheoerm 1 hold true with Kc, f+ e  instead of К andf, respec­
tively.

Proof. The minimax inequality (MMI) clearly holds if and only if for any e>0 
the following inequality is satisfied

inf sup ̂ (x, y) <  sup inf (f(x,y)+ e). 
y ^ Y x i X  X t x y t *

Equivalently, when there exists yc in Y  such that
supg(x, yc) <  sup inf (/(x, y)+e), 
xex x e x y t *

then there exists in X such that

supg(x, yr)  <  inf (/(x,, y)+s).
x e x  y£ Y

But this is (SP) for f+ e , g with (xe, y e) in X x Y  indeed. Theorem 1 is therefore 
applies.

As a further consequence we have [3, Theorem] in an improved form instead of 
its minimax formulation in [3]:

£R.
(7)

Corollary la . Let fb e  a real-valuedfunction o n X x Y  such that inf sup f  (u, y)£
y ^ Y u i X

There exists x0£ X  such that

inf sup f(u , y) s i/(x „ , v) for every v£Y
Y i Y x € X

holds i f  and only i f  there exists a nonempty set X0czX such that the following proper­
ties hold:
(8) min 2  kj f(xj ,  vt) ~  sup min/(x, vt)

• j xex0 1
for any finite sets (xj, Vj)£X0X Y  and esO, £  Xj = \\

j
(9) inf sup f{x , v) sup 2  hif(x, Vi)

v e r  x £ X 0 x € X 0 i

for any finite sets vfi Y and Pi=0, 2  /zf=  1;
i

(10) i f  C c(0 , -foo)xA has the property that for any x(- X0 there exists (c, v) in C 
with

f(x ,v )+ c  <  inf sup f (u, y)  

then a finite subset o fC  exists with the same property.
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Proof. The validity o f  the conditions (8), (9), (10) for the one point set X0 = {x0} 
where x0 satisfies (7), is evident. Thus the necessity part of the theorem is clear.To 
prove the sufficiency let g be the constant

g-= inf sup/(и, y)
ut x0

as a function on X X Y  to apply Theorem 1 with X0X {y0} as К  in the hope that 
(x0, y0) is saddle point for f ,  g with any y0£ Y, as (7) requires. With this K, f  and g 
conditions (1)—(3) reduce clearly to conditions (8)—(10), respectively. Theorem 1 
hence applies, thus the proof is complete.
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ON A PROBLEM OF R. PÖSCHEL 
ON LOCALLY INVERTIBLE MONOIDS

I. SZÁLKÁI (Veszprém) 

To the memory o f my Parents

0. Introduction and statement of results

Automorphisms of algebraic structures have been widely investigated. In con­
nection with the characterzation of properties of endomorphism monoids, in [FI] it 
was formulated a problem which we are going to investigate with a set-theoretic 
approach.

Before formulating the set theoretic version of the problem we need a few defini­
tions :

D efinition 0.0 (i) For sets A and В denote by BA the set of functions mapping 
from В to A and the set of permutations on A by SA.

(ii) о and 1 denote the operations of composition and restriction respectively. 
(That is f o r / ,g£AA, DczA and b£A { fo g )(b )= f{g{b )),f\D fDA and for every 
d£D ( / \D)(d)=f(d).] Letfurther f" D = Range (f\D )  for f d BA and D a  Range ( / )

(iii) a monoid M a AA is called locally invertible iff for every /£ M  and finite 
subset D of A there is a g^M  suchthat (gof)\D = '\á.

(iv) for F c A l let Loc (F) = { f£ AA\ \/D czA,D  finite, 3g£F f\D -g \D } the 
local closure of F.

Then the problem is whether the following statement is true:
P(A)=“MczLoc (S^lTLoc (M)) holds for every locally invertible monoid 

MczAA .”
We denote the negation of B(A) by ~]P(A).
Remarks, (a) R. Pöschel raised the problem in Szeged, 1983 (see [C, p. 653]). 

The problem first appeared in [P3], the original problem is whether “a clone of rela­
tions closed with respect to complementation” is an equivalent definition of Krasner 
clones of 2nd kind. (For more algebraic background and intuition see [PI, p. 161] or
[P2].)

(b) Stone’s definition in [St, p. 41] is, in fact, equivalent to (iii).
The validity of P(A) depends on the cardinality of A. It is easy to see that for 

cardinal numbers Ac* P(x) implies P(A). (If A is finite then P(A) is trivially true.) 
The affirmative answer for countable A was first given by J. Koliár (see eg. [Pf, p. 164]) 
and the reader can make up a proof himself also for this case.

Our results are the following (for the definitions of CH or MA see [K]):
Theorem 2.1. CH implies 3  F(2S»).

Theorem 3.1. (a) MA (Martin’s axiom) implies 1 P(2N»).
(b) MA (A) implies P(A) for A <  2N<> for countable monoids M.

Theorem 3.2. 2so= 2si=  Sa+  П М А + l ? ( 2 so) is relative consistent with ZFC.
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T heorem  3.4. 2Л=Я+ implies H P(2l) for any cardinal X.
(The same argument shows ~] P(%) for any к if 2x^ x  for every A<x.
It remains open whether “1 P(2**°) follows from ZFC or P(2*o) is consistent. Furt­

her, very little is known about P(X) for X()<A <2No.
Though Theorem 3.4 generalises all the other theorems, we prove it at the end 

because of the following reason. Theorem 3.1 (b) shows that the cardinality of the 
monoid plays an important role and in the proof of Theorem 3.4 we construct a mo­
noid of size A while the other proofs (using slightly different arguments) give coun­
table monoids. Theorem 3.1.b shows that countable counterexamples can not be 
given in ZFC alone.

In Section 1 we prove Lemma 1.2 which is the key to our results. In Section 2 we 
prove our main result: Theorem 2.1. Using the same ideas (but forcing techniques) 
we prove generalizations of this theorem (Theorems 3.1, 3.2 and 3.4). The author 
thanks R. Pöschel, P. Komjáth and P. Profile for helpful discussions.

1. The Lemma

In this Section we prove a lemma which is the starting point of our proofs and 
introduce some useful definitions which throw some light to the behaviour of our 
monoids.

We start with the notations and definitions we need. co0 is the set {0, 1,2, ...} 
andk-=ct)0 means k£co0 and i< k  means í£{0, 1, ..., k — 1} for kda)0.

D efin itio n  1.0. (i) M a AA is a free monoid iff it has no nontrivial о-equations. 
(That is for every/ г, / 2, / 3, / 4бМ if/io /2= /3o/4 then there are g f M  ( /= 1 , 2, ..., n 
for some n<cu0) such that f 1=glo...ogk, f 2=gk+1o ...ogp and f 3=gio...og„ 
A=gi+i°---°gn for some к, /<и.)

(ii) For a one-to-one function f f f A  we denote by / -1 the partial inverse of 
/ :  Dom ( f ~1)=Range ( / )  and f ~ 1(a)=b iff f(b )= a  for a£Dom ( / -1).

(iii) For a set FdAA we denote by (F, o )  ((F, о, —1)) the set of functions 
generated from F with the help of operation о , the composition (with the help of о 
and —1, the partial inverse, resp.). (To be more precise, g€(F, o )  and hdf,F, о, — 1) 
iff there are k£a>0, f ,  . . . , f k£F  and el5 ..., е*б{ + 1, — 1} such that g = fo ...o fk 
and h =f f  о .. f f  where we w r ite /+1 for /  and f ~ 1 for the partial inverse of /.) 
(Sometimes we w rite/° for id.)

(iv) A monoid M<^AA is finitely generated iff there is FczM  finite such that
M =(F, o ) .

In the next section we extend the elements of the monoid M a AA (constructed 
in this section) to NczBB, Bz>A M = {f\A :  f€N }. In the meantime we want to 
“kill” (every) permutation 7r£ L o c(M )^ !^  — {id^}, that is лАд\А  for all 

L oc  ( А) П S,j. To achieve this, while extending the elements of M  to B, we have to 
extend their local inverses in such a way that the partially killed n will not rise again. 
This is ensured by requiring the existence of local inverses for all f^ M  with good 
properties (and Lemma 1.2 (iv); for further details see the sets E; and Lemma 2.2). 
These good properties are declared in the following definition. (Any of the finite sets 
may be empty.)
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D efinition  1.1 (weaker version). A set of functions FczAA (A is an arbitrary 
set) is called fairly complete iff:

FOR EVERY f£F ,D c.A  finite, v<co, DmczA finite and one-to-one function gm 
mapping from £>m to A, gm̂ id\D m and / с F finite such that (p\Dm^ g m for all 
q>£(3/Fm, о , —1) and m ^V , THERE ARE infinitely many such that tof\D  = 
= idf£> and for every m<v and every о , —1) we have ilr\Dm̂ g m
for m < v.

Roughly speaking t is a local inverse for / \D and moreover makes no forbidden 
functions in (jifmU{t}, o , — l )  with respect to gm simultaneously for m < v.

(In the construction of the next section, one of the g's is will be the permutation 
7Г to be killed, see also Lemma 2.2.)

Observe that if F is fairly complete then it is locally invertible. Further if F is 
locally invertible (fairly complete) then so is (F, o) too.

However, in proving Theorem 2.1 (see Case 3 in Claim 2.3) we need a stronger 
property:

D efin itio n  1.1 (stronger version). A set of functions F<zAA (A is an arbitrary 
set) is caled strongly fairly complete iff:

FOR EVERY /£ F , DczA finite, v<co0, DmczA finite and one-to-one function 
gm, mapping from Dm to A, gm?±id\Dm and 2/FmczF finite for m<v, THERE ARE 
infinitely many t£F  such that to f\D —id\D and for every m<w and every 
i>£(^fmU{/}, о , — 1) Il/\D=gm implies D c D o m (f)  and ij/'\Dm = \l/\Dm where 
t// results if we replace i _1by (f\D )~ x (and i -1 by f\D )  in i// everywhere.

We need this stronger version because in the main construction (see the proof 
of Claim 2.3) we can not ensure that il/\Dm̂ g m for all ф£(Жт, о, —1) but for 
ф' only if i/d is defined as above.

In what follows we always use the stronger version of Definition 1.1.
The following lemma is the key to our results:

L em m a 1.2. There exists a countable monoid M a AA on a countable set A 
with the following properties:

(i) M  is not finitely generated and has independent о — generators F={ [:

(ii) F is strongly fairly complete,
(iii) Loc « { /;: /< /}, o, - l» n S ^ g { id A} for every j<co0.

R em arks M  is free by (i) and locally invertible by (ii). We will use (iii) in the 
next section to construct some sets for j<co0. Using their properties and the 
fairly completeness of M  we will be able to kill яТ Loc (M) Г1SA.

P r o o f . We will construct an increasing sequence of countable sets (A„: n<co0), 
Anc:An+1 for n< co0 and we will take A=U{A„: n<co0}. In order to construct 
M, in each step n^co0 we will build monoids M„+1c A»+i (An+1) by extending 
the elements of M n to An+1 and adding some (countable many) elements from 
An+t (An+1). More precisely we construct the free о—generators of M n+1. Finally
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every element of M n will be extended to A for every and at the end we will
take the set of generators of M  to be the set of these extended functions.

(In terms of formulas, the set of generators of M  is _F={t//; i, j<co0}czAA 
which we intend to define, ij/it„ “appears first” when constructing M„ (see below 
for definition). In step и<ш0 we will define the elements of the set Fn={\j/itj\An: 
i< <j)0, j ^ n } d A»(A„) only. This is the set of the generators of MnczA«(A„). Since 
in the n,h step we have not constructed ф1>} but ipitJ\A n only, we write ф\"] instead 
of IISi'j\A„ and define after the construction := U {»A,-") : и =7}. For convenience 
we enumerate Fn as (<An): w<co0}.)

From algebraic point of view, if M* and M* are the abstract monoids represen­
ted by M  and Mn ( и « а 0), then M* is a homomorph image of a submonoid of M*+1 
for all n<a>0 and so M*  is the inverse limit of the system {(M *, &„): n< oj0} where 
Sn is the homomorphism mentioned above. Since every element of M  map hierarchi­
cally (that is Range ( f j (A n+1\A„))czAn+1\A „  for every f£ M  and n<co0 if 
f  appeared before n) and is one-to-one; further the sets D, Dm for m < v, and v 
are finite in the definition of the local invertibility and the fairly completeness, 
these things are handled in Am, and so in Mm for some m < a>0 large enough. Further, 
we construct the free generators of M„ and M  only, so we can manage (i) through
(iii) easily.

Now, let us get down into the details. Let A0 be an arbitrary countable set, 
F0a A°(A0) an arbitrary countable set of о—independent injective functions on it, 
and put M0:=(F0, o).

Suppose that we have already constructed An and M„ and now we want to 
construct A„+1 and M n+1. We have Mm = (/•„,, o) by construction, where Fm = 
= {Ф1У: /<o)0, y=m ) for all m sn , and ф$=ф}?/>\Ак for /<<y0, j= k ^ m S n .

We want to extend the elements of Fn to A„+1 and find infinitely many local 
inverses for them on An+1 as independent from each other as possible. To this end 
choose countable sets B ^ DtU and disjoint from each other and from An for 
Ij/£Fn, DaA„ finite, w<co0 and, let Fn + 1 be not element of any of these sets and put

A +1:= A U U  {В£"> UB $DiU: iK F n, D c  An finite, и <  co0}U{Pn+1}.

Pn+i ensures (iii); for further details see Lemma 1.3. AnUB^n> will be the Range 
os Il/£F„ after extending it to An+1 and AnU B ^DiU will be the Range of a new ele­
ment of Fn+1, the nth local inverse of ф\Ь where ф £ Fn and DdA„ is finite, и <  co0. 
The disjointness of the sets Bi;”) and B $ Du is the main trick in the construction 
which ensures (i) through (iii). To be more precise, first extend all ip^Fn to A„+1 to 
be one-to-one arbitrarily such that ф"(Ап+i \ A n) a  B ^  and let {<A;"/1) ■' /< (o0 , 
j ^ n )  enumerate the set of these extended functions so that tA,("/1)fA =,H"j- (^ еса11 
that every il/£Fn has the form фf"j for some i<co0, j= n.) Next let /,;/jDu be the 
following injective function from A„ + 1 to An{JB ^D u for ф£F„, Dc.An finite 
for w<w0: 1ф,в,и\Х=(ф\В)~1 and where Х=ф'Ъ.
Finally put

{Ф1"п++i ■ i <  « 0} = {h,D,u~- Ф£Рп, D a  An is finite, и <  co0}.

It is easy to see that all the functions ф<Аф1> for i< <y0, jS n  + 1 are о— and 
— 1—independent by the disjointness of the sets Bty\ B $ D u, An for ф6Fn, DaA„ 
finite, и <  ю(|. So we can define F„+1, the set of generators of M„+1 as F„+x =
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= Ш."/1); 1<£0o> j= n  + 1}. Finally put M =(F, o) and F=U{i/q>7-: г, y<cu0} 
where t/qtJ-= U {•//■"]: л fey'} for i,j<a>0. So we can say that the function i// = F 
(or i/fi/1 =il/f A j) appeared first in M,-, or shortly, at j,  for any i, j  <  wfl.

So we have constructed Л and M. Now we have to show that they have pro­
perties (i) through (iii).

It is easy to see that the elements of Fare independent, so (i) holds.
Now we prove (iii). (Recall that F  is enumerated as { /(: /<cn0U}.)
Lemma 1.3. There is no permutation except idA in I.oc ((//, о, —1)) for any 

H c.F finite.
Proof. We are given an f f c F  finite and we must show that Loc ((H, о, — 1» 

contains no permutation except id^.
First choose an n<co0 large enough such that all the members of H  appeared 

first far below n (e.g. if h£H  appeared first in M„h, nh<w, then n>nh + 1 for h£H.)
Suppose now 7tgLoc((#, o, — 1 » П 5 д \ ^ х}. Let a£A be such that n(a)Aa 

and D={Pn+1, n~1(Pn+1), a}. Then we have

n\D =  (<ptk о (pekkSi о ...o<pEpo<pf)\D

for some к<ю 0, (pf FI and е;€{ + 1, —1} for Шк.
Using the facts that Range (^(T„ + 1\/4„))cF^n) and Pn+A B ^ } for every \p£F 

appeared first before n, clearly s0= +  l and since the sets for ij/£F are pair­
wise disjoint we can see (by induction on i) that г ^ г ,+1 implies (pi=(pi+1 . Since 
л (а)Аа we can suppose that e ,= l—ei+1 and (pt=(pi+г holds for no i s k .  This 
means that ef= + l  for all i^ k .  Finally Pn+1$Range ((p) for all (p£H but P„+1£ 
£n"D shows a contradiction. □

So Lemma 1.2 (iii) holds.
Now we prove (ii).
Lemma 1.4. F  is strongly fairly complete.
Let us be given v<w 0, Dm, Жт, gm for m<v and f£F , DczA finite as in 

Definition 1.1. We have to find some t£F  with good properties.
Choose an n<co0 large enough so that all these things appeared below n. 

That is we require that £>cA„ where

D:— D Uf" D  U U {Dm U Range (gm): m <  v}

and every element ij/ of / / := { /}  U U {Жт: m<v} appeared first below n. Write 
/  for f\A„, so f£F„.

When we built F„+1 we defined some local inverses г = /у,d,u£F„+1 (u<co0) 
for the present /  and D and this t appears in the sequence { f \A n + /< w 0} = F„+1 
infinitely many times.

We now show that the functions t£F  for which t\An + 1~ i  works. So, fix such 
a t£F  and let m< o>0 its index.

We may work in M n+1 and An+i since t//"(Am+1\ A m)c:Am+1\ A m for every. 
\I/£H and m>n since the elements of H  appeared first at last n + 1 and Й а  A„. (That 
is, all the functions we use from now on, we can suppose are elements of M„+1, 
their Dorn is An+1.) Let be fixed. Roughly speaking our construction works
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because we defined the values of our functions as independently as it was possible, 
that is ( /  stands for / \A„, f€F ):

(!) Range(t\(An\ f" D ) )  c  B ftD>u but Range(f\A„) c  An

(!!) Range ((p\Bj,Dt„) c  An+1\ A n for cp£M appeared before и

(!!!) В(т% ,иГ)Ап =  0 and D c  An.
Now we verify in details. We have to verify: if gm^id \D m and gmA(p\Dm for all 

o , —l) then for all о, — 1) we have <p\Dm?±gm. Namely
we prove the following:

S t a t e m e n t  1.5. For arbitrary ф£(Жт0  {t}, о, — 1)
(a) EITHER t can be replaced by (f\D )~ 1 and t ^ 1 by f \D  in ф everywhere 

and for the resulted ф' we have ОтаТ)от(ф') and ф'\От — фЮт,
( b )  OR Range (ф)П(Ап+1\ А п)=0.
This statement clearly implies that F is strongly fairly complete.
P r o o f . Let ф^(Жт0{1}, о, — 1) be fixed. We c a n  write ф in  the fo rm

(1) ф = yehh о yfrsl о ...оу$оу\1 oytf
where y f ^ mU{t} and ег£{ + 1, —1} for i s h  for some h<co0.

Our goal is to replace t by ( f  \ £>)_1 in ф as required in (a) whenever it is possible. 
We try to replace t in each of its occurrence in ф separately step by step. (We are 
allowed to make a replacement if for the resulted ф we have DmcD om  (ф).) If 
we succeed to replace all the occurrences of t by ( / \D)~l (and t~ 1 by / \D) then 
we reach case (a). If not, we get a breakdown somewhere, we reach case (b).

Now we examine not only the structure of ф but the “route” of Dm. That is, 
if фф'От once pops into A„+1\A „  (i/q0 is an initial segment of ф) then, by our con­
struction, it does for all />/„, so finally ф satisfies case (b). In the remainder part of 
the proof we verify the above in details. Now let the sequence (ir: r < w) enumerate 
the indices i ^ h  in increasing order for which yt= t. We can clearly suppose that 
w?± 0.

Case I: е,-= +  1 for all (In this case ф£(з4?т0{1}, о).) Now define
Фо~Фо = Фо0) = id and f°r r > 0 put

IK 0) =  У1г-1°У1г-г ° -°У ^ Ф ,-1
фг = íoi/i)0)

Ф'г =  (f\F>)~1oyir_1o...oyĴ ' r_1
where j= i,_1 + 1.

(фг and ф'г are the initial parts of ф and ф' resp., showing the procedure of 
replacing each occurrence of t by ( f  i f ) ) 1 in Ф-)

Now our task is to prove by induction on r<w  that
((a) EITHER Dfflc D o m ( ^ )  and ф'гОт\= ф г\От

(2) 1 ( b )  OR Range (ф,\D J f)(A n+1\ A n) *  0.
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Obviously (2) for all /-<vv implies that we are done. To see this observe 
that ф ~ yho ... о уjÔ jj w —i  and ф'=Ун0...оу]оф'„_1 where j= iw- i +  R

Then (2) (a) for r = w — 1 implies h „ c D o m (f )  and ф'\Dm =  ф\Dm while
(2) (b) for r = w — 1 implies Range (фг\Dm) П (/!„+1\Л „) tí 0 as required for State­
ment 1.5.

So, the induction step for (2): If case (b) holds in (2) for some then it is
easy to see that for every /•>/•„ case (b) holds in (2). So w.l.o.g. case (a) holds for 
every r<.w. In this case, if we denote (t/^0))"Z>m by x, we have two subcases depend­
ing on the position of x:

Subacase (i): xa f"D . Then t can obviously be replaced by ( f \D ~ 1) in фг 
and \j/'r\Dm = \pr\Dm.

Subcase (ii): x% f"D. Then it is easy to see that t can not be replaced by 
(/(D )-1 since t " ( x \ f ”D)c:B'}'D'U(zAn+1\ A n and so Z)„, Dorn (i/^). So Range 
(ip'r\Dm)Pl(An+i\A „ )^ 0 which proves the induction step for r and so we proved 
Case I, too.

Case II: e;=  —1 for some i<h. The method for this case is similar to the 
previous one but we have to be more careful.

Obviously we may suppose that there is no part like yoy-1 in (1), i.e.
(3) for no i-cA we have y,-+i=y; and e/+1 = l — e;
(since gm7±id\Dm). Again we examine the route of Dm. Put now F_ x =  Dm and 
Yi^iyVY'Yt-1 for i^h . Let further e0 be the smallest e ^ h  such that У,П(Л„+1\Л „) 
5̂ 0 if such an e does exist. Again we have two subcases:

Subcase (i): ea does exist. Then we know that for every (p£Mn we have Range 
((p+1)aA„ and Range ((p~1)a A n. But e0 was minimal and DmczAn and HczMn, 
so we must have e0 = i for some ru< w. (The sequence (ir: r<w) was defined 
before Case I.) In other words ye„=t. Further, by the construction of t and by the 
minimality of e0 we have seo =  +1 and YeoCMAn+1\ A n) c B ^ DtU.

We know that for every q>£F„, D c A n finite and /<tu0 all the sets and B ^ DtU 
are all pairwise disjoint, and for every (p£Mn we have Range (<p\(An + i \ A n)) a  B^n>.

So, by (3) we can prove by induction on /, ea-&ish the following fact (as in 
Lemma 1.3), using HaM„: et= + l and there is a (p = (p(i)£F„ such that ТгП 
П (Л +1\ Л ) с ^ л) or т;П(/1„+1\ Л ) с В " ,0,„. (This means that ф"ОтС\ 
fl(/lm+i V J ^ 0 ' )  This proves Subcase (i).

Subcase (ii): e0 does not exist. Then for /ё/г we have Yic A n. Now define 
фг, I/^0) and I//' and prove (2) by induction on r<w  exactly on the same way as in 
Case I.

The induction step in case (”/'■ can be replaced by in фг for every
r<w ”) is as follows:

Let х = (^ г(0))"Д„ and e=e,r. If x c f i  and e= + 1 or х с / 'Д  and e = —1 
then clearly we can replace f  by ( / \Dy~E in фг and ф'г\От = фг\От. In any other 
case we would have Yin={f)"xczAn by the definition of t, which is impossible.

So we proved Lemma 1.4. □
So (ii) also holds in Lemma 1.2 and we concluded the proof of Lemma 1.2. □
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2. Proof of the main theorem
m

In this section we prove:
T h eo rem  2.1. CH implies "|P(2!t»).
P r o o f . Our task is to define a monoid NczBB on some set В such 

that Loc (N) П SB =  {idB}. We start with the monoid M a AA constructed in the 
previous section. Then, using the main ideas of the previous section to extend the 
generators to larger and larger sets as independently as possible, step by step we 
extend M  to B, killing the elements of Loc (M) П Л’л\{1с1в}. We do not add any 
new generator, we only extend the elements of F (=  the set of free generators of 
M a AA) to B. Finally we will get N  as the generatum of these extended generators.

So, let A, F  and M  be guaranteed by Lemma 1.2 and let {лр. i<a>y) enumerate 
Loc (M )П>Si\{id4}. In each step j c o)i we extend A and the elements of F to a 
larger set Bj+1 (BjZ) U {Bp. u-=j] for all y<cui, By=A, Bo=0) in such a way 
that 7rf does not extend to Bj+1 for some j= i. (This means that for no ß£Loc (MJ+1) 
еМ=7гг where M J+1(zBj+i(BJ+1) is the extended monoid.) In this case we say 
that we “killed n ”.

To be somewhat more precise, let A-t be arbitrary countable infinite sets disjoint 
from each other for z'<coy and A(i — A. Put Bj = U{T;: *'</} for j=(x>y and 
B=Bai. (So B0= 0 and By —A.) Fix further a booking function d mapping 
cui\{0,1} onto ojyXo)y with the property: h s j  if ö ( j)  = (h, к) for some /< ю 1 
and for all j,h<cOy. (In the / th step we will kill the ö(i)=(h,k)th permutation, 
that is the k,h permutation of Loc (Мл)с (вйШа (the hlh level). We are forced to 
use such a booking function since g\A=idA for many gfLoc (MA)\{ id 5J , hccu1 
and finally we want to kill every elements of Loc (A^)\{idB} and A(zBhaB.)

Step by step we will extend (the generators of) M  to В as follows. Let MX=M. 
Denote M} the monoid already extended to Bj (so Mj c  bjBj and M0 = B0 = f), 
M a =NQ BB) for j=(Oy. The set of generators of Mj for jSco1, j A l  is Fj = 
=  {Л(Л; к <  ш0} c: (üßßj and they have the property / t(1) =f£n 1 Bt for k<(u0 
and 0 < l< y ^ iy1 by the construction.

Let further {njtk: k«x>y} enumerate Loc (M j)ПS’B;\{ id Bj} for j<(Oy. Now 
let i be given, 2 sz '< w 1 and suppose that we have already constructed Mj for all 
j < z. Now we want to construct M t. (Recall that Mj = (FJt0) for / < /  and the 
elements of FJl extend the elements of Fj2 for y'i<y2-<z.)

In case i is limit we clearly take

fkU) = U {fk(J): j  <  /} for к <  cu0;
and

Ft = {Л(0: к  <  co0}, M t =  (Fuo) c  (ßy)ß ;.

If / = / + 1 then we extend the о—generators of Mj to Bt (—BJ+1=BjUA) 
in such a way that the resulted M t will have the properties (z) through (iii) of Lemma 
1.2 and 7xS(j) will have been killed. The latter means that there will be no permutation 
QdSBl in Loc(M;) such that Q\Bh= n0(J), where ő (j)= (h ,k ) for some k-ccoy (since 
7cá(j.) is the kth element of Loc (Mh) n s ^ X jid \Bh}, к<ю 1; h s j) .

This construction ensures that finally we will have a locally invertible (and, 
moreover, a still strongly fairly complete) monoid N  (= M0H) on В (=Bai) such
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that Loc (N)C\SB={id}. (To see this use the fact that every element of N  maps 
A„=Bn+1\B „  into A„ for every n <  and so does every element of Loc (N) П Sn. 
If then n£Loc(N)C\SB, 7iXidfl, then л \ В hA\d)B h for some h(-a)s, and so, by 
the construction, n\Bh£Loc (M jnSA X iidflJ say n\Bh — nhtk for some к < .  
Then ö(j)= (h ,k ) for some j<0J\ , j ^ h .  In the y'th step, defining the elements 
of N  on Aj=Bj+1\ B j  we killed nhik, so Q\BhAnhtk = n\Bh for each gCLoc (Nj)C\ 
C\SB. which so holds for each g£Loc (N)C\Sb, a contradiction.)

Now we present a construction for Af2=(F2, o), the other successor steps 
i =j + 1 are the same. Write for convenience л and An instead of л:а(1) and Ak. (Recall 
that B1=A0=A, B2= A U A k and M 1= M c BlB1, M =(F, o).) Step by step we 
extend the elements of F to An in co0 steps (A„ and F are countable) and we take 
these extended functions into Т2={/*.(а): к < co0} c fí-B2. We intend to define the 
values of f k-2), k<co0 on An as independent as possible.

After the nth step we will have extended the first k(n> many elements of F to a 
finite set W(n)c A K. (The only important thing is that we extended only finitely 
many elements of F. We choose the first k(n) elements of F for convenience only.) 
Further we will have fixed finite sets Eta A  for every iskSn). These E ~ E f  sets 
are the most important objects in our construction. We require that E{z>Ej for 
/> /  and (p\EiAn\Ei for every <?€({/}: j = i}, о, —1). This can be done by Lemma 
1.2 (iii). The sets £'; play an important role in choosing locally inverses for the ex­
tended functions and taking care of the fairly completeness of F2 (see Case 3). Further­
more, in Lemma 2.2 we prove that if a£ AK is fixed, AM= я for some AgLoc (AT,) П 
П5Тил„ and m<a>0 is large enough then for all q>£(H, о, —1) either <р(а)Ал(а) 
or ср\Ет^ л \Е т where H = { / fc(2): i^ m] ; moreover this property is preserved in 
all further steps, that is H  can be any finite subset of F<2). This clearly justifies that 
я will be killed.

Denote the extended functions b y t h a t  is Dom (/;) = AUW M and } i\A = f  
for To summarize: after the nth step («<or0) we will have fV(n)c:AK
finite, k (n)-<co0 and { / ; : i ^ k (n)j where j\ extends f  to A U W(n). ( f i depends 
upon n but we do not indicate this.) Finally let An = {aj: j<co0j and let у be a 
function from co0 onto the set

X [А ]<и X И * ] Xm0 X [ № “]м X [ К ] " “] X [[F]-=“]" "  X M *]-“

and у takes every value infinitely many times, where A* — {g\D: g€AA, DP\A]^C‘} 
and [T]*:‘B={T cT r: Y  is finite} for any set X.

The role of у is similar to that of <5: enumerates the requirements for M2 to be 
locally invertible and fairly complete. The requirements listed by у will be satisfied 
during the construction, in Case 3, n=3l.

Now let us see the construction itself.
In the 0th step we do nothing: 1T(O) = 0 and no element of F  is extended, /c(,,)=0.
The (n + l)th step: let W = W <">c A !Z be the set constructed in the previous step 

and the function / 0, / i ,  ..., f k already extended be / , , ..., j k with fixed sets 
E0,E 1, . . . ,E k where k = k(n>. in o)0steps we have to define / (a) for all /£ F , a£An", 
and infinitely many locally inverses of f \D  for all f f  F, D c.A U An finite. In each 
step we either define f(a ) for a new a^AK or for a new /€ F or we define
some local inverse of an /  f D, and we have to make each type of steps cofinally 
many times. Enumerate first Аж and F a s  AK={aj\ / < o>0} and F = {fk: к<ю 0}.
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Since the order of the steps is unimportant, for easier understanding we work modulo 
3 and distinguish three cases:

Case 1: n= 3l+ 1 for some /< ю 0. If аг£ W{n) then we have nothing to do 
i. e. }y("+1)=W M, /c(n+1)= k ("). Otherwise extend f 0, f x, ..., f k (к = к(л+1) = к(л)) 
to Wfn+1) = Ж(и)и{а,} totally independently from each other and the points used 
before. That is, for i ^ k  let / ;(а,) be an arbitrary element of the set

An -  W (n) -  {a,} -  U {Range ( /,) : j  3= к) -  { / /a ,) : j  <  /}.
Then we put W("+l) = W (n)U{a,} and k<n+1)=k(n).

Case!: n= 3l+ 2 for some /<co0. If k= k(n)̂ l  then we have nothing to do. 
(I.e. IF(n+1) = IF(n), k("+1)= k (n).) Ifnot, then extend all the functions/fc+1, / fc+2, ...,/, 
step by step to l f =  independently from each other and the points used before. 
That is, if W={au\ n<w} for some iv<m0 then let for n<iv and i, k< -i^l 
fi(au) be an arbitrary element of the set

A „ - W -  U{Range (/,-): j <  i} -{ M a t): t <  u}.
Further, for every j, /с <  / ̂  / by Lemma 1.2 (iii) (and by the induction hypothesis, 
that is M,n satisfies Lemma (i) through (iii) for every m^coj) we know that there 
is no bijection in Loc ((/} : j= i), о, —1)) except id^. So we can choose an EtczA 
for k < is l  be finite such that Etз Ej and n (F,-^ id(Et for j <; and (p\Ei7±n\Ei 
for every (p£_Eoc ts i} ,  о, —1)) and к ё / < / ё / .  So in this case we construct
W (n+ i ) =  w w  k (n+  d  =  /> f k+1J k+2, ...,/, and 
while/; and Et for i ^ k  remain unchanged.

ht +1> Ek + z, Ei, too, (k = kw)

Case 3: n=3l for some / < co0 . Now we have to do something only if y(/) 
codes a requirement for F2 to be fairly complete.

First we clarify when у (/) codes such a requirement. We have

у(/) =  (/1,ДГ,У,1Я„5'1,5'я,С, G>
where lk, ml< a>0 and S t — {T^p: m <  v(i)}c[^;]<CJo for some v(i)<a)0, /= 1 ,2
recall that A2=An) and

Í =  {̂ Fm: m ^  v(3)} c: [F]^“« for some v(3) < <n0
and

G =  {g-m: m ^  v(4)} c  for some v(4) <  a>0.
Then у(/) codes such a requirement iff |G| = |5’1| =  |5'2| =  |(|=v and for every 
Dorn {gm) = T £ \

If the above statement does not hold then we have nothing to do. If it does, 
then we will construct ml many locally inverses of }h(X U Y) with taking care of 
the fairly completeness of F2 with respect to Жт and

Dm:= T ^Ö T ™  (m < v ).
Now do the following construction m, times, repeatedly. (Repeatedly here 

means true physically repetitions: after one construction ends we start the whole 
procedure once more again from the very beginning, repeatedly increasing k(n+1) 
and W(n+1\)
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First we have to suppose that lc = k(-n) and W =W M are large enough, that is 
k>max {t<cu0: m <  v} and W z> FU US2U (/(l)"F. (If not, use the

constructions described in Cases 1 and 2.)
In the construction we use the fairly completeness of F. We have already gm, 

Жт for /и< v. Now link the sequence n\Ei and {/): j= i)  for i ^ k(l,) to the above 
sequence, that is put

g ,+i-.= n\E i and Jfv+Í:= {/}: j  ^  ,} for i s  kin\  so v = v+k(n)+ l.
Further, write f h and X  instead of /  and D in Definition 1.1. Since F is fairly 
complete we have a function t£F  with good properties; moreover such that 
t$ { f :  i'ä  £<")}. t is good in A. We will extend it to Ww  taking care of /,  Y  and 
T,ll2> and arbitrary functions gm on 7^2) for m<v. The sets Д 2) for m< v are settled 
since U{7j,(,2): m < v } c(fw. The sets T,\2) for and the functions gm on
7^2) for are unimportant since we will define t on W(n) (and later on further
sets) totally independently from the other functions.

Now use the construction described in Case 2 to extend the functions f  for 
k < i^ k ( t)  to WM and determine the sets Et with the method described in Case 2 
with the restriction i \ ( f " Y ) = ( f  [F)-1 where k(t) is defined as t= fkW£F. Though 
R(i)  is not disjoint from W°'+1) = W(n\  we will see in the proof (see Lemmas 2.2  
and 2.4) it does not make any trouble. Finally we put 1Т("+1) = Ж(и) and k(n+1)= k(/) 
(and possibly repeat the construction m,—l times again). (To be somewhat more 
precise: let IVм  —{au: and for /, k < i^ k ( t)  and if iA k (t)  or
a„ if" Y  then let f ( a u) be an arbitrary element of the set

4 , \ » * ,)U{/rW'w : r ^  k } \ { f r(as): s t S u , r <  /}).

This ends the construction. □
So we have extended all the generators of M  to An. Let the о—generators of 

M 2 be F2, the set of these extended f t functions, i< ca0. We have to show that M 2 
satisfies the requirements (i) through (iii) in Lemma 1.2 and that n does not extend 
to An. (i) and (iii) can be easily verified.

We only have to check that F2 is strongly fairly complete and that n does not 
extend to An. (The other requirements are clearly satisfied.)

Lemma 2.2. n is not extended to A„.
P r o o f . We prove a bit more: л can not be extended to an element of 

Loc (<F2, o ,  — 1))(T Дгил,,-
Suppose it does. Let a£A„ be arbitrary fixed. If there is a ü£Loc((F2, о, — 1))П 

nSaLM„ suchthat n\A = n then b = n(a) = ( f iiofho...oft ) (a) for some zj, ..., 
...,/s<=co0 and .v<cu0. By the construction there is an и<ш0 large enough such 
that we have already extended all the functions f tj (j=s) till the nlh step so that 
( f i0°L o ...o fu)(a) is meaningful and equals b(LW(n\  (That is, к (п)ё / ; for j ^ s  
and (До...оД)(а) for and b are elements of

Now fix such an arbitrary и<ю0. Recall that till the n(h step we have extended 
f  ( i ^ k ^ k (n>) to W = W (n) and fixed the sets Etc.A (i=k). By the definition 
of the set Ek we have (p\ ЕкА л \ Ek = n\ Ek for every (p£({f- i= k), о, —1) and 
n\EkA-id\Ek. But by our indirect assumption there is a k '< co0 such that ф\Ек=
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= 'й\Ек= л\Ек for some i/i€Loc <{/,•: j= k'}, o) since rc€Loc(M2). Clearly we 
have k '> k  and we must have extended the functions /*, till the nth step,
n'^-n and k' = k (n\

However the following result can be proved by induction on m, m>n, using 
that F, is fairly complete:

Claim 2.3. For arbitrary m ^ n  i f  we have extended the functions f  ( i ^ k {n)) 
to lV(m) in steps 0, 1, ..., m then for every (pZ ({j]- i= k(m>}, о, —1) either (p(a)Ab 
or (р\ЕкА л \Е к (here k = k<n) and n is fixed.)

Obviously this claim proves Lemma 2.2.
Proof. The proof is an easy induction on m, examining the effect of the con­

struction in all three cases. The heart of our construction is that we always extended 
the functions totally independently from everything (the other functions and the 
points used before with a small restriction in Case 3).

The proof is rather easy but technical. The claim for m=n  is valid. Let mAn  
and k(m\  W(m) as usual. We prove for m + 1.

Fix any <p£({fi: z'Sk(m+1)}, o, —1), say

(4) cp = уЕ0°оу?о...оу1* (s <  co0, £„£{ + 1 ,-1} for и ^  s)

where yu= fiu, iuA k(m). We have to show that either <p(a)Ab of <р\ЕкА л \Ek 
(k= kM is fixed), using that this statement holds for m, that is for all i//f {{/;: 
z‘s k (m)}, o ,—l). Supposethat (p\Ek=n\Ek and q>(a)=a. Then we have (p\EkA\d\Ek 
since n\Ek^id lE k. So we may suppose that there is no part like / о / -1 or / _1о / 
in (p. (That is in (4) there is no u-cs suchthat yu—yu + 1  and £„=1— e„+1.)

According to the construction we have to distinguish three cases—which one 
was carried out to construct k (m+1), И/(ш+1), etc.

Case 1: m = 3 /+ l for some / < ш0. Then we extended the functions (among 
other functions) yu (uAs) to lF(m+1) = W(m) U (a,) totally independently from 
each other and the points used before. Since the induction hypothesis holds for m, 
by the construction it also holds for m + 1.

Case 2: m=3l+2 for some /<ю0. Then k(m+1)s /  and we extended the 
functions /*(.«>+1, ...,/; to W(m+1 ) =  JL(m) totally independently from each other and 
the points used before. Since the induction hypothesis holds for m, it also holds 
for m + 1, as well. (If that is there is a new function in (4), not constructed
till the m,h step, we must have (p (a)Ab. If not, then (p was constructed in the mlh 
step, and so we can use the induction hypothesis.)

Case 3: m = 3l for some /<c«0. This is the most crucial part of our proof.
In this case we constructed for some /1^/c(m) (several) locally inverses f,  of 

the function f h with respect to a set X U Y a A U A K (/xS/c(m)< / ^ k (m+x), YczWim)). 
We took an f tZF1, using the strongly fairly completeness of F1, with respect to 
(among others) A\Ek (/с = к(л) is fixed) and extended f  to totally
independently from the functions and points used before (with the only restriction 
that f tofli\Y= id\ Y but this causes no trouble since T U (/;1),,T c IF (m)).

If iuA t  for all Ik s  (that is f,  does not appear in cp in (4)) then by (4) we know

Acta Mathematica Hungarica 56, 1990



O N  A PROBLEM O F R. PÖSCHEL 321

that <p has already been constructed before the (m +1 )th step and using the induction 
hypothesis we are done.

So /, appears in (4).
Write (p' for the function we get by replacing /, by ( / / ( Z U  T))_1 and ( / ')_1 

by f h\ (ZU Y) in (p. Using the good properties of f  by the strongly fairly complete­
ness of F1 and our indirect assumption cp\Ek=n\Ek we may replace / ,  by ( / i / Z ) -1 
in cpl A everywhere and so we have (p'\E„=(p\Ek=n\Ek (k= k(n> is fixed).

Next we show that we can derive <p'(a)=b using the indirect assumption 
<p(a)=b. We defined/, totally independently on fb(m)\R angc  (/,|F) from the 
points used before and we defined f t on Range (fh\Y) to be the inverse of f h\ Y. 
It follows that supposing <p(a) is meaningful and equals to b we have that <p'(a) is 
meaningful and equals (p(a)=b (since b was an old point, too, that is a, b£W (m> 
and Y(J(fh)"Y cW im)).

So we have cp'\Ek = n}Ek and cp'(a) = (p (a)=b = ft (a). But (p' only consists of 
functions constructed before the (m +l)th step and by the induction hypothesis 
this is a contradiction.

So we proved Claim 2.3 and so Lemma 2.2. too. □
In order to carry out our construction in further steps (for M 3, A/,, ... and for 

any M i+1 (i < со,)) we must also to preserve the strongly fairly completeness of F.
Lemma 2.4. F2 is strongly fairly complete.
Proof. The proof is mainly included in the construction: in Case 3 we manage 

the fairly completeness of F2, and do not destroy it in further steps.
Observe first that the following fact is true: for every «i-=n2<c»o if untill the 

n;-th steps (/=1, 2) we have extended the functions { /}: j ^ k (”D} to the functions 
{ //° : js k № ),  Dom (//> )= A U №•> for and /= 1 ,2  then we have
(5) ID",) c  r/(h2) and //i)  Q f p  for j s k w
(6) Range(/;(1) HF"d)nRange = 0 for i, j  <  k{nd.
(That is : (5) says that we keep extending our functions, and (6) says that we define 
all functions independently from each other and the points used before.)

This fact can be proved by a simple induction on n2, n ^ S n ^ m 0.
Now, recall that F2= { /,: /<co0}, f i \A —f f F l for /<cu0. Let us be given 

0<a>o, DczA\JAK, fjfF 2, Жт(=F2, Dm<^AUA„ finite and gm: Dm-+AUAn for 
m<v as in the definition of strongly fairly completeness. We have to find some 
t=/(y)-<£o0 such tha t/, has certain good preperties.

Clearly we may suppose that
Range(gm 1 (Ar\Dm)) c  A and Range (gm\(AnC\DJ) c  An

for m < v. Choose an n0 < co0 large enough such that in the n0-th step we can talk 
about the above functions and sets, that is we have already extended all the elements 
of the set

H  = { fj)U{/„: }иажт, m < v} 
to the set W ^czA ^, and D C lA ^ W ^  where

Í) = D U U {£>„, U Range (gm) : m <  v} U f f  D.
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We know that there are infinitely many /0>/?0 large enough such that in the n = 3/„-th 
step we found a local inverse f t of j ) ! D with respect to gm and :Zfm (m<v) taking 
care of the fairly completeness of F2. (See Case 3 of the construction.) By the con­
struction we have exactly one /,£  F2 such that j\\ A = f.  We claim that f t works.

Roughly speaking, /,  was extended as independently from W("\ the points 
and the functions used before as possible and this causes f, to work.

Obviously we have f to(fj\D )= id. We have no trouble with the sets DC\A, 
DmDA and gm\(DmC\A) (m<u) since all members of F2 map A into A and An into 
A n and F\ was strongly fairly complete. We also do not have trouble with the sets 
D(1A„, Dmr  A„ and gm\ (DmiT Am) (m< v) using the construction (that is /, was 
defined totally independently) and (5) and (6) for induction for By the con­
struction the set {/г(п): iS k M} is strongly fairly complete for the full sets D, Dm, 
gm and Жт (m <  v). Further (5) and (6) ensure that we can not damage these good 
properties o f/, in any further step пксо0 for m=~n.

Finally, since this holds for all m<co0 (m is large enough), it must hold for 
F2 also (better to say, for /,£Fa).

This proves Lemma 2.4 and so Theorem 2.1. □

3. Further results

In this section we use the ideas of Sections 1 and 2 to prove further theorems.
T heorem 3.1. (a) MA implies 1 P(2*<>).
(b) MA(/) implies P(X) fo r  2 < 2 Ho and for countable monoids.
P roof, (a) The method is rather similar to the one presented in the proof of 

Theorem 2.1. Let {np i< 2No} enumerate Loc (M)C\SA—{\áA}, let Aj be pairwise 
disjoint countable sets for y< 2No, A0=A and let Bi=\J{Aj: y'</} for i^2*o. 
Extend the elements of M  succesively to Bt by killing я, (and of course use the 
coding function <5: 2xo^2soX2Ko as in Theorem 2.1 and use the fact that MA 
implies 2' = 2No for t< 2s<>). The only difference is the succesive step: killing a 
permutation n £ Loc (M)C\SA.

First we briefly sketch how to find a suitable forcing notion (P, s )  in the proof 
of Theorem 2.1. We know that the set of generators of M  is F—{ f  i < co0} and 
there is no permutation in Loc (({/}: /</}, о, —1)) for every i< ro0. So for 
every i< öj0 we can fix a finite subset EjCzA such that cp\Е ^ п \ Et for every cp f 
Loc(({/y: /< /} , 0, —1)) and EiCzEj for /-=y<co0, Let (P(0), á (0)) be the following 
forcing notion: P{0> consists of the forcing conditions of the form

P =  (D{”\  ( № \  ..., / $ , »
such that k(p)<ct)0, D(p) is a finite subset of AK a n d /<p) is a one-to-one extension 
of f  to A U P  for i s k (p).

Define the partial order á (0) on Pw  as iff k(2)s/c(1) and for every
Ji(p~) = / i<Pl)- Now define the subordering 3  of 3 <0) as Pi=/>2 iff we obtained p { 
from p2 using some (but finite) steps described in the proof of theorem 2.1. Clearly 
the largest element of P° is 1P=(0, 0). Then we define (P, as P={p£Pm :
p = l r} and we have already defined S  above.
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.Pis countable so it satisfies the ccc.
The following subsets of P are dense:

Da = {p£P: a€£»(p)} for a{An,
Dj = {p€P: j  ^  k(p)} for j  Ш a>0,

and
Dj,m,D =  {pdP: j  S  k(p) and D V ffD  c  £>(p) 

and fj \D  has at least m locally inverse among the functions {fj\ j ^ k (p)}} 
for j ,  m < co0 and D<^AUA„ finite.

Applying Martin’s axiom we get the desired extension of our monoid M  to 
A U  AK as in Theorem 2.1. □

(b) Let \A\—A. The forcing notions

Pf ,D = {g\H; g£M, f\(HP\D ) =  g t(#  ПО)} (f€M , D£[A]-»)
ordered by reversed inclusion satisfy the ccc since M  is countable. By MA we get 
a generic subset G c P  intersecting all the dense sets Da = {g\H^Pf>B: a£H  & 

Range (g\H)} for A. This proves Theorem 3.1. □
T heorem  3.2. 2!*o=^a+~|MA with ~|Р(2*У) is consistent.

P ro o f . The forcing notion P defined in the proof of Theorem 3.1 is countable 
so we can apply a weak form of Martin’s axiom which is consistent with 2**о=к2 + 
+ IM A :

T heorem  3.3 (C. Hernik, [W, Theorem 5.7, p. 848]). I f  there is a model o f set 
theory then there is one in which we have

(i) 2*o= a 2,
(ii) SH,

(iii) M A ( -linked)
(iv) 1 MA.
(For the definitions see e.g. [/f] or [IF].)
We only have to know that every countable poset is -linked. Then we proceed 

as in the proof of Theorem 3.1 (a) and apply Herink’s theorem. Use the fact that 
MA(x0-linked) also implies 2r=2*o for t<2*o. This proves Theorem 3.2.

R e m a r k . We could get a suitable model for Theorem 3.2 simply adding Кг 
Cohen reals to an arbitrary model of ZFC (well-known or see e.g. [IF]).

T heorem  3.4. 2Я=А+ implies ~\P(2я) for any cardinal X.
P r o o f . First construct a set C and a monoid Mx<zcC both of power Я taking 

Я disjoint copies of M  constructed in Lemma 1.2. (In other words let C= U {Ct: i< Я} 
where Сг are pairwise disjoint sets of power K0 and let M iczciCi be a monoid 
isomorphic to M  of Lemma 1.2 with generator set /j.) Put P;={/GcC: f \ C t= f' 
and f \ ( C  — C,) =  id for some f'dFj} and let Рл= и { /]: г'<Я} and МЛ =  (РЛ, 0). 
Clearly FÁ satisfies the properties described in Lemma 1.2. Now extend M x step by 
step to a set of power of Я+ by killing every permutation in Loc (M x) using a coding
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function ö: Я-►Ax A. When we kill a single permutation n we extend the elements 
of Fx to CUCK where \CK\=X, in A setps (where the sets Cn are pairwise disjoint). 
I do not think the details are worth writing down. □

The same argument proves “1 P(x) for x strong limit.
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OSCILLATION AND NON-OSCILLATION 
THEOREMS FOR A CLASS OF SECOND ORDER 

QUASILINEAR DIFFERENTIAL EQUATIONS
Á. ELBERT (Budapest) and T. KUSANO (Hiroshima)

1. Introduction

We consider the quasilinear ordinary differential equation

(1) (p(t)(p(y'))'+f(t,y) = o 
subject to the hypotheses:

f(a)p: [0,=ob(0, °°) is continuous;
(b) q>: R —R is continuous, strictly increasing and such that sgn <p(«) = sgn и

(2) and <p(R) = R;
(c)  / :  [0,o=)xR-*R is continuous, nondecreasing with respect to the second 

variable and such that sgn f ( t ,v )=sgn u for each fixed ?=0.
A prototype of (1) satisfying (2) is

(3) ((y')m*y + q(t)yn* = 0 ,

where m and n are positive constants, q : [0, °o)-»(0, °°) is a continuous function, 
and use is made of the notation

(4) ux* =  |n|Asgn u, A=-0.

Our main objective is to investigate in detail the oscillatory and nonoscillatory 
behavior of proper solutions of (1). By a proper solution of (1) we mean a function 
y: [Ty, &>) — R which satisfies equation (1) (so that p(t)cp(y'(t)) is continuously 
differentiable) for all sufficiently large t and sup {|y(t)|: f= T }> 0 for any T ^T y. 
A proper solution is called oscillatory if it has arbitrarily large zeros, and nonoscilla­
tory otherwise. Under additional hypotheses on p, (p and / ,  first we study the struc­
ture of the set of nonoscillatory solutions of (1), and then establish criteria for all 
proper solutions of (1) to be oscillatory. Thus we are able to indicate a wide class 
of equations of the form (1), including (3) with mAn, for which the oscillation 
of all proper solutions can be completely characterized.

The qualitative behavior of equation (3) has been studied by several authors 
including Elbert [2—5], Izjumova and Mirzov [7], Kitamura and Kusano [8], Mirzov 
[9—11] and Piros [12]; however, equation (1) in its general form does not seem to 
have been the object of systematic investigation.
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2. Existence of nonoscillatory solutions

Throughout the paper we make the following assumption without further 
mentioning:

(5)
°° ( k \ I =  oo for every constant к t  0,

where q> 1: R —R denotes the inverse function of <p, and employ the notation:

(6) 0 =  f v ' ( j ~ ) d s ,  , шт,

ФЛр\ 0 = Ф*,оО; 0. t s o .
From (5) and (6) it is obvious that Фк,т(Р'-> T)=0,

lim I Фк,ЛР> 01 =  oo for every к 0,t-*-oo *

and
\Фк,т(Р> 01 >  l^;,r(/L0)> for |Ar| >  |/| with kl >  0,

lim Фк,т(Р1 0 = 0 for each t ^  T.

We begin by classifying all possible nonoscillatory solutions of equation (1) 
according to their asymptotic behavior as t -►oo.

Lemma 1. Any nonoscillatory solution y(t) o f (1) is o f  one o f the following three 
types:

I. lim p(t)(p(y'(t)) = const ^  0;
t-*-oо

II. lim p(t)<p(y'(t)) = 0, lim \y(t)\ =«>;
t -*■ oo f-*-oo

III. lim p(t)q>(y'(t)) = 0, lim y(t) = const 0.
t~*- oo t-*- OO

P r o o f . Let y ( t )  be a nonoscillatory solution of (1). Without loss of generality 
we may suppose by (b), (c) that y(?)>0 for ?&?0> 0. From (1), (р(?)<р(/(?)))' = 
= —f { t , y ( f))<0, i^ ? 0, and so p ( t ) ( p ( y ' (0) is decreasing for ?^?0. We claim 
that p (0 < p (/(0 )> 0 ! t= t0, so that lim p(?)<p(/(0)s0 . In fact, ifp(b)9>(/(ti)) =
= — 0 for some b S / 0 and k>0, then p(t)q> (y'(t))^—k for ?^?l5 which 
is equivalent to y'(t)^cp~1( — k/p(t)), Integrating the last inequality from
?! to t and letting ?->-co, we see in view of (5) that у (?)-*- — °° as ?—oo. But this 
contradicts the assumed positivity of y(t). Therefore, p(t)(p(y'(tj)> 0 for ?ё?0, 
as claimed. A consequence of this observation is that y '( t)>-0 for t t t 0, i.e., the 
function y(t) is strictly increasing.

The limit lim p(t)(p(y'(t)) is either positive or zero. In the first case, y(t)
t-*- oo

is unbounded, since there are positive constants kk, k2, and tn (k1< k2) such that

&kUt0(p> 0 = y(t)-yOo) = Фкг,10(р-, 0» t = t0-
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In the second case, since y(t) is increasing, y(t) tends to a positive limit, finite or 
infinite, as i —°o. This completes the proof.

Now we give criteria for the existence of nonoscillatory solutions of (1) of types 
I, II and III.

T heorem  1. Suppose that for each fixed ky' Q and Ti-0,

(7) lim
* - o, h > o ФкЛ(р;

0.
0

= 0

uniformly on any interval o f the form [T\ °°), 7" >77 Then equation (1) has a non­
oscillatory solution o f type I i f  and only i f

(8) f  \f(t, сФк(р ; 0)| dt <°°
0

for some constants k^O  and c>0.
T heorem  2 . Equation (1) has a nonoscillatory solution o f type III i f  and only i f

(9) /  И ж /  /(i'cH! dt

for some constant c^O.
P roof of T heorem  1. (The “only if” part.) Let y(t) be a nonoscillatory solu­

tion of type I of (1). Without loss of generality y(t) may be assumed to be eventually 
positive. There exist positive constants cx, kk and t0 such that ck Фк1(р ‘, t)^ y ( t)

CO

for t ^ t 0. An integration of (1) yields J  f( t ,  y(t))dt< °°, which combined with
г

the above inequality leads to

f  сгФк1(р\ 0) dt <  oo.
*0

(The “if” part.) Suppose (8) holds for some c>0 and /c>0. Because of (7) 
we can choose /> 0  and T > 0 so that /<fc/2 and

oo

(10) f  f ( t , Фг1(р\ 0) dt =s /.
T

Define the subset Y  of C[T, oo) and the mapping & : Y-+C[T, oo) by

(11) Y = {y£C[T, oo): Ф,,Ар; t) s  y(i) s  ф2(,т(р; 0, f ^  T) 
and

(12) ^ > ( 0  =  f  (p-1 /  / ( a y(rj) r//]j ds, t 3= 77
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(i) S' maps Y  into itself. If y£ Y, then since
oo oo

0=s f  f ( r ,  y(r))dr S  f  f(r , Фг,(р\ rj)dr S  /, .S' is T,
s T

we obtain from (12)

/  v"‘ ( ж )  *  s  ^ (0 s  ( ж )  *■ 1 -

implying that S'yS Y.
(ii) S' is continuous. Let {yv} be a sequence of elements of Y converging to 

yd Y  as v -»-oo in the topology of C[T, °°). The Lebesgue dominated convergence 
theorem shows that

f  f ( t ,  У A  0) dt -  J  f ( t ,  y(t)) dt as v -
T  T

and so
oo oo

/  /(■?» Tv(J)) *  — /  /(.V, y(.s)) d.v as v —
t t

uniformly on [T, °°). It follows that S 'yv( t) ^ S ry(t) as uniformly on com­
pact subintervals of [T, °°), which implies the convergence S 'у S'у  in C[T, »).

(iii) S' (Y) is relatively compact. This follows from the relation

0 s  (Sry)'(t) = 9 - 1 1— (/ + f  f(s , y(s)) cfe) j s§

= <P-1 \ j f j )  (/+  f  ^  Фг,^ ; * ) )  ’ t ~ T’
holding for all y£ Y.

Therefore, applying the Schauder—Tychonoff fixed point theorem [1, 6], we 
see that there exists an element y£ Y  such that у = S 'у. Differentiation of the integral 
equation y(t)= S ry(t), t^ T ,  shows that y(t) is a positive solution of equation 
(1) for t ^ T .  It is obvious that y(t) is of type I.

If (8) holds for some 0 and c=-0, a similar argument is used to construct 
a negative solution of type I of equation (1).

P roof of T heorem  2. (The “only if” part.) Let y(t) be a positive solution of 
type III of (1). There are positive constants c± and t0 such that y ( t)^ c 1 for t ^ t 0. 
Integrating (1) from t to «>, we have

oo

p(0<p(y'(0) = f  / ( b  y(A) ds, t a  t0,
t

which implies

/ ( 0  = <Р~г ( - ^ y  f  t (j)) d.vj, t S  t0.
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Integrating this equation again and using y ( t ) ^ c x, we conclude that

/  V ' { j d )  I  Л 5’ ei ) * ) J i< 0 °'

A parallel argument holds if y(t) is supposed to be a negative solution of (1).
(The “if” part.) Suppose that (9) holds for some c>0. Let T’>0 be such that

из) f  ^ ' [ - p í ) * , ) A ) j , 4
and define

(14) Y =  [y£C [T, ~ ) : I  S  y(t) S  c, t S  t } 
and

(15) & y(t) = c - f  (p~1 f  f{r , y(r)) dr] ds, t £  T.

It is easy to verify that 2F is continuous and maps Y into a compact subset of 
Y, and hence SF has a fixed element у  in Y, which gives the desired solution of type 
III of equation (1). Similarly, (1) is shown to possess a negative solution of type III 
if (9) holds for some c< 0. This completes the proof.

Nonoscillatory solutions of types I and III have thus been characterized. A 
characterization of type II solutions is difficult to obtain, and so we content ourselves 
with sufficient conditions for the existence of such solutions of (1).

Theorem 3. Suppose (7) holds. Equation (1) has a nonoscillatory solution o f type 
II i f  (8) holds for some k^O  and c>  0 and

(16) /  b  1 ( j n ) f f ( s , d ) d s ] \ d t = c

for every nonzero constant d such that kd>0.
Proof. It suffices to consider the case where k> 0 and d> 0. Let 0 be 

an arbitrary fixed constant, and choose /> 0  small enough and 0 large enough 
so that a+ <f>i(p’, t)^c<Pk(p; t) for t ^ T  and

(17) f  f( t ,  а + Ф,(р; t)) dt ш 1.
T

This is possible because of (7) and the fact that lim Фк(р ; t)= °o. Now considert-t-oo
the set Y  and the mapping 2F defined by

(18)
and

( 19)

Y  =  {yiC[T, °°): a = y(t) ^  а+Ф,(р-, t), t ^  T} 

^ y ( t )  = a+ f  cp~' ^  f  f( r ,  y(r)) drj  ds, t ш T.
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As is easily verified, 3F has a fixed element y£ Y by the Schauder—Tychonoff 
theorem. That y= y(t) is a solution of equation (1) follows from differentiation of 
the integral equation y(t) = ̂ y ( t ) ,  t^ T .  From this equation we also see that

P(t)<P(/(0) =  f  f{s, y(sj) ds -  0 as t -*•“
t

and by (16)

y(t) ^  a+ f  cp 1
T

It follows therefore that y(t) is a solution of type II. This finishes the proof. 
E xa m ple  1. Consider the equation

Ь Ь г /  / •a)
ds as

3) ((yT*)' +  q(t)yn* =  0,
where 0, 7;>0 and q : [0, °°)->-(0, °o) is continuous. This is a special case of 
(1) in which

p(t) = 1, cp(u) = um* and f ( t ,v ) = q(t)v”*
and we have

(р~г(и) = u1,m* and Фк,т(Р \t) = k1/m*(t — T),
so that conditions (5) and (7) are satisfied for equation (3).

The possible types of asymptotic behaviour at infinity of nonoscillatory solutions 
of (3) are as follows:

I. lim [y(t)lt] = const 9  ̂0;
t-+- oo

II. lim [y(/)/?] = 0, lim |y(OI =°°;
t —► CO t  -*■ oo

III. lim y(t) = const 0.

From Theorems 1 and 2 it follows that (3) has a solution of type I if and only if

( 20) J  t"q( t) dt
0

and that (3) has a solution of type III if and only if

(21) J  { f  q(s)ds)Vm dt <oo.
0  I

Theorem 3 implies that the conditions (20) and

(22) /  ( f  q (s)d sf/m dt =°°
0 t

are sufficient for the existence of type II solution of (3).
Conditions (20) and (22) are not always consistent. In fact, let q(t) = (t+  1)A, 

where Я is a constant. Then, (20) holds if and only if Я< — 1 — n, and (22) holds if
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and only if Хш — 1— m, and hence these two conditions are inconsistent if тШп. 
Thus, if m>n  and — 1— тШХ< — 1— n, then there exists a solution of type II 
for the equation

((yT*Y+(t+ 1)V* = 0.

3. Oscillation of all solutions

We are interested in the situation in which equation (1) has no nonoscillatory 
solution, or equivalently, all proper solutions of (1) are oscillatory, and show that 
a characterization for this situation can be obtained provided additional hypotheses 
are placed on the nonlinearity of (1).

We say that equation (1) is strongly superlinear if there exists a constant у > 0  
such that \v\~y\f(t, a)| is nondecreasing in |u| for each fixed t and

(23) f  — ^ —-  <oo and f  ----^ —-  <°° for any 0;V '  J  _J ср-ЦпУ*) y

equation (1) is strongly sublinear if there exists a constant 8 >0 such that 
M-al f(t, i>)| is nonincreasing in |u| for each fixed t and

(24) /
dv

[<p~4v)Y
and f  dv

i  W ~ \v ) r
for any N  >  0.

According to the above definition, equation (3) is strongly superlinear if w <n and 
strongly sublinear if m>n.

Theorem 4. Suppose equation (1) is strongly superlinear. Suppose moreover that

(25) rp 1(uv)^cp 1(u)(p 1(v) for all u, v with uv >  0.

Then all proper solutions o f {1) are oscillatory i f  and only if

(26) /  \ p l ( j ( t ) I f ( ^ c)cls] \ d t =C

for every constant c^0 .
Theorem 5. Let equation (1) be strongly sublinear and suppose (7) and (25) hold. 

Then all proper solutions o f (\ ) are oscillatory i f  and only if

(27) /  \f(t,oPk(p; 0)| dt = -
0

for all constants k^Q  and c>0.
Proof of T heorem 4. The “only i f” part follows from Theorem 2.
To prove the “if” part, assume for contradiction that (1) has a nonoscillatory 

solution y(t). We may assume without loss of generality that y(r)>0 for t ^ t 0.
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Integrating (1) from t to °° and noting that lim p{t)(p(y'{t))=0, we havet-+- oo

P(t)<p(/(t)) S  f  f(s , y(s)) ds. t a  t0)
t

which implies

(28) У ' О )  =  <P-1 \ ~ ( J j  f  /(■*» -H-O) * )  ’ 1 -  /o-

We divide the above by (p~1((y(t))y), where y>0 is the constant of strong super­
linearity of (1), and use (25) to obtain

/ ( 0
<гЧШ У )

c p - F  f i e l d s  
yp(t) J  (y(i)y)

/(■?. y(F)
p(t) /  (>'(■'’))'

r/ ' j ,

t  ^  i n .

Since y(t)= c0, ts to , for some constant c0>0 we have, in view of the strong 
superlinearity of (1),

O (0)~7/ ( h  J40) S  c0-V (r, ce), ? a  tli,
so that

* (0 S  (p~l (c0-v - L -  f  f ( s, cu) J.s] s
•ГЧОЧОУ)

<P" (Co V)<P 1 ( - ^ y  /  /(-У, c0) c/s j , / ^

Integrating the last inequality over [/0, r j ,  we have

<1 /  1 <*> \  y(t

<P~4c~y) f  ср- 1 [ - Щ  f  f ( s ,  Co) d s }  d t ^  f
tQ t

which, because of (23), implies

yfti)
/

y(t0>

dv
ц>~1(уг)

I  <P 1 ( j ( t )  f  О) ds) dt <0°- 
*0 *

But this contradicts (26) and completes the proof of the “if” part of Theorem 4.
P roof o f  T heorem  5. The “only if” part is a consequence of Theorem 1. 

The “if” part is proved as follows. Lety(t) be a positive solution of(l) for t ^ t 0. First 
we note that y '( i)> 0, t ^ t 0, and

/ ( 0  = <P 1{ Р 0 ) (Р (У 'Ш ,  to-

integrating over [/0, /] and using the decreasing nature of p(t)<p(y'(t)) we have 

(29) y ( t) -y ( t0) = 9>_1(P(0<P(/(0))^i,ro(p; 0, t = t0.
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Now define 

(30)
>

F(u) = /
u

dv
D p-»]*  ’

where <5>0 is the strong sublinearity constant and u0=p(t0)(p(y'(t0j)>0. 
from (30) and (29) we find

(31) [F(p(t)(p(y'(t)))Y A t,y (t))
[(p-x{p(t)(p{y\t)))Y

Then

S  [4>i,,0(p\ t)]d{y(tj)-sf( t ,  7(0), t — ?,

From the strong sublinearity and the inequality y(t)S c0 Фк>{о(Р', 0 , /=/o> where 
c0>0 is a constant, it follows that

(32) (7(0)_Ä/(b  7(0) 0]~4/(f i c04>kito(p; tj)
for /=>/„. Substituting (32) into (31) and using the inequality

,t„(p\ 0/Фк_,о(р-, 0 — 41/*). 1 >  t0-

which follows from (25), we have by integration over [tl , Л>], b > /0,

c'o V "41/*) / Д /, c0<PkJa(p-, 0) dt
Í1 dv

j  [< г4 » )Г
where vi=p(ti)(p(y, (ti)), /= 1 ,2 . Letting and using (24) we obtain

f  f ( t ,c 0<Pk,to(p; 0) dt <°°,
ti

which contradicts (27). This completes the proof of the “if” part of Theorem 5. 
The following are variants of Theorems 4 and 5.
Theorem 6. Suppose (25) holds and there exist continuous functions q: [0, «= )- 

- * ( 0 ,  o o )  and g: ( 0 ,  ° ° ) - ^ ( 0 ,  ° o )  such that g is increasing,

(33) \f(t,v )\^q (t)g (\v \) for (/,O ([0 ,“ )XR, 
and

°° du(34) Í  ---- -— —r- <°° for any M  >  0.
J  (P~1°g(u)

Then, all proper solutions o f equation (1) are oscillatory i f  and only i f

(35) f  <p 1 J  q(*)ds}dt =oo.

Theorem 7. Let q(t) and g(v) be as in (33). Suppose (7) and (25) hold and

(36) g(uv) S  g(u)g(v) for any u,v > 0
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and

(37 ) f ---- < ° °  a n d  f — - ^  <oo far any N  >  0.
o*' S°\<P 4«)l _?5 gol^o !(n)|

Then all proper solutions o f equation (1) are oscillatory i f  and only if

(38) f  q(t)g(<Pk(p; t))dt = ° o
о

for every constant k^O.

P ro o f  o f  T h e o r e m  6. Since the “only i f ” part follows from Theorem 2, it 
suffices to prove the “if” part. Assume to the contrary that (1) has a nonoscillatory 
solution y (t)> 0  for 0. As in the proof of Theorem 4 we have (28), which
implies

y'(t) ё  (p-1 f  q{s)g(y(s)) ifrj, t S  t0.

Dividing the above by cp 1(g(y(t))) and using (25) we obtain

(39) / ( 0
9 1(g(y(t)))

— 9~

q> 1 r“  (i)M J  
vp(0 /  9 W ^ ( 0 )  Jg(.K0)

( ж /  9(J)<fa) ’ ' - io’

where we have used the fact that g-(_p(A-))/̂ (_y(/))^  1 for s ^ t  since g(y(j)) is 
increasing. Integration of (39) over [/0, r,] yields

f  v  ' ( t to  / q{s)d]  dt -  /
t '(0

ч ,§ -о к о ))
y(í,)

dt = f
K '0)

du
cp 1og(u)

which, in view of (34), implies

f  (p 1 { j ü ) f  * (,)<Zr) dt 0̂ *
But this contradicts (35) and the proof of Theorem 6 is complete.

P ro o f  o f  T h e o r e m  7. The “only if” part is a consequence of Theorem 1 . 
To prove the “if” part let y (t)  be a positive solution of (1) for t ^ t 0. As in the 

proof of Theorem 5, (29) holds, and so (36) implies

(40) 
Define

(41)

g{y(i)) = g{v 1 (p{t)(p(y'(t))))g(<Pu ,o(p\ 0), | ä / 0.

dvF(u) -  /
gocp J(V) , и >  0,

Acta Mathematica Hungarica 56, 1990



SECOND O RDER QUASILINEAR D IFFER EN TIA L EQUATIONS 335

where uo=p(to)(p(y'(t0))>0. Then by (41) and (40) we have 

(42)

^ ____g(QgCKO)

[ F i p u M / m y  g { c p - ^ t ) X v ) ) )

q{<p 1(р (0<р(у'(0))
Integration of (42) over [?1; i2], shows that

S q(t)g{4>u,SP'’ 0). i > /о-

űfo
J q ( tM * u ,0(p; t))dt
ri t;2

where vi—p(t^tp{y’(i()), which because of (37), implies

This contradiction proves the truth of the “if” part of Theorem 7, and the proof is 
complete.

Example 2. Consider equation (3) again. Since <p~1(u)=ullm* and f( t,v )=  
=q(t)vn*, equation (3) is strongly superlinear or strongly sublinear according to 
whether or m>n. Therefore from Theorems 4 and 5 it follows that a neces­
sary and sufficient condition for oscillation of all proper solutions of (3) is

oo oo

f  [ f  q(s)dsY,m dt =°° if m <  n,
0 t

oo

J  tnq(t)dt if m >  rt.
о
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SOME GOOD POINT SYSTEMS FOR 
DERIVATIVES OF LAGRANGE INTERPOLATORY

OPERATORS*
P. O. RUNCK (Linz) and P. VÉRTESI (Budapest)**

1. Introduction

1.1. Let us consider an arbitrary projection operator Ln: C-*-^n_x (i.e. Ln is 
a linear bounded operator, L„(f, x)€^„_a if f£ C  and Ln(f,x )= f(x )  iff 
here C is the set of continuous functions on [ — 1, 1], 2Pn-\  denotes the set of algebraic 
polynomials of degree ё и -1 ) .

We investigate the expression ||L<r)( / ,  x)||. By the usual definition 
(11Щ',)П|:= sup ||LJjr)(/> *)ll where ||g(x)|| is the supremum norm) |||L^r)||| ^c n 2r

f i c
(cf. D. L. Berman [10]). However, using a new norm introduced and investigated 
for projection operators by J. Szabados [3] we can have much better results. Namely, 
let
(1.1) Л“ := sup l|L̂ s)(/, x)||, j  = 0 ,1 ,2 ,..., / i l O

n c

(cf. [3, (2)]).
If L„ is the Lagrange interpolation, J. Szabados [3] constructed a “good” point 

system for each fixed j  such that

^  c(r)ns log и, j  = 1,2,...

(when s= 1 or 2, see also N. S. Baiguzov [2] and P. O. Runck [3]).. This estimation, 
considering that for arbitrary Ln: i

( 1.2) ЛИ ё ф ,  f)n s \ogn, j  =  0 ,1 ,...;  / (SO

(proved for Lagrange interpolation in J. Szabados [3] and in general by P. Vértesi 
[4]), is the best possible in order. This is why our paper is devoted to find other 
good systems (in the previous sense) for Lagrange interpolation.

1.2.
system

So hence let Ln be the Lagrange interpolatory operator based on the node 

X — Wn}) 1  S  í  S  И ,  П =  1 , 2 . . . . . . . .

Concerning ЛИ, we are interested in two problems. Let гёО be given.

* The work was completed during the second author’s visit in Linz (October, 1986).
** Research o f the second named author supported by Hungarian Research Grant N o. 1801.
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A. If / (г)бС, со is the modulus of continuity, then, using the Gopengauz theorem 
[5, p. 168] stating that there exist polynomials x such that

I f (i) O) —Pn] W i s e  [ 1 n Л j со (/ (r), , \x\ S  1, i =  0, 1, r,

we get, if lkn denote fundamental polynomials,
\ f (i){ x ) -L ^ { f ,x ) \  | / (i)( x ) ( x ) |  + 1 ( f - p n, x)| =

£  c
o Á f r\ I )V n )

if nl+ 2  0^=34jri/ffwi)k = 1 '
, / =  0, 1,..., r.

So using (1.2) and the relation

2  fc = 1
holding for Lagrange interpolations (see [3, (6)] (or (1.1))), we have

(1.3) II f « \ x ) - L P ( f ,  *)ll S  у Л И ш  (/fr>, 1 ) ,  0  s i s r .

В. If we know only / (s)£C, j s O, then for this derivative (again by the same 
Gopengauz theorem)

(1 -4) l l / (s) W  -  L l s) ( / ,  *)ll s  ± .  Л « ©  (/<■>, i )
(c. f. [3, Theorem 2]).

Then in the light of (1.2)—(1.4), it would be interesting
A) to find a node-system X(r)  for any fixed r such that for the corresponding 

norms
(1.5) Л\}} зЗ cri log n, 0 ~  / = /*,

B) to find a node-system X  such that for the corresponding norms

(1.6) S  cn log и, for certain values of s.

As it turned out the first problem (or (1.5)) can be solved for any given е ё 0. (Ac­
tually, the system in [3] does the job.) On the other hand if for a given matrix X, 

log и and A [f^cnq log n then \s—q \s 2  (cf. J. Szabados, P. Vértesi 
[6, Theorem 2] where we gave a corresponding matrix, too).

The aim of this paper is to give infinitely many matrices solving the above 
problems.

2. Results

2.1. To get our matrices we apply the method of [3] for other points systems. 
Namely, consider the Jacobi polynomials P ^’a)(x), a >  — 1, orthogonal on [ — 1, 1] 
with the weight (1— x2)*, with the roots xfá'x)=cos (xk=cos 0k, shortly).
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If / £ l  is a fixed integer, then let

(2.1) yt = yin =  cos yjm where r\in =  ^  |  °ln , у_,- = - у ь 1 ^  i ^  t.

Consider the polynomial

(2.2) 0„+*(*) = c I I  W -y V P nM  (x), n >  2t S  0.
t = 1

I f /=0,  let fí„(x) = p„(a'a)(x).
Now we take the Lagrange interpolation £,„,(/, x) based on the roots of 

fí„+2((x) (if « = -1 /2 , see [3]).
Theorem 2.1. I f  0 and /•£  0 are fixed then for Lntx: C —áí,„+2l_1

(2.3) Л™ 2(_r ^  cnl log n, 0 i == r, 
whenever

(2.4) max (—1, —у +2í—rj ё  a =2 —y + 2 t —r, a >  —1.

2.2. First let us give solutions for (1.5). If r=2rx, the possible values of t are, 

by (2.4), i= r l5 /у + l, fi+2,  ..., whence a is from ( -  1, - y ] , i - y , y ] , [ y , y ] , ..., 
respectively. If r =Ъ\ +1, the possible values of t are, by (2.4), t=r1Jr \ ,  ry+2, 

/ i + 3, ..., whence a is from (“ b y ] ,  [ y ,  y ] ,  [ y ,  y ] » •••, respectively.

l.e.for any yzxc<i r, arbitrary a can he good choosing the proper value o f t.
2.3. To solve (1.6) take three consecutive values s, a + 1  and s+2. By the pre­

vious consideration, if a = 2 a1 ;  whence a  +1 = 2s 1 +1 and a + 2 = 2 ( aj  + 1), we get 
the same node-systems for a , a +1 and a + 2  whenever í = a1 + 1 , a 1 + 2 ,  . . . .  I f t = A ! + l ,

say, then the corresponding intervals of a for s, s +1 and a + 2  are [— у , у ] , 1, у ]

and 1, — у J , respectively. The solution is their only common value, a =  — у .

Similarly, if ?=А! + 1+к, кёО, we get oc=—y +2k ,  respectively.

Now let a = 2.51+1. Then, by similar considerations, the proper values of t 
and a are t= s1+2+k and a = y + 2 k , k^O , respectively (when k = 0, see [6, 

Theorem 1]).
2.4. Our statements are valid if, instead of P„(a,’a)(x), we condsier generalized 

Jacobi polynomials, i.e. when the weight function w, instead of (I —x2)“ a >  —1,

is g(x)(l — x2)a, a>  — 1, with g£C, g(x)>-0 and f  °° (shortly wdGJ).
о 1
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The only thing we have to consider is relations (3.6) and (3.7) which are valid for 
w£GJ, too (c.f. P. Nevai, P. Vértesi [8, §2 and Lemma 2], say). Results concerning 
the weight g(x){\ — x 2)x(l +x)ß, a , /?> —1 can be obtained, too. We omit the 
details.

3. Proof

3.1. If lk(x) denote the fundamental functions based on the roots of Pj*'”\x )  
(=P„(x), shortly), the fundamental functions of Lntx are

(3.1)
(pk(x) =  Í п Л —§ -) /*(*), 1 s  к ^  n,\í—1 Xk — y t )
. . . Pn(x) ( ‘ x2—уП x + y u . . .

* u(x) = Í 7 Á  1 -  l"l -  uгп\Уи) yu—yi > zyu
If

(3.2) 4+a«(*> r,t):= 2  (И  -  4 ) 'I'4 ° Ml + 2  (Vl-L»)rl'Aii)W|:= Sx + S2
k =  1 |u | = 1

then, as it comes from (1.1), for L ntx

(3.3) Л1Ли,г = r> Oil. 0 =  I s  r.
To get (2.3), by (3.3) it is enough to prove

(3.4) 4 + at(x, r, t) á  cn‘ 1 _х2 + ~ )  loi  n> d — f —

3.2. First we prove that with 4 0J=4

(3.5) *n + 2í(* >  h 0 s c | / l  X 2 + log И. 1

Indeed,let |x—x,| =  min Lv—xd. Then w ithx=cosв [whence /1 — ,y2 + —~sin 0,1, lsksn 1 n )
0o„=O and 0„+i,„ =  7t

(3.6) , O ^ k ^ n ,

(3.7) |/ ,W |~ (n |e - e J|) (s ^ j  I S I S . ,

uniformly in к (cf. P. Nevai, P. Vértesi [8, §2 and Lemma 2], say) we can write if 
хёО , say,

n 3n/4 n

(3.8) 2 ( / M ) rW 0 l = 2 +  2  := h + h -
fc =  l  к - 1 fc =  3 n /4 + l

The use of (3.5) and Lemma 3.1 below (instead of long calculations for derivatives) are due to 
J. Szabados and A. K . Varma [9].
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Here, by |x2 —yf\Sc  • sin2 Oj, x \—yf ~sin 2 0k and (2.4)
C L « + r - 2 ( + 3 / 2

h —  ^  ; a - 2 t  +  l /2  ( 2 + 2 + 2 )
n ' j *  11+ 1/1 \ < j72 j / 2 s k - = 2 j  0'2j (Л; +y)(|A;—y‘| +  l)

~  (~ ) [ l o 8  2 /+  log 2 / + 11 +  ( y )  j] ~  (-£-) log2j  c (l''l- х 2 +  -i-) log n.

Using similar arguments for I2 and S2 (where the relations Pn(x)P~1(yu)Scj~°‘~1/2 
and j>jj — y?~n~ 2 (iVn) (cf. [8 , (20), (21), (17)]) can be used) we obtain (3.5) which 
is (3.4) when /=0.

3.2, To go further first we quote the next 
L emma 3.1. I f  q,f-P„ and with fixed q and A>  0

\Q
|^ ( .Y ) |s ( l / l -A 2 +  ̂ -)e, W á l ,

then with an absolute constant c> 0

\q«(x)\ =  cn (f'l - x 2 + ̂ -)  > M =  1

(cf. A. F. Timan [7; 4.8.72.]).
For x0€[ —1, 1] arbitrary fixed, consider

(/„+»(*,*„):= 2 (V 1 -Aiy<p*(x) • sign <Pfc(x0)+  2 1 (l'1 ->'u)r|AuW • sign iA'(x0).
fc =  l  |u |= l

By (3.3), (3.5) and Lemma 3.1

4 +32 (*o, r, t) =  q'n+2t(x0, x0) ^  cn | / l - x §  +  ̂ -) log n,

i.e., using that x0 was arbitrary, we get (3.4) if i= l.  Next, we use analogous argument 
for

qn+tt- 1  (x, x0):= 2  ( \ 'l ~ XD"<Pk(x) - sign <pl(x0) +
k = 1

+  2 (l/ i - ^ ) r'AÚW-signiAÚ/( ô)
|н| =  1

to get (3.4) when i—2, etc. We omit the details.
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NONLINEAR ELLIPTIC DIFFERENTIAL EQUATIONS 
WITH NONLOCAL BOUNDARY CONDITIONS

L. SIMON (Budapest)

In this paper it will be proved the existence of weak solutions of second order 
differential equations

(0.1) Z  ( - l ) |a|D*[yä(^. и, Du)\+g(x, u,Du) = F in Q
|«lsi

with nonlocal and nonlinear boundary conditions
(0.2) Z  A (x,u,D u)va + hi(x, u(x))+ht(x, и(Ф(х))) = 0, x£dQ

l« ' = 1  d
where a= (a l 5  ..., a„) is a multiindex, D=(D1, ..., D„), D j= -^~ , DX=D\1 ...D ln,
by va are denoted the coordinates of the exterior normal unit vector on the boundary 
dQ (|a| = l) and Ф is a given C^-diffeomorphism in a neighbourhood of dQ which 
maps dQ onto f c f í .  The domain QcR" may be unbounded but its boundary 
dQ is supposed to be bounded. The functions f a, g, hi, h% satisfy certain polynomial 
growth conditions. Similar equations with usual boundary conditions have been 
considered in [1] and [2 ].

If и is a classical solution of (0.1), (0.2) then by the formula

-  2  f  -O“[/*(*> u> Du)]v dx =
N=‘ я

=  z  u, Du)Dxv dx— Z  f f j x ,  u, Du)vxv da
1®1=1п [«1=1 dil

we obtain that for all i>eQ°(R")

Z  [f*(x, u, Du)D*v dx+ f  g(x,u ,D u)vdx +
l« ! - 1 Я П

+ f  [hAx, u) + h£(x, иоФ)]ь da =  J  Fvdx,
dil n

i.e.
(0.3) Z  ffA x , u, Du)D”v dx+ f  g(x, u, Du)v dx +

M*io я

+  f lh (x ,u )v d o +  f  hAx, м)(гоФ*!) da = jF v d x .
d i l  Г  Я

Weak solutions of (0.1), (0.2) will be defined by (0.3).
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Elliptic equations with nonlocal boundary conditions have been considered 
first by T. Carleman [3] and the importance of such problems has been emphasized 
by A. A. Samarskij in [4]. A. L. Skubachevskij has developed the theory of linear 
elliptic equations of order 2m with rather general linear nonlocal boundary con­
ditions (see [5]).

§1. The formulation of the results

Let ß c R "  be a (possibly) unbounded domain with a bounded, continuously 
differentiable boundary dQ, /;>  1 a fixed number. The usual Sobolev space with 
the norm

llMlln,*(fi) =  { 2  f  \D*u\pdx} ,p
la! —1 ß

will be denoted by W*(Q). The points of R" + 1  will be written in the form 0
where i?€R”, ££R.

Assume that
I. The functions f a: i2XRn + 1  — R satisfy the Carathéodory conditions, i.e. 

f a{x, £,) are measurable in x  for each fixed £€R ' , + 1  and they are continuous in £ for 
a.e. x£Q.

II. There exist a constant c4>0 and a function kx^L9(Q) \ — -\—  =  l |  such
that Ур q )

I /.(* , 0 1  z S b W - '+ b i x )
for a.e. x£Q, all ^€R ' , + 1  if |a |s l .

III. For a.e. x£ß, each t]£R, £, C'CR" with (X V

2 [/«(*, q, о-fa(x, rj, o k o - o) >  0.
1* 1=1

IV. There exist a constant c2> 0 and a nonnegative ki^.L1(Q)f]L°°(Q) such
that

Z A ( x, W x s c 2 2  \L\p- k ,( x )
|« |S 1  | a | s l

for all <OR"+1, a.e. x£ß.
V. The function g: Q x  Rn + 1  —R satisfies the Carathéodory conditions.
VI. If n<.p then for each there exist ks£L4(Q) and a constant cs>0

such that for a.e. x£ Q, all ££ R"

|g(x, 0 1  =  ca\C\e+ ks(x) if \n \^s
with some positive number q, satisfying p —lc Q ^ p  and if p s n  then there exist 
k3dLq(Q) and a constant c3>0 such that for a.e. x£ß , all <OR" + 1

\g(x, 0 1  S  c ^ + k ^ x )
with some number q, satisfying p — 1 < р < р  — 1 +p/n.

VII. There exist a nonnegative constant c4 < c 2 and ki ^L 1(Q)f]L°°(Q) such 
that к4 ё 0  and for a.e. x£Q, all ££R ' I + 1

g(x, 0 »? S - c 4 |/j|p- k 4 (x).
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VIII. The functions ht : #Í2XR-*R, h2: r x R ^ R  satisfy the Carathéodory 
conditions.

IX. If n ^ p  then for a.e. x€di2 resp. x£T, each i)£R, j —l, 2

\hj(x, tj)I = cs \ri\«j+k{(x)

with some constants c5 > 0 , —— and k\£L1+llei(dQ), /с|£Т1+1/е2 (Г)1 n —p
(in the case n=p for Qj an arbitrary positive number can be chosen); if n<p then 
for each there exist h\^D(dQ), Ь*^.Ьг(Г) such that for a.e. x£dQ resp.
х£Г, 7 = 1 , 2

Ihj(x, t])\ ^  h{(a).

X. In the case 2 there are functions hj£C 1(Uj XR) (where , U2 denote 
some open and bounded neighbourhood of <)Q resp Г) such that for a.e. x£dQ  
resp. х£Г, each >/£R

h fx , t])r] a i- |/ií(x , Ti)ri\, \hz(x, r\)I =э II4(x, f/)| 

where for 7'=  1 , 2  the functions /г] satisfy

I*;(*, t,)\<+ 1  \Dkh](x,r,)\<+\Dn+1h](x, rj) | ^ - 2>

2 1 /*(*> 0Z x+g(x,0>iblsi
uniformly in x £ (У) and ££ R" where Uj = UjC]i2.

In the case p ^ 2  there exist numbers c*j, Qj and k*£L1+1,e*(dQ), к%£Ь1+11е*(Г) 
such that O c p ic p  — 1 and for a.e. x£dQ resp. x£T, each R

K ix, *i)r\ s  - c t M e*+ kt(x)M , \hz(x, tj)I 5= c£Mc'+ £ |M -

XI. F  is a closed linear subspace of W*(Q) with the following property: there 
exists a positive number R such that <pGQ°(R"), <p (x) =  1 for |x|<7?, v fV  imply 
(pvdV.

T heorem . Assume that conditions I—XI are fulfilled. Then for any G£V* 
(i.e. any linear continuous functional on V) there exists u£ V such that for all V

(1.1) 2  f f ,( x ,  u, Du)Dflvdx + f  g(x, u, Du)v dx +
I«N1 n Í2

+  J h fx , u)vda+ j  hz(x, и ) ( г ю Ф - 1 )  da = {G, v) .  
da r

R em ark  1. In the case рш  2 the estimations on h2 in IX follow from assump­
tion X.

R em ark  2. The existence theorem can be easily extended to the case of “suffi­
ciently good” unbounded dQ.

A c ta  M a th e m a t ic a  H u n g a rica  5 6 , 199 0
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R e m a r k  3 . The following conditions are sufficient for the uniqueness of the 
solution of (1 .1 ):

2  VAx, Q -f'(.x , № Z a -D + [g (x , 0 - g ( x ,  DKÍO-?„) S  Сг\^-1 \2
I«|S1

with some positive constant c2 > 0 , >j) is monotone increasing (for a.e.
x£dQ), Dn+1h2 exists and sup \Dn+1lu\ is sufficiently small.

rxR
R em a r k  4. The following example shows that in the case Q2=p—1 (or of = 

=p — 1, see X) problem (1.1) may have no solution. Consider in ß12= {x f R2: 
1 <  |x| <  2 } the problem
(1.2) Ли— u = 0 in Bly2

(1.3) d2u(x) = ßju(yjx)+öj, xdS j, j  = 1,2

where S j= {xgR2 : |x| =y'}, dvu is the normal derivative of u, ßj, jj are given num­
bers, ftS-1 , у

Then all conditions of the existence theorem are fulfilled but in X g£ = l = p—1. 
If и is a weak solution of (1.2), (1.3) then by well known results on regularity of 
weak solutions of the Neumann problem for (1.2) one obtains that и is a classical 
solution of (1.2), (1.3). Set

U{r, cp) =  u(x1, x2) where хг = r cos cp, x2 =  r sin cp
and

2n
v(r)=  f  U(r,<p)d(p

then (1.2), (1.3) imply

(1.4) v"(r) + jv '( r ) - v ( r )  = 0, l < / - < 2

(1-5) v'(j) = ßJv(jyJ) + ö1 (у =  1 , 2 ).

It is easy to show that numbers ßj, y}, dj can be chosen such that problem (1.4),
(1.5) has no solution.

Further, numbers ßj, yj, 5j can be chosen such that problem (1.2), (1.3) has 
more than one solution.

§2. The proof of the existence theorem

First we formulate a lemma. For arbitrary natural number к define functions 
Sn by

gkV, О
(g(x, £) if 
lO if

\ x \ ^ k  
|x| >  k.
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Then the formulas
(TO), v) =  2  //*(■*, M, Du) Dx v dx, 

l«|siő

<5ц(м), v ) =  J g k ( x ,  w, /)»)!-' dx,
ß

(Q(u), v> =  J  hk(.t, «)?’ da + J  h.,(x, u)(vc<P ~l) da; u, v£_V 
ssi г

define bounded (nonlinear) operators T, Sk, Q: V-+V*.
L e m m a . The operators T+ Sk + Q are pseudomonotone and coercive.
P r o o f . Assumptions I—IV imply that the operator T is pseudomonotone 

(see [6 ]). Further, if (ut) -*u weakly in V then by VI, IX and known compact im­
bedding theorems (see e.g. [7]) there is a subsequence (и,') of (и,) such that (и,')—и 
in Lp*(Qk) and a.e. in Qk where Qk = QP\Bk, Bk = {x(LR", |x|<k) and p* is defined
by —7— \— —=1. Further, if n ^ p  then (u',)-*u in Lei+1(c)ß), Ьв1+1(Г) and a.e. 

P/в P
l г [sion Oß, Г since for p-=n we have 1< рх + 1 P i n - 1)

) ; 1
if p=-n then (u[)->-u

in C(i)Q) and in С(Г). Consequently, V VI, IX and Holder’s inequality imply

lim (Sk(u'i), u\ — u) =  0 , lim (Q(u'i), u\ — u) = 0
l-*-oo  1-+00

and by using Vitali’s theorem, Holder’s inequality, assumptions V, VI, VIII, IX it 
follows

lim (Sk(u'i), v) = (Sk(u), v), lim (Q(u't), v) = (Q(u), v)

for any fixed v£V. Thus it is easy to show that also T + S k+Q is pseudomonotone. 
Now we prove coercivity of T + S k + Q. Firstly, consider the case p>2. Since

the trace operator compactly maps Wp(U'j) into LPl(dQ) resp. LPl(T) for p k̂ ^ ———
if and for any P i> l if ршп thus it is easy to see that numbers pk, qx> 1
can be chosen such that l/Pi + l/<7 i=  1 and the trace operator compactly maps 
WfiU'j) into Lpi(dQ) resp. LP'(T) and W?(U'j) into L«‘(dß) resp.

By Holder’s inequality and X for any u£C°°(R")

(2 .1 ) (Q(u), u ) ^ — J \h k(x, u)n| da— J\h$(x, и)(моФ_1)| da S
да г

— — w)||L?1̂ fij 11м111,р1(ап) —ci\\K(x> m)IIl«i(t) Ии11тр1(йй) —

— — ci\\hiix, m)||^ i (1/') M t y ^ - c j h t i x ,  u)^w\(u't) (t/()
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with some positive constants c'j. Further, Young’s inequality implies
(2.2)

Шх, и)IIW ) -  { f[ \h* (x , u)\< + Z  IDkht(x, u)+Dn+1h*(x, u)Dku\“] dx)Vq s  
u[ * _ 1

S  { /[|ЛГ(лг, u)\*+ cM  2 [ \D kht(x, u)\<+\Dn+1h*(x, u)\<\Dku\<]] dx}1/q s
U[ k ~ 1

f[ \h U x , u r + Cl(q) i  [|Dkht(x, u)|* +

1 \Dn+1h*(x, и)I«» A\Dku\*y/q]) , Г  „

^  с2(<7- e) { / [ | / i í ( x ,  m)|«+ J ;  |-D*AÍ(x, M)|*+|F)n+1 /ii(x, u)|№] iix} 1/4 + 
u, k=1

+ cÁ<f)E\\u\\PW'(Ul) ~

= c,(0, «) { /  [|AÍ(*, u)|4 + i  IAAÍC*. h)|4+ IA ,+1AÍ(*, и)Г(р- 2>] dx}1,q +
U[  * _ 1

+  сз(#)е11м11 iv'(ufr

where ö2 is defined by - 4 — + —  , i.e. g2= ^ and so вв2 = - Д - .
Pl *7 *7 2  P ^  P ^

In virtue of X for each m > 0 there exists я > 0  such that |*/|>д implies

IhUx, r{)|4+ Í  IDkhUx, i/)|4 + |A ,+A*(x, i / ) |^ - 2> ^
fc=l

^  - Л -  [  Z  / « ( * >  £ ) & + £ ( * ,  £ ) > ; ]|a|^l

whence by using notation Ulta = {xGU{: \u(x)\^d), IV, VII, IX

(2.3) /  [|AÍ(*, n)|4+ 1  \Dkh*(x, u)\4+\D„+1hi(x, dx =
ui * = 1

= /[ |А ?(х , w) | 4 + Z  IDkh$(x, u)\q + \Dn + 1ht(x, и)\р1(р~г)] dx +
K a  k = 1

+ f  [\hi(x,u)\q+ 2 \ D khUx,u)\*+\Dn+1h U x ,u )\ '« '-V ]d x ^
U i \ U l . a  k ~ 1

^  ct (q, + [ [  Z  Á (x , и, Du)D*u+g{x, и, Du)u + k2 + k 4] dx.
m щ l-l-i
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(VI, Sobolev's imbedding theorem and Holder’s inequality imply that g(x, u, Du)u 
is integrable over Q ) Combining (2.2) and (2.3) we obtain
(2.4) \\ht(x, u)\\wi(u^ =5 c&(q, m, e) +

c6(q, e)+ - m { f[ 2 fÁ x b W, Du)Dxu+g(x, u, Du)u + k2 + k_i\ dx\Vq + 
u' I" ! - 1 J

+ c3(q)E\\u\\Z-1.
Similarly can be shown that h2(x, u) satisfies the same inequality as hk(x, u) in (2.4). 

By IV, VII for sufficiently large к
(2.5) (T(u), u) + (Sk(u), u) Sr 

f[ 2 /Л*, w, Du)D*u+g(x, u, Du)u+k2+kt\ dx +1

2  и' I*

+

ul 
c2 —c4

W \ y -  f  (kz + К )dx
Со Сл

\u\\v ~  f  (кг + кь) dx
a si

and (2.1), (2.4) imply
(2.6) (Q(u),u) ^ - c 7(q,m,e)\\u\\v -

_£a(q1E)_ r |- 21 f a(x , u, Du)D*u + g(x, и, Ви)и+ к2+ к ^ х - с ^ ) е \ \и \ \ ^ . 
m oi I“ ! - 1

Choosing sufficiently small e and sufficiently large m one obtains from (2.5), (2.6) 
the inequality

(2.7) (T(u), u) + (Sk(u), u) + (Q(u), и) s  u\\pv

+ 4- f [ 2 /«(*> u’ Du)D*u+g(x, u, Du)u + k2+kA dx —4 J, |.|«i

— C7 \\u\\y — C10 =  — IIм|| V" — c7ll u\\y — C10

for any m£C°°(R") and, consequently, for any u£V  since restrictions of functions 
of C“ (R") to Í2 are dense in H^(ß) (д£2 is supposed to be continuously differentiable).
(2.7) implies coercivity of (T+Sk + Q): V-»V* in the case 2.

In the case p= 2  by X and Holder’s inequality

(Q(u), и) S  J h k(x, u)udo — \J h 2(x, и)(иоФ ^r/oj ^
dSi Г

Sr -  / [cíM eí + &í]M d e -  f  [4\и\е*+к%]\иоФ~Ч da S
dSi

where pj = q* + 1  (if n= p= 2 then the right hand side is considered
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to be +oo). Consequently,

(.QM, и) S  -  [4 Íj И|1;.р1(ая) +  П 'Ч

- [ 4 l l « é i(r) +  ll^llLl,a/cí(r)]ll«o í-4 |LP,(r) * - e í N  ' -c '2\\u\\v ■Со и

and by (2.5) 

( 2 .8)

01 +  1, 0 2 + 1  <  P

<:T(U), M> + <St (n), u) + Q(u), u ) ^ ^ ^ \ \ u V y -

-с'ЛиГу1+1- с 'М Г ) +1- с ’Ли\\г-с', 

which implies coercivity of T + S k + Q.
P r o o f  o f  T h e o r e m . By the lemma for each positive integer к there exists 

uk£ V such that for all v£ V
(2.9) ((T+Sk + Q)(uk),v) = (G,v).

Applying (2.9) to v~uk, by (2.7), (2.8) (where constants do not depend on k) and 
the inequality |(G, uk)\ ^||(7|j||wJF we obtain that ||wJK is bounded. Thus there 
exist a subsequence (ukl) of (uk) and n€ V such that

(2.10) (ukl) — и weakly in V,

(2.11) (uk)  — и a.e. in Q.

Now consider an arbitrary fixed bounded domain со such that со a  Q and a 
function 0£C ^(R ") satisfying

0 S O  and 0(x) =  1 for xdco.

By VI, IX and theorems on compact imbeddings (see [7]), the subsequence (ukl) 
may be supposed to be chosen such that

(2.12) (ukl) -*u in Tp(ßDsupp 0),

(2.13) (uk)  -* и in Lp*(ßflsupp 0)

UlilPFP 1C nprl V\\/ 1 + - L - 1-WIICIC p 15» UC11J1CU Uy
Pie p* ’

(2.14) (ukl) -  и in L^+1(i)Q) and a.e. on dQ

and in C(dO) for

(2.15) (ukl) —■ и in LC2+a(r) , a.e. on Г for n S  p

and in C(T) for n<p.
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In virtue of assumption XI 9(ukl—u)£V and so by (2.9) we have

2 [fa (*, ukl, Dukl)D*[9(uk -u)] dx+ f  gk (x, uk , Duk)[9{uk - u )] dx +
M ^ n  a

+ f  hk(x, ukl)[9(ukl-u)]d<r+ f  h2(x, ик1)[е(щ-и)]оф-1 do =  <G, 9(nk -u )). 
да г

This equality can be written in the form

(2.16) 2  f  [/«(*> 4k,, Dukl) - f x(x, ukl, Du)]9Dx(uk - u )  dx = 
l« l* i  a

= 2 Í’/«(*> ukl, Du)9Dx(u — ukl) dx+ 2 f/«(*, Щ,, Duk)(D°‘9 )(u -u kl) dx +
W s i S  l « | s i n

+  f fo (x ,u kl,Dukl)9 (u -u kl)dx+ f  gkl(x, ukl,Dukl)9 (u -u kl)dx+
ß ß

+  f  hk(x, ukl)9 (u -u kl) d(T+ J h2(x, м*,)[0(м-м*,)]оф-1 dcr + (G, 9(uk -u )) . 
да г

Now we show that all the terms in the right of (2.16) tend to 0 as /-»<*=, Since 
by (2.11) and I
(2.17) / a( •, ukl, Du)9-»fx( •, u, Du)9 a.e. in Q
thus II, (2.12) and Vitali’s theorem imply that (2.17) holds also in the norm of Lq(Q). 
Consequently, the first term in the right of (2.16) tends to 0 as by (2.10) Dx(u—ukl)~*0 
weakly in LP(Q). Further, from I, II and (2.10) it follows that f x( ■ ,u kl, Duki) is 
bounded in Lq(Q) and so (2.12) implies that the second and third terms in the right 
of (2.16) converge to 0 .

Assumptions V, VI imply the boundedness of gkl(- ,u kl, Dukl) in 
jLp/e(ßnsupp 0 ) whence we obtain by (2.13) that also the fourth term in the right 
of (2.16) tends to 0 as Assumption IX implies that hj( ■, ukl) is bounded in
L1+1/ßl(dQ) resp. in Ь1+1/ег(Г) for пшр and in Ll(dQ) resp. ЬХ(Г) for thus
by (2.14), (2.15) also the fifth and sixth terms in the right of (2.16) converge to 0. 
Finally, (2.10) implies that the last term in the right of (2.16) tends to 0.

We have proved that the right of (2.16) converges to 0 as /-»oo for arbitrary 
bounded со with the property coaQ which implies that there is a subsequence 
(ukl) of (ukl) such that for each j — 1 , 2 , ..., n
(2.18) (DjUkl) — Dju a.e. in Q.
(See e.g. Lemma 2. of [1] or [8 ].) Thus from I it follows

fÁ-,U k,,D u'k)-+ fz(-,u ,D u )  a.e. in Q 
and so II, Holder’s inequality and Vitali’s theorem imply
(2.19) jim (T(u'k ),v) = (T(u),v)

l-*-со

for each fixed V. Similarly, by (2.18), V and the definition of gk we have 
g'k,(- ,u'k,,Duk)  -  g(- ,u,D u) a.e. in Í2
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and so VI, Holder’s inequality and Vitali’s theorem imply

(2.20) fim (S'kl(u'k) , v) = J g (x ,  u,Du)vdx
~KO° Q

for each v£V. Finally, from (2.14), (2.15), VIII, IX, Holder’s inequality and Vitali’s 
theorem we obtain

(2 .21) lim <Q(u'kl),v) = J h 1(x,u)vdo  + J  h2(x, u)(vo<l> *) do
да г

for each v£V. Combining (2.19)—(2.21), (2.10) with (2.9) we obtain the statement 
of our theorem.
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CROFTIAN SEQUENCES
L. FEHÉR, M. LACZKOVICH and G. TARDOS (Budapest)

1. H. T. Croft proved in [2] that if / :  R->-R is continuous and lim f(n x ) = 0
И-* oo

for every x> 0  then lim f(x)= 0 . This is an easy consequence of the following
statement: for every open, unbounded set G c R + there is a positive number x 
such that nx£G for infinitely many n. (This result was found earlier by D. J. Newman 
and W. E. Weissblum [4].) Actually, Croft proves slightly more; he shows that, 
under the same hypothesis on G, every subinterval of the positive reals contains a 
point x such that nx£G infinitely often.

These results were generalized by J. F. C. Kingman in [3]. Kingman considers 
the additive variant of Croft’s theorems. He proves that for every increasing sequence 
cn-*°° the following are equivalent.
(1) lim (c„+1 —c„)=0 .

П-+С©
(2) If G is an open subset of R, unbounded from above then, in any open interval 

of R, there is an x such that x+c„fG for infinitely many n.
(3) If / :  R-*R is continuous and lim /(x + c „ ) = 0  for every x in some open

It-*■ oo
interval, then lim f(x )= 0 .

X-*-oo

The statement (3) can be replaced by the following: If / :  R -»• R is continuous 
and lim f(x+c„) exists for every x in some open interval, then lim /(x) exists.

71-*- oo X-+ oo

Now Croft’s theorem follows from the observation that the sequence c„=log n 
satisfies (1). (These results proved to be useful in the theory of regularly varying 
functions; see [1, p. 50].)

As Kingman remarks, the theorem above leaves open the possibility that a 
sequence {c„} does not satisfy (1 ), but the existence of lim f(x+c„) for all x  implies

It-*- oo
the existence of lim /(x). This happens, for example, when {c„} consists of the

X-+oo
numbers of the form 2m+k2~m (m =0,1 , ...; k = 0 , 1 , ..., 2 m) arranged in as­
cending order. (We shall discuss this example in Remark 1.)

This observation raises the following problem. What is the exact characteriza­
tion of those sequences {c„} for which
(4) if / :  R — R is continuous and lim f ( x  + c„) exists for every x, then lim /(x )

П-+00 X-*-oo
exists; or

(5) if / :  R —R is continuous and lim /(x + c„)= 0 for every x£R, then 
lim /(x )= 0 .

X~*oo
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In this paper we shall consider the second of these questions. We shall say that 
the sequence {c,,} is thick, if (5) holds. A sequence will be called thin, if it is not thick. 
We shall give several characterizations of thin sequences. The characterizations 
given by our Theorem 1 may not seem completely satisfactory, since they are difficult 
to check and, in fact, they are not very far from the definition. However, most of 
our other results will be based on these conditions.

One would expect that a “real” characterization involves the speed of the se­
quence: slow sequences are thick and fast sequences are thin. We show, however, 
that it is not the case: there are arbitrarily slow sequences which are thin (Theorem 2). 
Yet, there are conditions in terms of the speed of the sequence which are sufficient 
and necessary, respectively. Thus, as Kingman showed, (1) is sufficient for {c,,} to 
be thick. In Theorem 3 we shall prove that lim c jn = 0 is a necessary condition.

П-*- oo
On the other hand, as we shall see, these conditions are far from being characteri­
zations.

We also consider the following generalization of the problem. We call a set 
Я с R thick if the following statement is true: whenever / :  R - R is continuous 
and lim /(* + y )= 0  for every x£R, then lim f( x )=0.

y -+ c o ,y £ H  X-+ CO

The exact characterization of thick sets seems to be difficult. We give sufficient 
conditions for a set to be thick and prove that there is a set Я  such that Я  is thick 
and whenever с„£Я and then {c„} is thin (Theorems 4 and 5.)

Acknowledgement. We are grateful to Paul Erdős for several stimulating dis­
cussions on this subject. He proved first that lim sup (c„ + 1— holds for

tl-*- oo
thick sequences (cf. (iii) of Theorem 1). He also constructed a thick sequence with 
lim sup (cn + 1  — c„ ) = > 0  and conjectured that lim c jn = 0  is a necessary condition.

П-*-оо П —► oo

2. We shall use the following notation. For every Я с  R and a£R we denote 
H+a = {x + a: х£Я} and — Я = { —x: x£ Я}. The cardinality, closure, derived 
set and outer Lebesgue measure of Я  will be denoted by card Я, H, H' and |Я |, 
respectively. If the range of indices is not indicated, it will mean that this range is 
the set N of positive integers. Thus {c„} denotes (c„: /ifN} and {ak—c„} denotes 
{ak- c n: k ,n £ N}.

We begin with some preliminary remarks. If / :  R ^ R  is continuous then 
lim f(x ) = 0  if and only if the open set {x: |/(x)|>£} is bounded from above for

X-+00
every £>0. This easily implies that a sequence {c,,} is thick if and only if the following 
conditions holds:
(6 ) For every open set G cR , unbounded from above, there is a point x  such that

x + cn£G for infinitely many n.
If a sequence {c,J has a convergent subsequence then {c,,} is thick. Indeed, in 

this case for every non-empty open G there is a point x such that x + cn£G for 
infinitely many n. Therefore we shall only consider sequences with |c„|->-°°. In 
this case, deleting the negative terms from {c,,} does not effect the property of thick­
ness. We may also rearrange the remaining terms and hence we may confine ourselves 
to increasing sequences tending to infinity.

T heorem  1 . Suppose that {cn} is increasing and tends to infinity. Then the following 
statements are equivalent.
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(i) {c„} is thin.
(ii) There is a sequence {ak} such that ak -»-со and {ak — c„} is nowhere dense.

(iii) Either lim sup (c„ + 1  — c„)=°° or there is a subsequence {c„J such that
П-+00

{c„k—c„} is nowhere dense.
(iv) There is a sequence o f open intervals {Ik} and a sequence o f real numbers

oo ' к
{ak} such that (J Ik is everywhere dense in R, ak->-°° and {сн}П(U  f  + ak) =  0 

«;=l  j = 1
for every kZ N.

P r o o f , ( i ) = s ( i i ) :  Suppose (i). Then ( 6 )  is false and hence there is an open set 
G= (J (ak, bk) such that ak^-°° and, for every x, x  + cn§_G if n is large enough.

k = 1

Let Xk = [J (G-Cj) (kZN), then f) ** =  0.
J > k  k = 1

We prove that {ak — c„} is nowhere dense. Suppose this is not true and let 
{ak — c„} be dense in an open interval I. Since ak ->oo and c„ —>-oo 9 this implies that 
{a;- c j: i, j > k) is also dense in I  for every kZN. Therefore XkC\I is a dense

oo

open subset of I  for every к and hence f  \ Xk^ 0, a contradiction.
fc=i

(ü)=a(í): Suppose that {%} satisfies the requirements of (ii). In order to prove
(i) it is enough to show that there are numbers 0<ök<ek such that for every x,
x +  £•„<£ U (ak + dk, ak + ek) if и is large enough.

k = 1
Let P={ak—cn}; then P is nowhere dense. For each к we choose an index nk

nk _
such that cn> k + ak for every n>nk. The set (J (P+Cj—ak) is nowhere dense

]=г
and hence we can select 0  <  <5fc < sk <  1 /к such that

(дк, ел)П (J (P+Cj — ak) = 0.
J = г

CO

Let x be arbitrary and suppose that x + c ,f (J (ak + dk, ak + ek) holds for in-
k = 1

finitely many n. Then there are sequences к ^ ° °  such that

a k, —  c ru +  ö k i -=  x <  aki —  cnt +  Bk i

for every i, and hence xZP. If x  + c„Z(ak + dk, ak + ek) then (P + cn — ak)C\(8k, sk) ^ 0 
and then, by the definition of ők and ek, we have n > nk. Thus cn> k  + ak and, as 
x < a fc—c„ + l<  — k + \, we obtain x+1. Therefore k ^ —x  + l for every i,
which is impossible.

(ii) =>(iii): Suppose (ii) and lim sup (c„ + 1  — c„)<W<°°. Let {ak} be a sequence
П -*■ со

satisfying the conditions of (ii). Then for every к large enough we can choose an 
index nk with \c„k — ak\<K. By selecting a subsequence we may assume that {c„k—ak} 
is convergent. This easily implies that {c„k — c„} is nowhere dense.

(iii) =s(iv): Suppose first that lim sup (c „ + i~ 0 =o° and let {»„} be a sequence
П-*~оо

of indices with lim <4 =°°, where dk = c„k + 1  — c„k.
k-*- oo
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We may assume that {dk} is increasing. Then the sequences of intervals Jk =  

= (—dk/2, dJ2) and numbers ak = c„k + — dk satisfy the requirements of (iv).

If there is a subsequence {c„J such that P={cn—cnJ  is nowhere dense then 
let {Ik} be an enumeration of the components of the exterior of P and let ak= c„k.

(iv)=>(ii): Suppose that { /J  and {ak} satisfy the requirements formulated in 
(iv). We prove that P={ak — cn} is nowhere dense. Let x be a point of accumulation 
of P. Then there are sequences of indices k t, n, such that x — lim (ak — c„ ). SinceÍ-+ oo * *
ak->-° ° ,  we may assume that к . -*-oo and n . —* ■ 0 0 . For every fixed k, c„.$Ik+aki
if k ^ k  and hence ak.—c„.$—Ik for / large enough. This implies x $ —Ik for every 
к and hence

x € R -  U ( - 4 )  =  S.
k =  1

By assumption, S  is nowhere dense. This shows that P 'czS  is nowhere dense and 
then so is P. □

R e m a r k  1 . By Kingman’s theorem, every sequence satisfying condition ( 1 )  is 
thick. Making use of Theorem 1 we can prove this as follows. Suppose that the 
sequence {c„} tends to infinity and satisfies (1). It is easy to see that if ak-*°° then 
{ak—c„} is everywhere dense and thus, by (ii) of Theorem 1, {c„} is thick.

On the other hand, the following example given by Kingman shows that (1) is 
not necessary for a sequence to be thick. Let the sequence (d„) consists of the num­
bers 2m+k2~m (m= 0 , 1, . . . ;  k = 0 , 1, . . . ,  2 m).

Then the sequence consisting of the elements dn,d n+ 1 satisfies conditions (1) 
and hence, by Kingman’s theorem, it is thick. This implies that {r/„} itself is thick, 
too. Indeed, it is easy to see that if there is a finite set {hk, ..., hk) such that the se­
quence of numbers n —1 , 2 , . . . ;  / = 1 , ...,k} is thick that {c„} is also
thick. (This is an easy consequence of (6 ).)

We may ask whether the following condition is equivalent to the property of 
thickness. There is a finite set {hk, ..., hk} such that the sequence of numbers {cn+hi: 
n = 1 , 2 , . . . ;  / = 1 , ...,k}  satisfies (1 ).

The answer is negative. In fact, one can construct a thick sequence {c„} such 
that the sequence of numbers {с„+/г;: л = 1 , 2 , ...; г =  1 , ...,k}  does not satisfy 
(1 ) for any finite set {h1, ...,h k}; moreover, for every bounded and nowhere dense 
set Ifc R , the complement of {c„} + H  contains infinitely many disjoint intervals 
of length ^d = d (H )> 0. Since we shall not use this fact in the sequel, we omit 
the proof.

00

L e m m a  1. Let cn —> 0 0  be thin, and let e„ -* 0. I f  dn —*■00 and {</„}c U (ck- e k, ck + s),
k = l

then {d„} is thin.
P r o o f . By (ii) of Theorem 1, there is a sequence {ak} such that ak-+<*> and 

{ak—c„} is nowhere dense. The condition on {d„} easily implies that {ak—d„}'ci 
<̂ {ak—c„y and hence {ak—dn} is also nowhere dense. Therefore, by Theorem 1, 
{1d„} is thin. □
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Theorem 2. There are arbitrarily slow thin sequences. More precisely, for every 
cn~-°° there is a thin sequence {cl,,} such that dn< cn for every n.

Proof. Let m be an integer with m<inf {c„}. It is easy to construct a sequence
CO

{4,} such that and for every n, dn<c„ and dn£ (J (*> i +  (|г | + 1)“1)- Since
i= m

{/: i=m, m + 1, ...} is thin by (ii) of Theorem 1, Lemma 1 implies that {d„} is thin 
as well. □

Theorem 3. Let {c„} be an increasing sequence tending to infinity. I f  {c„} is thick 
then cjn  -* 0 .

Proof. Suppose that cjn-w 0 and let c> 0  be such that c„^cn for infinitely
oo

many n. Let { /J  be a sequence of open intervals such that |J Ik is everywhere
k=l

dense in R and 2  |Tfc| <  c/4.
k = l

We shall prove that for every к there is a number акШск/4 such that
к

{c„} П (J ( f  + ak)=0. By (iv) of Theorem 1, this implies that {c„} is thin and this 
3 = 1

will provide the desired contradiction.
к

Let к be fixed, let H=  |J  I} and choose n> k  suchthat H a (— си/2) and 
3 = 1

c„^cn. Let A denote the set of points x£[cn/4, cn/2] for which { C j } f ] ( H + x )  — 0. 
It is enough to show that АА0. If x£[cn/4, cn/2] and cfiH + x, then Cj<cn and

П — 1
hence and, consequently, x£ U (—H+cfi.

3 = 1
It follows that

[си/4, cn/2\- A c  (J (—H+Cj) and hence \[cn/4,cn/2] — A\ S  (n—\)\H\ <  cn/4.
3 = 1

Therefore A 0, and the proof is complete. □
Remark 2. If sjn-*0 then there are thick sequences with c„/s„ wO. Indeed, 

if s jn — 0  then there is an increasing sequence {c„} such that cn + 1  — c„ - < - 0  and 
limsup cn/sn>0. By Kingman’s theorem, {c„} is thick (but c jsn-1*0 ).It-* oo

R emark 3. The condition c„/n—0 is not sufficient for {c„} to be thick (this 
is an immediate consequence of Theorem 2). In fact, this condition is very far from 
being sufficient, as the following argument show's. Let {c„} be an increasing sequence 
tending to infinity. We say that {r„} is very thin if there is a sequence ак-»<=°, such 
that {ak — c„Y is discrete, that is, if {ak — с„}'П[ — К, K] is finite for every K > 0. 
Since every discrete set is nowhere dense, it follows from Theorem 1 that very thin 
sequences are thin. By Theorem 3, if cjn-1-0 then {c„} is thin. Now we claim that 
if cjn-4 * 0  then {c„} is, in fact, very thin.

We briefly sketch the proof of this statement. The proof is based on the following 
combinatorial lemma.
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Let I  be an interval and let Я  be a finite subset of I  with card (Н)шс\1\. Then 
there is a point a in the middle third of 7 such that card (НП[а—т, a +m])^9cm 3 

holds for every mgN, тШ2.

(Proof: for every fixed m s2 , the number of integers a with 
card (Я П [а-ш , a+m])>9cm 3 is at most

c | / | ( 2 m + l) _  J7 [ 2 m+ 1  

9cm3 3 3 m3

Since 2  (2m + l)/3m3 < l ,  there is an integer with the required properties.)
m = 2

Now suppose that {c„} is increasing and c„/n>0. Let c„k >cnk (k= 1,2, ...). 
Applying the lemma with l=[0,cnk] and H = (c„: n < n j  we obtain a number 
ak(i[cnk/3, 2cnk/3] suchthat

9
card({c„: ak — m s  c„ s  ak + m, n < и*}) — m3

for every m ä2 . If m ^ c n j3 then ak + m < cnk and hence cn<ak+m implies 
n<nk. Consequently, for m<cnJ3 we have

9
card ({a,; — c„: ng А}П[— m, m]) ё  — m3.

For every fixed m we can select a positive integer and a subsequence {at .} of {a*} 
suchthat card ({aki—cn: ngN}(T[—m, m])=p for every/. Let

Mg2V}D[-m, m]) = /1>р},
9where p ^ — m3 is fixed. By selecting another subsequence, we may assume that c

{tjj: /gN} is convergent for every J=p, and hence ({akl—c„}D[— m, m])' is 
finite. Now we select subsequences of {ak} successively for m=2, 3, ... and then, 
using a diagonal argument, select a final subsequence {ak.} such that ({at(—с„}П 
П [— m, m])' is finite for every m. □

3. Now we turn to the investigation of thick sets. As we mentioned in the 
introduction, the exact characterization of thickness proves to be difficult. There 
is a stronger property, however, which is easier to handle. A set W cR will be 
called very thick if the following statement is valid. Whenever a function: / :  R — R 
satisfies lim f(x + y )= 0 for every xgR, then lim f ( x ) =0.

JC-»oo
This is easily seen to be equivalent to the following property: for every sequence 

ak-*°° there is a point x such that x  + akf_II for infinitely many k. That is, H  is 
very thick if and only if, for every ak-*°°,

П 0  (H ~ a k) * 0 .
n = 1 k=n

From this condition it is obvious that every residual or full measure set is very thick. 
Another sufficient condition is given by the next theorem.
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Theorem 4. Suppose that H is measurable and that there is an a> 0 such that 

lim inf |ЯП[(и — 1 )a, na]\ =  A >  0.
П -*■ °°

Then H is very thick.
Proof. Let {ak} be a sequence tending to infinity and put 

Hn = (J (Н -а к)П[0,2а\ (n£N).
k =n

Then #„ is measurable, \Hn\s A ,  and holds for every n. This implies
|П  Hn\^A . In particular, f j  # „ ^ 0  and hence Я is very thick. □
n = l n= 1

Theorem 5. There exists a very thick set H such that whenever cnf_H and 
c„ — then {c„} is thin.

Proof. Let {/J be a sequence of open intervals such that (J Ik is everywhere
k =  1

~  к
dense in R and 2  141 <1/2. Let Nk be chosen such that IJ /ус [ — Nk, Nk] (k£N),

* = 1  J = 1
and let {ak} be an increasing sequence of natural numbers such that the intervals 
[ — Nk+ak, Nk+ak] are pairwise disjoint. We define

H  = R \ ( J  ( U  I j+ a k).
k = 1 j  = 1

Then Я  is measurable and |ЯП[и, и+1])>1/2 holds for every n^N. By Theorem 
4, this implies that Я  is very thick. On the other hand, if cnfH  and then
{cj is thin. Indeed, we have

w n  и  (Ij + ak) = 0 , 
j - 1

and (iv) of Theorem 1 applies. □
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ON BOUNDEDLY DIVERGENT WALSH—FOURIER
SERIES

F. SCHIPP* (Budapest)

Dedicated to Professor Z. Daróczy on his 50th birthday

1. Introduction

The first example of everywhere divergent trigonometric Fourier series was 
given by Kolmogorov [5], [6 ]. Later, Marcinkiewicz [9] constructed a function whose 
trigonometric Fourier series diverges a.e., but the partial sums are bounded. For 
other counterexamples concerning the trigonometric system and for the history 
of this field see Ul’janov [15].

In this paper we will investigate the bounded divergence of Walsh—Fourier 
series. The Walsh system (vv„, n£N) is taken in Paley’s enumeration, i.e. for n£N = 
=  {0 , 1 , 2 , ...} with dyadic expansion

( 1 ) n = 2 nklk (и* = 0 , 1)*=o
w e  s e t
(2 ) w„= П К ,

k = 0

where (/•„, N) is the Rademacher system. The partial sums of the Walsh—Fourier 
series S f  of /£ L = L 1[0, 1) are denoted by S„ f (n£N) and the dyadic maximal 
function is defined by

/ * ( • * )  =  s u p  | ( S 2 " / ) C * ) I  =  s u p  - | у | - 1 / / ( 0 * |

where in the last expression the supremum is taken over all dyadic subintervals 
I  of [0,1) containing x£[0, !)• The function f i L  belongs to the dyadic Hardy 
space H if

ll/llH =  /  f \ x ) d x « ~ .
0

More generally, for every continuous, increasing function Ф: [0, CO Ы 0 , CO ̂  
let НФ(Н) be the set of functions f£ L  satisfying

(3) /  f W i ( f ( x ) ) d r < » .
0

This research was supported in part by MTA—NSF Grants TNT—8400708 and 8620153.
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The Walsh—Fourier series S f  is said to diverge boundedly at x£[0, 1) if S f  
diverges at x but

(S*f)(x) =  sup |(S„/)(x)|П

i.e. S f  diverges at x  because of oscillation.
The existence of divergent Walsh—Fourier series was first proved by Stein [13]. 
We show that there exist a.e. boundedly divergent Walsh—Fourier series. 

Moreover the following claim is true.
T heorem  1. Let Ф: [0, ■»)->[0, °°) be a continuous, monotone increasing func­

tion which satisfies
(4) Ф(г) =  о (log log t) as t — °°.

Then there is a function Ff ИФ(Н) such that SF diverges boundedly a.e. and diverges 
everywhere.

This is a generalization of an earlier result of the author [11]. The existence of 
functions in H with everywhere unboundedly divergent Walsh—Fourier series was 
proved by Ladhawala and Pankratz [8 ]. Functions belonging to НФ(Н) with every­
where unboundedly divergent Walsh—Fourier series were constructed in [12]. For 
analogous result concerning the trigonometric system see Körner [7] andTandori[14].

The a.e. bounded divergence cannot be replaced by everywhere bounded di­
vergence, since the following theorem is true (see Chen [3]).

T heorem  2. I f  f i  L and S f  diverges a.e., then S f  diverges unboundedly on a 
dense subset of[0 , 1).

2. Auxiliary results

In our construction we will use the term of strongly multiplicative system. Let 
(<p„, n£N) be a system of real functions defined on [0, 1). The product system of the 
system in question is defined by

< A  n = П Пк,
k =  0

where the nk’s are defined in (1). The system (<pn, n£N) is called strongly multiplica­
tive, if (фп, n£N) is orthogonal (see Alexits [1]).

Waterman [16] showed that if the strongly multiplicative system satisfies
1

(5) f  ф*(х) dx = К (n = n0)
0

with a constant K, then (фп, n£N) is the Walsh system in disguise.
T heorem  A. Let (cp„, n£N) be a strongly multiplicative system satisfying (5) 

and \(pn\ ^  1 a.e. (nfN). Then there exists a measure preserving mapping n o f [0 , 1 ) 
into itself such that
(6 ) ф„ = w non a.e. (n£ N).
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Denote

(7) Dn = n£ w k (n£P = N\{0})
k=0

the n-th Walsh—Dirichlet kernel and set £>„=0. It is well-known (see e.g. [4]) that

a k, if 0  ^  x  < 2~k
(8 ) D2k(x) = lo, if 2~k S r <  1

and

(9) IA.MI <  j (n€N, *€(0, 1)).

It is easy to see that for hS  2n the kernels Dn are constant on every dyadic 
interval with length 2-m. Furthermore, it follows from the explicit form of the 
Lebesgue constants for the Walsh system that

1

Ln = J  |D„(0l dt =  m, for 0  S  я á  2 " 
о

LNm S  cm, for all m£P

Nm = 2  2“  (w€P)
2fc<m

and c>0 is an absolute constant (see Fine [4]).
Our construction is based on the Walsh—Kolmogorov polynomials introduced 

in [11]. For every mZP set
_ r l ,  on {/>*m> 0 }

*m _ t - l ,  on { \ i 0 }.
Then it follows from (10) ii) that for every mZP and *6[0, 2~m) we have

( 10)

where

i)

Ü)

(11) (SNmg)(x) = (SNmg)(0) =  f  gm(t)D„m(t) dt S  cm.
о

For every 
by setting

( 12)

mZP we introduce a sequence of Walsh polynomials (<pk , kZN)

9k
\rm+k {x)g,„(x + k 2~m), 
\rm+k(x),

if 0 g f e < 2 " 
if I S  2m,

where x£[0, 1) and 4- is Fine’s operation (see [4]).
It is clear that the Walsh spectrum of q>k lies in [2m+k, 2m+k+1) and

\9k\ =  1 (kZN, mZP).
This implies that (<pk , kZN) is a strongly multiplicative system and its product 

system (il/k , kZ N) satisfies
1

/  |<АГ(0 1 3 dt =  1 (kZN, mZP).
о
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Thus, by Waterman’s theorem for every m fP  there exists a measure preserving 
transformation nm of [0 , 1 ) such that
(13) Ф к= м копт (k£lS, w€P).

The Walsh—Kolmogorov polynomials mentioned above are defined by

(14) Qm = n \  1+ФГ) Onep).
k = 0

Denote ||/ ||p  ( l s p )  the L p[0, l)-norm of f  and |Я| the Lebesgue measure of 
the set .Е£[0 , 1 ).

We need the following properties of the Qm’s.
L e m m a . For every m(L P the function Qm is a Walsh polynomial with properties

' О 110, 11! =  1 ,
(1 5 ) . Ü) sup \SkQm-S ,Q m\ ёг cm,

iii) \{S*Qm> 2 m ) \ ^ 2 l m ,

where c is the same constant as in (11).

Pro o f . From the definition of the product system and from (8 ) and (13) it 
follows that

22" ' - l  22 " _ 1
Qm = 2  Фп = 2  WnOnm = £»22m07Tm S 0.

n = 0 n — 0

Thus from (8 ) we get
l l ö J l i  =  P V - l l i  =  1 .

Observe that the definition of ф™ implies that

(16) Ф? = wn2mgnm
for some Walsh polynomial g"n which only takes the values 1 and —1 and has a 
spectrum in [0, 2m). Moreover,

=  Wim+k(x)gm(x + k2~m) (x€[0, 1)).

Hence and from (11) we get that for all 0 ^ k < 2 m and t£[/c2 m, (fc + l)2_m)

\(S^+’‘+NmQm)(t)~ (S 2m + kQm)(t)\ — \(SNmgm)(t+k2  m)| s  cm.

Consequently (15) ii) is satisfied.
To prove (15) iii) we use the fact that by (16) the spectrum of each ф™ is con­

tained in [n2 m, (n + l) 2 m) and, consequently,

S* Qm max 12  Ф«\ + max | Б*ф”\ =i*2m 0 ^n<2‘2m

= max \D,onm\ +  max„ , „ о т  "* „ о т
0 SÍ<22 0йп«:22

S*g"m = A1+ A2.
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Since the spectrum of g"m's lies in [0, 2m), by (10) for A2 we get

Thus
I{S* Qm >  2m)\ == I{ Л  >  m)I =  |{ i> * 0 7 r m >  m } | =  |{L >* >

where

D*(x) = sup \Dn(x)\ g  — (0 <  X <  1)n x

(compare (9)). Hence (15) iii) follows and the Lemma is proved.

m } \ ,

3. Proof of the theorem

Using the Walsh—Kolmogorov polynomials we can construct a function F 
with the required properties.

P roof of T heorem  1. Let en-»0 be a decreasing sequence of positive
numbers such that
(17) Ф(и) = £„ log2 log2n (« S  4)
and set

ßn = пгп
Ф(п) (n€ N).

Then ßn-+°° as и— and we can choose an increasing sequence (v„, n£N) 
of indices with v0 s 4  such that

(18)
°° 1

2 —n = 0 V„
<  OO

and for /„=22V" (n£N) the following properties hold:

i) ßi„ = ~2 ßin+i

(19) U) - f a  < i  (ilCN).
OO

iii) Z  £/„ <  00
n =  0

The function F is defined by

n = 0  v n

Conditions (18) and (15) i) imply that this series converges in L-norm. By definition, 
the Walsh spectrum of QVn satisfies

(2 0 ) spec (r2Vn+1 Qv„) c  [2 *v"+\  2 ^ +1+*v"+v„) c  [2 ^ +1, 2 ^ v"+1+1]

12* Acta Mathematica Hungarica 56, 1990
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therefore the series in question is the Walsh—Fourier series of F. Furthermore, 
from (15) ii) it follows that

sup \SkF—StF\ g c > 0
k,l

and, consequently, the Walsh—Fourier series of F diverges everywhere on [0, 1). 
To verify Fg НФ(Н) we use 2V"+2V,,< 2 2V" + 1  and Qv„=0 to see that

“  C)
F* S  У  ^ v"

n = 0 V„

Decompose [0, 1)=F*U( 2  Д,)» where

and
E* = lim sup {<2V =*■ 0}П-*- oo П

E„ =  {Qv„ >• 0 and QVk = 0 for all к >■ ri)

for «EN. Recall that <2V„ only takes the values 0 and 22V". Consequently, the defini­
tions En and ß„ imply that

ZeJ i  2 2> „  =  Z ß lk, 
k= 0 k= 0

where y£ is the characteristic function of the set F£[0 , 1). Since by (19) ftk+1

and ßi„ < ~2 we ^ave
Xe„F* ^  2ßln <  /„

for each «E N. But (15) i) and the fact that Q„n only takes the values 0 and 22V" implies

\{QVn *  0}| =  2 -2V" =  i - .

Consequently, |F „ |^ l//n and |F*|=0. Therefore, it follows (see (19)) that 
i

f  F*(t)4>(F*(i))dt = 2  f  F*(t)<P(F*(t))dtS

==2 2 ß i nH Q \E n\ = 2  2 k — -n = 0 n —0

Thus, it remains to prove that S*F is finite a.e. To this end observe that by (20)

(21) S * F ^ F *  + su p s * ö v „

and since ТЕНФ(Н), we have that F* is finite a.e. To estimate the second term set

S*QVnHn =  ^  2} =  {S*Qvn >  2 v„}
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for neNand let Я * = р | U By (15) iii) Consequently, |Я * | = 0
и = 0 k=tt n~0

and the second term is finite off Я*.
Thus, Theorem 1 is proved.
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HERMITE AND HERMITE—FEJÉR INTERPOLATIONS 
OF HIGHER ORDER. II (MEAN CONVERGENCE)

P. VÉRTESI* (Budapest)

To Professor A. Sharma on his 70th birthday

Weighted U  convergence of Hermite and Hermite—Fejér interpolations of 
higher order on the zeros of Jacobi polynomials is investigated. The results which 
cover the classical Hermite—Fejér case give necessary and in many cases sufficient 
conditions for such convergence for all continuous functions. Uniform convergence 
is considered, too.

1. Notations. Preliminary results

General notations. The symbols “const”, “c”, “c ”, etc. denote some positive 
constant being independent of the variables and indices. In each formula they may 
take different value. The symbol means as follows. If A and В are two expres­
sions depending on some variables and indices then

A ~ B  iff \A /B \^ c x and \B /A \^c 2.
C and Lp spaces. Let C denote the set of continuous functions on [—1, 1] with 

the usual norm
11/ 11:= max |/(x)|.

—

Sometimes we use the notation ||/ | |[ а,ь]:= niax  ̂ |/(x)|, /£C , [a, h]c[— 1, 1]. 
Further /g L p, 0 <p<oo iff

11/ 11,:=  ( f  \f(x)\p c/x)l/R <  °o
- 1

where Ä =m ax(l,p). If 0 < p < l, || • ||р is a distance, not a norm, but we keep 
this notation for convenience. It satisfies

W h  =  cp'R\\f\\p, ||/+g||p  ll/llp+llgllp,
b

whenever f,g £ L p. As above, WfWp.ia.bf^lf l / l p)1/R-
a

Hermite—Fejér interpolation o f higher order. Let X {xkn =  cos 9kn} c  [ - 1 , 1], 

(1 .1 ) - 1  =  *nB <  <•••<  xln 32 1 , n = 1 , 2 , ... ,

1801.
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370 P. VÉRTESI

be an infinite triangular interpolatory matrix. We consider the unique interpolatory 
polynomials Hnm( f  X ,x) o f degree Sm n — l for f f C  defined as follows:

( 1.2)
Hnm( f  X, xkn) = f(x kn), 1 S k S n ,
Н Ш  X, xk„) =  0, 1 I ^  m - 1, 1 — к = ny
m = 1 , 2 , ... is fixed; if m =  1 , we prescribe the function values only.

By definition, Hnl are the Lagrange-, Я „ 2 the Hermite—Fejér, and Hni the so called 
Krylov—Stayermann interpolatory polynomials. By (1.2), Hnm can be written as 
follows:

(1-3) Hnm (/, x) =  2  f(x kn) hknm (x), n=  1 ,2 ,...,
k  =  1

where the polynomials hk of degree exactly пт — 1 are

(1.4) L W  = C W  2  eiknm( x - x kn)‘, 1 S  к n.

Here the coefficients eik can be obtained from

(1.5)
I'knmiXl) = Ölk, \ S k ,  l S  П,
К$т(х,) = 0 , \ 'S к, I s  n, 1 s t s  m - 1;
if m — 1 , we omit the second row;

further, lkn(x) are the Lagrange fundamental polynomials of degree exactly и —1,
П

i.e. with ш„(х):=с„ JJ (x-x*„),
k = 1

( 1.6) lkn(x) = 0)„(x)
U > n ( x k „ ) ( x - X k „ )  '

Here and later we use some obvious short notations: e.g. we write Hnm( f  x), Hnm(x) 
or Hnm for Hnm{ f  X, x); hknm(x), lik„(x), hk(x) or hk for hknm(X, x), etc.

Hermite interpolation. If  / (m~1)6 C, the Hermite interpolatory polynomial 
L, x) of degree S m n — 1 based on the nodes (1.1) is defined by

( f  X, X k n )  =  / «  ( x J ,  \ s k s n ,  O s t s  i n - 1.

They can be written as
ш — 1 n

rfJnm (/> X, x) = 2  2  / <0 ( w J  Knm ( X , x ) ,  1 1 1 =  1,2,.. . ,
f = 0 k = l

where, by h^nm(xJn)=5ti8kJ, we write
Г y—T, V m — l — t

(1.7) hlknm(X ,x) = I M X ,x ) 2 L 2 ^ L  2  etiknJ x - x kny, ostsm-l.
1 • i =  0

Here Л0*=Л* and eoik=eik (cf. (1.4)), further

(1-8) f i,ta  =  iorhm- /• =  0, 1, . . . , m - l - f ,  0 ё ( 5 и - 1 .
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Relation (1.7) can be proved by induction with respect to t using the conditions for 
К  (cf. [2 , 3.1]).

By definition, for P£2Pmn_x (=  the set of polynomials of degree ^m n  — 1)
m —1 n

(1.9) Р(х) = Жпт{Р ,Х ,х) = Нтп(Р ,Х ,х )+ 2  2 ' P(,)(xk)hlk(x).1=1 k = l

Jacobi polynomials. w=w(a,w is a Jacobi weight function with parameters 
a, ß (shortly w£J or w£/(oc, ß)) iff
(1 .1 0 ) w(x) =  ( 1 -х ) “(1 +д:/, a , /?>  —1 , |x| ^  1 .

The corresponding system of orthogonal Jacobi polynomials is denoted by 
{p„(w)}5% i.e. p„{w)=y„(w)xn+lower degree terms, y„(w) > 0  and

1

/  Pn(w)pN(w)w =  <5„JV, n, N  & 0.
-1

The zeros of pn(w) are xkn(w) and they are ordered so that
- 1  <  X„„(w) < . . .<  x 2n(w) < Xln(w) <  1.

HERM1TE A ND HERM 1TE—FEJÉR INTERPOLATIONS O F H IG H E R  ORDER. II  371

2. Results

Let and — , m = l, 2, .... State-
2 m Z m  Z m

ments concerning the uniform convergence of Hnm( f )  to /  show that a, ß ^ A m 
are necessary conditions (cf. P. Vértesi [7]). This is why we suppose them from 
now on.

Let у = min (a, ß) and Г = max (x, ß).

The process H„m
T heorem  2.1. Let m = 2,4, ..., be fixed, even, p > 0, up£J, w£j(ot, ß) and 

(2.1) (1) y = s C ni or (2) Am =  у <  C,„ and Г - у  =£ 2/m.
Then
(2.2)

/7
(2.3)

Jim ||(tfnm(/, w )-/)w ||P = 0

u ( x ) \ \ - x zv(x) := -----------— -----
(w(x) } 1  — x2) m/2

v /e c

е т р.

Further using

(2.4) ° <  2 i f  К ^ м ,

(2.2) implies (2.3). Here К = т т {к,п—к+ \), M  is fixed.
R em arks 1. Conditions (2.4) say that the order of the corresponding coefficients
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is as big as it could be (cf. (1.8), (3.5) and (3.6)). They were verified very recently in 
R. Sakai, P. Vértesi [8 ].

2. If m=2 (when, as it is well known, ewkn2 =  1) the result was proved using 
another approach in P. Nevai, P. Vértesi [3, Theorem 5] even for w£GJC (i.e. 
w=wxg, w ^ J  and g > 0 , g'£Lip 1 on [—1 , 1 ]).

However the method applied here has some advantages, (a) It does not use results 
on mean convergence of Lagrange interpolation demanding a rather fine technique 
(cf. P. Nevai [2; Lemma and Theorem 6 ] and [3, Theorem 5]). (b) The proof directly 
works for each fixed /?>0 (cf. [3, p. 57]).

Our direct approach is based on the precise pointwise estimation of 2  \Kk(x)\ 
taking shape in Lemma 3.2 (cf. (3.2), too). Using Lemma 3.2, one can prove mean 
convergence on subintervals, too. The efficiency of Lemma 3.2 shows that at the 
estimation of atk( f ) h tk(x) we do not have to consider the possibly different signs 
o f htk(x) — a phenomenon which certainly does not occur taking odd values of 
m (cf. [2], when m = l,  i.e. Lagrange interpolation).

3. Let w^GJC. While our method works in this case, too, if m — 2 (cf. [3> 
Lemma 2]), the relations (3.5) seem to be difficult to verify whenever m >2.

The process Жпт
T heorem 2.2. Let m=2 ,4 ,. . . ,  be fixed, even, p>  0, up£J, wfJ(a, ß) and 

suppose (2A). Then
(2.5) lim ||(jf„m(/, w )-f)u \\p = 0 V /  with /<—«€C, 

i f  (2.3) holds true.
Using Lemma 3.2 we can obtain results on uniform approximation, too (cf. [7]). 

Namely let — 1 < ж 1 .  Then
Statement 2.3. Let m=2, 4, ..., be fixed, even, and suppose (3.7). Then

(2.6) Hm \\Ж„т(/, w ) - f \ \ ia,n = 0 V /  with / (m- 1)6 C
П-*- oo

i f  a < ß m.
Using p ^ 'P)(x)=(—l)"pitp’x)(—x) ([4, (4.1.3)]), we obtain analogous results 

for [— 1 , a], and finally
C orollary  2.4. Let m=2,4 , ... be fixed even numbers, and suppose (2.1). 

Then
(2.7) lim \\.tfnm{ f  w ) - / | | =  0  у f  with /<"+1>€C

П-*~ oo

i f  Г ^ В т.
R emarks 1. Uniform convergence of Hnm( f ) to /  can be obtained, too (cf. 

Propositions 2.3 and 2.4). The results slightly improve [7, Theorem 2.1] namely, 
[7, (2.1) and (2.4)] can be replaced by a£[Am, Bm) and a — [l^2/m, respectively. 
The proof is analogous to that of Statement 2.3.

Again we get nearly the same necessary and sufficient conditions for Hnm and Жпт.
2. The previous Remark 3 holds true for Жтп, too.
3. For theorems of “iff” type see P. Vértesi, Y. Xu [9].
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3. Proofs

3.1. From now on, unless otherwise stated, we suppose that X=X{w(a'ßy) = 
= {Xkn(w)=cos 9*„(V)}, k = l,  2 , . . . ,  n; n= 1 ,2 , . . . ,  a, / ? > - l .

Here with x=cos 9,

vv(*. P) (x) =  (1— x)* (1 + jc/  =  Q(-C,,ß)(& )  = 2a+i sin2ay  cos2/J у  , л, ß >  — 1. 

Using obvious short notations, we have
Lemma 3.1. With 9o„= 0 , 9„+1,„=n and \xj—x| ^ m in ^  I-*—

(3.1) Зк+1'П — 9 
uniformly for  O sfesn, nd N,
(3.2) |p„(*)l = lp„(cos3)|~

kn П

n\9-9j\
( w i x f n - x j y i z

uniformly for  — l S x = c o s $ ^ l  and nd N,

(3.3) \p'n(xk)\ = IK (cos Sk)\
n 1

uniformly for 1 ^ k s .n  n £ N.

Here (3.1) comes from [1], (3.2) from [6 , Lemma 4.3], finally (3.3) is essentially 
[4, (8.9.2)].

If K:=min (k, n —k + l) and /:= m in  (J, n—j + 1), 1 ^ k ,  j ^ n ,  by (3.1) it is 
easy to get the following relations, frequently used later:

(3.4)

\X -X k\' (K+J)\K-J\

, \ X - X j \
\ 9 - 9 j \ J

n

sin 9k

1 S  k , j  ш n, к ,*j, 

1 =£ n,

1 Ш к ^  n,

uniformly for k , j  and n£N.

Using Lemma 3.1 and the differential equation for the Jacobi polynomials 
for X (*,ß> and any fixed  m ä  1, we have the relations

(3.5) \ e 0sknm\ = cl{n, k, s), O ^S tS
where

(3.6) I(n ,k,s):=

(see [7, Lemma 3.11]).

i f  s =  0 ,2 ,4 ,.. .,  

i f  s =  1, 3, 5, ...
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Now we prove our basic statement.
L emma 3.2. Let m = 2,4, ..., fixed, further let

f(l) at, ß = Cm or (2) a ^ C m> ß ^  Am and a — ß ё  2/т or 
1 1(3) ß ^ C mx x ^ A m or (4) Am á a J S C , .

I f  —1 I then uniformly for  n and x

(3.8) Z \ h tk(x)\ ^ 4 - [ (У Г = 3 ^  +
*=i и L

log n
(w (xу) 1 — Aj) m/2H.

x€[a, 1], t — 0,2, ..., m — 2,

(3.9) 2  lAflkWIfc=i
log и

( v v  ( Х у )  У  l  - x j ) " ' / 2
+  1 , x€[a , 1], i =  1, 3, ..., w - 1 .

Further, supposing (2.1), relations (3.8) and (3.9) hold for  |x| =  l.
Proof of L em m a  3.2. First m —t be even, m —2, 3 ,__ By (1.7), (1.8) and

(3.6), for arbitrary |x| 3= 1

'**w l ' '*-**'' [' + l ä f + ( 4 S r ) S+ -

( n \ x - x k\ Y  * 2 _ u  ( n\x-xk\ \ 
v sin S* ) + 1 sin St )

m — t — 2
\ x - x k\
sin2 Sfc J '

Here by (3.4) n\x—xj/sin &k~(K + J)\K —J \K  1 Sc, IcAj whence, writing
m — l —t

Г...]= 2  q(i), we have q (0 )Scq(2 )s .. .Scq (m  — t — 2) and by q(2r+ 1) =
=  ( |x -X t|/s in 2 St)

So

|A«(x)|

4(2r), q( 1) S  cq(3) =§...=£ c q ( m - t - 1).

On the other hand, if k = j  we get q(i)^c  for every i, whence

\htJ(x)\ S  с IIj1 (x)| Ix X j - 11.

First we estimate htj(x). If x € [ x y + 1 ,  Х у ] ,  1 — 1 , say, and 4 n | S  — S y |  =
S | S y + i - S y | ,  h,j(x) can be handled as / i , , y + i ( x ) .  If 4 n | S  —S y | < | S y + 1  —S y | ,

|/y '(x)| |x  — Xy|f S  c (J / n 2) '  ~  п ~* sin 'Sy

(cf. (3.4), the first term of (3.8)). The other cases can be treated analogously.
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To go further, by (3.3) we write 

(3.10) 2 ' \htk(x)\ = c\pn(x)I \ z ‘
k = l  L к

, (w(xk))ml2(^n ,9t ) ' + 2 + m / 2

nt+2\x—xu +

+ 2
, (u'(.tt))m/2(sin 9*)(+ш/2 1.j := c\p™(x)| (/x + /2), m - 7 is even, m = 2,3,....k n‘+*\x-xk I

Here and later 2 '  means that we omit the term k=j.

First remark that by (3.7) a, ß ^ A m. Now let x 'ifl. Then by (3.10)
[3n/4] n I n ( lf / „ \ m ( i  +  l / 2 ) + t  + 2

/, =s У ' +  7  ~ ----- S- 7'--■■■■------------------ h
1 _ Ä  *=&4] И' “ 2 Ä  ( k + j ? ( k - j Y

+ i f - )« + * = 1  V n )

m(/? +  l / 2 ) + i  +  2

•= Sl + Si-

Considering SV, we write
n i. m(a + l/2) + f + 2 1 [j/2]

У ' _ ________________ <  У  W («+l/2)+ l+2 I
fc=i ( k + m k - J Y  -  f  á  K

2 j  ;m (a+l/2)+i в
_|_ 2 "  —  j 2 1  ^ m(* +  l / 2 )  +  « - 2  g  c ^-ym (a +  l / 2 ) + t ^ _ n m (a + l /2 )  +  i - l  J G g  ^

ft—[7/2] (k —j Y  к = 27

using ffl(a+l/2) +  H -2sm (a + l/2) + 2bO (by oc^Am). By ß ^ A m, m (ß + 1/2) + 
+ t+2sm (jS + l/2 )+2sO , i.e. can be estimated by So

(3.11) ' - M i l
m(a +  l /2 )  +  i

+
log n , x S 0, 7 S 0.

To estimate /2, again by (3.4)
c ", (к/п)т(а+1'г) 

-  Tfи* Ä  (fe+y)|/r- ,/i nf+2t = i l i j

m(/S +  l/2 )  +  f

•— Sad" S4 .

By arguments similar to the above ones, further using that 7=0, 2, ... (m — t is 
even, m is even)

f  /  • \  m(a + 1/2) + 1 — 1 -I

l o 8  2y + log wj

j  2 n m (51 +  1/2)

if 7 2,

if ig 2  or 7 = 0 and т(а+1/2)ё — 1, 

if 7 = 0 and m (a+ 1/2) <  — 1,

SC C c log n 
n

n - m ( ß  + 1/2) —2

if 7 = 0 and m (ß+ 1/2) S —1, 

if 7 = 0 and m (ß+ 1/2) <  — 1.
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I.e.,
log2 /  ( j )  

n V ti.

m(a+l/2) + < —1

J +
log n if t =  2 or t = 0 and a, ß £  Cm,

whence by (3.10), (3.11), w(xj)~(j/n)-x and VI — xj=sin 9j~j/n, we obtain (3.8) 
when а,/?£Ст .

If 7=0, m(oc +  l/2 )£  —1 but m(ß + l/2)< — 1, for our new term coming 
from we have, using (3.2) and (3.7),

ATM
f l m(ß + 1/2) + 2 j  m(ß  -j-1/2) + 22,+ 2 ('„)

m(ß— a)+ 2

i.e. we obtain (3.8) for this case, too.
If 7=0, m (ß + 1 /2) =— 1 but m(a+l/2)-= — 1, the new term coming from S3 is

Pn(x)
j 2 n m(x + l / 2 )  — j m (  a + l/2) + 2 S .  C

(by a.£Л Ш), i.e. (3.8) holds true.
Finally, if 7 =  0, m (a+ l/2 )< —1 and m (ß+ 1/2)<—1, we combine the last 

two cases to finish the proof of (3.8).
Now let m —t be odd, m = 1,2, —  By (1.7), (1.8), (3.5) and (3.6) for arbitrary 

\ x \ s l

I'1» « '  * [' + 1 ^ + (J!S r L)S+ •••

+
( n \x~xk\ V 
l  sin 9k )

\ x - x k
sin2

к

l sinSt J У
m — l  — k

If [...]:= 2  0(0» then by
i = 0

0(2r) =  n* \x -xk\q (2 r - l )~ \K -J \ \K + J \q (2 r - l )  ^ c q (2 r - l ) ,  

k ^ j ,  r =  1 , 2 , . . . , ( m - t - l ) / 2

and n\x—xjsin “ 1 9k^ c ,  k ^ j ,  we get that [,..]^cq(m — t — 1) which means
V Ш — t — 1

(3.12) \h,k(x)\ = c|/JT(v;)| \ х - х к\' ( n \ x - x kI V 
l sin 9k J , к Ф j.

If k=j, then q( i)^c  for all /, whence \htj{x)\ S  с\1™{х)\ \x—x / .  This term 
can be estimated as before. If k ^ j ,

(3.13) 2' I M * ) I  =  c\p™(x)\2
k  = 1 к

(w(xt))m/2(sin 9k),+2+m/2
n,+1\ x - x k\ 

m —t is odd, m =  1 , 2 , __
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Let x ^ a .  Denoting the sum by 73, we write

, _  pg»i , ^  1 (Ä/«r( e + 1 / , , + , + 1 ,
y 3 —  2  " b  ^ 1  ~  „ ( - 1  ^  /"ír I Alt- / I

A =  1 fc=[3n/4] И k =  l  t A + y ; | / C — у  I

+ —  i i - 1
« r + 1  ké A n )

m(j3 +  l / 2 )  +  I +  l

•— 56 + iS6.

Using considerations as before further using that 1 (m — t is odd, m is even), 
we get

C f /  yn(a + l/2)+( 1 j

S5 - 7 ? - [ log2 y ( n)  + lo g T  Se - C^ ~

whence, by log 2/(f 1 — x*)f =  c log n, we get (3.9).
Changing the roles of a and ß we get four other conditions and the corresponding 

statements for [— 1, a]. It is easy to check that (2.1) includes all the eight conditions. 
This completes the proof for the whole interval [— 1, 1]. □

3.2. P roof of T heorem  2.1. Let e>0 be fixed and take a polynomial Q such 
that II/— QH^e. Then

\№«m( f , x ) - f ( x ) \  ^  \Hnm( f , x ) - Q ( x ) \  +  \ f (x ) -Q (x ) \  ^

m — 1 n
= \Hnm{ f-Q ,  x)\ + 2  2  \Qu4xk)h,k(x)\+e =

t=1 k = 1 
n m—1 n

\h0k(x)\+M 2  2  \h,k(x)\+e, n S  n0
k = 1 t = 1 k = 1

where M \— max ||6 (i)ll- S° f ° r апУ fixed X  and e>0 there is a constant M  such 
that for n ^ n 0(e)

n m — 1 n
(3.14) X, x )- f(x )\  ^ e[ 2  \h0k(x)\ + 1]+M 2  2  \h,k(x)\.

k=1 i = l  k = l

3.3. “(2.3) =»(2.2)”. For x€[ű, 1] by (3.14), (3.8) and (3.9)

(3.15) IЯ„,„(/, x ) - f{ x ) I ^ r \ 2  \hok(x)\ + l ] +M 2  2  \h,k(x)\ +
k=l (=1,3, ■■■ k = l

+
log ngn  r 

n [

с E +

(w(xj) у 1 - x j p 2 

log n

H ‘ +
log

n

+■] + i ( rl +

1

(lw ( X j )  ) / l

log n

+

n  ( w ( X j )  V ' l - x j ) m t 2

И [w{x 

log n 1

j) Y T ^ j p 2)} ^

n (j/l-jc ))m(a- 1/ 2)
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First let m(ct+1/2)— 1 SO. By v£Lp we can choose а д ,  0<@^1, such that 
v1:=v/(Yl —x2)e€LA By the triangular inequality, (3.15) and l ^ n / l - ^ ' ^ c  
we have

||(tfnm(/)-/HU[0,i] = c\\eu\\p+

+ c II log »
' ¥ ) ' !  [

u(x) _____________- ! ■  r j g
H V l-X ?)8 (W l-xS)1-^ J J,/ L ( f ' l - x 5)m(*+i/2) - i 1 - x 2) 3 (n ] / \-x ) )

~  c e p / r  +  c  

= C6 W/i +  c

{ m '/ i Ä i - r
log n p/R

( / 1 —JC2) 0

Klip =  CEp/ R +  o( 1).

If 1 — m |̂ a + y j  = yl>0 with 0 £=1, we write 

| |( ^ ,m ,( / ) - / )w ||p , to , i ]  =  с ||еы ||„+

м т п
p 1 r ]p d^ !R

^  cep,R + c

(n i  l-x* jy-s
\ P / R  1

( П ) ( . /  uP(x)dx )1/R = cep/R + o(l).

Using similar arguments for the interval [ — 1, 0], we get (2.2).
3.4. “(2.2) =>(2.3)”. First let a + i  = e >0. By (1.7), (1.8), (3.5), (3.6), (2.4) 

and Lemma 3.1
1Ш — 2

(3.18) Au  (x) S  /£' (x) (x -  x*) |c  (x -  xt)] 1 -

n ( x - x k) l m ~ 4  V—Г 1 Г  и  - i m - 2
j • ^ } ^ ^ ( x ) ( x - x 4 ^ - ( x - x , ) j  ,( x - x k) _____

sin2 3k " ■ sin \

uniformly for K ^ M ,  (.x1 + l)/2:=a„Sx^b„:=(x1+2)/3.
By (3.18), (3.5), (2.4), Lemma 3.1 and (3.12), we get as before

(3.19)

2  hik(x)
i l l

ni П (w(x1))/ l- x f )m/a и1 —m (a-t-l/2) n l ~ m Q  >

2  I Alt (x) I = — ,
( 2)  П -

2  A u(x) >  0
(3)

uniformly for an^ x ^ b n and n£N. Here 2 ’ 2  and 2  mean summation for
(1) (2) (3)
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к with (1) k>M, O sx k, (2) \ S k s M ,  (3) xk<0, respectively. If u£J(n,v), by 
f l (x)—x  and (3.19)

(3.20) ||(я ит( /1) - / 1)«||* =  /  12  ^  f \  2  K\pup =
— 1 k~1 an k~1

= c J  \ 2  K \pup ёг :=  gin).
°n U)

By (2.2), £■(»)—0, whence (2/i + l — m(oc + l/2))p+2>0 i.e.

(Or +  1/2) —y ( a + l / 2 ) ) p > - l .

So vp is integrable in [0, 1]. If a + l/2<0, we use d(x ) S h (i ) (x^O) and u£Lp. The 
argument for [ — 1 , 0 ] is similar. □

3.5. P roof of T heorem  2.2. If Q is as that in 3.2, further M=  max || <2(i) — / (,)||l^t^m — 1
we get, using Lemma 3.2 as at 3.2—3.3

(3.21) М О / .*)-/(*)! s c [ . +  lon8 "  (?г

The remaining part is as that for Hnm. □

x£[a, 1].

3 .6 . P r o o f  o f  S t a tem en t  2.3. If we suppose (3 .7 ), we get (3.21), whence if 
a +  l/2 s 0 , x)~f(x)\ ;Sc(e+log ti/n), x£[a, 1], from where we obtain (2 .6 ).
When a + l/2>0, by (3.21) \Jfnm( f ,  x )- f(x )\^c (e+ nmix+1№-1 log n)=ce+o(l) 
using a<j9m. □
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