COMMISSIONS 27 AND 42 OF THE I. A. U.

INFORMATION BULLETIN ON VARIABLE STARS

Nos. 4401-4500

1996 November - 1997 July

EDITORS: L. SZABADOS, K. OLÁH TECHNICAL EDITOR: A. HOLL

TYPESETTING: K. ORI
ADMINISTRATION: Zs. KÖVÁRI
EDITORIAL BOARD: L. A. BALONA, M. BREGER, E. BUDDING, M. deGROOT, E. GUINAN, D. S. HALL, P. HARMANEC, M. JERZYKIEWICZ, K. C. LEUNG, M. RODONO, N. N. SAMUS, J. SMAK, C. STERKEN (Chair)

H-1525 BUDAPEST XII, Box 67, HUNGARY
URL http://www.konkoly.hu/IBVS/IBVS.html
HU ISSN 0374-0676

IBVS is published on behalf of the 27th and 42 nd Commissions of the IAU, by the Konkoly Observatory, Budapest, Hungary.

Individual issues could be downloaded for scientific and educational purposes free of charge. Bibliographic information of the recent issues could be entered to indexing systems. No IBVS issues may be stored in a public retrieval system, in any form or by any means, electronic or otherwise, without the prior written permission of the publishers. Prior written permission of the publishers is required for entering IBVS issues 1-4000 to an electronic indexing or bibliographic system too.

CONTENTS

1996

4401 C. STERKEN, A. JONES, B. VOS, I. ZEGELAAR,A.M. van GENDEREN, M. de GROOT: On the Cyclicity of the S DorPhases in AG Carinae1-4
4402 J. BOROVIČKA, L. ŠAROUNOVÁ: The Period and Lightcurve of NSV 4497 $1-3$
4403 W. LILLER, A.F. JONES: A New Very Long Period Variable Star in Norma $1-2$
4404 E.A. KARITSKAYA, V.P. GORANSKIJ: Unusual Fading of V1357 Cygni (Cyg X-1) in Early November, 1996 $1-2$
4405 K.N. GRANKIN, M.M. ZAKIROV, G.C. ARZUMANYANTS, S.Yu.MELNIKOV: New Eclipsing Binary Star CoD $-24^{\circ} 12698$ in the Directionof the Star-Forming Region ρ Oph1-2
4406 F. AGERER: GSC 4261.1197: a New Eclipsing Binary 1-2
4407 A. LASALA-GARCIA: NSV 08513, a New Detached Eclipsing Binary Star in Ophiuchus $1-2$
4408 G. ZAJTSEVA, P. PETROV, I. ILYIN, R. DUEMLER, I. TUOMINEN:
RY Tauri at High Brightness $1-3$
4409 J. GREINER, M.L. HAZEN: HV 2554 and the Supersoft X-Ray Source RX J0527.8-6954 $1-4$
4410 E. GARCIA-MELENDO, J.M. GOMEZ-FORRELLAD: NSV 03438, a New Detached Eclipsing Binary Star in Canis Minor 1-2
4411 P.L. NEDIALKOV, N.A. TIKHONOV, R.G. KURTEV, G.R. IVANOV:
New Variables in the North-Eastern Part of M31 1-4
4412 R.M. ROBB, M.D. GLADDERS: New Variables in the Field of RE J0725-002 $1-4$
4413 Z.I. KADLA, A.N. GERASHCHENKO, Yu.N. MALAKHOVA: Variable Stars in the Globular Cluster M72 1-4
4414 Z.I. KADLA, A.N. GERASHCHENKO, Yu.N. MALAKHOVA: Variable Stars in the Globular Cluster NGC6681 $1-3$
1997
4415 A.S. SHAROV: On Novae 1982 and 1986 and Possible Nova 1955 in M33 $1-2$
4416 M.A. CERRUTI: V676 Cen: New Times of Minima and a Possible Short Period Modulation $1-4$
4417 B.A. SKIFF: A Revision of Dolidze's "List of Probable Long-Period Variables of M Types..." $1-6$
4418 A.N. GERASHCHENKO, Z.I. KADLA, Yu. N. MALAKHOVA: Variable Stars in the Globular Cluster NGC 5286 $1-3$
4419 G. CUTISPOTO, M. KÜRSTER, I. PAGANO, M. RODONÒ: UBV(RI) ${ }_{c}$Photometry of the Rapidly Rotating K-Type Star HD $197890=$"Speedy Mic"1-3
4420 G.V. WILLIAMS: NSV $11164=$ Minor Planet (563) Suleika 1-2
a New Classification for V804 Arae 1-2
4422 L.N. BERDNIKOV, D.G. TURNER: Photoelectric BVI C_{C} Observations and a New Classification for the RS CVn Star GR Normae 1-2
4423 J.M. GOMEZ-FORRELLAD, E. GARCIA-MELENDO: NSV 02541, a Detached Eclipsing Binary Star in Orion $1-2$
4424 J. VIDAL-SAINZ, J.M. GOMEZ-FORRELLAD, E. GARCIA-MELENDO:NSV 00361 is an Overcontact Binary System in Pisces1-2
4425 J. JUAN-SAMSO, J. GUARRO-FLO: NSV 08156, a Possible Semiregular Variable in Hercules 1
4426 F. CAMPOS-CUCARELLA, J.M. GOMEZ-FORRELLAD,E. GARCIA-MELENDO: A New Beta Lyrae Variable SAO 56342, and TwoNew Possible Irregular Stars: BD $+32^{\circ} 0599$ and SAO 56366$1-3$
4427 J.M. GOMEZ-FORRELLAD, A. GARRIGOS-SANCHEZ: NSV 00821,
a New Overcontact Eclipsing Binary System in Triangulum 1-2
4428 M. MIKOLAJEWSKI, T. TOMOV, D. KOLEV: Activity of T Coronae Borealis in 1996 1-4
4429 Yu. A. SHOKIN, N.N. SAMUS: Accurate Positions for 38 Variables in a $5^{\circ} \times 5^{\circ}$ Field Around BL Lac 1-3
4430 K. KRISCIUNAS, R.A. CROWE: A Search for γ Doradus-Type Variables in the Open Cluster M 34 1-3
4431 B.A. SKIFF: Identification of the Margoni-Stagni Variables 1-4
4432 T. BERTHOLD, F. AGERER: NSV 4539 is an Eclipsing Binary 1-4
4433 B.A. SKIFF: Identification of the Rosino-Guzzi Variables in Sagitta 1-4
4434 Yu. N. MALAKHOVA, A.N. GERASHCHENKO, Z.I. KADLA: Variable Stars in the Globular Cluster M12 1-2
4435 T. PRIBULLA, D. CHOCHOL, P. ROVITHIS, H. ROVITHIS-LIVANIOU:
Sudden Period Change in the Contact Binary AW UMa? 1-3
4436 E. GARCIA-MELENDO, J.M. GOMEZ-FORRELLAD,A. GARRIGOS SANCHES: Two Variable Stars in Auriga: the NewClassical Cepheid NSV 01771 and the New Eclipsing Binary SystemGSC 2906.0213$1-3$
4437 L.N. BERDNIKOV, D.G. TURNER: Photoelectric BVI ${ }_{c}$ Observations, New Elements and a New Classification for BZ Tuc 1-4
4438 L.N. BERDNIKOV, O.V. VOZYAKOVA, V.V. IGN ATOVA: Photoelectric BVR_{c} Observations for the UU Her Star EV Aurigae $1-2$
4439 T. ROUNTHWAITE, G. HUDSON, R. HUDSON, E. BUDDING: Optical
Photometry of CF Tuc, Mid-1995 Through 1996 1-3
4440 N. MASETTI, C. BARTOLINI, A. GUARNIERI, A. PICCIONI: A Suspected Red Variable in the Error Box of GRB 970111 1-2
4441 B.A. SKIFF: Identification of Variables Near NGC 7635 1-4
4442 C. LLOYD, N.D. JAMES, T. BERTHOLD, G.J. KIRBY, M.J. COLLINS:
GSC 1657.1754: a New Deeply Eclipsing Binary System in Delphinus 1-4
4443 E. PAUNZEN: HD 193084: a New Variable Star 1-2
4444 J. WOITAS: Detection of 43 New Bright Variables Stars by the Tycho
Instrument of the Hipparcos Satellite 1-4
4445 T.N. DOROKHOVA, N.I. DOROKHOV: Observations of Three λ Bootis Stars by Using Dual Channel Photometer $1-3$
4446 A.N. GERASHCHENKO, Z.I. KADLA, Yu. N. MALAKHOVA: Variable Stars in the Globular Cluster NGC 6717 1-2
4447 A.N. GERASHCHENKO, Z.I. KADLA, Yu. N. MALAKHOVA: Variable Stars in the Globular Cluster NGC 4372 1-3
4448 B.A. SKIFF, G.V. WILLIAMS: Identification of Dahlmark Variables: I 1-3
4449 G.V. WILLIAMS, B.A. SKIFF: Identification of Dahlmark Variables: II 1-3
4450 B.A. SKIFF, G.V. WILLIAMS: Identification of Dahlmark Variables: III 1-3
4451 G.V. WILLIAMS, B.A. SKIFF: Identification of Dahlmark Variables: IV 1-2
4452 L. ŠAROUNOVÁ, M. WOLF: CCD Photometry of Eclipsing Binary AL Ophiuchi $1-3$
4453 J. MANFROID, P. RENSON, M. BURNET: HR 7674: a Low-Amplitude Cepheid? 1-2
4454 S. ENGIN, K. YÜCE: Photoelectric Observations of X Persei 1-3
4455 L.L. CHINAROVA: Orbital Period of the Eclipsing Variable V1147 Cygni 1-2
4456 L.N. BERDNIKOV, D.G. TURNER: Photoelectric VI $_{c}$ Observations and
New Elements for V399 Carinae $=$ HR 4110 $1-2$
4457 Yu. MALAKHOVA, A.N. GERASHCHENKO, Z.I. KADLA: Variable Stars in the Globular Cluster NGC 6266 1-3
4458 L. DAHLMARK: New Variable Stars in the Northern Milky Way 1-6
4459 B.A. SKIFF: Identifications for Baade's variables in Sagitta and Cygnus 1-4
4460 S.M. RUCINSKI: On the Name "Over-Contact Binary Systems" 1-2
4461 R.K. ZAMANOV, V.I. ZAMANOVA: UBV Observations of T CrB 1-3
Corrigenda 4
4462 S.-L. KIM, M.-Y. CHUN, W.-B. LEE, L. DOYLE: A Flare Event Detected in the Eclipsing Binary CM Dra 1-4
4463 H.-G. REIMANN, C. FRIEDEMANN: A New Suspected Variable in Pisces 1-3
4464 V.P. ZALINIAN, H.M. TOVMASSIAN: Detection of Fast Flares ofEV Lac In 1994-961-4
4465 H.M. TOVMASSIAN, E. RECILLAS, O. CARDONA, V.P. ZALINIAN:
Observations of Flare Stars EV Lac, V577 Mon and YZ CMi $1-4$
4466 S.-L. KIM, H. SUNG, S.-G. LEE: SA98-185(= HD 292574) - A New
Eclipsing Binary Among Landolt's Standard Stars $1-4$
4467 J.R. PERCY, A. DESJARDINS, M. MARINOVA, K. LUEDEKE,M.S. SMITH, R.R. THOMPSON, J.E. WOOD: Sorting Out W Bootisand its Comparison Stars$1-2$
4468 W. MOSCHNER, E. GARCIA-MELENDO, J.M. GOMEZ-FORRELLAD,
W. KLEIKAMP: Improved Ephemeris and New Observations of NSV 02980 1-4
4469 J.M. GOMEZ-FORRELLAD, E. GARCIA-MELENDO: Photometric
Results on Three Hipparcos Variables: The New Eclipsing Binary SystemsHD 125488 and HD 126080, and the Star HD 341508$1-3$
4470 N.Z. ISMAILOV: Photometric Obsrevation of T Tauri Type Stars: DI Cep, T Tau, V410 Tau, GW Ori, V649 Ori $1-4$
4471 E.V. KAZAROVETS, N.N. SAMUS: The 73rd Name-List of Variable Stars $1-45$
4472 F. AGERER, J. HUEBSCHER: Photoelectric Minima of Selected
Eclipsing Binaries and Maxima of Pulsating Stars 1-4
4473 M. JANG: GSC 4540_1533 is a New Binary Star 1-3
4474 R.M. ROBB: The Eclipsing Binary Star MS 1428.2+0732 1-4
4475 H. AK: Discovery of an Eclipsing Binary Star in Auriga 1-2
4476 J. MÁNEK: Improved Positions for Sonneberg Variables: Part 1 1-4
4477 B.L. NELLERMOE, L.E. REITZLER: Eclipse Observations of AB Andromedae 1-4
4478 J. MÁNEK: Correct Position of MX Sagittae 1
4479 V.M. IBRAHIMOVA, M.A. IBRAHIMOV: Fuor V1057 Cyg - Two Years in Local Minimum 1-4
4480 R. WASATONIC, E.F. GUINAN: Aldebaran: Discovery of Small
Amplitude Light Variations $1-4$
4481 P. FRANK, W. KLEIKAMP, W. MOSCHNER: New Elements of V694 Aquilae 1-4
4482 T.S. METCALFE: UBV Photometry of the W UMa Star BH Cas 1-2
4483 R. KUSCHNIG, E. PAUNZEN, W.W. WEISS: HD 102541: a Pulsating Candidate λ Bootis Star $1-3$
4484 M.E. SACHKOV: Radial Velocity Curves and First Calculations of the Radii for Four Double-Mode Cepheids 1-4
4485 S.V. ANTIPIN: A New Double-Mode Cepheid in Scutum 1-3
4486 R.M. ROBB, R. GREIMEL: The Eclipsing Binary RX J1326.9+4532 1-4
4487 L.N. BERDNIKOV, D.G. TURNER: The First Photoelectric Observations for the Double-Mode Cepheid BD $-10^{\circ} 4669$ $1-2$
4488 L.N. BERDNIKOV, D.G. TURNER: Photoelectric Observations for Two Misclassified Variables: AF Crucis and CG Sagittarii Are not Cepheids $1-3$
4489 R. NOVÁK: Revealing of a New SU UMa Type Variable Star Var21 Coronae Borealis $1-2$
4490 P.M. VEEN, A.M. van GENDEREN, J.de JONG: Two New Variable Stars Near the Variable WR 7 ($=$ HD 56925) and the Constant WR 18 ($=$ HD 89358) $1-3$
4491 A. ALKSNIS, A.S. SHAROV, Yu. A. SHOKIN, N.M. ESTIGNEEVA: More
Flares of HY Andromedae 1-2
4492 L.V. TÓTH, M. KUN: New Water Maser in L1251 1-3
Erratum 4
4493 R.M. ROBB, R. GREIMEL: Optical Observations of the Star RX J1239.8+5511 1-4
4494 E.A. KOLOTILOV, S.J. KENYON: The Recent Optical Decline of V1057 Cyg $1-4$
4495 A. SKOPAL: Photometric Peculiarities of CH Cyg during Its Recent, 1995-97, Quiescent Phase $1-4$
4496 J. KELEMEN: Observation of the Optical Counterpart of the GRB 970508 Source 1-3
Corrigenda 4
4497 AIYING ZHOU: Multiperiodicity of the δ Scuti Star BR Cancri 1-2
4498 J. MÁNEK: Improved Positions for Sonneberg Variables; Part 2 1-4
4499 N.D. MORGAN, R. WASATONIC, E.F. GUINAN: Near IR TiO Band Photometry of α Ori, 1996-97 $1-6$
4500 T.A. MAHLER, R. WASATONIC, E.F. GUINAN: Radius and Luminosity Variations of Mira from Wing Near-IR Photometry $1-6$

INDEX OF VARIABLES

The huge lists of variable stars published in the IBVS-issues Nos. 4417, 4429, 4431, $4433,4441,4444,4448,4449,4450,4451,4459,4472,4476,4498$ are not repeated here. Star IBVS No. Star IBVS No.

AB And	4477	V353 Pup=NSV 03731	4492
HY	4491	MX Sge	4478
V694 Aql	4481	CG Sgr	4488
V804 Ara	4421	EW Sct	4484
CO Aur	4484	BQ Ser	4484
EV	4438	T Tau	4470
W Boo	4467	RY V410	4408
BR Cnc	4497	Alpha	4480
YZ CMi	4465	BZ Tuc	4437
AG Car	4401	CF	4439
V399	4456	AW UMa	4435
TU Cas	4484	Antipin's Var21 in CrB	4489
BH	4482	$\mathrm{BD}+32^{\circ} 0599$	4426
V676 Cen	4416	$\mathrm{BD}-00^{\circ} 1712=$ RE J0725-002	4412
DI Cep	4470	$\mathrm{BD}-10^{\circ} 4669$	4485, 4487
Omicron	4500	CoD-24 ${ }^{\circ} 12698$	4405
T CrB	4428, 4461	GRB 970508	4496
	,	GSC 1657_1754	4442
AF Cru	4488	GSC 2906_0213	4436
CH Cyg	4495	GSC 4261_1197	4406
V1057	4479. 4494	GSC 4540_1553	4473
V1147	4455	HD 31992	4475
V1357	4404	HD 38545	4445
		HD 102541	4483
S Dor	4401	HD 125488	4469
CM Dra	4462	HD 126080	4469
EV Lac	64, 4465	HD 193084	4443
GY	4458	HD 197890	4419
		HD 204041	4445
V577 Mon	4465	HD 221756	4445
GR Nor	4422	HD 292574	4466
AL Oph	4452	HD 341508	4469
AL Oph	4452	HR 7674	4453
GW Ori	4470	HV 2554	4409
V649	4470	HV 2554	4409
Alpha	4499	IRAS $22376+7455$	4492
X Per	4454	LD 221-280	4458

MS 1428.2+0732	4474	HD 126080	4469
NSV 00361	4424	HD 193080	4443
NSV 00821	4427	HD 292574	4466
NSV 01771	4436	HD 341508	4469
NSV 02541	4423	HR 7674	4453
NSV 02980	4468	IRAS $22376+7455$	4492
NSV 03438	4410	LD 221-LD 280	4458
NSV 04497	4402	in M31 (33)	4411
NSV 04539	4432	MS 1428.2 +0732	4474
NSV 07457	4496	73rd Name-List	4471
NSV 08156	4425	in Pisces	4463
NSV 08513	4407	RE J0725-002	4412
NSV 11164	4420	RX J1239.8+5511	4493
RE J0725.002= $\mathrm{BD}-00^{\circ} 1712$	4412	RX J1326.9+4532 $07^{\mathrm{h}} 18^{\mathrm{m}} 32^{\text {s }} .7-13^{\circ} 13^{\prime} 54^{\prime \prime}(2000)$	4486 4490
RX J0527.8-6954	4409	$10^{\mathrm{h}} 17^{\mathrm{m}} 3.6-57^{\circ} 56^{\prime} 33^{\prime \prime}$ (2000)	4490
RX J1239.8+5511	4493	$15^{\mathrm{h}} 28^{\mathrm{m}} 45^{\mathrm{s}}+19^{\circ} 47^{\prime} 15^{\prime \prime}$ (2000)	4440
RX J1326.9+4532	4486	$16^{\mathrm{h}} 06^{\mathrm{m}} 51^{\mathrm{s}} .7-52^{\circ} 04^{\prime} 35^{\prime \prime}(2000)$	4403
SAO 563442	4426		
SAO 56366	4426		
Variables in Clusters:			
in M12	4434		
in M34	4430		
in M72	4413		
in NGC 4372	4447		
in NGC 5286	4418		
in NGC 6266	4457		
in NGC 6681	4414		
in NGC 6717	4446		
Extragalactic Variables:			
in M31 (33)	4411		
in M33 (3)	4415		
New Variables:			
BD $+32^{\circ} 0599$	4426		
$\mathrm{BD}-10^{\circ} 4669$	4485, 4487		
CoD-24¹2698	4405		
GRB 970508	4496		
GSC 1657_1754	4442		
GSC 2906_0213	4436		
GSC 4261_1197	4406		
GSC 4540_1553	4473		
GSC 4817_508	4412		
HD 31992	4475		
HD 102541	4483		
HD 125488	4469		

Star

MS 1428.2+0732	4474	HD 126080	4469
NSV 00361	4424	HD 193080	4443
NSV 00821	4427	HD 292574	4466
NSV 01771	4436	HD 341508	4469
NSV 02541	4423	HR 7674	4453
NSV 02980	4468	IRAS $22376+7455$	4492
NSV 03438	4410	LD 221-LD 280	4458
NSV 04497	4402	in M31 (33)	4411
NSV 04539	4432	MS 1428.2 +0732	4474
NSV 07457	4496	73rd Name-List	4471
NSV 08156	4425	in Pisces	4463
NSV 08513	4407	RE J0725-002	4412
NSV 11164	4420	RX J1239.8+5511	4493
RE J0725.002= $\mathrm{BD}-00^{\circ} 1712$	4412	RX J1326.9+4532 $07^{\mathrm{h}} 18^{\mathrm{m}} 32^{\text {s }} .7-13^{\circ} 13^{\prime} 54^{\prime \prime}(2000)$	4486 4490
RX J0527.8-6954	4409	$10^{\mathrm{h}} 17^{\mathrm{m}} 3.6-57^{\circ} 56^{\prime} 33^{\prime \prime}$ (2000)	4490
RX J1239.8+5511	4493	$15^{\mathrm{h}} 28^{\mathrm{m}} 45^{\mathrm{s}}+19^{\circ} 47^{\prime} 15^{\prime \prime}$ (2000)	4440
RX J1326.9+4532	4486	$16^{\mathrm{h}} 06^{\mathrm{m}} 51^{\mathrm{s}} .7-52^{\circ} 04^{\prime} 35^{\prime \prime}(2000)$	4403
SAO 563442	4426		
SAO 56366	4426		
Variables in Clusters:			
in M12	4434		
in M34	4430		
in M72	4413		
in NGC 4372	4447		
in NGC 5286	4418		
in NGC 6266	4457		
in NGC 6681	4414		
in NGC 6717	4446		
Extragalactic Variables:			
in M31 (33)	4411		
in M33 (3)	4415		
New Variables:			
BD $+32^{\circ} 0599$	4426		
$\mathrm{BD}-10^{\circ} 4669$	4485, 4487		
CoD-24¹2698	4405		
GRB 970508	4496		
GSC 1657_1754	4442		
GSC 2906_0213	4436		
GSC 4261_1197	4406		
GSC 4540_1553	4473		
GSC 4817_508	4412		
HD 31992	4475		
HD 102541	4483		
HD 125488	4469		

HD $292574 \quad 4466$
HD 3415084469
HR 76744453
IRAS $22376+74554492$
LD 221-LD 2804458
in M31 (33) 4411
MS $1428.2+07324474$
73 rd Name-List 4471
in Pisces 4463
RE J0725-002 4412
RX J1239.8 +55114493
RX J1326.9+4532 4486
$07^{\mathrm{h}} 18^{\mathrm{m}} 32.7-13^{\circ} 13^{\prime} 54^{\prime \prime}(2000) \quad 4490$
$10^{\mathrm{h}} 17^{\mathrm{m}} 3.6-57^{\circ} 56^{\prime} 33^{\prime \prime}(2000) \quad 4490$
$15^{\mathrm{h}} 28^{\mathrm{m}} 45^{\mathrm{s}}+19^{\circ} 47^{\prime} 15^{\prime \prime}(2000) \quad 4440$
$16^{\mathrm{h}} 06^{\mathrm{m}} 51^{\mathrm{s}} .7-52^{\circ} 04^{\prime} 35^{\prime \prime}(2000) 4403$
IBVS No.

IBVS No. Star IBVS No.

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4401

Konkoly Observatory
Budapest
25 November 1996
HU ISSN 0374-0676

ON THE CYCLICITY OF THE S Dor PHASES IN AG CARINAE ${ }^{1}$

AG Car (HD 94910) is a most enigmatic LBV of the southern hemisphere. Its light curve displays episodes of fading and brightening with strongly variable amplitude. In 1995, the star was in one of its brightest maxima since the double maximum of 1981-82, and is now again on its decline. Figure 1 displays the light curve since 1980 . The dots are visual estimates collected by one of us (A.J.), the open circles that are connected by a full line represent Walraven V data (transformed to Johnson V) taken from van Genderen et al. (1988, 1990) and Strömgren y data from the "Long-Term Photometry of Variables" (LTPV) project at ESO (Sterken 1983, 1994, for the data see Manfroid et al. 1991, 1994 and Sterken et al. 1993, 1995).

Van Genderen et al. (1996) discussed all available photometric data covering more than one century, and introduced the concept \mathbf{S} Dor phase (SD), viz. the phases of brightening with a more or less regular pattern of recurrence. In particular, they introduce a new nomenclature and distinguish "normal S Dor phases" superimposed on a much slower rhythm of brightening and fading for which they coin the term "Very-long term S Dor phase (VLT-SD)". For more details we refer to their paper.

Figure 1. Light curve of AG Car since 1982. - are visual estimates, ○ are based on data from van Genderen et al. $(1988,1990)$ and on published LTPV data. The continuous line connects all published. photoelectric V data

[^0]

Figure 2. Schematic light curve of AG Car since 1970 (adapted from van Genderen et al. 1996). The solid line covers the observations, the dotted line is the lower envelope of the continuous line and illustrates how the authors think the underlying VLT-SD phase could be represented. The numbered maxima do not correspond to the cycle numbers as shown in Figure 4. Note the double maximum 26-27.

From 1970 on (after JD 2440000), the light curve shows a fairly uninterrupted sequence of S Dor maxima. Numbered 17-38 in the van Genderen et al. (1996) paper, this sequence of 22 times of maximum yielded a period of $373^{\mathrm{d}} \pm 1.8$ (see Figure 2 for a partial reproduction of Figure 1 of van Genderen et al. 1996). Extrapolating the cycle-numbering scheme to the past, these authors refined the period to $P=3711^{\mathrm{d}} 4 \pm 0 \mathrm{~d} 6$. The resulting $O-C$ diagram did not show a random pattern, but suggested a possible cyclic behaviour on a time scale of about 7900 d or 21.6 y (for the time interval 1970-1994).

Unfortunately, diminishing opportunities for observing AG Car in the framework of LTPV made a complete coverage of the 1994-1995 (double) maximum impossible. However, from a preliminary reduction of yet unreleased LTPV data collected in November and December 1995, we could derive one additional time of maximum, viz. HJD 2450080 , corresponding to cycle $E=23$ (see Figure 3). The visual light curve also suggests maxima at JD 2449750,2450083 and 2450350 . The photoelectric maximum at $E=23$ fully confirms the one derived visually. The first of the new visual maxima was not taken to correspond to the brightest estimate, because the real maximum likely occurs around the middle of the corresponding block of data (as is also illustrated by the difference between the brightest y measurement and the maximum of the fitted curve in Figure 4). The maximum at $E=21$, provisionally estimated at JD 2449400 and bracketed in Table 1 of van Genderen et al. (1996), in reality seemed to have occurred later-that is, around JD 2449455 . Note that the estimation of the time of extremum during a supermaximum (maxima 26-27 in Figure 2, the double maxima in 1981-82 and in 1994-95) is particularly difficult because the star does not have the time to fall back to its low state of light output before the 371 d cycle is completed.

Figure 3. LTPV-1995 $y \equiv V$ photometry (in the natural system). Each data point represents one differential measurement. The line represents the fitted third-degree polynomial used to calculate the time of maximum. Note the asymmetric form, with a descending branch that is much steeper than the ascending branch, a phenomenon that is typical for normal SD phases on the descending branch of the VLT-SD phase, see also Figure 2.

The new $O-C$ diagram is shown in Figure 4. The two estimates of the time of maximum corresponding to $E=21$ have been flagged by an arrow in Figure 4, as well as the last point in the diagram, which ultimately may turn out to shift upward as suggested in the figure. The figure clearly confirms the cyclic pattern on a time scale of $\sim 20 \mathrm{y}$ as suggested by van Genderen et al. (1996).

Figure 4. $O-C$ diagram for SD maxima $17-38$ (cycle numbers 0-21) of AG Car for the linear ephemeris constructed with $P=371$ d. 4 , van Genderen et al. (1996). The \bullet at $E=23$ is derived from a sequence of photoelectric measurements, see Figure 3. The open circles at $E=22-24$ are based on new visual estimates. The upper vertical arrow indicates the corrected position of the $E=21$ maximum (which was provisionally estimated on the basis of incomplete data by van Genderen et al. 1996). The ? indicates the shift to be expected when the current SD phase will have been observed completely.

The new visual and photoelectric data collected after the conclusion of the study of van Genderen et al. (1996) allow us to confirm that the cyclic behaviour of the "normal" S Dor phases of AG Car is maintained.

This work was supported by a research grant from the Belgian Fund for Scientific Research (NFWO). The data have been obtained during ESO time allocation 57 D-0133.

C. STERKEN ${ }^{1}$
University of Brussels (VUB)
Pleinlaan 2
B-1050 Brussels, Belgium

A. JONES

Carter Observatory
P.O. Box 2909

Wellington, New Zealand
B. VOS
I. ZEGELAAR
A.M. van GENDEREN

Leiden Observatory
Postbus 9513
2300RA Leiden, The Netherlands
M. de GROOT

Armagh Observatory
College Hill
Armagh BT61 9DG, Northern Ireland
${ }^{1}$ Belgian Fund for Scientific Research (NFWO)

References:

van Genderen, A.M., Sterken, C., de Groot, M., 1996, $A \& A$, in press
van Genderen, A.M., Thé, P.S., Augusteijn, Th., et al., 1988, A\&AS, 74, 453
van Genderen, A.M., Thé, P.S., Heemskerk, M., et al., 1990, A\&AS, 82, 189
Manfroid, J., Sterken, C., Bruch, A. et al., 1991, A\&AS, 87, 481
Manfroid, J., Sterken, C., Cunow, B. et al., 1994, AधAS, 109, 329
Sterken, C., 1983, The Messenger, 33, 10
Sterken, C., 1993, in Precision Photometry, D. Kilkenny, E. Lastovica, J. Menzies (Eds.), South African Astronomical Observatory, 57
Sterken, C., Manfroid, J., Anton, K., et al., 1993, $A \& A S, 102,79$
Sterken, C., Manfroid, J., Beele, D., et al., 1995, A $\mathcal{A} A S, 113,31$

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4402

Konkoly Observatory
Budapest
2 December 1996
HU ISSN 0374-0676

THE PERIOD AND LIGHTCURVE OF NSV 4497

The variability of NSV 4497 ($=$ SVS 863 UMa $=$ GSC 2997_1204, $\alpha=9^{\mathrm{h}} 29^{\mathrm{m}} 0 \mathrm{~S} .59$, $\delta=+43^{\circ} 44^{\prime} 2^{\prime \prime} 0$, J2000.0) was discovered by Parenago (1938). He classified the star as an eclipsing binary and gave two times when the star was found near minimum light on a photographic plate. The star had been then neglected for a long time, except for an inconclusive visual survey of Locher (1984). We started to observe NSV 4497 in 1992 with an $18-\mathrm{cm}$ telescope and a SBIG ST-4 CCD camera. The observations were continued in 1993-94 with the same telescope but better ST-6 camera. These early observations, made without a filter, confirmed the type of variability and yielded four times of minima and a preliminary period.

In 1996 we performed a regular photometry of NSV 4497 with a 65 -cm telescope and the ST-6 camera. Standard V Johnson and R Cousins photometric filters were used. The technical configuration of the telescope, normally used for other purposes, did not allow to change the filters automatically. Instead, in some cases, only one filter was used in a particular night. Typical exposures were as long as $120-180$ seconds and the high signal-to-noise ratio enabled the relative precision of one measurement of about 0.010 mag in R and 0.015 mag in V filter to be reached. Altogether 418 measurements in R and 158 in V have been obtained. ${ }^{1}$ GSC 2997_1178 was used as the comparison star and GSC 2997-1472 as the check star. The magnitudes were transformed to the absolute scale using the standard stars according to Landolt (1992) and checked by the Guide Star Catalog. Due to the uncertainties in extinction, low precision of photometric data in the GSC and other instrumental effects, the absolute calibration is less certain and a systematic shift as high as 0.1 mag is possible. We derived the magnitude of the comparison and the check star as $V=12.2, V-R=0.40$ and $V=12.3, V-R=0.49$, respectively. The probable error of the color indices is $0 .{ }^{\mathrm{m}} 03$. The variable, comparison and check stars are identified in Figure 1.

All times of primary minima are given in Table 1. Using only our minima, we derived the following light elements:

$$
\begin{array}{rrr}
\mathrm{JD}_{\text {hel }}(\min)=2448691.3670 & +0.7747160 & \times \mathrm{E} . \\
\pm 7 & \pm 4
\end{array}
$$

The $O-C$ residuals relative to these elements are also given in Table 1. Parenago's two minima show negative $O-C$ residuals, probably larger than the error of observation. This suggests that the period of the star was slightly longer in the past but the lack of data prevents to draw a firm conclusion.

[^1]

Figure 1. Identifications chart of NSV 4497. The size of the field is $12!6 \times 9 \cdot 6$. The comparison star is denoted with A and the check star is C.

Table 1. The times of minima of NSV 4497

$\mathrm{JD}_{\text {hel }}-2400000$	f	N	w	E	$O-C$	source
17321.41		pg	1	0	-40492	-0.16
28625.38		pg	1	0	-25901	-0.07
48691.367	± 0.002	-	17	1	0	-0.000
49028.370	± 0.007	-	9	1	435	+0.002
49031.467	± 0.002	-	13	1	439	-0.000
49423.473	± 0.004	-	15	1	945	-0.001
50141.6354 ± 0.0002	R	48	5	1872	+0.0000	"ST-4
50142.4097 ± 0.0004	R	40	5	1873	-0.0004	$"$
50152.4807 ± 0.0002	V	35	5	1886	-0.0007	$"$ ST-6
50396.5178 ± 0.0003	R	27	5	2201	+0.0009	$"$

f: filter, N : number of measurements, w : weight, E : epoch

Table 2. The lightcurve parameters of NSV 4497

	$M_{\max }$	A_{I}	A_{II}
V-band	11.9	0.50 ± 0.03	0.08 ± 0.03
R-band	11.7	0.48 ± 0.02	0.11 ± 0.02
$M:$ magnitude, $A:$ amplitude $[\mathrm{mag}]$			
I, II - primary and secondary minimum, respectively			

The mean lightcurve of NSV 4497 in the V and R filters is given in Figure 2. It is a typical lightcurve of an Algol-type eclipsing binary. The eclipses are partial and their duration is 3 . 1 , i.e. 17% of the period. No sign of asymmetry is present. The magnitudes are summarized in Table 2.

Figure 2. The mean lightcurve of NSV 4497. Relative V, R magnitudes to the comparison star A are given

J. BOROVIČKA L. ŠAROUNOVÁ
Astronomical Institute
25165 Ondřejov Observatory
Czech Republic
e-mail: borovic@asu.cas.cz
lenka@asu.cas.cz

References:
Landolt, A., 1992, Astron. J., 104, 340
Locher, K., 1984, B.B.S.A.G. Bull., No. 70
Parenago, P., 1938, Perem. Zvezdy, 5, 206

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4403

> Konkoly Observatory
> Budapest
> 3 December 1996
> HU ISSN $0374-0676$

A NEW VERY LONG PERIOD VARIABLE STAR IN NORMA

IAU Circular 4075 reported the possible photographic discovery on May 27, 1983 of a nova by W. Liller, and the same IAUC reported that the object's existence had been confirmed by R.H. McNaught and D. Overbeek, and by D. Baade and J. Krautter. The last pair of observers obtained a spectrogram which showed several strong, narrow Balmer lines in emission plus Fe II at 492.3 nm , but also "strong molecular bands as in stars of spectral type M3-M5". They go on to say that "the object may be related to the class of symbiotic stars although no trace of emission due to [O III] 495.9 and 500.7 -nm and He II $468.6-\mathrm{nm}$ are seen". McNaught noted that the star appeared "clearly red" and further reported that a search of " 10 photographic charts back to 1916 shows its variation from mag 13 to fainter than $\mathrm{B}=15^{\prime \prime} 9$. He also gave a precise position (Equinox 1950):

$$
\text { R.A. }=16^{\mathrm{h}} 03^{\mathrm{m}} 02.92, \text { Dec. }=-51^{\circ} 56^{\prime} 32^{\prime \prime} 6
$$

The variable appears in the Hubble Guide Star Catalog; its average position from two GSC determinations is (Equinox 2000):

$$
\text { R.A. }=16^{\mathrm{h}} 06^{\mathrm{m}} 51^{\mathrm{s}} .67, \text { Dec. }=-52^{\circ} 04^{\prime} 344^{\prime \prime} 7
$$

The GSC magnitudes listed are 11.73 and 12.27. Duerbeck (1987) includes the star as "N Nor 1985/2 ... variable of late type" (p. 74-75) and provides a finding chart (p. 179).

His curiosity aroused, A.F. Jones began to make visual observations of the star while Liller continued to take photographs of this region of the Southern Milky Way as a part of his continuing PROBLICOM nova search program. Later, with the acquisition of a CCD, Liller started to follow the brightness changes of the star using a $20-\mathrm{cm} \mathrm{f} / 1.5$ Schmidt camera and various filters.

As of this writing eight maxima have been observed, and Figure 1 shows the light curve around the well-observed maximum of 1993 as measured visually by Jones and with an unfiltered CCD by Liller. The more than 2-magnitude difference in the peak magnitudes obviously results from the strong red (and by inference infrared) continuum reported in IAUC 4075 by Baade and Krautter and the extended red and infrared sensitivity of the CCD. Especially noteworthy are (1) the pre-maximum standstill clearly visible in the CCD measurements and just barely detected by Jones; and (2) the much slower decrease in brightness after maximum as measured with the CCD than visually (0.6 mag compared with 2.6 mag during the first 100 days). However, the two times of occurrence of peak brightness agree very closely at JD $2,449,034$.

Combining all the observations available, we arrive at a mean period of 558.8 days (1.53 years). Times of maximum for the rest of this century are herewith predicted to be on or about Oct. 20, 1997 and May 1, 1999.

The period of the Norma variable is considerably longer than the 278 days given by Hoffmeister et al. (1985) as the maximum of the period distribution of all Mira variables; indeed, only 13 Miras (of 2,994) are listed as having periods longer than 550 days. However

Figure 1. The light curve of the new variable in Norma showing Jones's visual magnitudes (crosses) and Liller's non-filtered CCD magnitudes (closed circles). The v's represent selected "fainter than" estimates. Note the two positive visual sightings near J.D. $2,448,900$; both were very close to the limit of detectability on those nights.
the period of the Norma variable is still far less than that of the 1374-day period given for BX Mon and listed as a symbiotic Mira variable (Sp. M4ep + F) in the 4th edition of the General Catalogue of Variable Stars (Kholopov et al., 1985).

We intended to publish elsewhere all the observations which we have accumulated; meanwhile the numerical data can be obtained by writing the first author.

WILLIAM LILLER
Instituto Isaac Newton
Casilla 8-9, Correo 9
Santiago, Chile

ALBERT F. JONES

Carter Observatory
P.O. Box 2909

Wellington, N.Z.

References:

Duerbeck, H.W., 1987, A Reference Catalogue and Atlas of Galactic Novae, (Dordrecht, Reidel)
Hoffmeister, C., Richter, G. and Wenzel, W., 1985, Variable Stars. (New York, SpringerVerlag), p. 55
Kholopov, P.N., Samus, N.N., Frolov, M.S., Goranskij, V.P., Gorynya, N.A., Kazarovets, E.V., Kireeva, N.N., Kukarkina, N.P., Kurochkin, N.E., Medvedeva, G.I., Perova, N.B., Rastorguev, A.S. and Shugarov, S. Yu., 1985, General Catalogue of Variable Stars, Vol. 2, 4th edition (Moscow, Nauka), p. 183

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4404

Konkoly Observatory
Budapest
4 December 1996
HU ISSN 0374-0676

UNUSUAL FADING OF V1357 CYGNI (Cyg X-1) IN EARLY NOVEMBER, 1996

Monitoring of V1357 Cyg, an optical counterpart of the X-ray source Cyg X-1 and known black hole candidate, was carried out at Tien-Shan astronomical observatory (Kazakhstan) from October 4 to November 14, 1996. The 1-meter reflector and a four channel WBVR photometer were used. The A1V type star HD $189474\left(19^{\mathrm{h}} 58^{\mathrm{m}} 51 \mathrm{~s} .6\right.$, $+35^{\circ} 29^{\prime} 52^{\prime \prime} ; 2000, V=6^{\mathrm{m}} 998$) was used as a comparison star in this observational set. Its magnitudes were taken from the Catalogue of WBVR Magnitudes of Northern Sky Bright Stars (Kornilov et al. 1991). Two check stars selected by Lyutyi (1972), 'a' ($19^{\mathrm{h}} 58^{\mathrm{m}} 21^{\text {s. }} 7$, $\left.+35^{\circ} 13 ' 54^{\prime \prime} ; 2000\right)$ and ' $c^{\prime}\left(19^{\mathrm{h}} 58^{\mathrm{m}} 06.3,+35^{\circ} 22^{\prime} 47^{\prime}\right.$; 2000), were measured regularly with the variable star. The 22 " diaphragm was always used for the visual binary 'a', thus we measured the combined brightness. The star 'a' was found to be a small amplitude variable in the range of $10{ }^{\mathrm{m}} 012-10 . \mathrm{m}^{\mathrm{m}} 035 \mathrm{~V}$, with one of the two possible periods: $P_{1}=$ 4.223 ± 0.005 and $P_{2}=1.3009 \pm 0.0005$.

Figure 1. Light curves of V1357 Cyg and of the check star. $\Delta \mathrm{V}$ are deviations of observations from the mean ellipsoidal light curve.

V1357 Cyg normally shows ellipsoidal double wave variability with the period of $\mathrm{P}=$ 5.6 and the total mean amplitude of $0 . \mathrm{m} 05 \mathrm{~V}$. The accuracy of an individual measurement was in the range of $0 .{ }^{\mathrm{m}} 003-0^{\mathrm{m}} 010$. But on November 2 the star was found to be fainter by $0 .{ }^{\mathrm{m}} 04 \mathrm{~V}$ than the mean ellipsoidal wave level and its brightness became lower by $0 . \mathrm{m} 02$ than Min I. Deep fading of V1357 Cyg without colour variations was seen on JD 2450390 - 397. During this time the star demonstrated ellipsoidal variations with the former amplitude in all the photometric bands. Figure 1 shows light deviations of V1357 Cyg in V band against the normal double wave level and the light curve of the check star ' c '. The OB star light predominates in the radiation of this system. The contribution of the accretion disk into combined light was estimated by Bruevich et al. (1978) to be $0 .{ }^{\mathrm{m}} 04 \mathrm{~V}$. This value is approximately equal to the depth of the fading. The dramatic change of the brightness level may suggest a strong change of the accretion disk structure which has led to the disappearance of the optical radiation from the disk.

It would be very important to know the behaviour of the X-ray radiation at this time.

E.A. KARITSKAYA
Institute for Astronomy
of Russian Academy of Sciences,
Moscow, Russia
karitsk@sai.msu.su

V.P. GORANSKIJ

Sternberg Astronomical Institute,
Moscow University,
Russia
goray@sai.msu.su

References:

Bruevich, V.V., Kilyachkov, N.N., Syunyaev, R.A., Shevchenko V.S., 1978, Soviet Astron. Letters, 4, 292
Kornilov, V.G., Volkov, I.M., Zakharov, A.I., et al., 1991, Sternberg Astron. Inst. Trans., 63
Lyutyi, V.M., 1972, Variable Stars, 18, 417

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4405

Konkoly Observatory
Budapest
6 December 1996
HU ISSN 0374 - 0676

NEW ECLIPSING BINARY STAR CoD - $24^{\circ} 12698$ IN THE DIRECTION OF THE STAR-FORMING REGION ρ Oph

The members of the Upper Scorpius region were observed by Eggen (1983) in an extensive intermediate band and H_{β} photometry. He detected the variability of CoD $-24^{\circ} 12698$ (SAO 184441). The star was changing its light from $10^{\mathrm{m}} 1 \mathrm{~V}$ (August 24, 1980) to 10 m 3 V (September 23, 1981). In September 1980 the star had a brightness of 9 m 4 R and 0 m $594 \mathrm{R}-\mathrm{I}$ while the respective values were and 9.7 and $0 .{ }^{\mathrm{m}} 607$ in July 1981. Herbig (see Struve and Straka, 1962) determined the spectral type to be A0 or A1, but found no emission in 1949. The star is situated in the direction of the star-forming region $\rho \mathrm{Oph}$, near the weak-line T Tauri stars Rox 42 and Rox 43.

We present the results taken from a long-term photometric monitoring program for CoD $-24^{\circ} 12698$ made during three runs from August 5, 1993 to July 23, 1996. Our UBVR observations were obtained at the Mt. Maidanak Observatory, Uzbekistan, using 0.48 m and 0.60 m telescopes equipped with a pulse counting FEU-79 photomultiplier tubes. The mean error of a observation is typically $\pm 00^{\mathrm{m}} 01 \mathrm{in} \mathrm{V.CoD}-24^{\circ} 12690$ was used as comparison star ($7^{\mathrm{m}} 538 \mathrm{~V}, 0^{\mathrm{m}} 012 \mathrm{U}-\mathrm{B}, 0^{\mathrm{m}} 382 \mathrm{~B}-\mathrm{V}$ and $0^{\mathrm{m}} 236 \mathrm{~V}-\mathrm{R}$).

A periodogram analysis of observations proved that $\mathrm{CoD}-24^{\circ} 12698$ is a short period eclipsing binary star likely of W UMa type. The ephemeris for the primary minimum is

$$
\begin{array}{rrrr}
\text { Min.I }=\mathrm{JDH} 2449204.349 & +0 \mathrm{~d} 589352 & \times \quad E \\
\pm 1 & \pm 1 &
\end{array}
$$

The total number of observations are 151 in U, 203 in B, 210 in V and 197 in R. We detected 11 moments of minima and they are listed in Table 1. The light curves of the binary are shown in Figure 1. The main photometric characteristics are given in Table 2.

Table 1

JDH2400000+	E	O-C	JDH2400000+	E	O-C
49213.1855	15	-0 d 004	50243.3686	1763	-0 d 008
49226.1520	37	-0.003	50243.3788	1763	+0.002
49520.2530	536	+0.011	50249.2761	1773	+0.006
49540.2772	570	-0.002	50275.1964	1817	-0.005
49540.2821	570	+0.002	50275.2101	1817	+0.008
49543.2351	575	+0.009			

Table 2

Phase	V	$\mathrm{U}-\mathrm{B}$	$\mathrm{B}-\mathrm{V}$	$\mathrm{V}-\mathrm{R}$
Max	10.01	0.40	0.95	1.03
MinI	10.38	0.49	1.00	0.96
MinII	10.11	0.40	0.95	1.03

Figure 1. Light curves in the U, B,V and R bands for CoD $-24^{\circ} 12698$.

The change in the colors of the variable is slight. We note that the position of the binary in the color-color diagram does not correspond to a spectrum A0. The components of the binary may be F-G stars. Perhaps, the binary is a foreground object in the direction of the star-forming region $\rho \mathrm{Oph}$.

One of us (MMZ) was supported by Fund for Fundamental Research of Republic Uzbekistan (Contract 33/96).
K.N. GRANKIN
M.M. ZAKIROV
G.C. ARZUMANYANTS
S.Yu. MELNIKOV

Astronomical Institute
Astronomical str. 33, Tashkent
700052 Uzbekistan, CIS
e-mail: grankin@silk.glas.apc.org
e-mail: mamnun@astro.gov.us

References:

Eggen, O.J.: 1983, Mon. Not. R. Astr. Soc., 204, 377
Struve, O. and Straka, W.C.: 1962, Publs Astr. Soc. Pacific, 74, 474

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4406

Konkoly Observatory
Budapest
9 December 1996
HU ISSN 0374-0676

GSC 4261.1197: A NEW ECLIPSING BINARY

[BAV Mitteilungen Nr. 94]

In a photometric investigation in the field of PX Cep, one of the stars, GSC 4261.1197, proved to be variable. A check of the GCVS and NSV catalogs did not reveal any previously known variable at this position. The Guide Star Catalog quotes GSC 4261.1197 as a non-stellar object, possibly caused by a nearby 15^{m} star, merging with the new variable. The brightness of GSC 4261.1197 is given as 13.96 .

Observations were performed in 14 nights between June and November 1996. An ST6 CCD-camera without filters attached to a 20 cm SC-telescope was used. The primary and secondary minima have an amplitude of $0 .{ }^{\mathrm{m}} 45$ and 0.38 respectively. As the variable always was measured together with its companion in the differential aperture photometry, the real amplitude of both minima may be somewhat greater. GSC 4261.1333 served as comparison star; several other stars in the same field were used to check its constancy. The time between first and last contact is about 4.5 hours; a total eclipse could not be detected. The individual measurements are sent via e-mail on request. Obviously the brightness in maximum light is not constant. This may result from interference with the nearby companion. If not, GSC 4261.1197 may be of RS CVn-type.

A period analysis program based on the algorithm of Schwarzenberg-Czerny (1989) together with the times of minimum light resulted in the preliminary ephemeris:

$$
\begin{equation*}
\operatorname{Min} \mathrm{I}=\mathrm{HJD} 2450249.4783+2 \mathrm{~d} 553689 \times \mathrm{E} \tag{1}
\end{equation*}
$$

Figure 1. Finding chart for GSC 4261.1197 (v); the comparison star is c. North is up, east to the left. The field is 8.6×6.5.

Figure 2. Differential light curve of GSC 4261.1197, drawn with the ephemeris derived in this paper.

Table 1. Times of CCD-measured minima for GSC 4261.1197, epochs and residuals computed with respect to the ephemeris derived in this paper.

N	JD hel	W	Epoch	$\mathrm{O}-\mathrm{C}$
1	2450249.4765	2	0.0	-0.0018
2	50304.3891	1	21.5	+0.0065
3	50360.5625	2	43.5	-0.0013
4	50369.5022	2	47.0	+0.0005
5	50392.4843	2	56.0	-0.0006

F. AGERER

Bundesdeutsche Arbeitsgemeinschaft
für Veränderliche Sterne e.V. (BAV)
Munsterdamm 90,
D-12169 Berlin, Germany
E-mail:
agerer.zweik@t-online.de

Reference:
Schwarzenberg-Czerny, A.: 1989, Monthly Notices R. Astr. Soc., 241, 153

Konkoly Observatory
Budapest
9 December 1996
HU ISSN 0374-0676

NSV 08513, A NEW DETACHED ECLIPSING BINARY STAR IN OPHIUCHUS

According to Kholopov (1982), the variability of NSV 08513 (BD - 00 ${ }^{\circ} 3264$, BV 0167 , CSV 007634, GSC 5066.0280) was announced by Strohmeier et al. (1957), who indicated that this object underwent fast light changes between photographic magnitudes 10.7 and $11^{\mathrm{m}} 4$, without specifying the type of variability. In the Guide Star Catalogue, NSV 08513 is a star with a photographic magnitude of 10.75 ± 0.28. This magnitude value was determined from photographic plates taken with the U.K. SERC Schmidt Telescope using a GG 395 filter and a IIIaJ photographic emulsion. The spectral information recorded in the NSV catalogue indicates that the spectral type of NSV 08513 is A1.

To confirm its variability, NSV 08513 was observed in the V band for 24 nights, from 14 June to 13 September 1996, using a CCD camera attached to a $0.2-\mathrm{m}$ telescope from Zaragoza and Morata de Jalon (Spain). GSC 5066.0580 and GSC 5066.0188 were used as comparison and check stars respectively. Photometric reductions suggest that the check star might be slightly variable. It is planned to monitor this object in the near future to check its variability.

Figure 1

Observations show that NSV 08513 is a detached eclipsing binary star with a period close to 1.8 days (see Figure 1). The depth of the primary minimum in the V band is $0^{\mathrm{m}} 77 \pm 0^{\mathrm{m}} 02$. The secondary minimum is about 0.02 magnitudes shallower (Figure 1). The following ephemeris has been computed:

$$
\begin{gathered}
\text { Min. } I=\text { HJD } 2450265.4518+1 \mathrm{~d} 7631 \times \mathrm{E} \\
\pm 0.0010 \pm 0.0005
\end{gathered}
$$

Antonio LASALA-GARCIA
Grup d'Estudis Astronomics
Apartado 9481
08080 Barcelona
Spain
e-mail: alasala@astro.gea.cesca.es

References:

Kholopov, P.N., editor, 1982, New Catalogue of Suspected Variable Stars, Moscow
Strohmeier, W., Kippenhahn, R., Geyer, E., 1957, KVB, No. 18

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4408

Konkoly Observatory
Budapest
10 December 1996
HU ISSN 0374-0676

RY TAURI AT HIGH BRIGHTNESS

The T Tau star RY Tau has increased its brightness from $V=10{ }^{m} 6$ to $V=9.6$ in the period from middle of October to middle of November this year, with no changes in U-B and $\mathrm{B}-\mathrm{V}$. Photometric monitoring of RY Tau is going on at the Crimean Laboratory of the Sternberg Astronomical Institute, Russia, with the $60-\mathrm{cm}$ telescope and the photoncounting photometer. The following is a subset of the photometric data from 1995 and the recent observations in October and November 1996 (also plotted in Figure 1):

JD 2450...	V	$\mathrm{U}-\mathrm{B}$	$\mathrm{B}-\mathrm{V}$
060.3042	10.57	+0.56	+1.09
064.4076	10.46	0.56	1.08
\ldots	\ldots	\ldots	\ldots
362.5437	10.60	0.38	0.96
373.5500	10.22	0.51	1.04
392.5924	10.01	0.59	1.09
400.4896	9.85	0.58	1.05
402.5382	9.60	0.46	1.01
408.4861	9.72	0.60	1.07

Figure 1. Light and colour variations of RY Tau

Figure 2. Variations in $\mathrm{H} \alpha$ profile: the most intensive profile is of December 1995 (low brightness of the star), others are of November 1996 (high brightness)

Figure 3. Fragment of the photospheric absorption spectrum of RY Tau, taken at different brightness of the star (the spectra are overplotted). No difference in line profile or intensity is noticeable

High-resolution echelle spectra of RY Tau were taken with the SOFIN spectrograph at the $2.5-\mathrm{m}$ Nordic Optical Telescope (La Palma, Spain), at low brightness of the star (5 Dec. 1995) and at high brightness (20 Nov., 22 Nov., 25 Nov., $27-30$ Nov. and 1 Dec. 96). The spectral range was $400-900 \mathrm{~nm}$, the resolving power $25000, \mathrm{~S} / \mathrm{N}$ ratio 170 . In spite of the large brightness difference, all the spectra show the same photospheric spectrum of a late G star, with the same line depths and line ratios, and with the same veiling factor of about 0.5 . The equivalent width of $\mathrm{H} \alpha$ emission has changed from 1.8 nm to 0.7 nm , that is the flux radiated in the line remains at about the same level as before the brightening of the star (see Figure 2). The spectra taken at high brightness of RY Tau show the usual night-to-night variations in emission line profiles of HI and CaII: superposition of broad emission with multiple variable absorption components at radial velocities from +50 to $-150 \mathrm{~km} / \mathrm{s}$. No variations were found in photospheric absorption lines (see Figure 3).

Similar event of brightening of RY Tau by more than one magnitude with constant colours was observed in 1983/84 (Zajtseva et al., Sov. Astron.Lett., 11(2), 109, 1985).

G. ZAJTSEVA

Sternberg Astronomical Institution, Russia

P. PETROV
Crimean Astrophysical Observatory, Ukraine

I. ILYIN
R. DUEMLER
I. TUOMINEN

University of Oulu, Finland

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4409

Konkoly Observatory
Budapest
10 December 1996
HU ISSN 0374-0676

HV 2554 AND THE SUPERSOFT X-RAY SOURCE RX J0527.8-6954¹

The discovery of the supersoft X-ray source RX J0527.8-6954 during the ROSAT first light observation (Trümper et al., 1991) of the Large Magellanic Cloud (LMC) in June 1990 has directed some attention to the optical variable HV 2554 because its location is within the X-ray error circle of RX J0527.8-6954 (Trümper et al., 1991, Greiner et al., 1991). Later ROSAT observations improved the X-ray position resulting in a larger offset to HV 2554 (Cowley et al., 1993, Greiner et al., 1996a,b). However, it also became clear that there are no exact coordinates available (no SIMBAD entry) for HV 2554. To our knowledge the only finding chart available for HV 2554 is the Large Magellanic Cloud atlas by Hodge \& Wright (1967) (see Figure 1), but unfortunately the scale is too poor and the variable itself invisible. While only a summary of the variability of HV 2554 is published in form of table entries in Shapley \& Mohr (1940) (based on the investigation of only 12 plates) and Shapley \& McKibben Nail (1955), the detailed notes of the Gaposchkins (C.H. Payne-Gaposchkin and S. Gaposchkin) on the brightness estimates of HV 2554 on 380 plates (taken between 1896 and 1954) of mainly the A series are unpublished.

Given these facts we went back to the original plates and re-identified HV 2554. From the unpublished individual brightness estimates (recently archived by D.L. Welch and electronically available on http://www.physics.memaster.ca/HCO/) we selected four plates: two with HV 2554 being brightest and two plates with it being in a faint state. A comparison of the brightest/faintest plate pairs quickly revealed a clearly variable object with an amplitude consistent with the value of $\Delta \mathrm{m} \sim 1.6 \mathrm{mag}$ (Shapley \& McKibben Nail, 1955). Our independent relative brightness estimates on nearly 30 further plates are in good agreement to those of the Gaposchkins and thus confirm the correctness of our re-identification. The astrometry on plates showing HV 2554 in the bright state is overplotted on a CCD frame taken in March 1995 (small circle in Figure 2) and demonstrates that its position is within the $5^{\prime \prime}$ X-ray error circle of RX J0527.8-6954.

These findings provided the motivation to determine the pattern of optical variability of HV 2554 over the last six years during which RX J0527.8-6954 was found to gradually decline in X-ray intensity (Greiner et al., 1996a,b). For this purpose, we investigated about 140 blue plates out of the 447 plates (210 blue, 230 red) taken between Oct. 1990 and Jan. 1995 within the EROS project for the search of microlensing events of the LMC (Aubourg et al., 1993). Two different emulsions were used in the blue passband (with filter GG385): IIaO during 1990-1993, and the emulsion IIIaF during Oct. 19931995. While plates of both emulsion types are generally more sensitive than the Harvard plates, the IIIaF emulsion even provides a spatial resolution below $2^{\prime \prime}$, thus reaching in best cases a quality comparable to the CCD image shown in Figure 2 (seeing of $0^{\prime \prime} 9$). As a consequence, in most cases several or even all of the at least 6 objects within the astrometric error circle of HV 2554 are resolved and detectable on these EROS project

[^2]

Figure 1. A $13.5 \times 13!5$ area around HV 2554 (center) reproduced from the Hodge \& Wright (1967) atlas of the LMC. The variable is located inside the triangle above the " 2554 " mark. North is at the top and East to the left.

Figure 2. The 5" X-ray error radius (large circle) of RX J0527.8-6954 overplotted on a 10 min B image taken on March 25, 1995 with the ESO 2.2 m telescope at La Silla/Chile. The small circle denotes the best-fit astrometric position of HV 2554 as determined from plate A 14531 of the Harvard plate collection. Numbers denote all resolved objects within the X-ray error circle (large circle, Greiner et al., 1996a).
plates. In addition to these plates, we have investigated single plates taken for other purposes in 1975, 1977, 1978, 1987 and 1989. The surprising result of our analysis of all the investigated plates was the fact that we did not find any variable object within or around the astrometric position of HV 2554.

The non-variability of any of these objects on the EROS Schmidt plates as opposed to the apparent variability on the Harvard plates can be due to several reasons:

1. The re-identification of HV 2554 is wrong while the original measurements are of a different object. We have carefully checked this possibility, but can definitely exclude it. There is no other star of the given brightness around the position marked on the Hodge \& Wright (1967) atlas, and in addition the variability pattern found on the plates coincides with that of the unpublished notes of the Gaposchkins.
2. HV 2554 has ceased to be variable in the two decades between the last Harvard plates (1954) and the first EROS project plates (1990) (with the few other, individual plates it would be even before 1977). Though this would be a rare circumstance, it cannot be excluded.
3. HV 2554 is not intrinsically variable on the Harvard plates. Instead, the combination of variable seeing and different limiting magnitudes of the plates result in a different size of the image of the several overlapping objects and thus counterfeits a variability. This reasoning implies a clear prediction, namely that HV 2554 appears bright on plates with better than average seeing and sensitivity, so that objects 2,3 and 6 (and probably also 4) contribute to the size of the merged image while on plates with bad seeing and sensitivity only object 1 is imaged, thus resulting in a considerably smaller size on the plate. A re-investigation of the Harvard plates has indeed confirmed this relation between the brightness of HV 2554 and the plate quality.
We therefore conclude that though variations are seen at first glance on the Harvard plates, a careful look including a consideration of the effects of different seeing, different fog level and limiting magnitude shows that variations of HV 2554 are marginal at best. A hint of support comes from the fact that the measurements on the unpublished notes from the Gaposchkins were crossed out which usually means that they did not consider the object to be variable in the end. We would like to mention, however, that it is not possible to exclude definitely intrinsic optical variability of HV 2554.

Given the large amplitude of the X-ray decline of RX J0527.8-6954 over the last six years (a factor of 50), one is inclined to expect a correlated (either positive or negative) variability of its optical emission. The lack of any obvious optical variability of objects 1 through 9 in Figure 2 (though somewhat uncertain for the faint objects 6 through 9) suggests that none of these is the optical counterpart of RX J0527.8-6954. Sensitive optical observations (imaging and spectroscopy) at sub-arcsecond resolution are certainly required to identify RX J0527.8-6954.

Acknowledgements: JG is indebted to J. Guibert and E. Lesquoy for kind hospitality at the Paris Observatory. We are grateful to D. Welch for detailed information on the unpublished Gaposchkin material. JG is supported by the Deutsche Agentur für Raumfahrtangelegenheiten (DARA) GmbH under contract FKZ 50 OR 9201.

JOCHEN GREINER
MPI für extraterrestrische Physik
Giessenbachstr. 1
D-85740 Garching, Germany
e-mail: jcg@mpe-garching.mpg.de

MARTHA L. HAZEN
Harvard College Observatory
60 Garden Street
Cambridge, MA 02138
e-mail: mhazen@cfa.harvard.edu

References:

Aubourg E., Bareyre P., Brehin S., Gros M., Lachieze-Rey M., Laurent B., Lesquoy E., Magneville C., Milsztajn A., Moscoso L., Queinnec F., Rich J., Spiro M., Vigroux L., Zylberach S., Ansari R., Cavalier F., Moniez M., Beaulieu J.-P., Ferlet R., Grison Ph., Vidal-Madjar, Guibert J., Moreau O., Tajahmady F., Maurice E., Prevot L., Gry C., 1993, Nat., 365, 623
Cowley A.P., Schmidtke P.C., Hutchings J.B., Crampton D., McGrath T.K., 1993, ApJ, 418, L63
Greiner J., Hasinger G., Kahabka P. 1991, $A \& A, 246$, L17
Greiner J., Schwarz R., Hasinger G., Orio M., 1996a, A\&A, 312, 88
Greiner J., Schwarz R., Hasinger G., Orio M., 1996b, in Supersoft X-ray Sources, ed. J. Greiner, $L N P, 472$, p. 145
Hodge P.W., Wright F.W., 1967, Atlas of "The Large Magellanic Cloud", Smithonian Press
Shapley H., Mohr J., 1940, Ann. of Harvard Coll. Obs., 90, No. 1
Shapley H., McKibben Nail V., 1955, Proc. of Nat. Acad. of Sci. 41, No.4, 185
Trümper J., Hasinger G., Aschenbach B., Bräuninger H., Briel U.G., Burkert W., Fink H., Pfeffermann E., Pietsch W., Predehl P., Schmitt J.H.M.M., Voges W., Zimmermann U., Beuermann K., 1991, Nat, 349, 579

NSV 03438, A NEW DETACHED ECLIPSING BINARY STAR IN CANIS MINOR

Following the cooperation program between the Esteve Duran Observatory Foundation and the Grup d'Estudis Astronomics, for the identification and study of poorly observed variable stars, NSV $03438(=$ WR $032=$ CSV 006558$)$ was monitored in the V band for 23 nights using a CCD camera, from 19 January to 5 May 1996. Observations were carried out with the $0.6-\mathrm{m}$ Cassegrain telescope at Esteve Duran Observatory in Seva (Spain) and the $0.4-\mathrm{m}$ telescope at Mollet del Valles Observatory (Spain). GSC 0762.2164 and GSC 0762.2280 were used as comparison and check stars respectively. NSV 03438 could be unambiguously identified with GSC 0762.2022.

In the NSV catalogue (Kholopov, 1982), it is recorded that variability of NSV 03438 was first observed by Weber (1957), who reported that this star was a possible Cepheid with a photographic brightness variation from 10.8 to 11 m 7 .

Our observations show that NSV 03438 is not a Cepheid but a detached eclipsing binary star, with a period over 1.5 days. Phase curve indicates that primary and secondary minima are 0 . 79 and 0 . 74 deep partial occultations respectively (Figure 1). The following ephemeris has been derived:

$$
\begin{gathered}
\text { Min. } \mathrm{I}=\mathrm{HJD} 2450122.48519+1^{\mathrm{d}} .535114 \times \mathrm{E} \\
\pm 0.00029 \pm 0.000003
\end{gathered}
$$

Figure 1

To determine the magnitude and $\mathrm{B}-\mathrm{V}$ color index of NSV 03438 and its comparison star, these objects were also observed in the B and V bands using an Optec SSP-5A photoelectric photometer. HR 2647, HR 2710, and HR 2760 were used as comparison stars. As a result, it was obtained that NSV 03438 has a visual magnitude at maximum light of 10.81 ± 0.05 and an observed color index of 0.49 ± 0.11.

Spectroscopic observations and multicolor photometry should be performed in order to obtain more accurate information about this new eclipsing binary star.

E. GARCIA-MELENDO
Esteve Duran Observatory
El Montanya - Seva
08553 SEVA
(Barcelona)
Spain
e-mail:duranobs@astro.gea.cesca.es

J.M. GOMEZ-FORRELLAD

Grup d'Estudis Astronomics
Apartado 9481
08080 Barcelona
Spain
e-mail:jmgomez@astro.gea.cesca.es

References:

Kholopov, P. N. editor, 1982, New Catalogue of Suspected Variable Stars, Moscow Weber, R., 1957, Documentation des Observateurs, Circulaire, No. 12

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4411

Konkoly Observatory
Budapest
19 December 1996
HU ISSN 0374-0676

NEW VARIABLES IN THE NORTH-EASTERN PART OF M31

The north-eastern part of M31 has been poorly studied for variable stars in contrast to the south-western one. After the pioneering survey of Hubble (1929) which covered the entire body of the galaxy only 4 fields (each with a diameter of 16^{\prime}) located at the different galactocentric distances along south-western major axis were studied for variable stars in details (Baade \& Swope, 1963, 1965; Gaposchkin, 1962). Only one new 75-day cepheid has been added (Ivanov, 1985) in the north-eastern part since Hubble's times.

The main goal of this work is to look for new variables in the north-eastern part of M31. We used 15 plates (B passband, $40^{\prime} \times 40^{\prime}$ field) obtained at the 1 m telescope ($\mathrm{f} / 13$) of SAO RAN, Russia from 1990 until 1992. They are centered on $\alpha(1950)=0^{\mathrm{h}} 41^{\mathrm{m}} 10^{\mathrm{s}}$ and $\delta(1950)=41^{\circ} 17^{\prime}$. This position was considered to include the larger part of the bulge of M31 which is the most probable area for discovering of novae and study of all four Hubble-Sandage variables in Andromeda nebula. The exposure time was usually 4 hours.

A separate calibration curve was constructed for each of our plates. We used 45 standard stars from the photoelectric sequences of Humphreys et al. (1987) and CCD measurements of Massey et al. (1986). The mean error of our calibration curves is about $0{ }^{\mathrm{m}} 1$. The stars were measured with a constant slit photometer.

We selected 19 new variable stars candidates within the investigated area blinking 5 pairs. They were included in a list of 33 known or suspected variables together with previously known 14 variables within the same area. Their coordinates accurate to $\pm 0!5$ are given in Table 1. The identification chart for these variables is given in Figure 1.

Table 1. Coordinates of known and suspected variables in the NE part of M31

No.	$\alpha(1950)$	$\delta(1950)$	Points	Rem	No.	α (1950)	$\delta(1950)$	Points	Rem
	h m	- ' "				h m	- ' ${ }^{\text {c }}$		
1	03931.50	410309.4	13		18	04120.99	410857.9	8	V 13
2	03931.68	410305.9	13		19	04212.45	411203.6	13	
3	03941.01	410317.4	12	V 4	20	04214.54	410717.5	13	
4	04005.31	410419.8	11		21	04213.24	410715.3	12	nova?
5	03928.11	410910.3	12		22	04144.76	410632.6	13	
6	03947.81	411242.2	13	I 1	23	04134.93	410618.3	12	V15
7	04024.16	411245.7	8		24	04120.03	410150.8	12	
8	04040.46	411510.1	13		25	04115.62	410132.8	12	
9	04036.39	412008.4	7		26	04115.63	410235.9	8	V 6
10	04058.90	412736.7	10		27	04102.69	410309.2	9	V 14
11	04126.65	412031.1	13		28	04100.65	410040.8	11	V11
12	04106.64	411859.9	4	V 9	29	04132.15	405702.5	9	
13	04117.74	411348.8	10	V12	30	04048.88	405542.2	9	V19
14	04107.50	411116.1	11	V7	31	04104.47	405301.0	3	V 2
15	04051.91	410712.1	12		32	04004.08	410535.0	4	V 8
16	04051.75	410703.6	8		33	04205.88	411409.3	12	VA 1
17	04114.11	410834.9	12						

Figure 1
Table 2. Photometry of stars No. 2, No. 5 and No. 28

JD	No.2	No.5	No. 28
$2440000+$			
8156.5260	19.73	19.10	20.39
8531.4896	19.63	19.28	20.99
8536.4618	19.44	-	20.68
8537.4375	19.67	19.51	20.80
8539.4375	19.49	19.17	20.95
8542.4583	19.78	19.27	21.32
8572.3542	20.15	19.12	-
8649.3767	19.52	19.17	21.21
8650.3577	19.99	19.42	-
8831.6177	19.89	19.21	20.82
8832.5823	19.84	19.11	20.92
8837.6250	20.32	18.61	20.67
8839.6215	20.02	18.85	20.43

Figure 2. Light curve of star No. 2

Figure 3. Light curve of star No. 5

Figure 4. Light curve of star No. 28

Our measurements show that practically all the suspected variables show measurable change in brightness (amplitudes greater than $0 .{ }^{m} 7$) but only for 14 of them we can present a list with more than 11 points of observation. A period-finding programme was applied to obtain the appropriate periods. For three of these stars acceptable light curves were found. Photometry of these stars is presented in Table 2.

Figures 2-4 show computed light curves with obtained periods. Luminosities of these variables coincide with the values predicted by the period-luminosity relation for the cepheids in M31. The star No. 28 was classified from Hubble (1929) as an irregular variable.

The limiting magnitude of our plates prevents us from reaching the levels more populated by cepheids. Most of the known and suspected variables are found out of the boundaries of the OB associations.

This project is supported by grants F-430/1994 and F-342/93 with the National Science Foundation, Bulgaria.

P.L. NEDIALKOV
Department of Astronomy,
Sofia University, Bulgaria
N.A. TIKHONOV
SAO of the Russian Academy of Sci.
Nizhnij Arkhyz, Russia

R.G. KURTEV

Department of Astronomy, Sofia University, Bulgaria
G.R. IVANOV

Department of Astronomy,
Sofia University, Bulgaria

References:
Baade W., Swope H., 1963, AJ, 68, 437
Baade W., Swope H., 1965, AJ, 70, 212
Gaposchkin S., 1962, AJ, 67, 358
Hubble E., 1929, ApJ, 69, 103
Humphreys R., Sitko M., Sitko A., 1987, PASP, 99, 380
Ivanov G., 1985, Ap\&SSS, 115, 409
Massey P., Armandroff T., Conti P., 1986, AJ, 92, 1303

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4412

Konkoly Observatory
Budapest
19 December 1996

HU ISSN 0374-0676

NEW VARIABLES IN THE FIELD OF RE J0725-002

The sky was surveyed in the extreme ultraviolet (EUV) region of the spectrum by the EUVE satellite (Malina et al., 1994) and the ROSAT satellite (Pounds et al. 1993) and catalogs of the sources included RE J0725-002 = EUVE J0725-00.4 = BD $-00^{\circ} 1712=$ GSC 4817_468. The star was one of the subjects of an investigation by Jeffries (1995), who concluded from spectral observations that it was a pair of nearly identical K5 dwarf stars orbiting with a 1.40 period.

The automated $0.5-\mathrm{m}$. telescope, Cousins R filter and CCD camera of the Climenhaga Observatory of the University of Victoria (Robb and Honkanen, 1992) were used to make photometric observations of RE J0725-002. Using IRAF ${ }^{1}$ routines the frames were de-biased and flat fielded, and the magnitudes were found from 5 arc second aperture photometry after using the Gaussian centering option of the PHOT package.

The field of stars we observed is shown in Figure 1 and their designations, coordinates (J2000) and magnitudes from the Hubble Space Telescope Guide Star Catalog (GSC) (Jenkner et al., 1990) and the $\Delta \mathrm{R}$ magnitudes are tabulated in Table 1. The $\Delta \mathrm{R}$ differences in magnitude are found from our data in the sense of the star minus GSC 4817_386. The standard deviation of the differences during a night ranged from 0 . 006 for a bright star on a good night to $0.0^{m} 030$ for the faint stars on poor nights. The $\Delta \mathrm{R}$ magnitude given in the table is the mean of the thirteen nightly mean differential magnitudes and the standard deviations measure night to night variations. The stars 4817_468 and 4817_788 have large standard deviations and are variable from night to night. Due to the small field of view extinction effects were negligible and no corrections have been made for them. No corrections have been made to transform the R magnitude to a standard system.

Photometric observations were made from 25 February to 25 March 1996 UT. Brightness variations in RE J0725-002 were evident both during a night and from night to night. A least squares fit of a single sine wave to the data shows a deep minimum in χ^{2} at a period of 1d.404. A period finding routine based on that of Jurkevich (1971) found the best period to be 1.412 . Two other possible periods are rendered less likely by the spectral observations (Jeffries 1995); namely 0.5836 , which is a one cycle per day alias, and 2 d 824 , which is twice the adopted period.

So in agreement with Jeffries (1995) the best ephemeris from our data is:

$$
\begin{gathered}
\text { HJD of Minima }=2450137^{\mathrm{d}} \cdot 46+1.412 \times \mathrm{E} \\
\pm .10 \pm 0.024
\end{gathered}
$$

A plot of the 1051 differential R magnitudes phased at this period is shown in Figure 2 with different symbols for each of the different nights. While the light curve does show a possible "primary eclipse" the lack of a corresponding secondary eclipse leads us to believe that this is not an eclipsing system; a possibility suggested by Jeffries (1995). We suspect

[^3]Table 1. Stars observed in the field of RE J0725-002

GSC No.	RA J2000.	Dec. J2000.	GSC Mag.	$\Delta \mathrm{R}$ Mag.
$4817 _468$	$07^{\mathrm{h}} 25^{\mathrm{m}} 14^{\mathrm{s}}$	$-00^{\circ} 25^{\prime} 39^{\prime \prime}$	10.2	$-1.698 \pm .034$
$4817-788$	$07^{\mathrm{h}} 25^{\mathrm{m}} 05^{\mathrm{s}}$	$-00^{\circ} 24^{\prime} 24^{\prime \prime}$	12.4	$-0.767 \pm .130$
$4817 _386$	$07^{\mathrm{h}} 25^{\mathrm{m}} 15^{\mathrm{s}}$	$-00^{\circ} 27^{\prime} 42^{\prime \prime}$	10.5	-
$4817 _508$	$07^{\mathrm{h}} 24^{\mathrm{m}} 59^{\mathrm{s}}$	$-00^{\circ} 24^{\prime} 44^{\prime \prime}$	13.9	$+2.298 \pm .013$
$4817 _1294$	$07^{\mathrm{h}} 25^{\mathrm{m}} 02^{\mathrm{s}}$	$-00^{\circ} 24^{\prime} 55^{\prime \prime}$	12.7	$+1.780 \pm .010$
$4817 _904$	$07^{\mathrm{h}} 25^{\mathrm{m}} 22^{\mathrm{s}}$	$-00^{\circ} 24^{\prime} 29^{\prime \prime}$	13.1	$+1.923 \pm .009$
$4817-1422$	$07^{\mathrm{h}} 25^{\mathrm{m}} 07^{\mathrm{s}}$	$-00^{\circ} 24^{\prime} 21^{\prime \prime}$	13.9	$+2.862 \pm .018$

Figure 1. Finder chart of the field labeled with the GSC numbers (Jenkner et al., 1990)

Figure 2. Light curve of the differential R data of RE J0725-002 for 1996

Table 2. Differential observations of GSC 4817_788

HJD	$\Delta \mathrm{R}$						
2450138.7	-0.627	2450145.7	-0.646	2450156.7	-0.803	2450165.7	-0.917
2450142.8	-0.619	2450148.6	-0.677	2450160.8	-0.870	2450166.7	-0.928
2450143.8	-0.638	2450154.7	-0.788	2450162.7	-0.887	2450167.7	-0.938
2450144.7	-0.636						

that one or both stars have large active regions on them causing the brightness variations and the large EUV emission. The light curve does show shifts of a few hundredths of a magnitude in mean level from night to night, likely due to differential rotation or active region evolution and could be studied by further photometric observations.

As a possible comparison star GSC 4817_788 was monitored but was found to vary from night to night. The differential R magnitudes are given in Table 2. The star was at maximum brightness on approximately HJD 2450142 and decreased in brightness at roughly $0 .{ }^{m} 01$ per day during our observations.

The star GSC 4817_508 was also found to vary in brightness during a night. Using a period finding routine based on that of Jurkevich (1971) our best estimate is 3.465 cycles per day. Using the method of Kwee and Van Woerden (1956), Heliocentric Julian dates of primary minimum were found to be 2450144.6908 and 2450154.7935 and times of secondary minimum were $2450142.8352,2450145.7157$ and 2450156.6867 . The precision of the minima determinations were nominally ± 0.0010, but this does not include an allowance for the asymmetry of the minima. In Figure 3 the data are plotted as a function of phase according to the ephemeris:

$$
\begin{gathered}
\text { HJD of Minima }=2450138.64+0{ }^{\mathrm{d}} 2886 \times \mathrm{E} \\
\pm .10 \pm 0 \mathrm{~d}^{\mathrm{d}} 0005
\end{gathered}
$$

Figure 3. Light curve of the differential R data of GSC 4817_508 for 1996

To help classify the two serendipitously discovered variable stars color information was sought. Unfortunately only a V frame and an I frame were obtained under nonphotometric conditions. While not definitive they are indicative of the type of stars. Assuming RE J0725-002 has the V-I of a normal K5V (Jeffries 1995), then GSC 4817_788 is an extremely late M star and GSC 4817_508 has the color of approximately an early K star. Therefore GSC 4817_788 is likely a long period or irregular variable and GSC 4817_508 is most likely an ellipsoidal or eclipsing binary and not a Delta Scuti type star. The shape of the light curve, small amplitude and difference in maxima are consistent with a W UMa star seen with a small inclination.

Further photometric and spectroscopic observations will be valuable to confirm our conclusions as to the reason for the variability of these stars.

R.M. ROBB
M.D. GLADDERS
Climenhaga Observatory
Dept. of Physics and Astronomy
University of Victoria
Victoria, BC, CANADA, V8W 3P6
Internet: robb@uvastro.phys.uvic.ca
Internet: gladders@astro.utoronto.ca

References:

Jeffries, R. D., 1995, MNRAS, 276, 397
Jenkner, H., Lasker, B., Sturch, C. McLean, B., Shara, M., Russell, J., 1990, AJ, 99, 2082
Jurkevich, I., 1971, Ap. 8 Sp. Sci., 13, 154
Kwee, K.K. and Van Woerden, H., 1956, Bull. Astr. Inst. Neth., 12, 327
Malina, R. F., et al., 1994, AJ, 107, 751
Pounds, K. A., et al., 1993, MNRAS, 260, 77
Robb, R. M. and Honkanen, N. N., 1992, in A.S.P. Conf. Ser., 38, Automated Telescopes for Photometry and Imaging, ed. Adelman, Dukes and Adelman, 105

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4413

Konkoly Observatory
Budapest
19 December 1996
HU ISSN 0374-0676

VARIABLE STARS IN THE GLOBULAR CLUSTER M72

NGC 6981 (M72), $\mathrm{l}=35.2, b=-33.7$, is a variable-rich Oo IA cluster. The cluster is classified as CC IX (concentration class) and according to Kukarkin (1974) has a radius $R=2!94$. The list of 42 stars in the Third Catalogue of Variable stars (Sawyer-Hogg 1973) contains 28 RR Lyrae variables with known periods, 11 with no period determinations, 2 non-variables and one red variable (V42). The four variables (V2, V27, V35, V39) detected at larger distances $3!6 \leq R \leq 5!2$, all have a positive X coordinate. Periods have been determined for the first three and hence there are 25 known RR Lyr variables with $R \leq 2.5$. A comparison of the position of the stars on the reproduced plates with the accompanying lists of Shapley (1920), Shapley and Ritchie (1920) and Sawyer-Hogg (1953) indicates that the X coordinates of V29 and V41 should have an opposite sign, i.e. minus and plus correspondingly. These errors have not been corrected in catalogue of Sawyer-Hogg (1973).

During the past 40 years no further search had been made for variable stars in this cluster and no periods were determined for 13 (V6, V19,V22, V26, V30, V33, V34, V36 - V41). In order to check the variability of the 11 stars with unknown periods and search for as yet undetected variables the method proposed and applied for M3 (Kadla \& Gerashchenko, 1982) was used. It is based on an analysis of a color-magnitude diagram obtained from measurements of two plates (or CCD) taken "simultaneously". A variable is thus at identical phase and the RR Lyrae stars are located in a definite strip. By indicating the possible variables the diagram considerably narrows down the number of stars which need further investigation.

We had at our disposal a pair of the necessary CCD (B,V) exposures obtained with the 90 cm Dutch telescope at La Silla. Details on the observations, methods of reduction are given in the paper by Brocato et al. (1996). The field includes 33 stars with $R<2!.5$ in the variable star list (Sawyer-Hogg, 1973). Photoelectric standards obtained by Dickens (1972) were used to transform the instrumental magnitudes. The resulting $\mathrm{V}-(\mathrm{B}-\mathrm{V})$ diagram (Figure 1) includes 239 stars in the magnitude range $15.50<V<18 \cdot 00$, the known variable stars being denoted by an asterisk.

The positions of V6, V19 and V33 on the color-magnitude diagram indicate that they belong to the GB. Of the four stars (V13, V22, V26 and V34) located in the vicinity of the RHB stars only V13 has a known period, V22 is listed as a non-variable and the last two are most probably RHB stars. It was difficult to identify the 5 variables with $R \leq 0.4$ found by Sawyer-Hogg (1953). The reproduced plate of the cluster does not have the necessary quality and no known variables are marked, although according to the listed coordinates V40 is located close to the known variable V13.

The coordinates, V and $B-V$ of the 9 suspected variable stars in the RR Lyr variability strip are given in Table 1. Their positions were determined using as a reference frame the coordinates system given in the catalogue of Sawyer-Hogg (1973).

Figure 1. The color-magnitude diagram for the globular cluster NGC 6981. The known RR Lyrae stars are denoted by asterisks, the stars from Table $1(S)$ - circles, (R) pluses.

Table 1. Positions and photometric data for suspected variables (S) and for possible variable stars located at the intersection with the RHB(R)

N	X (arcsec)	Y (arcsec)			$B-V$	N	X (arcsec)	Y (arcsec)	V
S1	-44.9	-36.5	16.60	0.27	R 1	-68.2	-102.6	16.92	0.54
S2	-15.9	-9.5	16.83	0.38	R 2	-34.9	-55.4	16.99	0.53
S3	-10.0	-4.5	16.61	0.26	R 3	-23.4	-9.2	17.01	0.56
S4	-0.4	-11.9	17.20	0.54	R4	3.7	6.7	16.97	0.53
S5	0.4	2.7	16.29	0.34	R5	18.2	26.8	17.01	0.52
S6	5.4	-17.5	16.22	0.50	R6	32.3	-12.4	16.93	0.53
S7	9.6	-2.4	16.36	0.26	R7	50.9	-44.4	16.96	0.53
S8	13.6	-9.0	16.72	0.27					
S9	24.9	-9.0	16.75	0.46					

Figure 2. Chart of the cluster. The notations V, S and R preceding the star number refer to known and suspected (Table 1) variables.

Figure 3. The central part of NGC 6981. The notation are the same as in Figure 2.

As the observed RR Lyrae instability strip slightly intersects the RHB there is a possibility that some of the latter stars are variable. The coordinates, V and $B-V$ of the stars which should be checked are listed in Table 1. The maps of NGC 6981 with known and suspected variable stars are shown in Figure 2 and Figure 3 (coordinates are in pixels, 1 pixel $=0.144$). Almost all the suspected variables are located in the central part of cluster.

Z.I. KADLA
A.N. GERASHCHENKO
Yu.N. MALAKHOVA
Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo, 196140 Saint-Petersburg, Russia,
e-mail: kadla@pulkovo.spb.su

References:

Brocato E., Buonanno R., Malakhova Yu. \& Piersimoni A., 1996, A\&Ap, 312, 80
Dickens R.J., 1972, MNRAS, 157, 281
Kadla Z.I. Gerashchenko A.N., 1982, Isv. Main A.O. of the Academy of Sci. of USSR (Pulkovo), 199, 86
Kukarkin B.V., 1974, The General Catalogue of Globular Clusters of our Galaxies. Publishing House Nauka, Moscow.
Sawyer-Hogg H., 1953, Comm. David Dunlap Obs., No. 34
Sawyer-Hogg H., 1973, Publ.David Dunlap Obs. 3, No. 6
Shapley H., 1920, Mt. Wilson Contr. No. 190 ApJ., 52, 73
Shapley H., Ritchie M., 1920, Mt. Wilson Contr. No. 195; ApJ, 52, 232

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4414

Konkoly Observatory
Budapest
19 December 1996

HU ISSN 0374-0676

VARIABLE STARS IN THE GLOBULAR CLUSTER NGC 6681

NGC 6681 (M70, $C 1840-323, l=2.9, b=-12.5$) is a variable poor Oo II cluster (II VP). With $[\mathrm{Fe} / \mathrm{H}]=-1.51$ it is one of several clusters which lie in the metallicity interval where alongside with II VP there coexist I VR (Oo I variable rich) clusters. The cluster has an absolute magnitude $M_{v_{o}}=-7^{\mathrm{m}} 05$, concentration class $\mathrm{CC}=\mathrm{V}$, apparent radius $r=3.9$ (Kukarkin 1974) and limiting radius $r=11.0$ (Kukarkin \& Kireeva, 1979).

The cluster was first searched for variable stars by Rosino (1962). In the investigated area he discovered five variable stars, three of which are field variables with a distance $r>11.7$ from the cluster center. The other two variables, designated V1 and V3, at $r=2!0$ and $9!8$ respectively, were noted by Rosino as RR?, and at the time of publication of the Third Catalogue of Variable Stars in Globular Clusters (Sawyer Hogg 1973) were the only known variables assumed to be cluster members.

A further search for variables was made by Liller (1983). In the investigated field she discovered 18 variables including the five previously detected by Rosino. Three of the variables found by Liller with $\mathrm{r}=0.9,5.9$ and 8.3 are within the limiting radius of the cluster. The estimated periods for four of them (excluding V4) enabled their classification as RR Lyrae variables. However according to the "mean" magnitude two of the latter V5 and V2 (renamed Rosino V3) at $\mathrm{r}=8.3$ and 9.8 were found to have low probability membership, thus limiting the distance of the three cluster variables at $\mathrm{r}=5.9$. In Liller's table 1 there is a misprint in the signs of the X coordinates of V3 and V4, which should be - and + respectively.

Details of the CCD observations, obtained with the 0.9 m Dutch telescope at ESO-La Silla, methods of reduction are given in the paper by Brocato et al. (1996). The method of a search for as yet undiscovered variables was the same as in the companion paper (Kadla et al., 1996). The V and B magnitudes of the measured stars are based on 16 photoelectric standards (Landolt, 1992) within the magnitude intervals $12 \mathrm{~m}^{\mathrm{m}} 52<V<$ $15 .^{\mathrm{m}} 91$ and $13 .^{\mathrm{m}} 02<B<16^{\mathrm{m}} 13\left(-0^{\mathrm{m}} 24<B-V<\right.$. $\left.^{\mathrm{m}} 91\right)$. CMD was obtained using for the mean V and B magnitudes from 3 V and 3 B consecutive exposures, the time difference between the mean V and B magnitudes being 25 minutes.

The stars in the instability strip of the resulting CMD diagram are shown in Figure 1. The available photometric data (23 exposures - 15 V and 8 B) permitted to confirm the variability of nine stars (including the aforementioned two known RR Lyr variables discovered by Rosino and Liller). Data for these variables (numbered 1-12, open circles) and other stars in the instability strip are given in Table 1 and Figure 2. Six stars (Nos. 13-18, triangles) are probably variables but need further confirmation and three (Nos. $19-21, V>16{ }^{\mathrm{m}} 36$) are probably field variables. There are three stars (Nos. 22-24, asterisks) in the instability strip which did not show any sign of variability in our data. If the variable V4 without a determined period at $\mathrm{r}=5.9$, found by Liller, is included there are at present ten known RR Lyrae stars belonging to the cluster.

Figure 1. The CMD for stars in an area $3: 8 \times 3!8$ centered on the cluster. Concerning notation of stars in the instability strip see the text

Figure 2. Chart of the cluster showing the position stars in Table 1

Table 1. Photometric data for variables

N	X (arcsec)	Y (arcsec)		V	$B-V$	N	X (arcsec)	Y (arcsec)	V
1	56.4	-105.1	15.58	0.45	13	-19.3	-12.0	16.06	0.59
3	-9.2	-53.2	15.91	0.52	14	-9.4	2.5	15.31	0.14
6	-12.9	-30.0	15.55	0.33	15	-1.6	23.2	15.41	0.35
7	-9.3	-1.2	15.55	0.41	16	1.7	6.9	16.10	0.56
8	-8.2	0.4	15.84	0.24	17	8.7	-19.1	15.52	0.29
9	2.1	20.3	15.47	0.23	18	37.1	-17.9	15.81	0.28
10	5.5	2.1	15.21	0.26	19	-19.7	9.2	16.36	0.31
11	5.6	-7.1	16.16	0.45	20	-10.9	-7.4	16.54	0.56
12	45.9	20.3	15.43	0.27	21	45.9	40.0	16.40	0.67
					22	2.6	4.3	15.01	0.12
					23	-4.0	-22.7	15.56	0.26
					24	-54.1	34.8	15.61	0.25

Financial support from Russian Fund for Basic Research is gratefully acknowledged.

Z.I. KADLA
A.N. GERASHCHENKO
Yu.N. MALAKHOVA
Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo, 196140 Saint-Petersburg, Russia, e-mail: kadla@pulkovo.spb.su

References:

Brocato, E., Buonanno, R., Malakhova, Yu. \& Piersimoni A.M.: 1996, A\&A, 312, 80
Kadla, Z.I., Gerashchenko, A.N. \& Malakhova, Yu.N., 1997, IBVS, No. 4413
Kukarkin, B.V.: 1974, The General Catalogue of Globular Clusters of our Galaxies. Publishing House Nauka, Moscow
Kukarkin, B.V. \& Kireeva, N.N.: 1979, Astr. Zh., 56, 465 [English transl.: Soviet Astr., 23, 261]
Landolt, A.U.: 1992, AJ, 104, 340
Liller, M.: 1983, AJ, 88, 1463
Rosino, L.: 1962, Mem. Soc. Astron. Ital., No. 5, 33, 351
Sawyer-Hogg, H.: 1973, Publ. David Dunlap Obs., 3, No. 6

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4415

Konkoly Observatory
Budapest
6 January 1997
HU ISSN 0374-0676

ON NOVAE 1982 AND 1986 AND POSSIBLE NOVA 1955 IN M33

Using plates obtained with the $50-\mathrm{cm}$ Maksutov telescope of the Sternberg Astronomical Institute Crimean Laboratory, we studied two novae in M33 discovered by Della Valle et al. (1994). These novae were also independently found on our plates.

The coordinates (2000) of the novae are the following:
Nova 1982 (No. 9): $\quad 1^{\mathrm{h}} 34^{\mathrm{m}} 05.46+30^{\circ} 46^{\prime} 04^{\prime \prime} .6$
Nova 1986 (No. 10): $1^{\mathrm{h}} 33^{\mathrm{m}} 35.70+30^{\circ} 35^{\prime} 03^{\prime \prime} 3$

The B magnitudes of the novae based on the photoelectric sequence (Sandage and Johnson, 1974) are given in the table:

Nova 9	Nova 10		
J.D. 2445000+	B	J.D.2446000+	B
229.408	17.9	686.502	$(19.2$
230.422	18.9	703.361	18.8
234.376	$(19.1:$	706.358	18.5
239.457	18.9	709.294	18.5
240.491	18.9	710.294	18.5
257.322	$19.2:$	712.310	19.2
258.497	$19.1:$	714.441	$(19.2$
263.431	19.2		
264.409	$(19.3$		
265.412	19.2		
266.410	19.3		
267.427	19.3		
285.276	$(19.2$		
286.403	19.2		
288.396	$(19.2$		

Nova 9 was seen on 5 plates of Della Valle et al. According to our data, the nova was bright on J.D. 2445229 and soon become fainter, but it was still seen for about two months.

Nova 10 was seen on a single plate of Della Valle et al. This nova is now confirmed on our plates, though on J.D. 2446710 it was appreciably fainter than according to Della Valle et al. ($m_{p g}=17.8$).

In connection with the search for novae in M33, it is necessary to mention the star 14 B (Humphreys and Sandage, 1980). It was bright in $1955(V=17.20)$ and fainter than $V=22$ in 1977. The star is absent on all (known to us) published photographs of M33, since 1899 (Keeler, 1908). It is not seen on any of our nearly 400 plates with $B_{l i m}=19$ taken in 1971-1996 and on the plate with $B_{l i m}=23$ as a part of Yu.N. Efremov's program at the $6-\mathrm{m}$ Russian telescope in 1986.

It seems that the star 14 B is a nova, and a search for it on plates taken in 1955 , if they exist, should be desirable.

A.S. SHAROV

Sternberg Astronomical Institute 13, Universitetskij Prosp., Moscow 119899, Russia

References:

Della Valle, M., Rosino, L., Bianchini, A., and Livio, M., 1994, Astron. Astrophys., 287, 403
Humphreys, R.M. and Sandage, A., 1980, Astrophys. J. Suppl. Ser., 44, 319
Keeler, J.E., 1908, Publ. Lick Obs., 8 (Plate 3)
Sandage, A. and Johnson, H.L., 1974, Astrophys. J., 191, 63

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4416

Konkoly Observatory
Budapest
6 January 1997
HU ISSN 0374-0676

V676 Cen: NEW TIMES OF MINIMA AND A POSSIBLE SHORT PERIOD MODULATION

We present new photoelectric (hereafter pe) minima of the very short period, red, Wtype W UMa star V676 Cen $=$ GSC 7806:1187, V $\simeq 11$ m.5, Sp.T. \simeq K2. Other available minima are the photographic ones (hereafter pg) from the discoverer (Hoffmeister 1956) and the photoelectric ones by Gómez and Lapasset (1988, hereafter GL) and by Gray et al. (1996a, b; hereafter GWS). History, a finder chart, light curves and preliminary elements can be found in GWS. The first period study of V676 Cen was made by Wood and Forbes (1963).

The observations reported here were made in 1983 and 1995 at Cerro Tololo InterAmerican Observatory ${ }^{1}$ in Chile with the Lowell telescope, refrigerated phototubes, standard UBVRI filters and photon counting techniques. GSC 7806:1222 and GSC 7806:1059 $=\mathrm{HD} 128433(\mathrm{~K} 2)=\mathrm{CoD}-38^{\circ} 9522$ were used as comparison and check stars, respectively. The derived minima are listed in the lower part of Table 1. The two minima corresponding to the 1983 season were determined through the Sliding Integral's Algorithm (Ghedini 1981, hereafter SIA), while the 1995 minimum was determined by extrapolation using the tracing paper method (Szafraniec 1948). With these minima we have extended the pe baseline of minima from about 4900 in GWS to 15500 cycles.

We made a least squares weighted parabolic solution taking into account all available minima to derive an improved ephemeris and a possible period variation. Standard deviations for the pg minima ($0 \mathrm{~d} 005,0 \mathrm{~d} 010$ and 0 d 015) were estimated from a linear solution with equal weights; for the pe minima we used those published by GWS and those from the output of SIA. The standard deviations of the 1995 minimum were estimated visually, while those from GL were estimated as the pg ones $(0 \mathrm{~d} 001,0 \mathrm{~d} 002$ and 0 d 005$)$ because they are lacking in the publication. We have taken extreme care to reconcile the pg with the pe minima. The parabolic solution is:

$$
\begin{gather*}
\text { Min I }=\text { HJD } 2446971 \mathrm{~d} 61072+0 \mathrm{~d}^{\mathrm{d}} 29239354 \times \mathrm{E}^{\prime}-1 \mathrm{~d} 76 \times 10^{-11} \mathrm{E}^{\prime 2} \tag{1}\\
\pm 0 \mathrm{~d}^{2} 00056 \pm 0.0000011 \quad \pm 0 \mathrm{~d} 29 \times 10^{-11} \mathrm{~m} . \mathrm{e} .
\end{gather*}
$$

Residuals from this solution are labeled $(\mathrm{O}-\mathrm{C})^{\prime}$ in Table 1. Those labeled $\mathrm{O}-\mathrm{C}$ are the residuals from the linear solution. As can be seen comparing the linear and parabolic residuals or from (1) the term that takes into account the total variation of the period is only marginally detectable. We might conclude that the system remained stable along the 53134 revolutions (cycles) covered by the available observations. The behavior of the $\mathrm{O}-\mathrm{C}$ residuals is depicted in Figure 1.

[^4]Table 1. Times of minima and residuals for V676 Cen

Ref.	Min.	Band	$\begin{aligned} & \hline \text { HJD } \quad(\text { sigma }) \\ & 2400000+ \end{aligned}$	E	$\mathrm{O}-\mathrm{C}$	$(\mathrm{O}-\mathrm{C})^{\prime}$
1	1	pg	$34425.5630(0.0100)$	-42908.0	0.0059	0.0069
1	II	pg	$34431.5510(0.0050)$	-42887.5	-0.0002	0.0008
1	I	pg	34474.3820 (0.0050)	-42741.0	-0.0050	-0.0041
1	I	pg	$34477.3180(0.0100)$	-42731.0	0.0071	0.0079
1	II	pg	$34479.5000(0.0050)$	-42723.5	-0.0039	-0.0030
1	II	pg	$34480.3830(0.0050)$	-42720.5	0.0019	0.0028
1	I	pg	$34480.5190(0.0100)$	-42720.0	-0.0083	-0.0074
1	II	pg	$34481.2500(0.0100)$	-42717.5	-0.0082	-0.0074
1	I	pg	$34481.3950(0.0100)$	-42717.0	-0.0094	-0.0086
1	II	pg	$34481.5470(0.0050)$	-42716.5	-0.0036	-0.0028
1	I	pg	$34482.2840(0.0050)$	-42714.0	0.0024	0.0032
1	II	pg	$34482.4260(0.0050)$	-42713.5	-0.0018	-0.0010
1	I	pg	$34482.5790(0.0100)$	-42713.0	0.0050	0.0058
1	II	pg	$34483.3010(0.0050)$	-42710.5	-0.0040	-0.0032
1	I	pg	$34483.4550(0.0050)$	-42710.0	0.0038	0.0046
1	I	pg	$34485.4850(0.0100)$	-42703.0	-0.0130	-0.0121
1	II	pg	$34485.6430(0.0050)$	-42702.5	-0.0012	-0.0003
1	I	pg	$34486.3650(0.0100)$	-42700.0	-0.0101	-0.0093
1	I	pg	$34488.4260(0.0050)$	-42693.0	0.0041	0.0049
1	I	pg	$34489.5920(0.0050)$	-42689.0	0.0005	0.0013
1	II	pg	$34490.3120(0.0100)$	-42686.5	-0.0105	-0.0096
1	II	pg	34490.6190 (0.0050)	-42685.5	0.0041	0.0050
1	I	pg	34491.6390 (0.0050)	-42682.0	0.0008	0.0016
1	I	pg	34503.3290 (0.0050)	-42642.0	-0.0050	-0.0042
1	II	pg	$34504.3550(0.0050)$	-42638.5	-0.0024	-0.0016
1	I	pg	$34505.3800(0.0050)$	-42635.0	-0.0008	0.0000
1	I	pg	34508.3140 (0.0100)	-42625.0	0.0093	0.0101
1	II	pg	$34509.6250(0.0050)$	-42620.5	0.0045	0.0053
1	II	pg	$34511.3710(0.0050)$	-42614.5	-0.0038	-0.0031
1	I	pg	34511.5220 (0.0050)	-42614.0	0.0010	0.0017
1	I	pg	$34512.3950(0.0050)$	-42611.0	-0.0032	-0.0025
1	II	pg	$34512.5600(0.0150)$	-42610.5	0.0156	0.0163
1	I	pg	$34513.2750(0.0050)$	-42608.0	-0.0004	0.0003
1	II	pg	$34513.4150(0.0050)$	-42607.5	-0.0066	-0.0059
1	I	pg	$34513.5520(0.0150)$	-42607.0	-0.0158	-0.0151
1	II	pg	$34514.5800(0.0100)$	-42603.5	-0.0112	-0.0104
1	II	pg	$34516.3500(0.0050)$	-42597.5	0.0045	0.0052
1	I	pg	$34516.4930(0.0050)$	-42597.0	0.0013	0.0020
1	II	pg	$34516.6330(0.0050)$	-42596.5	-0.0049	-0.0042
1	I	pg	$34517.3700(0.0050)$	-42594.0	0.0011	0.0018
1	II	pg	$34517.5160(0.0050)$	-42593.5	0.0009	0.0016
1	I	pg	$34518.2500(0.0050)$	-42591.0	0.0039	0.0046
1	I	pg	$34518.5400(0.0050)$	-42590.0	0.0015	0.0022
1	II	pg	$34519.5660(0.0050)$	-42586.5	0.0041	0.0048
1	II	pg	$34521.6100(0.0050)$	-42579.5	0.0014	0.0021
1	II	pg	$34529.2260(0.0150)$	-42553.5	0.0151	0.0158
1	I	pg	$34530.2250(0.0100)$	-42550.0	-0.0093	-0.0086
1	II	pg	$34531.2480(0.0100)$	-42546.5	-0.0097	-0.0090
1	IT	pg	34532.2790 (0.0050)	-42543.0	-0.0020	-0.0013
1	II	pg	$34532.4170(0.0100)$	-42542.5	-0.0102	-0.0095
1	II	pg	34533.3040 (0.0050)	-42539.5	-0.0004	0.0003
1	I	pg	$34533.4460(0.0050)$	-42539.0	-0.0046	-0.0039
1	I	pg	34534.3290(0.0050)	-42536.0	0.0012	0.0019
1	II	pg	$34534.4760(0.0050)$	-42535.5	0.0020	0.0027
1	II	pg	$34535.3400(0.0100)$	-42532.5	-0.0112	-0.0105
1	I	pg	34535.4910 (0.0050)	-42532.0	-0.0064	-0.0057
1	II	pg	34536.2300(0.0050)	-42529.5	0.0016	0.0023

Table 1 (cont.)

Ref.	Min.	Band	$\begin{aligned} & \text { HJD } \quad \text { (sigma) } \\ & 2400000+ \\ & \hline \end{aligned}$	E	$\mathrm{O}-\mathrm{C}$	$(\mathrm{O}-\mathrm{C})^{\prime}$
1	I	pg	34536.3730(0.0050)	-42529.0	-0.0015	-0.0009
1	II	pg	$34537.4010(0.0050)$	-42525.5	0.0031	0.0037
1	II	pg	$34538.2800(0.0050)$	-42522.5	0.0049	0.0056
1	I	pg	34538.4340 (0.0150)	-42522.0	0.0127	0.0134
1	I	pg	$34539.2950(0.0050)$	-42519.0	-0.0035	-0.0028
1	II	pg	$34539.4500(0.0050)$	-42518.5	0.0053	0.0060
1	II	pg	$34540.3210(0.0050)$	-42515.5	-0.0009	-0.0002
1	I	pg	$34541.3400(0.0050)$	-42512.0	-0.0053	-0.0046
1	II	pg	34541.4890 (0.0050)	-42511.5	-0.0024	-0.0018
1	I	pg	$34542.2250(0.0050)$	-42509.0	0.0026	0.0032
1	II	pg	$34543.2410(0.0050)$	-42505.5	-0.0048	-0.0042
1	I	pg	34543.3890 (0.0050)	-42505.0	-0.0030	-0.0024
1	II	pg	$34546.4650(0.0050)$	-42494.5	0.0029	0.0035
1	I	pg	$34562.4000(0.0050)$	-42440.0	0.0024	0.0030
1	I	pg	34564.4430 (0.0050)	-42433.0	-0.0014	-0.0008
1	II	pg	$34565.4580(0.0100)$	-42429.5	-0.0098	-0.0092
1	II	pg	$34566.3500(0.0050)$	-42426.5	0.0050	0.0056
1	II	pg	$34568.3950(0.0050)$	-42419.5	0.0033	0.0039
1	I	pg	$34569.4230(0.0100)$	-42416.0	0.0079	0.0085
1	I	pg	$34570.3000(0.0100)$	-42413.0	0.0077	0.0083
1	II	pg	34571.3140 (0.0050)	-42409.5	-0.0017	-0.0011
1	I	pg	$34571.4600(0.0050)$	-42409.0	-0.0019	-0.0013
1	I	pg	34572.3340 (0.0050)	-42406.0	-0.0050	-0.0045
1	II	pg	34572.4830 (0.0050)	-42405.5	-0.0022	-0.0017
1	II	pg	$34573.3550(0.0050)$	-42402.5	-0.0074	-0.0068
1	I	pg	$34573.5130(0.0050)$	-42402.0	0.0044	0.0050
2	I	U	45434.7866(0.0012)	-5256.0	0.0019	-0.0032
2	I	B	45434.7862(0.0010)	-5256.0	0.0015	-0.0036
2	I	V	45434.7864(0.0010)	-5256.0	0.0017	-0.0034
2	I	U	45435.6633(0.0009)	-5253.0	0.0014	-0.0037
2	I	B	45435.6634(0.0009)	-5253.0	0.0015	-0.0036
2	I	V	$45435.6636(0.0010)$	-5253.0	0.0017	-0.0034
3	II	pe	46965.6195(0.0010)	-20.5	0.0048	0.0028
3	II	pe	46965.6199(0.0010)	-20.5	0.0052	0.0032
3	II	pe	$46965.6167(0.0050)$	-20.5	0.0020	0.0000
3	I	pe	$46971.6167(0.0020)$	0.0	0.0080	0.0060
3	I	pe	46971.6167(0.0020)	0.0	0.0080	0.0060
3	I	pe	46971.6155(0.0010)	0.0	0.0068	0.0048
3	II	pe	46973.5174(0.0020)	6.5	0.0081	0.0061
3	II	pe	46973.5163(0.0010)	6.5	0.0070	0.0050
3	II	pe	$46973.5184(0.0020)$	6.5	0.0091	0.0071
3	II	pe	$46975.5618(0.0010)$	13.5	0.0057	0.0038
3	II	pe	$46975.5607(0.0020)$	13.5	0.0046	0.0027
3	II	pe	$46975.5617(0.0020)$	13.5	0.0056	0.0037
3	II	pe	$46978.4869(0.0010)$	23.5	0.0069	0.0049
3	II	pe	$46978.4867(0.0010)$	23.5	0.0067	0.0047
3	II	pe	$46978.4858(0.0010)$	23.5	0.0058	0.0038
3	I	pe	47007.5860(0.0050)	123.0	0.0128	0.0109
3	I	pe	$47007.5814(0.0010)$	123.0	0.0082	0.0063
3	II	pe	47008.6001(0.0050)	126.5	0.0035	0.0016
3	II	pe	47008.6011(0.0050)	126.5	0.0045	0.0026
4	I	BVRI	48393.5174(0.0001)	4863.0	-0.0045	-0.0027
4	I	BVRI	48394.6872(0.0001)	4867.0	-0.0043	-0.0025
5	I	V	49961.6375(0.0015)	10226.0	0.0054	0.0123
5	I	R	49961.6310(0.0025)	10226.0	-0.0011	0.0058
5	I	I	49961.6350(0.0025)	10226.0	0.0029	0.0098

References: 1) Hoffmeister; 2) 1983 minima; 3) GL minima; 4) GWS minima; 5) 1995 minimum.

Figure 1. Behavior of the $\mathrm{O}-\mathrm{C}$ residuals for V676 Cen from Formula (1). Hollow circles stand for primary minima

As can be seen in the pe residuals of Figure 1 there appears to be a modulation of semi-amplitude of 0 d 003 and a period of about 10 years. This might be explained on one hand by a third-body light-time effect (Mayer 1990). On the other hand, as noted in GWS, the O'Connell effect present in their light curves at phase 0.25 is interchanged in GL (phase 0.75), so some mechanism, in particular related to magnetic activity in this late type star, might be responsible for the period modulation (van't Veer 1991, Applegate 1992). However, due to the scanty material analyzed here, new pe times of minima will only give a conclusive answer about this point. The author would like to thank the staff and Director of CTIO for their hospitality.

Miguel Angel CERRUTI
I.A.F.E.
CC 67 Suc. 28
1428 Buenos Aires
Argentina
miguelan@iafe.uba.ar

References:

Applegate J.H., 1992, Astrophys J., 385, 621
Ghedini S., 1981, Mem. Soc. astr. Ital., 52, 633, SIA
Gómez M., Lapasset E. 1988, Inf. Bull. Var. Stars, No.3162, GL
Gray J.D., Woissol S., Samec R.G., 1996a, Inf. Bull. Var. Stars, No. 4359, GWS
Gray J.D., Woissol S., Samec R.G., 1996b, Inf. Bull. Var. Stars, No. 4390, ERRATUM
Hoffmeister, C., 1956, Veröff. Sonneberg, 3, Part 1, 43
Mayer, P., 1990, Bull. Astron. Inst. Czechosl., 41, 231
Szafraniec, R., 1948, Acta Astron. Serie c, 4, 81
van't Veer, F., 1991, Astron. Astrophys., 250, 84
Wood D.B., Forbes J.E., 1963, Astron J., 68, 257

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4417

Konkoly Observatory
Budapest
8 January 1997
HU ISSN 0374-0676

A REVISION OF DOLIDZE'S "LIST OF PROBABLE LONG-PERIOD VARIABLES OF M TYPES..."

The following table constitutes a revision of the star list appearing in an obscure paper by Dolidze (1975) concerning spectral peculiarities of M stars and the possibility of using these to predict the type of variability. I became interested in using the list to get visiblelight identifications and spectral types for IRAS sources. The original publication includes a list of spectral types determined on red-light objective-prism plates for 191 stars plus seven supplemental stars. About half of these were known or suspected variables, but the remaining 'probable' variables appear to have been observed for the first time, at least for spectral type.

A large number of errors were found in the paper, so a complete revision seemed necessary in order to make the IRAS identifications. In particular, the positions supplied by Dolidze are commonly in error by 5^{\prime} or more. Luckily, finder charts from objectiveprism plates are shown for each star, which were necessarily relied upon to identify them. I was able to match these with digitized sky survey images in all but two cases. The revised list provides precise positions for the remainder, with identifications from the IRAS and Guide Star Catalogues where possible, plus links with other names available through the SIMBAD database. For many of the known variables, precise positions are provided for the first time, among which are substantial corrections to the GCVS4 (Kholopov et al. 1985).

The procedure was simply to compare Dolidze's finder charts against the digitized sky survey using the Goddard SkyView facility (McGlynn et al. 1994, Scollick 1995) and SIMBAD. The original charts cover 12^{\prime} square. Matching star fields was usually unambiguous. I then did searches in SIMBAD around the position estimated from SkyView for IRAS sources and other previously published names as well as GSC positions. For stars with large Dolidze position errors, often the reverse procedure proved successful: calling up SkyView images centered on various IRAS sources near the nominal location. When a GSC identification was made, its position was adopted. Positions for stars missing from the GSC were taken most often from the U. S. Naval Observatory UJ1.0 or A0.9 catalogues (Monet et al. 1994, Monet 1996), although in a few cases I derived them from SkyView frames at large image scale.

The table shows Dolidze's designation (from his Tables 3 and 4) in the first column, followed by the equinox 2000 position, the coded source of the position ($\mathrm{A}=\mathrm{A} 0.9, \mathrm{G}=$ GSC, $\mathrm{P}=\mathrm{PPM}, \mathrm{S}=$ SkyView, $\mathrm{U}=\mathrm{U} 1.0$), and IRAS and GSC numbers as available. The spectral types are from Dolidze, being mean values if types were determined on more than one plate. The types were assigned usually only in odd-numbered increments (M3, M5, M7, etc.), but with many intermediate values (e.g. M5-7). I have taken this to mean the types are not highly accurate, although comparison with other published values suggests there are neither gross systematic errors nor much scatter in the types, especially considering that all the stars are surely variable and observed at random phases.

Table 1

[D75]	RA (2000)	Dec	s	IRAS	GSC	spec	Remarks
1 p	42047.1	+20 5424	G		1276-0352	C:	
2 p	54640.7	+9 2320	G		0719-0991	C:	
3 p	55227.1	+85718	G	05497+0856	0716-0136	M3S	
4 p	64356.3	+14459	A	06413+0148		M3/5S	S1* 170
5p	64418.7	+15501	A	06416+0158		C:	CGCS 376
6 p	231717.4	+632230	G	$23151+6305$	4283-0114	M1/3S:	
7 p	00334.6	+67 1259	U	00010+6656		dM5e	
1	00705.6	+614855	G	00044+6132	4014-0314	M5/7	V658 Cas
2	01756.3	+59 0915	U	00152+5852		M5/7	V659 Cas
3	02317.2	+6221 39	G	00205+6204	4019-2516	M5	
4	02710.7	+63 3324	G	00243+6316	4019-1440	M5	
5	02846.2	+635236	G	00259+6335	4023-0332	M5/7	
6	03426.5	+64 3252	G	00315+6416	4024-1176	M3/5SC:	V660 Cas
7	04417.0	+60 4220	G	00413+6025	4016-0347	M5/7	NSV 274
8	04807.0	+60 2019	G	00451+6003	4016-1895	M5/7	
9	05426.1	+633321	G	00513+6317	4021-0393	M5/7	BL Cas
10	13425.8	-185828	G	01320-1913	5854-0287	M7	AP Cet
11	33003.2	+35 4017	G	$03268+3529$	2354-1581	M7	R Per
12	34934.8	+510357	G	03458+5054	3338-0022	M8	AP Per
13	35402.3	+36 3218	G	$03507+3623$	2369-0278	M5/7	
14	40233.4	+28 2952	G	$03594+2821$	1825-0286	M5	
15	40811.8	+26 3554	G	04051+2627	1822-1275	M3	TX Tau
16	41142.4	+262718	G	04086+2619	1823-0250	M3/5	
17	41148.1	+29 2326	G	04086+2915	1827-1174	M3/5	see note
18	41537.7	+35 1226	G	$04123+3504$	2379-1135	M7	
19	41540.7	+35 3159	G	04123+3524	2379-0693	M3/5S:	NSV 1531
20	42111.0	+25 5300	G	$04181+2545$	1820-0620	M5/7	V412 Tau
21	42517.4	+280441	G	$04221+2757$	1824-0840	M5	
22	52055.4	+350521	G	05176+3502	2398-0293	M5	EE Aur
23	52124.1	+20 4427	G	05184+2041	1308-0034	M5	
24	52225.2	+22 4426	G	05193+2241	1847-0895	M7	
25	52654.6	+365411	G	05235+3651	2415-1199	M5/7	W Aur
26	52823.2	+8 4128	G	05256+0839	0700-0875	M5	V440 Ori
27	53426.5	+20 2253	U	05314+2020		M3/5	
28	54000.7	+284249	A	$05368+2841$		M5	AW Aur $=$ PEP 18
29	54007.9	+37 3810	A	$05367+3736$		M7/9	RU Aur
30	54404.9	+65716	G	05413+0656	0127-0715	M5	V520 Ori
31	55141.9	+281825	G	05485+2817	1875-2114	M3/5	AZ Tau
32	60325.8	+134356	G	06005+1344	0729-1282	M7/9	DT Ori
33	61534.4	+15 1222	G	06127+1513	1314-1235	M5	
34	64809.8	+15823	A	06455+0201		M7	see note
35	65336.0	-5 4202	G	06511-0538	4813-0430	M5	
36	65928.9	-2 2009	G	06569-0215	4805-1671	M5	
37	71253.4	-4 0932	A	07104-0404		M5	
38	72309.3	+130605	G	07203+1311	0771-0003	M5	V Gem
39	72451.0	+120817	G	07220+1214	0772-1474	M5	
40	73400.4	+114407	G	$07312+1150$	0773-0757	M7	T CMi
41	82455.4	+370653	G	08216+3716	2489-1344	M7	CLS 4
42	83737.2	+395804	G		2975-1484	M7	
43	155923.8	-23 4624	G	15564-2337	6779-1681	M7	BK Sco
44	160227.8	-26 2218	A			M7	
45	160242.7	-2654 38	G	15596-2646	6787-2279	M7	NSV 7398
46	160247.1	-2625 24	A			M7	
47	160344.1	-26 2502	U	16006-2616		M7/9	see note
48	160416.6	-25 2151	G	16012-2513	6784-0956	M5	
49	160828.8	-22 0431	G	16055-2156	6213-0571	M7	UV Sco
50	161312.9	-24 5616	G	16101-2448	6797-0345	M5/7	
51	161540.3	-250102	A	16126-2453		M5	UZ Sco
52	161722.0	-24 5531	G	16143-2448	6797-0098	M3/5	
53	161805.5	-21 4903	G	16151-2141	6214-1694	M7	VW Sco

Table 1 (cont.)

[D75]	RA (2000)	Dec	s	IRAS	GSC	spec	Remarks
54	161924.6	-22 2118	A			M3/5	VY Sco
55	162045.2	-210626	A	16178-2059		M $5 / 7$	
56	162058.0	-21 3118	G	16180-2124	6214-1096	M3/5	NSV 7639
57	162926.4	-19 2051	G	16265-1914	6211-0430	M7/9	Y Sco
58	174518.4	-174201	A	17423-1740		M7	see note
59	174548.1	-160708	A	17429-1606		M7	FK Sgr
60	174917.7	+245908	G	$17472+2459$	2081-0566	M5	EK Her, see note
61	175703.0	-19 2016	A	17540-1919		M7	VV Sgr
62	180533.2	-13 5318	G	18027-1353	5687-0504	M5	BE Ser
63	175843.0	-1635 54	A	17558-1635		M7	
64	180841.9	+320206	G	$18068+3201$	2625-0410	M7	PS Her
65	181157.8	+322754	G	18101+3227	2626-1277	M3/5	FL Her
66	182017.3	-162801	G	18173-1629	6265-2290	M5	
67	182137.4	-171107	A	18187-1712		M7	
68	182240.2	-19 2333	A	18197-1925		M5	
69	182322.8	-124052	G	18205-1242	5698-2284	M3/5	FR Sct
70	182500.9	-65057	G	18223-0652	5111-0308	M5	
71	182558.5	-19 4129	G	18230-1943	6274-0645	M5	V1982 Sgr
72	182819.6	-18 2608	A	18253-1828		M7:	
73	182902.7	-174701	G	18261-1748	6270-1514	M5	
74	182601.0	+505549	G	$18248+5053$	3538-0295	M7	CZ Dra $=$ StM 433
75	182848.7	+61753	G	$18263+0615$	0450-1286	M5	T Ser
76	182941.3	-190403	A	18267-1906		M7:	V1993 Sgr
77	183011.5	-81116	G	18274-0813	5690-1260	M7:	
78	183013.4	+61650	G	$18277+0614$	0458-0918	M3/5	BP Ser
79	183107.6	+70031	G	18286+0658	0458-0449	M8	BI Oph
80	183132.2	+42252	A	$18289+0420$		M3S	TY Oph, see note
81	183223.1	-95509	G	18296-0957	5695-0653	M7	VW Sct
82	183449.1	-19 3041	A	18318-1933		M7	
83	183457.4	-171429	G		6271-0917	M5	
84	183417.7	+74822	G	$18318+0745$	1024-1698	M7	V623 Oph
85	183523.7	+62736	G	$18329+0625$	0458-0515	M3/5	V925 Oph
86	183600.6	+74110	G	$18335+0738$	1024-1462	M $5 / 7$	BK Oph
87	183614.5	+50440	G	$18337+0502$	0454-1452	M $5 / 7$	BR Ser
88	183737.1	+72201	A	$18352+0719$		M7	
89	191547.2	+314931	G	$19138+3144$	2653-1244	M5/7	
90	192150.1	+320032	G	$19199+3154$	2658-1662	M7	AN Lyr
91	192448.4	+303603	G		2654-2686	M5	
92	192522.1	+291554	G	$19233+2909$	2137-0292	M7	
93	192602.4	+315308	A	$19241+3147$		M7	V456 Lyr
94	195917.1	+412455	U	$19575+4116$		M5/7	
95	200258.0	+413127	A	$20012+4123$		M5/7	
96	200446.9	+401154	U	$20030+4003$		M5/7	
97	201145.9	+38 0049	G	$20099+3751$	3151-2691	M3-M7e	
98	201312.2	+412726	G	$20114+4118$	3159-0739	M5	V431 Cyg
99	201355.9	+392349	G	$20121+3914$	3155-0689	M3-M7e	IRC +40400
100	201400.1	+432620	G		3163-0973	M5	
101	201759.3	+431743	G	$20162+4308$	3163-0118	M5	
102	202118.3	+381244	U	$20194+3803$		M7	IRC +40407
103	202643.0	+405627	A	$20249+4046$		M5	
104	202722.9	+410450	G	$20255+4054$	3156-1234	M5	KZ Cyg
105	203657.1	+375234	A	$20350+3741$		M5/7	V1828 Cyg
106	204221.8	$+272847$	G	$20402+2718$	2178-0679	M5/7	EN Vul
107	204350.5	+342849	G	$20418+3417$	2695-1838	M5	V1975 Cyg
108	204412.4	+261246	U	$20420+2601$		M7	
109	204431.5	+3229 32	U	$20425+3218$		M5/7	V570 Cyg
110	204632.3	+292608	G	$20444+2915$	2182-0983	M $5 / 7$	
111	204609.6	+405758	A			M5	
112	204822.9	+32 4057	G	$20463+3229$	2691-2873	M7	

Table 1 (cont.)

[D75]	RA (2000)	Dec	s	IRAS	GSC	spec	Remarks
113	204932.8	+29 4723	G	$20474+2936$	2183-0777	M7	
114	205133.8	+280845	G	$20494+2757$	2183-1590	M7	
115	205152.2	+290749	G	$20497+2856$	2183-2351	M7	
116	205232.1	+271028	G	$20502+2658$	2179-1415	M7	UW Vul
117	205439.8	+283012	G	$20525+2818$	2183-2400	M7	
118	205505.5	+302452	U	$20529+3013$		M7	UX Cyg
119	205613.6	+362152	G	$20542+3610$	2700-2803	M5	V1886 Cyg
120	205909.3	+264857	G	$20569+2637$	2180-0920	M7	
121	205949.4	+261348	G	$20576+2602$	2176-0027	M7	
122	210417.1	+375107	G	$21023+3739$	3168-0575	M5/7	LD 37
123	210633.2	+373251	G		3168-0583	M5/7	LD 38
124	210620.9	+413557	G		3176-1825	M7	
125	210729.8	+371045	G		2713-0439	M7	V1804 Cyg
126	211019.3	+39 4029	G		3173-0157	M8	IRC +40472
127	211259.5	+400837	U			M5/7	V529 Cyg, see note
128	(21 11.5	+39 11)	-			M5/7	see note
129	211248.3	+380642	G		3169-1735	M3-M7	
130	211412.2	+36 3901	S			M7	
131	211554.8	+381129	U			M5	V479 Cyg
132	211652.9	+4103 46	G		3173-0556	M7	IRC +40477
133	211606.8	+395231	G		3173-2544	M5/7	
134	211647.2	+365003	G		2714-0558	M5	IRC +40476
135	211840.2	+400408	G		3173-2344	M3/5	
136	212444.3	+380558	G		3182-1658	M7	V473 Cyg
137	212719.2	+365557	G		2716-0960	M7	
138	213330.0	+564648	G		3975-1232	M8	
139	213552.4	+511442	G	$21341+5101$	3603-0512	M3/5	V1728 Cyg
140	213559.8	+58 2746	G	$21344+5814$	3979-1062	M7	
141	(21 43.5	+55 44)	-		M8	see note	
142	214452.6	+585119	G	$21433+5837$	3979-1510	M5	
143	215002.3	+512756	U	$21482+5113$		M5	
144	215205.5	+564548	G	$21503+5631$	3976-1073	M5/7	
145	215619.0	+584823	A	$21547+5834$		M7	
146	215641.3	+585310	A	$21550+5838$		M7	
147	215952.2	+572149	G	$21581+5707$	3976-0717	M5	GN Cep $=$ IRC +60336
148	220528.6	+623011	G	$22039+6215$	4267-2009	M5/7	TT Cep
149	220730.2	+444853	G		3210-1749	M5	
150	221619.5	+441648	G	$22142+4401$	3211-1559	M5/7	
151	222008.4	+62 1014	G	$22184+6155$	4268-0720	M5/7	NSV 14126
152	223108.1	+551157	G	$22291+5456$	3987-1158	M6	NV Lac
153	223416.5	+4053 40	G		3205-0257	M5/7	
154	223938.0	+422218	G	$22374+4206$	3209-2055	M3/5	
155	224315.6	+422211	P	$22410+4206$	3222-0674	M7	R Lac
156	224321.0	+411720	G	$22410+4101$	3222-0149	M7	LD 207
157	224402.9	+423529	G	$22418+4219$	3222-1335	M5	
158	224620.6	+404500	G	$22440+4028$	3218-1625	M5	
159	224916.9	+58 3507	G	$22472+5819$	3996-0641	M7	AL Cep
160	225235.6	+411055	G	$22503+4054$	3219-0597	M5/7	
161	225700.4	+574000	G	$22549+5723$	3993-1301	M7	NSV 14375
162	230213.1	+572144	G	$23000+5705$	3993-0933	M5/7	
163	230449.6	+563258	G	$23026+5616$	3993-2216	M5	V343 Cas
164	230527.4	+570746	U	$23033+5651$		M7	
165	230839.8	+581810	G	$23065+5801$	4010-1748	M5	same as \#167
166	230753.7	+601928	G	$23057+6003$	4278-0748	M5	IRC +60386
167	230839.8	+581810	G	$23065+5801$	4010-1748	M5	same as \#165
168	230915.4	+605856	G	$23071+6042$	4279-1734	M3	
169	231043.6	+642853	G	$23085+6411$	4287-0974	M5	CH Cep
170	231140.6	+59 4158	P	$23095+5925$	4010-0907	M5	\checkmark Cas
171	231257.0	+603438	U	$23108+6018$		M5	OQ Cep

Table 1 (cont.)

[D75]	RA (2000)	Dec	s	IR AS	GSC	spec	Remarks
172	231433.6	+571521	U	$23123+5658$		M5	V397 Cas
173	231843.0	+55 5825	A	$23164+5541$		M5	
174	232116.9	+560445	U	$23190+5548$		M5/7	
175	232043.6	+593419	G	$23185+5917$	4011-0468	M5	
176	232234.6	+554314	U	$23202+5526$		M7	NSV 14531
177	232317.8	+5725 27	U	$23210+5708$		M5/7	
178	232441.4	+545518	U	$23223+5438$		M5/7	
179	232545.7	+561908	G	$23234+5602$	4007-1219	M5	
180	232552.2	+562710	G		4007-1005	M3/5	
181	232734.9	+554318	G	$23252+5526$	4003-0420	M5	DG Cas
182	232815.4	+602859	G	$23259+6012$	4280-1884	M5	V580 Cas
183	233550.4	+584419	G	$23334+5827$	4012-1009	M5	
184	233739.7	+585047	S	$23352+5834$		M5/7	
185	233840.0	+543518	A			M5/7	
186	234431.5	+563452	A	$23420+5618$		M5	Z Cas
187	234624.3	+542909	G	$23439+5412$	4004-0140	M5	RT Cas
188	234813.9	+610155	U	$23457+6045$		M5	IRC $+60424=$ EM Cas
189	235644.2	+584902	G	$23542+5832$	4013-1641	M5	
190	235745.8	+560620	G	$23552+5549$	4005-0210	M5	
191	235938.5	+594530	G	$23570+5928$	4013-0847	M5	V335 Cas

Notes

17 CGCS 629; however, not a carbon star ($c f$. Bidelman 1980).
34 ID somewhat uncertain; position is for brightest DSS image.
47 ID somewhat uncertain; alternate star NW has end-figures $43.8 / 24^{\prime} 54^{\prime \prime}$.
$58-1^{\circ}$ Dolidze Dec error.
60 also GSC 2081-3600.
80 HD $170831=$ CGCS 4032. this is surely a carbon star, Dolidze type wrong.
127 chart identical to \#126.
128 can't identify on sky; Dolidze position given.
141 can't identify on sky; Dolidze position given.
For intermediate types (and in taking averages) I have adopted the notation of Houk (see, for example, Houk \& Cowley 1975), which uses a slash (e.g. M5/7) to indicate uncertainty rather than a truly intermediate spectral class. Note several cases where Dolidze found indications of carbon-star or S-type characteristics (e.g. M3S).

The remarks and notes show additional identifications from SIMBAD, particularly variable-star names. In several cases Dolidze has given incorrect variable-star designations, which are herewith corrected.

I appreciate the help of William P. Bidelman in making a number of identifications from his bibliographic file. Two on-line facilities were indispensable for this work: SIMBAD, maintained by the Centre de Données Astronomique, Strasbourg, France; and SkyView, maintained by Keith Scollick of the Goddard Space Flight Center. This work was begun during a stay at the CDS Strasbourg; I gratefully acknowledge the assistance of the staff there.

Brian A. SKIFF
Lowell Observatory
1400 West Mars Hill Road
Flagstaff AZ 86001-4499
USA
e-mail: bas@lowell.edu

References:

Bidelman, W. P. 1980, Publ. Warner \& Swasey Obs., 2, 185
Dolidze, M. V. 1975, Byull. Abastuman Astrofiz. Obs., 47, 171
Houk, N., and Cowley, A. P. 1975, University of Michigan Catalogue of Two-Dimensional Spectral Types for the HD Stars, Univ. of Michigan, Ann Arbor
Kholopov, P. N., editor, et al. 1985, General Catalogue of Variable Stars, 4th edition, Nauka, Moscow
McGlynn, T. A., White, N. E., and Scollick, K. 1994, Bull. Amer. Astr. Soc., 26, 898 (abstract)
Monet, D., Canzian, B., and Henden, A. 1994, Bull. Amer. Astr. Soc., 26, 1314 (abstract)
Monet, D. G. 1996, Bull. Amer. Astr. Soc., 28, 905 (abstract).
Scollick, K. 1995, http://skview.gsfc.nasa.gov/cgi-bin/v2.3/skyview_advanced

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4418

Konkoly Observatory
Budapest
8 January 1997
HU ISSN 0374-0676

VARIABLE STARS IN THE GLOBULAR CLUSTER NGC 5286

NGC $5286(C 1343-511, l=311: 6, b=+10.6)$ is a cluster of intermediate metallicity, as it follows from its spectral class - F5 (Hesser \& Shawl, 1985), although a wide range of its values was quoted in the literature: from -1.26 (Samus' et al., 1995) to -1.79 (Brocato et al., 1996). It has the apparent radius $r=4!6$ (Kukarkin, 1974), the tidal radius $r=12.0$ (Webbink, 1985) and the concentration class CC V.

According to the data published in "A Third Catalogue of Variable Stars in Globular Clusters" (SHC) (Sawyer-Hogg, 1973) and later investigation by Fourcade et al. (1978) and Liller \& Richten (1978) altogether 16 variables have been discovered within the apparent radius of this cluster. Ten of these stars are classified as RRAB and six as RRC. With Pab and $\mathrm{Nc} / \mathrm{Nab}$ the cluster is classified as OoII variable-poor (IIVP).

The observational material and the method of search for variable stars are the same as in our previous papers (Kadla et al., 1996a,b). CMD was obtained as in Kadla et al. (1996b) using the mean V and B magnitudes from several consecutive V and B exposures. CMD for stars with $R>0.36$ within the investigated area 5.4×3.7 is shown in Figure 1. In the instability strip, besides 10 of the above variables, there are 8 stars which may be RR Lyr variables. The data for the latter stars are given in Table 1. Their positions were determined using as the reference frame the coordinates system given in the catalogue of Sawyer-Hogg (1973). Our photometric data (23 exposures -12 V and $11 B$) permitted to confirm the variability of 5 short-period variable stars and detect variability for 2 suspected variables (N2 and N7 from Table 1). All variables (known and suspected) are shown in the cluster chart (Figure 2).

Figure 1. The color - magnitude diagram for the globular cluster NGC 5286. The known RR Lyrae stars are denoted by \bigcirc, suspected ones by \odot

Figure 2. Chart of the cluster. Variable stars are denoted by \bigcirc. The notations V preceding the star number refer to known variables

Table 1. Positions and photometric data for suspected variable stars
$\left.\left.\begin{array}{lrcccccccc}\hline N & \begin{array}{r}X \\ (\operatorname{arcsec})\end{array} & \begin{array}{c}Y \\ (\operatorname{arcsec})\end{array} & & & B-V & N & \begin{array}{r}X \\ (\operatorname{arcsec})\end{array} & \begin{array}{c}Y \\ (\operatorname{arcsec})\end{array} & V\end{array}\right] B-V\right)$

We are grateful to the Russian Foundation for Basic Research for financial support.

A.N. GERASHCHENKO

Z.I. KADLA

Yu.N. MALAKHOVA
Central Astronomical Observatory of
the Russian Academy of Sciences at
Pulkovo, 196140 Saint-Petersburg
Russia, e-mail: mal@pulkovo.spb.su

References:
Brocato, E., Buonanno, R., Malakhova, Yu. \& Piersimoni, A.M., 1996, A\&A, 312, 80
Fourcade, C.R., Laborde, J.R., Puch, A.A., Arias, J.C., 1978, Peremennye Zvezdy (Variable Stars), 20, 549 (in Russian)
Hesser, J.E. \& Shawl, S.J., 1985, PASP, 97, 465
Kadla, Z.I., Gerashchenko, A.N. \& Malakhova, Yu.N., 1996a, IBVS, No. 4413
Kadla, Z.I., Gerashchenko, A.N. \& Malakhova, Yu.N., 1996b, IBVS, No. 4414
Kukarkin, B.V., 1974, The General Catalogue of Globular Clusters of our Galaxies. Publishing House Nauka, Moscow
Liller, M.H. \& Lichten, S.M., 1978, AJ, 83, 41
Sawyer-Hogg, H., 1973, Publ. David Dunlap Obs., 3. No. 6
Samus', N., Ipatov, A., Smirnov, O., Kravtsov, V., Alcaino, G., Liller, W. \& Alvarado F., 1995, A\&AS, 112, 439
Webbink, R.F., 1985, IAU Symposium No. 113, 541 eds by J. Goodman \& P. Hut, Reidel, Dordrecht

CORRIGENDA

Correction to IBVS No.4418: In order to bring to accordance Table 1 and Figure 2, it is necessary to interchange star's Nos. 4 and 5 in Table 1 and to attribute No. 6 to that one of two stars with number 5 in Figure 2 that has coordinates $\mathrm{Xpixel}=359$ and Ypixel=341.
Y. Malakhova

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4419
Konkoly Observatory
Budapest
9 January 1997
HU ISSN 0374-0676

UBV(RI) ${ }_{c}$ PHOTOMETRY OF THE RAPIDLY ROTATING K-TYPE STAR HD $197890=$ "SPEEDY MIC" ${ }^{1}$

HD 197890 ($=$ SAO $212437=$ CPD $-37^{\circ} 8883=$ RE J204745-363538) was found to be a very strong EUV and X-ray source during the ROSAT all-sky survey, with most of the emission due to a very intense flare event (Bromage et al. 1992; Matthews et al. 1994; Kürster 1995). Optical spectroscopy has revealed that the star is single and shows Ca II H\&K emission, a very strong Li I $6708 \AA$ line and a highly variable $\mathrm{H} \alpha$ profile (Bromage et al. 1992; Jeffries 1993). From the vsini value of $120 \pm 20 \mathrm{~km} \mathrm{~s}^{-1}$ and optical photometry it was immediately clear that HD 197890 was an extremely fast rotator and it was indeed nicknamed "Speedy Mic" (Bromage et al., 1992). So far HD 197890 is the most rapidly rotating nearby single late-type star known.

A V-band photometric study was presented by Anders et al. (1993) which, from a total of 62 observations over three nights in 1991 August/September, inferred photometric periods of 0.314 and 0.275 days. They present the whole data set by using the 0.314 -day period that, however, produce a quite scattered light curve (see Figure 4 in Anders et al. 1993). They also computed a $v \sin i$ value of $170 \pm 20 \mathrm{~km} \mathrm{~s}^{-1}$ from the analysis of the Li $6707 \AA$ and Ca $6717 \AA$ lines and estimated a K5 spectral type.

In order to further investigate on the rotational period of HD 197890, multicolor photometric observations were carried out over the interval 7-13 October 1996 by using the 0.5 m ESO telescope (La Silla, Chile) equipped with a single-channel photon-counting photometer, a thermoelectrically cooled R943-02 Hamamatzu photomultiplier and standard ESO filters matching the $U B V(R I)_{c}$ system. Accurate differential photometry was obtained with respect to HD 198178 and SAO 212414, that were used as comparison and check stars, respectively. The observations were corrected for atmospheric extinction and transformed to the standard $U B V(R I)_{c}$ system. Details on the observations and reduction procedures can be found in Cutispoto (1995). The typical error of our differential photometry is of the order of 0.005 magnitudes. We have also obtained the following V magnitude and colors for the comparison and check stars:

$$
\begin{aligned}
& \text { HD 198178: } \mathrm{V}=7.96, \mathrm{~B}-\mathrm{V}=1.04, \mathrm{U}-\mathrm{B}=0.89, \mathrm{~V}-\mathrm{R}_{c}=0.53, \mathrm{~V}-\mathrm{I}_{c}=1.01 \\
& \mathrm{SAO} 212414: \mathrm{V}=10.21, \mathrm{~B}-\mathrm{V}=0.65, \mathrm{U}-\mathrm{B}=0.19, \mathrm{~V}-\mathrm{R}_{c}=0.36, \mathrm{~V}-\mathrm{I}_{c}=0.71
\end{aligned}
$$

The errors on these values are of the order of 0.01 magnitudes.
We have collected a total of $46 U B V(R I)_{c}$ photometric observations of HD 197890 that have been analyzed according to the method presented by Scargle (1982), which is essentially a Fast Fourier Transform adapted for unequally spaced data. The highest peak in the periodogram (F1) corresponds to a photometric period of 0.380 ± 0.004 days, i.e. 9.120 ± 0.096 hours (see Figure 1). There is a second significant frequency (F2) in the periodogram that corresponds to a period of 0.303 ± 0.004 days.

[^5]

Figure 1. The periodogram obtained for HD 197890. The highest peak (F1) corresponds to a 0.380 -day period; the 1a, 1b, 1c and 1d peaks are aliases of the F1 period. A second frequency (F2), corresponding to a 0.303 -day period, and its aliases $2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{c}$ and 2 d are also visible

Figure 2. V-band light curve and colors of HD 197890 obtained over the time interval 1996, October
7-13. Phases are reckoned from the photometric ephemeris HJD $=2450000.0+0.380 \times E$

The resulting V-band light curve with a peak-to-peak amplitude of about 0.1 mag nitudes is shown in Figure 2, along with color variations that appear in phase with the V-band modulation. Phases are reckoned from the photometric ephemeris:

$$
\mathrm{HJD}=2450000.0+0.380 \times E
$$

The 0.303 -day period produces a rather scattered light curve. Our light curve folded with the 0.380-day period has a smaller amplitude with respect to the Anders et al. (1993) data and presents a maximum and a minimum luminosity that are about 0.025 and 0.14 magnitudes brighter, respectively. We also note that folding the Anders et al. (1993) data with our 0.380 -day period a light curve much less scattered than the original one is obtained.

The $B-V$ and $V-R_{c}$ colors of HD 197890 are consistent with those of a K3 V star, while the $U-B$ and the $V-I_{c}$ appears too blue and too red, respectively, for such a classification. These differences could be due to a very high activity level, to the fact that HD 197890 has not yet arrived on the main sequence or to both circumstances. However, from the vsini value computed by Anders et al. (1993) and our new photometric period, the minimum stellar radius falls in the range 1.13-1.43 R_{\odot}, thus supporting the hypothesis that HD 197890 is a pre-main sequence star (Anders et al. 1993).

Acknowledgements. Financial support by the Italian "Ministry for Universities and Research" (MURST) and the "National Research Council" (Gruppo Nazionale di Astronomia) is gratefully acknowledged. MK acknowledges support by the "Austrian Fond zur Förderung der wissenschaftlichen Forschung" under grant S7302-AST".
G. CUTISPOTO ${ }^{1}$
M. KÜRSTER ${ }^{2,3}$
I. PAGANO ${ }^{1}$
M. RODONÒ ${ }^{1,4}$
${ }^{1}$ Osservatorio Astrofisico di Catania, v.le A.Doria 6, I-95125 Catania, Italy
e-mail: gcutispoto@alpha4.ct.astro.it
${ }^{2}$ Institut für Astronomie, Universität Wien, A-1180 Wien, Austria
${ }^{3}$ Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, D-85740
Garching, Germany
${ }^{4}$ Istituto di Astronomia, Univ. degli Studi, v.le A.Doria 6, I-95125 Catania, Italy

References:

Anders, G.J., Jeffries, R.D., Kellett, B.J., Coates, D.W. 1993, MNRAS, 265,941
Bromage, G.E., Kellett, B.J., Jeffries, R.D. et al., 1992, in "7th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun", M.S. Giampapa \& J.A. Bookbinder (eds.), ASP Conf. Ser. Vol. 26, p. 80
Cutispoto, G., 1995, A\&AS, 111, 507
Jeffries, R.D., 1993, MNRAS, 262, 369
Kürster, M. 1995, in "Proceedings of the IAU Colloquium, 151 Flares and Flashes", Sonneberg, 5-9 December 1994, J. Greiner, H.W. Duerbeck \& R.E. Gershberg (eds.), Lecture Notes in Physics Series, Springer-Verlag, Vol. 454, p. 423
Matthews, L., Bromage, G.E., Kellett, B.J. et al., 1994, MNRAS, 266, 757
Scargle, J.D., 1982, ApJ, 263, 835

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4420

Konkoly Observatory
Budapest
15 January 1997
HU ISSN 0374-0676

NSV 11164 = MINOR PLANET (563) SULEIKA

In the New Catalogue of Suspected Variable Stars (Kholopov et al., 1982), it is suggested that NSV 11164 is a minor planet. An investigation by the current author shows that NSV 11164 is the minor planet (563) Suleika.

The original report of NSV 11164 is by Innes (1917a), who located the object, numbered 123 in his list, during a survey of variable stars near R Coronae Austrinae. Innes 123 appears only on a single 60 -minute plate, taken by H. E. Wood on 1915 Aug. 6, where it is recorded as being magnitude 14.8. Further details are given in Innes (1917b), where it is stated that the sole image is a 'good stellar image'. It is here that the remark 'Is only image found. Minor pl.?' appears.

An addendum to the initial report remarks that a further plate, a 30 -minute exposure by Wood on 1915 Aug. 3, had become available and that comparison of this plate and the plate of Aug. 6 proved that three of the objects identified initially as variable stars were actually minor planets. Innes (1917a) made identifications as follows: Innes $111=$ (22) Calliope; $132=(9)$ Metis; and $134=(267)$ Tirza. The first two identifications are confirmed as correct, but Innes 134 is in reality (131) Vala.

Table 1. Minor-Planet Candidates Reported by Innes

Innes No.	R.A.	Dec.	Equinox	Ref.	MP No.
111	$18^{\mathrm{h}} 22^{\mathrm{m}} 57^{\text {s. }} 8$	$-35^{\circ} 44^{\prime} 27^{\prime \prime}$	1915	Wood (1917)	(22)
123	183215	-2901.1	1875	Innes (1917a)	(563)
132	185503.1	-290117	1915	$\operatorname{Wood}(1917)$	(9)
134	185714.7	-290232	1915	$\operatorname{Wood}(1917)$	(131)

Table 2. J2000.0 Coordinates for Minor-Planet Candidates

Innes No.	R.A. (2000)		Dec.	MP No.
111	$18^{\mathrm{h}} 28^{\mathrm{m}} 40.3$	$-35^{\circ} 41^{\prime} 15^{\prime \prime}$	(22)	
123	184011	-2854.5	(563)	
132	19	0025.3	-285412	(9)
134	19	0236.8	-285511	(131)

Table 3. Predicted Minor-Planet Positions and V Magnitudes

MP No.	R.A. (2000)	Dec.	V	Innes No.	
(9)	$19^{\mathrm{h}} 00^{\mathrm{m}} 24.8$	$-28^{\circ} 54^{\prime} 13^{\prime \prime}$	$10^{\mathrm{m}} 2$	132	
(22)	18	2840.3	-354112	11.3	111
(131)	190237.0	-285513	13.5	134	
(267)	190957	-2850.0	14.2		
(563)	184013	-2854.9	13.2	123	

The time of exposure of the Aug. 6 plate was not given by Innes. Wood (1917) later reported precise measurements of the three recognised minor planets from both the Aug. 3 and 6 plates, repeating the misidentification of (131) as (267) and giving the times of mid-exposure as 1915 Aug. 3.78722 UT and Aug. 6.79426 UT.

Table 1 gives the original-equinox measurements for the four Innes objects that are minor planets; Table 2 lists the corresponding J2000.0 coordinates. Table 3 lists the predicted J2000.0 minor-planet coordinates and visual magnitudes for 1915 Aug. 6.79426 UT.

Gareth V. WILLIAMS
Harvard-Smithsonian Center for
Astrophysics
60 Garden Street
Cambridge MA 02138
U.S.A.
E-mail: gwilliams@cfa.harvard.edu

References:
Innes, R.T.A., 1917a, Union Obs. Circ., No. 31
Innes, R.T.A., 1917b, Union Obs. Circ., No. 37
Kholopov, P.N., et al., 1982, New Catalogue of Suspected Variable Stars (Moscow, Nauka Publishing House)
Wood, H.E., 1917, Union Obs. Circ., No. 34

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4421

Konkoly Observatory
Budapest
16 January 1997
HU ISSN 0374-0676

PHOTOELECTRIC $B V I_{C}$ OBSERVATIONS AND A NEW CLASSIFICATION FOR V804 ARAE

V804 Ara was included in our program of photoelectric observations for Cepheids because it is classified in GCVS-IV as a possible Cepheid. We observed the star at CTIO during the period September-November 1996 using the $1.0-\mathrm{m}$ reflector. A total of $30 B V I_{c}$ measurements were obtained (Table 1), the accuracy of the individual data being near $\pm 0^{\mathrm{m}} 02$ in all filters.

Our observations are plotted in Figure 1. The data indicate a range of light variability of 0.50 in $V, 0 .{ }^{\mathrm{m}} 15$ in $B-V$ and 0.30 in $V-\mathrm{I}_{c}$, but the star cannot be a Cepheid because, first, changes in $B-V$ color are asynchronous with the changes in V - which is atypical of Cepheids - and second, it has a very large infrared excess. It seems more likely that V804 Ara is a semiregular variable.

Table 1

$J D_{\text {hel }}$ $2450300+$	V	$\mathrm{B}-\mathrm{V}$	$\mathrm{V}-\mathrm{I}_{c}$	$J D_{\text {hel }}$ $2450300+$	V	$\mathrm{B}-\mathrm{V}$	$\mathrm{V}-\mathrm{I}_{c}$
48.5687	13.165	1.605	3.325	80.5499	13.471	1.531	3.533
50.6595	13.205	1.595	3.310	81.5341	13.472	1.491	3.527
51.5575	13.118	1.657	3.282	82.5295	13.494	1.486	3.505
52.5768	13.122	-	3.283	83.5303	13.421	1.592	3.493
53.5251	13.073	1.594	3.247	84.5372	13.379	-	3.453
54.5386	13.099	1.594	3.296	85.5161	13.401	1.537	3.477
55.5262	13.079	1.608	3.282	85.5183	13.424	1.565	3.471
57.5245	13.034	1.622	3.258	86.5265	13.330	1.558	3.451
58.5286	13.044	1.618	3.249	87.5219	13.420	1.605	3.473
59.5219	13.049	1.581	3.268	88.5254	13.370	1.560	3.466
60.5278	13.079	1.588	3.279	89.5250	13.302	1.546	3.409
61.5347	13.065	1.650	3.262	90.5201	13.343	1.592	3.453
62.5313	13.093	1.585	3.281	91.5201	13.328	1.540	3.442
63.5327	13.105	1.592	3.305	92.5142	13.303	1.623	3.422
79.5499	13.424	1.562	3.499	93.5171	13.325	1.617	3.435

Figure 1
The research described here was made possible in part by grants No. 95-02-05276 and No. 94-02-04347 from the Russian Foundation of Basic Research to LNB and through NSERC Canada to DGT. The authors were Visiting Astronomers at Cerro Tololo InterAmerican Observatory, National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.

L.N. BERDNIKOV

Sternberg Astronomical Institute
13, Universitetskij prosp.
Moscow 119899, Russia
D.G. TURNER

Saint Mary's University
Halifax, Nova Scotia, B3H 3C3
Canada

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4422

Konkoly Observatory
Budapest
16 January 1997
HU ISSN 0374-0676

PHOTOELECTRIC $B V I_{C}$ OBSERVATIONS FOR THE RS CVn STAR GR NORMAE

GR Nor is classified in GCVS-IV as a Cepheid (CEP type) with the elements

$$
\text { MaxJ } J D_{h e l}=2444145.82+1.960002 \times E .
$$

GR Nor was included in our program of photoelectric observations for Cepheids because there are few published observations for the star, and hence it is impossible to construct a good light curve for it. We observed the star at CTIO during the period September November 1996 using the $1.0-\mathrm{m}$ reflector. A total of $25 B V I_{c}$ measurements were obtained (Table 1), the accuracy of the individual data being near $\pm 0^{\mathrm{m}} 01$ for all filters.

The observations are plotted in Figure 1a using the above elements. A comparison of our observations with published data by Walraven et al. (1958), Harris (1980) and Diethelm (1986) - Figures 1b-1d - suggests that GR Nor cannot be a Cepheid because the shape of the light curve is not stable. A search of the literature revealed that Lloyd Evans (1984) had previously drawn attention to the spectroscopic peculiarities of the variable, which suggest that it has characteristics of RS CVn variables.

Table 1

$J D_{\text {hel }}$ $2450300+$	V	$\mathrm{B}-\mathrm{V}$	$\mathrm{V}-\mathrm{I}_{c}$	$J D_{\text {hel }}$ $2450300+$	V	$\mathrm{B}-\mathrm{V}$	$\mathrm{V}-\mathrm{I}_{c}$
48.5571	12.677	1.193	1.466	62.5489	12.797	-	1.483
51.5472	12.693	1.218	1.474	63.5646	12.682	1.273	1.442
52.5659	12.744	1.217	1.473	79.5314	12.674	1.236	1.470
53.5198	12.691	-	1.464	80.5306	12.809	-	1.495
54.5314	12.736	1.240	1.471	81.5101	12.684	1.302	1.448
55.4986	12.648	1.238	1.446	82.5126	12.829	1.166	1.508
57.5729	12.681	1.230	1.460	83.5116	12.692	1.263	1.460
58.5404	12.738	1.269	1.448	85.5076	12.685	1.219	1.456
59.5306	12.671	1.243	1.441	86.5184	12.765	1.223	1.489
59.5668	12.682	1.229	1.461	87.5121	12.673	1.248	1.435
60.5384	12.788	1.236	1.481	88.5068	12.774	-	1.495
60.5654	12.829	1.328	1.443	89.5174	12.623	1.235	1.437
61.5469	12.703	1.243	1.468				

The research described here was made possible in part by grants No. 95-02-05276 from the Russian Foundation of Basic Research to LNB and through NSERC Canada to DGT. The authors were Visiting Astronomers at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under co-operative agreement with the National Science Foundation.

Figure 1

L.N. BERDNIKOV

Sternberg Astronomical Institute
13, Universitetskij prosp.
Moscow 119899, Russia
D.G. TURNER

Saint Mary's University
Halifax, Nova Scotia, B3H 3C3
Canada

References:
Diethelm, R., 1986, Astron. Astrophys. Suppl., 64, 261
Harris, H.C., 1980, Ph.D. Thesis (University of Washington, Seattle)
Lloyd Evans, T., 1984, Observatory, 104, 221
Walraven, Th., Muller, A.B., Oosterhoff, P.Th., 1958, B.A.N., 14, 81

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4423

Konkoly Observatory
Budapest
17 January 1997
HU ISSN 0374 - 0676

NSV 02541, A DETACHED ECLIPSING BINARY STAR IN ORION

The variability of NSV 02541 (HD 290807, GSC 4767.0483, SVS 1007, CSV 000650) was first reported by Parenago (1946). In the NSV catalogue (Kholopov, 1982), this object is recorded as an eclipsing binary star without specifying type, with a photographic variation range from $11^{\mathrm{m}} 1$ to $12^{\mathrm{m}} 0$ and spectral type G5.

NSV 02541 was observed for 26 nights in the V band, from 9 October 1995 to 24 February 1996 from Mollet Observatory (Spain), using a CCD camera and a $0.4-\mathrm{m}$ telescope. GSC 4767.1182 and GSC 4767.0335 were used, respectively, as comparison and check stars. To determine the magnitude and B-V color index of NSV 02541 and its comparison star, these objects were also observed in the B and V bands using a photoelectric photometer attached to the Cassegrain focus of the $0.6-\mathrm{m}$ telescope at Esteve Duran Observatory. As comparison stars HR 1940, HR 1952, and HR 1955 were used.

Observations showed that NSV 02541 is, in fact, a detached eclipsing binary star with a period over 4.6 days (Figure 1). This object has a V magnitude of 10.64 ± 0.02 at maximum light. The amplitude, also in V, is $0 .{ }^{\mathrm{m}} 97 \pm 0{ }^{\mathrm{m}} 02$ for minimum I and $00^{\mathrm{m}} 14 \pm 0{ }^{\mathrm{m}} 02$ for minimum II. Phase curve suggests that the primary minimum, with a duration of 21.5 ± 2 hours, is an annular transit. It also shows that minimum II is centered at phase 0.51 , which indicates eccentric orbits for the components. Nevertheless, the long duration of eclipses and continuous bad weather conditions during the observation period did not allow to confirm these preliminary results.

Figure 1

To check possible $B-V$ color index variations, observations in the B and V bands were also performed for 6 nights, from October 1996 to January 1997, which sampled the light curve at the primary and secondary minima and at maximum light. These observations indicate that the $B-V$ color index has a value of $0 .{ }^{m} 87 \pm 0.03$, with no detectable variations beyond data scatter.

The following ephemeris was also derived:

$$
\begin{gathered}
\text { Min. } \mathrm{I}=\mathrm{HJD} 2450073.5185+4.63404 \times \mathrm{E} \\
\pm 0.0009 \pm 0.00015
\end{gathered}
$$

Although observations are not good enough to fit an accurate physical model for the binary system, they allowed to estimate the relative dimensions and luminosities of both components. These estimates indicate that the secondary star might be a K5 object of smaller size than the primary component. New spectroscopic and more photometric data are needed to clarify the exact nature of this system.

```
J.M. GOMEZ-FORRELLAD
Grup d'Estudis Astronomics
Apartado }948
0 8 0 8 0 ~ B a r c e l o n a ~
Spain
e-mail: jmgomez@astro.gea.cesca.es
```

E. GARCIA-MELENDO
Esteve Duran Observatory
El Montanya - Seva
08553 Seva, Barcelona
Spain
e-mail: duranobs@astro.gea.cesca.es

References:

Kholopov, P.N., 1982, New Catalogue of Suspected Variable Stars, Moscow Parenago, P.P., 1946, PZ, 6, 26

NSV 00361 IS AN OVERCONTACT BINARY SYSTEM IN PISCES

NSV 00361 (HV 06379, CSV 000111, P 2493, GSC 0015.0112) was announced as a possible RR Lyrae type star by Shapley and Hughes (1934). According to Kholopov (1982) it varies from the 12.4 to 13.0 photographic magnitudes, without giving other data about its variability.

In order to have more information about this star, NSV 00361 was included in the program of the Grup d'Estudis Astronomics for the identification and characterization of new variable stars. The object was observed for 12 nights between 10 October 1996 and 2 December 1996 at Monegrillo Observatory (Spain). A CCD camera equipped with B and V filters was used attached to the $0.4-\mathrm{m}$ telescope. BD+020.0139 (GSC 0015.0334) and GSC 0015.0231 were used as comparison and check stars respectively. To have an indication of its magnitude in the B and V bands, the comparison star was also observed with a photoelectric photometer coupled to the Cassegrain focus of the $0.6-\mathrm{m}$ telescope at Esteve Duran Observatory.

Figure 1
These observations allowed to determine that NSV 00361 is not an RR Lyrae but an overcontact eclipsing binary star with an amplitude of 0.43 ± 0.01 magnitudes at Min. I in the V band of $\left(0{ }^{\mathrm{m}} 43 \pm 00^{\mathrm{m}} 02\right.$ in $\left.B\right)$ and 0.33 ± 0.01 magnitudes at Min. II $(0 . \mathrm{m} 33 \pm$ $0 \cdot{ }^{\mathrm{m}} 02$ in B). At maximum light, NSV 00361 is a 11.75 ± 0.08 magnitude object in the V band ($122^{\mathrm{m}} 68 \pm 0^{\mathrm{m}} 16$ in B). Figure 1 shows the phase curve of NSV 00361 in the V band.

The following ephemeris has been computed for the system:

$$
\begin{gathered}
\text { Min. } I=\text { HJD } 2450376.43495+0 \mathrm{~d} 342487 \times \mathrm{E} \\
\pm 0.00015 \pm 0.000030
\end{gathered}
$$

J. VIDAL-SAINZ
J.M. GOMEZ-FORRELLAD
Grup d'Estudis Astronomics
Apartado 9481
08080 Barcelona
Spain
e-mail: vidal@astro.gea.cesca.es
jmgomez@astro.gea.cesca.es

E. GARCIA-MELENDO

Esteve Duran Observator
El Montanya - Seva
08553 Seva, Barcelona
Spain
e-mail: duranobs.astro.gea.cesca.es

References:

Kholopov, P.N., editor, 1982, New Catalogue of Suspected Variable Stars, Moscow Shapley, H., Hughes, E.M., 1934, HA, 90, No. 4, 163

NSV 08156, A POSSIBLE SEMIREGULAR VARIABLE IN HERCULES

NSV 08156 (BD $+39^{\circ} 3076$, CSV 007585, BV 0280, GSC 3072.1250) was announced as a variable star by Strohmeier and Knigge (1959), who indicated that it presented rapid variations between the 11.2 and 11.8 photographic magnitudes. Its spectrum is K 0 and the Guide Star Catalog records this star with photovisual magnitude of 10.07 ± 0.40 (PAL-V1 filter).

The star was observed for 30 nights in the V band between 26 May and 1 December 1996 from Els Hostalets de Pierola Observatory (Spain), with a CCD camera attached to a $0.4-\mathrm{m}$ telescope. Some observations with the $0.4-\mathrm{m}$ Schmidt-Cassegrain telescope at Piera Observatory (Spain) were also carried out. As comparison star GSC 3072.1543 was used.

During the observation interval NSV 08156 varied with an amplitude of 0.78 magnitudes in V showing successive maxima and minima (Figure 1). An analysis of the data suggests that it could be a semiregular star with a cycle of about 42 days. Nevertheless, more observations are necessary to confirm this preliminary result.

Figure 1

> J. JUAN-SAMSO
> J. GUARRO-FLO
> Grup d'Estudis Astronomics
> Apartado 9481
> 08080 Barcelona
> Spain
> e-mail: gea@astro.gea.cesca.es

Reference:
Strohmeier, W., Knigge, R., 1959, Bamberg Veröff., 5, No. 4

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4426

Konkoly Observatory
Budapest
17 January 1997
HU ISSN 0374-0676

A NEW BETA LYRAE VARIABLE SAO 56342, AND TWO NEW POSSIBLE IRREGULAR STARS: BD $+32^{\circ} 0599$ AND SAO 56366

SAO $56342\left(=\mathrm{HD} 20511=\mathrm{PPM} 68334=\mathrm{BD}+32^{\circ} 0602=\mathrm{AGK} 3+32^{\circ} 0318=\mathrm{GSC}\right.$ 2345.1896) with a spectral type A0 is one of the variables discovered with the TYCHO instrument of the European satellite HIPPARCOS. Its light variation was announced by Makarov et al. (1994), indicating that its raw magnitude fluctuated between 7.90 and 8.33 without giving any further information.

From 3 November 1995, SAO 56342 was visually monitored by one of us to obtain more information about this object. These preliminary observations indicated that it might be a Beta Lyrae type eclipsing binary star with a period close to 1.47 days. This star was subsequently observed in the V band from 9 July 1996 to 1 December 1996 using a CCD camera, and a $6-\mathrm{cm}$ finder telescope from Mollet del Valles Observatory and Esteve Duran Observatory (Spain). As comparison stars SAO 56376, SAO 56377, SAO 56355 , and GSC2345.1462 were used. Photometric observations were also performed using a photoelectric photometer attached to the Cassegrain focus of the $0.6-\mathrm{m}$ telescope at Esteve Duran Observatory.

Our CCD observations show that SAO 56342 is a Beta Lyrae type eclipsing binary star. Its light curve (Figure 1), shows a conspicuous O'Connell effect (O'Connell, 1951) that amounts to $\Delta \mathrm{m}=$ Max. II-Max. $\mathrm{I}=0.03$ magnitudes, where Max. II is the maximum following secondary minimum. According to photometric measurements, SAO 56342 is a 7.63 ± 0.02 magnitude object at Max. I. In addition, the star fades 0.41 magnitudes at primary minimum and 0.20 at secondary minimum. The following ephemeris was also computed:

$$
\begin{gathered}
\text { HJD Min. } I=2450401.594+1.46975 \times \mathrm{E} \\
\pm 0.001 \pm 0.00020
\end{gathered}
$$

Figure 1

Figure 2

Figure 3
Photometric reductions also showed that the star BD $+32^{\circ} 0599$ ($=$ PPM $68311=$ AGK3 $+32^{\circ} 0315=$ GSC 2345.1366) with a spectral type M8, is also variable. During the observation period $\mathrm{BD}+32^{\circ} 0599$ underwent light changes in the V band between $9 .{ }^{\mathrm{m}} 2$ and 9 m 8 (Figure 2). Its light curve indicates that it is probably irregular, although more photometric observations should be performed to ascertain its exact nature.

Furthermore, the star SAO $56366\left(=\right.$ HD $20678=$ PPM $68634=\mathrm{BD}+32^{\circ} 0608=$ AGK3 $+33^{\circ} 0316=$ GSC 2345.1400) with a V magnitude of 7.9 and spectral type K0 was used as a check star. Photometric reduction suggests that this object is slightly variable with a maximum observed amplitude of 0.04 magnitude. Figure 3 depicts the mean magnitude of SAO 56366 for every night and also the mean magnitude of SAO 56376 (C1) with respect to SAO 56377 (C2). Variability of SAO 56366 is probably real and not due to differential color extinction: the comparison star SAO 56355 is also a K0 spectral type object but shows no detectable light variations beyond light curve scatter. However, more photometric observations should be performed to confirm the variability of SAO 56366.

F. CAMPOS-CUCARELLA
J.M. GOMEZ-FORRELLAD
Grup d'Estudis Astronomics
Apartado 9481
08080 Barcelona
Spain
e-mail: jmgomez@astro.gea.cesca.es

E. GARCIA-MELENDO
Esteve Duran Observatory
El Montanya - Seva
08533 Seva, Barcelona
Spain
e-mail: duranobs@astro.gea.cesca.es

References:
Makarov, V., Bastian U., Hoeg, E., Grossmann, V. and Wicenec, A., 1994, IBVS, No. 4118 O'Connell, D.M.K., 1951, Riverview Pub., 2, 85

Konkoly Observatory
Budapest
20 January 1997
HU ISSN 0374-0676

NSV 00821, A NEW OVERCONTACT ECLIPSING BINARY SYSTEM IN TRIANGULUM

NSV 00821 ($=$ Wr 139 = CSV 005986 = GSC 2327.1518) was announced as a possible Cepheid by Weber (1963) with a photographic magnitude variation from $11 . \mathrm{m} 8$ to $12^{\mathrm{m}} 5$ without giving any further information. To check it, the star was included in the program of the Grup d'Estudis Astronomics for observing poorly studied variables. An initial monitoring with the $0.4-\mathrm{m}$ telescope at Mollet del Valles Observatory showed that NSV 00821 is not a Cepheid but an overcontact eclipsing binary system. It was then decided to follow this object with the $0.5-\mathrm{m}$ telescope at L'Ametlla del Valles Observatory (Spain). NSV 00821 was observed for 21 nights between 27 September and 26 December 1996. GSC 2327.1604 and GSC 2327.1636 were used as comparison and check stars respectively. The Guide Star Catalog records GSC 2327.1518 (NSV 00821) with a photovisual magnitude of 11.48 ± 0.40 (PAL-V1 filter).

Figure 1

Observations obtained in the V band with a CCD camera, confirmed our preliminary data in the sense that NSV 00821 is an overcontact eclipsing binary system, with a period close to 16 hours 50 minutes (Figure 1). The amplitude of the light variation is 0.41 ± 0.01 magnitude at minimum I, which is a transit, and 0.39 ± 0.01 magnitude at minimum II, which is an occultation. The following ephemeris has been computed:

$$
\begin{gathered}
\text { Min. } I=\text { HJD } 2450416.41635+0.70170 \times \mathrm{E} \\
\pm 0.00047 \pm 0.00002
\end{gathered}
$$

J.M. GOMEZ-FORRELLAD A. GARRIGOS SANCHEZ
Grup d'Estudis Astronomics Apartado 9481
08080 Barcelona Spain
e-mail: jmgomez@astro.gea.cesca.es

Reference:
Weber, R., 1963, IB VS, No. 21

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4428

Konkoly Observatory
Budapest
20 January 1997
HU ISSN 0374-0676

ACTIVITY OF T CORONAE BOREALIS IN 1996

T CrB is one of best studied recurrent novae having undergone major eruptions in 1866 and 1946. At quiescence it is classified as a symbiotic binary with an M3 giant cool component (Kenyon 1986 and references therein). The most uncertain parameters of the system are the masses of both components. Most of the published orbital solutions (e.g. Kraft 1958; Kenyon \& Garcia 1986) prefer the hot component less massive than the M3 giant but larger than the Chandrasekhar limit. This leads to models with rapidly increasing mass transfer onto a main sequence star as the reason of the nova-like outbursts (e.g. Webbink 1976; Cannizzo \& Kenyon 1992). However, the UV data (e.g. Selvelli et al. 1992) and occasionally demonstrated flickering activity in the optical (see Dobrzycka et al. 1996 and references therein) are more easily interpreted if the giant has a white dwarf companion. Recently, Mikołajewski et al. (1996) suggested that T CrB may belong to the subclass (propellers) of symbiotic binaries in which a massive, magnetic and rapidly rotating white dwarf accretes matter from the M giant's wind.

Photoelectric observations were carried out using the one-channel UBVRI photometer with the 60 cm telescope at Toruń observatory. The stars HD 143313 ($V=8.33 ; U-B=$ $\left.0.72 ; B-V=1{ }^{\mathrm{m}} 00 ; V-R=0 . \mathrm{m} 81 ; V-I=1 \mathrm{~m} 26\right)$ and HD $142929\left(V=8{ }^{\mathrm{m}} 41 ; U-B=\right.$ $00^{\mathrm{m}} 03 ; B-V=0{ }^{\mathrm{m}} 51 ; V-R=0^{\mathrm{m}} 54 ; V-I=0^{\mathrm{m}} 81$) were used as the comparison and the check, respectively. However, the first one seems to be a low-amplitude (less than 0.05) variable. UBVRI light curves covering more than one orbital period ($P=227^{d}$) are shown in Figure 1. The occasional, one to three hours searches for rapid variability are marked in Figure 1 as filled triangles for positive detection or open ones for negative detection. During three nights we observed a flickering with amplitude $\sim 0^{\mathrm{m}} 4$ and $\sim 0^{\mathrm{m}} 2-0^{\mathrm{m}} 15$ in U and B , respectively. During the two remaining runs a possible amplitude was less than $0^{\mathrm{m}} 2$ in both filters. No flickering with an amplitude larger than $0^{\mathrm{m}} 1$ was observed in the VRI bands.

Spectral observations of the $\mathrm{H} \alpha$ region were carried out with a CCD-camera mounted in the coudé-spectrograph of the 2 m telescope at NAO Rozhen. The resolution is $0.35 \AA$ and the S / N ratio ~ 100 in the continuum around $\mathrm{H} \alpha$. The epochs of observations are marked in Figure 1 and the profiles are shown in Figure 2.

Iijima (1990) noted that between dramatic nova-like outbursts T CrB exhibits two states: a "high" one when the emission lines (HI, He I) and the hot continuum are relatively strong, and a "low" one when they almost disappear. The last increase of Balmer emission lines as well as the He II 4686 appearance was noted by Iijima in April-July 1990 and over the five last years T CrB seems to remain in a low state. The Slovak photometric campaign (see Skopal et al. 1995 and references therein for previous reports) shows a very low level of U and B brightness and it excludes the presence of a blue continuum during this period. Anupama and Prabhu (1991) reported measurements of $\mathrm{H} \alpha$ equivalent widths that remain below $5-7 \AA$ after the "high" state in 1986-87, when they were larger than $20-30 \AA . H \alpha$ is also very weak in June 1989 (Ivison et al. 1994).
orbital phase from spectroscopic conjunction

Figure 1: T CrB UBVRI light curves in 1996. Estimations derived from flickering runs are marked by open and filled triangles for negative and positive detection, respectively. The epochs of the $\mathrm{H} \alpha$ observations are marked by arrows in the U light box. The orbital phases from spectroscopic conjunction (M-giant in front) are taken from Kenyon \& Garcia (1986)

In the beginning of April 1996 we observed a rapid increase in U light (Figure 1) by about 1 m .60 . Simultaneously, flickering variations with time scales from a few minutes to half an hour and amplitudes of about $00^{\mathrm{m}} 5$ in U and $0^{\mathrm{m}} 2$ in B appeared, whereas three weeks earlier they were not detected. Afterwards, the U magnitudes changed with an amplitude up to $0 . \mathrm{m} 8$ and time scale ~ 1.5 months, but until the end of our observations remained at least 1^{m} above the level of the "low" state in March 1996. The VRI light curves exhibit only the well known (e.g. Bailey 1975) ellipsoidal variations of the M giant with two distinct minima at spectroscopic conjunctions. The domination of the M giant in VRI is confirmed by the lack of flickering variations in these wavelengths. The B magnitudes in Figure 1 reflect both, the rotation of the M giant and the hot component activity.

Figure 2: $\mathrm{T} \mathrm{CrB} H \alpha$ profiles in 1996. The equivalent width and orbital phase are written in each box

Until now there is no observational evidence that T CrB is an eclipsing binary. Kenyon and Garcia (1986) mentioned that the ellipsoidal variations suggest a large orbital inclination and that several minima in the emission-line fluxes and the total UV flux occurred close to phase 0.0. Our data seemingly do not support this point of view. Just after phase 1.0 (Figure 1) the U magnitudes are close to the maximal value which we observed over the whole period and pronounced flickering variability is present as well. Nevertheless, between phases 0.8 and $1.0 \mathrm{a}^{\mathrm{m}}$ deep minimum is evidently visible in U light. Moreover, we did not detect flickering variations during this minimum. The minimum looks like an eclipse of the hot component by the M-giant which almost fills its Roche lobe. On the other hand, it is very similar to the previous two minima occurring typically for 1.5 months variability. Additionally, the spectroscopic conjunctions (phases 0.0, 0.5, 1.0 in Figure 1) and the minima caused by the ellipsoidal variations of the M-giant (VRI curves) are in good agreement. So, the minimum in U significantly precedes the spectroscopic conjunction in phase 1.0 and this cannot be interpreted as an eclipse.

Our spectral data (Figure 2) cover more than 25 per cent of the orbital period, but there are no indications that any emission component of $\mathrm{H} \alpha$ reflects the orbital motion. However, we tried to measure the radial velocity of each profile's "base", after cutting everything at the level 2.2 above the continuum. The H α "base" velocity does not change significantly and remains about $20 \mathrm{~km} \mathrm{~s}^{-1}$ blueshifted relative to the γ-velocity. The lack of orbital motion in $\mathrm{H} \alpha$ suggests that the dimension of the region in which this emission originates can be comparable to the distance between stars and/or that $q=M_{\text {cool }} / M_{\text {hot }}<$ 1. The large amplitude $K_{\text {hot }}=33.5 \mathrm{~km} \mathrm{~s}^{-1}$ obtained by Kraft (1958) from velocities of the $\mathrm{H} \beta$ emission on seven plates is probably casual. Any new observations, especially during the "high" activity phase, are very needed.

The equivalent width of $H \alpha$ systematically decreases from $20 \AA$ to $13 \AA$ between April and June 1996. Similar values of the equivalent widths were observed by Anupama and Prabhu (1991) during the previous activity period in 1985-87. These authors also reported a very strange behaviour of $\mathrm{H} \alpha$ with pronounced peaks of intensity at both spectroscopic conjunctions. Our observations obtained a few days before orbital phase 0.5 do not show such behaviour and the mentioned effect can rather be an artefact.

Rising U and B brightness and $\mathrm{H} \alpha$ emission, as well as flickering activity denote that T CrB was in a "high" activity state in 1996.

Acknowledgments: We are much indebted to students of Toruń University, Karolina Darowny, Jakub Janowski, Maciej Wojtkowski and Paweł Reng for their assistance in carrying out photometric observations. This research was sponsored by the Polish KBN Grant No. 2 P304 00706 and Bulgarian NFSR Grant No. F-574/1995.

```
M. MIKOLAJEWSKI
Centre for Astronomy
Nicolaus Copernicus University
Gagarina 11, 87-100 Toruń,
Poland
e-mail:mamiko@astro.uni.torun.pl
```

T. TOMOV, D. KOLEV
NAO Rozhen
P.O.Box 136
4700 Smolyan, Bulgaria
e-mail:rozhen@tempus.tu-plovdiv.bg

References:

Anupama, G.C., Prabhu, T.P., 1991, MNRAS, 253, 605
Bailey, J., 1975, J. Brit. Astron. Assoc., 85, 217
Cannizzo, J.K., Kenyon, S.J., 1992, ApJ, 386, L17
Dobrzycka, D., Kenyon, S.J., Milone, A.A.E., 1996, AJ, 111, 414
Iijima, T., 1990, J. Am. Assoc. Variable Star Obs., 19, 28
Ivison, R.J., Bode, M.F., Meaburn, J., 1994, AधAS, 103, 201
Kenyon, S.J., 1986, The Symbiotic Stars, Cambridge University Press, Cambridge
Kenyon, S.J., Garcia, M.R., 1986, AJ, 91, 125
Kraft, R.P., 1958, ApJ, 127, 620
Mikołajewski, M., Mikołajewska, J., Tomov, T., 1996, Compact Stars In Binaries, eds. J. van Paradijs et al., Kluwer, Dordrecht, p. 451
Selvelli, P.L., Cassatella, A., Gilmozzi, R., 1992, ApJ, 393, 289
Skopal, A., Hric, L., Chochol, D., et al., 1995, Contr. Astr. Obs. Skalnate Pleso, 25, 53
Webbink, R.F., 1976, Nature, 262, 271

ERRATUM

In the original version Fig. 1. have been erroneously inserted in place of Fig. 2. too.

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4429
Konkoly Observatory
Budapest
22 January 1997
HU ISSN 0374-0676

ACCURATE POSITIONS FOR 38 VARIABLES IN A $5^{\circ} \times 5^{\circ}$ FIELD AROUND BL Lac

Photographs of the field around BL Lac were taken with the AFR-1 wide-field astrograph $(\mathrm{D}=23 \mathrm{~cm}, \mathrm{~F}=230 \mathrm{~cm}, 5.5 \times 5.5$ field) at Mt. Maidanak (Uzbekistan) in 1990-1992. The observations used the method described by Shokin (1991) which allows to attenuate brightness of bright reference stars. This reduces the influence of the brightness equation on positions of faint objects and makes it possible to determine their coordinates in a system very close to the fundamental one.

Positions of individual stars were derived from measurements of up to 15 plates. Table 1 contains equatorial coordinates, epochs of observations, and GSC numbers (Lasker et al., 1990) for 38 variable stars in a $5^{\circ} \times 5^{\circ}$ field. The first column contains GCVS names or NSV catalog numbers. Asterisks mark stars whose positions are most accurate (better than to $0!1$); for the majority of stars, the positions are accurate to $0^{\prime \prime} 1-0^{\prime \prime} 3$. For four stars (V665 Cyg, V666 Cyg, V668 Cyg, V672 Cyg), the derived positions are least accurate (to about 0.3) because we had to use three steps for reductions to the source catalog. The Palomar prints show V668 Cyg as two components, partially overlapping. The coordinates in Table 1 refer to the eastern, red component; its variability is evident from two Palomar O-prints.

Figure 1

Table 1

Star	$\alpha_{2000.0}$	$\delta_{2000.0}$	Epoch	GSC
UZ Cyg	$21^{\mathrm{h}} 59^{\mathrm{m}} 14.314$	$+44^{\circ} 21^{\prime} 34^{\prime \prime} 58$	90.81	3197.0221
GT Cyg	215043.617	+42 5411.52	90.81	3193.1551
MN Cyg	215801.526	+44 2638.57	90.81	3197.1716
MU Cyg	215913.506	+44 4200.43	90.81	3197.0616
V665 Cyg	214915.956	+43 0336.49	53.70	
V666 Cyg	214925.862	+4322 25.36	53.70	
V668 Cyg	214956.837	+40 5631.94	53.70	
V670 Cyg	215019.432	+42 4627.56	90.81	3193.0469
V672 Cyg	215121.443	+443950.12	75.30	
V673 Cyg*	215137.755	+43 0958.75	92.69	3197.2745
V676 Cyg	215259.131	+441819.25	90.81	
V677 Cyg	215317.670	+44 0323.08	90.81	3197.0163
V683 Cyg	215732.615	+44 1019.71	90.81	
V1093 Cyg	215329.263	+440505.35	90.81	3197.0545
V1096 Cyg*	215552.164	+413546.72	92.69	
RS Lac	221252.535	+43 4501.03	90.81	3211.1056
RY Lac	221215.555	+435004.23	90.81	3211.0260
BI Lac	220049.035	+42 4539.25	90.81	3206.0669
BK Lac*	220219.725	+43 3444.38	90.73	3210.1226
BL Lac*	220243.287	+42 1639.92	90.73	
BO Lac	221456.692	+42 2044.46	90.81	3207.0267
DE Lac*	221007.774	+405510.63	90.73	3203.0565
DL Lac	215837.128	+414624.61	90.81	3193.0554
EL Lac	220853.723	+42 1621.26	90.81	3206.1935
ET Lac*	215906.287	+410355.98	92.69	3189.0410
FU Lac	220026.741	+435119.66	90.81	
GN Lac	220651.500	+43 2257.20	90.81	3210.1444
KQ Lac*	221551.763	+40 2513.08	92.69	3203.0344
V351 Lac*	220048.151	+423043.24	91.71	3206.0663
V352 Lac	220111.566	+43 0732.31	90.81	3210.1466
NSV 13904*	215143.222	+43 0923.62	92.69	
NSV 13917	215239.266	+43 3908.39	90.81	3197.1927
NSV 13922	215258.166	+44 0055.25	90.81	
NSV 13975	215726.500	+42 5818.65	90.81	
NSV 13976	215729.886	+44 4148.46	90.81	
NSV 13978	215730.936	+43 2056.83	90.81	
NSV 13989	215900.750	+44 4350.27	90.81	3197.0828
NSV 13990	215923.863	+435321.62	90.81	3197.0357

Table 2

Star		PPM	HIC
NSV 13907	062147		
NSV 13974	087224		
RT	Lac	062368	108728
BG	Lac	062336	108630
CM	Lac	062327	
CS	Lac	062318	
CX	Lac	062506	
VZ	Cyg	062131	107899

Table 2 contains PPM catalog (Röser and Bastian, 1991) identifications for eight bright variable stars in the program field; three of them are also identified with the HIPPARCOS input catalog (1992). We present finding charts (earlier never published) for GT Cyg and EL Lac; we have confirmed the variability of the corresponding stars using plates taken with the Sternberg Institute's 40 cm astrographs in Crimea. Each charts covers a $5^{\prime} \times 5^{\prime}$ field.

We are grateful to Mr. S. Antipin and Dr. V. Goranskij for assistance. This study was partially supported by the Russian Foundation for Basic Research through grant No. 95-02-05189. The finding charts are based on the Digitized Sky Survey, produced at the Space Telescope Science Institute under U.S. Government grant NAG W-2166.

Yu.A. SHOKIN
Sternberg Astronomical Institute
13, Universitetskij Prosp.,
Moscow 119899, Russia
N.N. SAMUS

Institute of Astronomy
48, Pyatnitskaya Str.
Moscow 109017, Russia

References:

HIPPARCOS Input Catalogue, 1992, European Space Agency, ESA SP-1136
Lasker, B.M., Sturch, C.R., McLean, B.J. et al., 1990, Astron. J., 99, 2019
Röser, S. and Bastian, U., 1991, PPM Star Catalogue, Heidelberg: Astron. Rechen-Inst. Shokin, Yu.A., 1991, Astron. Tsirk., No. 1547, 39

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4430

Konkoly Observatory
Budapest
22 January 1997
HU ISSN 0374-0676

A SEARCH FOR γ DORADUS-TYPE VARIABLES IN THE OPEN CLUSTER M 34

The γ Doradus stars constitute a new class of low-amplitude variable stars. Krisciunas \& Handler (1995) list known members and candidates. These stars typically show brightness variations of several hundredths of a magnitude on time scales of 0.5 to 3 days. γ Dor stars typically have early F-type spectra and are found on, or just above, the main sequence in the Hertzsprung-Russell Diagram. The most likely explanation for their variability is that they are exhibiting non-radial gravity mode pulsations (Aerts \& Krisciunas 1996, Balona et al. 1996).

Eggen (1995) and Krisciunas et al. (1995) suggest that the γ Doradus phenomenon is age related. There is evidence that many of these stars are younger than 150 Myr . Krisciunas et al. (1995) searched for candidates in the Hyades (age $\approx 600 \mathrm{Myr}$) and found none. The basic idea is that once photospheric convection sets in, the gravity-mode pulsations no longer are observable. Given the masses of these stars ($\approx 1.6 \mathrm{M}_{\odot}$), their main sequence phase must last about 3 Gyr . We are naturally interested to know what fraction of their main sequence life is spent exhibiting pulsations.

Our interest in M 34 (NGC 1039) is that it is a reasonably nearby open cluster whose age is estimated to be 250 Myr (Ianna \& Schlemmer 1993), which is in between the age of NGC 2516 (with eight γ Dor stars) and that of the Hyades. Ianna \& Schlemmer (1993) provide a finding chart, plates coordinates, apparent magnitudes and $B-V$ colors for the stars. Their photometry, however, is derived from photographic plates and is accurate to no better than $\approx 0.1 \mathrm{mag}$.

Given that early F stars listed in the Bright Star Catalogue have $B-V$ colors in the range 0.26 to 0.40 , and given the color excesses of the stars in M $34(0.07 \mathrm{mag})$, we selected stars from Ianna and Schlemmer's list with $0.33<B-V<0.47$. With one exception (UVa 197) all of our 11 program stars have membership probabilities greater than 0.6 . We used UVa 123 as our principal comparison star and UVa 166 as a check star. These two stars and 9 of our 11 program stars were observed photoelectrically by Johnson (1954). Our observing procedure was to do V-band differential photometry and observe the principal comparison star after every third program star. Transformation to the UBV system was accomplished with differential measures of the red-blue pair BS 8451 and BS 8453 (Hall 1983).

We observed at Mauna Kea with the University of Hawaii's $0.6-\mathrm{m}$ telescope and an Optec SSP-5 photometer belonging to the University of Hawaii at Hilo. Our seven night run began on 19 September 1996 UT. We lost three whole nights to clouds and one to equipment problems but did manage to obtain some accurate photometry. From observations of the principal check star (UVa 166) and 5 of our program stars that appeared to be constant (UVa 135, 186, 197, 200, and 251) we estimate that the accuracy of an individual measurement was ± 5.5 mmag. (Our faintest star, UVa 236, gave a lower signal to noise ratio and a correspondingly larger internal error.)

Table 1. Summary of differential photometry of M 34 stars. The comparison star in all cases was UVa $123(V=10.46, B-V=0.16)$. For each star we give the assigned UVa numbers of Janna \& Schlemmer (1993), the mean differential V magnitude, the internal error of a single differential value (i.e. the standard deviation of the distribution, not the mean error of the mean), and the number of data points

UVa	$\langle\Delta V\rangle$	$\sigma(\mathrm{mmag})$	N
135	0.780	5.7	20
144	1.017	10.0	21
161	1.442	5.8	19
162	1.003	5.9	19
166	-0.749	4.7	21
186	0.722	3.9	19
197	0.639	5.1	18
200	1.008	6.9	18
224	1.035	11.4	18
232	0.995	7.3	19
236	2.406	16.1	18
251	1.238	7.1	18

Our individual data, amounting to 228 differential measurements, can be obtained from IAU Commission 27 as file 318E of unpublished photometry. (See Breger, Jaschek, \& Dubois 1990 for further information on that archive.) We give in Table 1 a summary of the photometry obtained. The internal error of our nightly means in Table 1 compared to the differential magnitudes derivable from Table 5 of Ianna \& Schlemmer (1993) is \pm 0.082 mag , which we attribute to the fact that their data were derived from photographic plates. It is also revealed that the V magnitude adopted by Ianna \& Schlemmer is systematically too bright. If we use as a reference the V-band values for the 10 stars observed photoelectrically by Johnson (1954), the mean internal error is ± 0.021 mag. One should adopt Johnson's value of $V=10.46$ for the comparison star, UVa 123.

Because the differential magnitudes of our check star, UVa 166, and five of our program stars were constant, we have great confidence that our comparison star, UVa 123, is constant. Therefore, any variations observed in the other program stars can be attributed to those stars. Six of our eleven program stars showed evidence of low-amplitude variability and are deserving of further study. UVa $144,224,232$, and 236 showed evidence of differing nightly means, while UVa $161,162,224$, and 232 showed some evidence for variations over the course of a single night. While we do not yet have data sufficient to prove that any of these stars are bona fide γ Doradus-type variables (one would want enough to obtain a decent power spectrum), we show below the light curve of the best γ Dor candidate in M34, UVa 224. It is reminiscent of parts of other single-site light curves of γ Dor stars. See for example Mantegazza, Poretti, \& Zerbi (1994).

If it is confirmed that one or more of the early F stars in M 34 vary by several hundredths of a magnitude on a time scale of 0.5 to 3 days, we will then know for certain that the γ Doradus phenomenon extends to an age of 250 Myr in the lives of main sequence stars of mass $\approx 1.6 \mathrm{M}_{\odot}$.

Acknowledgments: We thank Ted Simon for drawing our attention to M 34. We thank Susanna Martin for useful discussions and for her (clouded out) attempts to observe these same stars. KK thanks the University of Hawaii for time on the $0.6-\mathrm{m}$ telescope, and thanks the Joint Astronomy Centre for observing support.

Figure 1. Differential V-band photometry of UVa 224 vs. UVa 123 (dots). Data for the star UVa 197 vs. UVa 123 (open circles) are also shown, offset by an arbitrary amount

K. KRISCIUNAS

Astronomy Department
University of Washington
Box 351580
Seattle, Washington 98195-1580
USA
e-mail: kevin@astro.washington.edu
R.A. CROWE

Dept. of Physics and Astronomy
University of Hawaii at Hilo
200 West Kawili Street
Hilo, Hawaii 96720
USA
email: rcrowe@maxwell.uhh.hawaii.edu

References:

Aerts, C., and Krisciunas, K., 1996, MNRAS, 278, 877
Balona, L., et al. 1996, MNRAS, 281, 1315
Breger, M., Jaschek, C., and Dubois, P., 1990, IBVS, No. 3422
Eggen, O.J., 1995, IBVS, No. 4210
Hall, D.S., 1983, IAPPP Communic., 11, 3
Ianna, P.A., and Schlemmer, D.M., 1993, AJ, 105, 209
Johnson, H.L., 1954, ApJ, 119, 185

Krisciunas, K., Crowe, R.A., Luedeke, K.D., and Roberts, M., 1995, MNRAS, 277, 1404
Krisciunas, K., and Handler, G., 1995, IBVS, No. 4195
Mantegazza, L., Poretti, E., and Zerbi, F.M., 1994, MNRAS, 270, 439

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4431

Konkoly Observatory
Budapest
28 January 1997
HU ISSN 0374-0676

IDENTIFICATION OF THE MARGONI-STAGNI VARIABLES

In a 1984 publication, "A search for new variable stars in the Milky Way field at $l=78^{\circ}$, $b=-6^{\circ} "$, R. Margoni and R. Stagni give finding charts, light curves, and elements for 99 new variable stars. A follow-up paper (Margoni et al. 1989) contains additional observations for the same stars. About three-quarters of these are now named variables. I have gone through this list to determine precise positions for all the stars, and have made identifications with the IRAS and GSC catalogues. Positions were drawn mostly from the GSC (version 1.1), or the U.S. Naval Observatory UJ1.0 and A0.9 catalogues (Monet et al. 1994, Monet 1996). The deep USNO catalogues were of considerable value in obtaining positions for the fainter stars. Where a star does not appear in any of these, I have used the Goddard SkyView facility (Scollick 1997) to estimate positions accurate to about $\pm 2^{\prime \prime}$ from the digitized sky survey (DSS) with a coordinate-grid overlay.

The table is largely self-explanatory. The source of each position is indicated in the column ' s ' immediately following, using the following codes:

$$
\begin{aligned}
& \mathrm{A}=\mathrm{A} 0.9 \\
& \mathrm{G}=\mathrm{GSC} \\
& \mathrm{U}=\mathrm{UJ} 1.0 \\
& \mathrm{~S}=\text { SkyView } \\
& \mathrm{P}=\text { PPM (one star only })
\end{aligned}
$$

Stars 56 and 85 have positions from the literature as noted in the remarks, which I have verified by comparing the Margoni-Stagni charts against the DSS.

The principal variable-star names are given in the 'Other IDs' column, along with names found in SIMBAD. Notes on specific stars are indicated by an asterisk in column ' n ', and follow after the end of the table.

Table 1. The Margoni-Stagni Variables

[MS84]	RA	(2000)	Dec	s	IRAS	GSC	n
1	203931.0	+355317	A	$20375+3532$			Other IDs
2	2040	17.3	+355906	U	$20383+3548$		V1828 Cyg
3	2041	19.0	+344452	U			Hen 2-468
4	204145.7	+350145	U				
5	204215.5	+353334	S	$20402+3522$		V1831 Cyg	
6	204211.9	+355217	S	$20402+3541$		V1830 Cyg	
7	204215.7	+355829	S	$20403+3547$		V1833 Cyg	
8	204300.0	+352948	G		$2695-1133$	$*$	LHS 3574
9	204306.0	+341340	U				
10	204312.6	+354251	S	$20412+3531$		V1834 Cyg	
11	204350.5	+342849	G	$20418+3417$	$2695-1838$	V1975 Cyg	
12	204415.1	+370532	A				
13	204434.2	+343621	U			V1835 Cyg	
14	204442.9	+355819	G	$20427+3547$	$2699-2314$	V1836 Cyg	

Table 1 (cont.)

[MS84]	RA (200	0) Dec	s	IRAS	GSC	n	Other IDs
15	204453.9	+364316	G	$20429+3632$	2699-1398		
16	204510.9	+364841	G	$20432+3637$	2699-1805		
17	204525.9	+374532	S	$20435+3734$	3166-1680	*	V1837 Cyg
18	204541.6	+364412	U	$20437+3633$			$\begin{aligned} & \text { V1838 Cyg } \\ & =\text { EM }^{*} \text { VES } 238 \end{aligned}$
19	204544.8	+35 4352	U				V1839 Cyg
20	204546.6	+334847	U	$20437+3337$			V1840 Cyg
21	204551.8	+360639	A	$20438+3555$		*	V1841 Cyg
22	204551.2	+365946	G		2699-1426		
23	204607.1	+365653	G	$20441+3645$	2699-2963		$\begin{aligned} & \text { V1842 Cyg } \\ & =\text { CGCS } 4967 \end{aligned}$
24	204627.7	+34 0353	S				V1843 Cyg
25	204636.2	+364531	A				V1844 Cyg
26	204643.2	+342949	U	$20447+3418$			V1845 Cyg
27	204719.0	+361401	U		2699-2644	*	V1847 Cyg
28	204718.5	+362329	U	$20453+3612$			V1846 Cyg
29	204722.5	+363947	U				not GSC 2699-0693
30	204728.7	+361657	S				V1848 Cyg; not HD 198196
31	204743.4	+3419 04	G	$20457+3408$	2695-3678		V1976 Cyg
32	204747.4	+361449	S	$20458+3603$			$\begin{aligned} & \text { V1849 Cyg } \\ & =\text { CGCS } 4976 \end{aligned}$
33	204756.6	+354420	S		2699-3236	*	V1850 Cyg
34	204808.0	+350110	U	$20461+3450$			V1851 Cyg
35	204811.3	+360917	G		2699-2555		
36	204813.5	+361455	U				
37	204813.9	+361425	U				V1852 Cyg
38	204814.2	+365236	G	$20463+3641$	2699-1038		$\begin{aligned} & \text { V1854 Cyg } \\ & =\text { EM }^{*} \text { VES } 245 \end{aligned}$
39	204821.5	+33 5433	S	$20463+3343$		*	V1855 Cyg
40	204819.4	+35 2734	G		2695-0975		V1856 Cyg
41	204827.0	+341315	S	$20464+3402$			V1857 Cyg
42	204825.3	+374531	G	$20465+3734$	3166-1801		
43	204830.2	+361347	A				V1858 Cyg
44	204834.4	+364456	A			*	
45	204855.6	+332319	G	$20469+3312$	2691-2274		V1978 Cyg
46	204855.3	+360944	A	$20470+3559$			V1859 Cyg
47	204904.4	+341611	G	$20471+3405$	2695-2300		V1860 Cyg
48	204905.5	+372730	U	$20471+3716$			V1861 Cyg
49	204916.2	+331347	U	$20472+3302$	2691-2538	*	V1862 Cyg
50	204917.1	+3313 33	P		2691-2536		AG+33 2010
51	204938.4	+371248	G	$20477+3701$	2699-0835		V1863 Cyg
52	205002.0	+344644	A				
53	205005.0	+37 3000	U	$20481+3718$			$\begin{aligned} & \text { V1864 Cyg } \\ & =\text { LD } 31 \end{aligned}$

Table 1 (cont.)

[MS84]	RA (2000)	0) Dec	s	IRAS	GSC	n	Other IDs
54	205014.3	$+335326$	U				
55	205015.0	$+341050$	G	$20482+3359$	2695-3508		DO 19513
							$=\mathrm{IRC}+30457$
56	205018.1	+33 3633	*	$20482+3325$		*	[PCC93] 430
57	205019.2	+34 3754	S	$20483+3426$		*	V1865 Cyg
58	205016.4	$+375645$	G		3167-1279		
59	205036.9	$+361843$	U				V1866 Cyg
60	205040.3	+35 2537	S				V1867 Cyg
61	205051.4	+334142	U				V1979 Cyg
62	205117.0	+343104	U				
63	205114.4	+365332	G	$20493+3642$	2700-0028		V1868 Cyg
64	205139.3	+332724	U			*	V1869 Cyg
65	205133.7	$+365703$	A	$20496+3645$			
66	205140.6	+351732	G	$20496+3506$	2696-3010		V1871 Cyg
67	205141.1	+354408	G		2700-1545		V1870 Cyg
68	205145.0	$+330757$	U	$20497+3256$			V1872 Cyg
69	205202.8	$+360758$	U	$20500+3556$			V1873 Cyg
70	205204.8	+35 5910	S		2700-0349	*	V1874 Cyg
71	205207.5	$+355830$	G		2700-1559	*	V1875 Cyg
72	205227.5	+365436	S	$20505+3643$		*	V1876 Cyg
73	205243.4	+342410	G		2696-3393		V1877 Cyg
74	205300.7	+381115	U				V1878 Cyg
75	205315.2	+32 5300	S			*	
76	205350.0	+371534	S				V1879 Cyg
77	205404.4	+35 5445	U	$20521+3543$			V1880 Cyg
78	205444.2	+343748	U	$20527+3426$			V1881 Cyg
79	205519.6	+374650	U				V1882 Cyg
80	205555.3	+360113	A				V1883 Cyg
81	205607.1	+33 3907	U				V1884 Cyg
82	205614.0	+34 4048	S	$20542+3429$			V1885 Cyg
83	205613.6	+362152	G	$20542+3610$	2700-2803		V1886 Cyg
84	205641.5	+33 0936	U				V1887 Cyg
85	205653.4	+3725 12	*			*	V1888 Cyg
86	205710.3	+340809	G	$20551+3356$	2696-1758		V1889 Cyg
87	205721.6	$+375520$	S			*	
88	205746.9	$+355803$	G		2700-0475	*	V1890 Cyg
89	205750.0	+34 0951	U				
90	205921.1	+344105	A				V1892 Cyg
91	205928.0	+3639 03	U				
92	205942.3	+340146	U				
93	205950.0	$+342007$	A				V1893 Cyg
94	210034.5	+372936	U				
95	210045.1	+340507	G	$20587+3353$	2709-1744		V1894 Cyg
96	210048.4	+363209	U				V1895 Cyg
97	210119.8	+3625 54	A				V1896 Cyg

Table 1 (cont.)

[MS84]	RA	(2000)	Dec	s	IRAS	GSC	n	Other IDs
98	2102	29.2	+350959	A	$21004+3457$			V1897 Cyg
99	210505.0	+354002	G		$2713-0126$	V1900 Cyg		

Notes
3 symbiotic star (Carrasco et al. 1983).
8 G 210-31 position corrected for annual proper motion of $-0 . / 225 /-0^{\prime \prime} 575$.
17 the southeastern star of a close pair.
21 Margoni-Stagni chart slightly in error; northwestern star of a close pair.
27 the northwestern star of a close pair.
33 the northern star of a close pair.
39 position is for the northern/brighter of two stars.
44 the southern/fainter of two stars.
$49 \mathrm{BD}+32^{\circ} 3954=\mathrm{IRC}+30456$. The PPM assigns the BD name in error to the visually fainter
companion southwest at end-figures $15.2 / 42^{\prime \prime}$.
56 VLA position from Lewis et al. (1990).
57 not GSC 2695-2517.
64 not NSV 13365, which is at: $205148.6+332804$ (U).
70 western star of a merged pair.
71 eastern of two stars.
72 crowded: position somewhat uncertain.
75 on northwest side of GSC 2692-2430.
85 AFGL 2679 position from Joyce et al. (1977).
87 the southeastern of two stars.
88 northeastern of two stars.
I appreciate the help of William P. Bidelman in reviewing this list for errors and identifications. This work was greatly facilitated by the use of SIMBAD, maintained by the Centre de Données Astronomiques, Strasbourg, France; SkyView, maintained by Keith Scollick at Goddard Space Flight Center; and the wonderful U. S. Naval Observatory PMM catalogues, which were prepared by Dave Monet and colleagues at USNO-Flagstaff.

```
Brian A. SKIFF
Lowell Observatory
1400 West Mars Hill Road
Flagstaff AZ 86001-4499
USA
e-mail: bas@lowell.edu
```


References:

Carrasco, L., Costero R., and Serrano, A. 1983, in IAU Symp. 103, D. Flower, ed., p. 548
Joyce, R. R., et al. 1977, Astrophys. J., 213, L125
Lewis, B. M., Chengalur, J. N., Schmelz, J., and Terzian, Y. 1990, Mon. Not. R. Astron. Soc., 246, 523
Margoni, R. and Stagni, R. 1984, Astron. Astrophys., Suppl. Ser., 56, 87
Margoni, R., Stagni, R., Munari, U., and Marton, S. 1989, Astron. Astrophys., Suppl. Ser., 81, 393
Monet, D., Canzian, B., and Henden, A. 1994, Bull. Amer. Astr. Soc., 26, 1314 (abstract)
Monet, D. G. 1996, Bull. Amer. Astr. Soc., 28, 905 (abstract)
Scollick, K. 1997, http://skview.gsfc.nasa.gov/cgi-bin/v3.0/skyview_advanced

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4432

Konkoly Observatory
Budapest
31 January 1997
HU ISSN 0374-0676

NSV 4539 IS AN ECLIPSING BINARY

[BAV Mitteilungen Nr. 96]

Abstract

NSV 4539 ($=$ GSC $238.0737=$ PPM $155983=$ SAO $117785=\mathrm{BD}+05^{\circ} 2200=$ HD $082908(\mathrm{~A} 2)=\mathrm{CSV} 101063=349.1934=\operatorname{Pr} 3303=\mathrm{AG}+04^{\circ} 1322$) was announced as a short period variable by Hoffmeister (1934) with a brightness range between 9^{m} and 10^{m} and a spectral type A2. Sandig (1947) found NSV 4539 ($=\operatorname{Pr} 3303$) to be constant at 9 m 5 on 35 photographic plates. According to Tsesevich (1952) NSV 4539 is probably not periodic and in no case short periodic.

Because of their proximity, NSV 4539 was included in a photometric investigation of AV Hya. Every third day, NSV 4539 showed an ascending branch from a minimum. Our photoelectric measurements on 20 nights in 1995 and 1996 excluded that the period is an integer fraction of these 3 days.

The photoelectric observations were made at the private observatory of one of us (F.A.) with an automatic photoelectric telescope. The photometer was equipped with an uncooled EMI 9781A tube and Schott filters for B and V. The moment of minimum light of completely observed minima was calculated using the method of Kwee and van Woerden (1956), for the others, the minima times were derived from the descending or ascending branches.

SAO 117771 (F8) served as comparison star and SAO 117803 (F5) was used to check its constancy. The amplitude of the primary minimum is about 0 m 40 . In the secondary minimum the amplitude does not exceed $0 . \mathrm{m}^{\mathrm{m}} 05$ in V and is even less in B. The duration between first and last contact is about 8.5 hours; a total eclipse could not be detected. The individual measurements are sent by e-mail on request.

The construction of a complete lightcurve was found to be extremely difficult from one location, for the difference between the period and three whole days sums up to almost a whole day after a year. The photoelectric lightcurve is therefore incomplete. To get information about period changes in the past and of those parts of the lightcurve which could not be observed, one of us (T.B.) investigated the star on 635 plates of the Sonneberg Sky Survey covering the interval from 1956 until 1995. Photographic magnitudes were obtained with a photometer and refer to Harvard-Groningen SA 100 (see Figure 1). The following comparison stars were used:

GSC 238_1193	$8.48 \mathrm{~m}_{p g}$
GSC 238_1621	$9.03 \mathrm{~m}_{p g}$
GSC 238_1847	$9.49 \mathrm{~m}_{p g}$

Figure 1. Differential photographic light curve of NSV 4539, drawn with the ephemeris (2) derived in this paper

Figure 2: Differential photoelectric light curve in V and B - V of NSV 4539, drawn with the ephemeris (2) derived in this paper

Figure 3: O-C diagram of NSV 4539, drawn with the ephemeris (2) derived in this paper

Obviously the period has not been constant in the examined interval. Weighted least squares fits provided the following set of linear ephemeris:

From JD 2435848 to JD 2444702:

$$
\begin{array}{r}
\text { Min } I=\text { HJD } 2437752.353+3.0093968 \times \mathrm{E} \tag{1}\\
\pm 26
\end{array}
$$

From JD 2444984 to JD 2450151:

$$
\begin{array}{r}
\text { Min I }=\text { HJD } 2450151.3916+3 \mathrm{~d} 0095905 \times \mathrm{E} \tag{2}\\
\pm 6 \quad \pm 25
\end{array}
$$

Until now, it has been not possible to decide whether the period changes occur in an erratic, periodic or secular way. Further observations are needed.

Table 1. Times of minima for NSV 4539, epochs and residuals computed with respect to the ephemeris (2)

N	JD hel.	W	T^{*}	Epoch	$\mathrm{O}-\mathrm{C}$	Observer
1	2435874.492	1	P	-4744.0	+0.598	Berthold
2	37752.366	1	P	-4120.0	+0.487	$"$
3	40325.375	1	P	-3265.0	+0.296	$"$
4	40656.396	1	P	-3155.0	+0.262	$"$
5	42871.362	1	P	-2419.0	+0.170	$"$
6	42889.396	1	P	-2413.0	+0.146	$"$
7	43217.411	1	P	-2304.0	+0.116	$"$
8	45763.413	1	P	-1458.0	+0.004	$"$
9	47099.643	1	P	-1014.0	-0.024	$"$
10	47969.456	1	P	-725.0	+0.018	$"$
11	49778.203	10	V	-124.0	+0.001	Agerer
12	49778.205	10	B	-124.0	+0.003	$"$
13	49784.221	10	V	-122.0	-0.001	$"$
14	49784.226	10	B	-122.0	+0.004	$"$
15	49787.233	10	B	-121.0	+0.002	$"$
16	49787.234	10	V	-121.0	+0.003	$"$
17	49793.242	5	$\mathrm{~V}:$	-119.0	-0.008	$"$
18	49793.243	5	$\mathrm{~B}:$	-119.0	-0.007	$"$
19	50142.360	5	$\mathrm{~V}:$	-3.0	-0.003	$"$
20	50151.3886	10	V	0.0	-0.0030	$"$
21	50151.3921	10	B	0.0	+0.0005	$"$

* P denotes photographic minima, B and V are photoelectrically observed, those marked ' $:$ ' got reduced weight (W).

We want to acknowledge the help by the management and staff of Sonneberg Observatory.

T. BERTHOLD
F. AGERER
Bundesdeutsche Arbeitsgemeinschaft
für Veränderliche Sterne e.V. (BAV)
Munsterdamm 90,
D-12169 Berlin, Germany
E-mail:
agerer.zweik@t-online.de
berthold.mtl@t-online.de

References:

Hoffmeister, C., 1934, Astr. Nachrichten, 253, 199
Kwee, K. K., van Woerden, H., 1956, Bull. Astron. Inst. Netherland, 12, 237
Sandig, H.-U., 1947, Astr. Nachrichten, 275, 40
Tsesevich, V.P., 1952, Var. Stars, 8, 414

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4433

Konkoly Observatory
Budapest
3 February 1997
HU ISSN 0374-0676

IDENTIFICATION OF THE ROSINO-GUZZI VARIABLES IN SAGITTA

The list below gives accurate coordinates and IRAS identifications for all but one of the 123 red variable stars found by Rosino \& Guzzi (1978) on a series of infrared plates. These faint stars lie in very crowded Milky Way fields. To determine accurate positions, each star was examined on the digitized sky survey using the Goddard SkyView facility (Scollick 1997). The IRAS identifications were found using SIMBAD. A few of the stars were bright enough to appear in the GSC or the USNO UJ1.0 and A1.0 catalogues (Monet et al. 1994, Monet 1996); these positions were adopted when available.

The finder chart for the star numbered 67 (MX Sge) does not match the sky at the position given by Rosino \& Guzzi. I searched at the positions of nearby IRAS sources, and at various obvious places where a typo might be involved ($\pm 1^{\circ}, 1^{\mathrm{m}}, 10^{\prime}$, etc.), all to no avail. MX Sge must be considered lost for now. The position for star 107 (PP Sge) was given in error by $+1^{\circ}$ in Dec, and is corrected below.

The table lists equinox 2000 positions, the source of the position ($\mathrm{A}=\mathrm{A} 1.0, \mathrm{G}=\mathrm{GSC}$ version 1.1, $\mathrm{S}=\mathrm{SkyView}, \mathrm{U}=\mathrm{UJ} 1.0$), IRAS names, spectral types from the source paper (they are for the time of maximum), and variable-star designations from the GCVS4 (Kholopov et al. 1985). The final column contains additional remarks; an asterisk indicates a note at the bottom of the table.

I appreciate the efforts of Gérard Jasniewicz (l'Observatoire de Strasbourg) to integrate these stars into the SIMBAD database.

Brian A. SKIFF
Lowell Observatory
1400 West Mars Hill Road
Flagstaff AZ 86001-4499
USA
e-mail: bas@lowell.edu

References:

Kholopov, P. N., editor, et al. 1985, General Catalogue of Variable Stars, 4th edition, Nauka, Moscow
Monet, D., Canzian, B., and Henden, A. 1994, Bull. Amer. Astr. Soc., 26, 1314 (abstract)
Monet, D. G. 1996, Bull. Amer. Astr. Soc., 28, 905 (abstract)
Rosino, L., and Guzzi, L. 1978, Astron. E Astrophys., Suppl. Ser., 31, 313
Scollick, K. 1997, http://skview.gsfc.nasa.gov/cgi-bin/v3.0/skyview_advanced

Table 1: The Rosino-Guzzi Variables

[RG78]	RA (2000)	0) Dec	s	IRAS	spec	GCVS4	Remarks
1	190614.1	+185201	A	$19040+1847$		HV Sge	
2	190656.7	+1820 17	A		M5	HW Sge	
3	190716.2	+181750	A	$19050+1813$	M8	HX Sge	
4	190726.8	+175630	U	$19052+1751$	M5	HY Sge	
5	190730.8	+181733	S	$19053+1812$	M7:	HZ Sge	
6	190811.2	+175454	G		M4	II Sge	GSC 1590-2950
7	190842.0	+184220	S	$19064+1837$	M7	IK Sge	*
8	190846.1	+182707	A	$19065+1822$		IM Sge	
9	190906.2	+183800	S	$19069+1833$	M6	IN Sge	
10	190952.5	+173951	A	$19076+1734$		IO Sge	*
11	190954.8	+172028	A		M3	IP Sge	
12	191020.6	+174029	S	$19081+1735$	M2	IR Sge	*
13	191021.2	$+171305$	S		M6	IQ Sge	
14	191035.8	+173041	A	$19083+1725$		IS Sge	
15	191040.9	+171300	S			IT Sge	
16	191043.5	+185649	S	$19085+1857$	M7	IU Sge	
17	191046.4	+19 5709	A	$19085+1952$	M10	IV Sge	
18	191057.3	+174204	S	$19087+1737$	M7	IW Sge	*
19	191057.0	+183434	S		M8	IX Sge	
20	191103.1	+1720 33	S		M8	IY Sge	crowded
21	191111.5	+184812	G	$19089+1843$	M9	IZ Sge	GSC 1594-0513
22	191116.8	+175152	G	$19090+1746$	M7	KK Sge	GSC 1590-3155
23	191133.4	+183614	S	$19093+1831$	M7	KM Sge	
24	191136.3	+164543	S	$19093+1640$		KL Sge	
25	191138.7	+201321	A		M4	KN Sge	
26	191139.7	+2003 02	A	$19094+1957$	M3	KO Sge	
27	191154.2	+171840	A		M6	KP Sge	
28	191200.0	+164208	A	$19097+1637$	M5	KQ Sge	
29	191228.6	+19 1722	A	$19102+1912$		KR Sge	
30	191237.2	+165353	S		M2	KS Sge	
31	191254.7	+163957	S	$19106+1634$	M8	KT Sge	
32	191257.9	+173602	S	$19107+1730$	M3	KU Sge	
33	191259.0	+202530	A			KV Sge	
34	191326.1	+182654	S	$19112+1821$	M4	KW Sge	
35	191346.6	+175224	S		M5	KX Sge	
36	191347.8	+173855	S		M6	KY Sge	*
37	191355.6	+190904	S	$19117+1903$		KZ Sge	*
38	191426.3	+192010	S	$19122+1914$	M8	LL Sge	
39	191431.6	+193130	S		M6	LM Sge	
40	191438.9	+173519	A			LN Sge	*
41	191442.7	+161913	S	19124+1613		V1347 Aql	
42	191443.8	+171804	S	$19124+1712$	M4	LO Sge	
43	191443.8	+175504	S		M8	LP Sge	
44	191452.6	+203649	S	$19127+2031$		LQ Sge	
45	191500.7	$+200105$	S	$19128+1955$	M4	LR Sge	
46	191502.8	+193057	S		M8	LS Sge	
47	191513.2	+180310	S	$19130+1757$	M7	LT Sge	
48	191522.6	+172752	A		M3	LU Sge	
49	191527.2	+154755	S	$19131+1542$	M8	V1349 Aql	*
50	191526.8	+185748	S	$19132+1852$	M8	LV Sge	
51	191532.9	+15 5137	S			V1350 Aql	
52	191537.9	+171133	S	$19133+1706$	M8	LW Sge	
53	191540.4	+160944	S	$19134+1604$		V1351 Aql	*
54	191537.4	+1918 05	A	19134+1912	M5	LX Sge	
55	191544.6	+170311	S	$19134+1657$		LZ Sge	*

Table 1: The Rosin-Guzzi Variables (cont'd.)

[RG78]	RA (2) Dec	s	IRAS	spec	GCVS4	Remarks
56	191543.7	+172044	A	$19135+1715$		LY Sge	
57	191545.1	+184329	S			MM Sge	
58	191633.9	+182252	A	$19143+1817$	M8	MN Sge	
59	191637.7	+1630 45	S	$19144+1625$		MO Sge	
60	191639.9	+182807	S			MP Sge	
61	191706.1	+173046	S	$19148+1725$	M8	MQ Sge	
62	191716.0	+171930	S	$19150+1714$	M10	MR Sge	*
63	191720.6	+165154	S			MS Sge	*
64	191725.8	+175518	S	$19152+1749$	M4	MT Sge	
65	191734.4	+164452	S	$19153+1639$		MU Sge	
66	191751.4	+183414	S	$19156+1828$	M6	MV Sge	*
67					M3	MX Sge	*
68	191756.3	+162718	A			MW Sge	*
69	191759.5	+164826	S	$19157+1642$	M6	MY Sge	
70	191759.6	+183354	S		M4	MZ Sge	*
71	191759.5	+20 0125	G	$19158+1955$	M5	NO Sge	GSC 1607-0201
72	191803.0	+174148	S	$19158+1736$	M8	NN Sge	
73	191805.3	+184823	S	$19158+1842$		NP Sge	
74	191808.5	+185240	A		M5	NQ Sge	
75	191908.1	+20 4911	S			NS Sge	
76	191933.4	+19 5903	S	19173+1953	M8	NT Sge	*
77	191941.7	+192447	S	$19175+1919$	M8	NV Sge	
78	191943.8	+182723	S		M10	NU Sge	
79	191949.3	+19 4151	S	19176+1936	M8	NX Sge	
80	191954.9	+173332	A	$19176+1728$	M8	NW Sge	
81	191957.8	+181937	S		M9	NY Sge	
82	192001.3	+202128	S	$19178+2015$	M6	NZ Sge	
83	192004.7	+19 5323	S	$19178+1947$	M8	OO Sge	
84	192013.2	+182545	S		M6	OP Sge	*
85	192029.0	+173138	S		M5	OQ Sge	
86	192054.9	+202454	S			NZ Vul	
87	192103.1	+20 0234	S	$19188+1956$	M9	OO Vul	*
88	192104.1	+193254	A	$19189+1927$	M6	OP Vul	
89	192107.2	+20 0208	S			OQ Vul	
90	192120.7	+200613	S	$19191+2000$	M9	OR Vul	
91	192121.0	+203014	S	$19191+2024$	M8	OS Vul	
92	192139.9	$+200130$	S	19194+1955		OT Vul	
93	192147.6	+19 4939	S			OU Vul	
94	192153.8	+19 0222	S			OR Sge	*
95	192209.3	+181854	S	$19199+1813$		OS Sge	
96	192214.5	+19 4053	S		M8	OV Vul	
97	192218.1	+173106	S	$19200+1725$	M6	OT Sge	
98	192224.2	+20 0345	G	$19202+1957$	M6	OW Vul	GSC 1608-0373
99	192230.2	+175822	S	$19202+1752$	M8	OU Sge	
100	192232.1	+19 5302	S	$19203+1947$	M9	OX Vul	
101	192245.8	+184104	S	$19205+1835$	M6	OV Sge	
102	192255.0	+184504	A			OW Sge	*
103	192253.9	+19 5222	A			OY Vul	
104	192329.9	+184509	S	$19212+1839$	M8	OX Sge	
105	192330.8	+184941	S	$19212+1843$		OY Sge	*
106	192351.3	+171259	S	$19216+1707$	M6	OZ Sge	
107	192408.0	+170303	A			PP Sge	*
108	192420.7	$+200027$	S	19221+1954	M6	OZ Vul	
109	192453.2	+190116	S	$19226+1855$	M8	PQ Sge	
110	192510.0	+191214	S		M6	PR Sge	

Table 1: The Rosino-Guzzi Variables (concluded)

[RG78]		RA	A (20)	Dec	s	IRAS	spec	GCVS4	Remarks
111	19	925	47.6	+17	73709	S	$19235+1731$	M6	PS Sge	
112	19	925	49.9	+19	91444	A	$19236+1908$	M10	PT Sge	*
113	19	925	49.2	+19	93020	S		M8	PP Vul	
114	19	926	00.4	+19	94037	S	$19238+1934$	M3	PQ Vul	
115	19	926	17.0	+18	81216	A	$19240+1806$	M6	PV Sge	
116	19	926	17.5	+18	80018	A	$19240+1754$	M6	PU Sge	
117	19	926	36.1	+19	90027	A	$19244+1854$	M2	PW Sge	
118	19	926	39.7	+17	74413	S	$19244+1738$		PX Sge	
119	19	927	05.9	+19	91935	S	$19249+1913$	M10	PY Sge	
120	19	908	45.0	+17	74122	S	$19065+1736$	M6	IL Sge	*
121	19	913	35.8	+16	60948	S			V1346 Aql	
122	19	919	04.2	+18	83055	S			NR Sge	
123	19	927	25.8	+18	82639	S	$19252+1820$		PZ Sge	*

Notes
7 ID somewhat uncertain; position is for the northwestern star of a merged pair.
10 this is not the M-dwarf G 142-11.
12 south-southeastern star of a pair.
18 crowded; position is for southwestern of two stars.
36 western star of a merged pair.
37 northern star of a pair.
40 southeastern star of a pair.
49 western of two stars.
53 ID uncertain: alternate candidate at end-figures $40.7 / 44^{\prime \prime}$.
55 southwestern star of a trio.
62 northern star of a merged pair.
63 position is just within the error ellipse of IRAS $19151+1646$.
66 in the field of cluster Palomar 10.
67 chart does not match the star field at the nominal position.
68 northeastern star of a merged pair.
70 in the field of cluster Palomar 10.
76 northeastern star of two.
84 ID uncertain: position is for the southwestern star of a merged pair.
87 GSC 1608-0453, position slightly offset due to crowding.
94 western of two stars.
102 position is just outside the error ellipse of IRAS $19207+1839$.
105 northwestern of two stars.
107 Rosino \& Guzzi +10 Dec error.
112 northwestern star of a pair.
120 southwestern star of a pair.
123 ID uncertain: position is for the southmost star of a trio.

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4434

Konkoly Observatory
Budapest
5 February 1997
HU ISSN 0374-0676

VARIABLE STARS IN THE GLOBULAR CLUSTER M12

NGC 6218 (M12, C1644-018, $l=15.7, b=26.3$) is a variable-poor cluster. It is an intermediate metallicity cluster with concentration class IX, apparent radius $r=7.2$ (Kukarkin, 1974) and tidal radius $r=13.4$ (Webbink, 1985).

The only variable found in this cluster by Sawyer-Hogg (1938) is a long-period Cepheid. Later Clement et al. (1988) confirmed her result that it was a W Vir variable (number 1 in Table 1) and discovered its period to be unstable, ranging from 15.50 to 15.55 .

In our investigation we study four fields with the common size of 4.3×4.3. One may find details of the observations and data reduction in the paper by Brocato et al. (1996). Search for variable stars in the cluster was made in the same way as described in our previous paper (Kadla et al., 1996). From $18 V$ and $20 B$ frames we selected for our study $8 B, V$ pairs with the time interval between B and V exposures shorter than 10 min. There are two stars (numbers 2 and 3 in Table 1) in the instability strip of the colour - magnitude diagram (Figure 1) that can be considered as RR Lyrae variable candidates. Unfortunately the duration of observations was insufficient to confirm the variability of these stars. Data for suspected variables (coordinates, V magnitudes and colour $B-V$) are listed in Table 1.

Figure 1. The color - magnitude diagram for the globular cluster M12, suspected variables are marked by circles

A finding chart for M12, suspected variables are denoted by circles
Table 1. Positions and photometric data for suspected variables

N	X pixels	Y pixels	V	$B-V$
1	366.00	96.52	12.02	0.90
2	-116.63	558.41	14.85	0.57
3	262.75	498.57	15.11	0.58

Yu.N. MALAKHOVA
A.N. GERASHCHENKO
Z.I. KADLA

Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo, 196140 Saint-Petersburg, Russia, e-mail: mal@pulkovo.spb.su

References:

Brocato E., Buonanno R., Malakhova Yu. \& Piersimoni A.M., 1996, A\&A, 312, 80
Clement Ch.M., Hogg H.S., Lee A., 1988, AJ, 96, No.5, 1642
Kadla Z.I., Gerashchenko A.N. \& Malakhova Yu.N., 1996, IBVS, No. 4413
Kukarkin B.V., 1974, The General Catalogue of Globular Clusters of our Galaxies. Publishing House Nauka, Moscow
Sawyer-Hogg H., 1938, Publ. Domin. Astroph. Obs., 7, No. 5
Webbink R.F., 1985, IAU Symposium, No 113, 541, eds by J. Goodman \& P. Hut, Reidel, Dordrecht

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4435

Konkoly Observatory
Budapest
6 February 1997
HU ISSN 0374-0676

SUDDEN PERIOD CHANGE IN THE CONTACT BINARY AW UMa?

The orbital period change of the contact binary AW UMa was firstly reported by Woodward et al. (1980). Hrivnak (1982) considered it as a sudden decrease of the period from one constant period (0.43873231 days) to another one (0.43872917 days), which occurred around 1976 or as a continuous decrease. Due to the lack of observations it was impossible to decide, which type of period change occurred.

Our UBV photoelectric observations were carried out at the Stará Lesná Observatory (SL) in 1995-1997, Skalnaté Pleso Observatory (SP) in 1992 and 1996 and Kryonerion Station of the National Observatory of Athens (K) in 1982 and 1986. The telescopes and their equipments are described in Hric et al. (1991). BD $+31^{\circ} 2270$ was used as the comparison star. U, B, V light curves of AW UMa based on the 1995 and 1996 data are depicted in Figure 1. Mid-eclipse brightening was registered in the secondary minimum (Pribulla and Chochol, 1997). Derman et al. (1990) and Bakos et al. (1991) reported pronounced light and colour variations of AW UMa in 1989-90. Our light curves show that AW UMa is in a quiet phase now. The times of minima and their standard errors, determined using Kwee and van Woerden's (1956) method are given in Table 1.

Figure 1. U, B and V light curves obtained at Stará Lesná Observatory in 1995 and 1996. Phases were calculated using the ephemeris (2).

Table 1. Times of minima of AW UMa

JD hel									
$2400000+$	σ $\times 10^{-4}$	Min.	Obs.	Filt.	$J_{\text {hel }}$ $2400000+$	σ $\times 10^{-4}$	Min.	Obs.	Filt.
45107.4766	2	I	K	BV	50139.4693	2	II	SL	UBV
45108.3531	4	I	K	BV	50141.4447	3	I	SL	UBV
46514.4813	10	I	K	BV	50161.4076	3	II	SL	UBV
46515.3586	3	I	K	BV	50421.571	10	II	SP	UBVR
48683.5554	5	I	SP	V	50423.5438	4	I	SL	UBV
49778.3977	2	II	SL	UBV	50428.5918	1	II	SL	UBV
49862.4120	5	I	SL	UBV	50430.5640	3	I	SP	UBV
50096.478	10	II	SL	UBV	50461.4979	4	II	SL	UBV
50097.5706	2	I	SL	UBV	50465.4433	1.5	II	SL	B
50098.4489	0.2	I	SL	UBV	50471.5855	1	II	SL	V

Figure 2. The $\mathrm{O}-\mathrm{C}$ diagram
The times of minima given in Table 1 together with the data published by Yim and Jeong (1995) and Müyesseroğlu et al. (1996) as well as the data compiled from literature by Bakos et al. (1991) and Demircan et al. (1992) were used to study period change. The $\mathrm{O}-\mathrm{C}$ residuals (Figure 2) were calculated using the ephemeris:

$$
\begin{equation*}
\operatorname{Min} \mathrm{I}=H J D 2438044.8164+0 \mathrm{~d} 43872901 \times E . \tag{1}
\end{equation*}
$$

As it is apparent from Figure 2, the data could be explained either by two sudden period changes, which occurred in 1976 and 1994 or by a continuous period change. The linear ephemeris between the two sudden period changes (1975-1994) is identical with ephemeris (1). The period 0.43873231 days determined by Hrivnak (1982) and our ephemeris (1) indicate a period jump $\Delta P / P=7.5 \times 10^{-6}$. The minima after the second jump are defined by the following linear ephemeris:

$$
\begin{equation*}
\operatorname{Min} \mathrm{I}=\mathrm{HJD} 2438044.8625+0 \mathrm{~d} 43872703 \times E \tag{2}
\end{equation*}
$$

The corresponding period jump ($\Delta P / P=4.4 \times 10^{-6}$) is smaller than the first one. The data in Figure 2 fitted by a parabola (continuous period change) are represented by the following ephemeris:

$$
\begin{equation*}
\operatorname{Min} \mathrm{I}=\operatorname{HJD} 2438044.7824+0.43873301 \times E-1.10510^{-10} \times E^{2} \tag{3}
\end{equation*}
$$

The sum of squares of the residuals for the three linear fits $\left(2.510^{-5} d^{2}\right)$ is half of that for the quadratic fit ($5.010^{-5} d^{2}$), therefore the sudden period change seems to be more probable than the continuous one.

Acknowledgements. This work was partly supported by a NATO grant (No. 960322) and by a VEGA grant 1282/1997.
T. PRIBULLA
D. CHOCHOL

Astronomical Institute
Slovak Academy of Sciences
05960 Tatranská Lomnica
Slovakia
e-mail: pribula@auriga.ta3.sk
H. ROVITHIS-LIVANIOU

Section of Astrophysics, University of Athens, GR 15784 Zografos, Greece
e-mail: elivan@atlas.uoa.gr

P. ROVITHIS

Astronomical Institute, The National Obs. of Athens, P.O. Box 20048,

GR 11810 Athens, Greece

References:

Bakos, G.A., Horák, T.B., Tremko, J., 1991, Bull. Astron. Inst. Czechosl., 42, 331
Demircan, O., Derman, E., Müyesseroğlu, Z., 1992, A\&A, 263, 165
Derman, E, Demircan, O., Müyesseroğlu, Z., 1990, IBVS, No. 3540
Hric, L., Skopal, A., Urban, Z., 1991, Contrib. Astron. Obs. Skalnaté Pleso, 21, 303
Hrivnak, B.J., 1982, Astrophys. Journal, 260, 744
Kwee, K.K. \& van Woerden, H., 1956, Bull. Astron. Inst. Neth., 12, 327
Müyesseroğlu, Z., Gürol, B., Selam, S.O., 1996, IBVS, No. 4380
Pribulla, T., Chochol, D., 1997, In: Proceedings of the conference "Contemporary problems of astronomy", Odessa, in press
Woodward, E.J., Koch, R.H., Eisenhardt, P.R., 1980, Astron. Journal, 85, No. 1, 50
Yim, J.R., Jeong, J.H., 1995, J. Astron. Space Sci., 12, 44

TWO VARIABLE STARS IN AURIGA: THE NEW CLASSICAL CEPHEID NSV 01771 AND THE NEW ECLIPSING BINARY SYSTEM GSC 2906.0213

The variability of NSV 01771 ($=$ CSV $006139=$ VB $11=$ GSC 2906.0279) was first announced by Horn-d'Arturo and Lacchini (1955). In the NSV catalogue (Kholopov, 1982), NSV 01771 is recorded as an RR Lyrae star with a photographic amplitude of 1.8 magnitudes. During the autumn of 1996 , a variable star search carried out with the $0.4-\mathrm{m}$ telescope at Mollet del Valles Observatory (Spain) revealed that this suspected variable had a period too long for an RR Lyrae star. To study more thoroughly its nature, it was monitored in the V band with the $0.6-\mathrm{m}$ telescope at Esteve Duran Observatory (Spain) using a CCD camera. Observations were also performed with the $0.5-\mathrm{m}$ telescope at L'Ametlla del Valles Observatory. NSV 01771 was observed for 21 nights from 7 October to 19 December 1996. GSC 2906.0069 was used as comparison star and GSC 2906.0213 as check star.

Photometric data shows that NSV 01771 is not an RR Lyrae star, but a classical Cepheid with a period close to 3.4 days which can be unambiguously identified with GSC 2906.0279, an object with an average photovisual magnitude (PAL-V1 filter) of 12.0 according to the Guide Star Catalogue. Its amplitude in the V band is of $0 . \mathrm{m}^{\mathrm{m}} 93 \pm 0^{\mathrm{m}} 02$. The phase curve (Figure 1) presents an asymmetry factor ($\mathrm{M}-\mathrm{m}$)/P=0.2. The following ephemeris was computed:

$$
\begin{gathered}
\text { Max. }=\text { HJD } 2450416.64+3.4075 \times \mathrm{E} \\
\pm 0.02 \pm 0.0015
\end{gathered}
$$

Figure 1

Figure 2
Brightness measurements obtained from archival plates would allow to improve the above given ephemeris and also study its light-curve in the past. In addition to this, spectroscopic and more photometric data would help to obtain additional relevant information about this new pulsating star.

CCD reductions yielded that the check star GSC 2906.0213, located about 43 arcseconds to the Southwest of NSV 01771 is also variable. According to the Guide Star Catalogue, its photovisual magnitude (PAL-V1 filter) is 12.7. This object is an eclipsing binary star with a period close to 0.9 days, and has an amplitude of 0.24 ± 0.04 at primary minimum and $0 .{ }^{\mathrm{m}} 19 \pm 0 \mathrm{~m}^{\mathrm{m}} 02$ at secondary minimum in the V band. Phase curve (Figure 2) presents higher dispersion around primary minimum than around minimum II. Simultaneous observations performed with two different telescopes showed that this is due to cycle-to-cycle changes in the shape of the light-curve, probably as a consequence of some form of stellar activity. Although data scatter does not allow to compute the physical parameters of this binary system, a preliminary study suggests that the primary component is about 10 times as massive as the secondary one. Minimum I is a transit whereas minimum II is an occultation.

Due to the unstable shape of primary minimum, ephemeris to predict times of minima was derived for minimum II:

$$
\begin{gathered}
\text { Min. } \mathrm{II}=\text { H.JD } 2450395.5073+0 \mathrm{~d} .91279 \times \mathrm{E} \\
\pm 0.0025 \pm 0.00020
\end{gathered}
$$

A list of minimum II timings and $\mathrm{O}-\mathrm{C}$ residuals for the above given ephemeris was also obtained after using the Kwee and van Woerden's (1956) method. These are given in Table 1.

Table 1

HJD	$\mathrm{O}-\mathrm{C}$
2450373.5962	-0.0041
2450374.5139	0.0008
2450395.5073	0.0000
2450416.4998	-0.0016
2450437.4940	-0.0016

E. GARCIA-MELENDO
Esteve Duran Observatory
El Montanya - Seva
08553 Seva
(Barcelona)
Spain
e-mail:duranobs@astro.gea.cesca.es

J.M. GOMEZ-FORRELLAD
A. GARRIGOS SANCHEZ

Grup d'Estudis Astronomics
Apartado 9481
08080 Barcelona
Spain
e-mail:jmgomez@astro.gea.cesca.es

References:
Horn-d'Arturo, G., Lacchini, G.B., 1955, Bologna Pubbl., 6, No. 13
Kholopov, P.N., editor, 1982, New Catalogue of Suspected Variable Stars, Moscow Kwee, K.K., van Woerden, H., 1956, BAN, 12, 327

Konkoly Observatory
Budapest
10 February 1997
HU ISSN 0374-0676

PHOTOELECTRIC $B V I_{c}$ OBSERVATIONS, NEW ELEMENTS AND A NEW CLASSIFICATION FOR BZ Tuc

BZ Tuc $=$ HV 821 was included in our program of photoelectric observations for Cepheids because it is listed in GCVS-IV as a classical Cepheid with the elements

$$
\operatorname{Max} J D=2444141.64+127.61 \times E .
$$

We observed the star at CTIO during September-November 1996 using the $1.0-\mathrm{m}$ reflector. A total of $26 B V I_{c}$ measurements were obtained (Table 1), the accuracy of the individual data being near $\pm 0 .{ }^{m} 01$ in all filters. Our new observations are plotted as filled dots in Figure 1, while open circles refer to our earlier observations (Berdnikov \& Turner, 1995).

The slight offset of the new observations from our earlier observations in Figure 1 suggests that our data do not satisfy the above elements. In order to refine them, we analyzed all available published observations using Hertzsprung's method; the derived epochs of maxima, listed in Table 2, together with times of maxima from Leavitt (1908), were introduced into a linear least squares solution to obtain the following improved ephemeris:

$$
\operatorname{Max} J D=2430242.8+127.447 \times E .
$$

Table 1

$J D$ $2450300+$	V	$B-V$	$V-I_{c}$	$J D$ $2450300+$	V	$B-V$	$V-I_{c}$
51.6601	11.794	0.793	0.874	81.6460	11.680	0.932	0.954
52.7280	11.763	0.800	0.867	82.6389	11.661	0.940	0.952
53.6278	11.756	0.808	0.867	83.6399	11.650	0.943	0.966
54.6378	11.748	0.807	0.871	84.6350	11.709	0.969	0.985
55.6658	11.784	0.799	0.872	86.6257	11.691	0.981	0.969
57.6306	11.735	0.804	0.866	87.6555	11.712	0.998	0.976
58.6354	11.738	0.811	0.867	88.6383	11.719	1.009	1.005
59.6230	11.719	0.824	0.869	89.6342	11.743	1.023	1.020
61.6585	11.700	0.823	0.865	90.6310	11.750	1.051	1.014
62.6531	11.704	0.836	0.875	91.6228	11.771	1.055	1.036
63.6294	11.706	0.820	0.889	92.6297	11.779	1.072	1.036
79.6424	11.652	0.893	0.955	93.6331	11.800	1.073	1.046
80.6372	11.669	0.948	0.954	94.6770	11.810	1.097	1.051

Table 2

MaxJD $2400000+$	Uncertainty	Filter	E	$O-C$	Number of Observations	Author
10097.00	-	pg	-158	-9.17	-	Leavitt, 1908
34443.23	± 1.15	B	33	-5.32	10	Gascoigne, Kron, 1965
34449.94	± 1.91	V	33	1.39	12	Gascoigne, Kron, 1965
41070.64	± 0.33	B	85	-5.15	18	Eggen, 1977
41203.26	± 0.64	V	86	0.02	25	van Genderen, 1983
41203.86	± 0.48	V	86	0.63	18	Eggen, 1977
41325.48	± 0.32	B	87	-5.21	23	van Genderen, 1983
41834.12	± 0.40	B	91	-6.35	10	Madore, 1975
41839.31	± 1.11	V	91	-1.17	10	Madore, 1975
44011.44	± 1.17	V	108	4.37	9	Freedman at el., 1985
44135.92	± 0.85	V	109	1.40	6	Harris, 1980
44515.26	± 0.29	B	112	-1.60	34	Caldwell, Coulson, 1984
44521.02	± 0.34	V	112	4.16	37	Caldwell, Coulson, 1984
50117.60	± 0.31	V	156	-6.92	32	This paper
50238.23	± 0.24	B	157	-13.74	30	This paper

Figure 1. The light curve of BZ Tuc established by our earlier observations (Berdnikov \& Turner 1995), open circles, and the observations of Table 1, filled circles

Figure 2. The $\mathrm{O}-\mathrm{C}$ diagram for BZ Tuc. For convenience the $\mathrm{O}-\mathrm{C}$ values are expressed in fractions of the period

Figure 3. The light curve of BZ Tuc according to van Genderen (1983), top, Caldwell \& Coulson (1984), middle, and Eggen (1977), bottom

The new ephemeris was used to calculate the $O-C$ values listed in Table 2, as well as for plotting Figures 2 and 3. In both Table 2 and Figure 2 we have taken into account that maxima in filter B precede those in V by 6.0 days. The data of Figure 1, as well as the observations of van Genderen (1983), Caldwell \& Coulson (1984), and Eggen (1977), which are replotted in Figure 3a-c for the new ephemeris, indicate that the shape of the light curve of BZ Tuc varies slightly. Moreover, a shift in the times of maxima for $B-V$ relative to those in V is evident. Such variability in light curve shape suggests that BZ Tuc cannot be a classical Cepheid. Likewise, it cannot be a type II Cepheid because of its very long period. Possibly BZ Tuc is an RV Tauri variable or alternatively a semiregular variable of the UU Herculis class.

The research described here was made possible in part by grants No. 95-02-05276 from the Russian Foundation of Basic Research to LNB and through NSERC Canada to DGT. The authors were Visiting Astronomers at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under co-operative agreement with the National Science Foundation.
L.N. BERDNIKOV

Sternberg Astronomical Institute
13, Universitetskij prosp.
Moscow 119899, Russia
D.G. TURNER

Saint Mary's University
Halifax, Nova Scotia, B3H 3C3
Canada

References:

Berdnikov, L.N., \& Turner D.G., 1995, Astron. Letters, 21, 534
Caldwell, J.A.R., \& Coulson, I.M., 1984, South. Afr. Astron. Observ. Circ., No. 8, 1
Eggen, O.J., 1977, Astrophys. J. Suppl., 34, 33
Freedman, W.L., Grieve, G.R., \& Madore, B.F., 1985, Astrophys. J. Suppl., 59, 311
Gascoigne, S.C.B., \& Kron G.E., 1965, M.N.R.A.S., 130, 333
Harris, H.C., 1980, Ph.D. Thesis, University of Washington
Leavitt, H.C., 1908, Ann. Astron. Observ. Harvard College, 60, 1
Madore, B.F., 1975, Astrophys. J. Suppl., 29, 219
van Genderen, A.M., 1983, Astron. Astrophys. Suppl., 52, 423

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4438

Konkoly Observatory
Budapest
14 February 1997
HU ISSN 0374-0676

PHOTOELECTRIC $B V R_{c}$ OBSERVATIONS FOR THE UU Her STAR EV AURIGAE

EV Aur is classified in GCVS-IV as a classical Cepheid with a period of 2.659562 days. We observed this star photoelectrically in 1985 for 18 nights (JD 2446285-304) and revealed no changes is brightness (Berdnikov, 1986) with this period. Schmidt et al. (1995) observed EV Aur with CCD and suspected that EV Aur was an UU Her star with the elements

$$
\operatorname{Max} \mathrm{JD}_{h e l}=2448578.4+55 \times \mathrm{E}
$$

To examine these elements, we observed the star at Mt. Maidanak Observatory (Uzbekistan) in September 1996 using the $0.6-\mathrm{m}$ reflector. A total of $7 B V R_{c}$ measurements were obtained, the accuracy of the individual data being near $\pm 00^{\mathrm{m}} 01$ in all filters. These data as well as the observations taken in 1985 are listed in Table 1 and presented graphically in Figure 1.

In Figure 2 our data (dots) are represented together with observations published by Schmidt et al. (circles). Both offset in phase and difference in shape of our light curve with respect to data of Schmidt et al. confirm their conclusion: most likely, EV Aur is an UU Her star.

The research described here was made possible in part by grant No. 95-02-05276 from the Russian Foundation of Basic Research.

Table 1

$\begin{gathered} J D_{\text {hel }} \\ 2400000+ \end{gathered}$	V	$B-V$	$V-R_{c}$	$\begin{gathered} J D_{\text {hel }} \\ 2400000+ \end{gathered}$	V	$B-V$	$V-R_{c}$
46285.4679	12.332	1.825	1.804	46300.4131	12.340	1.874	1.872
46287.4309	12.312	1.878	1.874	46301.4440	12.376	1.882	1.883
46288.4651	12.339	1.897	1.865	46302.4394	12.322	1.894	1.861
46289.4575	12.334	1.888	1.881	46303.4260	12.348	1.882	1.877
46290.4737	12.371	1.884	1.863	46304.4299	12.350	1.901	1.877
46291.4493	12.352	1.891	1.874	50332.4182	11.969	1.905	1.861
46293.4239	12.392	1.846	1.887	50333.4364	12.020	1.824	1.894
46294.4275	12.349	1.900	1.877	50337.4098	12.123	1.898	1.845
46295.4174	12.354	1.859	1.875	50340.4035	12.181	1.824	1.873
46296.4236	12.364	1.826	1.889	50341.4071	12.214	1.834	1.866
46297.4358	12.340	1.867	1.879	50344.4182	12.267	1.881	1.934
46298.4417	12.299	1.905	1.848	50347.4176	12.280	1.820	1.882
46299.4126	12.366	1.852	1.875				

Figure 1

Figure 2
L.N. BERDNIKOV
O.V. VOZYAKOVA

Sternberg Astronomical Institute
13, Universitetskij prosp.
Moscow 119899, Russia
V.V. IGNATOVA

Astronomical Institute
33, Astronomicheskaya ul.
Tashkent 520000, Uzbekistan

References:
Berdnikov, L.N., 1986, Astronomicheskij Circular, No. 1440, 8
Schmidt, E.G., Chab, J.R., Reiswig, D.E., 1995, Astron. J., 109, 1239

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4439

Konkoly Observatory
Budapest
17 February 1997
HU ISSN 0374-0676

OPTICAL PHOTOMETRY OF CF Tuc, MID-1995 THROUGH 1996

CF Tuc ($=$ CABS $^{1} \# 8$) is a relatively bright ($V \sim 7.5$) RS CVn type binary (Hearnshaw and Oliver, 1977). It consists of a G0 type Main Sequence dwarf orbiting in a 2.797672 d period (Budding, 1985; epoch HJD 2445606.9165) with a K4 subgiant. The star appears in front of the southern end of the SMC, and has received significant attention from observers in Australasia (Budding and Zeilik, 1995, and refs. cited therein).

The scale of related photometric (starspot/maculation) activity has varied from very large (tenths of mag, cf. Hall, 1981) to apparently insignificant (~ 0.01 mag; Budding and McLaughlin, 1987), with many observers recording irregularities on the order of 0.05 mag .

Drake et al. (1992) pointed out appreciable X-ray emission from CF Tuc. It is listed in the ROSAT (EUV) Bright Source Catalogue (Pounds et al., 1993), and Kürster (1994) reported a very large flare observed by ROSAT. It has also been found to be a reasonably active radio source (Slee et al, 1987), and this has prompted efforts toward 'multiwavelength' observational studies (Gunn et al., 1996). The present article attempts to put together recent photometric information as a background to such multiwavelength studies, involving further observations at the Australia Telescope in June 1996, which covered a complete orbital cycle of the binary.

In Figure 1 we show data which has been collected from two sites in New Zealand from mid-1995 up to the end of the year. The earliest points, observed from the Kotipu Place Observatory's APT ('KPO' - cf. Hudson et al., 1993) may be slightly brighter than the later trend towards a low secondary minimum. This is in the sense that later KPO data, combined with that from T Rounthwaite, indicate that towards the end of 1995 there was a reasonably coherent maculation wave, centering at phase around 0.6. This wave may have previously been at a higher phase and subsequently drifted down in longitude. Such effects are frequently observed for RS CVn stars showing spot-waves, and the rate of this drift for CF Tuc has been found to be typically of order 50 deg per year (Budding and Zeilik, 1995), in keeping with what could be expected from the trends studied by Henry et al. (1995), although appreciable variations in the apparent rates of spot drifts are found in particular cases.

Figure 2 indicates that the maculation wave continued its downward migration into 1996, decreasing somewhat in amplitude in the process. The overall rate of drift over the whole of 1996 would then appear to be about 100 deg , and if the drift was uniform over this period then the phase of the main minimum should have been about 0.45 at the time of the radio observations in Australia carried out at the end of June, 1996.

[^6]

Figure 1: V light curve of CF Tuc: Aug-Dec 1995; KPO (o) \& Rounthwaite $(+)$.

Figure 2: V light curve of CF Tuc: Jul-Dec 1996; KPO (o) \& Rounthwaite (+).

Data continue to be assembled and checked as part of a wider programme of active star studies. More intensive and detailed analyses can be expected in further stages of this programme.

T. ROUNTHWAITE
G. HUDSON
R. HUDSON
E. BUDDING
Auckland Observatory,
Kotipu Place Observatory,
Wellington, New Zealand

References:
Budding, E., 1985, Inf. Bull. Var. Stars, No. 2779
Budding, E. \& McLaughlin, E., 1987, Astrophys. Space Sci., 133, 51
Budding, E. \& Zeilik, M., 1995, Astrophys. Space Sci., 232, 355
Drake, S. A., Simon, T. \& Linsky, J. L., 1992 Astrophys. J. Suppl. Ser., 82, 311
Gunn, A. G., Migenes, V., Doyle, J. G., Spencer, R. E., \& Mathioudakis, M., 1996, Mon. Not. Roy. Astron. Soc., (in press)
Hall, D. S., 1981, in Solar Phenomena in Stars and Stellar Systems, eds. R. M. Bonnet \& A. K. Dupree, Reidel, Dordrecht
Hearnshaw, J. B., \& Oliver, J. P., 1977, Inf. Bull. Var. Stars, No. 1342
Henry, W., Eaton, J.A., Hamer, A., Hall, D.S., 1995, Astrophys. J. Suppl., 97, 513
Hudson, G., Hudson, R. and Budding, E., 1993, Proc. IAU Coll. 136, (Posters) eds. I.S. Elliott and C.J. Butler, Dublin Institute for Advanced Studies, 107
Kürster, M., 1994, Cool Stars, Stellar Systems and the Sun, 8-th Cambridge Workshop; ASP Conf. Series, 64, 104
Pounds, K. et al. (55 authors), 1993, MNRAS, 260, 77
Slee, O.B., Nelson, G.J., Stewart, R.T., Wright, A.E., Innis, J.L., Ryan, S.G. \& Vaughan, A.E., 1987, Mon. Not. Roy. Astron. Soc., 229, 659

Strassmeier, K.G., Hall, D.S., Fekel, F.C., Scheck, M., 1993, Astron. Astrophys. Suppl., 100, 173

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4440

Konkoly Observatory
Budapest
19 February 1997
HU ISSN 0374-0676

A SUSPECTED RED VARIABLE IN THE ERROR BOX OF GRB 970111

GRB 970111 is a gamma-ray burst detected by the satellite BeppoSAX on January 11, 1997 (Costa et al. 1997). Soon after the event, we observed the field of GRB 970111 (Guarnieri et al. 1997) with the 1.5 -meter telescope (+BFOSC) of the Bologna University and compared it to the Digitized Sky Survey (DSS). We noticed on the R frames the clear presence of a star (Figure 1) which was barely visible on the DSS (whose limiting magnitude is $R \sim 20.5$). The star is also practically invisible on the Palomar Sky Survey red plates and absent on the blue ones (limiting magnitude ~ 21 for both). From the DSS we deduced the coordinates of this object:

$$
\alpha=15^{\mathrm{h}} 28^{\mathrm{m}} 45^{\mathrm{s}} ; \delta=+19^{\circ} 47,15^{\prime \prime} \text { (equinox } 2000.0 \text {), }
$$

with a conservative error of ± 5 " for both values. The star is inside the GRB 970111 error box communicated by Hurley et al. (1997; see also Figure 1). No variable object within a circle of radius 10^{\prime} and centered on these coordinates is mentioned in the SIMBAD database.

From 5 frames (3 in R band, 1 in B and 1 in V, respectively) collected between Jan. 15 and Jan. 31 1997, we determined the magnitudes of the star by means of the DAOPHOT II package (Stetson 1987) and the ALLSTAR procedure implemented in MIDAS. The entire \log of observations, together with the Palomar data, is reported in Table 1.

Table 1. Available magnitudes and color indices for the variable

JD	B	V	R	$B-V$	$V-R$	Source
2433391.90	>21	-	~ 21	-	-	Palomar plates
2450463.68	-	-	19.90	-	-	$1.5 \mathrm{~m}+\mathrm{BFOSC}$
2450465.71	-	-	19.93	-	-	$1.5 \mathrm{~m}+\mathrm{BFOSC}$
2450479.65	>21	20.34	19.80	~ 1.2	0.54	$1.5 \mathrm{~m}+\mathrm{BFOSC}$

The calibration has then been performed with the use of the photometric standards in the field of PG 1047+003 (Landolt 1992). The star, on January 15 1997, was at $R=19.90 \pm 0.05$, thus showing a variation of more than a magnitude with respect to the Palomar red plates (April 1950), while on January 17 the R magnitude was 19.93 ± 0.05. On January 31 its magnitude in the R band was found to be 19.80 ± 0.05. During the same night, its $V-R$ color index was 0.54 . Unfortunately, the object was too faint to be visible in the B band, even with an exposure time of 50 minutes; we can however give an indicative $B-V$ color index of ~ 1.2 by comparing the $V-R$ of the star with those of field stars with known $B-V$ color indices. These colors suggest that this object is a mid-late K spectral type star, depending on the luminosity class (Lang 1992). All this seems to indicate that this suspected variable might be a long period red star.

Figure 1. The field $\left(9^{\prime} \times 9^{\prime}\right)$ of the suspected variable in the Johnson R band (exposure time: 20 minutes), observed on January 15, 1997. The star is indicated by the ticks. North is at top, east is to the left. The northern part of GRB 970111 error box by Hurley et al. (1997) is also reported

NICOLA MASETTI
Dipartimento di Astronomia
Università di Padova
vicolo dell'Osservatorio, 5
I-35122 Padua, Italy

> CORRADO BARTOLINI ADRIANO GUARNIERI ADALBERTO PICCIONI
> Dipartimento di Astronomia
> Università di Bologna
> via Zamboni, 33
> I-40126 Bologna, Italy

References:

Costa E., Feroci M., Piro L. et al., 1997, IAU Circ., No. 6533
Guarnieri A., Bartolini C., Piccioni A. et al., 1997, IAU Circ., No. 6544
Hurley K., Kouvelioutou C, Fishman G., Meegan C., 1997, IAU Circ., No. 6545
Landolt A.U., 1992, AJ, 104, 340
Lang K.R., 1992, Astrophysical Data: Planets and Stars. Springer-Verlag, New York Stetson P.B., 1987, PASP, 99, 191

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4441

Konkoly Observatory
Budapest
19 February 1997
HU ISSN 0374-0676

IDENTIFICATION OF VARIABLES NEAR NGC 7635

A group of new and known variable stars in the field of the emission nebula NGC 7635 was studied by Rosino, Bianchini, and Martino (1976). In the source paper, approximate positions, spectral types, and elements of variation were presented along with finder charts for the thirty-two new variables. All but one of these are now named variables. Although the positions provided are generally accurate, they are not precise. For the fainter stars especially, precise positions are required both for their recovery for further study at the telescope and for linkage within other surveys such as IRAS.

The tables below give precise positions and identifications for all the stars. Table 1 matches the Rosino et al. Table 1 in showing the variables already known at the time of publication. The sources of the positions are coded in column ' s ' as follows:

A A1.0 (Monet et al. 1996)
G GSC, version 1.1
P PPM
S SkyView
U UJ1.0 (Monet et al. 1994)
For stars not in any available catalogue, I used the Goddard SkyView facility (Scollick 1997) to estimate positions from the Digitized Sky Survey to $\pm 2^{\prime \prime}$ using a coordinate-grid overlay. The positions for MO Cas and MP Cas, which lie in the bright nebulous region of NGC 7635, were given erroneously by Rosino (1953). At the request of G. Williams, amateur observer D. diCicco obtained CCD frames that allowed measurement of their positions, which are given here.

The spectral types are copied directly from Rosino et al.; those in parentheses were taken from the literature. An asterisk in the final column indicates a note at the bottom of the tables.

Table 1

Name	RA (2	Dec	s	GSC	spec	
CC Cep	230128.5	+614019	U		G/K.	
AS Cep	230205.2	+59 4906	G	3997-0641	M3	
CR Cas	230452.0	+593357	G	3997-1059	K8:[sic]	
DP Cep	230821.1	+611200	G	4278-0009	F0	
PV Cas	231002.5	+591207	P		($\mathrm{B} 6^{-} \mathrm{V}$)	
GU Cep	231010.9	+611430	G	4279-0027	M3	
V Cas	231140.6	+594158	P		(M5-7e)	
CI Cep	231126.8	+62 5824	G	4283-0552	M5e	
HQ Cep	231246.8	+612632	U			

Table 1 (cont'd.)

Name	RA (2000	0) Dec	s	GSC	spec	n
OQ Cep	231257.0	+603438	U		M7	*
CY Cep	232009.3	+63 0123	A			
MO Cas	232043.6	+611443	*		M8	
MP Cas	232039.6	+61 1353	*		M8	*
CH Cas	232228.5	+62 4526	G	4283-1264	(F3pIb)	*
V398 Cas	232230.9	+591826	P		M5	
DQ Cas	232457.4	+621851	G	4283-0555	M5	
V433 Cas	232512.1	+611929	G	4279-0165	M6	*
PW Cas	232558.5	+611601	G	4280-1499	F8/G0	
IS Cas	232828.7	+603357	G	4280-1578	A2	
CY Cas	232912.8	+632228	G	4284-0433	(G0-G2Ib)	
DR Cas	233053.4	+620723	G	4284-0602	M2?	*
V530 Cas	233044.1	+601521	G	4280-1989		*
V435 Cas	233127.3	+592425	U			*
DS Cas	233221.0	+620633	G	4284-0514	C	
V438 Cas	233600.0	+620312	A		M8	
RS Cas	233716.1	+62 2545	G	4284-0674	(F8-G2Ib)	

Table 2, containing Rosino et al.'s new variables, is arranged in a similar way. Because the stars are somewhat fainter, few of them appear in the GSC; IRAS identifications are shown instead following the positions.

Table 2

No.	Name	RA	(2000)	Dec	s	IRAS	spec	n
1	PZ Cep	225655.2	+602510	S	$22549+6009$			
2	QQ Cep	225943.9	+605325	U				
3	V352 Cep	230127.0	+613350	P			$*$	
4	QR Cep	230150.9	+614007	A	$22598+6123$	M10:		
5	NSV 14394	230201.5	+615304	A	$22599+6136$			
6	QS Cep	230303.7	+613018	A	$23009+6113$	M4/5		
7	QT Cep	230558.4	+601500	S		M6:	$*$	
8	QU Cep	230619.4	+600431	A	$23042+5948$	M6:		
9	QV Cep	231147.8	+603414	G			$*$	
10	QW Cep	231228.3	+595219	U	$23103+5935$	M7		
11	QX Cep	231330.2	+625033	A	$23113+6234$	M7		
12	QY Cep	231338.1	+630902	A	$23115+6252$	M5	$*$	
13	V569 Cas	231514.9	+592748	A	$23130+5910$	M6	$*$	
14	V570 Cas	231627.6	+594818	U				
15	V563 Cas	231655.3	+602601	U		M6e	$*$	
16	V571 Cas	231941.5	+595818	S		M	$*$	
17	V572 Cas	231957.2	+622748	A		M8/10		
18	V573 Cas	232114.6	+590853	A	$23190+5852$	M7		
19	V574 Cas	232131.9	+602213	G	$23193+6005$	M5	$*$	
20	V575 Cas	232155.2	+620303	A		M2/4e		
21	V576 Cas	232311.5	+614440	S	$23209+6128$	M6		

Table 2 (cont'd.)

No.	Name	RA	(2000)	Dec	s	IRAS	spec	n
22	V577 Cas	232333.7	+602823	U				
23	V578 Cas	232507.2	+590304	A				
24	V579 Cas	232555.3	+605731	G		M5	$*$	
25	V581 Cas	232958.0	+602812	A	$23276+6011$	M8		
26	V583 Cas	233116.1	+613219	S	$23289+6115$	M		
27	V584 Cas	233147.7	+610246	A	$23294+6046$	M6/8		
28	V585 Cas	233359.0	+610410	A	$23316+6047$	M5		
29	V587 Cas	233745.5	+605939	A	$23354+6043$	M6		
30	V586 Cas	233516.7	+613525	U		M3	$*$	
31	V582 Cas	233011.3	+601646	G		M5	$*$	
32	V580 Cas	232815.4	+602859	G	$23259+6012$	M2	$*$	

Notes:
Table 1
CR Cas LS III $+59^{\circ} 40$. GCVS4 spectral type in error: cf. Popper (1996).
CI Cep IRAS 23093+6242
OQ Cep S 5686. Rosino et al. -1^{m} RA error.
CY Cep ID verified with chart in Rosino (1943).
MO Cas position from CCD frames by diCicco.
MP Cas position from CCD frames by diCicco.
CH Cas large Rosino/GCVS4 RA error, ID verified with chart in Parenago \& Kukarkin (1940).
V433 Cas IRAS $23229+6102=$ Case $264=$ CGCS 5875.
DR Cas IRAS $23286+6150$.
V530 Cas S 5744.
V435 Cas large Rosino et al./GCVS4 position error, ID verified with chart in Hoffmeister (1967).
Table 2
$3=$ V352 Cep HD 217692.
$7=$ QT Cep southmost star in the nebulous patch BFS $17=$ GM 1-79.
$9=$ QV Cep GSC 4279-1936.
$13=$ V569 Cas southern star of a merged pair on DSS.
$15=\mathrm{V} 563$ Cas \quad IRC +60395 .
$16=\mathrm{V} 571$ Cas $\quad[\mathrm{LRS} 87] 172=\mathrm{CGCS} 5847$.
$19=$ V574 Cas GSC 4279-2403.
$24=$ V579 Cas \quad GSC $4280-0617=$ IRAS $23236+6040=C^{*} 3188=$ CGCS 5877.
$30=$ V586 Cas GSC $4280-1006=$ IRAS $23329+6118$. large Rosino et al. position error.
$31=$ V582 Cas GSC 4280-1858; Rosino et al. Dec error; located on north side of sparse 3^{\prime} cluster.
$32=$ V580 Cas GSC 4280-1884.
This work was facilitated by the use of SIMBAD, maintained by the Centre de Données Astronomique, Strasbourg, France; I appreciate the efforts of Gérard Jasniewicz (Université de Montpellier) to integrate these stars into the database. The U. S. Naval Observatory PMM catalogues, which were prepared by Dave Monet and colleagues at USNOFlagstaff, were an indispensable aid in identifying the fainter stars. My thanks to Gareth Williams for providing the positions for MO Cas and MP Cas.

Brian A. SKIFF
Lowell Observatory
1400 West Mars Hill Road
Flagstaff AZ 86001-4499
USA
e-mail: bas@lowell.edu

References:
Hoffmeister, C. 1967, Astron. Nach., 290, 43
Monet, D., Canzian, B., and Henden, A. 1994, Bull. Amer. Astr. Soc., 26, 1314 (abstract); see also http://www.usno.navy.mil/pmm
Monet, D. et al. 1996, "USNO-A V1.0: A Catalogue of Astrometric Standards," Washington DC; see also http://www.usno.navy.mil/pmm
Parenago, P., and Kukarkin, B. W. 1940, Perem. Zvezdy, 5, 331
Popper. D. E. 1996, Astrophys. J., Suppl. Ser., 106, 133
Rosino, L. 1943, Publ. Obs. Bologna, 4, No. 4
Rosino, L. 1953, Publ. Obs. Bologna, 6, No. 3
Rosino, L., Bianchini, A., and Martino, D. 1976, Astron. Astrophys., Suppl. Ser., 24, 1
Scollick, K. 1997, http://skview.gsfc.nasa.gov/cgi-bin/v3.0/skyview_advanced.pl

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4442

Konkoly Observatory
Budapest
19 February 1997
HU ISSN 0374-0676

GSC 1657.1754: A NEW DEEPLY ECLIPSING BINARY SYSTEM IN DELPHINUS

[BAV Mitteilungen Nr. 95]

The 10.5 magnitude star GSC $1657.1754\left(21^{\mathrm{h}} 06^{\mathrm{m}} 26^{\mathrm{s}} .1+19^{\circ} 24 \prime 35\right.$ ") has recently been found to be variable on films taken over the last 7 years as part of the UK Nova/Supernova Patrol Programme. Details of the discovery and early observations are given by Collins et al. (1996). Initial reports of the variation were circulated electronically (Hurst 1996a) and the star has also been given the designation TAV J2106+194 (Hurst 1996b). On the survey films (Kodak Tech Pan 2415) the star was seen mostly at $m_{\mathrm{pv}} \sim 10.5$ but occasionally it faded below the limiting magnitude of ~ 11.8 suggesting an eclipsing binary with a period of near 10.35 days. Extensive visual observations confirmed the initial estimate of the period and further showed that the star faded below $m_{v} \sim 12.4$. The eclipse history of the star has also been followed on plates of the Sonneberg and Hartha Observatories' sky patrols taken over the past 35 years. The plates are blue sensitive ORWO ZU2 (Kodak 103a-O like) and the exposures were typically 30 mins . The variable is visible throughout the primary eclipse and yielded 15 times of minimum. These are collected with the other photographic and visual times of minimum in Table 1. A more complete discussion of these observations will be published elsewhere.

Figure 1. Light curve from the CCD observations with the model fit overlaid. The magnitude differences are relative to star D on the finding chart (Figure 4) GSC 1657.1766 , which is given as $10{ }^{\mathrm{m}} 6$ in V

Figure 2. Detail of primary minimum with the model fit superimposed

Figure 3. O-C diagram of the times of minima using the ephemeris given in the text. The photographic, photovisual, visual and CCD timings are plotted as filled circles, open circles, filled squares and an open square respectively

Since discovery GSC 1657.1754 has been observed extensively with a Starlight Xpress SX CCD and V filter on a $30-\mathrm{cm}$ Newtonian telescope. Exposure times were $15 \mathrm{sec}-$ onds and the limiting magnitude is typically 14 in V. The comparison star used was GSC 1657.1766 ($V \sim 10.6$, star D on the finding chart, Figure 4) and the check star used was GSC $1657.1804(\mathrm{~V} \sim 12.7)$. The mean ΔV between the comparison and check star is $2.031 \pm 0.065 \mathrm{mag}$ which is consistent with the GSC magnitudes. The CCD observations show that the star reaches $V \sim 13.5$, giving a primary eclipse of $\sim 3 \mathrm{mag}$, with a duration of just over one day. The secondary eclipse is not well defined but it probably has a depth of only $\sim 0.1 \mathrm{mag}$.

Table 1. Times of minima

JD	Cycle	O-C	Source	JD	Cycle	O-C	Source
2437191.404	-1270	0.1077	pg	2447719.486	-253	-0.1360	pv
2437543.399	-1236	0.1233	pg	2447802.316	-245	-0.1247	pv
2437874.470	-1204	-0.0805	pg	2448444.491	-183	0.2055	pv
2437988.323	-1193	-0.1032	pg	2448475.511	-180	0.1685	pg
2441166.492	-886	-0.1013	pg	2448506.352	-177	-0.0475	pv
2441601.341	-844	-0.0504	pg	2448537.320	-174	-0.1365	pg
2441839.490	-821	-0.0051	pg	2449593.483	-72	0.0882	pv
2441922.340	-813	0.0262	pg	2450245.485	-9	-0.1070	pv
2442657.357	-742	0.0273	pg	2450245.534	-9	-0.0580	pv
2442740.215	-734	0.0666	pg	2450266.457	-7	0.1603	vis.
2442740.244	-734	0.0956	pg	2450297.490	-4	0.1363	vis.
2442988.480	-710	-0.1244	pg	2450338.763	0	0.0000	CCD
2447388.410	-285	0.0628	pg				

Source: pg, Sonneberg/Hartha; pv, UK Nova/Supernova Patrol; vis., Visual
The times of minimum have been used to search for the period which can be determined unambiguously. The CCD observations around primary minimum have been used to derive E_{0} and the period has been determined from the visual and photographic times of minimum. The ephemeris

$$
\begin{array}{r}
\text { Min } I=\text { HJD } 2450338.7630+10.352336 \times E \\
\pm 18 \\
\pm 33
\end{array}
$$

is used to plot the light curves in Figures 1 and 2, and $\mathrm{O}-\mathrm{C}$ diagram in Figure 3.
Although the light curve is not complete the combination of very deep primary minimum and weak secondary minimum clearly suggest a high inclination Algol system. The light curve has been modelled using the Light2 code (Hill 1979, see also Hill et al. 1989) and it was initially assumed that the system contains a hot main-sequence star and a larger cool companion. The solution is largely independent of the initial conditions although the temperatures of the stars are poorly constrained and this produces large uncertainties in the absolute parameters of the system. The ratio of the temperatures of the components is ~ 3, with the secondary at $4500-5500 \mathrm{~K}$ while the primary is probably in the range $9000-15000$ K. The secondary may be filling its Roche lobe, for $q \sim 0.2$, and is only slightly smaller than the Roche radius for a wide range of mass ratios. The radius of the primary is only $\sim 25 \%$ smaller than that of the secondary. The inclination is $85-87$ degrees which is on the cusp of totality. It therefore seems most likely that the system contains a mid-B to mid-A type primary and a G - K subgiant secondary. If the primary is hot then the system may be similar to AU Mon or if it is somewhat cooler, VW Cyg. For all likely masses of the primary its radius is a factor of ~ 2 larger than would be expected for a main-sequence star, so this component would also seem to be evolved.

This new variable is a relatively rare example of a long-period Algol with very deep eclipses. As it is rather brighter than most of the stars in this group it should be a useful object for testing the evolutionary models of these systems and should repay further study.

It is a pleasure to acknowledge the management and staff of the Sonneberg Observatory for their help in accessing the Sky Patrol plates.

Figure 4. Finding chart for GSC 1657.1754 taken from Collins et al. (1996). The comparison is star D. South is up and the field is 40 arcmin square

C. LLOYD
Rutherford Appleton Laboratory
Chilton, Didcot
OXON OX11 0QX, UK
cl@ast.star.rl.ac.uk
N.D. JAMES
11 Tavistock Road
Chelmsford
Essex CM1 6JL, UK
ndj@astro1.demon.co.uk
T. BERTHOLD
Nr. 2
D 04703 Nauhain
Germany
Berthold.MTL@t-online.de

References:
Collins, M.J., James, N.D., Kirby, G.J, Lloyd, C., 1996, The Astronomer, 33, 183
Hill, G., 1979, Pub. DAO, 15, 297
Hill, G., Fisher, W.A., Holmgren, D., 1989, A\&A, 211, 81
Hurst, G.M., 1996a, (ed) TA e-circ 1090
Hurst, G.M., 1996b, (ed) TA e-circ 1131

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4443

Konkoly Observatory
Budapest
28 February 1997
HU ISSN 0374-0676

HD 193084: A NEW VARIABLE STAR

The detection of variability in HD 193084 ($\mathrm{V}=7.5$; CD $-30^{\circ} 17822$, SAO 189139) is reported. HD 193084 was used as one comparison star for the two λ Bootis stars HD 193256 and HD 193281 during our survey to detect pulsation within this group. Both λ Bootis stars and the second comparison star (HD 194170) turned out to be constant with an upper limit of 3 mmag in Strömgren b (Paunzen et al. 1996; Paunzen et al. 1997). Observations were performed at ESO during three nights (see Table 1 in Paunzen et al. 1997). A detailed description of the observation and reduction procedure can also be found in Paunzen et al. (1997).

Variability in the brightness of HD 193084 is clearly evident in all three nights. Figure 1 shows the differential light curves of HD 193084 and HD 193256 for the first night in Strömgren v. Furthermore, the data for HD 193256 - HD 194170 are presented to show the good photometric quality of the night and to establish the variability for HD 193084.

Using the data of all three nights, a time series analysis results in a period of about 80 minutes and an amplitude of 20 mmag in Strömgren v. The high statistical significance $(\approx 15 \sigma)$ compared to the mean noise level proves the found period. Since Figure 1 shows that a semi-regular (or multiperiodic) behaviour is evident, these results are just first numerical estimations.

In order to determine the nature of variability, a search for informations in SIMBAD was performed. Houk (1978) classified this star as B8 V with a quality flag 1 (best). Unfortunately, no photometric measurements in one of the common systems (Geneva, Johnson or Strömgren) were found making a calibration impossible. Following this spectral type, a possible δ Scuti pulsation can be excluded since the hot border of the instability strip ends at A0. Looking for other sources of variability among B-type stars, a possible membership in the β Cephei group (stars hotter than B4 with luminosity classes II to IV) and Be group (emission line stars with shells, periods \gg hours and amplitudes $\gg 0.1 \mathrm{mag}$, e.g. Pleione, γ Cas, S Dor, etc.) is very unlikely. One may speculate that HD 193084 is an unrecognized spectroscopic binary with a pulsating A-type component. Also a false classification by Houk (1978) cannot be ruled out.

In order to unambiguously establish the location of HD 193084 in the Hertzsprung-Russell-diagram and thus to determine the nature of variability, photometric and spectroscopic observations are very much needed. The author, therefore, encourages further observations as well as collaborations for solving the nature of HD 193084.

Acknowledgements: This research was carried out within the working group Asteroseis-mology- $A M S$ with funding from the Fonds zur Förderung der wissenschaftlichen Forschung (project S7303-AST). Use was made of the SIMBAD database, operated at CDS, Strasbourg, France.

Figure 1. The differential light curves for HD 193084 - HD 193256 and HD 193256 - HD 194170 for the first night in Strömgren v

E. PAUNZEN
Institut für Astronomie der
Universität Wien
Türkenschanzstr. 17
A-1180 Wien
e-mail: paunzen@astro.ast.univie.ac.at

References:

Houk, N., 1978, University of Michigan Catalogue of Two-Dimensional Spectral Types for the HD Stars, Volume III, Astronomy Dept., Univ. Mich., Ann Arbor, Michigan
Paunzen, E., Weiss, W.W., Kuschnig, R., 1996, IBVS, No. 4302
Paunzen, E., Kuschnig, R., Handler, G., Gelbmann, M., Weiss, W.W., 1997, A\&AS, in press

Number 4444

Konkoly Observatory
Budapest
28 February 1997
HU ISSN 0374-0676

DETECTION OF 43 NEW BRIGHT VARIABLE STARS BY THE TYCHO INSTRUMENT OF THE HIPPARCOS SATELLITE

The Tycho experiment on board of the Hipparcos satellite has led to a photometric catalogue that promises to improve our knowledge about variable stars greatly (Mauder, $\mathrm{H} \varnothing \mathrm{g}$, 1987). For about one million stars up to $\mathrm{B}=12$ (completeness up to 10.7 mag) the brightness in two spectral bands (Tycho-V and Tycho-B, similar to Johnson-V and Johnson-B) is given at 100 to 400 moments, which are spread over the four-year lifetime of the satellite (1989-1993).

This database has great advantages against archived photoplates that are usually used to search for new variable stars. On the one hand, the brightness is given in magnitudes, no further photometric reduction is necessary. On the other hand, the moments of observations are almost completely independent of seasons and daytimes. This is important for variables having a period of about one day or one year, what makes them hardly detectable by ground-based observations.

We have searched the Tycho Mean Photometric Catalogue (TPMC) and the Tycho Photometric Observations Catalogue (TPOC 2) for new variable stars using merely two criteria. The first one is that variability causes a scattering of the brightnesses at single observations with respect to their median value. Therefore, the error of this median will be larger than one would expect for a constant star, if the amplitude of the variability is strong enough (Grossmann, private communication). The other criterion does only affect periodic variables. Periodogram analysis (Horne, Baliunas 1985) has been done with the time series from the catalogue. The height of maxima in the periodogram yields a probability for a correct period determination (Scargle 1982), that is usually more than 99% for the stars presented here.

This analysis is strongly affected by the extremely uneven sampling. The smallest time interval between two single measurements is about one second, but there can be several months without any observation of the star. This leads to instabilities of maxima in the periodogram. We tried to overcome this problem by computing the periodogram over different time intervals, but this is only an improvement and not a complete solution. The measurement technique of Tycho causes another problem: The presence of field stars in the neighborhood of a program star and especially an unknown multiplicity of the star can simulate a variability that in fact does not exist. For these reasons we encourage astronomers to observe the stars that are presented here. This will lead to a better confidence for the variability and - especially - the period determinations.

The periodic lightcurves shown here were produced as follows: The data were phased with respect to the period taken from the periodogram and then binned into 20 equal parts of the period. The figures show to cycles. The reason for this binning is that single observations may be disturbed and can lead to wrong conclusions, if they are taken too seriously.

Figure 9. Phased lightcurve ($\mathrm{P}=5.252$) of the star HD 61551 in V . This may be an eclipsing binary of β Lyr type

Figure 21. Phased lightcurve ($\mathrm{P}=1222^{\mathrm{d}} 0$) of the star HD 114267 in V (triangles) and B (squares). Note the variability of the colour index $B-V$

Figure 38. Phased lightcurve ($\mathrm{P}=2^{d} 91$) of the star HD 213233 in V (triangles) and B (squares)

Table 1. Results on the 43 new variables

No.	TICID ${ }^{1}$	Cross Identification	RA 2000.0	Dec. 2000.0	Period [days]	Type
1	3303/979/1	HD 15992	$02^{\mathrm{h}} 31^{\mathrm{m}} 48.65$	$+49^{\circ} 51^{\prime} 38^{\prime \prime} 0$	0.40	RRc
2	9152/1800/1	HD 22909	033553.0	-6911352		L
3	2429/274/1	HD 43476	061802.7	+35 35515	28.4	
4	8535/222/1	HD 44363	061822.3	-5424156		L
5	3769/1982/1	HD 46101	063432.73	+5521105	62.9	SR
6	2426/414/1	HD 46552	063537.63	$+3234371$	0.53	EW
7	4539/864/1	HD 60062	074652.6	+8140568		
8	8551/1508/1	HD 60649	073246.24	-5333193	0.49	EW
9	5405/2897/1	HD 61551	073927.2	-1133509	5.52	EB
10	8911/2750/1	HD 65321	075429.4	-6112158	50.3	SR
11	2504/188/1	HD 84615	094720.12	$+3246575$		L
12	8606/502/1	HD 85025	094702	-57 21		L
13	8600/3290/1	HD 90371	102439.66	-5419191		L
14	9219/2587/1	HD 93325	104410.2	-7203 51	1.19	EB
15	8958/2448/1	HD 95687	110135.75	-6102554	2.91	
16	8628/1620/1	HD 98434	111843.92	-5811113	1.71	
17	8959/2596/1	HD 98817	112106	-60 50		L
18	8972/291/1	HD 101104	113734.4	-6054 124	2.05	
19	7240/1270/1	HD 106865	121729.58	-3430174	217	SR
20	881/680/1	HD 109983	123851.5	+1348135		L
21	5537/1087/1	HD 114267	130936.05	-0746505	122	SR
22	323/930/1	HD 125488	141937.8	+0553468	0.20	RRb
23	8682/2013/1	HD 125687	142252.1	-55 57 430	109	SR
24	3038/566/1	HD 126080	142217.6	+4127035	0.69	RRa
25	7851/500/1	HD 143996	160501.1	-3912578	12.5	
26	9039/2221/1	HD 152982	170036.6	-6124168		L
27	8354/1640/1	HD 158479	173210.4	-5104251		L
28	9297/1770/1	HD 160326	174622.4	-72 4918	349	SR
29	8344/931/1	HD 162985	175608.32	-4509208	0.78	EA
30	3913/1509/1	HD 172022	183426.3	+5748064		
31	1073/1391/1	HD 192689	201553.5	+0740130		L
32	6929/1233/1	HD 197785	204640.13	-2713599	11.1	EB
33	1656/2033/1	HD 200271	210153.2	+1859549		L
34	8818/1040/1	HD 204611	213200.6	-5848544		L
35	7990/374/1	HD 208016	215422.2	-411557 7	97.1	SR
36	8825/1029/1	HD 210741	221402.4	-5713063		L
37	8442/1011/1	HD 212508	222546.05	-49 49347	6.15	
38	3619/2726/1	HD 213233	222858.24	+5057474	2.91	δ Cep
39	9127/307/1	HD 223470	234958.0	-6108086	1.47	
40	2772/1716/1	HD 224326	235657.97	+32 20143	27.95	
41	2091/1465/1	HD 341508	180319.15	+2348530	5.89	δ Cep
42	6497/892/1	SAO 170690	054058.7	-2757073		L
43	8958/3540/1	CSI-60-11041 1	110609.0	-603121	0.33	RRb

1) The TICID is the "name" of a star in the Tycho Catalogue. The first number gives the GSC-region, the second one is a running number inside this region, and the last one numbers components of multiple systems.

Because the space is limited, not all of the 43 lightcurves can be presented here. They are available on the IBVS ftp site: ftp.konkoly.hu/pub/ibvs/4401/4444-f $<$ No. $>$.ps where No. is the serial number in Table 1.

Acknowledgements: I am thankful to Prof. Horst Mauder, Tübingen, for giving me the possibility to work with Tycho-data. Andreas Wicenec and Volkmar Grossmann helped me very much in doing my diploma thesis. This research has made use of the SIMBAD database, operated at CDS, France.

J. WOITAS
Max-Planck-Institut für Astronomie
D-69117 Heidelberg
Germany
e-mail: woitas@mpia-hd.mpg.de

References:

Horne, J., Baliunas, S., 1985, ApJ, 302, 757
Mauder, H., Høg, E., 1987, A\&A, 185, 349
Scargle, J., 1982, ApJ, 263, 835

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4445

Konkoly Observatory
Budapest
3 March 1997
HU ISSN 0374-0676

OBSERVATIONS OF THREE λ BOOTIS STARS BY USING DUAL CHANNEL PHOTOMETER

A small group of λ Boo stars attracts astrophysicists' attention owing to their controversial evolutionary status. These stars related apparently to a short-lived evolutionary phase are available for the development and control of the modern stellar atmosphere theories (Gray \& Corbally, 1993). The discovery of the λ Boo stars' pulsations (Weiss et al., 1994) gives the opportunity to apply the tools of asteroseismology for their profound investigation. Observations of the variability of λ Boo stars with different equipments are widely presented in IBVS by the Vienna working group Asteroseismology - AMS. It should be noted, that a high quality of sky seeing and instrumentation, and long time data series are needed for such observations because the stars with relatively long periods, from 0.5 up to 4 hours, have very low amplitudes, from 0.004 mag to 0.07 mag .

During 1994-1995 we have observed 3 stars from the list of Gray \& Corbally (1993) by using the dual-channel photometer (Dorokhov \& Dorokhova, 1994) attached to the 0.8 m Ritchey-Chretien telescope, situated in Central Asia, at the Mt. Dushak-Erekdag station of Odessa Astronomical Observatory.

HD 204041 was observed in Strömgren v-filter on two nights, 11 and 12 Oct., 1994, and HD 38545 (C1 HD 39098, C2 HD 39019) was observed in Johnson B-filter on 20 and 22 Nov., 1995 in single channel by using 3 -star mode (see Breger, 1992). Our observations confirm nonvariability of both stars within the upper limits which are higher by 0.001 mag than presented in the papers by Paunzen et al. (1996) and by Kuschnig et al. (1996).

Figure 1. On the top panel: light curves for HD 221756 and comparison star HD 221903 in Johnson's B, on the bottom panel: the VAR - COM curves for two nights 12 and 16 Nov 1995. All the curves are presented as residuals to the corresponding night-means. The solid line is a least squares fit of f_{1} and f_{2} frequencies

Figure 2. Fourier spectrum of both nights data. The middle panel shows the same after removal for $f_{1}=15.85 \mathrm{c} / \mathrm{d}$, the lower panel - the result of the prewhitening for $f_{1}=15.85 \mathrm{c} / \mathrm{d}$ and $f_{2}=27.54 \mathrm{c} / \mathrm{d}$

HD 221756 was tested by Paunzen \& Handler (1996) in August 1995. They obtained a period of 63 min and amplitude 6.6 mmag in Strömgren b. We observed HD 221756 and a comparison star HD 221903 ($\mathrm{m}=8.3 \mathrm{mag}, \mathrm{A} 0$) simultaneously in dual channel mode of the photometer on the nights $12 / 13$ and $16 / 17$ Nov 1995. The data were acquired as continuous 10 sec integrations in Johnson's B filter, interrupted by the channel reductions about one time per hour.

Then the counts of the comparison star in channel 2 were reduced to the sensitivity level of channel 1 , the data were corrected for coincidence counting losses, the sky background contribution and the atmospheric extinction, and were binned to 2 min integrations by taking 12-point averages. Figure 1 shows the light curves of HD 221756 and the comparison star, and the differential data as residuals to the nightly means for each date. In order to decrease the differential data noise level, comparison star's observations were smoothed by a rectangle filter with window size $=3$. The solid line in Figure 1 is a least squares fit of two frequencies, which were revealed from subsequently prewhitened amplitude Fourier spectrum of common series of data (Figure 2). The packaged program PERIOD (Breger, 1990) was used for Fourier analysis. Two peaks at frequencies $f_{1}=15.85 \mathrm{c} / \mathrm{d}(\mathrm{P}=1.51$ hour, $\mathrm{A}=0.011 \mathrm{mag})$ and $f_{2}=27.54 \mathrm{c} / \mathrm{d}(\mathrm{P}=52 \mathrm{~min}, \mathrm{~A}=0.006 \mathrm{mag})$ could be influenced by a $1 \mathrm{c} / \mathrm{d}$ aliasing. The result needs in further control because the variations of sky transparency may affect the such low-amplitude light curves even in the case of dualchannel photometry. Here we can only suppose that HD 221756, as well as already known HD 210111 (Paunzen et al., 1994) and 29 Cyg (Kusakin \& Mkrtichian, 1996) is another example of the multiperiodicity of λ Bootis stars like that taking place in δ Scuti stars.

T.N. DOROKHOVA
N.I. DOROKHOV
Astronomical Observatory
Odessa State University
Shevchenko Park, Odessa 270014
Ukraine

References:
Breger, M., 1990, Commun. Asteroseismology, 20, 1
Breger, M., 1992, Commun. Asteroseismology, 46, 1
Dorokhov, N.I., Dorokhova, T.N., 1994, Odessa Astronomical Publ., 7, 168
Gray, R.O., Corbally, C.J., 1993, AJ, 106, 632
Kusakin, A.V., Mkrtichian, D.E., 1996, IBVS, No. 4314
Kuschnig, R., Gelbmann, M, Paunzen, E., Weiss, W.W., 1996, IBVS, No. 4310
Paunzen, E., Handler, G., Weiss, W.W., North, P., 1994, IBVS, No. 4094
Paunzen, E., Handler, G., 1996, IBVS, No. 4301
Paunzen, E., Weiss, W.W., Kuschnig, R., 1996, IBVS, No. 4302
Weiss, W.W., Paunzen, E., Kuschnig, R., Schneider, H., 1994, A\& A, 281, 797

Konkoly Observatory
Budapest
3 March 1997
HU ISSN 0374-0676

VARIABLE STARS IN THE GLOBULAR CLUSTER NGC 6717

NGC 6717 (C1852-2246,l $=12088, b=-10.90$) according to its spectral class F8 (Hesser \& Shawl, 1985) is a relatively high metallicity but poorly studied cluster. Goranskii (1979) obtained an upper part of the CMD and detected one RR Lyrae variable near the cluster center. At present the only CCD photometric study of this cluster was made by Brocato et al. (1996). Our search for RR Lyrae variables was made on the base of these CCD observations by the method described in Kadla et al. (1996).

The cluster has a small apparent angular radius $r=1.9$ (Kukarkin, 1974) and a high central concentration. For this reason the CMD was obtained for stars with $13^{\prime \prime}<r<$ $120^{\prime \prime}$ (Figure 1). In the instability strip there are two stars: one is a known RR Lyr variable (V1) detected by Goranskii (1979) and the other is a suspected RR Lyr star. Their positions are shown in the cluster chart (Figure 2).

Figure 1. The color - magnitude diagram for the globular cluster NGC 6717. The known RR Lyrae star is denoted by o, suspected - •

Figure 2. Chart of the cluster. Variable stars are denoted by \bigcirc
We are grateful to the Russian Foundation for Basic Research for financial support.

A.N. GERASHCHENKO
 Z.I. KADLA
 YU.N. MALAKHOVA

Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo, 196140 Saint-Petersburg, Russia, e-mail: mal@pulkovo.spb.su

References:

Brocato E., Buonanno R., Malakhova Yu. \& Piersimoni A.M., 1996, A\&A 312,80
Goranskii V.P., 1979, Soviet Astronomy 23, 284
Hesser J.E.\& Shawl S.J., 1985, PASP, 97, 465
Kadla Z.I., Gerashchenko A.N. \& Malakhova Yu.N., 1997, IBVS 4413
Kukarkin B.V., 1974, The General Catalogue of Globular Clusters of our Galaxies. Publishing House Nauka, Moscow

Konkoly Observatory
Budapest
3 March 1997
HU ISSN 0374-0676

VARIABLE STARS IN THE GLOBULAR CLUSTER NGC 4372

The globular cluster NGC $4372\left(C 1223-724, l=301^{\circ} 0, b=-9.9\right)$ has a low concentration (CC XII) and relatively low metallicity. Estimates of the latter range from -1.66 (Bica \& Pastoriza, 1983) to -2.16 (Frogel et al., 1983). The integral spectral class, F5 (Hesser \& Shawl, 1985), favours the former value. The cluster has an apparent radius $r=9!3$ (Kukarkin, 1974) and tidal radius $r=31.6$ (Webbink, 1985).

In the first two editions of Catalogue of Variable Stars in Globular Clusters (Sawyer, 1939, 1955) with reference to a communication from H. Shapley there are 3 unpublished and 11 suspected variables in the cluster. However no data are given for these stars. In a search for variables (Fourcade et al., 1966) two (type unknown) were discovered at a considerable distance from the cluster center ($r>11^{\prime}$). A further search (Kaluzny \& Krzeminski, 1993) detected 19 short-period SX Phe type variables and close binaries. In the present study the search for RR Lyr type variables was made in the area $r<4.5$ using the same V and B observations (Brocato et al., 1996) in four overlapping fields with 3-6 consecutive exposures and applying the same method of search for variable stars as in our previous papers (Kadla et al., 1996a,b).

Figure 1. The color - magnitude diagram for the globular cluster NGC 4372. The suspected RR Lyrae stars are denoted by o

Figure 2. Chart of the western part of the cluster. Variable stars are denoted by \bigcirc

Table 1. Positions and photometric data for suspected variables stars

N	X (arcsec)	Y (arcsec)	V	$\mathrm{~B}-\mathrm{V}$
1	-76.06	33.38	16.13	0.66
2	-20.97	-46.72	15.77	0.62
3	-7.17	-98.01	15.87	0.59
4	-6.15	268.59	15.69	0.63

A comparison of the CMDs for the four fields revealed that the absorption in the southern part of the investigated area is less than in the northern part, $\mathrm{E}(\mathrm{B}-\mathrm{V})=0.1$. The resulting CMD corrected for differential absorption is shown in Figure 1. Data for the four stars in the instability strip, which are suspected RR Lyr variables, are given in Table 1. Their positions are determined using as a reference frame the coordinate system given in the paper by Kaluzny \& Krzeminski (1993) and are shown in the finding chart (Figure 2). V and $B-V$ values for V 4 are corrected for differential absorption. The short duration of the observations, less than 35 min in each color for each field, did not permit the confirmation of the variability of these stars.

We are grateful to the Russian Foundation for Basic Research for financial support.

A.N. GERASHCHENKO
Z.I. KADLA
Yu.N. MALAKHOVA
Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo, 196140 Saint-Petersburg, Russia
e-mail: mal@pulkovo.spb.su

References:

Bica, C.L.D. \& Pastoriza, M.G., 1983, ApSS, 91, 99
Brocato, E., Buonanno, R., Malakhova, Yu. \& Piersimoni, A.M., 1996, AधA, 312, 80
Fourcade, C.R., Laborde, J.R., \& Albarraem, J., 1966, Atlas y Catalogo de estrellas variables en cumulos globulares al sur de 29°, Cordoba
Frogel, J.A., Cohen, J.G. \& Persson, S.E., 1983, ApJ, 275, 773
Hesser, J.E.\& Shawl, S.J., 1985, PASP, 97, 465
Kadla, Z.I., Gerashchenko, A.N. \& Malakhova, Yu.N., 1996a, IBVS, No. 4413
Kadla, Z.I., Gerashchenko, A.N. \& Malakhova, Yu.N., 1996b, IBVS, No. 4414
Kaluzny, J., \& Krzeminski, W., 1993, MNRAS, 264, 785
Kukarkin, B.V., 1974, The General Catalogue of Globular Clusters of our Galaxies. Publishing House Nauka, Moscow
Sawyer, H., 1939, Publ. David Dunlap Obs., 1, No. 4, 127
Sawyer, H., 1955, Publ. David Dunlap Obs., 2, No. 2, 35
Webbink, R.F., 1985, IAU Symposium No. 113, 541, eds by J. Goodman \& P. Hut, Reidel, Dordrecht

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4448

Konkoly Observatory
Budapest
4 March 1997
HU ISSN 0374-0676

IDENTIFICATION OF DAHLMARK VARIABLES: I

The amateur observer Lennart Dahlmark has published a useful series of IBVS notes listing a number of candidate variable stars, most of which were new. Although adequate charts and reliable semi-accurate positions were supplied, no other identifications were usually given. If the stars are to be recovered for further study and linkage within other surveys (IRAS, etc.), then precise positions must be determined to make identification unambiguous within crowded galactic fields.

Table 1 gives precise positions and identifications for the first list of variables published by Dahlmark (1982). The variable stars were identified independently by the two authors. Skiff compared Dahlmark's charts against the Digitized Sky Survey (DSS) using the Goddard SkyView facility (Scollick, 1995). The identifications were found within SIMBAD (for the GSC) and in the U.S. Naval Observatory's UJ1.0 and A0.9 star catalogues (Monet et al., 1994; Monet et al., 1996). Williams compared Dahlmark's charts against the DSS, maintained as a service at the Center for Astrophysics by the Computation Facility. Positions are taken either from the GSC or (preferably) from the USNO A1.0 (UA 1.0) catalogue. For those objects not found in these catalogues, positions were measured from the DSS, using 12-40 comparison stars from the UA 1.0 catalogue; the r.m.s. residuals of the comparison stars were under 0 " 3 .

Table 1. Dahlmark Variables LD 8 - LD 65

| Name | RA | | (2000) | Dec | s | IRAS | GSC | n |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Other ids.

Table 1: Dahlmark Variables LD 8 - LD 65 (cont.)

Name	RA (2000	00) Dec	s	IRAS	GSC	n	Other ids.
LD 24	203406.09	+492154.4	U	$20325+4911$			
LD 25	203553.57	+42 5826.1	G		3161-00327		
LD 26	203657.08	+375233.8	U	$20350+3741$			V1828 Cyg
LD 27	203959.55	+49 5749.0	U				
LD 28	204224.57	+42 1805.2	U			*	
LD 29	204754.43	+454127.0	D		3574-00339		
LD 30	204813.95	+4633 28.3	U				
LD 31	205004.98	+3729 59.6	U	$20481+3718$			V1864 Cyg
LD 32	205227.87	+4624 51.7	G		3575-04390		
LD 33	205508.00	+38 3743.7	U				
LD 34	205753.62	+42 4554.7	G		3175-00313		V1891 Cyg
LD 35	210038.17	+38 3832.2	D	$20586+3826$	3168-00004		
LD 36	210304.03	+374830.0	G	$21011+3736$	3168-00351		V1800 Cyg
LD 37	210417.08	+375106.6	G	$21023+3739$	3168-00575	*	
LD 38	210633.13	+373251.0	U		3168-00583	*	
LD 39	210729.80	+371044.7	G		2713-00439	*	V1804 Cyg
LD 40	210739.51	+40 4001.6	G		3172-01009		
LD 41	210810.43	+372816.4	U				
LD 42	210944.00	+374933.4	G		3168-02663		
LD 43	211446.21	+44 1745.0	G	$21128+4404$	3181-03797		V1554 Cyg
LD 44	211506.92	+44 4216.7	D	$21132+4429$	3181-01373		EM* CGHA 73
LD 45	211717.59	+50 4510.4	U	$21156+5032$	3601-00623		
LD 46	211850.64	+39 5413.2	U				
LD 47	211941.11	+50 4042.3	U				
LD 48	211945.03	+49 4159.0	G	$21180+4929$	3597-01643		EM* VES 391
LD 49	212100.26	+38 1350.9	G		3182-00035		V1903 Cyg
LD 50	212341.39	+48 1115.9	D	$21219+4758$	3594-00490		
LD 51	212729.74	+39 1711.0	U				
LD 52	212844.83	+38 0013.8	D		3182-04181	*	V1724 Cyg
LD 53	213045.44	+43 3158.4	G	$21288+4318$	3195-01178		V1566 Cyg
LD 54	213049.90	+43 3015.3	D		3195-01686	*	
LD 55	213115.00	+38 4632.1	U	$21292+3833$			
LD 56	213128.58	+40 5830.9	U	$21294+4045$		*	V1614 Cyg
LD 57	213231.98	+385754.8	G		3183-01551		V1910 Cyg
LD 58	213250.27	+39 2208.2	U	$21308+3908$			
LD 59	213321.47	+38 0245.6	U			*	V1615 Cyg
LD 60	213621.64	+38 2323.6	G		3183-01717		
LD 61	213831.79	+454246.7	U	$21366+4529$			V1568 Cyg
LD 62	213940.62	+43 1820.4	U	$21377+4304$			
LD 63	214236.55	+445636.1	G	$21406+4442$	3196-02133		V1571 Cyg
LD 64	214319.47	+50 3914.3	U	$21415+5025$			V1734 Cyg
LD 65	214333.64	+49 0858.3	G	$21417+4855$	3599-02290		CGCS 5431

Notes:

LD 10	Not visible on POSS-I O print, and $\mathrm{R} \sim 17$ on E print. GSC plate taken when $\mathrm{V} \sim 15$, blended with companion star to N with position end-figures $47^{s} 84 / 49^{\prime \prime} 9$ (D).
LD 13	SE of two stars.
LD 14	Not IRAS 20021+4733.
LD 28	The brighter of two stars on DSS.
LD 37	Spectral type M5/7 (Dolidze 1975).
LD 38	Spectral type M5/7 (Dolidze 1975).
LD 39	Spectral type M7 (Dolidze 1975).
LD 52	ID verified against chart in Bychkov (1977b); SW star of two.
LD 54	Very close pair blended in GSC. Position given is for brighter (on DSS) NW component. SE component has end figures $50 .{ }^{\varsigma} 10 / 14^{\prime \prime} 1$ (D).
LD 56	ID verified against chart in Bartunov (1977).
LD 59	ID verified against chart in Bychkov (1977a).

The table lists the 'LD' name followed by the J2000 position and its source, coded in the table and notes as follows: $\mathrm{U}=\mathrm{UA} 1.0 ; \mathrm{G}=\mathrm{GSC} 1.1 ; \mathrm{D}=$ measurement from DSS using UA 1.0 comparison stars. The next two columns give IRAS point-source and GSC designations. An asterisk in the next column indicates a note at the bottom of the table. The final column contains GCVS designations and other names from SIMBAD.

The authors thank the following for their indispensable assistance in completing this work: SIMBAD, maintained by the Centre de Données Astronomique, Strasbourg, France; and SkyView, maintained by Keith Scollick at Goddard Space Flight Center.

Brian A. SKIFF
Lowell Observatory
1400 West Mars Hill Road
Flagstaff AZ 86001-4499
U.S.A.
e-mail: bas@lowell.edu

Gareth V. WILLIAMS
Harvard-Smithsonian Center
for Astrophysics
60 Garden Street
Cambridge MA 02138-1516
U.S.A
e-mail: gwilliams@cfa.harvard.edu

References:

Bartunov, O.S., 1977, Astron. Tsirk., 943, 7
Bychkov, S.M., 1977a, Astron. Tsirk., 940, 7
Bychkov, S.M., 1977b, Astron. Tsirk., 959, 7
Dahlmark, L., 1982, IBVS, No. 2157
Dolidze, M.V., 1975, Byull. Abastuman. Astrofiz. Obs., 47, 171
Monet, D., Canzian, B., and Henden, A., 1994, Bull. Amer. Astr. Soc., 26, 1314 (abstract); see also http://www.usno.navy.mil/pmm
Monet, D.G., et al. 1996, "USNO-A V1.0," U. S. Naval Observatory, Washington DC; see also http://www.usno.navy.mil/pmm
Scollick, K., 1995, http://skview.gsfc.nasa.gov/cgi-bin/v3.0/skyview_advanced.pl

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4449
Konkoly Observatory
Budapest
4 March 1997
HU ISSN $0374-0676$

IDENTIFICATION OF DAHLMARK VARIABLES: II

This note is a continuation of a series (Skiff \& Williams, 1997) listing accurate coordinates and identifications for variable stars discovered by the amateur observer Lennart Dahlmark. This work is intended to assist in the recovery of these variable stars for further study and linkage within other surveys.

The methods used by the authors in their independent identification of the variable stars are described in the first note of this series (Skiff \& Williams 1997). Table 1 gives precise positions and identifications for the second list of variables published by Dahlmark (1986). The table lists the 'LD' name followed by the J2000 position and its source, coded in the table and notes as follows: $\mathrm{U}=\mathrm{UA} 1.0 ; \mathrm{G}=\mathrm{GSC} 1.1 ; \mathrm{D}=$ measurement from DSS using UA 1.0 comparison stars. The next two columns give IRAS point-source and GSC designations. An asterisk in the next column indicates a note at the bottom of the table. The final column contains GCVS designations and other names from SIMBAD.

Table 1. Dahlmark Variables LD 66 - LD 105

Name	RA (2000	(2000) Dec	s	IRAS	GSC	n	Other ids.
LD 66	235057.57	7 +64 5539.3	U			*	
LD 67	235910.99	+62 0348.0	D			*	
LD 68	000213.22	$22+645423.8$	U			*	V485 Cas
LD 69	000210.32	22 +58 0550.3	G		3660-00090		
LD 70	000326.01	+670830.6	U				
LD 71	000341.97	7 +59 4413.0	U				CGCS 5984
LD 72	000407.08	+60 4852.1	G	$00015+6032$	4014-02654		
LD 73	000420.94	4 +65 1951.1	U				
LD 74	000705.59	$9+614855.2$	G	$00044+6132$	4014-00314	*	V658 Cas
LD 75	000725.36	$36+632057.2$	G		4018-02473		
LD 76	000734.75	$75+644321.8$	D	$00049+6426$			CGCS 8
LD 77	000817.81	+52 4557.1	U	$00056+5229$			
LD 78	001113.59	9 +64 1931.6	U	$00085+6402$			
LD 79	001636.46	$6+660110.6$	G	$00138+6544$	4026-00479		
LD 80	001654.52	2 +58 1900.0	D			*	
LD 81	001756.32	$32+590915.1$	U	$00152+5852$		*	V659 Cas
LD 82	001959.34	$34+563538.5$	U				
LD 83	002729.08	+59 1947.7	G	00247+5903	3666-00491		
LD 84	003426.50	0 +64 3252.3	G	$00315+6416$	4024-01176	*	V660 Cas
LD 85	003514.57	+ +525331.5	D	$00324+5236$			
LD 86	003541.13	$3+640907.7$	G	$00327+6352$	4024-01962		
LD 87	004947.18	$8+662712.5$	U				
LD 88	005104.15	$5+583626.0$	G	$00481+5820$	3667-01264		

Table 1 (cont.)

Name	RA (2000)		Dec	s	IRAS	GSC	n	Other ids.
LD 89	005325.23	+650156.4	D	$00503+6445$	$4025-00239$	$*$		
LD 90	005633.06	+593944.4	D	$00535+5923$			CGCS 142	
LD 91	005649.11	+671514.2	G		$4029-00984$			
LD 92	005718.55	+672028.7	G	$00540+6704$	$4029-00904$			
LD 93	0059	09.15	+634850.1	G	$00560+6332$	$4025-01404$	$*$	CGCS 149
LD 94	005924.12	+604420.6	G	$00563+6028$	$4017-01463$	$*$		
LD 95	011405.50	+562039.8	G	$01110+5604$	$3677-01412$	$*$		
LD 96	011453.61	+633644.1	G	$01116+6320$	$4034-00172$			
LD 97	011856.39	+532744.4	U	$01158+5312$				
LD 98	012018.17	+642807.0	D	$01169+6412$	$4038-01343$	$*$		
LD 99	013404.31	+621147.3	U					
LD 100	014316.73	+595951.6	G		$3683-00393$			
LD 101	015632.54	+595629.9	D	$01530+5941$		$*$		
LD 102	020057.12	+583658.2	G	$01574+5822$	$3697-02306$	$*$		
LD 103	020128.16	+581814.2	G	$01580+5803$	$3697-00241$		V666 Cas	
LD 104	02	0246.54	+630211.7	G		$4037-01998$		
LD 105	023027.53	+623145.8	G	$02266+6218$	$4050-00898$		V647 Cas	

Notes:
LD 66 Published declination in error by -4°. Corrected following correspondence with Dahlmark.
LD 67 Close pair. Position given is for the brighter (on the DSS) component. Other component has end-figures $10.82 / 44^{\prime \prime} 2$.
LD 68 Spectral type M6: (Dolidze 1975).
LD 74 Spectral type M5/7 (Dolidze 1975).
LD 80 Close pair. Position given is for NE component. SW component (GSC 3665-01942) has end-figures $53.76 / 18^{\prime} 49^{\prime \prime} 2$ (D).
LD 81 Spectral type M5/7 (Dolidze 1975).
LD 84 Spectral type M3/5SC (Dolidze 1975).
LD 89 Pair blended in GSC. Position given is for the brighter (on the DSS) component.
Other component has end-figures 24.48/02 $01^{\prime \prime} 00$ (D).
LD 94 Not AV Cas: cf. remarks by Stephenson (1992).
LD 95 Not a blue star, as indicated by LD color.
LD 98 Pair blended in GSC. Position given is for the brighter (on the DSS) component.
Other component has end-figures 18.68/27' $59 .!9$ (D).
LD 101 Very close pair. Position given is S component. Other component has end-figures $32.57 / 32$!.9 (D).
LD 102 Spectral type M7 (Rust 1938).
The authors thank the following for their indispensable assistance in completing this work: SIMBAD, maintained by the Centre de Données Astronomique, Strasbourg, France; and SkyView, maintained by Keith Scollick at Goddard Space Flight Center.

```
Gareth V. WILLIAMS
Harvard-Smithsonian Center
for Astrophysics
6 0 \text { Garden Street}
Cambridge MA 02138-1516
U.S.A
e-mail: gwilliams@cfa.harvard.edu
e-mail: gwilliams@cfa.harvard.edu
```

Brian A. SKIFF
Lowell Observatory
1400 West Mars Hill Road
Flagstaff AZ 86001-4499
U.S.A.
e-mail: bas@lowell.edu

References:
Dahlmark, L., 1986, IBVS, No. 2878
Dolidze, M.V., 1975, Byull. Abastuman. Astrofiz. Obs., 47, 171
Rust, C.F., 1938, Astrophys. J., 88, 525
Skiff, B.A., and Williams, G.V., 1997, IBVS No. 4448
Stephenson, C.B., 1992, IBVS No. 3800

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4450

Konkoly Observatory
Budapest
4 March 1997
HU ISSN 0374-0676

IDENTIFICATION OF DAHLMARK VARIABLES: III

This note is a continuation of a series (Skiff \& Williams, 1997a; Williams \& Skiff, 1997) listing accurate coordinates and identifications for variable stars discovered by the amateur observer Lennart Dahlmark. This work is intended to assist in the recovery of these variable stars for further study and linkage within other surveys.

The methods used by the authors in their independent identification of the variable stars are described in the first note of this series (Skiff \& Williams, 1997a). Table 1 gives precise positions and identifications for the third list of variables published by Dahlmark (1993, 1994). The table lists the 'LD' name followed by the J2000 position and its source, coded in the table and notes as follows: $\mathrm{U}=\mathrm{UA} 1.0 ; \mathrm{G}=\mathrm{GSC} 1.1 ; \mathrm{D}=$ measurement from DSS using UA 1.0 comparison stars. The next two columns give IRAS point-source and GSC designations. An asterisk in the next column indicates a note at the bottom of the table. The final column contains GCVS designations and other names from SIMBAD.

Table 1: Dahlmark Variables LD 106 - LD 185

Name	RA (200	2000) Dec	s	IRAS	GSC	n	Other ids.
LD 106	190312.86	6 +33 5812.2	U	$19013+3353$			V494 Lyr
LD 107	190618.09	+2534 20.6	U	$19042+2529$			V337 Vul
LD 108	190717.23	+31 4254.5	G	$19054+3138$	2640-02384		V495 Lyr
LD 109	190727.11	$1+354635.3$	U				V496 Lyr
LD 110	190749.12	$2+362309.1$	G		2652-01471		V497 Lyr
LD 111	190902.86	+32 5322.5	G	$19071+3248$	2644-01985		V498 Lyr
LD 112	191013.67	7 +23 2039.1	D	$19081+2315$	2123-01515		V338 Vul
LD 113	191113.16	6 +24 4409.9	U				V339 Vul
LD 114	191242.67	7 +23 1126.0	G	$19105+2306$	2123-01937		V340 Vul
LD 115	191319.64	+265903.4	U				V500 Lyr
LD 116	191437.54	+370116.7	U	$19128+3655$			V501 Lyr
LD 117	192200.87	7 +23 0625.1	U	$19199+2300$			V342 Vul
LD 118	192201.94	+26 2222.4	G	$19199+2616$	2132-02539		V343 Vul
LD 119	192241.15	$5+255837.7$	U				V344 Vul
LD 120	192314.14	$4+242740.1$	G	$19211+2421$	2128-00676		V335 Vul
LD 121	192348.69	+ 962721.2	U	$19217+2621$			V345 Vul
LD 122	192422.65	+ +321908.2	D	$19224+3213$			V503 Lyr
LD 123	192555.76	$6+263823.8$	U	$19238+2632$			V346 Vul
LD 124	192601.95	+350308.0	U	$19241+3457$			V504 Lyr
LD 125	192706.35	$5+352344.1$	G		2662-02213		V1985 Cyg
LD 126	192745.90	+ +244234.5	U				V347 Vul
LD 127	193014.60	0 +28 0940.3	U	$19282+2803$			V1986 Cyg

Table 1 (cont.)

Name	RA (2000	00) Dec	s	IRAS	GSC	n	Other ids.
LD 128	193110.48	+23 3033.9	G	$19290+2324$	2125-00932	*	V349 Vul
LD 129	193142.89	+285039.5	U				V1987 Cyg
LD 130	193550.75	+341610.2	U				V1988 Cyg
LD 131	193920.48	+23 4420.2	U	$19372+2337$			V350 Vul
LD 132	194020.16	+23 3258.2	D	$19382+2325$			V351 Vul
LD 133	194102.38	+24 5235.0	G	$19389+2445$	2143-01826		V352 Vul
LD 134	194209.89	+3013 52.8	U				V1989 Cyg
LD 135	194333.47	+342923.9	G	$19416+3422$	2664-00331	*	V1990 Cyg
LD 136	194351.80	+32 2928.8	D	$19419+3222$		*	V1991 Cyg
LD 137	194625.04	+3140 08.1	U	$19444+3132$			V1992 Cyg
LD 138	194647.37	+28 0833.4	G	$19447+2801$	2151-05679		AI Vul
LD 139	194719.87	+354618.9	U				V1993 Cyg
LD 140	194922.13	+22 3740.8	U	$19472+2230$			V353 Vul
LD 141	194913.18	+293136.6	D	$19472+2923$	2152-00824	*	V1995 Cyg
LD 142	194948.70	+354914.4	U	$19479+3541$			V1000 Cyg
LD 143	195010.47	+22 3217.0	U	$19479+2224$			V354 Vul
LD 144	195011.22	+26 2651.9	U				
LD 145	195115.10	+261056.6	U				V355 Vul
LD 146	195128.78	+32 4744.4	U	$19495+3239$			V1997 Cyg
LD 147	195201.82	+2709 44.9	U	$19499+2701$			V356 Vul
LD 148	195357.19	+23 0824.5	U				V357 Vul
LD 149	195512.42	+223106.6	D	$19530+2223$	2140-02164	*	V358 Vul
LD 150	195557.13	+22 2100.1	D	$19537+2212$			V359 Vul
LD 151	195628.25	+231613.4	U	$19543+2308$			V360 Vul
LD 152	195801.52	+315438.4	D	$19560+3146$			V2001 Cyg
LD 153	195813.89	+29 4130.1	U	$19562+2933$			V2002 Cyg
LD 154	195906.57	+31 1331.7	G		2670-02068		V2003 Cyg
LD 155	200229.72	+295140.8	D	$20004+2943$			V2004 Cyg
LD 156	200310.58	+31 2417.6	D		2670-02272		V2005 Cyg
LD 157	200324.02	+29 5453.4	G	$20013+2946$	2153-00130		V2006 Cyg
LD 158	200620.26	+25 2726.2	U				V363 Vul
LD 159	200615.45	+35 1724.6	D	$20043+3508$		*	V2007 Cyg
LD 160	200638.33	+33 5807.6	U	$20047+3349$			V2009 Cyg
LD 161	200826.67	+25 3550.5	U	$20063+2527$			V364 Vul
LD 162	200944.16	+315849.2	U				V2010 Cyg
LD 163	201001.08	+25 3759.7	U	$20079+2529$			V365 Vul
LD 164	201100.24	+22 5143.1	U			*	HX Vul
LD 165	201237.94	+243647.8	G	$20104+2427$	2158-01697		V366 Vul
LD 166	201540.50	+25 2638.4	U	$20135+2517$			V367 Vul
LD 167	201605.74	+24 1338.6	U	$20139+2404$			V368 Vul
LD 168	202131.29	+30 2448.1	U	$20194+3015$			V2013 Cyg
LD 169	202134.58	+29 1446.8	U	$20195+2905$			V372 Vul
LD 170	202209.93	+22 2259.4	U				V373 Vul

Table 1 (cont.)

Name	RA (2000)	00) Dec	s	IRAS	GSC	n	Other ids.
LD 171	202608.76	+28 0939.2	U	$20240+2759$			V374 Vul
LD 172	202728.33	+241721.7	D	$20253+2407$			V375 Vul
LD 173	191746.37	+34 2601.2	U				V502 Lyr
LD 174	192145.16	+24 4317.9	U	$19196+2437$			V341 Vul
LD 175	193015.02	+241010.6	U				V348 Vul
LD 176	194832.50	+320603.6	U				V1994 Cyg
LD 177	195045.14	+29 2910.1	D	$19487+2921$	2152-00122	*	V1996 Cyg
LD 178	195221.95	+305015.3	D	$19503+3042$			V1998 Cyg
LD 179	195423.40	+34 0451.3	U	$19524+3356$			V1999 Cyg
LD 180	195608.54	+35 3040.6	U	$19542+3522$			V1460 Cyg
LD 181	195729.26	+30 4313.4	D	$19554+3035$			V2000 Cyg
LD 182	195802.99	+22 4929.9	U	$19558+2241$			V361 Vul
LD 183	195814.84	+354322.0	G		2682-01684		V1464 Cyg
LD 184	201822.86	+26 3915.6	D	$20162+2629$		*	V369 Vul
LD 185	201838.03	+28 3528.1	U				V370 Vul

Notes:
LD 128 IRC +20412 .
LD 135 CGCS 4443.
LD 136 CGCS 4445.
LD 141 CGCS 4500. Not EM ${ }^{*}$ VES 61. Close trio blended in GSC. Other components have end-figures $122^{\mathrm{s}} 89 / 33^{\prime \prime} 1$ (D) and $12^{\mathrm{s}} 90 / 29^{\prime \prime} 7$ (D).
LD 149 Pair. GSC entry flagged as 'nonstellar'. N component has end-figures 12s23/13" 8 (U).
LD 150 CGCS 4561. Pair. N component has end figures $57.13 / 06^{\circ} .5$ (D).
LD 159 CGCS 4670.
LD 164 Identity confirmed by comparison with finder chart on MVS 286.
LD 177 Pair blended in GSC. N component has end-figures $45.03 / 15.6$ (D).
LD 184 Pair. E component has end-figures 23s08/17!! (D).
The authors thank the following for their indispensable assistance in completing this work: SIMBAD, maintained by the Centre de Données Astronomique, Strasbourg, France; and SkyView, maintained by Keith Scollick at Goddard Space Flight Center.

Brian A. SKIFF
Lowell Observatory
1400 West Mars Hill Road
Flagstaff AZ 86001-4499
U.S.A.
e-mail: bas@lowell.edu

Gareth V. WILLIAMS
Harvard-Smithsonian Center
for Astrophysics
60 Garden Street
Cambridge MA 02138-1516
U.S.A
e-mail: gwilliams@cfa.harvard.edu

References:

Dahlmark, L., 1993, IB VS, No. 3855
Dahlmark, L., 1994, J. AAVSO, 21, 34
Skiff, B.A., and Williams, G.V., 1997, IBVS, No. 4448
Williams, G.V., and Skiff, B.A., 1997, IBVS, No. 4449

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4451
Konkoly Observatory
Budapest
4 March 1997
HU ISSN $0374-0676$

IDENTIFICATION OF DAHLMARK VARIABLES: IV

This note is a continuation of a series (Skiff \& Williams 1997a, 1997b; Williams \& Skiff, 1997) listing accurate coordinates and identifications for variable stars discovered by the amateur observer Lennart Dahlmark. This work is intended to assist in the recovery of these variable stars for further study and linkage within other surveys.

The methods used by the authors in their independent identification of the variable stars are described in the first note of this series (Skiff \& Williams, 1997a). Table 1 gives precise positions and identifications for the fourth list of variables published by Dahlmark (1994, 1996). The table lists the 'LD' name followed by the J2000 position and its source, coded in the table and notes as follows: $\mathrm{U}=\mathrm{UA} 1.0 ; \mathrm{G}=\mathrm{GSC} 1.1 ; \mathrm{D}=$ measurement from DSS using UA 1.0 comparison stars. The next two columns give IRAS point-source and GSC designations. An asterisk in the next column indicates a note at the bottom of the table. The final column contains GCVS designations and other names from SIMBAD.

Table 1. Dahlmark Variables LD 186 - LD 220

Table 1 (cont.)

Name	RA (2000)	0) Dec	s	IRAS	GSC	n	Other ids.
LD 209	224620.97	+52 1434.6	G		3633-02601	*	
LD 210	224935.45	+52 1811.0	G	$22474+5202$	3633-02259		
LD 211	225015.93	+53 2417.0	U	$22481+5308$			
LD 212	225906.46	+49 0758.2	D				
LD 213	230106.42	+375045.3	G		3216-01210		
LD 214	230202.40	+39 5950.8	G	$22597+3943$	3220-02872		
LD 215	230224.03	+414336.9	G		3224-01028	*	
LD 216	230624.50	+38 1534.4	D	$23040+3759$	3216-02107	*	
LD 217	231625.96	+38 4347.1	U	$23140+3827$			
LD 218	232541.71	+454203.9	U	$23233+4525$			
LD 219	233101.32	+50 0317.6	U	$23286+4946$			
LD 220	233407.64	+4620 02.9	U	$23317+4603$		*	NSV 14621

Notes:
LD 193 NE component of very close pair blended in GSC. SE component has end-figures $35.16 / 28^{\prime \prime} 3$ (D).
LD 201 NE component of pair. SW component has end-figures $40.73 / 12^{\prime \prime} 0$ (D).
LD 207 Spectral type M7 (Dolidze 1975)
LD 209 Not FK Lac, see Williams (1996).
LD 215 Faint on POSS-I red print ($\mathrm{R} \sim 16-17$), bright in GSC.
LD 216 SW component of pair blended in GSC. NE component has end-figures $24.87 / 37^{\prime \prime} 7(\mathrm{D})$.
LD $220 \quad \mathrm{SV}^{*} \mathrm{R} 101$.
The authors thank the following for their indispensable assistance in completing this work: SIMBAD, maintained by the Centre de Données Astronomique, Strasbourg, France; and SkyView, maintained by Keith Scollick at Goddard Space Flight Center.

Gareth V. WILLIAMS
Harvard-Smithsonian Center
for Astrophysics
60 Garden Street
Cambridge MA 02138-1516
U.S.A
e-mail: gwilliams@cfa.harvard.edu

Brian A. SKIFF

Lowell Observatory
1400 West Mars Hill Road
Flagstaff AZ 86001-4499
U.S.A.
e-mail: bas@lowell.edu

References:
Dahlmark, L., 1994, J. AAVSO, 21, 34
Dahlmark, L., 1996, IBVS, No. 4329
Dolidze, M.V., 1975, Byull. Abastuman. Astrofiz. Obs., 47, 171.
Skiff, B.A., and Williams, G.V., 1997a, IBVS, No. 4448
Skiff, B.A., and Williams, G.V., 1997b, IBVS, No. 4450
Williams, G.V., 1996, IBVS, No. 4354
Williams, G.V., and Skiff, B.A., 1997, IBVS, No. 4449

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4452

Konkoly Observatory
Budapest
4 March 1997
HU ISSN 0374-0676

CCD PHOTOMETRY OF ECLIPSING BINARY AL OPHIUCHI

The eclipsing binary AL Ophiuchi ($=$ GSC 0999.155; $\alpha(2000)=17^{\mathrm{h}} 26^{\mathrm{m}} 45^{\mathrm{s}} .4, \delta(2000)$ $=+12^{\circ} 57^{\prime} 56^{\prime \prime}$) is a neglected, rather faint binary near α Oph. Its V magnitude given in the Guide Star Catalogue is $13{ }^{m} 05$. Unfortunately, this variable has not been studied photometrically for more than 20 years and the light elements of this system are not given in the GCVS.

Variability of this star with amplitude $14.1-15.0 \mathrm{mag}$ was discovered photographically by Reinmuth (1926) in Heidelberg. The spectral type of AL Oph was measured by Bond and Tifft (1974) during their spectroscopic survey of some high-latitude blue variables. They found a spectrum of G5. Meinunger (1981) concluded that AL Oph belongs to the W UMa type and the amplitude is too small for the period determination from the older photographic measurements. Recently, the variability of AL Oph was examined on the plates of the Odessa Observatory by V.I. Marsakova (Andronov 1996) and several weakenings were obtained. This star was also measured by Paschke (1996). All previous measurements lead to uncertain conclusions about its type and light elements.

The present CCD photometry of AL Oph was carried out during 14 nights in the period from June to November 1996 at the Ondřejov Observatory, Czech Republic, using a 65 cm reflecting telescope with a CCD-camera (SBIG ST-6) in the primary focus. The measurements were done using the standard Cousins R filter with exposure time from 45 to 120 s . Two nearby stars GSC $0999.1235(V=11.6 \mathrm{mag})$ and GSC $0999.388(V=12.8 \mathrm{mag})$ on the same frame as AL Oph served as a comparison and check stars (Figure 1). Some of the observations were done through thin clouds. The CCD data were reduced using software developed by P. Pravec and M. Velen (Pravec et al. 1994). No correction of relative magnitudes was allowed for airmass due to the proximity of the comparison star to the variable ($46 \operatorname{arcsec}$). Deviations caused by differential extinction in the broad-band filter for different colours of stars should not be significant. Due to preliminary period close to one sidereal day, the primary minima were observable only before the end of June 1996. On August 25 we obtained a flat secondary minimum and, fortunately, in November 21 LS observed a part of the descending branch to the primary minimum.

The times of minimum and period were determined using a new method of iterative least squares polynomial fitting. The method for a minimum determination was developed especially for processing of precise lightcurves with partial coverage of both branches. This is a typical result of non-automatical CCD observations, when several objects are followed and for a particular object we obtain groups of consequent images separated by large time intervals. This method should provide also more reliable results in the case when the number of points on each branch differs. We suppose only the symmetry of the minimum.

Figure 1. Finding chart of AL Oph. The comparison and check stars are also plotted
Table 1. New times of minimum of AL Oph

JD Hel.-	Error 2400000	Min.	$O-C$ [days]	Epoch	N
type	[days]				
50250.3865	0.0004	Pri.	+0.0006	7.0	16
50252.3717	0.0003	Pri.	-0.0002	9.0	25
50321.3896	0.0009	Sec.	+0.0038	78.5	65

Similar way of solution - double iteration connected with the least squares fitting can be used for determination of light elements from several night observation. We choose a symmetrical feature on the lightcurve (primary minimum), estimate period and basic light minimum. Then we fit a low-order polynomial like in the case of simple minimum determination. Varying the period we find a minimum residual corresponding to the best period. Using this method we can determine the precise value of period in the case of AL Oph, where we have only two primary minima with low accuracy in a short time interval (see Table 1). We derived the following linear light elements for the current use:

$$
\begin{gathered}
\text { Pri.Min. }=\text { HJD } 2450243.4348+0.993005 \times \mathrm{E} . \\
\pm 0.0003 \pm 0.000025
\end{gathered}
$$

Observed times of minima are presented in Table 1. In this table, N stands for the number of observations used in the calculation of the minimum time, the other symbols are self-explanatory. Figure 2 shows the composite differential R light curve during the summer 1996. The light amplitude in R colour for primary minimum according to our measurement is $A_{1}=0.56 \pm 0.02 \mathrm{mag}$, for secondary minimum we found $A_{2}=0.10 \pm$ 0.02 mag . The duration of both minima seems to be about 2 hours. New measurements of this system are necessary to improve the above given elements.

Figure 2. Composite differential R-light curve of AL Oph obtained in 1996
Acknowledgment. This work has been supported in part by the Grant Agency of the Czech Republic, grant No. 205-95-1498 and by the ESO C\&EE Programme, grant No. A-02-069. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France.

Lenka ŠAROUNOVÁ
Astronomical Institute
Academy of Sciences
CZ-251 65 Ondřejov
Czech Republic
Internet: lenka@asu.cas.cz

Marek WOLF
Astronomical Institute
Charles University Prague
CZ-150 00 Praha 5, Švédská 8
Czech Republic
Internet: wolf@mbox.cesnet.cz

References:

Andronov, I., 1996, private communication
Bond, H.E., Tifft, W.G., 1974, PASP, 86, 981
Meinunger, L., 1981, Mitteilungen Ver. Sterne, 9, 59
Paschke, A., 1996, private communication
Pravec, P., Hudec, R., Soldán, J., Sommer, M., Schenkl, K.H., 1994, Experimental Astronomy, 5, 375
Reinmuth, K., 1926, Astronomische Nachrichten, 226, 193

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4453
Konkoly Observatory
Budapest
5 March 1997
HU ISSN 0374-0676

HR 7674: A LOW-AMPLITUDE CEPHEID?

HD $190422=$ HR $7674\left(\alpha_{2000}=20^{\mathrm{h}} 07^{\mathrm{m}} 35^{\mathrm{s}}, \delta_{2000}=-55^{\circ} 01!0, \mathrm{~V}=6.25\right)$ was chosen as a comparison star for a study of photometric variations of some Ap stars, the results of which will be published elsewhere. The observations have been made at La Silla (ESO) during a three-week run in August 1996 with the 70 cm Swiss telescope equipped with the seven-colour double-beam Geneva photometer. Since HD 190422 was a comparison star for our initial programme, we could not use differential measurements. We had to rely on absolute data. Fortunately, these are of high quality in the Geneva system at La Silla.

This bright star is neither in the GCVS nor in the NSVSC. It is a standard of the Geneva system and does not appear in Rufener \& Bartholdi's (1982) list of suspected variables. Neither is it suspected in variability in the Hipparcos Input Catalogue (Turon et al., 1992). Hence we were somewhat surprised to find HR 7674 to be slightly variable.

Figure 1. Lightcurves of HD 190422 in Geneva's $U B V$ (bottom to top). The phase on the horizontal axis is computed with the origin $\mathrm{JD}=2450000$. Tick marks on the vertical axis are separated by 0 . 002

Renson's $(1978,1980)$ period-searching algorithm has been applied to the 29 measurements obtained for this star. The resulting period is $\mathrm{P}=3.15 \pm 0.03$. Figure 1 shows the measured Geneva V, B and U magnitudes plotted vs phases calculated with this value of P and the time origin 2450000.0 . The total amplitude has been estimated by fitting a smooth analytical curve through the observations. It is about $0.014,0 \mathrm{~m} 016$ and 0 m 023 in V, B and U, respectively. All colours vary in phase with a rapid brightening followed by a slower fading. The maximum brightness is reached around phase 0.05 and the minimum at 0.70 .

The HD spectral type of the star is F8, which is in perfect agreement with Johnson's colour index $B-V=0.53$. An MK type F8V has also been published (Buscombe, 1977).

The asymmetric shape of the variation, the colour dependence of the amplitude and the synchronism of the light curves in all colours point toward HR 7674 being a lowamplitude cepheid. On the other hand, the luminosity class V disagrees with a cepheid nature of the star.

A confirmation of the origin of the variations would be obtained by a radial-velocity analysis. Because of the small amplitude, a high accuracy is needed. This is probably difficult to achieve because of the large value of $v \sin i(200 \mathrm{~km} / \mathrm{s})$.

J. MANFROID
P. RENSON
Institut d'Astrophysique
Avenue de Cointe 5
B-4000 Liège, Belgium

M. BURNET

ESO
Correo 19001

References:

Buscombe, W., 1977, MK Spectral Classifications. Third General Catalogue
Renson, P., 1978, AछA, 63, 125
Renson, P., 1980, A\&A, 92, 30
Rufener F., Bartholdi P., 1982, A\&AS, 48, 503
Turon et al., 1992, Hipparcos Input Catalogue, ESA SP-1136

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4454

Konkoly Observatory
Budapest
6 March 1997
HU ISSN 0374-0676

PHOTOELECTRIC OBSERVATIONS OF X PERSEI

X Persei (HD 24534) is the optical counterpart of X-ray transient source 4U 0352+30. The system consists of a neutron star secondary accreting from an O9.5IIle primary via stellar wind processes. To investigate whether the last fading phase of X Persei beginning in 1990 is going on, we observed the system. The present observations were made in Johnson's UBV bands with the $30-\mathrm{cm}$ Maksutov telescope of Ankara University Observatory. In the observations, $\mathrm{BD}+31^{\circ} 0655$ was used as comparison star while $\mathrm{BD}+29^{\circ} 0632$ and $\mathrm{BD}+30^{\circ} 0582$ were chosen as the check stars. The magnitude differences between check stars and comparison star were constant within probable errors of ± 0.026 in V band. The individual differential observations were corrected for atmospheric extinction and light time effect of Earth's motion, and the V band differential magnitude determinations were transformed to the standard system.

Since the end of 19th century X Persei has been known to be a variable on a long time-scale. Roche et al. (1993) presented the most comprehensive optical light curve over the period 1964-1992. During this period the Be star has undergone two extended faint, non-variable phases, seen in 1974-1977 and 1990-1992. After this study, Zamanov and Zamanova (1995) have observed X Persei in the period 1992-1994. Their data are shown as $(+)$ in the figures and are evaluated together with our data. Their observations showed the optical low state that began in the mid-1990 finished in the spring of 1993. After this, the star has entered the optical high state. Our observations between 1994-1996 (see Table 1) indicate that the brightness of the system decreased again in 1995 and the star was still in a low state during our last observations in 1996 (Figure 1).

Figure 1 presents the V band light curve over the period 1991-1996. Our observations shown as open circles have completed the missing data in the vicinity of maximum after the 1990-1993 low state. The magnitude at maximum obtained at the end of October 1994 is found of 6.23 close to the values of the previous maxima. Also the current low state is similar to the previous ones ($V \approx 6.6-6.7$), and only the minimum in 1990-1993 is deeper than others ($V \approx 6.8$). If these minima are due to the loss of the Be star circumstellar disk, the current low phase must be associated with a new partial (or complete) disk-loss state.

The $\mathrm{B}-\mathrm{V}$ and $\mathrm{U}-\mathrm{B}$ colour changes are shown in Figures 2 and 3. Although the observed $B-V$ and $U-B$ colour index values show a large amount of scatter, it is seen that during the rapid brightening that followed the 1990-1993 low state, the $\mathrm{B}-\mathrm{V}$ colour became redder as expected. At 1990-1993 low state the observed U-B index is between -0.65 and -0.7 . This value is consistent with a B 0 star which has a colour excess $\mathrm{E}(\mathrm{B}-\mathrm{V})=0.39$ given by Fabregat et al. (1992). During the stage of high luminosity the observed U-B increased to about -0.85 suggesting that the disk radiation contributes to the observed Balmer excess.

Figure 1. The long term V band light curve of X Persei

Figure 2. The $B-V$ colour changes of X Persei over the past 4 years

Figure 3. The $\mathrm{U}-\mathrm{B}$ colour changes of X Persei over the past 4 years

HJD	V	$\mathrm{B}-\mathrm{V}$	$\mathrm{U}-\mathrm{B}$
2449655.4292	6.240	0.332	-0.801
2449662.3049	6.250	0.309	-0.802
2449683.3035	6.304	0.337	-0.805
2449686.2576	6.303	0.337	-0.852
2449725.2500	6.409	0.316	-0.872
2449732.1701	6.307	0.437	-0.867
2449739.1910	6.459	0.285	-0.842
2449795.2382	6.481	0.290	-0.841
2449943.5250	6.581	0.227	-0.826
2449956.4424	6.635	0.222	-0.824
2449970.4125	6.650	0.198	-0.805
2449977.4424	6.675	0.193	-0.800
2450005.5299	6.689	0.188	-0.784
2450033.3597	6.669	0.180	-0.808
2450096.3618	6.646	0.209	-0.783
2450117.2819	6.660	0.209	-0.786
2450390.3243	6.642	0.209	-0.770
2450397.4993	6.682	0.203	-0.775
2450404.5097	6.664	0.202	-0.754
2450411.5417	6.632	0.238	-0.759

Semanur ENGIN
Kutluay YÜCE
Ankara University Observatory
Science Faculty, Tandoğan 06100, Ankara, TURKEY

References:
Fabregat, J., Reglero, V., Coe, M.J., et al., 1992, A\& A, 259, 522
Roche, P., Coe, M.J., Fabregat, J., et al., 1993, $A \& A, 270,122$
Zamanov, R.K., Zamanova, V.I., 1995, Inf. Bull. Var. Stars, No. 4189

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4455

Konkoly Observatory
Budapest
11 March 1997
HU ISSN 0374-0676

ORBITAL PERIOD OF THE ECLIPSING VARIABLE V1147 CYGNI

V1147 Cyg $=$ HBV 426 was discovered by Wachmann (1966) who estimated the period as $238 \mathrm{~d} .02 / \mathrm{n}$. In the GCVS IV (Kholopov et al., 1985) another possible period 2.24460 : is listed. We have measured the star on 144 photographic plates of the Odessa Sky Patrol by using the comparison stars published by Wachmann (1966).

For the period search we have used 6 moments of most prominent weakenings: HJD $2434119.525,34952.358$ (Wachmann, 1966), 36462.3483 (12. 25), 39741.3395 ($12^{\mathrm{m}} 47$), 41150.3982 ($12^{\mathrm{m}} 36$), 41544.3847 ($122^{\mathrm{m}} 27$) (this paper).

We have used the fast algorithm and computer code described by Andronov (1991, 1994). The test function used is the r.m.s. deviation of $\phi+0.5$ from 0.5 , where ϕ is the phase of decreased brightness. The phase curves were plotted for 32 most prominent minima at the periodogram. This visual control allowed us to choose the value of the possible period corresponding to the 4 -th (by periodogram value) minimum. The linear ephemeris for the moments of minima is

$$
\begin{array}{rcc}
\text { Min } H J D=2439741.340 & + & 1.097382 \times E \tag{1}\\
\pm 2 & \pm .6
\end{array}
$$

Besides visual analysis, we have computed the "slow" periodograms corresponding to the methods of Lafler and Kinman (1965) and Deeming (1970) by using the computer code written by I.L. Andronov. The optimal value of the period was found to be $\mathrm{P}=1.097383$ for both methods. The accuracy estimate is better than 10^{-6} days, the value of the period shift for which the depth of the minimum at the periodogram decreases by ≈ 30 per cent. Naturally, smaller error estimate was obtained for the periodogram using all 144 observations instead of 6 moments of used in Eq. (1).

The light curve is shown in Figure 1. Outside eclipse the r.m.s. scatter, equal to $0{ }^{m} 066$, is typical of photographic measurements. Mean value is 11.92 is in excellent agreement with the value $11^{\mathrm{m}} 9$ listed in GCVS. The amplitudes of the first and second harmonics do not exceed 1.5σ and thus are not statistically significant. The duration of the eclipse is 0.076 P .

The scatter of photographic data may mask the secondary minimum at phase 0.5 , the depth of which does not exceed $00^{\mathrm{m}} 1$. As the depth of the primary minimum is $\approx 00^{\mathrm{m}} 46$, this may argue for a cooler secondary. Another possibility is that the real period is twice larger than the value mentioned above. In this case the minima may be of comparable depths arguing for similar surface brightnesses of both stars. From the present data we cannot determine magnitudes at both minima with an accuracy needed to find difference between them. Comparing Wachmann's (1966) estimate $238.02 / \mathrm{n}$ with the period value computed in this work one may easily find that $\mathrm{n}=216.9$. There is no contradiction, as Wachmann (1966) had used dim magnitudes instead of true minima, one of which was marked as unsure. Two sure minima were used to determine the period and are in excellent agreement with the given elements.

Figure 1. Photographic light curve of V1147 Cyg = HBV 426 computed according to the ephemeris MinHJD $=2439741.340+1.097383 \times E$

Assuming the stars are of nearly spherical shape (from the EA classification), one may obtain the geometric inequality (e.g. Tsessevich, 1980) $\left(R_{1}+R_{2}\right) / a \geq \sin (2 \pi \phi)=$ 0.24 . Additionally assuming that both stars obey the main sequence mass-radius relation $R / R_{\odot}=R_{*}\left(M / M_{\odot}\right)$ with $R_{*}=1.26$ (Allen, 1973), one may easily obtain another inequality

$$
\begin{equation*}
M_{1}+M_{2} \geq \frac{\sin ^{3 / 2} \phi\left(G M_{\odot}\right)^{1 / 2} P}{2 \pi\left(R_{*} R_{\odot}\right)^{3} / 2} \tag{2}
\end{equation*}
$$

where ϕ is the phase of the first contact, i.e. half-duration of the minimum. Equality holds for the inclination angle $\mathrm{i}=90^{\circ}$. For our data, one may estimate $\left(M_{1}+M_{2}\right) \geq 0.384 M_{\odot}$ for $\mathrm{P}=1.097382$ and $\left(M_{1}+M_{2}\right) \geq 0.77 M_{\odot}$ for the hypothesis of double period $\mathrm{P}=2.194764$.

To distinguish between these two periods, CCD or photoelectric photometry in at least two filters is needed.

Acknowledgement. The author is thankful to the referee for helpful comments.

L.L. CHINAROVA
Astronomical Observatory
Odessa State University
T.G.Shevchenko Park
Ukraine 270014 Odessa
root@astro.odessa.ua

References:
Allen C.W., 1973, Astrophysical Quantities, London, Athlone Press.
Andronov I.L., 1991, Kinem. Fiz. Nebesn. Tel., 7, No. 2, 78
Andronov, I.L., 1994, Odessa Astron. Publ., 7, 49
Deeming, T.J., 1970, M.N.R.A.S., 147, 365
Kholopov, P.N. et al., 1985, General Catalogue of Variable Stars, IV-th Edit., Moscow, Nauka Publ., 2
Lafler, J., Kinman, T.D., 1965, Ap.J.Suppl., 11, 216
Tsessevich, V.P., 1980, Peremennye Zvezdy i ih Nabludenie (in Russian), Moscow, Nauka
Wachmann, A.A., 1966, Berged Abh., 6, No. 4

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4456

Konkoly Observatory
Budapest
12 March 1997
HU ISSN 0374-0676

PHOTOELECTRIC $V I_{c}$ OBSERVATIONS AND NEW ELEMENTS FOR V399 CARINAE = HR 4110

Arellano Ferro (1981) analyzed observations of V399 Car $=$ HD $90772=$ HR 4110, the brightest member - of spectral type A7 Ia-O (Turner 1978; see also references cited by Arellano Ferro 1981) - of the young cluster IC 2581, and found four possible periods in its power spectrum: $34.87,40.26,47.80$, and 58.82 days. He noted that a period of 58.82 days provided the best match of his observations to those supplied by Madore (1980).

In an attempt to update the ephemeris for the star, we observed it at CTIO in September-November 1996 using the $1-\mathrm{m}$ reflector. A total of $18 V I_{c}$ measurements were obtained, the accuracy of the individual data being near $\pm 0 .{ }^{\mathrm{m}} 01$ in both filters. The observations are listed in Table 1.

The mean magnitudes of Arellano Ferro's (1981) as well as Cousins' (1966) observations were coincidenced with our V-band data in order to increase the sample available for a period search. We derived the following elements:

$$
\begin{gathered}
\text { Max } \mathrm{JD}_{\text {hel }}=2450387.4+47.2534 \times \mathrm{E} . \\
\pm 0.4 \quad \pm 0.0027
\end{gathered}
$$

Those elements are used in Figure 1 for plotting the light curve in V, where our observations are identified by large circles and observations published by Arellano Ferro (1981) and Cousins (1966) are denoted by small circles and dots, respectively. The shorter period found here appears to be supported by the rapid change in brightness of the star detected over our observing season.

Table 1					
$J D_{\text {hel }}$ $2450000+$	V	$V-I_{c}$	$J D_{\text {hel }}$ $2450000+$	V	$V-I_{c}$
358.8828	4.684	.680	383.8107	4.636	.681
359.8730	4.693	.680	384.7948	4.650	.691
361.8785	4.705	.689	386.7912	4.651	.674
362.8819	4.694	.674	387.7955	4.640	.680
362.8887	4.702	.688	388.7856	4.643	.690
363.8822	4.699	.697	390.7897	4.643	.689
379.8201	4.661	.667	391.7781	4.657	.676
380.8109	4.635	.663	392.7720	4.635	.679
381.8093	4.665	.685	393.7821	4.645	.684

Figure 1
As a member of the cluster IC 2581, HR 4110 has an estimated luminosity of $M_{V}=$ -8.8 (Turner 1978), placing it in the regime of the hypergiant stars. It is of interest to note that, at the period found here, HR 4110 falls almost exactly on the period-luminosity relation for pulsating B and A-type supergiants published several years ago by Maeder \& Rufener (1974; see also Burki 1978).

The research described here was made possible in part by grants No. 95-02-05276 and No. 94-02-04347 from the Russian Foundation of Basic Research to LNB and through NSERC Canada to DGT. The authors were Visiting Astronomers at Cerro Tololo InterAmerican Observatory, National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.

L.N. BERDNIKOV

Sternberg Astronomical Institute
13, Universitetskij prosp.
Moscow 119899, Russia
D.G. TURNER

Saint Mary's University
Halifax, Nova Scotia, B3H 3C3
Canada

References:

Arellano Ferro, A., 1981, P.A.S.P, 93, 351
Burki, G., 1978, Astron. Astrophys., 65, 357
Cousins, A.W.J., 1966, Roy. Obs. Bull., No. 122, E59
Madore, B.F., 1980, unpublished
Maeder, A., \& Rufener, F., 1974, IAU Symp., No. 59, 81
Turner, D.G., 1978, Astron. J., 83, 1081

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4457

Konkoly Observatory
Budapest
13 March 1997
HU ISSN 0374-0676

VARIABLE STARS IN THE GLOBULAR CLUSTER NGC6266

M62 (NGC 6266, C1658-300) is located close to the galactic center ($l=353^{\circ} 6, b=7.3$). This rather metal rich cluster $([\mathrm{Fe} / \mathrm{H}]=-1.28$ (Zinn \& West, 1984)) belongs to the concentration class CC IV, its apparent radius is $r=7!1$ (Kukarkin, 1974) and the tidal radius 10.5 (Webbink, 1985). M62 is rich in variables: 89 variables were discovered in the cluster (Sawyer-Hogg, 1973), periods are defined for 74 of these stars. Twelve of them are classified as RRc and 66 as RRab variables. Values of $\mathrm{P}_{a b}, \mathrm{~N}_{c} / \mathrm{N}_{a b}$ confirm the classification of the cluster as OoI variable rich one.

Table 1. Positions and photometric data for suspected variables

N	$\begin{array}{r} X_{S H} \\ (\operatorname{arcsec}) \end{array}$	$\begin{array}{r} Y_{S H} \\ (\operatorname{arcsec}) \end{array}$	ΔV	ΔB	N	$\begin{array}{r} X_{S H} \\ (\operatorname{arcsec}) \end{array}$	$\begin{array}{r} Y_{S H} \\ (\operatorname{arcsec}) \end{array}$	ΔV	ΔB
1	-102.5	-71.6	0.23	0.25	23	119.8	44.7	0.62	0.63
2	-73.8	-24.5	0.25	0.35	24	119.7	-22.7	0.10	0.08
3	-59.3	89.4	0.04	0.07	25	121.8	9.4	0.43	0.39
4	-57.5	97.5	0.38	0.31	26	-87.0	-87.3	0.02	0.23
5	-55.3	86.6	0.35	0.34	27	-65.9	71.1	0.11	0.29
6	-68.5	-119.2	0.05	0.02	28	-42.9	-84.3	0.48	0.40
7	-50.6	65.9	0.09	0.07	29	-31.4	-75.4	0.17	0.70
8	-50.2	-56.1	0.75	0.67	30	-20.2	-60.0	0.12	0.13
9	-33.5	-62.1	0.34	0.44	31	34.0	-92.7	0.93	1.24
10	-16.3	63.5	0.76	0.51	32	59.7	-106.7	0.54	0.58
11	-14.0	-118.2	0.16	0.19	33	89.8	49.8	0.27	0.29
12	10.3	87.6	0.22	0.32	34	91.8	71.7	0.40	0.47
13	7.8	-61.1	0.04	0.07	35	81.8	-115.3	0.13	0.17
14	22.0	-99.2	0.29	0.28	36	94.2	71.8	0.29	0.50
15	50.7	86.9	0.05	0.04	37	84.3	-127.5	0.45	0.35
16	60.1	67.1	0.19	0.18	38	88.4	-15.7	0.05	0.10
17	51.5	-116.6	0.44	0.37	39	131.6	-48.4	0.00	0.00
18	65.9	13.0	0.08	0.13	40	136.1	-34.5	0.01	0.02
19	74.6	42.2	0.05	0.03	41	144.1	-82.0	0.01	0.02
20	84.7	-86.4	0.04	0.03	42	152.9	-6.6	0.03	0.00
21	98.1	10.5	0.14	0.12	43	193.7	-113.0	0.00	0.02
22	103.5	48.3	0.35	0.57					

Figure 1. The color - magnitude diagram for the globular cluster NGC 6266 corrected for different reddening, the known RR Lyrae stars are denoted by circles, suspected variables are marked by squares

Figure 2. Finding chart for NGC 6266. The known RR Lyrae stars are denoted by circles and by their number from the catalog of SH , suspected variables are marked by squares

This study is based on CCD observations (Brocato et al., 1996). We used the same method of search for RR Lyrae variables as Kadla et al., 1996). In the investigation area (3.81×6.30) there are 31 known variables. The identification of V1 and V13 was made using coordinates of SH catalog only. They were not marked on Plate 3 of Van Agt and Oosterhoff (1959) since the stars are situated in the crowded central part of the cluster. Variables V2, V23 and V37 are brighter than the other variables. In order to eliminate errors due to crowding of the central part of the cluster, we have not considered the region of the cluster center ($r<2^{\prime}$).

The differential reddening across the cluster field (Van Agt and Oosterhoff, 1959) causes an additional difficulty for the investigation of this cluster.

The colour-magnitude diagram after correction for differential reddening is shown in Figure 1. Apart from 31 known variables, there are 43 stars in the instability strip. All data for suspected variable stars are given in Table 1. The coordinates of stars in arcseconds in the system of SH's catalog and the maxima of magnitude variations $\Delta \mathrm{B}$ and ΔV, during our observations are listed in columns 2-5 of Table 1. In Figure 1 and in the finding chart (Figure 2) the known and suspected variables are marked by circles and squares correspondingly.

Because of its position in Figure 1 we suppose that V13 is a red giant. The stars V2, V23 and V37 seem to be field variables.

We are grateful to the Russian Foundation for Basic Research for financial support.

Yu.N. MALAKHOVA
A.N. GERASHCHENKO
Z.I. KADLA
Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo, 196140 Saint-Petersburg, Russia, e-mail: mal@pulkovo.spb.su

References:

Brocato, E., Buonanno, R., Malakhova, Yu. \& Piersimoni, A.M., 1996, A\&A, 312, 80
Kadla, Z.I., Gerashchenko, A.N., Malakhova, Yu.N., 1996, IBVS, No. 4413
Kukarkin, B.V., 1974, The General Catalogue of Globular Clusters of our Galaxies. Pub-
lishing House Nauka, Moscow
Sawyer-Hogg, H., 1973, Publ. David Dunlap Obs., 3, No. 6 [SH]
Van Agt, S., Oosterhoff, P.Th., 1959, Leiden Ann., 21, 253
Webbink, R.F., 1985, IAU Symposium No. 113, 541 eds by J. Goodman \& P. Hut, Reidel, Dordrecht
Zinn, R., West, M.J., 1984, ApJSS, 55, 45

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4458

Konkoly Observatory
Budapest
14 March 1997
HU ISSN 0374-0676

NEW VARIABLE STARS IN THE NORTHERN MILKY WAY

The following is an evaluation of a $20^{\circ} \times 15^{\circ}$ area centered at $22^{\mathrm{h}} 42^{\mathrm{m}},+60^{\circ}$ (1950) in my series of Milky Way fields. Four fields have been previously described (Dahlmark 1982, 1986, 1993, 1996).

Nineteen plate pairs (Kodak 103aD + GG11 and 103aO) were exposed between 1967 and 1982, and forty-four were exposed on Kodak TechPan 4415 + GG495 filter in the years 1985 to 1996. Ten plate pairs were examined using a blink comparator as well as four stereo comparators in the method described by Dahlmark (1982, 1993). Magnitudes for the comparison stars were taken from the Guide Star Catalogue (GSC).

In this field 60 variables were found, of which 57 appear to be new. Table 1 shows positions and identifications. The coordinates were extracted from either the GSC (source code G), the U.S. Naval Observatory A1.0 catalogue (code A), or using the Goddard SkyView facility (code S, Scollick 1997). The lightcurves are based on 64 magnitude estimates for each star. From them the magnitude range, colour-index, provisional variability type, epoch of maximum, and period have been determined. These are collected in Table 2. An asterisk next to the star name indicates a note at the bottom of the table.

The finding charts are based on $200 / 210 / 300 \mathrm{~mm}$ Schmidt camera photographs taken when the variable stars were at maximum light.

Table 1. Positions and identifications, LD 221-280

Name	RA		(2000)	Dec	s	GSC	IRAS
Remarks							
LD 221	211349.9	+615123	A	$4248-0077$	$21126+6138$		
LD 222	211927.2	+612613	A		$21182+6113$		
LD 223	212411.8	+592749	A				
LD 224	212502.0	+615936	A	$4252-0770$	$21237+6146$		
LD 225	212727.3	+625324	A		$21262+6240$		
LD 226	213308.2	+614629	A	$4249-0543$	$21318+6133$		
LD 227	213431.9	+585103	A			StRS 407	
LD 228	213555.0	+544909	A				
LD 229	213650.8	+544058	A		$21352+5427$		
LD 230	214006.2	+593543	A		$21386+5922$		
LD 231	214403.8	+663912	A		$21429+6625$		
LD 232	214825.2	+580053	A		$21468+5747$		
LD 233	214817.9	+623807	A		$21469+6224$		
LD 234	215059.2	+592739	A		$21494+5913$		
LD 235	215219.4	+624840	A		$21509+6234$		
LD 236	215343.3	+522126	A		$21519+5207$		
LD 237	215444.1	+635622	A				
LD 238	215515.4	+634333	G	$4266-3002$	$21538+6329$		
LD 239	215529.1	+635624	A	$4270-0646$	$21540+6341$	see note	
LD 240	215726.1	+641249	A		$21560+6358$		
LD 241	215747.4	+643526	A				
LD 242	215808.6	+660003	A				

Table 1. Positions and identifications, LD 221-280 (cont'd.)

Name	RA (2000)	0) Dec	s	GSC	IRAS	Remarks
LD 243	215825.6	+634328	A	4266-2925	$21570+6329$	
LD 244	220110.5	+661030	G	4275-2480		
LD 242	215808.6	+660003	A			
LD 243	215825.6	+634328	A	4266-2925	$21570+6329$	
LD 244	220110.5	$+661030$	G	4275-2480		
LD 245	220136.7	+62 5927	A		$22001+6244$	
LD 246	220240.4	+613730	G	4263-0653		
LD 247	220321.3	+62 1829	A		$22018+6203$	CGCS 5565
LD 248	220421.7	+641044	S		$22029+6356$	
LD 249	220430.0	+62 0448	A	4267-0544	$22029+6150$	CGCS 5569
LD 250	220633.8	+643959	A		$22051+6425$	
LD 251	220659.8	+65 2810	A	4271-0380	$22056+6513$	
LD 252	220833.6	+633454	A	4267-2710		
LD 253	221100.2	+593843	A	3981-0582	$22093+5923$	
LD 254	221137.4	+60 0532	A		$22099+5950$	
LD 255	221426.1	+600431	S		$22127+5949$	CGCS 5613
LD 256	221539.4	$+661753$	A			
LD 257	222014.5	+604614	A			
LD 258	222230.0	+640926	A		$22208+6354$	
LD 259	222306.5	$+564250$	A		$22212+5627$	CGCS 5644
LD 260	222340.5	+584456	A			24P 116
LD 261	222640.3	$+583135$	A	3995-0119	$22248+5816$	
LD 262	223214.9	$+551052$	A		$22302+5455$	
LD 263	223542.0	+643957	A		$22339+6424$	
LD 264	223736.0	+61 1609	A		$22357+6100$	
LD 265	224254.6	$+655853$	A		$22411+6543$	
LD 266	224746.2	$+551813$	A		$22457+5502$	GY Lac
LD 267	225054.0	+62 0443	A		$22489+6148$	
LD 268	225132.9	$+582557$	A		$22495+5810$	
LD 269	231526.1	$+572705$	A		$23132+5710$	
LD 270	231810.6	$+655244$	A		$23160+6536$	
LD 271	231836.0	+640852	A		$23164+6352$	
LD 272	232000.9	+653208	A		$23178+6515$	
LD 273	232301.9	+561525	S		$23207+5558$	
LD 274	232531.3	$+552207$	G	4003-1940	$23232+5505$	
LD 275	232627.2	+535307	A		$23241+5336$	see note
LD 276	232925.1	+645940	A		$23271+6443$	CGCS 5885
LD 277	233739.7	+585047	S		$23352+5834$	see note
LD 278	234610.0	+584017	A		$23437+5823$	
LD 279	234913.4	+545404	A		$23467+5437$	
LD 280	235209.1	+663450	A		$23496+6618$	see note

Notes to Table 1:
LD 239 CGCS 5508, also Cl* Berkeley 93 SSWZ 154 from Saurer et al. (1994); from plates on five nights and CCD frames on two nights, they find: $14.6<\mathrm{V}<15.4, \mathrm{~B}-\mathrm{V}=3.8$.
LD 275 V354 Cas: GCVS4 position error; ID verified on MVS no. 281.
LD 277 spectral type M5/7 (Dolidze 1975).
LD 280 IRC $+70202=$ TASV J2352 +665 (Collins 1996).

Figure 1

Figure 2

Table 2. Elements of variation, LD 221-280

Name	$\begin{gathered} \max \min \\ (\mathrm{mv}) \\ \hline \end{gathered}$	mb -mv	type	$\begin{gathered} \text { epoch } \\ \text { JD } 2400000+ \end{gathered}$	period (days)
LD 221	11.8-13.7	2.1	SRa	50273	254
LD 222	12.1-16.0	1.4	M	49681	353
LD 223	13.5-15.5	>2	SRa	47862	315
LD 224	$13.4-15.3$	0.8	SRa	49541	265
LD 225	13.2-15.0	1.0	SRa	50273	246
LD 226	11.8-14.3	2	SRa	50200	248
LD 227	13.5-15.6	1.2	SRa	49954	331
LD 228	$11.7-13.6$	>2	Lb		
LD 229	$13.3->16.2$		L		
LD 230	$12.3-14.7$	>2.5	SRa	49954	404
LD 231	14.3-15.3	1	Lb		
LD 232*	13.7-15.1	>1.5	SRb	49681	390
LD 233	$12.6-14.5$	1.1	SRb	49870	120
LD 234	$12.8-14.8$	1.2	Lb		
LD 235	$12.9->16.0$		M	49920	495
LD 236	$12.4->16.0$	>1.6	M	49809	611
LD 237	$11.5->16.0$	2	M	50360	380
LD 238	$12.0-14.7$	2.5	M	49809	212
LD 239	13.5-14.8	>2	Lb		
LD 240	$12.2-15.5$	2.3	M	50305	310
LD 241	$14.1-15.3$	0.7	SRa	50337	146
LD 242	11.8-16.0	1.3	M	49809	155
LD 243*	11.4-15.2	2.1	M	50250	453
LD 244	$12.0-14.5$	>2	SRb		392 ?
LD 245	$12.4-15.3$	>2.2	M	50188	350
LD 246^{*}	$12.4-14.7$	1.8	SRa		350
LD 247	$11.8-14.1$	3.5	Lb		
LD 248	$14.1->16.0$		Lb		
LD 249	$12.0-14.3$	>3	Lb		
LD 250*	$13.0-14.9$	2.2	SRb	50188	224
LD 251	$11.8-14.6$	2.0	M	49681	381
LD 252	$12.5->16.0$		M	49895	283
LD 253	$12.5-16.0$	>2	M	50305	266
LD 254	$13.2->16.0$	2.6	M	50337	231
LD 255	$12.7-14.4$	>3	SRa	50305	398
LD 256	13.8-15.0	>1.5	Lb		
LD 257	$13.2-14.0$	1	L		
LD 258	$13.6->16.0$	>2	M	50360	335
LD 259	$12.2-14.6$	>1	M	50000	370
LD 260	$14.0-15.2$		L		
LD 261	$11.0-13.3$	2	Lb		
LD 262	$13.8-15.5$		SRb	49360	339
LD 263	$13.0-15.8$	>1.3	M	49987	318
LD 264	$11.8->14.5$	2.0	M	50350	227
LD 265	$10.9-16.0$	>1.6	M	49809	341
LD 266*	11.6-15.2	1.6	M	49650	380

Table 2. Elements of variation, LD 221-280 (cont'd.)

Name	$\max _{(\mathrm{mv})} \min$	mb-mv	type	epoch JD $2400000+$	period (days)
LD 267^{*}	12.8-16.0		M	50337	265
LD 268	$12.6->16.0$	>1.5	M	50188	162
LD 269	$12.5->16.2$		L		
LD 270	$11.9-16.1$	1.1	M	50360	366
LD 271	$13.0-15.0$	>1	SR	50360	232
LD 272	$12.7-16.0$	>1.8	M	49919	151
LD 273	$12.6->15.0$	>1.2	SR		$265 ?$
LD 274	$12.5->15.0$		M	50360	273
LD 275	$11.0-15.2$	>2	M	49843	369
LD 276	$12.6-15.3$	>1	L		
LD 277	$12.9-15.2$		SR	49809	365
LD 278	$13.1-15.1$	>1	SR	49954	255
LD 279	$12.5-15.5$		M	49542	400
LD 280*	11.3-14.6	2.1	M	50360	332

Notes to Table 2:

```
LD 232 period variable: \(380-400^{\text {d }}\) ?
LD 243 period decreasing: 1968-77 \(=469^{\mathrm{d}}, 1977-87=462^{\mathrm{d}}\), 1992-96 \(=453^{\mathrm{d}}\).
LD 246 period unstable: \(330-370^{\mathrm{d}}\).
LD 250 period variable: \(1975=202^{\text {d }}\).
LD 266 period decreasing: \(1975=408^{\mathrm{d}}, 1985=391^{\mathrm{d}}, 1995=380^{\mathrm{d}}\).
LD 267 period decreasing: 1967-70 \(=288^{\mathrm{d}}, 1987=276^{\mathrm{d}}, 1994=273^{\mathrm{d}}\),
            \(1995=267^{\mathrm{d}}, 1996=264^{\mathrm{d}}\).
LD 280 period increasing: \(1970-79=328^{\text {d }}, 1979-88=330^{\mathrm{d}}, 1988-1996=332^{\mathrm{d}}\).
```

I would like to thank Brian Skiff (Lowell Observatory) for helping me find accurate positions and the identifications of my stars from various catalogues.

Lennart DAHLMARK
Montlaux
F-04230 St. Etienne les Orgues
France

References:

Collins, M. 1996, The Astronomer, 33, 67
Dahlmark, L., 1982, IBVS, No. 2157
Dahlmark, L., 1986, IBVS, No. 2878
Dahlmark, L., 1993, IB VS, No. 3855
Dahlmark, L., 1996, IB VS, No. 4329
Dolidze, M. V. 1975, Byull. Abastuman. Astrofiz. Obs., 47, 171
Saurer, W., Seeberger, R., Weinberger, R., and Ziener, R. 1994, Astron. J., 107, 2101
Scollick, K. 1997, http://skview.gsfc.nasa.gov/cgi-bin/v3.0/skyview_advanced.pl

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4459

Konkoly Observatory
Budapest
20 March 1997
HU ISSN 0374-0676

IDENTIFICATIONS FOR BAADE'S VARIABLES IN SAGITTA AND CYGNUS

The tables below show identifications and precise positions for a group of variables found by Walter Baade (1928) during his Bergedorfer days. The stars reported in this survey are of some historical interest because it was as a result of this work that Baade conceived ideas that led to his later recognition of the two stellar populations among Galactic stars ($c f$. Osterbrock 1995).

The paper is one of the few variable-star surveys where precise positions are supplied (for equinox 1925), so checks and identifications were easy to make in modern catalogues. I examined each star on the digitized sky survey using the Goddard SkyView facility (Scollick 1997). Baade's original positions in his Table 1 are very good, all less than $2^{\prime \prime}$ from FK5-system positions, and often within $1^{\prime \prime}$. In the Cygnus field (Table 2), they are somewhat less good, but still within about 3 " 5 . In either case, making identifications on the sky is unambiguous despite the absence of finder charts. Follow-up lightcurves and photometry of comparison stars with finding charts for several of Baade's short-period variables can be found in Henden (1996) and Schmidt \& Seth (1996).

The stars are listed in the same order as in Baade's tables. The first column shows the provisional "Kiel" designation used in the Astronomische Nachrichten (Baade did not give all of these). Next comes the proper variable-star name, taken directly from the machine-readable version of volume 4 of the GCVS4 available from the Strasbourg CDS ftp service. N.B. the mix of O's and Q's among the names in Table 2. Since few of the stars appear in the GSC, I have by preference extracted positions from the U. S. Naval Observatory UJ1.0 star catalogue (Monet et al. 1996a), or the more comprehensive A1.0 catalogue (Monet et al. 1996b). The few remaining positions were taken directly from Baade, or estimated to $\pm 2^{\prime \prime}$ using SkyView. The source of the position is coded as follows: $\mathrm{A}=\mathrm{A} 1.0, \mathrm{~B}=$ Baade, $\mathrm{S}=$ SkyView, U = UJ1.0.

Table 1. Baade's variables in Sagitta

Table 1. Baade's variables in Sagitta (cont'd.)

Provis. desig.	Name	RA (200	0) Dec	s	GSC	IRAS	n
AN 21.1928	NSV 12640	195847.9	+195705	U			
AN 22.1928	NSV 12699	200129.2	+183756	U	1621-0052		
AN 23.1928	NSV 12631	195831.9	+1929 01	U			
AN 143.1905	RR Sge	195653.3	+193702	U		$19546+1928$	
AN 24.1928	NSV 12677	200024.2	+19 0210	U			
AN 25.1928	DO Vul	195210.6	+193444	B			*
AN 33.1926	SY Sge	195453.5	+181402	U	1620-0472		*
AN 144.1905	RX Sge	195656.2	+185606	U	1624-1910	$19547+1848$	
AN 26.1928	DW Sge	195554.3	+193236	U			
AN 145.1905	RS Sge	195706.4	+195944	U	1624-2141	$19548+1951$	
AN 27.1928	NSV 12567	195526.0	+190102	A			
AN 28.1928	NSV 12648	195907.8	+180726	U	1620-2194	$19568+1759$	
AN 29.1912	Z Sge	195356.1	+184717	U	1624-2120	$19516+1839$	
AN 29.1928	NSV 12628	195817.1	+183338	U	1620-0828	$19560+1825$	
AN 30.1928	NSV 12545	195431.4	+192124	U			
AN 31.1928	NSV 12544	195428.1	+181949	U	1620-2328		
AN 32.1928	NSV 12480	195134.1	+20 0216	U			
AN 33.1928	NSV 12504	195229.4	+190638	U			
AN 34.1928	NSV 12528	195349.0	+185306	U	1624-2957		*
AN 35.1928	NSV 12713	200152.1	+1925 51	U	1625-2044		
AN 36.1928	NSV 12517	195308.7	+180817	U	1620-2016		
AN 37.1928	NSV 12641	195856.8	+180616	U			
AN 38.1928	NSV 12491	195157.8	+192034	U		$19497+1912$	
AN 39.1928	NSV 12478	195124.3	+184110	U	1619-0843		
AN 40.1928	NSV 12622	195755.1	+185451	U			
AN 152.1905	TW Sge	195855.6	+181303	A			
AN 41.1928	NSV 12610	195738.5	+182858	U			
AN 42.1928	AP Sge	195420.8	+192157	U	1624-1184		
AN 43.1928	DP Vul	195218.1	+1939 27	U			
AN 44.1928	NSV 12578	195605.4	+192031	A			
AN 45.1928	NSV 12602	195713.4	+182006	U			
AN 46.1928	NSV 12645	195859.7	+175833	U			
AN 47.1928	NSV 12715	200152.7	$+200353$	U			
AN 48.1928		195349.4	+184427	U	1620-0122		*
AN 49.1928	NSV 12663	195939.2	+192907	A			
AN 50.1928	NSV 12675	200015.3	+192139	U			*
AN 51.1928	NSV 12666	200006.2	+183715	U			
AN 52.1928	NSV 12594	195653.4	+19 4008	U			
AN 53.1928	NSV 12561	195509.3	+184229	U			
AN 54.1928	NSV 12660	195932.2	+190030	B		$19573+1852$	
AN 55.1928	NSV 12590	195643.9	+185017	U			
AN 56.1928	VW Sge	195731.4	+194836	U			
AN 57.1928	NSV 12485	195148.6	+192252	U	1623-2167		
AN 58.1928	NSV 12543	195422.0	+185205	U	1624-0924		
AN 59.1928	NSV 12597	195701.2	$+200543$	B			*
AN 60.1928	NSV 12633	195835.5	+19 1006	U			
AN 127.1905	RW Sge	195233.2	+190623	U	1624-3188	$19503+1858$	
AN 61.1928	VV Sge	195534.4	+192113	U		19533+1913	
AN 137.1905	TT Sge	195513.6	+190704	U			
AN 62.1928	NSV 12606	195729.2	+191729	U	1624-1258	$19552+1909$	*
AN 63.1928	NSV 12599	195704.1	+19 3219	U			
AN 64.1928	NSV 12649	195907.0	+184418	U			
AN 65.1928	NSV 12514	195302.2	+182535	U			
AN 66.1928	NSV 12625	195805.2	+191409	U			
AN 131.1905	SX Sge	195349.1	+182203	A		$19515+1814$	

Notes to Table 1:
SY Sge \quad HD $350944=\mathrm{LS}$ II $+18^{\circ} 17$.
DO Vul no star on DSS precisely at Baade's position. The Downes \& Shara (1993) dwarf-nova atlas identifies this as the northwestern star of a faint pair at position end-figures $10.9 / 43^{\prime \prime}$. The identification is uncertain, however, since there have been no outbursts reported in the modern literature.
NSV 12528 BSNS 32.
AN 48.1928 NGC 6838 V2 $=$ Cl * NGC 6838 ZDA 16.
NSV 12675 equal $\sim 4^{\prime \prime}$ pair on DSS, resolved in UJ1.0. Baade's position is close to the mean of the two, which was adopted.
NSV 12597 evidently the southwestern star of a merged pair on DSS. The position (from Baade) given by Richter \& Greiner (1996) is in error by $+10^{\prime \prime}$; they identify the northeastern star of the pair as the variable.
NSV 12606 excellent IRAS position match, but the [12-25] color is relatively blue.
Table 2. Baade's variables in Cygnus

Provis. desig.	Name		RA (20	0) Dec	s	GSC	IRAS	n
AN 67.1928	PU Cyg	19	95615.8	$+375206$	U	3137-0124	$19544+3743$	
AN 68.1928	QZ Cyg	19	95904.1	+381544	U	3137-2987	$19572+3807$	*
AN 69.1928	QX Cyg	19	95834.7	+381435	U	3137-2869		
AN 70.1928	PR Cyg	19	95541.1	+381604	U	3137-1721	$19538+3807$	
AN 71.1928	OV Cyg	19	95414.3	$+382527$	U			
AN 72.1928	OP Cyg	19	95248.4	+381317	U			
AN 73.1928	PT Cyg	19	95607.3	+384440	A			
AN 74.1928	V341 Cyg	20	00 57.8	+385445	U	3150-1417	$19591+3846$	
AN 75.1928	V342 Cyg	20	0347.8	$+385751$	A		$20020+3849$	
AN 76.1928	OY Cyg	19	95443.9	+391758	U	3137-1152	$19529+3910$	
AN 77.1928	FZ Cyg	19	95113.0	+390446	U		$19494+3857$	
AN 78.1928	V339 Cyg	20	0028.9	+384408	A		$19586+3835$	
AN 79.1928	GK Cyg	20	00034.5	$+393636$	U	3154-1020	$19587+3928$	
AN 80.1928	NQ Cyg	19	94954.6	+380824	A			
AN 81.1928	QQ Cyg	19	95732.9	$+380530$	U			
AN 82.1928	V336 Cyg	19	95954.4	+384642	U			
AN 83.1928	GM Cyg	20	0415.9	$+380743$	U	3150-2692		
AN 84.1928	V344 Cyg	20	0415.0	$+385727$	U			
AN 85.1928	GL Cyg	20	0334.7	$+390935$	U	3150-0577		
AN 86.1928	QW Cyg	19	95830.5	$+372914$	U			
AN 87.1928	OZ Cyg	19	95515.7	+381534	A			
AN 88.1928	NV Cyg	19	95154.2	+384604	U			
AN 89.1928	NS Cyg	19	95042.1	+392847	U	3141-1041		
AN 90.1928	NSV 12556	19	95435.2	$+390349$	U			
AN 91.1928	NW Cyg		95158.8	+385410	B		$19502+3846$	
AN 92.1928	NY Cyg	19	95234.6	$+375544$	U			
AN 93.1928	PV Cyg		95629.2	$+374308$	U	3137-3117		
AN 94.1928	OT Cyg	19	95407.4	+381839	U			
AN 95.1928	OW Cyg		95430.3	$+373021$	U			
AN 96.1928	NSV 12601	19	96645.6	$+374201$	U			
AN 97.1928	QU Cyg		95827.9	$+381327$	A			
AN 98.1928	V338 Cyg	20	0003.0	$+385828$	A		$19582+3850$	
AN 99.1928	OQ Cyg		95332.8	$+375147$	U	3137-1524	$19517+3743$	
AN 100.1928	QT Cyg	19	98807.4	+384928	U			
AN 101.1928	V337 Cyg		95953.6	+391355	U			
AN 102.1928	NSV 12678	20	00000.5	+383550	U	3150-2033	$19582+3827$	
AN 103.1928	PZ Cyg		95727.6	+391412	U			
AN 104.1928	PY Cyg		95657.2	+385505	U			
AN 105.1928	QR Cyg	19	9731.0	$+382746$	U	3137-2489		
AN 8.1926	CV Cyg	19	95420.9	$+380250$	U	3137-0824		
AN 106.1928	QS Cyg	19	95739.5	+384820	U			
AN 107.1928	OU Cyg	19	9 5410.2	+384134	U			

Table 2. Baade's variables in Cygnus (cont'd.)

Provis. desig.	Name	RA (20	0) Dec	s	GSC	IRAS	n
AN 108.1928	OX Cyg	195439.4	$+391500$	U			
AN 109.1928	QY Cyg	195851.6	$+373850$	U	$3137-3257$		
AN 110.1928	NX Cyg	195204.1	$+375241$	U			
AN 111.1928	PS Cyg	195606.2	$+380008$	U			
AN 112.1928	OS Cyg	195358.3	$+391208$	U			
AN 113.1928	V340 Cyg	200054.4	+390144	U			
AN 114.1928	NSV 12576	195530.4	$+373552$	U	3137-3464		
AN 115.1928	PW Cyg	195631.0	+393032	U	3141-3532		
AN 116.1928	NT Cyg	195106.4	$+390043$	B		$19493+3852$	
AN 117.1928	PP Cyg	195516.4	+392708	A		$19535+3919$	
AN 118.1928	NN Cyg	194927.3	$+384447$	U			
AN 119.1928	OO Cyg	195244.9	$+375848$	U			
AN 120.1928	PQ Cyg	195536.3	$+375120$	U			
AN 121.1928	V343 Cyg	200404.5	$+390615$	U			
AN 122.1928	NSV 12420	194743.3	$+375600$	U			
AN 123.1928	NR Cyg	195041.5	$+374633$	U	3137-0303		
AN 124.1928	V1252 Cyg	195148.9	$+390037$	U		$19500+3852$	
AN 125.1928	V335 Cyg	195954.4	$+380639$	U	3137-2863		
AN 126.1928	NO Cyg	194941.1	$+381138$	U	3136-0455		
AN 127.1928	NP Cyg	194951.4	$+374628$	U			
AN 128.1928	QV Cyg	195825.9	$+384642$	U	3137-3036		
AN 129.1928	NZ Cyg	195237.5	$+384258$	U			
AN 130.1928	NU Cyg	195137.7	$+390721$	U			
AN 131.1928	OR Cyg	195335.9	$+375859$	U			
AN 132.1928	PX Cyg	195644.1	+373739	U	3137-3651		

Note to Table 2:
QZ Cyg $\mathrm{BD}+37^{\circ} 3710$.
I used SIMBAD to look for the GSC and IRAS identifications. Additional remarks are indicated by an asterisk and given following the tables.

I am grateful to Gérard Jasniewicz (Université de Montpellier), who pointed out several typos in an early version of this list. Taichi Kato (Kyoto University) provided comments on DO Vul.

Brian A. SKIFF
Lowell Observatory
1400 West Mars Hill Road
Flagstaff AZ 86001-4499
USA
e-mail: bas@lowell.edu

References:
Baade, W. 1928, Astron. Nach., 232, 65
Downes, R. A., and Shara, M. M. 1993, Publ. Astron. Soc. Pac., 105, 127
Henden, A. A. 1996, Astron. J., 112, 2757
Monet, D. G., et al. 1996a, "USNO UJ1.0," U. S. Naval Observatory, Washington DC; see also http://www.usno.navy.mil/pmm
Monet, D. G., et al. 1996b, "USNO-A V1.0," U. S. Naval Observatory, Washington DC; see also http://www.usno.navy.mil/pmm
Osterbrock, D. E. 1995, Journ. Hist. Astron., 26, 1
Richter, G. A., and Greiner, J. 1996, IBVS, No. 4319
Schmidt, E. G., and Seth, R. 1996, Astron. J., 112, 2769
Scollick, K. 1997, http://skview.gsfc.nasa.gov/cgi-bin/v3.0/skyview_advanced.pl

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4460
Konkoly Observatory
Budapest
20 March 1997
HU ISSN $0374-0676$

ON THE NAME "OVER-CONTACT BINARY SYSTEMS"

During the recent years, a new name of a group of binary stars seems to have appeared. These are "over-contact binaries". The name is clear and persuasive in its content: Since contact binary stars exists, the new name implies existence of binary stars that are in better or "more" contact than ordinary contact systems. In this note I would like to express the opinion that the name is currently being used incorrectly and that it should be reserved for possible cases of genuine overflow of the outer critical equipotential surface.

The name in question has been surfacing from time to time in the literature, but has been particularly frequently used recently in the IBVS. A brief look at the titles starting with the issue number 4301 and continued to the most recent available number 4433 shows that it has been used in five instances (issues numbers 4324, 4364, 4365, 4424, 4427). In all these cases normal contact binaries of the W UMa-type are described. Not a single case indicated overflow through the external Lagrangian point L_{2}, arguably a reason to call a system an "over-contact" one.

The basic groups of close binary stars have been discussed and defined by Kopal (1959) in his monumental book. They have been divided into detached, semi-detached and contact systems according to the relation to the critical equipotentials passing through the inner critical point L_{1}. These potentials, known also as "Roche lobes", although invisible and not material, act as lips dividing the connected vessels (cf. Pringle 1985, Fig. 1.4). The group of contact binaries was defined clearly by Kopal (1959, Sec. VII.6) as systems filling the common envelope encompassing both stars. The observationally-defined group of W UMa-type eclipsing binaries was equated there with the theoretical concept of contact binaries, i.e. binaries whose surfaces are described by potentials intermediate between those that pass through the critical Lagrangian points L_{1} and L_{2}.

The meaning of the contact systems has gained a real solid basis after the two seminal papers by Lucy (1968a, 1968b) who showed that single structures with two mass centres can exist and can produce light curves exactly as those of the W UMa-type. Since then a large body of literature on contact binary stars has appeared. The name of W UMatype systems has attained the status of an operational definition of contact binaries with orbital periods shorter than one day which consist mostly of solar-type stars, whereas the name of "early-type contact binaries" is used for rare systems with orbital periods longer than one day.

Apparently, the new name originated through the incorrect application of the name "contact" to describe the relation of a star to its equipotential surface. Thus, the phrase "to be in contact" has been sometimes used to describe that the surface of a star is in contact with the particular (critical) equipotential; correspondingly, the component filling its Roche lobe would be then called a "contact component". This usage is illustrative, but carries a danger that it may lead to misunderstanding: the equipotential is not a solid surface in space and there is nothing to be in contact with. Whereas stars in a binary system can be in contact, a single star cannot really be in contact with a non-material surface.

The new name of "over-contact" seems to have originated through a logical step further, to describe the cases when the stellar surfaces are located outside the inner critical (or Roche lobe) surfaces. Here, I would like to argue, that - in such situations - the star either (slightly) over-fills its critical equipotential (and then is part of a semi-detached system) or forms a structure described by a common equipotential, effectively making it to be in contact with the other component.

I propose that the name contact binary be used to describe systems which fill the common equipotentials and form single bodies with two mass centres, and that the name over-contact be reserved for, so far undetected, cases of genuine overflow of the contact configurations. Such may exist, probably briefly, but their discovery would be of immense importance for our understanding of the the angular momentum loss evolution, which for many close binaries carries them through the successive stages of detached, semi-detached, contact binary systems and then - at the end, through a brief stage of over-contact - to single stars. In light of this more rigorous definition, a claim that we know over-contact systems is certainly an over-statement.

I would like to thank Hilmar Duerbeck and Carla Maceroni for supporting me with the idea of publishing this note.

S.M. RUCINSKI
David Dunlap Observatory
P.O.Box 360, Richmond Hill
Ontario, Canada L4C 4Y6
e-mail: rucinski@astro.utoronto.ca

References:

Kopal, Z., 1959, Close Binary Stars (Chapman \& Hall, Ltd)
Lucy, L.B., 1968a, ApJ, 151, 1123
Lucy, L.B., 1968b, ApJ, 153, 877
Pringle, J.E., 1985, in Interacting Binary Stars, eds. J.E. Pringle \& R.A. Wade (Cambridge Univ. Press), p. 1

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4461
Konkoly Observatory
Budapest
21 March 1997
HU ISSN $0374-0676$

UBV OBSERVATIONS OF T CrB

T Coronae Borealis is a spectroscopic binary, with a period of 227.5 days, containing an M3 giant and a hotter companion. The star has experienced two outbursts with an amplitude of about 8 mag in 1866 and 1946, and is classified as a recurrent nova as well as a symbiotic star. The ultraviolet observations and the behaviour of the star during the outbursts point to the hotter component is an white dwarf with a mass close to the Chandrasekhar limit (Selvelli, Cassatella and Gilmozzi, 1992), in spite of the existence of some doubts that it can be a main sequence star (e.g. Kenyon and Garcia, 1986). The M giant fills the Roche lobe and the main part of the accretion is realized through the L_{1}.
$U B V$ observations of the recurrent nova T CrB were carried out with a single channel photon counting photometer, mounted at the 0.6 m telescope of the National Astronomical Observatory "Rozhen". The comparison star was HD 142929 ($V=8 .^{\mathrm{m}} 41, B-V=0^{\mathrm{m}} 51$, $U-B=0 .{ }^{\mathrm{m}} 03$). The data was processed using the APRN software (Kirov et al., 1991). The accuracy is better than $\pm 0.04 \mathrm{mag}$. Our observations are summarized in Table 1.

The long term photometry in the U band is presented in Figure 1. The triangles indicate our data, the circles denote the data from Hric et al. (1991, 1993, 1994) and Skopal et al. (1992,1995), the crosses denote the data of Mikolajewski et al. (1996). From Figure 1 it is visible that since 1990 TCrB has experienced three small outbursts with an amplitude of $\sim 1 \mathrm{mag}$ in the U band and peaks at JD 2448100, JD 2449100 and JD 2450200 . The typical time between these mini outbursts is of about 1000 days. Since 1994 the star has shown a considerable increase in the U brightness. It is interesting to note that UV flux observations of Selvelli, Cassatella and Gilmozzi (1992) over the period 1979-90 do not show similar behaviour. They had observed only two minima in 1979 and 1989.

In the V band as well as in the IR (see Yudin and Munari, 1993 and references therein), TCrB shows a double wave light curve, as a result of the ellipsoidal shape of the M giant. In Figure 2 the V data are shown, using the ephemeris of Kenyon and Garcia (1986). The dots refer to the data obtained before 1989: Lines et al. (1988), Rajkova and Antov (1986) and Bruch (1980, 1992). The other symbols are the same as in Figure 1. A Fourier analysis of the data using a three-term truncated Fourier series yields

$$
\begin{aligned}
V & =(10.080 \pm 0.005)+(0.018 \pm 0.007) \cos \phi+(0.162 \pm 0.007) \cos 2 \phi-(0.019 \pm 0.007) \cos 4 \phi \\
& +(0.018 \pm 0.008) \sin \phi+(0.039 \pm 0.007) \sin 2 \phi+(0.015 \pm 0.008) \sin 4 \phi,
\end{aligned}
$$

where ϕ is the orbital phase. This fit is also plotted in Figure 2. Although the data spread over 17 years a distinction between the observations obtained in different epochs is not visible. This points to the fact that the V light curve has not changed in its main features over the last 17 years.

Figure 1. U band light curve of T CrB

Figure 2. Phase plot of the V data according to the orbital ephemeris of Kenyon and Garcia (1986)

Most of the radiation flux in the U is emitted from the hotter component. The ellipsoidal variations are suggestive of a large orbital inclination but an eclipse cannot be detected in the UV flux (Selvelli et al., 1992). We also fail to detect eclipse in the U band. The U magnitudes of TCrB do not show correlation with the orbital period. It is worth noting that the eccentricity of the system is practically zero (Kenyon and Garcia, 1986) so the lack of connection with the orbital period is not surprising.

We ascribe the variability in the U band to the accretion disk and/or the boundary layer between the disk and the white dwarf. In our opinion the most likely reason for the observed variability is the changes in the mass transfer rate and/or in the structure of the accretion disk.

Table 1. Photometric observations of T CrB

JD2400000+	V	$B-V$	$U-B$	JD	V	$B-V$	$U-B$
48321.44	10.40	1.40	0.37	49889.34	10.19	1.45	0.51
49046.57	10.11	1.54	0.92	49929.37	10.16	1.36	0.32
49046.60	10.08	1.54	0.84	49930.39	10.17	1.33	0.18
49047.54	10.09	1.51	0.68	49994.23	10.16	1.36	0.34
49104.53	10.24	1.24	0.12	50092.66	10.08	1.43	0.57
49106.45	10.25	1.18	-0.05	50141.64	10.23	1.08	-0.20
49195.32	10.25	1.61	1.21	50142.57	10.29	1.27	0.08
49197.32	10.26	1.56	1.11	50167.52	10.19	1.46	0.62
49452.51	10.40	1.53	0.80	50192.39	9.90	1.14	0.13
49520.40	10.01	1.53	1.30	50267.36	10.03	1.16	-0.22
49572.32	10.44	1.56	0.92	50268.36	10.01	1.14	-0.30
49573.29	10.44	1.52	0.78	50297.30	9.88	1.22	0.08
49597.27	10.23	1.49	0.61	50393.18	10.19	1.25	0.05
49598.29	10.21	1.49	0.64	50433.66	9.84	1.29	0.11
49882.33	10.16	1.37	0.38	50435.66	9.87	1.29	0.12

This work was supported by NSF (F-466/94).

R.K. ZAMANOV
NAO Rozhen, POB 136, 4700 Smoljan, Bulgaria, e-mail: rozhen@tu-plovdiv.bg V.I. ZAMANOVA Planetarium, POB 132, 4700 Smoljan, Bulgaria

References:

Bruch, A., 1980, IBVS, No. 1805
Bruch, A., 1992, A§A, 266, 237
Kenyon, S.J., Garcia, M.R., 1986, AJ, 91, 125
Kirov, N. K., Antov, A.P., Genkov, V.V., 1991, Compt. rend. Acad. bulg. Sci., 44, No. 11, 5
Lines, H.C., Lines, R.D., McFaul, T.G., 1988, AJ, 95, 1505
Mikolajewski, M., Tomov, T., Kolev, D., 1996, IBVS, No. 4428
Hric, L., Skopal, A., Urban, Z. et al., 1991, Contr. Astr. Obs. Skalnaté Pleso, 21, 303
Hric, L., Skopal, A., Urban, Z., et al.,1993, Contr. Astr. Obs. Skalnaté Pleso, 23, 73
Hric, L., Skopal, A., Chochol, D., et al.,1994, Contr. Astr. Obs. Skalnaté Pleso, 24, 31
Rajkova, D., Antov, A., 1986, IBVS, No. 2690
Selvelli, P.L., Cassatella, A., Gilmozzi, R., 1992, ApJ, 393, 289
Skopal, A., Hric, L., Urban, Z., et al., 1992, Contr. Astr. Obs. Skalnaté Pleso, 22, 131
Skopal, A., Hric, L., Chochol, D., et al., 1995, Contr. Astr. Obs. Skalnaté Pleso, 25, 53
Yudin, B., Munari, U., 1993, $A \& A, \mathbf{2 7 0}, 165$

CORRIGENDA

In the No. 4428 issue of the IBVS, Figure 2 is erroneously the repetition of Figure 1. The correct version of Figure 2 is as follows:

Figure 2. T $\mathrm{CrB} \mathrm{H} \alpha$ profiles in 1996. The equivalent width and orbital phase are written in each box

The hardcopy of IBVS No. 4430 has been distributed in an incomplete form: the last three references (page 4) are missing. The references cut off the end of the paper are as follows:

Krisciunas, K., Crowe, R.A., Luedeke, K.D., and Roberts, M., 1995, MNRAS, 277, 1404
Krisciunas, K., and Handler, G., 1995, IBVS, No. 4195
Mantegazza, L., Poretti, E., and Zerbi, F.M., 1994, MNRAS, 270, 439
The electronically accessible versions (both $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ and PostScript) contain the complete paper.

The Editors

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4462

Konkoly Observatory
Budapest
4 April 1997
HU ISSN 0374-0676

A FLARE EVENT DETECTED IN THE ECLIPSING BINARY CM Dra

CM Dra is an eclipsing binary with the period of 1 d 26838965 and the inclination angle of 89.82 (Lacy 1977). It is a very interesting object by two facts. First, it has been currently known as a main-sequence eclipsing double-lined spectroscopic binary with the lowest mass $\left(0.23 \mathrm{M}_{\odot}\right.$ and $0.21 \mathrm{M}_{\odot}$; Metcalfe et al. 1996). Therefore it offers an excellent opportunity to test the structure and evolution model of very low-mass stars (Metcalfe et al. 1996; Chabrier \& Baraffe 1995). Second, a planetary occultation with a period about 735^{d} or a submultiple of it was reported in this eclipsing-binary system (Guinan 1996; Martin and Deeg 1996).

In this paper, we present the detection of a flare event from the BVI differential photometry, performing as a part of the TEP (Transits of Extrasolar Planets) international collaboration (Martin et al. 1996). Time-series CCD photometry of CM Dra has been carried out for eight nights from January 20 to March 5, 1997 (Table 1). The observations were made with a TEK1024 CCD camera attached to the 1.8 m telescope at Bohyunsan Optical Astronomy Observatory (BOAO). The field of view on the CCD image is $5.8 \times$ 5.8 at the $\mathrm{f} / 8$ Cassegrain focus of the telescope. The exposure times were $240 \mathrm{sec}, 150 \mathrm{sec}$ and 5 sec for B, V and I filters, respectively.

The preprocessing of CCD images including the overscan correction, the trimming of unreliable subsection, the bias correction and the flat field correction, was made with the IRAF/CCDRED package. We adopted simple aperture photometry to obtain instrumental magnitudes, using the IRAF/DAOPHOT package (Massey \& Davis 1992) and applied the classical two-star differential photometry to get differential magnitudes. Two comparison stars ($\mathrm{V}=14 . \mathrm{m} 2, \mathrm{~B}-\mathrm{V}=1^{\mathrm{m}} .^{1}$ for $\mathrm{C} 1 ; \mathrm{V}=14 . \mathrm{m} 9, \mathrm{~B}-\mathrm{V}=0 . \mathrm{m}^{\mathrm{m}} 6$ for C 2 , from our observation) near CM Dra were monitored to check the light variability of CM Dra (Figure 1). The detailed analysis of light variations (Figure 2) for CM Dra will be given in elsewhere (Kim et al. 1997).

Table 1. Observation Log

Obs. Date	Start H.J.D.	Obs. Time	Airmass	Phase	Seeing
Jan. 20	2450469.25	3.0	$2.00 \sim 1.24$	$0.394 \sim 0.475$	$3^{\prime \prime} 3$
29	478.25	3.5	$1.80 \sim 1.14$	$0.482 \sim 0.597$	2.2
Feb.	1	481.25	2.8	$1.72 \sim 1.18$	$0.849 \sim 0.924$
2	482.28	2.8	$1.48 \sim 1.12$	$0.663 \sim 0.754$	1.8
2	483.25	3.2	$1.64 \sim 1.13$	$0.430 \sim 0.535$	1.7
3	496.20	0.3	$1.79 \sim 1.68$	$0.635 \sim 0.646$	2.5
16	499.19	4.5	$1.83 \sim 1.09$	$0.991 \sim 0.139$	2.8
19	513.12	6.0	$2.17 \sim 1.07$	$0.974 \sim 0.171$	1.8
Mar. 5					

Figure 1. Finding chart of CM Dra. Two comparison stars are denoted as C1 and C2
Peculiar light variations of CM Dra were observed on February 2, 1997 (J.D.2450482.28), from phase 0.66 to 0.72 . The brightness increased up to about 0.20 in B and $0 .{ }^{\mathrm{m}} 06$ in V relative to the normal out-of-eclipse value. This is unlikely to be due to the atmospheric differential extinction because the differences in the airmass among three stars are negligible and their color differences, $\Delta(\mathrm{B}-\mathrm{V})_{V-C 1}=0 . \mathrm{m} 5$ and $\Delta(\mathrm{B}-\mathrm{V})_{C 2-C 1}=-0.5$, are not so large. Considering the brightness change within short time scale of ~ 1.8 hours and the strong amplitude dependence on colors, it might be a flare as commonly detected in the late-type dwarfs (dMe for CM Dra).

An ultraviolet flare of CM Dra was initially observed by Eggen \& Sandage (1967) on June 13 , 1966. Its brightness increased by 0.7 in U and $U-B$ color changed from 1 m 03 to 0 m 36 on short time scale ($\sim 1 \mathrm{~min}$), during the increase of light after mid-eclipse. By carrying out the BVRI high-speed photometry and differential I photometry to detect flare events of CM Dra, Lacy (1977) found only a single flare on May 14, 1976. From this, he estimated the flare rate about less than 0.05 per hour, which is much too low in contrast to that of classical Pop. I flare stars with similar luminosity (≥ 2 flares/hour; Lacy et al. 1976). He suggested that, biased on the abnormally low flare rate and the high space velocity of $163 \mathrm{~km} / \mathrm{sec}$, CM Dra might be an evolved system (Pop. II composition). Metcalfe et al. (1996) also detected a single flare event from the spectra of CM Dra. In six exposures started from J.D.2446255.666, the emission lines of the primary were observed to be very strong.

Figure 2. Light variations of CM Dra. A flare event was observed on Feb. 2, 1997, from phase 0.66 to 0.72 . The brightness increased by $0{ }^{\mathrm{m}} 20$ in B and 0.06 in V

Table 2. Flare events of CM Dra

Date(J.D.)	Phase	Duration	Characteristics	Flare rate	Ref
June 13, 1966	eclipse	1.25	$0^{\mathrm{m}} 7$ increased in U		1
2442912.87	~ 0.93	1.0	$0^{\mathrm{m}} 05$ increased in I	$\leq 0.05 /$ hour	2
2446255.66	~ 0.39	≥ 1.9	strong emission lines	$\sim 0.02 /$ hour	3
2450482.28	~ 0.66	1.8	$0.20(0.06)$ increased in $\mathrm{B}(\mathrm{V})$	$\leq 0.04 /$ hour	4

Ref. 1) Eggen \& Sandage 1967, 2) Lacy 1977, 3) Metcalfe et al. 1996, 4) This paper
The characteristics of four flare events which have been detected in CM Dra are listed in Table 2. The ultraviolet flares of CM Dra might occur in any orbital phase. The brightness during a flare event abruptly increased and decreased on very short time scale of a few minutes (two points of B at the phase of 0.66 in Figure 2). Then its intensity decreased slowly, continuing for $1 \sim 2$ hours. Flare rate estimated in this paper is ≤ 0.04 flares per hour, which is consistent with the other data. This low flare rate supports Lacy's (1977) suggestion that CM Dra might be a Population II star.

S.-L. KIM, M.-Y. CHUN, W.-B. LEE
Korea Astronomy Observatory
Taejon, 305-348
Korea
e-mail : slkim@seeru.boao.re.kr

L. DOYLE
SETI Institute
NASA Ames Research Center
Moffett Field, California
USA

References:

Chabrier, G., Baraffe, I., 1995, ApJ, 451, L29
Eggen, O.J., Sandage, A., 1967, ApJ, 148, 911
Guinan, E., 1996, IAUC, No. 6423
Kim H.-I, Kim S.-L., Chun, M.-Y., Lee, W.-B., 1997, (in preparation)
Lacy, C.H., 1977, ApJ, 218, 444
Lacy, C.H., Moffett, T.J., Evans, D.S., 1976, ApJS, 30, 85
Martin, E.L., Deeg, J., 1996, IAUC, No. 6425
Massey, P., Davis, L.E., 1992, A User's Guide to Stellar CCD photometry with IRAF
Metcalfe, T.S., Mathieu, R.D., Latham, D.W., Torres, G., 1996, ApJ, 456, 356

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4463

Konkoly Observatory
Budapest
8 April 1997
HU ISSN 0374-0676

A NEW SUSPECTED VARIABLE IN PISCES

We report here of the finding of few brightenings of a star in the neighbourhood of the irregular variable RZ Piscium. We became aware of this behaviour during brightness estimates of RZ Psc on sky patrol plates of the plate stacks of the Harvard College Observatory (Cambridge, MA, U.S.A.).

The presumed new variable was visible on only few plates. Normally the magnitude of the object in question was below the limiting magnitude of the sky patrol plates.

Figure 1. Identification map for the presumed variable (Y) in the neighbourhood of RZ Psc (RZ). Comparison stars are marked, too. Their B-magnitudes are listed in Table 1. The map covers an area of $26^{\prime} \times 17^{\prime}$ North is on the top and east to the left. The map is based on a B plate obtained by R. Ziener, KSO, Tautenburg

Plate flaws can be practically excluded as an explanation for the sporadically appearing object since we found at the exact position of it a faint star on a CCD image taken with the $90-\mathrm{cm}$ telescope of the Großschwabhausen (GSH) observing station of the Jena University Observatory. Independently, we identified the star on prints of the Palomar Observatory Sky Survey as well as on Schmidt plates in the plate archive of the Karl- SchwarzschildObservatory (KSO), Tautenburg.

Table 1. B-magnitudes of the comparison stars

Comparison star	B (mag)	Comparison star	B (mag)
a	11.42	3	14.49
b	12.28	4	14.84
c	12.44	5	13.86
d	12.95	6	14.00
f	13.15	7	12.76
x	14.08	8	14.34
1	10.12	9	15.38
2	12.25		

Table 2. Brightnesses of star Y

Julian Date	Brightness (mag)	Remarks
2427683.797	14.86	Harvard Obs., B
2427692.805	14.86	Harvard Obs., B
2427736.702	12.44	Harvard Obs., B
2433237.500	≈ 14.5	Harvard Obs., B
2443417.368	≈ 15.7	KSO, Tautenburg B
2443417.380	≈ 15.3	KSO, Tautenburg V
2443417.392	≈ 14.9	KSO, Tautenburg R
2443840.292	≈ 16.1	KSO, Tautenburg B
2450347.421	16.17	GSH, CCD, B

The identification map (Figure 1) covers only a part of that map for RZ Psc published by Friedemann et al. (1995). In the map presented here the object in question, RZ Psc, and the comparison stars are marked. Their B magnitudes have been derived on the blue CCD images obtained by us using photometric standard stars measured by Pugach and Kovalchuk (1983) and Wenzel (1993). The relevant photometric data are compiled in Table 1. The mean r.m.s. error amounts to $\pm 0.06 \mathrm{mag}$.

The data of the few discovered brightenings are collected in Table 2. The estimated photometric uncertainties amount to $\Delta m \approx \pm 0.2 \mathrm{mag}$.

Additional information have been obtained by measuring the brightness of the star on B, V and R plates of the KSO. For this aim we used for the comparison stars B and R magnitudes from the USNO-SA1.0 catalogue by Monet et al. (1996) and V from the Guide Star Catalog 1.1 (1992). From the three KSO plates obtained at JD 2443417 we derived B, V and R magnitudes amounting to $15.7,15.3$, and 14.9 , respectively. Combination of the B, V and R data results in a colour index $(B-V) \approx 0.4$ mag and $(V-R) \approx 0.4 \mathrm{mag}$. These values correspond to an unreddened star of spectral type F2 to F8.

Taking the brightenings found (see Table 2) as representative, the amplitude of the light variation amounts to $\Delta m_{B} \approx 3.7 \pm 0.4 \mathrm{mag}$. The amplitude derived from the few existing photometric data and the distribution of the brightenings over the time are compatible with the assumption that the variable probably belongs to the class of U Geminorum stars.

Acknowledgement. The authors are indebted to Dr. I. Shapiro, Director of the Harvard College Observatory, for the permission for using the plate collection and Dr. Martha Hazen, Curator of the plate Collection, for her kind support and hospitality during their stay. Furthermore, the authors thank Dr. R. Ziener from the KSO, Thueringer Landessternwarte Tautenburg, for making the Schmidt plates available to them and Dr. S. Klose for scanning these plates. The work was partially supported by the Deutsche Forschungsgemeinschaft (Grant Fr 963-1).

H.-G. REIMANN C. FRIEDEMANN
Astrophysikalisches Institut und
Unversitäts-Sternwarte Jena,
Schillergäßchen 2,
07745 Jena, Germany,
e-mail: rei@astro.uni-jena.de

References:

Friedemann C., Gürtler J. Reimann H.-G., 1995, $A \& A, \mathbf{3 0 0}, 269$
Guide Star Catalog 1.1, 1992, Association of Universities for Research in Astronomy, Inc. Monet, D., Bird, A., Canzian, B., Harris, H., Reid, N., Rhodes, A., Sell, S., Ables, H., Dahn, C., Guetter, H., Henden, A., Leggett, S., Levison, H., Luginbuhl, C., Martini, J., Monet, A., Pier, J., Riepe, B., Stone, R., Vrba, F., Walker, R., 1996, USNOSA1.0, (edited by U.S. Naval Observatory, Washington DC)
Pugach, A.F., Kovalchuk, G.U., 1983, Perem. Zvesdy, 22, 9
Wenzel W., 1993, Private communication

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4464

```
Konkoly Observatory
Budapest
9 April 1997
HU ISSN 0374 - 0676
```


DETECTION OF FAST FLARES OF EV Lac IN 1994-96

Spiky type very short flares of a duration less than 1 sec of some flare stars have been detected (Zalinian, Tovmassian, 1987; Tovmassian, Zalinian, 1988) by observations made with the two-channel (U and B) fast photometer of the Byurakan Astrophysical Observatory (Zalinian, Tovmassian 1989). Fast flares of a total duration of a few seconds or less have been found also by Tsvetkov et al. (1986) and Shvartsman et al. (1988).

In the present contribution we report on the results of the monitoring of EV Lac, that was carried out with the 40 cm telescope of the Byurakan Observatory in 1994-96 with somewhat modified mode of observations. In the present observations the monitoring was done as before with 0.1 sec integration time, but counts in U and B were recorded with an integration time of 10 sec , until the current count in U jumped above the mean value of the preceding hundred counts by 5σ. Then the signal in both channels was recorded with 0.1 sec integration time. Hence the fast, spiky type flares were recorded with 0.1 sec integration time, whilst the relatively slowly rising usual flares were recorded with 10 sec integration time. After each $15-20 \mathrm{~min}$ the star was moved out from the diaphragm, and the sky background was recorded for $20-30 \mathrm{sec}$. In these observations both components of the double fell in the diaphragm of the photometer. As usually in the case of observations of flare stars the ΔU and ΔB magnitudes were determined by the ratio I / I_{0}, where I_{0} is the intensity of the star in its quiescent state. Since observations were done simultaneously in U and B , we measured also $\mathrm{U}-\mathrm{B}$ values for the star during the flare.

Observations were done during 25 hours. Twelve flares were detected. The total duration 4 of half of them is less than 1 sec . In consecutive columns of the Table the following data on the detected flares are presented: date of observation, UT at the maximum of the flare, designation of separate maximums "s" for relatively slow flares), $\Delta \mathrm{U}$ and $\Delta \mathrm{B}$ magnitudes of the flare, $\mathrm{U}-\mathrm{B}$ color of the star at the flare maximum, rising time tr of the flare in seconds, and total duration of the flare. In deducing the parameters of the detected flares we accepted the following photometric data for EV Lac AB : $\mathrm{V}=10.05, \mathrm{~B}-\mathrm{V}=1.37$, $\mathrm{U}-\mathrm{B}=0.75$ (Moffet 1974). The $\Delta \mathrm{U}$ amplitudes and $\mathrm{U}-\mathrm{B}$ colors of flares were estimated by using the light curves of flares smoothed by medians.

Light curves of some flares are shown in Figures 1-3. In Figure 3a the light curve integrated in 10 sec is shown. The record of the short flare that occurred after the main one is shown in Figure 3b with an integration time of 0.1 sec .

We would like to draw attention that very short spiky flares of a total duration less than 1 sec seem mainly to occur shortly after the longer lasting flares.

Figure 1

Figure 2

Figure 3a

Figure 3b

Table 1. Data on flares of EV Lac

| Date | UT max
 h m | Peaks | $\Delta \mathrm{U}$ | $\Delta \mathrm{B}$ | $\mathrm{U}-\mathrm{B}$ | t_{r} |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| sec | | | | | | |\quad Duration

* Not certain

VPZ is grateful to CONACYT for financial support by the Project 211290-5-000PE during the reduction of observational data.

V.P. ZALINIAN
Byurakan Astrophysical
Observatory of the Armenian
National Academy of Sciences
H.M. TOVMASSIAN
Instituto Nacional Astrophysica
Optica y Electronica
Puebla
Mexico

References:

Moffet, T.J., 1974, ApJ Suppl., 29, 1
Shvartsman, V.F., Beskin, G.M., Gershberg, P.E., Neizvestni, S.I., Plakhotenkova, V.L., Pustilnik, L.A., 1988, Izv. Crimean AO, 79, 71
Tovmassian, H.M., Zalinian, V.P., 1988, Astrofizika, 28, 131
Tsvetkov, M.K., Antov, A.P., Tsvetkova, A.G., 1986, Comm. Konkoly Obs., Hung. Acad. Sci, No. 86, 435
Zalinian, V.P., Tovmassian, H.M., 1987, IBVS, No. 2992
Zalinian, V.P., Tovmassian, H.M., 1989, Contr. Byurakan Obs., 61, 142

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4465

Konkoly Observatory
Budapest
9 April 1997
HU ISSN 0374-0676

OBSERVATIONS OF FLARE STARS EV Lac, V577 Mon AND YZ CMi

Observations of some flare stars made with the 40 cm telescope of the Byurakan Astrophysical Observatory by using the two-channel (U and B) fast photometer (Zalinian, Tovmassian, 1989) with 0.1 sec integration time allowed to detect very short flares of a duration of a few tenths of a second with rising times of 0.1 sec or perhaps less (Zalinian, Tovmassian, 1987; Tovmassian, Zalinian 1988). Short flares of an order of a few seconds were detected also by Tsvetkov et al. (1986) and Shvartsman et al. (1988).

In this communication we present the results of observations of flare stars EV Lac, V577 Mon and YZ CMi made with the two-channel photometer of the Byurakan Observatory. Observations were made with the 1 m telescope of the IA UNAM in Tonantzintla in November and December 1996, and with the 2.1 m telescope of the INAOE in Cananea in December 1996 and January 1997 (Mexico). Two photomultipliers EMI 9789 AQ were used in the photometer.

Depending on the size of the telescope and on the observing conditions (night sky brightness, brightness of the Moon) different integration times of $0.5,0.1$ and 0.05 sec have been used. In each $15-20 \mathrm{~min}$ the sky background was recorded for $20-30 \mathrm{sec}$. During the monitoring the obtained information has been recorded in the memory of a PC.

The U and B magnitudes of the observed stars during the flare were determined by comparison with their corresponding values in the quiescent state. In this run just the flaring component of the double star EV Lac was observed. The observations lasted during 12.43 hours with the 1 m telescope and 3.2 hours with the 2.1 m telescope. V 577 Mon was observed during 3.25 hours with the 1 m telescope and 3 hours 15 min with the 2.1 m telescope. YZ CMi was observed during 0.75 hours only with the 2.1 m telescope. Nine flares of EV Lac, and five flares of V 577 Mon were detected in these observations. No flare of YZ CMi was detected. Sometimes the flares are composite, and short, spiky flares are observed over, or immediately after the main, relatively slow flare.

The data on the observed flares of EV Lac is summarized in Table 1, and that of the V577 Mon in Table 2. For deducing the parameters of the observed flares it was accepted that U and B magnitudes of the flaring component of EV Lac are equal to $12 .{ }^{\mathrm{m}} 79$ and 11 . 81 respectively (Alekseev, Gershberg 1995), and that of V577 Mon are equal to $14 . \mathrm{m}^{\mathrm{m}} 0$ and 12 m .8 (Shvartsman et al. 1988). In consecutive columns of both Tables the following information is given: the date of observation, UT at the maximum of flare, the designation of separate peaks observed during one flare, ΔU and ΔB magnitudes of the flare, $\mathrm{U}-\mathrm{B}$ color of the star at the flare maximum, the rising time of the flare t_{r}, the full duration of the flare, the integration time of observation, and the telescope, with which the observation was made. For determining the parameters of flares the smoothed by medians light curves of flares were used.

Table 1. Data on flares of EV Lac

Date	$\begin{gathered} \hline \text { UT max } \\ \text { h m } \\ \hline \end{gathered}$	Peaks	$\Delta \mathrm{U}$	$\Delta \mathrm{B}$	U-B	$\begin{gathered} \mathrm{t}_{r} \\ \mathrm{sec} \end{gathered}$	Duration sec	$\begin{aligned} & \hline \tau \\ & \mathrm{sec} \end{aligned}$	$\begin{gathered} \hline \mathrm{Tel} \\ \mathrm{~m} \\ \hline \end{gathered}$
16 Nov 96	2212.2		1.3	0.6	0.3	2.0	4.0	0.5	1.0
19 Nov 96	2224.0		2.2	0.7	-0.5	1.5	4.0	0.5	1.0
22 Nov 96	2235.9		1.5	0.8	0.3	0.5	2.5	0.5	1.0
24 Nov 96	2243.8	a	0.8	0.4	0.6	13.0	44.0	0.5	1.0
		b	1.2	0.6	0.4	0.5	1.	5	
04 Dec 96	2323.2	a	0.8	0.4	0.6	12.0	45.0	0.5	1.0
		b	0.9	0.3	0.4	0.5	1.0		
30 Jan 97	0214.6	slow	0.4	0.1	0.7	41*	150.0	0.05	2.1
		spike	0.7	0.1	0.4	<1.0	$<1.0^{\star}$		

* Not certain

Figure 1

Figure 2

Table 2. Data on flares of V577 Mon

Date	UT max h m	Peaks	$\Delta \mathrm{U}$	$\Delta \mathrm{B}$	$\mathrm{U}-\mathrm{B}$	t_{r} s	Duration sec	τ sec	Tel m
10 Jan 97	0423.7		1.1	0.4	0.5	1.7	4.0	0.1	2.1
10 Jan 97	0557.5		2.5	0.9	-0.4	5.0^{\star}	30.0	0.1	2.1
10 Jan 97	0610.8	a	0.6	0.0	0.6	8.0	40.0	0.1	2.1
		b	1.8	0.8	0.2	0.1	0.3	0.1	
10 Jan 97	0727.0		1.2	0.0	0.0	0.5	1.5	0.1	2.1

* The small preflare (Figure 4) is not considered.

Figure 3

Figure 4

Light curves of some flares are shown in Figures 1-4. The spiky type short flares of a duration less than 1 sec observed simultaneously in U and B are very remarkable (Figures 1-3). Such spiky flares were also detected in previous observations with the two-channel fast photometer (Tovmassian, Zalinian, 1988; Zalinian, Tovmassian, 1997). A chance coincidence of two noise spikes on two independent records in U and B with values of counts exceeding 5σ may take place once in 3×10^{4} hours. Thus the observed spikes are real flares. Shvartsman et al. (1988) stated that they have not detected flares with duration less than $2-3 \mathrm{sec}$, though on the light curves demonstrated by them there are some very short spikes similar to flares detected by us. We may suggest that Shvartsman et al. assumed that such spikes, registered at only one waveband, were only noise, and for this reason were not considered by them as real flares. The existence of such flares put certain constrains on the theories of the origin of stellar flares.

The authors acknowledge the Institute of Astronomy of the UNAM for use of their facilities at the 1 m telescope in Tonantzintla to carry out the reported observations. VPZ is grateful to CONACYT for financial support by the Project 211290-5-000PE.

H.M. TOVMASSIAN
Elsa RECILLAS
O. CARDONA
Instituto Nacional Astrophysica
Optica y Electronica
Puebla, Mexico

V.P. ZALINIAN

Byurakan Astrophysical Observatory of the Armenian National Academy of Sciences

References:

Alekseev, Yu., Gershberg, R.E., 1995, Astrofizika, 39, 67
Shvartsman, V.F., Beskin, G.M., Gershberg, P.E., Neizvestni, S.I., Plakhotenkova, V.L., Pustilnik, L.A., 1988, Izv. Crimean AO, 79, 71
Tovmassian, H.M., Zalinian, V.P., 1988, Astrofizika, 28, 131
Tsvetkov M.K., Antov, A.P., Tsvetkova, A.G., 1986, Comm. Konkoly Obs., Hung. Acad. Sci., No. 86, 435
Zalinian, V.P., Tovmassian, H.M., 1989, Contr. Byurakan Obs., 61, 142
Zalinian, V.P., Tovmassian, H.M., 1987, IB VS, No. 2992
Zalinian, V.P., Tovmassian, H.M., 1997, IB VS, No. 4464

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4466

Konkoly Observatory
Budapest
11 April 1997
HU ISSN 0374-0676

SA98-185(=HD 292574) - A NEW ECLIPSING BINARY AMONG LANDOLT'S STANDARD STARS

We present observational results of a newly discovered eclipsing binary SA98-185 $\left(=\mathrm{HD} 292574, \mathrm{RA}_{2000}=6^{\mathrm{h}} .52^{\mathrm{m}} 01.85, \mathrm{DEC}_{2000}=-00^{\circ} 27^{\prime} 21^{\prime \prime} 7\right.$, A 2$)$. It is one of well observed stars in the Landolt's $(1983,1992)$ standard star list, being widely used in the UBVRI photometry (for examples, Menzies et al. 1991 and Richer et al. 1985).

During the observing runs at Siding Spring Observatory (SSO) from November 5, 1996 to March 4, 1997, abnormal data points of SA98-185 were detected on February 28, 1997 (HJD2450508.07) for the first time. The brightness decreased by ~ 0.006 in the B, V, I magnitudes relative to that of the other standard stars (see Figure 2, upper panel). The field of view of SSO $40^{\prime \prime}$ telescope $(f / 8)$ with SITe 2048×2048 CCD is 20.6×20.6 and covers the whole area of SA98 which contains many well observed standard stars.

We carried out time-series CCD observations of SA98-185 over four nights from March 13 to 29, 1997 at the Bohyunsan Optical Astronomy Observatory (BOAO) in order to detect its light variability. These observations were done with a TEK1024 CCD camera attached to the BOAO 1.8 m telescope. The field of view in the CCD image is 5.8×5.8 at the $\mathrm{f} / 8$ Cassegrain focus of the telescope. Three comparison stars (SA98-193, 666 and 688; see Table 1) were monitored to check the light variability of SA98-185 (Figure 1).

The CCD preprocessings such as bias subtraction and flat fielding were made with the IRAF/CCDRED package. We adopted simple aperture photometry to obtain instrumental magnitudes, using the IRAF/DAOPHOT package (Massey \& Davis 1992) and transformed to the standard system as follows:

$$
B(V)=b(v)+a_{1}+a_{2} \times X+a_{3} \times(B-V)+a_{4} \times(B-V) \times X
$$

where $B(V)$ and $b(v)$ are standard and instrumental magnitudes and X is the airmass. Four coefficients of a_{1}, a_{2}, a_{3} and a_{4} are zero level, primary extinction, color and secondary extinction term, respectively. We then obtained differential magnitudes of SA98-185 which are plotted in Figure 2 and listed in Table $2(\Delta \mathrm{~B}$ and $\Delta \mathrm{V}$ in the sense Var-C1, $\Delta \mathrm{I}$ in the sense of Var-C2).

Table 1. Photometric properties of observed stars (Landolt, 1992)

ID $_{\text {ours }}$	Star Name	V	B-V	U-B
Var	SA98-185	10.536	0.202	0.113
C1	SA98-193	10.030	1.180	1.152
C2	SA98-666	12.732	0.164	-0.004
C3	SA98-688	12.754	0.293	0.245

Figure 1. A CCD frame (5.8×5.8) of SA98-185 observed in the BOAO. Three comparison stars (SA98-193, 666 and 688) are denoted by their number

Figure 2. Light variations of SA98-185 observed at SSO (upper panel) and BOAO(lower panel). It is noted that the brightness of SA98-185 decreased by about 0.06 in B and V near HJD 2450508.07 and by 0 . 14 in B near HJD 2450521.04

Table 2. Differential magnitudes of SA98-185

HJD	$\Delta \mathrm{B}$	HJD	$\triangle \mathrm{B}$	HJD	$\triangle \mathrm{B}$	HJD	$\Delta \mathrm{V}$	HJD	$\Delta \mathrm{I}$
2450000.+		520.9896	-0.459	521.0369	-0.334	$2450000 .+$		$2450000 .+$	
393.1518	-0.469	520.9902	-0.462	521.0374	-0.336	393.1430	+0.522	393.1231	-2.215
393.1547	-0.476	520.9909	-0.460	521.0380	-0.333	393.1456	+0.522	393.1255	-2.223
393.1577	-0.473	520.9915	-0.455	521.0389	-0.326	393.1487	+0.516	393.1303	-2.238
393.2190	-0.472	520.9921	-0.454	521.0396	-0.325	394.2323	+0.503	393.1328	-2.236
393.2219	-0.472	520.9928	-0.455	521.0401	-0.331	457.2027	+0.503	393.1366	-2.207
396.2363	-0.460	520.9934	-0.456	521.0407	-0.328	458.1895	+0.521	393.1390	-2.240
458.2010	-0.467	520.9943	-0.453	521.0413	-0.325	458.1919	+0.513	393.2301	-2.230
458.2034	-0.470	520.9951	-0.453	521.0419	-0.323	507.9734	+0.512	393.2326	-2.235
507.9708	-0.483	520.9957	-0.457	521.0425	-0.325	508.0717	+0.572	394.2025	-2.223
508.0690	-0.435	520.9962	-0.451	521.0430	-0.326	510.9329	+0.512	396.2302	-2.209
512.0770	-0.486	520.9968	-0.451	521.0438	-0.327	512.0799	$+0.520$	457.2037	-2.203
520.9539	-0.466	520.9974	-0.448	521.0443	-0.328	534.9655	+0.503	458.1924	-2.220
520.9554	-0.467	520.9980	-0.448	521.0449	-0.327	534.9661	+0.512	458.1947	-2.204
520.9565	-0.464	520.9986	-0.445	521.0455	-0.330	534.9664	+0.513	507.9776	-2.221
520.9581	-0.462	520.9991	-0.439	521.0461	-0.325	535.0140	+0.516	508.0757	-2.162
520.9587	-0.459	520.9997	-0.444	534.9604	-0.471	535.0155	+0.520	508.9356	-2.233
520.9591	-0.458	521.0003	-0.441	534.9618	-0.467	535.0159	+0.517	509.0682	-2.221
520.9596	-0.458	521.0015	-0.440	534.9627	-0.468	535.0530	+0.521	510.9347	-2.225
520.9601	-0.460	521.0030	-0.439	535.0109	-0.458	535.0540	+0.523	511.0626	-2.203
520.9605	-0.463	521.0042	-0.434	535.0118	-0.459	535.0544	+0.522	511.9300	-2.247
520.9612	-0.462	521.0051	-0.426	535.0124	-0.460	535.9592	+0.497		
520.9619	-0.463	521.0058	-0.422	535.0504	-0.437	535.9621	+0.507		
520.9623	-0.460	521.0064	-0.423	535.0514	-0.445	535.9649	+0.504		
520.9628	-0.460	521.0070	-0.420	535.0521	-0.441	535.9677	+0.503		
520.9633	-0.457	521.0076	-0.418	535.9577	-0.472	535.9707	+0.499		
520.9637	-0.459	521.0081	-0.418	535.9608	-0.467	535.9733	+0.504		
520.9652	-0.463	521.0093	-0.418	535.9634	-0.473	535.9759	+0.502		
520.9666	-0.468	521.0102	-0.416	535.9663	-0.470	535.9785	+0.497		
520.9681	-0.461	521.0107	-0.418	535.9694	-0.473	535.9815	+0.497		
520.9694	-0.462	521.0112	-0.411	535.9720	-0.476	535.9843	+0.506		
520.9700	-0.458	521.0117	-0.413	535.9747	-0.476	535.9874	+0.504		
520.9705	-0.465	521.0123	-0.410	535.9773	-0.479	535.9902	+0.499		
520.9710	-0.463	521.0143	-0.401	535.9800	-0.470	535.9928	+0.510		
520.9714	-0.463	521.0151	-0.393	535.9830	-0.475	535.9955	+0.504		
520.9719	-0.464	521.0160	-0.392	535.9862	-0.477	535.9982	+0.504		
520.9723	-0.461	521.0165	-0.389	535.9889	-0.472	536.0009	+0.505		
520.9732	-0.454	521.0170	-0.388	535.9915	-0.466	536.0037	$+0.507$		
520.9738	-0.461	521.0175	-0.387	535.9942	-0.475	536.0081	+0.517		
520.9743	-0.461	521.0180	-0.393	535.9969	-0.470	536.0120	+0.509		
520.9748	-0.467	521.0202	-0.383	535.9996	-0.477	536.0161	+0.504		
520.9752	-0.462	521.0207	-0.377	536.0024	-0.476	536.0200	+0.505		
520.9757	-0.458	521.0212	-0.377	536.0061	-0.480	536.0238	+0.507		
520.9762	-0.465	521.0217	-0.378	536.0100	-0.474	536.0275	+0.505		
520.9767	-0.459	521.0223	-0.371	536.0142	-0.474	536.0317	+0.510		
520.9772	-0.463	521.0233	-0.370	536.0182	-0.469	536.0363	+0.507		
520.9776	-0.462	521.0241	-0.367	536.0258	-0.473	536.0400	+0.512		
520.9781	-0.462	521.0247	-0.362	536.0296	-0.466	536.0441	+0.499		
520.9786	-0.465	521.0253	-0.364	536.0345	-0.478	536.0479	+0.518		
520.9792	-0.451	521.0259	-0.359	536.0382	-0.472	536.0516	+0.519		
520.9798	-0.452	521.0265	-0.355	536.0418	-0.470	536.0551	+0.513		
520.9802	-0.452	521.0273	-0.352	536.0461	-0.474	536.0589	+0.522		
520.9807	-0.462	521.0281	-0.350	536.0498	-0.470	536.0626	+0.524		
520.9811	-0.455	521.0287	-0.345	536.0534	-0.457	536.0663	+0.530		
520.9816	-0.449	521.0292	-0.357	536.0571	-0.471	536.9469	+0.534		
520.9820	-0.460	521.0298	-0.351	536.0608	-0.460	536.9487	+0.530		

Table 2 (cont.)

HJD	$\Delta \mathrm{B}$	HJD	$\Delta \mathrm{B}$	HJD	$\Delta \mathrm{B}$	HJD	$\Delta \mathrm{V}$
$2450000 .+$		520.9896	-0.459	521.0369	-0.334	$2450000 .+$	
520.9825	-0.456	521.0304	-0.344	536.0645	-0.462	536.9502	+0.523
520.9830	-0.462	521.0310	-0.345	536.9461	-0.460	536.9519	+0.524
520.9834	-0.464	521.0316	-0.342	536.9480	-0.453	536.9548	+0.522
520.9839	-0.455	521.0324	-0.342	536.9495	-0.456	536.9577	+0.516
520.9851	-0.459	521.0330	-0.341	536.9512	-0.457	536.9598	+0.513
520.9859	-0.452	521.0338	-0.343	536.9532	-0.452	536.9626	+0.510
520.9868	-0.457	521.0346	-0.340	536.9566	-0.463	536.9643	+0.514
520.9877	-0.461	521.0351	-0.340	536.9586	-0.458		
520.9883	-0.461	521.0357	-0.337	536.9612	-0.465		
520.9890	-0.457	521.0363	-0.337	536.9636	-0.470		

Light variations of SA98-185 were clearly detected on one night (HJD 2450521.0). Its brightness started decreasing at HJD 2450520.99, then reached minimum near HJD 2450521.042 and then slightly increased again (Figure 2). The light curves are similar to that of an Algol-type eclipsing binary (Hoffmeister et al. 1985). Its binary nature can be also deduced from the SSO data which showed a similar brightness decrease of about $0{ }^{\mathrm{m}} 06$ in all filters (B, V and I).

Light variations of SA98-185 have not been reported before (Kholopov et al. 1988). The UBVRI photometry performed by Landolt (1992) for 37 nights (45 data points) did not show any peculiarity of SA98-185 and gave very low mean errors of magnitudes and colors (for example, $\mathrm{V}=10.536 \pm 0.0018$). However, our observations suggest that it is a detached eclipsing binary with a minimum brightness near HJD 2450521.042, and an amplitude of at least $0{ }^{\mathrm{m}} 14$ in the blue band.
S.-L. KIM ${ }^{1}$
H. SUNG ${ }^{2}$
S.-G. LEE ${ }^{1}$
${ }^{1}$ Korea Astronomy Observatory
Taejon, 305-348, Korea
e-mail : slkim@seeru.boao.re.kr
${ }^{2}$ Visiting Fellow, MSSSO,
Australian National University, Australia

References:

Hoffmeister, C., Richter, G., Wenzel, W., 1985, in Variable stars, p. 201
Kholopov, P.N., Samus', N.N., Frolov, M.S., Goranskij, V.P., Gorynya, N.A., Kireeva, N.N., Kukarkina, N.P., Kurochkin, N.E., Medvedeva, G.I., Perova, N.B., Shugarov, S.Yu. 1985-1988, General Catalogue of Variable Stars, 4th Edition (Moscow: Nauka Publishing House)
Landolt, A.U., 1983, AJ, 88, 439
Landolt, A.U., 1992, AJ, 104, 340
Massey, P., Davis, L.E., 1992, A User's Guide to Stellar CCD photometry with IRAF
Menzies, J.W., Marang, F., Laing, J.D., Coulson, I.M., Engelbrecht, C.A., 1991, MNRAS, 248, 642
Richer, H.B., Pritchet, C.J., Crabtree, D.R., 1985, ApJ, 298, 240

ERRATUM

In the printed version the affiliation for author S.-G. LEE was erroneously given as " 3 ".

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4467
Konkoly Observatory
Budapest
14 April 1997
HU ISSN $0374-0676$

SORTING OUT W BOOTIS AND ITS COMPARISON STARS

W Bootis (HR 5490, HD 129712, V ~4.81, SpT M3 III) is a bright example of a small-amplitude red variable. Percy \& Desjardins (1996) recently reported that W Boo had changed period in about 1990, from 25 days to 50 days, and suggested that W Boo had switched pulsation mode. Unfortunately, the check star (HD 130446) used in the differential photometry appeared to be slightly variable. A second check star (HR 5524, HD 130603) was adopted, but it too appeared to be slightly variable. We therefore decided to observe all three stars in 1996, relative to the original comparison star, and a new check star. We report the results here.

The comparison star was HR 5534 (HD 130948, $V=+5.85, \mathrm{~B}-\mathrm{V}=+0.56, \mathrm{SpT}$ G0-2 V) and the new check star was HR 5454 (HD 128402, $V=+6.41, \mathrm{~B}-\mathrm{V}=+1.1, \mathrm{SpT} \mathrm{K} 0$). Five observers (Beresky, Luedeke, Smith, Thompson, Wood) carried out the measurements as part of the American Association of Variable Star Observers (AAVSO) photoelectric photometry program (Landis et al. 1992). The observations were made and reduced as described there, and in Percy \& Desjardins (1996).

We have a total of 48 V observations of W Boo (and its comparison and new check star), 23 observations of HD 130446, and 25 observations of HR 5524. The standard deviation of the (new check - comparison) magnitudes is $\sigma=0.011$, which is the expected error of the observations, especially considering that they were made by five different observers. These stars therefore appear to be constant. The σ of the (HR 5524 - comparison) magnitudes is 0.010 , which suggests that this star is also constant.

The σ of the (HD 130446 - comparison) magnitudes is 0.020 , which suggests that this star may be slightly variable. It is also possible that the larger scatter is due to the faintness $(\mathrm{V}=7.6)$ of the star. The power spectrum of the previous observations of this star (Percy \& Desjardins 1996) showed a peak at 0.1277 cycle/day, but this peak does not appear in the power spectrum of the present observations, nor does it produce a reasonable phase diagram. There are several peaks in the power spectrum of the present observations, none of which is very conspicuous. The star is K0 III type, so the variability, if real, could be due to star spots. Hatzes \& Cochran (1996) have recently reported short-term radial velocity variations in K giants, which they attribute to pulsation.

The 1996 light curve of W Boo (Figure 1) is very interesting. The cycle count period is 24 days (very similar to the period of W Boo before 1990), but it is strongly modulated, and there is some evidence for long-term variations. The light curve can be well represented as the superposition of two periods - 25 and 33 days. Periods of 25,35 and 50 days were found by Percy \& Desjardins (1996), and interpreted as adjacent radial modes. The new 25 - and 33 -day periods were determined independently of the previously-known periods. The mode switching in W Boo is rather similar to that recently reported in RR UMi by Lloyd \& West (1996). This star switched between periods of 34 and 61 days, with strong modulation of the amplitude.

Figure 1. The 1996 V light curve of W Boo, relative to the comparison star HR 5534. The time axis is (JD - 2450000). Note the modulation in the amplitude of the pulsation; the light curve can be represented as the superposition of 25 - and 33 -day periods

Acknowledgements. A. Desjardins and M. Marinova were participants in the University of Toronto Mentorship Program, which enables outstanding senior high school students to take part in research projects at the university. JRP acknowledges a research grant from NSERC Canada, and thanks the AAVSO for the infrastructure within which this project was carried out.

JOHN R. PERCY
ADRIEN DESJARDINS
MARGARITA MARINOVA
Department of Astronomy and
Erindale College
University of Toronto
Mississauga, Ontario
Canada L5L 1C6
e-mail: jpercy@erin.utoronto.ca
TED BERESKY
1833 S. Virginia Avenue, Springfield MO 65807-7101, USA

KENNETH LUEDEKE

9624 Giddings Avenue NE
Albuquerque NM 87109, USA
MICHAEL S. SMITH
6715 N. Table Mountain Rd.
Tucson AZ 85718, USA
RAYMOND R. THOMPSON
7 Welton Street
Maple, Ontario
Canada L6A 1R8
JAMES E. WOOD
15101 David Court
Bakersfield CA 93312, USA

References:
Hatzes, A.P. \& Cochran, W.D., 1996, in Cool Stars, Stellar Systems, and the Sun, ed. R. Pallavicini \& A.K. Dupree, ASP Conf. Ser., 109, 527
Landis, H.J., Mattei, J.A. \& Percy, J.R., 1992, IBVS No. 3739
Lloyd, C. \& West, K.W., 1996, IBVS, No. 4335
Percy, J.R. \& Desjardins, A. 1996, PASP, 108, 847

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4468

Konkoly Observatory
Budapest
16 April 1997
HU ISSN 0374-0676

IMPROVED EPHEMERIS AND NEW OBSERVATIONS OF NSV 02980

NSV 02980 (S 03990 , CSV 00076, GSC 0141.0638) was originally announced as a variable star by Hoffmeister (1949). Additional observations carried out by Guarro-Flo et al. (1995) showed that NSV 02980 is in fact a W UMa-type eclipsing binary system. The following preliminary ephemeris was given:

$$
\text { Min. } I=\text { HJD } 2449800.429+0.41630 \times \mathrm{E}
$$

To improve the above ephemeris and its light curve, NSV 02980 was observed in integral light and in the B and V bands during several nights, from December 29, 1995 to January 17,1997 , using the $0.32-\mathrm{m}$ Ritchey-Chretien telescope (Moschner) and the $0.20-\mathrm{m}$ SC-telescope (Kleikamp) equipped with ST-6 cameras, at private observatories in Germany, and the $0.51-\mathrm{m}$ telescope at l'Ametlla del Valles Observatory, in Spain, equipped with a Starlight Xpress CCD camera. GSC 0141.0390 and GSC 0141.0666 were used as comparison and check stars respectively.

From the new set of data a list of minima were derived using the Kwee and van Woerden (1956) method. These new minima showed that the preliminary period given by GuarroFlo et al. was an alias one. After performing a least-squares linear fit on the minima the following improved ephemeris was found:

$$
\begin{gathered}
\text { Min. } \mathrm{I}=\mathrm{HJD} 2450081.3665+0 \mathrm{~d} 34451 \times \mathrm{E} \\
\pm 0.0001 \pm 0.00003
\end{gathered}
$$

Table 1

HJD	Epoch	Minimum	Filter	O-C	Observer
2450081.5394	0.5	II	no	0.0007	(1)
2450086.3616	14.5	II	no	-0.0003	(1)
2450086.5331	15.0	I	no	-0.0010	(1)
2450088.4287	20.5	II	no	-0.0002	(1)
2450096.5243	44.0	I	no	-0.0006	(1)
2450102.5542	61.5	II	V	0.0003	(2)
2450116.5057	102.0	I	V	-0.0008	(2)
2450120.4702	113.5	II	V	0.0018	(2)
2450122.5363	119.5	II	V	0.0008	(2)
2450125.4621	128.0	I	V	-0.0017	(2)
2450129.4269	139.5	II	B	0.0012	(2)
2450130.4605	142.5	II	B	0.0013	(2)
2450131.4931	145.5	II	B	0.0004	(2)
2450144.4120	183.0	I	B	0.0001	(2)
2450153.3679	209.0	I	no	-0.0013	(1)
2450154.4033	212.0	I	B	0.0006	(2)
2450155.4349	215.0	I	B	-0.0013	(2)
2450157.3311	220.5	II	no	0.0001	(1)
2450380.5737	868.5	II	no	0.0003	(1)
2450464.4617	1112.0	I	no	0.0001	(3)
2450465.4964	1115.0	I	no	0.0012	(1)

Observer: (1) Moschner, (2) Garrigos, (3) Kleikamp

Figure 1

Figure 2

Table 1 summarizes minima timings and $\mathrm{O}-\mathrm{C}$ residuals according to the new ephemeris. After computing the improved ephemeris, to obtain a history of the period behaviour of NSV 02980, the variable was investigated (Moschner) on 350 plates taken with the 0.4m astrograph at Sonneberg Observatory. The variable was found to be at minimum light on 26 plates, covering the interval from January 5, 1930 until January 17, 1991.

Analysis of the timings suggests that the period of NSV 02980 has remained fairly constant from JD 2434391.5 until now. The observational gap between JD 2429302 and JD 2434391 does not allow to ascertain whether the period before JD 2434391 was different from the present one. Figure 1 shows $\mathrm{O}-\mathrm{C}$ residuals calculated against the new ephemeris. The typical error of photographic measurements is ± 0.02 days whereas that of the CCD measurements is ± 0.00005 days. Before JD 2434391 it is not possible to unambiguously assign an epoch number. For this reason, Figure 1 shows residuals for the two closest computed epochs to the observed photographic minima before JD 2434391, which are represented by open boxes and crosses. Solid circles represent residuals after JD 2434391. Table 2 lists photographic minima before JD 2434391 and gives the key to Figure 1. Table 3 lists photographic minima after JD 2434391.

Table 2

HJD	Epoch [Open boxes]	Epoch [Crosses]	O-C [Open boxes]	O-C [Crosses]
2425981.5293	-69953.5	-69954.0	-0.1569	0.0154
2427344.5938	-65997.0	-65997.5	-0.1462	0.0261
2427479.4689	-65605.5	-65605.0	-0.1468	0.0255
2427718.5626	-64911.5	-64912.0	-0.1430	0.0293
2428126.4781	-63727.5	-63728.0	-0.1274	0.0449
2428249.3306	-63371.0	-63371.5	-0.0927	0.0796
2428428.6097	-62850.5	-62851.0	-0.1310	0.0413
2428496.5094	-62653.5	-62654.0	-0.0998	0.0725
2428609.3341	-62326.0	-62326.5	-0.1021	0.0702
2428629.3392	-62268.0	-62268.5	-0.0786	0.0937
2428963.3371	-61298.5	-61299.0	-0.0832	0.0891
2429302.3481	-60314.5	-60315.0	-0.0700	0.1023

Table 3

HJD	Epoch	$\mathrm{O}-\mathrm{C}$
2434391.4982	-45542.5	-0.0216
2434451.3273	-45369.0	0.0350
2434809.4239	-44329.5	0.0135
2435192.3223	-43218.0	-0.0110
2439500.3383	-30713.5	0.0797
2445397.3933	-13596.0	-0.0152
2445672.4948	-12797.5	-0.0050
2446850.3830	-9378.5	0.0005
2447088.5847	-8687.0	-0.0234
2447099.6266	-8655.0	-0.0059
2447558.5165	-7323.0	-0.0033
2447566.4500	-7300.0	0.0065
2448271.4952	-5253.5	0.0120
2448273.5671	-5247.5	0.0168

Also, observations allowed to obtain a new light curve in the B and V bands. To obtain the B and V magnitudes of the light curve of NSV 02980, the comparison star GSC 0141.0390 was standardized using an OPTEC SSP-5A photoelectric photometer attached to the Cassegrain focus of the $0.6-\mathrm{m}$ telescope at Esteve Duran Observatory (Spain). Results indicate that NSV 02980 is an object with a V magnitude of $11.83 \pm$ 0.03 at maximum I (maximum I is the maximum following the primary minimum), and an average $B-V$ color index of $+0^{\mathrm{m}} 59 \pm 0^{\mathrm{m}} 08$. Figure 2 depicts B, V, and $B-V$ phase curves. Table 4 summarizes amplitudes of the primary and secondary minima and maximum light levels in the B and V bands. Systematic differences appearing around Max. I might be due to observational uncertainties.

Table 4

	Max. magnitude	Min. I amplitude	Min. II amplitude
B Band	$12 \mathrm{~m} 42 \pm 0.05$	0.59 ± 0.04	$0 \mathrm{~m} 50 \pm 0.03$
V Band	$11 \mathrm{~m} 83 \pm 0.03$	$0 \mathrm{~m}^{\mathrm{m}} 54 \pm 0.03$	$0 \mathrm{~m} 47 \pm 0.04$

Wolfgang MOSCHNER	Josep M. GOMEZ-FORRELLAD
Timmerschlade 8	Grup d'Estudis Astronomics
D-57368 Lennestadt	Apartado 9481
Germany	08080 Barcelona
e-mail:wolfgang.moschner@t-online.de	Spain
Enrique GARCIA-MELENDO	e-mal:jmgomez@astro.gea.cesca.es
Esteve Duran Observatory	Wilhelm KLEIKAMP
El Montanya - Seva	Hulsstr. 16
08553 Seva	45772 Marl
(Barcelona)	Germany
Spain	e-mal:wilhelm.kleikamp@t-online.de
e-mail:duranobs@astro.gea.cesca.es	

References:
Guarro-Flo, J., Gomez-Forrellad, J.M., Garcia-Melendo, E., Vidal-Sainz, J., 1995, IBVS, No. 4246
Hoffmeister, C., 1949, Astronomische Abhandlungen, Erganzungshefte zu den Astronomischen Nachrichten, 12, No. 1
Kwee, K.K., van Woerden, H., 1956, BAN, 12, 327

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4469

Konkoly Observatory
Budapest
16 April 1997
HU ISSN 0374-0676

PHOTOMETRIC RESULTS ON THREE HIPPARCOS VARIABLES: THE NEW ECLIPSING BINARY SYSTEMS HD 125488 AND HD 126080, AND THE STAR HD 341508

An analysis of the photometric data from the Tycho Mean Photometric Catalogue and the Tycho Photometric Observations Catalogue performed by Woitas (1997), yielded a list of 43 new bright variables. Several boreal stars of this list were included in the program for the identification and characterization of new variable stars carried out by the Grup d'Estudis Astronomics and the Esteve Duran Observatory. The first objects monitored were HD 125488, HD 126080 and HD 341508.

HD 125488 ($=$ SAO $120401=$ PPM $160531=\mathrm{BD}+06^{\circ} 2869=\mathrm{AGK}+06^{\circ} 1704=\mathrm{GSC}$ 323.930) was observed in the V band for 6 nights, from 13 to 21 March 1997, using a CCD camera and a $6-\mathrm{cm}$ refracting telescope at Esteve Duran Observatory. HD 124929 was used as comparison star, and HD 125452 , HD 125322 , and GSC 323.1326 as check stars. HD 125488 has an average photovisual magnitude of $7^{\mathrm{m}} 3$ and F2 spectral type. According to Woitas, this object is an RR Lyr variable with a 0.20 day period. Observations show that HD 125488 is not an RR Lyr star but an eclipsing binary system with a period of 0.48 days (Figure 1). The light curve indicates that both minima are almost equally deep, the amplitude being 0 m 37 in V . There was ambiguity in the selection of the primary minimum, so it was arbitrarily assigned to the best observed minimum. Additional photometric observations should be performed to clarify this point. The following ephemeris was computed:

$$
\begin{gathered}
\text { Min. } I=\text { HJD } 2450525.6434+0 \mathrm{~d} .48069 \times \mathrm{E} \\
\pm 0.0003 \pm 0.00010
\end{gathered}
$$

Table 1 gives a list of minimum timings and $\mathrm{O}-\mathrm{C}$ residuals.
Table 1

HJD	Epoch	Minimum	$\mathrm{O}-\mathrm{C}$
2450520.5961	-10.5	II	-0.0001
2450525.6434	0.0	I	0.0000
2450526.6051	2.0	I	0.0003
2450528.5274	6.0	I	-0.0001

A preliminary analysis suggests that the mass ratio of the components in this binary system is close to 1 , the minima are due to partial occultations, and than the fill out factor f is bigger that 0.25 .

HD $126080\left(=\right.$ SAO $45017=$ PPM $54091=\mathrm{BD}+42^{\circ} 2486=\mathrm{AGK} 3+41^{\circ} 1245=\mathrm{GSC}$ 3038.0566) was observed in the V band for 16 nights, from 12 March to 13 April 1997, at Mollet del Valles Observatory, using also a CCD camera and a $6-\mathrm{cm}$ refractor. It is

HD 125488

Figure 1

HD 126080

Figure 2
an object with an average photovisual magnitude of 8 m 6 and A2 spectral type. HD 126511 and HD 126426 were used as comparison and check stars respectively. HD 126080 was classified as an RR Lyrae (Woitas) with a 0.69 day period. CCD observations show that this variable is not an RR Lyrae star but an eclipsing binary star with a period over 1 day (Figure 2). Photometric data indicate that the primary minimum has an amplitude of 0.48 magnitude, and the depth of the secondary minimum is 0 m 37 . The phase curve also displays an O'Connell effect (O'Connell 1951), amounting to $\Delta \mathrm{m}=0^{\mathrm{m}} .^{1}$ ($\Delta \mathrm{m}=$ Max.II-Max. I, where Max. I follows the primary minimum). The following ephemeris was computed:

$$
\begin{gathered}
\text { Min. } \mathrm{I}=\text { HJD } 2450525.5234+1 \mathrm{~d} 056 \times \mathrm{E} \\
\pm 0.0002 \pm 0.002
\end{gathered}
$$

HD 341508 ($=$ SAO $85688=\mathrm{BD}+23^{\circ} 3251=\mathrm{PPM} 106718=\mathrm{AGK} 3+23^{\circ} 1697=$ GSC 2091.1465), is a star of 9.3 magnitude (photovisual) and G0 spectral type which, according to Woitas, is a classical Cepheid variable with a period of 5.89 days. This object was observed in the V band for 19 hours during six consecutive nights, from 13 to 18 March 1997, with a CCD camera, using the 0.41-m telescope at Mollet del Valles Observatory. $\mathrm{BD}+23^{\circ} 3249$ was used as comparison star and GSC 2091.2251 as check star. Observations show that HD 341508 remained constant during the six nights within ± 0.015 magnitudes. Correct identification with HD 341508 has been checked. If this star is variable, photometric results indicate that it is not a Cepheid.

J.M. GOMEZ-FORRELLAD
Grup d'Estudis Astronomics
Apartado 9481
08080 Barcelona
Spain
e-mail: jmgomez@astro.gea.cesca.es

E. GARCIA-MELENDO
Esteve Duran Observatory
El Montanya - Seva
08553 Seva, Barcelona
Spain
e-mail: duranobs@astro.gea.cesca.es

References:

O'Connell, D.M.K., 1951, Riverview Pub., 2, 85
Woitas, J., 1997, IBVS, No. 4444

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4470

Konkoly Observatory
Budapest
22 April 1997
HU ISSN 0374-0676

PHOTOMETRIC OBSERVATION OF T TAURI TYPE STARS: DI Cep, T Tau, V410 Tau, GW Ori, V649 Ori

Most of the pre-main sequence stars, as well as T Tauri type stars, are characterized by some kind of variability of their brightness. In the $U B V$ photometric system, magnitudes of these stars change by up to 2.8 mag on a time scale of hours to years (e.g. Appenzeller and Mundt, 1989; Herbst et al., 1994).

Photometric observations over the past 50 years showed that sometimes regular, sometimes erratic behaviour casts some light on the processes taking place in these objects and on their interaction with the environment. On the analysis of more than 10000 entries on 80 young stars, Herbst et al. (1994) proposed that there were three groups of light variations related to the spectra of these stars. Application of modern Fourier analysis methods now allows to reveal periodic components of light variability for some of these objects. This property of the T Tauri stars can be explained by rotational modulation for a star with an asymmetric distribution of spots on its surface (e.g. Vrba et al., 1989; Shevchenko et al., 1991). However, a more detailed study of these objects needs a large quantity of observational data on individual stars during a long time interval.

Our $W B V R$ observations of the T Tauri type stars DI Cep, T Tau, V410 Tau, GW Ori, and V649 Ori were carried out in autumn 1995 with the single-channel photon-counting photometer attached to the 60 cm telescope at the Crimean laboratory of Sternberg Astronomical Institute (Moscow). Observations were done by differential photometry. All stars were measured together with two comparison stars, and background light was measured at least twice in each band. For transformation to the standard system, we observed standard stars of luminosity classes IV-V and late spectral types from the list of Kornilov et al. (1991). Rms errors of the differential photometry are about 0.01-0.02 mag for $B V R$ bands and 0.03 mag for the W band. In this note, we report on the results of observations for five objects. The results are presented in the table.

Application of the W photometric band (Straizys, 1977) for CTTSs has some advantages compared to the U band; thus, the W band has lower transmission at larger wavelengths decreasing the influence of the Balmer jump, which is essential for stars with emission-line spectra. On the other hand, the W band reduces the red leak, while the U band has a considerable red leak. Our measurements in the W band showed little difference compared to U band measurements of other authors (see, e.g., Herbst et al., 1994).

Table 1. W $B V R$ observations of T Tauri stars

JD24...	V	$W-B$	$B-V$	$V-R$	JD24..	V	$W-B$	$B-V$	$V-R$	
T Tau					GW Ori					
50002.223	9.91	0.59	1.28	0.75	50002.320	9.67	0.38	1.03	0.90	
50003.423	9.90	0.47	1.20	0.76	50003.377	9.69	0.38	1.02	0.88	
50004.420	9.96	0.57	1.16	0.78	50004.390	9.73	0.37	1.03	0.89	
50004.502	9.89	0.55	1.19	0.70	50004.552	9.81	0.34	0.96	0.92	
50005.402	9.91	0.58	1.19	0.73	50006.467	9.80	0.46	0.88	0.95	
50006.355	9.92	0.57	1.10	0.80	50006.550	9.97	0.38	0.86		
50006.379	9.94	0.50	1.18	0.80	50007.464	9.93	0.38	0.89		
50006.466	9.93	0.58	1.22	0.71	50008.462	9.88	0.37	0.88		
50007.353	9.96	0.56	1.26		50009.434	9.82	0.36	0.91	0.90	
50007.420	9.97	0.55	1.23		50010.397	9.75	0.38	0.94	0.94	
50008.387	9.86	0.54	1.16							
50009.361	9.90	0.52	1.17	0.79						
50010.363	9.91	0.53	1.19	0.73						
DI Cep										
49970.420	11.43	-0.15	0.87	0.57	50006.195	11.46	0.06	0.91	0.57	
49973.401	11.40	-0.13	0.90	0.56	50006.233	11.46	0.06	0.94	0.68	
49974.422	11.38	-0.17	0.91	0.58	50007.198	11.36	-0.26	0.89		
50002.402	11.68	-0.12	0.62	0.88	50008.197	11.40	-0.24	0.88		
50003.208	11.71	-0.25	0.65	0.89	50008.242	11.38	-0.25	0.90		
50004.202	11.41	-0.18	0.92	0.60	50009.218	11.36	-0.18	0.87	0.59	
50004.289	11.43	-0.12	0.96	0.59	50009.270	11.36	-0.07	0.80	0.60	
50005.206	11.42	-0.21	0.73	0.59	50010.309	11.36	-0.15	0.91	0.55	
50005.261	11.43	0.04	0.75	0.55	50010.367	11.35	-0.14	0.91	0.55	
50006.177	11.14	-0.32	0.21	0.26						
V410 Tau						V649 Ori				
49969.576	10.77	0.89	1.27	0.93	50002.379	12.02	0.51	1.11	0.72	
49972.533	11.03	0.84	1.01	1.23	50003.472	12.00	0.49	1.10	0.74	
49974.451	10.86	0.82	1.16	0.98	50004.420	11.99	0.53	0.98	0.77	
50002.125	10.86	0.75	1.15	0.97	50007.473	11.98	0.57	1.01		
50003.323	10.98	0.91	1.02	1.20	50008.484	12.09	0.59	0.91		
50004.310	10.75	0.86	1.28	0.97	50009.442	12.11	0.51	0.99	0.82	
50005.420	10.85	0.83	1.17	0.96	50010.413	12.12	0.46	1.06	0.85	
50006.299	10.97	0.95	1.07	1.18						
50007.320	11.06	0.89	0.95							
50008.346	10.87	1.03	1.16							

Fortunately, a long sequence of clear nights on October 10-20 allowed me to get continuous measurements of some program stars. In the table, we presented Julian Dates, W, B, V, and R measurements.

Photometric monitoring of T Tauri type stars by different authors has revealed periodic variations in some stars, with periods between 2 and 15 days. Our data allow us to monitor variability of the program stars continuously, for $7-10$ days. Moreover, our measurements show light variability of some stars within a night.

Figure 1

Figure 2
In Figures 1 and 2, as an example, we present portions of light curves respectively of DI Cep and T Tau in all photometric bands. Figure 1 shows that, on JD 2450006, DI Cep increased its brightness by 0.2 in W and B and by $00^{\mathrm{m}} 1$ in V and R bands. Thus, we see photometric activity of DI Cep during that night. Other program stars showed no marked photometric activity ($\Delta \mathrm{V} \leq 0^{\mathrm{m}} 1$).

So, continuous photometric monitoring has not revealed evident periodic modulation of brightness for program stars. We observed variability in $W B V R$ bands within $\Delta V=0{ }^{\mathrm{m}} 1$ for all stars and a higher photometric activity for DI Cep.

N.Z. ISMAILOV
Sternberg Astronomical Institute 13, Universitetskij Prosp.,
Moscow 119899, Russia

References:

Appenzeller, I., Mundt, R., 1989, Astron.Astrophys.Rev., 1, 291
Herbst, W., Herbst, D.K., Grossman, E.J., Weinstein D., 1994, Astron. J., 108, 1906
Kornilov, V.G., Volkov, M.I., Zakharov, A.I. et al., 1991, Trudi GAISH, LXIII
Shevchenko, V.S., Grankin, K.N., Ibragimov, M.A. et al., 1991, IBVS, No. 3652
Straizys, V., 1977, Multicolor Stellar Photometry, "Mokslas", Vilnius
Vrba, F.J., Rydgren, A.E., Chugainov, P.F. et al., 1989, Astron. J., 97, 483

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4471

Konkoly Observatory
Budapest
23 April 1997
HU ISSN 0374-0676

THE 73rd NAME-LIST OF VARIABLE STARS

The present 73rd Name-List of Variable Stars, compiled basically in the manner first introduced in the 67th Name-List (IBVS No. 2681, 1985), contains all data necessary for identification of 771 new variables finally designated in 1997. The total number of designated variable stars, not counting designated non-existing stars or stars subsequently identified with earlier-designated variables, has now reached 31918. In the nearest future, we are going to present two special Name-Lists containing variables discovered by the HIPPARCOS mission and in the frame of the OGLE project.

The 73rd Name-List consists of two tables. Table 1 contains the list of new variables arranged in the order of their right ascensions. It gives the ordinal number and the designation of each variable; its equatorial coordinates for the equinox 1950.0 (note that we have changed the standard accuracy. For all stars but two, we present right ascensions to 0.1 and declinations to $1^{\prime \prime}$. The coordinates were found in the literature, taken from positional catalogues, including GSC, or determined by the authors. Sometimes the accuracy may actually be about 2 seconds of arc. For V725 and V726 Cas, we could not improve the published rough coordinates because finding charts are not available); the range of variability (sometimes the column "Min" gives, in parentheses, the amplitude of light variation); and the system of magnitudes used (the symbols "Rc", "Ic" designate magnitudes in Cousins's $R I$ system; the symbols "y", "b", "u" mean Strömgren's y, b, u magnitudes; " g " designates magnitudes in the system of Thuan and Gunn; "T" stands for broad-band Tycho magnitudes formed from B and V measurements; "r" are red magnitudes not tied to a particular system); the type of variability according to the classification system described in the forewords to the first three volumes of the 4th GCVS edition (with the additions introduced in the 68th Name-List, IBVS No. 3058, 1987, in the 69th Name-List, IBVS No. 3323, 1989, and in the 72nd Name-List, IBVS No. 4140); two references to the list of papers which follows Table 2 (the first reference is to the investigation of the star, the second one indicates the paper containing a finding chart, or the corresponding Durchmusterung - BD , CoD, or CPD - containing the variable, or the Hubble Space Telescope Guide Star Catalog - GSC - if the star can be found using it).

In a small number of cases, the value of the variability amplitude (column "Min", in parentheses) could not be expressed in the same system of magnitudes as the star's brightness; in such cases we indicate the photometric band for the amplitude separately.

Table 2 contains the list of variables arranged in the order of their variable star names within constellations. After the designation of a variable, its ordinal number from Table 1 is given, as well as identifications with several major catalogues and identifications necessary to find this star in the papers with the first (or independent) announcement of the discovery of its variability. References to such papers are given in square brackets after the corresponding identification. The name of the discoverer accompanies the reference
only in the case of its being different from the name of the author(s) of the paper referred to. For the stars having NSV catalogue numbers, the references to discovery papers already taken into account in the NSV catalogue are not always given. After the identifications, some minimal remarks are given if necessary.

Several new corrections to earlier Name-Lists have been found necessary. Thus, in the Name-List No. 67 (IBVS No. 2681), V2132 Oph is actually V1003 Oph, this was not revealed because of the then-adopted coordinates for V2132 Oph being seriously in error. The same applies to V489 Lyr (Name-List No. 71, IBVS No. 3840; actually the star is identical with BI Lyr).

Coordinates for several stars in the Name-Lists Nos. 67 (op.cit.), 68 (IBVS No. 3058), 72 (IBVS No. 4140) are, for different reasons, in error. The table below contains a list of these stars with corrected coordinates.

No.	Star		$\alpha_{1950.0}$	$\delta_{1950.0}$
67346	V930	Sco	$16^{\mathrm{h}} 06^{\mathrm{m}} 56^{\mathrm{s}}$	$-23^{\circ} 43.5$
67347	V931	Sco	160844	-2524.3
67350	V932	Sco	161541	-2837.9
67360	V938	Sco	162701	-2617.3
67361	V2131	Oph	162814	-2427.6
68242	AO	Lyn	061311	+5932.5
68567	V1902	Cyg	211508	+3733.4
72112	V702	Mon	074404	-0437.9
72338	V4314	Sgr	180720	-3123.3

The following significant identifications are to be added to the Name-Lists Nos. 67 and 72: PZ And $=\mathrm{BD}+49^{\circ} 620$ (6.2), V1376 Aql $=\mathrm{HD} 335387$ (K7), β Leo $=$ Gliese 448, V1308 Ori = AFGL 5191, V4278 Sgr = NSV 10267, V4284 Sgr = NSV 10272, V4289 Sgr = NSV 10282.

Several more corrections to Name-List No. 72: V2012 Cyg should have the variability range 10.7 to 11.2 P , type SR :; V2303 Oph: the magnitudes quoted are in the V band; V353 Pup = NSV 03431, not 03731.

Note that the corrected version of the past Name-Lists, in the form of a combined Name-List Nos. 67-72, is available as a zip file from Sternberg Astronomical Institute (ftp neptun.sai.msu.su, cd pub/groups/cluster/gcvs).

Thanks are due to S.V. Antipin, O.V. Durlevich, M.S. Frolov, N.N. Kireeva, and E.N. Pastukhova for their help during the preparation of the present Name-List and to all members of the GCVS team who prepared information for the variable star data base. This study was supported in part by Russian Foundation for Basic Research through grant 97-02-16739.

E.V. KAZAROVETS
N.N. SAMUS
Institute of Astronomy
of Russian Academy of Sciences
48, Pyatnitskaya Str.
Moscow 109017, Russia

Table 1

No.	Name		R.A., Decl., 1950.0					$, \quad \underset{m}{\text { Max }}$	$\begin{gathered} \text { Min } \\ \mathrm{m} \end{gathered}$			Type	Ref	
73001	AY	Scl	00	01	46.0	-30	561	$17 \quad 8.98$	9.88		J	EA	306	GSC
73002	V706	Cas	00	04	56.9	+64	263	3812.0	16.0		V	M :	072	072
73003	V707	Cas	00	05	41.3	+52	291	1611.6	16.8		V	M :	072	072
73004	V708	Cas	00	08	34.1	+64	024	4911.5	16.5		V	M :	072	072
73005	LN	Peg	00	09	54.6	+14	171	118.40	8.59		V	RS	005	BD
73006	BI	Psc	00	10	07.6	+12	512	2413.3	18.5		B	UV	270	270
73007	QR	And	00	17	14.0	+21	401	1312.16	12.69		V	NL	001	002
73008	QS	And	00	19	03.7	+27	524	4916.67	17.09		V	EW	003	
73009	V709	Cas	00	26	01.9	+59	004	4714.75	15.35		B	XM	068	068
73010	V710	Cas	00	33	52.1	+63	122	2418.6	21.6		V	FU	074	074
73011	V711	Cas	00	35	37.8	+48	062	2625.02	26.19		g	E	075	075
73012	V712	Cas	00	35	41.0	+48	034	4024.48	25.41		g	E	075	075
73013	V713	Cas	00	35	41.6	+48	052	2324.55	25.59		g	E	075	075
73014	V714	Cas	00	35	41.7	+48	095	5124.46	25.32		g	E	075	075
73015	V715	Cas	00	36	08.0	+48	084	4824.32	25.4		g	E	075	075
73016	V716	Cas	00	36	11.4	+48	103	3924.17	(25.08		g	E	075	075
73017	V717	Cas	00	36	11.4	+48	075	5724.28	25.33		g	RRC:	075	075
73018	V718	Cas	00	36	11.8	+48	110	0424.22	25.2		g	E	075	075
73019	V719	Cas	00	36	12.6	+48	103	3024.30	25.33		g	E	075	075
73020	BK	Psc	00	37	04.6	+10	225	5510.41	10.60		V	RS	269	153
73021	QT	And	00	38	35.5	+34	085	529.5	(0.43	Rc)	V	BY+	004	BD
73022	BL	Psc	00	41	25.4	+09	163	3611.30	11.39		U	NL	271	153
73023	V720	Cas	00	42	16.3	+53	102	249.6	12.5		P	SR	076	077
73024	BG	Phe	00	46	48.4	-56	220	0910.31	10.36		V	BE	266	267
73025	AZ	Scl	00	50	39.0	-36	363	3812.32	12.5		V	BE	307	CoD
73026	V721	Cas	00	53	31.7	+59	232	2912.2	(15.0		V	M :	072	072
73027	alpha	Scl	00	56	11.9	-29	373	384.31	(0.04	u)	V	SXARI	308	CoD
73028	V722	Cas	00	56	20.8	+60	281	1111.9	14.7		V	M	072	072
73029	sigma	Scl	01	00	03.3	-31	491	$15 \quad 5.50$	(0.03	u)	V	ACV :	308	CoD
73030	V723	Cas	01	02	06.6	+53	443	$37 \quad 7.08$	(18.		V	NB	078	079
73031	QU	And	01	10	12.6	+41	232	$23 \quad 7.25$	(0.05)	V	RS	005	BD
73032	V724	Cas	01	11	37.8	+63	205	5310.8	16.2		V	M	072	072
73033	BM	Psc	01	11	54.5	+27	505	5316.22	16.72		V	EW	00	
73034	QV	And	01	13	27.0	+47	490	076.22	(0.05		U	ACV	006	BD
73035	QW	And	01	15	48.6	+49	235	5112.6	(0.45)	V	EW	007	GSC
73036	BN	Psc	01	24	54.2	+27	521	1516.45	16.75		V	EW	003	
73037	BW	Cet	01	28	47.8	-11	223	$33 \quad 9.38$	(0.01	B)	V	ACVO	101	BD
73038	BB	Scl	01	32	42.0	-30	100	017.10	7.17		V	E	055	CoD
73039	B0	Psc	01	46	29.3	+06	091	1012.78	12.8		V	BY	103	GSC
73040	QX	And	01	54	58.8	+37	334	4811.25	11.5		V	EW	008	009
73041	XY	Tri	01	56	47.6	+27	471	1516.29	17.56		V	RRAB	003	
73042	XZ	Tri	01	59	41.8	+27	533	3316.67	18.00		V	RRAB	003	
73043	QY	And	02	07	54.0	+48	373	3411.1	11.9		P	SRA	010	010
73044	ER	Eri	02	08	24.4	-54	444	$48 \quad 9.6$	11.59		U	UV:	155	CPD

Table 1 (continued)

No.	Name			$\begin{aligned} & \text { A., D } \\ & \mathrm{h} \quad \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text {, Decl } \\ & \mathrm{m} \quad \mathrm{~s} \end{aligned}$				${\underset{m}{m a x}}_{\operatorname{Max}}$	$\underset{\mathrm{m}}{\mathrm{Min}}$			Type		ef.
73045	V519	Per	021	1501	01.0	+56	58	51	9.05	9.40		V	BE	257	BD
73046	YY	Tri	021	151	12.5	+28	22	59	5.84	7.72		K	M	014	
73047	V520	Per	021	153	32.6	+56	54	20	6.55	6.66		V	IA	257	BD
73048	V725	Cas	021	175	54	+60	20		12.8	15.4		I	M	080	
73049	XZ	Ari	022	292	28.8	+27	49	52	13.85	14.08		V	EW	003	GSC
73050	BX	Cet	023	333	30.5	+06	38	03	11.64	11.68		V	BY	018	102
73051	V726	Cas	023	333	38	+61	48		11.1	12.1		I	L	080	
73052	YY	Ari	024	402	25.3	+21	50	53	5.12	5.32		J	SR	033	GSC
73053	BY	Cet	024	445	53.3	-00	24	54	9.55	9.69		V	RS	103	BD
73054	VW	For	025	50	44.7	-30	49	57	19.5	20.5		P	AM:	015	015
73055	YZ	Ari	025	54	44.3	+11	06	03	5.05	6.55		J	M	014	
73056	BZ	Cet	025	57	21.6	+07	33	06	7.95	(0.05)	V	BY	005	BD
73057	V727	Cas	025	58	53.3	+69	56	17	10.0	15.8		P	M	081	081
73058	V521	Per	030	04	21.2	+47	07	01	6.41	6.42		V	DSCTC	258	BD
73059	CC	Cet	030	081	12.8	+09	38	10	13.80	14.07		H	R	104	GSC
73060	CD	Cet	0310	103	39.4	+04	35	13	13.81	13.87		V	BY	018	102
73061	V522	Per	031	145	58.8	+47	10	21	11.50	(0.15		V	BY	259	262
73062	V523	Per	031	15	20.1	+48	05	10	12.59	(0.04		V	BY	260	GSC
73063	V524	Per	031	1527	27.1	+48	39	50	13.44	(0.14		V	BY	373	GSC
73064	V525	Per	031	15	32.5	+48	00	08	11.99	(0.10)	V	BY	260	262
73065	ES	Eri	031	15	48.4	-19	55	09	10.70	10.78		V	RS:	156	GSC
73066	V526	Per	031	16	23.8	+49	41	17	12.37	12.64		V	BY	261	261
73067	V527	Per	031	16	33.4	+46	42	12	12.57	(0.04		V	BY	259	GSC
73068	V528	Per	031	17	44.6	+48	24	22	12.80	(0.18		V	BY	262	262
73069	V529	Per	031	18	37.1	+47	23	25	12.00	(0.15)	V	BY	260	262
73070	V530	Per	032	211	15.3	+48	42	47	11.71	(0.09)	V	BY	259	262
73071	V531	Per	032	211	16.8	+48	41	46	11.63	(0.06		V	BY	259	262
73072	V532	Per	03	224	47.8	+49	15	09	11.27	(0.11		V	BY	262	262
73073	V533	Per	032	24	06.1	+48	14	36	15.74	(0.11)	V	BY	260	261
73074	V534	Per	032	241	16.8	+49	01	47	12.29	(0.03)	V	BY	259	GSC
73075	V535	Per	032	24	40.0	+47	15	05	13.52	(0.10)	\checkmark	BY	263	GSC
73076	VX	For	03	24	49.2	-34	37	00	12.2	(19.		V	UG:	161	064
73077	V536	Per	03	25	14.1	+49	01	34	13.05	(0.20)	V	BY	259	262
73078	CE	Cam	03	25	54.2	+58	42	26	4.54	(0.03)		ACYG	044	BD
73079	CL	Oct	032	26	16.4	-85	42	58	14.72	14.90		V	ZZ	208	208
73080	ET	Eri	032	28	44.9	-15	35	03	4.46	4.68		J	SRB	033	GSC
73081	V537	Per	032	28	55.6	+49	00	27	11.98	(0.19)	V	BY	262	262
73082	V538	Per	03	29	14.5	+49	40	38	13.08	(0.08)	V	BY	263	GSC
73083	VY	For	03	29	56.9	-26	07	03	17.45	19.2		V	XM	162	163
73084	V539	Per	033	30	53.5	+49	11	43	13.24	(0.07)	V	BY	263	GSC
73085	CF	Cam	0331	31	11.9	+58	07	42	13.3	14.3		P	DCEP :	045	GSC
73086	V540	Per	03	32	46.2	+48	59	27	11.83	(0.11		V	BY	262	262
73087	V541	Per	033	331	19.4	+48	14	06	12.45	(0.11		V	BY	259	262
73088	V1082	Tau	03	36	41.2	+18	13	34	8.19	(0.05)	V	RS	005	BD

Table 1 (continued)

N	Name		R.A., Decl., 1950.0					$,{ }_{\mathrm{Max}}^{\mathrm{m}}$	$\begin{gathered} \text { Min } \\ \mathrm{m} \end{gathered}$			Type	Ref.	
73089	V542	Per	0336	59.7	+47	545	57	12.89	(0.04)	V	BY	59	GSC
73090	V1083	Tau	0341	103.6	+06	460	04	5.99	7.39		J	M	01	
73091	V1084	Tau	0341	121.3	+24	370	00	11.04	(0.08		V	RS	26	315
73092	V543	Per	0342	211.8	+46	084	44	12.21	(0.12		V	BY	260	222
73093	EU	Eri	0342	34.6	-42	031	14	8.22	8.99		T	SRC	15	D
73094	V1085	Tau	0342	36.9	+23	554	42	10.12	(0.05)	V	BY	259	15
73095	V1086	Tau	0344	404.3	+27	542	28	17.27	18.40		\checkmark	RRAB	00	
73096	V1087	Tau	0344	23.5	+24	41	44	16.8	(20.0		U	UV	316	17
73097	CG	Cam	0344	449.4	+68	011	18	14.2	15.8		B	RCB:	046	GSC
73098	V1088	Tau	0346	16.9	+24	240	05	16.0	17.2		P	UV	318	318
73099	V1089	Tau	0346	6 25.6	+23	411	17	11.35	(0.06		V	BY	26	315
73100	V1090	Tau	0346	34.7	+23	384	40	10.93	(0.03		V	BY	263	15
73101	V1091	Tau	0347	35.3	+25	163	36	12.2	13.1		U	UV	319	319
73102	V1092	Tau	0354	401.0	+28	291	16	11.7	(0.13		V	BY+UV	321	153
73103	V1093	Tau	0400	39.5	+27	552	20	17.40	18.13		V	EW	003	
73104	CH	Cam	0402	240.8	+60	471	12	14.4	(0.1		V	ZZ	047	48
73105	EV	Eri	0406	643.4	-09	220	03	5.12	6.38		J	SRB	033	GSC
73106	V544	Per	0408	35.5	+51	020	07	13.5	14.1		V	LB	26	264
73107	V1094	Tau	0409	05.7	+21	491	14	8.95	9.43		V	EA	322	BD
73108	V1095	Tau	0410	08.4	+28	113	35	13.67	13.76		V	BY	323	324
73109	V1096	Tau	0410	21.6	+28	085	50	13.37	13.58		V	BY	32	324
73110	V1097	Tau	0411	123.8	+28	440	02	11.64	12.37		V	BY	32	324
73111	V1098	Tau	0411	142.8	+27	450	05	12.00	12.19		V	INB	325	324
73112	TW	Ret	0412	203.3	-65	161	14	7.11	7.69		J	RV:	033	
73113	V1099	Tau	0412	25.7	+15	163	38	5.58	(0.02		V	ELL:	326	BD
73114	V545	Per	0414	440.0	+42	011	12	6.22	(0.04)	V	LBV	265	BD
73115	CI	Cam	0415	39.2	+55	524	45	12.31	13.08		B	ZAND :	049	GSC
73116	TX	Ret	0416	610.9	-64	261	16	8.6	(0.03		B	DSCTC	06	CPD
73117	V1100	Tau	0418	829.4	+20	085	55	12.5	(15.5		P	M	256	256
73118	V1101	Tau	0421	153.8	+21	555	51	14.8	16.2		P	UV	327	328
73119	TY	Ret	0423	52.4	-67	134	49	6.90	7.06		J	SR	033	GSC
73120	V1102	Tau	0425	35.4	+17	351	10	12.05	(0.07)	V	BY	26	329
73121	V1103	Tau	0426	606.5	+18	335	52	13.10	13.31		V	BY	323	324
73122	V1104	Tau	0426	608.3	+16	141	14	14.26	(0.05)	V	BY	263	329
73123	V546	Per	0426	65.1	+39	445	58	13.90	13.96		V	BY	018	102
73124	V1105	Tau	0427	52.3	+24	435	57	13.7	18.0		P	UV	330	328
73125	V1106	Tau	0430	-12.7	+24	152	20	16.0	17.2		P	UV	327	328
73126	V1107	Tau	0430	O28.6	+22	354	44	15.7	19.8		P	UV	327	328
73127	V1108	Tau	0431	14.4	+22	203	33	14.7	16.1		P	UV	327	328
73128	V1109	Tau	0431	120.1	+22	174	44	14.8	15.9		P	UV	327	328
73129	V1110	Tau	0431	136.8	+24	545	51	10.34	(0.06)	V	RS	005	BD
73130	V1111	Tau	0431	139.0	+24	405	55	15.0	18.8		P	UV	330	328
73131	V1112	Tau	0431	142.0	+08	155	51	13.1	(0.62)	V	EW	33	331
73132	V1113	Tau	0431	152.6	+22	121	10	14.5	16.7		P	UV	330	328

Table 1 (continued)

Table 1 (continued)

Table 1 (continued)

No.	Name	R.A., Decl., 1950.0							Max	Min			Type	Ref.	
				h m	m				,'	m					
73221	II	CMa	06	551	17.8	-13	103	32	15.22	15.74		V	EW	057	057
73222	IK	CMa	06	55	23.6	-13	090	09	18.00	18.43		V	EW	057	057
73223	CM	Cam	06	57	33.2	+75	290	04	6.96	(0.05)	FKCOM	005	BD
73224	PS	Gem	07	005	53.6	+10	50	42	7.24	7.58		V	SRD	164	BD
73225	IL	CMa	07	04	04.8	-30	344	40	6.32	6.54		V	E+LBV	058	CoD
73226	IM	CMa	07	16	48.8	-24	515	50	10.52	10.58		b	ELL	059	060
73227	IN	CMa	07	185	52.3	-31	411	16	14.64	14.89		V	NL	061	
73228	BL	Lyn	07	283	39.4	+36	20	25	11.76	11.80		V	BY	018	102
73229	BM	Lyn	07	43	42.0	+47	27	43	7.70	(0.25) V	RS+E	005	BD
73230	V436	Car	07	43	43.5	-52	495	53	13.6	15.8		B	UG:	068	068
73231	V354	Pup	07	45	23.7	-27	123	37	17.71	(0.04	y)) B	ZZ	274	048
73232	BM	CMi	07	461	13.0	+05	4700	00	14.34	15.23		V	IS	062	062
73233	V716	Mon	07	50	20.9	-10	345	57	13.8	(0.44) B	RRAB	110	202
73234	PT	Gem	07	51	31.5	+28	075	53	15.77	16.30		V	RRAB	003	
73235	V355	Pup	08	041	18.3	-20	11	22	8.5	(0.04		B	DSCTC	067	BD
73236	EW	UMa	08	12	49.6	+73	14	35	9.83	11.08		V	IS	062	062
73237	BN	Lyn	08	19	25.2	+43	210	01	4.21	4.27		V	SRD	039	BD
73238	FI	Cnc	08	291	13.9	+29	29	23	7.28	(0.17)	FKCOM	005	BD
73239	FK	Cnc	08	30	20.9	+11	26	23	7.94	(0.03)	BY:	005	BD
73240	WX	Pyx	08	30	54.1	-22	381	15	16.2	17.74		V	XM	275	11
73241	WY	Pyx	08	345	53.5	-36	170	07	9.0	(12.		V	M	030	030
73242	MN	Vel	08	36	22.2	-46	434	41	7.89	9.35		T	SRA	157	CoD
73243	B0	Lyn	08	39	43.1	+41	10	40	12.2	(0.32)	DSCT	188	GSC
73244	FL	Cnc	08	41	09.5	+32	143	38	7.03	(0.06)	DSCTC	053	BD
73245	EX	UMa	08	41	21.5	+56	47	22	10.90	11.38		V	RRAB	334	334
73246	FM	Cnc	08	44	36.4	+28	110	03	15.51	16.71		V	RRAB	003	
73247	MO	Vel	08	46	39.6	-41	5010	10	9.58	(0.01 B	()	ACVO	339	CoD
73248	WZ	Pyx	08	51	42.0	-24	3608	08	9.35	11.64		R	M	276	276
73249	XX	Pyx	08	56	27.1	-24	233	30	11.49	(0.08 B)	DSCTC	277	CoD
73250	EY	UMa	08	58	51.2	+50	010	07	13.2	14.4		P	RRAB	335	336
73251	FN	Cnc	08	59	03.5	+28	10	23	15.40	16.71		V	RRAB	003	
73252	BP	Lyn	08	59	53.9	+41	294	40	14.19	14.33		B	E+NL	189	11
73253	MP	Vel	09	09	16.1	-43	035	52	7.8	(0.02) V	DSCTC	067	CoD
73254	MM	Hya	09	11	45.5	-06	351	17	14.1	18.7		B	UG	169	111
73255	MQ	Vel	09	19	28.3	-45	180	06	3.5	5.2		K	M	029	
73256	EZ	UMa	09	21	44.0	+64	092	27	6.23	6.28		V	SRD:	005	BD
73257	MR	Vel	09	23	58.8	-47	451	15	16.98	17.30		V	XI	340	340
73258	MN	Hya	09	26	51.5	-23	515	56	16.4	18.5		Ic	XM+EA	178	178
73259	DX	Leo	09	29	49.9	+27	125	50	7.00	(0.10) V	BY	360	BD
73260	FF	UMa	09	29	54.2	+63	030	01	8.35	(0.12)	RS	005	BD
73261	AK	Ant	09	32	44.7	-28	391	15	8.3	(0.03 b)	b) V	DSCTC	012	BD
73262	MS	Vel	09	34	32.2	-52	191	11	8.13	8.98		T	SRA	157	CoD
73263	MT	Vel	09	43	43.5	-45	40	49	8.1	(0.09) B	DSCTC	067	CoD
73264	MU	Vel	09	45	02.0	-47	164	44	8.6	10.4		K	M	029	

Table 1 (continued)

No.	Name		R.A., Decl., 1950.0					$\begin{gathered} \mathrm{Max}_{\mathrm{m}} \\ \hline \end{gathered}$	Min			Type	Ref.	
73265	DY	Leo	094	4708.7	+11	202	28	7.59	(0.05)	V	RS	005	BD
73266	V437	Car	095	5316.9	-58	27	31	9.32	(0.01	B)	V	ACVO	069	CPD
73267	DZ	Leo	095	5450.0	+28	124	47	16.27	16.84		V	RRC	003	
73268	TU	Sex	101	1046.9	-01	285	56	16.4	17.0		B	EW	314	314
73269	FG	UMa	101	1823.3	+61	095	55	7.45	(0.11)	V	RS	005	BD
73270	MV	Vel	101	1903.0	-55	4727	27	4.49	(0.06)	V	BE	309	CPD
73271	SY	LMi	102	2358.6	+28	141	19	17.71	18.68		V	RRAB	003	
73272	V438	Car	103	3350.0	-57	585	57	11.25	(0.07	B)	V	ELL:	070	070
73273	V439	Car	103	3358.5	-57	582	24	13.46	(0.05	B)	V	BE:	070	070
73274	V440	Car	103	3400.1	-57	572	25	9.14	(0.01)	B	BCEP	070	070
73275	SZ	LMi	103	3412.3	+28	104	48	17.46	18.42		V	RRAB	003	
73276	V441	Car	103	3418.0	-57	583	36	13.51	(0.04	B)	V	ELL	070	070
73277	FH	UMa	104	4353.0	+63	510	02	19.4	(1.8)	V	AM	337	337
73278	EE	Leo	104	4818.6	+07	050	05	11.64	11.70		V	BY	018	066
73279	TT	LMi	105	5539.0	+28	14	49	16.42	17.00		V	RRC	003	
73280	V442	Car	105	5709.4	-60	023	36	13.82	14.45		V	DCEP	071	071
73281	V443	Car	105	5739.5	-60	051	17	13.12	(0.04)	V	DSCTC	071	071
73282	MW	Vel	110	0217.9	-50	570	07	8.43	10.00		T	SRB:	157	CoD
73283	FI	UMa	110	0950.6	+55	261	16	6.65	(0.03 b	b	V	DSCTC	338	BD
73284	FK	UMa	111	1434.4	+29	503	37	9.29	(0.04)	V	RS	005	BD
73285	TV	Crt	111	1937.1	-24	301	11	8.91	8.98		V	RS	005	CoD
73286	CN	Cam	113	3251.6	+81	3418	18	9.80	10.27		B	RRAB	051	BD
73287	V885	Cen	113	3833.7	-55	174	48	7.60	7.95		U	*	084	CPD
73288	EF	Leo	114	4635.4	+28	170	06	14.52	15.78		V	RRAB	003	
73289	IQ	Vir	115	5116.6	+00	494	49	6.30	(0.02)	V	DSCTC	067	BD
73290	TW	Crv	115	5732.1	-18	452	22	12.68	13.55		V	R	128	C
73291	IQ	Com	120	0330.7	+28	160	00	14.92	16.17		V	RRAB	003	
73292	CO	Cru	120	0617.5	-55	270	00	9.22	9.30		V	DSCTC	129	CPD
73293	CP	Cru	120	0752.7	-61	2828	28	9.2	(12.		V	NA:	130	
73294	C0	Cam	120	0952.8	+77	533	38	5.14	(0.07)	V	ELL	052	BD
73295	GV	Mus	123	3408.9	-68	021	10	16.82	17.05		Ic	EW	203	203
73296	GW	Mus	123	3412.3	-68	005	50	17.74	18.02		Ic	EW	203	203
73297	GX	Mus	123	3412.3	-68	110	08	15.76	16.07		Ic	EW	203	203
73298	GY	Mus	123	3413.8	-68	115	50	15.61	15.69		Ic	EW	203	203
73299	GZ	Mus	123	3431.4	-68	045	58	16.01	16.39		Ic	EW	203	203
73300	HH	Mus	123	3433.3	-68	062	25	17.13	17.40		Ic	EA	203	203
73301	HI	Mus	123	3437.2	-68	1018	18	15.55	15.77		Ic	EB	203	203
73302	HK	Mus	123	3444.8	-68	091	13	17.7	18.15:		Ic	EW	203	203
73303	HL	Mus	123	3445.1	-68	054	47	14.74	15.07		Ic	EW	203	203
73304	HM	Mus	123	3447.2	-68	063	34	16.32	16.95		Ic	EW	203	203
73305	HN	Mus	123	3451.5	-68	060	04	15.03	16.03		Ic	EA	203	203
73306	H0	Mus	123	3453.7	-68	065	52	14.99	15.11		Ic	EW	203	203
73307	HP	Mus	123	3454.0	-68	055	56	17.8	18.1		Ic	EB	203	203
73308	HQ	Mus	123	3455.1	-68	071	13	14.22	14.54		Ic	EB	203	203

Table 1 (continued)

Table 1 (continued)

Table 1 (continued)

N	Name		R.A., Decl., 1950.0				$, \operatorname{Max}_{\mathrm{m}}^{\mathrm{m}}$	$\underset{\mathrm{m}}{\mathrm{Min}}$			Type	Ref.	
73397	VW	CrB	1558	5807.9	+33	1939	3914.5	(17.5		B	UG	24	124
73398	VX	CrB	1558	5810.3	+35	0645	4513.6	15.0		B	RRAB	124	124
73399	EV	Dra	1600	0026.9	+51	2908	088.63	(0.06)	V	RS	005	BD
73400	VY	CrB	1604	0416.6	+33	3017	1713.7	15.1		B	RRAB	124	124
73401	V842	Her	1604	0439.1	+50	1913	$13 \quad 9.85$	10.45		V	EW	167	BD
73402	V1027	Sco	1605	0513.0	-38	5739	396.60	6.67		V	ACV	297	CoD
73403	VZ	CrB	1614	1429.8	+30	0340	4014.7	16.1		B	RRAB	12	124
73404	WW	CrB	1615	1515.7	+39	4556	5614.5	16.7		B	RRAB	126	126
73405	EW	Dra	1616	1639.6	+67	2234	3410.69	10.74		V	BY	18	148
73406	WX	CrB	1617	1730.3	+39	3718	1812.9	14.6		B	RRAB	126	126
73407	WY	CrB	1619	1929.6	+29	2704	0415.3	16.6		B	RRAB	12	124
73408	WZ	CrB	1621	2102.3	+39	1819	1915.8	17.1		B	RRAB	127	127
73409	XX	CrB	1621	2146.6	+28	0339	3915.12	15.35		V	EW	003	GSC
73410	V843	Her	1622	2224.8	+41	2156	5615.1	15.7		B	RRC	168	168
73411	V2304	Oph	1622	2252.8	-23	1249	4915.1	(18.		U	UVN	209	209
73412	V2305	Oph	1623	2314.8	-23	3741	4115.7	(18.		U	UVN	209	209
73413	V844	Her	1623	2317.8	+39	1613	1312.5	17.5		B	UG	168	168
73414	V845	Her	1623	2335.6	+41	0035	3514.3	15.5		B	CWA	126	126
73415	V355	Nor	1623	2355.5	-49	0301	0113.86	(0.02)	B	DSCTC	206	206
73416	V356	Nor	1624	2404.3	-49	0404	0413.06	(0.03)	B	DSCTC	206	206
73417	V357	Nor	1624	2407.0	-49	0241	4112.71	(0.01)	B	DSCTC	20	206
73418	V1028	Sco	1624	2421.7	-29	1037	$37 \quad 7.00$	(0.01)	V	ACV	298	CoD
73419	V846	Her	1624	2450.2	+24	2047	478.96	(0.06)	V	RS	005	BD
73420	V1029	Sco	1625	2521.9	-25	0728	2815.0	18.0		U	UV	299	299
73421	V1030	Sco	1625	2541.4	-25	4823	2315.6	(18.		U	UV	209	209
73422	V847	Her	1626	2606.4	+41	4659	5915.2	16.9		B	RRAB	126	126
73423	V2306	Oph	1627	2730.9	-12	3218	1810.05	10.10		V	BY	018	210
73424	V848	Her	1629	2946.0	+34	3844	4414.9	16.3		B	EB	127	127
73425	V1031	Sco	1633	3310.0	-26	1214	1412.0	(18.		U	UV	209	209
73426	V849	Her	1633	3324.6	+11	3059	5915.0	(0.5)	V	UG:	169	111
73427	V850	Her	1633	3335.2	+42	5232	3214.5	16.6		B	RRAB	126	126
73428	V851	Her	1633	3354.6	+41	1254	5415.1	16.4		B	RRAB	126	126
73429	V838	Ara	1635	3521.9	-53	5845	4511.	17.		V	M	030	030
73430	V852	Her	1635	3540.6	+27	0558	5814.4	15.8		B	RRAB	124	124
73431	V853	Her	1635	3550.8	+36	3753	5315.2	16.8		B	RRAB	168	168
73432	V854	Her	1636	3613.4	+34	2626	2614.7	15.8		B	EB	127	127
73433	V855	Her	1636	3648.9	+41	1733	3315.2	17.3		B	RRAB	127	127
73434	V2307	Oph	1637	3716.5	-23	4757	579.50	11.13		U	INA	21	CoD
73435	V856	Her	1642	4222.0	+39	2902	0212.8	13.8		B	EA	127	127
73436	V857	Her	1645	4510.8	+38	4415	1510.0	(0.29)	,	EW	170	042
73437	V858	Her	1646	4640.4	+40	3356	5615.1	16.5		B	RRAB	127	127
73438	V859	Her	1648	4803.3	+39	4403	0315.1	16.8		B	RRAB	126	126
73439	V860	Her	1648	4839.0	+28	0343	4314.73	15.74		V	RRAB	003	
73440	V861	Her	1649	4935.2	+41	2258	5813.8	14.2		B	EW	168	168

Table 1 (continued)

No.	Name		R.A., Decl., 1950.0					$\begin{gathered} \operatorname{Max}_{\mathrm{m}} \\ \hline \end{gathered}$	Min_{m}			Type	Ref.	
73441	V1032	Sco	1650	5027.8	-41	435	50	9.90	(0.02		B	BCEP	0	300
73442	V1033	Sco	1650	5033.2	-39	455	53	14.0	17.3		V	XND+E:	301	301
73443	V1034	Sco	1650	5049.0	-41	451	19	8.12	8.43		V	EA	300	300
73444	V862	Her	1654	5424.1	+40	134	41	13.2	13.6		B	RRC	168	68
73445	V863	Her	1655	5557.8	+41	361	18	13.6	14.5		B	RRAB	68	68
73446	V864	Her	1657	5701.2	+28	092	22	14.59	15.13		V	RRC	003	GSC
73447	V865	Her	1658	5801.0	+42	014	49	13.0	14.1		B	EA	26	126
73448	V866	Her	1658	5813.3	+41	153	37	12.1	14.2		B	LB	26	26
73449	V867	Her	1658	5840.9	+38	205	59	15.2	16.6		B	RRAB	168	168
73450	V868	Her	1659	5903.9	+36	131	10	15.9	17.3		B	RRAB	127	127
73451	V2308	Oph	1700	0017.7	-28	302	23	8.11	9.40		J	M	116	
73452	V869	Her	1700	0035.2	+38	403	37	15.0	16.4		B	EA	16	168
73453	V870	Her	1700	0058.0	+39	363	39	14.8	16.4		B	RRAB	126	126
73454	V871	Her	1705	0514.2	+39	260	05	15.5	17.3		B	RRAB	127	127
73455	V872	Her	1706	0644.5	+40	013	36	15.1	16.2		B	EA	168	168
73456	V873	Her	1706	0650.5	+16	313	30	8.4	(0.21		V	DSCT	171	BD
73457	V874	Her	1710	1012.9	+48	540	03	9.9	10.9		P	EB:		72
73458	V839	Ara	1711	1156.3	-59	260	04	10.75:	10.95		V	BE	032	D
73459	V875	Her	1713	1354.8	+28	031	11	17.25	18.57		V	RRAB	003	
73460	V1035	Sco	1715	1504.4	-34	212	22	9.27	(0.03		V	WR	30	CoD
73461	V876	Her	1717	1737.7	+28	084	44	17.22	17.99		V	RRAB	003	
73462	V877	Her	1719	1929.6	+28	032	25	14.56	14.91		V	RRC	003	GSC
73463	V2309	Oph	1720	2050.0	-29	164	47	9.2	18.		R	M	212	212
73464	V878	Her	1723	2309.3	+49	411	14	9.37	9.87		V	EB	173	BD
73465	V2310	Oph	1726	2617.5	-23	431	12	15.94	(0.03)	V	ZZ:	047	048
73466	V2311	Oph	1726	2657.3	-26	254	45	9	17.0		R	M	213	3
73467	V879	Her	1729	2914.3	+28	052	26	15.23	15.88		V	SXPHE	003	
73468	V2312	Oph	1730	3012.9	+10	012	27	13.7	(1.08)	V	RRAB	214	214
73469	V1036	Sco	1731	3126.3	-32	325	57	5.71	5.79		V	ELL	304	CoD
73470	V2313	Oph	1732	3247.6	-19	174	42	7.5	(12.5		V	NA	21	216
73471	V1037	Sco	1734	3437.6	-35	212	21	9.62	9.83		V	PVTEL	305	
73472	V880	Her	1740	4022.9	+28	045	55	15.14	16.21		V	RRAB	003	
73473	V881	Her	1741	4111.6	+28	054	44	16.04	16.96		V	RRAB	003	
73474	V2314	Oph	1741	4136.9	+06	045	57	7.43	(0.08		V	DSCTC	217	BD
73475	V2315	Oph	1741	4148.7	+05	440	06	8.28	8.34		V	ELL	218	BD
73476	V882	Her	1742	4251.0	+28	021	15	15.43	15.84		V	RRC:	003	
73477	V2316	Oph	1742	4252.4	+05	485	50	13.65	(0.05		V	BY	219	220
73478	V2317	Oph	1742	4252.5	+05	380	04	12.71	(0.04		V	BY	21	GSC
73479	V2318	Oph	1742	4258.2	+05	524	49	13.68	(0.08		V	BY	219	220
73480	V2319	Oph	1743	4329.3	+05	234	40	12.65	(0.07)	V	BY	219	22
73481	V2320	Oph	1743	4343.8	+05	403	35	7.36	7.39		V	ELL:	218	
73482	V2321	Oph	1743	4344.9	+05	423	32	14.34	(0.16)	V	BY	219	222
73483	V2322	Oph	1743	4359.1	+05	504	48	12.92	(0.04)	V	BY	21	221
73484	V2323	Oph	1744	4409.8	+06	081	18	8.09	8.12		V	ELL:	218	BD

Table 1 (continued)

No	Name		R.A., Decl., 1950.0				$, \quad{ }_{\mathrm{Max}}^{\mathrm{m}}$	Min			Type	Ref.	
73485	V2324	Oph	174	4419.5	+05	3457	$57 \quad 8.19$	8.25		V	ELL :	218	BD
73486	V2325	Oph	1745	4506.0	+05	3246	4613.08	(0.11)	V	BY	219	221
73487	V2326	Oph	1745	4516.6	+05	2259	5913.41	(0.08)	V	BY	219	220
73488	V2327	Oph	174	4616.3	+05	4259	597.51	7.54		V	ELL	218	BD
73489	V2328	Oph	174	4830.9	+07	1912	1215.2	17.1		B	RRAB	223	223
73490	V1038	Sco	1748	4831.7	-42	1322	228.06	9.57		J	M	116	
73491	V883	Her	174	4848.4	+28	0134	3413.13	13.35		V	EW	003	GSC
73492	V4334	Sgr	1749	4937.7	-17	4029	2910.90	21.		V	*	280	280
73493	V2329	Oph	1749	4950.0	+03	3828	2816.1	17.5		B	EA	224	224
73494	V4335	Sgr	1755	5508.1	-29	0900	008.01	10.57		K	M	281	
73495	V703	CrA	1755	5517.5	-39	0906	0610.55	14.04		H	M	116	
73496	V4336	Sgr	1755	5555.0	-28	4856	569.28	11.16		J	M	281	
73497	V4337	Sgr	1756	5605.5	-29	1611	$\begin{array}{ll}11 & 8.67\end{array}$	12.64		J	M	281	
73498	V4338	Sgr	1756	5607.2	-29	0943	438.0	(14.		V	UG	282	
73499	V4339	Sgr	1756	5638.7	-28	5300	0010.78	13.86		J	M	281	
73500	V2330	Oph	1757	5721.0	+08	3156	5614.4	16.3		B	RRAB	224	224
73501	V4340	Sgr	1757	5749.9	-29	0043	438.24	8.61		J	SRA	281	
73502	V4341	Sgr	175	5750.9	-29	1403	$03 \quad 7.27$	8.37		K	M	281	
73503	V2331	Oph	1758	5839.1	+08	4337	3715.1	16.5		B	RRAB	224	224
73504	V2332	Oph	1759	5925.3	+08	3542	4213.8	14.9		B	EB	224	224
73505	V2333	Oph	1759	5953.4	+08	5651	5113.3	16.1		B	M	223	223
73506	V884	Her	1759	5954.6	+18	0438	3814.5	(0.8)	V	XM	175	175
73507	V2334	Oph	180	0148.4	+06	0400	0014.9	16.5		B	RRAB	223	223
73508	V2335	Oph	180	0149.1	+04	4331	3115.0	(21.0		B	UG	223	223
73509	V2336	Oph	180	0210.5	+08	1934	3414.0	15.0		B	RRAB	223	223
73510	V2337	Oph	180	0301.1	+08	1450	5013.9	16.5		B	SRB	223	223
73511	V2338	Oph	180	0304.5	+07	5402	0212.4	13.2		P	CWA	225	225
73512	V2339	Oph	180	0323.6	+07	2720	2013.5	14.3		B	ISB	224	224
73513	V885	Her	180	0342.4	+21	2557	5710.62	(0.06)		BY	176	BD
73514	EX	Dra	180	0424.7	+67	5352	5213.5	17.2		B	UG+E	149	GSC
73515	V2340	Oph	1804	0444.0	+08	2220	2014.3	16.5		B	SRA	223	223
73516	V2341	Oph	1804	0444.3	+07	1944	4412.8	13.8		B	LB	224	224
73517	V4342	Sgr	1805	0554.2	-31	5552	5216.3	17.5		B	RRAB	284	284
73518	V4343	Sgr	1806	0606.1	-31	4618	1816.2	17.6		B	RRAB	284	284
73519	V886	Her	1806	0616.3	+24	1012	1210.	11.5		P	BE:	177	177
73520	V4344	Sgr	1806	0629.6	-31	5303	0316.1	16.8		B	RRC	284	284
73521	V4345	Sgr	1806	0639.5	-31	5753	5316.2	17.6		B	RRAB	284	284
73522	V4346	Sgr	1806	0653.5	-32	0053	5316.1	16.7		B	RRAB	284	284
73523	V4347	Sgr	1806	0657.4	-32	0222	2216.2	17.9		B	RRAB	284	284
73524	V4348	Sgr	180	0700.3	-31	5531	3116.6	17.8		B	RRAB	284	284
73525	V4349	Sgr	1807	0718.2	-31	5416	1616.3	17.5		B	RRAB	284	284
73526	V4350	Sgr	1807	0718.6	-31	3717	1716.1	16.9		B	RRAB	284	284
73527	V4351	Sgr	180	0722.8	-31	5603	0317.1	17.7		B	RRAB	284	284
73528	V4352	Sgr	1807	0723.2	-31	3524	2416.2	17.6		B	RRAB	284	284

Table 1 (continued)

N	Name		R.A., Decl., 1950.0				$, \quad{ }_{\mathrm{max}}^{\mathrm{m}}$	Min			Type	Ref.	
73529	V4353	Sgr	1807	0728.8	-31	585	5116.3	17.4		B	RRAB	284	284
73530	V4354	Sgr	1807	0733.6	-31	4848	4815.1	15.7		B	RRAB	284	284
73531	V4355	Sgr	1807	0738.1	-31	5407	0716.0	17.4		B	RRAB	284	284
73532	V4356	Sgr	1807	0743.2	-31	2810	1016.9	17.9		B	RRC:	284	284
73533	V4357	Sgr	1807	0748.4	-32	035	5715.8	17.6		B	RRAB	284	284
73534	V4358	Sgr	1807	0750.8	-31	5353	5316.0	17.2		B	RRAB	284	284
73535	V4359	Sgr	1808	0801.4	-31	5628	2815.7	16.5		B	RRC	284	284
73536	V887	Her	1809	0931.1	+27	0430	3012.09	12.33		U	SRD :	022	022
73537	V888	Her	1809	0932.5	+27	585	5416.33	17.48		V	RRAB	003	
73538	V2342	Oph	1810	1006.5	+08	3546	4613.8	(17.3		B	M	223	22
73539	V2343	Oph	1810	1023.8	+07	5140	4014.6	(17.5		B	M :	224	224
73540	V2344	Oph	1811	1103.3	+08	513	3413.4	15.6		B	SRA	223	223
73541	V2345	Oph	1811	1129.5	+09	034	4414.0	16.0		B	RRAB	224	224
73542	V4360	Sgr	1812	1234.4	-31	0718	1813.3	15.6		P	CEP	286	328
73543	EY	Dra	1815	1515.6	+54	0913	1311.83	(0.09		V	BY	152	153
73544	V2346	Oph	1816	1610.4	+08	0425	2513.2	14.5		B	RRAB	224	224
73545	V4361	Sgr	1820	2047.0	-18	085	5210.6	(15.5		P	N	374	
73546	V346	Pav	1820	2047.2	-63	0254	$54 \quad 6.14$	(0.04		V	DSCTC	243	CPD
73547	V704	CrA	1820	2051.6	-44	1336	367.90	7.93		V	DSCTC	117	CoD
73548	V446	Sct	1823	2343.1	-07	1507	0714.28	15.60		B	BE:	133	GSC
73549	NZ	Ser	1825	2501.4	-03	514	4713.07	16.33		U	INA	311	312
73550	V2347	Oph	1825	2526.1	+07	502	235.8	6.9		K	M	029	
73551	00	Ser	1827	2716.9	+01	1416	1611.4	16.1		K	FU:	313	313
73552	V4362	Sgr	1827	2728.6	-17	140	028.0	(15.0		V	NB	288	
73553	V4363	Sgr	1828	2816.5	-23	0946	4616.4	18.0		B	RRAB	289	89
73554	V4364	Sgr	1828	2827.7	-23	3811	1116.3	17.8		B	RRAB	289	289
73555	V4365	Sgr	1828	2847.5	-23	5803	0317.6	19.		B	LB:	289	289
73556	V4366	Sgr	1828	2848.8	-23	5030	3015.8	17.6		B	RRAB	289	289
73557	V4367	Sgr	1828	2858.5	-23	4242	4216.8	18.0		B	E	289	289
73558	V705	CrA	1829	2940.9	-40	5718	1818.15	18.48		V	EW	118	118
73559	V706	CrA	1830	3001.5	-40	5956	5618.90	19.57		V	EW	118	118
73560	V707	CrA	1830	3026.7	-41	0129	2916.15	16.37		V	EW	118	118
73561	V708	CrA	1830	30308	-41	0342	4217.55	17.90		V	EW	118	118
73562	V889	Her	1832	3208.8	+18	3902	027.39	(0.14) V	BY	005	BD
73563	V505	Lyr	1834	3437.4	+28	0126	2615.80	17.05		V	RRAB	003	
73564	V506	Lyr	1837	3749.4	+28	0211	1116.29	17.07		V	RRAB	003	
73565	V347	Pav	1838	3822.0	-74	2137	3714.85	16.67		V	AM	244	245
73566	V507	Lyr	1838	3849.8	+27	5845	4514.21	14.75		V	EW	003	GSC
73567	V508	Lyr	1841	4146.2	+27	5856	5616.20	16.61		V	EW:	003	
73568	V447	Sct	1841	4151.4	-07	0946	467.85	(0.12) V	BE	309	BD
73569	V509	Lyr	1842	4251.5	+27	5714	1416.89	17.37		V	EW:	003	
73570	V510	Lyr	1846	4617.8	+28	0214	1416.84	17.53		V	RRAB	003	
73571	V4368	Sgr	1851	5143.4	-19	4546	4610.0	(21.		V	NC:	291	292
73572	V709	CrA	1858	5812.4	-37	0514	1411.33	11.67		V	INB	119	120

Table 1 (continued)

Table 1 (continued)

No.	Name	R.A.,Decl.,1950.0					Max	Min			Type	Ref.	
				m		- ,	',	m					
73617	V381	Vul	2008	0840.1	+26	3538	3810.23	(0.03		V	DSCTC	351	241
73618	V382	Vul	2009	0913.0	+26	2219	1910.49	(0.03		V	DSCTC	351	241
73619	EZ	Dra 20	200	0939.5	+66	4814	1411.2	14.2		P	M	154	154
73620	V350	Pav 20	201	1335.7	-71	5253	$53 \quad 3.81$	5.90		J	M	014	106
73621	V383	Vul 20	201	1414.7	+22	1429	297.2	(0.03)	V	DSCTC	279	BD
73622	V4374	Sgr	201	1455.4	-28	1721	218.87	9.22		V	EA	296	296
73623	CM	Oct 20	2016	1649.5	-78	4914	146.36	7.70		J	M	014	
73624	V2029	Cyg 20	202	2122.9	+47	2733	3316.0	17.1		B	SR	134	134
73625	V2030	Cyg 20	202	2127.8	+50	3938	3814.4	15.5		V	SRB	134	134
73626	V2031	Cyg 20	202	2200.3	+38	1950	508.53	8.67		V	EA	135	135
73627	AY	Cap 20	202	2709.8	-23	4046	$46 \quad 6.36$	6.88		J	SR	033	GSC
73628	V2032	Cyg 20	2029	2916.6	+46	1133	3313.0	14.3		V	SRB	134	134
73629	V2033	Cyg 20	2029	2957.1	+46	3747	4715.9	16.7		B	LB	134	134
73630	V2034	Cyg 20	203	3206.7	+49	0931	3110.7	11.8		V	SRA	134	134
73631	V2035	Cyg 20	203	3347.2	+45	1853	5311.7	12.6		V	SRB	134	134
73632	V2036	Cyg	2035	3558.6	+49	4648	4814.9	15.8		V	SRB	134	134
73633	LW	Del 20	2036	3602.0	+09	0130	3012.8	(1.05)	V	RRAB	144	144
73634	V2037	Cyg 20	2036	3605.2	+48	4556	5610.9	12.1		V	SRB	134	134
73635	V2038	Cyg 20	203	3718.2	+50	2314	1414.0	14.7		V	SRB	134	134
73636	HX	Aqr 20	203	3737.0	-01	0615	1511.86	(12.30		V	E	013	GSC
73637	V2039	Cyg	204	4309.2	+46	5213	1316.4	17.9		B	LB	134	134
73638	V2040	Cyg 20	204	4358.9	+43	1818	1815.2	16.4		B	SRB	134	134
73639	B0	Mic 20	204	4434.0	-36	4642	429.2	(0.21)	V	BY	196	CoD
73640	V2041	Cyg 20	204	4652.2	+45	3614	1414.5	(18.		U	UVN	136	136
73641	V2042	Cyg 20	204	4739.3	+46	3702	0216.5	17.5		B	LB	134	13
73642	V351	Pav 20	204	4829.3	-72	0248	$48 \quad 4.02$	5.97		J	M	014	
73643	V2043	Cyg	204	4928.3	+40	4233	3315.9	20.0		P	UVN	137	138
73644	LX	Del 20	204	4951.3	+06	5726	2613.7	(0.8)	V	RRAB	145	145
73645	V2044	Cyg 20	2050	5045.4	+46	1330	3012.0	14.7		V	M	139	139
73646	V2045	Cyg 20	2050	5052.7	+45	0856	5615.2	15.9		V	SRB	134	134
73647	V2046	Cyg 20	205	5124.5	+53	3200	0015.3	17.3		V	SRB	134	134
73648	V2047	Cyg 20	205	5307.1	+42	4602	0214.5	18.		U	UVN	136	136
73649	V2048	Cyg 20	205	5312.1	+42	5320	2015.6	16.4		U	UVN	136	136
73650	AZ	Cap 20	205	5313.8	-17	2223	2310.40	10.50		V	BY+UV	065	065
73651	V2049	Cyg 20	205	5322.0	+43	1104	0414.8	17.6		U	UVN	136	136
73652	V2050	Cyg	205	5331.5	+39	1213	1314.42	14.76		V	EW	140	140
73653	V2051	Cyg 20	205	5600.1	+43	3845	4514.0	(18.		U	UVN	136	136
73654	BP	Mic	205	5711.8	-37	0655	$55 \quad 3.79$	4.48		H	M	014	
73655	V2052	Cyg	205	5910.0	+42	4757	5713.7	17.4		U	UVN	136	136
73656	V2053	Cyg	2100	0037.8	+45	5603	0316.0	17.2		B	LB	134	134
73657	V2054	Cyg	210	0129.9	+43	5737	3715.3	16.3		V	LB:	134	134
73658	V2055	Cyg	210	0141.9	+54	0218	1815.3	16.2		V	LB	134	134
73659	V2056	Cyg	210	0149.1	$1+44$	5600	0014.9	15.5		V	LB	134	134
73660	LY	Del 2	210	0408.6	+19	1232	3210.40	13.5		V	EA	146	146

Table 1 (continued)

No	Name		$\begin{gathered} \text { R.A } \\ \mathrm{h} \end{gathered}$	$\begin{gathered} \text { A. Decl } \\ \mathrm{m} \mathrm{~s} \end{gathered}$	95	$\begin{gathered} 950.0 \\ 0 \end{gathered}$	$\begin{aligned} & \operatorname{Max} \\ & ,{ }_{m} \end{aligned}$	$\underset{\mathrm{m}}{\mathrm{Min}}$			Type	Ref	
73661	V2057	Cyg	2105	0520.0	+42	133	3014.2	15.9		U	UVN	136	136
73662	V384	Vul	2105	0539.1	+27	532	2312.72	13.16		V	EW	003	GSC
73663	V2058	Cyg	2105	0557.4	+43	294	4515.4	16.7		B	SR	134	134
73664	V2059	Cyg	2106	0617.5	+46	190	0416.6	17.5		B	LB	134	134
73665	BQ	Mic	2106	0657.1	-38	4318	$18 \quad 3.45$	4.74		J	M	014	
73666	V2060	Cyg	2108	0812.4	+53	5816	1614.7	15.7		V	SR	134	134
73667	V2061	Cyg	2109	0902.0	+44	075	5712.5	13.2		R	LB	134	134
73668	V2062	Cyg	2110	1028.9	+52	5520	2016.0	17.5		R	UV:	141	141
73669	V2063	Cyg	211	1105.1	+44	3026	2617.8	18.8		B	LB	134	134
73670	V2064	Cyg	2111	1135.1	+54	0606	0617.1	18.7		B	LB	134	134
73671	V2065	Cyg	211	1136.4	+41	415	5815.9	17.4		B	SR	134	134
73672	V2066	Cyg	211	1428.2	+42	0445	4515.1	16.8		B	LB	134	134
73673	V2067	Cyg	2115	1510.1	+50	104	4713.2	14.3		V	LB	134	134
73674	V385	Vul	2118	1833.1	+27	5635	3516.33	16.65		V	RRC:	003	
73675	iota	Cap	2119	1927.9	-17	025	554.27	(0.06)	V	BY	005	BD
73676	V386	Vul	2119	1932.0	+27	5620	2015.15	15.58		V	RRC	003	
73677	V2068	Cyg	2119	1940.5	+54	534	4012.0	13.3		R	LB	134	134
73678	V2069	Cyg	2121	2149.5	+42	0507	0715.70	15.95		V	NL:	068	068
73679	BR	Mic	212	2401.2	-32	092	238.78	8.82		V	BCEP	197	CoD
73680	V2070	Cyg	2125	2500.4	+52	0609	0919.1	20.2		B	LB	134	134
73681	CH	Gru	2125	2523.2	-42	453	3718.3	19.8		B	NL	165	166
73682	HY	Aqr	2128	2827.3	-07	4735	354.69	6.15		H	M	014	GSC
73683	BB	Cap	2128	2833.7	-10	0038	3811.96	11.99		V	BY	018	066
73684	V389	Cep	2128	2837.2	+55	392	2013.1	15.3		P	ISA	095	095
73685	L0	Peg	2128	2845.0	+23	065	$59 \quad 9.04$	9.27		V	BY	248	237
73686	V2071	Cyg	2128	2850.9	+49	380	0412.9	13.8		V	LB	134	134
73687	V2072	Cyg	2129	2913.8	+38	331	1711.8	17.8		P	M	142	139
73688	HZ	Aqr	2129	2936.9	-00	000	009.89	(0.07)	V	RS	005	BD
73689	CI	Gru	2129	2956.2	-42	4213	1316.4	18.5		B	UG	165	166
73690	V2073	Cyg	2130	3006.7	+52	5532	3217.8	18.4		B	LB	134	134
73691	LP	Peg	213	3250.4	+27	515	5316.70	17.28		V	EW	003	
73692	LQ	Peg	2133	3353.5	+11	2726	2614.0	17.5		B	NL	249	111
73693	V390	Cep	2135	3518.4	+57	174	4013.	16.2		B	INB	096	097
73694	V391	Cep	2139	3921.9	+66	21	4014.9	17.0		B	INT	098	098
73695	V2074	Cyg	214	4143.3	+48	5511	1113.3	14.7		V	LB	134	134
73696	V392	Cep	214	4148.5	+65	5036	36	(1.2)	r	INT	099	099
73697	LR	Peg	21	4431.1	+27	503	3214.76	15.46		V	RRAB	003	
73698	V393	Cep	2148	4849.0	+59	225	5112.2	14.8		P	ISA:	095	095
73699	LS	Peg	2149	4933.1	+13	524	4711.6	13.0		V	UG :	250	111
73700	V2075	Cyg	215	5314.7	+44	105	537.46	(0.36		V	RS	005	BD
73701	V2076	Cyg	215	5525.4	+38	100	0412.3	15.2		V	SRD	011	011
73702	LT	Peg	2155	5553.8	+27	515	5216.29	17.76		V	RRAB	003	
73703	LU	Peg	2156	5634.8	+27	4858	5814.58	15.61		V	RRAB	003	
73704	LV	Peg	2158	5856.8	+08	215	576.18	6.95		J	M	01	GSC

Table 1 (continued)

No. Name		R.A., Decl., 1950.0					Max		Type			Ref.	
				h m		- ,	', m						
73705	LW	Peg	215	5912.8	+27	492	2914.96	16.01		V	RRAB	003	
73706	LX	Peg	220	0102.6	+27	481	1013.83	14.09		V	EW	003	GSC
73707	V394	Cep	220	0102.8	+59	123	3714.2	16.1		P	CWB :	095	095
73708	V378	Lac	220	0127.5	+45	193	338.7	9.1		R	LB	134	134
73709	LY	Peg	220	0325.5	+11	472	2511.34	11.52		V	EB	251	251
73710	V379	Lac	220	0548.1	+40	503	3012.1	15.2		V	M	011	011
73711	V380	Lac	220	0806.3	+38	005	5911.7	15.1		V	M	011	011
73712	LZ	Peg	220	0839.9	+27	531	1015.88	16.83		V	RRAB	003	
73713	II	Aqr	221	1342.7	-20	422	2419.0	21.5		P	NL	015	015
73714	V381	Lac	221	1352.1	+42	075	5612.5	(16.2		V	NL:	011	011
73715	V382	Lac	221	1736.4	+47	581	1412.3	14.1		V	SR	011	011
73716	V383	Lac	221	1806.0	+49	150	058.9	(0.19)	V	BY+	182	BD
73717	MM	Peg	221	1852.4	+27	481	1815.03	15.33		V	EW	003	
73718	V384	Lac	222	2125.4	+47	292	2013.8	15.2		V	SR	011	011
73719	IK	Aqr	222	2304.8	-11	284	4620.2	(0.35)	P	NL	016	017
73720	V385	Lac	22	2339.8	+50	025	5912.2	15.6		V	M	011	011
73721	UV	PsA	222	2723.7	-30	414	448.6	(0.07)	B	DSCTC	067	CoD
73722	V386	Lac	222	2749.1	+45	313	3212.5	15.0		V	M	011	011
73723	MN	Peg	222	2843.8	+06	072	2311.5	(15.5		P	M	252	GSC
73724	V387	Lac	22	2929.1	+48	003	3411.0	14.6		V	M	011	011
73725	UW	PsA	223	3045.4	-29	552	238.2	(0.08)	B	DSCTC	067	CoD
73726	M0	Peg	223	3433.2	+27	465	5716.84	17.54		V	RRAB	003	
73727	V388	Lac	223	3856.3	+40	182	2910.6	15.2		V	M	011	011
73728	MP	Peg	224	4017.8	+10	450	096.15	7.19		J	M	014	GSC
73729	V389	Lac	224	4106.8	+41	013	$35 \quad 9.7$	14.0		V	M	01	011
73730	V390	Lac	224	4307.7	+50	360	0712.8	(15.2		V	M	011	011
73731	MQ	Peg	224	4547.8	+27	492	2713.39	13.67		V	EW	003	GSC
73732	V391	Lac	224	4728.1	+52	021	1711.8	15.2		V	M	011	011
73733	V392	Lac	224	4809.2	+53	082	2312.2	14.3		V	SRA	011	011
73734	IL	Aqr	225	5034.7	-14	311	1410.15	10.19		V	BY	018	BD
73735	MR	Peg	225	5146.4	+22	233	$35 \quad 5.71$	7.28		J	M	014	GSC
73736	MS	Peg	225	5622.4	+24	594	4213.68	(0.10)	V	NL	253	254
73737	QZ	And	225	5653.2	+48	515	5312.9	15.0		V	SR	011	011
73738	V335	And	225	5942.9	+39	434	4211.8	14.5		V	M	011	011
73739	V336	And	2300	0005.3	+41	272	2711.6	(15.0		V	M:	011	011
73740	MT	Peg	2300	0038.0	+20	385	587.30	(0.02)	U	BY	255	BD
73741	MU	Peg	230	0330.8	+27	533	3416.23	17.48		V	RRAB	003	
73742	MV	Peg	230	0509.3	+23	304	426.08	7.31		J	M	014	
73743	MW	Peg	230	0801.5	+34	300	0111.7	12.4		P	SR	256	256
73744	BI	Ind	231	1043.7	-68	334	497.65	7.70		V	RS	181	CPD
73745	CP	Tuc	231	1222.2	-59	263	3414.1	16.1		I	XM	333	
73746	V728	Cas	231	1320.2	+61	353	358.1	(0.06)	V	RS:	082	BD
73747	V337	And	231	1403.0	+38	273	3611.3	14.4		V	SRD	011	011
73748	V395	Cep	231	1859.0	+73	574	$40 \quad 9.5$	(0.08)	V	INT	100	GSC

Table 1 (continued)

Table 2

QR	And $=$	73007	$=$ RX J0019.8+2156 [001, 002] $=$ GSC 1185.1428.
QS	And $=$	73008	$=$ No. 1 [003].
QT	And $=$	73021	$\begin{aligned} & =\mathrm{BD}+33^{\circ} 94(9.5)[004]=\mathrm{RE} 0041+342=2 \mathrm{RE} \mathrm{~J} 004117+342547=\mathrm{GSC} \\ & 2283.1157 . \end{aligned}$
QU	And $=$	73031	$=\mathrm{HD} 7205(\mathrm{G} 5)=\mathrm{BD}+40^{\circ} 248(7.0)=\mathrm{SAO} 037026=$ IRAS $01102+4123=$ LTT $10444=$ G 132-62 $=$ HIC $005684[005]=$ GSC 2808.0447.
QV	And $=$	73034	$\begin{aligned} & =\mathrm{HR} 369[006]=\mathrm{HD} 7546(\mathrm{~B} 8)=\mathrm{BD}+47^{\circ} 357(6.5)=\mathrm{SAO} 037067=\mathrm{GSC} \\ & 3268.0835 . \end{aligned}$
QW	And $=$	73035	$=$ GSC 3273.0761 [007].
QX	And	73040	$=$ Hein 235 (NGC 752) [008] = GSC 2816.1950.
QY	And $=$	73043	$=$ No. $2[010]=$ SVS $2886=$ GSC 3289.1992. $\boldsymbol{\prime}$ LM And $=$ No. 1 [010].
QZ	And $=$	73737	= LD 212 [011].
V335	And $=$	73738	$=$ LD 214 [011] = IRAS $22597+3943=$ GSC 3220.2872.
V336	And $=$	73739	$=$ LD $215[011]=$ GSC 3224.1028.
V337	And $=$	73747	$=$ LD 217 [011] = IRAS $23140+3827=$ GSC 3217.1369.
V338	And $=$	73752	$=$ LD $218[011]=$ IRAS $23233+4525$.
V339	And $=$	73754	$\begin{aligned} & =\text { LD } 220[011]=\text { IRAS } 23317+4603=\text { Prager } 2405=\text { Ross var } 101=\text { CSV } \\ & 5756=\text { NSV } 14621 . \end{aligned}$
V340	And $=$	73755	$\begin{aligned} & =15 \text { And }=\mathrm{HR} 8947=\mathrm{HD} 221756(\mathrm{~A} 0)[012]=\mathrm{BD}+39^{\circ} 5114(6.0)=\mathrm{SAO} \\ & 073346=\text { NSV } 14627=\mathrm{GSC} 3235.1512 . \end{aligned}$
AK	Ant $=$	73261	$\begin{aligned} & =\mathrm{HD} 83041(\mathrm{~A} 0)[012]=\mathrm{CoD}-28^{\circ} 7417(8.3)=\mathrm{CPD}-28^{\circ} 3780(8.2)=\mathrm{SAO} \\ & 177696=\mathrm{GSC} 6613.0532 . \end{aligned}$
HX	Aqr $=$	73636	$=$ Comparison star for AE Aqr, ~ 3.4, P.A. $170^{\circ}[013]=\mathrm{GSC} 5177.1637$.
HY	Aqr $=$	73682	$=$ IRAS $21284-0747[014]=$ GSC 5786.0021.

Table 2 (continued)

HZ	$\mathrm{Aqr}=$	73688	$\begin{aligned} & =\mathrm{BD}-0^{\circ} 4234(9.2)[005]=\operatorname{LDS} 749 \mathrm{~A}=\mathrm{G} 26-9=\operatorname{LTT} 16295=\mathrm{EUVE} \\ & \mathrm{~J} 2132+00.2=\text { NSV } 13768=\mathrm{GSC} 0542.0217 . \end{aligned}$
II	Aqr	73713	$=\mathrm{V} 2216-2027$ [015].
IK	Aqr	73719	$=\operatorname{Var} 7[016,017]=$ PHL $1889=$ CSV $8759=$ NSV 14152.
IL	$\mathrm{Aqr}=$	73734	$\begin{aligned} & =\mathrm{BD}-15^{\circ} 6290(9.5)=\text { Gliese } 876[018]=\mathrm{G} 156-57=\text { LHS } 530=\text { LFT } 1745 \\ & =\text { Ross } 780=\text { GSC } 5819.0957 . \end{aligned}$
V1425	$\mathrm{Aql}=$	73575	$=$ Nova Aql 1995 [019, Takamizawa].
V1426	Aql $=$	73579	$\begin{aligned} & =\operatorname{HD} 179376(\mathrm{G} 0)[021]=\mathrm{BD}+4^{\circ} 4010(9.0)=\mathrm{SAO} 124378=\text { SVS } 1070= \\ & \text { CSV } 8122=\text { NSV } 11802=\text { GSC } 0471.2131 . \end{aligned}$
V1427	$\mathrm{Aql}=$	73580	$\begin{aligned} & =\mathrm{HD} 179821 \text { (G5) }[022]=\mathrm{BD}-0^{\circ} 3679(8.1)=\mathrm{SAO} 124414=\text { IRAS } \\ & 19114+0002=\text { AFGL } 2343=\text { HIP } 094496=\mathrm{GSC} 0463.3866 . \end{aligned}$
V1428	Aql $=$	73583	$\begin{aligned} & =\text { HD } 180617(\mathrm{Ma})=\mathrm{BD}+4^{\circ} 4048(9.2)=\text { Gliese } 752 \mathrm{~A}[018]=\mathrm{G} 22-22= \\ & \text { LHS } 473=\text { LFT } 1466=\text { Ross } 652=\text { GSC } 0472.1252 . \end{aligned}$
V1429	$A q \mathrm{l}=$	73594	$\begin{aligned} & =\mathrm{BD}+14^{\circ} 3887(9.5)=\text { IRAS } 19192+1447=\text { MWC } 314[023]=\text { He } 3-1745= \\ & \mathrm{LS} I I+14^{\circ} 11=\text { GSC } 1054.0441 . \end{aligned}$
V1430	Aql $=$	73595	$=1 \mathrm{E} 1919+0427$ [024] = GSC 0472.2839.
V1431	Aql $=$	73604	$\begin{aligned} & =35 \mathrm{Aql}=\mathrm{HR} 7400=\mathrm{HD} 183324(\mathrm{~A} 0)[026]=\mathrm{BD}+1^{\circ} 4010(6.3)=\mathrm{SAO} \\ & 124675=\mathrm{GSC} 0469.6229 . \end{aligned}$
V1432	Aql	73606	= RX J1940.1-1025 = RX J1940.2-1025 [027].
V1433	Aql	73607	$=$ IRAS 19386+1513 [029].
V838	Ara	73429	$=$ IRAS 16353-5358 [030] $=16^{\mathrm{h}} 31^{\mathrm{m}} 21^{\text {® }} .6-52^{\circ} 52^{\prime} 37^{\prime \prime}$ (1900) [031].
V839	Ara $=$	73458	$\begin{aligned} & =\mathrm{CoD}-59^{\circ} 6479(9.3)=\mathrm{CPD}-59^{\circ} 6926(8.9)=\text { SAO } 244567=\text { IRAS } 17119- \\ & 5926=\text { He } 3-1357=\text { Wray } 15-1654=\text { NSV } 08382=\text { GSC } 8739.0311 . \end{aligned}$
XZ	Ari	73049	$=$ No. $6[003]=$ GSC 1775.0043
YY	Ari	73052	$=$ IRAS $02404+2150[033]=$ GSC 1229.1250. $\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}$ maser.
YZ	Ari	73055	$=$ IRAS $02547+1106[014]=$ AFGL 5087.
V402	Aur $=$	73143	$\begin{aligned} & =\mathrm{HD} 282719(\mathrm{~F} 0)=\mathrm{BD}+31^{\circ} 849(8.5)[034]=\mathrm{SAO} 057590=\mathrm{HIP} 023433= \\ & \text { GSC } 2388.1048 . \end{aligned}$
V403	Aur $=$	73204	$\begin{aligned} & =\mathrm{HR} 2054=\mathrm{HD} 39743(\mathrm{G} 5)=\mathrm{BD}+49^{\circ} 1423(6.5)=\mathrm{SAO} 040720=\mathrm{IRAS} \\ & 05532+4901=\mathrm{HIC} 028162[005]=\mathrm{GSC} 3369.0858 . \end{aligned}$
V404	Aur	73205	= Wr $123[035,036]=$ CSV $6411=$ NSV 02733 = GSC 2924.1750.
V405	Aur	73206	$=$ RX J0558+53 = RX J0558.0+5353 [037] = GSC 3750.0721.
V406	Aur $=$	73212	$\begin{aligned} & =\mathrm{HD} 43478(\mathrm{~A} 3 \mathrm{p})[038]=\mathrm{BD}+32^{\circ} 1246(8.0)=\mathrm{SAO} 058954=\mathrm{HIP} 029911 \\ & =\operatorname{GSC} 2424.0106 . \end{aligned}$
CY	Boo $=$	73371	$=101 \mathrm{Vir}=\mathrm{HR} 5352[039]=\mathrm{HD} 125180(\mathrm{Ma})=\mathrm{BD}+15^{\circ} 2690(6.2)=\mathrm{SAO}$ $100956=$ IRC $+20271=$ IRAS $14150+1529=$ HIP $069829=$ NSV $06613=$ GSC 1469.1456.
CZ	Boo	73374	= No. 25 [003].
DD	Boo	73378	= HV 10431 [040] = CSV $2213=$ NSV $06836=$ GSC 2016.0004.
DE	Boo $=$	73380	$=\operatorname{HR} 5553=\mathrm{HD} 131511(\mathrm{~K} 0)=\mathrm{BD}+19^{\circ} 2881(6.3)=\mathrm{SAO} 101276=\mathrm{IRAS}$ $14511+1921=$ Gliese $567=$ LFT $1153=$ LTT $14413=$ HIC 072848 [005] $=$ NSV $06847=$ GSC 1481.0694.
DF	Boo	73381	$=$ No. 26 [003] = HV $10434=$ CSV $2220=$ NSV $06854=$ GSC 2023.0268.
DG	Boo	73386	= BV $100[041,042]=$ CSV $7180=$ NSV $07020=$ GSC 3482.0620.
RS	Cae	73142	= RX J0453.4-4213 [043].
CE	$\mathrm{Cam}=$	73078	$\begin{aligned} & =\text { HR } 1040[044]=\text { HD } 21389(\mathrm{~A} 0 \mathrm{p})=\mathrm{BD}+58^{\circ} 607(5.0)=\mathrm{SAO} 024061= \\ & \text { IRC }+60120=\text { IRAS } 03258+5842=\text { HIP } 016281=\text { GSC } 3715.1250 . \end{aligned}$
CF	Cam $=$	73085	= V3 [045] = SVS $2686=$ GSC 3728.1092.
CG	Cam	73097	$=$ IRAS $03448+6801=$ GSC 4327.1109 [046].
CH	Cam	73104	$=$ PNN of NGC 1501 [047] = PK $144+6{ }^{\circ} 1=$ IRAS $04026+6047$.
CI	Cam	73115	$=$ MWC $84[049]=\operatorname{LS~V}+55^{\circ} 16=\operatorname{IRAS} 04156+5552=$ GSC 3723.0200.
CK	$\mathrm{Cam}=$	73144	$\begin{aligned} & =\mathrm{HD} 32456(\mathrm{G} 5)=\mathrm{BD}+55^{\circ} 956(7.4)=\mathrm{SAO} 025009 \quad[050]=\text { IRAS } \\ & 05023+5517=\text { HIP } 023768=\mathrm{GSC} 3738.0234 . \end{aligned}$
CL	Cam $=$	73147	$\begin{aligned} & =\mathrm{HD} 33363(\mathrm{G} 5)=\mathrm{BD}+75^{\circ} 217(7.6)=\mathrm{SAO} 005481=\text { IRAS } 05116+7553= \\ & \text { HIC } 024760[005]=\mathrm{GSC} 4511.0980 . \end{aligned}$
CM	Cam $=$	73223	$\begin{aligned} & =\mathrm{HD} 51066(\mathrm{G} 5)=\mathrm{BD}+75^{\circ} 280(7.0)=\mathrm{SAO} 006053=\mathrm{IRAS} 06575+7529= \\ & \text { HIC } 034101[005]=1 \mathrm{E} 0657.6+7529=\mathrm{GSC} 4526.1506 . \end{aligned}$

Table 2 (continued)

CN	$\mathrm{Cam}=$	73286	$=\mathrm{BD}+82^{\circ} 338(9.0)=\mathrm{SAO} 001900=\mathrm{BV} 367=\mathrm{CSV} 6845=\mathrm{NSV} 05256=$ GSC 4556.0251 .
CO	$\mathrm{Cam}=$	73294	$=\operatorname{HR} 4646[052]=\mathrm{HD} 106112(\mathrm{~A} 5)=\mathrm{BD}+78^{\circ} 412(5.1)=\mathrm{SAO} 007522=$ IRAS $12098+7753=$ HIP $059504=$ GSC 4553.1680.
FI	Cnc $=$	73238	$\begin{aligned} & =\text { HD } 72146(\mathrm{G} 5)=\mathrm{BD}+29^{\circ} 1772(7.5)=\text { SAO } 080232=\text { IRAS } 08292+2929 \\ & =\text { HIC } 041875[005]=\text { GSC } 1947.0489 . \end{aligned}$
FK	Cnc $=$	73239	$\begin{aligned} & =\mathrm{HD} 72429(\mathrm{G} 0)=\mathrm{BD}+11^{\circ} 1865(8.0)=\mathrm{SAO} 097905=1 \mathrm{E} 0830.3+1126= \\ & \text { HIC } 041951[005]=\mathrm{GSC} 0804.0682 . \end{aligned}$
FL	Cnc	73244	$=\mathrm{HD} 74292(\mathrm{~A} 2)[053]=\mathrm{BD}+32^{\circ} 1782(6.8)=\mathrm{SAO} 061019=\mathrm{GSC} 2484.1690$.
FM	Cnc	73246	= No. 11 [003].
FN	Cnc	73251	= No. 12 [003].
BQ	$\mathrm{CVn}=$	73353	$\begin{aligned} & =\text { HD } 112859(\mathrm{~K} 0)=\mathrm{BD}+47^{\circ} 2007(7.8)=\mathrm{SAO} 044410=\mathrm{HIC} 063368[005] \\ & =\operatorname{GSC} 3459.1053 . \end{aligned}$
BR	$\mathrm{CVn}=$	73358	$\begin{aligned} & =\text { HD } 116475(\mathrm{Mb})[054]=\mathrm{BD}+47^{\circ} 2053(7.0)=\mathrm{SAO} 044590=\mathrm{IRC}+50227 \\ & =\text { AFGL } 1618=\text { IRAS } 13209+4715=\text { HIP } 065309=\text { GSC } 3460.2120 . \end{aligned}$
HY	$\mathrm{CMa}=$	73210	$\begin{aligned} & =\mathrm{BD}-16^{\circ} 1396(9.1)=\mathrm{SAO} 151224[055]=2 \mathrm{RE} \mathrm{~J} 061238-164838=\mathrm{GSC} \\ & 5933.1801 . \end{aligned}$
HZ	$\mathrm{CMa}=$	73220	```= HR 2545 = HD 50123 (B8) = CoD-31^3717 (6.3) = CPD-31^1334 (6.3) = SAO 197263 = IDS 0646.6S3135A = IRAS 06484-3135 = MWC 157 [056] = He 3-19 = HIP 032810 = GSC 7088.2598.```
II	$\mathrm{CMa}=$	73221	= var\#1 [057]. Probable non-member of the open cluster Be 33.
IK	CMa	73222	$=$ var\#2 [057]. Probable member of the open cluster Be 33.
IL	$\mathrm{CMa}=$	73225	$\begin{aligned} & =\text { HR } 2680[058]=\text { HD } 54031(\mathrm{~B} 8)=\mathrm{CoD}-30^{\circ} 3907(6.8)=\mathrm{CPD}-30^{\circ} 1526 \\ & (7.2)=\text { SAO } 197566=\text { HIP } 034248=\mathrm{GSC} 7090.1305 . \end{aligned}$
IM	$\mathrm{CMa}=$	73226	$=\mathrm{Star} 34(\mathrm{NGC} 2362)[059]=\mathrm{CPD}-24^{\circ} 2236$ (9.4).
IN	CMa	73227	$=$ RE 0720-318 [061] = EUVE J0720-31.7 = EXOSAT 0718-312.
BM	$\mathrm{CMi}=$	73232	$=$ Anon CMi [062] = GSC 0192.0067.
AX	Cap $=$	73616	$=$ New CV 2006-17 [063] $=2006-1725$.
AY	$\mathrm{Cap}=$	73627	$=$ IRAS 20271-2340 [033] = GSC 6907.1948.
AZ	Cap	73650	$=$ EUVE J2056-17.1 [065] $=$ BD-17 ${ }^{\circ} 6128$ (9.9) $=$ GSC 6349.0200.
BB	Cap $=$	73683	$\begin{aligned} & =\text { Gliese } 831[018]=\text { G } 26-7=\text { LHS } 511=\text { LTT } 8556=\text { NSV } 13753=\text { GSC } \\ & 5790.0182 . \end{aligned}$
ι	Cap $=$	73675	$=$ iota $\mathrm{Cap}=32 \mathrm{Cap}=\mathrm{HR} 8167=\mathrm{HD} 203387$ (K0) $=\mathrm{BD}-17^{\circ} 6245$ (4.2) $=$ SAO $164346=$ IRC-20599 $=$ IRAS $21194-1702=$ HIC $105515[005]=$ GSC 6360.1220 .
V435	Car $=$	73215	$\begin{aligned} & =\mathrm{HD} 44958(\mathrm{~A} 2)[067]=\mathrm{CoD}-51^{\circ} 1874(6.8)=\mathrm{CPD}-51^{\circ} 898(7.0)=\mathrm{SAO} \\ & 234463=\text { GSC } 8114.1488 . \end{aligned}$
V436	Car	73230	= RX J0744.9-5257 [068] = GSC 8552.0902.
V437	Car $=$	73266	$\begin{aligned} & =\mathrm{HD} 86181(\mathrm{~F} 0)[069]=\mathrm{CoD}-58^{\circ} 2889(9.1)=\mathrm{CPD}-58^{\circ} 1700(8.9)=\mathrm{SAO} \\ & 237494=\operatorname{GSC} 8610.0420 . \end{aligned}$
V438	Car	73272	$=$ No. 87 (NGC 3293) [070].
V439	Car	73273	$=$ No. $60(\mathrm{NGC} 3293)[070]=\mathrm{GSC} 8613.3020$.
V440	$\mathrm{Car}=$	73274	$=$ No. 133 (NGC 3293) $[070,353]=\mathrm{CPD}-57^{\circ} 3515$ (8.8) $=$ GSC 8613.2626.
V441	Car	73276	$=$ No. 194 (NGC 3293) [070].
V442	Car	73280	$=$ No. 74 (NGC 3496) $[071]=\mathrm{GSC} 8958.1915$.
V443	Car	73281	$=$ No. 214 (NGC 3496) [071].
V706	Cas	73002	$=$ LD $76[072]=$ No. $1[073]=$ IRAS $00049+6426$.
V707	Cas	73003	$=\mathrm{LD} 77[072]=$ IRAS $00056+5229$.
V708	Cas $=$	73004	$=\mathrm{LD} 78[072]=$ IRAS $00085+6402$.
V709	Cas $=$	73009	$=$ RX J0028.8+5917 [068].
V710	Cas	73010	$=$ RNO 1B [074] = IRAS 00338+6312.
V711	$\mathrm{Cas}=$	73011	= C3-V36 (Gal.NGC 185) [075] = NGC 185 V0049. Foreground object?
V712	Cas $=$	73012	= C3-V28 (Gal.NGC 185) [075] = NGC 185 V0063. Foreground object?
V713	Cas	73013	= C3-V26 (Gal.NGC 185) [075] = NGC 185 V0069. Foreground object?
V714	Cas $=$	73014	= C4-V15 (Gal.NGC 185) [075] = NGC 185 V0070. Foreground object?
V715	Cas $=$	73015	= C1-V22 (Gal.NGC 185) [075] = NGC 185 V0155. Foreground object?
V716	Cas $=$	73016	= C1-V12 (Gal.NGC 185) [075] = NGC 185 V0165. Foreground object?
V717	Cas $=$	73017	= C1-V13 (Gal.NGC 185) [075] = NGC 185 V0166. Foreground object?
V718	Cas $=$	73018	C1-V9 (Gal.NGC 185) [075] = NGC 185 V0168. Foreground object?

Table 2 (continued)

V719	Cas $=$	73019	= C1-V1 (Gal.NGC 185) [075] = NGC 185 V0174. Foreground object?
V720	Cas $=$	73023	$=$ TAV $0042+53=$ IRAS $00422+5310[077]=$ GSC 3655.1254.
V721	Cas $=$	73026	$=$ LD $90[072]=$ IRAS $00535+5923$.
V722	$\mathrm{Cas}=$	73028	$=\operatorname{LD} 94[072]=\operatorname{IRAS} 00563+6028=\operatorname{CCS} 44=$ GSC 4017.1463. Not AV Cas.
V723	Cas $=$	73030	= Nova Cas 1995 [078, Yamamoto].
V724	Cas	73032	= LD $96[072]=$ GSC 4034.0172.
V725	Cas $=$	73048	= M 285 [080].
V726	Cas	73051	= M 295 [080].
V727	Cas $=$	73057	$\begin{aligned} & =\text { Prager } 2552=634.1936=\text { IRAS } 02588+6956=\text { CSV } 263=\text { NSV } 01020 \\ & {[081]=\text { GSC } 4317.0077 .} \end{aligned}$
V728	Cas $=$	73746	$=\mathrm{BD}+61^{\circ} 2409$ (8.3) $=$ SAO 020517 [082] $=$ HIP $114817=$ GSC 4279.0146.
V729	Cas $=$	73760	$=$ GSC 4285.1790 [062].
V730	Cas $=$	73761	$=$ No. $6[083]=$ GSC 4009.0677. In NGC 7789 field.
V731	$\mathrm{Cas}=$	73762	$=$ No. 9 [083]. In NGC 7789 field.
V732	Cas $=$	73763	$=$ No. 1 [083]. In NGC 7789 field.
V733	Cas	73764	$=$ No. 7 [083]. In NGC 7789 field.
V734	Cas $=$	73765	$=$ No. 8 [083]. In NGC 7789 field.
V735	Cas $=$	73766	$=$ No. 10 (NGC 7789) [083].
V736	Cas $=$	73767	$=$ No. 2 [083]. In NGC 7789 field.
V737	Cas	73768	$=$ No. 4 [083]. In NGC 7789 field.
V738	Cas $=$	73769	$=$ No. 5 [083]. In NGC 7789 field.
V885	Cen $=$	73287	$=\mathrm{HD} 101584(\mathrm{G} 0)[084]=\mathrm{CoD}-54^{\circ} 4274(7.0)=\mathrm{CPD}-54^{\circ} 4707(8.0)=\mathrm{SAO}$ $239288=$ IRAS 11385-5517 $=$ HIP $056992=$ GSC 8634.1166. Close binary eccentric system with a low-mass unseen secondary and a post-AGB primary. Long-term variations plus periodic variability.
V886	Cen $=$	73338	$\begin{aligned} & =\text { BPM } 37093[085]=\text { L } 327-186=\text { WD } 1236-495=\text { Gliese } 2095=\text { LHS } 2594 \\ & =\text { LTT } 4816=\text { GSC } 8240.2502 . \end{aligned}$
V887	Cen $=$	73340	$=\mathrm{V} 2[087]$. In the globular cluster Ru 106, a background object.
V888	Cen $=$	73354	= Nova Cen 1995 [088, Liller].
V889	Cen $=$	73359	$=$ LSS 3074 [089] = GSC 8995.3316.
V890	Cen $=$	73362	$=\mathrm{V} 1349-4754$ [015].
V891	Cen $=$	73363	$=\mathrm{V} 1350-4802$ [015].
V892	Cen $=$	73364	$\begin{aligned} & =\mathrm{HD} 121276(\mathrm{~A} 0)[091]=\mathrm{CoD}-51^{\circ} 7839(9.6)=\mathrm{CPD}-51^{\circ} 6430(8.6)=\mathrm{SAO} \\ & 241303=\mathrm{GSC} 8275.1886 . \end{aligned}$
V893	Cen $=$	73366	$=$ Star B [092] = IRAS 13568-6232. Not HD 121918.
V894	Cen	73369	$=$ IRAS 14122-5947 [093].
V895	Cen $=$	73372	$\begin{aligned} & =\text { EUVE J1429-38.0 (candidate 2) }[094]=\text { Prager } 3734=\text { HV } 7408=\text { CSV } \\ & 2143=\text { NSV } 06680 . \end{aligned}$
V896	Cen $=$	73376	$\begin{aligned} & =\mathrm{HD} 128157(\mathrm{~F} 0)[067]=\mathrm{CoD}-59^{\circ} 5334(8.4)=\mathrm{CPD}-59^{\circ} 5662(8.2)=\mathrm{SAO} \\ & 241852=\mathrm{GSC} 8691.3053 . \end{aligned}$
V389	Cep $=$	73684	= No. 3 [095] = NSV 13756.
V390	Cep $=$	73693	$=\mathrm{LkH} \alpha 349$ [096] $=\mathrm{HBC} 308=$ NSV $13814=$ GSC 3975.0396. In the cometary nebula IC 1396A.
V391	Cep $=$	73694	$=$ No. 7 [098] = GSC 4261.0743 .
V392	Cep $=$	73696	$=$ RNO 138S [099]. Illuminating star of the nebula RNO 138 in NGC 7129. Brightened at least by $1 .{ }^{\mathrm{m}} 2$ in [SII] ($\lambda_{0}=6740 \AA$, FWHM $=70 \AA$) between 1988 and 1993.
V393	Cep $=$	73698	= No. 6 [095] = NSV 13897.
V394	Cep $=$	73707	$=$ No. $8[095]=$ NSV $14008=$ GSC 3981.1498.
V395	Cep $=$	73748	$\begin{aligned} & =\mathrm{BD}+73^{\circ} 1031(9.5)=\text { IRAS } 23189+7357=\text { AS } 507[100]=\mathrm{HBC} 741=\mathrm{GSC} \\ & 4490.0538 . \end{aligned}$
BW	Cet $=$	73037	$=\mathrm{HD} 9289$ (A3) [101] $=\mathrm{BD}-11^{\circ} 286$ (9.0) $=\mathrm{SAO} 147854=\mathrm{GSC} 5274.0240$.
BX	Cet $=$	73050	$\begin{aligned} & =\text { Gliese 105B }[018]=\mathrm{G} 73-71=\mathrm{LHS} 16=\text { LFT } 218=\text { LTT } 10859=\mathrm{GSC} \\ & 0052.0151 . \end{aligned}$
BY	Cet $=$	73053	$\begin{aligned} & =\mathrm{BD}-0^{\circ} 431(8.8)=\mathrm{SAO} 130113=\text { EXOSAT } 0244-0024=\text { EXO } 024453- \\ & 0024.9[103]=\text { GSC } 4699.0241 . \end{aligned}$
BZ	Cet $=$	73056	$\begin{aligned} & =\mathrm{HD} 18632(\mathrm{G} 5)=\mathrm{BD}+7^{\circ} 459(8.3)=\mathrm{SAO} 110894=1 \mathrm{E} 0257.4+0733= \\ & \text { HIC } 013976[005]=\mathrm{GSC} 0641.0305 . \end{aligned}$

Table 2 (continued)

CC	Cet $=$	73059	$=\mathrm{PG} 0308+096[104]=\mathrm{WD} 0308+096=\mathrm{GSC} 0648.1198$.
CD	Cet $=$	73060	$=$ Gliese $1057[018]=$ G $77-31=$ LHS $168=$ GSC 0059.0616.
DL	$\mathrm{Cha}=$	73355	$\begin{aligned} & =\mathrm{S} 6439[105,106]=\text { IRAS } 13022-7650=\text { CSV } 6983=\text { NSV } 06083=\text { GSC } \\ & 9417.0318 . \end{aligned}$
BX	Cir $=$	73367	$=\operatorname{LSS} 3184[107]=$ GSC 9017.1207.
BY	$\mathrm{Cir}=$	73377	= Nova Cir 1995 [108, Liller].
BZ	$\mathrm{Cir}=$	73379	$=1 \mathrm{E} 1449.8-6803$ [110] = CIR 1.
CC	$\mathrm{Cir}=$	73384	$=$ HD $134877(\mathrm{O})=$ WR $66[112]=$ LSS $3322=$ He 3-1058 = GSC 8706.0757.
UU	$\mathrm{Col}=$	73146	= RX J0512.2-3241 [113].
UV	$\mathrm{Col}=$	73150	$\begin{aligned} & =\text { IRAS } 05150-4056[014]=\text { HV } 8043=\text { Prager } 2732=706.1935=\text { CSV } 535 \\ & =\text { NSV } 01911=\text { GSC } 7591.0707 . \end{aligned}$
UW	$\mathrm{Col}=$	73153	$=$ IRAS 05242-2852 [014].
UX	$\mathrm{Col}=$	73155	$\begin{aligned} & =\mathrm{CoD}-33^{\circ} 2353(9.7)=\mathrm{CPD}-33^{\circ} 819(10.2)=\text { EXOSAT } 0527-3329=\mathrm{EXO} \\ & 052707-3329.2[103]=\mathrm{GSC} 7059.1111 . \end{aligned}$
UY	$\mathrm{Col}=$	73207	$\begin{aligned} & =\mathrm{HD} 40765(\mathrm{~F} 2)[114]=\mathrm{CoD}-30^{\circ} 2754(8.6)=\mathrm{CPD}-30^{\circ} 1091(9.1)=\mathrm{SAO} \\ & 196385=\text { GSC } 7058.0210 . \end{aligned}$
IQ	Com $=$	73291	= No. 19 [003].
IR	$\mathrm{Com}=$	73341	= S $10932[115,355]=$ RX J1239.5+2108.
IS	$\mathrm{Com}=$	73357	$=$ No. 22 [003] = GSC 1996.1193.
IT	$\mathrm{Com}=$	73361	$\begin{aligned} & =\text { HD } 118234(\mathrm{~K} 0)=\mathrm{BD}+21^{\circ} 2548(7.8)=\mathrm{SAO} 082886=\text { IRAS } 13327+2102 \\ & =\text { HIC } 066286[005]=\mathrm{GSC} 1465.1022 . \end{aligned}$
V703	$\mathrm{CrA}=$	73495	$=$ IRAS 17552-3909 [116]. Not V695 Sco.
V704	$\mathrm{CrA}=$	73547	$\begin{aligned} & =\mathrm{HD} 168947(\mathrm{~A} 2)[117]=\mathrm{CoD}-44^{\circ} 12574(8.4)=\mathrm{CPD}-44^{\circ} 9121(8.4)= \\ & \mathrm{SAO} 228991=\text { GSC } 7913.1173 . \end{aligned}$
V705	$\mathrm{CrA}=$	73558	= CV4 in Sgr control field [118].
V706	$\mathrm{CrA}=$	73559	= CV1 in Sgr control field [118].
V707	$\mathrm{CrA}=$	73560	= CV3 in Sgr control field [118].
V708	$\mathrm{CrA}=$	73561	= CV2 in Sgr control field [118].
V709	$\mathrm{CrA}=$	73572	$\begin{aligned} & =\mathrm{CoD}-37^{\circ} 13022(10)=\mathrm{HBC} 676[119]=\text { VSS } 47=\text { Wa CrA } 1=\text { Kn Anon } 1 \\ & =\text { GlPe i } 2=\text { GSC } 7421.1890 . \end{aligned}$
V710	CrA $=$	73573	$=$ HH 100 IRS $[121,382]=$ Herbig-Haro object in CrA. IR source associated with the HH object.
UZ	$\mathrm{CrB}=$	73385	= No. 27 [003].
VV	$\mathrm{CrB}=$	73391	$=\mathrm{S} 10934[123]=$ IRAS $15489+3139=$ GSC 2572.0355.
VW	$\mathrm{CrB}=$	73397	= Var 21 [124].
VX	$\mathrm{CrB}=$	73398	= Var 22 [124] = GSC 2576.0466 [125].
VY	$\mathrm{CrB}=$	73400	$=\operatorname{Var} 23$ [124] = GSC 2576.0980.
VZ	$\mathrm{CrB}=$	73403	$=\operatorname{Var} 20$ [124].
WW	$\mathrm{CrB}=$	73404	$=\operatorname{Var} 6[126]=$ GSC 3062.0876.
WX	$\mathrm{CrB}=$	73406	$=\operatorname{Var} 7[126]=$ GSC 3062.0052.
WY	$\mathrm{CrB}=$	73407	$=\operatorname{Var} 19$ [124].
WZ	$\mathrm{CrB}=$	73408	$=\operatorname{Var} 16$ [127].
XX	$\mathrm{CrB}=$	73409	$=$ No. 28 [003] = GSC 2051.0528.
TW	$\mathrm{Crv}=$	73290	$=\mathrm{EC} 11575-1845[128]=$ GSC 6097.0879.
TV	$\mathrm{Crt}=$	73285	$=\mathrm{HD} 98800(\mathrm{~K} 2)[005]=\mathrm{CoD}-24^{\circ} 9706$ (8.8) $=\mathrm{CPD}-24^{\circ} 4651$ (9.1) $=\mathrm{SAO}$ $179815=$ ADS $8141=$ IRAS $11195-2430=$ Gliese 2084AB $=$ HIP $055505=$ GSC 6654.0219.
CO	$\mathrm{Cru}=$	73292	$\begin{aligned} & =\mathrm{HD} 105513(\mathrm{F0})[129]=\mathrm{CoD}-55^{\circ} 4437(9.4)=\mathrm{CPD}-55^{\circ} 4874(8.8)=\mathrm{SAO} \\ & 239697=\mathrm{GSC} 8636.2502 . \end{aligned}$
CP	Cru $=$	73293	= Probable Nova Cru 1996 [130].
CQ	$\mathrm{Cru}=$	73343	$=$ No. $74[131]=\mathrm{I}-20($ NGC 4755) $=$ GSC 8989.2533.
CR	$\mathrm{Cru}=$	73344	$=$ No. $83[131]=$ I-07 (NGC 4755) $=$ GSC 8989.2338.
CS	$\mathrm{Cru}=$	73345	$\begin{aligned} & =\mathrm{CPD}-59^{\circ} 4546(9.4)=\text { No. } 16[131]=\text { IV }-17(\text { NGC } 4755)=417(\text { NGC } 4755) \\ & {[356]=\text { He } 3-833=\text { Wray } 15-1030=\text { GSC } 8989.2082 .} \end{aligned}$
CT	$\mathrm{Cru}=$	73346	$\begin{aligned} & =\text { CPD }-59^{\circ} 4549(10.1)=\text { No. } 63[131]=\text { III-01 }(\text { NGC } 4755)=\text { LSS } 2810= \\ & \text { GSC } 8989.2014 . \end{aligned}$
CU	$\mathrm{Cru}=$	73347	$=$ No. 73 [131] = II-04 (NGC 4755).
CV	$\mathrm{Cru}=$	73348	$=\mathrm{CPD}-59^{\circ} 4550$ (9.5) $=$ No. $141[131]=\mathrm{I}(\mathrm{NGC} 4755)=\mathrm{GSC} 8989.2418$.

Table 2 (continued)

CW	$\mathrm{Cru}=$	73349	$\begin{aligned} & =\mathrm{CPD}-59^{\circ} 4559(10.1)=\mathrm{No.} 29[131]=\mathrm{III}-06(\mathrm{NGC} 4755)=306(\mathrm{NGC} \\ & 4755)[356]=\text { He } 3-834=\mathrm{GSC} 8989.1678 . \end{aligned}$
CX	Cru $=$	73350	$=\mathrm{CPD}-59^{\circ} 4558(10)=$ No. $75[131]=\mathrm{II}-02(\mathrm{NGC} 4755)=\mathrm{GSC} 8989.1871$.
CY	$\mathrm{Cru}=$	73351	$\begin{aligned} & =\mathrm{CPD}-59^{\circ} 4560(9.7)=\text { No. } 61[131]=\mathrm{III}-07(\mathrm{NGC} 4755)=\mathrm{LSS} 2814=\mathrm{HIP} \\ & 062937=\operatorname{GSC} 8989.3111 ? \end{aligned}$
CZ	Cru $=$	73352	$\begin{aligned} & =\mathrm{CPD}-59^{\circ} 4562(9.6)=\mathrm{No} .87[131]=\mathrm{II}-10(\mathrm{NGC} 4755)=\mathrm{LSS} 2815=\mathrm{GSC} \\ & 8989.2022 . \end{aligned}$
V2028	$\mathrm{Cyg}=$	73613	$\begin{aligned} & =\text { MWC } 623[133]=\text { He } 3-1805=\text { LS II }+30^{\circ} 8=\text { IRAS } 19545+3058=\text { GSC } \\ & 2669.4333 . \end{aligned}$
V2029	$\mathrm{Cyg}=$	73624	$=\operatorname{CCS} 2899[134]=$ IRAS $20213+4727=$ GSC 3576.2151.
V2030	$\mathrm{Cyg}=$	73625	$=\mathrm{BC} 42$ [134].
V2031	$\mathrm{Cyg}=$	73626	$=\mathrm{HD} 194378$ (F) $[135]=\mathrm{BD}+38^{\circ} 4063$ (8.9) $=\mathrm{SAO} 069957=$ Hoag 1 (NGC $6913)=$ Sanders $135=$ Zug $2[357]=$ Tifft $10=$ HIP $100586=$ GSC 3152.0040 .
V2032	Cyg	73628	$=\operatorname{CCS} 2908[134]=\operatorname{IRAS} 20292+4611=$ GSC 3573.2409.
V2033	Cyg $=$	73629	$=$ CCS $2909[134]=$ GSC 3573.1485.
V2034	$\mathrm{Cyg}=$	73630	$=\operatorname{CCS} 2911[134]=$ IRAS $20321+4909=$ GSC 3581.1545.
V2035	Cyg $=$	73631	$=\operatorname{CCS} 2914[134]=$ IRAS $20337+4518=$ GSC 3573.0420.
V2036	$\mathrm{Cyg}=$	73632	$=$ BC 43 [134] = IRAS 20359+4946.
V2037	$\mathrm{Cyg}=$	73634	$=$ CCS $2920[134]=$ IRAS $20360+4845=$ GSC 3582.1630.
V2038	$\mathrm{Cyg}=$	73635	= BC 239 [134] = GSC 3582.0707.
V2039	$\mathrm{Cyg}=$	73637	$=\operatorname{CCS} 2927$ [134] = IRAS 20431+4652 = GSC 3578.0357.
V2040	$\mathrm{Cyg}=$	73638	$=$ CCS $2930[134]=$ GSC 3178.0517.
V2041	$\mathrm{Cyg}=$	73640	= Ton 8 in Cyg T1 [136].
V2042	$\mathrm{Cyg}=$	73641	$=$ CCS 2936 [134] = IRAS $20476+4637=$ GSC 3575.5461.
V2043	$\mathrm{Cyg}=$	73643	$=\mathrm{B} 42$ in the NGC 7000 region $[137,138]$.
V2044	$\mathrm{Cyg}=$	73645	$=\mathrm{LD} 32$ [139] = GSC 3575.4390.
V2045	$\mathrm{Cyg}=$	73646	$=$ CCS 2939 [134].
V2046	Cyg $=$	73647	$=$ CCS 2941 [134] = IRAS $20514+5331=$ SVS 2404.
V2047	$\mathrm{Cyg}=$	73648	= Ton 9 in Cyg T1 [136].
V2048	$\mathrm{Cyg}=$	73649	= Ton 10 in Cyg T1 [136].
V2049	Cyg $=$	73651	$=$ Ton 11 in Cyg T1 [136].
V2050	$\mathrm{Cyg}=$	73652	$=$ Anon Cyg [140] = GSC 3171.0197.
V2051	$\mathrm{Cyg}=$	73653	= Ton 12 in Cyg T1 [136].
V2052	$\mathrm{Cyg}=$	73655	$=$ Ton 13 in Cyg T1 [136].
V2053	Cyg $=$	73656	$=$ CCS 2961 [134] = GSC 3588.7852.
V2054	$\mathrm{Cyg}=$	73657	$=\operatorname{CCS} 2964[134]=$ CSV $8611=$ NSV 13496.
V2055	$\mathrm{Cyg}=$	73658	$=$ BC $74[134]=$ IRAS $21017+5402$.
V2056	$\mathrm{Cyg}=$	73659	$=\mathrm{CCS} 2967$ [134].
V2057	$\mathrm{Cyg}=$	73661	= Ton 14 in Cyg T1 [136].
V2058	$\mathrm{Cyg}=$	73663	$=$ CCS $2986[134]=$ GSC 3180.2398.
V2059	Cyg $=$	73664	$=\operatorname{CCS} 2987[134]=$ GSC 3588.8299.
V2060	Cyg $=$	73666	$=$ BC $75[134]=$ IRAS $21082+5358=$ SVS $2407=$ GSC 3953.1310.
V2061	$\mathrm{Cyg}=$	73667	= CCS 2996 [134].
V2062	$\mathrm{Cyg}=$	73668	$=$ New variable star in Cepheus region [141] $=$ GSC 3953.1078.
V2063	Cyg $=$	73669	$=\operatorname{CCS~} 3000$ [134].
V2064	$\mathrm{Cyg}=$	73670	$=$ CCS $3001[134]=$ IRAS $21115+5406=$ SVS $2408=$ GSC 3953.0793.
V2065	$\mathrm{Cyg}=$	73671	$=\mathrm{BC} 46[134]=$ GSC 3177.2636.
V2066	$\mathrm{Cyg}=$	73672	$=$ CCS 3007 [134] = GSC 3177.1965.
V2067	$\mathrm{Cyg}=$	73673	$=$ CCS $3011[134]=$ IRAS $21151+5010=$ SVS 2409.
V2068	$\mathrm{Cyg}=$	73677	$=$ BC $76[134]=$ IRAS $21196+5453=$ SVS $2411=$ GSC 3970.1259.
V2069	$\mathrm{Cyg}=$	73678	$=$ RX J2123.7+4217 [068].
V2070	$\mathrm{Cyg}=$	73680	$=$ CCS $3033[134]=$ IRAS $21250+5206=$ SVS 2412.
V2071	Cyg $=$	73686	$=$ CCS $3037[134]=$ IRAS $21288+4938=$ SVS $2413=$ GSC 3598.1178.
V2072	$\mathrm{Cyg}=$	73687	$=\mathrm{LD} 55[139]=\mathrm{V} 11[143]=$ IRAS $21292+3833$.
V2073	Cyg $=$	73690	$=\operatorname{CCS} 3039[134]=$ IRAS $21301+5255=$ GSC 3966.1256.
V2074	$\mathrm{Cyg}=$	73695	$\begin{aligned} & =\operatorname{CCS} 3065[134]=\operatorname{LD} 65[139]=\text { IRAS } 21417+4855=\text { SVS } 2415=\text { GSC } \\ & 3599.2290 . \end{aligned}$
V2075	$\mathrm{Cyg}=$	73700	$\begin{aligned} & =\text { HD } 208472(\mathrm{~K} 0)=\mathrm{BD}+43^{\circ} 4087(7.0)=\text { SAO } 051437=\text { IRAS } 21532+4410 \\ & =\text { HIC } 108198[005]=\text { GSC } 3197.1790 . \end{aligned}$

Table 2 (continued)

V2076	Cyg $=$	73701	$=\mathrm{LD} 187$ [011].
LW	$\mathrm{Del}=$	73633	$=$ Prager $5435=$ SVS $651=$ CSV $5237=$ NSV 13191 [144] = GSC 1088.0993.
LX	Del $=$	73644	$=$ HV $10648=$ CSV $5292=$ NSV 13368 [145] = GSC 0524.0645.
LY	Del $=$	73660	$=$ TAV $2106+194[146]=$ GSC 1657.1754.
EU	Dra $=$	73382	$\begin{aligned} & =\mathrm{HD} 135262(\mathrm{G} 0)[147]=\mathrm{BD}+64^{\circ} 1050(8.0)=\mathrm{SAO} 016628=\operatorname{HIP} 074280 \\ & =\text { GSC } 4183.0211 . \end{aligned}$
EV	Dra $=$	73399	$\begin{aligned} & =\mathrm{HD} 144110(\mathrm{G} 5)=\mathrm{BD}+51^{\circ} 2051(8.3)=\mathrm{SAO} 029761=\mathrm{RE} 1601+512= \\ & \text { HIC } 078519[005]=\mathrm{GSC} 3497.0736 . \end{aligned}$
EW	Dra $=$	73405	$\begin{aligned} & =\text { Gliese } 617 \mathrm{~B}[018]=\mathrm{G} 225-58=\text { LHS } 3176=\text { GSC } 4195.1167 . \text { Gliese } 617 \mathrm{~A} \\ & =\text { NSV } 07624 . \end{aligned}$
EX	Dra $=$	73514	$\begin{aligned} & =\text { HS } 1804+6753 \text { [149, Barwig et al.] = C-object }[150]=\text { KUV } 18044+6754= \\ & \text { MS } 1804.3+6753=\text { GSC } 4429.1070[151] . \end{aligned}$
EY	Dra $=$	73543	$=$ RE 1816+541 [152] = EUVE J1816+541 = GSC 3904.0967.
EZ	Dra $=$	73619	$\begin{aligned} & =\text { Prager } 5342=32.1934=\text { IRAS } 20096+6648=\text { CSV } 5080=\text { NSV } 12872 \\ & {[154]=\text { GSC } 4244.0152 .} \end{aligned}$
ER	Eri $=$	73044	$\begin{aligned} & =\mathrm{CoD}-55^{\circ} 479(9.9)=\mathrm{CPD}-55^{\circ} 398(9.6)=\text { He } 3-1=\operatorname{PDS} 1[155]=\mathrm{GSC} \\ & 8483.1210 . \end{aligned}$
ES	Eri $=$	73065	$=1 \mathrm{E} 0315.7-1955[156]=$ GSC 5875.0847 .
ET	Eri $=$	73080	$=$ IRAS 03287-1535 [033] $=$ Stephenson $24=$ GSC 5873.0263.
EU	Eri $=$	73093	$\begin{aligned} & =\text { HD } 23548(\mathrm{~K} 5)=\mathrm{CoD}-42^{\circ} 1226(7.3)=\mathrm{CPD}-42^{\circ} 356(8.2)=\mathrm{SAO} 216463 \\ & =\text { IRAS } 03425-4203=\text { HIP } 017447=\mathrm{GSC} 7572.1544[157] . \end{aligned}$
EV	Eri $=$	73105	$=$ IRAS 04067-0922 [033] = GSC 5312.2096.
EW	Eri $=$	73133	$=\mathrm{L} 1642-1 \mathrm{~A}[158]=$ HBC $413=\operatorname{IRAS} 04327-1419=$ GSC 5320.1227.
EX	Eri $=$	73140	$\begin{aligned} & =\mathrm{HR} 1525=\mathrm{HD} 30422 \text { (A2) }[160]=\mathrm{CoD}-28^{\circ} 1735(6.4)=\mathrm{CPD}-28^{\circ} 649 \\ & (6.8)=\text { SAO } 169752=\text { GSC } 6471.0474 . \end{aligned}$
EY	Eri $=$	73141	$=$ IRAS 04505-1006 [014].
EZ	Eri $=$	73145	$=\mathrm{BD}-5^{\circ} 1159(9.5)=1 \mathrm{E} 0505.0-0527$ [156] $=\mathrm{GSC} 4758.1316$.
VW	For $=$	73054	$=\mathrm{V} 0252-3037$ [015].
VX	For $=$	73076	$=$ Probable Dwarf Nova in Fornax [161] = Suspected var. near TU For.
VY	For	73083	$=$ EXOSAT 0329-2606 = EXO 032957-2606.9 [162] = FOR 1.
PR	Gem $=$	73219	$=$ No. 9 [003].
PS	Gem $=$	73224	$\begin{aligned} & =\mathrm{HD} 52961(\mathrm{~A} 0)=\mathrm{BD}+10^{\circ} 1392(8.6)=\mathrm{SAO} 096430[358]=\mathrm{HIP} 034038= \\ & \mathrm{GSC} 0753.1411 . \end{aligned}$
PT	Gem $=$	73234	= No. 10 [003].
CH	Gru =	73681	$=\mathrm{V} 5$ [166].
CI	Gru =	73689	$=\mathrm{V} 6[166]=\mathrm{GRU} 1$.
CK	Gru $=$	73751	$\begin{aligned} & =\text { Prager } 5749=618.1935=\text { HV } 9758=\text { IRAS } 23213-4521=\text { AFGL } 4296= \\ & \text { CSV } 5712=\text { NSV } 14540[014]=\text { GSC } 8455.1039 . \end{aligned}$
V842	Her $=$	73401	$\begin{aligned} & =\mathrm{BD}+50^{\circ} 2255(9.3)=\mathrm{BV} 103=\mathrm{CSV} 7268=\mathrm{NSV} 07457[167]=\mathrm{GSC} \\ & 3497.0263 . \end{aligned}$
V843	Her $=$	73410	$=\operatorname{Var} 51[168]=$ GSC 3065.1355.
V844	Her $=$	73413	$=\operatorname{Var} 43$ [168].
V845	Her $=$	73414	$=$ Var $4[126]=$ GSC 3065.0704.
V846	Her $=$	73419	$\begin{aligned} & =\mathrm{HD} 148405(\mathrm{~K} 0)[005]=\mathrm{BD}+24^{\circ} 3008(8.8)=\mathrm{SAO} 084381=\mathrm{GSC} \\ & 2043.0407 . \end{aligned}$
V847	Her $=$	73422	$=\operatorname{Var} 3[126]=$ GSC 3066.0251.
V848	Her $=$	73424	$=\operatorname{Var} 15[127]=$ GSC 2584.0550.
V849	Her $=$	73426	$=$ PG 1633+115 [169] = HER 2.
V850	Her $=$	73427	$=\operatorname{Var} 5$ [126].
V851	Her $=$	73428	$=\operatorname{Var} 2$ [126].
V852	Her $=$	73430	$=\operatorname{Var} 24[124]=$ GSC 2053.0776.
V853	Her $=$	73431	$=\operatorname{Var} 46$ [168].
V854	Her $=$	73432	$=\operatorname{Var} 11[127]=$ GSC 2585.2215.
V855	Her $=$	73433	$=\operatorname{Var} 17$ [127].
V856	Her $=$	73435	$=\operatorname{Var} 18[127]=$ GSC 3074.0305.
V857	Her $=$	73436	= BV $105[042]=$ CSV $7493=$ NSV $07968=$ GSC 3070.0345.
V858	Her $=$	73437	$=\operatorname{Var} 12$ [127].
V859	Her $=$	73438	$=\operatorname{Var} 1$ [126].
V860	Her $=$	73439	= No. 29 [003].

Table 2 (continued)

V861	Her $=$	73440	$=\operatorname{Var} 44[168]=$ GSC 3079.0201.
V862	Her $=$	73444	$=\operatorname{Var} 45[168]=$ GSC 3075.0885.
V863	Her $=$	73445	$=\operatorname{Var} 49$ [168] = GSC 3079.0460.
V864	Her $=$	73446	$=$ No. $30[003]=$ GSC 2067.0530.
V865	Her $=$	73447	$=\operatorname{Var} 10[126]=$ GSC 3079.0534.
V866	Her $=$	73448	$=\operatorname{Var} 9[126]=$ IRAS $16582+4115=$ GSC 3075.0202.
V867	Her $=$	73449	$=\operatorname{Var} 48$ [168].
V868	Her $=$	73450	= Var 14 [127].
V869	Her $=$	73452	$=\operatorname{Var} 47[168]=$ GSC 3072.0441.
V870	Her $=$	73453	$=\operatorname{Var} 8$ [126].
V871	Her $=$	73454	$=\operatorname{Var} 13$ [127].
V872	Her $=$	73455	$=\operatorname{Var} 50[168]=$ GSC 3076.0951.
V873	Her $=$	73456	$\begin{aligned} & =\mathrm{HD} 155118(\mathrm{~F} 0)=\mathrm{BD}+16^{\circ} 3105(8.0)=\mathrm{SAO} 102617=\mathrm{HIC} 083921 \text { [171] } \\ & =\text { GSC } 1535.1319 . \end{aligned}$
V874	Her $=$	73457	$\begin{aligned} & =\mathrm{BD}+49^{\circ} 2601(9.2)=\text { SAO } 046557=\text { Prager } 1219=4.1932=\text { CSV } 3038= \\ & \text { NSV } 08316[172]=\text { GSC } 3504.0057 . \end{aligned}$
V875	Her $=$	73459	= No. 32 [003].
V876	Her $=$	73461	= No. 34 [003].
V877	Her $=$	73462	$=$ No. $35[003]=$ GSC 2082.0709.
V878	Her $=$	73464	$=\mathrm{BD}+49^{\circ} 2630(8.5)=\mathrm{SAO} 046698=$ DHK $40[174]=$ GSC 3516.0047.
V879	Her $=$	73467	= No. 36 [003].
V880	Her $=$	73472	$=$ No. 37 [003].
V881	Her $=$	73473	= No. 38 [003].
V882	Her $=$	73476	= No. 39 [003].
V883	Her $=$	73491	$=$ No. $40[003]=$ GSC 2085.0526.
V884	Her $=$	73506	= WGA J1802.1+1804 [175].
V885	Her $=$	73513	$\begin{aligned} & =\operatorname{ADS} 11060 \mathrm{C}[176]=\mathrm{BD}+21^{\circ} 3302 \mathrm{C}\left(\mathrm{AC}: 28^{\prime \prime} 37,171^{\circ} 7,1905 ; \mathrm{AB}=\mathrm{V} 772\right. \\ & \text { Her }) . \end{aligned}$
V886	Her $=$	73519	$\begin{aligned} & =\text { HD } 341617 \text { (A5) }[177]=\mathrm{BD}+24^{\circ} 3337(8.8)=\mathrm{SAO} 085766=\text { IRAS } \\ & 18062+2410=\text { GSC } 2091.0591 . \end{aligned}$
V887	Her $=$	73536	$=$ IRAS 18095+2704 [022,359] = GSC 2100.0044.
V888	Her $=$	73537	$=$ No. 41 [003].
V889	Her $=$	73562	$\begin{aligned} & =\text { HD } 171488(\mathrm{G} 0)=\mathrm{BD}+18^{\circ} 3734(7.0)=\text { SAO } 103862=\text { RE } 1834+184= \\ & \text { HIC } 091043[005]=\mathrm{GSC} 1574.0517 . \end{aligned}$
MM	Нуа $=$	73254	$=\mathrm{PG} 0911-066[169]=$ HYA $1=$ GSC 4891.0637.
MN	Нуа $=$	73258	= RX J0929.1-2404 [178].
MO	Нуа $=$	73342	$\begin{aligned} & =\text { HR } 4881=\text { HD } 111786(\text { A0 })[179]=\mathrm{CoD}-26^{\circ} 9369(6.3)=\mathrm{CPD}-26^{\circ} 4812 \\ & (6.4)=\text { SAO } 181169=\text { GSC } 6705.1317 . \end{aligned}$
MP	Нуа $=$	73373	$\begin{aligned} & =\text { HD } 127269(\mathrm{~A} 2)[180]=\mathrm{CoD}-24^{\circ} 11533(7.6)=\mathrm{CPD}-24^{\circ} 5332(7.4)= \\ & \text { SAO } 182624=\text { GSC } 6749.1660 . \end{aligned}$
BI	Ind $=$	73744	$\begin{aligned} & =\mathrm{HD} 219025(\mathrm{~K} 0)[181]=\mathrm{CoD}-68^{\circ} 2333(8.0)=\mathrm{CPD}-68^{\circ} 3563(8.4)=\mathrm{GSC} \\ & 9338.2053 . \end{aligned}$
V378	Lac $=$	73708	$\begin{aligned} & =\text { HD } 209596(\mathrm{Na})=\text { S } 8577=\text { CCS } 101[134]=\text { IRAS } 22014+4519=\mathrm{NSV} \\ & 14010=\text { HIP } 108892=\text { GSC } 3605.0545 . \end{aligned}$
V379	Lac $=$	73710	$=$ LD $190[011]=$ IRAS $22057+4050$.
V380	Lac $=$	73711	$=$ LD $194[011]=$ IRAS $22081+3801$.
V381	Lac $=$	73714	$=$ LD $197[011]=$ IRAS $22138+4207$.
V382	Lac $=$	73715	$=$ LD $198[011]=$ IRAS $22175+4757$.
V383	Lac $=$	73716	$\begin{aligned} & =\mathrm{BD}+48^{\circ} 3686(8.5)[005]=\text { SAO } 051891=\text { RE } 2220+493[182]=\text { EUVE } \\ & \mathrm{J} 2220+49.5=\text { GSC } 3615.1729 . \end{aligned}$
V384	Lac $=$	73718	= LD $199[011]=$ S 8583 [368] = NSV 14144.
V385	Lac $=$	73720	$=$ LD 201 [011] = IRAS 22236+5002.
V386	Lac $=$	73722	= LD 204 [011].
V387	Lac $=$	73724	$=$ LD $205[011]=$ IRAS $22294+4800=$ GSC 3624.1959.
V388	Lac $=$	73727	= LD 206 [011].
V389	Lac $=$	73729	$=$ LD $207[011]=$ IRAS $22410+4101=$ GSC 3222.0149.
V390	Lac $=$	73730	$=$ LD $208[011]=$ IRAS $22431+5036$.
V391	Lac $=$	73732	$=$ LD $210[011]=$ IRAS $22474+5202=$ GSC 3633.2259.
V392	Lac $=$	73733	$=$ LD $211[011]=$ IRAS $22481+5308$.

Table 2 (continued)

DX	Leo $=$	73259	$\begin{aligned} & =\mathrm{HD} 82443(\mathrm{~K} 0)=\mathrm{BD}+27^{\circ} 1775(7.0)=\mathrm{SAO} 080897=\text { IRAS } 09298+2712 \\ & =\text { Gliese } 354.1 \mathrm{~A}=\text { HIC } 046843[005]=\mathrm{GSC} 1962.0469 . \end{aligned}$
DY	Leo $=$	73265	$\begin{aligned} & =\mathrm{HD} 85091(\mathrm{~F} 8)=\mathrm{BD}+11^{\circ} 2108(7.8)=\mathrm{SAO} 098794=\mathrm{HIC} 048215[005]= \\ & \mathrm{GSC} 0831.1479 . \end{aligned}$
DZ	Leo $=$	73267	$=$ No. 13 [003].
EE	Leo $=$	73278	$\begin{aligned} & =\text { Gliese } 402[018,361]=\text { G } 44-40=\text { LHS } 294=\text { LFT } 742=\text { Wolf } 358=\text { GSC } \\ & 0261.0224 . \end{aligned}$
EF	Leo $=$	73288	$=$ No. 17 [003].
SY	$\mathrm{LMi}=$	73271	$=$ No. 14 [003].
SZ	$\mathrm{LMi}=$	73275	$=$ No. 15 [003].
TT	LMi $=$	73279	$=$ No. 16 [003].
HN	Lib $=$	73375	$\begin{aligned} & =\text { BD }-11^{\circ} 3759(10)=\text { Gliese } 555[018]=\text { LHS } 2945=\text { LTT } 5759=\text { NSV } \\ & 06707=\text { GSC } 5572.0804 . \end{aligned}$
HO	Lib $=$	73387	$\begin{aligned} & =\mathrm{BD}-7^{\circ} 4003(9.8)=\text { Gliese } 581[018]=\text { G } 151-46=\text { LHS } 394=\text { LTT } 6112 \\ & =\text { Wolf } 562=\text { NSV } 07023=\text { GSC } 5594.0593 . \end{aligned}$
HP	Lib $=$	73388	$=$ EC 15330-1403 [183] = GSC 5608.1089.
HQ	Lib $=$	73390	$=\mathrm{BD}-17^{\circ} 4392(9.8)=\mathrm{EC} 15360-1734[184]=\mathrm{GSC} 6189.0952$.
HR	Lib $=$	73394	$\begin{aligned} & =\operatorname{HR} 5930=\operatorname{HD} 142703(\mathrm{A0})[185]=\mathrm{BD}-14^{\circ} 4314(6.7)=\mathrm{SAO} 159587= \\ & \text { GSC } 5622.1574 . \end{aligned}$
λ	Lib $=$	73392	$=$ lambda Lib $[186]=45 \mathrm{Lib}=\mathrm{HR} 5902=\mathrm{HD} 142096(\mathrm{~B} 3)=\mathrm{BD}-19^{\circ} 4249$ (5.4) $=\mathrm{CPD}-19^{\circ} 5920(5.0)=\mathrm{SAO} 183895=$ IRAS $15504-2001=$ GSC 6195.1763.
IN	Lup $=$	73395	$\begin{aligned} & =\text { HD } 142994(\text { F0 })[185,362]=\mathrm{CoD}-38^{\circ} 10783(7.3)=\mathrm{CPD}-38^{\circ} 6314(7.0)= \\ & \text { SAO } 207192=\text { GSC } 7838.0433 . \end{aligned}$
IO	Lup $=$	73396	$\begin{aligned} & =\mathrm{HD} 143232(\mathrm{F0})[187]=\mathrm{CoD}-38^{\circ} 10803(7.1)=\mathrm{CPD}-38^{\circ} 6325(7.1)= \\ & \mathrm{SAO} 207224=\text { GSC } 7851.1816 . \end{aligned}$
BL	Lyn $=$	73228	$=$ Gliese 277B [018] = G 87-43 = LTT $12035=$ Ross $989 \mathrm{~B}=$ NSV $03622=$ GSC 2465.1600. Gliese 277A = VV Lyn.
BM	Lyn $=$	73229	$\begin{aligned} & =\mathrm{HD} 62668(\mathrm{~K} 0)=\mathrm{BD}+47^{\circ} 1484(7.3)=\mathrm{SAO} 041995=\text { IRAS } 07436+4727 \\ & =\mathrm{S} 4742=\mathrm{CSV} 1125=\text { NSV } 03726=\text { HIC } 038003[005]=\text { GSC } 3407.0482 . \end{aligned}$
BN	Lyn $=$	73237	$=31 \mathrm{Lyn}=\mathrm{HR} 3275[039]=\mathrm{HD} 70272(\mathrm{~K} 5)=\mathrm{BD}+43^{\circ} 1815(5.0)=\mathrm{SAO}$ $042319=\text { IRC }+40195=\text { IRAS } 08194+4320=\text { NSV } 04030=\text { GSC } 2980.2184$
BO	Lyn $=$	73243	$=$ No. 63 in the RR7 field [188] = GSC 2985.1044.
BP	Lyn $=$	73252	$=$ PG $0859+415=$ KUV 08599+4130 [189] $=$ LYN $1=$ GSC 2986.1825.
V505	$\mathrm{Lyr}=$	73563	$=$ No. 43 [003].
V506	$\mathrm{Lyr}=$	73564	= No. 44 [003].
V507	$\mathrm{Lyr}=$	73566	$=$ No. $45[003]=$ GSC 2115.0522.
V508	Lyr $=$	73567	$=$ No. 46 [003].
V509	$\mathrm{Lyr}=$	73569	$=$ No. 47 [003].
V510	$\mathrm{Lyr}=$	73570	= No. 48 [003].
V511	$\mathrm{Lyr}=$	73577	$=\mathrm{HD} 337518(\mathrm{~K} 0)=\mathrm{BD}+27^{\circ} 3245(9.0)=\mathrm{SAO} 086811=\mathrm{RE} 1906+274=$ $\text { G } 207-15=\text { HIC } 093817[005]=\text { GSC } 2130.2347 .$
V512	$\mathrm{Lyr}=$	73578	= S 10931 [190].
V513	$\mathrm{Lyr}=$	73584	= V7 (NGC 6791) [191].
V514	$\mathrm{Lyr}=$	73585	= V8 (NGC 6791) [191].
V515	$\mathrm{Lyr}=$	73586	= V11 (NGC 6791) [191].
V516	Lyr $=$	73587	= B8 (NGC 6791) [193].
V517	$\mathrm{Lyr}=$	73588	$=$ V12 (NGC 6791) [191].
V518	$\mathrm{Lyr}=$	73589	= V5 (NGC 6791) [191].
V519	$\mathrm{Lyr}=$	73590	= V1 (NGC 6791) [191].
V520	$\mathrm{Lyr}=$	73591	= V9 (NGC 6791) [191].
V521	$\mathrm{Lyr}=$	73592	$=$ V4 (NGC 6791) [191].
V522	$\mathrm{Lyr}=$	73593	= V6 (NGC 6791) [191].
V523	$\mathrm{Lyr}=$	73596	$=\mathrm{V} 15$ (NGC 6791) $[191]=\mathrm{B} 7$.
V524	Lyr $=$	73597	$=$ V10 (NGC 6791) [191].
V525	$\mathrm{Lyr}=$	73598	= V3 (NGC 6791) [191].
V526	$\mathrm{Lyr}=$	73599	= V2 (NGC 6791) [191].
AH	Men $=$	73214	$=1 \mathrm{H} 0551-819[194]=1 \mathrm{H} 0616-818=$ MEN $1=$ GSC 9391.0179.

Table 2 (continued)

BO	Mic $=$	73639	$=\mathrm{HD} 197890$ ($\mathrm{K0}$) [196] $=\mathrm{CoD}-37^{\circ} 13926$ (8.6) $=\mathrm{CPD}-37^{\circ} 8883$ (8.8) $=$ SAO $212437=2$ RE J204746-363543 $=$ HIP $102626=$ "Speedy Mic" $[196]=$ GSC 7469.0997.
BP	Mic $=$	73654	$=$ IRAS 20571-3706 [014].
BQ	Mic $=$	73665	$=$ IRAS 21069-3843 [014] = AFGL 5592.
BR	Mic $=$	73679	$\begin{aligned} & =\text { HD } 204076(\mathrm{~B} 5)[197,363]=\mathrm{CoD}-32^{\circ} 16569(8.5)=\mathrm{CPD}-32^{\circ} 6371(7.9) \\ & =\text { SAO } 213008=\text { GSC } 7478.0765 . \end{aligned}$
V713	Mon $=$	73216	$=$ IRAS 06230-0930 $=$ AFGL 935 [198].
V714	Mon $=$	73217	$=$ S $3990=$ CSV $761=$ NSV $02980=$ GSC 0141.0638.
V715	Mon $=$	73218	$\begin{aligned} & =\operatorname{HR} 2517[201]=\mathrm{HD} 49567(\mathrm{~B} 3)[364]=\mathrm{BD}+1^{\circ} 1531(7.0)=\mathrm{SAO} 114465 \\ & =\text { HIP } 032682=\mathrm{GSC} 0148.2853 . \end{aligned}$
V716	Mon $=$	73233	$=\mathrm{S} 4082=$ CSV $1162=$ NSV $03775=$ GSC 5415.0892.
GV	Mus $=$	73295	= V36 (Cr 261 field) [203].
GW	Mus $=$	73296	= V41 (Cr 261 field) [203].
GX	Mus $=$	73297	$=\mathrm{V} 4(\mathrm{Cr} \mathrm{261)} \mathrm{[203]}$.
GY	Mus $=$	73298	$=\mathrm{V} 2(\mathrm{Cr} 261)$ [203].
GZ	Mus $=$	73299	$=\mathrm{V} 30(\mathrm{Cr} 261)$ [203].
HH	Mus $=$	73300	$=\mathrm{V} 20$ (Cr 261 field) [203].
HI	Mus $=$	73301	$=\mathrm{V} 8(\mathrm{Cr} 261$ field) [203].
HK	Mus $=$	73302	= V10 (Cr 261 field) [203].
HL	Mus $=$	73303	$=\mathrm{V} 26(\mathrm{Cr} 261)$ [203].
HM	Mus $=$	73304	= V19 (Cr 261) [203].
HN	Mus $=$	73305	$=\mathrm{V} 22(\mathrm{Cr} 261)$ [203].
HO	Mus $=$	73306	$=\mathrm{V} 17$ (Cr 261) [203].
HP	Mus $=$	73307	= V23 (Cr 261 field) [203].
HQ	Mus $=$	73308	$=\mathrm{V} 16(\mathrm{Cr} 261)$ [203].
HR	Mus $=$	73309	$=\mathrm{V} 29(\mathrm{Cr} 261)$ [203].
HS	Mus =	73310	$=\mathrm{V} 7(\mathrm{Cr} 261$ field $)$ [203].
HT	Mus $=$	73311	= V11 (Cr 261 field) [203].
HU	Mus $=$	73312	$=\mathrm{V} 32(\mathrm{Cr} 261)$ [203].
HV	Mus =	73313	= V31 (Cr 261) [203].
HW	Mus $=$	73314	= V21 (Cr 261 field) [203].
HX	Mus $=$	73315	= V35 (Cr 261 field) [203].
HY	Mus $=$	73316	= V9 (Cr 261 field) [203].
HZ	Mus $=$	73317	= V37 (Cr 261) [203].
II	Mus $=$	73318	$=\mathrm{V} 28(\mathrm{Cr} 261)$ [203].
IK	Mus $=$	73319	$=\mathrm{V} 13(\mathrm{Cr} 261)$ [203].
IL	Mus $=$	73320	= V33 (Cr 261) [203].
IM	Mus $=$	73321	$=\mathrm{V} 38$ (Cr 261 field) [203].
IN	Mus $=$	73322	$=\mathrm{V} 44(\mathrm{Cr} 261$ field) [203].
IO	Mus $=$	73323	$=\mathrm{V} 25$ (Cr 261) [203].
IP	Mus $=$	73324	$=\mathrm{V} 45(\mathrm{Cr} 261)$ [203].
IQ	Mus $=$	73325	$=\mathrm{V} 12(\mathrm{Cr} 261)[203]=\mathrm{S} 8990=\mathrm{NSV} 05795$.
IR	Mus $=$	73326	$=\mathrm{V} 15$ (Cr 261) [203].
IS	Mus $=$	73327	$=\mathrm{V} 18$ (Cr 261 field) [203].
IT	Mus $=$	73328	= V34 (Cr 261 field) [203].
IU	Mus $=$	73329	= V14 (Cr 261 field) [203].
IV	Mus $=$	73331	$=\mathrm{V} 6(\mathrm{Cr} 261$ field $)$ [203].
IW	Mus $=$	73332	$=\mathrm{V} 24(\mathrm{Cr} 261)$ [203].
IX	Mus $=$	73333	$=\mathrm{V} 1(\mathrm{Cr} 261$ field) [203].
IY	Mus $=$	73334	$=\mathrm{V} 40(\mathrm{Cr} 261)$ [203].
IZ	Mus $=$	73335	= V3 (Cr 261 field) [203].
KK	Mus $=$	73336	$=\mathrm{V} 42(\mathrm{Cr} 261$ field) [203].
KL	Mus $=$	73337	$=\mathrm{V} 43(\mathrm{Cr} 261)$ [203].
KM	Mus $=$	73339	$=\mathrm{V} 39(\mathrm{Cr} 261)$ [203].
KN	Mus =	73360	$\begin{aligned} & =\text { PNN of NGC } 5189[047]=\text { HD } 117622(\text { Neb. })=\text { PK } 307-3^{\circ} 1=\text { He } 2-94 \\ & =\text { IRAS } 13300-6543=\text { NSV } 06296=\text { GSC } 9003.0669 . \end{aligned}$
V354	Nor $=$	73389	$=\mathrm{CoD}-48^{\circ} 10153$ (10) [205] $=\mathrm{CPD}-48^{\circ} 7730$ (9.7) $=$ GSC 8300.3214.
V355	Nor $=$	73415	$=$ IFA star $159($ NGC 6134) [206] $=$ \#29 [207] $=$ GSC 8320.2133.

Table 2 (continued)

V356	Nor $=$	73416	$=$ IFA star 9 (NGC 6134) [206] $=\# 5[207]=$ GSC 8320.1769.
V357	Nor $=$	73417	$=$ IFA star 161 (NGC 6134) [206] $=$ \#40 [207] = GSC 8320.1923.
CL	Oct $=$	73079	= RE J0317-853 [208] = GSC 9495.2075.
CM	Oct $=$	73623	$=$ IRAS 20168-7849 [014].
V2304	$\mathrm{Oph}=$	73411	$=$ Ton 5 in the ρ Oph region [209].
V2305	$\mathrm{Oph}=$	73412	$=$ Ton 6 in the ρ Oph region [209].
V2306	$\mathrm{Oph}=$	73423	$\begin{aligned} & =\text { BD }-12^{\circ} 4523(9.5)=\text { Gliese } 628[018]=\text { G } 153-58=\text { LHS } 419=\text { LTT } 6580 \\ & =\text { NSV } 07768=\text { GSC } 5635.0564=\text { GSC } 5635.1232 . \end{aligned}$
V2307	$\mathrm{Oph}=$	73434	$\begin{aligned} & =\text { HD } 150193(\mathrm{A0})[211,365]=\mathrm{CoD}-23^{\circ} 12887(8.7)=\mathrm{CPD}-23^{\circ} 6381(8.1) \\ & =\text { SAO } 184536=\text { IRAS } 16372-2347=\text { MWC } 863=\mathrm{GSC} 6796.1287 . \end{aligned}$
V2308	Oph $=$	73451	$=$ IRAS 17002-2830 [116].
V2309	$\mathrm{Oph}=$	73463	$\begin{aligned} & =\operatorname{CoD}-29^{\circ} 13477(9.0)=\text { IRC-30293 }=\text { AFGL } 1961=\text { IRAS } 17208-2916= \\ & \operatorname{CCS} 2438=\text { No. } 1337[212]=\text { GSC } 6837.0013 . \end{aligned}$
V2310	Oph $=$	73465	$\begin{aligned} & =\mathrm{CoD}-23^{\circ} 13397(9.9)=\text { PNN of NGC } 6369[047]=\text { PK } 2+5^{\circ} 1=\text { IRAS } \\ & 17262-2343 . \end{aligned}$
V2311	Oph $=$	73466	$\begin{aligned} & =\operatorname{IRC}-30300=\text { AFGL } 1972=\text { IRAS } 17269-2625=\text { No. } 2319[213]=\text { NSV } \\ & 08891 . \end{aligned}$
V2312	$\mathrm{Oph}=$	73468	$=$ HV $10972=$ CSV $3258=$ NSV $09136=$ GSC 0996.0190.
V2313	$\mathrm{Oph}=$	73470	$=$ Nova Oph 1994 [215, Akihiko Tago].
V2314	$\mathrm{Oph}=$	73474	$\begin{aligned} & =\text { HD } 161223(\mathrm{~A} 2)[217]=\mathrm{BD}+6^{\circ} 3514(8.0)=\mathrm{SAO} 122683=\text { Kopff } 28(\mathrm{IC} \\ & 4665)[366]=\text { GSC } 0427.1650 . \end{aligned}$
V2315	$\mathrm{Oph}=$	73475	$\begin{aligned} & =\mathrm{HD} 161261(\mathrm{~B} 9)[218,367]=\mathrm{BD}+5^{\circ} 3471(8.2)=\mathrm{SAO} 122687=\text { Kopff } 32 \\ & (\mathrm{IC} 4665)=\text { GSC } 0427.1623 . \end{aligned}$
V2316	Oph $=$	73477	$=\mathrm{P} 71$ (TC 4665) [219] = S 39 (IC 4665) = GSC 0428.1470.
V2317	$\mathrm{Oph}=$	73478	$=\mathrm{P} 12$ (IC 4665) [219] = GSC 0424.0759.
V2318	$\mathrm{Oph}=$	73479	$=\mathrm{P} 75$ (IC 4665) [219] $=$ S 50 (IC 4665).
V2319	Oph $=$	73480	$=\mathrm{P} 27$ (IC 4665) [219] $=$ V No. 81 (IC 4665) $=$ GSC 0424.0100.
V2320	$\mathrm{Oph}=$	73481	$\begin{aligned} & =\mathrm{HD} 161603(\mathrm{~B} 9)[218]=\mathrm{BD}+5^{\circ} 3484(7.7)=\mathrm{SAO} 122725=\text { Kopff } 64(\mathrm{IC} \\ & 4665)=\text { GSC } 0428.1685 . \end{aligned}$
V2321	$\mathrm{Oph}=$	73482	= P 100 (IC 4665) [219].
V2322	$\mathrm{Oph}=$	73483	= P 39 (IC 4665) [219] = V No. 109 (IC 4665) = GSC 0428.0294.
V2323	$\mathrm{Oph}=$	73484	$\begin{aligned} & =\mathrm{HD} 161660(\mathrm{~B} 9)[218]=\mathrm{BD}+6^{\circ} 3525(7.9)=\mathrm{SAO} 122734=\text { Kopff } 72(\mathrm{IC} \\ & 4665)=\operatorname{GSC} 0428.0215 . \end{aligned}$
V2324	$\mathrm{Oph}=$	73485	$\begin{aligned} & =\mathrm{HD} 161698(\mathrm{~B} 9)[218]=\mathrm{BD}+5^{\circ} 3491(8.3)=\mathrm{SAO} 122738=\mathrm{ADS} 10783= \\ & \text { Kopff } 76(\mathrm{IC} 4665)=\mathrm{GSC} 0424.0055 . \end{aligned}$
V2325	Oph $=$	73486	$=\mathrm{P} 150$ (IC 4665) [219] = V No. 175 (IC 4665) = GSC 0424.0980.
V2326	Oph $=$	73487	$=\mathrm{P} 155(\mathrm{TC} \mathrm{4665)} \mathrm{[219]} \mathrm{=} \mathrm{~S} 247$ (IC 4665) = GSC 0424.1220.
V2327	$\mathrm{Oph}=$	73488	$\begin{aligned} & =\mathrm{HD} 162028(\mathrm{~B} 9)[218]=\mathrm{BD}+5^{\circ} 3504(8.2)=\mathrm{SAO} 122776=\text { Kopff } 105(\mathrm{IC} \\ & 4665)=\mathrm{GSC} 0428.1300 . \end{aligned}$
V2328	Oph $=$	73489	= Var 29 [223].
V2329	$\mathrm{Oph}=$	73493	= Var 34 [224].
V2330	$\mathrm{Oph}=$	73500	$=\operatorname{Var} 35$ [224].
V2331	$\mathrm{Oph}=$	73503	$=\operatorname{Var} 36$ [224].
V2332	$\mathrm{Oph}=$	73504	$=\operatorname{Var} 37[224]=$ GSC 1008.1752.
V2333	Oph $=$	73505	$=\operatorname{Var} 31[223]=$ GSC 1008.0492.
V2334	$\mathrm{Oph}=$	73507	$=\operatorname{Var} 28$ [223].
V2335	$\mathrm{Oph}=$	73508	$=$ Var 25 [223].
V2336	$\mathrm{Oph}=$	73509	$=\operatorname{Var} 32$ [223].
V2337	$\mathrm{Oph}=$	73510	$=\operatorname{Var} 33[223]=$ GSC 1008.1491.
V2338	$\mathrm{Oph}=$	73511	= S 9291 = NSV 10183 [225] = GSC 1008.1699.
V2339	$\mathrm{Oph}=$	73512	$=$ Var $38[224]=$ IRAS $18033+0727=$ GSC 0442.0118.
V2340	Oph $=$	73515	$=\operatorname{Var} 30[223]=$ IRAS 18047+0822 $=$ GSC 1008.1326.
V2341	Oph $=$	73516	$=\operatorname{Var} 39[224]=$ IRAS 18047+0719 = GSC 0442.0113.
V2342	$\mathrm{Oph}=$	73538	$=\operatorname{Var} 26[223]=$ IRAS 18101+0835 = GSC 1009.1098.
V2343	$\mathrm{Oph}=$	73539	$=\operatorname{Var} 42[224]=$ IRAS 18103+0751?
V2344	$\mathrm{Oph}=$	73540	$=\operatorname{Var} 27[223]=$ IRAS 18110+0851 = GSC 1009.0361.
V2345	Oph $=$	73541	$=\operatorname{Var} 40$ [224].
V2346	$\mathrm{Oph}=$	73544	$=\operatorname{Var} 41$ [224] = GSC 1010.2541.
V2347	$\mathrm{Oph}=$	73550	$=$ IRAS 18254+0750 [029].

Table 2 (continued)

V1309	Ori $=$	73148	$\begin{aligned} & =\text { RJ } 051542+0104.7[369]=\text { RX J0515.6+0105 [226] }=\text { RX J } 051541+0104.6 \\ & {[227] .} \end{aligned}$
V1310	Ori $=$	73154	$=\mathrm{T} 326[228]=$ Tof 326.
V1311	Ori $=$	73156	$=\operatorname{San} 1[229]=$ HRC $97=$ TSN $20=2$ RE J053205-030509 $=$ NSV $02096=$ GSC 4770.0797.
V1312	Ori $=$	73158	$=$ Ton 267 [231] $=\Pi 999=$ GSC 4774.0101.
V1313	Ori $=$	73159	$=\mathrm{JW} 65[233]$.
V1314	Ori $=$	73160	= JW 101 [233].
V1315	Ori $=$	73161	= JW 167 [233].
V1316	Ori $=$	73162	= JW 174 [233].
V1317	Ori $=$	73163	= JW 179 [233].
V1318	Ori $=$	73164	= JW 191 [234].
V1319	Ori $=$	73165	$=\mathrm{JW} 220[233]=\Pi 1704$.
V1320	Ori $=$	73166	= JW 222 [233].
V1321	Ori $=$	73167	$\begin{aligned} & =\text { JW } 238=\Pi 1724[370]=\text { HBC } 452=\text { EXOSAT } 0532-0510=\text { EXO } 053237- \\ & 0510.1[103]=\text { GSC } 4774.0910 . \end{aligned}$
V1322	Ori $=$	73168	= JW 245 [233].
V1323	Ori $=$	73169	= JW 254 [233].
V1324	Ori $=$	73170	= JW 275 [233] $=\Pi 1745$.
V1325	Ori $=$	73171	= JW 326 [233].
V1326	Ori $=$	73172	$=\mathrm{JW} 337$ [233] $=\Pi 1771=$ Zinner $421=$ CSV $100570=$ NSV 02276.
V1327	Ori $=$	73173	$=\mathrm{JW} 406$ [233].
V1328	Ori $=$	73174	$=\mathrm{JW} 437$ [233] $=\Pi 1826$.
V1329	Ori $=$	73175	= JW 439 [233].
V1330	Ori $=$	73176	$=\mathrm{JW} 454[233]=\Pi 1840=$ CSV $100578=$ NSV 02287.
V1331	Ori $=$	73177	$=\mathrm{JW} 470$ [234].
V1332	Ori $=$	73178	= JW 481 [233].
V1333	Ori $=$	73179	$=\mathrm{JW} 536[233]=\Pi 1887$.
V1334	Ori $=$	73180	= JW 560 [233].
V1335	Ori $=$	73181	$=\mathrm{JW} 563$ [233].
V1336	Ori $=$	73182	= JW 588 [234].
V1337	Ori $=$	73183	= JW 607 [233].
V1338	Ori $=$	73184	$=\mathrm{JW} 641[233]=\Pi 1962=$ CSV $100592=$ NSV 02311.
V1339	Ori $=$	73185	= JW $674[233]=$ E 23 [236] = CSV 6266 = NSV 02315.
V1340	Ori $=$	73186	= JW 716 [233].
V1341	Ori $=$	73187	= JW 717 [233].
V1342	Ori $=$	73188	= JW 737 [233].
V1343	Ori $=$	73189	$=\mathrm{JW} 771 \mathrm{NW}$ [233]. (16. ${ }^{\mathrm{m}} 2 \mathrm{Ic}$.
V1344	Ori $=$	73190	$=\mathrm{JW} 765[233]=\Pi 2005$.
V1345	Ori $=$	73191	= JW 811 [234].
V1346	Ori $=$	73192	$=\mathrm{JW} 842 \mathrm{NW}$ [233]. (16. ${ }^{\mathrm{m}} 2 \mathrm{Ic}$.
V1347	Ori $=$	73193	= JW 819 [233].
V1348	Ori $=$	73194	$=\mathrm{JW} 850[234]=\Pi 2077$.
V1349	Ori $=$	73195	$=\mathrm{JW} 876 \mathrm{~N}$ [233]. (16. ${ }^{\text {m }}$ Ic. Coordinates need confirmation.
V1350	Ori $=$	73196	= JW 930 [233].
V1351	Ori $=$	73197	= JW 984 [233] = E 38 [236] = CSV $6296=$ NSV 02370.
V1352	Ori $=$	73200	$=$ Gliese $213[018,361]=$ G 102-22 $=$ LHS $31=$ Ross $47=$ GSC 0722.0455.
V1353	Ori $=$	73201	$=$ GSC 4767.0894 [238].
V1354	Ori $=$	73202	$=$ No. 481 [229] = GSC 4775.0051.
V1355	Ori $=$	73208	$\begin{aligned} & =\mathrm{HD} 291095(\mathrm{~K} 0)[055]=\mathrm{BD}-0^{\circ} 1147(9.1)=2 \mathrm{RE} \mathrm{~J} 060240-005153=\mathrm{GSC} \\ & 4782.1322 . \end{aligned}$
V1356	Ori $=$	73209	$=$ Star 12 (NGC 2169) [371] = GSC 0742.2169.
V1357	Ori $=$	73211	$\begin{aligned} & =\text { HR } 2208[242,380]=\mathrm{HD} 42807(\mathrm{G} 5)=\mathrm{BD}+10^{\circ} 1050(6.5)=\mathrm{SAO} 095394 \\ & =\operatorname{IRAS} 06104+1038=\text { Gliese } 230=\mathrm{GSC} 0734.2214 . \end{aligned}$
V1358	Ori $=$	73213	$=\mathrm{HD} 43989(\mathrm{G0})[055]=\mathrm{BD}-3^{\circ} 1386(8.5)=\mathrm{SAO} 133095=2 \mathrm{RE}$ J061909- $032541=$ HIP $030030=\mathrm{GSC} 4788.1272$.
χ^{1}	Ori $=$	73203	$\begin{aligned} & =\text { khi1 Ori }=\text { HR } 2047[242]=\text { HD } 39587(\text { F8 })=\mathrm{BD}+20^{\circ} 1162(5.0)=\text { SAO } \\ & 077705=\text { IRC }+20126=\text { IRAS } 05514+2016=\text { Gliese } 222 \mathrm{AB}=\text { GSC } 1320.2118 . \end{aligned}$

Table 2 (continued)

V346	Pav $=$	73546	$\begin{aligned} & =\text { HR } 6871=\text { HD } 168740(\text { A2 })[243]=\mathrm{CoD}-63^{\circ} 1353(6.5)=\mathrm{CPD}-63^{\circ} 4406 \\ & (6.6)=\text { SAO } 254237=\text { GSC } 9072.2407 . \end{aligned}$
V347	Pav $=$	73565	= RE J1844-741 = RE 1844-74 [245] = 2RE J184450-741853.
V348	Pav	73612	$=\mathrm{V} 1956-6034$ [015].
V349	$\operatorname{Pav}=$	73614	$=$ V 2008-6527 = V 2009-65.5 $=$ Drissen V211b [247].
V350	Pav $=$	73620	= S 7053 [106] = IRAS 20135-7152 = CSV $8457=$ NSV 12961.
V351	Pav $=$	73642	$=$ IRAS 20484-7202 [014].
LN	$\mathrm{Peg}=$	73005	$\begin{aligned} & =\mathrm{BD}+13^{\circ} 13(8.7)=\mathrm{SAO} 091772(\mathrm{G} 5)[372]=1 \mathrm{E} 0009.9+1417=\mathrm{HIC} 000999 \\ & =\mathrm{GSC} 0601.0221 . \end{aligned}$
LO	$\operatorname{Peg}=$	73685	$\begin{aligned} & =\mathrm{BD}+22^{\circ} 4409(9.1)[248]=\text { G } 145-43=\text { RE } 2131+23=\text { EUVE } 2131+233= \\ & \text { HIP } 106231=\text { GSC } 2188.1136 . \end{aligned}$
LP	Peg	73691	$=$ No. 52 [003].
LQ	$\mathrm{Peg}=$	73692	$=\mathrm{PG} 2133+115[249]=$ PEG $6=$ GSC 1128.0538.
LR	$\mathrm{Peg}=$	73697	= No. 53 [003].
LS	$\mathrm{Peg}=$	73699	$\begin{aligned} & =\text { Prager } 5642=181.1935=\text { Stephenson } \mathrm{H} \alpha 193[250]=\text { PEG } 2=\text { CSV } 5478 \\ & =\text { NSV13903 }=\text { GSC } 1134.0745 . \end{aligned}$
LT	$\mathrm{Peg}=$	73702	$=$ No. 54 [003].
LU	Peg $=$	73703	= No. 55 [003].
LV	$\mathrm{Peg}=$	73704	$=$ IRAS 21589+0821 [014] $=$ GSC 1135.0762.
LW	$\mathrm{Peg}=$	73705	= No. 56 [003].
LX	$\mathrm{Peg}=$	73706	$=$ No. $57[003]=$ GSC 2212.2323.
LY	$\mathrm{Peg}=$	73709	= WT $343=$ GSC 1144.1023 [251].
LZ	$\mathrm{Peg}=$	73712	= No. 58 [003].
MM	$\mathrm{Peg}=$	73717	= No. 59 [003].
MN	$\mathrm{Peg}=$	73723	$=\mathrm{J} 223114+0622[252$, Takamizawa $]=$ GSC 0573.0974.
MO	$\mathrm{Peg}=$	73726	$=$ No. 60 [003].
MP	$\mathrm{Peg}=$	73728	$=$ IRAS $22402+1045[014]=$ GSC 1155.1692.
MQ	$\mathrm{Peg}=$	73731	$=$ No. $61[003]=$ GSC 2229.0149.
MR	$\mathrm{Peg}=$	73735	$=$ IRAS $22517+2223[014]=$ GSC 2234.1146.
MS	$\mathrm{Peg}=$	73736	$\begin{aligned} & =\text { GD } 245[253]=\text { EG } 232=\text { WD } 2256+249=\text { KUV } 2256+249=\text { GSC } \\ & 2238.0737 . \end{aligned}$
MT	$\mathrm{Peg}=$	73740	$\begin{aligned} & =\mathrm{HD} 217813 \text { (G0) }[255]=\mathrm{BD}+20^{\circ} 5264(6.6)=\mathrm{SAO} 090973=\mathrm{GSC} \\ & 1717.0687 . \end{aligned}$
MU	$\mathrm{Peg}=$	73741	= No. 62 [003].
MV	$\mathrm{Peg}=$	73742	$=$ IRAS $23051+2330$ [014].
MW	$\mathrm{Peg}=$	73743	$=\mathrm{BD}+33^{\circ} 4659$ (9.5) $=$ DHK 43 [256] $=$ GSC 2759.1984.
MX	$\mathrm{Peg}=$	73749	= No. 63 [003].
MY	$\mathrm{Peg}=$	73753	$=$ No. 64 [003].
MZ	$\mathrm{Peg}=$	73759	= No. 65 [003].
V519	Per $=$	73045	$\begin{aligned} & =\mathrm{BD}+56^{\circ} 502(9.1)=\mathrm{SAO} 023165(\mathrm{~B} 5)=\text { Oo } 717(\mathrm{~h}, \chi \text { Per })[257]=\mathrm{GSC} \\ & 3694.2413 . \end{aligned}$
V520	Per $=$	73047	$\begin{aligned} & =\mathrm{HD} 14134(\mathrm{~B} 0)=\mathrm{BD}+56^{\circ} 522(6.8)=\mathrm{SAO} 023178=\text { Oo } 1057(\mathrm{~h}, \chi \text { Per }) \\ & {[257]=\text { HIP } 010805=\text { GSC } 3694.1824 .} \end{aligned}$
V521	Per $=$	73058	$\begin{aligned} & =\mathrm{HR} 933=\mathrm{HD} 19279(\mathrm{~A} 0)[258]=\mathrm{BD}+46^{\circ} 692(6.4)=\mathrm{SAO} 038587=\mathrm{GSC} \\ & 3314.1278 . \end{aligned}$
V522	Per $=$	73061	$=$ HE $373(\alpha$ Per $)[259]=$ GSC 3315.1080.
V523	Per $=$	73062	$=\mathrm{AP} 91(\alpha$ Per $)[260]=$ GSC 3315.1463.
V524	Per $=$	73063	$=$ AP $124(\alpha$ Per $)[259]=$ GSC 3319.0304.
V525	Per $=$	73064	$=$ AP $93(\alpha$ Per $)[260,262]=$ GSC 3315.2218.
V526	Per $=$	73066	$=\mathrm{AP} 95(\alpha$ Per $)[261]=$ GSC 3319.1842.
V527	Per $=$	73067	$=\mathrm{AP} 127(\alpha$ Per $)[259]=$ GSC 3315.2520.
V528	Per $=$	73068	$=$ AP $100(\alpha$ Per $)[260,262]=$ GSC 3315.2204.
V529	Per $=$	73069	$=$ AP $139(\alpha$ Per $)[260,262]=$ GSC 3315.1989.
V530	Per $=$	73070	$=\mathrm{AP} 149(\alpha$ Per $)[259,262]=$ GSC 3320.1643.
V531	Per $=$	73071	$=\mathrm{AP} 19(\alpha$ Per $)[259]=$ HE $622(\alpha$ Per $)[262]=$ GSC 3320.1283.
V532	Per $=$	73072	$=$ HE $699(\alpha$ Per $)[262]=$ GSC 3320.0545.
V533	Per $=$	73073	$=\mathrm{AP} 60(\alpha \mathrm{Per})$ [260].
V534	Per $=$	73074	$=\mathrm{AP} 63(\alpha$ Per $)[259]=$ GSC 3320.1081.
V535	Per $=$	73075	$=$ AP $167(\alpha$ Per $)[263]=$ GSC 3316.1185.

Table 2 (continued)

V536	Per $=$	73077	$=\mathrm{AP} 117(\alpha$ Per $)[259,262]=$ GSC 3320.1759.
V537	Per $=$	73081	$=$ AP $118(\alpha$ Per $)[262]=$ GSC 3320.1725.
V538	Per $=$	73082	$=\mathrm{AP} 201(\alpha$ Per $)$ [263] = GSC 3320.1296.
V539	Per $=$	73084	$=$ AP $212(\alpha$ Per $)$ [263] = GSC 3321.1940.
V540	Per $=$	73086	$=$ AP 225 (α Per) [262] = GSC 3321.2115.
V541	Per $=$	73087	$=\mathrm{AP} 226(\alpha$ Per $)[259,262]=$ GSC 3317.0377.
V542	Per	73089	$=$ AP $244(\alpha$ Per $)[259]=$ GSC 3317.1215.
V543	Per $=$	73092	$=\mathrm{AP} 258(\alpha$ Per $)[260]=$ GSC 3326.2163?
V544	Per $=$	73106	$=\operatorname{CCS} 184[264]=$ SVS $2422=$ IRAS $04085+5102=$ GSC 3340.0962.
V545	Per $=$	73114	$\begin{aligned} & =\mathrm{HR} 1328[265]=\mathrm{HD} 27026(\mathrm{~B} 8)=\mathrm{BD}+41^{\circ} 844(6.4)=\mathrm{SAO} 039447=\mathrm{GSC} \\ & 2886.2036 . \end{aligned}$
V546	Per $=$	73123	= Gliese $170[018]=$ G $81-21=$ LHS $1674=$ Ross $594=$ GSC 2884.0349.
BG	Phe $=$	73024	$\begin{aligned} & =\mathrm{CoD}-56^{\circ} 152(9.4)=\mathrm{CPD}-56^{\circ} 154(8.8)[266]=\mathrm{SAO} 232194(\mathrm{~B} 5)=\mathrm{JL} \\ & 212=\text { HIP } 003812=\mathrm{GSC} 8469.0098 . \end{aligned}$
UU	Pic $=$	73149	$=\mathrm{V} 0514-5253$ [015].
UV	Pic $=$	73151	$\begin{aligned} & =\operatorname{CoD}-45^{\circ} 1928(10)=\text { EXOSAT } 0519-4544=\operatorname{EXO} 051922-4544.4[103]= \\ & \text { GSC } 8085.0116 . \end{aligned}$
UW	Pic $=$	73157	$=$ RE 0531-462 $=2$ RE J053137-462400 = RX J0531.5-4624 [268].
UX	Pic	73198	$=$ IRAS 05345-4406 [014] = RAFGL 4431S $=$ GSC 7608.0885.
UY	Pic $=$	73199	$\begin{aligned} & =\text { HD } 37572(\mathrm{G} 5)=\mathrm{CoD}-48^{\circ} 1894(8.3)=\mathrm{CPD}-48^{\circ} 687(8.1)=\mathrm{SAO} 217430 \\ & =\text { IRAS } 05355-4759=\text { RE } 0536-475[269]=2 \text { RE } \mathrm{J} 053655-475802=\mathrm{GSC} \\ & 8090.0476=\text { GSC } 8090.1488 . \end{aligned}$
BI	Psc	73006	$=\mathrm{GB} 781006 \mathrm{~B}[270]=\mathrm{GBS} 0008+13$.
BK	Psc $=$	73020	$\begin{aligned} & =\operatorname{BD}+9^{\circ} 73(9.5)=\text { LHS } 1118=\text { RE } 0039+103[269]=2 \text { RE J } 003939+103925 \\ & =\operatorname{GSC} 0606.1422 . \end{aligned}$
BL	Psc $=$	73022	$\begin{aligned} & =\mathrm{BD}+8^{\circ} 102(9.3)=\text { RE } 0044+093[271]=2 \text { RE } \mathrm{J} 004403+093406=\mathrm{GSC} \\ & 0604.0483 . \end{aligned}$
BM	Psc	73033	$=$ No. 2 [003].
BN	Psc	73036	$=$ No. 3 [003].
BO	$\mathrm{Psc}=$	73039	$\begin{aligned} & =\text { LDS 3315A }=\text { EXOSAT } 0146+0608=\text { EXO } 014630+0608.9[103]=\text { GSC } \\ & 0035.0659 . \end{aligned}$
BP	Psc $=$	73750	$\begin{aligned} & =\text { IRAS } 23198-0230[033]=\text { Stephenson } \mathrm{H} \alpha 202=\text { PDS } 103[155]=\text { GSC } \\ & 5244.0148 \end{aligned}$
BQ	Psc	73756	= SX Phe type var [272].
BR	Psc $=$	73757	$\begin{aligned} & =\mathrm{BD}+1^{\circ} 4774(8.7)=\text { SAO } 128397=\text { IRAS } 23466+0207=\text { Gliese } 908[018]= \\ & \mathrm{G} 29-68=\text { LHS } 550=\text { LFT } 1828=\text { LTT } 17014=\text { Laland } 1828=\text { NSV } 14719 \\ & =\text { GSC } 0586.0610 . \end{aligned}$
BS	Psc	73758	$=\mathrm{BD}-1^{\circ} 4493$ (9.5) $=1 \mathrm{E} 2349.8-0112[005]=$ GSC 5253.0969.
BT	$\mathrm{Psc}=$	73770	$\begin{aligned} & =\mathrm{HD} 224638(\mathrm{~F} 0)[273,362]=\mathrm{BD}-2^{\circ} 6071(7.2)=\mathrm{SAO} 147016=\mathrm{GSC} \\ & 5253.1139 . \end{aligned}$
BU	Psc $=$	73771	$\begin{aligned} & =\mathrm{HD} 224945(\mathrm{~A} 3)[273]=\mathrm{BD}-3^{\circ} 5750(7.2)=\mathrm{SAO} 147045=\mathrm{GSC} 4666.0098 \\ & =\mathrm{GSC} 4666.0738 . \end{aligned}$
UV	$\operatorname{Ps} A=$	73721	$\begin{aligned} & =\mathrm{HD} 213204(\mathrm{F0})[067]=\mathrm{CoD}-31^{\circ} 18846(7.9)=\mathrm{CPD}-31^{\circ} 6676(8.0)= \\ & \text { SAO } 213868=\text { GSC } 7497.0910 . \end{aligned}$
UW	$\mathrm{Ps} \mathrm{A}=$	73725	$\begin{aligned} & =\mathrm{HD} 213655(\mathrm{F0})[067]=\mathrm{CoD}-30^{\circ} 19208(7.3)=\mathrm{CPD}-30^{\circ} 6651(7.8)= \\ & \text { SAO } 191223=\mathrm{GSC} 6969.1055 . \end{aligned}$
V354	Pup $=$	73231	$=$ PNN of NGC $2452[274]=$ PK $243-1^{\circ} 1=$ He 2-4 $=$ IRAS 07453-2712.
V355	Pup $=$	73235	$\begin{aligned} & =\mathrm{HD} 67290(\mathrm{~A} 3)[067]=\mathrm{BD}-19^{\circ} 2245(8.2)=\mathrm{CPD}-19^{\circ} 3102(8.4)=\mathrm{SAO} \\ & 175178=\mathrm{GSC} 6003.2759 . \end{aligned}$
WX	Pyx $=$	73240	$=1 \mathrm{E} 0830.9-2238$ [275] = PYX 2.
WY	Pyx $=$	73241	$=$ PC $4[030]=$ IRAS $08348-3617=$ CSS $320=$ NSV $04154=$ GSC 7148.3970.
WZ	Pyx $=$	73248	$=$ ELHS 2067 [276] = IRAS 08517-2436.
XX	Pyx $=$	73249	$=\mathrm{CoD}-24^{\circ} 7599$ (9.7) [277] $=\mathrm{CPD}-24^{\circ} 3912$ (10.0) $=\mathrm{GSC} 6589.0261$.
TW	Ret	73112	$=$ IRAS 04120-6516 [033].
TX	Ret $=$	73116	$\begin{aligned} & =\mathrm{HD} 27545(\mathrm{~F} 0)[067]=\mathrm{CoD}-64^{\circ} 148(8.2)=\mathrm{CPD}-64^{\circ} 317(7.5)=\mathrm{SAO} \\ & 248978=\text { GSC } 8872.1543 . \end{aligned}$
TY	Ret $=$	73119	$=$ IRAS 04238-6713 [033] = GSC 8875.1594.
TZ	Ret $=$	73138	$=$ R4 [278]. Probable non-member of the Reticulum system, might be a distant member of the LMC.

Table 2 (continued)

V336	Sge $=$	73581	$\begin{aligned} & =\mathrm{HD} 230990(\mathrm{F0})[279]=\mathrm{BD}+17^{\circ} 3901(8.9)=\mathrm{SAO} 104652=\mathrm{GSC} \\ & 1603.1333 . \end{aligned}$
V337	Sge $=$	73608	$=$ IRAS 19459+1716 [029].
V4334	Sgr $=$	73492	$=$ Sakurai's object $[280$, Sakurai $]=$ Novalike star in Sgr. 21 . $^{\mathrm{m}} 0$ on ESO $/$ SRC J plate of May 30/31, 1976. Brightened considerably by early 1995, then continued brightening, becoming gradually redder. A hint to oscillations in late 1996-1997. The central star of an old planetary nebula. A candidate final-helium-flash object. Resembles FG Sge, but shows more rapid development.
V4335	Sgr $=$	73494	$=$ IRAS 17551-2909 [281].
V4336	$\operatorname{Sgr}=$	73496	$=$ IRAS 17559-2848 [281].
V4337	$\operatorname{Sgr}=$	73497	$=$ IRAS 17560-2916 [281].
V4338	Sgr $=$	73498	$=$ Liller's Nova candidate $=$ Possible Nova Sgr 1990 [283].
V4339	Sgr $=$	73499	$=$ IRAS 17566-2852 [281].
V4340	$\operatorname{Sgr}=$	73501	$=$ IRAS 17578-2900 [281].
V4341	Sgr $=$	73502	$=$ IRAS 17578-2914 [281].
V4342	$\operatorname{Sgr}=$	73517	= F 15 (NGC 6558 field) [284].
V4343	Sgr $=$	73518	= F 14 (NGC 6558 field) [284].
V4344	Sgr $=$	73520	= Rosino 12 [285] = F 3 (NGC 6558 field) [284] = NSV 10278.
V4345	$\operatorname{Sgr}=$	73521	= F 13 (NGC 6558 field) [284].
V4346	Sgr $=$	73522	= F 23 (NGC 6558 field) [284].
V4347	$\operatorname{Sgr}=$	73523	= F 16 (NGC 6558 field) [284].
V4348	$\mathrm{Sgr}=$	73524	= F 44 (NGC 6558 field) [284].
V4349	$\operatorname{Sgr}=$	73525	$=\mathrm{F} 17$ (NGC 6558 field) [284].
V4350	Sgr $=$	73526	= Rosino 21 [285] = F 9 (NGC 6558 field) [284].
V4351	Sgr $=$	73527	= F 32 (NGC 6558 field) [284].
V4352	$\operatorname{Sgr}=$	73528	= F 41 (NGC 6558 field) [284].
V4353	Sgr $=$	73529	$=$ Rosino 16 [285] = F 5 (NGC 6558 field) [284].
V4354	$\operatorname{Sgr}=$	73530	= Rosino 10 [285] = F 1 (NGC 6558 field) [284].
V4355	$\operatorname{Sgr}=$	73531	= F 39 (NGC 6558 field) [284].
V4356	$\operatorname{Sgr}=$	73532	$=$ F 43 (NGC 6558 field) [284].
V4357	$\operatorname{Sgr}=$	73533	= F 12 (NGC 6558 field) [284].
V4358	Sgr $=$	73534	= Rosino 15 [285] = F 4 (NGC 6558 field) [284].
V4359	$\operatorname{Sgr}=$	73535	= F 18 (NGC 6558 field) [284].
V4360	$\operatorname{Sgr}=$	73542	= No. 239 [286].
V4361	Sgr $=$	73545	$=$ Nova Sgr 1996 [287, Sakurai].
V4362	$\operatorname{Sgr}=$	73552	$=$ Nova Sgr 1994 No. 2 [288, Sakurai].
V4363	Sgr $=$	73553	= F 6 (NGC 6642 field) [289].
V4364	$\operatorname{Sgr}=$	73554	= F 3 (NGC 6642 field) [289].
V4365	$\operatorname{Sgr}=$	73555	= F 11 (NGC 6642 field) [289].
V4366	$\operatorname{Sgr}=$	73556	= F 2 (NGC 6642 field) [289].
V4367	Sgr $=$	73557	$=\mathrm{F} 5$ (NGC 6642 field) [289].
V4368	$\operatorname{Sgr}=$	73571	= Peculiar var in Sgr [375, Wakuda].
V4369	Sgr $=$	73574	$=$ SV 5 in Sgr Galaxy [118]. Foreground star.
V4370	Sgr $=$	73576	= SV 10 in Sgr Galaxy [118]. Non-member of the Sgr Galaxy?
V4371	Sgr $=$	73600	$\begin{aligned} & =\mathrm{HD} 181943(\mathrm{G} 5)[293]=\mathrm{BD}-14^{\circ} 5413(9.0)=\mathrm{SAO} 162546=\mathrm{GSC} \\ & 5721.0030 . \end{aligned}$
V4372	Sgr $=$	73602	$\begin{aligned} & =\mathrm{HD} 183133(\mathrm{~B} 3)[294]=\mathrm{BD}-15^{\circ} 5362(7.2)=\mathrm{SAO} 162651=\operatorname{HIP} 095755 \\ & =\operatorname{GSC} 6298.2535 . \end{aligned}$
V4373	$\operatorname{Sgr}=$	73605	$\begin{aligned} & =\mathrm{HD} 185256(\mathrm{~F} 0)[295]=\mathrm{CoD}-30^{\circ} 17252(9.3)=\mathrm{CPD}-30^{\circ} 6070(9.1)= \\ & \mathrm{GSC} 6901.1033 . \end{aligned}$
V4374	$\operatorname{Sgr}=$	73622	$\begin{aligned} & =\mathrm{HD} 192825(\mathrm{G} 0)=\mathrm{CoD}-28^{\circ} 16553(8.5)=\mathrm{CPD}-28^{\circ} 7177(8.6)=\mathrm{SAO} \\ & 189111[296]=\mathrm{GSC} 6918.0817 . \end{aligned}$
V1026	Sco $=$	73393	$\begin{aligned} & =\text { HD } 142666(\mathrm{~A} 3)=\mathrm{BD}-21^{\circ} 4228(8.6)=\mathrm{CPD}-21^{\circ} 6063(8.4)=\mathrm{SAO} 183956 \\ & =\text { IRAS } 15537-2153=\text { BV } 536=\text { NSV } 07344=\text { GSC } 6199.0618[157] . \end{aligned}$
V1027	Sco $=$	73402	$\begin{aligned} & =\text { HR } 6000[297]=\text { HD } 144667(\mathrm{~A} 0)=\mathrm{CoD}-38^{\circ} 10894(7.0)=\mathrm{CPD}-38^{\circ} 6374 \\ & (7.5)=\mathrm{SAO} 207368=\text { IDS } 1601.9 \mathrm{~S} 3849 \mathrm{~A}=\mathrm{GSC} 7851.1817 . \end{aligned}$
V1028	Sco $=$	73418	$\begin{aligned} & =\mathrm{HD} 148199(\text { B9 } 9)[298]=\mathrm{CoD}-29^{\circ} 12551(7.5)=\mathrm{CPD}-29^{\circ} 4425(7.2)= \\ & \text { SAO } 184398=\text { GSC } 6806.0600 . \end{aligned}$
V1029	Sco $=$	73420	$=$ Ton 4 [299] = NSV 07742.

Table 2 (continued)

V1030	Sco $=$	73421	$=$ Ton 7 in the ρ Oph region [209].
V1031	Sco	73425	$=$ Ton 8 in the ρ Oph region [209].
V1032	$\mathrm{Sco}=$	73441	$\begin{aligned} & =\mathrm{CPD}-41^{\circ} 7711(9.8)=\text { Seggewiss } 282(\text { NGC } 6231)[300]=\text { Braes } 930=\mathrm{GSC} \\ & 7876.2681 . \end{aligned}$
V1033	Sco	73442	= X-ray Nova Sco 1994 [302] = GRO J1655-40 [301]
V1034	Sco	73443	$\begin{aligned} & =\mathrm{CPD}-41^{\circ} 7742(8.4)=\text { Seggewiss } 224(\mathrm{NGC} 6231)[300]=\text { Braes } 945=\text { NSV } \\ & 08024=\text { GSC } 7876.2289 . \end{aligned}$
V1035	$\mathrm{Sco}=$	73460	$\begin{aligned} & =\mathrm{HD} 156327(\mathrm{Oa})=\mathrm{CoD}-34^{\circ} 11622(9.0)=\mathrm{CPD}-34^{\circ} 6800(9.2)=\mathrm{SAO} \\ & 208655=\text { WR } 86[303]=\text { He } 3-1368=\mathrm{LSS} 4057=\mathrm{GSC} 7370.0511 . \end{aligned}$
V1036	Sco	73469	$=$ HR $6535=$ HD 159176 (Oe5) [304] $=\mathrm{CoD}-32^{\circ} 12935$ (5.8) $=\mathrm{CPD}-32^{\circ} 4616$ $(6.6)=$ SAO $208977=\operatorname{IDS} 1728.2 \mathrm{~S} 3231=$ LSS $4225=$ Eggen $1($ NGC 6383) $=$ Prager $4357=$ CSV $101659=$ NSV $09167=$ HIP $086011=$ GSC 7380.1077 .
V1037	Sco $=$	73471	$=\mathrm{HD} 320156$ (B 0) $=\mathrm{CoD}-35^{\circ} 11760$ (9.3) $[376]=\mathrm{CPD}-35^{\circ} 7069$ (9.2) $=$ SAO $209052=$ IRAS $17346-3521=$ He 3-1444 $=$ LSS $4300=$ Wray $15-1745=$ GSC 7384.0832.
V1038	Sco $=$	73490	$=$ IRAS 17485-4213 [116].
AY	Scl	73001	$=$ IRAS 00016-3056 [306] $=$ GSC 6989.0711.
AZ	Scl	73025	$=\mathrm{CoD}-37^{\circ} 316$ (10) $=\mathrm{SB} 357[307]=\mathrm{GSC} 7000.1427$.
BB	$\mathrm{Scl}=$	73038	$\begin{aligned} & =\mathrm{HD} 9770(\mathrm{G} 5)=\mathrm{CoD}-30^{\circ} 529(7.4)=\mathrm{CPD}-30^{\circ} 181(7.6)=\mathrm{SAO} 193189 \\ & =\text { IRAS } 01326-3010=\text { Gliese } 60 \mathrm{ABC}[055]=2 \text { RE J013501-295427 }=\mathrm{NSV} \\ & 00556=\text { HIP } 007372=\text { GSC } 6428.1616 . \end{aligned}$
α	$\mathrm{Scl}=$	73027	$=$ alpha Scl [308] = HR $280=\mathrm{HD} 5737(\mathrm{~B} 5)=\mathrm{CoD}-30^{\circ} 297(4.2)=$ $\mathrm{CPD}-30^{\circ} 99(3.5)=\mathrm{SAO} 166716=$ IRAS 00561-2937 $=$ NSV $00359=\mathrm{GSC}$ 6424.2270.
σ	$\mathrm{Scl}=$	73029	$\begin{aligned} & =\text { sigma } \operatorname{Scl}[308]=\mathrm{HR} 293=\mathrm{HD} 6178(\mathrm{~A} 2)=\mathrm{CoD}-32^{\circ} 410(5.6)= \\ & \mathrm{CPD}-32^{\circ} 108(5.6)=\mathrm{SAO} 192884=\operatorname{GSC} 6999.2321 . \end{aligned}$
V446	Sct	73548	$=$ MWC 930 [133] = IRAS 18237-0715 = GSC 5111.0068.
V447	Sct $=$	73568	$\begin{aligned} & =\mathrm{HD} 173219(\mathrm{~B} 0 \mathrm{p})[309]=\mathrm{BD}-7^{\circ} 4689(8.2)=\mathrm{SAO} 142567=\text { MWC } 304= \\ & \text { LS IV }-7^{\circ} 16=\mathrm{GSC} 5125.0325 . \end{aligned}$
NY	Ser	73383	$=$ PG $1510+234[310]=$ SER $1=$ HV $10444=$ CSV $2297=$ NSV 06990.
NZ	Ser	73549	$=$ MWC 297 [311] = AFGL $2165=$ IRAS 18250-0351 = GSC 5107.0494.
OO	Ser	73551	= DEOS Ser [313].
TU	Sex	73268	$=$ V 31 in Sex dSph Galaxy [314]. Non-member of the galaxy.
V1082	Tau	73088	$\begin{aligned} & =\text { HD } 22694(\mathrm{G} 5)=\mathrm{BD}+17^{\circ} 601(8.3)=\mathrm{SAO} 093538=\mathrm{HIC} 017076[005]= \\ & \text { GSC } 1239.0265 . \end{aligned}$
V1083	Tau	73090	$=$ IRAS $03410+0646$ [014].
V1084	Tau	73091	$\begin{aligned} & =\text { HII } 320 \text { (Pleiades) }[263]=\text { Zinner } 212=\text { CSV } 100304=\text { NSV } 01255=\text { GSC } \\ & 1803.0222 . \end{aligned}$
V1085	Tau $=$	73094	$\begin{aligned} & =\mathrm{BD}+23^{\circ} 511(9.0)=\mathrm{SAO} 076151(\mathrm{~F} 2)=\text { HII } 708 \text { (Pleiades) }[259]=\text { Zinner } \\ & 215=\mathrm{CSV} 100308=\text { NSV } 01274=\text { GSC } 1799.0974 . \end{aligned}$
V1086	Ta	73095	= No. 7 [003].
V1087	Tau	73096	$=\mathrm{K} 4$ (Pleiades) $[316]=$ TCSN $261=$ Plf 545.
V1088	Tau	73098	$=$ Plf 345 [318] = NSV 01350.
V1089	Tau $=$	73099	$\begin{aligned} & =\text { HII } 2284 \text { (Pleiades) }[263]=\text { Zinner } 241=\text { CSV } 100338=\text { NSV } 01353=\text { GSC } \\ & 1800.1249 . \end{aligned}$
V1090	Tau $=$	73100	$\begin{aligned} & =\text { HII } 2341 \text { (Pleiades) }[263]=\text { Zinner } 243=\text { CSV } 100340=\text { NSV } 01356=\text { GSC } \\ & 1800.1128 . \end{aligned}$
V1091	Tau	73101	$=$ Flare star in the Pleiades region [319] = Pels $72[320]=$ GSC 1804.0734.
V1092	Tau	73102	$=2 \mathrm{RE} \mathrm{J} 0357+283[321]=\mathrm{RE} 0357+283=$ GSC 1825.1142.
V1093	Tau	73103	$=$ No. 8 [003].
V1094	Tau $=$	73107	$\begin{aligned} & =\mathrm{HD} 284195(\mathrm{G} 0)=\mathrm{BD}+21^{\circ} 605(9.1)=\mathrm{SAO} 076494=\mathrm{DHK} 41[174]= \\ & \mathrm{GSC} 1263.0642 . \end{aligned}$
V1095	Tau $=$	73108	$=\mathrm{LkCa} 1[323]=\mathrm{JH} 141=$ HBC $365=$ GSC 1827.1092.
V1096	Tau	73109	$=$ Anon $1[323]=$ Anon (near LkCa 1) $=$ HBC $366=$ GSC 1827.1209.
V1097	Tau	73110	$=\operatorname{LkCa} 2[323,324]=$ GSC 1827.1087.
V1098	Tau $=$	73111	$=\mathrm{LkCa} 3[325,377]=\mathrm{HBC} 368=\mathrm{GSC} 1823.1802$.
V1099	Tau $=$	73113	$\begin{aligned} & =48 \text { Tau = HR } 1319[326]=\text { HD } 26911(\text { F } 5)=\mathrm{BD}+15^{\circ} 603(6.3)=\mathrm{SAO} \\ & 093836=\text { VB } 20=\text { VA } 79(\text { Hyades })=\mathrm{CSV} 100377=\text { NSV } 01537=\mathrm{GSC} \\ & 1251.0128 . \end{aligned}$

Table 2 (continued)

V1100	Tau $=$	73117	$=$ DHK $42[256]=$ IRAS $04184+2008=$ GSC 1272.0567.
V1101	Tau $=$	73118	= B 29 [327] = GSC 1277.1228.
V1102	Tau $=$	73120	$=$ VA 486 (Hyades) [263] $=$ GH 7-232 $=$ Leiden $68=$ GSC 1269.1045.
V1103	Tau $=$	73121	$=\mathrm{LkCa} 11[323]=\mathrm{GSC} 1269.0045$.
V1104	Tau $=$	73122	$=$ VA 512 (Hyades) [263] $=$ GH $7-236=$ GSC 1265.1019
V1105	Tau $=$	73124	= B 75 [330].
V1106	Tau $=$	73125	= B $33[327]=$ GSC 1829.0152.
V1107	Tau $=$	73126	= B 28 [327].
V1108	Tau $=$	73127	$=$ B $19[327]=$ GSC 1278.0382.
V1109	Tau $=$	73128	= B $21[327]=$ GSC 1278.0940.
V1110	Tau $=$	73129	$\begin{aligned} & =\mathrm{BD}+24^{\circ} 667(9.5)=\text { Wa Tau } 1[005,378]=\text { TAP } 50=\text { HBC } 408=\mathrm{GSC} \\ & 1833.0934 . \end{aligned}$
V1111	Tau $=$	73130	= B 71 [330].
V1112	Tau $=$	73131	$=$ HV $10389=$ CSV $418=$ NSV $01651=$ GSC 0669.1442.
V1113	Tau $=$	73132	= B 60 [330].
V1114	Tau $=$	73134	= B $52[330]=$ GSC 1829.0768.
V1115	Tau $=$	73135	$=\mathrm{LkCa} 14$ [325] $=$ HBC $417=$ GSC 1834.0177.
V1116	Tau $=$	73136	$\begin{aligned} & =\mathrm{HR} 1459[326]=\mathrm{HD} 29169(\mathrm{~F} 2)=\mathrm{BD}+23^{\circ} 715(6.5)=\mathrm{SAO} 076670=\mathrm{VB} \\ & 100(\text { Hyades })=\text { NSV } 01663=\text { GSC } 1830.2128 . \end{aligned}$
V1117	Tau $=$	73137	= B $47[330]=$ GSC 1830.1257.
V1118	Tau $=$	73139	$=$ B 43 [327$]=$ GSC 1830.0822.
V1119	Tau $=$	73152	$=111 \mathrm{Tau}[242]=\mathrm{HR} 1780=\mathrm{HD} 35296(\mathrm{G} 0)=\mathrm{BD}+17^{\circ} 920(5.5)=\mathrm{SAO}$ $094526=$ IDS $0518.6 \mathrm{~N} 1716 \mathrm{~A}=$ IRAS $05214+1720=$ Gliese $202=$ HIP 025278 $=$ GSC 1300.2225 .
QT	$\mathrm{Tel}=$	73611	$=$ IRAS 19521-5131 [033] = GSC 8403.1440.
QU	$\mathrm{Tel}=$	73615	$=\mathrm{EC} 20058-5234[332]=\mathrm{GSC} 8404.0125$.
XY	Tri $=$	73041	$=$ No. 4 [003].
XZ	Tri $=$	73042	$=$ No. 5 [003].
YY	Tri $=$	73046	$=$ IRAS $02152+2822$ [014].
CP	Tuc =	73745	= AX J2315-592 [379] = AS 2315-5910.
EW	$\mathrm{UMa}=$	73236	$=\mathrm{BD}+73^{\circ} 405$ (9.5) $=$ GSC 4380.1353 [062].
EX	UMa $=$	73245	$=$ BV $28=$ CSV $6652=$ NSV $04219=$ GSC 3801.1644.
EY	UMa $=$	73250	= GR 304 [336].
EZ	$\mathrm{UMa}=$	73256	$=\mathrm{HR} 3722=\mathrm{HD} 80953(\mathrm{~K} 2)=\mathrm{BD}+64^{\circ} 733$ (6.5) $=\mathrm{SAO} 014875=$ IRC $+60194=$ AFGL $1350=$ IRAS $09217+6409=$ HIC $046247[005]=$ GSC 4138.1441.
FF	$\mathrm{UMa}=$	73260	$\begin{aligned} & =\mathrm{HD} 82286(\mathrm{G} 5)=\mathrm{BD}+63^{\circ} 848(8.2)=\mathrm{SAO} 014919=\mathrm{RE} 0933+624=\mathrm{HIC} \\ & 046919[005]=\mathrm{GSC} 4139.0905 . \end{aligned}$
FG	$\mathrm{UMa}=$	73269	$\begin{aligned} & =\mathrm{HD} 89546(\mathrm{~K} 0)=\mathrm{BD}+61^{\circ} 1183(7.3)=\mathrm{SAO} 015153=\text { IRAS } 10183+6109 \\ & =\text { HIC } 050752[005]=\mathrm{GSC} 4144.1153 . \end{aligned}$
FH	$\mathrm{UMa}=$	73277	$=$ WGA J1047.1+6335 [337].
FI	$\mathrm{UMa}=$	73283	$\begin{aligned} & =\operatorname{HR} 4344[338]=\operatorname{HD} 97302(\mathrm{~A} 2)=\mathrm{BD}+55^{\circ} 1446(6.7)=\mathrm{SAO} 027952= \\ & \mathrm{GSC} 3824.1050 . \end{aligned}$
FK	$\mathrm{UMa}=$	73284	$=\mathrm{BD}+30^{\circ} 2130(8.9)=\mathrm{HIC} 055135[005]=\mathrm{GSC} 1983.0061$.
MN	$\mathrm{Vel}=$	73242	$\begin{aligned} & =\operatorname{HD} 73739(\mathrm{Ma})=\mathrm{CoD}-46^{\circ} 4393(7.6)=\mathrm{CPD}-46^{\circ} 2759(8.6)=\mathrm{SAO} 220216 \\ & =\text { IRAS } 08363-4643=\mathrm{CSV} 6649=\text { NSV } 04166=\mathrm{GSC} 8155.0343[157] . \end{aligned}$
MO	$\mathrm{Vel}=$	73247	$\begin{aligned} & =\mathrm{HD} 75425(\mathrm{~A} 0)[339]=\mathrm{CoD}-41^{\circ} 4521(9.3)=\mathrm{CPD}-41^{\circ} 2994(8.9)=\mathrm{SAO} \\ & 220501=\text { GSC } 7683.0055 . \end{aligned}$
MP	$\mathrm{Vel}=$	73253	$\begin{aligned} & =\mathrm{HD} 79185(\mathrm{F0})[067]=\mathrm{CoD}-42^{\circ} 5040(8.2)=\mathrm{CPD}-42^{\circ} 3432(7.4)=\mathrm{SAO} \\ & 220929=\mathrm{GSC} 7690.2860 . \end{aligned}$
MQ	$\mathrm{Vel}=$	73255	$=$ IRAS 09194-4518 [029].
MR	$\mathrm{Vel}=$	73257	= RX J0925.7-4758 [340].
MS	$\mathrm{Vel}=$	73262	$\begin{aligned} & =\text { HD } 83388(\mathrm{Ma})=\mathrm{CoD}-51^{\circ} 3979(8.1)=\mathrm{CPD}-51^{\circ} 2403(8.7)=\mathrm{SAO} 237135 \\ & =\text { IRAS } 09345-5219=\text { HIP } 047131=\mathrm{GSC} 8585.1054[157] . \end{aligned}$
MT	$\mathrm{Vel}=$	73263	$\begin{aligned} & =\mathrm{HD} 84712(\mathrm{~F} 0)[067]=\mathrm{CoD}-45^{\circ} 5401(8.2)=\mathrm{CPD}-45^{\circ} 4005(8.2)=\mathrm{SAO} \\ & 221465=\text { HIP } 047889=\mathrm{GSC} 8181.1795 . \end{aligned}$
MU	$\mathrm{Vel}=$	73264	$=$ IRAS 09450-4716 [029].
MV	$\mathrm{Vel}=$	73270	$\begin{aligned} & =\mathrm{I} \mathrm{Vel}=\mathrm{HR} 4074 \quad[309]=\mathrm{HD} 89890(\mathrm{~B} 5 \mathrm{p})=\mathrm{CoD}-55^{\circ} 3306(4.4)= \\ & \mathrm{CPD}-55^{\circ} 3286(4.8)=\mathrm{SAO} 237959=\text { MWC } 201=\mathrm{GSC} 8604.0975 . \end{aligned}$

Table 2 (continued)

MW	$\mathrm{Vel}=$	73282	$\begin{aligned} & =\text { HD } 96134(\mathrm{Mc})=\mathrm{CoD}-50^{\circ} 5655(8.9)=\mathrm{CPD}-50^{\circ} 3921(9.2)=\text { ISS } 370= \\ & \text { IRAS } 11022-5057=\mathrm{GSC} 8212.1230[157] . \end{aligned}$
IQ	Vir $=$	73289	$\begin{aligned} & =\mathrm{HR} 4555=\mathrm{HD} 103313 \text { (A5) }[067]=\mathrm{BD}+1^{\circ} 2624(6.8)=\mathrm{SAO} 119100= \\ & \text { GSC } 0273.0621 . \end{aligned}$
IR	Vir $=$	73330	= HV 10097 = CSV $1901=$ NSV $05798=$ GSC 4951.0769.
IS	Vir $=$	73356	$\begin{aligned} & =\mathrm{HD} 113816(\mathrm{~K} 0)=\mathrm{BD}-4^{\circ} 3419(8.4)=\mathrm{SAO} 139157=1 \mathrm{H} 1303-047=\mathrm{HIC} \\ & 063958[005]=\mathrm{CSV} 6993=\text { NSV } 06095=\mathrm{GSC} 4960.1185 . \end{aligned}$
IT	Vir $=$	73365	$\begin{aligned} & =\mathrm{HD} 121447(\mathrm{Map})[342]=\mathrm{BD}-17^{\circ} 3961(8.0)=\mathrm{SAO} 158240=\text { IRAS } 13530- \\ & 1800=\text { HIP } 068023=\text { GSC } 6140.0641 . \end{aligned}$
IU	Vir $=$	73368	= EC 14012-1446 [343].
IV	Vir $=$	73370	$=\mathrm{BD}-21^{\circ} 3873$ (9.6) [344] = GSC 6151.1012.
V376	$\mathrm{Vul}=$	73582	$=$ CCS $2714=$ IRAS 19131+2507 $=$ TASV 1913+25 [346] $=$ GSC 2127.2488.
V377	$\mathrm{Vul}=$	73601	$=3 \mathrm{Vul}[347]=\mathrm{HR} 7358=\mathrm{HD} 182255(\mathrm{~B} 5)=\mathrm{BD}+25^{\circ} 3811$ (5.5) $=\mathrm{SAO}$ $087136=$ EUVE J1922+26.2 $=$ HIP $095260=$ CSV $102926=$ NSV $11966=$ GSC 2132.3895.
V378	$\mathrm{Vul}=$	73603	= Roberts 93 [348] = WR $125=$ GSC 1609.0416.
V379	$\mathrm{Vul}=$	73609	$=\operatorname{HR} 7556[349]=\mathrm{HD} 187640(\mathrm{~B} 8)=\mathrm{BD}+28^{\circ} 3493$ (6.8) $=\mathrm{SAO} 087786=$ HIP $097572=$ NSV $12454=$ GSC 2152.6207 .
V380	$\mathrm{Vul}=$	73610	= LD 144 [350].
V381	$\mathrm{Vul}=$	73617	$=$ Star 19 (NGC 6882/5) [351] = GSC 2162.0948.
V382	$\mathrm{Vul}=$	73618	$=\mathrm{BD}+26^{\circ} 3819(9.4)=$ Star $25(\mathrm{NGC} 6882 / 5)[351]=\mathrm{GSC} 2162.1074$.
V383	$\mathrm{Vul}=$	73621	$\begin{aligned} & =\mathrm{HD} 192871(\mathrm{~A} 5)[279]=\mathrm{BD}+21^{\circ} 4133(7.0)=\mathrm{SAO} 088437=\mathrm{HIP} 099923 \\ & =\text { GSC } 1643.0019 . \end{aligned}$
V384	$\mathrm{Vul}=$	73662	$=$ No. $49[003]=$ GSC 2181.0129.
V385	$\mathrm{Vul}=$	73674	= No. 50 [003].
V386	$\mathrm{Vul}=$	73676	$=$ No. 51 [003].

References

1. K.Beuermann, K.Reinsch, H.Barwig, V.Burwitz, D.de Martino, K.-H.Mantel, M.W.Pakull, E.L.Robinson, A.D.Schwope, H.-C.Thomas, J.Trumper, A.van Teeseling, E.Zhang, AsAp 294, No.1, L1, 1995.
2. J.Greiner, W.Wenzel, AsAp 294, No.1, L5, 1995.
3. C.J.Wetterer, J.T.McGraw, T.R.Hess, R.Grashuis, AJ 112, No.2, 742, 1996.
4. R.M.Robb, IBVS No.4192, 1995.
5. G.W.Henry, F.C.Fekel, D.S.Hall, AJ 110, No.6, 2926, 1995.
6. J.E. Winzer, Ph.D.Thesis, Univ. of Toronto, 1974.
7. J.Vidal-Sainz, J.M.Gomez-Forrellad, E.Garcia-Melendo, IBVS No.4324, 1996.
8. E.F.Milone, C.R.Stagg, B.A.Sugars, J.R.Mc Vean, S.J.Schiller, J.Kallrath,
D.H.Bradstreet, AJ 109, No.1, 359, 1995.
9. E.G.Ebbighausen, ApJ 89, No.3, 431, 1939.
10. V.P.Smykov, Astr Tsirk No.1059, 6, 1979.
11. L.Dahlmark, IBVS No.4329, 1996.
12. E.Paunzen, G.Handler, IBVS No.4301, 1996.
13. W.F.Welsh, K.Horne, R.Gomer, MN 275, No.3, 649, 1995.
14. P.Whitelock, J.Menzies, M.Feast, F.Marang, B.Carter, G.Roberts, R.Catchpole, J.Chapman, MN 267, No.3, 711, 1994.
15. L.Drissen, M.M.Shara, M.Dopita, D.T.Wickramasinghe, AJ 107, No.6, 2172, 1994.
16. R.Haefner, IBVS No.4178, 1995.
17. G.Haro, W.J.Luyten, TTB No.19, 17, 1960.
18. E.W.Weis, AJ 107, No.3, 1135, 1994.
19. IAU Circ No.6133, 1995.
20. The Astronomer 32, No.375, 1995.
21. G.Sh.Roizman, G.P.Sigal, D.Pundak, F.H.Dallasheh, IBVS No.4267, 1995.
22. V.P.Arkhipova, N.P.Ikonnikova, R.I.Noskova, Astron Zh Pisma 19, No.5, 436, 1993.
23. A.S.Miroshnichenko, AsAp 312, No.3, 941, 1996.
24. D.L.Summers, M.Zeilik, E.Jaderlund, G.Hoeppe, A.Collins, IBVS No.3708, 1992.
25. L.O.Takalo, J.A.Nousek, ApJ 326, No.2, 779, 1988.
26. R.Kuschnig, E.Paunzen, W.W.Weiss, IBVS No.4070, 1994.
27. J.P.Patterson, D.R.Skillman, J.Thorstensen, C.Hellier, PASP 107, No.710, 307, 1995.
28. R.Staubert, M.König, S.Friedrich, G.Lamer, R.K.Sood, S.D.James, D.P.Sharma, AsAp 288, No.2, 513, 1994.
29. B.Carter, F.Marang, P.A.Whitelock, R.M.Catchpole, M.W.Feast, SAAO Ann Report 1992, p. 22.
30. M.Morel, P.Camilleri, IBVS No.3923, 1993.
31. C.B.Stephenson, N.Sanduleak, IBVS No.1213, 1976.
32. M.Parthasarathy, P.Garcia-Lario, D.de Martino, S.R.Pottasch, D.Kilkenny, P.Martinez, K.C.Sahu, B.E.Reddy, B.T.Sewell, AsAp 300, No.2, L25, 1995.
33. P.Whitelock, J.Menzies, M.Feast, R.Catchpole, F.Marang, B.Carter, MN 276, No.1, 219, 1995.
34. T.Oja, IBVS No.4000, 1994.
35. J.Guarro-Flo, E.Garcia-Melendo, J.Juan-Samso, J.Vidal-Sainz, J.Poch-Creixell, IBVS No.4245, 1995.
36. R.Weber, IBVS No.21, 1963.
37. B.N.Ashoka, T.M.K.Marar, S.Seetha, K.Kasturirangan, J.C.Bhattacharyya, AsAp 297, No.3, L83, 1995.
38. P.North, B.Nicolet, IBVS No.3978, 1994.
39. J.R.Percy, PASP 105, No.694, 1422, 1993.
40. J.M.Gomez-Forrellad, E.Garcia-Melendo, IBVS No.4247, 1995.
41. R.Diethelm, L.Moser, IBVS No.4198, 1995.
42. E.Geyer, R.Kippenhahn, W.Strohmeier, KVB No.11, 1955.
43. V.Burwitz, K.Reinsch, A.D.Schwope, K.Beuermann, H.-C.Thomas, J.Greiner, AsAp 305, No.2, 507, 1996.
44. J.R.Percy, D.L.Welch, PASP 95, No.570, 491, 1983.
45. S. Yarikov, Private communication, 1984.
46. N.E.Kurochkin, Private communication, 1994.
47. R.Ciardullo, H.E.Bond, AJ 111, No.6, 2332, 1996.
48. L.Perek, L.Kohoutek, Catalogue of Galactic Planetary Nebulae, Prague, 1967.
49. A.S.Miroshnichenko, Odessa Publ 7, part 1, 76, 1994.
50. F.Campos-Cucarella, J.Guarro-Flo, J.M.Gomez-Forrellad, E.Garcia-Melendo, IBVS No.4317, 1996.
51. F.Campos-Cucarella, J.Nomen-Torres, J.M.Gomez-Forrellad, E.Garcia-Melendo, IBVS No.4323, 1996.
52. E.Steinbring, D.P.Hube, B.E.Martin, IBVS No.4184, 1995.
53. A.V.Kusakin, IBVS No.4001, 1994.
54. K.W.West, C.Lloyd, IBVS No.4289, 1996.
55. G.Cutispoto, R.Pallavicini, M.Kürster, M.Rodonò, AsAp 297, No.3, 764, 1995.
56. C.Sterken, N.Vogt, R.Mennickent, AsAp 291, No.2, 473, 1994.
57. B.Mazur, J.Kaluzny, W.Krzemiński, MN 265, No.2, 405, 1993.
58. L.A.Balona, J.Cuypers, MN 261, No.1, 1, 1993.
59. L.A.Balona, C.D.Laney, MN 281, No.4, 1341, 1996.
60. H.L.Johnson, ApJ 112, No.2, 240, 1950.
61. M.A.Barstow, D.O'Donoghue, D.Kilkenny, M.R.Burleigh, T.A.Fleming, MN 273, No.3, 711, 1995.
62. E.G.Schmidt, J.R.Chab, D.E.Reiswig, AJ 109, No.3, 1239, 1995.
63. S.B.Howell, J.Liebert, R.M.Wagner, IBVS No.4074, 1994.
64. F.M.Bateson, M.Morel, Charts for Southern Variables, Ser.23, 1992.
65. M.Mathioudakis, J.J.Drake, N.Craig, D.Kilkenny, J.G.Doyle, M.M.Sirk, J.Dupuis, A.Fruscione, C.A.Christian, M.J.Abbott, AsAp 302, No.2, 422, 1995.
66. H.L.Giclas, C.D.Slaughter, R.Burnham, Jr., Lowell Bull No.102, 136, 1959.
67. C.Koen, D.Kilkenny, F.van Wyk, G.Roberts, F.Marang, MN 277, No.1, 217, 1995.
68. C.Motch, F.Haberl, P.Guillout, M.Pakull, K.Reinsch, J.Krautter, AsAp 307, No.2, 459, 1996.
69. D.W.Kurtz, P.Martinez, IBVS No.4013, 1994.
70. L.A.Balona, MN 267, No.4, 1060, 1994.
71. L.A.Balona, C.D.Laney, MN 277, No.1, 250, 1995.
72. L.Dahlmark, IBVS No.2878, 1986.
73. O.M.Kurtanidze, M.G.Nikolashvili, Astrofizika 17, No.3, 576, 1981.
74. H.J.Staude, Th.Neckel, AsAp 244, No.1, L13, 1991.
75. A.Saha, J.G.Hoessel, AJ 99, No.1, 97, 1990.
76. E.Rudolph, MVS 12, H.9, 165, 1993.
77. M.Collins, The Astronomer 28, No.332, 182, 1991.
78. IAU Circ No.6213, 1995.
79. The Astronomer 32, No.377, 111+covers, 1995.
80. V.Gasperoni, P.Maffei, G.Tosti, IBVS No.3573, 1991.
81. M.Collins, M.Westlund, The Astronomer 32, No.373, 17, 1995.
82. B.Martin, D.P.Hube, E.Steinbring, S.Cartledge, IBVS No.4093, 1994.
83. K.Jahn, J.Kaluzny, S.M.Ruciński, AsAp 295, No.1, 101, 1995.
84. E.J.Bakker, H.J.G.L.M.Lamers, L.B.F.M.Waters, Ch.Waelkens, AsAp 310, No.3, 861, 1996.
85. A.Kanaan, S.O.Kepler, O.Giovannini, M.Diaz, ApJ 390, No.2, L89, 1992.
86. W.J.Luyten, ApJ 109, No.3, 528, 1949.
87. J.Kaluzny, W.Krzeminski, B.Mazur, AJ 110, No.5, 2206, 1995.
88. IAU Circ No.6139, 1995.
89. R.Haefner, K.P.Simon, A.Fiedler, IBVS No.3969, 1994.
90. C.B.Stephenson, N.Sanduleak, Warner and Swasey Publ 1, No.1, 1971.
91. P.North, C.Richard, IBVS No.4147, 1995.
92. D.M.Leeber, D.C.B.Whittet, T.Prusti, D.Kilkenny, P.A.Whitelock, ApJ 463, No.1, L25, 1996.
93. Hu Jing-yao, Acta Aph Sinica 14, No.1, 46, 1994.
94. N.Craig, S.B.Howell, M.M.Sirk, R.F.Malina, ApJ 457, No.2, L91, 1996.
95. V.Satyoldiev, Variable Stars 23, No.5, 319, 1994.
96. F.V.Hessman, S.V.W.Beckwith, R.Bender, J.Eislöffel, W.Götz, E.Guenther, AsAp 299, No.2, 464, 1995.
97. M.Kun, L.Pásztor, ApSS 174, No.1, 13, 1990.
98. E.H.Semkov, IBVS No.3870, 1993.
99. L.F.Miranda, C.Eiroa, K.Birkle, AsAp 289, No.1, L7, 1994.
100. G.V.Zaitseva, Private communication, 1992.
101. D.W.Kurtz, P.Martinez, P.Tripe, MN 271, No.2, 421, 1994.
102. H.L.Giclas, R.Burnham, Jr., N.G.Thomas, Lowell Bull No.112, 61, 1961.
103. G.Cutispoto, G.Tagliaferri, R.Pallavicini, L.Pasquini, M.Rodonò, AsAp Suppl 115, No.1, 41, 1996.
104. M.W.Somers, J.J.Lockley, T.Naylor, J.H.Wood, MN 280, No.4, 1277, 1996.
105. C.Hoffmeister, ZfAp 55, H.4, 290, 1962.
106. C.Hoffmeister, VSS 6, H.1, 1963.
107. D.Kilkenny, C.Koen, MN 275, No.2, 327, 1995.
108. IAU Circ No.6130, 1995.
109. The Astronomer 31, No.310, 233, 1995.
110. C.Koen, D. O'Donoghue, ApJ Suppl 101, No.2, 347, 1995.
111. R.A.Downes, M.M.Shara, PASP 105, No.684, 127, 1993.
112. I.Antokhin, J.-F.Bertrand, R.Lamontagne, A.F.J.Moffat, J.Matthews, AJ 109, No.2, 817, 1995.
113. V.Burwitz, K.Reinsch, K.Beuermann, H.-C.Thomas, AsAp 310, No.2, L25, 1996.
114. D.W.Kurtz, R.F.Garrison, C.Koen, G.F.Hofmann, N.B.Viranna, MN 276, No.1, 199, 1995.
115. W.Wenzel, G.A.Richter, R.Luthardt, R.Schwartz, IBVS No.4182, 1995.
116. P.Whitelock, M.Feast, R.Catchpole, MN 248, No.2, 276, 1991.
117. E.Paunzen, W.W.Weiss, P.North, IBVS No.4068, 1994.
118. M.Mateo, M.Kubiak, M.Szymański, J.Katużny, W.Krzemiński, A.Udalski, AJ 110, No.3, 1141, 1995.
119. E.Covino, L.Terranegra, M.Franchini, C.Chavarria-K., R.Stalio, AsAp Suppl 94, No.2, 273, 1992.
120. F.J.Vrba. G.V.Coyne, S.Tapia, ApJ 243, No.2, 489, 1981.
121. S.Molinari, R.Liseau, D.Lorenzetti, AsAp Suppl 101, No.1, 59, 1993.
122. K.M.Strom, S.E.Strom, G.L.Grasdalen, ApJ 187, No.1, 83, 1974.
123. W.Wenzel, IBVS No.4183, 1995.
124. S.V.Antipin, IBVS No.4343, 1996.
125. M.D.Gladders, R.M.Robb, IBVS No.4350, 1996.
126. S.V.Antipin, IBVS No.4125, 1994.
127. S.V.Antipin, IBVS No.4342, 1996.
128. A.Chen, D.O'Donoghue, R.S.Stobie, D.Kilkenny, G.Roberts, F.van Wyk, MN 275, No.1, 100, 1995.
129. D.Heyndrickx, AsAp 283, No.3, 835, 1994.
130. IAU Circ No.6463, 1996.
131. L.A.Balona, C.Koen, MN 267, No.4, 1071, 1994.
132. H.C.Arp, C.T.van Sant, AJ 63, No.8, 341, 1958.
133. Yu.K.Bergner, A.S.Miroshnichenko, R.V.Yudin, K.S.Kuratov, D.B.Mukanov, T.A.Shejkina, AsAp Suppl 112, No.2, 221, 1995.
134. A.Alksnis, Z.Alksne, Carbon Stars in a field in Cygnus, Riga: Zinatne, 1988.
135. S.-L.Kim, S.- W.Lee, IBVS No.4331, 1996.
136. E.S.Parsamian, E.Chavira, G.González, IBVS No.4046, 1994.
137. N.D.Melikian, H.S.Chavushian, M.K.Tsvetkov, IBVS No.1470, 1978.
138. N.D.Melikian, G.A.Brutian, Burakan Soobshch No.57, 70, 1985.
139. L.Dahlmark, IBVS No.2157, 1982.
140. E.G.Schmidt, D.E.Reiswig, AJ 106, No.6, 2429, 1993.
141. N.D.Melikian, A.Ts.Karapetian, Astrofizika 38, No.4, 703, 1995.
142. O.D.Pikalova, M.Sci.Thesis, 1995.
143. V.Satyvoldiev, Variable Stars Suppl 3, No.18, 601, 1979.
144. J.M.Gomez-Forrellad, E.Garcia-Melendo, IBVS No.4248, 1995.
145. J.M.Gomez-Forrellad, E.Garcia-Melendo, IBVS No.4275, 1995.
146. M.Collins, N.D.James, G.J.Kirby, C.Lloyd, The Astronomer 33, No.392, 183+cover, 1996.
147. E.F.Guinan, G.P.McCook, D.Steelman, BAAS 27, No.1, 697, 1995.
148. H.L.Giclas, R.Burnham, Jr., N.G.Thomas, Lowell Bull No.140, 31, 1967.
149. I.Billington, T.R.Marsh, V.S.Dhillon, MN 278, No.3, 673, 1996.
150. S.Klose, ApJ 446, No.1, 357, 1995.
151. G.Poyner, BAA VSS Circ No.86, 2, 1995.
152. R.M.Robb, R.D.Cardinal, IBVS No.4270, 1995.
153. M.M.Shara, D.J.Shara, B.McLean, PASP 105, No.686, 387, 1993.
154. M.Collins, M.Westlund, The Astronomer 32, No.382, 237, 1996.
155. J.Gregorio-Hetem, J.R.D.Lépine, G.R.Quast, C.A.O.Torres, R.de la Reza, AJ 103, No.2, 549, 1992.
156. G.Cutispoto, G.Tagliaferri, AsAp 306, No.1, 278, 1996.
157. V.Makarov, U.Bastian, E.Hoeg, V.Grossmann, A.Wicenec, IBVS No.4118, 1994.
158. G.Sandell, B.Reipurth, G.Gahm, AsAp 181, No.2, 283, 1987.
159. G.Sandell, L.E.B.Johansson, Nguyen-Q-Rieu, K.Mattila, AsAp 97, No.2, 317, 1981.
160. R.Kuschnig, M.Gelbmann, E.Paunzen, W.W.Weiss, IBVS No.4349, 1996.
161. W.Liller, IAU Circ No.5127, 1990.
162. G.Schmidt, J.Norsworthy, IAU Circ No.4866, 1989.
163. K.Beuermann, H.-C.Thomas, P.Giommi, G.Tagliaferri, A.D.Schwope, AsAp 219, No.1/2, L7, 1989.
164. J.D.Fernie, AJ 110, No.6, 3010, 1995.
165. M.R.S.Hawkins, Nature 301, No.5902, 688, 1983.
166. M.R.S.Hawkins, Nature 293, No.5828, 116, 1981.
167. J.Nomen-Torres, E. Garcia-Melendo, IBVS No.4365, 1996.
168. S.V.Antipin, IBVS No.4360, 1996.
169. K.A.Misselt, A.W.Shafter, AJ 109, No.4, 1757, 1995.
170. J.M.Gomez-Forrellad, E.Garcia-Melendo, IBVS No.4364, 1996.
171. M.Aluigi, G.Galli, A.Gaspani, IBVS No.4064, 1994.
172. A.Dĕdoch, Brno Contr No.31, 85, 1995.
173. D.H.Kaiser, G.Lubcke, D.B.Williams, IBVS No.4284, 1996.
174. D.H.Kaiser, IBVS No.4119, 1994.
175. P.Szkody, A.Silber, D.W.Hoard, E.Fierce, K.P.Singh, P.Barrett, E.Schlegel, V.Piirola, ApJ 455, No.1, L43, 1995.
176. F.C.Fekel, G.W.Henry, M.L.Hampton, R.Fried, M.D.Morton, AJ 108, No.2, 694, 1994.
177. V.P.Arkhipova, N.P.Ikonnikova, V.F.Esipov, R.I.Noskova, Astron Zh Pisma 22, No.7, 526, 1996.
178. K.Sekiguchi, Y.Nakada, B.Bassett, MN 266, No.3, L51, 1994.
179. R.Kuschnig, E.Paunzen, W.W.Weiss, IBVS No.4069, 1994.
180. D.O'Donoghue, D.W.Kurtz, IBVS No.3893, 1993.
181. G.Cutispoto, AsAp Suppl 111, No.3, 507, 1995.
182. R.M.Robb, E.Steinbring, M.Balogh, B.Ansell, M.Gladders, J.Karr, D.Gilbert, W.Hughes, IBVS No.4281, 1995.
183. D.O’Donoghue, D.Kilkenny, A.Chen, R.S.Stobie, C.Koen, B.Warner, W.A.Lawson, MN 271, No.4, 910, 1994.
184. G.Roberts, F.Marang, F.van Wyk, D.Kilkenny, SAAO Ann Report 1992, p.23.
185. E.Paunzen, U.Heiter, W.W.Weiss, IBVS No.4191, 1995.
186. M.Jerzykiewicz, AsAp Suppl 97, No.2, 421, 1993.
187. E.Paunzen, B.Duffee, IBVS No.4297, 1996.
188. T.D.Kinman, N.B.Suntzeff, R.P.Kraft, AJ 108, No.5, 1722, 1994.
189. A.D.Grauer, F.A.Ringwald, G.Wegner, J.Liebert, G.D.Schmidt, R.F.Green, AJ 108, No.1, 214, 1994.
190. W.Wenzel, Th.Weber, P.Kroll, MVS 12, H.9, 156, 1993.
191. J.Kaluzny, S.M.Ruciński, MN 265, No.1, 34, 1993.
192. S.M.Rucinski, J.Kaluzny, R.W.Hilditch, MN 282, No.3, 705, 1996.
193. J.Kaluzny, A.Udalski, AA 42, No.1, 29, 1992.
194. D.A.H.Buckley, R.A.Remillard, I.R.Tuohy, B.Warner, D.J.Sullivan, MN 265, No.4, 926, 1993.
195. J.Patterson, PASP 107, No.713, 657, 1995.
196. G.J.Anders, R.D.Jeffries, B.J.Kellett, D.W.Coates, MN 265, No.4, 941, 1993.
197. N.C.Hambly, D.Kilkenny, F.P.Keenan, F.van Wyk, F.Marang, G.Roberts, P.L.Dufton, MN 267, No.4, 1103, 1994.
198. T.Le Bertre, AsAp Suppl 94, No.2, 377, 1992.
199. M.A.T.Groenewegen, T.de Jong, AsAp Suppl 101, No.2, 267, 1993.
200. J.Guarro-Flo, J.M.Gomez-Forrellad, E.Garcia-Melendo, J.Vidal-Sainz, IBVS No.4246, 1995.
201. C.Sterken, J.Manfroid, AsAp 305, No.2, 481, 1996.
202. MVS No.297, 1957.
203. B.Mazur, W.Krzemiński, J.Kalużny, MN 273, No.1, 59, 1995.
204. N.K.Reay, P.D.Atherton, K.Taylor, MN 206, No.1, 71, 1984.
205. W.A.Lawson, D.Kilkenny, F.van Wyk, F.Marang, K.Pollard, S.D.Ryder, MN 265, No.2, 351, 1993.
206. S.Frandsen, L.A.Balona, M.Viskum, C.Koen, H.Kjeldsen, AsAp 308, No.1, 132, 1996.
207. H.Kjeldsen, S.Frandsen, ESO Messenger No.57, 48, 1989.
208. M.A.Barstow, S.Jordan, D.O'Donoghue, M.R.Burleigh, R.Napiwotzki, M.K.Harrop-Allin, MN 277, No.3, 971, 1995.
209. E.S.Parsamian, E.Chavira, G.González, IBVS No.4047, 1994.
210. H.L.Giclas, R.Burnham, Jr., N.G.Thomas, Lowell Bull No.122, 103, 1964.
211. Yu.K.Bergner, A.S.Miroshnichenko, A.A.Krivtsov, R.V.Yudin, N.Yu.Yutanov, K.G.Dzhakusheva, K.S.Kuratov, D.B.Mukanov, Variable Stars 23, No.3, 163, 1993.
212. A.Terzan, Ch.Ounnas, AsAp Suppl 76, No.2, 205, 1988.
213. A.Terzan, E.Gosset, AsAp Suppl 90, No.3, 451, 1991.
214. A.Garrigos Sanchez, IBVS No.4356, 1996.
215. IAU Circ No.6001, 1994.
216. The Astronomer 31, No.362, cover, 1994.
217. S.Martin, E.Rodriguez, IBVS No.4273, 1995.
218. M.M.Zakirov, G.C.Arzumanyants, IBVS No.4280, 1995.
219. S.Allain, J.Bouvier, Ch.Prosser, L.A.Marschall, B.D.Laaksonen, AsAp 305, No.2, 498, 1996.
220. W.L.Sanders, W.F.van Altena, AsAp 17, No.1, 193, 1972.
221. M.F.McCarthy, S.O'Sullivan, Ric Astr 7, No.17, 483, 1969.
222. Ch.F.Prosser, Ph.D.Thesis, 1991.
223. S.V.Antipin, IBVS No.4344, 1996.
224. S.V.Antipin, IBVS No.4345, 1996.
225. S.V.Antipin, L.N.Berdnikov, IBVS No.4287, 1996.
226. A.W.Shafter, K.Reinsch, K.Beuermann, K.A.Misselt, D.A.H.Buckley, V.Burwitz, A.D.Schwope, ApJ 443, No.1, 319, 1995.
227. F.M.Walter, S.J.Wolk, N.R.Adams, ApJ 440, No.2, 834, 1995.
228. E.Parsamian, E.Chavira, G.González, Ton Bol 2, No.4, 341, 1978.
229. G.F.Gahm, K.Lodén, E.Gullbring, D.Hartstein, AsAp 301, No.1, 89, 1995.
230. N.Sanduleak, PASP 83, No.491, 95, 1971.
231. E.Chavira, E.Parsamian, Rev Mex 22, No.1, 15, 1991.
232. P.P.Parenago, Sternberg Inst Trudy 25, 1954.
233. P.J.Choi, W.Herbst, AJ 111, No.1, 283, 1996.
234. B.F.Jones, M.F.Walker, AJ 95, No.6, 1755, 1988.
235. Ch.F.Prosser, J.R.Stauffer, L.Hontmann, D.R.Soderblom, B.F.Jones, M.W.Werner, M.J.McCaughrean, ApJ 421, No.2, 517, 1994.
236. L.Rosino, A.Cian, Asiago Contr No.125, 22, 1962.
237. H.L.Giclas, R.Burnham, Jr., N.G.Thomas, Lowell Bull No.120, 1, 1963.
238. M.Wolf, L.S̆arounová, IBVS No.4333, 1996.
239. A.D.Andrews, A Photometric Atlas of the Orion Nebula, 1981.
240. J.Manfroid, P.Renson, IBVS No.4044, 1994.
241. A.A.Hoag, H.L.Johnson, B.Iriarte, R.I.Mitchell, K.L.Hallam, S.Sharpless, Naval Obs Publ, Second Ser., part 7, 360, 1961.
242. K.Stȩpień, E.Geyer, AsAp Suppl 117, No.1, 83, 1996.
243. E.Paunzen, B.Duffee, IBVS No.4255, 1995.
244. J.A.Bailey, L.Ferrario, D.T.Wickramasinghe, D.A.H.Backley, J.H.Hough, MN 272, No.3, 579, 1995.
245. D.O'Donoghue, K.O.Mason, A.Chen, B.J.M.Hassall, M.G.Watson, MN 265, No.3, 545, 1993.
246. D.T.Wickramasinghe, L.Ferrario, J.A.Bailey, L.Drissen, M.A.Dopita, M.Shara, J.H.Hough, MN 265, No.3, L29, 1993.
247. L.Drissen, M.Shara, M.Dopita, D. Wickramasinghe, IAU Circ No.5609, 1992.
248. R.D.Jeffries, P.B.Byrne, J.G.Doyle, G.J.Anders, D.J.James, A.C.Lanzafame, MN 270, No.1, 153, 1994.
249. D.A.Sokolov, S.Yu.Shugarov, E.P.Pavlenko, ApSS Library 208, 219, 1996.
250. R.H.Kaitchuck, L.Pawlowski, BAAS 26, No.1, 794, 1994.
251. L.Prévot, M.Imbert, M.Viton, W.Tobin, ApSS 207, No.1, 83, 1993.
252. T.Kato, Private communication, 1996.
253. G.D.Schmidt, P.S.Smith, D.A.Harvey, A.D.Grauer, AJ 110, No.1, 398, 1995.
254. H.L.Giclas, R.Burnham, Jr., N.G.Thomas, Lowell Bull No.125, 155, 1965.
255. R.Dukes, H.Nations, D.Buzasi, E.Guinan, G.McCook, IAU Circ No.6261, 1995.
256. D.H.Kaiser, IBVS No.4274, 1995.
257. C.Waelkens, P.Lampens, R.Heynderickx, J.Gypers, K.Degryse, S.Poedts, R.Polfleit, J.Donoyelle, K.Van Den Abeele, P.Smeyers, AsAp Suppl 83, No.1, 11, 1990.
258. L.Mantegazza, E.Poretti, AsAp 274, No.3, 811, 1993.
259. Ch.F.Prosser, M.D.Shetrone, E.Marilli, S.Catalano, S.D.Williams, D.E.Backman, B.D.Laaksonen, V.Adige, L.A.Marschall, J.R.Stauffer, PASP 105, No.694, 1407, 1993.
260. Ch.F.Prosser, R.E.Schild, J.R.Stauffer, B.F.Jones, PASP 105, No.685, 269, 1993.
261. J.R.Stauffer, L.W.Hartmann, B.F.Jones, ApJ 346, No.1, 160, 1989.
262. M.A.O'Dell, A.C.Cameron, MN 262, No.2, 521, 1993.
263. Ch.F.Prosser, M.D.Shetrone, A.Dasgupta, D.E.Backman, B.D.Laaksonen, S.W.Baker, L.A.Marschall, B.A.Whitney, K.Kuijken, J.R.Stauffer, PASP 107, No.709, 211, 1995.
264. Z.Alksne, A.Alksnis, Investigations of the Sun and Red Stars No.14, 28, 1981.
265. E.Chapellier, H.Sadsaoud, J.C.Valtier, P.Mathias, R.Garrido, M.Alvarez, J.P.Sareyan, J.Chauville, J.M.Le Contel, AsAp 307, No.1, 94, 1996.
266. D.Kilkenny, J.Spencer Jones, F.Marang, IBVS No.3235, 1988.
267. S.Jaidee, G.Lyngà, Ark Astron 5, H.4, No.21, 345, 1974.
268. K.Reinsch, V.Burwitz, K.Beuermann, A.D.Schwope, H.-C.Thomas, AsAp 291, No.2, L27, 1994.
269. SAAO Ann Report 1993, p.16.
270. J.Greiner, C.Motch, AsAp 294, No.1, 177, 1995.
271. B.J.Kellett, G.E.Bromage, A.Brown, R.D.Jeffries, D.J.James, D.Kilkenny, R.M.Robb, D.Wonnacott, Ch.Lloyd, C.Clayton, ApJ 438, No.1, 364, 1995.
272. G.M.Bernstein, P.M.Knezek, W.Offutt, PASP 107, No.712, 521, 1995.
273. L.Mantegazza, E.Poretti, F.M.Zerbi, MN 270, No.2, 439, 1994.
274. R.Silvotti, C.Bartolini, L.Stanghellini, AsAp 306, No.3, 766, 1996.
275. D. O'Donoghue, C.Koen, D.Kilkenny, MN 278, No.4, 1075, 1996.
276. C.R.Mullis, M.C.Begam, P.A.Ianna, PASP 107, No.714, 742, 1995.
277. G.Handler, M.Breger, D.J.Sullivan, A.J.van der Peet, J.C.Clemens, D.O'Donoghue, A.-L.Chen, A.Kanaan, C.Sterken, C.F.Claver, K.Krisciunas, S.J.Kleinman, D.T.Wickramasinghe, B.J.Wills, J.L.Provençal, R.E.Nather, D.E.Winget, T.K.Watson, M.A.Barstow, D.A.H.Buckley, AsAp 307, No.2, 529, 1996.
278. T.D.Kinman, L.L.Stryker, J.E.Hesser, J.A.Graham, A.R.Walker, M.L.Hazen, J.M.Nemec, PASP 103, No.670, 1279, 1991.
279. G.Handler, E.Paunzen, Delta Sct Newsletter No.9, 6, 1995.
280. H.W.Duerbeck, S.Benetti, ApJ 468, No.2, L111, 1996.
281. I.S.Glass, P.A.Whitelock, R.M.Catchpole, M.W.Feast, MN 273, No.2, 383, 1995.
282. R.M.Wagner, S.G.Starrfield, S.Austin, IAU Circ No.5008, 1990.
283. W.Liller, IAU Circ No.4974, 1990.
284. M.L.Hazen, AJ 111, No.3, 1184, 1996.
285. L.Rosino, Asiago Contr No.132, 6, 1962.
286. L.Plaut, AsAp Suppl 4, No.2, 75, 1971.
287. IAU Circ No.6443, 1996.
288. IAU Circ No.5993, 1994.
289. M.L.Hazen, AJ 105, No.2, 557, 1993.
290. D. Hoffleit, IBVS No.660, 1972.
291. A.Bragaglia, H.W.Duerbeck, U.Munari, T.Zwitter, AsAp 297, No.3, 759, 1995.
292. E.K.Grebel, H.W.Duerbeck, J.Greiner, G.A.Richter, IBVS No.4019, 1994.
293. F.C.Fekel, G.W.Henry, D.S.Hall, AJ 109, No.6, 2821, 1995.
294. W.A.Lawson, M.Clark, P.L.Cottrell, MN 266, No.3, 740, 1994.
295. D.W.Kurtz, P.Martinez, IBVS No.4209, 1995.
296. W.M.Kissling, G.L.Blow, A.C.Gilmore, IBVS No.3872, 1993.
297. D.W.Kurtz, F.Marang, MN 276, No.1, 191, 1995.
298. F.A.Catalano, F.Leone, AsAp Suppl 100, No.2, 319, 1993.
299. G.Haro, E.Chavira, Ton Bol 1, No.3, 189, 1974.
300. L.A.Balona, C.D.Laney, MN 276, No.2, 627, 1995.
301. Ch.D.Bailyn, J.A.Orosz, T.M.Girard, Sh.Jogee, M.della Valle, M.C.Begam, A.S.Fruchter, R.González, Ph.A.Ianna, A.C.Layden, D.H.Martins, M.Smith, Nature 374, No.6524, 701, 1995.
302. IAU Circ No.6046, 1994.
303. A.M.van Genderen, K.A.Van der Hucht, ILLarsen, AsAp 229, No.1, 123, 1990.
304. J.C.Thomas, I.Pachoulakis, IBVS No.4115, 1994.
305. D.J.Frame, P.L.Cottrell, A.C.Gilmore, P.M.Kilmartin, W.A.Lawson, MN 276, No.2, 383, 1995.
306. P.Whitelock, J.Menzies, R.Catchpole, F.Marang, MN 267, No.4, 881, 1994.
307. D.Kilkenny, IBVS No.3179, 1988.
308. J.Manfroid, P.Renson, AsAp 281, No.1, 73, 1994.
309. C.Sterken, N.Vogt, R.E.Mennickent, AsAp 311, No.2, 579, 1996.
310. M.Iida, D.Nogami, T.Kato, IBVS No.4208, 1995.
311. Yu.K.Bergner, V.P.Kozlov, A.A.Krivtsov, A.S.Miroshnichenko, R.V.Yudin, N.Yu. Yutanov, K.G.Dzhakusheva, K.S.Kuratov, D.B.Mukanov, Astrofizika 28, No.3, 529, 1988.
312. R.W.Goodrich, ApJ Suppl 86, No.2, 499, 1993.
313. K.-W.Hodapp, J.L.Hora, J.T.Rayner, A.J.Pickles, E.F.Ladd, ApJ 468, No.2, 861, 1996.
314. M.Mateo, P.Fisher, W.Krzeminski, AJ 110, No.5, 2166, 1995.
315. E.Hertzsprung, Leiden Ann 19, part 1A, 1947.
316. N.D.Melikian, I.Jankovics, J.Kelemen, IBVS No.2019, 1981.
317. G.Haro, E.Chavira, G.González, Ton Bol 3, No.1, 3, 1982.
318. E.S.Parsamian, Burakan soobshch No.49, 8, 1976.
319. J.Kelemen, IAU Symp No.137, 67, 1990.
320. F.van Leeuwen, P.Alphenaar, J.Brand, AsAp Suppl 65, No.2, 309, 1986.
321. R.D.Jeffries, M.R.Burleigh, R.M.Robb, AsAp 305, No.3, L45, 1996.
322. D.H.Kaiser, M.E.Baldwin, J.Gunn, D.Terrell, Ch.Stephan, B.Hakes, IBVS No.4168, 1995.
323. K.N.Grankin, IBVS No.4316, 1996.
324. G.H.Herbig, F.J.Vrba, A.E.Rydgren, AJ 91, No.3, 575, 1986.
325. J.Bouvier, E.Covino, O.Kovo, E.L.Martín, J.M.Matthews, L.Terranegra, S.C.Beck, AsAp 299, No.1, 89, 1995.
326. K.Krisciunas, R.A.Crowe, K.D.Luedeke, M.Roberts, MN 277, No.4, 1404, 1995.
327. A.S.Hojaev, IBVS No.2635, 1984.
328. General Catalogue of Variable Stars Team archive.
329. H.L.Giclas, R.Burnham, Jr., N.G.Thomas, Lowell Bull No.118, 257, 1962.
330. A.S.Hojaev, IBVS No.2636, 1984.
331. J.M.Gomez-Forrellad, E.Garcia-Melendo, IBVS No.4282, 1995.
332. C.Koen, D.O'Donoghue, R.S.Stobie, D.Kilkenny, R.Ashley, MN 277, No.3, 913, 1995.
333. D.Buckley, SAAO Newsletter No.27, 2, 1996.
334. J. Vandenbroere, IBVS No.4241, 1995.
335. K.Locher, BBSAG Bull No.60, 7, 1982.
336. G.Romano, IBVS No.1865, 1980.
337. K.P.Singh, P.Szkody, P.Barrett, N.E.White, E.Fierce, A.Silber, D.W.Hoard, P.J.Hakala, V.Piirola, K.Sohl, ApJ 453, No.2, L95, 1995.
338. R.L.Schutt, AJ 101, No.6, 2177, 1991.
339. P.Martinez, IBVS No.4348, 1996.
340. C.Motch, G.Hasinger, W.Pietsch, AsAp 284, No.3, 827, 1994.
341. J.M.Gomez-Forrellad, E.Garcia-Melendo, IBVS No.4257, 1995.
342. A.Jorissen, O.Hennen, M.Mayor, A.Bruch, C.Sterken, AsAp 301, No.3, 707, 1995.
343. R.S.Stobie, D.O'Donoghue, R.Ashley, C.Koen, A.Chen, D.Kilkenny, MN 272, No.3, L21, 1995.
344. M.Niehues, A.Bruch, H.W.Duerbeck, ESO Messenger No.67, 38, 1992.
345. E.Rudolf, MVS 12, H.10, 186, 1994.
346. M.Collins, The Astronomer 27, No.323, 240, 1991.
347. D.P.Hube, G.C.L.Aikman, PASP 103, No.659, 49, 1991.
348. I.I.Antokhin, A.M.Cherepashchuk, T.R.Irsmambetova, S. Yu.Shugarov, IBVS No.3475, 1990.
349. J.M.Benkö, ApSS 232, No.1, 195, 1995.
350. L.Dahlmark, IBVS No.3855, 1993.
351. J.H.Pena, R.Peniche, S.H.Diaz-Martinez, IBVS No.3488, 1990.
352. F.Haberl, J.R.Thorstensen, C.Motch, A.Schwarzenberg-Czerny, M.Pakull, A.Shambrook, W.Pietsch, AsAp 291, No.1, 171, 1994.
353. D.G.Turner, G.R.Grieve, W.Herbst, W.E.Harris, AJ 85, No.9, 1193, 1980.
354. R.S.Stobie, P.N.Okeke, D.A.H.Buckley, D.O'Donoghue, MN 283, No.4, L127, 1996.
355. G.A.Richter, J.Greiner, ApSS Library 205, 177, 1995.
356. J.Dachs, D.Kaiser, AsAp Suppl 58, No.2, 411, 1984.
357. G.A.Bakos, BAC 24, No.3, 164, 1973.
358. C.Waelkens, H.van Winckel, E.Bogaert, N.R.Trams, AsAp 251, No.2, 495, 1991.
359. B.J.Hrivnak, Sun Kwok, K.M.Volk, ApJ 331, No.2, 832, 1988.
360. S.Messina, E.F.Guinan, IBVS No.4282, 1996.
361. J.R.Stauffer, L.W.Hartmann, ApJ Suppl 61, No.3, 531, 1986.
362. E.H.Olsen, AsAp Suppl 54, No.1, 55, 1983.
363. F.Rufener, AsAp Suppl 45, No.2, 207, 1981.
364. V.G.Kornilov, I.M.Volkov, A.I.Zakharov, V.S.Kozyreva, L.N.Kornilova, A.M.Krutjakov, A.V.Krylov, A.V.Kusakin, S.E.Leontiev, A.V.Mironov, V.G.Moshkalev, T.M.Pogrosheva, V.N.Sementsov, Kh.F.Khaliullin, Sternberg Inst Trudy 63, 1991.
365. D.Kilkenny, D.C.B.Whittet, J.K.Davies, A.Evans, M.F.Bode, E.I.Robson, R.M.Banfield, SAAO Circ No.9, 55, 1985.
366. M.M.Zakirov, Tashkent Tsirk No.122, 10, 1986.
367. A.W.J.Cousins, SAAO Circ No.8, 69, 1984.
368. C.Hoffmeister, AN 289, Nr.1-2, 1, 1966.
369. P.M.Garnavich, P.Szkody, R.M.Robb, D.R.Zurek, D.W.Hoard, ApJ 435, No.2, L141, 1994.
370. E.A.Kolotilov, Astron Zh (Russia) 63, No.2, 298, 1986.
371. A.J.Delgado, A.J.Alfaro, J.C.García-Pelayo, R.Garrido, AJ 103, No.3, 891, 1992.
372. M.Rodonò, G.Cutispoto, S.Messina, AsAp 281, No.3, 756, 1994.
373. J.Bouvier, AsAp Suppl 120, No.1, 127, 1996.
374. K.Tamikazawa, VSNET Alert No.488, 1996.
375. IAU Circ No.5961, 1994.
376. A.U.Landolt, IAU Circ No.4133, 1985.
377. K.N.Grankin, IBVS No.3823, 1993.
378. K.N.Grankin, IBVS No.4042, 1994.
379. H.-C.Thomas, K.Reinsch, IAU Circ No.6261, 1995.
380. F.Rufener, P.Bartholdi, AsAp Suppl 48, No.3, 503, 1982.
381. D.J.Axon, D.A.Allen, J.Bailey, J.H.Hough, M.J.Ward, R.F.Jameson, MN 200, No.1, 239, 1982.

ERRATUM

Dr. G. Williams has revealed a misprint in the 73rd Name-List of newly designated variable stars (IBVS No.4471). In the introductory part, when listing mistakes in the earlier Name-Lists, V353 Pup was claimed to be NSV 03431. The correct cross-identification is, however, V353 Pup = NSV 03731.

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4472

Konkoly Observatory
Budapest
29 April 1997
HU ISSN 0374-0676

PHOTOELECTRIC MINIMA OF SELECTED ECLIPSING BINARIES AND MAXIMA OF PULSATING STARS

(BAV Mitteilungen No. 99)

In this 33rd compilation of BAV results, photoelectric observations obtained in the years 1996 and 1997 are presented on 93 variable stars giving 151 minima and maxima. All times of minima and maxima are heliocentric. The errors are tabulated in column " \pm ". The values in column $\mathrm{O}-\mathrm{C}$ are determined without incorporation of nonlinear terms. The references are given in the section "remarks". All information about photometers and filters are specified in the column "Rem". The observations were made at private observatories. The photoelectric measurements and all the lightcurves with evaluations can be obtained from the office of the BAV for inspection.

Table 1. Eclipsing binaries

Variable		Min JD 24..	+/-	Ph	Obs	O-C	GCVS	Rem
LO	And	50422.2818	$\begin{aligned} & .0004 \\ & .0007 \end{aligned}$	LB	AG	-0.0811	GCVS 85	2)
		50422.2820		LV	AG	-0.0809	GCVS 85	2)
ST	Aqr	50394.2435		L	KI	-0.0228	GCVS 85	1)
CX	Aqr	50369.3328		L	KI	-0.0008	GCVS 85	1)
V346	Aql	50343.3329		L	KI	-0.0053	GCVS 85	1)
V417	Aql	50303.4155		L	KI	-0.0415	BAVR 9)	1)
		50315.4511	. 0003	LB	AG	-0.0411 s	BAVR 9)	2)
		50315.4517	. 0005	LV	AG	-0.0405 s	BAVR 9)	2)
V609	Aql	50299.4307		L	KI	-0.0225	GCVS 85	1)
V724	Aql	50301.3793		L	KI	-0.0037 s	BAVM 57	1)
AP	Aur	50096.4104		L	MS	$+0.0033 \mathrm{~s}$	BAVM 67	1)
CG	Aur	50100.3663		L	MS	+0.0277 s	GCVS 85	1)
GX	Aur	50098.3305		L	MS	$-0.0123 \mathrm{~s}$	BAVM 69	1)
		50158.3524		L	MS	-0.0111	BAVM 69	1)
IU	Aur	50381.4989	. 0005	LV	AG	-0.0013 s	GCVS 85	2)
		50381.4998	. 0009	LB	AG	-0.0004 s	GCVS 85	2)
NSV2733	Aur	50096.2680		L	MS			1)
		50101.5474		L	MS			1)
		50151.3335		L	MS			1)
	Boo	50150.4382		L	MS	-0.0052	BAVM 68	1)
VW	Boo	50086.6593		L	MS	-0.0229	BAVR 8)	1)
		50204.4183		L	KI	-0.0219	BAVR 8)	1)
AC	Boo	50190.4053		L	QU	-0.0458 s	GCVS 85	5)
		50193.4020		L	QU	-0.0448	GCVS 85	5)
FF	Cnc	50115.3770		L	FR	-0.0336	BAVM 65	1)
		50123.3163		L	FR	-0.0331	BAVM 65	1)
		50140.5146		L	FR	-0.0357	BAVM 65	1)
		50152.4265		L	FR	-0.0321	BAVM 65	1)
		50156.3948		L	FR	-0.0333	BAVM 65	1)
		50158.3724		L	FR	-0.0404 s	BAVM 65	1)
		50162.3462		L	FR	-0.0360 s	BAVM 65	1)

Table 1 (cont.)

Table 1 (cont.)

Variable		Min JD 24..	+/-	Ph	Obs	O-C	GCVS	Rem
RS	Sct	50286.4524		L	KI	$+0.0032$	GCVS 87	1)
DK	Sct	50287.4765		L	KI	$+0.0311$	GCVS 87	1)
CU	Tau	49710.2821		L	MS	-0.0758	GCVS 87	1)
		49710.4866		L	MS	-0.0774 s	GCVS 87	1)
		49721.4198		L	MS	-0.0680	GCVS 87	1)
		49722.2436		L	MS	-0.0687	GCVS 87	1)
		49722.4498		L	MS	$-0.0686 \mathrm{~s}$	GCVS 87	1)
		49723.2743	. 0003	L	AG	$-0.0685 \mathrm{~s}$	GCVS 87	1)
		50114.3675	. 0003	L	AG	$+0.0340$	GCVS 87	1)
		50115.3979	. 0003	L	AG	+0.0338 s	GCVS 87	1)
HU	Tau	50043.392		L	QU	+0.008	GCVS 87	5)
TX	UMa	50141.4465		L	KRW	$+0.1221$	GCVS 87	5)
TY	UMa	50192.5267		L	FR	-0.0594 s	GCVS 87	1)
		50193.5905		L	FR	$-0.0592 \mathrm{~s}$	GCVS 87	1)
		50194.4775		L	FR	-0.0586	GCVS 87	1)
		50195.3645		L	FR	-0.0579 s	GCVS 87	1)
		50195.5409		L	FR	-0.0588	GCVS 87	1)
UY	UMa	50142.4061		L	MS	$+0.0563 \mathrm{~s}$	GCVS 87	1)
		50142.5929		L	MS	$+0.0551$	GCVS 87	1)
		50152.3668		L	MS	$+0.0526$	GCVS 87	1)
		50192.4160		L	MS	$+0.0561 \mathrm{~s}$	GCVS 87	1)

Table 2. Pulsating Stars

Variable		Max JD 24.. +/-	Ph	Obs	O-C	GCVS	Rem
OV	And	50115.2449	L	BK	-0.0038	MVS11,133	5)
XX	Boo	50249.4483	L	BK	+0.0196	GCVS 85	5)
CM	Boo	50195.3938	L	QU	-0.0342	BAVM 75	5)
CS	Boo	50088.6621	L	MS	-0.0041	IBVS 2855	1)
NSV6836	Boo	50175.5082	L	MS			1)
NSV7020 Boo		50190.4655	L	MS			1)
		50200.5584	L	MS			1)
HD32456	Cam	50150.5520	LB	GB	+0.0089	BAVM 84	7)
		50150.5600	LV	GB	+0.0169	BAVM 84	7)
AQ	Cnc	50186.4045	L	BK	-0.0474	GCVS 85	5)
RZ	CVn	50152.4306	L	KRW	-0.2543	GCVS 85	5)
ST	CVn	50153.500	L	PS	-0.061	GCVS 85	3)red
AD	CMi	50153.3664	L	KI	+0.0072	GCVS 85	1)
RV	CrB	50153.4574	L	MS	+0.0011	GCVS 85	1)
V798	Cyg	50314.4909	L	BK	-0.0680	GCVS 85	5)
GI	Gem	50081.5076	L	BK	+0.0685	GCVS 85	5)
		50153.4273	L	BK	+0.0661	GCVS 85	5)
BD	Her	50282.5358	L	KI	+0.0857	GCVS 85	1)
		50300.5499	L	BK	+0.0913	GCVS 85	$5)$
DL	Her	50247.4852	L	KI	+0.0217	GCVS 85	1)
LS	Her	50252.5143	L	BK	+0.0122	GCVS 85	5)
V418	Her	50301.4673	L	BK	+0.0354	GCVS 85	5)
ET	Hya	50151.4937	L	BK	+0.1043	GCVS 85	5)
DE	Lac	50313.5138	L	BK	+0.0187	GCVS 85	5)
RR	Leo	50170.4459	L	QU	+0.0229	GCVS 85	$5)$
		50194.4204	L	QU	+0.0206	GCVS 85	$5)$
ST	Leo	50166.585	L	PS	-0.010	GCVS 85	3)
		50192.3934	L	KI	-0.0131	GCVS 85	1)
SZ	Leo	50224.4201	L	BK	+0.2455	GCVS 85	5)
AA	Leo	50166.465	L	PS	-0.055	GCVS 85	3)

Table 2 (cont.)

Variable		Max JD 24.. $+/-$	Ph	Obs	O-C	GCVS	Rem
AX	Leo	50189.4212	L	BK	-0.0187	GCVS 85	$5)$
BX	Leo	50188.4399	L	BK	+0.0186	GCVS 85	5
Y	LMi	50146.3529	L	BK	+0.0548	GCVS 85	5
		50170.4954	L	BK	+0.0716	GCVS 85	5
		50190.4066	L	BK	+0.0529	GCVS 85	5
EH	Lib	50283.3665	L	SG	+0.0018	GCVS 85	6
RW	Lyn	50175.3572	L	BK	+0.0132	BAVM 75	5
EX	Lyr	50303.5011	L	BK	+0.0664	GCVS 85	5
V462	Lyr	50287.5089	L	BK	+0.0616	GCVS 85	5
V567	Oph	50286.5046	L	BK	+0.0624	GCVS 85	5
FU	Vir	50170.5380	L	MS	+0.1865	GCVS 87	$1)$
		50193.5098	L	MS	+0.1839	GCVS 87	$1)$
		50200.4203	L	MS	+0.2021	GCVS 87	$1)$

Remarks:

AG	Agerer, F.	Tiefenbach	MS	Moschner, W.	Lennestadt
	Birkner, C.	Hagen	MSR	Moschner, J.	Lennestadt
PS	Paschke, A.	Rueti CH	FR	Frank, P.	Velden
PTT	Petter, Dr.G.	Dresden	GB	Groebel, R.	Eckental
QU	Quester, W.	Esslingen	KI	Kleikamp, W.	Marl
SG	Sterzinger, Dr.P.	Wien A	KRW	Krawietz, A.	Hartha
:	$=$ uncertaid				
S	$=$ second	y minimum			
L	$=$ photoe	ctric observa	- with	out filter	
LB	$=\mathrm{as}$ above	- filter: B			
LV	$=$ as above	- filter: V			
red	$=$ reduced	results			
1)	$=$ photom	ter CCD 375	2 unco	ated - without	
2)	$=$ photom	ter EMI 9781A	filter:	$\mathrm{V}=\mathrm{GG495,1m}$	= $=\mathrm{BG} 12,1 \mathrm{~m}$
3)	$=$ photom	ter Cryocam	- wit	hout filter	
4)	$=$ photom	ter TC-211 -	hout fil	filter	
5)	$=$ photom	ter ST-7 - wi	ut filte		
6)	$=$ photom	ter SSP5			
7)	$=$ photom	ter 1P21-fil	$\mathrm{V}=\mathrm{GG}$	G14,2mm; B=	, 1mm+GG
BAV	M nn $=$ BAV M	tteilungen No.			
BAV	(BAV M	tteilungen No.	7 = IB	VS No. 3555	
BAV	- BAV M	tteilungen No.	= IB	VS No. 3811	
BAV	- BAV M	tteilungen No.	= IB	VS No. 3859	
BAV	= BAV M	tteilungen No.	= IB	VS No. 3942	
BAV	(${ }^{\text {a }} 84$ BAV M	tteilungen No.	$4=\mathrm{IB}$	VS No. 4306	
BAV	(${ }^{\text {a }} 88$ BAV M	tteilungen No	= IB	VS No. 4386	
BAV	(BAV R	ndbrief 32,122			
BAV	(BAV R	ndbrief 33,15			
GCV	VS nn = Genera	Catalogue of	iable S	Stars, 4th ed. 19	

Franz AGERER
Joachim HUEBSCHER
Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. (BAV) Munsterdamm 90, D-12169 Berlin Germany

Erratum (from IBVS 6048)

| TY UMa | $\& 50192.5267$ | FR | \& has to be deleted |
| :--- | :--- | :--- | :--- | :--- |
| | | | |
| TY UMa | $\& 50193.5905$ | FR | \& has to be deleted |
| | | | |
| TY UMa | $\& 50194.4775$ | FR | \& has to be deleted |
| | | | |
| TY UMa | $\& 50195.3645$ | FR | \& has to be deleted |
| | | | |
| TY UMa | $\& 50195.5409$ | FR | \& has to be deleted |

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4473

Konkoly Observatory
Budapest
30 April 1997
HU ISSN 0374-0676

GSC 4540_1553 IS A NEW BINARY STAR

CCD images taken at the Bohyunsan Optical Astronomy Observatory (BOAO) with the $1.8-\mathrm{m}$ telescope and at the Kyung Hee Astronomy Observatory (KHAO) with the $0.76-\mathrm{m}$ telescope on Jan. 21-Mar. 5, 1997 show that the star GSC 4540_1553 (V=15.22), located at R.A. $=08^{\mathrm{h}} 11^{\mathrm{m}} 422^{\mathrm{s}} 66$, Decl. $=+76^{\circ} 04^{\prime} 53^{\prime \prime} 22$ (equinox 2000.0) varies in magnitude. From the preliminary analysis of the light curve, I derive the period of 1.1799 day with 0.52 mag (in R) variation in primary and 0.45 mag (in R) variation in secondary minimum using GSC 4540_2581 and GSC 4540_1931 as the comparisons. It is considered as an Algol type eclipsing binary star. The light curve shown is the combined data of Jan. 21-22, 24, 1997 and Feb. 1, 1997 using GSC 4540_2581 as a comparison. The average B-V colour index of this new variable is $0 .{ }^{\mathrm{m}} 03$ out of minima.

Figure 1. Light curve of the new variable. R filter data

Minhwan JANG
Dept. of Astronomy and Space Science
Kyung Hee University
Yongin, Kyungki-Do, Korea

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4474
Konkoly Observatory
Budapest
30 April 1997

HU ISSN 0374-0676

THE ECLIPSING BINARY STAR MS $1428.2+0732$

The sky was surveyed in the X-ray region of the spectrum by the Einstein satellite, and the Extended Medium Sensitivity Survey (Stocke et al. 1991) included MS1428.2+0732 with the brightness given as 11.06 in V and the spectral type as F7V. This star is also listed in the Hubble Telescope Guide Star Catalog (GSC)(Jenkner et al., 1990) as GSC 0331_665.

The automated $0.5-\mathrm{m}$. telescope, Cousins R filter and CCD camera of the Climenhaga Observatory of the University of Victoria was used to make these photometric observations (Robb et al. 1992). The frames had the bias subtracted and were flat fielded in the usual manner using IRAF ${ }^{1}$. The magnitudes were found from aperture photometry using the package PHOT. The x y pixel coordinates of each star for photometry were found from inspection of a few frames and were used as starting points for the Gaussian centering option which precisely centered the 12 arc second aperture on each star for each frame.

The primary comparison star used was SAO 120507=GSC 0331_243 and the check star was GSC 0331_089. The precision of the photometry can be estimated from the standard deviation of the differences in R magnitude for these two stars for each night. This standard deviation varies from 0.011 on a clear night to 0.033 on a poor night. Night to night variations can be estimated from the mean and standard deviation of the nightly mean R magnitude differences between the comparison and check stars. The overall mean is -4.100 and the standard deviation of a night about this mean is 0.012 . The uncertainty in a measurement between the comparison and variable star is usually smaller because the check star was fainter. Due to the small field of view first order extinction effects were negligible and no corrections have been made for them. Nor have corrections been made for the colour difference between the stars to transform it to a standard system.

Photometric observations were begun April 1994, continued on fifteen more nights in the spring of 1995 , one night in 1996, and one night in 1997. Variations of brightness from night to night were soon obvious and the few long nights showed that the period of the variation must be more than a few hours. A sine curve was fit to various periods and reveals a minimum average chi squared at an inverse period of 1.21 ± 0.01 days $^{-1}$, as seen in Figure 1. This is half the orbital period and other minima in the figure correspond to aliases and multiples of the real period. Times of minimum light have been found from the method of Kwee and Van Woerden (1956) to be 2449481.7650(14), 2449499.9204(16), 2449859.7620(5) and 2450549.7339(8) which yield a period of:

$$
\text { HJD of Primary Minimum }=2449481.7640(6)+1.650649(2) \times \mathrm{E}
$$

where the uncertainties in the final digit are given in brackets. These uncertainties have been underestimated, because no allowance has been made for the asymmetry in the

[^7]minima. A plot of the differential R magnitudes phased at this period is shown in Figure 2 for the data from 1994 above and 1995 below. Different runs are plotted with different symbols so that brightness variations from night to night can be seen. The 1994 data have been shifted up 0.05 magnitudes, but the apparent difference between mean curves is about 0.09 magnitudes, indicating that most of the light curve has shifted fainter about 0.04 magnitudes from 1994 to 1995. The bottom of primary minimum was at an intermediate level in 1996 and 1997.

Figure 1. Chi squared fit to a single sine curve for various periods

Figure 2. The light curve in R for 1994 above and 1995 below

Figure 3. Differential R magnitudes for Julian Date 2449832 showing a flare
Observations on the Julian Date 2449832 are plotted in Figure 3. A large flare occured at approximately $7: 30$ UT and lasted until 9:30 UT with an amplitude of 0.04 magnitudes. The peak power of the flare is of the same order of magnitude as that of the active star RE0041+342 (Robb 1995), which is one of the largest ever seen.

Figure 4. Differential R magnitudes with example model
The light curve modelling program Binmaker 2.0 (Bradstreet 1993) was used to make a light curve which approximates the data as seen in Figure 4. The parameters used are temperatures of 6280 K and 3500 K , and relative polar radii of 0.337 and 0.203 for the hot and cool star respectively. The mass ratio was assumed to be 0.6 and the inclination was 66°. One spot was used which had a co-latitude of 60°, longitude of 300°, radius of 21° and a temperature factor of 0.9 . All other inputs were set at values appropriate for these temperatures.

Figure 5. Scale model of the system at phase $=0.75$
A scale model of the system at phase 0.75 is shown in Figure 5 again produced by Binmaker 2.0 (Bradstreet 1993). The sizes and shapes of the stars are approximately correct for a F7V primary and a K5V secondary star. The size and longitude of the spot are well constrained but the latitude of the spot is arbitrary. A better fit can be obtained by adding more spots, but with less confidence in their properties.

MS $1428.2+0732$ is an eclipsing binary star with active regions on its surface causing brightness variations, flares and X-ray emission from an active corona. Further observations will be interesting to increase the precision of the period in order to look for mass transfer and magnetic braking.
R.M. ROBB

Climenhaga Observatory
of the Dept. of Physics and Astronomy
University of Victoria
Victoria, BC, CANADA, V8W 3P6
Internet: robb@uvic.ca

References:

Bradstreet, D.H., 1993, Binary Maker 2.0 User Manual, Contact Software, Norristown, PA 19401-5505, USA
Jenkner, H., Lasker, B., Sturch, C. McLean, B., Shara, M., Russell, J., 1990, AJ, 99, 2082
Kwee, K.K. and Van Woerden, H., 1956, Bull. Astr. Inst. Neth., 12, 327
Robb, R.M. and Honkanen, N.N. 1992, in A.S.P. Conf. Ser. 38, Automated Telescopes for Photometry and Imaging, ed. Adelman, Dukes and Adelman, 105
Robb, R.M., 1995, IBVS, No. 4192
Stocke, J.T., Morris, S.L., Gioia, I.M., Maccacaro, T., Schild, R., Wolter, A., Fleming, T.A., and Henry, J.P., 1991, ApJ Sup, 76, 813

DISCOVERY OF AN ECLIPSING BINARY STAR IN AURIGA

New photoelectric observations of BD $+38^{\circ} 1005(=$ HD $31992=$ SAO 57581$)$ have shown that it is an Algol type eclipsing binary star with a period slightly longer than either 1 or 2 days.

A check of the GCVS's updated version (ftp://cdsarc.u-strasbg.fr/cats/II/139B/cata$\log . Z)$ and the recent volumes of the Information Bulletin on Variable Stars did not reveal any previously known variable at the position of $\mathrm{BD}+38^{\circ} 1005$.
$\mathrm{BD}+38^{\circ} 1005$ with a spectral type B 5 was observed as the check star during the observations of early type eclipsing binary TT Aur. Observations were performed in 3 nights between 6-10 February 1997, and on 28 April 1997 at the National Observatory, by using a SSP-5A photometer attached to a 0.4 m Cassegrain telescope.

The reduced U, B, and V differential observations of the check star $\mathrm{BD}+38^{\circ} 1005$ with respect to the comparison star $\mathrm{BD}+39^{\circ} 1191$ show that $\mathrm{BD}+38^{\circ} 1005$ is a detached eclipsing binary (see Figure 1). The constancy of the comparison star (to TT Aur) was shown before (cf. Wachmann, 1985). Only the descending branch of two eclipse minima were observed. The observations with large scatter at the shoulder of the eclipse minimum were made at very large zenith distance. The following preliminary ephemeris has been computed for the future observations:

$$
\operatorname{MinI}=\mathrm{HJD} 2450488.57+2.02 \times \mathrm{E}
$$

or

$$
\operatorname{MinI}=\mathrm{HJD} 2450488.57+1.01 \times \mathrm{E}
$$

This work was supported by The Scientific and Technical Research Council of Turkey. The data have been obtained during the test period of 0.4 m telescope of the National Observatory of Turkey (http://astroa.physics.metu.edu.tr/tug/home.html). I thank to Osman Demircan for the encouragement and help at different stages of this work, to Fevzi Çetin and Cahit Yeşilyaprak for their help in observations, and Ümit Kızıloğlu and İlhami Yeğingil for their technical support at the Observatory.

Hasan AK
Ankara University Observatory
Science Faculty, Tandoğan
06100, Ankara, TURKEY
(ak@astro1.science.ankara.edu.tr)

Reference:

Wachmann, A.A. 1985, A $8 A S, 60,349$

Figure 1. The light curve of $\mathrm{BD}+38^{\circ} 1005$

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4476

Konkoly Observatory
Budapest
9 May 1997
HU ISSN 0374-0676

IMPROVED POSITIONS FOR SONNEBERG VARIABLES: PART 1

The Sonneberg Observatory is well known in the world for its large plate archive and also for its contribution to the variable stars research field with almost 11000 variables discovered there. However most of these stars have had only approximate positions reported, so the follow-up observations and cross-referencing to other catalogues is sometimes difficult. Because many Sonneberg variables are located on the fields of the PICA project, one independent part of the project is to determine more precise coordinates for these stars. This paper is the first one devoted to the position improvements for Sonneberg variables.

My work on the PICA project significantly speed up after the USNO A1.0 catalogue (Monet et al., 1996) was kindly supplied by D.G. Monet. The identification procedure now used is as follows: the A1.0 catalogue is visualized on computer screen by means of a special program (written by the author) and then compared with the published chart. When any problem appears then Digitized Sky Survey (DSS) provided by STScI (1997) is used in conjunction with Cotton's Fitsview utility (1996), which is also used for position determination of objects present on DSS but not included in A1.0 catalogue. When no object is found neither in A1.0 nor in DSS, then the coordinates are either estimated according to the position marked on chart or preferably measured from direct CCD images (or plate scans).

Table 1 gives precise positions for objects having published finding charts in MVS 246 249 (1957). North on these charts is on the top with exceptions marked directly on individual charts. However there are deviations from this rule and these are noted in remarks. Comments from original paper of Hoffmeister (1931) were used when possible. The source of the position is coded as follows : $\mathrm{A}=\mathrm{A} 1.0, \mathrm{C}=\mathrm{CCD}, \mathrm{D}=\mathrm{DSS}+$ Fitsview, $\mathrm{E}=$ estimate, $\mathrm{P}=$ plate scan. Positions should be precise to $\pm 1^{\prime \prime}$ for $\mathrm{A}, \mathrm{C}, \mathrm{P}$ code and to $\pm 2^{\prime \prime}$ for D code. The possible error for E code is noted in remarks. Identification with GSC is given where possible. No other identifications were searched for. As on the charts is not every time given final designation (it was not known at the time when charts were published), provisional designation is given in the table too. The differences resulting from a comparison with the positions given in GCVS in the sense new - GCVS are also shown, where $\Delta \alpha$ is given is seconds of time and $\Delta \delta$ is given in minutes of arc.

Table 1

Prov. desig.	Name	RA (2000)	Dec	GSC	s	$\Delta \alpha$	$\Delta \delta$	Remark	
121.1931	AT Tau	53955.66	+275105.2	1869.1345	A	+7.8	-0.5		
122.1931	AW Tau	54730.21	+270810.8		A	+2.3	+1.2		
123.1931	AY Tau	54948.80	+252524.1	1866.1969	A	-3.7	+0.6		
124.1931	CG Tau	55158.94	+272921.1		D	-0.6	+0.2	2	
125.1931	BB Tau	55218.70	+254941.9	1867.2497	A	-0.4	0.0		
126.1931	BC Tau	55258.85	+241430.5	1863.0151	A	-5.9	+1.9		
127.1931	BD Tau	55341.41	+235143.0	1863.0969	A	-3.9	+0.2		
128.1931	CN Tau	55809.40	+28	0233.4	1871.2093	A	+3.0	-0.7	
129.1931	CO Tau	55854.64	+261353.6	1867.1913	A	-1.0	+0.7		

Table 1 (continued)

Prov. desig.	Name	RA (20	2000) Dec	GSC	s	$\Delta \alpha$	$\Delta \delta$	Remark
130.1931	BF Tau	55947.19	+26 4530.6	1871.1494	A	+8.7	$+0.4$	
131.1931	BO Aur	60010.64	+29 1406.6	1876.0382	A	+0.5	0.0	
132.1931	BF Gem	60154.99	+26 1941.3	1872.0911	A	+0.2	$+1.7$	
133.1931	DP Gem	60224.42	+272453.1	1872.1682	A	+1.0	+0.1	
134.1931	BR Aur	60245.95	+2938 44.9	1876.1947	A	-7.9	-0.2	
135.1931	BB Aur	60325.06	+313840.5	2419.0804	A	+0.1	0.0	
136.1931	BT Aur	60428.71	$1+295104.9$	1876.0980	A	+4.6	$+0.3$	
137.1931	BS Aur	60417.06	$6+282901.4$		A	-1.0	-0.2	
138.1931	BH Gem	60439.18	$8+262517.5$	1872.1061	A	-3.8	$+0.5$	
139.1931	BV Aur	61054.71	$1+301351.6$	2420.0581	A	-7.0	$+0.5$	
140.1931	CQ Mon	62714.00	+4 4631.2	0141.1493	A	-1.4	-0.6	
141.1931	CE Mon	64657.40	+3 0326.5	0152.2294	A	+1.1	-0.3	
142.1931	DI Mon	64936.26	$6+31019.5$	0152.2191	A	+0.8	+0.2	
143.1931	BU Mon	65033.64	+3 4416.6	0152.1957	A	-6.4	-0.2	
144.1931	CG Mon	65127.15	$5+51322.0$	0156.1137	A	+1.4	-0.6	
145.1931	DL Mon	65155.46	+51108.3	0156.0693	A	-6.3	-1.2	
146.1931	CL Mon	65536.65	+622 44.0	0161.1272	A	+2.6	-0.3	
147.1931	BP Mon	65655.44	$4+50143.9$	0157.1941	A	-1.1	+0.2	
148.1931	DS Mon	64447.46	$6 \quad-51748.9$	4807.2754	A	+3.7	-1.7	
149.1931	V512 Mon	64731.88	- -44259.0	4808.2174	A	+6.5	+1.4	
150.1931	DX Mon	64757.50	-20725.0	4804.1809	A	+1.1	0.0	
151.1931	DZ Mon	64956.33	$3-44937.9$	4808.1020	A	+6.0	$+0.9$	
152.1931	EH Mon	65208.71	$1-70352.8$	4812.0943	A	-7.0	-0.2	
153.1931	EI Mon	65227.29	-5 4551.5	4812.0516	A	+3.0	-0.2	
154.1931	EK Mon	65246.13	$3-22730.0$	4805.0467	A	+0.1	-0.1	
155.1931	EM Mon	65454.71	$1-80118.9$	5380.0096	A	-0.9	0.0	
156.1931	EX Mon	70159.12	$2-80612.8$	5381.0523	A	-2.5	+1.2	
157.1931	BQ Mon	70425.76	$6-95758.3$	5385.0039	A	-1.8	-0.4	
158.1931	EZ Mon	70525.36	$6-51036.8$	4822.1190	A	-0.6	$+1.0$	
159.1931	FF Mon	70635.51	$1-32120.5$	4818.2450	A	-3.5	+1.4	
160.1931	BR Mon	70722.39	$9-11925.3$	4814.0434	A	0.0	-0.7	
161.1931	FI Mon	71037.99	- 70722.0	4827.1039	A	-7.9	+0.6	
162.1931	BW Mon	71122.22	- $\quad 12940.2$	4815.1732	A	-5.9	+0.4	
163.1931	FK Mon	71121.15	$5-52708.4$		A	-4.6	+0.9	3
164.1931	FP Mon	71508.83	$3-95747.8$	5398.1061	A	-0.9	-0.5	
165.1931	FR Mon	71748.28	$8-93810.3$	5399.0783	A	-1.8	+1.3	
166.1931	DZ CMa	71659.31	$1-151826.3$	5965.0667	A	+6.8	+1.0	
167.1931	DR CMa	72224.09	- -151932.7	5966.0512	A	-1.6	+0.3	
168.1931	DS CMa	72409.71	$1-151455.0$		A	+1.9	$+1.0$	
169.1931	HN Pup	72946.02	$2-152211.5$	5979.2826	A	-2.8	-0.9	
170.1931	KP Mon	73006.80	-1053 21.5	5400.0633	A	-0.1	0.0	
171.1931	EE Pup	73028.20	-14 4434.7		A	+5.6	+1.0	
172.1931	FV Pup	73236.37	$7 \quad-121415.5$	5405.2616	A	-4.1	-0.8	
173.1931	FX Pup	73302.06	- 114755.5	5405.2443	A	+2.0	-1.4	
174.1931	HO Pup	73354.13	$3-154538.3$		A	+0.6	+0.9	
175.1931	NSV 03651	73506.98	-15 0803.7	5979.2750	A	+5.7	+0.6	
176.1931	BF Pup	73525.17	$7-150633.0$	5979.2390	A	-1.1	$+0.3$	4
177.1931	FZ Pup	73806.87	$7-173722.2$	5984.2694	A	+2.4	+0.5	
178.1931	GH Pup	73937.56	$6-155620.2$	5980.2323	A	+56.1	+0.6	5
179.1931	GK Pup	74144.01	$1-151350.1$	5980.1982	A	-9.4	-0.7	
180.1931	GN Pup	74635.78	$8-150033.3$	5981.1169	A	0.0	0.0	6
181.1931	GO Pup	74737.49	-115711.1	5419.2392	A	+0.3	0.0	
182.1931	GQ Pup	74829.06	$6-162312.5$	5981.0576	A	-0.2	+1.3	
183.1931	EG Her	173926.52	+29 1734.1	2088.1619	A	+1.0	$+0.1$	7
184.1931	NR Her	174030.64	+275057.6	2084.1066	A	-2.0	+0.4	
185.1931	LW Her	174148.91	$1+250925.6$	2080.1960	A	+0.4	+0.1	
186.1931	FS Her	174413.90	+25 1455.0	2081.0972	A	+3.5	+0.1	
187.1931	LY Her	174509.65	+25 2012.8	2081.2430	A	-0.6	-0.3	
188.1931	EH Her	174556.51	$1+325131.1$	2611.1450	A	-0.2	-1.4	
189.1931	EI Her	174820.41	$1+244227.2$	2081.1595	A	-6.7	+0.4	

Table 1 (continued)

Prov. desig.	Name	RA (20	2000) Dec	GSC	s	$\Delta \alpha$	$\Delta \delta$	Remark
190.1931	EK Her	174917.69	+2459 08.2	2081.3600	A	-12.0	0.0	
191.1931	LZ Her	174929.23	+29 1915.8	2089.1510	A	-2.1	+1.1	
192.1931	EL Her	175148.58	+263848.6	2098.2583	A	-5.8	+0.5	8
193.1931	EN Her	175338.57	+26 3925.7	2098.2793	A	-3.8	+2.0	
194.1931	EO Her	175355.88	+28 1325.6	2102.0068	A	-0.1	+0.9	
195.1931	FT Her	175404.61	+285749.1	2102.2426	A	-10.3	+2.3	
196.1931	EP Her	175509.40	+263619.1	2098.2384	A	+3.0	+2.7	
197.1931	ER Her	175648.29	+25 5421.5	2094.3319	A	+3.9	+1.7	
198.1931	ES Her	175642.45	+ +325231.8	2612.0362	A	-7.1	-2.2	
199.1931	EU Her	175813.45	$5+315510.0$	2612.1609	A	-6.7	-1.6	
200.1931	FW Her	175925.79	+254312.6	2094.1197	A	+5.2	-1.7	
201.1931	EV Her	175903.51	$1+314157.6$	2608.1902	A	-5.1	+0.1	
202.1931	MN Her	180217.64	$4+275327.9$	2099.1300	A	-2.8	-1.6	
203.1931	EW Her	180350.52	+33 2301.5		A	-4.2	-2.2	1
204.1931	EY Her	180438.79	+32 4139.7	2625.0721	A	-3.2	-0.6	
205.1931	EZ Her	180456.61	+2832 46.8	2103.0130	A	-9.9	+0.5	
206.1931	FF Her	180507.50	+30 0541.0	2621.0282	A	-6.7	+2.4	9
207.1931	FY Her	180628.56	+29 0550.9	2103.3029	A	-3.1	-0.6	10
208.1931	FH Her	180609.24	$4+322213.0$	2625.0277	A	-9.3	+0.8	
209.1931	FI Her	180954.82	+ +312146.1		A	-3.3	+0.1	
Ross 297	CG Her	181141.20	+26 2556.6		A	+0.5	+0.2	
210.1931	V555 Oph	174214.33	+5 2357.7	0423.0716	A	+1.8	0.0	11
211.1931	NSV 09582	174320.41	$1+50916.3$	0423.1094	A	+6.6	-0.4	11
212.1931	V 439 Oph	174333.28	$8+33536.2$	0419.1720	A	+4.7	-0.6	
213.1931	V557 Oph	174504.73	+64137.7		A	+0.7	0.0	
214.1931	V457 Oph	174714.08	+3 0438.3	0420.0040	A	-1.1	-0.1	
215.1931	V559 Oph	174712.73	+3 2021.5	0420.1303	A	-0.2	-0.1	
216.1931	V458 Oph	174737.13	$3+13236.7$	0416.0618	A	-0.9	-0.2	
217.1931	V560 Oph	174852.66	$6-11353.2$	5082.1714	A	+6.4	+1.0	
218.1931	V459 Oph	174847.15	$5+15946.7$		A	+0.7	+0.1	
219.1931	V562 Oph	174900.42	+238 27.3	0420.0119	A	+7.7	-0.6	
220.1931	V460 Oph	174924.74	$4-00306.6$		A	+0.9	+0.5	
221.1931	V563 Oph	174929.29	+3 1922.7		A	-1.6	-0.2	
222.1931	V461 Oph	175115.59	+04323.5	0416.1852	A	-0.4	0.0	
223.1931	V462 Oph	175108.63	+25107.1		A	+0.1	+0.1	
224.1931	V463 Oph	175137.92	$2-13221.8$		A	+3.3	+0.3	
225.1931	V464 Oph	175142.16	$6 \quad+50526.7$	0424.0637	A	-0.7	+0.1	
226.1931	V465 Oph	175207.42	$2-10507.8$	5082.1262	A	+3.4	-0.6	
227.1931	V530 Oph	175202.73	+43725.7	0424.1475	A	+0.3	+0.3	
228.1931	V466 Oph	175207.23	$3+45243.9$	0424.1174	A	-0.9	+1.2	
229.1931	V467 Oph	175316.92	$2-02808.1$		A	+8.5	+1.5	
230.1931	V468 Oph	175402.02	+61845.2	0429.1968	A	+2.6	+0.1	
231.1931	V469 Oph	175443.01	$1+04715.2$	0417.0655	A	+0.1	+0.1	
232.1931	V470 Oph	175440.06	+05608.7	0417.0361	A	+0.3	0.0	
233.1931	V531 Oph	175440.88	+61034.1	0429.1462	A	+1.3	0.0	
234.1931	NSV 09850	175503.32	$2+11529.2$	0417.0590	A	-1.1	+0.9	
235.1931	NSV 09851	175501.66	$6+32120.2$	0421.0847	A	-1.3	+0.8	1
236.1931	V471 Oph	175528.71	$1+21830.2$		A	-0.4	+0.1	
237.1931	V472 Oph	175547.12	+ +05637.8	0417.1923	A	+0.4	+0.2	
238.1931	V565 Oph	175542.26	$6+55210.0$		A	+0.3	+0.2	
239.1931	NSV 09878	175620.96	+ +3 2330.8	0421.0226	A	-0.9	-0.2	
241.1931	V473 Oph	175653.13	$3+32211.9$	0421.0376	A	-0.8	+0.1	
54.1907	SV Oph	175624.80	+3 2238.1	0421.0854	A	-0.1	0.0	
240.1931	NSV 09881	175625.66	+ +03619.2	0417.2172	A	-4.5	$+2.7$	
242.1931	V474 Oph	175755.70	+05822.1	0417.2557	A	+1.0	-0.1	
243.1931	V1013 Oph	175758.59	+53436.2		A	+4.3	+1.8	
244.1931	V475 Oph	175824.74	$4+40905.5$		A	+0.8	+0.2	
245.1931	V476 Oph	175822.58	+ +3718.2	0421.0335	A	+1.0	-0.1	
246.1931	V477 Oph	175908.15	$5 \quad+53825.7$		A	+0.9	+0.1	
247.1931	V478 Oph	175938.97	$7 \quad+04708.4$	0417.2031	A	+0.1	-0.1	

Table 1 (continued)

Prov. desig.	Name	RA	(2000)	Dec	GSC	s	$\Delta \alpha$	$\Delta \delta$	Remark
248.1931	V479 Oph	180004.11	+60716.5	0442.1093	A	-1.6	+1.3		
249.1931	V 480 Oph	180032.43	+10851.8	0430.3557	A	-8.1	-0.1		
250.1931	V481 Oph	180054.49	+21937.3	0434.3668	A	-1.6	-0.4		
251.1931	NSV 09981	180104.41	+12925.2	0430.2390	A	+0.3	+1.4		
252.1931	V482 Oph	180107.02	+04143.9	0430.2105	A	+2.0	-0.1		
253.1931	V483 Oph	180119.58	+25801.6	0434.2819	A	+10.2	0.0		
254.1931	V570 Oph	180122.77	+40228.6	0438.2164	A	-0.3	+0.2		
255.1931	V485 Oph	180212.49	+50250.4	0438.1803	A	-0.4	+0.3		
256.1931	AX Ser	180230.90	-00559.5	5096.0029	A	-1.0	-0.1		
257.1931	V484 Oph	180206.81	+70333.0	0442.1130	A	-1.7	-0.5		
258.1931	V487 Oph	180233.66	+14747.5	0430.1536	A	-0.1	+0.7		
259.1931	V486 Oph	180227.52	+42801.4	0438.1446	A	+7.0	-2.1		
260.1931	V488 Oph	180246.94	+41810.3	0438.1826	A	+7.2	-0.9		
261.1931	V489 Oph	180301.89	+45846.2		A	+5.9	-0.4		
262.1931	V490 Oph	180333.03	+42832.3	0438.2002	A	+0.5	-1.6		
263.1931	V491 Oph	180431.36	+32352.0	0434.1058	A	-1.5	-1.4		
264.1931	V492 Oph	180523.80	+25635.7	0434.0921	A	+2.4	+0.3		
265.1931	V493 Oph	180658.78	+53146.2	0438.0161	A	-1.6	+0.3		
266.1931	AY Ser	180806.58	-01517.4		A	-2.6	+1.2		
29.1926	V426 Oph	180751.71	+55149.7	0443.1459	A	-0.3	-0.1		

Remarks:

1. Two entries for the same star in A1.0. The position given in the table is an average.
2. CG Tau - mean position of a close double, not known which component varies.
3. FK Mon - north on the bottom.
4. BF Pup - not sure, northernmost in a small triangle.
5. GH Pup - GCVS position in error by 1^{m}.
6. GN Pup - southern component of a double star; the northern one is GSC 5981.1307 at a distance of about $7^{\prime \prime}$.
7. EG Her - north to the right side.
8. EL Her - nearby GSC 2098.2252 represents another object about $15^{\prime \prime}$ to east. On DSS it seems that these two objects are connected with some nebulosity. There also exist GSC 2098.3223 which is probably EL Her in maximum and blended with its eastern neighbour.
9. FF Her - north on the bottom.
10. FY Her - north to the right side, not left.
11. V555 Oph and NSV 09582 - two independent charts in one frame. Should be vertically divided into two square frames.

The author would like to thank D.G. Monet for providing the USNO A1.0 catalogue.

Jan MÁNEK
Štefánik Observatory
Petřín 205
11846 Praha 1
Czech Republic
e-mail: jmanek@mbox.vol.cz

References:

Cotton, W.D. : 1996, Fitsview v1.30;
see also http://www.cv.nrao.edu/~ bcotton/fitsview.html
Hoffmeister, C. : 1931, Astron. Nachr. 242, 129
Mitteilungen über Veränderliche Sterne, 1957, No. 246 - 249
Monet, D.G., et al.: 1996, "USNO-A V1.0," U. S. Naval Observatory, Washington DC;
see also http://www.usno.navy.mil/pmm
STScI: 1997, http://stdatu.stsci.edu/dss/

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4477

Konkoly Observatory
Budapest
9 May 1997
HU ISSN 0374-0676

ECLIPSE OBSERVATIONS OF AB ANDROMEDAE

AB Andromedae (G5+G5V, $\mathrm{R}=8.95,23^{\mathrm{h}} 11^{\mathrm{m}} 31590,+36^{\circ} 53^{\prime} 35^{\prime \prime} .7$, (J2000) is a frequently observed close eclipsing binary. This system is on the AAVSO list of eclipsing binaries (Baldwin and Samolyk 1993). The AAVSO bulletin reports eclipse minimum observations made between the dates JD 2442909.879 and 2448835.813 . An O-C plot of the AAVSO observations shows the published period of 0.33189215 days is decreasing with time.

The present note describes CCD photometry of AB And from the University of Iowa Automated Telescope Facility located in Iowa City, Iowa. The system consists of an 18 cm refractor, a Spectrasource HPC-1 CCD camera (format 512×512 binned pixels, $3^{\prime \prime} .00$ per pixel), and a Johnson R-band filter. We used the nearby Guide Star Catalog (GSC) stars GSC $2763.484\left[23^{\mathrm{h}} 12^{\mathrm{m}} 14^{\mathrm{s}},+36^{\circ} 58^{\prime} 30^{\prime \prime}\right]$; GSC $2763.683\left[23^{\mathrm{h}} 11^{\mathrm{m}} 14^{\mathrm{s}},+36^{\circ} 51^{\prime} 15^{\prime \prime}\right]$; GSC $2763.848\left[23^{\mathrm{h}} 11^{\mathrm{m}} 01^{\mathrm{s}},+36^{\circ} 58^{\prime} 20^{\prime \prime}\right.$, (J2000)] as check stars and the nearby star GSC $2764.1629\left[23^{\mathrm{h}} 12^{\mathrm{m}} 08^{\mathrm{s}},+36^{\circ} 46^{\prime} 50^{\prime \prime}\right.$, (J2000)] as the comparison star. A 60 second exposure of a field containing AB And as well as the check and comparison stars was repeated every two minutes for three hours. Differential aperture photometry was performed by an automated procedure after aligning all images to a common stellar reference. No air mass or color corrections were applied. The AB And system was observed during the nights of 29 October 1995 UT and 12 July 1996 UT. Light curves were produced by plotting the data obtained on these nights. These plots are shown in Figure 1.

Figure 1. Two light curves for AB And from the nights of October 29, 1995 and July 12, 1996. The primary minimum of October 29 has been superimposed over the secondary minimum of July 12. The abscissa is correct for October 29

Figure 2. A sample folded light curve. The MHJD of minima has been set to zero and the absolute value of the MHJD has been plotted. The data shown is for October 291996 UT

We observed a primary minimum at 2450019.8290 ± 0.0005 Heliocentric Julian Date (HJD) and a secondary minimum at 2450275.8824 ± 0.0005 HJD. The errors in the minima were found by 'folding' the light curves, i.e. setting the HJD at the time of minimum to zero and plotting the differential magnitude versus the absolute value of the modified HJD to produce a folded light curve for each night. As our original curves were almost perfectly symmetric, any shift in the minimum HJD greater than ± 0.0005 HJD caused noticeable discrepancies between the two halves. A folded light curve is shown in Figure 2.

The O-C measurements available from the AAVSO compilation clearly show that the linear ephemeris published in the AAVSO bulletin,

$$
J D_{\min }=2,436,109.5793+0.33189215 \times E
$$

where $J D_{\text {min }}$ is the time of primary minima, is not precise any longer. Demircan et al. (1994) has shown that a sinusoidal function provides a satisfactory fit to the $\mathrm{O}-\mathrm{C}$ residuals from a linear ephemeris:

$$
J D_{\min }=J D_{0}+0.3318890 \times E-A_{s} \cos \left(2 \pi \cdot\left(E-T_{s}\right) / P_{s}\right)
$$

where $J D_{0}$ is the reference epoch, A_{s} is the semi-amplitude in days, T_{s} is the period in orbital cycles, and P_{s} is the minimum time in units of E. Numerical values of the parameters are listed in the table.

Figure 3. O-C graph of the historical data of Demircan et al. (1994) along with the minima reported in this note. The data has been fitted with Demircan's ephemeris and the ephemeris reported in this note

Our times of minima do not agree with this ephemeris. They are consistent with a phase shift of 0.06 days with respect to Demircan et al.'s ephemeris. We have solved for a new periodic ephemeris that fits both his historical data and our data. The table below shows our revisions to Demircan's ephemeris. The change in $J D_{0}$ is due to a residual offset required to best fit all data points.

Reference	$J D_{0}$	A_{s}	T_{s}	P_{s}
Demircan et al. (1994)	2425297.4805	0.0580	23800	96800
Nellermoe and Reitzler (this note)	2425297.4846	0.0603	23707	100230

Figure 3 is a plot of Demircan's data along with the minima reported in this note fitted with the revised ephemeris equation. The fit has a root mean square uncertainty of 0.0028 days.

This sinusoidal trend in the $\mathrm{O}-\mathrm{C}$ plot suggests the presence of a third-body with a period of approximately 91 years. Demircan et al. suggest a similar result, with a third-body period of 88 years.

The authors would like to thank Leslie Simon Sauerbrei, Britt Scharringhausen and Professors Lawrence A. Molnar and Steven R. Spangler for their help with this note.

Interested parties can obtain the raw photometric data from the authors at the following e-mail address: atfproj@astro.physics.uiowa.edu.

This research has been supported by the Iowa Space Grant Consortium and the National Science Foundation.

B.L. NELLERMOE
L.E. REITZLER
Van Allen Observatory
Dept. Physics and Astronomy
University of Iowa
Iowa City IA 52242
USA

References:
Baldwin, M. and Samolyk, G. 1993, AAVSO Observed Minima Timings of Eclipsing Binaries No. 1
Demircan, O. et al. 1994, Mon. Not. R. Astron. Soc., 267, 19

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4478
Konkoly Observatory
Budapest
20 May 1997
HU ISSN 0374-0676

CORRECT POSITION OF MX SAGITTAE

During my work on PICA project (Precise Identification and Coordinate Adjustment of about 7000 variables) on stars in the field of U Sge I found in 1996 that MX Sge cannot be located at its nominal position. Skiff (1997) had also noticed this fact but he was unable to find its correct location. As finding chart was published by Rosino and Guzzi (1978) I was successful after some effort and found that the position reported by Rosino and Guzzi for their star $67=M X$ Sge exhibits quite large 4° error in declination (print error ?).

Precise position was extracted from Digitized Sky Survey provided by STScI (1997) used in conjunction with Cotton's Fitsview utility (1996), because the star is not in the USNO A1.0 catalogue. The correct position is as follows:

$$
\mathrm{RA}=19^{\mathrm{h}} 17^{\mathrm{m}} 56.73 \text { Decl. }=+15^{\circ} 47^{\prime} 18^{\prime \prime} .0
$$

This large declination error has also one important consequence - MX Sge is actually situated in Aquila, similarly to WX Eri which is in Taurus despite its name.

Jan MÁNEK
Štefánik Observatory
Petřín 205
11846 Praha 1
Czech Republic
e-mail: jmanek@mbox.vol.cz

References:

Cotton, W.D.: 1996, Fitsview v1.30;
see also http://www.cv.nrao.edu/~ bcotton/fitsview.html
Monet, D.G., et al.: 1996, "USNO-A V1.0," U. S. Naval Observatory, Washington DC; see also http://www.usno.navy.mil/pmm
Rosino, L., and Guzzi, L.: 1978, Astron. \& Astrophys., Suppl. Ser., 31, 313
Skiff, B.: 1997, IBVS, No. 4433
STScI: 1997, http://stdatu.stsci.edu/dss/

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4479
Konkoly Observatory
Budapest
22 May 1997
HU ISSN $0374-0676$

FUOR V1057 Cyg - TWO YEARS IN LOCAL MINIMUM

The star V1057 Cyg belongs to a small-number group of eruptive FU Orionis variables or Fuors (Herbig 1977; Hartmann et al. 1993). Since peak light in 1970 the light curve of the Fuor V1057 Cyg exhibits most remarkable and dynamic changes in comparison with more quiescent behavior in post-outburst stage of two other best-studied Fuors FU Ori and V1515 Cyg. Over the period 1970-1994 V1057 Cyg had declined by about of 3.5 mag in B (Figure 1). In contrast, FU Ori and V1515 Cyg have a much slower declining rates. Throughout post-outburst states both FU Ori and V1515 Cyg have faded by 1.1 (1937-1994) and 0.3 mag (1974-1994) in B, respectively. Moreover, in 1995 V1057 Cyg had suddenly dimmed by 0.8 mag in B (Ibrahimov 1996). Note that the 1995 drop in magnitude of V1057 Cyg is similar to the 1980 one of V1515 Cyg. In 1996 the observations of V1057 Cyg were continued at Mt. Maydanak observatory. These observations have been obtained using the same equipment as described in Ibrahimov (1996). These new observations are combined with existing ones and used to construct the figures. Figure 1 shows historical pg / B light curve of the Fuor based on all available data which have been compiled by the authors and joined with Mt. Maydanak database. Figure 2 shows a more detailed V-light curve of the Fuor based on our own observations in 1995-96. Figure 3 shows the brightness and color variations of the Fuor in 1978, 1981-96 based only on Mt. Maydanak observations.

The figures allow to conclude that the Fuor still remains in local minimum. The observations of 1995-96 (Figure 2) show that the star has no visible trend neither to increase nor to following decrease its brightness. Besides, Figures 2 and 3 indicate the presence of a gradual increase in the amplitude of light variations from 0.2 V in 1981-91 to 0.5 V in 1996. The similar increases in the amplitudes of light variations are observed in U, B, and R too. Since mid-eighties to 1996 the amplitudes have increased from 0.5 to 0.8 in U , from 0.2 to 0.6 in B , and from 0.1 to 0.3 mag in R .

The evolution of the colors of the Fuor in 1978-96 is most interesting (Figure 3). Despite the continuation of smoothed large-scale fading till 1986, the colors had practically constant values in 1978-86 (cf. the Table in Ibrahimov 1996). During the next five years 1986-90 the light curve shows a slight bowl-shaped increase in the brightness. This increasing light is accompanied by monotonic decrease of the average value of the $\mathrm{U}-\mathrm{B}$ color from +1.15 to +1.03 mag . At the same time the other two colors did not change. Thus, both colors have remained practically constant during 1978-90: $\mathrm{B}-\mathrm{V}=+1.76$ and $\mathrm{V}-\mathrm{R}=+1.59$ mag. During 1991-94 the light curve of the star exhibited saw-tooth variations. These variations are out of phase with similar saw-tooth color variations: i.e., redder colors correspond to higher brightness and vice versa. The 1995 drop in magnitude of V1057 Cyg has led to common reddening by $0.2-0.3 \mathrm{mag}$ of all three colors of the star.

Figure 1. Historical pg/B light curve of V1057 Cyg in 1934-1996

Figure 2. Detail V-light curve of V1057 Cyg in 1995-1996

Figure 3. Brightness and color variations of V1057 Cyg in 1978-1996

Now it can be defined that during the decade since mid-eighties to 1996 the general changes of the colors are about of 0.5 mag for $\mathrm{U}-\mathrm{B}$ and about of 0.3 mag for both $\mathrm{B}-\mathrm{V}$ and $V-R$.

Thus, we conclude that the new active phase of photometric changes of the Fuor V1057 Cyg began in 1991. The detected increase in the amplitude of light variations since 1991, remarkable behavior of the colors and the 1995 drop in magnitude of V1057 Cyg provide strong support to the conclusion. The mentioned changes (except the 1980 drop in magnitude of V1515 Cyg) have no analogies in the photometric behavior of the other Fuors. New observations of the Fuor in this active and interesting state are very important and useful.

V.M. IBRAHIMOVA
M.A. IBRAHIMOV
Astronomical Institute
Astronomical str. 33, Tashkent
700052 Uzbekistan
valery@astro.gov.uz

References:

Herbig, G.H., 1977, Astrophys. J., 217, 693
Hartmann, L.W., Kenyon, S.J., Hartigan, P., in Protostars and Planets III, eds. E.H. Levy and J. Lunine, Tucson, Univ. Arizona Press, 1993, p. 497
Ibrahimov, M.A., 1996, IBVS, No. 4285

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4480

Konkoly Observatory
Budapest
26 May 1997
HU ISSN 0374-0676

ALDEBARAN: DISCOVERY OF SMALL AMPLITUDE LIGHT VARIATIONS

Aldebaran (Alpha Tau $=$ HD 29139) is one of the nearest and brightest red giant stars. It is a standard spectroscopic star with a spectral type of K5 III; its average visual magnitude is about +0.87 mag with mean values of $\mathrm{B}-\mathrm{V}=+1.52$ and $\mathrm{U}-\mathrm{B}=+0.90$. Aldebaran has a relatively well determined parallax of 0.048 ± 0.005 arcseconds that should improve after the Hipparcos parallax is published. The star also has relatively high space motions with respect to the sun, indicating that it is an old, evolved disk star.

Because of its brightness and accessibility from both ground-based and orbiting observatories, it has been a favorite target of numerous studies. It is listed in the Bright Star Catalog (Hoffleit, 1982) and SIMBAD as a variable star and Petit (1982) classifies it as an Lb-type irregular star. In the literature the visual magnitude range is from $\mathrm{V} \cong+0.78$ to +0.93 ; most of these visual magnitude measurements are from surveys. It should be noted that reported variability for bright stars such as Aldebaran can sometimes have systematic errors due to saturation effects of the detectors and the lack of nearby appropriate comparison and check stars. Hence some of the early visual magnitude values of Aldebaran should be treated with caution.

The only concerted photometric study of Aldebaran was done by Krisciunas (1992). He obtained V-band photometry over 3 observing seasons (1987/88, 1990/91, and 1991/92). However, the photometry was conducted only 4 to 5 nights per season and a total of only 13 nights of data were obtained. Krisciunas found no indication of variability of greater than 0.02 magnitude, and reported Aldebaran to be "essentially constant" within the precision of his measurements. He found mean values of $\langle\mathrm{V}\rangle=+0.876 \pm 0.004$ magnitude and $\langle\mathrm{B}-\mathrm{V}\rangle=+1.549 \pm 0.026$ magnitude. The study of Krisciunas does not support the relatively large ≈ 0.1 light variations reported in the survey data, but there is not sufficient coverage or precision to discern low amplitude brightness changes. To understand and better quantify the photometric behavior of Aldebaran, we undertook a more intensive program of differential photometry of this famous, bright star.

In August 1996, Aldebaran was added to the program of photometry of cool giants and supergiants being carried out by us at Wasatonic Observatory and Villanova University Observatory. The photometry reported here was conducted from August 1996 to March 1997 at the Wasatonic Observatory (Allentown, Pennsylvania) on 31 nights using an uncooled Optec photometer attached to a $20-\mathrm{cm}$ Schmidt-Cassegrain telescope. The detector employed was a silicon PIN-photodiode. Differential photometry was conducted primarily with the V-band but on several nights the star was also observed with the Wing near-IR three filter intermediate band system to measure TiO (Wing, 1992). The characteristics of the Wing three-color system are given in Table 1. The TiO index is calculated according to Wing from:

$$
\text { TiO-Index }=\mathrm{A}-\mathrm{B}-0.13 \times(\mathrm{B}-\mathrm{C})
$$

Table 1. The Wing filter system

Filter	Region Measured	Central Wavelength	Bandpass (FWHM)	Measurements
A	TiO $\gamma(0,0)$ Band	7190 A	110 A	TiO-Index
B	IR Continuum	7540 A	110 A	B-C Color Index
C	IR Continuum	10400 A	420 A	B-C Color Index

Table 2. Photometric data

JD 2450+	Visual magnitude
324.847	+0.871
356.800	+0.868
365.881	+0.877
380.850	+0.882
402.630	+0.870
418.649	+0.872
426.553	+0.867
438.583	+0.865
455.605	+0.877
470.526	+0.882
477.658	+0.880
483.546	+0.877
504.549	+0.873
517.591	+0.875
531.520	+0.876

where A, B, and C are standardized magnitudes measured with these filters A near-IR color index is also formed from these observations, and is useful for determining the temperature of cool stars. This color index is defined as:

IR Color Index $=\mathrm{B}-\mathrm{C}$
where B and C are the magnitudes measured at 7540 A and $10,400 \mathrm{~A}$, respectively, which are regions clear of molecular absorption.

The comparison star was ϵ Tau (HD 28305; $\mathrm{V}=3.50, \mathrm{~B}-\mathrm{V}=1.04$, G9.5 III), which is itself a wing IR standard star, and the check star used was π Tau (HD 28100; V $=4.69$, $\mathrm{B}-\mathrm{V}=0.98$, G7 IIIa). Three ten-second integrations were made for each observation using the usual sky-comparison-variable-comparison-sky sequence. Atmospheric extinction and conversion to heliocentric Julian Day number was done during data reduction. Corrections for the V-band observations to the standard UBV system was also done; IR magnitudes were standardized using magnitude values supplied by Wing (1979).

Nightly and weekly means were computed from the V-data and these are plotted against heliocentric Julian Day in Figure 1, and tabulated in Table 2. As can be seen, the light variations observed over the 6 -month period are relatively small. Systematic trends in the data and spline-fits were applied to see if any regularities in the light variations could be found. As shown in Figure 1, Aldebaran appears to vary on a time-scale of about $85-95$ days; the full light variation is 0.018 magnitude. To check this period analytically,

Figure 1. Aldebaran visual light curve; calendar dates are mid-month. The sine curve shown was generated using a 92 -day period and varying semiamplitude

Figure 2. Aldebaran DFT; note peak intensity at frequency 0.01095 (period $=91.3$ days)

Figure 3. TiO-index - spectral type calibration, indicating Aldebaran as an M0 star
the observations were subjected to a formal period search using a Discrete Fourier Transform (DFT) of Sinnot (1988). Figure 2 shows the results of the DFT; a peak frequency of $0.01095 /$ days was found, corresponding to an approximate 92 day period. This period is close to the photometric period found by inspection. A sine curve of decreasing semi-amplitude, from 0 m 005 to $00^{\mathrm{m}} 0015$, was generated using the 92 -day period. This fit is shown in Figure 1. The agreement with the observations is reasonably good.

It is not certain if this period is stable with time and if there are any long-term changes in brightness. The mean brightness observed by us of $\langle\mathrm{V}\rangle=+0.873$ magnitude is in good agreement with the $\langle\mathrm{V}\rangle$ found earlier by Krisciunas; this indicates that the star does not have significant long-term brightness changes over the time scale of at least several years.

Based on the apparent observed period and varying amplitude, it appears that Aldebaran has photometric characteristics similar to the so-called Small Amplitude Red Variables (SARVs). SARVs are M-giants which pulsate with small light amplitudes and have periods of up to 200 days and visual amplitudes of up to 2.5 magnitudes (Percy, 1989). If so classified, Aldebaran would have the smallest observed amplitude of this class of stars.

Although we did not attempt to obtain light curves using the Wing IR filters, we did observe the star on four nights with this filter set. From these observations we determined the TiO-index and the near-IR color index to be $+0.282 \pm 0.012$ and -0.227 ± 0.009 magnitude, respectively. From over 20 cool standard stars observed with the Wing filters (Wing, 1978) a TiO-index vs. spectral type was calibrated for K and M-type stars. Part of this calibration is seen in Figure 3, where Aldebaran's TiO-index indicates it is of spectral type M0-III, which is not the usual K5 III value associated with this star. Additionally the $\mathrm{U}-\mathrm{B}$ and $\mathrm{B}-\mathrm{V}$ colors are more suitable for a M0 III star rather than a K5 III star.

More observations using the Wing filters are needed to further quantify the spectral type of Aldebaran and also to search for outer atmospheric TiO variations. Continued photometry is also planned to ascertain period stability and amplitude changes.

The authors wish to thank Dr. Emilia Belserene for her assistance in translating the DFT program from BASIC to FORTRAN. We also than Dr. Robert Wing for providing standard star IR data. For this research we utilized the SIMBAD database, operated by CDS, Strasbourg, France. This work was supported in part by NSF grant AST-9315365, which we gratefully acknowledge.

Rick WASATONIC
Edward F. GUINAN
Dept. of Astronomy and Astrophysics
Villanova University
Villanova, PA. 19085

References:

Hoffleit, D., 1982, Yale Bright Star Catalog, 4th Edition, Yale University Observatory
Krisciunas, K., 1992, Inf. Bull. Var. Stars, No. 3729
Percy, J., 1989, PASP, 101, 893
Petit, M., 1982, Variable Stars, John Wiley \& Sons, Ltd.
Sinnot, R.W., 1988, Sky and Telescope, Vol. 76, No. 3, p. 288
Wing, R.F., 1978, Spectral Classification and Color Temperatures For 280 Bright Stars In The Range K4 - M8, Astronomy Dept., Ohio State University
Wing, R.F., 1979, Standard Stars for Eight-Color Photometry, Dudley Obs. Report 14, A.G. Davis Philip, ed.

Wing, R.F., 1992, Journal of the American Association of Variable Star Observers, Vol. 21, No. 1, p. 42

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4481

Konkoly Observatory
Budapest
26 May 1997
HU ISSN 0374-0676

NEW ELEMENTS OF V694 AQUILAE

[BAV Mitteilungen Nr. 97]

V694 Aql $=92.1940 \mathrm{Aql}=\mathrm{GSC} 1058.32$ was discovered by Hoffmeister (1940) on photographic plates of the Sonneberg Observatory. He classified the star as an Algol-type variable in the range between $12^{\mathrm{m}} 0$ and $12^{\mathrm{m}} 5$.

First investigation of this variable was performed by Rohlfs (1949). She published 25 minima (times for plates with weak images), a photographic normal light-curve and first elements:

$$
\begin{equation*}
\text { Min I }=\text { HJD } \quad 2428782.334+0.450175 \times \mathrm{E} \tag{1}
\end{equation*}
$$

The range of brightness is given as $12^{\mathrm{m}} 4-12^{\mathrm{m}} 9$ (phot.). From her measurements she derived a time of constant light in the minimum of 1.4. With these data V694 Aql is listed in the fourth edition of the GCVS (Kholopov et al. 1985).

Popper (1956) and Wood (1963) pointed out that V694 Aql is of special interest because of its, for an Algol type variable, extreme short period of 0.45 . Popper gives for the primary component a radius of $0.3 \mathrm{R}_{\odot}$, spectral class F 0 and the radial velocities from two spectrograms. Based on the period given by Rohlfs, Brancewicz and Dworak (1980) published additional geometrical and physical parameters.

Almost 50 years later we put V694 Aql on our observing program. The CCD observations were made with SBIG ST6 cameras without filters, attached to a 32 cm RC telescope with $\mathrm{f}=1740 \mathrm{~mm}$ (WM), a 20 cm SC telescope with $\mathrm{f}=1200 \mathrm{~mm}$ (WK) and a 10 cm Aero-Ektar astrograph with $\mathrm{f}=600 \mathrm{~mm}$ (PF). The integration times were 60 seconds at the RC/SC-telescopes and 90 seconds at the astrograph. Our CCD observations cover 3 years. GSC 1058.1442 served as the comparison star and several other stars in the same field were used to check its constancy. In our instrumental system (Aero Ektar) the amplitude of variability is 0.50 for the primary minima and 0 . 15 for the secondary minima. A constant phase in minimum light could not be detected. All our CCD measured times of minimum light were calculated with the Kwee and van Woerden (1956) method. A thorough study of our measurements showed that the period given in the GCVS is a spurious one with the relation:

$$
\begin{equation*}
\frac{1}{\mathrm{P}_{\mathrm{GCVS}}}-\frac{1}{\mathrm{P}}=\frac{1}{1 \mathrm{~d}_{\text {sid }}} \tag{2}
\end{equation*}
$$

Using only CCD measured minima a weighted least squares fit led to the new ephemeris:

$$
\begin{array}{rrr}
\text { Min } I=H J D ~ & 2450281.5621 & +0 . \mathrm{d} 8205762 \times \mathrm{E} \tag{3}\\
\pm 2 & \pm 5
\end{array}
$$

One of us (WM) investigated the variable on about 300 photographic plates of the 0.4 m astrographs of the Sonneberg Observatory. 12 additional times of minimum light of V694 Aql could be found. The plates taken between JD 2442000 and JD 2448000 were of first quality. The scatter of the results is therefore small. The gap between JD 2432000 and JD 2442000 could not be closed due to a lack of useful plates from that time. Using all available minima a weighted least squares fit led to the new ephemeris:

$$
\begin{gather*}
\text { Min } I=\text { HJD } \quad 2450281.563 \tag{4}\\
\\
\pm 4
\end{gathered}+\begin{gathered}
\text { d } 8205795 \times \mathrm{E} \\
\pm 4
\end{gather*}
$$

Figure 1. Differential light curve of V694 Aql (Aero-Ektar 100/610 mm) drawn with the new ephemeris (??)

Figure 2 O-C diagram for V694 Aql using the new ephemeris (??) (dots) and the ephemeris (??) (dashes). • represent CCD measured minima and \square minima on photographic plates

Table 1. Observed times of minima for V694 Aql, epochs and residuals computed with respect to the linear ephemeris (??) derived in this paper.

JD hel. $2400000+$	W	T^{*}	Epoch	$\mathrm{O}-\mathrm{C}$	Lit	JD hel. $2400000+$	W	$\mathrm{T} *$	Epoch	O-C	Lit
28782.357	1	P	-26200.0	-0.109	$[1]$	31352.341	1	P	-23068.0	-0.169	$[1]$
28809.332	1	P	-26168.5	+0.198	$[1]$	42630.469	1	P	-9324.0	-0.041	$[2]$
29106.436	1	P	-25805.0	-0.157	$[1]$	43019.394	1	P	-8850.0	-0.069	$[2]$
29111.422	1	P	-25799.0	-0.095	$[1]$	45493.483	1	P	-5835.0	-0.017	$[2]$
29166.320	1	P	-25732.0	-0.175	$[1]$	45854.543	1	P	-5395.0	-0.011	$[2]$
29463.448	1	P	-25370.0	-0.096	$[1]$	45905.423	1	P	-5333.0	-0.006	$[2]$
29546.281	1	P	-25269.0	-0.141	$[1]$	46271.407	1	P	-4887.0	+0.001	$[2]$
29783.476	1	P	-24980.0	-0.093	$[1]$	46289.432	1	P	-4865.0	-0.027	$[2]$
29824.513	1	P	-24930.0	-0.084	$[1]$	46354.279	1	P	-4786.0	-0.005	$[2]$
29879.443	1	P	-24863.0	-0.133	$[1]$	47438.265	1	P	-3465.0	-0.001	$[2]$
30199.445	1	P	-24473.0	-0.156	$[1]$	47822.297	1	P	-2997.0	+0.002	$[2]$
30446.623	1	P	-24172.0	+0.029	$[1]$	47859.218	1	P	-2952.0	-0.003	$[2]$
30496.510	1	P	-24111.0	-0.139	$[1]$	49168.4495	10	E	-1357.5	-0.0010	$[2]$
30547.475	1	P	-24049.0	-0.050	$[1]$	49250.51	5	$\mathrm{E}:$	-1257.5	+0.00	$[2]$
30904.469	1	P	-23614.0	-0.007	$[1]$	50279.5170	10	E	-3.5	+0.0063	$[3]$
30931.445	1	P	-23581.0	-0.110	$[1]$	50281.5613	10	E	0.0	-0.0008	$[4]$
30940.430	1	P	-23570.0	-0.151	$[1]$	50284.4323	10	E	3.5	-0.0018	$[3]$
31028.283	1	P	-23463.0	-0.100	$[1]$	50286.4844	10	E	6.0	-0.0012	$[4]$
31229.510	1	P	-23218.0	+0.086	$[1]$	50300.4350	10	E	23.0	-0.0004	$[5]$
31238.495	1	P	-23207.0	+0.045	$[1]$	50314.3843	10	E	40.0	-0.0008	$[3]$
31292.468	1	P	-23141.0	-0.140	$[1]$	50332.4376	10	E	62.0	-0.0002	$[2]$
31324.506	1	P	-23102.0	-0.105	$[1]$	50360.3369	10	E	96.0	-0.0005	$[2]$
31325.400	1	P	-23101.0	-0.031	$[1]$	50381.2612	10	E	121.5	-0.0009	$[5]$
31343.366	1	P	-23079.0	-0.118	$[1]$	50383.3138	10	E	124.0	+0.0003	$[2]$

*) P denotes photographic minima and E CCD observed minima. Those marked with ':' got reduced weight.
[1]: E. Rohlfs: VSS 1.236, [2]: W. Moschner: this paper, [3]: P. Frank: this paper, [4]: P. Frank \& W. Moschner: this paper, [5]: W. Kleikamp: this paper

We want to acknowledge the help and assistance by the management and staff of Sonneberg Observatory, especially of Dr. Peter Kroll in using the library and plate archive.

P. FRANK W. KLEIKAMP W. MOSCHNER
Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V.
(BAV)
Munsterdamm 90, D-12169 Berlin, Germany
E-mail:
wilhelm.kleikamp@t-online.de wolfgang.moschner@t-online.de frank.velden@t-online.de

References:
Brancewicz, H. K., Dworak, T. Z., 1980, Acta Astronomica, 30, 501
Hoffmeister, C., 1940, Erg. AN, 10, 2
Kholopov, P. N. et al., 1985, General Catalogue of Variable Stars, 4th Edition, Nauka, Moscow
Kwee, K. K., van Woerden, H., 1956, Bull. Astr. Inst. Netherlands, 12, 32
Popper, D. M., 1956, Publ. Astron. Soc. Pac., 68, 131
Rohlfs, E., 1949, Veröffentlichungen der Sternwarte zu Sonneberg 1, No. 3
Wood et al., 1963, Flower Reprint, No. 140

Konkoly Observatory
Budapest
29 May 1997
HU ISSN 0374-0676

UBV PHOTOMETRY OF THE W UMa STAR BH Cas

The eclipsing binary BH Cassiopeiae was re-established as a W UMa-type star by Metcalfe (1995). Observations in the V-band were obtained in 1994 and 1995 at the Steward Observatory $1.5-\mathrm{m}$ telescope using the 2 kBig CCD. Photoelectric observations in the U- and B-bands were obtained in 1996 at the McDonald Observatory 2.1-m telescope. The extinction-corrected, normalized data are shown in Figure 1.

Figure 1. UBV observations of BH Cas, phased with the ephemeris given in this paper.

Times of minimum light were derived from quadratic fits to the 12 minima included in the B- and V-band data (see Table 1), and the following ephemeris was determined:

$$
\text { Min } I=\text { HJD } 2449998.618(7 \pm 3)+0.405890(04 \pm 13) \times \mathrm{E}
$$

Table 1. Observed times of minimum light for BH Cas.

Type	HJD of Min.	Epoch	Type	HJD of Min.	Epoch
II	2449634.7378	-896.5	I	2449978.7288	-49.0
I	2449767.6665	-569.0	II	2449998.8213	+0.5
II	2449970.8154	-68.5	I *	2450429.6738	+1062.0
I	2449971.8315	-66.0	II *	2450430.6883	+1064.5
II	2449977.7170	-51.5	I *	2450431.7023	+1067.0
I	2449977.9187	-51.0	II *	2450436.7780	+1079.5

*Times derived from B-band data.

Spectroscopic observations to be obtained from McDonald Observatory will allow the absolute masses and radii of the two components to be determined. Further constraints would be possible with the addition of R - and I-band light curves where BH Cas is brighter ($m_{R}=12.3, m_{I}=11.7$). Collaboration with observers at longitudes much different than McDonald Observatory ($\mathrm{L}_{\mathrm{w}} \simeq 6^{\mathrm{h}} 56^{\mathrm{m}} 1$) on the spectroscopic observations is most welcome.

T.S. METCALFE
Department of Astronomy
University of Texas
Austin, Texas, 78712 USA
e-mail: travis@astro.as.utexas.edu

Reference:
Metcalfe, T.S., 1995, IBVS, No. 4197

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4483

Konkoly Observatory
Budapest
29 May 1997
HU ISSN 0374-0676

HD 102541: A PULSATING CANDIDATE λ BOOTIS STAR

The candidate λ Bootis star HD 102541 was observed during five nights with the "modular photometer" at the 0.5 m telescope (observer: R. Kuschnig), operated by the South African Astronomical Observatory (SAAO). The characteristics of these nonmagnetic, metal-deficient Population I, A- to F-type dwarfs are described in more detail by Paunzen et al. (1997). The journal of observations and the chosen comparison stars are listed in Table 1. The light curve shown in Fig. 1 reveals the photometric variability of the program star with respect to both comparison stars. The applied standard time series analysis (Wei 1990) to the high quality data results in the amplitude spectrum and spectral window shown in Figure 2. The highest signal (6σ detection) appears at the frequency of $20 \mathrm{~d}^{-1}(232 \mu \mathrm{~Hz})$ which refers to a period of 72 min and the peak to peak amplitude is about 30 mmag in Strömgren v. These values are typical compared to previous results obtained by our survey for pulsating λ Bootis stars (Paunzen \& Handler 1996).

In order to establish the membership of HD 102541 to the λ Bootis group, an intermediate resolution spectrum ($0.9 \AA /$ pixel $)$ was obtained in the night of 13./14.06.95 (observer: E. Paunzen) with the Cassegrain spectrograph of the 1.6 m telescope at Itajuba, Brazil.

Figure 1. Light curve of HD 102541 and both comparison stars for the first night in Strömgren v

Figure 2. Amplitude spectrum and spectral window for the merged differential data of all five nights [HD 102541 - HD 103017] in Strömgren v

Table 1. Journal of observations for the program and comparison stars

Star	Durchm.	JD	hours	m_{V}	Spec.
HD 102541	$\mathrm{CD}-39^{\circ} 7307$	2449740	2	8.0	$(\lambda$ Boo $)$
		2449741	2.5		
		2449742	1.5		
		2449744	2		
HD 103017	CD $-39^{\circ} 7339$	2449747	1		
HD 103051	CD $-40^{\circ} 6992$			7.7	F3IV/V

Houk (1978) classified HD 102541 as A3 II/III. The Strömgen colours ($b-y=0.163$, $m_{1}=0.141, c_{1}=0.810, \beta=2.798$; Gray \& Olsen 1991), on the other hand, indicate that this star is actually a metal-deficient dwarf. Using the calibrations of Crawford (1979) and Napiwotzki et al. (1993), we derive $\mathrm{T}_{\text {eff }}=7700(200) \mathrm{K}, \log g=4.1(2)$ (typical for luminosity class V$), \delta \mathrm{m}_{0}=0.053(10)$ and $\mathrm{M}_{\text {Bol }}=2.5(3)$. The discrepancy between the luminosity classification given in the Michigan catalogue and a reclassification with higher resolution spectra, is a common fact for λ Bootis stars (Gray 1991). We classify HD 102541, based on the spectrum showed in Figure 3, as kA3hA5mA3V (LB), please note that the Mg II 4481-line is normal for A3 and not remarkably weak.

Many similarities of HD 102541 to the pulsating ($\mathrm{P}_{\text {obs }}=84 \mathrm{~min}$) λ Bootis star HD 168947 are obvious (Paunzen et al., 1994). This star was also classified as A3 II/III, but turned out to be a metal-deficient dwarf. Both stars are almost at the same place in the H-R diagram resulting in a comparable pulsation behaviour (observed period and amplitude). The observed period for HD 102541 is very close to the theoretical radial fundamental mode ($\mathrm{P}_{t h}=67 \mathrm{~min}$) derived by the PLC-relation taken from Stellingwerf (1979) making this star to an interesting target for an international multisite campaign.

Figure 3. Intermediate resolution ($0.9 \AA /$ pixel $)$ spectrum of HD 102541
Acknowledgement: This research was carried out within the working group Asteroseismo-logy- $A M S$ with funding from the Fonds zur Förderung der wissenschaftlichen Forschung (project $S 7303-A S T$). We are indebted to the scientific committees of LNA/CNPq/MCT and SAAO for granting observing time. This research has made use of the Simbad database, operated at CDS, Strasbourg, France.

R. KUSCHNIG
 E. PAUNZEN
 W.W. WEISS

Institut für Astronomie der
Universität Wien
Türkenschanzstr. 17
A-1180 Wien
e-mail: paunzen@astro.ast.univie.ac.at

References:

Crawford, D.L., 1979, AJ, 84, 1858
Gray, R.O., 1991, in: Precision Photometry, Davis Philip, A.G., Upgren, A.R., Janes, K.A. (eds.), p. 541

Gray, R.O., Olsen, H.H., 1991, A\&AS, 87, 541
Houk, N., 1978, University of Michigan Catalogue of Two-Dimensional Spectral Types for
the HD Stars, Volume II, Astronomy Dept., Univ. Mich., Ann Arbor, Michigan
Napiwotzki, R.. Schönberner, D., Wenske, V., 1993, A\&A, 268, 653
Paunzen, E., Weiss, W.W., North, P., 1994, IBVS, No. 4068
Paunzen, E., Handler, G., 1996, IBVS, No. 4318
Paunzen, E., Weiss, W.W., Heiter, U., North, P., 1997, A $\begin{aligned} & \text { AS, 123, } 93\end{aligned}$
Stellingwerf, R., 1979, ApJ, 227, 935
Wei, W., 1990, Time Series Analysis, Addison-Wesley Publishing Company

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4484

Konkoly Observatory
Budapest
2 June 1997
HU ISSN 0374-0676

RADIAL VELOCITY CURVES AND FIRST CALCULATIONS OF THE RADII FOR FOUR DOUBLE-MODE CEPHEIDS

Double-mode Cepheids form a specific group of Cepheids which includes a limited number of stars. The light and radial velocity curves of these stars show double-mode variations, whereas ordinary Cepheids show only one period. The ratio of periods is almost the same for most of these stars and is close to 0.71 , in agreement with the theoretical ratio of periods of the first overtone P_{1} to fundamental tone P_{0}. For CO Aur, unlike other stars, this ratio is close to 0.8 ; one can imagine (based on the theory of stellar pulsations) that this star pulsates both in the second and first overtone modes.

Berdnikov $(1992,1993)$ used a large number of original photoelectric observations of 14 double-mode Cepheids to decompose their light and color curves into two oscillations. Since 1987, we have carried out systematic measurements of radial velocities of northern Cepheids with a correlation spectrometer designed and made by Tokovinin (1987). Most part of these observations were included in our two catalogues (Gorynya et al., 1992, 1996). These data, combined with our unpublished observations, allowed us to derive separate radial velocity curves for two oscillations in five photometrically well-studied Cepheids (V367 Sct, EW Sct, BQ Ser, TU Cas, CO Aur).

Note that clear separation of radial velocity curves into two oscillations was made possible by long sets of observations resulting in good coverage of radial velocity curves.

Figures 1-5 show the decomposed radial velocity curves for each mode.
We used these curves to estimate the radii of the four double-mode Cepheids using Balona's method (1977), which is a modification of the well-known Baade-Wesselink technique (Wesselink, 1946). We were forced to simplify our analysis because the number of radial velocity observations is much less than that of photometric measurements, and radial velocities alone do not permit us to find the relation between the amplitudes and phases of the two modes found earlier in photometric data (Berdnikov, 1992, 1993). We therefore assumed that the two oscillations are independent of each other.

In this case the main least squares equation can be written as

$$
V=A(B-V)-5 \lg \left(<R>+r_{0}+r_{1}\right)+C
$$

where V and $(B-V)$ are current magnitude and colour; $\langle R\rangle$, mean Cepheid radius in R_{\odot}; and A and C, the constants to be found. The total pulsational radius variation $r=r_{0}+r_{1}$ can be found by direct integration of radial velocity curves for two modes:

$$
r=-p P_{0} / R_{\odot} \int V_{r 0} d \phi_{0}-p P_{1} / R_{\odot} \int V_{r 1} d \phi_{1}
$$

We use two color indices, $(B-V)$ and $(V-R)$, as the effective temperature indicators.
Table 1 gives the Cepheid radii and their formal errors.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5
Table 1

Star	P_{0}	P_{1}	R_{B-V} / R_{\odot}	σ_{R}	R_{V-R} / R_{\odot}	σ_{R}
EW Sct	5.8233	4.06714	57	14	50	10
BQ Ser	4.2756	3.01191	56	19	35	14
TU Cas	2.1393	1.51827	31	2	25	3
CO Aur	2.5113	1.78300	40	10	30	5

Radial velocity data for the faintest star, V367 Sct, cannot be used for calculations because of large observational errors.

We derived the following period-radius relations for the four double-mode Cepheids assuming that CO Aur oscillates in the first and second overtones.

$$
\begin{aligned}
\lg \mathrm{R}= & 1.33+0.59 \lg \mathrm{P}_{0} & & \text { for }(\mathrm{B}-\mathrm{V}) \\
& \pm .08 \pm .14 & & \\
\lg \mathrm{R}= & 1.21+0.61 \lg \mathrm{P}_{0} & & \text { for }(\mathrm{V}-\mathrm{R}) \\
& \pm .07 \pm .12 & &
\end{aligned}
$$

These relations agree well with that for single-mode Cepheids (Ripepi et al., 1997; Sachkov et al., 1997); we consider this agreement to be a justification of our technique applied to the double-mode Cepheids.

The author is grateful to Drs. A.S. Rastorgouev, N.A. Gorynya and N.N. Samus for helpful discussions.

This work was partially supported by the Russian Foundation for Basic Research through grant 96-02-18491.

M.E. SACHKOV
Institute of Astronomy of Russian Acad. Sci., 48, Pyatnitskaya Str., Moscow 109017, Russia
e-mail: sachkov@sai.msu.su;
msachkov@ra.inasan.ac.ru

References:

Balona, L.A., 1977, M.N.R.A.S., 178, 231
Berdnikov, L.N., 1992, Sov. Astron. Lett., 18, No. 8
Berdnikov, L.N., 1993, Sov. Astron. Lett., 19, No. 7
Gorynya, N.A., Irsmambetova, T.R., Rastorgouev, A.S., and Samus, N.N., 1992, Sov. Astron. Lett., 18, No. 5
Gorynya N.A., Samus, N.N., Rastorgouev, A.S., and Sachkov, M.E., 1996, Astronomy Letters, 22, 175
Ripepi, V., Barone, F., Milano, L., and Russo, G., 1997, Astron. and Astrophys., 318, 797
Sachkov, M.E., Rastorgouev, A.S., Gorynya, N.A., and Samus, N.N., 1997, Astron. and Astrophys., in preparation
Tokovinin, A.A., 1987, Soviet Astronomy, 64, 196
Wesselink, A.J., 1946, Bull. Astr. Inst. Netherland, 10, 91

A NEW DOUBLE-MODE CEPHEID IN SCUTUM

The variability of $\mathrm{BD}-10^{\circ} 4669$ (GSC $5681.0292 ; \alpha=18^{\mathrm{h}} 22^{\mathrm{m}} 27^{\mathrm{s}} 1, \delta=-10^{\circ} 07^{\prime} 29^{\prime \prime}$ (J2000.0); $l=20.6, b=+1.7$) was discovered on Moscow collection plates taken with the $40-\mathrm{cm}$ astrograph in Crimea.

The new variable was estimated by eye in B band on 221 plates for the interval JD2438964-48179. The variability range is $10^{\mathrm{m}} 5-11^{\mathrm{m}} 5$. B-band magnitudes of comparison stars (Table 1) were measured photoelectrically by L.N. Berdnikov (private communication).

Table 1. Comparison Stars

GSC	$\alpha(2000.0)$	$\delta(2000.0)$	B
5681.1238	$18^{\mathrm{h}} 22^{\mathrm{m}} 22^{\mathrm{s}} .4$	$-10^{\circ} 05^{\prime} 53^{\prime \prime}$	$10^{\mathrm{m}} 63$
5681.0344	$18^{\mathrm{h}} 22^{\mathrm{m}} 44^{5} .7$	$-10^{\circ} 00^{\prime} 23^{\prime \prime}$	$11^{\mathrm{m}} 78$

The results of the frequency analysis are presented in Figure 1. The step in frequency is about $10^{-5} \mathrm{c} / \mathrm{d}$. We can see the existence of two frequencies in the spectrum - f_{0} and f_{1} and their 1-day aliases. The second group of frequences (f_{0} and 1-day aliases) is more clearly seen in Figure 1b, where f_{1} is whitened.

Figure 1. The power spectra

Figure 2. The phased light curves: a.) fundamental mode; b.) first overtone mode; c.) fundamental mode where first overtone has been whitened; d.) first overtone where fundamental mode has been whitened

The peaks in the spectrum at frequencies f_{1} and $1+f_{1}$ are almost equal. But, to have a reasonable decision, we should consider the frequency f_{1} as real. In this case, the periods and the period ratio $P_{1} / P_{0}=f_{0} / f_{1}=0.699$ are typical for double-mode Cepheids. The shapes of the phased light curves, constructed with the periods P_{0} and P_{1} (Fig. 2cd), are in agreement with the $\operatorname{CEP}(\mathrm{B})$ type too. The first overtone phased light curve has a sinusoidal shape ($M-m \sim 0.5$).

So, we classify $\mathrm{BD}-10^{\circ} 4669$ as a new Cepheid, pulsating in two radial modes with the light elements:

$$
\begin{gathered}
\mathrm{JD}_{\max }=2447733.42+4.84125 \times E(\text { fundamental mode }) \text { and } \\
\mathrm{JD}_{\max }=2441177.37+3 \mathrm{~d} 3853 \times E(\text { first overtone mode }) .
\end{gathered}
$$

The error of period determinations is ± 0 d 0001 .
Average amplitudes in B band are $A_{0} \approx 0^{\mathrm{m}} 40$ and $A_{1} \approx 0^{\mathrm{m}} 65$. It is necessary to mention that, among Galaxy's double-mode Cepheids, the only one, AX Vel, has the amplitude of an first overtone mode exceeding that of the fundamental mode. BD $-10^{\circ} 4669$ is the second known double-mode Cepheid with the same peculiarity. But this is not a rare phenomenon. Among 30 beat Cepheids (that pulsate in fundamental and first overtone modes), discovered by MACHO Project in LMC, 11 show the strongest peak in the power spectrum at the first overtone (Alcock et al., 1995).

The author would like to thank Dr. N.N. Samus for his help and attention to this investigation, to express gratitude to Dr. L.N. Berdnikov for photoelectric observations of the comparison stars and for useful discussion, and to Drs. S.Yu. Shugarov and V.P. Goranskij for software used in this work. This study was partially supported by the Russian Foundation for Basic Research through grants Nos. 96-15-96656 and 97-02-16739.

S.V. ANTIPIN

Sternberg Astronomical Institute
13, Universitetskij Prosp.,
Moscow 119899, Russia
E-mail: antip@sai.msu.su

Reference:
Alcock, C., Allsman, R.A., Axelrod, T.S. et al., 1995, AJ, 109, 1653

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4486

Konkoly Observatory
Budapest
4 June 1997
HU ISSN 0374-0676

THE ECLIPSING BINARY RX J1326.9+4532

The sky was surveyed in the X-ray region of the spectrum by the ROSAT satellite (Voges et al., 1997) and catalogs of the sources included RX J1326.9+4532 = GSC 3460_780 (Jenkner et al., 1990). A literature search using SIMBAD shows that the star has a large proper motion measured (Giclas et al., 1965) to be $-.18 \% /$ an in right ascension and $-.20 " /$ an in declination. The star was one of the objects found in a survey by Beers et al. (1994), who concluded from objective prism spectral observations that it was "a faint star displaying moderate CaII H\&K emission".

The automated $0.5-\mathrm{m}$. telescope, Cousins R filter and CCD camera of the Climenhaga Observatory of the University of Victoria (Robb and Honkanen, 1992) were used to make photometric observations of RX J1326.9+4532. Using IRAF ${ }^{1}$ routines the frames were de-biased and flat fielded, and the magnitudes were found from 6 arc second aperture photometry after using the Gaussian centering option of the PHOT package.

Figure 1. Finder chart of the field labelled with the GSC numbers (Jenkner et al., 1990)
The field of stars is shown in Figure 1 and their designations, coordinates (J2000) and magnitudes from the Hubble Space Telescope Guide Star Catalog (GSC) (Jenkner et al., 1990) and the ΔR magnitudes are tabulated in Table 1 . The ΔR differences in magnitude are found from our data in the sense of the star minus GSC 3460_626. To look for brightness variations during a night the standard deviation of the differential magnitudes for each star during a night were calculated and ranged from 0 . 006 for a bright star on a good night to 0 . 030 for the faint stars on poor nights. To measure night to night variations a run mean of the seven nightly averages was calculated and is shown

[^8]Table 1. Stars observed in the field of RX J1326.9+4532

GSC No.	RA J2000	Dec. J2000	GSC Mag.	$\Delta \mathrm{R}$ Mag.	V	$(V-R)_{C}$
$3460 _780$	$13^{\mathrm{h}} 26^{\mathrm{m}} 54^{\mathrm{s}}$	$+45^{\circ} 32^{\circ} 50^{\prime \prime}$	12.5	variable	12.80	0.88
$3460 _601$	$13^{\mathrm{h}} 27^{\mathrm{m}} 04^{\mathrm{s}}$	$+45^{\circ} 35^{\prime} 30^{\prime \prime}$	13.4	$+1.966 \pm .009$	13.58	0.37
$3460 _626$	$13^{\mathrm{h}} 27^{\mathrm{m}} 24^{\mathrm{s}}$	$+45^{\circ} 34^{\prime} 31^{\prime \prime}$	11.6	-	11.81	0.54
$3460 _771$	$13^{\mathrm{h}} 27^{\mathrm{m}} 21^{\mathrm{s}}$	$+45^{\circ} 33^{\prime} 40^{\prime \prime}$	14.5	$+2.885 \pm .019$	-	-
$3460 _881$	$13^{\mathrm{h}} 26^{\mathrm{m}} 55^{\mathrm{s}}$	$+45^{\circ} 37^{\prime} 06^{\prime \prime}$	14.8	$+3.404 \pm .048$	-	-
$3460 _618$	$13^{\mathrm{h}} 26^{\mathrm{m}} 39^{\mathrm{s}}$	$+45^{\circ} 34^{\prime} 56^{\prime \prime}$	13.2	$+1.792 \pm .031$	-	-

as $\Delta \mathrm{R}$ in Table 1. We consider GSC $3460-780$ to be the only significantly variable star. Due to the small field of view extinction effects were negligible and no corrections have been made for them. No corrections have been made to transform the R magnitude to a standard system.

Brightness variations in RX J1326.9+4532 were evident during a night. A least squares fit of a single sine wave to all the the data shows a deep minimum in χ^{2} at a period of 0.18 , but a plot of the light curve shows unequal maxima which led us to double the period. An eclipse was also apparent with ingress and egress not resolved. On three occasions the observations were terminated by clouds or dawn during the eclipse, but we could clearly see the ingress of the primary minimum seven times and the Heliocentric Julian Dates $(2450000+$) were $550.9137,560.0163,560.7451,562.9295,570.9392,576.7641$, and 578.9498 with an uncertainty of about 0.0008 days. A fit to these times, corrected to mid eclipse gives the ephemeris:

$$
\text { HJD of Minima }=2450550 \mathrm{~d} 9246(3)+0 \mathrm{~d} 364095(7) \times \mathrm{E} .
$$

A plot of the differential (GSC 3460_780-GSC 3460_626) R magnitudes phased at this period is shown in Figure 2 for our two best nights. Clearly there is a difference of about $0 . \mathrm{m} 02$ after the first maximum, but no difference in the second maximum. Most of the other nights agreed with the data marked with "+" symbols.

Figure 2. R band light curve of RX1326.9+4532 for HJD 2450560(+) and 2450562(*)

To help classify the variable star V and R frames were obtained under photometric conditions along with observations of the nearby bright standard star HR 5112 (Moffett and Barnes, 1979). The V band brightness and $(V-R)_{C}$ colors are listed in Table 1 for the three brightest stars. However great caution should be exercised in using these data since they are derived from only one standard star and its ($V-R$) was transformed from the Johnson system to the Cousins system using Taylor's (1986) equations. While certainly not definitive these colors confirm that RX J1326.9+4532 is a late type (approximately M0V) star (Cousins 1981). A dwarf star of this color would be expected to have an absolute magnitude of approximately $\mathrm{V}=9.0$ (Allen 1976) so from our apparent magnitude we find the distance to be about 60 parsecs. Combined with the proper motion we find a large tangential velocity of $76 \mathrm{~km} / \mathrm{sec}$. Observations were continued in the V and R filters through the eclipse and the depths were measured to be $0 . \mathrm{m}^{\mathrm{m}} 054 \pm 0^{\mathrm{m}} 010$ in R and $00^{\mathrm{m}} 128 \pm 00^{\mathrm{m}} 029$ in V.

Since no points were observed on the descending or ascending branches of any primary minimum, we observed with no filter and decreased the exposure time to 33 seconds for a repetition rate of 54 seconds. Still no points were seen on the descending branch and only one possibly on the ascending branch. The duration of the primary minimum was 0.0212 ± 0.0006 so the ratio of the radii of the two stars must be less than 0.028 . All other eclipses were consistent with this duration.

Figure 3. R band light curve (points) with example model (line) of M0V and white dwarf
From the color information and the duration of the eclipse we can surmise that the primary star is a M0V and the secondary star is a white dwarf. Assuming 0.70 and 0.47 solar masses and 0.63 and 0.014 solar radii for the primary and secondary stars respectively (Allen 1976), we find from our period and Kepler's $3^{\text {rd }}$ Law the relative radii of 0.29 and 0.0065 . The temperature of the cool star was assumed to be 3480 K and from the depths of the minimum the temperature of the white dwarf was estimated, but needed to be adjusted to 10000 K . Using these radii, masses and temperatures a model light curve was made with Binmaker 2.0 (Bradstreet 1993) and is shown in Figure 3. The inclination was adjusted to 76° to fit the data, however assuming different masses and radii would
require an inclination different by a few degrees. To model the asymmetry in the maxima one spot was used which had a co-latitude of 130°, longitude of 60°, a radius of 13° and a temperature factor of 0.8 . All other inputs were set at values appropriate for these temperatures. The cool star is well inside its Roche lobe and it is not likely we will see much evidence of mass transfer.

The star RX J1326.9+4532 is therefore one of a small group of stars very similar to the famous eclipsing binary V471 Tau. Both stars have white dwarf secondary stars and late type primary stars with evidence of starspots from asymmetrical and changing light curves, and X-Ray emission. Further photometric observations with a larger telescope will be valuable to measure the relative radius, the color and thus the temperature of the white dwarf star. Spectroscopic observations will be important to get a good spectral class for the late type dwarf and radial velocities will measure the scale of the system and the masses. The space velocity is also of interest since the tangential velocity implies that the star may belong to Pop II. RG would like to thank the Austrian Ministry of Science for financial support.

R.M. ROBB
R. GREIMEL
Climenhaga Observatory
Dept. of Physics and Astronomy
University of Victoria
Victoria, BC, CANADA, V8W 3P6
Internet: robb@uvic.ca

References:

Allen, C.W., 1976, Astrophysical Quantities, the Athlone Press, University of London, London, UK
Beers, T.C., Bestman, W. and Wilhelm, R., 1994, AJ, 108, 268
Bradstreet, D.H., 1993, Binary Maker 2.0 Usermanual, Contact Software, Norristown, PA 19401-5505, USA
Cousins, A.W., 1981, SAAO Circ., 6, 4
Giclas, H.L., Burnham, R. Jr., Thomas, N.G., 1965, Lowell Obs. Bull., No. 6, 197
Jenkner, H., Lasker, B., Sturch, C., McLean, B., Shara, M., Russell, J., 1990, AJ, 99, 2082
Moffett, T.J. and Barnes, T.G. III, 1979, PASP, 91, 180
Robb, R.M. and Honkanen, N.N., 1992, in A.S.P. Conf. Ser., 38, Automated Telescopes for Photometry and Imaging, ed. Adelman, Dukes and Adelman, 105
Taylor, B.J., 1986, ApJS, 60, 577
Voges, W., Aschenbach, B., Boller,T., Braeuninger, H., Briel, U., Burkert, W., Dennerl, D., Englhauser, J., Gruber, R., Haberl, F., Hartner, G., Hasinger, G., Kuerster, M., Pfeffermann, E., Pietsch, W., Predehl, P., Rosso, C., Schmitt, J.H.M.M., Truemper, M. and Zimmermann, H.-U., 1997, A\&A, preprint

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4487

Konkoly Observatory
Budapest
4 June 1997
HU ISSN 0374 - 0676

THE FIRST PHOTOELECTRIC OBSERVATIONS FOR THE DOUBLE-MODE CEPHEID BD - $10^{\circ} 4669$

Antipin (1997) recently analyzed photographic archival plates at the Sternberg Astronomical Institute in Moscow and found that the star BD $-10^{\circ} 4669$ is a double-mode Cepheid with the elements:

$$
\begin{aligned}
& \text { fundamental: } \operatorname{Max} \mathrm{JD}_{h e l}=2447733.42+4.84125 \times \mathrm{E}, \\
& \text { first overtone: } \quad \operatorname{Max} \mathrm{JD}_{h e l}=2441177.37+3.3853 \times \mathrm{E} .
\end{aligned}
$$

We observed the Cepheid photoelectrically at the South African Astronomical Observatory in April-May 1997 using the $50-\mathrm{cm}$ reflector. A total of $35 V(R I)_{c}$ measurements were obtained (Table 1), the accuracy of the individual data being near $\pm 0 .{ }^{\mathrm{m}} 01$ in all filters. The elements cited above are used in Figures 1a and 1b for plotting our new observations.

Table 1

$J D_{\text {hel }}$ $2450500+$	V	$(V-R)_{c}$	$(V-I)_{c}$	$J D_{\text {hel }}$ $2450500+$	V	$(V-R)_{c}$	$(V-I)_{c}$
41.6167	9.630	.706	1.412	77.6427	9.837	.735	1.474
68.5836	9.798	.743	1.460	78.5217	9.720	.721	1.440
70.6007	9.709	.701	1.412	78.5880	9.717	.725	1.443
72.4674	9.848	.743	1.510	78.6386	9.721	.720	1.440
72.5547	9.874	.765	1.517	78.6450	9.717	.727	1.440
73.4990	10.024	.766	1.542	79.5696	9.920	.765	1.516
73.5937	10.046	.783	1.546	80.4662	9.776	.720	1.450
73.6662	10.038	.772	1.549	80.5775	9.739	.715	1.434
74.5287	9.683	.702	1.397	80.6273	9.722	.707	1.427
74.5901	9.659	.689	1.388	82.5589	9.842	.745	1.494
75.4888	9.662	.690	1.401	82.6064	9.886	.753	1.492
75.5739	9.692	.716	1.434	82.6545	9.884	.761	1.511
75.6374	9.698	.703	1.423	83.5498	10.074	.783	1.553
76.5343	9.902	.735	1.512	83.6062	10.052	.766	1.541
76.6163	9.915	.763	1.524	84.5415	9.638	.685	1.381
76.6528	9.917	.762	1.520	84.5977	9.620	.686	1.375
77.5437	9.865	.739	1.489	84.6454	9.593	.662	1.365
77.6024	9.849	.742	1.479				

Figure 1
The research described here was supported in part by the Russian Foundation of Basic Research and the State Science and Technology Program "Astronomy" to LNB and through NSERC Canada to DGT. We would also like to express our gratitude to the administration of the SAAO for their allocation of a large block of observing time.
L.N. BERDNIKOV

Sternberg Astronomical Institute
13, Universitetskij prosp.
Moscow 119899, Russia
D.G. TURNER

Saint Mary's University
Halifax, Nova Scotia, B3H 3C3
Canada

Reference:
Antipin, S.V., 1997, I.B.V.S., No. 4485

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4488

Konkoly Observatory
Budapest
6 June 1997
HU ISSN 0374-0676

PHOTOELECTRIC OBSERVATIONS FOR TWO MISCLASSIFIED VARIABLES: AF CRUCIS AND CG SAGITTARII ARE NOT CEPHEIDS

The present note addresses the status of two stars that are identified as Cepheid variables in the fourth edition of the General Catalogue of Variable Stars: AF Crucis and CG Sagittarii.

Grayzeck (1978a) found the star AF Cru to be a Cepheid variable with the elements:

$$
\operatorname{Max}^{\mathrm{JD}_{h e l}}=2441786.576+9.297 \times \mathrm{E}
$$

Its V magnitude was found to vary in brightness between 9.75 and 10.10 (Grayzeck 1978b). However, the shape of its light curve is very asymmetric, which is unusual for a classical Cepheid of that period.

Gerasimovic (1927) found CG Sgr, discovered previously by Bailey (1924), to be a long-period Cepheid variable with the elements:

$$
\operatorname{Max} \mathrm{JD}=2414127+64.1 \times \mathrm{E}
$$

In order to examine the light curves of both stars in greater detail, we observed them photoelectrically at the South African Astronomical Observatory in April-May 1997 using the $50-\mathrm{cm}$ telescope. A total of $29 V R_{c}$ measurements were obtained for AF Cru (Table 1), and a total of $43 V(R I)_{c}$ measurements were obtained for CG Sgr (Table 2), the accuracy of the individual data being near $\pm 00^{\mathrm{m}} 01$ in all filters.

It is readily seen that our observations for CF Cru do not satisfy the elements given by Grayzeck and that the star appears not to be varying. A search of the literature revealed that AF Cru was discovered by Uitterdijk (1936) as an eclipsing variable with the elements:

$$
\text { Min } \mathrm{JD}_{h e l}=2424988.959+1.895669 \times \mathrm{E},
$$

and a short eclipse duration of $D=0$ p 06 . Figure 1 illustrates that our observations do not conflict with Uitterdijk's elements. Our data suggest that AF Cru is indeed an eclipsing variable, although we have no measurements near the times of eclipses.

Regarding Grayzeck's (1978b) observations, they do not satisfy Uitterdijk's elements. Our attempts to find a new period using both the present and Grayzeck's observations were unsuccessful.

During the observing run for CG Sgr it was found that the star's brightness varied on a time scale of hours not days, in direct conflict with the elements of Gerasimovic. Although the light amplitude is comparable to that of certain RR Lyrae and δ Scuti variables, the time scale of variability appears to be too small for an object of the RR Lyrae class. It appears that CG Sgr may be a δ Sct star. Our attempts to find new elements for it were unsuccessful.

Figure 1

Table 1. VR_{c} observations of AF Cru

$J D_{h e l}$ $2450500+$	V	$(V-R)_{c}$	$J D_{h e l}$ $2450500+$	V	$(V-R)_{c}$
41.5860	9.771	.530	78.4412	9.783	.545
42.5988	9.790	.557	79.4437	9.772	.546
68.4660	9.786	.550	80.3507	9.772	.543
70.3868	9.779	.541	80.4086	9.769	.529
72.3457	9.785	.549	80.4347	9.774	.528
73.3404	9.771	.527	82.3603	9.769	.538
73.4321	9.759	.542	82.4283	9.781	.554
74.4629	9.776	.544	82.4573	9.770	.534
75.3275	9.777	.538	83.3326	9.769	.547
75.4246	9.765	.542	83.3538	9.785	.564
76.3313	9.790	.539	83.4255	9.780	.547
76.4218	9.793	.539	84.3438	9.784	.529
76.4791	9.786	.537	84.4066	9.793	.544
77.4913	9.761	.532	84.4412	9.806	.548
78.3662	9.778	.538			

Table 2. VR_{c} observations of CG Sgr

$J D_{h e l}$ $2450500+$	V	$(V-R)_{c}$	$(V-I)_{c}$	$J D_{h e l}$ $2450500+$	V	$(V-R)_{c}$	$(V-I)_{c}$
72.6293	13.269	1.324	3.046	82.5683	13.459	1.389	3.184
73.6060	13.321	1.353	3.097	82.5976	13.342	1.315	3.037
74.5403	13.262	1.287	3.042	82.6161	13.392	1.353	3.107
74.5990	13.249	1.262	3.015	82.6462	13.429	1.354	3.128
75.5009	13.439	-	3.171	82.6632	13.536	1.417	3.224
75.5846	13.278	1.314	3.029	83.4406	13.497	1.383	3.196
76.5477	13.408	1.389	3.155	83.4440	13.509	1.395	3.192
76.6278	13.273	1.313	3.052	83.4682	13.350	1.342	3.075
77.5546	13.394	1.361	3.136	83.4944	13.543	1.417	3.226
77.6532	13.269	1.310	3.027	83.5598	13.437	1.343	3.114
78.5327	13.488	1.440	3.226	83.6174	13.512	1.423	3.186
78.5982	13.249	1.306	3.026	84.4385	13.620	1.461	3.285
78.6539	13.318	1.357	3.093	84.5003	13.498	1.377	3.189
79.4584	13.457	1.398	3.200	84.5366	13.523	1.417	3.228
79.5264	13.454	1.402	3.184	84.5503	13.446	1.396	3.161
79.5827	13.356	1.374	3.116	84.5676	13.502	1.408	3.201
80.4432	13.490	1.416	3.217	84.5897	13.475	1.424	3.180
80.4777	13.477	1.415	3.206	84.6065	13.443	1.354	3.138
80.5876	13.404	1.392	3.142	84.6243	13.373	1.325	3.102
80.6375	13.347	1.333	3.089	84.6386	13.614	1.457	3.308
82.4762	13.547	1.442	3.238	84.6541	13.369	1.313	3.080
82.5515	13.564	1.443	3.262				

The research described here was supported in part by the Russian Foundation of Basic Research and the State Science and Technology Program "Astronomy" to LNB and through NSERC Canada to DGT. We would also like to express our gratitude to the administration of the SAAO for their allocation of a large block of observing time.

L.N. BERDNIKOV
Sternberg Astronomical Institute
13, Universitetskij prosp.
Moscow 119899, Russia

D.G. TURNER

Saint Mary's University
Halifax, Nova Scotia, B3H 3C3
Canada

References:
Bailey, S., 1924, Harvard Bulletin, No 803
Gerasimovic, B., 1927, Harvard Bulletin, No. 846
Grayzeck, E.J., 1978a, Astron. J., 83, 1390
Grayzeck, E.J., 1978b, Astron. J., 83, 1397
Uitterdijk, J., 1936, B.A.N., 7, 338

Konkoly Observatory
Budapest
6 June 1997
HU ISSN 0374-0676

REVEALING OF A NEW SU UMa TYPE VARIABLE STAR VAR21 CORONAE BOREALIS

Var21 Coronae Borealis was discovered and designated by Antipin (1996). He classified this star as a dwarf nova (U Geminorum type) with a photographic range of $14.5-<17.5$ magnitudes. Several outbursts were observed. Two types of them were found, differing by duration. The longer outbursts with a duration of 15 days or more and the shorter ones lasting about 10 days. This behavior is very common to the SU Ursae Majoris subtype of cataclysmic variables. These variable stars are characterized by the presence of small-amplitude (semi)periodic modulations in the light curve, called superhumps. Even though CCD photometry was made by M. Iida (Nagamo, Japan) in 1996 and T. Vanmunster (Landen, Belgium), no superhumps were detected.

During the last superoutburst in May 1997, the CCD photometry at Nicholas Copernicus Observatory and Planetarium in Brno (Czech Republic) was performed on night May $11 / 12$. We used SBIG's CCD camera ST-7 placed in primary focus of 40 cm Newtonian telescope ($\mathrm{f}=1750 \mathrm{~mm}$). For automatic reduction aperture photometry package MuniPhot (by Filip Hroch, Masaryk University Brno, using some author's routines), which is based on the well known DaoPhot II - New generation (Stetson, 1987) was used.

Figure 1. Light curve with three superhump maxima. $\mathrm{V}-\mathrm{C}$ is difference between variable and comparison star

The observing run started on JD 2450580.42 and ended on JD 2450580.59. Total number of exposures was 147 (two of them were omitted from the list beacuse of clouds). The star was near to 14.6 mag in R-band (Kron-Cousins) filter. Each exposure lasted 90 seconds. All images were processed by standard dark-frame and flat-field corrections. The standard deviation of magnitude of variable star was $\sigma=0.05 \mathrm{mag}$. The star GSC 2576.2027 close to Var21 CrB position was used as a comparison.

In the light curve (Figure 1), three superhump maxima were definitely detected. Using Phase Dispersion Minimization (Stellingwerf 1978) analyzing routines written by Taichi Kato (Kyoto University, Japan) we obtain value of superhump period as $\mathrm{P}_{S H}=(0.0743$ ± 0.0006) day. This result is well within the range of superhump periods of usual SU UMa stars, which lies below the lower limit of the period-gap (Osaki 1996) of cataclysmic variables, which is aproximately from 2 hours to 3 hours.

Independent CCD photometry performed during the same night by Vanmunster (1997) has confirmed our results. So there are good reasons to classify variable star Var21 CrB as an UGSU (U Geminorum, SU UMa subclass) dwarf nova with a range of variability $(14.5-<17.5) \mathrm{mag}(\mathrm{P})$ and coordinates: $\alpha_{2000}=16^{\mathrm{h}} 00^{\mathrm{m}} 03.7$ and $\delta_{2000}=33^{\circ} 11^{\prime} 15^{\prime \prime}$.

Acknowledgements: The author would like to thank Taichi Kato (and his group) for valuable comments, literature support and providing information, to all administrators of VSNET (Variable Stars Network) home page for their work, to Tonny Vanmunster for notifying about the outburst and independent observation of superhumps confirming our results, Jan Hollan and Zdeněk Mikulášek for valuable comments and manuscript editing, the Masaryk University for Internet access. The author is grateful to Filip Hroch for aperture photometry software support.

Rudolf NOVÁK
N. Copernicus Observatory
and Planetarium
Kraví hora 2
Brno 616 00, Czech Republic
Internet: rudolfn@physics.muni.cz

References:

Antipin, S.V., 1996, IBVS, No. 4343
Kato, T., Nogami, D., Baba, H., http://www.kusastro.kyoto-u.ac.jp/vsnet
Osaki, Y., 1996, PASP, 108, 39
Stellingwerf, R.F., 1978, ApJ, 224, 224
Stetson, P.B., 1987, PASP, 99, 191
Vanmunster, T., 1997, private communications and vsnet-alert 896

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4490

Konkoly Observatory
 Budapest
 6 June 1997
 HU ISSN 0374-0676

TWO NEW VARIABLE STARS NEAR THE VARIABLE WR 7 (= HD 56925) AND THE CONSTANT WR 18 ($=$ HD 89358)

During our search for variability among Wolf-Rayet (WR) stars on a timescale of minutes to days, we discovered two variable stars in the field of view of WR 7 ($=$ HD 56925, WN4, van der Hucht et al., 1981) and of WR 18 (=HD 89358, WN5). The variability of WR 7 will be reported elsewhere (Veen et al., 1997), while WR 18 appeared to be stable.

The observations were obtained using the Dutch $90-\mathrm{cm}$ telescope at ESO (La Silla, Chile) equipped with a CCD-camera (ESO\#29) and a Bessel B-filter (ESO \#419). The observations were performed during two consecutive nights in December 1993 and three nights in January 1994. On each of these nights CCD-images were obtained for 3 to 4 hours continuously, which resulted in a rate of about one frame per two minutes.

Ten stars in the field were picked to see whether they were suitable as comparison stars. Because of different pointings not all stars were recorded in each night. Figure 1 displays a CCD-image of the region around WR 7 (star 1), in which the position of the stars $2,3,5,7,8,9$, and 10 are indicated. During the analysis star 10 turned out to be variable itself. Stars 5 and 8 varied in brightness probably because of differential atmospheric extinction. Therefore, the differential magnitudes as presented in Figure 3 are computed with respect to the total flux of the stars $2,3,7$, and 9 . Figure 2 displays the field of WR 18. Observations in the night of January 3, 1994 showed star k to be variable. Stars d (=GSC 8608_693), i (=GSC 8608_1711), and j showed marginal photometric variability. Therefore, the differential magnitudes were calculated with respect to stars b (=GSC 8608_799), c, e, f, g, and h (=GSC 8608_1993). We notice that the stars near WR 7 are not listed in the Guide Star Catalogue (=GSC, Lasker et al. 1990, Russell et al. 1990 and Jenkner et al., 1990), probably because of light contamination by the ring nebula NGC 2359 around WR 7.

Table 1 lists the coordinates of the WR objects and of the variable stars. The mean magnitudes $\left(\mathrm{d} B_{\mathrm{B}}\right)$ are determined with respect either to WR 7 or to WR 18 , since they are the only stars in the field for which the B_{J} magnitude is known (Moffat et al., 1979 and Denoyelle 1977, respectively). However, WR 7 itself is variable at a level of $0 .{ }^{\mathrm{m}} 03$ (Veen et al. 1997). The stars near WR 7 have also been investigated by Moffat et al. (1979) from photographic plates. That program was not intended to detect possible variability. Column 6 of Table 1 lists the Johnson B magnitude that they determined.

Table 1. Particulars of the variable stars around WR 7 and WR 18. The numbers and letters in the first column correspond to those in Figures 1 and 2. The positions are determined from the CCD-frames relative to the WR star.

number	name	$\operatorname{RA}(2000)$	$\operatorname{Dec}(2000)$	$\mathrm{d} B_{\mathrm{B}}$	B_{J}	variability
1	WR 7	071829.0	-131302		$11^{\mathrm{m}} 68$	$00^{\mathrm{m}} 01-0^{\mathrm{m}} 03$
10		071832.7	-131354	$155^{\mathrm{m}} 17$		0.5
a	WR 18	101702.3	-575447		$11^{\mathrm{m}} 26$	$<0 \cdot 005$
k		101713.6	-575633	14.8		0.025

Figure 1 (left). CCD image of WR 7 (star 1). Star 5,8 , and 10 are variable. They are listed in Table 1. East is to the left and north is up. The size of the field is about $3.7 \times 3^{\prime} .7$. Finding charts with a larger field can be found in van der Hucht et al. (1981).
Figure 2 (right). CCD image of WR 18 (star a). Star k showed a clear variability.

Figure 3. The lightcurves of star 10 near WR 7.

Figure 4. Light variations of star k near WR 18 at 03-01-94. Because of a different pointing star k was not observed at other dates. As a comparison the other diagrams show from left to right the constant light curves of a brighter, an equally bright, and a fainter star in the field.

Figure 3 shows the impressive light variations of star 10 near WR 7. It shows a range not less than 0 . 5 each night. Our very tentative opinion is that star 10 is a β Lyrae or W UMa type eclipsing binary. In the nights in December we may have observed the ingress to the deep minimum and 27 days later we observed a less steep ingress, possibly to the secondary minimum, half a period later. Note the difference of $0 . \mathrm{m}^{\mathrm{m}} 05$ in the height of the two pairs of maxima. We suggest that 52.5 cycles elapsed between the observations in December and January. The period would then be $P=0.514$ day.

Figure 4 displays the lightcurve of star k near WR 18 together with light curves of a few comparison stars at the same date to illustrate the quality of the data. A cyclicity is suggested amounting to somewhat more than one hour. The increase of scatter of the data points in the course of the night is attributed to increasing cirrus.

Both of these objects need further photometric and spectroscopic investigation to determine the type of variability and their astrophysical characteristics.

Acknowledgements: We thank Jos de Bruyne for performing the observations. The differential photometrical measurements have been determined using the DAPHOT-package developed by JdJ. This research has made use of the Guide Star Catalog produced by the Space Telescope Science Institute.
P.M. VEEN
A.M. van GENDEREN

Leiden Observatory
PO-box 9513
2300 RA Leiden, The Netherlands
email: veen@strw.leidenuniv.nl
J. de JONG

Astr. Inst.'Anton Pannekoek'
University of Amsterdam
Kruislaan 403
1098 SJ Amsterdam
The Netherlands

References:

Denoyelle, J., 1977, A\&AS, 27, 343
van der Hucht, K.A., Conti, P.S., Lundström, I., Stenholm, B., 1981, Sp. Sc. Rev., 28, 227
Jenkner, H., Lasker, B.M., Sturch, C.R. et al., 1990, AJ, 99, 2081
Lasker, B.M., Sturch, C.R., McLean, B.J. et al., 1990, AJ, 99, 2019
Moffat, A.F.J., Fitzgerald, M.P., Jackson, P.D., 1979, Aध̇AS, 38, 197
Russell, J.L., Lasker, B.M., McLean, B.J. et al., 1990, AJ, 99, 2059
Veen, P.M., van Genderen, A.M., van der Hucht, 1997, $A \& A$, in preparation

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4491

Konkoly Observatory
Budapest
13 June 1997
HU ISSN 0374-0676

MORE FLARES OF HY ANDROMEDAE

The flare star HY And was found by Sharov and Alksnis (1975) on two plates taken on 1973 September $7 / 8$ with the 80 cm Schmidt telescope of the Radioastrophysical Observatory and with the 50 cm Maksutov telescope of the Sternberg Astronomical Institute (Crimean Laboratory).

We inspected about 250 and 1100 plates obtained during 1975-1996 with the Schmidt and the Maksutov telescope, respectively.

On 42 best plates taken with the Schmidt telescope, HY And was identified and its brightness in quiescent state was estimated in the range $B=19.5-20.3$, with the average value $B=19.9$. The scatter can be attributed to the random error of estimates near the limiting magnitude of the plates used.

The variable in quiescent state is not seen on plates taken with the Maksutov telescope (limiting magnitude $B=18.5-19.5$).

Three more flares of HY And were found. Data on all of them, including slightly revised data for the first one, are listed in Table 1.

Table 1

Date	JD	B
1973 Sep 7-8	2441933.484	18.8
	.505	18.2
	.545	$(18.6$
1982 Sep 26-27	2445239.310	18.8
1984 Nov 17-18	2446022.344	$(19.5$
	.377	18.8
1996 Jul 14-15	2450279.490	18.9

For light estimates of HY And, magnitudes of comparison stars based on photoelectric sequences for Nova 30 (Arp, 1956) and for the Field IV of M31 (Baade and Swope, 1963) were used. Equatorial coordinates (from the Schmidt plate taken on JD 2441933.505) and magnitudes of six comparison stars are given in Table 2.

The position of HY And was measured on the same plate and on film copies made from glass copies of POSS O- and E-plates. The coordinates of HY And are $\alpha=0^{\mathrm{h}} 39^{\mathrm{m}} 47.87$, $\delta=41^{\circ} 23^{\prime} 49^{\prime \prime} 2$ (1950.0, for the mean epoch 1963.7).

Table 2

No.	α_{1950}	δ_{1950}	B
1	$0^{\mathrm{h}} 9^{\mathrm{m}} 566^{\mathrm{s}} 10$	$41^{\circ} 23^{\prime} 09^{\prime \prime} 5$	$177^{\mathrm{m}} 1$
2	03956.68	412229.7	18.0
3	03956.17	412321.9	18.2
4	03953.37	412407.8	18.5
5	03945.86	412309.3	18.9
6	03950.98	412354.0	19.6

The available plates with the images of HY And do not, however, provide reliable proper motion of the star.

Positions of comparison stars given in Table 2 might be useful for future efforts to determine the proper motion of HY And.

This study was supported in part by the Russian Foundation for Basic Research through grant 95-02-03942.

A. ALKSNIS
Radioastrophysical Observatory
Latvian Academy of Sciences
Akademijas laukums 1
Riga LV-1050, Latvia

A.S. SHAROV
Yu.A. SHOKIN
N.M. EVSTIGNEEVA
Sternberg Astronomical Institute
13, Universitetskii prospect
Moscow 119899, Russia

References:

Arp, H.C., 1956, Astron. J., 61, 15
Baade, W., Swope, H.H., 1963, Astron. J., 68, 435
Sharov, A.S., Alksnis, A.K., 1975, Astron. Tsirk., No. 873, 3

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4492

Konkoly Observatory
Budapest
15 June 1997
HU ISSN 0374-0676

NEW WATER MASER IN L 1251

We report the results of a water maser search carried out with the Effelsberg-100m telescope on Feb. 4 and 7, 1997 in the direction of two IRAS sources in the L1251 (Lynds, 1962) dark cloud. A 300 Jy emission was detected towards IRAS $22376+7455$.

We observed the $6_{16} \rightarrow 5_{23}(22.23508 \mathrm{GHz})$ transition of $\mathrm{H}_{2} \mathrm{O}$ with a beamwidth of $40^{\prime \prime}$ during the night of Feb. 4/5, 1997, from 20:00 to 6:00 UTC. A liquid He cooled maser receiver was used with system temperature in the zenith of about 90 K . We used the standard 1024 channel autocorrelator with bandwidths of 3.125 MHz and 6.25 MHz . This corresponds to 0.04 and $0.08 \mathrm{kms}^{-1}$ resolution and 41 and $82 \mathrm{kms}^{-1}$ velocity coverage respectively. We observed in the position switching mode with 3 minutes integration time on both the OFF and ON positions and 6 minutes ON and OFF for the high resolution spectra. NGC7027 was used for flux calibration. We adopted 5.86 Jy for its flux density at 22.235 GHz frequency corresponding to 8.2 K brightness temperature (see Baars et al. 1977). The measured flux was 0.532 NTU (noise-tube unit), with good pointing.

The IRAS point sources IRAS $22343+7501$ and IRAS $22376+7455$ were observed on Feb. 4th between 21:00 and 24:00 UTC, and IRAS $22376+7455$ was reobserved on Feb. 7 th at 8:50 UTC.

IRAS22376+7455 $\mathrm{H}_{2} \mathrm{O}$ maser emission was detected towards IRAS $22376+7455$. The spectrum (obtained with 3.125 MHZ bandwidth, 6 min . integration time, RMS noise 0.3 Jy) is shown in Figure 1.

Figure 1. The $\mathrm{H}_{2} \mathrm{O} 6_{16} \rightarrow 5_{23}$ spectrum of IRAS $22376+7455$ (histogram) measured on 1997 Feb. 7 at $8^{\mathrm{h}} 50^{\mathrm{m}}$ UTC with the Effelsberg-100 radiotelescope. The central part of the spectrum is presented as there were no other lines detected in the velocity range $\left[-47 \mathrm{kms}^{-1},+37 \mathrm{kms}^{-1}\right]$. Gaussian fit to the blue-shifted side is overlaid (thin line). A redshifted excess of $\approx 10 \%$ of the total line area is seen.

There is a clear detection of an $S=300 \mathrm{Jy}$ line with total line area of $W=207 \mathrm{Jykms}^{-1}$. It appears at a velocity of $3.2 \mathrm{kms}^{-1}$ which is redshifted by about $7 \mathrm{kms}^{-1}$ relative to the rest velocity of the NH_{3} cloud core "H2" which is $v_{\mathrm{LSR}}\left(\mathrm{NH}_{3}\right.$ core $)=-3.9 \mathrm{kms}^{-1}$ (see Tóth \& Walmsley, 1996). There is no indication for other lines (i.e. $S>3 \sigma$ peaks) in the velocity range $\left[-47 \mathrm{kms}^{-1},+37 \mathrm{kms}^{-1}\right]$.

The corresponding total luminosity of the maser spot (upper limit, assuming isotropic radiation) is:

$$
L_{\mathrm{H}_{2} \mathrm{O}}=6.1 \times 10^{-7} L_{\odot},
$$

if we adopt 300 pc for the distance of L1251, as derived by Kun and Prusti (1993) (their value has an uncertainty of $\pm 50 \mathrm{pc}$). This distance value is in agreement with Balázs' unpublished result being $350 \pm 60 \mathrm{pc}$. The uncertainty of the luminosity value is $\approx 40 \%$ which comes from the uncertainty in the distance.

The detected line is slightly asymmetric with a red-shifted wing contributing approximately 10 percent to the total line area. In Figure 1 the observed line is shown (histogram) with the Gaussian fit overlaid (thin line) which was fitted masking out the $[2 \mathrm{~km} / \mathrm{s}$, $3.2 \mathrm{~km} / \mathrm{s}]$ velocity range.

We note that the line may also be fitted with two Gaussian components with the following parameters: velocities of $3.11 \pm 0.02 \mathrm{kms}^{-1}$, and $3.35 \pm 0.02 \mathrm{kms}^{-1}$; FWHM of $0.44 \pm 0.02 \mathrm{kms}^{-1}$, and $0.62 \pm 0.02 \mathrm{kms}^{-1}$ (correction for instrumental broadening is negligible with $0.04 \mathrm{kms}^{-1}$ channelwidth), a peak flux of 245.0 Jy and 97.9 Jy (rms=0.3 Jy), and line area of $161.0 \pm 0.12 \mathrm{Jykms}^{-1}$ and $46.0 \pm 0.05 \mathrm{Jykms}^{-1}$ respectively.

The far-infrared (FIR) colour indices of IRAS 22376+7455 are $\log \left(F_{25} / F_{12}\right)=0.842$; $\log \left(F_{60} / F_{25}\right)=0.765$ and $\log \left(F_{100} / F_{60}\right)=0.316$ (JISWG, 1989). Its total IRAS flux was calculated according to Emerson (1988) (i.e. $F_{\text {IRAS }}=20.653 \times F(12 \mu m)+7.538 \times F(25 \mu m)+$ $\left.4.578 \times F(60 \mu \mathrm{~m})+1.762 \times F(100 \mu \mathrm{~m})\left[10^{-14} \mathrm{Wm}^{-2}\right]\right) . F_{\text {IRAS }}($ IRAS $22376+7455)=3.24 \times$ $10^{-12} \mathrm{Wm}^{-2}$ which corresponds to $\approx 9.0 L_{\odot}\left(\frac{\text { distance }}{300 p c}\right)^{2}$ FIR luminosity, assuming isotropic FIR radiation.

FIR colors of both IRAS $22376+7455$ and IRAS $22343+7501$ are similar to those of other maser sources found in Cepheus by Wouterloot and Walmsley (1986).

Previous water maser observations of IRAS $22376+7455$ were unsuccessful according to:

- Felli et al. (1992): $F<2.8$ Jy in Feb. 1990,
- Tóth \& Walmsley (1994): $F<0.3$ Jy in Oct. 1993,
- Claussen et al. (1996): $F<0.1$ Jy, regularly observed from Dec. 1991 to Oct. 1994.

Three HH objects were found in association with IRAS $22376+7455$ by Eiroa et al. (1994). Near-infrared (K band) observations of the point source by Hodapp (1994) indicated a cluster of point sources there, the reddest one among them is possibly driving a CO outflow (Sato et al., 1994) associated with the IRAS point source.

IRAS $22376+7455$ is one of the faintest IRAS point sources with detected water maser emission (see e.g. Wilking et al., 1994), and its water maser flux is relatively high as compared to the other known examples. The $L_{\mathrm{H}_{2} \mathrm{O}}=1.12 \times 10^{-9}\left(L_{\mathrm{FIR}}\right)^{1.02}$ empirical relation of Felli et al. (1992) predicts $L_{\mathrm{H}_{2} \mathrm{O}}=1.1 \times 10^{-8} L_{\odot}$.

The maser emission may originate in the shocked clumps near the driving source of the outflow. Interferometric observations of this source with the aim at determining a precise position would help further interpretation.

IRAS 22343+7501 showed no water maser emission during our observations with a detection limit of 0.3 Jy (3 times the T_{RMS}) in the velocity interval $-45 \mathrm{kms}^{-1}<v_{\mathrm{LSR}}<$ $+35 \mathrm{kms}^{-1}$. Water maser emission of IRAS $22343+7501$ was first detected by Wilking et al. (1994) in Jan. 1992. From Claussen et al. (1996) (see their Fig. 13) and from the detection by Tóth \& Walmsley (1994) in Oct. 1993 we may assume the maser source can be seen at least once in a "quasi-period" of ≈ 5 months.

This research was partly supported by the Hungarian State Research Found (OTKA F-022566 and T022946) and the German-Hungarian Technological and Scientific Cooperation Project Nr. 121.
L. Viktor TÓTH

Loránd Eötvös University,
Budapest, Ludovika tér 2.,
H-1083, Hungary
and
Max-Planck-Institut für Astronomie, Königstuhl, 17
D-69117, Heidelberg, Germany

Mária KUN
Konkoly Observatory
of the Hungarian Academy
of Sciences
P.O. Box 67

H-1525 Budapest XII
Hungary

References:

Baars, J. W. M., Genzel R., Pauliny-Toth I. I. K., Witzel, A., 1977, A\&A 61, 99.
Claussen, M. J., Wilking, B. A., Benson, P. J., Wootten, A., Myers, P. C. \& Terebey S., 1996, ApJS, 106, 111.
Eiroa, C., Torrelles, J. M., Miranda, L. F., Anglada, G. \& Estalella, R., 1994, A\&AS, 108, 73.
Emerson, J. P., 1988, in: A. K. Dupree and M. T. V. T. Lago (eds.), Formation and Evolution of Low Mass Stars, Kluwer, Dordrecht, p. 19
Felli, M., Palagi, F., Tofani,G., 1992, A\&A, 255, 293
Hodapp, K.-W., 1994, ApJS, 94, 615.
Joint IRAS Science Working Group (JISWG), 1989, IRAS Faint Source Survey
Kun, M. \& Prusti, T., 1993, A\&A, 272, 235.
Lynds, B.T., 1962, ApJS, 7, 1.
Sato, F., Mizuno, A., Nagahama, T., Onishi, T., Yonekura, Y. \& Fukui, Y., 1994, ApJ, 435, 279.
Tóth, L.V. \& Walmsley, C.M., 1994, IBVS, No. 4107.
Tóth, L.V. \& Walmsley, C.M., 1996, A\&A, 311, 981.
Wilking, B.A., Claussen, M.J., Benson, P.J., Myers, P.C., Terebey, S. and Wootten, A., 1994, ApJ, 431, L119.
Wouterloot, J.G.A. \& Walmsley, C.M., 1986, A\&A, 168, 237.

ERRATUM

Dr. G. Williams has revealed a misprint in the 73rd Name-List of newly designated variable stars (IBVS No.4471). In the introductory part, when listing mistakes in the earlier Name-Lists, V353 Pup was claimed to be NSV 03431. The correct cross-identification is, however, V353 Pup = NSV 03731.
N.N. SAMUS

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4493

Konkoly Observatory
Budapest
20 June 1997
HU ISSN 0374-0676

OPTICAL OBSERVATIONS OF THE STAR RX J1239.8+5511

The sky was surveyed in the X-ray region of the spectrum by the ROSAT satellite (Voges et al., 1997) and catalogs of the sources included RX J1239.8+5511 = GSC 3844_317 (Jenkner et al., 1990).

The automated $0.5-\mathrm{m}$. telescope, Cousins R filter and CCD camera of the Climenhaga Observatory of the University of Victoria (Robb and Honkanen, 1992) were used to make photometric observations of RX J1239.8+5511. Using IRAF ${ }^{1}$ routines the frames were de-biased and flat fielded, and the magnitudes were found from 6 arc second aperture photometry after using the Gaussian centering option of the PHOT package.

Figure 1. Finder chart of the field labeled with the GSC numbers (Jenkner et al., 1990)
The field of stars is shown in Figure 1, and their designations, coordinates (J2000) and magnitudes from the Hubble Space Telescope Guide Star Catalog (GSC) (Jenkner et al., 1990) are given in Table 1. To look for brightness variations during a night the standard deviation of the differential magnitudes for each star during a night were calculated and ranged from $0{ }^{\mathrm{m}} 004$ for a bright star on a good night to $0{ }^{\mathrm{m}} 030$ for the faint stars on poor nights. To measure night to night variations a run mean of the fourteen nightly averages was calculated and is shown in Table 1 as $\Delta \mathrm{R}$ in the sense the star minus GSC 3844_650. We consider GSC 3844_317 to be the only significantly variable star. Due to the small field of view extinction effects were negligible and no corrections have been made for them. No corrections have been made to transform the R magnitude to a standard system.

[^9]Table 1. Stars observed in the field of RX J1239.8+5511

GSC No.	$\begin{gathered} \hline \hline \text { RA } \\ \mathrm{J} 2000 . \end{gathered}$	Dec. J2000.	$\begin{aligned} & \hline \hline \text { GSC } \\ & \text { Mag. } \end{aligned}$	$\begin{gathered} \hline \hline \Delta \mathrm{R} \\ \mathrm{Mag} . \end{gathered}$	V	$(R-I)_{C}$
3844_317	$12^{h} 39^{m} 52^{s}$	+55 ${ }^{\circ} 11^{\prime} 211^{\prime \prime}$	10.9	variable	11.77	0.66
3844_650	$12^{h} 40^{m} 19^{s}$	+55 ${ }^{\circ} 12^{\prime} 18^{\prime \prime}$	11.3	-	11.71	0.35
3844_683	$12^{h} 39^{m} 33^{s}$	+55 ${ }^{\circ} 13^{\prime} 47^{\prime \prime}$	12.4	$+1.003 \pm .015$	12.92	0.35
3844_519	$12^{h} 40^{m} 04^{s}$	$+55^{\circ} 14^{\prime} 50 \prime$	15.3	$+3.701 \pm .058$	-	-
3844_548	$12^{h} 40^{m} 26^{s}$	+55 ${ }^{\circ} 11^{\prime} 03 \prime \prime$	14.1	$+2.806 \pm .051$	-	-

Figure 2. Period search of the nightly means of RX1239.8+5511.

Figure 3. R band light curve of RX J1239.8+5511 for 1997

Brightness variations in RX J1239.8+5511 were barely detectable during a night, but were obvious from night to night. A sine curve was fit to the nightly means and the χ^{2} for various periods is shown graphically in Figure 2. The best fit was found for a frequency of 0.1407 cycles per day and semi-amplitude of $0{ }^{\mathrm{m}} 174$. This gives the ephemeris:

$$
\text { HJD of Maxima }=2450583 \cdot \frac{\mathrm{~d}}{4}(3)+7 \cdot{ }^{\mathrm{d}} 1(4) \times \mathrm{E} .
$$

where the uncertainty in the final digit is given in brackets. A plot of the nightly mean differential (GSC 3844_317-3844_650) R magnitudes phased at this period is shown in Figure 3 with different symbols for each of the different nights.

To help classify the variable star B, V, R and I frames were obtained under photometric conditions (JD 2450608) along with observations of the nearby bright standard stars HR 4660, HR 4716, HR 4931 and HR 5154 (Moffett and Barnes, 1979). The V magnitudes and $(R-I)_{C}$ colors are listed in Table 1 for the three brightest stars. The random errors for these data are about $0 .{ }^{m} 03$. However great caution should be exercised in using these data since they are derived from only a few standard stars and their ($R-I$) was transformed from the Johnson system to the Cousins system using the equations of Taylor (1986). While certainly not definitive these colors confirm that RX J1239.8+5511 is a late type (approximately K4) star (Cousins 1981). From the admittedly poorly determined $(B-V)$ of $0 .{ }^{\mathrm{m}} 8 \pm 0^{\mathrm{m}} 1$ RX J1239+5511 is more likely a dwarf and not a giant star. Assuming an absolute magnitude of 7.0 (Allen 1976) we find a distance of approximately 90 parsecs.

From the shape and amplitude of the light curve and the length of the period we would expect that this is a single K 4 V star with spots and X -rays produced by an active corona. It is possible that this star is a giant with spots or with a close companion either heating one hemisphere or causing a tidal distortion. To eliminate this possibility further photometric observations are useful to look for variations in color or in the height of the maxima. Spectral observations would be helpful to determine the spectral type, to look for $\mathrm{Ca} H \& \mathrm{~K}$ emission, to determine $v \sin (i)$ and to look for radial velocity variations.

RG would like to thank the Austrian Ministry of Science for financial support.

R.M. ROBB R. GREIMEL Climenhaga Observatory
Dept. of Physics and Astronomy University of Victoria
Victoria, BC, CANADA, V8W 3P6
Internet: robb@uvic.ca

References:

Allen, C. W., 1976, Astrophysical Quantities, the Athlone Press, University of London, London, UK
Cousins, A.W., 1981, SAAO Circ., 6, 4
Jenkner, H., Lasker, B., Sturch, C., McLean, B., Shara, M., Russell, J., 1990, AJ, 99, 2082
Moffett, T.J. and Barnes, T.G. III, 1979, PASP, 91, 180

Robb, R. M. and Honkanen, N. N., 1992, in A.S.P. Conf. Ser., 38, Automated Telescopes for Photometry and Imaging, ed. Adelman, Dukes and Adelman, 105
Taylor, B.J., 1986, ApJS, 60, 577
Voges, W., Aschenbach, B., Boller,T., Braeuninger, H., Briel, U., Burkert, W., Dennerl, D., Englhauser, J., Gruber, R., Haberl, F., Hartner, G., Hasinger, G., Kuerster, M., Pfeffermann, E., Pietsch, W., Predehl, P., Rosso, C., Schmitt, J.H.M.M., Truemper, M. and Zimmermann, H.-U., 1997, A\&A, preprint

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4494

Konkoly Observatory
Budapest
25 June 1997
HU ISSN 0374-0676

THE RECENT OPTICAL DECLINE OF V1057 Cyg

The pre-main sequence star V1057 Cyg was discovered as the second FU Orionis variable in 1970 (Herbig 1977). The star brightened by $\sim 5 \mathrm{mag}$ in less than one year and reached $\mathrm{B} \sim 10$ in 1972 (see Figure 1). The optical spectrum also changed significantly, evolving from a T Tauri-like spectrum into an A-type supergiant with P Cyg-type emission lines. The star also developed large near-infrared and near-ultraviolet excesses over the spectral energy distribution expected for a normal supergiant. The large broadening of optical absorption lines further indicated significant rotation, in excess of $30-40 \mathrm{~km} \mathrm{~s}^{-1}$ at $0.5-0.6 \mu \mathrm{~m}$.

Following the eruption, the brightness and spectrum continued to evolve. The spectrum cooled from an A-type to an F-type to a G-type supergiant in roughly a decade. The optical brightness declined by nearly a factor of ten during this time and then leveled off at $\mathrm{B} \approx 13$. The system also declined at all other wavelengths. The magnitude of the decline decreased monotonically from 4 mag at $0.36 \mu \mathrm{~m}$ to 0.5 mag at $3-5 \mu \mathrm{~m}$. Kenyon \& Hartmann (1991) interpreted this evolution in terms of a changing color temperature of a central accretion disc surrounding a low mass pre-main sequence star. Larger declines at wavelengths exceeding $5 \mu \mathrm{~m}$ followed the overall decline in bolometric luminosity of the optical source. This radiation is optical light absorbed and reradiated by a surrounding dust cloud (see Kenyon \& Hartmann 1991).

During the past decade, we have acquired UBV photometry of V1057 Cyg to follow the continuing decline of this interesting system. We acquired these data with the $60-\mathrm{cm}$ Zeiss reflector at the Crimean Laboratory of the Sternberg State Astronomical Institute (see Kolotilov 1990; Kenyon et al., 1991). Most observations were made through a $13^{\prime \prime}$ aperture; a $27^{\prime \prime}$ aperture was used on nights of poor seeing. We reduced the data using Landolt's (1975) star N9 as the comparison and star N13 as the control. The probable errors are $\pm 0.01-0.02 \mathrm{mag}$ in V and $\pm 0.02-0.03 \mathrm{mag}$ in $\mathrm{B}-\mathrm{V}$.

Figures 1-2 show our B light curves. The complete light curve in Figure 1 illustrates the ~ 1 mag irregular variability prior to the eruption, the 5 mag rise itself, a roughly 15 yr decline ($\sim 0.2 \mathrm{mag} \mathrm{yr}{ }^{-1}$), a nearly 10 yr period of constant brightness, and the recent, relatively rapid, decline of nearly 2 mag (see also Kenyon \& Hartmann 1991 and references therein). The optical source varies irregularly, $\sim 0.1-0.3 \mathrm{mag}$, on time scales of days to weeks throughout the optical decline. The amplitude of these irregular variations increases towards blue wavelengths and may reach $\sim 0.5 \mathrm{mag}$ at U (Kolotilov 1990; Kopatskaya 1984).

Figure 2 shows the recent activity on an expanded scale. The system declined ~ 1 mag in $8-10$ months, recovered by $\sim 0.25 \mathrm{mag}$ in 1 yr , and then faded by $\sim 0.75 \mathrm{mag}$ in the past year. The $\mathrm{B}-\mathrm{V}$ color increased by $\delta(B-V) \approx 0.35 \mathrm{mag}$ as the optical brightness declined. The $\mathrm{B}-\mathrm{V}$ color changed very little during the increase in B brightness during Year 27 (compare Figures 2 and 3).

In addition to the obvious decline, the B light curve contains a wave-like fluctuation with a period of $\sim 2 \mathrm{yr}$ and an amplitude of $\sim 0.5 \mathrm{mag}$. This variation was not visible shortly after maximum and has developed in the past decade. The variation maintained its 'coherence' through approximately one cycle during the recent 1.5 mag decline. Future data will yield better estimates for the period and amplitude of this variation.

The recent evolution of the light curve, with a total decline of 1.5 mag in nearly 3 yr, resembles the rapid fading of V1515 Cyg in the 1980's (Kenyon et al. 1991). The evolution of V1515 Cyg was comparable in magnitude but slightly faster, with a decline of $\sim 1.5 \mathrm{mag}$ in slightly less than one year. The change in the $\mathrm{B}-\mathrm{V}$ color was identical in both systems. Neither system showed much spectroscopic evolution during the decline: both continued to show G-type absorption features at minimum light.

The simplest explanation for the optical minimum in V1057 Cyg is a dust condensation event in the outflowing wind from the inner accretion disc. Kenyon et al. (1991) showed that the decline of V1515 Cyg can be explained with this interpretation. In V1057 Cyg, the reddening of the $\mathrm{B}-\mathrm{V}$ color is consistent with a 1.5 mag decline in B brightness for a standard extinction law (Mathis 1990). The lack of significant changes on optical spectra of V1057 Cyg suggests an external event - rather than a sudden cooling of the central source - caused the brightness decline.

Future optical photometry will provide a test of this simple picture. The brightness of V1515 Cyg recovered from the 1.5 mag decline in several years. We expect a similar time scale for recovery in V1057 Cyg once it has reached a definite minimum.

Figure 1. Historical B light curve of V1057 Cyg

Figure 2. Recent B light curve of V1057 Cyg

Figure 3. Recent B-V evolution of V1057 Cyg

E.A. KOLOTILOV
Crimean Laboratory
Sternberg State Astronomical Inst.
p/o Nauchny, 334413 Crimea
e-mail: kolotilov@sai.crimea.ua

S.J. KENYON

Smithsonian Astrophysical Obs.
60 Garden Street
Cambridge, MA 02138 USA
e-mail: skenyon@cfa.harvard.edu

References:
Herbig, G.H., 1977, ApJ, 217, 693
Kenyon, S.J., \& Hartmann, L., 1991, ApJ, 383, 664
Kenyon, S.J., Kolotilov, E. A., \& Hartmann, L. W., 1991, PASP, 103, 1069
Kolotilov, E.A., 1990, Pis'ma Astr. Zh., 16, 24
Kopatskaya, E.N., 1984, Astrofiz., 20, 275
Landolt, A.U., 1975, PASP, 87, 379
Mathis, J.S., 1990, ARA\&A, 28, 37

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4495

Konkoly Observatory
Budapest
15 July 1997

HU ISSN 0374-0676

PHOTOMETRIC PECULIARITIES OF CH Cyg DURING ITS RECENT, 1995-97, QUIESCENT PHASE

CH Cyg is a peculiar symbiotic star. A high level of variability in all the observed parameters makes it very difficult to understand. A single-star model had been accepted by some authors until the 1980's, when a regular variation in radial velocities of about 5700 days was revealed, and the binary nature for CH Cyg was suggested (Yamashita and Maehara 1979). However, explanation of the total hot component luminosity during the 1981-84 maximum in such a wide binary appeared to be a crucial problem. Skopal (1988) tried to solve this problem by assuming an asynchronous rotation of the giant star in the long-period binary to get a larger mass transfer via the L_{1} point. On the other hand, Mikolajewski and Mikolajewska (1988) suggested a long-term accumulation of the wind material around a rapidly rotating magnetic white dwarf before its final accretion at a high rate. A new track in the investigation of the nature of CH Cyg was set by Hinkle et al. (1993) who suggested a triple-star model in which an unseen G-K dwarf on the long 14.5-year period orbit revolves the inner binary (the symbiotic pair) as the short 756 -day period component. Skopal et al. (1996a) supported the triple-star model giving, however, two main modifications of the previous suggestion. They showed that CH Cyg is the system with a very high inclination of both the orbits, and instead of the unseen G-K dwarf, there is another giant star in the system on the long-period orbit. Also multifrequency observations from ultraviolet to the radio/mm-wave region, carried out during the recent 1992-94 active phase, revealed that outbursts can arise from accretion of material from the giant component onto its companion in the symbiotic pair of the triple CH Cyg system (Skopal et al. 1996b). In this contribution we present the recent development in its UBVR light curves.

CH Cyg has been regularly monitored at the Skalnaté Pleso (SP) and Stará Lesná (SL) observatories. The observations have been made in the standard Johnson system using a one-channel photoelectric photometer installed in the Cassegrain focus of the $0.6 / 7.5 \mathrm{~m}$ reflectors. The stars HD 182691 ($\mathrm{V}=6.525, \mathrm{~B}-\mathrm{V}=-0.078, \mathrm{U}-\mathrm{B}=-0.24, \mathrm{~V}-\mathrm{R}=0$) and SAO $048428\left(\mathrm{~m}_{\mathrm{v}}=8.0, \mathrm{~m}_{\mathrm{pg}}=8.6\right.$, spectrum F8) were used as the comparison and the check stars, respectively.

Our new UBVR photometric observations are introduced in Table 1 and plotted in right panels of Figure 1 together with those published previously in the literature. They cover a period of the CH Cyg return to quiescence from its recent, 1992-95, active phase. Here we point two peculiarities which developed during this period: (i) a sudden drop in the U brightness by ~ 1.5 mag at about JD 2450260 - marked in Figure by a bar, and (ii) about 1 mag deep and ~ 200 days broad minimum centered around JD 2450310 (1996 August), and pronounced more in V and R.

Table 1. New photometric observations of CH Cyg

$\mathrm{JD}-2440000$	U	B	V	R	Date	Obs
10070.291	10.314	10.314	8.710	6.734	$18 / 12 / 95$	SP
10080.188	10.553	10.357	8.637		$28 / 12 / 95$	SL
10096.191	10.953	10.319	8.483		$13 / 01 / 96$	SL
10099.190	10.553	10.232	8.458		$16 / 01 / 96$	SL
10115.633	10.465	10.117	8.504	6.558	$01 / 02 / 96$	SP
10139.613	10.572	10.349	8.841	6.849	$25 / 02 / 96$	SP
10150.607	10.510	10.336	8.869	6.869	$07 / 03 / 96$	SP
10160.502	10.649	10.467	8.987	6.937	$17 / 03 / 96$	SP
10161.531	10.414	10.397	8.966	6.948	$18 / 03 / 96$	SP
10193.539	10.538	10.389	8.885	6.960	$19 / 04 / 96$	SP
10197.487	10.898	10.508	8.959	7.008	$23 / 04 / 96$	SP
10234.411	11.285	11.121	9.660	7.536	$30 / 05 / 96$	SP
10240.469	11.174	11.130	9.752	7.611	$5 / 06 / 96$	SP
10248.470	11.478	11.358	9.921	7.749	$13 / 06 / 96$	SP
10269.371		11.725	10.063	7.859	$4 / 07 / 96$	SP
10274.478	11.425	11.473	10.070	7.847	$9 / 07 / 96$	SP
10278.492			10.183	7.829	$13 / 07 / 96$	SP
10286.448	11.116	11.306	9.948	7.756	$21 / 07 / 96$	SP
10292.373	11.159	11.329	9.939	7.746	$27 / 07 / 96$	SP
10296.455	10.858	11.173	9.888	7.726	$31 / 07 / 96$	SP
10305.477	10.869	11.213	9.953	7.793	$09 / 08 / 96$	SP
10364.462	11.393	11.394	9.882	7.649	$07 / 10 / 96$	SP
10365.373	11.365	11.377	9.883	7.656	$08 / 10 / 96$	SP
10371.231	11.600	11.624	9.947		$14 / 10 / 96$	SL
10383.208	11.476	11.522	9.929	7.651	$26 / 10 / 96$	SP
10384.207	11.680	11.628	9.956		$27 / 10 / 96$	SL
10397.256	11.339	11.428	9.908		$09 / 11 / 96$	SL
10411.193	10.803	11.004	9.642	7.457	$23 / 11 / 96$	SP
10421.247	10.931	10.963	9.452	7.313	$03 / 12 / 96$	SP
10421.290	10.968		9.453	7.294	$03 / 12 / 96$	SP
10422.209	11.162	11.157	9.492		$04 / 12 / 96$	SL
10425.192	11.232	11.191	9.471		$07 / 12 / 96$	SL
10428.263	11.069	10.957	9.375	7.230	$10 / 12 / 96$	SP
10445.261	11.044	10.864	9.292	7.127	$27 / 12 / 96$	SP
10456.217	11.292	11.029	9.384	7.177	$07 / 01 / 97$	SP
10467.676	10.779	10.811	9.310	7.162	$18 / 01 / 97$	SP
10482.555	10.737	10.721	9.203	7.034	$02 / 02 / 97$	SP
10509.467	10.759	10.733	9.209	7.006	$01 / 03 / 97$	SP
10519.551	10.895	10.852	9.282	7.068	$11 / 03 / 97$	SP

The first event is probably caused by cessation of the mass accretion onto the active star in the system, indicating thus the end of the recent, 1992-95, active phase. After this, between approximately JD 2449900 and JD 2450 100, the color indices did not differ from those of a typical late-type giant, which supports the above mentioned idea. A rival interpretation - a dust condensation in the circumstellar envelope of CH Cyg - should be tested by the infrared/radio observations, which, however, are not available at present time.

Figure 1. Right: recent UBVR photometry of CH Cyg covering its return to quiescence. The end of the active phase is marked by a bar. The eclipse in the symbiotic pair of the triple-star system is marked by e. Left: a part of the light curve during the previous, 1987-91, quiescent phase. It displays variations in V similar to those recently observed

The second phenomenon - the deep minimum - is characterized by a change in the U-B index to ≤ 0. Prior to this minimum, the M giant's ~ 100-day pulsations were seen well in the V, R light curves. A similar behaviour was recorded during the previous, 198791, quiescent phase (see left panels of Figure 1), during which a series of ~ 100-day pulses of the giant star was also ended by a more pronounced minimum in the V band around JD 2448030 (1990 May). Here we note that only the giant star in the symbiotic pair of the triple CH Cyg system is responsible for the observed ~ 100-day variations (Skopal, in preparation). In addition, spectroscopic observations made during these two minima, in 1990 and 1996, show a similar change in the cool continuum - a significant smoothing of the TiO bands (cf. Figure 6 of Bode et al. 1991 and Figure 3 of Mikolajewski et al. 1996). According to these observations and a detailed discussion on the 1990 minimum by Taranova and Yudin (1992), we can generally see the nature of the deep minimum in the giant's intrinsic variability rather than in a new dust creation. However, multifrequency observations are strongly needed to understand better the real nature of such the minima in the light curve of CH Cyg.

Acknowledgments: This work has been supported through the Alexander von Humboldt foundation and the Slovak Academy of Sciences Grant No. 1282/96.
A. SKOPAL

Dr. Remeis-Sternwarte, Bamberg
Astronomisches Institut der Universität Erlangen-Nürnberg, Sternwartstr. 7,
D-96049 Bamberg, Germany
Astronomical Institute, Slovak Academy of Sciences, 05960 Tatranská Lomnica, Slovakia e-mail: astrskop@auriga.ta3.sk

References:
Bode M.F., Roberts J.A., Ivison R.J., Meaburn J., Skopal A., 1991, MNRAS, 253, 80
Hinkle K.H., Fekel F.C., Johnson D.S., Scharlach W.W.G., 1993, AJ, 105, 1074
Mikolajewski M., Mikolajewska J., 1988, In: J. Mikolajewska et al. (eds.), IAU Coll. 103,
'The Symbiotic Phenomenon', Kluwer Acad. Publ., p. 223
Mikolajewski M., Tomov T., Kolev D., Leedjärv L., 1996, IBVS, No. 4368
Skopal A., 1988, Contr. Astron. Obs. Skalnaté Pleso, 17, 37
Skopal A., Bode M.F., Lloyd H.M., Tamura S., 1996a, A\&A, 308, L9
Skopal A., Bode M.F., Bryce M. et al., 1996b, MNRAS, 282, 327
Taranova O.G., Yudin B.F., 1992, A\&A, 257, 615
Yamashita Y., Maehara H., 1979, PASJ, 31, 307

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4496

Konkoly Observatory
Budapest
16 July 1997
HU ISSN 0374-0676

OBSERVATION OF THE OPTICAL COUNTERPART OF THE GRB 970508 SOURCE

With the aid of the $60 / 90 / 180 \mathrm{~cm}$ Schmidt telescope of the Konkoly Observatory we obtained CCD images of the gamma ray source which was detected by the BeppoSAX Gamma-Ray Burst Monitor on May 8.904 UT, 1997. We used a Photometrics, AT200 CCD camera having a 1536×1024 pixel KAF 1600 MCII coated CCD chip displaying a 29 arcminute x 18 arcminute area of the sky with an angular resolution of nearly 1 arcsecond/pixel. The images were taken on the nights 15/16 May 1997 (5 frames each 10 minutes exp. time) and 31 May/01 June 1997 (6 frames each 15 minutes exp. time).

In order to reduce the background noise and to reach as faint limiting magnitude as possible we coadded the frames taken on one particular night (Figure 1 and Figure 2). Filters were not used for the imaging. Based on the spectral sensitivity distribution of the chip, the brightness values represent close to R magnitudes. To estimate the brightness of the optical counterpart of the GRB 970508 we compared its intensity to the nearby star 13 arcsec north, $\mathrm{R}=19.7$ (Schaefer et al., 1997) marked as "c" in Figures 1 and 2.

During our observations we made positive identification of the source on the night 15/16 May 1997 and a negative one on the night 31 May/01 June 1997, which means that we could not identify any visible object in the previous position of the optical counterpart imaged two weeks before. Because the limiting magnitude of our coadded frame was 23.5 ± 0.2 magnitude we conclude that the object has faded below this brightness level.

The light curve based on the data listed in Table 1 is shown in Figure 3.

Figure 1. CCD image of the optical counterpart of the GRB 970508. Date of the exposure for the coadded image is 15.994 May 1997 (J.D. 2450584.494)

Figure 2. CCD image of the optical counterpart of the GRB 970508. Date of the exposure for the coadded image is 01.001 Jun. 1997 (J.D. 2450600.501)

Figure 3. R lightcurve of the optical counterpart of the GRB 970508 based on the brightness data published in the IAU Circulars (see References). The x represents the brightness estimation made at the Konkoly Observatory

Table 1. Brightness data of the GRB 970508 in the R band

Date UT. (1997 May)	J.D. $2450000+$	$\mathrm{m}(\mathrm{R})$	err.	source
09	577.500	21.2	.1	Galama et al., 1997
09	577.500	21.4	.05	Schaefer et al., 1997
09.128	577.628	20.8	.2	Castro-Tirado et al., 1997
09.19	577.690 (Gunn r)	21.33	.1	Djorgovski et al., 1997a
09.195	577.695 (Gunn r)	21.2	.15	Djorgovski et al., 1997b
09.89	578.390	21.1	.15	Kopylov et al., 1997
09.899	578.399	20.8	.2	Castro-Tirado et al., 1997
10	578.500	20.3	.02	Schaefer et al., 1997
10	578.500	20.35	.1	Galama et al., 1997
10.178	578.678 (Gunn r)	20.18	.07	Djorgovski et al., 1997b
10.23	578.730 (Gunn r)	20.17	.05	Djorgovski et al., 1997a
10.77	579.270	19.87	.08	Kopylov et al., 1997
10.85	579.350	19.78	.05	Mignoli et al., 1997
10.872	579.372	19.6	.2	Castro-Tirado et al., 1997
10.93	579.430	19.92	.08	Kopylov et al., 1997
11	579.500	20.0	.1	Galama et al., 1997
11	579.500	20.47	.03	Schaefer et al., 1997
11.198	579.698 (Gunn r)	20.16	.06	Djorgovski et al., 1997b
11.21	579.710 (Gunn r)	20.15	.05	Djorgovski et al., 1997a
11.76	580.260	20.18	.08	Kopylov et al., 1997
11.868	580.368	20.4	.2	Castro-Tirado et al., 1997
12.03	580.530	20.2	.1	Groot et al., 1997
12.195	580.695 (Gunn r)	20.53	.06	Djorgovski et al., 1997b
12.21	580.710	20.47	.09	Garcia et al., 1997
12.87	581.370	20.77	.08	Kopylov et al., 1997
13.18	581.680 (Gunn r)	20.76	.15	Djorgovski et al., 1997c
13.88	582.380	21.01	.08	Kopylov et al., 1997
14.40	582.900	21.1	.2	Chevalier et al., 1997
15.99	584.494	21.5	.2	present paper
Jun 1.00	600.501	23.5	.2	present paper (upper limit)

János KELEMEN

Konkoly Observatory
H-1525 Budapest, Box 67

References:

Castro-Tirado, A.J. et al., 1997, IAU Circular, No. 6657
Chevalier, C. et al., 1997, IAU Circular, No. 6663
Djorgovski, S.G. et al., 1997a, IAU Circular, No. 6655
Djorgovski, S.G. et al., 1997b, IAU Circular, No. 6658
Djorgovski, S.G. et al., 1997c, IAU Circular, No. 6660
Galama, T.J. et al., 1997, IAU Circular, No. 6655
Garcia, M. et al., 1997, IAU Circular, No. 6661
Groot, P.J. et al., 1997, IAU Circular, No. 6660
Kopylov, A.I. et al., 1997, IAU Circular, No. 6663
Mignoli, M. et al., 1997, IAU Circular, No. 6661
Schaefer, B. et al., 1997, IAU Circular, No. 6658

CORRIGENDA

Correction to IBVS No.4418: In order to bring to accordance Table 1 and Figure 2, it is necessary to interchange star's Nos. 4 and 5 in Table 1 and to attribute No. 6 to that one of two stars with number 5 in Figure 2 that has coordinates X pixel $=359$ and $\mathrm{Ypixel}=341$.

Y. Malakhova

The eclipsing binary nature of NSV 07457 (see IBVS No. 4365) was discovered earlier by J. Vandenbroere (IBVS No. 3946), see also Diethelm's note published in IBVS No. 4011.

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4497

Konkoly Observatory
Budapest
21 July 1997
HU ISSN 0374-0676

MULTIPERIODICITY OF THE δ SCUTI STAR BR CANCRI

BR Cancri (=HD 73175=SAO 97975, also known as KW 45 in Praesepe cluster) was discovered as a δ Scuti star by Breger (1973) on the basis of several-hour-long observations. It pulsates with a period of 0.038 ± 0.005 days. The author found no more data available in the literature. For checking its variability, observations covering a total of ten nights were secured between February 14 and March 30 1997. The observations were carried out by using a three-channel high-speed photometer P45-A attached to a 85 cm reflector of Xinglong Station of Beijing Astronomical Observatory, China. The photometer is especially used in WET, the Whole Earth Telescope network (Nather et al., 1990). The comparison $\operatorname{star}\left(R A=08^{\mathrm{h}} 38^{\mathrm{m}} 32^{\varsigma} .17, D e c=19^{\circ} 27^{\prime} 54^{\prime \prime} 5,2000.0,10.2 \mathrm{~V}\right.$) used was chosen carefully. No variation was found in its brightness. Furthermore, the constancy of comparison star was independently inspected with another star ($R A=08^{\mathrm{h}} 37^{\mathrm{m}} 38^{\mathrm{s}} 10$, $\mathrm{Dec}=19^{\circ} 31^{\prime} 06^{\prime \prime}$, $2000.0,11.5 \mathrm{~V}$) in one night. The data were acquired as continuous 10 s exposures through Johnson's V filter. The data were corrected for the sky background contribution and the atmospheric extinction. In order to analyze pulsational frequencies, all the measurements were binned into 120 s integrations by taking 12 -point averages and the times of measurements of BR Cnc were converted into HJD. This way 684 datapoints were obtained. The characteristics of the light curve of BR Cnc is shown schematically in Figure 1 according to the high-time-resolution photoelectric photometry. The brightness variation appears to be multi-periodic.

After the application of consecutive prewhitening procedure and frequency analysis, at least 3 frequencies were resolved through a standard Fourier program Period (Breger 1990). Figure 2 displays the preliminary power spectra of three apparently exhibited

Figure 1. One of the typical high-time-resolution V light curves of BR Cnc observed on February 16 1997. Exposure time of each point is 10 s

Figure 2. The spectral window (in top panel) and power spectra of three suggested frequencies of BR Cnc. The fundamental frequency $26.0023 \mathrm{c} / \mathrm{d}$ is displayed in the second panel; the third and fourth panels correspond to 10.4776 and $10.8994 \mathrm{c} / \mathrm{d}$ respectively. Note that different ordinates were used: for the DATA-00P $\left(f_{1}\right)$, ordinate goes up to $1.45 \times 10^{-5} \mathrm{mag}$ from the origin; for DATA-01P (f_{2}), ordinate goes from 0 to 6.0×10^{-6}; for DATA-02P $\left(f_{3}\right)$, the peak value is just 3.2×10^{-6} power of mag; the bottom panel shows the power of the residuals of the fitting with 3 frequencies above. Abscissa in cycles/day
frequencies: $f_{1}=26.0023, f_{2}=10.4776$ and $f_{3}=10.8994$ cycles/day with a standard error of 0.007 . The peaks at frequencies f_{2} and f_{3} could be influenced by a $1 \mathrm{c} / \mathrm{d}$ aliasing which can be seen from the spectral window. In view of the relatively short coverage the pulsational nature of this low amplitude δ Sct star deserves further investigation.

I would like to thank Dr. Li Zhiping for valuable suggestion which greatly inspired me in the analysis of the observational data. This research was granted by the National Science Foundation of China.

Aiying ZHOU
Beijing Astronomical Observatory
Chinese Academy of Sciences
Beijing 100080, P.R.China
Internet: aiying@bao01.bao.ac.cn

References:

Breger, M. 1973, AधA, 22, 247
Breger, M., 1990, Comm. Asteroseismology 20, 1, Vienna: Austrian Academy of Sciences
Nather, R. E., Winget, D. E., Clemens, J. C., Hansen, C. J., Hine, B. P., 1990, ApJ, 361, 309

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4498

Konkoly Observatory
Budapest
21 July 1997
HU ISSN 0374-0676

IMPROVED POSITIONS FOR SONNEBERG VARIABLES; PART 2

This paper is the second one devoted to the position improvements for Sonneberg variables, with more details given in Mánek (1997).

Table 1 gives precise positions for objects having published finding charts in MVS 250 254 (1957). North on these charts is on the top with exceptions marked directly on individual charts. However there are deviations from this rule and these are noted in remarks. Comments from original papers of Hoffmeister $(1931,1934)$ were used when possible. The source of the position is coded as follows : $\mathrm{A}=\mathrm{A} 1.0, \mathrm{C}=\mathrm{CCD}, \mathrm{D}=\mathrm{DSS}+$ Fitsview, $\mathrm{E}=$ estimate, $\mathrm{P}=$ plate scan. Positions should be precise to $\pm 1^{\prime \prime}$ for $\mathrm{A}, \mathrm{C}, \mathrm{P}$ code and to $\pm 2^{\prime \prime}$ for D code. The possible error for E code is noted in remarks. Identification with GSC is given where possible. No other identifications were searched for. As the final designation does not appear on the charts (it was not known at the time when charts were published), provisional designation is given in the table too. The differences resulting from a comparison with the positions given in GCVS in the sense ($n e w-G C V S$) are also shown, where $\Delta \alpha$ is given in seconds of time and $\Delta \delta$ is given in minutes of arc.

Table 1

Prov. desig.	Name	RA (2	(2000) Dec	GSC	s	$\Delta \alpha$	$\Delta \delta$	Remark
267.1931	V511 Oph	180819.24	$4+22530.8$	0435.4321	A	-0.8	0.0	
268.1931	V494 Oph	180822.19	$9+31205.0$	0435.1299	A	+1.1	+0.6	
269.1931	V575 Oph	180851.20	$0+33152.7$	0435.0847	A	-0.5	-0.2	
270.1931	V495 Oph	180904.56	$56+32929.7$		A	-4.2	-1.1	
271.1931	V496 Oph	181014.61	$1+30842.7$	0435.1931	A	-0.6	+0.1	
272.1931	V497 Oph	181056.27	$7 \quad+31302.2$	0435.1599	A	+5.2	+0.3	
273.1931	AZ Ser	181450.95	$5-01317.5$	5097.0855	A	-0.1	-0.3	
274.1931	BB Ser	181539.45	$5-01309.3$		A	+1.3	+0.8	
275.1931	V498 Oph	181544.11	$1+00520.4$	0432.0726	A	+0.4	-1.7	
276.1931	V499 Oph	181648.53	+2 2639.7		A	-1.4	-1.5	
277.1931	V500 Oph	181759.49	$9+21552.3$		A	-2.7	+0.6	
278.1931	V348 Aql	191120.00	0 +0 2911.7	0463.2661	A	+1.7	+0.2	
279.1931	V352 Aql	191333.74	$4+21813.0$		A	-4.6	0.0	2
280.1931	V353 Aql	191518.12	$2+50306.0$	0472.2097	A	+3.9	-1.2	
281.1931	V355 Aql	191713.39	9 + 05627.8		A	+1.5	+1.0	
282.1931	V848 Aql	192034.36	$6+30300.0$	0468.2841	A	+0.8	-0.7	
283.1931	V531 Aql	192250.30	- +61419.4	0477.4022	A	-3.7	-1.5	
284.1931	V372 Aql	192917.20	O +31430.2	0469.2592	A	+7.8	+0.3	
285.1931	V376 Aql	193051.06	$6+31657.6$	0482.0576	A	-0.3	+0.6	
286.1931	V416 Aql	193339.51	1 + 03222.8	0478.0495	A	-2.8	-0.2	
287.1931	V391 Aql	193752.55	$55+64344.1$	0491.0030	A	-0.1	-1.7	
288.1931	V392 Aql	193833.79	$79-03134.8$	5145.0506	A	+1.3	+1.5	
289.1931	LT Aql	193849.75	5 +63459.3		A	+1.9	-1.5	
290.1931	V398 Aql	194026.99	$9+50644.2$		A	-5.5	-1.3	
291.1931	UY Sge	202023.39	$39+163648.8$	1631.1551	A	-0.1	-1.7	

Table 1 (continued)

Prov. desig.	Name	RA (2	(2000) Dec	GSC	s	$\Delta \alpha$	$\Delta \delta$	Remark
292.1931	CE Del	202302.93	$3+101914.8$	1078.0911	A	-3.1	-0.4	
293.1931	CG Del	202315.07	$7 \quad+172926.1$		A	-6.7	-2.3	
294.1931	WW Del	202651.17	7 +15 3658.5	1632.1262	A	+1.3	-0.9	
295.1931	XX Del	202817.28	8 +18 3317.2	1636.0287	A	+3.3	+0.3	
296.1931	AA Del	203123.14	$4+180040.2$	1636.1159	A	+4.5	-0.5	
297.1931	AD Del	203304.27	$7 \quad+132823.8$	1099.0086	A	+3.9	+3.1	
298.1931	AE Del	203303.82	$2+173311.1$	1637.1761	A	+2.6	-1.1	
299.1931	SY Del	203315.79	$9+145853.8$	1100.0264	A	0.0	$+0.2$	
300.1931	BL Del	203403.03	$3+150505.9$		A	-0.7	-0.2	
301.1931	DG Del	203544.13	$3+112809.2$		A	+0.8	+1.7	
302.1931	DF Del	203549.21	$1+121637.3$	1096.1126	A	+4.7	$+0.2$	
303.1931	AL Del	203615.84	$4+130520.4$	1096.0502	A	-1.0	-0.1	
304.1931	DK Del	203735.67	$7 \quad+154839.0$	1633.0688	A	-2.6	+0.1	
305.1931	BO Del	203923.64	$4+142340.3$		A	+5.9	+1.0	
306.1931	AP Del	204013.33	$3+132433.5$	1100.1011	A	-0.4	+0.9	
307.1931	TU Del	204050.66	$6+145050.6$	1100.0689	A	-1.7	+0.1	
308.1931	DS Del	204328.73	$3+143418.5$	1101.1126	A	+5.0	+0.4	
309.1931	DT Del	204357.05	$5+102401.7$	1093.2929	A	-4.6	+0.1	
310.1931	BQ Del	204424.57	$7 \quad+142825.4$	1101.2152	A	$+0.7$	$+0.5$	
311.1931	DU Del	204537.91	$1+113645.6$	1097.2088	A	+0.4	-0.2	
312.1931	AU Del	204604.34	$4+131643.8$	1101.2275	A	+2.3	-0.3	
313.1931	AW Del	204756.18	8 +1704 20.7	1638.2621	A	+1.6	+0.2	
314.1931	EE Del	205151.64	$4+123730.9$		A	-3.3	-0.8	
315.1931	AZ Del	205216.28	8 +14 4634.6		A	-7.7	+1.2	
316.1931	BS Del	205258.26	6 +16 0242.3	1647.1877	A	+0.4	+1.3	
189.1930	BV Del	205309.95	$5+160849.1$	1647.1633	A	-0.8	-0.8	3
754.1933	V2067 Oph	165928.09	$9-21742.0$	5055.0638	A	+3.7	-0.2	
755.1933	NSV 08128	170154.50	$0-04418.5$	5064.0040	A	-2.1	-1.0	
756.1933	NSV 08133	170226.07	$7 \quad+20018.2$	0402.2670	A	-0.4	-0.5	
757.1933	NSV 08188	170603.80	0 +1 4320.2	0398.1205	A	-6.0	+0.3	
758.1933	NSV 08223	170754.23	$3-32702.0$	5069.1075	A	-2.5	+0.8	
759.1933	NSV 08236	170911.08	$8-23431.6$	5069.0146	A	+7.4	+0.2	
760.1933	NSV 08235	170903.80	0 +0 4334.4	0399.1293	A	+3.8	+1.3	
761.1933	V2047 Oph	170916.18	$8+04241.8$	0399.1432	A	-1.8	+1.5	
762.1933	V858 Oph	171008.18	$8-23555.0$	5069.0083	A	-1.6	+0.8	1,4
763.1933	NSV 08256	171022.00	$0-40335.4$	5073.1002	A	-0.4	+1.1	
764.1933	NSV 08351	171353.98	$8-35949.0$	5073.1000	A	+1.6	-0.4	
765.1933	V2070 Oph	171517.55	$5-01603.4$	5066.0028	A	+4.4	$+0.3$	
766.1933	NSV 08441	171629.67	$7-02916.3$	5066.0736	A	+3.4	-2.0	
767.1933	V2072 Oph	171659.81	$1-10116.9$	5066.1124	A	-11.1	-1.1	
768.1933	V1854 Oph	171846.24	$4-20343.0$	5070.0468	A	+10.1	+0.4	
769.1933	V756 Oph	172230.40	$0 \quad+14648.1$	0401.0572	A	$+0.7$	-0.1	
770.1933	NSV 08593	172405.06	$6-10328.6$		A	+1.0	+0.2	
771.1933	V2054 Oph	172446.77	$7 \quad-31719.6$	5071.0932	A	-2.8	+1.3	
772.1933	V767 Oph	173044.88	$8+23543.9$	0418.0851	A	+0.1	$+0.2$	
773.1933	V2055 Oph	173312.24	$4-21436.4$		A	+5.9	-1.6	
774.1933	NSV 09151	173306.97	$7-40920.2$	5088.0340	A	-15.6	-1.3	2
775.1933	V671 Aql	194557.28	8 + 03002.1		A	+8.9	$+0.7$	
776.1933	V539 Aql	194752.61	$1-34741.6$	5154.1920	A	-2.2	+0.5	
777.1933	V686 Aql	194844.43	$3-51630.5$	5154.1005	A	-4.0	$+0.9$	
778.1933	V541 Aql	194827.62	$2+15306.4$	0484.2334	A	-0.3	+0.6	
779.1933	V542 Aql	194846.79	$9-02811.8$		A	+2.4	+1.3	
780.1933	V423 Aql	194840.77	$7 \quad+04007.9$	0480.3013	A	-1.4	-0.4	
781.1933	V689 Aql	194920.09	$9-40857.7$	5154.1648	A	-8.1	+1.4	
782.1933	V545 Aql	194936.83	$3-20329.0$	5150.1892	A	+0.8	-1.5	
783.1933	V548 Aql	194959.50	0-20224.5		A	-3.5	0.0	
784.1933	V549 Aql	195038.59	9-35725.0	5154.0268	A	-1.4	+0.9	
785.1933	V551 Aql	195117.72	$2-24211.0$	5150.2641	A	-5.0	+0.1	
786.1933	V553 Aql	195152.01	1 +2 4818.5	0484.1036	A	0.0	+0.1	
787.1933	V706 Aql	195257.81	$1-20548.6$	5151.0518	A	+3.8	-1.6	

Table 1 (continued)

Prov. desig.	Name	RA (2000)	0) Dec	GSC	s	$\Delta \alpha$	$\Delta \delta$	Remark
788.1933	V501 Aql	195309.81	-5 2626.9	5155.1774	A	-8.7	-1.3	
789.1933	V554 Aql	195321.12	-4 3659.6		A	-2.5	-0.8	
790.1933	V344 Aql	195324.66	+2 1054.3		A	-3.0	-0.9	
791.1933	V345 Aql	195347.29	+2 5929.0		A	-2.5	+0.6	
792.1933	V556 Aql	195443.49	-3 1843.5	5151.1374	A	-0.8	$+0.3$	
793.1933	V558 Aql	195454.80	-3 5004.4		A	-3.0	0.0	
61.1924	EG Aql	195512.94	-3 4821.1		A	+0.1	0.0	
794.1933	V559 Aql	195530.03	+2 2640.9	0485.2192	A	-2.4	-0.3	
795.1933	V562 Aql	195602.29	-0 3558.3		A	-0.2	0.0	
796.1933	NSV 12577	195618.82	+0 0200.0	0481.2310	A	-1.0	0.0	
247.1930	QW Aql	195646.33	+0 0051.2	0481.2346	A	-0.6	0.0	
246.1930	GZ Aql	195617.22	-0 0257.8	5147.1014	A	+0.3	0.0	
797.1933	V502 Aql	195635.47	-2 3714.1	5151.1558	A	-5.1	-0.3	
798.1933	V724 Aql	195642.70	+10503.3	0481.2119	A	-5.1	-1.0	
Ross 263	QX Aql	195828.59	-2 2728.5	5151.0971	A	+14.2	+0.1	
799.1933	V503 Aql	195914.04	-12201.4	5147.2492	A	+3.7	+0.8	
800.1933	V565 Aql	195917.31	+1 0028.5	0481.3335	A	+5.4	+0.3	
801.1933	V745 Aql	195923.57	-15750.7	5151.0329	A	-0.3	-0.1	
802.1933	V566 Aql	195923.21	+0 0610.4		A	+3.4	-1.1	
803.1933	V567 Aql	195942.72	+31840.0	0485.3118	A	+3.2	-0.6	
804.1933	V568 Aql	200020.73	-1 5242.7	5164.0270	A	-0.1	-0.1	
805.1933	V754 Aql	200039.76	-5 1645.3	5168.0797	A	-2.5	+1.9	
806.1933	V752 Aql	200028.21	+0 2109.3	0494.2343	A	+3.7	-0.1	
807.1933	V569 Aql	200019.16	+153 42.7	0498.1005	A	-2.8	+0.4	
808.1933	V570 Aql	200028.39	+0 4515.0		A	-1.8	+1.9	
809.1933	V762 Aql	200106.87	+0 1503.3	0494.0472	A	+5.2	-0.3	
810.1933	V504 Aql	200147.76	+20748.1		A	+8.0	+1.4	
811.1933	V765 Aql	200204.81	-3 0231.0	5164.1493	A	-0.2	+0.1	
812.1933	V766 Aql	200202.19	+2 2126.4	0498.1415	A	-0.3	+1.0	5
813.1933	V505 Aql	200237.12	+0 1625.1	0494.0745	A	+5.5	0.0	
814.1933	NSV 12733	200306.32	-2 1134.5	5164.0426	A	-2.8	+1.0	
815.1933	V507 Aql	200320.28	-1 2932.0		A	+3.9	$+1.0$	
816.1933	NSV 12760	200427.70	-0 4526.0	5160.0947	A	0.0	+1.0	
817.1933	V773 Aql	200436.57	-1 2947.5		A	-3.9	+1.6	
818.1933	V574 Aql	200539.86	+2 1941.9	0498.2398	A	+0.3	-0.9	
819.1933	V575 Aql	200540.00	+3 2249.2	0498.0394	A	+0.5	+0.2	
820.1933	V576 Aql	200552.77	-1 1001.8	5160.0016	A	-5.3	-0.7	
821.1933	V509 Aql	200616.89	+2 2724.9	0498.2413	A	+2.5	-1.2	
822.1933	V782 Aql	200714.40	+12931.2	0494.1203	A	-2.0	-0.2	
823.1933	V510 Aql	200737.43	-2 2706.2		A	-1.9	$+0.1$	
824.1933	V787 Aql	200820.78	+0 0424.7	0495.1967	A	+1.0	-0.4	
825.1933	V788 Aql	200848.43	-1 0422.8	5161.2404	A	+2.5	-0.2	
826.1933	V511 Aql	200927.90	+20259.0	0499.2269	A	0.0	+1.1	
827.1933	V512 Aql	201016.65	-3 3307.9	5165.0728	A	+2.2	0.0	
828.1933	V513 Aql	201006.39	+0 2251.4	0495.1434	A	-0.1	+1.0	
829.1933	V514 Aql	201102.87	-4 1737.8	5169.0419	A	-1.3	-0.6	
830.1933	V790 Aql	201127.37	-0 4714.7		D	-0.3	-0.2	
831.1933	V515 Aql	201214.64	-0 2328.0	5161.0517	A	+0.4	+0.5	
832.1933	V516 Aql	201236.55	+15447.7	0499.0092	A	+2.5	-0.3	
833.1933	V517 Aql	201346.17	+2 5931.0	0499.2064	A	-3.8	+1.4	
834.1933	V519 Aql	201439.91	-1 1036.1		A	-0.1	0.0	
835.1933	V518 Aql	201437.44	+0 0852.8	0495.1720	A	-0.3	+0.7	
836.1933	V520 Aql	201444.59	+0 2427.4	0495.1429	A	-3.9	$+0.3$	
837.1933	V589 Aql	201555.18	+1 0030.0	0496.0788	A	+1.3	+0.2	
838.1933	V521 Aql	201701.98	-3 1538.1	5166.1783	A	+2.9	+2.0	
839.1933	V523 Aql	201742.64	-1 0616.4	5162.1018	A	+2.7	+0.4	
840.1933	V522 Aql	201733.07	-0 2500.6	5162.1956	A	-5.3	+1.6	
841.1933	V524 Aql	201758.57	+1 0316.9	0496.1540	A	+4.7	-0.1	
842.1933	V525 Aql	201950.22	-4 1741.2	5170.1355	A	-1.8	+1.8	
Ross 276	V335 Aql	202117.77	+11919.0	0496.1648	A	-0.9	0.0	

Table 1 (continued)

Prov. desig.	Name	RA (2000)	0) Dec	GSC	s	$\Delta \alpha$	$\Delta \delta$	Remark
843.1933	V595 Aql	202135.58	+0 4309.9	0496.1261	A	-0.6	+0.6	
844.1933	V596 Aql	202150.83	-1 5247.5	5166.1391	A	+3.1	+1.6	
845.1933	UX Sge	201807.11	+180817.4		A	+0.3	-0.1	6
846.1933	BZ Del	202218.78	+123604.3	1082.0316	A	+5.1	+0.4	
847.1933	CF Del	202331.33	+125929.8		A	+7.0	-1.2	
848.1933	BE Del	202350.56	+131458.5	1086.1212	A	+2.4	+1.2	
849.1933	VY Del	202351.96	+1815 50.7	1635.1345	A	+8.0	-0.9	
850.1933	CN Del	202520.19	+13 2610.2		A	+2.2	-0.7	
851.1933	CP Del	202554.39	+144709.0		A	-3.3	-0.7	
852.1933	WY Del	202720.52	+13 5433.7		A	+3.9	-0.4	
853.1933	CR Del	202850.14	+153701.0	1632.1154	A	+0.2	0.0	
854.1933	CV Del	203054.18	+163234.3	1632.2095	A	-6.0	-0.6	
855.1933	AH Del	203431.76	+14 0237.2	1100.0326	A	+1.9	+3.3	
856.1933	AM Del	203627.53	+13 3034.8		A	+3.1	+1.1	
857.1933	AO Del	203948.66	+1720 57.4	1637.1138	A	$+0.8$	-1.7	
858.1933	DN Del	204004.08	+13 4825.4		A	-2.2	+1.7	
859.1933	DO Del	204019.38	+1352 45.4	1100.0374	A	-4.8	+0.1	
860.1933	AQ Del	204102.68	+1720 03.6	1638.0757	A	+2.8	-0.7	
861.1933	AS Del	204213.63	+15 2645.5	1634.0186	A	-2.2	-3.0	1
862.1933	DV Del	204617.06	+13 0541.4	1097.0641	A	+2.8	+0.7	
863.1933	DW Del	204620.78	+1548 24.7		A	-0.9	+0.4	
864.1933	EF Del	205204.47	+125123.7	1098.1375	A	+0.8	+0.1	
865.1933	BT Del	205344.16	+154407.1	1647.0208	A	+4.0	+0.7	
866.1933	EH Del	205502.04	+134804.4		A	0.0	+1.6	
867.1933	BR Cep	222717.17	+661000.5	4276.0502	A	-4.1	-0.2	
868.1933	BT Cep	223130.35	+6723 46.7	4276.0073	A	+0.1	0.0	
869.1933	CH Cep	231043.59	+642852.9	4287.0974	A	-2.0	-0.1	
870.1933	CK Cep	231243.79	+635717.0	4287.0722	A	+3.4	+0.3	
871.1933	NSV 14486	231751.66	+620806.1	4283.0021	A	+1.4	0.0	1

Remarks:

1. Two entries for the same star in A1.0. The position given in the table is an average.
2. Slightly uncertain identification.
3. BV Del - unlabeled circle on chart for BS Del.
4. V858 Oph - Two GSC numbers (5069.0083 and 5069.1384) for one star. Northern component of a double
star, the southern one having position $17^{\mathrm{h}} 10^{\mathrm{m}} 8^{5} 05,-02^{\circ} 36^{\prime} 03^{\prime \prime} 0$.
5. V766 Aql - north on the bottom.
6. UX Sge - mean position of a close double, not known which component varies.

The author would like to thank D.G. Monet for providing the USNO A1.0 catalogue.

Jan MÁNEK
Štefánik Observatory,
Petřín 205,
11846 Praha 1,
Czech Republic,
e-mail: jmanek@mbox.vol.cz

References:

Cotton, W.D. : 1996, Fitsview v1.30;
see also http://www.cv.nrao.edu/~ bcotton/fitsview.html
Hoffmeister, C. : 1931, Astron. Nachr., 242, 129
Hoffmeister, C. : 1934, Astron. Nachr. 251, 19
Mánek, J. : 1997, IBSV, No. 4476
Mitteilungen über Veränderliche Sterne, 1957, No. $250-254$
Monet, D.G., et al.: 1996, "USNO-A V1.0," U. S. Naval Observatory, Washington DC;
see also http://www.usno.navy.mil/pmm
STScI: 1997, http://stdatu.stsci.edu/dss/

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4499

Konkoly Observatory
Budapest
23 July 1997

HU ISSN 0374-0676

NEAR IR TiO BAND PHOTOMETRY OF α Ori, 1996-1997

α Orionis (Betelgeuse, HD 39801, M2Iab) is the brightest star in the infrared sky. It is also one of the closest, with the recent Hipparcos Survey revising its distance determination to $131 \pm 30 \mathrm{pc}$ (Wing 1997). The star's relative proximity, coupled with its semi-regular variability and advanced evolutionary age, has made it an attractive target for a number of studies. For example, Guinan et al. (1993) have reported an overall photometric variability of 0.45 mag over the last decade, while Dupree et al. (1987) have found a 1.15 yr periodic modulation of 0.26 mag in blue wavelengths that stretches back to 1984 . Gilliland and Dupree (1996) have used direct imaging techniques with HST to uncover a substantially extended chromosphere in the supergiant as well as a large bright spot that appears hotter than the surrounding chromosphere by at least 200 K. Dyck et al. (1992) have even used $2.2 \mu \mathrm{~m}$ interferometric techniques to obtain an angular diameter for α Ori of 44.2 mas. This corresponds to a radius of $620 \mathrm{R}_{\odot}$.

Despite these studies, α Ori remains an enigmatic object. There is still some question as to the proper mass loss mechanism that can form the star's extensive circumstellar envelope (Dupree et al. 1987). Furthermore, the period of pulsations may not be constant with time. There is also evidence of period-doubling and period-tripling in the star's visible flux (Smith 1990) that hints at the star's internal complexities. Optical wavelength observations of α Ori have continued up to the present by Krisciunas \& Luedeke (1996) and at Villanova University by Guinan (1997) since 1981, but have shed little light on these stellar riddles. To understand and better quantify the behavior of α Ori, we decided to undertake a more extensive program of differential photometry of this famous star.

From September 1996 to April 1997, α Ori was observed at the Wasatonic Observatory (Allentown, Penn.) as part of the ongoing program between the Wasatonic and Villanova Observatories to study cool giants and supergiants. The photometry reported here was conducted on a total of 23 nights using an uncooled Optec photometer attached to a $20-\mathrm{cm}$ Schmidt-Cassegrain telescope. The detector employed was a silicon PIN-photodiode. The comparison star was $\Phi^{2} \operatorname{Ori}(\mathrm{~V}=+4.09, \mathrm{~B}-\mathrm{V}=+0.95, \mathrm{~K} 0 \mathrm{III})$ and the check star was γ Ori $(\mathrm{V}=+1.64, \mathrm{~B}-\mathrm{V}=-0.22$, B2III). Differential photometry was conducted using the standard sequence of sky-comp.-var.-comp.-sky-check-comp.-sky in both the V-band and Wing near-IR three filter system to measure TiO (Wing 1992).

Wing's photometric system is characterized by observations in three separate bandpasses denoted by A, B, and C. Table 1 lists the central wavelengths and bandwidths of these three filters. These filters were chosen to measure the three basic properties of cool stars: their infrared magnitude, their color, and their temperature (as measured by the strength of their TiO absorption band). Filter A is sensitive to the $\operatorname{TiO} \gamma(0,0) 719 \mathrm{~nm}$ bandhead, while filters B and C are essentially clear of strong absorptions. In order to extract an unreddened measure of the strength of the TiO band, Wing (1992) has devised a reddening-free TiO index as: $A-B-0.13(B-C)$

Figure 1. The 1996-1997 V-band and near IR observations of α Ori. The top panel shows α Ori's V-band light curve over the observation period. The star's IR color index and C(1024) magnitude light curves are shown in panels 2 and 3 , respectively. The bottom panel is a plot of TiO indices as defined by Wing's three color filter system. Note the inverse correlation between TiO strength and brightness of the star

Figure 2. Results for α Ori for the 1996-1997 observation period. The top panel shows the star's luminosity. The middle panel shows α Ori's temperature as derived from TiO indices. The bottom panel depicts α Ori's radius over time based on a symmetric, global pulsation model

$$
\text { Table 1. Wing's Three Color Near IR Filter Set }{ }^{1}
$$

Filter	Region Measured	Central Wavelength (nm)	Bandpass(FWHM) (nm)
A	TiO Band	719	11
B	Continuum	754	11
C	Continuum	1024	42
Taken from Wing (1992)			

where A, B, and C are the magnitudes in those respective filters. The quantity ($\mathrm{B}-\mathrm{C}$) is defined as the star's near IR color index. Wasatonic (1997) has provided a calibration system based on standard stars (Wing 1978) that relates TiO strength to a star's temperature. The result is an inverse correlation between temperature and TiO index for K 5 to M7 stars shown below:

$$
\operatorname{Temp}(K)=3990-775(\mathrm{TiO}-\text { Index })
$$

Table 2. Wasatonic Observatory Filter A,B,C Data for α Ori:
Sep 1996-Apr 1997

JD $(2450000+)$	A	B	C	JD $(2450000+)$	A	B	C
356.328	-2.145	-2.721	-2.651	477.622	-1.998	-2.625	-2.619
363.303	-2.166	-2.723	-2.639	486.506	-1.999	-2.611	-2.607
367.382	-2.128	-2.710	-2.653	495.540	-1.966	-2.601	-2.584
380.312	-2.123	-2.705	-2.674	504.507	-1.949	-2.588	-2.609
385.218	-2.131	-2.700	-2.651	508.526	-1.932	-2.592	-2.599
407.194	-2.046	-2.666	-2.641	515.522	-1.909	-2.566	-2.575
427.197	-2.014	-2.655	-2.631	520.616	-1.947	-2.581	-2.569
438.127	-1.991	-2.644	-2.616	532.555	-1.917	-2.581	-2.569
448.084	-1.979	-2.624	-2.606	541.555	-1.944	-2.589	-2.574
456.146	-2.000	-2.635	-2.621	548.555	-1.920	-2.576	-2.579
463.533	-1.991	-2.635	-2.608	553.555	-1.834	-2.541	-2.549
470.592	-2.008	-2.629	-2.607				

It should be noted that this relationship fails outside the specified spectral classes since TiO band strengths are insensitive to temperature changes outside of the K5 to M7 range.

The bolometric magnitude ($m_{b o l}$) of the star can also be approximated using the Wing system. Filter C is an accurate measure of an M star's near-infrared continuum and covers their wavelengths of peak intensity. Furthermore, it is known that near-infrared continuum points of Mira variables are very similar to their bolometric light curves in terms of shape, phase and amplitude (Lockwood \& Wing, 1971; Wing 1986). Hence the magnitude of filter C is a good representation of the star's apparent bolometric magnitude. Using bolometric corrections from Novotny (1973), we compared the apparent $m_{b o l}$ and $\mathrm{C}(1024)$ magnitudes of stars with comparable temperatures to α Orionis. A total of eight M2III Wing standard stars (Wing 1978) were used in the comparison. Since bolometric corrections are nearly identical for M2 giants and supergiants (Novotny 1973), we found that for both classes of stars:

$$
m_{b o l}=C+1.32
$$

where C represents the magnitude of the $\mathrm{C}(1024)$ filter. This magnitude correction has a standard deviation of $\sigma=0.075$. The luminosity of the star can then be calculated from its $m_{b o l}$ by the usual means.

The data collected at the Wasatonic Observatory is listed in Table 2. Observations were conducted in both V-band and Wing's three color filter system with light curves shown in Figure 1. The first panel shows a plot of α Ori's V-band light curve. α Ori dropped 0.3 mag in V-band brightness over the observation period. The maximum brightness of +0.4 mag is about the brightest the star ever achieves (Guinan 1997). Light curves of the star's near IR color index and C(1024) magnitude are shown in the second and third panels, respectively. The small-scale fluctuations in the data appear to be physical variations and are not observational scatter. TiO indices were then calculated using the Wing system described above and are shown in the bottom panel of Figure 1. Note the general anti-correlation between TiO band strengths and the brightness of the star.

Figure 2 summarizes our results based on the near IR data. The top panel shows α Ori's luminosity, the middle panel its effective temperature, and bottom panel its effective radius over our observation period. The left axis of the figure shows relative changes with
respect to the mean, while the right axis shows absolute values. As shown in the top panel, α Ori's luminosity systematically dropped approximately 12% with respect to the mean over our observation stretch. This was accompanied by a 4% systematic drop in effective temperature during the same time interval. Based on our TiO data, α Ori showed an average effective surface temperature of 3500 K . The maximum and minimum temperatures were 3550 K and 3440 K , corresponding to TiO indices of 0.568 and 0.706 , respectively. These temperature values agree well with the interferometric estimated surface temperature of $3520 \pm 85 \mathrm{~K}$ by Dyck et al. (1992).

It is still uncertain whether the luminosity changes shown in the top panel of Figure 2 are due to uniform, global pulsations of the star, or the growth and decay of local hot-spots on the surface. Goldberg (1984) concludes from radial velocity data that the visual brightness variations are probably not global in nature. However, Dupree et al. (1987) assert that the regularity of α Ori's variability argues against the erratic (random) variability associated with the emergence of convective cells. Under the assumption that the luminosity variations are global in nature, the effective radius of α Ori was computed for each observation. The result is shown in the bottom panel of Figure 2.
α Ori exhibited an average effective radius of $575 \mathrm{R}_{\odot}$ with changes of less than 2% above and below the mean radius over the observation period. This value compares with past interferometric radius determinations. For instance, Dyck et al. (1996) used $2.2 \mu \mathrm{~m}$ observations to obtain an angular diameter of 44.2 mas, corresponding to a radius of 620 R_{\odot}, and Balega et al. (1982) have used $7730 \AA$ observations to obtain an angular diameter of 62 mas , corresponding to a radius of $870 \mathrm{R}_{\odot}$. This paper's result, however, represents the first findings of α Ori's radius using intermediate infrared observations and the new Hipparcos distance.

Curiously, there appears to be no systematic change in α Ori's effective radius to match the trends discussed above for α Ori's luminosity and temperature. This might indicate that global pulsations are not alone responsible for α Ori's brightness variations. Instead, the growth and decay of local blobs and hot-spots may contribute to α Ori's variability in a non-trivial way. More near IR and radial velocity data is needed before any permanent conclusion can be reached. It should also be noted that our absolute luminosity and radius values critically depend on the empirically derived transformation between the $\mathrm{C}(1024)$ filter and bolometric magnitude. Further observations of M2I and III stars using Wing's near IR filter system would improve the reliability of this transformation. Observations of α Ori at the Villanova and Wasatonic Observatories will continue in both V-band and near IR wavelengths.

The authors thank Robert Wing for his assistance. For this research, we utilized the SIMBAD database, operated by CDS, Strasbourg, France. This work was supported in part by NSF grants AST-9315365 to Villanova University and AST-9528506 to the Four College Consortium, which we gratefully acknowledge.

Nicholas D. MORGAN
Rick WASATONIC
Edward F. GUINAN
Dept. of Astronomy and Astrophysics
Villanova University
Villanova, PA. 19085

References:
Balega, Y., Blazit, A., Bonneau, D., Koechlin, L., Foy, R., \& Labeyrie, A., 1982, A\&A, 115, 253
Dupree, A. K., Baliunas, S. L., Guinan, E. F., Hartmann, L., Nassiopoulos, G. E., \& Sonneborn, G., 1987, ApJ, 317, L85
Dyck, H. M., Benson, J. A., van Belle, G. T., \& Ridgway, S. T., 1996, AJ, 111, 1702
Gilliland, R. L., \& Dupree, A. K., 1996, ApJ, 463, L29
Goldberg, L., 1984, PASP, 96, 366
Guinan, E. F., Deeney, B., \& Miller, K., 1993, IAUC, No. 5708
Guinan, E. F., 1997, unpublished
Krisciunas, K., \& Luedeke, K. D., 1996, IBVS, No. 4355
Lockwood, G. W., \& Wing, R. F., 1971, ApJ, 169, 63
Novotny, E., 1973, Introduction to Stellar Interiors, (Oxford University Press), p. 11
Smith, M. A., 1990, BAAS, 22, 1208
Wasatonic, R., 1997, unpublished
Wing, R. F., 1978, in Spectral Classification and Color Temperatures for 280 Bright Stars in the Range K4 - M8, Astronomy Dept., Ohio State University
Wing, R. F., 1986, in The Study of Variable Stars Using Small Telescopes, ed. J. R. Percy, (Cambridge University Press, Cambridge, England), p. 127
Wing, R. F., 1992, JAAVSO, 21, 42
Wing, R. F., 1997, private communication

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 4500

Konkoly Observatory
Budapest
23 July 1997
HU ISSN 0374-0676

RADIUS AND LUMINOSITY VARIATIONS OF MIRA FROM WING NEAR-IR PHOTOMETRY

Mira (omicron Ceti AB) is the prototype of a class of pulsating red asymptotic giants that undergo large (typically 3 to 7 mag. in V) brightness variations with periods of a few hundred days. Mira itself is more complex as it is a binary system composed of the luminous M4-7IIIe star (o Ceti; Mira A; HD 14386) and a hot accreting component 0.6 distant (Mira B). AAVSO visual estimates of Mira A have shown its brightness to vary typically between 3rd and 10th magnitude over a period $P \sim 332 \mathrm{~d}$. Recently Mira's parallax has been re-determined by Hipparcos to be $r=129 \pm 18 \mathrm{pc}$ (van Leeuwen et al. 1997). As one of the nearest Mira variables, its brightness has made it a favorite object for spectroscopic, photometric and interferometric measurements.

Of particular interest to the study of Mira, and Mira variables in general, are observations obtained in the infrared. Among the coolest of all stars, their maximum energies lie in the near-infrared, and typical Miras are 6-10 magnitudes brighter in this region than they are in the optical. Also, there are fewer molecular absorption features in the infrared than at optical wavelengths. As discussed by Wing (1992), the interpretation of standard UBVRI optical photometry of Miras and other cool variables is compromised chiefly by the presence of strong TiO molecular features that fall within these bandpasses for stars with spectral types of M0 or later. For these reasons, Wing (1992) has developed a simple near-infrared photometric system for use with red stars, including Miras. This photometric system uses three intermediate-band filters that have been carefully chosen to have bandpasses that include a temperature dependent TiO molecular band and two in the near IR that are essentially free of strong absorption features, except in the coolest of stars.

The first filter, designated by Wing as A, is centered around one of the strongest isolated $\mathrm{TiO}(\gamma ; 0,0)$ bands and has a central wavelength of 719 nm . TiO was chosen because it is an excellent temperature indicator in cool stars and it has been known for a long time that visual maximum corresponds to the time of highest temperature and weakest TiO band strength in Miras (Pettit \& Nicholson 1933). Filter B, with a central wavelength of 754 nm , is placed in a region essentially clear of strong absorptions except in the coolest of stars. Both A and B have bandpasses of 11 nm . Filter C is also located at a region essentially free of absorption, but at a much longer wavelength, centered at 1024 nm , where it provides a measurement of the infrared apparent magnitude. Its bandpass is larger at 42 nm which compensates for the usual decreased detector sensitivity at this wavelength.

Figure 1. V light curve of Mira covering half of its pulsation period

Figure 2. Light curves of Mira's TiO Index, B-C Index, and $C(1024)_{\text {mag }}$

Figure 3. Luminosity, effective temperature and radius of Mira. The properties were estimated using the near-IR B-C Color Index to obtain an effective temperature, and the transformed $C(1024)_{\text {mag }}$ as an approximation of $\mathrm{m}_{b o l}$

As discussed by Wing (1992), filter C can also be used as a short-cut to measuring the star's total energy output as the light curves of Mira variables, measured at near infrared continuum points, are similar to bolometric light curves in shape, amplitude, and phasing (Lockwood \& Wing 1971; Wing 1986). Filters B and C are used together to obtain a color index defined by:

$$
\text { near-IR Color Index }=B-C
$$

Because this color index measures the slope of the continuum and is affected little by spectral lines and bands, it is primarily an indicator of temperature. Finally a TiO index can be obtained by using the magnitudes of all three filters in the formula:

$$
\mathrm{TiO} \text { Index }=A-B-0.13 \times(B-C)
$$

With this method, the continuum level is extrapolated to the TiO wavelength band and the observed magnitude at this band is compared to the magnitude the star would have if no TiO band were present. The numerical coefficient is determined by the spacing of the filters in wavelength. The TiO Index is the measure of the relative strength of the TiO bandhead near 719 nm and, as defined, the index becomes numerically larger as the TiO absorption increases.

Starting in 1996, photometric observations of Mira covering half of its pulsation period (from light maximum to past light minimum) have been carried out by Wasatonic using the Wing near-infrared ABC bands just described, as well the V-band. With a $20-\mathrm{cm}$ Schmidt-Cassegrain (SCT) coupled to an uncooled Optec photometer, the photometry was carried out relative to nearby and check stars, following the usual observing sequence of sky-comp.-var.-comp.-sky-check-comp.-sky. The comparison star was HD 16400 ($\mathrm{V}=$ $+5.65, \mathrm{~B}-\mathrm{V}=+1.02$, G5 III) and HD $16160(\mathrm{~V}=+5.82, \mathrm{~B}-\mathrm{V}=+1.04, \mathrm{~K} 3 \mathrm{~V})$ was the primary check star. In addition, several Wing standard stars ranging from M1 to M7 were observed most nights and their TiO and $\mathrm{B}-\mathrm{C}$ indices were obtained. The photometric observations of Mira are provided in Table 1.

Table 1. Photometric data

JD2450000+	V	A	B	C
314.0	7.351	3.842	1.452	-0.377
320.0	7.656	3.971	1.515	-0.282
341.0	8.030	4.360	1.891	-0.169
360.0	8.277	4.773	2.262	-0.322
368.0	8.434	4.800	2.284	-0.290
385.0	8.425	4.757	2.095	-0.343
398.0	7.916	4.445	1.790	-0.405
416.0	7.410	4.023	1.387	-0.530
427.0	6.767	3.550	0.911	-0.644
439.0	5.210	2.384	0.002	-0.772
455.0	3.922	1.355	-0.723	-1.090
463.0	3.187	0.689	-1.020	-1.172
477.0	2.516	0.034	-1.280	-1.232
489.0	2.320	-0.226	-1.396	-1.293
500.0	2.297	-0.287	-1.425	-1.337

Figure 1 shows the visual-band light curve. Phasing was done using a $t_{\max }$ of JD 2447823 and a period of 331.9 days (Quirrenbach et al. 1992).

Using the formula previously described, the TiO index was calculated for each observation. Figure 2 shows the TiO Index, $\mathrm{B}-\mathrm{C}$ Index, and the $C_{\text {mag }}$ light curve versus phase. From the data, it can be seen that the bolometric magnitude, which is computed from $C_{\text {mag }}$ (see below), reaches its faintest value near Mira's minimum phase at $0.6-0.7 \mathrm{P}$. As would be expected, the $\mathrm{B}-\mathrm{C}$ color index also reaches its greatest value at this phase indicating the lowest temperature. The TiO index becomes unreliable as a temperature indicator at Mira's minimum because the continuum regions of the spectrum become contaminated by lines of VO and other molecular species at $T_{\text {eff }}<2400 \mathrm{~K}$ (Wing 1992). This is noted in Figure 2 as the TiO index is nearly constant from phases $0.5-0.9 \mathrm{P}$.

To test the accuracy of using the $C(1024)_{\text {mag }}$ as an approximation of the apparent bolometric magnitude $m_{b o l}$, a calibration was carried out using a large number of Wing standard stars whose $C(1024)_{\text {mag }}$ or comparable $I(1040)_{\text {mag }}$ are given by Wing (1978), and whose V magnitudes and spectral type are known (Wing 1978). By calculating $m_{b o l}$ for each of these stars by the standard formula:

$$
m_{b o l}=V_{m a g}+B C
$$

and comparing the results to the given $C(1024)_{\text {mag }}$, it was found that the $C(1024)_{\text {mag }}$ was fainter by an average difference of $\sim 1.04 \mathrm{mag}$ with a standard deviation of $\pm 0.31 \mathrm{mag}$. Therefore, this difference was added to each C filter reading to obtain a good estimate of the apparent bolometric magnitude. The bolometric correction (BC) values were obtained from Novotny (1973).

Using this adjusted value of $m_{b o l}$, and the distance to Mira, the absolute bolometric magnitudes ($M_{b o l}$) were calculated for each observation phase. Miras luminosity was then calculated relative to the sun s and is shown in the upper panel of Figure 3.

An estimate of Mira's temperature at each observation phase was determined by applying a set of standard stars whose effective temperatures are known, and whose $\mathrm{B}-\mathrm{C}$ color indices were obtained by Wasatonic. The middle panel of Figure 3 shows the variations of Mira's temperature with phase.

With estimates of both Mira's luminosity and temperature at each observation phase, a radius can be determined from the standard formula:

$$
L=4 \pi \sigma R^{2} T^{4}
$$

The bottom panel of Figure 3 shows Mira's radius versus phase. Large scale radius changes from an $R_{\text {min }}=345 R_{\odot}(1.6 \mathrm{AU})$, to an $R_{\text {max }}=548 R_{\odot}(2.5 \mathrm{AU})$ can be seen in the plot. To place Mira s size in better perspective, if the star were placed at the center of our solar system, it would extend from just beyond the orbit of Mars (1.5 AU) to half way the distance of Jupiter (5.2 AU). The following table summarizes the extremes of the properties of Mira found during the 1996/97 epoch.

Table 2. Mira's Estimated Properties

$V_{\text {mag }}$	B-C Index	$T_{\text {eff }}$	Spec. Type	L / L_{\odot}	R / R_{\odot}	Radius (AU)
+2.29	-0.103	3520	\sim M0 III	1.6×10^{4}	345	1.6
+8.43	+2.584	2350	\sim M9 III	5.6×10^{3}	548	2.5

This work represents the first time the radius of Mira has been estimated using its proper distance and intermediate-band near-infrared photometric techniques. The values obtained for the radius compare well with previous interferometric measurements, such as those of Labeyrie et al. (1977) who found a radius of $\sim 645 R_{\odot}$ at 1040 nm at light maximum (Phase ~ 0.0). Also, the mean radius of $464 R_{\odot}$ recently reported by van Leeuwen et al. (1997) is in excellent agreement with our mean radius of $474 R_{\odot}$. However, interferometric observations at 775 nm by Karovska et al. (1991), when corrected for Mira's recently determined distance, yield an average radius of $\sim 1100 R_{\odot}$ at nearly light maximum (Phase ~ 0.97). Again, it should be noted that our estimates of radius and luminosity are based upon a transformation of the $C(1024)_{\text {mag }}$ to $m_{b o l}$. Relative changes obtained for the radius of Mira, however, are not dependent on this approximation and should be of particular interest. Further near-IR observations of Mira over its entire pulsation period and the results of radius estimates will be reported in the future.

The authors wish to thank Robert Wing and the SIMBAD database for their assistance in this work. This research is supported by NSF grants AST-9315365 to Villanova University and AST-9528506 to the Four College Consortium.

Todd A. MAHLER
Rick WASATONIC
Edward F. GUINAN
Dept. of Astronomy and Astrophysics, Villanova University, Villanova, PA. 19085

References:

Karovska, M., Nisenson, P., Papaliolios, C., \& Boyle, R.P., 1991, ApJ, 374, L51
Labeyrie, A., Koechlin, L., Bonneau, D., Blazit, A., \& Foy, R., 1977, ApJ, 218, L75
Lockwood, G.W., \& Wing, R.F., 1971, ApJ, 169, 63
Novotny, E., 1973, Introduction to Stellar Interiors (Oxford University Press), p. 11
Pettit, E., \& Nicholson, S.B., 1933, ApJ, 78, 320
Quirrenbach, A., Mozurkewich, D., Armstrong, J.T., Johnston, K.J, Colavita, M.M., \& Shao, M., 1992, $A \& A, \mathbf{2 5 9}$, L19
van Leeuwen, F., Feast, M.W., Whitelock, P.A., \& Yudin, B., 1997, MNRAS, in press
Wing, R. F., 1978 in Spectral Classification and Color Temperatures for 280 Bright Stars in the Range K4-M8, (Astronomy Dept., Ohio State University)
Wing, R.F., 1986, in The Study of Variable Stars Using Small Telescopes, ed. J.R. Percy, (Cambridge University Press: Cambridge, England), p. 127
Wing, R.F., 1992, JAAVSO, 21

[^0]: ${ }^{1}$ Based on observations collected at the European Southern Observatory (Chile)

[^1]: ${ }^{1}$ The table of observational data (in ASCII format) is available as the 4402-t3.txt file together with the electronic version of the Bulletin.

[^2]: ${ }^{1}$ PARTLY BASED ON OBSERVATIONS WITH THE ESO 2.2 M TELESCOPE AT LA SILLA/CHILE (MPI TIME)

[^3]: ${ }^{1}$ IRAF is distributed by National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract to the National Science Foundation

[^4]: ${ }^{1}$ Operated by AURA Inc. under cooperative agreement with the NSF.

[^5]: ${ }^{1}$ based on data collected at the European Southern Observatory, La Silla, Chile

[^6]: ${ }^{1}$ CABS refers to the Catalogue of Strassmeier et al. (1993).

[^7]: ${ }^{1}$ IRAF is distributed by National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract to the National Science Foundation

[^8]: ${ }^{1}$ IRAF is distributed by National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract to the National Science Foundation

[^9]: ${ }^{1}$ IRAF is distributed by National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract to the National Science Foundation

