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ALMOST TACHIBANA RECURRENT MANIFOLDS

S. K. D. DUBEY* (Bhatpar Rani)

1. Introduction

We consider an u-dimensional differentiable manifold M of class C* covered by
a system of coordinate neighbourhoods {U, x*}, where U denotes a neighbourhood
and xi denote the local coordinates in U with the indices i,j, k, ... having the range
1,2,3, ..., n. We choose the Jacobian determinant in M in such a way that

of the coordinate transformation ([1], [3])
xv=xI'(xLx2 ..., x")

occurring in every non-empty intersection of two coordinate neighbourhoods {£/, xh}
and {U', xH} is always positive, then the manifold is said to be orientiable.

An almost Tachibana manifold is first of all an almost Hermite manifold, i.e.,
a 2n-dimensional manifold with an almost complex structure F(Yano [8])

(11 F/Fth= —Ajh
and with Reimannian metric gt satisfying
(2.2) F/F/gls = gji,
where
(1-3) Fk=-Fj, Ft=Fgti.
The skew-symmetric tensor Fihis a killing tensor if
(1.4) VjFih+ViFjh —0>
where
ry,F, 4V ,F/ =0,
(15) . . N .
Mjih = VjFh+ ViFhj + VhHi
and
(1.6) R=—VjFiJ=0.

* Thanks are due to University Grants Commission, New Delhi, for providing the financial
assistance.
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4 S. K. D. DUBEY

In an almost Tachibana manifold, the Nijenhuis tensor Nj* is given in the form
(W) Njih = —4(VjFi)Fth+ 2Gt Fth+F/Gtih- F‘GtA
G\ = VjFf+ViF},
or
(1.8) N}t = -4 (VjFftF*

and consequently VjFj, is pure inj and i. When the Nijenhuis tensor vanishes, the
almost Tachibana manifold is called a Tachibana manifold, i.e.,

(1.9) VjF* = 0,

which yields that a Tachibana manifold is a Kaehler manifold ([4], [6]). The Nijenhuis
tensor NJih, NJitFH and Vy Fih are skew-symmetric in all their corresponding indices
and satisfy the following identities:

(110 a) 3VjFih-Fjih —Gjih~-Gjhi,
b) 3ViRNe A jip - _ 1y NJitFi,
¢ NJh=jF JUFi,

d VVF?= =

e) Njih=—20fi(VtFr--VEF/)F,

The Ricci-tensors K}i and Kj* are hybrid in an almost Tachibana manifold.
A necessary and sufficient condition that an almost Tachibana manifold reduces to a
Kaehler manifold is that

(1.11) Kjh= Kjh
where

Hkj —j KKihF*h

For a conformally flat almost Tachibana manifold, the curvature tensor has the form

(112 K-kijh ISkh~ji  8jhA~ki  kh8ji Cjhgkil
where

(113) i 20K% Wan_i)2u—2) °
(1.14) Hji = F/Cti-FiCHj,

(115) Zf, = -H j.fi =-2*0liCu,
(116) 0ji=Cts = Cji, Kfi =-2C i

Acta Mathematica Hungarica 56, 1990



ALMOST TACHIBANA RECURRENT MANIFOLDS 5

and

2n—4 1
U7) Kji~Kji = (2n—1)(2n—2) K8]i’
The Ricci identity having the tensor F/1 we can write (Yano [8])
(1.18) W /’-VAF/' = KKIhF !-K kI?R\
from which
(1.19) VIVjF* = KjtF'—Hj,.

2. Almost Tachibana recurrent manifold of first order

D efinition (2.1). An almost complex structure F is recurrent of first order if it
satisfies the relation
2.1) VjFih = Vj(OFih

where Vj(£) is a non-zero recurrence vector field in an almost Tachibana manifold.
Equations (1.4), (1.6) and (2.1) yield

2.2 =0
which implies that

(2.3) vJFih+viFjh=0
and

(2.9) Ft+VjF/= 0.

Theorem (2.1). For a recurrent complex structure offirst order, the Nijenhuis
tensor satisfies thefollowing identities

(2.5) Njih+4vjF?Fth—2Gji Fh—FfG,/1+FtihGth = 0,
(2.6) NJh+4vjFH Hh=0; N j = 4vjAih,

and

2.7 N jt+ 1O'ffv, Fs—vsFr) Fh.

Proof. In view of (2.1), equations (1.7), (1.8) and (1.I0e) yield the theorem.
Using (1.10b), (2.1) for an almost complex recurrent structure, we can write

Hth = 3v]Fih
for skew-symmetric in all its indices.

D efinition (2.2). An almost Tachibana manifold is called recurrent of first order
if the Nijenhuis tensor satisfies the relation

(2.8)
where Vk(x) is a non-zero recurrence vector field.

Acta Mathematica Hungarica 56, 1990



6 S. K. D. DUBEY

Let us take the coordinate system in almost Tachibana manifold
(2.9 x{= x40,
the recurrence vector field vk(x) can be expressed as Vk(£).

Theorem (2.2). In an almost Tachibana recurrent manifold o ffirst order, the com-
plex structure should be recurrent o ffirst order but the converse is not true, in general.

Proof. The equations (1.7), (2.1), (2.8) and (2.9) prove the theorem.

Theorem (2.3). In an almost Tachibana recurrent manifold thefollowing identity
holds:

(2.10) vk (V. a- j RItHj -4 (VkVj+VjVKFit = 0.
Proof. The equations (1.10b), (1.10c) and (2.1) yield the theorem.

The hybrid tensors Kjh and K*hin an almost Tachibana recurrent manifold, cor-
responding to recurrence vector fields wtand w*, can be expressed as

(2.11) ViKX = wiKjh
and
(2.12) K®nY, K% = w*

which yield the following by using (1.11).

Theorem (2.4). A necessary and sufficient conditionfor an almost Tachibana recur-
rent manifold to reduce to a Kaehler manifold is that the recurrence vectorfields, cor-
responding to hybrid tensors, are equal, i.e. wt= w¥*,

Theorem (2.5). | f the differential form
Fjffi&Ad?

is closed in an almost Tachibana recurrent manifold, then an almost Kaehler manifold,
in which the complex srtucture is recurrent, satisfies

(2.13) VjFin+viRj+vhAi = 0.
Proof. Equations (1.5), (2.1) and the expression Fjihn=0 will give the result.3

3. Almost Tachibana bi-recurrent manifold
D efinition (3.1). An almost Tachibana manifold is recurrent of second order,
i.e., almost Tachibana bi-recurrent manifold if it satisfies the relation
(3.1) VIfijF? = akjB

where aklis a non-zero recurrence tensor field.
Using equations (2.1) and (3.1), the recurrence tensor field can be expressed in
terms of recurrence vector fields, i.e.,

(3.2) akl =VkVj+VKVj.

Acta Mathematica Hungarica 56, 1990



ALMOST TACHIBANA RECURRENT MANIFOLDS 7

Theorem (3.1). Every almost Tachibana bi-recurrent manifold implies that there
exists an almost Tachibana recurrent manifold offirst order.

Proof. Equations (2.1), (3.2) give the above conclusion.

Theorem (3.2). The recurrence tensor field is symmetric, if in almost Tachibana
recurrent manifold the recurrence vectorfield is gradient, i.e.,

(3.3) \Wj-VjVk= 0.

Proot. Interchanging the indices k andj in (3.2), we get the result.
In an almost Tachibana bi-recurrent manifold, the Nijenhuis tensor yields the
recurrence tensor field such that

(3.4) V,VKNjih = bkINjih
in which
(3.5) bk = al

under the coordinate system x‘=x'(").
Equations (2.1), (2.6), (2.8), (3.1) and (3.5) yield the following identity:

(3.6) akiN /+4 (VtvkV f A*+8 (VVfivtA? +
+S[(V,Vj)vk+(VIVKvI]Aih+16vkVjV,Aih = 0.
A killing vector is defined as a vector field vh(E) (Yano [8]) which satisfies
(3.7) ViVt+VtVj = 0 and \ivl = 0.
In a recurrence vector field, equations (3.2) and (3.7) yield
(3.8) akl+ aXk = 2vjvk,
from which it follows:
Theorem (3.3). A recurrence vector field as a killing vector generates a local
one-parameter group ofmotions, if
(3.9) vjvk=j (a K+ajk).
Theorem (3.4). | f the recurrence tensor field is symmetric in an almost Tachibana

bi-recurrent manifold, the recurrence vectorfield is a harmonic vector.

Proof. A harmonic vector is defined (Yano [8]) as a vector field which
satisfies
V Wj—0 and Vy =0.

Thus, Theorem (3.2) gives that recurrence vector field is a harmonic vector.
If recurrence vector field «*(£) is treated as a killing vector field (Yano [7], [8])

(3.10) c%giJ:VJvi+VivJ =0

Acta Mathematica Hungarica 56,1990



8 S. K. D. DUBEY

Equations (3.8) and (3.10) give
(3.11) Segtj = akJ+ajk-2vjVk = 0,

which vyields the following:

Theorem (3.5). A necessary and sufficient condition that an almost Tachibana
bi-recurrent manifold admits a transtitive group ofmotions if it satisfies the relation

(3.12) akJ+ ajk—2vjvk —O0.

Theorem (3.6). In an almost Tachibana bi-recurrent manifold, the Ricci identity
relating to recurrence tensorfield can be expressed as

(3.13) akjFih+ K KlitFth = ajkF2+FKIthFit.

Proof. Equations (1.18) and (3.1) yield (3.13).
Applying the conctraction with respect to kK and h in equation (3.13), equa-
tions (1.19) and (1.10d) yield

(3.14) aj F* = KXFl—Hn
and
(3.15) OfjF* = (KIt—K*t)F*,

which gives the following:

Theorem (3.7). In order that Kjt= Kft in an almost Tachibana bi-recurrent mani-
fold, it is necessary and sufficient that

a,jF =0 (ajji0),
i.e., it reduces to an almost Kaehler manifold.

The Ricci-recurrence identity (3.13) can be expressed as

(3.16) akjFh = ajkFih- Kkj<dh- KKH Fit,
thatis,
(3.17) akjFh = aJtRk+ KkItF{- KkjhtF?

which yield the following:

Theorem (3.8). | f the recurrence tensorfield is an almost Tachibana bi-recurren
manifold, thefollowing identity holds

(3.18) KKitFh = KKhtFi.

We take a contravariant almost analytic vector field wh in such a way that

(Yano [7], [8])
(3.19) FEFi = WV, Fb—RRVwh+ Fhviw = 0,

Acta Mathematica Hungarica 56, 1990



ALMOST TACHIBANA RECURRENT MANIFOLDS 9

Using the recurrence vector field of equation (2.1) in (3.19), we have
(3.20) mSH1= wvthh-Fi\',wh+FthViw = 0

or

(3.21)

Theorem (3.9). |f a recurrence vector field can be expressed as a contravariant
almost analytic vectorfield in an almost Tachibana recurrent manifold, then it satisfies

(3.22)

Proof. We take w=rf in equation (3.21). Thus, in a 2/i-dimensional almost
Tachibana recurrent manifold, equation (3.21) and v,v,=2n give the required
expression.

Theorem (3.10). | f the recurrence vectorfield can be expressed as a contravariant
almost analytic vectorfield in an almost Tachibana bi-recurrent manifold, then

Proof. Equations (3.1) and (3.22) yield the identity.

4, Point-wise constant type almost Tachibana recurrent manifold

An almost Tachibana manifold has pointwise constant type (Yamaguchi, Chu-
man and Matsumoto [6], Gray [2]) if and only if there exists a scalar function a such
that

4.2) VIcF/V.F+V.FIVEF,,,. = a(2gkigih- gkhgdt- glhgXk+ RORi+ FhAk).
Now, we have

Theorem (4.1). An almost Tachibana recurrent manifold has point-wise constant
type if and only if

(4.2) vkv,Ff Fhr-"-(2gkigjh- g khgji-gihgjk+FthFji+FihFjK = o.
Proof. Equations (2.1) and (4.1) yield the required result.

The almost complex structure Fin a special almost Tachibana manifold is a
special killing 2-form with constant a(”*0) if

(4.3) VKVjFih = - a(gkj Ah- gk Fh~ gkhFjfi
Equations (3.1) and (4.3) give
(4.9 alj Ah+ a(gly Fh—gkiRh+ gkhFji) = 0.

Now, we have

Acta Mathematica Hungarica 56, 1990



10 S.K. D. DUBEY: ALMOST TACHIBANA RECURRENT MANIFOLDS

Theorem (4.2). A special almost Tachibana bi-recurrent manifold is a special kill-
ing 2-form with a non-zero constant a i f it satisfies

(45) (McW+ vkvj)Fin+ a (gkJFh- gkifh+ gkhH?3) = 0,
i.e. it is ofpoint-wise constant type.
Proof. Equations (3.2), (4.1), (4.2) prove the theorem. The equations (Gray [2])

(4.6) VjF,,VtF” = Rji-RB

and (2.1), give

4.7 vfljF.F- = RJt-R% = 2(n—I)=ji,
which can be written as

(4.8) VjFihv>Fih = R—R* = 4n(n-l)oc

where R*=RjigJi.
Takamatsu [5] has obtained the following identities

(4.9 (RX- R%)(Rji- 5R*J) = 0,
and
(4.10) (RR-RjiHRF-R**) = 4RkjihO#RKjsr.

Thus, we have

Theorem (4.3). A special almost recurrent Tachibana manifold (non-Kaehlerian) is
an almost Tachibana recurrent manifold (n> 1) with point-wise constant type whose non-
zero scalarfunction has theform

(4.11) a = R/5n(n—1Y).
Proof. Equations (4.8), (4.9) and (4.10) prove the theorem.

References

[1] R. L. Bishop and R. J. Crittenden, Geometry o fmanifolds, Academic Press (1964).

[2] A. Gray, Nearly Kaehler manifolds, J. Differential Geometry, 4 (1970), 283—309.

13] Y. Matsushima, Differential Manifolds, Marcel Dekker Inc. (1972).

[4] S. Tachibana and S. Ishihara, On infinitesimal holomorphically projective transformations in
Kaehlerian manifolds, T6hoku Math. J., 12 (1960).

[5] K. Takamatsu, Some properties of 6-dimensional A-spaces, Kédai Math. Sem. Rep., 23 (1971),
215—232.

[6] S. Yamaguchi, G. Chuman and M. Matsumoto, On a special almost Tachibana space, Tensor
(N.S.), 24 (1972), 351—354.

[7]1 K. Yano, The theory of Lie-derivatives and its applications, North-Holland Publishing Co.
(Amsterdam, 1957).

[8J K. Yano, Differential geometry on complex and almost complex spaces, Pergamon Press (1965).

(Received August 28, 1986)

DEPARTMENT OF MATHEMATICS
M. M. M. POST GRADUATE COLLEGE
PNHDAILPAR RANI, DEORIA (274702)

Acta Mathematica Hungarica 56, 1990



Acta Math. Hung.
56 (1—2) (1990), 11—22.

LIMITING DISTRIBUTIONS OF ADDITIVE
FUNCTIONS IN SHORT INTERVALS

K.-H. INDLEKOFER (Paderborn)

1. Introduction. In this paper we investigate the question of what choice of y =
—y(x) insures that the real-valued functions fy(n) possess a limiting distribution in
the interval x —y~tv~Ax (>"x). Here we consider the two cases

D fy(n) =f(n),
where/ is an additive function, and

f(n)-A(y)

(2) fyo) B(y) )
where/is strongly additive and

P(P)
3 = A =
Ifwe put
(4) FXJ(z):=y- x—yz<n"x >

then the question about the (weak) convergence of the distribution functions FXy to
a limit distribution F is equivalent to the question concerning the convergence of the
characteristic functions5

©) BYO:= ML, 7 B0

to the characteristic function cpf{t) of Fas y tends to infinity. Then <p(t) is continuous
in a neighbourhood of (=0 and <p(0)=I. Therefore the problem we have posed is
equivalent to the investigation of the y’s for which the sum in (5) converges to a non-
zero limit for all sufficiently small t.

Letfy— be an additive function. We show that one may choose y=xh(X\ where
fz(x) =1 —e(x) with e(x)>0 and s(x)=0(1) as x-><» so that the limiting distribu-
tion of an arbitrary real-valued additive function f(ri) in the interval x—y<n”x
exists if and only if the limiting distribution off in the usual sense exists, i.e. if the
conditions of Erd6s—Wintner hold (Corollary 1). An example given by Babu [1],
p. 102, shows that this result is best possible. For, if r>0 is given, one can construct
an additive function/ which fulfils the Erd6s—Wintner conditions but possesses no
limiting distribution in the interval x—x1~e<n”x. Assuming that /(pm—0 as

(m=l, 2, ...) we choose h(x)=0(1) where o(1) depends on/ (Corollary 2).
Cases in which h(x) lies between these extremes are treated in Corollary 3.
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One of the few contributions in this area is due to Babu [2]. He showed that under
the assumption

(6) y~r ~ 1=o(l) (y -*°°) for each B> 0,
|/(pPTm?|X*£

where

() xa<yS x forafixed a> 0,

the limiting distribution in the interval x —y<nSx exists if and only if the condi-
tions of Erd6s—Wintner hold.

Ify is chosen as in Corollary 1then the assertion holds without condition (6).
For smaller y an obvious modification of our proof gives a sharper result (Corollary

4).

: In the case fy= (f—A(y))/B(y) we restrict ourselves to strongly additive functions
belonging to the Kubilius class H (see Kubilius [8], Chapter V) and characterize the
cases in which the limit distribution has variance 1 (Theorem 4). Again one may
choose y(x)=x1£(x) with s(x)>0, and %S(XFO. Under further restrictions

on f (9.9. Lindeberg condition or RX |/(p)|:o(l§/x))b we obtain stronger results.
As a corollary we prove a result of Babu [3] concerning the limiting distribution of
cofriy=2, 1.
in

For the proof of the results we investigate the asymptotic behaviour of qxy (t).
The methods used are elementary (sieve methods) and most of them were developed
in the author’s paper [6] to characterize uniformly summable multiplicative functions.
The results and proofs of this paper also give a characterization of multiplicative
functions g of modulus of at most 1 whose mean-value in the interval x—y~nSx
differs from zero (Corollary 4).

Notation. We say that a strongly additive function /: N-* R belongs to the
Kubilius class A if B(x)->» as x-*°° and if there exists an unbounded, increasing

function r=r(x) such that
log r(x) B(r(x))
log* 0 and B(xX) 1

2. Results. Theorem 1. (i) Let fy—\ N—R be an additive function. I f the distri-
butionfunctions Fxy possess a limit distribution as y=y(x)->-°°, then the series

Pip) fip)
(8) .2..P9.2._p 2 D
V/(pi=i i (pisi 1/(p)lsl
converge.
(ii) Letfy be defined by (2) and (3), where /<EH. Further, let y=y(x)ssx! where

e> 0. Ifthedistributions Fx y possess a limit distribution as y “*co, then the distribution
functions

. f(n)-A(x \\

Fx(z):=x 1ljn " x: ( é(x)( ) T
possess a limiting distribution.

Acta Mathematica Hungarica 56, 1990



LIMITING DISTRIBUTIONS OF ADDITIVE FUNCTIONS 13

In the following theorem we assume that the additive function /: N—R satisfies

f(pm-*0 as p msl,
This means that

{9 <5(x):=sup [/(pmM[\0 as  x-*-°.
ISp

Mow we determine a positive function A*(x), which is monotonic and tends to zero as
X tends to infinity, by

(10) A*(X) = max (Bpef- ‘<), .
Then obviously
(11) SHHH) s AK).

Further we put

(12) A(x)e(x)A*(x), where A(X)\0 and qg(x)-»°° (x—°°),
and choose

(13) h(x) > 2B1(x)A(x) where h(x) —0 and £h(x) o (X ).

_Theorem 2. Let /: N—R be additive, f (pm)~*0 as p-»°°, N, and let the
series

(14) and 2 f(pp>
be convergent. 1f y~xhix\ where h(x)*2g1(x)X(x) is defined in (12) and (13), then,
as

(15) 2 . eUW=T1 fl

Xy2IPX ,(1+mg| p-meu™ ) +o{)l).

P

In the general case let f\ N—R be additive, and let the series (8) be convergent.
Then there exists a sequence e (/0\0 (/?—»), suchthat

P(p) 1
2
1/(p)IS| P EP)
Put
ST:= {pm |/(pm|2> £(>)}.
Then
(16) m2”

and \f(pm\2<£(p) for p1$ . Now define an additive function f *by

f/(Pn) if Pmi~
f M o otherwise

Acta Mathematica Hungarica 56, 1990



14 K.-H. INDLEKOFER

and a multiplicative function gt by the Dirichlet convolution
A7) = gt(’
Obviously, by (16),

If we determine &(x) as above (see (9)) by <5(X):=sup \f *(pm\ (i.e. <5(p)S(/'e())),
and if we put "

then we prove the following

Theorem 3. Letf: N >R be additive, and let the series (8) be convergent. With the
same notations as above let y £x AX such that,for everyfixed t£ R,

(18) Z = (y °°).
—hi
Then
(19) _y<n _ eiti) = I'I nooa + 2 P~r«M)+0{1).

The proof of Theorem 3 also shows that for y/mSx6(e>0) the estimation
c, J'I«J'Iex 2 M £fclU z/log -
(m)) P (tpsym 23] 5 ml 9 m
holds. Putting y~*x 1 a*w with <5*(x)>0, I_[m <5*(x)=0, we obtain
- log x/y 0%x)  _
nd M) =Y log yax Yv0mx) - o(y)-
This leads to

Corollary 1. Letfy=f: N~-R be additive, and let ywx1*0*" with (5*(x)>0
and Jim <5*(X)= 0. Then the distributionfunctions Fxy possess a limiting distribution

ifandonly if the series (8) converge.

Corollary 2. Let/ =/ and y"xh( lim h(x)=0 asin Theorem 2. Then the
distributionfunctions Fxy converge to a limit law ifand only if the series (8) converge.

For a given sequence e(p)\0 (p-+°°) let

(20) 2 pn 00
1ICp™)1="clp)

Acta Mathematica Hungarica 56, 1990



LIMITING DISTRIBUTIONS OF ADDITIVE FUNCTIONS 15
Further, let, if g, is defined as in (17),
(21

forsome (5>0. Then we have

Corollary 3. Let fy=f: N-*-R be additive, and assume that (20) and (21) hold
for some sequence {r(p)} andsome <5>0. Let y>0(x)x12 where g(x)-»<» as x —°.
Then the distributionfunctions Fxy tend to a limit law if and only if the series (8) con-
verge.

The proof of Corollary 3 follows immediately from Theorem 3 and the estimate

v ai) - yY(@y = P

Corollary 1and the following result sharpen the cited result of Babu [2].
Corollary 4. Let fy=f'. N—R be additive, and assume that
(22) 2 y 1=0(z) (z “mco) for each e> 0

oo 1/0>m)lse
where z satisfies

(23) Ailiogiogs N 2 N x1-E) (e(x) -»0 as x m).

Then there exists afunction h(x)\0 (x-*m), such thatfor all y"max (z, xh(x)) the
distribution functions Fxy possess a limiting distribution if and only if the series (8)
converge.

Next we consider strongly additive functions/ of the Kubilius class H. We show

Theorem 4. Let fEH be strongly additive, and let y=y(x) as in Corollary 1
Further, letfy be defined by (2) and (3). Then in order that the distribution functions
Fx y converge to a limit law with variance 1, it is necessary and sufficient that there
exists a nondecreasingfunction K(u) of unit variation such that at all points at which

K(u) is continuous
1 |
BHY) y ZE) M. K(U)

Np)cuB(ar)
as X

It is not difficult to characterize the limit law in Theorem 4 under further asssump-
tions, for example, if the analogue of the Lindeberg-condition holds. We restrict
ourselves to the following special case.

Corollary 5. Letf: N—R be strongly additive with the property

B(x) (max MEVH(EX) 1= e(x)

Acta Mathen:atica Hungaricy 56, 1990



16 K.-H. INDLEKOFER

as x-+°°, where XI_irp0 s(x)=0. Put h(x)=e2(x) q(x) with g(x)—=o00 —»a), and let
f be definedby (2) and (3). Then, if y the distributionfunctions Fxy converge to
the normal limit law

F(z) = -™= f e~u¥2du
\'2n
as y-~oo.

Remark. In the case f(ri)=a>(n)=2 1, we choose A(x)=(log log x) 1g(x)
(eW -20@) and obtain a result of Babu [3]. For multiplicative functions our proofs give

Corollary 6. Let g: N—C be multiplicative with |g|=1. Further, let y*
Ax h(X  where h(x) is defined as in Corollary 1. Then the following assertions hold:
(i) Ifthe series

(24)
converge, then
(25) lim y~ 2 N« = 7p7V . C]_+m:21 P~ng(pn).
(i) I f the limit in (25) exists and is different from zero, then the series (24) con-
verges.

For the proof of Corollary 6 one observes that the convergence of (24) implies
the convergence of

IRe g{p)—\\
P P

i.e. for “almost all p” g(p)-*T (cf. (16)).
3. Proof of Theorem 1. By laying the intervals

Oc-y0),*I. (x-y(y), (x-y(x)~¥(x-y(x)),x-y(x¥\,
etc. end to end, one sees at once that the asymptotic relation

xy@<rx ™ @+o(N)y(x)ep(t)

ensures that the relation
nZAXe u'M =(l+o(l))jc<p(/)

holds. By the well-known theorem of Erdos—Wintner (see, for example, Kubilius
[8], Theorem 4.5) the series (8) converge. This proves (i).1For the proof of (ii) one only

has to show that .
2 (ei,fy(m—eNM-acxD/BU)) _
X=y<n"x

1The proofwhich we had originally for (i) was an easy consequence of a large sieve inequality.
The above proof was then suggested by Professor Katai.

Acta Mathematica Hungarica 56, 1990



LIMITING DISTRIBUTIONS OF ADDITIVE FUNCTIONS 17

holds for But this is an easy consequence of the facts that fEH and thatfy
possesses a limiting distribution.

Remark. It is not difficult to prove a sharper result than (ii).
4. Proofs of Theorems 2 and 3. For the proof we use the methods from Indlekofer

[6]. We put
{a.} = {[x-y] +n: nSy)

p(b,) =x;(), q(d,,) > xxK

Here p(m) and q(jn) denote the largest and the smallest prime divisor of m, respec-
tively. We formulate the main steps of the proof as lemmata.

and an= brd,, with

Lemma 1. Let A (Pi prime) and |]-[l pf‘rix. Let tER
Then, iff satisfies (9),

21 +0 -« =140 (gn)
where GfiC anc/|6),|M (/=1, ..1).

Proof. It is obvious that, if ' is large enough,

DK 1+ = exp (2, log (I +®itf(pV)) =

= expai  Gif(pV)\)+0 (i Iti(p2\¥).

The last two sums are
3* (Y1

because of
(F«->)' and

Now, exp (—(log A)(logp)_1)/(log/i) increases monotonically. Therefore we have
Lemma 2. For all x the estimate

log A
P23| P~rexp logp ]« 1

Lemma 3. Let z=xpi(*M*). Then there exists a constant ¢ such that

i ™
holds with u= 1297 for log X<W<XAW)
" logw g '

2 Acta Mathematica Hungarica 56, 1990



18 K.-H. INDLEKOFER

Proof. By an idea of Rankin [9] one shows, if ££(0,1/3) (cf. Indlekofer [6], p.

268)
2 __1____— JR— _l ( A _l - )
: !m W m\ 5 7 «exp ,pgzv,v P+ Clyf-e Iogz).

With a suitably chosen c we put
o logz
logW °Ylog vV

suchthat 0<£<1/3, and the assertion of Lemma 3 holds.

Lemma 4. Let y=xhx\ z=xe ~<z32 and p<xxix\ Then

2 1=—T11 fl-—9 {I+0(exp(-u(log-loglog3n-2)) +
n*i%'] P gsp v 4)

+0O(exp(-\"\ogy/p)}

where u- log y/p
logp

Proof. This “fundamental lemma” follows from Theorem 2.5 of Halberstam—
Richert [5]. We observe that

p ~<”0) ™ xei}Mx)/2 yj
Proof of Theorem 2. By Lemma 1 we obtain
nzy ev(@") = nZye“/(bn){1+ 00)} = ly+oiy).

We divide  into two parts, with z=xexp®M In | 22we sum over divisors p ofb,,,
where z<g-=z32 and q(bjp)>p(p). Then we have

M2 — 2 1

""o(rr)
Ifwe put p=ppx, where p=p(p), we obtain

Ti2 = 2 2 2 1
'z 23R n
OO
P(*l)= (-5=-
and, by Lemma 4, (VWP?

1
A12"y{p2 + 2, e—mmmm——  \(E12+ " 12).

~og.x logJC z z3/2 j~
p pillj"pp

Acta Mathematlca Hungarica 56, 1990



LIMITING DISTRIBUTIONS OF ADDITIVE FUNCTIONS 19

Concerning the first sum we use a method of Rankin (cf. Lemma 3) and get

vl log* ” 1
12<<Z  (loglogx)2 L4 <
p(fi)Slogx
exp I- p1(x) N(X) log x+1log log Xx—2 log log log x + ¢ «

<<exnioglogx
as Xx—°. For the second sum we use Lemma 2 and Lemma 3. Then

\ Iogzp_lIO logzp 1 <

log p J ogp

£i2« P xexp, ¢

log<i )

2 " .p'llexPII—c/ (EIWiI-)Ig()gXA iog"M -i)n)

«

log
” - i f log xAW1 ( logxA® 1
log vV logp ) ( logp )
<kexp(—pj(x)) = o(l) as
Next we prove an upper estimate for Zn . We have

<

In = 2 e*m 2 1-
pb"z nty
p(b)LLKkn" X~

bamg ~-~-j>;c AR)

Because of h(x)"-2g1(x)A(x) Lemma 4 implies

0itf(b)

~iscpi v p) B R ERLICHI2

p{b)"x"x)
For the innermost sum on the right side we obtain, using Lemma 3,

pitf(b) pitfib)
={ 2 - 2 JET -

b7z b z<b
p(b)™xnXx”™  p(b) /X"

= 9.0+ 2P melq)\0iep{ 4 ~-cRUX)log Pi(x))}

Hence, since Fl1= L1+ 212=Z 1+ <9(>'(LI2+ Lf)) = £l+o(>"), we have
(26) y®= 1 i)+ [ p-meuwt)+o(\).
p " xa(x p m=

Now, the product in (26) converges because of the convergence of the series (14), and
Theorem 2 is proved.

2* Acta Mathematica Hungarica 56, 1990



20 K.-H. INDLEKOFER

Proof of Theorem 3. We use the decomposition (17). Then

<Pxy(0 = ¥Y~r 2 g, {n)ei,fdm) = T (2@ (n ) 2 A (,) +
X—y~*nm”~x nty X —y X

+ % e“f4m)x_y2 Ol = e 1(Ni+n D
m<y:--1 m M

In view of the assumption of the theorem we have X2=o0(y). Concerning  we use
for n-cK the result of Theorem 2 and, for /r>77, the trivial esetimate

e itf*(m) y_
X—y X n

Then
B - mei - -jin , lg,(«)h
Yorz o (- 00+ oy PITRIERD G Lol BTy v

Letting 77—e0 we obtain

pra-a(x) V pJ m—1

which implies the assertion of Theorem 3 because of the convergence of the series (8).

5. Proof of Corollary 4. We assume that x(loBlog0 1<p”x1£x) holds with
Ji,m e(x)=0. By the assumption (22) there exists a function <5(x)\0 such that
(@7) 2 1=o(y) (y-«>).

1(p™)|S«(x)

Let be the set of all prime powers which are counted in (27) (y—»). Then, by
partial summation,
28 . < oo
= P P

If we use the above mentioned function §(x) in the proof of Theorem 2, and if we
substitute the values /(//™") with pr'3P* and x;(X)<p *x by O, we make an error of
at most

< 2" 20 . >=Yy 2 o P~m+ t.2 1=o(y).
Areg* Xﬁlg(_ﬁfpx XAX)<pm™y < px

This proves Corollary 5.

6. Proof of Theorem 4. The proofis about the same as in §3. We only point out
the necessary modifications, the rest of the proofis left to the reader. Further, we use
Theorem 1, (ii), and Theorem 4.1 in Kubilius’s book [8]. Put

g(n) = gi’/M/AM
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LIMITING DISTRIBUTIONS OF ADDITIVE FUNCTIONS 21

and define a strongly multiplicative function g* by

+ 11 if xq< pr X
= tg(p) if prsxeX,
where a(x)=o(l) as will be chosen later. Let yx\—xt(X). By the same methods

as above we get
29) y=1 2 g*ne-uA"/BC = /7 e- bADKPXn» [1 + 17+0(1).
(29) 'y X_y<nAXg() UAC / B( pif p [ P ]J+0()

On the other hand
(30)

X—y<n”™x

— 2 A s(p)-e

X —y-<n”x \n
YX’P X

If/£// and ify and yxare larger than r(.x), we have A(y)/B(y)—A(yD/B(yD=o(l)
(cf. Kubilius [8], Chapter 1V). Thus the right side of (30) is at most

2. VI alp)-ivtofy) <
p((

t(A(Y)/B(y) —A(yD)/B(yD) |

X—y <«™X
YX~Aphx
< 2 |AE(p)-l|+2 2 \ +o{y)=:11+ 12+ o(y).
X—V<»=x  pu X—y<n”"x
p(n)=yY  ¥x-cp p\n for some p>y

For the first sum we use the estimate \eIX—11S|a| (a€ R) and obtain by the Cauchy—
Schwarz-inequality

iisld 2 2’\LLI«\*\y A
Xx—y<n®x p\n &\Y) p **\Y)
p(nbly ¥x"p

Now, B2yXB 2y)=1+0(1), and therefore, by a suitable choice of c(x), we obtain

(31) I't =o(y).

For the estimate of Z2we observe that, if y>x23 each n, which is counted in T2, has
exactly one prime divisor p>y. Thus

Yy
2 1 i =
(32) S iSZXty logy iS%Iy : ogy (logxlogy) = o(y)
if logx—logy=o0(logx).

By the mentioned result of Kubilius and by Theorem 1, (ii), we only have to
show that the condition in Theorem 4 is sufficient. Now, this condition implies (see
[6], pp. 70—T71), that the limit in (29) exists as y—"° and determines the limiting
distribution. Thus, by (31) and (32), the theorem is proved.
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22 K.-H. INDLEKOFER: LIMITING DISTRIBUTIONS OF ADDITIVE FUNCTIONS

Note. The author gave a talk on the results of this paper during the Oberwol-
fach-conference on “Elementare und analytische Zahlentheorie” (September 21—
September 27, 1986), and there he was informed by A. Hildebrand that a different
proof of Corollary 1is given in a forthcoming paper of Hildebrand on multiplicative
functions.
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ON SOME ULTRAPARACOMPACT SPACES

F. G. LUPIANEZ (Madrid)*

The following definitions are necessary in this paper:

a) A topological space X is called zero-dimensional if X has a base consisting of
clopen sets ([6]).

b) A topological space X is called perfectly zero-dimensional if X is zero-dimen-
sional and every open cover of X has a refinement consisting of open pairwise disjoint
sets ([6]).

c) A topological space X is called ultraparacompact if X is T2and every open
cover of X is refined by some locally finite clopen cover ([2]).

It is known that a 7] or regular space is perfectly zero-dimensional if and only if
every open cover of the space is refined by some discrete open cover ([6]), then a T2
space is perfectly zero-dimensional if and only if it is ultraparacompact ([2]).

The Sorgenfrey line S (the set of real numbers topologized by the base —
={[a b)\a, bER, xx 6}) is ultraparacompact. Moreover every base for S has a dis-
crete subfamily covering S (see 1.1 in [1]). Nevertheless, there exists bases for S with-

out discrete subcovers, for example, the base "~*=j[n, h)\j-*47j|[{,
This motivates the study of some classes of ultraparacompact spaces.

D efinition 1 We will say that a topological space X verifies property (PO if
X'is T2and every base for X has a discrete subfamily covering X.

Remarks. |.A T2space X verifies property (PQ ifand only if given any base
& for X, every open cover of X has a discrete subfamily of SA refining it and cov-
ering X.

2. If X verifies property (PO then X is ultraparacompact. The Sorgenfrey line
is ultraparacompact and does not verify property (P0.

3. There exist spaces which are not discrete and verify property (PO. In
fact, let A(m) be the space (X, T) where Zis a set ofcardinal m sli0,r Oa pointin X
and T the family consisting of all subsets of X that do not contain xOand of all sub-
sets of X that have finite complement. <

4. If aspace X verifies property (PO then X is totally paracompact. (A topol-

ogical space is said to be totally paracompact [4] if every base contains a locally
finite covering.)

* The results in this paper are contained in the author’s Doctoral Dissertation, written under the
direction of Professor E. Outerelo.
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5. If aspace Xis T2, totally paracompact andultraparacompact, in general, X
does not verify property (PO. In fact let Q be the space of all rational numbers;
the base 38={(a, h)ITQla, bdQ, of Q does not have discrete subcovers.

Definition 2. We will say that a topological space X verifies property (PX if X
is T2, zero-dimensional and every base 38 for X such that for each Bd38 B is open, has
a discrete subfamily covering X.

Remarks. 1. Clearly all spaces that verify property (P0Q also verify property (P,),
and all spaces that verify property (P,) are ultraparacompact.

2. A T2space X verifies property (PX if and only if itis zero-dimensional and
given any open cover U of X, every base 38 for X such that for each Bd38 B is open,
has a discrete subfamily refining }JJand covering X.

3. If aspace X verifies property (Pj), in general, X is not extremally discon-
nected. In fact, in A(m) let U be an open set which does not contain x,, and has
infinite complement; then U=UU {xC}.

Proposition 1. 1faspace X verifiesproperty (Pi), thenfor every base & of X such
thatfor each Bd38, B is open, there exists a base 38 of X, contained in 38, such thatfor
each B'c) is B'=B".

Proof. Let 38be a base of X such that for each Bd38B is open. Then, since X is
regular, 38*—{B\Bd38} is a base of X. Let XX =38C\38*={Bd38\B=B). 38'is a base
of X, in fact: let Bd38 and x0dB then there is Bf38 such that x0dBlaB 1czB.

= {N}U{X\/1,} covers X, then there exists "fez 38 which refines &J and is discrete
(then Hence there exists B 'd f suchthat x0dB'=B". Since'C refines °U, we
have that B'czB or B'czX\B1, and since x0dB', thereis x0dB'<zB and B'd38'.

Theorem 1. Ifaspace X verifies property (Pj) then X is locally compact or X has
infinitely many isolated points.

Proof. Since X is zero-dimensional, there is a base 38 of X consisting of clopen
sets.

Let Bd38, then, since B is closed in X, we have that B is compact or is not count-
ably compact (because X is paracompact).

Let Bd 3 not countably compact then there exists a sequence S=(x,,),,fN in B
without cluster points in X (because B is closed). Let Cs be the set of all cluster po-
ints of S.

Let 38f={B%=B\S\Bd38 is not compact and there exists a sequence Sf B
with Cs=0}, 38Z={Bd38\B is compact} and 38*=238%0338?.

We will prove that 38*is a base of X.

38* is a family of open sets because, if S does not have cluster points, then Sis
closed in B, and Bg is open in X.

Let A be an open set of X and let xdA. Then there exists Bd38 such that B is
compact and xdB*A (and so Bd38£a38*) or B is not compact for every Bd38 such
that xdBcA. In this case, there exists Bd38and S =(xnMniN<"B suchthat Cs=0,
{x,JhEN}?i.8 and xdBe:A. If xE{X,|/zEN} then there exists nx=max {n|x,=x}
(because x$Cs). Let ym=xmtx, then .S'=(>), ) ,, is a sequence in B, Cs,=0,
x${y.InEN} and xdBg.czB (where RycJfcf*).

If x${x,,|JnEN} then xdBgCiB (and Bsd38f(z38*).

Acta Mathematica Hungarica 56, 1990



ON SOME ULTRAPARACOMPACT SPACES 25

Thus, 38* is a base of X.

For every [?*£38% B* is open in X:

If B*£38 qthen B*=B£38 and B is compact. Then B*~B=B isopen.

If B*"38k then B*—Bs, where B£38, B is not compact, SczB and Cs=0.
We have that S is closed in B (and also in X). Let S1={xfS\xk is an isolated point
of B}and S2—{xfS\xk is an accumulation point of B}; clearly S=SkUS2 and
51M52=0. Then B\S=B\S1;in fact, if xXEB\S then xEB=B; ifx is in Slt
then {¢is open in X and x$B\S, thus x£B\S\. Conversely B\S1=(B\S)C S2

and B\SaB\S; letxdS” then, for each open neighbourhood Ux of x,(C/X\{x})N
M2MO; since S is closed in X, OX\(*S'\{x}) is an open neighbourhood of
x in 1 and we have that (C/X\.S)nfM 0 and UxCI(B\S)FO; then xEB\S and
S2czB\S. Thus B\S=B\S1. Since Skis closed in B then B\S =B’ is open in B
(and also in X).

By the hypothesis X verifies property (P,), then there exists a discrete subfamily
Y* of 38*which covers X. If for each B*£Y™*, B*£38g, then X is locally compact. If
there exists B5CY* then for every xkES, xkdB, hence there is B*E£Y* such that
xkdB*. Since Y * is discrete, we have that B*I).BE=0 and xkEB* (ABcS. Thus xk
is an isolated point of X (for every k£ N).

Remark. The Sorgenfrey line, the space of rational numbers and the space of
irrational numbers are ultraparacompact spaces and do not verify property (Pi).

Proposition 2. (a) Every closed subspace o f a space which verifies property (PO,
also verifies property (PO.
(b) All spaces which verify property (PQ are C-scattered.

Proof, (a) Let X be a space which verifies property (PQ and let F be a closed of X,
Let B be a base for F. Then 38*—{G\G is open in X and GDF=0 or GC\F£38}
is a base for X, and let ¥Y* be a discrete subcovering of 38*. Clearly, y={BC\G\B"y*,
BDFf @ is a discrete subcovering of 38. Thus F verifies property (PO.

(b) Let X be a space which verifies property (PQ. From (a) it follows that all
closed subspaces of X verify property (P,) and, by Theorem 1, every closed subspace
of X is locally compact or has infinite many isolated points. Then X is C-scattered.

Theorem 2. For each cardinal number m S KO there exists a base 380of the Cantor
cube of weigth rtt, Dm such that for every BA380 we have B—B\ for all Bk, Bf38
such that BRB 2F 0 we have that BB 2 is the union ofa discretefamily of members
of3Bo, andfor every open cover “UofDmthere exists a discrete refinement consisting o f
members o f380.

Proof. Let/ be aset of cardinality m and D the two-point discrete space.
We define 380=(JJ AAAjCzD for all jfiJ, A-=D for each jEj\F, where

FczJ is finite%. 3B0is aj%‘llse of Dm
Forevery JJ Aj of 380we have JJ Aj= JJ Aj.

jid jiJd jid
1 For all' JJ Aj, JJ Aj£380 such that' JJ Aj\JJ AjFO, where Aj=D for
JCJ jid jCcJ jid
each JEJ\F, F isafiniteset, Aj—D for eacH j£J\HJ and H is a finite set, we have
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that JJ A j\. JJ Aj is the union of a discrete family of members of &%0. In fact, if
X=(X, Z)th(=3 i] Aj\JJ Aj then there exists kEH such that xk$A'k. Let for each
Jf‘]’ izj jed
laj, if JNk
j UM, if j=k

thus [J Aj\ JJ Alj=U (/7 CR.

Let P= U (JJ éj)H >Iclearly P is finite.
For everngpjzﬁépj)JlHi-F”‘ let
if MH
if jdH.
We have
kgIH zrlJ ¢)) = peEP (3JJ M),

because, if x =(X))JfjE J] C) for some kfjl, then Xj£C) for all jfJ and XjfAj
for all /(H (for someJCkJEH). Therefore (Xj)JeIiEgMC)czP and XjfAj for each

j$H, thus there exists p£P such thatp=(pJ)j(H=(xj)j€H and Xj"Aj foreachy'iH
and finally JJ MJ for some pP P.

Conversely, |f x=(M/M JJ MJ for some p=(Pj)jEnc P, then there exists

kfli such that PjZC) for each jjﬁﬁ, and so there exists kd | suchthat PjdAj for
each j*H and {pK}=ARA'k. Since xf_MP for each jfJ, we have that XjfAj for
each 4 A and {v}={pjf for each jEH, thus there exists kfH such that {xk}=
= {pR—ARA k and XjEAj for each jf.T, hence there exists kEH such that

et-
Therefore we have
nAj\JIAj= u (1IMJ)
JEJ jicl pEP JCJ
Now {JC:]] MfipiP is a discrete subfamily of 3. In fact, if p, p'£P are distinct,
there existst 0dH such that pJQAPjo, and so M?0C\M%=0 and (JJCJJ M?)I‘I(jg] M f) —

=0; thus, the family {JJ consists of clopen pairwise disjoint sets. Since
JJ AJ\JJ Aljis clopen, \;ve have that [JJ M?jpeP is discrete.
JcJ Jcid JEj

2. Forany finite subfamily Bk, (where nLL2) suchthat Z'7I\U #,-10

we have that B{\[J Bt is the union of a discrete family of members of &0.
i=2
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In fact, we proceed by induction: if n=2 the assertion is proved above. Suppos-
ing the assertion is true for n—1 members of 330 then

sxa0 By= sxx v B)\Bn=( UBd\Bn= » BABN- « (.« B)
i=2 i=2 <fER d£O d€ED o€ait
where {Bd)dcn and {BajaiAd (for each df D} are discrete subfamilies of 360, thus
{Ba\afAd, dc D) is a discrete subfamily of 36a.
Finally, let “Ube an open covering of Dm Since 30is a base, there exists a finite
refinement {By, B,.}cz360 of &J. Then

zm= U Bt= U B\ n Bj)
1=1 i=1

and from paragraph 1 it follows that there exists a discrete refinement of °Il consisting
of members of 330.

Remark. For every cardinal number m 800, the Cantor cube of weight m
does not verify property (PO:

Let/ be a set of cardinality m, let 380be the base of Dmdefined in Theorem 2
and let

® = N -V I_IA-,_JA--A--
{jH W €hj JJ€'|J j-e\0j

Clearly, 36is a base for Dmand does not have discrete subcovers.
This motivates introduction of a new class of ultraparacompact spaces.

Definition 3. If Xis a zero-dimensional T2 space, we will say that X verifies
property (P2 if for every open cover Wof X and for every base 36 0f Z such that
(i) for each B£36 we have B—B,
(i) forall B1,B 2636 suchthat BLB 2~ 0 we have that B”B,, is the union of
a discrete family of members of 36;
there exists a discrete refinement "V of °U consisting Mf members of 36.

Remark. If X is a zero-dimensional T1space, there exists a base verifying asser-
tions (i) and (ii).

Proof. L If w(X) is finite there exists a finite base of X; since X is Tyit follows
that X is finite and discrete. The base consisting of all subsets of X verifies assertions
i) and ii).

2. If n'(f)=m sso then X is embeddable in Dm Let 360 be the base for Dm
defined in Theorem 2. 360 verifies assertions i) and ii). Let 361={BIMX\B£360,
2?nTVO0}, Clearly 36x verifies assertions i) and ii).

Proposition 3. Let Xbe a C-scattered and ultraparacompact space, then X verifies
property (Pa).

Proof. The proof is completely analogous to the proof of Theorem 3.1 in [7].

Proposition 4. Let X be a zero-dimensional T,, second-countable space, then X
verifies property (P2.
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Proof. From the above remark it follows that there exists a countable base
verifing assertions (i) and (ii). Let LLIbe an open cover of X. Let U for
some C/€"}={jB},.eN.Then X= U B,,= (J {B,\ U Bt). Forevery uEN, B,,\U F,

N i i<

ntg n(|N i-cn i<n
is the union of a discrete family of members of Xfi. Thus VH\I(F \g ?))is the union

i
of a discrete family "Vc 33x (because Bnis clopen for each nEN). FJinaIIy, from the
definition of {5,,},.eN it follows that Y refines aJ.

Problems. 1. If X is a space which verifies property (Pj) and Fis a closed sub-
space of X, does F verify property (Pi)?
2. Is every space which verifies property (Pj) C-scattered?
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ON THE CLASSES OF ALMOST HERMITIAN
STRUCTURES ON THE TANGENT BUNDLE
OF AN ALMOST CONTACT METRIC MANIFOLD

A. BONOME, L. M. HERVELLA (Santiago de Compostela) and I. ROZAS
(Pais Vasco)

8 1. Introduction

If (M, tp, £ t]) is an almost contact manifold, its tangent bundle T(M) is an
almost Hermitian manifold with the Sasaki metric gDand the almost complex struc-
ture J defined by

J = qHHrjv®tv—UH®EH.

In this paper following the classifications of Gray—Hervella [2] and Oubina [3]
for almost Hermitian an almost contact manifolds respectively, we study the type
of almost contact structure M acquires when we consider a particular almost Hermi-
tian structure on T(M) and conversely.

In 82 we give the results that will be needed in the sequel. In § 3 we define the
Kjgi-curvature identities. Taking into account that if Mis an almost contact (almost
Hermitian) manifold, M xR is an almost Hermitian (almost contact) manifold,
we prove that if M satisfies the A”-curvature (AT,-curvature) identity, then M XR
satisfies the A)-curvature (A),,-curvature) identity. This fact allows us to obtain new
subclasses of almost contact manifolds.

In 84 we study the relationship among the different types of almost contact
-structures on (M, tp, £, rj) and almost Hermitian structures on (T(M),gD J).

§ 2. Almost contact structures

We recall here the necessary results from the theory of almost contact structures.

A (2n+ I)-dimensional real differentiable manifold M of class C* is said to have
a (9 C ~-structure or an almost contact structure if it admits a field tp of endomor-
phisms of the tangent spaces, a vector field £ and a 1-form i] satisfying

if(<U)=1» qR=-/+>»

where | denotes the identity transformation. Then mpc=0 and tjcp=0; moreover the
endomorphism tp has rank 2 n.

Denote by 3E(M) the Lie algebra of C*-vector fields on M. If a manifold M
with a (tp, «, //)-structure admits a Riemannian metric g such that

g(cpX,(pY)"g(X,Y)-tUX)r,(Y)

where X, YA3C(M), then Mis said to havea(<p, < t], g)-structureor an almost contact
metric structure and g is called a compatible metric. A manifold with a (tp, i, tj)-
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structure admits a compatible metric g. The 2-form ®on M defined by ®(X, Y) =
= g(X, (pY) is called the fundamental 2 -form of the almost contact metric structure.
If Vis the Riemannian connection of g, the exterior derivatives of 4, and @ are

given by
2dr, (X,Y) = (V*r)Y —(VrrdX, 3c!d(X,Y,Z) =a(VxP)(Y, Z

where a denotes the cyclic sum over X, Y, (M).
If {Xt, (pX{, £;i=1, 2, ..., n) is a local orthonormal basis, defined on an open
subset of M, the coderivative of r, and ®are computed to be

Sfl=-2 {(VxrfXi+iKxrfvXil

1=

0D(X) = - 2 {(YX.®Xb, x)+ (Kx"X (pXh AN)-(Y2 ®XK, x ))

On the other hand, being M an almost contact metric manifold, M xR is an
almost Hermitian manifold with the almost complex structure J defined by

and the metric

where X, Y~A*(M ) and a, b are C*-functions on M xR mBearing this fact in mind
and the classification of A. Gray and L. M. Hervella [2] for almost Hermitian mani-
folds, J. A. Oubina [3] gives a classification of almost contact manifolds. Mis said to
be

1) Cosymplectic (C) if M xR is Kahler (K),

2) Nearly-K-cosymplectic (N—K—C) if M xR is nearly-Kéhler (NK=W1),

3) Almost-cosymplectic (A—C) if M xR is almost-Kahler (AK=W2,

4) Semi-cosymplectic normal (S—C—N) if M xR is W3,

5) Trans-Sasakian (T—S) if M xR is Wt,

) Quasi-K-cosymplectic (Q—K—C) if M xR is quasi-Kahler (OK=WI®IV2),

7) Normal (N) if M xR is Hermitian (H=W3®WX,

8) Gy-semi-cosymplectic (Gx—S —C) if M xR si 1¥163IV3,

9) Almost-trans-Sasakian (A—T—S) if M xR is W2®W4,

10) Nearly-trans-Sasakian (N—T—S) if M xR is W1@Wi,

11) Gy-semi-cosymplectic (G2—S—C) if M xR is W2@ Wi,

12) Semi-cosymplectic (S—C) if M xR is semi-Kéhler (SK=W1®W,® If3),

13) Quasi-trans-Sasakian (Q—T—S) if M xR is W1@W2@Wi,

14) Gy-Sasakian (Gy—S) if M xR is G1=W1®W3®Wi,

15) G2-Sasakian (G2—S) if M xR is G2=W2®W3(BWi.
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On the other hand, if (M, h, J) is an almost Hermitian manifold, M xR can be
endowed with an almost contact metric structure defining

n(*e )=W %) {-(0,s ); n{x,azx)-a,

H{x,ax),{y,bx]]-HX,YHab

and we have the same relations between almost Hermitian and almost contact mani-
folds that we pointed out above.

8 3. Alv-curvature identities

Let (M, (o, 0, 9) be an almost contact metric manifold and (A /) the almost

Hermitian structure on M XR previously defined. We shall represent by V and V
the metric connections on M and M XR respectively and R and R their curvature
tensors.

Definition 3.1. We shall say that M satisfies the K;9-curvature identity, i=
=1,2,3 ifforall X,Y,Z,W"3C(M)

Kiqt R(X, Y, Z, IV)=R(@>X, cpY, Z, W)

K tR(X, Y, Z, W)=R(tpX, <Y, Z, W)+R(q>X, Y, cpZ, W) +R(<pX, Y, Z, cpW)

K3: R(X, Y, Z, W)=R(cpX, <Y, Z <pH\).

Theorem 3.1. M satisfies the Kigpcurvature identity, ifand only if M XR satis-
fies the Kj-curvature identity (1= 1,2,3).

Proof. Let {Z1,Z2, ..., z2,+1} be alocal basis in a coordinate open set Uin M,
then

{(2150), (Z2,0), ..., (z2,+1,0), (0, )}

is a local basison UxR in MxR.

Because of the tensorial character of R, to prove the case 1= 1, it will be suffi-
cient to show the equivalence for the elements of the basis. Thus, to prove that M xR
satisfies the Kx-curvature identity, it will suffice to prove:

a) R(IX,jT)(Z,,0)=ii(X, Y)(Zi, 0), i=1,2, ..., 2u+1

b) R(IX,JY)[o, -IM)=.R(£ Y¥Y)(o, -"-j
where X ="Z, , Z="Z, w"-j are arbitrary vector fields on M XR.
Now, the curvatures R and R are related as follows:
# o4 )" (rrd)- z.ahy)-(~cr.1yz. (bx{")-ay{§) +

LAY () | dX(c))  dbdc  dade) d)

Tt dt adt dt  dt dtj dt]
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Taking into account this relation, we have
R(JIX, JY)(Zt, 0) = (R(<pX, g>Y)Zi~aR (f <pY)Zi-bR(<pX, f)Z,, 0).
R(X, f)(Z,, 0)= (B L Y)ZhO0).

But since M satisfies the ~-curvature identity, R(£, X)=0 for all XfX (M) and
then a) follows.

Case b) is verified trivially because both members are zero as a consequence of
the relation between R and R mentioned above.

Conversely, let us suppose now that M xR satisfies the ~-curvature identity,
then setting X —(X, 0), T=(Y, 0) for arbitrary vector fields X and Y on M, and
using again the above mentioned relation between R and R, the result follows.

The remaining cases (7=2, 3) are obtained through a straightforward computa-
tion like in the case /=1.

Bearing in mind that KA>K">K3, this theorem leads us to the following

Corollary 3.1. Klip-curvature>-K2ip-curvature’>-K3p-curvature.

Now let (M, & /) be an almost Hermitian manifold and consider on M XR the
associated almost contact metric structure (< £, i, 9).
The following theorem is obtained similarly to Theorem 3.1.

Theorem 3.2. M satisfies the Krcurvature identity if and only if M XR satisfies
the Kip-curvature identity.

In the sequel we shall represent with the subindex up (/=1, 2, 3) the class of
almost contact structures that satisfies the Kt,,-curvature identity. Using this notation,
subclasses of almost contact manifolds appear and their relation with some of the
already known is given in the following

Theorem 3.3. In the lattice ofalmost contact structures thefollowing relationships
are true:
(i) C=C-ip=C2g>C3Pp={N K C)lip=(A C)lip,
(i) N-K-C =(N-K-C)3=(N-K-C)Z"C,

(iii) N2p=N3JpzN,
(ivy(~c-~apg-c-apg
(v) CaN

(i) N-K-Cc(Q-K-C)3,

(i) Cc(Q -K -C)lv,

(Viiig {Q-K-C)3MQ-K-C,

(iX) (A-C)ikz(Q-K-C)iv (i=1, 2,3).

Proof. It is a consequence of Theorems 3.1 and 3.2 and the relation among the
different kinds of almost Hermitian and almost contact manifolds, [2], [3], [4].
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8 4. The tangent bundle of an almost contact manifold

Let X=X%?(T—, co=afix' be the expressions in local coordinates of a vector

field X and a 1-form co defined in local charts (U, x) on M and let (x‘, yI) be the local
coordinates induced naturally by (U, x) on T(M). Then the vertical lift of functions,
vector fields and 1-forms is given by, [5]

fv=fon; XV= X‘d?(" @ - @dx*

and the vertical lift of a tensor field can be defined using the formula (S®T)V=
=SV®TV.

The horizontal lift is defined with respect to a given connection V on the base
manifold by

/H=0; XH=X*‘ —rjsXhYs-jjL-; co* = risfcoidx!'+coidyi

where T s are the components of V, and the horizontal lift of a tensor field can be
given using the formula
(S®T)B= SV®TB+SH®TV.

Furthermore, if M is a Riemannian manifold with metric tensor g and metric
connection V, T(M) is also Riemannian and this with respect to the diagonal lift
gD(or Sasaki metric) which is defined by

gD(XB, YB) = gD(Xv,YVv) = g(X, Y)v, gDXv,YB) =gD(XB,Yv)=0

forall X, YeX(M).
Now we consider the metric connection VDofgDand we have

Theorem4.1. The connection VDis determined by thefollowing relations

(i) gOWRXYv, Zv)=gOVxvYv,ZH=gOWxyYB, ZH =0,
(i) gDVx»Yv,ZVv)=gOVAYB, ZB)={g(VxY, 2)Y,
(ii)) gD(V?vYn, ZB)= —1/2gDOyR(Z, Y), Xv),
(iv) gOQVR*YY, Z B)= —1/2gOyR(Z, X), Yv),
(V) gD¥ &»YB,Zv)=-H2g0OyR(X, 7), ZV),
where yR(X, Y) is the vertical vector field given by

yR{X,Y) = [X,Y)B-[XB,Y B}.

Let now (M, g tj,g) be an almost contact metric manifold (2n+ ~-dimen-
sional with metric connection V. Then, if we consider the (1,1) tensor field J defined

by
J=gB+if®Y - uH®tH

the Sasaki metric gDis a Hermitian metric with respect to J and we may conclude
that (T(M),gDJ) is an almost Hermitian manifold.
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Taking into account the relationship between the curvature tensors RDand R
of VDand V respectively, we may state the following

Proposition 4.1 |f (T(M), gD J) satisfies the Kr curvature identity, then
"(M, (p, £, N\, g) satisfies the Krcurvature identity,for i=1,2,3.

Next we study the relations among the different kinds of almost Hermitian struc-
tures on T(M) and almost contact structures on M, considering on T(M) and M the
structures mentioned above.

Theorem 4.2. Let us suppose that the almost Hermitian manifold (T(M), gD ,7)
satisfies the K -curvature identity (/=1, 2, 3). Then

a) ifT(M) is a Gx-manifold, then M is a Ni{-manifold,

b) ifT(M) is a Gz-manifold, then M is a (G, —S )i{-manifold,

c) ifT(M) is a Wy © Wi-manifold, then M is a cosymplectic manifold,
d) ifT(M) is a Q-K-manifold, then M is a {Q—K —C)i9-manifold.

Proof. It should be noted first that since M satisfies the ~-curvature identity,
we have
gOyR(X,Y),iv)=0, forall X, YEX(M).

a) Since T(M) is a G™-manifold
g°{vag@) Y, Z2) +gD{V’(I)X, Z) = gD(yfx(I)JIY, Z)TgD{V»fiJ)JIX, Z)

forall X, Y, ZEIT(T(M)); in particular for X= Y=cH, Z=ZH weobtain ¥\(>)*=0
and setting now X=XH, Y—YV,Z = ZV the result follows.
b) By hypothesis

c{gbw (J) k Z)—gD(Vfx(J)JY, 2)j =0

for all X, Y, Z"C(T{M)).»

Then, setting X=XH, Y=YH, z =Z 1 in this expression we obtain that M is a
(G2—S)-manifold through a straightforward computation.

c) Using a) we may deduce that M is a normal manifold and therefore

Vfi(p)Y = 0, for YidfM).
On the other hand, since T(M) is a Wy ©IT*-manifold we may write
gD(KxM J)Yv,Zv)+gD[VAX)H(J)JYVv,ZVv) =0.
and this together with the fact ofbeing Vficp)Y=0 and Theorem 4.2 leads to
g(VM<P)Y, Z) —g (yx(@>Y, Z)-r,(X)r,(Y)g(VE, Z) +t](Y)g(Vxf Z)=0.

Substituting X by <pXin this expression we obtain that M is a Q—K —C-manifold,
which together with being M a normal manifold leads to the result.
d) From the definition of Q- K -manifold we obtain

g»(Vd(J)Yv,ZVv) = -g DV2(x»)(J)jY V,ZV)
and the result follows from theorem 4.1.
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Theorem 4.3. If (T{M),gDJ) is a (W1I®W2®Wi)i-manifold, then M is a
(Q—K~C)iipmanifold if and only if V" =0.

Proof. The definition condition of (WI®W2®W4)i-mamf'o\d for vector fields
((eX)H Yv, Zv leads to the expression

9(ViX(a>)Y,2)-g{Wx (<p)<pY.Z)+r,(X)g(Vt((P)(PY . Z) +
+*|(T)g<yxZ,Z2)-ti(X)ri(r)g<ysS,Z) = o.
Substituting X by cpXin this expression, we have
g((Vx(cp)Y.Z) + g (V,*(p)enY, 2)-tj(Y)g(VVXFZ ) - n(X)g(Vs(<P)Y, Z) = 0.
Now
t](X)g(V4(cp)Y,Z) = 0 if and only if V(ij=0.
Since T(M) is a (W1®Wi®W?t)i-manifold g(Vfcp)(pY, cpZ)=0 which is equivalent
to

g{Wi (cp)Y,2)+rI(Y)g((pV",2)+t1(Z)gC7iQ,Y) =0

and the result follows inmediately.
Now, in order to study the case when M is an 5 —/-manifold, we need the follow-
ing lemma.

Lemma 4.1. The coderivative of the Kahler 2-form F of (T(M),gD J) is deter-
mined by

() AP(XH)={0® (X)}\

(i)~ F )= {1(W + 2 gDyR(EN9E) XV)-{g(V£, X)Y,

where X is a vector field on M and {EZ2, <, ..., gE,, &} is a local ortho-
normal tp-basis on M.

The proof follows directly from the definition of the coderivative and Theo-
rem 4.1,
Using this lemma we may state

Theorem 4.4. If (T(M),gDJ) is an (S—K)rmanifold then XI is an (S-C)iip
manifold.
As a consequence of this theorem and Proposition 4.1 we have

Corollary 4.1. Let (T(Xf),gD J) be an almost Hermitian manifold satisfying
the Ki-curvature identity (i—1, 2, 3).

a) 1fT (M) isa W1©W3-manifold, then Xl is an (S—C —N)iv-manifold.

b) HT{M )isa W2© W2-manifold, then XI is a(G2—S —C )iip-manifold.

Finally, we point out some results about lifts of almost contact structures.

Theorem 4.5. If (XI, o ¢, tj,g) is a normal manifold satisfyng the Klv-cuvature
identity, then (T(M), gD j) is a Hermitian manifold.

Proof. (T(M), gD J) is a Flermitian manifold if and only if
gDW (J) Y -\fs{J)JY,Z2) =0
for all JF, Y, ZMC(T{M)\
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In order to prove this identity it will be sufficient to do it in the following cases:

(i) X=XV, Y=YV, Z=2V,
(i) X=XV, Y=Yv, Z=2Z",
(i) 1=XV, Y=YHZ=ZH
(iv) X=XH Y=YV, Z=2V,
(v) X=XH F=FF Z=ZH,
(vi) X=XH Y—YH Z=ZH
@ In this case AD(VEr(/)FF, Zv)=0 and the other term is also zero, because
since M satisfies the Klg=curvature identity,

gD{Vix-{3)JIYv,Zv) = tX)v{g( (@Y, Z)Y+

+H{IX)){g(Vir(Y *,Z)-fuZ)g(Viq(y)"

and since M is normal VXp=0 and V~"=0 .
The proofin cases (ii) and (iii) is totally analogous to case (i).
(iv) Taking into account what we pointed out in case (i) we have

g°y° H(I)Y\Z V) = {g(Vx(<p)Y,2)Y,
gDY ~J)JY v,Zv) = {g(V(<p)<pF, Z) 9)i(Y)g(VIpXE, Z)Y

and the result follows from the fact that M is normal.
(v) Using Theorem 4.1 and since M satisfies the Klip-curvature identity, one can
deduce that

gDY ~(J)YV,ZH -g DV»X» (j)IYV,ZH = n{Y)v{-g(VxZ, Z)+g(VVXZ cpZ)Y

and since M is normal the result follows.
(vi) In this case we obtain

g»yy{J)YHZH = {g(Vx(v)Y,Z2)Y,
gDMVR» (J)IYHZH = {g(VvX(P)opY, Z)~, (Y)g(VPE, Z)}v

and since M is normal the proofis finished.
Therefore, we have

Corollary 4.2. | f (M, @ £, 1j, g) is a cosymplectic manifold, then (T(M), gD J)
is a Hermitian manifold.

Furthermore,

Theorem 4.6. If(M, @ £, i], g) is an almost contact manifold, the tangent bundle
T (M) withthe almost Hermitian structure (gD J) is an almost Kahler or anearly Kiihler
manifold ifand only if it is Kihler.

=
Proof. If (T(M), gD J) were a nearly Kahler manifold, then it would also be
a Wio IVi-manifold and by Theorem 4.2, M would be cosymplectic.
On the other hand, if (T(M),gD J) were almost Kahler, we would have
vgDYn(J)Y, Z)=0 which for X1, Yv,Zv, is reduced to {g(Vx())F, Z)}F=0 and
M would be cosymplectic. Then the result follows using the last corollary.
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Theorem 4.7. Let {Er, ..., En, (pEX, ..., E,, <} be a local orthonormal tp-basis
on M. If (M, $ 5,1 g) isa semi-cosymplectic manifold such that V~=0 and

i2 R(Et, cpE;)=0, then (T(M),gDJ) is asemi-Kahler manifold.
s

Proof. Since M is a semi-cosymplectic manifold, 5®=ar\=0 and Lemma 4.1
leads to the result.
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QUASI-CONTINUITY OF MULTIVALUED MAPS
WITH RESPECT TO THE QUALITATIVE TOPOLOGY

J. EWERT (Slupsk)

A subset A of a topological space X is said to be: )

— semi-open, if there exists an open set U such that UczAc U [s],

— semi-closed, if X \J1 is semi-open [2, 3].

The union of any family of semi-open sets is semi-open [s]. The union of all
semi-open sets which are contained in A is called the semi-interior of A; we denote it
by s-Int A [2, 3]. From the definition it immediately follows that each semi-open
(semi-closed) set has the Baire property.

Let F be a multivalued map which assigns a non-empty subset F(x) of a top-
ological space Y to each point x€X (for simplicity we will write F: X—F). For any
sets AcX, Be Y wewill denote [1]: F(A)= U (F(x): xEA}, F+(B)={xXEX:F(x)c
cB), F~(B)={xEX: B(x)NB"0).

A multivalued map F: X—F is said to be:

— upper (lower) quasi-continuous at a point xo£X, if for each open set FcF
suchthat F(xQcF (resp. F(xQDV A0) and for each neighbourhood U of x{there
exists an open non-empty set U AU such that F(x)czF (resp. F(x)HV~0) for
each xeUX[1o, 12],

— quasi-continuous at xo£X, if for any open sets V1, F2c F such that F(xQc
cFj and F(xQMF2A0 and for each neighbourhood U of Xo there exists an open
non-empty set t/jCt/ suchthat F(x)<"Vy and F(x) MK2*0 for [13].

Any single valued mapf: X—Y can be considered as a multivalued map with
values {/ (X)}. In this case each of the above three definitions gives the definition of
quasi-continuity in the sense of Kempisty [s].

In the sequel the symbol EUF), Et(F) and E,(F) will be used to denote the sets
of all points at which a multivalued map F is upper quasi-continuous, lower quasi-
continuous or quasi-continuous respectively. It follows from the definitions that
F*(F)cFu(F)nF,(F); the equality does not hold in general [4].

A multivalued map F is called upper quasi-continuous (lower quasi-continuous,
quasi-continuous) if it has this property at each point Equivalently F is upper (lower)
quasi-continuous iff for each open set F cF the set FHV) (resp. F~(V)) is semi-
open. Similarly Fis quasi-continuous iff for any opensets V1, F2czY theset F+iF~n
C]F~(V2 is semi-open [13].

Let X be a topological space and let Tq= {U\H: U is open, H is of the first

category). Then Tqis a topology on X [5] which sometimes is called the qualitative
topology.

Lemma 1. Let X be a Baire space.
(1) Aset AczX isofthefirst category ifandonly ifit is nowhere dense in (X, Tq).
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(2) Aset Ad X is ofthefirst category if and only ifit is of thefirst category in
(X, Tg.

(3) Aset AdX hastheBaireproperly ifandonly ifit has thisproperty in (X, Tq).

4) (X, Tg) is a Baire space.

(5) Aset AdX is Tgsemi-open (Tg-semi-closed) if and only if it is of theform
A=AXB (A=AXUB), where Ax is semi-open (semi-closed ) and B is of thefirst cate-
gory.

Proof. (1) follows from [5, Theorem 4]; (2) and (3) are consequences of (1).
Property (4) follows from the assumptions and the definition of Tqg. Thus we will
prove (5). If A is Tg-semi-open, then there exists a set VfTq suchthat VdAdV @
where VM denotes the 7”-closure of F. Thus F=U\H, U isan open setand H is
of the first category. The set Hr=HC\u is Tg-closed, so we have UdA\JHxd
d U\H (@O0H X=(U\H)UH[9= U(g)d U what means that is semi-open.
Assuming B=Hf\A, Ax=AUHx we have A—Af\B, Axissemi-open and B is of
the first category. Conversely, let A=AXB where Axis semi-open_and B of the
first category. Then there exists an open set U such that UdAxd U. Since U—
=J@=U\B<pand U\BdAABdU, the set AXB is Tg-semi-open. For Tqg
semi-closed sets the statement follows from above and the definition of a semi-closed
set.

For a multivalued map F: X-+Y by EUF, Tg, EXF, Tg and E*(F, Tg will
be denoted the sets of all points at which Fis upper Fs-quasi-continuous, lower Tqg
quasi-continuous or Tg-quasi-continuous respectively.

Theorem 2. Let X be a Baire space and Y a regular one. If F: X-+Y is a multi-
valued map with compact values, then

Int (F,,(F, TOC\EfiF, T9) d EUF)CIEXF).

Proof. Assume that xos Int (EUF, FDFi(F, TQ)\Eu(F). Then there exist
opensets U0d X and VdY suchthat F(xQdV, x0s8Q0dInt (EJF, TQOC\EXF, Tfi)
and each open non-empty set UdUO contains a point xu for which F(xun
D (F\F)?i0 holds. Letustakean openset W dY satisfying F(xQdIVdWdV. Since
xos F,,(F, T we have F(U\H)d W for some non-empty open set UdUO and a set
of the first category H. The set U contains a point xusatisfying F(x,,)D (T\F)FO.
Hence xfiH and F(x,)II(T \IT )0. The lower Tg-quasi-continuity of Fat xu
implies the existence of a Tg-open set QAAdU such that

(*) F(x)n(F\IF) * 0 for x'eA.

On the other hand because A is of the second category we have ATlM)(LL\H)”*0 and
F(ATI(U\H))d W, whatis a contradiction to (*). Thus we have shown
Int (EUF, TQCIEX(F, T9) d EYF).

Now let us assume xCEInt (F,,(F, Fa)nFa(F, Tfi)\E 1(F). Then there exist open
sets VdY and UOd X suchthat T(x9MK”"0, xos COclnt (F,,(F, TFiDEfF, Tq)
and each open non-empty set UdU 0 contains a point xusatisfying® F(xdd Y \f.
Let yos F(xQnF and let VxdY be an open set such that yo*"VxdVxdV. Since F
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is lower ['B-quasi-continuous at xOthere exist a non-empty open set UxczUO and a
set M of the first category such that

(**) FX)MU ™0 for XEUXM .

The set Uxcontains a point xxfor which the inclusion F(x¥c y\F t holds. The con-
dition x"E u(F, Tg implies that there exists a T"-open set 09iAcU 1 such that
JXACTXTi. The set A is of the second category so AC\(¥x\M)Tx0 and
f(a CJ(UAM ))cY\V1 But this is a contradiction to (**'). Hence we have
Int (EfF, TACIEfF, TAczEfF), what finishes the proof.

Corollary 3. Let X be a Babe space and Y a regular one. A multivalued map
F: X-»Y with compact values is lower and upper quasi-continuous if and only if it is
simultaneously lower and upper Tg-quasi-continuous.

For single valued maps we obtain a known result:

Corollary 4. Let X be a Baire space and Y a regular one. A single valued
mapf: X—Y is quasi-continuous ifandonly ifit is Tg-quasi-continuous.

Let us observe that the regularity of the space Y in Theorem 2 is essential.

Example 5. Let X be the set of real numbers with the natural topology, O the set
of rational numbers and let Y be the set of real numbers with the topology 7=
={(a, co): ai7}U{0, 7}. A multivalued map F: X—Y is defined as

[,:] for x£Q

FW={.1..] for xfx\0.

Then F has compact values and it is upper and lower Tg-semi-continuous. Bur
F_((,°°))=A\g, FH(—=2, 2))= <9 are not semi-open, so F is neither lower not
upper quasi-continuous.

Theorem 6. Let X be a Baire space and Y a regular one. If F: X-+Y is a multi-
valued map with compact values, then Int E,(F, Tgc:E*(F).

Proof. Suppose XxCEInt E*(F, TQ\E*(F). Then there exist open sets UOcrX

open non-empty set UczUO contains a point xu for which F(xy\V 1 or F(xu N
MK2=0 holds. Let yo€F(xQfl V2; we can choose open sets Wx, W2c Y satisfying
the inclusions F(xQclV1c:W1(=V1 and yos W2aW2cV 2. Since F is Tg-quasi-
continuous at x0Othere exist an open non-empty set Uc U0 and a set H of the first
category such that F(x)czWx and F(x)MIV2A0 for xd U\H. For some x# U
we have F(x)n(F\ITD7i0 or FIx~cyxJF,. Assume that E(x:)[M(T\N2)"0.
It follows from the condition xXEE*(F, Tq that there exists a non-empty Tg-open
set AaU suchthat E(x)N(¥Y\1X)1o for xEA. The set H is of the second cate-
gory, so 0 A\Hc U\H. Thus we have F(x)M(T\IFi)~ 0 for xEA\H and
F(A\H)czW 1, what is impossible. If F(x{a Y\PE2, then there exists a non-
empty Tg-open set Av<zU such that F(Aj)c: Y\W 2. The set A, is of the second
category, so 07iAAH cU \H and F(AAH)aY\fyi. On the other hand we
have F(x)f]JW29i0 for xEA™\H and this is the contradiction finishing the proof.
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As Example 5 shows, the assumption of regularity of Y in Theorem s cannot be
omitted.

Corollary 7. Let X be a Baire space and Y a regular one. A multivalued map
F: X-*Y with compact values is quasi-continuous i fandonly ifit is Tg-quasi-continuous.

If X is not a Baire space, then the above theorems are not true.

Example 8. In the set R of real numbers we denote by T the natural topology,
J f —the cr-ideal of all subsets of Lebesgue measure zero and T(J1') —{L,\B : UET,
Bd*V}\ then T(Ar)is a topology on R, [5]. A set AczR is of the first category in
(R, TUA)) ifand only ifit is the union of a set of the first category and a set belonging
to Ji [5, Corollary 1, Lemmas 3 and 5]. Every subsets of R can be represented as the
union of a set of Lebesgue measure zero and a set of the first category [11, p. 5], so
(R, T(jV)) is not a Baire space and (T(Ar))gcontains all subsets of R. Therefore each
multivalued map F:R-*R is lower and upper (7’(Af))i-semicontinuous. Moreover
for F given by

Mo, 1] for x€[o, IJfi£?

FOX) = 1[-1,0] for xER\[0, \]C\Q

we have F+ =F ((0, 1))=10, JNQ&JIC, so Fis neither lower nor upper

F("C)-quasi-continuous.

For lower or upper quasi-continuity only the theorem similar to Theorem 2 is
not true. We will formulate some sufficient conditions under which lower (upper)
Tg-quasi-continuity implies lower (upper) quasi-continuity. To begin with, we give
some definitions.

Let ~ be the family of all non-empty open subsets of X,  the family of all sets
of the second category with the Baire property and let

A multivalued map F: X —Y is said to be wu-ai-continuous (/-Jf-continuous)
at xCEX if for each open set VczY such that F(xQcF (resp. E(xgMK”0) and
for each neighbourhood U of x0Othere exists a set BZ&suchthat 8 ¢ U”and F(x)c. V
(resp. F(X)ITF?i0) for x*B [9].

A multivalued map F is said to be «-*-continuous (/-*-continuous) if it has this
property at each point.

We use the symbols C,,(F) and C,(F) to denote the sets of all points at which F
is upper or lower semicontinuous respectively.

Theorem 9 [9, Theorems 1and 2]. Let F be a multivalued map defined on a top-
ological spac X assuming compact values in a metric space Y. If F is u-M-continuous
(/-&?-continuous), then the set X\C,(F) (X\C UF)) is of thefirst category.

For a set AczX we denote by D(A) the set of all points at which A is not of the
first category [7, p. ss].

Theorem 10. Let X be a Baire space, (Y, d) a metric one and let F: X-*-Y be a
multivalued map with compact values. | f

(@) Fis upper (lower) T,,-quasi-continous,

(b) F-(F)cfi(F-(F)) (resp. F+(K)c/)(F!(K))) for each openset Fc Y,
then F is upper quasi-continuous (lower quasi-continuous).
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Proot. Let 36 be the family of all sets of the second category with the Baire prop-
erty in X and let F be upper 7”-quasicontinuous. For each open set VczY the set
F +(F) is Tg-semi-open. Thus for each open set UczX if F+(F)fl then accord-
ing to Lemma 1(5) it is of the second category and has the Baire property. From this
it follows that Fis n-aFcontinuous and by Theorem 9 the set X\C,(F) is of the first
category. Let us take a point xd X, a neighbourhood U of x and an open set VczY

suchthat F(x)C\V70. Then V= (J Mn, where the M,, are closed sets and F~(V) =
n=1
(J F~(M,,). The sets F~(Mn) are Fs-semiclosed, so they have the Baire property.

Thus F~(F) is a set with the Baire property; moreover the assumption (b) implies
that UMF~(F) is of the second category. Hence F is /-.~-continuous and from Theo-
rem 9 the set X \C UF) is of the first category. So we have shown

) X\C,,(F)C\CI(F) is of the first category.

For each open set VczY the set F-+HV) is Tg-semi-open, so FHV)=A\H, where
A'is semi-open and f1 is of the first category. Since X is a Baire space we have A\H =
= 1is semi-open [2], thus s-Int F +(F) =s-Inti = I d F+(F). We have obtained

) F HV) czs-Int F+(F) for each open set VczY.

Now we are going to show that Fis upper quasi-continuous. Let x0d X be any point,
U0 a neighbourhood of x0, e0>0 and 0<2e<£0. We denote K(F(x0),s)=
= U{K(y, a): yEF(x0}, where K(y, €) is the open ball with center y and radius s.
Then it follows from (2) that x0dA1=U0Cs-Int F ' (K(F(xa), a)). Since Alis a semi-
open set the condition (1) implies that there exists a non-empty open set UczAx
such that

(3) F(x")czK(F(x"),s) for x'x"€U.

From the inclusion UczFHK(F(x0), €)) we have F(xX)<zK(F(x0), ) for some xx<U
This fact and (3) give F(x)czK(€F(xD), e)<zK(F(x0), ) for xdU, i.e. F is upper
quasi-continuous at x0. Now let F be lower Tg-quasi-continuous. Using similar
arguments as in the first part of the proof we obtain that F is /-*-continuous. So
from Theorem 9 the set X\C UWF) is of the first category. For an open set VczY
such that F+(F)?i0 we denote:

K =\ydV-. d(y, Y\V)> 1} Mn= [ydV: d(y, Y\V) ~

where d(y, Y\V) is the distance of y from Y\V. Then MnczW,,+IciM,,+(zV,
for n ] and F= (J W,.= (J Mn. Moreover there exists n0 1 suchthat 'Vn 0

n—1 n=I
for n*n0. Letus take xs F+(F). The increasing sequence {iF ,,:«”1} isan open
cover of the compact set F(x), so F(x)czWnczMn for some n. Hence we obtain

F+(F)=/1(:J1 F+HMn). The sets F-HMn) are Tg-semi-closed, hence F+(F) has the
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Baire property. This fact and the assumption (b) imply that F is n-&"-continuous.
According to Theorem 9 the set X \C 1(F) is of the first category and consequently

4 X\C UF)C\CLF) is of the first category.
By the same way as (2) we can prove

©) F _(F)c s-IntF~(F) for each openset F ch
The conditions (4) and (5) imply the lower quasi-continuity of F, what finishes the
proof.

In Theorem 10 the assumption (b) cannot be omitted.
Example 11. Let Fx, F2:R-+R be multivalued maps given by
flo, ] for x£Q flo, 1 for xER\Q
FIx) = l[o,2] for x£R\Q, = 1[0, 2] for xdQ.

Then F, is lower F(@semicontinuous and F2 upper F(Fsemicontinuous. Assuming
F=(—12) and W=(1,2) we have F+(V)&D{FI{V)), FZ{W)(D(F{W)).
The sets Ff (W) and F£(V) are not semi-open, thus Fxis not lower quasi-continuous
and F2 is not upper quasi-continuous.
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AN INVARIANCE PRINCIPLE FOR DEPENDENT
RANDOM VARIABLES

l. SZYSZKOWSKI (Lublin)

1. Introduction and notations

Let {X,,nS1} be a sequence of random variables on a probability space
(Q, F, P). Let FM=g(Xi: Define two measures of depend-
ence by

<p(m) = sup {\P(B\A)-P(B)\: AEF", P(A) * 0, BdF~+m, n is 1},

. . | P(AOB) _ A .
i//(m) —sup 1P(A)P(B) AdF{, BeF,,~m, P(A)P(B) *0,nSlj.
The sequence {Xn, ne 1} is said to be /p-mixing or (//-mixing according as cp(n)-»0
ori/l(«) —9, respectively, as Clearly a (/-mixing sequence is ~-mixing.
Assume EXn=0, for every nisi and let Sn=" Xt and sI=ES%.

i=1
We will always assume that n2—° as n—°°. Consider a sequence {fc,, /r=0} of
real numbers satisfyingl

(1) 0 = k0< < k2< lim max (Af—A- Y/An = o,

and for each re:1 define
—Sm,()/sn’ *Eo,1],

where m,,(7)=max {770: fc;s?k,,}. The function ©co0->)T,((, co) is a measurable
map from (12, F) into (Z¥[0, 1], /?), where D[O, 1] is the set of all functions, defined
on the interval [o, 1], which have left hand limits and are continuous from the
right at every point, and B is the Borel /~-field on D[0, 1] induced by the Skorohod
topology (cf. [l]).

In this paper we present some sufficient and necessary conditions for the weak
convergence, in D[0, 1], of the random elements {Wn, iie 1} to the standard Brow-
nian process on D[O, 1], denoted by W in the sequel. We give the invariance principle
for nonstationary, mixing-type sequences under Lindeberg’s condition. This result
improves the moment conditions used by McLeish and Peligrad in [¢]—[11]. For
example, we do not assume that limsHn=a2>() and {T|, n*1} is uniformly
integrable. Moreover, we consider the processes {Smm\Ws,, O stsl), while the
authors of the above mentioned papers have investigated the processes {S”"/an 112
O~ A1}, Thus we obtain a version for the dependent case of an invariance principle
of Prohorov which treats the independent case under Lindeberg’s condition (cf.
[1, Problem 1, p. 77]).
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2. Results

The main results of this paper are given in the following three theorems:

Theorem 1. Let {Xt, /£1} be a centered g-mixing sequence of random variables
having finite second moments, satisfying

(2) lim NT22 EXfIO\Xi\ > £9)= 0 for every s=0
and -

(3) lim vy~ max EVXj\) 2 <A = 0.

Then

4) W, -»W weakly in £>[0, 1], n—<3

provided the sequence {kn, ngt0} satisfies (1) and
(5) s\ = k,,h(k,,), where h: R+-*R+ is a slowly varyingfunction.

Theorem 2. Let {Xh /=1} be a centered d-mixing sequence ofrandom variables
havingfinite (2+S)-th momentsfor some $>0,

(2 lim sk2-52 B [ |2+ = 0
and i
(3" 12=}’\ (i) ] (2+mi+6)

Then,for every sequence {k,, nS 0} satisfying (1) and (5), W ,, W weakly hi D[0, 1],
as n-*<e.

Theorem 3. Let {Xh /Si} be a centered cp-mixing sequence o f random variables
havingfinite second moments satisfying

2" lim sy2L 2 \XNI(\Xi\ > £-0)2= 0 for every e>0,
and
(30 2 KO < °-

Then, for every sequence {kn, nSO} satisfying (1) and (5), the invariance principle
(4) holds.

Remark 1. (i) If <p(l)<l, then condition (2) is necessary for the invariance
principle. The proof of this fact is essentially the same as that given by Peligrad [11,
Proposition 2.2].

(ii) Condition (5) (with {kn, nsO} satisfying (1)) is necessary for (4), too. In
fact it is enough to apply the method presented by Herrndorf in [2, Remark 2.3]
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with some modifications (for a detailed proof see [12]). It is also worth noticing that
condition (1) is equivalent (under kk/°°) to lim kn+tl/kn=1.

Remark 2. Letus observe that in our theorems we do not assume that lim s2n=
= m®> 0. This condition, which seems to be very restrictive even in the stationary
case, was considered by many authors as basic one (cf. [9], [¢]). We also show that the
mixing-rate conditions presented in [1, Theorem 20.1], [¢], [7] and [s] may be wea-
kened. Out theorems extend all the above mentioned results ([2], [4], [s]. [s}—[11])
to “essentially nonstationary” sequences of weakly dependent random variables.

3. Proofs

In what follows we need the following lemmas:
Lemma 1 ([11, Lemmas 3.1 and 3.2]). Let {X,,, 1} be a sequence of random
variables, S,,= _2I Xt. Suppose thatfor some b>0, pEN, and a0>0
1=

(6) 4>{p)+ max P(|SmS ;| > 2~haQ) S if< 1
Thenfor every aSaQand m>p thefollowing relations hold:

U]
P(max |S1>(l+b)a) » P(ISJ > a)/(I-r,)+P(max \Xt\> ba/2(p-1))/(1-i,)
andfor every Aua,,
(s) ESEI(SI > (L+2bfA) A (I-ri)-"r,(I +2bfESRI(Si > A) +
+4b~2(1—ri)~1p2A1+2b)2E max X fl(max Xf > (2p)~2Ab2.

Lemma 2 ([11, Proposition 2.1]). Let {Xn, nS 1} be a centered cp-mixing sequence
of random variables. Then, {max SPs2, nSI} is uniformly integrable if and only
if {max Xf/sl, nSI} is uniformly integrable.

Lemma 3. Let {Xh r= 1) and {{k,,, nSO} be two sequences which satisfy the

assumptions of Theorem 1, 2 or 3. Then there exists a sequence {e,, nS1) ofpositive
numbers tending to zero which satisfies each of the relations

9 lims-4-12 EX?I(\X,| > emsn) = o,
=1
(10) nIi_n(;)j -2, max Egi:zl XO(\X,\ > sns,)2= 0,
max s'l = ?) = for all nS
(n) l|:%+]_E(X’LI'\X’\ 77 =4, fora 1

andfor some sequence ofpositive constans —o.
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Proof. It is easy to choose (using (2), (2") or (2"), respectively) a sequence &0,
satisfying (9). Note that, by Lemma (1.2) [9]

j- zlg}% E(|2:1th(\Xi\ > ens,,)2" s~2E(_2:i |AH/(JAT| > ens,,)21S
Srea i EXFIOX\ > £xv)+ (1 +72(1))(is2 2 BALIOX\ > e,vj2 ~

ZEXfim >e,jd+(l+~(I»(j.-4-1 20200 > £.5,))2
1=1 1=1

and

y . _ i) S
max | 113" ensn)Fi)

S max -1 2 1a,EI,/d’\”S£,o1’\?)—’\/(|2|:|s £l +

i=k+

+4I: _I_I lﬂB,EI,|I'IF,| eJ,)| =5 max 28-1 wf_LC 1 K/-*)BABA| =M,)+

isicsn i=

+J.-4.1 2E X fI{|2f| >£,)5,,).
1

Moreover, by Holder’s inequality and Lemma 1.1.8 [5]

max 2 x>(i~F)E\Xi\lsn =

1SkSn i+1

NA-(H) N ET 2401/ Ha) (2 [iKo ](2+a)/(1+))(1+8)(2+<5)
and

Iréq% i1 [EE(* /(1% £,/\”))_£(2ﬁ1(|2r;| ensn)F{\: 23,,‘21<P(0'
i=fc+l i=
Finally, taking into account the above inequalities, (9) and the assumptions of Theo-
rem 1, 2, or 3, respectively, we obtain (10) and (11).

Proof of the Theorems. We will apply Theorem 19.2 of Billingsley [1]. From
the rp-mixing condition, by induction, it follows that Wn(t) has asymptotically inde-
pendent increments. (See the proof of Theorem 20.1 of [1].) Clearly EW,,(t)=0 and
EWI(t)=slJsI*t as fl-sooj according to (1), (5) and the Karamata representa-
tion of slowly varying functions (cf. Theorem 1.2 [13]). To complete the proof, we
have to verify that {WI(t), 1} is uniformly integrable and W,, is tight. But by
(2) it follows that {max Xf/s2, 1} is uniformly integrable, whence by Lemma 2,

we get the uniform integrability of {IFz(i), nsl} for each t.
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Let {r, nai} be the sequence from Lemma 3. For every n™l, let
us put
Jni = XtIOAX,\ =mwsn)/sn, Yni = XJsn- X ni,

Xni = Xni-EXni, Zt(n) = 2 1E(X'j\Fj),
J:
Utinn= 1 A(BAOo,

J=i+1
and define the random functions "

Kit) = zmw(n), i = unjf)(ri),

K (o = Zz{lt) xni,  w:i{t) =wn(t)-w;(t), t€[o, 1].

Obviously, for every tf[0, 1]
Wh(t) = K it)-U 'n(t)+EWZ(t)+W"(t)

and, for each n, Z'n(t) is a martingale. Let us observe that by Lemma 3

12 ! > e -
(12 (%’L\Ilg‘l \EW'(0] Vlg:lEU_l' KL 5. - 0,
(13) sup E{w:(t)-w:(s)f " 4 sup £(1C(0)2S
4wm2 max E{+ W X\ > ag,))2- 0,
1--/-N i=1
(14) sup E(U'M-U",,(s)Y £4 sup E(Un(t)Y »

S 80*+8(s—1|2_% \XN(OXiN>amsn)Y 0.

Therefore on account of (12), (13) and (14) we get
(15) sup F(1F,(0-Z;(0)2-0 as un— ,

0 4aisl
so that, for every ?6[0, 1] by the already proved relation EWQt)-»t,
(16) E[Z'n(t))2—t as n—

Now we show that the sequence {W,, h"l} is tight in £)[0, 1]. As
P(IL,,(0)=0) =1, for the tightness of this sequence it is enough to prove (cf. Theo-
rems 19.2, 8.2 and 8.3 [1]) that for every e>0

i . UsS-1
@an lim limsup jTZO P

i(0;1/a€tf v(i‘ag BLESO \W.is)-WnNe A\>B) = 0.
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Using (15), (16), the martingale property of Zn(t) and the Markov inequality we have
for any o, b>o

(18) I%rglirpfgp gﬁir}wl(%_l)% P;(W,,((i+l)<3)—\/\/n{s)y =4 1hs a) = 0.
Choose b, p, b0, and nOsuch that for every <55, and n>no
(19) <p(p)+ ogmax_i P((K,,((/+ 1)<5)-1B)2 > 4" b 2«) =

=rf(n,S,a)=rf< 1 and (1+2b2;;a —y_ 1< 1.
From (19) and (s) we obtain for every O s/s Il<6—1
(20
£(i+2b).aNe ((/+ i)b)-ik,,(/byyz = (1 +2b)V (i -4 )-1£.(»;((/+1) 1) - m(«))*+
m,,((i+ 1)3)
+ @p(1+20)2b-2(1- -1 2 Ea m XZ/sl
k=mn(id)+1

where EaX=EXI(X>A). Moreover by (5), (15) and (16), for sufficiently small
€>0 we get
1/3-1 1/3-1

limsup igo EWn((i+1)6)-Wn(i6)y = 0(.:02 5 =0(1).
By (20), (5) and (2) it follows that

1/3-1

Hmsuphmsup igo E (x+uvjj¥ af{{i+\)0)-Wn{io)f S
1,0-1

A limsup Hpsup (14~ /jis-» )1 2 EgWn((i+1)0)~Wn(is))2

Because both sides of the preceding inequality are decreasing functions in a, and
a +2b)V(I—7)_1<:1 we obtain (a—o), forevery sso

(21) ljim limsup % POWn({i+1)$)-Wn(ig)\ > a) = 0.

Now (17) is a simple consequence of (7), (2), (5), (18) and (21). Thus the proof of the
theorems is complete.

Acknowledgement. | am indebted to the referee for many valuable comments.
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ON SOME DENSE COMPACT OPERATOR RANGE
SUBSPACES IN SEPARABLE FRECHET SPACES

J. KAKOL (Poznan)

Introduction

Let E be a (Hausdorff) topological vector space (tvs) and X, Y two closed sub-
spaces of E with XDY=0. If X+Y isdensein£ (and X+Y~"E), then X, Y are
called (proper) quasi-complements [4]. In [2] Drewnowski obtained some extensions
to F-spaces, i.e. metrizable and complete tvs, of results concerning the existence and
properties of quasi-complements in Banach spaces. Among other things he obtained
the following results:

(@) Every closed non-minimal infinite codimensional subspace in a separable
F-space has a proper quasi-complement (an analogue of the Murray—Mackey theo-
rem).

b) IfX,Y areproper quasi-complements in a Fréchet space E, i.e. a locally convex
F-space, then there exist quasicomplements Mz”Y to X such that dim (W/Y)=°°.

To obtain (b) Drewnowski first proved that whenever T is a continuous not rela-
tively open linear operator from a Fréchet space F into a Fréchet space E, then E
contains a closed infinite dimensional subspace N with Nf]T(F)=0. Based on this
result and inspired by Shevchik’s Theorem 1of [5] we prove the following: If T: F—E
is a continuous not relatively open linear operator from a Fréchet space F into a sepa-
rable Fréchet space E with dense range, then for every infinite dimensional separable
Banach space Z there exists a compact injective linear operator Q-.Z"E such that
Q(2) is dense and Q(Z)C\T(F)=0 (a generalization of a result of Shevchik [5]).
Making use of this we establish some property of quasi-complements in separable
Fréchet spaces: If X, Y are proper quasi-complements in a separable Férchet space
E, then E contains a dense subspace GzdY with GniF=0.

Results

The following result extends Theorem 1 of [5].

Proposition. Let T be a continuous not relatively open linear operator from a
Fréchet space F into a separable Fréchet space E with dense range. Thenfor every
infinite dimensional separable Banach space Z there exists a compact injective linear
operator Q: Z*-E such that Q(Z)=E and O(Z2))T(F)=0.

It is known (cf. e.g. [¢], pp. 253—254) that whenever G is a dense non-barrelled
subspace in a Fréchet space E, then E contains a dense non-barrelled subspace H
(containing G) with a strictly finer metrizable and complete locally convex topology;
hence the proposition has an equivalent formulation:



54 5. KAKOL

(*) Let Z be an infinite dimensional separable Banach space. Thenfor every dense
non-barrelled subspace G in a separable Fréchet space E there exists a compact injec-
tive linear operator 0\Z-~E such that Q(Z) is dense and G(~)Q(2Z)=0.

We observe also (using a similar argument as in [1]) that the assumption “non-
barrelled” cannot be replaced by “codim G=°°".

Proof. By || . | we denote on E an F-norm defining the original topology o IE.
Using Drewnowski’s result (mentioned above, [2], Theorem 5.6) we find in Fa closed
infinite dimensional subspace N such that NC]T(F)=(). Choose in N a linearly
independent sequence (y,,) with T|yn\ which is w-independent, i.e. if (anfl°®
and Xa,yn=0, then (»,)=() (this is possible by Theorem 1 of [3]). Let (xn:nfN)
be a dense linearly independent subset in T(F). Since T is not relatively open, T(F)
admits a strictly finer metrizable and complete locally convex topology; by | .| we
denote an F-norm definining this topology. We find a sequence 0-=c,,S 1 such that

T|c,.X,,|-<°® and X\en(xn+yn\ <°o.

Take 0 and b,,>0 suchthat Ja,xn<2 _n and [h,(X,+Y,)||<2_n, »EN. Itis
enough to put
G,= anbr{\ +an -\\ +bnl 1

Since ||(X,,+Y,)—X j—0 and E is without isolated points, lin (zn:nc N) is dense
in E, where zn=c,x,,+cnyn, »EN. By the assumption concerning Z there exists
a biorthogonal system (unf,,), »€N, where (wJcZ, (/JcZ' (=the topological
dual of Z), (fn)is equicontinuous and total over Z. Define a compaO linear operator

O;Z"-E putting
Q(x) = Xfn{x)zn.

Observe Q is injective: Since jVHF(F)=0, then Xfn(x)cry,,=0 provided 0(x)"0.
Hence x=0 (because (yn) is /»-independent). Clearly Q(Z)C\T(F)=( and Q(2)
is dense in E; this completes the proof.

Coroltary 1 Let X, Ybe proper quasi-complements in a separable Frechetspace
E. Then E contains a dense subspace G such that Gz>Y and G(~)X=0.

Proof. Let T: E-~E/Y be the quotient map. Since the restricted map T\X
is not relatively open and T(X) is dense in E/Y, we apply Proposition to find in E/Y
a dense subspace S’such that S'DF(An=0. Then G=T~\S) s as required.

Corollary 2. Let X be a closed infinite dimensional [non-minimal] subspace
in a separable Banach [Fréchet] space E. If dim (F/W)=°°, then E contains a dense
subspace G such that dim D=2*a and GC\X. =0.

Corollary 3. Let T be a continuous not relatively open linear operator from
a separable Banach space E into a tvs W. If dim Ker F=°°, then T\G is injective
for some dense subspace G ofE.

We shall say that a subspace V in atvs E is a compact operator range if there
exist an infinite dimensional separable Banach space Z and a compact linear operator
defined on Z whose range is V.
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Making use of Proposition (in its equivalent form ) we note the following

Corollary 4. Every infinite dimensional separable Fréchet space contains two
dense non-barrelled compact operator range subspaces V and W such that VT\W=0.

It is known that every Fréchet space E with dim E—2%»contains a dense barrel-
led subspace G of infinite codimension such that for every linearly independent sequen-
ce (X, c E which is subseries summable there exists a subsequence (yn) of (x,,) with
0  V,EG, [1]. Hence E does not contain an infinite dimensional subspace V that
is a continuous linear image of another Fréchet space and such that Gfl F=0. Thus
the assumption “Gis non-barrelled” in Proposition (in its equivalent form) cannot be
replaced by “codim G=°°",
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SYMMETRY FACTORS FOR DIFFERENTIAL
EQUATIONS WITH APPLICATIONS
TO ORTHOGONAL POLYNOMIALS

L. L. LITTLEJOHN (Logan)

8 1. Introduction: Motivation and previous results

The classical orthonormal polynomials of Jacobi, Laguerre and Hermite are
well known to share many common properties (e.g. three-term recurrence relations,
generating functions, Rodrigues formulas, solutions of second order differential
equations etc.). One rather intriguing fact about these three polynomial sets is that
their orthogonalizing weight function is also a symmetry factor for the differential
equation that the polynomials satisfy. More precisely, if w(x) is the weight function
and L (y)=0 isthe second order differential equation, then w(x)L(y) is symmetric.

Recently, there has been a renewed and increasing interest in finding nonclassical
orthogonal polynomial solutions to higher order differential equations. In fact, at the
present time, there are ten sets of orthogonal polynomials known to satisfy differen-
tial equations of the form:

(1.1) 2 ak(x)yw (x) = Xy (x).

The search is continuing to find all differential equations of the form (1.1) that have
a sequence of orthogonal polynomial solutions. The interested reader is encouraged
to consult [3], [s], [7], [11], [13], [14] for indepth discussions of this work as well as
applications of this work. Observing that all ten known differential equations can
be made symmetric, Littlejohn set out to find conditions for when a differential expres-
sion of the form

(1-2) L(y) = 2 ak{x)yw{x)

can be made symmetric. Here we are assuming that ak(x) is real valued, x£1 where
/is some interval of the real line and ar(x)?+0 for all x£I.
The Lagrange adjoint of (1.2) is

L+y)= 2 (-"YRBbKYyXIM

The expression L(y)is said to be symmetric (or formally selfadjoint) if L(y)=L+(y).
In [12], we defined a symmetryfactor for L(y) to be a functionf (x) such that f (X)L(y)-
is symmetric. It is well known that every second order differential expression

a2(x)y"(x)+ a, (x)y' (x) + a0(x)y (x) (at€C’)
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can be made symmetric when multiplied by

expL L flic /q2(Q <)

1.3 =

(13) f(x) 02W

In fact, suchan / (x) can be found by solving the first order equation
(1.4) afx)y'(x)+(a'2(x)-a1(x))y(x) =0.

Until recently, however, very little was known on the existence and determination of
symmetry factors for higher order differential expressions. It is apparent, though,
that in order for a real differential expression to be symmetric, it must have even order.
Henceforth, we shall assume r=2n. In [12], Littlejohn proved the following theorem:

Theorem 1. Afunctionf (x) is a symmetryfactorfor

1.2 L(y) = 2 ak(oyw (9

ifand only if f (x) simultaneouslysatisfies thefollowing system of n homogeneous differ-
ential equations:

n2s—2k+1 7 25 \ (25-2K+\\ 226" 214 2— 1
(1.5) 2 2 2k—ij 1 j ) s—k+1

—a & UX)y(x) =0, K—1,2,..., N,

B&-*+as 3 X+~ (X)  (X)

where Bn is the Bernoulli number defined by:
X 1 N " B2x2
ex- | 2+A QN
Observe that the orders of the equations above are 1, 3, ..., 2n—1. When k=n,
(1.5) becomes
(1.6) naln(x)y' (x) + (na(x)—az2n_1(x))y (X) = o.

If n=1, notice that equations (1.4) and (1.6) are identical. Solving (1.6), we find that
(up to a constant multiple):

eXP(T/ flan-i(0/6an(0*]

(1.7) f(x) = (0

Hence /(x), given by (1.7), is a symmetry factor for (1.2) if and only if/(x) simulta-
neously satisfies the system (1.5) for fc=1, 2, ..., n—1 We name the equations (1.5)
the symmetry equations for L(y).

Examples. 1 Let LI(y)=(x2—X)¥@+2x(x—)(5x—=2)y@)+x(26x—20)/'+
+ (18x—2)y'+6y. In this case, the symmetry equations are:

(i) XAx—2)2y" + X1 —X)y = o,
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(i) x2Ax—D3/(3)+(12x3—18x2+ 6x)y" + (10x2—16x+ 6)y'+ (—L0x+ 6)y=0.
Itis easy to see that y(x)=1—x satisfies (i) and (ii) so it is a symmetry factor for L(y).

2. Lfiy)=y@®-—-5/s)+2y(3—y"+6y'+3y. From (1.5), the symmetry factor
must necessarily be e~5x/s. However, e~5xadoes not satisfy the other symmetry equa-
tions so L 2y) cannot be made symmetric.

8§ 2. Orthogonal polynomials

In 1929, S. Bochner [1] solved the following classification problem: (up to a linear
change of variable), find all orthogonal polynomials {®n(x)} that satisfy the second
order differential equation

a2(x)y"(x) +al(x)y'(x) = At 0O

Bochner solved this problem showing that there are four such polynomial sets. Besides
the three sequences of classical orthogonal polynomials, Bochner realized the exist-
ence of a fourth set: these polynomials were subsequently named the Bessel poly-
nomials and studied by H. L. Krall and O. Frink [10]. Bochner’s proof relied on his
observation that if (1.1) has a polynomial solution of degree m, m=0,1, ...r, then
afix) must be a polynomial of degree Si. By considering the possible locations of the
roots of afix), he was able to obtain his classification result. In his work, Bochner
implicitly posed the following problem: classify all differential equations of the form
(1.1) that have a sequence of orthogonal polynomial eigenfunctions. Some early
success on this problem was obtained by Hahn [2] and especially by H. L. Krall [8],
[9]. In 1938, Krall proved his “classification” theorem:

Theorem 2. Let ®T(X), —oo<x<°°, be apolynomial of degree m, m=o, 1, 2,....
Then [PT(x)} is an orthogonal polynomial sequence and ®T(x) satisfies

2 2hXil 4x) = 2ny(x)

i=lj=o

ifandonly if the moments {pn) associated with {P1(x)} satisfy:

ho hi mm hm
(I) hi  hi hm +1 9/\0, m = 0, 1, o
hm hm+1 him
(2.2 (i) Sk(m) = » 2,[1 n / i-2n- i, Bkr_un=0,
i=2n+l u=0V

2n+1Sr, m= 2n+l, 2n+2, ...
where P(n, k)=n(n—)...(n—k+1).

As a corollary to his theorem, Krall showed under the same hypotheses that r
must be even. The proof of this theorem is very difficultand long. In the next section,
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we will show how easy the recurrence relations follow from our results. We call sys-
tem (2.1) the moment equations for {PT(x)}.

In 1940, Krall [9] illustrated his theorem by classifying all differential equations-
of order four having orthogonal polynomial solutions. Besides rediscovering the four
previously known orthogonal polynomial sets, Krall discovered three fourth order
equations having nonclassical orthogonal polynomial solutions. Properties of these
polynomials, including their weight functions, were not discussed until 1978 when
A. M. Krall and R. D. Morton [4] found their weights and then in 1981, A. M. Krall
studied the polynomials [3] and their appropriate boundary value problems.

From the recurrence relations (2.1), Krall and Morton found the moments {gn}
associated with the polynomials {®T1(x)}. They then showed that the formal series

(2.2) W(X) 2 (_ i)er,,,"(m)(—v)

acts as a formal weight function for {®T(x)}. By using the Fourier transform, they-
were able to obtain classical representations of (2.2).

Using Theorem 1, Littlejohn offered [13] an alternative for determining the weight-
function. We illustrate this alternative by considering one of the fourth order equa-
tions discovered by H. L. Krall:

Exampte. The Laguerre type polynomials [3] satisfy:
(23) L,(y) = x¥@—2v2—4n)Y3J+ (x2—(2R +6)X)y"+((2R + 2)x—2R)y' = Ary.

By Theorem 1, the symmetry equations are:

(2.9 XY'+x3 =0
and
(2.5) XY 3+ 6xy"+ (- n2+ (2R+6)x+6) / + 2Rx+6)y = Q.

It is easy to check that y(x) =e~xsimultaneously satisfies (2.4) and (2.5) and hence is ai
symmetry factor for L4(y). Unfortunately, e~xis not a weight function for the Lagu-
erre type polynomials. However, if we solve (2.4) and (2.5) distributionally over po-
Ilynomials and require that the solution vanishes as |x| >0, we do arrive at a weight
function for the Laguerre type polynomials: Rewrite(2.4)asx Jexy)'=0. Dividing
by x2introduces the Dirac delta function and its derivative: (exy)'=c,6(x)+cal'(x).
Integrating this latter equation yields: exy(x)=cIH(x)+cZ(x)+c3, where JI(x) is
Heaviside’s function. Multiplication by e~xyields y(x)=cle~xH (x) +c16(x)+xie~x.
Since we require y(x)-*0 as |x]—oo we must have ¢3=0. Substitution of y(x)
into (2.5) yileds cR=cl. Choosing ™ =1, gives us y(x)=e~xH(x)+(V/R)d(x).
This example illustrates the following theorem of Littlejohn [13]:

Theorem 3. Suppose {®T(x)} is a sequence o f orthogonal polynomial solutions to
the differential equation:

22D 00 = Xy(x).
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Suppose A is a nontrivial solution to the system of distributional differential equations

<2.6)

noS-2k+i r 25 \ (2s—2k+ 11 225-2t+2—1
A 0 bfc-idlj ) s—k+1

= (aik-i(x)A, ®), k=12 n,

A -2 OAQ D) =

for all polynomials @, where
afx) = 2
i=0
Then A is an orthogonalizing weight distributionfor (T (X)}.

The equations (2.6), when solved in the above distributional sense, are called the
weight equations for A.

8 3. New results

Unfortunately, the symmetry equations given by (1.5) are quite complicated,;
the appearance of the Bernoulli numbers is intriguing on the one hand yet bother-
some and cumbersome on the other hand. The following new result gives a very suc-
cinct characterization of an equivalent set of symmetry equations.

Theorem 4. Let
2N

Ly) = 2 5ak0ayw (9,

where akdCK) is real valued and abl(x)” 0 for all xdl, I beingsome interval ofthe
real line. Then f (X)L (y) is symmetric if and only iff (x) simultaneously satisfies the n
homogeneous differential equations
2n
(3.1) i:22k+| (—1)4V Ko («eW /W )(-s*-)=0, £=0,1 .»n—1L
Proof (Sketch). By definition, f (x)L(y) is symmetric if and only if f (x) simul-
taneously satisfies the following system of 2n equations:

A+i= [ (- DkH (k/ *) (F()ak+d(x)p~f(x)ak(x) =0, k=01 .., 2n-1

Define

i=2fc+|

k=i 2 (-1)4 Kk I(€W/W)Q 2D k=01 .51,
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It is easy to see that C1=Al1, C2+2C1=A2 and itis not too difficult to establish for
3==A==2rt-I:

® +kC2L-D+ I Ak(k m 2/+3) C=*TW2) = Ak,

where Ck=0 if k>n and [.] is the greatest integer function. From these relations,
it is clear that Ak+1=0, k=0, 1, ...,2n—1, if and only if Ck+l =0, k=0, 1, '

Note. As one can see, proving this theorem is not very difficult finding the con-
ditions (3.1) was much harder.

8 4. An application of Theorem 4: A glance at a new proof of Krall’s
classification theorem

A. M. Krall and Littlejohn have recently [5] found a new proof of H. L. Krall’s
Theorem 2. We shall not reproduce it here; rather, we shall show how naturally the
moment equations (2.1) follow from distributionally solving the sytem (3.1).

Assume then that {dT(X)}, — is an orthogonal polynomial sequence
of solutions to

L2.0)= 2 J2' hjxJy ()(x) = FrT(x).

Assume a symmetry factor/(x) exists for L2(y). By Theorem 4,/(x) satisfies
4.0 I,_y (-D,i/_t_1)(eiWw/W)(_*“"D="° *=0,i,...,n-i,
where G,(j9= 2 hjx1- Let w(x) be the general distributional solution (found

weakly on polynomlals as in Theorem 3) to the system (4.1). Then for any polyno-
mial 4'(x), we have

4.2 0=( 2 (-Y(I~k~*@W-*Kk-'\ ) =
- (\W,_ 2
i=2k+1 \ K J /
Let AKv= 2 \ ~ « i so (w, Ak4,)=0. Then, it is easy to see that
i=2k+1 \ )
0= 2 (~ .r-k) dp(n-k-1) _p(n-K) g.n-k-1)) =
ft=0

= W, T12,(®p)-® pT2(@T)P = (2P-Am)<w, dpoT)
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so w is an orthogonalizing weight for {®T(x)}. Now let Y(X)=xT-2¢1, TLU2K+)\,
and substitute into

/ 2n i ft \
=\w> 2 2\ K \P(T-2k-\,1-2kK-\)1uxn-~T1.
\ i=2k+1j=0V n / /

Letting u=i—, this latter equation becomes

= (", 2 T[~ k=Dp(r=i-2k-\,i-2k-\lu_we-9 =

i=2k+1 u=

2« i (i—k —\\

= 2 2\ K \P{T-2k-\,1-2k-\)1~MulIT n= 8KT).

These calculations clearly show the explicit relationships that exist among the sym-
metry(gqﬁations (1.5), (3.1), the weight equations (2.6), (4.2) and the moment equa-
tions (2.1).
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CIRCLES, HOROCYCLES AND HYPERCYCLES
IN A FINITE HYPERBOLIC PLANE

C. W. L. GARNER (Ottawa)*

1. Introduction

Let P be a projective plane of order n=3 (mod 4), and n a regular polarity
whose absolute points form a conic (suitably defined in the finite case — see [5]).
As in the real projective plane, there are two disjoint classes of nonabsolute points:

I = {inner points, or points having 0 absolute lines};

O = {outer points, or points having 2 absolute lines};
and their dual classes of non-absolute lines:

0 = {outer lines, or lines having 0 absolute points};

1 = {inner lines, or lines having 2 absolute points}.

The incidence structure HA(n) whose points are | and lines are i, with inci-
dence as given in P, has been investigated as a finite analogue of the classical hy-
perbolic plane ([4]). One of its most interesting features is the existence of parallel
points — points with no common line. In [6] we have studied the types of motions
which exist in HA(n) when defined over certain desarguesian planes, and in this
paper we continue this study by investigating the finite analogues of circles, ho-
rocycles and hypercycles. Like those of the classical hyperbolic plane, these are
shown to be conics.

In this paper the words “point” and “line” always refer to elements of HA(n)
unless the adjective “outer” or “absolute” is explicitly inserted. In the figures, lines
of HA(ri) are represented by solid lines, absolute lines by dotted lines.

2. Finite analogue of a circle

If HA(n) is defined over a desarguesian projective plane P of non-square order
n=3 (mod 4), then P is pappian ([3], p. 160) and also fanonian, i.e. the diagonal
points of a quadrangle are not collinear ([7], pp. 190—194). Thus P satisfies the axi-
oms of projective geometry as enunciated by Coxeter ([2], p. 25), and in particular we
can exploit the properties of harmonic conjugates and involutory homologies.

D efinition 1. In P, <1 denotes the involutory homology with centre A, axis
a=An. Since only one of A, ais an inner element, oAa is called a point reflection oA
or line reflection caaccording as A or a belongs to HA(n).

Many properties of point- and line-reflections are derived in [6], and a list of
all possible products of reflections is given in Table 1([6], p. 493).

* Supported by grant A809 from NSERC of Canada.
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Definition 2. Apencil oflinesin HA (n) is the set of all lines incident with a com-
mon point, having a common absolute point (called an end) or having a common
perpendicular. Such a pencil is called an intersecting, parallel or ultraparallel pencil
respectively. See figure 1

As usual, two lines are perpendicular if they are conjugate; that is, each is incident
with the other’s pole ([7], p. 222, [1], p. 157, [4], p. 137).

The three reflection theorem holds for these pencils, just as in the classical planes
([4]. pp. 326—329 and [6], p. 292). Recalling a standard definition of a circle in the
Euclidean plane as the locus of a point by reflection in all the lines of a pencil, we are
led to the following three generalizations of circle, just as in the classical hyperbolic

plane ([]], p. 213):

Definition 3. In HA(n), let G be a pencil of lines and X any point incident with
a line of G. Then CA(G) = {F=(Ta(Z): aEG) s called a circle, horocycle or ultra-

Pencil of intersecting lines Pencil of intersecting lines
and associated circle and associated horocycle

Pencil of ultraparallel lines and associated
ultracycle

Fig. 1
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cycle according as G is a pencil of intersecting, parallel or ultraparallel lines. See
figure L

Note that CXG) is a subset of points of HA(n) ([6], p. 487). Moreover, since X
lies on a line of G, any point of CX(G) must also line on a line of G.

D efinition 4. The unique line of G through any point of CX(G) is called a dia-
meter through that point.

To generate a horocycle, it is unnecessary to require that X lie on a line of G,
because any inner point in P is joined to an absolute point by an inner line. Thus
through any point of HA(n) there passes a unique line of the parallel pencil G.

Theorem 1. If YfCXG), then Cy(G)= CXG), i.e. any circle, horocycle or
ultracycle associated with a givenpencil is determined by any ofitspoints.

Proof. Let Cx(G)={3(2): a<EG}, Cy(G)={o0-,(T): aEG} where Y=0,,(X)
for some bEG, isa member of CX(G). Let Z be any element of Cy(G), so that Z=
=<c(Y) for some c£G. Then Z=o0c¢{Y) =owb{X) and we wish to show Z6C X(G).

Denoting by d the line through X belonging to G (see figure 2), Z =omb(X) =
—j(jlod(X) = Of(X) where/, the fourth reflection line of c¢,b,d, also belongs to G
([6], p- 492). Thus ZE£ CX(G) andso CX(G)5 Cy(G). In the same way we can show
that Cy(G)3 CXG), since ob(d) is a line of G incident with Y. O

Fig. 2

Since CX(G) is independent of the choice of point X, but depends upon the line
pencil G, we shall refer to CX(G) as CG.

3. Finite hyperbolic circles

Theorem 2. In HA (n), the number o fpointson a circleis n+1.

Proof. Thereare (n+1)/2 lines through O, the common point of G ([4], p. 319).
Suppose oa(X)=ob(X) for some a,b£G. Then oab(X)=X which implies X=0
(Table 1 of [6]). This contradiction shows there are at least (n+1)/2 points in CG.
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But each diameter intersects CGin exactly two points. To see this, consider,
without loss of generality, the diameter OX. Now n0=onad where d is the line OX
and m is the unique perpendicular to d through O ([6], Result 8, p. 488). Thus a0(X) =
= @maJ(X) =am(X) which is not X, since am(Z) = X would imply both m and d inci-
dent with both O and X. Thus since mEG, X and Qn{X) are two distinct points of
CGon the diameter OX. Hence every diameter contains two points of CG, giving
precisely n+ ! points on CG. O

We note as an interesting corollary that the (M—3)/2 points distinct from O on
any diameter determine (n—3)/4 concentric circles about O.

Theorem 3. Any circle is a conic.

Proof. Since any oval in a desarguesian projective plane of odd order is a conic
by Segre’s theorem ([8]), we need only prove that CGis an oval, aset of n+1 points,
no three collinear.

Suppose there exist points X, Y, Zg CGwhich are incident with a common line c.
Without loss of generality, we can assume Y=o0a(X), Z—oh(X) for some a, b~G.
Then Y=oa(X) implies A, X, Y collinear and similarly B, X,Z are collinear.
Since X, Y, Z are incident with ¢, we must have ¢=AB. Thus c is the polar of the
point amb, and so an outer line, which contradiction proves that X, Y, Z are not
collinear.

4. Finite hyperbolic horocycles

Theorem 4. In HA (1), the number ofpoints on a horocycle isn.
Proof, Let
CG= {oa(X):atG, a pencil of parallel lines with a common end O)

be a horocycle. Through O there are n lines (and one absolute line o, in P), and no
two images of X can be equal since oa(X) —ob(X) implies obaa(X)—X, a contradic-
tion, for obgais a parallel displacement ([6], p. 489). Moreover, no diameter of CGhas
two points of the horocycle. For if Zand Y=o0a(X) are on the diameter OX=XY,
then A, X, Y are collinear so that AEXY. But since a£G, O”a and so A£o. Thus
A —XV =0, a contradiction, and so CGhas exactly n points, one on each dia-
meter. O

Again, an interesting corollary is that the (s—1)/2 distinct points on any line
of G yield @1—1)/2 “concentric” horocycles, i.e. horocycles with the same end.

Theorem 5. Any horocycle with its end is a conic.

Proof. Asin Theorem 2, we need only prove that no three of these n+ 1 points
are collinear. Clearly no three are incident with a diameter, so we need only consider
the possibility that X,Y=o0a(X) and Z=o0b(X) (where a, bc G) have a common
line c. But Y=o0a(X) and Z=abh(X) imply c=AB as in Theorem 3. Since a, b£G
a pencil of parallels with end O in P, a-b=0 and so AB=o0, an absolute line. This
is the required contradiction. O
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5. Finite hyperbolic hypercycles

Theorem 6. In HA(ri), the number o fpoints on an ultracycle is (h—1)/2.

Proof. Let CG={oa(X): afG} be an ultracycle generated by the point X belong-
ing to the pencil G of ultraparallels. G has cardinality (n—1)/2 (dual of [4], Theorem
3) and arguments similar to those used in Theorem 4 show that there is precisely one
point of CGon each diameter through O. O

Now if X be chosen on the line o, the ultracycle is simply the line o. For if Y=
=<q(X) for some a£G, then A, X, Y are collinear. But GEG (i.e. Oda in P)
which implies Afo, and sothis common line of A, X, Y iso. Thus we have:

Theorem 7. For each pencil ofultraparallels G, there is one ultracycle which is also
aline. O

We wish to extend an ultracycle to a hypercycle (analogous to the classical equi-
distant curve) and show that it is also a conic.

Lemma 1. Let o be the common perpendicular ofa pencil G, and let o intersect the
absolute A in absolute points M and N. Then M and N are not collinear with any point
ofan ultracycle CG" o, nor are any two points of CG” o collinear with either M or N.

Proof. Since M and N are incident with o, the first part of the theorem is obvious.
Now suppose that X and Y=cra(X)f CG are collinear with M: X, Y, Mdlineq.
Since Y=o0a{X) implies A, X, Y are collinear in P, X, Y, M, A allig. But aEG
implies A£o, and so A=q*0=M. Thus A is an absolute point, which is a contra-
diction. O

Lemma 2. Let CGbe an ultracycle belonging to the pencil G of ultraparallel lines
with common perpendicular 0. Then cO(CQ is also an ultracycle belonging to G

Proof. See Figure 3. Let X and Y—c&{X), for some (dG, be points of CG.
Then oQ(Y)=<TMa(X)=0a00(X) since a and o are perpendicular ([4], p. 321). Thus
Y'=00{Y)—oa(X") where X'=00(X) is a point incident with the line of the pencil

Fig-3

Acta Mathematica Hungarica 56, 1990



70 C. W. L. GARNER: CIRCLES, HOROCYCLES AND HYPERCYCLES

G throueh Y. Since Y was arbitrary in CG, we have a new ultracycle C'G=
={Y'=aa(X"): aEG}. If X$o0, X' also $0. O

D efinition 5. A hypercycle belonging to the pencil G of ultraparallel lines with

common perpendicular o is a set of points CGUCGU {M, N} where M, N are the
points of intersection of o with the absolute A, provided CGo.

Theorem 7. Any hypercycle which is not a line is a conic.

Proof. Since a hypercycle has 2(n—1)/2+2=un+ 1 points, we again need only
prove that no three are collinear. Because of Lemma 1, we must show it is impossible
for M (or N) to be collinear with two points of the hypercycle, one from each of the
ultracycles. Suppose M is collinear with X and Y'= oa(X") =0a00(X) for some acG.
But as before, Y'=oa(X") implies A, X', Y' are collinear. Since A£o, A and M
are both incident with the distinct lines o and Y'X', so that A—M, a contradiction.
Thus a hypercycle is an oval, and so a conic by Segre’s theorem ([8]). O

The ultracycle described here is analogous to the two-branched equidistant curve
of the classical hyperbolic plane ([1], pp. 216—217). Again we note that since any
diameter of a hypercycle cuts the hypercycle twice, once in each branch, the (n—1)/2
distinct points on each line of G yield (n—1)/4 concentric hypercycles.
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SINGULARITIES OF THE STABILITY FRONTIER
OF GENERIC FAMILIES OF LINEAR
DIFFERENTIAL EQUATIONS

IhOANG HUU DUONG! and NGUYEN VAN MINH (Hanoi)

I. Introduction

Let us consider the family of linear dilferential equations
@) a,(AyD+a,-iA/"-)+...+al(A)/+a0(X)y =0

where A, Aisa C*-manifold, afiC*“(A, R),/=0, 1, The set of values of the
parameter Xin which the greatest real part of the roots of the characteristic poly-
nomial is annulled, is called stability frontier.

For arbitrary dj, j=0,1, ..., n the stability frontier has a very complicated
structure, even locally speaking [1], [2]. But under some conditions we are going to
define below, its local structure can be classified. For the case an(X)=1 L. V. Levan-
tovsky [3] has shown that the stability frontier of the generic families has only a finite
number of local models.

In this paper we shall give a list of local models to which the stability frontier of
an arbitrary generic family is locally equivalent.

Il. Stratification of the space of polynomials

Let M be the space of polynomials an+ ... +alr+a0 where al+al !+...+
+afr"O, and let F be the stability frontier of this space, i.e. the set of polynomials
whose greatest real parts of the roots is annulled.

Definition 2.1. We denote by L,(k; ky, ..., k) the subset of F in which the
greatest real part is reached at one real root with multiplicity k, r pairs of complex
roots with multiplicities k1,...,kr, respectively and a,=a,_1=..=a,_ ,+1=0,

0 where a} are coefficients of the polynomials in M, j —0, 1, ..., n.

Theorem of Decomposition (See [4]). Each polynomial Jgo aj{ whose coeffi-
dents belong to the ring of germs of smooth functions at p can be decomposed into
factors as follows:

n
jgoajd =jI;Ile(t) =M QM =1 QM .m
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where a*C*, the ring ofgerms ofsmoothfunction atp, /1, y'=0,1, ...1,

Pj(0 = (t-CCj)KI+ 2 Ujh(t-Zj)kI-h
j(0 = ( J)+h_lJ( j)KI-h,

QK(0 = (t-B k—iw j P+ 2 , vkh(t-BK-iWK) %~ \

&

h
QM = (t-B k+iwk)r*+hZ=1th(t-f3k+iwk) f-h

R = 2 L= n',-=2. Kj- 24=21 4,
ujhEMp, the ideal o f germs of smoothfunctions being annulled at thepointp ,h=\, 2,
.o kjry=lL 2, mvihdJ/p, the ideal ofgerms of complex valued smooth functions
being annulled at the pointp, h=1,2, ...,lj, 7=1,2, gnEMp, h=1.2, ...L,
90e ¢ “\M p.

Lemma 2.1. LTk, Kk, ...,kr) is a submanifold of M whose codimension equals
I+k +2iglk{—r.

Proof. By using the Theorem of Decomposition we have

2 xf = P(0) mtf Ok(Tq mt| Qk(T) (1) *5(0

where xt:(x09I19 .. xnNERMHy-+X (/=0, 1,

2 kr),

P(O=(t-a”- hZ=| ah(t-~al)k~h

h
Qa i) = (T=bji)- ,2,bjh{i-bjlj-h, 4§ =t-iwj,
s(t)= 2 dih

This polynomial will become constant at the point p. R(t)=R1(t)...Rs(t) where the
factors Rj{t) (j= 1, ..., n) have the form

Ri(t) = (t-yj)m+ 2 dh{t-yj)mh
where the real parts of jj are negative.
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It is clear that in a neighbourhood ofp, the set Lfik; ky, ...kr) is determined by
the following equations:

ah: O, (B _& e K
Rebjh=0, A=12,..kj; j=1,2,...,r
Imbjh=0, h=23, .« k}\ y=12 ..., r
G=0 A=1.2,.

Besides, it is not difficult to show that the system (1) is composed of independent
equations. So we have the conclusion of the lemma.
From this lemma and the definition of Lfik; kk, ..., kr) it follows that

F=\jL,(k;KklI7 ..., kn) (disjoint union)

where |, k, k, kr run throughout the set of natural numbers, each Lt(k; k17 ...,

kr) is a submanifold. It is not difficult to prove that this decomposition of Fis in
fact a stratification of F. But in what follows we need only the decompositionin to
disjoint submanifolds of F.

I11.  Local models of singularities

Definition 3.1. Every mapping A*M transversal to every stratum L,(k; kK, ...,
..., kr) is called a generic family.

Corollary 3.1. The genericfamiliesform an everywhere dense set in C°°(A, M)>
more precisely a Baire setin C°°(A, M).

Theorem 3.1. For every genericfamily of differential equations
an(X)y(n+... + Gi(A)/+ 6oWy = 0
the stabilityfrontier is locally equivalent to one o f thefollowing surfaces:
0 = max (*i+/i(*2, ... xK), yn +Vj(yJ3, yjt, ..., yj2kj), £(y0L, y(2 ... yQ))

where xI5 x2|_- XK, ya, V-3, yjt, -mmyj2kj, Yoi1» Yp>ee»Td/5./=1» 2, ..., r are
the k+1+2 ff kj—r fist coordinates of Rdnfl p(x2, ..., xK is the greatest real

part of all the roots of the polynomial tk—i_Kz**/*“*, Vj(yJ0 yji&l) % *he

y
greatest real part of all the roots of the polynomial ti —hZ:JZ(YFIﬂ—F+¢/bI)****
C(>0i, yo2, --YM) is the greatest real part ofall the roots of the polynomial

i
Toiil+ To2li_1+ --+yod+1 if 7g1yb n O’
£= if 72:1ylj =°
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Proof. Let us consider the generic family in a neighbourhood of p£
L,(k; kx, ..., kr). From the transversality of the family to br(k; ku .... kr) and the
equations (1) determining L,(k\ /q, kr) it follows that the stability frontier in a
neighbourhood of 20where the family belongs to the submanifold L,(k; /q, kn)
is equivalent to the surface mentioned above by a local diffeomorphism. Besides, we
have the inequality

I+k+2 2 kj—r S.dimA.

7=1
Remark. From Theorem 3.1 it is easy to see that there is only a finite number of
local models for every fixed nand fixed dim A (see L. V. Levantovsky [3] for the case
the generic family having the form

yU+al?yf-1)+...+a,;ly =0
and the surface mentioned above can be modified as follows
0 = max (axt p G, ... xK), yn +Vj(yj3, ... yJAj))
and k+2 72:1 Kj—r=dim A),

IV. List of local models of the stability frontier

Codimer.sion Number of strata Strata
0 0 Z,(); LROI
1 2
2 5 £,,(2); i.0(0 1, 1), 7-0(1 1)
Z.i(l); L,(01
3 10
4 17

Proposition 4.1. The stabilityfrontier ofgenericfamilies o f\, 2, 3, 4 parameters
posseses exactly 1, 4, 11, 23 different local normalforms.

Proof. By calculating concretely we obtain the conclusion.

A. The case dim A=1. The stability frontier is composed of isolated points in
the space of parameters.

B. The case dim J1=2. The local models are germs at 0 of the following curves
in R2:

Yy
y
X
;max.(x,y)if
°: [o =*.;u<y)} =max.(x,y)J o
v ( ! max.(Xcg) if]}
Y—o
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C. The case dim A=3. The local models are germs at 0 of the following sur-

faces in R3
LO(1), LO(O, 1 {0 = a}

Lo(l, 1), z0(0, 1, 1) {0 = max (a, y)}
. ! if yro0
Lov) o —A+i'] z <0

i yn
Li(), LAO, 1) 0= M —-] i YN0
max (a, —co) if y =0

LOB)  {0= x+ju(y, 2}
i,,(2,1) {o= max(*+{»
LO(L 4 1), LOO 111 {0 = max(ay, 2)}

Ly,=01 if zpi
A (1,1, LAO 1,1) 0= m'X= Y, if zpio

max (a, y, — if z=0
1 N
maxl_| | Ii]:‘ ! OO, I'I if zpi0
LA2 if 770 )
Uy ; -
maxH 0 if y<o ) if z=0

LAL, LAO,1) 0= max(a £0, 2)}
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ON THE CONSTRUCTION OF A CLASS
OF ABUNDANT SEMIGROUPS

A. EL-QALLALI (Tripoli)

0. Introduction

On a semigroup S, the relation 0f* (&?*) is defined by the rule that a £ **b {affl*b)
if and only if the elements a, b of S are related by Green’s relation ££ (>K) in some
oversemigroup of S. Following Fountain [7] we say that a semigroup in which each
J57*-class and each ,"*-class contains an idempotent is abundant. When the idempo-
tents commute in an abundant semigruop, then it is called an adequate semigroup.
An adequate semigroup .Sinwhich eSTMaS=eaS and SelSa=Sae forany e2=e,
ad S is called a type A semigroup. Adequate semigroups as well as type A semigroups
have been studied by Fountain [6]. Inverse semigroups are contained properly in the
class of type A semigroups. Some properties of inverse semigroups were extended to
type A semigroups (see Fountain [6]).

Recall that regular semigroups are abundant semigroups and in this case J2?*=
= ££ and OL*—01 Blyth and McFadden [2] described a contruction of all regular
semigroups S that possess a normal medial idempotent u. It follows in that case that
uSu is an inverse monoid. The “building bricks” in that construction are the idem-
potent-generated regular semigroups with a normal medial idempotent and the inverse
monoids.

In this paper we extend that construction to a class of abundant semigroups S
in which the idempotents generate a regular subsemigroup and possess a normal me-
dial idempotent n such that uSu is a type A semigroup. Clearly, this class of abundant
semigroups contains the class of regular semigroups considered by Blyth and McFad-
den [2]. The “building bricks” of this construction are the idempotent-generated
regular semigroups with a normal medial idempotent and the type A monoids. The
approach adopted closely follows that used by Blyth and McFadden [2].

In the first section we introduce the basic concepts. In Section 2 we give some
properties of abundant semigrioups that possess a normal medial idempotent. Sec-
tions 3 and 4 are concerned with the general construction which includes a struc-
ture theorem for the class of semigroups under consideration. In the final section we
indicate how this construction can be put to use.

1. Preliminaries

We begin by recalling some of the basic facts about the relations ££* and Sk*.
As stated in the introduction, the relation (96" is defined on a semigroup S by
the rule that a3?*b (a>K*b) if and only if the elements, a, b of S are related by Green’s
relation ££{K) in some oversemigroup of S. Evidently (&?%)is a right (left) con-
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gruence on S. We put X*=3?*C\0l*. An alternative description of if’ (3#*) is pro-
vided by the following lemma.

Lemma 1.1 [6]. Let S beasemigroup andlet a bfS. Then thefollowing conditions
are equivalent:

1) afT*b (aSt*h);

2) forany x,y"*S1 ax=ay (xa—ya) ifandonly if bx=by (xb=yb).

As an easy consequence of Lemma 1.1 we have:

Corollary 1.2. Let S be a semigroup, a£S and e be an idempotent of S. Then
the following conditions are equivalent:

1) aL*e (aR*e);

2) ae=a(ea=a) and, for x,ydS1 ax=ay (xa=ya) implies ex=ey (xe=ye).

Obviously, on any semigroup S, we have ITQJT*, SIQSt*. It is well-known
and easy to see for regular elements a, bin S, that aET*b (aSt*b) if and only if
aifb (ablb). In particular, if S is a regular semigroup, then if*=if and £%*=8t
on S.

Let S be an abundant semigroup with the set E of idempotents and let U be an
abundant subsemigroup of S. Wesay that £/is a left (right) *-subsemigroup if for any
ad U, there exists edUC\E suchthat a”*se (aM*se). U is called a *-subsemigroup
if it is left and right *-subsemigroup. From El-Qallali [3] we have the following.

Proposition 1.3. Let S be an abundant semigroup and U be an abundant subsemi-
group of S. Uis a *-subsemigroup if and only if

£f*v = if«n(C/xC/) and SI*u= ®*sn(UxU).

Corollary 1.4. Let S be an abundant semigroup and e an idempotent of S. Then
eSe is a *-subsemigroup.

If the set of idempotents of S forms a band B, then S is called quasi-adequate.

For any elementa in S, let
a+£R*0OB, a*fEL*nB

and E(e) as in [8] be the -class in B that contains the idempotent e. Define the
relation 6on S by the rule (x, y)dS ifand only if x=eyf forsome efE (y+), fEE(y*).

A semigroup homomorphism and a congruence relation on S are good if they
preserve the relations £g* and St*. The properties of good homomorphisms and the
relation 6 have been examined in [5]. One of the main properties of 6 is included in the
following proposition:

Proposition 1.5 [5]. | f S is a quasi-adequate semigroup and S is a congruence on S
then 6 is the minimum adequate good congruence on S.

A quasi-adequate semigroup S is idempotent-connected when for each element a
of S, there is a bijection a: (a+>—a*) satisfying xa=a(xa) forall xR a+). Atype
A semigroup is an idempotent-connected adequate semigroup. This is equivalent to the
definition given in the introduction (cf. [4]).

A quasi-adequate semigroup S with band of idempotents B is split when 8 is

a congruence on S and the natural homomorphism 8”: S-»S/8 is splitin that there
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A CLASS OF ABUNDANT SEMIGROUPS 79

is a good homomorphism n: S/67S such that neS”™Is/a- In [3] we studied the
split quasi-adequate semigroups which satisfy the following condition: There is a
splitting homomorphism n: S/6”S suchthat forany aflmu, thereisan T-preserv-
ing bijection 0: a+Ba+-*a*Ba* with xa=a(xB) forany x£a-+Ba+ where Fis the
set of idempotents of Im n.

It turns out that the semigroup which will be considered in Section 5 can be de-
composed into two semigroups each one of them lies in the class of split quasi-ade-
quate semigroups which was described in [3].

2. Normal medial idempotents

Let S be an abundant semigroup and E the set of its idempotents. Let (E) be the
subsemigroup generated by E. Following Blyth and McFadden [2], we say that an
idempotent u in S is medial if it is such that x —xux for any min (E). A medial
idempotent 1 will be called normal if the subband u{E)u is a semilattice. Now assume
throughout this section that S is an abundant semigroup with a normal medial idem-
potent u. As a generalization of Theorem 2.2 in [2] we have the following:

Proposition 2.1. (i) S is quasi-adequate if and only if n is a middle unit.
(ii) S is adequate ifand only ifu is an identity element.

Proof, i) If nis a middle unit then x=xux=xx for any x in <€). Therefore
(E)=E and S is quasi-adequate. Conversely, let S be quasi-adequate. Irben E is a
band, S is conguence on E and the ~-classes of E are the rectangular bands E(e)
where e£E. Now, since

E (x) = E(xux) = E(uxu)

we have xSiuxu. Then uxyuSxySuxu -uyu for any x,yEE. Thus uxyu=uxu suyu,
and
Xy = XUXYUY = X *UXU eUyU By -- XUY.

Hence u is a middle unit for E and hence also for S because for any a, b~S, there
exist e, fEE suchthat af£*e and bM'f whence

ab = aefb = aeufb = aub.
(i) If S’is adequate and e£E then
e = eue = el = eu = Ue.

Therefore, au=aeu=ae=a and ua=ufa=fa=a forany a£S where e£EL*E and
A K ME. Hence nis an identity element. Conversely, if u is the identity element of S
then E is a band by (i) and

ef= ueumufu = ufu eueu =fe

for any e,f(zE. Hence S is adequate.
Proposition 2.2. USU is an adequate *-subsemigroup with v as an identity element.
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Proof. uSuis an abundant *-subsemigroup by Corollary 1.4 and u(E)u is a
semilattice. Hence uSu is adequate. Obviously u is the identity element of uSu.

S is said to be locally adequate if eSe is an adequate subsemigroup for any idem-
potent ein S. By a similar proofas in [2] we have the following.

Proposition 2.3. S is locally adequate.

3. Construction

In this section we consider the abundant semigroups satisfying the following
conditions:

A) The set of idempotents E of S generates a regular subsemigroup (E).

B) S contains a normal medial idempotent u.

C) uSu is a type A semigroup.

Itis easy to see that this class of abundant semigroups properly contains the class
of regular semigroups that possess a normal medial idempotent. Therefore, the con-
struction of the class of semigroups considered in this section extends that considered
in [2]. Indeed, our approach is inspired by that in [2]. In particular, the “building
bricks” in this construction will be idempotent-generated regular semigroups with
normal medial idempotent which are characterized in [2] and type A semigroups which
are analogues of inverse semigroups.

Suppose then that (E) is an idempotent-generated regular semigroup with a nor-
mal medial idempotent u. Let E° be the semilattice u(E)u and suppose that S is an
adequate semigroup whose semilattice of idempotents is isomorphic to E°. For nota-
tional convenience, we shall identify this semilattice with E°. In doing so, we shall see
that n becomes the identity element of S as well as that of E°; for, if af:S then we
have e£L*(S)C\E° sothat e=eu and it follows by Corollary 1.2 that a=an and
likewise a=ua.

Now let TEobe the set of all isomorphisms between the principal ideals of E°.
Given 0, (pETM with d:ege °~feE°® and < e(EE [pEa we recall (see [8]) that
6(p: es.,,,E°-*/BE° where ce,= (/fe,,)0-1 and /" = (fe<)<A

Moreover, TED is an inverse semigroup. Observe that if x£(E) and BETE0
then

eBxeB = (eOun)x(mneB) = ee(uxu)eefeeE°e0= eOE°.

Consequently, if 1F((E)) denotes the full transformation semigroup on (E) then we
can extend any 06Te0to a mapping 063T((E)) by defining

XO = (ag¥Cq0 for any x£(E).

Then we know from [2] that the mapping TE-»"{{E)) described by 0—0is a homo-
morphism.

For any element aiin S there is a unique idempotent e in L* and a unique idem-
potent/in R*(cf. [6]), so let the idempotent in L* be denoted by a* and the idempotent
in R* be denoted by a+. Suppose now that S is a type A semigroup. From [6] we have
a homomorphism a:s - te0 defined by aoc—<a where aa:a-+E°—a*E° such that
eaa=(ea)*, foc~1=(af)+ for any a£S, efa+E°, fEa*E°.
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Thus, for any a, b£S, we have
<adb = za: (ab)+E° - (ab)*E°

where (ab)+=(a*bHtx~1 and (ab)*=(a*b+btb.

In what follows a denotes the composite homomorphism S'— 0-"«£))
described by a—aa—aa.

Continuing with the above hypotheses on (E), E° and S, let JI? and A denote
Green’s relations on (E). Then, as in Blyth and McFadden [2] and in El-Qallali [3]
we have the following fundamental result.

Proposition 3.1. Given a,b£S, let g,h,v,wd(E) besuchthat

g&a+, WNdAa*, vSeb+ w®b*.
Then hvEE° and

g(hv)ota2EP(ahvb)+, (hv)dbmwvM(ahvb)*.
Proof. Notice that

hv = a*hvb+ = ua*hvb+ufu(E)u = E°
and

g(hv)ccadl(ahvb)+ = g(a*hva*)aLl(a*hvb+x~1= g(a* hva*hvb+Ha“1l =
= g(a*hva*)tx~1= g(hv)a“1,
(ahvb)+g(hv)a“1= (a*hvbHa~la+g(a*hva*)a~1= (a*hvb+a*tva*)<x, 1=
= (a*hvb+)a“l= (ahvb+)+= (ahvb)+.
Consequently, we see that g-(hv)a~1£'(ahvb)+ Similarly, we can show that
(hv)oTh mvM(ahvb)™.

Now, since gu=ga+tu=ga+=g and uh=ua*h=a*h=h, we have gd(E)u
and h£u(E). Also we notice that (E)u is a subband since, for any yE(E)u, y=xu
for some xd(E) and y w/—xu u=xu—y. Similarly u(E) is a subband. There-
fore Proposition 3.1 shows that if we define

W =W(E, S, a) = {(g, a h)E(E)uXSXu(E); gJz?a+, 1rdda*}
then the expression
(g, & h)(v, b, i) = (g m(hv)a~\ ahvb, (hv)5Tbmw)

defines a binary operation on W. The following sequence of results provides consid-
erably more information.

Proposition 3.2. W is a semigroup.
Proof. Let(g, a h), (v, b, w) and (x, ¢, y) be in W. Then
[(9, & h)(v, b, w)\(x,c,y) =(gm(hv)ahvb, (hv)Tomw)(x, c,y) =
=(gW ~'C W v ~i, ahvb(hv)Th-wxc, ((hv)yThmwx)STc my)
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and

(9, & h)[(v, b, w)(x, c, jO = (g, & h)(v(wx)af\ bwxc, (wxfay) =

—(g(hv(wx)ab*))a~r, ahv(wx)y.fowxc, (hv(wx)cGI)<sbnsc «(wx)al «>).

Notice that

g(hv)a~1m((hv)Thwx)adhlb = g(hv)y~1((hv)f wx)aflasrla~1=

= g [hv((hv)(wx)atDaradl= g[hv(wx)abT(x-1
Similarly
(hv(wx)abD)cchwe mwx)acy = [(hv) Thwx]Tcwy.

Since S is type A, then

b(/m)c = b(b+hvb+Hab= b+hvb+h = hvb
and
bwx = bb*wxb* — (b*wxb*)yb 1lbwx = (wx)ub 1bwx.

Therefore
ahvb(hv)oTbwxc = ahvbwxc — ahv (wx) ab rbwxc

and the associativity holds.
Proposition 3.3. The set of idempotents of W is
E(W) = {(g, a, h): a-a = a,g = ghg, h = hgh}.
Proof. FOr any (g, a, h) in W we have

(9. a h) (g, a, h) = (g(hg)oc~1, ahga, (hg)dTeh) =
= (g(a*hga*)a™l, afiga, (atfigat+)aleh) = (g(a/ig)+, Wigd, (hgafh).
Thus, if (g, a, /r) is an idempotent, then a=ahga which by Corollary 1.2 implies
a+=ahga+=ahg and a*=a*hga=hga. Consequently, as hgfEn is an idempotent,

we have
a = ahga = ahg mhga = a+a*£E°.

Thus ais an idempotent. It follows that a+=a=a* and so
(9, & h)(g, a, h) = (gahg, ahga, hgah) = (ghg, a, hgh).

Thus g=ghg and h=hgh.

Suppose, conversely, that (g, a, h)dW is such that a-a=a, ghg=g and hgh=
=h. Then a+=a=a*. Since gTfa, therefore ug=ua=a and hu=au=a ([2],
Theorem 2.1).

Now, since ah=h and a=ug, we see that ugh=h and hu-ugh =huh which
imply hugh=h. Therefore

hg = hugh g = hughg = hug.
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Thus
ahga = ahuga = (ahu)(uga) —(a<a)(am) = a-a=a
and
(@, a h)(g, a h) = (9(ahg)+, ahga, (hga)*h) = (ga, a, ah) = (g, &, h).
Hence (g, a, h) is an idempotent.
Proposition 3.4. W is abundant.

Proof. Given (g, a, h)dW. Consider (g,a+a+. We conclude from Propo-
sition 3.3 that (g, a+ a+) is an idempotent in W. Also

(9, a+, a#)(g, a, h) = (g(a+g)cc~f at+a+ga, (a+g)Tah) = (g, a h).
Now let (v, b, tv)and (x, ¢, y) be in W so that
(v, b, w)(@, a h) = (x, ¢, ¥)(g, a h)
i.e. (v(wg)a”l, bwga, (wg)YJi)=(x(yg)xcyga, (yg)Ta-h). Then we have
viwg)"1l= x(ygK "1,

bwga=cyga which by Corollary 1.2 implies bwga+=cyga+. Similarly, (Wg)Weh—
= (ygWeh implies a+wga+=a+yga+, ie. (wg)o&=(yg)x".
However,

(v, b, w)(g, a+, a+) = (viwg)”"], bwga+, (wg)aa+ea+)
and
(x, ¢, y)(g, at+, at) = (x(yg)ayl cyga+, (yg)a," ma+).
Thus we conlude
(t, b, w)(g, a+, a+) = (X, ¢, y)(9, a+, a+).

Now by Corollary 1.2, we get (g, a, h)E%*(g, a+ a+). Similarly, the idempotent
(@*, a*, h) is u?*-related to (g, a, h). Hence the result.

Corollary 3.5.Forany (g, a, h) and (v, b, tv) in E(W) we have
1) (g, a, h)EF(v, b, tv) ifand only if a=b and h=w;
2) (g9, a,h)0t(v,b,w) ifandonlyif a=b and g=v.

Proof. 1) From the proof of Proposition 3.4, we have
(9, & h)L*(a*, a*, h) and (v, b, w)&*(b*, b*, tv).
If a=b and h=w, then a*=b* and we have
(@* a*, h) = (b* b*, tv and (g, a, h)SF*(v, b, tv).
Since they are regular elements, we obtain
(9, a h):s?0, b, tv).
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Suppose, conversely that (g, a, h)Sf(v, b, tv). Then

(9, a h)(v,b,tv) = (9, a h)

and
0, b, w)(g, & h) = (v, b, tv),
that is
(g(hida“1, ahvb, (hv)¥bw) = (g,a, h)
and

(v(wg)oibl, bwga, (wgWah) = (v, b, tv).

Since a and b are idempotents, hence we get

(gahva, ahvb, bhvbw) = (g, a, h)
and

(vbwgb, bwga, awgah) - (r, h, tv).
Thus

(9fiv, hv, hw) = (g, a, h) and (nvj, tvg, tvitg) = (v, b, tv).

It follows that hv=a, hvw—h whence aw=h. Similarly, wg=b and bh=w. Now
aw=h, bh=w imply abh=aw=h, whence ¢pa=a. On the other hand, balv=bh—
=tv implies bab—b. Since a,b£E°, we obtain a=b and hRa=bRw. Notice that
aw=h implies hw=h and bh=w implies wh=w so that wLh. Thus hHw and

h=w.
2) is proved similarly to ().

Coroltary 3.6. The relations SE*, 31* and H* on W are given by
D (g, a, h)ET*(v, b, tv) ifand only if aST*h and h=w;

2) (#, a, h)3%*(v, b, tv) if and only if a3i*b and g=v;

3) (9, a h)j**(v, b, tv) ifand only if aXK*b, h=w and g—v.

Proof. Since (3) is an immediate consequence of (1) and (2), and (2) is the dual
of (2), it suffices to prove (1).
From the proof of Proposition 3.4, we have

(9, a, h)EP*(a*, a*, h), (v, b, w)J?*(b*, b*, tv).
Then
(9, a, h)&*(v, b, tv) 0 (a*, a*, h)Se(b*, b*, tv)

«a*=Db* and h = tv(Corollary 3.5) <>a3T*b and h=1tv
From [2] we have
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Proposition 3.7. | f {E(W)) denotes the subsemigroup o fW generated by the set
ofidempotents E(W), then

4 (W)) = {(g, a,h)eW: a-a = a}.
Proposition 3.8. (1, 1, W) is a normal medial idempotent in W.

Proof. The same as in Blyth and McFadden [2].
Also from [2] we have

Proposition 3.9. (E(W)") is isomorphic to (E).

Now consider the subsemigroup (u, u, u)W(u, n, n) of W. Notice that, for any
(9, a, h)EW, we have a*=ha*—hua*=a*hu=hu and ug=a-+. Then we obtain that

(1, u, u)(g, a, h)(u, n, n) = (1, n, u)(g(hu)=dl, ahu, (h u oun) =
= (n, n, u)(g(a*)arl, ahua*, uhu) = {u, u, u)(ga+ aa*, a*hu) =
= O, n, u)(g, a, @) = (u(ug)a“l, uga, (ugfaa*) =
=(n(a+)oc“], a, (a+)ccaa*) = (a+, a, a*).
It is now clear that we can define a bijection
9: (u, u, WW (u, u, u) -*S
by (a+ a, a*)9=a. Notice that
(a+, a, a*)(b+ b, b*) = (aHa*b+)"1 aa*b+h, (a*b+)Tho*) =
= {a+(ab)+, ab, (ab)*b*) = ((ab)+, ab, (ab)*).
Therefore
((a+, a, a*)(b+, b, b*))9 = ((ab)+, ab, (ab)*)9 = ab = (a+, a, a*)9(b+, b, b*)9.
Thus we see that 9is an isomorphism and the following result is established.
Proposition 3.10. (u, u, u)W(u, u, u) is isomorphic to S.
Summing up, we have the following theorem:

Theorem 3.11. Let (E) be an idempotent-generated regular semigroup with a nor-
mal medial idempotent u, and S be a type A semigroup whose semilattice o fidempotents
is u(E)u. Then W=W(E, S, a) is an abundant semigroup which satisfies thefollowing
conditions:

(i) thesetofidempotents ofW generates a regular subsemigroup;
(i) W contains a normal medial idempotent (u, u, u) and;
(iii) (u, u, WYW(u, u, u) is a type A semigroup.

In fact, the converse of this theorem is also true as the subsequent section (Theo-
rem 4.5) will show.
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4. Characterization

The aim of this section is to prove that every abundant semigroup which satisfies
the conditions (A), (B) and (C) stated at the beginning of Section 3 is isomorphic to
some semigroup IV(E, S, a) constructed in that section. For this purpose, let S be
an abundant semigroup with set of idempotents E that generates a regular subsemi-
group (E) which possesses a normal medial idempotent n such that uSu is a type A
semigroup. Denote the set ofidempotents of uSu by E°. Clearly, we have E°=u(E")u.

Forany X£S, uxuduSu. Since uSuis a *-subsemigroup by Corollary 1.4, then
for any efE such that eR*xu, we get

ueM*uxu and (uxu)lMue.
Then ue=(uxu)+ue. Thus
ueu = (uxu)*ueu = ueu (uxu)+ = ue(uxu)* = (Mxm)A

Observe that eu is an idempotent and euMe. Therefore euM*xu. Also ueuifeu.

On the other hand, for any fdE with fSE*ux, ufSEf and ufSE*ux. Then
(uxu)*=ufu, also ujWtufu.

However eu and ufare uniquely determined by x because if there exist e’u, uf'
such that (uxu)+=ue'u and (uxu)*=uf'u, then euSA*xuSk*e'u and cuifeue=
= (uxu)+=ue’u™e'u. Thus emXXe'n and hence eu=e'u. Similarly uf=uf.

In this case let eu be denoted by exand ufbe denoted byf x.

Lemma 4.1. For any x,yES we have
() ejtx,fx&*x,

(i) exy=ex(uxey)+,

(i) Ny=(/xyn)*ly

Proof, (i) Since exxu=xu, then it follows that for any gd L*IME, exxgug=
=xgug. Therefore exx=x. Now, forany s,t£S, we have

SX = tXx=>sxu = txu=>sex = tex (ex'M*xu).

Hence exiM*x. Similarlyfx <€*x
(i) exfd *xyu3t*xey=exuxeyM*ex(uxey)+ so that

ex(uxey)+eexy = exy =>uex(uxey) +uexy = uexy =
=> uexyuex (uxey) + = uexy =>exyuexyex(uxey + = exyuexy =>exyex(uxey) + =exy.
But ex(uxey™ (tkexy. Hence exy=ex(uxey)+
(i) is similar to (ii).
Consider the semigroup W=W (E, uSu, a). Clearly (ex,uxu,fx)dW for any
xdS and we have a mapping 0:S-»W defined by xB={(ex, uxu,fx).
Lemma 4.2. B is injective.
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Proof. If xB=yB, then ex=ey, uxu=uyu and fx=fy. Thus
UXU x = uyufy =>uxfx = uyfy =ux = uy =
=>exux = eyuy =>exx = eyy =>x =Yy (Lemma 4.1 (i)).

Hence the result.

Lemma 4.3. B is surjective.

Proof. Let (g, x, h)EW. Then x=uxu, gE?x+ hMx*. Notice that gxh£S and

(gxh)6 = (egxh, ugxhu,fgd).

Also

ugxhu = ugu ex +exx*uhu —x +mugu *x muhu &* = x +gxhx* = x#x* = x.

Consequently, g£fx+=(ugxhu)+=ug(xhu)+ so that gug(xhu)+—g, i.e. g(xhu)+=
=g. Therefore

eghv* gxhu 26 g(xhu)+= g.
Thus egxh-g=g so that
uegdugu = ug=>ugu megh = ug =>gug egh = gug =>gegh = g.

But egx,Rg and hence g mgdh=egh. Thus egxh-g. Likewise f gxh=h. Hence (gxh)9 =
=(g, x, h) and 0 is surjective.

Lemma 4.4. B is a homomorphism.
Proof. Let X, yf S. Then
XOyO = (ex, uxu,fx)(ey, uyujj) =
= (ex(fxey)a-ju, uxufxeyuyu, (fxey)a”u-fy).
Since ufx=fx, eyu=ey, fx3?*ux and eyR*yu, we obtain
uxufxeyuyu = uxyu.
Also
ex{fryK™u = ex((uxuffxey(uxuf) aA = ex(uxufxey)+=
—ex(uxfxey)+ = ex(uxey)+ = exy (Lemma 4.1 (ii)).

Similarly, (fxey)ajj~u-fy=fxy. Therefore

X0 «yO = (exy, uxyu,fxy) = (xy)0

and B is a homomorphism.
Thus we have proved the following.
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Theorem 4.5. |f S is an abundant semigroup with set of idempotents E such that
() E generates a regular subsemigroup (E);
(i) S contains a normal medial idempotent u, and
(iii) uSu is a type A semigroup;
then S is isomorphic to the semigroup W(E, uSu, a).

5. Decomposition

Let S be an abundant semigroup which satisfies the conditions A), B) and C)
stated at the beginning of Section 3. Retain the notations of Section 4 about S, E,
(E), mand ex,fx forany xfS. Our objective in this section is to obtain a decompo-
sition of S which is similar to that in Blyth and McFadden [1]. For this reason we
need the following lemma:

Lemma 5.1. For any X, ydS, if uxu=uyu, then eyx=yfx.
Proof. Since
y = eyuyufy = eyuxufy = eyxfy
therefore
y(uyu)* = eyxfy(uyu)* = eyx(uxu)* = eyxu.
Thus
uy(uyu)* = ueyxu =>uyu = UeyXu =>eyuyu = eyueyxu =>
=>eyyu = eyxu =>yu = eyxu =>yufx - eyxufx =>yfx = ex.
Recall (see [2]) that F,, and ,,F are the equivalences associated with the translations
2, xwenx and  qu: XA XU

respectively. Equivalently, we have (x, y)EFu if and only if ux=uy, and (x, y)(zuF
ifand only if xu—yu. 1fwe denote by F the relation on S that is given by

XFy <>uxu = uyu
then we have the following proposition which is similar to Theorem 6.1 [2].
Proposition 5.2. F,,esWF=F=F F,.

Proof. Suppose that (v,y)fF, U Then there exists z£S suchthat ux=uz
and zu=yu. Then uxu=uzu—uyu and so (x,y)cF. Conversely, suppose that
(x, y)€F. Then uxu=uyu and, by Lemma 5.1, eyxx=yfx=t(say). Notice that

ut = uyfx = uyufx = uxu -fx = uxfx = ux,
tu = eyuxu = eyuyu = ey-yu —yu

and hence (x,y)EFumF. Thus F,-,F=F. Similarly, we can show that U-mF,,=F.
If we now define 5wj X |FuS={(xu, uy); xFy} then we have the following result.
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P roposition 5.3. There is a one-to-one correspondence between S and 5u| X IplVBL

Proof. It is clear that we have a map B: S'—Su\ X\FuS defined by xO= (xu, nx)
for any xCS. Now, if x,ydS such that xa=yB, then xu=yu. It follows that
uxu=uyu and we get

exMxu = yuM*ey, ex ¥ (nxu)+ = (uyu)+Zey
Then ex=ey. Similarly fx=fy. Therefore
X = exuxufx = eyuyufy = y

and 9 is injective. In order to see that 0 is also surjective, let (xm, My)6Sm X \FuS.
Then xFy, thatis, uxu=yuy. By Lemma 5.1, xfy=exy=s (say), s£S and

us = uxfy = uxufy = uyufy = uy, Su = exyu = exuyu = exuxu = Xu.
Therefore
s6 —(su, us) = (xu, uy).
Hence the result.

Now let S be quasi-adequate. By Proposition 2.1, n is a middle unit and for any
(xu,uy), (X'u,uy"), (zu,ut), (z'u,ut’) in Su\X\RIS, the equalities (xu,uy)—
=(X"u, uy"), (zu, ut)=(z'u, ut’) imply

XZU = xuzu =X'uz’u = x'z'u
and
uyt = uvut = uy'ut' = uy't".
Hence, we can define a binary operation on Sm X \FUS by the following rule:
(xu, uy) ¢(zu, ut) = (xzu, uyt) for any (xu, uy), (zu, ut)

in Sm X mS.

It is clear that this binary operation is associative and 9: S—Sn{ X |/.nb’ defined
by xB=(xu, ux) is a homomorphism.

It follows by Proposition 5.3 that 0 is an isomorphism, and the following result
is established.

Theorem 5.4. | f S is a quasi-adequate semigroup which contains a normal medial
idempotent nand uSu is a type A semigroup, then S is isomorphic to £m] X I'uS.

The significance of this result relies heavily on the structure of each of the sub-
semigroups Su and uS. We now retain the hypotheses of Theorem 5.4 and proceed to
investigate the main properties of Su and uS.

Lemma. 5.5. Su and uS are quasi-adequate.

Proof. Since S is quasi-adequate, then (E)=E and the set of idempotents of
Su is Eu which is a band. Let x be an element in Su, say, x=yu for some y£S.
Notice that

yHIX = y+HIyU = y+HIYy+HyU = yHU = yu =X
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and forany s, ii Su,
SX = IX =>Syu = tyu =»syy*uy* = tyy*uy* =>sy = ty =>sy+= ty+=
=>sy+u = ty+u.

Therefore, by Corollary 1.2, x3t*y+u in Su. Since ySf*y*, then yuS?*y*u and
X cg*y*uin Su. Hence Su is quasi-adequate. Similarly uS is quasi -adequate.

From the proof of Lemma 5.5, it is clear that each of the semigroups Su and uS
is a *-subsemigroup of S. Itis easily verified that Su and uS satisfy the hypotheses of
Theorem 5.4. In what follows we shall prove some more properties for uS and the dual
argument shows the same properties for Su.

Lemma 5.6. Let the relation S on uS be as defined in Section 1. Then (x, Y)ES if
and only if xu=yu for any x,y£uS.

Proof. Forany x andy in uS, we have (x,y)£6 ifand onlyif x=eyf for some
e£uS(~)E(y+ and fEuS(~)E(y*), which implies xu=eyfu; But

xu = eyfu (in uSu)

= yfu(eyfu)* (uSu is type A)
=yy*ufu(ey+uyy*ufu)* = yfuy*u(y+ueyfuy*uf = yy*fy* (y+ey+yy*fy*uf =

= Y(ynT (FEE(y*), eeE(y+))

= yu(yu)* ((yu)* = u(yuf)

—yu.

On the other hand, let xu=yu. Then we have x*u=(xu)*=(yu)*=y*n whichimplies
X*FUX* =y*ux* i.e., x*=y*x*, and x*uy*=y*uy*, i.e., x*y*—y*. Therefore x*3iy*,
in particular x*£E(y*). But also

XU = yuMr> Xux* = yux* =x =y +yx*
where y+EE(x+), x*ZE(y*). Hence (X, y)(L5.
Corollary 5.7. Sis acongruence on usS.

Proof. It is an immediate consequence of Lemma 5.6 that 5 is a left congruence.
To show that Gis also right compatible, let x, y, cduS. Then we get

(X, Y)E6 =>Xu = yu =»xuc =yuc =»xc = yc (cEuS)=>

=>XCU = ycu =m(Xc, YC)£G.

Hence the result.

Now it follows by Proposition 1.5 that 6 is the minimum adequate good congru-
ence on uS. Difine «.: uS/S-*S by (xd)n=xu for any x6ZuS/6. Since xSyb=>
<>(x y)dooxu=yu and for any x5 y0"*uS/6,

(X0 *y5)k = (xy)ak = xyit = xuyn = (xg)n «(ya)n,
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therefore n is a monomorphism. To verify the goodness of 51, let xb and yd be elements
in uS/6 such that xbfE*yb in iiS/6. Since X,yZuS, uS is a *-subsemigroup of
S, xSe*x*, yfE*y* and 4 is good then xbfE*x*b in uS/g and ybJE*y*b in uS/b
and we get x*bSC*y*b in uS/b which is an adequate semigroup. Thus, x*b =y*b
which implies x*u—y*u. But x*uf£*xu, y*uM*yu in .S. Therefore xuSE*yu in S i.e,
(xb)n£?*(yb)n and n preserves the relation f£*. To show that n preserves also the
relation ét*, let xb and yb be elements in uS/b such that xb3t*yb in uS/b. Then
we get x +hét*xb, y-+b3t*yb in the adequate semigroup uS/b. Therefore x +d=y+b
which implies x-+Hui=y-+u. Since X-+uxu—xu and

axum = XU =>SX = tX =SX+Hu = tXx+Hu

for any s, tES, therefore x-+u3t*xu. Similarly y+uMyu. Therefore xu3t*yu i.e.,
(xb)nEA*(yb)n. Hence n is good. Moreover, we notice that (xb)n <b”=(xu)b=xb
which means n m8'= [uS/i. Thus the following result is proved:

Theorem 5.8. US is a split quasi-adequate semigroup.

Notice that Im n= {xu: xEuS}=uSu which is a type A semigroup whose semi
lattice of idempotents is uEu. For any aglm n, choose a+and a* to be in uEu. Then

a+uEa+ —a+uEua+- atuEu, a*uEa* = a*uEua* = a*uEu

and we have the bijection aa:a-+uEa+-»a*uEa* defined by eaa=(ed)*. Hence we
conclude that uS is a split quasi-adequate semigroup which satisfies the required con-
dition [f(ir the class of semigroups considered in [3], and therefore uS can be described
as in [3].

The author would like to thank the referee for his valuable suggestions.
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EXTENSIONS OF DISCRETE AND EQUAL BAIRE
FUNCTIONS

A. CSASZAR (Budapest)*, member of the Academy

0. Introduction In the paper [3], two stronger kinds of pointwise convergence of
sequences of real-valued functions, discrete and equal convergence, have been intro-
duced. [3], [4], [5] have investigated the Baire classes based on these convergence types;
the respective definitions (in their final form) can be found in [5], Sections 1 and 3.
Our present purpose is to study extension theorems corresponding to these classes,
similar to those valid for Baire classes based on pointwise convergence.

The author is thankful to Dr. M. Laczkovich for valuable remarks.

1. Perfect, normal ~-lattices. Let JI be a system of subsets of a set X. We say
that J1 is normal iff M,, MJJ4, M, MM, =0 imply the existence of NIt N2£Jlc=
= [X—M:M£JI1} such that

Mtc Nt, NxnNt=0.

Lemma 1.1. If ®is a subtractive lattice ([4], 1.3) on X, then 9(®) ([4], 1.4) isa
perfect, normal lattice ([4], 1.1) on Xsuch that O X£9(®).

Proof. According to [4], 3.2, we only have to prove the normality of 9(®).

If Px, Po£9(®), PL(TP2=0- leiftfi be taken from @ such that Pt= X (f=0) and
/iSO ([4], 3.1). Now

Oi = *(/i-12>0), Q=X If-f >0)
belong to 9(® )Cand satisfy P2c.0x, Qt'\Qi=V>- O

Lemma 1.2. Let9 be aperfect, normal b-lattice ([4], 1.1) on X such that 0, X£9.
Then ®= ®(9) ([4], \.4) is a complete, ordinary class ([4], 1.2,1.3) suchthat 9 =9(®).

Proof. By [4], 3.3, ®is a complete, ordinary class. Clearly 9(®)c9> so we
have to prove 9¢.9{®).

For this purpose, we introduce a binary relation < on the power set of X by
putting AcB iffthere are P4.9, Q£9Csuchthat

AcPaQaB.
It is easy to see that < is a topogeneous order ([2], p. 12) on X, and {<} is a topoge-

* Research supported by Hungarian National Foundation for Scientific Research, Grant 27—
3—232.
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nous structure ([2]. (7.7)) because A<"P(zQ(zB, Pd3, Q£3Cimplies
AczPczQ'cP'czQczB

for suitable sets P'£3, O'£3° (by the normality of IP), hence A<Q'<B.
Now let /*!, P2*3, N1 MF2=0 be given. By [2], (12.41), there is a function
[:JF—0, 1] such that f(x)=0 for x"Px, f(x)—1 for xEP2, and a,bdR, a<b

imply
X (fS f)<2T (/< h).

This function belongs to @ In fact, for cER, there are P,,€3, Q,,£3Csuch that

Asc)cP,cB,cdr(/<c +-i)
so that
X (f» c)=r1Pn&

because & is a "-lattice. X (fAc)EgP is proved in a similar manner:

x(f* C—i) ci.cftc *(/< q),

0,€"c hence *(/«?)=Y

@

For a given we write, by the perfectness of 3, X —P= (i P,, P,£3,
and choose functions f,,c® such that f,,(x)—0 for xEP, fn(x)=2~" for XEPn,
07f,,"2~n Then f= 2|fn belongs to ® and P=X(/*0)£3(P). O

2. Restriction of Baire and Bore! classes. Let & be a complete, ordinary class

onasetT, 3 =3(®), and let 3 X 2Xbe defined as in [4], 2, dxas in [4], 3.11.
For a given subset AcX, consider the trace

3(A) = 3\A = {P"A: P£3}

of the system 3. Since 3 is a perfect d-lattice ([4], 3.2), it is easily seen that 3(A) is a
perfect 6-lattice on A, 0, A£3(A), so that we can define

30(A) =0(A), 20(A) = {A-P: PZ3(A)},
3JA) = (Bydz R(A)f, 2XA) = %@3 R(A)Y,
A(A) = 3x(A)M2a(A).
Then all propositions in [4], Section 2 hold for these classes with A instead of X.
Proposition 2.1. For Os a<&>!, we have
38A = A A =2A
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Proof. Transfinite induction. O

Proposition 2.2. We have
rf&A ¢ J*a(A)

for If AEO*a and 1 then = holds instead of c.

Proof. The first part follows from 2.1. If B~sdfA), then 2?=PMNT =6Ibl for
suitable sets P"SPa, Q£&x- Since Bdi?x, provided A3PJ/1 and BaQ, by [4], 2.8,
there are sets Q', Qfsd” such that

Q'c X—B, Q"¢ Q QDQ"=0, QUQ"=X
Thus BdQ"dQ, B=Q"nA€sdJA. O
By [4], 3.3,
P(A) = D(&(A))

is a complete, ordinary class, and 0¥A)=0%®(A)). In fact, 0XA)>&FP(A)) by
definition, and ®\Ac®(A) implies

0>(A)cO>(D\A)CO> (D (1))

Thus we can define, starting from ®(A) and according to [4], 3.11, [5], Section 1, and
[5], Section 3, respectively, the pointwise, discrete, and equal Baire classes

®J1A), D?(A), DP>HAH
with the underlying set A.

Proposition 2.3. We have, for 0Osa<col, ®"*Aad™1), dMNAcDP(A),
PEHNcD<e)(A).

Proof. By [4], 3.14, ®=® (0y, hence /€® A implies F\A£ H&AA)=da(A).
From this, the statement concerning ®fe) follows by [5], 3.3 (or immediately for limit
ordinals a). For the case of ®™\[5], 1.2applies. O

For pointwise Baire classes, the following classical theorem holds:

Theorem 2.4. If 0 /f @,,(A), then there are a set A*£0a+l, A*d>Ay
and a function g£Oa(A*) suchthat f —g\A\ if A"3PJ]1 then A*=X can be chosen.

Proof. Consider first a bounded functionf say |/| ~c, and the sets
A* = A[fSS), A-=A[f*-IL).

Since /E® a(/1), wehave A+=ATIP+ A~=ADP~ forsuitablesets P+ P~£iPx.
Choose functions g, ht @ such that g, hsO, T(g=0)=P +, X{h—0)=P~. Define
Qi=X(g+h>0). Then AdQx*Rx, and the function

c 2 g
8l 3+ 3 g+h
satisfies

ft€*. (Ri), |gil Sj, \f(x)-gl()\s Li-
for xEA.
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We can repeat the construction for / —(g”A) instead of/because gI\A£0JA);
then cis repleaced by x . In this way we obtain sets Qni2.x such that Ac:Qn and
functions g,,€8x(Q,,) satisfying

2"-ir n 2nr
\gn\ = ——, ¥(*)- 2 s.(*)[ = -pr
for x£A.
Now

and g, \W*E ®X(A*) implies
g- 3 inE®*(A%)

because the series converges uniformly. Clearly f=g\A.

For an arbitrary /E® X(A), we consider /',=tanho/. Clearly /'*® XA). Choose
aset AZDA, AfE?x+l suchthat f'=g"\A for a suitable function "£® XA"). Define

A* = A'(\g'l < Defa(A") ¢ P+,

g = artanho (g'\A*)E OXA*),
then Ac:A*, f=g\A.

In the case AEEPX we have A+ A~cSPx, so that we can choose P+=A+,
P~=A~, and we obtain Q0=X. Inthe sequel Qn=X, A*=X, and the second part
of the statement turns out to be valid for a bounded /E® XA). For an unbounded
/, we define f'£ ®XA) as above and take gf® x suchthat f ' —g"A. Let b'’EdX be

chosen such that \h'\-s\, h'(x)=1 for x£A, h'(x)=0 for xEX(\g"\")£3?x. Then
EKMd X and \g'h'\<\, g'h"\A=f". Hence

g = artanhog'£®C
is the function looked for. O

The reader has certainly observed that the method of proof is taken from the
classical theorem of Tietze—Urysohn. In [6], 8§35, VI, Theorem, a quite different
method has been applied for the case aS|1, while, for a=0, the case ®=C(A), X
a metric space, has been treated by an elementary method that cannot be generalized
for the case of an arbitrary complete ordinary class ([6], 835,1, Theorem 1).

Corollary 2.5 (see [1]; [6], 8§35, VI, Corollary). If O [EPa(T), then
there is afunction gE®x+ suchthat f=g\A. O

3. Extension of discrete Baire functions. The second part of 2.4 says that the
first inclusion in 2.3 can be replaced by equality provided A£”x. For the second
inclusion, an essentially weaker statement can be proved:
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Theorem 3.1. The equality
DP\A = d(A)

holds if A£ZPo and orif AMat and an2.

Proof. We have to show that the sign z> holds. The case A$ 0%, a=0 is con-
tained in 2.4. Assume aél.
Let /<E®<«(JT). Then, by [5], 1.2,

A= (fAi, A fIx(A), f\Ai =gilAi, &ED(A).

If Ad&o, then Affa(A)=£JAc:£x, and £=Al4, NEP by 24 (for a=0).
Hence we can define
(3.1.1) £(*)=/(x) for x£A, g (X)=0 for XEX-—A,
and X—AE<&0c 4, implieos0 gE®PK) by [5], 1.2.

If AM2,i, then T-= !i] Bj, BfSP0. We introduce again the sets At and the
functions gi. By 2.4 gi\Bj=hij\Bj where ®. Thus

A= [J_OiAiDBj), A"Bje",
1=ij=i

further g\AiC\Bj=hij\Air\Bj. If a&2, then and gEp(d> O
Another very weak result is the following:

Proposition 3.2. If A£S/X, then

dMA = d«LA).
Proof. By [5], 1.2 again,

A :\IJAt, AfMA), /1Ai=giAi, g fd(A).
Now Af2.i=&>a so that we can suppose A"SP. Then by 2.4 fA\A i=gi\Al=hi\Ai
for suitable functions h f ®. By defining g according to (3.1.1), [5], 1.2yields g£ d*>
because X -Aa”. O

The hypothesis A£S0in 3.1 cannot be replaced by A£8Pr :

Example 3.3. Let ®=C(11), and/be a monotone function that has a jump at
every xCQ and is continuous on R—Q=QC

If A—Qc, then AC2PX f\A f~0(A) (because SP(A) is composed of the sets rela-
tively closed in A, hence ®(A) consists of the functions continuous on A). However,
if g: R-"R satisfies g\A=f\A then g cannot belong to any class ®(K In fact, if

R= f)j(At, for g/C(R), then, by Baire’s category theorem, J1;IMQc

is dense in Qcf)/ for an open interval | and for at least one i; this leads to a contra-
diction at a point rdQC\l. O
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Similarly, in 3.2, A~sf cannot be replaced by \ or A"2.x; the first asser-
tion follows from 3.3, the second one from 3.4:

Example 3.4. Let @/, Qc be the same as in 3.3, and A be a countable dense
subset of Qc. Now AZ2]5f\A£®DO(A), and f\A=g\A isimpossible for any g£

00
In fact, if R:(le4f, A fr, glA—ghAi, gt€C(R), then we can suppose A£(?0

so that at least one Atcontains an open interval 7. For ~ QT17, we obtain a contra-
dictionagain. O

We have better results concerning the analogue of 2.5:

Theorem 3.5. If/EDP/(A), a&2, then thereisaset A*z>A suchthat A*E>X,
f=g\A, gW'MA~*).

Proof. By [5] ,1.2,
N=Chlc, AEN(A), TIAI= giwi, EEO(A).

According to [4], 2.8, we can suppose that the sets Atare pairwise disjoint. Set
A, = Q,nA, Q£2a

Bi = Q- 4 QiZ-sf+i-

further

Clearly
Ai=BinA, n =V!La = Viﬂ,ﬂ,-
By 2.4, there exist sets Ctz"A satisfying
gi= h\A, bEd(Ca
for suitable functions 4. Define
A =AMMIC (3 A
Then A*££x (because a”2), A*I\B£n/a+l. Since the sets B{are pairwise disjoint,
we can define a function g on A* such that
g\A*C[Bt = b\A*C[B{.
By we get g€ '+Hi(A*), and clearly f=g\A. O
Corollary 3.6. If z=1, then the statement of 3.5 holdsfor a set A 'fsf.

Proof. The above construction applies with the only change A*£s/2 (because
BACASPf), A*OBfsd2. O

In 3.6, n/2cannot be replaced by In fact, let ®,/, A be the same as in 3.3. Now
if Qc=A<zA*££l1 and f=g\A, then g cannot belong to any class O<d)(A*). Assume

A*={1JAi, g\Ai=gi\At, g f ®(A*). Then by the Baire category theorem, J1;1C>C
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is dense in QQH7 for an i and an open interval 7. Since A*C\IE&x, A*C\la QcC\I
because the right hand side is not an F,, (by the category theorem again). At a point
*6(A*f)1)—A, we obtain a contradiction.

4. Extension of equal Baire functions. For the classes ®<), there exists a better
analogue of the second part of 2.4:

Theorem 4.1. If fa ®¥)(A), 0"a<col, and Afsf, then f=g\A for some
gf &), and d<1= de>(/).

Proof. If ®=0 or ais a limit ordinal, then ®[e)(A)—Px(A), @<e)= @1, hence
2.4 can be applied. Assume ct=R+1

By [5], 3.6,
A= (JAL ATEXR), NAI=gilAL gf<PB(A).

By 2.1, AfQ x so that we may suppose A f”R. Then, by 2.3, gi\Af dp{A),
and, by 24, g"A-h™Aj, hE<P,,. By putting g(x)=f(x) for xEA, g(x)=0 for
XAX—A, [5], 3.6 yields O

Observe that 3.2 is a particular case of 4.1 according to d[i)= Pfe> ([5], 3.3).
For the same reason, 3.3 and 3.4 show that, in general, Adjt?x cannot be replaced by
AfSPa or A£J a in the hypothesis.

The following theorem is the analogue of 2.5:

Theorem 4.2. 1T /6 ®QA), AczX, a=j9+I<cul, then f=g\A,
Proof. As in the previous proof,

A= {JAL ATEXA), NAI= gL gi"p(A).

Now we can proceed like in the proof of 3.5. We define Qi,Bh then C;3 A satisfying
Cf& BH=8<> gt=hi\A, AM®LC,). Now we construct A* as above and conclude
A*£s/a+l, A*nBfr/x+1; finally we define g on A*, and h]A*C dp(A*)a PXA*)
implies g"Q”iiA*). By 4.1, we can extend g to be an element of ®"1. O

3.3 shows that the statement of 4.2 is not valid for a=0.
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ON THE DIVERGENCE OF SOME FUNCTION SERIES

1. JOO (Budapest)

This paper is devoted to the study of the divergence of Fourier series. In the four
sections below we deal with the a.e., resp. the norm divergence of SR —S\Wf where
fi,— 0(1); thea.e. divergence for signed Toeplitz summations and another norm
divergence problem. We also formulate two corresponding problems.

1. Investigate first the pointwise divergence of a sequence of type SArf —S\A.

Lemma 1. Suppose {p,} and {v,} are natural numbers such that pn—+°°, v >
— +00 (N=-00) and define

1
() SK s, =V€Sjvcneh on J f(x)e mxdx.

Suppose that there exists fifL*O, 2n) such that
limsup IT,,ffix)\ >0

on a set ofpositive measure. Then there exists <5>0 andfor any 0 there exists
apolynomial f=fMsatisfying \A\\x* K with a constant K independent of M and 6;
further

2 syp \TI{x)\ > M (xEE)
where 7?cz[0, 2n] is a set of Lebesgue measure \E\>5,
Proof. We can suppose that
lim sup 17:/1(x)| & c0> 0 (xeEj
for a set Fj, IFjI*~-O. Fix an arbitrary M*>0. Letl
f(x):=M*.9Hfl-aM )(x)

where N and m will be specified later and SN denotes the N-th de la Vallée-Poussin
means. If m is large enough, T>TQqM*,"), then

WHi  cM*||/1-<xr(/D|ILS K.

+~.. +S2 SO+ ... +SN
, o

On = N N
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Suppose now that m, M* are fixed and vary the number N. Clearly
n> Nt(m)=>n,p, > m.

We know that
limsup |I,,/1(X)| &C)>0 (X£€E£iQ)

\jr |
so there exists a set E, |A| > " ami a number iV2such that

Al .
NiLrJBNi IiOO0l Scj2 (XEE).
Here N2depends only on /i, p,,, V,,. Let N be so large that N>/un, v,, if Nx< n< N2m
Then

TJ=M*{[50-aM - [SVA - anf]} =

consequently
sup |IM,,/(X)| = M*sup [F1(x)| » M* (x€E£)
and then
[ A e
M : 5 M\ 5: LH,

satisfies the statement of Lemma 1.

Lemma 2. Suppose that u,,v, —+<=" are natural numbers and \p,,—v,|“®+°°,
Then there exists 0 andfor any M>0 there exists apolynomial g with ||g||1=37r
and such that

sy IT.g001 > M
inasetofx of measure £5.

Proof. We can suppose p,,>V,,. Fix nEN and define

4ni

on+1 =01 ")
and
=i XV -ai
g(x) 1 X ,,1(x ai)
060
where
1 fd A/ j—1

VB() =y + jZ; COS /*+ i Loy \A- - JFE T/ cos™

is the de la Vallée-Poussin kernel and |' means that the summation is restricted to
the indices id I, where the set | will be given later. Define a sequence ktwith the prop-
erties

nd< v0, (pd >K,>2pk 1 (i=1L2..).
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Let Isjo™n, then

Sk (@)—SW (9)=~ 2 (A (x~a,)-DW (x-Of)) =

B}
, My +1) (x“a)_sin (u+T) (x-fi*
" g 2sin ¥ T

J siny (fika- vk.) (x- at)mosy (nkj' +vija+ 1) (x-at)
) g ("2 8
We can suppose that the sequence ktis chosen such that

Hi—vki =2k (mod 2n+1)1

fiot Vijt+1=2/ (mod2n+1)3 >V
This means that

1 . . . At

y (40 vkj)at =i on+ 1 (mod 25),
1, .4 v
2K . +4 + DA*BIbFTE (mod n)-

Let joAn-Yn, then
Inn

(*) In n ~T-.

i=jo+1 1 Jo

Let £>0 be a fixed number and — be some multiple of e. Divide [0, 2n] into disjoint
segments of length e. Then there exists a pair of segments [rr, (r+De], [je, (j+1)e]
with the following property. Let

[ =1k, lers):={ISi'S/i: kag[rr, (r+ )e], mod 2n;

lafclse, (y+ I)e], mod 21},
then

yil —1%- s cr2inn.
®r I-Jo
This follows from (*) and from the fact that there is (2n/e)2 such pair. Let

[ == [(r- De, (n+2)e]U[(r- e+ n, (r+ 2)e+ njU

ULG e, (s+2)e]uf(i-)exy,(j+2)ety],
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then |/|*16e and then |[0, 2n]\/| *2(a —38r). Denote
Ao [ajo9ay0+ii>
Ab:={xEAJt:j (jiKlo vijx$1}, Bo:=jxEAh:j (UK M+ i+ x<f/},

then, for £<1/100, say, we have

\Bh\~2\ A h\
and hence

W Uys-J-M J.

Take the partition of [0, 21]\/ into segments of length s, then there exists r', s' such
that the measure of the set

Cja:= jx€d;0: ~ (nk.-v kj)xE[r'e, (r'+ I)e] mod 2n,

\Z(H k30+vkj.0 + x£|>'e, (x'+1)£]mod 2nJ\
satisfies \cia\ » ce2vasor (further the segments [r's, (r'+1/e], [x'e, (/ + Dr] are disjoint
from /). Clearly /£/ and xfC Jo imply that

l N
A2 Rklo~VK) {X~ ai)

and the sign of the above sin and cos is independent if i£l. Summarizing all our ob-
servations we can estimate from below the difference

Sk, @)-Sve, (1 7 cr

\
cs, cos— (nkjotr vijo+ 1) (x- a,)

A X o Sh I af i
1—Jo »JO
£2 2|1+1 1
= Cm &rl 411200
))Ja

&csilnn (jo<n- J/n, x£Cj0Q.

n—jn
So the measure oftheset C:= Q Cia satisfies
N=

IC| s rf JIXIJL,
and
max _ IS,,,. (9)- S,.,b(g)| ~ cedlnn, xEC

1 JQ-+¥--YO

which proves Lemma 2.
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Lemma 3. Let T,,:L1-*Ln be a transformation for which there exists 6>0 and
for any M=~0 there exists apolynomial g such that

lIslli ~ 3, Sup \Tng(X)\ * M (xeE)
with |.E|~<5. Then there exists fd L 1 with
S|P \Tf(x)\ = ae.

Proof. Suppose indirectly that for all fdL 1, sHp|r,,/|<o° on aset of positive

measure. Saks’ theorem [3] states that there exists a measurable set Ec:[0, 2n]
such that

a) Sj{p \T,.f()\ < °0 for ae. tdE, VfdL]
b) SH)\TI’I‘(I)\ =w for ae t$E, fdLAB

with some set BcL 1 of first category. In particular, if for all fdL1 sup |Tnf \
is bounded on a set of positive measure then |.E|>0. Since Tncommutes with the
translations, i.e.

TX - +L)I(0 = [TI](y+1)

where the addition is meant mod 2n, hence fsc:[0, 2a] must be translation-invariant,
so E=[0, 2n]. Consequently

sup \Trf\ <°° a.e. forall fdL1

Now the Banach theorem on a.e. convergence ([4]) states that T,,is uniformly bounded
with respect to the metric inducing the convergence in measure on L°(0,1). In other
words, for any e, a>0 there exists 0 suchthat

€)) Wi = F=»|(sup |I",,/| >a)|"e-

Define T*f:=sup \Tnf\. The assumptions of Lemma 3 yield the existence of a
sequence (f*czL”™O, 2n), ||./tlli"*0 and of a sequence Mk-~+°° suchthat T*fk>
> Mk holds on a set of measure &<5. But this contradicts (3) and this contradiction
proves Lemma 3.

Lemma 4. Let z<2n, M>0. Suppose that there exists NdN and
a (trigonometric) polynomial g such that the level set

A= (I§1L'£V\Tng(x)l = M)

satisfies \A\Se. Then there exists another polynomial g'with  ||£/||1s4Me and a num-
ber N'dN such that

IA%LIJ\[I)\I' \Tn(g + r}g')(x)\>—152—M, Vx£€[0,2n].
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Proof. We shall prove that we can define the polynomial g' such that for some
N'yi>degg we have SN{g')=0. Then, of course,

sWro\Tn(g+r\g')(x)\> M (Xx$A).
Further we have
A= U Ij
i=i

where every set 1] is either a point or a (closed) segment. Let A2»deg g be a number
:s0 large that v,,>degg (n>N2. Introduce the functions

M if xZlj
fix) 0 if x$21j (mod 2n)
fj is linear if xE2 1j\Ij.

The partial sums of the Fourier series offj converge uniformly to fj, consequently
for sufficiently large nO>Ar2 we obtain

(SN -S \,) (et +VBA*  \g(/))-fé «4+4 YAH

where f\— 2 fj- Denote
i=i
g/ = e'[0'>>0+V»a/2]nea[(%_4 yz](/f)\
and N':=n0. Then g'and N' fulfil the requirements of Lemma 4.
Theorem 1. Let  andv, be given natural numbers satisfying
kn -~°°> vn—°°. li.—v,| —“ (h-°°).
Then there exists fZ L\0, 2n) such that
sup \T,,fCO\ = +“  for every x£[0, In],
Proof. We showed the existence of f2£Li(0, 2n) with
sup \T,ffx)\ =+o0 ae.

Forany k>0 we shall give numbers NkZN, ek>0 and polynomials gksuch that
lalli = (i), £ = o(i)

and

sup \t,,[2  Mi)0Yj VX.
Si0 (Eh21 o " O

Suppose that Nj, 8j,gjisgiven for Isj”* k and considerthe index fc+ I. If Bk+1<soek
is small enough and for some hzZL1

£*+i>
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then
<4) sup \T,,h(x)\ > k—1, Vx.

ISnSIV'

In what follows we shall make use of this property. We know that

suplr, (T gj+-Jrf/2,Xj 0 ae,

hence for any e=-0 there exists Nk=Nk(e) suchthat

AV PR A

holds outside a set of measure If Ikis large enough, then
sup }J i~ +1MalJ/A x)
z

. . e 1
eoutside a set of measure <ce. Use Lemma 4 with n:= , JV:=% to show the
existence of a polynomial gk+1 with

lISi+illi = 4~ <e = 4,
and of a number Nk+1 satisfying

J_ f+i
1s«§'i\9fc+l§t-rﬁ[=g%b+ L (°er L +£+1))(x) e 2k+l'

Since e>0 can be arbitraly small, hence we obtain
vogH

Hence we can define indeed Nk+1, ek+1, gk+1, with the indicated properties. Finally
define

/= k-
Now
W fWircZ"-c-

On the other hand

-Z -7 -0ai ?
724,91 oz ™
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whence (4) ensures that
sup \T,fOO\ > k—1, Vx\VKk,

and this proves Theorem 1

2. Next we investigate the phenomenon of the local norm divergence of Fourier
series.
Lemma 5. Let and FcL®(0,1) be an arbitrary function set. Then

there exists apartition (0, \)—ExU *E2 such that
a) Forany o O thereexists a set E, with IFJcs and

{IiEd o /EF}

is bounded.
b) Forany EcE,, |F|>0 there exists (f,,)czF with

sup [I1./l1<e) = *°-

Moreover, if we know that F is translation-invariant, i.e. fEF imples / (e-rtf F
(the summation meant periodically), then either Ex=0 or Ex=(0,1) and in the
latter case inpart a) we can take \Er\=0, i.e. Fisboundedin L\O, 1).

Proof. We call aset Ea(0, 1) agood set if

H/1pe): TEF
is bounded. Let { e }
6 := sup {IFI:E is good}.

There are good sets Ensuch that \En\—& Let
Ex— U E", E2:= (0, N\E x.
n=1

Since the union of finitely many good sets is also good, hence [i?i|=<5, so a) holds..
On the other hand Ex contains any good sets (up to a set of measure 0) by the same
arguments. So E2can not contain any good set, and then b) also holds.

Consider the case when F is invariant under translations. Suppose there exists a
good set E, |F|>0. Itisenough to prove that Fc:=(0, 1)\F is also good. Suppose-
indirectly that for any MM) there exists /= /VfGF suchthat

I/llEpleo= f\f\p>M.
Ec
Applying Fubini’s theorem we obtain

/(1 \m\pdx)dt= f (/ /E+\M(T)\"dr) dt =
0 Ec

0 EcC\(E+1)

= f \fW\p{ f XE+(T)dt)dr = \E\- J |/(F dx > M\E\.

Ec 0 Ec
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Hence there exists tf[Q, 1] with
M\E\A f o AR\"A 7/ p= fAf(x +t0\pdx.

Ecn (E +1t0) E+f0 E

Since f (« +tQ£F and M can be taken arbitrarily large independently of E, hence E
can not be a good set. The contradiction proves Lemma 5.
As a corollary we get the following statement.

Theorem 2. Let Ln:12(0, I)->-LQ0O, 1) be a sequence of continuous linear and
translation-invariant operators. Suppose that there exists /£12(0, 1) suchthat

sup |IL../I[ti@i) =°o.
Thenfor every set E, \E\>0 we have
SHp IIL,/|h(E) =°°

for every [ b\0, 1) exceptfor a set offirst category.
Corollary.Let pn, V,,fN SatiSfy
V,,->°0, sHp|/i,,—v,,| =°0.
Thenfor an arbitrary set E, \E\>0, there exists [ b \0, 2n) such that the sequence
(SPf —S\Mf) is not bounded in 12(E).

Proof. The operators Tn:=SRn—S\h are translation invariant. By Theorem 2
it is enough to prove the existence of [, 22(0, 1) with Spp |[7n |]11(02~)=00- Suppose
indirectly that there is no such f then the Banach—Steinhaus theorem implies that

WTJIWI2929 S CJ|/||x,i@ait) (yfdLf0,2nj).
In particular, for every analytic trigonometric polynomial p we have
1AW —v, [P 1111(0.27i) =S C ||p 11.1(0,2rt),
with C>0 independent of nand p. But this implies
(*) HYPIUHoit) —Cllplbl(0,d (fc= 0, 1,...)
for arbitrary analytic polynomial. Indeed, if n is chosen so that \pn—v,|> k, then let
p ;= e;[madinv)-kixp”
whence
H™p Hud™ o= II5Siii, v, iPIE028) S CLipLly*r™) = Cl|p||x,i(0j2%)-

But (*) is not true, see ([11], p. 599).
We raise here a problem concerning Theorem 2.

Probtem 1 Does there exist a set A of first category in 12(0, 1) such that for

every set E\E\>0,
spp lIL /B = (AA)?
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For the trigonometrical partial sums L,,=S,, the answer is positive and we return
to this in a next paper of the same journal.

Lemma 5 shows that the classical Saks theorem [3] has an analogy also for the
norm convergence. Indeed, we can prove the

Lemma 6. Let X be an arbitrary set, 1 and let Ln:X-*/00, 1) be an
arbitrary sequence of mappings. Then there exits a decomposition (0, I)=fsjU*Fa
such that

a) VXEXMe>0 32jtc (0, 1), |E]j,|<e satisfying
sup ||L,,x]||1i>(E\eq <0°-
b) WEczE2, |Ej >0 3x = xE: sup \\b, x \pl Ll =°°.

Moreover iffor every hER there exists a mapping x -»xh on X such that L,,xh—
= thLx theneither En=0 or jEj= (0, 1) and in the latter case a) holds with [i?,|=0,
i.e.

sup |ILnx|[iP@i) < *“, Vx"X.

Proof. We say that the set E is good if

sup NZXIE<@ <°°, Vx€Z
and apply the proof of Lemma 5.

3. Next we investigate the a.e. divergence for signed Toeplitz summations.

Lemma 7. Let 0<e<27r, 0<??<1, 0< M, anddenote by T an arbitrary Toeplitz
summation whose coefficients satisfy

a) 0<cOs L=21 *,,p]=k=?1 KJ <0 (Vnw),
b) lim /a4 =10 (Vk).
Let
TJg, x) := kg ) ‘nkSk(g, x).

Suppose that there exists NE£ N and an analytic trigonometric polynomial g satis-

lying
|(I sup \Ta(g, x)|SM)|<E.
ansJv

Then there exists another trigonometric analytic polynomial g' and N fN satisfying
Wg'W*AMr. and

sup | \Tn(g +r]g'’Xx)\ > minjy VX€[0, 2n\.
ian*«
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Proof. Let N~AN x~N 2Nz, degg<NIt then by a) and b) we get

M
2
= AL+ 1

hence in case |g(x)|>i/ M/3 we obtain
N.
M%(g, *)I = JK2| <Nk s k(g, x)\ & L:N2X+1 4% 1 oI*(*)l -

%2:1 4’;15k(g, nleé . L T*(g,x):=2 tnksk(g, X)

(in the last estimate we used b) again). If the polynomial g' will be given such that it
has zero coefficients of order =N2, then on the set

\I/bl >4 K U(I’\wﬁ{l \Tn{g)\>M)
we have
sup \Tn(h+t]g',x)\ &€ maxiM ,-~-ijr-1).
I"n~AN t A\ z J /
The set of x not yet considered has the form
ilg|=M2)n( sup \T{g)\"M)a
c ilgl s sup 1Z»(@) s m)=U 1lj,

where 1j are closed segments and 2 Ilj\ < £ Take the function fnj defined on I}
as the following figure shows (the interval /mis divided into m equal parts):

Acta Mathematica Hungarica 56, 1990



112 1. JOO
This function was used also in Totik [2]. Take the sum
fm 2fm,j-
7=1
If x is a point of discontinuity off mthen
ISk(fm, x)| 1 \fm(x-0)+fmx+0\ wM (k —),

hence for N3*>m we have

Sk(g+nfmx) = g(x) +1f*(x) +ok(\), k& N3
and then

I 2 3ks, k(g+ 4fn, x)| = -)é—l"W + nfmMI -

'k=N3+1
-% al) 2' Uvd ACIr]L--Ou3))
holds if N3<zN'3<z:Na. Let

h:= <{fm~SNian(fj, g':= P+h,

where P+ denotes the Riesz projection i.e. the transform of taking the analytic part
ofthe Fourier series. The constant n will be given later. We know that

ReSkg' = j {SO(h)+Sk(h)} =S k(h),

since his a real polynomial. Consequently
Ni
\TN'*(g+4g\x)\ = \(gltN'k(Skg(x)+ nSk(g\ *))|

N
—IRe(2_tNik{Skg{x)+r}sk(g\ x)) =

2 4'*(Re SkS(x)+] Sk(h, x)| &

A L Ren I Ry REQ00 +i- S K(hOV-i/2.

Now if N2<scm then
and if N~n then IM <b, (/m)]}~ = om(l)
IS<TI(/m ) - Sk(FM\,, = %i,m(l) (K * K)

Sk(h) = Sk(fm)+oNiim(i) (x & NJ.

SO
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Since m<szN3 hence
Sk(h, x) =fi(x)+oSt'Ntm(1) (N3"kS NJ
and then
\T%T(g+tlg',x)\>"-n* — | (xZU)
holds for an open set U= U(N4 containing all discontinuity points off m Outside U
the sequence Sk(fm) converges uniformly tof mhence for iVo»iV4 we obtain
Sk(f,,, x) =fm(x)+oNI(l) (ks N6, xi U).
On the other hand, let N5<zNs<szN6<s:n, then
I5f(<r,,(/m))-S , (/MU = °ve(l) (k =Ne),
hence
HS*(A)-S*(/J|]-= owi(l) (ksN 6

and (taking real parts) we get

k=NK+1

AT N "(g+ngix)\ 2 <IT'*\$R€ +-5-S*C‘J'lnr)11—o(i)=
5 5 X )1

—1.:2, Nk Reg(x) +jfn(x)
Lemma 7 is proved.

Theorem 3. Let T be a summation process satisfying a) and b) from Lemma 7.
Suppose that there exists a power type /613(0, 2n) satisfying

Spp \Tn(f X)| =00 ae.

Then there exists a power type /6 13(0, 2n) such that
SHp IM,,(fX)\ =0 Vvx6][0, 21].

The proofrepeats the ideas from Totik [2], Lemma 4, so we omit the details.

Remark. We have proved in Theorem 1the statement of Theorem 3 for the op-
erator

Th=S,-S W

This operator, meant as a signed Toeplitz summation, does not satisfy condition a)
of Lemma 7. Here the following question arises.

Problem 2. Give a common generalization of Theorems 1and 3.
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CHARACTERIZATION OF SUBPROJECTION
SUBOPERATORS

Z. SEBESTYEN* (Budapest)

Introduction

After P. R. Halmos [2], a suboperator is a bounded linear transformation from
a subspace of a Hilbert space into the whole space. A couple of problems initiated
also by Halmos in the paper just mentioned arises when one asks for a characteriza-
tion of subpositive, subprojection e.t.c. suboperators, that is for ones there are posi-
tive, projection e.t.c. operators that extend these suboperators. Of course, subselfad-
joint suboperators are, in view ofthe now classical theorem of M. G. Krein, symmetric
suboperators. A simple proof of this fact (together with extension not increasing the
norm as usual) can be found in Z. Sebestyén [3]. Here an independent characteriza-
tion of subpositive suboperators is proved as a starting point for the selfadjoint case.
This turned out to be the natural approach.

As a matter of fact the so called Schwarz inequality is proved to be characteristic
for subpositive suboperators in the author’s paper [3]. In the present note we show
that the Schwarz identity (with constant one) characterizes precisely the subprojection
suboperators (Theorem 1).

As a corollary we get the characterization of Halmos [2, Proposition 3] and in
a remark we prove the same result of Halmos for subpositive suboperators [2, Corol-
lary 2] using our result.

Factorizations through projection are proved in Corollaries 2 and 3.

Characterization of suhprojections

Given a (complex) Hilbert space H, a (closed) subspace HOin it and a subopera-
tor Q: HO~>H, we are interested in searching for a (selfadjoint) projection P on H
which restricted to HOis Q itself.

Theorem 1. Let Q:HO-*H be a suboperator. Q is a subprojection ifand only if
the identity

(1) 11S*2= (Qx, x)  (~<E0

holds true.

Proof. An operator P on a Hilbert space H is an orthogonal projectionifand only
if it is selfadjoint and idempotent:

) P*=P = P~

* Partly supported by National Scientific Research Funds (OTKA) No. 1816.
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116 Z. SEBESTYEN

In other words
IN1cll2 = (Px, Px) = (P, X) = (P, X)
holds true for any x in H. In the case when Q is the restriction of P to Hathis reduces
to (2).
On the other hand if we assume (1) to hold for Q, the approach of [3], [4] applies:
define a semi-inner product (,) onA0 by

©) (x,y) = (Qxy) (x, yEHO.

Then another Hilbert space K arises by taking completion of the quotient space
HJN with respect to the norm inherited from the inner product (denoted by the same
symbol) on this space, where N is the nullspace of (, ) in HO. For x in HO, (x+N)
is the corresponding vector in HO'N so that

4 V(x+N) := Qx (x6tf,)

defines on the dense subset HUN of Ara map V:HON-*H which is an isometry
as well. Indeed,

[Fx+IV)II2= NOM2= (Qx, x) £ (Xx+N, x+N)

holds true for all x in HO. Here we use step by step (4), (1) and (3) respectively. We
have thus a unique isometry, denoted also by V, of K'into H as an extension of the
former V. The desired projection of Il will be P:=VV*. First, this is selfadjoint
(moreover positive) and idempotent since V*V is the identity operator on K by the
isometry of V so that

Pz=v(V*V)V* = VV* =P,

That Prestricted to HOis Q is a consequence of the characteristic identity
(5) V*x =x+N (XxEHO,

we have discovered in our previous works. It is implied by the identity (for any y in
#,):
(y+N,V*x) = (V(y+N), x) = (Qy,x) = (y+N,x+N) (yiHO.

Indeed (5) implies (using (4))
Px = V(V*X)» V(x+N) B Qx
as desired. The proofis complete.

Coroltary 1(Halmos). Q:HO-+I1 is a subprojection if and only if A*=A and
A—A2=B*B hold truefor the operators A: HO"H 0, B:HO"H Q HO that represent

Q as a “column matrix™

Proof. In the representation just mentioned
(6) Qx —Ax®Bx, AxdHO, BxEHQHO
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holds uniquely for all x in HO. Therefore

| WQXV = [INIX]2+ [[BxX[[2= ((A*A+B*B)x, X)
an

(@Qx,x) = (Ax+Bx, x) = (AXx, X)

hold also true for any x from HO. Thus (1) is (easily shown to be) equivalent to the
requirements
A*=A and A = A*A+B*B = A2+B*B.

This is nothing but the properties stated by Halmos.

Characterization of subpositive suboperators
Remark 1(Halmos). Q:HO->H is subpositive if and only if A=0 and ran B*a
cran YA holds true for the operators A, B defined in Corollary 1

Proof. Theorem in [3] says that 3 is subpositive if and only ifthere exists M~O
with the property
IBX||[2=5 M(Qx, X) (XE€#0).

This implies (as before) A*=A and
WAX\R =M x||2+]|Bx]|[2= 1IRXII2=M(QX, X) = M(AX, X) (x€40.
Thatis A*O and
(B*Bx,x) = \\BX\2"M (Ax,x) (x€40.

But this last inequality implies ran B *cran YA [1, Theorem 1]. Moreover the last
requirement is equivalent to the existence of M SO with the property

[15x]|2= (B*Bx, X) S M(Ax, x) (x640.
This means that for any x in HO
IRxI2=||N1x]|2+]|Bx]|]2" VAW (AX,X)+M(AX,x) = (M||+M)(BX, X)
holds, therefore B is subpositive.

Remark 2. For a subprojection suboperator Q:HO0-*H and a projection R of
A such that R extends B we have PsR, where P is the projection in the proof of
Theorem 1

Proof. By an argument of [4] we have another Hilbert space L by taking a semi-
inner product on A using R as follows:

X y)o:= (Rx,y) (X,yeH),

and the procedure as before (using B on A0. The identity map A0-*A induces an
isometry T: HON-*H/NO, where NQis the nullspace of (,)0. Indeed

[[7Ux+£)||12 = |x+iVO2= (RX, X) = (Bx, X) = lIx+AU2 (x€40
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holds true since R extends Q. Taking W as a counterpart of V by defining
W (x+NOQO m- Rx (*€#)

we get the characteristic identity V=WT, where T:K-+H is the unique isometric
extension of the former isometry, since

WT(x+N) =W (x+NOQ=Rx =Qx= V(x+N)

holds for any x in HO.
Finally we have thus the desired inequality as follows:

P =W*=WT(WT)* =W(TT*)W* A WW* = R,

Factorization

Corollary 2. Let A, B be bounded linear operators on the Hilbert space H. There
exists aprojection P such that

() A =PB
ifandonly if
8 A*A = B*A.

Proof. Assuming (7) we get (8) easily:
A*A = (B*P)(PB) = B*P~B = B’ (PB) = B'A.

Conversely, (8) implies (7) by Theorem 1 since the map Q(Bx):—Ax, x"H is well-
defined and satisfies (1). Indeed, for any xEH we have

WABXW = \AxV = (A*Ax, x) N (B*Ax, x) = (Ax, Bx) = (Q(Bx), Bx),

where Bx=0 implies Q(Bx)=Ax=0. Q is defined on the range of B, a not neces-
sarily closed subspace. Of course, this is not essential in Theorem 1

Corollary 3. Let A be a bounded linear operator on the Hilbert space H. There
exists aprojection P and apositive operator B on H such that

(9) A =PB
if and only if
(10) (A*A)2s M mA*A2= M(A*)2A for some M ~ Q.

Proof. In view of (9) we arrive at (10) at once:
A*A = (B*P)(PB) = B*P2B = BPB,
(A*A)2= (BPB)(BPB) = (BP)B2(PB) » BP(\\B\\B)PB = \B\\- A*A-A, ||4|]| = M.

Conversely, (10) implies by [3, Corollary 1] that there exists a positive operatorBonH
suchthat A*A=BA. But Corollary 2 applies to get (9).
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THE SPECTRAL SINGULARITIES OF INJECTIVE
WEIGHTED SHIFTS

K.-H. FORSTER (Berlin) and B. NAGY (Budapest)

1. Introduction

The set of the spectral singularities of a (closed) operator in a Banach space was
defined in Nagy [5; Definition 1, p. 319]. It is the intersection of all closed subsets
S in the (extended) complex plane such that the operator I" is *-spectral ([5; Theorem
5]). It will be denoted here by S, (T), and is, loosely speaking, the smallest subset of
the spectrum sp (T), “outside which” the operator behaves like a spectral operator
in the sense of Dunford and Bade (cf. [2]). The set of the spectral singularities in the
strict sense S2(T) will be defined here as the smallest set in the class {K=Kczsp (T): T
is an /((Ai)-scalar operator} ([5; Theorem 6]), and may be thought of as the smallest
set, “outside which” T behaves like a spectral operator of scalar type ([2]). Clearly,
S1(T)c:St(T).

Using the basic results of R. Gellar [3], [4] and the survey of A. Shields [6], in
this note we determine these sets for the injective unilateral and bilateral weighted
shifts on the spaces 1JN) and /2Z), respectively (N., Z and C will denote the set of
all positive integers, integers and complex numbers, respectively). As it is well-known
(cf. e.g. [6; pp. 56—57] and [1; pp. 25—26]), general weighted shifts are direct sums
of injective ones, and their spectral behaviour can be quite complicated. Since any
weighted shift is unitarily equivalent to another one with weight sequence consisting
of the moduli of the original one, we may and shall assume that all weights wn are
positive. Our basic reference and source of most notations will be [6]. We mention
explicitly that if {8 (m)} is a two-sided sequence of positive numbers with 8 (0)= 1, then
the Hilbert space L2R) and the commutative Banach algebra L“=(/?) are defined on
[6; pp. 58 and 61], respectively. In this note operator will always mean a bounded
linear operator in a Hilbert space, and r(T) will stand for the spectral radius of the
operator T.

2. The results

Theorem 1. Let T be an invertible bilateral weighted shift on 12Z) with weight
sequence {w,,:n£Z} with positive weights and such that O<R =(r(T~2)~1=r(T).
Thefollowing are equivalent:

1° T is a spectral operator.

2° T is spectral ofscalar type.

3° T/R is similar to the (unitary) bilateral shift (for which all weights are 1).

4° There are positive numbers Ct, C2such thatfor all m*=n, m, n£Z we have
C,R"~m+1"wm. w,,"CtRn m+L

5° With the notation RBR(n)=R(n)R~" (ndZ) the spaces LARR) and L2(1) are
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identical, and their (Hilbertian) norms (see [6; p. 58]) are equivalent. \Here 1 denotes
the particular sequence B( .) satisfying 3(n) =1 for every n£Z.

Proof. Assume 1° and let A be a quasinilpotent operator commuting with T.
By [6; Theorem 3(a)], then N —UMf U-1 with some unitary U, where My denotes the
operator of multiplication by f={f(n): nfZ) in L°°(B). For any positive integer r
thenf'd L°°(B) and Nr=UMfTrlI~\ by [6; Proposition 9]. According to [4; Theo-

rem 3],f(z) = 2 f(n)z is the “Fourier series” of a bounded measurable function
/ on the set {z \z\ R} (in the sense that for z=ReU the Fourier series of / is
2 /(n)f?|nc,"y. Similarly, 2 / n(«)z" is the “Fourier series” of the function/r

n=—awo

for every positive integer r, and we have
\NA = \Mr \ sr e‘§§§KLJp|/(z)|r.

Hence |iVr|Uraess sup |/(z)|. Ifthe right-hand side is positive, then N is not quasinil-
potent, a contradiction. Otherwise N=0, which shows that the quasinilpotent part
of T vanishes, i.e. T is scalar. Therefore 1° implies 2°.

Assume now 2°. The spectrum of T is the circle {z: \2\—R} (cf. [6; Theorem 5
(@]). Hence there is such that for every function/ continuous on this
circle CRwe have |/(I")|* K max {\f(z)\:zdCR}, where the operatorf(T) is meant
in the sense of the functional calculus for scalar operators. For every ndZ let
fn(z)=zn on CR. Then f,,(T)=T"= UMf XJ~x with some unitary U: LAR)-*11Z).
Applying [6; formulas (21) and (28)], we obtain that

R A ER A3 () B o

From this and [6; Proposition 7] we have for JdZ, n—1,2, ...

0111
-1-2,...

0 < WWj+1... wl+n- 1=8KRn
and also R~mK"R(j)/B( j+n)>0. From this we obtain
0< K-'R" =B(j+n)/R(j) = WWI+1... wi+,, 1.
Hence for every mSn, m,n£Z wehave Rn~nK~1Swm..w,,"KRn~m i.e. 4° holds.
Assume now 4°. By [6; Theorem 2 (a)], T/R is then similar to the ordinary bilat-
eral shift, i.e. 3° follows. The implications 3°=>20=>I0 are clear. Finally, 5° is equiv-
alent to the existence of A,B >0 such that for every fEL ARR)=L Q1)
A2Z\?(n)\2  I\f(nWRR(n)2" B2I\f(n)\2
or, equivalently, A*BR(n)"B for every nEZ. By [6; Proposition 7], this means
that
A" R-nwO0... Wn-!, R"(w_1...w_,)-1gRB (n=0)
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or, equivalently, the existence of a, 0 such that
aR"S w0...wr-i, w_X...w_n” bR" (n> 0).
5°is therefore equivalent to 4°, and the proofis complete. O

If T is an injective bilateral weighted shift, then 0sR2=(r(T~1))~1"r(T) =R1
(in the sense that R2=0 if and only if Ogsp (T), cf. [3, Theorem 3]). With these
notations we have

Theorem 2. Let T be an injective weighted shift on I\Z) or on IZN) with positive
weight sequence {tv,.}. JfT is unilateral and r(T)>0, then the set of the spectral sin-
gularities (in both senses) is the spectrum {z$C:0"|z|*r(T)}. IfT is bilateral and
N,<0, then both sets of the spectral singularities are void exactly when the conditions
of Theorem 1 hold, otherwise both sets are identical with the spectrum (z£C: i?72—z\—

Ifineither case r(T)=0, then SI(T)=0 and S2(T)—{(}

Proof. If T is unilateral, then [6; Corollary 2 to Theorem 3] shows that there is no
nontrivial projection commuting with T. If T is bilateral and R2-=R1, then [3; Cor-
ollary 2 to Theorem 4] yields the same conclusion. If T is bilateral and 0<R.,=RlI,
then the spectrum of T is the circle {z£C: 121=2?"} (cf. [6; Theorem 5 (a)]). It is
clear that (for any operator T) for any complex number z2O we have SfzT) =
—zSfT) (i=1, 2). On the other hand, if |z|=1, then the bilateral weighted shifts
T and zT are unitarily equivalent (cf. [6; Corollary 2 to Proposition 1]), hence
2Si(T)—Si(zT)==Si(T). Since SfT) is a closed subset of the circle above, this
implies either St(T)=9 or St(T)=sp (T) (/=1,2). By Theorem 1, SfT)=0 for
i=1 or 2 implies that all the (equivalent) conditions there hold. Finally, r(T)=0
means that I is a (nonzero) quasinilpotent, hence the last assertion in Theorem 2 is
valid. O

Example. We give an example of a bilateral weighted shift T for which R=R X=
= 22=0> but T is not spectral. Let the corresponding weight sequence {w,,;nfZ} be

1112131~ 2 2 2 16l... where the first 2 is on the 1st place

(n=1), and the notation In' will mean that n\ copies of 1 follow after each other. It is
clear that (cf. [3; Theorem 3])

R2= nIi_rp0 (ipfwm+1... wm )M = 1
and we claim that
(@) J = nIi_rp0 (sprm+1... umt)h= 1

For a fixed nEN consider an m such that wn+1l=-m—-. Then

WMH ... W, = n+1.

By Theorem 1, this fact and 22="i= 1 show that T is not spectral. Ify is greater
than mx, the first such m, then clearly

2 wj+1l.wJH 33 n+l.
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If O then the first nonunit factor of wJ+i...wj+n comes, say, from the /cth
“nonunitary subsequence” of the weight sequence, whereas the last nonunit one from
the rth such subsequence (ksr). Then

Wl+1... wHN 3S (K+1)(K+2) ... (r+1) s (r+i)i.

Now if k<r, then the construction of the weight sequence shows that (r+1)!<n,

hence
wl+1..wj+n < n.

On the other hand, if k=r, then the estimation (2) holds again. Hence in all cases

for any jEZ, ndN
I"(w J+1L. . WjHy'nr(n+iy/\

Therefore (1) holds, and the operator T has the stated properties. By Theorem 2,
the sets of the spectral singularities St(T) (/=1, 2) coincide with sp (T)=CR, the
circle with radius R. O

References

[1] I. Colojoard and C. Foia8, Theory of generalized spectral operators, Gordon and Breach (New
York, 1968).

[2] N. Dunford and J. T. Schwartz, Linear operators. Part 111, Wiley Interscience (New York, 1971).

[3] R. Gellar, Operators commuting with a weighted shift, Proc. Amer. Math. Soc., 23 (1969), 538—
545,

[4] R. Gellar, Two sublattices of weighted shift invariant subspaces, Indiana Univ. Math. J.,23 (1973),
1- 10

[5] B. Nagy, Operators with spectral singularities, /. Operator Theory, 15 (1986), 307—325.

[6] A. Shields, Weighted shift operators and analytic function theory, Topics in operator theory,
pp. 49— 128. Math. Surveys No. 13, Amer. Math. Soc. (Providence, RI, 1974).

(Received October 16, 1987J

DEPARTMENT OF MATHEMATICS
TECHNICAL UNIVERSITY BERLIN
STRASSE D. 17. JUNI 135

D—1000 BERLIN (WEST) 12

DEPARTMENT OF MATHEMATICS
FACULTY OF CHEMICAL ENGINEERING
TECHNICAL UNIVERSITY BUDAPEST
STOCZEK U. 2—4. H. Il

H—1521 BUDAPEST, HUNGARY

Acta Mathematica Hungarica 56, 1990



Acta Math. Hung.
56 (1—2) (1990), 125—136.

ON JISTRONG CONVERGENCE OF DOUBLE
NUMERICAL SEQUENCES AND FOURIER SERIES

F. MORICZ (Szeged)*

8§ 1. Notation of J1-strong convergence

Let S=>{smn:m, n=0, 1, ...} be a double sequence of complex numbers. In
this paper we will use the notation

(1.0 Ilmmvm, =t

if srmconverges to t as both m and ntend to °° independently of one another (that s,
smmconverges to tin Pringsheim’s sense) and, in addition, smis bounded:

0-2) lISIU = sup vm] <°°.
m,nS0
We shall use the backward differences
AlOAmn Smn Sm_In, +~01Smn = smn —
NySm = AI0[ACISTT] = ACI[AISMT] = Sm—\n 1B— 1

defined for all m,n=0, 1, ..., with the agreement that
(1-3) S-i,,, =vm-i =s-1-i = 0.

Let A={kmm=A%)ffl:m ,n=0,1,..}, where {AD)} and {2} are two single
sequences of positive numbers, both nondecreasing and tending to =». Thus, we have

((+4) AIPmn="0, AQXM= 0, AllAm,=0
and
(1.5) lim A}n/]\n — o> m]r!mo n/]t’: 0,

where p and g are fixed. We note that we actually need the product representation
only in the proof of Lemma 2 in Section 2.
We say that S converges J1-strongly to t if

1 m

2 2 Hii[*pe(spd-0]| =0.

im —
T,u-00 Amn p=o0 ¢=Q

(1-6)

* This research was completed while the author was a visiting professor at the Syracuse Univer-
sity, New York, U.S.A., in the academic year 1986/87.
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The notion of J1-strong convergence was introduced by Hyslop [1] and Tanovic—
Miller [6] for single sequences in the special case A,,=n+1. (See also [3].)
The significance of conditions (1.4) and (1.5) is illustrated by the following.

Lemma 1. Ifconditions (1.1), (1.4) and (1.5) are satisfied, then

lim -— 2 [10A]|j -t] =0,

T,n~~> Amn
lim 1 2" AociKg]\sn~t\ = 0
- — &g AoKalsmt = 0
1 m n
1 - N N -
lim - p2=Oq2=0[ An”p\*pg-t\
with the agreement that
<I-7) Aln = "m-1 = A-1,-1 = 0.

Proof. It is routine.
We remind the reader that a sequence S = {sm} is said to be ofbounded variation
if
<|-8) lIS|lbv= 2
m=0 n=
(cf. agreement (1.3)). It will turn out in Section 2 that J1-strong convergence is an

intermediate notion between bounded variation and convergence in Pringsheim’s
sense.

We denote by bv and c the well-known Banach spaces of the double sequences
of complex numbers that are of bounded variation or converge in Pringsheim’s
sense and bounded, respectively.

8 2. Auxiliary results

First we characterize J1-strong convergence as follows.

Lemma 2. A sequence S={?,..} of complex numbers converges J1-strongly to a
number t if and only if

(M I|m sm = t,

n— oo

(i) |II_‘T*1W——n 2: 2 HoiVi,4MiovPl = 0,

1 mn
(iii) m,Li-'?ILo'm g:gezl—!jo"p,z;—i] Moidpil =0>

1 m n

(iv) lim-— 2 2 = °.
m,n—o0 Amn p=i =i
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Proof. Necessity. Dropping the absolute value bars in definition (1.6), we can
write
1 m n
<2.1) -r-2 2 Ny[*,(*,-)] = sM-t.
il p—0 q=0
Thus, (1.6) implies (i) in an obvious way.
Next, a simple algebraic manipulation shows that

2 ~A11\Mpg(Spq 0] = d 10[}.p,.(spn 0] = [Aw /-p,,]J{spn O + ~p-I,n[d 10
4=0

(cf. (1.7)), whence

1 m 1 m

————— 2 ~p-1,n\*10Spn\ — -2 2 [*107pn\\spn~'A +
*mn p=1 p=0

+~j— 2 q% . \AiApg(sp t~ 0]l-

‘mn p=0

By Lemma land (1.6), we have

2.2 li 2 A I =0.

(22) mIrI;n“ Am p=i PN 0

Using the product representation Am,=A£)A2), we can write (2.2) as follows:
1 m

o e 21k iH iofpd = °-
Forming the weighted means of the expression occurring here by means of the
sequence {A)}, an elementary calculation yields
. I
m’|r|11110° "‘H‘Mff) p2= i16502'?>iV\l,,iﬁi»]MlCXmi = o,

which is identical with (ii).
Relation (iii) can be derived in an analogous way.
Finally, we apply the identity

(2.3) S11AMpa(ea 0] [t11ApaMSpa A 01M-p—LG\A 10%pg
+ 17"107p,q-1] ~01SpqT —1.4— " u Spq
to get
1 m n 1 m n
7= 2 2 2p-i,4-iM uspg\w -j— 2 2 Muy[Awuw ("p,-0]1 +
‘unn p=1q=1 nTn p=0 g=o0
1 m n 1 m n
+7— 2 2 1+7— 2 2 MoiAp-i,JMioJPi| +
'smil p=0q=0 “m p=1 i=0
m n
R - 2 2 [*107p,q-11\"01Spqg\-
‘emn p=0 4=1

Now, relation (iv) follows from (1.6), (i), (ii), (iii) and Lemma 1
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128 F. MORICZ
Sufficiency. It is an immediate consequence of (2.3) and Lemma 1
Next, we reformulate conditions (ii) and (iii).
Lemma 3. Under (iv), conditions (ii) and (iii) are equivalent to thefollowing two
conditions:
(U0 Um -;— 2 Vi.nMioJpJ =°.
n p=I

. . 1
@ry lim -— 2, *mg-INeoism\ = 0

Proof. By performing a summation by parts,

2 0 throitp —1,9 MIO~pgl — ~p-1I,nMIO*pnl + 2  ~p-l,q[\*10spq\ \*10sp,q+I\] —
q= 9=0
Ap-l,n M1oSpn!+ gzl'\p-l,t-l\"uqu\

and similarly

2 [*O1”rp-1,9] MIO”pel — ~-p-1,n\*10spn\ 9_21"—;)—I.q-l M il'lle

Hence it follows that

1 m n
(24) W 2 2 [*OplgHOYl LWL
“mn p=19=0
J m 2 w "
—2  ATMp—knliopnli ;. 2 2 Ap—t,9—

where “s ” corresponds to “+” and “ &” corresponds to “— respectively. Now.,
the equivalence of (ii) and (if) follows from (2.4) and (iv).
The equivalence of (iii) and (iii9 under (iv) can be verified in a similar manner.
It is important to observe that condition (i) can be weakened in Lemma 2. To
this effect, we introduce a Fejér type mean as followsl

(2-5) Im= -—— 2 2Nell*pq] St
*mn p—o g=o0
Lemma 4. The condition
(i9 T'Ini~r1100 om=t
together with (ii)—(iv) are equivalent to (i) —(iv).

Proof. On the one hand, it is well-known that for a bounded sequence S con-
dition (i) implies (i), without any additional assumption.
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On the other hand, due to (ii)—(iv) the converse implication is also true. In fact,

it is easy to see that

m n
3mn  &Tn ~T 2 2 11 pg\ C*mn  “pq)‘
Amn p=o0 =0

Using the representation

(the

(2.6)

$m S Mg $n A S pd b ol

m n n
2 2 M1 2 MNoSgb 2 1
j=P+1 k=q+1 j=p+1 Kqu k= +1/\Oaj(
m n
empty sums 2  anc* 2  are taen to be zero), we get
j=m+1 k=n+1
J m n m n
smn~~amn— ~i 2

Ne 11Apg\ . 2 2 An Sjk+
]

2
Amp p=so g=0 =v+1 k=qg+1

1 m n m 1 m
+'}— 2 2LAnp<t 2 Noja+ 3— 2 qg , [Mu am]k_ qZ+1 A oispk —
= Ij*+lz+1s, say.

Interchanging the summations yields

m n j—1 k—1 J m n
2 2 Vnsjk) 2 2 duAp 2 2 Niolk-1nsjke

Amn 1=11=1 p=04=0 Amn j=1k=1

By (iv), Zxtends to zero as m,
Similarly,
1 m n j—1 1 m n
A2 = 2 2 A10sj 2 Al ~ 2 2 170 IMj-1 ~10Sj
? Amnj=1q=o[ SJq]p:o P4 Amn j—1g=o0 i-l.a] 14

also tends to zero as m, n—°°, due to (ii). The same is true for | 3, due to (iii).

Combining these with (2.6) results in the relation

Un Kn-0J =0

m, N—»€o

and (i") obviously implies (i) in this case.

8§ 3. Main results on numerical sequences

Denote by c(A) the class of double sequences S = of complex numbers
that converge J1-strongly. Clearly, c(A) is a linear space. We endow c(/1) with the
norm
(3.1 WSh\cU)= sup — 2 2 Un[Ap*u]|,

m,n"0 Amn p=o0 =0

which is obvionsly finite for every S"c(A).

9
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Remark 1 On the basis of Lemmas 2 and 3, the norm ]|| . |||cU) defined by

1
M-SV = USIU+ sup — 2" )p-id A iGsp)+

m.n*O ‘lmn p=1

J n | m
+ SUp © — 2 L,o-iNAGSMO\+ sup -— 2, Z *p i,0-i\Au spa\
m,n ‘Imn g=1 m,ng 0 '-Tn p— =
is equivalent to | . ||c(n) in the sense that there exist two positive constants Kxand Kz

such that for every S'éc(yl),
AISLu)” HIS||Uo M * 2|SL (/D).
We remind the reader of definitions (1.2) and (1.8).

Lemma 5. For any sequence S,

(3.2) IS|U ~ [IS]lcU) ~ 6]|S||bv
and, consequently,
(3.3) bvc c()c c

Proof. The first half of (3.2) follows from (2.1) on putting /=0. The second half
can be verified by using (2.3) also with t= 0 and the identities

p q n m
$pq = ]S* ~11Sjki A 10Spn* A uSpg* -~01Smq A AMINjw j*

= k—Q 4=0 p=0
Our main result reads as follows.
Theorem 1. The class c(J1) endowed with the norm (3.1) is a Banach space.

Proof. The only thing we have to prove is completeness. To this effect, let
{5<):r=1,2,...} be a Cauchy sequence in the norm | . ||c(n). Then by (3.2), {SU0}

is a Cauchy sequence in the norm | . ||,,, as well. Thus, there exists a sequence Sfc
such that
(3.4) M, [SW—S|U =0.

We will prove that Sdc(A) and
(3.5) %”S «—S||cU) = 0.

To see this, let an a>0 be given. By assumption, there exists a v=v(e) such
that

(3.6) [ISA-SMIcoo ™ £ if hrhv.
Let j, fc=0, 1, ...} and 5,={j;t} We fix (m, n) temporarily. Using (2.3)
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with /=0 , it is not hard to see that

1 m 4 f 2 m
@7 -y-2 2 A IBW-SIU 1+-J- 2 Vi,-+
mn p=o0 q=0 L nTn p=1

1

n
2" 1,910 — £
=1 ’ J

“mn

n 4 m
+ |7 2 9-1+ 1 2
5=1 “-mn p=1 q

provided r is large enough, due to (3.4). We apply the triangle inequality and take
(3.6) and (3.7) into account to obtain

1 m n 1 m n

L— p2 . 24:MiiUp<<(4?)_yP<<)]| - L= p2_0 2 H ii[fe(4«-4e)]l+

1 m n

+ -T - 2 2Mn[AJ4("N)-IM)]IS]||IStI)-SW [|eM)+ es2 e if [Ji=v.
‘?m p=0 5=0

Since this is valid for all (m, ri), by definition

IS(>-S|lcU,s2e  if /—v,

which proves (3.5).
One can check the fulfillment of 3'6¢(J1) along the same lines. This completes
the proof of Theorem 1

Probtem 1 We conjecture that there is no Schauder basis in c(/1).

Probtem 2. What is the conjugate space to c(/1)?

8§ 4. Application to Fourier series

One can apply the notion of J1-strong convergence to sequences of complex-valued
functions, in particular to Fourier series, while using C-metric or L p-metric. For the
sake of concreteness, here we present in full details the results on the uniform J1-
strong convergence of double Fourier series of continuous functions on the two-di-
mensional torus T 2={(x, y):—nSx, y<a}.

Denote by C the Banach space of the complex-valued continuous functions
f (x,y), 2rc-periodic in each variable and endowed with the norm

I/lle = max_ I/(x,y)l-

X, ¥)Er 2
Let

4.7 2, 2V ikaik(x.y)

be the double Fourier series of the function /€C, where we systematically use the

9* Acta Mathematica Hungarica 56. 1990
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following notations:
Ajk(x, y) = akcosjx cos ky +bjk sinjx cos ky +
+cJXkcosjx sinky+dXksinjx sin ky,
j re iz
ak=— J J f(x,y)cosjx cos ky dx dy,
- X

and analogous representations for bJk, cjk, dJk, and

1
j if j =k—0,

dik="1 ¢ j—0 and k=1 or j~ 1 and k=0,
1 if jal and Ic=£1
We will consider the rectangular partial sums

P 9
SPi(f) = spa(f; x,y)= 22 BjkAjkix, y)
j=0k=o0

and, following (2.5), the Fejér type means

1 m n

4.2) X,y)=¥-2 2 [AkiKM D
mn d=0 a=o0
ofthe series (4.1).

Denote by U, A and S(A), respectively, the classes of functions/ whose Fourier
series converge uniformly with uniformly bounded rectangular partial sums, converge
absolutely, and converge uniformly J1-strongly on T-. Clearly, in each case it follows
that/ must belong to C. To be more specific, we say that a function/belongs to .S/zl)
if (cf. (1.6))

1 m n

lim 2 2 M M(sCA-N]| =0

-mn p=o0 "=

Itis a common place that U and A are Banach spaces with the norms

Wlu = sup [jm/)llc and AL = 2 2 VikQiK,

respectively, where
Qk = 1a%+ bjk + clk+ djK]1/2

Both statements can be proved along the same lines as the corresponding one-dimen-
sional statements are proved (see, e.g. [2, pp. 6—38]).
According to (3.1), we introduce a norm in S(A) as follows

43 _ PP
4.3) /1Isu) SR pzzo qZZOI/ILI,[ApﬂB(/)“
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The norm inequalities corresponding to (3.2) are
I/lin~ 1l/lIsu) s 611/L,

which imply in turn (cf. (3.3)) AcS(A)dU.
The following results are the counterparts to Lemmas 2—4 and Theorem 1.

Lemma 6. Afunctionf belongs to 5'(J1) ifand only if thefollowing four conditions
are satisfied:

(v) lim (K, (/)-11lc = o,

m, N-»-«»

(vi) Ilm 4 - 2 AP-x nMIQJpn(/)| =C

amn p—

: >
vii) lim  j 2 am g-ivdorsmgis \ =0
( ) 00 J m,q-i\do\SmgqiJ ) .

‘mmn «=1

m n

(viii) lim -%n 2, 2K -iciMiinl - 0.

Theorem 2. The class 5"(JT) endowed with the norm (4.3) is a Banach space.

We note that the Banach space 5'(J1) for one-dimensional Fourier series was
introduced by Szalay [5] in the special case X,—n+ 1.

Lemma 7 below indicates that J1-strong convergence exhibits some of the charac-
teristic properties of absolute convergence. Namely, an analogue of the Denjoy—

Luzin theorem holds true (cf. the original one-dimensional theorem in [8, pp. 232—
233)).

Lemma 7. | fthe trigonometric series (4.1) converges Jl-stronglyfor all (x, y) belong-
ing to a set ofpositive measure, then

(44) im Wi j21+2 -I-k-ieik —0-

Here and in the sequel, we mean the Lebesgue measure on the plane and denote
ithy I.|.

Proof. We shall imitate the proofs of [4, Theorems 1and 2], at least in the first
part.

We may dismiss the AJk(x,y) for which Qk=0. Otherwise, let BJ(x,y) be
defined by

AKX, Y) - QKBIKX, y),
while let uJk® 0, T'péO, Hkand &jk, —~*d ]k, 0 k™ n, be defined by
(4.5) ak = ukcos ¥}, bk = uksin ¢k,

cjk = Vjkcos 0 Jk, dXk = vjksin 0J
Then

(4.6) AJ(x, y) —ulkcos (jx—dn) cos ky+vIkcos (jx —0 K sin ky,
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whence, applying the Schwarz inequality yields

\Ajk(x, y)I N [u%er96)U> = Qk.
Consequently,
\Bjk(x,y)\*\  for all (x,y).

According to the argument occurring in [4], in order to prove (4.4) it is enough
to show that

(4.7) liminf 1k > 0,

where
ljk =/ / Wk(x, ¥Y)dxdy
E

and E is a set of positive measure.
Actually, the weaker relation

(48) /->c!)ir;?1(iir]£’mld<> 0
is proved in [4]. Now, ifj is fixed and k—<> then we make use of the representation

(4.9 B)(x,y) = é+ ’\I(fgljk [cos 2(jx - D)+ cos 2ky + cos 2 (jx —D) cos 2ky] +
+ ajl; [cos 2 (jx —0)—eos 2ky —¢0s 2 (yx—0) cos 2ky] +

+ 7 JL Sn2ky[cos (2kx- ®- 0)+cos (0 - D),
dak y [cos ( ) ( )

where ®=d g and 0 = 0 jfc. Taking into account the well-known fact that the Fou-
rier coefficients of any integrable function converge to zero whenever at least one of
the indices tends to °° (see, e.g. [8, p. 301]), it follows from (4.9) that for fixedj

lik = 4-\B\+ j4- T f cos 2(3x-@) dx dy+

VK
+ 47 J) cos2(jx-0)dxdy+o(l) as k —°°.

It is easy to verify that for any fixedj, we have

Jycos 2(jx—d)dx dy < [E|.

Consequently, (4.7) holds true as k—=°°.
On the other hand, if K is fixed and y—°°, we can rely on the symmetric coun-
terparts of (4.5), (4.6) and (4.9). To be more specific, let itdk, vk <gk and 0 Xk be

defined by .
ak= Jkecos $ Ik, ck= aksin $ ik,
bjk —Vjkcos 0 Jk, djk —Vjksin 0 jk.
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Then
AX(x, y) = Ujkcosjx cos (ky—d)+ vXksinjx cos (ky—0)
and

Wk(x, y) =-" + *L(%l; [cos 2/x+cos 2(ky—®P)+ cos 2jx cos 2(ky—P)] +
0
+ [—€os 2/x+cos 2(ky—0)—cos 2jx cos 2(ky—Q)] +

+ ~2|'(kﬁ]<sin 2jx [cos (2ky—d—0 ) + cos (0 —D)],

where $ =3$Xk and 0 =&jk. Hence one can deduce that (4.7) holds true as j-*°°
and this completes the proof of Lemma 7.

In the special case where /,*=(_/+1)(k+1), the mean <m(f) defined by (4.2)
is the ordinary Fejér mean (in other words, the first arithmetic of the rectangular
partial sums) of the Fourier series (4.1). By [8, p. 304], condition (v) is satisfied for
every /EC. Using the corresponding special case of Lemmas 6 and 7, we arrive at
the following.

Theorem 3. Let 1= {(y+1)(k+1)}. IffEC, then the Fourier series (4.1) con-
verges uniformly J1-strongly tof (x, y) on T2ifandonly if

., . 1
(vi) m,lﬂmoo m+ 1f&jl\AMsin(Y = 0,

(vii) lim —lIrJ2| K\AQIsnk(f)\ = 0,
n+ t=

(viii")  lim (m+1)(n+1) j%iléiﬁij =o.
We note that the conditions

im 177k BBk =0 and fi e 2@ k= 0

are sufficient for the fulfillment of (vi') and (vii'), respectively. But each of them is
stronger than (viii').

Problem 3. How to characterize conditions (vi') and (vii') in terms of k2

8 5. Final observations

We finish our study with two more remarks.

Remark 2. All results in Section 4 can be reformulated by substituting Lp-met-
ric for C-metric where 17p-«=°. It is well-known that Lpendowed with the norm

W=/ f \f(x,yrdxdy]lip
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is a Banach space. We say that a function /£ L pbelongs to the class £P(/1) if

m it
lim _ * _ =o°
A, — 204 M wr R()-NIIN

and introduce the norm )
1 non

WilspU )= supy j— 2 2 vil-pn (]

The analogues of Lemma 6 and Theorems 2,3 hold true in the case of Lp-metric,
too. Their proofs are based on the results of Section 3 and the following two more
auxiliary results. First, if /ELP for somep, then

™. K,,()-p=0

m, n*-°°

(see, e.g. [8, p. 304]). Second, if the trigonometric series (4.1) converges J1-strongly
in the Lp-metric restricted to a set of positive measure, then (4.4) holds true (which
is the Lp-metric version of Lemma 7).

Remark 3. The notion of Ji-strong convergence and the methods described in
this paper clearly apply to multiple numerical sequences and higher dimensional
Fourier series. The extension of these results to *-multiple and Ldimensional cases,
where d is an integer greater than 2, is straightforward. As to the auxiliary results, in
[8, Ch. 17] the whole presentation is done in this general setting, and concerning
Lemma 7 we refer to [7] instead of [4].
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ON AFFINELY EMBEDDABLE SETS IN THE
PROJECTIVE PLANE

I. BARANY (Budapest)

In this note we prove a conjecture of Bisztriczky and Schaer [1] about convex
sets in the real projective plane P-. It will be simpler to formulate the result for convex
cones in R3and then show that it implies the conjecture. A cone CczR3is called point-
ed if it contains no line, i.e., when x€C and —£C imply x=0. Here is the result:

Theorem 1. Assume u=s3 and CI, ...,CnczR3 are closed, pointed, convex cones
with common apex the origin O. Assume that for iAj (i,j —h 2,..., n) there is an
<(/,NE{—L, +1} such thatfor all k=1,,..,n, kAi,j andfor both e=1I, —1

(h.J; koe)  (eCKM(Cl+e(i,j)Cj) = {O}
Then there is aplane P through O such thatfor all i=1, ..., n, PfjC;={0}.

We will now translate this theorem from R3to P1 For a convex pointed cone
Ceii3set 5'(C)=iS2nC where S'2is the unit sphere of R3 P2is obtained from S 2by
identifying antipodal points. With this identification the points of S(C) and —S(C)—
=S(—C) giverisetoaset P(C)cP2 Clearly, P(C)=P(—<).

A set AaP 2 is called convex if there exists a line L in P1disjoint from A and A
is convex in the affine plane PAL (cf. [2] or [1]). A convex set A in P 1gives rise to
two connected subsets S +HA) and S~(A)= —S HA) of S2 whose cone hulls are
C HA) and C~(A), respectively. Evidently, C+A)=—C~(A). In this way one can
see that AaP 2 is convex if and only if A=P(C) for some pointed convex cone
CtzR3

Now let Ax, A2czP-be convex. We want to define the convex hull of their union.
Then Aj=P(Cj) for some pointed convex cone CjCzR3 and also Aj=P(—Cj)
(y'=l, 2). So the union of An and Ar will have, in general, two convex hulls:
H1(AL1, A2 =P(conv(C1,C2) and H2ZAL A2—P(con\(Cx, —C,)). Of course,

and H2will be convex only if Cx—C2=conv (Cl, —C2 and C1-bC2=conv(C1 C2
are pointed cones.

We can now formulate Theorem 1in P2

Theorem 2. Let Aly ..., A, be closed convex sets in P2(nS3). Assume thatfor
iAj (/,7=1, ..., ri) either Akf)H1(Ai, Aj)=0 for all kAi,j or AKDH2(Ai, A f—R
for all kAi,j. Then thereisaline LrzP 2 disjointfrom each At.

In [1], the collection of the sets Alt..., A, is called affinely embeddable when
the conclusion of Theorem 2 holds.

In the proof of Theorem 1 we will use standard techniques from the theory of
convex cones in finite dimensional spaces (cf. [3], [4] or [5]).
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When proving Theorem 1we will obtain its dual form which seems to be worth
mentioning:

Theorem 3. Assume D¥, ..., DnczR3 (nS3) are closed, pointed, convex cones
with common apex the origin. Suppose that for i*j (/,./=1 mmn) there is an
e(i,j )E{—], +1} such thatfor all k=1,...,n, k™ i,j andfor both e=1 and —1
(eDKnD ir\{e(iJ)DJ)7~{0}. Then there are signs ex, =+1 or —1) and
avector pER3{0} such that pfeiDifor all /=1, n.

Proof of Theorem 1 Assume the theorem is false and take a counterexample
Cx, ..., CnczR3 of closed, convex, pointed cones satisfying condition (i,j; k, €) such
that for all planes P through the origin there is an /€{1, ..., n} with PI)Cr*{0}.

We will modify this counterexample. We claim first that for 2y both C;-fC-
and Ci—Cj are pointed and closed convex cones. We prove this for Ct+ Cj, the
proof for Ci—Cj is identical. By condition (i,k;j, —1)

(—Cj)C\Ci ¢ (-Cj)n{Ci+e(i, k)CK) = {O},

so Cj and (—Cj) can be separated (strictly, because they are closed), i.e,. there exists
VER3 such that tz-x-=0 for all XEC;\{0} and v-y>0 for all yE(—Cy)\{0}.
(Here v m denotes the scalar product of v, xER3) Then vez<0 forall zE(C;+ C j)\
\{C} proving that (Ci+Cj) is pointed.

Now we prove that Ci+Cj is closed. Assume it is not, then there are elements
xnEC; and vy,,fCj with xmymES2 and positive numbers am, m suchthat zm=
=axm+Bnymisin (Ci+Cj)f)S2 but z=lirnzm is not. By the compactness of S'2
we may assume that x=limxmand y —limym exists. Then amand Bmmust tend to
infinity and so zmE S 2 is possible only if x+y=0. This implies that Ci+Cj con-
tains the line through x and —x=y which is impossible because it is a pointed cone.

We define, for a closed pointed cone CcR 3 and for a>0 the set

Cx — {xER3: there is yEC with <ZxOyS a},

where < xOy denotes the angle of the triangle xOy at vertex O. C*“is clearly a con-
vex, pointed cone with nonempty interior provided a is small enough.

Condition (i,]; k, e) says that the two closed and pointed cones C;+e(/,y)Cj
and eCkare disjoint (except for the common apex). Then thereis «(/, /; k, €)=>0 such
that for O<a<a (/, /; k, )

(eCtn(C?+e(i,j)Q) = {O}

and CI, Cj, Ck, C*+e(i,j)Cj are all pointed, convex, closed cones. Set R=
=min a(/,./; k, e) and take a closed polyhedral cone /?, with nonempty interior satis-
fying

C,-c 5;c;Cf for i=1, ...,n.

We may choose the finitely many halflines generating the cones Bt to be in general
position. We will clarify later what is meant by general position here.

This is what we have now: The cones B, are convex, closed, pointed and poly-
hedral with nonempty interior, and they satisfy condition (i,j; k, €). Moreover, for
each plane P through the origin PPlint BA{0) for some /=1, ...,n.
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Consider now the polars 79,=7?* of 7J, defined as
7, = {XER3: x-y N 0 for yEP}.

The Di s are convex, closed, pointed, polyhedral cones in R3with nonempty
interior. We claim now that condition (/,/; k, €) implies the following condition:

(ij; k,ef (- eDKM79;MN(e(i,j) Dj) * {O},

and the last condition in the theorem implies this one: For each pf R3 {0} thereisan
i€{1, ...,«} suchthat

(*) p$Di and p i—Di-

We prove this claim using standard techniques from the theory of convex poly-
hedral cones (cf. [4] or [5]). Condition (i,j;k,e) for the cones 7, is of the form
Bkr\(B; +Bj) = {0} (here we dropped the signs) that has polar form 79,.+(79,079;) =
=R3 Assume now that (—79*)M(79rM79;)= {0}, then the cones —M, and (79,079;)
can be separated, i.e., there is vfRA{0} such that v-x*O for all x£ —Dk and
a-ysO for all y679,079;. But then a-zSO for all z*.Dk+(Dif]Dj), a contra-
diction. Let us see now the last condition:

Pflint BI {O},

and consider  POint 72- with g” O. Write p for a normal of the plane P. Then
g-p=0 and q-x<0 for all x*"B*\{0}=D\{0}, so indeed, +p"Dt.

(As a matter of fact, from now on we will give the proof of Theorem 3 in the case
when the sets 79; are polyhedral cones in R3with nonempty interior. The general case
follows by a standard continuity argument.)

Choose a point d”int 79, now for /=1, ..., n and shrink each set 79, to the
point dt linearly and simultaneously with a parameter [0, 1], so that the shrinking
set 79,(r) equals D;when t=1 and dLwhen 1=0. Write 7 for the set of indices
/, 1, k, eh Cj, ek and set

DAO = (eiDi(t))r\(ej Dj(1)) fl (ekDk{))

when ?€[0, 1]. We assume that the cones Btand the points dtare in general position
to ensure that Dj(1)+ {O} implies that int 79/(1) is nonempty. Moreover, as the cones
79,(0 shrink, the cones 79/(0 shrink as well and 79/(0= {0} for /<?0(7) where
t0(7) is the smallest t for which 79/(0 is different from {O}. (If, for some, 79/(1)=
= {0} already, then tO(1) is not defined.) We assume that the cones 77=and the points
dt are in general position to ensure that 79/(t) is a halfline when t=t0(l) and that
int79/(f)+ 0 for ?>/0(7).

As t decreases, condition (*) remains true because the cones 79; get smaller and
smaller. But conditions (/,j; k, €)* will fail for each (i,j; k, €) for some t because
79/(0)={(9} for all 7. The condition (i,]j; k, e)* holds for all t>t(i,j; k, €) and fails
for all t~t(i,j;k,e) where t(i,j;k,e) is uniquely determined. Write tO for the
largest k, <), then t0=t(i,j; k, e) for some (/,/; k, €). We may assume with-
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out loss of generality that i=1, /=2, k=3 and e(l,2) =1 and e= —I. So con-
dition (1, 2; 3, —1)* fails, i.e.,

DMnDMODM =K

where if is a halfline of the form {oca: a*O} with vdR*fd}. We know that Dx(t)C\
P\D.2(t)r\Ds(t) is {0} for and has nonempty interior for t>t0. We claim
now that for each j=\,2,n, vfDj{tQ or a€—Dj(t0. This will contradict
condition (*) and so prove the theorem.
The claim is evident when / = 1, 2 and 3. We are going to prove it with notation
j —4. There are two cases to consider.

L.yf case. When the intersection of two of the cones Dj(tQ (/= 1, 2, 3) is equal
to K, i?i('o)n Aj(fO=-K, say. From condition (2, 4;l,e= —1) we get for i=t0that

Di(t) D2t M(e(2, 4)OM ) * {O}.

But K=D1(tQ(~)D2(tQ and so vEKcze{2, 4)64(i0 indeed.

2nd case. When the intersection of any two cones Dj(t0) have nonempty interior
(/=1, 2,3). Then, by a wellknown theorem (see [3], for instance), there are vectors
UJER3 suchthat uj-xS 0 forall xdDj(tQ (/=1,2,3) and Ois in the convex hull
of ax, a, and as. The case when some s parallel with some other at has been dealt
with in the first case. So we assume that every aj is nonzero and 0= axax+az2+ a3
and every 0. Then e-xs0 (/=1,2,3) implies that x=Rv for some real
number ft Moreover, aj-v=0 for /=1,2,3.

Assume now that +v$Dx(t0. Then L, the line through vand —v can be sepa-
rated from Dx(t0, i.e., there exists a nonzero a4PR3 such that axex<0 when
xP A,/,)\{0} and ai -x=0 when xP L. This shows that the vectors at (/= 1,2, 3,4)
are all orthogonal to v and so ai=Rxax+R22 for some real numbers ft and ft.
We show now that ft and ft are both different from zero. Assume that ft=0, say.
Then axand ax are parallel and, then Dx(t0 is separated cither from £+4(t0 or from
—2)4(t0), contradicting condition (1,/;4, £1)*.

Consider now condition (1,2; 4, e)*: there exists an XER3 L suchthat

xti-eDnDMnD M

Then —eaxex<0, axexSO and a2mxSO. This implies that ft and ft cannot be of
the same sign. We may assume that ft>0 and ft<O0.

Suppose now that e(3, 4)= 1 and consider condition (3, 4; 2, —1)*. In the same
way as above this implies the existence ofan xR L with a2msO, axex<0 and
a2-xs0. Now ax is a positive linear combination of a2 and ax, so ax-x<0. But
ax-x<0, a2-xs0, u3-x*0is impossible. Assume now that e(3, 4)= —1 and con-
sider condition (3,4; 1, —1)*. Again, this implies the existence of an XER3L
with a3ex"0, ad4¢x>0 and axm 0. Now a2is a positive linear combination of ax
and -a4,soaa-x<0. But a,-xS0, a2ex<0 ,as*x”™0 isimpossible.

We mention finally that it is possible to extend these results to higher dimensional
spaces but, unfortunately, the conditions in the theorems become rather unintelligible.
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DYADIC MARTINGALE HARDY AND VMO SPACES
ON THE PLANE

F. WEISZ (Budapest)

1. Introduction

It is well-known that in case 1 +*“ the classical Hardy space Hp corre-
sponds to LP, furthermore the dual space of Il Lis BMO and the dual space of VMO is
H 1([2], [4]). The analogue of the first two parts were shown both in case of martin-
gale Hardy (Hp, + °°) and BMO spaces ([5]). The analogue of these third part
of the theorem is also true for special type of Hardy and VMO spaces ([7]). In these
last results the stochastic basis the definition of the spaces based on is linearly
ordered.

In this paper we are going to investigate the dyadic Hardy and VMO space on
the plane. We shall introduce an atomic Hardy space with respect to the two dimen-
sional dyadic stochastic basis and it will be shown that its dualis the adequate BMO)1
space. The dual space of VMO belonging to this BMO)1 space will be investigated
minutely and it will be proved that it contains strictly the above mentioned dyadic
atomic Hardy space.

Moreover, an H* space will be defined and its dual space will be found in case
of one and two dimensional dyadic martingale. (Exact definitions are given later.)

2. Preliminaries and notations

i) In this paper some well-known definitions and theorems will be needed. The
theorems will be stated without proof; the proofs can be found in [3] and [7].

Let (X, stf, P) be an arbitrary probability measure space. Denote by L°°(s4, 19
the set of functions f=(f,,,nEN) such that /, : X-*R are .“-measurable for all
nEN and

sup ess ||[/(Xy2 <+=°.
XZX

Endowe this space with the following norm:
Vil i := sup ess Wi{x) | ,* (/€ L>°(s4.19).
x£X

Now we introduce a subspace of L°°(s4, 12 whose dual has already been known.
Denote by Lqg(s4,12 the set of functions /= (/,, 12 suchthat
Jim WEN, FNF+L, L) L7 () =0.

To give the dual space of L"(s4, 12, the space of totally continuous additive set
functions of bounded variation mapping into 12is needed. This space will be denoted
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by BA(X, si, P, 12=:BA(si). Let p: si-+12 be a set function. The total variation
of p will be defined as follows:

r(A i)ZZSOp{iiz\‘jiNQ e il]:XEl: X, EE L,EIDEJ = 0, i*j).
p is a function of bounded variation if v(/r)< +°° and it is totally continuous with
respect to Pif p(A)=0 €/2 for all A£si that satisfies P(A)=0. Define the follow-
ing norm on BA (si):

iIPllsani) = v(p) (pfBA(si)).

It is easy to see that BA (si) is complete. Denoting the coordinate functions of
p~rBA(si) by/r,i.e. p=(p,,.n(|N), 0,.: it follows easily that all pnis addi-
tive, totally continuous relative to P and it is of bounded variation.

The function /= (fn, nEN)EL(f(si, 12 is said to be a stationary Osequence if
for all n large enough we havef,, = 0. It can be proved that the space of stationary
Osequences is dense in L f(si, 12. On stationary O-sequences an integral can be de-
fined:

Jidpm=2 fdpn (o- (P=nEN)EBA (si)),
X n=0x

This integral is a bounded linear functional on a dense subspace of L”(si, 12 and its
norm is Yo \Bawi)- Conversely, if /is a bounded linear functional on Lf (si, |2 then
there exists a p=(p,, nfiN)EBA (si) such that / has the following form on station-
ary 0-sequences:
Uf)= f/dp.
X

Thus the following theorem holds:

Theorem A [3]. The dual space of I f (si, 12 is BA (si).

The following concept of orthogonality will be used ([6]). Let Wczsi be an
arbitrary u-algebra. We say that ®={(pl: ifl}czL 2 is a *-orthogonal system ('ii-0.s.)
if for every i,j£1, iAj, E<Y(pi()=0 where Ev denotes the operator of conditional
expectation with respect to the rr-algebra <€and Lp denotes the space LRX, si, P)
( 0 + *“). Moreover, ifforall /£/, £V(|<P)d= 1then ®is said to be a *-ortho-
normal system («-0. n. s). Suppose that Ey (fe<p()=0 for all r'/ where fdL 2; if
this implies /=0 then the 'ii-0. n. s. ® is complete in L2 The following space is
also needed. Denote by L<v.RP,g) the set of functions /£ Lp such that

IKET*|/)Lplle < » .
Let us have a norm on this space like

Ni«<P,):= (EVJBPO (172<»,1S 95S»).

Then the following theorem holds:

Theorem B ([3], [7]). Ifthe o-algebra is genereted byfinite atoms then the dual
space of /Hw,2,«0 is E(<cr\y
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Suppose that there exists a countable, *-complete 0. n. s. ®in ZA Then L t2j0°)
is isometrically isomorphic to L*“(”, /2. The isometrical isomorphism is given by

V: Z(*,2;, - Z~(<V, 9, 4>(f) = (/.,, n€N)

where /,, := E<g(fe<r) denotes the "*-Fourier coefficient (see [3]).
It is easy to give a space that is isomorphic to LA{", 19 by the isometric iso-
morphism above. Let us denote by  2,00),0the set of functions such that

Jim '\f~/goj>,,||(«,2,<») =0
Then T(*>2,00),0 is isometrically isomorphic to 1. Therefore the following

theorem holds:

Theorem C [3]. The dual space of >0 is BA (T).

i) Further on let 2:=[0, 1)X[0, 1), let Si be the class of Borel sets of the unit
square and let Abe the Lebesgue measure on the unit square. We consider the proba-
bility measure space (12, Si, A). We are going to use the following notations:

® = Nen,m; /«€N),
sdnm:=o{[k-2-"(*+1).2-)x[/-2—,(/+1).2—):
k, /€N, 0" k< 20" /< 2m,
o<«,:= §{5x [/-2-",(/+1)-2-b: B"SS, /€N, Os 1< 2"},
A= fE{[L2-",(HI)-2-")x5: A€N, 0si<2"} (1, mEN)

where cr(”) denotes the cralgebra generated by si for an arbitrary set system si.
Moreover, let LP:=LRQ, Si, A),

Lp:={feLp: f/dX =0} (0<pS~)
n

and let the operator of conditional expectation relative to si,,tmbe denoted by Enm
(n, mENU {“>).

To define the two dimensional dyadic Hardy space we need the concept of the
atoms with respect to Q. The function afL°° is said to be an atom if there exist
n, m£ N and an atom H ofsi,,,msuch that

(i) {aA0tg H

*T(77)" 2°-2
(iii) J adX = 0.
a
Let the set of £A-atoms in Z* be denoted by 21
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Denote by X =>X (S) the set of functions /£ U for which there exist a sequence
of numbers (A, nEN) and a sequence of atoms (a,,, nf N) satisfying

0] n2=0 \K\ < 00

)
i) /= 2

Let the following norm be introduced:

WAU = inf{;q:ZO\ Uu-f= /12:0 K an}

where the infimum is taken over all decompositions off described in ().

As for all atom az 21, Hallal, the series (1) (ii) is convergent in L’-norm and
also A-ae. and ||/|[iS||/]|,*’ (/EX). It is easy to show that XX is complete and XX.
the series (1) (ii) is convergent in »x -norm, thus the linear envelop of 21 is dense in

It can be proved (see [8]) that b%<™K (I<pS+°°) and |[|/||if=Cp||/||p
(/EX, I-=/7"~+°°) where Cp depends only on p\ moreover, an upper estimate of
>K-norm can be given by C-fold Lj-norm ofthe maximal function f*:= sup \E,>nf\.

nm(LN
The converse estimate does not hold (see [8]).

To give the dual space of X, it is necessary to introduce the space BMO;

(/=1, 2), as the set of functions (p£EL\, such that

H%Lg% HE,>m Ip-£'nmPi)LiU <0°
with the following norm:
M lbmo, = ngﬂL]JLpN [INe,jd<p-£,,, mi)/ill~-

It can be seen that BMO~BMO, and | ¢ ||BVIO~|l ¢ llbmo2 where ~ denotes the
equivalence of norms ([8]).

Note that spaces like this are usually called BMOI" in the theory of martingales.
It is easy to prove that L"c BMO02.

Now the dual space of )X can be given:

Theorem D. The dual of x is BMO,.
Under more general conditions the proof can be found in [8].

3. The dual of VMO

Define the concept of the space VMO in the following way: let the set of dyadic
step functions be denoted by L and the dyadic step functions with Gvalue integral be
denoted by La. Let us close the space LOin BM 02-norm and call it VMO. It is obvious
that if <pEVMO then2

3] lim KEAJcp-E*cpmU =0
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where the meaning of “lim” is the following throughout this paper: for every e>0
there exists a number K such that for all n, m~"K

\\(En,m\(p--En,m(p\Allloo < £

To apply the theorems in 2. i, it is important to show that there exist for all
ugN a complete and an j/noo-0.n.s. They are constructed from the one di-
mensional Haar-system in the following way:

Y) = X52'ex) (kEN)

where Xk denotes the one dimensional, one periodic Haar-system. xHfl can be defined
analogously. It is easy to show that {/fy:kEN} is an -complete o.n.s. and
E®°,,,(Xn]\2 ~I- One can also easily see that the -Fourier series of every dyadic
step function is formed by finite terms, thus LOcL (* >ni2co),0- Obviously, the anal-
ogues of these statements hold for the system {yfl:kyN}. Then Theorem C can be
applied: the dual space of 2,4,),0is BA and the dual of L*n”2~),0
is 0). The following notations will be useful:

MYcp) := {E-AViPY, keN).
n*4<p) m= keN) (n€N).
A lemmais needed to give the dual of the space YMO.

emma [8]. Suppose that f=2fn k-ae., fmJt and \\f,,\\je<+°°-  Then
L [8]. Supp =0 =0 J
ft Te and I/1ljtS 2  Wn\Wk-
n=0

Now the dual of VMO can be presented:

Theorem 1 Suppose that [ XX, pfBA viBA /Lo=b.,0=0
(nEN) and
© 2, VLT, )+ o, ) <
hold. Then
e d(<p)= f1;f<pdx+"2_0 { (5 'Ped<P)dfi,,+ 8‘1 Y™((p)dvn) ((pPLO)

is a bounded linearfunctional on a dense subspace o/''VVMO. Conversely, if ®PVMO*
then there exist fPTf, p,fBA(rfmil), v,,£BA (sf,t08), /i, iO=r,j0=0 such that (3)
holds, moreover ®takes theform (4) on the subspace LOand

(5) padt

. . _
FLl/1U +i (law ~J+ 3 yeAy @) ,

= WO\ —QUIVIL*+ 2 o (\PrilANe, i+ WDieA&n T)]-
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While proving Theorem 1a duality theorem will be used which is very interesting
in itself. Introduce some notations as follows: let Xnm:=L,

H\xnm:= H(ENJEIZ i~ (1, mEN,
By Theorem B

(6) \gZ—riM\’\K\\x,,'J(En,M 2'Ai (t,*lItxamn,msN).

Moreover, if A£J/T*m then there uniquely eixsts an /EL 2such that

and
MU = ||(EnJ/|212|1.

Nowlet T:= x T, m Letthespace T be endowed with the following norm:
n,mEN

for £=(£,, ,,; U
HAIX— n%”en,nﬂx,;m

Denote by TOthe set ofelements £6 T for which
lim Ik,.nx,,M= 0

and for every fixed m there exists k such thatif n~k then c,,ra= Gtmand for all fixed
n there exists / satisfying if TW1. The dual of X0is going to be given.

Theorem 2. Suppose that fk,ifL2 (k,IEN), u4',,£EBAYy'£BA(n/nwo and

. = " . H 1 /\ - -
M C i NemYiaR UL+ i DHNlIo(A ) <
hold. Thpn
(8) NE) = lim 2 (2 f fkzi,kM+ f 4k1)(Z~Kdn'k+
i=o 4=* £ 5
+ | flkmikmM+fn t(MdVi)
m=k+l a A
(E€*,, and = lim = lim £*%,,)
00 00
is a bounded linear functional on X 0. Conversely, if A£X,F then there exist fkif L 2
(k, /EN), frEBA \WEBA(s/,,y&) such that (7) holds, furthermore, /1 can be
written as in (8) and
(9) Cr"UW~"jC.
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Proof of Theorem 2. The first part of Theorem 2 and the left side of (9) follow
from (6) and Theorem C.
In order to prove the converse statement some notations will be needed: for

mt€X0 let £*:=(EE,, N)gTO where
fO if né N and m~ N
ﬂ\Jm:= i,,,m otherwise.
For i£Z0 let n,mEN)EXO0(/'=1, 2) where
i,mif m=N and n™ N
0 otherwise
and

i,,mif n=N and m> N
0 otherwise.

In this case if N tends to <®then i N—i in Z-norm. Thus
A" — lim EN = lim Z (IE*Q)+N(E*(2)).

Therefore it is enough to give A(Eki)) (/= 1, 2). The restriction of /1 to the subset
which has elements of the form (/=1, 2) will be denoted by JI£°. Then

(10) Mil = Z(MH+MHI)
and it follows that

n™Yo,o0,..,1,No,..)=ffnNznNca (ns n,f,,Nev-, i,,New .
n

Let ZKNbe an j/, mstep function where I=kk (Ic"N). Then

K t+i

I(0, 0, ..., 0, £KN, %N, ..)ljr = Iijt,iIjfif,,
therefore there exists a function gktNEL2 which satisfies
N&MO, oo, 0, iitjv, IfcIV, --) =f gk.N~K.Ndk

Si
and

(11) MAIL = sup £ "z 1INeVIAARV2II+ liERAIgN MR 12/3:

If i tiVis an ,r/i>mstep function (17k) then
n#>(0,...,0, i*.w, &.»,...) = NPp(0, ..., 0, ifciwo, ...,0)+
K+ 1

+ O, ..., 0, it.iv, iifciv, ese)e
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Hence
jSk.nik.NA—J fk,nik.N*k+ J gk+lINGKN (&= N).
n Sl R

Applying induction we get

(12) f SKNKFidA= * Ntk NG+ fSn HfIEkHAX
i j=k ]

Al WENTLNY A

and (11) indicates that ,gk/j,n converges in Lj-norm and Aa. e. By (12) it follows

But

that J g,,'NEdA converges for all tEL ifntends to +°°. Let B(!;):=|_Ili+r0101 Jf g,.INAd
(E€E). Since

NE, ¥l U ~(£'~,MNIVA
thus

I /g"tdk| ACN(E L lga.*12) 1201 - 1K A w212t~ &~ bl Tl «nce-.nig11211-.
g

Consequently, B is a bounded linear functional on a subspace of rmo-
using Banach—Hahn’s theorem, preserving its norm it can be extended onto the
whole space i.e. there exists "TNEBA that satisfies

BQ=f MxlOdn and LU Babla) ™ 1MES|.
Q

Similar statements can be said on A too. Indeed, (10) and (11) imply (8) and (9).
The proof Theorem 2 is completn.

Note that B can be written in the form B(£)= J £dv where v is a cradditive
g
measure but is not necessarily totally continuous with respect to A

Proof of Theorem L By Theorem D it follows that

\Vff-(pdk\VsciWf\\je. M bmo2 (<20,

|
and by Theorem C we have
1 / | o MNag>—Er,(p)dn,, = |juniUa(?,, )L - JE~n<PIl(",n20=)S
D 7]
— HMVBROC, . IPIlbm Oj -

The same inequality holds for v,,. Obviously, if ®is of the form (4) then ®is a
bounded linear functional on a dense subspace of VMO and the right side of (5) is

satisfied.
To show that if <fEVMO* then @ is of the form (4) and the left side of (5)

holds, we embed (£,> I * Ibmo2 into X0, R:LO0-~X0, R(p:=(<p-Enmp; m, n€N).
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From (2) we get that the range of R is in X0. By the definition we have ||<p||smo2=
= WR(p\X((pELO). Choose an arbitrary functional ®EVMO*. It is easy to see that
®0i?-1 is a bounded linear functional on the range of R. Applying Banach—Flahn’s
theorem @®oR~1 can be extended onto XO preserving its norm so by Theorem 2
it follows that there exist A2 (n, N), inEBA(sJmn), ViEBA(sdn”) such
that (7) and 2||®Po/?_1||=2||P|| are satisfied and

(13 @) = Jim 2 (2 HK(P-Eikp)I+ ] 4P (p-EN kXt~

+m=?k+l(§fk’m(P_Ek””g)d)'+ﬁj 42)((p-Ekr<p)av'k} (f»€TOQ

holds. Let yn=(ym &EN), v,= (ve*; fcEN),

_Whk if k>0 _(vnk if *>0
Mk 10 if k=0, V'*10 if k=0

Then nniBA(jd,, ), WEBA(s/,,'J) and

(1] WARNBAC/X Ty = I I8 X (L)) I lvafil, o) 8 (B a(jrfag,)

Since
J f,k(<P-Ei,k<P)M = f (f k-Ei,k k)<pdk,
i R

(13) can be written as follows:

(15) ®(<p)=1t1 JiJd *f(i,k - Eikfid<pdX+
N+~ &0 T=nq

+ f4'P(<p)dlik+ 2 f(fk,mEknfkJcpd?.+f n 2)(<P)dvK) (2€E,,).
Si a

m=k+1 n

We show that the series

(16) 2 (ALk-E KK+ 2  (@kmEkrikd)
converges to a function /Zdf which satisfies

(17) /rll A6 c2|d|

in Z.j-norm and Aa. e. if n—+°°. Indeed, as

(is) N\E kfiJis w n ™ iiNe,fay;,jdi/2il,

the series converges in Lj-norm and Aa. e. Let the limit be denoted by/. To prove
(17) let dtuk<\Q) be a series of non-decreasing c-algebras such that ,s/0j0, sdltkC i,k
and for every fixed NEN, dBlkcontains at least one of and one of sdNmmThen

Wife EtkF, K\je — \\F,k~Ei'k/ " Kir(sel' K = c2L4 /5 —Ei KF . kihes?)
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where XK(EC,<} is the atomic Hardy space, is the martingale Hardy space
defined by the maximalfunction with respect to Jjt and c2is an absolute constant.
Using (18) and the well-known Doob’s inequality

1 N
I\I;u,\ﬁ) |4./111p T I/, (i</>")
where (E,,ftiZ N) is an arbitrary martingale, we have
11/,k—Elkfl,Aw.Xi,J —lisup «ay, mC fe}|1 =
N llsupm  f L RAnm\: 3 <JTH 1+ ||EL*al1s 3||(EiHy;itl) L2l

Thus
A3 .cl|(Elplna  1-

By the lemma it follows that / £K and (17) hold. Taking (14) into consideration we
get the left side of the inequality (5). Since the series (16) converges in L}-norm, too,
(15) implies (4). This completes the proof of Theorem 1,

Note that there is an exact but rather complicated way to give the subset of the
space in Theorem 1that maps all functions (pZLO into zero i.e. the set of elements
f W, v, (nZN) for which (4) takes zero for all (pZLO. The space of Theorem 1
factorized by this subspace is the dual space 0ofVMO.

It is obvious that Theorem 1 implies VMO*Z5*f and VMO* /" if.

4. The dual space of H*

@ First we consider the case of one dimensional dyadic martingales. Further on
denote by & the Borel sets of the interval 12=10, 1), by ), the Lebesgue measure on
the unit interval and by L the set of one dimesional dyadic step functions. Let

sdn:= ufJA «2~", (kT 1) m-n): fceN, 0" k < 2}

and Enbe the conditional expectation operator relative to s4n. Interpreting H* -norm,
the concept of quadratic variation is needed:

el:= $=i(54 11212 (/I€V)
where A,,f=E,,f—En If (n=0, Z7,/:=()). Let the H“-norm be introduced as
follows
Wru-:= HONU  (fU ).

Obviously, if fZL then ||/||H-< +°°. Let H* be the closure of L in H°°-norm. The
other way to define H* is the following: let H* be the set of functions fZ L1 for which

lim|I( Y. M,,/|2VW2L =0 holds. It is easy to see that these two definitions are equiv-
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alent. H~ can be embedded in the space L"(R, /9 isometrically:
R: H* *Lq{8, P), Rf:= (Arf, nEN).
Applying Theorem A if ®6(H*)* is arbitrary then there exists B = (/(,,, NEN)£BA (0%)
such that L#l= M\baw and
*(f)y = f R()dR = 2 T djdrRn (fib).
5 t=ofl

Now we give the subspace M of BA(3%) in the following way: let BEM if the bound-

ed linear functional @ belonging to B maps every function j+L into 0. It is enough

to czonsider those functionals which map all Haar-functions into 0. But Anf=
-

= k:2a lf(k)xk where % denotes the ka Haar function and f(k) denotes the /ch
D>-
Haar—Fourier coefficient. Consequently,

PXK) = r]; X, (2 2",

Therefore, if ®XK)=0 for all KEN then
Rn{\21m2-", (21+1) «2-")) = Rn([(21+D) M-, 2(1+1)2-))
(M6N, n> 0, KN, 0=/=29-1- 1)

and /i0([0, 1))=0. Denote by M the space of set functions B=(pn, n+N)EBA (33)
with the above mentioned property. A well-known theorem of functional analysis
implies

Theorem 3. The dual space d H “ is thefactor-space BA (38)jM.

(ii) Let us see the two dimensional dyadic case and use the notations described
in Sections 2 and 3 again. Quadratic variation is now defined as follows:

Qf={ 2€N M,.m/I212 /U D)
where
A, En, nf~E,-i,nf —EtmMUf+EnItm If F_ljn/:= 0 (n, mEN).

We define J'f“ -norm with the help of L*“-norm of Qf We call H” the closure of
the space L in H* norm Similarly as in the one dimensional case H*® can also be
defined here by limit. Denote by H* the set of functions /6 L 1 for which

11212~= 0.

Itis easy to show again that these two definitions are equivalent. Then the analogue of
Theorem 3 can be proved in a similar way to the one in part i.
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INTEGER SETS CONTAINING NO ARITHMETIC
PROGRESSIONS

E. SZEMEREDI (Budapest), corresponding member of the Academy

Introduction

K. F. Roth [1] proved 1953 using analytic methods that if a strictly increasing
sequence of natural numbers fll<ai<...<fltSn contains no three term arithmetic
progression then

loglogn'
Very recently Heat—Brown [2] could improve considerably (1) by showing
k c*n
(2 (log N3 (c3> 0).

The aim of the present work is to show that Roth’s analytic method combined
with some combinatorial ideas is are useful in the study of such type problems. Apply-
ing the method to the present problem the resulting inequality will be (2) whilst in [3]
it was shown that if al<a2<...-=tak“n is a sequence sa of natural numbers such
that sa—s& does not contain any positive square then

Ic

< trogmiciegoscs 2

It is possible that the present approach leads to new results in other problems of
additive number theory too.

N otations. Let

jrw = {12, ..., n},
—{ig+j’ 0+1)?+y> (i+S)?+y},

Let \sa\ be the number of elements in s&,

/m*00 = 2 «(«*). e(tX) = eZix y = n

Let r be a sufficiently small positive number and n=-nO(e). We suppose
y> -—4C-3— otherwise the theorem is triviallg true for sa.
log@n

Let us assume the assertion is proved for every m ~n. Choosing c2sufficiently
small it is clearly true for n<c4. It is easy to see that either
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a) U has asubset n-/'c: H, //+ m - - 9] with
loe r
\si'\ > (L+e)y dog W3’ S/l N

or
b) the total number of solutions of the equations ai+a;=2a*+w0 and at+aj -
-2ak—n0 is at most

(3) o(1 -t-45)y 3«0

for some number n06"«, «+—  /\J. The case a) can be settled easily (cf. the end of

the proof). Now we are dealing with the case b). In the following we work with n0
instead of n.

We write y0=y-70. Now

n,-l

is the number of solutions of the equation at+aj=2ak(mod n0. In view of (3) this
is less than ~ + 3£|yon0>since there is no 3-term arithmetic progression in si.
Because the main term (corresponding to t=0)is \jj*re6 it follows that

.y a{j- %W -

N R
Let us assume that for t"O, I/ \Hq;l o

There must be an i=ik with 2‘0<2ii<(log n)13 such that there exist tk, t2, tq

with a fixed  sufficiently large.

[?=?0")=["-] + D> (mod nQ with Otherwise we would
have

. 2 2 NI —)1n-—) '1&!3
e 2<sI2g2030 [rfl-* e« (1A (M) T (I (=) ety 1 1) KO T «of ¥

while it follows from Parseval’s identity that

@ (M iDH "-(-)D)-«"» .-» .1 UJI1 1 7

Q\Si\llogﬂaq aR% )
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We shall show the existence of a set

A= {b,2b, ...,Neb} = {bk}[%
such that

jbtv=li.,j(mod n0), |/J < -“ogn),

forall \*"jS\@ \,I=vSq =q(i). Dividing the set XX(,0 into /d(e+l) equal inter-
vals /j, 12, /,,j/(,+n, there must exist b' and b" (1 suchthat

b'tv(mod 10 lies in the same interval as b"tv for all v (i.e.|(h'—b")tv—kwnQA\*ng/(i+1)
with integer k). The choise b=\b"—b"\ satisfies our requirements.
Now the number of solutions of ai—aj =bk—bi (mod n0 is

which is at least n>unQ(r))

11M2 0 23 _ P,
4) a-e)qoyzi«ial  =(i-e)A if4.

On the other hand the number of solutions of ai—aj =bk—bl (mod nQ (with
the notation B'—LL}-, T a large constant) is

b nIB’

®  (i+i())22WuM"l 2

-r

( (VI

K (i >>,b'|vl--¥-/ m

where S(T)-+0 as T—=os
There exists a set n/8\j,b,B' with

(6) K, Mm,»-|8(1-2£)|5'y0
since otherwise the sum in (4) would be with a fixed T=TO0(e)

S (1+e)M F— (1-28)A'y0|sA| < (1- €) 8«dl”I2

in contradiction to (5).
Similarly if we have at* with

,(n
| n0Jr 2o
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then the same argument (with g= 1) shows the existence of a
~Iog% nQ\og3 with

(60 I I (1—2e) ML +"22/rj ~ f6-

in both cases (6) and (60 usmg the set5|Bv *bB we obtain a new set s/'cz

4+1)
c{l, B) with ]Ogs ; ”ZI/<4+1)J such that si' contains no 3 terms arith-
metic progressions and \si'\ >c(q)B'y0. Here either

1
iYg=\, c(q) > |+ 2fiTT

or
230 L3

It is easy to see that we have in both cases

c(q) B' c2B'
logGn logCB'

if c3was chosen sufficiently small. This contradicts our induction hypothesis and so
proves the theorem,

Remark. It is easy to see that if 20 forall i=12 ,n—1 with
a sufficiently large /,,, (i.e. we have case b) preceding (3)) then cOcan be chosen near
1/3. (c0=1/3 —e is admissible if /,,>c0(e))- A more careful computation concerning
case a) shows that c0> 14 can be chosen in the formulation of the Theorem.

W
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MULTIPLICATIVE FUNCTIONS WITH SMALL
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1. Let Jt (resp. Jt*) denote the set of complex-valued multiplicative (comple-

tely multiplicative) functions. Let q:[1 , €0) be a slowly varying function, i.e.
such that
U) if i 3" %2

with a suitable function ex(>0) tending to zero as x-+°=. Let asl| be a constant,
i?ae the set of those /€ Ji for which

(1.2) 2 (" «
holds.

Let KEN, /E£Jt be such that
(1.3) 2 AKf(n) =f(n+K)-f(n).

n~x
Our purpose in this paper is to characterize all these functions.

Theorem. If for ffJt (1.3) holds, then either f(n)=ns(n), Re.?" 1,
u(n+K) =u(n) (Vn€N) or

Remark. The special case a=1, o(x)= 1 has been considered in [2].
2. Lemmata. In this section we assume that faJt, ,/4f%e and that (1.3) is true.
Lemma 1. IfH is an arbitrary positive constant, then

2.1) 2 max W:k/(n)lac*e°y*)-

naSx la=i,aSH
Proof. It is clear; use only Holder’s inequality. O
Lemma 2. | f there exists an integer D such that

(2.2 2 /() LCxq*(x) (X —C0),
n 4
then /€ ", r. ( bf

Prooft. FOran arbitrary n, let a{n) be the product of prime factors of n composed
from the prime divisors of D and K, and let b(n) be defined by n=a(n) mb(n). From
the elementary theory of congruences we get that there are suitable constants H1, H2
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such that a(n+InK)*H 1 for a suitable /,, Furthermore, \f(n)\ =
S\f(n+ I\ +\AINKK f(ri)\, and so, by Lemma 1,

2 1001 « 2 If (N + t NK) \X+XQX(X).

Since f(a(n +1IrK)) is bounded, the number of integers n with b(n)=v, a(n)sH1,
is bounded as well, therefore the sum on the right hand side is

« X2 )]
This completes the proof. O

Lemma 3. For each primep coprime to K,f(pa=f{p)a

Proof. From (2.1) we infer

nZAX VAK pf(pn)-f(p)AKF(n)\x« xg*(x).

Consequently, by summing over the integers n of the form n=pav, (v,p)=1, we
have
2 \f(p)f(P°v)-f(patMNexQ*(X),
e
which leads to '
\f(p)f(pa)~f(pat)\* \%C V) « XQ(X).

(v.p)=I

Then f(p)f(pa=f(patl), since in the opposite case (2.2) would be satisfied with
p=D, and by Lemma 2 this would imply that /£E=5?". Hence the assertion immedi-
ately follows. O

Let fi(n)=Xo(n)\f(n)U where y( is the principal character mod K. It is clear

that (1.3) holds for /i instead of/ as well, furthermore that [ii e (see
Lemma 2).

Let g(n) :=fi(n),
(2.3) S(x) := 2 Sin).

It is clear that ]

fi(m)
2.4) \g{n)-gm\ =\« f tP'ldu\ LU
fiM

consequently we have
(2.5) 1I2"X \g(n+K)-g(n\ « 2 Mili(«)le(/i0-1(«+")+/il-1(«)).

A

Hence, by Holder’s inequality,
(2.6) nz" lg(n+ AY- ?2(<)l « (nZA Mr/iwn1 (s f+i )( "> «

« xT*e(x)(s(x+K))*-DA
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Since
g(m) * \g(m)-g(m-K)\ +\g(m-K)-g(m-2K)\ +...,

therefore, by (2.6),
g(m) -sc mXxQ(m)S(mf* Da
Hence we infer that

S(Xx+ H)-S(x)« Hx1«Q(X)S(x+Hy*-»1°,
which implies easily that
2.7 S(X+H) <zn xai (x) + S (x)
for each fixed H.
Lemma 4. |f H is an arbitrary positive constant, then

(2.8) 2 qnax Minl(«)lex W S(x)(

Proof. This is an obvious consequence of (2.6) and (2.7) . O
Let g be an arbitrary natural number coprime to K. For each n, let / be the least
nonnegative integer for which g\n+IK, and let = Then n determines /
and «!, furthermore a fixed n f*K') occurs exactly for q distinct n. From (2.8), we get
}%( (9(n)~g(ani))\« xQLY(x)S(xy,I- D +xefx).
Observing that

2, 9(ani) = 4g(4)s (4)+°(WaQM s ()<a1)")

we get
(2.9) S(x)—qg(q)S <k xLaQ(x)S {xYa~1)I*+ XQa(x).
Let
A= xif-IXB() '
Then, from (2.9),
(2.10) «A<"-i>[*(xX)+L

Lemma 5. | fthere exists some g, (g, K)=1, suchthat g(q)<\, then 2(x)=0(2),
consequently fiEHPae-

Proof. Since e(x/q)e~\x)-*-\, as x—°°, therefore, from (1.10) we get:
(2.12) A(X) -c (1—e)I(x/q)+A,

whenever x is larger than a constant y0, with suitable positive constants e, A. The
deduction of A(x)=0(l), from (2.11), is immediate. Indeed, let Xj<x2< ... be
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such a sequence for which A(xy) = ;{}%A(x) is not bounded, then there exists such an
infinite sequence xv, and A(xy—°°. But from (2.11),

A < (1—HAX,)+ 1,

which implies that sA(xfi<A, a contradiction. O

Lemma 6. For g>\ and (q, K)=1, let = be defined by g(q)=q} Then
(2.12) A(X) « X4&E
andfor {=*0,
(2.13) A(X)»x"-£

for every £50.
Proof. First we prove (2.12). Assume that x is large enough, xé&”0, suchthat
q(x/q) *(&(x))-1=<d/a. Then, from (2.10), with a suitable constant c,
LLx)-cl(x-»/*(x) < gcA {")+c,
whence we have

(2.14) AX) < qn+HAI—j + c1

with some constant cr. Starting from some x0,wedefine xv=qw0. Then, from (2.14),

Axv+]) < glt-2k(xv)+cl,
which gives that

AXV) <sc g '=2El) (v —°°),

i;e. that A(xV<s;xJ+2El. Since for X, xv<x<xv+l, we have A(X)«:xJ|iei<<x'+2H,
therefore (2.12) is true with 2Ex=£. So (2.12) is true.

Let us prove now (2.13).

Let £i>0 be an arbitrary constant, so large that q(x/q)Q~1(x)> q-eilx
whenever x>yx. Then, from (2.10),

(2.15) AX)+cALD/z(x)+c >mgq™~nA (x > yX.

Let le~q. There exists a constant A such that A(x/q)"A implies that A(x)"
SA(x/#). From (2.15) we obtain

(2.16) A(X) > 94 Zeia(-")
assuming that x>yx and that A(x/q)"Ax, At is a suitable constant. Since A(X)
is not bounded, therefore there exists x0, x0>y1? such that A(xQ=~Al. Let xv=
=qw0. From (2.16) we obtain that A(xy))>”" (v=1,2, ...) holds as well, conse-
quently

A(X\b > qA_ALll X”)!
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and so
A » x1~'E  (v-00).

Since for x,xVv*x<xv+l, A(x)»A(x\), therefore (2.13) is true with e=2el.
By this the proofis complete. O

3. Completion of the proof of the Theorem. If g(q)”l for each g, then A(x) =
=0(1), i.e. /6JSfap (see Lemma 2). If g(q)< 1for at least one q coprime to K, then
the same is true, see Lemma 5. Assume that g(q)”l whenever (q, K)=1

Let gt,q2 be arbitrary integers, coprime to K, *>1, #2>1, g(qi) =q\l, g(q93=
—qg2 Assume that >0. From Lemma 6 we obtain that

log /(x)

logx ~ 11 (x - »).

Then rj2=0 cannot occur, since this would imply

logAKX) O
logx
If ijo™O, then Lemma 6 gives
logA(x)
logx
consequently ih=q2.

We proved that g{q)=qn for each (g, K)=1, with some positive constant q.
Then \f(ri)\=Tf, (n,K)=1, a=gcc. Since (1.3) holds for |/| instead of/as well,
furthermore (n+K)a—rf~cKna~r, therefore (1.3) implies <rSl.

Let f2(n):=Xo(n)f(n), and /(1) be defined by f2(n)=nat(n). It is clear that
\t(riN= 1 if (n, A)=1, and t(ri)=0 if («, AN)>1 Since

Md A7) = (n+/QFdKi(n) + i(n)((n+.K)<-<),
therefore

B 2 (M+KY\AKRMI A 2 MK 21+ 21 (<)I[0»+*)e«'l =A+T2

We have
T2<9 %;(K" 1 xa<zx.
n

Furthermore, \AKF 2{n)\-NAKF{ri)\, consequently by (1.3)

*is (h\xl)(a-l)/ﬁ(r%kxm KW o) xq(x),

2 (n+4A/NK/O0! <<xe(x).

and so

This implies
2 |dKi(n)] « x1<M(x) <k xF

x/27n"~x
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with some constant <5<1. Hence we obtain

(32) 2 — -—— < 7o

Mn=1 n
In [1] it was proved that such a function t has the form
t(n) = Xk(m)nA
where % is a suitable character mod K. Consequently A(n)=n°+zyK(n). Let us

define u{ri) by f(ri)=naHTu(ri). It is clear that /2(«)=./(«) if (n,K)=1. Then,
from (1.3),

(3.3 r12"x \(n+K)eHTu (n+ K)-n°-HTu(n)\*<zcxQ(xy.

Repeating the argument used in [2] one can deduce that u(n+K)—u(n) (VKEN).
The proofis finished. O
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INEQUALITIES FOR SUMS OF MULTIPOWERS

ZS. PALES (Debrecen)

1. Introduction

For x=(xk, ..., X, )ER+, (=(lb the multipower xa is defined
by

xa= (XIt ..., xk@ ‘ae = A ... x°k

Using this notation, the Holder inequality (see [5])

(1)

(where tifN, xI5...,x,, yI5 X,,>0, p, g=~l, I/p+1/q=1) can be rewritten as

The following inequality obviously generalizes (2):

®) 1s (4,1 lis 7-)

where ao, ..., anER, a0, ..., amERk are fixed parameters and nEN, Xj, X,,ER +
are arbitrary variables. (Indeed, letting m=2, k=2, a0= —1, al=]/p, x2= Y,
ao=(l, 1), at=(p, 0), a2=(0, g), we can see that (3) is equivalent to (2).) However
(3) includes other important inequalities, for instance let m=2, k=1, a0=c—b,
ax=a —C, a2=b—a, al=a, at=h, a2=c, where a~b~c are arbitrary real values.
Then (3) reduces to

which is called Lyapunov’s inequality (see [5, p. 27, Theorem 17]).

The key result of this paper is an approximation theorem for convex functions.
Using this theorem, we obtain necessary and sufficient conditions for (3) to be valid
forall nEN, xr, ..., X,ER+. (See the Corollary below.) Then we give new and sim-
pler proofs for theorems obtained by Dardczy and Losonczi [3] and by the author
[7], [8]- We note that our results also include those of Reznick [9] and Ursell [11].
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2. Main results

Lemma. Let NnZN, xx, ..., x,.€:R+ befixed. Then thefunction

= jo—.2  *7
(p{a): In{/n |gl .;> a£Rk
is convex.
Proof. Since/is continuous, it is enough to show that it is Jensen-convex, i.e.

y(~tx)s vM +vW ' 0O,KR*.

This inequality is equivalent to

iLf 214027 (14 ?) V%14 ) V2
which is an easy consequence of the Cauchy—Bunyakovsky—Schwartz inequality*
The following theorem is the key result of this paper.

T heorem 1. (Approximation theorem for convex functions.) Let /: Rk-*-R be
an arbitrary convexfunction with f (0)=0. Then, for all compact sets Dcz Rt and for
all e>0, thereexist 0<a<l, N, xr, ..., x f R* suchthat

4) /(a)—a In\im:gl *?3\ < £ for afD.

Proof. Let e>0 and a*f Rk be arbitrarily fixed. Then, using the convexity
of/ and the Hahn—Banach theorem, we can find a vector u(a*)ERk and a constant
v(a*)ER suchthat

(5) f(a)s(u(a*),a)+v(a*) for aERk

and
f(a*) = (u(a% a*)+v(a*).

(Here (,)) denotes the inner product on Rt) Write
G(a*) := {uBR*1(M(at), a)+v(a*) > f(a)—e/4j.

Clearly, G(a*) is a neighbourhood of a*. Since D is compact, there exist al5 ..., anc R'1
such that

®) D¢ u1 G(a).

Write a()=0 and
u =ul), vt=v(af i=01..,m

Since /(0)=0, we have v,,=0 and t\, ..., vim0. Using these notations, (6) and
(5) yield

) max «M;, a)+vt) >/(a)—e/4 for acD.

Nc/a Mathematica Hungarica 56, 1990
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Putting a*=a;(i=0, 1, ..., m) into (5) we also find that

(8) f(a) » max (2w, a)+b\) for all ufR\
Now let M=0 and w-Glhi—e/4, ¢;] (/= 1, be arbitrary. Then by (7) and (8)
we have
|/(a) » max «u,, a+w;)| >/(a)-e/2
i.e.
9 |/(a) —max (<v;, a)+w,)| < e/2 for af/X

On the other hand, for t>(ra+1)4E we have the following estimate

m m \
in(2 tenvd2 H
: =0 max (<M, a)+w()

Ini
11 M M, a) + wi—max ((ulta) + w?) In2H A
* -
|nt "n2 o
L In(m+ 1)2
A . .
sty (in il=bl+m igo D — T~ e £/2.

Let fo>max((m + 1)4E¢€) be fixed and write a= I/In t0. Then the above estimate
and (9) yield

AT E T
(10) f(a)-a In < e for afD.
i2=0t01
This inequality is satisfied for all wt€[Cj—e/4, V], i—1, ...,k. Therefore we can find
values Wi€|T,—e/4, vi] suchthat tolis rational for /=1, (C0=70=1 is also

rational.) Choose 2N so that pi=gqtoi is an integer for all r=0, K. If ur=
= (Yu, e, LK) then write yr= (70, #Y. Clearly, yf=t(""d. Therefore

m

f(u>ia>+ Wi 2 q to 3 _Uu;_a) 2 A)(,

s Zmn
i=0 i=0
Let n:=r2=r:)Pi and define ..., XxnfR+ by
(*i> ...,X,,) = (0, ...,yOym ..., n,
Po Pi

Then A can be rewritten as %Z_nl xf- Putting this expression of A into (10), we see
that (4) is satisfied.
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Theorem 2. Let F: R”+L—R be a continuous function satisfying the following
condition:

(C) Iffor some t0,...,tm>0, F(tO, ..., /ms0O then M)eo for all
1

Let further a0, ..., amfa nf Rk be given vectors. Then

(11) Fingi ™ 5fkixn=0
holdsfor all ndN, ..., x,€R+ z/andonly if
(12) F(eW,...,eNe J)sO

bl satisfiedfor all convexfunctions/: R*—R with f (0)=0.

Proof. If (12) is satisfied for all convex functions/ with /(0)=0, then itis satis-
fied by

f@)=In(4 2 *?)-

which is convex by the Lemma and obviously satisfies f (0)=0. Thus we obtain (11)
and have proved the “if” statement.

We prove the “only if” part of the theorem indirectly. Suppose that (11) holds
forall ndN. xr, ...,xnERK but there exists a convex function /* : R*—R with/*(0) =
=0 such that (12) is not satisfied. Then, by the continuity of G(u0 ..., wn)=
= F(ew ..., edl), we can find an e>0 such that [ur—*(sa,)|<f (=0, ..., m)
implies F(ew, ..., e“')<0. By Theorem 1,wecan find O<a<]l, ndN, xIf ..., xndR+
such that

I*(«()-«Inl

for z=0, m. Therefore we have

4"))

By the properties of F, this inequality implies

which is a contradiction. O

Corollary. Let a0, ..., andR+ and a0, ..., anf R be given parameters. Then (3)
holdsfor all ndN, xr, ..., X,,ER+ ifandonly if

(13) 0=Sa0(li0+... +am(lim
is satisfiedfor all convexfunctionsf with f (0)=0.
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Proof. The function F(t0, ..., im=fo°...Cn—1 obviously satisfies the condi-
tions of Theorem 2. Thus (3) is equivalent to (12) which reduces to (13). O

Remarks. (1) There are important functions other than that used in the
proof of Corollary, which satisfy the condition (C) of Theorem 2, for instance

F(to, ...,tJ:=tll+...+fi"-f0 (Indeed, if for some i then F(iJ, rf,...,
AQ holds for a>0; if t*<t%0 for all / then F(t0, tlt ..., 7)=0 vyields

cae K Jin\. 4[—) for 0<a<1
-~
Thus we obtain F(/g, ..,C)S0.)
(2) In the investigation of the inequality (13) the determination of the set
H .= {(n0, ..., nm|3/: R* —R convexwith /(0) =0
such that ul=/(an, i=0, ..., m)

is a crucial point. This set turns out to be polyhedral, i.e. it is the intersection of a
finite number of closed half spaces. Any polyhedral set is determined by its extreme
points and extremal rays. (See Rockafellar "l01.) Thus (13) holds for all convex f with
f (0)=0 ifand only if

0 is au0+ ...+ccmum

for all extreme points and extreme rays (n0, ..., un) of H.
In the next section we give some applications of the Corollary.

3. Applications

First we consider the one dimensional case, i.e. when K—1.

Theorem 3 (cf. Theorem 1of [8]). Let a0, ...,amaQ0, ..., ATCR be given para-
meters with a0+ ...+am=0. Then

(14) in (_gleOO--(__Zl Xy’ m
holdsfor all nEN, x19 ..., x,,>0 if andonly if

(15) 0SaQa0-ail+...+aJamflj|
is validfor /=0, ..., m.

Proof. Since a0+ ...+am=0, (14) is equivalent to

/1 n /1 n \*m
-h « ') o
By Corollary 1this holds for all n,x1,..., x,, ifand only if
(16) 0 sdf(aQ+...+ctnf(al
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is satisfied for all convex /: R-*-R with /(0)=0. However, using a0+ ...+am=0
again, we see that the restriction /(0)=0 can be omitted, i.e. (14) is valid for all
n,x1...,x,, ifand only if (16) holds for all convex /: R—R. Taking J (a)=\a—ai\
we find that (15) is a necessary condition.

To prove the sufficiency, assume that (15) holds for /=0, ..., m and let/: R-*R
be an arbitrary convex function. Without loss of generality we can assume that
ul< (li<... <amand that/is linear on the intervals (—°, aj, [a2, a3, ..., [im 2um 1],
[«,,_!,°°). Thenf can be expressed in the form

) f(a) =pi+tplla-al\+..+pT-r\a-aT N\+pTa.

By the convexity of/, we have that the left derivative / _(a) is not greater than the
right derivative / +(a) at any point & R, calculating these derivatives at a=
=0 ..., em I5 we find that plt pT-ruD. Putting /=0 into (15) we have

0a <0(a0-a Q+... +qm(am-a 0.
Since a0+ ...+am= 0, this reduces to
0 s abal+... +xmam.
Similarly, letting i=m in (15) we find
0 s a0a0+ ... +amam

Thus
(18) 0 = a0a0+... +amam.

Now we can prove (16). Using (17), we have

m m m-3 m m

2, ) = Po2, *i+,2 Pi2, <ai - ail+Pm 2, <l

Applying (15) for /=1, 1, (18), ao+...+an=0 and pl,...,pT™w0 we
can see that (16) holds true. O

To formulate a corollary of Theorem 3, introduce the following notation:
For a biR let

(igl*lﬁlgl x°Yl(a b if a*b,
Mab(x) = Maf(xu ..., X,,) )
exp(2? x? In Xi/ j? xf), if a=bh,
i—X >=1

where UEN, x=(xI5..., x,,)ER+ are arbitrary. These means are sometimes called
Gini means [4]. Putting b=0, M abreduces to a power means [5]. The means Matl>a
were investigated by Beckenbach [1]. Several authors (e.g. Brenner [2], Gini [4] found
sufficient conditions for the comparison inequality

(19) M QIB(x )" M aubl(x).
The following necessary and sufficient condition is due to Dar6czy and Losonczi [3].)
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Theorem 4. Let 00, b0, ax, bxf R. Then (19) holdsfor all N, x€R+ if and
onlyif

(20) min (a0, b A min (al5 bj) and max (a0, bQ)  max (ax, bxX).

Proof. We may assume that aOsh 0, axShx because Mab=Mba. First we deal
with the case a0<b0, ax<bx. Then (19) can be rewritten as

lg (2 Ty /(" 1-f>1) . ( x bly/(bl-a1l)."g jhoyl/teo-bo) . (£ xalyi(bo-a0)"
i=1 i=1 i~ i=1

By Theorem 3, this inequality is satisfied for all N, XX x,>0 if and only if
0< { U~bX\ | U-bQ\ [f-flol

al—bl bx-ax a0-b0 b0-a0

holds for t£{a0, ax, b0, bx.
Putting t=bxinto (21) we have

p< 11 \bx-bQ I'Ifd ao
a0-b0 b0-a0

\bi-bO\+\b0-a S I8&- ol.

21

whence we obtain

However this relation is the opposite of the triangle inequality. Therefore, this holds
with equality and thus aO<hO implies b1*bO0.

Similarly, the substitution t=a0, yields a0Sax. Thus the necessity of (20) is
proved. The proof of the sufficiency is a trivial computation, so we omit it.

To extend the theorem to the case a0=b0 or al=bl, observe that (a,b)-+
Mab(x) is a continuous function on R2for all fixed at Furthermore it is an increasing
function of both variables. (Indeed, if then, forallb£ R, min (a, h)"min (a', b),
max (a, 6)smax (@', b) and this implies Mab(x)*M a‘b(x) for all b<{a, a'}. How-
ever, using the continuity, this hold true for b=a and b=a'))

Let h0—a0, bxSax and assume that MeJj(x)"M aitbl(x) for all x. Then, using
the monotonicity of M6 ,we have M,,0b(x)siMat(x) for all x and b<b0, ax<a.
Thus necessarily b~bx and alsa. Taking the limits h—h0—0, a-~ax+ 0 we obtain
that b0"b x and a0*ax, i.e., (20) is necessary.

To prove the converse, assume that a0Sax and b0"bx. Then for all b<b0,
ax<a we have e(lsa and b”bx, whence we obtain M@&K(x)*M a6, (x) for all x.
Taking the limits b-»b0—0, a—j+0, we find that Matfx)*M aubl(x), i.e.,
(20) is also sufficient. O

The next result is a generalization of Holder’s inequality for the M a&bmeans. If
X=(xa, .. xjf R'f, /=1, ...,m then write

Xi .. xm= (X ... xml, ..., X... xrm).

Theorem 5 (cf. Theorem 3 of [8]). Let k2 andlet b0*aO, ..., bk=5ak be given
parameters. Then

(22) M_a Hxx..xK Ma'bl(xx) ... Makibf x K)
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holdsfor all nEN, , ..., xkER'. ifandonly if
(23) a, 0 and ¢+ =0
holds for all i=0, ,k, where

(2 Voj)“1, if /// "o,
—| O

0, if ﬁ)
*0

Proof. First we prove the theorem assuming that b0<aOAQ, ...,bk<akAO0.
Then (22) can be rewritten as

Applying the Corollary, this holds for all nEN, (x1,  xk)cR+, i=1. .. ., o if
and only if
(24)
/[(-a , -0 |f(-bo,..., -b0 __
bo—ao ao ho
/0, ..., &, ..., 00 /(0,...,fcj,...,0)I
“j-bj bJ-°j 1

is satisfied for all convex functions /: R<I—R with / (())=(). Since constant functions
satisfy (24) with equality, therefore the condition f(0) =0 can be omitted.
For the sake of convenience, write

> ), Bom—( DO, .., b0,
Aj:=(, ..., aj, ...,0), Bj-=(0, ji=1,...k.
Thus (24) is equivalent to
(25) 4 f(Bj) .. j. Iw

70 Ay-by 720/ - bj m

Now we have to show that (25) is valid for all convex functions/if and only if (23)
is satisfied for all i=0 k.

Assume first that (25) holds. Then we prove that Btis in the convex hull of
{AOQ, ..., Ak} for all i. If this were not so then, by the Hahn—Banach separation
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theorem, there would exist a linear functional @: Rfe—R and a constant ¢ such that
(26) ®{A)-"c, j =0,....,k and @(£,)>c.

Define/by
/(n) = max(0, ®(n)—<C), UER*

Then/is obviously a nonnegative convex function, furthermore, by (26),
f(Aj) =0,j =0,...,k and f(Bt)>0.

Putting this/ into (25) we find that the right hand side vanishes, however the zth
term on the left hand side is positive and the others are nonnegative. This contra-
diction shows that the Bt (i=0, k) belong to the convex hull of {AQ, ..., Ak}

This means that there are nonnegative values Ay”O (/,/=0, ..., k) with ZK Ay=1
such that e

Bt=7;0thj (i=0,....k).
For /=0, we have the following equations
b0=AJG Ab (j—1 e K).

Thus A0,=(AMrO—bQ/aj. Substituting this into 72K £0.=1, we get
-0

N =1+ .
Aooao(g0 1/<4) I tf(y:zl I/aj\
If c:=_Z l/ay were zero then
7=0

0=1+b0(Z YVaj) = I+h0(-1/a0 = (a0-b 0/a0,
7=1
which is a contradiction. Therefore

A= (1+ bO(YZi 1/ay))ao_lc 1.

Now a simple computation yields

foy AD0—Q _ a0-n - 1 oft

In the cases /=1, ..., kK we have the following equations:

0 = AOUj- AOa0 (j~O and bi=ktia - | Maa.
Therefore

A,= (™0 and Ai= bi+Xioa°
aJ a.
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K re
Substituting these values into _£0 Aj=1, we find that
J:

at—bj
a,,atc '
Thus we obtain
Oj-bj
aiajC ’
(1+b{(.2 _i/4))d_1c \ if /=7>
~P

if 17,
A,

and we can observe that these formulae are valid for all /,7=o, ..., k.
The conditions AySO (V- ) imply ini# > 0 for all iV/. If c were negative
then (i0fli, a0a2, 6ja2would be also be negative, however their product is posi-

tive. This contradiction shows that c¢>0. Thus the numbers a,, ak have the
K
same sign. Since ¢c= * |/a7>0 therefore a0, ..., are positive. The inequalities
. . J=0
2i;50 vyield
/=0 ..,&

i
Rearranging this inequality we get hf+ c.~O. Thus we have proved that (23) is a
necessary condition.

To prove the converse, let /: R*»» R be an arbitrary convex function. Then

No) = /[ L XiA) ~ I xf(Aj).
Therefore
~fB) . * - Avw
27) i=0 i"OjTo fl—&

A simple calculation yields
iu —
i=o fli-h,- 7 A

hence (27) is equivalent to (25), which was to be proved.

Thus we have shown that Theorem 5 is valid if bo<ao?40, ..., bk<ak?£0. Let
a0”bo, ..., ak™ bkbe arbitrary values. Assume that (22) holds for all indicated values.
If a~a\T=0, then, by Theorem 4,

Al e, TN =M_QA@ _(,,,(*) and x) £ &K

is valid for all x. Therefore it follows from (22) that

(28) M_aw, 40(x, ... xK = Ma[_ (jq)... Ma" K(xK)
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for all N, id, ..., xkf R".. However, then it is necessary that

(29) 0, bhi+(Zl/aj)-180, i=0,...k.
Vo
(Ij\ll_o_w, taking the limits ««->-«,+0 (/=0, ..., k), we find that (23) is a necessary con-
ition.

To prove the converse, assume that (23) is valid. Then for all values
(/=0, ..., K) we have (29). Thus (28) is also satisfied. Letting a;-x;+0 we obtain
(22).

The proof of the theorem is complete. O
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ON ORTHOGONALITY SPACES ADMITTING
NONTRIVIAL EVEN ORTHOGONALLY ADDITIVE
MAPPINGS

GY. SZABO (Debrecen)

Introduction

In this paper we consider a real orthogonality space {X, L) in the Ratz sense
(cf. [5]) and orthogonally additive mappings F: X-*Y with values in an arbitrary
abelian group (Y, +). The general odd solution consists of all additive functions,
while the even orthogonally additive mappings are quadratic (cf. [5]). The main
problem is to select the even solutions from the class of quadratic functions.

The only known example of ortogonality spaces admitting nonzero even solu-
tions is a real inner product space. For the Birkhoff—James orthogonality on a nor-
med linear space (cf. [3], [4]) this example has proved to be unique (cf. under regu-
larity conditions e.g. [2], [7] and in general e.g. [8]), while in the abstract case it is
known only that such an orthogonality L is necessarily symmetric and unique, as
J. Ratz showed recently (cf. [6]).

Our purpose with this note is to continue this investigations. We obtain also the
additivity of JL, and show that any even orthogonally additive mapping is constant
on concentric “spheres” if dim Xw3 (see Section 3 below). This makes it possible to
define a real valued positive homogenous and positive definite “quasi norm” on X
having the property that the values of an even orthogonally additive mapping in
points of equal “quasi norm”, are the same. This structure is now very close to the
inner product space. Namely, our main result states that if dim X3 and there exists
a not identically zero even orthogonally additive mapping, then X is an inner product
space with the well known solutions (see Section 4 below).

Throughout the paper, R and R+ denote the set of real and nonnegative real
numbers, respectively. Also, dim X and lin V stand for the linear dimension of X
and the linear hull of asubset VcX, respectively. The constant mapping with values
c is denoted by c. Finally, we use O for the zero vector, the number zero and for the
identity element of the group Y.

1. Preliminaries
Definition 1.1. Let (X, +) and (Y, +) be abelian groups. The mappings

A, Q: X-<-Y are said to be additive and quadratic, respectively, if they satisfy the
Cauchy- and the Jordan—von Neumann functional equations:

(1.1) A(x+y) = A(X)+A(y) forall x, yEX,

(1.2) Q(x+y)+Q(x-y) = 2Q(x)+2Q(y) forall x, yEX.
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178 GY. SZABO

Lemma 1.2 (Aczél [1], Theorem 2). For any abelian groups (X, +) and (Y, +) and
any quadraticfunction Q:X -Y there exists a mapping B : XXX-+Y with the prop-
erties:

(i) symmetric: B(x,y)=B(y, x) forall x, yEX;
(i) biadditive: B(x,y+z)=B(x, y)+B(x, z) for all x,y,z£X;
(iif) representative: 4Q(x) =B(x, x) for all xf X.

The mapping B is uniquely determined by Q and we call it the biadditive represen-
tation of 4Q. Notice that when X is a real space, then

fa=c(2”)=40(A) =n(A,A), *enr,

i.e. in this case every quadratic mapping has a biadditive representation, namely
B':XxX-2Y defined by B'(z, y) = B(x/2,y/2, z,yEX.

D efinition 1.3 (Rétz [5], Definition 1). Let X be a real vector space of dimension
S2 and X a binary relation on X with the properties:

(01) totalfor zero: x10 .0 ix for every x£X;
(02) independent: if x, yET\{0}, xzy, then x andy are linearly independent;
(03) homogeneous: if x,yEX, xxy, then axXfly forall a,/?£R;
(04") thalesian: if P is a 2-dimensional linear subspace of X, xEP and R+, then
there exists yEP suchthat xxy and (x+y) L({/.x—y).
Then X is said to be an orthogonality relation on X and (X, X) is called an ort-
hogonality space.

Exampies 1.4 (Ratz [5], Examples A, B, C). Each of the following relations satisfy
the axioms (O1)—(04") of orthogonality:

(i) The “trivial” orthogonality on X, defined by (Ol) and for x, y*A\{0},
xty<=>x,y are linearly independent.

(i) The ordinary orthogonality on the inner product space (X, (¢, *)) defined
by x_Lyo{x, y)=0. In this case we refer to (X, X) as an inner product

space.
(iii) The Birkhoff—James orthogonality on the normed vector space (X, || ¢|))
given by n'Xy<=>||x+ Ay||s||x|| for all AER.

Defnition 1.5 (Ratz [5], Definition 2). Let (X, X) be an orthogonality space,

(Y, +) an abelian group. A mapping F: X—Y is called orthogonally additive if it
satisfies the conditional Cauchy functional equation:

(1.3) F(x+y) = F(xX)+F(y) forall x, yEX with xty.

Further in this paper X and Y will denote an orthogonality space and an abelian
group, respectively. Introduce the following notations:
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ON ORTHOGONALITY SPACES 179

Hot (X, F) = {A: X  Y\A is additive},
Quad (X, Y) = {Q: X—Y\Q is quadratic},
Homx (X, F) = {F: X—XI/7is orthogonally additive},
(o) Homx (X, F) = {D: X < F|D is odd orthogonally additive},

(e) Homx (X, Y) = {E: X—Y\E is even orthogonally additive}.

Theorem 1.6 (Rétz [5], Theorems 5, 6; Szab6 [8], Theorem 1.8). For any ortho-
gonality space (X, X) and any abelian group (F, +), we have

() (o) Homx (X, F) = HoT1 (X, F);
(i) (e) Homx (X, F)cQuad (X, F);
(iiiy Homx (X, F)=Hom (X, F)«*(e) Homx (X, F) = {0}.

Example 17 (Ratz [5], Theorems 9, 16; Szab6 [8], Corollary 1.7). If (X, | .|})
is a real normed linear space of dimension with the Birkhoff—James orthogo-
nality X, then () Homx (X, F)x{0}=>X is an inner product space, and in this latter
case we have

Ee () Homx (X,Y) o E(x) = a(||x|[9 forall xEX
with some agHom (R, F).

Theorem 18 (Rétz [6], Theorem 2.3). For any orthogonality space (X, X) and
any abelian group (Y, +) such that () Homx (X, F)~ {0}, we have

(i) X is symmetric;
(i) X is right unique.

2. Basic properties of orthogonality and mappings

The following properties of orthogonality will play an important role in the rest
of the paper.

Definition 2.1. Let L be a real vector space ofdimension =s2. The binary relation
t- on L is said to be

(i) symmetric, if x,yEL, x\-y=>y1-x;

(ii) right dense, if for any 2-dimensional linear subspace P~L and any
x6E\{0} there exists yf E\{0} with xl—y;

(iii) rigth additive, if x,y,zdL, xl-y, xhz*fxh(y+2);

(iv) right homogeneous, ii X, yeL, x\~y=>x\~Ry for all R8¢ R;

(v) right projective, ii x, ye Luthere is oXR with xK (y—ax);

(vi) right unique, if x,ye.L, x"0=>there exists at most one cXR for which
xh(y-ax);

Remark 2.2. In a similar way, one can define the corresponding “left sided”

properties of the relation In the “two sided” case the attributes “left” and “right”
are omitted.

It will be fundamental in our considerations the following

Lemma 2.3. Suppose that L is a real vector space of dimension and \—isa
right projective binary relation on L. If H'sH is a right unique relation on L,
then +H——
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180 GY. SZABO

Proof. Let X,yEL, x\-'y—(y—O0x). Because of the right projectivity of 1-,
there exists ocER suchthat x\-(y—ax). Hence by the inclusion 13+ we have
also x\-'(y—ccx). Now if x=0, then x=0\-(y—ct0)=y, else regarding the right
uniqueness of a=0, ie. also x\-y. Thus kcl- holds, proving the lemma.

Lemma 2A. For any orthogonality space (X, J ), we have

(i) L is right dense and, what is more, for any 2-dimensional linear subspace
PaX and P\{0} there exists vEP\{0} suchthat uXv and {u+v)X{u—v);

(i) X is right projective.

Proof, (i) If Pis a2-dimensional linear subspace of X and uf P\{0}, then using
axiom (04" for x=u and 2=1, weget VvEP suchthat uXv and (u+v)X(u—v).
Here v=0 would imply nXu that contradicts (02).

(i) Let x, yEX. For x=0 we have by (Ol) that x=01ly=(y-Ix). Other-
wise, for X740, take a 2-dimensional linear subspace X, ydPc. X. The first part of
the proof assures the existence of vf P\{0} with x+v, whence by (02) x and v
are linearly independent. Since yEP = lin {Xx, n}, we have y =y.x+Rv for some, a, f f
£R and so by (03) x XBv=(y —ax).

Lemma 2.5. Suppose the orthogonality X on X is right unique. If u, T\{0}
such that mMir, then

() forany  Hn{n v} nXy wehave y=Rv with some RER;
(i) for any )A R there exists pf R with (u+pv) X(/.u—pv).

Proof, (i) Let yE\in{u,v}, nXy=(y—Qu). Then y—yu+Rv, whence uXRv=
= (y—au) and because of the right uniqueness of 1, we have @=0, i.e. y=Rv.

(i) With respect to axiom (02), we have dim (lin {u, n})=2, thus by (04"
there exists y€lin {u, r} such that uXy and (u+y)X(hi—y). Finally part (i)
completes the proof.

Lemma 2.6. Let QcQuad (X, Y) and let B be the biadditive representation of
E=4Q. Then E is even and

() PEHomx (T, F)<=>2((x, v)=0 for all x, yEX, xXy;

(i) P(EHomx (X, Y)=>E(hu)=E(?.v) for any u, vEX such that (u+v)x(u—v)
andevery /1R;

(iii) E(ju) =E(2v) for some u, vEX and every 2i R =>B (Xu, pu)= B (Xv, pv) for
all 2, pER.

Proof, (i) For all x, yf*X we have

E{x+y) = B(x+y, x+y) = B(x, X)*+B(x, y) +B(y, X) +B(y, ¥)
= E(X)+E(y) +2B(x, y).

(ii) Since £€(e)Homi (T, Y), thus forany 2ER we get

E(au) = E~[u+v]+"-[u-v]j = E~Ti/ +r-]j+P"

=EMu+ V]t EN-N- =) = ply[m +1]-y = E(kv).
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(iii) For any ApER we have

B(Xu Hn) = B u, n) -B (_A—p A “
CE(ixi,) E(IE,).E(ix0,)-£(izal)
o Ate ,)_4A_” Al ) = B(Av,pv).

3. Orthogonality spaces with () Hom+ (X, Y) * {0}

Lemma 3.1. If Ed(e) HoT(T, ¥)\{0}, then2Ed(é) HoTx(¥, ¥)\0} holds, too.

Proof. Of course 2E is even and orthogonally additive. If it happened 2£=0,
then for all xdX we have E(x)+E(x)=0, ie. E(—x)=E(x)= —E(x). Thus £
is odd and so by Theorem 1.6, part (i), E is additive. This means for any xd X that

E(X) = E(x/2+x/2) = E(x/2)+E(x/2) = 2E(X/2) =0
i.e. £=0, which is a contradiction.

Lemma 3.2. Suppose B is the biadditive representation of a mapping Ed
(e)HoTt~(T, ¥Y)\{0}. Ifx,ydX are linearly independent and 2B(Ax, py)—0 for
all AJ/rER, then xzy.

Proof. By Lemma 2.4, part (ii), _L is right projective. Now let us define a new
relation on X by
U = 1 U{(Ax py)\A, /i£R}.

We have to show that L'= L To do this, regarding the inclusion L'z> L and
Lemma 2.3, we need only the right uniqueness of L.

First observe that _L' is an orthogonality relation on X. Indeed, all of the axioms,
but (02), are satisfied trivially, while (02) can be verified as follows: for x', y'd X\{0},
x" L'y', we have

— either x'ty' and so due to (02) for !, x"andy" are linearly independent;

— or x'=Ax and y'=py with some A pcR\{0}, whence by our hypothesis,
x"and y" are linearly independent, too.

Next we show that the mapping E?+0 is also L'-orthogonally additive. Indeed
for x',y'dX, x'tY we have

— either x'ty', which implies E(x’+y)=E(X)+E(y")\

— or x'=Ax and y'=py withsome A pdR, whence 2B(x', y') =2B(Ax, py)=0
and by the proof of Lemma 2.6, part (i), E(x'+y")=E(X")+E(y"). Thus we
have proved that () Homz+.(Z, ¥Y)u{0}.

Finally, we can refer to Theorem 1.8, part (ii), to obtain the right uniqueness of
+'. This completes the proof.

Coroltary 33. If () Hom£(T, ¥)0} and x,ydX are such that xzy,
(y-x+y) L(Bx—y) withsome a;Rd R. then (ax—y)x(Rx+y) holds as well.
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Proof. Let £T(e) Homx (X, F)\{0} with a biadditive representation B (see
Lemma 3.1 above). Suppose x,ydX, a, BRdR with xty and (ax+y)£(Bx—y).
Of course we may assume that y?+0 and so by axiom (02) also x*O. Thus x andy
are linearly independent. Hence (ax+y), (/?xTy)+0, therefore using again (02),
(ax—y) and (BRx+y) are linearly independent, too.

On the other hand, regarding Lemma 2.6, part (i), we have for all 1, pdR

2A(Afax-y], IARx+y]) =
= 2B(lax, pRx) +2B(lax, uy)—2B(1y, pRx) —2B(ly, jiy)
= 2B(I<xx, nBx) —2B(lax, uy)+2B(1ly, pRx)-2B(ly, py)
= 2B(I[ctx+y], n[Bx-y]) = O.
Then Lemma 3.2 completes the proof.

Corollary 3.4. If (€) Hom£(T, Y)~{0}. then the orthogonality £ is (right)
additive.

Prooft. Let B be the biadditive representation ofa mapping Ed(e) Hot (X, Y )\
\{0}. Now suppose x,y,zdX are suchthat x Ly and xiz. We may and do
assume that x,y, z,y+z+0. Then x and y+z are linearly independent. Indeed,
for if y+z=ax, a£R, we would have y—ax=—z, i.e. x L(—z)=(y—ax) and
X +y=(y—Ox) simultaneously. Thus the right uniqueness of J gives a=0 that
contradicts y +z"0.

On the other hand, forall I, pd R, Lemma 2.6, part (i), implies

2B(Ix, p[y+z\) = 2B(Ix, uy)+2B(1x, pz) = 0.

Finally Lemma 3.2 completes the proof.

Theorem 3.5. If dimTs3 and (e)Hom (I, P)*{0}, then there exists a
functional B:Z —R with thefollowing properties:

(i) e(0)=10, ¢ (x):-0 for all xE2f\{0};

(i) g(Ix)=\1\g(x) forall xd X and |- R;

(iii) E(x)=E(y) for any Ed(e) Hom (T, Y) and every Xx,y~X such that
Q(X)=Q(y)-

Proof. Remember that under our hypothesis, the orthogonality _L is symmetric,
uniquely projective and additive, besides (O1)—(04").

Let nET\(0} be arbitrarily fixed. First we show that for any i£Z\lin {m}
there are zGA'XjO} and crER\{0} suchthat

(3.1) nj_z, u+z) Llu—z) and zii, (z+o0s)x(z—rs)

whence by Lemma 2.6, part (ii), for any Ed(s) Homz(U, Y) and R it follows
that

(3.2) E(bl) = E(Hz) = E(t;[os]).

By the assumption dimZs3, we can choose tdX \lin {u, i} Using Lemma 2.4,
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part (i), we obtain
—£lin [u, #\{0} suchthat HI® and (u+v)L(u—v);
—MTin{u, t}\{0} suchthat n+w and (u+w)=(u—wj;
—zfiin {7, t}\{0} suchthat v Lz and (v+z)+(v—2).

Singe z—cev+Rw for SOMe a, &R and the orthogonality is linear, therefore u+z.

Similarly, s= yu+Sv tlrrplles Z"#\Se Bll%td\aesmmhat (u+z)+(¥—z) For this
B 1o itive representation of a

Esj(rgoslglmx(l Y);%; Bya><|om (02), v ad z are linearly i rrappla[g

u+z rthermore, for all X, p£R, wsing Lemma 26, we
n
gal 2B(X[u+ 2], plu—z]) = 2B(Xu, pu)—2B(lu, pz) +
+ 2B(Xz, pu) —2B(Xz, fiz) = 2B(Xv, fiv)—2B(/.v, pv) =
Thus Lemma 32 assures (u+2z)1 (u—z). Hnall i) with
1=1, thereexists ascalar C&!R\ O}(gucﬁ)that (Z+3(/)St)1y+ (z—os) 5 part gi
Now we are able to defire the functional .. The axi oeenables U 10)

select a homogeneous basis Sfrom X, i.e. Sax suchthatfor x X 0} there
IS aunique s£s and££R\ with x=Lv. theﬁrst of

fleoreach s£S_ascalar of- {O satlsfyl 2)(Ifl'M-|'I 1hen|etos besuch
that oss=u). Since 5,={f&||sg5} is also a Sis, \e May asSUTE

mat(&lforall s£S. Letfoen g: Xx=-R bewd

0 if a=0

|£| if x = fr, siS, "R\{0}.
ﬂnoﬁ% properties of g can ke venified as follows:

8) Let xfx and /. R Thecase x=0 is trivial, while for x +0 thereis a
unique s£s and £GR\{0} suchthat A=cv and s0 xx=(X£)s, Whence by cefi-

nition
Qo) =\L\ = |AE = |Ae(*).
(i) Let E~e) Homt(x Y) adx, de with g(x)=g(y). Then either x=
=y =0, When E(x) = (391 or x y+ when x=£s y=qgt forsome unique
ms,i£S and £ /£R\{O} \Bi=\q. Hence

E(x) = E(€s) = E(bu) = E0£\u) = E(\t)\u) = E(tiu) = E(t) = E(y).

4. Inner product on orthogonality spaces

Lemma 4.1. Let L be a real vector space of dimension s 2 andsuppose that |—is
a binary relation on L having the properties:
(P1) right additive;
(P2) right homogeneous;
(P3) right uniquely projective;
(P4) symmetric.

Acta Mathematica Hungarica 56, 1990



184 GY. SZABO

If<gx JL-*R is afunctional with
(N1) (0)=0, <p(x)>0 for all xEL\{0};
(N2) cp(JIx)=LL(p(x) for all xEL, AfR;
(PN) u, vEX, <p(u)= <p{v)=1 with u\-(v—au)=>(u—av)\-v,
then there exists an equivalent inner product ZXL--R, ie.
@) x\~yo(x,y)=0 for all x,yEL;
(i) q&x) = (x, x) for all xfL.

Proof. Let (, ¢): LXL—R be well defined by
(x,y) = ax) forall x,yEL with x\-(y—ax).
We show that (¢, ) is an inner product on L:

Right additive: Let x,y,zEL and a, /if R besuchthat xh(y—ax) and xI-
(z—8Bx). Then, regarding the right additivity of I~ we have x\~([y+z]—{ot+Z]x)..
This means that

(x,y +z>= [a+B](p2(x) = au(x)+RBep2(x) = (X, y) + (X, 2).

Right homogeneous: Let x,yEL and /if R. If x\—y—y.x) forsome afR, then
by the right homogeneity of b, we have x\-{By —3<xx), i.e.

<X, By) = Bet(p2(x) = Bleup2(x)] = B(x, Y).

Positive definite: If xfL\{0}, then there exists yfR such that x\-(x—yx)
and by the right homogeneity of I it follows that jd—0(jc—yx)=(x—x). Thus,
regarding the right uniqueness of 3 we have y=1 and so

(x, 3> = yop2(x) = ([@(x) > 0,
proving also the assertion (ii).

Symmetric: Let x,yEL and x\-(y—ax). We may and do assume that x,y”0.
Then regarding the homogeneity of 1-, we obtain

X Ty ax) X)
P vey) PO (PE)Y

Hence, using property (PN), we have

( x acpjx) vy ) y
{(PCx) <) ()  cpy)

and therefore, regarding once more the homogeneity and symmetry,

capllx) 1
<PUy)
Thus

(x,Y) = =(pUx) = fijify-f @) = (Y, x>
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Finally, for x=0 or y—0 it holds clearly (x,y>=0 and xhy, while for
X, YE\{0} the definition implies

0=(xy) =aq2(x) <=a= 00 x\-y,
where aER is the unigue scalar for which x\-(y —<x).

Theorem 4.2. (Main result.) If 4\mX~*3 and (e) Hom™A", ¥)*{0}, then
there exists an equivalent inner product (¢, ¢): AfXF—R, ie. x Lyo(x, y)=0 for
all x, y<EX, and

(e) Hom=(A; Y) = {ao| *||da6Hom (R, Y)}.

Proof. Let E£(e) Hortb (X, F)\{0} be fixed with ist biadditive representation
B. Under the hypothesis of our Theorem, the orthogonality * is symmetric, additive,
homogeneous and uniquely projective, i.e. properties (P1)—(P4) are satisfied.
Also, by Theorem 3.5, we can define a functional qg: X -*R with properties (N1), (N2)
and
E(x) =E(y) forall x, yf X with g(x) = g(y).

Thus, with respect to the just proved lemma and Example 1.7, we have only to show
that (PN) holds as well.

For this purpose let u,vEX, g(u=q(v)=\ and uzx(v—au) with some agR.
We may assume that a*O and v—ctu”O, since otherwise (PN) would hold trivially
(for instance v=oiu=s- £>(r)=ja£>(m) =m|a| = 1>mav=u=> n—ai;=0j_t>). Hence by
axiom (02), nand v are linearly independent, i.e. dim P=2 for P=lin (u, i}

Since g(au)=q(2v) and so E(/.u)=E(lv) for all AfR, therefore Lemma 2.6
implies

0 = 2B(u, v—aoi) = 2B(u, v)—2B(u, o) —2B(u, v) —2B(v, t) =

= 2B(u, v)—2B{ay; v) = 2B (u—atv, v).

Hence by the proof of Lemma 2.6, part (i), we obtain, using the notation z=k—
—av+VEP, that

4.2) E(z) = E(z—V)+E(v).

Here zxO and, what is more, lin {t),z} =P, since otherwise nand v would be line-
arly dependent.

Now choose a vector weP with gw)=1 and ztw. Ofcourse lin (z, W}—P,
thus v=£z+cow for some £, coER. We may assume that 0, since —cowith—w
suit as well and co=0 would imply i>=£z contradicting lin {v,z) =P. Now the
relation zL w and formula (4.1) implies

4.2 [E(z—£2)+E(—(ow)] + [E(Ez)+E(oiw)] =
= E(z —Cz—cow)+E(Cz+cow) = E(z—V)+E(v) = E(2).
Next we observe that due to axiom (04') and Corollary 3.3, there exists y€P
such that zLy and
(IClzy)-L(|I—Clz+y)

(for £=0 take y=0, otherwise apply (04" for x=|£|z and the scalar A=
= 11—C/Cl)- There may be two cases:
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Case C(I—0 =0. Then (fzzxj>)+x([I—f]z-FjO follows. Because of the right
uniqueness of J_, Lemma 2.5, part (i), implies y=Bw for some /?£R. Hence we
obtain with n=\R\"0 the relation (Ez+pw)_L([l —£]z—gw) and thus

(4.3) [E(z-tz)+ E(-nw)] +[E(L,2)+E(iLW)\ =

= E(z—£z—ixw)+E(Ez+iiw) = E(2).
(4.2) and (4.3) give
(4.4) 2E(cow) = E(z)-E(z-£2)-E(i;z) = 2EQjw).

Now we have only to prove that co=g, i.e.
U—V=z—v = ([1—£]z—con) £(Cz+a)w) = v.

Namely, if e.g. then by the above argument we could choose y£ER
with (fov+yz) L([co—jilw—yz). Hence

2E(eow) = 2E([jj.wIyz\ +[(03~n)w—yz\) =
= 2E(yw+yz) + 2E([(o.ilw—yz) = 2E(nw) +2E(yz) + 2E([co—]w—Yz)
and thus with respect to (4.4), we have
2E(y2)+2E([a>—y]w—yz) = 0.

Finally, choosing a vector sfP with s L{a&>—y]w+yz), o (s)=s(y:), we obtain
for t=s+[(0—]w+y:7+0

2E(t) = 2E{s) + 2E([a>—Jw-\-yz) = 0.

Using homogeneity properties, one can readily check that all of our considerations
involved above are valid for vectors being a fixed scalar multiples ofthe original ones.
Thus 2E=0 on lin {r}, therefore Theorem 3.5 leads to the contradiction 2E=0.

In a similar way, one can exclude the possibility of /i>0)>0.

Case £(1—i)<0. We are going to derive a contradiction. Here (£zty) L
([E—Qz+y) follows. By the above argument, we can take a scalar 0 with
(fz+ pw)x([i—]z—few). Then

(4.5) [E(z- C2)+EQiw)] + [E(Cz) + EQiw)] =
—E(z—Cz+fiw)+E(Ez+nw) = E(z +2y.w) —
= E(z)+E(2fiw) = £'(z) + 4E(juw)
whence with the aid of (4.2), we have
(4.6) 2E(cow) = E(z)-E(z-tz)-E(Cz) = -2 E{yw),
i.e. 2E(cow)+2E(fiw)=0. Let v=h/q(z). Then p(vz)=p=p(/nv) and therefore
2£(ow +vz) = 2E(cow)+2E(vz) = 0.

Thus, using the above mentioned homogeneity considerations, we have got 2E=0
on lin {(ow+vz). Here, because of co™O, also cow+ vz”0 holds, and so Theorem
3.5 implies that 2E=0, which is a contradiction.
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MULTIPLICATIVE SEMIGROUPS OF CONTINUOUS
MAPPINGS

A. CSASZAR (Budapest), member of the Academy and E. THUMMEL (Greifswald)

0. Introduction For a topological space Z, we denote by C(Z) the set of all con-
tinuous real-valued functions on X, and by C*(X) the subset of C(X) composed of
bounded functions. Both C(Z) and C*(X) can be considered to be semigroups if the
semigroup operation is the pointwise multiplication of functions.

A classical theorem [6] states that, if ZI5 X2are compact Hausdorff spaces, then
the isomorphy of the semigroups C(ZX and C(X2 implies the homeomorphy of Xt
and Z2. The paper [8] contains the statement that the same holds if X1and X, are
realcompact spaces.

It is easy to deduce from these statements two slightly more general ones in
which the conclusion is the homeomorphy of the Cech—Stone compactifications
BXxand >R and of the Hewitt realcompactifications 0Z, and uzZ2, respectively (cf.
5]):

2 A. Let Xxand X2be Tikhonov spaces.

(@) If the semigroups C*(Xr) and C*(X2 are isomorphic then RXr and RX2 are
homeomorphic;

(b) ifC (Zj) and C(Z2 are isomorphic then uZ, and 0Z2are homeomorphic.

In some recent papers, generalizations of these statements can be found. The
generalization goes in two directions: instead of C(Z)or C*(Z), one considers semi-
groups composed of continuous mappings from Z into suitable topological semi-
groups (not necessarily commutative), and semigroup isomorphy is replaced by weaker
conditions.

In order to formulate the generalizations in question, let us recall the definitions
of quasi-real and segment-like semigroups. In the following, R, [0, +°°), (0, + °°),
and [0, 1] are considered to be topological semigroups equipped with the multiplica-
tion of real numbers and the Euclidean topology of R (or the subspace topology
inherited from it, respectively).

(0.2) S is said to be a quasi-real semigroup [2] iff

(@) S is a topological semigroup containing [0, +«) as a topological subsemi-
group,

(b) Ois a zero element and 1is a unity elementin S,

(c) there is a continuous mapping xi-»— from S—{0} into S such that x e—=

=—-x=I| for x£S, x"O,

X
(d) there is a continuous homomorphism xi-*-|x| from S onto [0, +°°) such
that |x|=x for x6[0, +°°),

I*



190 A. CSASZAR and E. THUMMEL

(e) the sets k"={x6S: |x|<e} (e>0) constitute a neighbourhood base of 0
in S.

(0.2) Sis said to be a segment-like semigroup [3] iff

(@) Sis a topological semigroup containing [0, 1] as a topological subsemigroup,

(b) Ois a zero elementand 1is a unity element in S,

(c) there exists a continuous homomorphism from S into R such that
x| =x for x€[0, 1],

(d) |a]=0 implies G=0 for af£S,

(e) ab—a implies either a=0 or h=1 for a, b£S.

Itis easily seen that every quasi-real semigroup is segment-like (cf. also 5.3).

We introduce the concept of a weakly segment-like semigroup; by this, we unde-
stand a semigroup fulfilling (0.2) (a)—(d). By [3], (2.9), a weakly segment-like semi-
group need not be segment-like.

If Zis a topological space, S is a weakly segment-like semigroup, let us denote by
S(X) the set of all continuous mappings /: ,T-*S, equipped with the semigroup ope-
ration of pointwise multiplication. We denote by SO(X) and SQX) the subsemigroups
of S(X) composed of the mappings into [0, 1] and of those with a compact support,
respectively, where, for fES(X),

Z(f) = {xEX: f(x) = O}, Z'(f) = X-Z(f), supp/ = Zff).

In a semigroup S, we introduce, for/, gf S, the following relations according to
[2] and [3]:

f>ig iffthereisan h£S suchthat f=hg,

f>us ifff=fg- . , o , .
A bijection (pfrom a semigroup SLonto a semigroup S2is said to be a d-isomorphism

or a u-isomorphism iff
f <=>(n(f) >d<P(q)

f >u<p(9)

forf g”Slt where the relations on the left hand side are understood in Slt those on

the right hand side are taken in S2. Sxand Szare said to be d-isomorphic (u-isomorphic)

iff there existsa ~-isomorphism (m-isomorphism) from onto S2m Semigroup

isomorphy clearly implies d- isomorphy and n-isomorphy; the converses do not hold.
Now the generalizations mentioned above can be formulated as follows:

B ([3], Theorem 4.1). Let Xx and X2be Tikhonov spaces, Sj and S2segment-like
semigroups, S, a subsemigroup of SfX”) (i.e. of S(X) for X=Xt, S=S;) satisfying

Sio(Xd ¢ 5 ;¢ SFXi).

or

| f Sxand S2are u-isomorphic then Xxand 3X2are homeomorphic.

C ([2], Theorem 3). Let Xt and X2be Tikhonov spaces, S, and S2quasi-real semi-
groups and let SiiXj) be defined as in B. If W (*i) and S2(X2 are d-isomorphic then
vXxand vX2are homeomorphic.

A further result, similar to B, is contained in [4]. In order to formulate it, let us
denote, if X is a locally compact Hausdorff space, by Sm(X) the subsemigroup of
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MULTIPLICATIVE SEMIGROUPS OF CONTINUOUS MAPPINGS 191

S(X) composed of the mappings vanishing at infinity, i.e. ofthose  S(X) that pos-
sess a continuous extension/* to the one-point compactification XU £ of X such
that /*(°°)=0. Now we have:

D ([4], Theorem 9). Let X} and X2be locally compact Hausdorjf spaces, Sxand S2
segment-like semigroups, S; a subsemigroup o f SFX>) satisfying
Si0(~.)n5icNe) ¢ S fer SAXf

JfS+ and S2 are u-isomorphic then Xxand X2are homeomorphic.

Our main purpose is to prove theorems similar to Band D, in which n-isomorphy
is replaced by another condition; the method of the proof furnishes also a result simi-
lar to C. Finally some remarks follow concerning semigroups of semicontinuous real-
valued funtions.

1. /-isomorphic semigroups. Let S be a semigroup with zero element 0, and define,
for/, ges,

f>,g iff there is h”"S such that gh=g and fk=0 implies hk—0 for k€ S.
Lemma 11.1ff>tg then fk=0 implies gk=o0 for kdS.

Proof. If hES is chosen according to the definition, and fk=0, then gk=
=ghk=g- 0=0. O

Lemma 1.2. The relation >, is transitive in S.
Proof. Assume />, g and g>tm, and choose h.pfS suchthat

gh=g, fk =0 implies hk =0 for kcS,
mp=m, gk =0 implies pk —0 for kdS.

Then mp=m and k£S, fk =0 impliesgk=0 by 1.1, hencepk=0 sothat/>,m. O
Lemma 1.3. />,0 for any f£S.
Proof. 0-0=0 and fk=0 implies 0-k=0. O

If i81and .S are semigroups with zero elements, then a bijection @from Sxonto
S2will be said to be a t-isomorphism iff

/ for f.g<rSl

(where, as above, >, isto be taken in  on the left hand side, in S2on the right hand
side). Sy and S2are said to be t-isomorphic iff there exists a /-isomorphism from 5)
onto S2. Semigroup isomorphy implies /-isomorphy.

The converse of the last statement does not hold. Moreover, n-isomorphy and
/-isomorphy are independent of each other.

Lemma 1.4. Let S be a totally ordered set, 0 its least element, and fg=min (/, g)
for f gfS. Then, in the semigroup S,
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192 A. CSASZAR and E. THUMMEL

@ />, WMg,
(b) M,g ff />0 or g=0.

Proof, (a) is obvious. ffS, g=0 implies f>,g by 1.3. If#>0, then gh”"g
implies 0, hence fk =0implies hk=0 ifffk =0 implies /c=0, i.e. iff />0. O

Exampte 1.5, Let 51={0, 1,2, ..} and 52= Qn[0, +<») be equipped with the
order relation inherited from R and with the semigroup operation fg=m'm (f g).
By 1.4i§and S2are not u-isomorphic, but a bijection . ,S\-*S2 suchthat (p(0)=0
is a /-isomorphism. O

Exampie 1.6. Let 51=R be equipped with the multiplication of real numbers,

and
S2={(*y)§R2: 0gr<l, 0s y< 1}U{@Z, D}
be equipped with the semigroup operation
m(gl,92) = (figi-Agz)-

Clearly />, g iff/=0 or g=I both for/, giSI and/, g€S? (in S2 0=(0, 0),
1=(1, 1)). Hence (p: Sx-*-S2 is a m-isomorphism provided it is bijective and cp(0) =
= (0‘0), cp{l]: (l, 1)

However, Sxand S2are not /-isomorphic. In fact, ff S{, 0 implies /> ,g for
every g£S1: g-l=g, and fk=0 implies k=1-k=0 for kESx.

On the other hand, in S2, there is, for everyf={a, 0)£S2, 0*a<I, an element

g-="0, -ijcS'a such that f>tg does not hold: if h£S2 gh=g, then necessarily
h=(1,\),andfg=0, hg?t0. O
- In a semigroup S with zero-element, a subset IczS will be said to be a t-ideal
I(1.7.1) 0r/~S,
(1.7.2) ffS, gel,M,g imply /€/,
(1.7.3) fg£1 implies the existence of hil such that /=-,//, g>-/I.

If/is a /-ideal, then, in particular, ffj implies the existence of hil such that

A /-isomorphism (p: S1-»S2 carries the /-ideals of St to the /-ideals in S2-

2. /-ideals and /-filter bases. The following lemmas will be formulated in two
variants; the first of them will be denoted by a) and the second one with ).

Let X be

a) alocally compact Hausdorlf space,

R) a Tikhonov space,
S a weakly segment-like semigroup, S a subsemigroup of S(X) satisfying

a) S(T)nSc(*)cScSc(A),

R) SO(X) czS c S(X),

finally T the set of all subsets of X that are
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MULTIPLICATIVE SEMIGROUPS OF CONTINUOUS MAPPINGS 193

a) compact closures of cozero-sets,
R) closures of cozero-sets.

A cozero-set in Zis, ofcourse, a set of the form Z ¢(f) for some 4,C(1).
For fES(X), we define

\f\(x) = /M1 (xEX).
Obviously \J\EC(X).

Lemma 2.1. TAXiff T=supp/ for some fi S.

Proof. If: ZQ/)=Z QI/1). Only if: T=z0J), giC(X) implies T=2ZUJ),
where /= max (min (g, 1), 0)650(A); in case a), we also have fdSc(X). O

Lemma 2.2. Assumef hE£S; fk =0 implies hk=0 for every kES iff supp/z)
zisupp h.

Proof. Suppose supp/bsupp A fk=0, KkES, and indirectly A(x)£(x)f O
for some x£X. Then JAXX)| *|E(X)|FO by (0.2) (c) and (d), x€supp Acsupp/.
Since |[A(X)|nO, there is a neighbourhood V of x such that \k(y)\Tx0 for y£V;
by xEsupp/ there is a yEV suchthat f(y)*0. Then \f(y)\*0, \f(y)k(y)\ AO,
f(y)k(y)?i0: a contradiction.

Conversely suppose xf£supp A—supp/ for some x£X. Then there is a neigh-
bourhood V of x such that Fflsupp/=0 and a z£int F such that h(z)?+0; in case
a) we can assume that F is compact. There is a continuous k :Z-*-[0,1] satisfying
A(z)=1, k(y)=0 for y$V. Clearly kESQ(X), in case a) kdSc(X), hence kE£S,
and fk=0, A@)A@)"0. O

Observe that the statement remains valid if X is a locally compact Hausdorff
space and
SO(L)nSc(l)cScS(L).

The following lemma will motivate the somewhat strange definition of the rela-
tion In order to formulate it, let us denote by $the Cech—Stone proximity of
X, i.e., if we write 5 for non-<5, let us put ASB iff there is a continuous s: Z-<-[0, 1]
such that n(x)= 1 for x€A and ,v(x)=0 for x€B (A, BcX). Let us further write,
for P, QaX, P<Q iff PS(X-Q). Then itis easy to check (cf. [1], (4.1.1)):

(2.3.1) Q implies X-Q < X-P,
(232) 0<0, X,
(233) P'aP <RcR' implies P'< Q
(234) pic Qi for i=1,., « implies

1 I'1I6r
(2.3.5) Q implies the existence of R c

R<o,

(2.3.6) Q implies Pc intQ.
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Lemma 2.4. Forfi ge S, we have f> tg iff

suppg < supp/.

Proof. Suppose suppg<supp/, and let h: /7—0, 1] be continuous, satisfying
h(x)=1 for xésuppg, h(x)—0 for xeX—supp/ Then heSQ(X), in case a)
heSffX) because supp hcsupp/ feSffX), hence hfS. Clearly gh=g, and fk=0
implies hk=0 by 2.2 for keS.

Conversely suppose gh=g forsome heS such that fk =0, kES implies hk=0,
i.e., by 2.2, such that supp hesupp/. For v=max (min (/r|, 1), 0) we have jeS'oW*
and g(x)"0 implies \g(x)\7io by (0.2)(d), hence |ir(cc) =1, j(x)=1 for xEZc(g)
and also for xesuppg. Finally x£ X —supp/implies x$supph, h{x) =0,i(a)=0. O

Let us now call a t-filter base a system t of subsets of X such that
(25.1) + o, 0?xTex for ret,
(25.2) ret, rcr'ez imply r'et,
(25.3) r1;rzt implies the existence of ret suchthat T<TI1f]T2.

The terminology is justified by the fact that a Milter base is a filter base by (2.5.1),
(2.5.3) ,and (2.3.6).

Lemma 2.6. I fl is a t-ideal in S then supp 7= {supp/: fiel) is a t-filter base in X.

Proof. Denote t=supp 7. Then 720 implies bl0, and by 21 T£% for ret.
If gel andsuppg were empty, then g=0, and by 1.3f>tg for feS sothat7=5'
would follow by (1.7.2).

If ret, TcT'eX, then r=suppg forsome gel, r'=supp/ for some
feS by 2.1, and there is hei suchthat g>,h by (1.7.3), so that supp h<supp g by
2.4. Hence supp /z<-supp/ by (2.3.3), />,/tr by 2.4, and fie7, supp/et by (1.7.2).

Suppose ri5r2et, r (—supp/, fél. By (1.7.3) there is gel satisfying />, g
for /=1,2, hence supp g<supp/=r; by 24,and r=suppget, by
(2.3.4) .0

Lemma 2.7. | ft is a t-filter base in X then

supp-11= {feS: suppl/et}
is a t-ideal in S.

Proof. bl 0 implies 7=supp-1t?i0 by (2.5.1) and 2.1. Clearly suppO=0Ct
implies I"S.

If feS, gel, f=~,g, then by 2.4 supp g<supp/, hence suppget implies
supp/et, fel by (2.3.6), 21 and (2.5.2).

Iff gel, suppf suppget, then by (2.5.3) thereis ret suchthat r<supp/H
(Tsuppg. By 21 r=supph for some heS, and clearly helm By 2.4 /> /r,
g>,h. O

Corollary 2.8. The mappings
t=supp 7 and | =supp-11
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are inverses of each other and establish a bijectionfrom the set ofall t-ideals in S onto
the set ofall t-filter bases in X.

Proof. For a /-ideal 7, define t=supp 7, 7'=supp-1t. Then clearly Iczl'.
If/E/', then supp/€t=supp 7, hence supp/=supp,g for some g£l. By (1.7.3)
there is h£l suchthat g>th, i.e. by 2.4 supp /i<supp g=supp/i f>th, and /£/
by (1.7.2). Thus V=I.

Conversely if t is a Milter base and 7=supp-1t, then supp7=t because, by
2.1, each T£t hasthe form T=supp/ forsome ffS, and/clearly belongsto7. O

Lemma 2.9. For t-ideals f , 72in S, fell, iff supp /,csupp 72. Hence | is a
maximal t-ideal iff supp 7is a maximal t-filter base. O

Lemma 2.10. For xEX, the neighbourhoods of x belonging to X constitute a
neighbourhood base of x and a maximal t-filter base. Conversely, if V is a maximal
t-filter base and x£ Mt', then t' is composed of all neighbourhoods of x belonging to X.

Proof. IfV is a neighbourhood of X, let IF be a closed neighbourhood of x such
that WaV and, in case a), let IF be compact. Then there is ffSfiX) such that

I(x)=1, f(y)=0 for yEX—W, and T—U, C/=jz€A"/(z)>yJ yield a neigh-

bourhood TdX ofxsuch that TaWaV.

The collection of all neighbourhoods TAX of x is a Milter base t; (2.5.1) and
(2.5.2) are obvious, and if 7), TZt, then {x}<7t for 7=1, 2, hence {x}<7’1Ml2
by (2.3.4), {x}<F for some V by (2.3.5), and V is a neighbourhood of x,
hence there is TEt suchthat TczV, 7'<7°1M72 by (2.3.3).

If t'ot isa/-filter base, let T'6t', and suppose Choose by (2.5.3) T'fit'
suchthat 7°"<7’,. x$T" would imply the existence of TE£t such that Tf)T"=Q
which is impossible since T, T"dt' and F is a filter base; hence XET " and T'Et by
(2.3.6). Thus t is a maximal /-filter base.

If F is a maximal /filter base and Xx6MT, then Tfit' implies T"<-T' for
some T"dF, and x£T" yields T'Et by (2.3.6) again. Thus Fct and F=t. O

3. Locally compact spaces. We continue by studying the consequences of the
hypotheses a).

Lemma 3.1. In X, every t-filter base isfixed (i.e. it has non-empty intersection),
hence every maximal t-filter base coincides with the collection of all neighbourhoods
belonging to X ofsomepoint XEX.

Proof. A /ilter base is a filter base composed of compact sets hence it has a
non-empty intersection. Then 2.10 applies. O

Corollary 3.2. For xdX, let t(x) denote the maximal t-ideal supp-11in S,
where t is the collection of all neighbourhoods belonging to X ofx. Then t is a bijection
from X onto the set o fall maximal t-ideals in S.

Proof. 2.10, 3.1 and 2.8 can be completed by the observation that, if x, yEX,
xX"y, then t(x)Xt(y) because there are neighbourhoods T, TfiX of x andy,
respectively, such that TM\T'=&. O
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Lemma 3.3. For f£ S, let B (f) denote the set of all maximal t-ideals | in S such
that fal. Then
I WE(/)) = intsupp/.

Proof. t(x)EB(f) iffsupp/is a neighbourhood ofx. O

Corollary 3.4. Let the set Y of all maximal t-ideals in S be equipped with the
topologyfor which the sets B(f) (ffS) constitute a base. Then t is a homeomorphism
from X onto Y.

Proof. By 2.1 and 2.10, the sets int supp/ (ffS) constitute a base in X. Hence
3.2and 33 apply. O

Theorem 3.5. Let X1and X, be locally compact Hausdorff spaces, Sj and S2
weakly segment-like semigroups, SfX*) the semigroup o fall continuous mappingsfrom
Xtinto S Si0(Xi) and Sic(Xj) the subsemigroups of SfXJ composed of all mappings
into [0,1] and of those with compact support, respectively, and S, a subsemigroup of
SAX,) satisfying

SIXAnSAXA ¢ Stc Sic(X().

IfSiand Sz are t-isomorphic then Xj and X2are homeomorphic. O

This theorem does not precisely correspond to Theorem D (because Si<zSic(X])
is supposed instead of St<zS,,,(T,)). However, we can prove a stronger result quite
analogous to D.

Lemma 3.6. Let X be a locally compact Hausdoiff space, S a weakly segment-like
semigroup, and S a subsemigroup of S (X) such that

ST)nSc(T)cScS,,(T).
Then gt'S belongs to SQX) iffthereisan ff S satisfying f> tg.

Proof. If ffS, f> g, then there exists h£S suchthat gh=g, Since g(x)"0
implies \n{X)\=\, and hfSm(X), supp g has to be compact. Conversely, if supp g
is compact, we can construct an hEC(X) such that supp h is compact, 0~h(x)"I
for xEX, h(x)=1 for xgsupp”(see, e.g., [4], Lemma 1). Clearly
h£S, and h>-tg becausegh—g. O

Lemma 3.7. Under the hypotheses 0j 3.6, set S'=SC\Sc(X). Then S' is a sub-
semigroup ofS(X), and, for f gfS', f> tg holdsrelative to S" iffitholds relative to S.

Proof. If f>,g relative to S', then there is h£S'<zS such that gh=g, and,
for ffS’, fk =0 implies hk=0. However, according to the remark following 2.2,
the latter condition means supp/z>supp h, and then fk =0 implies hk —0 for every
KES. Thus f>tg relative to S.

Assume, conversely, f>tg relative to S. Then there is hrS such that gh=g
and, iffk =0, kES, then hk=0. By 3.6 supp g is compact, hence there is
nSc(l) suchthat hO(x) =1 for x*suppg. Clearly hhOf S, ghh0=g, and fk=0,
KES' implies hhOk=0; therefore f>,g relativeto S'. O

Theorem 3.8. Let Xx, X2 be locally compact Hausdorff spaces, SI5 S2 weakly
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segment-like semigroups, and St a subsemigroup of SfXR satisfying
SAXNS-JXi)csiC SM )
(/= 1, 2). If S1land S2are t-isomorphic then X1and X2are homeomorphic.

Proof. By 3.6, a/-isomorphism (p: 51-"5'2 carries .Si= 2in.S1c(Ai) to s2=
= 52MM5'rc(A2). By 3.1, (p\S[: S[-*Sz is a/-isomorphism. Since Si0(A',)n5',((A)c;
cz5,-c5'ic( Xf 3.5 applies. O

Thus, in Theorem D, segment-like semigroups can be replaced by weakly seg-
ment-like ones, and w-isomorphy by /-isomorphy.

4, Construction of BX. Now we adopt the hypotheses ), and our next purpose
is to show that the knowledge of the relation in S enables us to construct the
Cecil—Stone compactification BX of X. For this purpose, let us recall the following
construction of X for a Tikhonov space X.

Let Sdenote, as above, the Cecil—Stone proximity in X and < the correspond-
ing order for the subsets of X. A filter s in X is said to be round iff S fs implies the
existence of SW65 suchthat S*S', and 5is said to be compressed iff S'OA/-

for every Sfis implies AOB (see e.g. [1], pp. 250 and 186).

Now let Zd | be aset such that there exists a bijection s from Z —X onto the
set of all nonconvergent, round, compressed filters in X. For x(LX, let s(x) denote
the neighbourhood filter of x in X. Equip Z with the topology for which a base is
composed of the sets s(G), where G is open in X and

s(G) = {z€Z: G£s(2)}.

Then Z=RX and, for z£Z, s(z) is the trace in X of the neighbourhood filter of z
inZ.

It is well-known that (in general, in every proximity space) round, compressed
filters coincide with maximal round filters, In fact, if s is round and compressed, and
s'ids is around filter, then, for Sfis', thereis Sfs' suchthat S[<S', S"SiX—S'),
and iS+nSI17i0 for every S*£s implies S*<"S' for some S*£s, so that S.
On the other hand, ifs is a maximal round filter, S'C) A*dAS'(1B forevery S"£s,
and we assume indirectly ABB, A<X—B=C, then, by (2.3.5), there exist sets C, for
ZTN suchthat J1<C;+1<C;<C for every/. The filter s'generated by the filter base
composed of the intersections 5" C; for Sfis, iEN, is easily seen to be round and
s'ds, hence s'=s, and S'nCjEs implies Cfs: a contradiction.

Lemma 4.1. A t-filter base t generates a roundfilter s in X, and t= 2 Ms.

Proof. For S'ds, choose T£t, TaS', and T'Et, T'<T. Then Tfis,
T'<S'. Hence s is a round filter. Clearly tc”fls. Conversely, if T'£%C\s, there
is TEi suchthat TczT', and Tfit by (25.2). O

Lemma 4.2. | f5is a roundfilter in X, then 2 Pis is a t-filter base that generates s.
Proof. If S'Es, s, then choose s£S0(X) such that n(x)=1 for
XiS”, j(x)=0 for xEX—S'. Then
implies GATfls, GczS'. Hence t=2 lNs generates s.
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t is composed of non-empty elements of 2, and (2.5.2) is clearly fulfilled. For
7\, T2£t, we have 7\MTfs. Choose 5'€s, 5'<771M72, and Tft such that
TaS’. Then TEt, T<TrMT2. O

Corollary 4.3. The constructions contained in 4.1 and 4.2 establish a bijection
from the set of all t-filter bases in X to all round filters in X. In particular, maximal
roundfilters are generated by maximal t-filter bases. O

Corollary 4.4. Let Z—3X, s(z) be the trace in X of the neighbourhoodfilter of
02Z, t(z) = 2fis(z), /(z)=supp-1t(z). Then tis a bijectionfrom Z onto the set Y of
all maximal t-ideals in S.

Proof. 2.10, 4.3, 2.8, and the observation that implies s(z)”s(z2. O
Lemma 4.5. The sets Mint T), 7T 2, constitute abase in Z =RX.

Proof. FOr z£Z and a neighbourhood V of z, let G be open in X, zEs(G)aV.
Then G£s(z) and by 4.3 there is Tdt(z) suchthat TczG. Choose Tft(z), T'<T,
then T'dintT by (2.3.6), and int TEs(z), z£s(int T)ds(G)cV. O

Lemma 4.6. For fES, B(f)={IEY:f£l}, wehave
r 1(B(fj) = ~(intsupp/).

Proof. t(z)EB(f) iff ffJ(z) iff supp/Et(z). Now intsupp/£s(z) clearly
implies supp/€ 2 f)s(z)=t(z), while supp/£t(z) implies the existence of TfA(2),
T<suppf hence Tcintsuppjjs(Z). O

Corollary 4.7. | fwe equip Y with a topologyfor which a base is composed o f the
sets B(f), fdS, then t: Z"Y isahomeomorphism. O

Theorem 4.8. Let XX, X2 be Tikhonov spaces, SI5 S2 weakly segment-like semi-
groups, SfXj and SjO(Xt) be defined as in 3.5, S, a subsemigroup of SfXj satisfying

SJXjcis, c 5(2).
15, and 50 are t-isomorphic, then RXxand £X, are homeomorphic. O

This theorem corresponds to Theorem B ; segment-like semigroups are replaced
by weakly segment-like ones, and n-isomorphy is replaced by /-isomorphy.

5. Pseudo-real semigroups. Now we look for a theorem analogous to Theorem C.
It turns out that the method based on f-ideals can be applied if we replace quasi-real
semigroups by a slightly more general concept.

For this purpose, let us say that S is a pseudo-real semigroup iff it fulfils (0.1)
(@) —(d) (i.e. condition (e) is omitted). The argument used in the proof of [2],
Theorem 1, easily furnishes:

Lemma 5.1. Let G be a topological group that contains (0, +°°) as a topological
subgroup; suppose there is a continuous homomorphism a: G->-(0, +<=3 such that
ot(@—a for a£(0, +°°). Let S=GU{w} where w(fG, and define

a-co=oom =00 (afG), wem=0m o) =0.
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Equip S with a topology such that G is a subspace of S and the neighbourhoodfilter of @

is composed ofsets f/U {co}, where UEs, and s is an openfilter in G satisfying

(@) for Uds, thereis Ufis suchthat U'-U'czU,

(b) for [/Es, agG, there are Uads and a neighbourhood V of a in G such that
UaVUVUa<zU,

(c) for e>0, thereis UEs such that

a(x) < e for x£U,
(d) for Ufs, thereis t>0 such that
0< x< £ implies x£ U.

After having identified co with the real number 0, S will be a pseudo-real semigroup
(with |x| =oc(X)).

Conversely, every pseudo-real semigroup can be obtainedfrom a topological group
G with the help of this construction. O

Now we can show that the concept of a pseudo-real semigroup is strictly more
general than that of a quasi-real semigroup:

Exampte 5.2 (J. Gerlits). Let G=(0, +°°)xR be equipped with the group
operation
x,y)m(x, /) = (xx\y+/)

and with the product topology of the topology on (0, +°°) inherited from the
Euclidean topology of R and ofthe discrete topology of R. Denote by ®the collection
of all positive solutions of the functional equation

f(y+y") =/00/00-

For a finite subset ®'c® and£=-0, define
U0.,.e= {(x,y): 0 < x < ef(y) for /6®'}.

The open subsets UO, c of G generate an open filter s in G. Define a(x, y)=x for
(x,y)6G, and let us identify (x, 0)£G with x”(0,+°°).
Now the hypotheses of 5.1 are fulfilled. In fact, 0<e<| implies CdreeQ ec

c[/ql( further, for (a,b)EG, QdriicEcC/d e provided 2ajx{b} and

6 min {f(b):fed'}, finally, if £>0, f1(y)=ey, f-fiy)=e~y, we have a(x,y)=

=x<£ whenever (x,y)6L{/l/ZHE and, since /(0)=1 for any AP, O<x<E
implies (x, 0)£tV |C for any finite ®'c®.

Hence 5.1 furnishes a pseudo-real semigroup S. In S, 0 does not possess any
countable neighbourhood base. In fact, it is well-known that there is an infinite sub-
set Bcz R (a Hamel base) such that the values of an /6 ® taken on at the elements
bdB can be quite arbitrarily prescribed positive numbers. Hence, if Il is a countable
system composed of sets of the form 1/th>E and <pis an injection from U into B, we
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can find a g£ @ such that
g(b) < emin {/(h): /<ED}
for b=(p{U0.f), and then £/p-1c: £/{9}adoes not hold for any U0."X\.

Therefore S is not quasi-real, not only for the above embedding of (0, +<*>) into
G and the above definition of a, but for any possible embedding and absolute
value. O

Lemma 5.3. Every quasi-real semigroup is pseudo-real and every pseudo-real semi-
group is segment-like. O

We know from [2], Theorem 2, that, for every topological group T, G=TX
X(0, +°0) satisfies the hypotheses of 5.1 provided (e, y) is identified with y>0 (eis
the unity element of T), and a(x,y)=y. Itis worth while to observe that the con-
verse is true if G is commutative:

Lemma 5.4. Let G be a commutative topological group satisfying the hypotheses in
5.1, and T the topological subgroup of G composed o f the elements afG such that
a(a)=). Then G is isomorphic to TX(0, +«=).

Proof. Define (p(t,x)=tx for /ET, x£(0, +°°). Obviously g TX(0, +°0)~*
-<G is a continuous homomorphism. It is bijective because af£G implies a=

where and tlx1=t22, a(h)=a(rd=1L xlt x%E

€(0, +°°) imply xx=x2, fi=/2. Since a>+a a and a>*a(@) are continuous,

(a)

< 1is continuous, as well. O
We know from [2], p. 135 that the condition of commutativity is essential in 5.4.

6. Construction of vX. We shall show that, under a suitable restriction of con-
ditions RB), the knowledge of the semigroup S(X) determines the space uX. First we
assume R) only.

Lemma 6.1. A t-ideal in S is a subsemigroup.

Proof. Let / be a /-ideal in S, /, g£l. Choose hdl such that />,i, g=>,h,
i.,e. by 2.4

supp h < suppf supp h < suppg.
G =Zc(h), Gi —Zc(f), Go= Zc(qg).

Put

Then G, GlIt G2are open sets, and GczG1C\G2. For every open set 0XifcG, we
have tfiTG"xfi, then /iTG*"nG"Xfi, hence GZdG and GcGjDG,.
Since GIC\Go=Zc(fg), we obtain supp//csupp/g and supp/gEsupp/ by 2.6,
fgel by28 “0O

From now on we suppose that S is a pseudo-real semigroup that is commutative
or, more generally, quasi-commutative in the sense that ab=ba for a£[0, +°°),
bES. Let A'be a Tikhonov space, S=S(X); by 5.3, the conditions ) are fulfilled.

Acta Mathematica Hungarica 56, 1990



MULTIPLICATIVE SEMIGROUPS OF CONTINUOUS MAPPINGS 201

We recall that, if Sis a semigroup,
S* = {heS: hf—fh for ffS},
/is a subsemigroup of S such that /I S *» 0, and we define, for f,g£S,
f ~ g iffthereis IU/If)S* such that fh = gh,

then ~ is an equivalence relation, and the equivalence classes constitute a semigroup
S/l provided [fli[g]i=[fg]i where [h\, is the equivalence class containing liC-S.

If G is a semigroup with unity element e, an element fEG is said to be a unit iff
there are g, hEG such that fg=hf=e.

Lemma 6.2. Let | beat-idealin S, fdS. Then S/lexists, and[/], isaunitin S/I
iff there exists kfl such that supp k(zZc(f).

Proof. By 2.8, h£l implies |/z|E/, hence IHS*"0. Assume [/]/[5']/=[1]/for
some g£S (1 denotes the constant 1; [1]7is a unity element in S/I). Then there is
KEl such that fgk=k. If k(x)?£0, then \k(x)\*0, hence \f(x)\ «|#(x)|=1
\f{x)\?+£0. By continuity, this is still valid for vGsupp k. Thus supp ka Z c{f).

Conversely, suppose supp kcZc(f), k£l, and choose hel such that k>,h,
i.e. by 2.4 supp /z<supp k. By 2.8, we can assume /r(x)6[0, +<») for x£X (replace
h by \h\). There is mE£SO(X) satisfying m(x) =1 for x£supp/z, m(x)—0 for XEX—
—supp k. Define

g(x) =m(x) ¢ for x£Zc(f),

gx) =0 for xfz(f).

Then g\Zc(f) is continuous, and the same is true for g\X—supp k. Finally g is con-
tinuous, gdS(X), and fgh—h, since h(x)?+0 implies x£Zc(f), m(x) =1 Simi-
larly gfh=h, sothat [/1/[g]i=[I1/, [o)/[/)/=[1]i. OO

Let us now introduce the spaces Y, Z, and the homeomorphism t: Z-+Y just
asin 4.

Lemma 6.3. Let | be a maximal t-ideal in S, and f£ S. Then t 1(1)ezZ(f) (the
closure is taken in Z) iff [/], is not a unit in S/I.

Proof. z=t~\Il) belongs to the closure of Z (/) iff each element of s(z) inter-
sects Z (/), i.e., by 4.4, iffeach element of t(z) =supp | intersects Z (/), i.e., by 6.2,
iff[/], snotaunitin s/i. O

Let us now recall that uXis the subspace of Z= X composed ofall points zfZ
suchthat lim/z(x) exists and is finite for every hEC(X). For ffS, denote by Z'(f)cz

¢ Y the set ofall maximal f-ideals I such that [f]tis not a unit in /1.

Lemma 6.4. For z(/Z, we have z£vX iff, for any gC-C(Y) such that g(t(z))=0,
there isffS suchthat 07°z'(f)czZ(g).
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Proof. Suppose z£EoX and g€C(Y), 9g(t{z))=0. Now t(X)aZc(g) would
imply, for h(x)=—'—/ — (x£X), h£C(X) and Li_ggzh(x)= +°°. Hence there is

£ *
X(EX such that <?E/(xogg:0, so that f (x)=\g(t(x))\ (xEX) defines a function
fES(X) suchthat t(xQ£Z'(f)c:Z(g), because Z'(/) =/(Z(/)) by 6.3.
Conversely, suppose z£Z—vX. Then there is hfC(X) such that lim |/;(.v)| =
= +°° (observe that any hfC(X) can be considered to be a continuous mapping

from X into the one-point compactification R* of R, hence it has a continuous exten-
sion h*: Z- R). By taking max (\h\, 1) instead of h, one can suppose As 1l Then

there is a continuous extension k*:Z-*R of k=-"-£C*(X), and g=k*ot~1"C(Y)

satisfies g(t(z))=0 and t(T)DZ(g)=0, so that 0~Z'(/)cZ(g) is impossible
for feS (use again Z'(f) =t(zZ(f))). O

If we know, for a quasi-commutative pseudo-real semigroup S, the semigroup
S'CZ), then we can construct Y by 4.7, the set Z'(f)cY for any fES(X), hence,
according to 6.4, the subspace t(vX) which is homeomorphic to vX.

Theorem 6.5. Let X1and X2be Tikhonov spaces, Si and S2 quasi-commutative,
pseudo-real semigroups, and SfXj) the set ofall continuous mappingsfrom Xtinto S;,
equipped with pointwise nultiplication. 1f SfX”) and S2(X2 are isomorphic, then
vXx and uX2 are homeomorphic. O

This theorem corresponds to Theorem C; quasi-real semigroups are replaced
by pseudo-real ones, but we assumed quasi-commutativity and isomorphy instead of
rf-isomorphy.

Let us remark that /-isomorphy of C(XX and C(X2 does not imply homeo-
morphy of vXy and 0X2in general. In fact, in [3], Theorem 15, it is shown that, if X
is a non-compact, realcompact space, then there is a bijection ¢= C(X)-»C*(X)

such that
Z(<p(f))=z{f), z(1—p(/)) = Z(1-+4)

for fEC(X). From this, we easily deduce that C(X) and C*(X) are /-isomorphic, i.e.
the same holds for C(X) and C(RX).

7. Semigroups of semicontinuous functions. We add a remark on the multiplica-
tive semigroup U(X) (or L(X), respectively) of nonnegative upper (lower) semicon-
tinuous functions on a topological space X.

The following theorem strengthens the corresponding result on rings, which was
established in [7].

Theorem 7.1. Let Xxand X2 be Tx-spaces. | f U{XX) and U(X2 (or L(XX and
L (X2, respectively) are u-isomorphic, then Xxand X2are homeomorphic.

Proof. We construct a space homeomorphic to X from the set U(X) equipped
with the relation For this purpose, let | denote the subset of U(X) composed of
all elements fAU(X) such that /> ,,/ (i.e. /= /2. Clearly / consists of all characte-
ristic functions x(F) of closed subsets of F, and, for closed sets Fx, F2cxX, Fxc F2
iff x(Fi)>ux(F2. Hence/ o=x(0) is the unique element /CE/ such that f 0>ug for
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every g£l. Let Fc7 be composed of all elements gdl suchthat g~fo and fa,

f>ug imply /=/o or f=g. Then Y consists of the functions y({x}) for x£x.

Therefore w(g;)=y({x}) defines a bijection co:X-+Y, and oi(F)={g(Y: g>uy(F)}

for any closed set FcX. Hence cois a homeomorphism from X onto Y provided the
I ttev’se uippe y/ith the topology for which the closed sets are those having the form
giv-.g47 (fay

A similar construction applies to L(X). O
The authors express their gratitude to Dr. J. Deék for valuable remarks.
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UBER EINE ZWEIPARAMETRIGE FAMILIE VON
MITTELWERTEN

H. ALZER (Waldbrol)

1. Definition von E(r, s; X, Y)

In einer Note aus dem Jahre 1975 hat K. B. Stolarsky [11] flr positive reelle
Zahlen x undy (mit x~y) und fiir reelle Parameter feund vfolgende Familie von Mit-
telwerten eingefhrt:

. _'s x '-f\K-9
E(r,s; X,y) = — r¥s, rsWo,
] . ] Xr-yr *
E(r, 0; x,y) = !lng E(r, s; x, FIn (xly) r* 0,

E(r,r; x,y) = le E(r,v; X, ¥) =e Ur(xx'yynd r-yn  r ~ 0,

£(0,0; x,y) = (xy)r2
Die Mittelwertfamilie E enthélt neben den drei klassischen Mittelwerten:
dem geometrischen Mittel: G(x,y) = E(r, —;x,y) = (xy)12
dem arithmetischen Mittel: A(x,y) = E(l, 2; x,y) = (x+y)/2,
und dem harmonischen Mittel: H(x,y) —E(—2, —;x,y) = 2xy/(x+y),
auch das logarithmische Mittel:

£(*>) =£<1,0;*.r) =" E 7
als Spezialfall.

Dem Mittelwert L kommt bei praktischen Problemen aus den Gebieten Physik
und Wirtschaftswissenschaft eine besondere Bedeutung zu (siehe [8—10]). Dartiber
hinaus ist er Gegenstand zahlreicher rein-mathematischer Untersuchungen. Insbe-
sondere sind eine Reihe bemerkenswerter Ungleichungen fiir das logarithmische Mittel
veroffentlicht worden; siehe [3; Chapter VI] und die dort angegebene Literatur.

AulRer Stolarsky haben sich vor allem E. B. Leach und M. C. Sholander [5—7]
mit E beschaftigt. Wahrend sie sich sich in [5] vor allem mit Monotoniefragen befassen,
behandeln sie in [6] das Problem, fiir welche Parameterpaare (r, M) und (r', s') die
Ungleichung

E(r,s; x,¥)s E(r',s"; X,¥)

erfullt ist; und in [7] untersuchen die beiden Autoren eine verallgemeinerte Mittel-
wertfamilie der Form E(r,s;x0, ...,X,,). Von Leach/Sholander ist fir den Mittel-

il
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wert
I(x,y) = E(I, 1, X y) = ~(xXyyL(x~y)

die Bezeichnung ,,identric mean“ gewahlt worden. Auf Grund der (von Stolarsky [11]
gefundenen) Integralformel

E(r,s; x,y) = exp—s 3" Lins(nsf) at

r

spielt | eine ,,central role” [5, p. 209] innerhalb der Mittelwertfamilie E. Ungleichun-
gen fir | findet man auBer in den erwahnten Arbeiten [5—7, 11] auch in [3, Chapter
V1.

In dieser Note wollen wir die Untersuchungen Uber E fortsetzen. Unser Ziel ist
es, den von Stolarsky bewiesenen Satz, dal n-+E(r, s; X, y) in R monoton steigt, zu
verallgemeinern, indem wir nachweisen, dal3 es sich bei

ln-E(r, s; x, Y)/E(r, s; u, V)

um eine in R streng monoton steigende Funktion handelt, wenn die positiven reellen
Zahlen x,y, nund v der Bedingung x/y>«/c= 1 genigen.

Mit Hilfe dieses Resultats werden wir anschlielend zeigen, wie sich die von Ky
Fan stammende Ungleichung

77 (**/(1-*ft))1IB=s 2 xk Z O<rtu/2, k—1, .., n
k=1 k=1 k=1
fur den Sonderfall n=2 verscharfen lait.

2. Die Funktion E(r, s\ x,y)/E(r, u, V)

Im ersten Teil dieses Abschnitts beweisen wir eine Ungleichung zwischen dem
geometrischen und dem logarithmischen Mittel, die wir zum Beweis von Satz 2 beno-
tigen.

Satz 1 Fir alle positiven reellen Zahlen x, y, nund v mit x/y>u/v>l undfir
alle reellen Zahlen r~O gilt:

@ G(xr,yn/G(ur, V) < L(xfy)/L(ur, vr).
Beweis. Wenn wir a=x/y und b—ifv setzen und mit/die Funktion
109 =/(r; a b) = (b/a)rilar—)/(hr- 1), r AQ,
/(0) =/(0;a b) = Ing/inbh,

bezeichnen, dann sind die beiden Ungleichungen: (1) und /0)>/(0) fir r”0
einander aquivalent.
Differentiation von/ ergibt fur r?+0:

2ry ™ - =g(ci)-g(br) mit: g(z) = In (2).

Acta Mathematica Hungarica 56, 1990



UBER EINE ZWEIPARAMETR1GE FAMILIE VON MITTELWERTEN 207

Far z> 1 gilt:
9'(z)(z-1)2=-21n(z)+z-l/z = _2_3\|' , 1? (1-2/0 >0;

somit ist g im Intervall (1, ») streng monoton steigend und wir erhalten wegen ar>

1 (r>0) die Abschéatzung g(ar)=""Ner)- AufGrundvon /(r)>0 gilt/'(/-)>0
flr /->0. Da/ eine gerade Funktion ist, folgt:/ist in R+ streng monoton steigend
und in R streng monoton fallend; insbesondere gilt fiir alle rAO: /(/m)>/(()). O

Bemerkung. Die Ungleichung (1) ist auch fiir u=v gultig. In diesem Fall ist
(1) mit der Carlson Ungleichung

G{a,b) < L(a,b), a,b>0, aAb,
identisch (siehe [4]).
Wir beweisen nun folgenden Monotoniesatz.

Satz 2. Esseine X, y, nund vpositive reelle Zahlen mit x/y >u/v& 1 Dann ist die
Funktion
E(r, 55X, Y)/E(r, s; u, v)

beztiglich r in R streng monoton steigend,

Beweis. FUr den Spezialfall u=v ist Satz 2 (wie im ersten Abschnitt erwahnt)
von Stolarsky bewiesen worden, so dal? wir ohne Einschrankung uv>1 voraussetzen
kdénnen.

Wir bezeichnen mit h die Funktion

h(r) = h(r; x, y, y,v) = In%?z\:(—, r AO,
h(0) = h(0; x,y, n,v) = In :: ((ﬁ%)) ,

Eine kleine Rechnung ergibt fiir rA 0:

r1 Gur,\WI12(  TL(if, vi) G(x-/)
Ir L{tZ,TH\ 1 VL{",y) G(i/,vn)

Nach Satz 1erhalten wir /'(/*)>0 fiir rA0. Also ist hin R streng konvex und auf

Grund von
i E(rs-, x,y) h(r)r:?(s) rAs,
E(r, u V)
h\r), r—s,

N ' L - A ] 9 . - - _
folgt, dal In Er, s: ﬁ v)\ und somit auch E(r, g; if \]/)1 beziiglich r in R streng mo

noton steigt.
Da h' in R streng monoton steigt, haben wir insbesondere bewiesen, daf die
Funktion
E(r, \ x, Y)/E(r, r\ u, v) = exp li'(r)

dieselbe Monotonieeigenschaft besitzt. O
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3. Verschérfung einer Ungleichung von Ky Fan

In ihrem Buch ,,Inequalities” haben E. F. Beckenbach und R. Bellman das fol-
gende ,,unpublished result due to Ky Fan“ [2, p. 5] angegeben:

Wenn mit Ufa, ..., x,) das geometrische und mit A(xIt ...,xn) das arithme-
tische Mittel von Xi,..., n, bezeichnet wird, dann gilt fur 0<xk™\/2, k=\, ...,n:
P, Ufa, %) A(xIt ..., x,,)

U(l—xL 1—x,) ~ A(l-xI5  I-x,,) "
Das Gleichheitszeichen gilt in (2) genau dann, wenn x1=...=x,,. Die Ungleichung

(2) Il&st sich, wie Beckenbach/Bellman erwahnen, leicht durch ,forward and back-
ward induction* beweisen (vgl. [2]). Neue Beweise sowie Verallgemeinerungen und
Verscharfungen der Fan Ungleichung sind in [1], [3] veroffentlicht worden.

Wir sind nun in der Lage, die Abschatzung (2) fur den Sonderfall n=2 zu
verscharfen, denn nach Satz 2 folgt:

Ufay) _  E(rs;xy)  ~ AKYy)
G(I_Xl I_Y) > E(r!S, I'Xv\_y) ' A(I_Xr I_y) ’
0-=Xy vy,; XY,
fir alle Parameterpaare (r, M) mit:
—1=—<rS 2 (rs)?*(2,1) oder " —r<s”2, 1,2).

Insbesondere erhalten wir als Gegenstick zu den in [5] und [11] bewiesenen Un-
gleichungen :

Ufay) < L(x,y) <y (Ufay)+A(X ) < I(X,y) < AKX, y), x"Y,

die folgenden Abschétzungen (man beachte: E(1/2, I; x, y)=-"-(G(x, y) +A(X, y)):

Ufay) L(X, y) Ufay) +A(x,y)
Ul —x, 1—y) L(lI-x,1—y) U(l—, =) +A(l—, 1—y)

I(x, ¥) A(x,y)
11-x, 1y)  A(LX, 1-y)r O0S*x¥S V2 x7y.

Literaturverzeichnis

[1] H. Alzer, Verscharfung einer Ungleichung von Ky Fan, Aequat. Math., 36 (1988), 246— 250.

[2] E. F. Beck nbach and R. Bellman, Inequalities, Springer (Berlin, 1983).

[3] P. S. Bullen, D. S. Mitrinovic, and P. M. Vasic, Means and Their Inequalities. Reidel Publ. Co.
(Dordrecht, 1988).

[4] B. C. Carlson, The logarithmic mean, Amer. Math. Monthly, 79 (1972), 615— 618.

[5] E. B. Leach and M. C. Sholander, Extended mean values, Amer. Math. Monthly, 85 (1978),
84—90.

Aeta Mathematica Hungarica 56, 1990



UBER EINE ZWEIPARAMETRIGE FAMILIE VON MITTELWERTEN 209

[6] E. B. Leach and M. C. Sholander, Extended mean values 11, J. Math. Anal. Appl., 92 (1983),
207—223.

[7]1 E. B. Leach and M. C. Sholander, Multi-variable extended mean values, J. Math. Anal. AppL,
104 (1984), 390—407.

[8] W. H. McAdams, Heat Transmission, Me Graw-Hill (New York, 1954).

[9] A. O. Pittenger, The logarithmic mean in nvariables, Amer. Math. Monthly, 92 (1985), 99— 104.

[10] G. Pélya and G. Szeg6, Isoperimetric Inequalities in Mathematical Physics, Princeton Univ.
Press (Princeton, 1951).

[11] K. B. Stolarsky, Generalizations of the logarithmic mean, Math. Mag., 48 (1975), 87—92.

(Eingegangen am 28. August 1986; in veranderter Form 14. August 1989.)

MORSBACHER STR. 10
5220 WALDBROL
BUNDESREPUBLIK DEUTSCHLAND

Acta Mathematica Hungarica 56, 1990






Acta Math. Hung.
56 (3—4) (1990), 211—224:

FONCTIONS ARITHMETIQUES TRONQUEES

J. M. DE KONINCK (Québec) et A. MERCIER (Chicoutimi)

1. Introduction

Soit méO un entier. Pour «si un entier, on dénote par a>(n) la fonction
arithmétique qui désigne le nombre de nombres premiers distincts qui divisent n et
par fi(ri) la fonction de Mébius. Pour obtenir une approche générale de la méthode
du crible combinatoire [3], on doit, par exemple, utiliser I’identité

Q) —

2 ri(d) = (- 1 m

©dm

D’une fagon générale toutefois, il n’est pas facile de trouver une formule fermée
pour les sommes 2 g(d), ou g(n) est une fonction arithmétique arbitraire.

Par exemple, pour %{n)= 1, onapour n=p(l..plk

2 1=1+ 2 a;+ 2 aig+ 2 diagar + ...

Inink 17 t<jrk
-+ 2
K K - 7 e - ~
En posant . (1+ar?)=1+ 2" e dkf et en définissant le polyndme
=1 1=1

gm(i*i, ..., a*; () de degré m (T_LLIK) par
AMirr s o 00 1 _mgg(ca-, see5 &K)H\

on obtient
n 7 e

@ (d)"m

Dans le cas ou n est libre de carrés, cette derniére identité devient

S a—  FemU i) —jolxji]a 2 w) ~
(oéym :
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d’apreés ([5, p. 130]). Ceci nous amene a poser

(0 gm(») = mé%g(»UO

ou g(ri) est une fonction arithmétique connue. Les résultats que nous obtiendrons
concernant gm(n) vont nous permettre de généraliser quelques résultats d’Alladi [1]
lesquels sont utiles pour obtenir des informations sur le plus petit et le plus grand
facteur premier de n. De plus, quelques généralisations de certains théoremes de la
théorie élémentaire des nombres seront obtenues.

2. Quelques lemmes

Lemme 1. Soit m, r et K des entiers non-négatifs satisfaisant a rS.k+m. Alors
ona

z >= ()

D émonstration. Puisque le nombre de «r—m» objets pris « & la fois est ('r)
le résultat est immédiat. '

Lemme 2. Etant donnésm, r et k des entiers non-négatifs satisfaisant a r*k +m,
et soit (a,) une suite d'entiers telle que at 2 pour chaque i. Alors

2 2 0Kk, v

SN e — ik —r j=k+m~?

D émonstration. On utilise un raisonnement par induction sur k. Pour k=1,
le résultat est trivial. Pour k+ 1, on a

(2) 2

2 ..
= Sk LAkl ¢ G )
et en utilisant I’hypothése d’induction, la somme de droite peut s’écrire sous la forme

. . \—I32|iSr—k\j:ik+if(Vf‘ >b?
Ainsi (2) devient

Q 2 da= 2 (Y-Id+ 2 (Y-rd+-

-+ 2 ] Jaj.

Soit 0=n=r—k—m—1, alors le coefficient qui multiplie ak++m+l est égal a

'? v m *11-
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Dans ce cas, (3) devient

»-JfA + A _ S (j-m-1)
2j alk+ ~ ik gakmn+mH o 2 Ic rai'
m+ [ Ailc-T<ik+1rr 11=0 ! 7 j=k+m+1" 1

ce qui démontre le résultat.

Lemme 3. Soit k et r des entiers positifs tels que r>k. Alors pour chague entier
i€[l, k], ona

? T (/-W~aa>
D émonstration. D’aprés le lemme 1, on peut écrire

Inik -s< -<iktr T _Err+sL o
et en utilisant le lemme 2, on obtient le résultat.

Lemme 4. Soit n et m des entiers non-négatifs. Alors pour tout entier positif k,
ona

4 (-1)' Q) [k )=1-D'"(m_,,)-

D émonstration. Puisque

KE YT )P0- K mH0-)KH)-

-4 CWYO) (2N -y [P D)
alors en utilisant cette égalité ainsi que I’induction sur n, on obtient le résultat.

3. Séries de Dirichlet

Si dans (1), on remplace g(ri) par gin) alors il s’ensuit que

rim(n) = 2\ k(n/d)-

(4)
Il est immédiat que pour m~co(n), (4) devient gm(n)—2 n(d), tandis que si
m=0, pO(ri)=p(ri). Cependant, I’équation (4) peut s’écrire sous la forme

km{n) = 2 p(n/d)8(d)
d\n

qui est équivalent a

1 S co(ri) m
©) glnk md) = B(n):|{10 si co(ri) > m.
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Remarque. Lorsque m=0, (5) se réduit a un résultat connu:
r si n=1
d\n jo Si n>1.

Soit ao I’abscisse de convergence absolue des séries de Dirichlet, alors pour Res>ao
ona

(y /I'o(«)1 $ dn _ 200 1
la ns ) ns) -4 I TR
co(n) m

On définit maintenant formellement Qn(t) comme étant la série J>i Fl ce qui
n=
co(n)™m

nous permet d’écrire

(6) , - N =
n=I n

4r-U i)-

i4r-
n“ n
Il est facile de voir que @(s)=1 et que ml_i*(rg0 £m(s)=£(w?) ou C(s) désigne la fonc-
tion zéta de Riemann. Généralisons I'identité obtenue en (s).

Theoreme 1. Pour Resxx0, ona

"~ gm(n)”_g(n) Y]
2I n = n£:l_n=r %IT‘MP

gm) = 2 g(n/d).
co(d)*m

Démonstration. Ceci est immédiat d’aprés lidentit¢ gm(n)—(g*R)(n), ou
* désigne le produit de Dirichlet et B(n) la fonction définie en (5).

Corollaire. Pour Ren>1, ona
w d (i X
2.3y | - P(*)Us),
ou dn(ri)= > d(n/d) et dri)=_ .

@©(d)*m

Corollaire. Soit f et g desfonctions arithmétiques arbitraires et soit h(ri)=
—2 g(d)f(n/d). Alorspour Rei>0e0, ona

2 gJd)f(n/d)
2 =Cn0) 2,

Qgn(n)= 2 g(n'd)-

h(n)

«
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D émonstration. En utilisant le théoreme 1, on obtient
» (2 gm(a)f(n/d) j
(2 om(@HV) § o), /(<)
i | ns T n=l n n=ln n=1 r‘él
ce qui démontre le résultat.

4. La fonction pm(n)
Théoreme 2. Soit nii 1 un entier. Alors pour tout entier m”O, on a

() = (- )" P(n).
D éemonstration. D’aprés (5), il suffit de montrer que
(oj(d)-\\ 1 si «(«)=m
i (-)m( m M Ho n
Puisque Nm alors pour n=1 on a le résultat. Soit n>1 et supposons
que 1So(ii)Sm. Si 1<d|n, alors 1)=o etainsi A (=" AN k(d) =

=0. Cela prouve le résultat pour 0*a>(ri)*m. Supposons maintenant que w(n)>m.
En posant n=pll...plk, k"m+1, alors pour I<d|n, il suffit de considérer les
diviseurs «d» ayant la forme d=pl..pJ, m+1Sjak. Ainsi, on peut écrire
L te(d)-v
G C0m e §IM) =
1

, (m+1)
D imese T VT >
et d’apres le lemme 1, on obtient

§ <D (MM = LN ) (%
d>l
.(k—m—D
. —k\ f:_\7"‘_1'( » 1 i )
m\(k—m—1)! j-, m+l+/

Mais en utilisant les fractions partielles, il est facile de montrer que
(k—m —1)!
m+1+i (m+D)(m+2) ..k’

et ainsi on obtient le résultat pour co(n)>w. Ceci achéve la démonstration du
théoréme 2.
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Théoreme 3. Pour chaque couple d'entiers r” 0, nrwO on a

2 (0o =(-D i< =i
co(d)”r

D émonstration. Puisque

NOMA) = (—ir+rf"ml} 2 1,
d\n A\ -
co(d)=r

ou k=cofri), alors d’aprés le lemme 1 on obtient
2 a.fo - (-1l -(r- *)("«)
cu(d)=r

et ceci démontre le résultat.

Remarques. 1) Lorsque m=0, on obtient I’identité¢ déja mentionnée dans
2 {d) (-\ [(\C/O{(r;)
n = -\y [e{mr

I’introduction, a savoir
Il
]
fagﬂs

2) En utilisant I'identit? -ktlﬂ.fln‘))'lrilcu(n)'ﬂu(\Gﬂ(iﬁ)?j?\r)l, 7 expression du
théoréme précédent devient

si r*m
2 t*m(d) [>-Tkm, (71 |
1
drr 1IM+"4 « ) £ oream
D ’apres le corollaire 2, on peut écrire
"2 gm(d)f(n/d) "’ ( 2 h(n/d)
a1 A\ M »)
7
( ) 21 O‘EC&Yntr 1=1 ﬁS

et ceci nous permet d’énoncer le résultat suivant.

Théoreme 4. Soit nél et soit f unefonction airthmétique arbitraire. Alors
pour tout entier méO, on a

c% hJdd)f(nld) = 2 g(n/d)
ou g(n)=§n p(d)f(n/d).
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Théoreme 5 (Inversion de Mdbius). Soit n”\ et soit f et g deux fonctions
arithmétiques arbitraires. Alors pour tout entier hisQ on a

2 hm(d)f(n/d) = gm(n) o fm(n) = 2 gm(d),

ou
fmn)= 2 f(n/d) et gmn)= > g(n/d).
Démonstration. Soit I(n) et fl(n) deux fonctions arithmétiques définies par
[()=1, pour tout nél et /?(n)={o si Alors on a ("m*/)(«)= AL(»)
ou encore

a */0 *)(«) = @ *gj(n)-
En utilisant (5), cette derniere identité est équivalente a
@*f)(n) = (+ *Awyoo

nd) =2
CLémsz(ﬂ) g

d\n

Ou encore

ce qui donne le résultat.

5. Identités contenant la fonction LT{n)
L’objet de cette section est centré sur I'étude des sommes de la forme
2 pm(d)f(d) dans lecas ou / estune fonction arithmétique choisie. Si O”*co(n)—
|I est immédiat que 2 tim(d)f(d)=f(l). Supposons maintenant que a>(ri)>m.

En posant n=Pil... plk ksm +1, alors pour d\n, d>1, il suffit de considérer les
diviseurs «d» ayant la forme d=pl..pJ, m+\SjSk. Donc

) 2 () =- 2 f(Ph -p ims +

it-<me< im+
d>1

+{nmX _;iw%(/(AvT,,,t!)+-+(—ir?,, ik -A ).

Dans le cas ou f(n)=pr(n), (r*l), ou pr(n) désigne le «r» iémeplus petit facteur
premier de n. L’équation (s) nous permet d’obtenir une relation intéressante qui
lie 2 ilm(d)pr(d) avec une expression impliquant la fonction Pr(ri), qui désigne

le «r » ieme plus grand facteur premier de n. Plus précisément, on démontre le résultat
suivant :
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Théoreme 6. SOit «Si et k=a>(n) alors pour tout entier me¢o, ona

2 km(d)Pr(d) =

T 1 R I 1y RS

Si 1SrSm+:

(_ vk
11)1 t-\){mrk +m)«-<«("> * 1 '""+1-

Démonstration. Soit 1=ér«T+ 1 et posons f(n)=pr(n). Puisque pr{1)=0,
alors pour (ofri)*~m, I’équation (s) devient

&N nfdpr(d)=- " 2 P-I'IJ:'IT )/ 1S /,<c-_<!r2_ imtss v

|S|1<—<||&<|m+,SIA V+---+ (_ir+z (/V lp
et en utilisant le lemme 3, on peut écrire

.Z Pm(dyPr¢d) =
d\n

A G — w4 (M) (Fz-i) Pj+ L +<-df— (= 1) N .

Or le coefficient deph I"rSirk +r-m -2 est égal a

o (-t [k'\'rm_'_\\('_\

. k—i
= (1D T eaceiy m+je 1—r

(i-1) fnkevn) -] [(m+j\ (k+r—m—i—1]
m i a (-»'U -d|
(r~4'
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FONCTIONS ARITHMETIQUES TRONQUEES 219
et d’apres le lemme 4, ce dernier terme vaut

(r-) k=)
m i
(r-u !

AN J—
De plus, le facteur de pk+r_m lest —‘k+ r—m 2\1, dou pour lérém+1 ona

WJA+— e

2 nJJ)Pr(d) = - (k+rrz 1~ 2)pk+r-m-1+

N4m+r - k+r-m-2

_mixrk—m}( DTV V(rnl- )|1n+|—k)J
+ (")

[ AKEMH krrm—d
" i@ ic—} G D' (i 3JU t|}

to(-m)

et ceci est le résultat de la premiére partie.
Supposons maintenant m+ 1*r*w(n)=k, alors (s) devient

2 Pm(d)PAd) =
d\n
= (-1 +M 2 Av+(-i)m+r+1(") 2 pir+ -
LACal + (*“ 1)n-
En utilisant le lemme 3, cette derniére identité devient

2 Pn,(d)PAd) = (- Dm+r, 4

2 JZ: fc I)Pj+

r

+<-ir«« (5) 1 (/:D(V )*,+-+<-D” *f» )n-

Par conséquent le facteur qui multiplieph rSi*k—1 est

et en utilisant le lemme 4, ce coefficient est égal a

- () LG
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Ainsi on obtient
dz\ "m(d)PAd) =

(- (T YA >+, 4 <0—  (r-i)

et ceci acheve la démonstration de ce résultat.

Le prochain résultat est un cas particulier du théoreme s et a été énoncé par
Alladi [1].

Corollaire. Soir /-si un entier. Alors pour tout entier m*"O, on a

Zfi(d)Prul) = (-1y (W™ 7 *) PAn)

et
dg Pm(d)pAd) = - P m+1(u).

Inversant les r6les du plus grand facteur premier et du plus petit facteur premier,
le théoréme s devient

Théoreme 7. Pour tout entier bie O, on a

5n Pm(d)Fr(d) =

A_iyn+r+k k+r—m—1 H H
__lyn+r r—m (I_IA( k—l

[r- \)\m+\—rﬁmm_kj)Pk+l-i(n)

si 1s ntl
7-1

(- r =il Pt S rsmel
ou k—ee{n).

Encore une fois, le résultat suivant déja obtenu par Alladi [1] découle immédia-
tement du théoreme 7.

Corollaire. Soit /m&! un entier. Alors pour tout entier méO, on a

X pM
et
2 Pm(d)Pi(d) = - p m+1(n).
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Théoréeme s. Pour tout entier méO, on a

2 Pm(@p(Q) =

1 si w(n)S m
(VL (- DmEOM)!_% 1 r om pimtrin o
m\(co(n)—m—)! /ri Iw+l J) con)y+j —m —1
si e(n)>m.
Démonstration. D’aprés (8), on a pour k=a>(n)>?n
- _Dw+2_
C?2\>n1 Pm(d)n(d) - 1SiT *2 o+ * 2:I'm+25fc (
- n A D - _ _i “
" 2 1sin 2cimgt O "W e r TiGp T D),
et en utilisant le lemme 1, on a
Z «nete<o =<-D)-T  (m?™) (,,+)+1) =
&1
L o oMy
=TT m\(k—m—)! j20 m+1-j
k\ mH = ( ﬂ \2k~m~&#if J
" - n» +l-E I e i
C2)" 1 (ke —a ) M 5— \m+14) kK—m—+7

ou cette derniere égalité a été obtenue en utilisant I’identité (1.12) de [4].

Remarque. Il est intéressant de remarquer que dans le cas ou m=0, on
retrouve la relation bien connue 2 k2(d)=2w(n).
d\n

6. Autres fonctions arithmétiques

Considérons maintenant le cas ou g(n)—(p(n), la fonction g d’Euler. Alors (1)

devient
: 2 .
H (') t 9(' 10)

Théoreme 9. Pour chaque entier méO, ona

O iy

D émonstration. Soit A={k\W\-"k”n, oj((k, ri))=m}. Séparons les entiers de
A de la fagon suivante : Si d est un diviseur de n tel que oj{d)Sm, alors I’entier
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«a» appartient a Cdsi (a, n)=dl, c’est-a-dire,
Cd= {a\(@,n) =d, 1» n, m(d) si m} =

= = 1,1 ®(d) S Tn|.

Ainsi, on obtient
#Cd= (p(n/d) tel que <u()S m.

Puisque chaque entier de A appartient a exactement une classe Cd, alors

#A= sz‘ <?0A0,
ce qui termine la preuve de ce résultat.
Définissons les fonctions suivantes

1(n)=1 et I(n)=n pour chaqgue ns 1.
Puisque
K »

I(n)

2 k(d)d(n/d) ou d(n) =2 .

c%n n(d)cr(n/d) ot o(n)=2 d

ditl

I M) =2 k() (4) , k=,

elle est appelée la fonction de Jordan.
Pour k=1, on obtient

/(1; n)y = cp(n) =2

dn

a fonction d’Euler. En utilisant la notation de (1) et le théoréme 4, on a le résultat
suivant.

k(d)n
«

Theoreme 10. Soit n=é&l, alors pour chaque entier m~O, on a

) =2 k@A,  In) =2 kfdo(a,
Jm(k; n) :d% k‘r@iﬁ’}) ) m:dgjkm(d);_

~ En utilisant ce théoreme, on peut a l’aide du théoreme 5 énoncer le résultat
qui suit.

Theoreme 11. Soit ne 1, alors pour chaque entier méo, ona

dm(n) = dz\n 1,,.G/), = (%n 40),

(40)*=74,0;0 4()=2 O
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~Remarque. Ces trois derniers résultats sont des identités connues lorsque m=0
(voir [2]). Nous terminerons cette section par une généralisation des sommes de
Ramanujan. Soit K et n des entiers positifs. Il est bien connu que

Ainiinrik) o si kin
©) R
Pour chague entier méO, posons
(10) ck(m\ )= 2

co((rr, k))*=m
Lorsque m=0, on obtient les sommes de Ramanujan. De plus, on observe que
lorsque K\n, (10) devient ck(m; n)=(pm(Je), d’apres le théoréme 9.
Théoreme 12. Soit k=1 et nwl des entiers. Alors pour chaque entier méO
ona
ck(m; ) = 2 ilm(k/d) d.

d|(fc. n)
D émonstration. En utilisant (5), on peut écrire
ckinv, i) = 2 eZl@mk = 2 ek 21 pm(d) =
co((rr,T()I)"m r=1 di(r,/c)

= Pm(d N(m/K).
ik m( )r=?,\(2rlpR&d)e mK)

Soit r=jd, 7=1,2, ..., k\d, alors
S km(d)?

si T 1"

ck(m; n) = 2 km(d) 2 exniUndkd» =
d\k 7=1 K,

° a
d’aprés (9). Soit L/d=r, alors d=k/r et ainsi on obtient le résultat.
Corollaire. Pour chaque entier méO, ona ck(m; 1)=pm(k).
Théoreme 13. Pour chaque entier méO, ona

Ay R

0 B Dk,

2 ck(m; d)
d\n

D émonstration. Posons

d si dik
M =4 s dk

alors le théoréeme 12 peut s’écrire sous la forme
ck(m; ri) = (pm*oK)(ri)
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ou encore
(1 *ck(m; n))(n) =((1 *fim*SK)(n) = (B*SK)(n)

ou B(n) a été définie dans (5). Ainsi on obtient
(% ck(m; d) = OO%Z\ ok(n/d)
n (]3"m
ce qui établit le résultat.
Lorsque m=0, on obtient le résultat suivant bien connu
Corollaire. Soit n&1l, alors

(0. §) = n\k
2 k@A=L G ik
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SUMMEN UNABHANGIGER ZUFALLSVARIABLEN,
DIE DURCH DIE MAXIMALTERME DOMINIERT
WERDEN

R. WITTMANN (Eichstatt)

Im folgenden sei (Xn) stets eine Folge von unabhéngigen, symmetrisch verteilten
Zufallsvariablen mit gemeinsamer Verteilungsfunktion F auf einem Wahrscheinlich-
keitsraum (Q, sd, P). Wir benitzen die Bezeichnungen

snN— 21 max |5,|, SJ:=0.
1=
Ziel dieser Arbeit ist der folgende
Satz. Esqilt
Ilm_%yp = o fs.
genau dann wenn E(X*)—0.

Fur positive Zufallsvariablen wurde obiges Phanomen zuerst von Darling [2]
beobachtet. Als Hauptresultat fiir positive Zufallsvariablen (insbesondere gilt S*=
=S,,) kann die folgende unmittelbare Folgerung aus Kesten [5], Theorem 5 angesehen
werden:

limsup —° f.s. 0 E{Xj))=m

Dieser Fall unterscheidet sich also stark vom Fall symmetrisch verteilter Zufallsva-
riablen. Im symmetrischen Fall wurden die ersten Beispiele mit EAXf)«™ in
Feiler [4] entdeckt. Unser Beweis ist dem in [1], S. 202 gegebenen Beweis des obigen
Satzes von Kesten ahnlich.

Wir benétigen drei Lemmata.

Lemma 1.FUr alle xso sei

H(x):= (]; 2tP{\XJi >t}dt,

Tx(co):= inf{n€N: [S,(W)| > x} (E££).

Dann giltfir alle x~O
X2 o, 9x2
~WR2x) - E{Tx) - H(2x) *
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Beweis. Sei e>0 gegeben. Fiir alle nEN sei
X n H{AXxN\SZx +c} Xn + (2x + fi)(I{X,,>2x+e}~ *{Xn<- ix- c})>

Sn:= 2 %-

i=1

Ist |S,, 1(co)|*x, Sn-.A(w)=Sn-1((0) und S,,(@a>)*S,,((0), dann gilt ~,(to)!,
|51,(ca)|s(2x + €)—>S,, 1(g))|>x. Daraus folgt

T™X@) = inf{nEN: |S,,(«)] =x} (bIE(2).
Insbesondere gilt

1) x2MS XN (3x+€e)2 8txanS (3r+s)2 («6N).
Wegen (1) und der 2. Identitét von A. Wald (siebe [1], S. 139) gih

E{TxI\n)E{X2 = E(§8TxAN) S (3x+e)2
und folglich
E(TX)E(X!) = E(S}j <

Zusammen mit (1) und H(2x +e)=E(X[) folgt daraus schlieflich
x2™ E(TX)H(2x +e) = (3x+e)2
Da e>0 beliebig klein wéhlbar ist, folgt die Behauptung. O

Das nachste Lemma ist eine Variante des Borei—Cantelli—Lemmas. Einen
Beweis hierflr kann man in [1], S. 95 finden.

Lemma 2. Seien (A,,) und (Bn) zwei Folgen in sd mit
P{AM U Ai+k) :P(At)P(.g(Bj) (i, fcEN).
J=1 ]
Dann sind diefolgenden beiden Aussagen aquivalent

() ZP{An= m,

() P, 0 B0 =+

Lemma 3. Fiir alle £>0 gilt

f
Beweis. Wenden wir Erickson [3], S. 375 auf X 2an, so folgt die Behauptung fir
e=1. Daraus folgt der allgemeine Fall, dennx

X2 X2 2 X2
Hx) ~ d(@ex) “ E 4(x)
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falls 0<£4&l, und

w E

H(x) - H(ex) H(x)

falls e> 1. 0O

Beweis des Satzes. Sei £>0 gegeben. Wir definieren
An-={S* xs e\Xn\}, B,,:= {S* xs 2e\Xn\).
Indem wir die bedingte Verteilung beziglich Xnbilden, folgt

@) P(An=E(P(S*n_1" e |V, |IIV..)=
Andererseits gilt

E(TX = goPW (x " °)-
Zusammen mit (1) folgt daraus

00

> P(AD) =2 f 2 F{S*n-i" exddF(x) = 2 f E(TJ dF(x).
"=1 o nl 0

Wenden wir nun Lemma 1an, so erhalten wir

2/ 77?N) dFM's .1 PW m x F

Zusammen mit Lemma 3 folgt daraus

2 ZP{AnN=~>*>E{X)=~>.
@ ZP{AD X1
Far alle und coeaj gilt

P .
2 2fmco)[ S 12 xm@a>n+\ I xJco)l N 2e\Xj(con ([~ p ~ i)

m=i+|
und somit

A,MA-c ﬂ(l‘li\ld%x I 2 J"2e\Xj\}.

Da die Zufallsvariablen  auferdem unabhangig und identisch verteilt sind, gilt fir
alle /, /IcEN

P(N-N U i {maxi 2 *m” 2elZ]}) =
m=i+|

j=i+k j—i+k

=PAIP{ G {max | 2 Xm*2B\X]\})=P(AtP{\) Bj).

j=i+k 1<P™) m=i+
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Also sind die Voraussetzungen von Lemma 2 erfillt, und wir erhalten

® |/|2_1a A=-«p (kr=|Ij=V|k Bj) = I-

Fassen wir (2) und (3) zusammen, so ergibt sich

i Bj) = 1*>E(X*) =00.
k=1j=k
Wegen J

fimeup-JP; 2 (fe 0 Y eic fimge,,, £ L

und da wir e>0 beliebig klein wéhlen kdnnen, folgt die Behauptung. O

Danksagung. Dem Referenten mdchte ich fur das grundliche Durchlesen des
Manuskriptes und insbesondere fiir die Entdeckung eines nicht-trivialen Fehlers im
Beweis des Satzes danken.
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A GENERALIZATION OF BOUNDED VARIATION

H. KITA and K. YONEDA (Osaka)

81. Introduction. The concept of bounded p-variation was first introduced by
N. Wiener [4] in 1924. Afterwards, Waterman [3] defined J1-bounded variation and
Chanturiya [2] introduced the concept of the modulus of variation.

In this paper, we shall define a new generalization of bounded variation and study
some of its fundamental properties. We also consider the inclusion relations between
Chanturiya’s class and our class,

Let/be a function defined on (—°, °°) with period 1. Ais said to be a partition
with period 1, if

(1.1) Al ...< t2<...< Im< mMm#l<...

satisfies tk+m=tk+ 1 lor A:=0, £1, +2, ..., where mis a positive integer.
We shall generalize the concept of bounded variation.

Definition 1.1. When ISp,tp as n-»°°, where 1*p~ +«>, /is said to be a
function of BV{pn\p) ifand only if

V(f\prip) = sup sup {(2 [/(I*)—Ht*-DIP)U": afA)ier 12} < + oo,

where e)=inf|(k-/k_1.

When pn—p forall n, it is easy to see that BV(pn\p) coincides with BVPwhich
is the Wiener’s class of bounded p-variation. When p=+°°, the space BV (pnf°°) is
especially useful and plays an important role in the uniform convergence of Fourier
series.

82. Preliminary results. Let 5[0, 1 denote the space of real valued functions /
of period 1 such that

WWB = sup (J/(-v)|: *€[0, I} < + °°.

Lemma 2.1. We have
2.1 U BV, QBV(pn~)QB[0,1]

1~ p< + co
and ’
(2.2 u BvgQBV(pn\p)*BVp (l<p< +~).

Is«<p

Proof. If 4 5[0, 1], then there exists a sequence of real numbers {xj ;y~1} of



230 H. KITA and K. YONEDA

the interval [0, 1] such that
Jv)!rll (XN = + «, .}!m Xj = xCE[O, 1],
IXj—Xa < 1/4 for j =1,2,3,
Put t0=x0—1/2, tx=Xj and f2=x0+1/2. Then we get
min {xj—D, t2—Xj: S 12" for n=2234, ...
From (2.3) we get
v (/; A0S {1(M)-I(To)k"+1/(N-1(M)IM g s
= 1O*NAC<=)IN (X)) - DAoL ~°°  as

Hence /A5F(/7,t°°). Therefore 5F(/?,,t°°)*R[0, 1] holds.

Next we prove 5f£SF(p,t°=>) for all ISp<+°°. For any there
exists an integer nOsuch that p<p,, =P,,+i= e for all n=n,,. Let fdBVp and A be
an arbitrary partition defined by (1.1) such that p(d)sl/2”. When n>u0, we have

(23)

{AglI/(O—/(’\—i)Ip}ll" S iFZl \f(Q-TOk-I)\Tp=K(/1 < +».
When 1SnS/i0, we get

{jtz_i\f« K-f{tk* Y A =2|/|[Bm)VP, ~ 2]||/|,2%Ft. s 211/11,2*

Therefore fEBV (pnt°®) holds and (2.1) is proved.
Let I<p<+co and 1=pjp- We prove (2.2). Since 1=/>,=/>, it follows that

{E;ml 1/(0-/(ik-i)Iplp~ {%21 1/(0-/(i*-i) Ip-}2mn

for all d for which g(d)*1/2". Therefore we get BV(pr\p)QBVp. Let I1Sq<p.
Then there exists an integer nO such that q<pnSp,I+1S...-*p for all nluw. The
proof of (2.2) can be finished similarly as that of (2.1).

Let Abe an arbitrary partition of the interval [0, 1], namely,
(2.9) A:0=(O<([<...< im= 1
Itis clear that fEBV (pn\p) ifandonlyif
(2.5) seuPsup {(tgi [/(a+i*)-/(a+i*-i)|g)p-: q(A) & 12", aER} <+=».

Lemma 2.2. Let A be an arbitrary partition defined by (2.4). Iffor some 0<pn
(«=1,2,..)

(2.6) sq[la sup {(fZTI \f(tk)~ f(tk-D)\RY/Pn- q(A) s 1/2"} <+o00,

then fEB[O, 1] holds.
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The proof of this lemma can be accomplished in the same way as that of (2.1).

Lemma 2.3. Let \-&pip as «-»+«>, where and let f be anyfunc-
tion satisfying (2.6). Then fEBV (pnp).

Proot. Let A be an arbitrary partition defined by (2.4). And suppose q(2)£ 1/2".
We consider any partition

a=a+td<a+?!<...< a+tk<...<«+?, = 9+1

of the interval [a a+ 1], where ais any real number and a f 0 (mod 1). Then there
exist integers /0and k,, such that a+tko<lO<a+tko+l (Without loss of generality,
we may suppose that /0*a+40 and /0"a+ 4 0+1l) Then it follows that

{k_2n1 («+ tK)-f(a+ fic-i)HIUP' =
= {\f(a+tkQ~f(a+tkO-1)\F+ \f(a+tkOH~/ (6+ " QI+

+ \f(a+torf—F(a+ QI+ 21 1/(a+ ") ~/(6+-i) IR P

m
where 2 ' denotes the sum for k n kO, kO+ 1, kO+2. Since /6 B[O, 1] by Lemma 2.2,
a=l

we get
m

{2 LAs+ )=/ («fit-i)Ipyug »
m
" {3(211/11A-+k2= 1' \f(a+tk)-f(a+tk* y ip »

s 61N ,,+{k£' /(«+iR-/(«+7-i) IpH' s

N B|/IBHL/(/O-f(a + t*n + Na+tOH)- 4 /o)lp-+
m
+t;i' 1AB+b)-AB+"*-1)1p}*.
We obtain a partition of the interval [0, 1]; namely,
31: 0 < ct+ tko+2—10 < ...< a+1 —/0< fl+ §—/0—1) <...< A+ tko-i~ Uo~ 1) 1
which satisfies p(di)*1/2". Hence and from (2.6) we get (2.5) and fd_BV(pn\p).

83. Main results. Theorem 3.1. Let 1=</=/?s +«=. When 1=pn\p, 1Sq,,iq as
n—+°°, and pjn\o, q,/M0 as n—+°o0, BV (pn\p) =BV(q,,\q) ifandonlyif

(3.2) \nlg,,-nlp,,\ =0(1) &i hA- +oo.

Proof. We note that (3.1) implies p—q. First, we shall prove the sufficiency.
Let A be a partition with period 1such that p(d)s /2" and

3.2) < i< IS f,A...
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Let fZBV(pJp). When I*q,,<p,,, we have from (3.1)
m

{kélll('*)'/('*-iH 1/e" =
m m
s [{24 O -1 O iNIJ' {2 i 1o~

m
S {k2_1 I/(%k)~f(h-i)lp} Vg '=m~n-i/Pn) ~
A K</f; Pr\p).2"W*»-VpJ = F(/; A t/»)0(1).
When \*pnSqn, itis obvious that

il n

{k2=ll)+( )-X -1IH 1/"= {,@:lll(hb/(h—iH 1/p" S F (/; pjp)

Therefore we proved that BV(pn\p)QBV(g,,\q). Similarly we have BV(gqn\g)Q

QBV(pJp) and consequently we get BV (pn\p)=BV(qnq).
Next, we shall prove the necessity. Assume that lfﬁ%) \n/qn—n/p,,\= +co. Without

loss of generality we may assume that Hn.&) n{\/q,,—\/p,,}= + <= Then we construct

fEBV{p,,\p) such that j\ BV(gn\g) holds. We shall define a sequence of functions
{f,,;n" 1} as follows. Set dn=(1/2)"/pn Since n/p,\>°* as «—+», dnjO as h—+°°.

First, set
2cl1x, if OSxs 1/2,
(-2dd(x-\), if 1/2Sx3 1
Next, we shall define /2(x) on [0, 1/2] as follows:
r22(c/i-d 9x, if 0=£x=31/22
fi(Q) = [2AdAx-1/2)+dL, if 1llls x~» 12

Weextend / 2(x)on [1/2, 1] as follows: / 2(x)=/2(1—) for /2sx”™ 1
When /,,(x) is defined, /,,+x(x) will be defined as follows: When n is even, if

fn(k/2*)>f, {(k+1)/27), set "

- 2"+A{/, (xI2M) -1, (N+1)/2") - d,,+X}(x- JV2")+/,, (k/21),
, = if k/2n™ xM(2k+\)/2n+\
In+IW | =2+ i/, +1{x—(fe+1)/2"}+/,((& + 1)/2"),
if (2k+\)/2ntlix s (k+ 1)/2n
for A=0, 1, 2, ..., 2'—1, and, if /,,(fc2n </, ((&+1)/2"), set

2 drrd(x -k /2™) + Fr(k/2n), if /02" rSxA (2k+])/2"+\
Ip+iW = 2" FLE((k+ 1)z -/, (T~ drL} (x- (* + )2 ") +1,, (&+ 1)/27),
if (2A:+1)/2B+IAXS (A +1)/2",
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for k=0,1,2, ...,2n-1. When nis odd, if /,,(fc/2") >m/, ((&+1)/2"), set

2"+ 1dn+(x-k/2 )+ fn(k/2n), if k2" L x™ (2k+\)/2"+\
[ riw - 2L (21, (2 +1)/2Y) - dntl(x-(K+])/2") +1,, ((fc+ 1)/2Y),
’ if  (2k+1)/2n+ W xWLk+1)/2n,

for ft=0, 1,2, ...,2"-1, and, if /BUV2")</»((*+ 1)/2"), set

2"+1{/,, ((*+1)/2")-1,, (*12%)-d n+1} (x - ki2™) +1,, (fc/2"),
if K/2"LW x™(2k + 1)/2"+\
In+liX) ~  2"H dnHL(x-(k+\)/2")+ fr{(k+\)/2'%
if (@fc+1)/2'+1~ x ™ (k+ D)/2",

for fc=0,1, 2, 24—L Continuing in this way, we get a sequence of functions
{/n;nSI}. Since Pn\P and dn=(\/2)nmn

djdn+ = 2Nerlyp,+H=d2,} g.2{(rrH)i>nnip,} = 2P S 2.

Therefore we get

(33 dn*2dntl for mSi.
From (3.3) and dn\Q, it follows that
(3.9) \fn(x)-fN(x)\*dn for all n,N* 1, *€[0,1].

Since {/,; nsl} is a Cauchy sequence by (3.4), there exists a function/ such that
Wwn/,,(*)=/(*) and

(3.5) \f,(x)-f(x)\*d,, forall nit 1 and *€[0,1].

We shall prove that fEBV (pr\p). Let A be an arbitrary partition satisfying (3.2) such
that e(d)SI/2" and set

k= {lsysifi: 1/2*+1 =K -0-il < I/12KR for k =0, 1,2, ... .
If 1/2"+1a |x—j1-=1/2", it follows from (3.5) that

IIM-IOOIL S |I(*) )+ L. ()1, (y)l+ U.(y)-/O01 ~

—d,,+ \f,, {00 )| + d, = 4d,,.
Then we get

m n—1

AT = L T

—o jerk

=2 2 @<HmM=4R2 (1/2)" 2 1-
=0 jtr

k=o jer

Qv * -O-il = 2-4" =
4" 2(112)* 2.0 oo 1By 10-0-il = 2-4™ = 8p.
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Therefore it follows that

{&\J(D)-/(ﬂ-i)\u”}lm- Pt = -

Hence we get f(LBV(pr]p).
Last we prove f\BV{qn\qg). From the definition of/,

\f((2k+\)/2")-f(2k/2"-)\ = dn
or
[/((2*+2)/2")-A(2*+1)/2")| = 4, for mSi.
Then we get

{2 \f(kr2n-f((k-\)/2m\~,, w{2- 1. = (I/2)v.Be2nii*/ =
= (1/2)1o W' n-YPn).
We have already assumed that - lim n{l/q,,—¥p/1= +°°. Therefore it follows that

fABV(qnqg). We proved the theorem.

Theorem 3.2. Let \-"p,,\°° as n—+°°. Then BV(pr\*)=B[Q,\] if and only
if thesequence {pn;un= 1} satisfies thefollowing condition:

(3.6) np,, S C for all n LU
where C>0 is a constant.

Proof. Suppose that {pn; n*l} satisfies (3.6). We prove B[O, 1]QBV{p,,\°°).
Let A be an arbitrary partition defined by (2.4) which satisfies g(A)w 1/2". From
(3.6) and ms2n we get

{2, 1/(h)-/(h-D)H 1" = {2 (2|MBHIp =
= 2||/||BemVFn =211/1U +21*. S 2C+1]|/||B< + -.

Therefore fdBV (prnt°°) holds.

Next we suppose that {/;,,; nayi} does not satisfy (3.6). As an example we con-
struct a bounded function which is not in BV (pnt°°). Since {n/p,,;n"1} is not
bounded by hypothesis, there exists a sequence of integers {nk; k » 1} such that

@3.7) Jim njp = -l

We define two dense subsets Ex and Ez of the interval [0, 1] as follows. The set Ex
contains all the points of the form m/2' where n and m are nonnegative integers;
£2=[0, IT\Ex. Put
fo if xdE,
Iw={i if xeE"

Let A be a partition of the interval [0, 1], namely,
A 0-10 < % oh— 1s
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where t2k=2Ic/2n, t2k+HEE2 and Q(A)M/2n+L If we put n=nk—1, we get from
(3.7) that

oUra1 = 20KRKAL VK)-. + 0 as K —+ .

LA 1/(0)-7(0-i)lp"+1}1/p"+1

Therefore MBV (pr\°°) and proofis complete.
Wiener [4] showed that functions of the class BVP could only have simple dis-
continuities. For functions of the class BV(p,,\°°) we have the following result.

Theorem 3.3. For the class BV (pnt°°), there exists afunction which has a dis-
continuity not of thefirst kind.

Proof. We consider the following example. Since Isp, t°° as we can
choose a monotone increasing sequence of positive integers {nk\k~\} such that
nk=\ and

(3.8) Prk-r —logk for all Kuw:2

We construct a function/ as follows. Set

3.9
49 lif (U2){U2D+Q/2BN} < x ATA"*-) for k=1,2,3,..,

lo otherwise.

Clearly,/is a bounded function defined on [0, 1] and/ has a discontinuity not of the
first kind at x=0.

We prove that/is a function of the class BV(p,,t°°). Let A be an arbitrary parti-
tion defined by (2.4) such that o(J1)é 1/2". Then, for every fixed index n, there exists
a positive integer k such that

(3.10) 2\-.s "< 2V

Hence we get 12" < 1/2”7 1/2"N- and p,.k_|=p,,=p,.k- From (3.8), (3.9) and (3.10),
it follows that

(2 \FUJ)-F(t-i)\F'Hp" A (KPR A 2 k125 S 2ok\Vp'ce, =2 oK UIBL= 2¢ < + *
j=r

Therefore we get fEBV(p,,t°°) and Theorem 3.3 is proved.
Corollary 3.1. We have
U BVp%BV{Pn\~>).
Let oo(/; h) be the modulus of continuity in the space C(0, 1). We have the follow-
ing theorem.

Theorem 3.4. Let 1"pn° as n—+°°, fEC(0,1) and |[|/||B<l/2. If pns
Sn/log4(l/ci,,), wAcrc co,,=co(f; 1/2'"), thenweget fEBV (pnt°°).
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Proof. Let A be an arbitrary partition defined by (3.2) such that t>(d)sl/2”
holds. Then we have

m n—1

L0 0 1(0-i)Tp - = ¢ 2

- - " A
j=1 e MO )-T(0 i) Tpmpifen

n 55 12k+1 ¢0jMVr,, s 2%5 12kcop 1pn  2{2'121aM ilp,.
=0 =0 4=0

Since /jt~c/log4(l/a>t), we get 2ka&S\/2k Therefore it follows that

n—1

{ngl 1/(0)-/(0-i)IpYU ~ 4 2 (il2K}U's 4

Hence we have f€.BV(pJ°°).

84. Relations between F[v] and Z?F(/>,t°°)- In this section we consider the inclu-
sion relations between Chanturiya’s class F[v] and our class BV (pn>).

D efinition 4.1. The modulus of variation ofa function/is the function
/: = 2 1Nl
v(/: n) sup 2, )

where f(1K=f(bk)—(ak and M, is an arbitrary system of n non-overlapping inter-
vals Ik=[ak, bk] (i[0, 1]. Suppose v is a nondecreasing, convex upwards function on
[0, +00) and v(0)=0. Ifvis given, then F[v] denotes the class of functions for which

v(f:n)=0(v(n)) as n-»+Q0.
We have the following theorem.

Theorem 4.1. Let I</>,t°° as n->-+°°. When p,,wlog v(2") for n~1, we have
V[MQBV/(pntoo).

Proof. Let A be a partition defined by (1.1) such that g(A)s 1/2". Since v(n)t°°
as n<-+oo, there exists an integer nOsuch thatp,*log v(2")> 1 for all n-"nu. When

JEIN[v], there exists a constant 1such that \f(x)\"M for all x€[0,1]. There-
fore we get
m m
{,gzll [(4)—/ (4 -i)IPn}1/Pn {kz_l 1/(4)-1(4-i)1,08v(2n)}1/10gv(2n) s

m
A L(2M )logv(27)-i 2 |/(4)-/(4-i)1} 1/108v(2n) s
k=1

A oM (=11 TS 2M{ (1 v ion(r)

= 0((v(2"))MaM2)) =0(1) as n- +°o.
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A GENERALIZATION OF BOUNDED VARIATION 237

When 1&unéiio, we get

m
2.1/ (0-/(h-i)IM Up"= 2Mm 2M - 2"°.
=1

Therefore we have fEBV{pnt°=).
Theorem 4.2. F[V]=27[O, l] //and On/y/

lim niv(ri) < + »

«-» 00

Proof. Suppose that n*Cv(n) (n&1) for some constant C>0. When /£5[0,1],
we get

Z (@) —2]|/|[Bn = 2C||/||Bev(n).
k=1

Therefore we have v(/: n)*2C||/||Bev(/i) and /EF[v] holds.
Conversely, we assume that F[v]=.B[0, 1]. We prove that llin n/v(n)<

Let/be a function defined in Theorem 3.3. Set ak=V2"« and /[k= 1/2"*+2/(3 +2'*)
for K—1,2,3,..., and colr_llsiderasystem ofintervals 7=[afg for t=1,2,3, ..

...,N. Then we get n= 2 1/(4)I—v(/:») By our assumption, /£F[v]. Therefore

we have v(f: n)*Cv(n). Hence nSCv(n) holds and the proofis complete.

Theorem 4.3. Let lim n/v(n)=+°° and I<p,\°° as n-++°°. Then there
exists afunction /£E1K(p,,1°°)NC(0, 1) such that f%F[Vv].

Proof. Since lim n/v(n)= +°°, there exists a sequence 0<c,<l, c,|0 as
W-*-00
n—+°° suchthat lim ncjvfji)—+°°. We shall construct a function/as follows.

We choose a monotone increasing sequence of positive integers {nk; /c& 1} such that
=1 and (3.8) hold. Set

' 2rk+1ck(x—1/2"«), if 12'«srs (I/2m+ 1/2"k~1)/2,

—2"k+1ck(x—I1/2"k-D), if {1/2"«+112"«-D127x"112"«-\
1{X) - for k=1,2,3,..,

0, otherwise.

We get a function /EC (0, 1) and extend it periodically with period 1 on (—°, °°).
Next we show that/EBF(/7,t°°). Let /1 be an arbitrary partition of the interval
[0, 1] defined by (2.4) such that gq{A)*1/2". For this fixed n, we can choose integers
and nk for which nb 1éun<wuk holds. Then it follows that p,k x=pn=P,k and
1/2"«<I/2""\/2"k-i. Hence we get from (3.8)

m K
{2 \f(tj)-f(ij~i)\p"}1/p" = 22 cH 1/p" 2 ek1lp"k-1si 2 ek 1l/loek # 2c < + co.
7=1

Therefore fEBV (pnl>°) holds.
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Finally, we prove that O V[v], Set ak=1/2rk and bk=(\/2/x+\/2m~D/2. We
consider a system of intervals 1k=[ak,bk] for k—1,2,3, .... Sincec,|0, we get

1 = - = A
[ @)1= 2 FbR-f(aki=2 ~ nen.

Assume that /EF[v]. Then it follows that
k2_I 1/(4)I = v(/: n)=0(v(n)) as n- +°°

which means TILTO nc,,/v(ri)*C. We arrive at a contradiction. Therefore we get [ F[Vv]

and the proofis complete.
Let N={N,;u&1} be an increasing sequence of positive numbers such that

r%=’1 (14,)= +°°. A function/is said to be of J/1-bounded variation (fEABV), if for
every choice of nonoverlapping intervals {7,,;nfel} we have

2 1[I+t

n=1

M. Auvdispahic [1] showed the inclusion relation between Waterman’s class ABV and
Chanturiya’s class F(v). Our class BV (prt°°) plays an important role with respect to
the problems of uniform convergence of Fourier series. We describe some results for
the applications of Fourier series in another paper.
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GREEN’S THEOREM ON A FOLIATED
RIEMANNIAN MANIFOLD AND ITS
APPLICATIONS

S. YOROZU and T. TANEMURA (Kanazawa)

1. Introduction

Our main aim is to prove the following theorems that are well-known ([4]) in the
cases of the foliations by points:

Theorem A. Let (M, gM, F) be a closed, oriented, connected Riemannian mani-
fold with a transversally orientablefoliation F of codimension g and a bundle-like met-
ricgMwith respect to F . Let Q be the normal bundleofF . Then

f divBvdM = «T, V»
M

for all vET(Q), where divDv denotes the transverse divergence ofv with respect to the
transverse Riemannian connection D of F and x denotes the tensionfield o fF .

Let E be the integrable sub-bundle of the tangent bundle TM given by F . We
noticethat Q=TM/E, and F is minimalif t=0. Let V(F)={vET(Q)\Dx v=0 for
all XEr(E)}.

Theorem B. Let (M, gM, F) be as in Theorem A. Suppose that F is minimal. I f
v€ V(F) satisfies
Av = od(v) and divBv = 0,

then v is a transverse Killingfield of F . Here gpb is the Ricci operator with respect to D.

Theorem A is analogous to the well-known Green’s Theorem on a Riemannian
manifold with or without boundary. Theorem B is proved by the integral formulas
induced from Theorem A.

We shall be in C°°-category and deal only with connected and oriented manifolds
without boundary. We use the following convention on the range of indices: 1s/,
jSp and p+I~*a, b, c,d*p+q. The Einstein summation convention will be used.

2. Preliminaries

Let (M,gM,F) be a (p+”-dimensional compact Riemannian manifold with
a transversally orientable foliation F of codimension g and a bundlelike metric gM
with respect to F in the sense of Reinhart [7]. Let V be the Levi-Civita connection
with respect to gM. The foliation F defines an integrable sub-bundle E of the tan-
gent bundle TM over M. Let Q=TM/E be the normal bundle of F. The metric”
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gives a splitting a of the exact sequence

0 E-~-TM3Q -0
with 0(Q)=Ez= (the orthogonal complement bundle of E). Then gMinduces a metric
Sq on Q:

for all v, fier(Q).

In a flat chart U(x‘, x@ with respect to Sr ([7]), a local frame {Xh Xa=
= {o/ox\ d/dxa—Adad/dxj} is called the basic adapted frame to S'. Here are
functions on U with gM(Xh Xa@=0 ([7], [8]). We notice that {T,} and {Xa} span
M(E\n) and r(E+\U) respectively. We set

gij guWi, N)> g g\ilAa' A),
(@) = (gij)-\ (9a) = (gab)-1-
A connection D in Q is defined by
Dxv = n(yX,YV]) for all XEI(E), VET(Q) with Yv= a(v),
Dxv = 7t(vxYy)  for all AATCE-1), VvAT(Q) with Fv= a(v).

S60, ju)y = g M (ff(v), a(n))

Then we have

Proposition 1 ([2]). The connection D in Qis torsionfree and metric with respect
to gQ.
Thus we have

D efinition 2 ([2], [3], [5], [6]). The connection D is called the transversal Rieman-
nian connection of S".

The curvature RB of D is defined as follows: RD(X, Y)v=DxDyv—DyDxv—
—D[x,Y]v forall X,YET(TM) and v£T(0. We notice that i(X)RD=0 for all
XET(E), where / denotes the interior product ([2]). The Ricci operator qod:r(Q)-+
-*r(Q) of Sris defined by

1) od(v) = g°RIX(<I (), Xan(Xb)
forall vVET(®.

Let V(S") be the space ofall vector fields Ton M satisfying [F,Z]€r(£) forall
Z"r(E). Anelement of V(2E) is called an infinitesimal automorphism of S* ([3], [6]).
We set

) V(S-) = {veT(0)lv = n(Y), YeV(ir)}.
Lemma 3. An element vof VIS') satisfies Dxv—0 for all X£I(E).
The transverse Lie derivation O(F) with respect to YAV (S') is defined by

0(F)v= t([F,FV)
for all vAr(Q) with Fv=cr(v). Then we have
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D efinition 4 ([3], [5], [6], [9]). If YEV(S) is metrical, thatis, 0(Y)ga=0, then
v—T7t(7) is called a transverse Killing field of S'.
For YdV(S'), we define an operator AD(Y): r(Q)—T(Q) by

(3) Ad(Y)v= 0(Y)v—DyV
for all VET(Q). Then we have
4) AD(Y)v=-D ¥wn(Y)

where Yv=a(v). This formula shows that (i) AD(Y) depends only on v=n(Y),
(ii) AffiY) is a linear operator on r(Q). Thus we may use AD(V) instead of AD(Y)

([3D.
Definition5 ([3]). If YfAV(S) preserves the connection D in Q, that is,

9(Y)D=0, then v=n(Y) is called a transverse affine field of S'.
Then we have

Proposition 6 ([3]). Let vE VIS'). Then the following conditions are equivalent:
(i) vis atransverse Killingfield ofS".

(i) AD(v)gQ=0. _
(hi) gaiAoiv)®, p2+gQ{Hi, Ad(v)ha =0 for all pu g2T(Q).

Proposition 7 ([3]). Let YAV (S?) with v=n(Y). Then thefollowing conditions
are equivalent:

(i) Y preserves D.
(ii) Da(IDAD(v)=RD(o(p), Y) for all gf.T(Q).
Lemma 8 ([3]). A transverse Killingfield ofS' is a transverse affinefield ofS’.

Let O'(M, Q) be the space of all Q-valued r-forms on M. The inner product
(, ) on Q?2(M, Q) is defined by

(5) «7, Uy = '{AgQ(n’\*n’)
([2]). For example, if i/=<i;@, r \ 'Q ) then gQ»jA~*ij')=
(v, V)EA *f mWe notice that the bundle projection n.TM”"-Q is anelementof
Q\M, Q).

The Q-valued bilinear form a on M is defined by
(6) «(X,Y)=-(D xT)(Y)

for all X, YET(TM) ([2]). Since <X(X Y)=n(VxY) for all X, YET(E), we call a
the second fundamental form of S’ ([2]). The tension field Tof S’ is defined by

(7) r = gucc(Xj, Xj).

D efinition 9. The foliation S' is minimal if all the leaves of S' are minimal sub-
manifolds.
Then we have

Proposition 10 ([2]). Thefoliation S' isminimal ifandonly if £=0.
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Let dD: Qr(M, Q-+Qr+1(M, Q) be the exterior differential operator, and let
diR be the adjoint operator of dDwith respect to (, ) ([2]). The Laplacian A acting
on Q'(M, Q) is defined by
8) A = dDdg + d£dD.

Anelement vofr(Q) is regarded as an element of Q°(M, Q), thatis, vE Q°(M, Q).
Then we have

Proposition 11.A transverse Killingfield vofS" satisfies the equation:
dv = DaMv+QD(v).
Proof. We firstremark that DXiv=0. Thus we have
Av = dEdDv = - g iJ(DXiDXjv-D VxXjv)-gaDXaDXbv-D vxj bv) =
= g'IDa0erXi X)) V- gab(DXaDXov- Dan(¥§ b)v) =
= DaMv+ ga(Dx Ad(v)) (1i(Xb).
By Proposition 7, we have
(Dx AD(V))(n(XB) = RD(o(v),Xa{n(XD).

Thus we have, by (1),

dv =Da(t)v+gabRD((x(v). Xa(n(XD) = D,,(Qv+ Qi(V).
Q.E.D.

Definition 12 ([10]). An operator divD: r(Q)-+R is defined by
divDv = gagQDXav, n(Xh).

We call divDv the transverse divergence of vwith respect to D.
By Proposition 6, we have

Proposition 13 ([10]). Ifvis a transverse Killingfieldof , then divflv=0.

3. Proof of Theorem A

Let divw X be the divergence of XE£I(TM) with respect to V. For any VEF(Q),
we have
divwp ) = gidgM(Vx.o(v), Xj) +gahgM(VXao(v), Xb) =

=-£°>m(<P), a(n(yx X]jj)XgagM{*(DXa), a{n(XD)) =
= ~gQv, r)+gabgQ(DXav, n{Xh) = ~gQVv, t) + divBv.
By Green’s Theorem, we have

0 =/ diwo(v)dM= f divlvdM «v, T».

M M

This completes the proof of Theorem A.
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As Corollary of Theorem A, we have
Corollary 14 ([10]). Let (M, gM, F) beas in Theorem A. If F is minimal, then

f divDvdM =0
M

for all vET(Q).

4. Integral formulas and proof of Theorem B

We consider an element £ of T(Q) given by
© £ = godgQ(DXev, n)n{Xd),
where ju,  V{F). Then we have
DXaQ= XJga)gQDXc\ fi)n(Xd) +gagQDXaDXcv, n)n(Xd) +
+ godgQ(DXcw>DXau) n(Xd) +gedgQDXev, f) D Xaz(Xd)
div £ = gacgQ(DXaDXov, n)+gacgQDXc\D xj i) -
- gebgeigQn(Xd), DXan (X)) gQDXev, u) =
= gaogQ(DXaDXcv, 1) + gaog QDXav,D Xcfi)-g QDaMy, 1),
where 4 =gabn(WxaXb).
Since Av=Da(z)v - g abDXaDXbv+ DaMv, we have
-g a(Av, 1) = gagQ(DXaDXbv, n)-g QDM)v, n)-g ADa(t)v, u).
Thus we have
dW3 £ = - gQAv, L) +gQ(D,,(t)v, 1) + gebgQDXav, DXbouy).
Ifweset x=zdi(Xd), then o(z)=rdXd. Thus we have
9QZ 1) = godga(DXev, n)gQNn(Xd), «) =
= tagQDXdv, u) = gQDa(r)v, if).
Therefore, by Theorem A, we have
Theorem 15. Let(n ,gM, F) be as Theorem A. For u, v V(F), we have
«lv, 1)) = «Dv, Df}),

where ((Dv,Dp))= l\f/l gabgQ{Dx \, DXbg)dM.

and

If vis a transverse Killing field of F, then, by Proposition 11 and Theorem 15,
we have
<<en(v), v» + «D,,(t)v, v» = «Dv, Dv)) S 0.
Thus we have
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Theorem 16 ([3]), [9]). Let (M,gM, F) be as in Theorem A. Suppose that F is
minimal and that the Ricci operator gdo fF is non-positive everywhere and negativefor
at least onepoint o fM. | fvisa transverse Killingfield ofF , then v=0.

By direct calculation, we have, for all vdT(Q),

(10) divD((divDv) v) = v(divDv) + (div;j v)2
n) divDAd(v)v = - g agQDXaDa(v)v, n(XDb).
(12) Tr Ad(v)Ad(v) = gabgQDaXey) v, n(Xh),
where Tr denotes the trace operator.

(13) v(divB v) = v(gd)gQDXav, n(Xh) +

+gabgQ{Da(v)DXav, n(Xh)+gagQDXa\,D awn(Xh).
Then we have
-divfl* B(v)v-divB((divDv)v) =
= gagQ(RD(Xa, ff(v))v, n(XH)+TtAd(v) Ad(v) —(divR v)2—

1

gabgQ(Do(DaMn(Xa))V>71Ne )) + gabgQ (A vy, ff(v)]E TINe >)) —
~v(ge&hge(DXav, n(X,,))-gagQDXav,D av)n(XD),
where [, JE denotes the T-component of [, ]. Since we have
~v(ga)gQDXav, n(Xhj) = gacgQDXav,Dalv)n(Xc)) +
+ Da(D,MKX)V' n (X))>
if \CV(F), then 9cbgQ(Da(DMKX)V' n (Xb))

—divBvid(v) v—divD((divDv)v) = eD(v)+ Tr AD(v) AD(Vv)-(di\Dv)2
Therefore, we have

_Theorem 17. Let (M,gM, F) be as in Theorem A. Suppose that F is minimal. | f
v€ V(F), then

f {R'on (\J+ Tr AD(v)AD(V) —(divDv)2 dM =0,

where RicB(v)=gQ{™B(v), V).
By Theorem 17 and the fact that

Tr Ad(v)Ad(v) = —Tr ‘Ad(v) Ad(v) 4 (1/2) Iv {ADv)+ ‘ADV)\
where 43 denotes the transpose of B, we have
Theorem 18. Let (M, gM, IF) be as Theorem A. Suppose that F is minimal. Then

f {RicB(v)—Tr ‘Ad(\) Ad(v) + (1/2) Tt(Ad(v)+ *AD(V))2—(divDV)ZdM = 0
M

for all vVEV(").
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A proof of Theorem Bis given as follows: We remark that
Tr ‘Ad(v)Ad(v) = gabgQ(DXav,D Xw),
RicB(v) = gQAv, V).
Thus, by Theorem 18, we have

{AV, vo-«E>V,E5v» + (I/2) T Tr(AD(v)+‘ADV))2dM = 0.
M

By Theorem 15, the above equality implies

[/ Tr (Ad(v)+*Ad(v))2dM = 0.
M

Since AD(v) +tAD(v) is symmetric, it follows that
wd(v)+‘Ad(v) =0

([4]). Thus Proposition 6 implies that vis a transverse Killing field of :W.

Finally, we have some coments: If M is complete and noncompact, then L2
transverse Killing fields of JF ([9]) on M are discussed by [1]. We have prepared
the discussion of another geometric transverse fields of Gk In [10], the first author
ought to have made reference to Molino’s papers ([5], [6], etc.) that are concerned with
the transversal Riemannian connection of 3Fand transverse Killing fields of 3F
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HARDY’S INEQUALITY FOR
ORLICZ—LUXEMBURG NORMS

E. R. LOVE (Melbourne)

1. Introduction

The original Hardy’s Inequality [1: Theorem 326] may be written
(1) WAXWAC WX\

where x=(xr) is a sequence treated as a column matrix, || . | is the /p-norm with
/>>1, C is independent of x, and A= (anm) is the Cesaro matrix

\im if 0< nLlUm,
(0 otherwise.
In this paper | propose to generalize this inequality, replacing A by a much more gene-
ral matrix operator and | .| by an Orlicz-type norm which is essentially due to
Luxemburg [2]. This norm is defined below.
References [3] and [4] are related to this paper. In [3] the norms are weighted
/p-norms only. In [4] the norms are Orlicz—Luxemburg; but the dominance condi-

tion on the elements of A has a more complicated character and, except in one the-
orem, A is lower triangular.

Orliczfunction is any continuous convex cp: (0, °°)->-(0, °°) for which ¢ (0+)=0.
Such a function is strictly increasing, and consequently has a continuous inverse
h-E (0, )+ (0,00). As usual in Orlicz theory the domain of (p is extended to the
complex plane by <p(z)= <p(jz) and <p(0)=0.

Orlicz—Luxemburg norm of a complex-valued sequence s=(s,,) is
@)

for a fixed Orlicz function tpand fixed 2,,>0. Besides having the properties ofa norm
it has the monotonic property that if || |/,| for all «then |[|j[|s]|t]|.

Example. If cp(t) =tp and p s1, the condition in (2) can be written

2 klp—

and consequently

N1 = (2 W )yp
a weighted /p-norm
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2. Preliminaries

Lemma 1. T/Oc |V||<°°

Proof. Suppose that fomt||j|| as wt°°. Then for each Mmand N

N
2 K<p s I

Since @is continuous,
N

K 1
g K
The lemma follows from this by making N-+°°,

Lemma 2. Let eachfunction sn(t) be non-negative and measurable on E, a measu-

rable subset of the real axis. 1fs(t) denotes the sequence (,v,,(/)), and Js(t)dt the se-
E

quence (fs,,(t)dt}, then ||j (/)]| is measurable on E and

@ \Fs(t)dt\\rsfl\s (H)W dt.
E E

The same conclusions hold ifeach s,,(t) is complex-valued and integrable on E.
Proof, (i) To prove that |j (/)| is measurable on E, consider the function

g(x, 0= 27 p{ Ll -
Since ¢pis continuous, g is plane-measurable on {x: x>0} X{t: tEE}; thus
{(x,1): g(x,t)> 1 x>0 & tEE}

is plane-measurable. So the measures of its sections /-constant form a measurable
function of ton E. But g is a decreasing function of x for each fixed t, so these sections
are line-segments 0<x<[[i(/)|[ or 0<xS|[j (/)||. Thus [[i(/)]| is measurable on E.

(i) Suppose that the right side of (3) is zero. Consider the null set N=
—{t"E: HVF)H >0}. For tEE—N, sn(t)=0 for all u, and so

°- fsnO)dt= f s,,(t)dt =
E E-N
Thus

Wis(f)dt\ = 0=5 f\s(t)\\ dt = 0,
E E

and the required inequality is just an equality.
(iii) Suppose that the right side of (3) is not zero. Denote its value by x; we can
suppose that 0-=%-=°°. Let
N = {teE: W11 =-}. S = {tEE: 0 < \s()\ <-}
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For tE(E—N)—S, |li(r)||=0 and so N(7)=0 forall n. Thus

) 270/ s,(0df] = y,Xpiv / s0)dt] =
"=1 Vx £ / n=1 V* E—N )

) ko J,(0
=g L YOn) =2t Y e won @
o k@il (*n() \ rik@n ~, ., (wmH\u
) SOXK m *(iworjn =/ — 2~ llwoi)
() "JrM)L('JL(n:]_

In (4) we have used the fact that N is a null set; in (5) the convexity of ¢g=and the
fact that

KOl dt= / dt”~ -f IKOHdt = 1;

X SUN X X E

and the last has been used again in (6), as well as Lemma 1

Now (3), whose right side is x, follows at once from (2) and (6).

(iv) For any complex-valued sequence s=(s,) write [s|==(|s,|). Then by (2)
INI =11kill. So if each s,,(t) is complex-valued and integrable on E we obtain, using
the monotonic property and (3),

FHESE AN = [|[/5(0 || s 11l k(o dtWA / wkcom dt =/ 1o dt.
E E E E E

This completes the proof of Lemma 2, which is of course an extension of Minkowski’s
Inequality.

Lemma 3. | fs\rdenotes the sequence sl r, s2r, s3r, ... for r=1,2, ...,°°, and
for eachfixed m and allpositive integers r

0 — »>r L +j "msnlto0  0S I °°,

then TkJ-lk.-11 as /e-°°.

Proof. By the monotonic property of the norm,

Ikrll = lk.r+ill = 1k.-1
for all r\ and consequently the following limit exists and

Il.if[&)|k‘] ~olk.-ll-

There is nothing further to prove unless there is inequality here.
Suppose there is inequality here. Then there is x such that

@) lim kdl < « < Ik.-lI-
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It follows that

holds for every positive integer n, since by (2) it holds with nreplaced by «. Since it also
holds for all r, and @is continuous,

Making N _cos

whence, by (2), ||j<d| Sn. This contradicts (7), so proving Lemma 3.

3. Hardy’s Inequality generalized

Theorem. Let <p(t) be Orlicz and supermultiplicative. Let a(t) be non-negative and
measurable and have a decreasing rearrangement a(t), all on (0, °°). For all positive
m

integers m and n let 2,,>0 and Am=ﬁ£\l,,; also T0=0. If A=(am) and x=(xm)
are complex matrices,

AJAm
\armis, f a()dt and C= f &a)(p~1(rr)dt,
n,-Int 0

then WA AC||n:].
I f the sequence (|x,,|) is decreasing, this inequality holds with C reduced in value to

) (/) a(t)(p-\t-*)dt,

and a need not have a decreasing rearrangement.

Proot. We may suppose that a(t) is not null, and consequently C>0; for other-
wise aur=0 and the left side of the inequality would be zero. We may suppose also
that 0<||x||<°°; forif |m|=0 the left side would again be zero, while if 11x11=°
the right side would be infinite.

(i) Suppose that amand x,, are non-negative, and that y= (v,) has a decreasing
rearrangement. For all n let

9) g(u) = xn for Nin.1<m”n,,,

and let g(u)=0 otherwise. Then g(u) has a decreasing rearrangement g(u) on (0, °°),
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whether lim Nnis finite or infinite. We have

AJA,
(10) 03 22am" 2 3 «(0X,dt=
n=

n=1nn. 10T

ng/, nt /[ \N7) nT

n—l

oo [eo)

=/ a(i)f(/Iffic)ais / a(Or(J1T0N»

using [1: Theorem 378] in the last step.

Now take norms of the sequences in (10). Using the monotonic property of the

norm, and Lemma 2,

()

12 amvel ' aMgAMANN s T WAG(ATONIE = |5 (1)1)(117 1 dt
= 0 0 0

251

here the mth member of each sequence concerned is written instead of the sequence

itself.
(ii) By (2), for all />0,

(12) Wg(Ant\ = inf{dk >0: 2K<P (~ r] s i}

accordingly we estimate the sum in this for all k>0 and />-0.
13 J . £ -J
(13, A, («£») i

s fo(«f*)* _ [ (ifit)r-

(14) i™;

*(/\)*_.u'/*(_

T)* -

d-

/

in (13) we have used the (opposite) monotonies of ¢rand of g, and at (14) the super-

multiplicativity of q@ Writing k'=k/(p~1(t~2),

using rearrangement invariance in (15), and (9) in (16).

5 Acta Mathematica Hungarica 56, 1990
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In the above, K and t are independent positive variables. Since 0<||x||<°° we
may impose the relation k=k(t)=\\x\g>~1(t~1. This makes k'=|x||, so that (16)
and Lemma 1 give

The required inequality follows from (11), (12) and (17), since they give

&0 a

(18) WA A 3 GL(ONG(ATON dt LY A(H)K(D) dt =
(o] (0]

b oo S HI ])dt:C\\X\\

This proves the inequality in the situation laid down in (i).

(iii) Suppose that anmmand xnare still non-negative, but (cf. (i)) that (x,,) has no
decreasing rearrangement; for instance, x,,>0 for all but a finite set of n. Let xurbe
the rth segment of x, that is,

Xr=x, for nSr, xor=0 for n>r.
Since each sequence X r has a decreasing rearrangement, (18) gives, for eachr,

(19 Iln2=lannx,,ll = Irlél anmmxm\ S C|jxm];

here again the mth member of each sequence concerned is written instead of the se-
quence itself. Making Lemma 3 applied to the extreme members of (19) gives
the required inequality.

(iv) Suppose that ammand xnmay be complex. For any complex-valued sequence
y=(y,) we have |.M=]||W]|, where |\ is the sequence (.2.}). This, together with the
monotonic property and the outcome of (i), (ii) and (iii), gives

(20) = 1112 Iix JIl =C \&K
=1

This completes the proof of the first paragraph, the main part, of the theorem.
v) Suppose that amn and xnare non-negative and that (x,,) is decreasing. Then
g(u) in (9) is decreasing, and the steps in (10), omitting the last, give

0 —_2I anmXn —n/ a(t)g(/\mt)dt.
1=

The rest of the argument in (i) and (ii) now applies with a and g replaced by a and g.
At the end of this (18) becomes

WAXI » (/) «mxWv-Ht-Hdt.

This proves the second paragraph of the theorem in the case where am and xnare
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non-negative. It will be noticed that no rearrangement of a is required. The claim that
replacement of C by (8) reduces it is a consequence of [1: Theorem 378], because
< (i_1) is its own decreasing rearrangement.

(vi) Suppose that amsnand xn may be complex, and that (|x,,|) is decreasing.
Then (20) applies, except that use of (i), (ii) and (iii) is replaced by use of (v), and
consequently C may be replaced by (8). This completes the proof.

Remark. In the theorem it is supposed that (pis both Orlicz and supermultiplica-
tive. That there are such functions is evident from the example (p(t) =tp with p> 1
This example is actually multiplicative; but there are others which are not, for ins-
tance

P+1
<PU = with
m m
Corollary. Ifp>\, 1,=>0 and Xm= /f:lK X"}lgl J1i> ren
~ *
(mél -5 T2,V NV)\P

This is the case of the theorem in which (p(t) = ip,
a() =1 for 0<iSI, a(t) =0 otherwise,
am,= X J/ir for 0<ns m, am=0 otherwise.

It is essentially [1: Theorem 332], and includes the original Hardy’s Inequality as the
case 2=1.
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STRONGLY REGULAR RINGS

C. JAYARAM (Madras)

1. Introduction

Rings (all of which are assumed to be associative) with no nonzero nilpotent ele-
ments will be called reduced rings. In this note we prove that a ring R with identity,
is Noetherian strongly regular if and only if R satisfies the following three conditions:
(i) R isreduced, (ii) every non right unitin R is a zero divisor and (iii) 0 is the product
of a finite number of prime elements.

2. Strongly regular rings

Throughout this paper R denotes an associative ring with identity. Forany R,
the principal ideal (principal right ideal) generated by ‘a’ is denoted by (a)aR. An
ideal P of R is prime ifand only if PAR and aRb”P implies that &€ P or bEP,
for all a, bdR. An element af R is said to be a prime element, if (a) is a prime ideal.
All ideals are assumed to be proper. For undefined terms in this paper, the reader
may refer to [1] and [4].

If R is a reduced ring, then xy=0 ifand only if yx=0, forall x,yER (see[3]).

Lemma 1 Let R be a reduced ring. For any x,y, zf R, if xyz=0, then xzy=0.

Proof. Suppose xyz=0. Then (yx)(yz)=0, so that by hypothesis, (yz)(yx)=0
and hence (yz)(yxz)=0. Again since y(zyxz)—0, it follows that 0—(zyxz)y=
= (zy) (xzy)=(xzy) (xzy)=(xzy)2 As R is reduced, we have xzy=0. Hence proof of
the lemma.

Lemma 2. Let R be a reduced ring. If alaz...a,,=0 (afR), then aflala.,ain=0
for every permutation i\,i%, of 1,2, ..., n

Proof. The proof of the lemma follows from Lemma 1.

D efinition. A nonzero element aER is said to be an atom if, for any xf R,
either xram=0 for some n,mdZ+ or xy=a for some yER.

Lemma 3. Suppose R is a reduced ring in which every non right unit is a zero divisor.
Let xbe aprime elementofR. If xy=0 (y” 0), then xR+yR=R. Moreovery isan
atom.

Proof. Suppose XR+yR”R. Then x+y is anon right unit, so that there is
df R such that (x+y)d=0 and d”0. Observe that xd=—yd. We show that
yRdQ(x). Let a be any element of R. Then by Lemma 1, (x+y)da=0=(x+y)ad\
so xad= —yad and hence yadf (x). Since (x) is a prime ideal, we have either y€(x)
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or d£(x). Suppose y€(x). Then Y=2 rixst and so by Lemma 2, y2=y(2 rixsi)=
i=1 i=1

n
= _"I’\ A =0. Again since is reduced, it follows that y =0, a contradiction.
1=

Hence y(((x). If df(x), then d= 2!laiXbt; so that yd=y(2 =0 and
i=1 i=1
therefore xd=0.|_ISince xd=0, by Lemma 2, a*bid*O for i=1,2,...,n. Con-
sequently 0=(2 aixbdd=d2 As 7?is reduced, d—0, a contradiction. This shows
i=1

that xR+yR=R.

Now we prove thaty is an atom. Suppose zy*O forsome z£R. Using Lemma 2,
it can be easily shown that, zmy"r60 forall n,mdZ+. Since zy?+0, by above argu-
ment, xR+zyR =R\ sothat 1=xxI+zyyl forsome xI5yfR- Therefore y=1-y =
=(xx1+zyyDy=xxly+z(yyly)=z(yyly). Hence y is an atom. This completes the
proof of the lemma.

A ring R is called regular if for each af R there exists XER suchthat a=axa.
R is called strongly regular if for every a£R, there exists ¥ R such that a=aX.
It is well known that every strongly regular ring is a regular ring (see [1], Theorem 3.2)
and in a strongly regular ring every one sided ideal is an ideal (see [1], Theorem 3.4)
and every idempotent is a central idempotent (see [4], Proposition 4 and Corollary 5).
Therefore by Theorem 9.5 of [2 page 186], we get that in a Noetherian strongly regular
ring R, every maximal right ideal is a principal right ideal generated by some central
idempotent. Now we prove the converse part.

Lemma 4. | f every maximal right ideal of R is a principal right ideal generated by
some central idempotent, then R is a Noetherian strongly regular ring.

Prooft. First we prove that every right ideal is a principal right ideal generated by
some central idempotent. Suppose not. Let J*—{I\l is a right ideal which is not
a principal right ideal generated by some central idempotent}. By Zorn’ lemma, £
has a maximal element say I. By hypothesis 7is not a maximal right ideal. So IczM
(properly) for some maximal right ideal M of R. By hypothesis M=eR for some
central idempotent. Observe that 1—e”l and so 7+ (I —)R=fR for some central
idempotent fER. Obviously 1"eRC\fR=efR. Since /67+(l —)R, we have/=
=i+(l—e)a for some /37 and aER; so that ef=ei+e(l—e)a=ei=iefl and
hence efRQI. This shows that 1=efR, a contradiction. Therefore every right ideal
is a principal right ideal generated by some central idempotent. Now we prove that
R is a strongly regular ring. Let a£R. By the above argument, aR=eR forsome
central idempotent ef R. So a=ea=ae and e—ax forsome x£R. Consequently,
a=ae=ax and hence R is a strongly regular ring. Again since R is a strongly regular
ring, right ideals and ideals coincide (see [1], Theorem 3.4) and hence R is a Noethe-
rian strongly regular ring.

Lemma 5. R is a Noetherian strongly regular ring if and only if R is reduced and
for every maximal right ideal M of R, there is some idempotent atom ef R such that
e$M.

Proof. The “only if” part is obvious. Now we prove the ‘if’ part. Since R is
reduced, every idempotent is a central idempotent. Let M be any maximal right ideal
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of R. Choose an idempotent atom e£R suchthat e$M. We claimthat M = (I—)R.
As e$M and e is an idempotent atom, it follows that em=0 for every mEM. So
that, for any m=(l —e)m+em=(\ —e)m, and therefore M Q (I—e)R.
Again since (1—e)R?£R, we get M =(l—e)R, and therefore by Lemma 4, R is
Noetherian strongly regular.

We characterize Noetherian strongly regular rings as follows.

Theorem. R is Noetherian strongly regular if and only if R satisfies thefollowing
conditions:
() R is reduced.
(if) Every non right unit in R is a zero divisor.
(iii) 0 is theproduct ofafinite number ofprime elements.

Proof. The “only if” part is obvious. Now we prove the “if” part. Suppose
O=ar-a2..an where a/s are prime elements. As each atis a non right unit, there
exist bfR (\si®n) suchthat a1 =0 and b~O for 14iSn. AsR is reduced, by
Lemma 2, we have (a;)M(#,)=(0) for /=1,2, ...,«. Also by Lemma 3, (a)+
+(bj)=R, so that (a)=(e/) and (b,)=(f) for some idempotents {&} {/;}E*
(Is/~n). Observe that eJ/j=0 and fAO for /=1,2, ...,n. Since each et
is a prime elenljlent, e/ r=0 and f» 0 for /=1,2,...,«; byLemma 3,eachf isan

atom. As (_21(/-))+(ei)=R for every /£{1, 2, n}9 we have
1=

R=(2 W)+(er, e = (2 IN+©@=i (D).
Without loss of generality, we can assume that for /V/ Againsince 2 (f)~
i=1
=R and fiS are pairwise disjoint idempotents, it follows that (t2_ni =R and there-

fore _2nfi= \. Now the result follows from Lemma 5. This completes the proof of

1=
the theorem.

It is not hard to show that the conditions (i), (ii), and (iii) of the above theorem,
are independent.
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UNIFORM BOUNDEDNESS FOR DELAY EQUATIONS

T. A. BURTON (Carbondale)*

1. Introduction. Let DtzR" be an open setwith 0£D and let/: [0,°°)XD—R"
be continuous. Then

© x'=f(t,x)

is a system of differential equations. The classical theory of Liapunov’s direct method
concerns a Liapunov function V: [0, °°)xD—R which is continuous and locally
Lipschitz in x, together with continuous strictly increasing functions ([0, )—
—0, = satisfying Wf0)=0. Two of the main theorems may be stated as follows.

Theorem 0x. | f

() WIO\X\)AV (£,x) MW, (\x\)
(i) LO)Y, x)*-W fix\)

then x=0 is uniformly asymptotically stable.
Theorem 02. If D=Rn and
(i  W{AXH)AV (L, x)MW fix)),
(i) Ma{t,x)"-W 3{\x\)+M, M=> 0,
(iii) Wfr) =*° as r w°
(iv) wWfU) =>M for some U > 0,

then solutions of (0) are uniformly bounded (U. B.) and uniformly ultimately bounded
for bound B (U. U.B.).

When these theorems were extended to delay equations, serious problems were

encountered which we briefly describe after we present the setting for delay equations.

Let (C, I«ll) denote the Banach space of continuous functions tp: [—h, 0]—Rn

with the supremum norm: ||*|= sup |dp(y)| and |e|is any convenient norm on
—ASsSO

R", while h is a positive constant. If 0 and x: f—h, A)-+Rn is continuous, then
0~t< A implies that xfC, where x,(i)=x(i+]j).

and

* This research was supported in part by an NSF grant with number NSF—D M S—8 521 408.



260 T. A. BURTON

If F:[0,°°)XC—Rn is continuous and takes bounded sets into bounded sets,
then

Q) X' = F(t,x,)

is a system of functional differential equations with finite delay which satisfies the
following properties. For each /06O and each cpdC, there is a solution x(t0, <)
of (i) with value x(t, t0, @ which satisfies x,0(t0, =@ and satisfies (1) on
[tO, fo+a) for some 000. If x(t, t0, g remains bounded, then oc=°°.

If V:[0,0=)xC-[0, 00) is continuous, the derivative of V along a solution of
(1) can be defined by

P = Iig;QHp[F<7+(5, xt+(t, <p)]-V(t, cp)/é.

Details may be found in [9], for example. In the same reference one may see the classi-
cal extension of Liapunov theory from (0) to (1). In that presentation we see that in
extending Theorem 0, to (1), investigators were forced to require that |F(t, @)| be
bounded for ||| bounded when V satisfies the relation

LLi<p(0)V)zsv.(t,
But it was noted in [2] that if we ask that

Wi(19>(0)]) S V(t, a) S W2(\<p(Q)Y) + Wa(Weplh),

where |||<p|| is the ZAnorm, then the boundedness of |F(t, q)| for ||s4 bounded may
be dropped, making a clean generalization of Theorem 0, to (1).

But when it came to extending Theorem 02to (1), Hale [9; p. 139] lists none at all.
He complains that, though Yoshizawa [11; p. 206] gives such a generalization, it
depends on the size of h. We point out the additional difficulty that it requires F(t, @)
periodic in t.

In this paper we again use an ZAnorm and obtain a very clean generalization of
Theorem 02to (1). That is the content of our Theorem 3. But some progress has been
made since the presentation in [9] and we now survey those results. To be definite
here, we first give some definitions.

D efinition. Solutions of (1) are uniformly bounded (U. B.) if for each Bx>0
there exists /12> 0 suchthat [t,,s0, ||<p| S5 X imply that \x(t, t0, cp)\*B2. Solutions
of (1) are U. U. B. for bound B if for each 53>-0 here exists T>0 such that
[fo™0, |<pll=ra3, tA t0+ T] imply that \x(t, tO, cp)\<B.

An early result by Yoshizawa [11; p. 202] shows that if there is a V with

(i) »i(I<KK0)Q s V(t, @ S w2(\cp(0)1)+»",(M]1),
(i) (t,cp)*0 for MO)| large,

and with
(iii) LL(r)—W3(r) *m as r -»,

then solutions of (1) are U.B.

Aeta Mathematica Hungarica 56, 1990



UNIFORM BOUNDEDNESS FOR DELAY EQUATIONS 261

Burton—Zhang [8] show that if .

(0 »i(i4»©)i) » vo, s w\u>T)+T (/ ~430r(1)i)ds),

(i) *£)(/, P si-TF4(<p0)|)+M, ™ > o,

(iii) WAO, WAr) -»m as r
then solutions of (1) are U.B. and U.U.B.

This result has two main faults: LU, must be the same in (i) and (ii), and LL, in (ii)
must be unbounded.

Burton [4] proves that if there are positive constants 1, U, §, and C with

(i) O”Mv(t,<p)sWAM),

(i) A-fINF (t,(p)\-c  for Ip(0)I= £,

@i V'@, P=Rr if IO < U,
then solutions of (1) are U.B. and U.U.B.
Burton—Hatvani [6] show that if M >0 and U>0 with

0
(i) Mmoo =2v(t, @S W2(\cp(0))+W3{ ¢ |cp(n)| ds),

(ii) <p)*~ M4(b(O)]) + ws (1 \op(s) ds)]+M,

(i) WAU)>M, WAV)> M, WArn*°o0 as r

then solutions of (1) are U.B. and U.U.B.
Burton—Huang—Mahfoud [7] show that for general delay equations some type
of fading memory is required in the functional V. The pair

F(t)Sa(i)+ f ta(s)ds, V'(t)=—tx(t)+I

has an unbounded solution V(t). Fading memory can take the form
t
V(t)Soc(t)+  <x(s)ds,
t-h
for example.
While Theorem 3 is our most direct generalization of Theorem 02to (1), the other
results require much less on the growth of W.

2. Boundedness. The result of Burton—Hatvani just quoted asks that

Vi=—[IT5( /7 [v@)I*)] + FA?(0))+M

-ft

making the derivative, in fact, a function of V. We begin by separating this into two
results which overcome that objection.
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In most examples the integral of x, appears in V (and frequently in V'). We
express that in Theorem 1by the L 2norm, denoted by [||x(||, and in Theorems 2 and
t

3by J |x(i)| ds. These, and many others forms, are completely interchangeable.

t-h

Theorem 1 |f there is a continuous functional V:[0, ~)xC —0,») with
() Wep(O1) SV(t, o~ W{\g>m)+Wz(\(p\W),

(i) V'(t,(p)-WAW<P\)+M, M> 0,

(iii) IfiOy-+-=3 ns [~>00, Wi(U/2)*]2M for some U>0, then solutions of (1)
are U.B. and U.U.B.

Proof. Let BAU /yli be given and set

P = W2 U/fh)+W3U)
and —
P*=1IVM +W"B"h).
Then we will show that
B2= WffP* +4Mh+\]
and
B = Wil[P+4Mh+\].
Let 0&0, Il Ij=[t0+jh, tO+(j+1)h], x(t)=x(t, t0, (p), and V{t)=
=V(t,x,).
If V(t)<P* forall t"t0, there is nothing to be proved. Thus, we let 4+ be the

first value of t past tOwith V(t*")=P*. (This is the place referred to later as the
beginning of our argument.) Now tf 1k for some k. Since V\t)sM, it follows that

V(OP*+4Mh on IR=4U4+U/*+U4+3

I. Suppose there is a first t2£1k+2 with |||x,J|| *U. Then elementary properties
of the integral show that |||x,||| SC//2 on an interval Ik of length h/2 lying in Ik*=
= k+lUIk+2U1k+3. Thus, V'(t)s —Wi(U/2)+M on Ik and"so V decreases by at
least [INC//2)—M 1h/2"\ \Mh/2>5Mh units on Ik. Thus, at the right end-point of
*4+3 we have V(t)<P* —Mh and V(t)<P* on Ik+i. The argument begins all
over again with the search for the first 2 past Ik+i with F(s)=P*.

Il. Suppose [||x(|||<C/ on all of Ik+2. This means that there is a t$£lk+2 with
\x(tH)\<U/fh- otherwise, \x{t)\*Uj]fi on all of 4« +2 so that at the right end-point
ofs+2 we have [||x,|[|*C/. Hence,

V(20) » W2(JI\{h) +WfU) =P AP\

and the argument begins again with /, replaced by tf
Because of (1) and (1) it is true that

KXY S V(1) < P*+4Mh+ 1 for ts t0
and this is the uniform boundedness.
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For the U.U.B., let B3>0 be given, t0sO, []<p||".83, x(t)=x(t, t0, ), V(t)=
=V (t,xt), and V{tO"W 2{Bs)+W2{B2fh)"P**. If P**"P, then the U.B. argu-
ment yields \x(t)\<B for t*t0. Thus, we suppose P**>P,

Arguing as before, either F(i)<P at some pointin [r0, r0+3/r] (so that V(t)<
<P+4Mh +1 for t*t0+4h) or V(t)"P on [tO, t0+3h], If there is a t2in that
interval with |||x(||& i/ then V decreases by at least 5Mh units and increases at
most 4M/i units on [/, tO+4/;], so that V(t0+4h)<V(tQ—Mh. If P2V (t) on
[t0, t0+3h] and there is no t2 with ||ljc(||||SU, then \x(t)\*Ufth on all of
[t0,t0+3h], a contradiction. Hence, there is a t£[t0, t0+3h] with V(t)<P or
V(t0+4li)<V(tQ0—Mh. If N>P**/Mh, then there is a tE[t0, t0+4Nh\ with V(t)<

so that V(t)<P+4Mh +1 for t~t0+4Nh. This completes the proof.

The proof of the next result centers on three lemmas which go well beyond Theo-
rem 2, which is itself simply an example illustrating how the three lemmas can be
satisfied. When V'* —\WA(W\)+M  with WA convex downward, then the three
lemmas are readily satisfied without the seemingly complicated form of (iii) in Theo-
rem 2. That convexity is assumed in Theorem 3 and it results in a clean generalization
of Theorem 0, to (1); but the price is moderately high since convexity requires that
Wr)>m as r-»m (among other things). Theorem 2 reduces the requirement
through (iii) which allows us to construct a convex function under W4 on short inter-
vals.

Properties of convex functions and Jensen’s inequality are found in Natanson
[10; pp. 36—46]. Other applications of Jensen’s inequality to stability theory are found
in [1] and [5]. The three properties we use are:

(@ W is convex downward if
W ([h+tJ/2) S [W(h)+W{Q]R,
(b) If W is convex downward, then

t 1
fW f k(0] ds/hj,

t-h t—h

r

(c) IfWisincreasing, then J W(s) ds is convex downward.
0

and

Theorem 2. Let V:[0, °°)xC-<-[0, °°) be continuous and suppose there are po-
sitive constants U< /0, E/-=/0f, and M with

0
() JPI(HO)) s V(t, o =i w2(\(pm)+W3( / lpQa),
-h

Wr) ©°° as r-*«o,
(i) FOU, P W-\Y 40\<pl)NI-M, W (U)A5M,
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@iii) /0—" implies that

]
f Wfis) ds/Wf'[W2(U)+5Mh + U'fiJh)] > 5M.
«
Then solutions are U.B. and U.U.B.
The proof proceeds by way of three lemmas.

Lemma 1. Let J be defined by Nd(J)= W2(U)+ W3(JOh)+ 5SMh and suppose
that x(t) isasolution of(1) with [x(Y,)]= U and |.v(h)| =||.viZ with tld[t2—h, M)
If V(T)=V(t, xt), then V(t2SV (ti—h)—4Mh.

Proof. Suppose first that V(t)*V (t9+5Mh. Then
HK(x(b)]) A Vih) =V (t2+5Mh w W2(U)+W3( / [x(i)| ds)+5Mh.
tt-h

Since |n:(b)|M, we have X ~ J \x(s)\ds”JOh. Now for 0S/-A|x(tj)| define

t2/i
L, by
Wfir) = f [WHfisfiUitfiwds.
Since LLLis increasing we have 0
W5(r) S Wi(r)r/|x(fi)] ~ 1Vfir).
Moreover, W&is convex downward. Hence,

*2
V() —V(t2-h)~ t IF(x()]) ds+ Mh
t2—h
h 1
AV (t2-h)~ £ WS(X(s)\) ds+Mh AV (t2-h)-hW 5[ f (s)\ ds/h) +Mh =

U~h

(by Jensen’s inequality)
X/h

= V(t2-Ir)-hWfX/h) +Mh = V(t2—h)—h [f Wfis) ds/Uitfi] +Mh +
0

X/h

S Mh+V(t2—h)—h [ f Wfis) dsjW fI]M(U) + W fX) v5Mh\ sS
0

s4 M1i+V (t2—h)—5Mh = V(t2—h)—4MIi.

The last conclusion is based on V fAAVitfi +SMh. If F(h)*"F(/2+5M/7?, then
V(t)sV (t2—h)+Mh since V'(t)*M and so

V(t2-h) +Mh ~ F(fi) 3V(t)+5Mh
yielding
V(t2h)"V (12 +4Mh,
as required.
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Lemma 2. Let J be defined in Lemma 1 and let x(t) be a solution of (1). Denote
V(t) = V(t, xt) and suppose there is a t with

V(t) & W2(J) +WfiJh) tL PO;
then there is a pair t2, t2—h£[t—2h, t+h] with
V(t2tSV (t2-h)-4Mh.
Proof. Either

(@ ix() —d
or

®) f [*COlds & Jh.
t-h

If (a) holds, then because of J>U, either

(@) l|idj) =T on [t t+h] so that V(t+hi) LUV (t)—4Mh,
o (aii) there is a first t2€[t, t+h] with |x(/3] = U

so that by Lemma 1we have the desired conclusion.
If () holds, then there is an £6[—h, /] with

f \x(s)\ds=\x(0\h"Jh,
t-h
so that (a) holds for t=i; and, again, the desired conclusion is obtained. This proves

Lemma 2.

Lemma 3. If x(t) is a solution of (1), V(t)=V(t, %), and P"PO0=W2J)+
+ W fJli), then the inequality V(t)<P on [/,, t0+h] implies that V(t)<P for all
t"o-
Proof. If this lemma is false, then there is a first /x>tu with Y(1r)=P. Thus,
|x(ii)|<J because F'(b)sO. Hence,
Jrl X(s)\ ds = X(E)\h » Jh for some ~(h—h, X;
*i_*
this yields [x<;) €Y. Since F(£)<P and F(i)=P, there exists f26[i, b] with
F'(rd>0 sothat |x(rd|<t/ and thereisa A<, b] with \x(t2\=U. By Lemma 1,
F decreases by at least 4M/i units on [t2—h, /J. But V(t2—h)<P so

V(td » V(t2—h)—4Mh < P—4Mh.

b
This meansthat F(b)<P because V'(t)"M. Hence, J \x{s)\ds<Jh and F(t)<P
th

forall /é/,,. Thisproves Lemma 3.
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Corollary. Given Br>3, 010, if \(p\\sBl, thenfor x(t)=x(t, t0, P we
have
*(Ol < Wr'iw fB"+ wfti*i-n &L B2,

so solutions are U.B.

To complete the proof of U.U.B., let B3>J be given and for 0O and ||<p||S
AB3 let x(t)=x(t, t0, @) and V(t)=V(t, xt). By Lemma 2 if V(t)*P0 on an
interval of length 3h, then V decreases at least 4Mh units, while increasing at most
3Mh units. Hence, there is a T=T(BY such that V(t)<P0 at some point
h€|/o, t0+T\. Thus, V(t)<P0+Mh on [h, h+h]. By Lemma 3, F(7)<P0+Mh
for all t~"t0+T+h so that

x(0)| S Wf*Po+Mh) ~ B.

This completes the proof.
In the following example, when a function is written without its argument, that
argument is t.

Example 2. Let f (x)=x/(l + |x|) and consider the scalar equation
(3 X'(t) = —I +tsin2/)/(x) —a(t)f(x(t—h))+p cos t
where a(/) is continuous on [0, co), \a(t)\"k, &<1—,&>0, p>0, a/6>/> and

ka/3h>5p. Then the conditions of Theorem 2 will be satisfied when we define
V(t, xt) = \x\+k J J[((\'(v))| ds
t-h

so that
vV, X) MVA XN+ KAF(X(t-h)\+ KVFOO)N-KAF(x (t-h))\+p

tad-cc\f)\+p =-W i (\\) +M.
Here, WI=W2=(I/k)Ws and WA(r)=af(r). Thus, if 17=2, then ILj(E/)=2a/3>
J
>4p. Forlarge/, J Ifi(s) ds™aJ/2 so that for fixed U, M, and h, the left side of (iii)

in Theorem 2 exceeuds [cal2/z for large/. And ky./3h>5p so (iii) is satisfied. Hence,
solutions are U.B. and U.U.B.; yet, none of the cited results apply to this problem.

Theorem 3. Let V: [0, 0°)xC—[0, m») be continuous with

() J*i(pO))  V(t, o) X W2(\(p(0)\) +W3{ _fh )\ ds)
IVi(r)~+°° as f*°°, and
(i) cp)”-L (\ep{LL, +M
where W4 is convex downward and 0. Thensolutions of (1) are U.B. and U.U.B.

Proot. Following Lemma 1we first note that convex implies that LL(r)-+°°
as r-«o ; hence, there is a Uwith W"(1J)=bM. Next, we note that there isa / 0>0
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such that J=JO0 implies that hWi(J)>5M. Define J by WI{J)=W2U)+
+W3(JOh)+5Mh.

Suppose there is a solution x(t) and a t2with \x(t2\=U, [xJ| =
= [x(7)| with t2—]v 1-pM2. If V(tD*V(to)+~5Mh, then

IV3) =5 LW(n-(/,)]) 3 V(h) s=V(Q+5Mh 7

2
»IV,al) +Iv,( f \x(s)\ds) +5Mh

t2—h

so that J \x(s)\ds™Juli. Thus,

f2—h
F(/a8K (/r A+M/i- | W~2rxfs~ds =5
04
s V(tz—h)+Mh—hWi ( J |a()l firn) =
~ V(t2—h) + Mh —hu(/,) V(tt-h)-4Mh,
as claimed in Lemma 1. This depends on If V(t)~V (t2+5Mh,

then V(tDSV (t2—h)+Mli and so F(A—hi+M /isF*& F" +SM/z or V(12"
—V (t2—h)—4Mh, as required. Hence, for these choices of U,J0, and J, then Lemma
Llis satisfied.

We now consider Lemma 2 and suppose that V(t)*W 2(J) +W3(Jh)=PO0.
We must show that there is a pair t2, t2—h€\t—2/i, t+h] with V(t9=V(t2—h)—
—4Mh. In fact, the proofis identical to that of Lemma 2.

Lemma 3 claims that if V(t)<P on [f0, tO+h], then F(?)<P for all t~tO0.
Again, the proofis precisely the same as the one already given.

Note added in proof (January 2, 1991). The final version of reference [6] did
not contain the material on U. B. and U. U. B. mentioned this paper because of
the length.
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SOME PARTITION RELATIONS FOR IDEALS ON PxX

C. A. JOHNSON (Keele)

The problem of lifting theorems about a regular uncountable cardinal x to an
analogue about PxX has always been a troublesome one, especially in the case where
ideal theory is concerned (see [19]). In this paper we develop techniques whereby some
partition relations for ideals on PxXmay be proved.

In 81 we introduce the class of seminormal ideals on PxXand in 8§81, 3 and 5
show that for ideals belonging to this class, the distributivity of the quotient algebra is
strongly related to some ideal theoretic partition relations. In particular we prove
(Theorem 5.3) that for a normal ideal | on PxX; the partition relation 7+-<-(/+)\ may
be characterised in terms of distributivity, thus extending a result of Menas [15].

We also consider some well known ineffability properties of PxX For many of
our results the cardinality of PxX will play an important role, and hence in 82 we
adapt a theorem of Solovay [17] to show that if cAéx and x is A-Shelah then
X<x=X.

In [11, 12] we introduced a property of ideals on uncountable cardinals, WC,
which may be regarded as an ideal theoretic analogue of the “strong inaccessibility
and tree propert y” equivalent of weak compactness. In §3 we introduce an analogous
concept for ideals on PxX, and show it to be related to NShxX(the ideal induced by the
A Shelah property) and mild Sineffability. An interesting corollary of our results here
is that if cfA”Xx, x is $#Shelah, AENShxXand (fxX\xEA) is a sequence such that
(VXEA)(fx:x-»x), then there is a function f: X--X suchthat (YyE£PxX)({xdA\x">y
and fx\y = f\y}£NShxX). We also prove that the property WC is related to partition
relations of the form | +-*(1+ X%

In 84 we extend results of Carr [6a], Kunén [14] and Baumgartner [1] to show that
ineffable and almost ineffable subsets of PxX may be characterised in terms of regres-
sive partition relations.

80. Notation and terminology

Throughout x will denote a regular uncountable cordinal and Xa cardinal éx.
PxX={xczX||x|<x} and X<xis the cardinality of this set. For XEPxX, x={yEP xXxc
cry}, x1=xMx and x denotes the order type of x.

For XQPxX and n<co, [Z]"={(x1, X2, ..., X,,)€N"|[0"g:1c x Zr...c;4:,,} and
[TI'<={(x1,x2, ..., X,,)6[4r],|VISi<n, [x,|<|xAxr+l}. If A\[X]n*X, then (i) /
is said to be regressive iff for each (xr, x2, ..., X, )€[T]", f(xy, X2 ..., and(ii)
aset HA;X is said to be homogeneous for/ iff \f"[H]\=\. Tis said to be unbo-
unded iff  x(LPxX)(XC\xA$). Throughout Ix) will denote the ideal ofnot unbounded
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270 C. A. JOHNSON

subsets of PxXand /, a proper, non principal, n-complete ideal on PxXextending Li-
Furthermore | +={XXPxX\X$_I} and I* denotes the filter dual to /.

If AEI+ then LUA={XA"PxX\XIMAE1} and an /-partition of A is a maximal
collection WAXP(A)C\I+ suchthat XI)YEl whenever X, YEIV, XVT. The /-
partition W is said to be disjoint if distinct members of W are disjoint, and in this
case for xE UW, W (x) denotes the unique member of W containing ™\ If Wand T
are /-partitions of A, we say W refines T (and write W ~T) iffforeach XEW there
isa YET such that XQY.

/is said to be (/r, v)-distributive iff whenever A£1+ and (IF.|y is a sequence
of /-partitions of A, each of cardinality Sv, there isa BEP(A)I'\1+ and a sequence
(Xy\y<fi) such that for each X.fWy and B -X yfl. (Hence / is (/(, redistri-
butive iff the quotient algebra P(PXA)// is (p, v)-distributive in the usual sense.)

/is said to be normal iff whenever AfJ+ and f: A~X is regressive, there is a
BEP(A)IM\1+ such that fAB is constant. NSxX denotes the non stationary ideal on
PxXand

SNSXX= {X <=PxX\(3f: X -*X) (/ is regressive and Va < X / -1({a})e/X)}.

Clearly all these conceps could be similarly defined for PxA where A is any set of
ordinals of cardinality &n.

81. Seminoimality

A simple but important fact concerning /-partitions is that (by n-completeness)
any /-partition of cardinality Sn has a disjoint refinement (see for instance [10,
Theorem 1.4.1]). An interesting intermediate between n-completeness and normality,
which enables us to obtain a similar results for /-partitions of carchnality ~X is the
following.

Definition 1.1. / is said to be seminormal iff whenever A£Il+ /«A and
f: A-*p is regressive, there isa BEP (A)f] 1+ such thatf \B is constant.
Seminormal ideals may be regarded as Acomplete in that

Proposition 1.2. |l isseminormal then P(PxX)/l is X-complete.

Proof. Given {AaXx"p"X}*"P(PxX then by seminormality, in P(PxX)/I,
[{x€P*A|3ae/iMx, xE£Aj]=V{[AJa</i}. O

Lemma 13. I f1 is seminormal, AfJ+ and W A P(A)M\T+ ispredense below A in
I +and ofcardinality SA, then there is a disjoint I-partition of A, T, of cardinality s/
such that (4XET)(3YeW){X<jAY).

Proof. Suppose W={Yaix<pSX} then by induction on a</i define Xa=
= {xEldagx and V/?<a, x"XB} and let T={Aala*=/t andZaf /+}.

Clearly distinct members of T are disjoint and every element of T is contained in
some element of W. Suppose BEP(A)C\I+ and a is the least ordinal such that
B(3YaE I+ If BIM\XxEL then {x€/?M FJ 3/?<a, xEXB}E£I+ and hence by semi-
normality (38”a)(BC\XRcj+), contradicting our choice ofa. O

Lemma 1.3 enables us to push through some well known arguments concerning
ideals on n. For instance
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Theorem 1.4 (cf. [10, Theorem 1.4.1]). If | is seminormal and X-+-saturated then |
isprecipitous.

We leave the proof to the reader.

In [3, p. 59] Baumgartner, Taylor and Wagon showed that (for an ideal J on Xx)
the partition property / +->-(/+, co+ 1)1 is related to weak selectivity and weak p-
pointness. Using seminormality we may obtain a PxX analogue of this result. First the
PxX analogues of the notions concerned.

D efinition 1.5. (2) / is a weak /»-point (weak (/-point) iff whenever AfJ+and
{Ax\xZA}QP(A)C)I (P(A)i]1x¥), there isa BEP(A)C\I+ such that for each X£B,
BC\AxF)xClxX(I
Is wea yselectlve iff/is a weak /»-point and a weak (/-point.

(b) If P, Q RQP(PxX) and n<co, then P-*{Q,R)8 denotes the assertion
“whenever XEP and /: [X]n=>2, either there is a Y(Q homogeneous forOoraZfR
homogeneous for I". If oc”x and R={ZQPxX the order type (with respect to ¢)
of Zis a}, we write P-*(Q, d@)!], and if Q=R we write P-*(Q)

(c) /is weakly lean iff for each Adl+ there isa BEP(A)C\I+ suchthat |B|=A
(it is easy to show that if /?€/+4 then |Z?|sA).

Theorem 1.6. Suppose | is seminormal and weakly lean. Consider thefollowing
assertions:

(@) / is weakly selective.
(b) /+-(/+, coT 1)5.

C) [ +-(/1+,03)\.

(d) 1isaweak p-point.
Then (a) —b)-*-(c)-»(d).

Proof. (a)->(b). Suppose A£I1+ and /: [A]2-*2 is a function having no homo-
geneous set for 0in/+. Since / is weakly lean we may assume that |T|=A, and for
each xEA let Ax={ydAf)x\f(x, y)=1}

Define a sequence of /-partitions of A, (W, \«<co) such that
by induction as follows. Let L={A}. Given W, and X(fVn, {Xf)AX\XEX and
XC\AY0 +} is predense below X in /+ (for if YEP(X)OI+ is such that (Vy€F)
(YDAYCI), then by weak selectivity there is a Zf P(Y)P\I! such that for each
(y, 2)e[Z]\ ziAy, and so Z is homogeneous for 0), and hence by Lemma 1.3 we
may find a disjoint /-partition of A, W1 refining W, such that whenever YEWn+1,
ATIV,, and YQX, thereisan x£X suchthat YQAX

Since each Whis an /-partition of A, A—\JW,,kl, hence by ”-completeness,

J [A—UWn=A— I'I UWKEI and in particular p| UWB?*0. Pick x€ f) UlW,

n-co) 0) n< fy

then since WO V\D(x)"JVl(x)"WZ(x)" " and for each n<co there
isan x,,EW,,(x) suchthat VVh+1(x)QAXn Clearly {x,|n<cu}U{x} is the required
homogeneous set for 1

(b) »(C) is trivial.

(c) >(d). Suppose A£1+ and {AX\xCA}*P(A)f)I. Since | is weakly lean and
extends Lx we may assume that \A\=X and y4"{0}. Let c: X—{0}-»A be a bijec-
tion and for each xEA letf(x) be the least ordinal aEx—{0} such that xEAcM;
f(x)=0 ifno such a exists. Define g:[A]2-+2 by g(x,y)=0 iff f(x)sf(y), then
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since / +—(/+, w)| there is a BEP(A)C\I + such that for each (x, y)£[B]3 /(x)s
=f(y)- Suppose REX—{0}, c(R)=x, say, and Bf]Afljx, then for each y£B
f{y)*f{z)SR whenever rEBMAxMyrN\{$}. But then by seminormality there is a,
CE£P(B)C\I+ suchthat fA\C is constant, hence f*C={0} and so for each a£A--{0},
CNAd¥M{«}=0. This proves the weak p-point property. O

As in [11], distributivity is related to partition relations.

Theorem L1.7. Suppose | is seminormal, weakly lean and t is a cardinal, ;/<x.
Consider thefollowing assertions:

(@) I is weakly selective and (/< /~-distributivefor each /ro/.

(o) /+-(/+, 4+ D1

(© I +-(/+, 1)~

(d) I is (u, XYdistributive for each it< u.

Then (a)-(b)-(c)-(d).

The proof of (a)—(b) is similar to that of Theorem 1.6 (a)—(b), using the distri-
butivity of I to continue the construction of the /-partitions (B£|ao/) at limit stages.
The proof of (¢c)—(d) is similar to the corresponding proof for ideals on x ([11, Theo-
rem 7]) using Lemma 1.3.

82. The $Shelah property

The following inelfability property of | ff was introduced by Carr [4] as the PxX
analogue of a combinatorial equivalent of weak compactness due to Shelah [16]. Let
NShxXbe the set of all X fP xX which do not have the property “for any sequence
(fX\XEX) such that (\/xdX)(fx:x—x), there is a function /:/1—H such that
YYEPXX) ({XE_XCW\fx\y =f 1y}€/xn)”- is said to be #Shelah iff PXX$NShxX, and
in this case Carr [4, Theorem 2.3] showed that NShxXis a normal ideal on PxX In this
section we wish to prove (Corollary 2.7 below ) that if ¢cfXSx and xis #Shelah, then
A<*=4.

If Ais a set, a function F:nX->-X is co-Jonsson for X if (V YQX)(\Y\ = \X\—
—F"AY=X). Erddés and Hajnal [8] showed that every infinite set has an co-Jénsson
function and Solovay (see [17] ) used this concept to show that if U is a normal mea-
sure on PxXand Ais regular, then the function (sup (X)\XCPx$) is injective on a set
in U. We first show that Solovay’s proofextends to yield the following.

Theorem 2.1 Suppose X=fi+ and x is X-Shelah, then thefunction (sup (x)|x€ PxX)
is injective on a set in NShx) .

Proof. Let F: “d—4 be an co-Jonsson function for A
Lemma 2.2. {XEPxX\Vge"x, F(g)EX}ENSh$X.

Proof of Lemma 2.2. Suppose not then A={xEPxX|x3co and 3gx€ax,
F(gx)$x}ENSh+x. For each x€A pick g fw suchthat F(gx)$x, then by the &
Shelah property there is a function /: co—fsuch that B={xEA\gx=/3}£l f. Butthen
for each xEB, F(f)=F(gX)$x, contradicting B fIf. O

Lemma 2.3. {XEPxX\F\cx is an co-Jonssonfunctionfor Xx}£NSh*x.
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Proof of Lemma 2.3. Suppose not, then by Lemma 2.2, {xC/*AK3oc/n:)
(36xgx)(JiJ = |x| and aAF"»ax)}dNShix. By normality of NShxX, there is an
a<A suchthat A={xEPxA 3axQx, |nj=|x| and a"F"ma”*NShix.Foreach xBA
let axQx witness that XxEA andfx: x-+ax be a bijection. By the A-Shelah property
there exists a function /:A —A such that ("yC.PxX) {{xCAC\y\fx\y="f\y}0£x).
But then/is injective and so there exists an j€“(im(/)) such that F(s)=a. Let
j={y<Al/(y)€im(i)}, theny is countable and so there is an XEAC\y such that
fx\y="fly. Hence s@®(im (f X))=gax contradicting F(j)=a$F*ax. O

Lemma 24. {X"PxX\x=(xr\y)+}£NShlx.

Proof of Lemma 2.4. Suppose A={xEPxLx<(x\n)+}dNShtx. For each
xEA let fx:x-"xM/fi be injective, then applying the A-Shelah property yields an
injective function contradiction.

Suppose {xiPx/\x>(xC\p)+£ENShix, then by normality of NShxXthere exists

a y such that /i<cy<A and {XEPxX\xr\y=(xf)ii)+}(LNSh+x. However if g'y-"y.
is bijective, then by normality, {x*"PxX\g"xC]y=xC]fi}"NSh*x; contradiction. O

As in Lemma 2.2 we may also prove.
Lemma 2.5. {X"PxX\x is closed under co-limits}* NShxX.

The proof of Theorem 2.1 is now similar to that of [17, Theorem 3.4]: Let X=
={xEPxX\x is regular, 3c>cw, x is closed under co-limits and F\ax is to-Jonsson for
x}, then XENSh*x. Suppose x, yEX with sup (X)=sup (y)=c>. As 3y are regular
and it and y are closed under to-limits sup(xHy)=<5 and hence |x| = [x[y|=|y|.
But then by the co-Jonsson property, x=F"<gxC\y)=y. O

Corollary 2.6. If A=/i+ and x is X-Shelah then X<x=X.

Proot. By a result of Carr ([5, Proposition 1.2)], x is strongly inaccessible and
hence if AENSh*XX with \A\=X, ihcn \PxX=WJ{P(x)\xdA}\"2<x-\A\=X. O

Corotlary 2.7. 1T cfX”x and x is X-Shelah then X<x=X.

Proot. The case for successor cardinals is proved in Corollary 2.6, hence suppose
Ais a limit cardinal. By a result of Carr ([5, Proposition 1.1]), x is /i-Shelah whenever (|
is a cardinal such that and hence cfX”x and Corollary 2.6 yield [ilA|=
=|U{i"+|x"<A}=A. O

83, WC Ideals

In [11, 12] we introduced a property of ideals on x, WC, which may be regarded
as an ideal theoretic analogue of the “strong inaccessibility and tree property” equi-
valent of weak compactness. The following seems to be the natural PxX analogue of
this notion.

D efinition 3.1. For g.sX, Jis (/, v)~WC iffwhenever AE£I+ and (WW\y<ii)
is a sequence of /-partitions of A, each of cardinality Sv, there is a sequence
(Aylyc/i) suchthat for each y</i, XyCWy andforeach yCPxX UKXW\yEy [T/i}£/+.
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In [12, 83] we mentioned that if x is weakly compact and/ is a normal ideal on X,
then / is WC (in the sense of [12]) iff/ extends the I1J\-indescribable ideal on x. Ana-
logously we have.

Theorem 3.2. If Px2 carries a normal (2,k)-IVC ideal I, then x is k-Shelah and
/i NShxX

Proof. Suppose A (f+ and (fx\xEA) is a sequence such that (VX£A)
(fx:x-+x). For each a, gk let X‘={x"AC\{6t}\fx(@)=o0), then by normality,
Wa={Xg\Q<k and X®%£/+} is an /-partition of A. Since | is (2, k)-tVC there is a
function /:2->-2 such that for each y€Pxk, M{T/@)afy}£/+. In particular,
{XEAC\y\/X\y=/\y}£1+1. O

Before we can prove the converse we need the following preliminaries, the first of
which may be regarded as the Px2 analogue of [11, Theorem 2)].

Theorem 3.3. Suppose | is normal and p<x then I is (p, 2)-distributive iff whe-
never A(U+andf: A "2 issuchthat (Vxc A—{0})(/(x)é'bi), thereisa BtP(A)D
M /+ such that f \B is constant.

Proof. (-*-). Let A and/be as given. For each ox/j and £><2 let =
= {x£A\f(X)(a) = <%} then by normality IMx={X£\g<k and XE£I+} is an/-partition
of A. By (g, 2)-distributivity there is a set BEP(A)C\I + and a function g: 2 such
that for each a</j, B—X ~* 1, and hence by x-completeness, C= M{T|(*)|a</(}£/+.
Clearly for each x£C, f(x)=g.

(-<-). Suppose AdI+ and (WWy<p) is a sequence of /-partitions of A, each of
cardinality s2. By Lemma 1.3 we may assume that each Wy is disjoint. Let h:
U {(WW\y<n}~2 be injective, then by ~-completeness, B={x£A\Vy<p, xE UW,
and h(IVy(x))ExX\€(NA)*. By hypothesis there is a g¢g(/2 such that
{xEB|Vy<g, W(x)=h~I(g{y))}*I+, and hence TI{/r 1("(y))ly< "}€2+, thus
proving (p, 2)-distributivity. O

Coroltary 3.4. (cfk”x). Ifx is k-Shelah and | is normal and extends NShxX,
then | is (p, 2)-distributivefor each p<x.

Proof. Using Theorem 3.3, suppose p<x, A£I+ and /: A—"k issuchthat
(VXEA {0} (/(nr)E"n:). By Corollary 2.7, 2'=2 and as in the proof of Lemma 2.2,
if c: "2*2 is bijective then {xdPxk\c"'IX1 x}£NShxXQI*. Hence

{xEA\c(f(x)Xx}el+,
and by normality/is constanton asetin/+. O

Lemma 3.5 (Carr [6], 2<x=2). | f x is k-Shelah and c: Pxk-+k and b: 22— are
bijective then {XEPxk\xx is an inaccessible cardinal, c"PXxx —x andb"x2=x}£NSh*x.

Theorem 3.6. (cf 2€X). Ifx isk-Shelah and | is normal and extends NShxX then
lis (k,k)-WC.

Proof. Suppose A1+ and (WW\y<k) is a sequence of /-partitions of A, each
of cardinality S2. By Lemma 1.3 we may assume that each Wy is disjoint. By Corol-
lary 2.7, 2<x=2 and by Lemma 3.5, if c: k-*Pxk is bijective then
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B = {xdPxA\xx is an inaccessible cardinal and c"x = PXxx}dNSh*k A I*.

For each a<A let *"={0 {AylyCc(@}'iyfc(oC), XfW y}C\I+ then since / is
(Ic(@)], M-distributive, Txis a disjoint /-partition of A. Since A<x—A, |7]JsA, and by
normality, if h: U {7)Ja<A}>-A is injective then

C = {xC~nfilVaex, x€EUTx and h(Tx(x))dx}d(I/A)*.

Hence by the A-Shelah property there is a function /: A»A such that for each y(Ei* A
{x"Cflyl Vady, /(a)=/r(a(x))}€/"qa. In particular for each a<A, /r_1(/(a))€rlra
and I'I{/r_l(/(:;ll)é)llaéiy}e/"n- .

Suppose *A and M{i 1/(a))[aE}>}6/. Choose <5</1 such that c(c))6
ZBC\y, then yU{<5}£i"A and hence n{h~1/(a))[a€yU{(5}}€/+A Now h~\f{d))dTx
and for each ady, c(a)Ec(<5) (since c(6)dB), hence TO*T X and we may find a set
FaC7" suchthat h_1(/(d))~7a. But then there isa Rdy such that YRAh~1(f(R))
(for otherwise M{h~1Lf(a))\oidy}= M{Yx\ady} Afhr!(f(6))£I1+), and hence since TR
is disjoint, h~\f(6))nC\\fi~L(f(ci))\ixEy}QYRNh~1(f(R)) =Q a contradiction.

Finally since each IF, is refined by some Tx, this proves the (A /)—WC
property. O

Immediately from (the proof of) Theorem 3.2 we now have.

Coroltary 3.7. (cfAéx). Suppose x is A-Shelah, AANShf and {fx\xdA)
is a sequence such that (Vx€ A)(fx : x-+x). Then there is afunction f: A*A such that
for each ydPxA, [xd Afly|fX\y=f\y}dNShf.

The AShelah property is ideal theoretically strong in that the associated ideal is
normal. An ideal theoretically weak PxA generalisation of weak compactness due to
DiPrisco and Zwicker [7] is the following. Let NMInx) be the of all X*P xAwhich do
not have the property “for any sequence (S'JXCAS) such that fi xdX)(SxQx),
there isan SQA suchthat (WE-P*A) ({xE Aly|5"My = 5TIy}£/+;)'/. x is said to be
mildly Sineifable iff PxAANMInxX and in this case Carr ([4, Proposition 1.4])
showed that NMInxk=Lx- Mild A-inefifability is related to the property WC by the
following theorem whose (easy) proof we leave to the reader.

Theorem 3.8. Thefollowing are equivalent:
(@) PxAcarries a (A 2)—TC ideal.

(b) x is mildly A-ineffable.

(c) Ixxis (A, 2)—WC.

In [11, Corollary 2] we showed that if x is weakly compact then Ix (the ideal on x
dual to the Fréchet filter) is (x, x)-distributive. This result suggests the following
question which we have been unable to answer: if x is midly Sineffable, is it the case
that Lx is (A 2)-distributive?

As in [11, Theorem 8], the property WC is related to partition relations.

Theorem 3.9. Suppose | is seminormal, weakly lean and weakly selective, then I is
(x,A)-WC iff [+-(/+, X)L

The proof is similar to that of Theorem 1.6 and [11, Theorem 7], hence we leave
the details to the reader.
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In [1, Theorem 3.2], Baumgartner showed that if xis weakly compact and/is the
M\-indescribable ideal on x, then (in the terminology of [1]), / +-*(/+, x)\. Baum-
gartner and Carr [6] generalised this result to the Px Xcontext: if X<X=X, x is A-Shelah,
AdNSh+i and f:[A]2—2, then either there is a set BAP(A)C\NSh”x such that
f'[Bf< ={0} or a function h: PxX-~A such that (V (y, X)€[I*A]<)((y, h(y), h(x))£
€[7A]< ar|d f(h(y),h(x))=1). The property (X,X)—WC is related to a natural
variant of this partition relation by the following.

Theorem 3.10. Suppose | is seminormal and weakly lean. Consider thefollowing
assertions:

(@ /+-(/+,4)1.

(b) 1+-(/+)!.

(c) 7is weakly selective and (X, X)-distributive.

(d) 1 is weakly selective and (X, X)—WC.

(e) whenever A£l+ and f: [A]2=>2 either there is a set Bf_P(A)C\lI+ such
that f"[B]2={0} oraset Cf P(A)C\IXX and afunction h: C A suchthat

(V(y, )E[CIA(y ¢ h(y) ¢ h(x) andf(h{y), h(x)) = 1).
Then  (@)—(b)—(c)->(d)->(e).

Proof. The implication (a)->-(b) is proved exactly as in [1, Theorem 6.2]. The
proofs of (b)->-(c) and (c)—a) are similar to those of Theorems 5.3 (d)->-(a) and 6.2
(a)—b) respectively. (c)->-(d) is trivial.

(d)->-(e). Suppose Ad_I+ and f\[A]2-*2 is a function having no homogeneous
set in 7+ for 0. Since 7 is weakly lean we may assume that \A\=X, and since x is
strongly inaccessible (by Theorem 3.8 and [5, Proposition 1.2]) and 7 is weakly selec-
tive we may assume that |y|<|n:| whenever (y, x)i[A]2 For each xd A let Ax=
={zEAC\x\f(x, z)=1}, then as in the proof of Theorem 1.6, given BEP(A)C\I+
and rEPxX {BC\AwwO.BC\f}CM+ is predense below B in 7+.

For each XEA we define, by induction on |x|, a disjoint 7-partition of A, Wk,
and a function gx:Wx-*AC\x such that for each XdWx, XQAg(X) as follows.
Suppose xEA and Wyand gy have been defined for each yEA suchthat \y\< |x|
(and in particular for each yE AT P(x)-{*})m As in the proof of Theorem 3.6, since 7
is (|P(x)], A)-distributive we may find a disjoint 7-partition of A,TX, such that TxsWy
whenever YEATM)P(X)—{x}. Given ZETX, {ZC\AWw£EZC\x}ifl+ is predense
below Z in 7+, and hence by lemma 1.3 we may find a disjoint 7-partition of A, W,
and a function gx:Wk-*Af)x such that for each XfWx there is a ZETX with
gx(XKZ and XATIMN .

Since 7is (A, X—WC we may find a sequence (Xx¥_A) such that for each
xBA, XxdWx and for each s£A, N\{XX\XEAM\ P(s)}dl+ Let h: A-»A be given
by h(x)=gx(Xx), then clearly h(x)Ex. Suppose (y, X)E[A]2 and ZCTX s such that
h(x)£EZ and XxQZr\Ah(x). Since XxC\X§ | + and Tx"Wy we must have Z"A",
and since XyC Ah(y), h(x)f Ah(y). Hence his our required function. O
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84. Inefl*ability

In [9], Jech defined the following generalisations of ineffability and almost
ineffability. A set X~PxX is said to be A-ineffable (almost A-ineffable) iff for any
sequence (SlJxeA) such that (VXEX)(Sx"x), there is an SQ.X such that
{xex\sx=snx}eNSi,(i:x).

NInxXX={XQPx X\X is not A-ineffable}

NAINXX={XQPxX\X is not almost A-ineffable}
and by a result of Carr [4, Corollary 1.3], NShxXXQNAInxXX*N InxX. x is said to be
A-ineffable (almost A-ineffable) iff PxXXSNINXX(NAInxX), and in this case Carr [4,
Theorem 1.2] showed that NInxXX(NAInXX is a normal ideal on PxA

In this section we generalise results of Baumgartner [1] and Kunén [14] to show
that A-ineffable and almost A-ineffable subsets of PxX may be characterised in terms
of regressive partition relations.

Theorem 4.1. (cf Aéx). Suppose x is almost X-ineffable and AENAIn+x, then
for every regressivefunction f: [A]2-»X thereisa BEP(A)C\IXX such that |[/"[R]<]| =

Proot. By Corollary 2.7, X<X=X and by Lemma 3.5, if c:PxX-*X and h:A2-*,
are bijective and

M = {xfPyX\xx is an inaccessible cardinal, c"PXxx = x and b"x2= x},

then M£ NAIn*x.
Suppose now that AENAIn+x and f\[A]2-*X is regressive. Clearly we may
assume that A*M . Foreach XxEA let

S* = {b{c(y),f(y,x))\yiPXxrA}(Qx) and Bx = {yiPXxf)A\Sy = "y}.
Let E={xdA\BXESNSZxX}, then
Lemma 4.2. A—EENAInxX

Proof. Suppose A—EENAIn+x and Xx£EA—E. Since BXESNS,,xX there is a
regressive function f x : Bx-+x such that (VaCv)(,/CL{x})r/ZX), and hence for each
<Ex there is a g(x, y)fPXx such that fx I({a}){PXx—g(x," a). Let Gx=
= {fe(a, c(g(x, a)))|aEx} then Gxfx and by coding (Gx, SX) as a single subset of x
(using b) and applying almost A-ineffability, we may find subsets of A G and S such
that Z={xEA—E\Gx=GC\x and Sx=SC\x}£l+x.

Pick (y,x)€[Z]Z then Sy=SxCly and hence y£Bx. Suppose N1(y)=a(£y)
then y " ff1({oi))Q,PXxx —g(X'i «). Also Gy—GxCly lienee (since Gx codes a func-
tion), g(x, a)=g(y, a) and so yig{y~, a), contradicting our definition ofg. O

For each xEE we may (unambigously) define a regressive function gx:Bx-*x
by gx(y)=y iff there is a r£BxI)y such that \y\<xz and f(y,z)=y. Since
BXESNS+xX there is a 3x€x such that gx\{bft)*JixX, and hence by normality of
NAInxXthereis a <56<A suchthat F={xEE\0x=0}dNAIn+x. For each xEFlet7}.=
=c"g-j1{<5Y, then TxQx and by almost A-ineffability there is a set TQX such that
H={xiF\Tx=Trx}a;x.

Let B=c~v'T, then claim B is the required *“homogeneous” set for/. Firstly
suppose VEPxX then pick xfHHv suchthat \W\-<xx. Since gx\{b})CilXxX we may
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find a y*gx1({0})Dv and hence c(y)ETxSA'T; thus BEI+#. Suppose (y, z)E[I?]<,
then pick XxEHDz suchthat |z|<x*. Since xEM, c(y), c(z)ET(Ix=Tx, hence
(y, 2CIBXYK and gx(y)—0. But then by our definition of gx, f(y, 2=<56. O

Conversely we have

Theorem 4.3. If AQPXA and satisfies the conclusion of Theorem 4.1, then
At NAInxXX.

Proof. Suppose is a sequence such that (VXiT)(SxEx). Define a
function /: [d]2—A by / (x,y)=min (SAd(S”flx)) if SAd (BH1x)"0; f(x,y)=
=min (x) otherwise, thenf is regressive and hence we may find an a< $ and a set
BEP(A)M\1+X such that f"[B]={a}. Pick CEP(B)M1£X such that either
(VXEC)(aE£Sx) or (VxEC)(a$Sx), then Sx=Sj,rix whenever (x,y)€[C]<.
Hence if S= U{S"x~C}, then Sx=SDx for each x€C. O

For ineffability we have the following

Theorem 4.4. (cf. Aéx.) Suppose X is /.-ineffable and Ac NInf, thenfor every
regressive function f: [A]2—A there is a Bf F(A)CA\NSXX such that \f"\Bfi\ =1

Proof. Suppose AENIn+x and /: [A]2*A is regressive. Let b, ¢ and M be
as in the proof of Theorem 4.1, then MC NInxX and A TMdNInxX. For each
xEATIM let Sx={b(c(y), f(y, X))|[yE PXxxC\A} then SxQx and by Sineffability
we may find an SAA suchthat C—{XxEA DM\SX=S r\x}€NSEx.

We may (unambiguously) define a regressive function g: C-+A by g(y)=y
iff there is an xECOQOy suchthat |y|< xx and f(y, x)=y. Hence by normality of
NSxXthere is a <6<f such that and clearly X{<Pl<=&& O

Theorem 45. If AQPXA and satisfies the conclusion of Theorem 4.4, then
AiNInxX

The proof is similar to that of Theorem 4.3 and we leave the details to the reader.

In order to obtain a version of Theorem 4.4 in which the set B is homogeneous
for/, we may redefine Stineifability as in the following

Theorem 4.6 (cfHAe*x). Suppose AQPXA then the following are equivalent:

(@) For every sequence {SxX\xEA) such that (‘/xf_A)(Sxfx), there is a set
/1€ P(A)IM NS+X such thatfor each (x,y)C[LL2 |x|<|xMy| and Sx—SyC\x.

(b) For every regressivefunction /: [/I]2-»A, there is a set Bc P(A)C) NSxX such
hat |[/W | =1

The proof is similar to that of Theorem 4.4. We do not know if a version of
Theorem 4.6 holds for “almost Sineffability”.

Alternatively we may turn to Menas’ combinatorial principle y (see [15, p. 228]):
Let x(I) denote the statement “for every A£1+ there is a function /: x—x such
that {XEA\J(WXCW\)=\x\ and (Va<|xMx|)(/(a)<|xOx|)}£/+”. As in [15,
Lemma 5] we may show (using Lemma 2.3) that if x is almost $tineffable and
X(NAInX) holds then {dENAIn+x\y(x, y)£[d]2 [x|<|x[)y[} is dense in NAInxX
and hence if cfA”x, AcNAInXXand f : [A]--*Ais regressive, then there exists a
BcP(A)C]IxX homogeneous for/. Also as in the case of normal measures (see [15,
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p. 228]), for certain cardinals A>x, y (NAiny> will always hold. For instance (by
Lemmas 2.4 and 3.5) if A=%+ and x is almost A-ineffable, then the function
fix-*x given by (Va<x)(/(a)=a+) witnesses that x(NAInxi) holds.

Similar remarks may be made for A-ineffability.

85. Complete ineffability

In [11. Corollary 3], we showed that x is completely ineffable iff x carries a nor-
mal (x, x)-distributive ideal. Analogously let us define x to be completely n-ineffable
iff Pxk carries a normal (A A)-distributive ideal.

Theorem 5.1. Thefollowing are equivalent:

(@) I is normal and (A 2)-distributive.

(b) Whenever Adl+ and {Sx\xdA) is a sequence such that (fxd A)(Sxfx),
thereisan S fk such that {xf_A\Sx=S(\x}fl +

(©) I is normal and (A /~-distributive.

Proof. (a)-*(b). Let A and (S"xC:A) be as given. For each a<A let X£=
={xElijla([ S*} and J1d= {x€N|a€5'.c}, then I"={Af|i<2 and X[dI+) is an/-par-
tition of A. By (A 2)-distributivity we may find a BdP(A)CM+ and a function
/. A—2 such that for each a<A, B—X[wdl- By normality, C={xdB\\/a.dx,
XEA'/@}£/+ and hence for each xdC, =y“X{1})Ox.

(b) -«(C). Normality is clear. Suppose Adl+and (IF,Ja<A) is a sequence of
[-partitions of A, each of cardinality S A By Lemma 1.3 we may assume that each Wa
is disjoint. Let h: U {IFJot<A}-*A be injective, then by normality, B=
—{xdA\Va€x, xE UW, and h(Wa(x))dx}d(I\A)*. For each xdB let Sx=

={h(Wx(x))\otEx\, then SxQx, and by our hypothesis there isan S fk such that

C={x€5|5'x=5Mn}€/+. Suppose oc<A X, YdWa with CMX, CMIr6/+. Pick

x,y, 100 HT{a} such that xdX, ydY and zz>{h(X), h(Y)}. Then h(X)=

=h{Wx(x))dSxQS, h(Y)—h(Wx(y))fSyQsS, hence {li(X),h(Y)}QSHz=Sz and

so zdXf] Y. But then since If) is disjoint X=Y, thus proving (A A)-distributivity.
(c) -»(a)is trivial. O

Theorem 5.2. | f x is completely k-ineffable and p is a cardinal such that x*/i<A,
hen x is completely g-ineffable.

Proof. Suppose / is a normal (A A)-distributive ideal on PxA and for each
xEPxk, h(x)=xf]p. Then h: Pxk-+Pxg and it is easy to check that /z*(/)=
g\h~\X)dI} is an ideal on Pxp. Using Theorem 51 we show that /i*(/)
is normal and (p, /-distributive. Suppose X yhfl)' and (TArdX) is a sequence
suchthat  rdX) (TrQr). Then h~1(X)dI+ and for each xdh~\X) let Sx=Th(xy
By Theorem 5.1 we may findan S~k (indeed S"p) suchthat Bb={xC/z_1(")|5%=
=SC\x}dl+ But then h"Bdh*(I)+ and for each xdB, THX=Sx=SC]x=Sr\
r\pf]x=SC]h(x). O

In [15, Proposition 1], Menas showed that if | is normal and prime, then / is a
weak g-point iff there exists a set Adi* suchthat (V(x,y)éU](|x|<|xMy]) iff
[ +-*-(1+)8. As in [11]] this latter partition relation is related to distributivity.
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Theorem 5.3. (cf Aék). Thefollowing are equivalent:

(@) lisnormal, (A, X)-distributive and a weak g-point.

(b) I is normai, (X )fdistributive and {/?£/+|V (X, j)E[F2 |x| < uNy|} is
densein | +.

(c) Whenever A £I1+ n<co and is regressive, thereisa Bf_P(A) I/ +
such that \fVv m = le

(d) lisnormaland / +->(/+)|.

Proof. (a)-»(b). As in [15, Proposition 1], given A£I+ let g: A—PxX be any
function such that (MAA)(XE£?(x)) and [3<M#(n:)| >|x|). by the weak «/-point
property we may find a BEP(A)I)1+ such that for each {x, y)C[B]-, q(x)czy and
hence |m<[3<y].

The proofof (b)->-(c) is similar to that of Theorem 4.4.

(c) -*(d) is trivial.

(d) —{a). Firstly the weak (/-point property. As in [15, Proposition 1], if AfJ+
and {AJXEA}QP(A)nixi, define /:[N]2*2 by f(x,y)=0 iff y6Ax. Clearly if
BEP(A)N1+ is homogeneous for/ then /"[/?]2= {1}, and hence for each xfB,
BMAXM)c=0.

Now suppose A£Il+ and (WJokA) is a sequence of /-partitions of A, each
of cardinality wX. By Lemma 1.3 we may assume that each Wk is disjoint. Let
h: U{WJokX}»A be injective, then by normality, B ={x"A\Ma"x, xC UWXE
£(NA)*. Define g:[Z?]12—2 by g(x,y) =1 iff (3a£x) (Wa(x)72Wd(y)) and if a
is the least such ordinal then h(Wx(x))>h(Wx(y)).

Suppose CE£P(B)C\I+ is homogeneous for g, say ¢"[C]2={lI}, B<X and for
each u<R there is a set XxEWa such that C—XaEl. By normality, D=
={xEC\\fadBRCix, kx(x)—Xx}*(1\C)*, and hence if X and Y are distinct members
of WB, say h(X)<h(Y), such that CMA//+ and CMTE/+ then f(x, y)=0
whenever x*"DOXD {1} and yfdilFflx, a contradiction. A similar argument
carries through when g"[C]2= {0}, and hence this proves (A A)-distributivity. O

86. Non seminormal ideals

To date we have restricted ourselves to considering mainly seminormal weakly
lean ideals. In this section we briefly mention two results relating distributivity to
partition relations which hold for ideals in general. Since / may not be weakly lean we
first make the following definitions. Let L ={A£I-HA\/BEP(A)C\I+ |B|= |1}, then
clearly L is dense in / +and so / may be broken down into ideals which are lean in the
following sense.

D efinition 6.1. Foracardinal ij=A, /is said to be (/-lean iffthere is an Adi*
such that \A\=rj and (dBE£I+H(\B\=//).

Theorem 6.2. Suppose / is 1j -lean, then thefollowing are equivalent:
(@) 1 is weakly selective and (rj, 2)-distributive.
(b) Foreach n< qj and /k%, [/ +-»(/+)".

Proof, (a)-»(b). Firstly note that (by Theorem 3.8 and [5, Proposition 1.2])
since g”X and /is (//, 2)-distributive, x is weakly compact (and in particular strongly
inaccessible).
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By induction on nnow; the case n—1 is immediate from %-completeness, hence
suppose p<x, Adl+ and /: [H],+1—y. Since 7 is ij-lean we may assume that

\A\=q and for each a=(xI5x2, X )E[Aln and let

f(x1,x2, xn,y)=e}- By (|/ 2) distributivity there is a BEP(A)C\I+ suchthat
for each a£[A]n and or BM\X%£1, and hence by ~-completeness
there is a unique function g: [A]"—/t such that for each a£[A]", B —XMEIL. By

inductive hypothesis there is a y and a C6P(B)M/+ such that g"[C\'={y}.
For each xEC let

Ax = {ycCtfxIBfo.Xg, FOxIEx2, ..x,, % x,y) "y}

then AxEIl (since |P(x)\-=x and 7 is ~-complete), and hence by weak selectivity we
may find an EEP (C)f)I+ such that for each (x, )>)c-\E\l, yt{ Ax. Clearly f'\E ]n+l=

(b)-*-(a). Weak selectivity is proved as in Theorem 5.3 (d)-*-(a).

Suppose AEl+ and (WW\y<q) is a sequence of 7-partitions of A, each of car-
dinality s2. By ~-completeness we may assume that each Wy is disjoint and since 7
is iplean we may suppose that \A\=q. Hence reindex (WWy<q) as (YVJIxfA),
and for each x£EA let D& {M{XWEP(X)MANYYEP(X)M\A, Xy(LM43r\ri
Straightforward arguments show that x is weakly compact (and in particular strongly
inaccessible), and hence by *-completeness, 7is (|P(x)|, 2)-distributive. Thus Tx is a
disjoint 7-partition of A. )

Define h:[A]3--2 by h(x,y,z)=0 iff y,zEOTx and Tx(y)=Tx(z). If
BEP(A)IM\1+ is homogeneous for h, then clearly we must have /r"[Zip={(}, and
hence for each xdB there isa YXETX suchthat B—YX£EI.

Finally, given y€A, WysT x whenever xfBTly, and so this proves (tj,2)-
distributivity. O

Note that in proving the implication (b)-<-(a) we have used 7+->(7+)2 rather
that 7+->-(7+)|. To obtain (g, 2)-distributivity from this latter partition relation we
(seem to) need g many such partitions.

Theorem 6.3. Suppose | is U-lean, then thefollowing are equivalent:

(a) 7 is weakly selective and (g, 2)-distributive.

(b) whenever A£1+ and fy: [A]2>2 (y<q) is afamily offunctions, there is a
BCP(A)C\I+ and afunction t\y-+IxX suchthat for each y<q, \ff[B —t(y)]2=1I.

The proofis similar to that of [12, Theorem 4.7] and we leave the details to the
reader.
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ON ALMOST NILPOTENT RINGS AND IDEALS

G. A. P. HEYMAN (Bloemfontein)

1. Introduction

An associative ring A is said to be almost nilpotent if every nonzero ideal of
A strictly contains some power of A (cf. [2]). This concept is a generalization of nil-
potent’and it was shown in [2] that an almost nilpotent ring is either a prime ring or a
nilpotent ring.

The purpose of this note is in the first instance, to characterize prime almost nil-
potent rings. Some properties analogous to those of nilpotent ideals ofa ring are being
investigated in the rest of the paper.

All rings to be considered will be associative and 7<i A will mean ‘7is an ideal
of A\

2. Prime almost nilpotent rings

For our first theorem we will need the following lemma:

Lemma !. IfAisanalmost nilpotent ring then p) Am=0 forall fcsi.
m=k

Proof. |If I'I AmAOQ there is a positive integer n such that Arf f) Am and we
m=k

may obviously choose n~k. Butthen AnT A", which is absurd.

Theorem 1. Thefollowing are equivalentfor the ring R :
(1) R is aprime almost nilpotent ring.
(2) R is a semiprime ring with a proper essential almost nilpotent ideal P and R/P
is nilpotent.
(3) R is a semiprime ring such that every proper homomorphic image of R is nil-
potent.

Proof. (I)=>-(2). Let R be a prime almost nilpotent ring. By definition R cannot

be a simple ring, so it must have a proper nonzero ideal P, and the rest is obvious.

(2)=>(3). Let We want to show that R/A is nilpotent. If A = P there is
nothing to prove. So assume AA P. We consider three cases:

R/P

(@ PQA. Then A/P

R/A

P/A

AR/A is nilpotent since R/P is.

(b) AQP. Then A R/P so that R/A is nilpotent since both R/P and P/A

() X=PDA with AP and P%A. Now P/X is nilpotent since P is almost



284 G. A. HEYMAN

nilpotent, and R/X/P/X=R/P is nilpotent so that R /X is nilpotent. Then R/X/A/X=
ssR/A is nilpotent.

(3)=H(1) For any two nonzero ideals | and ./of R wc have RkQ1 and RIfJ.
So if 77=0 then Rk+I=0, a contradiction. Hence R is prime. Furthermore, if X
is any nonzero ideal of R then RP*X, pEN and if no power of R is strictly contained
in X then RP=X. But RnQP for certain n £N, so that by Lemma 1,

n RTuvu n Pm=0 for kSl
m—k k

This means that X= f] (RPm=0, a contradiction which implies that R is almost
m=k
nilpotent.

3. Almost nilpotent ideals of a ring

It is well known that the sum of two nilpotent ideals in a ring is a nilpotent ideal
but that the sum of all nilpotent ideals need not be nilpotent (see Example 3 in [1]).
We now investigate the almost nilpotent analogue of this property.

First of all, by the very example mentioned above, we already know that the sum
of all almost nilpotent ideals need not be almost nilpotent. Furthermore it is easy to
show that the sum of a prime almost nilpotent ideal and a nilpotent ideal ofa ring R
need not be almost nilpotent.

Let for instance

- _
W= 2y-\ (2x,xy+1D) =1 and x,

(cf[1], p. 103), and consider the ring R=W® N, where N is any nilpotent ring.
It is well known that IF is a prmie almost nilpotent ring and that the only nonzero
ideals of W are of type (2)", n=1,2, ..., and W—{2). So obviously R is neither
prime nor nilpotent, so cannot be almost nilpotent.

For our next result let us assume that R is a subdirectly indecomposible ring,
that is a ring in which the intersection of any two nonzero ideals always is nonzero
(cf[3]). Clearly every prime ring is subdirectly indecomposible.

Theorem 2. |f P and Q are two prime almost nilpotent ideals of a subdirectly
indecomposable ring R, then P+ Q is almost nilpotent.

Proof. Let 0"X<iP+Q. Then X”~O for Ajf=0 would imply that P has a
nonzero nilpotent ideal AJ/TIP. Hence 021|M PET M P </ sothat PrczX, rEN.
Analogously Qsd X, sEN, and so (P+Q)r+SQX. The inclusion is strict for if no
power of (P+ Q)r+S is strictly contained in X then all powers of (P+ Q)r+S equals X,

so that Ijk[(P+B)r+T i I_'Ik (P+QY for kwl But (P+Q)PQP so that

n_k [(f"+6)pjm= Uk P™=0 for any kw 1 This obiously implies that T=0,

a contradiction which proves the theorem.
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Corollary. Let P and Q be two either nilpotent or prime almost nilpotent ideals
of a subdirectly indecomposable ring R. Then P+Q is almost nilpotent if and only if
P+ Q iseither anilpotent or aprime ring.

To close our discussion, one last observation. A class M of rings is said to satisfy
the extension property if R/AM and AEM imply RcM.
While we know that nilpotent rings satisfy this property we offer the following.

Theorem 3. I fR isa semiprime ring, R/A a nilpotent ring and A aprime ring which
isa nonzero almost nilpotent ideal 0 fR, then R is aprime almost nilpotent ring.

Proof. R“QA, nEN, so Rnis almost nilpotent. Let then 0"X<tR. Then
0~X "o Rnand since Rnis almost nilpotent we have RntczXnQX, which proves that
R is almost nilpotent.

Remark. One cannot expect R/A and A prime almost nilpotent rings to imply R
prime almost nilpotent. In fact R almost nilpotent implies R/A nilpotent which im-
mediately gives a contradiction.

Example. Consider the ring R—W®N mentioned earlier. Then R/W=N, so
R/W and also W is almost nilpotent but R is not.
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THE INFLUENCE OF nrQUASINORMALITY
OF SOME SUBGROUPS ON THE STRUCTURE
OF A FINITE GROUP

AYESHA SHAALAN (Fayum)

1. Introduction

Throughout this paper, only finite groups are considered and our notation is
standard.

Ito, Buckley, Van der Waall and Asaad have proved the following theorems for
a finite group G.

Theorem (Ito [6]). Suppose that G is of odd order and that every subgroup of G'
ofprime order isnormal in G. Then G' is nilpotent.

Theorem (Buckley [2]). Suppose that G is of odd order and that every subgroup of
G ofprime order is normal in G. Then G is supersolvable.

Theorem (Van der Waall [9]). Suppose that every subgroup of G o fprime order is
normal in G. Then thefollowing two assertions are equivalent:

(1) Gissupersolvable.

(2) G is 2-nilpotent.

Theorem (Asaad [1]). Suppose that every subgroup of G of prime order is
quasinormal in G, and that every cyclic subgroup of G of order 4 is quasinormal in G.
Then G is supersolvable.

The object here is to improve these results.

2. Definitions and assumed results

D efinitions. Subgroups H and K of G permute if (H, K)=HK=KH. A sub-
group of Gis called 7t-quasinormal in G if it permutes with all Sylow subgroups of G.

The group G is said to have an ordered Sylow Tower property, that is to say
there is a series 1= GO< Gx< G2<...<<?,=G ofnormal subgroups of G such that for
each /=1,2, ...,n, GJGi-"to a Sylowpt-subgroup of G wherepx,p2, ...,p,, are
the distinct prime divisors of Gand pl>p2>...>pn.

We now list for an easy reference some known results which are frequently used
later:

(2.2) [7]. A n-quasinormal subgroup ofG is subnormal in G.
(2.2) [7]- 1f HQKQG andH is n-quasinormal in G, then H is n-quasinormal in K.
(2.3) [7]. I1fHis n-quasinormal Hall subgroups of G, then H<tG.

Proof. By (2.1), H is subnormal subgroup of G. Hence H is subnormal Hall
subgroup of G. This implies that A<C,
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(2.4) [4). If A is ap'-group of automorphisms o f the abelian p-group P which acts
trivially on QfP), then A=1

(2.5) [5]. IfH is a normal Hall subgroup ofG, then there exists a subgroup KofG
such that G/H—K.

(2.6) [8, exercise, 7.2.22, p. 159]. IfG/H and G/K are supersolvable, then G/HP\K
is supersolvable.

Proof. G/HDKszG/HxXxG/K.

@78 1f A<6, then @ (9)" ®(C).
(2.8) [5]. Gissupersolvable iff GfP(G) issupersolvable.
(2.9) [4]. If G= (p(G)H for some subgroup H ofG, then G=H.
(2.10) (Burnside Basis Theorem [8]). I f G is afinite p-group, where p is a prime,
\G/<P{G)\ =pn
G<P(G) = (XI<P(G)x2<P@G), ....x,fP(G)),

then G=(xi, X2, ..., X,,).

(2.11) [5]. Suppose that G is a group which is not p-nilpotent but whose proper sub-
groups are all p-nilpotent. Then G is a group which is not nilpotent but whose proper
subgroups are all nilpotent.

Proof. See [5, IV, 5.4, p. 434]

(2.12) [5]. Suppose that G is a group which is not nilpotent but whose proper sub-

groups are all nilpotent. Then
(i) Ghasa normal Sylowp-subgroup Pfor some primep and G/P—Q, where Q

is a non-normal cyclic g-subgroupfor some prime gXp.

(if) P/®(P) is a minimal normal subgroup of C/®(P).

(iii) 1fPis non-abelian andpX2, then the exponent of P isp.

(iv) IfPis non-abelian and p= 2, then the exponent if Pis 4.

(v) IfPisabelian, then Pis ofexponentp.

Proof, (i), (ii), (iii) and (iv): see [5, Ill, 5.2, p. 281].

(V) We argue that QXP)=P. If not, QL(P)Q is a proper subgroup of G.
Clearly, 12(P)Q= Q1(P)XQ. Now applying (2.4), it follows that G=PXQ, a cont-
radiction. Hence QL(P)=P.

(2.13) [8]. | f G is supersolvable, then.

(i) Gpossesses an ordered Sylow tower.

(if) Gisp,,-nilpotent, wherep,, is the smallestprime dividing |G|.

(iii) G has a normal Sylow px-subgroup, where pxis the largest prime dividing |G|.

Proof, (i) See [8, 7.2.19, p. 158].
(i) and (iii) are immediate consequences of (i).

(214) [71. If NQHQG and N is normal in G, then H is n-quasinormal in G ifand
only if H/N is n-quasinormal in G/N.

(2.15) [3]. Suppose that G is a group which is not supersolvable but whose proper
subgroups are all supersolvable. Then

(i) Ghasanormal Sylow p-subgroup Pfor someprimep.
(it) P/®(P) is a minimal normal subgroup of C/®(P).
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@iiiy 1f pX 2, then the exponent of P isp.
(iv) 1f P is non-abelian and p—2, then P is ofexponent 4.
(v) I fPis abelian, then the exponent of P isp.

Proof, (i), (ii), (iii) and (iv): See[3].
(v) If pX 2, then the exponent of P isp by (iii). We may, therefore, assume that

2-

By Hilfssatz C [3 (b), p. 198—199], G is 2-nilpotent or G is a group which is not
nilpotent but all of whose proper subgroups are nilpotent. If G is 2-nilpotent, then
there exists a normal 2/-Hall subgroup K of G such that G=PK and PIMNK=1
Since P<G and KcG, it follows that G=PxK. Therefore, G is supersolvable.
This is impossible as G is not supersolvable. Thus Gis a group which is not nilpotent
but whose proper subgroups are all nilpotent. Then QfP) =P by (2.12, v). Therefore,
the exponent of P is 2.

3. Generalized results

In this section, we prove the following results:

Theorem 3.1. Suppose that H is a normal p-subgroup of G, and that G/H is
supersolvable. Supposefurther that every subgroup ofH oforderp is n-quasinormal in G
and that one o f thefollowing conditions holds:

(i) H is abelian.

(i) pn2.

(iii) p =2, andevery cyclic subgroup ofH oforder 4 is n-quasinormal in G.
Then G is supersolvable.

Proot. Suppose that the theorem is false and let G be a counter-example of
smallest order. Clearly, the hypotheses are inherited by all proper subgroups of G.
Thus G is a group which is not supersolvable but whose proper subgroups are all
supersolvable. Then by (2.15, i), there exists PcG, where Pis a Sylowsubgroup ofG.
By (2.5), there exists a subgroup A of G such that G/P=AT. Clearly, K is supersol-

vable. If (|P|, |A])=1, then by (2.6), G=G/Pn#<iG/PxG/tf. Since G/PXG/H
is supersolvable, it follows that G is supersolvable, a contradiction. Thus HgP.
By (2.15, ii), P/®(P) is a minimal normal subgroup of GfP(P). Now it follows that
either A®(P)= ®(P) or Ad(P)=P. If AP (P)= ®(P), then A"d (P) and so
C/®(P) is supersolvable. By (2.7), ®(P)Q ®(C). Hence 0/®(C) is supersolvable
and so G is supersolvable by (2.8), a contradiction. If Ad(P)=P, then A4=P by
(2.9) ,and so His a Sylowp-subgroup of G.

Suppose first that S is abelian. Let A be a subgroup of A of orderp. Let Q be a
Sylow ~-subgroup of G, where gXp. By hypothesis, AQ is a subgroup of G. By (2.2),
A is 7r-quasinormal in AQ. Hence by (2.3), Ac AO and so QQNGA). Thus
Op(G)QNg(A), where Op(G) is the subgroup of G generated by all /-elements of G.
Since AcH and Op(G)QNc(A), it follows that AcG. By (1.15), iii) and (2.15, v),
d(A)=1 By (1.15, ii), A=H. Since G/H is supersolvable and || = prime, it
follows that G is supersolvable, a contradiction.

Suppose next that His nonabelian. Set \H/®(H)\=pn and A/®(A) = (x1P(H),
x2®(H), ..., x,,®(A)). Then by (2.10), H=(x1x2, ..., X,). By (2.15, iv) and (2.15,
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v), the exponent of H isp or 4. Then |(x;)|=p or4forall /=1, 2, «. We argue
that (xt) are nonnormal subgroups of G for all /=1,2,...,«. If not, there exists
(xj)cG forsome I~ /sa Now it follows from (2.15, ii) that (xj)<P(H)=H and
so (xj)=H. This is impossible as A is nonabelian. Thus (xf) are all nonnormal
subgroups of G forall /=1,2,...,«. Let Qbe a Sylow ~-subgroup of G, where g”p.
By hypothesis, (xt)Q is a subgroup of G. Now it follows from (2.2) and (2.3), that
(x,)<i(xQR and so QC A<;((x-). Thus Op(G)QNg((xi)). Since Ng((x,)<"G, it
follows that Op(G)c:G. Since G/H is supersolvable and G/Op(G) is a p-group, it
follows that G/HC\Op(G) is supersolvable. Clearly, ATIOpG)<zH. Then by
(2.15, i), HN\OP(G)Q(P(H). Thus C/®(4) is supersolvable and so G is supersol-
vable, a final contradiction.

Theorem 3.2. Letp be the smallest prime dividing \G\. Suppose that every subgroup
oforderp is n-quasinormal in G and that one of thefollowing conditions holds:
(i) The Sylow p-subgroups of G are abelian.
(i) P7£2.
(iii) p=2, and every cyclic subgroup of G oforder 4 is n-quasinormal in G.
Then G is p-nilpotent.

Proof. Suppose that the theorem is false and let G be a counter-example of
smallest order. The hypotheses are inherited by all proper subgroups of G. Thus Gis a
group which is not p-nilpotent but whose proper subgroups are all p-nilpotent. Now
(2.11), implies that G is a group which is not nilpotent but whose proper subgroups
are all nilpotent. Then by (2.12), G has a normal Sylow p-subgroup P and G/P=Q,
where Q is a nonnormal cyclic Sylow ~-subgroup of G. We consider the following
three cases:

Case 1. P is abelian. Let I be a subgroup of P of order p. By hypothesis, T is n-
quasinormal in G. Then TQ is a subgroup of G. We argue that T-cG. Ifnot, TQ
is a proper subgroup of G. Then TQ is nilpotent subgroup of G, and so T<iTQ. Also
TcP asPis abelian. Thus PcG, Butby (2.12, iii), Pis a minimal normal subgroup
of G, and so T—P, Since |Aut (P)|=p —, it follows that g/p—21 This is a contra-
diction as gq>p.

Case 2: p?c2 and P is nonabelian. Set |P/®(P)|=p" and P/®(P)=
=<x"(P), ..., X,®(P)>. Then by (2.10), P=(xX X2, ..., X,,). By (2.15, iii), P has
exponent p, so |[(x,)|=p for all /=1,2, ...,«. We argue that (x,) are nonnormal
subgroups of G for all /=1, 2, ...,«. Ifnot, there exists (xf, forsome Is/s«, such
that (xj) is normal subgroup of G. By (2.12, ii), P/®(P) is a minimal normal sub-
group of G/<P(P), and so (xy)®(P)=P. By (2.15, ii), P=(xjH and so |P|=
= I(xj)|. By (2.12, iii), P has exponent p, and so |P|= Kxj)|=p. Since |Aut(P)|=
=p —4, it follows that g/p—I. This is a contradiction as gq>p. Thus (X;) are non-
normal subgroups of G for all /=1,2,..., «. By hypothesis, (x;) are 7r-quasinormal
subgroups of G for all /=1, 2, ..., «. Then (xt)Q are subgroups of G for all /=
=12, ...,.«. In fact (Xi)Q are proper nilpotent subgroups of G, and so (x;)8 =
= (X,-)XQ. Therefore, P fC G(Q) and that is a contradiction as O is nonnormal
Sylow "-subgroup of G.

Case3: p=2 and Pisnonabelian. Set |P/® (P)|=2" and P/®(P)=(xr®(P), ...,
X, @(P)> By (2.10), P=(X], X2, ..., X,,). By (2.15, iv), P has exponent 4, and so
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|(x})|=2 or4forall i=I, 2, n. By hypothesis, (x;) are sa-quasinormal in G, and
so {Xi)Q are subgroups of G for all /=1,2, n. Since Pis nonabelian, it follows
that (XPQ are proper subgroups of G for all /=1,2, n. Then (x;)B are nil-
potent subgroups of G, and so (x-)0=(x)XQ, forall /=1,2,..., n. Now it fol-
lows that P~C g(Q), a contradiction as Q is not normal Sylow ~-subgroup of G.
This proves case 3, and the Theorem.

Theorem 3.3. Set n(G) ={pl,p2 ..., p..}, where px>p2> me>P, m Suppose that
every subgroup of G ofprime order pr, where i—2, 3, ..., n, is n-quasinormal in G.
Supposefurther that one of thefollowing conditions holds:

(0 A,5*2.

(1) pn=2, and the Sylow 2-subgroups of G are abelian.

(iif) pn=2, andevery cyclic subgroup o fG oforder 4 is n-quasinormal in G.

Then G possesses an ordered Sylow tower.

Proof. By Theorem 3.2, G is pn-nilpotent. Then G—PrnK, where P, is a Sylow
pn-subgroup of G, and K is a normal p'-Hall subgroup of G. By induction on |G|,
K possesses an ordered Sylow tower. Therefore, G possesses an ordered Sylow tower.
This completes the proof.

Theorem 3.4. Let H be aproper normal subgroup o fG. Suppose that G/H is super-
solvable and that every subgroup of H ofprime order is n-quasinormal in G. Suppose
further that one ofthefollowing conditions holds:

(i) 2\ \H\.

(ii) 2| IH| and the Sylow 2-subgroups o fare abelian.
(iii) 2| \H\ and every cyclic subgroup ofH oforder 4 is n-quasinormal in G.
Then G is supersolvable.

Proof. If A isagroup of prime power order, then G is supersolvable by Theorem
3.1. Now we consider the case where |A]| is divisible by at least two distinct primes.

By Theorem 3.3, A possesses an ordered Sylow tower- Then by (2.13), P<\H,
where Pis a Sylow p-subgroup of A and p is the largest prime dividing \H\. Since
Pchar H<iG, we have P<G. By (2.14), every subgroup of A/P of of prime order
is 7r-quasinormal in G/P. Also, G/P/H/P s G/H is supersolvable. Now by induction
on |G|, G/P, is supersolvable. Thus by Theorem 3.1, G is supersolvable. This
completes the proof.

Theorem 3.5. Under the assumptions of Theorem 3.3, G possesses an ordered
Sylow tower and G/fj is supersolvable, where Plisa Sylow p1-subgroup of G, andp, is
the largest prime dividing |G|.

Proof. By Theorem 3.3, G possessses an ordered Sylow tower. Then by (2.13,
iii), Pi-=aG, where Pxis a Sylow px-subgroup of G, and pxis the largest prime dividing
|G]. By (2.5), G=PXK, where 4 is a pi-Hall subgroup of G. By Theorem 3.3, K pos-
sesses an ordered Sylow tower. Then by (1.13, ii), K=QL, where Q is a Sylow g
subgroup of K, g is the smallest prime dividing |A|, and L is a normal ~r'-Hall sub-
group of K. Clearly, K/L—Q. It follows now from Theorem 3.4, that K is supersol-
vable. Therefore, G/P"K is supersolvable. This completes the proof.

As an immediate consequence of Theorem 3.1 and 3.5, we have:
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Coroltary 3.6. | fGisafinite group ofodd order and all subgroups of G ofprime
order are n-quasinormal in G, then G is supersolvable.

Corottary 3.7 (Asaad [1]). Suppose that every subgroup of prime order is
quasinormal in G, and that every cyclic subgroup o forder 4, is quasinormal in G. Then
G is supersolvable.

Corollary 3.8. Letp,, be the smallest prime dividing |G|. Suppose that every sub-
group of G ofprime order is n-quasinormal in G, then thefollowing two conditions are
equivalent:

(D) G is supersolvable.

(i) G isp,,-nilpotent.

Proot. (I)->-(2). Suppose that G is supersolvable. Then by (2.13, i), G possesses an
ordered Sylow tower, and by (2.13, ii), G ispn-nilpotent.

(2 —1). Let G=P,,K, where B, is a Sylowpn-subgroup of G, p,, is the smallest
prime dividing |G|, and K is a normal /r'-Hall subgroup of G. Clearly, G/K=P,,.
Now applying Theorem 3.4, it follows that G is supersolvable.

Corollary 3.9. Suppose that G' QH, where G' is the commutator subgroup ofG
and H is asubgroup of G, and that every subgroup ofH ofprime order is n-quasinormal
in G. Supposefurther that one o f thefollowing conditions holds:

M 2[|A].

(i) 2] \H\ and the Sylow 2-subgroups of H are abelian.
(iii) 2| 1# land every cyclic subgroup ofH oforder 4, is n-quasinormal in G,
Then G is supersolvable.

Proof. If H=G, then G is supersolvable by Theorems 3.5 and 3.1. Now we
consider the case where HaG. Clearly, G/H is abelian. Applying Theorem 3.4, it
follows that G is supersolvable.

As an immediate consequence of Corollary 3.8, we have:

Ito’s Theorem [5, 177, 5.3 (b), p. 282; see also 6]. Suppose that G is a group of
odd order and that every subgroup o f G' ofprime order is normalin G. Then G' is nil-
potent.

Theorem 3.10. Suppose that p =q for everyprime q dividing |G|, Op(G)=1, and
every subgroup ofprime order gy”p is n-quasinormal in G. Supposefurther that one of
the following conditions holds:

(i) 2f|G].
(ii) 2| |G| and the Sylow 2-subgroups ofG are abelian.
(iii) 2| |G| and every cyclic subgroup of G oforder 4 is n-quasinormal in G.

Then G is supersolvable p'-group.

Proof. We argue that Gis a//-group. Ifnot,/? dividing |G|. Now Theorem 3.3,
implies that G possesses an ordered Sylow tower, and so PcG, where Pis a Sylow
,p-subgroup of G and p is the largest prime dividing |G|. Since Op{G)~ 1, we have
P= 1 Thus Gisa//-group. Theorem 3.5, implies that G/Plis supersolvable, where [
is a Sylow [ -subgroup of Gandp lis the largest prime dividing |G|. Thus by Theo-
rem 3.1, Gis supersolvable. This completes the proof.

Acta Mathematica Hungarica 56, 1990



THE INFLUENCE OF vQUASINORMALITY 293

Acknowledgements. The author expresses her deep sense of gratitude to Dr. M.
Asaad, Professor of Algebra, Math. Dept., Faculty of Sciences, Cairo University, for
his work in reviewing the paper and for a number of valuable suggestions and com-
ments.

References

[1] M. Asaad, On the solvability of finite groups, Arch. Math., 51 (1988), 289—293.

[2] J. Buckley, Finite groups whose minimal subgroups are normal, Math. Z., 116 (1970), 15—17.

[3] K. Doerk, Minimal nicht uberaufl osabre, endliche Gruppen, Math. Z., 91 (1966), 198—205.

[4] D. Gorenstein, Finite groups, Harper — Row (New York, 1968).

[5] B. Huppert, Endliche Gruppen 1, Springer (Berlin, 1967).

[6] N. Ito, Uber eine Zur Frattini—Gruppe duale Bildung, Nagoya Math. J., 9 (1955), 123—127.

[7]1 O. Kegel, Sylow— Gruppen Und Subnormalteiler endlicher Gruppen, Math, Z., 78 (1962), 205—
221.

[8] W. R. Scott, Group theory, Prentice — Hall (Englewood Cliffs, N. J., 1964).
[9] R. W. Van der Waall, On minimal subgroups which are normal, J. Reine Angew Math., 285 (1976),
77—78.

(Received March 20, 1987)

DEPARTMENT OF MATHEMATICS
FACULTY OF EDUCATION
CAIRO UNIVERSITY

FAYUM, EGYPT

Acta Mathematica Hungarica 56,1990






Acta Math. Hung.
56 (3—4) (1990), 295—297.

REPRESENTING COMPLETELY BOUNDED
MULTILINEAR OPERATORS

K. YLINEN (Turku)

In an important recent article [1] Christensen and Sinclair introduced the notion
of a completely bounded multilinear operator @: Ak-*L(H), where A is a C*-
algebra and L(H) the space of bounded linear operators on a Hilbert space H. They
showed that ®is completely bounded if, and only if, ®is representable in the sense

that there are Hilbert spaces *representations G : A-*L(11j) for j—
=1 and bounded linear operators Vj: Hj+i-*Hj (notation: VJjEL(Hj+1, Hjj)
fory = 0 , k, where HO=Hk+1=H, suchthat

(1) ®(ny, ..., ak —\061(a)V162@Vv2...6k(ak)vk

for all ak, ..., akEA. Moreover, the so-called completely bounded norm ||®||db equals
the representation norm ||®||rg defined as the infinum of ||U[ «lIKII—IIUI over all
representations of @ in the form (1) (see [1, Theorem 5.2]).

This note contains an elementary proof of the fact, arrived at in [3] via a different
route, that a representable @ always has also a representation of a simpler type, na-
mely,

2

where all the *-representations 0- act on the same Hilbert space K, and
WEL (K, H), \KEL(H, K). Moreover, if in (1) the operators \0, ..., \k are so nor-

malized (by multiplying by suitable constants) that lloll=1 for j=1, ..., k—1, then
we may take |)V||= |9 and WK\ =11 in (2). This shows that | dLkep equals the
infimum of Il «11I'll over the representations of ®in the form (2).

The following lemma is the key ingredient of the proof.

Lemma. Let Hj for j=0,1,2, 3 be Hilbert spaces and Vj€EL(HJ+1, Hj) for
j=0,\,2,with 1*jI*l. Let Ajfor i=0,...,n be C*-algebras, and let 00:A0—

-*L(HK and bi'. Ai-*L(H2 for i=1,...,n be *representations. Then there exist
a Hilbert space K, bounded linear operators \0 : K-»HO, \2 :H3-*K, and *-repre-
sentations Qi : Ai~+L(K) for i=0,..,n such that Il =[loll> WWE 1> ond
for all afAi, i=0,...,n.

Proof. Denote A=9A1pHA2 for short and define VfL(H) by the formula
i)=(L 2>0)- Borrowing a trick from the proof of [2, Theorem 2.4] (see

also [7, p. 638]) we note that since |[i*||s], Whas a unitary dilation, i.e.there is a
Hilbert space KzrH such that for some unitary operator U: KA-K VI=PHU\H
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where PHis the orthogonal projection of K onto A (see [6, Problem 177] or [5]). Write
K=H1QH2(QHa. Define V{:A3-A by the formula KX(£)=(0, F£, 0), write
0i(a;)=0®0j(a;)©0 for /= 0Q@a,,) = UX(),{(a0 ®0®0)T, and finally denote
V0 =VOPHIU: KAH 0. Then

\6'o(ade'l(al)...0'n(a,,)V2S =
= [Mo7a19A*(00(ag®O®O)/HIA(O® _/_/ 0,(B,)®0)](0, F2£, 0) =

= Wea(aQPHIU(O, (ff et(@))V", 0) = VB (ag) P ., (11 =

=rMmaoll neBm>X #u
for all O

We formulate the main result in slightly greater generality than the situation
described at the beginning would require.

Theorem. Let HO, HIt Hk+1 be Hilbertspaces and Alt ..., Ak C*-algebras.
Suppose that VjEL(Hj+1, Hj) for j=0,....,k and [|fjl|s] for j=\, —1
Let Q:Aj-*L(Hj) be *representationsfor /=1, ..., k. Then there exist a Hilbert
space K, two operators MIL (K, HOQ and KEL(Hk+1,K) with \WA\=||fj|| for
y'=0, k, andfor each j=1,...,k a *representation 0j : Aj-*L(K) suchthat

©®) WO M VM ajr, ... Ok{avk= V '{j)
i
forall afAii= 1 ... k. ’

Proof. The proofis by induction on k. The claimis trivial for k=\. Suppose the
theorem is true for k—21 Then the left-hand side of (3) equals MiOx(al)V1/02(a2...
...6k(@kWK', where for some Hilbert space K\ \KfL{K"', HK, WW=||F||(=1),
WEL(HK, K, WK\ = ||FJ, and Oy: Aj-*L(K") is a "-representation for each j —
=2, k. Applying the Lemma we see that this has the type of form indicated by the
right-hand side. O

Remark, () After completing the above arguments the author found out from
E. G. Effros that [2] also contains an inductive dilation proof which shows that in the
Christensen—Sinclair representation the '-representations G can be replaced by ones
acting on the same Hilbert space, and the bridging maps Vf, j= 1, ..., kK—L can be
removed. Our proof is more elementary in the sense that it does not depend on the
existence of the square root of a positive operator. Indeed, in [9, Proposition 3.1]
a square root free proof of the type of dilation theorem we used above is given.

(b) Paulsen and Smith [8] have proved a representation theorem for completely
contractive multilinear operators on the product of subspaces of C'-algebras, ana-
logous to (1) with [|Pj||*l for /=1, ..., f—1, Kkan isometry, and \Othe adjoint of
an isometry in L(HO, Hf) [8, Theorem 3.2]. The above proofs (and the argument in
[2] referred to above) show that there (and in [8, Theorem 2.9 and Corollary 2.10])
the appropriate bridging maps can also be removed.
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A DECOMPOSITION OF CONTINUITY

M. GANSTER (Graz) and I. L. REILLY (Davis)

In 1922 Blumberg [1] introduced the notion of a real valued function on Euclidean
space being densely approached at a point in its domain. Continuous functions satisfy
this condition at each point of their domains. This concept was generalized by Ptak
[7] in 1958 who used the term nearly continuous, and by Husain [3] in 1966 under the
name of almost continu ty. More recently, Mashhour et al. [5] have called this pro-
perty of functions between arbitrary topological spaces precontinuity.

In this paper we define a new property of functions between topological spaces
which is the dual of Blumberg’s original notion, in the sense that together they are
equivalent to continuity. Thus we provide a new decomposition of continuity in
Theorem 4 (iv) which is of some historical interest.

In a recent paper [10], Tong introduced the notion of an si-set in a topological
space and the concept of A/-continuity of functions between topological spaces. This
enabled him to produce a new decomposition of continuity. In this paper we improve
Tong’s decomposition result and provide a decomposition of si -continuity.

Let S be a subset of a topological space (X, ST). We denote the closure of S and
the interior of S with respect to 9~ by STcl Sand 2Iint S respectively, often suppress-
ing the IT when there is no possibility of confusion.

D efinition 1. A subset S of (X, &~)is called
(i) an a-set if S(Z&~int [STcl {STintS)),
(ii) a semiopen set if SaST cl {STint S),
(iii) a preopen set if ScST int{TclS),
(iv) an si-setif S=UP\F where Uis open and F is regular closed,
(v) locally closed if S= C/MF where Uis open and Fis closed.

Recall that S'is regular closed in (X, IX) if S=3F cl (2 int S). We shall denote
the collections of regular closed, locally closed, preopen and semiopen subsets of
(X, 3N by RC(X, 3r), LC (X, ST), PO (X, 3N and SO (X, ST) respectively. The
collection of ,c/-sets in (X, ST) will be denoted si(X, FT). Following the notation of
Njastad [6],  will denote the collection of all a-sets in (X, 9~).

The notions in Definition 1were introduced by Njastad [6], Levine [4], Mashhour
etal. [5], Tong [10] and Bourbaki [2] respectively. Stone [9] used the term FG for a lo-
cally closed subset. We note that a subset S of (X, ST) is locally closed iff S= C/flcl S
for some open set U ([2], I. 3.3, Proposition 5).

Corresponding to the five concepts of generalized open set in Definition 1, we
have five variations of continuity.

D efinition 2. A function f: X-*Y is called a-continuous (semicontinuous, pre-
continuous, "/-continuous, LC-continuous respectively) if the inverse image under/

8



300 M. OANSTER and I. L. REILLY

ofeach open setin Y is an a-set (semiopen, preopen, si-set, locally closed respectively)
in X.

Njastad [6] introduced a-continuity, Levine [4] semicontinuity and Tong [10]
~-continuity, while LC-continuity seems to be a new notion. It is clear that si-
continuity implies LC-continuity. We now provide an example to distinguish these
concepts.

Example L Let (X, ¥Y) bethe set N ofpositive integers with the cofinite topology.
Define the function f: X->-X by/(1)=1 and /(x)=2 for all xAL Then V=
—X —{2}isopenand f ~XV)={\) which is (locally) closed but not an si-set. Note
that the only regular closed subsets of (X, ST) are 0 and X. For any subset V of X,
f~\V) is {1}, X—{1}, O or X, and these are all locally closed subsets of X. Hencel/is
LC-continuous but not ~/-continuous.

Our first two results improve Theorems 3.1 and 3.2 of Tong [10].

Theorem L Let S be a subset ofa topological space (X, ST). Then S is an si-set
ifandonlyifS issemiopen and locally closed.

Proof. Let S"s4(X,ST), so S=Uf]F where UET and FERC(X,2T).
Clearly S is locally closed. Now int S= Cflint F, so that S=t/fcl (intF)c
cel (C/flint F)=cl (int S), and hence S is semiopen.

Conversely, let S be semiopen and locally closed, so that Sc cl(intS) and
S= C/flcl S where Uis open. Then cl S=cl (int S) and so is regular closed. Hence S
is an jZ-set.

Theorem 2. For a subset S ofa topological space (X, ST) the following are equi-
valent.

(1) S isopen.

(2) Sisan a-set and locally closed.

(3) S ispreopen and locally closed.

Proof. (1) implies (2) and (2) implies (3) are obvious. (3) implies (1): Let S be
preopen and locally closed, so that Scint(clS) and S=t/ITclS. Then ScUf]
flint (cl S)=int (t/flcl S)=int S, hence S is open.

Theorem 3. For a topological space (X, ,T) thefollowing are equivalent.
(1) s4(X,3T)=3T.

(2) s4(X, ST) is a topology on X.

(3) The intersection ofany two si-sets in X is an s i -set.

(4) SO(X, £F) is a topology on X.

(4) (X, S") is extremally disconnected.

Proof. (1) implies (2) and (2) implies (3) are clear.

(3 implies (4): Let Sx, S.fSO(X, 3F). We wish to show S,nS/SO (X, 3~)
Suppose there is a point xfSiHSg such that x$cl (int (Sj*flSa)). So there is an
open neighbourhood U of xsuch that C/Mint Sifl int S2=0. Thus C/flcl SUTintS2=0,
and hence we have UC\int (cl SXYMcl S2=0. Therefore UMint (cl S, Mcl S2=0, so
that x$cl (int (cl StMcl S2). But, on the other hand we have cl Sx, ¢l S f RC (X, 3~),
so that clISj, cl Sfsi(X, £T)czSO (X, .X). Then xfcl Siflcl S2 implies
xfcl (int (cl SiDcl S2), which is a contradiction. Thus no such point x exists, and so

SinS<=S0(X,.Z). "
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(4) implies (5) is due to Njastad [6].

(5) implies (1): IfMis an jaf-setthen A = UC\F where UCFT and FERC(X, ST).
Since (X, FT}is extremally disconnected FAFT. Hence A"FT.

Theorem 1and 2 show that in any topological space (X, FT) we have the follow-
ing fundamental relationships between the classes of subsets of X which we are con-
sidering, namely

(1) sd{X, FT)=SO(X, FT)<fLC(X, FT).
(if) ST=FT*flLC (X, FT).

(iii) FT= PO(X, 5T)(N1bC(X,3I).

(i) and (iii) immediately imply.

(iv) FT=PO{X,FT)F)sd(X,FT).

(V) 2=PO(X, FT)C\SO(X, FT) is due to Reilly and Vamanamurthy [8].

These relationships provide immediate proofs for the following decompositions.
We note that (ii) of Theorem 4 is an improvement of Tong’s decomposition of con-
tinuity [10, Theorem 4.1], and that (iii) of Theorem 4 is due to Reilly and Vamana-
murthy [8]. Theorem 4 (i), (iv) and (v) seem to be new results and provide new decom-
positions of continuity.

Theorem 4. Let f: X-+Y be afunction. Then

(i) f is sd-continuous if and only i ff is semicontinuous and LC-continuous.
(i) f is continuous ifand only iffis azcontinuous and LC-continuous.
(i) f is axcontinuous ifand only i ff is precontinuous and semicontinuous.
(iv) f is continuous if and only i ff isprecontinuous and LC-continuous.
(v) fis continuous ifand only iffis precontinuous and sd-continuous.
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A GENERAL SADDLE POINT THEOREM
AND ITS APPLICATIONS

Z. SEBESTYEN (Budapest)

Let X and Y be nonempty sets,/and g be real-valued functions on the Cartesian
product X XY ofthese sets. A point (x,y) in XX Y is said to be a saddle point of the
functions/, g if

(SP) g(u,y) *(x,v) for every (u,v) in XxY

holds true. For asingle function/ the well-known notion of saddle point follows here
by letting g=f in (SP). It should also be noted that the existence of a saddle point
implies the following minimax inequality

(MMI) infsupg(x,y)é sup mf/(x y).

yiYxeX

In the case when f=g, especially when g equals/, the latter property is known as the
statement of the two variable generalized version of the celebrated von Neumann’s
minimax theorem, namely

(MME) infsupg(x, y) = sup mff(x y).
yiyxtX

Our aim is to prove a general but rather elementary theorem first on the existence
of saddle points (Theorem 1), secondly, as a consequence, on the existence of mini-
max inequality and equality respectively — giving necessary and sufficient conditions
for them. Our condition is general enough and not only of convexity type. The results
so obtained are a common generalization of our previous ones and many other known
theorems of concave-convex type. Our approach is essentially the same as our earlier
one. We use the finite dimensional separation argument for disjoint convex sets in
a similar but essentially simpler way as in [1, Theorem 2.5.1] and Riesz’s well-known
theorem concerning a common point of compact sets with finite intersection property.
The compactness here follows by Alexander’s subbase theorem [6].

Concerning minimax type inequalities see S. Simmons [10], J. Kindler [5] and
Z. Sebestyen [8, 9]. Minimax theorems are e.g. in Belakrishnan [1], Z. Sebestyen
[7,8,9], I. Jo6 [3 and I. Jo6—L. L. Stacho [4].

Let now/, g be two real-valued functions defined on the Cartesian product X xY
of two nonempty sets X, Y. As a notation, for a nonemty set KtzXxY, for a point
(", v)in XxY and for a positive real number c let

kuv = {(X, >>)€E: 0=/(x,v)-g(u,y)+c}.

This is why for a point (x,y) in XxY to be a saddle point is nothing else but each
,.being nonempty for the one point set K={(x, y)}.
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Theorem 1. Letf,g be real-valued functions on XxY. There exists a saddle
pointforf, g ifand only if there exists a nonempty set KdY XY such that:

@ min. 2 Kx,y)[H{x,v)-g(u,y)]* sup min [f(x,v)-g(u, )]

(u, V)EG (x,y)EF JY)EK (M, V)EG

for allfinite sets Fd K, GdXxY and a probablllty measure X on F;
@ 0s= inf o osup [ V)-guw)] = sup 2 H(UWITO)-g(uy)]

(x,Y)ek (x,y)ek (u,v>ea
for everyfiniteset Gd X XY and aprobability measure ponG;

(3)if DA(0, +°°)X AXY has the property that for any (x,y) in K there exists
(c, u, v) in D with f(x, v)—g(u, )+ c<0, then afinite subset of D exists with the
same property.

Proof. Assume first that a point (x,y) in XxY is a saddle point for the func-
tions/, gon XxY. The one point subset K={(x, y)} of XxY clearly satisfies con-
ditions (1), (2) and (3)

To prove the sufficiently let K be as in the assumption. Let further UNV=K\K " ,
bo the complements in K of the subsets K” vintroduced before.

Topologize K by taking {{/,%: (c, u, i>X(0, +=°)xTx Y} as a family of open
subbase for this topology. Condition (3) says that if K is covered by a subfamily
{£/£,;: (c,u, v)dD} then K is also covered by a finite subcollection of the family
indexed by D. By Alexander’s well-known subbase lemma K is thus compact in the
topology so introduced. But the subsets KU,,,of K are thus closed hence compact with
respect to this topology on K. Now a point (x, y) in X XY satisfies (SP) ifand only if

0 =f(x, v)—g(u, y)+c holds for all (c,u, v)E(0, +°°)xXxY,

in other words (x, y) belongs to each of K, v. To prove that a saddle point exists is
therefore nothing else but to prove that the sets KLlvhave a common point. But the
compactness of  Js allows us, refering to Riesz, to prove the finite intersection
property of the family KuUyv. Let O<c;, (/;,,vAXxY for i=1,2,...,n have a
finite family of subsets K,tv. in K indexed by r=1,2, ...,n. Since with c=
={minCi:ls/sn}

KuMd KEM for /=1,2,..,7

_In:IlK will imply the desired nonvoid intersection property for the chosen
finite family {K%atvt: i=1,2,...n}. Assume the contrary: I'I KU}V 0. Then we

conclude that for any (x, y) in K there exists a natural number / \didn such that

(x, y)iKa'Q, ie f(x, vD-giiii, y) + c<O0.
This implies the following property:

4 1r:n_in [f{x, VA-giui, y)] < — forany (x,y) in K
Let now dcbe the /A"-valued function on K defined as follows:
ax(x, y) == (f(x,v)-g(uly)+c, ....f(x,v,,)-g(uly) +c).
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We have thus that ®QXX, Y), the range of <G does not meet
R+:= {t = (h, OCR": Os tt for / = 1,2,

the positive cone in R". But we state more that this, namely that the convex hull of
@®QX, Y) also does not meet but the interior of R'V. Otherwise there would be a finite
set FczXxY, probability measure Xon F such that

0 <2 Y[f(x, Vi)-g(Ui, y)+c] for /=12, n.

(x,y)€F

But then, in view of (1) and (4), we have
-c< min 2 *x’y)If(x,vj-giui,y)S sup min [f(x,v"-g(ut,y)] S-c,

1r “Wn (x,y)EF (x.joex1-1-"
a contradiction. The separation argument thus applies: there exists a nonzero vector
g=(g1, ...,p,,)ERn separating the mentioned two convex sets in R”. This can be
expressed by the following property

2  Fi[f(x,v)-g(ui,y)+c] r8 2 Fitt for (x,y) in KOS tf, /=1,2, n.
i=1 i=1

As an easy consequence we have for i=1,2 , \We can thus assume
2 hi~2> i.c. that Llis a probability measure on the finite set G={(uh vf. i—
= 1 2, But (2) thus gives us the following contradiction

0
Os= inf sup [f(x,v)-g(u,y)]tB sup 21"i[{f(x,v"—g{Ui, y)] S-c.

(u,v)ZXXY (x,y)IK
The proof of the theorem is now complete.

Coroltary L Let X, Y be convex subsets of real linear spaces, and let f, g be
real-valuedfunctions on X xY suchthat (5)f (—g) is concave in itsfirst (second),
and convex in its second (first) variable.

Then there exists a saddlepointin XxY for f g ifandonly if there exists a non-
empty subset K in X x Yt with (3) and such that

(6) 0s sup [f{x,v)—g(u,y)] for every (u,vfiXxY.

(x,y)ek

Proof. FOr concave-convex functions /, —g, as (5) assumes, we have for every
finite sets F, GczXxY and probability measures 2, p on them, respectively, such
that

2 Hxy)[f(x,v)-g(u,y)Irsf( 2 Mx,y)x,v)-g(u, 2 4x,y)y),

fcj)EF (x,y)€F (x,y)EK

f(x, 2 Ifu,v)v)-g( 2 p(u,v)uy)-~ 2 h@>v)[f(x,v)-g(u,v)].

(u,v)£G (u,y)6G (mv)6G

Properties (1), (2) are easy consequences of these and (6). Therefore Theorem 1
applies.
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Remark 1. A known result is a consequence of Corollary 1in the case when X, Y
are compact convex subsets of real topological linear spaces and f=g is continuous
(or at least f(x, v)—g(u, y) is upper semicontinuous in (x, y) for every (u, v)j con-
cave-convex real-valued function on XxY.

Theorem 2. Let g, f be real-valuedfunctions on the Cartesian product X xY of
the nonempty sets X, Y. The minimax inequality (MMI) holds trueforf g ifand only
iffor each positive real number e there exists a nonempty subset Kl of X xY such that
conditions (1), (2), (3) ofTheoerm 1hold true with Kc, f+e instead ofK andf, respec-
tively.

Proof. The minimax inequality (MMI1) clearly holds if and only if for any e>0
the following inequality is satisfied

infsup~(x, y) < sup inf(f(x,y)+e).
yrYXi X Xtxyt*
Equivalently, when there exists ycin Y such that

supg(x, yg < sup inf(/(x, y)+e),
Xex xexyt*

then there exists  in X such that
supg(x, yp < inf(/(x,, y)+s).
Xex yEY

But this is (SP) for f+e, g with (xe,ye in XxY indeed. Theorem 1is therefore
applies.
As a further consequence we have [3, Theorem] in an improved form instead of
its minimax formulation in [3]:
Corollary la. Letfbe areal-valuedfunctionon X xY such that infsupf (u, y)£
yAYuiX

£R. There exists X0EX such that
7 infsupf(u, y) si/(x,,,v) for every VvEY
YiYXx€EX

holds if and only if there exists a nonempty set XOczX such that thefollowing proper-
ties hold:

(8) min 2 kjf(xj, vt) ~ sup min/(x, vt)
e ] xex0 1

for anyfinite sets (xj, VJ)EXOXY and esQ £ X=\\
J
9 inf sup f{x, v) sup 2 hif(x, Vi)
XEX0 i

ver x£X0

for any finite sets vfi Y and Pi=0, 2I lzf= 1;
(10) if Cc(0, -foo)xA has the property thatfor any x(- X0 there exists (c, V) in C
with
f(x,v)+c < inf supf(u,y)
then afinite subset ofC exists with the same property.
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Proof. The validity of the conditions (8), (9), (10) for the one point set X0= {x0}
where X0 satisfies (7), is evident. Thus the necessity part of the theorem is clear.To
prove the sufficiency let g be the constant

g-= inf l‘j,tuxrg)/(m, y)

as a function on X XY to apply Theorem 1 with XO0X {yQ}as K in the hope that
(x0, y0 is saddle point forf, g with any yQEY, as (7) requires. With this K,f and g
conditions (1)—3) reduce clearly to conditions (8)—(10), respectively. Theorem 1
hence applies, thus the proofis complete.
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ON A PROBLEM OF R. POSCHEL
ON LOCALLY INVERTIBLE MONOIDS

. SZALKALI (Veszprém)

To the memory of my Parents

0. Introduction and statement of results

Automorphisms of algebraic structures have been widely investigated. In con-
nection with the characterzation of properties of endomorphism monoids, in [FI] it
was formulated a problem which we are going to investigate with a set-theoretic
approach.

Before formulating the set theoretic version of the problem we need a few defini-
tions :

D efinition 0.0 (i) For sets A and B denote by BA the set of functions mapping
from B to A and the set of permutations on A by SA.

(ii) o and 1denote the operations of composition and restriction respectively.
(That is for/,gEAA, DczA and bEA {fog)(b)=f{g{b)),ADfDA and for every
dED (/\D)(d)=f(d).] Letfurther "D = Range (f\D) for fd BA and D a Range (/)

(iii) a monoid M aAA is called locally invertible iff for every /EM and finite
subset D of A there isa g"M suchthat (gof)\D ="a

(iv) for FcAl let Loc (F)={f£AA\ \/DczA,D finite, 3g£F f\D-g\D } the
local closure of F.

Then the problem is whether the following statement is true:

P(A)="MczLoc (SMTLoc (M)) holds for every locally invertible monoid
MczAA.”

We denote the negation of B(A) by ~]P(A).

Remarks, (a) R. Pdschel raised the problem in Szeged, 1983 (see [C, p. 653]).
The problem first appeared in [P3], the original problem is whether “a clone of rela-
tions closed with respect to complementation” is an equivalent definition of Krasner
clones of 2rd kind. (For more algebraic background and intuition see [PI, p. 161] or

P2].
[ ]zb) Stone’s definition in [St, p. 41] is, in fact, equivalent to (iii).

The validity of P(A) depends on the cardinality of A. It is easy to see that for
cardinal numbers Ac* P(x) implies P(A). (If Ais finite then P(A) is trivially true.)
The affirmative answer for countable A was first given by J. Koliar (see eg. [Pf, p. 164])
and the reader can make up a proof himselfalso for this case.

Our results are the following (for the definitions of CH or MA see [K]):

Theorem 2.1. CH implies 3 F(2S).

Theorem 3.1. (a) MA (Martin’s axiom) implies 1 P(2N).
(b) MA (A implies P(A)for A< 2Nfor countable monoids M.

Theorem 3.2. 2s0=2si= Sa+ MMA+ 1? (2s0) is relative consistent with ZFC.
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Theorem 3.4. 2JEA+ implies HP(2l) for any cardinal X

(The same argument shows P(%) for any K if 2x*x for every A<x.

It remains open whether “1P2**) follows from ZFC or P(2*0) is consistent. Furt-
her, very little is known about P(X) for X)<A<2N

Though Theorem 3.4 generalises all the other theorems, we prove it at the end
because of the following reason. Theorem 3.1 (b) shows that the cardinality of the
monoid plays an important role and in the proof of Theorem 3.4 we construct a mo-
noid of size Awhile the other proofs (using slightly different arguments) give coun-
table monoids. Theorem 3.1.b shows that countable counterexamples can not be
given in ZFC alone.

In Section 1we prove Lemma 1.2 which is the key to our results. In Section 2 we
prove our main result: Theorem 2.1. Using the same ideas (but forcing techniques)
we prove generalizations of this theorem (Theorems 3.1, 3.2 and 3.4). The author
thanks R. Pdschel, P. Komjath and P. Profile for helpful discussions.

1. The Lemma

In this Section we prove a lemma which is the starting point of our proofs and
introduce some useful definitions which throw some light to the behaviour of our
monoids.

We start with the notations and definitions we need. oXis the set {0, 1,2, ..}
andk-=ct)0 means kg£co0 and i<k means i£{0, 1, ..., k—1} for kda)o0.

Definition 1.0. () M aAA is afree monoid iff it has no nontrivial o-equations.
(That is for every/ r,/2,/3,/46M if/io/2=/30/4 then thereare gfM (/=1,2, ..., n
for some n<cuQ) such that fl=glo...ogk, f2=gk+lo...ogp and f3=gio...oqg,,
A=gi+i°---°gn for some K, /<u.)

(ii) For a one-to-one function fffA we denote by / -1 the partial inverse of
/. Dom (f~)=Range (/) and f~ Xa)=b ifff(b)=a for aEDom (/-1).

(iii) For a set FAAA we denote by (F, o) ((F, o, —1)) the set of functions
generated from F with the help of operation o, the composition (with the help of o
and —1, the partial inverse, resp.). (To be more precise, g€(F, o) and hdf,F, o, —1)
iff there are k£a>0, f, ...,fkEF and el5 ..., e*6{+ 1, —1} such that g=fo...ofk
and h=ff o.ff where we write/+l for/ andf~ 1for the partial inverse of /.)
(Sometimes we write/° for id.)

(iv) A monoid M<”™AA is finitely generated iff there is FczM finite such that
M=(F, o).

In the next section we extend the elements of the monoid M a AA (constructed
in this section) to NczBB, Bz>A M ={f\A: f€N}. In the meantime we want to
“kill” (every) permutation xE£Loc(M)M™—{id"}, that is nAg\A for all

Loc (A)MS,j. To achieve this, while extending the elements of M to B, we have to
extend their local inverses in such a way that the partially killed n will not rise again.
This is ensured by requiring the existence of local inverses for all f*M with good
properties (and Lemma 1.2 (iv); for further details see the sets E; and Lemma 2.2).
These good properties are declared in the following definition. (Any of the finite sets
may be empty.)
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D efinition 11 (weaker version). A set of functions FczAA (A is an arbitrary
set) is calledfairly complete iff:

FOR EVERYfEF,Dc.A finite, v<co, DntzA finite and one-to-one function gm
mapping from £mto A, gmid\Dm and / ¢ F finite such that (p\Dm*g m for all
PEEFM, 0o, —1) and m~V, THERE ARE infinitely many such that tof\D =
=idfe> and for every m<v and every o, —1) we have inDm*gm
for m<v.

Roughly speaking tis a local inverse for / \D and moreover makes no forbidden
functions in (jifmU{t}, o, —I) with respect to gmsimultaneously for m<v.

(In the construction of the next section, one of the g's is will be the permutation
Tto be killed, see also Lemma 2.2.)

Observe that if F is fairly complete then it is locally invertible. Further if Fis
locally invertible (fairly complete) then so is (F, 0) too.

However, in proving Theorem 2.1 (see Case 3 in Claim 2.3) we need a stronger
property:

D efinition 11 (stronger version). A set of functions F<zAA (A is an arbitrary
set) is caled stronglyfairly complete iff:

FOR EVERY /EF, DczA finite, v<co0, DnczA finite and one-to-one function
gm, mapping from Dm to A, gm?+id\Dmand 2rrczF finite for m<v, THERE ARE
infinitely many tE£F such that tof\D—d\D and for every m<w and every
i>E(MmU{/}, o, —1) IAD=gm implies DcDom (f) and §/\Dm=\IADm where
t// results if we replace i_1by (f\D)~x (and i-1 by f\D) in i/ everywhere.

We need this stronger version because in the main construction (see the proof
of Claim 2.3) we can not ensure that iIADm*gm for all £0OKT, o, —1) but for
o' only if i/dis defined as above.

In what follows we always use the stronger version of Definition 1.1.

The following lemma is the key to our results:

Lemma 1.2. There exists a countable monoid M aAA on a countable set A
with thefollowing properties:

(i) M is not finitely generated and has independent o — generators F={[:

(ii) F is stronglyfairly complete,
(iii) Loc «{/;: I</}, o, -I»nS~g{id A for every j<coO.

Remarks M is free by (i) and locally invertible by (ii). We will use (iii) in the
next section to construct some sets for j<co0. Using their properties and the
fairly completeness of M we will be able to kill aT Loc (M) MSA.

Proof. We will construct an increasing sequence of countable sets (A,,: n<co0),
Anc:Ant+l for n<od and we will take A=U{A,,: n<co(}. In order to construct
M, in each step n~co0 we will build monoids M,,+1c A+ (An+l) by extending
the elements of Mn to Antl and adding some (countable many) elements from
Art(Ant+l). More precisely we construct the free o—generators of Mn+1. Finally
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every element of Mnwill be extended to A for every and at the end we will
take the set of generators of M to be the set of these extended functions.
(In terms of formulas, the set of generators of M is F={t/; i, j<coGczAA

which we intend to define, ij/it,, “appears first” when constructing M,, (see below
for definition). In step n<wO0 we will define the elements of the set Fn={\j/itjf\An:
i< 90, jAn}dMAA,) only. This is the set of the generators of MnczA«(A,,). Since
in the nhstep we have not constructed ¢} but pitI\Anonly, we write ¢\] instead
of IISi'j\A,, and define after the construction = UPAY): n=7}. For convenience
we enumerate Fhas (<An): w<coG}.)

From algebraic point of view, if M* and M* are the abstract monoids represen-
ted by M and Mn(un «aQ0), then M* is a homomorph image of a submonoid of M*-+1
for all n<a>0and so M* is the inverse limit of the system {(M * &,): n< oj0} where
Snis the homomorphism mentioned above. Since every element of M map hierarchi-
cally (that is Range (fj(An#l\A,,))czAntl\A,, for every fEM and n<coO if
f appeared before n) and is one-to-one; further the sets D, Dmfor m<v, and v
are finite in the definition of the local invertibility and the fairly completeness,
these things are handled in Am and so in Mmfor some m< &b large enough. Further,
we construct the free generators of M,, and M only, so we can manage (i) through
(iii) easily.

Now, let us get down into the details. Let A0 be an arbitrary countable set,
Foa A°(AQ an arbitrary countable set of o—independent injective functions on it,
and put M0:=(F0, o).

Suppose that we have already constructed An and M,, and now we want to
construct A,,+1 and Mn+l. We have Mm= (/,,,, 0) by construction, where Fn=
={®d1Y: /<0)0, y=m) for all msn, and p$=}?/FAK for /<<y0, j=k"mSn.

We want to extend the elements of Fhto A,,+1 and find infinitely many local
inverses for them on Ant+l as independent from each other as possible. To this end
choose countable sets B~ DU and disjoint from each other and from An for
i/£Fn, DaA,, finite, w<co0 and, let Fn+1be not element of any of these sets and put

A +1:=AUU {B£>UB$DU. KFn, Dc An finite, un< ocdtU{Pn+l}.

Pn+i ensures (iii); for further details see Lemma 1.3. AnUB"wwill be the Range
os WEF,, after extending it to A+l and AnUB”DOU will be the Range of a new ele-
ment of AL, the nth local inverse of d\b where h£Fnand DdA,, is finite, n< ca.
The disjointness of the sets Bi”) and B$Du is the main trick in the construction
which ensures (i) through (iii). To be more precise, first extend all p*Fnto A,,+lto
be one-to-one arbitrarily such that ¢"(ArH\Ana B”™ and let {<A'"/1)ia/< (00,
j”n) enumerate the set of these extended functions so that tA(/)fA=,H"j- ("ecall
that every I/EFnhas the form fj for some i<co0, j=n.) Next let /;/jDu be the
following injective function from A,,+1to An{JB"Du for ¢£F, Dc.An finite
for w<wO0: 1hs,MX=(cp\B)~1 and where X=¢'b.
Finally put

{dfm+H mi < «o}= {hDu—~ PEPn, D a An is finite, n < ook

It is easy to see that all the functions &p>for i<<0, jSn +1 are o— and
—Il—independent by the disjointness of the sets Bty\ B$Du, An for t6F, DaA,,
finite, n<1io(. So we can define F,+1, the set of generators of M,+1 as F,#=
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= W."/1); 1<£00> j=n + 1}. Finally put M=(F, o) and F=U{i/g¥* T, y<cu0}
where tgtk= U{-/®": nfey} for i,j<a>0. So we can say that the function i//=
(or ifilL=ilif Aj) appearedfirst in M,-, or shortly, atj, for any i, j <wfl.

So we have constructed /1 and M. Now we have to show that they have pro-
perties (i) through (iii).

It is easy to see that the elements of Fare independent, so (i) holds.

Now we prove (iii). (Recall that F is enumerated as {/(: /<cnOU}.)

Lemma 1.3. There is no permutation except idA in l.oc ((//, o, —L1)) for any
Hc.F finite.

Proof. We are given an ffcF finite and we must show that Loc ((H, o, —1»
contains no permutation except id”.

First choose an n<coO large enough such that all the members of H appeared
first far below n (e.g. if hEH appeared first in M,,h, nh<w, then n>nh+ 1for h£H.)

Suppose now 7tgLoc((#, o, —1» M 5a\"x}. Let aEA be such that n(a)Aa
and D={Pn+1, n~1(Pn+1), a}. Then we have

n\D = (ko (PASI 0 ...0<pro<pf\D

for some k<100, (pfFl and e;€{+ 1, —1} for LLk.

Using the facts that Range (*(T,, +4/4,,))cF*n) and Pn+A B~} for every \pEF
appeared first before n, clearly s0= + 1 and since the sets for j/EF are pair-
wise disjoint we can see (by induction on i) that r~r,+L implies (pi=(pi+l. Since
n(a)Aa we can suppose that e,=l—ei+l and (@=(pi+r holds for no isk. This
means that ef=+1 for all i"k. Finally Pn+1$Range ((p) for all (pEH but P,+£
£n"D shows a contradiction. O

So Lemma 1.2 (iii) holds.
Now we prove (ii).

Lemma 1.4. F is stronglyfairly complete.

Let us be given v<wO0, Dm XT, gmfor m<v and fEF, DczA finite as in
Definition 1.1. We have to find some tEF with good properties.

Choose an n<coO large enough so that all these things appeared below n.
That is we require that £>cA,, where

D:—D Uf"D U U{DmURange (gm: m < v}

and every element ij of //:={/} U U {KT: m<v} appeared first below n. Write
[ for f\A,,, so fEF,,.

When we built F,+1 we defined some local inverses r=/y,d,EF,+1 (u<coQ
for the present / and D and this t appears in the sequence {f\An + /<w(}=F, +l
infinitely many times.

We now show that the functions tEF for which t\An+1~i works. So, fix such
a tEF and let n< o9 its index.

We may work in Mn+l and An+i since t/"(Am#\ A nm)c:Aml\ A m for every.
\I/£H and m>n since the elements of H appeared first at last n+ 1and W a A,,. (That
is, all the functions we use from now on, we can suppose are elements of M,,+1,
their Dorn is An+l) Let be fixed. Roughly speaking our construction works
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because we defined the values of our functions as independently as it was possible,
that is (/ stands for / \A,,, f€F):

() Range(t\(Anf"D)) ¢ BftDu but Range(flA,,) ¢ An
(1) Range ((p\Bj,Dt,)c An+\A n for cpEM appeared before u
(1" Bfo,uMNAn=0 and D c An.

Now we verify in details. We have to verify: if gm*id\Dmand gmA(p\Dm for all
o,—1) then for all 0, —1) we have <p\Dm?+gm. Namely
we prove the following:

statement 1.5. For arbitrary p£(QOKTO {t}, 0, —1)

(@ EITHER t can be replaced by (f\D)~1and t*1 by f\D in ¢ everywhere
andfor the resulted ¢' we have OTaT)oT(h') and p\OT—hIOT,

1) OR Range (p)M(AmMN\ A n)=0.

This statement clearly implies that F is strongly fairly complete.
Proof. Let p*"(OKTO{1}, 0, —1) be fixed. We can write pin the form

1) ¢ = ykoyfrslo...oy$oy\loytf

where y fA mU{t} and eE{+ 1, —1} for ish for some h<coO.

Our goal is to replace t by (f \£5)_1 in ¢has required in (a) whenever it is possible.
We try to replace t in each of its occurrence in ¢ separately step by step. (We are
allowed to make a replacement if for the resulted ¢ we have DncDom (¢).) If
we succeed to replace all the occurrences of t by (/\D)~Il (and t~1by / \D) then
we reach case (a). If not, we get a breakdown somewhere, we reach case (b).

Now we examine not only the structure of ¢ but the “route” of Dm That is,
if dp'OToONCe pops into A,,H\A,, (i/g0is an initial segment of ¢v) then, by our con-
struction, it does for all />/,,, so finally ¢ysatisfies case (b). In the remainder part of
the proof we verify the above in details. Now let the sequence (ir: r<w) enumerate
the indices i“h in increasing order for which yt=t. We can clearly suppose that
w?+0.

Case I: e=+ 1 for all (In this case E(34?T0{1}, 0).) Now define
®o~Po=d)) =id and f°r r>0 put
KO = YIFI°YIr-r°-°Y o -1
tr = ioifi)0

dr = (\F>)~1oyir lo...0yJ 'r_ 1
where j=i, 1+ 1
(dr and dir are the initial parts of ¢ and ' resp., showing the procedure of
replacing each occurrence of t by (fif))1 in &)

Now our task is to prove by induction on r<w that
(& EITHER DffcDom (*) and drOM=¢r\OT
2 1) OR Range (p,\D If)(Am\A n) * 0.
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Obviously (2) for all /-<wv implies that we are done. To see this observe
that ¢~yho...oyjOYjw—i and ¢'=YHO...oy]Jod,, 1 where j=iwi+ R

Then (2) (a) for r=w—1 implies h,,cDom (f) and ®'\Dm=p\Dm while
(2) (b) for r=w—1 implies Range (oADM)MN(/!,,+41,,) ©i0 as required for State-
ment 1.5.

So, the induction step for (2): If case (b) holds in (2) for some then it is
easy to see that for every /e>/s,, case (b) holds in (2). So w.l.o.g. case (a) holds for
every r<w. In this case, if we denote (t/"0))"Z>mby x, we have two subcases depend-
ing on the position of x:

Subacase (i): xaf"D. Then t can obviously be replaced by (f\D~1) in dr
and Yr\Dm=\pnDm.

Subcase (ii): x%f"'D. Then it is easy to see that t can not be replaced by
(/(D)-1since t" (x\f'D)c:B'}DUzAm\A n and so 2),, Dorn (i/"). So Range
(iPnDMPI(An+H\A ,,)" 0 which proves the induction step for r and so we proved
Case I, too.

Case Il: e;= —1 for some i<h. The method for this case is similar to the
previous one but we have to be more careful.
Obviously we may suppose that there is no part like yoy-1 in (1), i.e.

(3) forno i-cA we have y,-+i=y; and ef+l=1—¢;

(since gnvxid\Dn). Again we examine the route of Dm. Put now F_x= Dm and
YiriyVY'Yt-1 for inh. Let further eObe the smallest e*h such that ¥,MN(1,,+\1,,)
50 if such an e does exist. Again we have two subcases:

Subcase (i): eadoes exist. Then we know that for every (pEMnwe have Range
((pH)aA,, and Range ((p~DaAn. But e0 was minimal and DmczAn and HczMn,
so we must have e0=i for some ru<w. (The sequence (ir: r<w) was defined
before Case 1.) In other words ye,,=t. Further, by the construction of t and by the
minimality of eOwe have seo= +1 and YeoOCMAH\A ncB DU

We know that for every ¢>£F,, D c A nfinite and /<tuOall the sets and BADU
are all pairwise disjoint, and for every (pEMnwe have Range (<p\(An+i\A n))a BYw

So, by (3) we can prove by induction on /, ea-&ish the following fact (as in
Lemma 1.3), using HaM,,: et=+1 and there is a (p=(p(i)£F,, such that TiTl
nAa+\n)crn or T;N(L, N )cB",0,, (This means that ¢"OTG
fl(/ImHdV J~0") This proves Subcase (i).

Subcase (ii): e0 does not exist. Then for /é/r we have YicAn. Now define
¢r, 1/"Q and ¥/' and prove (2) by induction on r<w exactly on the same way as in
Case I.

The induction step in case (”/m can be replaced by in dor for every
r<w?”) is as follows:

Let x=("€0)"O, and e=e,r. If xcfi and e=+1 or xc/'4 and e=—1
then clearly we can replace f by (/\Dy~E in d¢rand ¢inOT=¢nOT. In any other
case we would have Yin={f)"xczAn by the definition of t, which is impossible.

So we proved Lemma 14. O

So (ii) also holds in Lemma 1.2 and we concluded the proof of Lemma 1.2. O
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2. Proof of the main theorem
m

In this section we prove:
Theorem 2.1. CH ImplleS "|P(2">>)

Proof. Our task is to define a monoid NczBB on some set B such
that Loc (N) MSB= {idB. We start with the monoid M aAA constructed in the
previous section. Then, using the main ideas of the previous section to extend the
generators to larger and larger sets as independently as possible, step by step we
extend M to B, killing the elements of Loc (M) MJin\{1clg} We do not add any
new generator, we only extend the elements of F (= the set of free generators of
M a AA) to B. Finally we will get N as the generatum of these extended generators.

So, let A, F and M be guaranteed by Lemma 1.2 and let {np. i<a>y) enumerate
Loc (M)M>Si\{id4}. In each step j c 0)i we extend A and the elements of Fto a
larger set Bj+1 (BjZ) U{Bp. u-=j] for all y<cui, By=A, Bo=0) in such a way
that #fdoes not extend to Bj+1 for some j=i. (This means that for no BELoc (MJ+1)
eM=7rr where MJ+1(zB+i(BJ+1) is the extended monoid.) In this case we say
that we “killed n .

To be somewhat more precise, let Atbe arbitrary countable infinite sets disjoint
from each other for Z<coy and A({—A. Put Bj= U{T;: *</} for j=(x>»y and
B=Bai. (So B0=0 and By—A.) Fix further a booking function d mapping
cui\{0,1} onto ojyXay with the property: hsj if 6(j)=(h, k) for some /<iol
and for all j,h<cOy. (In the /th step we will kill the 6(i)=(h,k)th permutation,
that is the k,h permutation of Loc (Mnc (gillla (the hih level). We are forced to
use such a booking function since g\A=idA for many gfLoc (MA\{id5J, hccul
and finally we want to kill every elements of Loc (AM\Y{idB} and A(zBhaB.)

Step by step we will extend (the generators of) M to B as follows. Let MX=M.
Denote M} the monoid already extended to Bj (so Mjc pBj and M0=B0=f),
Ma =NQB) for j=(Oy. The set of generators of Mj for jScol, jAl is Fj=
= {1, k< wa}c: (URRj and they have the property /t@)=fE£n 1Bt for k<(uO
and o <l<y”iyl by the construction.

Let further {njtk: k«x>y} enumerate Loc (Mj)NSB\{idB} for j<(Oy. Now
let i be given, 2sz'<w1 and suppose that we have already constructed Mj for all
j <z Now we want to construct Mt. (Recall that Mj=(F}t0) for /</ and the
elements of FJI extend the elements of H2 for y'i<y2-<z.)

In case i is limit we clearly take

kU = U{fkJ):j < [} for k< ab;
F={10: k< o}, Mt= (Fuo) c (BYR;.

If /=/+1 then we extend the o—generators of Mj to Bt (—BJ+1=BjUA)
in such a way that the resulted M twill have the properties (z) through (iii) of Lemma
1.2 and %gj) will have been killed. The latter means that there will be no permutation
QdSH in Loc(M:;) such that QBh=n0(J), where 6(j)=(h,k) for some k-ccoy (since
). is the kth element of Loc (Mhns~ X jid\Bh}, k<tol; hsj).

This construction ensures that finally we will have a locally invertible (and,
moreover, a still strongly fairly complete) monoid N (=M@ on B (=Bai) such

and
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that Loc (N)C\SB={id}. (To see this use the fact that every element of N maps
A,,=Bntl\B,, into A,, for every n< and so does every element of Loc (N) MSn.
If then n£Loc(N)C\SB, 7iXidfl, then n\BhA\d)Bh for some h(-a)s, and so, by
the construction, n\BhELoc (MjnSAXiidflJ say n\Bh-—hk for some k< .
Then 6(j)=(h,k) for some j<O0J\, j*h. In the yth step, defining the elements
of N on Aj=Bj+I\B j we killed nhik, so Q\BhAnhtk=n\Bh for each gCLoc (Nj)C\
C\SB. which so holds for each g£Loc (N)C\Sb, a contradiction.)

Now we present a construction for Af2=(F2, 0), the other successor steps
i=j + 1 are the same. Write for convenience n and Aninstead of nal) and Ak. (Recall
that B1=A0=A, B2=AUAk and M1=McBBl, M=(F, 0).) Step by step we
extend the elements of F to Anin o steps (A,, and F are countable) and we take
these extended functions into T2={/*.(a): k< a0} cfi-B2. We intend to define the
values of fk2), k<co0 on Anas independent as possible.

After the nthstep we will have extended the first k (®>many elements of Fto a
finite set W(nNcA K (The only important thing is that we extended only finitely
many elements of F. We choose the first k() elements of F for convenience only.)
Further we will have fixed finite sets EtaA for every iskSn). These E~Ef sets
are the most important objects in our construction. We require that E{z>Ej for
/>/ and (P\EIAN\Ei for every <?€({/}: j =i}, o, —1). This can be done by Lemma
1.2 (iii). The sets £; play an important role in choosing locally inverses for the ex-
tended functions and taking care ofthe fairly completeness of F2(see Case 3). Further-
more, in Lemma 2.2 we prove that if af AKis fixed, AM= s for some AgLoc (AT,)MN
M5Twun,, and m<a>0 is large enough then for all g>£(H, o, —1) either <p(a)An(a)
or cp\ET n\E T where H={/2): i® m]; moreover this property is preserved in
all further steps, that is H can be any finite subset of F<2. This clearly justifies that
A will be killed.

Denote the extended functions bythat is Dom (/;)=AUWM and }i\A=f
for To summarize: after the nth step («<orQ) we will have fV(nc:AK
finite, k(n)-<co0 and {/;: ik (j where j\ extends f to AUW(). (fi depends
upon n but we do not indicate this.) Finally let An={aj: j<coj and let y be a
function from adonto the set

X[A]JMXU * 1 XmOX[Ne “IMX[K]"“] X[[F]=]"" XM*]-*

and y takes every value infinitely many times, where A*—{g\D: g€AA, DP\AI'G
and [T]*:B={TcTr: Y is finite} for any set X.

The role of yis similar to that of <& enumerates the requirements for M2to be
locally invertible and fairly complete. The requirements listed by y will be satisfied
during the construction, in Case 3, n=3l.

Now let us see the construction itself.

In the Othstep we do nothing: 1T(Q= 0 and no element of F is extended, /c(,,)=0.

The (n+ Ithstep: let W=W < A Z be the set constructed in the previous step
and the function /0,/i, ..., fk already extended be /,, ..., jk with fixed sets
EOQEL...,E k where k =k({® in 00steps we have to define / (a) for all /EF, aEAn",
and infinitely many locally inverses of f\D for all ff F, Dc.AUAn finite. In each
step we either define f(a) for a new a”AKor for a new /€ F or we define
some local inverse of an / fD, and we have to make each type of steps cofinally
many times. Enumerate first Axand Fas AK={aj\ /< ¢} and F={fk: k<io(}.
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Since the order of the steps is unimportant, for easier understanding we work modulo
3 and distinguish three cases:

Case 1: n=3I+ 1 for some /<i00. If arE W{) then we have nothing to do
i. e ('+)=WM, fe(n+1)=k (). Otherwise extend fO, fx, ..., fk (k = k(ML) = k()
to Winl) = Xum{a,} totally independently from each other and the points used
before. That is, for i~k let/;(a) be an arbitrary element of the set

An- W(n)- {a}- U{Range(/,):] =k)- {//a,):] < I}
Then we put W('H)=W (nU{a,} and k<n)=k(n).

Case!: n=31+2 for some /<co0. If k=k(n)*| then we have nothing to do.
(le. IFMHY) = IF(), k("+1)=k (n).) Ifnot, then extend all the functions/fctl, / fer2, .../,
step by step to If= independently from each other and the points used before.
That is, if W={au\ n<w} for some iv<mO then let for n<iv and i, k<-i*l
fi(au) be an arbitrary element of the set

A, -W - U{Range (/,-): j< i}-{Mat): t< u}k

Further, for every j, fc</~/ by Lemma 1.2 (iii) (and by the induction hypothesis,
that is M,nsatisfies Lemma (i) through (iii) for every m”coj) we know that there
is no bijection in Loc ((/}:j=1), 0, —1)) except id”*. So we can choose an EtczA
for k<isl be finite such that Et3 Ej and n(F-" id(Et for j <; and (p\Ei7xn\Ei
for every (pE Eoc tsif}, 0, —1)) and ké/</é&/. Soin this case we construct
W (n+i)= ww  kn+a=FH fk+lJ k+2,...,/, and ht+1> Ek-+z, Ei, too, (k=kw)
while/; and Etfor ik remain unchanged.

Case 3: n=3l for some /<o0. Now we have to do something only if y(/)
codes a requirement for F2to be fairly complete.
First we clarify when y(/) codes such a requirement. We have

y(/) = (/1,4r,Y¥,14,5'1,5'a,C, &

where 1k, ml<a® and St—{T"p: m<v(@)}c[*;]<Cb for some v(i)<a)0, /=1,2
recall that A2=An) and

| I = {fm m ~ v@d}c: [F]*“« for some V@ < <D
" G={gm m~" vd}c for some v(4) < ab.

Then y(/) codes such a requirement iff |G|=|57=|5'23=|(|]=v and for every
Dorn {gm=TE\

If the above statement does not hold then we have nothing to do. If it does,
then we will construct ml many locally inverses of }h(XUY) with taking care of
the fairly completeness of F2with respect to XXTand

Dm:=TAOT™ (m<v).

Now do the following construction m, times, repeatedly. (Repeatedly here
means true physically repetitions: after one construction ends we start the whole
procedure once more again from the very beginning, repeatedly increasing k(n+l)
and W(m)
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First we have to suppose that lc=k{) and W=WM are large enough, that is
k>max {t<cu0: m < v} and W z=FU US2U (/()"F. (If not, use the
constructions described in Cases 1and 2.)
In the construction we use the fairly completeness of F. We have already gm,
Xt for /u<v. Now link the sequence n\Eiand {/): j=i) for i” k() to the above
sequence, that is put

g,+i-=n\Ei and Jfv+i:= {/}:j~ } for is kin so v =v+k(n+lI.

Further, write fh and X instead of / and D in Definition 1.1. Since F is fairly
complete we have a function tEF with good properties; moreover such that
t${f: faf£<)} tis good in A. We will extend it to Ww taking care of /, Y and
TI2>and arbitrary functions gmon 722 for m<v. The sets [ 2 for m< v are settled
since W{7,(2): m<v}c(fw. The sets T\Q for and the functions gm on
779 for are unimportant since we will define t on W(n) (and later on further
sets) totally independently from the other functions.

Now use the construction described in Case 2 to extend the functions f for
k<i”k(t) to WM and determine the sets Et with the method described in Case 2
with the restriction i\(f"Y )= (f [F)-1 where k(t) is defined as t=fkKWEF. Though
R(i) is not disjoint from We°'+)=W(\ we will see in the proof (see Lemmas 2.2
and 2.4) it does not make any trouble. Finally we put 1T('+)= >X() and k(n+L)=k (/)
(and possibly repeat the construction m,—l times again). (To be somewhat more
precise: let 1Vm —{au: and for /, k<i”k(t) and if 1Ak(t) or
a,,if"Y then let f(au be an arbitrary element of the set

4 \» * U{/r'Ww : r* k}\{fr(as): stSu,r< /}.
This ends the construction. O

So we have extended all the generators of M to An. Let the o—generators of
M2be F2, the set of these extended ft functions, i<c. We have to show that M2
satisfies the requirements (i) through (iii) in Lemma 1.2 and that n does not extend
to An. (i) and (iii) can be easily verified.

We only have to check that F2is strongly fairly complete and that n does not
extend to An. (The other requirements are clearly satisfied.)

Lemma 2.2. N is not extended to A,,.

Proof. We prove a bit more: 51 can not be extended to an element of
Loc (<R2, o . —L))(T Arwn,,-

Suppose it does. Let af£A,, be arbitrary fixed. Ifthereisa UELoc((F2, o, —1))MN
nSaLM,, suchthat n\A=n then b=n(a)=(fiiofho...oft) (a) for some Zj, ...,
...,/s<o0 and .v<cu0. By the construction there is an n<wO0 large enough such
that we have already extended all the functions ftj (j=s) till the nlhstep so that
(fioLo...ofu)(a) is meaningful and equals b(LW@ (That is, k(mé/; for j"s
and (Ao...o4)(a) for and b are elements of

Now fix such an arbitrary n<t00. Recall that till the n(hstep we have extended
f (i"k"k{® to W=W() and fixed the sets Etc.A (i=k). By the definition
of the set Ek we have (Q\EKAn\ Ek=n\Ek for every (pE£({f- i=k), o, —1) and
n\EKA-id\Ek. But by our indirect assumption there is a k'< cd such that (p\Ek=
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="MEk=n\Ek for some i/i€Loc <{/,*: j=k'}, 0) since rc€Loc(M2. Clearly we
have k'>k and we must have extended the functions /*, till the nth step,
n'A-n and k'=k(n\

However the following result can be proved by induction on m, m>n, using
that F, is fairly complete:

C1uaim 2.3. For arbitrary m”~n if we have extended the functions f (i"k{n)
to IV(M insteps O, 1, ..., m thenfor every (pZ({j]- i=k{#}, o, —1) either (p(a)Ab
or (P\EKAN\EK (here k=k<) and n isfixed.)

Obviously this claim proves Lemma 2.2.

Proof. The proofis an easy induction on m, examining the effect of the con-
struction in all three cases. The heart of our construction is that we always extended
the functions totally independently from everything (the other functions and the
points used before with a small restriction in Case 3).

The proof is rather easy but technical. The claim for m=n is valid. Let mAn
and k(M W(m) as usual. We prove for m+1

Fix any <pf£({fi: zSk(m+D}, o, —1), say

4 @ =yE&oy?0...0y1* (s< o, ££{+1,-1} for u" s)

where yu=fiu, iuAk(m. We have to show that either <p(a)Ab of <P\EKA n\Ek
(k=kM is fixed), using that this statement holds for m, that is for all i//f{{/;:
sk (M}, o,—). Supposethat (p\Ek=n\Ek and g>(@)=a. Then we have (p\EKA\d\Ek
since n\Ek*idIEk. So we may suppose that there is no part like /o/-1 or / _1o/
in (p. (Thatis in (4) thereis no u-cs suchthat yu—yu+1 and £,,=1—,+1)

According to the construction we have to distinguish three cases—which one
was carried out to construct k (m+1), W(url), etc.

Case 1: m=3/+| for some /<uw0. Then we extended the functions (among
other functions) yu (uAs) to IF(Mm)=W(mU(a,) totally independently from
each other and the points used before. Since the induction hypothesis holds for m,
by the construction it also holds for m+1

Case 2: m=3l+2 for some /<t00. Then k(mls/ and we extended the
functions *(«>+1, ...,/; to W(m+L)= JL(1) totally independently from each other and
the points used before. Since the induction hypothesis holds for m, it also holds
for m+1, as well. (If that is there is a new function in (4), not constructed
till the m,h step, we must have (p(a)Ab. If not, then (p was constructed in the mh
step, and so we can use the induction hypothesis.)

Case 3: m=3l for some /<c«0. This is the most crucial part of our proof.

In this case we constructed for some /1*/c() (several) locally inverses f, of
the function fh with respect to a set XUYaAUAK (/xS/c(m< /Mk (my), YczWim)).
We took an ftZF1, using the strongly fairly completeness of F1, with respect to
(among others) A\Ek (fc=k(n) is fixed) and extended f to totally
independently from the functions and points used before (with the only restriction
that ftofli\Y=id\'Y but this causes no trouble since TU(/;D, TclF ().

If iuAt forall Ik s (thatisf, does not appear in @in (4)) then by (4) we know
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that sphas already been constructed before the (m+1)thstep and using the induction
hypothesis we are done.

So/, appears in (4).

Write (p' for the function we get by replacing /, by (//(ZU T))_1 and (/')_1
byfh\(ZU Y) in (p Using the good properties of f by the strongly fairly complete-
ness of Fland our indirect assumption cp\Ek=n\Ek we may replace /, by (/i/Z2)-1
in cpl A everywhere and so we have (p"\E,,=(p\Ek=n\Ek (k=k [ is fixed).

Next we show that we can derive <p'(@)=b using the indirect assumption
P(a)=b. We defined/, totally independently on fb(m\Rangc (/,|F) from the
points used before and we defined ft on Range (fh\Y) to be the inverse of fh\Y.
It follows that supposing <p(@) is meaningful and equals to b we have that <p'(a) is
meaningful and equals (p(a)=b (since b was an old point, too, that is a, bEW (>
and Y (J(fh)"YcW im).

So we have cp\Ek=n}Ek and cp'(@)=(p(a)=b=ft(a). But (p' only consists of
functions constructed before the (m+I1)th step and by the induction hypothesis
this is a contradiction.

So we proved Claim 2.3 and so Lemma 2.2. too. O

In order to carry out our construction in further steps (for M3, A/,, ... and for
any Mi+l (i< co)) we must also to preserve the strongly fairly completeness of F.

Lemma 2.4. F2is stronglyfairly complete.

Proof. The proofis mainly included in the construction: in Case 3 we manage
the fairly completeness of F2, and do not destroy it in further steps.

Observe first that the following fact is true: for every «i-=n2<c»0 if untill the
n;-th steps (/=1, 2) we have extended the functions {/}: j* k (T} to the functions

{//°: jskNe ), Dom (//>)=AU Nee> for and /=1,2 then we have
5) ID)c r/t) and //i) Q fp for jskw
(6) Range(/;(HF"d)nRange =0 for i,j < k{m.

(That is: (5) says that we keep extending our functions, and (6) says that we define
all functions independently from each other and the points used before.)

This fact can be proved by a simple induction on n2, n*Sn”m 0.

Now, recall that F2={/,: /<coQ}, fi\A—fF | for /<cuO. Let us be given
O<a>0, DczAVJAK fjfF2, XTEF2, Dm<MAUA,, finite and gm: Dm+AUAnN for
m<v as in the definition of strongly fairly completeness. We have to find some
t=/(y)-<£00 such that/, has certain good preperties.

Clearly we may suppose that

Range(gmli(Ar\Dm)) ¢ A and Range (gm\(AnC\DJ) ¢ An

for m<v. Choose an n0O< cd0 large enough such that in the n0-th step we can talk
about the above functions and sets, that is we have already extended all the elements
of the set

H = {fj)U{/,: JvaokT, m < v}

to the set W~czA”, and D CIAMW ~ where
) =DU U, URange (g : m < v}U ffD.
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We know that there are infinitely many /0>/?0 large enough such that in the n=3/,,-th
step we found a local inverse ft of j)ID with respect to gmand :Am(m<v) taking
care of the fairly completeness of F2. (See Case 3 of the construction.) By the con-
struction we have exactly one /,£ F2 such that jWA=f. We claim that ft works.

Roughly speaking, /, was extended as independently from W("\ the points
and the functions used before as possible and this causes f, to work.

Obviously we have fto(fj\D)=id. We have no trouble with the sets DC\A,
DmDA and gm\(DmC\A) (m<u) since all members of 2Zmap A into A and Aninto
Anand R was strongly fairly complete. We also do not have trouble with the sets
D(1A,,, Dmr A,, and gm\(DmTAmM (m<V) using the construction (that is /, was
defined totally independently) and (5) and (6) for induction for By the con-
struction the set {/r(n): iSkM} is strongly fairly complete for the full sets D, Dm,
gmand XXT(m< v). Further (5) and (6) ensure that we can not damage these good
properties of/, in any further step nkcoOfor m=~n.

Finally, since this holds for all m<coO (m is large enough), it must hold for
F2also (better to say, for/,£Fad).

This proves Lemma 2.4 and so Theorem 2.1. O

3. Further results

In this section we use the ideas of Sections 1 and 2 to prove further theorems.

Theorem 3.1. (a) MA implieS 1 F(M
(b) MA(/) implies P(X)for 2<2 Hhandfor countable monoids.

Proof, (@) The method is rather similar to the one presented in the proof of
Theorem 2.1. Let {np i< 2N} enumerate Loc (M)C\SA—{\4A}, let Aj be pairwise
disjoint countable sets for y<2M, AO0=A and let Bi=\J{Aj: y'</} for i"2*o.
Extend the elements of M succesively to Bt by killing 1, (and of course use the
coding function <& 2x0”"2s0X2kKo as in Theorem 21 and use the fact that MA
implies 2'=2N for t<2s%) The only difference is the succesive step: killing a
permutation n £ Loc (M)C\SA.

First we briefly sketch how to find a suitable forcing notion (P, s) in the proof
of Theorem 2.1. We know that the set of generators of M is F—{f i<od} and
there is no permutation in Loc (({/}: /</}, o, —1)) for every i<ro0. So for
every i<&0 we can fix a finite subset EjCzA such that cp\E ~ n \Et for every @ f
Loc(({/y:/</}, 0, —1)) and EiCzEj for /-=y<co0, Let (P(0), & (0)) be the following
forcing notion: P{0>consists of the forcing conditions of the form

P=(Df\ (Ne\ ..., /$,»

such that k(p)<ct)0, D(p) is a finite subset of AKand/<) is a one-to-one extension
of f to AUP for isk(p).

Define the partial order a (0) on Pw as iff k(@s/c (1) and for every
Ji(m)=/i<Pl)- Now define the subordering 3 of 3 <) as Pi=/>2 iff we obtained p{
from p2using some (but finite) steps described in the proof of theorem 2.1. Clearly
the largest element of P° is 1P=(0, 0). Then we define (P, as P={pEPm:
p =Ir} and we have already defined S above.
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.Pis countable so it satisfies the ccc.
The following subsets of P are dense:

Da= {p£P: a€f»()} for af{An,

Dj = {p€P: j ~ k(@} for j L9,
and
Dj,mD= {pdP: j S k(® and DVffD ¢ £p

and fj\D has at least m locally inverse among the functions {fj\ j*k (p)}}

for j, m< a0 and D<"AUA,, finite.
Applying Martin’s axiom we get the desired extension of our monoid M to
Au AKas in Theorem 2.1. O

(b) Let \A\—A The forcing notions
F.D= {g\H; gEM, f\(HP\D) = gt(# MO)} (fEM, DE[A]-»)

ordered by reversed inclusion satisfy the ccc since M is countable. By MA we get
a generic subset G cP intersecting all the dense sets Da={g\H"Pf>B: atH &
Range (g\H)} for  A. This proves Theorem 3.1. O

Theorem 3.2. 2F0="a+~|MA with ~P(2*Y) is consistent.

Proof. The forcing notion P defined in the proof of Theorem 3.1 is countable
so we can apply a weak form of Martin’s axiom which is consistent with 2**o=k2+
+ IMA:

Theorem 3.3 (C. Hernik, [W, Theorem 5.7, p. 848]). If there is a model of set
theory then there is one in which we have
(i) 2*0=a2,
(iig SH,
(1ii) MA(  -linked)
(iv) 1 MA.

(For the definitions see e.g. [/f] or [IF].)

We only have to know that every countable poset is  -linked. Then we proceed
as in the proof of Theorem 3.1 (a) and apply Herink’s theorem. Use the fact that
MA(x0-linked) also implies 2r=2*o0 for t<2*o This proves Theorem 3.2.

Remark. We could get a suitable model for Theorem 3.2 simply adding kr
Cohen reals to an arbitrary model of ZFC (well-known or see e.g. [IF]).

Theorem 3.4. 25EA+ implies ~\P(25)for any cardinal X

Proot. First construct a set C and a monoid Mx<zcC both of power 5 taking
Adisjoint copies of M constructed in Lemma 1.2. (In other words let C= U{Ct:i< ¢}
where Crare pairwise disjoint sets of power KO and let MiczciCi be a monoid
isomorphic to M of Lemma 1.2 with generator set /j.) Put P;={/GcC: f\C t=f"
and f\(C —C,)=id for some f'dFj} and let Pn=u{/]: r<d} and MJF (P/10).
Clearly FAsatisfies the properties described in Lemma 1.2. Now extend Mx step by
step to a set of power of 7+ by killing every permutation in Loc (MX) using a coding
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function 6: A-»AxA When we kill a single permutation n we extend the elements
of Fxto CUCKwhere \CK=X, in Asetps (where the sets Cn are pairwise disjoint).
I do not think the details are worth writing down. O

The same argument proves “IP(x) for x strong limit.
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OSCILLATION AND NON-OSCILLATION
THEOREMS FOR A CLASS OF SECOND ORDER
QUASILINEAR DIFFERENTIAL EQUATIONS

A. ELBERT (Budapest) and T. KUSANO (Hiroshima)

1. Introduction

We consider the quasilinear ordinary differential equation

@) (P (p(y))'+f(ty) =0
subject to the hypotheses:
f%agp: [0,=0b(0, °°) is continuous; )

b) : R—R s continuous, strictly increasing and such that sgn <p(«)=sgn
@ and <pR)=R;

(c) /: [0,0=)xR-*R is continuous, nondecreasing with respect to the second

variable and such that sgn f(t,v)=sgn u for each fixed ?=0.

A prototype of (1) satisfying (2) is

©) ((y)nry+q(t)yr =0,

where m and n are positive constants, q: [0, °0)-»(0, °°) is a continuous function,
and use is made of the notation

@) ux*= |n|Asgnu, A=-0.

Our main objective is to investigate in detail the oscillatory and nonoscillatory
behavior of proper solutions of (1). By a proper solution of (1) we mean a function
y: [Ty, 8&—R which satisfies equation (1) (so that p(t)cp(y'(t)) is continuously
differentiable) for all sufficiently large t and sup {|y(t)|: f=T}>0 forany T/ Ty.
A proper solution is called oscillatory if it has arbitrarily large zeros, and nonoscilla-
tory otherwise. Under additional hypotheses on p, (pand /, first we study the struc-
ture of the set of nonoscillatory solutions of (1), and then establish criteria for all
proper solutions of (1) to be oscillatory. Thus we are able to indicate a wide class
of equations of the form (1), including (3) with mAn, for which the oscillation
of all proper solutions can be completely characterized.

The qualitative behavior of equation (3) has been studied by several authors
including Elbert [2—5], I1zjumova and Mirzov [7], Kitamura and Kusano [8], Mirzov
[9—11] and Piros [12]; however, equation (1) in its general form does not seem to
have been the object of systematic investigation.
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2. Existence of nonoscillatory solutions

Throughout the paper we make the following assumption without further
mentioning:

5 ° (kI

= o0 for every constant Kkt O

where ¢ 1: R—R denotes the inverse function of 9 and employ the notation:

(6) 0= fv'(j~)ds, ,wT,

®p\ 0 = d*00; 0. tso.
From (5) and (6) it is obvious that & T(P=>T)=0,
Jim IexJIP> 0L =00 forevery k O,

;TP 0L> 1Nr(L0)> for A > || with kI>0,
an

limdxT(PL 0 =0 foreach t* T.

We begin by classifying all possible nonoscillatory solutions of equation (1)
according to their asymptotic behavior as t-»o.

Lemma 1. Any nonoscillatory solution y(t) of (1) is of one of thefollowing three
types:

I lim p(t)(p(y'(t)) = const ~ O;

I
lim p)<p(y'®) = 0, Jir
Il. JJ_Q,? p(g>(y'(t)) =0,lim y(t)=const 0.

t*-a

1. WY\ =«>;

00

Proof. Lety (t) be a nonoscillatory solution of (1). Without loss of generality
we may suppose by (b), (c) that y(?)>0 for ?&?0>0. From (1), (p(?)<p(/(?)))'=
=+ {t,y (F))<0, 7?0, and so p (t)(p(y (0) is decreasing for ?"?0. We claim
that p(O<p(/(0)>0! t=10, sothat limp(?)<p(/(0)s0. In fact, ifp(b)9>(/(ti)) =
=— 0 forsome bS/0 and k>0, then p(t)g>(y'(t))*—k for ?7?I5 which
is equivalent to y'(t)cp~1L—k/p(t)), Integrating the last inequality from
2 to tand letting ?->co, we see in view of (5) that y(?-*-—"° as ?—e0. But this
contradicts the assumed positivity of y(t). Therefore, p(t)(p(y'(tj)>0 for ?&2?0,
as claimed. A consequence of this observation is that y'(t)>-0 for ttt0, i.e., the
function y(t) is strictly increasing.

The limit tIi*n(;lop(t)(p(y'(t)) is either positive or zero. In the first case, y(t)

is unbounded, since there are positive constants kk, k2, and tn (kl<k2? such that

&11p>0 = y{)-yO) = |, » t=10
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In the second case, since y(t) is increasing, y(t) tends to a positive limit, finite or
infinite, as i—°0. This completes the proof.

Now we give criteria for the existence of nonoscillatory solutions of (1) of types
I, Il and III.

Theorem 1. Suppose thatfor eachfixed ky'Q and Ti-0,
) _Iim . 0. -

uniformly on any interval of theform [T\ °°), 7">77 Then equation (1) has a non-
oscillatory solution of type | ifand only if

®) [ i(t, cox(p; 0] dt <

for some constants k*O and c¢>0.

Theorem 2. Equation (1) has a nonoscillatory solution of type 111 if and only if

©) I W x| I@raH! ™
for some constant c"O.

Proof of Theorem 1. (The “only if” part.) Let y(t) be a nonoscillatory solu-
tion of type | of (1). Without loss of generality y(t) may be assumed to be eventually
positive. There exist positive constants cx, kk and t0 such that ckdd(p;t)*y(t)

for t~t0. An integration of (1) yields J f(t, y(t))dt<°°, which combined with
r

the above inequality leads to
f crédxi(p\ 0) dt < oo
0

(The “if” part.) Suppose (8) holds for some ¢>0 and /c>0. Because of (7)
we can choose />0 and T>0 so that /<fc/2 and

0o

(10 f f(t, drl(p\ 0) dt =s /.

T
Define the subset Y of C[T, oo) and the mapping &: Y-+C[T, oo) by
(11) Y = {yEC[T, 00): @, Ap; t)s y(i)s ®ZT(p; 0, £~ T)
and
(12) A>(0 =1 (p-1 [ I(ay(rj)rijds, t3=77
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(i) S' maps Y into itself. If yE Y, then since

O=s f f(r,y(r))dr S f f(r, &r(p\ rj)dr S /, SisT,
S T

we obtain from (12)

[ v"™(x )*s”™ (0s (x)*m 1-

implying that S'yS Y.

(i) S' is continuous. Let {yv} be a sequence of elements of Y converging to
yd Y as v» in the topology of C[T, °°). The Lebesgue dominated convergence
theorem shows that

f f(t, YAQ)dt- J f(t,y(t))dt as v-
T T

and so

0o 0o

| I TVE)* —1 [V, y(s)dv as v—

uniformly on [T, °°). It follows that S'yv(t)"Sry(t) as uniformly on com-
pact subintervals of [T, °°), which implies the convergence S'y S'y in C[T, »).
(iif) S'(Y) is relatively compact. This follows from the relation

0s (Sy)'(t) = s -11— (/+f f(s, y(s)) cfe)j §

= RL\jfj) (f+F ~ orr; *)) t~T
holding for all y£ Y.

Therefore, applying the Schauder—Tychonoff fixed point theorem [1, 6], we
see that there exists an element y£ Y such that y=S'y. Differentiation of the integral
equation y(t)=Swy(t), t*"T, shows that y(t) is a positive solution of equation
(1) for tAT. Itis obvious that y(t) is of type I.

If (8) holds for some 0 and c=-0, a similar argument is used to construct
a negative solution of type | of equation (2).

Proof of Theorem 2. (The “only if” part.) Let y(t) be a positive solution of
type 111 of (1). There are positive constants ctand tOsuch that y(t)*c1 for t*t0.
Integrating (1) from t to «>, we have

p(0<p(y'(0) :tf /(b YA ds, ta 1

which implies

(o = <Pr(-"y f t(j))dvj, tS t0.
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Integrating this equation again and using y (t)*cx, we conclude that

/ Vv '{jd) | NSei)*)Ji<0®

A parallel argument holds if y(t) is supposed to be a negative solution of (1).
(The “if” part.) Suppose that (9) holds for some ¢>0. Let T>0 be such that

n3) f ~[-pi) > )A)), 4

and define

(14) Y=[yEC[T,~):1 s y(t)Sc tSt}

and

(15) &y(t)=c -f (p~1 f f{r, y(r))dr]ds, t£T.

It is easy to verify that 2F is continuous and maps Y into a compact subset of
Y, and hence SFhas a fixed element y in Y, which gives the desired solution of type
Il of equation (1). Similarly, (1) is shown to possess a negative solution of type 111
if (9) holds for some c<0. This completes the proof.

Nonoscillatory solutions of types | and Il have thus been characterized. A
characterization of type 1l solutions is difficult to obtain, and so we content ourselves
with sufficient conditions for the existence of such solutions of (1).

Theorem 3. Suppose (7) holds. Equation (1) has a nonoscillatory solution of type
Il if (8) holdsfor some k*O and ¢>0 and
(16) [ b 1(jn)ff(s d)ds]\dt=c
for every nonzero constant d such that kd>0.

Proof. It suffices to consider the case where k>0 and d>o0. Let 0 be
an arbitrary fixed constant, and choose />0 small enough and 0 large enough
so that a+ <=>i(p) t)"c<Pk(p; t) for tAT and

(17) f f(t, a+@,(p; 1) dtwl

This is possible because of (7) and the fact that M% dx(p; t)="°0. Now consider
the set Y and the mapping 2F defined by

(18) Y = {yiC[T, °°):a=y(t) » a+d,(p-, t), t* T}
and
(19 Ay(t)y =a+f cp A f f(r,y(r))drds, twT.
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As is easily verified, 3F has a fixed element y£ Y by the Schauder—Tychonoff
theorem. That y=y(t) is a solution of equation (1) follows from differentiation of
the integral equation y(t)="y(t), t*"T. From this equation we also see that

P(t)<P(/(0) = f f{s,y(sj)ds- 0 as t =
and by (16) t
y() *a+f @1l d as
; bbr/ I

It follows therefore that y(t) is a solution of type Il. This finishes the proof.
Examptle 1 Consider the equation

3) ((yT*)"+q(tyr =0,
where 0, 7;>0 and q: [0, °°)->-(0, °0) is continuous. This is a special case of
(1) in which

p(t)= 1 cp(u) =un* and f(t,v)= q(t)v’*
and we have
(p~r(n) = uln* and &k T(P\t) = kI (t—T),

so that conditions (5) and (7) are satisfied for equation (3).
The possible types of asymptotic behaviour at infinity of nonoscillatory solutions
of (3) are as follows:

I tILrQ0 [y(®It] = const 9" 0;
I Jim [y = 0, lim ly(O1 =*°;
. lim y(t) =const O.

From Theorems land 2 it follows that (3) has a solution of type | if and only if
(20) (3] t"q(t) dt
and that (3) has a solution of type Il if and only if
(21) J {f q(s)ds)vindt <oo.
Theorem 3 implies that the conditions (20) and
(22) I (f q(s)dsfimdt =°°
t

0

are sufficient for the existence of type Il solution of (3).
Conditions (20) and (22) are not always consistent. In fact, let q(t) =(t+ DA
where fAis a constant. Then, (20) holds if and only if A< —1—n, and (22) holds if
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and only if Xw —1—m, and hence these two conditions are inconsistent if TLLn.
Thus, if m>n and —1l—TrLlUX<—1—n, then there exists a solution of type Il

for the equation
mv++1)V* =0

3. Oscillation of all solutions

We are interested in the situation in which equation (1) has no nonoscillatory
solution, or equivalently, all proper solutions of (1) are oscillatory, and show that
a characterization for this situation can be obtained provided additional hypotheses
are placed on the nonlinearity of (2).

We say that equation (1) is strongly superlinear if there exists a constant y>0
such that W\~Wf(t, a)| is nondecreasing in |u| for each fixed t and

{;3) Jf — N — <00 and _Jf cpli\my*) <°°  for any 0;

equation (1) is strongly sublinear if there exists a constant 8>0 such that
M-alf(t, &) is nonincreasing in |u| for each fixed t and

(24) / ov and . f av forany N> 0.
[<p~4v)Y i W~\)r

According to the above definition, equation (3) is strongly superlinear if w<n and
strongly sublinear if m>n.

Theorem 4. Suppose equation (1) is strongly superlinear. Suppose moreover that
(25) P L(uv)*cp 1) Lv) for all u, v with uv > O.
Then all proper solutions of {1) are oscillatory if and only if
(26) [ \p 1(j(t)1f(~ c)cls]\dt=C
for every constant c”0.

Theorem 5. Let equation (1) be strongly sublinear and suppose (7) and (25) hold.
Then all proper solutions of (\) are oscillatory if and only if

(27) (/) \f(t,oPk(p; 0)|dt=-

for all constants k~Q and c¢>0.

Proof of Theorem 4. The “only if” part follows from Theorem 2.
To prove the “if” part, assume for contradiction that (1) has a nonoscillatory
solution y(t). We may assume without loss of generality that y(r)>0 for t"tO.
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Integrating (1) from tto °° and noting that Llhngo p{t)(p(y'{t))=0, we have

P(t)<p(/(t) S f f(s, y(s))ds. ta t0)

which implies
(28) yo)= ®l1\-QJjf /[(@»-HO)*)’ 1- /o

We divide the above by (p~1((y(t))y), where y>0 is the constant of strong super-
linearity of (1), and use (25) to obtain

/(0 ¢ p - Ffie lds 1. y(F)
<rylg y) yp(t) 3 (y()y p(ty /@)

k)

t A in.
Since y(t)=c0, tsto, for some constant c0>0 we have, in view of the strong
superlinearity of (1),
0(0)~7(h J40) S coV(r, ce), ?a tli,
so that
* (0 S (p~l(cev-L - f f J.
-ruo&oy) (p~1 (c (s,cJs] s
P @WP 1(-*y | I(-Y,cOdsj, I~

Integrating the last inequality over [/0, rj, we have

< /o1 s \ yiti) dv
<P~4c~y) f ¢cp-1[- f f(s, coyds} dt
y) o p-1[-14 t ( 1 y(‘:/o> L>1(yr)

which, because of (23), implies

INESNION:; 0) ds) dt <0°-

But this contradicts (26) and completes the proof of the “if” part of Theorem 4.

Proof of Theorem 5. The “only if” part is a consequence of Theorem 1.
The “if” part is proved as follows. Lety(t) be a positive solution of(l) for t~ t0. First
we note that y'(i)>0, t~t0, and

/(0 =< H{PO)P(Y'LU, to-

integrating over [/0, /] and using the decreasing nature of p(t)<p(y'(t)) we have

(29) y(1)-y(tQ = 9> L(P(0<P(/(0))Ni,rop; 0, t=t0.
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Now define

(30) Fuy =/

u

dv
Dp-»]*

where <5>0 is the strong sublinearity constant and uO=p(tQ)(p(y'(t0j)>0. Then
from (30) and (29) we find

: Aty(t))
(31) [FeOPYODY  op@® (piy\))Y

S .00\ Dld{y(tj)-sf(t, 7(0), t—7

From the strong sublinearity and the inequality y(t)ScOd{(P', 0, /=/o> where
c0>0 is a constant, it follows that

(32 (7(0)_A(b 7(0) 0]~4 (fi cO4kito(p; tj)
for /=>/,. Substituting (32) into (31) and using the inequality
Lo\ O/dK op-, 0 —  41/*%). 1> t0-
which follows from (25), we have by integration over [tl, JH, b>/0,
11 dv
J [<rd»)l
where vi=p(ti)(p(y, (t)), /=1,2. Letting and using (24) we obtain

doy "41/%) /1 4/, co’ap- 0) dt

f f(t,cO&kto(p; 0)dt <°°,
ti
which contradicts (27). This completes the proof of the “if” part of Theorem 5.
The following are variants of Theorems 4 and 5.

Theorem 6. Suppose (25) holds and there exist continuous functions q: [0, «=)-
-x(0, 00) @Nd g: (0, **)-~ (0, <o) Such that g is increasing,

(33) \f(t,v)\*q(t)g(\v\) for (/,0([0," )XR,
and
(34) [ B _pcoe for any M > 0.

J P-Tg(u)

Then, all proper solutions of equation (1) are oscillatory if and only if
(35) f 91 J q(*)ds}dt =oo.

Theorem 7. Let q(t) and g(v) be as in (33). Suppose (7) and (25) hold and
(36) g(uv) S g(u)g(v) for any u,v >0
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and

37 f - o0 d f_ .

GO Fep a1 = " B golro ()]

Then all proper solutions of equation (1) are oscillatory if and only if

<oo farany N >o.

(38) (1: aMa(<PK(p; t))dt - -
for every constant k*O.

Proof of Theorem 6. Since the “only if” part follows from Theorem 2, it
suffices to prove the “if” part. Assume to the contrary that (1) has a nonoscillatory
§o|u|t_ion y(t)>0 for 0. As in the proof of Theorem 4 we have (28), which
implies

Y (p-1 f a{s)a@ys) ifr, ts 10

Dividing the above by @ 1(g(y(t))) and using (25) we obtain

J

39 (HM
) OW g((k0O) J

/(0 ¢
o 1gh) T ‘vpo

—9 (% 1 9J)<fa)’ ' - io

where we have used the fact that g-( p(A))YN W)™ 1 for s™t since g(y(j)) is
increasing. Integration of (39) over [/0, r,] yields

t'(O dt = i’) du
f v '(tto / qfs)d] dt- / 4,8-0K0)) kg @ log(u)

which, in view of (34), implies

b0 1{ju)f *()<z0) de
But this contradicts (35) and the proof of Theorem 6 is complete.

Proof of Theorem 7. The “only if” part is a consequence of Theorem 1.
To prove the “if” part let y(t) be a positive solution of (1) for t~t0. As in the
proof of Theorem 5, (29) holds, and so (36) implies

(40) a@) =ofv Ap{)(p(y'®))g(<Pu,op\ 0), |&/0.
Define

dv
(41) F(u) - / I 0,
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where uo=p(tg(p(y'(tQ)>0. Then by (41) and (40) we have

(42) [FipuM/my g{cp-~t)XV)))
" 9(QyCKO) o i
o 16 0<py(0)) © HOGHUSPT 0) T lo
Integration of (42) over [?1; i, shows that

J q(tM*u,0p; t))dt
fi

where vi—p(t* tp{y’(i()), which because of (37), implies

This contradiction proves the truth of the “if” part of Theorem 7, and the proofis
complete.

Example 2. Consider equation (3) again. Since <p-l(u)=ullm®* and f(t,v)=
=q(t)vr*, equation (3) is strongly superlinear or strongly sublinear according to
whether or m>n. Therefore from Theorems 4 and 5 it follows that a neces-
sary and sufficient condition for oscillation of all proper solutions of (3) is

[ R.
[21 A.
[B1A.
[4A.

[5] A.
[6] M.

[71D.

00 00

f [f qg(s)dsYmdt=°° if m<n,
0 t

00

J tng(t)dt if m>n
0
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SOME GOOD POINT SYSTEMS FOR
DERIVATIVES OF LAGRANGE INTERPOLATORY
OPERATORS*

P. O. RUNCK (Linz) and P. VERTESI (Budapest)**

1. Introduction

1.1 Let us consider an arbitrary projection operator Ln; C-*-"n x (i.e. Lnis
a linear bounded operator, L,,(f, x)€",,_aif fEC and Ln(f,x)=f(x) iff
here C is the set of continuous functions on [—1, 1], -\ denotes the set of algebraic
polynomials of degree émn-1).

We investigate the expression ||L<n)(/, X)|. By the usual definition
aLyn:= ?LIJE) ILIN (> where ||lg(X)|| is the supremum norm) [[|[L ||| *cn2

(cf. D. L. Berman [10]). However, using a new norm introduced and investigated
for projection operators by J. Szabados [3] we can have much better results. Namely,
let

(1.1) M= sup o W90 5 =012, /10

(cf. [3, (2.

If L, is the Lagrange interpolation, J. Szabados [3] constructed a “good” point
system for each fixed j such that

AN c(nnslogwn, j = 1,2,...

(when s=1or 2, see also N. S. Baiguzov [2] and P. O. Runck [3]).. This estimation,
considering thatfor arbitrary Ln: i

(12 nneég, fyns\ogn, j=0,1,...; /(SO

(proved for Lagrange interpolation in J. Szabados [3] and in general by P. Vértesi
[4]), is the best possible in order. This is why our paper is devoted to find other
good systems (in the previous sense) for Lagrange interpolation.

1.2. So hence let Lnbe the Lagrange interpolatory operator based on the node
system
X—Wn}) 1STSH n=172...

Concerning J1M, we are interested in two problems. Let réO be given.

* The work was completed during the second author’s visit in Linz (October, 1986).
** Research of the second named author supported by Hungarian Research Grant No. 1801.
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A. If/ (N6C, mis the modulus of continuity, then, using the Gopengauz theorem
[5, p. 168] stating that there exist polynomials xsuch that

| f()O)—Pn]Wise[ InMjoo(/® , WS1 i=01 r

we get, if lkndenote fundamental polynomials,
VPO -LAE)N [7@(x ) (x) [ +1 (f-pnX)| =
0 Q\/fr\ In))
if
So using (1.2) and the relation

£c nl+ E=10A234jri/ffwi) , 1=0,1,...,r1

#1

holding for Lagrange interpolations (see [3, (6)] (or (1.1))), we have

(13) e\x)-LP (f, 'S yAWNw (fr>, 1), osisr.

B. If we know only / SEC, js O then for this derivative (again by the same
Gopengauz theorem)

1-4 HIEW - Lig(/,MIl's = . N«O© (<m>, i)

(c. f. [3, Theorem 2]).

Then in the light of (1.2)—(1.4), it would be interesting

A) to find a node-system X(r) for any fixed r such that for the corresponding
norms

(1.5) N} Berilogn, 0~ /=K
B) to find a node-system X such that for the corresponding norms

(1.6) S cnlogw, for certain values of s.

As it turned out the first problem (or (1.5)) can be solved for any given e&0. (Ac-
tually, the system in [3] does the job.) On the other hand if for a given matrix X,
logn and A[frcnglogn then \s—g\s2 (cf. J. Szabados, P. Vértesi
[6, Theorem 2] where we gave a corresponding matrix, too).
The aim of this paper is to give infinitely many matrices solving the above
problems.

2. Results
2.1. To get our matrices we apply the method of [3] for other points systems.
Namely, consider the Jacobi polynomials P*’a)(x), a> —1, orthogonal on [—L, ]
with the weight (1—x2* with the roots xfa'x)=cos (xk=cos 0k, shortly).
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If /E1 is a fixed integer, then let
(2.1) yt=vyin= cosym where An= ~ | °In, y ,-=-yb 1M it
Consider the polynomial
(2.2) 0,+(*) =c tI=IlW -yVPMM (x), n>2tS 0.
/=0, let fi,,(x) = p.@a)x).

Now we take the Lagrange interpolation £,,,,(/, X) based on the roots of
fi, ¥2((x) (if «=-1/2, see [3]).

Theorem 2.1. If 0 and /s£0 arefixed thenfor Lntx: Cc —ai,,+2l_1

(2.3) a™MAr~ enllogn, 0 i=r,
whenever
(2.9) max (—1, —y +2i—jé a=2—y+2t—, a> —L
2.2. First let us give solutions for (1.5). If r=2rx, the possible values of t are,

by (2.4), i=rI5N+1, fi+2, ..., whenceaisfrom (- L, -y ],i-y.,y1.[y.y1,...,
respectively. If r=b\+1, the possible values of t are, by (2.4), t=rlXx\, ry+2,
li+3, ..., whenceaisfrom (“by], [y, Y], [y, Yy ]»eee, respectively.

l.e.for anyyzxc<i r, arbitrary a can he good choosing the proper value oft.

2.3. To solve (1.6) take three consecutive values s, a+1 and s+2. By the pre-
vious consideration, if a=2a1; whence a+1 =2s1+1 and a+2=2(aj+ 1), we get
the same node-systems for a, a+1 and a+ 2 Whenever i= a1+ 1 ,a1+2, ... 1ft=A 1+1,

say, then the corresponding intervals ofafors,s+1 anda+2 are [~ ,y 1, 1 y]
and 1, —y J, respectively. The solution is their only common value, a= —y .

Similarly, if ?=Al+ 1+K, K80, we get oc=—y+2k, respectively.

Now let a=251+1. Then, by similar considerations, the proper values of t
and a are t=sl+2+k and a=y+2k, kO, respectively (when k=0, see [6,
Theorem 1]).

2.4. Our statements are valid if, instead of P,@’a)(x), we condsier generalized
Jacobi polynomials, i.e. when the weight function w, instead of (I —x2*“ a> —1,

isg(x)(I —x2a a> —1, with g£C, g(x)>-0 and f °® (shortly wdGJ).
0 1
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The only thing we have to consider is relations (3.6) and (3.7) which are valid for

wE£GJ, too (c.f. P. Nevai, P. Vértesi [8, 82 and Lemma 2], say). Results concerning
(tjhe _\I/veight g(x){\ —x2x(I +x)B, a,/?>—1 can be obtained, too. We omit the
etails.

3. Proof

3.1. If Ik(x) denote the fundamental functions based on the roots of Pj*”\x)
(=P,,(x), shortly), the fundamental functions of Lntx are

ok = [ =§¢) (). 15 k2

3.1) o Px) (O f x2=yM x+yu .
*u(x) = Ihw) yu—yi> zyu Lo M-
If
(3.2) Atac(*> r,t):= kgl (W - 4)'t4° Ml + gl (VI-L»)r AW [:= Sx+ 52

then, as it comes from (1.1), for Lnix
(3.3) non,r = r>0il. 0=1sr.
To get (2.3), by (3.3) it is enough to prove

(3.4) 4+a(x,r,)den* 1. x2+~) loi n> d—f—

3.2. First we prove that with 4 0J=4

(3.5) *na2i(*>h 0 sc |/1 X2+ log n.1

Indeed,let |[x—x,| = Ierisnn Lv—xd. Then withx=cosB Ewhence 11 —y2+ n—~sin 0,1,
00,=0 and O,,+i,,,= 7
(3.6) , O"k"™n,

(3.7) |/, W |~ (nle-eJ])(s "] ISIS.,

uniformly in k (cf. P. Nevai, P. Vértesi [8, 8 and Lemma 2], say) we can write if

X€0, say,
3n/4 n

(3.8) 2(/M)rwol=2+ 2 —=h+h-

fc= 3n/4+1

The use of (3.5) and Lemma 3.1 below (instead of long calculations for derivatives) are due to
J. Szabados and A. K. Varma [9].
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Here, by [x2—yf\Sc esin2 Oj, x\—yf~sin2 0k and (2.4)

C L«+r-2(+3/2
h- A YA (<?n+j/25k.2=z,- _I(_)%)(ﬂ+y)(|A;—y|+ )
~(~) s 2/+ loga2/+ 11+ (y) J]~ &) log2i  c(I"l-x 2+ -i-) logn.

Using similar arguments for 12and S2 (where the relations Pn(x)P~1(yuScj~°‘~12
and Fj—y?~n-2 (iVn) (cf. [s, (20), (21), (17)]) can be used) we obtain (3.5) which
is (3.4) when /=0.

3.2, To go further first we quote the next
Lemma 3.1. If q,f-P,, and withfixed gand A>0

Q
NCY) s(H1-Az+7-)e, WA,
then with an absolute constant ¢ o

\ge\ = cn (fl-x 2+7-) > M =

(cf. A. F. Timan [7; 4.8.72]).
For xCE[—L, 1] arbitrary fixed, consider

(%)= 2 (M-Ay®-sign F00+ ‘g|1(|'1->' HAWVsign ia(x0.
By (3.3), (3.5) and Lemma 3.1
4 %2(*0, r, t) = dn+2t(x0,xQ ~ cn|/1-x§ +~-) logn,

i.e., using that xOwas arbitrary, we get (3.4) if i=1. Next, we use analogous argument
for

grtt . (x, X0:= I(2:1(\'I ~ XD"'<H(x) -sign <pl(x0) +

+ |21 (1/i-~) rAOWsigniAU ("o)

to get (3.4) when i—2, etc. We omit the details.
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NONLINEAR ELLIPTIC DIFFERENTIAL EQUATIONS
WITH NONLOCAL BOUNDARY CONDITIONS

L. SIMON (Budapest)

In this paper it will be proved the existence of weak solutions of second order
differential equations

0.1) |<5si (-1) [aD*[ya(™. n, Du)\+g(x, u,Du) =F in Q

with nonlocal and nonlinear boundary conditions

0.2) Z A(x,u,Du)va+ hi(x, u(x))+ht(x, n(®(x))) =0, x£dQ
l«'=l d

where a=(ais ..., a,) is a multiindex, D=(D1, ..., D,), Dj=-"~, DX=D\1...DIn,

by vaare denoted the coordinates of the exterior normal unit vector on the boundary
dQ (Jaj=1) and ®is a given C -diffeomorphism in a neighbourhood of dQ which
maps dQ onto fcfi. The domain QcR" may be unbounded but its boundary
dQ is supposed to be bounded. The functions fa, g, hi, Hbsatisfy certain polynomial
growth conditions. Similar equations with usual boundary conditions have been
considered in [1] and [2].

If nis a classical solution of (0.1), (0.2) then by the formula

- 2 fO[*C>u>Du)lvdx =
N="q

z u, DuDxvdx— Z  ffjx, u, Du)vxv da
®=1n [«d=L il

we obtain that for all i>eQ°(R")

Z [f*(x, u, Du)D*vdx+ f g(x,u,Du)vdx +
L!-ls} ( ) I‘Ig( )

+ dfl [hAX, u) +hE(X, nod)]bda = J Fvdx,
n

i.e.
0.3 Z ffAx, u, Du)D’vdx+ f g(x, u, Du)vdx +
M*io A
+ flh(x,u)vdo+ f hAx, m)(ro®*!)da = jFvdx.
r A

dil

Weak solutions of (0.1), (0.2) will be defined by (0.3).
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Elliptic equations with nonlocal boundary conditions have been considered
first by T. Carleman [3] and the importance of such problems has been emphasized
by A. A. Samarskij in [4]. A. L. Skubachevskij has developed the theory of linear
elliptic equations of order 2m with rather general linear nonlocal boundary con-
ditions (see [5]).

81. The formulation of the results

Let BcR"™ be a (possibly) unbounded domain with a bounded, continuously
differentiable boundary dQ, /;> 1 a fixed number. The usual Sobolev space with
the norm

IMIn*() = { 2 £ \D*Uipdx} p
—t

will be denoted by W*(Q). The points of R-+1 will be written in the form 0
where i7€R”, ££R.

Assume that

I. The functions fa: i2XRa+1 —R satisfy the Carathéodory conditions, i.e.
fa{x, £) are measurable in x for each fixed £€R'+1 and they are continuous in £ for
a.e. XEQ.

Il. There exist a constant c4>0 and a function kx"L9Y(Q) \—% = I; such
that Y q
I /.(*, 01 ZzZSbW -"+ bix)

for a.e. X£EQ, all "€R+1 if |a|s].
Ill. For a.e. XxER, each t]JER, £ C'CR" with (XV

112—1 I«(*, qOfa(< J,oko - o) > 0.

IV. There exist a constant ¢2>0 and a nonnegative ki*.L1(Q)f]L°°(Q) such
that
ZA (x,W xsc2 2 \L\p-k,(x)

l«]S1 lalsl

for all <OR"+1, a.e. XER.

V. The function g: Qx Rn+1 —R satisfies the Carathéodory conditions.
VI. If n<.p then for each there exist ksEL4(Q) and a constant cs>0
such that for a.e. x£ Q, all ££R"

lg(X, 01 = ca\Ce+ks(x) if \n\ s

with some positive number q, satisfying p—IcQ”~p and if psn then there exist
k3dLg(Q) and a constant ¢3>0 such that for a.e. XxER, all <OR-+:

\g(X, 01 Sc™+ k"x)

with some number q, satisfying p—i1<p<p — +p/n.
VII. There exist a nonnegative constant c:<cz2 and ki*L1(Q)f]L°°(Q) such
that ks€ o and for a.e. XxEQ, all ££R 141

g(X, 0 9S - C 4 |/j|p-K ().
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NONLINEAR ELLIPTIC DIFFERENTIAL EQUATIONS 345

VIII. The functions ht: #12XR-*R, h2: rxRAR satisfy the Carathéodory
conditions.
IX. If n?p then for a.e. x€di2 resp. XET, each )£R, j —I, 2

\hj(x, )l = cs\ri\j+k{(x)
1

(in the case n=p for Q an arbitrary positive number can be chosen); if n<p then
for each there exist h\*D(dQ), b*M.br(I") such that for a.e. xEdQ resp.

Xer, 7=1.2
Ihj(x, T ~ h{(a).

X. In the case 2 there are functions hjEC 1(Uj XR) (where , U2denote
some open and bounded neighbourhood of <Q resp I') such that for a.e. XEdQ
resp. XEIl', each >/ER

hix, @] ai-|/if(x, TR, \hz(x, A = N4(x, )

where for 7'= 1,2 the functions /r] satisfy

with some constants ¢s>o, np and K\EL1+lei(dQ), /c|ET1+1/e2(T)

*;(*, t)\<+ 1 \Dkh](x,r )\<+\Dn+1h](x, ) |* - 2>
Kish f*(*>0Zx+g(x,0>i

uniformly in x£ (¥) and ££R" where Uj =UjC]i2.
In the case p”2 there exist numbers ¢, @ and k*£L1+1e*(dQ), kK%ELI+1e*(I)
such that Ocpicp —1 and for a.e. XEdQ resp. XxET, each R

Kix, *)A's -ctM e*+kt(x)M, \hz(x, t)l s=CEMcC+£|M -

XI. F is a closed linear subspace of W*(Q) with the following property: there
exists a positive number R such that <pGQ°(R"), 9u(x)= 1 for |x|<7?, vfV imply
(pvav.

Theorem. Assume that conditions |—XI are fulfilled. Then for any GEV*
(i.e. any linear continuous functional on V) there exists uEV such that for all Vv

(1.1) 2 ff,(x, u, Du)Dflvdx + f g(x, u, Du)v dx +
I\ n P

+ O\ghfx, u)vda+ | hz(x, u)(r0¢-1) da = {G, \.
]

Remark 1 In the case pw 2 the estimations on h2in IX follow from assump-
tion X.

Remark 2. The existence theorem can be easily extended to the case of “suffi-
ciently good” unbounded dQ.
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346 L. SIMON

Remark 3. The following conditions are sufficient for the uniqueness of the
solution of (1.1):

2 VAX, Q-f'(.x, NeZa-D+[g(x, 0-g(x, DKIO-2,) S Q\*-1\2

1St
with some positive constant c2>o, >) is monotone increasing (for a.e.
Xx£dQ), Dn+lh2exists and su{g \Dn+1u\ is sufficiently small.
rx

Remark 4. The following example shows that in the case @=p—1 (or of=
=p—1, see X) problem (1.1) may have no solution. Consider in B12={xf R2:
1< [x| <2} the problem

(1.2) Nin—u =0 in B2
(13) d2u(x) = Bju(yjx)+0j, xdSj, j =12

where Sj={xgRz: [x| =y}, dw is the normal derivative of u, j, jj are given num-
bers, ftS-1,y

Then all conditions of the existence theorem are fulfilled but in X gE=1=p—L1
If nis a weak solution of (1.2), (1.3) then by well known results on regularity of
weak solutions of the Neumann problem for (1.2) one obtains that n is a classical
solution of (1.2), (1.3). Set

U{r, @ = u(xl,xd where Xr=rcosq@ x2=rsing

P
v(r)=f U(r<pd(p

and

then (1.2), (1.3) imply
(1.4) V') +jv'(r)-v(r) =0, I</-<2

(1-5) vi(j) = Bv(y)+61 (y = 1,2).
It is easy to show that numbers 3j, y}, dj can be chosen such that problem (1.4),

(1.5) has no solution.

Further, numbers Bj, yj, 5j can be chosen such that problem (1.2), (1.3) has
more than one solution.

82. The proof of the existence theorem
First we formulate a lemma. For arbitrary natural number k define functions
Sn by
(9(x, £) if \x\"k
gkv. 0 o if | > k
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Then the formulas
(TO),v) = 2 _J/*(w*, M Du) Dxv dx,
l«|sid

<5uy(m), v) = r\S]gk(x, w, /)»)1-" dx,

(Q(u), v>= J hk(t, «?’da+ J h.,(x, u)(ve<P~)da; u, vE V
ssi r
define bounded (nonlinear) operators T, Sk, Q: V-+V*,

Lemma. The operators T+Sk+ Q are pseudomonotone and coercive.

Proof. Assumptions I—IV imply that the operator T is pseudomonotone
(see [s]). Further, if (ut)-*u weakly in V then by VI, IX and known compact im-
bedding theorems (see e.g. [7]) there is a subsequence (1) of () such that (n,}—u
in Lp*(QKk) and a.e. in Qkwhere Qk= QP\Bk, Bk={x(LR", |x|<k) and p* is defined

by —7—\—P—=1. Further, if n*p then (U')-*u in Lei+i(c)?), bel+1(I") and a.e.

P/s
Pin-1)

on O, I [since for p-=n we have 1<px+1 _if p=n then (UD>u

in C(i)Q) and in C(I). Consequently, V VI, IX and Holder’s inequality imply
I!im (Sk(u'i), w\—u) = o, 1Ilrorg (QI), u\—u) = o
and by using Vitali’s theorem, Holder’s inequality, assumptions V, VI, VIII, IX it

follows
lim (Sk(u'i), v) = (Sk(u), v), lim (Q(u't), v) = (Q(u), v)

for any fixed VvEV. Thus it is easy to show that also T+ Sk+Q is pseudomonotone.
Now we prove coercivity of T+ Sk+ Q. Firstly, consider the case p>2. Since

the trace operator compactly maps Wp(U'j) into LPI(dQ) resp. LPI(T) for pk* » ———

if and for any Pi>1 if pwn thus it is easy to see that numbers pk, gx>1
can be chosen such that I/Pi+ l/<i= 1 and the trace operator compactly maps
WfiU'j) into Lpi(dQ) resp. LP(T) and W?(U'j) into L«‘(dR) resp.

By Holder’s inequality and X for any u£C°°(R")

(.1) (Q(u), u)” — J\hk(x, u)n| da—I\h$(x, m)(Mo® 1) da S
ha r

— W)L M o (@) —CiNK (x> il (€) Wniplid) —

—¢iW\hiix, M|N@)M tyA-cjhtix, uyUy) @0
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with some positive constants c¢j. Further, Young’s inequality implies

2.2

LI, wiw ) - {f[[\h*(x, U\<+ Z IDkht(x, u)+Dn+lh*(x, u)Dku\‘] dx)Ws
u *_1

S {/[Nr(ar, u)\*+cM 2[\D kht(x, u\<HDn+Ih*(x, UNDKA]] dx}1g's

UL k~1

f(\hUX, ur+ Cl(q) i [|Dkht(x, u)*+

1  \Dn+lh*(x, n)lke>  A\Dku\*y/q]) , I ,

Nocag-e) {I[|/iT(x, ml«t J; |F-D*AIX, M)*+F)n+/ii(x, u)|Ne] iixy va +
u k=1

+ CA<HENINRV(UI) ~
= ¢,(0, Q {/ [JAIx, u)ld+ i IAAIC*. n)[4+1A +1AI(*, ) (- 2] dxyigt
Ul * 1
+ c3(#)e mliv' (ufr

where & is defined by -2 —— | i.e. g2=|’3\ and so BB2= bﬂ' -.
*7 *T n N
In virtue of X for each m>0 there exists 5>0 such that |*/|>g implies

hUx, )4+ [ . IDKhUX, ie+|A +A*(x, i/) |~ - 2"

i

A
- [Ia [l e ]
whence by using notation Ulta={xGU{: \u(x)\*d), IV, VII, IX

(2.3) I [IAI(*, n)j4+ 1 \Dkh*(x, u)d+\D,,+1hi(x, dx =
ul *=1

= J[|JA?(x, wia+ Z IDkh$(x, u)\g+\Dn+lht(x, n\d(p~r)] dx +

K a k=1
+ f [\hix,u)\g+ 2\D khUx,u)\*+\Dn+1hU x,u)\'«'-V]dxA
UilUl.a k~1

Nocot(g,  + " u}[lzl iA(x, n, Du)D*u+g{x, u, Du)u+k2+k4 dx.

Acta Mathematica Hungarica 56, 1990
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(VI, Sobolev's imbedding theorem and Holder’s inequality imply that g(x, u, Du)u
is integrable over Q) Combining (2.2) and (2.3) we obtain

2.4) Wht(x, Ui (U =5 c&g, m, &) +
+ -CG(r‘j]' ©) L[ 2 fAxbWDu)Dxu+g(x, u, Du)u+k2+k i\ dx\Vg+
]

u' ki
+c3(q)E\W\Z-1

Similarly can be shown that h2(x, u) satisfies the same inequality as hk(x, u) in (2.4).
By 1V, VII for sufficiently large k

(2.5) (T(u), u)+ (Sk(u), u) Sr
1 L2 /7, w DWDu+g(x, . Du)u+k2+ kil dx +

2

Co—¢ ® O
+ 7T Wyt (kz+ K)dx W= £ (Kr +Kb) dx
a R

and (2.1), (2.4) imply
(2.6) (Q(u),u) ™ - ¢ 7(q,m,e)\\ullv -

_fa(qlB_ r}| 21 fa(x, u, Du)D*u +g(x, u, Bu)nu+k2+ k" x-c”*)e\\n\\".
m oi ki1

Choosing sufficiently small e and sufficiently large m one obtains from (2.5), (2.6)
the inequality

2.7) (T(u), u)+ (Sk(u), u)+(Q(u), n) s g
+ﬂ’ I L%i/((’&u’Du)D*U“Lg(X, u, Du)u+k2+kA dx—

—C\Wy—C0= — IMV—eluly—CI0

for any mEC°°(R") and, consequently, for any uf£V since restrictions of functions
of C* (R") to 12are dense in H™(B) (a£2is supposed to be continuously differentiable).
(2.7) implies coercivity of (T+Sk+Q): V-»V* in the case 2.

In the case p=2 by X and Holder’s inequality

(Q(u), n) S Jhk(x, u)JudoAJh2(x, n)(mod® *rf/oj »

dsi r

Sr- / [ciMe+ &M de- f [4\n\e*+Kk%6]wod-Y da S

dsi

where pj=g*«1 (if n=p=2 then the right hand side is considered

a* Acta Mathematica Hungarica 56, 1990



350 L. SIMON

to be +00). Consequently,
(Q\/,“os - [4il/l|1;.p1(aﬂ)+ ny

S[4 1« &i(n)+ IMUACO] <o f-4[LBE *-e IN * -c'2Wdv mD
01+ 1,02+1 <P

and by (2.5)

(2.8 <T(U)! I\A>+Q(n)1 U)+Q(U), U)AAA\\UV y-

-C'Iulyl+l-¢'M M) +1- ¢ NTnu\\r-c',

which implies coercivity of T+Sk+Q.

Proof of Theorem. By the lemma for each positive integer K there exists
UKEV such that for all vEV

(2.9) ((T+Sk+Q)(uk),v) = (G,v).

Applying (2.9) to v~uk, by (2.7), (2.8) (where constants do not depend on k) and
the inequality |(G, uk\*||(7]j|lwJF we obtain that |[wJKis bounded. Thus there
exist a subsequence (ukl) of (uk) and n€V such that

(2.10) (ukd) —n  weakly in V,
(2.11) (uk) —n ae. in Q

Now consider an arbitrary fixed bounded domain @ such that wa Q and a
function 0£C"(R") satisfying

0 SO and O0(x) = 1 for xdco.

By VI, IX and theorems on compact imbeddings (see [7]), the subsequence (uK)
may be supposed to be chosen such that

(2.12) (uk) -*u in  Tp(RDsupp 0),
(2.13) (uk) -*n in  Lp*(Bflsupp 0)
WiltEp HuumehVy 1+ -L -1
Pie p* ’
(2.14) (Uk) - »n in LM+L(3I)Q) and ae. on dQ
and in C(dO) for
(2.15) (ud) —m in LC2+a(r), ae.onl for nSp

and in C(T) for n<p.
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In virtue of assumption XI 9(ukl—u)£V and so by (2.9) we have
2 [fa(*, ukl, Duk)D*[9(uk -u)] dx+ f gk (x, uk, Duk)[9{uk - u )] dx +
a

M ~n

+ f hk(x, uk)[O(ukl-u)]d<r+f h2(x, nd)[e(w-n)Jo-1 do = <G, 9(nk -u)).
na r

This equality can be written in the form

(2.16) 2 T [l«(*> 4k, Dul) - fx(x, ukl, Du)]9Dx(uk -u) dx =
l«1*ia
=2 Tk{*>uk, DuyIDx(u—uk) dx+ 2 FAL* LLIPUK(D**9)(u-uk) dx +
WsiS l«|sin

+ [fsfo(x,u kKI,Duk)9 (u-u kl)dx+[1; gkl(x, ukl,Dul)9 (u-ukl)dx+

+ f hk(x, uk)9 (u-ukl) d(T+ J h2(x, m*)[0(m-m*,)]Joth-1der+ (G, 9(uk -u)).
A r
Now we show that all the terms in the right of (2.16) tend to 0 as /-»< Since
by (2.11) and |
(2.17) /a(e, ukl, Du)9-»fx(e, u,Du)9 ae.in Q

thus 11, (2.12) and Vitali’s theorem imply that (2.17) holds also in the norm of Lg(Q).
Consequently, the first term in the right of (2.16) tends to O as by (2.10) Dx(u—ul)~*0
weakly in LRQ). Further, from I, Il and (2.10) it follows that fx( mukl, Duki) is
bounded in Lq(Q) and so (2.12) implies that the second and third terms in the right
of (2.16) converge to o .

Assumptions V, VI imply the boundedness of gkl(-,ukl, Dukl) in
jLp/e(Bnsupp o) whence we obtain by (2.13) that also the fourth term in the right
of (2.16) tends to O as Assumption IX implies that hj( m ukl) is bounded in
L1+/RI(dQ) resp. in bl+ler(l") for nwp and in L1(dQ) resp. bXI") for thus
by (2.14), (2.15) also the fifth and sixth terms in the right of (2.16) converge to 0.
Finally, (2.10) implies that the last term in the right of (2.16) tends to 0.

We have proved that the right of (2.16) converges to 0 as /-»00 for arbitrary
bounded @ with the property coaQ which implies that there is a subsequence
(ukl) of (uK) such that for each j —1,2, ..., n

(2.18) (DjUK) —Dju ae. in Q.

(See e.g. Lemma 2. of [1] or [s].) Thus from I it follows
fA-,Uk, Du'k)-+fz(-,u,Du) ae. in Q

and so Il, Holder’s inequality and Vitali’s theorem imply

(2.19) jim (T(k).v) = (T(u)v)

for each fixed V. Similarly, by (2.18), V and the definition of gk we have
gk(-,u'k,,DuK) - g(-,u,Du) ae. in I2
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and so VI, Holder’s inequality and Vitali’s theorem imply
(2.20) fim (SkI(uK), v) = Jg(x, u,Du)vdx
10 Q

for each VEV. Finally, from (2.14), (2.15), VIII, IX, Holder’s inequality and Vitali’s
theorem we obtain

(2.21) lim Q(U'K),v) = Jh1(x,u)vdo +J h2(x, u)(vod> * do
na r

for each vEV. Combining (2.19)—(2.21), (2.10) with (2.9) we obtain the statement
of our theorem.
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CROFTIAN SEQUENCES

L. FEHER, M. LACZKOVICH and G. TARDOS (Budapest)

1. H. T. Croft proved in [2] that if /: R->-R is continuous and MI_[m f(nx)=0
for every x>0 then Ilim f(x)=0. This is an easy consequence of the following

statement: for every open, unbounded set G cR + there is a positive number X
such that nxEG for infinitely many n. (This result was found earlier by D. J. Newman
and W. E. Weissblum [4].) Actually, Croft proves slightly more; he shows that,
under the same hypothesis on G, every subinterval of the positive reals contains a
point X such that nxEG infinitely often.

These results were generalized by J. F. C. Kingman in [3]. Kingman considers
the additive variant of Croft’s theorems. He proves that for every increasing sequence
cn-*°° the following are equivalent.

(1) %(c,,h—c,,):o.
(2) If Gis an open subset of R, unbounded from above then, in any open interval

of R, there is an x such that x+c,,fG for infinitely many n.

(3) If /: R-*R is continuous and IItim0 [(x+c.)=0 for every x in some open

interval, then XIlrp0 f(x)=o.
The statement (3) can be replaced by the following: If /: R-»R is continuous
and 7I1|m f(x+c,,) exists for every x in some open interval, then X!irgg /(X) exists.

Now Croft’s theorem follows from the observation that the sequence c,,=log n
satisfies (1). (These results proved to be useful in the theory of regularly varying
functions; see [1, p. 50].)

As Kingman remarks, the theorem above leaves open the possibility that a
sequence {c,} does not satisfy (1), but the existence of I!_i*_m f(x+c,,) for all x implies
the existence of XI|+r(1;10 /(x). This happens, for example, when {c,} consists of the
numbers of the form 2m+k2~m (m=0,1, ...; k=o,1, ...,2m arranged in as-
cending order. (We shall discuss this example in Remark 1)

This observation raises the following problem. What is the exact characteriza-
tion of those sequences {c,} for which
(4) if/: R—R is continuous and Hllm) f(x +c,,) exists for every x, then Xllry) 1(x)

exists; or
(5) if /: R—R is continuous and lim /(x+c,)=0 for every Xx£R, then

Jim /(x)=o.
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In this paper we shall consider the second of these questions. We shall say that
the sequence {c,} is thick, if (5) holds. A sequence will be called thin, if it is not thick.
We shall give several characterizations of thin sequences. The characterizations
given by our Theorem 1may not seem completely satisfactory, since they are difficult
to check and, in fact, they are not very far from the definition. However, most of
our other results will be based on these conditions.

One would expect that a “real” characterization involves the speed of the se-
quence: slow sequences are thick and fast sequences are thin. We show, however,
that it is not the case: there are arbitrarily slow sequences which are thin (Theorem 2).
Yet, there are conditions in terms of the speed of the sequence which are sufficient
and necessary, respectively. Thus, as Kingman showed, (1) is sufficient for {c,} to
be thick. In Theorem 3 we shall prove that rIFi*m cjn=0 is a necessary condition.

On the other hand, as we shall see, these conditions are far from being characteri-
zations.

We also consider the following generalization of the problem. We call a set
A ¢ R thick if the following statement is true: whenever /: R -R is continuous
and y_+Icim£H [(*+y)=0 for every XER, then Xl_im)f(x)=0.

The exact characterization of thick sets seems to be difficult. We give sufficient
conditions for a set to be thick and prove that there is a set A such that 4 is thick

and whenever c¢,,£4 and then {c,,} is thin (Theorems 4 and 5.
Acknowledgement. We are grateful to Paul Erdds for several stimulating dis-
cussions on this subject. He proved first that I|m 1 Sup (c,+1— holds for

thick sequences (cf. (iii) of Theorem 1). He also constructed a thick sequence with
I|m Sup (chr+1—€,)=>0 and conjectured that I|m cjn-=o is a necessary condition.

2. We shall use the following notation. For every 4 ¢ R and aER we denote
H+a={x+a: xEA} and —A={-—x: xEA}. The cardinality, closure, derived
set and outer Lebesgue measure of A will be denoted by card 4, H, H' and |4|,
respectively. If the range of indices is not indicated, it will mean that this range is
the set N of positive integers. Thus {c,} denotes (c,: /ifN} and {ak—c,} denotes
{ak-cn: k,nEN}.

We begin with some preliminary remarks. If /: R”R is continuous then
le f(x) =0 ifand only if the open set {x: |[/(x)|>£} is bounded from above for

every £>0. This easily implies that a sequence {c,} is thick ifand only ifthe following
conditions holds:
(s) For every open set GcR, unbounded from above, there is a point x such that

x +cnEG for infinitely many n.

If a sequence {cJ has a convergent subsequence then {c,} is thick. Indeed, in
this case for every non-empty open G there is a point x such that x +cnEG for
infinitely many n. Therefore we shall only consider sequences with |c,|->-°°. In
this case, deleting the negative terms from {c,} does not effect the property of thick-
ness. We may also rearrange the remaining terms and hence we may confine ourselves
to increasing sequences tending to infinity.

Theorem 1. Suppose that {cn}is increasing and tends to infinity. Then thefollowing
statements are equivalent.
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(i) {c.}is thin.
(ii) There is a sequence {ak} such that ak-» and {ak—c,,} is nowhere dense.
(iii) Either Iirp_ﬁﬂp (c.,+1—¢,)=°° or there is a subsequence {c,J such that

{c,k—=¢,} is nowhere dense.
(iv) There is a sequence of open intervals {Ik} and a sequence of real numbers

{ak} such that (J Ik is everywhere dense in R, ak=>=* and {CH}I'I(U f+ak=10

for every kZN.
Proor, (i)=s(ii): Suppose (i). Then (e) is false and hence there is an open set

G= (J (ak, bk such that ak”-°° and, for every x, x +cr§8 Gif n is large enough.
k=1

Let Xk=[J (G-Cj) (kZN), then f) **=0.
J>k k=1

We prove that {ak—c,} is nowhere dense. Suppose this is not true and let
{ak—c,;} be dense in an open interval I. Since ak->00 and ¢,—0 this implies that
{a;- cj:i,j>Kk) isalso dense in | for every kZN. Therefore XkC\l is a dense

open subset of | for every k and hence 1Ic:\| Xk~ 0, a contradiction.

(u)=a(i): Suppose that {%} satisfies the requirements of (ii). In order to prove
(i) it is enough to show that there are numbers O<ok<ek such that for every x,

x+B£U (ak+ dk, ak+ek) if nis large enough.

Lelfc:1P={ak—cn}; then P is nowhere dense. For each k we choose an index nk
such that cn>k +ak for every n>nk. The set fﬁ (P+Cj—ak is nowhere dense
and hence we can select o < &< sk< 1/k such tha -

(ox, e (J (P+Cj—ak) = 0.

J=r1

Let x be arbitrary and suppose that x +c,f (J (ak+dk, ak+eK) holds for in-
=1
finitely many n. Then there are sequences K"° ° such that

ak,—crut oki -= X < a|<i—Crt+ Bki

for every i, and hence xZP. If x +c,,Z(ak+dk, ak+eK) then (P+cn—ak)C\(8k, sk} 0
and then, by the definition of 6k and ek, we have n>nk. Thus cn>k +ak and, as
x<afe—¢,+ I< —k +\, we obtain x+1. Therefore k » —x +1 for every i,
which is impossible.

(if) =>(iii): Suppose (ii) and Iim‘sup (c.+1—€,,)<W<°°, Let {ak} be a sequence
satisfying the conditions of (ii). Then for every Kk large enough we can choose an
index nkwith \c,k—ak\<K. By selecting a subsequence we may assume that {c,k—ak}
is convergent. This easily implies that {c,k—c,} is nowhere dense.

(iii) =s(iv): Suppose first that rI]i*rjgosup (c,,+i~0=0° and let {»,} be a sequence

of indices with k!i_m < =°°, where dk=ck+1—€K.
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We may assume that {di} is increasing. Then the sequences of intervals Jk=
=(—dk2, dJ2) and numbers ak=ck+—dk satisfy the requirements of (iv).

If there is a subsequence {c,,J such that P={cn—cn] is nowhere dense then
let {IK} be an enumeration of the components of the exterior of P and let ak=ck.

(iv)=>(ii): Suppose that {/J and {ak} satisfy the requirements formulated in
(iv). We prove that P={ak—cr} is nowhere dense. Let x be a point of accumulation
of P. Then there are sequences of indices kt, n, such that x —um)(akk—c,,,). Since

ak=>- we may assume that K.--00 and n._.... For every fixed k, c,,.$lk+ak
if k "k and hence ak—c,,.$—Ilk for / large enough. This implies x$—k for every
K and hence

xER- U (-4) = s.
=1

By assumption, S is nowhere dense. This shows that P'czS is nowhere dense and
thensois P. O

Remark 1. By Kingman’s theorem, every sequence satisfying condition (1) is
thick. Making use of Theorem 1 we can prove this as follows. Suppose that the
sequence {c,,} tends to infinity and satisfies (1). It is easy to see that if ak-*°° then
{ak—c, } is everywhere dense and thus, by (ii) of Theorem 1, {c,} is thick.

On the other hand, the following example given by Kingman shows that (1) is
not necessary for a sequence to be thick. Let the sequence (d,,) consists of the num-
bers 2m+k2~m (m=o, 1, ...; k=0,1, ..., 2n).

Then the sequence consisting of the elements dn,dn+ 1 satisfies conditions (1)
and hence, by Kingman’s theorem, it is thick. This implies that {,} itself is thick,
too. Indeed, it is easy to see that if there is a finite set {hk, ..., hk) such that the se-
quence of numbers n—,z,...; /=1,..,k} is thick that {c,} is also
thick. (This is an easy consequence of (s).)

We may ask whether the following condition is equivalent to the property of
thickness. There is a finite set {hk, ..., hk} such that the sequence of numbers {cn+hi:
n=1,2,...; /=1, ..k} satisfies (1).

The answer is negative. In fact, one can construct a thick sequence {c,,} such
that the sequence of numbers {c,+/r;: n=1,2,..; r=1, ...,k} does not satisfy
(1) for any finite set {hl, ...,hk}; moreover, for every bounded and nowhere dense
set IfcR, the complement of {c,}+H contains infinitely many disjoint intervals
of length "d=d(H)>0. Since we shall not use this fact in the sequel, we omit
the proof.

Lemma 1 Let cn—=so be thin, andlete,-*0. 1f dn—=o and {</,,}cOlOJ (ck-e k, ck+s),
k=1
then {d, .} is thin.

Proot. By (ii) of Theorem 1, there is a sequence {ak} such that ak-+&> and
{ak—c,} is nowhere dense. The condition on {d,} easily implies that {ak—d,,}'ci
<Mak—c,,y and hence {ak—dn} is also nowhere dense. Therefore, by Theorem 1,
{d.}is thin. O
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Theorem 2. There are arbitrarily slow thin sequences. More precisely, for every
cn~°° there is a thin sequence {d,} such that dn<cnfor every n.

Proof. Let m be an integer with m<inf {c,}. Itis easy to construct a sequence
{4,} such that and for every n, dn<c,, and dnf (J =i+ (r|+ 1“2 Since

{/: i=m, m+1, ..} is thin by (ii) of Theorem 1, Lemma 1 implies that {d,} is thin
aswell. O

Theorem 3. Let {c,} be an increasing sequence tending to infinity. 1f {c,} is thick
then cjn *o.

Proof. Suppose that cjn-w0 and let ¢>0 be such that c,,“cn for infinitely
00
many n. Let {/J be a sequence of open intervals such that kl‘ll Ik is everywhere

dense in Rand 2 [T< c/4.

We shall pr(_Jve that for every k there is a number akllck/4 such that
{c. N (|J( (f +ak=0. By (iv) of Theorem 1, this implies that {c,} is thin and this
will preg\iide the desired contradiction.

Let K be fixed, let H= |IJ( I} and choose n>k suchthat Ha(— c¢w/2) and

c,,cn. Let A denote the setszéf points xE[cn/4, cn/2] for which {cj3f1(H+x) —0.
It is enough to show that AAO. H_;(£[cn/4, cn/2] and cfiH +x, then Cj<cn and

hence and, consequently, x£ U (—H+cfi.
It follows that =

[cw/d, cn/2\-A ¢ (3 (—H+Cj) and hence \[cn/4,cn/2]—A\ S (n—V)\H\ < cn/4.
3=1

Therefore A 0, and the proofis complete. O

Remark 2. If sjn-*0 then there are thick sequences with c,/s,, wO. Indeed,
if sjn—o then there is an increasing sequence {c,} such that cn+1—€,-<-0 and
Iirﬁ],s&j)p cn’sn>0. By Kingman’s theorem, {c,} is thick (but cjsni*o).

Remark 3. The condition c,/n—8 is not sufficient for {c,} to be thick (this
is an immediate consequence of Theorem 2). In fact, this condition is very far from
being sufficient, as the following argument show's. Let {c} be an increasing sequence
tending to infinity. We say that {r,.} is very thin if there is a sequence ak»<2, such
that {ak—c,,Y is discrete, that is, if {ak—c,}'TI[—K, K] is finite for every K=>0.
Since every discrete set is nowhere dense, it follows from Theorem 1 that very thin
sequences are thin. By Theorem 3, if cjn-1-0 then {c} is thin. Now we claim that
if cjn-4=0 then {c}is, in fact, very thin.

We briefly sketch the proof of this statement. The proofis based on the following
combinatorial lemma.
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Let | be an interval and let 1 be a finite subset of I with card (H)wc\1\. Then
there is a point a in the middle third of 7 such that card (HMN[a—T, a+m])*9cms
holds for every mgN, TLLI2.

(Proof: for every fixed ms2, the number of integers a with
card (AM[a-w, a+tm])>9cms is at most

cl/|(zm+1) _J7[ 2m+:
9cms 3 3ms

Since 2 (2m+ 1)/3ms<|, there is an integer with the required properties.)

m=2
Now suppose that {c,} is increasing and c,/n>0. Let ck>cnk (k=1,2, ..).
Applying the lemma with 1=[0,cnk] and H=(c,: n<nj we obtain a number
ak(i[enk/3, 2cnk/3] suchthat

9
card({c,;; ak—m s ¢,s ak+m, n< 1P —ms

for every mda2. If m~cnj3 then ak+ m<cnk and hence cn<ak+m implies
n<nk. Consequently, for m<cnJ3 we have

9
card ({a,;—¢,, ng AH1[—m, m]) & —m3,

For every fixed m we can select a positive integer and a subsequence {at.} of {a*}
suchthat card ({aki—cn: ngN}(T[—m, m])=p for every/. Let

WZV}D[-m, m]) = /]H}!
where p” %ms is fixed. By selecting another subsequence, we may assume that

{tjj: /gN} is convergent for every J=p, and hence ({akl—c, }D[—m, m])' is
finite. Now we select subsequences of {ak} successively for m=2, 3, ... and then,
using a diagonal argument, select a final subsequence {ak} such that ({at(—e,}
M[—m, m])" is finite for every m. O

3. Now we turn to the investigation of thick sets. As we mentioned in the
introduction, the exact characterization of thickness proves to be difficult. There
is a stronger property, however, which is easier to handle. A set WcR will be
called very thick if the following statement is valid. Whenever a function: /: R—R
satisfies  lim  f(x+y)=0 for every xgR, then JIci_[LLf(x):O.

This is easily seen to be equivalent to the following property: for every sequence
ak-*°° there is a point x such that x +akf_Il for infinitely many k. That is, H is
very thick if and only if, for every ak-*°°,

M o (H~ak*o.

=n

From this condition it is obvious that every residual or full measure set is very thick.
Another sufficient condition is given by the next theorem.
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Theorem 4. Suppose that H is measurable and that there is an a>0 such that

Iipwi,pf |[AM[(mn —Da, na\ = A > 0.
Then H is very thick.
Proof. Let {ak} be a sequence tending to infinity and put

Hn= (J (H-agM[0,2a\ (nEN).
k=n

Then #,, is measurable, \Hn\sA, and holds for every n. This implies
M HAMA. In particular, fj #,70 and hence A is very thick. O
n=1

n=I
Theorem 5. There exists a very thick set H such that whenever cnf H and
G,— then {c} is thin.

Proof. Let {/J be a sequence of open intervals such that (J Ik is everywhere
k=1

dense in R and 2~ 141<1/2. Let Nkbe chosen such that IJ /yc [—Nk, NK] (kEN),

J=
and let {ak} be an increasing sequence of natural numbers such that the intervals
[—Nk+ak, Nk+ak] are pairwise disjoint. We define

= R\(J (U Ij+ak).
k=1 j=1

Then 4 is measurable and |AM[n, n+1])>1/2 holds for every n"N. By Theorem
4, this implies that A is very thick. On the other hand, if cnfH and then
{cj is thin. Indeed, we have

wn un (lj+ak) = o,
j-1
and (iv) of Theorem 1applies. O
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1. Introduction

The first example of everywhere divergent trigonometric Fourier series was
given by Kolmogorov [5], [¢]. Later, Marcinkiewicz [9] constructed a function whose
trigonometric Fourier series diverges a.e., but the partial sums are bounded. For
other counterexamples concerning the trigonometric system and for the history
of this field see Uljanov [15].

In this paper we will investigate the bounded divergence of Walsh—Fourier

series. The Walsh system (w,,, n£N) is taken in Paley’s enumeration, i.e. for nEN =
={,1,2, ..} with dyadic expansion

(1) n =*:20nklk W*=0,1)
e set
(2) w,,= kI:IOK ,

where (-, N) is the Rademacher system. The partial sums of the Walsh—Fourier
series Sfof /EL=L40, 1) are denoted by S,,f (nEN) and the dyadic maximal
function is defined by

Fpot) = sup ((SUNCHN = sup-[y -1 T{0

where in the last expression the supremum is taken over all dyadic subintervals
I of [0,1) containing x£[0, 1) The function fiL belongs to the dyadic Hardy
space H if

WNH=/ f\Ax)dx«~.
0

More generally, for every continuous, increasing function ®: [0, bl o, "
let H®(H) be the set of functions fEL satisfying

3) I fW i(f(x))dr<».

This research was supported in part by MTA—NSF Grants TNT—8400708 and 8620153.
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The Walsh—Fourier series Sf is said to diverge boundedly at x£[0, 1) if Sf
diverges at x but
(S*)(x) = syp 1(S../)(X)|

i.e. Sfdiverges at x because of oscillation.
The existence of divergent Walsh—Fourier series was first proved by Stein [13].
We show that there exist a.e. boundedly divergent Walsh—Fourier series.
Moreover the following claim is true.

Theorem 1 Let @: [0, m»)->[0, °°) be a continuous, monotone increasing func-
tion which satisfies

4 ®(r) = o(loglogt) as t—>.

Then there is afunction FfWd(H) such that SF diverges boundedly a.e. and diverges
everywhere.

This is a generalization of an earlier result of the author [11]. The existence of
functions in H with everywhere unboundedly divergent Walsh—Fourier series was
proved by Ladhawala and Pankratz [s]. Functions belonging to H®(H) with every-
where unboundedly divergent Walsh—Fourier series were constructed in [12]. For
analogous result concerning the trigonometric system see Kérner [7] andTandori[14].

The a.e. bounded divergence cannot be replaced by everywhere bounded di-
vergence, since the following theorem is true (see Chen [3]).

Theorem 2. If fi L and Sf diverges a.e., then Sf diverges unboundedly on a
dense subset offo, 1).

2. Auxiliary results

In our construction we will use the term of strongly multiplicative system. Let
(., NEN) be a system of real functions defined on [0, 1). The product system of the
system in question is defined by

an= [T K,
k=0

where the nk’s are defined in (1). The system (gn, nE£N) is called strongly multiplica-
tive, if (on, nEN) is orthogonal (see Alexits [1]).
Waterman [16] showed that if the strongly multiplicative system satisfies

) flcb*(x)dx =K (n=n0

with a constant K, then (¢n, nEN) is the Walsh system in disguise.

Theorem A. Let (op,, NEN) be a strongly multiplicative system satisfying (5)
and \(p\* 1ae. (nfN). Then there exists a measure preserving mapping n of [o, 1)
into itselfsuch that

(s) @, =wnon a.e. (nEN).
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Denote
) Dn= klﬁ:él k (n£P = N\{0})

the n-th Walsh—Dirichlet kernel and set £>,=0. It is well-known (see e.g. [4]) that
ak if o x< 2~k

¢) D&(x) = lo, if 2~kSr< 1
and
©) IAMI <j (n€EN, *€(0, 1)).

It is easy to see that for hS 2n the kernels Dnare constant on every dyadic
interval with length 2-m. Furthermore, it follows from the explicit form of the
Lebesgue constants for the Walsh system that

1

iy Ln=J |D,Oldt=m, for ¢« S ga 2"
(10 ) h

0 LNmS cm, for all mEP
where

Nm=_2 2" (weP)

and c¢>0 is an absolute constant (see Fine [4]).
Our construction is based on the Walsh—Kolmogorov polynomials introduced
in [11]. For every mZP set
_rl, on {>*m>.}

*m_t-1, on { \iok
Then it follows from (10) ii) that for every mZP and *6[0, 2~n) we have

(11) (SNmg)(x) = (SNm)(0) = (1; gm(H)D,,mt) dt S cm.

For every mZP we introduce a sequence of Walsh polynomials (gk, kZN)
by setting
\rmk{x)g,,,(x + k2~n), if o gfe<z2"

(12 K \rmH(x), if 1S 2m

where XE[0, 1) and 4- is Fine’s operation (see [4]).
It is clear that the Walsh spectrum of ¢k lies in [2m+k, 2mtk+1) and

\9K\ = 1 (kZN, mzP).

This implies that (gk, kZN) is a strongly multiplicative system and its product
system (ilk , kZ N) satisfies
1

[ |<Ap1zdt = 1 (KZN, mZP).
0
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Thus, by Waterman’s theorem for every mfP there exists a measure preserving
transformation nmof [o, 1) such that

(13) ® k=mkonT (KEIS, WEP).
The Walsh—Kolmogorov polynomials mentioned above are defined by

(14) Qm= k_no \ 1+®I) Onep).

Denote ||/||p (Isp) the Lp[0, I)-norm of f and |A| the Lebesgue measure of
the set .E£[o, 1).
We need the following properties of the Qnrs.

Lemma. For every m(LP the function Qmis a Walsh polynomial with properties

"O 110, ul= 1,

(15) . U) sup \SkQm-S,Q m\ ércm,
i) \{S*Qm>2m)\*2Im,
where c is the same constant as in (11).

Proof. From the definition of the product system and from (s) and (13) it
follows that
22" -1 2" 1

Qn= 2_ dn = 20 WhOnm = £2h@TS 0.

Thus from () we get
H6dli= PV -1li = 1

Observe that the definition of ¢g™implies that
(16) ®? = wrdngm

for some Walsh polynomial g'n which only takes the values 1 and —1 and has a
spectrum in [0, 2n). Moreover,

= Wim+k(x)gm(x + k2~n)  (x€[0, 1)).
Hence and from (11) we get that for all 0"k<2m and t£[/c2 m (fc+ 1)2_m)
\(SM+ NN (1) ~ (S 2mkQm(H\ —\(SNgn) (t+k2 m| s cm.
Consequently (15) ii) is satisfied.
To prove (15) iii) we use the fact that by (16) the spectrum of each dfis con-
tained in [n2m (n+ 1)2n) and, consequently,
S*Qm may 12 ®d+ Anax, |B*cp™\ =

= max_\D,onm\+ max_S*g"'m= Al+A2.
6S1<s3” GUMke23"
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Since the spectrum of ghts lies in [0, 2n), by (10) for A2we get

Thus
{S*OQm> 2m\ = 0 > M)i= |{i>*07rm > m}| = {L>* > m}\,
where

D*(x) = sup \Dn(x)\ g x_ 0< X<

(compare (9)). Hence (15) iii) follows and the Lemma is proved.

3. Proof of the theorem

Using the Walsh—Kolmogorov polynomials we can construct a function F
with the required properties.

Proof of Theorem 1 Let en-»0 be a decreasing sequence of positive
numbers such that
a7 &) = £,logzlog2n  («S 4)
and set
_ o nm
fn = o(n) (nEN).
Then Bn—+° as m— and we can choose an increasing sequence (V,, NEN)
of indices with ws4 such that
g 1
(18) 2y
and for /,=227 (nEN) the following properties hold:
i) B, = ~2BinH
(19) U -fa <i (iICN).
iii) nZO £, < 00

The function F is defined by

n=0 vn

Conditions (18) and (15) i) imply that this series converges in L-norm. By definition,
the Walsh spectrum of Q\h satisfies

(20) spec (Mt Qv,) ¢ W'+ 2™ ++HVHy,) ¢ [27MH, 2 AV HLH]
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366 F. SCHIPP

therefore the series in question is the Walsh—Fourier series of F. Furthermore,
from (15) ii) it follows that
SIE,P \SkKF—StF\ gc >0

and, consequently, the Walsh—Fourier series of F diverges everywhere on [0, 1).
To verify FgH®(H) we use 2V+:V,<2a-+1 and Qv,=0 to see that

F*S ¥ 9\/'
0\,
Decompose [0, 1)=F*U(2 A)» where
E* :Iilﬂk_%]p {Q\LI:'-O}
E, = {Qv,>0 and Q\= 0 for all k >mri)

for «EN. Recall that <, only takes the values 0 and 2. Consequently, the defini-
tions Enand R,, imply that

and

Zel i 22, = ZRIk,
k=0 k=0
where y£is the characteristic function ofthe set FE[0, 1). Since by (19) ftee

and Ri,,<-~2 we "ave
Xe,,F*"* 2BIn< /,

for each «<EN. But (15) i) and the fact that Q,,nonly takes the values 0 and 22 implies
own* 0H=2-2/=i-.

Consequently, |F,,|*l//n and |F*|=0. Therefore, it follows (see (19)) that

fIF*(t)4>(F*(i))dt = 2 f F*(t)<P(F*(t))dtS

=2 2RinHQ\En=2 2 k — -
N~o N—o
Thus, it remains to prove that S*Fis finite a.e. To this end observe that by (20)
21 S*FAF* +sup " %"~
and since TEH®(H), we have that F* is finite a.e. To estimate the second term set

Hn= S™QMI A 23 = fs*Qn> 2y}
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ON BOUNDEDLY DIVERGENT WALSH—FOURIER SERIES 367

for neNand let A *=BJOkgtt By (15) iii) 0 Consequently, |A+ =0

and the second term is finite off A*.
Thus, Theorem 1 is proved.
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HERMITE AND HERMITE—FEJER INTERPOLATIONS
OF HIGHER ORDER. Il (MEAN CONVERGENCE)

P. VERTESI* (Budapest)

To Professor A. Sharma on his 70th birthday

Weighted U convergence of Hermite and Hermite—Fejér interpolations of
higher order on the zeros of Jacobi polynomials is investigated. The results which
cover the classical Hermite—Fejér case give necessary and in many cases sufficient
conditions for such convergence for all continuous functions. Uniform convergence
is considered, too.

1. Notations. Preliminary results

General notations. The symbols “const”, “c”, “c ”, etc. denote some positive
constant being independent of the variables and indices. In each formula they may
take different value. The symbol means as follows. If A and B are two expres-
sions depending on some variables and indices then

A~B iff \A/B\*cx and \B/A\“c2.

C and Lpspaces. Let C denote the set of continuous functions on [—1, 1] with
the usual norm
o = max |/(X)].

Sometimes we use the notation ||/||[ab]:= niax" |/(x)|, /EC, [a h]c[—L 1]
Further /gLp, o <p<oo iff

o = (f \f(X)\peX)IR < 0
-1
where A=max(l,p). If 0<p<l, | ||pis a distance, not a norm, but we keep
this notation for convenience. It satisfies

W h = cgRW\\p, [|/+g|lp  Ip+ligllp,
b
whenever f,gELp. As above, WfWp.ia.bfMf I/1p IR

Hermite—Fejér interpolation of higher order. Let X {xkn=cos 9ki}c [ -1, 1],

(1.1) -1 = *rB< <eeo< XINP 1, N=1,2, ..,

* Research supported by Hungarian National Foundation for Scientific Research Grant No.
1801.



370 P. VERTESI

be an infinite triangular interpolatory matrix. We consider the unique interpolatory
polynomials Hhm( f X,x) ofdegree Smn —I for ffC defined as follows:

Him(f X, xk) =f(xkn), 1SkSn,
(12 H LW X xk)=0, 1 I"m-1 1—Kk=ny
m=1,2,.. Iisfixed; if m = 1, we prescribe the function values only.

By definition, Hnl are the Lagrange-, 1,2 the Hermite—Fejér, and Hni the so called
Krylov—Stayermann interpolatory polynomials. By (1.2), Hm can be written as
follows:

(1-3) HM(/, x) = 2 f(xkyhkm(x), n= 1,2,..,

where the polynomials hk of degree exactly nT— are

(14 LW =CW 2 eikm(x-xk), 1Sk n
Here the coefficients eik can be obtained from

I'knmixl) = Ok, \Sk, 1S I
(1.5) K$T(x,) =0, \'SK, Is n 1sts m -1,
if m—1, we omitthe second row;

further, lkn(x) are theI_ILagrange fundamental polynomials of degree exactly n—i,

i.e. with w,,(x):=c,, JJ (X-x*,,),
k=1

0),,(X)

(16) k() =) (e n

Here and later we use some obvious short notations: e.g. we write Hm{( f x), Hhm(x)
or Hmfor Hhm{ f X, x); hkm(x), lik,,(x), hk(x) or hk for hknm(X, x), etc.

Hermite interpolation. If / (m~1)s C, the Hermite interpolatory polynomial
L, x) of degree Smn—1 based on the nodes (1.1) is defined by

(f X,xkn) =/« (x3, \sksn, Osts in-1

They can be written as
U+ n
rfdm(> X, x) = f?o kgl/ Qw3 Knm(x,x), 111= 1,2,...,

where, by h”Anm(xJ)=5ti8kJ, we write
[y—T. V ma—t
A7) hkmX.x) = IM X ) 20280 " et x -x ky, Ostsm-I.
1e i=0
Here Jb*=/T* and eoik=eik (cf. (1.4)), further

(1-8) fi,ta = iorhm- f=10,1,...,m-I1-f, 0&é(5u-1.
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Relation (1.7) can be proved by induction with respect to t using the conditions for
K (cf. [z, 3.1]).
By definition, for PE2Pm x (= the set of polynomials of degree “mn —1)

m—1 n

(1.9 P(x) = XXm{P,X,x) = HM(P ,X ,x)+lgl kg; P (,)(xk)hlk(x).

Jacobi polynomials. w=w(w is a Jacobi weight function with parameters
a, B (shortly weJ or wt/(oc, R)) iff
(1.10) w(x) = (1-x)“(+a:/, a,/?>—, X" 1.

The corresponding system of orthogonal Jacobi polynomials is denoted by
{p.,,(W)}% i.e. p,,{w)=y,,(w)xn+lower degree terms, vy, (W > o and

1

[ Pn(w)pNw)w = M n, N &0.
-1

The zeros of pn(w) are xkn(w) and they are ordered so that
-1 < X, <...< xnw) < XIn(w) < 1

2. Results

Let > m 7 m and 7 T m=l1, 2, .... State-

ments concerning the uniform convergence of Hm(f) to / show that a, R*Am
are necessary conditions (cf. P. Vértesi [7]). This is why we suppose them from
now on.

Let y=min (a, 8) and I =max (X, B).

The process H,m
Theorem 2.1. Let m=2,4, ..., befixed, even, p>0, uptJ, wEj(ot, B) and

(2.1) () y=sCn or (2) Am=y<C, and -y =£2/m.
Then

(22 Jim ||(tf(/, w)-/)w|[P=0o V/ec

7

(2.3) v(x) ;—----H-Q.‘.D\' XZ eTp

Further using
(2.4) ° < 2 if K m,
(2.2) implies (2.3). Here K=TT1{K,n—+\), M isfixed.
Remarks 1 Conditions (2.4) say that the order ofthe corresponding coefficients
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is as big as it could be (cf. (1.8), (3.5) and (3.6)). They were verified very recently in
R. Sakai, P. Vértesi [s].

2. If m=2 (when, as it is well known, ewk2= 1) the result was proved using
another approach in P. Nevai, P. Vértesi [3, Theorem 5] even for weGJC (i.e.
w=wxg, w”J and g>o, g'ELip 1+ on [—, 1]).

However the method applied here has some advantages, (a) It does not use results
on mean convergence of Lagrange interpolation demanding a rather fine technique
(cf. P. Nevai [2; Lemma and Theorem s] and [3, Theorem 5]). (b) The proof directly
works for each fixed /?>0 (cf. [3, p. 57]).

Our direct approach is based on the precise pointwise estimation of 2 \Kk(x)\
taking shape in Lemma 3.2 (cf. (3.2), too). Using Lemma 3.2, one can prove mean
convergence on subintervals, too. The efficiency of Lemma 3.2 shows that at the
estimation of atk(f) h tk(x) we do not have to consider the possibly different signs
of htk(x) — a phenomenon which certainly does not occur taking odd values of
m (cf. [2], when m =1, i.e. Lagrange interpolation).

3. Let wArGJC. While our method works in this case, too, if m—2 (cf. [3>
Lemma 2]), the relations (3.5) seem to be difficult to verify whenever m>2.

The process X

Theorem 2.2. Let m=2,4,..., be fixed, even, p>0, upEJ, wfl(a, B) and
suppose (2A). Then

(2.5) lim [|Gfm(/, w)-flu\p=0 V / with /<—«EC,

if (2.3) holds true.

Using Lemma 3.2 we can obtain results on uniform approximation, too (cf. [7]).
Namely let —L<>x 1. Then

Statement 2.3. Let m=2, 4, ..., befixed, even, and suppose (3.7). Then
(2.6) HHm WK,T(/, w)-f\ign =0 V/ with /(m)sC
if a<Bm

Using p”'P)(x)=(—)"pitpx)(—x) ([4, (4.1.3)]), we obtain analogous results
for [—, a], and finally

Corollary 2.4. Let m=2,4, ... be fixed even numbers, and suppose (2.1).
Then
2.7 Aim Wi f w)-/|| =0 yf with /<"+1>€C
if T"BT.

Remarks 1 Uniform convergence of Hnm(f) to / can be obtained, too (cf.
Propositions 2.3 and 2.4). The results slightly improve [7, Theorem 2.1] namely,
[7, (2.1) and (2.4)] can be replaced by afE[Am Bm) and a—{I*2/m, respectively.
The proofis analogous to that of Statement 2.3.

Again we get nearly the same necessary and sufficient conditions for Hrmand M.

2. The previous Remark 3 holds true for >XTn, too.

3. For theorems of “iff” type see P. Vértesi, Y. Xu [9].
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3. Proofs

3.1. From now on, unless otherwise stated, we suppose that X=X{w@R)=
={Xkn(w)=cos 9*,,(V)}, k=1, 2,..., n, n=1,2,..., a,/?>-1.
Here with x=cos 9,

WP (X) = (1—)*(1+jd = qw.p)&) = 2at+isin2ay cosly , n, 8> —L
Using obvious short notations, we have
Lemma 3.1. With 90,=0, 9,#,,,=n and \Xj—x| ~*min" |*—

(3.2 3k+1'TH9,,
uniformlyfor Osfesn, ndN,

(3.2 [P.,(*) = Ip,,(cos3)|~

M

n\9-9j\
(wixfn-xjyiz

uniformlyfor —Sx=cos$~1 and ndN,

(3.3) WK\ = IK(Cos S\ " !

uniformlyfor 17°ks.n n£N.

Here (3.1) comes from [1], (3.2) from [s, Lemma 4.3], finally (3.3) is essentially
[4, (8.9.2)].

If Ki=min (k,n—k +1) and /:=min (J, n—+ 1), 1"k, j*n, by (3.1)itis
easy to get the following relations, frequently used later:

woxky (KPR LS K,jwon, K%,
(34) RINTI v En
sin 9k 1 WK N n,

uniformly for k,j and nEN.

Using Lemma 3.1 and the differential equation for the Jacobi polynomials
for X (*B>and anyfixed m 4 1, we have the relations

(35) \e Osknm\ = Cl{n, k, S), OAStS
where

if s=0,2,4,...,
(3.6) I(n,k,s):=

if s=13,5, ..

(see [7, Lemma 3.11]).
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Now we prove our basic statement.
Lemma 3.2. Let m=2,4, ..., fixed, further let

fl) &B=Cm or (2) a“Cm>B" Am and a—é 2/T or
1 13 BRACmxx"Am or (4 AmadalSC,.

If —1 I then uniformlyfor n and x

A oA logn
(3.8) AN\ "Iy T =37+ W) 1 —Ap i

x€[a, 1], t —0,2, ..., m—2,

log n .
+1, x£[a, 1], i=13 ..,w-1.

3.9
(3:9) ]%:ilAﬂk\M (VW(Xy) yr-xiymre2

Further, supposing (2.1), relations (3.8) and (3.9) holdfor [x|=1.

Proof of Lemma 3.2. First m—t be even, m—2, 3, By (1.7), (1.8) and
(3.6), for arbitrary |x| 31

] xAxENTT+ A fF+(4S ) St-
(nvx-xR Y * o (NXXRA2 oy
v sinS ) +1 sinSt ) sinz St J!
Here by (3.4) n\x—xj/sin &~(K+J)\K—J\K 1Sc, IcAj whence, writing
m— —t
r.J= q(i), we have q()Scq(2)s...Scq(m —t—2) and by q(2r+.) =

= (|x-Xt|/sin2St)

4(2r), q(1) S cq(3) =8..=Ecq(m-t-1).
So

|A<(X)]
On the other hand, if k=j we get q(i)*c for every i, whence
\ntIC)\ S ¢ IjAX)| Ix xj-1L

First we estimate htj(x). If x¢[xy+1, Xy, 1 —, say, and 4nS - Sy|=
SISy+i-Sy| h,j(x) can be handled as /i, y+i(x). If4n|s —Syl<[Sy+1—Sy],

[y' (X)] [x —Xy|f S ¢@/n2* ~ n~*sin'Sy

(cf. (3.4), the first term of (3.8)). The other cases can be treated analogously.
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To go further, by (3.3) we write

X (W(Xk))mZ(An Q) +2+ms2

(3.10) kgl \tk()\ = c\pn(x) 'L\KZ nt+2\x—xu

, (U'(.t))m2(sin 9%)(Hu2
* 2%k n‘+*\x-xki

Here and later 2 ' means that we omit the term k=j.

ji: Ap™Q)| (/x+/2, m- 7 iseven, m=223,....

First remark that by (3.7) a, R*Am. Now let x'ifl. Then by (3.10)

[3n/4] n | n (If/,\m(i+1/2)+t+2
/[,=s.Y'+ 1 ~-—S 7--NEEE-— —meeme- h
1 A *=&4] WA (k+j?(k-jY

m(/2+1/2)+i+2

+ if- o= + Si-
« + *LIVr)) SI+Si
Considering SV, we write
n im@+1/2) +f+2 1 [i/2]
Y_‘_ < Y W («+I1/2)+1+2 1|
fcei (k+mk-JY - f a K
2j ym(a+1/2)+i B
1l 2" — j 21 "m(*+1/2)+«-2 g c/ym(@a+l/2)+t*_nm(a+l/2)+i-1 JGg ~

ffr21 (K— Y K=27
using ffl(a+1/2)+ H-2sm(a+1/2) +2bO (by oc”Anm). By R*"Am m(R+1/2)+
+t+2sm(jS +1/2)+2s0O, ie.  can be estimated by So

m(a+1/2)+i IOg n

(3.11) oM i + , XS0, 7S0.
To estimate /2, again by (3.4)
" 1! m(/S+1/2) + f
c ", (k/m)T(atr) —Sad'S..

- TEA  (fery)ir- Ji nf+2t=ili]

By arguments similar to the above ones, further using that 7=0, 2, ... (m—t is
even, m is even)

f/ s\m(a+ 1/2)+1—1

-
los 2y+logwj ifig2 or 7=0and T(a+1/2)é -4,

if 7= 0 and m(a+1/2) < —,

j2nmeE+ 1/2)
if 7 2

SCce 'Og n if 7= 0 and m(R+12) S —1,
nemGu2—2 jf 7= 0 and m(B+12) < —L
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m(a+l/2) + <

logz2/ ()

lo
; + gn
n vl

ift=2ort=0and a, 8 £ Cm

whence by (3.10), (3.11), w(xj)~(j/n)-x and VI —j=sin 9j~j/n, we obtain (3.8)
when a,/?£CT.

If 7=0, m(oc+ I/2)£ —1 but m(B+1/2)<—1, for our new term coming
from  we have, using (3.2) and (3.7),

m(B—a)+2

ATM
fim(R +1/2) + 2 i m(B -j-1U42 (',,)

i.e. we obtain (3.8) for this case, too.
If 7=0, m(B+ 22)=— 1 but m(a+1/2)-= —1, the new term coming from S3is

Pn(x)

janmx+1/2) — jm(a+l2)+2 S- C

(by aEnLY i.e. (3.8) holds true.

Finally, if 7=0, m(a+1/2)<—1 and m(B+1/2)<—1, we combine the last
two cases to finish the proof of (3.8).

Now let m—t be odd, m=1,2, — By (1.7), (1.8), (3.5) and (3.6) for arbitrary
\x\sl

>« * [+ 17+ @S r )Ste

(n\x~xKV \x-xk
| sin9k ) sz | sinst 3 Y

m—I —k

If [.]:= 2 _ 0(0» then by

0(2r) = n*\x-xRq(2r-1)~\K-JWK+J\q(2r-1) ~cq(2r-1),
KAj, r=a1,2,...,(m-t-1)/2

and n\x—xjsin-1 9k*c, k*j, we getthat [,..]*cq(m——) which means

(n\x XkIYH_l
(3.12) \h KGO\ = TV \x - x K sin 9k

If k=j, then q(i)*c for all /, whence \htj{x)\ S A\1™x\\x—x/. This term
can be estimated as before. If k"j,

(W(XE))MI(sin 9K),+2-+112

* —_ T !
(3.13) k=1 RN dp W 41\ x-x K
m—t is odd, m= 1,2,
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Let x*a. Denoting the sum by 73, we write

, _ poi, A 1 (Al<re+1r,,+,+1
V3= 2y bk oaCl 2 e Ak

m@3+ 1/2) + 1+1
A 56+ i%5.
«r+1l léllAriL) ®

Using considerations as before further using that 1 (m—t is odd, m is even),
we get
Cc f I yn(@a+1/2)+( 1 j

Ss -7?-[logzy (n) +logT Se- CM ~

whence, by log 2/(f 1—*)f=clog n, we get (3.9).

Changing the roles ofa and R we get four other conditions and the corresponding
statements for [—1, a]. It is easy to check that (2.1) includes all the eight conditions.
This completes the proof for the whole interval [—1, 1. O

3.2. Proof of Theorem 2.1. Let >0 be fixed and take a polynomial Q such
that 11/—QH"e. Then

\Ne«ern(f,x)-F(x)\ ~ \Hm(f,x)-Q (x)\ + \f(x)-Q(x)\ ~
= \HI{f-Q, X\ +tmz:_1 kz_n  \QUAXRRK()\+e =

m—l n

o NOCO\EM 2. 2 \hk()\ve, n'S o

where M\— max || ()lF S° f°ranYfixed X and e>0 there is a constant M such
thatfor n”*n0(e)

(3.14) X, x)-f(x)\ ~ e[ié1 \hOk(X)\ + 1]+Mm_2_|1 k_2nI \h,k()\.
3.3. “(2.3)=»(2.2)". For x€[G, 1 by (3.14), (3.8) and (3.9)
(3.15) I9,,,,(/, X)-f{x) 1" r\ %:I\hok(x)\+ 11+M (:f3 -<g| \h,k(X)\ +

log
H “+ N qxin

+
logm r r+Iogn
N [(wxi)y1-xjp2+m] +i ( W) YT jp2)kn

log n 1 log n 1
C E+ . .
n (w(Xj) V'l-xj)mt2 n (j/l-jC))fT(a-llz)
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First let m(ct+1/2)—1SO. By vE£Lp we can choose ag, 0<@”1, such that
vl:=v/(Yl —x2eELA By the triangular inequality, (3.15) and I~ n/I1-~"'~¢

we have
|[(tFnm(/)-/HU[o,i] = c\eu\p+

+CIIIog» u(x) im r g
¥ )Y L(Fl-xs)n(+ik) AVIFX2)8 (MAxQ)1AJ ~J

e fm A -1

log n PR

= GWi+c Klip = cep/r+ 0( D).

If 1—mfa+yj=yl>0 with 0 £=1, we write

[I("m,(/)-Nwllp.to,i] = clleb]],+
poar Jpd™* R
M T n (nil-x*jy-s

\P/R 1

N eepR+C( M) (./ uP(x)dx)IR= cepR+ o(l).

Using similar arguments for the interval [—L, 0], we get (2.2).
34. “(2.2)=>(2.3)”. First let a+i=e>0. By (1.7), (1.8), (3.5), (3.6), (2.4)

and Lemma 3.1
1LHs-

(3.18) A(X) S EX)(X- x¥)|c (x- xt)] \ -

-2

X-XK n(x-xKim-+ V- 1 Loy -im
(sinsz) "“m  sin\ NAFANM(X)(X-X4N-(X-X,)]

uniformly for KAM, (x1+1)/2:=a,,Sx"b,,:=(x1+2)/3.
By (3.18), (3.5), (2.4), Lemma 3.1 and (3.12), we get as before

2 MO 0wy Iexfymla e e >
(319) 2 At = — |

(2) n-

2 AX)>o

(3)

uniformly for an~x~bn and nEN. Here 2 * 2 and 2 mean summation for
o @ ®
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K with (1) k=M, Osxk, (2) \SksM, (3) xk<0, respectively. If uJ(n,v), by
fl1(x)—x and (3.19)

. -1 D«* = 2 ~ f\2 K =
(3.20) Y-/ = 1 12 f1 2 Kipp

=c¢J \2 K\puper := gin).
n oy
By (2.2), £m(»—0, whence (2/i+ | —m(oc+ 1/2))p+2>0 i.e.

O+ 1/2)—y (a+l/2))p>-1.

So vpis integrable in [0, 1]. If a+ 1/2<0, we use a(x)s n¢) (X*O) and uflLp. The
argument for [—, o] is similar. O

3.5. Proof of Theorem 2.2. ITQis as thatin 3.2, further M= I"?"%ﬁ(—l | <26y — )1
we get, using Lemma 3.2 as at 3.2—3.3

(321) MO/ *)-/(*)sc[.+ loB" (or  xE[a, 1].

The remaining part is as that for Hm O

3.6. Proof of Statement 2.3. If we suppose (3.7), we get (3.21), whence if
atl/2so, x)~f(x)\ ;Sc(e+log ti/n), xE[a, 1], from where we obtain (2.6).
When a+1/2>0, by (3.21) \JIfnm(f, x)-f(x)\*c(e+nmx+Ne-1log n)=ce+o(l)
using a<j9m O
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