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WIENER’S TAUBERIAN THEOREMS FOR
GENERALIZED MEASURES DEFINED ON THE
DYADIC FIELD

K. YONEDA (Sakai)

The following Wiener’s tauberian theorems are very important in analysis

(see [6]).

Theorem A. If h is an L*-integrable function and lim h(x) =A, then we have

Jim (k) ) = A k(y)dy
for each kdL\—°°, °°).
Theorem B. When k1 is an integrable function, and

XIiIn (kx*h) (x) —A f kfy) dy
for each hdL°°(—°°, 00), then 2

SR00 = A i K()dy

for each kdL\—°°, °°) ifandonly if fcfx)~ 0 for each x (see [2], [5]J.

In this paper, we shall generalize Theorems A and B for generalized measures,
so-called dyadic measures or quasi-measures, defined on the dyadic field.

For details of properties of the dyadic field we refer to [7]. The dyadic field
is the set of all sequences (..., xt, ...) such that x,=0 or 1 and I,!im x(=0. In

[3] and [4], N. J. Fine investigated many properties of the dyadic group and the
dyadic field. In these two papers Fine defined the group operations -f and -.
The additive group of the dyadic field is a locally compact abelian group and its
characters are called Walsh functions. A Walsh function is defined by the following
equation:

Z Xy,
Wy(x) = (-1

where x=(...,xh...) and y=(...,¥3,..). When m is a dyadic measure which
is a generalized measure defined on the dyadic field, we can define the Walsh—Fourier
transform of m by the following dyadic measure m:

o
m(/,,(m) = v2"f W (x)m(dx),
0

1* Acta Mathematica Hungarica 43, 194



2 K. YONEDA

where /,,(X) is the dyadic interval of rank n containing x. m has the following
property: m=m. This definition contains the original definition of Walsh—Fourier
transforms.

If m and h are dyadic measures satisfying the conditions

(1) 2 Iwlpi2", (p+ 1)-721
and )
(2 supl/i(/,,(x))| «= @

for all n, then we can define the convolution m*h by
(m*h)[pl2*, (p+i)~/2 = 2 m[(p+K)I2", ((p+ K)+ 1)-/2rAh[/c/2", (fc+1)-/2"].
k=0

From condition (1), it follows that there exists a continuous function / such that
for each dyadic interval |

mil) = f /(x) dx,
|

and
(m*h)~(/) = J f{x) h(dx)
I

(see Theorem 2 of [7]).
Theorem 1. Let h be a dyadic measure satisfying
(3) fim h{In(x)) = A/2n

for all n where A isa constant and m is a dyadic measure satisfying (1). Then we
have
fim (m*h) (/,(x)) - Al2'm[0, )

for all n where m[O0, °°)=n|_§_rgo m[0, 2~n.
Proof. From (3), we have
[(m*h) [p/2", (p+i)-/2n]-A/2nm[0, °°)| =
im [(p +Kk)/2" ((p+ f)+1)-/2"]h[k/2n (fc+1)-/2"]-

-V 2 4 (p + 12 ((p+ 1)+1)-/20 = 2 m[(P+f/2n (p+ K +1)“/2"] »

{hiki2n (k+ 1)-12"]-A2" P 4 2

k

M {2 Im{ki2’(k+D-/2"]]}.

+

{mx \[K/2\ e+ 1)-/2°]|+ VI/2"}+{j  mif2%, (fc+ 1)-/2"]|)}.
A o5y, Ifer2w(fe + 1)-12" (fe+1)~/2"1-~2"} = /1+ /2.

Acfa Mathematica Hungarica 43, 1984



TAUBERIAN THEOREMS FOR GENERALIZED MEASURES 3
By hypothesis, for each e>0 we may take N so large that 72< &/2. Further,
for fixed N take p so large that /t-=fi/2. Therefore we have
(m*h) [pi2", (p+1) /2"]- A/2m [0, °°)|< e
Corollary 1 Iff isan LT-integrable function and satisfies >!_i*r_pof (x)= A, then

oo

0
for each g£L}[0, *°).

Proof. This follows immediately from the fact that f* g isuniformly continuous
on [0, “).

Theorem 2. When m1l is a dyadic measure satisfying (1), and
e Jim (wij*h) (/,, (X)) = Al2m1[0, °°)

for a dyadic measure h satisfying (2)for each n, then
5) lim m*h) (/,,(x)) = A/2m[0,

for a dyadic measure m satisfying (1) ifand only if f (xy 0 for all x where m}—mx.

Proof. At first we shall prove the necessity. Assume that there exists x0 such
that f (xo = 0. There exists a dyadic measure m satisfying #(xQ~0 where ms=ml.

Set
h(In(x)) = wx(y)dy.

his a dyadic measure satisfying |/1(/,,(x))[*1/2" for all x. h is the dyadic measure
which has mass 1at x0. Then we have

(m1*h)[pl2"AP+iri2n = 12" f wy(p/2nf(y)fi(dy) =
0
= 12" 1 (xQwx(p/2) = 0
if xCE[O, 2”"]. Moreover we have
2" wy(p/2*)f(y) fi(dy) = 0
0
if x,$[0, 2-"]. Therefore we proved that
(6) lim (m1*h) (In(x)) = 0/2m1[0, <w= 0.

On the other hand, for sufficiently large n the following equality holds:

2»-
(m* h) [pi2”, (p+1)“/27] = 1/2"(;‘ wy(p/2ng(y)fi(dy) = 1/2"g(x0Q wx(p/2").

Acta Maihematica Hungarlca 43, 1984



4 K. YONEDA

Hence we obtain

) Jim (m*h) (/,,(x)) = Jim 1/2"g(xQwXo(x) "~ 0.

(6) and (7) contradict the hypothesis. We proved that /(x) ~ 0 for all x.
Next we shall prove the sufficiency. Since mx satisfies (2), we can write

/(2"x) = ImJp/2”, (p+1)-12"Twp(X);

the last series converges absolutely for each n and x£[0, I-] and rhl=mf. Set
g(x)=1//(x). Sincef (x) 0 forall x, the Walsh—Fourier series of g(x) converges
absolutely (see [1]). Set in—ms. m satisfies (2). Then we can write

g(2"'x) = m[p/2", (p+1)-/12"]wp(x) (absolutely convergent)

p=o

for each n and x€[0, 1“]. Since ( and /(x)g(x)=1, mx*m has
mass 1at 0. Hence we have

(mI*h*m*m)(1) = (nix*m*m*h)(1) —(m*h)(l).
m*m satisfies

2_(m*m) [p/2", (p+D~2*1\ A (2 \m[k2, (fc+ 1)-/2"]) -

«iiimD72",04-1)-/2"]|)<=0.
V=0 >
ml1*h satisfies (5). Therefore from Theorem 1, we obtain
lim (m*h) (/,(x)) = lim (m*m*m1*h)(In(x)) = A/2"m1[0, °°)-(m*m)[0, ).
We easily get
m[0, co) = 2 WP/2", (P+1)_/2qwp(0/2") = g(0) = 1//(0) = 1/mJO, ~).
=0
Set '
Im[0, °°)-m[0, °°)—Mm™*m) [0, 2-iv]l = 2 m[k2N (fc+1)2w]-

e 2:fiU'2%,0"+1)2N-]- 2™[p2" (p+ )2ff-]m[p2* (p+1)2»-] =
p=o

=12 . m[P2\ (p+ |)2N—]m[p'2N (pT_|. 1)2*_] S [m[O, 2,\..]| _
{1 \fn[k2N (fc+D2"-1|}+ { i |m[/c2*, (fc+ D2*~]|}{JI Im[/2\ (/+ 1)2*-]|} =

= An-f S

Acia Mathematlca Hungarica 43, 1984



TAUBERIAN THEOREMS FOR GENERALIZED MEASURES 5

Since {2 >n[k2N (k+ 1)2N ]| is decreasing with N, we have

1k =1 >N

sup {2 [N o+ D21 = K <

in satisfies (2) for «=0 and

2\LL k2" (K+1)2"-]\* 2 |mffe,(fc+ 1)-]]

then we get

lim, 2. \m[k2N (<+1)2"-]t = 0,

Hence we can prove MQO AN=0. In the same way we shall getz\gg BN=0. We
proved that

(m*m) [0, °°) = m[0, *°)*m]0, ~).
Consequently we get

Jim (m*h) (/,(x)) = A”2"m1[, =) *m[0, *°) sm [0, ©°) = Aj2"m[0, *°).

Corollary 2. When Kkl is an integrable function, and

Jigy (k1) (x) —A £ fei (y) dy
for hEL°°[0, °°), then

Jim (fi* h) (a) = A f k(y)dy

for each kEI}O, °°) ifandonly if for all x.

References

[1] G. N, Agaev, A Wiener-type theorem for series of Walsh functions, Doki. Akad. Nauk SSSR,
142 (1962), 751—753.

[2] T. Carleman, L'integral de Fourier et questions qui sy rattachent (Uppsala, 1944).

[3] N. J. Fine, On Walsh functions, Trans. Amer. Math. Soc., 65 (1949), 372—414.

[4] N. J. Fine, The generalized Walsh functions, Trans. Amer. Math. Soc., 69 (1950), 66—77.

[5] S. Koizumi, Fourier Analysis (in Japanese) (Asakura, 1978).

[6] N. Wiener, Tauberian theorems, Ann. of Math., 33 (1932), 1—100

[7] K. Yoneda, Fourier transforms and convolutions of generalized measures defined on the dyadic
field, Acta Math. Hung., 42 (1983), 237—241.

(Received January 20, 1982)

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF OSAKA PREFECTURE
SAKAI, OSAKA

JAPAN

Acta Mathemalica Hungarica 43,194






Acta Math. Hung.
43(1—2) (1984), 7—12.

INVERSE LIMITS AND SMOOTHNESS OF CONTINUA

J. J. CHARATONIK and W. J. CHARATONIK (Wroclaw)

Relations between the inverse limit operation and smoothness of continua
are studied in this paper. Inverse systems with monotone bonding mappings are
mainly discussed. It is shown that smoothness of continua is preserved under the
inverse limits of inverse systems with monotone bonding mappings provided there
exists a thread composed of points at which the factor spaces are smooth; in parti-
cular it follows that the inverse limit of an inverse sequence of smooth dendroids
with monotone bonding mappings is a smooth dendroid if the corresponding thread
does exist.

Topological spaces considered throughout this paper are assumed to be compact
(thus Hausdorff, see [7], p. 165) and the mappings are assumed to be continuous.
By a continuum we mean a compact connected space.

The following notation will be used. {Xx/'A A} denotes an inverse system
of the topological spaces X x with continuous bonding mappings / Ag X B-~Xx for
any Aén, where A 16 A and A is a set directed by the relation 5 . We assume
that / AAis the identity, and we denote by X =Ilim {Xxf X3 A} the inverse limit
space. Further, nx:X —Xx denotes the projection from the inverse limit space
into the A-th factor space. In a particular case when A is the set N of natural numbers
with the natural ordering S we write {X‘f W= and n*‘ instead of {Xx, f M, A}
and A respectively, where /': Xi+1-*XI are bonding maps, and then {X1 :
is called an inverse sequence.

Given a point pfX —im {Xx, fX. A), we put px=nx(p)EXx and we write
P—{px}. If A=N, we write p= {{?*}. Obviously we have

@) / Ao(pd = PA for any ApEN with A" p.

A point p£X, i.e., a system of points pxdXx for nfNl satisfying (1) is called
a thread.

Let a continuum X be given. Consider an arbitrary decomposition of X
into two of its subcontinua A and B, i.e., X —AUB, and let r(A, B) denote the
number of components of ACIB less one. The multicoherence degree r(X) is
then defined by r(Af)=sup {r(A, B): A and B are subcontinua of X and AOB=X}
(see [6], p. 159: cf. [14], p. 83).

Let a point p£X be fixed. The hereditarily multicoherence degree r(X, p) of
X at the point p is defined by r(X, p)—sup {r(C): C is a subcontinuum of X and
PiC).

In other words we have r(X, p)=sup {r(A, B): A and B are subcontinua ot
X and p£AMB}.

A continuum X is said to be hereditary unicoherent at apoint pZX provided

Acta Mathematica Hungarica 43,194



8 J. J. CHARATONIK and W. J. CHARATONIK

that the intersection of any two subcontinua of X, each of which contains p, is
connected (see [8], p. 52). Thus a continuum X is hereditarily unicoherent at p£X
if and only if r(X, p)=0.

We have the following

Proposition 1. Let X denote the inverse limit ofan inverse system {Xx,f X3 /1}
of the continua X x. Let fcsO be afixed integer. I f there exists a thread p={px) such
that r(Xx,pX)Sk for each Agn, then r(X, p)~k.

Proof. Note that X is a continuum ([3], 2.10, p. 236; cf. [7], 6.1.18, p. 436).
Let A and B be subcontinua of X suchthat p£AIMNB. Put Y =AUB, and
gX3= where Yx=nxXY)c:Xx for each AE/l. Then {Yx g>R JT} is an inverse
system with surjective mappings gX3% and Y is the inverse limit of this system (see
[3], (2.8), p. 235; cf. [7], 25.7, p. 138). Further, we have pxEYx for each A6/
Let Cx=nxA)r\nx(B)<zYx and put hX3=gXACR. It follows from [3], (2.9), p. 235
that {C\ hX3 /1) is an inverse system having ACIB as its inverse limit. Since
nx(A) and n\B) are subcontinua of Xx both containing px, their intersection
CA has no more than k+ 1 components by assumption. So by Lemma 1 of [11],
p. 227, the intersection AIMB has no more than /r+ 1 components. Thus the proof
is complete.

Corollary 1. Let X denote the inverse limit of an inverse system {Xx, f X3 J1}
of the continua X x. | f there exists a thread p—{px}€.X such that X x is hereditarily
unicoherent at px for each AE/, then X is a continuum which is hereditarily uni-
coherent at the point p.

The authors do not know whether the assumption that the points at which
the continua X x are hereditarily unicoherent form a thread of the inverse system
is essential in Corollary 1. Thus one can raise the following

Problem 1. Let X denote the inverse limit of an inverse system {Xxf X3 J1}
of the continua X x each of which is hereditarily unicoherent at apoint and such that all
bonding mappings are onto. Does it follow that X is hereditarily unicoherent at
some point?

Recall that a continuum X is hereditarily unicoherent at a point p£X if
and only if for every point XEX there exists in X a unique subcontinuum px
which is irreducible between p and x (see [8], Theorem 13, p. 52). A continuum
X is said to be smooth at apoint p£X (in the sense of Gordh, [8], p. 52) if X is
hereditarily unicoherent at p and for each convergent net {a, ndD} (where
D is a directed set) of points of X the condition lim a,,=a implies that the net
{pan; n£D) of subcontinua of X converges to the limit continuum pa. The point
p is then called an initial point of X, and the set of all points at which a continuum
X is smooth is called an initial set of X and is denoted by I(X). If I(X)AO,
then the continuum X is said to be smooth.

A quasi-order on a set X is a reflexive and transitive relation. A quasi-order
on a topological space X is said to be closed if its graph is closed in XXX. If
a continuum X is hereditarily unicoherent at a point p, then the quasi-order S on
X defined by the condition xSy if and only if pxczpy is said to be a weak cut-
point order with respect to p ([9], p. 63). It is known that a continuum X which

Acta Mathematica Hungarica 43, 1984



SMOOTHNESS OF CONTINUA 9

is hereditarily unicoherent at a point pdX is smooth at this point if and only if
the weak cutpoint order with respect to p is closed ([9], Theorem 3.1, p. 65).

We discuss now some relations between smoothness of continua and the inverse
limit operation. We start with an example.

Let X be the simplest Knaster indecomposable continuum with one end point
(see [10], 8§48, V, Example 1, p. 204 and Fig. 4, p. 205). It is well known that X is
the inverse limit of an inverse sequence {X1f'}”, where X* is the closed unit
segment [0, IJand /': [0, 1]—0, 1] is a fixed mapping defined by /'(/)=1 —2/—1|,
i£[0,1], for each /=1,2, ... . Note that each continuum X * is hereditarily uni-
coherent at each point and it is smooth at each point, each bonding mapping is
open, and yet the limit continuum X is hereditarily unicoherent at each point while
it is smooth at none. So we see that smoothness of continua is not preserved by
the inverse limit operation, even if the inverse limit space is hereditarily unico-
herent at each point and if bonding mappings are very simple ones (in parti-
cular open). Therefore a natural question arises concerning conditions (on factor
spaces and/or on bonding mappings) under which the inverse limit continuum
is smooth at a point provided that the factor spaces are so. The following theorem
gives a partial answer to this question.

Theorem 1. Let X be the inverse limit ofan inverse system {Xxf X3 A}, where
Xx are continua and f X3 are monotone mappings. |f there exists a thread p= {px}
such that X x issmooth at px for each A, then X is a continuum which is smooth
at the point p.

Proof. By Corollary 1 the inverse limit space X is a continuum which is
hereditarily unicoherent at p. By Theorem 3.1 of [9], p. 65 for each AEA there
exists a closed weak cutpoint order  Awith respect to the point px. Define a rela-
tionS on | by xSy ifand onlyif xx” xyx foreach /.£A. Notethat S is transitive
and reflexive, i.e., it is a quasi-order. We claim that ~ is closed. To see this, con-
sider two convergent nets {xn\ndD} and {®;nED} of points of X having
points x and y of X as their limits respectively. Assume that xn*y n for each
nED. Thus xx=nx(x,,)"xyx=nx(y,,) for each AEA by the definition of thequasi-
order & on X. Since a net [xn;nE£D) of points in the inverse limit space X con-
verges to a limit point v if and only if the nets {xx\\nfD) converge to xx for each
AEN (see [7], 2.3.34, p. 119), and since each quasi-order ~x is closed, we have
xnényx for each AEA, and thus the claim is proved.

To complete the proof we need only to show that the quasi-order defined above
is just the weak cutpoint order with respect to p, i.e., that x*y holds if and only
if pxczpy. To this end let us take for XSp the partial mapping gX&=f X3pyR
from the unique irreducible continuum pfyR into the continuum Xx.

It follows from Theorem 4.1 (ii) of [8], p. 56 that gX¥pRy/R)=px/X so we can
consider the mapping gX&: pfy/R-~pxyx as a surjection. Obviously we have gX¥pf)~Px
and gX{yR)=yx. Since {n\X),f XAnk{X), A} is an inverse system ([3], 2.8, p. 235),
it can be easily verified that {p¥x gX3 A} is also an inverse system. Let L denote
its inverse limit. Obviously p,yEL. Further, L isa continuum which is irreducible
from p to y. Indeed, if M isa subcontinuum of L containing the points p and
y, then for each AEA the set nx(M) is a continuum containing px and yx and
contained in pyx Therefore n\M)=pxx by irreducibility of pxyx, whence by
[3], 2.8, p. 235 it follows that M=]]rn {pwxgX3 A}=L. Thus L—py, since by
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10 J. J. CHARATONIK and W. J. CHARATONIK

hereditary unicoherence of X at p there is only one continuum irreducible from
p toy ([8], Theorem 1.3, p. 52).

Furthermore, since {pxx, gX3 /1} is an inverse system, we conclude that the
condition xy , i.e., xx"xyx for each A (which means that pxxxczpxyx for
each /1), is equivalentto pxcpy. So the proof is finished.

The remainder of the paper deals with metrizable spaces only, therefore we
restrict the inverse systems to be considered as inverse sequences (cf. [7], Corollary
4.2.4, p. 324 for justification). We recall that the inverse limit of an inverse sequence
of metrizable spaces is metrizable ([7], 4.2.5, p. 325) and that the inverse limit of
an inverse system of continua (i.e. of compact connected topological spaces) is
a continuum ([7], 6.1.18, p. 436), whence it follows that

(2) the inverse limit of an inverse sequence of metric continua is a metric continuum.

By a dendroid we mean a metric continuum which is arcwise connected and
hereditarily unicoherent (i.e. an arcwise connected metric continuum such that the
intersection of each two of its subcontinua is connected). Nadler ([11], Theorem 4,
p. 229) and Bellamy ([2], Lemma 1, p. 192) have proved the following result about
inverse limits of dendroids:

Theorem A (Nadler, Bellamy). Let X denote the inverse limit of an inverse
sequence {X‘f =i where X* is a dendroidfor each i=1,2,....

1. If X is arcwise connected, then X is a dendroid.

2. If X is locally connected, then X is a dendrite.

3. If X1 is a dendrite and f I: X i+1-*X* is monotone for each /=1,2, ...,

then X is a dendrite.
4. If the mapping /': Xi+1-~X* is monotone for each /=1,2,..., then X is a

dendroid.

Recall that for dendroids the notion of smoothness presented above and due
to G. R. Gordh, Jr. ([8], p. 52) coincides with a previous one due to the first author
and C. A. Eberhart ([5], p. 298). Thus Theorems 1and A (Part 4) imply the following

Corollary 2. Let X be the inverse limit of an inverse sequence {X'/ F‘i
of the dendroids X' with monotone mappings /' : X i+1-*XI. If there exists a thread
p={p'} suchthat X1 issmooth at p* for each /=1,2,..., then X is a dendroid
which is smooth at p.

Similarly to a previous question (see Problem 1) the authors do not know
whether the existence of a thread composed of initial points of X * (i.e. of points
at which each X' is smooth) is an essential assumption in Corollary 2. Thus we have

Problem 2. Let a dendroid X be the inverse limit of an inverse sequence of
smooth dendroids with monotone bonding mappings. Is then X smooth?

Monotonicity of bonding mappings is an essential assumption in Corollary 2
even in the case when the limit continuum is a dendroid. This can be seen by the
following

Example. There exists an inverse sequence {XI, f J=i such that X* is a finite
dendrite, X‘cX i+l and /' is a retraction for each /=1,2,... whose inverse
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limit space X is a non-smooth (and even non-contractible and non-selectible)
dendroid.

Indeed, let An be the line segment joining (—L,0) and (1, 2~") in the plane,
for n—0,1,2, . and let T be the line segment joining (—1,0) and (1,0). Then

21=7U UOAnls a dendroid (the so called harmonic fan). Let D2 be the reflection

of D1 about the origin, and put X=D1UD2 (see [12], Fig. 1, p. 372). It is evident
that | is a non-smooth dendroid, and it is known that X is non-contractible
([13], Theorem 2.1, p. 838) and that the hyperspace C(X) of its subcontinua admits
no continuous selection ([12], Theorem 2, p. 372). For each /=1,2,.. put Dfi)=

—TU lIJ A,,, let DZi) denote the reflection of DXi) about the origin, and define
n=1
Xi=DYi)UDZi). Thus X 'aX isa finite dendrite foreach /= 1,2,... and we have

Fcrfclx...cf'cl'+lc...cl1= U X"

We define the mapping / “: Xi+1-*X" as follows:

JO,j) if (x,y)ex\
JOY) - 0) if (Qy)eX+H\X -

Thus f * projects the (/+1)-th line segment Ai+l in T>i(/+1) and its reflection
about the origin in D fi+ 1) perpendicularly onto T, and / ’ is the identity on the
rest. So f “: Xi+1-~X"* is a retraction. The equality X —\im{X\ can be seen
by Theorem | of [1], p. 348.

In light of the above example one can ask questions about conditions (regarding
the bonding mappings / 9 under which some other properties such as contractibility
or the existence of a continuous selection on the hyperspace of subcontinua are
transferred from X*‘ to X =]im (X1 f). Studying these and similar problems is
left for the future.

Let us keep our attention for a while on a very particular kind of dendroids,
nemely on fans. By afan we understand a dendroid having exactly one ramification
point (called the top of the fan).

Observe the following easy characterization of fans.

Proposition 2. A dendroid F is a fan with top p if and only if for every
two points x, yEF the condition pxC\py\{p}A O implies either pxcpy or pyczpx
(we consider here an arc as a degeneratefan whose top is an arbitrary point).

Theorem 2. Let X denote the inverse limit of an inverse sequence {X\f'Y fii
where X “ isafan and f | isa monotone mapping of X i+l into X foreach /=1,2, ....
Then X isafan (an arc or asingleton).

Proof. Letptbe the top ofthe fan X 1foreach/=1,2, .... Applying Theorem 12
°f[4],p- 32 we have f'(Pi+x)=Pi so that there exists athread p£X whose coordinates
n(p)= pl=Pi arejust the tops of the fans X*. It follows from Part 4 of Theorem A
that X is a dendroid. We will show that | is a fan with top p. To this end,
let x and y be two distinct points of X suchthat px Mp>"\{p}” 0 « Let g"pxf)
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12 J. J. CHARATONIK and W. J. CHARATONIK: SMOOTHNESS OF CONTINUA

Map\{p}. Consider the partial mappings g‘=f \pi+lxi+l and h‘= fpi+ly+1
of p,+lxi+l and pi+lyl+l into X*“ for each /=1,2,.... They are monotone
(see e.g. [5], Proposition 1, p. 307), whence it follows that g‘(pi+Ixi+l) is the
arc pXx*“ and, similarly, h'(pi+lyi+l) is the arc py* (cf. [14], Chapter 1X, (1.1),
p. 165). Thus we can consider the mappings g*:p'+x‘+l~pXx‘and h*:piHy,+1>
-*py* as monotone and onto for each /=1,2, ... . They preserve end points of
the arcs, whence we conclude that {g‘\pixi}fLl and {h,pYy3r=r are inverse
sequences, the inverse limits of which are the arcs px and py, respectively (see [3],
Theorem 4.8, p. 244). Thus we have gEpx‘M\py'\{p'} for each /=1,2,....
Since the X “ are fans, Proposition 2 implies that for every /=1,2,... we have either
pxicpiyi or py'cp\ Note that since g and h‘ are monotone and onto,
either the former inclusion holds for all /=1, 2, ... or the latter one is satisfied for
all /=1,2,.... In the first case we have pxcpy, in the second one the inclusion
pyapx is true; therefore X is a fan with top p by Proposition 2.

The next corollary summarises some results on inverse sequences of dendroids
with monotone bonding mappings.

Corollary 3. The following properties are preserved under the inverse limits of
inverse sequences with monotone bonding mappings: (a) to beanarc; (b) to be a dendrite;
(c) to be a dendroid; (d) to be a smooth dendroid, provided that there is a thread of
initial points; (e) to be afan; (f) to be a smoothfan.

Proof, (a) see [3], Theorem 4.8, p. 244; (b) [11], Part 3 of Theorem 4, p. 229;
(¢) [2], Lemma 1, p. 192; (d) Corollary 2; (¢) Theorem 2; (f) see (d) and (e) above and
note that the existence of a proper thread is shown in the proof of ().

Results of the present paper will be applied by the first author in a forthcoming
paper to the construction of a dendroid composed of endpoints and of ramification
points only.

References

[1] R. D. Anderson and G. Choquet, A plane continuum no two of whose nondegenerate subcon-
tinua are homeomorphic: an application of inverse limits, Proc. Amer. Math. Soc., 10
(1959), 347—353.
[2] D. P. Bellamy, An interesting plane dendroid, Fund. Math., 110 (1980), 191—208.
[3] C. E. Capel, Inverse limit spaces, Duke Math. J., 21 (1954), 233—245.
[4] J. J. Charatonik, On fans, Dissertationes Math., 54 (1967), 1—40.
[5] J. J. Charatonik and C. Eberhart, On smooth dendroids, Fund. Math., 67 (1970), 297—322.
[6] S. Eilenberg, Sur les espaces multicohérents I, Fund. Math., 27 (1936), 151— 190.
[7]1 R. Engelking, General topology, PWN 1977.
[8] G. R. Gordh, Jr., On decompositions of smooth continua, Fund. Math., 75 (1972), 51—60.
[9] G. R. Gordh, Jr., Concerning closed quasi-orders on hereditarily unicoherent continua, Fund.
Math., 78 (1973), 61—73.
[10] K. Kuratowski, Topology, vol. Il, Academic Press and PWN 1968.
[11] S. B. Nadler, Jr., Multicoherence techniques applied to inverse limits, Trans. Amer. Math. Soc.,
157 (1971), 227—234.
[12] S. B. Nadler, Jr. and L. E. Ward, Jr., Concerning continuous selections, Proc. Amer. Math.
Soc., 25 (1970), 369—374.
[13] L. G. Oversteegen, Non-contractibility of continua, Bull. Acad. Polon. Sei., Ser. Sei. Math.
Astronom. Phys., 26 (1978), 837—=840.
[14] G. T. Whyburn, Analytic Topology, Amer. Math. Soc. Collog. Publ. vol. 28, 1963.
(Received February 24, 1982)
INSTITUTE OF MATHEMATICS
UNIVERSITY OF WROCLAW
PI. ORUNWALDZKI 2/4

50-384 WROCLAW
POLAND

Acta Mathematica Hungarlca 43, 1984



Acta Math. Hung.
43(1—2) (1984), 13— 16.

ON THE JACOBSON RADICAL OF
ASSOCIATIVE 2-GRADED RINGS

A. SULINSKI (Warsaw) and J. F. WATTERS (Leicester)

In this note definitions of the Jacobson radical of 2-graded rings are given which
are analogous to the usual definitions for associative rings in terms of maximal
modular one-sided ideals and of primitive ideals. We show that these definitions
lead to the same ideal and are left-right symmetric. The relationship between the
Jacobson radical of the 2-graded ring and that of the associated associative ring is
also investigated.

Preliminaries

Recall from [1] that an abelian group G which is the direct sum of fixed sub-
groups GO and Gx is said to be 2-graded and we write G=(G0,G1). The elements
of Gj, i=0, 1, are called homogeneous and if 0*a£G( then i is called the degree
of a By convention 0 has degree 0 and 1 A graded subgroup H =(#,,, #i)
has Ho"G 0 and H1QG1 If {Hx} is a family of graded subgroups, then n m
is the graded subgroup K=(KO0,KI) with AC=f]Ho and Kx=f]Hx.

X X

A 2-graded abelian group R=(RO,RX) is a 2-graded ring if an associative
multiplication is defined for all homogeneous elements a”“Rh byERy such that
ciibjZRi+j, i,j£ {0, 1} and i+] is addition modulo 2; we also require this multipli-
cation to be right and left distributive with respect to the addition of elements of
the same degree. For brevity we shall refer to 2-graded rings as graded rings.

If A—(AQ, At) and B=(BO0, Br) are additive graded subgroups of the graded
ring R we define the homogeneous subgroups Afiy, (At. <By) and (Ai «. By) as follows:

A,Bj aikbJkm GikdAj, by¥6By}  R;y,
where the summation is finite;

(A'. By) = {r<fR: rByg At} A Ri+J;
and
(At\Bj) = {r€R: Byvc At) 4 RI+J;

in all cases with i,j(z {0,1} and i+ being addition modulo 2.

An additive graded subgroup 1= (10,li) will be called a left ideal of R if,
for all i,j, RjyQli+y. Right ideals and ideals are similarly defined. Note that
if / is a left ideal of R then 70 is a left ideal of RO and AQ(I0“.Ri), so /g
g (/0, (/o’.Ri)) which is a left ideal of R whenever /,, is a left ideal of RO.
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14 A. SULIStSKI and J. F. WATTERS

We will write
lg—(/o. RN(4. R{) —{a0ZRO0: aORi g /+» for i= 0, 1},
A= (/,,.*AjniA = {ai€Ai: fliA, g /,+1 for /- 0, 1},
and / = (=5 ).

If / isaleftideal of i? then it is easily verified that / isan ideal of J?. Further-
more, if /sf isan ideal of R and KQI, then KQ I for KARjAKi+j rf+].

Modular left ideals

We define a left ideal / of the graded ring R=(R0, RX) to be modular if there
is an element e6R0O such that x —xe”l for every homogeneous element x of R.
Of necessity we have e£R0 so that x —xe is homogeneous.

Proposition 1 If 1 is a modular left ideal of R, then (f.-RQQf for
j—0, 1and | isthe largest ideal of R contained in 1.

Proof. If afff-.«RffRj then a—aedlj whilst ae£(lj.sRORO"Ij. Hence
(1j.sROQIj and so /a/. We have already noted that 1 contains every ideal of
R within | and this proves the proposition.

The left Jacobson radical JfR) is defined to be M{M\' M is a maximal mo-
dular left ideal of R}. The right Jacobson radical Jr(R) is defined similarly. From
the definitions it is clear that Jt(R) and f(R) are ideals of R. These definitions
are analogoues of the definition of the Jacobson radical in rings in terms of primitive
ideals. Again by analogy we define Tt(R)=MN{M: M is a maximal modular left
ideal of J?}. Since N/gN/ itis clear that Ji(R)g T fR). Our aim is to establish
the opposite inclusion by characterizing the maximal modular left ideals of R.

Proposition 2. If M =(M0,M,) is a maximal modular left ideal of R, then
MO is a maximal modular left ideal of RO.

Proof. From the definitions it is clear that MO is a modular left ideal of RO.
If MO=RO then RIM0=R1IROQM1 and Rtg (M1l.«ROEM | by Proposition 1
so that M=R. Thus MO RQ If KO is a left ideal of RO properly containing
MO, then K =(KO, Mx+ R’K0 is a left ideal of R properly containing M. There-
fore K=R, KO=R0O, and MO is maximal.

Propositions. Let 10 be a modular left ideal of RO where R=(R0O,RJ is
agradedring. Then | =(/0, (10".iy) isa modular left ideal of R and if K —(10, Kr)
is a modular left ideal of R, then KQI.

Proof. With the usual notation put L1=R1I—e)+RII0. Then L=(I0,LY)
is a left ideal of R (observe that RIL1fR Q\—e)+10QI0 since i?Q[l —e)fI0
by modularity). By construction L is modular.

For any left ideal K=(1QKY we have R"A"Q f. Thus Kx* (/,,’.4r) and,
in particular, Lxg (/0’.Rf.

From RIRUOQ™I0 we deduce that R1I0Q(I0'. Rf. Also R*Rflo". jy] g/0
implies that J2/0". jyg(70'.Jy. The inclusions RQOg I0 and Ri(10". jy g/0
are clear. Therefore | is a leftideal of R and | is modular since LQI.
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Theorem L M =(MO,MX) is a maximal modular left ideal of the graded ring
R=(RO,RX ifand only if MO is a maximal modular left ideal of RO and Mx=
={Mf.RX.

Proof. If XX is a maximal modular left ideal of R, then MO is a maximal
modular left ideal of RO from Proposition 2and M X=(MO0",RX from Proposition 3.

Conversely, if MO is a maximal modular left ideal of RO, then M=
=(MO, (M0'. RY) is a modular left ideal of R by Proposition 3. If M is not
maximal then there is a proper modular left ideal N —(NO, Nx) with MOf=NO
and (MO'. JOQNx but Nz)M. If NO=MO then N=M from Proposition 3.
Hence NO=RO. But then, arguing as in the proof of Proposition 2, we have N —R.
Thus M is maximal.

The radical

It is clear from the definition of Tt(R) and Theorem 1that Ti(R)=(J(RO, TX
where

Tx=M¢mo". RX: m o is a maximal modular left ideal of RC}
={@ERx:RxaxQ rwo=/(*,)} = (J(RO * RX.

Likewise TrHR)=(J(RO, (J(RO.'RX). To show that T{R)=THR) we prove
first that TER)=J6K).

Theorem2. I,(0K)=/rOK).

Proof. The inclusion JI(R)&T I(R) is immediate from the definitions and
Proposition 1

Now suppose that M=(MO0, MX is a maximal modular left ideal of R and
Tt(R)<fM. If TORj<fMj and TxRjQM 1+ forall j, then TOgM Oand TXQMX
Hence, for some i and j, we have an element xdrj Wwith Tix% mi+j, in parti-
cular xswmj.

Consider the left ideal N=(MO0+TjX, Mx+ TJ+1x) of R. Since T(x% M 1+3
we have NzdM. Hence N=R by the maximality of M. From MO+TjX=R0
and Mx+TJ+Ix=Rx we deduce that mj +TOx=Rj. Therefore x—axdMj for
some a£TO0. But Tn—J(Rn so a has a quasi-inverse afTn and (1—a")(x—ax)—
=xEM], a contradiction. Thus Ti(R)QM and Ti(R)=J{R).

Theorem 3. Tt(R) =THR).

Proof. From Theorem 2 we have that Ti(R)=(TO, TX) is an ideal of R.
Hence TXRXQT0=J(R0O. Therefore TXQ(J(RO.'RX so that T,(R)QTHR)
and, by symmetry, Ti(R)=TrR).

We now consider the class of graded ringgs f= {R:J(R) =R} where J(R) =
=JI(R)=JrR). If REf then J(RO=RO0. On the other hand if J(RO=RO0, then
RIQJ(RO so RXQTX and J(R)=R. Therefore f={R: J(RO=R(. It now
follows from the known properties of the Jacobson radical in associative rings
that Y is homomorphically closed, J(R)(if for any graded ring R, and if | is
an ideal of R with then 1QJ(R), and finally f(R/f(R))=0 for any graded
ring R. Thus B determines a radical property for graded rings in accordance
with the definition of such properties given in [1].
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The associated associative ring

Whenever we have a graded ring R we can define an associative ring S(R)
on the additive group RO® Rx by defining a product

(ao, (i) (b0>ifi) = (a0b0+ albl, aOh*+a”o).

We now prove that S(J(R))QJ(S(R)) and give an example to show that this
inclusion can be strict.

Theorem 4. S(J(Rj) QJ(S(R)).

Proof. Note first that S(J(R)) is an ideal of S(R). Let (a0, a)£5'(/(i?)).
Then al£J(RO and al0=alO+al—ald®m1£J(RO where d0 is the quasi-inverse
of a0, that is a0+d0—a0d0 — 0. Let d0 be the quasi-inverse in RO of a0. Nowit
can be verified that (b0, bl) is a right quasi-inverse of (a0A) where ba=adQ@(albl)
and bx=(1 —60)(aiab—ar). Hence S(J(R)) is a right quasi-regular ideal of S(R)
and so S(J(R))QJI{S(R)).

Example. Let F be a field and G= {a: a2=e), the cyclic group of order 2.
Set S —FG, the group algebra. Then S —RO®R1 with R0=Fe and Rl=Fa
Thus we have a graded ring R=(R0,RJ with S(R)—S. For this graded ring
J(R)—0 since J(RO=0 and (J(RO'. Ri)= i?lr1=0}=0. However if
char F—2 then J(S) —F(e+a)*0 and the inclusion S(J(R))c:J(S(R)) is strict.

References

[1] A. Sulinski, Radicals of associative 2-graded rings, Bull. Acad. Polon. Sei. Sér. Sei. Math. Astro-
nom. Phys., 29 (1981), 431—434.

(Received March 12, 1982)

INSTITUTE OF MATHEMATICS,
UNIVERSITY OF WARSAW,
PKIN, 00-901,

WARSAW, POLAND

DEPARTMENT OF MATHEMATICS
THE UNIVERSITY,

LEICESTER, LEI 7R"

ENGLAND

Acta Mathematica Hungarica 43, 1984



Acta Math. Hung.
43(1—2) (1984), 17—24.

ON COHOMOLOGICAL DIMENSION AND THE
SUM THEOREMS

S. DEO (Jammu) and R. A. SHUKLA (Allahabad)

1. Introduction

Let X bealocally paracompact space. Then it always admits a paracompactify-
ing family @ of supports with its extent as X, viz. the family of all those closed
subsets of X which have a paracompact neighbourhood in X. In this paper all
spaces are assumed to be Hausdorif and a “module” does not necessarily mean
“unitary module”. Suppose L is a ring, and for any sheaf sd of L-modules on X,
let Hg(X, sé) denote the sheaf cohomology of X with supports in @®. Then the
smallest integer n (or =») such that H4{X, sf)=0 for each sheaf sd on X and

is called the cohomological dimension of X and is denoted by dimL(X). It
is well-known that dimL(X) is independent of ® [3, p. 74]. The above definition
of cohomological dimension is essentially due to H. Cartan [5] and it is this cohomo-
logical dimension of a paracompact space X which has been of much use in the
cohomological theory of topological transformation groups [2,4, 9. The main
objective of this paper is to obtain all forms of sum theorems for the above dimension
for locally paracompact spaces. Some results of Quillen [13] turn out to be straight-
forward corollaries of these sum theorems or of the method of the proof used in
proving them. The basic tool for proving these results is a well-known theorem
which characterises dimt {X)=n in terms of existence of a soft resolution of length
n for each sheaf on X. This characterization is analogous to the characterization
of left global dimension (1. gl. dim L —n) of a ring L in terms of existence of an
injective resolution of length n for each left L-module C [10, p. 202].

In 1954 Cohen [6] defined a cohomological dimension of a locally compact
space X with respect to a non-zero coefficient group G as follows: Cd (X, G)"n
iff Hc(U, G)=0 for each m>n and each open set U of X. Here H* denotes
the Alexander—Spanier cohomology with compact supports. If L is a P.1.D.
then it is a theorem of Floyd—Grothendieck that for a locally compact space X,
Cd (X, LAdim” (X). Motivated by Cohen’s definition, Okuyama [12] gave the
following definition of cohomological dimension: Let H*(X, G) denote the Cech
cohomology of X with coefficient in a non-zero abelian group G. Then the smallest
integer n such that for each m”n and each closed set A of X the map
i*: Hm(X, G)-~HmA, G) induced by the inclusion map i: A—T is onto, is called the
cohomological dimension of X and is denoted by D(X, G). He also shows that
if X is paracompact and locally compact then Cd (X,G)—D(X,G). One form
of sum theorem for Cd (X, G) was proved in [6] for a locally compact space X and
if X is paracompact then other forms of sum theorems were proved for D(X, G)
in [12]. Now the sum theorems for dimL{X) cannot be deduced from those for
D(X, L) even if X is assumed to be paracompact. As a matter of fact for para-
compact X and for any abelian group G we have D(X, G)sdimt (X) and whether
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or not there will be an equality when G—L is an open problem. We discuss these
matters in Section 3. In Section 4, first of all we prove some results about the soft-
ness of sheaves which directly yield the sum theorems. These results are stated more
generally in terms of ®-dimension for any paracompactifying family @ of supports.
For locally paracompact spaces the sum theorems are simple corollaries. When
X is locally compact, Cohen’s sum theorem for Cd (X, L)=dimL(X) becomes
a special case of one of our sum theorems.

The authors are thankful to the referee for suggesting an improvement in the
proof of a Proposition.

2. Preliminaries

First of all we recall Cartan’s definition of cohomological ®-dimension of
a space X where @ is a paracompactifying family of supports on X. For any
ring L, let si denote a sheaf of L-modules on X and HE(X, si) be the sheaf
cohomology of X with supports in @®. Then the smallest integer n (or °°) such
that HX, si)=Q for each i>n and each sheaf si of L-modules on X is called
the cohomological ®-dimension of X over L and is denoted by dim0 L(X). It
turns out that if ®, W are two paracompactifying families of supports on X having
the same extents then dim<}L(A)= dim,i,iL(A) [3, p. 74]. Thus if X admits a para-
compactifying family & of supports, such that E(cp)=X, then we can define the
cohomological dimension of X over L, denoted by dimt(X), to be dim®:L (X).
Locally paracompact spaces, which include all locally compact spaces and all para-
compact spaces, form such a class for which dim*, (X) is always defined. However,
if @ is not paracompactifying or its extent does not equal to X then dim0 L(T)
may turn out to be different from the desirable one [7, 8]. Let us recall that a sheaf
si on X is said to be ®-soft if each section of si defined on any member of
@ has an extension to the whole X. If @ is the family cld of all closed subsets of
X then a ®-soft sheaf is said to be soft. We follow [3] for various sheaf theoretic
standard definitions, notations and results.

Now let us recall [10, p. 202] that for any ring L the left global dimension of
L~n ifand only if for each left L-module A whenever

O-A-"X~"AX, -...- -0

is a resolution of A of length n by left L-modules and each Xt is injective,
i=0, 1, ...,n—1 then X, is also injective. A characterization of dim0 L(X)
for paracompactifying family similar to the above one is [3, p. 73] as follows:

Theorem 2.1. Let @ be aparacompactifyingfamily ofsupports on a space X.
Then thefollowing statements are equivalent:

(@ dimOiL(X)Sn.

(b) For any sheaf si of L-modules on X if § s i —j§S7-1»
“m£n—+0 is a resolution of si in which if' is ®softfor each i-*n then ifn is
also ®-soft.

We shall make repeated use of the above theorem. We shall also need the follow-
ing two results. The first is elementary and the second follows easily from the above
theorem.
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Lemma 2.2. Let @ be a paracompactifying family of supports on a space X.
Then any sheaf si on X is ®soft if and only if si\K is softfor each KE®.

Proposition 2.3 (subset theorem). Let X be any space and ® be a para-
compactifying family of supports on X. Suppose A is locally closed in X. Then

3. Various cohomological dimensions and the covering dimension

For the results on covering dimension (dim X) we refer to [11]. In the Appendix
of that book D(X, G) (notation changed to d(X, G)) has been studied in great
detail. For paracompact spaces it is a theorem of Sklyarenko [14] that D(X, G)Sn
ifand only if for each closed set A of X, L/m(X, A, G)—0 for each m>n. We use
this in the following

Proposition 3.1. Let X be a paracompact space, G be any abelian group
and L be aring. Then

D(X, G dimMNT) =dim X.

Further, if dim X<<=* and L=Z, then
D(X, Z) = dimz(Z) = dim X.

Proof. Note that for a paracompact space X Cecil cohomology and the sheaf
cohomology with supports in the family cld of all closed sets of X are naturally
isomorphic. Let G be an abelian group and suppose D(X,G)-—. Then by
Sklyarenko’s theorem there exists a closed subset A of X suchthat H,,(X, A, G)X0.
Since A is closed

H\X, A, G ~ H2diiX-A)(X-A, G

where cld\(X—A) denotes the family of all closed subsets of X which are contained
in X—A. Now because cld\(X—A) is paracompactifying on the locally para-
compact space X —A and its extent is X —A, we find by regarding G as an 1-
module that dimL(X—A)”n. Since the subset theorem for dimLis true for any
locally closed subset of X we find that U\mL(X)”n. Next using Cech’s definition
of sheaf cohomology one can easily see that dimt (Z)~dim X. Finally, if dim X
is finite for a paracompact space X then it has been proved in [11, p. 206, 210]
that D(X, Z)—dim X. This completes the proof.

Remark 3.2. If X is paracompact and dim X— then by the above proposition
(@) D{X,L) & dimL(3f) and,
(b) dimL@3T) S dim X =

Whether or not there is equality in each of (a) and (b) is not known. In fact when
X is also locally compact and L is a P.l.D. then we give an elementary proof
below, that there must be equality in (a). However (b) has been a long standing
problem in cohomological dimension theory. In fact, even if we assume that the
space is compact then whether or not there will be equality for L—Z in (b) is
a famous problem of Aleksandrov [1].
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Remark 3.3. Various forms of sum theorems for D(X, G) when X is para-
compact have also been obtained by Kodama [11, Appendix], However, his proofs
appear to be inadequate. In fact he has obtained a characterization of D(X, G)
in terms of extension of maps from closed sets of X into Eilenberg—MacLane spaces
under the assumption that dim X is finite. It is this characterization which has been
used to prove the sum theorems. By the above remark it is possible (unless proved
otherwise) that there is a paracompact space X of infinite covering dimension
which has finite cohomological dimension with respect to some non-zero abelian
group G. For such a space X if there is a countable closed covering {Fp} such
that D(FP, G)*n, for each p then Kodama’s proof cannot be applied to conclude
that D{X,G)tan.

Proposition 3.4. If X is paracompact and locally compact then for any

principal ideal domain L
D(X,L) = dimL(Z).

Proof. Suppose dimL(Z)=n. Then by [3, p. 75, Theorem 5.11] there exists
an open set U of X such that H’{U, L)*0. This means H"(X, X —U,L)?+0.
Now if we put X —U=B then by [15, p. 322]

(X, B; L) =\jmHfX, V; L)

where V runs over all cobounded neighbourhoods of B in X. Now it is easy to
verify that in a locally compact space X any cobounded neighbourhood of B con-
tains a closed cobounded neighbourhood of B. For, U cobounded neighbourhood
of B implies X —U is compact and therefore X —U and B can be separated by
disjoint open sets say Vx and V2. Also compactness of X—U in Vx means there
is an open neighbourhood W of X —U contained in Vx such that W is compact.
Then N=X—W is a closed cobounded neighbourhood of B contained in U.
Therefore closed cobounded neighbourhoods of B form a cofinal set in the set of
all neighbourhoods of B and so H"(X, N, L)?+0 for some closed subset N of X.
By Sklyarenko’s theorem, this implies that, D(X, L)"n.

We have seen that if X is a paracompact space and L is any ring then
dimt (Z)~dim X. Also we pointed out that the converse of this is a classical open
problem. However, one special case of this converse when dimL(Z)=0 is quite
elementary.

Proposition 3.5. Let X be a paracompact space and suppose dimL(Z)=0
for some ring L. Then dim X =0.

Proof. The abelian group Z2={0, 1} can always be regarded as an L-module
(possibily trivial). We can identify Z2 with the O-sphere S°. Thus to prove the
proposition it suffices to show [11, p. 51] that any continuous map / from any
closed subset A of X to S° can be extended to the whole X. Let us regard S° as
the constant sheaf of /.-modules on X. Then / can obviously be regarded as a sec-
tion of S° defined on A. Since dimL(Z)=0=dimdd,(Z) we find by [3, p. 73] the
that each sheafon X must be soft and therefore / can be extended to a continuous
map defined on the whole X.
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By a similar argument one can prove the following

P roposition 3.6. If X is locally paracompact and dimL(.T)=0 for a ring
L then X must be totally disconnected. If X is locally compact then the converse
is also true.

4. Softness of sheaves and sum theorems

First of all we prove the following results about the softness of sheaves
which are basic to the proof of various forms of sum theorems and other results.

Proposition 4.1. Let {Fp\p=1, 2, ..., n,..} be a countable closed cover of
aspace X and ®be a paracompactifyingfamily of supports on X. If sd is asheaf
of L-modules on X suchthat sd\Fp is <PAFpsoft for each p=\, 2, ..., n,..., then
sd itselfis d-soft.

Proof. Since @ is paracompactifying it suffices, by Lemma 2.2, to prove that
sd\K is soft for each member K of &. Again because sd\Fv is E\Fp-soit for
each p and each closed subset of KC\FP is a member of @& we find that sd\KFFp
is soft for each p. Thus it suffices to show that if X is paracompact, {Fp} is a
countable closed cover of X and sd\Fp is soft for each p then sd itself is soft.
To prove this let K be a closed subset of X and sOfsd(K). Since KC\F1 is closed
in Fx and sd\F1is soft there is an extension sfisd(K(JFd of sO. Now KUFx
being closed in X and X being paracompact there exists an open set U containing
*KUFx and a section sfjd(U) which extends s'. Let VY be an open set of X
such that .KUFxCJ*ciFjCiyx. Then s1=s"\Vi is a section on Vx and_extends &D.
Substituting Vx for K we can find another open set V2 containing YrUF2 and
a section sZsd(V2 which extends st. Proceeding inductively we can find, for
each n, and open set V,,dF,d F,,.i_ and a section £sd(V,,) which extends sat.
Now if we define s: X-+st sothat x|F,=j,, for each n, then s is easily seen to be
a section of sd and is a required extension of j0.

Before we come to the next Proposition, let us recall that if {Fa} is a closed
covering of a topological space X, then X is said to have the weak topology with
respect to {Fj if (i) for any sub family {F3} of {Fa}, U{H3} is closed in X, and
(ii) a subset F of U{FR} isclosed in U{F3} iff the intersection of F with each
member of {F&} is closed in U {F‘}. This notion is due to K. Morita. With this
definition we have

Proposition 4.2. Let X be a space which has the weak topology defined by
a closed covering {Fau.}. Suppose sd is a sheafofL-modules on X and & is
a paracompactifyingfamily ofsupports on X. If si\Fa is @/F~softfor each a, then
sd itselfis @®-soft.

Proof. Just as in Proposition 4.1 we can assume that X is paracompact and
®=clW. Let K be any closed subset of X and tdsd(K). Well-order the index
set | and for each a£/ put Fa=(U {FRR<<x.})OK. By transfinite induction we
shall define sxEsd(Ea) such that for each /?<a, sa\ER=sR. Suppose s has been
defined for each /?-=a satisfying the given condition. If a is a limit ordinal then
Ex=BI;IaEBand we can define sfsd(EX) by setting sx(x)=si(x) if xEER. Notice that

since X has the weak topology defined by the covering {Fj, each Ea is a closed
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set and the topology of Ea is also the weak topology defined by {FR|/?<a}. There-
fore sa is continuous. On the other hand if a is a successor of a' then because
sf\Fa is soft we can extend sa to sxEsi(EX. Finally, we define  X7si so
that for each a, s\Ea=sx. Then s is a section of si on X which extends t. Thus
si is soft and this completes the proof of the proposition.

Proposition 4.3. Let ® be a paracompactifying family of supports on a space
X and F be aclosed subset of X. Suppose si isasheafof L-modules on X such
that si\F is (pf-soft and si\(X—F) is ®\(X—F)-soft. Then si itself is ®-soft.

Proof. Once again we assume that X is paracompact and ®—cla. Let
K be a closed set of X and s£si{K). Since KOF s closed in F there is an s'E
£si(KUF) which extends s. Now K 6 F being a closed subset of a paracompact
space X implies that there is an open set U containing KUF and a section
s'fsi(U) whichextends s'. Let V be another open set suchthat kU fcFcfcf/.
Since si\{X—F) is cld |[(X—F)-soft we find that sfAX—U is (cld \X —V)f]
N@f—7)=cld£l (X—£/)-soft. Now s"\(V-V)€j*(V-V) and V—V being
closed in X, V—V£cld J(X—V). Now because sd\(X—F) is cld | (X—F)-soft
we find that si\X—F is cld | (X—F)-soft and hence there is an extension s"6
€si(X—V) extending s"|(V—V). Since s" and s" agree on the common part
V—V there is a section si")isi(X) which extends s.

The following proposition now immediately follows from Lemma 2.2 and the
above Proposition.

Proposition 4.4. Let ® be a paracompactifying family of supports on a space
X and si beasheafofL-modules on X. Suppose F is a closed subset of X. If
si\F is L\F-soft and si\A is ®\A-50" for each closed subset A of X disjoint
from F then si itself is ®-soft.

Now we can prove all forms of sum theorems for the cohomological dimension
of locally paracompact spaces over any ring L. We state the theorems in most
general forms for ®-dimensions and the usual forms of sum theorems are their
immediate corollaries. We have

Theorem 45. Let (Fpp=1,2, ..., n,..} be a countable closed covering of
aspace X and @ be a paracompactifying family of supports on X. Then for any

ring L
dns>Z (20 = Sup {dim#F>L(Fplp = 1, 2, ..., n, ..}

Proof. Bythe subset theorem for ®-dimension (Proposition 2.3) dimO|Fp>L(FP"
NaimOL{X) for each p. Conversely suppose dim,,|Fj;iL(FpSn for each p. Let
si be any sheaf of F-modules on X and let

0 —si - if0- - jSf-0
be a resolution of si in which is ®-soft foreach i=0, 1, ..., n—L This means,
for each p,
0- si\Fp- JS”|FP- £F\Fp-...- <frx\Fp- <h\Fp- O

is a resolution of si\Fp in which ~f‘|Fp is ®[T,-50/1 for each i=0, 1, ..., n—L
Since dimO|f L(Fp”~n, Proposition 2.1 implies that i£n\Fp is d[Tp-30/1 for each p.
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Then we can apply 4.1 to conclude that J8' itself is @d-soft. By Proposition 2.1
again this means dim0>i(Z)Sn.

If X is locally paracompact, let & be a paracompactifying family of supports
on X such that E{®)=X. Then for each closed subset F of X, @[T is para-
compactifying and E(F\F)=F. This gives the following usual countable closed
covering sum theorem.

Corollary 4.6. Let X bea locallyparacompactspaceand {Fp\p=1,2,...,n,...}
be a countable closed covering of X. Thenfor any ring L

dimL(X) = Sup {dimL(Fp\p = 1,2, ..., n, ...}.

By using the same arguments as in the proof of Theorem 4.5 and using Propo-
sition 4.2 or 4.3 or 4.4 appropriately one can prove all of the following results:

Theorem 4.7. Suppose a space X has the weak topology defined by a closed
covering {FalatE/} of X and let ® be a paracompactifying family of supports on X.
Thenfor any ring L

dimO;L(Z) = Sup {dim&F,,iL(Fa)|a€/}.

Note that if {F3 is a locally finite closed covering of a space X then the
topology of X is always the weak topology defined by {Fa}. Hence the following
includes the usual secondform ofsum theorem for dimL.

Corollary 4.8. Suppose a locally paracompact space X has the weak topology
defined by a closed covering {Fx\a€/}. Thenfor any ring L

dimL(X) = Sup {dim" (F3[a£/}.

The following result, sometimes considered as a sum theorem, is known to be
not generally valid for covering dimension or D(X, G) and therefore shows a better
behaviour of dimL.

Theorem 4.9. Let F be any closed subset of a space X and @ be a para-
compactifying family ofsupports on X. Thenfor any ring L

dimp,L(30 = Sup {dimi |FL(.F), dimf|@f P!.(Z-F)}.

Corollary 410. If X is locally paracompact and F is a closed subset of
X thenfor any ring L

dim~fZ) = Sup {dimL(F), dimL(Z-F)}.

The following was first proved (for paracompact spaces) and usefully exploited
by Quillen [13] in proving that if a compact Lie group G acts continuously on
a paracompact space X then dimt (X \G)SdimF(X).

Corollary 4.11. Let & be aparacompactifyingfamily of supports on a space
X and F be a closed subset of X. For any ring L, if dim@>L(F)Sn and
dim®IASL(A)*n for each closed subset A disjointfrom F then dimOyL(X)"n.

Corollary 4.12. Let X be locally paracompact and F be a closed subset
of X. For any ring L, if dimt(F)Sn and dimL(A)*n for each closed subset
A of X disjointfrom F then dimL(X)"n.
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Quillen used the above corollary to prove the following result. However, by
applying our second form of sum theorem it can be proved directly. The only thing
to be remembered is that for any n-cell a, dimL(0)Sn forany L.

Corollary 4.13. Let X be a CW complex of dimension n. Thenfor any ring
L, dimt (*) s n.
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DERIVATIVES AND CLOSED SETS

J. MAftiK (East Lansing)

In their article [1] G. Petruska and M. Laczkovich proved (among other things)
that a function defined on a perfect set S and differentiable relative to S can be
extended to a function differentiable on the whole real line R. This note contains
an elementary proof of a more general theorem where the set S is supposed only
to be closed in R.

Notation. The word function means a mapping to R=(—°°, °°). Let af*ScR
and let F be a function. If BI'\(a,b)X0 for each b>a, we define

Fs+(@) = hm (F(x) —F(a))/(x—a) (XES, x\ a)

provided that this limit exists. We define analogously the meaning of Fs~(a) and

Fs(a). (Note that Fs(@ may exist even if FsHa) is undefined.) The symbols

F'Ha), F'~(a) and F'(a) will have the usual meaning (i.e. F,+(a)=F'RHa) etc.).
Points in RXR will be denoted by (e, ).

L Let a, bdR, a<b and let J=[a,b]. Let tp and ¢ be functions continuous
on J. Let < be convex, ¢ concave, (p— on {a,b}. Set s={Ppb)—p@)jb—a).
Let a B, M, NfR, (pHa)"<x*p'Ha), '~(b)*"P cp'~(b), Af<min (a, B, j),
max (a, B, s) < N. Then there is a function G continuously differentiable on J such
that G'+(a)=a, G'~(b)=B, M<G'<N on (a,b) and that, for each x£(a, b),
G(x)=(p(a)+s(x—a) or <PX)-<G(x)< d(X).

Proof. We may assume that <p=tp=0 on {a, b}. Then j=0. Let c—a+b)/2
We construct a function H continuously differentiable on / such that H'+d)=a,
H=0 on (c,b), M*MH'AN on (ab) and that, for each xf(a,b), H(x)=0 or
<p(X)<#(x)<t/4;t). If <=0, we choose H—0 on J. Now let, e.g.,, a>0. Choose
an e€(0, —M) and set p(x)=d'Hx) (x£[a, bj). We have a”p(a)=p(a+). There
is an axf{a, ¢) such that ¢ increases on (a, af). There is an af(a, af) and a
function p continuous and decreasing on [a aZ] such that a(@—a)<e(ai—a2),

p(a)—a, on (a, ad and p(ad=(). Since Jr/?xa(a2—6)<£(al—aa, there is a
2 al a2
function g continuous on [at,al such that 0Sq”~e, J g—J p and that ?=0 on

{a2,ai}. Set h=p on [a,ad, h=—q on [a2, ax], h—0 on (ax,b\ and H(x)=J h

for each xfJ. It is easy to see that —£~H'(x)<a and 0"H(x)<.tp(x) for each
x€(a, ).
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In an analogous way we construct a function K continuously differentiable
on J such that K=0 on (a c), K'~(b)=R, on (a b) and that, for
each x£(a, b), K(x)=0 or (p(x)<K(x)<t(x). Now it suffices to take G=H+K.

2. Let a,b and J beasin 1 Let P beafunction on J such that the derivatives
ct=P'Ha), 8—P'~(b) exist. Set s=(P(b)-P(aj)/(b-a). Let M, NER,
<min (a, B, s), wax (a, 8, s)<N. Then there is a function G continuously dif-
ferentiable on J such that the graph of G is contained in the convex hull of the graph
of P and that G'Ha)=a, G'~(b)=k, G=P on {a b} and M<G'<N on (a, b).

Proof. Let ® and P be functions continuous on J such that ®=P=P
on {a b}, ® isconvex, P isconcave, ®'Ha)=P'~(b)=—"°°,P +(@)—®d'~(b)="".
Set Po=(PV/®)AP. Obviously oc=PoHa), B=P'o~(b). Let C and CO be the
convex hulls of the graphs of P and Pn respectively. It is easy to see that COcC.
Let tp be the greatest convex function on J such that q=Po and let ¢ be the
smallest concave function on J such that Po=d¢- Let C2 be the set of all points
(x,y) such that xf(a,b) and that y=P(a)+s(x—a) or cp(x)<y<d(x). Then
C1cCO. Now we apply L

3. Let S be a nonempty set closed in R. Let A, BARIJ{—= <} Let P be
afunction on R suchthat A<P\x)<B for each xdS and that

A < (P(y)-P(x))/(y-x) < B,

whenever x,y£S,xAy. Then there is afunction G differentiable on R suchthat
G=P,G'=P' on S and A<G'-?B on R.

Proof. We may suppose that infS'= —°°, sup S =°°. Let (a, b) be a compo-
nent of RXSland let a,B,s be asin 2 There are M, NER such that
<min (a, B, s), max (a, B, s)<N<B. Construct a function G according to 2. In
this way we define G on /~\S’; further we set G—P on S. It is easy to see that
G has the required properties.

4. Let xo0,yo0,sdR. For each )>€(0, °°) define
@) Wy = {(x, Y)ERXR; ly Y s(xx0l<y(x-x0}
Let e€(0, andlet (xi, yf), (b, )EWi,3x1"4b —x0. Then (2b—xI52c— Wu.

Proof. We may suppose that xO=y0=0. Then 6xx*8b and hence \2c—yx—
—s(2b-x Y|s2]|c-jfi| + |yl- XXI< e(2b+ X]j)S e(10b—5xx) = 5e(2b—X).

Remark. The geometric meaning of Wy is obvious. To see the geometric
meaning of assertion 4 the reader should realize that 3x!*4b—x0 means the same

as Xxx—x0S -j- (b—x0 and that (b, c) is the center of the segment with end points
<Xiyyi> and (2b-x1,2c-y 1.

5. Let xo0,y0,s£R. For each yd(0, °°) define Wy by (1). Let s£(0, °°) and
let (x*yf), (b, ¢), (x2,y2)fW e, xx<b<x2 XER, 3|x-b|Sb-X!. Let q=(y2-y Dl
[(x2—Xi). Then (x, c+q(x—b))fW 3e.
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Proof. We may suppose that x0=j0=0. Set y=c+q(x—b), Z=\x—b\(x1+x2/
I(x2—=%). As 3(x—b|<min (x2—xI5b), we have 3Z<min (jg+Xjj, b(x\+x2/
[(Xi—=Xij). If x2s2b, then x1+x2"3b; if x2>2b, then

(m'+ n2/(n:2—xR < (b+x3/(x2-b) < 3.

Thus in either case Z<fe.

Obviously \g—s\=\y2—sx2—(jx—IXi)|[/(x2—x®) S a(x1+ x2)/(x2—xT); therefore
\y—xs\=\c—sb+ (x—b)(g—s)\Seb+eZ<2sh. Since x=b—(b—x)>2b/3, we have
| y—x|<3ex.

6. Let S be asetclosedin R. Let F be afunction on S such that Fs(x)
is finite for each accumulation point x of S. Then there is a function H on R
differentiable at each point of S such that H —F on S.

Proof. We may suppose that inf5= —  sup S=°°. Set
A+= {xd-S; STI(x,y) » 0 for eachy > ni},
A~ —{x€»S; -Sfl(y,x) ~ 0 for each y < 5},

I+—~A~\A+ I~=AAA~, |I-S\(A +UA~). Define a function / on S as
follows: If bEA+UA~ (=S\I), set f{b)=Ffb). If bE£l, find xI5x2£S such
that sn(xI5x2={h} and set

f(b) = (F(x2-F (xD)I(x2- xJ).
For each bES define a set Mb as follows:
If beA+MA-, let M,,={b}.
If h€/+U/_, choose a 0 such that either S(I(b,b+3dD=0 or STI
C\(b-3db, b)=0 and set

Mb= {x; 2b-xESC\[b-db, b+dh]}.

If b£l, choose a db>0 suchthat SC\(b—3db, b+3dbh={b} and set Mb=
=[b-d,,,b+db.

Let M —(IMb (b£S). Obviously bEMb for each bES and MaOMb=10,
whenever a, b£S, a*b. If (a,b) is a component of then Mcl(a, b)=0
for each c€S\{a, b). Thus (a b)\M=(a, b)\(Mabd Mb) which is open. There-
fore R\M = (R\S)\M is open, M is closed.

There is a unique function G on M with the following properties: G=F
on S; if xEMb, b£I+Ul~, then G(x)=2F(b)—F(2b—x); if xEMb, b£Il, then
G (x)=F(b)+(x-b)Ne.

Let x0ES. We shall prove that

@) Gff (x0 —F(x 0.

The case Xx0$A+ is left to the reader. Now let xfA + and let e£(0, °°). Set
s=f(x0Q (= Fs(*Q)- For each y€(0, o0) define Wy by (1). Thereisa z>Xx,, such
that (x, F(x))EWe fogeach X€STI(X0, z). Thereare zIt zffS suchthat x0<z2<z

and that AN-(z2-x 0 (so that x0<zl1<z2d. Let XEMT\(xO0,zf). If XES,
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then, obviously, (x, G(x))EWe. Thus, let x$ S and let (a, b) be the component
of containing x. We have xi*a< x”b”z1. There are the following four
possibilities:

L xEMb, bf£l~. Set xx=2b—x. Then x"S, 0<xx—b~"dbS(b—a)/3<

4
<(b—x0/3, therefore 3xj<4b—x0, and xx= + {zx—x0/3=x0+y (zj—x0< z2.

Set c=F(b), y1=F(x1). We have (b, c), (xIry "W ,, x=2b—xlt G{x)=2c—y1
so that, by 4, (x, G(x))6 We.

2. XEMDb, bEl. Thereisan x2£SC\(b, « suchthat SC\(b, x2= 0. Obviously
M8Sz2. Then G(x)=F(b)+(x—b)f(b), 0O<b—x"d b*(b—a)/3 so that by 5 with
Xx=a, q=f(b) etc. we have (x, G(X))EW3e.

3. xdMa, a£l+ Proceeding as in 1we get (x, G(x))OVee.

4. xEMa, afl. Proceeding as in 2 we get (X, G(X))EW3t.

This proves (2). Similarly, it can be shown that G'i(xQ)=/(x 0) for each x0ZS.
Now it suffices to choose for H the function that equals G on M and is linear
on the closure of each component of R\M .

7. Let T beaclosedsetin R, V=R\T, QaV andlet Q be isolatedin V.
Let g be afunction on O. Then there is afunction K differentiable on R such
that K=0 on TUQ,K'—Oon T and K'=g on Q.

Proof. Let < be a function differentiable on R such that ¢p—0 on {0}U
U (R\(—L, 1)), <j/(0)=l, M<1 on R. There is a function co continuous on
R such that co=co'=0 on T and that w>0 on V. There are positive numbers
cg(qE Q) such that the intervals dg—[g—eg, q+c4] are pairwise disjoint and that
JgdV for each g. Now let i/,= min {w(x); x€/e}, cd4=max (I/r,, \g\I>ig and,
for each x£R, let

KO = 2 -"r-Vica(x-q))

Obviously \K\~(0 on R. Itiseasy to seethat K satisfies our requirements.
Remark. The following assertion is a generalization of Theorem 55.3 in [1].

8. Let S be a nonempty set closed in R. Let F and f befunctionson S such
that Fs(x)=f(x) for each accumulation point x of S. Let A, BERO {—°, *°}
Suppose that A<f(x)<B for each x£S and that A<(F(y)—F(x))/(y—x)<2?,
whenever x,yfS and xAy. Then there isafunction G differentiable on R suchthat
G—F, G'=fon S and A<G'<B on R.

Proof. Let T be the set of all accumulation points of S. Let H beasin 6.
By 7 there is a function K differentiable on R such that K—0 on S, K'=0 on
T and that K'=f-H' on 5\I'. Set P=H+K. Obviously P=F and P'=f

on S. Now we apply 3.

Remark. It has been mentioned in [1] that there is a perfect set S and a func-
tion F on S suchthat |Fs(x)|*1 for each x£S and that G' is unbounded for
each function G differentiable on R suchthat G=F on S. The following example
shows a little more.
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Let I=x0>Xi>..., *n-*0, (n—»2,..). It is easy
to see that x,,~zy,,<x,,-.1l. Set S= 0 [*, JBj U{0} Define a function F on

S setting T(0)=0 and F(x)=x2 for each Xx£[X,,V,\. Then S is perfect and
Fs=0 on S. Nowlet G be a function differentiable on R suchthat G=F on S.
Then G(x,,-1)- G(Y,)=*2_i- 2xAxn_1- x H=2(xn_j—yn)/xn so that (G(xa-i)~
- G(yn)/(xn_1-y n-~°o(n-~ 0°). We see that G' is unbounded on (0,1).

Thus, we have constructed a perfect set S and a function on S twice (actually,
infinitely many times) differentiable relative to 5 that cannot be extended to a func-
tion twice differentiable on R.

Reference
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SELECTIVE, BI-SELECTIVE,
AND COMPOSITE DIFFERENTIATION

R. J. O'MALLEY* (Milwaukee) and C. E. WEIL (East Lansing)

Only the third notion of differentiation is new here. The results show when it
implies each of the first two and when the second implies the third.

1. Introduction

The real line is denoted by R and all functions will be realvalued and defined
on R. The closure of a set AczR will be denoted by CIA. The selective and
bi-selective derivatives have been studied by the firstauthor in [2] and [6] respectively.
The composite derivative is introduced here and we show that a composite derivative
is a bi-selective derivative, determine when a composite derivative is a selective
derivative, and find conditions under which a bi-selective derivative is a composite
derivative. The paper is concluded with an example showing that sometimes selective
and composite derivatives must be different.

2. Preliminaries

In this section we give the necessary definitions and state some known facts.

2.1. Definition. By a bi-selection, ft, we mean an ordered pair, s and v, of
interval functions defined on the family of all nondegenerate, closed subintervals
of R satisfying x<.r([x, y])<y for all x<y. The interval function s is called
a selection.

2.2. Definition. Let ft be a bi-selection and let / and g be functions. Then
g is said to be the bi-selective derivative of / relative to ft if for each x

lm (©&(x y1)-/(x))/(s([x, y1)-x) = 9(x).

Here [X,y] denotes the interval [y, x] if y<x.
We note that if the limit defining #(x) exists, it is unique. So it is permissible
to denote g by ft/".

2.3. Definition. Let s be a selection and let / be a function. If f has a bi-
selective derivative relative to the bi-selection ft where Vv([a, b])=f(s([a, ft])), then
we say / has a selective derivative relative to s and denote the derivative by s f.

#This author supported in part by N. S F. Grant #M CS 8102494.
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32 R. J. O'MALLEY and C. E. WEIL

2.4. Definition. By a decomposition of R we mean closed sets E, for
n=1,2,3,... such that < En—R. A function f s said to have the function
g as a composite derivative relative to the decomposition E, if for each n and

| yom - (f(y)-fO)) Iy -x) = g(x).

In this case the above limit need not be unique unless 1 is a limit point of E,,.
On the other hand if x liesin two different sets E,,, the two limits must be the same.
So it may always be assumed that f,c £ ,+1,

The following facts are obvious or can be found in the references listed.

2.5. All selective derivatives are bi-selective derivatives.

2.6. Bi-selective derivatives are equivalent to —r derivatives. (See [1] and [6].)

2.7. All selective derivatives have the Darboux property. (See [2].)

2.8. All bi-selective derivatives are of honorary Baire class 2 (see [6]) but even
selective derivatives are not necessarily of Baire class 1 (See [2].)

2.9. All approximate derivatives are selective derivatives (see [2]) and composite
derivatives. (See [5].)

We close this section by showing that the situation for the composite derivative
relative to Baire 1 and Darboux is exactly opposite to that for the selective derivative;
namely every composite derivative is of Baire class 1, but need not have the Darboux

property.
2.10. Theorem. All composite derivatives are of Baire class L

Proof. Let the sets En, n=1,2, ..., be a decomposition and let / and ¢
be functions such that g is a composite derivative of / relative to the sets E,,.

To shows that g is of Baire class 1 let E be any perfect set. Then E—ﬁ:l(El')En)

and each Ef]En is closed. So there is a closed interval / suchthat 0 AIC\E(zEOEn
for some n. Assume as we may that IC\E is perfect. Then g is a derivative relative
to ICIE. Thus by Theorem 5.5.2 on page 209 of [7], g is the restriction of a func-
tion g which is a derivative on R. The function g has a point of continuity,
xfJOE relative to IDE, and since g=g on IDE, x is a point of continuity
of g relative to 1ME.

2.11. Example. A composite derivative need not have the Darboux property.

Proof. Let f(x)=W and for wu=1,2 ..., let E,,=R\(0, I/ri). Then
g(x) = [x|/x for x ?£0 and g(0)=—1 is a composite derivative of f (in fact the
composite derivative of/) relative to the sets En, but g does not have the Darboux
property.

Observe that g is also a bi-selective derivative of /. Thus a bi-selective derivative
need not have the Darboux property.
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3. Main theorems

3.1. Theorem. Let the sets E,,, n=1,2, ... be a decomposition of R, and let
f and g befunctions. Suppose g isa composite derivative off relative to the sets En.
Then there is a bi-selection b such that bf'(x)=g(x).

Proof. Assume, as we may, that for each n, E,,czEn+l. For each xER let
n{xX)=min {n: xEEn}. Thus X6£'An)\£ 'NX) 1 where Eo=0. By the distinguished
endpoint of an interval [a,b\ we mean that endpoint, d, satisfying n(d)=
=min {«(«), n(b)) with the honor going to the right endpoint in case n(a)=n(b).
To define the bi-selection we let [a, b] be an interval and let d be the distinguished
endpoint. If E,dn(a, b) 0, then let M[n b])EEn(d)i](a, b) and let v([a b])=

=f(s([a,b])). If EnWI(a, b)= 0, then let s([a, b)=" ~ and Vv([a b])=f(d) +

+g(d)(b-a)/2.

To show that the bi-selective derivative, bf', of / exists and is g, let XxER
and let e>0. There is a ~>0 such that if |y—x]<<515 then n(y)éun(x) for if
not, then x would be the limit of a sequence from and since each E,, is
closed, x would belong to En(X)_r contrary to the earlier observation that
XEENM\E bl -1- Next there is a €&>0 such that if y£E,,(x) and if \y—x|<d2,
then |g(x) —(fly)—/(x))/(y—x)|<£. If x is a right hand limit point of En(x),
then let &= +°° If not, then there is a >0 such that E,(XYD(x,x+S3=0 .
Let (5=min {&,; &, &}. If 0<|y —x|<(5, then since <G5, u(;)eun(x). If £,w fl
M(x, 3;)7"0 , then by definition of s, j([x, y])"En(X)C\{x, y) and hence by defini-
tion of v,

190<)-(u(lx, yD-/C))/(s([x, yI)-x)| = 1g(x)-(/(s([x, y1))-
-FONI(S([x, y1)-x)| < £

since <G<%2. Now suppose EnMIN)(x,y)= 0. If x—<b<y<x, then wn(y)én(x)
implies x is the distinguished endpoint of [x, y]. If on the other hand x<y<x+<5,
then the supposition EnMIM(x,y)= 0 implies that x is not a right hand limit
point of En(x). Thus &< + °0 and since <553, y$E,,M. Consequently n(y)>n(x)
and again x is the distinguished endpoint. Therefore by definition of s and v,

190)-(u(lx, yD-/0))/(s(Ix, yI)-x)| = 19 (x)—g (x) (y—x)/2+
() FONI(Yy+x)/2- X)| = 0< £

3.2. Theorem. Let En,f and g be as in 3.1. Suppose in addition that for
each X, g(x) is a bilateral derived number of f at x. Then there is a selection, s,
such that g=sf' on R.

Proof. As in the proof of 3.1 assume that En<zEn+l, define the positive
integer n(x) for each xER and the distinguished endpoint of a closed interval.
Let [a b] be closed interval and let d denote its distinguished endpoint. As in the
previous proof if EndM(a b)® 0, then let s([a, b]))EEn(d)C\(a, b). However if
E. (M b)=0, then since g(d) is a bilateral derived number of / at d, we may
select s([a b])E(a, b) such that \g(d)-(f(s([a, b]))-f(dj)/(s([a, b))—d)\<\b —a\.
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Let x£i? and let £50. Let & min &, & S3,¢} where @5€, and 8
are defined as in the proof of 3.1. Let 0-<|x—j|<<5. If E,m M(x,y)" 0, then as
before |g(x)-(/(i([x, i1))-/(¥)/G(y, “1)-y)|<E. ~ Suppose ERXr\(x,y)=o .
Again as before x is the distinguished endpoint of [x,y] and consequently by
definition of s

190)-(/0([*. A))-/CN/C([*, ID-*)I < \y-x\ <&SE.

3.3. Corollary. Let Enf, and g be as in 3.1. Iffor each x there is an
n such that x is a bilateral limit point of E,,, then there is a selection, s, such that
sf'=g.

Proof. The hypotheses of 3.3 imply those of 3.2,

The condition on a decomposition given in 3.3 besides yielding that the compo-
site derivative is Darboux also gives that it will have Zahorski’s M2 property as
well as the Denjoy—Clarkson property. (See [2].)

To complete the circle we now present a condition by which a bi-selective
derivative becomes a composite derivative. It is clear that some condition is needed
since a bi-selective derivative need not be Baire 1and hence need not be a composite
derivative. The idea comes from [4] and requires that we first introduce the following
notion.

3.4. Definition. By a family of tangential paths we mean a function t on
{(x, h): xER, |ftj>0} such that for all XER and |ft|>0, t(x, ft)?ift and for each
XER, ]I1i_n2)t(x, h)/h—1

3.5. Theorem. Let b be a bi-selection and let f and g be functions such that
bf'=g on R. Suppose there isafamily oftangential paths, t, such thatfor each xdR

Amg (V([x+h, x+t(x, O (X)/(s([x+ft, x+t(x, ft)])-Xx) = g(x).
Then there is a decomposition of R intosets En, n—\, 2, suchthat g is a compo-
site derivative of f relative to the sets E,,.
Proof. For each n let
A, = I(B([x x+<5])-/(x))/(s([x, x+<5])-x)| < nif0 < |G < 1n},
and let En=CIAn. By Lemma 2 of [6] if x1,x2€En and if Ppx—xZ< 1/«, then
I/(xi)-/(x2|Sn|xi-x2. Since bf'—g on R, /ElAn:R. So the sets En are a

decomposition of R.

Let n be a positive integer, let xEEn and let {X*} be a sequence in E,, con-
verging to Xx. Without loss of generality we may assume that x=0,/(0)=0, and
O<|x*|<l/w for each k. For each k there is an hkEA,, such that [ftle—xk|<
<|x®/ft<l/n and O<|ft*|<l/n. Let tk=t(0, hk), vk=v([hk, tk]) and sk=s([hk, tk]).

Th
o F(xKIxk = £((/ (xK) - f (MR)I(xk- ) ((xk- hR/XK} +
+{((/(f)- WK/(hk- sK) ((ft*- S¥ft%) (Fesix)3+ {(visK) (M%) (R
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The first factor of the first term is bounded by n. (Ifwe were fortunate enough to be
able to choose hk=xk, then we just let the first term be zero.) The second factor
tends to 0 as So the first term has limit 0 as Since hkdAn, the
first factor of the second term is bounded by n provided Mk—hk\~d/n which is
true for k sufficiently large since tkhk has limit 1as k-*°°, which also implies
that sk/hk has limit 1as k-~°° and hence the second factor has limit 0 as k —°.
Finally the first factor of the third term has limit g(0) as k-*°° by assumption;
the second and third factors both have limit 1when k-+°° as was just mentioned.
Thus the third factor has limit g(0) as k °° which completes the proof.

To see how close a general bi-selective derivative comes to being a composite
derivative, the reader is referred to Proposition 4 of [6].

We close this paper with an example of a function, /, which has both a selective
derivative and a composite derivative. In general it is possible for a given function
to have several selective derivatives depending on the selection and likewise many
composite derivatives. The important aspect of this example is that any selective
derivative of / must differ from any composite derivative of /.

3.6. Example. Let Cc[0,I] be the Cantor set. Let /=0 on fR\[0O, 1])UC.
Let (a,b) be a component interval of [0, 1]\C. We let/ be a continuously dif-
ferentiable function on [a, b] whose derivative from the right at a is 0, whose
derivative from the left at b island f((a+b)/2)=3(b—a)/2. Clearly the function
g=0 on (i?\[0,1)UC and g— on the component intervals of [0, 1]\C is
a composite derivative of /.

Let K be the set of all right hand endpoints of component intervals of [0, 1]\C.
We assert that there is a selection, s, such that sf'=0 on C\K, sf'—\ on K,
and of course sf'=f"' elsewhere. To define s let x<y. First suppose x$K.
If CD(x,y)?i0, then let jflx,y])6CM(x, y). If CM(x, y)= 0, then let a([x,y])=
—(x+y)/2. Now suppose xdK. If z is the midpoint of a component interval of
[0, Ij~C to the right of x, then (/(z)—(xj)/(z—x)= 1. If y$C, then let &[x,Yy])
be any such midpoint. If y€C, then we choose n([x, y]) to be the midpoint of
one of these intervals that is so close to x that (f(y)—f(s([x, y])))/(y—e([x,y]))>
>x—y. By a straightforward but tedious argument it can be shown that sf is
as claimed.

To show that no composite derivative of / can be a selective derivative of
/ we recall that a selective derivative has the Darboux property and we now show
that no composite derivative of / can have that property. Letthesets E,,, n=1, 2,...
be a decomposition of R and let g be a composite derivative of / relative to the

sets En. Then C—IJ (,[l, MC). Thus there isan interval |1 with 0 A1MNCcE,,I'C

for some n. Smce/— 0 on £,MC,g=0 on EnC\C. Since K isdense in C ,9=0
at some points of K. Since g=f on the component intervals of [0, 1]\C, since
/" is continuous on these intervals and has value 1 at the right hand endpoints,
we see that g is not Darboux.
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DILATABLE OPERATOR VALUED
FUNCTIONS ON C*-ALGEBRAS

Z. SEBESTYEN (Budapest)

Introduction

Our recent papers [6], [7] on moment theorems with respect to C*-algebras
offer a way to treat these questions in a setting of the dilation theory due to Halmos,
Naimark and Sz.-Nagy [5]. We shall do this investigations here.

Let A be a (complex) C*-algebra, not necessarily with unit, let G be a mul-
tiplicative semigroup in A, closed with respect to the involution of A (briefly
a ~-semigroup) and such that its linear span is a norm dense *-subalgebra in A.
Given an operator valued function / on G,f :G-*B(H), where B(H) is the
C*-algebra of all bounded linear operators on the (complex) Hilbert space H,
we say that / is dilatable with respect to A if there is a Hilbert space K, a conti-
nuous linear operator V of K into H and a “representation S of A on K
such that

(1) I(g) = vsgu*
holds for each g in G.

In the scalar valued case, when H —C (i.e. dim H—I), V is a continuous
linear functional on K, hence by the Riesz Representation Theorem there is a vector
x in K such that (1) is of the form [6]

(1/ 1(g) = (Sex, x) (g6G)
where in addition V*I=x. In this case
@ @ = (Sx, x) (atA)

is a (unique) positive linear extension of / giving a solution of a moment theorem
with respect to the C*-algebra A.
In the previous case, similarly,

) (p(a) = VSav* (atA)

defines not only a positive linear, but also a dilatable extension of f These two
notions coincide in the case when A is commutative (Theorem 1), which is an easy
consequence of [7, Theorem 4], due to the author, and generalizes a theorem of
Stinespring (and Naimark too). As a corollary, we give a new characterization of
subnormal operators on Hilbert space differing from that of Halmos—Bram,
MacNerny and Embry (Theorem 2).

In the case when A is noncommutative, our result (Theorem 3) subsumes
the previous ones and gives a common generalization of theorems of Sz.-Nagy [5]
and Stinespring [8].
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Dilatable functions with respect to commutative C*-algebras

The first result is a simple consequence of our previous one proved in [7,
Theorem 4].

Theorem 1. Let G be a multiplicative *semigroup in a C*-algebra A such
that G generates a norm dense *-subalgebra in A. Given an operator valuedfunction
f of G with values in B{H), the C*-algebra of all bounded linear operators on the
Hilbert space H, it is dilatable with respect to A if and only if there is a positive
constant M such that if O”*x"H, then

1
3 Ny L cBf(g)x,x)2 2 cgeh(f(h*g)x, x) S M||x]|2]|]2* ceg\2
holds for eachfinite sequence {cg} of complex numbers indexed by elements of G.
Proof. The necessity is an easy consequence of (1) which holds by assumption:

2 cff{g)x, x f =\{(2 cgsgv*x, V*xfs ||[lM1laM 2||[(2*A)*"*||2=
9 9 9
=\\y42\w\22 ¢ ech(ysh.gv*x, x) = |[ini2M 22 c gch(f(h*g)x, x) S

A, h g.h

s |IF T M 4ls2 cOglzs HHI4M 4 1127g]j2

where ||5]*1, as S isa ~-representation of the C*-algebra A.

To prove the sufficiency of (1) assume (3) and conclude by [7, Theorem 4],
(an operator valued moment theorem, if A is considered via the commutative
Gelfand—Naimark Theorem as Co(Q), the complex valued continuous functions
vanishing at infinity over the locally compact Hausdorff space 12), that there is a posi-
tive operator valued measure F(¢) on £ dilatable by our Naimark-type result [7,
Theorem 2] to a spectral measure E{ m) on a Hilbert space K which has a suitable
continuous linear operator V into H such that

(4) F(.) = VE()V*

holds for these two operator measures F(-) and E{e) on £ Define now a
“representation S of A by

(5) Sa= If2 a(t)e(dt) (abl).
We have the desired property of S given in (1):
(/(g)x, x) = f g(t)(F(dt)x, x)= f g(t)(VE(dt)V*x, x) =
A R
= f g()E(dt) (v=x, V*X) = (Sgv*x, V*X) = (VS,V*X, X).
a

The proof is complete.
As a consequence we give a new characterization of subnormal operators,
showing that an operator B on a Hilbert space is subnormal if and only if the
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operator double-sequence {B*nS"}~n0 is a moment sequence on the compact
subset Q of the complex plane (the spectrum of B in the sense of MacNerny [4]).
Recall that B is subnormal if there isa Hilbert space K containing H, and a normal
operator N on K with H as invariant subspace and extending B. In other words
for the orthogonal projection P of K onto H

©) PN*mMNm = B*nBr

holds for any natural numbers m, néO [5].
Theorem 2. B is a subnormal operator on the Hilbert space H if and only if

® 0S 2 cm,kAB*(+mBk+x, x) S [[X[[2max 12 cT,n(1rA"p

K, |

holds for any double-sequence {c}*,,=0 of complex numbers, where Q denotes
the spectrum of B.

Proof. The necessity of (6) is a simple consequence of the spectral theorem
with respect to normal operators and, of course, (5):

2  CcTTKIB*«+1>B+mx,x)= 2  cmi, K, (PN*d+m)N kHx, X) =

k,I,m,n k,l,m,n

= 2 cmneu (N * AN k+lx,x) =

K, I, m,n

yi2'ct,m*uM 2 2 EmnW* MIn 2BHA mMax\2¢, <,nNe”

To prove the sufficiency of (6), we shall prove that the function/((A)nR)= B*nBn
(m,n=0, 1, 2,...) isdilatable with respect to the C*-algebra C(Q) of the complex
continuous functions on the spectrum Q of B. Here by the Stone—Weierstrass
Theorem the *-semigroup {(I)r}* =0 (Ae £2) of polynomials generates a norm
dense *-subalgebra in C(C2). But our assumption (6) proves (3) with M —1, only
the left hand side of (3) is not seen at once. In this special case the ~-semigroup
(and the C*-algebra) in question has a unit element (the constant 1 function on Q)
so that this difficulty vanishes if we take the left hand side of (3) as a Schwarz
inequality for the numerical function (f(-)x,x) (xEH), which is positive definite
by assumption, indeed.

The general case
Our next result is a common generalization of the Naimark, Sz.-Nagy and
Stinespring dilation theorems.

Theorem 3. Let A be a C*-algebra, G a multiplicative *-semigroup in A,
generating a norm dense *-subalgebra in A. Given an operator valued function
f :G-*B(H) on G with values in B(H), the C*-algebra of all bounded linear ope-
rators on the Hilbert space H,f is dilatable with respect to A ifand only if there is

Acta Mathemallca Hungarica 43, 1934



40 Z. SEBESTYEN

a positive constant M such that

) 2, 12 1@ 2 (f(h*g)x., xh,
® 2 cgeh(f(h*g)x, ) M\xv][2 g2 (*e?)

holdsfor anyfinite sequences {xg and {c@ in H and C, respectively.
Proof. The necessity of (7) and (8) are easy consequences of the dilatability
with respect to A, since (1) implies

[12 /1(g)*92= 11*42*V 4)||2s m zzh(vshgv*Xg, xh =
a g 9
= wrz{f(h*g)xgxh,
g,h
2 ogeh(f(h*g)x, x) = ((2 cgchSgV*x, V*X) si
9.h 9,ft

A IHIIF T2 * A [2= 11 TM 25 (Z 910 IN. INI2IMIR1E[2¢, g |2

where ||£]|* 1 as in the proof of Theorem 1

To prove the sufficiency, assume (7) and (8) and consider the linear space F of
/l-valued functions with finite support on G with semi-inner product (via (7))
defined by

) (2 h®xh, 2 k@%e= 2 (f(k*h)xh, yk),

where the generating element h<S>h is the function with value xhEH in g£G
and 0 otherwise on G, and | denotes (as always in this paper) a finite sum
(over the *-semigroup G). We thus geta Hilbert space K by first factoring F with
respect to the nullspace of (¢, ¢) and then completing this quotient space with
respect to the norm obtained from the arising inner product. For simplicity we
take F as a norm dense subspace of K, denoting elements of it and the inner
product of K also by the symbols introduced before, respectively.

We have a shift operation Sg on F (fora g in G) given by
(10) St(% h®xh)=2h gh®xh (g€G).

Our first aim is to prove that Sg generates a bounded linear operator, denoted
by the same symbol, on K. For u=2!h®xh in K we have by (9)
h

IV P = <S,u, u) = ssgtgu,u>si 11V .y Il
HVir€d = IV9)2'-, m2II"P"+~2 = Ilh2(g*g r',A®*A2IM2'+#- 2=
= INlm#l-r2 <(g*gT-'h®xh, (g*gT-'k®xK =
h,k

S N|2'+l—2hzk ll(g*g)2'"*AO0xA ||(g*9)2" fc®;tj = |v|2'+- 2(% ll(g*g)Z' IA®*]J)2
t
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for n=1,2,..., by induction. Using (8) this implies
HVirH3 NIIZ"'-Z"h (f(h*(g*g)2'h)xh, xhy f S

s [J«r"+1-2(2V MIXAll[(g+9)2-1AD2s  [IM r+1-*Ml|(g*g)2 T ([HM[[I/1]]) 2=
=bl r¥-2n/Kr +1|/|h bl \LU
giving as w-"00
(12) W~ ligl

for any g in G. Itis easy to prove that (Sg9*=Sg* and Sgg=Sd¢g, for any
g,g" in G. In other words S:G~*B(K) is a “representation of G on K. To
prove that it has a (unique) extension to a “representation of A on K we have
only to show instead of (11)

(12

9 9

for any finite sequence {).g} of complex numbers indexed by elements of G. For
simplicity let Sa—]’?/ aSg foran a= 2"gS *n 4 Then we have, similarly as before,

for any u=2h®xh
IS,n[|2= & ..«, n) LW|ISe*ed] ||n],
|[ba«P"H ™ \Sia.ar-i «M«|1AW¥-2=Inl" —\\h2 gN®2sx42=

= NiIZ"l-ZhZk (% gsh®Asxh, 2t 8,k®J1,xK &
N Nil2' "—23h \\SZ gN®A.*»|| ||t2 g, k®*txkll = N IF+- 2ChZ ||SZ g.h®i.x,, )2
where (G*)2-1= 25 29ys stands for the sake of simplicity, so that
N3AT 1 NIZ+-22(Z KUF(h*gtgsh)xh, x,)rY LLI
s NI24-22 A N J \ZKgsh\\f »
s NHZ'+-2 1IN N r-4p (2N J Ni)2= M (2\xHNID2M F 4N ir+- 2
thus giving (12) as /r—°°, indeed.

Finally, we have a bounded linear operator V of K into H, if we define it
on F by

(13) V(2 h@x = 2 f(hxh

It is densely defined and bounded by (7) so that V has a (unique) bounded linear
extension to K, denoted also by V. To prove (1), it suffices to show4

(149 StV*x = g®x  (g€G,xeff)
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since then VSgvV*x=V(g®x)=f(g)x holds for any a in H, proving (1). To
prove (14), we need only to show that

(2hh®xh, S,,V*x) = (KS>(€ h®xh, x) = (V%g*h@xh, X) =
=2 (f(g*h)xh x) = (2h ®xHg®x)

for any element 2hh®*h in since they are norm dense in K. The proof is
complete.
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ON IRREDUCIBLE OPERATOR *‘-ALGEBRAS
ON BANACH SPACES

J. VUKMAN (Maribor)

This work is in close relationship with our earlier research (see [9], [11], and
[12]). Throughout this paper we denote by L(X) the algebra of all bounded linear
operators on the Banach space X. A subalgebra JcI(T ) is irreducible on X
(or acts irreducibly on X), if for each pair x, ydX, xAO there exists such
that Ax=y. We follow C. E. Rickart [8], and call a subalgebra ~ci(1) strongly
irreducible if for each ydX there exists a constant ay with the following pro-
perty: If XEX, ||| =1, then there exists AdS& suchthat Ax=y, and \\A\\*ay.
Note that a subalgebra &aal(X) is strongly irreducible if it contains all linear
operators with finite dimensional range. Let si be a real or complex Banach
»-algebra with the identity element e. We say that si is symmetric if (e+a*a)~I
exists for each adsi. As usual, we call a linear functional on the complex Banach
»-algebra si positive, if /(G*G)£0 for all adsi. In the real case we call a linear
functional / positive if /(a*g)é0 and f(a*)=f(a) are fulfilled for all adsi.
We denote by Kf the left kernel which corresponds to the positive functional
/ acting on the real or complex Banach »-algebra si (Kf={a;f(a*a)=0}). We
shall write r{a) for the spectral radius of adsi and p{a) for r(a*a)l2 It should
be mentioned that the spectral radius of an element a in a real Banach *-algebra
si is defined to be equal to the spectral radius of a as an element of the complexi-
fication of si (see [8, p. 5], and [10] for details).

Let X be such a real or complex Banach space that there exists an involution
A-~A* on L(X) satisfying the condition A*Aa O for each nonzero A£L(X).
According to the classical result of S. Kakutani and G. W. Mackey (see [3] and [4])
there exists an inner product on X such that the corresponding norm is equivalent
to the given norm on X and that A* is the adjoint of A relative to the inner
product. It should be mentioned that J. Bognar obtained a simple and elementary
proof of this result (see [1] and [2]). Some results in the sense of the Kakutani—
Mackey theorem can be found in [9], [11] and [12]. The main purpose of this paper
is to prove the following result which also characterizes a Banach space with an equi-
valent Hilbert norm among all Banach spaces. The proof is based on N. Namsraj’s
result concerning the existence of positive functionals on complex symmetric Banach
»-algebras (see [5]), and recent extension of this result to the real case which can
be found in our earlier paper [10].

Theorem 1. Let X be a real or complex Banach space. Suppose there exists
a strongly irreducible symmetric Banach *-algebra Jc I (f) which contains the
identity operator I. In this case there exists an inner product on X such that the
corresponding norm is equivalent to the given norm, and that for each Adi, A* is
the adjoint of A relative to the inner product.
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Remarks. The algebra SS in the theorem above is semisimple since it is ir-
reducible. Therefore by [6, (5,5)] and [10, Theorem 4] A*A AO is fulfilled for each
nonzero AdSS. On the other hand we did not require the existence of operators with
finite dimensional range, minimal idempotents or minimal ideals in S& Therefore
we cannot introduce an inner product into X using the dual space of X (see [11])
or a minimal hermitian idempotent (see [7], [8, Theorem (4.10.7)] and [9]). In our
case an inner product will be introduced into X via a positive functional.

For the proof of Theorem 1 we need the following lemmas.

Lemma 1 Let si be a real or complex symmetric Banach * -algebra with the
identity element e. Then the following statements are fulfilled.

1° To each proper left ideal ifcrf there corresponds a positive functional
f such that lfc.Kj-,f(e)= 1

2° There exists a constant M such that the relation r(a*a)l/2*M || isfulfilled
for each adsi.

Proof. For the proof of the complex version of 1° see the proof of Theorem 1
in [5]. The real version of 1°is contained in [10, Theorem 11]. The proof of the
complex version of 2° can be found in [6] (see (8,1) and (8,2)). The proof is based
on the subadditivity of p(m), and the fact that the radical of a complex symmetric
Banach *-algebra contains exactly those elements a for which the relation p(a)=0
is fulfilled. Since both of those results are proved also for real symmetric Banach
-algebras (see [10, Theorem 4]), the real version of 2° can be proved in the same way.

Lemma 2. Let f be a positive functional acting on a real or complex Banach
*-algebra si with the identity element e. The following statements are fulfilled.

1°f(a*a) " f(e)r(a*a) for all adsi.

2° f(b*a*ab)"-r(a*a)f(b*b) for all pairs a,bdsi.

Proof. The complex version is well known (see [6, (2,4)]). For the real version
see the proof of Lemma 8 in [10].

Proof of Theorem 1 Let udX be a fixed nonzero vector. First observe that
each xE£X can be written in the form x=Au for some AdS& since S is by
assumption strongly irreducible. It is easy to prove that the left ideal SE= {A; AdS4,
Au—0Q} is maximal. Since SE is closed, the quotient space SSjSS is complete in
the norm \A+ SS\\O_éPs]; [/1+ 7J||. By the open mapping theorem the isomorphism

A +£2>*Au, which maps S&SS onto X, is bicontinuous if we equip S&/J? with
the norm | ¢||0. By Lemma 1 there exists a positive functional f /(/)= 1 such that
S£czKs. Since SE is maximal, we have fE=Kf . Therefore S&/SS is a pre-Hilbert
space with the inner product (A +SS, B+JS)=f(B*A), A, BdS3. Denote the norm
corresponding to the inner product by | -ji. Letus prove that there exists a constant
a such that for all A-\-STdS&ISE the inequality

0 M +J2b=M M +Sfllo

is fulfilled. From the first statement of Lemma 2 it follows WA+ £S\IH(A*A) =
—f((A +Bj*(A+B)"r((A +B)*(A+B)). Since by the second statement of
Lemma 1 there exists a constant M such that r((A+ B)*(A+B))11
LUMWA+B I, we obtain WA+ 32WAM\\A +B\ where B is any operator from SE.
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Therefore WA+ WM |nf L1+5L, =MWA+JEWNO which completes the proof

of (1). The isomorphism A+3£ Au allows us to introduce an inner product
into X as follows

(x.y) = (A+& B+&)=f(B*A), x =Au, y = Bu.

Denote the norm induced by this inner product by | ¢J|2. Then combining (1) with
the fact that there exists a bicontinuous isomorphism between 38.8? (equipped
with the norm | -10, and X (equipped with the original norm | -||), we obtain
that the inequality

@ 1], s/2]Ix]|

is fulfilled for some constant B, and each x3X. Letus prove that

©) e ylacla

for some y and all x3X. For this purpose let us first prove the relation
@) \AxIaS r(A*A) Ven,

where A338 and x3X are arbitrary. Let A338 and x—Bu, B338 be given.
Then \AxLL=(Ax, AX)={(AB)u, (AB)u)=f((AB)*(AB))=f(B*A*AB). Using the
second statement of Lemma 2 we obtain WAX\\=f(B*A*AB)"r(A*A)f(B*B)=
=r(A*A)|[*||1, which completes the proof of (4). From (4) and the second statement
of Lemma 1it follows that

© M*[|.eNT/M|[*].

for some constant M, all A338 and all x3X. Let a fixed vector e3X, ||e||,= 1
be given. Then by strong irreducibility there exists for each x3X an operator
A33 suchthat Ax=\\x\\e, and W\AWAC, where C is some constant. Therefore
IM1=WAX\2, and by (5) |*||=]I"*[|2AfM]||[x||2*1/C||*||2, which completes
the proof of (3). From (2) and (3) it follows that the norm induced by the inner
product is equivalent with the given norm on X. It remains to prove that (Ax, y)=
=(*, A*y) for AfiXt, and all pairs x,yEX. Let At38 and * y€X be given.
There exist Ar,A2"\38 such that x=Alu,y=A2u. Since Ax=(AAJu, A*y=
=(A*A2u, we obtain (Ax, y)=f(A*AAD, and (x, A*y)=f((A*AD*AD=f(A*AA).
The proof of the theorem is complete.

We conclude with the result below which can be considered as a consequence
of Kadison’s remarkable result concerning representations of (*-algebras (see
[8, Theorem (4.9.10)]).

Theorem2. Let X be a complex Banach space, and suppose that there exists
an irreducible B*-algebra 38alL(X) which contains the identity operator. In this
case there exists an inner product on X such that the corresponding norm is equivalent
to the given norm, and that for each A338, A* s the adjoint of A relative to the
inner product.

Proof. The proof will be similar to the proof of Theorem 1. Let therefore
u3X be a fixed nonzero vector, and denote by 3£ the left ideal {A; A33, Au=0},
which is by irreducibility of 38 maximal. Since a complex iU-algebra is symmetric,
there exists by Theorem (4.7.14) in [8] a pure state / such that Ks=3£. Therefore,
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as in the proof of Theorem 1, an inner product can be introduced into &/£? as
follows: (A+&, B+&)=f(B*A), A, BE®. By Lemma (4.9.11) in [8] the norm
induced by this inner product is equivalent to the norm W\A+:S70= jnf WA+ B\

Combining this with the fact that there exists a bicontinuous isomorphism between
X and equipped with the norm | ¢||0, it follows that an inner product can be
introduced into X such that the corresponding norm is equivalent to the given
norm on X. The rest of the proof goes through as in the proof of Theorem 1

Remark. It seems that the proof of Theorem 2 cannot be used for the real
case, since real BR*-algebras are not necessarily symmetric, and since the proof of
Theorem 2 depends heavily on Lemma (4.9.11) in [8], which is an immediate con-
sequence of Kadison’s result mentioned above, and which is by our knowledge
proved only for complex iT-algebras.
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ON THE THREE-DIMENSIONAL FINSLER SPACES WITH
-TENSOR OF A SPECIAL FORM

H. D. PANDE and J. P. PANDEY (Gorakhpur)

In this paper a special form of the '-tensor Thijk has been proposed and studied
in three-dimensional Finsler spaces.

Introduction

Let Cijk(x, y) (cf. Matsumoto [3]) be the (A)An-torsion tensor of an n-dimensional
Finsler space Fn with the metric function L(x,y) where x is a pointand y is an

element of support.
The r-curvature tensor Shik (cf. Matsumoto [3]) is defined by

(ED Shik = CkeCfj ChirC[k.
The r-covariant derivative of a tensor T) is given by
(1.2) Ti\k =aT\myk+ TICk- T ‘Ck.

The -tensor Thik (cf. Matsumoto [4]) is completely symmetric and is defined by
the equation

(1.3) Thik = LChiJk+Chijlk+Chklj+ CH§ + Ckjj Ih
where /,=T _ly,.

A Finsler space in which the h(hr)-torsion tensor Cik is of the form
1.4 (n+1) C;Xk — hij Ck+ hXkCt+ hk Cj,

is called a C-reducible Finsler space (cf. Matsumoto [5]).

A Finsler space Fn (u"3) with the non-zero length C of the torsion vector
C* is called semi-C-reducible (cf. Matsumoto and Shibata [7]), if the (h)hv-torsion
tensor Ctk is of the form

(15) Cijk = (hu Ck+ hXCi + hkiCj) + -~ C i Cj Ck

where p and q(=1—p) do notvanish, p iscalled the characteristic scalar ofthe Fn.
The purpose of the present paper is to study a special form of the I'-tensor
Thik in special Finsler spaces.
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Special form of the -tensor Thijk

We assume that that the I'-tensor Thijk is written in the form
21 Thik = hhiQjk+ hh]Qik+ hhkQij + htJQhk+ hikQhl+ hkQM+ XChC;Cj Ck

where QtJ are components of a certain tensor field and A is a scalar.
Since Thijk is symmetric in all the indices, hence we get

2.2) hK(Qhi-Q if) = 0

which implies that Qu is a symmetric tensor.
Contracting (2.1) with respect to yk and using Thjkyk=hJyk=0 we obtain

(2.3) hjiQJo+ hhIQi0+ hij QI —o

where “0” means contraction with respect to the element of support.
Further contraction of (2.3) with respect to gH yields

(2.4) Qio=0 (n>2)

which means that Qtj is an indicatory tensor.
Therefore, we have

Lemma (2.1). If the T-tensor of a Finsler space I',,(n>2) is of theform (2.1),
then Qij is a symmetric and indicatory tensor.

In a two-dimensional Finsler space (cf. Berwald [1]), the angular metric tensor
hu and the {h)hv-torsion tensor CiXk are written in the form

(2.5) a) hij=T,7; b) LCijk = Imimjmk

where the function | is called the principal scalar by L. Berwald.
From (1.3) and (2.5), the I'-tensor of F2 is given by

(2.6) LTMk = T 2mhm, msmk
where
2.7 Li=zLM L mf

Hence the '-tensor Thijk of an 2 is of the form (2.1) since Qtj and X are found
from (2.5) and (2.6) in the form

L 1.2mimJ b-Y.n
(2.8 Qu = X= ica

The T-tensor of a semi-C-reducible Finsler space (Matsumoto and Shibata [7])
of the first kind is given by

(2.9) Thik= L (I « HUk+ TP w1 (+ Tp CpKk)
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where
TP = (px+pgpC2(n+Il) (n+1-2p), TP = q(pct+pl(n+1-2p),
Tp =[{n+1- (n+3p}ragx+ {(n+3p- 2(n+1)}pcl(n+1-2p)C2
Hhljk = hhihXk+ hhjhki+ hhkhtJ,
HPIk = hhiCjCk+hijCkCh+hh CtCk+ hXkCi Ch+hhkCiCJ+ hki Cj Ch,

cl = ChCtCjCk, Pt=jp and Fc= PiC1C\ a= PC%/C*
We see that the T-tensor Thijk of a semi-C-reducible Finsler space of the firstkind
is of the form (2.1) since Qy and $ are found from (2.9) as
(2.10) Qu=LQTPhu+TP CiCj), A=LTP.

The indicatorized tensor Thijkl (Fukui and Yamada [2] and Yamada [9]) of Shi
is given by

(2.12) Thijld — ShijKi+L~1(21,Shjk+ IhSujk+ liShidk+ Ij Shrk+ IkShijj).
Differentiating (1.1) with respect to yk we get
(2-12) Shijkli = Q*rli Cfj + CharC/j-1,—ChIAl C'k—ChirCJK\i.

Indicatorizing (2.12) and using the indicatory properties of CiJk Qij and hu,
we obtain with the help of (2.1), (2.12),

(2.13) LThijd  hijdihi "Fhkidjki'\rhjiakii + h~a-tr
+ hkiaijk+hn ah§ —hkia,j —hK aitj —huakij —hhJalki—htiajik—hjlahki+
+ ChnQK+ C i Qhi—ChlIQki—CknQhJ+2(CkC; Cj Ehi+ ChCtC(EKj—CkC; C;Ehj—

—ChCtEK)
where
(2.14) auj = QmC™ and Ef§f —CTC™
Therefore we have

Theorem (2.1). | f the indicatorized tensor of L Chidk is of the form (2.1), then
the indicatorized tensor of Shikh is given by (2.13).

Three dimensional Finsler spaces

In this section we give the fundamental formulae of three-dimensional Finsler
spaces. Matsumoto [6] developed the theory of three-dimensional Finsler spaces
with respect to the orthogonal frame eMi, a=0, 1, 2 where e(QJi=L~1yi, ew ~C ~1Ci
where C is the length of the torsion vector Ct. The third vector e(i is given by

(3.1) e(2, = eijkemewk.
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The (A)fia-torsion tensor Cik are written as

(32 LCtk — CdyeWle(R)je(y)k

where b~xCd are called the scalar components of CIlJk We also have
(3.3) Cfo=0, Cm=H, CI2=/, C22— Clk=.J.

H, I and J are called the main scalars and satisfy

(3.4) H+1=LC.

The a-covariant derivative of the vector e(@@' are given by

(3.5 ew\] L = emeMI+Shervj

where Vj are the components of the "-connection vector. The scalar components
MRy of a tensor T)Xk are defined by

(3.6) Tdy = T)kemle™e(y*.
The scalar components 24y of T j\k L are written in the form

(3.7 Taly=b " e (y*+T,pr $¥+Tal\ilBy

where the quantities ' $ B are such that

(3.8) = T()\ay> flioliy = dRy~—~dROQ
and r[i]2y=Vy. The a-covariant derivatives of T\} are given by
(3.9) Tik-L = Tapyem® " e MK.
. nr. .
Since yt=L-rj-j, from (3.2) and (3.9), we obtain
(3.10) L 2mChij\k+L- ChijeWk = Cd.6e@@he<pieMIe(Ok
From (3.3), (3.4), (3.7) and (3.8), we obtain
Q6 ~ CRS
CHbl = H;i+ 3Jvt,
(3.11) ' Clzi= —Ji+(H=21)vi,
azs-~ ;i 3Jhf,
C224= J + 3lva

where H.a—L (aH/3y")
The a-connection vector also satisfy the following relations:

(i) (A—21)vk- 3v2= J;1+ H.2,

(3.12) (i) 3dvk+ (H —2D)2= 1A+ J 2,
(i) 3w+ 3Iv2= - Jy+/.2

From (1.3) and (3.2) we get
(3.13) LThjk —{Caly;S+ CRyit0a+ CaySoq+ CaBo0y}eMhe(R)lefs) eWk.
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Three dimensional Finsler space with I'-tensor of the form (2.1)

Let F3 be the three-dimensional Finsler space whose I-tensor Thik is of
the form (2.1). Let QX3 be the scalar components of LQtJ i.e.

(4-1) LQij = Qape(a)ie(B)j-
Since Qu is a symmetric and indicatory tensor, hence we have
4.2 @GR=Qa and Qua=o.
The scalar component of the angular metric tensor ht] are given by
4.3) — (RaR~$0x AM)e (ayi e(R)j
From (2.1), (3.13), (4.1), and (4.3), we obtain
(4.4) CXy.s+ CRySHe[+ CaySo3 + Crpos0y — (X3—00SM) Qyi+ (6 liy—60e00) QR +
+ (8x6 ~ <5m0a) Olly+ (BRy ~ ~OR &-w)Q xi+ (RB6 ~ OoB"0a)Qxy +
F (SyS—600® QX+ LiX CisltsR’6iyal i .
From (3.3), (3.11), (4.2) and (4.4), we get

(i) tf;2+ 3IVI = 6QU+LXC\
(i) H.2+3Jv2= 3012
@iii) -/p+(H-2/K = 3R12
" (iv) —.2+(H-—=21)v2= 622+ 611»
1 ; (v) lii-3Jvl = Qil+Qu,
(vi) 1.2-3Jv2= 3Q1
(vii) J1+3Iv2 = 3Q12
(viii) J.2+3lv2= 6Q2
By virtue of the equations (3.12), equations (ii) and (iii), equations (iv) and (v) and
equations (vi) and (vii) are identical. From equations (ii) and (vi) of (4.9) and (3.4)
we obtain
(4.6) LC.2=6QL2 ie. QR=j LC;2

Also adding (iii) and (vii) and using (3.4), we get
@7 Q2= —LCvi.

Therefore Q12:4éJLC:2: ?LCt>i. Hence m=C-1C.g. Adding (iv) and (viii)
of (4.5) and using (3.4), we get
(4.8) O11+ 702 = (H+1)v2= LC\2
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From (v) (4.5) and (4.8) we obtain
(4.9 Q2= ’\O(LCv2- I;14#43JM) and OQn = -0i(7/.x-21/t)1-LCj>J).

With the help of (i) (4.5) and (4.9), we have

(4.10) X=C-i{C.1+Cv2-Z L -1(l.i-?>JvD}.
Therefore we have

Theorem (4.1). |f the T-tensor of a three-dimensional Finsler space is of the
form (2.1), then the scalar components QX3 of L Qtj and the scalar K are given
by (4.2), (4.7), (4.9) and (4.10).

We also have

Corollary (4.1). |If the T-tensor of a three-dimensional Finsler space is of
the form (2.1), then the v-connection vector vt vanishes if and only if Qu=o0 and

Qn+iQiz=o.
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ON A PROBLEM OF F. A. SZASZ

S. FEIGELSTOCK (Ramat-Gan)

1. The study of rings satisfying the minimum condition for principal (right)
two-sided ideals, (MHR) MHI-rings, was initiated by F. A. Szasz [2, 3, and 4].
These rings provoke interesting questions in the radical theory of rings, see [5, pp.
128—129, problems 29—40]. Szész has asked for necessary and sufficient conditions
under which an MHR-ring is embeddable into a unital MHR-ring. In this note,
the structure of the additive groups of unital MHR, and MHI-rings will be given.
Using this structure theory, it will be shown that an (MHR) MHI-ring may be
embedded into a unital (MHR) MHI-ring if and only if its torsion part is bounded.

The author is indebted to Professor Szadsz for posing the above problem, and
for his suggestion that it might be solved by studying the additive groups of
MHR-rings.

2. Notation:

R aring

R+ the additive group of R

R, the torsion part of R+

Rp  the p-primary component of R,, p a prime
IcR | isanidealin R

(x) the ideal in R generated by x£R

Q  the field of rational numbers.

Theorem 1. Let G be a torsionfree group. The following are equivalent:

1) G is the additive group ofan MHR-rmg.

2) G is the additive group of an MHI-ring.

3) G is divisible.

Proof. Clearly 1)=>2).

2) =>3). Let R be an MHI-ring with R +=G, x£EG, and let n be a positive
integer. There exists a positive integer k such that (nkx)=(nk+lx). Therefore
there exists yER such that nkx=nk+ly. Hence nk(x—y)=0. Since G is torsion
free, x=ny, and so G is divisible.

3) =*1). If G is a divisible torsion free group, then G is the additive group
of a field.

Lemma 2. Let R be a torsion free (MHR) MHI-ring, and let !<}R. Then
I + is divisible.

Proof. Similar to the proof of the implication 2=>3) in Theorem 1
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Corollary 3. Let R be an (MHR) MHI-ring, and let I<\R/Rt. Then | + is
divisible.

Corollary 4. Let R be a torsion free (MHR) MHI-rmg, and let S be an
extension of R by Q. Then S is an (MHR) MHI-rmg.

Proof. It follows easily from Lemma 2, that every (right) ideal in R isa (right)
ideal in S. The statement of Corollary 4 is a direct consequence of this fact.

A ring satisfying the minimum condition for principal ideals generated by
a torsion free element will be called an MHTFI-ring. It is easily observed that if
R isan MHTFI-ring, then R/R, is an MHI-ring.

Theorem 5. Let Gbe a group. Thefollowing are equivalent:
1) G is the additive groupof a unital MHR-réag.

2) G s the additive groupof a unital MHI-ring.

3) G s the additive groupof a unital MHTFI-rmg.

kt
4) G=sO©0+© C?D © e Z(p{), n,kt positive integers, pt a prime, and a, at]
a t=lj=laij

arbitrary cardinals, i=1,...,n;j =1, ..., kt.

Proof. Clearly I)=>-2)=>-3).

3)=>4). Let R be a unital MHTFI-ring, with unity e. If R+ is a torsion
group, then |e|=n<°°, and nx=(ne)x=0 for all xER. Hence R+ is bounded,
and is of form 4) with a=0, [1, Theorem 17.2]. It may therefore be assumed that
R + is not a torsion group, in which case e is torsion free. Let p be a prime.
There exists a positive integer K such that (pke) =(pkHe) for every non-negative
integer /. Hence pke—pk+lyl, for some yt*R, or pkle—ply,)=0. Therefore
e—ply,+zi, with pkzi=0. Let x£Rp, x*O, and choose / such that x\=pl.
Then x=ex=ztx. Hence pk«=(pkzl)x=0, i.e., pkRp—0. This implies that

K
Rp=® ®Z(pJ), oj acardinal, j =1,..., Kk, [1, Theorem 17.2].

éu;l)p(])se that RPZ0 for infinitely many primes pt, i=1,2,3,.... It was
shown above that there exists a positive integer kt such that pkRHA=0,i=1,2, 3,... .
There exists a positive integer n, suchthat {pLvp\r... pke)—{p\p\i ... pkpKfe).
Put s'p'i'pfy ... pK' There exists fER suchthat se=pki® sf Let XERPw, x*O.
Since (j, [x|)=I, there exist integers u,v suchthat mj+ ux|=1 Hence x—ex—

n Kl
= usex= usfpk®”"x=0, a contradiction. Therefore Rt—_®|_®I ®Z(pj), a+ a car-
1=l|=

dinal, i=1, ..., n;j=1,..»kt. Since R, is bounded, R+=Rt®H, H a torsion
free group, [1, Theorem 100.1]. By Lemma 2, H is divisible, and so 4 =@a>16 +,

[1, Theorem 23.1].
4) =>1). Let G be a group satisfying 3). Let F be a field with F+=a®Q+’

and let Zpj be the ring of integers modulo p{, i=1 ..., n;j—I, ..., kt. Then
n k

R=F® '®|"@3| ®2pj is a unital MHR-ring with R +s2G,
=)=l aj

For an alternate proof of the equivalence of 1) and 4) in Theorem 5, see [3,
Satz 3.2].
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Corollary 6. Let R be a unital (MHR) MHI-ring. Then R s a ring direct
sum R=Rt®RO0, with R, a bounded (MHR) MHI-rdg, and RO a torsion free,
divisible (MHR) MHI-rég.

Corollary 7. Let R bean (MHR) MHI-ring. R may be embedded into a unital
(MHR) Mill-ring if and only if R, is bounded.

Proof. If R is a subring of a unital (MHR) MHI-ring then Rt is bounded
by Corollary 6.

Conversely, let R be an (MHR) MHI-ring with R, a bounded group. Then
R+—R:QRO0, [1, Theorem 100.1]. By Corollary 3, RO is divisible. Let n be a
positive integer such that nRt=0. Now RteR0=R,-(nRO)=(nR,)sR0=0, and
similarly RO-Rt=0. Hence R=R,®R0 is a ring direct sum, with Rt a bounded
(MHR) MHI-ring, and RO a torsion free, divisible (MHR) MHI-ring. It clearly
suffices to embed Rt and RO separately into unital (MHR) MHI-rings. The
following procedure is essentially that in [1, Lemma 123.2]. Let Zn be the ring
of integers modulo n. Clearly, Rt is a Z,-algebra. Put G,=Z,+®i?r. For
afzf bfR,, i=1,2, define (al+bl{a2+b2=ala2+blb2+alb2+adl, where
the products ala2,blbi are the productsin Z,, and R, respectively, and axb2, a2bl
are defined by the action of Zn on Rt. This multiplication induces a unital
(MHR) MHI-ring structure S,, with Rt<iSt. Replacing Zn with Q, and
R, with RO; the same procedure yields a unital ring SO, with RO<\SO, and
SOROMQ. By Corollary 4, SO is an (MHR) MHI-ring.

Observation. The proof of Corollary 7 shows that if an MHR (MHI)-ring
R is embeddable into a unital (MHR) MHI-ring as a subring, then R may be
embedded into a unital (MHR) MHI-ring as an ideal.
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A GENERALIZATION OF STRONGLY REGULAR
RINGS

V. GUPTA (Tripoli)

In this paper we introduce the notion of n-weakly regular rings. We give some
characterizations of fnrweakly regular rings with unit element. Finally we show that
every ring A has a unique maximal two sided n-weakly regular ideal S(A) with
some radical like properties.

All rings are assumed to be associative. A ring A is called mweakly regular
if for all alLA we have adaAa2A. The class of r~weakly regular rings lies strictly
between the class of right (or left) weakly regular ring and strongly regular rings.
Following are some examples.

Example 1 (Fisher [3], Example 2). K[y, £5], the ring of differential polyno-
mials in the indeterminate y with cofficients in K, where K is a universal differential
field with derivation D, is n-weakly regular but not strongly regular.

Example 2. A,,, the ring of nXn matrices over a divison ring is a right (left)
weakly regular but not n-weakly regular.

We use the following notations.

(x) =the two sided ideal generated by xdA.

X* = {adA\Xa=aX=0}, the annihilator of a non empty set XQA.

Xr ={adA\Xa=0}, the right annihilator of a non empty set XQA.

X1 =the left annihilator of a non empty set XQA.

Concerning our terminology we refer to the papers by V. A. Andrunakievic and
Ju. M. Rjabuhin [1], V. S. Ramamurthy [7] and E. T. Wong [9].

A ring A is called reduced if it is without non zero nilpotent elements. Now
we give the following two lemmas which will be used frequently in the subsequent
study.

Lemma 3 (K. Chiba and H. Tominaga [2]). Let A be a reduced ring and let
a, bdA.
(i) 1f ab—Q then ba=0 and (a)r=(a)l

(i) If aAO then Aj(a)r is reduced and the residue class a of a mod (a)r is
a non zero divisor.

(iii) If A isaprime ring then A contains no non zero divisor (i.e. (@r=(a)l=0
for aAQ).

Proof. It is obvious.

Lemma A If A is a prime s-weakly regular ring then A is a simple ring with
unit element.
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Proof. It is clear that A is reduced. Let adA, then a—ax where xd(a2.
Now X acts as a unit element of A, since for all adA, xa—ad(a)r=0. Thus
xa=a. It is obvious that ax=a. Moreover A=AxQAAaZ2AQAaA. Thus A is
a simple ring with unit element.

Now we formulate the following characterizations of j-weakly regular rings.

Theorem 5. Thefollowing are equivalentfor a ring with unit element.
(i) A iss-weakly regular.
(i) A is a right (or left) weakly regular ring and is a subdirect sum of simple
reduced rings.
(iii) A is reduced and right (or left) weakly regular.
(iv) A is reduced and A/P is right (or left) weakly regular for every proper
prime ideal P of A.
(v) A is reduced and A/P is s-weakly regular for every proper prime ideal
P of A
(vi) A is reduced and every proper prime ideal is maximal.
(vii) A is reduced and every proper completely prime ideal is maximal.

Proof. (i)=>(ii). Itis clear that A is right (or left) weakly regular and hence
semisimple in the sense of Jacobson (Ramamurthy [7]). Now A is a subdirect
sum of primitive rings Aa each of which is a homomorphic image of A and hence
j-weakly regular. Now by Lemma 4 each of Aa is a simple reduced ring.

(i) =>(iii)=>(iv). These are obvious.

(iv)=>(vii). Let P be a proper completely prime ideal of A. Since A/P is
right (or left) weakly regular, it can be verified that A/P is a simple ring. Thus
P is a maximal ideal.

(vii)=>(i). Let OAafEA. Then A=A/(a)r is reduced and a is a non zero
divisor of A. Every proper completely prime ideal of A is a maximal ideal of A.
Let M be the multiplicative semigroup generated by all elements 5—ax where
xd(ad. We claim that 0dM. Suppose OJM then there exists a completely prime
ideal P with POM—0 (Andrunakievic and_Rjabuhin [1]). Let adA. Then
(a29=P or there exists ad(éd2 suchthat ad P- Iff42 QP then axP- Since
P is completely prime, we have adP- Now &—axdPCIM = 0 for xd(a2 which
gives a contradiction. If there exists ad (42 suchthat a$P then we have (a+P) =
=A/P, since A/P is simple. In particular 1—ffupM'jdP. Thus &a—aziijCcl'jdPn
MM =0 which is a contradiction. Hence OdM. Now

0 = (a—axj)(a—axa) ... (a—ax,,)

where xtd(a2). Since A isreduced and & isa non zero divisor, by using Lemma 3
it can be verified that T=x for some xd(a?d. Thus 1—xd(a)r. Now we have a—ax.
(i) =(v)=>(vi)=>(vii). These are obvious.

Let A" be a ringand A a subring of A' containing the identity of A'. A is
called an integral extension of A if for every xdA’', there exists a positive integer
n and elements a,_x ...,a0 in A suchthat x"+an- Xxn~1+ ... +a0=0.

Lemma 6. Let A' be an integral extension of A and let A" be an integral
domain. If A issimple then A" is asimple ring.
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Proof. Itissufficientto prove that for every nonzero x£A', we have A'XA'=
—A’. Let 0?*xEA' then x is integral over A, thus x"+a,,-Ixn~1+... +a0—0.
Since A' is an integral domain, we can assume a0*0. Now consider the ideal
generated by a0 in A. Since A is a simple ring we have AaCA=A. Now it can
be shown easily that A'’XA'=A'. Hence A' is a simple ring.

Analogously to the corollary of Wong [9] we have the following.

Theorem 7. A reduced integral extension A' ofa right (or left) weakly regular
ring A is an s-weakly regular ring.

Proof. Let P' be a proper completely prime ideal of A'. Then P=P'T\A
is a completely prime ideal of A. A/P is a simple ring. A'IP"' is an integral domain
and an integral extension of A/P. Now by Lemma 6 A'/P' is a simple ring. Thus
P' is a maximal ideal of A'. By Theorem 5, A" is irweakly regular.

An element afA is called nweakly regular if there exists x£(a2 such that
a=ax. A two sided ideal | is called n-weakly regular ideal if each of its elements
is n-weakly regular.

Let S(A)= {aEA\(a) is an f-weakly regular}. Now we give the following lemma
which will be used in proving our next theorem.

Lemma 8. Let | be an ideal of A. | iss-weakly regular ideal of A ifand only
if afaAa2A for any afl.

Proof. Let a£l and a—ax where x£(ad. From this xE(axa)Qlad. Thus
| is an n-weakly regular ideal. The converse is trivial.

Lemma 9. If x€aAa2A and a—x€(a—x)A(a—x)2A then afaAa?A.
Proof. Since xEaAa?\, we have (a—x)AQaA. Moreover

(a—=t)6(a—x)A(a—x)A - (a—x)A(a2+x2—ax—xa)A Q aAa2A.

Since x£aAaZA, we have afaAa?A.

Theorem 10. (i) S(A) is the unique maximal s-weakly regular ideal of A.

(i) S(A/S(A))=0.

@iii) 1f 1 isanideal of A then S{1)~S(A)OI.

(iv) S(AN—0 where A,, denotes thefull matrix ring of order n over A.

(v) If A/U(A) isan s-weakly regular ring then S(A)=0 ifandonlyif U(A)T#
QU(A) where U(A) denotes the upper nil radical of A.

Proof, (i) Let aEA and u£S(A), then clearly au and ua£S(A). Now
suppose that w, and u2ES(A) then we show that ul—u2ES(A). Let a*(ul—u?d
then a=zx—z2 where zf(ut) for /=1,2. z1=zI1TrizJri for some rhr["A.
Now consider

a-a 2 riai=(z1-2z2-(z1-z22 £ ri(4+zt~z122-z 2zjr,' =

= - z2- 2x2 rfzi-z822-z22Z0)r'i+ z22 ri(Z'+4 ~z122- 7 2Z])rl€(zD.

Now by Lemma 9 aEaAa2A. Thus S(A) is an ideal. Now the result is immediate.
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(i) Let a denote the residue class modulo S(A) which contains the element
a of A. If BdS(A/S(A)) and a€(fc) then 5€(6). Thus &~&ax where x£(a2.
Thus a—ax£S(A). By Lemma 9 afaAa2A. Hence bES(A) and B—O.

(iii) By (i) and Lemma 8, S(A)C)IAS(I). Conversely, if adS(l) then
axalaax™alQS(1). Similarly xa£S(l). Thus S(l) is an ideal of A. We have
S(NHQS(A)r\J by Lemma 8.

(iv) By using (iii), it suffices to prove the result for a ring with unit element.

Let QE*X"S(A,,) and let O”a be the (/,y)th entry in X. Then

0 a0 .. 0
0 00 ..0

Y = EuXEj2 = 000 .0 es(An.
000 .. 0

3 )This implies that Y =YIZiYZ'i=0 which is a contradiction. Hence
N)=o.
(v) It is easy to verify that U(A)DS(A)=0. Since U(A) mS5(A) and S(A) -
mU (A)MU(A))S(A)=0 we have S(A)QU(A)TQU(A). Hence S(A)=0.
Conversely, let S(A)=0. First we will show that U(A)C{U(A)T)2=0. Let

xEU{A)C{U(A)T)2 then xEU(A) and x—Z aibi where aj,biEU(A)T. Since

A/U(A) is i~weakly regular, we have at—Z xjalx'jai=ui for some uf£U(A). Now

We use induction on n.
If =1 then

b
1

Z, xjaljalbl= Z, XCilXjX = 0.

If 1 then we have
14
anb,= x- Z aibi-

Thus
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U(A)T is a two sided ideal. Since

(m m \

2 XjdU'j- 2 XjdnX'Aa,, b"U(A)T,

i=1 i=1 '
we have x=0 by induction hypothesis. Now let a£(U(A)T)2 then (d)Q(U(A)T)2
Moreover, if a6(a) then a—2 x]*?XjIC€EU(A)n(U(A)T)2—0. Now a£S(A)=0.
Thus U(A)TQU{A).
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THE SPECTRUM OF A CLASS OF SINGULAR
INTEGRAL OPERATORS

N. S. FAOUR (Kuwait)

Introduction

Let E be a bounded measurable subset of the real line R, and let L2(R)
be the usual Lebesgue space of C" valued square integrable functions on R («> 1).
The space LMJIR) is the set of nXu matrices (Py) (1~ /, /=«), where each of
the functions ®0E-°°(R).

The operators of interest are the singular integral operators S defined on
L{E) by

where BEL"AE), and B* isthe adjoint of B.

The singular integral operator 5 is hyponormal, that is the selfcommutator
[5*, S]1=5*S—SS* is a non-negative operator. Moreover, [5*, S] is «-dimen-
sional.

In this paper it is proved that the spectrum of S is the set of all complex
numbers z=x+iy such that x is in the essential closure of E and \y\*
=ess tIﬂi_rrx1 sup ||5(r)]|2 It should be remarked that a complete description of the

spectrum of S for the case n=1 was given by Clancey and Putnam [1].

The spectrum

In this section the spectrum of the singular integral operator S defined on
LI(E) by

D

is studied. To do that some definition and lemmas are needed.

If g is a non-negative essentially bounded measurable function defined on
a subset of F of the real line, then g will automatically be extended to be zero
off F, and g*(x) will be defined by

9#5)() = esstllzrp supg(® = ‘(!i‘r_no ess supg(i)

where the Lebesgue measure of AT1F is greater than zero for every neighborhood
A of x.

If F isa measurable subset of the real line R, then the set of all real numbers
x such that every neighborhood of x intersects F in a set of positive measure
is the essential closure of F and will be denoted by Fe. The set C(g) is C(g)=
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64 N. S. FAOUR

= {x-piy: xc.Fe |y|Sg#(X)}. It is clear that C(g) is a closed subspace of the
complex plane.
Let BEbMI(E). In this paper the norm of B is defined by |||6]||=ess sup ||5(t)|,

where \\B(t) | denotes the norm of the matrix B(t) as an operator on C" with
the Euclidean norm, also, the spectrum of the operator S is denoted by cr(S).
The main theorem of the paper is the following

Theorem 1 Let S be the singular integral operator defined on L\(E) by (1-
Then the spectrum of S is equal to

{x+iy: xE£e, |y| * esslimsup [|5(0|I1Z}-
The proof of Theorem 11 requires some preliminary lemmas.
Lemma 1L Let T be the singular integral operator defined on L\E) by

n J s-t d,
E

where bEL°°(E). Then the spectrum of T is equal to C(|b|2, where b* is the
complex conjugate of b.

Proof. See Clancey and Putnam [1].

Lemma 2. Let {g,}r=i be asequence ofnon-negative essentially bounded measur-
able functions defined on a measurable set F contained in the real line R. Suppose
S3— eee—g> where g is a non-negative essentially bounded function on F,

and gn-*g uniformly on F. Then n (/ " C(ng C(g), where (U C(gj)
n=1 Vi -
denotes the closure of U C(gm) .

Proof. Since glag25g3s...~g, then it follows that C(g®¥?~C(g2cC

gC(g3g...C(g). Since C(g) is closed, it follows that l]_I:III' le(gn)/] AC(9).
To prove the other inclusion, let z—x+iyEC(g). Choose a sequence {z.}*=l,
where zn=xn+iy,,, and |y,|=g*(xX)= lim esiﬁupg,,(i). Note that {y,.}=lis
bounded, and hence rIL|m yn exists. If |y|< \yn\ for some n, then the result follows.

Suppose |y|ély,| for any n. Since g,-*-g uniformly on F, then it follows that
(g—gnN(0<£ f°r all n*N. From this it follows that g#(x)Sg*(x)+e for all
n~N. Therefore |y]*g*(x)+e for all wénr. Hence, |y|—y.|=9,f(X)—y.|+£
From this it follows that |y|—y,|<e for all n*N. Hence, |y|=rlpi+n010 \yn\= |”Ii>r2 yr

From this it follows that z£ M1 U C(gn)J , and that ends the proof ofthe lemma.

Before we state the next lemma, the following definition is needed. A sequence
of operators is said to converge to T in the strong star sense in case
T,—T and ™*—* strongly. We will write Tn-+T{s—*) for this convergence.
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The following lemma is a result which appears in Howe [2], p. 643.

Lemma 3. Let {7.}“=1 be a sequence of hyponormal operators on a Hilbert
space H such that Tn-T (s—%*), where T ishyponormal, then

nn e = am.

Proof of Theorem 1 It should be remarked that B can be approximated by
a sequence {®,}=1 of simple functions such that ®n-+B uniformly and |||®1||"
Al 2|lé... p?]||l. In view of Lemmas 2, 3 it suffices to prove Theorem 1 for the
operator S defined on L2(E) by

sm=sm+tLL>fm m di
n -~ S+
where @ is a simple function. Since @ is simple, then it can be written as ®=
m
—2$jXFji where <y is a constant nXn matrix, and the sets
Fj are disjoint Borel sets whose union is E. It is easily seen that §S)=

= lmJ<y(Sj), where the singular integral operator Sj is defined by

MAE S~t
1
; — * r(<w 3/(0 d
Sjf(s) = 3/(3) +(P*D" v ' st

The operator Sj can be written as

The matrix (®*df 2 is unitarily equivalent to the nXn diagonal matrix with
diagonal entries aJ), ..., [7j~m . It follows that Sj is unitarily equivalent
to the orthogonal direct sum of the n-operators defined on L3Fj) by

1Sj s m.

s—t

From Lemma 1, it follows that a(Sij)= {x+iy: x*F?, |y|é|*,(N2}. From this
m

it follows that o(Sj)="x-\-iy: xdF*-, |y|é||®7||Z  Since o(S)—JgiO(Sj), it
follows that cr(5)={x+r>: LIyl = lI®[lI3, and that ends the proof.

References

[1] K. F. Clancey and C. R. Putman, The spectra of hyponormal integral operators, Comment.
Math. Helvitici, 46 (1971), 451—456.
[2] R. Howe, A functional calculus for hyponormal operators, Indiana Univ. Math. Jour., 23 (1974),
631—644.
(Received April 6, 1982)

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF KUWAIT
KUWAIT

5* Acta Mathematica Hungarica 43, 1984






Acta Math. Hung.
43(1—2) (1984), 67—71.

JFRIGHT CONGRUENCES AND A CLASSIFICATION
OF ORTHOGROUPS

F. CATINO (Siena)

Introduction

The importance of Green’s relations X, 3 ,0t, 3), ¥ in the theory of semi-
groups is well-known. In fact, investigations carried out by means of Green’s
relations have often led to the characterization of the structure of several types of
semigroups and have allowed to give meaningful and useful classifications.

In the present work we characterize, by means of Green’s relations, the ortho-
groups with band of idempotents of type SP, where 3? is anyone of the types of bands
classified by Petrich in [3].

To this aim it is useful to introduce the concept of J1-right [A-leftjcongruence
as well as the band S/g where S is an orthogroup and g is a Jl-right [J1-left]
congruence.

We omit the duals of all the theorems, namely all the theorems obtained by
interchanging with if, “right” with “left” and by changing, in a suitable way,
the equalities in the last point of each theorem.

For the terminology and material used here, the reader is referred to [1] and [2].

1 If a is a completely regular (c.r.) element of a semigroup S, we denote
the unit element of Ha by & and the inverse of a in Ha by a-1.

Definition 1. Let S be a c.r. semigroup and let g be a relation of equi-
valence on S, q is said to be a h-relation if aga for every ad S.
Green’s relations on a c.r. semigroup S provide examples of Jl-relations.

Definition 2. Let S be a c.r. semigroup and let g be a Jfl-relation on S
4 is said to be a /\-right [respectively J1-left] congruence if it is a left [resp. right]
congruence and

agb =acgbc (a, bdS) [agb =>cégcb (a, bES)]

for every cdS.

Notice that a J1-relation g is a congruence iff o isboth a J1-rightand a /1-left
congruence.

Let S be ac.r. semigroup; if is a family of /1-right congruences of
S that contain a relation >K, then

Q: iIi_II q

is a Jl-right congruence and contains >X. Let us denote by >X' the intersection
of all the N1-right congruences a of S suchthat Xda.
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Theorem 1. Let S be a completely regular semigroup. Then >X' isa congruence
iff any A-right congruence is a congruence.

Proof. Let X' be a congruence, it is clear that >X”—>X*, where X* is
the congruence on S generated by XX. Then if g isa Jl-right congruence &acgaéc
for every a, c£S, it follows that q is a congruence.

Let S be a c.r. semigroup and let q be a A-right congruence; then aq denotes
the e-dass of a(adS) and S/q denotes the set of equivalence classes. On these
the product ag-bg=(ab)q is defined for every pair aq, bq of p-classes of S.

If a Nl-relation q is a congruence, then S/q is the quotient semigroup.

We recall that an orthogroup is an orthodox c.r. semigroup.

Theorem 2. If S is an orthogroup and g is a A-right congruence then S/q
is a band.

We recall that a band E is said left [respectively right] regular iff ax—axa
[resp. xa=axa] forevery a, XxEE.

Theorem 3. In every orthogroup S, XK is the smallest A-right congruence
q for which S/q is a left regular band.

Proof. It follows from Theorem 2 that S/>K is a band; moreover axS=axas,
for every a, xES; hence ax>Xixin. Therefore S/XK is a left regular band.

Let g be a A-right congruence such that S/q is a left regular band and let
a,bES besuch a®. Then agMo in S/q; hence, since S/q is a left regular
band, aq=bq, so that 3iQq. Therefore tk'*q.

2. If 5 is a subsemigroup of a semigroup S, we shall denote by >Xg, JEB &l
3)B 2TB respectively, Green’s relations XX, jSf, 3k 3 on the semigroup B.
Recall now that a band E is said to be a right [resp. left] semiregular band iff
yxa=yxyayxa [resp. axy—axyayxy] for every a, x,yEE. A band E is said to be
a regular band iff axya=axaya for every a, x, y2E.

Theorem 4. In an orthogroup S with set of idempotents E the following
statements are equivalent:
() E is a right semiregular band;
(i) L isa A-right congruence;
(i) axyS= axaysS for every a, xEE, y£S.
Proof. (i)=>(ii). Let a,b£S be such that a3$b; then from Theorem 3 of [3]

ac3ibnc for every c£S. Since ES=S and scS=scS for every s£S, we have
acS=bcs.

(i) =>(iii). Let a XxEE, then axfflaxa with ax and axa idempotent
therefore, from the assumption, axylftaxay for every y£S.
(iii) =>(i). Let a,x,yEE; by assumption, yxa3itlyxya, hence, yxa—yxyay»

(on the other hand, (iii)=>(i) for Theorem 7 of [4] and Theorem 3 of [3]).

Theorem 5. In an orthogroup S with set ofidempotents E thefollowing state-
ments are equivalent:
(i) E is a regular band;
(i) OL is a A-right congruence and is a A-left congruence;
(i) axySxya= axaySxaya for every a, x, YEE.
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Proof. The implications (i)=>(ii) and (ii)=>(iii) follow immediately from
Theorem 4 and its dual. The implication (iii)=>(i) follows immediately from
Theorem 4 of [3] and Corollary 2 of [4].

Recall that a band E is said to be right [resp. left] seminormal iff yxa=yayxa
[resp. axy=axyay] for every a,x,yEE; a band E is said to be left [resp. right]
normal iff axy=ayx [resp. yxa=xya] for every a, X, yZE.

Theorem 6. In an orthogroup S with set of idempotents E the following
statements are equivalent:
(i) E is a right seminormal band;
(i) Si isa A-right congruence and S/Si is a left normal band;
(iii) Si is a congruence and S/Si is a left normal band;
(iv) axyS—ayxS for every a, x, ydS.

Proof. It follows from Theorem 8 of [4] and Theorem 5 of [3] that the state-
ments (i), (iii), (iv) are equivalent. The implication (iii)=>(ii) is trivial.

(i)=>(1). Let a, x,ydE; as S/0L is a left normal band yxaSiyax. Therefore
zdS exists such that yxa=yaxz. Thus yayxa=ya(yaxz)=yaxz= yxa.

Recall that a band E is said to be right [resp. left] quasinormal iff yxa=yaxa
[resp. axy=axay\ forevery a,x,ydE; aband E is saidto be normal iff axya—ayxa
for every a X, ydE.

Theorem 7. In an orthogroup S with set of idempotents E the following
statements are equivalent:
(i) E is a right quasinormal band;
(i) if isa A-left congruence, Si is a A-right congruence and S/Si is a left
normal band;
(iii) if isa A-left congruence, S. isacongruenceand S/Si isa left normal band;
(iv) axySxya=ayxSxaya for every a, ydE, xdS.

Proof. The implications (i)=»(ii), (ii)=>(iii), (iii)}=>(iv) follow immediately
from Theorem 6 and from the dual of Theorem 4. The implication (iv)=>(i) follows
from Corollary 2 of [4].

Theorem 8. In an orthogroup S with set ofidempotents E the following state-
ments are equivalent:

(i) E is a normal band;

(i) Si is a A-right congruence, S/Si is a left normal band, if is a A-left
congruence and S/N1? is a right normal band;

(iii) Si, if are congruences, S/Si is a left normal band and S/SE is a right
normal band;

(iv) axySxya=ayxSyxa for every a,x,ydS.

Proof. The implications (i)=*(ii), (ii)=>(iii), (iii)=>(iv) follow immediately
from Theorem 6 and its dual.
The implication (iv)=>(i) follows from Corollary 3 of [4].
Theorem 9. In an orthogroup S with set of idempotents E the following
statements are equivalent:
(i) E is a right regular band;
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(i) &=2r,

(iii) xaS—axaS for every a,x£S.

Proof. It follows from Theorem 8 of [3] and Theorem 9 of [4] that the state-
ments (i) and (ii) are equivalent.

(i) =>(iii). For every a,x£S, SxaS=SxaaS=SaxaS= Sa~%xaSQ Saxas, hence
SxaS=SaxaS and, from the assumption, xaS=axaS.

(iii) =>(i). It follows by assumption that, for every a, xEE, xa=axaxa= axa.

Theorem 10. In an orthogroup S with set of idempotents E the following
statements are equivalent:

() E is aright normal band;

(i) 01=2), SE is a /\-left congruence and S/SC is a right normal band;

(iii) 01=2), 2? is a congruence and S/Sd is a right normal band;

(iv) xaSxya=axaSyxa for every a, X, yd S.

Proof. The implications (i)=>(ii), (ii)=>(iii), (iii)=>(iv) follow immediately
from Theorem 9 and from the dual of Theorem 6.

(iv) =>(i). For every a, xEE, xa=(xa)2=(xa)a(xaa)dxaSxaa=axaSaxa Q axas;
analogously axadxaS, hence
@ xaS = axasS.

For every a, x,ydE, because of (1)
xyaS —x(ya)S = (ya)x(ya)S = y(a(xy)as) =
—y(xy)aS = yx(ya)S = yxayaS Q yxasS;

analogously yxaS£ xyaS, hence

)] xyaS = yxaS.

Besides,

xya = (xyaf = (xya)a(xya)bxyaSxya = yxaSxya (from (2)) Q SxaSxya =
= SaxaSyxa " Syxa\
yxa = (yxa)2= (yxa)a(yxd)gyaxaSyxa (from (1)) g SaxaSyxa =

--SaxaSyxa Q Sxya

i.e. Syxa=Sxya. Then the idempotents xya and yxa belong to the same Jf-class;
therefore xya=yxa.

Theorem 11 In an orthogroup S with set of idempotents E the following
statements are equivalent:
(i) E is asemilattice;
(i) st=se =9\
(iii) aS—Sa for every adS.

Proof. It follows from Theorem 10 of [3] and Corollary 3 of [4] that the state-
ments (i), (ii), (iii) are equivalent.

I wish to thank Professor F. Migliorini with whom | had several discussions
while the paper was being prepared.
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Dedicated to Professor A. Késa on his 50th birthday

The aim of the present paper is to give a necessary and sufficient condition of
the Lebesgue summability of eigenfunction expansions associated with the Schro-
dinger operator in any bounded three dimensional domain. The results obtained
generalize those of the paper [2] for more general potential. The conditions for the
potential in the present paper are close to the necessary ones.

Let Q be any bounded domain in R3 X0ER, g be a function of the form

47N = a|ll-colr + 44 (= g°n +4l
where a is a non-negative function with the propérty

(*) / a(t)dt <
+0

and gq~LJfi) is a non-negative function. Consider the Schrédinger operator
L ——A+q(x)e

with domain Cj°(R). Denote by L an arbitrary non-negative selfadjoint extension
of L with discrete spectrum. According to a well-known theorem of K. O. Friedrichs
(cf. [7]) there exists such an extension, if qdLfQ). Denote by ... the
sequence of eigenvalues and let {u,}~ be the complete orthonormal system in
L2Q) of the corresponding eigenfunctions of the operator/,. The expansion of
fEL 2(Q) with respect to the system {«} is said to be Lebesgue summable at x€R
if the limit

. y sin ¥X, h

i

Arlb A yroh (/, unun{x)

exists. We shall prove the following

Theorem. Let fdWI(Q) be arbitrary and suppose a(t) —O0(I/~'t). Then the
expansion of f with respect to the system {u,,} is Lebesgue summable in x0 if and

only if the limit 1im” Jf(x0+rd)dO exists. Here Jf(x0+rO)dO denotes the integral

of f over the sphere of radius r with.centre in xa, with respect to the normalized
Lebesgue measure.

For the proof of the theorem we need some lemmas, which are given in Sec-
tions 1and 2 below.
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1. The mean value formula and its applications

Set
r

ft(1) = min (1, 170 (r>0), 6(r) =/ ac dt (r> Q).
0
Lemma 1.1. We have

1.0 — [ AM)|sin/i(/-r)|e(0rft s Cib(Nh(NE) (r mQ Ls 0).

Proof. If rps 1, then — using the notation / for the left hand side of (1.1) —
we obtain r

1~ f a(t)dt = 1 eb(r)h(rn).
0

r 1/. r
If r/t:»l, then 1=J =J + y*=A+fa and
0 0 1

Um
1S 1 a(tydt 1 eb(r)h(rii).
0

Further

f -}-a(t)dt~h(rn) f a(t)dtsl-b(r)h(rfi).
Mim > M

Lemma 1.1 is proved.
Set

o ox(p Ay = u r . ]
Pofo/0 M (r.m™ I'l/lg vk-i(t,n)Sinp(t-r)a(t)dt,

Il T
W(T, 9) = — / (i (*o+ iQ)«(*o+  /0d0) Fesin /r(T- r)dr,

**(>,u) = — [/ H-*_j(r,/Ji)sin/i(r-r)a(r)dr,

where wjd = Mm(x, /i) is an arbitrary eigenfunction of the operator -A+q{x), with
eigenvalue u* and IMtj(n)= I*

Lemma 1.2. We have
(1.2) k(r, o1 S cali(r/iy b\

(1.3)  Jws(r, W\ S c,(/|<p(r, M)|f*di)[cib(r)d* (0S rs 1, Lé 0; k=0,1,..),

Acta Mathematica Hungarica 43,1284



SUMMABILITY OF EIGENFUNCTION EXPANSIONS. I 75

where
2i(* x* *_% N
w4 , 4 (%) _7| ol At
if
(1.5) viud)= f 9iwW "(y, n)dy,

xe+tB

B denotes the unit ball of R3 with centre O.

Proof. Use induction in k. First prove (1.2). The case A:=0 is trivial. Using
(1.1) and the induction hypothesis it follows

J r

kO% d)\ = — / P)\Nenv(t-r)\a(t)dt &

Si cjcibin)]*-1-A- f h(tfi)\sinn(t-r)\a(t)dt si csfe(™)[cibW]*.

Now we prove (1.3) for the case k=0. Integrating by parts we obtain

J r

w,(r, n) = —" f (f qi(x0+tO)u(x0+te, li)de) tsinn (t-r)dt —
rlo B

On the other hand

2 ©<Is y,
consequently
no(r, /i) A — J \ep(t,n)\t 4t.
Using the induction hypothesis it follows

2 r
wk(r,n)N — é K _1(i,/i)||sin/i(/-r)|e(i)d/S
”»

Citeibin)]*-~/ <p(i 1 I/-2<t)-- 1 [sindiCi-n)la(di s

ac2clb(r)]*(/ |<pf, Ai)uad/).
Lemma 1.2 is proved.
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Corollary. For thefunctions

«(r,y) = f§=|"" y), B(r,y)™ kZ_;OV\k(r, y)
the estimates
(1.6) W(ry)\ S ch(ry)[Clb(r)],
r
(1.7) DEr, )\ ss c2f  Ipft, y)\t~4t,

holdfor 0~ r~r0, where rO satisfies cdpo)< L
Lemma 13. For every ['€[0, r(Q] the following equation holds

(1.8) BFu(xO+ r9, y)dO = u(xQy) [SLD’/\ -+ af(r, y)]] +B3(r,y)

Proof. By the mean value formula of E. c. Titchmarsh [19]

f u(x0+r9, y)d9 = u(x0,y) Si?yry +
A

H--"-f [f a(x0+t9)u(x0- to, y)d9)siny (t-r)dt.
rno B

For our special g we obtain ;o
f u(x0+r9, y)d9 -u (x 0,y)va{r, y)\-——F [fn(x0+ 19 y) dO)
B [Yo B
esiny (t—r)a(t) dt+wo(r, y),

i.e. the function
v(r,y)= f u(x0+r9,y)do
B

is the (unique) solution of the integral equation
1 1
/00 = u(x0,y)vO(r, y)+Ty J f(t)smy(t-r)(t)dt+wO(r,y).
0

Solving this equation by successive approximation, beginning with
/000 = n(x0, y) vo(r, y) +wo(r, y)
we obtain for the solution v the Neumann series
v(ry) = n(x0,y) 2 Vk(r, y)+ (2 wk(r=p>
and hence (1.8) follows. Lemma 1.3 is proved.
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Lemma 1.4. The estimate
(19) 2n  |M,(*0)2S &2 (p U1l,H,,= yTn)

holds. The constant c3 does not depend on p.

Proof. We use the method of V. A. II'in [3]. A different method for such
estimation was given by B. M. Levitan [5].
Consider the function

________ if R<r<2R
0 if ri(R, 2R),

where RE£(0,r02), r=\x'—x0\, p>-0. Calculate the Fourier coefficients of d with
respect to the system {u,,}:

d,=d,{p) = T d(\x-x0\ p)un(x) dx -

— f sinprsinpnrdr+p f rsinpra(r, p,,) dr W«W+

R R

+p T rsinprR(r, pndr.
Obviously, R
[ sinpr sinpnrdr s Beos2r

and, using (1.6),

2

K /r rsinpm(r,pndr1S c2p J rh(rp) [ob(r)] dr S cLc2Rb(2R),

if pAp0 and \p-pn\"I.
On the other hand, by an easy computation we obtain.

2n_ \pf rsinprB(r, p,,)dn2~ p2R 2n  (f 18(r,p,.)\dr)2~
|&,.-njiat R

O(pRY 2n f \R(r,M\r=0(pR [ { 2n [f Kutp)\t-4t]2dr?
0(p*R>) fZR( 2n  f \<ptpn\xr i+1-'dt)drs

opRY T f( T Kdi(y)\dy} t~3+dtdr » 0{pRi*).

0 x0+tB
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We have used the Cauchy and Bessel inequalities and (1.7). Summarizing our
estimates, using the Bessel inequality for the function d, we obtain (1.9). Lemma 1.4

is proved.

Lemma 1.5. We have
2R

(1.10) A1 f Tsinnrvk(r, p,,) dr| w c8c4[cxb (2R)f ~ AN

O<R<r02,/ia0/l,gO k=01..).
The constant ct does not depend on p, pn,R and k.

Proof. Use induction on k. For k—0 the estimateion (1.10) follows by an
easy computation. Now, using (1.2), the Fubini theorem and the induction hypo-
thesis, we get

p f rsinprvk(r,pndr =p f r&inpr— f v~t, pjsinp,(t-r)a (t)dtdr =
R R

0

2R 2R
=_— f ( f sinprcosp”rdrivt-iit, p,,)sinpata(t)dt—
Nen O max(t,R)

2R 2R

[ (1 sinyrsinfinrdr® _1(/, /1) cos finta (/) dt,
0  Tax(r.4)
3! i XK
fti /7 esinprvk(r, pMdr I G . f N2t pnla(t)dt S
R - wn W\ o

IL 1 2 A
S cae2[eib(2in]: 1— — -/ hit t)dt S
[e1b(2i) woi] itedac

S GC*[Cib (2R)f TAh .
Lemma 1.5 is proved.

Corollary. For any RE£(0, [o/2) the estimate

Zv

1.11 A1/ rsin/rra(r,/i,,)dr| € c&{2R)-"- ¢j-- otS 0, /, Sr0
(1.11) A ( )dr| { )Mh \t*n‘ " )

holds. The constant cs does not depend on p, p,,, R.

Lemma 1.6. There exist J1/>0 and c¢,>0 such that

(112) TnCo)12S cp+ (ji S 0).

Proof. We adapt the method of V. A. II’in [4]; we use (1.11) and also other
estimates of the present work. We only sketch the proof.
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By the Parseval equality
(1.13)

A2(£'+O(Fi5)3 = f d20x-Xo\,n)dx = (\m_szuM+ ZN <%= 2i+ 2a-
First we prove for any fixed M>0

(1.14) Zx= O(F) Zp, (OO ~) (£>0," 2W)

Use an estimate given in the proof of Lemma 1.4:

{ R 1 R
— | T sinrysinfinrdr\+c”b 2R)r \+/i\ f rsinfirl(r, un dr\.

dn R > R
If u»2M and \un—u\*M, then frj and hence \u/um”2. We get

Zi ™ (2R+clc2b(2R)R)2 Zn  Wh(Xo)\2+ HZé:l\E2 rsin nri3{r, yn) dr
Using the estimate for the last term given in the proof of Lemma 14 the desired
estimate (1.14) follows. Now consider | 2:

(1.15) Zj2= Zn+{ Zn + 2n)+ Zn = S1+S2+S3.
""S1 17n3-§ ~ f

An easy calculation shows
N = 0(/AK2> S2=01L2
where e>0 and 1/2m=M. Indeed, using (1.9) and (1.15) we obtain

S3=0( [2-m+ ~-%

2R 12
ﬁ f d,,rdr+clc2b(2R)R\ +0(pYP~*) = O *R 2.
R 1

Applying (1.11) and (1.15) it follows

5—( Zn + Z%)Iun(*,,)|20 \i;\+b(2R)\a{E]_d\.|2+o(B—R*—‘).

In this case \W,,—d\— and \dn~dl—‘dn, consequently

0 (D

\dn~d\ /#V /4*
We get

h2 k(*o0)l2 —
Q, {’ 2 + 23 ) [/.U dﬁ/2+2 +0(/r27?443— ol 794H )
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At last consider S3. Suppose M=2m and set
p = minjlc: 25 NJe

In this case \p,,— -y and hence p/pn*2. Taking into consideration also (1.9)
and (1.15) we obtain

o) B\ 2 JMEOI2j+0(/AR4-) =

k=m L2fc-1S |(In- /i|S2fc \P

=0(1)e-3= i\ In M *0)l*|+0(/AK4- ) =

=0(p2 2 2-k+0(pR2~) = O(fi[2-m+ /24 )

The desired estimate (1.12) follows from (1.14) and (1.15) choosing m i.e. M large
enough.
Lemma 1.6 is proved.

Corollary. There exist infinitely many n with w,(xx070.

Remark. Up tothispoint we used onlythe assumption (*). This raisesthe question,
whether this condition is necessary or not. Next we show that this condition is close
to the necessary, namely, if the singularity of q at xOis of order 1/|[x—x02 then
for any eigenfunction u{x, fi) of the operator —A+q(x), u(x0,fi)=0 holds.
This statement is true in any dimension. The reason of this fact is that in this case
the operator ¢ mis not only perturbation in -A+Q-.

We prove our statement for radially symmetrical eigenfunctions (then the
general case follows by expanding the eigenfunction u(x, fi) in hyperspherical
functions. It is enough to remark that the coefficients Rnk(r) in the expansion
u(r, 0)~ 2 -Rnk()*n,k(®)’ r=\x—x(Q are spherically symmetrical eigenfunctions
ofa Schrodmger operator with spherically symmetrical potential; we left the details
to the reader).

Indeed, let BcR M(JVs3) be an arbitrary domain, x0€Q, g(x)=a/\x—x0R2
(a>0). Then for any spherically symmetrical eigenfunction u(x, fi) of the operator

—A+q- the equality u{x0, fi)—O0 is fulfilled. To prove this we use spherical co-
ordinates

d2u N—1 du

dr2”~ r dr +a(rm=fiu,
i.e. the function v(r, fi) M r~wu(r, fi) satisfies the Bessel equation

N—2

+\p2x2—a+vlv—0, v= 5
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The general solution of the last equation on (0, <) is
v=cr+i+CzY M (vib = Ja+Vv2).
u(r)=rw(r) is bounded as r—+ 0 and hence c2=0. On the other hand

uir)- d -0 (r—+0)

and our statement is proved for spherically symmetrical eigenfunctions. It is easy
to see from the proof, that if a<0, then |n{/-)|—+ °° as r—+ 0, that is in this
case there is no any eigenfunction of the operator —A+q- in the classical sense.

At last we remark, that developing the ideas of the present paper, it is possible
to generalize Lemma 1.4 for arbitrary dimension for potentials of the form

a(|x-x0)

2 = -+ <),
where aSO, Ja(t)dt< «gx*CKQ) and 1>{N—4)/2. In this case we have
+0

2n  |mgmola” cy"-1 (1 —0, o—fQ .

2. Proof of the Theorem

We need some lemmas.

Lemma 2.1. For any fFW\(R)

(2.1) 2 10> W)V —C7IlI wi-

Proof. It is wellknown that ([6])
(R) = CO (R)|nJ(®R)

(the closure of CJT(B) in the metric W\(Q)), hence it is enough to prove (2.1) for
fEC?(Q). By the Parseval equation we get

g YD = mo= r{ f (—Af+qf) =
= B1‘ IY/T+ é 21/i2~ const 1/11/M+ B/ (<To+<Ti)IN12 S
g const Il/llal+ 1M JI/IIL + é\f? q 0"0\\f\\w|+|5] g O\fw

taking into account the imbedding W\-~14. At least apply the Holder inequality
with p=3/2, =3 and use W\-+L6. It follows

E/ <7oli2™ bI\bP\P K = kollxj/112,, S c\f\\wl.
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Lemma 2.1 is proved.

Lemma 2.2. Forany /£ W2Q) the estimate

(2.2) f%:iH r>Fn)\IA K (*o)l ~ c8II/11w),

holds, uniformly in r£(0, 1), i.e. the constant cs does not depend on r.
Proof. By (1.6), (2.1) and the Schwarz inequality we have

(2 ki, IOIAWIE S cawwi § @ MIKK)

Fn
—cb2(r) j2h\rpn ~ ~ = Z,+ Zn = alt+a?2
n=1 Fn <<n31 ra,=>1

Taking into account (1.9) we get

N,
Als cb’(r) 2, |“Y I cb2(r)fc2:I AJ 2 MC12—

KMy nldk+1
»le4- '*o 4

0(2.

Lemma 2.3. Forany /€ W «(B)

(2.3) Z1 Ber, Popnfm s ¢ owf\\wl
n-

holds uniformly in r£(0, 1).
Proof. Itiseasyto see that

ivgl \B(r>F\ID) ~ constlll wi 2 \B(r>Fn)2

and, taking into account (1.7)

2 \B(r, Fn)RS const ( / \<pt, p)\t~4if const 2 T It Fa~3~edt =
n-1 0 .

‘=10

=const T {2 kpt /OIYt~3-adt = 0(1) f ( T q\(y)dyj~3 adt =0(1).

0 vn=1 0 x0+tfl
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Lemma 2.3 is proved.
Using our estimates the proof of the Theorem goes along the same line as in

[2] forthe special case  =0).
The author is indebted to professor S. A. Alimov for his valuable suggestions.
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ON QUASI-IDEALS IN RINGS

H. J. WEINERT (Clausthal)

Dedicated to Professor O. Steinfeld on the occasion
of the thirtieth anniversary of quasi-ideals

8§ 1. Introduction

Let A be a ring, which always means an associative one throughout this paper.
A subgroup Q of (A, +) is called a quasi-ideal of A, iff AQHQAQQ holds,
where AQ denotes all finite sums Za”i with afA, qfQ. This concept, gene-
ralizing the notion of one-sided ideals of rings, and the corresponding one for semi-
groups are due to O. Steinfeld (cf. [5], [6]). We refer to his monography [7] for
the far-reaching theory on quasi-ideals which has developed in the meantime.

Clearly, the intersection LC\R ofa left ideal L and a right ideal R of a ring
A is always a quasi-ideal of A, and the same statement holds for semigroups.
But whereas each quasi-ideal of a semigroup can be obtained in this way, it was
unknown for about 20 years whether or not analogously each quasi-ideal Q of
a ring A is such an intersection

@0} Q = Lf]R for suitable left and right ideals L and R of A

The answer was in the negative and given by A. H. Clifford, who constructed
an algebra A of dimension 3 over the field XX = {0,1}, containing a quasi-ideal
Q such that (1) does not hold (published in [7], Expl. 2.1, p. 8). We shall deal
with this example in 82 and show that A may be obtained as the contracted semi-
group algebra A —dfO[S] of a certain semigroup S =6" over XX ={0, 1} In this
interpretation, Clifford’s counter-example does no longer depend on the special
choice of the field XX More generally: For any commutative ring ¥ with an
identity the contracted semigroup algebra 38[S] of this semigroup S contains
a quasi-ideal Q violating (1), a statement which remains true if one defines &[S\
for non-commutative rings a? in a suitable way (cf. Proposition 2.1 and Remark
2.3). Further, there are various semigroups T =T° obtained from S such that
each of the rings A=3t(T] also has at least one quasi-ideal not satisfying (1)
(cf. Remark 2.4).

In this situation, we say that a quasi-ideal Q ofa ring A has the intersection
property iff (1) holds and formulate the following questions:

Problem a) (cf. [7], p. 9). Give sufficient and/or necessary conditions for a ring
A such that each quasi-ideal Q of A has the intersection property.

Problem b). If Q is a quasi-ideal ofa ring A, give sufficient and/or necessary
conditions such that Q has the intersection property.

Probtem c) (A. H. Clifford, correspondence communication). Give sufficient
and/or necessary conditions for a semigroup S=S° suchthat for any field XX each
quasi-ideal Q of XB] has the intersection property.
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86 H. J. WEINERT

In the main part of this paper (883—5) we give some contributions to these
problems. Concerning the first and the last one, we are far away from complete
solutions, and some of our results disprove hopeful conjectures. Only for Problem b)
we obtain general necessary and sufficient conditions in Proposition 3.1. They
are repeatedly used in what follows and imply known sufficient conditions concerning
the Problems b) and a) immediately (cf. Corollary 3.2).

In order to include minimal quasi-ideals 1 in our considerations, we give a
description of the quasi-ideals (X)q and (x)q ofaring A generated by a subset
XQA or by an element xEA,2 and a characterization of minimal quasi-ideals
(cf. Lemma 3.3). From these results we obtain that a minimal quasi-ideal Q of
a ring A satisfying Q2A {0} has the intersection property (together with a short
proof of known basic statements for those quasi-ideals, cf. Theorem 3.4), whereas
for Q2= {0} both cases are possible (cf. Remark 3.7). By the first statement, each
minimal quasi-ideal of a ring A without nilpotent elements has the intersection
property (cf. Corollary 3.5). Unfortunately, one can not go on in this direction
(for instance, with respect to Problem a)), since there are rings A containing quasi-
ideals Q which do not satisfy the intersection property, whereas each minimal
quasi-ideal of A has the intersection property (cf. Theorem 3.8 and also Theorem
51 and Remark 5.5).

All examples of rings A which contain quasi-ideals without the intersection
property presented in 882 and 3 are obtained as contracted semigroup algebras
A=@({S] of some semigroups S —S°. In order to combine these examples and
to give a partial answer to Problem c), we characterize in Theorem 4.1 a class of
semigroups S by some conditions such that each contracted semigroup algebra

of S° contains at least one quasi-ideal Q without the intersection property.
In the following remarks we show that all semigroups we have used to obtain those
rings (and also other ones) satisfy these conditions. But we do not believe that all
semigroups S satisfying the above statement for all ~ ({Sa] belong to the class
described in Theorem 4.1, and we formulate a corresponding problem at the end of §4.

On the other hand, all these examples of rings containing quasi-ideals without
the intersection property have a lot of zero divisors. This fact and Corollary 3.5
lead to the question, whether all quasi-ideals of a ring without zero divisors satisfy
the intersection property. The answer is in the negative, and §5 is devoted to
construct a class of rings A without zero divisors and to prove that they have
a quasi-ideal Q which does not satisfy the intersection property. The question,
whether these rings A can be obtained as contracted semigroup algebras, remains
open, and we refer to Problem 5.6 in this context.

As a by-product, we use these rings of 85 to deal with two problems posed by
L. Marki (cf. 86 up to Proposition 6.1), recently solved by P. N. Stewart ([9],
Example 1). The rings considered there as well as our rings mentioned above provide
an answer to both problems in the positive, and even a stronger one than asked for
since all these rings have no zero divisors (cf. Proposition 6.1). Note further that

1A quasi-ideal Q of Aiscalled minimal if {0}and Q A {O}are all quasi-ideals of A contained in Q.

2Clearly, (X),, is defined as the intersection of all quasi-ideals of A containing X. Similarly,
we denote by (X)r, (X)rand (X) the left, the right and the (two-sided) ideal of A, resp., and by (X)
the subgroup of (A, +) generated by XQA.
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the rings of [9], Example 1 have an identity, whereas our rings do not satisfy the
intersection property. Moreover, in Proposition 6.2 we give an answer to a strength-
ened version of one of these problems: There are rings A (even without zero
divisors) with a quasi-ideal Q such that Qf is not a gasi-ideal of A.

§ 2. Clifford’s example and its generalization
A. H. Clifford considers the algebra A of dimension 3 over the two-element

field Jf = {0, 1}, defined by the basis {e, a, b} and the left hand multiplication
table (22) (cf. [7], p. 8):

e a b ebec
e ea+h o eelc
ab 0 O bb0o0
bb 0 O c 000

Straightforward calculations, depending on the characteristic 2 of Jf, show that
A is associative and that Q= {0, a} is a quasi-ideal of A, not satisfying the inter-
section property. The proof of these statements is easier if we use {e, b, c}
instead of {e, a, b) as abasis of A, where c=a+b and hence a=b+c. Obviously,
the right hand table (2r) above describes the same multiplication on A. More-
over, (2r) defines a semigroup S = {e, b, ¢, 0} with zero 0, which is easily checked
by Light’s associativity test (cf. [1], 8 1.2) or by considering the non-trivial cases

e(ec) = ec —(ee)c, e(be) = eb =0 = (eb)e,
g(ce) = 0= ce = (ec)e, b(ee) —be = (be)e.

Thus A is the contracted semigroup algebra X (5] (cf. [1], §5.2). In this inter-
pretation, Clifford’s example has the following generalization:

Proposition 2.1. Let S~{e,b,c, 0} be the above semigroup, & acommutative
ring with zero 0 and identity 1, and let A —33]S] be the contracted semigroup
algebra of S over 31, i.e. the algebra defined by the base {& b, c} and the mul-
tiplication table (2r). Then the subgroup

a = (b+c) = {c(b+c)|ce<i)E"}

of (A, +) generated by b+c is a quasi-ideal of A which does not satisfy the inter-
section property. Moreover, one has Q2= (0), and Q is a minimal quasi-ideal
of A iffthe characteristic of 31 is aprime number.

Proof. From (ee+Bb+yc)Z(b+c)=Etlc for all e,B,yE3l and £6<1) we
obtain AQ={qc\gtg and similarly QA= {ffb\()'’E3t}. Hence Q is a quasi-
ideal of A by AQf)QA ={0}QQ. To disprove the intersection property, we con-
sider any left ideal L and any right ideal R of A such that QQLHR. Then
cdAQQL and b+cEL vyield h€Z, and we also have bEQAQR, hence b LOR
for b$Q. Thus QQLf]R implies QczLDR. Finally, g2—{0}is trivial, and
Q is a minimal quasi-ideal of A iff (Q, +) is simple, i.e. iff (1) has prime order.
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Remark 2.2. Clearly, each (simple) subgroup U of (B, +) determines
a (minimal) quasi-ideal QGee= {fi(b+c)\n£0/} of A which has the same properties
as Q=Q(i> above. The same holds, for instance, for Q'=(b+c+c)?iQ if the
characteristic of 0L is not 2, and so on. On the other hand, one easily checks that
(cf. (10) of Lemma 3.33))

@), = {ote}, (etb+c)g= {a(e+b+c)},
(e+b\ ={x(e+b)}, (e+c), —{a(b+c)} for all a£0t

are quasi-ideals of A which are not one- or two-sided ideals, but all of them have
the intersection property.

Remark 2.3. The statements of Proposition 2.1 and also the following ones
dealing with contracted semigroup algebras (also in 83 and 4) do not depend on
the commutativity of 0L\ Let Il =A° be a semigroup, 01 a ring with identity,
and let A be the left vector space over 0L with #\{ 0} as a basis. We identify
the zeros of 0t and H, and write lahf with ufcSt,h~H \ {0} for the elements
of A, where a;=0 holds for almost all af. Then A isa ring with respect to the

multiplication
(4011 (2 Bh) = 2 ¢ijbiby,

where hjij denotes the product in H. We call A a contracted semigroup algebra
and write A=£%0[H] also in this case. In fact, if PN is not commutative, A=0?([H]
is a special case of a “generalized algebra” introduced by G. Pickert [3] or of a
“monomial ring” as considered by L. Rédei [4], § 66, but in general not an algebra
over 0L in the usual meaning. We refer to [10], 88 2 and 4, for more details in this
context. A reader not interested in this generalization may assume 0Ll to be com-
mutative for all contracted semigroup algebras A=0!dqH] considered in the
following.

Remark 2.4. Starting with the above semigroup S ={e, b, c, 0}, there are
different ways to obtain semigroups T=T° which contain S' as a subsemigroup
such that the quasi-ideal Q—(b+c)gq of A =0tti[T] has the same properties as
stated in Proposition 2.1. For instance, let T be any inflation of S (cf. [1], §3.2),
or any semigroup (T, ¢)2 (S, ¢) suchthat

(3) (T\S)S Q {c,0} and S(T\S)$c

hold. Another way is to consider a semigroup (T, )2 (S, ¢) such that for all
ti, hiT one has

4) t\t% —b = ty= b9t%—6, h—e, —cj
in this case the quasi-ideal Q=(b +c)q of A may contain (b-+c) properly.

In this context we note that all these semigroups T satisfy the conditions (16)
and (17) of Theorem 4.1, which imply that A=MOQ[T°] has a quasi-ideal Q without
the intersection property (cf. the corresponding remarks in §4).
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8§ 3. Some general statements on quasi-ideals

Let Q be a quasi-ideal of a ring A. If Q satisfies the intersection property
Q=Lf]R, one clearly may choose L and R minimal, ie. L—Q)JI=AQ+Q
and R=(Q)r=QA +Q. Thus the general situation is described by

©) AQ+QAQQQ(AQ+Q)n(QA+Q),
and we state the following solution of Problem b) in § 1:

Proposition 3.1. Let Q be a quasi-ideal ofaring A. Then each ofthefollowing
statements is equivalent to the intersection property of Q:

(6) Q = (AQ+Q)n(QA+Q),
O AQfI(QA+Q)QQ,
(70 QAN(AQ+Q)"Q.

Proof. By the above considerations, Q has the intersection property iff (6)
holds, which in turn implies (7) and (70- Conversely, for any subgroups U, V and
Q ofthe group (A, +), one obviously has

Un(V+Q)"Q =(U+Q)n(V+Q)QQ.

Hence (7) as well as (70 imply (AQ+Q)f](QA+Q)QQ, which is equivalent to
(6) by the right hand inclusion in (5).

As a consequence of (7), a quasi-ideal Q of A does not have the intersection
property iff there is a finite number of elements gh /5 p£Q and ah bfiA such that

®) 2 ai% =\2 Pjbj\+piQ

holds. Clearly, both sums as well as p are not 0 in (7), and also the quasi-ideal
({5 B>PHg= Q does not have the intersection property. The simplest case of
such a formula (8) with n=m =1 was in fact the key point of the examples given
in 82, namely

e(b+c) = (b+c)(—e)+ (b+c)ig.

Subsequently, we shall use similar formulas to disprove the intersection property
for a quasi-ideal.

The following consequences of Proposition 3.1 are already known (cf. [7],
Proposition 2.8 and Corollary 2.9). The second one seems to be the only known
sufficient condition with respect to Problem a) — apart from the trivial assumptions
that A is a commutative ring or a division ring:

Corollary 3.2. a) |faquasi-ideal Q ofaring A satisfies QQAQ or QQ QA,
then Q has the intersection property.

b) If a ring A contains a left or a right identity, then each quasi-ideal Q of
A has the intersection property.

Proof. Since b) clearly follows from a), we only state that Q”*AQ implies

(70 by QAN(AQ+Q)=QAnAQQQ.
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Lemma 3.3. @) The quasi-ideals (X)q and (x)q ofaring A generated by a subset
XQA orby an element xdA, respectively, are given by

) (X)q= (X) + (AXMXA) = ZX+(AXCXA),
(99 Qg = (x)+ (AxMxA) = Zx+ (AxIxA).

b) A quasi-ideal Q of A is minimal iff QA {0} and
(10 Q —Zx+ (AxIMxA) holdsfor each xd Q \ {0}.

Proof, a) It is enough to show (9). Clearly, (X)q contains (X)=zZX as well
as AXTIXA. Both are subgroups of (A, +), the latter since AXIMXA isa quasi-
ideal of A. Thus (X)+(AXMXA)g (X)q is a subgroup, and even a quasi-ideal
of A by

A((X)+(AXTT XA) N((X)+(AXMXA)Ag

g A(OX)+AX)M((X)+XA)A g AXTIXA.

b) Since (x)g=0 for each x6R\{0} holds iffa quasi-ideal Qa {0} of A is
minimal, (10) follows from (9").

The next theorem is essentially Theorem 6.5 of [7]; due to Lemma 3.3 b), the
following proof will be more convenient.

Theorem 3.4. Let Q be a minimal quasi-ideal ofa ring A. Then thefollowing
statements are equivalent:

a) BV {0},

b) Q has no zero divisors,

c) Q is a division ring.
I f this is the case, Q has the intersection property, moreover,

(1) Ay MxA —Q holdsfor all x,ydQ\{0}.
In particular, we have Q=Ae(~)eA—eAe for the identity e of Q.
Proof. Assume xy=0 for x,yER \{0}. Then we obtain from (10)

Q2= (x)a(y)gH(Zx +Ax)(Zy+yA) = {0},

hence a) implies b). Now we suppose b). Then (11) holds since each quasi-ideal
Ay MxA satisfies {0fAAYIMxA fAQf] QAQQ and Q is minimal. To obtain c),
it is enough to show that for x, y€6\{0} there exists an element z€ Q satisfying
x=zy. Applying (11) to xyd S\{0}, there are a,bdA suchthat

X =axy = xyb, hence z = ax —axyb —xb£Q
is such an element. Since c)=>a) is trivial, all statements are proved.

Corollary 3.5. Ifa minimal quasi-ideal Q ofa ring A does not satisfy the
intersection property, Q2={0) holds. Thusfor a ring A without non-zero nilpotent
elements, in particular for one without zero divisors, each minimal quasi-ideal of
A has the intersection property.
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Remark 3.6. Aquasi-ideal Q ofaring A satisfying (11) or merely AxMNxA =Q
forall x6R \{0} isa minimal one by Lemma 3.3 b). Thus (11) implies that a quasi-
ideal Q is minimal and has the intersection property, but there are examples
satisfying also Q2= {0} (cf. iii) below). Hence (11) is not equivalent to a), b) and c)
in Theorem 3.4.

Remark 3.7. For a minimal quasi-ideal Q of a ring A such that Q2={0}
the following (extreme) cases are possible:
i) Q does not satisfy the intersection property, hence

(12) AylMxA = {0} holds for all x,ydQ.
ii) Q satisfies the intersection property, but (12) and even
(13) Ay(I(xA +2Zx) = (Ay+Zx)DxA = {0} hold for all x,y£Q.

iif) Q satisfies the intersection property and (il).

Proof. Examples for i) are given in Proposition 2.1. For ii), letS= {x, a, b, ¢, 0}
be the semigroup with zero 0 defined by

(14) ax = b, xa —c, all other products 0.

Let 31 be a ring with zero 0 and identity 1 and consider the contracted semigroup
algebra A=33(S] (cf. Remark 2.3). For each simple subgroup °U of (33, +),
the subgroup Q={px\p£d/} is the intersection of

(X)i = {Bb+ivc\RE3I, and (X)r= {yc+px\y£3i,

Hence Q=(x)q is a minimal quasi-ideal of A with intersection property and
R 2={0}, and (13) holds by

AXP\EX)r — (LX), f1’XA — {0} for all £ rF*U.

To obtain examples for iii), we consider A=Jf(S1, where X is a finite prime
field and S 1 is the semigroup defined by (14) together with an adjoined identity
e (which clearly differs from the identity 1 of >X). Then 0= {[iX\iJ.(i3f} is the
intersection of Arjx—(r])i and "xA=("x)r for all £ rj£Jf\ {0}, hence a minimal
quasi-ideal Q~(x)g of A as stated in iii).

At this stage of our considerations, one clearly would like to reduce questions
concerning quasi-ideals without the intersection property to minimal ones of this
kind. Unfortunately, this is not possible in general:

Theorem 3.8. a) There are (finite as well as infinite) rings A such that A has
a quasi-ideal Q which does not satisfy the intersection property, whereas each minimal
quasi-ideal of A has the intersection property.

b) There are semigroups S —S° such thatfor each ring 31 with an identity,
but without zero divisors, the contracted semigroup algebra A=3$(S] is a ring as
described at a).
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Proof. It is enough to present a finite semigroup satisfying b). We use a semi-
group S=S°={e b, c,d, 0} introduced in [11] by3
ebed
eelcd

bb0O0O
c 0doo
ddo0oO0oO

From (9") and the table it follows that the quasi-ideal O of A=3$(S] generated
by b+c or by b+c+d is

Q = (b+0)g= (b+c+d)g= {C(M-c) + 0d|C<I>, BELL-

Since e(b+c)=(b+c)(-e)+(Ib+c)=c$ Q holds, Q does not satisfy the inter-
section property by (8). Moreover, Q contains the ideal (d) ={gd\QIOI} of A
properly. To show that each minimal quasi-ideal of A has the intersection property,
we consider all quasi-ideals (x)4 of A generated by one element. Depending on
the choice of

(15) X =ee+Rb+yc+doddA (e B, Yy, 6£3i),
we shall see that either (x)q is not a minimal quasi-ideal of A, or that (n:), has
the intersection property, regardless whether or not it is minimal. If holds in

(15), we obtain xd=dx=ed£(x)q, hence (zd)qy: {0} is a quasi-ideal of A properly
contained in (x)g. The same follows for e= 0 and BAOAy from x2=yRd£(x)q
and yB 04 (the quasi-ideal Q above is one of these cases). Finally, if e=/?=0
or e=y=0, then (x)q is checked to be the intersection of (g)r and (X)r.

8 4. A criterion for contracted semigroup algebras

All semigroups S=S° used so far to obtain rings A=£%0[S] which contain
at least one quasi-ideal without the intersection property will turn out to be semi-
groups satisfying the conditions of the following theorem. It is also applicable
to semigroups SASO; in this case, clearly, the contracted semigroup algebra
A —&(S°] of S° isjust the semigroup algebra A~3t[S] of S.

Theorem 4.1. Let S be a semigroup containing a left ideal Ls, a right ideal
Rs and elements b”c such that the following conditions hold:

(16) HLS, c€SbUSci(Z.sn.Rs)U{c},
an Cc<tRs, bEbSUCcSQ (LsTMRs)U{b}.

3For an easy comparison with the considerations in § 2, we changed the notation used in [11]
according to a=e, ft=d, y=b, S=c. In [11] we proved that a ring-theoretical example constructed

in [8] as an algebra A over the field XX = {0, 1} can also be obtained as A= [5].
4 0nly here we use that & has no zero divisors. In this context we note that there are rings

3% with zero divisors such that, for suitable &,y(A%, the quasi-ideal Q~(Rb +yc) of a?0[S] (not
satisfying the intersection property as above) is minimal.

Acta Mathematica Hungarica 43,1984



ON QUASI-IDEALS IN RINGS 93

Then, for each ring with an identity, the contracted semigroup algebra t%{[S°]
of iS° has a quasi-ideal Q which does not satisfy the intersection property.

Proof. Ifthe semigroup S has no zero, (16) and (17) imply the corresponding
formulas with S'Q Lso=Ls(J{0} and 7%o0=/?sU{0} instead of S, Ls and Rs.
respectively. Thus, to simplify our notation, we may assume that S already has
a zero, hence S=S° in the following.

Further, Ds=Lsr\Rs is a quasi-ideal of S, and we have b, c$Ds by (16)
and (17). In A=£%0[S] we define

Q ={C(b+c)+ 2eidt|CEL>, dfDs),
clearly a subgroup of (A, +) such that b, c(f Q. From (16) it follows that each
element of AQ is a linear combination of LsU{c} (with coefficients in 4?), and

each element of QA is a linear combination of RsU{b} by (17). Since b$Ls
and we obtain

(LsU{ch M (Rs\J{b}) = LsC]Rs = Ds,
and therefore AQCIQAQ which proves O to be a quasi-ideal of A

We are going to disprO\i/e the intersection property for Q. Again by (16) and
(17), there are elements slf s2£S such that

(18) Sib=c or sx=c¢
and
(19 bs2=b or cs2—b
hold.

But sf—c and bs2=b would imply c=slb=slbs2=cs2, hence by (17)
c£cSMLSDRsf Rs contradicting c(| Rs. Similarly, sxx=c and c¢s2=b would
yield b=stb and bf£Ls by (16), whereas b3$Ls was assumed. Consequently,
exactly one of the two equations (18) and exactly one of the two equations (19) is
valid, and the other product is contained in LsCIRs=Ds by (16) and (17). Therefore
we obtain in A

(18" sfb +c) = c+di for some sxtES, d”Ds,
(199 (b+c)s2= b+d2 for some sZS, dZEDs.
Since c<tQ and d"O, we have

Silb+c) = (b+c)(—s"Tib+c+dj+d") = c+dj™B

for elements b+c£Q, b+c+di+ dZ<2, stEA and —s2£EA. This is a formula (8),
which proves that Q does not have the intersection property.

Remark 4.2. Obviously, the semigroup £ ={e b, c, 0} of Proposition 21
satisfies the conditions (16) and (17) for the elements b, ¢ and LS=RS=DS={0}.
The same holds for the semigroup S= {e, b, ¢, d, 0}, used in the proof of Theorem
3.8, with respect to LS=RS=DS={d, (}.
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Remark 4.3. Let S be a semigroup satisfying (16) and (17) and let T be an
inflation of S. Then (16) and (17) are also valid for T, since LS=LT is a left
and RS—RT a right ideal of T, too.

For more examples, we show that also the other semigroups T =T° mentioned
in Remark 2.4 (in fact, more general ones) satisfy the conditions (16) and (17) of
Theorem 4.1 for b,cdSQT and suitable left and right ideals LT and Rr of T:

Remark 4.4. Let " be a semigroup containing the semigroup 5 = {e, b, ¢, 0}
of Proposition 2.1 as a subsemigroup such that (4) holds. Note that T need not
have a zero or may have a zero which is not that of S. Then (4) implies

txtz2=e=tx=t2=e for all tlttdT,

since b=be=(btD)t2 and c—ec—tx{t%x) yield t2=e and tx=e by (4). Hence
7"\{e, b, ¢} is a two-sided ideal of T, and we have b,c({T and

cdTbUTcg {c, 0, T\S} = (T\{e, b, cpU{c},
bdbT6cTQ{b, 0, T\S) = (T\{e, b, chU{b).
Thus b,cdT and LT—RT=T\{e, b, ¢) satisfy the conditions (16) and (17) for T.

Remark 4.5. Let T be a semigroup containing the semigroup S —& b, c, 0}
of Proposition 2.1 as a subsemigroup; instead of (3) we merely suppose

(20) (T\S){b, c}gic, 0} and {b, c}(I'\5)%c.

Again we have no assumptions concerning a zero of T. We shall prove that T
satisfies (16) and (17) with respect to b,c(:T, the right ideal RT=bTUcT and
the left ideal

LT=TbUTcU RTN{bPUT(RT\{b}).

Using the multiplication of S without comment, from (20/) we obtain TboU Tc—
={c, 0} Thus for b~LT it remains to show that T(RT\ {b}) does not contain b.
By way of contradiction, bE£T(RT\{b}) would vyield

bETRT = T(bTUcT)<gThT(jTcTQ{c, O}T,
which is impossible according to
b=ct=b = (ec)t =e(ct) = eb =0,
b—Q=b — (eO)t —e(01) = eb —O0.

From (20r) it follows that c$RT, and we note 0£cSQRT as well as bdbSGRT.
Now one easily checks
cdTbDTc —{0, ¢} Q (LTr\RT)U {c} and bdbTUcT =RT Q (LTf]RT\J {b},

which are the remaining statements we were to show.
We conclude this section with the following version of Problem c):
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Problem 4.6. Characterize semigroups S for which the conditions of Theo-
rem 4.1 are necessary and sufficient in order that for each ring P6with identity the
contracted semigroup algebra 30[S°] has a quasi-ideal Q which does not satisfy
the intersection property.

8 5. Rings without zero divisors

The purpose of this section is to prove the following

Theorem 5.1. There are rings A without zero divisors such that A has a quasi-
ideal Q which does not satisfy the intersection property.

To construct those rings, we use a certain generalization of polynominal rings,
essentially due to Ore [2].

Lemma 5.2. a) Let 3A be a ring with identity 1 and tj an endomorphism of SA
Using the elements 2 alYl and the addition of the usual polynomial ring SA[) in one
indeterminate y over SR, we define another multiplication by

cn \(m \ ntm
Zw' Z ( Z aibjjyk
i=0 /VvV=0 [/ k0 I+=k

(the key point is yb=b%¥ instead of yb=by). In this way one obtains a ring which

we denote by SA[y\.
b) The ring SA[y\ has no zero divisors iff SA has none and bAO implies b”AO

for all bdSR.

Proof, a) This statement is easily checked by direct computation. We refer
to [10], 81, in particular for a more general statement and the interrelation to the

concept considered in [2].
b) Let SA and f] satisfy our conditions and suppose anAOAbm in (21).

Then abEynm is the only term of highest degree on the right side, and anbh AO
holds by our assumptions. The converse statement is clear.

Corollary 5.3. Let 3A be a ring without zero divisors and with identity 1,
and consider the endomorphism f] of the usual polynomial ring SA—3AWX\ defined
by f{x)n=f(\—x). Then the ring R —SA[Y\—"[x][y]n consists of all elements

(22) 2 with f(x)3SA = 3AX\
i=0
and the multiplication is given by

(210 (2.1 (*))) (2J Sj(*)) = 2|>jf ()9j (})"y i+,

where gj(x)i‘=gj(x) if 2|i and gfixY=gfi\-x) if 2(7.
Moreover, R=3A[x\y\ has no zero divisors, arid all elements (22) such that
fux) is contained in the ideal (x)=x39[X] of Lx] form asubring A of R.
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Proof. With respect to Lemma 5.2, we only have to state that /(x)"*0 implies
f(xf=f(\ —x)"*0 and that f(x) holds for all f(x)£Sf=LLx].

Clearly, these subrings A will turn out to be those rings satisfying Theorem 5.1.
Another way to obtain them (may be a more direct one, but more tedious to prove)
is as follows: Let LLx,y] be the “polynomial ring” in the non-commutative
indeterminates x and vy, i.e. the semigroup ring L PI], where F denotes the
free semigroup generated by {x,y}. Then the ideal (y—xy—yx) of LLx, V]
corresponds to the relation

(23) yx = (I-x)j - y-xy

(cf. (21"), and one has to check that the ring LLx, y]/(y—xy—yx) coincides with
the ring A=LLx][y]n of Corollary 5.3. Finally, we have

A = (X Y)/(y- xy-yx)c WX, ylj(y- xy-yx).

In particular, if we choose =Z, then A is the ring generated by the elements
X,y subject to the relation (23). Now, Theorem 5.1 will be proved by the following

Lemma 54. Let A be the subring of a ring N=LIx][y]n as introduced in
Corollary 5.3. Let Q be the set of all elements
(24) ZK(x)yv
such that /il(X)C-i?[x] satisfies ’
(25) hfix) = al+h1(x), x#()Q&a?, hL(x)€a?[x] and 0) = ix(1) = 0.

(Note that each of and hfix), may equal 0.) Then Q is a quasi-ideal of
the ring A without zero divisors, in fact the quasi-ideal Q=(y)q generated by v,
and Q does not satisfy the intersection property.

Proof. Obviously, Q is contained in A. Since the difference of the poly-
nomials

(26) fi[(x) = aj-f/i*x) and  kfix) = /il+ K1(x)

occurring in (25) is again such a polynomial, Q is a subgroup of (A, +). In order
to check AQCQAQQ, we consider any element

(AYX*)) (A KXy = (I kfix)y* [Z gj(x)y]]

of AQDQA. Such an element, say cOX)+ ci(x)y+cqx)j2+ ... is contained in
Q by (24) if cQx)=0 holds (which is clear) and if

Ci(x) =/0(x) hfix) = &L(x)g0(1-x )€~ [X]

Acta Mathematica Hungarica 43, 194



ON QUASI-IDEALS IN RINGS 97

satisfies (25). To show the latter, we use ht{x) and /cXx) as denoted in (26) and
recall that /0(0)=gQ0)= 0 holds by the definition of A. Then we obtain

G() =N (0ax=0 and cx() = Bxga(0) = 0,

hence cl(x)=0+cl(x) satisfies (25), and Q is proved to be a quasi-ideal of A.
Similar considerations show that AyilyA contains all elements (24) of Q such
that ~=0 holds in (25), i.e. Q—y)aq.

Finally, we have y€Q and xy$Q by (24) and (25), and our relation (23)
provides

xy = y(-x)+yiQ,

i.e. a formula (8) proving that Q does not satisfy the intersection property.

Remark 55. For all rings denoted by A in this section, each minimal quasi-
ideal has the intersection property by Corollary 3.5. Flence the quasi-ideal Q
considered in Lemma 5.4 can not be a minimal one, and Theorem 51
provides a statement parallel to Theorem 3.8 a). On the one hand, this new
statement is stronger, since it presents those rings without zero divisors; on the
other hand, there are no finite rings of this kind (which would be division rings and
hence only contain the trivial quasi-ideals).

We further note that we could not clear whether or not the rings A of this
section can be obtained as contracted semigroup algebras £4[S{], i.e. as semigroup
algebras OIS\ for a suitable semigroup S A S° since A has no zero divisors.
A possibility to decide this question would be to answer the following problem in
the positive:

Problem 5.6. If a semigroup algebra A=Jf[S] of a semigroup S"S° over
a division ring X has no zero divisors, is it true that each quasi-ideal Q of A
satisfies the intersection property?

§ 6. On two problems posed by L. Marki

The problems under consideration read as follows (cf. [7], 83, p. 16):

Problem d). Does there exist a ring A with a left ideal L and a right ideal
R such that RL is not a quasi-ideal of A?

Problem e). Does there exist a ring A with quasi-ideals Q1 and B2 such
that 6iR 2 is not a quasi-ideal of A?

Proposition 6.1. There are even rings A without zero divisors containing
a left ideal L=(y)t and a right ideal R=(y)r generated by the same element yEA
such that RL is not a quasi-ideal of A.

Proof. As already mentioned in the introduction, the rings A considered
in [9], Example 1 satisfy this statement for a suitable element yEA. We shall show
that the same holds for the subring A of each ring LUX][y]n as introduced in
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Corollary 5.3 with respect to the generating element y. Firstly, we have by (21"

L=0)= {|2 0) = 0, GE<S>p
R=0),={2 g(I-*)y+1+0ylgo(0) = o, &>}

We want to show that axy2(A for each a”O of (A is not contained in RL. By
way of contradiction, assume axy2£RL. Since axy2?"2y e vy, this yields that
axy2 should be a product

go(I-M~-Cin or CrYNN(x)y = Cr/>(1~x)y2 or g0(l-x)y-fo(x)y =
= go(I-)/o(I-")"

which is impossible by gQql—)=/o(l —1)—0 and al =a”~0. But then RL is
not a quasi-ideal of A, since for a quasi-ideal Q of A which contains y2 one has

axy2—y 2x£EAQC)QA 4 Q.
It is clear that this solution of Problem d) is also an affirmative solution of

Problem e). But now one may pose a stronger version of Problem e), namely the
same question with Oi= 2- We present a solution by

Proposition 6.2. There are rings A without zero divisors containing a quasi-
ideal Q such that Q2 is not a quasi-ideal of A.

Proof. We shall show that the quasi-ideal Q of A considered in Lemma 5.4
is one of this kind. By (24), Q2 consists of the elements

IOV, 2V V) A =2, o
with hl(x)=al+R1(x) and k1(x)=R1+kl1(x) according to (25). Hence we have
c2(x) = dIR1+ctlUL(1-x)+ R L(x)B1+R1(x)lc1(1-x),

which is clearly again a polynomial satisfying (25). On the other hand, ax for some
a"O of LA is not such a polynomial. This proves that Q2—Q' is not a quasi-
ideal of A, since otherwise y22Q"' would imply

axy2=y2ax€AQ'C\Q'A g Q"
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ON THE FISSILITY OF SEMIPRIMARY RINGS

DINH VAN HUYNH (Halle)l

We only consider associative rings. A ring A is called fissile, if the maximal
torsion ideal of A is a ring-direct summand of A. The fissility of rings satisfying
some chain conditions was investigated by several authors (cf. fl], [2], [4], [5], [6]).
Avrtinian rings and rings with minimal condition for principal right ideals are examples
of fissile rings. A ring A is called semiprimary if the Jacobson radical J(A) of
A is nilpotent and AfJ(A) is (right) artinian. By a famous result of H. Bass, every
semiprimary ring with an identity is a ring with minimal condition for principal
rigt ideals, therefore it is fissile. But obviously this result is no longer true for semi-
primary rings without identity. Even there are semiprimary rings which are not
fissile as one can easily see.

Let A be a semiprimary ring. Then A/J(A) has an identity e. By the nil-
potency of J(A), there is an idempotent e in A with e£g. Such an idempotent
is called a principal idempotent of A. By Ann (e) we denote the set of all xdA
with xe=ex=0. The symbols ® and (+) stand for the group-direct and ring-
direct sum, respectively.

Now we begin with

Lemma L Let A beasemiprimary ring and e be aprincipal idempotent of A.
If A/J(A) is torsion free and Ann (e)=(0), then A is divisible.

Proof. In general, a semiprimary ring A has a decomposition

@ A = eAe®(\—e)1e®(1—e)Ae® (I—)A (I—e),
where

eA(l—e)= {ea—eae\atA}, (I—)A(l—e)= {a—ea—ae + eae\afA}.
By assumption we get (1—e)A(l —)=Ann (e)=(0), therefore
)] A —eAede1(1—e)d (1—€)Ae.
Clearly eA(l—e)p(1—e)AeQJ(A). Then A/J(A)*eAe/l(eAe), so eAel/l(eAe)

is torsion free. Hence it is divisible. For each natural integer m there is an f*eAe
and a gf£J(eAe)=eJ(A)e with

(3) tnf—e+g.

1The results of this note are presented in a paper of the author ”Uber die Spaltbarkeit der
halbpriméren Ringe* (Hanoi, January 1980).
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We prove first the divisibility of eAe. Let n be the nilpotent degree of eJ(A)e.
For n=\, eJ(A)e—0), so eAe is divisible. Let us assume that the assertion is
already proved for all natural integers Kk with /c<u. Since eAef{eJ(A)e)n~1
satisfies the conditions of Lemma 1, eAe/(eJ(A)e)"~1is divisible by the induction
hypothesis. For each a£(eJ(A)e)"'~1we get by (3) m(fa) = (mf)a=(e+g)a=ea+
+ga=ea=a, since gafeJ(A)e(eJ(A)e)"~1=(0). Hence each equation mx=a
with a*(eJ(A)e)"~1 has a solution x=fa in (eJ(A)e)n~1 ie (eJ(A)e)"~1 is
divisible. Thus eAe is divisible. Hence for each natural integer m there is an
ffieAe with mf'=e. Consequently m(bf')=b(mf)=be=b for each bs(1—e)Ae.
This means that x=bf" is a solution of the equation mx=b in (1—e)Ae, proving
the divisibility of (1—e)Ae. The same holds also for eA(l-e). By (2), A is
divisible.

Lemma 2. Let A be a semiprimary ring with a principal idempotent e. If
Ann (e)=(0), A isfissile.

Proof. As is well-known, AJ=A/J(A) is fissile, ie. A=F(+)T, where
T isthe maximal torsion ideal and F isa torsion free ideal of A. Theideals F and
T have identities ex and e2, respectively. Then é=&1+&2, where & isthe image
of e in A. Since J(A) is nilpotent, there exist orthogonal idempotents er, e2
in A with e=el+e2and e,€et(i=1,2). For e2 thereisa natural integer n with
nefJ(A). Hence there exists a natural integer k with (ne2k=0, i.e. nke2=0.

Since by assumption Ann (e)=(0), A has a group-direct decomposition (2).
By e*AeJJ*Ae”siF and by Lemma 1, exAex is divisible and torsionfree, since
otherwise, elAel contained an additive quasicyclic subgroup U with elAelU=(0),
in particular elU=(0), a contradiction. Let a£(l —e)Ae. Then there is a bEA
with a=be—ebe=Db(el+e?+ (el+ edb(el+ e)=bel+be2—elbel—e2be2—efie2—edel.
By Lemma 1thereisan f in elAel with nE= e 1. Hence elbe2= (ni)be2=fb(nke2 —
= 0. Similarly etpe”O. From this and (2) we get

4) A =eclAel®elA(I-eD® (I-e DAel@e2®e2Ae2®e?A (1—eQ® (1-eAe2.

By Lemma 1, F= elAel®elA (I—e)® (I—eD)Ael is a torsionfree and divisible

subring of A and obviously T = e2Ae2@e?A (1-e2® (I—eJAe2 is the maximal
torsion ideal of A. Since clearly TF=FT=(0), we get A—F(+)T.

Corollary 3. Every semiprimary ring with a right (or left) identity isfissile.
Now we can formulate the main result of this paper.

Theorem. Let A be a semiprimary ring with a principal idempotent e. Then
A contains afissile subring B with A—B® Ann (<), where Ann (g) is contained
in J{A).

Proof. A has a direct decomposition (1), hence A —B® Ann (e) with
Ann (e)QJ(A). By Lemma 2, B is fissile.

Corollary 4. Let A be a semiprimary ring with aprincipal idempotent e. Then
(@ If Ann (e) is torsion, then A isfissile.
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FISSILITY OF SEMIPRIMARY RINGS 103

(b) If J(A) is an artinian A-right (or left) module, i.e. A is right (or left)
artinian, then A isfissile (cf. [6]).

Proof. By Theorem, (a) is trivial.

(b) By Ann (e)QA(l —)QJ(A) and by [3], Ann (e) is contained in a right
artinian nilpotent ring A(l—e), which is (as well-known) a ring with minimal
condition on additive subgroups. Such rings are torsion. Hence (b) follows from (a).

Remark. In a discussion Dr. Widiger told me that he has obtained also the
same results as in my paper but with other methods.
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L

Let T and /1 * be the set of complex valued multiplicative and completely
multiplicative functions, respectively. Let if QJ1 denote the set of those functions
f{n) for which

J 1/001

s E1
holds.

The letters p, g, n denote prime numbers, P, Q prime-powers.

Let

. H{pt)i

12 =
(12 Rufp)_agI ox

It is obvious that (1.1) is equivalent with
(1.3) 2Io R(fp) < °°-

Our main purpose in this paper is to prove the following
Theorem 1. Let f,gE.M. Assume that

(1.4) /12_1 lg(n+ D)~/(n)i-< oo,

Then f and gdLP, or /(n)=g(n)=n,+1,0S<r< 1
Without any important change in the proof we could prove the following
Theorem 2. Let a{ri), b(n)£/. Assume that

2 |b(n+|)-a(n)| < oo
/E 1

There are two possibilities: either

(1) Clan) [ and  2Wb(rij<e
or
@ afn) = b{n) = n°+z, -1<(T<0.

The special case f —g in Theorem 1seems to be nontrivial too.
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Theorem 3. Let f£Jt, and
/\ -
0§ ) 102 DA,

Then /EJS?, or f(n)=naHyz 0<<r< 1
We shall deduce Theorem 1from Theorem 3 and from the following

Theorem 4. Assume that f g~Ji, and (1.4) holds. |f fgfySf, then f{ri)=g{h)
for every n.

To prove Theorem 3 it is convenient to assume that fEJi*. Therefore we prove
Theorem 5. Let k be apositive integer, f£_Jt and

(1.6) j%:i\H'll'l+K)—T\"<~.
Assume that feL. Thenfor eachprime p coprime to K we have /(pVY=/(p)Vv
(v=1.2, ..).

Especially for K —1 we have fAJt*.
We remark that J. Mauclaire and Leo Murata [2] proved the following assertion
earlier: if |/(n)|=1,f*JI, and

Mol es ) e ten
then f(LJ(*.
Now we do not try to generalize this result since Theorem 5 has only an auxiliary
character.

2. Proof of Theorem 5

We shall use the notation E, I, introduced in [1]. So (1.6) can be written in the
form

2.1) 20 H(E*-D(n)]<~.

Let ma 1l Since zK—1 is a divisor of zKm—1, therefore

2n ’f\tI(E*m NI <~
consequently
(2.2) 2 ~~ \(EKm—I1)f (mri\ < oo,

Let
23) A(n, m) = (EKm 1)f(mn)-f(m) {EK 1)f(n)

=f(m(n + K))~ f(m)f(n +K)~ (F(mn)- / (m)/(n).
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Then, by (2.1), (2.2)

A M(n; myl
(2.4) ° ( i )
Let m=p, (p, K)=I, n=pw, (U, Kp)—1. Then (m,n+K)=1 and so
(2.5) An, m) = —/(pv) -/W 0> VYI/(K.
Assume that /(pw1)?i/(p)/(p\). Then, from (2.4)
X, W)l _
*9 (MR U
Hence we deduce that and by this the proof will be completed.

Since (p’+K,Kp)=1 for a”l, therefore by (1.6) and (1.10)

. Yy o K<
2, o Sy, Wer+0-/(pal+ L Mp7+K)I< @
Consequently

1/001
2.7
@7 uk4 u
Let g be a prime factor of K, gR\K Let K =qRf1. We have

y:%i q y=2i+i-é‘ll(?’+tf)-/(?,)| * g y=|"+i' A 7q A D)
The last sum is finite, since (qy~p+K1,K)=1 Consequently

2g R(fo)*==
This, by (2.7) gives the desired result.

3. Proof of Theorem 3

We may assume that and so that Let
e(n+1)=[/(n+1)-/(n)],
Z>2 be an arbitrary integer, (3/=1,2,...) be the set of integers in
[oM~-\g M.

After q being fixed, we define for every 1V>1 the sequence

NJ=[y] (=0,12..).

By this we have
(N=)NO= iif+dc, Nj, —qNi+ii,...
where
0,€{0,1,...,7-1} = j/ &
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If Nozxfffl, then Njzsfffi.j (j—, ..., M —1). Fixing any integer kts/fa'Lj,
Nj=k occurs qJ times when NO runs over s/jf.
Let K = j;11qz:12(lll(j)l. It is obvious that

(3.1) \F(NJ)-f(q)f(NJHD\S e(gNI+HL+i)+...+e(N]),
and so
(3.2 2 \fm -f(q)f(N H)\*"qg 2 @)-
Furthermore
M- 2

@3 H(na-IOWT(rm s 2 T ) -FW (N W@\

First we prove that |/(n)|s] holds for every n. Assume in the contrary that
f(q) =A, |N|<1. Then, from (3.3)

2 (NO)-N"-T(Nm D<2 2 M N(Nj)-AFNIN

NOAAM J— Nj€EAM-j

Since [/(WAf_D)|"K, we have

M2 FNDSRA - +HAAW 2 — m

nr M_j n

Summing up for M=1,2, ..., we get

2 M2 101Nk 2 Inw-2 2

Afrl Af&l tA I nEAt N

K, . 1 £(«)
- *THAM+T inr.1~'="
that is /€if.

Let |/(w)|=e“w, where u(n) is a completely additive function. It is non-
negative, since |/(n)|sl. Since wu(n)"0, n(a+1)50, therefore

Ne«@m) 1= [m(n+:)-m(m)| s [[/(n+1)]-[/(n)]].
Furthermore ||/(«+1)|—/(n)]||s|/(n+1)—{n)\, and so by (15) we have

W2 VTR

~ |du(n)|
=1 W
and consequently
(3.4 7X ng‘XN «)hO .

In [3] it was proved that (3.4) involves that u(ri) is a constant multiple of
log n, u(ri)=alog n. So \f(n)\=na. Since

2 -~ n+ |)ff—tla\ < 00
0 I( )

holds only for crd, we may assume that 0<<7<1.
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Let now t{ri) be defined by i(n)=f(n)n " Then \t(h)\=\, tEJi*. Further-
more, from (1.5) it follows immediately that

2 ~ W+ h—f()|< =

Now it has remained to prove the theorem under the condition |/(n)]= 1 We
assume that |/(n)|=1(n=1, 2, ...). Let

e(m) - Am’ h

Let g>1 be given, and NO,Nx, ... be defined as earlier. Let v<Af. We
start from the inequality

B5) 2 M(No)-f(@)VWwis Z N1 2 (N )-f(a)f(NHDS

s2qM 2 @),

»e<V. 1

an obvious consequence of (3.1), (3.2).
Hence we get immediately that

(3.6) q-M 2 1/w —(?2)V(iVYI< geig-").

Let now assume that gx, g2 are positive integers, g-="gx. Let H, be a large
fixed integer, MX>HX It is clear that for a suitable M 2. After
fixing Hx, let Vj,v2 be a pair of large integers such that

37 il H
(37) .
holds. Now we define Mx= wx+7/x and M2 by the property m<2i Let
H2=M2—2. It is clear that //2"°° whenever HA2—".
Now we rewrite (3.6) with = and g=q2 We get

(3.8 2 \f(No)-f(qiY'f(NJI\ « g™Q(q?'-%
_ NO
(3.9) NV = n 5
(3.10) 2  \(NOQ-f(q>f(NJI\ « qpQigS»-J),
311 B Wol
(- ) - q\ZJ'
Each can be written in the form

Wb= hg2*+b, 0*"b<ql\
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It is obvious that n,2=h. Furthermore,

and so W —mJs3, if Hx,H 2,vx,v2 are greater than a positive constant.
Assuming this, we have

(3.12) 2 2 2 (e(A-3)+..+e(fc+3))«

From (3.8), (3.10) we get
(3.13) 2 DWW -/(? 2V («V)I«9TfIO(~N1-)+ ~eNe -1
Rek e

Hence, by (3.12),
(3.14) [[(?iM-/(?2\M-( 2 1) <a“le(a?1~D+a?*e(a%r~1)-

Since for fixed HX, g22<zgx’, gx |<soR2 we have
(3.15) li-Ttedvw ic

We can see that the right hand side tends to zero as Hx-*°°.

For areal x let |x|| denote its distance from the nearest integer. Let f(qt)=
= e2a(N,lo*8| (/= ~2)

We have proved the fulfilment of the following assertion: If g\<gx and
(vi* viJ) (j—1, 2, ...) is an arbitrary sequence of pairs of positive integers tending
to infinity such that v[J) log gx—vY) log g2-+0, then

Wv[J)Axlog gx- vR)A2log g21 - O.
Let us assume that /(2)=1.
Now we choose q2=2. Let 4 Then we may put J12=0. Let a= ’Fo’é’\zl.

Assume that gx is not a power of 2. Then a is an irrational number. Furthermore
Iivi )al-»0 involves that |W-)/11(log 2)a|| —b.

In [1] we proved the following assertion.

(A): Let a be an irrational number, 8 be an arbitrary real number. Assume
that for every sequence mx<m2< ... of integers satisfying |myx|-*-0 the relation
\Wrijd\ —0 holds. Then R is an integer, or R—koc, with a suitable integer k.

That is fixlog gx=integer, or J1xlog 2—integer.

In the second case

(3.16) Ax= 2 7 [c(9i) = integer.
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Since JIr=0 can be stated in the first case, therefore (3.16) holds if
This representation is good for gl=2t, if we put k(2")=0.
By using that f{mri)—f{m)f{n) holds for every m,n, we deduce that

logm
log 2

logmn _
log2 ~
for odd integers m, n. Hence

(mn)km) = mk() *nk{n) «2Sm'n

with a suitable integer Jmn By using the unicity of prime-decomposition, we get
0, and so k(mn)=k(m)=k{n) if m and n are coprime odd integers, m,n>4.

+k(n) 1991 (mod 1)

k{mn) log 2

k(m)

Consequently k{ri)=L=constant for odd si>4. So we have f(n)—e " 2
log3

if (n,2)=1, n>4. Since /(3)=/(15)/(5)=e2AtL1082’, therefore /(n)=pTl°8"
with r=L/log 2. But this holds for /(2°), since xlog2'=0 (mod 1), and f(29)—0.

The assumption / (2f)= 1 is not a restriction. If this condition does not hold,
Alogw

f(2)=e2iX then we consider the function / (8)=/ (nN)e 18 . I twill suffice the
conditions of the theorem, and /(2) = L
This completes the proof of the theorem.

4. Proof of Theorem 4. Preliminary lemmas

Given a subset 9* of natural numbers, we shall write

= N _ I\S?) = J—
(4.1) &(n\ST) n2|? n1 9Qi\S?) r%y -
permitting that the series do not converge. We shall say that !'F and are finite,
if the series are absolutely convergent.
The following assertions are obvious consequences of (1.4).

Lemma 1. (1) If dFifil?) isfinite, then so is where 9" —{mn—1897}.
If 6{n\9) isfinite, then so is 9'(n\9"), where 9'—{n\n+1£9}.

(2) If 'F(n\9) isfinite, 9g= {M\mQd9’, (m, Q)=\} and /(0)~0, then so is
9x(n\9q). The same assertion is true for ~(n\9), when g(Q)"0.

Lemma 2. Assume that f, g£)X, and (1.4) holds, furthermore that /(2)”"0,

g(2)~0.
I ffor a suitable odd integer N
4.2) 9(r\(r, 2N) = 1) s finite,
or
4.3 Ar|(r, 2N) = 1) is finite,
then f g£ JT.
Proof. Let N = nx, ..., nr be distinct primes. Assume that (4.2)

holds. We may assume that for every nj there exists a suitable exponent y,->0,
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for which /(n}070. In the opposite case, ie. if f(n*)=0 (a=I, ...) holds for
a suitable j, then we may change N by N1—i]'§N in (4.2). After carrying out all
the possible reductions we come to such an N satisfying the requirement. Let

...,yr be exponents such that /(ap)*O (y=1, ..., 1. Let {q,...,is} be an
arbitrary subset of {1, ...,/s}. Let

{mim= .. i BS 1,....81tS T JP= {int=m J[ )}

First we observe that (4m*+1 2N)=1 Then 3F{4nf+1\T*£)X'*) is finite.
By using Lemma 1 and /(2)eg(2) » O repeatedly, we get that the series
Y(@T*+2\1*e)X*),Y 2T*+ \T*EX™), &r2TX\T*edA*), &(T*\T*£X"*),&(T\TeX')
are finite. Consequently &'{r\(r,2)=I) is finite, and so
||2 - 929 <~
From Lemma 1we get that the series *m2/-—1J(* 2) = 1), &2r\(r, 2)= 1), and finally
that ~(r|(r, 2)=1) are finite, consequently gEET.
In the proof of the second assertion only a slight change is needed. First we
observe that @@m*—1\T*E£YT*) is finite, and consider the chain of the finite series:

Si(4m*—|m*ejT*), &(4T*-2\T*£XK*), .I (2m*-I|m*<=)K*\
<S(2m*\m*etf*), Y (T\TESLD).
We can continue the proof in the same way that was used earlier. O

Lemma 3. Assume that f g£Ji, and (1.4) holds, furthermore that /(2)"0,
g(2)A0. Let aand N be nonzero integers, (a N)—1, N odd. Assume that there
exists a suitable integer N* that contains all the prime divisors of N at least on
thefirst power and does not contain any others, and that f(N*) =0. If

r\r = I(mod2), (ar+1, N) = 1)

isfinite, then f, gZHP.
The same assertion holds if g(N*)*0 and

18(r\r = I(mod2), (ar+1, N) = 1)
isfinite.
Proof. Let s be coprime to 2N*. Then sN* is odd, and (amsN*+1 A)=1
Then ~(sN*\(s,2N*)=1) and so 3F(s\{s,2A*)=1) is finite. From Lemma 2
we get the assertion. The proof of the second assertion is the same. O

Lemma 4. Assume that f gd£f, (1.4) holds, and /(2)~0, g(2)A0. Then

- - 9(4)
4.9 nza(zmm) "r\Cg(n)—f(rl)\ 9(2)/(2)
(4'5) b= 5(2 d 8) T\&n)~C\f(rl)\ cl g(2)/(2)
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Proof. If g(4)=0, then (4.4) is obvious from (1.4), similarly if /(4)=0, then
(4.5) follows directly from (1.4).
Let A{n)—g{n+\)—f(n). We have

/(4L+1) = X /(8/C+2)=-J(2)(8(.Sk+3)-A(Sk +2)),
and for g(4) 0

gldlc+2) = g(2)g2lc+ 1) = |g1(/(8/c +3)+ d(8/c + 3)).

Hence
(4.6)

A(Gk+1) = 1i|/(8k +3)-7 ~g(8/c+3)+]|||d (8 k +3)+7 ~-d(8/c + 2).

Similarly, if /(4)"0, then

/ (2k+1) = " )(& k +5)——/"(ﬁ\)(tk+ 4).

I @k = | e +2) /(12) (g(4fc+3)-d(4k+2))

/(8fc+4) = /’\(g

1(2)g(2)g(8k+6) /(2) J4fc+2)

1 1 L
12)92) KT 10y @) YK I (5 dTer2),
and so
= 1
1471 0= 1(4) g(8fc+ 5)- 12)9(2) / (8k+ 5)—/(4) d(8fc+ 4)+

+7 N (« #2)- 7 N L, pa+h).

(4.4), (4.5) immediately follow from (4.6) and (4.7), we have to take into account
only (1.4). O

Lemma 5. Assume that 2)70, g(2)70, and that (1.4) holds. Let
O be an odd integer.

(1) 7/ "wnn=3 (mod 8), (n,0 =1) is finite, then so is $(r\r=\ (mod 2),
@-+3,0=1). If additionally g(4)?"0, then ~(r\r=\ (mod 2), (4r—L0=1) is
finite.

(2 If #Wmn=5(mod8), (n,0=1) is finite, then so is ,A(r\r=1(mod 2),
(4r+l, 0 =1). If additionally (03)=1 and g(Q)"0, then <&ft=1 (mod2),

(0 0=1) isfinite.

Proof. All the following series are finite if so is the first one: &(n\n=3 (mod8),
(n,0 =1), #(njn=2(mod 8), (u+1, 0 = 1), *(b\n”l (mod 4), (2n+l, Q) — 1),
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A(njs=2 (mod 4), 2n+3,0=1), #(r|r=I1 (mod 2), (4r+3, Q)= 1). If £(4)"0, then
C 70 in Lemma 4, and so the series ,*(aju=3 (mod 8), 1, 0 = 1), ~(n|/?s4(mod8),
(n—L4,0=1), ~(r[r=1 (mod 2), (4r—1, 0=1) are finite. By this (1) is proved.
**  Now we prove (2). If A{n\n=5(mod 8), (n,0 =1) is finite, then so are the
following series: ~(slu=6 (mod 8), u1—L, 0=1), ¥Y(n=?> (mod 4), 2v—1, 0=1),
Anin=2 (mod 4), (2a+1, 0=1), tF(r\r=I (mod 2), (4r+1, 0 = 1). Consequently
(mod 2), (4y—3, 0=1) s finite. Let us consider only the subset s=2Qt,
(t,20=1. We get (4y—3,8)=1, if (0 3)=1 Since g(Q)"0, we get that
M= 1(mod 2), (0 t)=1) is finite. Recalling Lemma 2, the proofiscomplete. O

5. Proof of Theorem 4 under the condition/(2) ™0, g(2) 770,/(4) ™0, g(4) 0

Let us assume in this section that the conditions of Theorem 4 as wellas /(2)"0,
g(2)?"0, /(4)T~0, g(4)TiO hold, furthermore that f,g"PE£.

We define the function H(n) by f(n)jg(n) if the ratio has meaning. We shall
say that a prime power Q is irregular, if f(Q)"g(Q).

In our case C ™0, 07"0.

We shall reach our aim by proving a sequence of auxiliary assertions that we
denote by (a), (b), etc.

(@ If N=1(mod8) and /(IV)=0, then g(N)=0, and vice versa.

Proof. Assumethat g(N)=0 and f(N)*0. Then *{n\n=5 {modi),{n,N)=\)
is finite, and so from (2) in Lemma 5we get that so is ~{r\r=1(mod 2), (4r+ 11V)=
= 1). The conditions of Lemma 3 are valid, since f(N)?x0, so f g¢g"SP.

Assume now that /(IV)=0 and g(N)*0. Then by (1) in Lemma 5, <S(r\r=
=1(mod2), (4r—1, 0 =1) is finite, whence by Lemma 3 (g(IV)7i0) we get im-
mediately that /, g€j2. O

() If N =1(mod8), then f(N)=g(N).

Proof. We may assume that g(N)?+0. Let us assume that H(N)” 1 Starting
from (4.4),

2 S\Cg(N)g(n)-AN)f(n)\
A

and so

C
«:(r:{njz\rzozdls) _tl H{N) g(«)_/(«)
Comparing this with (4.4), we get that ~(a|u=3 (mod 8), (n, IM)=1) is finite.
Hence, by Lemma 5 &\r=1(mod 2), (4r—L, IV)= 1) is finite, and so by Lemma 3
g,/<Eif(g(A)=0". O

(6)7/ P is a prime-power, P= —1(mod 8), then f(P)=0 involves that
g(P) =0, and vice versa.

Proof. Assumethat g(P)=0,f(P)7i0. If Pn=5 (mod 8), then n=3 (mod 8).
Let us substitute n by Pn in (4.5), and sum up for n=3 (mod 8), (n, P)=1 Since
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g(Pn)=0, we get that IF{n\n=3 (mod 8), (n, P)=1) is finite, and by Lemma 5
sois M(r|r=1 (mod 2), (4r—1, P)=1). Consequently aF{s\s=0 (mod 2), (4.¥—3,P)=
= 1) isfinite. Extending the summation only for 2|jj, we getthat #’(/11= 1(mod2),
(8i—3,P)=1) s finite. Since P is a prime-power, = —1(mod 8), therefore
(P,3)=1 Now we put tP into the place of t in the last series. The condition
(8(rP)—3, P) =1 holds automatically, and so by f(P )*0 we getthat dP(t\f, 2P)=
=1) is finite. From Lemma 2 we get that f gEEE.

Assume now that f(P)=0 and g(P)"0. If n=3 (mod8), (i, P)=1, then
Pn=5(mod8) and f(Pn)=0. From (4.5) we get that &(n\n=3 (mod 8), (n, P)=1)
is finite. From Lemma 5 (see (1)) and Lemma 3, ¢,fd:Sf. O

(c) If N= —1(mod 8) and f(N)g(N)?£0, then f(N)=g(N).
Proof. Assume that f(N)g(N)?+0. Replacing n by nN in (4.5), we get
(5.1) 2 1lgWgW-Q/W/WI

n=3(mod 8) ft
(n,N)=

which by (4.4), involves

-C
n= 3(%0(13) CrH(I-O
(n,N)=I

Hence, by Lemmas 5 and 3 we deduce immediately that

(5.2 H(N) = -Jc

Now we consider the inequality

(5.3) 2 "-\Cg(N)g(n)-f(N)f(n)\ < *,
n?nS(Nm)ozd18) ft

whence, after comparing it with (4.5),

H(N
Q - N) /(I
n=5(mod 8)
(n,N)=1
Hence, by Lemmas 5 and 3,
(5.4 H{N) = CCX
(5.2) and (5.4) imply CCr=+% 1. The case H(N)=CC1——1 is impossible.

Indeed, assuming that f(N)——g(N), from (5.1), by repeating the above argument
we deduce that 1+Cx—®0, and similarly, from (5.3) that C+1 = 0. But this leads
to CCi=lI, a contradiction. O
(d) Let P=1(mod 8) be a prime-power, 1=3 or 5(mod8). If g(P)=0,
then f{P) —0.
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Proof. Assume in the contrary, that f(P)?+0, g(P)=0. If P=3(mod8),
then by (4.4), putting there Pn into the place of n, we deduce that

(5.4) A(nin = I(mod 8), (n,P) = 1) s finite.

For P=5(mod 8) we consider (4.5) instead of (4.4) and get (5.4) too. From
(5.4) it follows that the series An|a=2 (mod 8), (n—1,P)=1), il(ri\n=21mod 4),
(2n—L, P)=1), Js(m|msO(mod4), (2m+1, P)=1) are finite. Summing in the last
sum only for 22[Jm, we get that SF(r\r=\ (mod 2), (8r+1, P)=1) is finite. Since
f(P)*0, Lemma 3 gives that /€£P. O

(e) I1f f(2X)—0 for every a™3, then /£Jz?.

Proof. By using (a) we get that all the series ${n\n=1 (mod 8))=
—rm\n- 1mod 8)), &Mn=2 (mod 8)), &Mn=1(mod 4)), tF(n\n=0 (mod 4)),
3P{r\{r, 2)=1) are absolutely convergent. So /GJSf. O

(f) Let P=3 or 5(mod8) be a prime-power, f(P)*0. Then g(P)=CH(P)
for P=5(mod8), and Cg(P)=f(P) for P=3 (mod 8).

Proof. We change n by Pn in (4.4) and use (a). We get

2 \Cg(P)~f(P)\mt |/(n)| < « (P = 3(mod 8)),
ij=I(mod8) 'L
(nP)=1

2 )\g(P)—fo(P)\ *4-1/001< - (P = 5(mod 8)).

n=I(mod 8
(n,P)=

If one of the assertions does not hold, then ~(n\n =1 (mod 8), (n, P)=i) is
finite. Repeating the argument that was used by the proof of (e), we get that
fg£&- O
g Let Ji be the set of irregular prime powers in the residue class =/(mod8).
As we have seen before, and are empty.

Let Pr be an irregular odd prime power in such that

(5.5) g(Pd M0, AN) =0.

Let n=/(mod 8), (n,P|)=1. Then Pn=1(mod 8), g(Pn)—f(Pn), so f(ri)=
=g(n)=0 for every n=/(mod8), (n,P)=1

If 13, then ~(Mmn=3(mod 8), (n, PX=1) is finite, and by Lemmas 5
and 3, g6J2\

Let 1=5. Then PX*3Y (P,3)=1, furthermore /(«)=0 if n=5(mod8),
(n, Py)=1, consequently iF{n\n=5 (mod 8), (h, Pr)= 1) is finite. So, by Lemma 6,
(t/ffIPy, t)= 1) is finite, which by Lemma 2 leads to g,/£J2.

So we proved that (5.5) cannot occur, if Px is an odd prime power. O

(g If f(n)=g(n)=0 holdsfor every n= —1(mod 8), then f, gG-Sf.

Proof. Since g(n)=0 for every n=7 (mod 8), therefore the series
A(n\n =6 (mod 8)), *{n\n =3 (mod 4)), "(1]22|7), Y(r\{r, 2)=1) are finite. O
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(h) We have CCx 1L
We may assume that there exists an N =—I(mod8), for which f(N)?+0,
(c) and (5.4) give (h). O

(i) Assume that f and g are nonnegative functions, and that there exists an
irregular odd prime power P. Then for every prime power Q=3 or 5 (mod 8),
if (Q,P)=1, then g(Q)=f(Q)=0.

Proof. Assume that P =Q (mod 8) and that g(Q)AO0. First we observe that
g(PQ)=f(PQ), since PQ=\(mod8). From (f) we get that C2=1, or Cf=1
according to P=3 or 5(mod8). Since / and g are nonnegative, therefore
C—1 or Cl1~1 and by (h), C=CX=\.

Assume that P = —Q (mod 8). Then PQ = —1(mod 8), and so by (c), g(PQ)=
—+(PQ) that by (f) involves C=C1. From (h) we get C—Cl1-. O

ify 1ff and g are nonnegative functions, then there do not exist irregular odd
prime powers.

Proof. Let P be irregular, (P,2)=1. Then f(P)"0, g(P)*0. Let N=3
or 5(mod 8), (N, P)=1 Then N contains a prime-power Q=3 or 5 (mod 8),
and so by (i), f(Q)=g(Q)=0, f(N)=g(N)=0. So f(N)=g(N)=0 whenever
N=3 or 5(mod8), (N, P)=1. This involves that ~{n\n =3 (mod 8), (1, P)=1)
is finite that by Lemma 5 gives f gEE. O

So we have proved the following assertion.
(k) 1ff and g are nonnegative, then f(n)=g(n) holdsfor every odd n.

Now we consider /(25) and g(25). In the next step we do not assume the
nonnegativity of / and g.

() I'f f(n)—g(n) for every odd n, then

N i/(2'+2) = g(2)/(2"+)
(5-6) ig(2at2) = /(2)g(2#) (@ °'1'2"-)-

Proof. We start from the relation
A (4k)+f(4k) = g(4fc+l) =/(4k+1) = g(4k+2)—A(4k+]) =
=g@g(2k+ 1)- A(dk+1) = g (@ [f(2k) + A(2K)]-A(4k + 1),

whence by (1.4),

i|1/(4fc)-g(2)/(2fc)|<oo0.
L=|1n )-9(2)/(2fc)]

Extending the summation only for k=2xm, (m,2)=1, and observing that
IF(m\(m, 2) = 1) cannot be finite, hence we deduce immediately the first relation
in (5.6).
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To prove the second, we consider the relation
g(4k) =/(4fc-1)+d(4fc-1) - g(4fc)+d (4/c—1) =/ (4k—2)+
+A(dk—N)+A(4lc—2) =f(2)f(2k~1)+ A (4k-i)+A(4k-2) =
=/(2) (g(2fc)- N1 (2k- 1))+A(4k- 1)+ A(4k- 2)
whence by (1.4)
i T |g(4/c)-/(2)g(2/c)| <

Repeating the argument that was used earlier, we get the second equation in (5.6). O
(m) Iff and g are nonnegative, then f(2)=g{2).

Proof. Under the assumption stated we have /(3)=g(3). Let n be running
over the residue class 7 (mod 12). For such an n we have (n(n+\), 3)=1. We
start from the equation

g(3)d(n) = g(Bn+3)-/(3n) = (g(3n+ 3)-/(3n +2))+
+(/(3n+2)-/(3n+ D))+(/(3n+ 1)-/(3n)} =
- A(Bn+2)+A (bn+1) m{/(3n +1)—K3n)).
Hence, by (1.4) we have
n=7(m20dlz)1:t [/(3n+1)-/(3n)| <

and so
2 f |g@Bn+D-/I3n+1)| <

n=7(modl2) ft

Assume that g(2)7(2). Since 3u+ 1 runs over the elements of 22 (mod 36)
and 2||3n+l, therefore

g@B+)-/Bn+1)=g(2)g("-)-/(2)/["£i) = @A+ @PI(— >

and so from the last inequality we get
(5.7) i f g(U+18r)<

So, the series d*(n\n=10(mod 18)), &(nM\n=5 (mod 9)), *(n\n =5 (mod 18))=
g=(Mn=5 (mod 18)), £F(N\n=4 (mod 18)), J*(njn=4 (mod 4-18)), &(n\n"
= 1 (mod \%))=6(n\n = 1(mod 18)), ~(n\n=0 (mod 18)) are convergent. If there
exists a suitable >0 for which f(3p)—g(3il)7i0, then from .A(n"\n=0 (mod 18))<«=
we get Jr(mm=2-3"v, (v, 6)=1)<°°, consequently ~(v|(v, 6)=1)="(v|(v, 6)—
= 1)<°° whichleadsto f gild (see Lemma 2).
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Assume now that f(3R—g(3%)=0 for 0=1,2,.... Then, by (1.4), &(n\n=
= 1(mod 3))<°°, M(n\n = —1(mod 3))<°°. Since g(ri)=f(n) for odd n,

&\(n, 6) = 1) =S" (|(n, 6) = 1) < °°,
whence by Lemma 2 we deduce that /, g€if. O
(n) I ff and g are nonnegative, then f(n) =g(n) for every n.
Proof. This is an immediate consequence of (1), (m) and (k). O
(o) We have \f(n)\=\g(n)\=na (0<ff<l) for every n.

Proof. If (L4) holds for / and g, then it holds after substituting them by
\f(n)\, |g(n)|, respectively. For them by (n) we get |/(n)|=|g(n)] and so by
Theorem 3 |/(n)|=1g(/i)|=nff(0Sn< 1).

(p) There do not exist irregular odd prime powers.

Proof. Assume that the assertion does not hold. From (h) we know that
CCXx=1 Let Pl=i®2s/(mod 8), 1=3 or 5(mod 8), (Px,P2=1 Since by (0)
g(Pj)"0, and NP2=1 (mod 8), therefore g(P1IP=/(P1P2=/(P 1P2,9(P)g(P2=
=f(P)f(P2J, and so by (f), Cf=1,C2=1 Hence CXC2=W 1 If there exists
any irregular prime power P, then it has to be =3 or 5(mod 8), and by (f), all
the prime powers P=3 or 5(mod 8) are irregular, furthermore f(P) =—g(P)
holds for all of them. This involves

(5.8) /(n)= —g(n) if n=3 or 5(mods).

As we know, f(n)=g(n) if /7=xl(mod8), and \f{{n)\—\g{n)\=na™\.
Let n=1(mod 24) Sinceg(3) = —#(3), therefore g(3(«+1))+f(3n)=g{3)A{n).
Sj
e gBn+3)=/(3n+2)+d(3n+2), f(3n) = g(3n+1)-d(3n),
we have
/(3n +2)+g(3n+l) = g(3)d (n)+A (3ri)—A(3n +2).

Since 3«+2=5 (mod 8), we have

/(3n +2)= —g(3n+2)= -/(3n+1)-d(3n +2),
and so by (1.4)

2 -ilg@Bn+1)-/(3n+1)|<~.

w=I(mod24) ™
By putting there n= 1+24/, 3n+1=4(1 + 18r), we get
lszi-ll-iga+ iso-tfr/a+isoi <

First we consider the sum for t=0 (mod4). Let t~4r. Since g(l +18 ¢4t)=
=/(1 + 18-41) we have

2 ~ 1M4)—111/(1+ 18 +4r)| = o,
and so fA(4)=1.
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By putting i=41+1, we have 1+ 18/ =19+ 18-4t=3(mod 8), that gives
g(19+ 181)= —(19+181), whence

2|91 (4) + 1||/(19+187)| < o,
tBI1 T

i.e. H(4)=—L This is a contradiction. O
(q) We have f(2)=g(2).

Proof. We have to repeat the argument used in the proof of (m). Since
g(3)=/(3), therefore from the assumption /(2)+g(2) we are led to the consequence

t|’=-ii,Lg(u +1810)|<~,

which by g~ is impossible. O
(r) Under the conditions/(2) + 0, g(2)+0,/(22 + 0, g(22+0, Theorem 4 is true.

Proof. From (q) and (1) we have /(2*)=g(2e) (a= 1,2,...) that together
with (p) give f{ri)=g(n) (n=1,2,...). The conditions stated in Theorem 3 hold. O

6. Proof of Theorem 4 under the condition/ (2)g(2)f é)g(4)=0

We shall prove that in this case (1.4) involves that / g~d£.
Since (1.4) implies
et g T e

1] n 7

and /<EJ5? if and only if |/|EJ8?, we may assume that / and g are nonnegative.
Throughout this section, we shall assume that f g~ 0,f g£J( and that (1.4)
holds.

Lemma 6. If <&n{n 2)=1)<°°, then f,g$ df.

Proof. If {n\(n,2)=1)<°°, then i*2n|ns1(mod2))<°°, and so
A(n\n =1 (mod4))<e°. if f(n)=0 for every n= —1(mod 4), then we are ready,
since then IF(n\(n, 2)= 1)<°°, and '&2RR=\, 2, ...)<k u|(n,2)=1)+1

Let us assume that /(«)+0 for a suitable ns —1(mod4), i.e. that /(B)+0,
for Q=qgs=—1 (mod 4). Since #"(Qnijnis—1 (mod 4))<°°, therefore
A(T|T = —1(mod 4), (m, B)—1)< Consequently

(6.1) 2 R(f p)=2-

e

If there exist coprime pairs Qt, Q2s —L1(mod 4) with the property /(<2i)+0,
/(02+0, then (6.1) holds extending the summation for every odd p, that is
~m(n|(n, 2)= I)<°°, whence we get /, g(EISK.
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It has remained the case when f(ri)=0 for every ar -1 (mod4) coprime
to Q.

It may occur that f(n)=0 for every odd n coprime to Q. But then
f(2B—1)—0 except when 2B—\ being a power of g. Since as it is well known the
equation 2B—\=qy has only finitely many solutions, therefore f(28—1)—0 for
every large B, consequently R(g, 2)< <% and so gd"Pm

Finally we assume that there exists an odd prime power P, (P, Q)=1,f(P)"0.
Let s be so large that 2§P—1L. We observe that for qy=—I (mod 2s), P\=
=—P(?4 —)(mod2s). Since the exponent of 2 in P*+1 is bounded by s if
A= —1 (mod 29, therefore

d{jPy+\\gy= 1(mod 29) S. ¥Y(n\{n, 2) = 1) < °°,
and so

AN~3?(gWagy= -1 (mod29)c °=

For the subset gy —1(mod 23) we use the inequality
#m(qgy 1(mod29) <cd (qy+ I\gy+\ ~ 0 (mod29)+0 (2).

But the sum in the right hand side is convergent, since every qy+ 1 contains 2
at most on the power s—1. So 3P(qy\y=lI, 2, ...)<”, and so dF("\{n, 2)=I)<°o
that leads to the aim immediately. O

Lemma 7. If ~(nf(n, 2)—1)<°°, then f,gdEP.
Proof. Ifthereexistsa B sl with g(2R)"0, then we are ready, since in this case
2)=l)<sc™(2im|(m, 2) = I)<sc.F(njn=I (mod 2))+ 0 (I)<scl,

and this case has been considered in Lemma 7.

We assume that g(2*)=0 for >5=1.2, ....

From ~m|(n7,2) = 1) < we get that iF(M\2\n) < °° and so d§(n\n = —1
(mod 4))coo.

First we consider the case when there existsa Q = —1 (mod 4), Q—qs, g(6 ) +0.
Then, as above, 4§Mn= 1(mod4), (n,0 =1)<°o, that leads to ’\ig?(g,p)< °0.

If there exist Qu Sa, (61, 6a)=1 with this property, then we are ready. Let Q be
unique, i.e. g(n)=0 for n=1(mod 4), (1, 0=1. We have to see that

7

The contribution of the terms = —1(mod 4) is finite since dS(n\n=—1
(mod 4))< oo.

Let P be an odd prime power coprime to Q such that g(P)"0. Let s be
so large that P~ 1(mod 2s). Since for 2s\oy—1,2"\Pqy—1, therefore

ITEL g (gWay= I(mod 29) « jF(n|2sfn)+o0 (1),

and here the right hand side is finite.
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Furthermore
<d(qgy fa I(mod 29) < 'F(qy—\\2s\qy—\) +0 (\) «  (n\2s\ri) +o0 (f).

Consequently &(n\(n, 2)=1)<°° and by Lemma 6 we are ready. If there
does not exist such a P then g(ri)=0 for (n, 2Q)—1, g(2%+ 1)=0 for all but
finitely many B, and so R (f 2)< and we are ready.

It has remained the case when g(n)=0 for every n=—1(mod 4).

If g(n)=0 for every odd n, then we are ready. We assume that this condition
does not hold.

Let a be the least integer for which there exists an odd no, 1 (mod 2a+1),

no)”o.
o )The case oc=1 has been considered. Assume that a£2. We may assume that
n0=Q is a prime-power, Q=q%* Q=Igmod2x+l), /a=2“+1.

If n=/a(mod 2a+1), then 2“|n—1, and so

(6.3)
Mnn = A(mod 29+1) ) KN {2xT\(T, 2) = 1)+0(1) <<, A(m|(m, 2) = 1)+ 0(l) <k L
Since uQ”"Ix(mod 2X+1) when u= 1(mod 2I+1), and g(ju)<g:g(uQ), when (n,0=1,

we get
(6.4) <&u= I(mod 2°4), 1,0 = I) <

From (6.3) and (6.4), &n\(n, 2R) = 1)<°°, and so by the assumption g(2/)=0,
Anl(n, @ =1)<°°. We distinguish two cases according to whether there exists
or not another P with (P, 0=1 suchthat g(.P)AO.

We can continue the proofin both cases on the way that was used in the proof
of Lemma 6. We omit the details. O

Lemmasg. If /(2a8)=0 for every ocfl, or g(2R)—O0 for every /?é1, then
fg(L&.
Proof. Itisclear, sincethe conditions of Lemma e or 7 are satisfied obviously. O

Lemma 9. Assume that f(2X)A0,9(2RA0. Let IP be an arbitrary subset of
odd integers. Then

(6.5) Y(T\TEEP) «<$(2xH¥m - (2x-1)\m<if£P)+\
and
(6.6) SF(MMEIP) <k & {2XHm + (28~ 1) |mE€SP\+1.

Proof. Since f(2X)A0, g(2Q)A0, therefore
'S(M\TEEP) <& f(2X9(2RAM(M\MEH) —f (2X<S(2BM\MZEP) <s
«f(2XS?(2Rm-I\ME£& ") +] « F (2Hm -2 X\mi£P) +\ <.
<KS (2X%Him- (2x- 1)\mEEP)+ 1
The proof of (6.6) is similar and so we omit it.

Lemma 10. If g(2)=0, then f gdIP.
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Proof. g(2m)—Q for odd m, so /Hnmn=\ (mod 4))<°°. Let Q=qy=—1
(mod 4) be a prime power, /(6)*0. Then ?Fn\n=—1(mod4), (n, g)= )<<=°.
Hence we have % _I-'\(/, p)< °°-

Let ,s/s be the set g’fthose odd integers n forwhich gs\n. Since ,max \f(qI\<s:\,

therefore, from ~(n”n, 2g)=1)<°° we have J¥(n|n£.s/i§<°° for every s.

By Lemma 8 we may assume that/(2)"0, g(2p~0 for suitably chosen a and
B{"2). Let s be so large that qS[2p—I. Then by putting £f= {gly—1 2,...},
and observing that 2X#qy+(2P—I)Es/s for every large y, from (6.6) we deduce
that R(fq)<°°, and so that 3P(n\(n, 2)= 1)<°°. This, by Lemma 7 completes
the proof. O

Lemma 11 Assume that ~(n\(2N, n)=1)<°° or &(n\(2N, n)=1)< °° holdsfor
a suitable N. Then f gdL£.

Proof. We may assume that N is odd, N =n1...nr, where Uj are distinct primes,
furthermore that for suitable a and R, f(2XA0,9(2p"0. The assertion is true
for N=1 We shall treat only the case 3T(n\(2N, n)—1)<°°. If R (f nf)<°°

then we can reduce itto N =— N. So we may assume that R(f,Kj)=°° (j =1,-,r).

Let s be an integer such thg% m\2p—\. Since R (f nf)="°°, therefore f(nj)AO.
for infinitely many vy, so there exists Sj*s for which f(nf)*"0. LetA—
=n{1...nir~f, and consider the set £P= {kyAly —1,2, ..}. Since f(ny) « f(nyA),
by (6.6) we get

&(nYy = 1,2,...) <«3?(nyAly = 1, 2 ...) «3?(2xHnyA+(2p-1)\y = 1,2, ...)+I.

But the integers 2x+pnyA+(2p—I) contain the primes itj at most on the power
5—1, if y is large, consequently R (f m)< °°, a contradiction. The proof of the
second assertion is the same, and so we omitit. O

Lemma 12. Let /(2)=0, g(2)*0. Then fgdLP.

Proof. We shall give an indirect proof. Assume that f,g$ .
Then /(29)?i0 for a suitable a (see Lemma 8). Let a be the smallest exponent
for which /(29" 0.

(A) g(n)=0 if n isoddand n” 1(mod 27).

Proof. If n isodd, n=1(mod 2*), then the exponent of 2 inn—1 is smaller
than a, so f(n—1)=0. Then "(«|uir 1(mod2a), (n, 2)=I)<°°.

If (A) is not true then there exists an odd prime power P, pa1(mod 2*), g(P)AO.
Then (mod 2%), (m, P)=1)<°°, and so &(m\(m, 2P)=1)-="°°, which
by Lemma 11 finishes the proof. O

(B) f(n)=0 if n=5(mod8).

Proof. Since a”2, therefore from (A) it follows that g(n)=0 if n=3 (mod 4),
and so if n=6 (mod 8), consequently Je(n\n=5 (mod 8))<°°.

Assume in the contrary that there exists an NO=5 (mod 8) for which f(N 9~0.
We may assume that No is “primitive” in the following sense: either No=p—
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—prime power=5 (mod 8), or No=P1-P2 where Px=3 (mod 8), P2=7 (mod 8),
PI, P2 being coprime prime powers. We have

An\n = I(mod 8), (n,Ng) = 1)<

and so by g(2)*0 and (14)
Avlv = I(mod 4), 2v—L, NQ = I) < °.
Letting the values v run only over v=1+2Y, (g, 2)= 1, we get
jF(glg=I(mod 2), (2*¥ig+I, NO = 1)<

whence by putting g = oNO,

IF(o\o = I(mod 2), (a, Ng) = I) < <
that by Lemma 11 gives the desired result. O

Now we prove that f(ri)=0 for all elements of one of the residue classes
3 (mod 8), 7(mod 8). Assume that this is not true. Then there exist 4,=3(T0b8),
P2=7(mod 8) suchthat /(P1)~0,/(P 2"0. (We take into account that f(m)=0
for meeS(mod 8)!) If (PLP2=1, then f(P1P2)=f(P)f(P2"0, but PXP2=
=5 (mod 8), and this is impossible. So Px=p>l, P2=pX. Let ms3 (mod 4),
(m,p)=1 Since Ppn or P2n=5 (mod 8), therefore f{m)=0.

We distinguish two cases according to g(4)=0 or g(4)"0.

If g(4)=0, then ~r(n\n”3 (mod 8))<°°, and from f(Pi)9~0 we have
3P(n\n= 1(mod 8), (1, p) = 1)<« This involves that ~(vjv=1 (mod 4), (2v—1,p)=
= 1)< @& Summing up only for v= 1+2‘Y, (g, 2)= 1, we get

A(p\p = I(mod 2), 2+1g+ 1, p) = 1)<

By putting g=o0P1, we have £F(e\(o, 2p)—L1)< and this leads to the as-
sertion.

Assume that g(4)70. Since f(ri)=0 for (n,p)—1, n=3 (mod 8), therefore
3i(4v(v, 2)=1, (4v—1,/?)=1)<«>, and so ~(v|(v,2)=1, (4v—-,p)=1)<°°. Let
v= 1+2®g, (g,2)=1. Since 428”0, we get J*¥(g|(20y+3,p)=I, (g, 2)= I)<<=.
If p 5*3, then we put p =oPx and deduce that #'(6](ff, 2g) = )< °0. If p =3,
then the condition (2“+2g+3,p) =1 is equivalent with g”~O (mod 3), and so
JA(ff|(0-,29)=:1)< @D holds in this case too. O

So we have proved the following assertion.

(C) Either

(al) f(n)=0 for every 2=3 (mod 8)
or

(@) f(n)—o for every n=1 (mod 8).

Now we shall prove that (al) is equivalent with g(4)=0. Assume that g(4)=0.
Then ~(1|72=3 (mod 8))<°°. If (al) does not hold, then f(P)"0 for a suitable
P=py=3 (mod 8), so 3r(riin=1(mod 8), (zg)= 1)="°°. In this case (a2) is satisfied.
So we have ~(n\(n, 2g)=1)<°° that leads to fg"SP.

Assume that (al) holds and g(4)"0. Then 7~(72|22|n)<°°, and so (Vv|(v, 2)=
= 1)<o00 and this gives that f gEEP.
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We shall prove that (a2) is equivalent with g(2p=0 (/1=3,4,...). Assume
first that g(28)—0 for every R73. Then 3F{n\n*l (mods))<°°. If (a2) does not
hold, then (al) is satisfied, and there existsa P=py=7 (mod 8) such that /(P)0.
This involves that $8(m\in=1(mod 8), (n, p)=I)-=«=, and so by (B), (a2), we get
~(n(n, 2p)—1)<

Assume now that (a2) holds and there exists a 823 for which g(2p " 0. Since
(a2) involves ~(n|23||n)-=°°, we have

ov|(v, 2 - D« Si2V|(v,2) = )<
and so, we are ready. I
So we have proved the following assertion.
(D) Either
(bl) g(4)=0 and (al) holds,
or
(b2) g(2)=0 for every "3 and (a2) holds.

First we prove that
(E) The case /(3)=0 is impossible.

Proof. Let /(3)=0. From (A) we know that g(3)=0. Hence, by (1.4) we get
that ~(n]u=4, 7 (mod 9))<o°. Since g (2)0, putting n—2m, (m, 2)=1, we get
immediately that ~(m|m=2, 8 (mod 9), (m, 2)—1)<°°. By putting m=I1+2xy,
(v,2)=1, from f(2x~0 we deduce that

(6.7) 3F(Y\ = 1(mod 2), 2*v= 1, 7(mod 9)) < °°.
From g(3)=0 it follows immediately that .¥{n\n=2, 5 (mod 9))<<=°, and so
(6.8) AmIm = 1(mod 2), 2°m= 2, 5(mod 9)) « °°.

LetAG=2a+1. If (m 2)=1 m=1(mod9), then 2x+Im—(2“—1)= Jla(mod9).
So, by Lemma 9

(6.9) Amm = I(mod 9), (M, 2)= 1)< °°
if
(6.10) Aa(mod9)€{4,7,2,8,3,6}.
Furthermore, if m=5(mod9), then 2a+lm—2a—1)=1 (mod 9), and so
(6.11) A(m|m = 5(mod 9)) <

under the condition (6.10). Consequently ~(m|(m, 6)= 1)<°=, and soby Lemma 11,
[, *€%. . .
(6.10) holds if a= 1,4, 5,0(mod6). Consider now the cases a=2, 3 (mod 6).

If a=2 (mod 6), then 2a=4 (mod 9), and so, from (6.7), (6.8) we deduce that
(6.12) #'(vlv=1I(mod 2), v= 25 8,7 4(mod9)) <

Similarly, if a=3 (mod 6), then 2a=8(mod9), and we get (6.12) as well.

If g(3y~0 for a suitable ys2, then we get y(tn\{m, 6)=1)<°°, since
v=38(mod9) is included in (6.12), and so §{2 *37(v, 6)=1)<
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Assume now that g(3y)=0 (y=1, 2, ...). Then
(6.13) A(n|n = 2(mod 3)) < ¢

If a=3(mod6), then 24=2(mod3), and, by putting n=2*m, m=1(mod 3),
we get iF(m\m=\ (mod 3), (m, 2)=1)< which gives 'F{m\(m, 6)= 1)< oo.

It has remained to prove the case when oc=2(mod6), g(3y=0 (y=1,2,...).
We know that ~(n|n=2, 4, 7, 8 (mod 9), (n, 2)= 1)<

If we could prove that

(6.14) &(M\n =5(mod 9), (n,2) = 1)< m,

then by Lemma9 03=1) it would follow that ~(njn=1(mod?9), (1, 2)= 1)<°°.
Indeed, in this case Aa=5 (mod 9). But then g€JP.

Let us assume that (6.14) does not hold. Then there exists at least one
n=5(mod9), (n,2)=1 for which g(n)*0. So there exists an odd prime power
P suchthat P~ 1(mod 9), g(P)*0. We shall deduce that

(6.15) 9(n\(n, 6P) = 1) < m,
which involves g,fePE£.
(6.15) is obvious if P =4,7 8 (mod9), since in these cases P_1(mod9)=

=7,84 (mod9 and so P_1{2, 4, 7, 8} (mod 9)7?{1, 5}, furthermore
NT\(T, 6P)—1, Pm={2, 4, 7, 8} (mod 9)}<°°.
First we consider the case P =5 (mod 9). Then P_1=2(mod9), and so

(6.16) Asaln = 5(mod 9), (n, 6P) = 1) < °°,

We consider now <&rin=1(mod 9), (n, 2P)= 1).
Let m—m" be odd, mx=1 (mod 9), m2, m3, m4 be defined by the relation

(6.17) mi+1 = 2a+1T ;—29—1) (i = 1, 2, 3).
Let P=p°.

Let and E2 be the set of those m for which additionally p{m2 and p\mi
holds, respectively. From (6.16) and Lemma9 we get ~(m|m€5")<°° and
Y(M\TEEPD~<  First we prove that every odd m in 1(mod 9) belongs to
i;‘] p{(2x+1+ 1)(29—1). Indeed, assume that p\Tr,p\Tx. Then, from (6.17) we deduce
that

0 = 4 = 2"+1(29+1m2—(28—1)) —(2*—1) = - (2a+1+ |)(2a-1)(modp),

i.e. pl(2s+1+ 1)(29-1). So (6.15) holds if p|(2a+1l+ )23 ).

If p|2a—1, then (p, m2= 1 holds ifand only if (p, m)= 1, and so by Lemma 9
we get (6.15) immediately.

Let now 2a+l+ 1=0 (modp). m2=0 (modp) is equivalent with T1H1-24
(modp), and so by Lemma 9,

N 1—2°(mod p)) s @(T2AT2* 0(mod p)) < °°,
consequently

(6.18) Anln = I(mod9), (n,2)= 1, n~ 1—2a(mod p)) -c °°.
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Let us assume now that /(3s)A0 for a suitable If n=1+23lp, then
n=1(mod 9), and the condition n=\—2a(modp) is equivalent with 2X3x=
= —2“(modp), ie. with 34r+ 1=9 (modp). So, from (6.18) we get

(6.19) 6) =1 3Xfi+1 ® O(modp)) < °.
By putting ii=2/1—1, A= 1(mod 9), hence we deduce that
(6.20) 32(A1 = I(mod 9), (A, 2) =1, 3a(2/1-1)+1 ¢ 0 (modp)) <

If the congruences u=1-—2“(modp), 2 mBsr=(3a—1) (modp) are not equi-
valent, then (6.19), (6.20) together involve that ¥{mn=1(mod 9), (n, 2) = 1) <°°
that is enough. If they are equivalent, then 2-3s5(1—28=3a—1(modp), whence
by p|2a+1-I-1 we get

(6.22) 2- 3a+1 = 0 (mod p).

Assume that (6.21) holds and consider (6.19). If f(pR)”~0 holds for a suitable
power pR of p, then by substituting p=pfr, (1,6p)=1 into (6.19), we deduce
that ~(T|(T, ep)=1)<°°.

Let Q beaprime power, (Q,6)=1,/(0LN0O. Let (/i, Q=1 If (~1( modp),
then the relations 34 +1 =0 (modp), 3xQp+\=0(modp) cannot hold simul-
taneously. This gives ™ (7|(T,68)=1)<°° and leads to aim immediately.

Assume that there does not exists such a Q. Then every integer n, (n, 6)=1,
such that f(n)jio has to be composed from prime powers 0 =1(modp), ie.
n= Qi - Qs, consequently n=1(modp). To prove that !F(p\{p,6p) = 1) «»,
it is enough to show that 3a+ 10 (modp) (see (6.19)), but this is obvious from
(6.21) .

Now we treat the case /(3R=0 (BR=1,2,..). Then Y(mn=1 (mod3))<*.
If there exists an NO=—1(mod3), such that g(NO”" 0, then &(n\(n, NO=\,
n=—1(mod 3))<°°, and we are ready. In the opposite case g(n)=0 for every
ns2(mod3), and so &(n\(n, 3)=1)<°°.

Now we may assume that g(P)=0 for every odd prime power P in the residue
classes 4, 7, 8,5(mod 9). Consequently, if (n,2)=1, n=5(mod 9) and g(n)nO0,
then n contains at least four mutually coprime prime powers, Px, P2, P3, P4=
=2(mod9), suchthat g(Pj)*0. Let Pj=p]J{j=1,2,3,4). Since P{1(mod9) =5,
weget 2p=\, m=1 (mod 9))<°=. Since No=P1P2=4 (mod 9), g(PiP2)ai
O we have &{m\(m,2pipi)=1, m=5(mod 9))<°°, and so Y(T\(T,6p1p2d=
= 1"< co. We are ready. O

(F) The case /(3)~0,/(4)"0 is impossible.

Proof. Since /(3)"0, therefore (al) does not hold, so (a2) holds. Since
g(4)=0 involves (al), therefore g(4)*0. We know that g(3)=0.
Consequently #'(m|m=2, 5(mod 9))<°°. Since for m=8 (mod 9), 3|[4m+ I,
we get
= 8(mod 9), (M, 2) = 1) « #'(4m|dm = 5(mod9))+| <
< ”(n|n = 6 (mod 9)+ 1 < L

Thus #"(n|(n, 2)= 1, n=2 (mod 3))< Hence we have Y(mn=0 (mod 6))<
and this gives é(n\(n, 6)= 1)<°° if g(3y)yi0 holds for a suitable .
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Assume that g(3n=0. Then &(n\n=2 (mod 3))<°°, and so, by /(3)"0,
m(nmn=6 (mod 9))<oo. So Ti(n\n= 7 (mod 9))< By taking n=2m and n=4m,
(m, 2)=1 into the bracket after we get

2) =1, m=4,8(mod9) <
Let m=1+3 4oy, (v,6)=1 m=4 (mod9), i.e. v=I(mod3). We have *(yly=

= 1(mod 3), (v, 2)= 1)< oo, which leads to iF(n\(n, 6)=1)<°°. Hence the assertion
follows by Lemma 11 immediately. O

(G) Thecase /(3) 0,/(4)=0 isimpossible.

Proof. Now g(4)"0. Since the minimal a satisfying /(2550 is greater
than 2, therefore g(5)=0 (see (A)). /(5)=0 is true from (B).
Since g(5)= 0, therefore aF(MS\n+ D<g”(/j+ 1|5||n+ 1)+ I<scl, and so

(6.22) A(njn = 4, 9, 14,19(mod25)) -= =,

By putting n=3m, (m,3)=I, from /(3)"0 we get #'(mm=5"1{4, 9, 14, 19)
(mod25), (m, 3)=1)<°°. We have 5 1=12 (mod 25), and so

A(TI(T, 3 =1 m=—28,1 18 3(mod 25)) < °°.
Consequently
(6.23) 9(n\(n-1,3)= 1, n= -1, 9, 19, 4(mod 25)) < <&

and so for n—4m, ms 1(mod 25), (4m—, 3)= 1 the condition stated in (6.23)
holds, whence by g(4)~ 0

Am|(dm—L,3) =1, (m 2)= 1, m = I(mod25)) < °°

Let m=0+ 1 (4m—1,3)=1 is equivalent with (0, 3)=1, while (m, 2)=1
with O=even. Therefore

(6.24) F{9\2\9, 259, (3,9) = 1)< ».

If there exists a suitable R such that f(5%"0, then by choosing 9—2x-50y,
(v, 30)—1 in (6.24), we have J*(v|(v, 30)= 1)<°°, that is sufficient.

It has remained to consider the case when f(5R=0 (8=1,2,...). Then
A(njn=1(mod 5))<o0o0. Since g(2)"0, g(4)"0, by putting there n—2m, n—4m,
(m,2)=1 we deduce that 3'TLUT,2)=1, m=3, 4 (mod5))< By choosing
m=I+2*%, (v,2)=1, we get

(6.25) Av|(v,2) = 1, v=2_2a3 4} (mod 5)) <
If as2(mod4), then 2“s4 (mod 5),2 _as4 (mod 5), while for as4(mod4)
we have 2a= 1(mod5), 2-a= 1(mod 5). Consequently * (y[(y,2)=1 v={2 3}

(mod 5))<=0 holds in these cases. If we take v+ 1=2/r,/rs2 (mod 5), (/q2)=1,
then vs3(mod5), (v,2)=1, and so

Avlv = 3(mod 5), v,2) = 1) «

Hence &(n\(n, 10)= 1)<°°, and thus we can deduce easily the desired result.
If as 1(mod4) then 24=2 (mod 5), 2_as3 (mod 5); if as3(mod4), then
2“s3 (mod 5), 2~9=2 (mod 5), and so 2_s{3 4}= (1, 4} (mod 5).
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In these cases ~(n\n=0 (mod 10))<°°, and this gives the desired result, except
when g(5™)=0 (3=12..).

Assume that g(bp=0 (3=1,2,...). Then ~(n\n=4 (mod 5))<°°. Put
n—2am=4 (mod 5), (m,2)=1 We have

(6.26) m\m = 2(mod 5), (m, 2) = 1)< °° if a= I(mod 4),
(6.27) A(mlIm = 3(mod 5), (in, 2) —1)-=°0 if a= 3(mod 4).
Inthecase a=l(mod4) we put 4m—1=2 (mod 5), i.e. 77=2 (mod 5), (1,2) = 1,
and by g(4)?i0, from (6.26) we deduce that
(6.28) &(n\(n, 2) = 1, n=2(mod 5)) < °°.

In the case a=3(mod4) we put 2n—1=3 (mod5), i.e. 77=2(mod5),
and by g(2)70, from (6.26) we deduce (6.28). Collecting our results we have
Am\(n, 10)= 1)<°°, that by Lemma 11 leads to /, g£.S?.

The proof of Lemma 12 is finished. O

Lemma 13 Let /(2)"0, g(2)"0,/(3)=0. Then fgi& .

Proof. Assume in the contrary that /, g$JS?. Since /(3)=0, therefore
A(njn=4, 7 (mod 9))<°°. By putting n=2m,(m,2)—\, from g(2)*0 we deduce
that A(m\(m, 2)=1, w=2, 8(mod 9))<°°. Hence ~(n\2\\n, 7= 1, 7 (mod 9))<<=°, i.e.

(6.29) Afm\(m, 2) = 1, m= 5, 8(mod 9)) < °°.

(6.29) involves that ~(mM\2\n, n=6 (mod 9))< °°, Mw|n=0 (mod 18))<

If there exists a yé2 such that g(3y)-A0, then Y(n\(n, 6)= I)<°°, that is
sufficient. If g(3)9"0, then from the first inequality, by putting there 77=6/7,
/7=1 (mod 3), we have

(6.30) A, 2) = 1, fi= 1 (mod 3) < @

If there does not exist any prime power P= —1(mod 3) such that g(P)”~0, then
g(n)=0 for every odd n, = —1(mod3), and we are ready. If there exists such
a P, then

A0, 2P) = 1, L= —1(mod 3)) < *°

and this is enough to guarantee that g,/£.$?.

If g83)=0 for /5=1,2,..., then #"(u|«=2 (mod 3))<«, and by putting
n=2m, (m,2)=1, we deduce that ~(tn\m=I (mod3))<°°. This involves that
JR(n\(n, 6)=1)<°° which by Lemma 11 leads to f g£i?. O

Lemma 14. Assume that /(2)"0, g(2 L0, g(4)=0. Then /, gEEP.

Proof. Assume that/, g$ £P. From g(4)=0 we get ~(n\n”3 (mod 8))<°°.
Since g(3)"0, therefore ~(n|n =1 (mod 8), (n, 3)= 1)<°°. Hence @(n\(—1,3)=1,
77=2 (mod 8))< °°, whence by g(2)*0 we deduce that Y(T\2T—13)=1,
7u=1(mod 4))< By putting m=1+2yt (y*2), we deduce that

3, PRt =1 ()= )< 0
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Assume first that /(2y)?+0 for a suitable yS2. Then, from the last inequality
we get
AF|(27+2f+1,3)= 1, (t,2) = 1) < °°

whence by /(3)70, after substituting t= 3T, (t,6)=1 we get 6)=1)<°°
which leads to /, gEif.

Let us assume finally that /(2*)=0 (a=2, 3, ...). Then ~(njn=1 (mod 4))<°°.
Ifg(NQ?+0 for a suitable Ao= —L1(mod 4), then $(n\n= —1 (mod 4), (n, NO= 1)<
<°° and so “u|(n, 2A10= 1)< =, while in the case g(n)~0 for all elements
of n= —1(mod 4), we get M{n\(n, 2)=1)<°° immediately.

By this the proof has been finished. O

Lemma 15. If/(2)"0, g(2)70, g(4)"0, /(4)=0, then fg£2.
Proof. We assume that /, g4 if. Now (4.4) holds, i.e.

(6.31) 2 Ticgm)yw)i =25 C g(%f?Z)

n=3(mod8) ™
Furthermore, from /(4)=0 we have
(6.32) A(n|n = 5(mod 8)) < °°.

Let us assume first that g(nQ”0 holds for a suitable 70=7 (mods). Then,
from (6.32) we get
(6.33) Amln = 3(mod 8), (n, ng) = 1) < °°,
whence
IF(t\t = I(mod 4), (2i+1,n0 =< *“.

After substituting 1+ 1=2£, (c¢,2)=1, this leads to
»Ne .2)=1, 4£—1,n0= 1)<

We finish the proof by applying Lemma 3.

Assume now that g(n)=0 holds for every /r=7(mods8). Consequently
J?72=6 (mod 8))<°°, and by /(2) N0 we get " (njpe3(mod4))<°°. By
Lemma 13 we may assume that /(3)70, and so from the last inequality we get
J*(njn=1 (mod 4), (n, 3)=1)-="°° So *(n\(n, 6)—)<°°, we are ready.

By this all the possible cases have been discussed. Theorem 4 is proved.
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SIMPLE RINGS WHOSE LOWER RADICALS ARE
ATOMS*

B. J. GARDNER (Hobart)

Introduction

A 1972 paper of Snider [14] initiated the study in detail of lattices of radicals
of associative rings. The subject of radical lattices has subsequently attracted a fair
amount of attention in various contexts: much work has been done with rings and
algebras (see, e.g. [7], [13], and their bibliographies) and, independently, with modules
(e.0. [B], [6], [25]). Almost all of this work has, however, been concerned with here-
ditary radicals, [6] being a notable exception.

Snider [14] proved that in the lattice of hereditary radicals of associative rings,
the lower radical L(S) defined by every simple ring S is an atom. Not much is
known about atoms in the lattice of all radicals (of associative rings), not even
about those simple rings S for which L(S) is an atom. Problem 7 of the recent
book of Andrunakievich and Ryabukhin [3] asks for a description of such simple
rings. Certainly not every simple ring has such a lower radical: the zeroring Z{p)°
on a cyclic group of prime order p defines a lower radical class which contains
the zeroring Z(p°°)Q while the latter, having no maximal ideals, defines a properly
smaller lower radical class.

Our approach to the problem is to seek “Z(p”)-like” rings which will similarly
disqualify other simple rings. The existence of such rings is closely connected with
the existence of non-trivial ring extensions of a simple ring by itself.

It has been noted by Puczylowski [12] that L(S) is an atom whenever S is
simple with identity. The latter property is equivalentto S being a direct summand
whenever it is an ideal. We show that L(S) is an atom when S (simple) satisfies
the following, weaker condition:

*) SASR&IR/S Si S =>3/cJ? such that R = S®I.

We show also that L(S) being an atom is equivalent to S satisfying a condition
which appears to be (and possibly is) a good deal weaker that (*). It remains unknown
whether S has to satisfy (*) if L(S) is an atom. This being so, there is some interest
in the status of this implication in other settings. We show that the implication is
vacuously true — L(S) is never an atom; S never satisfies (*) — in the class of
all (not necessarily associative) rings and that it is sometimes false in the class of
modules over a ring.

* These results were obtained while the author was visiting the University of California, Berke-
ley, as part of a University of Tasmania Outside Studies Programme and with the partial support ofa
Fulbright Senior Scholar Award.
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1. Associative rings

All rings considered in this section are associative.

Theorem 1.1. Let S be a simple ring. Consider thefollowing conditions:
(i) S satisfies (*).

(i) L(S) is an atom in the lattice of all radicals.

(in) There isaring R with a series

0=/0< /1< /2<...</,</, +1<....
such that In+ill,,=S for each n, R—1J/,, and R has no ideals but the /,,.
We have the following implications: (i)=>(ii) =~ (iii).

Proof. (i)=>(ii). Simple zerorings do not satisfy (*), so it can be assumed that
S2=S. Let AAO be aring in L(S). Since the lower radical construction over
{A} terminates in two steps, we may assume that SeA. We consider first the
case where S is an essential ideal. Suppose S AA. Then A/S is a non-zero ring
in L(S) so as above, A/S has an ideal 1/S—S. Since S satisfies (*), we have
| —S®J for some Jel with Js*S. But then, as J2—J, we have JeA and
/05=0, which violates the assumption that S is essential. Thus A=S if S is
essential. If S is not essential, let M e A be maximal with respect to having zero
intersection with S. Then (S+M)/M is essential in A/M (see [1] or [4]) and
(S+M)/MAS/STIMAS. Thus, as above, A/M"S. In any case, A has S as
a homomorphic image, so L(S)QL(A)QL(S). This proves that L(S) isan atom.

(iii)= (ii). Let A be as described. Clearly REL(S); clearly also, R has
no maximal ideals, so S$ L(R) and thus L(R) ~ L(S). O

Two comments should be made about condition (iii) of Theorem 1.1

Firstly, if R is as described, then the exact sequences

0-f~S-h-1JfsS—0, 0—/2—/3—/3/2 £ —0,

etc. are non-split. Thus (iii) is (ostensibly) a stronger version of ~(*). Moreover,
the existence of non-split exact sequences

0-S-Ti- S-O, 0-*Tr- I2- S-+0, ...

subject to the requirement that there be suitably compatible isomorphisms Tn+y/S ar
isT, (cf. [10], Lemma 7) implies the existence of a ring R satisfying (iii), viz.
R=UT,, (or Auwl,).

The second point to note is that, when S is simple and idempotent, L(S)
consists of all rings A having a series

0=/0gngl2g9..9/agi.+1g ...g/,, = a
where lae A for each a,IX+/IX*S for each a and IR~ Igpf when R is a limit
<€

ordinal. (See [2], Proposition 2.2 or [16].) Thus simple rings whose lower radicals
are atoms can be described in terms of the possible order types of composition series
of members of their lower radical classes.

It remains unclear whether (*) is equivalent to —iii). In fact not too much is
known about (*) for simple rings.
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Let AT be a field, F(K) the ring of linear transformations of finite rank of
an KDdimensional JT-vector space. Leavitt [8] has shown that F(K) does
not satisfy (*). By an extension of the argument used in the proof of this, Leavitt
and van Leeuwen [10] have shown that, in fact, F(K) satisfies (iii). Thus 7.(7'(A))
is not an atom.

Of course the zerorings Z(pf also fail to satisfy (*) and correspondingly the
zerorings Z(pe)0 satisfy (iii).

Non-unital examples of simple rings satisfying (*) have been obtained by Leavitt
[9] and Leavitt and van Leeuwen [11].

Some time after the submission of this paper the author was informed that the
resultls oflihis section had, in effect, been obtained also by K. I. Beidar and by Halina
Korolczuk.

2. Non-associative rings

In this section we shall work in the class of all (not necessarily associative)
rings. Radical classes here also form a complete lattice, the only complication being

that we must define
V @xX=L(\J A3

(where Z( ) is the lower radical) as semi-simple classes are not well-behaved with
respect to intersections ([2], Proposition 1.2a0. It turns out that we can always
construct a “Z(p“)-like” ring for a simple ring.

Theorem 2.2. Let S be asimple ring. Then L(S) is not an atom in the lattice
ofall radicals.

Proof. If S=Z(p)°, we can argue as in the associative case; thus we may
assume that S2=S.

For n—1,2,..., let A, be the ring which is additively the direct sum of n
copies of S and whose multiplication is given by

(9az, a,, )(bob2 9 br)=

= - 2 2 &ibj9 ***9An-\bn—i~t~ CibnA- bn, b.).
(ISQan |§|Sj Xisn 25isj n-\bn—i-t~Qn-ibn+-Qnbn, Qnb,,)

Then for m<n, R,, contains a copy of Rm in its first m components — we shall
call this copy Rm—and AnxiA,, forall m~n. Also Ri—S.

Let 7 be anon-zero ideal of R,,. Suppose | contains an element (ar, a2, mma)
with a170. Then for every bES, we have

(Gjh, 0,0, ..., 0) = (al5 a2, ..., a,)(, 0,0, ..., 0)6/
(bax, 0,0, ..., 0)= (b, 0,0, .., 0)(ax a2, ..., a,)&l.

and

Since S has zero two-sided annihilator, this means that /T A*O, so that 73 A|.
If, on the other hand, 7 contains an element (ax a2, ..., a,) with % =...=am x=
=07am, then 7 contains any element

©, ...,0,b,0,...,0)(ax, ..., an = (bam, ...),
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as well as any
(alt a2, ..., a,)(0, -b, b, o0, 0)

= (al0+ (al+ a2)0 + eee+ (ai+ + am-i)(—b)+ (6i+ e+ < 0" + 0+ .. +0,...) —

= (amb, ...).

Since S has zero annihilator, we see that | must contain an element with non-zero
first component, so as above,
The natural projection of Rn onto the last kK components, for any k, produces
an exact sequence.
0 “R,-k“mRn+*Rk 0.

Moreover, if i*rnSn, the induced diagram

Rm
| \

commutes. Using this, we can show by induction that the only ideals of R,, are
0, Rx,R2, ..., Rn. Let f?=hm J?,=the ring on the direct sum of No copies of
S constructed using the obvious generalization of our multiplication. Then R has
a series

where Rn<iR and Rn+H/Rn*S for each n and Rm=til<J(oR,,. It follows that R is
in L(S).
Let Then J*R,, for some n, so JfJRn=Rm for some T<wu.

Now for k>n, we have JC\RK"JC\R n=R,n. If this inclusion were ever proper, we
should have JC\Rk7iRni+l, whence Rm=Jf}R,,"Rm+1 — a contradiction. It follows
that J=Rm. In particular, J is not maximal, so L(R) contains no simple ring.
Thus L(R) g L(S) and L(S) is not an atom. O

Thus (in a sense trivially) (*) is equivalent to L(S) being an atom in the lattice
of radicals for the universal class of all rings.

3. A remark on modules

By the same argument (actually a slightly simpler one) as was used to prove
Theorem 1.1, we can show that if A is a simple (unital) module over a ring R,
and if S satisfies (*), then L(S) is an atom in the lattice of all radicals of unital
i?-modules. The following example shows that the converse need not be true.

Example 3.1. Let p be a prime. Then the only simple module over the ring
Zpr2 of integers mod p2 is Z(p), and this module does not satisfy (*). However,
L(Z(p))=Mod {Zpi) is the only non-zero radical class and hence an atom. (Any-
body who is unhappy with this example can modify it by replacing Zp by Zp®R
for any unital ring R.) The attempt to build a “Z(p°°)-like” module here (cf.
Theorem 1.1) fails: any non-split element of ExtZXZ(p), Z(p)) has the form

0 “wZ (p) “wZ (p) -»Z (p) —0
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while any exact sequence
0-2Z(p3 *M *Z(p) - 0
with Md Mod (Z,,i) splits over Z, and hence over Zp».
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DIVERGENCE OF LAGRANGE INTERPOLATION
ON A SET OF SECOND CATEGORY

P. VERTESI (Budapest)

1. Introduction

11 Let X be a triangular matrix of interpolation in [—1, 1], i.e. X ={xkn),
k=\,2, 1w nEN (=the set of natural numbers) with
(1.2) -1 = x/Hln < Xn-i,,, *n< xIn=£1=x0n, nEN.

Further let for ,C (=/is continuous on [—1, 1])

(1.2 Ln(f x) =Ln(f X, x) = k2_1f(.lel<n{x,x),
0= 0 G Q0 = Q&0 (xX]-

Let (o(ty*a0 be a modulus of continuity on [0,2] (see [1], 3.2). Finally, let

Clecom = {/; aom(f t) - Of (com())}, C*(cod = {/; om(f t) = of (om(t))},

where an(f, t) is the m-th modulus of smoothness of /, an(t)=co(tn).
As it was proved in [2] by P. Erdds and me (see further [12], 3.3),for any X there
exists an FEC such thatfor the Lagrange interpolatory polynomials Ln

(1.3) Em Ln(F, X,j9|=- on 5c[-I, ]

where 161=2 and S is ofsecond category. That means supposing merely continuity
we obtain a rather strong divergence theorem. But if we tried to characterize co(F, t)
or to give lower estimations for \L,,(F, X, x) —F(x)| using the Lebesgue function

(%) = XX, X) = Z I\i k(X X)\

and co(F, t), we should encounter practically insolvable difficulties.

With another word if we want to involve the modulus of continuity and the
Lebesgue function, generally, we are not able to prove results involving measure,
at least not at present (compare 2 .2).

1.2 To be more precise we quote some recent results of this type. In his paper
[10] O. Kis proved as follows.

If _
(14) im Y o

t=+0 r
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thenfor anyfixed. X there existsan /EC (nT) suchthat

BS M W W L alL

Here ||.|| is the maximum norm on [—L, 1], 2n— n(X) —\WV.n(x)\\ (Lebesgue constant)
and
(!-5) d,= _min  (xk-xkH).

Recently W. Dickmeis and P. Nessel [4] proved thatfor any coft) there exists
an /i€C(a) such that

(1.6) W ILJf 1= «0o

on a dense set of second category in [—1, 1]. (X is given.) Questions of different
type can be considered by investigating the expression co(i)|In /.

As it is wellknown, if IigO] w(|1n f|=0, then lim WL, (fT,x)—f(x)\=0
foranyfd C (where, as usual T = (cos 2! n},k =1,2, ..., n; hEN, isthe Chebyshev

matrix), i.e. to obtain divergence type results for an arbitrary matrix X we have to
suppose, say, that

7 limco(7)[Int\ > 0.
=0

The case (

(1.8) limca0 [Int\ = «

was investigated by A. A. Privalov [3], [6]. He stated that if X is given and
Itigg co(i) In 1 then there exists an fEC*(yo) such that n_I*i_(r)y \Ln(f X, x)|= =
on a dense set of second category in [—1, 1]. Unfortunately, there is a mistake
in his proof.2

1Actually, he supposed the weaker condition
- S _
(1.8%) {|=r8£o(/)|ln t\

but he used the condition (1.8). | was not able to carry out the proof with (1.8%).
2Namely, in [6], in the proof of Lemma 6, he states that if A"c[—1, 1] and

max min \x-xkn\> 2 InInwn/a supposing n"nlt
-1SxS1 ISk”n

then there exists an m06[-1,1] and a subsequence {«J suchthat

min |x0—xkn\£ 2InInnjn if n=nun2 ....
ISk&n

But this is not the case. Indeed, consider the matrix xIn=1, x2n=1-6 Ininn/n, xk,,=x2,,—
—(k-2)(2—6 Inln u/n)/(«-2), Ar=3,4,..., n; n=3, 4....... (Obviously x0" I because 1 is a node
for each n. On the other hand, if x0€[ 11) then x2, =-x0 if nwnr (where nxis the first integer for
which 6 Inln «i/nx-=1-—x0). Butthen min \xa-x k,\s (I —3InIn n/n)/(n—2)-<1/(«-2)<2 InIn n/n if

1SkSn
nwn2)
The above incorrect statement was used, for example, in his paper [16], too.
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1.3 The aim of this paper is threefold. First, we want to answer a question
raised by S. B. Steckin at a conference in Gdansk, 1979 and later at a conference
in Varna, 1981: If co(i)|Ini|=1, can we prove or not for a suitable function
fEC(a>) a corresponding divergence theorem on a set of second category? Secondly
I shall give a correct proof of the above statement of A. A. Privalov, a proof, which,
because of the mentioned mistake, essentially differs from the original one. Finally
I prove and quote some further theorems.

2. Results

2.2 First we state the next

Theorem 2.1. Let X be given.
a) |f we suppose (1.7) then there exists an such that

22 tHJoo\Ln{f’ X, x)-ffx)\v A 1
on a dense set ofsecond category in [—1, 1].

b) If we suppose (1.8) thenfor an f 2(zC*(co)
(2.2) N |T,,(/2, X, x)| = °°

on a dense set ofsecond category in [—, 1].
Sometimes the next result is sharper.
Theorem 2.2. | ffor a given X we have (1.7), thenfor a certain f 3EC(co)

(2.3) MH M /3, X, x)-f3(X)\ s j

on a dense set ofsecond category in [—1, 1]. Here p,,=n3+t where e>0 is arbitrarily
small.

In many cases we can apply the following result.
Corollary 2.3. Iffor agiven X, ¢c>0 and TO we have
(2.9) Oi(M[InT| S cco()|ini] 0O<i&d7sro

then with a certain fAC(pai)
(2.5) Mr Ln{fAX,x)-ffx)\_ o]

on a dense set of second category in [—1, 1].

(From now on c, c0,cls... are arbitrary absolute positive constants.)
Indeed, by p,,>n and (2.4) we obtain Corollary 2.3 by the previous theorem.
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2.2. It is worthwhile remarking that for the matrix T we can prove a stronger
result:

I f we have (2.4) then with a certain ffC(co)

(2.8) Em bnt - o x\ s 1 for every xs6[-I, 1]

(see P. Veértesi [15], Theorem 1.4).

3. Proofs

3.1 The main ideas are as follows. We use a general divergence theorem
(Part 3.2) which requires a rather deep analysis of the Lebesgue function restricted
for a subinterval (Part 3.4). By this divergence theorem, in Theorems 1 and 2 first
we construct a countable dense set. (Namely, for every subinterval [a, b] we choose
a proper point x0 of the interval considered.) To obtain x0 we consider two types
of intervals (Parts 3.5 and 3.6). To obtain the set of second category we use a gene-
ralization of a nice idea of Orlicz (Part 3.8).

3.2. Proof of Theorem 2.2. We intend to use the following statement which
is a special case of a recent work of W. Dickmeis and R. J. Nessel [4], Theorems

1and 2.
Let B be a Banach space, Y a normed linear space (with norms ||.||B, ||.]|r
respectively), and let [B, Y] be the space of bounded linear operators from B into Y.

Theorem 3.1 ([4]). Let {T,jnJéKa[C, Y] and let {&J>0}n>eN satisfy
lim 6nj=0 for each je N. Suppose that for each n,jdT$ there exists a function

gnJ such thatfor afixed m

gifte,
(3.1) " llafjllc —c3»

1g A s CATL
If
(3.2 L WTnlgnl\Ya c5> 0

then for am(t) satisfying (1.4) one can find an feC(oon), independent of jeN,
for which

(3.3 nr I(?V %_ s 1 for each jEN.
We allow cs=°° when one canfind an f(zC*(com) for which
(3.4) Em 1 = °° for each jeN.

Remark. Compare the conditions and the theorem with P. Vértesi [5].
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3.3. To apply thistheorem firstwe prove—roughly speaking—thatin an arbitrary
interval [a h]c[—, 1] there exists a point xCE[a,b\ and a “good” function
g,,X) suchthat 2 gn(xknhn(xo)=c Inn for infinitely many n.

. (e .
First we need some definitions. Let Jkn=[xkH,,, xk\, Isk”n—I. For the
interval [a, fclc[—L1, 4 let sn=sn{a,b)—\JJkn where Jiknc [a b] and \Jki*

Sg,, = «"16 Sn=Sn(a, b)=(a, b)\s,,.
3.4. Now we prove an interesting statement for the “restricted Lebesgue
function” yfiX, sn,x)=xn(sn, x) (34—3.4.3).

Lemma 3.2. Let [a h]c[—1,1] be afixed interval. Then for £>0 there exist
a constant g=q(e)*~0 and sets H,,czs,,(a, b), \HA\*(b—a)e, suchthat

(35) X,(5,,,X)= 2 1™ >>?(«)Inn if x£s,\H,, and né n0(s).3

Here f]=coc3 [where cO—(6 *8 #144 +56) 1]; on the other hand nQ€) depends on the
length of [a, b], too.

The next proofis analogous to P. Erdés, P. Vértesi [13] Part 3.3—3.6.1.
We introduce the following notations.

N@) = Na(?) = 1+ ?27]. xk-q\jk] @ = k" n—l),
where Os”S1/2. Let zk=zk{q) be defined by
(3.6) \co,, @)\ = Jnin, Im,(x), k=0,1,..,n,

finally let
\fi, «dl = max (xm -xt|, |[og*—m,|) (0 Si, k& ri).

In [2], Lemma 4.2 we proved
Lemma 3.3. If lak, r<n thenfor arbitrary 0-= 1/2
1) D , W@\ [ :
3.7 I if x£Jr(q).
@.7) PR T o oo §t o (@)

We shall also use Lemma 3.3 from [13] which can be stated as follows (see
further Vértesi [14], Lemma 3.3).

Lemma 3.4. Let lk=[ak,b2 Iskstii, r=2, beany t intervals in [a,b] with
14M41=0 (kY), \IK=Q (I~k"t), I(2_1\|k\=h— Supposing that for a certain integer
R~2 we have p”2Rg, there exists an index s, l&i~r, such that

3.8 <?=y 14 - \%
(38) T TR
4 will be called accumulation interval of {4 JUi-

3The meaning of x,,(X, A, x) where A ¢ [ —1,1] is analogous to (3.5).
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(Here and later mutatis mutandis we apply the notations of 3.4 for arbitrary
intervals.)

Note that we do not require bk"a k+L1.

From now on we suppose sn0 ,n=\,2, — (If sn=0, Lemma 3.2 is trivial.)

34.1. Suppose  x£Jk(g)czsn (1*k~n—I). Whenever yn(sn,x)”*qg(e) Inn
{A will be determined later), the point i, the intervals Jkn and Jki(g), finally the
index Kk will be called exceptional. Let ¢=8/12.

We shall prove

(3.9) Z'141=Dbn--£ (b~a) (N= NO= «o(«)-

Here and later the dash indicates that the summation is extended only over the

exceptional indices k.
To prove (3.9) it is enough to consider those indices {nl}j*1= Nx for which

pnite(b-a)l 10, say.
We can apply Lemma 3.4 for the exceptional Jkn's with Q=Q, and
2

A=[logn¥7+ 1 if nENx and n”~nQge) (shortly nEN2.

Denote by M 1—MIn the accumulation interval. Dropping Mx, we apply
Lemma 3.4 again for the remaining exceptional intervals with p—pn—\MxX>p,,/2
and the above g and R, supposing p,,"g2R+l whenever n£N2. We denote
the accumulation interval by M 2. Atthe z-thstep (27l ) we drop Mx, M2, ...,
...jil/;-1 and apply Lemma 3.4 for the remaining exceptional intervals with

p:pn—_lz:lw \ using the same g and R.
HerJe_ ¢n is the first index for which

but NEN2.

=1 -4 i=i -4

If we denote by M#n+l, Mdr+2... Mim the remaining (i.e. not accumulation)
exceptional intervals (by \MA™g,,, (e(b—a)/20)nl/e<</<,<0), by (3.8) we can
write

g? WK _  “ninn . :
(3.10) ker WM, M K\ = 56(b-a) if 1Srs i (nENJ.
3.4.2. To go further proving (3.9) let t]—clad6, uinEMin(g) (1Sz'S<p,,, n"N2

be exceptional points, where cx will be determined later.
If for a fixed nEN2 there exists t,I*"t*"cpn, suchthat

cieZminn

(3.11) AA S T

by f]Inn”x,, (s,, utn) we obtain (3.9) for this n. We shall prove (3.11) for arbitrary
nEN2. Indeed, let us suppose that for a certain m£EN2

ejunin m
(3.12) Xm(sm, O d E—a when umdMm(qg), 1Srg”.
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By (3.12) we obtain

(pm Inm

(3.13) 2 WM rm\Xm(.Sm, Km) b-a where  m<zN2.

On the other hand, by (3.7), for arbitrary nEN2

W\ 2 4« \MNA 2" INLLN+H\1 kM \] A

2 %, coz) \MT\MK
q =
2 n <o) WM Mk G ZF L,

s0, by (3.10) and (3.11) we have

on o Lo o oco(z) \MAMK
r:2| \K\Xﬂ(sn,K) - r:21 \Nlr\xk%€s’] a x( ,2:1 =1 «(zj M,, Mkl

vy iim@r 4 X \MN\MK\
22 AAU co@zk coz) \Mr,M K\

A y IMIly IMt] g2 fo, falnn = Cle2*lnn

- 4 A 'MAA\M ;)M K\" 4 2 56(6-fl) b-a
if d=(8 *144+56)“1 This contradicts (3.13), i.e. (3.11) is valid for arbitrary nEN2,
which proves (3.9).

3.4.3. The exceptional intervals should belong to H,,. Moreover, by definition
if Jknc.sn and if it is not exceptional, then for any x£Jk(q) (3.5) holds.
The sets JkhJ k(g) of aggregate measure c2 should also belong to H,,

Obviously c2*2q 2 JIn=2q(b-a) — -, So using this, and (3.9), we can

Jcfab] ’

\Hn\ = un+c2=-|(b-a)+-|-(b-a) < e(b-a)

write

which completes the proof of Lemma 3.2.
3.5. Let us consider an arbitrary interval Ak=[a, b]c[ —1, 1] for which

(3.14) b—a = |s,(a, b)| + o(l), n€EN.
By (3.14) and Lemma 3.2, if e=I/10, say, Xni(4i)d=efmax XnSAIt x)=2c¢7Innk
if nr is large enough.4

4 The meaning of xAA) for an arbitrary interval 4 c [-1, 1] is analogous.
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If xni("i)=«i (where y> 1 is any fixed number) let AicA 1 be a closed interval
for which ZAH(n:)"IEaA)(lZM(x)éM( if xEA.2

If /,,/zb)-=/?£, consider the interval
(3.15) 2X= fo, = |mins,1(3)+ , maxs~dj- "~ g" ]

If w was large enough then 2[ii1|s|d 1, say, i.e. again by (3.14) and Lemma 3.2,
X4 )"2c7In nk; further there are intervals /A C i~ di) in [a aj and in [bit b\
Let d2cdj. be a closed interval for which

(3.16) Xi(Ax, x) ~ c7lnnj if xE£AT.

Continuing this process we find a sequence {d,} of embedded closed intervals and
a sequence of indices {nj such that if

(3.17) Xt(Ai) —nj
then
(3.18) 23,((x) s %2 l(x) Al if xEAIHL
Otherwise, i.e. if
(3.19) _ _ nj > Xu(d/)
we have for Al=[4i, Sj (see (3.15))
(3.20) XA, x) Wc7inn, if x€d|+L
Moreover there are intervals Jkn. from s,,.(A) in [at,a] and [Bt, h( (iEN; ak=a,
b\=b).
For further purposes we can suppose
(3.21) |d,[nfas 1, €N, @> 0 is fixed.

351 Let -0£E N 0- If we have (3.17) and (3.18) for certain bid = Mx
*€N
and {d} then let for any fixed nEM x
sign kn(*0) if x =xkn, I"k”"n,

gn(x) = gjxIn) if ~.SrSI,
an(%,,,,) if 1=mx = xnn;
between interpolation points [xfcH,,,, xk] let g,,(x) be the Hermite interpolatory
polynomials of degree S2m+1 satisfying g@)(xk,) —giJ)(xt+h,) =0 @ ~j S m,
1MkAn—1). Let

(3.22)

Obviously |g,,(;c)|*l and £<"°£C. To obtain |g‘m)(;c)|Sced'm we need
as follows (see P. Erdds and P. Turan, [8], §6).
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[17*,cd = [a,/?]c[-1,I] then

M

(3.23) QAW min K T

JKCA

By (3.23) d,,=dn[—!, 1])"(«2n)_1=%, from where it is easy to get |g<m)(x)|*c8f,m
(see e.g. [10]). Moreover, by definition and (3.18)

(3.29) L,,(gn,x0 = k2:|gn(.x()Ikn(x() = I%:lM*o)I = xn(xQ =0.5ny.

3.5.2. jVow let us suppose (3.19) and (3.20) for certain n,€M2 and AL Let
for any fixed i

n251 a N = fsign/*.(io) if * = g

1" 30 if x =xkni$Ai or x£xIn. or xs=
Between the nodes let g,t be as above.

Let
(3-26) SK =

Then using that there are certain nodes xkp in the intervals [ahat) and (b,, bt],
by (3.19), (3.21) and (3.23)

(3.27) dni(Ad S dni(d}) > 2nfly ~ = Snt.

By (3.25) and (3.20)

(3.28) Lni(gnt,xQ = 2 \hn,(xO\ = c7lnn,,
xknfi 2i

moreover, by definition it is easy to see that |g,,J*l, g'f'AC and |g‘m(x)|*cea”m

3.6. Now we are going to settle the case when instead of (3.14) we have thatfor
infinitely many n
(3.29) A(a, h)|"ce>0, n=nk, n2, ....

If for a certain n=nh [a, b] is free of the nodes {xin}2+], let A,,—a, b). Let x:
and xtn be the smallest and biggest nodes in [a b], respectively (n=nr, w2, ...).
By definition (a, xs)aSn and (xmb)c:Sn. If 0*xsn—a”e,,, we omit (a, xs,)
from S,,. The same should be done with the interval (xtn, b). Let us denote by

A, the remaining part of S,. Then A,,= (J In where for any fixed j

a) there exists a K suchthat IJn—(xI{+|t,,,xm) or
b) hn=(a,x3y, or Ijn=(xtnb); or
c) A,,=(a, b);
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moreover one can suppose that V1,\wbc9(n=n1, n2, ...). By construction if 1Jnc:An,
then \Ij,\>Qn so if 1dn=(@@.Jn, BJ) then for the sets

(3.30) An= U [«>+ BjnY 3n, Rjn- Ri\ a]n)

we have \A,\"c9, Ancz[a, b\, moreover if xdA,,

(3.31) min |x-xj >qg3 (h=nln2..).

O "k~n-1

First we remark that there exists a set Bc[a, b] of measure ”~c9 such that
for any x£B one canfind asubsequence {p;}c {«}for which xEA,, whenever n=pl,p2, ....

Indeed, let Bt= (JA, and B= f] Bt. Obviously B1zrB2... and |4,|*c9, /€N,

from where |£|e09 On the other hand if XxEB, then x"Bt (iEN) from where
xBA,,k for infinitely many Kk as it was stated.

3,1.6. So let xCEB be a fixed point. Then xO0€A,, (n=pr,p2 ..), i.e. by
(3.30) and (3.31)
(3.32) Bng |x0— Xj > ,— if n=pip2..

In [7], pp. 116—117, S. Bernstein proved that for the polynomial
2v2-(a24-R32

Pisfr) = cos2sarccos m B> a)
of degree 4s, IAOOI—1 if yE[—8, —a]U[a,/?] and

SRR (C: ol

Moreover, it is easy to see that for the roots of Pis(y) we have

R<Y < Y2 y-x -a<a<yxs<ys 1<..-=yJ</?,
(3.34) Vi~ [F-y Cos—ZIA(fS_I L+ 2HRe ® =12 28

Let a=eJ6, R=2 and sJ U(}f'l'l'l|).j' We have with y=x—x0
P?s+1(y) = PZH(x~x09" G(X) = 2 G{xKIkn(X, x).

The polynomial G(x) of degree 4s(m+1) has the following properties:

a) |G(X)|= [HPas(x—x0)F+1= 1 whenever xE£[-B+x0, -a+ x 0]U[a+ x0,j8+ Xq],
especially If x=xk, k=1,2,..., n (n=px,p2, ...; see (3.32));

b) Gw(yti+xo=0 if i=o,l,....m and j=1,2,...,2s
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Now let
_iG™  if *€[-ji+*0, Y-+ oMy~M+Xo, B+X(
8n X ~ fa if xel[y-z+x0, ys+*0]-
-XJ){I )/72: X0 1 _I Tls;/‘u XJX 1_

1 1 1
f0-2% x0a i0 £+a i042« 0+i0

Evidently, one can find a j=j(ri), Os/~n, such that xo6 (X-+lj,, xJ). 5 First
we state that
*0+a mEYb+X0 #=x0+20c< Xj S 1 if n=px, p2...

and Pi is large enough which we suppose. Indeed, by (3.34) and (3.32)

(3.35) Ss= [a2+ 2)XKAM-cos ] <2a<xry—xO.

Similarly —Isx”+1-=x0—2a<y_25+x0<x0—a. By these, a) and b) we get
9,,(X)|=SI and gnxk=G(xk), I"k"n, i.e.

L,,(g,,,x0) = él an(xk)1k(x0Q =k—21 G(xKIk(xQ = G(x0 = /7s+1(0).
By definition it is easy to see that |gin)(*)|=0 if *€[Y-2*+*0> J1+"]> moreover
<™ = |G(M(x) | clon2m whenever xi[-R + x 0,y A 2s+x0 U [y2s+x0, B +x0] (Mar-
kov theorem) i.e. we have (3.1) for gn(n=pk, p2, =8 with S,,—n~2

3.7. Using the above considerations for every interval [Aj,Bj\cz[—1,1]
with rational Aj and Bj (j =1,2,...) we can state by Theorem 3.1 as follows.

If oo(t) satisfies (1.4) then there exists an /EC(cum) for which
(3.36) ILJIXxfi-fixj)] sI f n€P ={b}-i; jE€N.

Here {Xj}<N is a dense set in [—L,1], moreoverfor nZ.Pj (jZ N)

mlA (T we have (3.14), (317) and (3.18),
1 .
BT=+ onpiysy if we have (3.14), (319) and (3.20),
A ;o we have (3.29),

K{xj) if we have (3.14), 317) and (3.18),

K] - cInn if we have (3.14), (319 and (3.20),
PE+1(0) if we have (3.29)

for the corresponding interval [Aj, Bj] (J—1,2, ...).
5This interval is not the empty set.
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Indeed, we can consider the functionals Tnif=[Ln(f, Xj)—f(xj)]RB,,j for 4C.
(By the previous notations, if [a,b\=[AJtBj], then nn = nt, which is actually
n&Aj, Bj); or Snjhd =5,,.(=Sn(Aj Bj)) (if we have (3.14), say).)

Clearly Tnjé[C, Y) where Y=(— T h e requirements (3.1) and (3.2)
for the corresponding functions gnj can be found at 3.5.1, 3.5.2 and 3.6.1 re-
spectively, rI]EBJ A,,(Jj:.)=°° and rl]ga PZ+1(0)= °° can be verified by (3.24) and (3.33),
respectively, from where it 1S easy go obtain (3.2).

3.7.1 Let us remark that until now we have used neither condition (1.7) nor
condition (1.8).

3.8. To go further we quote the following
Lemma 3.5. Let A denote a topological space of second category and D a A

a dense subset. Let {h},eN be a sequence of continuous functions on A such that
for each tED

(3.37) FILm h,t) S Cn> 0.
Then the set
(3.38) S = {It£A; nl_i_rg) h,(f) S c.}

DaScA, isdense andofsecond category in A. We allow the case cn=°°.

For the proof if cu=°° or O<cu<°®° see W. Orlicz [11] and W. Dickmeis,
R. J. Nessel [4], respectively.

3.8.1. If we want to use this lemma for the left hand side of (3.36) (as hn) we
have to choose another denominator to ensure the continuity. For this aim by the nota-
tions of 3.7 we prove:

If m—Il and we have (1.7) thenfor anyfixed j (j=1, 2, ...)

(3.39) co(SnJ)AnJ s chm(ﬁln-i/ Inpn if n= nlUnj2 ... j = 1,2,
where p,,—n3+c, £>0 is arbitrarily small, njr is large enough.
1 Indeed, if we have (3.14), (3.17) and (3.18), with the corresponding indices
n=nX (/—L,2, ...), by (1.7) and 3.7
le a. 1 KX) _ K(Xj) D
" (np)Ki-  *nj)In x , - c32Inn+InA, ~ P-
In——
8¢

To estimate we use the next estimation which was essentially proved by
I. P. Natanson [9] (see I/IX/83).

Let [a, /?]c:;[—L1,1]. If Pn(x) isapolynomial ofdegree *n and @%\P,,(x)\" 1
then

(3.40) bl bl
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Indeed, if we consider the polynomial

e,(,)=P,[Szrx2£4]
then [on(MI—L if «€[—L, 1], i.e. by [9], 1/(63) |6,,(n)|*[IM+ )m2—]n whenever
m=-1. Let /?<x”I; say. Then n=(2x—a—N)({/?—a)-1>1, ie [P,X)|=

—16n(L)| Y lR—I]"<@u)" = MXA  a N jA(IT a) &S WS statec”
By (3.40) and (3.21) we can write with a certain s, 1gj~n, as follows.

= »llU < n(8ni)nmax |lsn(x)| S «(Bn"™)"TaxA,,(x).

So by (3.18), for the denominator of P
2 Inn+In A,S 31In n+2(pn In n+ In 2n(xj).
If 2cpnInnésin /,,(X)) we have

CMny

5minn

whenever Jfln is large enough which we can suppose. On the other hand when
2eninn<iIn  (xj),

P> Iny,> 10 In/i,,

m,
P — C13 3|n)(?1<gg(1) Y'-nixj) In n,

(whenever nly is large enough).
2. If we have (3.14), (3.19) and (3.20), we can write

‘SR, = 0 (2-2| —") c7n» = QU Inli,,.

if 770 islarge enough and y+ = 1+ e, which can be attained.
3. If we have (3.29) then by a=1/(6ul6) and /i=2, using (3.33) we have

uionjunj = NTYo) > > m(-i-) Inf,

as we stated.

3.8.2. So by (3.3) and (3.39) we have:
If a)(t) satisfies (1.7) then there exists an /EC(w) for which

(X DAODN =l e,

Here {xj}y=l isadensesetin [-1, 1].
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3.8.3. If we apply Lemma 35 with D={xj}, A=[-1,1] and hnt)=
—L,.{f t)—~4(N][cui— JIn/t,1_1 we obtain Theorem 2.2.
t Mn'

3.9. Proofof Theorem 2.1. Statementa) immediately follows from Theorem?2.2.
To prove b) first we consider the notations and ideas of Parts 3.2 and 3.7.
According these for each fixed interval [Aj, Bj\ we have the functions

{&/}y (n£Pj,j=1,2,...) such that with a,= j Inun we can write
T \Thjgn\ = °° where TnXf=[Ln(f, xj)-f(xj)] (aj.*)-1 if /€EC. Then by
(3.4) with a proper fEC*(a>)

lim .
n6Pj a,.XnJ(o(8nj)
But for the denominator using (3.39) and (1.8)

=5 c12a,00 |-M, Infin= 012}50 {]] In/t’i'] :

jm e Xi)-/(xi) 2

ip, 1/2

from where by Lemma 3.5 we get b).
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GAUSSIAN APPROXIMATION OF MIXING
RANDOM FIELDS

I. BERKES (Budapest)

1. Introduction

Let Z2 and A2 denote, respectively, the set of all two-dimensional vectors,
with integral, resp. positive integral coordinates. Let {fv,vVEA Z} be a random
field with index set A2 We assume that

(1.1) Efv= 0, E\ZW>SQ<«>, WEA

for some constants C”~O, 0<<5”"1 and that {fv, AZ} satisfies the following
strong mixing condition:

(12) a(H,A2=  sup _\P(AB)—P{A)P{B)\"C,{ii(lkbnvfﬁHtV*—vD“»

for some C2>0, a large enough y>0 and for any disjoint nonempty sets
H1, HotzN2 (Here a{ <} denotes the cr-field generated by the r.v.’s in the brackets.)
Set Sn= 21£v where, for any m, ndZ2 the relation “m~rr’ means inequality

coordinatewise. Put finally, for any n=(nx,n2£Z2 [M—K«3.

In [1] approximation of partial sums of stationary random fields satisfying
(1.1) , (1.2) with two-parameter Wiener process was studied. It was shown that under
(1.1) , (1.2) there exists a two-parameter Wiener process {IV(t), i€[0, °°)Z} such that

(1.3) Sn-W{n")*.[nfl2~x as.

holds with the exception of lattice points MEA2 lying “near” the coordinate axes;
here X isa positive constantand <k is an alternative symbol for the big O notation.
In the same paper it was shown by a simple example that for all n€EA2 not only
(1.3) but even

(1.4) Sn—W(n) = o([n] log log [N])2 a.s. as [n] °°

is generally impossible.1 In the mentioned example ES2 behaves irregularly in
the sense that the limit

(1.5) Jjm. ES2EW ()2

does not exist; more exactly, ES2EW(n)2 converges to different limits on different
lines parallel to the x-axis. Obviously then, (1.4) is impossible for any Wiener

—~To

1Relation (1.4) is meant in the sense #im frﬂgi (S,—H'(n)/«,,=0a.s. where#,—{[«]loglog[n])12
The same convention applies for relations of the type (1.4) appearing later.
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154 I. BERKES

process W by the law of the iterated logarithm. (Far away from the axes ESI
behaves nicely i.e. £5®~[n].) This example shows that the natural candidate for
approximating S,, in the whole first quadrant is not W (n) but a Gaussian field
{H(n), nEN 2} suchthat

(16) Nlli_m, ESUEH (n)2= 1

The simplest such field is H(ri)= 2£v where {£,, VEIVZ} is a stationary Gaussian

field with mean zero and the same covariance structure as {£,, VEIVZ. We shall
show that for this {1 (1) the approximation

()] Sn—H(n) « [n]¥Xloglog[n]-* a.s.

holds for all nEN2 where § is a positive constant. ((1.7) is meant, as usual, in
the sense that the fields (v, vENZ and {H(n), n”"N2Z can be jointly defined on
a suitable probability space, without changing their distribution, such that (1.7)
holds.) More generally, we shall see that (1.7) holds for any Gaussian field H(n)
with stationary increments satisfying (1.6) and a simple regularity condition. This
result, while being a natural two-parameter analogue of standard a.s. invariance
principles for mixing sequences (see [13]) has the novel feature that the approximating
field H(n) has dependent increments. This fact causes substantial difficulties in the
proof and though we will eventually be able to reduce the problem to the “standard”
situation, we have to follows a rather indirect way.

It is worth noticing that while the Wiener process is, in general, not suitable
for approximating the partial sum field {5),, nENZ in the “uniform” sense (1.3),
(L4) i.e. when a nontrivial remainder term depending only on [n] is required,
allowing non-uniform remainder terms one can find a Wiener process W providing
a satisfactory approximation. Theorem 2 below gives an example for such a “non-
uniform” approximation theorem. Here the remainder term depends individually
on both coordinates of n which has the consequence that Sn—W (n) has, in terms
of [n], different order of magnitude in different domains of N2 Along the axes
this order is O([ri\ loglog [n])Va (in accordance with the fact that (1.4) is generally
impossible) and it becomes gradually better as we move away from the axes. E.g.,
O{[n] loglog [n])12 becomes of[n] loglog [n])1/2 as soon as [n]“w°° in such a way
that both coordinates of n tend to infinity; moving even deeper into the first quadrant
this order of magnitude improves continually until it reaches O([n]{¥2o0g~x[ri\)
with a positive ¢ on the line y—x. This phenomenon is in accordance with the
results of [1] where it was already observed that uniform bounds on S,,—W(n)
are necessarily of different form in different domains of N2 While in [1], however,
only very special domains were considered, here we get uniform bounds for a much
larger class of domains.

We now formulate our results in detail. Define, for any weakly stationary
field {fv, vew 2},

ck= 2 Kv) k=0 %1, £2, ...

{vACvi v*)€Z*:4 =k}

2 r(v) Z=0, =1, £2, ...
=0, S 2}
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where r is the covariance function of the field; the series converge if the field satisfies
(1.1) and (1.2) with a sufficiently large y (see Lemma 4 below). Evidently r(y)~
=/+(—V) and thus ck=c_k, d,—d_i. Now we have

Theorem 1. Let {cv, VENZ} be a weakly stationary random field satisfying
(1.1) and (1.2) with y*"KJS where KO is a large absolute constant; let r(v) be
the covariancefunction of thefield. Letfurther {,, UETVZ} be a stationary Gaussian
field with mean zero and covariance function r*(y) satisfying

(19) (W) « VL@24) v 0
(1.10) *(0)—2 k*(v)| > 0

for some £>0. Let ck,d, be defined by (1.8) and denote by ck,d* the analogous
quantitiesfor thefield {£v, vETVZ. Then thefollowing statements are equivalent:

(A) Thefields {&v, vETVZ} and {£, VETVZ can be defined jointly on a suitable
probability space such that

(1.11) \%nqu"n - o([n]loglog[n])12 as. as [ri\ —=»

(B) Thefields {f, wgTVZ} and {Od VETVZ can be defined jointly on a suitable
probability space such that

(1.12) Vg\niv «M 12 OoglogW)-1 as.

holdsfor some positive constant X
(C) ck=¢k (xk=0,1..) and d,=df (1—0 1 ..).
(D) [M%E(Z Q2E(2 Q2=1I-

Condition (1.9) implies that the field {fv, vETVZ} is of weakly dependent type
(as contrasted to the strongly dependent Gaussian fields studied, e.g. in [4]). For
strongly dependent {(v,vdTVJ relations (1.11), (1.12) are impossible for variance
reasons. E.g. if r(v)~const |v[-a for some O0<a<2 then, as a simple calculation
shows, for vectors nEN2 of the form n=(k, k) we have

£(2iV)2» M 2“2

Hence (1.1) cannot hold even for these special n since the first sum on the left side
is o([u]L s¥4) by a<2 and the law of the iterated logarithm and the second sum,
divided by [n]l a4, is a normal r.v. with mean zero and variance »1 and thus
it does not tend to 0 even in probability. Condition (1.10), on the other hand,
is a technical condition needed in the proof to establish a certain mixing condition
for the field {£v, vETVZ} (see the proof of Lemma 10(*)). Although this condition
seems to be irrelevant for Theorem 1, we were notable to prove the result without it.

As an invariance principle, Theorem 1 implies various limit theorems connected
with the law of the iterated logarithm for the field {£v, vENZ. However, the re-
mainder term O([n]2Xloglog [w])-n) is not strong enough to get upper and lower
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class tests; for such results at least a remainder term O([/j]¥20g9*“'l[«]) would be
necessary with A>0. If such an improvement of Theorem 1 holds remains open.

The proof of Theorem 1 yields an explicit value for the constant Kn; for
example, A),=4098 will do. KO0"2 is necessary even for the simplest estimates
in the proof; the large numerical value 4098 is needed for the proof of Lemma 7
(except this lemma, KO=82 would do). We shall not make any attempt to minimize
this constant.

We finally mention that the constant A in (1.12) can be chosen as large as
desired i.e. if any of statements (A), (C), (D) in Theorem 1 holds then statement
(B) will be valid with any prescribed positive a (the construction of the sequences
£v,Qv will, however, depend on )

For the rest of the paper let A0=4098.

Corollary (1.1). Let {KV, VEN 2 be a weakly stationary randomfield satisfying
(1.1) and(1.2) with y~ KJ6; assume that the covariancefunction r*(y) o f thefield satisfies
(1.10). Let {Cv, vélVZ} be the stationary Gaussianfield with mean zero and the same
covariance structure as &V, VGTVZ}:. Then the fields {f, vE7VZ} and {(v,vENZ}
can be definedjointly on asuitable probability space such that (1.12) holds with apositive
constant A

Corollary (1.2). Let {£,, vEiVZ} be a weakly stationary randomfield satisfying
(1.1) and (1.2) with let r(y) be the covariancefunction of the field. Then
the following statements are equivalent:

(A]) There exists a Wiener process {W(t), /€[0, °°)2} such that (1.4) holds.

(Bi) There exists a Wiener process {W(t), i€][0, °°)Z} such that

(1.13) VZAnZv~W (n) <sc[n]¥Xloglog[n])-i a.s.

for some positive constant A

(Cj) k=0 (k=12 ..) and dt=0 (1= 1,2, ..) where ck,dt
are defined by (1.8).

(D) [Il]jr_QDE{ 2 f)j[n\ exists.

In the last corollary (and everywhere in our paper) “Wiener process” means
any constant multiple of a standard Wiener process i.e. ¢c=EW (1, )2 is allowed
to be any nonnegative number. We shall see that the actual value of ¢ in Corollary
(1.2) is equal to the limit in (DX and also to r(v) Hence the case Kv)

is degenerate with W —0. (Note that because of condltlon (1.10), Corollary 1.2)

follows from Theorem lonly if 2 r(v)*0. The case r(v) 0 will follow from
VEZ2

Theorem 4 and the argument proving (A)=>-(C), (C)<—>(D) |n the proof of Theorem 1.)
We also note that replacing [«]—°° by w/\n”*-*°° (where aAb and aVb denote
min (a, b) and max (a, b), respectively) the limit in (Dj) always exists under the
mere conditions (1.1), (1.2) (see the corollary of Lemma 4). Hence condition (Dj)
is a restriction on the behaviour of E{\;YI £\)2 for lattice points n lying near the
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coordinate axes. Obviously, conditions (Q) and (DX are satisfied if the r.v.’s
are orthogonal.

Theorem 2. Let {£, VENZ be a weakly stationary random field satisfying
(L.1) and (1.2) with y*KJ&. Then the field {£,, VEIVZ can be redefined on a new
probability space together with a Wiener process {W (f), /£[0, °°)Z} such that

(1.14) 2 Zv-W(n) « ([«] log log [n])/2((log n) “Ar(log nd~X) a.s.2

for some positive constant Kk where n=(n1, n?. (Actually, A can be chosen as large
as desired.)

Corollary (2.1). Let {£,, vfN 2 be a weakly stationary randomfield satisfying
(1.1) and (1.2) with y"KJS. Then there exists a Wiener process {W(t), [0, °*)&}
such that

(1.15) Vg\nl'v~W(h) = o(M] loglog [N)12 as. as nlAn2-m°°

where n=(nl,n2.

Thus, while (1.4) is generally impossible under (1.1) and (1.2), the slightly
weaker approximation (1.15) can always be attained. It follows also that the trouble
in (1.4) is caused by lattice points n£N2 lying along the coordinate axes. It is
worth noticing that Corollary (2.1) is best possible in the sense that replacing
o([n\ log log [n])12 in (1.15) by o(/([/;])) where f(t) =o(l loglog /)12 (i—°°) is
any prescribed function, the statement of Corollary (2.1) becomes false. This follows
immediately from Theorem 3 of [1] or the theorem formulated after Corollary (2.2).

To discuss further consequences of Theorem 2 let us define, for any function

0=/(0 —~if —0)
(1.16) Gf = fn= (NIt n2EN2: nr S /(«a), n2S /(n t)}.

The set Gf can be used to measure how far a point n£N2 lies from the coordinate
axes: the larger the / is, the deeper the points of Gs lieinside N2 Now Theorem 2
implies
Corollary (2.2). Let {fv, vENZ be a weakly stationary randomfield satisfying
(1.1) and (1.2) with y*KJS. Then there exists a Wiener process {W(t), i£]0, 00)2}
such thatfor anyfunction f (t) satisfying 0~ f(t) =t (i SO) and sup/(k3//3/c)<
we have ksl
(1.17) \2—11/\ ~ w (n) <sc([n]loglog[/i])/2log~V(N) as- ™ Cf
with a positive constant A (Actually, A can be chosen as large as desired.)
Corollary (2.2) shows that the approximation of S,, by W (n) gets gradually
better (in terms of [u]) as we move more and more deeply into the first quadrant.
It is worth comparing Corollary (2.2) with the following special case of Theo-
rem 3 of [1]:

Throughout this paper, log tand loglog t are meant as log (tVe) and log logfiVe), respectively.
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Theorem. There exists a stationary 2-dependent Gaussian randomfield {;,, vEIVZ}
such that EEv=0 and, for any Wiener process {W(t), /£[0, 0°)2} and any positive
nondecreasingfunction fit), t = 0 satisfying the conditions

f(t)"Scl(loglogt)12(t~tQ for a sufficiently small c\=4Q,
Lim/(0 = °°,

t-*-00

sup 1/(20 - f(t)\<«>,

tel

the approximation
V- (€« (W loglog [«)V2([«])y WGy

cannot holdfor any 1

In other words, log“;/([«]) in (L.17) cannot be replaced by /([n])_y f°r 1
provided that / grows sufficiently slowly. 1f log A/([n]) can be replaced by f{[ri\)~y
for some O0<yS| remains open.

For f(x)—xx (0<a< 1) and /(x)=(log x)a (a>0) (1.17) vyields

(1.18) 2 Ev—W(n) [n)Y2og A2[n] as. in Gf
(1.19) N Ev—F(n) <c [n]2(loglog [n])-A2 as. in  Gf

respectively. These two special cases were treated also in [1] using a different method.
(1.19) is the same as Theorem 2 of [1] except that in [1] only the case of large a was
considered (where a is the constant in the definition of /). On the other hand,
(1.18) is weaker than Theorem 1 of [1] where on the right side one had [n]12 A
instead of [n]Y/2log_vi2[n].

At this point we would like to point out an error in [1]: the proof of Lemma 4
is not correct. To get a correct proof, see the proof of Lemma 3 of the present
paper. Here, however, yfe82/c> is assumed and to have the "-dimensional proof
all right, the exponent #(1+ 6)(1+2/<5) in (1.2) of [1] should be replaced by AJ5
where Ag=5 4 6+2.

It is worth noticing that a non-uniform approximation can be obtained in the
context of Theorem 1 as well: the theorem remains valid if relation (1.12) is sharp-
ened to

(1.20) VZA% V- g'%Cv«M 12(loglog[n])~;I((logn) - A+ (logiid-A as.

where n=(n1,n2. Along the coordinate axes (1.20) is identical with (1.12) and
like (1.14), it gets gradually stronger (in terms of [1]) as we move away from the axes.
Contrary to Theorem 2, however, (1.20) adds very little new information to (1.12)
since in domains GczN2 where (1.20) is substantially sharper than (1.12), the partial
sum process 2 G can actually be approximated by Wiener process in the same

V-1

order. For example, inthe domain Gf defined by (1.16) relation (1.20) yields (under
the assumptions made on / in Corollary (2.2))

(1.21) 2 ACVAM~OoglogM ~log”/ftn]) as. in Gy
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The presence of log A/([n]) on the right side of (1.21) means improvement to
(1.12) only if log f{t) grows faster than any power of loglog t; in this case, however,
the right side of (1.21) and (1.17) are basically of the same order. Hence, for such
domains Gf it is clearly more preferable to apply (1.17) than (1.21).

As far as practical applicability is concerned, a useful improvement of Theorem 1
would be, as we have already pointed out, if relation (1.12) could be replaced by

(122 2 £v- 2 iv« MIRlos nM as.

for some 2>0. If (1.22) is possible remains open.

Finally we formulate one more approximation theorem of the type (1.7) where
H(n) is a slightly perturbed Wiener process. Given any random field {iv, v€7VZ},
a nondecreasing function O S/(/)Si (i~0) and a constant n2€0, define the field
{Cy*a VEIVZ by

(ov if veGf
iv if v<IGf

where Gf is defined by (1.16) and oov are independent N(0, a2 r.v.’s which are
also independent of the field {£,, vENZ. Now we have

Theorem 3. Let {iv,vENZ} be a weakly stationary random field satisfying
(1.1) and (1.2) with y"KJd\ set a2—2 Kv) where r(v) is the covariancefunction

of thefield. Let {£, VEIVZ be the stationary Gaussianfield with mean zero and the
same covariance function r(v). Then there exists a nondecreasing function f(t)
satisfying /(1)<kexp ((log tf) for some O<a< 1 such that the fields {iv, vEN 2},
{E£(/»*), 1VZ} can be redefined on a rich enough probability space so that

2zv- 2 odo>« [n]¥2(loglog[n]) n as.

holds with a positive constant X (Actually X can be chosen as large as desired and
a as small as desired.)

The r.v.’s G/>02) being i.i.d. normal in Gf i.e. in the largest part of N2 the
field H(ri)= 2 C/'&) is “almost Wiener”; on the other hand, it preserves the co-

variance structure of {Ev,F6iVZ} in a narrow strip along the coordinate axes.
Despite the nonstationarity of VvEAZ}, Theorem 3 is more suitable for
applications than, for example, Corollary (1.1). As a matter of fact, Theorem 2
follows easily from Theorem 3 and the proof of Theorem 1 will also depend crucially
on Theorem 3. (For technical reasons we shall actually work with a slightly modified
version of CY'&= namely the field {i<t vgTVZ} in Theorem 4.) 1t would be interest-
ing to minimize / in Theorem 3 but we shall not deal with this question here.

In conclusion we note that while in our paper we consider only two-parameter
fields, all results and their proofs can be extended, without any difficulty, for g-para-
meter fields, 3.
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2. Preparatory lemmas

Lemma 1. (Dvoretzky [5].) Let ~ be a (possibly complex valued) random
variable with |£|” 1 and let F be the o-field generatedby f Thenfor any a-field

E\E{£\0)-EE\ 21 _sup \P(AB)-P{A)P(B)\

Lemma 2. (Davidov [3].) Let £ and f] be (possibly complex valued) random
variables measurable F and respectively. Let pLp2,p9* 1 with p{1+p21+
+pfi=1 If |iljpt<0°® and |[f/||p<°°® (where |e|p denotes the Lp norm) then

sup  \P(AB) —P(/L)P(5)]) IP3|"|Ip |

From Lemma 2 it follows (setting Pi=p3=2+8, p3=(2+6)/6) that if
{0/, vENZ} satisfies (1.1) and (1.2) and it is weakly stationary with covariance
function r(v) then

(2.1) [r(v)| « |v]|-""3« ([v]VI])-yae
for any vE£Z2 v?i0.

Lemma 3. Let {cv, vENZ} be a (not necessarily stationary) randomfield satisfy-
ing (L.1) and (1.2) with y"82/<5. Put «=(5/1024. Then we have

£|p_regv,\n+n£v|2+a B[n]1+a2

for any p={px, /r)=0 and nEN2; here B is apositive constant and e=(l, 1).

Proof. Set
Say) = 12, nl\/z:yG/

for each y=1,2, ... and aSO where n=(n1,n2. Applying Lemma (2.5) of [§]
with £= 1/4 and noting that 82/5/ (1 +2/5) «5/4 we get E\Sfy)\2+s* B 1 uniformly
in a and y where 5x=5/32 and Bx is a positive constant. Then, because 82/5"

& (1+2/5)-5/4 and since the random variables {"*(y), y=1,2, ..} are strong
mixing in y with zero means and uniformly bounded (2+5X-th moments, we

conclude by the same reasoning that
Tab=rn2R. 2 Say)
satisfies E\Tap2+x"B uniformly in a,b where a=5x32 and B is a positive

constant.
For the following lemma we need some notation. Given any bounded sets

/,J on the real line and any integer k, let <pyj(k) denote the number of pairs
(/,y) suchthat i,j areintegers, i£l,jEJ and j —i=k. Further, for any bounded
set / in a Euclidean space let |/| denote the number of lattice points (i.e. points
with integral coordinates) contained in I.

Lemma 4. Let {Ev,vEIVZ} be a weakly stationary random field with mean zero
and covariancefunction r(v) satisfying

(2.2) [r(v)] « |v|-<2¢&> (v F 0)
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for some e>0. (By (2.1), this is the case if {£v, vENZ satisfies (1.1) and (1.2) with
y>6/6.) Then V%%éb)lmo and thus the series defining ck and di in (1.8) are

convergent. Let I, J and G be closed intervals on the positive line and set
S1= 2 «w.s.- 2 . Then

veixa vCIXG
(2.3) £s152=(G{ 2 <Pij(ick-+const «0-(/| AMICTI-¥4) .

(The series on the right side is convergent since (p, k) =0 for all but finitely
many k.) Ifin the definition of Sk and S2 we replace IXG and JXG by G XI
and GXJ, respectively, then (2.3) remains valid with the modification that ck is
to be replaced by dk (defined by (1.8)).

(Here, and in the sequel, 9 denotes various numbers satisfying [0|sl and all
the constants (including those implied by relations <) will depend only on the field
{iv,vein)

Corollary. Under the conditions of Lemma 4 we have
(2.4) E( 2 iv)2= {q(a"+ consteB en284) = [u1] (b, 2+const «9 m)fe4) =
= [n] (a2+ const 9 «(NLIN2"*/4)
where n=(nk, n2 and
(2.5)
ak = i=2_k(l-|i|/fc)C(, bk = i_2_k(l-|‘llfeK-, <*’<=V£2Zz r(v) = 2 ¢*= 2 d

=—00 /= —o00

where ck, dt are defined by (1.8). Moreover, the sequences {cfc/cS0} and {dh 170}
are nonnegative definite. (The number a2 is nonnegative by the third equality 0f(2.4).)

Proof of Lemma 4. Let m=\G\. Obviously, for any given v=(vI5v)eZ2
the number of those pairs p(0\ u@ suchthat Baf(IXG)D N2 /QE(/XC)M M2
and /i@—r@@) = v is <P/j(vj) (m—MA)+. Hence, by the weak stationarity of the
field {£,, veiVZ} we have
(2.6)

ES152= 2 <P/j(Vi)(m-|vaDr(v) = mi 2 <piavi)r(v)~

{v=(Vj,vs)£Zz:1v,|Sm} V{v€Zz:|v,|Sm]|
{vEZz:|v2|Sm)

Let and denote the two sums appearing in the brackets in the last expression.
Observing that <7 .;E)é&|/|N1|/| for any k and

k(v)] L™

{vEZz:|vjsi}

forany L>0 by (2.2), it follows that
2i = V%ZZ(Pl,j (vi)r(v)+ const.O-(|/|N|Y )T €2
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Breaking 2 into two parts according as |v28»ila or |v2[>m12 and using the
same inequalities as above we get |£2<k(|/[N|/])T-1/2+ (|/|N]./])T~£4 Hence

- m (2L _<P/j(Vi)r(v)+ const-0-(|/|A|7|)m _£/4) =

=»( 2° <j(k)ck+const m «(|/|Al/[)m-£/4

which proves (2.3).

Specializing (2.3) (and the analogous equation involving dk) to the case
I —J —[1, Uj], G =[1, h] and observing that 4>i,i(k) = (I—\k\)+ for any interval
I where I=\I\" we get the first two equalities of the corollary. To get the third
equality note that |c*|«A:~(1+£2) by (2.2) and thus

tft-o- = 2 cft 2’ -%-c, <«kk-~dl
li| \i\mk

as it follows again by breaking the second sum into two parts according as \i\"kVi
or |[/|>&12 Hence the third equality of (2.4) follows from the first one. Finally,
to show that {ck, k*O} is nonnegative definite, put

Si>= . D

x4z

ES?>sy> = I(cj-t+const «B mE ¢h)

By (2.3) we have

and thus

E cy_i/.Ay + const «B m~C|i

for any ré 1 and any complex numbers A, ..., /r. Dividing by | and letting
we get that _2’ lcj—i\%j—O what was to be proved.
i-i=

We note that the sequences {ck, k*O}, {dt, /& O} will actually be positive
definite if, in addition to (2.2), the covariance function r(v) satisfies the condition

2.7) U0~ r(0)—2,\r(Y\ > 0

(see Lemma 14). This fact, however, will not be needed in the sequel.

3. The associated Gaussian fields

In this section we introduce three Gaussian fields which will play a crucial
role in the proof of our theorems and prove a central limit theorem related to them.

Assume that {cv, vENZ is weakly stationary with mean zero and covariance
function r(v) satisfying (2.2). By the Corollary to Lemma 4 the sequences {q, ksO)
and {dk,k"0} (defined by (1.8)) are nonnegative definite. Let {C4), vENZ be
a Gaussian field such that for every fixed /= 1,2, ... the one-parameter process
{£3%/), k=1,2, ...} is Gaussian with mean zero and covariance sequence {ck, k & O}
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and moreover, the just mentioned one-parameter processes are independent. Ana-
logously, let {&2, vENZ} be a Gaussian field such that the one-parameter processes
{0, &=1, 2,...} (/= 1, 2, ...) are independent Gaussian processes with mean zero
and covariance sequence {dk, k*O}. Finally, given any partition H =(Hk, H2, H3

of N2 into three disjoint sets H1,H 2,H 3 we define the Gaussian field VENZ}
as follows:
if veHt
(3.1) if v€/f2
py If VEH3

where {£Y), VENZ}, {2, vENZ are the fields defined above which, in addition,
are assumed to be independent of each other and {d)v, vEH 3} are independent normal
r.v.’s with mean zero and variance a2 which are independent of both the ( f’s
and the G2)’s. Here a2 is the number defined by (2.5).

Lemma 5. Let & ,VvENZ be a weakly stationary random field satisfying (1.1)
and (1.2) with yé82/S. Let r~l be an arbitrary integer and let A,/2, ..., Ir,
G be closed intervals on the positive line. Let uk= [4XG]| (k=\, ..., ), m=|G
and set

sk= 2 iv. §*>= 2 0° ({fc=1,...1
VCTkXG VEIKXG
where {£%), VEIVZ} is thefield defined above. Thenfor any vector A=(AI5 ..., kNER2
we have

3.2)

|[ETexpi-A-Sx+...+-~.S'r +-|I'H <cm~|
11 U4 J4 5 ) 1

provided that |Ar*m T; here >0 is a suitable constant. The same inequality holds
tf 4XG is replaced everywhere by GXIlk and {G1),vENZ is replaced by
{G2, vEN 2. |fwe drop the condition that {&v, vENZ} is weakly stationary then still
there exist numbers gtj, I=1i,j*r (depending on the field (cv, vENZ and on the
intervals f, ..., Ir, G) suchthat ]g;jjl<scl and

exp - iiw-i km
'H(-n'x+"+TH b P yzi,j2=|g”WJ

for |Arédm".
For the proof of Lemma 5 we need a trivial property of the field (Cil), vENZ,
quite analogous to Lemma 4 which we formulate here as a separate lemma.

Lemma 6. Assume the conditions of Lemma 5, let /, J, G be closed intervals on
the positive line and set

2 ax. S2= vﬁxce'

VCIXG

Then
(3.3) ESKE2 =
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In other words, (2.3) is valid for the field {((l), vEN 2} as well, even without the
error term on the right side. Relation (3.3) is obvious since the covariance function
/+fiv) of the field VEIVZ} vanishes except for those v=(vI5v2 such that =0
and thus the argument leading to the first equality of (2.6) yields directly (3.3).

Lemmas 4 and 6 imply the covariance matrices ofthe vectors (SfYul, SJik)
and ..., Sp>/yuj are close to each other if |G| is large. Starting out
from this fact, the proof of Lemma 5 follows the standard pattern of proving central
limit theorems for mixing processes (see [6]). However, the calculations are somewhat
tedious and thus we postpone the proof to section 6 in order not to digress from the
main line of the proof of our theorems.

Corollary of Lemma 5. Let {f, VENZ satisfy the conditions of Lemma 5
and let Sn= Xg\nEV. Then we have

(3.4) |E{exp(iIASJI[N]1D}-exp(-(72822)| <k(n1nn2 _e for |As (n2/\n"e
and
(3.5) P{|S.[S t[nN]¥2} « exp(-Bt3+[n] for t*=0

where n=(nl, n?), a2 is defined by (2.5) and B, q are positive constants. (3.5) is valid
even without the assumption of the weak stationarity of {£v, v€IVZ}:.

Lemma 7. Let (cv, v*AZ} be a (not necessarily stationary) randomfield satisfy-
ing (1.1) and (1.2) with ys4098/(5 and let Sn= 2 £v Then we havefor all nEN2

X=in

(3.6) P{mjtx 11 " i[n]¥} <cexp (—Dt3 for 0" tS Dlogl2n]

with a positive constant D.

The proof of Lemma 7, like that of Lemma 5, is basically routine but tedious
and thus it will be postponed to section 6.

Lemma 8. The conclusion of Lemma 5 remains valid if instead of the conditions
made on {£,, wEAZ} we assume that {|v, VENZ} is a stationary Gaussianfield with
mean zero and covariance function r(v) satisfying (2.2). Lemmas 3 and 1 and the
statement of Lemma 5 concerning the non-stationary case remain valid if instead of
(1.2), (1.2) we assume that {£,, vENZ} is a Gaussianfield satisfying

(3.7 Ety=Q E&« 1 (VEAD
and
(3.8) [NV T« N -y |- (24)

for some e=*0.

Proof. Assume first that {£v, vENZ} is a Gaussian field satisfying (3.7) and
(3.8) . Then

2E&+ 2 2 IEANEANE Y/ IS
VEG VEG {viz*,v*0} {ii:iiCG,h+ vCG}

« |G |+ \GI({ng%vq’\Vl_(Zﬂ)) « |G|
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uniformly for any finite set GczN2 Since the sum \%gccv is normally distributed
with mean zero, the last estimate implies

(3.9) £ (V:Gv )4«|G |2
and
(3.10) P{| 62G Ll S i|G|UZ<=exp (-Btd (/s 0)

uniformly in G with a positive constant B. (3.9) shows that the conclusion of
Lemma 3 holds with a=2, on the other hand, (3.10) implies (3.6) by a maximal
inequality of Mdricz ([11], Theorem 1).

Assume now that {Ev,vdNZ} is stationary Gaussian with mean zero and
covariance function r(v) satisfying (2.2). In this case, both vectors (S1, ..., Sn)
and (S15 ..., 5(0) in Lemma 5 are Gaussian with mean zero and thus the left
side of (3.2) equals

(311 exp(~j.A4 -exp[-y "2 aftAf)

where
«y = (UiuL)~V2E(SIS)), aft = (utUj)-~E(SFtSft).

By Lemmas 4 and 6 we have \afj—aft\<s:m~e,i (L=, ;'Sr). Since both matrices
(a,j)rXr and (aft)rXr are nonnegative definite, the expression (3.11) is

« m~ci(2 wW)’S m~4Ax

and thus (3.2) holds for |ar"m1 where T=€/16. If now ¢¢.. VENZ is Gaussian
satisfying (3.7) and (3.8) then the last inequality of Lemma 5 holds (with the left
side equal to zero) with gtj=(utw)~12 (StSfi. It remains now to notice that
lgBy<s:l by the Cauchy—Schwarz inequality and the analogue of Lemma 3
proved above.

Lemma 9. Let {{k,&"1} be a stationary Gaussian process with mean zero
and covariance function c,<scn~(1+€) for some s>0. Let aQ=cO+2k2 ck and set

=
K
tk= _21[exP (id] for some O<a< 1 where [ ] denotes integral part.3 Then there
=

exists_(after possibly redefining the sequence £k onanew probability space) independent
normal rv’s {{ft 1} with mean zero and variance a2 such that

(3.12) 12 (6-OL3« 4/2(log - 1Y (o= 1.2, .)

where || #||3 is the L3 norm.
Lemma 9 is implicit in [12] but we shall give a simple direct proof in section 6.
(Our argument will also yield an alternative proof of the results of [12]).

3This notation is not to be confused with [1] for ndN-, introduced in section 1
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4. Sketch of the proof of the theorems

Because of the rather technical nature of the proof of Theorems 1—3 it is worth
outlining the basic idea behind the proofs. The real problem is to prove implication
(C)=>(B) in Theorem 1, the rest is quite easy. Assume that {Ev, V*}VZ} satisfies
(1.1) and (1.2) with a large y. Divide the set of positive integers into consecutive
intervals /*, Jx, ..., Ik, Jk ... in such a way that |/A—®o} 111—°°, 1/11/141-0 in
a suitable way. Set

Xxmn= I4,X/,,\-1/2V€J%w"|..

In analogy with the usual method for proving a.s. invariance principles for mixing
sequences of r.v.’s (see [13], [2]) one might attempt to show that the sequence
{Xmn m~Il, n*1} is “asymptotically independent” in the sense that

Qm = Q*{afXm, (hj)» (m, QF}- 0 as mvn-
with a proper speed where a{ s} denotes the er-field generated by the r.v.’s in the

brackets and
g{F<& = sup \P(AB)-P(A)P(B)\.

However, £*,, will not be small if one of in and n is small; for example, the
separation between the index sets belonging to Xn® and Xm2 is independent of
m and thus if we assume nothing more than (1.1),’(1.2) then generally g*a -h 0.
We remedy this trouble by introducing the vectors X* ={Xldm X2-m, ..., XI'T)
and X**=(XT/1, XmA, ..., X1 where rm=o(m), rmf°® is a suitable sequence
of positive integers and by replacing the sequence {Jfi,,m S|, nw 1} by a new
sequence formed by the r.v.’s {Xmn, m>rn, n>rn} and the vectors X* X** (m=
=2,3,...). As one can easily see, this new sequence is then asymptotically
independent in the above sense. Moreover, if {), vGVZ, {£2), vgiVZ} are the
Gaussian fields introduced in Section 3 then by Lemma 5 the distribution of the
vectors X*,X** are asymptotically equal, as m—<5 with those of the vectors
Y*, Y** where Y*, Y** are defined in the same way as X*, X** just with the
underlying field {£v, VEIVZ} replaced by {C" VvCTVZ}, {2, v6AZ}, respectively.
The distribution of the r.v.’s {Xm,,, m>rn, n>rn} being asymptotically N(0, a2
by the Corollary to Lemma 5, the above facts show that the (one and higher dimen-
sional) r.v.’s {Xmn, N>r7} X* X** (m=2, 3, ...) are asymptotically inde-
pendent and are close in distribution to the r.v.’s {Zn®, m>r,,, n>rn}, 2*,Z2**
(m=2, 3, ...) defined analogously just with the field v,vENZ} replaced by the
Gaussian field {CiH), vENZ introduced in Section 3 where A=(Ar,A243 is
the partition of N2 defined by

#1= l'J_Z‘l_Jl(K[XKj, 82= U U (kmxx ), A3=a2(a1na?

where Knm=ImUJm Also, the quantities Z are (strictly) independent. Hence, by
the approximation method of [2] the r.v.’s {Xmy m>rn, n>rn), X* X** (m=2,3,..))
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can be redefined on a suitable new probability space together with the r.v.’s
{Zpns m>rpsn>r,}, Zh,Z3* (m=2,3,...) such that the joint distributions of
both sequences remain unchanged and the X’s are close to the corresponding
Z’s. From here we get easily a joint construction of the fields {¢,, vE N2}, {{{#),ve N2}
on the same probability space such that their partial sums are close to each other.

As a matter of fact, in the proof we shall actually work with more complicated
vectors than X, X* defined above in order to avoid certain technical difficulties.
However, the basic idea remains unchanged.

The above argument applies also in the case when instead of (1.1), (1.2) we assume
that {&,, véN?} is a stationary Gaussian field with mean zero and covariance
function r(v) satisfying (2.2), (2.7). The only difference is that in this case we need
the Kolmogorov—Rozanov theorem (instead of (1.2)) to show the “asymptotically
independent” character of the r.v.’s {X,, ., m>r,, n=>r,}, Xp, Xp¥ (m=2,3, ...).
Hence in this case we can also approximate the partial sums of {&,, vé N?} by those
of {{{™,veN?} where H is the same partition. Observe now that {{{¥,ve N2}
is defined in terms of the quantities ¢, d, in (1.8) and the partition H; hence if
we have two stationary fields {&,, v€ N?} one of which is mixing satisfying (1 1),(1.2)
and the other is centered Gaussian satisfying (2.2), (2.7) and, moreover, the quantities
¢y, d, are the same for the two fields then the approximating field {{{), ve N?}
will also be the same in the two cases and thus the partial sums of the two fields
can be approximated also by each other in a good order. This is exactly implication
(C)=(B) of Theorem 1.

5. Proof of the theorems

Let «=0, c,>0 be sufficiently small constants such that c,<o/3; set p,=

m

[
(5.2) Pm~Cs W >
(5.3) gm~ cs(logm)t —#/*mee

with suitable positive constants c¢;, ¢y, ¢3; the symbol ~ means asymptotic
equality. Let

[H1= U (GLJEN: tyoy <J =ty 150 tuers),
m=2
(.4)

le - mN:\{HIUHz}.

¢ Cf. footnote 3.
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Evidently A1MA2=0. We are going to prove the following theorem from which
each of Theorems 1—3 follows easily:

Theorem 4. Let {f, vdN 2} be a weakly stationary randomfield which either satis-
fies (1.1) and (1.2) with y£ 4098/(5 or is Gaussian with mean zero and covariance function
r satisfying (2.2), (2.7). Let H =(H1, 42 A3 be the partition defined by (5.4) and
let {OH vENZ be the Gaussian field defined by (3.1). Then the fields {{,,, vdN2}
and {£H), vdNZ} can be jointly defined on a suitable probability space such that

(5.5) 2 M~ M«M”™Ooglog"D-~Gognl-'+ilog/jjj)-) as.

where n—(w, nd and t=(1—3a)/8a.

Proof. Assume first that {Ev,vdNZ} is weakly stationary and satisfies (1.1)
and (1.2) with ys4098/6. Let

X™ = pmue2 2-_|'V =11~

LB = arl* 2 v "™ L ini),
(5.6)

zm, = (pnp,,)~12 Aoy =),

i i B v
y—m i +I»in i+l

Amn = v=fm 1w%,t - +1IV v=(m_ 1+%r 1+ v
where, for any positive integers a, b, c,d the symbol % iv. means the (possibly
empty) sum 2 V- Define now a sequence U, (m*I, n£1) of random

(a,b)Svt(c,i)
vectors as follows:

rga, Z®, ..., XU~\ zmmtl, ..., Zmnd3) if m>1 n= 1

_ @ f)....y(4z,,4,,. 2[54) if m=1 n>1
6.0 am, = Zm, if m > rt n>[n®3]
0 otherwise.

Define the sequences X<j\ F<°, Zm,,, dmn, 6/ analogously as in (5.6), (5.7), just
replacing £v everywhere by CH> where A is the partition (5.4). The field
{(<H), vdNZ} may be defined on a probability space different from the space support-
ing the £vs. It follows immediately from definiton (5.4) of the partition H=
= (Ab A2 A3 that the variables t/mn(T& 1,4al) are independent. Our purpose
is to apply Theorem 1 of [2] to the sequence AT_,, to this end we arrange the terms
of this sequence linearly as follows. Let

Yk={(K 1), {k 2), ..., {k, k - 1), (L, K), 2 K), .. (K -1,K), (k K)}

Acta Mathematica Hungarica 43, 1984



GAUSSIAN APPROXIMATION 169

and define an ordering «< of all vectors VEIV2 as follows: p<v iff VESI
for some /c</ or p, vE&K for some &é€1 and p precedes v in the ordering of 4.
Let dmn denote the dimension of the vector U,Ln and set

= £|E{exp i(u, Gmn)|**mn}-"{exp i(u, 0PAHR

for wG?dmn where (e, ¢) is the inner product and demn denotes the rr-field
generated by those U.j whose index (/,/) precedes (m,n) in the above ordering.
Then we have

Lemma 10. For |u|«:(wn)6 we have

{(PmPr)-1 In the first and second case of (5.7),
(P[T«/3]P[,,*/a])-1 in the third and fourth case of (5.7).

Proof. We show (5.8) separetely in the four cases of (5.7). The estimation
of Amn(u) in the first and second case of (5.7) is almost the same, on the other hand,
Am,()=0 in the fourth case. It suffices, therefore, to treat the first and third case
of (5.7).

Let Hmn denote the set of those VEN2 such that the variable f appears in
the definition of Umn and write

;M) —E|ir{exp i(u, Un< nt—E{exp i(u, Umn)} +
+ |E{exp i(u, Omn}-£{exp i(u, tfm,}}] = Qi+ Q2, say.

We estimate first Q1. In the first case of (5.7) we get, using Lemma 1 and our as-
sumption (1.2) with yé4098/<5,

Qi 2nmo(HT1 U DHLj) « PFEIM»B« Pml

for all u. Similarly, in the third case of (5.7) we get, using T>[na3), n>[T113],

Qi M 2ne(Hmn, ( 0] n)Hu) « (ET p 'N-r)-Ta>«

« Pm"2Vp'-2 « (P[m«'3]P[W_1

for all u. Turning to the estimate of Q2, we get in the first case of (5.7), using
Lemma 5, QAP ~"Pm1 provided that \W\(gm+méB3 " pm which is certainly
satisfied (by (5.3)) if ju«mi6. Similarly we get in the third case of (5.7), using
the first statement of the Corollary to Lemma 5 and m>[n“/3], n>[m'/3],

2« (P,fPn)~e« pnT2Vp'n~2« (Pin**]Pm«*])-1

provided that \u\s(pm/\pn)e which is certainly satisfied if \ul<<z(nmf. Hence Lemma

10 is proved.
We next observe that

(5.9 P{\Om] & const+(mn)6}« (mn)“6

as one can readily verify in each of the four cases of (5.7) by observing that the
components of On#n are all normal r.v.’s with mean zero and variance «cl.
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We apply now Theorem 1 of [2] to the sequence Umm in the above ordering
and with Tmn=const-{mrif. Using (5.8), (5.9) it follows that the field {£, VENZ}
can be redefined on a suitable probability space together with a sequence

I,n*1} of independent random vectors such that the vectors Umn and Om,
have the same distribution and P{IC/T (7T n|é aT>,}"aT n where

«1,n « dmn(mn)-elog m«+(p[mip[{]) -1/2(/rm)M>..n+(mn)-e

and i=1 in the first and second case of (5.7) and t=a/3 in the third and fourth
case of (5.7). Substituting the definition of pk into the last estimate and noting that
i4i,n~(wY3 and dmn=\ in the first two and in the last two cases of (5.7), re-
spectively, we get by a simple calculation that

(5.10) am,n« {mn)~5

in each of the four cases of (5.7). As we have already noted, the random vectors
Umn are independent and thus the two sequences "I nél} and

m&l, «*1} have the same distribution Hence by enlarging the probability space we
can define on this space also the field VENZ} (retaining its original distribution)
such that the quantities Umn belonging to this field are identical with the Umn.
Then by the above relations we have

P{\unn-Uﬂ,T\' «w.n} S art,,

and thus

(5.11) IUmn—Umn\« (rnri)~s a.s.

by (5.10) and the Borel—Cantelli lemma. We claim that the fields {£, VvEIVZ}
and {(*H), vETVZ} satisfy (5.5).

As a first step in proving (5.5) we show the somewhat weaker inequality

(5.12) . ... A2 «([n] log log [N YA (lognD “ (L a)2a. (l0g« 2 1 ayiray &S.

where n={nx,n"). To obtain (5.12) we observe first that

(5.13) (mn)-J as. (mMm51,n¢é 1.

Relation (5.13) is obvious from (5.11) if m>[n°t/3], n>[1a3; to get it eg. for
1aBS[m's] we observe that (5.11) yields for n=1

Qm
(5.14) 2! Am)|[A m~Hm« m-~4 aS.

2 zm,i-zmtil<izm SMx/3<scm-4 as.

i=rm+i

Evidently, the last relations imply (5.13) for \*n”rm and rm+linS[m /3],
respectively. Next we state
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Lemma 11. We have
(5.15) I 2 jAij\« (tm, loglog tm0 1/2(/*“ 14+ t~14) as.
iSSh

for asy fixed sequence {e.”, i'SI,/EI} where e,j=0 or 1 (77ie exceptional
zero set in (5.15) may depend on the eitj.) A similar statement holds for the Aul.

Proof. Obviously
2 H,jM,j~ 5+ S3
Al

5r:v£[l,gn]>(G,£vv> %vﬂ}%(tl,UEW’ sz:dm’«viv

Here all the ev are equal to 0 or 1(ev=eW if vEN2 belongs to the index set of
the L-shaped sum At - and Gk:]SéJSfC (/», /). The sum Sx can evidently be

considered as a rectangular sum of a (non-stationary) random field {£* v6iVZ}
satisfying (1.1) and (1.2) with y&4098/<5 and thus the second statement of the
Corollary to Lemma 5 yields

where

P{\Si\ —A (tmTnlog log tmT,,rZ « (log mr,,)-"a+
+(tmT)~e« (M*‘+na?-BRY« (mn)-BAX/

for any fixed A>0 where T,= 2 Pi and B, g are the constants appearing in

(3.5). Choosing A large and observmg that T,<sc#2 the above estimate and the
Borel—Cantelli lemma imply that jSjj is majorized a.s. by the right side of (5.15).
Estimating isy and [Sf similarly, we get (5.15).

The proof for Aij is the same; we only have to observe that the assumptions
made on {Ev,\vEIVZ imply ck<gok+, dk«k~i (see (2.1)) and thus the Gaussian
field {C'\ VENZ satisfies conditions (3.7) and (3.8) of Lemma 8. Consequently,
the field satisfies also (3.10) uniformly in G; the latter relation now replaces (3.5)
in the exponential estimates above.

Next we show

Lemma 12. With probability one,

ft ‘m-1L*n-l

(5.16) sup 2 fv- 2 v«
v v=1,1 v=1,1
in-1-J-in
« (tmt,,log log /m,)1/2(log O - (i-i)/21+(log O - (1- &/2a)-
The same relation holdsfor £H instead of £v.
Proof. Set, for any rectangle I,
M{l) = max 12 iv|-
™ is J’ecfangle
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Obviously, the left side of (5.16) cannot exceed Fx+F2 where
Yi = M{[Il, ijx[i,,-, a, y2= M([tm L ijx[i, tn-x]).
By Lemma 7 we have
P{AYX*A A (tmTnlog log tmM ) Y2} « (log tmPh)~DAI « (Ww”+ n°)~DAi s<(mn)

for any fixed A>0 where T*=tn—tn_1 and D is the constant appearing in (3.6).
Choosing A large, using the Borel—Cantelli lemma and observing that

~const- /,(log i,,)-(1~a&Ya by (5.2), it follows that |LX is majorized a.s. by the right
side of (5.16). Repeating the argument for |T2 we get (5.16). For the field
(CIH), vENZ} the proof is the same, just instead of Lemma 7 we use Lemma 8 (see
the last paragraph of the proof of Lemma 11).

Relations (5.13), (5.2) and Lemma 11 with ef7= 1 obviously imply (5.12) for
vectors nEN2 of the form tj). Hence, using Lemma 12 and /1//T_r—1
we get (5.12) for all nEN2

After these preparations we can now prove the validity of (5.5) as follows. Let

D= nliJ:l{(l’;): tmi<irtm Isjs gny dj = min{i: (i,))ED} (@=12,.),

K =dtnhx, en= min{i:(t,, tn£D},

- g >
n- ot ™Rk 2.V Tm=, %%, v—i%- bV

RmJ = max \#Ztm' A
1,1
and denote by Vni Tml,Rml the analogues of Vn, TmJ,RmJ for the field
{IIK Vv€iVZ. From Lemma 7 and the Borel—Cantelli lemma it follows that
(5.17) V,, (k,,pnloglog knpnlz as.

and the same estimate holds for V,, (Recall that VENZ} satisfies (3.7) and
(3.8) andthus Lemma 8 applies.) Further, by Lemma 7 and (5.3) we have

FAmax (pmlloglog pmn)~II2Tms ~ C }« A,,(log pml)~Dd « m~2

for large enough C and thus

(5.18) Fry « (pmlloglogpml)12 as. for m S 1,

The same argument yields

(5.19) Rme <« (p;/loglogp'JY'2 as. for T 1 [IS/S gm

The analogues of the last two estimates are also valid for the quantities fmJ, Rnj.
Consider now a point (k,)ED and assume ™,,. Then by
(5.2), (5.13), (5.14), the relation 1, Lemmas 11, 12, (5.17)—(5.19) and their

Acta Mathematica Hungarlca 43,1984



GAUSSIAN APPROXIMATION 173

analogues for the ~ quantities we get, setting /?=(1—a)/2a,

I Kl
15.20) f <-z ) s @ pv2zixP-wi+z (}-,40,)+

m—I A A n—1 ej
z (Ri.i+Ri.i)+Tm, i+ Tmtl+ z 2 (PtPNU2\Zi,j— %i,j\ +

e, +1 3=1 1=1

n—lej m—I en
+7Z Z (4,j+2it])+yr|+P|'|« 2 p\is-i+Z(p'i*ogiogp'iirz+
s—1 i=1

j—1i=I

+ "Z o toglog o 0¥ (omi log log ., 1y 12+

+ 32:1 2|=i (PiPPII2W)~3+ (Ktn log log knt, 12+ (knpnlog logknp,,)1/2 «

« pT +(Pmllog log pml)12+ (pnp,,) 112+ (kntnlog log k,,try 12+
+ (k,,p,, log log knp,,)12« (logt j ~BtA2+ (log tm) - B(tml log log tml)112+
+ (log O ~P(log O ~B(tmrl, )12+ (A,tnlog log K try 12«
< (log k)~B(kl log log k1) 112+ (kI log log A)V2(AJAL2 a.s.

Let Dxc:D denote the set of those (A I)ED suchthat k”df. Observing that (5.1)
and (5.3) imply dt<cexp (/?i) for some yi>0, it follows that Dxz>{(A /): As 1; 1~/S
Aconste(logk)y} for a suitable y2=>0. Now, if (k,)ED1 and ?,,_!</*t,, then
As/, kr.d\*.d2_=k\ and thus (5.20) gives

I
2 /\V- % aH (kl'log logA2 ¥2((log k)-RB+k~1,i) « (kl)2/2(log kl)~R2 as.
v= I, 1 = 1

The same estimate can be obtained in a domain D2 where 2)2z: {(A/):/S 1
17A~const ¢(log /)*<}. Now if (k, /)$ DXUD2 then A>const ¢(log 25*/>const e
*(log A)» i.e. AA/»(log AL and thus we get, using (5.12),

2 er_zl aH (AlloglogA/)¥2((logA) B-f-(log/) R)

« (A)VY2(log log kI)~(B- 1)/2((log A)~i/2+(log 1)~R/i).

Hence (5.5) is proved in each of the domains Dx,D2,NA(D XUD2 and thus
Theorem 4 is proved in the mixing case.

Let us see now how the above proof should be modified in the case when
{Ev, VE€IVZ} is a Gaussian field. As an inspection of the proof shows, we made direct
use of mixing condition (1.2) only in the proof of Lemma 10; at all other places we
used only the central limit theorem (Lemma 5) and oscillation inequalities for the
field &v, vENZ which, by Lemma 8, remain valid also in the case when {£v, v€ NZ&
is a centered stationary Gaussian field with covariance function r satisfying (2.2).
Hence all what we have to prove is the analogue of Lemma 10 in the Gaussian case.
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We shall do this by using the Kolmogorov—Rozanov theorem (see [7]) and the
following two simple lemmas.

Lemma 13. Let {Ev,vdNZ}be a stationary Gaussian field with mean zero and
covariance function r(v) satisfying (2.2). Let Hx, H2<"N2 be finite sets whose
distance is d>0. Let ;2=|A0~122 £v(i—1 2) then \E]%]J2A<¢d~e2 where the

constant implied by <« depends only on the covariance function r.
Proof. A simple calculation shows that

(5.21) {Aezg; s} lij~<2+B>«

where the constant implied by < depends only on s. Evidently

EIFl» = \WA-A\H-A 2 fffiy 2 1
{ntz2:Hed}

and here the inner sum is clearly |9 11|A3" A 41/2A12 for any fixed p£Z2
Using (2.2) and (5.21) we get the statement of the lemma.

Lemma 14. Let {cv,vVENZ be a stationary Gaussian field with mean zero and
covariance function r(v) satisfying (2.2), (2.7). Let Hx If, Ilk be disjoint
finite subsets of N2 and set rli~\H\~ ]JZ%H 0=1, Then for any real

[

numbers cx, ..., ck we have
£'(Z ci'iy »~ (.Zc?)e

Proof. It suffices to show that for any finite HaN 2 and any real humbers
{c,, VEIV} we have

(5.22) E(2 "2 e

vEH

To verify (5.22) we extend the sequence {cw} for all VEN2 by setting cv=0 for
v$4 and note that

E(2 O/V2Sr(0)(2 O - 2 IKIOK2 \chv#i)= h-h-
VEH VEH Hiz* VEH

By the Cauchy—Schwarz inequality the absolute value of the inner sum in /2 is
S 2 cv and thus (5.22) is valid.

vEH

We can now prove the analogue of Lemma 10 for Gaussian fields {£,, VENZ}.
Using the same notations as in the mixing case, we shall show

Lemma 10(*). Let {f, VENZ} satisfy the conditions of Lemma 14. Then for
|v|<3c(Tn)6 we have

mPn)~d5 in the first and second case of (5.7),
Pim¢*Aim¢3)-t/s in rhe third and fourth case of (5.7).
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Notice that (5.23) differs slightly from (5.8); the exponent e/5, however, does
not cause any trouble in the sequel.

Proof. As in the proof of Lemma 10, we have )mJu)”™ Qx+ 02; we have to
estimate only 6i since the estimate for Q2 is the same as in the mixing case (cf.

Lemma 8). Let ,, denote, as in the mixing case, the u-field generated by those
random vectors UtJ such that (i,/)-<(»j, ri); let further denote the c-field
generated by the vector Uny,, Clearly, is generated by the one-dimensional

random variables xx,x2,...,xs where xx,X2,...,Xs are obtained by arranging
the components of the vectors U.yJ: (/,./)«<(m, n) in an arbitrary manner. A trivial
calculation shows (separating again the four cases in (5.7) and using (5.3)) that
s<se(mri)2  On the other hand, sdmn is generated by yx, ..., yt, the components
of the vector Uny, evidently t<s:(mnfL3 in all four cases of (5.7). Now, the r.v.’s
XX, ...,XS,yX, ...,yt are all of the form \H\~12Z £ for some finite sets HczN 2
VEH
s t'
say #!, ..., Hs, H[,..., Ht. Denoting by d0 the distance of _UIFIr and 7U1$=|),
1= =
we obviously have

,, in the first two cases of (5.7),
i.-iApi-!» (p[m<3JP[>3])42 in the third case of (5.7),

where a”b means a<zb<s:a. Since the vector (jc}..., xs,y X, ...,yt) is Gaussian
and {Xx, ..., X9), = ...,¥t}, the Kolmogorov—Rozanov theorem
(see [7]) implies

(5.24)
sp \P(AB)-P(AIP(B)\ 5 _sup EU JU )Iul

"""" Em2( 1 ciXij Ev214 djyj\
From Lemma 13 and the Cauchy—Schwarz inequality it follows that the numerator
on the right side of (5.24) is
s a2/t a2

gljgl\Ci\\dj\d’\ E,ﬂ, clh [Z/jj (st)l2dgS2

Since the denominator is (ZS ciaﬂaf 2' d]y/2 by Lemma 14, (5.24) implies

(5.25) U \P(AB)-P(A)P(B)\ S const *(s/) U0 12
n, mn

In view of Lemma 1, the right side of (5.25) is an upper estimate for the quantity
6i in the proof of Lemma 10 and hence using (5.25) and the estimate obtained
for s,t and dO we get (5.23). This completes the proof of Theorem 4 in the
Gaussian case.
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Proof of Theorem 1 Since statement (B) obviously implies statement (A),
it suffices to prove the implications (A)=>(C), (C)=*(B) and the equivalence of (C)
and (D). The implication (C)=>(B) is an immediate consequence of Theorem 4.
Indeed, observe that the field vgiVZ} in Theorem 4 is completely determined
by the quantities ck,d, in (1.8) where r is the covariance function of the field

fvvEIVZ (note that a2— 2 cke Hence if {v,vdNZ and {(, AZ satisfy
the conditions of Theorem 1 and condition (C) is valid then we have

(5.26) g 2 75)  [n]u2(log log[n])-"((log «j)_A+(log as.,
(5.27) \;th\%n ivB” [n]Y/2(loglog[n])_A((log n) _A+(lognd-') as.
with the same field VETVZ} in (5.26) and (5.27). (Here n=(nlLn2 and A'is

a positive constant.) (5.26) and (5.27) obviously imply (1.20) and consequently (1.12).

(Strictly speaking, the probability space supporting the fields <v and may
be different from the space supporting the £v and GH)- However, using
the Kolmogorov existence theorem and Lemma Al at the end of [2] it follows
that the three fields £,,£», GH) can be redefined on the same probability space such
that the joint distribution of the fields {fv, vE7VZ}, {£iH), vEN 2} and also the joint
distribution of the fields {iv,vE7VZ, {JH), vEN 2} remains unchanged. Obviously,
in this case (5.26), (5.27) remain also valid.

Next we show the equivalence of (C) and (D). Observe that both {£,, vE7VZ}
and {£,VvENZ satisfy the conditions of Lemma 4 and thus, using the Corollary
of the same lemma we get, setting Rn=E(2 iv)2£{ 2 &2

. . . a2
<<i4,<I,m4 R, = at lim R, nlf\IrlliiTl o0 Rn (C|’*)2

where ak,bk, a2 are defined by (2.5) and at, bf, (a*)2 are the analogous quantities
forthe field {fv, vE7VZ. iNote that (1.9), (1.10) and Lemma 14 imply E(V;“iv)Z—aoM

for all nEN2 with a positive constant a0 and thus @i*>0, b£=-0, (u*¥)2>0.) The

above limit relations show that condition (D) is equivalent to ak=at, bk=bk
(k=1,2,...), er2=(cr*)2which, in turn, is equivalent to (C) since the numbers ak, bk
(k=1,2,...) in (2.5) uniquely determine the numbers ck,dk (k=0, £1,...) (note
ck ¢ dk &.

Finally, to show the implication (A)=>(C) assume that (1.11) holds. By the
law of the iterated logarithm for one-parameter mixing and Gaussian processes

(see e.g. [12], [13]) we get, using also the Corollary of Lemma 4,

(5.28) limsup (2 £v)/(2[n]loglog [n])12= ajla
nl=kTI2-*@ v~n
(5.29) limsup (2 Q/(2[n\loglog [])12= (ak¥ 2

for every fixed Kk where ak, at denote the same quantities as in the previous para-
graph. From (1.11), (5.28), (5.29) it follows that ak=at and a similar argument
yields bk=btmAs in the previous paragraph, this implies that (C) is valid.
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Proof of Theorem 2. Let {£,vEN2} be a weakly stationary random field
satisfying (1.1) and (1.2) with y”~4098/<5. Let H —(1i1, H2 H3J) be a partition defined
by (5.4) and {£'H), vEAZ} the corresponding Gaussian field defined by (3.1). Let
az2= ng* r(v) where r(v) is the covariance function of the field {cv, vE7VZ}, set

Uj="maxk and consider the finite Gaussian processes (x*, [*Jc”v,}

(1=1,2,...) where x[b=C(k,0 Each of these processes is an initial segment of
a stationary Gaussian process with mean zero and covariance sequence {c,, n"O}

4-00

where ¢, is defined by (1.8). Since c,,«n-2 by (2.1) and a2— 2 ck—c0+2 200 Cb

k=1
it follows from Lemma 9 that there exist processes {y”, 1" k —r(} 1=1,2,... such
that, for every fixed /, the r.v.’s yjp, Isfes», are independent N(0, ad r.v.’s and

(5.30) 2 (4°-A0) % N UlogN)-v~*)x

for each 1 which is of the form N =ti. (Of course, an enlargement of the
probability space may be necessary for constructing all these sequences on it.)
Moreover, since the processes {X)*\ 1"k =u,} are independent, the approximating

processes {y”, 1 can be chosen in such a way that the <7-fields séy=
=o'{xINy£1I), 1Lk Sti,}, 1=1,2,... be independent. Analogously, considering the
independent Gaussian processes {x)K), 1*1 ~*vK), k=12, ... where max |

and xik)=C(kj) ~ follows that there exist processes {y*0, Is/*r,}, k=12, ..,
each composed of independent N(0, a2 r.v.’s such that the e-fields alk=0{x)K\ y[kz
1S/Sw), k=1,2,... are independent and

(5.31) 2.<&>No) , IVUlogN)-v-viz*

foreach 1" N " vk which is ofthe form N =tj. Since the processes 1=k =},
1=1,2, ..., {xK 1*17vlj, k=1,2,... are independent both of each other and
of the field {£iH), vEHJ, we can also guarantee that the e-fields s/h I~ 1 and
3K, kA1 are independent of each other and of a{CiH vEH3}. Set

if v= (k, Qc#!,
if v= (k t)EH2,
if vEtf3,

then evidently £, rEA2 are independent N(0, ed r.v.’s. We claim that £iH) and
G satisfy

(5.32)
2 OH)- 2 Ows:(H IbglogN)Y0o0gni)_(1_)/2i+(logn"(1_y2) as.
where n=(ti1,n2. Since 1V(n)= 2 4 is a Wiener process, (5.32) and (5.5) together

X—n
imply (1.14) i.e. the statement of Theorem 2. In view of Lemma 12 (which is also
valid for the CHand G)) it suffices to show (5.32) for the values n=(t., tj). Observe
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now that

Cr-w +1 2 =

2 1958y

= i ?
fCI=24 e)+i:f2 £7P, say

O8) Fgle) i =gh 2 |
V

and the terms of the last two sums are independent random variables. Now, both
vk and v, are of the form tt (cf. (5.4)) hence if (P, Q) is of the form (tb tj) then
by (5.31) we have

UR2) b« B 12(logh)-(1- %2, 2sftsP.

Setting zk=Q~V2Qog QY1- “)/Z2*T(?) we then have i?zt=0, ||zJ3S| and thus
(5.34) T(PloglogPR)1¥2Z} K (log PR) A2+ P 18

as one readily sees by using the central limit theorem with Ljapunov’s remainder
term (see [9], p. 288) or the Chebisev inequality according as plEz\ exceeds P3,i

k=
or not. (Obviously the last sum is SP.) Now, if (P, B)=(t;, tj) then P:»exp (/*),
log PQ»ia+jar(id)‘a further forany integer P € 2 there exists at most const «P 1/16
different integers Q satisfying (P, Q)£EH2- Hence adding up the right side of (5.34)
for all (P, Q)£H2 which is of the form (P, ) = (t-, tj) we get a convergent sum
provided A is large enough. Thus with probability one we have

(5.35) k2_24e)« (PQ1°g bg PR)1Xlog a.s.

for (P, Q) =(ti, tj)EH2. Observe now that though by its definition the sum jg?zx[Q

k=
in (5.33) depends both on P and R, for (P, Q) Ell2 this sum actually does not
depend on R i.e. its value does not change if we replace (P, B) by (P, Q) where
Q'—\Wp. Since vP is of the form and the right side of (5.35) is an increasing
function of Q for large enough B, it follows that (5.35) holds also for (P,Q)=
= (fi, tj) ifP/2. Using the same argument for the we get

1:%q\p)/\ (PQI°g logPR)V2logP) (1~)Y2a a.s.

for (P, Q) of the form (fi, tj) and thus (5.33) implies (5.32) for values n of the
form n=(ti, tj), This completes the proof of Theorem 2.

Proof of Theorem 3. Let H=(H1H2 H3 be the partition of N2 given by
(5.4) and define the function f(x) (jc*O) by

(12 if OSisSfj,
ifimt/3T /2 if tmi<xSt, (M=2,3,..),
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where 0<a<1 and tm is the sequence defined at the beginning of Section 5. Then
obviously

tf1= {nENz: nj H2= {nf/V2: n2</(«!)},
H3= {nEN2: Tii —/Oh), « ~/(ni)}.

From (5.1) it follows that /(x)<scexp ((log x)*) (x*2). Let r(v) be the covariance
function of the field {£v,vEiVZ and set a2= 2 r0>), let further {£», VEArZ} be

vgZ*
the stationary Gaussian field with mean zero angd covariance function r. In view
of Theorem 4, Theorem 3 will follow if we show that the fields {//'& vEN~} and
{H vE/VZ} can be jointly defined on a suitable probability space such that

(5:36) 2 & *et)- 2 CH « M1Xloglog[n])-{(k"nj)-*+ (Iogna)") as.

where n=(nL,n2 and x=(1—3a)/8a. The proof of (5.36) is almost identical with
that of Theorem 4 in the Gaussian case and thus can be omitted.

6. Proof of Lemmas 5, 7 and 9

To complete the proof of our theorems, in this section we give the proof of
Lemmas 5 and 7 which we postponed until now because they all use standard but
rather tedious calculations. We also give a simple direct proof of Lemma 9.

Proof of Lemma 5. To simplify the formulas we assume G=[l,m]; the proof
requires only notational changes in the general case. Let 0</?S1/2 be a sufficiently
small constant and put, for /=1,2, ...

K, —{: ()ml-B<;S/mlp} L =4f:/mlA—/m<j"

Gt= K,\Lt.
Also, set
skt= 2 v (1S k=2r /=12".), Zkit— 2 v,
velkXGt VEIKkXbt
Rk = v£/kX(G€ISté#n o) v,
and
6 f,j = (UN-"EISPSW) (L7, j 1.

Since the vector (Gj*, ..., S() is Gaussian with mean zero, we have
jEjex ix S<1>+...+"-S<1>J=ex - . jh”j
FIoP i fi. Py i fin
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Hence the left side of (3.2) cannot exceed ]Ei|+ [e2+ £3! where

[ \M*kS)\uk )\ | [ISSmPISKSF \uk )l
s=elLx\ 2 2 M EIexP[ 2
| (1stSm~Isfesr \ uk )) IStSm » UsitSr \ uk )}

B= EjleXpEIS?(Sr \A 5" H' eng( Taj ﬁ 1y d )
We estimate each of 61, €2 and s3 in turn. Using the inequality |exp(w)—exp(/6)| =
LLLa—b\, valid for real numbers a, b, one readily observes that

6.2) ZM i ieh, 260 R

s 2 AENIMRI*+ 2 £U(Xe)(2H)
t=1 Yu IStSm»
where a isthe constantappearing in Lemma 3. Estimating E\RK2+x and E\Zkt\2+*
from Lemma 3, (6.2) gives
ki —(.22 4 1] tn~p,i§ WX\ Yr m~R;t

provided B~ 1/6. To estimate e2 we apply Lemma 2 repeatedly with pl=pi=2+S,
pr—1+2/<5 and take (1.2), 0<(5” 1 and yé&82/<5 into account; one gets [eZ«
sc(frn)~ys" +H)mBRSm~1 using B~1/2. Finally, to estimate s3 we use the well
known expansion of the characteristic function of a r.v. with a (2 + a)-th moment
(see [9] p. 199) to get

(6.3) I K +ra
14

where a is the constant appearing in Lemma 3 and

2+a
\T\ S cxE

with a constant cx depending only on a. By Lemma 3 and the Minkowski inequality,
(6.4) [7IVe+)« 2; klm-"*S |Afr m~B,i.
k=1

Applying Lemma 4 for E(SittSJ,) and Lemma 6 for E~AS”ASA) (notice that (2.1)
and yé82/(5 imply (2.2) with e=1) we get, using also (6.1) and assuming /?¢ 14,

(6.5) (Wi M)_1/2£(8i,t51) = conste0em~18 =
= m~B(fi, j +const «0 em -1/8)
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where in the last step we used the fact that |/;;|<scl (by Lemma 6 and \qr /k)\s
AN A 22012, Hence

(6.6) e\l2 -A"S kX =m ‘;z J,AN+const.fl. |;.[Vm-4_.
[k=l \uk ) (rj=i J

Now, using (6.3), (6.4), (6.6) and the relation 1+x=exp (x+.D(x32), valid for
x=0(l) we get, setting o= min (1/8, oc/2),

n elopi 2
I1IStSm* [ (IS/cSr y Uk jj
= N 2 f.jrj+const-e-\i\&2m -R-*\ -
ImtSm» ( LM ij=1 )
= N exP | 2 ft,jMtXj+consteemAVem R € =
= exp j? fujh” (1+ const <0 mVerem ~¢)

provided that LWir*TeB Since (fj) rXr is a covariance matrix and hence non-
negative definite, it follows that |e3<san e/2 for |ArSme/l2 Collecting the esti-
mates for |ex, €2, [e3 we get the first statement of our lemma.

Observe now that the only place in the above proof where the weak stationarity
of {fv, v6jV2L was used is relation (6.5) where we applied Lemmas 4 and 6. If we
modify the definition of fW to fij=m p(uiu)~L2E("SittSjtt) then everything
remains valid in the proof above even without weak stationarity and hence the same
estimates hold for [e4, |e2, |e3. It remains now to notice that for the new fij
we have [ by the Cauchy—Schwarz inequality and Lemma 3.

To prove the Corollary we observe that (3.4) and (3.5) are symmetric with respect
to nx and n2 and thus there is no loss of generality in assuming n*n”. From
Lemma 5 it follows

6.7) JE-{exp (-jJNTTFjJ-exp [-y<r2A[ <cn2ztk [n]-¥2 for L =5[n]n2

where 0f=[/i]-1.E( N {ev,vdNZ} is weakly stationary and a2 is some

number <scl if weak stationarity is not assumed. In the latter case (3.5) follows
immediately from (6.7) via an Esseen type lemma (see e.g. Lemma (2.2) of [2]).
In the weakly stationary case we observe that Lemma 4 and its corollary are valid
for the field (Cil), vENZ as well (by Lemma 6), hence by the third relation of (2.4)
we have [<2—12«:(n1Am2)~14 and thus (3.4) also follows from (6.7).

Proof of Lemma 7. We start with showing the following
Lemma 7A. Let {cv,vVENZ} be a (not necessarily stationary) random field
satisfying (1.1) and (1.2) with y&4098/<5, let SV_H\/ ant™ et n=(nx, n2£N2
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with w~n2. Thenfor every real x we have

(6.8) P{max SvAh x} n 2P{.VAn ax Sy”n x—L[n]]/Zj}+const-
and
(6.9) P{max Své x} * AP{Snrsx—L[n]V¥Z}+consten2R

where L, B are positive constants.

Proof. We first show (6.8). Let -< be the lexicographic ordering of N 2 i.e.
p<v iff /Xi*"Vi or pAV! and g2<v2 where p=(jpi, pd, v=(vxVv2d. Set, for
any L>0,

A —{maxSv” x, D={ max SvS x—L[;i]J/Z;},

-V

Av—{SvS x and 9),< x for p<v}

= {svMP-Sv” -y [n¥YZ} (v=>5n), Cv={sv-SwWy -x[NTI)

where, for any v=(v1; vJ61V2 the vectors v* v<) are defined by v*=(/i1; v, v(p)=
=((vi+p)Axzj, v9; here p—n\ where q is a number satisfying 2/y<pg<a/(2 + a)
with y and a appearing in (1.2) and Lemma 3. Since a=5/1024 and yé 4098/5
by our assumption, such a number q always exists. By Lemma 3 and the Markov
inequality we have P(CVY”" 1/2 if L is large enough (Cv denotes the complement
of C\. On the other hand, the events Ay,vSn are disjoint and their union in A
hence we have

(6.10) P(A)= 2 pW =22 P{AYP{Cy ==22 {P("vCy+constp-i)

where in the last step we used (1.2). Now, by the disjointness of the Avs and

AVB\CvcD we have

(611) 2P (AVCY = P(u AVBVCY+P (U AVBVCY"P (D) +P((J BY~
sp(py+ 2 p¢ N BYAP{D)+ 2 5 ) max \ﬁ \

=1 \=in, vj=1 I is rectangle

where f —{v=(vl, vAEN2:vSn, I*v~Al+pl and “rectangle” means rectangle
with sides parallel to the coordinate axes. From Lemma 3 and a maximal inequality
of Moricz (see [10], Theorem 7 or the first inequality in Lemma 7 of [1]) it follows
that the expression P {max ...} in the last sum of (6.11) is

« (pMY1+a/2>« ni-(i+«/2)(i-e> = n-a+v
where 2>0 by a/(2+a). Thus, by (6.11),
(6.12) 2 P(AVCY " P(Z))+constenfA

Observe also that [n]p~7Sn2yA by n”~n2 and here the exponent of nl is negative
by g>2/y. Consequently, relations (6.10) and (6.12) imply (6.8). Using a similar
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(in fact simpler) argument we get
P{ max SvS S SPIS), » y—L*[n]L2}+const *n2f3

for any real y and suitable positive constants L*, 8. Hence (6.9) is also proved.

We can now easily prove Lemma 7. Clearly, it suffices to prove (3.6) without
the absolute value sign on the left hand side. Also, there is no loss of generality
in assuming nl*n2 where n=(nl,n2. Let aw, denote the left hand side of (3.6)
(without the absolute value sign) then by Lemma 7A and (3.5) we have the two
estimates

in2(exp (- Bt24) + nf®)+ nf R
613 2exp ( ) )

a"r<<lexp (-Bt24) +n2R

both of which are valid for all n and t*2L where L, R are constants of Lemma 7A
and B, ¢ are the constants in (3.5). Now, if OSiSZ) logl/2n] withasmall D then
evidently nfAnfrexp (Btd (since [n]Snf) and thus using the upper line of (6.13)
for n2Sexp (Bt2S) and the lower line for n2>exp (Zzh28) we get the desired bound
for ant Hence (3.6) is proved for t~2L; obviously it is true also for 0Si”2L.

Proof of Lemma 9. Note first that

(6.14) =" +0(fel"82)

as one can easily verify by a simple calculation. If a2=0 then (6.14) shows that
the variance of 2 f£«is <K*1-H2 and since this sum is normally distributed with

i=1
mean zero, its fourth moment is <ck2~c. Hence in this case (3.12) holds with £f=0
(i=1,2,..) ie. the statement of the lemma is valid for €=0. Assume now <2>0
and set, with the notations introduced at the beginning of Section 5,

SP>= 2 b rw= 2 Z, xk=p "Btk yk={pi)-12T «.

By (6.14) and stationarity we have

(6.15) ffa2 ~ Ex2S 2tr2 for i i0.
Further, by the one-parameter version of Lemma 13 we have
(6.16) \EXiXj\ « @s/<y).

Now let ak,...,ak be arbitrary real numbers and set ak+l—ak+2—... —0. Then
we get, using (6.15), (6.16) and the Cauchy—Schwarz inequality,

(617) e [2 e?) Const-/2:l \(_% Iaiai+|u oI+ 0 40~

i ip-
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if i\ islarge enough. Now (6.15), (6.16), (6.17) and the Cauchy—Schwarz inequality

T NG R ) SR

« (i |fq)fc-0(i d?) 12S k=B (k* h)

for any real numbers dtl, ..., dk. Hence, denoting by ¥k and sfk+i the cr-fields
generated by xh,...,xk and xk+1, respectively, the theorem of Kolmogorov
and Rozanov (see [7]) yields
sup IP(AB) —P(A)P(B)\ <ck~® (kS iX.

Ae +1
In view of Lemma 1 and the trivial estimate P{\xk\*ks/4<Kexp (—cklp<ck~16
this shows that Theorem 1 of [2] applies to the sequence {xk,k” ik} with Tk=ka
and gk(u)=exp (—tr2u22) and we obtain that there exist independent N(O, a2
rv.’s {ik,k~iJ suchthat

(6.18) P{\SA-py\K\"p}I*k-@ « k-* (feSiO.

Choosing nk, I"k”~ix in such a way that they are independent N(0,02 r.v.’s
and are independent of the sequence {ik, k ~ix}, (6.18) will hold for all /ce: 1.
If the probability space is large enough, there exist independent N(0,a2 r.v.’s
{O¢ké 1} such that pkzjk= Z (r With exponential tail estimates for T'K)

and its analogue for the sequence we get from (6.18)

(6.19) P{\'t Z f6-Q|*PifAc-G«lc-8
-1

Obviously the Ze norm of the sum in (6.19) is « (tk—tk-1)12 and thus using the
inequality

EICHE =0 (ET 80| ty'2+t3
valid forany r.v. X with £T6<°° andany i&0 we getfrom (6.19), using also (5.2,)
(. e (tk- tk-1)1X-i30 t20ogit) (L

A-1=9,K
whence the statement of the lemma follows immediately.
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NORM ESTIMATES FOR (C,S) MEANS OF
HERMITE EXPANSIONS AND BOUNDS FOR <&ff

C. MARKEIT (Aachen)

1. Introduction and main results

Mean convergence of Hermite expansions in Lp{— °°), 4/3<p<4, has been
proved by Askey —Wainger [3]; Muckenhoupt [14] has shown that the range of
convergence can be enlarged by introducing more general weight functions. In
1965 already, Freud and Knapowski [7] have solved the (C, <§ summability problem
for <=1 and p=°°. The (C, 1) summability for 12» ~  has been established
independently by Freud [5], [6], and Poiani [15], more general weight functions
being admitted in [6], [15], too. The problem is unsolved as yet for 0<<5< 1.

The purpose of this paper is to give norm estimates from above and below
for the (C,S) means of Hermite expansions for any <5s0, 1S jjS*“, which will,
among other things, imply that the Hermite expansion is (C, S) summable for each
Igyjroo if &1/2.

The following notations will be used. Denote the Hermite polynomials and
functions by

MH,,(x) = (- )nex,(d/dx)ne - xt
()} (x€ER,n€P= {0, 1,2...}),
[ 8,.,(*) = (82122""nN)-1/2HN(x) e~xt,i
respectively, and let Lp(— ..~ <o) be the Lebesgue space with norm ||/|'1p(_t0, . ,-
={ f \NeVidx}Wwp for I2p<°°, ||/|lz.~(=0, <»)=ess sup |/(x)| for p= °0. The

Ceséiro means of order <5s0 of the Hermite expansion of a function f<ELp(—°°, «),
14/)S “, are defined by

(1.2) (C, QMf x) = (A*)-1 fmf(t) 2_ As-kbIx)b10 dt (jcER, n€P),
where a _O

(13) A* = ~ns &” 0, n—oo).

(Here ~ stands for A%=0(ns) and ns—O0{Af) as n-+°°) Instead of an &;
expansion in 1/( —= °°), we will consider the (formal) //,,-expansion

f~ 21~ (k,H)H ki),
(1.4) ) (fc6P)
f ~(k, H) = (\v*2cl)-i / AOHK(0 e-*dt
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188 C. MARKETT

of a function f in the weighted Lebesgue space
15 Lpv = {/; 1O (*)HUT-~,~) <», u(x) = e~xifl2} (1 =p =),

and investigate the corresponding Ceséro means of order 570
(16 (C, 5" (fx)- (AJ)-1K2_OA*n-kf~ (k, H)Hk{x) =

(A%)-" 1 1(0 irg AR-Nn”2kk M H k{x) Hk(t)e-'%lt (*€R,n€P).

The investigation of (1.6) in the space (1.5) is equivalent to that of (1.2) in the spaces
Lp(—>°, co) since the following relation between the respective operator norms is
obvious:

(1.7 lie, <5),%P(_Te,m)] - H(c, <5)[tiH)] (1s,s -).

An expansion in Hermite functions §,, can also be regarded as an expansion
in eigenfunctions of the Hermite differential equation in its normal form (cf. [16;

(5.5.2)])
(1.8) (d2dx3y(x) + @n+1-xJy(x) =0 (nfP),

so that the distinction between expansions of the second and third type made in
[13], i.e., with respectto £“ or g (cf. [13; (1.10), (1.12)]), does not arise here.
Our main results are the following.

Theorem 1. The (C, <§)" means of the Hermite expansion satisfy,
i) for &= 0:
n2/(3p)-1/2, 1=p< 4/3
log(n+1), p=4/3
(1.9 IRC, 0)?||LHL ~"C<1, 4/3<p <4
log(n+1), p—4
wirs-2/(3P f 4 < p o sco=;
ii)for 0 < 6™ V2
B(n)n2p-32~5 17 p =s4/(25+3)

(1.10) IRC, <5)"2H):  C, 4/(25+3) < p < 4/(1—20)
B(n)nl2~2p-s, 4/(1-25) 00;
iii) for 5> 1/2:
(111 IRC, 5)"||I'FU¢I)] siC, 1=p="-o

/lere WEN={l, 2, ...}, and C denotes a constant, independent of n, which may be
different at each occurrence, and B(n)=B(n, p, S)=o(nT as n-+°° for each 7>0.
In particular, if p=1 or p=°°,

C, 0<5< 12

(1.12 Clog (n+1), 5= 172
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NORM ESTIMATES FOR (C, §) MEANS OF HERMITE EXPANSIONS 189

Comparing the bounds in (1.9) and (1.10), it follows immediately (cf. also
[13; (1.20)]) that, e.g. for p=1, (1.10) can be sharpened to

n/s, 0=6<1/3
1/2-8 13=6<1/2
HI[L S = % #
(1.13) IC Mz = CY1og (n+1), 6=1/2
1, 0 =12

THEOREM 2. Let 0=8=1/6, 1=p=co. Then there exists a sequence {m}xcnCN
and a constant C =0, such that

nON-112-3 | = p = 4/(3+65)
(1.14) (€, 5),';"11_5(”)] = Cil, 4/(3+60) = p = 4/(1—-60)
ni/s-2Gr -3 4/(1—-66) < p = oo.

For 6=0, p=1, (1.14) is even valid without restricting n to a subsequence of N.

Thus our upper and lower bounds match when 6=0, whereas for 0<d<1/2
there is still a gap between them. It follows that

(1.15) 1/6 = 8. = 1/2,

and it remains an open question whether J.¢=1/2 or not for the Hermite expansion.
Here & is the largest 6=0 with the property that the Hermite expansion is not
(C,0) summable for at least one f€Lly (ie., the (C,5) means are “‘effective”
in LPy . 1=p=e, for all 6>0d.). Nevertheless, the present results already
imply that there is an essential distinction between Laguerre and Hermite expansions.
Let p, denote the largest p€[l, 2] such that a given orthogonal expansion diverges
for at least one f€Lm, and let y be determined by {|(C, 0),/l;3~n?, n—eo, thus

(1.16) y =1/6, po = 4/3, 5.€[1/6,1/2]
for the Hermite case; and in [12] it has been shown that
(1.17) Y =1/2, py = 4/3, b¢ec = 1/2

for the Laguerre case. According to a conjecture of Lorch [11; p. 756] one should
have y=d¢; for both cases (and others), which is true in (1.17) and would imply
Ser=1/6 in (1.16). On the other hand, Askey [l; p. 812] noted that in several
known cases the line in the (1/p,d) plane which connects the points (1, d.¢) and
(1/py, 0) always meets the point (1/2, —1/2); cf. also [2; p. 81]. The latter principle
applies to (1.17), but it would apply to (1.16) only if J.=1/2. So, in contrast
to the Laguerre case, in the Hermite case either Lorch’s conjecture or Askey’s
principle fails.

Concerning the method of proof, one may either trea: the Hermite case parallel
to the Laguerre case, making use of the fact that many e <ential features coincide
for the two expansions (as carried out e.g. in [3], [14]), o1 on¢ may derive assertions
for the Hermite expansion directly from those for the Lagu°rre case since the two
expansions are transformable into each other by (2.1) below The latter approach
was chosen e.g. by Szegé [16], [17; Chap. 9] (pointwise convergence and summability)

Acta Mathematica Hungarica 43, 1984



190 C. MARKETT

and by Poiani [15] ((C, 1) summability in the mean) and will essentially also be
followed here (except for the proof of the case 5=0, I<p<°° below). This
requires norm estimates for the Laguerre expansion in spaces with parameter shifted
(see Theorem 3 below) as have been presented in [13; Sec. 4, 5]. The fact that the
shifting produces an improvement of the exponent of divergence then leads to the
y—1/6 in (1.16) instead ofthe y= 1/2 in (1.17).

2. Preliminaries

The following properties of the Hermite polynomials and functions (1.1) will be
used (cf. [17], [14]):
I H2n(x) = ()m22im!  12(x9
(2.7 (MEP, X£ER).
ttf2mHl(x) = (—)m22n+iml L, 2(x9 x

The Christoffel—Darboux formula reads (cf. [14; (2.9—15)]):

(2.2 2 bIX)E>K(0 = b,,K+cn(h2+h3,
;=0
where

K(n, x, t) = §,(x)8,(), h2(n,x, 0 X —t

h3(n, x, t) = h2(n, t, x), 1/37h,,c, Al (nEN).

Following [3] and [14], there exist positive constants C and vy, independent of
X and n, such that
r(7VU3+ |x2-JV|)-14, x2 2N

(2.3) 1$,,(x)| =c jexp(_ yxd) oy (6P,
N~1 2- 14 2N 2TV
(2.4) |§,,+1(x)—§n_l(X)I"CJ(eXP(ZS,\f;Jr e M X on (N,

where N=N(n):=2n+1. Obviously, (2.3) and (2.4) remain valid, if the transition
point x2=2N is replaced e.g. by

(2.5) AN.

Lemma L (Cf. also [10] for p=1, p=°°, and [8] for p=4.) The Hermite
functions satisfy

nl/(2p)-1/4; 1n p< 4
(2.6) InWillst—q  n_18(logn)¥4, » - 4 n ),
n —I/(6p) —1/12" 4 < p
(27) H+iW -ShriWle'i e) A nli(2p)-1/4
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PrOOF. Since $,(x) is either an even or an odd function on R (cf. (2.1))
one has, by (2.3),

195 (O Lo(= o0, 00y = { f |9, (x)|? dx}llp = 21/P{f Ign(x)[pdx}llp =

o I, 1 - 2 1/p s d
gc{(oj +v£ ) (NV3 4 |x2— N/ dx+y£e‘“’" dx} =c{j§1 1,.} ’

say. Setting N3+ N—x*=(/N+N+x)(YNB+N—x) in I; and N3+ x*—N=
=(x+YN—N7)(x—YN—N3) in I,, the first factor is =CN'? in both cases,
uniformly for xé€ [o, Vﬁ] Xx€ [Vﬁ, Vm, respectively. Evaluating the remaining
integrals and comparing the three upper bounds obtained, the upper estimate in
(2.6) follows. Analogously, the upper estimate in (2.7) is proved by means of (2.4).
For the lower bounds we use the asymptotic expansions of $,(x) and of $,.,(x)—
—9,-1(x) from [14; (7.2—3)] and restrict the range of integration in (2.6) to
[1, N2—pN-"%], and in (2.7) to [1, b YN/2] where N is chosen sufficiently large
to be able to apply Lemma 15 of [14] to the principal term. Moreover, in the first
case b>1 has to be large enough, and in the second case 0<b<1 has to be small
enough, in order that the remaining terms can be neglected. Then the assertions
follow.

3. A relation between the operator norms of the Cesaro means
of Laguerre and Hermite expansions

We make use of the connection (2.1) between Laguerre and Hermite polynomials.
But instead of comparing the (C,d) means of the two orthogonal expansions
directly, as done in [15], we first pass to the corresponding Riesz means since these
are easier to handle in case J is not an integer. Moreover, we want to set up an
explicit relation between the operator norms in order to make also the rate of
divergence transformable from one expansion to the other. A slight extension of
a general equivalence theorem of Butzer, Nessel, and Trebels [4] (cf. also Trebels
[18]) for Cesaro and Riesz means of Fourier expansions in Banach spaces is needed
for this purpose.

Denoting by [X] the set of bounded linear operators from a Banach space
X into X, we assume that there exists a sequence {P}xcpC"[X] of projections
which are mutually orthogonal and total, i.e.,

3.1) P;P, =6, P, (j, keP),
(322) f€EX and P, f=0 for all kéP imply f=0.

The Cesaro and Riesz means of order =0 of the orthogonal expansion of feX
are then defined by (cf. (1.3))

33) @, 6)"f=(A2)"‘k§"0 A P.f (n€P),
(3.4) Bisef= 3 (=klfPS (@>0).
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192 C. MARKETT

Lemma 2. Let X, {4}p satisfy (3.1) and (3.2). For each fEX and each
<570 there is a constant C, independent of f and n or g, suchthat

(3.5) m,S)nf\x AC  sup (n€P),
(3.6) \®i, X * C s WV, KA (e > 0)

Proof. The proofis an immediate extension of [18; Theorem 3.19]. Indeed,
(3.5) follows from (cf. (1.3))

m, S ) nf\\x =S(/) (e M I Mhiief\\x \u(n+i-Q)\dQ =8

=C sup WAriJwx f \(g)\do,
f

0<fSn+l

where u denotes a certain 1J(0, °0)-fimction.
For (3.6) one defines a multiplier sequence /j(*, § by

(I-k/eY, K 2=q
Wi 9= {, KA B

and its fractional difference by
Ai+lrk = 2A;*-*r k+n (fc€P).
m=0

(B > 0)1

The Riesz means can then be written as (cf. [18: proof of Theorem 3.3])
(3.7) awm.. /= 24]le,0)pk = 2 AUAs+Irk(e,6)](*6)kf  (fexy

The assertion now follows in view of
(3.8) A (.ﬂ{]gQNQ 8KN1xMe,Mb..H,

since ft]dovd+l (cf. [18; Theorem 3.18]).

In the sequel Lemma 2 will be applied to three particular cases. As in [13]
we define the (formal) expansion of a function / into Laguerre polynomials
LL(x), oo — (R?,:=L°(x)ILI(0), 1E£(0)=A") hy

(39 [/~ g/~(.|<,«)L|,(x), I (k,a) = (r(a+1))"1/ f(t)R*k(t)e-“t°dt

and its Cesaro means by (x"O, oo— 1, (5&0, n£P)

(3.10) (C,5W x) = (A*)-12 A%kf~ (k, a)Z|(*) =
(Tid+1)~)-1/ /(0 kgo A* KLKk(x) Rk{i)e~‘t*dt.
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Here the function / belongs to some weighted Lebesgue space:

@11 ZEQ) = {/; /() u(y, X)[|LRO,-) < °°, u(y, x) =e XXxy2Z (1" p =)

Corollary 1. Inequalities (3.5—6) of Lemma 2 hold in the following particular
cases (cf. (3.9—11), (1.4—6)).

G, <5),/= (C, b tf
(3.12)

(*/\0)
i) X=LPBH, Pkf —f~(k, HYHk, where /cEP, /€L?(H), 1=P<0° Here

G 9,,/= (C, 9nf
(3.13)

(*€R).

Proof. The assumptions of Lemma 2 are fulfilled since X is always a Banach
space and a sequence of bounded, linear, and mutually orthogonal projec-
tions from X into itself. The totality property (3.2) follows, e.g., from the fact
that the (C, 1) means form an approximation process, its operator norms being
uniformly bounded ([13], [5], [15]), and the Laguerre and Hermite polynomials
being dense in the respective spaces (cf. [14; Lemma 1, 2]).

Now to the proof of the main result of this section.

Theorem 3. Let ISpS°°, <560, and nf£P. The following relations hold
between the (C, § means of Laguerre and Hermite expansions:

(3.14)
IKC’ ATk w

(3.15)
(3.16)

Proof. It suffices to consider the cases 0°(5<1. The result for p=°° follows
from that for p—1 by duality, so that we can confine ourselves to 1 °°

First we set up a relation between the Riesz means of Hermite and Laguerre
expansions and then we transform them to the corresponding Cesdaro means by
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virtue of Lemma 2 and Corollary 1. By (2.1) one obtains for (?>1 after some
calculation

3.17 — “fc))  Hk(x) Hk(t) =

(317) ofeel) g OV Te)  HKGO HK®

T(%JZ)‘ os%ze/Zv %/JJ LJLAGR JV(T) +

+fe-n( 1 N I 1)
I Q \1r@3/2) orr-D/«T  (c-D/2)

Observing the symmetry properties of these two terms with respect to t, we have
for fU Sw

=/[LO+A-01{ ~ 2 , (i-")V <*>

+ 1 1(0-11-01X

Substituting t=.y1/2, and setting
1(*) = gi(*9+ 92(*9* (x€R), gi(x) := [/(Kx)+/(- |/i9]/2, x " O,
MX)-/(- IX1/(2jx), x>0

92(*):= 0, X =0,
one obtains for x£ R
(3.18) *£...(/, x) = RiXUigr, M) + (A - ) &Riil.(e-i)/2(g2 x 2x.
Here one has, if 1IM)<«>, 9,€Z.3(_Vp), E2£E£pL Up). Indeed, the substi-

tution j=x2 and the inequality |/1+2?|pg2p_1(Nip+|.0|p,/7"1, yield
(3.19) l|gilLuVi/p, = {O/ [gi(s)*/ a M®)|pds}lp =
= {O/ 21p|[/(x) +/(—x)]e~xi/2piix}1p a
s {/(|/«e-"2+|/(-x)e-xl2pc/xFLlp= { | |/I(x)e~xa2pdx}lp= ||/||4(H).

Analogously one can show that
(3.20) llgall 7 A Ifh
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Concerning the norms of the Riesz means, one obtains by (3.18), substituting x=s12
and estimating the factor [(g—1)/e]r by 1,

@21) WRUIF*ILED)s | 1 gillz 1)+ il (i- D.&ll4<t

Now we are able to prove (3.14) of Theorem 3 (for 1 °°, Oé<5< 1). Starting
with the estimation (3.5) of Lemma 2 in the special case (3.13), we use relation
(3.21) of the Riesz means, and return to the Cesdaro means by (3.6) of Lemma 2
in the cases (3.12). Indeed, given any /£Z.£(H),

322) |(c;i)f/liamsc O%H\\RUGF\\NI—P
—C  3up,. {-RLiij2gliza( )+ HDol(«-1). gL 1}

S C, “P»IKC™ “1 | blu<,.,,, +

+C SR, (. 920,

bl 17
u P

By means of (3.19—20) one immediately obtains (3.14).
For the proof of (3.15) we define for any g€L£(_1p) an even function f by
f(x)=g(x2, xER. Obviously,

Lo,
and by applying (3.18) to this / (thus gx—g, g2=0), one has
(3.23) Ne ,*/11IL*, = WKlilgh*,
Using Lemma 2 again, i.e. (3.5) in the case a= —1/2 of (3.12) as well as (3.6) in the
case (3.13), this yields (3.15).
The estimate (3.16) can be proved analogously. In this case, for any gEZ.£(1 1/p)

we define an odd function / by f(x)=g(x3x for x~O, =0 for x=0. Then we
have (cf. (3.18) with gi=0, gz=q)

M, wenie v l1"ba,2e+1/11LJ(H) oll cu(l-1/pi

By Lemma 2 and Corollary 1 this leads to (3.16). Thus Theorem 3 is proved
completely.

Corollary 2. Let <570, 1 °°, The Hermite operator norm ||(C, <9A[1j(H)]
is uniformly bounded as n-+°° if and only if both the Laguerre operator norms

kc, S 9] and (€, W AIN; (X HJ] are uniformly bounded as n-°°.
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4, Norm estimates

The results given in [13] can now be used to derive upper and lower norm
estimates for the Ceséro means of Hermite expansions.

Proof of Theorem 1 By [13; Theorem 1] the Laguerre partial sum operators
satisfy for all a® —1/2 and n£P

4.1) IKC 0211 IC, Olgggpn  C max {L nle}

Inserting (5=0 and the particular cases a = + 1/2 of (4.1) into (3.14) of Theorem 3,
the assertion of Theorem 11i) for p=1 and p = °° follows.

For 1</)<«., we estimate the norms of the Hermite partial sums in the equi-
valent setting IKGG0 ) ~ | | «)] (cf. (1.2), (1.7)), for convenience, proceeding
along the lines of [14] without going back to the Laguerre case. The proof is es-
sentially based on representing the kernel of the partial sums in terms of the Christof-
fel—Darboux formula (2.2), splitting up the double integral, and estimating each
of its parts separately. Here some basic inequalities of [14] are used; these are
variants of the well-known Hardy inequality and of the Hilbert transform theorem.
We only sketch the proof. By (2.2) one has

Tl
4.2) l1(e,0)«g]|Lp(_ {111 2bX)b, ()il fixi ’

= Z{ /1 | g(Ohk(x,t,;n)dt\pdx)Vp.

Kk —1 —00 —©

The first term can easily be estimated by Lemma 1, (2.6). The other two terms
have to be treated more carefully since the double integrals now have to be split
up according to the singularities of the hk(x,t,n), k=2,3, at x=t and to the
bounds of §,,§8,+1—8,,-i as given by (2.3—4). One of the 13 terms occurring
reads, for example, (N =2n+1)

4.3) 7={f 7 W()"'Bg.(0fe.»w -6-M b,
fivia  fjvia X (
By (2.3—5) we can substitute into |
bn(t) = (N +\t*-N\)-v*(p(t, N),
=N-VNe +\*-N\)W (x, N),

where the functions cp(t, N) and \f/(x, N) are uniformly bounded on [fAV/4, 7 Yn /4]
with respect to N and t or x. Since for all such x

(N1u3+ xa- A= (ar13+ \XFYNWX~Y N yvs
= {A(IV oA IX-A I TA (TV-00)
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(and correspondingly for t), it follows that

T”“ PN gt N) MY~ YA
X —t | ar-1/s+ |r_"/ar|
fiv/a fiv/4
Substituting now x=YN+N-~vtZ t=yN+ N~V6r, the double integral can be
transformed in such a way that [14; Lemma 10, 11] is applicable. After some
calculation one deduces
n2/(3p)-1/12; < <

(4.4) CllglILR_ log n, P—4/3
1, 43 < p-

The remaining terms can be estimated similarly, using (2.7) too.

Finally, assertions ii) and iii) of Theorem 1 are easily obtained by inserting
into (3.14) the bounds obtained in [13; Theorem 2] for the Laguerre operators
(C, ®)I with a=+1/2, and (1.12) follows by [13; (1.17)].

Proof of Theorem 2. By (3.15) and [13; Theorem 3 with a= —1/2] there
exist a constant C>0 and a sequence {d,},(ncN such that, for each mé€N,

/(P25 5 1= 5 < 4/(3+6(5)
(4.5 sup  I(C, {lp n L 43+ 69s p N 4(1—60)
0S*<271+2 " <H) R116-2/1(3P)-S 4/(1—65) < p = °°.

Using the same argument as in the proof of [13; Theorem 3, (5.8) ff] one obtains
a (possibly different) sequence with the properties asserted in (1.4).
Concerning the last assertion of Theorem 2, by (3.23),

(4-6) II(C, 0)n V2|[tuVI/p)] ~ NI(C, O)i,+1||[iS(H)],

since Cesaro and Riesz means coincide for $=0. According to [13; (5.9)], forp=1
the left hand side of (4.6) has Cnlk as a lower bound, and the proof is complete.
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FAMILIES CLOSE TO DISJOINT ONES

P. KOMJATH (Budapest)

Introduction

The aim of this paper is to define and investigate two properties of systems of
equicardinal sets, both are strengthenings of almost-disjointness and having the
transversal property, but they have nice properties: they indicate property B and
compactness is available. However we shall show, that under certain conditions,
strong almost-disjointness implies these properties. So they fit naturally in the series
of known transversal-like properties.

Definition 1 A system >X of sets, each of cardinality p, is sparse if there is
a function / with /(/)€[#]” {HEX) such that the sets {H—{H)\ HaXX)
are mutually disjoint.

Definition 2. A system XX of sets, each of cardinality p, has the large subset
property if there is a function / with such that the sets {/(//): HEX)
are mutually disjoint.

Definitions. A system XX of infinite sets has the transversal property, if there
is a function / with (HC K and / is one-to-one.

Definition 4. A system XX of sets is 2-chromatic (has property B) if there is
a set X suchthat OTxXMHTxH for every HEX.

Any of these definitions implies the next (the only non-trivial implication is
Def3—Def. 4, which is the main result of [10]). However, it is easy to see that
Def. 2—Def. 4 holds.

All notations are standard. Ordinals are identified with the set of their pred-
ecessors, cardinals with initial ordinals. [57<i, [S]" denote {AgQSL |A|</i}
and {XQS: |A|=/r}, respectively. If XX is a system of sets, each of cardinality
p, XK is almost-disjoint, if |AC\B\<-p for A,BEXX, A"B. GCH denotes the
generalized continuum hypothesis, V=L the axiom of constructibility (see [11]).

General statements

Proposition 1L (@) If XX is a system ofsets, )K\*p=\H\ for HEX, then
XK has the large subset property.

(b) If X is an almost-disjoint system of sets, \>\LLUp=\H\ for H"XX and
p is regular, then X is sparse.

(c) The statement in (b) is not truefor any singular p.

Proof, (@) This is Bernstein’s theorem [3].
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(b) If XX={Ha:ckx), x*y, choose
f(HJ = /19<a(ﬂ,.ﬂﬂ,).

(c) Put x=cf(x), assume that x:supx" The ground set will be T+Xx.

If a<t+ is limit with cf(a)=r, choose a sequence </™(a): converging
to a, and put Ha= U/i(a)X[xI5 xi+1). Clearly {Ha:a<T1+, cf(a)=T} is almost-

disjoint. Assume that £(a£[Ha]Je holds for every appropriate a. Let us define
X*={a<x+:icf(@)=71, [MAN|*x4). As cf(x)=t<t+ there is a suchthat
Xlc is stationary. j\ is regressive on X", so there are a,a' with a, afX” and
/|h(_a) =/{(°0=y- Then yX[x{ x(+1)"H alHa, and g(HaUg(Ha) can not cover
this set.

In connection with the last counter-example let me note that in [7] a similar
technique is used to construct an almost-disjoint system of sets of singular cardinality
without strong property B. As this proof is not easy to read and further progress
was made concerning large chromatic almost-disjoint families, we involve a variant
of that result.

Proposition 2. Assume that x=cf (y)<y, then there exists an almost-disjoint
system XX ofsets of cardinality y, such that there does not exist a set X with 1S
= |ANAl</r for every Ha)XX, i.e. XX does not possess strong property B, WK\ =2xi.

Proof. Choose an almost-disjoint system of sets of cardinality x=cf(y)
with chromatic number >x, thatis, if we colour the ground set S with x colours
there always exists a monochromatic member of Y. This can be done by a result
of G. Elekes and G. Hoffmann [6] (a full description of the proof for every x is
given in [12]). This is the point changed in the proof, the original proof used a result
of Hajnal [§] stating that large chromatic almost-disjoint systems exist under GCH.
Notice that by [12] \6\ can be made "2*.

Let us denote &= (Ga:a<\&\}, y=supy,, Gx={galf): £<%}. The ground

set of XX will be y2XS, the members of XX are the sets of form either y2X {x}
(if xES) or TXS= U {[yS+y(, y6+yt+1)Xgx(0: (here 5<y and a<|?|).
First we prove that XX is almost-disjoint. Clearly yX{x}\yX{y}=10 if
[AIX{x}N7~1—ii+l (or 0) if x=gj£) (or xfjGJ; |Taal Tad,|=0 and
\Ta,s T xty\Syi+1 if Gxi)Gx. is covered by {&,(£):E<£}.
Next, assume that | is a subset of y2XS, meeting each member of X in
less than y points. As !X[Mp2X for every x£S, we can colour S by x
colours: x is coloured by § if \XMy2X{x}\-*y*. There is a monochromatic
set Gx, and TaS$, <5G</r are disjoint subsets of y2XGx, so one of them is disjoint
from X, as \xn(y2XGxX\<y.

Proposition 3. |If XX is a system ofsets each of cardinality y, then X has
the large subset property ifand only if thefollowing holds: for every g: X -*[uXX]<4
with g(H)E[H]<l the system {H—g(H) :HEXX} has the transversal property.

Proof. Clearly, if / states the large subset property and g is given as above,
we can select an element t(H) from f(H)—g(H). t proves the transversal property.
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' On the other hand, if # has the property described above, we can inductively
define for a<up, f,(H) so that f,(H) is a transversal of {H—{f;(H): {<a}: HEH}.
That is, f,(H)#f,(H’) if H#H’ and f,(H)#f3(H) if p<a. Let us define a graph
G as follows: the vertex setis # and H, H” are connected if and only if there
are o, f<p with f,(H)=f3(H’). Observe that a=p is impossible and for a given
pair (o, ) and given H there is at most one appropriate H’. From this it follows
that in G; every vertex has a degree at most u, and we can deduce that every
(connected) component of G has cardinality at most u. Assume that X is the
set of the components of G. If Ce# |C|=u and so by Proposition 1 the system
{fs (H): a< u}: HEC} has the large subset property: assume that f: witnesses this.

aving defined an f; for every C, let us define f as the union of them. f will
witness the large subset property for #: if H, H'€# and H, H’€C by the
choice of f., if HeC, H’eC’ with C=C’, {f,(H): a<y} and {f,(H'): a<p}
are disjoint, so are fc(H) and f¢. (H').

PROPOSITION 4. Assume that # is a system of sets of ccrdinality p, |5 |=A>u
is singular, and every subsystem of smaller cardinality has the large subset property.
Then so has .

Proor. By Proposition 3 we have to prove, that if # is given as above and
g is a function with g(H)€[H]<* for HE#, then ¥={H—g(H): HEH} has
the transversal property. By hypothesis, and the easier part of Proposition 3, every
smaller subsystem of & has a transversal, so by the famous Shelah Singular Cardinal
Compactness theorem (see [15], newer proofs were given subsequently in [2], [9])
% has a transversal.

PROPOSITION 5. Assume that # is a system of sets of cardinality u, |#|=A>p
is singular, and every subsystem of smaller cardinality is sparse. Then so is H# .

PrROOF. Assume that #={H,: a<A}. Choose a sequence {A;: ¢<cf(4)}
converging to A. By hypothesis, {H,: a<J} is sparse, choose an f; witnessing
this fact. We are going to define a graph G as follows: the ground setis A, a<f<A
are connected in G if and only if there are &, n<cf (%) such that (H,— f,:( )N
N(Hp—f,(Hp))# @&. Observe, that necessarily £>n and if o, &, n are fixed, the
number of good f’s is at most |H,—f:(H,)|=p. Soin G every vertex has a degree
at most pu+cf(1). We can deduce again, that every connected component has
size at most u+cf (1). Let us denote by K the set of components in G. If CeK
choose an f; witnessing {H,:x€C} 1is sparse. Let us define f as follows: if
C is the (unique) component containing o and ¢ is minimal with a<J,, then
fH)= f:(H)Ufc(H,). We prove that f is good. Assume that a<p<A are
given, f(H)=f{(H)Ufe(H,), f(Hp)=fy(Hp)Ufe:(Hp). If C=C’ or &=y, we
are done. If neither possibility holds, « and f are not connected in G, so already
H,—f:(H,) and H,—f,(Hp) are disjoint.

PROPOSITION 6. Assume that » is regular, # ={H,: a<x} is a system of
sets of cardinality p<x. Assume moreover that every subfamtly with smaller car-
dinality is sparse. Let us define X =X(#)={u<x: thereisa p=a with [Hpﬂ
ﬂ( U Hy)|=p}). Then # is sparse if and only if X() is not stationary.

PrOOF. Assume first that X is non-stationary, C is a closed, unbounded
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subset of x with 0dCQx—X. Put C = {c™ £<x} in increasing order. By hypo-
thesis, for fixed {Aa: a€[ci? ci+1)} is sparse, so there is an ft witnessing
this, and moreover we can prescribe /?2(A)3 1/ 1MN( U HY, as | X. Clearly
/= 13 4 works. ™ad

On the other hand, assume that > is sparse and J witnesses this. Let us
define for g =sup{(: (A?-/(A NI HY" 0}.

[J Hj"p- |E|<% and {Ac—(An): £<x} is disjointed, g(£)<x. Choose

<.
C={yif then g(c)<y}. Let us denote by C the limit points of C. We
shall prove XC\C'= 0. Ifnot, aCIfIC' and B witnesses aEX, there is a point
Xd(HR—F(HB))C\(uv Hs), so X6AN for a :<.. By our definitions, ¢ < . SO

<Ml g(™+1)<a and jB~g(~+1)<a, a contradiction.

P roposition 7. Assume p is regular, XX is a system ofsets of cardinality p.
X is sparse if and only if thefollowing two conditions hold:

(@) XX is almost disjoint,

(b) K has the hereditary transversal property, that is, if h is afunction with
h(H)(:[H]B for HEXK, then {h(H): HEXK} has a transversal (has the large subset

property).

Proof. Clearly the conditions on transversal or large subset are equiva-
lent. One direction of the proposition is also trivial. We are going to prove
that if XX fulfils (@) and (b) >X is sparse, by induction on x=\)>K\. If x"p
XK is sparse by (a) and Proposition 1 (b). If x is singular we can use the inductive
hypothesis and Proposition 5, as both (a) and (b) are hereditary for subsystems.

Assume x=\X\ is regular, every subfamily of smaller cardinality is sparse,
but > isnot. Then, by Proposition 6, X(>K) is stationary. By the definition of
X(XK), if aEX(K) there is a R(a) with |U HAT[HPp—p. As C={yoc if a<y

then /?(a)<y} is a closed unbounded set, Y =XC\C is stationary again.
Let us define h as follows: if /'7<x is given and there is an a with af£T,
B=R(@) put h(HR)=(1] Hi)l HB. Clearly, a is unique. If no such a exists,

h(HR)—HRB. As \h(HB)\=y always holds, by (b) there is a transversal / for
{h(HR): 0<x}. For a£7 there is a g(a)<a with f(h(HR@))EHg(x). By Fodor’s
theorem, as x"p + there are p+a€Y with the same g(a) which is impossible
as \HgM\=p.

Compactness properties

In order to construct systems X of sets of cardinality p=cf (p) without the
transversal property, but so that every smaller subfamily has a transversal the most
direct way is to seek sets from {a<%: cf(a)="} stationary in X, but nonstationary
at every smaller ordinal. Clearly such a set exists if x=p+ and for x>p+ not
weakly compact, Jensen constructed such sets from V—L. From this it is easy
to construct a system \)XK\—x with \H\=p if Ha)X, so that every smaller sub-
family is sparse but XX has no transversal. However, for x=p++ and the trans-
versal property (or the large subset property) there is an example by J. Truss (see
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[14]) as follows: let us define for p*a”p +SB <p++ Hxp—ocx{oc, B}- Then every
subfamily of >X = {HXP} of cardinality p+ has the large subset property while
XK has no transversal either. It is not the case when speaking of sparseness, we shall
show that compactness results are available.

Theorem 1.1 If p<x are regular and x is weakly compact (p=co and X is
supercompact) then there is a generic extension in which x =p ++ and the following
holds: GCH+if X is a system of cardinality x (of arbitrary cardinality) which
is not sparse, then there is a subsystem of cardinality p+ which is not sparse, either.

Proof. We shall use the Lévy-collapsing P making x=/i++. The elements
of P are functions of cardinality p, and P is /i+-closed, i.e. if pfP is decreasing
for £</i, there is a common extension of them. Assume x is weakly compact,
and XX={Hp. a<x} is a counterexample in Y[LL, the generic model.

By Proposition 6, X=X (>K) is stationary in x. We must be careful as Propo-
sition 6 works only for stationary sets in cardinals. By well-known properties of P
(see [1]) there is an a<x with the following properties: a is strongly inaccesible,
if Px, Px is the set of functions from P with support aXp, (x—oi)Xp, respectively,
(H$: £<a), Tflo! are equally defined by *8C\Pa and Y =XPla is stationary in
a (where a is the actual p++. Work in Y[@MPa]. Notice, that in V[fS] there
is a function / witnessing that (Ht:£<a) is sparse in V]fSA. Choose a name
/ over Iy in VfSTPJ. By induction we can define for every an ordinal
yAcx and a subset X{APa with \)K* \ and the following properties hold:
if pEXX®, x"yi then either p\-x$_Hp—f(Hp) for every B, or thereisa  JTCH,
qrp, with q\\-xEHR—f(HR), moreover is closed for decreasing
limits of length </i. For limit t take unions. Put C = {y4: £<a}, y"6TIC"
As Y s stationary, such b6 does exist and it is easy to prove that if X (OK) is
stationary, then those elements of it having cofinality p constitute a set stationary,
t Sp we can assume that cf(y*—p. As y4&£Y, there is a B"y$, B<ot with
iﬁ: Hi)\—P- Put £=Ilim ft, HR—{xx: xtEyit. Choose pxas follows:

px (kp) is decreasing, pxaXK$x, px forces either xx$Hp—f(Hp) for every R or
XXEHPt—(HP) for /ij<yit. If p is the union of px (t</i), and gq=p forces
xx$ f(Hp) for a certain t</i, then qr—OE(HP— (HR)) M (Hp—f (Hpf), a contra-
diction.

In the second case, p=a>, x is supercompact. If we collapse x to p-++, and
XKX={HX a-=A}is a system in VfS\, which is not sparse, and is of minimal cardinality,
then X is regular, and X (>K) is stationary in X We can equally assume that X(>K)
has only points of cofinality p.

As x is supercompact, there is a normal ultrafilter on P([A]<X¥. Almost all
PE[A]<X have the following properties: xIP is inaccesible, otp (P) is regular,
if XEPM\Hx and the status of x£X is completely decided by £PxnP, if p(z*xnp
forces |ﬂ,,|/|%SHfI:p then B, SE Y[9MN&KpE

So our system restricted to P has the exact properties described as above.
That proof can be copied again, noting that, as p—co, no closure against decreasing
sequence of conditions is needed.

1 See the note at the end of the paper.
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Miller’s theorem revisited

In his paper [13] E. W. Miller proved that if XX is a system of infinite sets, any
two of its members intersect in at most n elements, then XX has property B. P.
Erdés and A. Hajnal [7] proved that if every member of X is countable then X
has strong property B, i.e. there is a set X with \"\Xf\H\ f o r every H")X.
We generalize both results.

Theorem 2. 2 Assume that XX is a system of countable, infinite sets,
XK is almost disjoint, and jIT{H:H"X'N<n if X "> and \)K\*MNL1 Then
X s sparse.

Proof. We prove the statement by transfinite induction on WVK\. If \>K\" KO,
X={Hp. i<k”(o}. As XX is almost-disjoint, f(Hf)= U (A,M4A,) (/<& will

work.

If = X={HX a<x} and are given, let us define a tower
(Xa: okx) from subsets of UXX with the following stipulations:

(i; 111

(i) XxczXB for

(iii) if \HC\Xa\*n then H<fXx (HE£X),

(ivy Ul.= UX

To Vet (i—iv) put Ya0=0{HR:R"oc}, VY.ik+l=Y. K\I\IJ{H€JIr: \HN
NYw|rn}, Xa= 1IJ ¥, k. As every u-tuple of 0>K is contained in only countably

many elements o;‘q;K, we get |YBg+1éX O ag|"> so we have |XaSKQU {HR:
O<a}|™ X0e|aj«=x. Next, let us define

Ta= Xa-( U XPB, Xx= {HEX: \HMNTa\ = KO}

/?<a

By (i—iv) XX=0XX,x, and if HEXXx,HA Xa and g(H)=HC\( U X[) has at most

n—21 elements. By induction, as Eti—{H—g(H): HEX" (>kx) fulfils the as-
sumptions of the theorem, and VKa\*\Xx\nm  they are sparse, so there is an fx
witnessing this. Put f{H)=g{H)\Jf(H—g{H)) if H*>XX By our earlier remarks
[(#) isdefined and finite for every HMXX If H, H'EX, HAH' and H, H'E£XX
then Hr\H'"g(H)\Jg(Hj{Ifi(l1~g(H))Ifi(n'-g(Hj)=f(H)[If(Hj surely
holds, if He>ka, H'e>xp with >R, HMH'E£XalMH'Qg(HjQf(HjQf(H)U
Uf(Hj, too. Q.E.D.

Theorem 3. |f X is a system of infinite sets, n<ca, and the intersection of
uncountably many members of X has less than n elements, then there is an
f - KAMXK  with \f(H)\=\H\, f(H)QH for HEX, suchthat {/(A): HEX)
is disjointed. Hence, if XX is uriiform as well, > has the large subset property.

Proof. Put X={Ha:a-=x}. Assume that \Ha\=pa, Ha= U{HX(:
where |Aa?= "0, and {Hxi: is a disjoint system. We want to apply

2 See the note at the end of the paper.
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Theorem 2 to ¥={H, : {<pu,, a<x}, by it, ¥ has a transversal g. f(H,)=
={g(H,,¢): E<p,} (x<x) are large subsets for #.

Notice that ¢ is not almost-disjoint, so for the handling of the x=w case we
have to use Bernstein’s lemma (Prop. 1), and then exactly the same proof as in
Theorem 2.

THEOREM 4 (MA). If A is a system of infinite sets, n<w, and |N{H: HE
€X' Y| <n if H'CSH, |H'|=2% then H has property B.

PROOF. Assume # ={H,:o<x}. Choose H,€[H,]*. It is enough to prove
that #’= {H}: a<x} has property B. For x<2% this is a well-known consequence
of Martin’s axiom. If »=2% we define Y,; (k<w) and X, (x<x) as in the
proof of Theorem 2. We want to show that |X,|<x if a<x. Clearly |Y, =
=|U{H;: B<o)|= o] + Ro=.

Assume first that »x=2%. If |Y, ,;|<%, Y, +1 sets, each of cardinality <2%,
so as MA holds, 2% is regular, |Y, ;+|<2% By Konig’s theorem, |X,|=
= 3 Yo ul<2b%=x. If %>2%, |V, ;1| =X 4|" 2% and [X|<|a]-2%o<ac.

k<o

THEOREM 5. Let H# be a system of sets of cardinality p (u is regular). Assume
that 2 is almost-disjoint and the intersection of p* members of the system has
power <t. Then # is sparse, assuming either

(@) u=t*t* and GCH holds, or

(b) p=t*, GCH and |#|=p*® holds, or

(¢c) u=t* and V =L holds.

Let me note, that property B, in case (c), was proved first by Donder [4].

ProOOF. We can give an inductive proof, as in Theorem 2. For |#|=u the
statement is true. Assume |#|=3=>pu. The construction of Theorem 2 can be
copied out, the only problem is when there are sets S Sx with [S|<x and |S|'=x.
As GCH holds, this is possible only if x=A4% with cf (1)=r.

In case (a), however it is true that for a set of cardinality 4 a system of sets
of cardinality =t such that every set of cardinality 7 is contained in only u sets,
has cardinality at most A. For a proof assume that # S[A]"* is as described,
and A=sup {4;:: E<cf (1)}, for every HEH thereisa &<cf(l) with |[HNAf=1"
as cf (A)=t. For a given ¢<cf(4) the set of H’s as described above can be at
most 2*y as A,=zt. So |[#|=p 2*%=). This observation enables us to

&<cf(2)
define X, (x<x) with
@ ux.=Uoe,

(i) X,cXy,

>iii) |X,|<x,

@iv) if |[HNX,|=7" then HEX,.
We can finish the proof exactly as in Theorem 2. For case (b), x<u™® we can prove
the result without any problem, Proposition 4 gives the result for »x=p*®.

For handling case (c) we can assume that U#=p=1*, x=1i% cf ()=t

and [J; holds. [, denotes the following axiom (introduced by Jensen [11]):
for every a<A*, limit there is a subset C,Sa, with
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(@ Cx is closed unbounded in a,

(b) otp (order-type) C "1,

(c) if y is a limit point of Ca, then Cy—CxINy. Assume that O0£C, for
every limit a, and ((£, a): ( <otp (a)) is an increasing enumeration of Cx. For every
a</?-=A+ let us fix [a B)= |J S(ct,B,f) with |57a B, £)|sA? where (Af: <<

?2«=cf(A)
<cf(A)) is a fixed sequence with ~A?=A. For a<A+, limit let us define (for
£<cf(A))
T(= U _S(c(t], a), c(rj + 1, a), £).
u

>i-=otp

Now we are able to define a sequence {ify.y<A+}£jIA+ with
(i) dy is increasing,
(ii) if \HCldW=ii then H"dy for HMXK.
If a<A+ is given, as a= (J T\, |AMNal=7+ holds and a is minimal with this

?-=cf(A
property, then cf <) =t+ - for( 3€<cf A), [T||eAN eT+< A and there is a f<cf(A)
with |7|0A|=T+. So if a is given, then /(a)=sup {sup A : there is a £ with
[AT)7|]€T} is defined and we just now proved that /(a)<A+ whenever otp(a)*A
(this is the only case when |I||<A is not guaranteed). From this we can inductively
define alO=a, ap+i=/(«/})> «,=sup {a™ jl<i} if i is limit. The point is, that aT
has the property that if |[AMal{4=r+ then A Qat+ For the proof of this fact,
assume |AMat—T+. As cf(art)=r+, there is a £<cf(A) with \HC\Tp*|Sx.
If y is an element of CcrH1{aBR: R <i+) large enough, |AM7jJ|St so A is

included in a,,+1.
This proves that for every a<A+ there is a g(a)>a with g(a)<A+, limit
and if |AM~(a)|=T+ oreventhereisa £-<cf(A) with [AN7]1@"T then A"#(a).
From this we can define a closed unbounded CgA+ with the property: if
HEK then there is a ydC with |[yNd|=1, HQy' where y' is the next element
of C. Using this “tower” we can finish the proof.

Added in proof (December 19, 1983). The author has found a proof for the
unrestricted case of Theorem 1if /i>® is regular. This result, along with some
substantial generalizations of Theorems 2, 3, and 5 will soon be published.
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ON GENERALIZED UNIQUENESS THEOREMS
FOR WALSH SERIES

K. YONEDA (Sakai)

Introduction
Let
(1) v 2°° A(k) w, ()

be a Walsh series.

Vilenkin [6] proved that the empty set is a set of uniqueness in the classical sense.
Fine [2] and Shneider [3] generalized the result just cited and established independently
that a countable set is a set of uniqueness in the classical sense. Crittenden and Shapiro
[1] generalized their result such as if

2"—1
lim > A(k)we(x) =0
el ™)
except on a countable set and

2n—1
lim 1/2" 3 A(k)we(x) =0
5 k=0

everywhere then [1(k)=0 for all k. From an other point of view different from one
of Crittenden and Shapiro, Skvortsov [5] gave a generalization such as if some
{Sani(X)}is my<mny=<..., of partial sums of (1) such that klim [ (k)=0 converges to zero

everywhere except perhaps on a countable set, then [i(k)=0 for all k.
By Skvortsov’s theorem in [4], it follows that if a Walsh series (1) satisfies

2"—-1 2"—-1
2) liminf > A(k)w,(x) =0 = lim sup (k) wy (x)
e s | B+ = k=
except perhaps on a countable set and kllm (k)=0, then f(k)=0 forall k. Wade [7]
proved that if a Walsh series (1) satisfies (2) everywhere and

2"—1 2n—1

liminf1/2" 3 A(k)we(x) =0 = limsup 1/2" 3 (k) w; (x)
JEEse k=0 st k=0

except on a certain countable set, then [i(k)=0 for all k.
On the other hand, the author [10] proved that a set of Haar measure zero is
a set of uniqueness for the class of Walsh series (1) satisfying

3) sup A(K)wi(x)| <<= everywhere.
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Wade and the author [8] extended the result just cited for the group of integers of
a p-series field.
The purpose of this paper is to extend the Crittenden—Shapiro and Skvortsov
theorems, Skvortsov and Wade theorems and the author’s theorem.
When o is a certain class of Walsh series, a set E is said to be a set of gene-
ralized uniqueness of the first kindfor 3d, or a Uxsetfor ¢B, if each Walsh series
which satisfies

-1
@ Iing]fZ fi(kjwk(x) = 0 except on E

vanishes identically. A set which is not Ux is called an M xsetfor g3 And a set
E is said to be a set ofgeneralized uniqueness of the second kindfor ¢ or a U2set
forgR, if each Walsh series pggl? which satisfies (2) except on E vanishes identically.
A set which is not U2 is called an M.,-setfor df&.

The main theorems of this paper are as follows.

Theorem 1. A countable set is a Uxsetfor the class of Walsh series (1) satisfying

® liminf 2" * fi(k)wk(x) = 0 everywhere.
k=0

Theorem 2. A countable set is a U2setfor the class of Walsh series (1) satisfying
(5) everywhere.

Theorem 3. A set of Haar measure zero is a Uxset for the class of Walsh
series (1) satisfying (3) everywitete except perhaps on a countable set and (5) everywhere.

Preliminaries

The dyadic group [2] is the set of all 0—1 series (tx, t2, ...). For convenience,
we shall identify (tx,t2 =) hm tkAA, with (2 th2K) and when lim tk=1, we

k-»00

shall write as (/Is i2, ...)= (kgl A2%)~. A dyadic interval of rank n, [/2/2", (/?+1)"/21],

n
is the set of all (fi, t2,...) such that 2! td2k—p/2n Obviously [0, 1~] denotes
the dyadic group. k=1

A dyadic measure or a quasi measure m is a set function which satisfies

tn[p/2", (p+1)-/2"] - m[2p/2n+L, (2p+ D)~/2n+]+ m[(2p+1)/2" +1, (2p+2)-/2n+1]

for n=0,1, ... and p=0, 1, ...,2"—L It is already known that each Walsh series
is a Walsh—Fourier series of some dyadic measure and each dyadic measure has its
Walsh—Fourier series. We shall write the dyadic measure associated with p by mr
The relation between and its &-th Walsh— Fourier coefficient fi(k) is as follows:
for 2",

B) = 2 Tub/2n (p+1)*/2Twk(pi2").
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It is easy to see that a Walsh series ji is the null series if and only if mll(1)=0 for
all dyadic intervals 1. In this paper / and I' are dyadic intervals.

For détails of dyadic measures and the dyadic group we refer the reader to
[8], [9] and [10].

Proof of Theorem 1

In order to prove Theorem 1 we need three lemmas.
Lemma 1 The empty set is a Uksetfor the class of all Walsh series.
Proof. Let mRB be the dyadic measure associated with p. Then it follows that
K [o0,1-]| S |m,o, I-/2]|+ K [l/2,1-]] =
S 2 max{Im,[p/2, (p+1)“/2]|: p=o0, 1} = 2\Tp¥2, (pi+ I)-/2]

where pt=0 or 1.

Continuing in this way we obtain a sequence of dyadic intervals {[p,J2",
(Pn+1)_/2"in suchthat

(6) [o,1-]1 [pJ2, (N+1)-/2]8...2 [p.f2-, (p.+1)-/2"] 5...
.. 2 ImMO, 1-]| *2\mR\pJ2, (p1+ D-/2]| A ...S 2n\mli[pd2n (p,,+ 1)-/2"] ~....

Each dyadic interval is a closed and open set. Then we have [pJ2n (pn+\)~j2n=
=/,(x,) where In{x) is the dyadic interval of rank n containing x and

IJ;l[pJZn, <e+l)-/2n - bl -
From the hypothesis there exists a sequence of integers {nk}k tending to infinity
such that
Umn 2Mm{UKxO)\ = o.

Therefore it follows that w/aoO, 1~]=0.

In the same way we obtain that mfi(1)=0 for all I. This completes the proof.
Lemma 1 implies Vilenkin’s theorem in the dyadic case.

Lemma 2. A set ofonepoint is a Uxsetfor the class of Walsh series (1) satisfying
(5) everywhere.

Proof. Let X, bethe pointwhere (4) does not hold. If x0(/, then by Lemma 1
mfl(1')=0 for Teil. Hence for 0*fc<2" we have

fi(k) = 2 "Nl (P+1)~/2"TVv*(p/2n) = m,,(I"(x0))wk(xQ =

2,
-
2 M’ (p+1) /2Twk(xQ = m,D, 1 Twk(x0.
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On the other hand it is obvious that

m,[0, 1“] = Tu(L,,(xQ) = 1/2" 2 fi(k)wk(x0.
k=0
Making use of (6), we have mfiO, 1~]=0. Lemma 2 is proved.

Remark. k2 wk(x) satisfies
=0

for
for x=0

and (5) everywhere but at x=0.

Lemma 3. When a Walsh series (1) satisfies (5) everywhere, set
D = jx: liminf k2_0 B(k)wk)  °}.

If D is a countable set, then it is nowhere dense.
Proof. At first we shall prove that (i) if x satisfiesfor some na

() 2"|m,,(/,(x))] > a (né no,
then itfollows that
©) 2"|m,,(/,,'(x))| >£

for countably many n where [I,,(x)=/,_1(x)V/,, (X).
Suppose (8) does not hold. Then there exists nl such that 2"\m,tt(*))|se
for nS«!. Let N be a number satisfying A=max (n0, nf) and

f2'vimM/N(X))| > e
12"|m,,(/(x))] ~ e for n sSN.

Set 6=e—2N\mA(IN(x))\>0. Hence we have WmI{/NX))\=(e+6)/2N From the
definition of dyadic measures, we have

h £ (/M IW)| +pill(/A +1(X))| S (E-+0)/2.
Then

v e SO(e+ 0)2m—T g(/M+H (X)) S(s+e)/2N-512 N+
Continuing in this way we obtain
KOWVGY)| ™ (e+9)/2n—ei2n+1 —... —e/2N+k =
> (e+d)/2N- e/2Nf1-... - e/2N+k-...= B/2".
It is clear that

lim inf |1 a(/,,(x))[ S6/2N> 0.
This contradicts (5).
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From (5) it is obvious that (ii) if
\mil[pol2N Oo+1)_/27]| > {],

then there exists x£[pJ2N (pO+1)~/2N such that 2"|m;,(/,.,(x))| >2Nqj for n~N.

At last we shall prove the lemma. Suppose that D is dense and set D=
={x0,xI5 ...}. Let xo satisfy

liminf 2"|m,,(/,,(x0)| >£.
There exists W such that
2n\mll(In(xQ)\ > £

for . From (i) there exists nt which satisfies w>n0 and 2n]mil(/'1(x0)|>£.
From (ii) there exists at least one x contained in Tfx(Q and satisfying (7) for
n*w,. Let xm be the first x in D satisfying the above relation. Then
2nm,,(In(xm))\>e for n”*n0.
Continuing in this way we obtain [xmkk and {nkik, no< i<..., satisfying
3rx )s/rm (x)s 1
where xnmo=xx and

| 2'pIm/A(/ kXt D)| > e
b"|ta(/,(xTk.D) > e for né n,,
Set
QL KS* MR = ()
It is obvious that 2"|ta(/,.(x,))|>e for n=no and x'~x,, for all n. This contradicts

the hypothesis.
On each dyadic interval, similarly the same result holds. This proves Lemma 3.

Remark. There exists a Walsh—Fourier series of a positive Radon measure
which satisfies

2z "1Ne)\* = 0(1)
k=2"
as and

lim Z R(x)wk(x) = 0

everywhere except on a dense set of Haar measure zero [10].

Proof of Theorem 1. By Lemma 3 D is nowhere dense. Set D=DIl)=DIUD'1
where 2)x is the set of accumulating points of Df) and D'x is the set of isolated
points of £, For xfD[ there exists / such that IC\DO={x}. By Lemma 2
m,(["Y=0 for Tal. Then (4) holds on D{.

Set analogously D1=DiUD'2 as we did on DO. Then (4) holds on D2

In general set £a=.Da+xUZ>+X where a is an ordinal number such that
a<i2 and Q is the first ordinal number of the third class. D is a countable set,
then there exists an ordinal number R~~Q such that Dp=0. If follows that
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D= 1J &' and (4) holds on each Z>. That is, (4) holds on D. Therefore (4) holds
a<p

everywhere. Consequently by Lemma 1 Theorem 1 is proved.
The following results are corollaries to Lemma 1

Corollary 1 For a dyadic interval I, if (4) holds everywhere on J, then
mu(l)=0 for all Fezl.

Corollary 2. Let {m}, be a sequence ofpositive numbers tending to infinity.
When E is a closed set such that 1/A,*Nn(E) = 0(1) as n—°° where N,,(E) is the
number of dyadic intervals of rank n containing some elements of E, E is a Ulset
for the class of o f Walsh series (1) satisfying

lim inf i =0 here.
K Bnk2:O fi(k) Vk(x) everywhere

We can extend Lemma 1 for double Walsh series.
Corollary 3. The empty set is a Uxsetfor the class of all double Walsh series.

Proof of Theorem 2

To prove Theorem 2 we need following lemmas.
Lemma 4. The empty set is a U2setfor the class of all Walsh series.

Proof. Similarly to the proof of Lemma 1 we can easily find two sequences
of dyadic intervals {[pJ2n (pn+ 1) “/2r}, and {[gJ2n {ogn+1)“/2'T},, suchthat

m,[0, 1 “] =s2m,,[pJ2, (pi+ I)“/2] =... s& 2nmfipjl", (pn+ 1)~/2n]rs...,
[0 1-1i [pj2 (px+ 1)-/2]1...2 [PI2n (pn+1)-/21

mfio, 1-] = 2mB[qJ2, (qx+ 1)"/2] S...i£ 2nmll[gJ2n (gn+ 1)-/2"]&...,
b, 1-]1i [q32, (Ft+ 1)"/2]i ...3 [q,/2n (Qn+D~/2"] 2 ...

Set /ﬂl[pr!Zn, (p,,*+1)~/2= {ric} and /l[_]l[qJZn, ?,+ D~2"1= {*£}. From (2)
we have

mfig 1”] = lim inf2"2nM/,, ¢0) S 0, mB[o, 1“] & dmsup 2nmflfix'fi) ~ o

where 1,,(x0=[pr/2n (p,,+1)-/2n and In(X0=[gJ2n(gn+1)-/2n]. Consequently
we get/a0, 1 ]=o0.
Quite similarly we can prove that mR(l)=0 for all 1. This proves Lemma 4.
We state two lemmas without proofs.

Lemma 5. A set ofonepoint is a U2setfor the class of Walsh series (1) satisfy-
ing (5).
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Lemma 6. When a Walsh series (1) satisfies (5) everywhere, set
= Ix: liminf ¥ fi(k)wk(x) < ol, D2—ixrlimsup ¥ fi(k)wk(x)> ol.
| =0 > 1 n~°°  k=o >

If D1 and D2 are countable sets, then both of D1 and D, are nowhere dense.
We can prove these lemmas similarly to Lemma 2 and Lemma 3 respectively.

Theorem 2 is proved quite similarly to Theorem 1.
Proof of Theorem 3

To prove Theorem 3 we need the following three lemmas.

Lemma 7. A set of Haar measure zero is a Ux-setfor the class of Walsh series (1)
satisfying (3) everywhere.

Proof. Let O0<i/<1. From (4) and Egorov theorem, there exists a closed
set such that

mesEi > 1—, lim inf 2 fi(k)wk(x) —0 uniformly on Et.

For each e>0, there exists an integer M=7V1(s) such that

g 2 filowkx) =inf 2'm,(4(x))|<e on Ex

For each xEET, let /ex(X) be an integer satisfying kI(x)"N1 and
2KIC\MB(IKI)(X))| < e.
Since
U 4i(x)(x) S EXx,
there exist xj1, ., X MIEt satisfying

) M()u_}(xl'll'lAu?fixw) =0 (i~ j), iglllz*KI@)ﬂ-]J.

Let kx be the largest ki{x”) for I"i~sk and If be the set of all p suchthat

[p2*L, (p+ 1)-RAIN U 4 1I(.f»)(x<>)= 0.
Then we get

Im.[0, 1= = 2 Im* (AIX))I+ 2 W,,[p/21h (p+ 1)-/2])

S i2 1" Di#ilkK[PLI2 (p+1)-/1245
1= 1
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where #2?x is the number of elements of and on Bx \mHp/2kl, (p+1)_/2‘]|
takes the maximum at px. From (9) we have #2?xml/2kI*rj. Thus we have

rufQ -] 2 e+ti-2kmiipr2w, (@kH)-/24].
Continuing in this way, there exists a sequence of dyadic intervals
{[PjlI2\(Pj+ i)-/2 K}T=
[Pil2K (PI+1)~/2K] i [p22\ (p2+1)-/12Kqg...
hu[PjRKJ, (Pj+1)-/2%j]\ A E/23+Kj -fti/2kj2k* I\mIl [pd+1/2K+i, (S+1+ 1)-/2K*H\.
Thus we get
\mfiO, 1~]| S e+ e/2 +... +e/2J~1+ rjI2§\mfl[pj/2ki, (Pj+1)~/2K}\.

such that

Set
par [Pi12g* (P + 1) /2k] = {xO}
Therefore
ImMO, 1 ]| Se+e/2+...+e/2] 1+rjI2g\mII(Ikj(xO\ < 2e+rjI2\mII(1kj(xO)\.

From the hypothesis the second term of the last formula tends to zero as
so that we have |m7,[o, I~]|<2e. Consequently we have w0, 1 ]=0.

Similarly we can prove that mfil)~0 for each dyadic interval 1, that is,
fi(k)=0 for all k. This completes the proof of Lemma 7.

Corollary 4. |fa Walsh series (1) satisfies (3) everywhere on | and (4) almost
everywhere on 1, then T,,(I)=0 forall Icl.

Lemma 8. |f a Walsh series (1) satisfies (4) everywhere on | but x0 and (5)
everywhere, then mA(1')=0 for all I'cl.
The proof of Lemma 8 depends on Lemma 2.

Lemma 9. Let D be the set ofall x satisfying
n1
syp o fi(k)wk(x) = co_

If D is a countable set, then it is nowhere dense.
Proof. Suppose that D is dense on [0,1 ]. Set D= {xI5x2, ..} and xt=

= (A1), 42, Let nx be the first number n such that 2"|m,(/,(x))|>L Let
xh be the first element of D contained in Therefore jcl=(iil), tffi, ...
~m Let n2 be the first number n satisfying
2n\m 2, Mm+1»

and xh be the first element of D contained in LAxiJ\{xil}.
Continue in this way and set

y0= (4», tfrh,
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ON GENERALIZED UNIQUENESS THEOREMS FOR WALSH SERIES 217

Obviously we have 2*|wh(/,,k(yQ)| > «, thatis,
sup 2njmA(/,,(y0)| = ~.

Then yCED. But this contradicts the hypothesis.
It is obvious that a similar result is valid on each dyadic interval.
The proof of Theorem 3 is quite similar to the proof of Theorem 1
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SATURATION FOR BERNSTEIN TYPE
RATIONAL FUNCTIONS

V. TOT1K (Szeged)

81,

Soon after Bernstein’s fundamental work on Bernstein polynomials ([5]) it
has begun the extension of these to infinite intervals (see e.g. [7, p. 36]). However,
uniform approximation by polynomials on infinite intervals cannot be expected,
so it is natural to seek a modification where the range of the operator consists of
rational functions. In [1] C. Balazs introduced the operators

1 *
AN oy amr (*S0)

and proved that Rn(f) converges to / uniformly on compact intervals under the
conditions: a,,=h,,/n—0, / bounded and continuous on (0, °°). In [2]
weighted estimates were given in the case a,,=np~x b,,=np, 0</172/3 and certain
questions of the uniform convergence of R,,(f) on (0, <o) were also treated.

The aim of the present paper is to settle the saturation properties of Rn{f)
and to prove a general convergence theorem for 1?,-like rational functions.

First let us consider the saturation case. We can solve the saturation problem
on intervals (a, *9, 0 when an——nB~x, b,—np, 0</J<I, i.e. a neighbourhood
of zero is omitted. Before formulating our theorem let us see what sort of results
can be expected. If / is smooth on the interval (a, b) then we can hope a good
approximation by Rn(f) only on subsets of (a, b) “far” from a or b since the
values of / outside (a, b) can spoil the order of approximation near a or b.
Conversely, if we know the order of R,,(f)—f on (a b) then, clearly, we can infer
smoothness properties of / only on parts of (a b) “far from the endpoints”.
These remarks justify the introduction of the following definition.

Let I be a property, | an interval. We shall write {/1T}t for the class of
functions / having property T uniformly on 1.

Definition. {/?,} is said to be saturated on (a, b) with order {®,} if
sup \Rn(f; x)—(x)| —o(®P,,) implies that / is constant on (a, b) and there exists

xi(a,b)
a function /o not identically constant on (a, b) suchthat SL(pr) \RN(fO', x)— o(X)| =
x 6 (a,
=0(®d,,). We say that the saturation class is
) sRn=wure,H
if for every e>0
(i) R,{f-, *)-/(*)! ~ Kbn, x€(a, b), n=1 2, ...
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220 V. TOTIK

implies
1€{g|7 " HaiSi.-£) . 1
() fZ{g\T\a,b)
implies

\R,,(f; x)-f{x)\ A K&/ x£(a+e, b-s), n=1,2, ....

After these let us consider the operators

where
(LY (0& k"™ n).
Throughout the paper the terms B, &, and mk(x) will be used always in this sense.
With the notations
~a(l; *) = f(x +h)-f(x), A\(f\ x) =f(x+2h)-2f(x+h)+f(x) (h=0)
we shall prove
Theorem 1. Let a>0.

0] 2 1 then {7} is saturated on (a, °°) with order {ni_1} and
saturation class S(R,,)={f\f absolutely continuous, xZ' (x)=0{\)}*ab).
(i) Ifi</F Aen (AN ‘s saturated on (a, °°) with order {n ‘} and

saturation class
2P 2(1_[3)
S(R = {f\f abs. cont, x2(x)=0(2), x* Ah(f; x) =0(h B

(iii) If B=72 then the saturation order of {/?,.} on (a, °°) is {n 12} and the
saturation classis  S(R,,)={f\f' abs. cont., xZ&'(x)—0(1), xf"(x)= Of{l)Fa*>)m

(iv) If 0</l< — then the saturation order of {/2.} on (a, = is and
the saturation class is

S(Rn={f\f abs. cont., /(»)= hm f(t) exists,
Xil(2-s/»/'(*) = 0(1), xW-HAXJ; x)=0(hRI1~R)),
XI"(X) =0(1), /(7)-1(*) = O(Xx-R-R% & .

By localization we shall obtain the saturation conditions on finite intervals.
Here, however, a so called trivial class T(Rr) can also arise. This consists of all

1 For 6==0 let bh—e=°=.
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SATURATION FOR BERNSTEIN TYPE RATIONAL FUNCTIONS 221

functions for which Rn(f)— =o(®n) ({®,} is the saturation order), (see [10, p. 123]).
We have

Corollary 1. Let 0 be any two numbers.
2
@ If— 1 then {/?} is saturated on (a,b) with order {n r}, with
trivial class
(12 T(Rn) = {f\f const)X,,b

and saturation class S(Rn)= {/1€ Lip 1}*, -
(@ii) If y1 <(i<2— then {/?,} is saturated on (a,b) with order {rf 1}, with

trivial class (1.2) and saturation class 5'(A,)= 5 G Lip——2——?§—r§—i(a )

@iiiy If =y {en {"N issaturated on (a,b) with order {n 12}, with trivial
class
T(R,) = {/1/(*) = c+d f erdxfa,
and saturation class
.3 S(R,,) ={/!'/'€ Lip 1}0).
(iv) If 1 then {r.} is saturated on (a,b) with order {n R}, with

trivial class
T(Rn = {/|/(x) - c+dx)U)

and saturation class (1.3).

Remarks. 1. At first glance the dependence of the saturation order on B may
be surprising, namely with the decrease of 3, i.e. with the increase of the distance

K . 1 .
between the nodes —, the saturation order decreases (!) for /?>y and in-
creases for /?<y. The explanation is the following: in the approximation the

dominating factor for /J>y is the distance of x from the weight point of the

weight system:
{the weight r,,itfa(x)="] is put into the point

and this distance decreases together with B. On the other hand, for /?<y the

dominating factor is the “second moment” /?,((?—x)2; X) which increases when
I/B does so.

2. The form of the saturation classes is also odd, since most “natural” operators
have Lip 1 or {/|/'ELip 1} as their saturation class.
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3. Our theorem shows that from the point of view of best possible approxima-
tion the optimal value of B is y (compare [1, p. 124]).

4. 1t would be very interesting to solve the saturation problem around x=0.

5. Let
r*-1 for 1> Ra 1/2

(1'% m==Iln-p for o<B<I/2.
If 0<a< 1 and a>0 then one may be interested in determining the function classes
= {f\R,Af\x)-f(x) = 0(fn}<X)

i.e. the conditions under which the non-optimal approximation order {y} can be
achieved (for related problems see eg. [4,8,9]). We conjecture the following:
Let us write /(°°) = lim/(?) and when the term /(°°) is used then it is also under-

stood that / is a function for which the limit exists. With the convention accepted
in Theorem 1the following hold very likely:

LForJ £R<1

() = {n x) = O(if); /1(*)-/(«>) = 0 (X-*)&, T

®-R) Mi-fi)
RC~) = {f\x B At(f-x) =0(h f ) x"A\(R x) = 0Qf),

fix") — (°°) = O(x_a)Fa,.,.).
3. For0< B <j

= {fAx?AI(f\ x) = 0(h**), x " fiAU T, x) = 0(h?),
2alk an B
xAMiALIf- x) =0 (JAN); 1(*)-1(-) =0 (X_")}*BTE).

The sufficiency of these conditions can be proved similarly as in Theorem 1
and also much of the necessity proof of Theorem 1 can be transferred to the above
non-optimal case. One major difficulty is the proof of x*AL,/ ;x)=0(had when
RniD~f=0iri*-X R=1/2.

After these we turn to the uniform approximation problem for Bernstein type
operators. Let a={a,,)x be a positive sequence and B=(bnk)osk*n(n=12 ) a
matrix with entries
(1-5) 0=br0< ba<..<b,,.

We shall consider the operators
RN(>X) = R,,(B; a; f; X) J(b I [7) @)k 2 f(bn,k)mk()-
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Let S be the set of functions 4,C[0, °°) for which /(°o):lj_m f{t) exists.
Clearly, since lim Rn{B\ a; f; x)=f(bn,,) exists, uniform approximation on [0, °°)
by the operators R,, can be achieved only for functions belonging to S.

Definition. We say that {R,} has the approximation property if
Am R,{B\aV; x)=f(x) uniformly on [0, °°) for every f/S.

We have
Theorem 2. Let B, aand R,, be as above. Thefollowingassertionsareequivalent:

(i) {7} has the approximation property,
@ii) lim Rn( f;x)=f(x) uniformly on compact subsets of [0, 5 for every
continuous and bounded f
@iii) lim /?,,(1/(1+1); X)= 1/(1 +x) for every rational x"O,
(iv) Hagb..[ew/(1+ax)]=n for every x"O.
E.g. we obtain from (iv) that the operators

@+x)t £/ b k+r1

have the approximation property (cf. [6]).
Note that (iii) is a very strong Korovkin type characterization of the approxima-
tion property (for an application see Corollary 5 below).

Corollary 2. If a={«,} is agiven sequence of positive numbers then there is
a matrix B such that {R,,(B; @)} has the approximation property if and only if
lim nan=°° and H,U,m ajn=0.

n*-ao

Corollary 3. If a={G,} and b={b,,} are two positive sequences then

{«« PRE .

has the approximation property if and only if naJbn-+\, a,-*-0 and b,,»°° as n-*°°,

Corollary 4. Let B=(b,,t) be a matrix with property (1.5), and let k~(x)
and k;+(x) be the number ofthe brek which satisfy b,,k*x and b,tk>x, respectively.
Then there is a sequence a={a,,} of positive numbers such that {Rn(B\d)} has
the approximation property if and only iffor all x,y>0

(16) Aol ety = 4

Corollary 5. Let {a,} and (b, be as above and let us assume that 0
for every n. Then {Rn{(b,tk), {«.p)} has the approximation property if and only
ifit has the sequence of operators
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224 V. TOTIK
Thus, e.g. we can conclude that

s ~{ .,V (1r1) -/n
uniformlyon [o, °°) for every /£fm 1).

Remark. Much of Theorem 2 could be extended to other type of operators,
e.g. to the Bernstein type operators

O0sSxSl, 0s i),0< (O.!< ..s 1,

or to the Szasz—Mlirakjan type ones:

-nJnx)k
k\

The paper is organized as follows: In §2 and 83 we prove Theorems 1 and 2,
respectively, and 84 contains the proof of our lemmas.

2 f(b nke: X—0, 0S <HB:

8 2. Proof of Theorem 1

Proof of Sufficiency, i.€. the given conditions ensure the stated approximation
order.

a. The case 72/3. By our assumption |/(t) —£(x)|"Ajt_2|//—x| for x"a +e
X 1
and -"—t—2x, so we get for n1~R

\K (A *)-/(*)1~ 0{n~=D + AR n(|/-x]; X) = 0(n"-J)

where we used (i) and (ii) from Lemma land the inequality /2~ | —8.
Since f'(x) = 0(x~32, the limit f(°=)=lim f(x) existsand f(x)—(°°)=0(x_1),

hence for réy un 1 1 we obtain from Lemma 1 (ii)

\Rn(A x)-f(x)\ ~ Rn(\f-f(00)|; X)+ |[/(Xx)-/(°0)| =
= 0in-"+0inP-"+0in0-1) = O tf-1).

B. The case ! 2—. For Xéyll/ll p argue as above in a For n23-p"
we get by the argument of Case a
|ﬂ11(/1 X)_/(X)l =0 (n_1)+_/\_ A,,(li-X|; X) =
= 0{n~0)+0 {x-2{ni,- x2+n - BI2xil2)) = O (np~r)

since
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SATURATION FOR BERNSTEIN TYPE RATIONAL FUNCTIONS 225

Finally, for a+s”"x"n (@23 B let 6= ~

A9 o s Wl )
and g2 G
/a(0 = [yj T {2f(t+u+v)-f(t+2(u+v)j)dudv

(see e.g. [8]). For these we have (see [8], especially formulas (3.2) and (3.3))

1(0~/a(1 ™ Kalin-"*), 1//(01 » K~a>(n-V*) [jSt*2x)

and by xZ'(x)=0(): VO(x)\"K/x2 Now our assumption x{I~R/RABR(f;x)=
—0(h2(R)R) says that co(S)=0(321~fiffi), hence the relations |/&(/)|Ssup |/|,

\R«(f; x)-f(x)\ —R,, (\f-fs\,x) +\f(x)-fd(x)\ +\Rn(fe; x ) -fa(x)\
and
\M0-M x)-fd(xXt-x)\ » K/i(0(1-x)2= K — a>(n~A2) (t—x)2

give together with Lemma 1
Rn(f; x)-/(x)\ » 0(n-") +0O(ca(r,-V3) +O(co(n~V2) +

+HOOIARC-* 5 x)[+™) +~w (n -~ 71 a0 -7 5 x) "

g 0(n~)+0(np~)+0(nB~D+Knk~1-"-{nZ>2* + =0(nk-1
since NP3 1.

y. The case B=1/2. The proofgiven in Case B works also in our case because
xf*(x)=0(1) implies
ft/x h][x

WA (/5 %) = \ff f(x+u+v)dudv\ & KFf (x+u+v)~xdudv s Kh2
0 0

G The case 0</?<l/2. For k*~n we have by f(x)—{°°)=0(xRKR~D):
T -n a)=0(n~R) hence (see Lemma 1, (ii))

\RN(F;x)-F(X)\AO (N~RY+Kn-B 2 k() =0(n~R) [x~jn 1»).

—n
4
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For nz3 fx”-~-n1~R we use

1(0-/W I S Kx-WV-n\t-x\R"-R) 2X)
by which
MW; *)-/(*)I=0Cn-"+/~c-wa-wAdi-jciAil-»; *) ~
SO (n-)+ATw-L(1+x 21—0"n ’\-zn)"Kn~r3

where we used Lemma 1, (i), (ii) and x"*n23~R.
Finally, when a+e”x"n 23~ then we use f'(x) =0 (x 1<%, /" (x)=0(x_1),
Lemma land the estimate

1/(0-/(*)-/14*)(i-*)I S * (t-x)2 2X)
to obtain
MW x)-f{x)\ Wo (n-)+|/'C*)|(|,,(*-*; x)|+-*+~1,,((r-x)2; x) =S
1

0(n~D+0(xB~2nB~1xJ+0(N2B~2x 3+ n~R) = 0(n~R)
by which the sufficiency of our conditions is proved.

Proof of Necessity, i.e. R,,{f)—f=0{y,,) (cf. 81) ensures the stated structural
properties of /. The proofs below with minor modifications yield also that the
saturation order is {y,}, we omit the details.

a. The case 2/3~/?<I. First we show the absolute continuity of / on (a, °°).
It is enough to do this on every finite interval (a, b). We may suppose that / is
not linear in any left neighbourhood of b.

First of all let us prove that if f is bounded, continuous and

(2.1) limsup n1~p(R,,(/; x)—(x)) > 0

for every x£(a, b) then there is a point xo€[a, b] such that / decreases on (a, x0
and increases and convex on (x,,b). Let xo be a point where / attains its
minimumon [a,b\. If a*x<y<xoand /(x)Sf(y) then, by the choice of x0,
there isa z between x and x, where / has a local maximum. Thus, fora &0
[(t)M(z) for z—dSt"z+ 6 and then Lemma 5 yields Ra(f; z)Sf(z)+0(n~1)
by which

limsup n1- B(R..(f; z)-/(z)) * o

and this contradicts (2.1). This contradiction shows that we cannot have /(y)s/(x),
i.e. / strictly decreases on (a,x0. The same argument gives that / increases
on (x0,b). Finally, let us suppose that for some x0Sx1<x2<x3Sb we have

fix9 " = f(xD+a(x2-x .

n3  Aj
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Then (see also the figure) there is a z£(xx,x3 for which
fit) S/(z)+a(t-z)
for all t sufficiently close to z, and so Lemma 5 gives

*.(l; 2)-1(z) £«Rn{t-Z;i)+0 (n-i) = - L Zq+ Q(»")

which contradicts (2.1) because a is positive. Hence / is convex on (x0,b).
Now let us turn back to our / on (a b). Since R,,()—=0(nBk~) and

Rn(t; x)—x= —Y+W~bc "there is a C>0 such that for the functions /+(/) =
- —Ct+f(ty we have limsup (N1,,(/%; «) —1= (x>0 for every x£(a,b). Let

X6 and x6 be points where f + and f~ attain their minima on [a, b], respec-
tively. According to what we have proved above both / + and f~ are convex on
the interval (max (x<\x,,), b). Since we assumed the non-linearity of / around
b we can conclude that max (x6,x")=b. Let eg. x<f=b and x#
arbitrary (if xE=b is also satisfied then the consideration below becomes even
simpler). Since f~ is decreasing on (a, b), we have for x,x+h£(a,b),h>0

(2.2) f~(x+h)—~(x) =—Ch—(/(x + h)-f(x)) =o.

Also, / + is decreasing on (a, x@) and increasing and convex on (x@,b), hence
(2.3) -Ch+if(x+h)-/(x))~ 0

for x, x+h(z(a, Xq], /i>0 and

(2.9) —Ch+(f(x+h)—(x))~dh

for x, x+h£[x,,, b'], h;»0 where d denotes the right derivative of f + atthepoint b'.
By (2.2), (2.3) and (2.4) / isin Lip 1 on (a, b") with Lipschitz constant C+d,
and since was arbitrary, the absolute continuity of / is proved. For later
applications let us note that our argument is valid for all /?S1/2.

Now at every point x where/ is differentiable we have lim n1_p(7?,,(/; X)—#x)) =

=x2 ,(X) (see Lemma 2, (i)) and so the boundedness of nl~B{Rn(f\ x)-/(x))
on (a, °°) implies that of x2'(x).
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B. The case 1/2</?<2/3. First we prove that xil~R)/RAI(f; x)=0(hX1~R)/B)
on (a+e, °°). By Lemma 6 we can modify / on (0, a+e€) so that the resulting
function/* satisfies R,,(f*)—* =0(nBR~1 uniformly on [0, °°) and /* is constant
on (0, a). Subtracting /*(0) from /* we may thus suppose that /is zero on (0, a)
and R,,(f)-f=0(nk-1) on (0, °0) in proving that

25 = co(/; 9= ML-(/; = 0{h2A1~R)IR).
(25) «9=coli 9= _sup  ML-(/; X = 0{h2t-H
In fact, if we apply this result to the above /* and take into account that f(x)=
=f*(x) for jcSd+e we get
_ * . N Ll
X;g&e\A\rx(f O £m((/*; h)» KftZx-»")
which is equivalent to our assertion.
Almost everything from the proof is contained in
Proposition 1 |If 1/2<)8-<2/3, Rn(f)—=0(nR~1) uniformly on (0, °°)
and f(x) =0 for x£(0, a) (a=>0 isfixed) then
IR "afi, *)] = K-(nR-1+co(n-p2) (x>0, n=12 .).

Proof. Let *>0 and <%= IxjnB. Then

IW ; ®ls k (/-1,; Y\ +\K (fs-x)| = Ifix) + 1fix)
where

I o \2 <512

1«0 = [yj T @f(t+u+v)-f(t+2u+v)))dudv

is the function already used in the sufficiency part of the proof.
We shall estimate 1fix) and Ifix) separately.

I. Estimation of Ifix). An easy computation gives (compare e.g. [4, p. 705]) that

26, W ; >=| ,|[[(” TT&)!-(-21"™)r-(T£bl Y ]x
x4 £) LSHIW (T-iffe) "«» ™
- $M T ) HI(>) ((F~tS Ef)'*e» =

= hfifi, x)-/x.a(/; x).

First, let us consider the case i~(a/2)2 We have /|-"-]— =0 for

because /(x)=0 on (0,a), furthermore for k>— nRa we get from the
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definition of o (see also [7])

00) L a co(n B,
Z- —nRka

where we assumed, as we may, 1.
In the above expression of R'aif—d', x) we have

27
(see [4, (1.3)]) and N l+ax :1, hence
. n
\K if-U x)\ S7?o0,(n-W 2. -+ ——co(n~R2) 2 ran(x) s — -w(n

After this let x>(u/2)2 We use that a>(A<5)"A7I2a0<) (A ™) (see [8]) by which

co(n~p"-j*- for 0 < k”nBx
co(n~RI9 for k> nBx.

(2.8 s i

We have also /(0)—r(0)=0 for xSnfa2 and |/(0)—#r(0)|*2 sup |/| for all X,
hence with

(0 for x " nRa2
(2.9) h(x) =

b for x> npa%

we get by the positivity of (I “2y ~ ) if+(y”~j) 7. that

M- AS[fel-(TTfe) ] Wr* W+

+"C0(n-"3f;[r%(i | 19O = 5109 +529+ 539 +54X).
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Since B>~2 and h(x)=0 for x"nfRa2

Si (xX) Kn2Zh(x)r,,'0x) = K~ nB~1|" (1+~ iJ h(x)

sK~ n~ "I" - (~rirp))« «V
By (2.7)

n'i1*
AW N K-co(n~RB2 " A

- co(n"
To estimate £2(x) let
(2/10) S,(g;,) =J 8(I)("),.('-.)-

be the u-th Bernstein polynomial of gEC[0,1]. We have (see [7,p. 14]) B,, ((t-x)2;x)

£ AN T +a x TorXN ~ anx) rn+ik+i(x)

and
when * . «m* 1's 4 -
n 1+a,x) (n+1  l+a,x) Em rjr(uf,,x} n2

S0

. E R n2«(n V\2)n’_‘___’jx_,\ np _
SUT - colu g/%erer(l+r{1p~'1x')(n+ ) e

where we used also the inequality x sjyaj] .
A similar argument gives

SM -og.0r*-){i+l[*, ((I-"gj) +(" ) L

-0(g At " o(-«m>) -
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and so the estimate
InCN-n; *)=o
has been proved for jc (@/2)2

To estimate /132(/—fa, x) (see (2.6)) for *-n1~f"x"(a/2)2 we use Lemma 1
(ii) and (2.8) by which

IW -/;*>1*Jav (" -+, ?

TV 2_<K_®(K ) X

Let now ) First of all let us notice that t_JJ& Rn(f; t)=f(n1~R)

exists, so, by Rn(f)— —o(1), the limit / (°°)=t!1{n% /(] also exists and we have
I/H -/(n /)l =|lim{m -R a(J- 0)] » Knlt 1.
Now putting r(B)=co(6/ynl~R), Q=(x——"1~-Bn2~1 a=nr~p, b=nl~-B+n1~A in
Lemma 4 and taking into account that (n+ 1)1-i—1~BSn~R we obtain for
x€Wm1-N,(n+1)1-p):
[/(n1-7)-/(x)] = \f(n2:-R)-f(n - R+e(b-a))\ =S

A K(v(I~Q(b—a))+q) » K(y(ng_Zz_nl_Zp)+ n® 1) A if(cu(n_N + ni_1).

Since this is true for all n and nb % xS («+1)1 i, we get for x"n1~R:

f(x)-f(°°) = 0(nB 1+ co(n R)
by which

vt gl - K s HHE 1 T - K(nB- 1+co(n-B)
—l-

4

for kS 1/4n.
Using this and Lemma 1 (ii) we obtain for x”nx~R:

[Aa(/-/t; I BKAr\in J+ L ~
Kk~T"

N KA2N-(n-1+ nB- 1+co(n-B)) K-If-(nRk- 1+ (ti(n-Rl12)).
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Collecting our inequalities we obtain

\r(x)\* K2 (n'-r+1(n-'1*))

with a K independent of n and x.
Il. Estimation of /2(x). A simple calculation gives (compare [7,p. 12])

W ;pa= »(»-I)[ il : Lo ) (", 2) (T 2~ (1+a,X)4
2na
1+ r-o -- -

By the definition of /() and  we have (see also [8])

jco(n~R2) for 1=k = nlx
(2.11)
H},X—co\gmfs 2 for ft> nix.

Furthermore, Al-eifa 0)=0 for n~R*ass and x”"nfR(a/2)2and |d2-0(/4,0)|a
"4 sup I/l otherwise, hence using the function (2.9) we obtain

"t n2co(n~R/z)
(2.12) \IM | x)| » Knm(l+n*'—1*)
~ram 1 (N~2) (@)K I KnBco(n 2) -2 [n-2\ (ank A
A kIl k Ja+ax)n-2 X *=m*]+4 k ) (I+a,,x)n-2 ~
ftP nii X]fl —I1 anx (n - 2) (O,,X)k

I +a,xl £ J(I+a,x)n!
+AX— cu(n-"2 KT nB~1+KX— co(n~f3/2Q tliZ W—T— H f\/*ﬂlalfm’-ll! S
=K ~ gnB 1+ a>(n"
For xS the estimate of /2X/a; x) is easy:
[/IM(1; x)|sfi.*-1si:yii'-1
If 1" xsin 1il we argue as follows. Since ¥ f {t)\~K (np[x )co(ixjnBt) (see
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[8]) and co(lh)SK2.2a>(h) (Asl) we have
'h

Q—-
~co(n-Ah2 for &x

L co(n-R*)h2 for

Thus, putting g=-o(n~R2)/k, a=k/nk b—a=yk/inBa>(n~2) and v(h)=
—n2¥Kk)co(n~R2)h2 when 17k +nRx and p=Yoj(n~R2)/nkx, a=k/nB b—a—
—YXjnRa>(ti~¥2) and v(h) —n’¥/x)co(n~R2)h2 when k>nRx we obtain from Lemma 4

" Vireo(n-42 LKnco(n R2/k for nix

— K W2 -
m m) i npl—K )/ ) K "2 co(n-**) for k> nBx

where at the last steps we used that a>(kh)*Kk2o(h) implies co(h)ch2 (c>0)
(we may assume that co(1)?~0 i.e. that / is not constant) and so

k/co(n~R/2) » nBx/n~B ™ n2n1~B& n2 il ~ kS nBx, x *  r}~fy,
xInB(o(n~R2) & nl R N2~

Using (2.13) the estimate
[Im(; X\ - KA-{nB-1+0)(n-R'Q)

can be proved exactly as we got (2.12) from (2.11).
Finally, for X—2 "1 /? we use Lemma 1 (ii) and the above (in Part I) proved fact

[(*)-1(°°) = O(ni-1+«o(n_i)) (X
by which the method of Part | gives

V21, x)| - KA 1 1x (1 +7-Yo>(n-0) -

A e n’ nB’“%_ o - A .
. M |+il”_lX gfnP +coin |la) K X{/n +coin »/a)l

Collecting our inequalities we obtain
[1*(x)| » K— (nB~1+co(n~R/))

and the proof of Proposition 1 is complete.
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Now let us turn back to (2.5). For every >0 and né 1 an application of
Proposition 1 gives
K m(fi xp S VAly-(f-Rn(fy, x)\ +\Alrx(Rn(fy, *)| »

h/x
AKNP-"+ Iff R”(f\ x+u+v)dudvIlS KnR~1+
0

+ff — {nR~1+w{n~R2))dudv S KnB~x+ K _»/2 2 (nR~1+co(n~A2)
ie
y 2,0
(2.14) coyr N - 1+ NCAP(|."-1+a) (KN 2).
Let now 0<<5sl be arbitrary. We can find an n&2 with n~f2<é™(n—I)~R,i
and then (2.14) implies
0i(h) S M A « 1-/»/P+ A(<52(1-~+10 (1))]

for all Osh, §si. Since 2(1—/?)//?<2, we obtain (2.5) from Lemma 3.
It has remained to show the boundedness of x2f'(x). First of all let us note that

B-1 2(1—p)
2(1—R)/IB>1 and AI(f\x)=0(x B h B ) (xSu+e) imply thatB/_ is c%r)lti—
-l m- t
nuously differentiable on (a+£, °°) and |/'(x) —#'(x+h)|s.KXx Ii] R

+ —yShSA'j (see [9, p. 6]). This and the mean value theorem yield
m-f(x)-fA\x){t-x)\ =1/(a (t-x)-f{x)(t-x)\ s

R-1 201-Fi) i fi-1 2(1-fi)

S Kx B E—=\ B [t—\'s Kx B \t—jd R  (E€(f, X))
by which (see Lemma 1 (iii))

R-I 21-fi)
K(f\ x)-f(x)-f\x)*R n(t-x-, x)+0 AKX B Aa(l/-*| B ;x).
Applying Lemma 1 we get from Rn(f)—=0(nfk~2)
aa-fi) 6y
O(NB-Y+\F'OON {fIMBXIx TON-D) - O{x*~ )

Multiplying this by wu1 B and taking the limit w*~<» we obtain |/'(x)|x2=0(l)
as we claimed above.

o 1 2 .
The proofof necessity in the case — — is thus complete.

y. The case First we prove that / has an absolutely continuous derivative
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on (a, °°). Let (a b) be any finite interval. It is sufficient to show that / has an
absolutely continuous derivative on (a, h).
The proof used in a shows that / isin Lip 1on (a, b). Let eg.

\F(x+h)-f(x)\ = M\h\  (x, x+h£(a, b))

and

(2.15) \Rn(f; x)-f(x)\  Mn~12 (x£(a, b)).
We claim that

(2.16) M*(/; )| —Ch2 (a+h a x* b—h, h > 0)

where C=2(M+5Mb2/a. (2.16) already implies the absolute continuity of /'

(see [10, p. 6]).
Let us suppose on the contrary that e.g. 2f(x0Q—f(x 0+h)—f(x 0—h)=CLh2
for some xiE{a+h,b—h), h>0 and CXC. Let C<C2<Ci. For the func-

tion
fW=/(/)+c.(,-,»,)--& =M icil(,-,1+i,
we have
9(x0-g(x0-h) = g(xg-g (x0+h) ="-(29(xQ-g (x0+h)-g(x0~h)) =

= C1h2—C2h2> 0,

hence, if m= _ su g(t), and z is a point where the supremum is attained then
X

x0—h<z<x0+h. Now since m—g is nonnegative on (x0O—h,x0+h) and g(z)—
—m—0 we have

m =™-c(,-*).+2& £Mi>adi((_*l+w
for x0—h "t~ x 0+h and

which yield easily
m g/M -C , ft-z)-+(-2C ,(z-"+/fa+t)-/fa--5))(,-z) =

N(z)-C 2(i-z)ata(r-z)
for |i-z|<min (z—(x0-h), x0+h —z). Applying Lemma 5 we get
R,,(f; 2)-f(z) "-C 2Rn((t-2)2 z)+aRn(t-z- z)+0(n~J

S-C,n-12 Ly, -an-'?

I+n TT "7 +0(n_1)-
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Since \f(x0+h)—/(x 0—h)\-".M2h\
Ch<jC xh2=1(2f(x0Q-f(x0+h)-f(x0-h)) *j2M h = 2M
and |z—xO\sh, we get |a|é5M, and so
A,(; 2)-1(z) Wm-12(-C2y+5/1/bJ < n-1/2i-Cy +5Mb] =-M n~~

for large n and this contradicts (2.15). Thus, the absolute continuity of f s
proved.

Applying Lemma 2 we get that at every point x where f"(x) exists, i.e. almost
everywhere on (a, <5

—2x2 " (x) +xf" (X)| = [2lim nL2Rn(f; x)-/(x))[ =A
independently of x. We show using this that |x2"(x)|’\iA and \xf"(x)\"iA,
by which the proof will be complete. In fact, let us assume e.g. xIf'(x0Q> —?jA
for some x0E(a, °°). Then xd'(x)>iA in a neighborhood U of xo and so
at every XxEU where f" (x) exists we have necessarily f"(x)>—. This implies

3
that f strictly increases in U and we can conclude easily that x-f(x)>—A for
every x”~x0.Butthen f*(x)>A/x for every x"x0 by which f' (x)i*const+Alogx
(x™x,,) and this contradicts the boundedness of /. Thus, |x2"(x)\"iA and so

3
wf" (x\—At+-2 A for x>u. The proof is complete.

<& The case 0</?< 1. The fact that /' is absolutely continuous follows from
[10, Theorem 5.1], and the boundedness of x/"(x) on (a °°) can be proved
exactly as above (the argument for /?<1 is even simpler since nR,,(f; x)—(x)) —

-*-Ix/"(x) where f"(x) exists, see Lemma 2).

For xéa+£ and 2-S1S2x we have by xf"(x)=0 (2):

J(0-1(*)-Fit-xf A (x)(t-x) =i/(/)-1(x) +]| (/- X )2
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and so we get from Lemma land R,,(f)—f —0(n ) the relation

I'MI(1+ +0C»-1)) M Kn-"+KAnV-W +n-'x).

If here n23~R*x"(n+ 1)23~R then we obtain

(2.17) \F{x)\A Kn-13" Kx 2R,

Since R,,(f)—f=o(l) uniformly on (a, °°) the limit /(°°)= lim/(/) exists

and for every n
(,1-/<)-/H | = llim(R,,(ft)—f (0] s Kn-R

R
This, together with f'(x) =0(1) easily imply f(x)—f(°°)=0(x 1_R).
Finally we prove

2fi

B
(2.18) x*~8 lA\(f: jo| = Kh}-B (a< m<°° h>0),

in several steps.
(2.18) s clearly equivalent to

219 \i(x+hx2-/(jd] = Khi~B (x~ a, h> 0),

and f'(x)=0(1) shows that we may assume in (2.19) x"2.
Step 1L For n—1,2,... and n23~f*"x*"-ni~B we have

14-T A Kn~R.

In fact, by (2.17)

‘"M Tn M A v (F29)

thus (see Lemma 1)
(2.20)
On the other hand, using the Bernstein polynomials B,, (see (2.10)), the fact

B, (("-&)2,a) = a(\ a) («£(0, 1)
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and Schwarz’s inequality for positive functionals we obtain

M I'- 1+0%-1X 1, 1+ «»-m*) 7
=*UMi A TABL*

- t5 M o *

by which (see (2.20))

1 1 A
where we used that 5 o m :0 and Xx”n 23-R.

Since we have also |/?,,(/; x)—f(x)\*Kn~[ we can conclude

K(*- i+ V X )~I(jc)

+\Rn(f;x)-f(x)\*Kn->
as was stated above.

Step 2. For 1 and O’\Aéix-l we have

|/ (x—Ax —+ (X1 = Kh1~B.
3(1-«

Indeed, if OsA”x 2~3* then (2.17) gives

B 1—27 3(1-2«

[/(x-Ax2)-/(x)]| & Khx2x 2~3= Kh}~B AN x *** =

3(1-¢) 1-2/j 3(1-2«
N Khl» (x 2-3/2)!-/? 42-30 S Kh1-0.

If, conversely,
3(1-«

(2.21 X 23N AAs Z( "y
then there isan n for which n23 " x » —nl~R and

(n+iy-1 . ,0-1
A
I+(n+Dp X 1+ n™-1x

The existence of an n satisfying (2.22) follows from the fact that nR~1(1+nR~1x)

(2.22)
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decreases from 1/(1+x) to 0 as wu increases from 1 to infinity, and then the in-
equality n23~pLLUx"-"ril~R is an easy consequence of (2.21) and (2.22).
Thus, if we apply Step 1and the estimate (2.17) we can get

(x-hx2-FO)\ = [/]* ~ 1+~ ix I-/(*>]+|/(* - 1+nB1x )~ * X~ hx"\ -

K e R [ nB~1x (n+1¥* 1x )
AKN=PHK e X2 11+np~rx l+in+iy~x)

& Kn~p+Kx2((n+\¥Y~1-np-) S *n-~(I+x2n2*-2 S Kn~p”™ KhZ"-R)
where at the last but one step we used that x A \-n.i-B

Step 3. Forany xSI| and /i>0 the inequality (2.19) holds.

If then by f(x)—f(°°)=z0(x~R/(1~R)):

[[(Xx+Nx)—Hx)| » \f(x+hxD-/(“IN+|/[(x)-/(~>)] s Kx~" Kh*=T.

For x~x let y=x+hx2 and . Then h*Sh, y—h*y2=x and

V2 o1 1v2_1 1xA 1 L

y2~ 22T AY Yy - ay”

Thus, we can apply the inequality proved in Step 2 at the point y and we can infer
[/(x+/ix2)-/1(x)] = \f(y)-f(y-h*y2\s K(h*y**-n A KhBI(1~R)

by which (2.19) has been proved.

We have completed the proof of Theorem 1

The proof of Corollary 1. The statements concerning the local saturation
classes follow easily from Theorem 1 by Lemma 6 and by the remark made after

it (note that the sufficiency proof of Theorem 1 works also locally). All what we
have to mention is that the conditions

h* = h

210
AR(f,x)"Kh R  (xE(a, b—2h))
. 2=3R . 1 2
and /'£ Lip—R— on (a,b) are equivalent when —</?<y (see e.g. [10,p. 6]).

It has remained to prove the statements concerning the trivial classes.
Following the proof of xZ'(x)=0(1) and xf"(x)=0(1) in Theorem 1 one
can easily see that R,,(f)—f= o(y,) on (a, b) (see (1.4)) implies

I./(x)=const when ~ ~ >
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2. -*2'(*)+y/"(x)=lim nV2(R,,(f\x)-f(x))=0 (ae) when B=-j,

3. \fxf'\x)z r||.i+To np(R,,(f; X)—(x))=0 (a.e.) when 2 and so f

is of the form ¢, c+d J e’dx, c+dx, respectively,

0
Conversely, if / has the form

c when y =R 1

1 c+dJ eddx when RB=y
0

c+dx when o< B¢y

on (s, b) then the asymptotic formula (see [1, p. 127] and Lemma 5)

_ n x2 nAx"+n-0x

valid uniformly on compact subintervals of (g b) and Lemma 1 show that
R,, (f;x)—(x)=o0(y,,) uniformly on compact subsets of (a, b).

f(x)+o(nil- )

8 3. Proof of Theorem 2
Clearly, it is enough to show the implications (iii)=*(iv), (iv)=s(ii) and (iv)=>(i).
I. Proof of (iii)=>-(iv). First we verify
Proposition 2. ITR n(1/(1 + t); X) —1/(1+ x) (n—>0) for every rationalx”~O then
limajn=0 and Jm nan="°°,

M*oo

The proof is divided into three steps.

Step 1. an=0(n). Indeed, let us suppose that for a sequence °° we have
1
arll w, 00+ Then, because of r,k+1(x)jrn k(x)=:(—;k,l a.x . We have

NAUML + 0 ;x) = (U1 + bt )r,,uni(x)+ox(r,,ltni(x))
and here
Hor  (x) =lim {/1 | +a,(x =1
which proves that 7?,.(1/(1+1); x)-*1/(1+x) cannot hold.

Step 2. an—o(n). Let an=a,n, and let us suppose that an+o(n), i.e. x,+o(l).
Then, taking into account also Step 1 there is a sequence {n} and a number
0O<a<®® such that a as /->°. For the sake of simplicity we shall suppose
that tn—a (otherwise we would have to use a fixed subsequence of the natural
numbers instead of the whole set).
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We claim that the limits
= |im !
N L

exist for each kO and that these ck satisfy

31 o= (-1 +{ble+ 0 (-1)'(i)4-
This already contradicts our assumption a>0 since each c; is between 0 and 1
but for odd k the right side in (3.1) is at least k\ ak—2k which tends to infinity

if k does so.
Since

with a ¢ independent of xSI and n (note that a,—a), we have for every K

3.2, «(L/@A+* *)=,].TTbl ")r & 3

where the “O” is independent of x~1 and n.
Let here k=Q. Then

with “O” independent of x~1 and n and so we cannot have

limsup-———= q> 0
1+b,,n

because choosing a large rational x we would get
. L 2
limsup Rn(1/(1 +1t); x) N gg~ RK&—KX~1>—r0
which contradicts lim Rn(1/(1+t)l *)=1/(1+x). Thus, co=0.

In the proof of the existence of the ¢\ we proceed, by induction.
If the existence of c,, cI5..., ck_rhas already been proved then taking into account

MY (e \+(Xmxd lorxd

we get from An(1/(1+/); jg-*1/(1+x) and (3.2) the formula

83>rh - 1S N h e~~+h-t?PTTK™)i

Acta Mathematica Hungarica 43, 1934



242 V. TOTIK

i.e., expanding e ax into a series of powers of x~Xx,

(3.4) Thgr = R 9t Uim SPIErr ki O (X-ker

for some d0,...,dk and with large “O” independent of x~I. By
1 1 1 -

(3.5) jd(x+1)  Xi+l Xi+1(X+1) (i=0,1,2..)

(3.4) implies easily that do=0, dk= 1, d2=—1, dk. 1=(-1)k and

d+CTi“P7 +lhd IT? = (-
The same argument gives that

dic+ i Inf-r= [ dy ek (9
by which the existence of lim 1/(1 +b,,,,,-*) is proved.

By (3.3)

1+X I%I |Icc x‘:|e 8)(+O(X—k~]).

Clearly, here (as we have already mentioned) co=0, and cl=a. Using this we
get from the expansion of e~1bx

L3 o Gop TOX3

and hence (see also (3.5)) — ~1i,e" c2= -2laz+|j|c1l Proceeding
similarly we obtain

k+1
(-1 (y1iel | () 2 « |
x*N %) aboes(fo—a)! T 2 Ixkek(k- 2')\ -t ok TO(x k-]

which cannot hold unless

K (—Dk="r-

i1 AyKil (k- i t

(- hfere{fctak+ 4, (- Df(M)c}
and our proof is complete.
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Step 3. Clearly, we may suppose bn0>0 for every n. Let b*k=I/b,t,-k
and a*=\jan. For every rational x>0 we have by our assumption

lim Rn((b*K); K3} 1/0 +0; x) =

Thus, we can apply Step 2 to the sequence {a*} to obtain limna,,= lim n/a*="--.

The proof of Proposition 2 is complete.
Now let us turn back to the implication (iii)=>(iv).
Let us suppose on the contrary that (iv) does not hold, e.g. for an x0>0

limSuph,,.[.a,X(i +fIn,0)]
Then there isa $=*0 and infinitely many n with

(3.6) bn,[na, M( a)] — F"m

Let y£(x0,x0+<5) be a rational number, say y-—x+e where r-=p/2 is
sufficiently small.

na,,y nanx0 _ na,,(y-x0 _  nae
1+a,y 1+anx0 (1 +a,,y)(I+a,,x0 (I+a,y)2

and so if z=\2r ina,, e/(fy(l +a,y)) and u=~1q_~arg in Lemma 5 (for small e we

have \na,,y /(1 +any)) then we get
Mo 1
LI+anx0J \ E‘  nan
2, miy) = Co~-ynzer asn ee(1)

na,y

Vnany
k= r—:a_ﬁ§/|> z reay
where at the last step we applied Proposition 2.
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Thus, for the ris satisfying (3.6) we have

r "an*0 1
(L|+a,,xOJ \ i
2 + 2 J-rrr-~M s
't=0 Fmnx01 ' | +b,k A0
1I=hn +
NO(1) + 1 |
'm»0) = o (i)+
1+X0+S _ 1y L l+y+e
Li+ii,,xnJ

i.e. we cannot have /£,,(1/(1 -N); »1/(1 +y), and this proves that (iii) implies (iv).
Il. Proof of (iv)=>(ii). First of all let us remark that (iv) implies

3.7) rlj@)na,, =°°, rljm) ajn =0.
In fact, if we had e.g. a,,“cn (c>0) for infinitely many n then for every jem-

and for infinitely many n we would have b,tl,anx/(1+,,*)]=K,n-i which contra-
dicts (iv) (the limit of the left hand side must depend on jo.

Letf be bounded, say |/|[sM, and continuous on [0, *°) and let A>0 be
arbitrary. We have to prove that R, (f; x)-*f(x) uniformly on [0, A]. Let
T/8>e>0 be arbitrary small. Since

IJJJ_‘Q)OB>[,,H fcc/<|+a,,ke)l ~ I

for k—0, 1, ..., [T/e] + 1, an easy consideration gives that there isa number N such
that for n*N we have

(3.8) X-2€¢ S blGavii+..*)] x+2b (x€[0, A}).
Clearly,
(3.9) nanx na,,y na, \x-yl

1+anx 1+any O+2anAY

for x,j€[0,2A]. Now for every Osk”n there is a y with k=[na,y/(I+a,y)],
S0 (3.7), (3.8) and (3.9) yield that for large n the relations x€[0, A], b,,,u€[0, 2A]
and \bly—n:|>48 imply

na,,E

(3.10)
1+anx (1+2anAY =

Since for n large enough we have also

A+4de<bh
" [e>TA{1+a1 A\

it follows that (3.10) holds for every x£[0, A] and k with \bnk—x\>4e provided
n is sufficiently large.

anx

in Lemma 5 then we get,
1+a,,x

Ifweputz =7 4“7 (142%") e and u-
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by (3.10), for large n
1 na, (l+a,l)V __ca na. (1+a,B 12

(3.11) 2 rjk(X)Se 4 xU+*cna)*re 1au+2a,av (i +a,a) = 0(1)
Ibn,fc-*1»4s

uniformly in x€[e, A] it S e is needed for zS-"-(iw(l —))1/3 .

Since rnk(x) increases for na,x/(\+anx)"k we get easily from (3.11) that
for ogjc”E and large n

(3.12) 2 rm,k(x)S 2 r,kx)- 2 r/e) = o(
tn kSbs 6, t45t

holds, since for large n, bn>k"5e implies k”"nane/(l+a,£.) (take into account that
for n large enough b, inah2rMi+anM® 3e and [na,2e/(1+ a,2e)]>nane/(1+ a,,e)).

~ Using (311) and (3.12) the proof of the uniform convergence of Rv on [0, A]
is easy:

ir, (1 X)-FON =|(Ibn,k2-*h + bn.kz_*!S Y(Abnun>-A*)K*(*)| ~

S sup |/(x)-/00|+o(l)
X£[0,A\
\x—y\"5e
uniformly for jc£€[0, A], and, by the continuity of /, the right hand side can be
made arbitrary small by suitable choice of e.

II. Proof of (iv)=>-(i). Let / be continuous with finite limit /(«>) at the
infinity. We may suppose /(°°)=0. If e>0 is given, there is an A such that
|/(jc)|<e for x"A. Since R, (f; x)-+f(x) uniformly on [0, 2A] (see Il
above) it is enough to show that \Rn(f;x)|s2e for x"2A and for sufficienty
large n. However, this is easy: rnk{x) decreases for na, x/(I+a, x)"k and for
large n, bn<ks A implies k*2m nAl(\+2a,,A), hence

()N = M 2 m,iW+| 2 0>,Kr,*(x)[s
K.k"A b, A

=M 2 mkRA)+e 2 rk(x)sMo(D)+e (x” 2A)

bn,k —A

(see also the proofin II).

The proof is complete.

Corollaries 2 and 3 follow easily from Theorem 2. For Corollary 5 see Step 2
above in the proof of Proposition 2. Finally, (iv) of Theorem 2 is equivalent to
lim En"ﬁfkr-jx) HI_|m E.M'J(;(S~X hence (iv)=>(1.6) hold. The opposite impli-
cation (1.6)=>(iv) is also easy if we put a,,=,, (1)/k+ (1) (n*n0.
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§ 4. Lemmas
In the following lemmas R(f;x)=Rn(R-,f;x).
Lemma 1. (i) For O<as&2
A, (li-x|a; s) ~ naiB~)xA+xf72n~1°12  (x S 0),
(i) If G=-0 isfixed then
Ax)= ) % f\(/mmk(x)+o[n-l)
T s *rsix

uniformlyfor aSxSn1 R We have also

Rn(f x) = 21/["-) E,t(x)+0(n-D
—A
uniformly for x'An1~R,
(i) R, (t-x; x) = Lo n Ay
and
LERENERNTES
4 ~ nP~
uniformlyfor aSxSn 1~ (a>0fixed).
Proof. By

Nk 2x4+ n Rx
Rn((t-x)2; x) = (L4 nB- 1x)2

(see [1, (2.4)]), (i) follows from Holder’s inequality
“ ("1 5\ )2 a/2
E = _ * —_
na(ll-*riox) = 20 X -X]I'- (X)} —
= {i?,(t—x)2; x)3I"2s X 25+ x*120 A2,
(ii) and (iii) easily follow from [1, (2.3)] and Lemma 5 below.
Lemma 2. Let f be a bounded function, () If A—y2 a f Is differentiable

at the point x0 then
lim n1-B(Rn(f; x0)-/(x0))=-x8§/'(*0).

(if) 1f the second derivative of f exists at the point x0 then we have

for B =

limnB(R,,(f-, xQ)-/(xQ) =
% f" (X0) for 0 <R < —.
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Proof. For (ii) see [1, Theorem H]. In this theorem we used the assumption
n12bn-+0 (/i-~), however a careful examination of the proof together with the
estimate

2 rn,k(x) » Kn-'

P 1

(see Lemma 5) show that for bounded f it can be omitted.

If the assumption of (i) holds then f(t)—f(x 0+ f'(x0) (t—x0)+L(t) (t—x0
where AN->0 as t-*x0 and 1(f) is bounded by the boundedness of /. Given
e>0 we can finda ¢>>0 suchthat |f—x,,|<<5 implies |2(f)|<e, and so we obtain
for n=«e from Lemma 5 and Lemma 1 (i)

I *0) ~f(x0) ~ f (xQRn(t-x 0\ xQ| N,(A(0[|7-x0q; x0Q =
xqg+0(n X =£i?,(i-x0; xO+0(n Y~

s Ke(n~B2+nB~)+0(n~1) S Ken“ 1.
Since e>0 was arbitrary all we have to mention is that I1|[n.gnn1 RRN(t—x05x0) =
= —xI| (see Lemma 1, (iii)).

Lemma 3. Let Q be monotonically increasing on [0,1]. If for O0<a<2 one
hasfor all h and <56(0, 1]

Q(h) M (" + (") E+RSQ)

then Q{d)=0(S*) (&0+).
This is [3, Lemma 2.1].

Lemma 4. | ff is continuous on [a, b+2(b—a)\ |/[=1 and sup Hf-(/;x)|=
M(h) (XE[a, b+ (b—a)], 0< hAb —a) then o
[1(*)-1(x+e(b —a)[ = K(v(yQ (b-a))+0) (x€[a, b], 0<B = I
See [9, Lemma 2].

Lemma 5. Let <7, fc(w)=iYj »*(1—u)n~k (O~ w”l, o~k~n). If O~”z~

S (nm(@—u))L2 then

0, - =« A
\fc-rai|/\22(nu(I-M))1/’a A)Au (O «a I)'
Especially, if and a>0 are given then (see (1.1)
r,K(X) Kn-' (n=1,2,..)

—
Inf
uniformly in x$\a, Snl ?].
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Proof. The first estimate is well-known, see [7, p. 18].
Clearly, rok(x)=qku) with u= I+f].-ix or x=  «/(l-n) and for
x£ [a, S4~f], Has1 we have

yan"-1S un  6/(i+8), l(+<5 I-m =I.
Furthermore,

K—nu = nB Xj + unfx,

hence it follows that \k/nB—x\ ><5x implies
\k-nu\ ?=6nRx-(8/(1+8))nkx = 2ynu{l-u)-(» » ~ 27 +95)
For 7SI

Ynu 62

- @—wzao(1+E) Y(MM-u)R

and so the first inequality gives

2 2nl * 2 . AnAn)

\k—nu\> 2z (jn(a—u))1r2
|~ - xr a*

ANri-'rexp [-y a<SBV/I(4(1+<5)2(1-u) Q) N Ka<in~
uniformly in x€[a, 4«1 ¥ which proves the second estimate of the lemma.

Lemma 6. Let a>0 and R, (f)—f =0(nk~2) uniformly on (a, °°).

Then for every e>0 we can modify f on (0,a+¢€) jo that the modified function
f* is constant on (0, a) and Rn(f*)—f* =0(nR~1) holds uniformly on (0, °°).

By the same technique we could prove that if Rn{f) —f= 0 (nR~2) on the finite
interval (a,b), a>0 then / can be modified on (0, a+£)U(fe—£, °°) so that the
resulting function f* satisfies: Rn(f*)—f* =0(nf~1) uniformly on (0, *°),/* is
constant on (0,a) and on (b, °°).

Proof. First let us show that if t]>0, Rn(f)—f =0(nB~2) uniformly on
(x0—n, °0) and / has a local minimum at x0 then for the function

rf(x) for x”" xo0
I/ (x for x = x0
we have Rn(f*)—f*=0(nk~2) uniformly on (0, »). We may assume f(x0)=0.
Let £<?;/3 be so small that /(i) —O is satisfied on the interval (x0—e, o+ ). Since

[*(x)=0 for x<x0 /*(xX)—#(x)=0, Rn{f\x)—f(x)—0{nB~1) for x>x0, an
easy consideration gives (see e.g. Lemma 5) that R,,(f*\ x)—f*(x)=0(nB~2) uni-

P (x) = I
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formly on [0, *0--|)u (x0+y , °°j. Thus, it has remained to show the same rela-

tion for £ + £
The weight
- "x)k
" K afain
increases for xg Hr'nl—_l and decreases for x> "{ ik , S0 for x0—e/2 " x " x0

we obtain by Lemma 5 and the inequality /* (1)£0 (x0—eSi * x0+e) the estimate
4.2 - KnB 1S. R, (f*', x) = 2 f[Mj)mk(x)+ °(n H~
= 2 f[~B3\r,, Ax0)+HO(N-D™N R n(/-,xQ+0(N-)"KnNM3L

XxOnBAKA(x0+el2)nP  \M s

Similarly, since for k”*x 0nf, rnk(x) attains its maximum at

we have for x 0+ c2nR~1= x " x U+£/2

- ~'A * - = A o A
4.2) KnRg Rn(f—*; x) (x(lelzna kAXOan[ RYrmAx)+°(n 1)

S (jO-i/22y . ij/“\_ril)u r*kixo+c A A +0in-0) =R,,(f; x0+c2np~)+0(n~1J.
Now we have to use the factthat / isin Lip 1 on (x0—e, x0+ ¢). For the proof

see that of the absolute continuity of / in Theorem 1in the case R=y, Rn(/;*) —

—+(x)=0(nB~1) (xE(jto—17, 0°)) (this proof does not use Lemma 6). By

4 % 4 j 7c+ n-I'l  (n'~btyk
av. x)- (g oty . (¢ 2% 1

(see [7, p. 12]) the relation “/6 Lip 1 on (xa~s, xo+e)” and Lemma 5 give
4.3) \R,,(f; *)| =sKnB(Kn-B+0(nA) = K
uniformly in joo—e/2s x S x0+ e/2. Thus

R(fl xo+m3*®)  R(f; xQ+K3-" BKnR»

and so (see (4.2))
(44) *L(-1*;x) = oA A
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uniformly in n:e|xo+c2/ \ -*o+y]- For x€(x0; T0+c2n*-1) we obtain (4.4)

from (4.3).
Now (4.4) gives for x0™ x ~ x O+£/2

Rn(f*; x)-f*(x) = —R,,(f—*', x)+ Rn(f; x)-f(x) = O(n"“)

which, together with (4.1), prove our assertion.
Let us turn back to our lemma. For the function

ri—a)2(t—a+e)2 if a*thra+ e
M to otherwise

we have Rn(g; x)—g(x)=0(nfl~) uniformly on (0, °°) (see the sufficiency part
of Theorem 1 and — for small ;1 — the monotonicity argument used above).

Thus, if M is large enough then for f M(t) = f(t)—Mg(t) we have R,,(fM)—/m=
=0 (ni_1) uniformly on (a, o0) and /m(0=/(0 for t*a+ e, moreover f M(t)
has a local minimum at a point x0£(a, a+e). According to what we have proved
above a possible suitable modification of / is

(4o- Mg(o for t"xo
1 ~\f(xi)-Mg(x0) for o~ I~ xO0.
The lemma is proved.
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THE CONTINUITY OF SYMMETRIC AND SMOOTH
FUNCTIONS

M. J. EVANS (Raleigh) and L. LARSON (Macomb)

Introduction

For a function /: R-*R denote
AZix, h)=f(x +h)+/(x —h)— f(x).

If AZ(x, h)=0{1) ash-*0, then / is said to be symmetric at x and if AZ{x, h)=
=of{h) as h—0, then / issaid to be smooth at x. The function / is simply called
symmetric (smooth) if it is symmetric (smooth) at each x. Both symmetric and
smooth functions can be extremely badly behaved. For example, there are solutions
to Cauchy’s functional equation

fix +y) =f(x)+1(y)

which are non-measurable, fail to possess the Baire property and assume every real
value uncountably many times on every perfect set [4]. However, symmetric func-
tions which are measurable are known to be quite nice in that they are of Baire class
one and are continuous almost everywhere [5]. As might be expected, measurable
smooth functions are even better behaved in that they belong to the class Baire*
one [7] and have only a countable number of discontinuities [6].

In this work the set of points on which symmetric and smooth functions are
continuous is studied. First, it is shown that an arbitrary function with the Baire
property which is symmetric on a residual set of points is also continuous on a
residual set. In then follows easily that any symmetric function with the Baire
property is in Baire class one. Second, the set of points at which a measurable
smooth function is discontinuous is characterized as a separated set in the sense of
Hausdorff [3].

First, some notation must be introduced.

If AcR, A will denote the closure of A, A" will denote the set of limit points
of A, and Ac will denote the complement of A. The distance between a point
x and the set A will be denoted by d(x, A).

The set d cR is separated if A has no subset which is dense in itself.

All functions are finite-valued with domains contained in R. If / is a function,
then the oscillation of / at x is written cof (x). The set of points at which / is
continuous is written C{f) and the set of points at which / is discontinuous is
written D (f).

A function /: R->-R has the Baire property if there is a set A residual in
R such that the restriction of / to A, f\A, is continuous.

If / is symmetric at x and e>0, then <5(x, €) denotes a positive humber
suchthat |d2(x,/i)|<e for 0</i<<5(x, €).

5* Acta Mathematlca Hungarica 43 194
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If TcR, f\Ais continuous at X£EA and e>0, then S*(x,e,A) denotes
a positive number such that

1/100-/(x)l < e for |x-y| < <5*x E A), yEA.
If / is symmetric at XxEA and f\ A is continuous at a, then

S'(x,e, A) = min {&(a, €), (%, e, A)}.

Symmetric functions

It is noted above that symmetric functions which are measurable exhibit a
considerable degree of continuity. In this section it is shown that the assumption
of the Baire property gives rise to the same nice behavior. First, a preliminary
lemma is needed.

Lemma 1.1. Suppose f :R-*R is symmetric at each point of a set A and
that f\ A is continuous at xUifA. Let t]>0 be arbitrary. For each x*A satisfying

0< *1—x0< S'(x0,j, Aj

there exists a positive number h-<x1—xu such that
[/(x+(x1-x0)-/(x-(x1x,))] < L
whenever x, <x<xO0+/r.

Proof. Let x, and X1 be as described. Set h= min {xx—x0, <5(xx, r;/4)}
and let x be any number satisfying x0<x<xO0+h. Since X+ (Xj—xo0)=xj+
+ (x—x0) and 0<x—x0<<5(xI5tj/4), we have

(1) [/[x+(x1-x Q]+/[x1-(x-x Q]-2/(xD| < >4
Also, since Xj—(x—x0)=x0+ (x1—x) with 0<Xj—x<4a(x0,rj/4) we have
(2) M*1-(x-x0Q]+/[x0-(x1-x)]-2(x 0| < t]l4

Next, since x0—(xx—x)=x —(xx—x0), it follows from (1), (2) and the triangle
inequality that

?3) [/[x +(x1-x O]-/[x-(x1-x O] < o2+ 2|/ (xD-/(xO[.
Finally, since 0<xx—x0-=6*(x0,r//4, A), the desired inequality follows from (3).

Theorem 1.2. Iff :R-*-R has the Baire property and is symmetric at a residual
set o fpoints, then C (/) is residual.

Proof. Since / has the Baire property, there is a residual set B such that
f\B is continuous. Consequently, there is a residual set A at each point of which
/ is symmetric and f \A is continuous.
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Suppose / is discontinuous at a second category set of points. Then there
is an interval (a,b) and an <¢0 such that the oscillation of / at each point of
(@ b) is ~a. For n=1,2, ... set

An= {x£A: <KX a/24) » 1n}.

Since A—UAn, there must be an w and a subinterval (c,d) of (a, b) of length
< 1/n0 such that A,,0 is dense in (c, d).
Let x0£(c, d)C\A. We shall now verify the existence of two points x2 and x3

satisfying the following:

@) C-=:X0<.X2< X A< d,

(®) [/(*3)-1(*21= @,

(6) X3-X 2< min [25(X0, a/48, A), x2-x(,
() Xy = X0+ (x3- x2/23$A.

Since the oscillation at each point of (a, b) is Sa, we can clearly find points
x2 and X3 with x0<x2< x3<  suchthat

[/(x39~/(x2i<ae and 0< x3—x2< min [2S5 (X0, a/48, A), x2—x(.

If x0+(x3—x2)/2Eyl, then (4)—(7) are satisfied with x2=x2 and x3=x3.
On the other hand, if x0+ (x3—x2)/2$A, then choose a positive e<(x3—x2/3
and let C denote the set of points in (x3—e, x3 for which |/(x)—(x 3| =al6.
If C is of the second category, then, since A is residual, there is a point
XZEC suchthat x0+(x3—x2/2£A. Then this x3 and x2=x2 would satisfy (4)—(7).
If C is of the first category we set D —(x3—e,x3—C and note that

®) 1/(x)-1(x3| < al6 for each x£R.

Again, by considering the oscillation of / on (a, b) we see that there must be
a point x2€(x2,x2+e) with
) 1/(i9-/(x2| nal3.

By (8) and (9) we have |/(x)—(x29)|"a/6 foreach xfD. Since D is of the
second category, there must be an x3£D for which x0+(x3—x 2)/2"A. Once again,
these points x2 and x3 satisfy (4)—(7).

Having considered all possible cases, the claim concerning x2 and X3 is
established.

Now, by the Lemma, since Xx—x0=(xs—x2/2, there exists a positive h<
<(x3—x2)/2 such that

(10)  |/[x+ (3 /2] - /[ x- (>3- xdl2]| < &/12 for x0< X < X0+ h,

Set "=(x2+x3/2. Since A,0 is dense in (c,d), there is an x'£A,,0such that
x=2x"'—£€(x0,x0+h). By (10) it follows that

(12) |[/(2x'—=x9—(2x'—x3I< al12.
Since x2=x'+(x2—x") and 0<x2—x'<1/n0, we have
(12) 1(")+/(2x'—x9—2/(x) 1< a/24.
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Similarly, since x3=x'+(x3—x') and 0<x3—  1/v0, we have
(13) \f(x3+/(2x" - x3- 2/(*) 1< a/24.

From (12) and (13) we have

(14) \f(x3-f(xM)+ f(2x"-x3-f(2x"-x I\ < al12,

and from (14) and (11) we obtain
\f(x3-f(x 2\ < ale,

which contradicts (5) and completes the proof.

Neugebauer [5, Theorem 1] states that if a function / is symmetric and measur-
able, then C (/) has full measure. Theorem 1.2 of the present paper implies that if
/ is symmetric and possesses the Baire property, then C (f) is residual. Using this
residual set of continuity points in place of Neugebauer’s full measure set, it is
easy to see that both of his Theorems 3 and 4 still hold with the new assumption.
This implies the following two corollaries.

Corollary 1.3. If f : R—R is a symmetric function with the Baire property,
then f isin Baire class one.

Corollary 1.4. A symmetric function f : R—R is measurable if and only if
it has the Baire property.

It should be noted that a method similar to the proof of Theorem 1.2 was used
by H. Fried [2] to show that if / is symmetrically continuous on a residual set,
then C(/) is residual. Also, D. Preiss [8] has shown that every symmetrically
continuous function is continuous almost everywhere. However, it is not known
whether symmetrically continuous functions are in Baire class one or not.

Smooth functions
The goal of this section is to characterize D (f) when / is measurable and
smooth.
Theorem 2.1. | ff issmooth and measurable, then D (f) is separated.

Proof. By definition it suffices to show that D (f) contains no subset which
is dense in itself [3, p. 136]. To do this let E denote the set of points X such
that there exists a sequence of numbers xn* x such that

(1)
and

2

To establish that D (f) is separated, the following two statements will be established.

A) E is countable.
B) If D (f) contains a subset which is dense in itself, then E is uncountable.

Acta Maihematica Hungarica 43, 1954



THE CONTINUITY OF SYMMETRIC AND SMOOTH FUNCTIONS 255

To establish A, suppose XCEE and let {x,} be a sequence disjoint from x0
which satisfies (1) and (2). Since / is smooth at x0 there is a number k and
a <6>0 suchthat

3 \f(X)+f(2x0—x) —2/(x0Q| < felx—x,| for |x—x0 < &

From (1) and (2) it follows that there exists an integer N such that if n~N, then
0<|x,,—x0<<5 and

@ aof (x)>3k\xn-x O\
Fix an n*N. For any number y satisfying
\y-xn < min {<5-]xn-x 0, k - x 0}
it follows from (3) that
®) \f(y)+f(2x0-y)-2f(x O\ < kly-xQ< 2k\xn-x O\
(3) and (5) imply that for any such v,
[/(2x0—y) —F(2x0—x )l N \f(y)-f(xn\-3k\xn-x O\
wf (2x0- x 1) ‘S(of (x)-3k\xn x 0O\,

and an application of (4) yields cof (2x,,—X%,,)>0. Hence 2x0-x,,6Z>(/). Now
A follows by noting that xO0 is the arithmetic mean of 2x0—xn and X, and since
D(f) is countable [6], only countably many such arithmetic means exist.

To establish B, suppose that D{f) contains a subset DO which is dense in
itself. Let £1, £a, ... be an arbitrary sequence of real numbers. If it can be shown
that there is an xEE which does not belong to this sequence, then B follows.

Since DO is dense in itself, there exists a sequence {Xx,,}cZ)0 and a sequence
of positive numbers {g,} such that x1MDO, xxT K and

ex< min {coyCxi), 1, ta-fil}
and for 1, xreDO0, xn?+En, and

Of , -
Xy ( an) , _1' |X,, n|Jl.

Therefore,

Min Xkn ~n—tTSn-i, Xn_i+ £, i

The sequence of intervals [x,—£,, X,,+£,] is nested and, consequently, there is
apoint x0 in their intersection. This point does notbelong to {£,} because x,,—£,,<
<X0<x,+£, and either £,<x,,-s,, or £a>x,+£,. Moreover,

(OfjXn) a>f(x,,)

[*,-*0l e,
Therefore,
. COf(xn)
lim ©
M0 ta-xol

which implies that xo£E.
The theorem follows at once from A and B.
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Theorem 2.2. |f D isan arbitrary separated set, then there is a non-decreasing
and smooth function f such that D =D (f).

Proof. It may be assumed without loss of generality that Z)c(0, 1). Let
D0=D and for each ordinal number inductively define

Da= -Da-jITD'-! when a is not a limit ordinal
and
Da= I Dp when a is a limit ordinal.

B<a

Any separated set is countable [4, p. 147], so D may be written as D ={xj, X2, ...}
and since D contains no subset which is dense in itself it follows that

/>= U (D*-D, +I).

If xfD, then there is an ordinal number a suchthat x fD a—Da+1, Define
0 if x<xn

y (d(xn,D'd)22-n if x=x,

(d(xn,D'%))22 -n if x>x,,
and let

fix) = 2 fnix).
n=1

m
Then r%_1fnix) converges uniformly to / so that DcczD (f)c. If x,fD, then it

is clear that
»/(*,) = (d(x,£>"))22~n> 0;

so X,,6Z>(/). Therefore D (f)=D. Since / is locally constanton D¢, itis obviously
smooth on Dc. It is clear that since each /,, is nondecreasing, / is also non-
decreasing.

The theorem follows if it can be shown that / is smooth on D. To do this,
three cases are considered: 1)xdD —D'\ 2) xdD'C\D\ and, 3) xED'—D.

1) Suppose xdD —D'. Then there isan /z>0 suchthat (x—h, x+h)C\D= {x}
and therefore it is clear that on (x—h,x+ h),f(x)=fn(x)+C, where C is some
constant and x= xn. Because f,, iS smooth, it is clear that / is smooth at x.

2) Suppose XED'OD=D1. Let a be the least ordinal with x~Dx. From
the definition of Da it is clear that a cannot be a limit ordinal, so there is an
ordinal 8 such that a=R+\, x£EDR and x~D'R. Hence there is an £>0 such
that (x—e x+e)fU)i={x}. This implies that if y£D MN(x—e, x+e) and y+X,
then y£Dy-D y+1, where y<[. Therefore, d(y, D$)~d(y, X) because X£DRcz

czDy+1cD'y.

Choose any y such that y£(x, x+e). From the definition of / it follows that
| . Dy ] A
(1) fiy)—fix) =i/, (1] XADCZCX.y]>K X4

N»(F)+ 2 (d(xisx))22_i </,,(x)+ 2 (d(x, y)2~ </, (x)+|x-yj2
Acta MatherfetitH (Kitihgarica 43, 1984 x*3M(x,y]
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Similarly, if y£(x—, x), then
() f(x)-f(y) </,.(*)+ [x-jf.
It follows from (6) and (7) that if then

f(x)+F,,(x) </(x+/t) <F(x)+F,,(x) + h2
d
i f(x)-fn(x)~h2</(x- h) </(x)- fn(x).

Adding these two inequalities and rearranging the terms yields

(8) —h2< f(x+h)+f(x—h)—2(x) < h2
It follows at once that f is smooth at x.
3) Suppose xdD'—D. Let a be the least ordinal such that x (E£>'.

Then there is an e=»0 such that (x—e, x+ £)M14,=0. IfyE(x—e x+e)C\D, then
yZDR—DR+1 for some R«x.. Thus, d(y, Dp)Sd(y, x) because xED'B. Pro-
ceeding as in case 2 it follows that if 0</i< e, then

J(x)—< [(x—A)</(x) and [(x)</(x+]2)<I(x)+]i2

Adding these two inequalities and rearranging the terms yields (8) once again.
Therefore, / is smooth at Xx.

Theorems 2.1 and 2.2 give a characterization of D(f) for any smooth and
measurable function / which interestingly is the same as the characterization of
D(f) when f has a finite symmetric derivative everywhere, a result which was
obtained by Z. Charzynski [1] and E. Szpilrajn [9].
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I. KATAI (Budapest), corresponding member of the Academy

1. Introduction

This paper is a continuation of [1], [2]. JI and JI* denote the set of multipli-
cative and completely multiplicative functions with complex values, respectively,
denotes the set of those f(n) for which

1/001

(1 ¢ n
holds.

Let p,q,n, ... denote general primes. Let
12 = A
(19 R{f\ p) aZ=I F>p
It is obvious that /£]JS? if and only if R(f, p)<°°® for every p, and
(1.3) Z P) <0°-
Furthermore, if then if and only if
(1.49) \f(p)I<p
holds for every prime p, and
f1.5) ‘ép YORL <qe-

Given a subset of natural numbers, we shall write

F(n\v>)= Y (n\Y)= Zj

2 —
ney wu "
permitting that the series do not converge.

Let us consider those functions f,g£Jt, for which

(16 \g(n + K)—f(n)\

holds. Here K is a positive integer.

We are interested in all solutions of (1.6). The case K —1 has been treated
and completely solved in [2]. If f,g£~C, then J\ g is a solution of (1.6). If f(n)=
=g(ri)=x(n)natT, OS<r<l, and x(n) is a multiplicative character modK, then
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it is a solution of (1.6). To avoid some technical difficulties we shall assume that
/, gMJ(*. We shall solve the problem for K =2 and for odd K.

First we shall prove Theorem 1 which will serve as the main lemma in the proof
of the assertion above.

Theorem 1. Let fg”Ji*, C be a nonzero constant, K S 1 be an integer,

w) ~\g(n+K)-Cf(n)\

Assume that there exists a prime p coprime to K for which f{p)=0 or g{p)=0
holds. Then gdJT.

Let Assume that there exists a suitable polynomial P(z)=a0+alz+ ..
... +akzk (ak= 1,20 0) over the field of complex numbers for which

(18) 20-\P (E)f(n)\

is satisfied. Here the operators E,A,AB, | are defined as follows: Exn=xn+l,
Ixn=x,,, A=E—I, AB=EB-1, Ak=(E—I)k AB={EB- 1)k (see [1]).

Let sdf =s4 denote the set of all polynomials P satisfying (1.8). It is obvious
that sé is an ideal. The constant polynomials belong to si if and only if f£:
We shall prove that if si is not empty, then it contains some element of type
(zB—1k with suitable positive integers B, k. To prove this, we may assume that
/$ 151, From (1.8) we deduce that there exist no more than k —1 primes p, for
which f(pi)=0. Assume in contrary that pk, pk are distinct primes such that
f(Pi)=0. Let NO be such a positive integer for which NO0+i—1=0 (mod pt)
(/=1, ...,k). Then f(n+j)=0 forj=0,1,...,k~ 1 n=N0(modB), B=pk, ...,pk,
and so, from (1.8),

n=NO(mod B) W

From (1.8) the following assertion follows immediately: if there exist k residue
classes mod B with consecutive residues I=r, r+1, ...,r+ k—1, such that the
series tF(n \n=I(modB)) (I=r, r+\, ...,r+k—\) are absolute convergent,
then 3E{n In=r+k (mod B)) is absolutely convergent too, consequently by
a repeated application of this argumentation we get that

Let us assume now that P is a minimal degree polynomial in s4. Let P(z)=

=_[ZO—O;), and 6mQO) be defined by Qm(z)= 1]_f(z-s?).
Since Om(zm) is a multiple of P{z), therefore Qm(zm)£stf, and so

A AQm(Em) f(n)\
Extending the summation only for the integers that are multiples of m, and
observing that Qm(Emf(nm)=f(rn)Q m(E)f(ri), under the assumption f(m )"0
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we deduce that
y \Q,AE)m\

n n

ie. Q,fsd. Since r5(z)=g.cd. (P(z), Qm(zj)£sL, therefore degs(z)~k, and so
P(z) —Qm(z), consequently

(1.9) (elf ....exp = {05 0JB (if/(m) * O).

(1.9) is valid, if m does not contain any prime factor p with f(p)~ 0. Since the
set of such primes is finite and a0=81.. Ok(—1)kAO, we get that pA4=1 and

are rational numbers. Let (/=1, ...,x), [ar, ..., at)=1. B con-
tains only such prime factors p for which f(p)=10. So

(1.10) P(z2)= N (z-exp (" ~)j
and
(111) QB(zB) = (zB-i)ke ™.

We have proved the following

Theorem 2. Let assume that P is a minimal degree polyno-
mial for which (1.8) holds. Then

(112) NEBNH* () r

where B=1 or B=pll..py and f(Pi)=---=f(Pj)=0. There exist at most
k—1 primes p for which f{p)=o0.

If B\C and (1.12) is satisfied with B, then it is satisfied with C instead of
B, too. This is obviously true, since (zB—\)k is a divisor of (zc—I)k. Con-
sequently, looking for the solutions of (1.12) we may assume that B contains all
the primes p for which f(p)—o.

Theorem 3. Let 5=1, or B=p\l..py, pk, mmPj be distinct primes. Let
fEJ/*. Assume that f(pt)=0 (/=1, and f(p) A0, if p\B. // (1.12) holds,
then /CAf, or f{n) =xB{n)rf+h, 0"o<k, and Xs(p) is a suitable multiplicative
character mod B. Conversely, for these functions (1.12) is satisfied.

The second part of this theorem is obvious, the first part will be proved in Sec-
tion 3.

Finally in Section 4 we shall prove

Theorem 4. Let fgrJ/*, j\ LE, gi£P, and assume that (1.6) is satisfied.
(1) Let K be an arbitrary odd integer. Then f(ji) = g(ri)= %I(ri) na+lz, 060-<1,
Kx is a divisor of K, +#KI is a multiplicative character mod KKk.
For these functions (1.6) holds.
(2) Let K=2. Then all the solutions are:
@ f{ri)=g{ri)=nalri\ 0S ax1 («=1,2,..);
(b) f(ri)=g(n')=na+n, O~crc 1 for odd n and /(2)=g(2)=0;
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(c) f{n) = Xs(ji)natz, g(ri)=Xi(n)f(ri), Osff<l, where yA is the nonprin
character mod 4, and ys is the following character mod 8: Xe(l)—Zs(7) = +1,
*8(5)=XB(3) = -1.

Remark. We hope to solve this problem for every even K in a subsequent
paper.

2. Proof of Theorem 1

First we formulate some remarks.

1 Since Wg{n+KN\—=\C\f{ri)\\"\g{n+K)—Cf(n)\, and the relation
depends only on the absolute value of /, we may assume that g~ 0O./sO, C >0.

2. If then g£  obviously holds, and conversely.

3. We may assume that f(q) =0 for every prime-divisor q of K.

We have to prove only the last assertion. By putting n—qn, K —gqKx, from
(1.7) we get

(2.1) ZM1g(?)g («+>i)-C/(?)/(n)]

If/(q)"0 and g(q)?i0, then (2.1) is a relation similar to (1.7) with A) instead
of K,Kx<K. Iff(qg)=0 and g¢g(q)"0, then gEjS?, while for g(q)=0, /(q)"0
we have /£ 222

We shall assume f, 0, and f(q) =0 for every @\K. Assume the condition

of Theorem 1 holds.

Let 3P denote the set of all primes p coprime to K for which f(p)=0.
Similarly, 01 denotes the set of q, (q,K)=1 g(*)=0. The sets 03Q 0301701
are defined as follows

(2.2) 0>x = {/7€M3«o= K (modp), g(n0) » 0}
(2.3) & = {q£0t\3no = —K (mod q),f(n0) Ok

2Px,01x, and one of 0 and 01 may be empty.
First we observe that if 0y=0 and =0, then the following condition
(COND) holds.

(COND):f(n)=0 ifand only if g(n+K)=0.

Indeed, “/(n)=0 iff g(n+K)=0" is true if (M,A)>1. Assume that 0 " 0 ,
p£0> Then, from (2.2) we get g(n)=0 for n=K(modp). Similarly, for f ~ 0,
g£0, from (2.3) we have /(n)=0 for n= —K(modq).

If f(ri)=0, (n,K)= 1, then nhas a prime divisor p in 0, andso g(n+K)=0.
Similarly, for g(ri)=0, (n,K)= 1, there exists a g\n, q£0, and so n—K =
= —A(mod q),f(n—K) =0.

Step1.0%4= 0, 0 X= 0. Ifp£0, then 01 contains all the primes ¥= A (mod p).
If g£0, then 0> contains all n, = —K (mod q). Since at least one of 0 and
0t is not empty, therefore both of them contain infinitely many elements.

Let Q be a large (odd) prime, Q \K —\,Qd3i.
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Let ZQ be the set ofall reduced residue classes mod Q, sa=ZQsé, 3B—Z q\38,
and sd, 38 be defined as follows:

sa={Ix, ...,/*|/(n)=0 if n=/f(mod Q)}, 38= {kr, ..., ks\g(n) = 0 if >=&s(mod 6)}-

In other words, a reduced residue class /(mod Q) belongs to sd if and only
if f(n)=0 for every n=1(mod Q), and k(mod Q) belongs to 38 if and only if
g(n)=0 for every n=k(modQ).

Let I%sd, ie /(«)=0 for /'=/j(mod R). Hence COND is true, therefore
g(n+K)=0 for every such n, ie g(m)=0 if m"K+I1"mod Q) and m>K.
We shall prove that the condition m >K is superfluous. Let m=K+Ili(mod Q).
t be so large that N=m1+iQ~1)>K. Then N=K +li(mod Q), so g(N)=0
which involves that g(m)=0 (gfJI*\). So we have proved the following assertion:
if ["sd, then li+K =0 (mod Q), or li+K"38. Similarly, we can see the validity
of the following assertion: if k£38, then ki—K”"sd or kt—K=d (mod Q).

Since Q£38,38i=0, weget —K£s4, so s& cannot be empty.

We shall distinguish two cases according to K338 or K*38.

Case I:
sf—eUis> soo, Ir-il Ir —~K}
(2.4 ® = {k1, ..., in_x; 0}
kj =1j+K(modQ) (j =1, .., A-1).
Case Il:
*= {h,..., IR-C,IR=-K}
(2.5) B —ki, ..., ij kR= K}

ki=/j+K(modQ) (i= 1, .., R—1).
In Case | we have
sd- {s5...,sHy, H=0Q -I-R
(2.6) 38={> hi hi+i}
tj=Sj+K (j=1,...,#), r,+1=K

Assume that sd is not empty. Since s& and 38 are subgroups in ZQ, there-
fore #|6-1, A+I1IR-1, andso #(#+1)|6-1, H"iQ .
We know that 38 has infinitely many elements. Assume that Case | occurs

for infinitely many Q. Since all the primes in saC\38 are in 38V\38, and H"iQ,
therefore there exists an arbitrary large prime n for which f(n)=g(n)=0. But
in this case for Q —n only Case Il can occur.

So we have proved that there exists infinitely many Q3.38, for which Case Il
occurs.
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In Case Il we have
sé = {Si, ..., sH, H—Q—\—R
2.7
tj=Sj+K (j=1,....,H)

assuming that n/ and 3t are not empty.

Furthermore, si and 38 are subgroups of the same order of ZQ, and so
si=38. From (2.7) we get that a£si involves that a+K££%=si, and so a+tKd
£si(t=12 ..), thus si—ZQ. This is impossible, since —K *si. Consequently
si=38— &, and so f(n)—g(n)=0 if n"2, K, 0=1. Since g(Q)= 0, therefore
g(n)=0 forevery n*2, and so by COND we get /(n)=0 for n*2. J8

Step 2. ~? 10 . Let p"38x. Then f(p)=0, (p,K)=1 and there exists an
n0=K (modp) such that g(n0)9i0. Then @ (n\n=K (mod p))<

Since nn0=K(mod p) if n=1(modp), and #mOWNO, we have &(n\n=
= 1(modp))< °-.

Since rigp)=1 (modp) for (n,p)=1 so g(nHp~)=o(n,(p~1) as t-*
consequently 0=g(n)<n holds for every n,(n,p)= 1.

If gx,...,qp_x are belonging to the same reduced residue class modp, then
gx, ..., gp-x=\ (mod/;), therefore

Malg = Z(mod p)*(p) *« *(n\n = 1 (mod p)) <°°,
if /0. So we have proved that
(2.8) &(a\g * p) <*, g9(q) <q if q”p.
Hence we get
(2.9) &(n\(n, p) = ) <°° =>~(nIn + A" 0(mod p)) <».

~—

If 38x contains at least two elements, px,p2 say, then we are ready, since from
(2.8), applying it with p = px,p 2 we deduce that  JSf.

Assume now that 38x= {p} and p\K + 1 Starting from the second inequality
in (2.9), we deduce that

(2.10) Mnjn b —A(mod p)) < °°.
Since p\K +\, therefore (—K)2dp —K (modp), and so

2.11 tF (n\n = —K (mod p))2 £ 1.Si%} <00-
(2.11) ( (mod p)) n=Kirod) ﬂl}
Furthermore, if (n,p)=1, then 7a®h —K (modp) if a=0 (mod(p—1)), and
SOf(ne=o(n% as a—°o, whence 0=ijf(ft)<m.
Thus we have
(2.10) IFO\n\n @) < 0n/(a) < 1,
which by f(p)=0 gives f*3£m
Let us assume that 38={p} and p\K+I. Consider first the case p=2.
This can occur if ATis odd. Let K + I=28m, (m, 2)=1. Then, from (2.9) we have

&{n\(n, 2)=1)<o00.
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Let y>/J. Since 2yjjn—L1 implies 28\\n+K, therefore
(2.11) A(n\n = 1 (mod2y) c™(n|2p|[n)+1<k™(n|(n, 2)+ |

By repeating the argument used above, we get immediately that » (n\n ?72)< °°,
/(Tr)<d, which by /(2)=0 gives /€"?.

Let now 2. Assume first that there exists a k, k 1 (modp) for which
f{k)7t0. Since kn¢ I (modp) for n=I(modp), therefore, after substituting
kn inplace of n inthe second series in (2.9) we deduce that S' (n\n= 1(mod /?))<
which leads to /€«Sf, by repeating the consideration used earlier.

It has remained to consider the proof under the following condition:

A) = {p*} p*\K-\-\, p* > 2, f(k) — 0 for every k ¢ 1(mod p*).
We shall consider this later.

Step 3. Stx@0 . By repeating the argument used in Step 2, we can execute the
proof easily in the following cases:

(1) 0tx contains at least two elements,

(2) 0Ix={q}, g \K -\,

(3) A1={2},2]A:-1,

(4) Stx-{q}, q\K -\, g>2, 3=, " l(modtf), q(k)"0.

It has remained to prove it under the condition:

(B) Six = {g*}, q*\K+\, g*> 2, f(k) = 0 for every k ¢ l(mod g*).

Step 4. Let us assume now that (A) holds. Then S$*A. {n\n ¢ 1(modp*)}.
Hence we deduce that g(ri)=0 if (n,p*)= 1 Let k=/(modp*), 1=2, ....p* —1
Since f(k)=0, there exists a n\k, n£S. Since agp*, i, and so g(&+.K)=0
by the definition (see (2.2)). Since K = —I(modp>*), k+ K =|—1(mod p). We
have proved that g(n)=0 if n>K and n=1,2,..,p*=2 (modp*). Since
nl=n(modp) if /—1=0(mod (p*—1)) and g(nl)=g(n)l the condition n>K
can be substituted by u>l. So, g(n)—0 if 1, npO, —(modp*). Let n=
= —I(modp¥*). Since n2=I(modp¥*), g(n2=0, consequently g{n)=0.

We have proved the following assertion:

(AS 1): If (A) holds then g(n)=0 for every né2 that is not a power of p*.
We shall prove now
(AS 2): If (B) holds then f(ri)= 0 for every 2 that is not a power of g*.

From (B) we get that SI3 {a|jn¢I(modqg*)}. Let /c=/(mod g*), /€
6{2,..., g*—1} Since g(k)=0, therefore there exists a n\k suchthat g(n)=Q,
and 1y*q*. Consequently Tt(S% and n”Slx, and so by (2.3) we get f(k —K)=0.
So from the assumption (B) we get /(«)=0 for every né2, n={l, ..., q*—2}
(mod g*). Since for (N, g*)=1 we may choose an exponent t such that
IV'sl®modi?*), so /(A)'=/(A")=0. This proves the assertion.

Hence we can finish the proof easily. The case S3= 0 , SIx= 0 has been con-
sidered in Step 1 Assume that Sx= 0 and Stx= 0. Then (AS 1) and (AS 2)hold.
We have to prove in this case only that g(p*)<p*, or f(g*)<qg*- As it is known,
p**—K =qg*R has at most a finite number of solutionsin a, [1, therefore f(p*x—K)—0
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for every large a, which by the assumption of the theorem gives R (g, p*)<°°, i.e.

Assume now that (A) holds and 'Mx= 0. Since contains all the primes
except at most p*, and 4a?1=0 ,/(m)=0if T+KTtp*y. Butthen f(n) has tobe
zero for every n. This is an obvious consequence of the fact that na+K is not
a power of n* if « islarge. Then

Finally we assume that 0 and (B) holds. Since 3P contains all the primes
except at most g* and ~ = 0,9g(n)=0 if n—K *q*y. But then g(n) has to be
zero for every n, since n“—K is not a power of g* if a is large enough. Then

The proof has been completed.

3. Proof of Theorem 3

We may assume that /(f0?.

We shall conduct the proof by making the following steps.

(A) [/(M|=nA0 for every n coprime to B.

(B) Let 1 If Aék—l, then (1.12) holds with v(n)=n~X%(n) instead
of n and with k —1 instead of k. If A<k—1, then (1.12) holds with k—1
instead of k.

(C) Theorem 3 is true for k= 1.

Hence the theorem will follow immediately.

Proof of (A). Let H(n)=f(n) if k=1, and H(n)=(EB-1)k- f(n) forks2.
From (1.12) we get

(3.1) 2-|ln max \H(n +1,B)-H(n)\ < -

where is an arbitrary constant.
Let #>1,(q, B)= 1 bean arbitrary integer. Let

(Q+Z+...+Z9-1y1-1 = a0+ alz+...+alzh; h = {g-\){k—12).

a
Then 2 <«=gk~1 Hence we may deduce immediately that

1=0
f{q)H {n) = (EBq—1)k~1/ (qn) = 2 «H(qn+]jB),
and by (3.1)
(3.2) %’niﬁ'l?sxs H{an+1nB )-"H {n)

For a positive integer NO coprime to B, a0 denotes the least nonnegative
integer for which No—a0B=0(mod q), and N1 being defined by N0—a0B-\-gNi.
It is obvious that (N1,B)= 1 After replacing gn+ InB->-N0, n-*N1, from (3.2)
we get

3.3 i - A
33 oo P T TS )
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Assume first that \f{q)\<qk~1- Then, by repeating the argument used at the
proof of Theorem 1in [2], we can deduce that

(34)

nei tl

If k=1, then (3.4) implies f£ if, while in the case k> 1, (1.16) holds with k —1
instead of k. Assume now that \f(q)\*gk~1 \f(q)\~qk~1+" Let

\H(N)\
(3.5) 4W = (N )
Since NL and X occurs at most for g distinct N0*x, from
(3.3) we get

(3.6) n<* LLI4L|J Im—

g is a suitable positive constant.
Hence it follows easily that

3.7 A{x) « x1
Every integer N * X _B occurs as a component for exactly g distinct N0”x,
therefore, by (3.4) we get

with a suitably chosen ¢2>0. Hence we can deduce easily

(38) A{x)y>x*~",
for every constant e>0, (3.7) and (3.8) give

log A (a)
(3.9) log™* 1 (x-°°),

consequently f] does not depend on ¢, and so \f{n)\—nt+k if (i, 2?)=1.
Now we prove that 3<1.
Since I=E~B{EB-1)+ E ~ B,

(3A0)\2(EB-iy-1f(n)\ w \2 (Es-1Y /(n-B)\+\2 (EB-iy~"'f(n-B)\.
n"x n"x

n"x
If .
ut(x)= %&E Biyf(n),
then from (3.10) we get immediately

(3.12) Ut. j(x) =U,(x-B)+ Ui-iix-B).

(1.16) gives Uk(x)=o0(x). By a repeated application of (3.12) we deduce that
Uk-i(X) = 0(x3,..., UO(X) = o(xk+l). The last relation implies //<1.
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Proof of (B). Since \f(gq)\<gk-1 implies (3.4), the assertion is true for
A<A—L
Let 1™k —I, v(ri)=n~X(ri). We have \v(ri)\=nk~2+",0Si/< 1 By an easy
computation we get
*AB/(n) —nABv(n) + BkAB~1v(n + B).

Let g(ri)= AB-1v(n). Hence, and from (1.16) we get

3.12) (n+Bk)g(n+B)-ng(ri) = A,
(3.13) Kl

From (3.12) we get
(3.14) g1 ~ 1g(n-s)|+ K (> B).

If we put B(x)= Z\g(ri)\ then from (3.14) and (3.13) we can deduce that B(x)"
AB(x—B) +c3, anné so B(x)=0(x). We have

Y J4IML < " \nABv(ri) + Bkg(n)\ t \Bkg(ri)\

U x n ~ nSx n2 S T2
Both sums on the right hand side are convergent. Consequently v satisfies (1.16).
But W(g)\<gk \ so using the proved part of (B) we get z 19()!

Proof of (C). We may assume that \f(ri)\=ri* (y=0) for (n,B)= 1 Let
f(n)=n"t(ri), li(n)|=1 for (n,B)=\. Observing that f(n+ B)—f(ri)=ri,ABt(n) +
+ rjnT~1t(n, B), n*n*=n+B, from (1.16) we deduce immediately that

(3.15) \t(n +B)-t(ri)\

It has remained to prove only that t(n)=xB(ri)mnh under the condition (3.15).
This has been proved for B —1 in [2] (see Theorem 3). The case B > 1 needs only
a little change in the proof, therefore we shall only sketch it.

Let [/(n)|=1 for (n, B)=\,f(ri)=Q> for (n, N)>1, and

(3.16) 2 \f(n +B)-f(n)\

Let ~=1 (mod£), g2=\ (mod B) be arbitrary integers such that ?I<?x,

and '°9°! be an irrational number. We define the decompositions according to the

0
foIIowigg rules.

Let NO be a general positive integer. We define a0 to be the least nonnegative
integer for which N0—a0B =0 (mod gx), N+ is defined by N0=q1N1+ al)B, ar, N2,
a2, N3, ... are defined similarly. Let us do it with g2instead of gx\N 0—qg2n1+ a0B,
nl=qg2n2+41B, .... Since gj=1(mod B)(j=1,2), NO=Nv(mod B), NO=nR(mod B)

Acta Mathematica Hungarica 43, 194



MULTIPLICATIVE FUNCTIONS WITH REGULARITY PROPERTIES. 1l 269

and so Nv—«,,=0 (mod B) holds for every v and p. Repeating the arguments
used in the proof of the cited theorem, the last remark allows to prove that

2 1(Ay-I(nv)]- 0 as H2

Continuing the proof nearly word for word, we deduce that f(n) =eu'en for every
n=I(modi?). Let now R(n)=e2don (n=1, 2, ...), u(n)=f(ri)R(n).

Since (3.16) is valid for f and R, soitis true for u(n) as well. Since |[/?(n)|= 1
for every n, |bi(n)|=1 if (n,B)=1 and u(n)=0 if 1. Since /(n) = N(7)
for H=I(mod.R), therefore u(n)—1 if n=\ (modB). Furthermore
But then n has to be a character mod B. So we have /(1) =yB(a)n'T.

4. Proof of Theorem 4

We may assume that f(p)—g(p)=0 for every p\K. If it were not true then
we could change K with a proper divisor Kr of it.

Let A,=g(n+K)—f(n). Let H(ri)= ?n) be defined when #(1n)"0, i.e. for
g

(n,K)=1 (see Theorem 1).
First we consider the case when K is odd. We are starting from the relations

g{2n +2K) =f(2n+ K) +A2mK; f(2n) = g2n+ K )-A 2,
Since 2\K, from Theorem 1we get /(2)"0, £-(2)*0, and so

A, = g(n +K)-f(n) = YA[fA-n+K) +anzeki—j~ (g (2n +K)-AZ],

whence, by (1.6) we get

2 g(12)f(2n+ K )/—E‘g){Zn +K)

i.e.

(4.2) wdac/t-gml<», C=A0).
Assume for a moment that “(n\(n, 2)=1) is absolutely convergent. Then, by
(4.2), “(v|(n, 2)= 1) is absolutely convergent, and by (1.6) we get §(2i'\8= 1, 2, ...)
is absolutely convergent, which implies if, /€if. So we have

2 Uy
(4.2) n2= n

Let now m be odd, (m, K)=\. Then g(m)”~0. Putting tnn in place of n in
(4.1), we get

(4.3) — \Cf(m)f{n) —g(m)g(n)\ <°°,

2
(n2)=1 I
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ie

(4.4) (n%):l}F\CH (m)f{n) —g(ri)\ <«.

Taking into account (4.2), we get H(jri)=1. Furthermore f(n)=g(n)=10 if
(n,A)>1. Replacing g(n) by /(n) in (4.1), from (4.2) we get C—1, con-
sequently f(n)—g(n) for every n, and so the conditions of Theorem 3 are satisfied.
We are ready.

Letnow K =2. First we prove the following assertion:

(A): If 3) is an arbitrary odd integer such that

(4.5)

then f,gf <€
Let / be an integer, (1,23>)=\. Since f(p)"0 for p*2 (see Theorem 1),
we get/(/)*0. Furthermore «/»M -~"mod 28) holds for n=1 (mod 2®),

thus we get
n=|(m%2")
and so

(4.6) 2  ]/W [ <00-

(n,23)=1 n

2
1u=1(mod 2")

Hence we get
% _I_g__Q_Q_I____: oo
and by putting n=3v,(g(3)"0),
(L

v=1(mod2)

2 Y oot

v=1(mod?2) \

consequently

Furthermore, from (1.6) we have

+ 151,

@
i

+um v=1I(mod2) \%

and so
Let n be an odd integer. We consider first the identities:

4.7) (n+2)(I+2/n)-n(1+2f(n+2)) = 2,
(4.8) (n+2)(-1 +2tn)-n(-1+ 2 (n+2)=- 2
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Hence we deduce that

(4.9) ANlg(«+2)g(I+21In)-/(n)/(1+21(n +2)[ <

(4.10) 2 -y l(n +2)/(—1+22) —g(n) g (—L+2i(n + )| = ».

Furthermore, by (1.6), K—2, we get

(4.11) 1éIT\g{I+2tn)—f(-\+2tn)\ < 0o,
and so, from (4.11),
(4.12) 2y 00 +2ui) f(i('l)z)g(- 1+ 2i (+2))

Comparing this with (4.9), we deduce that

~ LM A g(-142,(,+2))-I A (1+2(>+2)
whence it follows immediately that
(413) "~ 7(nT2) N n+2)B O A 1+2/("+2>)“ S(~ 1+ 2' («+ 2))| <
By putting <=wu4-2, ui=0 (modi/), we get

(4.14) 2 — \H{d-2)H{d)f{\+2m)-g{-\+2m )\ < ».
m= 0 (modrf) Ul
If we put d=d1,d —d2 and m runs over the integers m=0 (mod [, t/7),
we deduce that

n [Ac/)A(£1-2)-A(1/9A(L/2-2)]-1]/(1 + 2T1)] <
m= 0 (mod [t/j, d2])
We have that v=1+2m runs over the integers = 1(mod 2[</, </J) while
m runs over m= 0 (mod[i/j, 99). By using the assertion (A), and assuming that
jS, we get
(4.15) H(d)H (d1—2) = H(d2 H (d2—2)

if i/j,d2 are arbitrary odd integers.

By putting d2=(/!+2, we deduce that H(d+4)=H(d) for </=1,3,5,....
Since A(1)=1, we get immediately H(n)=1 for «=1(mod 4). Further-
more, from (4.15) we get A(n)=con51 for n = —I(mod 4). Since n2=I(mod4),
AWM= AMm)2 therefore H (n) = +1 (mod 4). ﬁs_slume that A(n)=—1 when

n=—(mod4). By using (1.6) and g(u)=(—1) 2 /(n) for (n, 2)=1, we can
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deduce easily that
(4.16) “iL/(,, +A)+/() <~
n

and so 2n 7- \f(n +8)-/(«) I< «o
Since therefore by Theorem 3 we get f(n) = Xs(n) -nlc+h, OScrd,

where Xa is a suitable character mod 8. Observing that (—L) 2 =y4(u), where
Xi is the non-principal character mod 4, and substituting f(ri)= Xs(n)na+iz,g(n) =
—Xi(")/(”) into (16), we deduce that

(4.17) xdn +2)xa(n+2)-Xa{n) =0

is satisfied indentically. This gives X8(5)= %8(3)=—1, B(L)=X8(7)= 4-1. It is
obvious that this pair is indeed a solution of (1.6).
Assume now that H(n)= 1 for every odd«. Since / (2)=g(2)=0, therefore

/ (n)=g(n) f°revery n, and so the conditions of Theorem 3 are satisfied, consequently
f(n)=g ( i)=natT foroddn and f(ri)=g(n) if n is even.
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ON GLOBS

J. CEDER (Santa Barbara)

Agronsky [1], [2; p. 29] showed that each F,, bilaterally c-dense-in-itself
subset of R can be expressed in the form U{A(oc): a€[l, °°)} where each A(ct)
is closed and whenever «</? each point of A(a) is a bilateral c-limit point of
A (B). (Any set expressible in this form will be called a linear glob.) Then according
to Agronsky [1] the function defined by

1
f{x) = inf{axdA(ot)}
0 if A

if X£A

becomes a Darboux, upper semi-continuous function such that A =f~x(0, °°)).

Therefore, the following are true

(1) each bilaterally c-dense-in-itself Fa is a linear glob;

(2) a setis a linear glob if and only if it is the inverse image ofa non-void open
set under a Darboux semi-continuous function.

In this paper we attempt to extend these two results to a particular two-dimen-
sional setting. First we must extend the notions of a bilateral c-limit point and
a Darboux function to two dimensions.

A point z is called a panoramic c-limit point of a planar set A if each non-
degenerate closed triangle containing z also contains 2H points of A. We write
AQpB if AQB and each point of A isa panoramic c-limit point of B. A family
of closed sets {F(a): a£[l, °°)} is called a hierarchy if F(a)<fpF(R) whenever
a</k The union of a hierarchy is called a glob. A function / : R2-+R is said to be
Darboux if the image of each non-degenerate closed triangle is an interval. The
study of such functions was initiated in [4] (see also [3]).

In the sequel we will show, in contrast to the one dimensional case, that a pano-
ramically c-dense-in-itself Fa set is not necessarily a glob. Thus, (1) does not
extend to our two dimensional setting. As for as (2) is concerned, it is true that each
glob is the inverse image of an open set under a Darboux semi-continuous function;
however, the converse remains an unsolved problem.

Our unsuccessful attempt to extend (1) and (2) satisfactorily then leads to
studying globs in detail. We obtain some interesting results, one of which, (e) below,
is of independent interest. Many open questions remain. The main additional
results can be summarized as follows:

(@) globness is not a topological invariant;

(b) a panoramically c-dense-in-itself F,, which is “locally” a glob is a glob;

(c) aproduct of two linear globs is not necessarily a glob (it is if one set is open
in the density topology);
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(d) any non-empty open set minus a null set contains a glob (it is a glob if the
difference is an F,)\

(e) if A is a null subset (resp. offirst category) of the unit square 12, then
there exists a non-void perfect subset P of | and a subset Q of I which has
full measure (resp. is residual) such that PXQ misses A.

Lemma 1. Let E be an analytic set which is panoramically c-dense-in itself.
If A is a compactsubset of E, then there exists a compact set B such that A £

£pBQpE.

Proof. Let iP consist of all open arcs in the unit circle. For x and WdfiP
define IV(x)= {x+ree:r>0, ewEW}. For W OP let \W\ denote the length of W.
First we prove the following statement: For any e>0 and oc6(0, n) there
exists a finite set F(e, a)A"EC\ {y:dist (y, A)<e} such that W(x)MF(e, a)* 0
whenever x£EA and \W\>-a. To show this we proceed as follows: For any ydA
we can find a finite set D{y) in EC\{z: dist (z, T)<s} suchthat W(y) hits D{y)

whenever By continuity we may find an open set 0(y) containing y
suchthat W (z) hits D(y) whenever zdO (y) and W \xx. Since A ni15 compact
we can find 0(zx), 0(z2, ..., 0 (zm) which cover A. Now put F(e, a)= _(JlD (zm).

1=

Next define a sequence {Cjj” ! ofsubsets of E by C,=F \f\ﬁnﬂ) .PutC= U1 C..
Enumerate C by {c}* x Clearly A ispanoramically densein ylUCand C—CQA
and AUC is compact.

Next select an open sphere S; centered at ct with radius rt in such a way
that SinSj— 0 when iAj. Let {/,i=1 be a dense subset of HF For fixed
i define P(i, ri) to be a non-empty perfect subset of

£nS'/n|z: \z-ct\

Put B=11J U\P(i,ri))V)A. Then clearly B is a dense-in-itself compact set for

i=1 n=1"

which AVQpBQpE.
The next result says that a panoramically odense-in-itself Fa which is
“locally” a glob is a glob.

Theorem 1. Let E be a panoramically c-dense-in-itself F,, subset of the plane.
| f each non-empty relatively open subset of E contains a glob, then E is a glob.
Proof. Let E= (J A, where each A, is compact. By Lemma 1 we may

/E 1

choose a compact set B, such that A1A+pB1AEE. In fact by modifying the proof
of Lemma 1 in place of the sets P(i,n) we may choose the closed set F,
where {Fa: I} is a hierarchy whose union is contained in

EDStC\{z: z-ct
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Hence there exists a sequence of globs {G,}*=1 in E with associated hierarchies
{G"aiaSI} such that B1-Ai= U Ghx2

m=1
Nowput E1—A1 and £2=51U"2- Then E1A"pE2'=pE. By the same argument
as above we may find a compact set B2 such that E2==pBA=pE and a sequence
of globs {Gm}r= with associated hierarchies {G,,a:ot=1} such that B2~E2=

= 0 Cm3- Then put E3=B2UA3.
m=1
Continuing in this way we obtain sequences {fm}‘=xand {F,}*=1 of compact sets
together with sequences of globs {Gi;}™=1 with associated hierarchies {G*iS: a”I}

suchthat E,,QpEn+1QpE and Bn—En— U G"\h+1 for all n.

m=1
Let us now define a family {E(E): 271} as follows: E(A)=EnU| (J
if nrO<n+1. It easily follows that each E(X) is closed. It is also clear that

is(a)QpE(R) whenever a<RB. Since E= (J En it follows that E is the glob
U {E{X): Asi}. n=1

Theorem 2. A union of afamily ofglobs is a glob if and only if the union is an
Fa set.

Proof. In view of Theorem 1 it suffices to show that SDA is a glob where
A is any glob which intersects the open unit disk S. Let A be the union of
a hierarchy {i(a): aSI}. For 1 let S(r) be the closed disk of radius
r centered at the origin. Pick % such that S(S)C\A” 0. Let/ be an increasing
function from [1,°°) onto [&§1). For a”l define F(a)=A(a)fl.S(/(a)).
It is easily checked that {F(a): a1} is a hierarchy whose union is

Corollary 1. The non-empty intersection of any open set with a glob is a glob.
Corollary 2. The union of countably many globs is a glob.

Proof. It follows trivially from Theorem 2. However there is also an easy
direct proof: Lnet {{G* «=1}}I=r be a sequence of hierarchies. For n*a<un+1

define F(a)= (J Gk. Then (F(oc): a51} is a hierarchy whose union is the union
fc—1
of the family of globs.
Theorem 3. Any open set is a glob.

Proof. Since each open disk is obviously a glob the result follows from Co-
rollary 1.

Agronsky’s proof that a linear glob is the inverse image of a non-void open set
under a Darboux semi-continuous function can be easily carried over to two
dimensions.

Theorem 4 (Ceder [4]). If A is aglob, then there exists a Darboux, upper-semi-
continuousfunction f suchthat A=/ -1(0, °°).

The converse of Theorem 4 is true, namely:
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Theorem 5. If f is an upper-semi-continuous (resp. lower semi-continuous)
Darboux function, then any non-empty f~ 1(a, °°) [resp.f~ 1(— &)] is a glob.

Proof. Assume / is upper-semi-continuous and / -1(a, °°)* 0 . Choose
b€(a, oo)rirng/. Let g be a homeomorphism at (a, b] onto [1, 00). For each
at[l, °°) put F(a)={x:f(x)*g~x@} Then it is easily checked that {F(a); m~I}
is a hierarchy of closed sets whose union is f~ 1(a, ).

In the case of a Darboux Baire 1function f :R-*R it is always true that the
inverse image of an open set is a linear glob. It is unknown whether the analogue
of this result is true for functions from R2 to R, except in the special case of
Theorem 5.

I conjecture that

Conjecture. If f is a Darboux Baire 1function and G is any non-void open
set, then f~ x(G) is a glob.

In general if / is Darboux Baire 1 and G is an open set, then f~ x(G) is
a panoramically c-dense-in-itself Fa set. However, such a set may not be a glob
as shown by the following example.

Example 1. There exists a panoramically c-dense in-itself Fa set which does not
contain any glob.

Construction. Let A={(x,y): 0<y<1, 0<x< 1 x is rational}. Clearly
A is a panoramically c-dense-in-itself Fa set.

Suppose A contains the union of some hierarchy {/-(a):asl}. Pick
(xa, y«)€F(a) such that xa=inf(dom F(a)) by the compactness of F(a). Since
F{a.)QpF{R) when a</? it follows that xpAxx. This contradicts the countability
of the rationals. Hence, A contains no glob.

By Theorem 5 it follows that AAf~x{a °°) for any a and lower-semi-
continuous Darboux function /.

In view of Example 1 it would be interesting to find a reasonable characteriza-
tion of those panoramically c-dense-in-itself F,, sets which are globs. In this vein
we do have the following

Theorem 6. Any panoramically c-dense-in-itself F,, which is also of second
category everywhere is a glob.

Proof. Obviously any Fa set of second category has non-void interior and
hence, contains a glob. Now apply Theorem 1
The converse of Theorem 6 is not true by the following example.

Example 2. There exists a glob of 1st category and measure 0.

Construction. Choose {P,}’=x be a sequence of nowhere-dense, non-void,
null perfect sets in (0, 1) such that any open subset of (0, 1) contains some P,,

Then for each n the set A,,=P,X a closed, nowhere-dense planar

set. Hence A.llA,, isan Fa null set of first category. It is easy to see that /lgl An
is a glob using Theorem 1and Theorem 8.
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It is unknown whether the measure analogue of Theorem 6 is valid: that is,
any panoramically c-dense-in-itself F,, of positive measure is a glob or more simply,
does any closed set of positive measure contain a glob?

Next we proceed to investigate what product sets are globs. First we have
a couple of lemmas.

A linear, non-void, nowhere dense bounded perfect set will be called a Cantor set.

Lemma 2. Each linear, uncountable analytic set contains a linear glob.

Proof. Let £ be a linear, uncountable analytic set and choose P to be
a Cantor setin E. Let P' be the set of bilateral limit points of P. Let {-S}=i
be a countable base for the relative topology on P'. For each n pick P,, to be

a Cantor set in BnC\P'. Then, (Jan is a bilaterally c-dense-in-itself Fa set, hence
n=

a glob.
The two-dimensional analogue of Lemma 2 is false by Example 1
For a set A let d{A) denote the distance set of A, i.e., {\x—y\: x, yEA}.

Lemma 3. Let J be any open interval centered at 1 with length less than 2.
There exist null Cantor sets P and Q such that

d(P)f1(d(Q)-J)={0}.

Proof. Without loss of generality let us assume that /=(.9, 1.1). Pick sequences
{a =1 and {fr, = in (0, 1) converging to o such that for all n, a,+i<b,+I<
<an<bn and lla,,<9h,,. Let dHP)=d(P)—{0} for any set P.

Let Gn=(b,+l,a,) for each n. We will construct a Cantor set P suchthat

dHP)" UlG,,. First pick xItx2€/ with xx<x2 and x2—x1f"Gl. Choose s>0
s

so that z£[x1,x1+e] and wes[x2—e, x4 imply that w—"G1l. Pick ak“e and
yiE(xt, Xi+e) and J2€(x2—e,x29 such that }\—xx and x2—y2 belong to Gk.
Put Fo=[x1,y] and /4 = [}2,x9 and Ei—{x1,y1,y2 x2. Then d HEr) U GjUGK.

Now consider the interval [x1; eJ. In a similar way we may find z1 and z2

such that xl1<zJ<z2<yl and d-H{xk, zIt z2 Ti})E L_JlG,,. Likewise we may find
wk and w2 suchthat y2<wil<w2<x2 and

d+H{x1, x2, ylf y2, z15 z2, wl; wZ}) Q [glG——

Let Foo=[x1,z], Foi=[z2,"], F1o=[y2, wj and Fu=[w2,xq. Letting E2 be
the set of endpoints of these four intervals we then have d HE2g rlélGn.

We may continue this process by induction. Letting si consist of all sequences
of o’'s and |’s, we obtain a system of closed intervals {Filia ik:ifsi, A51},
such that for each ids/

(1) fii,....,,..nfi,...ikkn=0 whenever m”~n\
(2) Fh....ikm*F h.... ik for all m;
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(3) if Ek consists of the endpoints of all Fh....ik as iranges through sd, then
d+(ERiI 0 G,;
n=1

@) acu {Fh....i: for each k.

Put P=U {krlI ik Then P is a Cantor set and dHP)=
=C\(;}£1d+(Ek))AC\(n\:J| G.)= (U, G,,)U{0}. Hence, d+(P)Qn:U| G,..

Let U,=(an, bn). Then an® <il A i bn. Hence for each
n we may choose an open interval \h centered at m" * s such that V,,-J*Un.

Now proceeding as before we can find a Cantor set Q such that d +(9)Q IV,

Therefore, d+(Q)JQ(Q V,,)-J= U (F. /)g 0 V,, Since (U "r)I'I(O G,)=0

we must have d(P)C\(d(Q) /)= {O} Moreover |t is clear from 4 that P and
Q both have measure zero.

Theorem 7. There exist null Cantor sets P and Q such that PXQ contains
no panoramic c-limit points of itself.

Proof. Apply Lemma 3 to /=(0.9, 1.1) to obtain null Cantor sets P and
Q such that d(P)C\d(Q) = {0). For any point (p, q)dPxQ let T(p,q) be
that closed triangle having (p, q) as a vertex and having adjacent sides of length 2

and slopes 0.95 and 1.05. If (pk, gD .T(p, q)—{(? q)} then £/ and hence
d(P()g( Hd(Q)-9)x {0} Therefore, T(p, q)(~)(PXQ)={(p, )} for all (p,q) in

Neither Lemma 3 nor Theorem 7 can be improved to assert that both P and
Q have positive measure 0, because in that case PXQ would have positive
measure and therefore, have a point of density which is obviously a panoramic
c-limit point.

As an interesting consequence of Theorem 7 we have

Corollary 3. There exists a continuousfunctionfrom R into R whose graph
contains aproduct of two Cantor sets.

Proof. Let A be the rotation of the set PXQ in Theorem 7 by 45 degrees.
Then A isaclosed set having no two points with the same first coordinate. Obviously
we can find a continuous function f:R -*R suchthat A isa subset of the graph of f.

Corollary 4. A product of linear globs is not necessarily a glob.

Proof. Let P and 0 be specified as in Theorem 7. By Lemma 2 let A and
B be linear globs in P and Q respectively. By Theorem 7 PXQ, and hence
AX B does not have any panoramic c-limit points of itself. Therefore, AXB
cannot contain a glob.
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Although a product of linear globs may not be a glob in general, it is under
certain conditions as shown by

THEOREM 8. The product of two linear globs is a glob if one of them is open in
the density topology.

ProoOF. Suppose A4 and B are linear globs and B is open in the density topo-
logy. According to [8] or [2, p. 29] we can write B as a union of a hierarchy
{B(e): =1} such that whenever a<f and x€B(a), the density at x with respect
to B() is 1, written &(x, B(f))=1. Let A be the union of the hierarchy
{A(2): «=1}. For each a=1 put C(a)=A4(x)XB(x).

It suffices to show that each point of C(x) is a panoramic limit point of C(f)
forany a<p. Let (a, b)eC(x) and W be any wedge with vertex at (a, b). Without
loss of generality we may assume that W is determined by two lines given by
y=b+A(x—a) and y=b+pu(x—a) where O<A<yu. Suppose (a, b) is not a limit
point of WNC(B). Then for each ¢=0 and x€(a, a+e)A(B) the closed interval

- B(p)N[b, b+u(x—a) _i(x—a) A

i = misses B(f). Then = =—=<I.
[A(x—a)+Db, p(x—a)+Db] (B) ey . 1
Hence &(b, B(B))=4/u<1, a contradiction. Therefore, C(a)ZSpC(p).

As a consequence of Theorem 8 it follows that the intersection of two globs
may fail to be a glob even if it is non-empty. For example, let 4, and A4, be
linear globs where A;NA,={0}. Then A4;XR and A,XR are both globs, but
(A, X R)N(A; X R)={(x, ¥): x=0}.

Example 3 in the sequel shows, surprisingly, that the product of two linear
globs each dense in some open interval can fail to contain a glob. In this case both
sets are null, first category linear globs.

Before reaching Example 3 we need a few preliminary results.

THEOREM 9. Suppose {A,}n=1 is a sequence of non-void, closed, nowhere-dense
planar sets such that diam 4,—0, card (4,NA,)=8, whenever n=m, and no A,

contains a glob then, | ) A, is not a glob.
n=1

ProoF. Put 4= |J A4, and let us suppose that A4 is the union of a hierarchy
n=1
{F,: =1} where F;# &. Put B=cl (|J F,)and B;=BNA4;. Then 3 =BES F,C A.
a<2

Next suppose O is any open set hitting B. Since (UJ F,)N0E U (B;N0)
a<2 i=1

and (U F,)N0 is a glob (by Corollary 1), hence card ({J (B;0))=c and there
a<2 i=1

exists an 7 such that card (B;10)=c. Moreover, since card (B;\B;)=%, for all
Jj#i it follows that (B;— (J B;)N0= &.
j#i

Next there exists a jsi for which (B;—B;)N0> &. If this were not true then

0N U B,SB;N0 and consequently (|J F,)N0EB;S4; and 4; would contain
n#i <2

a glob, a contradiction. Since B; is closed there exists an open set NS0 such that
NNB;= & and N(\B;# &. Now repeating the argument in the previous paragraph
there exists msi such that (B,— U B,)\N#= Q.

n¥=m
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Now pick *€(ﬂ?'-¥',\i5j)00 and y€(Bm—|_§Jﬂ_B,,)ON. Since diam 22 —0

there exists an M such that kwM implies diam 1/3|x—y\. There exists
a sphere Sx of radius less than 1/3|x—y| centered at x which misses U [Bk: K< A4,
kxi}. Likewise there exists a sphere S2 of radius less than [/3\x—y\ centered
at y which misses U{Bk: k<M, KAm).

It follows then that there exists two closed spheres To and Tx each of dia-
meter less than 1 such that ToC\BX0 and TxMBXO0 and moreover, such that
no Bk hits both o and Tx.

Next apply the previous argument again to the interior of TO (resp. 7j) which
plays the role of 0. Then we obtain two closed spheres T and TQ (resp. T10
and Tu) each of diameter less than 1/2 and each hitting B such that no Bk hits

both I'w and T,x(resp. TIDand T1X.
Proceeding in this way we obtain a system of closed sets, where consists of

all sequences of 0’s and I’s, {Tiu jin:ifsd, n 1} with the following properties:
For each i and n Th....in+1<z Tiu...irl= 0, TiltAtC[B" O,
didm T: <2~" and no Bk hits both ,,, , .. and T,

Finally put T={A4ril..iknB-.i"Y Obviously TQB and card T=c.

Moreover, for each i ﬁ Th....ikC\B consists of a single point. But by the last

property above distinct points of T cannot lie in the same Bk. This is a contra-

diction.
It follows from Theorem 9 that some sets which are unions of countably many

planar arcs (eg. all closed line segments each of whose endpoints are rational) are
not globs. However, it is unsolved whether or not a union of an arbitrary countable
set of planar arcs can be a glob. In particular, can an arc contain a glob?

It is unknown whether or not the condition that diam”,,—0 is essential in

Theorem 9.

Lemma 4. Let {An} fx, {Bn}f=x be sequences of disjoint Cantor sets such that
diam Bn<\jn and didm An< 1/u. Then there exists a sequence of planar, closed
disjoint nowhere-dense sets {Qk}f=L such that

D I|<nl:JI a }N \mglﬂ'»‘):kyl Qk,

(2) diam Qk-+0,
(3) for each k there exist n and m and open intervals | and J for which

Qk = (A,,ri)X(Bmr)J).

Proof. For each n and m it is clear that we can decompose A,, and Bm
into a finite number of disjoint portions (i.e., sets of the form A,, intersect an open

interval) and fB" in such that diam (A"\XB", )< for each
i,jsk(m,n). Choose {QKik=x to be any enumeration of all the sets A'f/,B"nj.

Lemma 5. Let {/,H=r beany sequence ofclosed intervals such that 0<sup/n+l=
-=infl,, and Ijj*mo (sup /,,)=0.
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If W is any open subinterval of (0, 1), there exists a Cantor set PSW for which
d (P)ﬂ[ L) )=
ProoF. Pick distinct points x and y in W such that |x—y|¢ U I,. Clearly

we can find disjoint non-degenerate closed intervals 7, and T; contammg x and

y respectively and having diameters less than 1 such that |z—w|¢ U I, whenever
z€T, and wcT;.

Repeating this process in 7, (with int 7, playing the role of W) we can
find disjoint non-degenerate closed intervals Ty and Ty in int T, each of dia-

meter less than 1/2 such that |[z—w|§ U I, whenever z€Ty, and w€T.

Contmumg this process by 1nduct10n we obtain a system of closed intervals

{Ti, .. i€sf,n=1} where & is the set of all sequences of 0’s and 1’s, having
the following properties for each i and n
Tty S Aty 2Ws T 4 600T, a=@, diam T, — < 2c"
and |z—w|¢ | I, whenever z€T;  ; o and weT;, ; ;. Put
k=1

pe U{ﬁ T‘.h__,,,.";ied}.
n=1
Then P is a Cantor set contained in W and d(P)NU I,=O
n=1

ExampLE 3. There exist null, first category linear globs each a dense subset of
(0, 1), whose product is not a glob.

Proor. Let {W};z, be an open base of intervals for (0, 1) with diam W;<1/i.
Let J=(.9, 1.1). Pick sequences {a,};=, and {b,};=; such that 0<(11/9)b, ;1<
<a,<b,<1 for all n. Put I,=[a,,b,].

Using Lemma 5 and induction we can find disjoint Cantor sets {B;};=, such
that B,CW, and d(B,-)ﬂ( Tk 1")= @. Thus (U d(B,)]m(U J-J,J: @ and
n=1 i=1 n=1

(O 7 -d(Bi))ﬂ(G 1,,]:@. Letting T,=[by.1,4] we have U J-1.d(B)S
n=1 n=1

0
< U T,U{0).

~Agam using Lemma 5 we can ﬁnd disjoint Cantor sets {4}z, such that 4;EW,
and d(A‘)ﬂ[U Tk] @. Put A= U A, and B= U B,,. Then for each n and

m d(4,)\J ~*-d(B,)= {0} so accordmg to the argument in Theorem 7, A, XB,
has no panoramic limit points and hence, cannot contain any glob.
Now applying Lemma 4 there exists a sequence {Q}i=, of disjoint closed,

nowhere dense sets such that diam Q,—~0 and no Q, contains a glob and (J Q,=
k=1
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=AXB. According to Theorem 9, 4 XB is not a glob. Obviously 4 and B are
null, and of first category (from Theorems 7 and 8) and linear globs dense in (0, 1).

THEOREM 10. Globness is not preserved under product homeoniorphisms.

Proor. Let P and Q be Cantor sets as specified in Theorem 7. Let C be
a Cantor set which has positive measure in each relative open interval of C. Let
h and g be homeomorphisms of R such that #(C)=P and ¢g(C)=Q. From the
proof (and notations of that) of Lemma 2 it is clear that we can find a linear glob

A with ASC such that A= D A, with A, a perfect subset of B,NC’ having
n=1

measure greater than %]B,,ﬂC’l. Then each point of 4 has density 1. Therefore

by Theorem 8, AXA is a glob. However, h(A)Xg(A4) being a subset of PXQ
is not a glob.

Note that linear globs are preserved under homeomorphisms of R. Also in
contrast to one-dimensional Darboux function we have the following consequence
of Theorem 10.

EXAMPLE 4. There exists a Darboux upper semi-continuous function [ and an
homeomorphism k of R® such that fok is not Darboux.

CoNsTRUCTION. Let k& be the product homeomorphism of Theorem 10 given
by k~'(x, y)=(h(x), g(x)). Let 4 be the set in Theorem 11. Since AXA is
a glob, by Theorem 4 there exists a Darboux upper semi-continuous function
S such that AXA=f"1(0, ). However, (fok) (0, «)=k1(f~2(0, «))=h(4)X
X g(A4) which is nota glob. Hence, fok cannot be a Darboux upper semi-continuous
function by Theorem 5. Therefore, fok is not Darboux since fok is upper semi-
continuous.

We have seen that an F, set of second category contains a glob whereas it is
unknown whether or notan F, set of positive measure contains a glob.

A related question is: does an open set minus a first category or a null set
contain a glob. A natural approach to resolving this question is to try to find “‘fat”
products of linear globs missing a given negligible set. We pursue this approach
in the sequel and are able to conclude that an open set minus a null set does contain
a product glob (Theorem 17). But the problem of finding a product glob in an open
set minus a first category set remains unsolved.

To begin with we need to strengthen the following well-known theorem.

THEOREM 11 (Kuratowski—Ulam [6, 7]). If A is a planar first category set,
then there exists a residual subset B of the line such that for each x€B {y: (x, y)€ A}
is of first category.

If 4 is a planar set, and x€R, then A(x) will denote the set {y:(x, y)€A}.
The stronger version of the Kuratowski—Ulam theorem is the following:

THEOREM 12. If A is a planar set of first category, then there exists a residual

G; set B in R such that | ) A(x) is of first category whenever P is a F, subset of
xeP
B of first category.
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Proor. It suffices to replace R? by [0,1]%. Let % consist of all closed no-
where dense subsets of [0, 1]. Let {B,};=, be a countable base for [0, 1].

Let us first show the theorem with A being closed and nowhere dense. Then,
for each n there exists a residual G; set G, such that for all P€¢ ¥, PG, implies
B, % |J A(x). If this is not the case then there exists some # such that for all residual

P

G;s sets G there exists P€9 with PEG and B,S | J A(x). By Theorem 11 there

xcP
exists a y€B, such that L={x:(x,y)€A} is of first category. Since A is closed
L is closed too and hence L is nowhere dense also. Hence, taking G=[0,1]—L
we obtain a contradiction.

Now put B= () G,. Then B is residual and if PSB with P€¥, we have

n=1
B, |J A(x) for all n. Since 4 and P are closed it follows that () A(x) is also
xepP x€EP
closed. Hence, (J A(x) is nowhere dense. Therefore, we have shown that if A4 is

xepP
closed and nowhere dense there exists a residual G5 set B such that for all closed
and nowhere dense subsets P of B, [J A4(x) is closed and nowhere dense.
xEP
Suppose A= U A, where each A, is nowhere dense. Let A'= U A,. For
each n there ex1sts a residual G5 set I, such that P€2 and PST, 1mply that

U A,(x)€P. Since U A(x)E U A (x)= U U A,(x) we have that Pc% and

n=1x¢€

PSB= ﬂ I, imply |J A(x) is of first category.
n=1 xe€pP
Next suppose P= ) P, where each P, is closed and nowhere dense. Since
n=1

U Ax)=U U A(x) we have for each first category F, set PC B that |J A(x)
x€EP n=1x€cP, xXEP
is of first category.

It is unknown whether or not the F, requirement can be deleted from the

above theorem.

THEOREM 13. If A is a planar set of first category, there exists an F, set P
of first category dense in R and a residual Gs set Q such that PXQ misses A.

Proor. By Theorem 12 pick a F, set P of first category dense in B. Let
Q be a residual G; missing ) A(x). Then PXQ misses 4.

x€P

Neither Theorem 12 nor Theorem 13 can be improved to assert that P is of
second category. For example, take A= {(x, x): x€R}.

It is unknown whether or not the sets P and Q in Theorem 13 can be chosen
so that PXQ contains a glob. Thus, the question of whether an open set minus
a first category set contains a glob or not remains unsolved.

The well-known correlation between measure and category [7] and Theorem 11
suggests that Fubini’s Theorem can also be extended in the manner of Theorem 12.
We are unable to prove this and therefore offer it as a conjecture.
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CONJECTURE. If A is a null set in the plane, then there exists a set B of full
measure in the line such that |) A(x) has measure zero whenever P is a G; null
subset of B. e

Nevertheless the measure analogues of Theorems 13, remain true. In order
to show it we only need a weaker extension of Fubini’s theorem which we now
proceed to establish. Let 1; and A, denote the Lebesgue measure in R and R*
respectively.

THEOREM 14 (Eggleston [5]). If E is an F, subset of 1* and ¢=0, then there
exists a non-void perfect set PS1 such that

A (xLEJP E(x)) < Ay(E)+e.

LemMA 6. Suppose N is a G set for which 2,(N)=0 and A is a Cantor
set in I such that A;(N(x))=0 whenever x€A. Then, for each &=0 there
exists a closed set Q<1 with 4,(Q)=1—¢ and a non-void perfect set PS A
such that (PXQ)NN=.

PROOF. Let & be a homeomorphism of 7 onto 7 such that A,(h(A4))=1—¢/3.

Let M={(x,y): (h~1(x), y)¢N}. Then 2,(M)=0 and A,(MU(I—h(A)XI))=¢/3.

Let G be an open set containing M U((I—h(4))xI) with 21,(G)<2¢/3. Applying

Theorem 14 we obtain a perfect set P> @& such that A, (U G(x))<,12(G)+a/3 <e.
xEP

Put O=I— |J G(x). Then Q is closed and 4,(Q)>1—e¢. Since x¢h(A) implies
P

G(x)=I1 we must have PCh(4). Let P*=h"'(P) then P*SA and P*XQ
misses N.
The main idea of the proof of the next theorem is due to M. Laczkovich.

TaeoreM 15. If ESI* and A,(E)=0, then there exists a non-void perfect
set P andan F, set Q with 2,(Q)=1 suchthat (PXQ)NE= Q.

ProoF. Clearly it suffices to assume E isa G; set. Let {I,};2, be an enumera-
tion of all open subintervals of (0, 1) with rational endpoints. Let M={x€Il:
21(E(x))=0}. By Fubini’s theorem 2,(M)=1 and hence we can choose a Cantor
set AS M. Then, according to Lemma 6 there exists a closed subset Q; of I
with 1,(0,)>1/22,(1;) and a Cantor set P,S A4 such that P;XQ, misses E.

Now split P; into two disjoint non-void portions F, and F; each having
diameter less than 2/3. For each i€ {0, 1} apply Lemma 6 again to obtain a closed
subset S; of I, with 4,(S;)=3/44,(1,) and a Cantor set 7; in [F; such that
T; X S; misses E. Then put Q;=S,MNS; and P,=T,UT,. Then P,XQ, misses
E and 4,(Q2)=1/2 4,(Iy).

Now split 7, (resp. T3) into two portions F,, and Fy (resp. F;, and Fy;)
each of diameter less than 1/3. Apply Lemma 6 to each F;; to obtain a closed
subset S;; of I3 with 4,(S;;)>7/8 2,({3) and a Cantor set Tj; in F;; such that
T;;XS;; misses E. Put Qy=N{S;;:4,€{0,1}} and P=U{Ty;: i, jc{0,1}}.
Then P;XQ, misses E and A,(Q5)=>1/2 2,(1,).

Next we split each T}; into 2 portions and apply Lemma 6 again. Continuing
the inductive process (as done in the proofs of Lemmas 3 and 5 and Theorem 9)
we will obtain a sequence of closed sets {Q,}r=, such that 4,(Q,)=1/24,(Z,) and
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a sequence of closed sets {P,}r=i such that P, XQnmisses E. Putting P= T Pn
n=1

it is easily seen that P is a non-void Cantor set. Putting Q=AJ_16 ,, we see that

M(QC\))>~1/2 Aj(/) for each open subinterval / of I. Hence, |—Q has no
density points and thus AL(R)=1. Moreover, it follows that PXQ misses E.
The next result is the measure analogue of Theorem 13,

Theorem 16. If A is a planar null set, there exists an F,, set P dense in R
andan F,, set Q offull measuresuch that PXQ misses A.

Proof. First of all it is clear that we can modify the proof of Theorem 15 to
conclude that there exists an Fa set Q of full measure (i.e. ?.fQC\J)=Ai{J)
for each finite interval J) suchthat PX Q misses E. Let {S}-=1 be a countable
base for R. Then applying this result we obtain a Cantor subset P,, of Bn and

an F,, set Q, of full measure such that PnXQ,, misses E. Now put P=\J P,
Y S

and let Q be an F,, set of full measure which is a subset of p| Om a FaS set of
=1

full measure. Then, PXQ misses E.

Theorem 16 cannot be improved to assert that the set P has measure >0.
For example, let A be the union of all lines of rational slope passing through the
origin. Select closed subsets P' and Q' of positive measure of P and Q re-
spectively. If (P'XQ"')C\A= 0, then the set of all ratios plqg, pdP' and q£Q"'—{0}
would be nowhere dense in R. But this contradicts the fact that the ratio set of
two closed non-null sets contains an interval.

Theorem 17. If G is aplanar open set and A is a planar null set, then G—A
contains a glob dense in G—A.

Proof. Note that the product PXQ in Theorem 16 is a glob because Q is
open in the density topology by Theorem 8. Now let {N,}*=1 be a sequence of open

rectangles forming a base for G. Then Sn—A contains a glob Bn. Then 1J B,
A1

is a glob, by Corollary 2, which is dense in G—A.
The author wishes to thank Ibrahim Mustafa for his assistance in revising
this article.

Note. Mustafa, in a work to be published, has shown that (1) a glob can be
the union of countably many arcs and (2) each planar set of positive measure
contains a glob.
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SMALL IDEALS IN RADICAL THEORY™*

B.J. GARDNER (Hobart)

Introduction

It was proved by Armendariz [2] that a radical class of associative rings is
hereditary if and only if its semi-simple class is closed under essential extensions.
This result parallels an analogous one for modules obtained by Dickson [6]. Further-
more, it is possible to modify the argument of Armendariz to obtain the well-known
result that hereditary classes of associative rings determine hereditary lower radical
classes; the resulting argument closely resembles one used by Dickson [7] to obtain
the corresponding result for modules. The moral is that in a suitably “‘nice” en-
vironment, the analogues of the module results referred to can be obtained without
the necessity of having injective envelopes.

For modules over perfect rings, the results referred to can be dualized. Thus
a semi-simple class is homomorphically closed if and only if its radical class is closed
under essential covers and a homomorphically closed class always generates a homo-
morphically closed semi-simple class. These facts can be proved by means of argu-
ments using projective covers [5].

In view of the “‘superfluity” of injective envelopes referred to above, one is
led to ask about the possibility of obtaining analogues of these results on homo-
morphically closed semi-simple classes in contexts where there are no projective
covers. Of course, such results are false in the class of associative rings.

An examination of the argument used by Armendariz in [2] reveals that two
crucial facts are (i) the product of two normal epimorphisms is normal and
(ii) for an ascending chain {I, | A€ A} of ideals and an ideal J ofaring 4, we have
JN 2 I,= 2> (JNI,). Thus for the dual argument to work, we need transitivity for
normality of subobjects plus the lattice identity J+ NI,=(J+1,) for a descending
chain of normal subobjects 7, and a normal subobject J. (Cf. Proposition 2.10
below.) These latter conditions are met, for example, by the category of compact
abelian groups, though the latter, by the dualization of some results of Gabriel [9],
has projective covers, so we can use the same argument as for modules over a perfect
ring. (Alternatively, we can exploit Pontryagin Duality.) Incidentally, by a remark of
Grothendieck [10] (for a proof see, e.g., Mitchell [13], p. 86) an abelian category satisfy-
ing both the conditions on subobject lattices and with direct sums and products
must be trivial, so the example of modules over a perfect ring makes it clear that the
results on homomorphically closed semi-simple classes do not depend on the lattice
condition. Whether there exist situations in which these results hold in the absence

*These results were obtained while the author was visiting the University of California,
Berkeley as part of a University of Tasmania Outside Studies Programme and with the partial
support of a Fulbright Senior Scholar Award.
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of both projective covers and the lattice conditions seem to be a question worthy
of further investigation. (For that matter, one can make an analogous comment
concerning hereditary radical classes and essentially closed semi-simple classes.)

The homomorphically closed semi-simple classes (i.e. the semi-simple radical
classes) of associative rings are completely known. A generalization, wherein semi-
simple classes £? were required to satisfy the weaker condition

/ <1 and 9 = 0=S\I"Se

has recently been studied by Anderson and Wiegandt [1] and Sands [14].
Motivated by the above considerations, we consider small ideals in a similar way.
Anideal / ofaring A issmallifthe following holds:

J<iA and I1+J= A=3J=A

Under these conditions we write 7«iA. A ring R is an essential cover of a ring
B if there is a surjective homomorphism /: B with Ker (/)«!#. (This latter
is the dual of the notion of essential extension.)

Let f be a radical class with semi-simple class SP. We shall consider the
following two conditions

*)
(**) /<-=aA and A/IE<SI=>Ae®.

It turns out that (*) implies (**) but not conversely. After some general remarks
about small ideals we consider semi-simple classes satisfying (*) and radical classes
satisfying (**). Semi-simple classes satisfying (*) are not easy to find. The only
ones we can give are those which are contained in the Brown—McCoy semi-simple
class; in these (and they include, of course, the homomorphically closed semi-simple
classes) there are no non-zero small ideals. There are plenty of examples of radical
classes satisfying (**); which of these have semi-simple classes satisfying (*) is
largely unknown. Condition (*) for a semi-simple class SA is equivalent to the
following weak “right exactness” condition for the corresponding radical class &?:

J<iA = (@(A)+1)/1 = @AN).

Throughout the paper, all rings considered are associative.

Small ideals

We first present some examples of small ideals.

Example 1.1. Let A be subdirectly irreducible with heart H{A). Then
H(A)<<3A.

Example 1.2. Let A be a ring in which the ideals form a chain. Then every
proper ideal / of A is small. In particular, every proper ideal of the ring of all
linear transformations of an arbitrary vector space is small.
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ProrosiTioN 1.3. Let A be a ring, M a maximal ideal of A. If I<<A,
then IS M.

Let % denote the Brown—McCoy radical class. There are important connec-
tions between ¥ and small ideals. We have immediately

COROLLARY 1.4. If I<<1A, then IS 9 (A).

COROLLARY 1.5. If the intersection of the maximal ideals of A 1is zero, in parti-
cular if 4(A4)=0, then I<<A implies 1=0.

A ring A is called strongly regular, if for every a€ A there is an x€A4 such
that a=a?x.

COROLLARY 1.6. If A is strongly regular, then I<<A implies 1=0.

TueoreM 1.7. Let A be a ring in which every ideal is contained in a maximal
ideal. If I<A, then 1<<A if and only if 1S N{M |M is a maximal ideal of A}.

Proor. If 7 is not small, let /+J=A4,J<14,J #A4. Let M be a maximal
ideal such that J S M. Then A=I+JSI+M, so IEM. The converse is just
Proposition 1.3. O

COROLLARY 1.8. Let A be a ring with a left or right identity, I<1A. Then
l<<ad ifand only if 1S%(A).

Proor. For every maximal ideal M of A, the simple ring A/M has a one-
sided, and therefore a two-sided, identity [4]. Thus %(4)=N{M | M is a maximal
ideal of 4}. O

COROLLARY 1.9. Let A be a commutative ring with identity, I<1A. Then
I<<3A if and only if I is quasiregular. [

Folowing the example of Leonard [11] we call a ring 4 small if A<<B for
some ring B. The small rings can now be easily described.

PRroOPOSITION 1.10. A4 ring A is small if and only if A€Y.

Proof. Since ¥ is hereditary, all small rings are in ¢ by Corollary 1.4.
Conversely, if A€%, then A=%(A*Z), where A*Z is the standard unital
extension. By Corollary 1.8, A<<4*Z. 0O

Of course Brown—McCoy radical ideals are not always small; consider direct
sums, for instance.

For further results on small ideals and the analogous concept of small normal
subgroups, see the papers of Baer [3] and Michler [12].

Radical and semi-simple classes

In this section we examine conditions (*) and (**) of the Introduction. The
following result will be useful.

PROPOSITION 2.1. If I<<aR and J<1R then (I+J)|J/ <<1R/J.
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Proof. If (I+J)/J+K/J=R/J, then R=I+J+K=1+K, so K=R and
K/J=R/AJ. O

Theorem 2.2. Let 01 be a radical class, ST the corresponding semi-simple
class. Then ST satisfies (*) if and only if S$(R/1)=(0!(R)+1)/1 whenever | <<aR.

Proof. Suppose ST satisfies (*), and let 7 be a small ideal of some ring R.
Then by Proposition 2.1, @?(7?)+ 7)/a?(7?) «\R/St(R), so ST contains
(R/St(R)) (RID
O*(1)+ NH/A(/0) o*m+nNiH:

Hence S#(R/DQ(OI(R)+/)//. But (S#(R)+1)/l is in 01, so we have the desired

equality.
Conversely, if the stated condition holds, let J«\SAST. Then 0I(S1J)=
=(0t(S)+J)/J=0, ie. SJCST. O

Corollary 23. Let 0. be a radical class with semi-simple class ST. If ST
satisfies (*), then Ol satisfies (**).

Proof. If I«iR and R/ICO1, then R/J=(3t(R)+/)//, so @(R)+I=R'
whence Si(R)=R. O

This result is also a consequence of
Proposition 2.4. Let SCbe a regular class satisfying the condition

y«i7?e”=s R/JESC.

Let Ol denote the upper radical class defined by SG Then 01 satisfies (**).

Proof. Let I<<oA, with A/1d0i. If J-=sA and A/JESC, then since (J+J)/J< =
we have Al(I+J)C.9>. But also A/(I1+J)£0l, so A= 1+J, whence J=A,
and so A has no non-zero homomorphic images in G i.e. A isin 0L O

Corollary 25. Let SC be a homomorphically closed regular class. Then the
upper radical class defined by SC satisfies (**).

Corollary 2.6. The upper radical class defined by any class of simple rings
satisfies (**).

We next present an example to show that (*) and (**) are not equivalent.

Example 2.7. Let G be the subgroup {m/n\n odd} of the additive group
of rational numbers, A the zeroring on G. Let Z° denote the zeroring on the

additive group of integers. Then Z°, 2Z°<i®. If J-aA and 2Z"+J—A, then
Z°+J=A. Let J+ denote the additive group of /. Then Z+J+=G, so

j+/(j*+nz) ss (0++2)/iz=G/zsiez(r) (podd),

whence it follows that J+=G (see, e.g., [8], §42). In particular, pJ+=J+ for
every odd prime p. Now 2Z+ J+=G. Let 1=2n+g, where gCJ+ Then g= 1—2n
is an odd integer, so J+=gJ+. Hence I=g/(l —2n)£J+ so ZQ J+and J+=G, i.e.

RI(dt(R) +1) Si
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J=A. This proves that 2Z° << 4. Now A4/2Z° is the zeroring on G2Z=Z(2)®
®DZ(p~) (podd) ([8], §42).

Now let 2 be the (radical) class consisting of all rings with divisible additive
groups. Clearly 2 is the upper radical class defined by the class of all rings with
bounded additive groups. The latter class is homomorphically closed, so by
Corollary 2.5, 2 satisfies (**). However, the ring A described above is 2 -semi-
simple and 2Z°<<14, while 2(A4/2Z°) 0. Thus the semi-simple class of 2 does
not satisfy (*).

Thereis a very weak partial converse to Corollary 2.5, which we prove by a dualiza-
tion of the proof of the theorem of Armendariz mentioned in the Introduction.

We shall be interested in the following lattice-theoretic condition.

For every chain {a;|A€ A} and every b,

bV Aa, = A(bVay).

A lattice is said to be continuous if it satisfies this condition and its dual. The latter
is, of course, satisfied by the ideal lattice of every ring.

ExampLE 2.8. Any ring with DCC on ideals has a continuous ideal lattice.

ExXAMPLE 2.9. Any ring whose ideals form a chain has a continuous ideal
lattice.

PROPOSITION 2.10. Let # be a radical class satisfying (**). If A is a heredi-
tarily idempotent R-semi-simple ring with continuous ideal lattice, then every homo-
morphic image of A is R-semi-simple.

PrOOF. Let /<A and let #(A/I)=B/I. Let
S ={J|J<B and I+J= B}
Let € be a chainin 4, C =MN%. Then we have
I+C=I1+N{JJEC} = N{I+J|JEF} = B.

By Zorn’s Lemma, # has a minimal element, K. Then B/I=([+K)/I=K/KNI.
Let L<K be such that K=(KNI)+L. Then

B=I+K=I+(KNI)+L = I+L.

By the minimality of K and the fact that L<K<tB<14 and A is hereditarily
idempotent, we have L=K. Thus (KNI)<<K, while K/(KNI)=B/I€Z#. By
(**) we have K€, so, since K<14, we have K=0. Thus B/I=K/KNI=0,
so that 2(A4/I)=0. O

Using Corollary 2.5, we get

COROLLARY 2.11. Let Z be the upper radical class defined by a homomorphically
closed regular class (in particular, by a class of simple rings). If A is hereditarily

idempotent and R-semi-simple and has a continuous ideal lattice, then every homo-
morphic image of A is R-semi-simple.
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A related result is

Proposition 2.12. Let & be a radical class satisfying (**). Let A be sub-
directly irreducible with 3t(A)=0. Then 3ft(A/l11(A))=Q, where H(A) is the
heart of A.

Proof. Let 3ft(AIH(A))—B/H(A)-, if this is non-zero, then B is subdirectly
irreducible with heart H(A), so H(A)« 5, whence BE3ft— contradiction. O

Hereditary radical classes

In this section we obtain some information about hereditary radical classes
whose semi-simple classes satisfy (*).

Let A be any ring. The ring A0*A (“split null extension”) is defined on the
direct sum of two copies of the additive group of A by

@ b) (c, d) = (ad+ bc, db).

Proposition 3.1. If A is idempotent, then AO0*A is idempotent.

Proof. If aEA, we can write a=2 xy, X, yd A, and then (a, 0)= (2XY’0)=
=2 (x,00(0,y). Similarly if b£A, we can write b=2 zw and then (0,b)=
=2 (0.2)(0, w). Thus

@b=2 (*>0)Ney)+2 (°>>z)(0.w). O
Proposition 3.2. Let S be a homomorphically closed class of rings. 1fa ring
A has no non-zero homomorphic images in SCand if 1"aA, IESC, then | <<gA.
Proof. Let I+J=A ,JcA. Then A/Jt*(1+J)/J*"1/(IDJ)ESC, so J=A. O
Corollary 3.3. If A is idempotent, I<\A and | is nilpotent, then |« i A.

We shall identify the zeroring AO on the additive group of a ring A with its
“first component copy” in AO0*A.

Corollary 3.4. If A is idempotent, then A°<<aA°*A.
Proof. By Proposition 3.1, AO*A is idempotent. O

Theorem 3.5. Let (Wa {0} be a hereditary radical class whose semi-simple
class Y satisfies (*). Then & is supernilpotent.

Proof. Suppose 3t is not supernilpotent. Then 3ft(Z°)=0, where Z° is
the zeroring on the integers. The ring A of Example 2.7 is an essential extension
of Z° so A is in Y. Since 2Z°<<iA, we have A/2Z°Ey, by (*), whence
Y contains the zeroring on Z(p°°) for every odd p. By an analogous argument,
using, in place of A, the zeroring on

{m/nd Q \n is not divisible by 3},

Ada Mathematica Hungarica 43 1984



SMALL IDEALS IN RADICAL THEORY 293

we see that & contains the zeroring on Z(p*) for all p##3. Thus each zeroring
on a quasicyclic p-group is in & and it follows that &% contains all zerorings.

Let S be an idempotent simple ring. Then S° is a maximal ideal of the
idempotent (Proposition 3.1) ring S°#*S, so S° is an essential ideal of S%*.S.
Since S$% &, we have S°%S€&. But by Corollary 3.4, S°<<S%%S, so S=
=(S%%5)/S%Z.

Hence & contains all simple rings as well as all zerorings, so & contains
the heart of every subdirectly irreducible ring. Since & is closed under essential
extensions, & contains all subdirectly irreducible rings and hence, being closed
under subdirect products, all rings. O

We conclude with a result which gives a bit of an indication of which super-
nilpotent hereditary radical classes have semi-simple classes which satisfy (*).
In what follows, # and ¥ are, respectively, the Jacobson and Brown—McCoy
radical classes.

THEOREM 3.6. Let R be a hereditary supernilpotent radical class, & the
corresponding semi-simple class.

() If S F, then & does not satisfy (*).

(i) If 9SSR, then & satisfies (*).

Proor. (i) Let ¥ be a vector space of countably infinite dimension,
{uy, vy, uy,v,, ...} a basis for V. Let f be the linear transformation defined by
f(u)=v;; f(v;)=0. Let S be the ring of linear transformations of finite rank,
R the ring generated by SU{f}. Then R is subdirectly irreducible with heart S,
so S<<aR, while (R/S)*=0.

If # is a hereditary supernilpotent radical class whose semi-simple class
satisfies (*), then R/S€# and hence R€Z. Since S¢Z, it follows that 2 is
not hereditary.

(ii) If ¥S %, then every Z-semi-simple ring is %-semi-simple, so by Corol-
lary 1.5 the semi-simple class of £ satisfies (*) trivially. O

Note that (ii) of Theorem 3.6 holds for non-hereditary radical classes also.

In view of Corollary 1.4, one possible way of obtaining semi-simple classes
& satisfying (*) is »ia an investigation, analogous to that in [1], [14], of the partial
homomorphic closure condition I<14, €9, AcF=A/IcS.
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ON B*-PURE SEMIGROUPS

N. KUROKI (Niigata-ken)

1. A semigroup S is called normal ([4]) if aS=Sa for all a of S. Asis
well-known ([3], II. 4.10 Corollary), a semigroup S is normal and regular if and
only if it is a semilattice of groups. A subsemigroup 4 of a semigroup § is called
a bi-ideal of § if ASAC A. A bi-ideal A of a semigroup S is called B-pure if
ANxS=xA and ANSx=Ax for all x of S. A semigroup S is called B*-pure
if every bi-ideal of it is B-pure. It is easily seen that a normal regular semigroup
is B*-pure. In this note we shall give some properties of B*-pure semigroups.

2. An element a of a semigroup S is called completely regular if there exists
an element x in S such that a=axa and ax=xa. We denote by E(S) the set
of all idempotents of a semigroup S.

LEMMA 1. Let S be a B*-pure semigroup. Then S has the following pro-
perties:

(1) aS=a2S and Sa=Sa* forall a of S.

(2) For every a of S, a* is completely regular.

(3) S is normal.

(4) E(S) is contained in the center of S.

(5) E(S) is a semilattice.

Proor. (1) Let a be any element of S. Then, since S is B*-pure, the bi-
ideal aS is B-pure. Then we have

aS=aSNaS=a(aS)=a®S.
Similarly, Sa=Sa®.
(2) Let a be any element of S. Then by (1) we have

a2€aSNSa = a®SNSa® = (a?)2SNS(a?2

Then it follows from [3, IV. 1.2 Proposition] that a2 is completely regular.
(3) Let a be any element of S. Then, since Sa is a B-pure bi-ideal of S,
by (1) we have
aS =a%*S S (Sa)S=:SaMnss € Sa.

It can be seen in a similar way that Sa&SaS. Thus we have aS=Sa.
(4) This follows from (3) and [4, Lemma 1].
(5) This follows from (2) and (4).

3. A semigroup S is called archimedean if, for each elements @ and b of
S, there exists a positive integer n such that a"€SbS. As is easily seen, a normal
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semigroup is weakly commutative. Thus it follows from Lemma 1(3) and [3, Il. 5.6
Corollary] that a 5*-pure semigroup is a semilattice of archimedean semigroups.

Theorem 2. For a B*-pure semigroup S thefollowing conditions are equivalent.
(1) S is archimedean.

(2) SaS =SsbsS for all a, b of S.
(3) aS =hbS for all a, b of S
(4) aSa=bSb for all a, b of S

(5) S has exactly one idempotent.
(6) Every bi-ideal of S is archimedean.

Proof. (1)=>(2). Let a and b be any elements of S. Then, since S is
archimedean, there exists a positive integer n such that anESbhS. Then by Lemma
1 (1) we have

SaS = SanS g S(SbS)S = (SS)b(SS) A SbS.

Similarly, we have SbS A SaS. Thus SaS =ShbS. It follows from Lemma 1 (1), (3)
that (2)=K3)=*(4.)

(4) =s(5) Let e and/ be any idempotentsof S. Then,sinceeSe=1Sf,
there exist elements x and yin S suchthat e=fxf and f=eye.Then we have

e=fxf=ffxf =fe = eyee - eye =f.

Since E(S) is nonempty by Lemma 1 (2), S has exactly one idempotent.

(5) =>(6) Let A be any bi-ideal of S, and let a and b be any elements
of A. Then, since a2 and b2 are regular by Lemma 1 (2), there exist elements
x and y in S such that a2=aXa2 and b2=bZb2 Since ax and bz are
idempotent, we have aX=b2. Then

a3= aa2=a(axa?d = a(b2y)a2—ab{byaldEAb(ASA) A AbA.

This means that A is archimedean.
(6) =>(1) Obvious.

4, A semigroup S is called weakly commutative if, for all a, b of S, there
exists a positive integer n such that {abfdbSa.

Theorem 3. Let S be a semigroup such that aS=aZ and Sa=Sa2 for all
a of S. Then thefollowing conditions are equivalent.

(1) E(S) is contained in the center of S.

(2) S is normal.

(3) S is weakly commutative.

Proof. (1)=s(2) Let a be any element of S. Then, as is stated in the proof
of Lemma 1 (2), a2 is regular. Thus there exists an element x in S such that
a2=aXa2 Let aZy be any element of aS(=a2S). Then, since xa2 is idempotent,
we have

a2y = (axady = a2((xaldy) = a2(y(xad) = (ayalda2kSa2= Sa,

and so we have aS”Sa. Similarly, SadaS. Thus we obtain that aS=Sa,
and that S is normal.
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(2) =>(3) Let a and b be any elements of S. Then, since S is normal,
(ab)2(Sb)(aS) = (bS)(Sa) - b(SS)a g bSa.

Thus S is weakly commutative.
3) =*(1) Let a be any element of S and e any idempotent of S. Since
S is weakly commutative, we have (aef*eSa for some positive integer n. Then

we have
ae = aee”aeS = (ae)"S g (eSa)S g eS.

This implies that there exists an element r in S such that ae=ex. Similarly,
there exists an element y in S such that ea=ye. Then we have

ae = ex = eex = eae = yee —ye = ea.
Thus E(S) is contained in the center of S. This completes the proof.

Theorem 4. For a semigroup S thefollowing conditions are equivalent.
(1) S is B*-pure.
(2) S isnormal and Sa—Saz2 for all a of S.

Proof. It follows from Lemma 1 (1), (3) that (1) implies (2). Conversely,
assume that (2) holds. Let A be any bi-ideal of S, and x any element of S.
Let a—x2 (afA, sdS) be any element of (=AC\xZXS). Then, as is easily
seen, x2 is regular. Thus there exists an element y in S such that x2=x2yx2
Since yaESa=Sa2 there exists an element z in S such that ya—za2 Then,
since S is normal, we have

a= XX = (x2yx2ds = (x2y)(x2s) = (x)a =
= x2(ya) = x2(zad —x((xz)a)aEx(Sa)a = x(ab)u g x(ASA) g xA,
and so we have APixSQxA. Let xa (aEA) be any element of xA. Then we have
xaeSa = Sa2= aSa g ASA g A,

and so xAQA. Since xAgxS, we have XAQACIxS. Thus AC\xS=xA. It
can be seen in a similar way that AC\Sx=Ax. Thus we obtain that S is i?*-pure
and that (2) implies (1).

5. A semigroup S is called a semilattice of groups if it is the set-theoretical
union of a family of mutually disjoint subgroups Gt (iEM) such that, for each
i,j in M, the products Gfij and GjG, are contained in the same group Gk (kEM).
The following is due to [3, Il. 4.10 Corollary] and [2, Theorem 1].

Lemma 5. For a semigroup S the following conditions are equivalent.

(1) S is asemilattice ofgroups.

(2) S is normal and regular.

(3) The set of all hi-ideals of S is a semilattice under the multiplication of
subsets.

Now we give our main result.
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Theorem 6. FOr a semigroup S thefollowing conditions are equivalent.
(1) S is B*pure.
(2) S2 isasemilattice ofgroups.

Proof. (1)=>(2) Since S is normal by Theorem 4, S2is normal. Let a=xy
(x,y in S) be any element of S2 Since by Theorem 4, xyExS=x2, there exists
an element n in S suchthat xy=x2u. Since x2 is regular, there exists an element
v in S suchthat x2=x2vx2 Then, by Theorem 4, we have

a —Xy —x2u = (x2vxqu = (x2v)(x2u) = (x2v)aES2a = S2a2= aS2a.

This means that S 2 is regular. Then it follows from Lemma 5 that S 2 is a semi-
lattice of groups.

(2=>(1) Let a be any element of S. Then, since Sa is a bi-ideal of S2
Sa is globally idempotent by Lemma 5. Since S 2 is normal by Lemma 5, we have

Sa = (Sa)2g S2a = aS2g aS.
Similarly, we have aS”Sa, and so aS=Sa. On the other hand,
Sa = (Sa)2=S(aS)a = S(Sa)a = S2a2g Sa2g Sa,

and so Sa=Sa2 Then it follows from Theorem 4 that S isi?*-pure. This completes
the proof.

Corollary 7. For a semigroup S the following conditions are equivalent.
(1) S isasemilattice ofgroups.

(2) S isregular and B*-pure.

(3) S is completely regular and B *-pure.

(4) S is intra-regular and B*-pure.

(5) S is completely regular and weakly commutative.

(6) S is completely regular and E(S) is contained in the center of S.
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UBER L. FEJES TOTHS WURSTVERMUTUNG
IN KLEINEN DIMENSIONEN

U. BETKE und P. GRITZMANN (Siegen)

1. Einleitung

Seien B\,...,Bk k Translate der Einheitskugel Bd im (/-dimensionalen
euklidischen Raum Ed die hochstens Randpunkte gemeinsam haben. Ck be-
zeichne die konvexe Hille der Kugelmittelpunkte und Sk eine Strecke der Lange
2{k—1).

Ferner sei Vd das (/-dimensionale Volumen.

L. Fejes Téth vermutete in [2], daB fur i/é5

1) Vd(Sk+ Bd =Vd(Ck+ Bd
gilt. Da Sk+Bd einer (/-dimensionalen Wurst &hnelt, nannte Fejes To6th (1) die
Wurstvermutung.

In [1] wurde gezeigt, dafl (1) richtig ist, falls

2

oder falls dim S3 und d~dim Ck+1 gilt. In der vorliegenden Arbeit wird
folgender Satz bewiesen:

Satz. FUr dim Ckw9 und didira Ck+1 gilt (1). Gleichheit tritt genau fir
Ck~Sk auf.

Der Satz 16st die Wurstvermutun gfir beliebige unterdimensionale Lagerungen
von Einheitskugeln bis zur Dimension d =10; es bleibt demnach zum vollstandigen
Beweis von (1) in den Dimensionen 5 bis 10 nur der volldimensionale Fall dim Ck—d
librig. Das benutzte Beweisverfahren versagt bei 7~dimensionalen Kugellagerungen
im Entl fir n=10. Die Methode ist fir alle Dimensionen weiterreichend als
die in [1] verwendete, liefert aber asymptotisch keine Verbesserung der Konstante
7/12 in (2).

Da der Beweis des Satzes auf einer Verallgemeinerung der Methoden aus [1]
beruht, wird, um Wiederholungen zu vermeiden, bisweilen auf [1] zurlickgegriifen.

Im folgenden Paragraphen wird die Behauptung umgeformt, und es werden
hinreichende Bedingungen fiir die Glltigkeit von (1) angegeben. Paragraph 3
enthdlt analytische Lemmata zur Berechnung auftretender Integrale. Der Beweis
des Satzes wird schlieRlich in Paragraph 4 gefiihrt, wobei nach der Dimension der
auftretenden Seiten von Ck unterschieden wird.
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2. Hinreichende Bedingungen fir die Wurstvermutung

Sei «=dimCfc und es bezeichne Ft(CK) die Menge der /-Seiten / von Ck
und a(/) den auf 1 normierten &uBeren Winkel von f bez. Ck. Ferner sei
w=n11r (1+i/2) und M das /-te innere Volumen gemaR [3], S. 253.

Aus der Steiner-Formel

Vd(Ck+Bd) =

ergibt sich wegen W+1(CK)=...=\&Q(CK)=0 mit V*if) = a(/)K*‘(/ ")

22 2
J=1 T=o/ep (Th)

Hierbei gilt Gleichheit genau fir Ck—Sk.
Mit Hilfe der Steiner-Formel fir Vd(Sk+Bd und \M0—I ergibt sich somit als
hinreichende Bedingung fir (1):

) oona>cH
@) (fe-Dw 32124 16 20

Eine ausflhrlichere Herleitung der Bedingung (3) findet sich in [1]. Zum Beweis
des Satzes bewerten wir die Punkte der mn-dimensionalen Einheitskugel mit Hilfe
einer geeigneten Gewichtungsfunktion. Dann zerlegen wir die so gewichtete Kugel,
um die Summanden von (3) einzeln vergleichen zu kdnnen.

Vuif).

Als Bewertungsfunktion wahlen wir g (x)="~ \W\p, wobei B=R(n) folg-
enden Werten entspricht: B(A)=R(5)=2, BR(6)=4, B(7)=8, ~(8)=18, R(9)=160.
Es gilt @m,= Jg(x)dx. Fir /-Seiten / von Cksei K(f) der Kegel mit Spitze O der

Bn
auBeren Normalen von Ck, die an einen relativ inneren Punkt von / angetragen
werden.
Ferner sei mit B"=BfMaffCk (bei geeigneter Wahl des Ursprungs)

VIjif) = g(x)dx.

f
(I+K@MMB"
Da die Mengen (/+K(/))MB" die Kugel Bj zerlegen, gilt

jgi i2=i /er,z(ck) Ki() = (k- D,

und man erhalt als hinreichende Bedingung fur (1):

K K ' -
PN K Xit)nhG—+
@) |’2=i /efigcfc) j%i vii<i) = f(Ft(ck) j=i 2c0d_1
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Wir erhalten fur Vj'j(f) (i< n) folgende Abschatzung:

I A‘ g(x)dx = f f g(x)dxdy

W +K (f))r\Bp fnen (J+S(/))ne"
, 0 fl-lul2
n nB"  «

Wir bezeichnen im folgenden die rechte Seite mit ky (/) und setzen V,,j(f)=VK(f).
Wegen

(val. fll) folgt LI.’I’§‘+1 g 21 Insgesamt erhalten wir damit aus (4) die Bedingung

2imbog 2 W " Enddwjsl A

Fir jV 2 und in dem Fall, daB keine Ecke von / in den Mittelpunkt von R" fallt,
wird

(5) PyCD"-"0W )
bewiesen. Im verbleibenden Fall wird

(6)

gezeigt, wobei sich die Summation tber alle j erstreckt, fir die der Mittelpunkt
von B eine Ecke von / ist.

3. Berechnung einiger Integrale

Im folgenden berechnen wir die Fy(/) definierenden Integrale und erhalten
insbesondere eine fiir den Beweis des Satzes wichtige Monotonieaussage.
Lemma 1. Seien j und m nicht-negative ganze Zahlen und 0=t = 1. Dann gilt
f1 itlh m m\ ( m 11

J; (t+r2)mrddr = (1-/) 2 Sgo? W_sﬁ \Izl_rln—s(J+21+l)') -n

Acta Mathematica Hungarica 43, 194



302 U. BETKE and P. GRITZMANN

Beweis. Es gilt
v jdr = 2 e
+ = ,) [1 ] .H+.v“‘:
Of (t+rnrjdr /=0\|7v'3tf RILERRERR|
SRk
2(m—)+j+i 10D
('1)q f =
2(m-j+9)+7+I

ixi m m T m i-i
- (1-8* J 2,( ™M U ,0+2,+1))
Der letzte Schritt ergibt sich unter Ausnutzung der ldentitat

durch vollstandige Induktion nach s.

Lemma 2. SW w eine nicht-negative ganze Zahl, j eine natirliche Zahl und

Omt~l. Dann ist die durch
Yi-t
[ - 6] (t+rnmrddr

definierte Funktion in t monoton fallend.
Beweis. Nach Lemma 1 gilt:

m = "1’\(1«+’\«)’\:

=0-0 N {T+2iir+T—2"ml (o+2;+1))“‘r+,+

+.1 27 U .0« "4»)"L 2-* 4=

=(1- )¥(Twunb T -2 (4 «)"< --

Qi !)25|(m_r2i1)r(,xu+2+])) “1

Hieraus folgt die Behauptung.
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In Lemma 3 fihren wir ein bei der Berechnung von WJ(f) auftretendes
Doppelintegral auf die Betafunktion

1
B(x,y) = 6] tx~1(1—tf~1dt (x,y > 0)

zurlick. Wegen
reOr(y)

PN rixey)

1ant sich das betrachtete Doppelintegral in den fiir diese Arbeit relevanten Féllen
dann explizit bestimmen.

Lemma 3. Seien j, m und p nicht-negative ganze Zahlen. Dann gilt:

2 VI-(2-1)2

Jtp j [2—)2+ rgmridr dt =

. m\ -

= g ~ 145~ J +21+1f Bfs+I+1,1+L).
Y Y (—iY2p~1is (M-s)\ W J] { )

Beweis. Mit Hilfe von Lemma 1 ergibt sich:

2 VI-(2-i)2

ftp ] [2- if+rdmrddrdt =

:32=025Erﬁ_’;).1"6\izl;l_30+2/+1); {] (2-tfdt =
m m\ /

m f1} Ui
= n uU+2/+1) = f (2-u)p(l-u*) 2 u*du =
— a
% s sl 22T 0§

Lemmad4. SWe« 1747£S” +1 und z(t)—\—B—Af+(t—Bf. Dann gilt
die Ungleichung

‘B *«) . 11 l
5! SZ(O-H“ IA2J+1 p+ln+2m ((SHQ@*' P
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flir Parameterwerte gemaR folgender Tabelle:

n m 12 3 4 5 6 7
4 1 00

5 1 20 0- - - -

6 2 3 200- - -

7 4 4 32 0 0- -

8 9 5 4 3 2 0 0-

9 30 6 54 3 2 00

Beweis. Zum Beweis von Lemma 4 nehmen wir an, dal} die angegebene Un-

gleichung nicht gilt.
Wegen z(t)—I1+A —t)2=2(t—A)(I+ A—B)"0 folgt aus der Monotonie
des inneren Integrals geméR Lemma 2:

B th-z (1) B yi-(l+A-()2

[ (@) +rdmrddrdt A/<” I [+ A —)2+ r3mrJdr dt.

Erneute Anwendung von Lemma 2 liefert mit Hilfe der Widerspruchsannahme
die Ungleichung

B cY1-(1+1-02 1
P ooon o=
nl tpl 5f [A+A-t)2+rZmridr- J+1 n+2m @+l at

A+l rVI-(1+A-i)2

i f M [(+A-)2+rgmridr-——— Dy W2t

A [ S 2 J+1

Nach Lemma 2 und den Eigenschaften der Gewichtung tp folgt wegen A I

Kl-(2-<)2

1 n+2m (oJ+H f tp f [(2-t)2+rZmddrdt > 1

200D+ p 1 0 g,

Berechnet man das Doppelintegral gemaR Lemma 3, so erhalt man fur die linke
Seite folgende Tabelle:

\y 1 2 3 4 5 6 7
n\

4 0,9000 1
5 09257  0,9333 1 — — - -
6 07867 09611  0,9259 1 — - -
7 06295 08474 09821  0,9183 1 - -
8 04847 07072 08819 09924  0,9100 1 —
9 03705 05733 07575 09041 09980 09020 1

Da kein Wertin der Tabelle gréR3er als list, ergibt sichein Widerspruch zur Annahme.
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Beweis des Satzes

Im folgenden setzen wir — ohne Einschrankung — voraus, da Ck so triangu-
liert ist, dall alle Ecken der Triangulierung bereits Ecken von Ck sind.

Lemmab. Sei f eine 2-Seite von CKk, und das Zentrum von B" sei keine
Ecke von f. Dann gilt (5).

Beweis. Wie in [1] gezeigt wurde, kdnnen hdchstens zwei Kanten von / das
Innere von B" schneiden. Sei v eine Ecke von /, so daf alle Kanten, die das
Innere von B" schneiden, v enthalten. Wir fihren nun Polarkoordinaten in
aff(/) mit v als Ursprung ein. Dann ist (5) dquivalent zu:

()
;:bf ?J((p)vll( / d d d 1 < n m 49 d d
R 2 R RdR
4R 8K (2(R) + ry /2m-aRdr dRdcp * 2n-2 n+Rtont J R|I% cp
mit
R2(cp) + R1(P)
)
Da fir symmetrische Funktionen h Jxh(x)dx=0 gilt, folgt(7) aus:
YK (PaZC)HK
f f (2R)+rZ 2r-3drdR" ZTiZnEB(m-;RZ(CP;'Rl«P)
R 0 a,

Damit haben wir die Situation von Lemma 4 mit j =n—3 und m=R/2 erreicht,
und es folgt die Behauptung.

Lemma 6. Firjede 2-Seite f von Ck gilt (6).

Beweis. Da sich die Innenwinkel von f zu n ergédnzen, kénnen wir die Durch-
schnitte fC\B”” mit den drei Kugeln, deren Mittelpunkte die Ecken von / sind,
durch einen Teil eines Kreises ersetzen, der durch einen Durchmesser oder durch
zwei disjunkte und nicht-parallele Segmente, von denen eines ein Durchmesser ist,
begrenzt wird. Der Beweis ergibt sich dann analog Lemma 5. (Vgl. [1].)

Lemma 7. Sei i=n und f=CKk. Dann gilt (5).
Beweis. Durch Einfihrung von Polarkoordinaten (mit der Funktional-
determinante c((p)rn~1) ergibt sich:

Vnj(= f gx)dx =f () f —fF- r>m1drdp = f o<p)— RR+n((p)d(p
Bj ® O )

—/ c(<p) Rn{(@dp= f c(cp)g{ﬂrrhldrdcp= \hi{f).
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Lemma 8. Sei i=n—1 und f eine Facette von Ck. Dann gilt (5).
Beweis. Die Beziehung (5) ist &quivalent mit:

r\I-liyli2 v
/ / yV+r2l4r-~-Mdy”rQ .
myV « (ly 4r1+|3)y Q

Wir zeigen, dal der Integrand des dufleren Integrals nicht positiv ist.
Dieses ist gleichwertig mit

4 n P Vi8R
] (\W\2+r2R,2dr ~ 1

m on
Es gilt mit Lemma 1:
4n+R V1-"3"2
®) 7 ., | (M2+R20r=

4 n+B Ne tBI2)> (W

. V1
T T n s=0 (p2—s)! V M@+, 1 S1-[P)3v2

Fir n=4 und n=5 wird das Maximum dieses Ausdrucks fur |j7]|2= _ ange-

nommen; es ist2/2 bzw. ng . Beide Werte sind kleiner als 1.

Fir n=6,1 und 8 schatzen wir (8) durch Einsetzen des Maximums

(2sf
(25 +1)s+ 1/2

mit der Setzung 0°=1—von 1bN0251 IjlI212 ab. Es ergibt sich:

fl-1yl12

non J (\WA\2+r2r/2d r s

n+g "~ (R ( ja ri (s
n J1 ®/2s)! L /i-V ) (2s+1)522

Auswertung der rechten Seite fir n=6,7, 8 liefert die Werte 0,9662; 0,9182;
0,9466. Im Fall n=9 liefert numerische Auswertung von (8) als Maximum der linken
Seite den Wert 0,9592.

Insgesamt ist damit Lemma 8 bewiesen.

Zum Beweis der Behauptung in den restlichen Fallen benutzen wir eine in
[1] definierte spezielle Simplexzerlegung, deren Eigenschaften im folgenden Lemma
zusammengefallit werden. Zum Beweis vgl. [1].

Lemma 9. Sei S, ein i-Simplex im E" und V0, ..., v{ seine Ecken. Sei pdEn
und B" eine Kugel mit p ah Mittelpunkt.

Es seien vy, ..., vl<Bn und vO$B" oder vO=p. Fir alle vs+p bezeichne
Si(vs) die Menge aller Punkte x von SL1Bn deren Abstand von vs nicht groRer
ist als der des Mittelpunktes der Sehne B'T) aff {s, x}.
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Dann gibt es eine Zerlegung von SL in konvexe Mengen St(vs) {v” p) mit
VESi(vs) und Si(v,)C\Bn(zSi(vs).

Lemma 10. Sei i=1 oder 3”"i*n—2. Dann gilt (5).
Beweis. Sei / eine z-Seite von Ck, fir die (5) nicht erfiillt ist. Dann gilt:

M —Ily 112 i i n m 1
f{ | (W*+rTV-“Mr-T— 0.
fC\Bj o 1
Zerlegen wir / gemdl Lemma 9, so gibt es eine Ecke vs von / mit vs$Bj und
{ﬂ=llyl2 ] 1 1 n 0
iI&yV+rw'* r— i :
Siwnj" / y 2 n—n+R

Wir fihren nun Polarkoordinaten mit vs als Ursprung ein und erhalten mit
c((p)r,~1 als Funktionaldeterminante und dem Winkelbereich @:

I’Z\/l fll-z(R)
fofp § N-4 f @R+ 2r dr—
«(@ 1o

~ T2 n:in_'pg; tOéﬁ’.]’:rl}:ijd<i>:~O,

wobei mit p(<p) als halber Sehnenlange z(/?)=1 —g2<p)+ (R —R*tp) —£X(tp))2 ist.
Dann gibt esein 40 mit

Ki«V 'MI-UA) 11 ” 1
f "1y f  (z(R)+r¥ 2rn~~1dr——---r—s- n~--\dR =0.
Rcio) 10 2n~In+B <ni J

Aus der Monotonie des Integranden gemaR Lemma 2 folgt mit Lemma 9:

RHE>)  Uz(R)
J Ril J (z(R)+r¥2r-1-1drdR

g S Aok (O ()

Mit A=R1((p0, B =R2cpd + g(cpd, j-n —i—I, p=1i-\ und m=R/2 ergibt sich ein
Widerspruch zu Lemma 4.
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LIMITS OF STRONG UNICITY
CONSTANTS FOR CERTAIN C~ FUNCTIONS

M.S.HENRY (Mount Pleasant) and J. J. SWETITS (Norfolk)

1. Introduction

Let C(X) denote the space of real-valued, continuous functions on the compact
set X, and let C(X) be a Haar subspace of dimension u+l. Denote the
uniform norm on C(X) by |¢|.

For each /EC(X) with best approximation B,,(f) from i#w+1, there is a small-
est positive constant M,,(f) such that for any p&03+i,

W- en/l1 1's Mn(f)[\\f-p\\-\\f-B n(n\\I

This inequality is the strong unicity theorem [4, p. 80], and M,,(f) is the
strong unicity constant. A number of recent papers have considered the asymptotic
behavior of M,,(f) as a function of changing dimension [1—3, 6—10, 12, 14, 15].

For /€C(X), let

; (/) (¥) =/(x) - Bn(/) (), XEX,
an
(1.1) En(J) = {xEX: [e.,(/)(x)| = [le,COLI}-

Let E,,()\ be the cardinality of the extremal set (1.1). The following result is
noted in [3, 11].

Theorem 1. Let /€C(X) If \E,,(f)\—n+2, then
12) N ils Mn(f).

Hereafter X is the interval /=[—1,1], and 3+ s the space 77, of poly-
nomials of degree at most n. Under certain hypotheses, (1.2) can be improved.

Theorem 2. [9] Suppose that / (TH2AEC(/), and that / (HD(X) «/(H2)(x)"0,
xEl. Then
1.3) n+1 <M (/).

We observe that the hypotheses of Theorem 2 insure that [En(/)|=n+2.

Now let Fn+1 be a polynomial of degree precisely n+ 1 Then it is known
[5, 9] that
1.4) M,,(Pr+l) = 2n+ 1.

Since the left hand side of (1.3) does not involve the strong unicity constant of the
same function for every n, (1.4) is of a slightly different character than (1.2) and
(1.3).
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However, the following characterization of the strong unicity constant, due
to Bartelt and Schmidt [2], demonstrates that the strong unicity constant actually
depends only on the elements of the extremal set (1.1) and a set of associated signs.

Theorem 3. If fdC(l), then
(1.5) Af, () = H}ﬁx (Ipll: sgnen(f)(x)p(x) S 1for £,(N}*

Because of characterization (1.5), it is reasonable to expect that expressions
like (1.4) may be useful in analyzing upper and lower bounds for Mn(f) (e.g., (1.2)
and (1.3)).

From (1.4) we immediately obtain

(1.6 lim 2.

M->oo0

M,,(Pn+l)
0 -

Considering (1.6) and the conclusions of Theorems 1and 2, it would be of interest
to find classes of functions for which

o MAN
(1.7) Jim 0
can be determined. Sections 3 and 4 below are primarily devoted to determining
(1.7) for aclass of non-rational functions F defined in [10].
In the next section we analyze Mn(f) for certain rational functions to obtain

results consistent with both (1.6) and (1.7).

2. Rational functions

Let
(2.1) r(x)=;(, -1S xS I,
where alll2. A principal objective of the current section is to determine the limit
(1.7) for the rational function defined by (2.1). This result will subsequently be
used to determine I]]i_mMn(r—)for particular sequences of rational functions {,}* ,,
which will in turn prove useful in Section 3.

As usual let
(2.2) En(r) = {xEl: |e,,(N(X)| = |le,(D|} = {x0,xu ..., xn+1}
where
(2.3) -1 = x0< ¥ <...< x,¥1= 1

Here each jct, /=0,1,..., u+ 1 actually depends on n, but since this dependence
is clear in what follows we suppress notational reference to this dependence.
As in [6, (2.9)], now define Qn+l£A,+1 by

(2-4) 0,+i(**) = sgne,,(N(x*) = (-1)n+t, k=01, ..., n+ 1
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(x2-1) [n(a2- 1)12C,(X)+ (ax-1) C, (X)]
(25) w(x) = n2"_1f(a2—)Va+ a]
where C,, is the Chebyshev polynomial of degree n.

Lemma 1. Let Q,+1 be defined by (2.4). Then

a
n/fa2—1

Proof. Let H(x), x£Il, be the right hand side of (2.6). Evaluating H at
the extremal points (2.2) yields

(2.6) 0,,+i(X) ((1-x2C;(x)-xC,,(x).

@.7) HOQ= i XDC (9= xKC()

But from [6, p. 284] we have that
2.9 com =(-. 1 - A L n
From (2.5) we observe that
n(a2—i)1/2Cn(xk + (axk—i)C'(xk =0, k=12 .., n
(see also [6, p. 284]). Using (2.8) in this equation and then solving for C,,(xK) yields

n+k aXk |
(2.9) C, 0K = (=DM 2

Substituting (2.8) and (2.9) into (2.7) and simplifying reveals that
(2.10) HxR =(-iy+ k=\,...,n
On the other hand. (2.7) implies that
tf(-1) = C,(-1) = (-1)", and tf(l)=-C,, (1)=-1.

These two equalities and (2.10) now imply that H(xK)=(—I)nH k=0, 1, ...,n+ 1,
and hence uniqueness in interpolation implies that H(x) = Qn+l(x), xEl. O
We next define gjndn,, by

(2.11) g]n{xk) = sgnen(r)(xk = (-H"+t, k=0, ..., n+ 1; k?*j; j =0, ..., n+ 1
Since from (2.2), \E,,(N\=n+2, finding lim M () is equivalent to deter-

mining [7]

(2.12) rlri&]) OWH n
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If antl is the leading coefficient of Q,,+1 in Lemma 1, then it is known [6, (2.10)
and (2.24)] that

(2.13) Ax) =e.Hl(x)-aat+tjZ E L,
where w(x) is given by (25), j =0, ...,u+1. From [6, (2.25)],
(2.14) 2n 1@ la+a]wrx)| * n(a+1)+2(a2 -1)I72+|2ax2 -x —a\n.

By Lemma 1we have that
. 2"~1Ja+ (a2—1)12

(2.15) aml —
Vaz- 1

Therefore (2.15) and (2.14) imply that

» 4, @+
(2.16) an+iw M1 ~ 27 Ea"—i))i72+2-
Thus, (2.13) implies that
(2.17) vgjn(x) I = \Qn+i(x)\ + 2”3(5 ~—~l,1_/2+ 2.
Hence

W "A2n "~ -+ )p +2+||g,+1,
and consequently

(2.18) bly $2 0at8yp*ia(2+116,41). J—0,1  n+1
From (2.5), (2.6), (2.13), and (2.15) we obtain

gn(x) =~C,, (x)—77===_(2ax+a - 1)C'(x).
) ) n’\u2—l( )¢
Therefore

(2.19) lita(-1)|=2n|g”™+ L
Combining (2.18) and (2.19) yields

_ TojA
(2.20) (a—l)llz-t = S Oﬂ?r)l(+i 0 “ E3+_B%+’\n(2+||0,, +I).
We have nearly established the following theorem.

Theorem 4. Let r(x)=— , a~2, xEl. Then
a—X

(Al + D»/»
n @a—-)rz2'

Proof. The theorem follows from inequality (2.20) and the observation above
(2.12. O

(2.21)
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To the authors’ knowledge (2.21) is the first non-polynomial limit of the type
described by (1.7) to be determined. As already noted, non-rational functions
will be considered in Section 3 below. The following corollary will be very useful
in the succeeding section and parallels (1.6) for a sequence of rational functions.

Corollary. If m(x)= -A:, f, =2, xEl, then

@i If rlm)A,,:A, then
. Mn(rn) 2(A+ 1)IR
(2.22 lim 0 A2 ¢
(i) If IJLr[E)A,,:+°°, then
. Tfn(Q
(2.23) dim TS -2
Proof. Both (2.22) and (2.23) follow immediately from (2.20) and (2.12). O

The results of the Corollary to Theorem 4 are perhaps not unexpected when
compared to (1.6), but the analysis needed to establish Theorem 4 is considerably
more complex that than required to prove (1.4) and hence (1.6). It is thus not
surprising that the arguments needed to determine (1.7) for a class of non-rational
functions are even more complex.

3. A class of non-rational functions

In this section we determine (1.7) for a class of non-rational functions F. This
class is introduced and analyzed in 110], but only upper and lower bounds to
/£ F, are obtained.

Definition. Let F be the set of all functions /CC* (7) satisfying

@/ Mmhx)*0 on /,
and

L /(2
®) 3 / ()M

for all n sufficiently large, where a” >0 are constants depending on / but
noton n.

Theorem 5. If /EF, then
(3.1) lim 0 —2

on

Comment. Although we now proceed directly to the proof of Theorem 5, two
lemmas needed in the proof will be stated where they are used and established sub-
sequent to the proof of Theorem 5.
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Proof of Theorem 5. Let F£F. Then part (a) of the Definition implies that
|7+ (/)|—n+2. As before, let En(f)={x0,x1,...,xn+l) where

(3.2) -1 =, -= XX Xn< mHl= 1
As in (2.2), each xibi=0,...,n+I, actually depends on n and hence could be
labeled x”; i=0, ..., u+l. However, no confusion results from suppressing the

superscripts, and hence for the sake of notational simplicity the superscript is deleted.
Define qJiEMn by

(3.3)  gn@)(Xi) = sgne,,(H(x), i=0 ..,n+1;i"j;j=0..,n+1
Again by appealing to [7] we may select k{0, 1, ..., n+1} such that

(3.4) Mn(f) = \gkn(f)\\.

Paralleling (2.4), let Q,,+i(f)E£n,,+1 be defined by

(3.5 Qn+i(f)(xi) = sgne,(N)(*,), i=0, ..,n+1

If an+l(f) is the leading coefficient of xn+l in R,,+1(/), then as in (2.13)

(3.6) ?7*,(N(*) = on+i(f)(x)~an+l(f) J]_J0 (x-xj).
Therefore (3.4) and (3.6) imply that

(3.7) Mn(f) =[[Bn+1()]| + k +1(/)] "ff \x-xj\.
We shall shortly consider j}\ko

(3.8) HI'I \x—Xj|, k=01, ..., n+1
First let M

(3.9) Un(x) = XEl,

oc(n+2)+2—x ’

and denote the extreme points of en(Un by

(3.10) -1=W< W< ..<U,< th+x1= 1
Similarly, let
(3.11) KK B(n+2)—x—2 XEb

and label the extreme points of en(Vn) by

(3.12) -l =v0< vt<...<wn< vntl= 1
Then it can be shown [10] that

(3.13) Z< W< Xt< M<C =12 ..,0N
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where

Z, = COS———--—n, 1=101, n+ 1,
(3.19)

are the extreme points of the Chebyshev polynomials C,,+1 and C,, respectively,
and where ut,vh and xh i=0,1, ...,n+ 1 are given by (3.10), (3.12), and (3.2),
respectively.

We now estimate the size of (3.8). Four cases are considered.

Case I. Suppose k=0. Then it is known [16, Lemma 2] that there exists
an x£l suchthat —1~x0"x<x1 and such that

(3.15) ko,.(Nl = ko, ()(x)I>
where qOn(f) is defined by (3.3) with k=0. Now (3.13) implies that
(3.16) [T \x-Xj\'S 'li] \x-vj\.

j=i J=

Case Il. Next assume that Isk”n —1 By again appealing to [16, Lemma 2],
we know for each kK that there exists an x suchthat xk*1<x<xk+L and such that

3.17) HANEETNIE

where gk, is defined by (3.3), k=\, ..., n—1 For Case Il first suppose that xk t<
<x”"xk. Then (3.13) implies that

(3.18) j\ﬂfg wex gy SO AX-uj\ L'i‘] \x-UjFuUj—xj\ =
= =0 j=k+1
n+1 -X,
= N X-Uj 1147
e
1 1
e X ] Ilkl_'ll(g \x - «ylexp l4=2K+1
n+1 . .
_ we JZ1FCIFTH Vi~ 4 )
- J}\I._I—RO b= v Zj-tk =N
From [10, Theorem 5]
Vi-U, A
(3.19) e = paan,
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where A is independent of j and n. Therefore (3.18) and (3.19) imply that

e 1 A wtl 7 vy 1
(3.20) n n o |*-«ylexpf 2 o
J-]A1(o j)\ko La j=k+1 zj~ik
- n+| - - -
To obtain an upper bound for 77 |[x—x}\,k=\, 1, similar to that obtained
J7 0
. : . . 5+I Z-—¢;-
in (3.16) for Case | (k~0) we will need to estimate % — In Lemma 3

. j=k+1 1j~Ck
below we will show that

(3.21) "2 Zj~p-gMfn+TIn(n+1), fc=I,...,n-1,
k

j=k+1 ZJ—i

where M is independent of n.
Applying (3.21) to (3.20) yields

(3.22) jE;];l\x—xj\ =£exp{]i\/(!ll-f-‘fi-l--|n(a4|)§j'rf’j+51L W—u\, K= 1, ..a—1,
jnk jiék

where M does not depend on n. Inequality (3.22) is similar to (3.16) where |
replaces Vj, jhk.

Now assume that Then from (3.13) we obtain
nel k=1 n+ 1
(3.23) T AX-X\S 7T \x—xj\ Z7 \x-Vj\.
J=0 i=o0 J=k+ 1

If k=1, then (3.22) reduces to

(3.24) 7»1\ X\ &H
. X-X]
jlg fjlt%

which is in the spirit of (3.16).
For 1, (3.13) implies that
ft-1 e t-i

|
77 x X\ = n \X-vj+Vj-xj\ = 77 |x-t+ i+-
7=0| =T J*+Vi-xj HI a

o

[Bdn iy, WVivexpfZ -4 —pil,

= A I*~t+exp[2 (ifz7k)(T y)] =

7=0
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From (3.19) we may now infer that
k-1 r/ k-1 _r 1

*_ % _| A *_NA
(3.25) o e, rb L*-Nexplo2 .

where J1 is independent of u.
Now Lemma 3 below will also assert that

(3.26) E Zi+l~}1=Mfn+TIn (n+1), =1, n,
J=0 zk~i]

where M is again independent of .
Applying (3.26) to (3.25) yields
*ai r—/n+1
I S X—W\ M - - I 1 .
[T o S LL w—hexp M == in(n+1)
This inequality and (3.23) now imply that

/n+1
(3.27) pﬁk-x,\ —exp, 'IVI— ------ |n(n+|) r| X~V> k —2,...,n—,

e "t
which resembles (3.22).

Case Ill. We next assume that k~n. Then [16, Lemma 2] implies that
W\ = nn(f)(x)\ where x,, 1<3c<x,,+1= 1 We may therefore conclude from
(3.13) that

(3.28) MI\X-Xj\S "M \x-Uj\.
it o

Finally, for £=n+1, [16, Lemma 2] applied to ||?BH,,,(/)ll = kn+mMC/1(*)1 asserts
that xn< x*xn+l=\. Therefore

(3.29) 76| - n \x~ uj\-
Together, (3.16), (3.22), (3.27), (3.28), and (3.29) establish that
(3.30) A \x-xj\ Wexp [N In(”+ U] max{ "jj \x-vj\, 77
j’ﬁk’ « \n J Ijij’lsi/) fﬁ*? >

where M >0 is independent of n and where again K is such that \ga(f)\\
Assume for the sake of simplicity that

'7I7'\x Xj\v A expr In(n+ Dl ';A/l[x |\/|j|
j.l*—ko \n J J=0
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Utilizing this inequality in (3.7) yields

(3.31) Mn(f) - ]]Bn+ﬂﬂ1\+"+1r01exp|fV1n(»+1)]k+|(tg| hf\x - U\

\eln + 1\ u ) L 7\f(

where an+1(U,) is the coefficient of xn+l in the Qnm+l(U,) defined by (2.6) with
a=A,=a(n+2)+2. By applying (2.13) to (3.31) we find that

(3.32) Mn(f) - \orra\ + lg ; ; (@[ exp

Now from [10, Theorems 3 and 10]

(333) |+ A = lewi(pll ~ LDy

Ve, (AN

where Kx does not depend on n.
At thisjuncture in the proof of Theorem 5 we assume the conclusion of Lemma 2
below: if fE F, then

(330 kO A -
kg o

Using (3.33) and (3.34) in (3.32) we obtain
(3.35) () — I+ + [1+ 45 20 00 X
Xexp [m — j~ 1} [M, (U,,).+ I8, +i (t,,)I]],

where K=KXmK2. Thus from (2.15) and (3.9) we have that

Y[a(n+2)+ 2]2—1

+ 2+ [em+ 2a+ 2)2- 1] 12X

(3.36) g JIWfilli+ 2 L1+‘H e+ 2

Finally, (2.23) implies that IA—~ — N~ - 72, Since every fEF, also satisfies the

hypotheses of Theorem 2, (1.3) now |mpI|es (31). O
The conclusion of Theorem 5 is mildly surprising in that it coincides with the
limits given in (2.23) and (1.6).
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4. Lemmas

We conclude this paper by considering two lemmas already used in Section 3.
In the first of these two lemmas we reconsider (3.34).

Lemma 2. |f fEF, then
(41) o € n =g,
K n
where C is a positive constant independent of n.
Proof. It is sufficient to show that if /€ F, then
f mAr,)
/ (m1D)00

is bounded for —I1"tj, 1 independent of n. In fact, if (4.2) holds, then [13, p. 78]
implies that there exist j and s in | suchthat

4.2)

43) Ko i) I (m2)0?) 1
' IkCDII [ (D)) 2(n+2)
If 4 F, then
[ (207 /(W f (H)(n) |
[ m)E) / (epw <)) T

and consequently we have

@) F ) n / EM+13((>3 N

I (B+1)(e) y(eH!

where A is a positive constant not depending on e t, or n. On the other hand,
for A F it is known [10, Lemma 1] that

[ (")) ¢ g
I (n+1)(e) ’

where B does not depend on e i/, or n. This inequality, (4.4), and (4.3) now
combine to imply the conclusion of Lemma 2. O

1— v—1

The proof of the next lemma is more complex than the proof of Lemma 2.
Lemma 3 is of interest in its own right.

Lemma 3. Let {Zj}"tl and {£}'=o be the extreme points of the Chebyshev
polynomials Cn+l and Cn, respectively (see (3.14), (3.21), and (3.26)). Then there
exists a constant A not depending on n such that

(4.5) "Z 7 AAIW L In(n+1), 1S fsSn-1, n=2,3,
j—k+1 7)) —tk
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and

(4.6) 2 4+l —A™M+1liIn(h+1), 12k~ n n=1,2,..
j=0 zk~ij

We prove only part (4.5) of Lemma 3. The proof of part (4.6) is similar.

Proof of (4.5). Case I. k=kf,;» +1j. Here [[*] is the greatest integer function.
For n sufficiently large, the left side of (4.5) may be written as

mlo, [fn™+r] A
4.7
1=%+1 Zj—Lk j=k+1 7j — £k
i i 1 n+ 1 . 1
+ zj~Cj + 2 iJ~£J

4—&K  pznei-[fn 1] 4—&

Label the sums on the right side of equality (4.7) by Sk, S2, and S9 respectively.

Since —*J)~1 1 for jAk+ 1, Sx satisfies
4—&
(4.8) Sks [[AT+1]+ 1-(/c+ D+ 1« [/In+1] fn+\.
For S2, \*n+ 1+2 [y17+ 1]. Therefore from (3.13) we have that
zj-tj-1 Zj-zij-1 zi—zj-1
Zj-Ck zj ~ zk+1 Zj-27{1— x+1I

From (3.14) and the mean value theorem,

(4.10) Zj- zj-x = Isindj\-22-

where _ﬂ 7r<0..<—n, and hence where
77+ 77+1

[VI7+1+11 n~» Q L_bfn+1+1]|

71+1 1 \ 7+ 1 /

Also for 7+ 1+2]7j~n —\y'n + 1],

(41D Ayri+i - 7 1
where —[—t—nilt'—l—n</7y< Il n, and hence where
77+1 T1+1
(4.12) —— N < Hj< (I _1—).n.
77+1 | AT+ 1 »]
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For 0T | In+\)

4.13 sin@l  sinm

(4.13) ® Vn+1l
Applying (4.13), (4.12), (4.11), and (4.10) to (4.9) vields
(4.14) 4-0-1 .

Zj-Ck ) . sin-
O-[ynTi+i]) I+l

UYUTT+2]  ~ n-Lywn+l].
Utilizing (4.14) to bound S2 gives

n[ypil z -r 1
(415) s2= _ 2 S N —— ., 2
T=[j5FFi+] ~ « stn W — .-
fn+T
L+1-iIM+1+1] 1 .
sin- E1 ! Sin--mmt e
fn+1 vn+ |

where u is sufficiently large and XX is independent of n.
To estimate Ss, we recall that 2~ ZJ-1 _<' for j=k + 1. Therefore
M1 Y
(4.16) - _ ZJT—"rJ-l
|:n+F-|YT"‘|J J-
S n+2—n+ 1)+ [J/«+1] = [*n+1j+1" Vn+ 1+ 1

Finally, inequalities (4.16), (4.15), and (4.8) combined to (4.7) imply theconclusion
of Lemma 3 for Case |I.

Case Il. [Yn+1+1j~k~n —*n + 1+2]. In this case we write the leftside
of (4.5) as

(417) ;:%=+! I*-/l—i*_ - ;:gc+i J‘/ 2 Jvi

Denote the terms on the right side of (4.17) by Sj and S2, respectively.
Then it is clear that (4.16) serves as an upper bound for S2.

For SI,k™\_~n+ 1+1] and (3.13) imply that

o nHivnH] z r nflyinT] z,—z, ,
(4.18) 1= 440 z—x 1" R o A
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Again using the mean value theorem and (3.14) we obtain

R
an
@ zj-zk= L&Yl Kl M- [érl; I].n,

where k+ 27 jAn—[/n + 1]. But the inequality below (4.20) and &é&[/a+1 + 1]
imply that

[[M+T+I1]+ 1 . on+-[/ii+ 1+1]]
1 A<HAS e
which in turn implies
4.21 -a<fij<il—_ 3+1n
#21) /n IJ?I'l ) I m+ 1]J
We find that (4.21) is identical to (4.12). This observation (4.13), and (4.20) yield
4.22 2~ 2 — sin [i-Ck+1]
“2) -kl In+T n+1
Using (4.22), (4.20), (4.19), and (4.18) produces
(4 23) 1 n-uyn+1J l
: St~ 1+ .
sm- J="r2  j—(fc+l)
/n+1
1 »-(IKn+Il+1]+k) 1
- 14 2 s i+ In(n+1)=
sm- i=1 ! sin-
/n+1 m+1

M/n+1In(n+1),

where n is sufficiently large and M is independent of n. Thus (4.5) is established
for Case Il.
Caselll. n—[/n+1+1Js& Sn—L In this case

n+1 ,
(4.23) Toomen e gl (et 1)+
j=k+1l zk-~Cj

S n+2-(n+[/n+1+1]) = [/n+1]+3 *M/n+1

Thus Lemma 3 (4.5) is proven. O
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SOME TYPICAL RESULTS ON BOUNDED
BAIRE 1 FUNCTIONS

A. M. BRUCKNER (Santa Barbara) and G. PETRUSKA (Budapest)

0. Introduction. Notations

The word “typical” in the title refers to properties which hold for most of the
Baire 1 functions in the sense of category. Results of such type were proved in [2],
where the authors dealt with Darboux Baire 1 functions and some subclasses of
those. We denote by si, A, StSS1, UBLthe set of approximately continuous functions,
derivatives, Darboux Baire 1 functions and Baire 1 functions, resp., all defined on
[0, 1]. Taking the corresponding bounded classes bsi, bA, bSHS], bdS1 one has the
advantage, that all these are Banach spaces with norm ||/|| =sup]|/| and these
four spaces form a strictly increasing system of closed subspaces in each other.
All of our results, however make sense in the unbounded cases as well.

For any function / we denote by Cf,Af,Rf the set of continuity points,
the set of approximate continuity points and the range of f resp.

Lebesgue’s measure is denoted by ¢ and we repeatedly make use of the fact
that an arbitrary Borel measure p (always supposed to be finite) on [0, 1] is (outer)
regular: p(H)=inf {p(U), HczU, U open}.

The set of real numbers is denoted by R.

1. Level sets

In this section we study the typical properties of the level sets / _10>)0>€R).
Lemma 1.1. Let | be an open interval, and put
A\ = 3yiK,c\f-\y) z/}.

I f a sequence is (pointwise) convergent to f, then also f is constant on an
everywhere dense subset of I. In particular, if /C4?1 then fA3S).

Proof. Since fn@zM}, it is constant on a Gd set Hn everywhere dense in /
(n=1, ..). Hence H= F‘llHn is a Gs set everywhere dense in /, and the limit
/ is obviously constant on H.

Lemma 1.2. Let p be an arbitrary Borel measure on [0, 1]. For a given <5>0
we put
K.O={le«13yER, dif-10") S s}

| fasequence /,,€,<5 is (pointwise) convergent to f, then /r(/_1(1)) —&for asuitable
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Proof. By our assumption we can find yn such that for L,,=fn~1(yn) we have
n(LH~8. Putting L= P| 1J L,, we also have u(b)wg. We show first that {y,.}

N=1n=N
contains a convergent subsequence. Fix xatL, then x0dLn for infinitely many n,

say, n=n1,n2, __ Now we have

ooooo

because of xCEL,k (k ...). Denoting L*= P| |J L,k we obtain again p(L*)"6
and for any x£L* zL N=ik=N

fix) = lim f,k(x) = lim y,k = f(x0.

That is, for y=/(x,,) the level set / -1(y) satisfies / _1(j)d I*, thus/r(/-1(y))é
El«(E*)E>.
Corollary 1.3. Let 38} and 38\« be as in Lemmas 1.1 and 1.2, respectively.

Then, 38} and 38\6 are uniformly closed classes. If F is a uniformly closed sub-
family in 38l, then Fj=F Q38} and FA""FO 38} are also uniformly closed.

Proof. This is immediate from the preceding lemmas.

Lemma 1.4. Let Fa3ix be uniformly closed, and #'+gc#' if g is a piece-
wise linear continuous function. Then, for any given interval I, FAFCIdS} is
a uniformly closed and nowhere dense subset of F.

Proof. By Corollary 1.3, only the nowhere dense property of Fj has to be
verified. Let fdFu and e>0. Let g(x)=0 outside of I, g(c)=s at the midpoint
c of /, and g connects 0 and e linearly on both halves of 1 Then f+gdF,
but f+g”~Fj. Indeed, / takes a fixed value on a dense subset of I, therefore it
takes the same value on its continuity points in I. This property can not hold
for f+g, because this sum has the same continuity points as /, and f+g is not
constant on Cf f]l.

Theorem 1.5. Let FaSIP- be a class as in Lemma 1.4. Then
JzZf —{fdF: f~i(y) is nowhere densefor every yd R}

is an everywhere dense G6 subset of F.

Proof. F\L?=UF 1, where / ranges over the open intervals with rational
endpoints. Thus the result follows from Lemma 1.4.

Corollary 1.6. For the elements f ofa residual G6 in bsd, bA, b3(38x b38x
the level set f~ x{y) is nowhere densefor every y£R.

Theorem 1.7. Let p be an arbitrary continuous Borel measure on [0, 1]. Then
{fdbS#1:p (f~1(y))=0 for every yER} is a residual G& in b38x

Proof. We prove that b38\t6 is nowhere dense in BUSL This and Corollary 1.3
give the result. Since b3} is closed, we have to show that it can not contain
a ball. Let fdb38\%and a>0. We can approximate / by a gdbdS1 having finite
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range: y2, and ||/-g]| mlet [0,1] be divided into N equal

subintervals, where N is large enough to ensure 4 ([Y 4 ]H < *=1...*>
Now we slightly modify g so as to get a function h which takes any of its finitely

— ijl. To this end we choose nN

different values O<y(/, A ( _ /=1, L [, ..., N) all smaller than

mim (y>y \ya-y B\ B * «)

Let AN ==x<? and g(x)=yj. Then we put h(x)=yj+y(j.k). Let xt and x2
belong to different subintervals. If g(x)Tig(xd, then

IAG<i)-A (9| = IhOi)- gfo) + g(*i)- g(x3+ g2(x~h(x) "

S 19(xD-9(x3[-|A(xD-g(xI[-|A(x3-g(Y2 Sy minlyr-y,\ >0.

If g(x)=g(x3=yj, then h(xD-h(xd=y(j, k)-y(j, 1)"0, because of A~
Therefore, we have /i(A-1(y))<<5 for any y£R, and by

If -1, =H/-gIH-Hg-ft]l <y +y =£
we obtain that the r-ball around / can not belong to b33V's.
Theorem 1.8. For any continuous Borel measure ji the set
{fab”I1: g.(clf~1(y))=0 for every y£ R}
is a residual subset in BI/L

We do not know that this setis a Gs or not.

Proof. The function h constructed in the proof of Theorem 1.7 has finite
n—1 A

I N °N
But then, this property also holds for any fAbdS1with ||/—4| *=s if TT|Y,—Yi\

range and any of its level sets h_1(y) is a subset of a small interval

Yx"Y]\To L/IC rngh. Since such type of functions h form an everywhere open
dense subset in bKL we obtain immediately that

{1&>&: 3y, M cl/-1"))"}
is nowhere dense in bdS1, and hence the result follows.

If we restrict ourselves to Lebesgue’s measure A then we can extend Theorem
1.7 (but not 1.8) to the subclasses bstf, bA, bSIIML For the cases bsrf, bA we make
use of a lemma of D. Preiss.
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Lemma 1.9 (D. Preiss, private communication). For any measurable f and
e>0 there exists gdbsd such that ||g||<€ and A((/+g)-1(j>))<E for any ydR.

Proof. We consider all the numbers y—yIt mmmyn with ".(/“bT))—?g,"'(If

no such y exists, we can choose g=0.) We can find a finite system S of mutually

disjoint closed sets such that
@) for FdS wehave fc /_1(~) for some j, moreover each xd F isa point

of density of fAiyj);
(i) A(F)<-|-for any FdS;

@) a[(m <J-
For each Fd.S we choose a number c(F) with the properties

(iv) O<c(F)<mijnJe, jbft-Fyl)
and

(V) c(F)”~c(F2 if FAF 2.
Applying a theorem of Zahorski ([3], Theorem 7) we can find gdbsd satisfying

M) g(x)=0 (*$ .U/ -10T1));

(vii) 0=4g(x)=sE (xd[0, 1]);
wiii) g(x) = c(F) (xdFdS).

Consider now (f+g)~1(y) for a given ydR. By (vi) we have
(f+9)-4y) = =1 - 1) lu
v (Z+g”rOonf Ui/-1("-)\US]Ju[(/+9)-K(T)nUS] = *nda.nas.

If yAY] d=1, ...,n) then A(/—l(y))<gj. Hy=yj for some j then Ax=0,

thus A(AX<— in any case. A(f2-<—also holds by (iii). The level set (f+g)~1(y)
can not intersect more than one closed set FdS. Indeed, if

) [(xi) +g(xi) =/(x2+g(x9, xIdF1, xAFa, Fj ti F2,
then
101)-1(*2) = g(Xi)-gbi) = c(F9—(Fj),

0 < \f(xD)~f(x2\ < TNI? \yj-ykl

that is

a contradiction, because f(.x)=yj,f(x3=yk for some j and k. Thus by (ii) we
have A(ﬂ3<g— and the lemma is proved.

Acta Mathematica Hungarica 43, 194



SOME TYPICAL RESULTS ON BOUNDED BAIRE 1FUNCTIONS 329

Theorem 1.10. The set offunctions f such that f 1(y) is a nowhere dense
(Lebesgue) null set for all yfR is a residual G} in any of bsé, 1 and bSdffll

Proof. Referring to Corollary 1.6 it remains to prove that f~ x(y) is a null
set for every yE R for the elements of a residual Gs in bs/, bA, bStdS1, respectively.
Applying Corollary 1.3, = By, A(/-1(y))"<5} is uniformly closed
in bA, bB3AL Thus it is enough to show that is nowhere dense.
In the cases & =b$/,bA this follows immediately from Lemma 1.9. For !F=b2i!38x
we need a different method, because the sum of a Darboux function and an approxi-
mately continuous function is not necessarily Darboux. Suppose that bS>SSr\3S\tS
contains the ball

S = {h~bQiasSl: \h—ii0]|< e}, h~b~t~1 is fixed.

By Theorem 1.7 we can choose a function fEb@)x such that A(/_1(y))=0 (YER)
and 1l/—h0Q|< §/ . Now, according to Theorem 3 of [2] we can find g”b”aS1 such

that ||g—#1 «4 — and g—f almost everywhere. Therefore
Afe-W) = A(/-*00) =0 0*R)

IAdll S T—AH-H/-Adll

that is g£S, a contradiction. Thus &T\0id is nowhere dense in all the three
cases &=bsl,bA, b3>dSx and hence the result follows.

We remark that the typical behaviour of the closure of level sets has not been
cleared up yet. In contrast to Corollary 1.3the set {/: Alcl/'4/)) = &for somey€R}
is not uniformly closed in bsf, bA, bi&38], b&x. This can be seen as follows. Let
g denote the function of Lemma 2.2 (see below), and put

and

9(x), M jlleij

mm(g(4 1— , x€lj 1 —j Sn).

[1.(*) =

Then, f,,€bst,fn-»f uniformly and / _1(1)=0, but cl (/n1(1))=3[0, 1]\IJ Ik for
k=1

n=1,2,  We can of course choose ANO, 1]\U (5>0.

2. Continuity points

It is well known that Cf is an everywhere dense Gd for any /€4?\ thus Cf
is large in the sense of category. We show, that, on the other hand, it is typically
small in the sense of measure.

Lemma 2.1. Let g be an arbitrary Borel measure on [0, 1] and <$>0. The
family
li(Cf) ~ O}
is uniformly closed.
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Proof. Suppose that /,-+-1 uniformly. We consider C= T 1J Cfn.
JV=In=W

For any xEC we have x£.Cfn for |nf|n|tely many indices n, hence CaCf. Thus
A(Cy)Vi.(C)A<5 and this proves / £ ~

Lemma 2.2. Let In=(an, bn)—(cn—hn, cn+hn) be a sequence ofpairwise disjoint
open intervals in [0, 1] such that the open set H — IJ l,, is everywhere dense in [0,1].
Let g,, (n—1, ...) be the piecewise linear contlnuousfunctlon for which

1, x=g,
gn(x) 1,
0, x —c,—~h,, or ot TN
andg, connects 0 and 1 linearly on |c,— and c,+-—A,j. Let

8= r%zlsn- Then

(i) gll,..ag is continuous on [an, bn] M=1,...), Ca=H and g(x)~0 for x{H\
(if) g is approximately continuous on [0,1].

Proof. Forany s there exists at most one nwith g,,(x)+0, thus the defini-
tion of g makes sense. Obviously o\ia,,b"—gn\ta,b”t hence it is continuous
on [0,,b,]. Therefore C934A. For x8 H, g,,(xX)=0 (n=1, ...), thisimplies g(x)=0;
since H is an everywhere dense open set, any point A is the limit point of
some subsequence of {c,,}, thus Cg and this proves Cg=H. The approximate
continuity is to be verified for x*H only. We can suppose that every right hand
side neighbourhood (x, x+h) meets infinitely many intervals /,, (otherwise x=a,,
for some n and g is continuous from the right at a,,). Let n=N be the smallest
index with /,M(x,x+h)+ 0. Thenl

Lt x < t< x+h, gt) > 0 &

2+K
29hm if x+h$H, or x +hdf, but ay<x+h?"cv
2 2
v, K
if cv----hyS x+h" by

22K+ "thy
where the summation is always extended to the indices n such that Ina(x, x+h).
Since n”N, v"l\fer 2"—N—l,—\{:ls N1 ih both the above cases

2t x < t<x+h gy >0)
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and we obtain lim app g(y)=0=g(x), because h—0 implies N-—co. Similar
yox+

argument applies to the left hand side neighbourhoods (x—h, x) and hence the

proof is complete.

LEMMA 2.3. Let F=bsot, b4, bDRB', bAB. In all cases the set F*={fecF:
C; does not contain any open interval} is an everywhere dense Gz in F.

Proor. Let #={fc#:C,OI} where I isa given open interval. It is trivial
that % is uniformly closed and the complement #\%; is everywhere dense in Z.
Let J range over the open intervals with rational endpoints, then (J % is a first

J

category F, and hence the result follows.

THEOREM 2.4. Let p be an arbitrary Borel measure on [0,1] and % =bsZ,bd,
b2, bAB'. Then {fcF: n(C,)=0} is an everywhere dense G; in F.

Proor. By Lemma 2.1 the family #(\.#, ; is uniformly closed. We show
that it is nowhere dense in %, that is #(\.#,; can not contain a ball. If there
were a ball in #N.#, ; then, by Lemma 2.3, we could also suppose that it is cen-
tered around a functlon feEF*N\M, s with radius &, say. Now we cover the every-
where dense set [0, I]N\C, by an opcn set H suchthat u(C,MNH)<d. Let g denote

the function of Lemma 2.2 applied to AH. Then h=f+~;—g€.7" and ||h—f|l§;:-<a.

%g to an element of bZ%' without destroying

the Darboux property, still we have now h€% because f and g have no disconti-
nuity points in common (see [1], p. 9, property (6)).

Furthermore, g 1is discontinuous out of H, whereas f is continuous there,
and hence C,,CC N H. This implies u(Cy)<d, thatis h¢.#,,, a contradiction,
and the proof is complete.

Though we cannot generally add

3. The range

This section deals with the typical range. The full range f(I) on an interval
I is to be studied only for fc#' because Darboux functions map intervals onto
intervals. However, the restricted range taken on C, or A, is interesting for the
subclasses as well.

LEMMA 3.1. Let u be an arbitrary Borel measure and 6=0. The set

e%u,‘; = {f: ﬂ(Cl Rf) = 5}
is a nowhere dense uniformly closed set in bZ*.

Proor. Let f,€Z, ; and f,—f uniformly. Suppose pu(cl R;)<d. We choose
the open set U such that cl R,cU and. u(U)<d. Since cl R, is compact, we
can choose U to be the union of finite number of intervals: U=U,U...UU,.
For each j=1,...,n, let V; be an open interval such that cl U;CV, and

[U V]<6 We put V= U 7 and e=dist (cl U, [0, I]\V). Then we fix k,

J=1
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such that ||/*-/||<£ for kwk0. We have now cl R/kc V (k~k0 and hence
li(cl RfJ*p(V)<6, a contradiction. Thus is closed. We know that the
functions with finite range are everywhere dense in b&il It follows immediately,
that if D is a given everywhere dense subset of R, then the family {fib.M":
Rf finite, RfdD} is also everywhere dense in b6il If we put D=[y:/h{yP=(}
then D is everywhere dense (D has countable complement). Applying the remark
to this set D, we see that

{ftb6il: p (cl Rf) = 0} = {febdil: Rf finite, Rf a D)
is everywhere dense in b6il, thus the same holds for the complement of 3ill 6.
That is, §i”6 is nowhere dense and the assertion is proved.
Theorem 3.2. Let p be an arbitrary Borel measure. Then

= {febOS1: p(cIRf) = 0}

is an everywhere dense Gs in bG6il
Proof. By bOINOt= FI1J=1A il/nthe result immediately follows from Lemma 3.1.

We recall some results on f(Cf) and f(Af) with respect to the subclasses
6?=bs6, bA, bSt&il

Theorem 3.3. Let  be an arbitrary Borel measure. Thefamily
{/€ ai(c1/(C/))=0}
is an everywhere dense G6 in both OF=bsd and bA.

For the case iF*bOO0I1 an even stronger result holds:
Theorem 3.4. Let U be an arbitrary Borel measure. The family

{feb&Gi1: /|(c1/(N1,))=0}
Is an everywhere dense Gd in b&OSL

These results were stated and proved in [2] for the special case y—X The
general case can be proved without essential change of the original argument, thus
we omit the proof here. Theorem 3.4 can not be extended to bA: it was recently
proved by the second named author that f(Af)=Rf for any derivative f that is,
in this respect derivatives stand closer to approximate continuous functions than
to Darboux Baire 1 functions.

The results of Theorems 3.2, 3.3, 3.4 would be trivial if the underlying sets were
countable. This is not the case, as shown by the next theorem.

Theorem 3.5. Let ,¥=bsd, bA, bS>6i\ b3i\ Then the family
{/6#"f{Cf) is ofpower of continuum)
is an everywhere dense Gs set in Sk
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Proof. / (Cf) is an analytic set, therefore its power is either countable or of
continuum. If f(Cf)={yl, ...} is a countable set, then by the category theorem
there exist an index n and an open interval | such that /~1(y,,)[IC/ =1MNC/.
Thus cl/-1(y,,)=)/. Therefore Theorem 1.5 gives the result.

4. Problems

4.1. What are the typical properties of /i(/_1(y)) in bsf, bA, bl3381 for
Borel measures /i?

4.2. What are the typical properties of A(cl/-1(y)) or /t(clf~1(y)) in the three
subclasses considered?

4.3. Is it true, that there is a “large” set Y<zRf such that / _1(j) is countable
(finite or singleton) for typical /6 # - iF=Dbsf, bA, bSdffll, bkl and y€T?

4.4. How large is the Hausdorff measure of f~I(y), Cf,f(Cf) for typical /?
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ON MEASURES OF INTERSECTIVITY

I. Z. RUZSA (Budapest)

0. Notations

If A, B, ... are sets of integers, A(X), B(x), ... is the corresponding counting
function, d(A) the asymptotic density, d(A), d(A) the lower and upper density;

{A+xB = a+h: afA, bdB,}

nA = {na: adA}, Axn —{axn: adA}
(n a number).

1. Introduction

A set A of positive integers is called (difference) intersective, if AF\(B—B)?+ 0
whenever B has positive upper density. Here instead of upper density we might
equally naturally write lower or asymptotic density; we are going to show that these
definitions lead to the same concept, even quantitatively. This is used to show that
intersectivity is a “finitary” property. We also show that the situation becomes more
complicated if we intend to distinguish between intersective sets, or if we consider
sums rather than differences. A denser set than the previously known ones will also
be constructed whose differences do not contain any prime-minus-one (this is known
to be intersective).

2, Measures of intersectivity

Write
GYA) = sup {d(B)\ AC\(B—B) = 0},

where the choice of B is restricted to sets having an asymptotic density. Remark
that AF\(B—B)= 0 is equivalent to BI'\(B+a)= 0 for all adA. We can replace
this by the weaker condition

(2.1) d(in(5+a) =0 (adA)
and thus define
S2(A) = sup {d(B)\ B satisfies (2.1)}.

So < isthe smallest and <& the biggest of the six possible definitions of “measure
of intersectivity” that we get by combining lower, upper and asymptotic density
and the above strict and weak disiointness conditions.
Put
D(Ax) =Tax{|l|: fc[U (r-rnrol = 0},
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a finite version of these concepts. D(A, x) is obviously a subadditive function of x,

thus there exists
N
2.2 s(A) = lim PAX) 0 1A x)

X
where, of course, x runs over only positive integers.
Theorem 1. For every set A, 61(A)=62(A)=6(A).

Proof. &{<® is obvious. To show 62S6 let B be a set satisfying (2.1) and
fixdn x. In (kx, (k+1)x] B can have at most D(A, x) elements, with o(y) ex-
ceptions of ksy, thus d(B)"D(A, x)/x; taking first the limit in x and then
supremum in B we obtain the desired inequality.

Finally we have to show <&S4&; to this end we need some concepts and results
from [2].

A set H of finite sets of integers is called a homogeneous system, if for every
SfH all the subsets and translates of S belong to H as well. The counting func-
tion of a h. s. Fl is defined by

H(x) = max |AT[1, X\

and its density by
d(H) = lim H(x)/x = inf H(x)/x.

Given our A, let H be the collection of all finite sets T such that (T—T)MA=0.
Then obviously
H(x) = D(A,x), d(H) —6(A).

Now Theorem 4 of [2] asserts that for every homogeneous system H there is a
sequence of natural numbers B all whose finite subsets belong to H and such that
d(B)=d(H). Take this B for our H; in this case the above properties become

(B-B)MA = 0, d(B) = 0{A)

as wanted. (As a by-product we learned that the supremum in the definition of
4j is actually a maximum.)

Remark. §= & was essentially proved by Stewart and Tijdeman [4], Theorem 5.

3. Finitariness of intersectivity

Here we show that if a set is intersective, it is because some of its finite
subsets are already almost so.

Theorem 2. For every set A
0(A) =inf(0(MN): Ta A, jZj< o}
Proof. Write AX=AI\[1, x]. Obviously pa(AX)LUO(A) and

D(A, x) = D(AX x) =xS(AX)
by (2.2), thus
lim S(AX & lim D(A, x)/x —6(A).
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4. The case D(A4, x) = o(x)

In case 6(A4)=0 we can ask (i) how fast D(4, x)/x tends towards zero, (ii) how
dense an infinite set B can be if (B—B)(N A= &. We shall see that, in contrast
to the case d(A4)=0, these questions may have a totally different answer. Authors
on these subjects have generally ignored the difference between (i) and (ii), though
it quite possibly occurs also at “‘ordinary” sequences, cf. the next section.

THEOREM 3. Let F be any positive-valued function on natural numbers such that
F(x)/ o but F(x)/x\0 as x—co. There is a set A such that D(4, x) = F(x),
but there is no infinite B for which AN(B—B)= .

(Recall that fx<g means that both f<<g and g<f.)
ProOF. Let n be a natural number, 2%|n. We set n€A4 if
(4.1) 2*F(n) < n.

First we show that an infinite difference set cannot avoid 4. Suppose (B—B)N A= &
and let b,<b, be the first two elements of B, 2¥| (b,—b,); let b be any other ele-
ment. For j=1 or 2 we have 2**{(b—b;), thus by (4.1) 2*F(b—b;)=b—b;,
which by F(x)/x—0 can have only a finite number of solutions.

Now we establish D(4, x)=F(x)/2. Let 2¥=x/F(x)<2**! and

T={n:n=xn=1(mod2*+)}.
Then |T|=x/2**'=F(x)/2 and if b,b’€T, then 2**'|b—b" and

X . bb
Fx) — F(b—b)’

2k+1 =

which shows b—b"¢ A.
Finally we show D(A4, x)=2F (x)+2. Suppose

(T-T)NA= @, Tcl,x)

Let u be the minimal and » the maximal element of 7. For an arbitrary beT
we know b—u¢ A, v—b¢ A. Suppose first b—u=v—b. If 2¥b—u, then
2XF(b—u)=b—u, ie.

ok b—u i (v—u)/2 .
F(b—u) — F((v—uw)2)

This leaves for b—u at most

IV

(w—u)/2
21(

possibilities. The other half-interval can be estimated in the same way, thus we have
obtained

14 =1+ F((v—u)2)

IT| S 24 2F((v—u)/2) = 2+2F(x).

REMARK. D(4, x)/x may not be monotonically decreasing, but it is almost so;
namely subadditivity implies that for y>x

D(A, y)/y =2D(4, x)/x.
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5. Variations on shifted primes

Let
P+={p+\ p prime}, P~ = {p—1p prime}.

That P+ and P~ are intersective (other translates of the set of primes are
evidently not) was proved by Sarkézy [3]. He even proved

D{Pt,x) x(log logx)~2E
From below, Erd6s and Sarkdzy [1] improved the trivial /)»elog x to
D(P ~, x)» logx log log x.

D(Pt,x) =0 (xB seems certain but hopeless; it would imply that the first prime
p =1 (mod k) is <fcl+E We are going to improve the lower bound.

Theorem 4. @) There is a set B such that

apn =exp(l£]1+0(1)) _"£ _

and
CB-£)n(P+UP-) - 0.

by If A=P + or A=P~, then
D(A, x) » exp(log2+o(l))

Proof, @) Let pk denote the kth prime. First we construct auxiliary numbers
rk with the properties
r*+i>2rk, rk>p2+1 rk=0 (modpkp2... p2- 2,
rk=~ 1(modp2 K, rk= 1(modpX).
If we always choose the smallest possible value for rk, then obviously
P1P> mmP2k —rk+1 —2rfc+ P2+ PIP2 « Pab

—e(ol)<daA

thus there are ~(log x)/(2 log log x) rks up to x. Now let B be the set of numbers
of the form

whence easily

2 s*rt, £=0o0r 1

rk+1>2rk guarantees that all sums of this form are distinct, hence

p(b|i+0(1)) M i_
as wanted. Now let b, b'EB; we have to show that b—b'+ 1 is not a prime. Let-
b=2 f&rk, V = 2 €e*r*
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and let j be the first suffix for which E~ s-. Then by the defining congruences
b—b' = Ej—s] (mod p2)),
= gj-g] (mode tjr),

i.e. one of b—b'+l and b—b'—I is divisible by p2] and the other by p3-v
Now if either of them is a prime, it can be only this one. But

b—b'— £ 5 1>p3

by assumption, thus this cannot happen either.
b) Consider P+; P~ can be treated similarly. Again we define auxiliary
numbers rl5 ...,rk, but now in dependence on x. Namely let

K= (1- ¢)(log x)/log log x
and let Tj (j=1,...,k) satisfy
O+i > 20, rj= 1(modpj), rj=0(modpJ+lpj+2... pKk.
If again we choose the smallest possible rk, then
rin6 = pir2—rk = exp (I+o(l))/c log kK
and o+1=20+0, whence by induction

" @-NQ, m~(2k-1)R<x
for x>x0(e).
Define B as in a) and let again

b =2 eiri, b'=2"ri

be two different elements of B, b<b'. Let j be now the suffix of the gEeatest dif-
ferent digit, i.e. §=0, Ej=I. Then

b'*—b—1= (r,- 1)+ 12—1 (Ei- E)ri= ° (mod Pj)-
The value p} is excluded by

b'-b-1 £0-1 £ rj—1 £ P2P3mmPk-1 >pk~Pj
for k=s3. This concludes the proof.

Remark. | have included this particular case because it is a “natural” sequence
for which the phenomenon dealt with in the previous section likely occurs. At least
with the present construction it seems inevitable that ifwe want to use the congruences
“economically”, then we must construct our sequence in dependence on x; if we
want to know which of b and b' is the greater, we need the last different digit,
and the smaller ones must not spoil it.

In our constructions n=b'—b—1 was not only composite but always had
a prime divisor «dog n. | can show that under this stronger condition we obtained
(logarithmically) the correct order of magnitude.
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6. A note on sum-interscctivity

So far we have considered only the “difference-intersective” property; there
are analogous problems for sums. Given a set A, consider the sets B such that
AD(B+B)—0 and put

+(A) = sup3(2?), ar(A) =supd(B), a3(A) —supd (B).
We may also define

; S(A, x) = max {|7’|: (T+T)M\A = 0, 7c[l,x]}
an t
i &i(A) = limsup S(A, x)/x, €(A) = liminfS(A, x)/x.

Unlike the case of differences, these are in general five different numbers. E.g. let
A= tl_Ji [1OMbIO*E 1.

In this case <1=0.87, (B—0, +4—0.89, <5=0.45. | do not know the exact value of
a2 but 39/997cx2< 0.45 (I think the lower bound is correct). Obviously we have
always

03 —(Q02 S cr4,

and | am quite sure that this is the only connection between them. By varying the
above construction one can show that these quantities really induce five different
concepts of sum-intersectivity. Erdds and Sarkozy [1] chose ax—0 for this purpose;
I think none of them is more natural than the others.

To contrast Theorem 2 we may note that the omission or inclusion of a finite
number of elements does not affect the sum-intersective properties (nor does it even
modify any of ax, ..., a3.
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EQUIVALENT PROBLEMS IN THE CALCULUS OF
VARIATIONS WHOSE FUNDAMENTAL FUNCTIONS
INVOLVE SECOND-ORDER DERIVATIVES

MAGDALEN SZ. KIRKOVITS (Sopron)

1. Introduction

Let F(x5x,x9) and F*(xx‘x9 denote the fundamental functions of two
n-dimensional variational problems, where x‘(t) are of class C4 and F, F* are
of class C3 in their 3n variables.

It is well-known that the two variational problems are said to be equivalent in
the sense of Carathéodory [1], if their respective fundamental functions differ by
a total derivative that is (H. Rund [4] page 204)

(1.1 F*(x x4 x9 = F(x\ x* (S = s (x>m)
The Euler—Lagrange equations are
(1.2 *I(F) =0 and éi(F*) =0,
where the operator e; denotes

B . o _ 3
(L3) 8".= d gy oim x0T dxt

If (1.1) holds, then obviously Si(F*)=Si(F). However, if a solution of the Euler—
Lagrange equations of a variational problem is a solution of another one, too, it
does not necessarily imply that the two problems are equivalent in the terminology
of Carathéodory.

In this paper we furnish a discussion of the case, when the following relations
hold

1.4) SI{AF*(x>x, X)) = 1.(x, X, X) S\(F(X, x, X)), 2(x,x,x) " 0.

The proportionality function X is the same for each of these n equations and
it is dependent not only on positional coordinates as proved by A. Moor [2], but
on theirfirst and second derivatives x‘ and x‘, too. Our considerations are in some
degree analogous to those of H. Rund [3], but it will be supposed that the funda-
mental functions depend on x‘, too.

In Section 2 we shall prove our fundamental result that if relation (1.4) holds
identically, further X satisfies certain conditions (see Theorem 1), then both funda-
mental functions are necessarily linear in x*.

In Section 3 we are going to show that the function X could be reduced to
a constant under further conditions (2.10), (2.13) in which AKZKA.

Finally we shall examine a special case, when our problem reduces to the Finsler
case which was investigated by H. Rund in [3].
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2. The form of the fundamental functions F and F*

Theorem 1. If F(X,x,x) and F*(x,x,x) denote the fundamental functions
ofapair ofvariationalproblems and the relations (1.4) hold, where thefunction X(x, X, X)

is such that X*O and -~”"0, then thefunctions F and F* are necessarily linear
in xk.
Proof. (1.4) has the explicit form

If we calculate the derivatives with respectto t, we get an expression of the form

(2.2) is an identity if and only if the coefficients Pw(x, x, x) (a=0,1,2, 3)
vanish which yield the following conditions
(2.3)
(2.9) p$ m=XKdyF'-Xdrftd-jF = 0,
(2.5) PE>m=9?9LF*-ffi% F*-XW9iF-9i% F)+
and
(2.7 dTd'fdj F*xj +d'fd'fd) F*xJ—X(d'fgindjFxj + g?okn) Fx) = 0

which could be written in the following form

Because of (2.3) and (2.4), respectively, the first as well as the second term on the
left-hand side of (2.8) are identically zero, thus (2.8) reduces to:

(2.9)
Since by supposition we obtain
(2.10) F(x, x, X) = Ak(x, x)xk+ B (X, X).
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Secondly, since Xa O for any value of its variables, the relation (1.4) is also true
in the following form:

(2.12) E(F) = A~4.(F*).

In this case evidently the same conditions are fulfilled for the coefficients of  k,
xJxk and xk Thus we can find an identity similar to (2.9) for 1“1 and F*:

VA 1
(2.12 - =0
. dx~
and since - A0, consequently we also have
(2.13) F*(x, X, X) = At(x, X)xk+B*(x, X).
Q. e d

3. The form of the function X

Let us suppose that (2.10) and (2.13) are satisfied, thatis F and F* are linear
in x\ Xa O|it is not supposed in the following that Let these expressions
be substituted in (2.2), from which it follows that
(3.1 P\ (X, X, X)xk+ Pj3 (X, x, X) = 0.

In order that (3.1) hold identically, PfP and Pf3 have to vanish necessarily for
arbitrary values of their variables; so we get on account of (2.5), (2.6), (2.10) and (2.13)

(3.2 P> = dkAf-d IAt-X (X, X, X) (AKA,-4}AK = 0,
(33) P@:= (dtd'jAf-d\dtA])xIxk+ (diAt+dkAt +d-kdjAfxJ-d}djAtxj +
+d-kdj A tx J-d\d-kB*)xk+dkdj A tx Ixk+diB*-d idkB *xk-
—X{x, X, X)[(d'kd'jAi—didkA) x j xk+ (diAk+dkAi+dkdjAixJ—
-d\djAkxJ+dkdJAixJ-d idkB)xk+dkdjAix Ixk+diB - d fdkBxK] = 0.

Let us differentiate (3.2) with respect to xJ. Since At and Ak are independent
of x* it follows that

(3.4) (d'jXmA.-dlIAJ = 0.
From this we have

3.5) AiX =0,

or

(3.6) dkAt-d}Ak= 0.

First we examine the case, when X is independent of xJ.

Theorem 2. |f the fundamental functions F and F* are linear in xk and
AKA(IkA, then thefunction X in (3.1) must be constant.
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Proof. If AKAd'kA, then from (3.4) we have d"X=0, consequently X is
independent of xJ. Because of (3.2) the coefficient of xk in (3.1) is

(3.7) Pg> := dkAt-d}A*k-X(x, x)XXA;-a}AK = 0.

Furthermore, on account of (3.3) Pfs> is a polynomial of x‘ and it vanishes identi-
cally, that is P,!3 has the form

(3.8) Pjs) := PYL(x, X)xJIxk+ P~ (x, X)xk+P\p(x, x) = 0.
We have Pfjk=PR] and by (3.3) it follows:

(39)

(3.8) is an identity in (a, x, x) ifand only if P$, Pjp and P)9 identically vanish;
thus we get

(312 (@ P} =0, (b) PP =0, (¢ =0.
If we differentiate (3.7) with respect to xJ then
(3.13) WjAf-d]d)A*k = (0) X)(okAi-?riAK) +X(©ka ) A - SLLLAK).

If we substitute the right-hand side of (3.13) in the first term of (3.12) (a) we have
after multiplication by 2:

djdkAr-d}dIAj + (d}X)(dkAi~d}AK-X(djdkAi-d:d-kAJ = 0.
The skew-symmetric part in i and kK of the last identity gives

We substitute the term Xd[kA” from (3.7), and so we get

(3.15) agnr-M)-~}(&n,-3;A) =o

which could be written in the form

(3.16) =0
Because of (3.7) this identity reduces to

(3.17) (djXXdiAt-dIA,) = 0.
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Since Ak"d'kA the second factor does not vanish, consequently 0}A=0, thus
A is independent of xJ, too.

Furthermore let us construct the skew-symmetric partin i and k of(3.12)(b)
and (3.10), respectively. After division by 3/2 we get

(3.18) [KdjAf-dIdjAZ-HxmdjAi-dIdjAbfixJ = 0.

This relation can be written in the following form:

(319) {A AT -g"-L xXar-"AA+A W A AA A =0
Because of (3.7) we also get

(3.20) NM%nNn-$n) =0

From the condition Ak7idkA it follows that

(3.21)
thus A=const. Q. e. d.

Remark. The case A=const. has been also discussed by A. Moor ([2], §3).
In his discussion the equality A= const. was not a direct consequence of the identity
Si(F*)—X(x)Si(F), but was stated as a separate condition. In this way he obtained
for F* the form:
d*S
XF+ dt

Furthermore we examine the case (3.6). Then Ak=dkA and from (3.2) Ak=dkA*
is also satisfied, so

(3.22) F* (X, X, X) = dkA* (x, X)xk+B*(X, X)
and
(3.23) F(x, x, X) = QKA (X, X)xk+B(x, X).
Let (3.22) and (3.23) be substituted in (1.4), then it follows that
(3.24)

(dkdiA*+d\dkA*+d\d'kdj A*xi -d\dkB*)xk+diB*-d\dkB*xk+d\dkdj A*xi xk-
- X(x,x,X){(dkdiA +a\gKA +d\d\djAxj -d\d kB )xk+diB -d\dkBxk+d\dkd] AxixK} = 0,

and this corresponds to (1.4).
Finally we shall consider the following special case: Ak= aKA(x), AK~aKA*(X).
Because of (3.23)

(3.25) F(x, X, X) =B(x,x )+ """,

so the extremals of the two fundamental integrals jF(x, x, x)dt and JB(x, x)dt

are identical, since the addition ofan exact differential to the integrand obviously cannot
affect any extremals.
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Furthermore, if 2=2(x, X) and Ak=g'nA(x), Ak=dkA*(x) then from (3.24)
follows directly
(3.26) &i(B*) = A(x, x)é?i(B),

therefore our equivalent problem reduces to that case which was examined by
H. Rund in [3].
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SYNTOPOGENOUS SPACES WITH PREORDER. |
(CONVEXITY)

K. MATOLCSY (Debrecen)

The present paper is a member of a sequence of notices dealing with syntopo-
genous spaces equipped with a preorder. Starting out from the analogous properties
of topological ([11]), proximity ([14]) and uniform ([11], [12]) ordered spaces, this
direction of the research was taken the initiative by Burgess—Fitzpatrick ([1]—I[3]).
The examinations of this publication connect with the results of these authors, and
study two general types of convexity of preordered syntopogenous spaces.

I am very grateful to Professor A. Csaszar for this valuable advices.

1. Increasing and decreasing spaces

A preorder A on a set £ is a reflexive and transitive relation on E, the pair
(E, S) is called preordered space. The graph of the preorder = is the set G(—
defined by
G(==) = {(x, Y)EEXE: x S y}

A mapping / of the preordered space (E, S) into a preordered space (E\ *')

is said to be preorder preserving (inversing), ifx Sy implies f(x) s'/(y) {fi})" f(x))

for every x,ydE. The product of the preordered spaces (Eh w.) (/c/” Q) is a pre-

ordered space (E, *), where E= 'er’ and (x,)S(y;) iff x;~ ;y; for each /£/.
[

A preordered syntopogenous space is a triplet (E, £E-&) consisting of a set E,
a syntopogenous structure Y (see [5]) and a preorder & On E.
Defining, for any <65"; the set

G(<) = {x Y)EEXE: x<E-y),
we obtain the graph
G(SE)= n{G(<):

of the preorder generated by Y ([1], 3.2).
A preordered syntopogenous space (E, =) (or the syntopogenous structure
S? on (E, s=)) will be called increasing (decreasing) iff, for G= G(s),

GcG(y) (G-1c G(sf)).
(Instead of the term “increasing” in [J—[3] SP was said to be “s-inclusive”.)
(1.1) Theorem.

(1.1.1) A syntopogenous structure coarser than an increasing (decreasing) syntopo-
genous structure is also increasing (decreasing).
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(1.1.2) The syntopogenous structure ST is increasing (decreasing) iff so is each of
the structures STP, ITh STL STtp and STh.

(1.1.3) ST is increasing iff STC is decreasing.

(1.1.4) Let f be a preorder preserving mapping of a preordered space (E, L) into
the preorderedsyntopogenousspace (E\ ST', s'). | f the latter space s increasing
(decreasing), then (E,f~x{ST), s) is also increasing (decreasing).

(1.1.5) If under the remaining conditions of (1.1.4) f is preorder inversing, then
(E,f-\ST'\ s) s decreasing (increasing).

(1.1.6) The supremum of any number of increasing (decreasing) syntopogenous
structures is also increasing (decreasing).

(1.1.7) Theproduct ofany number ofincreasing (decreasing) preordered syntopogenous
spaces is also increasing (decreasing).

Proof. (1.1.1)—(1.1.3) is obvious by [1], 3.2.

(1.1.4) . Suppose that (E',6T'-s") is increasing. If x,yEE, x<E—y fo
==/ _1(<)> where <ffIT', then f(x)<.'"E'—f(y) (see [5], (6.1), therefore
f(x) fIf(y), hence xLWLy. This shows that G (S)cG (f~1(IT"). If (E',ST', *")
is decreasing, the proof is similar.

(1.1.5) is analogous to (1.1.4).

(1.1.6) : Put IT=V MU where is an increasing syntopogenous structure on

ier

the preordered space (E, S) for any /E£/. Then ffKIT implies G(IT)czG{ITi)

for every ffl, so that G(IT)<z M G(ff) (cf. [1], 3.2). Conversely, if (X, y) $G{IT),
an

then x<E—y for some <CY¥Y. Putting -:(_LiJ -=)«, where Affffj, iffl

r
(1"j~n), we obtain x * E —y for some index j, sjo that (x, y)(fG(If.), therefore
n<7(")cC(”). In view of G(S)cG") (/a), from here G (*)cf| G(")=

i£l i£l
=G(ET) follows. The decreasing case is similar.

(1.1.7) : The projections of the product onto its components are preorder
preserving, hence (1.1.4) and (1.1.6) can be applied (cf. [5], (11.4)). |

In a preordered space (E, S) a set AczE is said to be increasing (decreasing)
iff xEA and xSy (ycSx) imply yBA. The smallest increasing (decreasing) set
containing an arbitrary XczE is i{X)={y£E: x"y, xEX) (d(X)={ylE:y"x,

XEX)).
Let us denote by <' (<") the biperfect topogenous order generated by the
system of all increasing (decreasing) sets of (E, sd), and put ={<tand £IS=

= {«% (cf. [5], (2.1)). Then we have:
(1.2) Theorem (cf. [1], 3.5).

(1.2.1) aff (TTff) is an increasing (decreasing) biperfect topogenous structure on
(E, a), and dP6e—I£N.

(1.2.2) A syntopogenous structure IT is increasing (decreasing) on (E, S) iff
ET<WS (IT<LT).

Proof. By [1], 35 generates that is G{")=GffUff). A set AczE is
increasing iff E—A is decreasing, therefore d/ff=£T”, and from (1.1.3) it follows
that Ufg is decreasing. If IT is increasing (decreasing), then <I1IT, A<B implies
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i(A)czB (d(A)czB), hence A<B (A ~="B), sothat Sf<adH (if <iff). The converse
statement follows from (1.2.1) and (1.1.1). |

(1.3) Remarks. For the “classical” topological structures we have the following
connections (see also [1], [2], [9], [10], [13], [14], and [11], p. 58).

Let (E,if, S) be a preordered syntopogenous space, and let .S and LU
denote the classical topology, the quasi-proximity and the quasi-uniformity as-
sociated with iftp,if' and ifb respectively. Then

(1.3.1) G(if) = {(x, y)EEXE: xEyT} = {(*, y)EEXE: {x}<5{y}} = N{C/: Ui*U}.
The following statements are equivalent:
(1.3.2) (E, if, ~) is increasing (decreasing).
(1.3.3) Every T-0pen set is increasing (decreasing).
(1.3.4) Every T-closed set is decreasing (increasing).
(1.35) x"y (x"y) implies XxEyT
(1.3.6) A, BcE, i(A)f)d(B)X 0 (or d(A)C\i(B)X 0) implies AOB.
(1.3.7) x"y (x™y) implies {x}6 {"}.
(1.38) x"y(x"y) implies (x, y)(LU for any |

(1.4) Example. Letus consider the syntopogenous structure J on the naturally
ordered real line (R.s) (see [5], (7.12)). Then (R,f, =) is decreasing, and
(R, f ¢, S) is increasing, ¢

(1.5) Lemma (cf. [5], ch. 12). Let (p be afunctional family on the preordered
space (E, S) consisting ofpreorder preserving (inversing) functions. Then (E,ifv, &)
is decreasing (increasing).

Proof. Let us now denote by the order of the real line. If (x, y)$G(if9),

then x<MEE—y for some g=>0, which means that /(x)+6S,/(y) for a suitable
f€<? f(y)érf(x) implies x*y (x£y), sothat G (S)_1cG(",) (G(tE)<zG(5%)). |

(1.6) Theorem. The preordered syntopogenous space (E, if,=) is decreasing
(increasing) iff each iff,f)-continuous real function is preorder preserving (in-
versing).

Proof. Suppose that (E,if, &) is decreasing and / is an (ff, ,/)-continuous
function. If f(x)-0rf(y) for some x, yEE, then f(y) <eR—(x) with a suitable
e>0. In this case yf~1(<9QE—x, consequently (y, x)*G (f~1"))ZDG(if)T>G(") 1
by f~\J)<if. Thus xdy, i.e. [/ is preorder preserving. Conversely, assume
that every (if, J (-continuous function is preorder preserving. Then there is an
ordering structure @® on E such that iftifg, (see [5], (12.37)). @ implies
that / is (if, ./(-continuous, and because of our condition it is preorder preserving.
Henceg, isdecreasing on (E, LL) for each <pE®, and by (1.1.6) so is the structure

~Feh=y . The other statement is analogous, ¢

In [2], Burgess—Fitzpatrick observed that, for any preordered syntopogenous
space (E,if, S),

ifu= V{¥’.(E,if', ») isincreasing and Sf*<if}
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is the finest of all increasing, and
ST1= V {ST" (E, ST', =) is decreasing and ST'<ST)

is the finest of all decreasing syntopogenous structures coarser than ST. They will
be called the upper and lower syntopogenous structures of (E, ST, g). We have the
following generalization of [2], 3.1 and 3.2 for arbitrary ordinary operations ([5],
p. 74):

(1.7) Theorem. Let k be an ordinary operation such that STk< STtb for any
syntopogenous structure ST. Then,for each preordered syntopogenous space (E, ST, ),
we have STuk<STku and STIK<STKL. If ST~STk, then STu~SStk and STI~ST k.

Proof. STu<ST implies STuk<,STk. By (1.1.2) STub is increasing, therefore
from STk< STub andfrom (1.1.1) we getthat STik isalso increasing, thus STWk<.STku
If ST~STk then STWKk<STKUAST", on the other hand STu<STW thus STu~STWk
The case of 1 is similar. J

(1.8) Theorem (cf. [2], 3.1). For any preordered syntopogenous space (E, ST, s.),
we have STlc~Sfas and STuc~STdl.

Proof. STlc<,STau and STW<STd by [2], 3.1. Let us apply these inequalities
for ST'=STC Then STQ# ST*=ST'WWX ST'clc=STecle= STX  and similarly  SToe

__Cf'l_ Cflcc™ y?'cue__ Cfccuc__ cfuc [o]]

(1.9) Theorem. For any preordered syntopogenous space (E, ST, &), STtu~STu
and STx~STIt.

Proof. Assume ST=STtut There exists a totally bounded syntopogenous
structure S0 on E such that STAST (see [5], (19.38)). ST is increasing on (E, &),
thus so is S0, too (cf. (1.1.1)). Since ST* is topogenous, SI—STwt~STiu by (1.7).
From this STASTAKSTJ hence owing to [5], (19.39) SIUST. But this means
SD<STY hence ST,U'STA<ETut. The inverse inequality can be found in (1.7). For
1 the proof is analogous. |

(110) Example. For k—p OF or cpku~cpuk an(j cpkircpik cannot be alwayS
true. In fact, we give an example for a symmetrical topogenous structure ST on
the naturally ordered real line (R, S) suchthat, for k=p or by STku—aJs ,STK<—SEN
(see (1.2)), but yrikk=£Tlk is equal to the indiscrete syntopogenous structure <R
on R (see [5], p. 86), which is not finer than and STs.

Put, for a given natural number n,
njun, + °°),

and define, for A,icR, A<(,B iff AczB and AM\Hn?t0 implies H,,czB. Then
st—{<(,,,: NEN} is a symmetrical syntopology on R (in fact, -H(nU <(mC <(*),
where A= max {u,m), and -,)C <<,)), consequently STAST1 is a symmetrical
topogenous structure. For any x€R there exists N such that x$H,,, and in
this case {x}<(,){x}, thus stp—q)r is the discrete syntopogenous structure of R,
sTb=sTpb=06)r IS also true, and from (1.2) it follows that stku=q sf=a1”™ and
STkl=% =S Ts .
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For the determination of Z7% let us consider an increasing syntopogenous
structure ¥’<Z on (R, =). Put <€¥’, <€, <€ <® and A<'B. Dis-
regarding the trivial case of A= &, suppose A <{C <;D<;B. From (1.2.1) i(4)cC
and i(D)cB. For some néN we have C<(,D, hence &=i(4)NH,cCNH,
implies H,cD. But in this case R=i(H,)ci(D)cB, that is B=R. This shows
<=4 R» hence ¥'=0p, thus F*"=0x. The proof of J'=0 is very
similar. As Oy is biperfect, we have 7*=0r=7" for *=? or b. |

In the following theorem another construction of &* and &' will be given
with the help of ordering structures defined on (£, &, =). First of all it is convenient
to formulate a lemma based upon the results of ch. 12 of [5]. The definition of the
used notions can be found in [5] (p. 158, 160, 161, 165 and 167).

(1.11) LEMMA. = For an arbitrary syntopogenous space (E,%) the ordering
structure @ consisting of all (&, F)-continuous ordering families is saturated, and
we have & ~Fp~ ) Fp={<,,¢: 9€P, e>0}.

PED

PROOF. Assume ¢, @y, ..., 9,6 ®. Then .9,’,‘<;V by [5], (12.33). Putting
0=[0y, @s, ..., @,], from [5], (12.21) we get %, ~V <, thus from [5], (12.33)

@€ @ issues, hence @ is saturated. In view of [5], (12.10) ®=9o", therefore
So~U &, by [5], (12.27). Finally because of [5], (12.35)—(12.37) ¥ ~% holds. |§
Y

(1.12) THEOREM. Let (E,%, =) be a preordered syntopogenous space. Then
the set ®'(9”) of all(¥, F )-contmuous ordering families consisting of preorder preserv-
ing (inversing) functions is a saturated ordering structure, and &'~y (F*~Sp.).

Proor. If ¢@€@’, then &, is decreasing by (1.5), and owing to [5], (12.33)
we have ¥,<% Thus &, <yl consequently ¢ is (&, .ﬁ)—contmuous On the
other hand if ¢ is (.7‘ J)-continuous, then any feo is (&, J)-continuous,
hence it is preorder preserving by (1.6). Further ¥'<% implies that ¢ is (%, J)-
continuous. Summing up, @’ is identical with the ordering structure of all (&, £)-
continuous ordering families, hence (1.11) can be applied. For @” the proof is
analogous. [

2. Two general types of convexity

In a preordered space (E, =) a subset C is said to be comvex iff x, y€C,
z€E, x=z=y imply z€C. The smallest convex set containing an arbitrary subset
X of E is ¢(X)={z€E: x=z=y for some x, ycX}. We have c(X)=i(X)Nd(X).

Let us now consider the family

6, = {<x,c: Xc CC E,C is convex}

of elementary topogenous orders (see [5], p. 42), and let “ be an arbitrary ele-
mentary operation ([5], p. 69).

The preordered syntopogenous space (E, &, =) will be called weakly °-convex
iff, for any =€, there exists a family & =&, such that

2.1) (<}<é" < 2.
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On the other hand, (E,if, will be said to be “convex iff

(2.2

(For a=\p or b the latter definition is similar (but not equivalent) to that of
Burgess—Fitzpatrick [2].) We shall use the term “(weakly) “-convex” for a synto-
pogenous structure on a preordered space, too.

(2.3) Lemma. If (E,if, *) is (weakly) ““convex, then if ~if*

Proof. if <if* is always true. If (E,if, &) is weakly “-convex, then from
(21) {<'P<<?=<?< 9" follows for any < £if (with a suitable thus
if“<if. If the space is “-convex, then ¥ “~(Y “YY" Uk ("“VY)“~" |

(2.4) Lemma (cf. [2], p. 21). The preordered syntopogenous space (E, if,=)
is “convex iff if ~ (if Yiff)*, where if (iff) is an increasing (decreasing) syntopo-
genous structure on (E, S).

Proof. The necessity is obvious. Conversely, if this condition is fulfilled by
if, then ifx<ifu and ifL<ifl (in fact, ift< (ifxy iff)<(if~ifff<if for /= 1, 2),
therefore if ~ (if Miff)“< (ifu\lifl)“<if“ But Sfa~(if \iff)“=(ifx\if.f)“~if, so
that (ifuvif)«if. @

(2.5) Lemma. If the preordered syntopogenous space (E,Sf, =) is (weakly)
““convex, and “ is an elementary operation such that “““ is also an elementary opera-
tion, then (E, ST*, g) is (weakly) “““-convex.

Proof. If SczSc satisfies (2.1), then {<* } <,if* is also true. Analo-
gously, if if~(if“\iifd« then if* ~(if“\if )= (cf. (24). |

(2.6) Theorem. Let (E,if, s) bea (weakly) ““convex preordered syntopogenous
space. Then (E,if'*; ) isalso (weakly) ‘““convex.

Proof. If (E,if, =) isweakly “convex, then we can choose a family S<c Sc
for every <€«9" such that
{~I< S e<ES.

Putting S—U {<< <€7}, we get if<U{*:<iif}<if, so that ifta=S"“
by [5], (8.49). In view of it issues from this that ifta is weakly “-convex.

If (E, if, L) is “convex, then from [5], (8.50), (8.101) it follows that ifta=
= (if\jifl)ta= (if\liflta~ (ifutv ifl)“~ (iftu\fif,Da (see (1.9)). |

(27) Theorem. Let {if: L ly=0}beafamily of (weakly) ““convex syntopogenous
structures on the preordered space (E,S). Then (_\_/I Hi)“is also (weakly) ‘“convex
il

on (E, S).
Proof. Let if be weakly “-convex on (E, ~). If if:{f€f|ifff, and <6.9*
i
is arbitrary, then for a natural number n
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Put <$—U where the families SjC.Sc are chosen in accordance with {-<y}<
<Sf<Sf\}| r 1=j=n. Then ScSc, further

Sta=((@Sfj ~JUS'f) =8,
hence

{<}< r<(u <r,

i.e. Sf is in fact weakly “-convex.
Let Ci be “convex on (E, s) for any ifl, and put <S":(]\a/"Y— Suppose

S(—y and V #'s Then Sfx is increasing, 5" is decreasing on (E, s) by
(1.1 6) Applying [5], (8 99) and (8.97), we obtain

St~ (V (5fV#')*)“~ (BEV"D°,

so that 5" is “convex by (2.4). ¢

(2.8) Corollary. ‘““convex preordered syntopogenous space is weakly
‘fconvex.

Proof. Let (E, O g) be an “convex space and .9} (5Q be an increasing
(decreasing) syntopogenous structure on (E, ) such that V.%)“ If
<C-9 (®) and <'¢~1 (5Q are suchthat «<C <'2 then implies 1 <'£><T?,
and we can find an increasing (decreasing) set C in (E, S) for which DczCczB
(see (1.2)). Then Ac'C, hence S—{-"xx\X-=!IC,C s increasing (decreasing)}
is a family of elementary topogenous orders such that SczSc (increasing or de-
creasing sets are convex), and {-=}<<f'< {<'}. This means that ZIX and ~ are
weakly ‘“convex, consequently so is £X\£f2, too (see (2.7)). Finally Sf~(«9JV SSff
is weakly “-convex by (2.5). |

(2.9) Theorem. Let f be apreorder preserving mapping of the preordered space
(E, ") into a (weakly) *“convex preordered syntopogenous space AN,
Then (E,f~x(R”"), &) is also (weakly) ‘“convex.
Proof. Assume that (E'.£T'"") is weakly “convex. If then there
exists a family S'aS'c suchthat {<}<Sna<y”. Because of [5], (6.19) we have
f~x{S) = -AX,CE&}-

If C is convex in (E', ), then / -1(C) is also convex in (E, ”), therefore
f~x(S")czSc. From here by f- 1(S"),a= f-1(S,ta), we get {/“1( 0} </ 1(<Na<
<f~\sr')e
Let be *convex. Then/-A"/)~/_1((**V",)°)=1_1(<\"V
V’\’)“-(/ 1@V 1-1(5%i))a (see [5], (9.10)). Since f~x(&') is increasing,
~1(.9") is decreasing on (E, S) by (1.1.4), from (2.4) it follows that / _1(<9"
|s “convexon (E,S). E

Acta Mathematica Hungarica 43, 1934



354 K. MATOLCSY

(2.10) Theorem. Suppose that (Eh if, S;) is a (weakly) *convex preordered
syntopogenous spacefor idl?+ 0. Put L =)|_(|I Et, if = (X >B)*and let = be the product

h
preorder on E. Then (E, O aiso (weakly) “—conlvex.

Proof. The projections pr,:£ —£j are preorder preserving, therefore (2.9)
and (2.7) can be applied. |

Let us recall that an elementary operation “is said to be symmetrical iff ¢'= *c
(cf. [5] (8.1), (8.2)).

(2.11) Theorem (for “= “ see [1], 4.2). Let “be a symmetrical elementary opera-
tion. Then (E, if, =) is “convex iff so is [E,ifc, &). jn this case (E,ifg =H
is also ““convex.

Proof. ¥ ~(A"YY ") implies ifct {if“V-AT)0=iffy iflf “= {if'tVifl)*~
~ (ifdVifa)“= (KTAV STA)* (see (1.8) and [5], (8.102)).

If (E,if, ~) is “convex, then because of ifsa~{if VEfda(2.7) gives that if“
is “convex. |

(2.12) Theorem. Let (E, if,”) be a symmetrical preordered syntopogenous
space. Then the following statements are equivalent:

(2.12.1) if is ““convex on (E, =).
(2.12.2) if ~iff*, where if, is increasing on (E, ").
(2.12.3) if ~iff* where if,, is decreasing on (E, ™).

Proof. (2.12.1)=r>(2.12.2): By (1.8) if ~(ifu ifl)*~(ifuy A

(2.12.2) ~*(2.12.1): If if ~iff*, where if0 is increasing on (E, "), then iff
is decreasing, and if ~iff“~ (#,Viff)*, hence if is “-convex by (2.4).

(2.12.2) <=>(212.3) by (1.1.3) and s=c ¢

3. Weakly convex and locally convex spaces
In this section we study the corollaries of the general theory of weakly “convex
spaces in the cases of “=I,por b
(3.1) Lemma. The preordered syntopogenous space (E, if, S) is weakly “convex
m m
ifffor every < iif thereexists <fiif suchthat A<B impliesJC U 4U Q C 5,

i=l1 i=1
where m is a suitable natural number, X, <iCt, and C, is convex in (E, LL) for
each 1"i"m .

Proof. Suppose that (E,if,=) is weakly “convex, and put <iif. There
exists SczSc and -sjEif such that {<}<<< {=¢ Disregarding the trivial
cases of A=0 or B=E, form A-=B

Ac CI P\xu, Uhcﬂc B,

i=1j=1 i=1j=1
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where C;; is convex and X;;<,C; (1<z<m 1=j=n) by [5] (5. 54) Then
Ci= ﬂC,, is convex, and with X;= ﬂ)t,, we have ACUX,-, UCiCB,
i=1 i=1

further X;<,C;, because < is topogenous
Conversely, if <,€& is chosen for <€% in accordance with the condition,
then the family
6={<x,c: C isconvex and X<,C}

(once more by [5], (5.54)) has the properties £ &, and {<}<é'<{<.}. §

(3.2) LemMA. The preordered syntopological space (E, ¥, =) is weakly P-convex
iff, for each <€, there exists < €% such that x€E, x<B imply x<,CCB,
where C is a suitable convex set in (E, =).

ProOOF. Assume that (E, ¥, =) is weakly P-convex, <&, and choose
<€ such that {<}<87<{<;} for some &£cé&,.. This means <C <fC <,
where < =(U&)%. Put x<B. Then x<yB is also true, consequently

m m m m
g O ij> EJ O ij o B Xij =1 C

ij»
By

where C;; is convex (1=i=m, 1=j=m;). Since, for at least one i, x¢€ ﬂ Xij»

we obtain that with the notation C = ﬂ C;; the set C is convex and x<,CCB.

Conversely, suppose <€, and lct us choose <;€& for < in accordance
with the condition. Then considering the family

& = {<x,c: C is convex and X <, C},
we have
=cUeyrc(UaPC<fr=—<,

that is {<}<67<, so that (E, &, =) is weakly ?-convex. |
(3.3) THEOREM. Any weakly b-convex space is weakly P-convex.

Proor. If (E, &, =) is a weakly P-convex preordered syntopogenous space,
then #~%° by (2.3). For an arbitrary <€& let us consider §Cé&, and <€&
such that with the notation <,=(U?&)%, <C <S€C </, finally put <?C <&
x<B implies x<jB, which means x<,E—y for any y€E—B. Because of =%
there exists <y, c,€6 so that x€X,<'C,cE—y. Then C=N{C,: y¢E—B}
is convex, and by Ll <; we have x<1CCB On the basis of (3.2) this gives
that & is P-convex on (E, =). §

(3.4) THEOREM. Let (E, ¥, =) be a preordered biperfect syntopological space
and U be the quasi-uniformity associated with &. (E, &%, =) is weakly P-convex iff

(3.4.1) for every UCU there exists U,€U such that
c(Uy(x)) € U(x) for any x€E.
If & is symmetrical (i.e. U is a uniformity), then (3.4.1) is equivalent to
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(3.4.2) for every IKfU there exists U faJ such that
(X, Y)EUX, x =z =y imply (X, z)e U.

Proof. Let (E, if, LL) be weakly ~-convex and Uid) For < = <L, there
exists an order satisfying the condition of (3.2). Put Ul=U<L Then
yrU(x) means x<E—y, thus x*"C cE —y for some convex C. We have
Ul(x)c:C, therefore c(Ufx))tzC, hence y$.c(un(x)). Conversely, suppose that
(3.4.1) is satisfied by °U Then, for an arbitrary < 6if, let us choose U fdl
corresponding to (3.4.1) with U=U<. Put m=-cVI. x</i means U(x)<zB,
but because of (3.4.1) the convex set C =c{U1[x)) has the property x-c*"3/c
C<zU(x)(zB, therefore if is weakly p-convex by (3.2).

It is obvious that (3.4.1)=>(3.4.2). Now assume that % is a uniformity satisfying
(3.4.2) . For U4 find UfW suchthat U'oU'aU, for U' by (3.4.2),
finally consider with the property t/jof/jc:t/'M U". Then zdc*Ufx))
implies «6 Ufx), vd Ufx), u”z*v. (u,v)EU" and (3.4.2) give (Uu,z)E£ U (x, W€
£f/iCi/' is also true, hence (x,z)i U, thatis c{U1{x))c:U(x). |

(3.5) Examptes. A preordered topological space is weakly "~-convex iff it is
associated with a Nachbin’s locally convex “classical” topology (see (3.2) and [11],
p. 26; cf. also [3], 3.6).

In [7], Fedorchuk StLrJndied proximity relations 8 on a linearly ordered set E, for

which A8B implies Ac: _|Jlot(cE—B, where Ox,02, ..., Om are closed intervals.
1=

This property is similar to that of the proximity relation associated with a weakly
-convex symmetrical topogenous structure (cf. (3.1)).

In [4], Carruth investigated ordered metric spaces with the condition that
xiz<y implies g(x, z)< g>x y). The uniformity of such a space satisfies (3.4.2),
therefore the associated symmetrical syntopology is weakly "-convex. |

In [3], Burgess—Fitzpatrick introduced the notion of a locally convex pre-
ordered syntopogenous space (E, if, ~) as follows ([3], 3.1):

(i) for each <i?if there exist -f£if and AtzEXE such that G(<)czAc:
cG (<), and A(x) is convex for every XxEE;

(ii) for <6” thereis -ffif suchthat x<z? implies x-f'C<"B for a suit-
able convex set C.

This definition can be essentially simplified.

(3.6) Lemma. For an arbitrary preordered syntopogenous space (E, if,=)
the implication (ii)=>(i) always holds. The space in question is locally convex iff,
for each <iif, there is <ifif such that x-<B implies x<jCcR for a convex
set C.

Proof. Suppose (ii) for (£, if, S). Define AczEXE as follows: (x,y)EA
iff yiC for every convex set C such that x -<"C. One can show that G(-=")<cAc
cG (<) and A(x) is convex for xEE. In fact, (X,y)*G(<) means Xx<E-—y,
therefore x<-"Cc.E—y for a convex set C. Since y$C, (x,y)$A. If (x,y)$A,
then there exists a convex set C such that x<"C, and y$C. Then x"fE—y,
thus (x, y)*G(<"). Finally, if y,zEA(x) and ySu”~z, then for each convex set
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CCE, x<"C implies y,z€C, consequently ucC, but this yields (x, u)€A, that
is u€ A(x).

Passing over to our second statement, let us remark that (ii) is obviously stronger
than the present condition. Conversely, if <€%, and <€% with <C <%
further <,€% is chosen for <" so that

x<'B,=> x<,CcB,, where C is convex,
0 1 0

finally if < U< C <"€¥, then x<B implies x<'B,<'B. From this x<,CCaB,,
so that x<"C <"B, where C isconvex. J

Comparing (3.6) with (3.2) we obtain a characterization of locally convex
spaces by weakly convex spaces.

(3.7) THEOREM. A preordered syntopogenous space (E,, =) is locally convex
iff (E,&P, =) is weakly P-convex. [j

(3.8) COROLLARY. A preordered syntopogenous space (E, %, =) is locally
convex iff so is (E,%?, =). §

4. Convex spaces

Let us observe that a preordered syntopogenous space (E, &, =) is convex
(in the sense of [2]) iff it is - or ?- or -convex. Now we can describe the fundamental
properties of a larger class of preordered syntopogenous spaces containing every
convex space (cf. [2], 4.2, 4.3, 4.6, and [1], 4.2,5.2, 6.2, 7.6).

(4.1) THEOREM. Let (E, ¥, =) be a preordered syntopogenous space such that
S ~F* where *=° or *=" for an elementary operation °, which fulfils <*C<°
for every semi-topogenous order <. Then

4.1.1) (E, ¥, =) is %comex iff there exist syntopogenous structures $,=%* and
SH=%F such that & (%) is increasing (decreasing) on (E, =), and &~
~(AVR).

(4.1.2) If & is symmetrical, then (E, ¥, =) is “-convex iff & ~%* for an increasing
or decreasing syntopogenous structure =% on (E, =).

(4.1.3) In the case of & =" the symbol = can be written instead of ~ .

PrOOF. (4.1.1): The sufficiency of the condition is clear even in the case of
k=t (see (2.4), (2.5), (2.6) and [5], (8.101)). Conversely, if (E, &, =) is %convex,
then & ~Frn(F"V LY =(FL* VI Y =(F*V L )k (see [5], (8.50), (8.99) and
(8.100)). Put =" and S%=". ¥ isan ordinary operation, for which #*<5*
(cf. [5], (8.23), (8.26)), thus from (1.7) #A~F* and H~F", sothat & is increasing
and % is decreasing. Finally from (K,) of [5], p. 74: #=%F and H%=%F.

(4.1.2): Suppose that the condition is satisfied by & For *=¢ & is *-convex
by (2.12). For ¥=" we have & ~F=%* (cf. [5], (8.51)), thus we can refer
to (2.12) and (1.1.2). Conversely, let (E, &, =) be “convex and &£ ~%*° e.g.
for an increasing % (see (2.12)). Then ¥~ SIS L =F~F (see (2.3)),
therefore & ~F*~ Fusak=guwk By the train of thought followed in the proof
of (4.1.1), from (1.7) &“~" can be obtained, thus & =" is increasing, %=Lk
and Lo SIS =N,
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(4.1.3) isclear, @
We can complete the above theorem as follows:
(4.2) Corollary (cf. (3.3)). Any b-convex space is p-convex.

Proof. If (E, if, s)is "-convex, then if~ifb by (2.3). Because of (4.1.1)
if (<N ifi)b fif, where ifx (fi.) is an increasing (decreasing) biperfect
syntopology on (E, S) (see [5], (8.102)). ¢

(4.3) Exampte. We show an easy example for a locally convex but non convex
topology. Let (R, if, ) be the naturally ordered and topologized real line. Then

G = {0,R}U{Kc R: Vis .l'-open, 0$F}

is the system of the open sets for another topology ST' on R that is obviously
locally convex. Suppose x,y,zd R and 0 Then the open interval (x,z)
is a .~A"-neighbourhood of y. If if' is convex, then y6/ILUc(x, z), where 1(D)
is an increasing (decreasing) ~"-open set (cf. e.g. [2], p. 21). yeD implies 0£D,
but in view of that the only .A"-neighbourhood of 0 is R itself, we have D=R
Thus 1a(x,z), which is impossible,

Remark. Convex classical structures were studied in [9]—[14]. Their connections
with convex syntopogenous spaces were cleared by Burgess—Fitzpatrick in [1]—[2]. |

In order to show a remarkable categorical property of “-convex spaces, let us
consider the following lemma:

(4.4) Lemma. Let “ be an elementary operation and (g, if, =) be a preordered
syntopogenous space with if~ifa Then (if*Vifd« is the finest of all ““convex
syntopogenous structures on (g, S) coarser than if.

Proof. (ifus ifd«is in fact ““convex by (24). if"<if and ifi<if imply
sT™Vify«<if«~if. Let ifi be another “-convex syntopogenous structure on (g, S)
such that fi<if. Then ify<ifu and ifl<ifl, consequently fi~(ifiy V-fil)‘<
<(if“Mifd~ §

Let us recall that in the theory of the categories a full subcategory B of the
category A is said to be (epi)reflective in A iff for any object AdA there exists
an object RdB with an (epi)morphism r: A-+R of A such that whenever BfB
and / : A-*B isa morphism of A, there is a unique morphism g: R—B of B for
which f —gor. R is called the (epi) reflection of A in B with the (epi)reflector r.

The preordered syntopogenous spaces (as objects) and the preorder preserving
continuous mappings (as morphisms) form a category denoted by Ps. For an
elementary operation “ let Ps(@ be the subcategory of Ps consisting of those
preordered syntopogenous spaces (E,if, &) and their morphisms, for which
if~if« Letus denote by C(@ the subcategory of the “-convex preordered synto-
pogenous spaces in Ps(@) (cf. (2.3)).

(4.5) Theorem. C(@) is an epireflective subcategory of Ps(“k

Proof. C@ is a full subcategory of Ps(), i.e. every morphism in Ps(@
between the objects of C(@@) is a morphism of C(@). Suppose (g, if, *")EPs(@),
and put if*—if"Vif)~ We prove that (g if*,S) is the epireflection of
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(E,%,=) in C@, and the corresponding epireflector is the identity mapping
of E. In fact, (E,&* =)€C®, and idg: (E, &, =)—~(E,&*, =) is an epi-
morphism of Ps@ by (4.4). If (E’,¥’, =)€C9, and f:(E, &, =)~(E, ¥, =’
is a morphism of Ps®, then there exists a unique mapping g: E—~E’ such that
f=goid; (namely f=g). g7 (&) =f"1(¥’) is “convex, and it is coarser than &,
hence g H(¥)<F* (see (2.9) and (44)). Thus g:(E,&* =)~(E, ¥, =)
is a morphism of Ps“. J§

An arbitrary preordered syntopogenous space (£, ¥, =) will be called sym-
metrizable iff there exists a symmetrical ‘-convex syntopogenous structure &% on
(E, =) such that %<9 <9%p. This is a generalization of the notion of a sym-
metrizable syntopological space introduced by Csészér [6] (cf. [8]). (In fact, let us
consider a syntopology & on the set E equipped with the trivial preorder =.
Then every syntopogenous structure on (E, =) is both increasing and decreasing,
consequently it is ‘-convex. Thus (E, ¥, =) is symmetrizable iff <& <SP,
ie. S ~p for an arbitrary symmetrical syntopogenous structure % on E, which
is equivalent to that & is a symmetrizable syntopology.)

(4.6) ExampLE. Let (R, 7, =) be the preordered symmetrical topogenous
space of (1.10). Then (R, Z7, =) is symmetrizable, but (R, 7, =) is not. In
(1.10) we showed that TP=9yg, TP=%- and TP=%_. Let us now observe that
F=(UV L-)~UL. is a symmetrical -convex structure on (R, =) such that
JP=%p. On the other hand, if % is an ‘-convex syntopogenous structure on
(R, =), for which %' <7, then %*<T7"=0f and %*'<T'=0x (see (1.10)),
thus % ~F " VS '=0g implies that TS P=0x is impossible. [

(4.7) LEMMA.
(4.7.1) Any symmetrizable preordered syntopological space is P-convex.

(4.7.2) Any - or P-convex symmetrical preordered syntopogenous space is symmet-
rizable.

ProoF. (4.1.7): If (E, &, =) is symmetrizable and & =7, then, for a suitable
i-convex syntopogenous structure % on (E, =), < <SP implies S K FP=
=P <LHP, so that ¥ ~%pP, and from (2.5) we get that & is P-convex.

(4.7.2): If (E, &, =) is symmetrical and ‘-convex, then it is trivially sym-
metrizable. If it is symmetrical and P-convex, then on the basis of (2.12.2) & ~%?,
where % is increasing, consequently % is ‘-convex on (E, =).

We show that the notion of a symmetrizable preordered syntopogenous space
is a generalization of that of Nachbin’s uniformizable topological ordered space.
(In the following theorem we use the notation # =" of [5].)

(4.8) TaeoreM (cf. [11], pp. 52—53). The preordered syntopogenous space
(E, &, =) is symmetrizable iff <€ implies the existence of an (¥, 5°)-continuous
functional family ¢ on E, for which if x<V, then there are functions f, g€
such that f is preorder preserving, g is preorder inversing, f(E), g(E)[0, 1],
f(x)=g(x)=0 and max {f(y),g(y)}=1 for y€E-V.

In this case denoting by @ the set of all (¥, S°)-continuous ordering families
consisting of preorder preserving functions, we have 95<S <Y9gP. Furthermore,
95 is the finest of all -comvex symmetrical syntopogenous structures on (E, =)
coarser than . If & ~F?, theninstead of J° one can write H.
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For the sake of the verification of the theorem let us mention the following
simple fact:

4.9) Lemma. Let f be a realfunction on E and ¢ be a constant. Then, for
the function g=c—f, andfor any e>0, we have g~l(<e=/ -1(<8c.

Proof. For A,BcE, Ag~1(<t)B iff there exists /?£R such that Ac:
cg-1((—°°,p]) and g-1((—°°,p+e))cB. This is equivalentto £-/1 ¢/ _1((-«>,
c-p-e]) and / _1( ( - c-p))cE-A (cf. [5], p. 157). g

Proof of the Theorem. Let (E, if, #) be symmetrizable. Then £G<if <%
for a decreasing syntopogenous structure if0 on (E, €) by (2.12). Suppose <iif,
and put < C <op for a suitable In view of [5], (12.41) we can find an
(S0, .//continuous functional family (@@ on E suchthat A<O0B implies f(E)c
c[O, 1,f(A)= {0} and f(E —B)—{1} for some /E<p0. By (1.6) the elements of
€0 are preorder preserving. Further denote o0~ {L—: fE(pQ}. dmis {iff, J)-
continuous by (4.9), consequently the family <p=<,Udq0 is {iff ./'/continuous,
and because of iff<if itis {if, ./'/continuous. Now assume V. Then ;c<gpF,
that is .v<5F. With the help of [5], (3.44) it is easy to verify that sets B, B'cE can
be found such that x<0B, x<6"' and BHB'cV. Because of the choice of qO
there are f,f'£<p0 for which f{E),f'{E)c[0, 1], f(x) =0, f(E —B)= {1}, further
f'(E—B")={0} and /'(*)=1 Let us consider the function g=1—'. Then
/, g€<p, / is preorder preserving, g is preorder inversing, furthermore/*), g{E)c
c[0, ] and /(A)=g(x)=0. If yEE—V, then yEE-—B implies f(y)= 1, or
yEE—B" implies g{y)= 1, so that max {f(y), g(j;)}—L isalso true.

Conversely, let the condition be satisfied by if, and let & denote the ordering
structure described in the theorem &&f 0, since it contains any family < consisting
of constant functions). Every cpEd is {if, ./'/continuous, hence so is the family
—(p= {—£/€<?}, too. By (4.9) we have iff=if-( Since ./< ./s, these families
are {if, //continuous, so that ifp<if and if- p<if. From here iffrifriffA

-LfAy-vKif, and A= (V v (see [5], (8.102)). By (1.5), (1.1.6)

<p€
and (2.12.3) iff is symmetripczl and “convex.

After this we show that if < iffp. In fact, for a given < iif, let ¢ be the func-
tional family mentioned in the condition. For each e>0 choose an order -=efif
with
(*) [-4<ihc<(E

for each fE<p. Denote by ¢ the family of all bounded, preorder preserving real
functions/, which have the property (*) for every e>0. Then following the train
of thought to be found under the formula (12.38) of [5], p. 168, one can easily verify
that ¢ is an {if, ./'/continuous ordering family, hence GE®. Now suppose
x<V. Then there are f,gE(p such that / (g) is preorder preserving (inversing),
f(x)=g{x)=0 and max (f{y), g(/)}—1 for y£E-V. Lemma (4.9) and [5],
(6.8) give that f =1—¢g fulfils (*) iff so does g, therefore f,f'kd. Put
B=/-1((-°°, 1) and B'=g_1((-00, 1)). Then xf~\")B and '

E-B'=f -"{{— ,0D/"-U<i)/,-1((-~. 1))cE-nr,
that is x// 1(<D)dB,. This shows x<\ABC\B'cV. From here -=C<PC
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C<ines?, thus <V Fr<(V 7y =(V £P=(V %f*=%" (cf. [
PED PED [43 4 PED

(8.99) and (8.102)).

Further let &% be a symmetrical -convex syntopogenous structure on (F, =)
such that &% <. Suppose <€%', and let ¢ be an (¥, #)-continuous ordering
family consisting of preorder preserving functions on (E, =), for which <C<,,
for some &>0 (see (1.12) and (1.11)). Since % is symmetrical, ¢ is (&, S°)-
continuous, and by %<9 it is (¥, #5)-continuous. We have ¢@€@, hence
SIS, & is -convex, thus by (1.8) Hf~F'V S ~F VYV Sl ~ S5 <FF, so that
K<

Finally, if & ~%7? and if ¢ isan (&, #%)-continuous functional family, then
it is (&P, F°P)-, i.e. (¥, #)-continuous. Conversely, if ¢ is (¥, #)-continuous,
then by J*<# we get its (&, F*)-continuity. [

5. Convexity of compact and totally bounded spaces

It is an immediate consequence of (2.5) and (2.6) that if a preordered synto-
pogenous space (E, &, =) is (weakly) -convex, then (E,¥?, =) and (E, %P, =
are (weakly) P-convex (see also (3.3) and (4.2)), (E,¥", =) is (weakly) ‘-convex,
consequently (E, ¥, =) and (E, %", =) are (weakly) P-convex, too. The
inverse statements are not always true.

(5.1) ExampLis. On the naturally ordered real line (R, =) #=J% is P-convex
but it is not weakly *-convex. #'? is P-convex, but #* is not weakly ‘-convex.
In fact, ¢ is ‘-convex by (1.4) and (2.12), thus # =P is P-convex. H"P=
=S (see [3], p. 89), so that #'? is P-convex. Finally put #*={<}. Then, for
the set N of the natural numbers and for B= |J (n—1/2, n+1/2), we have N<B3,
ncN
but Nc |J C;cB (where the sets C; are convex) is impossible, therefore #*
i=1
(and a fortiori #) is not weakly -convex by (3.1) and (2.6). B

(5.2) THEOREM. A compact symmetrical preordered  syntopogenous space
(E, &, =) is weakly -convex, provided (E, %P, =) is weakly P-convex.

ProOF. Let < be an arbitrary element of &, and <,%, <€ <}. For
<, let us choose and order <;€% in accordance with (3.7) and (3.6), further
suppose <,C <3, where —,6&. If A<B, then A<,V <,B for some VCE,
thus x€V implies x<,C,cB for a suitable convex set C,. Let H,CE be defined
so that x<,H,<,C,.. Because of the inequality E—V<,F—A4, from the system
{H,, E—A: x€V} we can choose a finite subsystem {H,,...,H, ,E—A} which
covers E. Then

dc UH,, UGB, Hg=C,{(l=i=m),
i=1 i=1
therefore (E, &, =) is weakly “convex by (3.1). B

I can prove the corresponding statement for convex spaces only under an additio-
nal condition, and I do not know whether this condition is necessary or not (cf.

(1.10)).
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(5.3) Lemma. Let (E,if, S) be a compact symmetrical preordered syntopoge-
nous space such that SfuPASfPu ami SfI"~Sfpl. If (E,if” is "-convex, then
(E,if, S) is '-convex.

Proof. Sf"~(if"“\/if")"~(Sfu'v £fI")"= (£fu\Sf)". Since the structure
ifullifl js ajso compact by ifudifl<if, from Lemma 8 of [6] it follows that
if<ifunifl ie if~if\ifl |

The condition of the lemma is satisfied by any compact symmetrical preordered
syntopological space (see (1.7)), but since these spaces are totally bounded ([5],
(19.19)), we can state more than (5.3):

(5.4) Theorem. For a totally bounded preordered syntopogenous space (E, if,=)
the following statements are equivalent:

(5.3.1) (E,if, =) is (weakly) '-convex.
(5.4.2) (E,if, S) is (weakly) "-convex.
(5.4.3) (E, if', S) is (weakly) '-convex.

Proof. (5.4.1b>(5.4.2) by (2.5) and [5], (19.13).

(5.4.2) ~>(5.4.1): Suppose that (E,if, ) is weakly ~-convex. In view of
if~if", for let us choose an order <.,fif in accordance with (3.2), finally
assume <eéuif. If A<B, then there is a convex set Cx with r< (CjCS
for every xEA. Suppose x<2tf<2Cx. Let (<2 denote the system of those
sets PcE, for which X<.fY, XOP f-0 imply PczY (see [5], p.- 220). By [5],
(19.17) a finite subsystem &' of ® (<2 covers E. Assume that PI,...,Pn are
themembersof SR' intersecting A. Then, forany index 1=tj*n, we have PjCzHx ,
where Xj is a suitable element of A. Thus

Ac JL'lej, "[J Cxjc B and Pj<2CXI(1SjS n),

hence (E, if, s5) is weakly '-convex by (3.1).

Let IE, if, s ) be pconvex. Owing to if" Vifl<if, the structure if" Vifl
is also totally bounded, therefore if ~(ifuvif)"~SPW ifl that is (j4,,if, ) is
‘“convex (see [5], (19.6) and (19.13)).

(5.4.1)=>(5.4.3) by (2.6).

(5.4.3)~>(5.4.1): Let (E,if', ™) be weakly '-convex. Then, for <"if,
there exists a finite system ©—{SV, ..., 5’} of the subsets of E and < fif such
that A<B implies AczS"SjCiB for suitable sets St, Sj*Q. In this case one
can find an order <ij£if and a natural number mtJ, for which

sic. kay, "Uclicsj, XfrjCjj
=1 *=1

and CK is convex (1°kSm”). Then <O satisfies the condition given in (3.1),
therefore (E,if, S) is weakly “-convex.

Let (E,£f, S) be “convex. Then if'~if'u\iftl~if""\iSf"~(if“Siff (see
(1.9) and [5], (8.101)). Since if is totally bounded, we have if < ifuViflby [5],
(19.39), thatis if ~ifuv ifl hence (E,if, S) is*-convex. |
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(5.5) Corollary. Let (E, ff, S) be a compact symmetrical preordered synto-
pological space. If (E, p is weakly p-convex, then (E,&, =) is weakly
'-convex.

Proof. (E,if', &) isweakly “convex by (5.2). SE is totally bounded, therefore
(E,EE, &) is also weakly "-convex. |
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NOTE TO “ON BUNDLE-LIKE CONFORM DEFORMATION
OF A RIEMANNIAN SUBMERSION”*

P. T. NAGY (Szeged)

The fourth equation of (13) is
LLl' = <Py/2 ("0).0.
The transformation of the forms ftp* by the change of the bundles Om{P)

and 0 M(Pe) is calculated in the formulas (11). Thus instead of (14) we have (p*+ (pi=
=0 and we get the following correct equations in Theorem 2:

2= 1A2+yexp Z Alecet,

dy=Y exp [y €) Z Aydb°b+-j 2 (Tyl’- ea8y)0OR

dr= - -jexp (y ej Z A*hob- J Z ( T"BIcoR)el,

®y = cpy + \z (QyOR- Qaoy) Os.
18

Corollary. The fundamental tensors A and f of the submersion {Pe,n,M}
have the form

Afb=-exp(y e) Afb, Tywo= TyaR-Q aok.
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