COMMISSIONS 27 AND 42 OF THE I. A. U.

### INFORMATION BULLETIN ON VARIABLE STARS

Nos. 5701 - 5800

2006 May $-\,2007$  October

EDITORS: K. OLÁH, J. JURCSIK TECHNICAL EDITOR: A. HOLL TYPESETTING: O. RIBÁRIK SUBSCRIPTIONS: Zs. KŐVÁRI

EDITORIAL BOARD: B. Gänsicke, G. Handler (chair),
L. Kiss, S.S. Saar, M. Schreiber, D. Sasselov, B. Skiff,
S. Rucinski (Comm. 42.), A. Giménez (Div. V.), S. Kawaler (Comm. 27.),
D. Kurtz (advisor), N.N. Samus (advisor), C. Sterken (advisor), L. Szabados (advisor)

H–1525 BUDAPEST XII, Box 67, HUNGARY URL http://www.konkoly.hu/IBVS/IBVS.html HU ISSN 0374–0676

#### **COPYRIGHT NOTICE**

IBVS is published on behalf of Commissions 27 and 42 of the IAU, by the Konkoly Observatory, Budapest, Hungary.

Individual issues may be downloaded for scientific and educational purposes free of charge. Bibliographic information of the recent issues can be entered to indexing systems. No IBVS issues may be stored in a public retrieval system, in any form or by any means, electronic or otherwise, without the prior written permission of the publishers. Prior written permission of the publishers is required to enter IBVS issues 1-4000 to an electronic indexing or bibliographic system too.

# CONTENTS

## 2006

| 5701 KLINGENBERG, G.; DVORAK, S. W.; ROBERTSON, C. W.:                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Times of Maxima for Selected Delta Scuti Stars 1-4                                                                                                                       |
| 5702 ISMAILOV, N. Z.; ALIYEVA, A. A.:                                                                                                                                    |
| Active Motion of Matter in the Envelope of DI Cephei $\dots \dots \dots$ |
| 5703 HÄUSSLER, K.; BERTHOLD, T.; KROLL, P.:                                                                                                                              |
| Elements for 8 RR Lyrae Variables in Ophiuchus $\dots \dots \dots$       |
| 5704 MANIMANIS, V. N.; NIARCHOS, P. G.:                                                                                                                                  |
| The First Complete Photometry of the Short-period Algol-type Binary                                                                                                      |
| BF Vel 1 – 3                                                                                                                                                             |
| 5705 SÓDOR, Á.; VIDA, K.; JURCSIK, J.; VÁRADI, M.; SZEIDL, B.; HURTA,                                                                                                    |
| ZS.; DÉKÁNY, I.; POSZTOBÁNYI, K.; VITYI, N.; SZING, A.; KUTI, A.;                                                                                                        |
| LAKATOS, J.; NAGY, I.; DOBOS, V.:                                                                                                                                        |
| UZ UMa: an RRab Star with Double-Periodic Modulation $\dots \dots \dots 1 - 4$                                                                                           |
| 5706 SCOTT, N. J.; CORWIN, T. M.; CATELAN, M.; SMITH, H. A.:                                                                                                             |
| Newly Discovered Variable Stars in the Globular Cluster NGC 6864 (M75) $1-3$                                                                                             |
| 5707 DOĞRU, S. S.; DOĞRU, D.; ERDEM, A.; ÇIÇEK, C.; DEMIRCAN, O.:                                                                                                        |
| New Times of Minima of Some Eclipsing Binary Stars $\dots \dots \dots$   |
| 5708 KIMESWENGER, S.; EYRES, S. P. S.:                                                                                                                                   |
| Variability of V838 Mon before Its Outburst $\dots 1-4$                                                                                                                  |
| 5709 JURCSIK, J.; SODOR, A.; VARADI, M.; VIDA, K.; POSZTOBANYI, K.;                                                                                                      |
| SZING, A.; HURTA, ZS.; DEKANY, I.; WASHUETTL, A.; VITYI, N.:                                                                                                             |
| $BVR_cI_c$ Photometry of Three RRab Stars $1-4$                                                                                                                          |
| 5710 POLSGROVE, D. E.; WETTERER, C. J.; BLOOMER, R. H.; NEWTON,                                                                                                          |
| J. D.:                                                                                                                                                                   |
| CCD Photometry of DF Lyr, BY Peg, CW Peg, and RW Tri 1 – 8                                                                                                               |
| 5711 FRIGO, A.; OCONER, P.; TOMASONI, S.; MORETTI, S.; TOMASELLI,                                                                                                        |
| S.; GRAZIANI, M.; DALLAPORIA, S.; HENDEN, A.; SIVIERO, A.;                                                                                                               |
| MUNARI, U.:<br>Calibration of a UDVDI Sequence around News Cur 2006                                                                                                      |
| Calibration of a UBVRI Sequence around Nova Cyg 2000 $\dots 1 - 2$                                                                                                       |
| Speetroscopy of the Epint Durof Neuro DV UMa and AB Cha                                                                                                                  |
| 5713 DIFTHELM R $\cdot$                                                                                                                                                  |
| 165 List of Timings of Minima Eclipsing Binarios by BBSAC Observors 1 - 8                                                                                                |
| 5714 DALLAPORTA S · MINARI II ·                                                                                                                                          |
| Accurate BV Light Curve of the Eclipsing Binary V1898 Cvg $1-3$                                                                                                          |
| 5715 NELSON B H · TEBRELL D · GROSS I ·                                                                                                                                  |
| The Classical Algol XZ UMa — Observations and Analysis $1-6$                                                                                                             |
| 5716 SPOGLI, C.: FIORUCCI, M.: CAPEZZALI, D.: ROCCHI, G.: MANCI-                                                                                                         |
| NELLI, V.: BRUNOZZI, P.: FAGOTTI, P.:                                                                                                                                    |
| BVRI Photometry of DX And: the Autumn 2005 Outburst $\dots 1-4$                                                                                                          |
| 5717 LE BORGNE, J. F.; KLOTZ, A.; BOËR, M.:                                                                                                                              |
| The GEOS RR Lyr Survey $\dots 1 - 4$                                                                                                                                     |
| 5718 SZEIDL, B.; SCHNELL, A.; PÓCS, M. D.:                                                                                                                               |
| The High-amplitude $\delta$ Scuti Star GP Andromedae                                                                                                                     |

| 5719 BERNHARD, K.; FRANK, P.:                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GSC 2038.0293 is a New Short-period Eclipsing RS CVn Variable $\dots 1-4$                                                                                                |
| 5720 SMIRNOVA, O.; ALKSNIS, A.:                                                                                                                                          |
| Found a Nova in M31: The True Optical Counterpart of the M31 Supersoft                                                                                                   |
| X-ray Source 191                                                                                                                                                         |
| 5721 KAZAROVETS, E. V.; SAMUS, N. N.; DURLEVICH, O. V.; KIREEVA,                                                                                                         |
| N. N.; PASTUKHOVA, E. N.:                                                                                                                                                |
| The 78th Name-List of Variable Stars $\dots \dots \dots$                 |
| 5722 KHALIULLIN, KH. F.; KHALIULLINA, A. I.; PASTUKHOVA, E. N.;                                                                                                          |
| SAMUS, N. N.:                                                                                                                                                            |
| RV Aps: A Unique Eclipsing Binary for Gravity-Darkening Studies 1 – 4                                                                                                    |
| 5723 KOZHEVNIKOVA, A. V.; ALEKŠEEV, I. YU.; HECKERT, P. A.;                                                                                                              |
| KOZHEVNIKOV, V. P.:                                                                                                                                                      |
| Detection of a Large Flare in the RS CVn Star WY Cnc $\dots 1-4$                                                                                                         |
| 5724 NELSON, R. H.: ROBB, R. M.: HENDEN, A. A.: KRAJCL, T.: QUESTER, W.:                                                                                                 |
| GSC 3576-0170: A New Near-Contact Solar-Type Binary, Period Analysis                                                                                                     |
| and Classification $1 - 4$                                                                                                                                               |
| 5725 SZABADOS L :                                                                                                                                                        |
| The Bright Cenheid V411 Lacertae $1-4$                                                                                                                                   |
| 5726 DEČÍBMENCI Ö L                                                                                                                                                      |
| Photometric Analysis of the W IIMa Type Binary V566 Ophiuchi $1 - 4$                                                                                                     |
| 5727 SPOCI I C · CIPRINI S · FIORUCCI M · CAPE77ALI D · MANCI                                                                                                            |
| NELL V · BRUNOZZI D · FACOTTI D · NUCCIARELLI, C · TOSTI                                                                                                                 |
| $C \cdot ROCCHL C \cdot$                                                                                                                                                 |
| BVB I Observations of the Dwarf Neve AH Her during 2005                                                                                                                  |
| $D \vee R_c I_c$ Observations of the Dwall Nova An her during 2005 $1 - 4$                                                                                               |
| Times of Minima of the Folinging Dinamy System EC Conhoi                                                                                                                 |
| Times of Minima of the Eclipsing Dinary System EG Cepher $\dots 1 - 2$                                                                                                   |
| 5729 ÇAKIRLI, O.; GUNGOR, C.; PINAR, A.; ÇAMURDAN, C. M.:                                                                                                                |
| New Times of Minima of Some Eclipsing Binary Stars $\dots 1 - 2$                                                                                                         |
| 5730 ZHANG, X. B.; ZHANG, R. X.:                                                                                                                                         |
| GSC 02799-00902: a New $\delta$ Sct Variable                                                                                                                             |
| 5731 HUBSCHER, J.; PASCHKE, A.; WALTER, F.:                                                                                                                              |
| Photoelectric Minima of Selected Eclipsing Binaries and Maxima of Pulsa-                                                                                                 |
| ting Stars $\dots \dots \dots$                                           |
| 5732 HAUSSLER, K.; BERTHOLD, T.; KROLL, P.:                                                                                                                              |
| Elements for 8 RR Lyrae Variables $\dots 1 - 4$                                                                                                                          |
| 5733 ZAMANOV, R.; BOER, M.; LE COROLLER, H.; PANOV, K.:                                                                                                                  |
| Photometry of RS Oph after the 2006 Outburst $\dots 1 - 4$                                                                                                               |
| 5734 MANIMANIS, V. N.; NIARCHOS, P. G.:                                                                                                                                  |
| First Complete BVRI Light Curves of the Short-period Algol-type Binary                                                                                                   |
| DF Pup 1 – 3                                                                                                                                                             |
| 5735 WOLF, M.; ZEJDA, M.; KIYOTA, S.; MAEHARA, H.; NAGAI, K,;                                                                                                            |
| NAKAJIMA, K.:                                                                                                                                                            |
| IV Cassiopeiae: a Probable Photometric Triple Star $\dots 1 - 4$                                                                                                         |
| 5736 CSIZMADIA, SZ.; KLAGYIVIK, P.; BORKOVITS, T.; PATKÓS, L.;                                                                                                           |
| KELEMEN, J.; MARSCHALKÓ, G.; MARTON, G.:                                                                                                                                 |
| New Times of Minima of Some Eclipsing Binary Systems $\dots \dots \dots$ |
|                                                                                                                                                                          |

| 5737 SMIRNOVA, O.; ALKSNIS, A.; ZHAROVA, A. V.:                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The Optical Counterpart of the Possible Brightest Transient X-ray Source in                                                                                            |
| M31 is Found $\ldots 1 - 3$                                                                                                                                            |
| 5738 JURDANA-SEPIC, R.; MUNARI, U.:                                                                                                                                    |
| Plate Archive Search for the Progenitor of Nova Cyg 2006 $\dots 1 - 2$                                                                                                 |
| 5739 HENZE, M.; MEUSINGER, H.; PIETSCH, W.:                                                                                                                            |
| Discovery of 19 New Historical Nova Candidates in M31 $\dots 1 - 4$                                                                                                    |
| 5740 BIAZZO, K.; FRASCA, A.; MARILLI, E.; HENRY, G. W.; SOYDUGAN,                                                                                                      |
| F.; ERDEM, A.; BAKIS, H.:                                                                                                                                              |
| First Simultaneous Photometric and Spectroscopic Analysis of the Active                                                                                                |
| Star IT Com 1 – 4                                                                                                                                                      |
| 5741 ZEJDA, M.; MIKULÁŠEK, Z.; WOLF, M.:                                                                                                                               |
| CCD Times of Minima of Selected Eclipsing Binaries $\dots \dots \dots$ |
| 5742 TERRELL, D.:                                                                                                                                                      |
| Photometry of the Algol-type Binary Z Draconis $\dots \dots \dots$     |
| 5743 BERNHARD, K.; KLIDIS, S.; HAMBSCH, FJ.; WILS, P.:                                                                                                                 |
| CCD Photometry of the Multi-mode $\delta$ Scuti Star GSC 1730-1858 1 – 4                                                                                               |
|                                                                                                                                                                        |

# $\boldsymbol{2007}$

| 5744 SALINAS, R.; CATELAN, M.; SMITH, H. A.; PRITZL, B. J.:                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Newly Discovered Variable Stars in the Globular Cluster NGC 1261 $\dots 1-6$                                                                                           |
| 5745 SMITH, A. B.; CATON, D. B.:                                                                                                                                       |
| Precise Times of Minimum Light of Neglected Eclipsing Binaries $\dots 1 - 4$                                                                                           |
| 5746 DOĞRU, S. S.; DÖNMEZ, A.; TÜYSÜZ, M.; DOĞRU, D.; ÖZKARDEŞ,                                                                                                        |
| B.; SOYDUGAN, E.; SOYDUGAN, F.:                                                                                                                                        |
| New Times of Minima of Some Eclipsing Binary Stars $\dots \dots \dots$ |
| 5747 SCHANNE, L.:                                                                                                                                                      |
| Remarkable Absorption Strength Variability of the $\varepsilon$ Aurigae H <sub><math>\alpha</math></sub> Line outside                                                  |
| Eclipse $\dots \dots \dots$                                            |
| 5748 GOLOVIN, A.; PAVLENKO, E.; KUZNYETSOVA, YU.; KRUSHEVSKA, V.:                                                                                                      |
| Detection of a Large Flare in FR Cnc (=1RXS J083230.9+154940) $\dots 1-3$                                                                                              |
| 5749 CAPEZZALI, D.; SPOGLI, C.; FIORUCCI, M.; CIPRINI, S.;                                                                                                             |
| NUCCIARELLI, G.; MANCINELLI, V.; BRUNOZZI, P.; FAGOTTI, P.;                                                                                                            |
| BRANDONI, L.; ROCCHI, G.:                                                                                                                                              |
| BVRI Photometry of VW Vul and New Comparison Stars $\dots \dots 1 - 4$                                                                                                 |
| 5750 BERNHARD, K.; LLOYD, C.; BOYD, D.; PIETZ, J.; JONES, J. L.;                                                                                                       |
| RENZ, W.:                                                                                                                                                              |
| A New Long-Period U Gem Variable Identified with the X-Ray Source                                                                                                      |
| 1RXS J224342.3+305526 $1-4$                                                                                                                                            |
| 5751 HAEFNER, R.; FIEDLER, A.:                                                                                                                                         |
| Spectroscopy of the Faint Old Novae V Per and V500 Aql $\dots 1 - 4$                                                                                                   |
| 5752 GRANKIN, K. N.; ARTEMENKO, S. A.; MELNIKOV, S. Y.:                                                                                                                |
| Photometry of 39 PMS Variables in the Taurus-Auriga Region $\dots 1-4$                                                                                                 |
| 5753 BÍRÓ, I. B.; BORKOVITS, T.; HEGEDÜS, T.; KISS, Z. T.; KOVÁCS, T.;                                                                                                 |
| LAMPENS, P.; REGÁLY, ZS.; ROBERTSON, C. W.; VAN CAUTEREN, P.:                                                                                                          |
| New Times of Minima of Eclipsing Binary Systems $\dots \dots \dots$    |

| 5754 ŞENAVCI, H. V.; TANRIVERDI, T.; TÖRÜN, E.; ELMASLI, A.; KILI-<br>ÇOĞLU, T.; ÇINAR, D.; SIPAHIOĞLU, S.; ALAN, N.; ÇOLAK, T.;<br>XILMAZ, M.: IILUS, N. D.: BASTÜRK, Ö.: CALISKAN, S.: AVDIN |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| G : EKMEKCL F : ALBAYBAK B : SELAM S O :                                                                                                                                                       |
| Photoelectric Minima of Some Eclipsing Binary Stars                                                                                                                                            |
| 5755 MEUSINGER, H.: SCHOLZ, RD.: JAHREISS, H.:                                                                                                                                                 |
| Spectroscopic Detection of a Spectacular Flare on DX Cnc $\dots 1-4$                                                                                                                           |
| 5756 BARANNIKOV, A. A.:                                                                                                                                                                        |
| Long-Term Optical Light Variations of the Peculiar Massive Runaway Star                                                                                                                        |
| HD 108 1-4                                                                                                                                                                                     |
| 5757 PIGULSKI, A.; MICHALSKA, G.:                                                                                                                                                              |
| FR Scuti: a Triple VV Cephei-type System of Particular Interest $\dots 1 - 4$                                                                                                                  |
| 5758 HÄUSSLER, K.; BERTHOLD, T.; KROLL, P.:                                                                                                                                                    |
| Elements for 7 Pulsating Variables $\dots 1 - 4$                                                                                                                                               |
| 5759 MICHALSKA, G.:                                                                                                                                                                            |
| Eleven More Eclipsing Systems with Apsidal Motion in the Large Magellanic                                                                                                                      |
| Cloud $\dots \dots \dots$                                                                      |
| 5760 NELSON, R. H.:                                                                                                                                                                            |
| CCD Minima for Selected Eclipsing Binaries in 2007 $\dots 1-4$                                                                                                                                 |
| 5761 HUBSCHER, J.; WALTER, F.:                                                                                                                                                                 |
| Photoelectric Minima of Selected Eclipsing Binaries and Maxima of Pulsa-                                                                                                                       |
| ting Stars $\dots 1 - 12$                                                                                                                                                                      |
| 5762 INNIS, J. L.; COATES, D. W.; KAYE, T. G.:                                                                                                                                                 |
| CE Octophie                                                                                                                                                                                    |
| CF  OCTABLIS  1 = 4 $5762  COLOVIN A AVANI K DAVIENKO F D. KDAICL T. KUZNVET$                                                                                                                  |
| SOVA VII · HENDEN A · KRUSHEVSKA V · DVORAK S · SOKOLOV                                                                                                                                        |
| SKY K · SERGEEVA T P · IAMES B · CRAWFORD T · CORP L ·                                                                                                                                         |
| SDSS 1102146 44 $\pm$ 234926 3: New WZ Sge-Type Dwarf Nova $1 - 6$                                                                                                                             |
| 5764 LACY C H S ·                                                                                                                                                                              |
| New Times of Minima of Some Eclipsing Variables $1 - 4$                                                                                                                                        |
| 5765 WILS P: OTERO S A : HAMBSCH F -J :                                                                                                                                                        |
| A Sudden Period Change in the RRc Variable GSC 6199-0755 $\dots 1 - 4$                                                                                                                         |
| 5766 SAMUS, N. N.: WATSON, C.:                                                                                                                                                                 |
| A Lesson of Y Scorpii $\dots 1-2$                                                                                                                                                              |
| 5767 LE BORGNE, J. F.; KLOTZ, A.; BOËR, M.:                                                                                                                                                    |
| The GEOS RR Lyr Survey $\dots 1-7$                                                                                                                                                             |
| 5768 PILECKI, B.; SZCZYGIEł, D. M.:                                                                                                                                                            |
| 13 New Eclipsing Binaries with Additional Variability in the ASAS Cata-                                                                                                                        |
| logue $1 - 4$                                                                                                                                                                                  |
| 5769 HENDEN, A.; MUNARI, U.:                                                                                                                                                                   |
| Photometric Sequences and Astrometric Positions for Nova Cyg 2007 and                                                                                                                          |
| Nova Oph 2007 1 – 4                                                                                                                                                                            |
| 5770 HAUSSLER, K.; BERTHOLD, T.; KROLL, P.:                                                                                                                                                    |
| Elements for 10 RR Lyrae Stars $\dots 1 - 4$                                                                                                                                                   |
| 5771 HENDEN, A.; MUNARI, U.:                                                                                                                                                                   |
| Photometric Sequences and Astrometric Positions of Nova Sco 2007 N.1                                                                                                                           |
| and N.2 $1-4$                                                                                                                                                                                  |

| 5772 LLOYD, C.; BERNHARD, K.; MONNINGER, G.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GSC 3377-0296 is a New Short-Period Eclipsing RS CVn Variable $\dots 1 - 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5773 RAUW, G.; NAZÉ, Y.; MARIQUE, P. X.; DE BECKER, M.; SANA, H.;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VREUX, JM.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Long-term Spectroscopic Variability of Two Oe Stars $\dots \dots \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5774 HURTA, ZS.; PÓCS, M. D.; SZEIDL, B.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| AD CMi 1-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5775 SOUTHWORTH, J.; SCHWOPE, A.; GÄNSICKE, B. T.; SCHREIBER, M.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| The Ultra-Compact Binary Candidate KUV 23182+1007 is a Bright                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Quasar $\dots \dots \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5776 ZAMANOV, R. K.; STOYANOV, K. A.; TOMOV, N. A.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $H_{\alpha}$ Observations of the Galactic Microquasar LSI+61°303 1 – 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5777 PARIMUCHA, Š.; VAŇKO, M.; PRIBULLA, T.; HAMBÁLEK, L.;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DUBOVSKY, P.; BALUĎANSKÝ, D.; PETRÍK, K.; CHRASTINA, M.;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| URBANČOK, L. :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| New Minima Times of Selected Eclipsing Binaries $\dots \dots \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5778 POLLMANN, E.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ${\rm H}_{\alpha}$ Observations of the Binary System HR 2142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5779 TOMOV, T.; MIKOŁAJEWSKI, M.; RAGAN, E.; CIKAŁA, M.; ŚWIER-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CZYŃSKI, E.; BROŻEK, T.; KARSKA, A.; WYCHUDZKI, P.; WIĘCEK,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| M.; GAŁAN, C.; KOZIATEK, P.; LEWANDOWSKI, M.; RADOMSKI,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| T.; CZART, K.; ZAJCZYK, A.; KONORSKI, P.; NIEDZIELSKI, A.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| V2467 Cyg — A Nova with Extremely Strong OI 8446 Å Emission $\dots 1 - 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5780 WOLF, M.; KOTKOVÁ, L.; BRÁT, L.; HANŽL, D.; HORNOCH, K.;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LEHKÝ, M.; ŠMELCER, L.; ZASCHE, P. :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CL Aurigae: a Triple System with Mass Transfer $\dots \dots \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5781 DIETHELM, ROGER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 166. List of Timings of Minima Eclipsing Binaries by BBSAG Observers $1-6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5782 VAN GENDEREN, A. M.; STERKEN, C.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Orbital effects on the light curves of $\eta$ Car, BP Cru, and Other Eccentric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Binaries $1-5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5783 HENDEN, A.; DI SCALA, G.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Quiescent Photometry of V5115 Sgr $\ldots 1 - 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5784 LEWANDOWSKI, MARCIN; NIEDZIELSKI, ANDRZEJ; MACIEJEWSKI,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GRACJAN:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CCD Times of Minima of Some Eclipsing Binaries from the SAVS Sky Survey $1 - 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5785 PILECKI, B.; SZCZYGIEł, D. M.:<br>AGAG 199901 9990 A. A.N. $G$ L. $($ $\Box$ LIDD LG $($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ASAS 122801-2328.4 - A New Galactic Field RRd Star $\dots $ $1-2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5780 SAMEC, RONALD G.; BRANNING, JEREMY; JONES, SIEPHANIE M.;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FAULKNER, DANNY R.; HAWKINS, NATHAN C.; VAN HAMME, W.:<br>V062 Current is an Active Detected Binary with a 22 5 Hour Deriod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| V905 Using the field of the contraction of the c |
| Diggovery of 6 Minute Ogeillations in HD 151878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5788 KHODVKIN S $\Lambda$ ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Fuidence for a Third Body in the Felipsing Binary DI Herculis 1 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5780 NELSON T E $\cdot$ CATON D B $\cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| An Increase in Stellar Activity in the Eclinsing Binary CM Dra $1-4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5790 LE BORGNE J F : KLOTZ A · BOËR M ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| The GEOS BB Lyr Survey $1 - 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| 5791 GÜROL, B.; DERMAN, E.; MÜYESSEROĞLU Z.; GÜRDEMİR, L.;                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GÖKAY, G.; ÖZBEK, N.; SAĞIR, U.; KALCI, R.; SALMAN, G.; ÇOKER,                                                                                                         |
| D.; EMİNOĞLU, B.; DEMİRCAN, Y.; TERZİOĞLU, Z.:                                                                                                                         |
| Minima Times of Some Eclipsing Binary Stars $\dots \dots         |
| 5792 SPOGLI, C.; FIORUCCI, M.; ROCCHI, G.; CAPEZZALI, D.:                                                                                                              |
| UBVRI Photometry of DX And: the 2006 Outburst $\dots 1 - 4$                                                                                                            |
| 5793 SÓDOR, Á.; JURCSIK, J.; NAGY, I.; VÁRADI, M.; DÉKÁNY, I.; VIDA,                                                                                                   |
| K.; HURTA, ZS.; POSZTOBÁNYI, K.; VITYI, N.; SZING, A.; DOBOS, V.;                                                                                                      |
| KUTI, A.:                                                                                                                                                              |
| Multicolour CCD Photometry of Three RRab Stars $\dots 1 - 4$                                                                                                           |
| 5794 GONZÁLEZ, J. F.; HUBRIG, S.; SAVANOV, I.:                                                                                                                         |
| Discovery of Rapid Oscillations in HD 218994 $\dots 1 - 3$                                                                                                             |
| 5795 DOGRU, S. S.; DOGRU, D.; DONMEZ, A.:                                                                                                                              |
| New Times of Minima of Some Eclipsing Binary Stars $\dots \dots  |
| 5796 KRUSPE, R.; SCHUH, S.; TRAULSEN, I.:                                                                                                                              |
| Minima Times for Selected Close Binary Stars $\dots \dots        |
| 5797 KHALIULLIN, KH. F.; KHALIULLINA, A. I.; ANTIPIN, S. V., SAMUS, N. N.:                                                                                             |
| Physical Parameters of the Components of the Visual Binary                                                                                                             |
| CCDM 11289-6256 $1 - 4$                                                                                                                                                |
| 5798 SUMTER, G. C.; BEAKY, M. M.:                                                                                                                                      |
| $\delta$ Scuti Component Discovered in Eclipsing Binary System BO Her 1 – 4                                                                                            |
| 5799 Observations of Variables $\dots \dots                      |
| 5800 WILS, PATRICK; DI SCALA, GIORGIO; OTERO, SEBASTIAN A.:                                                                                                            |
| NSVS 14256825: A New HW Vir Type System $\dots 1-5$                                                                                                                    |

### AUTHOR INDEX

| Alan, N.          |           |           | 5754 | Czart, K.         |       |       |       | 5779 |
|-------------------|-----------|-----------|------|-------------------|-------|-------|-------|------|
| Albayrak, B.      |           |           | 5754 | Dallaporta, S.    |       |       | 5711, | 5714 |
| Alekseev, I. Yu.  |           |           | 5723 | De Becker, M.     |       |       |       | 5773 |
| Aliyeva, A. A.    |           |           | 5702 | Değirmenci, Ö. L. |       |       |       | 5726 |
| Alksnis, A.       |           | 5720,     | 5737 | Dékány, I.        |       | 5705, | 5709, | 5793 |
| Angione, R.       |           |           | 5728 | Demircan, O.      |       |       |       | 5707 |
| Antipin, S. V.    |           |           | 5797 | Demircan, Y.      |       |       |       | 5791 |
| Artemenko, S. A.  |           |           | 5752 | Derman, E.        |       |       |       | 5791 |
| Ayani, K.         |           |           | 5763 | Di Scala, G.      |       |       | 5783, | 5800 |
| Aydin, G.         |           |           | 5754 | Diamond, B.       |       |       |       | 5728 |
| Bakis, H.         |           |           | 5740 | Diethelm, R.      |       |       | 5713, | 5781 |
| Baluďanský, D.    |           |           | 5777 | Dobos, V.         |       |       | 5705, | 5793 |
| Barannikov, A. A. |           |           | 5756 | Doğru, D.         |       | 5707, | 5746, | 5795 |
| Baştürk, Ö.       |           |           | 5754 | Doğru, S. S.      |       | 5707, | 5746, | 5795 |
| Beaky, M. M.      |           |           | 5798 | Dönmez, A.        |       |       | 5746, | 5795 |
| Bernhard, K.      | 5719, 574 | 43, 5750, | 5772 | Dubovsky, P.      |       |       |       | 5777 |
| Berthold, T.      | 5703, 573 | 32, 5758, | 5770 | Durlevich, O. V.  |       |       |       | 5721 |
| Biazzo, K.        |           |           | 5740 | Dvorak, S. W.     |       |       | 5701, | 5763 |
| Bíró, I. B.       |           |           | 5753 | Ekmekçi, F.       |       |       |       | 5754 |
| Bloomer, R. H.    |           |           | 5710 | Elmasli, A.       |       |       |       | 5754 |
| Boër, M.          | 5717, 573 | 33, 5767, | 5790 | Eminoğlu, B.      |       |       |       | 5791 |
| Borkovits, T.     |           | 5736,     | 5753 | Erdem, A.         |       |       | 5707, | 5740 |
| Boyd, D.          |           |           | 5750 | Eyres, S. P. S.   |       |       |       | 5708 |
| Brandoni, L.      |           |           | 5749 | Fagotti, P.       |       | 5716, | 5727, | 5749 |
| Branning, Jeremy  |           |           | 5786 | Faulkner, Danny R |       |       |       | 5786 |
| Brát, L.          |           |           | 5780 | Fiedler, A.       |       |       |       | 5751 |
| Brożek, T.        |           |           | 5779 | Fiorucci, M.      | 5716, | 5727, | 5749, | 5792 |
| Brunozzi, P.      | 571       | 16, 5727, | 5749 | Frank, P.         |       |       |       | 5719 |
| Çakirli, Ö.       |           |           | 5729 | Frasca, A.        |       |       |       | 5740 |
| Çalişkan, Ş.      |           |           | 5754 | Frigo, A.         |       |       |       | 5711 |
| Çamurdan, C. M.   |           |           | 5729 | Gałan, C.         |       |       |       | 5779 |
| Capezzali, D.     | 5716, 572 | 27, 5749, | 5792 | Gänsicke, B. T.   |       |       |       | 5775 |
| Catelan, M.       |           | 5706,     | 5744 | Gökay, G.         |       |       |       | 5791 |
| Caton, D. B.      |           | 5745,     | 5789 | Golovin, A.       |       |       | 5748, | 5763 |
| Chaubey, U. S.    |           |           | 5787 | González, J. F.   |       |       |       | 5794 |
| Chrastina, M.     |           |           | 5777 | Grankin, K. N.    |       |       |       | 5752 |
| Çiçek, C.         |           |           | 5707 | Graziani, M.      |       |       |       | 5711 |
| Cikała, M.        |           |           | 5779 | Gross, J.         |       |       |       | 5715 |
| Çinar, D.         |           |           | 5754 | Güngör, C.        |       |       |       | 5729 |
| Ciprini, S.       |           | 5727,     | 5749 | Gürdemir, L.      |       |       |       | 5791 |
| Coates, D. W.     |           |           | 5762 | Gürol, B.         |       |       |       | 5791 |
| Çoker, D.         |           |           | 5791 | Haefner, R.       |       |       | 5712, | 5751 |
| Çolak, T.         |           |           | 5754 | Hambálek, L.      |       |       |       | 5777 |
| Corp, L.          |           |           | 5763 | Hambsch, FJ.      |       |       | 5743, | 5765 |
| Corwin, T. M.     |           |           | 5706 | Hanžl, D.         |       |       |       | 5780 |
| Crawford, T.      |           |           | 5763 | Häussler, K.      | 5703, | 5732, | 5758, | 5770 |
| Csizmadia, Sz.    |           |           | 5736 | Hawkins, Nathan ( | J.    |       |       | 5786 |

| Heckert, P. A.                |             |       |               | 5723         | Lampens, P.                 |                   | 5753         |
|-------------------------------|-------------|-------|---------------|--------------|-----------------------------|-------------------|--------------|
| Hegedüs, T.                   |             |       |               | 5753         | Le Borgne, J. F.            | 5717, 5767        | , 5790       |
| Henden, A.                    | 5711,       | 5724, | 5763,         | 5769,        | Le Coroller, H.             |                   | 5733         |
|                               |             |       | 5771,         | 5783         | Lehký, M.                   |                   | 5780         |
| Henry, G. W.                  |             |       |               | 5740         | Lewandowski, M.             | 5779              | , 5784       |
| Henze, M.                     |             |       |               | 5739         | Lloyd, C.                   | 5750              | , 5772       |
| Hornoch, K.                   |             |       |               | 5780         | Maciejewski, Grac           | jan               | 5784         |
| Hubrig, S.                    |             |       |               | 5794         | Maehara, H.                 |                   | 5735         |
| Hübscher, J.                  |             |       | 5731,         | 5761         | Mancinelli, V.              | 5716,5727         | , 5749       |
| Hurta, Zs.                    | 5705,       | 5709, | 5774,         | 5793         | Manimanis, V. N.            | 5704              | , 5734       |
| Innis, J. L.                  |             |       |               | 5762         | Marilli, E.                 |                   | 5740         |
| Ismailov, N. Z.               |             |       |               | 5702         | Marique, P. X.              |                   | 5773         |
| Jahreiss, H.                  |             |       |               | 5755         | Marschalkó, G.              |                   | 5736         |
| James. R.                     |             |       |               | 5763         | Marton, G.                  |                   | 5736         |
| Jones, J. L.                  |             |       |               | 5750         | Melnikov, S. Y.             |                   | 5752         |
| Jones, Stephanie N            | <b>/</b> [. |       |               | 5786         | Meusinger. H.               | 5739              | . 5755       |
| Jurcsik. J.                   |             | 5705. | 5709.         | 5793         | Michalska, G.               | 5757              | 5759         |
| Jurdana-Sepic R               |             | 0.00, | 0.00,         | 5738         | Mikołajewski M              | 0.01              | 5779         |
| Kalci B                       |             |       |               | 5791         | Mikulášek Z                 |                   | 5741         |
| Karska A                      |             |       |               | 5779         | Monninger G                 |                   | 5772         |
| Kave T G                      |             |       |               | 5762         | Moretti S                   |                   | 5711         |
| Kazarovets E V                |             |       |               | 5721         | Munari II                   | 5711 5714 5738    | 5769         |
| Kelemen I                     |             |       |               | 5736         | Manari, O.                  | 0111, 0111, 0100, | 5771         |
| Khaliullin Kh F               |             |       | 5722          | 5797         | Müvesseroğlu Z              |                   | 5701         |
| Khaliullina A I               |             |       | 5722,<br>5722 | 5797         | Nagai K                     |                   | 5735         |
| Khadukin S $\Delta$           |             |       | 0122,         | 5788         | Nagar, IX,<br>Nagay I       | 5705              | 5703         |
| Kilicoğlu T                   |             |       |               | 5754         | Nakajima K                  | 0100              | 5735         |
| Kinçogiu, 1.<br>Kimeswenger S |             |       |               | 5708         | Nazá V                      |                   | 5773         |
| Kineswenger, S.               |             |       |               | 5791         | Nalson R H                  | 5715 5794         | 5760         |
| Kieg Z T                      |             |       |               | 5753         | Nelson T E                  | 5715, 5724        | 5780         |
| Kibo, Z. I.                   |             |       |               | 5735         | Newton I D                  |                   | 5710         |
| Klagwiyik P                   |             |       |               | 5736         | Newton, J. D.               | 5704              | 5734         |
| Klagytvík, I.                 |             |       |               | 5743         | Niarchos, I. G.             | 5770              | 5784         |
| Klingophorg C                 |             |       |               | 5701         | Nucciarolli C               | 5797              | 5740         |
| Klingenberg, G.               |             | 5717  | 5767          | 5701         | Ocener P                    | 5121              | 5711         |
| Kiotz, A.<br>Konorski D       |             | 5717, | 5101,         | 5770         | Other $\mathbf{S}$          | 5765              | 5200         |
| Konorski, I.                  |             |       |               | 5780         | Örbolt N                    | 5705              | 5701         |
| Koukova, L.                   |             |       |               | 5752         | Özberdeg B                  |                   | 5746         |
| Kozhounileur V E              | •           |       |               | 5799         | Dandey, D.                  |                   | 5740         |
| Kozhevnikov, v. r             | V           |       |               | 5725         | Panuey, C. F.               |                   | 5799         |
| Koznevinkova, A.              | v .         |       |               | 5725         | Fallov, K.<br>Darimucha Č   |                   | 5777         |
| Koziatek, r.                  |             |       | 5794          | 5779         | Farmucha, S.                |                   | 5777         |
| Krajci, I.                    | 5709        | 5720  | 0724,         | 0700<br>F770 | Pasciike, A.                | F 701             | 5751         |
| Kroll, P.                     | 5703,       | 5732, | 5738,         | 0//U<br>5760 | Pastuknova, E. N.           | 5721              | , 0122       |
| $\mathbf{K}$ rusnevska, V.    |             |       | 5748,         | 0703<br>E706 | Fatkos, L.<br>Daularia E. D |                   | 0/30<br>E700 |
| Kruspe, K.                    |             |       |               | 0790<br>5700 | ravienko, E. P.             | 5748              | , 0703       |
| Kuti, A.                      |             |       | 5705,         | 5793         | Petrik, K. $\mathbf{D}$     |                   | 5777         |
| Kuznyetsova, Yu.              |             |       | 5748,         | 5763         | Pietsch, W.                 |                   | 5739         |
| Lacy, C. H. S.                |             |       |               | 5764         | Pietz, J.                   |                   | 5750         |
| Lakatos, J.                   |             |       |               | 5705         | Pigulski, A.                |                   | 5757         |

| Pilecki, B.      |             | 5768, | 5785         | Sumter, G. C.         |               |               | 5798         |
|------------------|-------------|-------|--------------|-----------------------|---------------|---------------|--------------|
| Pinar, A.        |             |       | 5729         | Świerczyński, E.      |               |               | 5779         |
| Pócs, M. D.      |             | 5718, | 5774         | Szabados, L.          |               |               | 5725         |
| Pollmann, E.     |             |       | 5778         | Szczygieł, D. M.      |               | 5768,         | 5785         |
| Polsgrove, D. E. |             |       | 5710         | Szeidl, B.            | 5705,         | 5718,         | 5774         |
| Posztobányi, K.  | 5705,       | 5709, | 5793         | Szing, A.             | 5705,         | 5709,         | 5793         |
| Pribulla, T.     |             |       | 5777         | Tanriverdi, T.        |               |               | 5754         |
| Pritzl, B. J.    |             |       | 5744         | Terrell, D.           |               | 5715,         | 5742         |
| Quester, W.      |             |       | 5724         | Terzioğlu, Z.         |               |               | 5791         |
| Radomski, T.     |             |       | 5779         | Tiwari, S. K.         |               |               | 5787         |
| Ragan, E.        |             |       | 5779         | Tomaselli, S.         |               |               | 5711         |
| Rauw. G.         |             |       | 5773         | Tomasoni, S.          |               |               | 5711         |
| Regály Zs        |             |       | 5753         | Tomov. N. A.          |               |               | 5776         |
| Renz W           |             |       | 5750         | Tomov, T.             |               |               | 5779         |
| Robb R M         |             |       | 5724         | Törün. E.             |               |               | 5754         |
| Robertson C W    |             | 5701  | 5753         | Tosti, G.             |               |               | 5727         |
| Rocchi G         | 5716 5727   | 5740  | 5702         | Traulsen I            |               |               | 5796         |
| Sağir II         | 5710, 5727, | 5743, | 5792         | Tri L                 |               |               | 5728         |
| Sagin, U.        |             |       | 5791         | Tüvsüz M              |               |               | 5746         |
| Salman C         |             |       | 5744         | Illus N D             |               |               | 5754         |
| Samual, G.       |             |       | 5791<br>E796 | Urbančok L            |               |               | 5777         |
| Samec, Konald G. | F701 F700   | 5766  | 0780<br>F707 | van Cautoron P        |               |               | 5753         |
| Samus, N. N.     | 5721, 5722, | 5700, | 0/9/<br>5770 | van Cauteren, 1.      |               |               | 5789         |
| Sana, H.         |             |       | 5773         | van Genderen, A. M.   |               |               | 5786         |
| Savanov, I.      |             |       | 5794         | Van Hamme, wanter     |               |               | 5777         |
| Schanne, L.      |             |       | 5747         | Vánko, M.<br>Vérodi M | 5705          | 5700          | 5702         |
| Schnell, A.      |             |       | 5718         | Varadi, M.            | 5705,<br>E705 | 5709,         | 0790         |
| Scholz, RD.      |             |       | 5755         | V I d a, K.           | 5705,<br>F705 | 5709,         | 5793         |
| Schreiber, M.    |             |       | 5775         | V I U Y I, I N.       | 5705,         | 5709,         | 5793         |
| Schuh, S.        |             |       | 5796         | Vreux, JM.            |               | F <b>7</b> 91 | 0//3<br>F701 |
| Schwope, A.      |             |       | 5775         | Walter, F.            |               | 5731,         | 5761         |
| Scott, N. J.     |             |       | 5706         | Washuettl, A.         |               |               | 5709         |
| Selam, S. O.     |             |       | 5754         | Watson, C.            |               |               | 5766         |
| Şenavci, H. V.   |             |       | 5754         | Wetterer, C. J.       |               |               | 5710         |
| Sergeeva, T. P.  |             |       | 5763         | Więcek, M.            |               |               | 5779         |
| Sievers, J.      |             |       | 5728         | Wils, P.              | 5743,         | 5765,         | 5800         |
| Sipahioğlu, S.   |             |       | 5754         | Wolf, M.              | 5735,         | 5741,         | 5780         |
| Siviero, A.      |             |       | 5711         | Wychudzki, P.         |               |               | 5779         |
| Šmelcer, L.      |             |       | 5780         | Yilmaz, M.            |               |               | 5754         |
| Smirnova, O.     |             | 5720, | 5737         | Zajczyk, A.           |               |               | 5779         |
| Smith, A. B.     |             |       | 5745         | Zamanov, R. K.        |               | 5733,         | 5776         |
| Smith, H. A.     |             | 5706, | 5744         | Zasche, P.            |               |               | 5780         |
| Sódor, Á.        | 5705,       | 5709, | 5793         | Zejda, M.             |               | 5735,         | 5741         |
| Sokolovsky, K.   |             | ,     | 5763         | Zhang, R. X.          |               |               | 5730         |
| Southworth, J.   |             |       | 5775         | Zhang, X. B.          |               |               | 5730         |
| Sovdugan. É.     |             |       | 5746         | Zharova, A. V.        |               |               | 5737         |
| Sovdugan, F.     |             | 5740  | 5746         |                       |               |               |              |
| Spogli. C.       | 5716.5727   | 5749  | 5792         |                       |               |               |              |
| Sterken. C.      |             | 0 ,   | 5782         |                       |               |               |              |
| Stovanov K A     |             |       | 5776         |                       |               |               |              |
| ~                |             |       | 5.10         |                       |               |               |              |

### INDEX OF VARIABLES

| QT Aur $5745$ $\mathbf{TT}$ Aur $5741$ RT And $5745$ $\mathbf{TT}$ Aur $5794$ XZ Aud $5753$ $5754$ $\mathbf{TT}$ Aur $5799$ AB And $5754$ $5777$ WW Aur $5745$ BX And $5741$ $5754$ AH Aur $5745$ CA And $5770$ AP Aur $5775$ CN And $5776$ AR Aur $5745$ DO And $5716$ $5792$ CL Aur $5745$ DX And $5736$ $5771$ EO Aur $5745$ GZ And $5736$ $5771$ EO Aur $5776$ GZ And $5736$ $5771$ HL Aur $5777$ PA Aud $5766$ $\mathbf{1M}$ Aur $5736$ GZ And $5777$ $771$ HP Aur $5774$ PA Aud $5776$ $777$ $\mathbf{1U}$ Aur $5774$ PX And $5776$ $777$ $\mathbf{1U}$ Aur $5771$ V363 And $5754$ $\mathbf{KO}$ Aur $5741$ V366 And $5776$ $777$ $777$ V440 And $5741$ $778$ $777$ V444 And $5784$ $772$ $777$ V444 And $5754$ $777$ $777$ V444 And $5754$ $777$ $777$ V447 Aqr $5741$ $778$ $5707$ V7 Aqr $5741$ $777$ $777$ VAqr $5741$ $778$ $5777$ <tr< th=""><th>Star</th><th>IBVS No.</th><th><math>\varepsilon  { m Aur}</math></th><th>5747</th></tr<>                                                                                                                                                                                    | Star      | IBVS No.            | $\varepsilon  { m Aur}$ | 5747                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|-------------------------|------------------------------------|
| RT And $5745$ TT Aur $5754$ XZ And $5753$ $5754$ $5772$ Aur $5750$ AB And $5753$ $5754$ $5777$ WW Aur $5745$ BX And $5754$ $5777$ WW Aur $5754$ CC And $5701$ AP Aur $5754$ $5777$ CC And $5701$ AP Aur $5754$ DO And $5741$ BH Aur $5709$ DX And $5766$ AR Aur $5745$ DO And $5741$ BT Aur $5705$ EP And $5736$ $571577$ EO AurFP And $5736$ $5715777$ FO AurSZ And $5736$ $57157777777777777777777777777777777777$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                     | QT Aur                  | 5741                               |
| XZ And       5753       TZ Aur       5709         AB And       5753 5754       5777       WW Aur       5745         BX And       5741       5754       AH Aur       5745         SX And       5736       AR Aur       5745       5754         CA And       5736       AR Aur       5745       5753         DO And       5741       BH Aur       5745       5735         DX And       5716       5792       CL Aur       5745       5735         QP And       5736       5741       5777       EO Aur       5745       5736         QZ And       5736       5711       FP Aur       5736       5737         QA And       5776       IL Aur       5707       5745         QA And       5777       HP Aur       5741       5736         Y363 And       5754       FO Aur       5741       5731         Y376 And       5736       5737       IU Aur       5741       5741         Y40 And       5741       Y364 Aur       5741       5741       5741       5741       5741       5741       5741       5741       5741       5741       5741       5741       5741 <td< td=""><td>RT And</td><td>5745</td><td>TT Aur</td><td>5754</td></td<> | RT And    | 5745                | TT Aur                  | 5754                               |
| AB And       5753 5754 5777       WW Aur       5745         BX And       5741 5754       AH Aur       5745         CC And       5701       AP Aur       5754         CN And       5736       AR Aur       5755         DO And       5716       5792       CL Aur       5745         DO And       5716       5792       CL Aur       5745         DO And       5716       5792       CL Aur       5745         SP And       5736       5777       EO Aur       5735         GZ And       5736       5777       FO Aur       5736         JO And       5776       5791       HL Aur       5707         JC And       5736       5777       FU Aur       5736         JC And       5777       5791       HP Aur       5741         SY And       5796       IM Aur       5741       5731         VAnd       5777       FU Aur       5741       5731         V363 And       5754       5777       FU Aur       5741         V40 And       5741       V364 Aur       5741         V444 And       5784       V410 Aur       5741         V444 And       <                                                                                        | XZ And    | 5753                | TZ Aur                  | 5709                               |
| BX And57415754AH Aur57545777CC And5701AP Aur5736CN And5736AR Aur5745DO And5741BH Aur5709DX And573657415732CL Aur57455753GP And57365717FO AurFP Aud573657415777GZ And57365771FP AurSZAnd57365771FP AurSZAnd57365771FP AurSZAnd57365773FP AurSZAnd57365773FP AurSZAnd57365773FP AurSZAnd5777FO Aur5741PX And5791HP Aur5745SZAnd57755751HO AurSZAnd5777FO Aur5741SZAnd5754KO Aur5741SZAnd5754V363 And5754SZAnd5754V40 Aur5741V363 And5754V40 Aur5741V364 And5784V40 Aur5741V364 And5741TY Boo5707V444 And5741TY Boo5707UL Aqr5741TY Boo5707SZ Aql5741TY Boo5707SZ Aql5743CK Boo5745Y Aql5744FY Boo5707Y Aql5741TY Boo5707Y Aql5741CV Boo5707V Aql <td>AB And</td> <td>5753 <math>5754</math> <math>5777</math></td> <td>WW Aur</td> <td>5745</td>                                                                                                                                                                                                                                                                                                                                                                                           | AB And    | 5753 $5754$ $5777$  | WW Aur                  | 5745                               |
| CC And5701AP Aur5754CN And5736AR Aur5754O And5741BII Aur5709DX And57165722CL Aur5745DX And57165729CL Aur5745GP And57015718FP Aur5736GZ And573657415777HL Aur5707FV And5776114FP Aur5741CO And57775711HP Aur5741PX And5776114Aur5736QR And5777110Aur5736Y376And5736V356AurV376And5736V356AurV376And5736V356AurV376And5734V400AurV376And5734V4045741V40 And5741V364Aur5741V40 And5741V364V10AurV444And5784V100AurV444And5784V1005707V Aps5722TU Boo5707U Aqr5741TY Boo5707V Aqr5741UW Boo5707XZ Aq157535754CK Boo5707Y Aq15741UW Boo5707Y Aq15741UW Boo5707Y Aq15741CW Boo5707Y Aq15743FY4Boo5707Y Aq1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BX And    | 5741 $5754$         | AH Aur                  | 5754 $5777$                        |
| CN And $5736$ AR Aur $5745$ $5754$ DO And $5741$ BH Aur $5705$ $5753$ DO And $5716$ $5792$ CL Aur $5745$ $5735$ DY And $5736$ $5745$ $5735$ $5745$ $5745$ GP And $5736$ $5741$ $5777$ EO Aur $5736$ GZ And $5736$ $57177$ HL Aur $5707$ $5745$ LO And $5777$ FI Aur $5736$ $5733$ QR And $5777$ FI Aur $5736$ $5733$ QR And $5777$ HI Aur $5741$ $5733$ V440 And $5754$ KO Aur $5741$ $5745$ V440 And $5742$ TU Boo $5707$ $5741$ V444 And $5742$ TU Boo $5707$ $5745$ QC Aqr $5741$ TZ Boo $5707$ $5745$ QC Aqr $5741$ TZ Boo $5707$ $5745$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CC And    | 5701                | AP Aur                  | 5754                               |
| DO And5741BH Aur5709DX And57165792CL Aur574557535770DX And5736571157335777EO Aur574557535777GP And573657415777FD Aur573657415776574557535777FD Aur5736574157775745LO And57765771FD Aur5771FD Aur573657335741574357435741574357435743574357435743574357435743574357435743574357445744574457445744574457445744574457445744574457445744574457445744574557455745577557455775574557455775574557455775574557755745577557455775574557755745577557455775574557755745577457417257415745574157415745574557455745574557455745574557455745574557455745574557455745574557455745574557455745574557455745574557455745574557455745574557455745574557455745574557455745 <td>CN And</td> <td>5736</td> <td>AR Aur</td> <td>5745 <math>5754</math></td>                                                                                                                                                                                                                                                                                                                                                                                                     | CN And    | 5736                | AR Aur                  | 5745 $5754$                        |
| DX And57165792CL Aur574557535780EP And5736574157535777EO Aur57365736GP And57015718FP Aur57365736GZ And573657415777HL Aur57075745LO And57775791HP Aur57415733QR And5776IM Aur573657335733QR And5776IM Aur57415733Y363 And5754KO Aur57415733V376 And57365736V356 Aur5701V40 And5741V364 Aur57415741V40 And5741V364 Aur57415741V410 Aur5741TY Boo57075777CX Aqr5741TY Boo57075777DY Aqr5741TZ Boo57075774Y Aqr5741YZ Boo57075744YZ Aq15754AC Boo57075754XZ Aq157535754CK Boo5707YZ Aq15751FY Boo5707V047 Aq15741EE Boo5707V047 Aq15741SV Cam5736V047 Aq15741SV Cam5736V0700 Aq15741AC Cam5745V0761 Aq15741AC Cam5745V0784 Aq15741AC Cam5745V0784 Aq15741AC Cam5745V0889 Aq15741                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DO And    | 5741                | BH Aur                  | 5709                               |
| Initial101010101010GP And5736574157535777GZ And573657415777FP Aur5736GZ And573657415777HI Aur5707LO Aud57761M Aur57365733QR And5776IM Aur57365733QR And5777IU Aur57415736V363 And5754KO Aur5741V376 And5736V356 Aur5701V440 And5741V364 Aur5741V444 And5784V410 Aur5744V444 And5784V410 Aur5744V444 And5741TZ Boo5707UU Aqr5741TZ Boo5707TU Aqr5741TZ Boo5707TY Aqr5741UW Boo5774SK Aqr5754AC Boo5775YZ Aql5754CK Boo5775XAql5754CV Boo5707XZ Aql5754CV Boo5707YZ Aql5754CV Boo5707Y047 Aql5741EF Boo5770V0479 Aql5741FY Boo5741V0500 Aql5741SV Cam5738V0770 Aql5741SV Cam5738V0770 Aql5741SV Cam5738V0770 Aql5741KW Cam5745V0883 Aql5753BL Cam5773V0770 Aql5741KW Cam5745V0                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DX And    | 5716 5792           | CL Aur                  | 5745 $5753$ $5780$                 |
| In this505 611 6165 711FP Aur5736GP And5701 5718FP Aur5736GZ And5736 5741 5777HL Aur5707 5745LO And5777 5791HP Aur5736 5733QR And5777IU Aur5741 5753QR And5777IU Aur5741 5753QR And5776WA ur5741 5753V363 And5754KO Aur5741 5753V364 And5736V356 Aur5701V440 And5741V364 Aur5741V376 And5784V100 Aur5754V400 And5741TY Boo5707V444 And5741TZ Boo5707 5741V444 And5741TZ Boo5707 5741V4475741TZ Boo5707 5741 5753 5754 5771VAqr5741UW Boo5745GK Aqr5741UW Boo5745GK Aqr5741UW Boo5745Y Aql5741CW Boo5707 5754X Aql57535754CK Boo5707Y Aql5741EB Boo5707V047 Aql5741EF Boo5707V0477 Aql5741FY Boo5745V0500 Aql5751FY Boo5745V0699 Aql5741SV Cam5736V0770 Aql5741Y Cam5736V0784 Aql5741AC Cam5745V083 Aql5741AC Cam5745V0889 Aql5753BL Cam5741                                                                                                                                                                                                                                                                                                                                                                                              | EP And    | 5736 5741 5753 5777 | EO Aur                  | 5745                               |
| Ch And       5761 5741 5777       HL Aur       5707 5745         LO And       5777 5791       HP Aur       5736 5733         LO And       5777 5791       HP Aur       5736 5733         QR And       5776       IU Aur       5741 5753         V363 And       5754       KO Aur       5741 5753         V363 And       5754       KO Aur       5741 5753         V376 And       5736       V356 Aur       5701         V440 And       5741       V364 Aur       5741         V444 And       5784       V4064 Aur       5741         V444 And       5784       V523 Aur       5741         V444 And       5741       TZ Boo       5707 5771         UU Aqr       5741       TZ Boo       5707 5741 573 5754 5777         UU Aqr       5741       TZ Boo       5707 5741 5753 5754 5777         QY Aqr       5741       UW Boo       5745 5701         XZ Aql       5753       5754       5707 5754 5751         YZ Aql       5753 5754       CK Boo       5707 5754         YZ Aql       5753 5754       CK Boo       5707 5754         V0407 Aql       5741       EF Boo       5707         V0417 A                                     | GP And    | 5701 5718           | FP Aur                  | 5736                               |
| OD And57075791HP Aur5741PX And57775791IM Aur57365753QR And5776IU Aur57415753V363 And5754KO Aur5701V376 And5736V356 Aur5701V440 And5741V364 Aur5741V444 And5784V410 Aur5754V444 And5784V410 Aur5754V444 And5784V523 Aur5707UU Aqr5741TY Boo5707CX Aqr5741TZ Boo5707DY Aqr5741UW Boo5707SC Aqr5741YZ Boo5705XZ Aql5754AC Boo5707XZ aql57556K Aqr5745V0 Aql5741CV Boo5707V0417 Aql5741EF Boo5707V0479 Aql5741EF Boo5707V0479 Aql5741Y Cam5738V0761 Aql5741Y Cam5738V0761 Aql5741AC Cam5735V0761 Aql5741AC Cam5735V0761 Aql5741AC Cam5735V0761 Aql5741AC Cam5735V0761 Aql5741AC Cam5735V0761 Aql5741AC Cam5745V0761 Aql5741AC Cam5753V0761 Aql5741AC Cam5753V0761 Aql5741AC Cam5753V0763 Aql5741AC                                                                                                                                                                                                                                                                                                                                                                                                                                           | CZ And    | 5736 5741 5777      | HL Aur                  | 5707 $5745$                        |
| ID And $5713$ IM Aur $5736$ $5733$ QR And $5777$ IU Aur $5741$ $5753$ V363 And $5754$ KO Aur $5741$ V376 And $5736$ V356 Aur $5701$ V440 And $5741$ V364 Aur $5741$ V444 And $5784$ V410 Aur $5754$ V444 And $5784$ V410 Aur $5754$ V444 And $5784$ V400 Aur $5754$ V444 And $5784$ V523 Aur $5707$ VU Aqr $5741$ TY Boo $5707$ UU Aqr $5741$ TZ Boo $5707$ VAqr $5741$ TZ Boo $5707$ YAqr $5741$ UW Boo $5745$ GK Aqr $5741$ YZ Boo $5707$ XZ Aql $5754$ AC Boo $5707$ YZ Aql $5754$ CK Boo $5707$ V4q1 $5741$ UW Boo $5745$ OO Aql $5753$ $5754$ CK BooOT01 $5741$ EF Boo $5707$ V047 Aql $5741$ EF Boo $5741$ V0407 Aql $5741$ EF Boo $5745$ V0500 Aql $5741$ FY Boo $5741$ V0700 Aql $5741$ AC Cam $5733$ V0770 Aql $5741$ AC Cam $5733$ V0784 Aql $5741$ AC Cam $5733$ V0803 Aql $5741$ AC Cam $5743$ V0803 Aql $5741$ AC Cam $5741$ V182 Aql $5741$ AC Cam $5741$ V182 Aql $5741$ <                                                                                                                                                                                                                                                | LO And    | 5777 5701           | HP Aur                  | 5741                               |
| I X And5740IU Aur5741QR And5777IU Aur5741V363 And5754KO Aur5741V376 And5736V356 Aur5701V440 And5741V364 Aur5741V444 And5784V410 Aur5754V444 And5784V410 Aur5754RV Aps5722TU Boo5707UU Aqr5741TY Boo5707QX Aqr5741TZ Boo5707 5741DY Aqr5741UW Boo5745GK Aqr5741YZ Boo5707YZ Aql5754AC Boo5707XZ Aql5754CK Boo5707V417 Aql5741CV Boo5707V0407 Aql5741EF Boo5707V0417 Aql5741EL Boo5707V0500 Aql5751FY Boo5741V0500 Aql57415741SV CamV0761 Aql5741YC am5738V0770 Aql5741AC Cam5773V0803 Aql57415741AC CamV0803 Aql57415741AW CamV182 Aql57415741TX CacV182 Aql57415741574V182 Aql57415741V77757415745574V77757415745574V77757415745574V699 Aql57415741V7744415741V7755741<                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DV And    | 5706                | IM Aur                  | 5736 $5753$                        |
| Qit Alti $5771$ KO Aur $5741$ V363 And $5754$ KO Aur $5741$ V376 And $5736$ V356 Aur $5701$ V440 And $5741$ V364 Aur $5741$ V444 And $5784$ V410 Aur $5754$ V444 And $5784$ V410 Aur $5754$ V444 And $5784$ V410 Aur $5754$ RV Aps $5722$ TU Boo $5707$ UU Aqr $5741$ TY Boo $5707$ CX Aqr $5741$ TZ Boo $5707$ DY Aqr $5741$ UW Boo $5745$ GK Aqr $5741$ UW Boo $5767$ XZ Aql $5754$ AC Boo $5707$ ZAql $5754$ CK Boo $5767$ V2 Aql $5745$ BW Boo $5745$ OO Aql $5753$ $5754$ CK Boo $5707$ V0407 Aql $5741$ EF Boo $5707$ V0407 Aql $5741$ EI Boo $5767$ V0407 Aql $5741$ FY Boo $5741$ V0500 Aql $5751$ FY Boo $5741$ V0500 Aql $5741$ Y Cam $5753$ V0770 Aql $5741$ AO Cam $5773$ V0784 Aql $5741$ AO Cam $5753$ V0784 Aql $5741$ AW Cam $5753$ V0783 Aql $5741$ $5745$ $5W$ CamV188 Aql $5741$ $5745$ $5745$ V188 Aql $5741$ $5745$ $5745$ V188 Aql $5741$ $5745$ $5745$ V188 Aql $5741$ <td>OD And</td> <td>5750</td> <td>IU Aur</td> <td>5741 5753</td>                                                                                                                                                                           | OD And    | 5750                | IU Aur                  | 5741 5753                          |
| V305 And5734V376V376 And5736V356 Aur5701V440 And5741V364 Aur5741V444 And5784V410 Aur5754V444 And5784V410 Aur5754V444 And5784V410 Aur5754V444 And5784V410 Aur5754V444 And5784V410 Aur5754V444 And5784V410 Aur5754V444 And5784V410 Aur5754V4475741TY Boo5707VAqr5741TY Boo5707VAqr5741TZ Boo5707Staq5741YZ Boo5707Staq5754AC Boo5707XZ Aql57555754CK Boo5707XZ Aql5745BW Boo5745YO Aql5741CV Boo5707V0407 Aql5741CV Boo5707V0417 Aql5741EI Boo5707V0479 Aql5741EI Boo5745V0500 Aql57415741SV CamV0699 Aql5741Y Cam5736V0761 Aql5741AO Cam5774V0803 Aql5741AB Cam5753V0784 Aql5741AB Cam5741V0803 Aql57415741AW Cam5745V0873 Aql5741AB Cam5741V188 Aql57415745SW Cnc5744V182 Aql57417741K Cam5744                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vaca And  | 5777                | KO Aur                  | 5741                               |
| V376 And $5736$ $V364$ Aur $5734$ $V440$ And $5741$ $V364$ Aur $5741$ $V444$ And $5784$ $V410$ Aur $5754$ $VV$ Aps $5722$ $TU$ Boo $5707$ $VU$ Aqr $5741$ $TY$ Boo $5707$ $DY$ Aqr $5741$ $TY$ Boo $5707$ $DY$ Aqr $5741$ $TZ$ Boo $5707$ $DY$ Aqr $5741$ $UW$ Boo $5707$ $DY$ Aqr $5741$ $UW$ Boo $5707$ $DY$ Aqr $5741$ $UW$ Boo $5707$ $ZZ$ Aql $5754$ AC Boo $5707$ $XZ$ Aql $5754$ $CW$ Boo $5745$ $V0407$ Aql $5753$ $5754$ $CW$ Boo $5767$ $V0477$ Aql $5741$ $EF$ Boo $5707$ $V0477$ Aql $5741$ $EF$ Boo $5707$ $V0479$ Aql $5741$ $EF$ Boo $5707$ $V0479$ Aql $5741$ $EF$ Boo $5775$ $V0500$ Aql $5751$ $FY$ Boo $5741$ $V0509$ Aql $5741$ $44i$ Boo $5745$ $V0761$ Aql $5741$ $AC$ Cam $5733$ $V0770$ Aql $5741$ $AC$ Cam $5753$ $V0784$ Aql $5741$ $AC$ Cam $5753$ $V0803$ Aql $5741$ $AC$ Cam $5753$ $V0803$ Aql $5741$ $AC$ Cam $5745$ $V182$ Aql $5741$ $AC$ Cam $5745$ $V182$ Aql $5741$ $AC$ Cam $5745$ $V182$ Aql $5741$ $AC$ Cam $5745$ <td>V303 And</td> <td>0704<br/>5720</td> <td>V356 Aur</td> <td>5701</td>                                                                                                       | V303 And  | 0704<br>5720        | V356 Aur                | 5701                               |
| V440 And $5741$ V410 Aur $5754$ V444 And $5784$ V410 Aur $5754$ RV Aps $5722$ TU Boo $5707$ UU Aqr $5741$ TY Boo $5707$ DY Aqr $5741$ TZ Boo $5707$ DY Aqr $5741$ TZ Boo $5707$ DY Aqr $5741$ UW Boo $5745$ GK Aqr $5741$ UW Boo $5745$ SZ Aql $5754$ AC Boo $5707$ YZ Aql $5754$ AC Boo $5707$ YZ Aql $5754$ CK Boo $5767$ YZ Aql $5753$ $5754$ CK BooOO Aql $5753$ $5754$ CV BooV0407 Aql $5741$ EF Boo $5707$ V0417 Aql $5741$ EH Boo $5757$ V0407 Aql $5741$ FY Boo $5741$ Sood Aql $5751$ FY Boo $5741$ V0500 Aql $5751$ FY Boo $5745$ V0609 Aql $5741$ AC Cam $5753$ V0770 Aql $5741$ Y Cam $5753$ V0784 Aql $5741$ AS Cam $5753$ V0803 Aql $5741$ AS Cam $5745$ V0803 Aql $5741$ AR Cam $5741$ V182 Aql $5741$ FW Cam $5741$ V182 Aql $5741$ TR Cam $5741$ V182 Aql $5741$ $5745$ SW Cnc $5741$ V182 Aql $5745$ SW Cnc $5754$ V1355 Aql $5745$ $5745$ WX Cnc $5784$ SX ri $5753$                                                                                                                                                                                                                                                  | V376 And  | 5730                | V364 Aur                | 5741                               |
| V444 And $5784$ $V10$ Au $5741$ RV Aps $5722$ TU Boo $5707$ QU Aqr $5741$ TY Boo $5707$ $V10$ Aqr $5741$ TZ Boo $5707$ $V2$ Aqr $5741$ TZ Boo $5707$ $DY$ Aqr $5741$ UW Boo $5745$ $GK$ Aqr $5741$ UW Boo $5745$ $GK$ Aqr $5741$ YZ Boo $5707$ $XZ$ Aql $5754$ AC Boo $5707$ $YZ$ Aql $5754$ BW Boo $5745$ $YZ$ Aql $5745$ BW Boo $5745$ $YO407$ Aql $5741$ CV Boo $5707$ $V0407$ Aql $5741$ EF Boo $5707$ $V0479$ Aql $5741$ EL Boo $5757$ $V0407$ Aql $5741$ EV Boo $5741$ $YP$ Boo $5741$ $5753$ $5741$ $V0407$ Aql $5741$ EV Boo $5767$ $V0479$ Aql $5741$ EV Boo $57741$ $V0500$ Aql $5741$ $5741$ $5753$ $V0761$ Aql $5741$ $5741$ $44i$ Boo $5741$ $5741$ $5741$ $5753$ $V0770$ Aql $5741$ $5741$ $AO$ Cam $5733$ $5741$ $AO$ Cam $5753$ $V0783$ Aql $5741$ $5741$ $AO$ Cam $5753$ $5741$ $5753$ $5741$ $5753$ $5741$ $5753$ $5741$ $5753$ $5753$ $5753$ $5723$ $5753$ $5753$ $5753$ $5723$ $5753$ <                                                                                                                                                                                                                              | V440 And  | 5741                | V410 Aur                | 5754                               |
| RV Aps $5722$ TU Boo $5711$ UU Aqr $5741$ TY Boo $5707$ $CX$ Aqr $5741$ TZ Boo $5707$ $DY$ Aqr $5741$ TZ Boo $5707$ $DY$ Aqr $5741$ UW Boo $5745$ $GK$ Aqr $5741$ UW Boo $5745$ $GK$ Aqr $5741$ UW Boo $5745$ $GK$ Aqr $5741$ YZ Boo $5707$ $XZ$ Aql $5754$ AC Boo $5707$ $YZ$ Aql $5754$ BW Boo $5745$ $YZ$ Aql $5754$ BW Boo $5745$ $YO$ Aql $5753$ $5744$ CV Boo $Y0407$ Aql $5741$ EF Boo $5707$ $Y0479$ Aql $5741$ EF Boo $57741$ $Y0500$ Aql $5751$ FY Boo $57415$ $Y0699$ Aql $5741$ FY Boo $5745$ $Y0761$ Aql $5741$ Y Cam $5733$ $Y0770$ Aql $5741$ AS Cam $5753$ $Y0784$ Aql $5741$ AS Cam $5753$ $Y0803$ Aql $5741$ AS Cam $5745$ $Y0803$ Aql $5741$ AS Cam $5753$ $Y0803$ Aql $5741$ $AW$ Cam $5741$ $Y182$ Aql $5741$ $5745$ $5W$ Cnc $5741$ $Y182$ Aql $5741$ $5745$ $5753$ $5741$ $Y179$ $5741$ $5753$ $5741$ $5754$ $Y299$ $777$ $5753$ $5753$ $5723$ $5741$ $Y1182$ Aql $5741$ $5753$ $5754$ $5784$ </td <td>V444 And</td> <td>5784</td> <td>V523 Aur</td> <td>5741</td>                                                                                                                                                | V444 And  | 5784                | V523 Aur                | 5741                               |
| TU Boo $5707$ UU Aqr $5741$ TY Boo $5707$ CX Aqr $5741$ TZ Boo $5707$ DY Aqr $5741$ TZ Boo $5707$ DY Aqr $5741$ UW Boo $5745$ GK Aqr $5741$ UW Boo $5745$ GK Aqr $5741$ YZ Boo $5707$ XZ Aql $5754$ AC Boo $5707$ YZ Aql $5754$ AC Boo $5707$ YZ Aql $5754$ CK Boo $5707$ OO Aql $5753$ $5754$ CK Boo $5754$ V0407 Aql $5741$ CV Boo $5707$ V0417 Aql $5741$ EF Boo $5707$ V0479 Aql $5741$ EF Boo $5745$ V0500 Aql $5751$ FY Boo $5741$ V0699 Aql $5741$ FY Boo $5745$ V0761 Aql $5741$ Y Cam $5733$ V0770 Aql $5741$ AO Cam $5777$ V0803 Aql $5741$ AS Cam $5753$ V0873 Aql $5741$ AW Cam $5745$ V0889 Aql $5753$ BL Cam $5741$ V182 Aql $5741$ $5745$ SW Cnc $5741$ V1325 Aql $5741$ $5745$ WX Cnc $5754$ SAri $5745$ WX Cnc $5754$ $5784$ SAri $5745$ WX Cnc $5754$ $5784$                                                                                                                                                                                                                                                                                                                                                           | RV Aps    | 5722                | v 525 Mui               | 0141                               |
| 000 Aqr $5741$ TY Boo $5707$ $5777$ $CX$ Aqr $5741$ TZ Boo $5707$ $5741$ $5753$ $5754$ $5777$ $DY$ Aqr $5741$ UW Boo $5745$ $5707$ $5741$ $5753$ $5754$ $GK$ Aqr $5741$ $YZ$ Boo $5707$ $5777$ $XZ$ Aql $5754$ AC Boo $5707$ $5754$ $YZ$ Aql $5755$ $BW$ Boo $5745$ $OO$ Aql $5753$ $5754$ CK Boo $5707$ $V0407$ Aql $5741$ CV Boo $5707$ $V0407$ Aql $5741$ EF Boo $5707$ $V0479$ Aql $5741$ EF Boo $5777$ $V0479$ Aql $5741$ EL Boo $5774$ $V0500$ Aql $5751$ FY Boo $5745$ $V0500$ Aql $5741$ $44i$ Boo $5745$ $V0761$ Aql $5741$ Y Cam $5733$ $V0770$ Aql $5741$ AO Cam $5777$ $V0803$ Aql $5741$ AN Cam $5745$ $V0893$ Aql $5741$ AW Cam $5745$ $V0899$ Aql $5753$ BL Cam $57741$ $V1168$ Aql $5741$ $5745$ SW Cnc $5741$ $V1325$ Aql $5741$ $5745$ SW Cnc $5744$ $V1355$ Aql $5745$ $5753$ WX Cnc $5723$ $5744$ $5753$ WX Cnc $5723$ $5744$ $5754$ $5753$ WX Cnc $5724$ $5784$                                                                                                                                                                                                                                                     |           |                     | TU Boo                  | 5707                               |
| CX Aqr $5741$ TZ Boo $5707$ $5741$ $5753$ $5754$ $5777$ DY Aqr $5741$ UW Boo $5745$ GK Aqr $5741$ YZ Boo $5701$ XZ Aql $5754$ AC Boo $5707$ YZ Aql $5754$ AC Boo $5707$ OO Aql $5753$ $5754$ CK BooOO Aql $5753$ $5754$ CK BooV0407 Aql $5741$ CV Boo $5707$ V0417 Aql $5741$ EF Boo $5707$ V0417 Aql $5741$ EL Boo $5777$ V0479 Aql $5741$ EL Boo $5774$ V0500 Aql $5751$ FY Boo $5741$ 5741 $5741$ Y Cam $5733$ V0761 Aql $5741$ Y Cam $5733$ V0770 Aql $5741$ AO Cam $5777$ V0803 Aql $5741$ AN Cam $5743$ V0873 Aql $5741$ AW Cam $5745$ V1168 Aql $5741$ LR Cam $5741$ V1182 Aql $5741$ $5745$ SW Cnc $5744$ V1355 Aql $5745$ SW Cnc $5754$ SAri $5753$ WX Cnc $5723$ $5744$ SAri $5753$ WY Cnc $5723$ $5744$                                                                                                                                                                                                                                                                                                                                                                                                                       | UU Aqr    | 5741                | TY Boo                  | 5707 $5777$                        |
| DY Aqr $5741$ UW Boo $5745$ GK Aqr $5741$ YZ Boo $5701$ XZ Aql $5754$ AC Boo $5707$ YZ Aql $5754$ BW Boo $5745$ OO Aql $5745$ BW Boo $5745$ V0407 Aql $5741$ CV Boo $5707$ V0417 Aql $5741$ EF Boo $5707$ V0417 Aql $5741$ EF Boo $5707$ V0479 Aql $5741$ EL Boo $5751$ V0500 Aql $5751$ FY Boo $5741$ V0500 Aql $5751$ FY Boo $5745$ V0761 Aql $5741$ Y Cam $5733$ V0770 Aql $5741$ SV Cam $5736$ V0784 Aql $5741$ AS Cam $5733$ V0873 Aql $5741$ AW Cam $5745$ V0889 Aql $5741$ LR Cam $5741$ V182 Aql $5745$ SW Cnc $5744$ V1355 Aql $5745$ SW Cnc $5754$ SX Ari $5753$ WX Cnc $5723$ SX Ari $5753$ WX Cnc $5724$ SX Ari $5753$ WX Cnc $5724$ SX Ari $5753$ WX Cnc $5724$ SX Ari $5753$ WX Cnc $5724$ SX Ari $5753$ WY Cnc $5724$ SX Ari $5753$ WY Cnc $5724$ SX Ari $5753$ WY Cnc $5724$                                                                                                                                                                                                                                                                                                                                             | CX Aqr    | 5741                | TZ Boo                  | $5707 \ 5741 \ 5753 \ 5754 \ 5777$ |
| GK Aqr $5741$ YZ Boo $5701$ XZ Aql $5754$ AC Boo $5707$ $5754$ YZ Aql $5753$ $5754$ BW Boo $5745$ OO Aql $5753$ $5754$ CK Boo $5754$ V0407 Aql $5753$ $5754$ CV Boo $5707$ V0417 Aql $5741$ EF Boo $5707$ V0417 Aql $5741$ EL Boo $5707$ V0417 Aql $5741$ EL Boo $5757$ V0407 Aql $5741$ EL Boo $5757$ V0417 Aql $5741$ EL Boo $5754$ V0500 Aql $5751$ FY Boo $5741$ V0509 Aql $5741$ Y Cam $5753$ V0761 Aql $5741$ Y Cam $5753$ V0770 Aql $5741$ AO Cam $5777$ V0803 Aql $5741$ AW Cam $5753$ V0873 Aql $5741$ AW Cam $5745$ V0889 Aql $5753$ BL Cam $5741$ V1882 Aql $5745$ SW Cnc $5744$ V1355 Aql $5745$ SW Cnc $5754$ SN Ari $5745$ WX Cnc $5784$ SS Ari $5753$ WY Cnc $5723$ SS Ari $5753$ WY Cnc $5724$ SS Ari $5753$ WY Cnc $5724$                                                                                                                                                                                                                                                                                                                                                                                               | DY Aqr    | 5741                | UW Boo                  | 5745                               |
| XZ Aql       5754       AC Boo       5707 5754         YZ Aql       5745       BW Boo       5745         OO Aql       5753 5754       CK Boo       5754         V0407 Aql       5741       CV Boo       5707         V0407 Aql       5741       EF Boo       5707         V0417 Aql       5741       EF Boo       5707         V0479 Aql       5741       EL Boo       5754         V0500 Aql       5751       FY Boo       5741 5799         V0699 Aql       5741       44i Boo       5745 5791         V0761 Aql       5741       Y Cam       5736         V0770 Aql       5741       SV Cam       5736         V0784 Aql       5741       AO Cam       5777         V0803 Aql       5741       AO Cam       5745         V0803 Aql       5741       AW Cam       5745         V0803 Aql       5741       AW Cam       5741         V188 Aql       5741       AW Cam       5741         V188 Aql       5741       TX Cnc       5754         V1355 Aql       5741       5745       WX Cnc       5754         V1355 Aql       5745       5753       WX Cnc                                                                               | GK Aqr    | 5741                | YZ Boo                  | 5701                               |
| YZ Aql       5745       BW Boo       5745         OO Aql       5753       5754       CK Boo       5754         OO Aql       5753       5754       CV Boo       5707         V0407 Aql       5741       EF Boo       5707         V0417 Aql       5741       EL Boo       5754         V0479 Aql       5741       EL Boo       5741         V0500 Aql       5751       FY Boo       5741         V0500 Aql       5741       44i Boo       5745         V0699 Aql       5741       Y Cam       5753         V0761 Aql       5741       Y Cam       5736         V0770 Aql       5741       SV Cam       5733         V0784 Aql       5741       AO Cam       5777         V0803 Aql       5741       AS Cam       5753         V0784 Aql       5741       AW Cam       5745         V0803 Aql       5741       AC Cam       5745         V0803 Aql       5741       AC Cam       5745         V0898 Aql       5741       AW Cam       5745         V1188 Aql       5741       LR Cam       5741         V1355 Aql       5741       5741       774                                                                                          | XZ Aal    | 5754                | AC Boo                  | 5707 $5754$                        |
| OO Aql       5753       5754       CK Boo       5754         OO Aql       5753       5754       CV Boo       5707         V0407 Aql       5741       EF Boo       5707         V0417 Aql       5741       EF Boo       5707         V0479 Aql       5741       EL Boo       5754         V0500 Aql       5751       FY Boo       5741 5799         V0699 Aql       5741       44i Boo       5745 5791         V0761 Aql       5741       Y Cam       5753         V0770 Aql       5741       SV Cam       5736         V0784 Aql       5741       AO Cam       5777         V0803 Aql       5741       AS Cam       5753         V0873 Aql       5741       AW Cam       5741         V1168 Aql       5741       LR Cam       5741         V1182 Aql       5741       LR Cam       5741         V1355 Aql       5741       TX Cnc       5754         SX Ari       5745       WX Cnc       5784         SS Ari       5753       WY Cnc       5723       5741       5754                                                                                                                                                                   | YZ Aal    | 5745                | BW Boo                  | 5745                               |
| V0407 Aql       5741       CV Boo       5707         V0407 Aql       5741       EF Boo       5707         V0417 Aql       5741       EL Boo       5754         V0479 Aql       5741       EL Boo       5754         V0500 Aql       5751       FY Boo       5741 5799         V0699 Aql       5741       44i Boo       5745 5791         V0761 Aql       5741       Y Cam       5736         V0770 Aql       5741       SV Cam       5736         V0784 Aql       5741       AO Cam       5777         V0803 Aql       5741       AS Cam       5733         V0873 Aql       5741       AW Cam       5745         V0889 Aql       5753       BL Cam       5701         V1168 Aql       5741       LR Cam       5741         V182 Aql       5741       TX Cnc       5754 5799         RX Ari       5745       WX Cnc       5754 5799         RX Ari       5745       WX Cnc       5784         SS Ari       5753       WY Cnc       5754 5784                                                                                                                                                                                              | 00 Aql    | 5753 5754           | CK Boo                  | 5754                               |
| V0417 Aql       5741       EF Boo       5707         V0479 Aql       5741       EL Boo       5754         V0500 Aql       5751       FY Boo       5741 5799         V0699 Aql       5751       FY Boo       5745 5791         V0761 Aql       5741       Y Cam       5733         V0770 Aql       5741       SV Cam       5736         V0784 Aql       5741       AO Cam       5777         V0803 Aql       5741       AS Cam       5753         V0873 Aql       5741       AW Cam       5745         V1168 Aql       5741       LR Cam       5741         V1182 Aql       5741       TX Cnc       5741         V182 Aql       5745       SW Cnc       5741         V1355 Aql       5745       WX Cnc       5754         SS Ari       5753       WY Cnc       5754                                                                                                                                                                                                                                                                                                                                                                       | V0407 Aql | 5741                | CV Boo                  | 5707                               |
| V0411 Aql0141EL Boo5754V0479 Aql5741FY Boo5741 5799V0500 Aql5751FY Boo5741 5799V0699 Aql574144i Boo5745 5791V0761 Aql5741Y Cam5753V0770 Aql5741SV Cam5736V0784 Aql5741AO Cam5777V0803 Aql5741AS Cam5753V0873 Aql5741AW Cam5745V1168 Aql5741LR Cam5741V1182 Aql5741SW Cnc5741V1355 Aql57415745WX Cnc5784SS Ari5753WY Cnc5723 5741 5754 5784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V0417 Aql | 5741                | EF Boo                  | 5707                               |
| V0445       5741       5741       5741       5799         V0500       Aql       5751       FY Boo       5741       5799         V0699       Aql       5741       44i Boo       5745       5791         V0761       Aql       5741       Y Cam       5753         V0770       Aql       5741       SV Cam       5736         V0784       Aql       5741       AO Cam       5777         V0803       Aql       5741       AS Cam       5753         V0873       Aql       5741       AW Cam       5745         V0889       Aql       5753       BL Cam       5701         V1168       Aql       5741       LR Cam       5741         V1182       Aql       5741       TX Cnc       5754         V1355       Aql       5741       5753       WX Cnc       5741         V1355       Aql       5745       WX Cnc       5784       5784         SS Ari       5753       WY Cnc       5723       5741       5754       5784                                                                                                                                                                                                                     | V0479 A d | 57/1                | EL Boo                  | 5754                               |
| V0500 Aql575144i Boo5745 5791V0699 Aql5741Y Cam5753V0761 Aql5741Y Cam5753V0770 Aql5741SV Cam5736V0784 Aql5741AO Cam5777V0803 Aql5741AS Cam5753V0873 Aql5741AW Cam5745V0889 Aql5753BL Cam5701V1168 Aql5741LR Cam5741V1182 Aql5745SW Cnc5741V1355 Aql5741TX Cnc5754SX Ari5745WX Cnc5784SS Ari5753WY Cnc5723ST415753WY Cnc5724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V0479 Mql | 5751                | FY Boo                  | 5741 $5799$                        |
| V0099 Aql       5741       Y Cam       5753         V0761 Aql       5741       SV Cam       5736         V0770 Aql       5741       SV Cam       5736         V0784 Aql       5741       AO Cam       5777         V0803 Aql       5741       AS Cam       5753         V0873 Aql       5741       AW Cam       5745         V0889 Aql       5753       BL Cam       5701         V1168 Aql       5741       LR Cam       5741         V1182 Aql       5745       SW Cnc       5741         V1355 Aql       5745       SW Cnc       5754         RX Ari       5745       WX Cnc       5784         SS Ari       5753       WY Cnc       5723       5741       5784                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V0500 Aql | 5771                | 44i Boo                 | 5745 $5791$                        |
| V0701 Aql       5741       Y Cam       5753         V0770 Aql       5741       SV Cam       5736         V0784 Aql       5741       AO Cam       5777         V0803 Aql       5741       AS Cam       5753         V0873 Aql       5741       AW Cam       5745         V0889 Aql       5753       BL Cam       5701         V1168 Aql       5741       LR Cam       5741         V1182 Aql       5745       SW Cnc       5741         V1355 Aql       5741       5745       5754         RX Ari       5745       WX Cnc       5754         SS Ari       5753       WY Cnc       5723       5741       5784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V0099 Aql | 5741                | VO                      | 5759                               |
| V0770 Aql       5741       SV Cam       5736         V0784 Aql       5741       AO Cam       5777         V0803 Aql       5741       AS Cam       5753         V0873 Aql       5741       AW Cam       5745         V0889 Aql       5753       BL Cam       5701         V1168 Aql       5741       LR Cam       5741         V1182 Aql       5745       SW Cnc       5741         V1355 Aql       5741       TX Cnc       5754         SX Ari       5745       WX Cnc       5784         SS Ari       5753       WY Cnc       5723       5741       5784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V0701 Aql | 5741                | Y Cam                   | 5753                               |
| V0784 Aqi       5741       AO Cam       5777         V0803 Aqi       5741       AS Cam       5753         V0873 Aqi       5741       AW Cam       5745         V0889 Aqi       5753       BL Cam       5701         V1168 Aqi       5741       LR Cam       5741         V1182 Aqi       5745       SW Cnc       5741         V1355 Aqi       5741       TX Cnc       5754         SS Ari       5753       WY Cnc       5723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V0770 Aql | 0741<br>E741        | SV Cam                  | 5730                               |
| V0803 Aql       5741       AS Cam       5753         V0873 Aql       5741       AW Cam       5745         V0889 Aql       5753       BL Cam       5701         V1168 Aql       5741       LR Cam       5741         V1182 Aql       5745       SW Cnc       5741         V1355 Aql       5741       5745       5754         RX Ari       5745       WX Cnc       5754         SS Ari       5753       WY Cnc       5723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V0784 Aqi | D/41                | AO Cam                  | 5777                               |
| V0873 Aql       5741       AW Cam       5745         V0889 Aql       5753       BL Cam       5701         V1168 Aql       5741       LR Cam       5741         V1182 Aql       5745       SW Cnc       5741         V1355 Aql       5741       TX Cnc       5754         RX Ari       5745       WX Cnc       5784         SS Ari       5753       WY Cnc       5723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V0803 Aqi | 5741                | AS Cam                  | 5753                               |
| V0889 Aql       5753       BL Cam       5701         V1168 Aql       5741       LR Cam       5741         V1182 Aql       5745       SW Cnc       5741         V1355 Aql       5741       TX Cnc       5754 5799         RX Ari       5745       WX Cnc       5784         SS Ari       5753       WY Cnc       5723 5741 5754 5784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V0873 Aql | 5741                | AW Cam                  | 5745                               |
| V1168 Aql       5741       LR Cam       5741         V1182 Aql       5745       SW Cnc       5741         V1355 Aql       5741       TX Cnc       5754 5799         RX Ari       5745       WX Cnc       5784         SS Ari       5753       WY Cnc       5723 5741 5754 5784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V0889 Aql | 5753                | BL Cam                  | 5701                               |
| V1182 Aql       5745       SW Cnc       5741         V1355 Aql       5741       TX Cnc       5754 5799         RX Ari       5745       WX Cnc       5784         SS Ari       5753       WY Cnc       5723 5741 5754 5784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V1168 Aql | 5741                | LR Cam                  | 5741                               |
| V1355 Aql       5741       TX Cnc       5754 5799         RX Ari       5745       WX Cnc       5784         SS Ari       5753       WY Cnc       5723 5741 5754 5784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V1182 Aql | 5745                | SW Cnc                  | 5741                               |
| RX Ari     5745     WX Cnc     5784       SS Ari     5753     WY Cnc     5723 5741 5754 5784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V1355 Aql | 5741                | TX Cnc                  | 5754 5799                          |
| SS Ari 5753 WY Cnc 5723 5741 5754 5784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RX Ari    | 5745                | WX Cnc                  | 5784                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SS Ari    | 5753                | WY Cnc                  | $5723\ 5741\ 5754\ 5784$           |

| AC Cnc               |           | 5741         | BE Cep       | 5741           |
|----------------------|-----------|--------------|--------------|----------------|
| AR Cnc               |           | 5712         | CQ Cep       | 5736           |
| DX Cnc               |           | 5755         | DI Cep       | 5702           |
| EV Cnc               |           | 5736         | DQ Cep       | 5701           |
| FR Cnc               |           | 5748         | EG Cep 57    | 728 5777       |
| DL OV-               |           | F77 1        | EK Cep 57    | 741 5753       |
| BICVN                |           | 5734         | EZ Cep       | 5793           |
| CV CMa               |           | 5745         | GK Cep       | 5745           |
| TU CMi               |           | 57/1         | GW Cep       | 5777           |
| TX CMi               |           | 5741         | IO Cep       | 5741           |
| XZ CMi               |           | 5741         | OT Cep       | 5741           |
| AD CMi               | 5701      | 5774         | V698 Cep     | 5741           |
| AG CMi               | 0101      | 5741         | SS Cet       | 5745           |
| AO CMi               |           | 5741         | TT Cet       | 5729           |
| AV CMi               |           | 5741         | TV Cet 57    | 741 5745       |
| V062 CMi             |           | 5741         | ES Cet       | 5775           |
| V 002 OIVII          |           | 0141         |              | 0110           |
| $\eta  { m Car}$     |           | 5782         | RW Com 57    | 707 5777       |
| AB Cas               |           | 5741         | RZ Com 57    | 707 5777       |
| AH Cas               |           | 5741         | SS Com       | 5741           |
| BK Cas               |           | 5793         | CC Com 57    | 707 5777       |
| BS Cas               |           | 5777         | DG Com       | 5741           |
| CC Cas               |           | 5745         | EK Com       | 5741           |
| CW Cas               | 5736 5741 | 5777         | IT Com       | 5740           |
| DN Cas               | 0100 0111 | 5753         | LL Com 57    | 741 5784       |
| EL Cas               |           | 5741         | LO Com       | 5741           |
| EV Cas               |           | 5741         | LT Com       | 5784           |
| IT Cas               |           | 5745         | MM Com       | 5784           |
|                      | 5735      | 5741         | TU CrB       | 5741           |
| KL Cas               | 0100      | 5741         | TW CrB       | 5741           |
| KT Cas               |           | 5741         |              | F <b>7</b> 0 0 |
| MM Cas               |           | 5741         | BP Cru       | 5782           |
| PV Cas               | 5736      | 5753         | WW Cyg       | 5745           |
| V344 Cas             | 0100      | 5784         | XX Cyg       | 5701           |
| V592 Cas             | 5796 5777 | 5700         | ZZ Cyg       | 5724           |
| V523 Cas<br>V527 Cas | 0100 0111 | 5745         | CG Cyg 57    | 741 5754       |
| V541 Cas             |           | 5745         | DX Cyg       | 5745           |
| V615 Cog             |           | 5776         | GO Cyg 57    | 754 5777       |
| V015 Cas<br>V775 Cas |           | 5770         | GV Cyg       | 5741           |
| V776 Cas             | 5726      | 5777         | KR Cyg       | 5754           |
| V770 Cas             | 0100      | 5741         | V0052 Cyg    | 5741           |
| V 799 Cas            |           | 5741<br>E741 | V0053 Cyg    | 5741           |
| V851 Cas             |           | 5741         | V0388 Cyg    | 5741           |
| vori Cas             |           | 0701         | V0401 Cyg 57 | 741 5777       |
| VW Cep               |           | 5753         | V0442 Cyg    | 5741           |
| WY Cep               |           | 5741         | V0456 Cyg    | 5741           |
| WZ Cep               |           | 5777         | V0463 Cyg    | 5745           |
| XX Cep               |           | 5753         | V0469 Cyg    | 5745           |
| ZZ Cep               |           | 5741         | V0490 Cyg    | 5745           |

| V0498 Cyg          | 5745               | EX Dra                                 | 5796                   |
|--------------------|--------------------|----------------------------------------|------------------------|
| V0500 Cyg          | 5741               | FU Dra                                 | 5777                   |
| V0509 Cyg          | 5741               | GW Dra                                 | 5701                   |
| V0512 Cyg          | 5745               | WV F.                                  | 5741                   |
| V0541 Cyg          | 5745               |                                        | 5741                   |
| V0635 Cyg          | 5741               | DL FL                                  | 5741                   |
| V0700 Cyg          | 5741               | TX Gem                                 | 5741                   |
| V0706 Cyg          | 5741               | AV Gem                                 | 5741                   |
| V0711 Cyg          | 5741               | BN Gem                                 | 5773                   |
| V0787 Cyg          | 5741               | $\operatorname{EL}\operatorname{Gem}$  | 5741                   |
| V0822 Cyg          | 5741               | FG Gem                                 | 5741                   |
| V0859 Cyg          | 5741               | FT Gem                                 | 5741                   |
| V0870 Cyg          | 5741               | $\operatorname{HR}\operatorname{Gem}$  | 5741                   |
| V0873 Cyg          | 5745               | ${ m KQ}~{ m Gem}$                     | 5741                   |
| V0877 Cyg          | 5741               | $\operatorname{KV}\operatorname{Gem}$  | 5741                   |
| V0959 Cyg          | $5741 \ 5745$      | PZ Gem                                 | 5773                   |
| V0963 Cyg          | 5786               | QS  Gem                                | 5701                   |
| V0974 Cyg          | 5745               | $V345 { m Gem}$                        | 5701                   |
| V1004 Cyg          | 5741               | С7 Ц <sub>от</sub>                     | 5754                   |
| V1019 Cyg          | 5741               |                                        | 5754                   |
| V1136 Cyg          | 5745               | ТТ пег<br>ТУ Пот                       | 0704<br>E7E4           |
| V1147 Cyg          | 5741               |                                        | 5754                   |
| V1191 Cyg          | 5777               |                                        | 5704<br>5707           |
| V1326 Cyg          | 5745               | AH Her<br>AK Her                       | 0727<br>5741 5754 5777 |
| V1414 Cyg          | 5741               | AK Her<br>DO Her                       | 5741 5754 5777         |
| V1436 Cyg          | 5745               |                                        | 0190<br>5745 5752 5799 |
| V1898 Cyg          | 5714               | DI ner<br>DV Hor                       | 5745 5755 5766         |
| V1918 Cyg          | 5777               |                                        | 0701<br>E7E2           |
| V2088 Cvg          | 5701               |                                        | 5755                   |
| V2129 Cyg          | 5701               | V 550 Her<br>VEE1 Her                  | 5770<br>5770           |
| V2362 Cyg          | 5711 $5738$ $5799$ | V 551 Her<br>V559 Her                  | 5770<br>5770           |
| V2467 Cyg          | 5769 $5779$        | V 552 ner<br>VEEE Her                  | 5770<br>5770           |
| VV D-1             | F711               | V556 Her                               | 5770                   |
|                    | 0/41<br>F741       | V 550 Her<br>VEE7 Her                  | 5770                   |
|                    | 0/41<br>5752       | V 557 Her<br>V569 Her                  | 5770<br>5770           |
|                    | 0700<br>5700       | V 002 Her<br>V606 Her                  | 5770<br>5770           |
| MA Del<br>MZ Del   | 5729<br>5720       | V020 Her<br>V650 Her                   | 5770<br>5770           |
| MZ Dei             | 5729               | V059 пег<br>V790 Цег                   | 5770                   |
| Z Dra              | 5742 $5745$        | V 709 Her<br>V 820 Her                 | 5741                   |
| RR Dra             | 5745               | $V \delta 29$ Her<br>$V \delta 20$ Her | 5701                   |
| RZ Dra             | 5707 $5784$        | V050 Her<br>V057 Her                   | 5701                   |
| TW Dra             | 5741               | V007 Her<br>V007 Her                   | 5701                   |
| AU Dra             | 5784               | V927 Her<br>V066 Her                   | 5701<br>5701           |
| AX Dra             | 5707               | V900 Her<br>V004 Her                   | 0701<br>E7E2           |
| BE Dra             | 5777               | v ээ4 ner                              | 9793                   |
| BF Dra             | 5745               | VX Hya                                 | 5701                   |
| BW Dra             | 5707               | VZ Hya                                 | 5745                   |
| CM Dra             | 5745 $5789$        | WY Hya                                 | 5741                   |
| ${ m EF}~{ m Dra}$ | 5741 $5777$        | FG Hya                                 | 5791                   |

| SW Lac        | 5753 $5754$   | V412 Lyr               | 5745      |
|---------------|---------------|------------------------|-----------|
| TW Lac        | 5741          | V431 Lyr               | 5745      |
| TZ Lac        | 5741          | V563 Lyr               | 5784      |
| VY Lac        | $5741 \ 5784$ | V576 Lyr               | 5784      |
| AR Lac        | 5753          | BU Mon                 | 5745      |
| AU Lac        | 5741  5753    | TV Mon                 | 5745      |
| CM Lac        | 5745          | IV Mon                 | 5741      |
| EM Lac        | 5707 $5741$   | BB Mon                 | 5741      |
| GH Lac        | 5741          | BM Mon                 | 5741      |
| IP Lac        | 5741          | CH Mon                 | 5741      |
| MZ Lac        | 5745          | HM Mon                 | 5741      |
| PP Lac        | 5741 $5777$   | NN Mon                 | 5741      |
| V344 Lac      | 5741 $5777$   | V085 Mon               | 5741      |
| V345 Lac      | 5745          | V087 Mon               | 5741      |
| V364 Lac      | 5741          | V306 Mon               | 5741      |
| V411 Lac      | 5725          | V453 Mon               | 5741      |
| х <i>т</i> т  |               | V501 Mon               | 5741      |
| Y Leo         | 5741          | V606 Mon               | 5741      |
| UV Leo        | 5753 5754     | V838 Mon               | 5708      |
| WZ Leo        | 5741          |                        | 5708      |
| XY Leo        | 5754 $5777$   | CF Oct                 | 5762      |
| XZ Leo        | 5754          | U Oph                  | 5745      |
| AM Leo        | 5754          | BS Oph                 | 5733      |
| AP Leo        | 5741 $5754$   | WZ Oph                 | 5745      |
| BL Leo        | 5741          | V0451 Oph              | 5745 5754 |
| BW Leo        | 5741          | V0456 Oph              | 5754      |
| CE Leo        | 5736 $5777$   | V0502 Oph              | 5707 5754 |
| FK Leo        | 5754          | V0508 Oph              | 5754      |
| XX LMi        | 5791          | V0565 Oph              | 5758      |
|               | 0101          | V0566 Oph              | 5726 5754 |
| $ m RR \ Lep$ | 5741          | V0763 Oph              | 5770      |
| SS Lib        | 5741          | V0809 Oph              | 5732      |
| TY Lib        | 5741          | V0839 Oph              | 5754      |
| VZ Lib        | 5741          | V0871 Oph              | 5732      |
| IV Lib        | 5768          | V0011 Oph<br>V0013 Oph | 5741      |
|               |               | V0943 Oph              | 5758      |
| SW Lyn        | 5754          | V0946 Oph              | 5703      |
| SZ Lyn        | 5701          | V0950  Oph             | 5732      |
| TV Lyn        | 5701          | V0961 Oph              | 5732      |
| TW Lyn        | 5709          | V0901 Oph<br>V0981 Oph | 5741      |
| UV Lyn        | 5777 $5784$   | V1066 Oph              | 5758      |
| AN Lyn        | 5701          | V1079 Oph              | 5758      |
| BE Lyn        | 5701          | V1094 Oph              | 5739      |
| BO Lyn        | 5701          | V1008 Oph              | 5702      |
| CQ Lyn        | 5701          | V2031 Oph              | 5703      |
| DF Lyr        | 5710          | V2034 Oph              | 5758      |
| FL Lyr        | 5741          | V2079 Oph              | 5702      |
| PY Lyr        | 5736          | V2082  Oph             | 5703      |
| V361 Lyr      | 5741 5777     | V2084 Oph              | 5703      |
| TOOT LIJI     |               |                        | 0100      |

| 5703                   | KX Pup                                               | 5745                                                 |
|------------------------|------------------------------------------------------|------------------------------------------------------|
| 5703                   | V Sgo                                                | 5777                                                 |
| 5766                   | WZ Sge                                               | 5736                                                 |
| 5769                   |                                                      | 5701                                                 |
| 5741                   |                                                      | 5777                                                 |
| 5741                   |                                                      | 5741                                                 |
| 5741                   | DL Sge                                               | 5741                                                 |
| 5745                   | m V0395~Sgr                                          | 5768                                                 |
| 5707                   | $V5115~\mathrm{Sgr}$                                 | 5783                                                 |
| 5741                   | σSco                                                 | 5789                                                 |
| 5741                   | V Sco                                                | 5766                                                 |
| 5741                   | 1 500<br>V0202 See                                   | 5769                                                 |
| 5741                   | VU393 500<br>V1990 C                                 | 0700<br>F771                                         |
| 5741                   | V 1280 SCO<br>V1991 C                                | 0771<br>5771                                         |
| 5736 5753 5754         | V1281 Sco                                            | 5771                                                 |
| 5736 5777              | XY Sct                                               | 5741                                                 |
| 5701                   | $\operatorname{ER}\operatorname{Sct}$                | 5745                                                 |
| 5741                   | FG Sct                                               | 5741                                                 |
| 5710 5741              | FR Sct                                               | 5757 $5768$                                          |
| 5710 5741              |                                                      |                                                      |
| 5741                   | AU Ser                                               | 5791                                                 |
| 0710<br>F7F4 F777 F701 | EP Ser                                               | 5732                                                 |
| 5/54 5/// 5/91         | LX Ser                                               | 5741                                                 |
| 5745                   | AH Tau                                               | 5736                                                 |
| 5701                   | AL Tau                                               | 5741                                                 |
| 5741                   | AN Tau                                               | 5745                                                 |
| 5777                   | EQ Tau                                               | 5736 5753 5777                                       |
| 5777                   | GR Tau                                               | 5741                                                 |
| 5775                   | V0781 Tau                                            | 575/ 5777                                            |
| 5753                   | V0701 Tau<br>V1117 Tau                               | 5759                                                 |
| 5751                   | VIII/ Iau                                            | 0102                                                 |
| 5741                   | V Tri                                                | 5741                                                 |
| 5741 5753              | X Tri                                                | 5741                                                 |
| 5741 5755              | RW Tri                                               | 5710 $5741$                                          |
| 0790                   | ST Tri                                               | 5741                                                 |
| 5741                   | AI Tri                                               | 5796                                                 |
| 5745                   | $TW IIM_{\circ}$                                     | 5759                                                 |
| 5741                   | IW UMA                                               | 0700                                                 |
| 5741                   | UA UMa<br>UZ UM                                      | 5741                                                 |
| 5736 $5777$            | UZ UMa                                               | 5705                                                 |
| 5741                   | VV UMa                                               | 5753                                                 |
| 5741                   | XY UMa                                               | 5777 5784                                            |
| 5741                   | XZ UMa                                               | $5707 \ 5715 \ 5741$                                 |
| 5736                   | ZZ UMa                                               | 5753                                                 |
| 5754                   | AE UMa                                               | 5701                                                 |
| 5754                   | DV UMa                                               | 5712                                                 |
| 0704<br>E790           | DW UMa                                               | 5753                                                 |
| 0129<br>5777           | GG UMa                                               | 5701                                                 |
| 0111                   | $\rm HH~UMa$                                         | 5701                                                 |
| 5730                   | IP UMa                                               | 5701                                                 |
| 5734                   | LP UMa                                               | 5753                                                 |
|                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

| TU UMi                       | 5701      | $CD - 39^{\circ}4980$                   | 5704         |
|------------------------------|-----------|-----------------------------------------|--------------|
| TV UMi                       | 5777      | $CD - 52^{\circ}0646$                   | 5768         |
| BF Vel                       | 5704      | FL 0439                                 | 5780         |
| $\alpha$ Vir                 | 5782      | FL 3529                                 | 5735         |
| AG Vir                       | 5777      | GJ 1111                                 | 5755         |
| AW Vir                       | 5707      | $GSC \ 00181 - 00490$                   | 5774         |
| BF Vir                       | 5754      | $GSC \ 00184-00604$                     | 5774         |
| HW Vir                       | 5741      | GSC 00697-00960                         | 5752         |
| DY Vir                       | 5777      | GSC 00770-00523                         | 5741         |
| Z Vul                        | 5754      | GSC 00816-01907                         | 5741         |
| VW Vul                       | 5749      | GSC 01004-00993                         | 5770         |
| BT Vul                       | 5741      | $GSC \ 01174-00344$                     | 5791         |
| BU Vul                       | 5741      | $GSC \ 01258-00338$                     | 5752         |
| DR Vul                       | 5745      | GSC 01259-00232                         | 5752         |
| ER Vul                       | 5754 5777 | GSC 01266-01121                         | 5752         |
| FQ Vul                       | 5745      | GSC 01267-00362                         | 5752         |
| GP Vul                       | 5745      | GSC 01270-00230                         | 5752         |
| IVI VUI<br>MN V1             | 5741      | GSC 01270-00735                         | 5752         |
| MIN VUI<br>NO Vul            | 5726      | GSC 01274-01076                         | 5752<br>5752 |
| NO VUI                       | 0700      | CSC 01274-01491                         | 5752         |
| $1 ES \ 0829 + 15.9$         | 5748      | GSC 01273 = 000039<br>GSC 01281 = 00398 | 5752         |
| 1 RXS J064117.0 + 464904     | 5772      | GSC 01281-01906                         | 5752         |
| 1 RXS J083230.9 + 154940     | 5748      | GSC 01284-00930                         | 5752         |
| 1 RXS J160248.3 + 252031     | 5719      | GSC 01284-01283                         | 5752         |
| 1 RXS J224342.3 + 305526     | 5750      | GSC 01288–00790                         | 5752         |
| $2MASS 22/3/070 \pm 3055200$ | 5750      | GSC 01289-00513                         | 5752         |
|                              | 0100      | GSC 01292-00639                         | 5752         |
| ALS 1135                     | 5768      | GSC 01392-02634                         | 5748         |
| ASAS $001856 + 2239.6$       | 5743      | GSC 01392-02636                         | 5748         |
| ASAS 122801–2328.4           | 5785      | GSC 01392-02708                         | 5748         |
| ASAS $155552-2148.6$         | 5765      | GSC 01730-01709                         | 5743         |
| ASAS $182323 - 1240.9$       | 5757      | GSC 01730-01858                         | 5743         |
| BD -03°3419                  | 5777      | GSC 01730–02105                         | 5743         |
| $BD = -19^{\circ}3931$       | 5768      | GSC 01730-02179                         | 5743         |
| $BD + 04^{\circ}3553$        | 5726      | GSC 01838-00189                         | 5752         |
| $BD + 04^{\circ}3556$        | 5726      | GSC 01843-00400                         | 5752         |
| $\mathrm{BD}$ +05°3547       | 5726      | GSC 02038-00293                         | 5719         |
| $BD + 07^{\circ}3142$        | 5777      | GSC 02038-00505                         | 5719<br>5710 |
| $BD + 16^{\circ}1753$        | 5748      | CSC 02038-00003                         | 5759         |
| $BD + 26^{\circ}1883$        | 5723      | GSC 02371 - 02073                       | 5752         |
| $BD + 27^{\circ}1706$        | 5723      | GSC 02391-00494                         | 5752         |
| $BD + 41^{\circ}1609$        | 5709      | GSC 02393 - 01455                       | 5780         |
| $BD + 42^{\circ}2782$        | 5791      | GSC 02397-00378                         | 5709         |
| $BD + 50^{\circ}1651$        | 5715      | GSC 02656-02055                         | 5786         |
| $BD + 62^{\circ}2363$        | 5756      | GSC 02656-03363                         | 5786         |
| CCDM 11289–6256              | 5797      | GSC 02656-01995                         | 5786         |
|                              |           |                                         |              |

| GSC 02685-00099                                                          | 5741         | HD 118234                  | 5740         |
|--------------------------------------------------------------------------|--------------|----------------------------|--------------|
| GSC 02685 - 01186                                                        | 5741         | HD 142669                  | 5782         |
| GSC 02685 - 01453                                                        | 5741         | HD 151878                  | 5787         |
| GSC 02736-01067                                                          | 5750         | HD 162215                  | 5733         |
| GSC 02751-01007                                                          | 5791         | HD 163611                  | 5726         |
| GSC 02765-00348                                                          | 5791         | HD 163708                  | 5782         |
| GSC 02799–00902                                                          | 5730         | HD 175227                  | 5788         |
| GSC 02971-00853                                                          | 5709         | HD 187879                  | 5782         |
| GSC 03109-00859                                                          | 5784         | HD 193834                  | 5728         |
| GSC 03377-00296                                                          | 5772         | HD 194400                  | 5728         |
| GSC 03429-00449                                                          | 5715         | HD 196818                  | 5762         |
| GSC 03429-01027                                                          | 5715         | HD 200595                  | 5714         |
| GSC 03429-01530                                                          | 5715         | HD 200776                  | 5714         |
| GSC 03576-00170                                                          | 5724         | HD 201666                  | 5714         |
| CSC 03576 - 00702                                                        | 5724         | HD 213159                  | 5725         |
| CSC 03576 -00064                                                         | 5724         | HD 213233                  | 5725         |
| CSC 03570 - 00904                                                        | 5702         | HD 218205                  | 5794         |
| GSC 03071 - 01241                                                        | 5741         | HD $226954$<br>HD $226057$ | 5734         |
| GSC 03708 - 01323                                                        | 0741<br>1770 | HD 220337                  | 5741         |
| GSC 03822 - 01030                                                        | 0700<br>1701 | HD 203323<br>HD 203729     | 5752         |
| GSC 04001-00770                                                          | 0730<br>5795 | HD 203702<br>HD 999709     | 5752         |
| GSC 04001-01004                                                          | 5735         | IID 203790                 | 5752         |
| GSC 04025-01395                                                          | 5793         | HD 284135                  | 0702<br>5750 |
| GSC 04297–01664                                                          | 5741         | HD 284149                  | 5752         |
| GSC 04428-01574                                                          | 5784         | HD 284503                  | 5752         |
| $GSC \ 04521-00784$                                                      | 5793         | HD 285166                  | 5741         |
| GSC 04816-02749                                                          | 5741         | HD 285281                  | 5752         |
| $GSC \ 05094-00061$                                                      | 5733         | HD 285579                  | 5752         |
| $GSC \ 06199-00755$                                                      | 5765         | HD 302992                  | 5768         |
| GSC 09269-00545                                                          | 5722         | HD 336759                  | 5798         |
| $GSC \ 21322 - 01252$                                                    | 5705         | HD $350731$                | 5741         |
| $GSC \ 21322 - 01262$                                                    | 5705         | HIP 041889                 | 5748         |
| GSC $21322 - 14531$                                                      | 5705         | HIP 090115                 | 5757         |
| $GSC \ 21322 - 14679$                                                    | 5705         | HIP 110924                 | 5725         |
| HD 000108                                                                | 5756         | HIP 110968                 | 5725         |
| HD 028150                                                                | 5752         |                            | 0120         |
| $\begin{array}{c} \text{IID} \ 028130 \\ \text{UD} \ 021981 \end{array}$ | 5752         | $\operatorname{HR}\ 2142$  | 5778         |
| HD 031201<br>HD 041225                                                   | 5752         | HS $0705 + 6700$           | 5796         |
| $\Pi D 041355$                                                           | 0110<br>5770 |                            |              |
| HD 040314                                                                | 0773<br>5772 | HV 05079                   | 5722         |
| HD 060848                                                                | 5773         | HV 06886                   | 5780         |
| HD 065498                                                                | 5791         | HV 10945                   | 5770         |
| HD 077173                                                                | 5723         | $HV \ 11012$               | 5732         |
| HD 077581                                                                | 5782         | HV 11016                   | 5732         |
| HD 093205                                                                | 5782         | HV 11018                   | 5758         |
| HD 093308                                                                | 5782         | HV 11035                   | 5703         |
| HD 099898                                                                | 5797         | KUV 23061±1220             | 5775         |
| HD 101837                                                                | 5782         | $\frac{11229}{11007}$      | 5775 5775    |
| HD 109164                                                                | 5782         | 110 1 20102 - 1007         | 0110 0110    |
| HD 116658                                                                | 5782         | LHS 248                    | 5755         |
|                                                                          |              |                            |              |

| LSI 61303                      |      | 5776         | S 04214                            | 5732 |
|--------------------------------|------|--------------|------------------------------------|------|
| M31 5720                       | 5737 | 5730         | S 08619                            | 5770 |
| M31 5720<br>M75                | 0101 | 5706         | S 08623                            | 5770 |
| M175                           |      | 5700         | S 08627                            | 5770 |
| MCC 527                        |      | 5748         | S 09266                            | 5703 |
| NGC 0224                       |      | 5720         | S 09281                            | 5758 |
| NGC 1261                       |      | 5744         | S 09285                            | 5758 |
| NGC 6864                       |      | 5706         | S 09296                            | 5703 |
|                                |      |              | S 09802                            | 5770 |
| Nova Cyg 2006                  | 5711 | 5738         | S 09804                            | 5770 |
| Nova Cyg 2007                  | 5769 | 5779         | S 09806                            | 5770 |
| Nova Oph 2007                  |      | 5769         | S 09824                            | 5770 |
| Nova Sgr 2005                  |      | 5782         | S 09830                            | 5770 |
| Nova Sco 2007                  |      | 5771         | S 09835                            | 5758 |
| NSV 00025                      |      | 5756         | $S_{0.000}$ 09845                  | 5758 |
| NSV 09517                      |      | 5732         | S 09848                            | 5703 |
| NSV 09519                      |      | 5758         | S 09851                            | 5732 |
| NSV 10061                      |      | 5732         | S 09854                            | 5732 |
| NSV 10069                      |      | 5758         | S 09856                            | 5703 |
| NSV 18773                      | 5797 | 5797         | S 09865                            | 5732 |
| NEVE 04620766                  |      | 5779         | S 09875                            | 5703 |
| NSVS 04020700<br>NSVS 08015780 |      | 0772<br>5750 | S 10350                            | 5770 |
| NGVG 14256402                  |      | 5750         | S 10354                            | 5703 |
| NGVG 14250492                  |      | 5800         |                                    |      |
| 115 15 14230823                |      | 9900         | SAO 010973                         | 5756 |
| OGLE J051218.69–685832.5       |      | 5759         | SAO 034498                         | 5725 |
| OGLE J051644.53-693233.3       |      | 5759         | SAO 141973                         | 5733 |
| OGLE J051812.71–693524.5       |      | 5759         | SDSS J102146.44 + 234926.3         | 5763 |
| OGLE J052035.18–693437.8       |      | 5759         |                                    |      |
| OGLE J052215.00-693848.3       |      | 5759         | SV*BV 032                          | 5715 |
| OGLE J052509.46-700422.6       |      | 5759         | SV*BV 729                          | 5768 |
| OGLE J052645.27–694404.5       |      | 5759         | SVS 948                            | 5735 |
| OGLE J053124.73-692528.1       |      | 5759         | TVC 1202 2624 1                    | 5749 |
| OGLE J053502.18-694417.8       |      | 5759         | 1101392-2034-1<br>TVC 2420 1520    | 5715 |
| OGLE J053714.17-702001.5       |      | 5759         | 1103429-1000                       | 5715 |
| OGLE J054041.59–695901.4       |      | 5759         | 11C 9000-0298-1<br>TVC 0210 2220 1 | 5769 |
| ROTSE1 J131228.30+251426       | 5.1  | 5784         | 1109219-3529-1<br>TVC 0252 1202 1  | 5769 |
| ROTSE1 J183824.48+423643       | 8.1  | 5784         | 1109205-1392-1                     | 5708 |
|                                |      | 5750         | USNO 0825–11335145                 | 5733 |
| RAJ 0409.8+2446                |      | 5752         | USNO 0825–11559850                 | 5758 |
| RXJ 0424.8+2643A               |      | 5752         | USNO 0825–11738616                 | 5732 |
| RXJ 0435.9+2352                |      | 5752         | USNO 0825–11741216                 | 5732 |
| RAJ 0439.4+3332A               |      | 5752         | USNO 0825–11742658                 | 5732 |
| RAJ 0446.8+2255                |      | 5752         | USNO 0900–10271285                 | 5732 |
| RAJ 0451.9+2849A               |      | 5752         | USNO 0900–10274067                 | 5732 |
| S 04183                        |      | 5732         | USNO 0900–10278316                 | 5732 |
| S 04192                        |      | 5758         | USNO 0900–10280680                 | 5732 |
| S 04197                        |      | 5703         | USNO 0900–10287295                 | 5732 |
| S 04201                        |      | 5732         | USNO 0900–10292848                 | 5732 |

| 5732         | USNO 0900–11727384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5732         | USNO 0900–11727474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5732         | USNO 0900–11728679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5758         | USNO $0900-11739495$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5703         | USNO $0900-11805844$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5703         | USNO 0900 $-11809655$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5703         | USNO 0900–11817170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5703         | USNO 0900–11818657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5732         | USNO 0900–11822141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5732         | USNO 0900–11995376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5732         | USNO 0900–12003470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5732         | USNO 0900–12007595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5732         | USNO 0900–12011821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5758         | USNO 0900–12239936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5758         | USNO 0900–12245301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5703         | USNO 0900–12249834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5703         | USNO 0900-12252310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5703         | USNO 0975-09236295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5703         | USNO 0975–09345600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5703         | USNO 0975–09311040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5703         | USNO 0975–09544608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5703         | USNO 0975–09653264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5703         | USNO 0975–09955355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5703         | USNO 1050–08668833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5703         | USNO 1050–08969873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5703         | USNO 1050–09117461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5703         | USNO 1050–09311278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5703         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5705<br>5702 | USNO-B1.0 0945-0527099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0700<br>5700 | USNO-B1.0 0946-0525128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5703         | USNO-B1.0 1138-0175054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5703         | Vela X-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5703         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5703         | WD 23067122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5758         | WRA 977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5732         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5732         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5732         | Minima and Maxima of Variab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | les $5713$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5732         | 5731,5746,5760,5761,57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 64, 5781,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5732         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5732         | The GEOS BR Lyr Survey 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17 5767                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5758         | The GEOS fift Lyf Survey 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11, 5101,<br>5700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5732         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5732         | The 78th Name-List of Variabl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5732         | Stars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5703         | Observations of Variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5703         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5703         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5703         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5703         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | 5732<br>5732<br>5732<br>5732<br>5703<br>5703<br>5703<br>5703<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5758<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5732<br>5733<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703<br>5703 | 5732USNO 0900-11727384 $5732$ USNO 0900-11727474 $5732$ USNO 0900-11728679 $5758$ USNO 0900-11805844 $5703$ USNO 0900-11809655 $5703$ USNO 0900-11817170 $5703$ USNO 0900-11818657 $5732$ USNO 0900-1182141 $5732$ USNO 0900-12003470 $5732$ USNO 0900-12003470 $5732$ USNO 0900-12203936 $5753$ USNO 0900-12239936 $5758$ USNO 0900-12245301 $5703$ USNO 0900-12245301 $5703$ USNO 0900-12245301 $5703$ USNO 0975-09345600 $5703$ USNO 0975-0934608 $5703$ USNO 0975-0934608 $5703$ USNO 0975-0944608 $5703$ USNO 0975-09544608 $5703$ USNO 1050-08668833 $5703$ USNO 1050-08969873 $5703$ USNO 1050-09117461 $5703$ USNO 1050-0911278 $5703$ USNO 1050-0911278 $5703$ USNO-B1.0 0945-0527099 $5703$ USNO-B1.0 0946-0525128 $5703$ Vela X-1 $5703$ Vela X-1 $5703$ WD 23067122 $5758$ WRA 977 $5732$ The GEOS RR Lyr Survey 57 $5732$ The 78th Name-List of Variab1 $5733$ Stars $5703$ Observations of Variables $5703$ Stars |

Number 5701

Konkoly Observatory Budapest 3 May 2006 *HU ISSN 0374 - 0676* 

#### TIMES OF MAXIMA FOR SELECTED DELTA SCUTI STARS

KLINGENBERG, G.<sup>1</sup>; DVORAK, S. W.<sup>2</sup>; ROBERTSON, C. W.<sup>3</sup>

<sup>1</sup> Bossmo Observatory, Mo i Rana, Norway; e-mail: geir.klingenberg@gmail.com

<sup>2</sup> Rolling Hills Observatory, Clermont, FL USA; e-mail: sdvorak@rollinghillsobs.org

<sup>3</sup> SETEC Observatory, Goddard, Kansas USA; e-mail:cwr@pixius.net

We are presenting 120 previously unpublished times of maxima for 32 Delta Scuti and SX Phe stars. The observations where obtained in the period 2002 - 2006, using the telescopes and CCD-detectors listed in Tables 1 and 2. CCD-frame calibration and differential aperture photometry where performed using AIP4WIN software (Berry and Burnell, 2005), sextractor and custom-written applications. The times of maxima, presented in Table 3, are all heliocentric, and where determined by polynomial fitting using Peranso software (Vanmunster, 2006).

Table 1: Telescopes and Observatories

| Telescope type | Aperture     | F-ratio | Observatory                     |
|----------------|--------------|---------|---------------------------------|
| Newtonian      | $20~{ m cm}$ | f/4     | Bossmo Observatory (BMO)        |
| Catadioptric   | $25~{ m cm}$ | f/10    | Rolling Hills Observatory (RHO) |
| Catadioptric   | $30~{ m cm}$ | f/5     | SETEC Observatory (SEO)         |

| CCD type    | $\operatorname{Chip}$ | FOV               | Pixels           | Observatory |
|-------------|-----------------------|-------------------|------------------|-------------|
| SBIG ST-7   | Kodak KAF-400         | 19.4 	imes 28.8   | 765~	imes~510    | BMO         |
| SBIG ST-9XE | Kodak KAF-0261        | 18'.5 	imes 18'.5 | $512 \times 512$ | RHO         |
| SBIG ST-8   | Kodak KAF-1603ME      | $19.3\times29.3$  | $1530\times1020$ | SEO         |

Table 2: Detectors

Table 3: Times of Maxima

| Star     | HJD           | +/-     | $\operatorname{Filter}$ | Obs |
|----------|---------------|---------|-------------------------|-----|
| CC And   | 2452609.67358 | 0.00010 | V                       | SEO |
|          | 2452609.80426 | 0.00046 | V                       | SEO |
|          | 2453280.31612 | 0.00094 | V                       | BMO |
|          | 2453280.43954 | 0.00108 | V                       | BMO |
| GP And   | 2453680.35518 | 0.00031 | None                    | BMO |
| V356 Aur | 2453708.60049 | 0.00140 | None                    | BMO |

Table 3: (cont.)

| YZ Boo           | 2452374.70620                  | 0.00121 | None      | SEO       |
|------------------|--------------------------------|---------|-----------|-----------|
|                  | 2452374.81064                  | 0.00102 | None      | SEO       |
|                  | 2452392.71252                  | 0.00024 | None      | SEO       |
|                  | 2452392 81760                  | 0.00033 | None      | SEO       |
|                  | 2452302.01066                  | 0.00000 | Nono      | SEO       |
|                  | 2452592.91900                  | 0.00074 | None<br>V | SEO       |
|                  | 2452452.08570                  | 0.00053 | V         | SEO       |
|                  | 2452432.78942                  | 0.00062 | V         | SEO       |
|                  | 2453798.47144                  | 0.00054 | None      | BMO       |
|                  | 2453798.57500                  | 0.00051 | None      | BMO       |
|                  | 2453798.67870                  | 0.00052 | None      | BMO       |
|                  | 2453800.86516                  | 0.00044 | V         | $\rm RHO$ |
|                  | 2453800.96972                  | 0.00015 | V         | RHO       |
| BL Cam           | 2453809.30025                  | 0.00004 | None      | BMO       |
|                  | 2453809.33812                  | 0.00005 | None      | BMO       |
| UY Cam           | 2453808 42249                  | 0.00292 | None      | BMO       |
| V871 Cas         | 245381646696                   | 0.00051 | None      | BMO       |
| VOTI Cas         | 2453010,40050                  | 0.00001 | None      | DMO       |
| DO C             | 2455610.00251                  | 0.00094 | None      | DMO       |
| DQ Cep           | 2453710.23224                  | 0.00074 | None      | BMO       |
|                  | 2453797.69160                  | 0.00052 | None      | BMO       |
| AD CMi           | 2453810.62591                  | 0.00030 | V         | RHO       |
| XX Cyg           | 2453169.84064                  | 0.00015 | V         | $\rm RHO$ |
|                  | 2453499.85607                  | 0.00049 | V         | $\rm RHO$ |
|                  | 2453538.69645                  | 0.00045 | V         | RHO       |
|                  | 2453626.62920                  | 0.00040 | V         | RHO       |
|                  | 2453660.61528                  | 0.00059 | V         | RHO       |
|                  | 2453686 50947                  | 0.00056 | V         | BHO       |
|                  | 2453695 27639                  | 0.00047 | None      | BMO       |
|                  | 2453605 41071                  | 0.00041 | None      | BMO       |
| V2028 C          | 2403093.41071                  | 0.00045 | None      | DMO       |
| V2028 Cyg        | 2403706.27713                  | 0.00155 | None      | DMO       |
| V2129 Cyg        | 2453442.33548                  | 0.00027 | None      | BMO       |
| GW Dra           | 2453713.19876                  | 0.00018 | None      | BMO       |
|                  | 2453713.31692                  | 0.00031 | None      | BMO       |
| QS  Gem          | 2453709.69030                  | 0.00118 | V         | BMO       |
| V345~Gem         | 2453443.36334                  | 0.00170 | None      | BMO       |
| DY Her           | 2452786.65844                  | 0.00064 | V         | $\rm RHO$ |
|                  | 2453054.93914                  | 0.00015 | V         | RHO       |
|                  | 2453132.67363                  | 0.00005 | V         | RHO       |
|                  | 2453489.83381                  | 0.00018 | V         | RHO       |
|                  | 2453535.61256                  | 0.00039 | V         | RHO       |
| V830 Her         | 2453817 57388                  | 0.00092 | None      | BMO       |
| V927 Her         | 2453803 51891                  | 0.00002 | None      | BMO       |
| <b>V</b> 521 Her | 2453803 66200                  | 0.00000 | None      | BMO       |
|                  | 2400000.00209<br>0452004 56001 | 0.00099 | None      | DMO       |
| MOCC II          | 2400004.00891                  | 0.00020 | NOLLE     | DMO       |
| v 900 Her        | 2453807.54554                  | 0.00031 | None      | RWO       |
| VX Hya           | 2452735.60669                  | 0.00069 | V         | KHO       |
|                  | 2453016.91220                  | 0.00042 | V         | RHO       |
|                  | 2453113.63636                  | 0.00022 | V         | m RHO     |
|                  | 2453467.69577                  | 0.00106 | V         | $\rm RHO$ |
|                  | 2453476.59757                  | 0.00151 | V         | $\rm RHO$ |
| AN Lyn           | 2453796.32690                  | 0.00072 | None      | BMO       |
| ~                | 2453802.61728                  | 0.00084 | V         | RHO       |
|                  | 2453802.71466                  | 0.00067 | V         | RHO       |
| BE Lyn           | 2453416 27845                  | 0.00047 | None      | BMO       |
| DD Dyn           | 2453416 27591                  | 0.00041 | None      | BMO       |
|                  | 2400410.01021                  | 0.00040 | None      | BWO       |
|                  | 2400440.002/4<br>9459700 91017 | 0.00040 | None      | DMO       |
| DO I             | 2400798.31817                  | 0.00024 | none      |           |
| BO Lyn           | 2453795.53561                  | 0.00044 | none      | RWO       |
| <b>GO T</b>      | 2453795.63339                  | 0.00037 | None      | BWO       |
| CQ Lyn           | 2453709.38329                  | 0.00069 | V         | BMO       |
|                  | 2453709.49681                  | 0.00076 | V         | BMO       |

Table 3: (cont.)

| SZ Lyn       | 2452321.73578   | 0.00063            | None   | SEO |
|--------------|-----------------|--------------------|--------|-----|
|              | 2452343.79563   | 0.00042            | None   | SEO |
|              | 2452623.55155   | 0.00058            | V      | SEO |
|              | 2452623.67342   | 0.00035            | V      | SEO |
|              | 2452640.54936   | 0.00035            | V      | SEO |
|              | 2452640.66976   | 0.00056            | V      | SEO |
|              | 2452643.44217   | 0.00118            | V      | SEO |
|              | 2452643.56365   | 0.00062            | V      | SEO |
|              | 2452643.68337   | 0.00081            | V      | SEO |
|              | 2452647.42013   | 0.00047            | V      | SEO |
|              | 2452647.54057   | 0.00051            | V      | SEO |
|              | 2452647.65949   | 0.00023            | V      | SEO |
|              | 2452648.50325   | 0.00056            | V      | SEO |
|              | 2452648.62321   | 0.00082            | V      | SEO |
|              | 2452658.63939   | 0.00036            | V      | RHO |
|              | 2453064.72252   | 0.00024            | V      | RHO |
|              | 2453338.81318   | 0.00097            | V      | RHO |
|              | 2453395.58528   | 0.00022            | V      | RHO |
|              | 2453416.55775   | 0.00050            | V      | BMO |
|              | 2453745.73923   | 0.00064            | V      | RHO |
|              | 2453758.76187   | 0.00016            | V      | SEO |
|              | 2453758 88451   | 0.00035            | V      | SEO |
|              | 2453759 60604   | 0.00007            | V      | SEO |
|              | 2453759.72692   | 0.00002            | V      | SEO |
|              | 2453759.84713   | 0.00061            | ,<br>V | SEO |
|              | 2453759 96792   | 0.00001            | ,<br>V | SEO |
|              | 2453798 41955   | 0.00049            | None   | BMO |
| TV Lyn       | 2453806 53233   | 0.00062            | None   | BMO |
| BP Peg       | 2453709 23216   | 0.000025           | None   | BMO |
| DY Peg       | 2452518 74991   | 0.00053            | None   | SEO |
| D1108        | 2452518 82371   | 0.00043            | None   | SEO |
|              | 2452522 75997   | 0.00061            | None   | SEO |
|              | 2452522.83366   | 0.00071            | None   | SEO |
|              | 2452522.90871   | 0.00058            | None   | SEO |
|              | 2452524 73135   | 0.00078            | None   | SEO |
|              | 2452524 80295   | 0.00010            | None   | SEO |
|              | 2452524 87576   | 0.00043            | None   | SEO |
|              | 2452524 94893   | 0.00039            | None   | SEO |
|              | 2453295 21602   | 0.00015            | V      | BMO |
|              | 2453295 28932   | 0.00014            | V      | BMO |
| AE UMa       | 2453409 52857   | 0.00011            | None   | BMO |
| nin oma      | 2453409 61085   | 0.00021<br>0.00032 | None   | BMO |
|              | 2453409 69405   | 0.00052            | None   | BMO |
|              | 2453794 36194   | 0.00000            | None   | BMO |
|              | 2453795 31152   | 0.00025            | None   | BMO |
|              | 2453795.31192   | 0.00031            | None   | BMO |
|              | 2453827 65701   | 0.00130            | V      | BHO |
| GG UMa       | 2453711 20412   | 0.00130            | v<br>V | BMO |
| HH UMa       | 2455111.29412   | 0.00004            | v<br>V | BHU |
| $IP IIM_{2}$ | 2453719 50509   | 0.00190            | v<br>V | BMO |
| 11 Uma       | 2453712 60750   | 0.00041<br>0.00074 | v<br>V | BMO |
|              | 2453797 3/0/3   | 0.00061            | None   | BMO |
|              | 2453797 45183   | 0.00082            | None   | BMO |
| TU UMi       | 2453713 50846   | 0.00002<br>0.00045 | V      | BMO |
| T 0 01011    | = 1001 10.000H0 | 0.00010            | •      |     |

#### **Remarks:**

Many Delta Scuti stars have multiple periods, and in these cases O - C values might show some scatter due to the beating of the periods. Still, averaged O - C values are useful when looking for long term trends (Fauvud et al., 2006) or sudden period changes (Breger et al., 1998), if analyzed with care.

#### Acknowledgements:

This work has made use of the SIMBAD database, operated at CDS, Strasbourg, France.

#### Reference:

Berry, R., Burnell, J., 2005, Handbook of Astronomical Image Processing, Willmann-Bell http://www.willbell.com/aip/index.htm

Breger, M., Pamyatnykh, A. A., 1998, A&A, 332, 958

Fauvaud, S., Rodríguez, E., Zhou, A.Y. et al., 2006, "A comprehensive study of the SX Phe star BL Cam", accepted for publication in  $A \mathscr{C}A$ 

Vanmunster, T., 2006, http://www.peranso.com

#### ERRATUM FOR IBVS 5701

The star listed as V2028 Cyg in IBVS 5701 should be V2088 Cyg.

Geir Klingenberg

Number 5702

Konkoly Observatory Budapest 15 May 2006 *HU ISSN 0374 - 0676* 

#### ACTIVE MOTION OF MATTER IN THE ENVELOPE OF DI CEPHEI

#### ISMAILOV, N. Z.; ALIYEVA, A. A.

Shamakha Astrophysical Observatory, National Academy of Sciences of Azerbaijan, Shamakha, Azerbaijan; e-mail: Box1955n@yahoo.com

Emission spectra of T Tauri stars (TTSs) carry important information from disk accretion areas that interact with the star's magnetosphere. Balmer profiles of young stars suggest the presence of magnetic funnel flows, created as the stellar magnetosphere truncates the inner disk and redirects the accretion flow along magnetic trajectories terminating in accretion shocks on the stellar surface (Königl 1991, Muzerolle et al. 1998, Beristain et al. 1998). However, details of this process are not clear yet. A detailed spectroscopic study of the structure of a star's emission lines can give us information important for understanding interaction of disk accretion with the star's atmosphere.

We present new results of our study of the hydrogen emission lines for the TTS DI Cep. We used the echelle spectrometer in the Cassegrain focus of the 2 m telescope (Shamakha Observatory, Azerbaijan) with a  $580 \times 530$ -pixel CCD (Mikailov et al. 2005). The spectral range was  $\lambda\lambda 4400 - 6800$  Å, the spectral resolution was R = 14000. The whole range was divided into 28 orders, each of them about 100 Å wide. The linear dispersion varied between 11 and 6 Å/mm. The average signal-to-noise ratio was 60 and 40, respectively in the H $\alpha$  and H $\beta$  region. The mean exposure time for one spectrum was about one hour. The spectral reductions made use of software developed by Galazutdinov (1992). To undertake cleaning for the telluric lines, we use a special technique (Alieva and Ismailov, 2005) based on the following procedure: after precise position identification of telluric lines, we derive a pseudo-continuum, which ignores positions of the telluric lines. After dividing by this pseudo-continuum, we obtain the so-called "divisor" spectrum, which contains the telluric lines. We then apply this spectrum as a spectrum of a standard star with a smooth continuum (Galazutdinov, 1992). Two spectra were obtained in 2004 and 18, in 2005. Ten of these spectra were obtained on the night of JD 2453589, at 5-minute intervals, to check for rapid variability of the H $\alpha$  emission. In these spectra, the signalto-noise ratio is S/N = 8, thus the equivalent widths of the H $\beta$  lines are not measurable; the data for JD 2453589.486 in Table 1 (see description below) are mean parameters for these 10 spectra. The mean uncertainty of our radial velocity measurements for standard stars was within 2 km/s, that for equivalent widths was about 4-5%.

The H $\alpha$  line profiles in different spectra are presented in Fig. 1. The profile basically has two strong peaks (Nos. 3 and 4 in Fig. 1), with a depression between them. In turn, each of the peaks 3 and 4 shows a complex structure. On some nights, weak emission peaks displaced to the blue and to the red in the spectrum by  $\pm 400$  km/s (peaks 1 and 5) were observed. The blue wing of the emission peak 1 is very extended and smoothly merges with the continuum at a displacement of -600 km/s. These peaks are especially strong in the spectrum acquired on JD 2453588. The absorption 2 has a blue shift about -320 km/s and forms a typical P Cyg structure. The peak 5 on the same night had a displacement about +491 km/s. Thus we observe strong variations of the H $\alpha$  structure from night to night as well as within a night.

| JD 24                                                                                                | $\stackrel{W_1}{\mathbb{A}},$                      | $\stackrel{W_2}{	ext{A}},$                          | $\overset{W_3}{	ext{A}},$                                | $egin{array}{c} W_4, \ { m \AA} \end{array}$                   | $\stackrel{W_5}{	ext{A}},$                        | W,<br>Å                                               | FWHM,<br>Å |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|------------|
| 53240.298                                                                                            |                                                    |                                                     | 12                                                       | 15                                                             |                                                   | 27                                                    | 6.96       |
| 53240.392                                                                                            | 0.34                                               | 0.14                                                | 13.1                                                     | 17.7                                                           | 0.09                                              | 30.8                                                  | 7.13       |
| 53587.390                                                                                            |                                                    |                                                     | 5.7                                                      | 6.7                                                            |                                                   | 12.5                                                  |            |
| 53587.420                                                                                            | 0.12                                               | 0.22                                                | 16.7                                                     | 19.2                                                           | 0.21                                              | 35.8                                                  | 7.35       |
| 53587.488                                                                                            | 0.20                                               | 0.10                                                | 17.7                                                     | 25                                                             | 0.12                                              | 39.3                                                  | 7.87       |
| 53588.428                                                                                            | 0.71                                               | 0.56                                                | 29.5                                                     | 26.2                                                           | 0.78                                              | 55.7                                                  | 8.03       |
| 53588.476                                                                                            | 0.61                                               | 0.50                                                | 30.6                                                     | 28.3                                                           | 1.18                                              | 58.9                                                  | 7.67       |
| 53589.486                                                                                            |                                                    |                                                     | 24.7                                                     | 13.5                                                           |                                                   | 38.3                                                  | 7.69       |
| 53590.392                                                                                            | 0.24                                               | 0.12                                                | 25.9                                                     | 12.9                                                           |                                                   | 38.8                                                  | 7.06       |
|                                                                                                      |                                                    |                                                     |                                                          |                                                                |                                                   |                                                       |            |
|                                                                                                      | $V_1$ ,                                            | $V_2$ ,                                             | $V_3$ ,                                                  | $V_4$ ,                                                        | $V_5$ ,                                           | $V_6$ ,                                               |            |
|                                                                                                      | $V_1, 	ext{km/s}$                                  | $V_2,  m km/s$                                      | $V_3,  m km/s$                                           | $V_4,  m km/s$                                                 | $V_5,  m km/s$                                    | $V_6,  m km/s$                                        |            |
| 53240.298                                                                                            | $V_1, 	ext{km/s}$                                  | $V_2,  m km/s$                                      | $V_3,$ km/s                                              | $V_4, 	ext{km/s}$                                              | $V_5,  m km/s$                                    | $V_6,  m km/s$                                        |            |
| 53240.298<br>53240.392                                                                               | $V_1,$ km/s                                        | $V_2,  m km/s$                                      | $V_3, \ { m km/s} \ -103 \ -80$                          | $V_4,  m km/s$<br>53<br>56                                     | $V_5,$ km/s $349$                                 | $V_6, \ { m km/s}$ -28 -25                            |            |
| 53240.298<br>53240.392<br>53587.390                                                                  | $V_1,$ km/s                                        | $V_2,$ km/s                                         | $V_3, \ { m km/s}$<br>-103<br>-80<br>-99                 | $V_4,  m km/s$<br>53<br>56<br>10                               | $V_5,$ km/s $349$                                 | $V_6, \ { m km/s}$ $-28$ $-25$ $-42$                  |            |
| 53240.298<br>53240.392<br>53587.390<br>53587.420                                                     | $V_1, \ { m km/s}$ -377 -414                       | $V_2, km/s$ -356 -323                               | $V_3,  m km/s$<br>-103<br>-80<br>-99<br>-119             | $V_4,  m km/s$<br>53<br>56<br>10<br>18                         | $V_5,$ km/s $349$ $395$                           | $V_6,  m km/s$<br>-28<br>-25<br>-42<br>-33            |            |
| 53240.298<br>53240.392<br>53587.390<br>53587.420<br>53587.488                                        | $V_1, km/s$<br>-377<br>-414<br>-495                | $V_2,$ km/s<br>-356<br>-323<br>-318                 | $V_3,$ km/s<br>-103<br>-80<br>-99<br>-119<br>-116        | $V_4,\ { m km/s}$ 53<br>56<br>10<br>18<br>23                   | $V_5,  m km/s$<br>349<br>395<br>440               | $V_6,  m km/s$<br>-28<br>-25<br>-42<br>-33<br>-27     |            |
| 53240.298<br>53240.392<br>53587.390<br>53587.420<br>53587.488<br>53588.428                           | $V_1, 	ext{km/s}$<br>-377<br>-414<br>-495<br>-412  | $V_2,$ km/s<br>-356<br>-323<br>-318<br>-339         | $V_3,$ km/s<br>-103<br>-80<br>-99<br>-119<br>-116<br>-74 | $V_4,\ { m km/s}$<br>53<br>56<br>10<br>18<br>23<br>13          | $V_5,$ km/s<br>349<br>395<br>440<br>381           | $V_6,$ km/s<br>-28<br>-25<br>-42<br>-33<br>-27<br>-37 |            |
| 53240.298<br>53240.392<br>53587.390<br>53587.420<br>53587.488<br>53588.428<br>53588.476              | $V_1, m/s$<br>-377<br>-414<br>-495<br>-412<br>-417 | $V_2,$ km/s<br>-356<br>-323<br>-318<br>-339<br>-336 | $V_{3}, \\ \rm km/s$ -103 -80 -99 -119 -116 -74 -74      | $V_4,\ { m km/s}$<br>53<br>56<br>10<br>18<br>23<br>13<br>18    | $V_5,$ km/s<br>349<br>395<br>440<br>381<br>491    | $V_{6}, \\ km/s$ -28 -25 -42 -33 -27 -37 -34          |            |
| 53240.298<br>53240.392<br>53587.390<br>53587.420<br>53587.488<br>53588.428<br>53588.476<br>53589.486 | $V_1, m/s$<br>-377<br>-414<br>-495<br>-412<br>-417 | $V_2,$ km/s<br>-356<br>-323<br>-318<br>-339<br>-336 | $V_3, km/s$ -103 -80 -99 -119 -116 -74 -74 -104          | $V_4,  m km/s$<br>53<br>56<br>10<br>18<br>23<br>13<br>18<br>42 | $V_5,  m km/s$<br>349<br>395<br>440<br>381<br>491 | $V_{6}, \ \rm km/s$ -28 -25 -42 -33 -27 -37 -34 -32   |            |

Table 1. Parameters of the H $\alpha$  line in the spectrum of DI Cep

The results of our measurements of equivalent widths and radial velocities of individual  $H\alpha$  components are presented in Table 1. To measure equivalent widths of individual components, we used the following method from the DECH20 (Galazutdinov, 1992) software package: for each component, we limited the left and right sides of its peak with vertical lines and determined the area between these lines by integration. In our case, we could not apply Gaussian fitting because, for our profiles, the wings of individual components remained mainly unresolved.

The first part of Table 1 presents equivalent widths of the main components marked in Fig. 1. W is the full equivalent width of the emission, FWHM is a line width at half intensity. In the second part of Table 1, radial velocities of the same components are presented.

Figure 2 shows the H $\beta$  line profiles for the same spectrograms. It can be seen that this line exhibits structures similar to those we observe for the H $\alpha$  line. The H $\beta$  profile is quite similar to the H $\alpha$  line structure for JD 2453588.476. Here we simultaneously observe the components displaced into the blue and red parts of the spectrum, respectively by about -408 and +328 km/s. On JD 2453588, the H $\beta$  profiles recorded one after another have the peaks 1 and 4 barely visible in the first spectrogram, these peaks were observed stronger in the spectrogram acquired one hour later. Note that, while the blue-displaced component 1 is observed confidently enough, the component 4 is rarely observed and shows active variations. The parameters of the H $\beta$  line are collected in Table 2, which is similar in its contents to Table 1, but the component numbers refer to Fig. 2. We find direct correlation between equivalent widths of individual emission components of the H $\alpha$  and H $\beta$  lines, with correlation coefficients ~ 80%. For example, we obtained a direct correlation between the equivalent widths of the blue peak 3 of H $\alpha$  and peak 2 of H $\beta$ , with the correlation coefficient r = 84%. Signatures of simultaneous accretion on T Tauri stars and outflow from them were first observed by Walker (1972) who had noticed an additional absorption component redward of the redshifted emission peak, then the event was observed for other classical TTSs (CTTSs) (Bertout, 1984; Batalha et al., 2001). Our observations show that the H $\alpha$  and H $\beta$  line profiles of the CTTS DI Cep vary actively. Unstable accretion and emission components of the two hydrogen lines have been observed on the same spectrogram for the first time. This is a rare phenomenon, it also demonstrates the discrete character of the accretion process.

Periodic spectral and photometric variations of the star  $(P = 9^{d}.24)$  were observed (Ismailov, 2003). If they are related to the asymmetric and inhomogeneous envelope, one of the possible causes of the inhomogeneity is the structure of the magnetosphere, with accretion along the magnetic lines. In principle, such activity of DI Cep can be easily explained in modern magnetospheric-accretion models. High activity of the star is provided by kinetic energy of matter accreted onto the star surface across magnetic field lines (Muzerolle et al. 1998, Lamzin 1998).



Figure 1. The H $\alpha$  profiles in the spectrum of DI Cep

|           |                                |                           |                           |                                 |         | - P        | £              |                | 1              |                |                |
|-----------|--------------------------------|---------------------------|---------------------------|---------------------------------|---------|------------|----------------|----------------|----------------|----------------|----------------|
| JD 24     | $\overset{W_1}{\mathrm{\AA}},$ | $\overset{W_2}{	ext{A}},$ | $\overset{W_3}{	ext{A}},$ | $\substack{W_4,\ \mathrm{\AA}}$ | W,<br>Å | FWHM,<br>Å | $V_1,  m km/s$ | $V_2,  m km/s$ | $V_3,  m km/s$ | $V_4,  m km/s$ | $V_5,  m km/s$ |
| 53240.298 |                                | 2.4                       | 1.5                       |                                 | 3.9     | 6.96       |                | -93.2          | -5.3           |                | -27.2          |
| 53240.392 | 0.07                           | 3.2                       | 1.8                       |                                 | 5.0     | 4.29       | -398           | -97.2          | 28.3           |                | -2.1           |
| 53587.390 |                                | 3.5                       | 2.4                       |                                 | 6.0     | 4.98       |                | -109           | -9.4           |                | -34.1          |
| 53587.420 | 0.09                           | 3.9                       | 3.2                       |                                 | 7.0     | 5.44       | -344           | -111           | -7.6           |                | -46            |
| 53587.488 | 0.17                           | 4.8                       | 3.7                       | 0.20                            | 8.5     | 5.35       | -420           | -93.9          | 73.5           | 441            | -16.4          |
| 53588.428 | 0.08                           | 5.8                       | 5.6                       | 0.45                            | 11.7    | 5.20       | -410           | -85.1          | 100.7          | 325            | -19.7          |
| 53588.476 | 0.83                           | 6.5                       | 4.5                       | 1.68                            | 10.9    | 5.71       | -408           | -94.2          | 38.6           | 323            | -3.8           |
| 53590.392 |                                | 4.2                       | 2.9                       |                                 | 7.1     | 5.27       |                | -107.3         | 15.5           |                | -35.1          |
|           |                                |                           |                           |                                 |         |            |                |                |                |                |                |

Table 2. Parameters of the H $\beta$  line in the spectrum of DI Cep

Thus, we can make the following conclusions:

1. Profile variations of the H $\alpha$  and H $\beta$  hydrogen lines during a night and from night to night, on time scales from an hour to a day, are observed.

2. For the first time, signatures of matter accretion and outflow were simultaneously observed for the CTTS DI Cep, providing evidence of complex structure of its circumstellar disk.

We thank Dr. N.N. Samus for discussions and assistance during the preparation of the manuscript.



**Figure 2.** The H $\beta$  profiles in the spectrum of DI Cep

#### References:

Alieva, A.A., Ismailov, N.Z., 2005, Circular Shamakha Observ., No. 110, 14

Batalha, C., Lopes, D.F., Batalha, N.M., 2001, Astrophys. J., 548, 377

Beristain, G., Edwards, S., Kwan, J., 1998, Astrophys. J., 499, 828

Bertout, C., 1984, Reports Progr. Phys., 47, 111

Galazutdinov, G.A., 1992, Preprint Spec. Astroph. Obs., No. 92

Ismailov, N.Z., 2003, Inform. Bull. Var. Stars, No. 5466

Königl, A., 1991, Astrophys. J., 370, L39

Lamzin, S.A., 1998, Astronomy Reports, 42, 322

Mikailov, Ch.M., Chalilov, V.M., Alekperov, I.A., 2005, Circular Shamakha Observ., No. 109, 21

Muzerolle, J., Calvet, N., Hartmann, L., 1998, Astrophys. J., 492, 743

Walker, M.F., 1972, Astrophys. J., 175, 89

Number 5703

Konkoly Observatory Budapest 16 May 2006 *HU ISSN 0374 - 0676* 

### ELEMENTS FOR 8 RR LYRAE VARIABLES IN OPHIUCHUS

HÄUSSLER, K.<sup>1</sup>; BERTHOLD, T.<sup>1,2</sup>; KROLL, P.<sup>2</sup>

 $^{1}$ Bruno-H.-Bürgel-Sternwarte, Töpelstr. 46, D-04746 Hartha, Germany

<sup>2</sup> Sternwarte Sonneberg, Sternwartestr. 32, D-96515 Sonneberg, Germany

email: sternwart ehart ha@lycos.de, tb@4pisysteme.de, pk@4pisysteme.de

These stars were reported to be variable by Hoffmeister (1949, 1966, 1967, 1968) and Boyce and Huruhata (1942). Except in the cases of V946 Oph and V2202 Oph (see details noted in the remarks below), no further observations or ephemeris have been published until today. Photographic plates of a field centered at 67 Oph, taken with the Sonneberg Observatory 40cm Astrographs during three intervals spread over the years from 1938 to 1994, were used to investigate the behaviour of these objects (see Table 1).

The given elements were obtained by means of least-squares solutions. Photographic amplitudes were derived with respect to magnitudes of the comparison stars given in Table 2. An extensive list holding the times of maxima derived can be retrieved as 5703-t3.txt, using the link in the HTML version of this paper. Individual data are available upon request.

| Star              | Type            | $\operatorname{Epoch}$ | Period    | Max.                | Min.                                   | M-m                        | No. of                  |
|-------------------|-----------------|------------------------|-----------|---------------------|----------------------------------------|----------------------------|-------------------------|
|                   |                 | 2400000 +              | (day)     |                     |                                        |                            | $\operatorname{Plates}$ |
| V946 Oph          | RRab            | 49124.459              | 0.6398176 | $14.^{\mathrm{m}}7$ | $15.^{m}7$                             | $0^{\rm p}_{.}16$          | 205                     |
|                   |                 | $\pm 9$                | $\pm 4$   |                     |                                        |                            |                         |
| $V1098 { m ~Oph}$ | RRab            | 49475.496              | 0.5983190 | $14 \cdot 6$        | $16 \stackrel{\mathrm{m}}{\cdot} 3$    | 0P18                       | 164                     |
|                   |                 | $\pm 10$               | $\pm 5$   |                     |                                        |                            |                         |
| V2031  Oph        | $\mathbf{RRab}$ | 45913.374              | 0.2616933 | $15 \cdot 0$        | $16 \cdot 0$                           | $0^{\mathrm{p}}_{\cdot}20$ | 181                     |
|                   |                 | $\pm 7$                | $\pm 2$   |                     |                                        |                            |                         |
| $V2079 { m ~Oph}$ | RRba            | 48801.491              | 0.4675631 | $14 \cdot 7$        | $16 \cdot 2$                           | $0^{\mathrm{p}}_{\cdot}16$ | 193                     |
|                   |                 | $\pm 6$                | $\pm 4$   |                     |                                        |                            |                         |
| V2082  Oph        | $\mathbf{RRab}$ | 49488.572              | 0.6655856 | $15.^{\mathrm{m}}1$ | $15.^{\mathrm{m}}8$                    | 0P12                       | 204                     |
|                   |                 | $\pm 8$                | $\pm 6$   |                     |                                        |                            |                         |
| V2084  Oph        | $\mathbf{RRab}$ | 49215.391              | 0.5152199 | $15^{\mathrm{m}}3$  | 16···································· | 0P19                       | 149                     |
|                   |                 | $\pm 8$                | $\pm 4$   |                     |                                        |                            |                         |
| V2086  Oph        | $\mathbf{RRab}$ | 49154.514              | 0.5432653 | $14.^{m}1$          | $15.^{\mathrm{m}}5$                    | $0^{p}.16$                 | 250                     |
|                   |                 | $\pm 6$                | $\pm 3$   |                     |                                        |                            |                         |
| V2202  Oph        | RRab            | 48801.508              | 0.5924134 | $15.^{\mathrm{m}}4$ | $16 \cdot 3$                           | $0^{p}.16$                 | 146                     |
| _                 |                 | $\pm 10$               | $\pm 6$   |                     |                                        |                            |                         |
|                   |                 |                        |           |                     |                                        |                            |                         |

Table 1. Summary of this paper

|                                                           | V946 Oph                                                                                                                                                                                                                      |                                                                                                                                                       | V1098 ~Oph                                                                                                                                                                                                              |                                                                                                            |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|                                                           | S 4197                                                                                                                                                                                                                        |                                                                                                                                                       | S 9875                                                                                                                                                                                                                  |                                                                                                            |
|                                                           | USNO 0900-11245172                                                                                                                                                                                                            |                                                                                                                                                       | USNO 0900-12249834                                                                                                                                                                                                      |                                                                                                            |
| Comp. No.                                                 | $\operatorname{GSC}$                                                                                                                                                                                                          | $\mathrm{m}^{*}$                                                                                                                                      | USNO                                                                                                                                                                                                                    | $\mathbf{m}^{*}$                                                                                           |
| 1                                                         | $0900 	ext{-} 11242067$                                                                                                                                                                                                       | $14.^{\mathrm{m}}9$                                                                                                                                   | 0900 - 12252310                                                                                                                                                                                                         | $14.^{m}7$                                                                                                 |
| 2                                                         | 0900 - 11243430                                                                                                                                                                                                               | $15.^{\mathrm{m}}1$                                                                                                                                   | $0900 \hbox{-} 12245301$                                                                                                                                                                                                | $15.^{\mathrm{m}}2$                                                                                        |
| 3                                                         | 0900 - 11248377                                                                                                                                                                                                               | $15.^{\mathrm{m}}7$                                                                                                                                   | 0900 - 12239936                                                                                                                                                                                                         | 16.0                                                                                                       |
|                                                           |                                                                                                                                                                                                                               |                                                                                                                                                       |                                                                                                                                                                                                                         |                                                                                                            |
|                                                           | V2031 Oph                                                                                                                                                                                                                     |                                                                                                                                                       | V2079 Oph                                                                                                                                                                                                               |                                                                                                            |
|                                                           | ${ m S}10354$                                                                                                                                                                                                                 |                                                                                                                                                       | S 9266                                                                                                                                                                                                                  |                                                                                                            |
|                                                           | USNO 0900-10975013                                                                                                                                                                                                            |                                                                                                                                                       | USNO 0900-10982172                                                                                                                                                                                                      |                                                                                                            |
| Comp. No.                                                 | USNO                                                                                                                                                                                                                          | $\mathrm{m}^*$                                                                                                                                        | USNO                                                                                                                                                                                                                    | $\mathbf{m}^{*}$                                                                                           |
| 1                                                         | 0900 - 10979371                                                                                                                                                                                                               | $14.^{\mathrm{m}}8$                                                                                                                                   | 0900-10982884                                                                                                                                                                                                           | $13.^{m}3$                                                                                                 |
| 2                                                         | 0900 - 10983694                                                                                                                                                                                                               | $15.^{\mathrm{m}}4$                                                                                                                                   | 0900 - 10988752                                                                                                                                                                                                         | $15.^{m}1$                                                                                                 |
| 3                                                         | 0900 - 10971449                                                                                                                                                                                                               | $15.^{\mathrm{m}}8$                                                                                                                                   | 0900 - 10983912                                                                                                                                                                                                         | $15.^{\rm m}4$                                                                                             |
| 4                                                         |                                                                                                                                                                                                                               |                                                                                                                                                       | 0900 - 10985378                                                                                                                                                                                                         | $16.^{\mathrm{m}}0$                                                                                        |
|                                                           |                                                                                                                                                                                                                               |                                                                                                                                                       |                                                                                                                                                                                                                         |                                                                                                            |
|                                                           |                                                                                                                                                                                                                               |                                                                                                                                                       |                                                                                                                                                                                                                         |                                                                                                            |
|                                                           | V2082 Oph                                                                                                                                                                                                                     |                                                                                                                                                       | V2084 Oph                                                                                                                                                                                                               |                                                                                                            |
|                                                           | $\begin{array}{c} \mathrm{V2082~Oph}\\\mathrm{S}~9848 \end{array}$                                                                                                                                                            |                                                                                                                                                       | $\begin{array}{c} \mathrm{V2084~Oph}\\\mathrm{S}~9856 \end{array}$                                                                                                                                                      |                                                                                                            |
|                                                           | V2082 Oph<br>S 9848<br>USNO 0900-11067505                                                                                                                                                                                     |                                                                                                                                                       | V2084 Oph<br>S 9856<br>USNO 0900-11418565                                                                                                                                                                               |                                                                                                            |
| Comp. No.                                                 | V2082 Oph<br>S 9848<br>USNO 0900-11067505<br>USNO                                                                                                                                                                             |                                                                                                                                                       | V2084 Oph<br>S 9856<br>USNO 0900-11418565<br>USNO                                                                                                                                                                       |                                                                                                            |
| Comp. No.                                                 | V2082 Oph<br>S 9848<br>USNO 0900-11067505<br>USNO<br>0900-11065091                                                                                                                                                            | $m^*$<br>15 <sup>m</sup> 0                                                                                                                            | V2084 Oph<br>S 9856<br>USNO 0900-11418565<br>USNO<br>0900-11416873                                                                                                                                                      | $\frac{m^*}{15.00}$                                                                                        |
| Comp. No.<br>1<br>2                                       | V2082 Oph<br>S 9848<br>USNO 0900-11067505<br>USNO<br>0900-11065091<br>0900-11075451                                                                                                                                           | $m^*$<br>15 <sup>m</sup> 0<br>15 <sup>m</sup> 3                                                                                                       | V2084 Oph<br>S 9856<br>USNO 0900-11418565<br>USNO<br>0900-11416873<br>0900-11414437                                                                                                                                     | $m^* \over 15.00 \\ 15.55$                                                                                 |
| Comp. No.<br>1<br>2<br>3                                  | V2082 Oph<br>S 9848<br>USNO 0900-11067505<br>USNO<br>0900-11065091<br>0900-11065691<br>0900-11066645                                                                                                                          | $m^*$<br>15 <sup>m</sup> 0<br>15 <sup>m</sup> 3<br>15 <sup>m</sup> 3                                                                                  | V2084 Oph<br>S 9856<br>USNO 0900-11418565<br>USNO<br>0900-11416873<br>0900-11414437<br>0900-11416503                                                                                                                    | $m^*$<br>15 <sup>m</sup> 0<br>15 <sup>m</sup> 5<br>15 <sup>m</sup> 6                                       |
| Comp. No.<br>1<br>2<br>3<br>4                             | V2082 Oph<br>S 9848<br>USNO 0900-11067505<br>USNO<br>0900-11065091<br>0900-11075451<br>0900-11066645<br>0900-11067909                                                                                                         | $\frac{m^{*}}{15^{m}_{\cdot}0}$ $15^{m}_{\cdot}3$ $15^{m}_{\cdot}3$ $16^{m}_{\cdot}0$                                                                 | V2084 Oph<br>S 9856<br>USNO 0900-11418565<br>USNO<br>0900-11416873<br>0900-11414437<br>0900-11416503<br>0900-11420016                                                                                                   | $\frac{m^{*}}{15.^{m}0}$ $15.^{m}5$ $15.^{m}6$ $16.^{m}4$                                                  |
| Comp. No.<br>1<br>2<br>3<br>4                             | V2082 Oph<br>S 9848<br>USNO 0900-11067505<br>USNO<br>0900-11065091<br>0900-11066645<br>0900-11066645<br>0900-11067909                                                                                                         | $\frac{m^{*}}{15\stackrel{\rm m}{\cdot}0}\\15\stackrel{\rm m}{\cdot}3\\15\stackrel{\rm m}{\cdot}3\\16\stackrel{\rm m}{\cdot}0$                        | $\begin{array}{c} V2084 \ {\rm Oph}\\ {\rm S} \ 9856\\ {\rm USNO} \ 0900\text{-}11418565\\ \hline \\ \hline \\ 0900\text{-}11416873\\ 0900\text{-}11416873\\ 0900\text{-}11416503\\ 0900\text{-}11420016\\ \end{array}$ | $rac{\mathrm{m}^{*}}{15^{\mathrm{m}}0}$<br>$15^{\mathrm{m}}5$<br>$15^{\mathrm{m}}6$<br>$16^{\mathrm{m}}4$ |
| Comp. No.<br>1<br>2<br>3<br>4                             | V2082 Oph<br>S 9848<br>USNO 0900-11067505<br>USNO<br>0900-11065091<br>0900-11066645<br>0900-11066645<br>0900-11067909<br>V2086 Oph                                                                                            | $m^*$<br>$15^m_{\cdot}0$<br>$15^m_{\cdot}3$<br>$15^m_{\cdot}3$<br>$16^m_{\cdot}0$                                                                     | V2084 Oph<br>S 9856<br>USNO 0900-11418565<br>USNO<br>0900-11416873<br>0900-11416573<br>0900-11416503<br>0900-11420016<br>V2202 Oph                                                                                      | $\frac{m^{*}}{15^{m}0}$ $15^{m}5$ $15^{m}6$ $16^{m}4$                                                      |
| Comp. No.<br>1<br>2<br>3<br>4                             | V2082 Oph<br>S 9848<br>USNO 0900-11067505<br>USNO<br>0900-11065091<br>0900-11066645<br>0900-11066645<br>0900-11067909<br>V2086 Oph<br>S 9296                                                                                  | ${ m m}^{*}$<br>15 ${ m 0}$<br>15 ${ m 3}$<br>15 ${ m 3}$<br>16 ${ m 0}$                                                                              | V2084 Oph<br>S 9856<br>USNO 0900-11418565<br>USNO<br>0900-11416873<br>0900-11416503<br>0900-11416503<br>0900-11420016<br>V2202 Oph<br>HV 11035                                                                          | $rac{\mathrm{m}^{*}}{15^{\mathrm{m}}0}\ 15^{\mathrm{m}}5\ 15^{\mathrm{m}}6\ 16^{\mathrm{m}}4$             |
| Comp. No.<br>1<br>2<br>3<br>4                             | V2082 Oph<br>S 9848<br>USNO 0900-11067505<br>USNO<br>0900-11065091<br>0900-11066645<br>0900-11066645<br>0900-11067909<br>V2086 Oph<br>S 9296<br>USNO 0900-11817170                                                            | $m^*$<br>15 <sup>m</sup> 0<br>15 <sup>m</sup> 3<br>15 <sup>m</sup> 3<br>16 <sup>m</sup> 0                                                             | V2084 Oph<br>S 9856<br>USNO 0900-11418565<br>USNO<br>0900-11416873<br>0900-11414437<br>0900-11416503<br>0900-11420016<br>V2202 Oph<br>HV 11035<br>USNO 0900-10462979                                                    | $rac{\mathrm{m}^{*}}{15^{\mathrm{m}}0}$<br>$15^{\mathrm{m}}5$<br>$15^{\mathrm{m}}6$<br>$16^{\mathrm{m}}4$ |
| Comp. No.<br>1<br>2<br>3<br>4<br>Comp. No.                | V2082 Oph<br>S 9848<br>USNO 0900-11067505<br>USNO<br>0900-11065091<br>0900-11066645<br>0900-11066645<br>0900-11067909<br>V2086 Oph<br>S 9296<br>USNO 0900-11817170<br>USNO                                                    | $m^*$<br>$15^m_{\cdot}0$<br>$15^m_{\cdot}3$<br>$15^m_{\cdot}3$<br>$16^m_{\cdot}0$<br>$m^*$                                                            | V2084 Oph<br>S 9856<br>USNO 0900-11418565<br>USNO<br>0900-11416873<br>0900-11416873<br>0900-11416503<br>0900-11420016<br>V2202 Oph<br>HV 11035<br>USNO 0900-10462979<br>USNO                                            | $m^*$<br>15 <sup>m</sup> 0<br>15 <sup>m</sup> 5<br>15 <sup>m</sup> 6<br>16 <sup>m</sup> 4<br>m*            |
| Comp. No.<br>1<br>2<br>3<br>4<br>Comp. No.<br>1           | V2082 Oph<br>S 9848<br>USNO 0900-11067505<br>USNO<br>0900-11065091<br>0900-11066645<br>0900-11066645<br>0900-11067909<br>V2086 Oph<br>S 9296<br>USNO 0900-11817170<br>USNO<br>0900-11805844                                   | $\frac{m^{*}}{15\stackrel{\rm m}{\cdot}0}$ $\frac{15\stackrel{\rm m}{\cdot}3}{16\stackrel{\rm m}{\cdot}0}$ $\frac{m^{*}}{14\stackrel{\rm m}{\cdot}0}$ | V2084 Oph<br>S 9856<br>USNO 0900-11418565<br>USNO<br>0900-11416873<br>0900-11416873<br>0900-11416503<br>0900-11420016<br>V2202 Oph<br>HV 11035<br>USNO 0900-10462979<br>USNO<br>0900-10459019                           | $\frac{m^{*}}{15^{m}0}$ $15^{m}5$ $15^{m}6$ $16^{m}4$ $m^{*}$ $15^{m}3$                                    |
| Comp. No.<br>1<br>2<br>3<br>4<br>Comp. No.<br>1<br>2      | V2082 Oph<br>S 9848<br>USNO 0900-11067505<br>USNO<br>0900-11065091<br>0900-11066645<br>0900-11066645<br>0900-11067909<br>V2086 Oph<br>S 9296<br>USNO 0900-11817170<br>USNO<br>0900-11805844<br>0900-11822141                  | $\frac{m^{*}}{15^{m}0}$ $\frac{15^{m}3}{15^{m}3}$ $16^{m}0$ $\frac{m^{*}}{14^{m}0}$ $14^{m}1$                                                         | V2084 Oph<br>S 9856<br>USNO 0900-11418565<br>USNO<br>0900-11416873<br>0900-11416873<br>0900-11416503<br>0900-11420016<br>V2202 Oph<br>HV 11035<br>USNO 0900-10462979<br>USNO<br>0900-104659019<br>0900-10466769         | $\frac{m^{*}}{15^{m}0}$ $\frac{15^{m}5}{15^{m}6}$ $16^{m}4$ $\frac{m^{*}}{15^{m}3}$ $16^{m}0$              |
| Comp. No.<br>1<br>2<br>3<br>4<br>Comp. No.<br>1<br>2<br>3 | V2082 Oph<br>S 9848<br>USNO 0900-11067505<br>USNO<br>0900-11065091<br>0900-11066645<br>0900-11066645<br>0900-11067909<br>V2086 Oph<br>S 9296<br>USNO 0900-11817170<br>USNO<br>0900-11805844<br>0900-11822141<br>0900-11809655 | $m^*$<br>$15^m_{\cdot}0$<br>$15^m_{\cdot}3$<br>$16^m_{\cdot}0$<br>$m^*$<br>$14^m_{\cdot}0$<br>$14^m_{\cdot}1$<br>$15^m_{\cdot}1$                      | V2084 Oph<br>S 9856<br>USNO 0900-11418565<br>USNO<br>0900-11416873<br>0900-11416873<br>0900-11416503<br>0900-11420016<br>V2202 Oph<br>HV 11035<br>USNO 0900-10462979<br>USNO<br>0900-10465769<br>0900-10464279          | $\frac{m^{*}}{15^{m}0}$ $\frac{15^{m}5}{15^{m}6}$ $16^{m}4$ $\frac{m^{*}}{15^{m}3}$ $16^{m}0$ $16^{m}1$    |

Table 2. Comparison stars and cross references

\* Magnitudes refer to the B values of the USNO-A2.0 catalogue

## $\it Remarks:$

### V946 Oph

The period previously published by of Götz et al. (1957) and cited in the GCVS is erroneous. The brightest maxima published by Götz et al. were included in our period analysis.

### V2202 Oph

The brightest observation published in the paper of Hoffmann (1981) was included in the period analysis.

This research made use of the SIMBAD data base, operated by the CDS at Strasbourg, France.



Figure 1. Light curve of V946 Oph





14.50

15.00

15.50

16.00

16.50

-0.2

0.0

0.2

Figure 5. Light curve of V2082 Oph

B(pg)

B(pg)



Figure 2. Light curve of V1098 Oph



Figure 4. Light curve of V2079 Oph



Figure 6. Light curve of V2084 Oph



0.4 Phase

0.6

0.8

1.0

Figure 7. Light curve of V2086 Oph



Figure 8. Light curve of V2202 Oph

References:

Boyce, H.E., Huruhata, M., 1942, Harvard Annals, 109, 19

- Götz, W., Huth, H., Hoffmeister, C., 1957, Veröff. Sternw. Sonneberg, 4, 123, (H2)
- Hoffmann, M., 1981, Inf. Bull. Var. Stars, 1979
- Hoffmeister, C., 1949, Erg. Astron. Nachr., 12, 1
- Hoffmeister, C., 1966, Astron. Nachr., 289, 139
- Hoffmeister, C., 1967, Astron. Nachr., 290, 43
- Hoffmeister, C., 1968, Astron. Nachr., 290, 277

Number 5704

Konkoly Observatory Budapest 23 May 2006 *HU ISSN 0374 - 0676* 

## THE FIRST COMPLETE PHOTOMETRY OF THE SHORT-PERIOD ALGOL-TYPE BINARY BF Vel

MANIMANIS, V. N.; NIARCHOS, P. G.

Dept. of Astrophysics, Astronomy and Mechanics, Faculty of Physics, National & Kapodistrian University of Athens, Athens, Greece; e-mail: vmaniman@phys.uoa.gr

| Name of the object:                                                             |                                                                                                                                      |                                |  |  |  |  |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|--|--|--|
| BF Vel, $CD-39^{\circ}4980$                                                     |                                                                                                                                      |                                |  |  |  |  |
| Foundational Foundation                                                         |                                                                                                                                      |                                |  |  |  |  |
| DA optempas DI                                                                  | Equatorial coordinates: Equinox:                                                                                                     |                                |  |  |  |  |
| <b>R.A.</b> = $08^{n}56^{m}24^{s}$ <b>DEC.</b> = $-39^{\circ}58'54''$ 2000      |                                                                                                                                      |                                |  |  |  |  |
| Observatory and tele                                                            | escope:                                                                                                                              |                                |  |  |  |  |
| South African Astrono<br>telescope                                              | mical Observatory Suther                                                                                                             | land Station, 1.0 m Cassegrain |  |  |  |  |
|                                                                                 |                                                                                                                                      |                                |  |  |  |  |
| Detector:                                                                       | CCD camera, liquid nitrogen cooled at 180.5 K, 1024 $\times$ 1024 imaging pixels binned to 512 $\times$ 512, 5'.3 $\times$ 5'.3 FOV. |                                |  |  |  |  |
| Filter(s):                                                                      | BVRI                                                                                                                                 |                                |  |  |  |  |
|                                                                                 |                                                                                                                                      |                                |  |  |  |  |
| Date(s) of the observ                                                           | vation(s):                                                                                                                           |                                |  |  |  |  |
| 2006.01.11, 2006.01.12, 2006.01.13                                              |                                                                                                                                      |                                |  |  |  |  |
| <b>Comparison star(s):</b> Uncatalogued star 236" NW of the variable            |                                                                                                                                      |                                |  |  |  |  |
| · · · · · · · · · · · · · · · · · · ·                                           | comparison star(s). Cheatanogued star 200 1000 of the variable                                                                       |                                |  |  |  |  |
| Check star(s):                                                                  | Uncatalogued fainter star 63" NW of the variable                                                                                     |                                |  |  |  |  |
| Transformed to a standard system: No                                            |                                                                                                                                      |                                |  |  |  |  |
|                                                                                 |                                                                                                                                      |                                |  |  |  |  |
| Availability of the data:                                                       |                                                                                                                                      |                                |  |  |  |  |
| Available at the IBVS website, after 2006.11.26                                 |                                                                                                                                      |                                |  |  |  |  |
| Type of variability: EA                                                         |                                                                                                                                      |                                |  |  |  |  |
| Type of variability.                                                            |                                                                                                                                      |                                |  |  |  |  |
| Remarks:                                                                        |                                                                                                                                      |                                |  |  |  |  |
| Apparently, no suitable times of minima of BF Velorum have been obtained for    |                                                                                                                                      |                                |  |  |  |  |
| an accurate period of the system to be calculated. Budding et al. (2004) give a |                                                                                                                                      |                                |  |  |  |  |
| value of $0.7040$ day. The heights of the two maxima are unequal in the R and I |                                                                                                                                      |                                |  |  |  |  |

value of 0.7040 day. The heights of the two maxima are unequal in the R and I bands. The secondary minimum is very shallow and deepens considerably at longer wavelengths, indicating a large temperature difference between the components. BF Vel is known to have a spectral type of A3+[G4IV].

#### Acknowledgements:

This research was included in the project for the support of research groups in the universities, co-funded by the European Social Fund (ESF) and National Resources (EPEAEK II) - *PYTHAGORAS*. This paper uses observations made at the South African Astronomical Observatory (SAAO).



Figure 1.  $14' \times 14'$  finding chart with the comparison (C) and check (K) stars marked; BF Vel is marked with a V.

Reference:

Budding, E., Erdem, A., Çiçek, C., Bulut, I., Soydugan, F., Soydugan, E., Bakis, V.; Demircan, O., 2004, A& A, 417, 263.



Figure 2. The complete B (upper) and V (lower) light curves of BF Vel.



Figure 3. The complete R (upper) and I (lower) light curves of BF Vel.

Number 5705

Konkoly Observatory Budapest 30 May 2006 *HU ISSN 0374 - 0676* 

#### UZ UMa: AN RRab STAR WITH DOUBLE-PERIODIC MODULATION

SÓDOR, Á.<sup>1</sup>; VIDA, K.<sup>2</sup>; JURCSIK, J.<sup>1</sup>; VÁRADI, M.<sup>1</sup>; SZEIDL, B.<sup>1</sup>; HURTA, ZS.<sup>2</sup>; DÉKÁNY, I.<sup>2</sup>; POSZTOBÁNYI, K.<sup>2</sup>; VITYI, N.<sup>2</sup>; SZING, A.<sup>3</sup>; KUTI, A.<sup>2</sup>; LAKATOS, J.<sup>2</sup>; NAGY, I.<sup>2</sup>; DOBOS, V.<sup>2</sup>

<sup>1</sup> Konkoly Observatory of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest, Hungary; e-mail: sodor, jurcsik, varadi@konkoly.hu

<sup>2</sup> Eötvös Loránd University, Department of Astronomy, P.O. Box 32, H-1518 Budapest, Hungary

<sup>3</sup> University of Szeged, Dept. of Exp. Physics and Astron. Obs., H-6720 Szeged, Dóm tér 9, Hungary

UZ UMa was discovered to be variable by Baker (1938). He classified it as an irregular or semiregular type variable based on the photographic observations of Kapteyn. The correct classification (RRab) and period (P=0.4668795 d) were given by Meinunger (1968).

UZ UMa was observed in the course of our survey of short period ( $P_{puls} < 0.48 \text{ d}$ ), fundamental mode, northern RR Lyrae stars, that aims to determine the real incidence rate of Blazhko variables in this sample and to study the modulation properties in detail. The observations were made with the 60 cm automatic telescope of Konkoly Observatory, Svábhegy, Budapest, equipped with a Wright  $750 \times 1100 \text{ CCD}$  camera through a Cousins V filter. 1584 brightness measurements were obtained on 30 nights between 27 January and 23 May in 2006 (JD 2453763–878). Data reduction was performed using standard IRAF<sup>1</sup> packages. As no appropriate comparison star was found in the field of view, magnitude differences of UZ UMa from the average magnitude of 5 neighboring stars (GSC 21322-01261, GSC 21322-014531, GSC 21322-01252, GSC 21322-014679 and GSC 21322-01255) were calculated in order to reduce the noise of the comparisons' magnitudes. Instrumental magnitude differences of UZ UMa are given in Table 1, available only electronically.<sup>2</sup>

The following elements for light maxima were derived:

 $t_{\rm max}[{\rm HJD}] = 2453763.3368 + 0.4668413 \,\mathrm{d} \cdot E$ 

The original light curve and the light curve prewhitened with the pulsation frequency and its harmonics phased with the pulsation period are shown in Fig. 1–2. The plots clearly show the sign of the Blazhko modulation. The residual light curve indicates that the modulation is the largest on the rising branch and around maximum brightness, significant changes in the shape of the bump preceding minimum light also occur. The light curve is the most stable at minimum and on the mid part of the descending branch.

The Fourier spectrum of the light curve prewhitened with the 18 harmonics of the pulsation shows a complex structure of peaks around the pulsation frequencies. We assume that the Blazhko modulation can be described with the same, symmetric pattern of modulation frequency components of the residual spectrum around the frequency components of the pulsation. In this case the true modulation frequency can be identified more clearly

<sup>&</sup>lt;sup>1</sup>IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

<sup>&</sup>lt;sup>2</sup>Available on the IBVS website as 5705-t1.txt.
in a *cumulative spectrum* defined as the sum of the two sides of the spectrum's segments in the vicinities of the pulsation peaks up to a given order according to the following formula:

$$A'(f) = \sum_{i=1}^{n} \left[ A(i \cdot f_{p} + f) + A(i \cdot f_{p} - f) \right], \quad f < f_{r}.$$

A(f) is the original spectrum,  $f_p$  is the pulsation frequency, *i* is the harmonic order,  $f_r$  is the length of the examined frequency range and A'(f) is the yielded cumulative spectrum, which has better S/N properties than the original spectrum.



Figure 1. The V light curve of UZ UMa phased with the pulsation period.



Figure 2. The prewhitened V light curve of UZ UMa phased with the pulsation period.

The cumulative spectrum of the prewhitened light curve shows two modulation peaks of different shapes, one at 0.065 c/d and another, wider component at around 0.03 c/d (see Fig. 3). The wideness of this latter frequency component indicates that there might be some differences in its position in the different harmonic orders and at the different sides of the pulsation components. However, to examine this possibility in more detail a more extended dataset is needed.



Figure 3. The cumulative residual spectrum of UZ UMa summed for the first 8 pulsational harmonics.



Figure 4. The light curves in different phases of the 26.7-day and 143-day modulations after removing the modulation corresponding to the other modulation period. In the electronic edition animated figures of the modulations are available.

In accordance with the two frequency peaks appearing in the cumulative residual spectrum, the light curve of UZ UMa cannot be fitted with the required accuracy assuming a single modulation period. Instead, even with two different modulation periods the residual scatter remains larger than observational inaccuracies would explain. Though the modulations of many Blazhko stars are known not to be strictly regular, the light curve of only XZ Cyg (LaCluyzé et al., 2004) has been previously described by two pairs of equidistant modulation components.

Data analysis was performed using the utilities of the program package MUFRAN (Kolláth, 1990). First we determined the modulation frequency values,  $f_{\rm mod\,1}$  and  $f_{\rm mod\,2}$  simultaneously through an iterative process, as the frequencies that yield the best fit to the residual light curve prewhitened by the pulsation frequency components up to the 18 th harmonics. The modulation components up to the 8 th harmonic order and also  $f_{\rm mod\,1}$  and  $f_{\rm mod\,2}$  were considered. The following modulation frequencies were thus determined:  $f_{\rm mod\,1} = 0.0374 \,\mathrm{c/d}$  and  $f_{\rm mod\,2} = 0.0070 \,\mathrm{c/d}$  ( $P_{\rm mod\,1} = 26.7 \,\mathrm{d}$  and  $P_{\rm mod\,2} = 143 \,\mathrm{d}$ ). If the modulation frequencies are not determined simultaneously but in consecutive steps, then very similar results arise. The first modulation frequency is then at  $0.0372 \,\mathrm{c/d}$ , and the other modulation frequency gives the best fit with  $0.0065 \,\mathrm{c/d}$  value. The observations span over only 115 days, thus the period of the secondary modulation is somewhat uncertain. Its value is most probably somewhere between 125 d and 170 d.

The 0.017 mag r.m.s. scatter of the residual indicates even more complex behaviour of the modulation, but no further real frequency component can be resolved.

In Kovács (2005) it was noted that in case of good data sampling the mean light curve of Blazhko stars can be used to define the physical properties from the Fourier parameters of the light curve. We came to the same conclusion using the data of the small amplitude modulation RRab stars: RR Gem and SS Cnc (Jurcsik et al., 2005; Jurcsik et al., 2006). Based on the Fourier parameters of the mean light curve of UZ UMa [Fe/H] = -1.17 can be determined using the formulae of Jurcsik & Kovács (1996). Our previous multicolour measurements with the same instrumentation indicate that if instrumental v magnitudes are used instead of standard V magnitudes, then the calculated [Fe/H] overestimates the metal content only by 0.02 - 0.04.

Acknowledgements: The financial support of OTKA grants T-043504, T-046207 and T-048961 is acknowledged.

References:

Baker, E. A. 1938, MNRAS, 98, 65

- Jurcsik, J., & Kovács, G. 1996, A&A, **312**, 111
- Jurcsik, J., Sódor, Á., Váradi, M., Szeidl, B., Washuettl, A. et al., 2005, A&A, 430, 1049
- Jurcsik, J., Szeidl, B., Sódor, Á., Dékány, I., Hurta, Zs. et al. 2006 AJ, in press (astroph/0603496)

Kolláth, Z. 1990, Occ. Techn. Notes Konkoly Obs., No. 1,

http://www.konkoly.hu/staff/kollath/mufran.html

- Kovács, G., 2005, A&A, **438**, 227
- LaCluyzé A., Smith, H., Gill, E-M., Hedden, A., Kinemuchi, K. et al. 2004, AJ, 127, 1653
- Meinunger, L. 1968, MVS 4, 7, 179

Number 5706

Konkoly Observatory Budapest 13 June 2006 *HU ISSN 0374 - 0676* 

# NEWLY DISCOVERED VARIABLE STARS IN THE GLOBULAR CLUSTER NGC 6864 (M75)

SCOTT, N. J.<sup>1</sup>; CORWIN, T. M.<sup>1,4</sup>; CATELAN, M.<sup>2</sup>; SMITH, H. A.<sup>3</sup>

<sup>1</sup> Department of Physics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; e-mail: njscott@email.uncc.edu, mcorwin@uncc.edu

<sup>2</sup> Pontificia Universidad Católica de Chile, Departamento de Astronomía y Astrofísica, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile; email: mcatelan@astro.puc.cl

 $^3$  Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA; email: smith@pa.msu.edu

<sup>4</sup> Visiting Astronomer, Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

The distant globular cluster NGC 6864 (M75) belongs to a group of relatively rare clusters that display multimodal horizontal-branch (HB) morphology (Catelan et al. 1998, 2002). Using Alard's (2000) image-subtraction method, we recently discovered a number of new variables in this cluster, pointing to an unusual Oosterhoff-intermediate classification (Corwin et al. 2003). The present study also uses image subtraction with the data reported on in our previous analysis. This time, however, the image subtraction threshold was substantially reduced. This produced thousands of false identifications, but, in addition to the previously known variables, we found four new variables, all very close to the cluster core.

The CCD images used in this study were obtained with the 0.9 m telescope at the Cerro Tololo Inter-American Observatory. The field was observed over a seven-night interval in 1999 July. Observing conditions were not good for three of the seven nights, and data from these nights were not included in our analysis. The data reported here were obtained on the nights of 1999 July 15/16 (night 1), 19/20, 20/21, and 21/22 (nights 5, 6, and 7). The 2048 × 2048 Tek 2K-3 CCD was used. Images were obtained through both V and B filters. Typical exposure times were 360 s for the B frames and 240 s for the V frames. The pixel scale was 0".395, giving a field of view 13'.5 × 13'.5.

The location and tentative periods of the variables are given in Table 1. The x and y coordinates are in arcseconds with respect to the cluster center, given in the Clement et al. (2001) online catalog as RA  $20^{h}03^{m}2$  and Dec  $-22^{\circ}04'$  (J1950). Because the data are limited and relatively noisy, the periods are given to only three significant figures. Light curves (in flux units) based on the periods of Table 1 are shown in Figure 1.

Of the four nights reported here, the data for night one were the least reliable and are not plotted for NV1, NV2, and NV3 (*B* light curve). NV1 was not found in the data from nights one or six. Three of the stars reported here have periods less than 0.3 d. While the most natural interpretation is that they are simply first-overtone pulsators (Kovács 1998; Catelan 2004), there also exists the possibility that they are RR Lyrae stars pulsating in the second overtone (Alcock et al. 1996; Clement & Rowe 2000). The low amplitudes of second-overtone and short-period first-overtone pulsators might account for these stars being found only at the lower image-subtraction threshold, although their location very close to the cluster core may have been an important factor as well. NV2 seems to have two distinct *B* light curves. The reason for this is not clear. It is likely that it is a blended image, but this should not affect the differential flux as determined by ISIS. NV3 has a somewhat unusual curve, showing a large dip in brightness on nights 1 and 6. The light curve is roughly consistent with an eclipsing binary of the  $\beta$  Lyrae type, although our tentative short period could favor a W UMa classification instead. However, a period of approximately 1.93 days will also phase the data well, producing a light curve with large gaps.

| Variable | x('') | y('') | Period (d) | Type                  |
|----------|-------|-------|------------|-----------------------|
| NV1      | 6.4   | -2.1  | 0.278      | RRe or RRc            |
| NV2      | 4.0   | 2.3   | 0.276      | RRe or RRc            |
| NV3      | 0.0   | 1.0   | 0.634      | $\operatorname{EB}$ ? |
| NV4      | -1.5  | 1.2   | 0.269      | RRe or RRc            |

Table 1. Locations and tentative periods for new variables.

### Acknowledgements:

M.C. acknowledges support by Proyecto FONDECYT Regular No. 1030954. H.A.S. acknowledges the NSF for support under grant AST 02-05813.

### References:

- Alard, C., 2000, A&AS, 144, 363
- Alcock, C., Allsman, R.A., Axelrod, T.S., et al., 1996, AJ, 111, 1146
- Catelan, M., 2004, ASP Conf. Ser., 310, 113, in: Variable Stars in the Local Group, ed. D. W. Kurtz & K. R. Pollard (San Francisco: ASP)
- Catelan, M., Borissova, J., Ferraro, F.R., Corwin, T.M., Smith, H.A., Kurtev, R., 2002, *AJ*, **124**, 364
- Catelan, M., Borissova, J., Sweigart, A.V., Spassova, N., 1998, ApJ, 494, 265
- Clement, C.M., Rowe, J., 2000, AJ, 120, 2579
- Clement, C.M., et al., 2001, AJ, **122**, 2587
- Corwin, T.M., Catelan, M., Smith, H.A., Borissova, J., Ferraro, F.R., Raburn, W.S., 2003, AJ, **125**, 2543
- Kovács, G., 1998, ASP Conf. Ser., 135, 52, in: A Half Century of Stellar Pulsation Interpretations, ed. P. A. Bradley & J. A. Guzik (San Francisco: ASP)



Figure 1. B and V-band differential light curves (in flux units) for the four new variables in M75. The open squares represent data from night 1, the filled squares from night 5, the open triangles from night 6, and the filled triangles from night 7.

Number 5707

Konkoly Observatory Budapest 19 June 2006 *HU ISSN 0374 - 0676* 

## NEW TIMES OF MINIMA OF SOME ECLIPSING BINARY STARS

DOĞRU, S. S.; DOĞRU, D.; ERDEM, A.; ÇIÇEK, C.; DEMIRCAN, O.

Çanakkale Onsekiz Mart University Observatory, Terzioğlu Campus, TR-17100, Çanakkale, Turkey; e-mail: dogru@comu.edu.tr

## Observatory and telescope: 30-cm Cassegrain-Schmidt telescope of the Çanakkale University Observatory, (ÇUG301) 30-cm Cassegrain-Schmidt telescope of the Çanakkale University Observatory, (ÇUG302)

| Detector: | -ST10XME camera, Peltier cooling, KAF 3200ME chip,               |
|-----------|------------------------------------------------------------------|
|           | $17' \times 12'$ FOV, $2184 \times 1472$ pixels.                 |
|           | -ST237 camera, Peltier cooling, TC237 chip, $11' \times 8'$ FOV, |
|           | $640 \times 480$ pixels.                                         |
|           | _                                                                |

## Method of data reduction: Reduction of the CCD frames was made with C-MUNIPACK<sup>1</sup> software.

### Method of minimum determination:

Kwee – van Woerden method (Kwee & van Woerden, 1956).

<sup>&</sup>lt;sup>1</sup>Motl, D., 2004, C-MUNIPACK, http://integral.sci.muni.cz/cmunipack/

| Times of 1 | ninima:            |         |      |                         |          |
|------------|--------------------|---------|------|-------------------------|----------|
| Star name  | Time of min.       | Error   | Type | $\operatorname{Filter}$ | Rem.     |
|            | $\rm HJD~2400000+$ |         |      |                         |          |
| HL Aur     | 53787.3073         | 0.0001  | Ι    | V                       | ÇUG301   |
| TU Boo     | 53862.4745         | 0.0002  | Ι    | $\mathbf{C}$            | ÇUG302   |
| TY Boo     | 53787.5077         | 0.0002  | Ι    | V                       | ÇUG301   |
|            | 53850.4615         | 0.0001  | II   | $\mathbf{C}$            | m CUG302 |
|            | 53862.5131         | 0.0003  | II   | $\mathbf{C}$            | ÇUG302   |
| TZ Boo     | 53862.5218         | 0.0005  | Ι    | $\mathbf{C}$            | ÇUG302   |
| AC Boo     | 53862.5157         | 0.0002  | Ι    | $\mathbf{C}$            | ÇUG302   |
| CV Boo     | 53849.3996         | 0.0002  | II   | $\mathbf{C}$            | ÇUG302   |
| EF Boo     | 53789.3134         | 0.0002  | II   | V                       | ÇUG301   |
| RW Com     | 53827.38402        | 0.00007 | Ι    | V                       | CUG301   |
|            | 53845.3034         | 0.0001  | II   | С                       | CUG302   |
|            | 53863.3379         | 0.0002  | II   | $\mathbf{C}$            | m CUG302 |
| RZ Com     | 52849.4809         | 0.0006  | II   | $\mathbf{C}$            | ÇUG302   |
|            | 53863.3564         | 0.0002  | II   | $\mathbf{C}$            | ÇUG302   |
| CC Com     | 53850.36952        | 0.00005 | Ι    | $\mathbf{C}$            | ÇUG302   |
| RZ Dra     | 53590.3784         | 0.0001  | Ι    | V                       | ÇUG301   |
| AX Dra     | 53800.3190         | 0.0002  | Ι    | V                       | ÇUG301   |
| BW Dra     | 53601.4952         | 0.0003  | Ι    | V                       | ÇUG301   |
| EM Lac     | 53590.4866         | 0.0003  | II   | V                       | CUG301   |
| V502 Oph   | 53863.4527         | 0.0002  | II   | $\mathbf{C}$            | ÇUG302   |
| FZ Ori     | 53771.2680         | 0.0002  | Ι    | BVR                     | ÇUG301   |
| XZ UMa     | 53800.5090         | 0.0002  | Ι    | V                       | ÇUG301   |
| AW Vir     | 53787.4543         | 0.0001  | II   | V                       | ÇUG301   |

### Remarks:

We present 23 minima times of 18 eclipsing binaries. In the Remarks column of Times of Minima table, telescopes used in the observations are given.

### Acknowledgements:

This work was partly supported by the Research Found of Çanakkale Onsekiz Mart University.

Reference:

Kwee, K. K., & van Woerden, H., 1956, Bull. Astron. Inst. Neth., 12, 327.

#### **ERRATUM FOR IBVS 5707**

Time of minimum of RZ Com was given as 52849.4809, but it should be 53849.4809.

S. Serkan Doğru

Number 5708

Konkoly Observatory Budapest 22 June 2006 *HU ISSN 0374 - 0676* 

#### VARIABILITY OF V838 Mon BEFORE ITS OUTBURST

KIMESWENGER, S.<sup>1</sup>; EYRES, S.P.S.<sup>2</sup>

<sup>1</sup> Institut für Astro- und Teilchenphysik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria

<sup>2</sup> Dept. of Physics, Astronomy & Mathematics, University of Central Lancashire, Preston PR1 2HE, UK

V838 Mon had an unusual "nova-like" outburst in 2002 (Munari et al., 2002, Kimeswenger et al., 2002). Several attempts at photometry of the progenitor on archival plates led to different results (Munari et al., 2002, Kimeswenger et al., 2002, Goranskij et al., 2004). While the first two used scans based on the SERC-J plate from 1983 and the UKST-ER plate from 1989, Goranskij et al. (2004) added the UKST-I plate from 1982 and the POSS-I plates from 1952. Munari et al. (2005) used the USNO-B1 catalogue and a revised calibration based on their CCD sequence. The USNO-B1 is based on scans with an 8 bit linear greyscale only. Thus the stellar images are without grey wings and no deblending can be done. There are also two bright objects (USNO-B1.0 0861-0120005) and USNO-B1.0 0861-0120000) at/near the target position. It is also not clear to the reader how Munari et al. (2005) averaged the different bands used in USNO-B1 (POSS-I O and SERC-J). The investigation of the "older twin" of this unusual object — V4332 Sgr (Nova Sgr 1994) — shows the progenitor might be variable during the last years before outburst (Kimeswenger, 2006). This is essential for the investigation of the spectral energy distribution (SED).

Here we used not DSS scans, but the SuperCOSMOS scans (except POSS-I O) of the same plates used by Munari et al. (2002) and Goranskij et al. (2004). These scans have a much higher spatial resolution. Bacher et al. (2005) have shown, that this does not normally improve the photometry of unblended stars. But as already mentioned there, blended objects have often been rejected in their work. V838 Mon is within a small group of stars. Small apertures and high resolution are thus essential here (for a calibration of the "best aperture" see Bacher et al., 2005). Figure 1 shows the increase of quality and better de-blending capabilities using the SuperCOSMOS scans. In addition to the surveys used up to now, the SuperCOSMOS server also provides us with the scans of the new UKST-SR survey. This plate was taken in parallel to the UKST H $\alpha$  survey for off-band continuum subtraction. It was obtained less than four years before the outburst of V838 Mon and was overlooked up to now. It gives us valuable additional information. All photographic plates were calibrated using the CCD sequence of Munari et al. (2005) and the nonlinear tuning for digitized sky surveys by Bacher et al. (2005). The latter change of the method is the main difference to the calibration used by Kimeswenger et al. (2002). They only used a linear approximation to a few stars having the same magnitude.

The blue bands of the POSS-I and of the SERC-J survey strongly differ in their bandpass. Thus the conversion to standard B magnitudes was used for the comparison. While the B<sub>J</sub> conversion is well studied (Bacher et al., 2005) there exist no such extensive studies



Figure 1. The upper panel shows the 1989 UKST-ER plate. The left hand image is the DSS-2 scan (resolution 1."01). The right image shows the same plate from the SuperCOSMOS scans (resolution 0."67). On the DSS-2 scan the stars are clearly elongated and overlap with their neighbors. The lower panel shows the same field on the DSS-1 (resolution 1."7) POSS-I E plate and again the SuperCOSMOS scan. Here the de-blending problem for V838 Mon is even more obvious



Figure 2. The photographic red band photometries from POSS-I E (1953) and UKST-ER (1989) show no significant variation until at least 1989. The fading of V838 Mon (cross) during the late nineties is evident on the UKST-SR (1998) plate. The blue photometries (converted to standard B magnitudes) show no variations before 1983 either. The I band combines the photographic UKST-IR (1982) plate with the data from the DENIS (1999) CCD survey. The same fading as in the R-band is obvious

for the POSS-I O. Dorschner et al. (1966) assume there is no color correction required. We found with the field stars  $m_{\rm O} = B - 0.030(B - R) - 0.058$ . This correction was applied to derive  $m_{\rm O}$  magnitudes of the stars of the CCD sequence for calibration purposes. As most of the field stars are foreground stars with typically  $0^{\rm m}4 \leq (B - V) \leq 0^{\rm m}8$ , this effect is small. This led Goranskij et al. (2004) to the conclusion, that color corrections need not be applied at all. They used a comparison with stars in that color range only. While these field stars have spectral types of A-F with a strong Balmer jump, the progenitor of V838 Mon is a heavily reddened blue object without any Balmer jump. Thus the effective wavelength differs even when they have about the same (B - V) color. This is certainly true for the  $B_J \rightarrow B$  conversion. However it is weak at the wavelengths of the SERC-J survey, so it may not affect the work of Goranskij et al. (2004) significantly. It is more significant for the  $m_{\rm O} \rightarrow B$  calculation (with the filter just on the Balmer continuum absorption).

The last data before the outburst was taken by the DENIS and the 2MASS surveys. The 2MASS survey visited the target twice due to an overlap of neighboring tiles. While the 02/11/1998 data is in the point source data base, another plate was taken just 37 days after that. We have loaded both images from the data base, to redo the photometry on both of them. This gives a good error estimate by using the stars in the overlap of the two observations. Finally we have access to the non-public DENIS images. The DENIS survey is known to sometimes have systematic zero point shifts. The standard survey operations of calibration is insufficient here. Also the K<sub>s</sub> band was at its limits for this band. Using the 2MASS data of the field stars around the target and the improvement of the calibration for DENIS data by Kimeswenger et al. (2004) we obtained a more accurate photometric calibration in J and K<sub>s</sub>. The corrected values are given in the table below.



Figure 3. The 2MASS data obtained 2/11/98 vs. those taken 9/12/98

The target seems to be stable before 1990. This corresponds to the finding of Goranskij et al. (2004) who had their last Sonneberg plate 13/03/1991. After this a fading clearly started. The 2MASS data gives a weak indication in all three bands, that this fading continued in late 1998. At the end of 1999 the DENIS J and K<sub>s</sub> data show a small rebrightening by about 10%. This is also consistent with the fact that  $I_{1999} - I_{1982} = 0.363$  is different from  $R_{1998} - R_{1989} = 0.461$  by about  $K_{1999} - K_{1998} \simeq J_{1999} - J_{1998} \simeq -0.162$ 

|            |           |                           |                | 1)                      |                             |                            |
|------------|-----------|---------------------------|----------------|-------------------------|-----------------------------|----------------------------|
| date       | JD —      | $\operatorname{material}$ | band name      | $\lambda_{	ext{eff}}$ ) | $\operatorname{mag}$        | $\operatorname{err}$       |
|            | 2400000.0 |                           |                | $[\mu \mathrm{m}]$      |                             |                            |
| 16/01/1953 | 34393.32  | POSS-I                    | ${ m E}$       | 0.650                   | $14.^{m}58$                 | $0^{\rm m}_{\cdot}13$      |
| 16/01/1953 | 34393.41  | POSS-I                    | О              | 0.405                   | 15.68                       | $0^{\mathrm{m}}_{\cdot}15$ |
| 22/01/1982 | 44990.57  | SERC-I                    | Ip             | 0.840                   | $14 \cdot 15$               | 0.008                      |
| 17/01/1983 | 45350.52  | SERC-J                    | $\dot{B_J}$    | 0.475                   | $15.^{m}49$                 | 0.109                      |
| 05/03/1989 | 47589.47  | $\rm UKST-ER$             | r              | 0.650                   | $14.^{\mathrm{m}}45$        | $0^{\rm m}_{\cdot}09$      |
| 01/02/1998 | 50844.45  | UKST-SR                   | r              | 0.650                   | $14.^{m}91$                 | $0^{\rm m}_{.}10$          |
| 02/11/1998 | 51119.86  | 2MASS                     | J              | 1.150                   | $13^{\mathrm{m}}_{\cdot}86$ | 0.103                      |
|            |           |                           | Η              | 1.650                   | $13^{\mathrm{m}}_{\cdot}50$ | 0.004                      |
|            |           |                           | $K_s$          | 2.150                   | $13^{\mathrm{m}}_{\cdot}31$ | 0.01                       |
| 09/12/1998 | 51156.83  | 2MASS                     | J              | 1.150                   | $13.^{\mathrm{m}}96$        | 0.01                       |
|            |           |                           | Η              | 1.650                   | $13^{\mathrm{m}}_{\cdot}55$ | 0.103                      |
|            |           |                           | $K_s$          | 2.150                   | $13.^{\mathrm{m}}43$        | 0.05                       |
| 12/12/1999 | 51524.76  | DENIS                     | Ic             | 0.790                   | $14.^{\mathrm{m}}52$        | $0^{\rm m}_{\cdot}03^{2)}$ |
| . ,        |           |                           | J              | 1.150                   | $13.^{\mathrm{m}}82$        | 0.006                      |
|            |           |                           | K <sub>s</sub> | 2.150                   | $13^{\mathrm{m}}_{\cdot}12$ | 0.07                       |

Table 1: Summary of the photometry (sorted by date of observation). The horizontal line in the middle marks the start of the fading. Data before this line should not be mixed with those after the line, when adjusting a SED

1) based on the SED with  $T_{\rm eff} > 15\,000$  K and  $E({\rm B-V}) \approx 0.07$ 

2) single band — error estimate taken from survey point source catalogue

In our opinion the discrepancies of the photometry mentioned in the introduction originate in the blend with neighboring objects and the different handling of color equations. The new photometry provided here now gives more accurate values for SED fitting. The fading found here might be important for interpreting the nature of this unique object. But even more important is the fact that the photographic data before 1990 should not be used together with the 1998/1999 NIR survey data when fitting the SED or when deriving the foreground extinction. The fading lowered the NIR data and thus leads to an overestimate of the interstellar extinction and/or an overestimate of the progenitors effective temperature. As we do not have blue data during the late nineties, we do not have any idea about a possible color change. Thus we cannot decide, if the fading is caused by a change of the temperature, a contraction of the photosphere, or any other kind of geometric effects.

#### References:

Bacher, A., Kimeswenger, S., Teutsch, P., 2005, MNRAS, 362, 542
Dorschner, J., Gürtler, J., Schielicke, R., Schmidt, K.-H., 1966, AN, 289, 51
Goranskij, V.P., Shugarov, S.Yu., Barsukova, E.A., Kroll, P., 2004, IBVS, No. 5511
Kimeswenger, S., 2006, AN, 327, 44
Kimeswenger, S., Lederle, C., Richichi, A., et al., 2004, A&A, 413, 1037
Kimeswenger, S., Lederle, C., Schmeja, S., Armsdorfer, B., 2002, MNRAS, 336, L43
Monet, D.G., Levine, S.E., Canzian, B., et al., 2003, AJ, 125, 984
Munari, U., Henden, A., Kiyota, S., et al., 2002, A&A, 389, L51
Munari, U., Henden, A., Vallenari, A., et al., 2005, A&A, 434, 1107

Number 5709

Konkoly Observatory Budapest 26 June 2006 *HU ISSN 0374 - 0676* 

#### BVR<sub>C</sub>I<sub>C</sub> PHOTOMETRY OF THREE RRAB STARS

JURCSIK, J.<sup>1</sup>; SÓDOR, Á.<sup>1</sup>; VÁRADI, M.<sup>1</sup>; VIDA, K.<sup>2</sup>; POSZTOBÁNYI, K.<sup>2</sup>; SZING, A.<sup>3</sup>; HURTA, ZS.<sup>2</sup>; DÉKÁNY, I.<sup>2</sup>; WASHUETTL, A.<sup>4</sup>; VITYI, N.<sup>2</sup>

<sup>1</sup> Konkoly Observatory of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest, Hungary; e-mail: jurcsik@konkoly.hu

<sup>2</sup> Eötvös Loránd University, Department of Astronomy, P.O. Box 32, H-1518 Budapest, Hungary

<sup>3</sup> University of Szeged, Dept. of Exp. Physics and Astron. Obs., H-6720 Szeged, Dóm tér 9, Hungary

<sup>4</sup> Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany

The discovery of small amplitude light curve modulation of RR Gem and SS Cnc (Jurcsik et al., 2005, 2006) warns that having not enough extended and accurate photometry similar modulation behaviour of RR Lyrae stars may have escaped detection. In this note CCD observations of three RRab stars (TZ Aur, BH Aur, TW Lyn) extending over 20-30 days intervals are published.

Photoelectric observations of TZ Aur were obtained by Fitch et al. (1966), Sturch (1966), Stepien (1972), and Epstein (1969). Because of the inhomogeneity, their observations did not allow to resolve smaller light curve changes. For TW Lyn and BH Aur only a few, V and R band measurements were published by Schmidt et al. (1995) and Schmidt & Reiswig (1993), respectively. According to our observations the light curves of the three stars remain stable within the accuracy limit of the photometry. Our data do not, however, exclude the possibility of light curve changes on longer time scales.

The observations were made with the 60-cm automatic telescope of Konkoly Observatory, Svábhegy, Budapest, equipped with a Wright  $750 \times 1100$  CCD camera using  $BVR_CI_C$ filters. Log of observations are summarized in Table 1.

| Star   | Comparison       | Observation period | No. of nights | filters    |
|--------|------------------|--------------------|---------------|------------|
| TZ Aur | $BD + 41 \ 1609$ | 2453329 - 2453358  | 13            | $BVR_CI_C$ |
| BH Aur | GSC 02397-00378  | 2453743 - 2453762  | 12            | $VR_CI_C$  |
| TW Lyn | GSC 02971-00853  | 2453361 - 2453387  | 17            | $BVR_CI_C$ |

Table 1. Log of observations

Data reduction was performed using standard IRAF<sup>1</sup> packages. Instrumental magnitudes were transformed to the standard  $BVR_CI_C$  system by observing photometric standards in M67 (Chevalier & Ilovaisky, 1991).

<sup>&</sup>lt;sup>1</sup>IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.



**Figure 1.** Differential  $V, B - V, V - R_C$  and  $V - I_C$  light and colour curves of TZ Aur



Figure 2. Differential  $V, V - R_C$  and  $V - I_C$  light and colour curves of BH Aur



Figure 3. Differential  $V, B - V, V - R_C$  and  $V - I_C$  light and colour curves of TW Lyn

Our photometric data available electronically from the IBVS website list the  $BVR_CI_C$ magnitude differences between the variable and the comparison. Standard magnitudes of the comparison stars are available only for TZ Aur in UBV bands (Stepien, 1972). The constancy of the brightness of the comparison stars was checked by measuring magnitude differences to 3-6 other stars in our field of views. The rms. scatter of these data is typically less than 0.01 mag. in each band which equals to the rms scatter of the Fourier fit of the light curves of the variables. The V light curves and the B - V,  $V - R_C$  and  $V - I_C$  colour curves of the three stars are plotted in Figs. 1-3.

Normal maximum timings and the Fourier parameters of the V light curves are listed in Table 2.

Spectroscopic [Fe/H] values from the literature (transformed for the metalicity scale used by Jurcsik & Kovács (1996)) and [Fe/H] calculated from the Fourier parameters according to the formula derived in Jurcsik & Kovács (1996) are given in Table 3.

Table 2. Fourier parameters and normal maximum timings of the V light curves

| Star   | $T_0$ [HJD] | $\mathbf{P}^*$ | A1    | $R_21$ | $R_31$ | $R_41$ | $R_51$ | $\varphi_{21}$ | $\varphi_{31}$ | $\varphi_{41}$ | $\varphi_{51}$ |
|--------|-------------|----------------|-------|--------|--------|--------|--------|----------------|----------------|----------------|----------------|
|        | -2453000    | ) [d]          | [mag] |        |        |        |        |                |                |                |                |
| TZ Aur | 343.622     | 0.3916746      | 0.441 | 0.560  | 0.349  | 0.238  | 0.152  | 2.359          | 5.094          | 1.416          | 4.174          |
| BH Aur | 755.264     | 0.4560898      | 0.316 | 0.532  | 0.326  | 0.171  | 0.101  | 2.606          | 5.447          | 2.057          | 4.707          |
| TW Lyr | 375.551     | 0.4818600      | 0.344 | 0.552  | 0.343  | 0.195  | 0.110  | 2.558          | 5.358          | 1.992          | 4.658          |

\* Taken from the GCVS (Kholopov et al., 1985).

| Star   | [Fe/H] spect. | ref.                     | [Fe/H] phot. |
|--------|---------------|--------------------------|--------------|
| TZ Aur | -0.60         | Layden $(1994)$          | -0.30        |
|        | -0.63         | Suntzeff et al. $(1994)$ |              |
| BH Aur | +0.14         | Fernley & Barnes (1997)  | -0.17        |
| TW Lyn | -1.03         | Layden (1994)            | -0.43        |
|        | -0.09         | Fernley & Barnes (1997)  |              |

Table 3. Spectroscopic and , photometric'  $\left[\mathrm{Fe}/\mathrm{H}\right]$  values

The relative absolute magnitudes of the three stars estimated from the Fourier parameters using the first equation of Table 6. of Kovács & Walker (2001) indicate slight brightness differences between the stars. TW Lyn is the brightest and TZ Aur is the faintest, but the difference between their  $M_V$  is only 0.08 mag.

The financial support of OTKA grants T-043504, and T-048961 is acknowledged.

References:

- Chevalier, C., Ilovaisky, S.A., 1991, A&A Suppl. Ser., 90, 225
- Epstein, I., 1969, AJ, 74, 1131
- Fernley, J., Barnes, T.G., 1997, A&A Suppl. Ser., 125, 313
- Fitch, W.S., Wisniewski, W.Z, Johnson, H.L., 1966, Comm. Lunar and Planet. Lab., Vol 5., No 71
- Jurcsik, J., Kovács, G., 1996, A&A, **312**, 111
- Jurcsik, J., Sódor, A., Váradi, M., Szeidl, B., Washuettl, A., et al., 2005, A&A, 430, 1049
- Jurcsik, J., Szeidl, B., Sódor, A., Dékány, I., Hurta, Zs., et al., 2006, AJ, 132, 61
- Kholopov, P.N., et al., 1985, General Catalogue of Variable Stars, Moscow: Nauka Publishing House, 1988, 4th ed., edited by Kholopov, P.N.; and 2004 web edition (http://www.sai.msu.su/groups/cluster/gcvs/)
- Kovács, G., & Walker, A., 2001, A&A, 371, 579
- Layden, A., 1994, AJ, **108**, 1016
- Schmidt, E.G., Chab, J.R., Reiswig, D.E. 1995, AJ, 109, 1239
- Schmidt, E.G., Reiswig, D.E., 1993, AJ, 106, 2429
- Stepien, K., 1972, Acta Astron., 22, 175
- Sturch, C.R., 1966, ApJ, 143, 774
- Suntzeff, B.N., Kraft, R.P., Kinman, T.D., 1994, ApJ Suppl. Ser., 93, 271

Corrected version, Thu Dec 14 09:11:40 MET 2006

Number 5710

Konkoly Observatory Budapest 6 July 2006 *HU ISSN 0374 - 0676* 

## CCD PHOTOMETRY OF DF Lyr, BY Peg, CW Peg, AND RW Tri

POLSGROVE, D.E.<sup>1</sup>; WETTERER, C.J.<sup>1</sup>; BLOOMER, R.H.<sup>2</sup>; NEWTON, J.D.<sup>2</sup>

<sup>1</sup> United States Air Force Academy, USAF Academy, CO 80840, USA, e-mail: daniel.polsgrove@usafa.edu

<sup>2</sup> King College, Bristol, TN 37620, USA, e-mail: rhbloome@king.edu

| Observed star(s): |          |                                              |                      |                          |  |  |  |
|-------------------|----------|----------------------------------------------|----------------------|--------------------------|--|--|--|
| Star name         | GCVS     | Coordinates (J2000) Comp./che                |                      |                          |  |  |  |
|                   | type     | $\mathbf{R}\mathbf{A}$                       | Dec                  | $\operatorname{star}(s)$ |  |  |  |
| DF Lyr            | EW/D     | $18^{h}53^{m}34^{s}.2$                       | $+28^{\circ}04'20''$ | CTI catalog              |  |  |  |
| BY Peg            | EW/KW    | $21^{\rm h}38^{\rm m}52\stackrel{\rm s}{.}2$ | $+28^{\circ}05'46''$ | CTI catalog              |  |  |  |
| CW Peg            | EA/SD    | $21^{h}48^{m}27.6$                           | $+28^{\circ}06'29''$ | CTI catalog              |  |  |  |
| RW Tri            | EA/WD+NL | $02^{h}25^{m}36^{s}.1$                       | $+28^\circ05'51''$   | CTI catalog              |  |  |  |

### Observatory and telescope:

CCD Transit Instrument (CTI), 1.8 -m f/2.2 meridian pointing telescopeUS Air Force Academy Observatory (AFA), 0.61 -m f/15.6 Cassegrain telescope

| Detector:                                                                    | CTI: RCA LN2-cooled CCD, $320 \times 512$ pixels, 8'3 wide strip, AFA: Photometrics LN2-cooled CCD, $512 \times 512$ pixels, $3'.6 \times 3'.6$ FOV. |  |  |  |  |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Filter(s):                                                                   | CTI: $BVR$ , AFA: $BVR$                                                                                                                              |  |  |  |  |
| Date(s) of the observation(s):<br>CTI: 1987.10–1991.05. AFA: 2004.02–2005.11 |                                                                                                                                                      |  |  |  |  |

The original CCD/Transit Instrument (CTI) was a stationary, meridian pointing 1.8 meter, f/2.2 optical telescope that imaged a 8.26' strip of the sky at all right ascensions. CTI operated on Kitt Peak from December 1984 to April 1992 and observed in the meridian at a declination centered at  $+28^{\circ}02'$  (1987.5 epoch, J2000 equinox), four degrees from the zenith. The resulting CTI survey area not only uncovered a multitude of previously unknown variable stars, but also observed many known variable stars (Wetterer et al. (1996)). This paper reports on observations at the US Air Force Academy (AFA) of four of these previously known variable stars that are eclipsing binary systems. All images were bias subtracted, flat fielded, and the magnitudes of the variable and its comparison stars were extracted using IRAF's aperture photometry.

Photometric characteristics for these stars are listed in Table 1.  $V_{\text{Max}}$ ,  $V_{\text{MinP}}$ , and  $V_{\text{MinS}}$  are the average standard V magnitudes at maximum, primary minimum, and secondary

minimum light. AFA magnitudes were transformed to CTI instrumental magnitudes via differential photometry with nearby CTI stars in the same AFA field of view and then to standard magnitudes using previously determined transformation coefficients as detailed in Equations (3) and (4) in Wetterer et al. (1996) and assuming constant B - V. Because of the differential photometry between stars on the same field the first order extinction correction is very small and is not applied, the second order term is neglected. Calculated random errors are shown in parentheses while estimated systematic errors introduced by not accounting for the changing B - V with respect to phase are shown in square brackets. We estimated what the systematic error is by using what we know of the system from our Binary Star Maker 3.0 fit to estimate what the B - V is during eclipses and how this would affect the standard magnitude calculation (for RW Tri we used the fact that the GCVS lists the system to have a M0V type star so assumed the primary eclipse's B - V to be 1.4 based on Main Sequence tables we use). CTI/AFA obs is the number of observations from each site. The GCVS period, the Atlas of O - CDiagrams of Eclipsing Binary Stars (Kreiner 2004) period, and period calculated using CTI and AFA V photometry and employing the standard period finding algorithm of Lafler and Kinman (1965) are in days. Finally, new calculated ephemeris light elements (HJD epoch - 2400000, linear term, quadratic term) using new and historical minima timings (uncertainties estimated for those timings whose uncertainties were not reported) are listed in days. The new minima timings were determined from those AFA nights where a minimum was adequately observed using the Kwee and Van Woerden method (Kwee and Van Woerden (1956)). This is not possible for the CTI data because CTI observed each star only once per night, however, approximate CTI minima timings were determined using the most prominent darkenings (close to known minimum magnitude and given an uncertainty related to sharpness of minima) and CTI/AFA period solution in Table 1. All minima timings (HJD - 2400000) are listed in Table 2.

We used Binary Maker 3.0 software and reference manual (Bradstreet (2004)) to obtain preliminary solutions for three of these binaries (RW Tri was excluded due to the volume of literature already available regarding the physical characteristics of this system). Both DF Lyr and BY Peg appear to have rounded minima and smoothly varying light curves characteristic of W UMa eclipsing binaries undergoing partial eclipses. CW Peg, on the other hand, has a deep primary eclipse and a shallow secondary eclipse that was never observed consistent with an Algol type system. For all systems, we assumed both stars were on the Main Sequence and used the measured colors and eclipse depth differences to estimate mass ratios and surface temperatures using tables adapted from Allen (2000). We then adjusted the fillout factor and inclination to most closely reproduce the lightcurve. We also compared the radii of the stars as determined by the fit to the model Main Sequence stars for self-consistency. In this analysis, we used standard values for gravity darkening coefficients (1.00 for radiative stars of T > 7200 K and 0.32 for convective stars), limb darkening coefficients (Van Hamme (1993)) and reflection coefficients (1.0)for radiative stars and 0.5 for convective stars) and assumed there was no third light contribution. Table 3 summarizes the results. The V light curves from CTI and AFA data (with Binary Maker 3's fit based on the preliminary solution where applicable) are shown in Figures 1 (DF Lyr), 2 (BY Peg), 4 (CW Peg), and 6 (RW Tri). O - C values (against GCVS light elements) for available data, Kreiner's solution, and solution based on the new ephemerides of Table 1 are plotted in Figures 3 (BY Peg), 5 (CW Peg) and 7 (RW Tri).

|                    | DF Lyr         | BY Peg                     | CW Peg                   | RW Tri                     |  |  |  |
|--------------------|----------------|----------------------------|--------------------------|----------------------------|--|--|--|
| $V_{\mathrm{Max}}$ | 13.031(4)      | 12.419(8)                  | 11.917(2)                | 13.082(7)                  |  |  |  |
| $V_{ m MinP}$      | 13.500(10)[+3] | 12.919(9)[+2]              | 15.352(9)[+103]          | 15.5(1)[+1]                |  |  |  |
| $V_{ m MinS}$      | 13.353(7)[-2]  | 12.782(6)[-2]              | -                        | -                          |  |  |  |
| $V_{ m Mean}$      | 13.145(1)      | 12.585(1)                  | 12.006(1)                | 13.210(14)                 |  |  |  |
| (B-V)              | 0.437(8)       | 0.849(7)                   | 0.061(6)                 | 0.140(15)                  |  |  |  |
| E(B-V)             | 0.27(3)        | 0.12(1)                    | 0.09(1)                  | 0.07(1)                    |  |  |  |
| CTI/AFA obs        | 27 / 542       | 22 / 364                   | 22 / 458                 | 54 / 135                   |  |  |  |
| GCVS period        | 0.577128       | 0.341937                   | 2.372516                 | 0.231883                   |  |  |  |
| Kreiner period     | 0.57712889     | 0.3419412(2)               | 2.372521(2)              | 0.23188318(2)              |  |  |  |
| CTI/AFA period     | 0.5771285(10)  | 0.3419371(6)               | 2.3725201(5)             | 0.23188297(8)              |  |  |  |
| new ephem epoch    | 53,522.7396(6) | 45,565.4946(8)             | $53,\!630.9437(3)$       | 53,639.92521(13)           |  |  |  |
| new ephem linear   | 0.57712884(3)  | 0.34193423(8)              | 2.3725133(15)            | 0.231882976(6)             |  |  |  |
| new ephem quad     | -              | $+1.08(3) \times 10^{-10}$ | $-4.3(5) \times 10^{-9}$ | $-3.12(6) \times 10^{-12}$ |  |  |  |

Table 1: Photometric characteristics

| Table | 9. | Minima  | timing |
|-------|----|---------|--------|
| Table | 4. | winnina | ummga  |

| Object                                | HJD of Min.          | E        | Type | $\operatorname{Filt}\operatorname{er}$ |
|---------------------------------------|----------------------|----------|------|----------------------------------------|
| DF Lyr                                | $47,\!681.91(1)$     | -10120.5 | II   | V                                      |
|                                       | $48,\!101.77(1)$     | -9393    | Ι    | V                                      |
|                                       | $53,\!513.7956(2)$   | -15.5    | II   | V                                      |
|                                       | $53,\!515.8135(2)$   | -12      | Ι    | $\mathbf{R}$                           |
|                                       | $53,\!518.69880(12)$ | -7       | Ι    | V                                      |
|                                       | $53,\!519.8523(4)$   | -5       | Ι    | V                                      |
|                                       | $53,\!522.7372(3)$   | 0        | Ι    | $\mathbf{R}$                           |
|                                       | $53,\!528.7986(3)$   | 10.5     | II   | $\mathbf{R}$                           |
| $\operatorname{BY}\operatorname{Peg}$ | $47,\!357.92(2)$     | -18456   | Ι    | V                                      |
|                                       | $47,\!823.64(2)$     | -17094   | Ι    | V                                      |
|                                       | $48,\!127.79(2)$     | -16204.5 | II   | V                                      |
|                                       | $48,\!175.66(2)$     | -16064.5 | II   | V                                      |
|                                       | $48,\!539.66(2)$     | -15000   | Ι    | В                                      |
|                                       | $53,\!604.942(3)$    | -186.5   | II   | V                                      |
|                                       | $53,\!628.7084(6)$   | -117     | Ι    | V                                      |
|                                       | $53,\!628.8751(6)$   | -116.5   | II   | V                                      |
|                                       | $53,\!647.6857(4)$   | -61.5    | II   | V                                      |
|                                       | $53,\!657.7693(2)$   | -32      | Ι    | V                                      |
|                                       | $53,\!666.6557(3)$   | -6       | Ι    | V                                      |
|                                       | $53,\!668.71385(17)$ | 0        | Ι    | В                                      |
| CW Peg                                | $47,\!357.99(3)$     | -2644    | Ι    | В                                      |
|                                       | $47,\!419.67(3)$     | -2588    | Ι    | В                                      |
|                                       | $53,\!630.9401(7)$   | 0        | Ι    | V                                      |
| RW Tri                                | $47,\!475.777(3)$    | -26583   | Ι    | V                                      |
|                                       | $47,\!823.833(3)$    | -25082   | Ι    | V                                      |
|                                       | $47,\!833.804(3)$    | -25039   | Ι    | V                                      |
|                                       | $53,\!626.9326(13)$  | -56      | Ι    | V                                      |
|                                       | $53,\!639.9221(2)$   | 0        | Ι    | V                                      |

#### Table 3: Binary Maker 3 preliminary solutions

|                                     | 1                      | v             |                        |
|-------------------------------------|------------------------|---------------|------------------------|
|                                     | DF Lyr                 | BY Peg        | CW Peg                 |
| Mass Ratio $(M_{\rm II}/M_{\rm I})$ | 0.73                   | 0.83          | 0.21                   |
| ${ m Fillout_{ I}}$                 | -0.05                  | 0.10          | -0.63                  |
| ${ m Fillout_{II}}$                 | -0.10                  | 0.10          | 0.30                   |
| $T_{\mathrm{I}}$                    | $8400 { m K}$          | $5500 { m K}$ | $10200~{ m K}$         |
| $T_{\mathrm{II}}$                   | $7100~{ m K}$          | $5000 { m K}$ | $4300~{ m K}$          |
| Inclination                         | $77  \mathrm{degrees}$ | 71 degrees    | $86  \mathrm{degrees}$ |



Figure 1. Lightcurve for DF Lyr: P = 0.5771285(10) days, epoch = 2,453,522.7372(3)



Figure 2. Lightcurve for BY Peg: P = 0.3419371(6) days, epoch = 2,453,668.71385(17)



**Figure 3.** O - C plot for BY Peg using GCVS light elements (BBSAG from Qian and Ma (2001), Diethelm (2005), and Kreiner (2006)



Figure 4. Lightcurve for CW Peg: P = 2.3725201(5) days, epoch = 2,453,630.9401(7)



**Figure 5.** O - C plot for CW Peg using GCVS light elements (BBSAG from Diethelm (2003), Diethelm (2004), and Kreiner (2006))



Figure 6. Lightcurve for RW Tri: P = 0.23188297(8) days, epoch = 2,453,639.9221(2)

#### Notes on individual stars:

**DF Lyr** is a short-period binary with an EW-type light curve. The preliminary fit indicates a near contact system with radii ~ 7 % smaller than corresponding model Main Sequence stars of the same spectral class. A perfect match is achieved for stars 600 K cooler and is possible if a lower reddening is adopted. The light curve has differences from night to night indicating the possible presence of spots, which may also be producing a larger than expected scatter in the timings in the O - C diagram. With so few timings and having to estimate uncertainties for earlier epochs, a weighted least squares fit to all



Figure 7. O - C plot for RW Tri using GCVS light elements (BBSAG from Diethelm (2003), Diethelm (2004), Kreiner (2006), and Nelson (2006); "various old" from Walker (1963), Surkova and Skatova (1969), Warner (1973), Winkler (1977), and Protitch, Efimov and Prokofieva from Kreiner (2006);
"various new" from Longmore et al. (1981), Smak (1995), Zejda (2004), Krajci (2006), ROTSE from Nelson (2006), and Mikulasek and BRNO observers from Kreiner (2006))

the data yields elements dominated by later epochs and obviously erroneous. The new ephemeris of Table 1 is from a simple least squares linear fit and is essentially identical to Kreiner's solution.

**BY Peg** is a short-period binary with an EW-type light curve. The preliminary fit indicates a contact system with the primary's radius consistent with the corresponding model Main Sequence star of the same spectral class and the secondary's radius ~ 10 % smaller. The light curve appears to have significant differences from night to night indicating the possible presence of spots or unknown systematic error. The timings in the O-C diagram also displays a larger than expected scatter. Qian and Ma (2001) analyzed O-C values and proposed a revised ephemeris indicating a decreasing period (note that there is an error in Qian and Ma's paper: the exponent of the quadradic term should be -11 and not -8) also shown in Figure 3. It is clear that Qian and Ma's ephemeris is not correct. This paper's new ephemeris of Table 1 uses data after 1970 and indicates the period may actually be increasing at a rate of  $dp/dt = +2.31(6) \times 10^{-7}$  day/yr. The three historical timings (one in 1936 and two in 1956) not used do not fit the new ephemeris. Interestingly, the 1936 timing would be close to the new ephemeris if the measured minima was a secondary eclipse and not a primary eclipse.

**CW Peg** has a deep primary eclipse and very shallow secondary implying a possible semi-detached or Algol-type binary, with the preliminary solution parameters supporting this conclusion. The new ephemeris of Table 1 uses data after 1980 and indicates the period may be decreasing at a rate of  $dp/dt = -6.6(8) \times 10^{-7}$  day/yr. The one historical timing from 1936 not used does not fit the new ephemeris.

**RW** Tri is a nova-like eclipsing binary, well-studied from a variety of perspectives and believed to consist of a late-type star which is transferring material to a companion white dwarf. Past observations have led to the conclusion that it exhibits long-term variations in its mass-transfer rate. The new ephemeris of Table 1 indicates the period may be decreasing at a rate of  $dp/dt = -9.8(3) \times 10^{-9} \text{ day/yr}$ , indicating RW Tri may have entered a period of increased mass transfer.

Acknowledgements: We would like to thank Dr. Jerzy Kreiner for sharing historical timing data on these stars, Dr. Dan Caton for his vital assistance, Air Force Academy Cadets Donny Heaton, Matthew Spakowski, and Anthony Young for observations, and the Appalachian College Association for a grant that provided the opportunity for research to be completed. This research made use of the SIMBAD database.

#### References:

- Africano, J.L., Nather, R.E., Patterson, J., Robinson, E.L. and Warner, B., 1978, PASP, 90, 568
- Agerer, F., Dahm, M. and Hubscher, J., 2001, IBVS, No. 5017
- Agerer, F. and Hubscher, J., 2002, IBVS, No. 5296.
- Agerer, F. and Hubscher, J., 2003, *IBVS*, No. 5484
- Allen, C.W., 2000, Astrophysical Quantities, 4th ed., Springer-Verlag, New York
- Bradstreet, D., 2004, Binary Maker 3.0, Contact Software, 725 Standbridge St, Norristown, PA 19401-5505
- Diethelm, R., 2003, IBVS, No. 5438
- Diethelm, R., 2004, IBVS, No. 5543
- Diethelm, R., 2005, IBVS, No. 5653
- Dvorak, S.W., 2003, IBVS, No. 5502
- Hubscher, J., 2005, IBVS, No. 5643
- Hubscher, J., Paschke, A., and Walter, F., 2005, IBVS, No. 5657
- Krajci, T., 2006, *IBVS*, No. 5690
- Kreiner, J.M., 2004, Acta Astronomica, 54, 207
- Kreiner, J.M., 2006, personal communication
- Kwee, K. and Van Woerden, H., 1956, BAN, 12, 327
- Lafler, J. and Kinman, T., 1965, ApJ Sup., 11, 216
- Longmore, A.J., Lee, T.J., Allen, D.A., and Adams, D.J., 1981, *MNRAS*, 195, 825 Nelson, R.H., 2006,
  - http://www.aavso.org/observing/programs/eclipser/omc/nelson\_omc.shtml
- Qian, S. and Ma, Y., 2001, PASP, 113, 754
- Robinson, E.L., Shetrone, M.D. and Africano, J.L., 1991, AJ, 102, 1176
- Safar, J. and Zejda, M., 2002, *IBVS*, No. 5263
- Smak, J., 1995, Acta Astronomica, 45, 259
- Surkova, L.P. and Skatova, N.V., 1969, IBVS, No. 394
- Van Hamme, W., 1993, AJ, 106, 2096
- Walker, M.F., 1963, ApJ, 137, 485.
- Warner, B., 1973, *IBVS*, No. 852.
- Wetterer, C.J., McGraw, J.T., Hess T.R., and Grashuis, R., 1996, AJ, 112, 742.
- Winkler, L., 1977, AJ, 82, 1008.
- Zejda, M., 2004, *IBVS*, No. 5583.

Number 5711

Konkoly Observatory Budapest 8 July 2006 *HU ISSN 0374 - 0676* 

#### CALIBRATION OF A UBVRI SEQUENCE AROUND NOVA Cyg 2006

FRIGO, A.<sup>1</sup>; OCCNER, P.<sup>1</sup>; TOMASONI, S.<sup>1</sup>; MORETTI, S.<sup>2</sup>; TOMASELLI, S.<sup>2</sup>; GRAZIANI, M.<sup>2</sup>; DALLAPORTA, S.<sup>3</sup>; HENDEN, A.<sup>4</sup>; SIVIERO, A.<sup>5</sup>; MUNARI, U.<sup>5</sup>

<sup>1</sup> Museo Civico di Rovereto, Borgo S. Caterina, 38068 Rovereto (TN), Italy

 $^2\,$  ARAR, Circoscrizione 3, Via Orceoli 15, Forli, Italy

 $^3$  Via Filzi 9, I-38034 Cembra (TN), Italy

 $^4$  AAVSO, 25 Birch St., Cambridge, MA USA

<sup>5</sup> INAF, Osservatorio Astronomico di Padova, Sede di Asiago, I-36032 Asiago (VI), Italy

Nova Cygni 2006 (= V2362 Cyg) was discovered by H. Nishimura, as reported in Nakano (2006), at mag 10.5 on photographs obtained on April 2.807 UT. Spectroscopic confirmation was given by Yamaoka (2006, and references therein).

The peak brightness reached by the nova ( $V \sim 8.5$  on April 5.5 UT) and its slow decline make it a favorable target for protracted observations during the whole summer 2006 season of visibility. To assist interested observers we have calibrated an accurate  $UBV(RI)_C$  photometric comparison sequence around the nova, which is identified in Fig. 1 and tabulated in Table 1. The sequence extends over a  $6 \times 6$  arcmin field centered on the nova itself and the photometric stability of the comparison stars has been checked by repeated observations in twelve independent nights between April and May 2006.

The UBV magnitudes have been calibrated with CCD observations obtained with a variety of private instruments during nine different nights with respect to the Hoag et al. (1961) photoelectric photometry of the nearby open clusters NGC 6910, NGC 6913, NGC 7062, NGC 7063 and NGC 7209. Hoag et al. photometry was obtained with the same instrumentation that was used originally in the definition of the UBV system of Johnson & Morgan (1951, 1953), and it is tightly linked to it. The nova and cluster fields were observed at very similar air-masses during good photometric nights. Color transformation equations were characterized by slopes always within the margins 0.91-1.06. For only two nights the difference in air-mass would project into a > 0.01 mag effect on the derived magnitudes, and for them observations of the reference clusters were protracted long enough to derive the atmospheric extinction coefficients. The telescopes we used were: (a) a 0.50-m f/8 Cassegrain reflector equipped with an Apogee Alta 260e CCD camera and Optec UBV filters located on Mt. Zugna, Rovereto (TN), Italy, (b) a Newton 0.42-m f/5.5 reflector with an Apogee Alta 260e CCD camera and Schuler UBVfilters, located in Bastia (RA), Italy, and (c) a Meade RCX 400 12" f/8 telescope equipped with an SBIG ST-9 CCD camera and native B, V Johnson filters.

The  $R_C/I_C$  magnitudes were obtained from the Sonoita Research Observatory (SRO) in southern Arizona (USA), using a 0.35-m robotic telescope and SBIG STL-1001 CCD system. Observations on each photometric night included following an extinction star from

| 31           | 81-1159-1 = 0  | GSC 0 | 3181-01159     |       |                |       | 0                 |          | -                 |          |
|--------------|----------------|-------|----------------|-------|----------------|-------|-------------------|----------|-------------------|----------|
|              | U              | $N_U$ | В              | $N_B$ | V              | $N_V$ | $V - R_C$         | $N_{VR}$ | $R - I_C$         | $N_{RI}$ |
| $\mathbf{a}$ | $12.57\pm0.03$ | 3     | $11.15\pm0.01$ | 9     | $9.70\pm0.01$  | 9     |                   |          |                   |          |
| $\mathbf{b}$ | $11.44\pm0.04$ | 3     | $11.52\pm0.01$ | 9     | $11.23\pm0.01$ | 9     | $0.167 \pm 0.010$ | 6        | $0.212\pm0.018$   | 6        |
| с            | $11.98\pm0.04$ | 3     | $11.94\pm0.01$ | 9     | $11.55\pm0.02$ | 9     | $0.225\pm0.014$   | 6        | $0.261 \pm 0.019$ | 6        |
| $\mathbf{d}$ | $12.89\pm0.02$ | 3     | $12.70\pm0.01$ | 9     | $12.10\pm0.01$ | 9     | $0.338 \pm 0.013$ | 6        | $0.335 \pm 0.018$ | 6        |
| е            | $13.69\pm0.04$ | 3     | $13.44\pm0.01$ | 9     | $13.05\pm0.02$ | 9     | $0.223 \pm 0.009$ | 6        | $0.276 \pm 0.017$ | 6        |
| f            | $14.18\pm0.04$ | 3     | $13.95\pm0.02$ | 9     | $13.33\pm0.01$ | 9     | $0.367 \pm 0.014$ | 6        | $0.364 \pm 0.014$ | 6        |
| g            | $14.46\pm0.09$ | 3     | $14.24\pm0.01$ | 9     | $13.82\pm0.01$ | 9     | $0.244 \pm 0.011$ | 6        | $0.305 \pm 0.015$ | 6        |
| $\mathbf{h}$ | $15.54\pm0.10$ | 3     | $14.18\pm0.02$ | 9     | $12.70\pm0.02$ | 9     | $0.822 \pm 0.017$ | 6        | $0.749 \pm 0.019$ | 6        |
| i            | $14.73\pm0.05$ | 3     | $14.32\pm0.01$ | 9     | $13.71\pm0.01$ | 9     | $0.407 \pm 0.014$ | 6        | $0.421 \pm 0.013$ | 6        |
| j            | $15.52\pm0.09$ | 3     | $14.40\pm0.02$ | 9     | $12.86\pm0.01$ | 9     | $0.910 \pm 0.010$ | 6        | $0.855 \pm 0.016$ | 6        |
| 1            |                |       | $14.77\pm0.03$ | 4     | $14.20\pm0.04$ | 4     | $0.326 \pm 0.022$ | 6        | $0.375\pm0.024$   | 6        |
| m            |                |       | $14.95\pm0.04$ | 7     | $13.55\pm0.01$ | 7     | $0.783 \pm 0.010$ | 6        | $0.746 \pm 0.018$ | 6        |
| n            |                |       | $15.06\pm0.04$ | 7     | $14.29\pm0.02$ | 7     | $0.476 \pm 0.018$ | 6        | $0.476 \pm 0.016$ | 6        |
| р            |                |       |                |       | $13.45\pm0.02$ | 3     | $0.937 \pm 0.010$ | 6        | $0.862 \pm 0.020$ | 6        |
| q            |                |       |                |       | $14.56\pm0.05$ | 6     | $0.541 \pm 0.015$ | 6        | $0.526 \pm 0.019$ | 6        |

Table 1: Magnitudes and their errors for the stars in the photometric sequence. N indicates the number of nights in which the given star has been measured in the given band. Star a corresponds to TYC  $3181-1159-1 = GSC \ 0.3181-01159$ 

low to high airmass, along with  $BVR_CI_C$  exposures of Landolt standard fields (Landolt 1983, 1992). The results were cross-checked using the Asiago 1.82-m and the USNO Flagstaff 1.0-m telescopes and the corresponding equipments.



Figure 1. B band finding chart for the photometric sequence. The cross indicates the nova

References:

Hoag, A.A., Johnson, H.L., Iriarte, B., Mitchell, R.I., Hallman, K.L., Sharpless, S., 1961, *Pub. US Naval Obs.*, 17, 343
Johnson, H.L., Morgan W.W., 1951, *ApJ*, 114, 522
Johnson, H.L., Morgan W.W., 1953, *ApJ*, 117, 313
Landolt, A.U., 1983, *AJ*, 88, 439
Landolt, A.U., 1992, *AJ*, 104, 340
Nakano, S., 2006, *IAUC*, No. 8697
Yamaoka, H., 2006, *IAUC*, No. 8698

Number 5712

Konkoly Observatory Budapest 10 July 2006 *HU ISSN 0374 - 0676* 

### SPECTROSCOPY OF THE FAINT DWARF NOVAE DV UMa AND AR Cnc

HAEFNER, R.

Universitäts-Sternwarte München, Scheinerstr. 1, D-81679 München, Germany

Results of time-resolved spectroscopy of the faint dwarf novae DV UMa and AR Cnc are reported. Both objects have attracted little observational attention so far. The present observations were performed using the Low Resolution Spectrograph (LRS) at the 9.2-m Hobby-Eberly Telescope (HET) and the FORS2 instrument at the ESO Very Large Telescope (VLT) Unit No. 2. Table 1 lists the observing log for each object. All spectra were reduced with IRAF<sup>†</sup> standard tools. Radial velocities were measured using the IRAF 'splot (k)' routine.

Table 1: Journal of observations. UT times refer to the start of the first and last exposure, respectively. The VLT runs were consistently interrupted to observe other targets

| Object | Date                 | First exp.      | Last exp.       | Indiv. exp. | No.  | Res.                      | Tel.               |
|--------|----------------------|-----------------|-----------------|-------------|------|---------------------------|--------------------|
|        |                      | $(\mathrm{UT})$ | $(\mathrm{UT})$ | time $(s)$  | exp. | $(\text{\AA}/\text{pix})$ |                    |
| DV UMa | 2002 Jan. 25         | 10:31:32        | 11:28:22        | 500         | 7    | 5                         | $HET^1$            |
| AR Cnc | 2001 Feb. 26         | $01:\!38:\!50$  | 03:38:50        | 480/600     | 4    | 1.2                       | $VLT^2$            |
|        | 2001 Feb. 27         | 01:49:40        | 03:08:02        | 900         | 2    | 1.2                       | $VLT^2$            |
|        | $2002~{\rm Feb}.~20$ | $09{:}00{:}23$  | 09:19:29        | 800         | 2    | 5                         | $\mathrm{HET}^{1}$ |

1: wavelength range  $\lambda\lambda 4400$ –9200 Å, 2: wavelength range  $\lambda\lambda 3700$ –5900 Å

Table 2: System parameters for DV UMa

| i (°)     | $M_2/M_{\odot}$ | $M_1/M_{\odot}$ | Type                    | Reference                 |
|-----------|-----------------|-----------------|-------------------------|---------------------------|
| 72        | 0.23            | 0.43            | spec.                   | Szkody & Howell (1993)    |
| 71.5 - 73 | 0.17            | 0.31            | $\operatorname{phot}$ . | Howell & Blanton (1993)   |
| 84        | 0.15            | 0.90            | $\operatorname{phot}$ . | Patterson et al. $(2000)$ |
| 84        | 0.16/0.17       | 1.14/1.04       | $\operatorname{phot}$ . | Feline et al. $(2004)$    |

DV UMa is known to be a faint ( $V \approx 19$ ) eclipsing ( $\Delta V \approx 2$ ) dwarf nova of SU UMa type. The orbital period amounts to  $2^{h}3^{m}38^{s}$ . Spectroscopic work on this object is scarce in the literature: Mukai et al. (1990) detected the spectral signature of the secondary in a low resolution spectrum and determined its spectral type to be M4.5. This finding

<sup>&</sup>lt;sup>†</sup>IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

was later confirmed by Smith et al. (1997). Szkody & Howell (1993) demonstrated  $H_{\beta}$  to feature the typical double-peaked line structure of a high inclination system. Based on nine spectra they also derived radial velocities by fitting Gaussians to each of the two peaks of this line with the final velocity being the midpoint of the two Gaussians, respectively. The resulting radial velocity curve ( $\gamma = -61 \pm 13 \text{ km/s}, K_1 = 140 \pm 18 \text{ km/s}$ ) shows a phase lag of 36° compared to the eclipse thus indicating that the  $H_{\beta}$  velocities do not exactly reflect the motion of the white dwarf. Therefore, the derived mass estimates given in Table 2 may be less reliable. Table 2 also lists inclinations and masses obtained by several authors using eclipse analyses.



Figure 1. The normalised average spectrum of DV UMa showing the double-peaked lines of  $H_{\alpha}$  and  $H_{\beta}$ . The He I  $\lambda$ 5876 line may also be present

The individual HET spectra of DV UMa (Fig. 1 presents the average spectrum) proved to be suitable to determine the  $H_{\alpha}$  and the  $H_{\beta}$  velocities in part using the same procedure as Szkody & Howell (1993). Results are shown in Fig. 2. The data points cover roughly half a period and indicate an amplitude  $K_1 \approx 115 \pm 20$  km/s as well as a moderate phase lag of about 20°. Assuming  $i = 84^{\circ}$  and  $M_2 = 0.16 M_{\odot}$  (mass-period relation) one then arrives at  $M_1 = 0.39(+0.24/-0.08) M_{\odot}$ . Even if the range of dispersion is high and one is aware of the problems in determining the true  $K_1$ , the derived range of  $M_1$  is distinctly smaller than the values obtained by recent eclipse analyses. This small mass would be in line with the finding by Webbink (1990) that the mean white dwarf mass for dwarf novae with periods below the gap amounts to  $0.5 \pm 0.1 M_{\odot}$ , which does not, however, exclude a higher value for the individual system DV UMa.

AR Cnc is a faint ( $V \approx 19$ ) dwarf nova which shows deep eclipses ( $\geq 3$  mag) repeating with a period of 5<sup>h</sup>9<sup>m</sup> (Howell et al. 1990). Spectroscopic confirmation was based on three spectra obtained by Bruch (1989), Mukai et al. (1990) and Szkody & Howell (1992), respectively.

The HET spectra of AR Cnc may resolve one of the puzzling results obtained for this system so far: the spectral features (TiO) to the red side of the A band (Fig. 3) indicate a spectral type around M1 for the secondary rather than M4–M5.5 as deduced by Mukai et al. (1990). This would be in line with the long orbital period of AR Cnc thus supporting a canonical value for the mass of the secondary of about 0.5  $M_{\odot}$ . The unusual high mass



Figure 2. Radial velocities of DV UMa corrected for the motion of the earth ( $H_{\alpha}$ : circles,  $H_{\beta}$ : squares). Phases are calculated using the precise ephemeris given by Feline et al. (2004). The straight line represents the  $\gamma$ -velocity determined by Szkody & Howell (1993)



Figure 3. The average flux-calibrated HET spectrum of AR Cnc. It is dominated by Balmer and He I emission lines. Also present are the He II  $\lambda$ 4686 and Fe II  $\lambda$ 5169 emissions as well as the (unresolved) Na I doublet of the secondary at 8190 Å



Figure 4. The best VLT spectra of AR Cnc, normalised and separated vertically by offsets (orbital phases from top to bottom: 0.0 (arbitrary), 0.10, 0.67 (bad seeing), 0.71). Note the changing relative intensities and profiles of the Balmer lines

for the primary ( $\geq 2.45 \ M_{\odot}$  for  $i \geq 80^{\circ}$ ) as derived by Howell & Blanton (1993) can only be decreased to a plausible value assuming an inclination  $\leq 75^{\circ}$ , which would, however, contradict the large eclipse depth observed and the double-peaked emission lines found by Szkody & Howell (1992). The VLT spectra, though quite noisy (Fig. 4), nevertheless show that the emission lines do not exhibit a permanent double-peaked structure. The profiles vary considerably over the orbital period and may have a quite different appearance even at similar phases. The latter does not necessarily imply such severe variations on a short time scale, because the spectra obtained at phases 0.67 and 0.71 (Fig. 4) are separated by five orbital revolutions.

#### References:

- Bruch, A., 1989, A&AS, 78, 145
- Feline, W.J., Dhillon, V.S., Marsh, T.R., Brinkworth, C.S., 2004, MNRAS, 355, 1
- Howell, S.B., Blanton, S.A., 1993, AJ, 106, 311
- Howell, S.B., Szkody, P., Kreidl, T.J., Mason, K.O., Puchnarewicz, E.M., 1990, PASP, 102, 758
- Mukai, K., Mason, K.O., Howell, S.B., Allington-Smith, J., Callanan, P.J., Charles, P.A., Hassall, B.J.M., Machin, G., Naylor, T., Smale, A.P., van Paradijs, J., 1990, MNRAS, 245, 385
- Patterson, J., Vanmunster, T., Skillman, D.R., Jensen, L., Stull, J., Martin, B., Cook, L.M., Kemp, J., Knigge, C., 2000, PASP, 112, 1584
- Smith, R.C., Sarna, M.J., Catalán, M.S., Jones, D.H.P., 1997, MNRAS, 287, 271
- Szkody, P., Howell, S.B., 1992, ApJS, 78, 537
- Szkody, P., Howell, S.B., 1993, ApJ, 403, 743
- Webbink, R.F., 1990, in: Accretion Powered Compact Binaries, ed. C.W. Mauche, Cambridge University Press, 177

Number 5713

Konkoly Observatory Budapest 17 July 2006 *HU ISSN 0374 - 0676* 

# 165. LIST OF TIMINGS OF MINIMA ECLIPSING BINARIES BY BBSAG OBSERVERS

(BBSAG Bulletin No. 132)

DIETHELM, R.

BBSAG, Bahnhofstrasse 3, CH–4118 Rodersdorf, Switzerland

The following Table lists timings of minima of eclipsing binaries secured by photoelectrical means by BBSAG observers, primarily obtained between July 2005 and June 2006. The given O - C values generally refer to the linear elements of the GCVS (Kholopov et al. 1985), except for the cases stated in the remarks. All times given are heliocentric UTC.

| Variable    | Type | HJD 24     | ±      | O - C   | n   | Obs           | Remarks                                  |
|-------------|------|------------|--------|---------|-----|---------------|------------------------------------------|
| SS Aps      | р    | 53556.331  | 0.006  |         | 130 | APs           |                                          |
| WX Aps      | р    | 53088.499  | 0.002  | +0.005  | 412 | $\mathbf{FH}$ | el.: 2452135.035 + 4.69684 $\timesE$     |
|             | р    | 53539.387  | 0.005  | -0.003  | 179 | APs           |                                          |
| AS Aps      | р    | 53548.230  | 0.003  |         | 95  | APs           | GCVS period excluded, close to $0.4^{d}$ |
| IO APs      | р    | 53559.441  | 0.020  | +1.611  | 174 | APs           |                                          |
| MR Aps      | р    | 53207.419  | 0.004  | -0.009  | 480 | $\mathbf{FH}$ | el.: 2452135.852 + 0.52787 × $E$         |
| NT Aps      | р    | 53543.350  | 0.001  | -0.013  | 100 | APs           | el.: Hipparcos                           |
|             | s    | 53543.497  | 0.002  | -0.014  | 81  | APs           |                                          |
| RafV002 Aps | s    | 53545.562  | 0.005  | +0.013  | 57  | APs           | el.: IBVS, No. 5700                      |
| FS Aqr      | р    | 53670.3032 | 0.0012 | +0.0328 | 14  | RD            | V; el.: Per. Zv., 22, 327                |
| LT Aql      | р    | 53565.4770 | 0.0010 | +0.0747 | 24  | RD            | V                                        |
| V407 Aql    | р    | 53592.3892 | 0.0018 | +0.4309 | 15  | RD            | V                                        |
| V699 Aql    | р    | 53566.477  | 0.008  | +0.021  | 12  | RD            | V                                        |
| V1075 Aql   | р    | 53557.4155 | 0.0004 | -0.0264 | 16  | RD            | V                                        |
| KO Ara      | р    | 53553.544  | 0.004  |         | 62  | APs           |                                          |
| V336 Ara    | р    | 53555.551  | 0.003  | -0.005  | 120 | APs           | el.: 2451966.919 + 3.03175 $\timesE$     |
| V339 Ara    | р    | 53206.435  | 0.003  | +0.016  | 479 | $\mathbf{FH}$ |                                          |
| ZZ Aur      | р    | 53674.4526 | 0.0006 | +0.0141 | 16  | EBl           |                                          |
|             | р    | 53683.4704 | 0.0009 | +0.0136 | 20  | EBl           |                                          |
|             | р    | 53686.4772 | 0.0002 | +0.0143 | 24  | EBl           |                                          |
|             | р    | 53694.2915 | 0.0008 | +0.0128 | 24  | EBl           |                                          |
|             | s    | 53694.5897 | 0.0010 | +0.0104 | 24  | EBl           |                                          |
|             | s    | 53741.4881 | 0.0010 | +0.0140 | 31  | EBl           |                                          |
|             | s    | 53746.2962 | 0.0007 | +0.0124 | 18  | EBl           |                                          |
|             | р    | 53760.4264 | 0.0004 | +0.0141 | 34  | EBl           |                                          |
|             | р    | 53768.245  | 0.003  | +0.017  | 8   | EBl           |                                          |
|             | s    | 53768.546  | 0.005  | +0.017  | 13  | EBl           |                                          |

| Variable        | Type         | HJD 24                   | ±       | O - C              | n               | Obs                  | Remarks                                 |
|-----------------|--------------|--------------------------|---------|--------------------|-----------------|----------------------|-----------------------------------------|
| FO Aur          | р            | 53674.433                | 0.002   | -0.040             | 21              | $\operatorname{EBl}$ |                                         |
| HP Aur          | s            | 53674.3522               | 0.0013  | +0.0476            | 15              | $\mathbf{EBl}$       |                                         |
| HW Aur          | s            | 53674.4248               | 0.0007  | 0.0184             | 23              | $\mathbf{EBl}$       | el.: IBVS, No. 5016                     |
| GSC2393-680 Aur | $\mathbf{s}$ | 53683.4375               | 0.0015  | +0.0032            | 14              | $\operatorname{EBl}$ | el.: IBVS, No. 5699                     |
|                 | р            | 53683.5913               | 0.0011  | -0.0007            | 27              | $\mathbf{EBl}$       |                                         |
|                 | р            | 53686.4416               | 0.0017  | +0.0002            | 19              | $\mathbf{EBl}$       |                                         |
|                 | $\mathbf{S}$ | 53686.5983               | 0.0008  | +0.0014            | 23              | $\operatorname{EBl}$ |                                         |
|                 | р            | 53694.3571               | 0.0007  | +0.0023            | 17              | $\operatorname{EBl}$ |                                         |
|                 | $\mathbf{S}$ | 53694.5141               | 0.0020  | +0.0011            | 20              | $\operatorname{EBl}$ |                                         |
|                 | р            | 53694.6702               | 0.0003  | -0.0011            | 17              | $\mathbf{EBl}$       |                                         |
|                 | р            | 53705.4330               | 0.0010  | -0.0005            | 23              | $\mathbf{EBl}$       |                                         |
|                 | s            | 53705.5913               | 0.0010  | -0.0005            | 25              | $\mathbf{EBl}$       |                                         |
|                 | s            | 53741.3591               | 0.0012  | -0.0011            | 18              | $\mathbf{EBl}$       |                                         |
|                 | q            | 53741.5188               | 0.0009  | +0.0003            | 21              | EBl                  |                                         |
|                 | s            | 53760.3483               | 0.0010  | -0.0041            | 21              | EBl                  |                                         |
|                 | D            | 53760.5127               | 0.0009  | +0.0021            | 22              | EBl                  |                                         |
|                 | S            | 53768.2638               | 0.0007  | -0.0019            | 12              | EBl                  |                                         |
|                 | n            | 53768.4251               | 0.0016  | +0.0011            | 21              | EBI                  |                                         |
| GSC2903-237 Aur | р<br>D       | 53683.3946               | 0.0012  | -0.0003            | 10              | EBI                  | el.: IBVS, No. 5699                     |
|                 | P<br>S       | 536835942                | 0.0006  | +0.0003            | 28              | EBI                  |                                         |
|                 | s            | 53686 3792               | 0.0012  | +0.0001            | $\frac{20}{28}$ | EBI                  |                                         |
|                 | n            | 53686 5791               | 0.00012 | +0.0001            | 30              | EBI                  |                                         |
|                 | P<br>S       | 53694 3367               | 0.0007  | -0.0001            | 20              | EBI                  |                                         |
|                 | n            | 53694.5367               | 0.0007  | $\pm 0.0001$       | 18              | EBI                  |                                         |
|                 | Р<br>5       | 53705 4779               | 0.0010  | +0.0010<br>+0.0004 | 32              | EBI                  |                                         |
|                 | n            | 53705 6755               | 0.0010  | -0.0010            | 22              | EBI                  |                                         |
|                 | P            | 53741 2885               | 0.0001  | $\pm 0.0013$       | 14              | EBI                  |                                         |
|                 | o<br>n       | 53741.2860               | 0.0011  | +0.0013            | 30              | EBI                  |                                         |
|                 | P            | 53760 3851               | 0.0000  | -0.0006            | 20              | EBI                  |                                         |
|                 | ə<br>D       | 53760 5831               | 0.0007  | -0.0000            | 29<br>12        | EBI                  |                                         |
|                 | Р            | 53768 3493               | 0.0020  | -0.0013            | 10<br>91        | EBI                  |                                         |
|                 | 5<br>12      | 52768 5420               | 0.0007  | -0.0011            | 41<br>16        | EDI<br>EDI           |                                         |
| CSC2015 212 Aur | p            | 52106.3430               | 0.0011  | +0.0007            | 10              | EDI<br>FDI           | al IDVS No 5700                         |
| G502915-212 Au  | P<br>D       | 52400.3204               | 0.0001  |                    | 20<br>24        | EDI<br>EDI           | el.: 1Bv3, No. 5700                     |
|                 | p            | 59445 4111               | 0.0003  | +0.0007            | 04<br>90        | EDI<br>FDI           |                                         |
|                 | Р            | 52682 6770               | 0.0013  | -0.0003            | 29<br>19        | EDI<br>EDI           |                                         |
|                 | s            | 00000.0779<br>E2606 60E0 | 0.0009  | -0.0009            | 10              |                      |                                         |
|                 | 5            | 52604 210                | 0.0021  | +0.0003            | 12              | EDI<br>FDI           |                                         |
|                 | 5            | 52741 5550               | 0.003   | +0.008             | 9               | EDI<br>FDI           |                                         |
|                 | р            | 52460 2459               | 0.0011  | +0.0003            | 27<br>17        | EDI<br>FDI           |                                         |
| TV D            | s            | 55400.5452               | 0.0015  | -0.0001            | 10              |                      | M -L. DAV MALL CO DI                    |
| 11 D00          | р            | 53647.4405               | 0.0007  | -0.0233            | 19              |                      | $\mathbf{V}_{i}$ et.: DAV Mitt., 08, 21 |
| T7 D            | s            | 53847.0090               | 0.0011  | -0.0194            | 14              | RD<br>DD             | V<br>V                                  |
| 17 B00          | s            | 53847.3049               | 0.0011  | -0.0726            | 21              | RD<br>DD             | V<br>V                                  |
|                 | р            | 53847.5104               | 0.0011  | -0.0756            | 20              | RD<br>DD             | V                                       |
| YY Boo          | р            | 53849.4686               | 0.0004  | -0.1022            | 23              | RD                   | V                                       |
| AU BOO          | р            | 53859.5211               | 0.0003  | +0.1034            | 25              | RD<br>DD             | V                                       |
| AR BOO          | р            | 53859.5407               | 0.0003  | +0.0217            | 23              | RD<br>DD             | V; el.: IBVS, No. 4601                  |
| GSC921-412 B00  |              | 53847.4408               | 0.0007  | 0.0020             | 17              | RD<br>EDI            | V                                       |
| GSC2013-288 B00 | р            | 53382.0234               | 0.0008  | -0.0030            | 10              | EBI                  | el.: IBVS, No. 5699                     |
|                 | р            | 53445.3726               | 0.0010  | +0.0006            | 10              | EBI                  |                                         |
|                 | s            | 53445.5254               | 0.0017  | +0.0018            | 11              | EBI                  |                                         |
|                 | s            | 53463.4132               | 0.0008  | +0.0056            | 14              | EBI                  |                                         |
|                 | р            | 53502.3584               | 0.0004  | 0.0000             | 8               | EBI                  |                                         |
|                 | s            | 53502.5128               | 0.0007  | +0.0028            | 15              | EBI                  |                                         |
|                 | р            | 53515.3906               | 0.0019  | -0.0019            | 13              | EBI                  |                                         |
|                 | $\mathbf{S}$ | 53515.5444               | 0.0006  | +0.0003            | 19              | EBI                  |                                         |
|                 | $\mathbf{S}$ | 53517.3660               | 0.0019  | +0.0032            | 10              | EBl                  |                                         |
|                 | n            | 53517 $5157$             | 0.0011  | +0.0013            | 26              | EBI                  |                                         |

| Variable                               | Type         | HJD 24                   | ±      | O - C        | n        | Obs                                                           | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------|--------------|--------------------------|--------|--------------|----------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GSC2015-44 Boo                         | р            | 53485.3623               | 0.0005 |              | 75       | RD                                                            | V; el.: ASAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        | s            | 53847.4969               | 0.0006 |              | 24       | RD                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NSV 6813 Boo                           | s            | 53847.4509               | 0.0009 |              | 13       | RD                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| VV CVn                                 | р            | 53849.4391               | 0.0010 | -0.0313      | 19       | RD                                                            | V; el.: IBVS, No. 5403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| YZ CVn                                 | р            | 53846.4107               | 0.0017 | -0.0074      | 10       | RD                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DF CVn                                 | $\mathbf{S}$ | 53788.3462               | 0.0018 | +0.0393      | 8        | EBI                                                           | el.: IBVS, No. 5021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        | р            | 53788.5081               | 0.0009 | +0.0377      | 10       | EBI                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DH CVn                                 | р            | 53788.4892               | 0.0006 | -0.0123      | 19       | EBl                                                           | el.: IBVS, No. 5149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\mathrm{GSC2004}$ -784 $\mathrm{CVn}$ | р            | 53788.4343               | 0.0016 | -0.0018      | 12       | EBl                                                           | el.: IBVS, No. 5269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        | $\mathbf{S}$ | 53788.5700               | 0.0010 | -0.0020      | 12       | EBl                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| GSC2533-1519 CVn                       | $\mathbf{S}$ | 53809.393                | 0.004  | +0.005       | 13       | EBl                                                           | el.: IBVS, No. 5541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| GSC2534-216 CVn                        | s            | 53809.398                | 0.003  | -0.003       | 10       | EBl                                                           | el.: IBVS, No. 5403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| GSC2534-1121 CVn                       | р            | 53809.3467               | 0.0010 | +0.0065      | 11       | EBl                                                           | el.: IBVS, No. 5541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| GSC2537-520~CVn                        | р            | 53809.3599               | 0.0010 | -0.0063      | 11       | EBl                                                           | el.: IBVS, No. 5541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| GSC2544-1007 CVn                       | s            | 53809.4517               | 0.0010 | -0.0027      | 12       | EBI                                                           | el.: IBVS, No. 5541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| GSC2544-1090 CVn                       | s            | 53382.7091               | 0.0007 | -0.0006      | 13       | EBI                                                           | el.: IBVS, No. 5699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        | p            | 53445.4256               | 0.0008 | -0.0003      | 16       | EBI                                                           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | r<br>S       | 53463.3712               | 0.0013 | -0.0012      | 13       | EBI                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        | s            | 53502.3537               | 0.0023 | +0.0008      | 8        | EBI                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        | n            | 53502 5464               | 0.0020 | +0.0000      | 10       | EBI                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        | P<br>s       | 53515 4755               | 0.0021 | +0.0000      | 15       | EBI                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        | د<br>م       | 53517 4051               | 0.0015 | $\pm 0.0004$ | 26       | EBI                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 28C2545.070 CVn                        | 8<br>12      | 52282 520                | 0.0007 | $\pm 0.0003$ | 20<br>6  | EDI<br>EDI                                                    | al IDVS No 5600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3502545-970 O V II                     | р            | 52282 7261               | 0.004  | -0.004       | 0        | EDI<br>FDI                                                    | ei IBVS, No. 5099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | s            | 00002.7201               | 0.0020 | -0.0008      | 9        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        | s            | 53445.4833               | 0.0000 | +0.0018      | 15       | EBI                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        | s            | 53463.4644               | 0.0012 | +0.0006      | 15       | EBI                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        | $\mathbf{s}$ | 53502.3652               | 0.0012 | +0.0009      | 14       | EBI                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        | р            | 53502.5476               | 0.0009 | -0.0002      | 14       | EBI                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        | р            | 53515.3925               | 0.0008 | +0.0002      | 16       | EBI                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        | s            | 53515.5758               | 0.0009 | 0.0000       | 15       | EBI                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        | s            | 53517.4118               | 0.0005 | +0.0011      | 23       | EBI                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| GSC2548-936 CVn                        | р            | 53809.4192               | 0.0018 | -0.0044      | 10       | EBI                                                           | el.: IBVS, No. 5403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4SC3022-996 CVn                        | $\mathbf{S}$ | 53809.352                | 0.003  | -0.002       | 11       | EBI                                                           | el.: IBVS, No. 5403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| GSC3026-1046 CVn                       |              | 53788.4428               | 0.0006 | +0.0156      | 17       | EBI                                                           | el.: IBVS, No. 5269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| GSC3034-299 CVn                        | р            | 53382.6910               | 0.0005 | -0.0009      | 20       | EBI                                                           | el.: IBVS, No. 5699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        | р            | 53445.4990               | 0.0012 | +0.0005      | 13       | EBI                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        | s            | 53463.4712               | 0.0010 | -0.0002      | 13       | EBl                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        | р            | 53502.3804               | 0.0003 | +0.0005      | 18       | EBl                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        | р            | 53515.4156               | 0.0010 | +0.0004      | 22       | EBI                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        | $\mathbf{S}$ | 53515.607                | 0.004  | -0.006       | 6        | EBI                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        | р            | 53517.3902               | 0.0005 | -0.0011      | 17       | EBl                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EI Cas                                 | р            | 53660.3060               | 0.0014 | +0.0910      | 10       | RD                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NN Cas                                 | $\mathbf{S}$ | 53670.246                | 0.008  | +0.130       | 18       | RD                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| V344 Cas                               | р            | 53670.2745               | 0.0013 | -0.1063      | 14       | RD                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| V411 Cas                               | р            | 53670.2914               | 0.0013 | +0.1952      | 18       | RD                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| VZ Cep                                 | р            | 53658.3090               | 0.0006 | -0.0085      | 15       | RD                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | р            | 53672.510                | 0.005  | -0.008       | 198      | APs                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| GS Cep                                 | р            | 53670.3134               | 0.0009 | +0.0005      | 12       | RD                                                            | V; el.: IBVS, No. 3596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V357 Čep                               | q            | 53670.2886               | 0.0009 | -0.2125      | 14       | $\operatorname{Rd}$                                           | V; el.: Brno Contr., 28, 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TU Cha                                 | q            | 53554.427                | 0.010  |              | 184      | APs                                                           | , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ГХ Сһа                                 | r<br>D       | 53554.492                | 0.010  |              | 58       | APs                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RafV007 Cir                            | r<br>D       | 53545.391                | 0.005  |              | 95       | FH                                                            | period close to $0^{d}_{c}96$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CN Com                                 | r<br>n       | 53844.5790               | 0.0010 | +0.0562      | 11       | RD                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| LL Com                                 | P<br>D       | 53846 3953               | 0 0008 | -0.0448      | 1/       | RD                                                            | V.el. IBVS No. 4386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Com                                    | ч<br>Ч       | 53788 4600               | 0.0000 | 10,0440      | 11<br>11 | EBI                                                           | el · IBVS No 5059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| D Com                                  | a<br>c       | 53788 1591               | 0.0011 | -0.0059      | 11<br>17 | ED1                                                           | $al \in IBVS  No. 5052$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 28C1006 427 Com                        | 5            | 53700.4321<br>53700 FE7E | 0.0012 | 0.0074       | 1 F      | EDI<br>FDI                                                    | $\begin{array}{cccc} \mathbf{EII} & \mathbf{ID} & \mathbf{VS} \\ \mathbf{O} & \mathbf{ID} & \mathbf{VS} \\ \mathbf{N} & \mathbf{S} & \mathbf{S} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} & \mathbf{S} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} & \mathbf{S} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} & \mathbf{S} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} & \mathbf{S} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} & \mathbf{S} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} & \mathbf{S} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} & \mathbf{S} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} & \mathbf{S} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} & \mathbf{S} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} & \mathbf{S} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} & \mathbf{S} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} & \mathbf{S} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{S} \\ \mathbf{O} & \mathbf{S} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} & \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ $ |
| ようし1990-437 U0M<br>TW C_P              | p<br>-       | 00100.0010<br>E0050 517  | 0.0011 | -0.0191      | 10       | Б<br>Б<br>Б<br>Б<br>Г<br>С<br>Г<br>Г<br>С<br>Г<br>С<br>Г<br>Г | $e_{1.1}$ 1D v 5, 1NO. 5209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| IWUIB                                  | s            | 53859.517                | 0.003  | +0.034       | 7<br>1 = | КD<br>Бру                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ээС2040-1361 CrB                       | р            | 53917.5548               | 0.0010 | -0.0065      | 17       | EBI                                                           | $\mathbf{R}$ ; el.: IBVS, No. 5295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                        |              |                          |        |              | 111      | 10121                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| Variable           | Type         | HJD 24                   | ±      | O - C        | n        | Obs        | Remarks                   |
|--------------------|--------------|--------------------------|--------|--------------|----------|------------|---------------------------|
| GSC2580-2086 CrB   | р            | 53917.4561               | 0.0012 | -0.0099      | 14       | EBI        | R; el.: IBVS, No. 5295    |
| V443 Cyg           | р            | 53895.4515               | 0.0006 | -0.0021      | 27       | RD         | V                         |
| V477 Cyg           | s            | 53899.4726               | 0.0012 | -0.4649      | 28       | RD         | V; non-circular orbit     |
| V490 Cyg           | s            | 53660.331                | 0.005  | +0.210       | 8        | RD         | V                         |
| V725 Cvg           | D            | 53566.4458               | 0.0015 | +0.2332      | 16       | RD         | V                         |
| V822 Cyg           | P<br>D       | 53592.3737               | 0.0011 | -0.1411      | 15       | RD         | V                         |
| 1022 0/8           | Р<br>D       | 53900 4405               | 0.0004 | -0.1435      | 25       | RD         | V                         |
| V860 Cug           | P            | 53660 320                | 0.0004 | $\pm 0.1450$ | 10       | RD         | v                         |
| V800 Cyg           | o<br>n       | 52000.320                | 0.000  | $\pm 0.000$  | 15       |            | v                         |
| VOOU Cyg           | p            | 53900.4010<br>F200F 4400 | 0.0005 | +0.0003      | 10       |            | v<br>V                    |
| V959 Cyg<br>Voci C | р            | 53895.4480               | 0.0007 | -0.0521      | 29       | RD<br>DD   | V                         |
| V961 Cyg           | р            | 53592.4161               | 0.0007 | +0.0016      | 20       | RD         |                           |
| V1036 Cyg          | р            | 53566.4634               | 0.0006 | +0.0030      | 13       | RD         | V; el.: IBVS, No. 5204    |
| V1066 Cyg          | $\mathbf{p}$ | 53557.400                | 0.005  | +0.068       | 14       | RD         | V                         |
| V1136 Cyg          | р            | 53899.4669               | 0.0003 | +0.0774      | 35       | RD         | V                         |
| V1355 Cyg          | р            | 53660.306                | 0.005  | +0.045       | 11       | RD         | V                         |
|                    | р            | 53900.4933               | 0.0014 | +0.0438      | 23       | RD         | V                         |
| V1401 Cyg          | р            | 53592.447                | 0.008  | -0.398       | 15       | RD         | V                         |
| V2280 Cyg          | p            | 53638.3354               | 0.0006 | +0.0405      | 16       | EBI        | el.: IBVS, No. 4996       |
| V2282 Cyg          | a            | 53652.3064               | 0.0019 | -0.0311      | 13       | EBI        | el.: IBVS, No. 4996       |
| V2284 Cvg          | S            | 53638.3324               | 0.0005 | -0.0013      | 14       | EBI        | el.: IBVS, No. 4985       |
| V2294 Cvg          | s            | 53652.284                | 0.008  | -0.004       | 7        | EBI        | el.: IBVS, No. 4995       |
|                    | n            | 53652 4555               | 0.0000 | _0.001       | 11       | ERI        |                           |
|                    | P            | 53670 2055               | 0.0022 | 0.0160       | 17       | BD         | V                         |
|                    | 5            | 53070.2955<br>E2EE0 26E  | 0.0008 | -0.0109      | 109      |            | v                         |
| EW Dei             | р            | 53558.305                | 0.005  | +0.129       | 102      | APS        |                           |
|                    | s            | 53558.571                | 0.010  | +0.140       | 88       | APS        |                           |
| GG Del             | р            | 53674.3213               | 0.0014 | -0.0232      | 15       | RD         | V; el.: IBVS, No. 3406    |
| Z Dra              | р            | 53847.4461               | 0.0004 | -0.1770      | 33       | RD         | V                         |
| RX Dra             | s            | 53592.4166               | 0.0022 | +0.0426      | 17       | RD         | V                         |
| AX Dra             | р            | 53847.4711               | 0.0002 | -0.0555      | 23       | RD         | V                         |
| BX Dra             | р            | 53846.4111               | 0.0004 | +0.0108      | 10       | RD         | V; elem IBVS, No. 4266    |
| CK Dra             | р            | 53849.5433               | 0.0022 | +0.1360      | 50       | RD         | V; normal minimum         |
| CV Dra             | р            | 53557.3894               | 0.0012 | -0.0019      | 12       | RD         | V; el.: BAV Mitt., No. 69 |
|                    | р            | 53844.5727               | 0.0011 | -0.0020      | 13       | RD         | V                         |
|                    | s            | 53900.491                | 0.002  | +0.023       | 22       | RD         | V                         |
| FU Dra             | р            | 53859.5350               | 0.0003 | -0.0104      | 22       | RD         | V: el.: Hipparcos         |
| GSC3523-505 Dra    | r<br>S       | 53303.2750               | 0.0006 | -0.0001      | 10       | EBI        | el.: IBVS. No. 5699       |
| 0.0001000010       | n            | 53303 3916               | 0.0011 | -0.0029      | 12       | EBI        |                           |
|                    | P<br>S       | 53325 2550               | 0.0011 | -0.0001      | 12       | EBI        |                           |
|                    | n            | 53325 3710               | 0.0011 | -0.0001      | 12       | EBI        |                           |
|                    | P            | 50020.0119               | 0.0011 | -0.0020      | 10       | EDI<br>EDI |                           |
|                    | p            | 53320.332                | 0.003  | +0.002       | 14       | EDI        |                           |
|                    | s            | 53320.457                | 0.004  | +0.007       | 10       | EBI        |                           |
|                    | р            | 53540.401                | 0.003  | +0.004       | 8        | EBI        |                           |
|                    | s            | 53540.5184               | 0.0008 | +0.0024      | 8        | EBI        |                           |
|                    | $\mathbf{s}$ | 53575.399                | 0.006  | +0.002       | 11       | EBI        |                           |
|                    | $\mathbf{s}$ | 53579.4589               | 0.0005 | +0.0001      | 9        | EBI        |                           |
|                    | р            | 53600.364                | 0.004  | 0.000        | 10       | EBl        |                           |
|                    | $\mathbf{s}$ | 53600.4848               | 0.0018 | +0.0016      | 16       | EBI        |                           |
|                    | р            | 53600.6009               | 0.0014 | -0.0018      | 14       | EBl        |                           |
| GSC3552-321 Dra    | D            | 53303.4075               | 0.0003 | -0.0011      | 13       | EBl        | el.: IBVS, No. 5699       |
|                    | r<br>D       | 53325.2768               | 0.0013 | -0.0025      | 19       | EBI        | ,                         |
|                    | Ч            | 53326 3700               | 0.0011 | -0.0028      | 20       | ERI        |                           |
|                    | n            | 53540 4804               | 0.0015 | $\pm 0.0020$ | 14       | EBI        |                           |
|                    | r<br>P       | 53540,4094               | 0.0010 | $\pm 0.0024$ | 10       | EDI<br>FDI |                           |
|                    | р            | 53579.4170               | 0.0019 | $\pm 0.0002$ | 19       | EDI<br>EDI |                           |
|                    | р            | 03000,4150               | 0.0012 | +0.0029      | 20<br>10 | EBI        | LIDIG N FFOF              |
| G5U3888-464 Dra    | s            | 53612.4519               | 0.0009 | +0.0101      | 12       | EBI        | el.: IBVS, No. 5505       |
|                    | S            | 53902 4174               | 0.0010 | $\pm 0.0084$ | 11       | EBL        | К                         |

| Variable           | Type         | HJD 24                  | ±      | 0 – C                        | n        | Obs            | Remarks                   |
|--------------------|--------------|-------------------------|--------|------------------------------|----------|----------------|---------------------------|
| GSC3905-60 Dra     |              | 53303.416               | 0.002  | +0.004                       | 9        | EBl            | el.: IBVS, No. 5699       |
|                    | s            | 53325.3065              | 0.0009 | +0.0038                      | 24       | EBl            |                           |
|                    | s            | 53326.3378              | 0.0008 | +0.0025                      | 27       | EBl            |                           |
|                    | р            | 53540.4951              | 0.0007 | +0.0006                      | 17       | EBl            |                           |
|                    | s            | 53575.3972              | 0.0002 | +0.0012                      | 18       | EBl            |                           |
|                    | р            | 53600.3877              | 0.0004 | +0.0030                      | 32       | EBl            |                           |
|                    | $\mathbf{S}$ | 53600.5933              | 0.0013 | +0.0021                      | 16       | EBl            |                           |
| MT Her             | s            | 53900.5117              | 0.014  | +0.0601                      | 14       | RD             | V; el.: ASAS              |
| V681 Her           | р            | 53565.4968              | 0.0008 | +0.0729                      | 11       | RD             | V; el.: IBVS, No. 5027    |
| V728 Her           | р            | 53899.4753              | 0.0006 | +0.0667                      | 28       | RD             | V; el.: IBVS, No. 3234    |
| V1005 Her          | р            | 53899.4691              | 0.0005 | +0.0371                      | 17       | RD             | V; el.: IBVS, No. 4611    |
| V1033 Her          | р            | 53614.3218              | 0.0008 | -0.0107                      | 12       | EBl            | el.: IBVS, No. 5146       |
|                    | р            | 53917.441               | 0.004  | -0.011                       | 12       | EBl            | R                         |
| V1036 Her          | s            | 53614.4289              | 0.0006 | +0.0036                      | 14       | EBl            | el.: IBVS, No. 5146       |
|                    | р            | 53917.3889              | 0.0009 | +0.0022                      | 15       | EBl            | R                         |
| V1038 Her          | s            | 53614.4238              | 0.0005 | +0.0046                      | 14       | $\mathbf{EBl}$ | el.: IBVS, No. 5146       |
|                    | s            | 53917.4700              | 0.0014 | +0.0086                      | 11       | EBl            | R                         |
| V1039 Her          | s            | 53614.4171              | 0.0010 | +0.0007                      | 12       | EBl            | el.: BBSAG Bull. 128, 10  |
|                    | s            | 53917.5532              | 0.0006 | +0.0034                      | 16       | $\mathbf{EBl}$ | R                         |
| V1044 Her          | $\mathbf{s}$ | 53614.3816              | 0.0018 | -0.0047                      | 12       | EBl            | el.: IBVS, No. 5192       |
| V1047 Her          | $\mathbf{s}$ | 53614.3342              | 0.0004 | -0.0109                      | 10       | EBl            | el.: IBVS, No. 5192       |
| V1053 Her          | $\mathbf{s}$ | 53614.3809              | 0.0007 | +0.0039                      | 16       | EBl            | el.: BBSAG Bull., 128, 10 |
| V1055 Her          | $\mathbf{s}$ | 53614.3297              | 0.0015 | -0.0056                      | 13       | EBl            | el.: IBVS, No. 5192       |
| V1062 Her          | р            | 53620.4204              | 0.0017 | -0.0078                      | 10       | EBl            | el.: IBVS, No. 4965       |
| V1067 Her          | s            | 53620.4167              | 0.0018 | -0.0005                      | 14       | EBl            | el.: IBVS, No. 4966       |
| V1073 Her          | s            | 53620.3489              | 0.0008 | +0.0078                      | 16       | EBl            | el.: IBVS, No. 4975       |
|                    | р            | 53620.4931              | 0.0007 | +0.0048                      | 10       | EBl            |                           |
| GSC1505-565 Her    | р            | 53846.4900              | 0.0006 | +0.1201                      | 20       | RD             | V; el.: ASAS              |
|                    | s            | 53846.6060              | 0.0006 | +0.1181                      | 14       | RD             | V                         |
| GSC1537-1557 Her   | s            | 53612.4616              | 0.0017 | +0.0040                      | 13       | EBl            | el.: IBVS, No. 5505       |
|                    | s            | 53902.4145              | 0.0015 | +0.0083                      | 11       | EBl            | R                         |
| GSC1549-121 Her    | р            | 53612.3165              | 0.0018 | -0.0028                      | 9        | EBl            | el.: IBVS, No. 5505       |
|                    | s            | 53612.5219              | 0.0025 | +0.0038                      | 10       | EBl            |                           |
|                    | s            | 53902.4359              | 0.0013 | -0.0016                      | 12       | EBl            | R                         |
| GSC2049-1408 Her   | s            | 53846.5056              | 0.0003 | -0.0053                      | 29       | RD             | V; el.: ASAS              |
| GSC2056-117 Her    | s            | 53846.4998              | 0.0004 | +0.0540                      | 23       | RD             | V; el.: ASAS              |
| GSC2083-1870 Her   | р            | 53612.3452              | 0.0010 | +0.0016                      | 12       | EBl            | el.: IBVS, No. 5306       |
|                    | s            | 53612.5256              | 0.0007 | +0.0015                      | 11       | EBl            | ,                         |
| GSC2613-3432 Her   | р            | 53612.3432              | 0.0007 | +0.0041                      | 12       | EBl            | el.: IBVS, No. 5306       |
| GSC2614-1369 Her   | S            | 53617.4418              | 0.0012 | +0.0008                      | 20       | EBl            | el.: IBVS, No. 5516       |
| GSC2615-1821 Her   | s            | 53617.3431              | 0.0008 | +0.0013                      | 12       | EBl            | el.: IBVS, No. 5516       |
| GSC2618-1385 Her   | s            | 53617.3082              | 0.0005 | -0.0032                      | 10       | EBI            | el.: IBVS, No. 5516       |
|                    | p            | 53617.4782              | 0.0009 | -0.0018                      | 17       | EBI            |                           |
| GSC2629-1932 Her   | P<br>D       | 53620.4013              | 0.0004 | +0.0004                      | 14       | EBI            | el.: IBVS, No. 5333       |
| GSC3097-1297 Her   | р<br>р       | 53617 4739              | 0.0003 | +0.0004                      | 18       | EBI            | el: IBVS, No. 5564        |
| GSC3098-683 Her    | P<br>S       | 53612 4897              | 0.0014 | -0.0033                      | 17       | EBI            | el: IBVS, No. 5306        |
| GSC3008 1253 Her   | n            | 53612 3208              | 0.0011 | $\pm 0.0058$                 | 6        | EBI            | al: IBVS No 5306          |
| GD CD000-1200 1101 | e<br>P       | 53612.5256              | 0.0021 | ±0.0058                      | 19       | EBI            | CI. IDV 5, IVO. 5500      |
| GSC3101-547 Her    | 5<br>0       | 53617 2741              | 0.0010 | $\pm 0.0033$<br>$\pm 0.0017$ | 14<br>15 | EBI            | el·IBVS No 5564           |
| CSC3101-347 Her    | 5            | 53659 1051              | 0.0011 | -0.0017                      | 19<br>19 | EBI            | al IBVS No $5564$         |
| CSC3510 5 Um       | р<br>С       | 53617 256               | 0.0000 |                              | 10<br>14 | EDI<br>EDI     | ol IBVS No $5564$         |
| CSC2510 1992 II    | 5            | 00011.000<br>52617 2500 | 0.003  | +0.000                       | 14<br>10 | сы<br>ГDI      | el. IDVS, INO. $3304$     |
| G5U3510-1283 Her   | р            | 53017.3508              | 0.0005 | -0.0069                      | 10       | EBI            | ei.: IBVS, No. 5516       |
| CCORDO 44 TT       | s            | 53617.4892              | 0.0025 | -0.0076                      | 11       | EBI            | LIDIG N F222              |
| G5U3528-44 Her     | s            | 53620.2998              | 0.0006 | +0.0029                      | 12       | EBI            | ei.: IBVS, No. 5333       |
| addered 1-1 T      | р            | 53620.4894              | 0.0010 | +0.0012                      | 14       | EBI            |                           |
| GSC3532-174 Her    | S            | 53620.3495              | 0.0013 | -0.0003                      | 13       | EBI            | el.: IBVS, No. 5333       |
|                    | -            | E9690 4611              | 0.0016 | 0.0095                       | 19       | FDI            |                           |

| Variable                   | Type         | HJD 24                 | ±                | O - C              | n                | Obs                 | Remarks                     |
|----------------------------|--------------|------------------------|------------------|--------------------|------------------|---------------------|-----------------------------|
| GSC3532-553 Her            | s            | 53303.3781             | 0.0004           | -0.0004            | 15               | EBl                 | el.: IBVS, No. 5699         |
|                            | $\mathbf{s}$ | 53325.2940             | 0.0011           | +0.0015            | 17               | EBl                 |                             |
|                            | s            | 53326.2432             | 0.0007           | -0.0021            | 16               | $\mathbf{EBl}$      |                             |
|                            | р            | 53326.407              | 0.002            | +0.002             | 14               | $\mathbf{EBl}$      |                             |
|                            | р            | 53540.4610             | 0.0014           | -0.0014            | 15               | $\mathbf{EBl}$      |                             |
|                            | р            | 53575.3974             | 0.0014           | -0.0004            | 14               | EBl                 |                             |
|                            | s            | 53579.366              | 0.002            | -0.002             | 13               | EBl                 |                             |
|                            | s            | 53600.3300             | 0.0010           | +0.0011            | 9                | EBl                 |                             |
|                            | р            | 53600.4880             | 0.0006           | +0.0003            | 28               | EBl                 |                             |
| GSC3532-939 Her            | q            | 53620.3724             | 0.0014           | +0.0010            | 14               | EBI                 | el.: IBVS, No. 5333         |
| BS Lac                     | D            | 53674.297              | 0.008            | -0.205             | 18               | RD                  | V                           |
| CG Lac                     | r<br>D       | 53658.292              | 0.003            | -0.144             | 12               | RD                  | V                           |
| CO Lac                     | P<br>S       | 53658.3064             | 0.0004           | +0.0096            | 15               | RD                  | V: non-circular orbit       |
| FL Lac                     | n            | 53566 462              | 0.005            | -0.063             | 18               | RD                  | V                           |
| IL Lac                     | Р<br>5       | 53895 4563             | 0.0005           | -0.4676            | 24               | RD                  | Vel BVS No 5621             |
|                            | 5            | 00000.1000             | 0.0000           | 0.1010             | 21               | пъ                  | non-circular orbit          |
| NS Lac                     | n            | 53566 4231             | 0 0000           | -0.2054            | 21               | вD                  | V                           |
| XX Leo                     | ь<br>Ч       | 53816 2881             | 0.0009           | -0.2004<br>⊥0.0010 | ⊿⊥<br>17         | BD                  | V el · TAAVSO 28 25         |
|                            | Ъ            | 52810 2757             | 0.0013           | +0.0010            | 11<br>1          |                     | v, cl., JAAVSO, 20, 29<br>V |
|                            | p            | 00049.3101             | 0.0007           | +0.0843            | 24<br>15         | лD<br>ПП            | V<br>X7                     |
| An Lyr<br>Fy I             | р            | 53557.4002             | 0.0003           | -0.1300            | 15               | кD                  |                             |
| EA Lyr                     | р            | 53899.4677             | 0.0003           | -0.0093            | 29               | КD                  | v; ei.: 2451296.408 +       |
| N 677 T                    |              |                        | 0.005            | 0 1 0 5            | C                | DD                  | $+$ 0.7172965 $\times$ E    |
| MZ Lyr                     | р            | 53895.374              | 0.005            | -0.105             | 9                | RD                  | V                           |
| NV Lyr                     | р            | 53895.4417             | 0.0008           | -0.0753            | 26               | RD                  | V                           |
| V 376 Lyr                  | р            | 53899.4893             | 0.0006           | +0.0793            | 24               | RD                  | V                           |
| V400 Lyr                   | $\mathbf{p}$ | 53629.3324             | 0.0011           | -0.0276            | 16               | EBl                 | el.: IBVS, No. 4995         |
| V412 Lyr                   | р            | 53566.4536             | 0.0016           | +0.1620            | 14               | RD                  | V                           |
| V574 Lyr                   | р            | 53629.2975             | 0.0012           | -0.0060            | 7                | EBl                 | el.: IBVS, No. 4976         |
| V579 Lyr                   | р            | 53629.3480             | 0.0009           | -0.0048            | 19               | EBl                 | el.: IBVS, No. 4982         |
| V580 Lyr                   | s            | 53652.248              | 0.003            | -0.011             | 10               | EBl                 | el.: IBVS, No. 4982         |
|                            | р            | 53652.3922             | 0.0009           | -0.0123            | 16               | $\mathbf{EBl}$      |                             |
| V582 Lyr                   | р            | 53629.3154             | 0.0014           | +0.0299            | 13               | EBl                 | el.: IBVS, No. 4985         |
| GSC3108-57 Lyr             | р            | 53652.2867             | 0.0013           | +0.0009            | 14               | EBl                 | el.: IBVS, No. 5525         |
| ·                          | s            | 53652.4680             | 0.0009           | -0.0021            | 9                | EBl                 |                             |
| GSC3109-859 Lyr            | р            | 53652.3904             | 0.0010           | -0.0017            | 22               | EBl                 | el.: IBVS, No. 5525         |
| GSC3526-1995 Lyr           | s            | 53652.3625             | 0.0015           | -0.0068            | 13               | EBI                 | el.: IBVS, No. 5525         |
| GSC3526-2369 Lyr           | s            | 53652.4055             | 0.0008           | +0.0063            | 17               | EBI                 | el.: IBVS, No. 5525         |
| SW Oph                     | p            | 53560.432              | 0.003            | +0.305             | 101              | APs                 | ,,                          |
| UU Oph                     | г<br>р       | 53559 387              | 0.007            | -0.042             | 147              | APs                 |                             |
| V448 Oph                   | Р<br>Р       | 53542 348              | 0.007            | +0.032             | 107              | APs                 | el : 2426867 378 +          |
| , 110 O bu                 | Ч            | 50512.010              | 0.001            | 10.002             | 101              | 111 13              | $+ 1819697 \times E$        |
| V496 Oph                   | n            | 53537 /11              | 0.005            | _0.011             | 67               | ΔDa                 | AV B 5/ 8                   |
| v 490 Obu                  | Ъ<br>Р       | 53557,411<br>52555 197 | 0.000            | 0.011              | 07<br>169        |                     | 51. DAV 100., 04, 0         |
| V500 Oph                   | Р            | 00000.407<br>52556 500 | 0.004            | -0.010             | 100<br>190       |                     |                             |
| vədə Opti<br>V700 Omb      | Р            | 00000.020<br>E2EE0 200 | 0.004            | +0.040             | 130<br>00        | APS                 |                             |
| v (09 Opn                  | р            | 03002.389              | 0.005            | +1.420             | 00<br>10         | APS                 |                             |
| v 1125 Oph                 | р            | 53565.4563             | 0.0015           | -0.0096            | 16               | кD                  | v; el.: GEUS EB, No. 28     |
|                            | р            | 53895.4783             | 0.0003           | -0.0065            | 26               | RD                  | V L IDIG N IGIT             |
| V2332 Oph                  | р            | 53565.5153             | 0.0008           | -0.0609            | $\frac{28}{-}$   | RD                  | V; el.: IBVS, No. 4345      |
| GSC983-1722 Oph            | р            | 53846.5453             | 0.0004           | +0.0007            | 34               | RD                  | V; el.: ASAS                |
| GSC995-1646 Oph            | s            | 53612.492              | 0.002            | +0.011             | 10               | EBl                 | el.: IBVS, No. 5505         |
|                            | $\mathbf{s}$ | 53902.388              | 0.003            | +0.007             | 13               | EBI                 | R                           |
| NSV9234 Oph                | р            | 53895.4320             | 0.0004           | -0.0178            | 24               | RD                  | V; el.: IBVS, No. 5630      |
| NSV9637 Oph                | р            | 53895.5071             | 0.0008           | -0.0026            | 14               | RD                  | V; el.: IBVS, No. $5644$    |
| U Peg                      | р            | 53674.302              | 0.003            | -0.108             | 8                | RD                  | V                           |
| SvkV001 Peg                | р            | 53551.532              | 0.003            | -0.008             | 202              | APs                 | el.: IBVS, No. 5700         |
| SvkV002 Peg                | p            | 53553.650              | 0.007            | -0.051             | 89               | APs                 | el.: IBVS, No. 5700         |
| 0                          | n            | 53542.553              | 0.007            | +0.012             | 45               | APs                 | el.: IBVS, No. 5700         |
| SvkV003 Peg                |              |                        |                  |                    |                  |                     | ,                           |
| SvkV003 Peg                | P<br>S       | 53543.572              | 0.009            | +0.020             | 75               | APs                 |                             |
| SvkV003 Peg<br>SvkV005 Peg | Р<br>S<br>D  | $53543.572\ 53556.349$ | $0.009 \\ 0.007$ | +0.020             | $\frac{75}{209}$ | ${ m APs} { m APs}$ |                             |
| Variable         | Type         | $HJD \overline{24}$ | ±      | $O - \overline{C}$   | $\overline{n}$  | $\overline{Obs}$     | Remarks                |
|------------------|--------------|---------------------|--------|----------------------|-----------------|----------------------|------------------------|
| DK Sge           | р            | 53592.3950          | 0.0011 | $+0.\overline{1371}$ | $\overline{22}$ | $\overline{RD}$      | V                      |
| GSC2035-175 Ser  | $\mathbf{S}$ | 53917.5096          | 0.0009 | +0.0078              | 17              | EBl                  | R; el.: IBVS, No. 5295 |
| GSC1830-1432 Tau | р            | 53683.4056          | 0.0021 | +0.0027              | 11              | EBl                  | el.: IBVS, No. 5699    |
|                  | $\mathbf{S}$ | 53683.5398          | 0.0010 | +0.0010              | 16              | EBl                  |                        |
|                  | Ρ            | 53683.6726          | 0.0006 | -0.0021              | 17              | $\operatorname{EBl}$ |                        |
|                  | р            | 53686.3901          | 0.0024 | -0.0029              | 16              | $\operatorname{EBl}$ |                        |
|                  | s            | 53686.5286          | 0.0014 | -0.0003              | 18              | $\operatorname{EBl}$ |                        |
|                  | р            | 53686.6634          | 0.0012 | -0.0014              | 15              | $\operatorname{EBl}$ |                        |
|                  | р            | 53694.2780          | 0.0015 | +0.0021              | 9               | $\operatorname{EBl}$ |                        |
|                  | $\mathbf{s}$ | 53694.4147          | 0.0010 | +0.0029              | 16              | $\mathbf{EBl}$       |                        |
|                  | р            | 53694.5467          | 0.0014 | -0.0010              | 16              | $\mathbf{EBl}$       |                        |
|                  | $\mathbf{s}$ | 53694.6829          | 0.0011 | -0.0008              | 14              | $\mathbf{EBl}$       |                        |
|                  | р            | 53705.4217          | 0.0018 | +0.0009              | 21              | $\mathbf{EBl}$       |                        |
|                  | s            | 53705.5584          | 0.0012 | +0.0017              | 19              | $\mathbf{EBl}$       |                        |
|                  | р            | 53705.6913          | 0.0022 | -0.0013              | 18              | $\mathbf{EBl}$       |                        |
|                  | р            | 53741.3032          | 0.0006 | +0.0015              | 19              | $\mathbf{EBl}$       |                        |
|                  | s            | 53741.4375          | 0.0010 | -0.0001              | 22              | $\mathbf{EBl}$       |                        |
|                  | р            | 53741.5724          | 0.0013 | -0.0012              | 17              | $\mathbf{EBl}$       |                        |
|                  | р            | 53760.3311          | 0.0010 | +0.0016              | 22              | $\mathbf{EBl}$       |                        |
|                  | s            | 53760.4671          | 0.0009 | +0.0017              | 17              | $\mathbf{EBl}$       |                        |
|                  | $\mathbf{s}$ | 53768.3492          | 0.0007 | +0.0008              | 18              | $\mathbf{EBl}$       |                        |
|                  | р            | 53768.4878          | 0.0014 | +0.0035              | 18              | $\mathbf{EBl}$       |                        |
| GSC1848:1264 Tau | p            | 53683.4307          | 0.0014 | -0.0019              | 15              | EBl                  | el.: IBVS, No. 5699    |
|                  | s            | 53683.6080          | 0.0010 | +0.0016              | 23              | EBl                  | ,                      |
|                  | s            | 53686.3878          | 0.0012 | 0.0000               | 14              | EBl                  |                        |
|                  | g            | 53686.5598          | 0.0009 | -0.0019              | 29              | EBl                  |                        |
|                  | s            | 53694.3846          | 0.0003 | +0.0002              | 19              | EBl                  |                        |
|                  | р            | 53694.5591          | 0.0013 | +0.0009              | 20              | EBI                  |                        |
|                  | D            | 53705.333           | 0.003  | -0.003               | 8               | EBl                  |                        |
|                  | s            | 53705.5131          | 0.0008 | +0.0030              | 26              | EBl                  |                        |
|                  | D            | 53705.6854          | 0.0009 | +0.0015              | 26              | EBl                  |                        |
|                  | s            | 53741.3209          | 0.0004 | +0.0001              | 18              | EBI                  |                        |
|                  | D            | 53741.4933          | 0.0005 | -0.0013              | 18              | EBI                  |                        |
|                  | r<br>D       | 53760.2680          | 0.0015 | -0.0012              | 16              | EBI                  |                        |
|                  | Р<br>S       | 53760.4452          | 0.0009 | +0.0022              | 23              | EBI                  |                        |
|                  | n            | 53768 256           | 0.003  | -0.009               | 10              | EBI                  |                        |
|                  | Р<br>S       | 537684418           | 0.0007 | +0.0022              | 21              | EBI                  |                        |
| XZ UMa           | n            | 53849 4038          | 0.0003 | -0.0811              | 31              | BD                   | V                      |
| AA UMa           | р<br>D       | 53846 4016          | 0.0004 | +0.0304              | 12              | RD                   | v                      |
| W UMa            | р<br>D       | 53849 4346          | 0.0005 | +0.0084              | 22              | RD                   | V el IBVS No 4402      |
| AH Vir           | ч<br>5       | 53859 4395          | 0.0008 | -0.0213              | 11              | RD                   | V                      |
| HW Vir           | ы<br>я       | 53555 3750          | 0.0004 | $\pm 0.0213$         | 18              | EBI                  | el·AA 364 199          |
| GSC2850-1075 Vir | 6            | 53553 316           | 0.0004 | 10.0024              | 55              | APs                  | 0111 1111 001,100      |
| VSV5987 Vir      | n            | 53840 4549          | 0.004  | _0.008               | 16              | BD                   | V el BVS No 5630       |
|                  | 4            | 53800 /791          | 0.0012 | $\pm 0.0050$         | 25              | RD                   | V: non-circular orbit  |
| CV Vul           | s<br>r       | 53000 4737          | 0.0010 | ±0.2002<br>±0.0691   | 20<br>25        | BD                   | v, non-encular orbit   |
| JV VUI           | ρ            | 00000.4101          | 0.0010 | $\pm 0.0021$         | <u>40</u>       | пD                   | v                      |

#### **Observers:**

| EBl : | E. Blättler | Wald, Switzerland       |
|-------|-------------|-------------------------|
| RD :  | R. Diethelm | Rodersdorf, Switzerland |
| FH:   | F. Hund     | Hakos Farm, Namibia     |
| APs : | A. Paschke  | Rüti, Switzerland       |
|       |             |                         |

Reference:

Kholopov, P.N., Samus, N.N., Frolov, M.S., Goranskij, V.P., Gorynya, N.A., Kireeva, N.N., Kukarkina, N.P., Kurochkin, N.E., Medvedeva, G.I., Perova, N.B., Shugarov, S.Yu., 1985, General Catalogue of Variable Stars, Moscow

#### ERRATUM FOR IBVS 5230

In IBVS 5230 we published several times of minima. One is corrected here. Instead of: XZ Leo 52274.5538 .0002 I V -0.0330 " the following should read: XZ Leo 52274.5955 .0002 I V +0.0054 "

Szilárd Csizmadia

#### ERRATUM FOR IBVS 5438, 5543, 5713

As Dr. Samus reported, the star erroneously labelled GSC 02850-01075 is really GSC 00285-01075.

The Editors

Number 5714

Konkoly Observatory Budapest 17 July 2006 *HU ISSN 0374 - 0676* 

# ACCURATE BV LIGHTCURVE OF THE ECLIPSING BINARY V1898 Cyg

#### DALLAPORTA, S.<sup>1</sup>; MUNARI, U.<sup>2</sup>

 $^{1}$  Via Filzi 9, I-38034 Cembra (TN), Italy

 $^2$  INF Osservatorio Astronomico di Padova, Sede di Asiago, I-36032 Asiago (VI), Italy

Name of the object:

V1898 Cyg = HD 200776

| Equatorial coordinates:                                                | Equinox: |
|------------------------------------------------------------------------|----------|
| <b>R.A.</b> = $21^{h}03^{m}53^{s}8$ <b>DEC.</b> = $+46^{\circ}19'50''$ | 2000     |

| Observatory and telescope: |  |
|----------------------------|--|
|----------------------------|--|

28-cm Schmidt–Cassegrain telescope

**Detector:** 

Optec SSP5 photoelectric photometer

Filter(s):

 $\overline{BV}$ 

Date(s) of the observation(s): From July 22, 2003 to September 17, 2004

| Comparison star(s): | HD 200595 (B3V); adopted magnitudes $V = 6.486$ ,            |
|---------------------|--------------------------------------------------------------|
|                     | $B - V = -0.137$ transformed from Tycho-2 $V_T$ , $B_T$ val- |
|                     | ues following Bessell (2000); the same comparison star       |
|                     | adopted by McCrosky and Whitney (1982) and Halbedel          |
|                     | (1985)                                                       |

| Check star(s): | HD 201666 (B2V); adopted magnitudes $V = 7.643, B -$       |
|----------------|------------------------------------------------------------|
|                | $V = -0.013$ transformed from Tycho-2 $V_T$ , $B_T$ values |
|                | following Bessell (2000)                                   |

| Availability of the data:                                                       |
|---------------------------------------------------------------------------------|
| Available at the IBVS website and http://ulisse.pd.astro.it/V1898Cyg/index.html |

```
Type of variability: EB
```

| Transformed to a standard system: | Yes |
|-----------------------------------|-----|
| Standard stars (field) used:      |     |

#### **Remarks**:

Abt et al. (1972) discovered V1898 Cyg as a single lined spectroscopic binary with a period of 2.9258 days. Photoelectric photometry by McCrosky and Whitney (1982) fitted to this period was unable to provide a reasonable light curve. Later on, Halbedel (1985) obtained 110 pairs of B, V photoelectric measurements and indicated an orbital period of 3.0239 days with nearly equally deep eclipses. The Variability Annex to the Hipparcos Catalog suggests that the depth of primary and secondary eclipses should be markedly different and that the orbital period should be around half of the previously published values. Our extensive (607 points in Vband, 559 in B band) and accurate (r.m.s. error 0.006 mag in B, 0.008 mag in V) photoelectric photometry provides the first complete mapping of the light and color curves (see Figure 1) of this interesting early type binary (B2III, Fehrenbach et al. 1962). The data show that the correct orbital ephemeris for primary minimum in V band is:

 $Min (I) = 2452901.3740(\pm 0.0001) + 1.51311(\pm 0.000005) \times E.$ 

Heliocentric times of primary minima are 2452895.3220 ( $\pm$  0.0002) and 2452901.3740 ( $\pm$  0.0001) in V band, 2453246.3663 ( $\pm$  0.0005) in B band.



**Figure 1.** The complete B and V light curves and B - V color curve for V1898 Cyg

References:

Abt, H.A., Levy, S.G., Gandet, T.L., 1972, *AJ*, 77, 138 Bessell, M.S., 2000, *PASP*, 112, 961 Fehrenbach, C. et al., 1962, *J. Obs.*, 45, 349 Halbedel, E.M., 1985, *IBVS*, No. 2663 McCrosky, R.E., Whitney, C.A., 1982, *IBVS*, No. 2186

# ERRATUM FOR IBVS 5714

The true shape of the eclipsing binary light curve and the modified, correct period of V1898 Cyg was already published in IBVS 5699/76 (2005, July 20) by Caton & Smith (http://www.konkoly.hu/cgi-bin/IBVS?5699#76).

The Editors

Number 5715

Konkoly Observatory Budapest 17 July 2006 *HU ISSN 0374 - 0676* 

#### THE CLASSICAL ALGOL XZ UMa — OBSERVATIONS AND ANALYSIS

NELSON, R.H.<sup>1,2</sup>; TERRELL, D.<sup>3</sup>; GROSS, J.<sup>4</sup>

<sup>1</sup> 1393 Garvin Street, Prince George, BC, Canada, V2M 3Z1, e-mail: bob.nelson@shaw.ca

 $^2$  Guest investigator, Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council of Canada

<sup>3</sup> Dept. of Space Studies, Southwest Research Institute, 1050 Walnut St., Suite 400, Boulder, CO 80302, USA; e-mail: terrell@boulder.swri.edu

<sup>4</sup> Sonoita Research Observatory, Box 131, Sonoita, AZ 85637, USA, e-mail: johngross3@msn.com

XZ UMa (=  $SV*BV 32 = BD+50 1651 = TYC 3429 1530, 9^h31^m24^s5, +49^\circ28'03'', J2000.0$ ) is listed in the General Catalogue of Variable Stars, 4th Edition (Kholopov, 1985) as type EA/SD, period = 1.22232 days, spectral type A5 + F9, and referenced to Remus (1956), who provided the chart (and is presumably the discoverer), and to the authors of the GCVS (who presumably determined the period).

No published light curves or analysis could be found (although there are catalogue parameters given—see Brancewicz & Dworak (1980) and Svechnikov & Kuznetsova (1990)), nor is there any evidence of any existing radial velocities, so this system was selected for study.

Times of minima have been continuously observed since about 1970; an O - C plot (Nelson, 2005a) reveals continuous changes in the period, alternately increasing and decreasing, which suggests a sinusoidal relationship of period 7770 days. (However, this relationship—if it exists—has been observed over only one putative sine period and is therefore highly speculative.)

The following elements (calculated from the last few hundred cycles) were used for phasing:

JD Hel Min I =  $53048.7928(32) + 1.2223115(10) \times E$ .

Eleven high-resolution (10 Å/mm) spectra were taken by one of the authors (RHN) in April 2005 at the Dominion Astrophysical Observatory (DAO) in Victoria, British Columbia, Canada. The spectral range was 4997–5260 Å. A log of observations and the derived heliocentric radial velocities is presented in Table 1 and a list of IAU Standard Radial Velocity Stars (Roberts & Boksenberg, 1986) from which the XZ UMa radial velocities were derived is given in Table 2.

Intermediate reductions (overscan removal, cosmic ray cleaning, setting apertures, fitting background, summation of counts, reduction to 1 dimension, calibration from Fe-Ar arc spectra, and finally dispersion correction) were performed by Ravere, software developed by one of the authors (Nelson, 2005b). Final determination of radial velocities was performed by "Broad", software developed by the same author that uses the Rucinski broadening functions (Rucinski, 2004). As expected, there was some scatter in the values

|            |                | Table 1  |                          |              |              |
|------------|----------------|----------|--------------------------|--------------|--------------|
| DAO        | Start time     | Exposure | Phase at                 | $V_1$        | $V_2$        |
| Image $\#$ | (HJD - 240000) | (sec)    | $\operatorname{mid-exp}$ | $(\rm km/s)$ | $(\rm km/s)$ |
| 3139       | 53487.6569     | 3000     | 0.081                    | -78          | 67           |
| 3141       | 53487.7072     | 3600     | 0.122                    | -104         | 93           |
| 3143       | 53487.7570     | 3600     | 0.163                    | -120         | 125          |
| 3146       | 53487.8125     | 3600     | 0.209                    | -127         | 149          |
| 3007       | 53481.7576     | 3600     | 0.255                    | -137         | 144          |
| 3118       | 53486.6574     | 3600     | 0.264                    | -133         | 151          |
| 3124       | 53486.7500     | 3600     | 0.339                    | -120         | 139          |
| 3128       | 53486.8048     | 3600     | 0.384                    | -99          | 110          |
| 3179       | 53489.6527     | 7200     | 0.748                    | 90           | -185         |
| 3064       | 53483.6757     | 3600     | 0.824                    | 76           | -170         |
| 3155       | 53488.6549     | 3600     | 0.898                    | 44           | -121         |
|            |                |          |                          |              |              |

| Table 2        |                       |       |       |               |  |  |  |  |
|----------------|-----------------------|-------|-------|---------------|--|--|--|--|
| DAO            | $\operatorname{Star}$ | V     | Sp.   | $\mathrm{RV}$ |  |  |  |  |
| Image $\#$     | HD-                   | (mag) | Type  | $(\rm km/s)$  |  |  |  |  |
| 3004,3033      | 089449                | 4.78  | F6 IV | 6.3           |  |  |  |  |
| 3036,3069      | 102870                | 3.59  | F8 V  | 4.3           |  |  |  |  |
| 3019           | 149803                | 8.58  | F7 V  | -7.5          |  |  |  |  |
| 3022,3057,3193 | 154417                | 6.00  | F9 V  | -16.8         |  |  |  |  |
| 3026,3061      | 187691                | 5.12  | F8 V  | 0             |  |  |  |  |

for a given XZ UMa spectrum from the various radial velocity standard spectra. The mean and standard deviation were taken and those values lying outside twice the sample standard deviation were rejected. In this way, the standard deviations for each radial velocity determination of  $V_1$  and  $V_2$  averaged 6.5 and 8.5 km/s (resp.); the rms deviations from the best-fit WD radial velocities were 7.5 and 11.0 km/s (resp.). Conversions from geocentric radial velocities (relative to that of IAU standard stars) to heliocentric radial velocities was accomplished by one of the authors (RHN) using his own software.

Photometric observations were carried out by DT and JG in the B, V and  $I_c$  bands; 754, 770 and 815 values were obtained, respectively. The 14" telescope at the Sonoita Research Observatory (SRO), equipped with a Santa Barbara Instrument Group STL-1001E camera was used to obtain the photometric data. The usual data processing procedures (bias and dark subtraction and flatfielding) were done using IRAF<sup>†</sup>. Comparison stars are listed in Table 3; the magnitudes and colours are from the Tycho catalogue (ESA, 1997). The data are in the SRO instrumental system

We used the latest version of the Wilson-Devinney (WD) light curve and radial velocity analysis program with the Kurucz atmospheres (Wilson & Devinney, 1971; Wilson, 1990; Kallrath et al., 1998) to analyze the data. To get started, we used the above B - V = $0.20 \pm 0.04$ ; the tables of Flower (1996) gave temperature  $T_1 = 7766 \pm 240$  K; interpolated tables from Cox (2000) gave log g = 4.282; an interpolation program by Terrell (1994) gave the (van Hamme, 1993) limb darkening values; and finally, a logarithmic (LD = 2) law was selected, appropriate for hotter stars (Bessell, 1979). Fitting a double sine wave

<sup>&</sup>lt;sup>†</sup>IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

| Table 3               |             |       |       |  |  |  |
|-----------------------|-------------|-------|-------|--|--|--|
| Star                  | GSC ID      | V     | B - V |  |  |  |
| Var                   | 3429 - 1530 | 10.49 | 0.20  |  |  |  |
| $\operatorname{Comp}$ | 3429 - 449  | 10.33 | 0.36  |  |  |  |
| Check                 | 3429 - 1027 | 9.96  | 0.53  |  |  |  |

|                           |          |          | Table   | 4                         |        |                        |
|---------------------------|----------|----------|---------|---------------------------|--------|------------------------|
| $\operatorname{Quantity}$ | Val      | ue       | Error   | Quantity                  | Value  | $\operatorname{Error}$ |
|                           | Star $1$ | Star $2$ |         |                           |        |                        |
| F                         | 1.000    | 1.000    | [fixed] | $i (\deg)$                | 83.96  | 0.06                   |
| g                         | 1.000    | 0.320    | [fixed] | $L_1/(L_1+L_2)$ (B)       | 0.820  | 0.001                  |
| A                         | 1.000    | 0.500    | [fixed] | $L_1/(L_1+L_2)$ (V)       | 0.728  | 0.002                  |
| $x \ (bol)$               | 0.673    | 0.642    | [fixed] | $L_1/(L_1+L_2)$ (I)       | 0.609  | 0.002                  |
| $y \; (bol)$              | 0.203    | 0.166    | [fixed] | $\phi_0$                  | 0.0006 | 0.00004                |
| x (B)                     | 0.822    | 0.847    | [fixed] | e                         | 0      | [fixed]                |
| y(B)                      | 0.332    | 0.059    | [fixed] | $a \ (solar \ radii)$     | 7.02   | 0.1                    |
| x(V)                      | 0.716    | 0.784    | [fixed] | $V_{\gamma} \ (\rm km/s)$ | -20.4  | 0.2                    |
| y(V)                      | 0.284    | 0.181    | [fixed] | $r_1$ (pole)              | 0.2389 | 0.0008                 |
| x (I)                     | 0.507    | 0.631    | [fixed] | $r_1$ (point)             | 0.2457 | 0.0009                 |
| y(I)                      | 0.213    | 0.225    | [fixed] | $r_1$ (side)              | 0.2416 | 0.0008                 |
| $T_1$ (K)                 | 7766     |          | 240     | $r_1$ (back)              | 0.2445 | 0.0008                 |
| $T_2$ (K)                 |          | 5346     | 5       | $r_2$ (pole)              | 0.3176 | 0.0004                 |
| Ω                         | 4.794    |          | 0.013   | $r_2$ (point)             | 0.4542 | 0.0016                 |
| f (fill factor)           | -4.470   | 0.000    | 0.040   | $r_2$ (side)              | 0.3320 | 0.0004                 |
| q = M2/M1                 | 0.6      | 26       | 0.003   | $r_2 (\mathrm{back})$     | 0.3642 | 0.0004                 |

to the radial velocity data gave a mass ratio of  $q = M_2/M_1 = 0.658 \pm 0.029$  km/s and a centre of mass radial velocity  $V\gamma = -19.5 \pm 0.9$  km/s.

The general appearance of the light curve suggested a detached or semidetached system. Mode 5 (semidetached—Algol) gave the best fit. We selected radiative values for the bolometric albedo and gravity darkening exponents (albedo  $A_1 = 1$  and gravity exponent  $g_1 = 1$ ) for star 1 and convective values ( $A_2 = 0.5$  and  $g_2 = 0.32$ ) for star 2 based on temperature  $T_1$  and the anticipated temperature  $T_2$ , respectively.

Because of the changes in the O - C diagram that suggest a third body, we attempted to adjust third light in the simultaneous light/radial velocity curve solution. However, we could find no statistically significant value of third light in any of the three passbands. Because of the difficulty in recovering small amounts of third light, especially in partially eclipsing systems like XZ UMa, our null result on third light should not be taken as necessarily negating the third body hypothesis. We also adjusted the angular rotation rate of the primary but we found no evidence of asynchronism. Further, attempts with a detached configuration gave a poorer fit, hence the detached configuration can be ruled out.

The results of the fit are listed in Table 4 and fundamental derived quantities, in Table 5. [Note: 's.u.' = solar units.] Note also that the errors quoted are the standard errors computed from the covariance matrix in the differential corrections solution.

A 3-D representation generated by Binary Maker 3.03 (Bradstreet, 1993) is presented in Figure 3.

| Table 5                    |        |       |        |                        |  |  |  |  |  |  |  |
|----------------------------|--------|-------|--------|------------------------|--|--|--|--|--|--|--|
| Fund. Quantity             | Star 1 | error | Star 2 | $\operatorname{error}$ |  |  |  |  |  |  |  |
| Spectral Type              | A7     |       | G7     |                        |  |  |  |  |  |  |  |
| Mass $(M_{\odot})$         | 1.92   | 0.09  | 1.20   | 0.05                   |  |  |  |  |  |  |  |
| ${ m Radius}\;(R_{\odot})$ | 1.70   | 0.03  | 2.38   | 0.04                   |  |  |  |  |  |  |  |
| $\log g ({ m CGS})$        | 4.26   | 0.2   | 3.76   | 0.2                    |  |  |  |  |  |  |  |
| Luminosity $(L_{\odot})$   | 9.5    | 0.1   | 4.2    | 0.1                    |  |  |  |  |  |  |  |
| Distance (pc)              | 504    | 26    |        |                        |  |  |  |  |  |  |  |



Figure 1.



Figure 2.





XZ UMa is a classical Algol, as discussed in Giuricin et al. (1983), in that the A7 primary lies in the middle of the main sequence band (Iben, 1967), and the evolved G7 secondary lies above this band (i.e., is overluminous) by about a magnitude. Further, the masses and stellar radii for this system lie near the lower end of the Algol group and the period is relatively short, as is fitting for late-type Algol systems (ibid). However, the mass ratio, q, lies at the upper end of the group, suggesting that the system is still early in its mass transfer phase. The sinusoidal shape of the O - C plot, as previously mentioned, suggests the presence of a third body (light time effect); however, examination of the spectra does not immediately support this hypothesis. Further monitoring of times of minima over the next decade or two should resolve the matter (but note Zavala, 2004 for an alternate explanation of cyclic period changes).

If there is a third body, this system would somewhat resemble the near Algol DL Vir (EA, A3 + K0-2, q = 0.485), where there is evidence of a G8 III third star (Schoffel & Popper, 1974; Schoffel, 1977)—directly from spectra and indirectly from O - C analysis. (The eclipsing pair is only single lined; the mass ratio of this pair comes from analysis of the radial velocities of the A3 and G8 stars.) Although this system was at one time semi-detached (and therefore underwent mass transfer), it now seems to be slightly undercontact; it is also more evolved than XZ UMa. However, the light curve analysis was done using the Russell–Merrill model—an analysis with a modern light curve synthesis code is long overdue.

Acknowledgements: It is a pleasure for RHN to thank the staff members at the DAO (especially Les Saddlemyer) for their usual splendid help and assistance. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France.

References:

- Bessell, M.S., 1979, PASP, 91, 589
- Bradstreet, D.H., 1993, Binary Maker 3.03, in: Milone, E.F. (ed.), Light Curve Modelling of Eclipsing Binary Stars, pp. 151–166 (Springer, New York); "Binary Maker" software available from http://www.binarymaker.com/
- Brancewicz, H.K., & Dworak, T.Z., 1980, Acta Astron., 30, 501
- Cox, A.N., ed., 2000, Allen's Astrophysical Quantities, 4th ed., (Athlone Press, London)
- ESA, 1997, The Hipparcos and Tycho Catalogues (ESA SP-1200)
- Flower, P., 1996, ApJ, 469, 355
- Giuricin, G., Mardirossian, F., & Mezzetti, M., 1983, Astrophys. J. Suppl. Ser., 52, 35
- Iben, I., 1967, Ann. Rev. Astr. Ap., 5, 571
- Kallrath, J., Milone, E.F., Terrell, D., & Young, A.T., 1998, ApJ, 508, 308
- Nelson, R.H., 2005a, Eclipsing Binary O C Files,
- http://www.aavso.org/observing/programs/eb/omc/nelson\_omc.shtml
- Nelson, R.H., 2005b, Software, by Bob Nelson,
  - http://members.shaw.ca/bob.nelson/software1.htm
- Kholopov, P.N., et al., 1985, General Catalogue of Variable Stars, 4th ed., Moscow
- Remus, G., 1956, KVB, No. 16
- Roberts, C.K., & Boksenberg, A., The Astronomical Almanac for the Year 1986, pp. H42–43
- Rucinski, S.M., 2004, *IAU Symp.*, **215**, 17, in: Stellar Rotation, ed. Andre Maeder and Philippe Eenens, ASP (San Francisco)
- Schoffel, E., & Popper, D.M., 1974, Publ. Astron. Soc. Pacific, 86, 267
- Schoffel, E, 1977, A&A, 61, 107
- Svechnikov, M.A., & Kuznetsova, Eh.F., 1990, Catalogue of Approximate Photometric and Absolute Elements of Eclipsing Variable Stars, Vols. 1–2, Sverdlovsk, Ural University
- Terrell, D., 1994, Van Hamme Limb Darkening Tables, v1.1., http://www.boulder.swri.edu/~terrell/ld/
- van Hamme, W., 1993, AJ, 106, 2096
- Wilson, R.E., & Devinney, E.J., 1971, ApJ, 166, 605
- Wilson, R.E., 1990, ApJ, 356, 613
- Zavala, R.T., 2005, ASP Conference Series, **335**, 137, in: The Light-Time Effect in Astrophysics, ed. C. Sterken, ASP (San Francisco)

# ERRATUM FOR IBVS 5715

The orbital inclination of XZ UMa had been omitted from IBVS 5715. It should be  $83.9^\circ\pm0.1^\circ.$ 

Bob Nelson

Number 5716

Konkoly Observatory Budapest 18 July 2006 *HU ISSN 0374 - 0676* 

#### BVRI PHOTOMETRY OF DX And: THE AUTUMN 2005 OUTBURST

SPOGLI, C.<sup>1,2</sup>; FIORUCCI, M.<sup>1</sup>; CAPEZZALI, D.<sup>1,2</sup>; ROCCHI, G.<sup>2</sup>; MANCINELLI, V.<sup>2</sup>; BRUNOZZI, P.<sup>2</sup>; FAGOTTI, P.<sup>2</sup>

<sup>1</sup> Physics Department, University of Perugia, Via A. Pascoli, 06123 Perugia, Italy

<sup>2</sup> Porziano Astronomical Observatory, Via Santa Chiara 2, Assisi, Italy

DX And is a well-known dwarf nova with a long outburst recurrence time (270–330 days, Šimon 2000) and a long orbital period (P = 10.6 hours, Bruch et al. 1997). Only few known cataclysmic variables have similar characteristics, and for this reason it has been extensively studied by many astronomers. Spectroscopic observation were made by Bruch (1989) who reports that DX And exhibits a considerable contribution of the secondary star to the continuum energy distribution as well as the line spectrum. During the years 1981–1999, the brightest outbursts reach up to about 11.5 mag<sub>vis</sub> from a typical quiescent level of 14–14.7 mag<sub>vis</sub> (Šimon 2000). Ritter and Kolb (1998) report a wider range: DX And varies from V = 16.5 at minimum to V = 10.9 at the maximum of brightness.

In this brief paper we present the results of our observations made in the years 2003 and 2005 at the Porziano Astronomical Observatory, Monte Subasio Astronomical Association. We used the 0.30-m Schmidt-Cassegrain f/6.5 telescope, equipped with an AP-32ME CCD camera (Kodak 3200-ME, 2184 × 1470 pixels) and Johnson-Cousins  $BVR_cI_c$ photometric filters. The exposure time was 60–300 s depending on the brightness of the object. The frames were first corrected for standard de-biasing and flat-fielding, and then processed by a PC-based aperture photometry package developed by one of the authors. The magnitudes were determined relative to the calibration stars reported by Spogli et al. (1998). Calibrations done with standard Landolt stars show negligible color effects in the V,  $R_c$  and  $I_c$  bands, while B data have been corrected and the reported standard deviations take into account this effect. Heliocentric corrections to observed times were applied before the following analysis.

During the year 2003, DX And was observed for a total of 40 photometric nights only with the  $R_c$  filter and it was always in quiescence (Table 1). The variable oscillates between  $R_c \simeq 14.4$  and  $R_c \simeq 15.0$ , with an average of  $R_c \simeq 14.63$ . In quiescence and at these wavelengths the system is dominated by the late-type secondary and its ellipsoidal variations: this is a familiar pattern for long-period cataclysmic binaries. Hilditch (1995) studied R and I variations of DX And during five consecutive nights, ten orbital cycles, and he found an ellipsoidal variation of amplitude 0.13 mag, superimposed to additional variability. We have already analyzed intra-night data to verify the ellipsoidal variation (Spogli, Fiorucci & Tosti 1998), so we collected data with a longer time-scale with the aim to obtain information about the additional variability. However, periodograms and other statistical tools are not able to find evidence of strict periodicity with the data reported



Figure 1. Phase-diagram of DX And in quiescence considering an hypothetical period of 10.645 days. Dotted line is the sinusoidal best fit. This variation is superimposed to an ellipsoidal variation well defined by Hilditch (1995).

|            |            | Tab            | ole 1      |            |                |
|------------|------------|----------------|------------|------------|----------------|
| UT Date    | HJD        | $R_c$          | UT Date    | HJD        | $R_c$          |
|            | (2452000+) |                |            | (2452000+) |                |
| 18/07/2003 | 839.387    | $14.67\pm0.05$ | 11/08/2003 | 863.346    | $14.90\pm0.05$ |
| 19/07/2003 | 840.339    | $14.53\pm0.04$ | 12/08/2003 | 864.391    | $14.70\pm0.10$ |
| 20/07/2003 | 841.329    | $14.82\pm0.03$ | 13/08/2003 | 865.373    | $14.45\pm0.03$ |
| 21/07/2003 | 842.326    | $14.82\pm0.04$ | 14/08/2003 | 866.320    | $14.50\pm0.03$ |
| 22/07/2003 | 843.329    | $14.73\pm0.03$ | 15/08/2003 | 867.311    | $14.37\pm0.03$ |
| 23/07/2003 | 844.322    | $14.40\pm0.05$ | 16/08/2003 | 868.316    | $14.74\pm0.03$ |
| 24/07/2003 | 845.326    | $14.62\pm0.03$ | 17/08/2003 | 869.366    | $14.55\pm0.03$ |
| 25/07/2003 | 846.388    | $14.59\pm0.03$ | 18/08/2003 | 870.299    | $14.54\pm0.03$ |
| 26/07/2003 | 847.322    | $14.63\pm0.04$ | 19/08/2003 | 871.293    | $14.48\pm0.04$ |
| 27/07/2003 | 848.323    | $14.71\pm0.04$ | 20/08/2003 | 872.294    | $14.47\pm0.03$ |
| 28/07/2003 | 849.333    | $14.50\pm0.03$ | 21/08/2003 | 873.297    | $14.89\pm0.04$ |
| 01/08/2003 | 853.381    | $14.64\pm0.03$ | 22/08/2003 | 874.349    | $14.63\pm0.03$ |
| 03/08/2003 | 855.349    | $14.78\pm0.05$ | 23/08/2003 | 875.293    | $14.68\pm0.03$ |
| 05/08/2003 | 857.453    | $14.49\pm0.03$ | 13/09/2003 | 896.265    | $14.51\pm0.03$ |
| 06/08/2003 | 858.381    | $14.46\pm0.04$ | 15/09/2003 | 898.248    | $14.48\pm0.04$ |
| 07/08/2003 | 859.361    | $14.66\pm0.04$ | 16/09/2003 | 899.301    | $14.59\pm0.03$ |
| 08/08/2003 | 860.312    | $14.59\pm0.03$ | 17/09/2003 | 900.274    | $14.46\pm0.03$ |
| 09/08/2003 | 861.319    | $14.78\pm0.03$ | 18/09/2003 | 901.295    | $14.44\pm0.03$ |
| 10/08/2003 | 862.323    | $14.73\pm0.05$ | 19/09/2003 | 902.261    | $14.57\pm0.05$ |
| 11/08/2003 | 863.342    | $14.97\pm0.03$ | 20/09/2003 | 903.258    | $14.61\pm0.03$ |



Figure 2. V light curve of DX And during Autumn 2005 (left panel), filled circles represent our data, while small crosses are visual estimates available from AFOEV (cdsweb.u-strasbg.fr/afoev/). The right panel shows our BVRI data only: it is evident the different color indices from the outburst to the minimum, and the internal variability during quiescence.

| Table 2    |            |                |                |                |                |  |  |  |  |  |  |
|------------|------------|----------------|----------------|----------------|----------------|--|--|--|--|--|--|
| UT Date    | HJD        | B              | V              | $R_c$          | $I_c$          |  |  |  |  |  |  |
|            | (2453000+) |                |                |                |                |  |  |  |  |  |  |
| 26/09/2005 | 640.414    | $12.48\pm0.04$ | $12.38\pm0.04$ | $12.21\pm0.03$ | $12.12\pm0.02$ |  |  |  |  |  |  |
| 03/10/2005 | 647.386    | $12.09\pm0.08$ | $12.03\pm0.02$ | $11.86\pm0.04$ | $11.71\pm0.02$ |  |  |  |  |  |  |
| 09/10/2005 | 653.393    | $13.29\pm0.05$ | $13.11\pm0.02$ | $12.87\pm0.02$ | $12.65\pm0.02$ |  |  |  |  |  |  |
| 11/10/2005 | 655.341    | $14.26\pm0.07$ | $13.89\pm0.02$ | $13.52\pm0.02$ | $13.22\pm0.02$ |  |  |  |  |  |  |
| 12/10/2005 | 656.342    |                | $14.55\pm0.05$ | $14.05\pm0.05$ | $13.61\pm0.03$ |  |  |  |  |  |  |
| 14/10/2005 | 658.324    | $15.78\pm0.05$ | $14.99\pm0.04$ | $14.37\pm0.02$ | $14.01\pm0.02$ |  |  |  |  |  |  |
| 15/10/2005 | 659.399    | $16.18\pm0.05$ | $15.09\pm0.02$ | $14.38\pm0.02$ | $13.96\pm0.03$ |  |  |  |  |  |  |
| 18/10/2005 | 662.351    | $16.21\pm0.07$ | $15.07\pm0.02$ | $14.34\pm0.02$ | $13.87\pm0.02$ |  |  |  |  |  |  |
| 22/10/2005 | 666.344    | $15.77\pm0.08$ | $15.07\pm0.02$ | $14.39\pm0.02$ | $13.84\pm0.02$ |  |  |  |  |  |  |
| 24/10/2005 | 668.325    | $15.93\pm0.05$ | $15.02\pm0.02$ | $14.38\pm0.02$ | $13.91\pm0.02$ |  |  |  |  |  |  |
| 25/10/2005 | 669.365    | $15.70\pm0.06$ | $15.01\pm0.02$ | $14.44\pm0.04$ | $13.94\pm0.03$ |  |  |  |  |  |  |
| 26/10/2005 | 670.364    | $15.99\pm0.05$ | $15.16\pm0.02$ | $14.47\pm0.02$ | $14.02\pm0.02$ |  |  |  |  |  |  |
| 29/10/2005 | 673.333    | $16.10\pm0.05$ | $15.04\pm0.02$ | $14.53\pm0.03$ | $13.99\pm0.02$ |  |  |  |  |  |  |
| 30/10/2005 | 674.349    | $16.20\pm0.05$ | $15.15\pm0.03$ | $14.52\pm0.03$ | $14.01\pm0.02$ |  |  |  |  |  |  |
| 31/10/2005 | 675.263    | $16.07\pm0.05$ | $15.13\pm0.03$ | $14.51\pm0.02$ | $13.97\pm0.03$ |  |  |  |  |  |  |
| 02/11/2005 | 677.435    | $16.15\pm0.05$ | $15.24\pm0.03$ | $14.57\pm0.02$ | $14.06\pm0.03$ |  |  |  |  |  |  |
| 27/11/2005 | 702.361    | $16.11\pm0.05$ | $15.20\pm0.02$ | $14.56\pm0.02$ | $14.04\pm0.02$ |  |  |  |  |  |  |

in Table 1. The analysis is seriously biased by the data sampling ( $\pm 1$ ,  $\pm 2$  c/d alias frequencies) that makes correct identification of the frequency components ambiguous. The most probable results are obtained for P = 10.645 days (65 %, Fig. 1), P = 0.912 day (58 %), P = 0.47625 day (55 %), and P = 0.4482 day (50 %). Probably the latter can be identified with the actual value of the orbital period, while the additional variability showed by DX And during quiescence is of an unknown origin.

In the year 2005, DX And was monitored from September 26 to November 11 with the  $BVR_cI_c$  photometric bands, for a total of 17 photometric nights (see Table 2). It was in outburst and we followed part of the rise and the decline (Fig. 2). The profile and the time-scales confirm the results obtained by Šimon (2000). Also the color indices are in substantial agreement with our previous  $BVR_cI_c$  observations (Spogli et al. 1998). However, these new data increase the historical database on this variable source and they can help to constrain theoretical models.

References:

Bruch, A., 1989, A&AS, 78, 145
Bruch, A., Vrielmann, S., Hessman, F.V., et al., 1997, A&A, 327, 1107
Hilditch, R.W., 1995, MNRAS, 273, 675
Ritter H., & Kolb U., 1998, A&AS, 129, 83
Simon, V., 2000, A&A, 364, 694
Spogli C., Fiorucci M., & Tosti G., 1998, A&AS, 130, 485

Number 5717

Konkoly Observatory Budapest 21 July 2006 *HU ISSN 0374 - 0676* 

#### THE GEOS RR Lyr SURVEY

Fifth list of maxima of RR Lyr stars observed by the automated telescope TAROT

(GEOS Circular RR 28)

LE BORGNE, J.F.<sup>1,2</sup>; KLOTZ, A.<sup>3</sup>; BOËR, M.<sup>4</sup>

<sup>1</sup> GEOS (Groupe Européen d'Observations Stellaires), 23 Parc de Levesville, 28300 Bailleau l'Evêque, France

 $^2$ Laboratoire d'Astrophysique, Observatoire Midi-Pyrénées, Toulouse, France

<sup>3</sup> Centre d'Etude Spatiale des Rayonnements, Observatoire Midi-Pyrénées, Toulouse, France

<sup>4</sup> Observatoire de Haute-Provence, France

We present here the fifth list of light maxima of RR Lyrae stars from the GEOS RR Lyr Survey, a GEOS program (http://www.upv.es/geos/) (Boninsegna et al., 2002) of automated observations of RR Lyr stars started in January 2004. We are using the 25-cm automatic telescope TAROT (http://tarot.obs-hp.fr) (Boër et al., 2001, Bringer et al., 1999) located in Calern Observatory (Observatoire de la Côte d'Azur, Nice University, France). Images are obtained by a  $2048 \times 2048$  Marconi 42-40 thin back illuminated CCD. Field of view is  $1.86^{\circ} \times 1.86^{\circ}$ . Data reduction, from bias subtraction and flatfielding to photometry using SExtractor (Bertin and Arnouts, 1996), is performed automatically. The aim of this legacy project for the study of period variations of RR Lyr stars is to monitor maxima of light of these stars in order to feed the GEOS RR Lyr web database (http://dbRR.ast.obs-mip.fr).

The present list contains 290 maxima observed with no filter between January and June 2006 (Table 1). The maxima are determined by fitting a polynomial function on the data points. The uncertainties on individual maxima are estimated from the data sampling of each maximum. The nominal sampling (two consecutive 30s exposures taken every 10 minutes on a time baseline of 2 hours centered around the predicted maximum time) may be altered by local events (weather or telescope operation). This results uncertainties from 0.002 to 0.010 day. For a well observed star, the mean uncertainty on maxima is about 0.003 day (4.3 minutes). The O - C's are computed with the GCVS elements (Kholopov et al., 1985) and are displayed in table 1 in column "O - C". When no elements are available in the GCVS, the reference of the elements is given as a footnote of Table 1. XZ Cyg is also an exception for which we use the elements from Baldwin and Samolyk (2003).

| Variable          | Maximum                 | 0 – C  | E      | Variable           | Maximum                   | 0 – C  | E      |
|-------------------|-------------------------|--------|--------|--------------------|---------------------------|--------|--------|
|                   | HJD 24                  | (days) |        |                    | HJD 24                    | (days) |        |
| CI And            | $53738.435{\pm}0.003$   | 0.002  | 1401.  | Z CVn              | $53776.590{\pm}0.003$     | 0.259  | 22705. |
| DR And            | $53739.370 {\pm} 0.004$ | -0.016 | 29335. | Z CVn              | $53833.472 {\pm} 0.005$   | 0.258  | 22792. |
| X Ari             | $53739.376 {\pm} 0.002$ | 0.307  | 24811. | Z CVn              | $53839.368 {\pm} 0.003$   | 0.270  | 22801. |
| X Ari             | $53754.352{\pm}0.004$   | 0.307  | 24834. | Z CVn              | $53867.483{\pm}0.005$     | 0.271  | 22844. |
| TZ Aur            | $53737.647{\pm}0.002$   | 0.004  | 86386. | RU CVn             | $53759.596 {\pm} 0.002$   | 0.004  | 33626. |
| TZ Aur            | $53785.431{\pm}0.002$   | 0.003  | 86508. | RU CVn             | $53801.444 {\pm} 0.002$   | 0.005  | 33699. |
| BH Aur            | $53758.455{\pm}0.002$   | -0.002 | 24133. | RU CVn             | $53848.452 {\pm} 0.002$   | 0.006  | 33781. |
| RS Boo            | $53795.521{\pm}0.002$   | -0.007 | 31868. | RU CVn             | $53860.489{\pm}0.002$     | 0.005  | 33802. |
| RS Boo            | $53806.466{\pm}0.003$   | -0.005 | 31897. | RU CVn             | $53895.458{\pm}0.002$     | 0.006  | 33863. |
| RS Boo            | $53807.601{\pm}0.002$   | -0.002 | 31900. | RU CVn             | $53899.471 {\pm} 0.005$   | 0.006  | 33870. |
| RS Boo            | $53809.488{\pm}0.002$   | -0.002 | 31905. | RZ CVn             | $53760.672 {\pm} 0.002$   | -0.180 | 23646. |
| RS Boo            | $53863.447{\pm}0.002$   | -0.002 | 32048. | RZ CVn             | $53776.563 {\pm} 0.005$   | -0.176 | 23674. |
| RS Boo            | $53869.486{\pm}0.004$   | 0.000  | 32064. | RZ CVn             | $53796.420{\pm}0.002$     | -0.178 | 23709. |
| RS Boo            | $53889.485{\pm}0.002$   | 0.000  | 32117. | RZ CVn             | $53834.437 {\pm} 0.004$   | -0.178 | 23776. |
| RS Boo            | $53897.410{\pm}0.004$   | 0.001  | 32138. | RZ CVn             | $53855.436{\pm}0.003$     | -0.173 | 23813. |
| RS Boo            | $53900.430{\pm}0.003$   | 0.002  | 32146. | RZ CVn             | $53881.534{\pm}0.004$     | -0.176 | 23859. |
| ST Boo            | $53809.545{\pm}0.003$   | 0.071  | 55646. | SS CVn             | $53807.665 {\pm} 0.002$   | 0.162  | 29643. |
| ST Boo            | $53832.559{\pm}0.003$   | 0.061  | 55683. | SS CVn             | $53866.535 {\pm} 0.002$   | 0.174  | 29766. |
| ST Boo            | $53834.431{\pm}0.005$   | 0.066  | 55686. | SS CVn             | $53867.488 {\pm} 0.002$   | 0.170  | 29768. |
| ST Boo            | $53837.541{\pm}0.002$   | 0.064  | 55691. | UZ CVn             | $53760.476 {\pm} 0.005$   | 0.241  | 39171. |
| ST Boo            | $53839.409{\pm}0.003$   | 0.065  | 55694. | UZ CVn             | $53776.520{\pm}0.005$     | 0.236  | 39194. |
| ST Boo            | $53857.467{\pm}0.005$   | 0.077  | 55723. | UZ CVn             | $53831.647 {\pm} 0.003$   | 0.239  | 39273. |
| ST Boo            | $53900.404{\pm}0.004$   | 0.076  | 55792. | UZ CVn             | $53839.322 {\pm} 0.002$   | 0.238  | 39284. |
| TW Boo            | $53756.643{\pm}0.002$   | -0.048 | 50473. | UZ CVn             | $53841.406{\pm}0.004$     | 0.229  | 39287. |
| TW Boo            | $53837.550{\pm}0.002$   | -0.046 | 50625. | UZ CVn             | $53857.464{\pm}0.002$     | 0.238  | 39310. |
| TW Boo            | $53851.388{\pm}0.003$   | -0.047 | 50651. | UZ CVn             | $53866.535 {\pm} 0.004$   | 0.237  | 39323. |
| TW Boo            | $53860.436{\pm}0.002$   | -0.048 | 50668. | UZ CVn             | $53871.416{\pm}0.002$     | 0.234  | 39330. |
| TW Boo            | $53885.451{\pm}0.003$   | -0.050 | 50715. | AA CMi             | $53755.553{\pm}0.002$     | 0.049  | 36066. |
| TW Boo            | $53893.434{\pm}0.003$   | -0.051 | 50730. | S Com              | $53749.597 {\pm} 0.002$   | -0.095 | 22324. |
| UY Boo            | $53802.659{\pm}0.003$   | -0.025 | 3835.  | S Com              | $53759.570{\pm}0.002$     | -0.094 | 22341. |
| UY Boo            | $53806.561{\pm}0.004$   | -0.029 | 3841.  | S Com              | $53776.580{\pm}0.005$     | -0.095 | 22370. |
| UY Boo            | $53832.596{\pm}0.004$   | -0.031 | 3881.  | S Com              | $53796.528 {\pm} 0.002$   | -0.091 | 22404. |
| UY Boo            | $53834.546{\pm}0.004$   | -0.033 | 3884.  | S Com              | $53840.519{\pm}0.003$     | -0.094 | 22479. |
| UY Boo            | $53849.528{\pm}0.003$   | -0.023 | 3907.  | S Com              | $53850.495 {\pm} 0.003$   | -0.090 | 22496. |
| CM Boo            | $53850.445{\pm}0.003$   | -0.074 | 29468. | ST Com             | $53777.606 {\pm} 0.003$   | -0.023 | 17620. |
| AH Cam            | $53751.342{\pm}0.005$   | -0.364 | 40740. | ST Com             | $53798.561 {\pm} 0.002$   | -0.030 | 17655. |
| RW Cnc            | $53740.462{\pm}0.003$   | 0.203  | 25921. | ST Com             | $53831.506{\pm}0.004$     | -0.026 | 17710. |
| RW Cnc            | $53746.472{\pm}0.003$   | 0.194  | 25932. | ST Com             | $53843.486{\pm}0.002$     | -0.025 | 17730. |
| SS Cnc            | $53755.394{\pm}0.002$   | 0.048  | 83511. | ST Com             | $53849.478 {\pm} 0.003$   | -0.022 | 17740. |
| TT Cnc            | $53740.529{\pm}0.002$   | 0.103  | 24485. | ST Com             | $53855.465 {\pm} 0.003$   | -0.024 | 17750. |
| AN Cnc            | $53739.487{\pm}0.002$   | 0.127  | 28185. | HY Com             | $53850.502 {\pm} 0.003$   | 0.042  | 21832. |
| AS Cnc            | $53739.632{\pm}0.004$   | -0.282 | 23545. | TV CrB             | $53783.631{\pm}0.002$     | 0.020  | 37914. |
| AS Cnc            | $53744.572{\pm}0.003$   | -0.283 | 23553. | TV CrB             | $53865.488{\pm}0.002$     | 0.031  | 38054. |
| AS Cnc            | $53746.422{\pm}0.002$   | -0.285 | 23556. | TV CrB             | $53872.500{\pm}0.005$     | 0.027  | 38066. |
| $\rm EZ~Cnc^{-1}$ | $53738.562{\pm}0.002$   | -0.029 | 12065. | TV CrB             | $53882.429{\pm}0.002$     | 0.018  | 38083. |
| $\rm EZ~Cnc^{-1}$ | $53755.480{\pm}0.002$   | -0.030 | 12096. | TV CrB             | $53889.448 {\pm} 0.002$   | 0.022  | 38095. |
| W CVn             | $53748.640{\pm}0.005$   | -0.123 | 58624. | TV CrB             | $53896.465 {\pm} 0.005$   | 0.023  | 38107. |
| W CVn             | $53806.573 {\pm} 0.004$ | -0.125 | 58729. | TV CrB             | $53903.479 {\pm} 0.002$   | 0.022  | 38119. |
| W CVn             | $53807.674{\pm}0.003$   | -0.127 | 58731. | UY Cyg             | $53904.459{\pm}0.004$     | 0.055  | 56127. |
| W CVn             | $53831.399{\pm}0.003$   | -0.128 | 58774. | UY Cyg             | $53913.427 {\pm} 0.003$   | 0.052  | 56143. |
| W CVn             | $53842.439{\pm}0.003$   | -0.123 | 58794. | $XZ Cyg^{2}$       | $53845.482 \!\pm\! 0.002$ | -0.004 | 11305. |
| W CVn             | $53863.397{\pm}0.002$   | -0.132 | 58832. | $\rm XZ \ Cyg^{2}$ | $53850.621 {\pm} 0.002$   | 0.003  | 11316. |
| W CVn             | $53869.474{\pm}0.004$   | -0.124 | 58843. | $XZ Cyg^{2}$       | $53858.557 {\pm} 0.005$   | 0.007  | 11333. |
| W CVn             | $53874.434{\pm}0.005$   | -0.130 | 58852. | $XZ Cyg^{2}$       | $53865.553{\pm}0.002$     | 0.004  | 11348. |
| W CVn             | $53880.504{\pm}0.004$   | -0.130 | 58863. | $XZ Cyg^{2}$       | $53901.478 {\pm} 0.002$   | 0.001  | 11425. |
| W CVn             | $53890.436{\pm}0.004$   | -0.129 | 58881. | DM Cyg             | $53917.428 {\pm} 0.002$   | 0.062  | 26996. |
| W CVn             | $53901.474{\pm}0.003$   | -0.127 | 58901. | DX Del             | $53915.483{\pm}0.004$     | 0.055  | 30782. |

Table 1: maxima of RR Lyrae stars

| Variable                              | Maximum                                     | O - C  | $\mathbf{E}$    | Variable           | Maximum                                     | O - C  | $\mathbf{E}$     |
|---------------------------------------|---------------------------------------------|--------|-----------------|--------------------|---------------------------------------------|--------|------------------|
|                                       | HJD 24                                      | (days) |                 |                    | HJD 24                                      | (days) |                  |
| RW Dra                                | $53836.569{\pm}0.002$                       | 0.153  | 32645.          | RR Gem             | $53809.371{\pm}0.002$                       | -0.343 | 31342.           |
| RW Dra                                | $53837.467{\pm}0.003$                       | 0.165  | 32647.          | SZ Gem             | $53809.340{\pm}0.004$                       | -0.047 | 53110.           |
| RW Dra                                | $53840.549{\pm}0.003$                       | 0.146  | 32654.          | ${ m GI}~{ m Gem}$ | $53756.465{\pm}0.002$                       | 0.070  | 54031.           |
| RW Dra                                | $53844.546{\pm}0.002$                       | 0.157  | 32663.          | ${ m GI}~{ m Gem}$ | $53795.461{\pm}0.003$                       | 0.072  | 54121.           |
| RW Dra                                | $53848.539 {\pm} 0.002$                     | 0.164  | 32672.          | GI Gem             | $53799.358 {\pm} 0.002$                     | 0.069  | 54130.           |
| RW Dra                                | $53856.534 \pm 0.002$                       | 0.186  | 32690.          | TW Her             | $53842.503 \pm 0.004$                       | -0.010 | 80824.           |
| SU Dra                                | $53337\ 504\pm0\ 003$                       | 0.037  | 14287           | TW Her             | $53864 \ 480\pm0.002$                       | -0.011 | 80879            |
| SU Dra                                | $53743664\pm0004$                           | 0.038  | 14902           | TW Her             | $53866478\pm0.004$                          | -0.011 | 80884            |
| SU Dra                                | $537/9.615\pm0.003$                         | 0.000  | 1/011           | VX Her             | $53836567\pm0.002$                          | -0.395 | 70462            |
| SU Dra                                | $53783.200\pm0.003$                         | 0.040  | 14069           | VX Hor             | $53851505\pm0.002$                          | -0.000 | 70405            |
| SU Dra                                | $53806.410\pm0.003$                         | 0.040  | 14302.<br>14007 | VX Hor             | $53857.535\pm0.003$<br>53857.514 $\pm0.003$ | -0.335 | 70435.           |
| SU Dra                                | $53800.410\pm0.003$<br>52808 204 $\pm0.004$ | 0.044  | 15000           | VX Her             | $53857.514\pm0.003$                         | -0.395 | 70508.           |
| SU Dia                                | $53606.394\pm0.004$                         | 0.047  | 15000.          | VA Her             | $53636.422\pm0.002$                         | -0.398 | 70510.           |
| SUDIA                                 | $55659.452 \pm 0.005$                       | 0.045  | 15047.          | VA ner             | $55672.540\pm0.005$                         | -0.397 | 70341.           |
| SU Dra                                | $53804.520\pm0.005$                         | 0.043  | 15085.          | VX Her             | $53903.504 \pm 0.002$                       | 0.057  | 70008.           |
| SW Dra                                | $53798.400 \pm 0.005$                       | 0.079  | 48403.          | VZ Her             | $53837.574 \pm 0.003$                       | 0.061  | 38718.           |
| SW Dra                                | $53806.354 \pm 0.002$                       | 0.057  | 48417.          | VZ Her             | $53871.480 \pm 0.002$                       | 0.062  | 38795.           |
| SW Dra                                | $53831.418 \pm 0.003$                       | 0.056  | 48461.          | VZ Her             | $53875.442 \pm 0.004$                       | 0.061  | 38804.           |
| SW Dra                                | $53839.395 {\pm} 0.005$                     | 0.058  | 48475.          | VZ Her             | $53901.422 {\pm} 0.003$                     | 0.061  | 38863.           |
| SW Dra                                | $53843.375 {\pm} 0.004$                     | 0.050  | 48482.          | DL Her             | $53860.568 {\pm} 0.002$                     | 0.033  | 26456.           |
| SW Dra                                | $53856.484{\pm}0.002$                       | 0.056  | 48505.          | DL Her             | $53866.477 {\pm} 0.005$                     | 0.026  | 26466.           |
| SW Dra                                | $53860.470 {\pm} 0.004$                     | 0.055  | 48512.          | DL Her             | $53882.462{\pm}0.004$                       | 0.037  | 26493.           |
| XZ Dra                                | $53917.411 {\pm} 0.002$                     | -0.104 | 25161.          | GO Hya             | $53710.581{\pm}0.003$                       | -0.070 | 44091.           |
| BC Dra                                | $53748.561{\pm}0.003$                       | 0.077  | 15939.          | GO Hya             | $53738.581{\pm}0.010$                       | -0.073 | 44135.           |
| BC Dra                                | $53802.531{\pm}0.003$                       | 0.078  | 16015.          | GO Hya             | $53759.570{\pm}0.003$                       | -0.086 | 44168.           |
| BC Dra                                | $53807.562{\pm}0.002$                       | 0.072  | 16022.          | RR Leo             | $53746.662{\pm}0.004$                       | 0.070  | 23102.           |
| BC Dra                                | $53833.476{\pm}0.002$                       | 0.082  | 16057.          | RR Leo             | $53760.688 {\pm} 0.002$                     | 0.072  | 23133.           |
| BC Dra                                | $53836.354{\pm}0.004$                       | 0.081  | 16062.          | RR Leo             | $53838.502{\pm}0.002$                       | 0.074  | 23305.           |
| BC Dra                                | $53856.504{\pm}0.010$                       | 0.083  | 16090.          | RR Leo             | $53843.477{\pm}0.002$                       | 0.073  | 23316.           |
| BC Dra                                | $53866.567{\pm}0.005$                       | 0.072  | 16104.          | RX Leo             | $53839.471 {\pm} 0.002$                     | 0.078  | 26833.           |
| BC Dra                                | $53892.482{\pm}0.006$                       | 0.082  | 16140.          | RX Leo             | $53858.433 {\pm} 0.002$                     | 0.091  | 26861.           |
| BC Dra                                | $53897.518 {\pm} 0.005$                     | 0.081  | 16147.          | SS Leo             | $53759.570 {\pm} 0.002$                     | -0.044 | 19124.           |
| BC Dra                                | $53905.435 \pm 0.003$                       | 0.083  | 16158.          | SS Leo             | $53776.484 \pm 0.003$                       | -0.041 | 19151.           |
| BC Dra                                | $53915 498 \pm 0.010$                       | 0.072  | 16171           | SS Leo             | $53801\ 531\pm0\ 003$                       | -0.048 | 19191            |
| BD Dra                                | $53737642\pm0.005$                          | 0 144  | 20309           | ST Leo             | $53796\ 382\pm0\ 004$                       | -0.026 | 54130            |
| BD Dra                                | $53740589\pm0002$                           | 0.146  | 20300.          | ST Leo             | $53801.646\pm0.002$                         | -0.020 | 54141            |
| BD Dra                                | $53756532\pm0.002$                          | 0.184  | 20014.          | ST Leo             | $53760592 \pm 0.002$                        | 0.020  | 15528            |
| BD Dra                                | $53760.635\pm0.002$                         | 0.164  | 20341.          | WW Loo             | $53700.532\pm0.002$<br>53737 613 $\pm0.003$ | -0.130 | 21976            |
| DD Dia<br>DD Dro                      | $53700.033\pm0.002$<br>52705 404 $\pm0.002$ | 0.104  | 20340.          | WW Leo             | $53737.013\pm0.003$<br>52740.625 $\pm0.002$ | 0.027  | 31270.<br>91999  |
| DD Dia                                | $53795.404\pm0.002$                         | 0.179  | 20407.          | WW Leo             | $53740.025\pm0.003$                         | 0.025  | 01202.<br>91909  |
| DD Dia                                | $53636.377 \pm 0.004$                       | 0.101  | 20400.          |                    | $53740.038\pm0.003$                         | 0.030  | 51494.<br>E 4106 |
| BD Dra                                | $53858.415 \pm 0.002$                       | 0.101  | 20514.          | AE Leo             | $53748.090\pm0.005$                         | -0.309 | 54100.<br>54100  |
| BD Dra                                | $53805.483 \pm 0.002$                       | 0.101  | 20526.          | AL Leo             | $53758.710\pm0.005$                         | -1.009 | 54123.<br>20215  |
| BD Dra                                | $53911.405 \pm 0.005$                       | 0.137  | 20604.          | AX Leo             | $53748.678 \pm 0.005$                       | -0.039 | 39217.           |
| BK Dra                                | $53858.403 \pm 0.003$                       | -0.146 | 47857.          | AX Leo             | $53759.581 \pm 0.005$                       | -0.038 | 39232.           |
| BK Dra                                | $53891.555 \pm 0.003$                       | -0.151 | 47913.          | V LM1              | $53787.456 \pm 0.002$                       | 0.027  | 62982.           |
| BK Dra                                | $53897.472 \pm 0.005$                       | -0.155 | 47923.          | V LMi              | $53842.396 \pm 0.005$                       | 0.032  | 63083.           |
| BK Dra                                | $53900.435 {\pm} 0.002$                     | -0.152 | 47928.          | V LMi              | $53848.377 {\pm} 0.002$                     | 0.030  | 63094.           |
| BK Dra                                | $53910.501{\pm}0.003$                       | -0.152 | 47945.          | X LMi              | $53740.609 {\pm} 0.002$                     | 0.186  | 21248.           |
| BK Dra                                | $53916.420{\pm}0.003$                       | -0.153 | 47955.          | X LMi              | $53758.401{\pm}0.004$                       | 0.185  | 21274.           |
| BT Dra                                | $53783.575 {\pm} 0.003$                     | -0.002 | 39154.          | TT Lyn             | $53756.467{\pm}0.003$                       | -0.032 | 28630.           |
| BT Dra                                | $53809.467{\pm}0.003$                       | -0.011 | 39198.          | TT Lyn             | $53795.302{\pm}0.002$                       | -0.030 | 28696.           |
| BT Dra                                | $53849.496{\pm}0.002$                       | -0.012 | 39266.          | TW Lyn             | $53737.430{\pm}0.002$                       | 0.052  | 18086.           |
| BT Dra                                | $53859.506{\pm}0.002$                       | -0.010 | 39283.          | TW Lyn             | $53744.658{\pm}0.003$                       | 0.052  | 18101.           |
| BT Dra                                | $53865.396{\pm}0.004$                       | -0.006 | 39293.          | TW Lyn             | $53754.296{\pm}0.002$                       | 0.053  | 18121.           |
| BT Dra                                | $53875.404{\pm}0.005$                       | -0.006 | 39310.          | RZ Lyr             | $53871.434{\pm}0.003$                       | -0.003 | 24818.           |
| BT Dra                                | $53882.466{\pm}0.002$                       | -0.008 | 39322.          | RZ Lyr             | $53893.422{\pm}0.003$                       | 0.001  | 24861.           |
| RR Gem                                | $53334.610{\pm}0.002$                       | -0.318 | 30147.          | RZ Lvr             | $53896.493{\pm}0.002$                       | 0.005  | 24867.           |
| $\operatorname{RR}\operatorname{Gem}$ | $53754.544{\pm}0.002$                       | -0.341 | 31204.          | RZ Lyr             | $53917.452{\pm}0.002$                       | 0.003  | 24908.           |

Table 1 (cont.): maxima of RR Lyrae stars

| Variable                              | Maximum                   | O - C    | Е      | Variable | Maximum                   | O - C  | Е      |
|---------------------------------------|---------------------------|----------|--------|----------|---------------------------|--------|--------|
|                                       | HJD 24                    | (days)   |        |          | HJD 24                    | (days) |        |
| AW Lyr                                | $53911.483{\pm}0.003$     | 0.025    | 57453. | RV UMa   | $53801.652 {\pm} 0.002$   | 0.098  | 18643. |
| CN Lyr                                | $53869.573 {\pm} 0.005$   | 0.020    | 22809. | RV UMa   | $53808.675 {\pm} 0.002$   | 0.101  | 18658. |
| CN Lyr                                | $53881.502 {\pm} 0.005$   | 0.019    | 22838. | RV UMa   | $53809.612 {\pm} 0.002$   | 0.101  | 18660. |
| CN Lyr                                | $53886.442 {\pm} 0.004$   | 0.022    | 22849. | RV UMa   | $53831.615 {\pm} 0.005$   | 0.106  | 18707. |
| CN Lyr                                | $53911.533 {\pm} 0.002$   | 0.019    | 22911. | RV UMa   | $53838.633 {\pm} 0.003$   | 0.103  | 18722. |
| CN Lyr                                | $53916.467 {\pm} 0.004$   | 0.016    | 22923. | RV UMa   | $53853.611 {\pm} 0.003$   | 0.103  | 18754. |
| IO Lyr                                | $53856.524 {\pm} 0.004$   | -0.026   | 24670. | RV UMa   | $53869.522 {\pm} 0.005$   | 0.100  | 18788. |
| IO Lyr                                | $53863.450 {\pm} 0.002$   | -0.026   | 24682. | RV UMa   | $53899.472 {\pm} 0.004$   | 0.094  | 18852. |
| IO Lyr                                | $53871.530 {\pm} 0.003$   | -0.026   | 24696. | RV UMa   | $53900.411{\pm}0.004$     | 0.097  | 18854. |
| IO Lyr                                | $53882.494 {\pm} 0.003$   | -0.027   | 24715. | TU UMa   | $53737.601 {\pm} 0.002$   | -0.025 | 19557. |
| IO Lyr                                | $53897.493{\pm}0.004$     | -0.033   | 24741. | TU UMa   | $53842.439 {\pm} 0.003$   | -0.027 | 19745. |
| IO Lyr                                | $53904.426 {\pm} 0.002$   | -0.026   | 24753. | TU UMa   | $53857.497 {\pm} 0.003$   | -0.026 | 19772. |
| IO Lyr                                | $53912.498 {\pm} 0.002$   | -0.033   | 24767. | AB UMa   | $53739.604{\pm}0.010$     | 0.119  | 29207. |
| V455 Oph                              | $53889.482 \!\pm\! 0.005$ | -0.226   | 26561. | AB UMa   | $53748.599{\pm}0.010$     | 0.120  | 29221. |
| V455 Oph                              | $53904.456 {\pm} 0.005$   | 0.222    | 26593. | AB UMa   | $53838.529 {\pm} 0.005$   | 0.113  | 29372. |
| V455 Oph                              | $53909.446 {\pm} 0.002$   | 0.219    | 26604. | AB UMa   | $53844.526 {\pm} 0.005$   | 0.115  | 29382. |
| $\operatorname{AR}\operatorname{Per}$ | $53738.455 {\pm} 0.010$   | 0.053    | 62276. | AB UMa   | $53850.515 {\pm} 0.005$   | 0.108  | 29392. |
| AR Per                                | $53750.371 {\pm} 0.002$   | 0.053    | 62304. | AB UMa   | $53856.504{\pm}0.010$     | 0.101  | 29402. |
| VY Ser                                | $53856.437 {\pm} 0.004$   | 0.034    | 31692. | AB UMa   | $53859.502 {\pm} 0.008$   | 0.101  | 29407. |
| VY Ser                                | $53881.439 {\pm} 0.002$   | 0.043    | 31726. | AB UMa   | $53865.508{\pm}0.010$     | 0.111  | 29417. |
| AN Ser                                | $53844.486{\pm}0.003$     | 0.003    | 74962. | ST Vir   | $53845.522 {\pm} 0.002$   | 0.037  | 31909. |
| AN Ser                                | $53857.533{\pm}0.005$     | -0.002   | 74987. | ST Vir   | $53857.429{\pm}0.004$     | 0.030  | 31938. |
| AN Ser                                | $53892.517 {\pm} 0.004$   | 0.004    | 75054. | ST Vir   | $53871.403{\pm}0.002$     | 0.036  | 31971. |
| AN Ser                                | $53902.430{\pm}0.004$     | -0.003   | 75073. | UV Vir   | $53761.581 {\pm} 0.002$   | 0.017  | 23453. |
| AT Ser                                | $53845.609 {\pm} 0.004$   | 0.009    | 16137. | AF Vir   | $53860.571{\pm}0.002$     | -0.097 | 27962. |
| AT Ser                                | $53872.496{\pm}0.003$     | 0.020    | 16173. | AV Vir   | $53842.510{\pm}0.002$     | 0.003  | 18834. |
| AT Ser                                | $53881.451 {\pm} 0.002$   | 0.017    | 16185. | AV Vir   | $53869.454{\pm}0.004$     | 0.014  | 18875. |
| AV Ser                                | $53889.526 {\pm} 0.002$   | 0.134    | 52396. | BB Vir   | $53843.488{\pm}0.002$     | 0.242  | 30205. |
| AV Ser                                | $53890.503{\pm}0.004$     | 0.135    | 52398. | BB Vir   | $53849.610 {\pm} 0.002$   | 0.240  | 30218. |
| AV Ser                                | $53872.454{\pm}0.002$     | 0.126    | 52361. | BN Vul   | $53890.453{\pm}0.005$     | 0.062  | 14071. |
| $ m RU~Sex^{-3}$                      | $53760.485 \!\pm\! 0.005$ | 0.018    | 31818. | BN Vul   | $53912.435 \!\pm\! 0.002$ | 0.061  | 14108. |
| ref.:                                 | 1 Boninsegna, 19          | 90       |        |          |                           |        |        |
|                                       | $2~{\tt Baldwin}$ and Sa  | molyk, 2 | 003    |          |                           |        |        |
|                                       | 3 Williams, 1993          |          |        |          |                           |        |        |

Table 1 (cont.): maxima of RR Lyrae stars

#### References:

Baldwin, M.E., Samolyk, G., 2003, AAVSO RR Lyrae Monographs 1, (2)

- Bertin, E., Arnouts, S., 1996, A&AS, 117, 393
- Boër, M., Atteia, J. L., Bringer, M., Gendre, B., Klotz, A., Malina, R., de Freitas Pacheco, J. A., Pedersen, H., 2001, A&A, 378, 76
- Boninsegna, R., 1990, *JAAVSO*, **19**, 126, (1)
- Boninsegna, R., Vandenbroere, J., Le Borgne, J.F., The Geos Team, 2002, ASP Conf. Ser., 259, 166, IAU Colloq. 185, "Radial and Nonradial Pulsations as Probes of Stellar Physics"
- Bringer, M., Boër, M., Peignot, C., Fontan, G., Merce, C., 1999, A&AS, 138, 581
- Kholopov, P.N., et al., 1985, General Catalogue of Variable Stars, Moscow: Nauka Publishing House, 1988, 4th ed., edited by Kholopov, P.N.; and 2006 web edition (http://www.sai.msu.su/groups/cluster/gcvs/)
- Williams, D.B., 1993, JAAVSO, 22, 116

Number 5718

Konkoly Observatory Budapest 26 July 2006 *HU ISSN 0374 - 0676* 

#### THE HIGH-AMPLITUDE $\delta$ SCUTI STAR GP ANDROMEDAE

SZEIDL, B.<sup>1</sup>; SCHNELL, A.<sup>2</sup>; PÓCS, M.D.<sup>1</sup>

<sup>1</sup> Konkoly Observatory, H-1525 Budapest, P.O. Box 67, Hungary

<sup>2</sup> Astronomisches Institut, Universität Wien, Türkenschanzstr. 17, A-1180 Wien, Austria

GP And is a well-studied high-amplitude  $\delta$  Scuti star. Its variability was discovered by Strohmeier et al. (1956). Lange (1969, 1970) derived the type and period of this variable and pointed to possible light curve variation with a modulation period of 0.2684 day. This announcement aroused our interest and we started the star's photoelectric photometry at Konkoly Observatory in 1970.

Since the early seventies photoelectric photometry of this variable has been carried out and published by Eggen (1978), Gieseking et al. (1979), Rodríguez et al. (1993) and Schmidt et al. (1995). Splittgerber (1976), Burchi et al. (1993) and the BAV group (Agerer & Hübscher, 1998, 2002, 2003; Agerer et al., 1999, 2001; Hübscher, 2005; Hübscher et al., 2005) published photoelectric/CCD times of maximum light.

The Hipparcos photometry and the NSVS (Wozniak et al., 2004) provide useful data sets to study the period changes and the possible light curve modulation of the star. Having taken into account the heliocentric corrections normal maxima could be constructed from these data sets:

1) from the Hipparcos photometry: HJD<sub>max</sub> 2448448.1856 and

2) from the NSVS data:  $HJD_{max} 2451484.7904$ .

Apart from the rather accurate photoelectric/CCD observations a great number of photographic and visual measurements are found in the literature. In our discussion, however, we disregard these inaccurate data.

Our observations extended from 1970 to 1997. Observations at Konkoly Observatory were made with the 60 cm Newtonian reflector (10 nights) and the 50-cm Cassegrain telescope (10 nights) each equipped with an uncooled UBV photometer, and with the 1-m RCC telescope equipped with an  $UBV(RI)_C$  refrigerated photoncounting photometer (5 nights).<sup>†</sup> CCD observations were obtained with the 60/90/180-cm Schmidt telescope using a Photometrics camera (thermoelectrically cooled Kodak KAF-1600 1024 × 1536 chip) on one night without filter and two nights in the V colour band.

Observations at Leopold Figl-Observatory of the Astronomical Institute of the University of Vienna have been carried out in the V and B band using an uncooled photometer (with standard Corning filters) attached to the 60-cm RC telescope on 13 nights.

Throughout our observations we used GSC 01739-01584 lying  $\sim 5'$  west from the variable as comparison star.

<sup>&</sup>lt;sup>†</sup>The 1-m RCC  $UBV(RI)_C$  observations (Table 1) are available at the IBVS website as 5718-t1.txt.



Figure 1. O - C diagram with quadratic fit. The open circles denote uncertain data not taken into account in the fit



**Figure 2.** Folded V light curve of two nights (five cycles) of CCD observations (JD 2450746: dots; JD 2450772: crosses)

|                               | imes or . | light maximum | observed | at Leopold Figl               | and Kor | ikoly Observato               | ries |
|-------------------------------|-----------|---------------|----------|-------------------------------|---------|-------------------------------|------|
| $\mathrm{HJD}_{\mathrm{max}}$ | Rem.      | $HJD_{max}$   | Rem.     | $\mathrm{HJD}_{\mathrm{max}}$ | Rem.    | $\mathrm{HJD}_{\mathrm{max}}$ | Rem. |
| 2400000 +                     |           | 2400000 +     |          | 2400000 +                     |         | 2400000 +                     |      |
| 40854.4352                    | [1]       | 43848.3910    | [1]      | 46704.5745                    | [3]     | 46720.5464                    | [3]  |
| 40854.5135                    | [1]       | 45609.4674    | [2]      | 46705.4394                    | [3]     | 46722.5134                    | [3]  |
| 40854.5923                    | [1]       | 45609.5464    | [2]      | 46705.5182                    | [3]     | 46743.3650                    | [2]  |
| 40867.4962                    | [1]       | 45622.4513    | [2]      | 46713.3867                    | [3]     | 46769.3297                    | [3]  |
| 40867.5745                    | [1]       | 45622.5294    | [2]      | 46713.4657                    | [3]     | 46769.3298                    | [2]  |
| 40869.3841                    | [1]       | 45634.4885    | [2]      | 46713.5443                    | [3]     | 50277.4810                    | [4]  |
| 41189.4655                    | [1]       | 45648.4154    | [2]      | 46714.4882                    | [3]     | 50278.5036                    | [4]  |
| 41604.5175                    | [1]       | 45648.4939    | [2]      | 46714.5675                    | [3]     | 50279.5262                    | [4]  |
| 41604.5958                    | [1]       | 45649.4391    | [2]      | 46717.3997                    | [3]     | 50310.5275                    | [4]  |
| 41625.4469                    | [1]       | 45653.4512    | [2]      | 46717.4778                    | [3]     | 50360.4909                    | [4]  |
| 41960.5570                    | [1]       | 45674.4594    | [2]      | 46717.5565                    | [3]     | 50745.3285                    | [5]  |
| 41960.6355                    | [1]       | 46679.4740    | [3]      | 46718.4220                    | [3]     | 50745.4074                    | [5]  |
| 42004.3832                    | [1]       | 46679.5533    | [3]      | 46718.5008                    | [3]     | 50745.4863                    | [5]  |
| 42697.4208                    | [2]       | 46680.4975    | [3]      | 46719.3669                    | [3]     | 50746.3514                    | [5]  |
| 42697.4986                    | [2]       | 46702.4496    | [3]      | 46719.4457                    | [3]     | 50746.4303                    | [5]  |
| 42697.5775                    | [2]       | 46702.5288    | [3]      | 46719.5239                    | [3]     | 50746.5089                    | [5]  |
| 42712.4485                    | [1]       | 46702.6067    | [3]      | 46720.4686                    | [3]     | 50772.4744                    | [5]  |
| 43848.3126                    | [1]       | 46704.4953    | [3]      |                               |         |                               |      |

**T** 1 0 **T**' C 1 · 1 1 TZ

On the whole 70 times of maximum light could be determined from our observations. Each light maximum was derived as an average over the B and V bands since the times of maximum for these colour bands are not perceptibly shifted to each other. (Except some cases, when observations were made only in one colour band.)

The times of maximum light derived from our observations are given in Table 2. The complete list of times of maximum light (Table 3) used to construct the O - C diagram and to study the period changes of the variable is only available electronically through the IBVS website as file 5718-t3.txt.

The O - C values have been calculated by the formula:

$$C = 2447005.6146 + 0.07868276 \times E$$

and plotted against E in Fig. 1. A quadratic least-squares fit provides the new ephemeris:

$$C_{\text{new}} = 2447005.61456 + 0.0786827620 \times E + 5.20 \times 10^{-13} \times E^2.$$
  
$$\pm .00009 \pm .000000012 \pm .27$$

Three uncertain, outlier points (at JD 2450438.4732, 2451768.528 and 2451882.458) were not taken into account in the fit.

The observations of the years 1970 and 1971 do not support the cubic solution of Pop et al. (2005), but the deviation of these data from the quadratic fit may hint at the reality of the higher order fit or a sine-like solution (Pop et al., 2003) notwithstanding that the slow period increase  $1/P(dP/dt) = 6.1 \times 10^{-8} \text{ y}^{-1}$  is not in serious conflict with evolutionary theories (Breger & Pamyatnikh, 1998).

Gieseking et al. (1979) noted that some disturbances were present in the fundamental pulsation. From four nights of photometry they found variability of some 0.1 mag in

Remark: [1] Konkoly N 60-cm, [2] Konkoly C 50-cm, [3] Figl RC 60-cm, [4] Konkoly RCC 100-cm, [5] Konkoly Schmidt 60/90-cm CCD

the amplitude with a period of 0.64 days, furthermore they pointed out that the mean brightness of the star and the shape of the light curve strongly varied from cycle to cycle, while an 18 minute wave superposed on the light curve was present. Rodríguez et al.'s (1993) photometry of high accuracy, however, did not show these kinds of disturbances.

As our photoelectric photometry also exhibited variability in the shape and amplitude of the light curve we decided to go into the matter in more detail. The Fourier analysis of the Hipparcos, the NSVS and our 1983 BV and 1998 BVRI data sets, however, did not prove the existence of any additional frequencies with amplitude higher than 0.01 mag The folded CCD V light curve of two nights (five cycles) presented in Fig. 2. also shows a regular light variation characteristic of stable high amplitude  $\delta$  Scuti stars.

Since GP And has a 1.5 mag fainter (in minimum, Eggen, 1978) very close visual companion with 11'' separation (Morlet et al., 2000) its photometry through a 20-30'' diafragm becomes uncertain. Therefore we incline to presume that the observed disturbances are rather (at least in significant part) the defect of the photometry.

The financial support of the OTKA grants T-043504, T-046207 and T-048961 is acknowledged.

#### References:

- Agerer, F., Dahm, M., Hübscher, J., 1999, IBVS, No. 4712
- Agerer, F., Dahm, M., Hübscher, J., 2001, *IBVS*, No. 5017
- Agerer, F., Hübscher, J., 1998, *IBVS*, No. 4606
- Agerer, F., Hübscher, J., 2002, IBVS, No. 5296
- Agerer, F., Hübscher, J., 2003, *IBVS*, No. 5485
- Breger, M., Pamyatnykh, A.A., 1998, A&A, 332, 958
- Burchi, R., De Santis, R., Di Paolantonio, A., Piersimoni, A.M., 1993, A&AS, 97, 827
- Eggen, O.J., 1978, *IBVS*, No. 1517
- Gieseking, F., Hoffmann, M., Nelles, B., 1979, A&AS, 36, 457
- Hübscher, J., 2005, IBVS, No. 5643
- Hübscher, J., Paschke, A., Walter, F., 2005, IBVS, No. 5657
- Lange, G.A., 1969, Astron. Tsirk., 534, 7
- Lange, G.A., 1970, Astron. Tsirk., 559, 3
- Morlet, G., Salaman, M., Gili, R., 2000, A&AS, 145, 67
- Pop, A., Liteanu, V., Moldovan, D., 2003, Ap&SS, 284, 1207
- Pop, A., Turcu, V., Moldovan, D., 2005, ASPC, 335, 317, in: The Light-Time Effect in Astrophysics (ed. C. Sterken)
- Rodríguez, E., Rolland, A., López de Coca, P., 1993, A&AS, 101, 421
- Schmidt, E.G., Chab, J.R., Reiswig, D.E., 1995, AJ, 109, 1239
- Splittgerber, E., 1976, *MVS*, 7, 137
- Strohmeier, W., Kippenhahn, R., Geyer, E., 1956, Kleine Veröff. Bamberg, No. 15
- Wozniak, P.R., Vestrand, W.T., Akerlof, C.W., et al., 2004, AJ, 127, 2436

Number 5719

Konkoly Observatory Budapest 31 July 2006 *HU ISSN 0374 - 0676* 

# GSC 2038.0293 IS A NEW SHORT-PERIOD ECLIPSING RS CVn VARIABLE

(BAV MITTEILUNGEN NO. 177)

#### BERNHARD, K.<sup>1,3</sup>; FRANK, P.<sup>2,3</sup>

<sup>1</sup> A-4030 Linz, Austria; e-mail: klaus.bernhard@liwest.at

 $^2$  D-84149 Velden, Germany; e-mail: frank.velden@t-online.de

 $^3$ Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. (BAV), Munsterdamm 90,

D–12169 Berlin, Germany

During a programme of optical identification of X-ray sources from the ROSAT all-sky survey bright source catalogue (Voges et al., 1999) with the ROTSE1 database (Woźniak et al., 2004) it was found that the uncatalogued variable NSVS object ID 7869362 (= GSC 2038.0293) was coincident with the X-ray source 1RXS J160248.3+252031. Further details of the programme are presented in Bernhard et al. (2005). GSC 2038.0293 has V = 10.62 and B - V = 0.83 from the Tycho-2 catalogue (Høg et al., 2000), the 2MASS catalogue gives J - K = 0.612 (Cutri et al., 2003).

Our observations were made using both a 20-cm Schmidt-Cassegrain telescope and a Starlight XPress SX CCD camera with BV filters (2005) and BVR filters (2006) in Linz, Austria and a Flatfield Camera 576/2.0 with a CCD camera OES-LcCCD12 and IR-cutting filter in Velden, Germany (2005 and 2006). The comparison stars used were GSC 2038.0565 and GSC 2038.0663, which were found to be constant within < 0.03 mag.

The following primary minima were observed in 2005 and 2006 (Table 1):

| minimum time | filter   | observer               | O - C (d) |
|--------------|----------|------------------------|-----------|
| 3566.433(2)  | IR cutt. | Frank                  | -0.002    |
| 3569.405(2)  | V        | Bernhard               | -0.003    |
| 3846.348(2)  | IR cutt. | $\operatorname{Frank}$ | +0.005    |
| 3877.555(2)  | V        | Bernhard               | +0.002    |

Table 1: Times of primary minima of GSC 2038.0293 (HJD 245...)

Figures in brackets denote rms errors in units of the last decimal, O - C values were calculated with the ephemeris given below.

A Fourier analysis of the available data including ASAS3 (Pojmanski, 2002) and ROTSE1 was performed to search for periodicity of the light variations. The following ephemeris can be derived from the analysis with the algorithm Period04 (Lenz and Breger, 2005):

$$\begin{aligned} \text{HJD}_{\text{MinI}} &= 2453560.491 + 0.495410 \times E. \\ &\pm 3 \qquad \pm 1 \end{aligned}$$

The folded (and in y-direction shifted) light curves of the BVR filtered observations in May and June 2006 are given in Figure 1 and show an amplitude of nearly 0.20 mag for the B observations and of nearly 0.18 mag for the V and R observations.



Figure 1. Folded BVR light curves of GSC 2038.0293 in the observing season 2006

The shape of the folded light curve with two minima of considerably different width clearly identifies GSC 2038.0293 with a very short period and heavily spotted RS CVn type star. This finding is also supported by the X-ray identification, and the values of the Tycho-2 and 2MASS colours, which point to a spectral type of late G or early K. B - V and V - R values of our observations in 2006 indicate a slight reddening of the star, when it enters the minimum of the spotted light curve. The peak to peak amplitude (i.e. the magnitude difference between the secondary and primary minima), determined by low order polynomial fitting, is for the B band about 0.09 mag, for the V and R band only 0.07 and 0.06 mag. This is in good agreement with data from literature, where a  $\Delta R/\Delta V$  value of 0.90 for active stars has been determined (Drake, 2006).

The period of 0.495410 days is very short for an RS CVn star. Only one of 206 binary systems of the second edition of the catalogue of chromospherically active binary stars has a shorter period (XY UMa, 0.4789944 days; Strassmeier et al., 1993).

The folded light curves of ROTSE1, ASAS3 and our V-band data, which are shifted for the different years, are given in Figure 2.

ROTSE1 data are available for 1999 and 2000, ASAS3 V data for 2003, 2004, 2005 and 2006 (filled circles). Our V-band data for 2005 and 2006 are shown as open circles. The amplitudes of the V and R band are very similar (see Figure 1). Therefore it can be assumed, that also ASAS3 (V) and ROTSE1 amplitudes (near R values) are roughly comparable.



Figure 2. Folded ASAS3 and ROTSE light curves (filled circles) and our V data (open circles) in 1999–2006



Figure 3. Peak to peak amplitude of the minimum of the spotted light curve in the ASAS3 and ROTSE data (filled squares) and in our V-band data (open squares) in 1999–2006

It can be clearly seen, that the primary minimum has fairly the same amplitude in 1999–2006, but the depth of the minimum of the spotted light curve is changing to a large extent. The long-term changes of the light curve are illustrated in more detail in Figure 3.

The amplitude of the spotted light curve shows a clear variation in 1999–2006 with two clear maxima in the years 1999 and 2005. In 2005, the year of the highest variation, the minimum of the spotted light curve was fainter than the primary (eclipsing) minimum. We noticed considerable changes in the shape of the lightcurve on timescales of a few weeks in our B, V and unfiltered observations. This resulted in an increased scatter near the minimum of the spotted light curve in the ASAS and our data of that year (see Figure 2).

Though it is clear that more observations will be necessary to describe the long-term activity of GSC 2083.0293, (cyclic?) variations on timescales of 6–8 years seem to occur. Similar cycles have also been observed for other RS CVn stars (e.g. Berdyugina and Tuominen, 1998). We conclude that GSC 2038.0293 is a new RS CVn variable with one of the shortest known periods and a dramatically changing light curve. We hope that the present study will stimulate more observations of this interesting, high activity star.

Acknowledgements: The authors want to thank Dr. Christopher Lloyd and Dr. Konrad Dennerl for collaboration and suggestions. This research has made use of the SIMBAD and VizieR databases operated at the Centre de Données Astronomiques (Strasbourg) in France.

References:

Berdyugina, S.V., Tuominen, I., 1998, Astron. Astrophys., 336, L25-L28

- Bernhard, K., Lloyd, C., Berthold, T., Kriebel, W., Renz, W., 2005, IBVS, No. 5620
- Cutri, R.M., et al., 2003, 2MASS All-Sky Catalog of Point Sources, University of Massachusetts and IPAC/California Institute of Technology
- Drake, A.J., 2006, AJ, **131**, 1044
- Høg, E., Fabricius, C., Makarov, V.V., Urban, S., Corbin, T., Wycoff, G., Bastian, U., Schwekendiek, P., Wicenec, A., 2000, A&A, 355, L27
- Lenz, P., Breger, M., 2005, Comm. in Asteroseismology, 146, 53
- Pojmanski, G., 2002, Acta Astronomica, 52, 397
- Strassmeier, K.G., Hall, D.S., Fekel, F.C., Scheck, M., 1993, Astron. Astrophys. Suppl., 100, 173-225
- Voges, W., et al., 1999, Astron. Astrophys., **349**, 389, The ROSAT all-sky survey bright source catalogue
- Woźniak, P.R., et al., 2004, Astron. J., 127, 2436, Northern Sky Variability Survey: Public Data Release

Number 5720

Konkoly Observatory Budapest 2 August 2006 *HU ISSN 0374 - 0676* 

# FOUND A NOVA IN M31: THE TRUE OPTICAL COUNTERPART OF THE M31 SUPERSOFT X-RAY SOURCE 191

SMIRNOVA, O.; ALKSNIS, A.

Institute of Astronomy, University of Latvia, Raina bulv. 19, Riga, LV-1586, Latvia; e-mail: o.smirnova@inbox.lv

In this note we report the discovery of a nova in M31 (NGC 224) which turned out to be the true optical counterpart of the supersoft X-ray source 191 of the M31 XMM Newton survey catalogue instead of the Nova 1992-01 proposed by Pietsch et al. (2005a). The nova was found by one of us (O.S.) on scanned archival photoplates taken in October and November of 2001 for search for novae in M31 with the Schmidt telescope (80/120/240cm) at the Baldone Astrophysical Observatory of the Institute of Astronomy, University of Latvia.

The coordinates of the nova were obtained using the Aladin Sky Atlas (CDS) image astrometric calibration tool with respect to the positions of field stars from the BVRIcatalogue of M31 (Magnier et al., 1992). The resulting nova position derived from 7 scanned plates is the following:

 $R.A. = 00^{h}41^{m}54^{s}.26$ ,  $Decl. = +41^{\circ}07'23''.9$  (equinox 2000.0),

with 1-sigma error of 0".2. It is located 564".4 West and 524".6 South of the center of M31; a finding chart is given in Figure 1. No record of this object was found in any searches of the papers or WWW pages devoted to novae in M31.

Times of the middle of exposures in Julian days and *B*-magnitudes of the nova based on the secondary standard stars from the BVRI catalogue of M31 (Magnier et al., 1992) are given in Table 1. The light curve of the nova is presented in Figure 2.

| Table 1   |                      |           |                      |  |  |  |  |  |  |  |  |
|-----------|----------------------|-----------|----------------------|--|--|--|--|--|--|--|--|
| JD        | B                    | JD        | В                    |  |  |  |  |  |  |  |  |
| 2452000 + | $\operatorname{mag}$ | 2452000 + | $\operatorname{mag}$ |  |  |  |  |  |  |  |  |
| 151.472   | > 19.5               | 204.250   | 17.7                 |  |  |  |  |  |  |  |  |
| 196.262   | 16.6                 | 207.390   | 18.0                 |  |  |  |  |  |  |  |  |
| 198.256   | 16.8                 | 208.267   | 18.2                 |  |  |  |  |  |  |  |  |
| 199.282   | 16.8                 | 226.208   | 18.5:                |  |  |  |  |  |  |  |  |
| 203.234   | 17.3                 | 228.238   | > 19.6               |  |  |  |  |  |  |  |  |

The available photometric data for the nova do not allow to determine the time and the value of the maximum brightness exactly. However, the dB/dt parameter can be



Figure 1. The scan of the photoplate taken on October 15, 2001 with the discovered nova (marked with an arrow). The white and black crosses show positions of X-ray source 191 and Nova 1992-01 respectively

estimated from the general slope of the light curve between the brightest observation, when B = 16.6 and the observation closest to 2 magnitudes fainter than the maximum. Excluding an uncertain measurement we estimate dB/dt = 0.13 m/d equivalent to the rate of decline  $t_2 \sim 15$  days, which corresponds to the fast novae according to the classification by Payne-Gaposchkin (1957). The mean maximum magnitude for novae with similar rate of decline is B = 16.5, according to the relation between the rate of decline and the magnitude at maximum for M31 novae obtained by Capaccioli et al. (1989). It could indicate that the first observation of the nova was about one day past its maximum light.

Comparing the nova position with those of X-ray sources in the catalogue of XMM-Newton survey of M31 (Pietsch et al., 2005b) we found that source 191 is located at a distance of 0".9 East and 0".1 South from the nova. This X-ray source is classified as supersoft as other known X-ray sources identified with novae. The 1-sigma error of X-ray source position is 0".88, including systematic error. Within error its position coincides with the position of the nova.

According to Pietsch et al. (2005a) the X-rays at the position of the source 191 was first detected during XMM-Newton observations at JD 2452280.5, so 84 days after the nova outburst and then six days later. No X-ray source was detected at that position during the three XMM-Newton observations made at the moments corresponding to 476, 290 and 107 days before the nova outburst. Evidently this source was not yet active also 17 days after the nova outburst, as it was covered by the Chandra HRC1 observation 1912, but not reported in the catalogue by Kaaret (2002).

Pietsch et al. (2005a), searching for X-ray counterparts of optical novae, correlated this source with the Nova 1992-01, reported by Shafter & Irby (2001) from two Halpha images, taken in December of 1992 and January of 1993. According to Pietsch et al. (2005a) the time separation of 3303 days between Nova 1992-01 outburst and X-ray source rise is significantly larger than that for the other 22 M31 and M33 novae in the dataset. Therefore the authors supposed that the Nova 1992-01 was probably a recurrent nova, which had a new unobserved outburst about 2001, responsible for the observed X-rays.



Figure 2. The light curve of the nova in M31. Filled circles: confident measurements; open circle: uncertain measurement; triangles: brightness upper limits (the triangle with arrow corresponds to JD 2452151.472)

To try to verify the possibility, that our reported nova and the Nova 1992-01 is the same object, we inspected Baldone observatory archival plates of M31 taken in 1992. We found the Nova 1992-01 on two 1/10/2001 photographs and measured its coordinates on both plates in the same way, as was done for the reported nova, and we got

 $R.A. = 00^{h}41^{m}53^{s}82, Decl. = +41^{\circ}07'22''.5$  (equinox 2000.0),

with 1-sigma error of  $0^{\prime\prime}_{...3}$ .

The position separation between the Nova 1992-01 and our reported nova is 5".2, thus they are different objects.

As the Nova 1992-01 lies 6".1 apart from the X-ray source 191, but our nova at much smaller distance 0".9, the latest must be considered as an optical counterpart of the X-ray source. In this case the time separation between the optical outburst and X-ray rise—84 days falls in the interval of time separation from 63 d to 170 d observed for four other novae—optical counterparts of X-ray sources in M31, contrary to the extraordinarily long 9 years time separation in case of previously assumed identification with the Nova 1992-01. To the common features of these short-time separation optical counterparts add the fact that three of them are fast novae in the same way as our nova. References:

- Capaccioli, M., della Valle, M., Rosino, L., D'Onofrio, M., 1989, AJ, 97, 1622
- Kaaret, P., 2002, ApJ, 578, 114
- Magnier, E.A., Lewin, W.H.G., van Paradijs, J., Hasinger, G., Jain, A., Pietsch, W., Truemper, J., 1992, A&AS, 96, 379
- Payne-Gaposchkin, C., 1957, The Galactic Novae, North-Holland Publ. Comp., Amsterdam, p. 24
- Pietsch, W., Fliri, J., Freyberg, M.J., Greiner, J., Haberl, F., Riffeser A., Sala, G., 2005a, A&A, 442, 879
- Pietsch, W., Freyberg, M., Haberl, F., 2005b, A&A, 434, 483
- Shafter, A.W., Irby, B.K., 2001, ApJ, 563, 749

Corrigendum for IBVS 5720 In the paper by Smirnova & Alksnis (2006), third paragraph from the end, instead of 1/10/2001 should be 1/10/1992. Our thanks are due to W. Pietsch for pointing out this error.

Number 5721

Konkoly Observatory Budapest 8 August 2006 *HU ISSN 0374 - 0676* 

#### THE 78TH NAME-LIST OF VARIABLE STARS

KAZAROVETS, E.V.<sup>1</sup>; SAMUS, N.N.<sup>1,2</sup>; DURLEVICH, O.V.<sup>2</sup>; KIREEVA, N.N.<sup>1</sup>; PASTUKHOVA, E.N.<sup>1</sup>

<sup>1</sup> Institute of Astronomy, Russian Academy of Sciences, 48, Pyatnitskaya Str., Moscow 119017, Russia [elena\_k@sai.msu.ru, kireeva@sai.msu.ru, pastukhova@sai.msu.ru, samus@sai.msu.ru]

<sup>2</sup> Sternberg Astronomical Institute, University of Moscow, 13, University Ave., Moscow 119992, Russia [gcvs@sai.msu.ru]

The present 78th Name-List of Variable Stars contains all data necessary for identifications of 1706 new variables finally designated in 2006. The total number of named variable stars, not counting designated non-existing stars or stars subsequently identified with earlier-named variables, has now reached 40215.

We are currently working on merging the electronic tables of the GCVS and the Name-Lists. Because of this, we decided to somewhat change the presentation of the 78th Name-List compared to the standard form of several previous lists, which followed the manner first introduced in the 67th Name-List (IBVS No. 2681, 1985). Thus, the main part of the 78th Name-List contains a single printed table, appended with two tables presented in the electronic form only.

The printed Table 1, similar to Table 1 in the previous Name-Lists, contains the list of new variables arranged in the order of their right ascensions (2000.0). For each star, the table gives: its ordinal number; its GCVS name (an asterisk after it means the presence of a remark in the electronic Table E4, see below); the equatorial coordinates for the equinox 2000.0 (right ascensions to  $0^{\circ}$ .1 and declinations to 1"); the range of variability (magnitudes in maximum and minimum light; sometimes the column "Min" gives, in parentheses, the amplitude of light variation; the symbol "<" means that the star, in minimum light, becomes fainter than the magnitude indicated; the system of magnitudes used. Here "p" are photographic magnitudes; "r" are instrumental red magnitudes; the symbols "Rc", "Ic" designate magnitudes in Cousins RI system; "Hp" stands for magnitudes in the system of the Hipparcos Catalogue; "\*" corresponds to unfiltered CCD magnitudes; the rest of designations are standard Johnson UBVRIJKL magnitudes or their more or less successful equivalents. In a small number of cases, the value of the variability amplitude (column "Min", in parentheses) could not be expressed in the same system of magnitudes as the star's brightness; in such cases we indicate the photometric band for the amplitude separately. Then follows the type of variability according to the classification system described in the forewords to the first three volumes of the 4th GCVS edition (with the additions introduced in the 68th Name-List, IBVS No. 3058, 1987, in the 69th Name-List, IBVS No. 3323, 1989, in the 72nd Name-List, IBVS No. 4140, 1995, in the 75th Name-List, IBVS No. 4870, 2000, in the 76th Name-List, IBVS No. 5135, 2001; see also the description of variability types and distribution of stars over variability

types at http://www.sai.msu.su/groups/cluster/gcvs/gcvs/iii/vartype.txt). In variance with the earlier Name-Lists, the last columns contain up to three references to the literature. The first reference is to the star's study that permitted us to include it into the Name-List, the second one indicates the paper containing a finding chart or refers to the Durchmusterung – DM (BD, CoD, or CPD), or the Hubble Space Telescope Guide Star Catalog – GSC, g2.2, or the USNO A1.0/A2.0/B1.0 catalog – USNO, or the 2MASS catalog – 2MASS, if the star can be found using one of them; in some cases, we add the third reference if information significant for the Name-List (mainly included in the electronic Table E3, see below) comes from a source different from that indicated in the first reference.

The order of stars in Table 1 corresponds to the order of their 2000.0 right ascensions. Note that several stars named between Name-Lists No. 77 and No. 78 upon request from the IAU Bureau of Astronomical Telegrams have GCVS names, within their constellation, are not in their proper order by right ascension. The coordinates presented in the Name-List were taken from positional catalogues or found in the literature.

Then, a short Table 2 follows. This is a list of variable stars earlier named not in their proper constellations, because of erroneous coordinates or of changes in the constellation boundaries (cf. N. N. Samus et al., 2006, *Astronomy Letters*, **32**, 263, section "The Variables to be Renamed"). The present Name-List contains new names for these variables. Their old names will not be given to any other variable, to avoid confusion.

The electronic supplement to this paper contains two additional tables of the Name-List. Table E3 presents a preliminary catalogue of the newly-named variable stars. Its columns contain, besides the information described above for Table 1, also the following data: epoch (minimum for eclipsing variables and RV-type stars or maximum for all other stars, in Julian days minus 2400000); variability period (in days); light curve asymmetry (M-m) for pulsating variables or duration of minimum for eclipsing stars, in hundredths of the period; spectral type.

The electronic Table E4 contains the list of variables arranged in the order of their variable star names within constellations. It can have several lines per variable. After the designation of a variable, its ordinal number from Table 1 is given, and then each line contains an identification with one of several major catalogues or an identification necessary to find this star in the papers referred to in Tables 1, E3 or in the papers with the first (or independent) announcement of the discovery of its variability. Some minimal remarks are given if necessary, also occupying a line, with "\* Rem" in the beginning of the remark. The abbreviated names of the catalogues in Table E4 generally follow conventions of the GCVS or of the SIMBAD data base.

We take the opportunity to announce corrections of several errors and misprints in earlier Name-Lists of Variable Stars, not announced earlier as lists of corrections in electronic issues of the IBVS.

| NL No. | IBVS No. | Position              | Printed                          | Should be                        |
|--------|----------|-----------------------|----------------------------------|----------------------------------|
| 72     | 4140     | Table 2               | V1191 Cyg                        | V1991 Cyg                        |
| 76     | 5135     | Table 1, IL Cam       | $03 \ 43 \ 53.0 \ +67 \ 40 \ 52$ | $03 \ 43 \ 52.5 \ +67 \ 40 \ 33$ |
| 76     | 5135     | Table 2, $\delta$ Sco | 76083                            | 760839                           |
| 77     | 5422     | Tables 1, 2           | V1209 Tau                        | = V738 Tau                       |

As usual, those wishing to find new and corrected GCVS and NSV catalogue information are asked to regularly visit our web site:

http://www.sai.msu.su/groups/cluster/gcvs/gcvs/

At our web site, there exists access to a table containing accurate coordinates and, whenever available, proper motions for GCVS stars (including Name-Lists) and for many NSV catalogue stars, taken from positional catalogues (referred to in the table) or measured by the GCVS team. The table is being continuously expanded in the course of our positional work. The positional information is based upon our new identifications, primarily using the best finding charts available, and checked via comparison with identifications by other authors whenever possible.

We would like to thank many astronomers who sent us unpublished data, immediately responded to our requests to provide missing data or to correct erroneous data necessary for this Name-List. Also, thanks are due for sending us corrections to our catalogues and Name-Lists. This study was supported in part by Russian Foundation for Basic Research through grant 05-02-16289, by the Programme "Origin and Evolution of Stars and Galaxies" of the Presidium of Russian Academy of Sciences, and by the Support Programme for Leading Scientific Schools of Russia. Our research has made extensive use of the excellent ASAS-3 data base.

Table 1

| No.    | Name       |            | R./ | A.,      | Decl         | ., 20 | 000      | . 0      | Max          | Min    |          |        |        | Туре        | Refe | erences    | 5   |
|--------|------------|------------|-----|----------|--------------|-------|----------|----------|--------------|--------|----------|--------|--------|-------------|------|------------|-----|
|        |            |            | h   | m        | S            | 0     | ,        | "        | m            | m      |          |        |        |             |      |            |     |
| 780001 | V956       | Cas        | 00  | 05       | 05.4         | +59   | 39       | 01       | 14.2         | 17.2   |          |        | В      | IS:         | 001  | 002        |     |
| 780002 | CD         | Scl        | 00  | 06       | 20.8         | -35   | 17       | 13       | 12.7         | 14.2   |          |        | V      | RRAB        | 130  | 004        |     |
| 780003 | V439       | And        | 00  | 06       | 36.8         | +29   | 01       | 17       | 6.13         | ( 0.04 | 4        | )      | V      | BY          | 005  | DM         |     |
| 780004 | V957       | Cas        | 00  | 09       | 45.7         | +50   | 30       | 39       | 11.6         | 12.8   |          |        | *      | SR:         | 006  | USNO       |     |
| 780005 | V958       | Cas        | 00  | 10       | 48.5         | +57   | 29       | 27       | 8.8          | 9.8    |          |        | *      | SR:         | 006  | GSC        |     |
| 780006 | V959       | Cas        | 00  | 12       | 02.7         | +55   | 05       | 19       | 12.0         | 12.6   |          |        | *      | EW          | 006  | GSC        | 040 |
| 780007 | EK         | Psc        | 00  | 16       | 54.3         | +07   | 04       | 30       | 15.3         | ( 0.0  | 2        | )      | В      | RPHS        | 008  | 009        |     |
| 780008 | V960       | Cas        | 00  | 19       | 50.4         | +47   | 42       | 38       | 11.5         | 12.3   |          |        | *      | SR          | 006  | USNO       |     |
| 780009 | V961       | Cas*       | 00  | 26       | 49.3         | +55   | 27       | 24       | 12.0         | ( 0.4  | 0        | )      | v      | EB          | 010  | GSC        |     |
| 780010 | V440       | And*       | 00  | 26       | 49 5         | +41   | 49       | 09       | 12.6         | 13.2   | •        | ·      | *      | EΔ          | 006  | GSC        | 040 |
| 780011 | CE         | Scl*       | 00  | 31       | 33.5         | -36   | 16       | 25       | 9.70         | 9.9    | 2        |        | v      | E.A         | 011  | DM         | 010 |
| 780012 | CF         | Scl        | 00  | 33       | 07.3         | -32   | 01       | 19       | 9 78         | 10 10  | 0        |        | v      | RS.         | 012  | DM         |     |
| 780012 | CP         | Pho        | 00  | 34       | 18 6         | -43   | 00       | 03       | 10 6         | 13 0   | •        |        | v      | SBA         | 130  | 004        |     |
| 780014 | VQ62       | Caex       | 00  | 35       | 30 5         | +54   | 55       | 15       | 10.0         | 13 5   | 1        |        | *      | FA          | 214  | 004<br>014 |     |
| 780015 | 0002<br>CD | Dho        | 00  | 37       | 51 6         | -30   | 50       | 00       | 12.00        | 1/ 6   | T        |        | v      | DDAD        | 130  | 01/        |     |
| 700015 | VOG2       | Cog        | 00  | Δ1<br>ΛΛ | 01.0<br>00 E | 157   | 02<br>26 | 00       | 10.0         | 12.0   |          |        | v<br>+ | CD.         | 006  |            |     |
| 700010 | V903       | Cas<br>Cat | 00  | 44       | 22.0         | -00   | 20       | 21<br>12 | 12.3<br>17 E | 13.0   | 0        | `      | τ<br>V | DDAD        | 000  | USNO       |     |
| 700010 | EU         | Dec        | 00  | 44       | 24.0         | -00   | 21       | 40       | 17.5         | (1.0)  | 0        | )<br>\ | V<br>V | RRAD<br>CDC | 015  | USNU       |     |
| 700010 | EL<br>VOCA | PSC        | 00  | 40       | 33.0         | +10   | 20       | 32       | 5.20<br>10.2 | (0.2   | 2        | )      | V      | SKS<br>CD.  | 010  |            | 040 |
| 780019 | V964       | Cas        | 00  | 49       | 59.3         | +52   | 50       | 35       | 12.3         | 13.1   |          |        | *      | SK:         | 006  | USNU       | 040 |
| 780020 | CR         | Phe        | 00  | 50       | 02.5         | -48   | 43       | 41       | 9.2          | 10.6   | <u> </u> |        | V      | SRB         | 130  | DM         | 040 |
| 780021 | CG         | SCI        | 00  | 55       | 26.8         | -37   | 31       | 26       | 8.67         | 9.10   | 6        |        | V      | EA          | 011  | DM         |     |
| 780022 | V965       | Cas        | 00  | 55       | 40.9         | +67   | 34       | 32       | 14.4         | 16.2   |          |        | *      | SR:         | 006  | 2MASS      |     |
| 780023 | V441       | And        | 00  | 56       | 44.2         | +41   | 29       | 23       | 13.5         | 14.3   | _        |        | *      | EW          | 006  | GSC        |     |
| 780024 | СН         | Scl        | 00  | 57       | 43.8         | -26   | 13       | 22       | 9.99         | 10.18  | 8        |        | V      | EA:         | 011  | DM         |     |
| 780025 | EV         | Cet*       | 00  | 57       | 53.8         | -00   | 46       | 35       | 11.6         | ( 0.48 | 8        | )      | V      | EW          | 017  | GSC        |     |
| 780026 | V966       | Cas        | 01  | 02       | 57.2         | +69   | 13       | 37       | 7.67         | ( 0.0  | 2        | )      | V      | BY          | 018  | DM         |     |
| 780027 | V442       | And        | 01  | 03       | 53.4         | +47   | 38       | 32       | 6.63         | 6.93   | 2        |        | V      | BE          | 019  | DM         |     |
| 780028 | CS         | Phe        | 01  | 09       | 49.5         | -44   | 18       | 53       | 11.9         | 13.8   |          |        | V      | RRAB        | 130  | 021        |     |
| 780029 | V443       | And        | 01  | 10       | 41.9         | +42   | 55       | 55       | 7.66         | ( 0.0  | 2        | )      | V      | BY          | 018  | DM         |     |
| 780030 | V967       | Cas        | 01  | 11       | 00.0         | +67   | 09       | 55       | 12.3         | 14.3   |          |        | *      | SRA         | 006  | USNO       | 040 |
| 780031 | V444       | And        | 01  | 15       | 28.7         | +41   | 19       | 59       | 13.0         | 13.7   |          |        | *      | EW          | 006  | GSC        |     |
| 780032 | EW         | Cet        | 01  | 16       | 24.2         | -12   | 05       | 49       | 7.55         | ( 0.0  | 3        | )      | V      | BY          | 018  | DM         |     |
| 780033 | V445       | And        | 01  | 16       | 29.3         | +42   | 56       | 22       | 6.61         | ( 0.0  | 3        | )      | V      | BY          | 018  | DM         |     |
| 780034 | V968       | Cas        | 01  | 18       | 47.2         | +56   | 01       | 36       | 12.9         | 13.7   |          |        | *      | SR          | 006  | USNO       | 040 |
| 780035 | EM         | Psc*       | 01  | 18       | 48.5         | +13   | 21       | 08       | 14.3         | ( 0.4  | 5        | )      | V      | EW          | 010  | GSC        |     |
| 780036 | EG         | Tuc        | 01  | 19       | 48.3         | -69   | 33       | 27       | 9.4          | 9.8    |          |        | V      | SRS         | 130  | DM         |     |
| 780037 | EN         | Psc        | 01  | 21       | 28.2         | +31   | 20       | 29       | 8.49         | ( 0.0  | 2        | )      | V      | BY          | 018  | DM         |     |
| 780038 | V446       | And*       | 01  | 25       | 40.9         | +47   | 07       | 07       | 7.61         | ( 0.0  | 9        | )      | V      | *           | 018  | DM         |     |
| 780039 | CT         | Phe        | 01  | 25       | 46.4         | -39   | 56       | 11       | 11.2         | 11.8   |          |        | V      | EA          | 130  | 004        |     |
| 780040 | EO         | Psc        | 01  | 29       | 04.9         | +21   | 43       | 23       | 7.74         | ( 0.0  | 2        | )      | V      | RS          | 018  | DM         |     |
| 780041 | AR         | Tri        | 01  | 34       | 42.6         | +30   | 25       | 28       | 10.60        | 10.63  | 3        |        | V      | DSCTC:      | 022  | GSC        |     |
| 780042 | EX         | Cet        | 01  | 37       | 35.5         | -06   | 45       | 38       | 7.66         | ( 0.0  | 2        | )      | V      | BY          | 018  | DM         |     |
| 780043 | alpha      | Eri        | 01  | 37       | 42.8         | -57   | 14       | 12       | 0.40         | 0.40   | 6        |        | Hр     | BE          | 023  | DM         |     |
| 780044 | CU         | Phe        | 01  | 38       | 30.7         | -42   | 55       | 40       | 6.68         | ( 0.0  | 6        | )      | V      | GDOR:       | 024  | DM         |     |
| 780045 | EY         | Cet        | 01  | 40       | 58.8         | -05   | 24       | 13       | 8.50         | ( 0.03 | 3        | )      | V      | ВҮ          | 018  | DM         |     |
| 780046 | V969       | Cas        | 01  | 43       | 46.9         | +61   | 51       | 41       | 13.18        | ( 0.2  | 1 I      | )      | V      | EA/RS       | 025  | 025        |     |
| 780047 | V970       | Cas        | 01  | 43       | 57.4         | +67   | 47       | 47       | 13.1         | 14.5   |          |        | *      | LB:         | 006  | 2MASS      |     |
| 780048 | V971       | Cas*       | 01  | 44       | 12.0         | +61   | 52       | 19       | 14.43        | ( 0.7  | 7 I      | )      | V      | EA/RS:      | 025  | 025        |     |
| 780049 | V972       | Cas        | 01  | 45       | 18.0         | +61   | 06       | 56       | 9.90         | ( 0.39 | 9 Ic     | )      | Rc     | BE          | 026  | DM         |     |
| 780050 | V973       | Cas        | 01  | 45       | 37.8         | +61   | 07       | 59       | 12.97        | (0.09) | 9 Tc     | )      | Rc     | BE          | 026  | GSC        |     |
| 780051 | V974       | Cas        | 01  | 45       | 39.6         | +61   | 12       | 59       | 12.09        | ( 0.10 | 0 Ic     | )      | Rc     | BE          | 026  | GSC        |     |
| 780052 | V975       | Cas        | 01  | 45       | 46.4         | +61   | 0.9      | 21       | 11.77        | ( 0.10 | 0 T c    | )      | Rc     | BE          | 026  | GSC        |     |
| 780053 | V976       | Cas        | 01  | 45       | 56.1         | +61   | 12       | 46       | 11.58        | ( 0.20 | 0 Tc     | )      | Rc     | BE          | 026  | GSC        |     |
| 780054 | V977       | Cas        | 01  | 45       | 59.3         | +61   | 12       | 46       | 10.23        | ( 0.20 | 0 Tc     | )      | Rc     | BE          | 026  | DM         |     |
|        |            |            |     |          |              |       |          |          |              |        |          | -      |        |             |      |            |     |
IBVS 5721

| No.    | Name    |              | R.1 | A., | Decl | ., 20      | 000       | . 0        | Max          | 1           | Min   |     |        | Туре   | Refe       | erences           |
|--------|---------|--------------|-----|-----|------|------------|-----------|------------|--------------|-------------|-------|-----|--------|--------|------------|-------------------|
|        |         |              | h   | m   | s    | 0          | ,         | "          | m            |             | m     |     |        |        |            |                   |
| 780055 | V978    | Cas          | 01  | 46  | 06.1 | +61        | 13        | 39         | 11.11        | (           | 0.25  | Ic) | Rc     | BE     | 026        | DM                |
| 780056 | V979    | Cas          | 01  | 46  | 14.0 | +61        | 13        | 44         | 12.85        | (           | 0.10  | Ic) | Rc     | BE     | 026        | GSC               |
| 780057 | V980    | Cas          | 01  | 46  | 20.2 | +61        | 14        | 22         | 11.44        | (           | 0.15  | Ic) | Rc     | BE     | 026        | GSC               |
| 780058 | V981    | Cas          | 01  | 46  | 26.8 | +61        | 07        | 42         | 10.20        | (           | 0.15  | Ic) | Rc     | BE     | 026        | DM                |
| 780059 | V982    | Cas          | 01  | 46  | 26.9 | +61        | 14        | 12         | 11.90        | (           | 0.12  | Ic) | Rc     | BE     | 026        | GSC               |
| 780060 | V983    | Cas          | 01  | 46  | 27.7 | +61        | 12        | 26         | 10.34        | (           | 0.35  | Ic) | Rc     | BE     | 026        | GSC               |
| 780061 | V984    | Cas          | 01  | 46  | 30.6 | +61        | 14        | 29         | 11.66        | (           | 0.42  | Ic) | Rc     | BE     | 026        | GSC               |
| 780062 | V985    | Cas          | 01  | 46  | 35.5 | +61        | 15        | 48         | 9.85         | (           | 0.36  | Ic) | Rc     | BE     | 026        | DM                |
| 780063 | V986    | Cas          | 01  | 47  | 03.7 | +61        | 17        | 32         | 12.07        | (           | 0.05  | Ic) | Rc     | BE     | 026        | GSC               |
| 780064 | V987    | Cas          | 01  | 47  | 44.8 | +63        | 51        | 09         | 5.63         | (           | 0.05  | )   | V      | ВҮ     | 005        | DM                |
| 780065 | ΕZ      | Cet          | 01  | 49  | 23.4 | -10        | 42        | 13         | 6.75         | (           | 0.05  | )   | V      | BY     | 005        | DM                |
| 780066 | FF      | Cet          | 01  | 50  | 50.9 | -00        | 07        | 56         | 18.          | (           | 0.93  | )   | V      | RRAB   | 015        | USNO              |
| 780067 | FG      | Cet          | 01  | 50  | 58.2 | -00        | 50        | 51         | 17.5         | (           | 0.82  | )   | V      | RRAB   | 015        | USNO              |
| 780068 | FH      | Cet*         | 01  | 51  | 05.9 | -03        | 32        | 41         | 13.7         |             | 14.7  |     | V      | EA     | 028        | GSC               |
| 780069 | FI      | Cet          | 01  | 51  | 18.6 | -02        | 23        | 01         | 14.0         | 5           | 20.8  |     | R      | UG:    | 029        | 029               |
| 780070 | FK      | Cet          | 01  | 53  | 31.3 | -00        | 34        | 18         | 17.4         | (           | 0.57  | )   | V      | RRAB   | 015        | USNO              |
| 780071 | FL      | Cet*         | 01  | 55  | 43.4 | +00        | 28        | 07         | 15.5         | (           | 5.9   | )   | V      | E+XM   | 030        | USNO              |
| 780072 | V447    | And          | 01  | 58  | 53.9 | +37        | 34        | 43         | 13.39        | (           | 0.03  | )   | V      | RS     | 031        | GSC               |
| 780073 | AR      | For          | 01  | 59  | 30.2 | -31        | 29        | 18         | 10.6         |             | 12.1  |     | V      | SRA    | 130        | 014               |
| 780074 | V988    | Cas          | 02  | 00  | 40.2 | +58        | 31        | 37         | 8.54         | (           | 0.02  | )   | В      | ACVO   | 032        | DM                |
| 780075 | FM      | Cet          | 02  | 02  | 46.0 | -00        | 00        | 02         | 16.          | (           | 0.98  | )   | V      | RRAB   | 015        | USNO              |
| 780076 | V448    | And          | 02  | 03  | 21.2 | +46        | 23        | 48         | 10.5         |             | 13.6  | -   | V      | М      | 332        | GSC               |
| 780077 | AS      | Tri          | 02  | 03  | 58.2 | +29        | 54        | 18         | 8.25         | (           | 0.09  | )   | V      | DSCTC  | 033        | DM                |
| 780078 | FN      | Cet          | 02  | 04  | 59.3 | -15        | 40        | 41         | 7.79         | (           | 0.04  | )   | V      | ВҮ     | 018        | DM                |
| 780079 | FO      | Cet          | 02  | 06  | 10.7 | -10        | 16        | 34         | 6.68         | `           | 6.75  | ,   | V      | GDOR   | 034        | DM                |
| 780080 | FP      | Cet          | 02  | 08  | 25.1 | -00        | 34        | 44         | 18.          | (           | 1.19  | )   | V      | RRAB   | 015        | USNO              |
| 780081 | V678    | Per          | 02  | 09  | 30.3 | +57        | 57        | 38         | 8.71         | (           | 0.02  | )   | В      | DSCTC: | 035        | DM                |
| 780082 | V449    | And          | 02  | 09  | 46.9 | +46        | 43        | 17         | 12.2         |             | 12.9  |     | *      | EW     | 332        | GSC               |
| 780083 | AZ      | Ari          | 02  | 11  | 23.1 | +21        | 22        | 38         | 7.33         | (           | 0.02  | )   | V      | ВҮ     | 018        | DM                |
| 780084 | FQ      | Cet          | 02  | 12  | 18.7 | -13        | 30        | 42         | 10.4         | Ì           | 0.1   | )   | V      | EA     | 036        | DM                |
| 780085 | CV      | Phe          | 02  | 12  | 47.1 | -44        | 29        | 20         | 7.84         | (           | 0.02  | b ) | V      | DSCTC  | 037        | DM                |
| 780086 | V450    | And          | 02  | 12  | 55.0 | +40        | 40        | 06         | 7.19         | Ì           | 0.02  | )   | V      | BY     | 018        | DM                |
| 780087 | V451    | And          | 02  | 13  | 13.3 | +40        | 30        | 27         | 7.35         | Ì           | 0.03  | )   | V      | BY     | 018        | DM                |
| 780088 | V989    | Cas          | 02  | 15  | 42.6 | +67        | 40        | 20         | 7.13         | Ì           | 0.03  | )   | V      | BY     | 018        | DM                |
| 780089 | V990    | Cas*         | 02  | 16  | 41.8 | +67        | 17        | 02         | 7.03         | (           | 0.02  | )   | v      | *      | 018        | DM                |
| 780090 | FR.     | Cet*         | 02  | 24  | 58.4 | -02        | 46        | 48         | 6.31         | `           | 6.65  | ,   | V      | *      | 038        | DM                |
| 780091 | CW      | Hvi          | 02  | 30  | 51.0 | -68        | 42        | 05         | 16.          |             | 18.   |     | v      | ХМ     | 039        | 039               |
| 780092 | FS      | Cet          | 02  | 35  | 07.6 | +03        | 43        | 57         | 12.41        | (           | 0.01  | )   | v      | R.     | 041        | 009               |
| 780093 | FT      | Cet          | 02  | 36  | 41.8 | -03        | 09        | 22         | 8.10         | Ì           | 0.04  | )   | V      | BY     | 018        | DM                |
| 780094 | V679    | Per          | 02  | 38  | 47.6 | +56        | 43        | 10         | 12.9         |             | 14.2  | ,   | *      | SR:    | 006        | 2MASS             |
| 780095 | V680    | Per*         | 02  | 41  | 41.0 | +35        | 42        | 55         | 13.55        |             | 14.13 |     | *      | EW     | 042        | GSC               |
| 780096 | BB      | Ari          | 02  | 44  | 57.7 | +27        | 31        | 09         | 13.5         | <           | 17    |     | *      | UGSU   | 043        | 043               |
| 780097 | AS      | For          | 02  | 46  | 21.1 | -36        | 13        | 36         | 10.2         | <           | 11.2  |     | V      | M      | 332        | USNO              |
| 780098 | BC      | Ari          | 02  | 48  | 09.1 | +27        | 04        | 07         | 7.56         | (           | 0.02  | )   | v      | BY     | 018        | DM                |
| 780099 | AT      | For          | 02  | 51  | 09.4 | -38        | 04        | 53         | 9.28         | `           | 9.90  |     | v      | E.A    | 011        | DM                |
| 780100 | TP      | Eri          | 02  | 54  | 38.8 | -05        | 19        | 51         | 7 32         | (           | 0 04  | )   | v      | BY     | 018        | DM                |
| 780101 | TO      | Eri          | 02  | 55  | 38 0 | -22        | 47        | 03         | 17 6         | $\tilde{c}$ | 0.5   | )   | v      | NI.    | 0.39       | 039               |
| 780102 | рт<br>П | Cot *        | 02  | 59  | 53 2 | -00        | 40        | 47         | 7 86         | $\tilde{c}$ | 0.05  | )   | v      | *      | 018        | оо <i>о</i><br>ма |
| 780103 | V681    | Por          | 02  | 00  | 22.2 | +56        | -10<br>21 | 53         | 14 9         | ΄.          | 16 6  | ,   | *      | SB.    | 006        | 2MASS             |
| 780104 | TR      | Eri          | 03  | 00  | 32 7 | -15        | 16        | 21         | 24.5<br>8 /5 | (           | 0 02  | ١   | v      | RS     | 018        | DM                |
| 780105 | CX      | Hvi          | 03  | 04  | 38 7 | -81        | 13        | 21<br>58   | 9.43<br>9.9  | `.          | 10 1  | ,   | v      | SBS    | 130        | DM                |
| 780106 | VESO    | ny 1<br>Dor  | 03  | 04  | 00.1 | 456<br>456 | 10        | 50<br>50   | 10 /         |             | 15 5  |     | v<br>* | M·     | 006        | OWVdd             |
| 780107 | CY      | ı ⊂⊥<br>Hvi≯ | 03  | 06  | 17 0 | -62        | 10<br>10  | 30<br>30   | 4 2<br>4 2   |             | 9 Q   |     | v      | FW     | 120        | DM                |
| 780100 | TC      | ny⊥*<br>Fri  | 03  | 00  | 12 2 | -00        | 77<br>77  | <u>⊿</u> 7 | 9.0<br>8 10  | (           | 0.06  | )   | v      | BV     | 130<br>019 | M                 |
| 100100 | то      | ل لمن        | 03  | 09  | 42.3 | 09         | 04        | 41         | 0.40         | C           | 0.00  | )   | v      | ום     | 010        | ויוע              |

| No.    | Name  |      | R./ | Α., | Decl | ., 20 | 000 | . 0 | Max   | Min     |          |    | Туре   | Refe | erence | 5    |
|--------|-------|------|-----|-----|------|-------|-----|-----|-------|---------|----------|----|--------|------|--------|------|
|        |       |      | h   | m   | S    | о     | ,   | "   | m     | m       |          |    |        |      |        |      |
| 780109 | V683  | Per  | 03  | 13  | 02.8 | +32   | 53  | 47  | 8.15  | ( 0.02  | )        | V  | ВҮ     | 018  | DM     |      |
| 780110 | V684  | Per  | 03  | 16  | 56.1 | +55   | 52  | 33  | 13.0  | 15.1    |          | *  | SR:    | 006  | 2MASS  |      |
| 780111 | V991  | Cas  | 03  | 16  | 58.1 | +67   | 02  | 45  | 12.2  | 15.0    |          | *  | М      | 006  | 2MASS  | 040  |
| 780112 | V685  | Per  | 03  | 20  | 10.9 | +45   | 58  | 18  | 13.0  | <15.0   |          | *  | SR:    | 006  | GSC    | 040  |
| 780113 | V686  | Per  | 03  | 20  | 59.5 | +33   | 13  | 06  | 7.94  | ( 0.04  | )        | V  | ВҮ     | 018  | DM     |      |
| 780114 | V687  | Per  | 03  | 23  | 12.1 | +33   | 04  | 42  | 7.96  | ( 0.02  | )        | V  | BY     | 018  | DM     |      |
| 780115 | LX    | Cam  | 03  | 24  | 46.1 | +55   | 52  | 12  | 12.1  | <14.5   |          | *  | M:     | 006  | 2MASS  | 040  |
| 780116 | V688  | Per  | 03  | 26  | 04.2 | +48   | 48  | 07  | 10.65 | 10.71   |          | V  | ВҮ     | 044  | GSC    |      |
| 780117 | V1220 | Tau  | 03  | 28  | 09.6 | -01   | 18  | 05  | 11.9  | 12.5    |          | V  | EB     | 045  | GSC    |      |
| 780118 | V1221 | Tau  | 03  | 28  | 15.0 | +04   | 09  | 48  | 9.49  | 9.56    |          | V  | ВҮ     | 046  | DM     |      |
| 780119 | V1222 | Tau  | 03  | 28  | 25.8 | +09   | 04  | 24  | 13.28 | 13.64   |          | *  | EW     | 047  | GSC    |      |
| 780120 | V1223 | Tau  | 03  | 29  | 14.7 | +09   | 11  | 20  | 12.13 | 12.59   |          | *  | EW     | 047  | GSC    |      |
| 780121 | V1224 | Tau  | 03  | 29  | 38.4 | +24   | 30  | 38  | 12.05 | 12.23   |          | V  | INT    | 048  | GSC    |      |
| 780122 | V689  | Per  | 03  | 32  | 10.2 | +49   | 08  | 29  | 11.99 | 12.11   |          | V  | BY     | 044  | GSC    |      |
| 780123 | I.Y   | Cam  | 03  | 35  | 08.3 | +55   | 04  | 55  | 10.7  | <12.4   |          | *  | SRA:   | 006  | 2MASS  | 040  |
| 780124 | V690  | Per  | 03  | 36  | 54.3 | +40   | 55  | 40  | 12.2  | ( 0.05  | )        | v  | DSCTC: | 049  | 049    | 0 10 |
| 780125 | V691  | Per  | 03  | 37  | 15.0 | +40   | 54  | 00  | 11.2  | (0.03)  | )        | v  | DSCTC: | 049  | 049    |      |
| 780126 | V1225 | Тап  | 03  | 39  | 51 2 | +25   | 11  | 41  | 8 81  | (0.08)  | ý        | v  | GDOR   | 050  | DM     |      |
| 780127 | TT    | Eri  | 03  | 42  | 33.6 | -14   | 50  | 43  | 9.1   | 9.6     | '        | v  | SRB    | 130  | DM     | 040  |
| 780128 | V692  | Per  | 03  | 44  | 11.3 | +32   | 06  | 12  | 14.22 | (0.15   | )        | Tc | TNT    | 051  | 052    | 0 10 |
| 780129 | V693  | Per  | 03  | 44  | 16.4 | +32   | 09  | 55  | 12.63 | ( 0.07  | )        | Τc | TNT    | 051  | 052    |      |
| 780130 | V694  | Per  | 03  | 44  | 18.2 | +32   | 09  | 59  | 15.53 | 16.06   | ,        | Τc | TNT    | 051  | 052    |      |
| 780131 | V695  | Per  | 03  | 44  | 19.2 | +32   | 07  | 35  | 14.87 | ( 0.65  | )        | Tc | TNT    | 051  | 052    |      |
| 780132 | V696  | Per  | 03  | 44  | 21.6 | +32   | 10  | 17  | 14.55 | ( 0.26  | )        | Tc | TNT    | 051  | 052    |      |
| 780133 | V697  | Per  | 03  | 44  | 21.6 | +32   | 10  | 38  | 14.80 | 15.98   | '        | Tc | TNT    | 051  | 052    |      |
| 780134 | V698  | Per  | 03  | 44  | 22.3 | +32   | 05  | 43  | 14.75 | 15.25   |          | Tc | TNT    | 051  | 052    |      |
| 780135 | V699  | Per  | 03  | 44  | 23.7 | +32   | 06  | 47  | 14.15 | ( 0.14  | )        | Ic | INT    | 051  | 052    |      |
| 780136 | V700  | Per  | 03  | 44  | 25.6 | +32   | 12  | 30  | 13.57 | (0.18   | )        | Τc | BY     | 051  | 054    |      |
| 780137 | V701  | Per  | 03  | 44  | 26.6 | +32   | 03  | 58  | 14.04 | (0.18   | )        | Τc | BY     | 051  | 054    |      |
| 780138 | V702  | Per  | 03  | 44  | 27.2 | +32   | 10  | 37  | 15.96 | 17.12   | <i>`</i> | Ic | INT    | 051  | 052    |      |
| 780139 | V703  | Per  | 03  | 44  | 27.9 | +32   | 07  | 32  | 14.08 | ( 0.06  | )        | Ic | INT    | 051  | 052    |      |
| 780140 | V704  | Per  | 03  | 44  | 28.5 | +32   | 07  | 23  | 13.33 | ( 0.24  | )        | Ic | INT    | 051  | 052    |      |
| 780141 | V705  | Per  | 03  | 44  | 31.2 | +32   | 06  | 22  | 10.56 | ( 0.04  | )        | V  | DSCTC: | 053  | 052    |      |
| 780142 | V706  | Per  | 03  | 44  | 31.5 | +32   | 08  | 45  | 12.12 | ( 0.08  | )        | Tc | TNT    | 051  | 052    |      |
| 780143 | V707  | Per  | 03  | 44  | 32.8 | +32   | 09  | 16  | 14.69 | ( 0.24  | )        | Ic | INT    | 051  | 052    |      |
| 780144 | V708  | Per  | 03  | 44  | 34.0 | +32   | 08  | 54  | 13.55 | ( 0.18  | )        | Ic | INT    | 051  | 052    |      |
| 780145 | V709  | Per  | 03  | 44  | 37.4 | +32   | 06  | 12  | 13.78 | ( 0.08  | )        | Ic | INT    | 051  | 052    |      |
| 780146 | V710  | Per  | 03  | 44  | 37.4 | +32   | 09  | 01  | 14.63 | 14.97   |          | Ic | INT    | 051  | 052    |      |
| 780147 | V711  | Per  | 03  | 44  | 37.8 | +32   | 12  | 18  | 15.40 | ( 0.35  | )        | Ic | INT    | 051  | 2MASS  |      |
| 780148 | V712  | Per  | 03  | 44  | 38.0 | +32   | 03  | 30  | 12.97 | 14.95   | <i>`</i> | Ic | INT    | 051  | 054    |      |
| 780149 | V713  | Per  | 03  | 44  | 38.0 | +32   | 11  | 37  | 15.40 | 15.84   |          | Ic | INT    | 051  | 052    |      |
| 780150 | V714  | Per  | 03  | 44  | 38.4 | +32   | 13  | 00  | 14.55 | ( 0.20  | )        | Τc | TNT    | 318  | 2MASS  |      |
| 780151 | V715  | Per  | 03  | 44  | 38.4 | +32   | 07  | 36  | 13.21 | (0.17   | )        | Ic | INT    | 051  | 052    |      |
| 780152 | V716  | Per  | 03  | 44  | 38.5 | +32   | 08  | 01  | 14.11 | (0.29   | )        | Ic | INT    | 051  | 052    |      |
| 780153 | V717  | Per  | 03  | 44  | 38.7 | +32   | 08  | 42  | 13.86 | (0.12   | )        | Ic | INT    | 051  | 052    |      |
| 780154 | V718  | Per  | 03  | 44  | 39.2 | +32   | 07  | 36  | 12.95 | 13.65   | ,        | Τc | E:     | 055  | 052    |      |
| 780155 | V719  | Per  | 03  | 44  | 43.8 | +32   | 10  | 31  | 14.12 | 14.80   |          | Ic | INT    | 051  | 052    |      |
| 780156 | V1226 | Tau* | 03  | 45  | 43.2 | +25   | 40  | 23  | 17.36 | ( 0.01: | )        | Ic | *      | 007  | 2MASS  |      |
| 780157 | V1227 | Tau  | 03  | 45  | 44.5 | +24   | 42  | 50  | 11.1  | ( 0.15  | )        | V  | ВҮ     | 048  | 056    |      |
| 780158 | V720  | Per  | 03  | 46  | 12.8 | +51   | 33  | 24  | 11.3  | 13.0    | 1        | *  | SR:    | 006  | GSC    |      |
| 780159 | V1228 | Tau  | 03  | 47  | 24.1 | +24   | 35  | 18  | 7.71  | (0.02 v | )        | V  | DSCTC  | 057  | DM     |      |
| 780160 | V1229 | Tau* | 03  | 47  | 29.5 | +24   | 17  | 18  | 6.84  | 6.94    | ,        | V  | EA     | 058  | DM     |      |
| 780161 | LZ    | Cam* | 03  | 47  | 45.0 | +63   | 28  | 25  | 19.5  | 20.6    |          | V  | EB     | 059  | 059    |      |
| 780162 | MM    | Cam* | 03  | 51  | 00.5 | +69   | 06  | 10  | 7.11  | ( 0.04  | )        | V  | *      | 018  | DM     |      |

| No.    | Name          |                | R./ | A.,      | Decl | ., 20 | 000 | . 0                  | Max   | 1                        | Min    |   |          |    | Туре       | Refe | erences | 5   |
|--------|---------------|----------------|-----|----------|------|-------|-----|----------------------|-------|--------------------------|--------|---|----------|----|------------|------|---------|-----|
|        |               |                | h   | m        | S    | 0     | ,   | "                    | m     |                          | m      |   |          |    |            |      |         |     |
| 780163 | V1230         | Tau*           | 03  | 53       | 06.0 | +10   | 26  | 45                   | 14.28 |                          | 14.52  |   |          | *  | EW         | 060  | GSC     |     |
| 780164 | MN            | $\mathtt{Cam}$ | 03  | 57       | 29.8 | +54   | 56  | 18                   | 11.2  | :                        | 11.7   |   |          | *  | DCEP       | 061  | GSC     | 040 |
| 780165 | MO            | $\mathtt{Cam}$ | 03  | 58       | 59.4 | +56   | 11  | 13                   | 11.14 | :                        | 11.39  |   |          | V  | BE         | 062  | GSC     |     |
| 780166 | V721          | Per            | 04  | 00       | 39.7 | +51   | 21  | 02                   | 11.7  |                          | 13.9   |   |          | *  | SRA        | 332  | 2MASS   |     |
| 780167 | MP            | Cam*           | 04  | 01       | 01.2 | +55   | 11  | 10                   | 12.5  |                          | 14.3   |   |          | *  | EB:        | 214  | 214     |     |
| 780168 | MQ            | Cam            | 04  | 01       | 31.0 | +55   | 02  | 43                   | 11.9  |                          | 12.3   |   |          | *  | DCEP       | 061  | GSC     |     |
| 780169 | MR.           | Cam            | 04  | 12       | 18.1 | +58   | 40  | 05                   | 9.8   |                          | 12.6   |   |          | *  | М          | 040  | GSC     |     |
| 780170 | TU            | Eri            | 04  | 16       | 36.0 | -10   | 05  | 09                   | 7.49  |                          | 7.55   |   |          | Hŋ | DSCTC      | 024  | DM      |     |
| 780171 | V1231         | Tau            | 04  | 16       | 50.8 | +18   | 52  | 21                   | 15 46 |                          | 15 93  |   |          | *  | RRC        | 063  |         |     |
| 780172 | V1201<br>V722 | Dor            | 04  | 17       | 01 5 | +35   | 31  | 11                   | 10.40 | (                        | 0 15   |   | \$       | R  | BV         | 064  | 064     |     |
| 780173 | V122          | Tau            | 04  | 18       | 01.0 | +18   | 15  | 24                   | 7 53  | $\tilde{c}$              | 0.15   |   | )<br>)   | V  | BG         | 019  | т<br>М  |     |
| 780174 | V1252<br>TV   | Tau<br>Fri     | 04  | 21       | 15 / | -35   | 10  | 2 <del>1</del><br>1/ | 12 0  |                          | 13 5   |   | <i>,</i> | v  | DDAD       | 130  | DM      |     |
| 700174 | 1V<br>V1022   | EI I<br>Teu    | 04  | 21       | 10.4 | -30   |     | 14<br>E1             | 12.0  |                          | 0.00   |   | `        | v  | RRAD<br>DV | 130  |         |     |
| 700175 | V1233         | Tau<br>Tau     | 04  | 25       | 51.7 | +10   | 21  | 20                   | 0.07  | (                        | 10.02  |   | )        | V  | DI<br>VM   | 010  |         |     |
| 780176 | TM            | Eri            | 04  | 25       | 55.2 | -19   | 45  | 30                   | 10.7  |                          | 18.0   |   |          | v  |            | 039  | 039     |     |
| /801// | V1234         | lau*           | 04  | 29       | 25.0 | +09   | 05  | 30                   | 12.6  |                          | 13.0   |   |          | *  | LW         | 065  | GSC     |     |
| 780178 | V1235         | Tau            | 04  | 32       | 10.2 | +17   | 43  | 18                   | 10.96 |                          | 11.00  |   |          | V  | DSCTC      | 022  | GSC     |     |
| 780179 | MS            | Cam            | 04  | 33       | 54.3 | +64   | 38  | 00                   | 7.75  | (                        | 0.03   |   | )        | V  | BY         | 018  | DM      |     |
| 780180 | MT            | Cam*           | 04  | 40       | 24.5 | +55   | 25  | 15                   | 12.94 |                          | 13.54  |   |          | *  | EW         | 214  | 214     |     |
| 780181 | IX            | Eri            | 04  | 47       | 36.3 | -16   | 56  | 04                   | 5.47  |                          | 5.51   |   |          | V  | BY         | 005  | DM      |     |
| 780182 | V536          | Aur            | 04  | 53       | 56.2 | +36   | 45  | 27                   | 7.77  | (                        | 0.03   |   | )        | V  | BY         | 018  | DM      |     |
| 780183 | V1648         | Ori            | 04  | 55       | 30.3 | +03   | 04  | 28                   | 12.9  | <:                       | 14.6   |   |          | V  | М          | 332  | GSC     |     |
| 780184 | V537          | Aur            | 05  | 08       | 45.0 | +40   | 15  | 17                   | 12.1  | (                        | 0.05   |   | )        | V  | DSCTC      | 067  | GSC     |     |
| 780185 | V1236         | Tau            | 05  | 16       | 28.8 | +26   | 07  | 39                   | 18.1  | (                        | 0.17   | * | )        | V  | EA         | 068  | 068     |     |
| 780186 | AS            | Col            | 05  | 20       | 38.0 | -39   | 45  | 18                   | 7.34  |                          | 7.38   |   |          | V  | RS:        | 046  | DM      |     |
| 780187 | V1649         | Ori            | 05  | 23       | 31.1 | +05   | 19  | 23                   | 6.34  | (                        | 0.01   | b | )        | V  | DSCTC      | 037  | DM      |     |
| 780188 | V1237         | Tau*           | 05  | 26       | 21.1 | +24   | 49  | 51                   | 14.03 | (                        | 0.20   | * | )        | V  | EW         | 070  | 070     |     |
| 780189 | AF            | Lep            | 05  | 27       | 04.8 | -11   | 54  | 03                   | 6.26  |                          | 6.35   |   |          | V  | RS         | 071  | DM      |     |
| 780190 | V1650         | Ori*           | 05  | 29       | 11.4 | -06   | 80  | 05                   | 10.43 |                          | 11.5 : |   |          | V  | INB:       | 038  | DM      |     |
| 780191 | AG            | Lep            | 05  | 30       | 19.1 | -19   | 16  | 32                   | 9.62  |                          | 9.67   |   |          | v  | ВҮ         | 046  | DM      |     |
| 780192 | V1651         | Ori            | 05  | 31       | 27.2 | -05   | 10  | 29                   | 12.00 | (                        | 0.07   |   | )        | Ic | INB        | 072  | GSC     |     |
| 780193 | V1652         | Ori            | 05  | 31       | 31.1 | -05   | 06  | 29                   | 12.95 | (                        | 0.07   |   | )        | Τc | TNB        | 072  | USNO    |     |
| 780194 | V1653         | Ori            | 05  | 32       | 02.3 | -05   | 23  | 37                   | 14 21 | Ì                        | 0 04   |   | )        | Tc | TNR        | 072  | USNO    |     |
| 780195 | V1654         | Ori            | 05  | 32       | 11 0 | -05   | 24  | 35                   | 13 55 | $\tilde{(}$              | 0.05   |   | )        | Tc | TNR        | 072  | USNO    |     |
| 780106 | V1655         | Ori            | 05  | 32       | 11 7 | -05   | 07  | 00                   | 11 96 | $\tilde{c}$              | 0.00   |   | )<br>)   | Tc | TNR        | 072  | CSC     |     |
| 780197 | V1656         | Ori            | 05  | 32       | 18 9 | -05   | 05  | 27                   | 13 48 | $\tilde{\boldsymbol{c}}$ | 0.00   |   | )<br>)   | Tc | TNR        | 072  |         |     |
| 780108 | V1657         | Ori            | 00  | 33       | 10.0 | -05   | 23  | 10                   | 10.40 | $\tilde{c}$              | 0.10   |   | ,<br>\   | TC |            | 072  | CSC     |     |
| 780100 | V1658         | Ori            | 05  | 33       | 1/ / | -05   | 13  | 10                   | 12.50 | $\tilde{c}$              | 0.10   |   | )<br>\   | TC |            | 072  |         |     |
| 700199 | V1650         |                | 05  | 22       | 14.4 | -05   | 10  | <del>2</del> 0       | 14 20 | (                        | 0.52   |   | )<br>\   |    |            | 072  | USNO    |     |
| 700200 | V1009         |                | 05  | 22       | 10.0 | 05    | 11  | 0 <i>3</i>           | 14.20 | $\left( \right)$         | 0.13   |   | ,<br>\   | TC |            | 072  | USNO    |     |
| 700201 | V1000         |                | 05  | 33<br>22 | 20.4 | -05   | 11  | 24<br>17             | 12.02 | (                        | 0.08   |   | )<br>\   | 10 |            | 072  | USNO    |     |
| 780202 | V1001         | Uri            | 05  | 33       | 21.0 | -05   | 04  | 11                   | 13.87 |                          | 0.08   |   | )        | 10 | IND        | 072  | USNU    |     |
| 780203 | V1662         | Uri            | 05  | 33       | 22.5 | -05   | 23  | 03                   | 14.04 | (                        | 0.10   |   | )        | 1C | INB        | 072  | USNU    |     |
| 780204 | V1663         | Uri            | 05  | 33       | 31.1 | -05   | 25  | 23                   | 13.07 | (                        | 0.07   |   | )        | 1c | INB        | 072  | USNU    |     |
| 780205 | V1664         | Ori            | 05  | 33       | 39.8 | -05   | 19  | 54                   | 14.39 | (                        | 0.17   |   | )        | 1c | INB        | 072  | USNO    |     |
| 780206 | V1665         | Ori            | 05  | 33       | 41.6 | -04   | 56  | 00                   | 14.45 | (                        | 0.08   |   | )        | Ic | INB        | 072  | USNO    |     |
| 780207 | V1666         | Ori            | 05  | 33       | 44.5 | -06   | 05  | 20                   | 14.50 | (                        | 0.11   |   | )        | Ic | INB        | 072  | USNO    |     |
| 780208 | V1667         | Ori            | 05  | 33       | 46.1 | -05   | 34  | 26                   | 12.34 | (                        | 0.11   |   | )        | Ic | INB        | 072  | USNO    |     |
| 780209 | V1668         | Ori            | 05  | 33       | 46.3 | -06   | 13  | 05                   | 14.79 | (                        | 0.08   |   | )        | Ic | INB        | 072  | USNO    |     |
| 780210 | V1669         | Ori            | 05  | 33       | 54.8 | -05   | 08  | 31                   | 14.69 | (                        | 0.08   |   | )        | Ic | INB        | 072  | USNO    |     |
| 780211 | AH            | Lep            | 05  | 34       | 09.2 | -15   | 17  | 03                   | 8.46  |                          | 8.50   |   |          | V  | ВҮ         | 046  | DM      |     |
| 780212 | V1670         | Ori            | 05  | 34       | 14.4 | -04   | 58  | 34                   | 14.62 | (                        | 0.06   |   | )        | Ic | INB        | 072  | USNO    |     |
| 780213 | V1671         | Ori            | 05  | 34       | 18.5 | -05   | 34  | 00                   | 12.60 | (                        | 0.10   |   | )        | Ic | INB        | 072  | 2MASS   |     |
| 780214 | V1672         | Ori            | 05  | 34       | 20.3 | -04   | 34  | 03                   | 13.52 | (                        | 0.06   |   | )        | Ic | INB        | 072  | USNO    |     |
| 780215 | V1673         | Ori            | 05  | 34       | 20.7 | -04   | 35  | 02                   | 14.12 | (                        | 0.08   |   | )        | Ic | INB        | 072  | USNO    |     |
| 780216 | V1674         | Ori            | 05  | 34       | 20.8 | -05   | 23  | 29                   | 14.18 | (                        | 0.10   |   | )        | Ic | INB        | 072  | 2MASS   |     |

| No.    | Name     |     | R. <i>I</i> | A.,      | Decl. | ., 20 | 000           | . 0      | Max   | l                           | Min  |        |          | Туре | Ref | erences |
|--------|----------|-----|-------------|----------|-------|-------|---------------|----------|-------|-----------------------------|------|--------|----------|------|-----|---------|
|        |          |     | h           | m        | S     | 0     | ,             | "        | m     |                             | m    |        |          |      |     |         |
| 780217 | V1675    | Ori | 05          | 34       | 23.8  | -05   | 08            | 16       | 13.70 | (                           | 0.08 | )      | Ic       | INB  | 072 | USNO    |
| 780218 | V1676    | Ori | 05          | 34       | 23.9  | -05   | 15            | 40       | 11.19 | (                           | 0.16 | Ic)    | J        | INB  | 072 | USNO    |
| 780219 | V1677    | Ori | 05          | 34       | 24.3  | -06   | 06            | 56       | 12.96 | (                           | 0.10 | )      | Ic       | INB  | 072 | USNO    |
| 780220 | V1678    | Ori | 05          | 34       | 25.3  | -04   | 54            | 39       | 13.24 | (                           | 0.09 | )      | Ic       | INB  | 072 | USNO    |
| 780221 | V1679    | Ori | 05          | 34       | 26.1  | -06   | 15            | 33       | 15.64 | (                           | 0.14 | )      | Ic       | INB  | 072 | USNO    |
| 780222 | V1680    | Ori | 05          | 34       | 28.1  | -06   | 16            | 13       | 12.67 | (                           | 0.30 | )      | Ic       | INB  | 072 | USNO    |
| 780223 | V1681    | Ori | 05          | 34       | 29.6  | -05   | 04            | 29       | 15.50 | (                           | 0.10 | )      | Ic       | INB  | 072 | 2MASS   |
| 780224 | V1682    | Ori | 05          | 34       | 30.4  | -04   | 57            | 05       | 14.40 | (                           | 0.07 | )      | Ic       | INB  | 072 | USNO    |
| 780225 | V1683    | Ori | 05          | 34       | 31.0  | -05   | 58            | 04       | 15.53 | (                           | 0.10 | )      | Ic       | INB  | 072 | 2MASS   |
| 780226 | V1684    | Ori | 05          | 34       | 32.2  | -05   | 41            | 49       | 14.67 | (                           | 0.10 | )      | Ic       | INB  | 072 | 2MASS   |
| 780227 | V1685    | Ori | 05          | 34       | 33.7  | -04   | 44            | 15       | 14.95 | Ì                           | 0.14 | ý      | Ic       | INB  | 072 | USNO    |
| 780228 | V1686    | Ori | 05          | 34       | 35.5  | -04   | 27            | 21       | 11.17 | Ì                           | 0.04 | )      | Τc       | TNB  | 072 | GSC     |
| 780229 | V1687    | Ori | 05          | 34       | 37.2  | -04   | 38            | 24       | 15.41 | $\tilde{(}$                 | 0.11 | ý      | Τc       | TNB  | 072 | 2MASS   |
| 780230 | V1688    | Ori | 05          | 34       | 38 0  | -04   | 51            | 09       | 14 06 | $\tilde{c}$                 | 0 10 | ý      | Tc       | TNR  | 072 | USNO    |
| 780231 | V1689    | Ori | 05          | 34       | 38 7  | -05   | 57            | 43       | 12 09 | $\tilde{c}$                 | 0.10 | )      | Tc       | IND  | 072 | USNO    |
| 780232 | V1690    | Ori | 05          | 34       | 30.1  | -06   | 07            | 3/       | 12.00 | $\tilde{c}$                 | 0.00 | )      | Tc       | IND  | 072 | UGNO    |
| 780232 | V1601    | Ori | 05          | 3/       | 10 6  | -04   | 13            | 31       | 1/ 58 | $\tilde{c}$                 | 0.04 | )      | Tc       | TNB  | 072 | ONAGG   |
| 700233 | V1091    |     | 05          | 24       | 40.0  | -04   | 40            | 20       | 19.00 | $\left( \right)$            | 0.09 | )      | IC<br>To | TND  | 072 | LIGNO   |
| 700234 | V1692    |     | 05          | 34<br>24 | 40.9  | -04   | 40<br>4 E     | 10       | 12.40 | $\left( \right)$            | 0.00 | )      | TC<br>TC | TND  | 072 | USNO    |
| 700000 | V1693    | Ori | 05          | 34       | 41.0  | -05   | 45            | 10       | 11.60 |                             | 0.20 | )      | IC<br>T- | TND  | 072 | USNO    |
| 780236 | V1694    | Uri | 05          | 34       | 41.8  | -04   | 53            | 40       | 13.13 |                             | 0.44 | )      | 1C<br>T  | INB  | 072 | USNU    |
| 780237 | V1695    | Uri | 05          | 34       | 42.0  | -05   | 02            | 25       | 14.98 | (                           | 0.16 | )      | 1C<br>T  | INB  | 072 | 2MASS   |
| 780238 | V1696    | Uri | 05          | 34       | 43.1  | -06   | 12            | 39       | 13.49 | (                           | 0.22 | )      | 1c<br>-  | INB  | 072 | USNU    |
| 780239 | V1697    | Ori | 05          | 34       | 44.0  | -04   | 39            | 38       | 15.28 | (                           | 0.08 | )      | 1c       | INB  | 072 | 2MASS   |
| 780240 | V1698    | Ori | 05          | 34       | 45.0  | -04   | 55            | 39       | 15.06 | (                           | 0.10 | )      | Ic       | INB  | 072 | 2MASS   |
| 780241 | V1699    | Ori | 05          | 34       | 46.4  | -04   | 54            | 02       | 16.22 | (                           | 0.31 | )      | Ic       | INB  | 072 | 2MASS   |
| 780242 | V1700    | Ori | 05          | 34       | 46.9  | -04   | 59            | 13       | 13.19 | (                           | 0.07 | )      | Ic       | INB  | 072 | USNO    |
| 780243 | V1701    | Ori | 05          | 34       | 47.6  | -05   | 43            | 51       | 11.34 | (                           | 0.11 | )      | Ic       | INB  | 072 | GSC     |
| 780244 | V1702    | Ori | 05          | 34       | 48.1  | -06   | 18            | 12       | 14.21 | (                           | 0.05 | )      | Ic       | INB  | 072 | USNO    |
| 780245 | V1703    | Ori | 05          | 34       | 48.2  | -04   | 47            | 40       | 11.55 | (                           | 0.09 | )      | Ic       | INB  | 072 | USNO    |
| 780246 | V1704    | Ori | 05          | 34       | 48.6  | -04   | 47            | 50       | 14.05 | (                           | 0.22 | )      | Ic       | INB  | 072 | 2MASS   |
| 780247 | V1705    | Ori | 05          | 34       | 50.9  | -06   | 00            | 14       | 13.51 | (                           | 0.11 | )      | Ic       | INB  | 072 | USNO    |
| 780248 | V1706    | Ori | 05          | 34       | 51.1  | -04   | 43            | 41       | 11.64 | (                           | 0.06 | )      | Ic       | INB  | 072 | USNO    |
| 780249 | V1707    | Ori | 05          | 34       | 51.3  | -04   | 47            | 57       | 11.38 | (                           | 0.10 | )      | Ic       | INB  | 072 | 2MASS   |
| 780250 | V1708    | Ori | 05          | 34       | 52.1  | -06   | 03            | 21       | 13.22 | (                           | 0.07 | )      | Ic       | INB  | 072 | USNO    |
| 780251 | V1709    | Ori | 05          | 34       | 52.2  | -04   | 28            | 16       | 13.13 | (                           | 0.18 | )      | Ic       | INB  | 072 | USNO    |
| 780252 | V1710    | Ori | 05          | 34       | 55.6  | -06   | 01            | 04       | 13.39 | (                           | 0.05 | )      | Ic       | INB  | 072 | 2MASS   |
| 780253 | V1711    | Ori | 05          | 34       | 55.7  | -04   | 37            | 49       | 13.91 | (                           | 0.05 | )      | Ic       | INB  | 072 | USNO    |
| 780254 | V1712    | Ori | 05          | 34       | 59.2  | -05   | 44            | 55       | 14.79 | (                           | 0.6  | )      | Ic       | INB  | 072 | 2MASS   |
| 780255 | V1713    | Ori | 05          | 35       | 02.0  | -04   | 41            | 14       | 15.05 | (                           | 0.09 | )      | Ic       | INB  | 072 | 2MASS   |
| 780256 | V1714    | Ori | 05          | 35       | 02.4  | -04   | 49            | 16       | 13.78 | (                           | 0.16 | )      | Ic       | INB  | 072 | 2MASS   |
| 780257 | V1715    | Ori | 05          | 35       | 02.7  | -04   | 49            | 29       | 12.10 | (                           | 0.05 | )      | Ic       | INB  | 072 | 2MASS   |
| 780258 | V1716    | Ori | 05          | 35       | 02.8  | -05   | 51            | 03       | 13.60 | (                           | 0.15 | )      | Ic       | INB  | 072 | USNO    |
| 780259 | V1717    | Ori | 05          | 35       | 03.0  | -05   | 45            | 33       | 14.96 | (                           | 0.30 | )      | Ic       | INB  | 072 | 2MASS   |
| 780260 | V1718    | Ori | 05          | 35       | 03.3  | -04   | 49            | 21       | 10.82 | (                           | 0.34 | )      | Ic       | INT  | 072 | 2MASS   |
| 780261 | V1719    | Ori | 05          | 35       | 04.0  | -05   | 40            | 52       | 13.35 | (                           | 0.08 | )      | Ic       | INB  | 072 | 2MASS   |
| 780262 | V1720    | Ori | 05          | 35       | 05.0  | -04   | 49            | 13       | 12.83 | (                           | 0.12 | )      | Ic       | INB  | 072 | 2MASS   |
| 780263 | V1721    | Ori | 05          | 35       | 06.8  | -05   | 10            | 39       | 14.02 | Ì                           | 0.06 | )      | Τc       | TNB  | 072 | 2MASS   |
| 780264 | V1722    | Ori | 05          | 35       | 07.0  | -04   | 54            | 57       | 13.44 | Ì                           | 0.11 | )      | Τc       | TNB  | 072 | USNO    |
| 780265 | V1723    | Ori | 05          | 35       | 07 9  | -04   | 35            | 49       | 14 45 | $\tilde{c}$                 | 0 18 | ý      | Tc       | TNR  | 072 | USNO    |
| 780266 | V1724    | Ori | 05          | 35       | 08 7  | -05   | 04            | 41       | 13.87 | $\tilde{c}$                 | 0.05 | )      | Tc       | TNR  | 072 | USNO    |
| 780267 | V1725    | Ori | 05          | 35       | 10 1  | -04   | 51            | 08       | 13 86 | $\tilde{c}$                 | 0 10 | )      | Tc       | TNR  | 072 | 2MASS   |
| 780268 | V1726    | Ori | 05          | 35       | 11 0  | -04   | 47            | 12       | 14 12 | $\tilde{c}$                 | 0 08 | )      | Tc       | TNR  | 072 | 2MASS   |
| 780260 | V1707    | Ori | 05          | 35       | 10 5  | -04   | ΔΛ            | 26       | 11 07 | $\tilde{c}$                 | 0 11 | )      | Tc       | TNR  | 072 | 2MASS   |
| 780203 | V1709    | Ori | 05          | 35       | 14 6  | -0F   | - <u>1</u> -1 | 20<br>25 | 1/ 12 | $\tilde{\boldsymbol{\ell}}$ | 0.11 | י<br>א | TC<br>TC | TNP  | 072 |         |
| 100210 | V 1 I ZO | ULT | 00          | 00       | 14.0  | 05    | 02            | 20       | 14.12 | ſ                           | 0.11 | )      | тC       | TND  | 012 | UNICO   |

8

| No.    | Name            |     | R./ | Α., | Decl | ., 20 | 000 | .0       | Max   | ľ                | Min   |   |          | Туре | Ref | erences |
|--------|-----------------|-----|-----|-----|------|-------|-----|----------|-------|------------------|-------|---|----------|------|-----|---------|
|        |                 |     | h   | m   | S    | 0     | ,   | "        | m     |                  | m     |   |          |      |     |         |
| 780271 | V1729           | Ori | 05  | 35  | 16.3 | -06   | 18  | 43       | 14.48 | (                | 0.29  | ) | Ic       | INB  | 072 | USNO    |
| 780272 | V1730           | Ori | 05  | 35  | 16.8 | -04   | 40  | 32       | 11.59 | (                | 0.21  | ) | Ic       | INB  | 072 | 2MASS   |
| 780273 | V1731           | Ori | 05  | 35  | 19.5 | -05   | 36  | 52       | 13.45 | (                | 0.08  | ) | Ic       | INB  | 072 | 2MASS   |
| 780274 | V1732           | Ori | 05  | 35  | 19.8 | -05   | 45  | 41       | 13.77 | (                | 0.10  | ) | Ic       | INB  | 072 | USNO    |
| 780275 | V1733           | Ori | 05  | 35  | 20.8 | -04   | 58  | 34       | 14.27 | (                | 0.16  | ) | Ic       | INB  | 072 | USNO    |
| 780276 | V1734           | Ori | 05  | 35  | 21.3 | -05   | 56  | 36       | 14.13 | (                | 0.09  | ) | Τc       | TNB  | 072 | 2MASS   |
| 780277 | V1735           | Ori | 05  | 35  | 22.5 | -05   | 09  | 11       | 11.67 | $\tilde{(}$      | 0.10  | Ś | Τc       | TNB  | 072 | USNO    |
| 780278 | V1736           | Ori | 05  | 35  | 23.2 | -04   | 43  | 03       | 12 52 | $\tilde{c}$      | 0 10  | Ś | Tc       | TNR  | 072 | 2MASS   |
| 780270 | V1737           | Ori | 05  | 35  | 26.0 | -04   | 34  | 57       | 15 02 | $\tilde{c}$      | 0.10  | Ś | Tc       | IND  | 072 | USNO    |
| 700213 | V1720           |     | 00  | 25  | 20.0 | -04   | 15  | 02       | 11 02 | $\tilde{c}$      | 0.11  | > |          |      | 072 |         |
| 700200 | V1720           | Ori | 05  | 25  | 21.9 | -04   | 40  | 03       | 11.03 | (                | 0.04  | ) | IC<br>Tc |      | 072 |         |
| 700201 | V1739           | 011 | 05  | 25  | 20.0 | -04   | 00  | 04       | 10 12 | $\left( \right)$ | 0.00  | ) | IC<br>To |      | 072 |         |
| 700202 | V1740           | 011 | 05  | 35  | 29.0 | -05   |     | 04       | 12.13 | $\left( \right)$ | 0.07  |   |          |      | 072 | OMAGG   |
| 700004 | V1741           | Ori | 05  | 35  | 30.5 | -04   | 1 d | 29       | 12.70 |                  | 0.13  |   |          | TND  | 072 | ZMASS   |
| 780284 | V1742           | Uri | 05  | 35  | 31.5 | -06   | 14  | 19       | 14.03 |                  | 0.10  |   | 1C<br>T  | INB  | 072 | USNU    |
| 780285 | V1743           | Uri | 05  | 35  | 31.7 | -04   | 41  | 80       | 14.71 | (                | 0.21  |   | 1C       | INB  | 072 | 2MASS   |
| 780286 | V1/44           | Uri | 05  | 35  | 33.1 | -05   | 41  | 80       | 14.01 | (                | 0.06  | ) | 1c       | INB  | 072 | 2MASS   |
| 780287 | V1745           | Ori | 05  | 35  | 33.5 | -04   | 56  | 02       | 14.32 | (                | 0.11  | ) | lc<br>-  | INB  | 072 | 2MASS   |
| 780288 | V1746           | Ori | 05  | 35  | 34.0 | -04   | 54  | 11       | 13.65 | (                | 0.10  | ) | Ic       | INB  | 072 | 2MASS   |
| 780289 | V1747           | Ori | 05  | 35  | 34.2 | -04   | 33  | 42       | 13.74 | (                | 0.07  | ) | Ic       | INB  | 072 | USNO    |
| 780290 | V1748           | Ori | 05  | 35  | 36.6 | -05   | 04  | 39       | 13.23 | (                | 0.16  | ) | Ic       | INB  | 072 | USNO    |
| 780291 | V1749           | Ori | 05  | 35  | 37.3 | -06   | 00  | 00       | 14.13 | (                | 0.07  | ) | Ic       | INB  | 072 | USNO    |
| 780292 | V1750           | Ori | 05  | 35  | 38.0 | -04   | 48  | 33       | 13.67 | (                | 0.13  | ) | Ic       | INB  | 072 | 2MASS   |
| 780293 | V1751           | Ori | 05  | 35  | 40.8 | -04   | 48  | 31       | 11.12 | (                | 0.10  | ) | Ic       | INB  | 072 | 2MASS   |
| 780294 | V1752           | Ori | 05  | 35  | 41.7 | -05   | 49  | 26       | 14.58 | (                | 0.04  | ) | Ic       | INB  | 072 | USNO    |
| 780295 | V1753           | Ori | 05  | 35  | 43.4 | -05   | 40  | 55       | 13.70 | (                | 0.06  | ) | Ic       | INB  | 072 | 2MASS   |
| 780296 | V1754           | Ori | 05  | 35  | 44.0 | -05   | 56  | 53       | 14.16 | (                | 0.11  | ) | Ic       | INB  | 072 | USNO    |
| 780297 | V1755           | Ori | 05  | 35  | 44.4 | -04   | 57  | 17       | 14.68 | (                | 0.12  | ) | Ic       | INB  | 072 | 2MASS   |
| 780298 | V1756           | Ori | 05  | 35  | 44.5 | -04   | 44  | 16       | 13.16 | (                | 0.18  | ) | Ic       | INB  | 072 | USNO    |
| 780299 | V1757           | Ori | 05  | 35  | 47.1 | -06   | 11  | 45       | 15.67 | (                | 0.24  | ) | Ic       | INB  | 072 | 2MASS   |
| 780300 | V1758           | Ori | 05  | 35  | 47.4 | -05   | 55  | 11       | 14.19 | (                | 0.05  | ) | Ic       | INB  | 072 | USNO    |
| 780301 | V1759           | Ori | 05  | 35  | 50.4 | -04   | 42  | 08       | 14.41 | (                | 0.08  | ) | Ic       | INB  | 072 | 2MASS   |
| 780302 | V1760           | Ori | 05  | 35  | 51.6 | -05   | 08  | 09       | 10.74 | (                | 0.41  | ) | Ic       | INB  | 072 | GSC     |
| 780303 | V1761           | Ori | 05  | 35  | 53.6 | -05   | 02  | 34       | 14.84 | (                | 0.11  | ) | Ic       | INB  | 072 | 2MASS   |
| 780304 | V1762           | Ori | 05  | 35  | 54.5 | -04   | 48  | 05       | 10.74 | (                | 0.15  | ) | Ic       | INB  | 072 | USNO    |
| 780305 | V1763           | Ori | 05  | 35  | 57.7 | -06   | 11  | 25       | 13.52 | (                | 0.23  | ) | Ic       | INB  | 072 | USNO    |
| 780306 | V1764           | Ori | 05  | 36  | 00.2 | -06   | 03  | 29       | 13.05 | (                | 0.15  | ) | Τc       | TNB  | 072 | USNO    |
| 780307 | V1765           | Ori | 05  | 36  | 01.8 | -04   | 34  | 17       | 12.31 | (                | 0.05  | ) | Τc       | TNB  | 072 | GSC     |
| 780308 | V1766           | Ori | 05  | 36  | 05.2 | -05   | 41  | 39       | 14.13 | $\tilde{(}$      | 0.05: | Ś | Τc       | TNB  | 072 | USNO    |
| 780309 | V1767           | Ori | 05  | 36  | 05.8 | -05   | 18  | 56       | 15.45 | $\tilde{(}$      | 0.15  | Ś | Τc       | TNB  | 072 | 2MASS   |
| 780310 | V1768           | Ori | 05  | 36  | 06.8 | -04   | 28  | 08       | 13 34 | $\tilde{c}$      | 0.22  | Ś | Tc       | TNR  | 072 | USNO    |
| 780311 | V1760           | Ori | 05  | 36  | 10.0 | -04   | 20  | 31       | 13 /0 | $\tilde{c}$      | 0.22  | Ś | Tc       | IND  | 072 | USNO    |
| 780312 | V1770           | Ori | 05  | 36  | 25 A | -05   | 17  | 02       | 15 87 | $\tilde{c}$      | 0.00  | Ś | Tc       | IND  | 072 | 2000    |
| 780312 | V1771           | Ori | 05  | 36  | 25.4 | -04   | 33  | 12       | 15.07 | (                | 0.13  | 5 |          | TND  | 072 | LIGNO   |
| 700313 | V1770           |     | 05  | 26  | 20.9 | _04   | 21  | 42<br>27 | 10.00 | (                | 0.23  | > |          |      | 072 | CSC     |
| 700314 | V1/72           | 011 | 05  | 30  | 20.9 | -04   | 27  | 51       | 12.09 | $\left( \right)$ | 0.09  |   |          |      | 072 | GSC     |
| 700315 | V1//3           | Ori | 05  | 30  | 39.8 | -04   | 31  | 5Z       | 13.38 |                  | 0.05  |   |          | TND  | 072 | USNU    |
| 100310 | $V \perp 1 / 4$ | Uri | 05  | 30  | 41.9 | -05   | 45  | 43       | 12.54 | (                | 0.13  | ) | T -      |      | 072 | USNO    |
| 100311 | V1//5           | Uri | 05  | 30  | 55.4 | -05   | 20  | 14       | 13.68 |                  | 0.07  | ) | TC<br>T  | TND  | 072 | UNICUC  |
| 780318 | V1//6           | Uri | 05  | 36  | 55.6 | -04   | 32  | 11       | 14.46 | (                | 0.25  |   | TC<br>TC | TNP  | 072 | USNU    |
| /80319 | V1777           | Uri | 05  | 37  | 00.9 | -05   | 41  | 37       | 11.46 | (                | 0.06  | ) | 1C       | TNR  | 072 | GSC     |
| 780320 | AT.             | Col | 05  | 37  | 05.3 | -39   | 32  | 26       | 9.52  | ,                | 9.61  | 、 | V        | BA   | 046 | DM      |
| /80321 | V1778           | Uri | 05  | 37  | 08.6 | -05   | 18  | 46       | 15.27 | (                | 0.21  | ) | 1c<br>-  | TNR  | 072 | USNU    |
| 780322 | V1779           | Ori | 05  | 37  | 10.9 | -05   | 15  | 20       | 14.07 | (                | 0.09  | ) | 1c       | INB  | 072 | USNO    |
| 780323 | V1780           | Ori | 05  | 37  | 18.4 | -05   | 43  | 52       | 12.74 | (                | 0.12  | ) | Ic       | INB  | 072 | USNO    |
| 780324 | V1781           | Ori | 05  | 37  | 20.1 | -05   | 11  | 50       | 12.45 | (                | 0.08  | ) | Ιc       | INB  | 072 | USNO    |

| No.    | Name  |      | R.A | A., | Decl | ., 20 | 000 | . 0 | Max   | Mir  | ı  |     |    | Туре    | Refe | erences | 3   |
|--------|-------|------|-----|-----|------|-------|-----|-----|-------|------|----|-----|----|---------|------|---------|-----|
|        |       |      | h   | m   | S    | о     | ,   | "   | m     | n    | 1  |     |    |         |      |         |     |
| 780325 | V1782 | Ori  | 05  | 37  | 23.5 | -05   | 43  | 23  | 14.07 | ( 0. | 15 | )   | Ic | INB     | 072  | USNO    |     |
| 780326 | V1783 | Ori  | 05  | 37  | 29.6 | -05   | 15  | 55  | 14.48 | ( 0. | 09 | )   | Ic | INB     | 072  | USNO    |     |
| 780327 | V1784 | Ori  | 05  | 37  | 38.0 | -05   | 16  | 34  | 13.51 | ( 0. | 16 | )   | Ic | INB     | 072  | USNO    |     |
| 780328 | V1785 | Ori  | 05  | 38  | 03.1 | -05   | 51  | 06  | 14.49 | (0.  | 10 | )   | Ic | INB     | 072  | USNO    |     |
| 780329 | V1786 | Ori  | 05  | 38  | 04.2 | -05   | 15  | 27  | 13.54 | (0.  | 04 | )   | Ic | INB     | 072  | USNO    |     |
| 780330 | V1787 | Ori  | 05  | 38  | 09.3 | -06   | 49  | 17  | 13.75 | 13.  | 84 |     | V  | INA     | 038  | GSC     |     |
| 780331 | V1788 | Ori  | 05  | 38  | 14.5 | -05   | 25  | 13  | 9.76  | 9.   | 85 |     | V  | INA     | 038  | DM      |     |
| 780332 | V1789 | Ori  | 05  | 38  | 39.7 | -05   | 08  | 43  | 11.61 | (0.  | 11 | )   | Ic | INB     | 072  | GSC     |     |
| 780333 | AI    | Lep  | 05  | 40  | 20.7 | -19   | 40  | 11  | 8.97  | (0.  | 05 | )   | V  | RS      | 018  | DM      |     |
| 780334 | V1790 | Ori  | 05  | 40  | 24.3 | -00   | 46  | 17  | 10.63 | (0.  | 01 | b)  | V  | DSCTC   | 037  | DM      |     |
| 780335 | V1791 | Ori  | 05  | 40  | 37.4 | -08   | 04  | 03  | 11.55 | 14.  | 57 |     | V  | INB:    | 038  | USNO    |     |
| 780336 | V1792 | Ori  | 05  | 41  | 04.1 | -09   | 23  | 19  | 14.80 | 14.  | 92 |     | V  | INB     | 038  | GSC     |     |
| 780337 | V538  | Aur  | 05  | 41  | 20.3 | +53   | 28  | 52  | 6.34  | 6.   | 38 |     | Hр | ВҮ      | 005  | DM      |     |
| 780338 | V1238 | Tau* | 05  | 42  | 14.6 | +22   | 22  | 17  | 8.50  | 8.   | 87 |     | v  | EW      | 130  | DM      |     |
| 780339 | AK    | Lep  | 05  | 44  | 26.5 | -22   | 25  | 19  | 6.15  | (0.  | 06 | )   | V  | ВҮ      | 074  | DM      |     |
| 780340 | V1647 | Ori* | 05  | 46  | 13.1 | -00   | 06  | 05  | 18.1  | <20. |    |     | V  | FU      | 075  | 076     |     |
| 780341 | BC    | Dor  | 05  | 46  | 15.0 | -68   | 35  | 24  | 13.6  | 19.  | 7  |     | V  | UG      | 077  | 078     |     |
| 780342 | V1239 | Tau* | 05  | 50  | 25.9 | +26   | 56  | 51  | 10.66 | 11.  | 80 |     | V  | EA:     | 130  | GSC     |     |
| 780343 | V539  | Aur  | 05  | 51  | 50.5 | +32   | 32  | 35  | 16.05 | (0.  | 55 | Rc) | V  | DSCT    | 080  | 080     |     |
| 780344 | V540  | Aur  | 05  | 52  | 16.6 | +32   | 28  | 15  | 14.98 | (0.  | 23 | Rc) | V  | EA:     | 080  | 080     |     |
| 780345 | V541  | Aur  | 05  | 52  | 20.4 | +32   | 33  | 20  | 13.78 | (0.  | 4  | Rc) | V  | EA:     | 080  | 080     |     |
| 780346 | V542  | Aur* | 05  | 52  | 33.0 | +32   | 32  | 41  | 16.07 | (0.  | 35 | Rc) | V  | EW      | 080  | 080     |     |
| 780347 | V543  | Aur* | 05  | 52  | 39.1 | +32   | 36  | 31  | 17.83 | (0.  | 68 | Rc) | V  | EW      | 080  | 080     |     |
| 780348 | V544  | Aur* | 05  | 52  | 53.2 | +32   | 33  | 02  | 16.17 | (0.  | 33 | Rc) | V  | EW      | 080  | 080     |     |
| 780349 | V545  | Aur  | 05  | 53  | 00.7 | +32   | 24  | 51  | 16.11 | (0.  | 39 | Rc) | V  | RRC:    | 080  | 080     |     |
| 780350 | V1793 | Ori  | 05  | 54  | 03.0 | +01   | 40  | 22  | 9.45  | 9.   | 95 |     | V  | INT     | 038  | DM      |     |
| 780351 | V546  | Aur* | 06  | 01  | 44.1 | +49   | 56  | 30  | 13.97 | 14.  | 07 |     | V  | GDOR:   | 081  | 081     |     |
| 780352 | V547  | Aur* | 06  | 01  | 57.4 | +49   | 58  | 55  | 14.46 | 14.  | 54 |     | V  | GDOR:   | 081  | 081     | 040 |
| 780353 | V548  | Aur* | 06  | 02  | 05.3 | +49   | 49  | 11  | 15.32 | 15.  | 42 |     | V  | DSCT    | 081  | 081     |     |
| 780354 | V549  | Aur  | 06  | 02  | 21.3 | +49   | 52  | 37  | 15.90 | <16. | 40 |     | V  | EA      | 081  | 081     |     |
| 780355 | V550  | Aur  | 06  | 02  | 26.4 | +49   | 51  | 57  | 13.01 | 13.  | 80 |     | V  | DSCTC   | 081  | 081     |     |
| 780356 | V551  | Aur* | 06  | 02  | 38.1 | +49   | 53  | 02  | 14.43 | 14.  | 65 |     | V  | EA+DSCT | 081  | 081     |     |
| 780357 | V575  | Pup* | 06  | 04  | 46.7 | -48   | 27  | 30  | 6.62  | ( 0. | 04 | )   | V  | RS      | 046  | DM      |     |
| 780358 | AU    | Col  | 06  | 09  | 02.6 | -41   | 07  | 05  | 7.45  | ( 0. | 04 | b)  | V  | DSCTC   | 037  | DM      |     |
| 780359 | V371  | Gem* | 06  | 10  | 19.4 | +24   | 01  | 15  | 10.5  | 11.  | 6  |     | V  | DCEP    | 082  | 083     |     |
| 780360 | V352  | CMa  | 06  | 13  | 45.3 | -23   | 51  | 43  | 6.37  | 6.   | 40 |     | V  | ВҮ      | 046  | DM      |     |
| 780361 | V552  | Aur* | 06  | 14  | 09.8 | +45   | 30  | 09  | 11.2  | 14.  | 5  |     | р  | AM:     | 085  | 085     |     |
| 780362 | V1794 | Ori  | 06  | 18  | 24.8 | +02   | 05  | 34  | 12.7  | <18. | 2  |     | В  | М       | 086  | 086     |     |
| 780363 | V1795 | Ori  | 06  | 18  | 56.1 | +09   | 18  | 20  | 14.8  | <19. | 8  |     | В  | М       | 086  | 086     |     |
| 780364 | V1796 | Ori  | 06  | 19  | 22.9 | +15   | 43  | 04  | 15.2  | <20. | 0  |     | В  | М       | 086  | 086     |     |
| 780365 | V1797 | Ori  | 06  | 20  | 57.3 | +07   | 51  | 27  | 14.4  | <19. | 8  |     | В  | М       | 086  | 086     |     |
| 780366 | V353  | CMa  | 06  | 21  | 33.1 | -22   | 12  | 53  | 8.48  | ( 0. | 02 | )   | V  | ВҮ      | 018  | DM      |     |
| 780367 | MU    | Cam* | 06  | 25  | 16.3 | +73   | 34  | 39  | 14.3  | 15.  | 0  |     | R  | MX      | 087  | 087     |     |
| 780368 | V354  | CMa  | 06  | 26  | 03.8 | -14   | 21  | 01  | 11.1  | 13.  | 9  |     | V  | М       | 130  | USNO    |     |
| 780369 | V848  | Mon  | 06  | 31  | 11.1 | +05   | 52  | 37  | 8.94  | ( 0. | 02 | )   | V  | ВҮ      | 018  | DM      |     |
| 780370 | AI    | Pic  | 06  | 32  | 49.6 | -63   | 35  | 50  | 12.2  | <15. | 0  |     | V  | М       | 130  | USNO    | 040 |
| 780371 | V355  | CMa  | 06  | 32  | 52.3 | -26   | 10  | 24  | 10.8  | <14. | 3  |     | V  | М       | 130  | 086     | 040 |
| 780372 | AK    | Pic  | 06  | 38  | 00.4 | -61   | 32  | 00  | 6.14  | 6.   | 19 |     | V  | BY      | 046  | DM      |     |
| 780373 | V849  | Mon  | 06  | 39  | 02.3 | -08   | 45  | 29  | 12.9  | <14. | 8  |     | V  | SRB     | 130  | USNO    |     |
| 780374 | V356  | CMa  | 06  | 39  | 11.6 | -26   | 34  | 19  | 8.44  | ( 0. | 02 | )   | V  | BY:     | 018  | DM      |     |
| 780375 | V850  | Mon  | 06  | 39  | 31.4 | +03   | 19  | 11  | 9.37  | ( 0. | 03 | )   | V  | BY      | 018  | DM      |     |
| 780376 | V553  | Aur  | 06  | 44  | 11.7 | +36   | 59  | 38  | 7.53  | 7.   | 58 |     | Нp | GDOR    | 091  | DM      |     |
| 780377 | V576  | Pup  | 06  | 50  | 54.9 | -37   | 29  | 23  | 12.4  | <15. | 5  |     | V  | М       | 332  | USNO    |     |
| 780378 | V372  | Gem* | 06  | 50  | 55.8 | +22   | 29  | 22  | 12.5  | (0)  | 50 | )   | V  | EB      | 092  | GSC     |     |

| No.    | Name       |             | R./ | A.,       | Decl  | ., 20 | 000       | . 0      | Max         | Min         |           |          |         | Туре     | Refe | erences      | 5     |
|--------|------------|-------------|-----|-----------|-------|-------|-----------|----------|-------------|-------------|-----------|----------|---------|----------|------|--------------|-------|
|        |            |             | h   | m         | S     | 0     | ,         | "        | m           | m           |           |          |         |          |      |              |       |
| 780379 | V851       | Mon*        | 06  | 51        | 40.1  | +00   | 27        | 07       | 10.85       | 10.9        | 90        |          | V       | ACV:     | 093  | 093          |       |
| 780380 | V852       | Mon*        | 06  | 51        | 41.7  | +00   | 23        | 43       | 16.58       | 16.7        | 74        |          | V       | EW:      | 093  | 093          |       |
| 780381 | V853       | Mon*        | 06  | 51        | 43.3  | +00   | 31        | 19       | 15.98       | 16.1        | 12        |          | V       | EW       | 093  | 093          |       |
| 780382 | V854       | Mon         | 06  | 51        | 48.9  | +00   | 26        | 56       | 12.56       | 12.5        | 59        |          | V       | GDOR     | 093  | 093          |       |
| 780383 | V855       | Mon         | 06  | 51        | 50.0  | +00   | 28        | 20       | 12.66       | 12.7        | 71        |          | V       | GDOR     | 093  | 093          |       |
| 780384 | V856       | Mon         | 06  | 51        | 51.1  | +00   | 25        | 39       | 11.62       | 11.6        | 36        |          | V       | ACV      | 093  | 093          |       |
| 780385 | V857       | Mon*        | 06  | 51        | 56 8  | +00   | 25        | 47       | 15 82       | 16 0        | 12        |          | v       | FW       | 003  | 003          |       |
| 780386 | V858       | Mon*        | 06  | 51        | 57 3  | +00   | 25        | 47       | 15 73       | 15 0        | 20        |          | v       | FW.      | 000  | 000          |       |
| 780387 | V850       | Mon*        | 00  | 52        | 07.0  | +00   | 20        | <br>     | 1/ /7       | 1/ 5        | 3         |          | v       | EB.      | 000  | 000          |       |
| 700200 | V633       | Pur         | 00  | 52        | 107.2 | -26   | 07        | 10       | 14.4/       | 14.C        | 1         |          | v       | м        | 090  | 095<br>0MAGG |       |
| 700200 | VOLI       | Fup<br>Mart | 00  | 55        | 12.4  | -30   | 20        | 10<br>01 | 11.0        | ×14.4       | ±<br>1 /l |          | v       |          | 120  |              | 040   |
| 700309 | V00U       | Mon*        | 00  | 00        | 10.7  | -04   | 30<br>E / | 21<br>47 | 9.22        | 12 /        | ±4±<br>1  |          | V<br>V  | EA<br>EA | 130  |              | 040   |
| 700390 | V001       | Mon*        | 07  | 02        | 49.9  | -00   | 10        | 41       | 12.0        | 13.4        | ŧ         | 、        | V<br>V  |          | 095  |              | 040   |
| 780391 | V862       | Mon         | 07  | 04        | 10.4  | +05   | 12        | 41       | 9.08        | ( 0.0       | )2        | )        | V       | BI       | 018  | DM           | ~ 4 4 |
| 780392 | V863       | Mon*        | 07  | 05        | 25.1  | -09   | 00        | 34       | 9.02        | 9.1         | 16        | 、        | V       | FR       | 130  | DM           | 011   |
| 780393 | DW         | Lyn         | 07  | 07        | 09.7  | +60   | 38        | 50       | 14.7        | ( 0.0       | )3        | )        | В       | RPHS     | 096  | GSC          |       |
| 780394 | V373       | Gem*        | 07  | 11        | 55.3  | +23   | 24        | 56       | 9.26        | 9.4         | 12        |          | V       | EB       | 011  | DM           |       |
| 780395 | CX         | CMi*        | 07  | 13        | 34.1  | +10   | 15        | 13       | 11.41       | 12.0        | )2        |          | V       | EW       | 097  | GSC          |       |
| 780396 | V374       | Gem         | 07  | 15        | 08.0  | +21   | 35        | 22       | 12.3        | <14.        |           |          | V       | М        | 098  | 098          | 040   |
| 780397 | V864       | Mon         | 07  | 15        | 08.5  | -04   | 44        | 21       | 9.9         | 10.6        | 5         |          | V       | EW       | 130  | GSC          |       |
| 780398 | СҮ         | CMi         | 07  | 16        | 10.3  | +09   | 59        | 48       | 8.11        | 8.2         | 26        |          | V       | SRD      | 099  | DM           |       |
| 780399 | CZ         | CMi         | 07  | 16        | 57.3  | +09   | 12        | 35       | 10.54       | 11.0        | )6        |          | V       | EW       | 097  | GSC          |       |
| 780400 | V578       | Pup         | 07  | 17        | 05.8  | -34   | 49        | 39       | 11.2        | <14.5       | 5         |          | V       | М        | 130  | USNO         |       |
| 780401 | V579       | Pup*        | 07  | 17        | 59.7  | -41   | 21        | 19       | 12.39       | 13.5        | 56        |          | V       | EA       | 130  | GSC          |       |
| 780402 | V580       | Pup         | 07  | 19        | 05.0  | -42   | 58        | 01       | 9.7         | 11.5        | 5         |          | V       | SRA      | 130  | GSC          | 040   |
| 780403 | V357       | CMa         | 07  | 20        | 04.1  | -19   | 30        | 45       | 9.6         | 10.0        | )         |          | V       | SRA      | 090  | DM           | 040   |
| 780404 | V358       | CMa*        | 07  | 20        | 22.4  | -23   | 43        | 57       | 13.9        | ( 0.1       | LO        | )        | V       | WR:      | 101  | 102          |       |
| 780405 | V359       | CMa         | 07  | 21        | 14.8  | -29   | 18        | 00       | 11.2        | 13.0        | )         |          | V       | SRA      | 130  | GSC          | 332   |
| 780406 | V865       | Mon         | 07  | 22        | 43.2  | -08   | 40        | 54       | 11.7        | 12.6        | 3         |          | V       | SRB      | 095  | GSC          | 040   |
| 780407 | V375       | Gem*        | 07  | 22        | 46.0  | +17   | 02        | 28       | 12.7        | 13.6        | 3         |          | V       | EB       | 319  | GSC          | 040   |
| 780408 | V575       | Car*        | 07  | 24        | 49.6  | -51   | 28        | 27       | 7.82        | 8.2         | 23        |          | V       | EA       | 011  | DM           |       |
| 780409 | V581       | Pup*        | 07  | 28        | 21.1  | -36   | 43        | 13       | 11.87       | 12.4        | 17        |          | V       | EW       | 011  | DM           |       |
| 780410 | V376       | Gem         | 07  | 29        | 01.8  | +31   | 59        | 38       | 7.73        | ( 0.0       | )3        | )        | V       | ВҮ       | 018  | DM           |       |
| 780411 | DX         | Lvn         | 07  | 33        | 00.6  | +37   | 01        | 47       | 7.68        | ( 0.0       | )2        | )        | V       | ВҮ       | 018  | DM           |       |
| 780412 | V582       | y<br>Pup∗   | 07  | 34        | 08.3  | -13   | 02        | 22       | 7.86        | 8.1         | 13        |          | V       | EA       | 011  | DM           |       |
| 780413 | V866       | Mon         | 07  | 34        | 17.8  | -08   | 45        | 20       | 12.0        | 13.7        | 7         |          | v       | E.A      | 095  | GSC          | 130   |
| 780414 | V867       | Mon         | 07  | 34        | 26.2  | -06   | 53        | 48       | 8.16        | (0,0)       | )2        | )        | v       | BY       | 018  | DM           | 100   |
| 780415 | V868       | Mon         | 07  | 39        | 04 8  | -02   | 39        | 06       | 8 9         | 9 5         | 5         | <i>,</i> | v       | EB       | 094  | DM           |       |
| 780416 | V869       | Mon         | 07  | 39        | 59 3  | -03   | 35        | 51       | 7 18        | (0)         | ,<br>)2   | )        | v       | BV       | 018  | DM           |       |
| 780417 | V583       | Pup         | 07  | 40        | 47 8  | -24   | 05        | 14       | 7 98        | 8 9         | 22        | ,        | v       | FR       | 011  | DM           |       |
| 780/18 | V574       | Dup         | 07  | ±0<br>//1 | 53 6  | _07   | 00        | 77       | 6 93        | 10.0        |           |          | v       |          | 320  | DIT          |       |
| 700410 | V074       | Mon         | 07  | 10<br>1   | 00 0  | _00   | 25        | 10       | 0.33        | 10.<br><10  | •         |          | v       | M        | 102  | CCC          |       |
| 700419 |            | CM-         | 07  | 40        |       | -02   | 20        | 40       | 0.4<br>7 E0 | NIZ.<br>7 G | 7         |          | V<br>Um |          | 001  | UGD<br>Ma    |       |
| 700420 | UU<br>V077 | CM1<br>Q    | 07  | 40        | 50.Z  | +00   | 39        | 43       | 7.50        | 1.5         |           | 、        | пр      | GDUR     | 091  | DM           |       |
| 780421 | V3//       | Gem         | 07  | 49        | 55.1  | +27   | 21        | 41       | 6.93        |             | 5         | )        | V       | BI       | 120  | DM           | 040   |
| 700422 | V584       | Pup         | 07  | 51        | 31.4  | -40   | 15        | 54<br>10 | 9.5         | 10.2        | 2         |          | V       | SKB      | 130  |              | 040   |
| 780423 | V585       | Pup         | 07  | 59        | 09.0  | -22   | 26        | 13       | 11.5        | <14.0       | )         |          | V       | M        | 130  | USNU         | 040   |
| 780424 | DY         | Lyn*        | 80  | 00        | 46.0  | +42   | 10        | 33       | 9.67        | 10.2        | 21        |          | ۷       | EA       | 104  | DM           |       |
| 780425 | V586       | Pup         | 80  | 01        | 49.4  | -48   | 46        | 56       | 11.0        | 14.5        | )         |          | V       | M<br>    | 090  | USNO         | 040   |
| 780426 | V587       | Pup*        | 80  | 03        | 44.2  | -25   | 54        | 45       | 9.11        | 9.3         | 32        |          | V       | EA       | 011  | DM           |       |
| 780427 | V871       | Mon         | 80  | 06        | 17.3  | -04   | 26        | 47       | 8.84        | 9.1         | 18        |          | V       | EA       | 322  | DM           |       |
| 780428 | HM         | Cnc         | 08  | 06        | 23.0  | +15   | 27        | 32       | 21.2        | ( 1.0       | )8        | )        | Ι       | XM:      | 105  | 105          |       |
| 780429 | V588       | Pup*        | 08  | 06        | 32.0  | -13   | 46        | 35       | 10.9        | <14.5       | 5         |          | V       | М        | 130  | USNO         | 040   |
| 780430 | DE         | CMi         | 80  | 09        | 58.5  | +01   | 01        | 14       | 7.96        | ( 0.0       | )6        | )        | В       | DSCTC    | 106  | DM           |       |
| 780431 | V589       | Pup*        | 80  | 10        | 26.6  | -35   | 35        | 38       | 8.72        | 9.0         | )9        |          | V       | EA       | 011  | DM           |       |
| 780432 | DZ         | Lyn         | 08  | 11        | 53.5  | +42   | 54        | 36       | 9.88        | 10.2        | 25        |          | V       | EB:      | 104  | DM           |       |

| No.    | Name      |              | R.A | A., | Decl | ., 20      | 000       | . 0        | Max          | Min   |          |          |          | Туре      | Refe | erences | 5   |
|--------|-----------|--------------|-----|-----|------|------------|-----------|------------|--------------|-------|----------|----------|----------|-----------|------|---------|-----|
|        |           |              | h   | m   | S    | 0          | ,         | "          | m            | m     |          |          |          |           |      |         |     |
| 780433 | EE        | Lyn          | 80  | 14  | 50.3 | +48        | 49        | 16         | 9.12         | 9.    | 14       |          | V        | DSCTC     | 022  | DM      |     |
| 780434 | V590      | Pup          | 80  | 15  | 39.2 | -17        | 32        | 04         | 11.6         | 15.3  | 2        |          | V        | М         | 130  | 107     |     |
| 780435 | HN        | Cnc*         | 80  | 15  | 46.8 | +16        | 21        | 56         | 11.13        | 11.   | 54       |          | V        | EW        | 065  | GSC     |     |
| 780436 | V591      | Pup          | 08  | 17  | 01.9 | -15        | 00        | 43         | 12.6         | <14.4 | 4        |          | V        | М         | 332  | USNO    |     |
| 780437 | V576      | Car*         | 08  | 19  | 15.7 | -60        | 10        | 01         | 6.32         | 8.    | 17       |          | ĸ        | *         | 108  | 2MASS   |     |
| 780438 | V397      | Hva          | 08  | 19  | 19 1 | +01        | 20        | 20         | 8.35         | ( ) ( | 03       | )        | v        | BY        | 018  | DM      |     |
| 780430 | FF        | Ivn          | 00  | 10  | 31 8 | +35        | 02        | <u>Λ</u> Λ | 7 23         | 7     | 00<br>07 | <i>,</i> | Hn       | CDOB      | 010  | DМ      |     |
| 780440 | ми        | Com          | 00  | 10  | 17 2 | +77        | <u>лл</u> | 30         | 0 1          | 0     | 6        |          | тр<br>тр | CD A      | 330  | CSC     |     |
| 700440 | FC        | Calli<br>L.m | 00  | 19  | 41.Z | +11        | 94<br>24  | ວ∠<br>ວວ   | 9.1<br>10 0  | 10    | 0<br>1   |          | ר<br>ת   | SRA<br>VM | 020  | 020     |     |
| 700441 |           | Суп          | 00  | 20  | 51.1 | -49        | 54        | 10         | 10.0         | 19.4  | 4<br>0   |          | n<br>v   | лм<br>М   | 120  | 039     |     |
| 780442 | V5//      | Car          | 08  | 22  | 03.7 | -60        | 57        | 13         | 10.4         | 14.0  | 07       |          | V        | M         | 130  | DNGO    |     |
| 780443 | V592      | Pup          | 80  | 25  | 1/./ | -34        | 22        | 01         | 1.83         | 1.0   | 87       |          | V        | RS        | 046  | DM      |     |
| 780444 | V593      | Pup          | 80  | 25  | 40.3 | -22        | 10        | 34         | 12.5         | <14.0 | 6        |          | V        | M         | 088  | USNU    | 332 |
| 780445 | V594      | Pup          | 80  | 26  | 04.2 | -30        | 06        | 41         | 11.0         | 13.4  | 4        |          | V        | RV        | 332  | GSC     |     |
| 780446 | V398      | Hya          | 80  | 26  | 26.8 | -03        | 17        | 44         | 10.9         | 14.   | 1        |          | V        | М         | 090  | GSC     |     |
| 780447 | V595      | Pup          | 08  | 26  | 27.1 | -12        | 09        | 09         | 12.5         | 13.8  | 8        |          | V        | EA        | 040  | GSC     |     |
| 780448 | V399      | Hya          | 08  | 26  | 54.8 | -06        | 12        | 11         | 7.59         | ( 0.0 | 02       | )        | V        | BY        | 018  | DM      |     |
| 780449 | LS        | UMa          | 08  | 27  | 40.1 | +67        | 58        | 27         | 8.12         | ( 0.1 | 20       | )        | V        | GDOR      | 091  | DM      |     |
| 780450 | XX        | Vol          | 80  | 28  | 30.1 | -64        | 43        | 19         | 10.7         | <14.8 | 8        |          | V        | М         | 040  | GSC     |     |
| 780451 | V400      | Hya          | 08  | 31  | 02.3 | -10        | 58        | 04         | 10.5         | <15.0 | 0        |          | V        | М         | 332  | USNO    |     |
| 780452 | CR        | Pyx*         | 80  | 31  | 29.0 | -31        | 04        | 20         | 11.11        | 11.   | 59       |          | V        | EB        | 130  | DM      |     |
| 780453 | CS        | Pyx          | 80  | 36  | 23.0 | -30        | 02        | 15         | 8.08         | ( 0.0 | 03       | )        | V        | BY        | 110  | DM      |     |
| 780454 | HO        | Cnc          | 80  | 36  | 55.8 | +23        | 14        | 48         | 8.73         | ( 0.0 | 03       | )        | V        | ВҮ        | 018  | DM      |     |
| 780455 | CT        | Pyx          | 08  | 37  | 15.5 | -17        | 29        | 41         | 8.72         | ( 0.0 | 04       | )        | V        | BY        | 018  | DM      |     |
| 780456 | V401      | Hva          | 80  | 37  | 50.3 | -06        | 48        | 25         | 6.73         | ( 0.0 | 05:      | )        | V        | ВҮ        | 005  | DM      |     |
| 780457 | ES        | Cha*         | 80  | 41  | 30.5 | -78        | 53        | 07         | 17.07        | (0.   | 14       | )        | V        | INT       | 111  | 111     |     |
| 780458 | V388      | Vel          | 08  | 42  | 16.6 | -40        | 44        | 10         | 14.24        | 14.   | 59       | <i>.</i> | V        | TNA       | 038  | 2MASS   |     |
| 780459 | ET        | Cha*         | 08  | 43  | 18.6 | -79        | 05        | 18         | 13.97        | ( 0.  | 7        | )        | v        | TNT       | 111  | 111     |     |
| 780460 | V578      | Car          | 08  | 43  | 45.4 | -55        | 01        | 52         | 11.2         | <14.0 | 0        | <i>`</i> | v        | M         | 332  | USNO    |     |
| 780461 | CII       | Pur*         | 08  | 44  | 02 7 | -21        | 52        | 10         | 12 28        | 14    | 0<br>7   |          | v        | F Δ       | 112  | DM      |     |
| 780462 | 00<br>Г Т | IIMa         | 00  | 11  | 47 8 | +55        | 32        | 20         | 2.20<br>8 Q1 | ( ) ( | ′<br>∩   | )        | v        | BV        | 018  | лм      |     |
| 780/63 | ПО        | Cnc          | 00  | 50  | 40 0 | +07        | 51        | 50         | 0.01         | (0.)  | 00       | ì        | v        | BN        | 010  | DM      |     |
| 700400 | ио<br>111 | Cnc*         | 00  | 50  | 42.2 | +07<br>+11 | 15        | 16         | 17 77        | (0.)  | 202      | )<br>\   | v        | БI<br>Г   | 112  |         |     |
| 700404 | пų<br>up  | Cnc*         | 00  | 50  | 40.0 | T11        | 40        | 40<br>E 1  | 15 02        | (0.)  | 20<br>10 | )<br>\   | v        | E<br>DC.  | 110  | USNO    |     |
| 700405 | nr.<br>UQ | CIIC<br>Ciic | 00  | 50  | 55.0 | TII        | 30<br>4 E | 51         | 10.95        | (0.)  | 12       | )<br>\   | V<br>V   |           | 113  | 0210    |     |
| 780466 | HS        | Cnc          | 80  | 51  | 04.8 | +11        | 45        | 51         | 13.51        | (0.)  | 14       | )        | V        | EW<br>D   | 323  | GSC     |     |
| 780467 | HI        | Cnc*         | 80  | 51  | 07.3 | +11        | 53        | 00         | 12.01        | ( 0.0 | 00       | )        | V        | E:        | 115  | GSC     |     |
| 780468 | HU        | Cnc*         | 80  | 51  | 13.4 | +11        | 51        | 40         | 13.45        | 13.0  | b1       | 、        | V        | RS:       | 323  | GSC     |     |
| 780469 | HV        | Cnc          | 80  | 51  | 18.0 | +11        | 45        | 54         | 12.73        | ( 0.0 | 00       | )        | ۷        | EA        | 311  | GSC     |     |
| 780470 | HW        | Cnc*         | 80  | 51  | 18.7 | +11        | 47        | 03         | 12.60        | ( 0.0 | 07       | )        | V        | RS:       | 115  | GSC     |     |
| 780471 | НХ        | Cnc*         | 80  | 51  | 19.7 | +11        | 52        | 11         | 13.90        | ( 0.0 | 80       | )        | V        | RS:       | 115  | GSC     |     |
| 780472 | HY        | Cnc          | 80  | 51  | 24.1 | +12        | 01        | 31         | 14.98        | ( 0.0 | 07       | )        | V        | RS:       | 115  | GSC     |     |
| 780473 | V402      | Hya          | 08  | 53  | 12.1 | -07        | 43        | 21         | 9.04         | ( 0.  | 12       | )        | V        | BY        | 046  | DM      |     |
| 780474 | HZ        | Cnc*         | 80  | 53  | 23.7 | +16        | 49        | 35         | 14.1         | ( 0.0 | 03       | )        | R        | *         | 116  | 009     |     |
| 780475 | V389      | Vel          | 08  | 53  | 35.7 | -37        | 32        | 42         | 11.6         | <12.  | 5        |          | V        | SRA       | 130  | GSC     | 040 |
| 780476 | II        | Cnc          | 80  | 53  | 49.9 | +26        | 54        | 48         | 8.46         | ( 0.0 | 05       | )        | V        | BY        | 018  | DM      |     |
| 780477 | V403      | Hya          | 08  | 54  | 10.7 | -13        | 00        | 51         | 8.8          | 13.0  | 6        |          | V        | М         | 130  | GSC     | 040 |
| 780478 | IK        | Cnc          | 80  | 54  | 41.5 | +16        | 36        | 40         | 8.32         | ( 0.0 | 03       | )        | V        | ВҮ        | 018  | DM      |     |
| 780479 | IL        | Cnc*         | 08  | 55  | 51.5 | +20        | 03        | 39         | 12.35        | 12.9  | 96       |          | *        | EW        | 060  | GSC     |     |
| 780480 | V390      | Vel*         | 80  | 56  | 14.2 | -44        | 43        | 11         | 9.01         | 9.    | 19       |          | V        | RV:       | 119  | DM      |     |
| 780481 | V391      | Vel          | 08  | 56  | 28.1 | -43        | 05        | 58         | 11.21        | 11.0  | 64       |          | V        | INA       | 038  | GSC     |     |
| 780482 | DS        | Oct          | 08  | 56  | 35.7 | -83        | 05        | 11         | 12.0         | <14.8 | 8        |          | V        | М         | 332  | 120     |     |
| 780483 | IM        | Cnc*         | 08  | 57  | 21.0 | +24        | 06        | 51         | 12.82        | 13.0  | 6        |          | V        | EA        | 225  | GSC     |     |
| 780484 | V392      | Vel          | 08  | 58  | 26.2 | -43        | 26        | 08         | 11.25        | 14.   | 76       |          | V        | BE        | 038  | DM      |     |
| 780485 | CV        | Pvx          | 08  | 58  | 35.6 | -26        | 48        | 37         | 11.7         | 13.   | 5        |          | V        | SRA       | 130  | GSC     | 040 |
| 780486 | V393      | Vel          | 08  | 59  | 25.8 | -55        | 58        | 50         | 12.5         | 14.   | 7        |          | V        | SRB       | 332  | USNO    |     |

| No.    | Name         |            | R./ | Α.,      | Decl         | ., 20 | 000       | .0        | Max          | Mir       | ı      |   |        | Туре         | Refe | erences   | 5     |
|--------|--------------|------------|-----|----------|--------------|-------|-----------|-----------|--------------|-----------|--------|---|--------|--------------|------|-----------|-------|
|        |              |            | h   | m        | S            | 0     | ,         | "         | m            | n         | 1      |   |        |              |      |           |       |
| 780487 | V394         | Vel        | 09  | 00       | 58.1         | -54   | 55        | 55        | 10.6         | 11.       | 2      |   | V      | SRB          | 130  | GSC       | 332   |
| 780488 | V395         | Vel        | 09  | 01       | 00.9         | -54   | 57        | 00        | 11.7         | <14.      | 0      |   | V      | М            | 332  | GSC       |       |
| 780489 | XY           | Vol        | 09  | 02       | 13.6         | -64   | 32        | 57        | 12.8         | 15.       | 4      |   | V      | М            | 130  | USNO      | 040   |
| 780490 | EH           | Lyn        | 09  | 02       | 40.2         | +34   | 19        | 47        | 14.00        | 14.       | 32     |   | *      | EW           | 060  | GSC       |       |
| 780491 | CW           | Pyx        | 09  | 02       | 42.4         | -30   | 32        | 43        | 11.3         | <15.      | 0      |   | V      | М            | 332  | GSC       |       |
| 780492 | XZ           | Vol        | 09  | 03       | 19.4         | -66   | 23        | 57        | 12.6         | 14.       | 4      |   | V      | SRA          | 130  | 121       | 040   |
| 780493 | V579         | Car        | 09  | 03       | 26.0         | -64   | 03        | 57        | 13.0         | 15.       | 0      |   | V      | SRA          | 130  | USNO      |       |
| 780494 | YY           | Vol        | 09  | 03       | 37.2         | -66   | 08        | 52        | 12.7         | 14.       | 2      |   | V      | SRA          | 040  | 121       |       |
| 780495 | V404         | Hya*       | 09  | 04       | 17.8         | +04   | 32        | 29        | 14.84        | 15.       | 24     |   | *      | EW           | 122  | GSC       |       |
| 780496 | V405         | Hya        | 09  | 04       | 20.7         | -15   | 54        | 51        | 8.77         | (0.       | 03     | ) | V      | BY           | 018  | DM        |       |
| 780497 | V580         | Car        | 09  | 05       | 02.8         | -57   | 15        | 36        | 12.8         | <14.      | 7      |   | V      | М            | 130  | USNO      |       |
| 780498 | V581         | Car        | 09  | 05       | 13.1         | -61   | 55        | 45        | 12.6         | <14.      | 4      |   | V      | М            | 130  | USNO      |       |
| 780499 | V582         | Car        | 09  | 05       | 18.0         | -67   | 08        | 24        | 11.0         | 12.       | 6      |   | V      | SRA:         | 130  | 121       | 332   |
| 780500 | V406         | Hya        | 09  | 05       | 54.7         | -05   | 36        | 08        | 16.5         | 20.       | 3      |   | V      | NL           | 123  | USNO      |       |
| 780501 | V396         | Vel        | 09  | 07       | 15.3         | -53   | 25        | 19        | 11.9         | <13.      | 8      |   | V      | М            | 332  | USNO      |       |
| 780502 | CX           | Pvx        | 09  | 07       | 34.0         | -26   | 14        | 00        | 11.1         | 12.       | 8      |   | V      | SRA          | 130  | GSC       |       |
| 780503 | СҮ           | Pvx*       | 09  | 80       | 17.1         | -37   | 06        | 54        | 8.27         | 8.        | 36     |   | V      | E:           | 046  | DM        |       |
| 780504 | V407         | Hva        | 09  | 09       | 17.9         | -17   | 02        | 24        | 10.8         | 12.       | 8      |   | V      | SRB          | 130  | 124       | 040   |
| 780505 | V583         | Car        | 09  | 09       | 18.5         | -71   | 47        | 12        | 12.7         | 15.       | 1      |   | v      | SRA          | 130  | GSC       |       |
| 780506 | V408         | Hva        | 09  | 10       | 07.5         | -17   | 00        | 38        | 10.0         | 11.       | 0      |   | v      | SRB          | 130  | DM        | 040   |
| 780507 | V409         | Hva        | 09  | 10       | 09.6         | +03   | 44        | 35        | 11.0         | 11.       | 6      |   | v      | EW           | 130  | 125       | 0 - 0 |
| 780508 | V397         | ,∝<br>Vel  | 09  | 10       | 14.7         | -37   | 55        | 23        | 11.8         | 14.       | 2      |   | v      | SRB          | 130  | USNO      | 332   |
| 780509 | V584         | Car        | 09  | 11       | 30.0         | -61   | 37        | 13        | 10.8         | 15        | 0      |   | v      | M            | 130  | 126       | 040   |
| 780510 | V410         | Hva        | 09  | 12       | 44 4         | -14   | 41        | 17        | 10 48        | 11        | 11     |   | v      | FΔ           | 011  | DM        | 010   |
| 780511 | V585         | Car        | 09  | 12       | 57 9         | -57   | 48        | 28        | 10.9         | <15       | 0      |   | v      | M·           | 130  | USNO      | 332   |
| 780512 | V411         | Hva        | 00  | 13       | 43 5         | -20   | 21        | 55        | 10.0         | 11        | 1      |   | v      | SRR          | 130  | MU        | 040   |
| 780513 | FT           | I vn       | 00  | 13       | 48 2         | +43   | 13        | 04        | 5 32         | ( 0       | 03     | ) | v      | SXART        | 100  | DM        | 010   |
| 780514 | V412         | Hva*       | 09  | 14       | 28 9         | -13   | 41        | 39        | 12 7         | 14        | 1 •    |   | v      | ΕΔ           | 112  | 128       |       |
| 780515 | V413         | Hva        | 09  | 15       | 50.7         | -15   | 41        | 24        | 10 7         | 11        | 5      |   | v      | SRB          | 130  | GSC       | 040   |
| 780516 | TN           | Cnc*       | 00  | 16       | 14 7         | +16   | 15        | 26        | 11 87        | 12        | 56     |   | *      | FR           | 060  | GSC       | 010   |
| 780517 | 1N<br>V586   | Car        | 00  | 16       | 27 5         | -72   | 04        | 15        | 11 0         | 13        | 5      |   | v      | М            | 130  | 120       |       |
| 780518 | 1000<br>TO   | Cnc*       | 00  | 17       | 16 1         | +16   | 19        | 34        | 13 89        | 14        | 52     |   | *      | FW           | 060  | GSC       |       |
| 780510 | TD           | Cnc        | 00  | 17       | 53 5         | +28   | 33        | 38        | 7 20         | ( 0       | 02     | ) | v      | BV           | 018  | MU        |       |
| 780520 | C7           | Duv*       | 00  | 18       | 10 0         | -27   | 13        | 03        | 10 3         | 14        | 02     |   | v      | SBB          | 130  | CSC       | 040   |
| 780521 | ם<br>חח      | Dur        | 00  | 10       | 10.0         | -33   | 01        | 30        | 12.J<br>8 /  | 17.<br>Q  | 3      |   | v      | CDB          | 130  | MU        | 040   |
| 780522 | UD<br>V587   | Car        | 09  | 20       | 20 3         | -66   | 18        | Δ7        | 12 0         | 12        | 8      |   | v      | GBB ·        | 130  | 101       | 040   |
| 780522 | 1007<br>то   | Cnc*       | 00  | 20       | 50.0         | ±1/   | -10<br>57 | 71<br>25  | 12.0         | 12.       | 15     |   | v<br>¥ | FU           | 100  | 121       | 010   |
| 780524 | דע<br>חד     | Dur        | 00  | 20       | 00 5         | -26   | лл        | 20        | 13 0         | 13        | 2<br>Q |   | v      | DDC          | 120  | CSC       |       |
| 780525 | VE88         | Cor        | 00  | 21       | 00.0         | -61   | 56        | 20        | 11 0         | <11       | ິ<br>ວ |   | v      | M            | 100  |           |       |
| 780526 | V 300        | Duv        | 09  | 21       | 00.9         | -36   | 10<br>∕10 | 22<br>00  | 10.6         | ~14.      | 3      |   | v      | M            | 130  |           | 330   |
| 700520 |              | гух        | 09  | 22       | 04.0<br>E2 7 | -30   | 42        | 09        | 10.0         | ×14.      | 0      |   | v      | n<br>DC.     | 121  | UNGU      | 120   |
| 700521 | V414<br>EU   | пуа<br>Сър | 09  | 22       | 00 1         | -13   | 49        | Z1<br>//1 | 10.0         | 9.<br>/15 | 2      |   | v      | пр.<br>м     | 220  |           | 130   |
| 700520 |              | Cna        | 09  | 23<br>02 | 20.1         | -70   | 20        | 41        | 12.4         | <15.      | 2      |   | V<br>V | M            | 040  | USNO      |       |
| 700529 | V 589        | UMark      | 09  | 23       | 32.2         | -12   | 22        | 49        | 12.0         | <15.      | CE.    |   | V      |              | 040  | DMGO      |       |
| 700530 | LU           | 0ria≁<br>D | 09  | 24       | 03.3         | 701   | 40        | 23        | 0.44<br>10 E | 0.<br>11  | 200    |   | пр     | GDUR         | 120  |           | 220   |
| 700531 |              | Рух        | 09  | 24       | 07.0         | -30   | 05        | 50<br>1.C | 12.5         | 14.       | 10     |   | V      | SKA<br>CDOD. | 130  | GSC       | 332   |
| 700532 | V415<br>VE00 | пуа        | 09  | 25       | 27.0         | -06   | 24        | 10        | 10.7         | 10        | 10     |   | пр     | GDUR:        | 120  |           |       |
| 780533 | V590         | Car        | 09  | 25       | 35.9         | -63   | 35        | 52        | 12.7         | 13.       | 8      |   | V      | KKAB         | 130  | 120       |       |
| 780534 | V591         | Car        | 09  | 27       | 00.9         | -70   | 3/<br>52  | 56        | 12.5         | 13.       | 5      |   | V      | ГR           | 130  | 121<br>DV |       |
| 780535 | DH           | Рух        | 09  | 27       | 04.0         | -34   | 53        | 51        | 9.6          | 10.       | 1<br>L |   | V      | LR           | 130  |           |       |
| 180536 | WY           | LMl        | 09  | 30       | 23.3         | +33   | 53        | 10        | 14.53        | 15.       | 29     | 、 | *      | KKAB<br>DV   | 063  | GSC       |       |
| 780537 | GS           | Leo        | 09  | 30       | 35.8         | +10   | 36        | 06        | 8.66         | (0.       | 06     | ) | V      | RAGES        | 018  | DM        |       |
| 780538 | LV           | UMa        | 09  | 32       | 45.7         | +49   | 38        | 06        | 10.7         | (0.       | 03     | ) | V      | DSCTC:       | 049  | 049       |       |
| 780539 | V592         | Car*       | 09  | 33       | 45.3         | -66   | 01        | 17        | 10.87        | 11.       | 50     |   | V      | EW           | 011  | 121       |       |
| 780540 | V593         | Car        | 09  | 35       | 17.0         | -68   | 23        | 53        | 10.9         | 15.       | 0      |   | V      | М            | 130  | GSC       |       |

| No.    | Name     |             | R./ | Α., | Decl | ., 20 | 000 | . 0      | Max   | Min    |    |         | Туре       | Refe | erence | S   |
|--------|----------|-------------|-----|-----|------|-------|-----|----------|-------|--------|----|---------|------------|------|--------|-----|
|        |          |             | h   | m   | S    | 0     | ,   | "        | m     | m      |    |         |            |      |        |     |
| 780541 | V594     | Car         | 09  | 37  | 24.3 | -63   | 48  | 46       | 10.4  | 11.2   |    | V       | EA         | 011  | 132    |     |
| 780542 | V595     | Car         | 09  | 39  | 55.1 | -74   | 32  | 43       | 10.2  | 13.6   |    | V       | М          | 090  | 133    | 040 |
| 780543 | GT       | Leo         | 09  | 42  | 09.9 | +07   | 35  | 25       | 8.92  | ( 0.04 | )  | V       | ВҮ         | 018  | DM     |     |
| 780544 | VZ       | Sex         | 09  | 44  | 31.7 | +03   | 58  | 06       | 12.8  | 16.8   |    | V       | XM         | 310  | USNO   |     |
| 780545 | GU       | Leo*        | 09  | 47  | 33.8 | +18   | 21  | 43       | 11.62 | 12.31  |    | *       | EW         | 135  | GSC    |     |
| 780546 | V596     | Car         | 09  | 50  | 28.5 | -60   | 58  | 03       | 8.44  | 8.75   |    | V       | IA         | 038  | DM     |     |
| 780547 | WW       | Sex*        | 09  | 50  | 39.3 | -05   | 30  | 43       | 9.96  | 10.50  |    | V       | EA         | 322  | DM     |     |
| 780548 | BF       | Ant         | 09  | 56  | 54.1 | -27   | 28  | 31       | 6.32  | ( 0.01 | )  | V       | DSCTC      | 024  | DM     |     |
| 780549 | L.W      | IIMa        | 09  | 56  | 56 1 | +41   | 26  | 41       | 10 22 | 10 27  | ,  | v       | DSCTC      | 022  | DM     |     |
| 780550 | V416     | Hva         | 00  | 57  | 39 7 | -16   | 20  | 20       | 6 64  | 6 73   |    | •<br>Hn | CDOR       | 024  | DM     |     |
| 780551 | V417     | Hya         | 10  | 04  | 37 7 | -11   | 13  | Δ7       | 8 15  | ( 0 03 | )  | v       | RV         | 018  | DM     |     |
| 780552 | WX       | nya<br>Sov* | 10  | 04  | 24 9 | +01   |     | 10       | 12 /  | 12.8   | ,  | v       | DI<br>FW   | 017  | CSC    |     |
| 700552 |          | Sout        | 10  | 00  | 27.0 | -00   | 56  | 12<br>00 | 11 5  | (0.26) | )  | v       |            | 017  | CGC    |     |
| 700555 | CV CV    | Dex*        | 10  | 11  | 57.4 | -00   | 50  | 20       | 11.0  | 11 06  | )  | V<br>V  | EW         | 206  | CCC    |     |
| 700554 | GV       | Leo*        | 10  | 11  | 59.2 | -10   | 52  | 50       | 11.45 | 11.90  |    | v       | EW<br>ED   | 300  |        |     |
| 780555 | WZ       | Sex*        | 10  | 13  | 26.9 | -01   | 39  | 51       | 9.8   | 10.2   | 、  | V       | EB         | 094  | DM     |     |
| /80556 |          | UMa         | 10  | 14  | 35.8 | +53   | 46  | 15       | 8.02  | ( 0.05 | )  | V       | BY         | 018  | DM     |     |
| 780557 | XX       | Sex         | 10  | 16  | 02.1 | -06   | 18  | 26       | 9.32  | 9.56   |    | V       | EW         | 094  | DM     |     |
| 780558 | V597     | Car         | 10  | 18  | 10.3 | -60   | 59  | 42       | 9.5   | 10.0   |    | ۷       | SRB        | 130  | GSC    | 040 |
| 780559 | GW       | Leo         | 10  | 18  | 53.5 | +13   | 41  | 09       | 12.06 | 12.23  |    | *       | EW         | 060  | GSC    |     |
| 780560 | V398     | Vel         | 10  | 20  | 09.0 | -56   | 36  | 55       | 7.92  | ( 0.03 | )  | V       | ELL:       | 136  | DM     |     |
| 780561 | XY       | Sex         | 10  | 20  | 14.5 | -08   | 53  | 46       | 14.43 | ( 0.08 | )  | V       | R          | 020  | 009    |     |
| 780562 | V399     | Vel         | 10  | 25  | 01.1 | -57   | 05  | 11       | 8.24  | ( 0.02 | )  | V       | BCEP:      | 136  | DM     |     |
| 780563 | XZ       | Sex         | 10  | 25  | 57.5 | -07   | 30  | 51       | 9.7   | <10.4  |    | V       | SRA        | 103  | GSC    |     |
| 780564 | WZ       | LMi*        | 10  | 31  | 26.5 | +31   | 38  | 33       | 12.45 | 12.71  |    | *       | EW         | 135  | GSC    |     |
| 780565 | XX       | LMi*        | 10  | 33  | 04.8 | +32   | 22  | 15       | 12.42 | 12.58  |    | *       | EW         | 122  | GSC    |     |
| 780566 | XY       | LMi*        | 10  | 34  | 12.3 | +32   | 08  | 52       | 10.71 | 11.15  |    | *       | EW         | 122  | GSC    |     |
| 780567 | V418     | Hya         | 10  | 36  | 30.8 | -13   | 50  | 36       | 8.71  | ( 0.02 | )  | V       | BY:        | 018  | DM     |     |
| 780568 | YY       | Sex         | 10  | 39  | 47.0 | -05   | 06  | 57       | 17.40 | 18.75  |    | V       | ХM         | 137  | USNO   |     |
| 780569 | V598     | Car*        | 10  | 42  | 46.9 | -72   | 59  | 12       | 10.81 | 11.38  |    | V       | EA         | 011  | DM     |     |
| 780570 | V419     | Hya         | 10  | 43  | 28.3 | -29   | 03  | 51       | 7.72  | ( 0.02 | )  | V       | ВҮ         | 018  | DM     |     |
| 780571 | LY       | UMa         | 10  | 48  | 18.0 | +52   | 18  | 31       | 14.95 | 15.44  |    | V       | NL         | 138  | USNO   |     |
| 780572 | LZ       | UMa         | 10  | 50  | 40.3 | +51   | 47  | 59       | 8.31  | ( 0.02 | )  | V       | ВҮ         | 018  | DM     |     |
| 780573 | V400     | Vel         | 10  | 53  | 07.9 | -41   | 37  | 28       | 11.8  | <14.8  | -  | V       | М          | 090  | USNO   | 130 |
| 780574 | V599     | Car         | 10  | 53  | 27.3 | -58   | 25  | 25       | 8.85  | 9.41   |    | V       | ТА         | 038  | DM     |     |
| 780575 | GX       | Leo         | 10  | 56  | 16.9 | +22   | 21  | 06       | 7.71  | 7.79   |    | B       | SRS        | 141  | DM     |     |
| 780576 | GY       | Leo         | 10  | 56  | 30.8 | +07   | 23  | 19       | 7.37  | (0.03) | )  | V       | BY         | 018  | DM     |     |
| 780577 | X7       | L.Mi*       | 10  | 59  | 48.3 | +25   | 17  | 23       | 8 49  | (0.03) | ý  | v       | RS·        | 018  | DM     |     |
| 780578 | G7       | Leo         | 11  | 02  | 02 3 | +22   | 35  | 46       | 8 83  | 8 95   |    | v       | RS         | 141  | DM     |     |
| 780579 | AB       | Crt         | 11  | 02  | 50 1 | -09   | 19  | 10       | 9 03  | (0.03) | )  | v       | RV         | 018  | DM     |     |
| 780580 | NU<br>VV | T Mi*       | 11  | 02  | 1/ 5 | +30   | 32  | 21       | 8 96  | (0.00) | )  | v       | DI<br>DC.  | 010  | DM     |     |
| 700501 |          |             | 11  | 03  | 14.J | -04   | 12  | 16       | 7 57  | 7 61   | )  | v       | DV         | 010  | DM     |     |
| 700501 |          | Com         | 11  | 04  | 41.0 | -04   | 10  | 22       | 10 6  | 14 0   |    | V<br>V  | м          | 140  | 140    | 120 |
| 700502 | V O U U  |             | 11  | 00  | 02.0 | -00   | 30  | 33       | 10.0  | 14.0   | `` | V<br>Т. | M          | 142  | 142    | 130 |
| 780583 |          | UMa*        | 11  | 10  | 30.8 | +68   | 30  | 11       | 10.0  | (0.01) |    | 1C      | *          | 007  | 143    |     |
| 780584 | HI       | Leo*        | 11  | 12  | 16.8 | +01   | 19  | 06       | 11.2  | (0.8   | )  | V       | EB<br>GD 4 | 017  | GSC    |     |
| /80585 | V601     | Car         | 11  | 12  | 23.9 | -60   | 22  | 43       | 8.2   | 8.5    |    | V<br>   | SRA        | 290  | DM     |     |
| 780586 | MN       | UMa         | 11  | 12  | 32.4 | +35   | 48  | 51       | 6.53  | 6.56   |    | Hр      | BY         | 005  | DM     |     |
| 780587 | MO       | UMa         | 11  | 13  | 06.0 | +40   | 21  | 38       | 11.66 | 12.04  |    | *       | RRC        | 144  | GSC    | 332 |
| 780588 | V602     | Car         | 11  | 13  | 30.0 | -60   | 05  | 29       | 7.6   | 9.1    |    | V       | SRC        | 130  | DM     | 040 |
| 780589 | HK       | Leo*        | 11  | 17  | 03.5 | +18   | 25  | 58       | 14.70 | 14.85  |    | V       | R          | 146  | 009    |     |
| 780590 | MP       | UMa         | 11  | 20  | 37.7 | +39   | 21  | 01       | 12.06 | 12.19  |    | *       | DSCT:      | 144  | GSC    | 040 |
| 780591 | MQ       | UMa         | 11  | 21  | 41.1 | +43   | 36  | 53       | 11.57 | 11.83  |    | *       | EW         | 144  | GSC    | 332 |
| 780592 | V1048    | Cen*        | 11  | 28  | 42.7 | -59   | 25  | 43       | 9.57  | 9.83   |    | Ι       | CEP(B)     | 147  | DM     |     |
| 780593 | MR       | UMa         | 11  | 31  | 22.4 | +43   | 22  | 38       | 12.95 | 17.    |    | V       | UGSU       | 148  | 149    |     |
| 780594 | MS       | UMa*        | 11  | 32  | 20.9 | +49   | 44  | 10       | 11.97 | 12.60  |    | *       | EW         | 144  | GSC    | 332 |

| No.    | Name     |                 | R./ | Α.,        | Decl         | ., 20       | 000       | . 0      | Max           | Min                                    |           |    |         | Туре       | Refe                   | erences   | 5   |
|--------|----------|-----------------|-----|------------|--------------|-------------|-----------|----------|---------------|----------------------------------------|-----------|----|---------|------------|------------------------|-----------|-----|
|        |          |                 | h   | m          | S            | 0           | ,         | "        | m             | m                                      |           |    |         |            |                        |           |     |
| 780595 | MT       | UMa*            | 11  | 33         | 34.7         | +42         | 58        | 29       | 11.75         | 12.                                    | 16        |    | *       | EW         | 144                    | GSC       | 332 |
| 780596 | MU       | UMa             | 11  | 35         | 36.7         | +38         | 45        | 58       | 11.8          | 12.                                    | 3         |    | *       | RRC        | 144                    | GSC       | 332 |
| 780597 | V1049    | Cen             | 11  | 37         | 17.6         | -50         | 30        | 23       | 10.7          | 11.                                    | 9         |    | V       | SRA        | 090                    | 150       |     |
| 780598 | V1050    | Cen             | 11  | 37         | 43.2         | -44         | 04        | 31       | 10.4          | 14.                                    | 5         |    | V       | М          | 090                    | 289       |     |
| 780599 | V1051    | Cen             | 11  | 37         | 48.4         | -63         | 19        | 24       | 7.13          | 7.                                     | 24        |    | V       | EA         | 011                    | DM        |     |
| 780600 | MV       | UMa*            | 11  | 38         | 59.7         | +42         | 19        | 44       | 8.22          | ( 0.                                   | 02        | )  | V       | RS         | 018                    | DM        |     |
| 780601 | V1052    | Cen             | 11  | 39         | 44.5         | -60         | 10        | 28       | 8.97          | 9.                                     | 56        |    | V       | IA         | 038                    | DM        |     |
| 780602 | MQ       | Mus             | 11  | 41         | 19.5         | -72         | 30        | 39       | 11.0          | <14.                                   | 4         |    | V       | М          | 090                    | USNO      |     |
| 780603 | MR       | Mus*            | 11  | 41         | 37.8         | -67         | 54        | 52       | 8.41          | 8.                                     | 53        |    | V       | EA         | 011                    | DM        |     |
| 780604 | MW       | UMa             | 11  | 43         | 02.3         | +60         | 34        | 37       | 9.26          | ( 0.                                   | 49        | )  | Rc      | EA         | 151                    | 151       |     |
| 780605 | HL       | Leo             | 11  | 43         | 47.0         | +24         | 00        | 37       | 7.40          | ( 0.                                   | 06        | )  | V       | ВҮ         | 018                    | DM        |     |
| 780606 | МХ       | UMa             | 11  | 47         | 52.9         | +53         | 00        | 55       | 8.78          | ( 0.                                   | 08        | )  | В       | DSCTC      | 152                    | DM        |     |
| 780607 | MS       | Mus             | 11  | 49         | 19.9         | -66         | 00        | 39       | 9.89          | 10.                                    | 33        |    | V       | DCEP       | 130                    | DM        | 288 |
| 780608 | PQ       | Vir             | 11  | 49         | 28.1         | +00         | 36        | 33       | 9.12          | ( 0.                                   | 03        | )  | V       | BY:        | 018                    | DM        |     |
| 780609 | МŶ       | UMa             | 11  | 51         | 57.9         | +48         | 05        | 19       | 8.97          | (0.                                    | 03        | )  | V       | ВҮ         | 018                    | DM        |     |
| 780610 | PR       | Vir             | 11  | 56         | 41.2         | -02         | 46        | 44       | 9.50          | ( 0.                                   | 05        | )  | V       | ВҮ         | 018                    | DM        |     |
| 780611 | PS       | Vir*            | 11  | 57         | 51.3         | +06         | 27        | 05       | 11.6          | 12.                                    | 3         |    | V       | EW         | 154                    | GSC       | 130 |
| 780612 | LV       | Com             | 12  | 07         | 50.9         | +18         | 56        | 56       | 9.16          | ( 0.                                   | 03        | )  | V       | BY         | 018                    | DM        |     |
| 780613 | DN       | CVn             | 12  | 09         | 17.0         | +33         | 39        | 36       | 14.82         | 15.                                    | 20        | ,  | v       | RRC        | 155                    | GSC       |     |
| 780614 | MZ       | UMa             | 12  | 11         | 27.8         | +53         | 25        | 17       | 7.96          | ( 0.                                   | 02        | )  | v       | BY         | 018                    | DM        |     |
| 780615 | DZ       | Cru             | 12  | 23         | 16.2         | -60         | 22        | 34       | 9.7           | <20                                    | -         | ,  | v       | N:         | 156                    | 280       |     |
| 780616 | PT       | Vir*            | 12  | 24         | 23 0         | +10         | 35        | 13       | 13 38         | 13                                     | 56        |    | *       | EW         | 135                    | GSC       |     |
| 780617 | V420     | Hva*            | 12  | 24         | 32 5         | -28         | 18        | 56       | 10.00         | 10.                                    | 9         |    | v       | E.         | 100                    |           | 040 |
| 780618 | NN NN    | IIMa            | 12  | 26         | 20.2         | +54         | 35        | 19       | 7 53          | (0)                                    | 03        | )  | v       | BV.        | 018                    | M         | 010 |
| 780619 | MW       | Cam             | 12  | 26         | 20.2<br>43 7 | +81         | 28        | 26       | 9.25          | ς υ.<br>α                              | 36        | ,  | V<br>Hn | DSCT       | 157                    | М         |     |
| 780620 | V1053    | Con*            | 12  | 20         | 58 3         | -34         | 15        | 02       | 11 80         | 12                                     | 65        |    | v       | FW         | 011                    | М         |     |
| 780621 | NO       | IIMa*           | 12  | 20         | 18 9         | +55         | 07        | 02       | 8 08          | ( 0 )                                  | 00        | )  | v       | BG.        | 005                    | M         |     |
| 780622 | V1054    | Cent            | 12  | 32         | 49 0         | -35         | Δ1        | 42       | 11 20         | 12                                     | 20        | ,  | v       | FW         | 011                    | М         |     |
| 780623 |          | CVn             | 12  | 35         | 51 3         | +51         | 13        | 17       | 8 52          | ( 0 )                                  | 02        | )  | v       | BV         | 018                    | М         |     |
| 780624 | סס<br>סח | CVn             | 12  | 36         | 17 0         | +51         | 30        | 52       | 8 58          | $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ | 02        | )  | v       | BV.        | 010                    | DM        |     |
| 780625 |          | Virt            | 12  | 30         | 18 6         | -02         | 26        | 02<br>22 | 11 5/         | 11                                     | 71        | ,  | v<br>*  | FW         | 010                    | CSC       |     |
| 780626 |          | CVn*            | 12  | 10         | 33 1         | +3/         | 20        | 56       | 10 10         | 10                                     | 7 I<br>50 |    | *       | EM<br>EM   | 264                    | CSC       | 158 |
| 780627 | ND       | UM <sub>2</sub> | 12  | 40<br>// 1 | лл Б         | +55         | 77<br>73  | 20       | 12.12<br>8 97 | ( 0                                    | 03        | ١  | v       | BV         | 20 <del>4</del><br>018 | мл        | 100 |
| 780628 | חח       | CUnt            | 12  | 41         | 44.J         | +35         | 43<br>57  | 29<br>56 | 11 62         | 11                                     | 03<br>02  | )  | v<br>¥  | EN<br>EN   | 264                    | CSC       | 270 |
| 780620 |          | Con             | 12  | 44         | 41.0         | -47         | 10        | 05       | 12.02         | ×15                                    | 92<br>0   |    | v       | M          | 204<br>000             |           | 130 |
| 700620 | V1000    | CVn             | 10  | 40         | 16 2         | +2E         | 10        | 00       | 1/ 10         | 15                                     | 0<br>1 E  |    | v       |            | 264                    | CGC       | 155 |
| 700621 | U3<br>W7 | Cru             | 12  | 41<br>10   | 20.3         | -15         | 12        | 10       | 7 02          | ( 0                                    | 10        | ١  | v<br>v  | NNAD<br>DV | 20 <del>4</del><br>010 | USC<br>MU | 100 |
| 700620 |          | Com             | 12  | 40         | JZ.J         | -10         | 43<br>50  | 10<br>10 | 6 21          | $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ | 10        | )  | v<br>v  | DI         | 160                    |           |     |
| 700622 | LW<br>DT | CUn             | 10  | 40<br>50   | 10 7         | - 24<br>⊥27 | 21        | 2J<br>01 | 6.04          | (0)                                    | 03<br>TO  | )  | V<br>D  | DECTC      | 027                    | DM        |     |
| 700624 |          | Com             | 10  | 50         | 20.7         | +37<br>+9E  | 20        | 20       | 0.04          | $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ | 05        | )  | D       | DOCIC      | 037                    |           |     |
| 700625 |          | COM             | 12  | 51         | 38.4         | +25         | 30<br>1 E | 32       | 9.09          | ( 0.                                   | 05        | )  | V       | BI         | 161                    |           |     |
| 780635 |          | CVn*            | 12  | 51         | 40.0         | +37         | 15        | 47       | 14.1          | 14.                                    | б<br>0 Г  | `  | *<br>⊓  | EW<br>LDD. | 161                    | GSC       |     |
| 700630 | ee<br>FF | Cru             | 12  | 53         | 30.1         | -60         | 20        | 32       | 12.09         | (0.                                    | 05        |    | B       | LPB:       | 162                    | GBC       |     |
| 700637 | EF       | Cru             | 12  | 53         | 38.0         | -60         | 22        | 40       | 10.17         | (0.                                    | 01        |    | V       | BCEP       | 162                    | GSC       |     |
| 780638 | EG       | Cru             | 12  | 53         | 43.3         | -60         | 24        | 02       | 11.45         | (0.                                    | 01        | )  | V       | BCEP:      | 162                    | GSC       |     |
| 780639 | EH<br>DV | Cru             | 12  | 53         | 49.4         | -60         | 20        | 51       | 11.81         | (0.                                    | 01        | )  | B       | BCEP:      | 162                    | GSC       |     |
| 780640 |          | CVn             | 12  | 53         | 51.2         | +32         | 09        | 56       | 14.75         | 15.                                    | 30        | `` | V       | RRC        | 155                    | GSC       |     |
| 180641 | ET<br>LV | Cru             | 12  | 53         | 52.0         | -60         | 22        | 16       | 9.44          | (0.                                    | 01        | )  | V       | RCEL       | 162                    | USNU      |     |
| 180642 | LY       | Com             | 12  | 54         | 41.3         | +31         | 16        | 45       | 14.46         | 15.                                    | 02        |    | V       | KKC        | 155                    | GSC       |     |
| 180643 | LN<br>LN | Vir             | 12  | 55         | 36.3         | -05         | 38        | 35       | 11.57         | 11.                                    | 63        |    | V       | DSCTC      | 022                    | GSC       |     |
| /80644 | LZ       | Com             | 12  | 56         | 51.2         | +28         | 10        | 35       | 14.37         | 14.                                    | 79<br>-   |    | V       | RRC        | 155                    | GSC       |     |
| 780645 | V1056    | Cen             | 12  | 58         | 44.7         | -42         | 30        | 42       | 10.4          | <11.                                   | 5         |    | V       | M          | 090                    | GSC       | 040 |
| 780646 | MM       | Com*            | 13  | 00         | 11.7         | +30         | 23        | 11       | 12.25         | 12.                                    | 89        | 、  | *       | EW         | 264                    | GSC       | 040 |
| /80647 | MN       | Com*            | 13  | 00         | 42.5         | +19         | 12        | 36       | 15.9          | (0.                                    | 05        | )  | 1C      | *          | 007                    | 2MASS     |     |
| 780648 | DW       | CVn             | 13  | 02         | 22.3         | +37         | 20        | 43       | 8.12          | (0.                                    | 04        | )  | V       | BY:        | 018                    | DM        |     |

| No.    | Name       |            | R.A      | A.,        | Decl          | ., 20 | 000.                  | . 0 | Max          | Min                                    |           |   |          |         | Туре         | Refe | erences   | 3    |
|--------|------------|------------|----------|------------|---------------|-------|-----------------------|-----|--------------|----------------------------------------|-----------|---|----------|---------|--------------|------|-----------|------|
|        |            |            | h        | m          | S             | 0     | ,                     | "   | m            | m                                      | L         |   |          |         |              |      |           |      |
| 780649 | PW         | Vir        | 13       | 03         | 10.6          | -16   | 03                    | 20  | 9.5          | <15.                                   | 1         |   |          | V       | М            | 090  | GSC       | 130  |
| 780650 | РХ         | Vir        | 13       | 03         | 49.7          | -05   | 09                    | 43  | 7.69         | ( 0.                                   | 04        |   | )        | V       | ВҮ           | 018  | DM        |      |
| 780651 | MO         | Com        | 13       | 05         | 14.4          | +28   | 37                    | 13  | 14.25        | 14.                                    | 58        |   |          | V       | RRAB         | 155  | GSC       |      |
| 780652 | V421       | Hya*       | 13       | 05         | 40.2          | -25   | 41                    | 06  | 16.94        | ( 0.                                   | 02        |   | )        | Ic      | *            | 163  | 163       |      |
| 780653 | DX         | CVn*       | 13       | 05         | 49.2          | +38   | 37                    | 06  | 12.25        | 12.                                    | 71        |   |          | *       | EW           | 264  | GSC       | 164  |
| 780654 | MP         | Com        | 13       | 06         | 22.7          | +22   | 16                    | 48  | 6.86         | 6.                                     | 94        |   |          | Hр      | GDOR         | 165  | DM        |      |
| 780655 | MT         | Mus        | 13       | 80         | 01.9          | -64   | 57                    | 56  | 11.2         | 13.                                    | 1         |   |          | V       | SRA          | 130  | GSC       | 040  |
| 780656 | MQ         | Com        | 13       | 09         | 29.7          | +27   | 00                    | 59  | 14.01        | 14.                                    | 36        |   |          | V       | RRAB         | 155  | GSC       |      |
| 780657 | РҮ         | Vir*       | 13       | 10         | 32.2          | -04   | 09                    | 33  | 9.60         | 10.                                    | 09        |   |          | V       | EW           | 094  | DM        | 130  |
| 780658 | DY         | CVn*       | 13       | 10         | 47.8          | +36   | 44                    | 80  | 13.05        | 13.                                    | 90        |   |          | *       | EW           | 264  | GSC       | 164  |
| 780659 | V1057      | Cen*       | 13       | 12         | 38.2          | -63   | 22                    | 32  | 12.4         | 12.                                    | 8         |   |          | V       | EW           | 166  | 166       | 130  |
| 780660 | V1058      | Cen        | 13       | 13         | 11.0          | -63   | 23                    | 31  | 11.8         | ( 0.                                   | 2         | * | )        | R       | IS           | 166  | 166       |      |
| 780661 | MR         | Com*       | 13       | 14         | 24.2          | +27   | 11                    | 32  | 12.00        | 12.                                    | 45        |   |          | *       | EW           | 264  | GSC       | 167  |
| 780662 | DZ         | CVn        | 13       | 17         | 03.4          | +36   | 06                    | 58  | 14.00        | 15.                                    | 03        |   |          | V       | RRAB         | 155  | GSC       |      |
| 780663 | V1047      | Cen        | 13       | 20         | 49.7          | -62   | 37                    | 51  | 8.8          | <11.                                   | 0         |   |          | V       | N            | 261  |           |      |
| 780664 | ΡZ         | Vir        | 13       | 24         | 11.6          | +03   | 20                    | 51  | 20.5         | 21.                                    | 8         |   |          | r       | AM           | 168  | 043       |      |
| 780665 | NQ         | UMa        | 13       | 25         | 45.5          | +56   | 58                    | 14  | 7.29         | (0.                                    | 04        |   | )        | V       | ВҮ           | 018  | DM        |      |
| 780666 | ົດດ        | Vir        | 13       | 27         | 48.6          | +09   | 54                    | 51  | 13.45        | ( 0.                                   | 05        |   | )        | В       | RPHS         | 169  | 009       |      |
| 780667 | EV         | Cha        | 13       | 32         | 52.5          | -76   | 12                    | 22  | 11.1         | 14.                                    | 0         |   | <i>.</i> | V       | M            | 090  | 133       |      |
| 780668 | EE         | CVn*       | 13       | 34         | 13.8          | +31   | 21                    | 26  | 13.7         | 14.                                    | 5         |   |          | *       | EW           | 264  | GSC       | 164  |
| 780669 | EF         | CVn*       | 13       | 36         | 38.4          | +28   | 11                    | 41  | 13.08        | 13.                                    | 56        |   |          | *       | EW           | 264  | GSC       | 167  |
| 780670 | GV         | Boo*       | 13       | 36         | 59.4          | +26   | 52                    | 48  | 12.37        | 12.                                    | 77        |   |          | *       | EW           | 264  | GSC       | 167  |
| 780671 | EG         | CVn        | 13       | 37         | 26.2          | +37   | 35                    | 00  | 12.99        | 13                                     | 60        |   |          | *       | EW           | 264  | GSC       | 167  |
| 780672 | EH         | CVn*       | 13       | 41         | 13 7          | +31   | 47                    | 24  | 13 0         | 13                                     | 4         |   |          | *       | EW           | 161  | GSC       | 040  |
| 780673 | V1059      | Cen*       | 13       | 43         | 01 3          | -48   | 36                    | 22  | 11 2         | <15                                    | 0         |   |          | V       | M            | 090  | GSC       | 040  |
| 780674 | 0 R        | Vir        | 13       | 43         | 34 0          | -17   | <u>4</u> 9            | 38  | 93           | 11                                     | 1         |   |          | v       | SRA          | 090  | DM        | 130  |
| 780675 | V1060      | Cen        | 13       | 49         | 32 1          | -46   | 26                    | 11  | 10.6         | <11                                    | 5         |   |          | v       | SRA          | 090  | GSC       | 040  |
| 780676 | 05         | Vir        | 13       | 49         | 52.0          | -13   | 13                    | 37  | 14 27        | 17                                     | 76        |   |          | П       | EA+IIV       | 170  | 171       | 010  |
| 780677 | QT<br>QT   | Vir        | 13       | 52         | 09.3          | +06   | 00                    | 05  | 8 50         | (0)                                    | 02        | h | )        | v       | DSCTC        | 0.37 | DM        |      |
| 780678 | GW         | Boo        | 13       | 53         | 13 9          | +20   | 00                    | 43  | 10 19        | 10                                     | 65        | U | '        | v       | FW           | 104  | DM        |      |
| 780679 | MP         | Dra        | 13       | 56         | 17 8          | +66   | 56                    | 41  | 8 45         | ( 0                                    | 03        |   | )        | v       | BV           | 018  | DM        |      |
| 780680 | CX         | Boo        | 14       | 01         | 05 6          | +24   | 42                    | 16  | 12 23        | $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ | 24        | v | )        | *       | FW.          | 161  | GSC       |      |
| 780681 | FT         | CVn*       | 14       | 02         | 05.6          | +34   | 02                    | 40  | 11 82        | 12                                     | 60        | v | ,        | *       | EW.<br>FW    | 264  | GSC       | 164  |
| 780682 |            | Vir*       | 1/       | 02         | 13 2          | +00   | 34                    | 10  | 11 75        | 12.                                    | 00        |   |          | *       | EM           | 135  | CSC       | 10-1 |
| 780683 | QU<br>CV   | Boo        | 1/       | 12         | 40.2          | +23   | 18                    | 51  | 8 88         | ( 0                                    | 00        |   | )        | V       | BV           | 018  | UDC<br>MU |      |
| 780684 | V1061      | Con*       | 1/       | 1 <i>1</i> | 56 8          | -61   | -10<br>1Λ             | 18  | 0.00<br>0 55 | ( U.                                   | 71        |   | ,        | v       | ۲۸<br>F      | 010  | DM        |      |
| 780685 | 01001      | Cir        | 1/       | 17         | 50.0          | -68   | 02                    | 10  | 7 54         | ( )                                    | 1 I<br>08 |   | )        | v       | BG           | 046  | DM        |      |
| 780686 |            | Vir        | 1/       | 18         | 36 7          | -06   | 37                    | 38  | 1/ 69        | 15                                     | 20        |   | ,        | *       | CYDHE        | 172  | CSC       |      |
| 780687 | Q V<br>C 7 | Roo        | 1/       | 10<br>01   | 08.0          | +37   | 24                    | 04  | 8 00         | ( 0                                    | 20<br>04  |   | ١        | v       | BV           | 018  | MU        |      |
| 780688 | GZ<br>UU   | Boo*       | 14<br>1/ | 21         | 100.9<br>ΛΛ 1 | +16   | ∠ <del>4</del><br>//1 | 50  | 10 01        | 11                                     | 55        |   | ,        | v       | EN<br>EN     | 104  | CSC       |      |
| 700600 | ит         | BOO*       | 14<br>1/ | 21         | 44.1          | 121   | 41<br>41              | 16  | 10.91        | ( )                                    | 25        |   | ١        | v       | D.           | 172  | CGC       |      |
| 700600 |            | B00≁       | 14       | 20         | 43.2          | 110   | 07                    | 20  | 10.34        | (0)                                    | 00        |   | )<br>\   | v       | n.<br>DC     | 110  |           |      |
| 790601 | пл<br>uī   |            | 14<br>1/ | 29         | 01.2          | ±11   | 07                    | 20  | 0.43         | (0)                                    | 09        |   | ן<br>א   | V<br>V  | п.Э<br>Е Л • | 010  |           |      |
| 700600 |            | DOO        | 14       | 29         | 02.0          | 120   | 102                   | 34  | 1.01         | (0)                                    | 03        |   | )        | V       | EA:          | 010  | DM        |      |
| 700602 |            | Б00<br>Сат | 14       | 29         | 09.3          | -30   | 10                    | 40  | 9.17         | (0.                                    | 02        |   | )        | V       | L:/RS        | 120  |           |      |
| 780693 | V1062      | Via        | 14       | 30         | 20.1          | -03   | 11                    | 45  | 11.0         | <14.                                   | 5<br>72   |   |          | V       | M            | 170  | 174       |      |
| 780694 | ųw<br>vo   | VIL        | 14       | 30         | 50.5          | -03   | 11                    | 09  | 14.32        | 14.                                    | 13        |   |          | *<br>17 | KRC<br>M     | 1/2  | GSC       |      |
| 780695 | KS         | LID        | 14       | 32         | 59.9          | -10   | 50                    | 03  | 11.8         | <13.                                   | 9         |   | 、        | V       | M            | 090  | USNU      |      |
| 180696 | HN         | R00        | 14       | 36         | 00.6          | +09   | 44                    | 41  | 1.48         | (0.                                    | 04<br>7   |   | )        | V       | БІ           | 100  |           |      |
| 180697 | ųχ         | Vir*       | 14       | 36         | 28.4          | -05   | 36                    | 21  | 12.1         | 12.                                    | 1         |   | 、        | V       | LW           | 130  | GSC       |      |
| 180698 | KT.        | LID        | 14       | 39         | 20.0          | -20   | 50                    | 32  | 12.8         | (0.                                    | 1:        |   | )        | V       | SAPHE        | 1/5  | GSC       |      |
| 180699 | KU         | LID        | 14       | 40         | 31.1          | -16   | 12                    | 33  | 1.36         | ()                                     | 39        |   | 、        | нр      | ы            | 005  | DM        |      |
| 180700 | v1063      | Cen        | 14       | 41         | 26.5          | -35   | 47                    | 38  | 10.71        | (0.                                    | 02        |   | )        | в       | DSCTC        | 1/6  | DM<br>aaa |      |
| 180701 | ΚV         | Lib        | 14       | 46         | 00.8          | -10   | 13                    | 16  | 14.13        | 14.                                    | 10        |   | 、        | *       | SXPHE        | 063  | GSC       |      |
| 780702 | HO         | Boo        | 14       | 46         | 03.1          | +27   | 30                    | 44  | 7.98         | (0.                                    | 02        |   | )        | V       | BA           | 018  | DM        |      |

| No.    | Name       |              | R./ | A., | Decl          | ., 20 | 000 | . 0      | Max   | Mi  | n                |          |         | Туре      | Refe | erences  | 5   |
|--------|------------|--------------|-----|-----|---------------|-------|-----|----------|-------|-----|------------------|----------|---------|-----------|------|----------|-----|
|        |            |              | h   | m   | s             | 0     | ,   | "        | m     | 1   | m                |          |         |           |      |          |     |
| 780703 | QY         | Vir          | 14  | 47  | 16.1          | +02   | 42  | 12       | 7.76  | ( 0 | .02              | )        | V       | ВҮ        | 018  | DM       |     |
| 780704 | KW         | Lib          | 14  | 47  | 51.5          | -06   | 34  | 46       | 13.64 | 14  | .17              |          | *       | RRAB      | 063  | GSC      |     |
| 780705 | HP         | Воо          | 14  | 50  | 15.8          | +23   | 54  | 43       | 5.98  | 6   | .01              |          | Hр      | BY        | 005  | DM       |     |
| 780706 | V422       | Hva          | 14  | 56  | 01.6          | -26   | 42  | 39       | 12.4  | 15  | .5               |          | v       | М         | 090  | 128      |     |
| 780707 | КХ         | Lib          | 14  | 57  | 28.0          | -21   | 24  | 56       | 5.72  | ( 0 | .04              | )        | V       | ВҮ        | 018  | DM       |     |
| 780708 | DG         | Cir          | 15  | 03  | 23.8          | -63   | 22  | 59       | 12.75 | 16  | .80              | <i>,</i> | v       | TNA       | 038  | GSC      |     |
| 780709 | MY         | TrA          | 15  | 08  | 20.0          | -70   | 04  | 35       | 10.8  | <14 | 0                |          | v       | M         | 090  | USNO     |     |
| 780710 | W379       | Ser          | 15  | 15  | 59 2          | +00   | 47  | 47       | 7 05  | 7   | 08               |          | •<br>Hn | RV        | 005  | MU       |     |
| 780711 | 1075<br>DF | Cir          | 15  | 17  | 50.2<br>50 5  | -61   | 57  | 16       | 7.00  | <18 | .00              |          | пр<br>* | N         | 177  | DI       |     |
| 700711 | 1730U      | Sor          | 15  | 26  | 10 7          | +00   | 21  | 57       | 10.0  | 10  | •                |          | т<br>V  | CD V      | 111  | CCC      |     |
| 700712 | V 300      | Ver<br>Ver   | 15  | 20  | 10.7          | +00   | 7E  | 11       | 7 06  | 12  | .9               |          | V<br>V  | SNA<br>ED | 090  | USC<br>M |     |
| 700714 | го<br>M7   | Aps≁<br>TA-+ | 15  | 21  | 11.1          | -10   | 45  | 11       | 0.57  | 1   | .91              |          | V<br>V  |           | 011  |          |     |
| 780714 |            |              | 15  | 34  | 34.1          | -05   | 00  | 11       | 0.57  | 0   | .76              | 、        | V       | LA        | 011  |          |     |
| /80/15 | AN         | CrB          | 15  | 35  | 30.2          | +36   | 12  | 35       | 8.61  | ( 0 | .02              | )        | V       | BI        | 018  | DM       |     |
| /80/16 | V383       | Nor          | 15  | 35  | 51.7          | -50   | 1/  | 21       | 8.18  | 8   | .50              |          | V<br>   | SRB       | 012  | DM       |     |
| 780717 | NX         | Lup          | 15  | 37  | 16.9          | -32   | 03  | 26       | 7.95  | 8   | .03              |          | Hр      | GDUR      | 024  | DM       |     |
| 780718 | AO         | CrB          | 15  | 39  | 25.2          | +27   | 37  | 35       | 8.99  | ( 0 | .04              | )        | V       | BY        | 018  | DM       |     |
| 780719 | V381       | Ser*         | 15  | 45  | 52.4          | +05   | 02  | 27       | 9.15  | ( 0 | .02              | )        | V       | RS        | 018  | DM       |     |
| 780720 | V382       | Ser          | 15  | 48  | 09.5          | +01   | 34  | 18       | 7.44  | ( 0 | .04              | )        | V       | BY        | 018  | DM       |     |
| 780721 | NY         | Lup          | 15  | 48  | 14.6          | -45   | 28  | 40       | 14.50 | 14  | .78              |          | V       | XM        | 178  | 178      |     |
| 780722 | KΥ         | Lib          | 15  | 51  | 56.6          | -09   | 28  | 09       | 8.93  | ( 0 | .04              | )        | V       | RS        | 018  | DM       |     |
| 780723 | NZ         | Lup          | 15  | 53  | 27.3          | -42   | 16  | 01       | 7.87  | ( 0 | .04              | )        | V       | BY        | 046  | DM       |     |
| 780724 | MQ         | Dra          | 15  | 53  | 31.3          | +55   | 16  | 15       | 17.7  | 18  | .8               |          | V       | AM        | 168  | USNO     |     |
| 780725 | AP         | CrB          | 15  | 54  | 12.4          | +27   | 21  | 51       | 16.5  | ( 0 | .65              | )        | R       | XM        | 179  | 179      | 252 |
| 780726 | V383       | Ser*         | 15  | 55  | 19.1          | +16   | 02  | 40       | 8.68  | ( 0 | .03              | )        | V       | RS        | 018  | DM       |     |
| 780727 | ΚZ         | Lib*         | 15  | 55  | 59.8          | -17   | 11  | 39       | 11.14 | 13  | .1               |          | V       | EA        | 011  | GSC      |     |
| 780728 | AQ         | CrB          | 15  | 57  | 31.8          | +28   | 38  | 01       | 11.78 | 12  | .73              |          | V       | RRAB      | 264  | 181      | 180 |
| 780729 | AR         | CrB*         | 15  | 59  | 18.6          | +27   | 52  | 15       | 10.84 | 11  | .45              |          | *       | EW        | 264  | GSC      | 182 |
| 780730 | AS         | CrB*         | 16  | 00  | 14.5          | +35   | 12  | 32       | 11.34 | 11  | .85              |          | *       | EW        | 264  | GSC      | 182 |
| 780731 | V384       | Ser*         | 16  | 01  | 53.6          | +24   | 52  | 18       | 11.88 | 12  | .41              |          | *       | EW        | 264  | GSC      | 182 |
| 780732 | V385       | Ser          | 16  | 03  | 25.7          | +01   | 02  | 37       | 13.65 | ( ) | . 54             | )        | v       | EW        | 017  | GSC      |     |
| 780733 | V384       | Nor*         | 16  | 05  | 18.9          | -49   | 30  | 08       | 10.07 | 10  | .36              | <i>.</i> | V       | EA        | 011  | DM       |     |
| 780734 | ΔT         | CrB          | 16  | 06  | 29 6          | +38   | 37  | 56       | 8 58  | ( 0 | 02               | )        | v       | BY        | 018  | DM       |     |
| 780735 | V1189      | Sco          | 16  | 07  | 42 6          | -26   | 45  | 08       | 11 2  | 13  | 2                | <i>'</i> | v       | SRA       | 090  | GSC      | 040 |
| 780736 | V1190      | Sco          | 16  | 08  | 29 7          | -39   | 03  | 11       | 16 42 | 16  | . <u>-</u><br>93 |          | v       | TNT       | 184  | 184      | 010 |
| 780737 | V1101      | Sco          | 16  | 00  | 18 2          | -30   | 04  | 10       | 16 52 | 17  | <br>13           |          | v       | INI       | 184  | 184      |     |
| 780738 | V1101      | Sco          | 16  | 00  | -10.2<br>51 Δ | -30   | 05  | 30       | 15 70 | 16  | 40               |          | v<br>T  | TNT       | 18/  | 184      |     |
| 700720 | V1102      | 500          | 16  | 00  | 51.4          | -20   | 03  | 17       | 14 67 | 15  | 22               |          | J<br>V  |           | 104  | 104      |     |
| 700770 | V1135      | Sor          | 16  | 10  | 22 7          | _01   | 00  | 11<br>11 | 19.07 | 10  | <br>             |          | v       | 1N1.      | 104  |          |     |
| 700740 | V300       | Ser          | 10  | 10  | 33.7          | -01   | 02  | 22       | 10.9  | 19  | . ∠              |          | V<br>V  |           | 120  | CGC      | 040 |
| 700741 | V1194      | 500          | 10  | 12  | 21.2          | -21   | 44  | 40       | 10.2  | 12  | .4               |          | v       | SRA<br>M  | 130  | GSC      | 040 |
| 780742 | IN IN      | ITA          | 10  | 12  | 34.8          | -66   | 30  | 30       | 10.4  | <13 | .2               |          | v       |           | 090  | USNU     |     |
| /80/43 | AU         | CrB          | 16  | 13  | 31.7          | +32   | 34  | 43       | 12.3  | 12  | .5               |          | *       | DSCI      | 186  | GSC      |     |
| 780744 | V2577      | Uph*         | 16  | 13  | 53.4          | -06   | 32  | 16       | 11.6  | <14 | .8               | 、        | V       | M         | 103  | 128      |     |
| 780745 | V1078      | Her          | 16  | 14  | 46.9          | +42   | 27  | 36       | 14.14 | ( 0 | .09              | )        | В       | RPHS      | 187  | 009      |     |
| 780746 | AV         | CrB*         | 16  | 14  | 58.6          | +30   | 16  | 36       | 11.87 | 12  | .48              |          | *       | EW        | 264  | GSC      | 182 |
| 780747 | AW         | CrB*         | 16  | 15  | 20.2          | +35   | 42  | 26       | 11.08 | 11  | .35              |          | *       | DSCT:     | 264  | GSC      |     |
| 780748 | V1195      | Sco*         | 16  | 19  | 23.0          | -40   | 56  | 39       | 8.86  | 9   | .04              |          | V       | EA        | 011  | DM       |     |
| 780749 | V382       | Nor          | 16  | 19  | 44.7          | -51   | 34  | 53       | 8.7   | <17 | •                |          | V       | NA        | 303  | 043      |     |
| 780750 | NO         | TrA*         | 16  | 20  | 04.5          | -69   | 57  | 48       | 8.67  | 8   | .86              |          | V       | EA        | 011  | DM       |     |
| 780751 | V1079      | Her          | 16  | 20  | 13.7          | +24   | 36  | 11       | 8.9   | ( 0 | .14              | )        | Rc      | BY:       | 188  | 188      |     |
| 780752 | V2578      | Oph          | 16  | 24  | 19.8          | -13   | 38  | 30       | 8.40  | ( 0 | .02              | )        | V       | ВҮ        | 018  | DM       |     |
| 780753 | V385       | Nor          | 16  | 27  | 37.8          | -49   | 10  | 42       | 11.64 | ( 0 | .04              | )        | V       | ELL:      | 190  | GSC      |     |
| 780754 | V386       | Nor          | 16  | 27  | 40.0          | -49   | 10  | 25       | 13.52 | ( 0 | .01              | )        | V       | DSCTC     | 190  | 190      |     |
| 780755 | V387       | Nor          | 16  | 27  | 43.1          | -49   | 07  | 24       | 13.57 | ( 0 | .01              | )        | V       | DSCTC     | 190  | 190      |     |
| 780756 | V388       | Nor          | 16  | 27  | 49.1          | -49   | 06  | 43       | 12.43 | ( 0 | .02              | )        | V       | DSCTC     | 190  | GSC      |     |

| h       m       s       o       ''       m       m         780757       V2579       Oph       16       29       35.3       +01       38       19       11.32       (       0.04 R       )       B       RPHS       11         780757       V2579       Oph       16       33       05.2       -60       54       13       7.88       (       0.03 b       )       V       DSCTC       03         780758       NP       TrA       16       36       27.8       +14       11       36       9.83       9.84       V       DSCTC       02         780760       V1081       Her       16       37       38.4       +08       37       21       14.3       16.0       B       SRA       19         780761       V2580       Oph       16       39       41.4       -20       52       39       10.3       11.5       V       SRB       09         780762       V1082       Her       16       40       35.1       +49       09       59       9.00       (       0.02       )       V       BY       01 | 16 009<br>37 DM<br>22 DM<br>91 002<br>90 GSC 040<br>18 DM |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------|
| 780757       V2579       Oph       16       29       35.3       +01       38       19       11.32       (       0.04       R       )       B       RPHS       11         780757       V2579       Oph       16       33       05.2       -60       54       13       7.88       (       0.03       b       )       V       DSCTC       03         780758       NP       TrA       16       36       27.8       +14       11       36       9.83       9.84       V       DSCTC       02         780760       V1081       Her       16       37       38.4       +08       37       21       14.3       16.0       B       SRA       19         780761       V2580       Oph       16       39       41.4       -20       52       39       10.3       11.5       V       SRB       09         780762       V1082       Her       16       40       35.1       +49       09       59       9.00       (       0.02       )       V       BY       01                                                | 16 009<br>37 DM<br>22 DM<br>91 002<br>90 GSC 040<br>18 DM |        |
| 780758       NP       TrA       16       33       05.2       -60       54       13       7.88       (       0.03       b       )       V       DSCTC       03         780759       V1080       Her       16       36       27.8       +14       11       36       9.83       9.84       V       DSCTC       02         780760       V1081       Her       16       37       38.4       +08       37       21       14.3       16.0       B       SRA       19         780761       V2580       Oph       16       39       41.4       -20       52       39       10.3       11.5       V       SRB       09         780762       V1082       Her       16       40       35.1       +49       09       59       9.00       (       0.02       )       V       BY       01                                                                                                                                                                                                                         | 37 DM<br>22 DM<br>91 002<br>90 GSC 040<br>18 DM<br>18 DM  |        |
| 780759       V1080       Her       16       36       27.8       +14       11       36       9.83       9.84       V       DSCTC       02         780760       V1081       Her       16       37       38.4       +08       37       21       14.3       16.0       B       SRA       19         780761       V2580       Oph       16       39       41.4       -20       52       39       10.3       11.5       V       SRB       09         780762       V1082       Her       16       40       35.1       +49       09       59       9.00       (0.02)       )       V       BY       01                                                                                                                                                                                                                                                                                                                                                                                                     | 22 DM<br>91 002<br>90 GSC 040<br>18 DM<br>18 DM           |        |
| 780760       V1081       Her       16       37       38.4       +08       37       21       14.3       16.0       B       SRA       19         780761       V2580       Oph       16       39       41.4       -20       52       39       10.3       11.5       V       SRB       09         780762       V1082       Her       16       40       35.1       +49       09       59       9.00       (0.02)       V       BY       01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 91 002<br>90 GSC 040<br>18 DM                             |        |
| 780761         V2580         Oph         16         39         41.4         -20         52         39         10.3         11.5         V         SRB         09           780762         V1082         Her         16         40         35.1         +49         09         59         9.00         (         0.02         )         V         BY         01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90 GSC 040<br>18 DM<br>18 DM                              |        |
| 780762 V1082 Her 16 40 35.1 +49 09 59 9.00 ( 0.02 ) V BY 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18 DM<br>18 DM                                            | )      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18 DM                                                     |        |
| 780763 V2581 Oph 16 41 29.1 +01 18 47 9.42 (0.04) V BY 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           |        |
| 780764 V1083 Her 16 42 35.4 +06 09 43 13.2 14.0 B RRAB 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92 125                                                    |        |
| 780765 V1084 Her 16 43 45.7 +34 02 40 12.48 12.75 V NL 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 93 193                                                    |        |
| 780766 V1085 Her 16 45 32.3 +33 49 48 9.45 (0.01) V BY 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 DM                                                     |        |
| 780767 V1086 Her 16 48 39.3 +30 27 46 13.1 13. * DSCT 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S1 GSC                                                    |        |
| 780768 V1087 Her 16 48 43.2 +06 07 49 12.7 14.5 B BBAB 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92 125                                                    |        |
| 780769 V878 Ara* 16 49 48 8 -47 07 46 8 00 8 22 V EW: 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11 DM                                                     |        |
| 780770 V1196 Sco* 16 51 20 4 -26 00 27 11 9 13 8 V SRA 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30 GSC 040                                                | n      |
| 780771 V1197 Sco. 16 51 24 6 -28 21 54 12 4 <16 0 B M 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                           | ן<br>ר |
| 780772 V2582 0mb 16 51 25 1 ±08 18 51 12 9 15 6 R M 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           | 5      |
| 700772 V1100 Geo 16 52 50 2 -41 52 04 11 90 ( 0.05 ) V LDP, 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |        |
| 780777 V1196 Sco 16 53 59.5 -41 55 04 11.69 (0.05) V LFB. 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                           |        |
| 780777 V199 Sco 10 54 01.9 -41 55 24 15.99 (0.04) V DSCIC 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                           |        |
| 780775 V1200 Sco 10 54 04.9 -41 50 40 15.71 (0.20) V GDUR: 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95 USNU                                                   |        |
| 780776 V2585 UPR 10 54 05.9 -27 10 47 12.3 <10.5 B M 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 96 196                                                    |        |
| 780777 V1201 Sco 16 54 10.7 -41 47 47 10.60 (0.03) V LPB: 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                           |        |
| 780778 V1202 Sco 16 54 12.9 -41 52 29 14.62 (0.04) V GDUR: 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95 g2.2                                                   |        |
| 780779 V1203 Sco 16 54 14.1 -41 53 58 14.69 (0.02) V DSCTC 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95 USNU                                                   |        |
| 780780 V1204 Sco 16 54 15.7 -41 49 32 10.17 (0.05) V BCEP: 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95 GSC                                                    |        |
| 780781 V1205 Sco 16 54 15.7 -41 51 40 13.45 (0.04) V DSCTC 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95 GSC                                                    |        |
| 780782 V1206 Sco 16 54 16.2 -41 50 26 10.74 (0.03) V LPB: 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 95 GSC                                                    |        |
| 780783 V1207 Sco 16 54 20.6 -41 49 29 11.20 (0.04) V BCEP: 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95 GSC                                                    |        |
| 780784 V1208 Sco 16 54 21.3 -41 51 42 9.72 (0.15) V E 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95 GSC                                                    |        |
| 780785 V1209 Sco 16 54 29.3 -41 55 46 14.33 ( 0.02 ) V DSCTC 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95 GSC                                                    |        |
| 780786 V1210 Sco 16 54 29.8 -41 55 39 13.70 ( 0.01 ) V GDOR: 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95 GSC                                                    |        |
| 780787 V1211 Sco 16 54 30.0 -41 56 05 16.2 ( 0.25 ) V GDOR: 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95 USNO                                                   |        |
| 780788 V1212 Sco* 16 54 31.2 -41 55 29 10.3 ( 0.04 ) V DSCTC 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39 DM                                                     |        |
| 780789 V1213 Sco 16 54 33.4 -41 56 32 15.03 ( 0.10 ) V GDOR: 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95 g2.2                                                   |        |
| 780790 V1214 Sco 16 54 34.2 -41 54 49 15.12 ( 0.02 ) V GDOR: 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95 g2.2                                                   |        |
| 780791 V1215 Sco 16 54 35.6 -41 53 21 15.67 ( 0.02 ) V GDOR: 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95 GSC                                                    |        |
| 780792 V1216 Sco* 16 54 57.7 -43 56 27 10.09 10.52 V EA 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11 DM                                                     |        |
| 780793 V1217 Sco 16 56 09.9 -40 36 34 13.3 ( 0.09 ) B DSCTC: 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 97 197                                                    |        |
| 780794 V1218 Sco 16 56 11.6 -40 35 29 10.4 ( 0.02 ) B BCEP: 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 97 197                                                    |        |
| 780795 V1219 Sco 16 56 15.7 -40 40 44 14.1 ( 0.4 ) B EA: 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 97 197                                                    |        |
| 780796 V1220 Sco 16 56 19.6 -40 34 41 14.2 ( 0.8 ) B EA 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97 197                                                    |        |
| 780797 V1221 Sco 16 56 28.6 -40 33 28 12.5 ( 0.10 ) B DSCT: 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 97 197 203                                                | 3      |
| 780798 V1222 Sco 16 56 29.9 -40 32 24 14.2 ( 0.12 ) B DSCT: 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 97 197                                                    |        |
| 780799 V1088 Her* 16 56 31.1 +32 20 55 13.7 14.2 * EW 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54 GSC 040                                                | )      |
| 780800 V1223 Sco 16 56 43.3 -40 36 25 11.0 ( 0.22 ) B EA 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 97 197 040                                                | )      |
| 780801 V1224 Sco 16 56 43.5 -40 32 56 16.1 ( 0.08 ) B RS: 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 03 197                                                    |        |
| 780802 V1225 Sco* 16 56 47.4 -40 47 28 10.16 10.25 V EW: 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 97 197 040                                                | )      |
| 780803 V2584 Oph 16 56 57.8 -30 01 09 10.7 (16. * M: OC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 06 2MASS                                                  |        |
| 780804 V1089 Her 16 57 42.2 +47 21 44 7.93 (0.03) V BY 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 DM                                                     |        |
| 780805 V1090 Her 16 57 53.2 +47 22 00 7.76 (0.02) V BY 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 DM                                                     |        |
| 780806 V2585 Oph 16 58 11.3 -23 31 08 9.8 12.6 * M 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 06 USNO 040                                               | )      |
| 780807 V2586 Oph 16 59 28.1 -13 23 14 13 1 <14.9 V M OC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 06 USNO 040                                               | )      |
| 780808 V2587 Oph 16 59 42 0 -22 50 13 10 5 13 1 T M OC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 040 040 040                                               | -      |
| 780809 V2588  Uph 16 59 44 1 +07 38 34 11 4 13 0 V SRA 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 94 GSC 040                                                | n      |
| 780810 V2589 Oph 16 59 45.1 -24 12 49 13.0 <14.9 * M <sup>2</sup> 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 06 2MASS                                                  | -      |

IBVS 5721

| No.    | Name          |            | R./      | A.,              | Decl          | ., 20      | 000        | . 0              | Max   | Mir      | ı    |   |   |        | Туре        | Refe       | erences      | 5   |
|--------|---------------|------------|----------|------------------|---------------|------------|------------|------------------|-------|----------|------|---|---|--------|-------------|------------|--------------|-----|
|        |               |            | h        | m                | S             | 0          | ,          | "                | m     | n        | 1    |   |   |        |             |            |              |     |
| 780811 | V2590         | Oph        | 16       | 59               | 52.6          | +04        | 59         | 01               | 13.0  | <15.     | 9    |   |   | В      | М           | 194        | 107          |     |
| 780812 | V2591         | Oph        | 17       | 00               | 07.8          | +06        | 41         | 23               | 13.6  | 15.      | 2    |   |   | В      | RRAB        | 192        | 125          |     |
| 780813 | V2592         | Oph        | 17       | 01               | 48.6          | -23        | 01         | 16               | 13.8  | <15.     | 6    |   |   | V      | М           | 006        | USNO         | 040 |
| 780814 | V2593         | Oph        | 17       | 02               | 02.3          | -28        | 38         | 26               | 10.9  | 13.      | 7    |   |   | *      | M:          | 006        | USNO         | 040 |
| 780815 | V2594         | Oph        | 17       | 02               | 14.9          | +08        | 00         | 20               | 13.2  | 14.      | .4   |   |   | В      | RRAB        | 194        | 198          |     |
| 780816 | V1226         | Sco        | 17       | 02               | 25.0          | -36        | 49         | 35               | 10.59 | 10.      | 78   |   |   | V      | EA          | 011        | DM           |     |
| 780817 | V1227         | Sco        | 17       | 02               | 28.9          | -35        | 14         | 57               | 10.8  | 12.      | .7   |   |   | R      | M:          | 199        | 199          |     |
| 780818 | V2595         | Oph        | 17       | 02               | 56.6          | -29        | 50         | 34               | 11.3  | 13.      | 5    |   |   | *      | SR          | 006        | 2MASS        |     |
| 780819 | V2596         | Oph        | 17       | 03               | 00.7          | -24        | 45         | 16               | 11.2  | 13.      | 8    |   |   | *      | М:          | 006        | USNO         |     |
| 780820 | V2597         | Oph*       | 17       | 03               | 31.0          | +06        | 09         | 51               | 14.0  | 15.      | 8    |   |   | В      | RRAB        | 192        | 125          |     |
| 780821 | MR            | Dra        | 17       | 04               | 25.6          | +52        | 49         | 07               | 8.21  | (0.      | 01   |   | ) | V      | DSCTC       | 200        | DM           |     |
| 780822 | V2598         | Oph        | 17       | 05               | 43.6          | +06        | 25         | 42               | 14.1  | 14.      | .5   |   | ` | В      | RRC         | 194        | 201          |     |
| 780823 | V1091         | Her*       | 17       | 07               | 24.5          | +36        | 15         | 26               | 12.04 | 12.      | .28  |   |   | *      | EW          | 161        | GSC          |     |
| 780824 | V2599         | Παμ        | 17       | 09               | 36.2          | -26        | 40         | 18               | 5.94  | 7        | 06   |   |   | К      | M           | 202        | 2MASS        |     |
| 780825 | V2600         | -r<br>Ωph* | 17       | 11               | 39.2          | -23        | 28         | 00               | 11.5  | 12       | 8    |   |   | V      | RV          | 040        | GSC          |     |
| 780826 | V2601         | 0ph        | 17       | 12               | 04.6          | +08        | 54         | 28               | 13.2  | 15       | 3    |   |   | B      | SRA         | 191        | 107          |     |
| 780827 | V879          | Ara        | 17       | 12               | 05.4          | -66        | 36         | 00               | 12.2  | <14      | 8    |   |   | v      | M           | 130        | 204          | 040 |
| 780828 | V1186         | Sco        | 17       | 12               | 51 3          | -30        | 56         | 38               | 9.6   | <18      |      |   |   | v      | N           | 205        | 206          | 010 |
| 780829 | V2576         | Onh        | 17       | 15               | 33 0          | -29        | 09         | 40               | 9.2   | <17      |      |   |   | v      | N           | 324        | 326          |     |
| 780830 | V1092         | Her*       | 17       | 16               | 39.9          | +29        | 34         | 05               | 11 93 | (0)      | 50   | v | ) | *      | EW          | 161        | GSC          |     |
| 780831 | V1093         | Her*       | 17       | 18               | 03.9          | +42        | 34         | 13               | 13 97 | (0)      | 02   | • | Ś | v      | *           | 116        | 009          | 183 |
| 780832 | V2602         | 0ph        | 17       | 18               | 10 9          | -24        | 30         | 05               | 13 4  | <18      | 0    |   | ' | v      | M           | 332        | 128          | 100 |
| 780833 | V2573         | Oph        | 17       | 10               | 14 1          | -27        | 22         | 35               | 10.4  | <20      | . 0  |   |   | v      | N A         | 207        | 208          | 040 |
| 780834 | V2603         | Oph        | 17       | 10               | 20 1          | -25        | 02         | 56               | 16 0  | 17       | 5    |   |   | R      | RRAR        | 201        | 200          | 010 |
| 780835 | V1220         | Sco        | 17       | 10               | 50 0          | -31        | 15         | 01               | 16.7  | <18      | . 0  |   |   | л<br>Т | YN          | 200        | 200          |     |
| 780836 | V1220         | Hort       | 17       | 26               | 31 3          | +35        | -10<br>01  | 15               | 10.7  | 13       | 15   |   |   | *      | EM<br>EM    | 210        | CSC          | 211 |
| 780837 | V1004         | Sco*       | 17       | 26               | 43 3          | -42        | 13         | 56               | 8 90  | 10.<br>Q | 08   |   |   | v      | FR          | 011        | ТМ           | 211 |
| 780838 | V1225         | Hor*       | 17       | 20               | -10.0<br>03 3 | +43        | Δ1         | 24               | 11 90 | 12       | 44   |   |   | *      | FW          | 264        | GSC          | 211 |
| 780839 | V2604         | Oph*       | 17       | 20               | 10.0          | -16        | 30         | 02               | 10 7  | 14       | 0    |   |   | v      | ΕN          | 201        | CSC          | 211 |
| 780840 | V1096         | Hor        | 17       | 20               | 45 0          | +43        | 18         | 13               | 13 01 | 13       | 30   | • |   | *      | FW          | 264        | CSC          | 211 |
| 780841 | V1187         | Sco        | 17       | 20               | 18 8          | -31        | 46         | 02               | 9 6   | 18       | .00  |   |   | v      | NΔ          | 201        | 213          | 211 |
| 780842 | V220          | Ara        | 17       | 20               | 25 1          | -51        | 10         | 22               | 11 2  | 14       | 7    |   |   | v      | M           | 090        | GSC          |     |
| 780843 | V2605         | Onh        | 17       | 20               | 51 5          | +01        | 29         | 46               | 10 1  | 11       | a    |   |   | v      | SRA         | 090        | GSC          | 130 |
| 780844 | V2575         | Oph        | 17       | 22               | 13 1          | -24        | 20         | 07               | 11 07 | <17      | . 0  |   |   | v      | N           | 117        | 000          | 100 |
| 780845 | V1007         | Hor        | 17       | 33               | 28 0          | +26        | 55         | 18               | 10 76 | 11       | 30   |   |   | *      | FW          | 264        | CSC          | 211 |
| 780846 | V2574         | nor        | 17       | 38               | 45 5          | -23        | 28         | 19               | 10.70 | <20      | .00  |   |   | v      | NΔ          | 215        | 216          | 211 |
| 780847 | V1098         | Hor        | 17       | 30<br>30         | 37 2          | +50        | 12         | 03               | 10.2  | ( 0      | ้รยเ | ı | ) | *      | FW          | 161        | GSC          |     |
| 780848 | MS            | Dra        | 17       | 30               | 55 7          | +65        | 00         | 06               | 8 39  | (0)      | 001  | ' | Ś | v      | BY          | 018        | DM           |     |
| 780849 | V1099         | Hor*       | 17       | 40               | 22 0          | +48        | 53         | 58               | 13 2  | (0)      | 02   |   | Ś | v      | *           | 116        | 009          |     |
| 780850 | V881          | Ara*       | 17       | <u>4</u> 0<br>Δ1 | 55 0          | -45        | 34         | 16               | 10.2  | 10       | 63   |   |   | v      | FΔ          | 011        | 014          |     |
| 780851 | V2606         | 0nh        | 17       | 42               | 40 1          | -27        | Δ <u>4</u> | 53               | 16 3  | <19      | 2    |   |   | T      | XN.         | 217        | 145          |     |
| 780852 | V2607         | Oph        | 17       | 12               | 10.1          | -03        | 30         | 21               | 13 5  | 14       | 7    |   |   | v      | SBB         | 140        |              | 040 |
| 780853 | V1100         | Hor        | 17       | 10               | 10.2          | +40        | 16         | 51               | 10.0  | ( )      | 3/   |   | ) | *      | FW          | 264        | CSC          | 150 |
| 780854 | V1188         | Sco        | 17       | 44               | 21 6          | -34        | 16         | 36               | 8 66  | <17      | .01  |   | ' | v      | NΔ          | 139        | 327          | 100 |
| 780855 | V1230         | 9co*       | 17       | 15               | 34 6          | -34        | 00         | 54               | 11 3  | 16       | 5    |   |   | R      | M           | 218        | 221<br>2MAGG | 040 |
| 780856 | V1200         | Onh        | 17       | 46               | 43 6          | -04        | 00         | 07               | 12.0  | 14       | 6    |   |   | V      | SBV         | 103        | 2MAGG        | 010 |
| 780857 | V1031         | Sco        | 17       | 18               | 10.0          | -35        | 28         | 21               | 15 42 | 15       | 61   |   |   | т      | FW          | 210        | 2MAGG        |     |
| 780858 | V1201<br>V378 | Sor        | 17       | 10<br>// 0       | 24 6          | -12        | 50         | 50               | 11 5  | <18      | .01  |   |   | *      | N           | 317        | ZHADD        |     |
| 780850 | V5119         | Ser        | ⊥/<br>17 | +9<br>50         | 24.0<br>05 0  | ⊥∠<br>_20_ | 59<br>57   | <u></u> ⊿1       | 16 00 | 16       | 07   |   |   | т      | FΔ          | 220<br>011 | 220          |     |
| 780860 | V5110         | Sar        | 17       | 50               | 40 0          | 29<br>-17  | ۵ï<br>۵∩   | <i>3</i> 8<br>тт | 11 7  | 12       | 6    |   |   | ⊥<br>* | SB ·        | 006        | TIGNU        |     |
| 780861 | V1020         | SCO        | 17       | 50               | 46 0          | -3U        | ∪3<br>70   | <u>⊿</u> ∩       | 14 57 | 1/       | 62   |   |   | т      | 5π.<br>FΔ·  | 220        | 220          |     |
| 780860 | V5100         | Sar        | ⊥/<br>17 | 50               | -10.0<br>48 1 | -20<br>-20 | 00         | ±∪<br>30         | 16 07 | 16       | 1/   |   |   | т<br>Т | <b>Γ</b> Λ. | 220<br>220 | 220          |     |
| 780862 | V5101         | Sar        | ⊥′<br>17 | 50               | 40.1<br>40 F  | _20        | 01         | 90               | 14 67 | 1/       | 71   |   |   | ±<br>T | ΞA.<br>FΔ   | 11Q        | 220          |     |
| 780864 | V1233         | Sco        | 17       | 50               | 55.4          | -30        | 14         | 51               | 13.89 | 14       | .02  |   |   | Ť      | EA          | 220        | 220          |     |

| No.    | Name           |          | R./      | Α.,       | Decl         | ., 20 | 000       | . 0      | Max   | Min           |        | Туре      | Refe | erences      | S   |
|--------|----------------|----------|----------|-----------|--------------|-------|-----------|----------|-------|---------------|--------|-----------|------|--------------|-----|
|        |                |          | h        | m         | S            | 0     | ,         | "        | m     | m             |        |           |      |              |     |
| 780865 | V5122          | Sgr      | 17       | 51        | 03.1         | -29   | 55        | 50       | 15.35 | 15.42         | I      | EA        | 220  | 220          |     |
| 780866 | V1234          | Sco      | 17       | 51        | 10.0         | -30   | 16        | 46       | 15.66 | 15.71         | I      | EA        | 220  | 220          |     |
| 780867 | V5123          | Sgr      | 17       | 51        | 14.4         | -29   | 54        | 24       | 16.18 | 16.22         | I      | EA        | 134  | 134          |     |
| 780868 | V1235          | Sco      | 17       | 51        | 14.6         | -30   | 03        | 28       | 14.71 | 14.79         | I      | EA        | 220  | 220          |     |
| 780869 | V1236          | Sco      | 17       | 51        | 17.1         | -30   | 03        | 01       | 14.77 | 14.80         | I      | EA        | 134  | 134          |     |
| 780870 | V1237          | Sco      | 17       | 51        | 24.3         | -30   | 14        | 06       | 14.17 | 14.20         | I      | EA        | 220  | 220          |     |
| 780871 | V5124          | Sgr      | 17       | 51        | 27.0         | -29   | 52        | 22       | 14.51 | 14.54         | I      | EA:       | 220  | 220          |     |
| 780872 | V5125          | Sgr      | 17       | 51        | 28.3         | -29   | 52        | 35       | 14.92 | 14.96         | I      | EP:       | 134  | 220          |     |
| 780873 | V1238          | Sco      | 17       | 51        | 49.0         | -30   | 13        | 25       | 15.56 | 15.59         | I      | EP        | 220  | 220          |     |
| 780874 | V5126          | Sgr      | 17       | 51        | 49.4         | -30   | 01        | 44       | 14.88 | 14.93         | I      | EA        | 220  | 220          |     |
| 780875 | V5127          | Sgr      | 17       | 51        | 50.9         | -29   | 54        | 43       | 14.01 | 14.07         | I      | EA        | 220  | 220          |     |
| 780876 | V5128          | Sgr      | 17       | 52        | 08.6         | -29   | 56        | 13       | 14.79 | 14.84         | I      | EA        | 220  | 220          |     |
| 780877 | V1239          | Sco      | 17       | 52        | 15.5         | -30   | 13        | 54       | 15.60 | 15.63         | I      | EA        | 134  | 134          |     |
| 780878 | V5129          | Sør*     | 17       | 52        | 18.6         | -29   | 56        | 25       | 15.64 | 15.71         | T      | EA        | 118  | 220          |     |
| 780879 | V5130          | Sor      | 17       | 52        | 36 0         | -29   | 37        | 29       | 16 70 | 16 75         | T T    | ED.       | 1.34 | 134          |     |
| 780880 | V5131          | Sor      | 17       | 52        | 44 8         | -17   | 24        | 00       | 12 5  | 10.70<br>14 4 | *      | SB ·      | 006  | 2MASS        | 040 |
| 780881 | V5131          | Sar      | 17       | 52        | 11.0<br>15 1 | -20   | 27        | 10       | 15 97 | 15 21         | т      | EN        | 220  | 200          | 040 |
| 700001 | V5152          | Sar      | 17       | 52        | 40.4         | -29   | 72<br>12  | 1/       | 16 /2 | 16 /0         | т<br>Т | EA<br>EA  | 220  | 220          |     |
| 700002 | V0100          | Sgr      | 17       | 52        | 40.4         | -29   | 40        | 20       | 14.00 | 14.00         | 1<br>T |           | 220  | 220          |     |
| 700004 | V5134<br>VE12E | Sgr      | 17       | 52        | 40.0         | -30   | 00        | 30       | 14.92 | 14.90         | 1      | EA<br>EA  | 124  | 220          |     |
| 700005 | V5135          | Sgr      | 17       | 52        | 54.0         | -29   | 40        | 34       | 15.59 | 10.03         | 1      | EA<br>EA  | 134  | 134          |     |
| 780885 | V1240          | SCO      | 17       | 52        | 57.5         | -30   | 05        | 33       | 16.46 | 16.51         | 1      | EA<br>DA  | 134  | 134          |     |
| 780886 | V5136          | Sgr      | 17       | 53        | 04.5         | -29   | 38        | 30       | 14.83 | 14.90         | 1      | EA        | 220  | 220          |     |
| 780887 | V1241          | Sco      | 17       | 53        | 09.8         | -30   | 06        | 30       | 15.99 | 16.04         | 1      | EP:       | 134  | 134          |     |
| 780888 | V5137          | Sgr      | 17       | 53        | 21.2         | -29   | 35        | 39       | 14.78 | 14.85         | I      | EA        | 220  | 220          |     |
| 780889 | V5138          | Sgr      | 17       | 53        | 22.7         | -29   | 59        | 23       | 14.33 | 14.37         | I      | EA        | 220  | 220          |     |
| 780890 | V2609          | Oph*     | 17       | 53        | 32.0         | +05   | 25        | 26       | 14.6  | 15.5          | В      | RRAB      | 221  | 002          |     |
| 780891 | V2610          | Oph      | 17       | 53        | 32.3         | -03   | 54        | 55       | 9.20  | 9.45          | V      | EW        | 094  | DM           |     |
| 780892 | V5139          | Sgr      | 17       | 53        | 36.8         | -29   | 34        | 30       | 15.71 | 15.75         | I      | EA        | 220  | 220          |     |
| 780893 | V5140          | Sgr      | 17       | 53        | 48.1         | -29   | 56        | 01       | 15.92 | 15.97         | I      | EA        | 134  | 134          |     |
| 780894 | V5141          | Sgr      | 17       | 53        | 51.2         | -17   | 46        | 14       | 13.0  | 14.5          | *      | SR:       | 006  | 2MASS        |     |
| 780895 | V5142          | Sgr      | 17       | 53        | 51.7         | -29   | 41        | 54       | 15.39 | 15.46         | I      | EA        | 220  | 220          |     |
| 780896 | V5143          | Sgr      | 17       | 54        | 09.0         | -29   | 47        | 39       | 13.49 | 13.55         | I      | EA        | 220  | 220          |     |
| 780897 | V5144          | Sgr      | 17       | 54        | 16.5         | -29   | 43        | 12       | 16.01 | 16.06         | I      | EA        | 220  | 220          |     |
| 780898 | V5145          | Sgr      | 17       | 54        | 23.5         | -29   | 45        | 58       | 16.21 | 16.27         | I      | EA        | 118  | 220          |     |
| 780899 | V1242          | Sco      | 17       | 54        | 24.5         | -31   | 05        | 35       | 14.5  | 16.1          | *      | SR:       | 006  | 2MASS        |     |
| 780900 | V5146          | Sgr      | 17       | 54        | 33.4         | -29   | 44        | 38       | 16.35 | 16.42         | I      | EA        | 220  | 220          |     |
| 780901 | V5147          | Sgr      | 17       | 54        | 33.9         | -30   | 01        | 32       | 13.06 | 13.10         | I      | EA        | 220  | 220          |     |
| 780902 | V5148          | Sgr      | 17       | 54        | 35.0         | -29   | 38        | 51       | 16.39 | 16.46         | I      | EA        | 220  | 220          |     |
| 780903 | V1243          | Sco      | 17       | 54        | 37.7         | -30   | 53        | 28       | 13.6  | 16.9          | *      | M:        | 006  | 2MASS        |     |
| 780904 | V5149          | Sgr      | 17       | 54        | 38.6         | -29   | 38        | 32       | 14.55 | 14.63         | I      | EA        | 220  | 220          |     |
| 780905 | V1244          | Sco      | 17       | 54        | 44.7         | -31   | 05        | 40       | 12.7  | <16.5         | *      | <u></u>   | 006  | 2MASS        |     |
| 780906 | V1245          | Sco      | 17       | 54        | 44.7         | -30   | 53        | 40       | 13.0  | <15.9         | *      | M·        | 006  | 2MASS        |     |
| 780907 | V5150          | Sor      | 17       | 54        | 47 0         | -29   | 41        | 17       | 15 58 | 15 63         | Т      | EΔ        | 220  | 220          |     |
| 780908 | V1246          | Sco      | 17       | 54        | 48.3         | -31   | 02        | 20       | 11 8  | 14 7          | *      | м·        | 006  | 2MASS        | 040 |
| 780909 | V5151          | Sor      | 17       | 54        | 52 3         | -29   | 58        | 20       | 13 22 | 13 25         | T      | FΔ        | 220  | 220          | 010 |
| 780010 | V10101         | Sco      | 17       | 54        | 52.6         | -31   | 00        | 20<br>10 | 13 2  | 15 6          | *      | GB.       | 006  | 220<br>2MAGG | 040 |
| 700011 | V1247          | 500      | 17       | 54        | 52.0         | _21   | 02        | 49<br>96 | 12.0  | 10.0          | т<br>+ | ы.        | 000  | OMAGG        | 040 |
| 780010 | VE1E0          | Sam      | 17       | 54        | 00.0         | -00   | 0∠<br>∧0  | ∠0<br>∧0 | 15 10 | 15 00         | т<br>Т | л.<br>БЛ  | 110  | 13/          |     |
| 700010 | V010Z          | og og    | 17       | 00<br>E E | 12 0         | -29   | 40<br>1 ∕ | 40<br>50 | 10.19 | 15.22         | 1      | ĽА<br>M.  | 110  | 104<br>0MAGG |     |
| 100913 | V1249          | 5C0      | 17       | 55        | 10.2         | -31   | 14        | 52       | 13.0  | 10.0          | *      | м:<br>Е А | 006  | ZMASS        |     |
| 700015 | V0103          | sgr      | 17       | 55        | 10.4         | -29   | 31        | 32       | 13.48 | 13.51         | Ţ      | LA        | 220  | 220          |     |
| 100915 | V1250          | 5C0      | 17       | 55        | 10.0         | -31   | 00        | 33       | 13.9  | <10.0         | *      | SK:       | 006  | ZMASS        |     |
| 700015 | V1251          | 5C0<br>G | 11<br>17 | 55        | 28.0         | -31   | 04        | 25       | 12.9  | 17.0          | *      | M:        | 006  | ZMASS        |     |
| 180917 | V5154          | Sgr      | 1/       | 55        | 29.8         | -29   | 33        | 31       | 15.39 | 15.44         | T      | LA        | 220  | 220          |     |
| 180918 | V1252          | Sco      | 17       | 55        | 31.5         | -31   | 05        | 23       | 11.9  | 15.0          | *      | М:        | 006  | 2MASS        |     |

| No.     | Name   |                      | R./ | A., | Decl         | ., 20 | 000 | .0 | Max   | Miı | ı                |   |               | Туре    | Refe | erences      | 3   |
|---------|--------|----------------------|-----|-----|--------------|-------|-----|----|-------|-----|------------------|---|---------------|---------|------|--------------|-----|
|         |        |                      | h   | m   | S            | о     | ,   | "  | m     | r   | n                |   |               | • -     |      |              |     |
| 780919  | V1253  | Sco                  | 17  | 55  | 52.2         | -30   | 48  | 39 | 15.5  | <17 | .5               |   | *             | SR:     | 006  | 2MASS        |     |
| 780920  | V1254  | Sco                  | 17  | 55  | 53.0         | -31   | 02  | 24 | 15.0  | 16  | .4               |   | *             | SR:     | 006  | 2MASS        |     |
| 780921  | V5155  | Sør                  | 17  | 55  | 53.2         | -29   | 22  | 29 | 15.68 | 15  | .73              |   | т             | EA      | 134  | 134          |     |
| 780922  | V1255  | Sco                  | 17  | 55  | 53.9         | -31   | 14  | 46 | 14.1  | 15  | .9               |   | *             | SR:     | 006  | 2MASS        |     |
| 780923  | V1256  | Sco                  | 17  | 55  | 54 0         | -31   | 11  | 20 | 14 2  | <16 | 1                |   | *             | SB·     | 006  | 2MASS        |     |
| 780924  | V1257  | Sco                  | 17  | 55  | 58 1         | -30   | 47  | 10 | 13 1  | 16  | . <u>-</u><br>ົາ |   | *             | M.      | 006  | 2MASS        |     |
| 780021  | V1258  | Sco                  | 17  | 56  | 05 1         | -31   | 15  | 20 | 11 7  | 13  | . <u>2</u><br>ົງ |   | *             | CB.     | 006  | 20MAGG       |     |
| 780020  | V5156  | Sar                  | 17  | 56  | 21 2         | -20   | 24  | 20 | 1/ 67 | 1/  | · 2<br>73        |   | т             | FA      | 220  | 200          |     |
| 700920  | VJ10E0 | Sec                  | 17  | 50  | 21.2         | 23    | 10  | 10 | 19.07 | 15  | .15              |   | т<br>т        | M       | 220  | 220          |     |
| 700000  | V1259  | 500                  | 17  | 50  | 24.0         | -31   | 10  | 40 | 12.2  | 10  | .9               |   | T             | M CD    | 000  | ZMASS        |     |
| 780928  | V1260  | 500                  | 17  | 50  | 33.5         | -30   | 40  | 20 | 13.1  | 14  | . 0              |   | *             | SK:     | 000  | ZMASS        |     |
| 780929  | V5157  | Sgr*                 | 17  | 50  | 35.5         | -29   | 32  | 21 | 15.30 | 15  | .32              |   | 1<br>T        | EP      | 134  | 134          |     |
| 780930  | V1261  | Sco                  | 17  | 56  | 37.1         | -30   | 51  | 05 | 11.5  | 12  | .2               |   | 1<br>T        | SR      | 006  | 2MASS        |     |
| 780931  | V1262  | Sco                  | 17  | 56  | 37.9         | -31   | 00  | 46 | 11.7  | 15  | . /              |   | 1             | M       | 006  | 2MASS        |     |
| 780932  | V1263  | Sco                  | 17  | 56  | 38.8         | -30   | 53  | 18 | 12.1  | 14  | .0               |   | T             | SRA     | 006  | 2MASS        |     |
| 780933  | V1264  | Sco                  | 17  | 56  | 39.7         | -30   | 59  | 28 | 13.4  | 16  | .3               |   | *             | M:      | 006  | 2MASS        |     |
| 780934  | V5158  | $\operatorname{Sgr}$ | 17  | 56  | 41.2         | -29   | 40  | 05 | 13.70 | 13  | .74              |   | Ι             | EA      | 220  | 220          |     |
| 780935  | V1265  | Sco                  | 17  | 56  | 44.2         | -31   | 04  | 01 | 11.6  | 13  | .2               |   | Ι             | M:      | 006  | 2MASS        |     |
| 780936  | V1266  | Sco                  | 17  | 56  | 44.3         | -30   | 49  | 41 | 14.3  | 17  | .0               |   | *             | M:      | 006  | 2MASS        |     |
| 780937  | V5159  | $\operatorname{Sgr}$ | 17  | 56  | 44.9         | -29   | 40  | 35 | 15.99 | 16  | .05              |   | Ι             | EA      | 220  | 220          |     |
| 780938  | V5160  | $\operatorname{Sgr}$ | 17  | 56  | 47.5         | -29   | 42  | 42 | 14.85 | 14  | .89              |   | Ι             | EA      | 220  | 220          |     |
| 780939  | V1267  | Sco                  | 17  | 56  | 48.8         | -31   | 01  | 49 | 12.7  | <15 | .6               |   | *             | M:      | 006  | 2MASS        |     |
| 780940  | V1268  | Sco                  | 17  | 56  | 56.2         | -30   | 45  | 13 | 11.7  | 17  | .0               |   | Ι             | М       | 006  | 2MASS        |     |
| 780941  | V1269  | Sco                  | 17  | 56  | 58.3         | -30   | 52  | 30 | 11.2  | 14  | .8               |   | Ι             | М       | 006  | 2MASS        |     |
| 780942  | V5161  | Sgr                  | 17  | 56  | 58.6         | -24   | 06  | 11 | 10.7  | 13  | .2               |   | Ι             | М       | 006  | 2MASS        | 040 |
| 780943  | V1270  | Sco*                 | 17  | 57  | 02.5         | -40   | 07  | 16 | 9.17  | 9   | .72              |   | V             | EA      | 011  | DM           |     |
| 780944  | V5162  | Sgr                  | 17  | 57  | 05.7         | -29   | 22  | 49 | 14.68 | 14  | .72              |   | Ι             | EA      | 220  | 220          |     |
| 780945  | V1271  | Sco                  | 17  | 57  | 08.2         | -30   | 04  | 29 | 13.0  | <14 | .4               |   | *             | SR:     | 006  | 2MASS        |     |
| 780946  | V1272  | Sco                  | 17  | 57  | 09.0         | -30   | 58  | 23 | 11.5  | 14  | .2               |   | т             | M       | 006  | 2MASS        |     |
| 780947  | V5163  | Sør                  | 17  | 57  | 10.3         | -29   | 15  | 38 | 14.94 | 14  | .97              |   | T             | E.A     | 134  | 220          |     |
| 780948  | V1273  | Sco                  | 17  | 57  | 13 6         | -30   | 06  | 17 | 12 7  | <14 | 4                |   | *             | SB      | 006  | 2MASS        |     |
| 780949  | V5164  | Sor*                 | 17  | 57  | 16 0         | -29   | 35  | 31 | 13 26 | 13  | . <u>-</u><br>২1 |   | т             | FΔ      | 118  | 220          |     |
| 780950  | V1074  | Sco.                 | 17  | 57  | 20.0         | -30   | 54  | 58 | 11 1  | 14  | 2<br>2           |   | *             | M.      | 006  | 220<br>2MAGG |     |
| 7000051 | V1075  | 900<br>800           | 17  | 57  | 22.2         | -20   | 10  | 00 | 11.1  | 12  | 0                |   | т             | м       | 000  | OMAGG        |     |
| 700050  | VIZIO  | 500<br>Sam           | 17  | 57  | 20.4<br>00 E | -30   | 49  | 50 | 11.0  | 15  | . 9<br>00        |   | т<br>т        |         | 124  | 124          |     |
| 700952  | V5105  | Sgr                  | 17  | 57  | 20.5         | -29   | 43  | 50 | 15.79 | 10  | .02              |   | 1<br>T        |         | 134  | 134          |     |
| 700054  | V5100  | Sgr                  | 17  | 57  | 30.1         | -29   | 20  | 44 | 15.17 | 10  | . 22             |   | ц<br>т        | EA<br>M | 220  | 220          |     |
| 780954  | V1276  | SCO                  | 17  | 57  | 35.4         | -31   | 05  | 18 | 10.7  | 13  | .2               |   | T             | M       | 006  | ZMASS        |     |
| 780955  | V12//  | Sco                  | 17  | 57  | 36.2         | -30   | 59  | 52 | 11.3  | 13  | .9               |   | *             | M:      | 006  | 2MASS        |     |
| 780956  | V5167  | Sgr                  | 17  | 57  | 38.0         | -29   | 35  | 1/ | 15.76 | 15  | .84              |   | 1             | EA      | 220  | 220          |     |
| 780957  | V1278  | Sco                  | 17  | 57  | 46.5         | -31   | 20  | 06 | 11.3  | 13  | .7               |   | 1             | M       | 006  | 2MASS        |     |
| 780958  | V5168  | Sgr                  | 17  | 57  | 52.4         | -22   | 41  | 34 | 10.5  | 12  | .9               |   | Ι             | М       | 006  | 2MASS        |     |
| 780959  | V5169  | $\operatorname{Sgr}$ | 17  | 58  | 02.4         | -29   | 44  | 40 | 13.7  | <15 | .4               |   | *             | SR:     | 006  | 2MASS        |     |
| 780960  | V5170  | $\operatorname{Sgr}$ | 17  | 58  | 11.2         | -19   | 56  | 41 | 13.3  | <16 | .2               |   | *             | M:      | 006  | 2MASS        |     |
| 780961  | V5171  | $\operatorname{Sgr}$ | 17  | 58  | 19.1         | -23   | 36  | 29 | 8.8   | 10  | .7               |   | Ι             | M:      | 006  | 2MASS        |     |
| 780962  | V5172  | $\operatorname{Sgr}$ | 17  | 58  | 25.4         | -27   | 05  | 55 | 10.3  | 13  | .7               |   | *             | M:      | 006  | 2MASS        |     |
| 780963  | V5173  | $\operatorname{Sgr}$ | 17  | 58  | 40.3         | -29   | 03  | 49 | 13.47 | ( 0 | .2               | ) | Rc            | SR      | 223  | 2MASS        |     |
| 780964  | V5174  | $\operatorname{Sgr}$ | 17  | 58  | 40.8         | -29   | 08  | 29 | 15.16 | ( 0 | .2               | ) | $\mathtt{Rc}$ | SR      | 223  | 2MASS        |     |
| 780965  | V5175  | Sgr                  | 17  | 58  | 41.1         | -31   | 15  | 17 | 13.2  | 16  | .6               |   | *             | M:      | 006  | 2MASS        |     |
| 780966  | V5176  | Sgr                  | 17  | 58  | 41.6         | -29   | 03  | 54 | 14.8  | 15  | .8               |   | Rc            | SRB     | 223  | 2MASS        |     |
| 780967  | V5177  | Sgr                  | 17  | 58  | 41.9         | -29   | 06  | 51 | 13.92 | ( 0 | . 25             | ) | Rc            | SR      | 223  | 2MASS        |     |
| 780968  | V5178  | Sgr                  | 17  | 58  | 42.4         | -29   | 05  | 16 | 16.65 | ( 0 | .4               | ) | Rc            | SR      | 223  | 2MASS        |     |
| 780969  | V5179  | Sgr                  | 17  | 58  | 42.4         | -29   | 10  | 29 | 16.10 | ( 0 | .3               | ) | Rc            | SR      | 223  | 2MASS        |     |
| 780970  | V5180  | Sgr                  | 17  | 58  | 42.5         | -29   | 02  | 41 | 14.01 | ( ) | . 15             | ) | Rc            | SR      | 223  | 2MASS        |     |
| 780971  | V5181  | Sgr                  | 17  | 58  | 42.6         | -29   | 03  | 40 | 16.31 | ( 0 | .25              | ) | Rc            | SR      | 223  | 2MASS        |     |
| 780972  | V5182  | Sgr                  | 17  | 58  | 42.8         | -29   | 08  | 47 | 14.8  | 15  | .4               | , | Rc            | SR      | 223  | 2MASS        |     |

| No.    | Name  |                      | R. <i>I</i> | A., | Decl | ., 20        | 000 | .0 | Max   | Min                                           |   |               | Туре      | Refe | erences |
|--------|-------|----------------------|-------------|-----|------|--------------|-----|----|-------|-----------------------------------------------|---|---------------|-----------|------|---------|
|        |       |                      | h           | m   | S    | 0            | ,   | "  | m     | m                                             |   |               |           |      |         |
| 780973 | V5183 | $\operatorname{Sgr}$ | 17          | 58  | 43.3 | -29          | 10  | 14 | 15.21 | ( 0.1                                         | ) | Rc            | SRS       | 223  | 2MASS   |
| 780974 | V5184 | Sgr                  | 17          | 58  | 43.7 | -29          | 03  | 26 | 13.41 | ( 0.2                                         | ) | $\mathtt{Rc}$ | SR        | 223  | 2MASS   |
| 780975 | V5185 | Sgr                  | 17          | 58  | 44.5 | -29          | 02  | 36 | 14.05 | ( 0.12                                        | ) | Rc            | SRS       | 223  | 2MASS   |
| 780976 | V5186 | Sgr                  | 17          | 58  | 45.5 | -29          | 03  | 58 | 15.75 | ( 0.15                                        | ) | Rc            | SR        | 223  | 2MASS   |
| 780977 | V5187 | Sgr                  | 17          | 58  | 45.8 | -29          | 10  | 35 | 15.43 | ( 0.1                                         | ) | Rc            | SR        | 223  | 2MASS   |
| 780978 | V5188 | Sgr                  | 17          | 58  | 45.8 | -29          | 03  | 28 | 14.43 | (0.12                                         | ) | Rc            | SR        | 223  | 2MASS   |
| 780979 | V5189 | Sgr                  | 17          | 58  | 45.9 | -29          | 07  | 49 | 15.65 | (0.15                                         | ) | Rc            | SRS       | 223  | 2MASS   |
| 780980 | V5190 | Sør                  | 17          | 58  | 46.0 | -29          | 03  | 11 | 15.08 | (0.35                                         | ) | R.c.          | SR.       | 223  | 2MASS   |
| 780981 | V5191 | Sør                  | 17          | 58  | 46.8 | -29          | 07  | 20 | 16.87 | (0.1                                          | ý | Rc            | SR        | 223  | 2MASS   |
| 780982 | V5192 | Sor                  | 17          | 58  | 46 9 | -29          | 03  | 34 | 15 10 | (0.15)                                        | ý | Rc            | SR        | 220  | 2MASS   |
| 780083 | V5102 | Sar                  | 17          | 58  | A7 1 | -20          | 07  | 10 | 16 02 | (0.10)                                        | ý | Rc            | SB        | 220  | 20MAGG  |
| 780984 | V519/ | Sar                  | 17          | 58  | 47 3 | -20          | 01  | 58 | 14 66 | (0.1)                                         | ý | Rc            | SB        | 220  | DDVWCC  |
| 700005 | VELOE | Sar                  | 17          | 50  | 47 7 | -20          | 01  | лл | 14 04 | $\begin{pmatrix} 0.10 \\ 0 & 1 \end{pmatrix}$ | ) | De            | CD        | 220  | OMAGG   |
| 700006 | V5195 | Ser                  | 17          | 50  | 41.1 | -20          | 10  | 44 | 19.24 | 14 25                                         | ) | De            | CDD       | 220  | OMAGG   |
| 700007 | V5190 | Sgr                  | 17          | 50  | 41.0 | -29          | 10  | 05 | 16 10 | 14.35                                         |   | пC<br>D-      | SUD       | 223  | ZMAGG   |
| 700000 | V5197 | Sgr                  | 17          | 50  | 40.1 | -29          | 01  | 21 | 10.10 | 10.75                                         |   | RC            | SKB       | 223  | ZMASS   |
| 780988 | V5198 | Sgr                  | 17          | 58  | 48.6 | -29          | 07  | 45 | 15.20 | 15.90                                         |   | КC            | SRB       | 223  | ZMASS   |
| 780989 | V5199 | Sgr                  | 17          | 58  | 49.0 | -29          | 11  | 23 | 14.10 | 15.10                                         |   | KC            | SRB       | 223  | 2MASS   |
| 780990 | V5200 | Sgr                  | 17          | 58  | 49.1 | -29          | 05  | 29 | 15.14 | ( 0.1                                         | ) | Rc            | SRS       | 223  | 2MASS   |
| 780991 | V5201 | Sgr                  | 17          | 58  | 49.3 | -29          | 10  | 14 | 15.75 | 17.40                                         |   | Rc            | SRA       | 223  | 2MASS   |
| 780992 | V5202 | $\operatorname{Sgr}$ | 17          | 58  | 50.0 | -29          | 06  | 33 | 13.61 | ( 0.1                                         | ) | Rc            | SR        | 223  | 2MASS   |
| 780993 | V5203 | $\operatorname{Sgr}$ | 17          | 58  | 50.2 | -29          | 04  | 56 | 15.15 | ( 0.5                                         | ) | Rc            | SR        | 223  | 2MASS   |
| 780994 | V5204 | $\operatorname{Sgr}$ | 17          | 58  | 50.4 | -29          | 03  | 15 | 14.73 | ( 0.15                                        | ) | Rc            | SR        | 223  | 2MASS   |
| 780995 | V5205 | $\operatorname{Sgr}$ | 17          | 58  | 50.5 | -29          | 10  | 17 | 16.01 | ( 0.5                                         | ) | Rc            | SR        | 223  | 2MASS   |
| 780996 | V5206 | Sgr                  | 17          | 58  | 50.8 | -29          | 01  | 07 | 16.70 | ( 0.35                                        | ) | Rc            | SR        | 223  | 2MASS   |
| 780997 | V5207 | Sgr                  | 17          | 58  | 51.1 | -29          | 07  | 22 | 13.40 | ( 0.4                                         | ) | $\mathtt{Rc}$ | SR        | 223  | 2MASS   |
| 780998 | V5208 | Sgr                  | 17          | 58  | 51.3 | -29          | 02  | 06 | 16.24 | ( 0.1                                         | ) | Rc            | SR        | 223  | 2MASS   |
| 780999 | V5209 | Sgr                  | 17          | 58  | 51.6 | -29          | 03  | 14 | 14.15 | ( 0.08                                        | ) | Rc            | SRS       | 223  | 2MASS   |
| 781000 | V5210 | Sgr                  | 17          | 58  | 51.9 | -29          | 05  | 26 | 16.14 | ( 0.1                                         | ) | Rc            | SR        | 223  | 2MASS   |
| 781001 | V5117 | Sgr                  | 17          | 58  | 52.6 | -36          | 47  | 35 | 9.2   | <17.                                          |   | V             | NA        | 084  | 328     |
| 781002 | V5211 | Sgr                  | 17          | 58  | 53.0 | -29          | 08  | 33 | 14.16 | 14.44                                         |   | Rc            | SR        | 223  | 2MASS   |
| 781003 | V5212 | Sgr                  | 17          | 58  | 53.1 | -29          | 04  | 23 | 15.74 | ( 0.3                                         | ) | Rc            | SR        | 223  | 2MASS   |
| 781004 | V5213 | Sgr                  | 17          | 58  | 53.4 | -28          | 59  | 40 | 14.59 | (0.15                                         | ) | Rc            | SRS       | 223  | 2MASS   |
| 781005 | V5214 | Sør                  | 17          | 58  | 54.0 | -29          | 03  | 51 | 14.13 | (0.1                                          | ý | Rc            | SRS       | 223  | 2MASS   |
| 781006 | V5215 | Sor                  | 17          | 58  | 54 1 | -29          | 05  | 24 | 15 90 | (0.6)                                         | ý | Rc            | SR        | 223  | 2MASS   |
| 781007 | V5216 | Sor                  | 17          | 58  | 54 3 | -29          | 03  | 25 | 15 49 | (0.0)                                         | ý | Rc            | SBS       | 220  | 2MASS   |
| 781008 | V5210 | Sar                  | 17          | 58  | 54.5 | -20          | 10  | 20 | 15 62 | (0.2)                                         | ý | Rc            | SB        | 220  | DDVWCC  |
| 781000 | V5217 | Sar                  | 17          | 58  | 54.6 | -28          | 58  | 33 | 10.02 | (0.1)                                         | ý | Rc            | GBG       | 220  | SAWC    |
| 781010 | V5210 | Sar                  | 17          | 58  | 55 0 | -20          | 06  | 20 | 16 01 | (0.20)                                        | ) | Rc            | STD<br>SD | 220  | OMAGG   |
| 701010 | V5219 | Sar                  | 17          | 50  | 55.0 | _ <u>2</u> 9 | 50  | 10 | 12 12 | (0.13)                                        | ) | RC<br>Dc      | CDC       | 220  | OMAGG   |
| 701011 | V0220 | o g ana              | 17          | 50  | 55.2 | -20          | 07  | 10 | 15.15 | (0.1)                                         |   | nc<br>De      | ono<br>an | 223  |         |
| 701012 | V5221 | Sgr                  | 17          | 50  | 55.4 | -29          | 10  | 07 | 15.11 | (0.2)                                         |   | RC<br>D-      | SK        | 223  | ZMASS   |
| 781013 | V5222 | Sgr                  | 17          | 58  | 55.5 | -29          | 12  | 80 | 15.37 | (0.25                                         | ) | KC<br>D       | SR        | 223  | ZMASS   |
| 781014 | V5223 | Sgr                  | 17          | 58  | 56.2 | -29          | 00  | 51 | 16.46 | (0.3                                          | ) | KC            | SR        | 223  | 2MASS   |
| 781015 | V5224 | Sgr                  | 17          | 58  | 56.6 | -29          | 06  | 01 | 15.07 | (0.15                                         | ) | Rc            | SRS       | 223  | 2MASS   |
| 781016 | V5225 | Sgr                  | 17          | 58  | 56.7 | -29          | 03  | 40 | 15.40 | (0.2                                          | ) | Rc            | SR        | 223  | 2MASS   |
| 781017 | V5226 | $\operatorname{Sgr}$ | 17          | 58  | 56.8 | -29          | 08  | 04 | 15.23 | ( 0.1                                         | ) | Rc            | SRS       | 223  | 2MASS   |
| 781018 | V5227 | $\operatorname{Sgr}$ | 17          | 58  | 56.9 | -29          | 04  | 47 | 15.17 | ( 0.3                                         | ) | Rc            | SR        | 223  | 2MASS   |
| 781019 | V5228 | $\operatorname{Sgr}$ | 17          | 58  | 57.2 | -29          | 12  | 18 | 15.88 | ( 0.12                                        | ) | Rc            | SR        | 223  | 2MASS   |
| 781020 | V5229 | $\operatorname{Sgr}$ | 17          | 58  | 57.4 | -29          | 05  | 39 | 13.43 | ( 0.1                                         | ) | Rc            | SR        | 223  | 2MASS   |
| 781021 | V5230 | $\operatorname{Sgr}$ | 17          | 58  | 57.5 | -29          | 06  | 33 | 13.00 | 13.80                                         |   | Rc            | SRA       | 223  | 2MASS   |
| 781022 | V5231 | $\operatorname{Sgr}$ | 17          | 58  | 57.7 | -29          | 01  | 16 | 15.35 | 15.95                                         |   | $\mathtt{Rc}$ | SRA       | 223  | 2MASS   |
| 781023 | V5232 | $\operatorname{Sgr}$ | 17          | 58  | 57.8 | -29          | 03  | 50 | 16.17 | ( 0.6                                         | ) | $\mathtt{Rc}$ | SR        | 223  | 2MASS   |
| 781024 | V5233 | Sgr                  | 17          | 58  | 58.3 | -29          | 11  | 37 | 13.61 | ( 0.1                                         | ) | Rc            | SRS       | 223  | 2MASS   |
| 781025 | V5234 | Sgr                  | 17          | 58  | 58.4 | -29          | 08  | 46 | 15.71 | ( 0.25                                        | ) | Rc            | SR        | 223  | 2MASS   |
| 781026 | V5235 | Sgr                  | 17          | 58  | 58.5 | -29          | 07  | 23 | 13.95 | 14.50                                         |   | Rc            | SRB       | 223  | 2MASS   |

| No.    | Name  |                      | R./ | A., | Decl | ., 20 | 000 | .0       | Max   | Mi  | in                 |   |               | Туре      | Refe | erences | 5   |
|--------|-------|----------------------|-----|-----|------|-------|-----|----------|-------|-----|--------------------|---|---------------|-----------|------|---------|-----|
|        |       |                      | h   | m   | s    | о     | ,   | "        | m     |     | m                  |   |               |           |      |         |     |
| 781027 | V5236 | Sgr                  | 17  | 58  | 59.9 | -28   | 58  | 12       | 13.74 | ( ( | ).1                | ) | Rc            | SRS       | 223  | 2MASS   |     |
| 781028 | V5237 | Sgr                  | 17  | 59  | 00.1 | -29   | 11  | 12       | 14.50 | ( 1 | L.O                | ) | Rc            | SR        | 223  | 2MASS   |     |
| 781029 | V5238 | Sgr                  | 17  | 59  | 00.1 | -29   | 05  | 58       | 15.12 | ( ( | ).1                | ) | Rc            | SRS       | 223  | 2MASS   |     |
| 781030 | V5239 | Sgr                  | 17  | 59  | 00.6 | -29   | 03  | 07       | 14.95 | ( ( | ).15               | ) | Rc            | SRS       | 223  | 2MASS   |     |
| 781031 | V5240 | Sør                  | 17  | 59  | 00.8 | -29   | 09  | 54       | 16.67 | ( ( | ).4                | ) | R.c.          | SR        | 223  | 2MASS   |     |
| 781032 | V5241 | Sor                  | 17  | 59  | 00 8 | -29   | 12  | 40       | 15 40 | (   | ) 2                | ý | Rc            | SR        | 223  | 2MASS   |     |
| 781033 | V5242 | Sor                  | 17  | 59  | 01 1 | -29   | 09  | 12       | 15 61 | (   | ) 2                | ý | Rc            | SBS       | 220  | 2MASS   |     |
| 781034 | V5242 | Sar                  | 17  | 50  | 01.1 | -20   | 05  | 10       | 15 83 | (   | ) 15               | ) | Rc            | SB<br>SB  | 220  | 2MAGG   |     |
| 781035 | V5240 | Sar                  | 17  | 50  | 01.1 | -20   | 00  | 03       | 16 21 |     | ) 3                | ) | Rc            | SU<br>SD  | 220  | OMAGG   |     |
| 701035 | V5244 | San                  | 17  | 59  | 01.3 | -29   | 00  | 20       | 10.21 |     | ).J                | ) | nc<br>De      | on<br>CD  | 220  | OMAGG   |     |
| 701030 | V5245 | o and                | 17  | 59  | 01.0 | -29   | 00  | 3Z<br>0E | 15.22 |     | ).2                |   | nc<br>De      | SU        | 223  | OMAGG   |     |
| 701037 | V5240 | Sgr                  | 17  | 59  | 02.1 | -29   | 00  | 20<br>40 | 10.00 |     | ).S                |   | пC<br>De      | ON<br>CDC | 223  | ZMAGG   |     |
| 701030 | V5247 | Sgr                  | 17  | 59  | 02.7 | -29   | 08  | 43       | 10.15 |     |                    |   | RC<br>D-      | SKS       | 223  | ZMASS   |     |
| 781039 | V5248 | Sgr                  | 17  | 59  | 02.9 | -29   | 10  | 39       | 15.07 |     | ).25               |   | KC<br>D       | SK        | 223  | ZMASS   |     |
| 781040 | V5249 | Sgr                  | 17  | 59  | 03.0 | -29   | 12  | 06       | 13.94 |     | ).15               | ) | KC<br>D       | SR        | 223  | ZMASS   |     |
| 781041 | V5250 | Sgr                  | 17  | 59  | 03.3 | -29   | 06  | 03       | 15.30 | ((  | 0.08               | ) | RC            | SR        | 223  | 2MASS   |     |
| 781042 | V5251 | Sgr                  | 17  | 59  | 03.5 | -28   | 59  | 20       | 15.07 | ( ( | ).15               | ) | Rc            | SRS       | 223  | 2MASS   |     |
| 781043 | V5252 | Sgr                  | 17  | 59  | 04.1 | -29   | 11  | 04       | 14.90 | 15  | 5.80               |   | Rc            | SRB       | 223  | 2MASS   |     |
| 781044 | V5253 | $\operatorname{Sgr}$ | 17  | 59  | 04.5 | -29   | 07  | 46       | 15.43 | ( ( | ).3                | ) | Rc            | SR        | 223  | 2MASS   |     |
| 781045 | V5254 | Sgr                  | 17  | 59  | 05.1 | -29   | 07  | 09       | 13.53 | ( ( | ).1                | ) | Rc            | SRS       | 223  | 2MASS   |     |
| 781046 | V5255 | $\operatorname{Sgr}$ | 17  | 59  | 05.4 | -28   | 58  | 36       | 16.36 | ( ( | ).3                | ) | Rc            | SR        | 223  | 2MASS   |     |
| 781047 | V5256 | $\operatorname{Sgr}$ | 17  | 59  | 05.5 | -29   | 05  | 46       | 13.37 | ( ( | ).1                | ) | Rc            | SRS       | 223  | 2MASS   |     |
| 781048 | V5257 | $\operatorname{Sgr}$ | 17  | 59  | 05.6 | -29   | 02  | 35       | 16.15 | ( ( | ).3                | ) | Rc            | SR        | 223  | 2MASS   |     |
| 781049 | V5258 | $\operatorname{Sgr}$ | 17  | 59  | 05.6 | -29   | 11  | 07       | 14.03 | ( ( | ).1                | ) | Rc            | SR        | 223  | 2MASS   |     |
| 781050 | V5259 | $\operatorname{Sgr}$ | 17  | 59  | 05.7 | -29   | 11  | 30       | 16.38 | ( ( | ).5                | ) | $\mathtt{Rc}$ | SRS       | 223  | 2MASS   |     |
| 781051 | V5260 | Sgr                  | 17  | 59  | 05.9 | -29   | 07  | 34       | 13.70 | ( ( | 0.06               | ) | Rc            | SRS       | 223  | 2MASS   |     |
| 781052 | V5261 | Sgr                  | 17  | 59  | 05.9 | -29   | 06  | 21       | 13.71 | ( ( | ).3                | ) | Rc            | SR        | 223  | 2MASS   |     |
| 781053 | V5262 | Sgr                  | 17  | 59  | 06.5 | -29   | 05  | 29       | 14.87 | ( ( | ).15               | ) | Rc            | SRS       | 223  | 2MASS   |     |
| 781054 | V5263 | Sgr                  | 17  | 59  | 07.2 | -29   | 12  | 43       | 15.12 | ( ( | ).15               | ) | Rc            | SR        | 223  | 2MASS   |     |
| 781055 | V5264 | Sgr                  | 17  | 59  | 07.2 | -29   | 10  | 26       | 14.02 | ( ( | ).6                | ) | Rc            | SR        | 223  | 2MASS   |     |
| 781056 | V5265 | Sgr                  | 17  | 59  | 07.5 | -29   | 30  | 29       | 10.7  | <13 | 3.0                |   | *             | М         | 006  | 2MASS   |     |
| 781057 | V5266 | Sgr                  | 17  | 59  | 07.9 | -28   | 58  | 28       | 15.07 | ( ( | ).25               | ) | Rc            | SR        | 223  | 2MASS   |     |
| 781058 | V5267 | Sgr                  | 17  | 59  | 08.2 | -29   | 07  | 30       | 13.42 | ( ( | ).2                | ) | Rc            | SR        | 223  | 2MASS   |     |
| 781059 | V5268 | Sgr                  | 17  | 59  | 08.2 | -29   | 80  | 57       | 15.01 | ( ( | ).6                | ) | Rc            | SR        | 223  | 2MASS   |     |
| 781060 | V5269 | Sgr                  | 17  | 59  | 08.4 | -29   | 12  | 51       | 14.08 | ( ( | ).1                | ) | Rc            | SRS       | 223  | 2MASS   |     |
| 781061 | V5270 | Sgr                  | 17  | 59  | 08.7 | -29   | 13  | 45       | 18.12 | ( ( | ).35               | ) | Rc            | SR        | 223  |         |     |
| 781062 | V5271 | Sør                  | 17  | 59  | 09.2 | -29   | 04  | 26       | 15.05 | ( ( | ).15               | ý | Rc            | SRS       | 223  | 2MASS   |     |
| 781063 | V5272 | Sør                  | 17  | 59  | 09.3 | -28   | 58  | 00       | 14.36 | (   | ).1                | ý | Rc            | SRS       | 223  | 2MASS   |     |
| 781064 | V5273 | Sør                  | 17  | 59  | 09.3 | -26   | 38  | 00       | 12.9  | <18 | 3                  |   | V             | M         | 006  | 2MASS   | 332 |
| 781065 | V5274 | Sor                  | 17  | 59  | 09.4 | -29   | 08  | 26       | 14 23 | ( ( | ) 2                | ) | Rc            | SB        | 223  | 2MASS   | 002 |
| 781066 | V5275 | Sor                  | 17  | 59  | 10 0 | -29   | 13  | 59       | 14 49 | (   | ) 35               | ý | Rc            | SB        | 220  | 2MASS   |     |
| 781067 | V5276 | Sar                  | 17  | 50  | 10.0 | -20   | 04  | 58       | 15 25 | (   | ) 4                | ) | Rc            | SB        | 220  | 2MAGG   |     |
| 781068 | V5270 | Sar                  | 17  | 50  | 10.0 | -20   | 01  | 36       | 1/ 2/ |     | ). <u>-</u><br>) 0 | ) | Rc            | SU<br>SD  | 220  | OMAGG   |     |
| 701000 | V5277 | Sar                  | 17  | 50  | 10.0 | -20   | 00  | 00       | 19.24 |     | ).Z                | ) | nc<br>Dc      | CD        | 220  | OMAGG   |     |
| 701009 | V5210 | Sgr                  | 17  | 59  | 10.7 | -29   | 57  | 09<br>10 | 13.07 |     | ).25               |   | пC<br>De      | DR<br>ID. | 223  | ZMAGG   |     |
| 701071 | V5279 | Sgr                  | 17  | 59  | 10.8 | -28   | 51  | 40       | 14.00 |     | ).2                |   | RC<br>D-      | LB:       | 223  | ZMASS   |     |
| 701071 | V5280 | Sgr                  | 17  | 59  | 10.9 | -29   | 14  | 10       | 10.50 |     | ).5<br>).5         |   | RC<br>D-      | DK<br>OD  | 223  | ZMASS   |     |
| 781072 | V5281 | Sgr                  | 17  | 59  | 11.1 | -29   | 14  | 03       | 16.25 |     | ).35               |   | KC<br>D       | SK        | 223  | ZMASS   |     |
| 781073 | V5282 | Sgr                  | 17  | 59  | 12.3 | -29   | 13  | 59       | 14.27 |     | ).1                | ) | KC<br>D       | SRS       | 223  | ZMASS   |     |
| 181074 | v5283 | Sgr                  | 1/  | 59  | 12.6 | -29   | 06  | 10       | 15.02 | ((  | 1.25               | ) | КC            | SK        | 223  | ZMASS   |     |
| /81075 | V5284 | Sgr                  | 17  | 59  | 13.1 | -29   | 09  | 02       | 15.62 | ((  | ).25               | ) | Kc            | SR        | 223  | 2MASS   |     |
| 781076 | V5285 | Sgr                  | 17  | 59  | 13.3 | -29   | 14  | 10       | 15.00 | ( ( | ).15               | ) | Rc            | SRS       | 223  | 2MASS   |     |
| 781077 | V5286 | Sgr                  | 17  | 59  | 13.5 | -28   | 58  | 12       | 12.62 | ( ( | ).4                | ) | Rc<br>-       | SR        | 223  | 2MASS   |     |
| 781078 | V5287 | $\operatorname{Sgr}$ | 17  | 59  | 13.8 | -29   | 07  | 04       | 14.98 | ( ( | ).15               | ) | Rc            | SR        | 223  | 2MASS   |     |
| 781079 | V5288 | $\operatorname{Sgr}$ | 17  | 59  | 13.8 | -29   | 09  | 53       | 16.28 | ( ( | ).3                | ) | Rc            | SR        | 223  | 2MASS   |     |
| 781080 | V5289 | Sgr                  | 17  | 59  | 13.9 | -29   | 80  | 16       | 15.12 | ( ( | ).15               | ) | Rc            | SRS       | 223  | 2MASS   |     |

| No.    | Name  |       | R./ | A., | Decl | , 20 | 000 | . 0      | Max   | Μ                | lin  |   |               | Туре     | Refe | erences |
|--------|-------|-------|-----|-----|------|------|-----|----------|-------|------------------|------|---|---------------|----------|------|---------|
|        |       |       | h   | m   | s    | 0    | ,   | п        | m     |                  | m    |   |               | 01       |      |         |
| 781081 | V5290 | Sgr   | 17  | 59  | 14.0 | -29  | 02  | 42       | 15.98 | (                | 0.35 | ) | Rс            | SR       | 223  | 2MASS   |
| 781082 | V5291 | Sør   | 17  | 59  | 14.5 | -29  | 08  | 53       | 13.54 | Ì                | 0.1  | ý | Rc            | SRS      | 223  | 2MASS   |
| 781083 | V5292 | Sor   | 17  | 59  | 14 8 | -29  | 11  | 31       | 15 86 | ć                | 0 4  | Ś | Rc            | SR       | 223  | 2MASS   |
| 781084 | V5292 | Sor   | 17  | 59  | 14 8 | -29  | 53  | 53       | 11 9  | 、<br><1          | 5.8  |   | *             | M·       | 006  | 2MASS   |
| 781085 | V5200 | Sar   | 17  | 50  | 15 3 | -20  | 00  | 34       | 1/ 96 | (                | 0.5  | ) | Pc            | SD       | 222  | OWAGG   |
| 701000 | V5294 | Saz   | 17  | 59  | 15.5 | - 20 | 00  | 04<br>0E | 15 22 | $\tilde{c}$      | 0.0  | 5 | De            | CD CD    | 220  | OMAGG   |
| 701000 | V5295 | o and | 17  | 59  | 15.0 | -29  | 00  | 20       | 14 05 | $\left( \right)$ | 0.2  | , | nc<br>De      | D<br>D   | 223  | ZMAGG   |
| 701007 | V5296 | Sgr   | 11  | 59  | 15.9 | -29  | 08  | 40       | 14.25 |                  | 0.25 | , | RC            | SK       | 223  | ZMASS   |
| 781088 | V5297 | Sgr   | 17  | 59  | 15.9 | -29  | 04  | 10       | 14.56 | (                | 0.15 |   | KC<br>D       | SR       | 223  | 2MASS   |
| 781089 | V5298 | Sgr   | 17  | 59  | 16.3 | -29  | 80  | 06       | 15.31 | (                | 0.25 | ) | Rc            | SR       | 223  | 2MASS   |
| 781090 | V728  | CrA   | 17  | 59  | 16.5 | -42  | 35  | 07       | 14.2  | 1                | .8.  |   | р             | UGSU     | 224  | USNO    |
| 781091 | V5299 | Sgr   | 17  | 59  | 17.0 | -29  | 05  | 02       | 13.27 | (                | 0.2  | ) | Rc            | SR       | 223  | 2MASS   |
| 781092 | V5300 | Sgr   | 17  | 59  | 17.3 | -29  | 10  | 50       | 14.43 | (                | 0.7  | ) | Rc            | SR       | 223  | 2MASS   |
| 781093 | V5301 | Sgr   | 17  | 59  | 17.8 | -29  | 08  | 80       | 15.92 | (                | 0.3  | ) | Rc            | SR       | 223  | 2MASS   |
| 781094 | V5302 | Sgr   | 17  | 59  | 18.1 | -29  | 01  | 24       | 12.64 | (                | 0.45 | ) | $\mathtt{Rc}$ | SR       | 223  | 2MASS   |
| 781095 | V5303 | Sgr   | 17  | 59  | 18.3 | -29  | 05  | 06       | 14.58 | (                | 0.8  | ) | Rc            | SR       | 223  | 2MASS   |
| 781096 | V5304 | Sgr   | 17  | 59  | 18.4 | -29  | 06  | 08       | 16.34 | (                | 0.4  | ) | Rc            | SR       | 223  | 2MASS   |
| 781097 | V5305 | Sgr   | 17  | 59  | 18.5 | -29  | 00  | 47       | 13.44 | (                | 0.15 | ) | Rc            | SRS      | 223  | 2MASS   |
| 781098 | V5306 | Sgr   | 17  | 59  | 18.5 | -29  | 13  | 04       | 13.70 | (                | 0.1  | ) | Rc            | SR       | 223  | 2MASS   |
| 781099 | V5307 | Sør   | 17  | 59  | 18.8 | -29  | 05  | 47       | 14.30 | (                | 0.08 | ) | R.c.          | SRS      | 223  | 2MASS   |
| 781100 | V5308 | Sør   | 17  | 59  | 19.5 | -29  | 04  | 52       | 12.95 | Ì                | 0.15 | Ś | Rc            | SR       | 223  | 2MASS   |
| 781101 | V5309 | Sor   | 17  | 59  | 19.7 | -29  | 12  | 48       | 14 15 | $\tilde{c}$      | 0 15 | Ś | Rc            | SRS      | 223  | 2MASS   |
| 781102 | V5310 | Sar   | 17  | 50  | 20 0 | -20  | 1/  | 17       | 17 37 | $\tilde{c}$      | 1 0  | ) | Rc            | SD<br>SD | 220  | OWAGG   |
| 701102 | V5510 | o and | 17  | 59  | 20.0 | -29  | 14  | 11       | 17 70 | $\left( \right)$ | 1.0  | , | nc<br>De      | D<br>D   | 223  | ZMAGG   |
| 701103 | V5311 | Sgr   | 17  | 59  | 20.4 | -29  | 15  | 52       | 11.10 |                  | 0.9  |   | RC<br>D-      | SK<br>GD | 223  | ZMASS   |
| 781104 | V5312 | Sgr   | 17  | 59  | 20.6 | -29  | 15  | 08       | 15.34 | (                | 0.25 | ) | ĸc            | SR       | 223  | ZMASS   |
| /81105 | V5313 | Sgr   | 17  | 59  | 21.0 | -31  | 09  | 20       | 13.9  | <1               | 5./  |   | *             | SR:      | 006  | 2MASS   |
| 781106 | V5314 | Sgr   | 17  | 59  | 21.7 | -29  | 80  | 42       | 14.84 | (                | 0.35 | ) | Rc            | SR       | 223  | 2MASS   |
| 781107 | V5315 | Sgr   | 17  | 59  | 21.8 | -29  | 11  | 00       | 14.86 | (                | 0.25 | ) | Rc            | SR       | 223  | 2MASS   |
| 781108 | V5316 | Sgr   | 17  | 59  | 21.8 | -29  | 05  | 48       | 14.69 | (                | 0.35 | ) | Rc            | SR       | 223  | 2MASS   |
| 781109 | V5317 | Sgr   | 17  | 59  | 21.9 | -29  | 12  | 31       | 12.84 | (                | 0.35 | ) | Rc            | SR       | 223  | 2MASS   |
| 781110 | V5318 | Sgr   | 17  | 59  | 21.9 | -24  | 59  | 35       | 12.4  | <1               | 6.0  |   | *             | M:       | 006  | USNO    |
| 781111 | V5319 | Sgr   | 17  | 59  | 21.9 | -29  | 11  | 58       | 17.49 | (                | 0.4  | ) | Rc            | SR       | 223  | 2MASS   |
| 781112 | V5320 | Sgr   | 17  | 59  | 22.4 | -29  | 11  | 35       | 14.76 | (                | 0.25 | ) | Rc            | SR       | 223  | 2MASS   |
| 781113 | V5321 | Sgr   | 17  | 59  | 23.1 | -29  | 80  | 22       | 13.34 | (                | 0.3  | ) | Rc            | SR       | 223  | 2MASS   |
| 781114 | V5322 | Sgr   | 17  | 59  | 23.3 | -29  | 14  | 53       | 16.08 | (                | 1.0  | ) | Rc            | SR       | 223  | 2MASS   |
| 781115 | V5323 | Sgr   | 17  | 59  | 23.8 | -29  | 09  | 54       | 14.94 | (                | 0.2  | ) | Rc            | SR       | 223  | 2MASS   |
| 781116 | V5324 | Sgr   | 17  | 59  | 24.3 | -29  | 14  | 00       | 13.20 | 1                | 4.10 |   | Rc            | SRB      | 223  | 2MASS   |
| 781117 | V5325 | Sgr*  | 17  | 59  | 24.4 | -29  | 12  | 38       | 15.88 | (                | 0.5  | ) | Rс            | SR       | 223  | 2MASS   |
| 781118 | V5326 | Sør   | 17  | 59  | 25.2 | -29  | 03  | 38       | 16.43 | Ì                | 0.25 | ) | Rc            | SR       | 223  | 2MASS   |
| 781119 | V5327 | Sor   | 17  | 59  | 25 5 | -29  | 00  | 38       | 13 78 | ć                | 0 15 | Ś | Rc            | SR       | 223  | 2MASS   |
| 781120 | V5328 | Sar   | 17  | 50  | 26.0 | -20  | 06  | 13       | 17 06 | $\hat{c}$        | 0.10 | Ś | Rc            | SB       | 220  | 20005   |
| 781121 | V5320 | Sar   | 17  | 50  | 20.0 | -20  | 07  | 07       | 13 3/ | $\tilde{c}$      | 0.20 | Ś | Rc            | SD       | 220  | OWAGG   |
| 701121 | V5529 | Saz   | 17  | 59  | 20.3 | -29  | 07  | 10       | 15.04 | $\left( \right)$ | 0.35 |   | nc<br>De      | on<br>OD | 220  | 2MAGG   |
| 701122 | V5330 | Sgr   | 17  | 59  | 20.3 | -29  | 02  | 10       | 15.40 |                  | 0.2  |   | RC<br>D-      | DK<br>DK | 223  | ZMASS   |
| 781123 | V5331 | Sgr   | 17  | 59  | 26.8 | -29  | 03  | 48       | 15.63 | (                | 0.06 |   | КC            | SRS      | 223  | 2MASS   |
| 781124 | V5332 | Sgr   | 17  | 59  | 27.5 | -29  | 13  | 35       | 14.41 | (                | 0.1  |   | КС            | SRS      | 223  | 2MASS   |
| 781125 | V5333 | Sgr   | 17  | 59  | 27.8 | -29  | 05  | 31       | 15.71 | (                | 0.3  | ) | Rc            | SR       | 223  | 2MASS   |
| 781126 | V5334 | Sgr   | 17  | 59  | 27.8 | -29  | 10  | 40       | 14.85 | (                | 0.3  | ) | Rc            | SR       | 223  | 2MASS   |
| 781127 | V5335 | Sgr   | 17  | 59  | 27.9 | -29  | 01  | 19       | 13.18 | (                | 0.1  | ) | Rc            | SR       | 223  | 2MASS   |
| 781128 | V5336 | Sgr   | 17  | 59  | 29.5 | -29  | 09  | 27       | 12.64 | (                | 0.2  | ) | Rc            | SR       | 223  | 2MASS   |
| 781129 | V5337 | Sgr   | 17  | 59  | 31.0 | -29  | 80  | 59       | 16.13 | (                | 0.3  | ) | $\mathtt{Rc}$ | SR       | 223  | 2MASS   |
| 781130 | V5338 | Sgr   | 17  | 59  | 32.1 | -29  | 08  | 59       | 13.90 | (                | 0.3  | ) | Rc            | SR       | 223  | 2MASS   |
| 781131 | V5339 | Sgr   | 17  | 59  | 32.4 | -29  | 80  | 02       | 16.07 | (                | 0.1  | ) | Rc            | SRS      | 223  | 2MASS   |
| 781132 | V5340 | Sgr   | 17  | 59  | 33.9 | -29  | 07  | 29       | 16.53 | (                | 0.06 | ) | Rc            | SRS      | 223  | 2MASS   |
| 781133 | V5341 | Sgr   | 17  | 59  | 34.9 | -29  | 11  | 13       | 15.64 | (                | 0.08 | ) | Rc            | SRS      | 223  | 2MASS   |
| 781134 | V5342 | Sgr   | 17  | 59  | 35.3 | -29  | 05  | 07       | 14.34 | (                | 0.05 | ) | Rc            | SR       | 223  | 2MASS   |
|        |       | 5     |     |     |      |      |     |          |       | •                |      | - |               |          |      |         |

| No.     | Name      |                      | R./ | A., | Decl | ., 20 | 000 | .0 | Max   | Min             |        |          | Туре      | Refe | erences  |    |
|---------|-----------|----------------------|-----|-----|------|-------|-----|----|-------|-----------------|--------|----------|-----------|------|----------|----|
|         |           |                      | h   | m   | s    | о     | ,   | "  | m     | m               |        |          |           |      |          |    |
| 781135  | V5343     | Sgr                  | 17  | 59  | 36.0 | -29   | 09  | 17 | 13.61 | ( 0.4           | )      | Rc       | SR        | 223  | 2MASS    |    |
| 781136  | V5344     | Sgr                  | 17  | 59  | 36.2 | -29   | 05  | 17 | 16.38 | (0.1            | )      | Rc       | SRS       | 223  | 2MASS    |    |
| 781137  | V5345     | Sgr                  | 17  | 59  | 36.9 | -29   | 08  | 36 | 15.48 | (0.6            | )      | Rc       | SR        | 223  | 2MASS    |    |
| 781138  | V5346     | Sgr                  | 17  | 59  | 37.0 | -31   | 24  | 47 | 13.2  | <15.4           | ,      | *        | M:        | 006  | 2MASS    |    |
| 781139  | V5347     | Sør                  | 17  | 59  | 37.0 | -29   | 02  | 53 | 16.04 | ( 0.05          | )      | R.c.     | SR        | 223  | 2MASS    |    |
| 781140  | V5348     | Sor                  | 17  | 59  | 37 6 | -29   | 09  | 28 | 14 18 | (0.25)          | ý      | Rc       | SRS       | 223  | 2MASS    |    |
| 781141  | V5349     | Sor                  | 17  | 59  | 38.2 | -29   | 01  | 20 | 15 66 | (0.20)          | )<br>) | Rc       | SR        | 220  | 2MASS    |    |
| 7811/12 | V5350     | Sar                  | 17  | 50  | 30.2 | -20   | 01  | 16 | 1/ 60 | (0.00)          | Ś      | Rc       | SD<br>SD  | 220  | OMAGG    |    |
| 701142  | V5251     | Sar                  | 17  | 50  | 10 0 | -29   | 03  | 20 | 16 10 | (0.2)           | )      | nc<br>Dc | CD CD     | 220  | OMAGG    |    |
| 701143  | V5351     | Sam                  | 17  | 59  | 40.0 | -29   | 07  | 20 | 10.10 | ( 0.00          | )      | nc<br>v  | Sn<br>M.  | 223  | ZMAGG O  | 10 |
| 701144  | V5552     | Sgr                  | 17  | 59  | 41.2 | -21   | 05  | 24 | 15.5  | <14.0<br>( 0 0F | ``     | V<br>D - | M.        | 000  | ZMAGG 04 | ±Ο |
| 701145  | V D J D J | Sgr                  | 17  | 59  | 43.3 | -29   | 07  | 30 | 10.34 | (0.05)          |        | RC<br>D- | SKS       | 223  | ZMASS    |    |
| 781140  | V5354     | Sgr                  | 17  | 59  | 40.0 | -29   | 03  | 50 | 10.31 | (0.25           | )      | KC       | 585       | 223  | ZMASS    |    |
| 781147  | V5355     | Sgr                  | 17  | 59  | 50.4 | -29   | 35  | 42 | 12.4  | 13.4            |        | V        | SR        | 006  | ZMASS    |    |
| 781148  | V5356     | Sgr                  | 18  | 00  | 15.6 | -21   | 50  | 49 | 12.6  | 14.6            |        | *        | SR:       | 006  | 2MASS    |    |
| 781149  | V5357     | Sgr                  | 18  | 00  | 32.8 | -24   | 16  | 19 | 7.7   | 10.8            |        | T        | M         | 006  | 2MASS    |    |
| 781150  | V5358     | Sgr                  | 18  | 00  | 39.6 | -28   | 31  | 45 | 12.4  | <15.5           |        | *        | M:        | 006  | 2MASS    |    |
| 781151  | V387      | Ser                  | 18  | 00  | 40.4 | -13   | 53  | 17 | 13.3  | 16.1            |        | *        | M:        | 006  | 2MASS    |    |
| 781152  | V5359     | Sgr                  | 18  | 00  | 42.2 | -29   | 44  | 37 | 12.7  | <15.0           |        | *        | M:        | 006  | 2MASS    |    |
| 781153  | V5360     | $\operatorname{Sgr}$ | 18  | 01  | 10.5 | -29   | 30  | 38 | 12.3  | <14.4           |        | *        | SR:       | 006  | 2MASS    |    |
| 781154  | V5361     | $\operatorname{Sgr}$ | 18  | 01  | 13.9 | -30   | 20  | 37 | 11.7  | 13.1            |        | Ι        | RVA       | 006  | 2MASS    |    |
| 781155  | V388      | $\operatorname{Ser}$ | 18  | 01  | 14.9 | -15   | 23  | 38 | 13.2  | 16.3            |        | *        | M:        | 006  | 2MASS    |    |
| 781156  | V5362     | $\operatorname{Sgr}$ | 18  | 01  | 31.6 | -29   | 43  | 52 | 11.2  | 17.4            |        | Ι        | М         | 006  | 2MASS    |    |
| 781157  | V5363     | Sgr                  | 18  | 01  | 35.9 | -30   | 15  | 59 | 11.0  | 12.9            |        | Ι        | SR        | 006  | 2MASS    |    |
| 781158  | V5364     | Sgr                  | 18  | 01  | 49.5 | -30   | 15  | 45 | 12.5  | 13.8            |        | V        | SRA       | 006  | 2MASS 04 | 40 |
| 781159  | V5365     | Sgr                  | 18  | 02  | 10.9 | -28   | 47  | 50 | 11.5  | 15.6            |        | Ι        | М         | 006  | 2MASS    |    |
| 781160  | V5366     | Sgr                  | 18  | 02  | 14.6 | -28   | 15  | 37 | 11.1  | 13.3            |        | Ι        | М         | 006  | 2MASS    |    |
| 781161  | V5367     | Sgr                  | 18  | 02  | 22.8 | -28   | 22  | 24 | 10.6  | 12.2            |        | Ι        | SR        | 006  | 2MASS    |    |
| 781162  | V5368     | Sgr                  | 18  | 02  | 29.7 | -28   | 14  | 10 | 11.6  | <14.4           |        | *        | M:        | 006  | 2MASS    |    |
| 781163  | V5369     | Sgr                  | 18  | 02  | 32.2 | -30   | 02  | 01 | 13.71 | ( 0.06          | )      | Rc       | SRS       | 223  | 2MASS    |    |
| 781164  | V5370     | Sgr                  | 18  | 02  | 36.1 | -30   | 02  | 18 | 15.62 | ( 0.2           | )      | Rc       | SRS       | 223  | 2MASS    |    |
| 781165  | V5371     | Sgr                  | 18  | 02  | 36.7 | -29   | 57  | 53 | 15.03 | ( 0.2           | )      | Rc       | LB:       | 223  | 2MASS    |    |
| 781166  | V5372     | Sgr                  | 18  | 02  | 37.9 | -29   | 59  | 34 | 14.78 | ( 0.15          | )      | Rc       | SRS       | 223  | 2MASS    |    |
| 781167  | V5373     | Sgr                  | 18  | 02  | 38.7 | -29   | 59  | 55 | 16.59 | (0.35           | )      | Rc       | SR        | 223  | 2MASS    |    |
| 781168  | V5374     | Sør                  | 18  | 02  | 39.3 | -29   | 59  | 20 | 13.80 | (0.1            | )      | R.c.     | SRS       | 223  | 2MASS    |    |
| 781169  | V5375     | Sør                  | 18  | 02  | 40.0 | -29   | 58  | 22 | 13.87 | (0.15           | ý      | Rc       | SR        | 223  | 2MASS    |    |
| 781170  | V5376     | Sør                  | 18  | 02  | 40.6 | -30   | 00  | 55 | 14.67 | (0.15           | ý      | Rc       | SRS       | 223  | 2MASS    |    |
| 781171  | V5377     | Sor                  | 18  | 02  | 40.9 | -29   | 59  | 03 | 15 80 | (0.2)           | ý      | Rc       | SR        | 223  | 2MASS    |    |
| 781172  | V5378     | Sor                  | 18  | 02  | 41 7 | -29   | 57  | 54 | 13 83 | (0.2)           | ý      | Rc       | SR        | 223  | 2MASS    |    |
| 781173  | V5379     | Sor                  | 18  | 02  | 41 8 | -29   | 59  | 58 | 15 52 | (0.2)           | )<br>) | Rc       | SR        | 220  | 2MASS    |    |
| 781174  | V5380     | Sar                  | 18  | 02  | 42 Q | -30   | 03  | 36 | 16 88 | (0.5)           | )      | Rc       | SB        | 220  | OWNES    |    |
| 701175  | V5300     | Sar                  | 10  | 02  | 42.9 | -20   | 56  | 15 | 15 00 | (0.0)           | )      | nc<br>Dc | CD CD     | 220  | OMAGG    |    |
| 701170  | V5301     | Sam                  | 10  | 02  | 43.3 | -29   | 10  | 10 | 10.02 | 11 0            | )      | пС<br>т  | OR<br>CDA | 223  | OMAGG    |    |
| 701177  | V550Z     | Sgr                  | 10  | 02  | 45.0 | -29   | 4Z  | 10 | 10.7  | 11.9            | ``     | T<br>D - | ANG       | 000  | ZMAGG    |    |
| 701170  | V5383     | Sgr                  | 18  | 02  | 45.0 | -29   | 58  | 13 | 14.52 |                 |        | KC       | SKS       | 223  | ZMASS    |    |
| 781178  | V5384     | Sgr                  | 18  | 02  | 45.3 | -29   | 55  | 38 | 13.51 | (0.5)           |        | KC<br>D  | SKS       | 223  | ZMASS    |    |
| 781179  | V5385     | Sgr                  | 18  | 02  | 45.5 | -30   | 03  | 29 | 14.14 | ( 0.06          | )      | KC<br>D  | SR        | 223  | ZMASS    |    |
| 781180  | V5386     | Sgr                  | 18  | 02  | 45.7 | -30   | 01  | 12 | 16.22 | (0.35           | )      | RC       | SR        | 223  | 226      |    |
| 781181  | V5387     | Sgr                  | 18  | 02  | 48.4 | -30   | 03  | 11 | 15.40 | (0.3            | )      | Rc       | SR        | 223  | 2MASS    |    |
| /81182  | V5388     | Sgr                  | 18  | 02  | 48.9 | -29   | 54  | 31 | 15.65 | (0.4            | )      | Rc       | SR        | 223  | 2MASS    |    |
| 781183  | V5389     | Sgr                  | 18  | 02  | 49.4 | -29   | 58  | 53 | 14.63 | (0.3            | )      | Rc       | SR        | 223  | 226      |    |
| 781184  | V5390     | $\operatorname{Sgr}$ | 18  | 02  | 51.2 | -30   | 00  | 14 | 15.14 | (0.7            | )      | Rc       | SR        | 223  | 226      |    |
| 781185  | V5391     | $\operatorname{Sgr}$ | 18  | 02  | 51.8 | -30   | 02  | 46 | 15.32 | ( 0.25          | )      | Rc       | SR        | 223  | 2MASS    |    |
| 781186  | V5392     | $\operatorname{Sgr}$ | 18  | 02  | 52.3 | -30   | 00  | 24 | 15.70 | ( 0.3           | )      | Rc       | SR        | 223  | 226      |    |
| 781187  | V5393     | $\operatorname{Sgr}$ | 18  | 02  | 52.6 | -29   | 54  | 58 | 15.76 | ( 0.2           | )      | Rc       | SR        | 223  | 226      |    |
| 781188  | V5394     | Sgr                  | 18  | 02  | 52.8 | -30   | 01  | 80 | 15.92 | ( 0.4           | )      | Rc       | SR        | 223  | 226      |    |

| No.    | Name  |      | R./ | Α., | Decl | ., 20 | 000          | . 0 | Max   | N           | lin   |   |          | Туре       | Refe | erences      | 3   |
|--------|-------|------|-----|-----|------|-------|--------------|-----|-------|-------------|-------|---|----------|------------|------|--------------|-----|
|        |       |      | h   | m   | S    | 0     | ,            | "   | m     |             | m     |   |          |            |      |              |     |
| 781189 | V5395 | Sgr  | 18  | 02  | 52.9 | -30   | 02           | 51  | 15.53 | (           | 0.3   | ) | Rc       | SR         | 223  | 2MASS        |     |
| 781190 | V5396 | Sgr  | 18  | 02  | 53.8 | -29   | 54           | 25  | 14.48 | (           | 0.15  | ) | Rc       | SR         | 223  | 226          |     |
| 781191 | V5397 | Sgr  | 18  | 02  | 54.1 | -30   | 00           | 49  | 14.89 | (           | 0.5   | ) | Rc       | SR         | 223  | 226          |     |
| 781192 | V5398 | Sgr  | 18  | 02  | 56.1 | -29   | 55           | 35  | 15.20 | 1           | 16.20 |   | Rc       | SRA        | 223  | 2MASS        |     |
| 781193 | V5399 | Sgr  | 18  | 02  | 56.6 | -29   | 57           | 06  | 13.63 | (           | 0.5   | ) | Rc       | SR         | 223  | 2MASS        |     |
| 781194 | V5400 | Sgr* | 18  | 02  | 56.9 | -29   | 55           | 52  | 15.71 | (           | 0.15  | ) | Rc       | SRS        | 223  | 226          |     |
| 781195 | V5401 | Sgr  | 18  | 02  | 57.1 | -29   | 52           | 01  | 14.54 | (           | 0.1   | ) | Rc       | SR         | 223  | 2MASS        |     |
| 781196 | V5402 | Sgr  | 18  | 02  | 57.4 | -30   | 03           | 54  | 12.77 | (           | 0.1   | ) | Rc       | SR         | 223  | 2MASS        |     |
| 781197 | V5403 | Sgr  | 18  | 02  | 58.2 | -29   | 50           | 50  | 13.17 | (           | 0.15  | ) | Rc       | SRS        | 223  | 2MASS        |     |
| 781198 | V5404 | Sør  | 18  | 02  | 58.4 | -30   | 03           | 12  | 15.26 | (           | 0.2   | ý | R.c.     | SR         | 223  | 2MASS        |     |
| 781199 | V5405 | Sør  | 18  | 02  | 58.7 | -29   | 54           | 27  | 13.77 | (           | 0.5   | ý | R.c.     | SRB        | 223  | 2MASS        |     |
| 781200 | V5406 | Sør  | 18  | 02  | 58.7 | -29   | 52           | 22  | 13.57 | (           | 0.08  | ý | Rc       | SR         | 223  | 2MASS        |     |
| 781201 | V5407 | Sør  | 18  | 02  | 58.8 | -30   | 01           | 09  | 14.87 | Ì           | 0.25  | Ś | Rc       | SR         | 223  | 226          |     |
| 781201 | V5408 | Sor  | 18  | 02  | 59 0 | -29   | 57           | 59  | 14 45 | $\tilde{c}$ | 0.20  | ý | Rc       | SR         | 220  | 220<br>2MASS |     |
| 781202 | V5400 | Sar  | 18  | 02  | 50.0 | -30   | 07           | 5/  | 15 20 | `_          | 15 95 | , | Rc       | SBV<br>CBV | 220  | 2716         |     |
| 781200 | V5410 | Sar  | 18  | 02  | 01.4 | -23   | 42           | 31  | 9 7   | 1           | 11 3  |   | т        | SBV<br>SBV | 006  | 220<br>2MAGG | 040 |
| 781205 | V5/11 | Sar  | 10  | 03  | 01.4 | -30   | - <u>τ</u> 2 | 01  | 15 63 | (           | 0.25  | ) | I<br>Rc  | CD.        | 222  | 2006         | 040 |
| 701200 | V5/10 | Sar  | 10  | 03  | 01.0 | -20   | 50           | 52  | 12 50 | (           | 0.25  | ) | nc<br>Dc | CDC        | 220  | 220          |     |
| 701200 | V0412 | 2 an | 10  | 03  | 01.7 | -29   | 50           | 16  | 10.09 | (           | 0.1   |   | nc<br>De | ono<br>ap  | 220  | OMAGG        |     |
| 701207 | V5413 | Sgr  | 10  | 03  | 03.1 | -29   | 00           | 10  | 12.03 | (           | 0.06  | ) | RC       | SR         | 223  | ZMASS        |     |
| 701200 | V0414 | Sgr  | 10  | 03  | 03.0 | -30   | 02           | 43  | 10.01 | (           | 0.5   |   | nC<br>De | SR<br>CD   | 223  | 220          |     |
| 701010 | V5415 | Sgr  | 10  | 03  | 03.9 | -29   | 51           | 30  | 14./1 |             | 0.1   | ) | RC<br>D- | DR<br>OD   | 223  | 220          |     |
| 781210 | V5416 | Sgr  | 18  | 03  | 04.8 | -29   | 52           | 59  | 15.29 | (           | 0.15  | ) | RC<br>D  | SK         | 223  | ZMASS        |     |
| 781211 | V5417 | Sgr  | 18  | 03  | 05.2 | -29   | 55           | 16  | 15.51 | (           | 0.3   | ) | RC       | SR         | 223  | 226          |     |
| 781212 | V5418 | Sgr  | 18  | 03  | 05.4 | -29   | 50           | 32  | 12.58 | (           | 0.05  | ) | RC       | SRS        | 223  | 2MASS        |     |
| 781213 | V5419 | Sgr  | 18  | 03  | 05.8 | -29   | 53           | 45  | 14.78 | (           | 0.4   | ) | Rc<br>-  | SR         | 223  | 2MASS        |     |
| 781214 | V5420 | Sgr  | 18  | 03  | 05.8 | -30   | 05           | 09  | 14.91 | (           | 0.2   | ) | Rc       | SRS        | 223  | 2MASS        |     |
| 781215 | V5421 | Sgr  | 18  | 03  | 06.2 | -29   | 51           | 42  | 15.29 | (           | 0.4   | ) | Rc       | SR         | 223  | 226          |     |
| 781216 | V5422 | Sgr  | 18  | 03  | 06.2 | -29   | 52           | 04  | 16.42 | (           | 0.2   | ) | Rc       | SR         | 223  | 226          |     |
| 781217 | V5423 | Sgr  | 18  | 03  | 06.9 | -30   | 06           | 36  | 16.00 | (           | 0.2   | ) | Rc       | SR         | 223  | 226          |     |
| 781218 | V5424 | Sgr  | 18  | 03  | 07.1 | -30   | 05           | 21  | 16.08 | (           | 0.4   | ) | Rc       | SR         | 223  | 226          |     |
| 781219 | V5425 | Sgr  | 18  | 03  | 07.3 | -30   | 02           | 56  | 13.29 | (           | 0.25  | ) | Rc       | SR         | 223  | 2MASS        |     |
| 781220 | V5426 | Sgr  | 18  | 03  | 07.8 | -30   | 04           | 52  | 13.88 | (           | 0.05  | ) | Rc       | SR         | 223  | 2MASS        |     |
| 781221 | V5427 | Sgr  | 18  | 03  | 07.9 | -25   | 18           | 57  | 12.3  | 1           | 14.3  |   | *        | SR:        | 006  | 2MASS        | 040 |
| 781222 | V5428 | Sgr  | 18  | 03  | 08.2 | -30   | 03           | 31  | 15.64 | (           | 0.2   | ) | Rc       | SR         | 223  | 226          |     |
| 781223 | V5429 | Sgr  | 18  | 03  | 08.7 | -29   | 52           | 20  | 16.02 | (           | 0.3   | ) | Rc       | SR         | 223  | 226          |     |
| 781224 | V5430 | Sgr  | 18  | 03  | 08.8 | -30   | 05           | 53  | 14.64 | (           | 0.1   | ) | Rc       | SRS        | 223  | 2MASS        |     |
| 781225 | V5431 | Sgr* | 18  | 03  | 09.3 | -29   | 52           | 44  | 13.71 | (           | 0.2   | ) | Rc       | SR         | 223  | 2MASS        |     |
| 781226 | V5432 | Sgr  | 18  | 03  | 09.5 | -30   | 02           | 41  | 13.45 | (           | 0.1   | ) | Rc       | SRS        | 223  | 2MASS        |     |
| 781227 | V5433 | Sgr  | 18  | 03  | 09.9 | -30   | 01           | 39  | 14.51 | (           | 0.1   | ) | Rc       | SRS        | 223  | 226          |     |
| 781228 | V5434 | Sgr  | 18  | 03  | 10.6 | -29   | 56           | 20  | 14.66 | (           | 0.15  | ) | Rc       | SRS        | 223  | 2MASS        |     |
| 781229 | V5435 | Sgr  | 18  | 03  | 11.9 | -29   | 59           | 02  | 12.74 | (           | 0.05  | ) | Rc       | SR         | 223  | 2MASS        |     |
| 781230 | V5436 | Sgr  | 18  | 03  | 12.5 | -30   | 04           | 30  | 15.23 | (           | 0.4   | ) | Rc       | SR         | 223  | 226          |     |
| 781231 | V5437 | Sgr  | 18  | 03  | 13.3 | -30   | 00           | 56  | 16.41 | (           | 0.7   | ) | Rc       | SR         | 223  | 226          |     |
| 781232 | V5438 | Sgr  | 18  | 03  | 13.9 | -29   | 56           | 21  | 14.16 | (           | 0.4   | ) | Rc       | SR         | 223  | 2MASS        |     |
| 781233 | V5439 | Sgr  | 18  | 03  | 17.8 | -30   | 02           | 30  | 15.29 | (           | 1.0   | ) | Rc       | LB         | 227  | 226          |     |
| 781234 | V5440 | Sgr  | 18  | 03  | 18.1 | -30   | 03           | 11  | 14.51 | (           | 0.1   | ) | Rc       | SRS        | 227  | 226          |     |
| 781235 | V5441 | Sgr  | 18  | 03  | 18.4 | -29   | 53           | 47  | 15.81 | (           | 0.2   | ) | Rc       | SR         | 223  | 226          |     |
| 781236 | V5442 | Sgr  | 18  | 03  | 18.7 | -30   | 02           | 20  | 15.38 | (           | 0.4   | ) | R        | SR         | 227  | 226          |     |
| 781237 | V5443 | Sgr  | 18  | 03  | 20.0 | -29   | 59           | 36  | 13.83 | (           | 0.1   | ) | Rc       | SRS        | 223  | 226          |     |
| 781238 | V5444 | Sgr  | 18  | 03  | 20.3 | -30   | 00           | 40  | 13.47 | (           | 0.15  | ) | R        | SR         | 227  | 2MASS        |     |
| 781239 | V5445 | Sgr  | 18  | 03  | 20.3 | -29   | 54           | 33  | 14.79 | (           | 0.1   | ) | Rc       | SRS        | 223  | 226          |     |
| 781240 | V5446 | Sgr  | 18  | 03  | 20.7 | -30   | 04           | 52  | 15.42 | (           | 0.15  | ) | Rc       | SRS        | 223  | 226          |     |
| 781241 | V5447 | Sgr  | 18  | 03  | 22.3 | -30   | 02           | 56  | 13.22 | (           | 0.25  | ) | Rc       | SR         | 223  | 226          |     |
| 781242 | V5448 | Sgr  | 18  | 03  | 23.0 | -30   | 03           | 20  | 15.54 | (           | 0.8   | ) | R        | SR         | 227  | 226          |     |
|        |       | 0    | -   | -   |      |       |              | -   |       | •           | -     | , | -        |            |      | -            |     |

| No.    | Name  |                      | R./ | A., | Decl         | ., 20 | 000 | .0       | Max   | N                | Mir | ı      |        |          | Туре       | Ref€ | erences |
|--------|-------|----------------------|-----|-----|--------------|-------|-----|----------|-------|------------------|-----|--------|--------|----------|------------|------|---------|
|        |       |                      | h   | m   | S            | о     | ,   | "        | m     |                  | n   | 1      |        |          | • -        |      |         |
| 781243 | V5449 | Sgr                  | 18  | 03  | 23.3         | -30   | 08  | 39       | 14.97 | (                | 1.  | 0      | )      | Rc       | SR         | 223  | 226     |
| 781244 | V5450 | Sgr                  | 18  | 03  | 23.8         | -29   | 54  | 11       | 15.15 | (                | 0.  | 35     | )      | Rc       | SR         | 223  | 226     |
| 781245 | V5451 | Sgr                  | 18  | 03  | 23.9         | -30   | 00  | 06       | 14.33 | (                | 0.  | 5      | )      | Rc       | SR         | 223  | 2MASS   |
| 781246 | V5452 | Sgr                  | 18  | 03  | 23.9         | -29   | 59  | 26       | 15.57 | (                | 0.  | 3      | )      | Rc       | SR         | 223  | 226     |
| 781247 | V5453 | Sgr                  | 18  | 03  | 24.4         | -30   | 04  | 16       | 14.41 | (                | 0.  | 15     | )      | Rc       | SR         | 223  | 226     |
| 781248 | V5454 | Sør                  | 18  | 03  | 24.5         | -30   | 04  | 39       | 15.93 | Ì                | 0   | 1      | ý      | R        | SRS        | 227  | 226     |
| 781249 | V5455 | Sor                  | 18  | 03  | 25.0         | -30   | 08  | 49       | 14 14 | $\tilde{(}$      | 0   | 0.3    | ý      | Rc       | SRS        | 223  | 2MASS   |
| 781250 | V5456 | Sar                  | 18  | 03  | 20.0         | -29   | 50  | 17       | 15 15 | $\tilde{c}$      | 0.  | 1      | ì      | R        | SB         | 220  | 2711100 |
| 781250 | V5450 | Sar                  | 10  | 03  | 20.1         | -20   | 50  | 11<br>10 | 14 70 | $\tilde{c}$      | 0.  | 2<br>1 | )<br>) | Rc       | ST.        | 221  | 220     |
| 701201 | V0407 | Saz                  | 10  | 03  | 20.0         | -29   | 09  | 40       | 14.70 | $\left( \right)$ | 0.  | 1      | )      | nc<br>Da | on<br>on   | 221  | 220     |
| 701052 | V5450 | o g ana              | 10  | 03  | 20.0         | -30   | 50  | 40       | 14.07 | $\left( \right)$ | 0.  | 4      |        | nc<br>De | DD DD      | 223  | 220     |
| 701054 | V5459 | Sgr                  | 10  | 03  | 20.0         | -29   | 00  | 41       | 14.04 | $\left( \right)$ | 0.  | 15     |        | пс       | D<br>D     | 223  |         |
| 701254 | V5460 | Sgr                  | 10  | 03  | 20.5         | -30   | 07  | 02       | 10.02 |                  | 0.  | 15     |        | RC       | SR         | 223  | ZMASS   |
| 781255 | V5461 | Sgr                  | 18  | 03  | 27.3         | -30   | 01  | 03       | 14.81 | (                | 0.  | 3      | )      | RC<br>D  | SK         | 227  | 226     |
| 781256 | V5462 | Sgr                  | 18  | 03  | 27.4         | -30   | 02  | 26       | 13.65 | (                | 0.  | 1      |        | КC       | SRS        | 223  | ZMASS   |
| 781257 | V5463 | Sgr                  | 18  | 03  | 27.8         | -30   | 06  | 56       | 15.41 | (                | 0.  | 15     | )      | Rc       | SR         | 223  | 2MASS   |
| 781258 | V5464 | Sgr                  | 18  | 03  | 28.4         | -29   | 55  | 45       | 16.02 | (                | 0.  | 1      | )      | Rc       | SR         | 223  | 226     |
| 781259 | V5465 | $\operatorname{Sgr}$ | 18  | 03  | 28.8         | -30   | 02  | 28       | 14.71 | (                | 0.  | 15     | )      | R        | SRS        | 227  | 226     |
| 781260 | V5466 | $\operatorname{Sgr}$ | 18  | 03  | 29.2         | -30   | 02  | 49       | 12.97 | (                | 0.  | 6      | )      | Rc       | SR         | 227  | 2MASS   |
| 781261 | V5467 | $\operatorname{Sgr}$ | 18  | 03  | 29.3         | -29   | 59  | 40       | 15.11 | (                | 0.  | 4      | )      | Rc       | LB:        | 227  | 226     |
| 781262 | V5468 | $\operatorname{Sgr}$ | 18  | 03  | 29.6         | -30   | 01  | 09       | 14.63 | (                | 0.  | 5      | )      | Rc       | SR         | 223  | 226     |
| 781263 | V5469 | $\operatorname{Sgr}$ | 18  | 03  | 30.0         | -29   | 58  | 22       | 13.30 | (                | 0.  | 25     | )      | Rc       | SR         | 223  | 2MASS   |
| 781264 | V5470 | Sgr                  | 18  | 03  | 30.5         | -29   | 58  | 36       | 12.26 | (                | 0.  | 05     | )      | R        | SRS        | 227  | 2MASS   |
| 781265 | V5471 | Sgr                  | 18  | 03  | 30.6         | -30   | 00  | 51       | 15.59 | (                | 0.  | 4      | )      | R        | SR         | 227  | 226     |
| 781266 | V5472 | Sgr                  | 18  | 03  | 31.1         | -29   | 59  | 03       | 15.46 | (                | 0.  | 2      | )      | Rc       | SR         | 223  | 226     |
| 781267 | V5473 | Sgr                  | 18  | 03  | 31.2         | -29   | 53  | 34       | 15.35 | (                | 0.  | 2      | )      | Rc       | SR         | 223  | 226     |
| 781268 | V5474 | Sgr                  | 18  | 03  | 31.7         | -30   | 00  | 44       | 13.03 | (                | 0.  | 06     | )      | Rc       | SR         | 223  | 2MASS   |
| 781269 | V5475 | Sgr                  | 18  | 03  | 31.9         | -30   | 00  | 29       | 13.65 | (                | 0.  | 25     | )      | Rc       | SR         | 227  | 226     |
| 781270 | V5476 | Sgr                  | 18  | 03  | 32.2         | -30   | 01  | 49       | 13.71 | (                | 0.  | 1      | )      | Rc       | SR         | 223  | 2MASS   |
| 781271 | V5477 | Sgr                  | 18  | 03  | 32.3         | -30   | 04  | 44       | 14.61 | (                | 0.  | 3      | )      | Rc       | SRS        | 223  | 226     |
| 781272 | V5478 | Sør                  | 18  | 03  | 32.3         | -30   | 03  | 32       | 14.62 | Ì                | 0   | 05     | )      | R        | SRS        | 227  | 2MASS   |
| 781273 | V5479 | Sør                  | 18  | 03  | 33.3         | -30   | 05  | 23       | 14.73 | Ì                | 0   | 2      | ý      | Rc       | SR         | 227  | 226     |
| 781274 | V5480 | Sor                  | 18  | 03  | 33 7         | -30   | 03  | 31       | 12 70 | $\tilde{(}$      | 0   | 02     | ý      | R        | SR         | 227  | 2MASS   |
| 781075 | V5481 | Sar                  | 18  | 03  | 3/ 1         | -29   | 50  | 50       | 15 30 | $\tilde{c}$      | 0.  | 35     | )      | Rc       | SB         | 221  | 2006    |
| 781076 | V5/82 | Sar                  | 10  | 03  | 3/ 1         | -30   | 05  | 17       | 15 30 | $\tilde{c}$      | 0.  | 05     | \$     | D        | CDC        | 220  | 220     |
| 701270 | V5402 | Sar                  | 10  | 03  | 2/ 1         | -20   | 00  |          | 1/ 20 | (                | 0.  | 00     | )      | n<br>Do  | CD CD      | 221  | 220     |
| 701070 | V0400 | San                  | 10  | 03  | 24.1         | -30   | 01  | 20       | 14.39 | $\left( \right)$ | 0.  | 2      |        | nc<br>Da | on<br>on   | 223  | 220     |
| 701270 | V0404 | Saz                  | 10  | 03  | 24.0<br>25 0 | -30   | E0  | 30       | 14.07 | $\left( \right)$ | 0.  | 2      | )      | nc<br>D  | on<br>on   | 223  | 220     |
| 701219 | V5405 | Sgr                  | 10  | 03  | 35.0         | -29   | 59  | 49       | 15.43 | $\left( \right)$ | 0.  | 1      |        | л<br>р   | OD C       | 221  | ZMASS   |
| 701200 | V5400 | Sgr                  | 10  | 03  | 30.0         | -29   | 00  | 00       | 15.03 | $\left( \right)$ | 0.  | 1      |        | n<br>De  | CDC<br>CDC | 221  | 220     |
| 781281 | V5487 | Sgr                  | 18  | 03  | 36.9         | -30   | 01  | 47       | 15.42 | (                | 0.  | 2      |        | RC       | SKS        | 223  | 226     |
| 781282 | V5488 | Sgr                  | 18  | 03  | 39.0         | -29   | 58  | 27       | 13.55 | (                | 0.  | 1      | )      | KC<br>D  | SR         | 223  | ZMASS   |
| 781283 | V5489 | Sgr                  | 18  | 03  | 40.2         | -29   | 55  | 32       | 13.35 | (                | 0.  | 2      | )      | Rc<br>-  | SRS        | 223  | 2MASS   |
| 781284 | V5490 | Sgr                  | 18  | 03  | 40.4         | -29   | 56  | 13       | 14.40 | (                | 0.  | 15     | )      | Rc       | SRS        | 223  | 2MASS   |
| 781285 | V5491 | $\operatorname{Sgr}$ | 18  | 03  | 42.7         | -30   | 00  | 07       | 14.54 | (                | 0.  | 05     | )      | R        | SRS        | 227  | 2MASS   |
| 781286 | V5492 | $\operatorname{Sgr}$ | 18  | 03  | 43.8         | -30   | 05  | 17       | 16.1  | (                | 0.  | 2      | )      | R        | SR         | 227  | 226     |
| 781287 | V5493 | $\operatorname{Sgr}$ | 18  | 03  | 45.3         | -30   | 01  | 33       | 14.82 | (                | 0.  | 15     | )      | R        | SR         | 227  | 2MASS   |
| 781288 | V5494 | $\operatorname{Sgr}$ | 18  | 03  | 45.5         | -30   | 04  | 33       | 14.98 | (                | 0.  | 1      | )      | R        | SR         | 227  | 226     |
| 781289 | V5495 | $\operatorname{Sgr}$ | 18  | 03  | 46.0         | -29   | 59  | 13       | 15.41 | (                | 0.  | 3      | )      | Rc       | SR         | 227  | 226     |
| 781290 | V5496 | $\operatorname{Sgr}$ | 18  | 03  | 46.6         | -30   | 02  | 27       | 15.2  | (                | 0.  | 15     | )      | R        | SRS        | 227  | 226     |
| 781291 | V5497 | $\operatorname{Sgr}$ | 18  | 03  | 47.5         | -30   | 03  | 37       | 14.90 | (                | 0.  | 1      | )      | R        | SRS        | 227  | 226     |
| 781292 | V5498 | $\operatorname{Sgr}$ | 18  | 03  | 48.5         | -29   | 59  | 47       | 14.60 | (                | 0.  | 25     | )      | Rc       | SR         | 227  | 226     |
| 781293 | V2611 | Oph                  | 18  | 03  | 48.7         | +01   | 12  | 59       | 15.0  | 1                | 16. | 1      |        | В        | RRAB       | 221  | 083     |
| 781294 | V5499 | Sgr                  | 18  | 03  | 50.1         | -30   | 03  | 15       | 14.55 | (                | 0.  | 1      | )      | R        | SR         | 227  | 2MASS   |
| 781295 | V5500 | Sgr                  | 18  | 03  | 50.9         | -30   | 01  | 52       | 13.76 | (                | 0.  | 05     | )      | R        | SRS        | 227  | 2MASS   |
| 781296 | V5501 | Sgr                  | 18  | 03  | 52.0         | -30   | 02  | 02       | 14.62 | (                | 0.  | 2      | )      | R        | SR         | 227  | 2MASS   |

| No.    | Name           |             | R./      | Α., | Decl         | ., 20      | 000      | .0         | Max           | Mir        | L        |   |         | Туре          | Refe       | erences    | 3   |
|--------|----------------|-------------|----------|-----|--------------|------------|----------|------------|---------------|------------|----------|---|---------|---------------|------------|------------|-----|
|        |                |             | h        | m   | s            | 0          | ,        | "          | m             | n          | 1        |   |         |               |            |            |     |
| 781297 | V5502          | Sgr         | 18       | 03  | 52.2         | -30        | 03       | 34         | 14.42         | ( 0.       | 1        | ) | R       | SR            | 227        | 2MASS      |     |
| 781298 | V5503          | Sgr         | 18       | 03  | 52.7         | -30        | 01       | 24         | 14.31         | ( 0.       | 05       | ) | R       | SR            | 227        | 226        |     |
| 781299 | V5504          | Sgr         | 18       | 03  | 52.9         | -30        | 01       | 59         | 14.9          | ( 0.       | 15       | ) | R       | SR            | 227        | 226        |     |
| 781300 | V5505          | Sgr         | 18       | 03  | 57.9         | -29        | 57       | 00         | 11.10         | 11.        | 48       |   | V       | DSCT          | 022        | GSC        |     |
| 781301 | V1101          | Her*        | 18       | 07  | 33.3         | +46        | 54       | 35         | 11.92         | 12.        | 52       |   | *       | EW            | 264        | GSC        | 228 |
| 781302 | V5506          | Sgr         | 18       | 07  | 36.9         | -27        | 33       | 47         | 10.8          | 12.        | 4        |   | Ι       | SRA           | 006        | 2MASS      |     |
| 781303 | V5507          | Sgr         | 18       | 07  | 54.2         | -27        | 34       | 16         | 11.5          | 13.        | 8        |   | Ι       | М             | 006        | 2MASS      |     |
| 781304 | V1102          | Her*        | 18       | 08  | 01.2         | +50        | 24       | 52         | 13.60         | 14.        | 41       |   | *       | EW            | 264        | GSC        | 228 |
| 781305 | V5508          | Sgr         | 18       | 08  | 08.0         | -26        | 13       | 14         | 16.64         | <19.       | 0        |   | Ι       | UG:           | 229        | USNO       |     |
| 781306 | V1103          | Her*        | 18       | 08  | 18.6         | +34        | 34       | 36         | 11.91         | 12.        | 43       |   | *       | EW            | 264        | GSC        | 228 |
| 781307 | V389           | Ser         | 18       | 08  | 36.2         | -14        | 47       | 34         | 14.5          | 16.        | 7        |   | т       | M             | 230        | 230        |     |
| 781308 | V390           | Ser         | 18       | 09  | 06.0         | -15        | 18       | 37         | 12.9          | 15.        | 7        |   | I       | M             | 230        | 230        |     |
| 781309 | V1104          | Her         | 18       | 09  | 47.8         | +49        | 02       | 55         | 13.23         | 14.        | 19       |   | *       | EW            | 264        | GSC        | 228 |
| 781310 | V391           | Ser*        | 18       | 09  | 58.0         | -14        | 58       | 36         | 14.0          | 16         | 1        |   | Т       | M             | 230        | 230        | 220 |
| 781311 | V5113          | Sor         | 18       | 10  | 10 4         | -27        | 45       | 35         | 8.8           | <18        | -        |   | v       | NΔ            | 231        | 232        |     |
| 781312 | V5509          | Sor         | 18       | 10  | 37 4         | -26        | 20       | 00         | 16 75         | <19        | 0        |   | т<br>т  | IIG ·         | 229        | 202        |     |
| 781313 | V1105          | Her         | 18       | 11  | 23.5         | +30        | 36       | 39         | 12 6          | 13         | 0        |   | *       | EW            | 161        | GSC        |     |
| 781314 | V5510          | Sor         | 18       | 11  | 51 2         | -26        | 26       | <u>1</u> 9 | 15 78         | <19        | 0        |   | т       |               | 229        | 000        |     |
| 781315 | V3010          | Ser         | 18       | 12  | 19 9         | -15        | 05       | 03         | 10.70<br>11 A | 12         | 7        |   | T       | SB            | 040        | 230        | 230 |
| 781316 | V1106          | Hor*        | 18       | 13  | 24 4         | +25        | 50       | 12         | 12 6          | 12.        | à        |   | *       | FW            | 161        | GSC        | 200 |
| 781317 | A1100          | Sor*        | 18       | 13  | 24.4         | -05        | 00       | 56         | 12.0          | <14        | <i>л</i> |   | v       | GBV ·         | 101        | CSC        |     |
| 781318 | V555           | Sar         | 10       | 13  | 30 0         | -33        | 16       | 20         | 18 05         | <03        | 3        |   | v<br>D  | YD            | 100        | 023        |     |
| 781310 | V301           | Sor         | 10       | 13  | 58.0         | -15        | 40<br>22 | 22         | 14 6          | 16         | ວ<br>າ   |   | т       | CD<br>CD      | 230        | 200        |     |
| 781320 | V305           | Sor         | 10       | 1/  | 07 6         | _15        | 22       | 3/         | 14.0          | 16         | 2        |   | т<br>Т  | SIL<br>SPA    | 230        | 230        |     |
| 701220 | V395           | Der         | 10       | 1/  | 07.0         | T00        | БЛ       | 04<br>00   | 14.7          | ( )        | 5        | > | T<br>Do | CD            | 230        | 200        | 040 |
| 781322 | V1107          | Sar         | 10       | 1/  | 20.1         | -17        | 04       | 20         | 14.0          | 10         | 60       | ) | и<br>К  | YR            | 234        | ZPIASS     | 040 |
| 701022 | V206           | Sor         | 10       | 16  | 20 /         | _10        | 10       | 10         | 11.07         | 16         | 1        |   | т       | лD<br>M•      | 200        | 220        |     |
| 781327 | V390<br>V307   | Sor         | 10       | 16  | 12 7         | _15        | 42<br>51 | 07         | 19.0          | 15         | -<br>∩   |   | т<br>Т  | FA.           | 230        | 230        |     |
| 781325 | 1308           | Sor         | 10       | 16  | 45.7         | _13        | J1       | 17         | 15.4          | 16         | 6        |   | т<br>Т  | CR.           | 230        | 230        |     |
| 701220 | V590           | Ser         | 10       | 16  | 40.9         | -13        | 41<br>20 | 11<br>51   | 12.05         | 10.<br><10 | 0        |   | т<br>Т  |               | 230        | 230        |     |
| 701320 | V5015          | Sar         | 10       | 16  | 50.0         | _25        | 23       | 20         | 7 0           | ×19.       | 0        |   | T<br>V  | NA NA         | 216        | 11/        |     |
| 701220 | V200           | Sor*        | 10       | 17  | 26.0         | _15        | 00       | 25         | 11 6          | 10.        | 7        |   | v       |               | 011        | 720        |     |
| 701320 | V399<br>V400   | Ser *       | 10       | 17  | 10.2         | -10        | 24       | 20         | 12 7          | 16         | 1        |   | V<br>T  | са<br>м       | 011        | 230        |     |
| 701029 | V400           | Ser         | 10       | 17  | 42.1         | -14        | 24       | 21         | 13.7          | 10.<br>/1E | 4        |   | T<br>V  | MA            | 100        | 200        |     |
| 701001 | V0110          | Ser         | 10       | 10  | 10 E         | -30        | 20       | 10         | 11 0          | <1C        | 0        |   | V<br>T  | M             | 109        | 329        |     |
| 701001 |                | Ser         | 10       | 10  | 49.0         | -17        | 10       | 40         | 11.9          | <1C        | 0        |   | т<br>Т  | M             | 230        | 230        |     |
| 701002 | V5514          | Sar         | 10       | 10  | 00.0         | -75        | 10       | 12         | 14.0          | 11         | 0        |   | T<br>V  |               | 230        | 230        |     |
| 70122/ | V5515          | Sar         | 10       | 10  | 00.9         | -20        | 24       | 10         | 14.0          | 14.        | 0        |   | v<br>v  | ELL<br>I D    | 231        | 201        |     |
| 701004 | V5510          | Sar         | 10       | 10  | 02.2         | -20        | 24       | 20         | 15.4          | 16         | 6        |   | v<br>v  | CD.           | 230        | 200        |     |
| 701000 | V5517          | Sgr         | 10       | 10  | 02.0         | -20        | 20       | 20         | 10.0          | 10.        | 1        |   | V<br>V  | on.<br>CD.    | 200        | 200        |     |
| 701000 | V5510<br>VEE10 | Sgr         | 10       | 19  | 03.0         | -25        | 29       | 30<br>21   | 14.5          | 10.        | 1        |   | V<br>V  | SR:<br>CD.    | 200        | 230        |     |
| 701000 | V5519          | Sgr         | 10       | 19  | 03.7         | -25        | 20       | 10         | 15.0          | 10.        | 1 7      |   | V       | SR:           | 230        | 230        |     |
| 701000 | V5520          | Sgr         | 10       | 19  | 00.5         | -25        | 24       | 12         | 11.0          | 10.        | 1        |   | V       | SR:           | 230        | 230        |     |
| 701240 | V5521          | Sgr*        | 10       | 19  | 07.8         | -25        | 121      | 10         | 15.3          | 15.        | 8        | ` | V       | EW<br>DV      | 237        | 237<br>DM  |     |
| 781340 | V590           | Lyr         | 18       | 19  | 08.8         | +33        | 13       | 53         | 8.28          | (0.        | 02       | ) | V<br>T  | BI            | 018        | DM         |     |
| 701040 | V402           | Ser         | 18       | 19  | 10.0         | -12        | 42       | 41         | 14.9          | 16.        | 0        |   | 1       | SKA           | 230        | 230        |     |
| 701342 | V5522          | Sgr         | 10       | 19  | 10.6         | -25        | 21       | 40         | 15.5          | 10.        | 0        |   | V       | SRB           | 238        | 238        |     |
| 701040 | V5523          | Sgr         | 10       | 19  | 10.9         | -25        | 21       | 43         | 15.0          | 20.        | 0        |   | V       |               | 240        | 240        |     |
| 701045 | v 5524         | Sgr         | 10       | 10  | 10.0         | -25        | ∠3<br>24 | 20         | 12 0          | 18.        | 3        |   | V<br>T  | N IDGUI:      | 239        | 239        |     |
| 101345 | V4U3<br>VEEOE  | Ser         | 10       | 10  | 16.0         | -12        | 34<br>00 | 90         | 15.0          | <10.       | 1        |   | ⊥<br>V  | ים מס<br>מסיס | ∠3U        | ∠3U<br>220 |     |
| 101340 | V 5525         | Sgr         | 10       | 10  | 10.0         | -25        | ∠3       | 30<br>17   | 16.0          | 11.<br>17  | 4<br>2   |   | V       | SKD:          | 238<br>000 | ∠38<br>220 |     |
| 101341 | V5520          | Sgr         | 10       | 10  | 22.0         | -25        | ∠ວ       | E 2        | 16.0          | 10         | 3<br>1   |   | V       | LD:<br>FD     | 238<br>227 | ∠38<br>027 |     |
| 101348 | V552/          | sgr*        | 10       | 10  | 24.4         | -25        | 25<br>04 | 53<br>50   | 10.4<br>17 5  | 10.        | T        |   | V       | ED<br>ED      | 231        | 231<br>227 |     |
| 781250 | V5520          | ogr*<br>Sa∽ | 10<br>10 | 10  | 24.0<br>20 ∩ | -72<br>-72 | ∠4<br>2∩ | 00<br>17   | 15 0          | 10.        | 7        |   | v<br>V  | CDB           | 231<br>220 | 231<br>239 |     |
| 101000 | v JJZ3         | NRT         | тO       | 13  | 20.0         | ∠0         | 50       | тŦ         | 10.2          | то.        | 1        |   | v       | UTU UTU       | 200        | 200        |     |

| No.    | Name          |                      | R./ | A., | Decl         | ., 20 | 000      | . 0      | Max   | Min       |                      |          |        | Туре       | Refe | erences   | 5     |
|--------|---------------|----------------------|-----|-----|--------------|-------|----------|----------|-------|-----------|----------------------|----------|--------|------------|------|-----------|-------|
|        |               |                      | h   | m   | S            | 0     | ,        | "        | m     | m         |                      |          |        |            |      |           |       |
| 781351 | V5114         | Sgr                  | 18  | 19  | 32.3         | -28   | 36       | 36       | 8.1   | <18.      |                      |          | V      | NA         | 241  |           |       |
| 781352 | V5530         | Sgr                  | 18  | 19  | 36.7         | -25   | 25       | 53       | 12.0  | 16.       | 8                    |          | V      | М          | 240  | 239       |       |
| 781353 | V5531         | Sgr                  | 18  | 19  | 40.8         | -25   | 27       | 13       | 16.5  | 16.       | 9                    |          | V      | SR         | 238  | 238       |       |
| 781354 | V5532         | Sgr                  | 18  | 19  | 58.5         | -17   | 31       | 34       | 14.7  | <16.      | 0                    |          | Ι      | M:         | 230  | 230       |       |
| 781355 | V5533         | Sgr*                 | 18  | 23  | 29.0         | -30   | 15       | 30       | 9.77  | 9.        | 80                   |          | V      | LPB:       | 022  | DM        | 040   |
| 781356 | V5534         | Sgr                  | 18  | 23  | 30.5         | -27   | 27       | 14       | 13.6  | 16.       | 4                    |          | *      | М          | 006  | 2MASS     |       |
| 781357 | V478          | Sct                  | 18  | 24  | 12.8         | -13   | 15       | 55       | 14.0  | 16.       | 1                    |          | т      | М          | 230  | 230       |       |
| 781358 | V591          | Lvr*                 | 18  | 24  | 36.8         | +38   | 17       | 34       | 13.28 | 13        | -<br>97              |          | *      | EW         | 264  | GSC       | 242   |
| 781359 | V5535         | Sor*                 | 18  | 24  | 57 4         | -30   | 24       | 43       | 10.65 | 11        | 00                   |          | v      | FR         | 022  | DM        | 130   |
| 781360 | V5536         | Sar                  | 18  | 25  | 05.0         | -17   | 03       | 58       | 14 6  | 16        | 5                    |          | т      | М          | 230  | 230       | 100   |
| 781361 | V5537         | Sar                  | 10  | 20  | 10.0         | -26   | 05       | 30       | 10 0  | 11        | 5                    |          | v      | CDB        | 040  | 200<br>M  |       |
| 781362 | V3337         | SC+*                 | 10  | 20  | 15 1         | _1/   | 50       | 53       | 2 53  | ۰۱۲.<br>۵ | 01                   |          | v<br>v | Y I.       | 040  | CSC       |       |
| 701262 | V419<br>VEE20 | SCL*                 | 10  | 20  | 10.1         | -14   | 01       | 04<br>00 | 16 1  | 9.<br>17  | 101                  |          | л<br>т | AJ.        | 240  | 020       |       |
| 701004 | V 5538        | Sgr                  | 10  | 21  | 54.1         | -10   | 21       | 20       | 10.1  | 10        | 4                    |          | 1      | SRA<br>GDA | 230  | 230<br>DM | 100   |
| 781364 | V480          | SCT                  | 18  | 28  | 26.8         | -15   | 45       | 11       | 10.0  | 10.       | 3                    |          | V      | SKA        | 090  | DM        | 130   |
| 781365 | V2612         | Upn*                 | 18  | 29  | 13.0         | +06   | 41       | 14       | 9.36  | 9.        | 74<br>00             |          | V      | EW<br>DU   | 244  | DM        | ~ 4 ~ |
| 781366 | V592          | Lyr*                 | 18  | 30  | 53.7         | +34   | 80       | 10       | 12.41 | 12.       | 92                   |          | *      | EW         | 264  | GSC       | 242   |
| 781367 | V476          | Sct                  | 18  | 32  | 04.8         | -06   | 43       | 34       | 11.1  | <17.      |                      |          | V      | NA         | 089  | 330       |       |
| 781368 | V593          | Lyr                  | 18  | 32  | 06.4         | +40   | 35       | 57       | 11.75 | ( 0.      | 62                   | )        | V      | DSCT       | 264  | GSC       | 161   |
| 781369 | V5539         | $\operatorname{Sgr}$ | 18  | 32  | 09.6         | -29   | 55       | 47       | 11.1  | 13.       | 5                    |          | V      | SRA        | 090  | GSC       |       |
| 781370 | V729          | CrA                  | 18  | 32  | 13.9         | -44   | 37       | 01       | 11.4  | 13.       | 6                    |          | V      | SRA        | 090  | 2MASS     | 040   |
| 781371 | V481          | Sct                  | 18  | 33  | 55.3         | -06   | 58       | 39       | 5.85  | 6.        | 23                   |          | K      | BE:        | 245  | 245       |       |
| 781372 | V477          | Sct                  | 18  | 38  | 42.9         | -12   | 16       | 16       | 10.4  | <19.      |                      |          | V      | NA         | 079  | 331       |       |
| 781373 | V1108         | Her*                 | 18  | 39  | 26.2         | +26   | 04       | 10       | 12.0  | 17.       | 1                    |          | V      | UGSU       | 247  |           |       |
| 781374 | V5540         | Sgr                  | 18  | 39  | 58.9         | -33   | 14       | 12       | 12.0  | 12.       | 8                    |          | V      | SRB        | 012  | GSC       |       |
| 781375 | DT            | Oct                  | 18  | 40  | 52.4         | -83   | 43       | 10       | 11.4  | <15.      | 2                    |          | V      | UGSU       | 078  | 248       |       |
| 781376 | V5541         | Sgr                  | 18  | 43  | 16.6         | -18   | 31       | 28       | 13.3  | ( 0.      | 15                   | )        | V      | PVTEL      | 249  | USNO      |       |
| 781377 | V5542         | Sgr                  | 18  | 43  | 23.9         | -21   | 20       | 37       | 13.18 | 13.       | 84                   |          | *      | EA         | 250  | 250       |       |
| 781378 | V1664         | Aql                  | 18  | 43  | 39.2         | -00   | 04       | 27       | 11.3  | 13.       | 0                    |          | Ι      | SR         | 006  | 2MASS     |       |
| 781379 | V351          | Tel*                 | 18  | 44  | 00.5         | -49   | 20       | 53       | 10.05 | 10.       | 52                   |          | V      | EA         | 011  | DM        |       |
| 781380 | V482          | Sct                  | 18  | 44  | 02.2         | -06   | 38       | 44       | 11.4  | <14.      | 1                    |          | V      | М          | 103  | GSC       | 040   |
| 781381 | V594          | Lvr                  | 18  | 45  | 21.8         | +45   | 53       | 29       | 14.   | ( 0.      | 33                   | )        | V      | EW:        | 161  | GSC       |       |
| 781382 | V5543         | Sør                  | 18  | 45  | 50.3         | -32   | 16       | 26       | 11.5  | 16.       | 7                    | ,        | R.     | M          | 130  | 2MASS     | 040   |
| 781383 | V595          | Lvr                  | 18  | 46  | 34.6         | +38   | 21       | 03       | 8.10  | ( 0.      | 02                   | )        | V      | BY         | 018  | DM        |       |
| 781384 | V596          | Lvr                  | 18  | 46  | 55.1         | +45   | 00       | 52       | 12.09 | 12        | 75                   | <i>`</i> | *      | EW         | 264  | GSC       | 242   |
| 781385 | мт            | Dra                  | 18  | 46  | 58 8         | +55   | 38       | 28       | 16    | 20        |                      |          | R      | XM         | 251  | 251       |       |
| 781386 | V352          | Tel                  | 18  | 47  | 20 6         | -47   | 38       | 06       | 10.5  | <13       | 0                    |          | v      | M          | 090  | GSC       | 130   |
| 781387 | V5544         | Sor                  | 18  | 47  | 20.0         | -31   | 07       | 48       | 11 6  | 14        | 0                    |          | v      | SRA        | 090  |           | 040   |
| 781388 | V483          | Sct                  | 18  | 48  | 35 7         | -06   | ۵ı<br>41 | 10       | 14 20 | 16        | 40                   |          | v      | ZAND       | 253  | 2MASS     | 010   |
| 781380 | V-100<br>V/8/ | Sct*                 | 10  | 10  | 16 1         | -10   | 12       | 30       | 0 15  | 10.       |                      |          | v      | ΣAND<br>ΓΛ | 011  |           |       |
| 701200 | V404<br>V720  |                      | 10  | 49  | 10.1<br>01 0 | _20   | 11       | 05       | 0 70  | 10        | ∠ <del>1</del><br>∩1 |          | v      | EA<br>EU:  | 120  | DM        |       |
| 701390 | V130          | U and                | 10  | 49  | 21.2         | -30   | 11       | 05<br>44 | 9.10  | 10.       |                      |          | V<br>W | EW:        | 130  |           |       |
| 701391 | V1109         | Her<br>C-+           | 10  | 49  | 29.4         | +12   | 00       | 41       | 9.30  | 9.        | 51                   |          | V      | ED<br>N    | 011  |           |       |
| 781392 | V4/5          | SCT                  | 18  | 49  | 37.6         | -09   | 33       | 51       | 8.4   | <16.      | ~~                   |          | V      | N          | 254  | 255       |       |
| 781393 | V353          | Ie1*                 | 18  | 49  | 51.3         | -52   | 07       | 19       | 7.13  | ( )       | 20                   | 、        | нр     | DSCIC      | 024  | DM        |       |
| 781394 | V1110         | Her                  | 18  | 50  | 24.5         | +24   | 06       | 24       | 7.0   | (0.       | 02                   | )        | V      | BY         | 018  | DM        |       |
| 781395 | V5545         | Sgr                  | 18  | 53  | 52.8         | -22   | 22       | 04       | 12.1  | 14.       | 2                    |          | V      | SRA        | 130  | USNO      |       |
| 781396 | V1111         | Her                  | 18  | 55  | 12.9         | +23   | 13       | 13       | 7.90  | (0.       | 03                   | )        | V      | BY         | 018  | DM        |       |
| 781397 | V1665         | Aql*                 | 18  | 56  | 09.9         | +07   | 56       | 08       | 8.09  | 8.        | 40                   |          | V      | EA         | 011  | DM        |       |
| 781398 | V1112         | Her                  | 18  | 56  | 45.5         | +13   | 49       | 41       | 13.0  | 15.       | 7                    |          | *      | M:         | 006  | 2MASS     |       |
| 781399 | V1113         | Her                  | 18  | 56  | 52.7         | +14   | 45       | 40       | 11.8  | 14.       | 8                    |          | *      | M:         | 006  | 2MASS     |       |
| 781400 | V1114         | Her                  | 18  | 57  | 01.9         | +12   | 41       | 26       | 13.0  | <15.      | 0                    |          | *      | M:         | 006  | 2MASS     |       |
| 781401 | V1115         | Her                  | 18  | 57  | 06.2         | +12   | 58       | 34       | 10.3  | 12.       | 8                    |          | *      | М          | 006  | 2MASS     |       |
| 781402 | V1666         | Aql                  | 18  | 57  | 10.9         | +10   | 06       | 17       | 13.0  | <14.      | 9                    |          | *      | SR:        | 006  | 2MASS     |       |
| 781403 | V1667         | Aql                  | 18  | 57  | 22.1         | +11   | 48       | 34       | 13.4  | <15.      | 8                    |          | *      | M:         | 006  | 2MASS     |       |
| 781404 | V359          | Sge                  | 18  | 57  | 29.9         | +20   | 05       | 28       | 11.8  | <15.      | 2                    |          | V      | М          | 006  | 2MASS     | 332   |

| No.    | Name  |      | R./ | Α., | Decl | ., 20 | 000 | . 0 | Max   | Miı | n   |   |    | Туре  | Refe | erences | 5   |
|--------|-------|------|-----|-----|------|-------|-----|-----|-------|-----|-----|---|----|-------|------|---------|-----|
|        |       |      | h   | m   | S    | 0     | ,   | "   | m     | I   | n   |   |    |       |      |         |     |
| 781405 | V485  | Sct  | 18  | 57  | 40.7 | -13   | 13  | 35  | 12.4  | <14 | .1  |   | V  | М     | 006  | 2MASS   | 332 |
| 781406 | V486  | Sct  | 18  | 57  | 42.3 | -10   | 49  | 04  | 13.0  | <14 | .2  |   | V  | М     | 006  | 2MASS   | 332 |
| 781407 | V1668 | Aql  | 18  | 57  | 42.3 | +11   | 12  | 57  | 11.6  | 14  | .8  |   | *  | М     | 006  | 2MASS   |     |
| 781408 | V1669 | Aql  | 18  | 58  | 13.4 | +15   | 06  | 22  | 12.1  | <15 | .1  |   | *  | M:    | 006  | 256     |     |
| 781409 | V1670 | Aql  | 18  | 58  | 21.0 | +11   | 20  | 31  | 13.4  | <15 | .5  |   | *  | SR:   | 006  | 2MASS   |     |
| 781410 | MU    | Dra* | 18  | 58  | 35.3 | +50   | 09  | 30  | 11.51 | 12  | .09 |   | *  | EW    | 264  | GSC     | 242 |
| 781411 | V1671 | Aql  | 18  | 58  | 43.6 | +12   | 56  | 13  | 13.3  | <15 | .0  |   | *  | SR:   | 006  | 2MASS   |     |
| 781412 | V360  | Sge  | 18  | 59  | 12.6 | +20   | 14  | 38  | 11.5  | 13  | .5  |   | *  | SR:   | 006  | 2MASS   |     |
| 781413 | V361  | Sge  | 18  | 59  | 38.6 | +19   | 59  | 00  | 11.0  | <13 | .3  |   | *  | М     | 006  | 2MASS   | 332 |
| 781414 | V362  | Sge  | 18  | 59  | 40.0 | +19   | 30  | 11  | 11.8  | 14  | .2  |   | *  | M:    | 006  | 2MASS   |     |
| 781415 | V1672 | Aql  | 19  | 00  | 10.9 | +03   | 45  | 47  | 6.91  | 8   | .58 |   | Κ  | SDOR: | 257  | 2MASS   |     |
| 781416 | V1673 | Aql  | 19  | 00  | 15.1 | +10   | 50  | 17  | 11.8  | 15  | .6  |   | *  | M:    | 006  | 2MASS   |     |
| 781417 | V1674 | Aql  | 19  | 00  | 16.8 | -10   | 26  | 36  | 12.7  | 13  | .6  |   | V  | RRAB  | 258  | 258     |     |
| 781418 | V1675 | Aql  | 19  | 00  | 28.1 | +14   | 09  | 53  | 12.5  | 15  | .2  |   | *  | М     | 006  | 2MASS   |     |
| 781419 | V1676 | Aql  | 19  | 00  | 40.5 | -09   | 51  | 48  | 12.3  | 14  | .0  |   | *  | SR:   | 006  | 2MASS   |     |
| 781420 | V1677 | Aql  | 19  | 01  | 09.4 | +15   | 38  | 57  | 11.6  | 14  | .0  |   | *  | SR:   | 006  | 2MASS   |     |
| 781421 | V1678 | Aql  | 19  | 01  | 16.3 | +10   | 31  | 22  | 13.8  | <15 | .2  |   | *  | SR:   | 006  | 2MASS   |     |
| 781422 | V1679 | Aql  | 19  | 01  | 32.3 | +15   | 00  | 22  | 11.8  | 13  | .7  |   | *  | M:    | 006  | 2MASS   |     |
| 781423 | V1680 | Aql  | 19  | 02  | 14.5 | +13   | 03  | 03  | 9.7   | <21 |     |   | V  | NA    | 259  | 259     |     |
| 781424 | V363  | Sge  | 19  | 02  | 22.6 | +19   | 56  | 56  | 11.0  | 13  | .6  |   | *  | M:    | 006  | 2MASS   |     |
| 781425 | V1681 | Aql  | 19  | 02  | 27.8 | +18   | 12  | 36  | 12.3  | 15  | .0  |   | *  | M:    | 006  | 2MASS   |     |
| 781426 | V1682 | Aql  | 19  | 02  | 41.8 | +12   | 46  | 00  | 12.1  | 15  | .1  |   | *  | M:    | 006  | 2MASS   |     |
| 781427 | V1683 | Aql  | 19  | 02  | 53.7 | -10   | 26  | 43  | 9.8   | 12  | .6  |   | *  | М     | 006  | 2MASS   | 332 |
| 781428 | V1684 | Aql  | 19  | 03  | 33.4 | +16   | 31  | 20  | 13.0  | ( 0 | .6  | ) | V  | SR:   | 260  | GSC     |     |
| 781429 | V1663 | Aql  | 19  | 05  | 12.2 | +05   | 14  | 12  | 10.84 | <18 |     |   | V  | NL    | 073  | 2MASS   |     |
| 781430 | V1685 | Aql  | 19  | 10  | 36.1 | +02   | 49  | 29  | 15.9  | 17  | .0  |   | V  | ZAND  | 253  | 262     |     |
| 781431 | V597  | Lyr  | 19  | 11  | 59.7 | +42   | 18  | 46  | 11.0  | ( 0 | .11 | ) | V  | DSCT  | 263  | GSC     |     |
| 781432 | MV    | Dra  | 19  | 12  | 11.4 | +57   | 40  | 19  | 7.04  | ( 0 | .02 | ) | V  | ВҮ    | 018  | DM      |     |
| 781433 | V1686 | Aql* | 19  | 13  | 47.7 | -01   | 50  | 07  | 8.91  | 9   | .01 |   | V  | EB    | 011  | DM      |     |
| 781434 | V1687 | Aql* | 19  | 14  | 39.7 | +03   | 50  | 40  | 11.42 | 11  | .85 |   | V  | EW    | 097  | GSC     |     |
| 781435 | V1688 | Aql  | 19  | 15  | 35.1 | +11   | 33  | 17  | 8.06  | ( 0 | .02 | ) | V  | ВҮ    | 018  | DM      |     |
| 781436 | V1689 | Aql  | 19  | 20  | 30.0 | -07   | 02  | 41  | 11.3  | 12  | .2  |   | V  | SRA   | 130  | GSC     | 040 |
| 781437 | V598  | Lyr  | 19  | 20  | 38.9 | +37   | 49  | 05  | 17.28 | 17  | .35 |   | R  | ВҮ    | 265  | 266     |     |
| 781438 | V599  | Lyr  | 19  | 20  | 39.1 | +37   | 47  | 26  | 17.51 | ( 0 | .02 | ) | V  | EP:   | 267  | USNO    |     |
| 781439 | V600  | Lyr  | 19  | 20  | 39.3 | +37   | 45  | 40  | 18.00 | ( 0 | .02 | ) | V  | EP:   | 267  | USNO    |     |
| 781440 | V601  | Lyr  | 19  | 20  | 39.7 | +37   | 47  | 36  | 19.06 | ( 0 | .08 | ) | V  | BY:   | 267  |         |     |
| 781441 | V602  | Lyr  | 19  | 20  | 42.5 | +37   | 44  | 37  | 17.54 | ( 0 | .02 | ) | V  | BY:   | 267  | 2MASS   |     |
| 781442 | V603  | Lyr  | 19  | 20  | 43.0 | +37   | 47  | 33  | 19.16 | ( 0 | .08 | ) | V  | BY:   | 267  |         |     |
| 781443 | V604  | Lyr* | 19  | 20  | 45.3 | +37   | 45  | 49  | 17.02 | ( 0 | .05 | ) | V  | BY:   | 267  | USNO    |     |
| 781444 | V605  | Lyr  | 19  | 20  | 46.4 | +37   | 44  | 14  | 19.45 | ( 0 | .08 | ) | V  | BY:   | 267  |         |     |
| 781445 | V606  | Lyr  | 19  | 20  | 47.7 | +37   | 44  | 58  | 19.74 | ( 0 | .09 | ) | V  | ELL:  | 267  |         |     |
| 781446 | V607  | Lyr  | 19  | 20  | 49.2 | +37   | 49  | 14  | 16.49 | ( 0 | .08 | ) | V  | SRS:  | 267  | USNO    |     |
| 781447 | V608  | Lyr* | 19  | 20  | 49.7 | +37   | 48  | 08  | 16.87 | ( 0 | .02 | ) | V  | ELL:  | 267  | USNO    |     |
| 781448 | V609  | Lyr* | 19  | 20  | 49.8 | +37   | 45  | 51  | 18.27 | ( 0 | .03 | ) | V  | EB:   | 267  | 2MASS   |     |
| 781449 | V610  | Lyr  | 19  | 20  | 50.1 | +37   | 48  | 32  | 19.44 | ( 0 | .02 | ) | V  | BY:   | 267  |         |     |
| 781450 | V611  | Lyr  | 19  | 20  | 51.0 | +37   | 48  | 25  | 18.38 | 18  | .48 |   | R  | ВҮ    | 265  | 2MASS   |     |
| 781451 | V612  | Lyr  | 19  | 20  | 51.7 | +37   | 45  | 25  | 18.08 | 18  | .15 |   | R  | ELL   | 265  | 266     |     |
| 781452 | V613  | Lyr  | 19  | 20  | 52.5 | +37   | 47  | 30  | 15.66 | 15  | .68 |   | R  | ELL:  | 267  | USNO    |     |
| 781453 | V614  | Lyr  | 19  | 20  | 52.8 | +37   | 44  | 59  | 18.12 | ( 0 | .06 | ) | V  | BY:   | 267  | 2MASS   |     |
| 781454 | V615  | Lyr  | 19  | 20  | 52.9 | +37   | 46  | 37  | 16.67 | ( 0 | .02 | ) | V  | ELL:  | 267  | 2MASS   |     |
| 781455 | V616  | Lyr  | 19  | 20  | 53.0 | +37   | 46  | 52  | 14.84 | ( 0 | .04 | ) | V  | SRS:  | 267  | 2MASS   |     |
| 781456 | V617  | Lyr  | 19  | 20  | 55.2 | +37   | 46  | 40  | 18.60 | ( 0 | .15 | ) | V  | EA    | 267  | 2MASS   |     |
| 781457 | V618  | Lyr  | 19  | 20  | 55.4 | +37   | 47  | 23  | 16.18 | ( 0 | .02 | ) | Ic | E:    | 267  | 2MASS   |     |
| 781458 | V619  | Lyr  | 19  | 20  | 56.4 | +37   | 45  | 39  | 17.87 | ( 0 | .03 | ) | V  | ELL:  | 267  | 2MASS   |     |

| No.    | Name  |      | R./ | Α., | Decl | ., 20 | 000. | . 0 | Max   | Miı | n    |   |   |    | Туре   | Refe | erences | 5   |
|--------|-------|------|-----|-----|------|-------|------|-----|-------|-----|------|---|---|----|--------|------|---------|-----|
|        |       |      | h   | m   | s    | 0     | ,    | "   | m     | r   | n    |   |   |    |        |      |         |     |
| 781459 | V620  | Lyr  | 19  | 20  | 56.6 | +37   | 46   | 36  | 18.89 | ( 0 | .10  |   | ) | V  | E:     | 267  |         |     |
| 781460 | V621  | Lyr  | 19  | 20  | 57.1 | +37   | 48   | 12  | 17.54 | ( 0 | .01  |   | ) | V  | SRS:   | 267  | 2MASS   |     |
| 781461 | V622  | Lyr  | 19  | 20  | 58.9 | +37   | 44   | 47  | 18.11 | ( 0 | .02  |   | ) | V  | BY:    | 267  | 2MASS   |     |
| 781462 | V623  | Lyr  | 19  | 21  | 00.5 | +37   | 48   | 41  | 18.07 | ( 0 | .02  |   | ) | V  | BY:    | 267  |         |     |
| 781463 | V624  | Lyr  | 19  | 21  | 00.7 | +37   | 45   | 45  | 18.10 | 18  | .44  |   |   | R  | EA     | 265  |         | 267 |
| 781464 | V625  | Lyr  | 19  | 21  | 00.8 | +37   | 44   | 35  | 18.25 | 18  | .32  |   |   | R  | ВҮ     | 265  | USNO    |     |
| 781465 | V626  | Lyr  | 19  | 21  | 01.8 | +37   | 45   | 42  | 17.13 | ( 0 | .04  |   | ) | V  | ELL:   | 267  | 2MASS   |     |
| 781466 | V627  | Lyr* | 19  | 21  | 02.5 | +37   | 47   | 09  | 16.60 | 16  | .62  |   |   | R  | ELL    | 265  | 2MASS   |     |
| 781467 | V628  | Lyr  | 19  | 21  | 02.7 | +37   | 46   | 01  | 18.30 | ( 0 | .02  |   | ) | V  | BY:    | 267  |         |     |
| 781468 | V629  | Lyr  | 19  | 21  | 03.1 | +37   | 43   | 52  | 18.69 | 18  | .78  |   |   | R  | BY:    | 267  | USNO    |     |
| 781469 | V630  | Lyr  | 19  | 21  | 03.6 | +37   | 48   | 04  | 16.17 | <16 | .26  |   |   | R  | SRS:   | 267  | USNO    |     |
| 781470 | V631  | Lyr  | 19  | 21  | 03.7 | +37   | 46   | 06  | 18.28 | <18 | .38  |   |   | R  | E:     | 265  |         |     |
| 781471 | V632  | Lyr  | 19  | 21  | 05.2 | +37   | 47   | 09  | 18.12 | ( 0 | .01  |   | ) | V  | ELL:   | 267  |         |     |
| 781472 | V633  | Lyr  | 19  | 21  | 06.5 | +37   | 47   | 27  | 17.89 | ( 0 | .04  |   | ) | V  | E:     | 267  | 2MASS   |     |
| 781473 | V634  | Lyr* | 19  | 21  | 07.6 | +37   | 48   | 10  | 17.26 | 17  | .34  |   |   | R  | ELL    | 265  | 266     |     |
| 781474 | V2363 | Cyg* | 19  | 21  | 08.4 | +51   | 02   | 01  | 12.10 | ( 0 | .18  |   | ) | V  | EW     | 161  | GSC     |     |
| 781475 | V2364 | Cyg* | 19  | 22  | 11.7 | +49   | 28   | 34  | 11.20 | 11  | .84  |   |   | *  | EW     | 268  | GSC     |     |
| 781476 | V1690 | Aql  | 19  | 22  | 38.4 | +14   | 07   | 53  | 10.6  | <13 | . 1  |   |   | *  | M:     | 088  | 2MASS   |     |
| 781477 | V5546 | Sgr  | 19  | 24  | 01.6 | -33   | 32   | 32  | 7.69  | 7   | .79  |   |   | Hр | GDOR   | 024  | DM      |     |
| 781478 | V2365 | Cyg  | 19  | 24  | 14.7 | +50   | 15   | 20  | 9.62  | ( 0 | .2   |   | ) | B  | EA     | 269  | DM      |     |
| 781479 | V1691 | Aql  | 19  | 25  | 01.5 | -04   | 53   | 04  | 6.82  | ( 0 | .04  |   | ) | В  | DSCTC  | 270  | DM      |     |
| 781480 | V1692 | Aql* | 19  | 26  | 28.2 | +07   | 11   | 49  | 11.22 | 11  | .45  |   |   | *  | EW     | 065  | GSC     |     |
| 781481 | V1693 | Aql  | 19  | 27  | 51.0 | +11   | 11   | 00  | 12.1  | 16  | .4   |   |   | *  | М      | 006  | 2MASS   | 040 |
| 781482 | V5547 | Sgr  | 19  | 30  | 57.4 | -32   | 41   | 57  | 7.39  | ( 0 | .1   |   | ) | V  | ELL:   | 024  | DM      |     |
| 781483 | V364  | Sge  | 19  | 31  | 12.0 | +19   | 01   | 19  | 15.1  | 16  | .4   |   |   | В  | DCEP   | 271  | GSC     |     |
| 781484 | V1694 | Aql  | 19  | 32  | 00.4 | +11   | 09   | 25  | 11.4  | 14  | .1   |   |   | *  | M:     | 006  | 2MASS   |     |
| 781485 | V2366 | Cyg  | 19  | 32  | 10.8 | +45   | 44   | 09  | 12.79 | ( 0 | .42  | V | ) | *  | EW     | 161  | GSC     |     |
| 781486 | V2367 | Cyg  | 19  | 34  | 45.6 | +45   | 54   | 16  | 11.81 | ( 0 | .40  | V | ) | *  | DSCT   | 161  | GSC     |     |
| 781487 | V5548 | Sgr  | 19  | 36  | 01.7 | -24   | 43   | 09  | 5.82  | ( 0 | .04  |   | ) | В  | DSCTC: | 270  | DM      |     |
| 781488 | V5549 | Sgr  | 19  | 36  | 40.5 | -28   | 35   | 04  | 11.8  | <15 | .0   |   |   | V  | М      | 130  | GSC     | 090 |
| 781489 | V1695 | Aql  | 19  | 38  | 22.3 | -03   | 32   | 37  | 10.80 | 11  | .38  |   |   | V  | EW     | 272  | DM      |     |
| 781490 | V2368 | Cyg  | 19  | 38  | 48.3 | +30   | 28   | 59  | 13.7  | 14  | .8   |   |   | Rc | SR:    | 273  | 273     |     |
| 781491 | V2369 | Cyg  | 19  | 39  | 51.1 | +38   | 21   | 80  | 10.9  | ( 0 | .37  |   | ) | V  | RRC    | 274  | GSC     |     |
| 781492 | V2370 | Cyg  | 19  | 40  | 05.3 | +40   | 14   | 17  | 18.91 | ( 0 | .16  |   | ) | V  | EA     | 275  | USNO    |     |
| 781493 | V2371 | Cyg  | 19  | 40  | 12.5 | +40   | 00   | 45  | 18.02 | ( 0 | .07  |   | ) | V  | EA     | 275  | USNO    |     |
| 781494 | V2372 | Cyg  | 19  | 40  | 13.9 | +40   | 11   | 22  | 19.13 | ( 0 | .06  |   | ) | V  | EA     | 275  | USNO    |     |
| 781495 | V2373 | Cyg  | 19  | 40  | 21.7 | +40   | 04   | 10  | 16.74 | ( 0 | .03  |   | ) | V  | EA:    | 275  | USNO    |     |
| 781496 | V2374 | Cyg* | 19  | 40  | 21.8 | +40   | 12   | 09  | 20.6  | ( 0 | .40  |   | ) | V  | RRAB:  | 276  | 276     | 040 |
| 781497 | V2375 | Cyg* | 19  | 40  | 30.5 | +40   | 16   | 24  | 19.56 | ( 0 | .45  |   | ) | V  | EB     | 276  | 276     |     |
| 781498 | V2376 | Cyg* | 19  | 40  | 31.6 | +40   | 12   | 52  | 20.5  | ( 0 | .80  |   | ) | V  | EA     | 276  | 276     |     |
| 781499 | V2377 | Cyg  | 19  | 40  | 32.0 | +40   | 10   | 41  | 18.40 | ( 0 | . 15 |   | ) | V  | BY:    | 276  | 276     |     |
| 781500 | V2378 | Cyg  | 19  | 40  | 38.0 | +40   | 01   | 05  | 21.72 | ( 0 | .21  |   | ) | V  | EA:    | 275  |         |     |
| 781501 | V2379 | Cyg  | 19  | 40  | 41.6 | +40   | 07   | 47  | 19.2  | ( 0 | .70  |   | ) | V  | CEP:   | 276  | 276     | 040 |
| 781502 | V2380 | Cyg* | 19  | 40  | 42.7 | +40   | 13   | 26  | 20.37 | ( 0 | .45  |   | ) | V  | EW     | 276  | 276     |     |
| 781503 | V2381 | Cyg* | 19  | 40  | 44.8 | +40   | 09   | 22  | 17.36 | (1  | .50  |   | ) | V  | EA     | 276  | 276     |     |
| 781504 | V2382 | Cvg  | 19  | 40  | 48.4 | +40   | 16   | 19  | 20.68 | ( 0 | .6   |   | ) | V  | ВҮ     | 276  | 276     |     |
| 781505 | V2383 | Cvg* | 19  | 40  | 53.1 | +40   | 11   | 18  | 20.06 | ( 0 | .60  |   | ) | V  | EA     | 276  | 276     |     |
| 781506 | V2384 | Cvg  | 19  | 40  | 56.7 | +40   | 05   | 05  | 18.67 | ( 0 | .10  |   | ) | V  | EA     | 275  | USNO    |     |
| 781507 | V2385 | Cvg* | 19  | 40  | 59.6 | +40   | 08   | 25  | 19.81 | ( 0 | . 30 |   | ) | v  | EW     | 276  | 276     |     |
| 781508 | V2386 | Cvg* | 19  | 41  | 05.8 | +40   | 12   | 54  | 20.72 | ( 0 | .50  |   | ) | v  | EW     | 276  | 276     |     |
| 781509 | V2387 | Cvg  | 19  | 41  | 09.7 | +40   | 10   | 38  | 19.12 | ( 0 | . 10 |   | ) | v  | BY     | 276  | 276     |     |
| 781510 | V2388 | Cyg* | 19  | 41  | 10.3 | +40   | 15   | 19  | 16.61 | ( 0 | .45  |   | ) | v  | EW     | 276  | 276     |     |
| 781511 | V2389 | Cvg* | 19  | 41  | 11.7 | +40   | 06   | 40  | 18.17 | ( 0 | . 35 |   | ) | v  | EW     | 276  | 276     |     |
| 781512 | V2390 | Cyg* | 19  | 41  | 15.3 | +40   | 12   | 32  | 18.11 | ( 0 | .15  |   | ) | V  | EB:    | 276  | 276     |     |

| No.    | Name           |                      | R./      | Α.,        | Decl         | ., 20      | 000      | . 0       | Max   | Min                                                                                                                                                                                                                                                                                                                |          |    |   |          | Туре      | Refe | erences    | 5   |
|--------|----------------|----------------------|----------|------------|--------------|------------|----------|-----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|---|----------|-----------|------|------------|-----|
|        |                |                      | h        | m          | S            | 0          | ,        | "         | m     | m                                                                                                                                                                                                                                                                                                                  | L        |    |   |          |           |      |            |     |
| 781513 | V2391          | Cyg                  | 19       | 41         | 21.3         | +40        | 02       | 14        | 16.60 | ( 0.                                                                                                                                                                                                                                                                                                               | 03       |    | ) | V        | EA        | 275  | USNO       |     |
| 781514 | V2392          | Cyg                  | 19       | 41         | 22.2         | +40        | 10       | 11        | 19.1  | ( 0.                                                                                                                                                                                                                                                                                                               | 20       |    | ) | V        | BY        | 276  | 276        |     |
| 781515 | V2393          | Cyg                  | 19       | 41         | 22.6         | +40        | 11       | 07        | 17.49 | ( 0.                                                                                                                                                                                                                                                                                                               | 16       |    | ) | V        | EW:       | 276  | 276        |     |
| 781516 | V2394          | Cyg*                 | 19       | 41         | 22.9         | +40        | 14       | 39        | 18.27 | ( 0.                                                                                                                                                                                                                                                                                                               | 16       |    | ) | V        | EW:       | 276  | 276        |     |
| 781517 | V2395          | Cvg                  | 19       | 41         | 26.8         | +40        | 10       | 49        | 18.2  | (0.                                                                                                                                                                                                                                                                                                                | 20       |    | ) | V        | BY        | 276  | 276        |     |
| 781518 | V2396          | Cvg                  | 19       | 41         | 28.6         | +40        | 16       | 25        | 17.25 | ( 0.                                                                                                                                                                                                                                                                                                               | 20       |    | ) | V        | EW        | 276  | 276        |     |
| 781519 | V2397          | Cvg                  | 19       | 41         | 33.9         | +40        | 26       | 35        | 20.07 | ( 0.                                                                                                                                                                                                                                                                                                               | 25       |    | ) | v        | EA        | 275  |            |     |
| 781520 | V2398          | Cyg                  | 19       | <u>4</u> 1 | 35 9         | +40        | 13       | 53        | 19 76 | (0)                                                                                                                                                                                                                                                                                                                | 20       |    | Ś | v        | BV        | 276  | 276        |     |
| 781521 | V2300          | Cva                  | 10       | <u>1</u>   | 36 0         | +40        | 16       | 20        | 10.70 | $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$                                                                                                                                                                                                                                                                             | 20       |    | ì | v        | BV        | 276  | 276        |     |
| 701521 | V2000          | Curr                 | 10       |            | JU.U         | +40        | 07       | 20<br>02  | 10 02 | $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$                                                                                                                                                                                                                                                                             | 20       |    | ì | v        | DV        | 270  | 270        |     |
| 701022 | V2400          | Cyg                  | 10       | 41         | 41.0         | +40        | 11       | 40        | 10.03 | (0)                                                                                                                                                                                                                                                                                                                | 10       |    | , | V<br>V   |           | 270  | 270        |     |
| 701523 | V2401          | Cyg                  | 19       | 41         | 41.8         | +40        | 11       | 42        | 10.47 | (0)                                                                                                                                                                                                                                                                                                                | 10       |    | ) | V        | BI:<br>DV | 270  | 270        |     |
| 781524 | V2402          | Cyg                  | 19       | 41         | 44.5         | +40        | 14       | 24        | 18.76 | (0.                                                                                                                                                                                                                                                                                                                | 12       |    | ) | V        | BI        | 276  | 276        |     |
| 781525 | V2403          | Cyg                  | 19       | 41         | 51.4         | +40        | 12       | 33        | 19.40 | (0.                                                                                                                                                                                                                                                                                                                | 10       |    | ) | V        | BY        | 276  | 276        |     |
| 781526 | V2404          | Cyg                  | 19       | 41         | 52.3         | +40        | 12       | 24        | 20.08 | (0.                                                                                                                                                                                                                                                                                                                | 50       |    | ) | V        | EW        | 276  | 276        |     |
| 781527 | V2405          | Cyg                  | 19       | 41         | 57.1         | +40        | 18       | 25        | 18.46 | ( 0.                                                                                                                                                                                                                                                                                                               | 10       |    | ) | V        | EA        | 275  | 2MASS      |     |
| 781528 | V450           | Vul                  | 19       | 42         | 05.5         | +23        | 19       | 00        | 10.05 | 10.                                                                                                                                                                                                                                                                                                                | 37       |    |   | V        | BE        | 277  | GSC        |     |
| 781529 | V2406          | Cyg                  | 19       | 42         | 07.1         | +39        | 59       | 39        | 20.18 | ( 0.                                                                                                                                                                                                                                                                                                               | 04       |    | ) | V        | EA:       | 275  |            |     |
| 781530 | V5550          | $\operatorname{Sgr}$ | 19       | 42         | 08.9         | -28        | 46       | 11        | 11.7  | 14.                                                                                                                                                                                                                                                                                                                | 7        |    |   | V        | М         | 090  | GSC        |     |
| 781531 | V2407          | Cyg                  | 19       | 42         | 11.7         | +40        | 06       | 48        | 17.61 | ( 0.                                                                                                                                                                                                                                                                                                               | 12       |    | ) | V        | BY:       | 276  | 276        |     |
| 781532 | V2408          | Cyg                  | 19       | 42         | 15.1         | +40        | 04       | 42        | 18.88 | ( 0.                                                                                                                                                                                                                                                                                                               | 19       |    | ) | V        | EA        | 275  |            |     |
| 781533 | V399           | Pav*                 | 19       | 42         | 25.4         | -68        | 07       | 35        | 11.2  | 11.                                                                                                                                                                                                                                                                                                                | 9        |    |   | V        | SRB       | 130  | GSC        | 040 |
| 781534 | V1696          | Aql                  | 19       | 42         | 25.9         | -10        | 58       | 18        | 10.0  | 13.                                                                                                                                                                                                                                                                                                                | 1        |    |   | V        | SRA       | 130  | GSC        |     |
| 781535 | V5551          | Sgr                  | 19       | 42         | 31.0         | -22        | 06       | 12        | 11.3  | 15.                                                                                                                                                                                                                                                                                                                | 0        |    |   | V        | М         | 090  | GSC        |     |
| 781536 | V1697          | Aal                  | 19       | 43         | 21.5         | +00        | 30       | 35        | 13.2  | 15.                                                                                                                                                                                                                                                                                                                | 0        |    |   | V        | SRA       | 332  | GSC        |     |
| 781537 | V1698          | Aal                  | 19       | 44         | 49.5         | -00        | 46       | 57        | 11.5  | 13.                                                                                                                                                                                                                                                                                                                | 5        |    |   | V        | SRB       | 278  | 278        | 130 |
| 781538 | V2409          | Cvg*                 | 19       | 45         | 06.4         | +53        | 23       | 36        | 13.7  | 14                                                                                                                                                                                                                                                                                                                 | 3        |    |   | *        | EW        | 161  | USNO       | 040 |
| 781539 | V1699          | ojo<br>Aal           | 19       | 48         | 21.3         | -05        | 15       | 07        | 12 9  | 15                                                                                                                                                                                                                                                                                                                 | 0        |    |   | *        | <u>_</u>  | 103  | GSC        | 040 |
| 781540 | V5552          | Sor                  | 19       | 48         | 55.3         | -37        | 12       | 12        | 12.86 | 13                                                                                                                                                                                                                                                                                                                 | 0<br>74∙ |    |   | v        | ΕΔ        | 011  | 121        | 010 |
| 781541 | V451           | V111                 | 10       | 53         | 04 9         | +21        | 51       | 22        | 11 0  | 12                                                                                                                                                                                                                                                                                                                 | 7        |    |   | v        | SBB       | 040  | CSC        |     |
| 7815/2 | VEEES          | Sar                  | 10       | 55         | 17 7         | -11        | 00       | 30        | 8 53  | 12.<br>Q                                                                                                                                                                                                                                                                                                           | ິ        |    |   | v        | FB        | 011  | MU         |     |
| 701542 | V0000          | Curr                 | 10       | 57         | 25 0         | 11<br>127  | 11       | 53        | 10.00 | <ul><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li></ul> | 02       |    |   | v<br>v   | м         | 006  | OMAGG      |     |
| 701543 | V2410<br>V0/11 | Cyg                  | 10       | 57         | 12 0         | 131        | 26       | 10        | 12.0  | <14.                                                                                                                                                                                                                                                                                                               | 0<br>E   |    |   | т<br>Т   | rı.       | 000  | OMAGG      |     |
| 701044 | V2411<br>V0440 | Cyg                  | 19       | 57         | 43.2         | +30        | 50       | 42        | 10.7  | <15.                                                                                                                                                                                                                                                                                                               | 5<br>2   |    |   | <b>*</b> | DR:<br>DR | 000  | ZMAGG      | 040 |
| 781545 | V2412          | Cyg                  | 19       | 58         | 07.7         | +46        | 50       | 01        | 12.7  | 14.                                                                                                                                                                                                                                                                                                                | 3        |    |   | *        | SK        | 006  | ZMASS      | 040 |
| 781546 | V2413          | Cyg                  | 19       | 58         | 42.0         | +29        | 56       | 07        | 12.8  | <14.                                                                                                                                                                                                                                                                                                               | 1        |    |   | *        | SR:       | 006  | ZMASS      |     |
| 781547 | V5554          | Sgr                  | 19       | 59         | 58.0         | -22        | 58       | 15        | 11.3  | 15.                                                                                                                                                                                                                                                                                                                | 4        |    | 、 | V        | M         | 090  | GSC        | 040 |
| 781548 | V452           | Vu⊥                  | 20       | 00         | 43.7         | +22        | 42       | 39        | 7.67  | (0.                                                                                                                                                                                                                                                                                                                | 03       |    | ) | V        | BY        | 018  | DM         |     |
| 781549 | V1700          | Aql                  | 20       | 00         | 55.4         | +07        | 24       | 41        | 8.27  | 8.                                                                                                                                                                                                                                                                                                                 | 64       |    |   | V        | EA        | 011  | DM         |     |
| 781550 | V1701          | Aql                  | 20       | 00         | 56.9         | -06        | 05       | 14        | 12.1  | <14.                                                                                                                                                                                                                                                                                                               | 6        |    |   | V        | М         | 103  | 2MASS      | 332 |
| 781551 | V5555          | Sgr*                 | 20       | 01         | 49.8         | -12        | 41       | 18        | 11.08 | 11.                                                                                                                                                                                                                                                                                                                | 51       |    |   | V        | *         | 281  | DM         |     |
| 781552 | V2414          | Cyg*                 | 20       | 02         | 19.4         | +39        | 55       | 09        | 9.87  | 10.                                                                                                                                                                                                                                                                                                                | 48       |    |   | R        | E         | 282  | 282        |     |
| 781553 | V1702          | Aql                  | 20       | 02         | 26.5         | -04        | 46       | 35        | 12.06 | 13.                                                                                                                                                                                                                                                                                                                | 18       |    |   | V        | EA        | 283  | GSC        |     |
| 781554 | V2415          | Cyg                  | 20       | 03         | 03.1         | +31        | 12       | 43        | 10.2  | 12.                                                                                                                                                                                                                                                                                                                | 0        |    |   | *        | SR        | 006  | 2MASS      | 040 |
| 781555 | V2416          | Cyg                  | 20       | 03         | 04.2         | +59        | 06       | 54        | 13.4  | ( 0.                                                                                                                                                                                                                                                                                                               | 14       |    | ) | В        | DSCT      | 284  | 284        |     |
| 781556 | V2417          | Cyg*                 | 20       | 06         | 40.0         | +33        | 14       | 28        | 6.28  | 6.                                                                                                                                                                                                                                                                                                                 | 90       |    |   | K        | BE:       | 285  | GSC        |     |
| 781557 | V365           | Sge                  | 20       | 07         | 55.4         | +17        | 31       | 16        | 12.50 | 13.                                                                                                                                                                                                                                                                                                                | 19       |    |   | V        | EW        | 286  | 286        | 069 |
| 781558 | V2361          | Cvg                  | 20       | 09         | 19.1         | +39        | 48       | 53        | 10.13 | <19.                                                                                                                                                                                                                                                                                                               |          |    |   | V        | NA        | 287  |            |     |
| 781559 | V453           | Vul                  | 20       | 09         | 24.8         | +24        | 03       | 31        | 12.2  | 14.                                                                                                                                                                                                                                                                                                                | 8        |    |   | *        | М:        | 006  | 2MASS      |     |
| 781560 | V2418          | Cvg                  | 20       | 09         | 46.0         | +50        | 27       | 30        | 12.1  | <14                                                                                                                                                                                                                                                                                                                | 6        |    |   | *        | М:        | 006  | 2MASS      |     |
| 781561 | V454           | V111                 | 20       | 10         | 35.8         | +25        | 55       | 06        | 10.9  | 13                                                                                                                                                                                                                                                                                                                 | 7        |    |   | *        | M         | 006  | 2MASS      |     |
| 781560 | V2410          | Cwo                  | 20       | 11         | 55 1         | +21        | 10       | 21        | 13.2  | 16                                                                                                                                                                                                                                                                                                                 |          |    |   | *        | м.        | 006  | 2MAGG      |     |
| 781562 | V1702          | √y8<br>∆al           | 20<br>2∩ | 12         | 50.1         | -00        | 12<br>50 | ∆⊥<br>∩1  | 7 70  | ( )                                                                                                                                                                                                                                                                                                                | 03       |    | ١ | v        | RV        | 019  | DM         |     |
| 701000 | V2/00          | лчт<br>Ст.           | 20       | 1/         | 03.0<br>97 0 | 100<br>1/7 | ບ∠<br>ว∩ | VE<br>OT  | 12 0  | 11                                                                                                                                                                                                                                                                                                                 | л<br>Л   |    | , | v<br>*   | ום<br>נים | 010  | OWNER      | 040 |
| 701565 | V2420          | Cyg                  | 20       | 14<br>1/   | 21.0         | T41        | 29       | 40<br>1 ∕ | 12.0  | 14.<br>15                                                                                                                                                                                                                                                                                                          | +<br>^?  |    |   | т<br>т   | SR<br>FD  | 000  | ZLIHOD     | 040 |
| 701500 | V2421          | Cyg*                 | 20       | 14         | 30.0         | ±41        | 00       | 14<br>04  | 12.19 | 15.                                                                                                                                                                                                                                                                                                                | U3<br>61 | J. | ` | *<br>17  | LD<br>FD  | 000  | 001        |     |
| 101200 | v 2422         | ∪yg*                 | 20       | тο         | 00.X         | -39        | UD       | 24        | 13.3  | τυ.                                                                                                                                                                                                                                                                                                                | 04       | *  | ) | v        | ĽD        | 79T  | 291<br>291 |     |

| No.    | Name           |            | R./ | A.,       | Decl | ., 20 | 000        | .0       | Max   | Min   |                 |          |        | Туре     | Refe | erences | 5   |
|--------|----------------|------------|-----|-----------|------|-------|------------|----------|-------|-------|-----------------|----------|--------|----------|------|---------|-----|
|        |                |            | h   | m         | S    | 0     | ,          | "        | m     | m     |                 |          |        |          |      |         |     |
| 781567 | CL             | Cap        | 20  | 18        | 26.8 | -18   | 58         | 20       | 12.49 | 12.9  | 93              |          | *      | EW       | 122  | GSC     |     |
| 781568 | CM             | Cap*       | 20  | 19        | 49.6 | -12   | 30         | 38       | 9.70  | 10.2  | 25              |          | V      | EW       | 130  | DM      |     |
| 781569 | V1704          | Aql        | 20  | 20        | 24.0 | -03   | 48         | 59       | 12.45 | 13.1  | 18              |          | *      | RRAB     | 272  | GSC     |     |
| 781570 | V2423          | Cyg        | 20  | 21        | 02.2 | +44   | 17         | 44       | 12.8  | <13.8 | 3               |          | *      | SR       | 006  | 2MASS   |     |
| 781571 | CN             | Cap        | 20  | 21        | 54.0 | -16   | 27         | 03       | 14.84 | 15.3  | 32              |          | *      | RRAB     | 172  | GSC     |     |
| 781572 | V455           | Vul        | 20  | 26        | 26.0 | +24   | 30         | 39       | 11.3  | 13.2  | 2               |          | V      | LB:      | 292  | GSC     |     |
| 781573 | V2424          | Cvg        | 20  | 27        | 23.5 | +47   | 48         | 52       | 12.7  | 13.9  | 9               |          | *      | SR:      | 006  | 2MASS   |     |
| 781574 | V5556          | Sgr        | 20  | 27        | 29.2 | -30   | 48         | 37       | 12.0  | <15.0 | )               |          | V      | М        | 090  | 2MASS   | 040 |
| 781575 | V2425          | Cvg        | 20  | 31        | 07.8 | +33   | 32         | 34       | 8.35  | ( 0.0 | )3              | )        | V      | ВҮ       | 018  | DM      |     |
| 781576 | CD             | Cap        | 20  | 33        | 10.5 | -23   | 40         | 11       | 10.8  | 12.8  | 3               | <i>,</i> | v      | SRA      | 090  | 174     |     |
| 781577 | 00             | Del*       | 20  | 33        | 54.6 | +07   | 19         | 50       | 17.78 | 18.1  | 10              |          | v      | EW       | 293  | 293     |     |
| 781578 | ΩP             | Del*       | 20  | 34        | 02.8 | +07   | 19         | 35       | 16.99 | 17.3  | 37              |          | v      | EW       | 293  | 293     |     |
| 781579 | V2426          | Cvg        | 20  | 38        | 24 1 | +48   | 09         | 12       | 12 4  | 14 5  | 5               |          | *      | SBA      | 040  | 2MASS   |     |
| 781580 | 00             | 0j8<br>Del | 20  | 30        | 37 7 | +04   | 58         | 19       | 7 88  | (0)   | 5<br>14         | )        | v      | BV       | 018  | DM      |     |
| 781581 | V0407          | Cyg        | 20  | 30        | 40 5 | +43   | 51         | 17       | 1A A  | <17 0 | ) <u>-</u><br>) | '        | *      | м•       | 006  | DUI     |     |
| 701501 | V2721<br>V0400 | Cura*      | 20  | <u>⊿1</u> | 10.0 | +2/   | 11         | エ1<br>につ | 14.5  | 16 0  | 2               |          | D      |          | 204  | 2016    |     |
| 701502 | V2420          | Cyg*       | 20  | 41        | 19.0 | - J-4 | -14<br>-10 | 20       | 14.0  | 12.5  | 7               |          | U<br>V |          | 294  | 290     |     |
| 701503 | VZ429          | Cyg<br>Aam | 20  | 43        | 40.0 | -10   | 20<br>10   | 00       | 10.4  | 14 7  | י<br>דס         |          | ۷<br>۷ | EU.      | 125  | 290     |     |
| 701504 | NU<br>VO420    | Aqr        | 20  | 44        | 10.0 | -12   | 40         | 02       | 14.10 | 14.1  | 13              |          | *<br>  | сw<br>M. | 135  | OMVGG   |     |
| 701505 | V2430          | Cyg        | 20  | 45        | 43.1 | +44   | 00<br>E 4  | 45       | 13.3  | 15.0  | 5               | `        | *      | M:<br>DC | 000  | ZMASS   |     |
| 781586 | UK             | Del*       | 20  | 40        | 13.3 | +15   | 54         | 26       | 7.09  | ( 0.0 | 5               | )        | V      | RS       | 018  |         |     |
| /8158/ | V/13           | Сер        | 20  | 46        | 38.7 | +60   | 38         | 03       | 15.3  | 18.8  | 3               | 、        | В      | UG       | 297  | USNU    |     |
| 781588 | V2431          | Cyg        | 20  | 49        | 16.2 | +32   | 1/         | 05       | 8.25  | ( 0.0 | )3              | )        | V      | BY       | 018  | DM      |     |
| 781589 | DU             | Uct*       | 20  | 50        | 04.2 | -75   | 54         | 37       | 9.21  | 9.4   | <del>1</del> 8  |          | V      | EA/RS:   | 011  | DM      |     |
| 781590 | V714           | Сер        | 20  | 50        | 05.7 | +61   | 14         | 53       | 13.2  | <15.1 | 1               |          | *      | M:       | 040  | 2MASS   |     |
| 781591 | CX             | Mic        | 20  | 51        | 09.0 | -34   | 53         | 53       | 11.0  | 15.2  | 2               |          | V      | М        | 130  | GSC     | 090 |
| 781592 | NP             | Aqr*       | 20  | 51        | 19.0 | -13   | 55         | 28       | 7.59  | 7.6   | 59              |          | V      | EB       | 011  | DM      |     |
| 781593 | СҮ             | Mic        | 20  | 51        | 55.0 | -40   | 47         | 05       | 11.75 | 12.4  | 16              |          | V      | EA       | 011  | 121     | 130 |
| 781594 | CZ             | Mic*       | 20  | 54        | 43.9 | -39   | 48         | 11       | 12.70 | 13.5  | 53              |          | V      | EA       | 011  | 121     | 130 |
| 781595 | V2432          | Cyg        | 20  | 57        | 03.3 | +39   | 16         | 52       | 11.9  | 13.9  | 9               |          | *      | SR:      | 006  | 2MASS   |     |
| 781596 | V2433          | Cyg        | 20  | 59        | 41.0 | +48   | 08         | 41       | 11.5  | 12.4  | 1               |          | *      | LB:      | 006  | 2MASS   |     |
| 781597 | DD             | Mic        | 21  | 00        | 06.4 | -42   | 38         | 44       | 11.0  | 11.7  | 7               |          | V      | ZAND     | 066  | GSC     |     |
| 781598 | V456           | Vul        | 21  | 00        | 18.0 | +27   | 52         | 56       | 12.14 | 12.8  | 31              |          | V      | EA       | 214  | GSC     |     |
| 781599 | V2434          | Cyg        | 21  | 00        | 18.4 | +43   | 50         | 45       | 12.1  | 13.7  | 7               |          | *      | SR:      | 006  | 2MASS   |     |
| 781600 | V2435          | Cyg        | 21  | 00        | 41.8 | +38   | 50         | 01       | 10.5  | 12.3  | 3               |          | *      | SR:      | 006  | 2MASS   |     |
| 781601 | V2436          | Cyg        | 21  | 02        | 40.8 | +45   | 53         | 05       | 7.69  | ( 0.0 | )3              | )        | V      | BY       | 018  | DM      |     |
| 781602 | TV             | Equ        | 21  | 05        | 08.0 | +07   | 56         | 44       | 7.98  | ( 0.0 | )2              | )        | V      | BY:      | 018  | DM      |     |
| 781603 | DE             | Mic*       | 21  | 05        | 59.0 | -36   | 15         | 34       | 7.65  | 8.0   | )5              |          | V      | EW       | 011  | DM      |     |
| 781604 | V715           | Сер        | 21  | 06        | 54.2 | +61   | 31         | 00       | 12.3  | 13.1  | 1               |          | *      | LB:      | 006  | 2MASS   |     |
| 781605 | NQ             | Aqr*       | 21  | 07        | 53.6 | -11   | 33         | 25       | 12.3  | 13.0  | )               |          | V      | EW       | 011  | GSC     | 130 |
| 781606 | V397           | Peg        | 21  | 08        | 53.7 | +15   | 37         | 11       | 15.03 | 15.9  | 97              |          | *      | EW       | 060  | USNO    |     |
| 781607 | V398           | Peg        | 21  | 08        | 57.9 | +15   | 56         | 55       | 13.26 | 14.2  | 20              |          | *      | RRAB     | 063  | GSC     |     |
| 781608 | NR             | Aqr        | 21  | 09        | 35.1 | -14   | 07         | 00       | 7.56  | ( 0.0 | 02              | )        | V      | SRS:     | 018  | DM      |     |
| 781609 | CG             | Ind        | 21  | 10        | 31.3 | -48   | 49         | 59       | 10.7  | 12.4  | 1               |          | V      | SRA      | 090  | GSC     |     |
| 781610 | V2362          | Cyg        | 21  | 11        | 32.3 | +44   | 48         | 04       | 8.5   | <20.  |                 |          | V      | Ν        | 325  | 326     |     |
| 781611 | V2437          | Cyg        | 21  | 12        | 18.5 | +47   | 58         | 46       | 11.3  | 12.8  | 3               |          | *      | SR:      | 006  | 2MASS   |     |
| 781612 | V2438          | Cyg        | 21  | 15        | 36.9 | +47   | 43         | 19       | 12.1  | 13.7  | 7               |          | *      | SR:      | 006  | 2MASS   |     |
| 781613 | NS             | Aqr        | 21  | 17        | 02.1 | -01   | 04         | 39       | 8.08  | ( 0.0 | 02              | )        | V      | ВҮ       | 018  | DM      |     |
| 781614 | V457           | Vul        | 21  | 18        | 58.2 | +26   | 13         | 50       | 8.45  | ( 0.0 | 04              | )        | V      | ВҮ       | 018  | DM      |     |
| 781615 | V2439          | Cvg        | 21  | 23        | 11.9 | +42   | 59         | 27       | 13.2  | 16.0  | C               | -        | *      | M:       | 006  | 2MASS   |     |
| 781616 | V2440          | Cvg        | 21  | 23        | 13.6 | +46   | 20         | 51       | 14.18 | ( 0.0 | 02              | )        | В      | S:       | 298  | 298     |     |
| 781617 | V2441          | Cvø        | 21  | 23        | 14.1 | +46   | 24         | 40       | 19,17 | ( 0.0 | 06              | )        | B      | DSCTC    | 298  | 298     |     |
| 781618 | V2442          | Cvo        | 21  | 23        | 18.6 | +46   | 21         | 24       | 15,49 | (0.0) | 12              | )        | B      | DSCTC    | 298  | 298     |     |
| 781619 | V2443          | Cvo        | 21  | 23        | 21.5 | +46   | 22         | 59       | 13.87 | ( 0 ) | )2              | )<br>)   | B      | DSCTC    | 298  | 298     |     |
| 781620 | V2444          | Cyg        | 21  | 23        | 21.7 | +46   | 25         | 12       | 15.01 | ( 0.0 | )2              | )        | B      | DSCTC    | 298  | 298     |     |

| No.    | Name        |             | R./      | A., | Decl | ., 20 | 000 | . 0       | Max   | Mir          | ı       |          |        | Туре      | Refe | erences      | 5   |
|--------|-------------|-------------|----------|-----|------|-------|-----|-----------|-------|--------------|---------|----------|--------|-----------|------|--------------|-----|
|        |             |             | h        | m   | S    | 0     | ,   | "         | m     | n            | n       |          |        |           |      |              |     |
| 781621 | V2445       | Cyg         | 21       | 23  | 22.9 | +46   | 22  | 25        | 18.16 | ( 0.         | .07     | )        | В      | DSCTC     | 298  | 298          |     |
| 781622 | V2446       | Cyg         | 21       | 23  | 23.7 | +46   | 22  | 59        | 17.83 | (0.          | .01     | )        | В      | DSCTC:    | 298  | 298          |     |
| 781623 | V2447       | Cyg         | 21       | 23  | 29.6 | +46   | 23  | 05        | 19.55 | ( 0.         | .34     | )        | В      | DSCT      | 298  | 298          |     |
| 781624 | V2448       | Cyg         | 21       | 23  | 29.8 | +46   | 22  | 38        | 14.67 | (0.          | .02     | )        | В      | DSCTC     | 298  | 298          |     |
| 781625 | V2449       | Cyg         | 21       | 23  | 30.6 | +46   | 21  | 39        | 13.98 | (0.          | .04     | )        | В      | DSCTC:    | 298  | 298          |     |
| 781626 | V2450       | Cvg         | 21       | 23  | 33.5 | +46   | 22  | 80        | 16.45 | (0.          | .03     | )        | В      | DSCTC     | 298  | 298          |     |
| 781627 | V2451       | Cvg         | 21       | 23  | 35.9 | +46   | 24  | 11        | 15.03 | (0.          | .03     | )        | В      | DSCTC     | 298  | 298          |     |
| 781628 | V2452       | Cvg         | 21       | 23  | 39.1 | +46   | 20  | 21        | 19.90 | ( 0.         | .02     | )        | В      | DSCTC     | 298  | 298          |     |
| 781629 | V2453       | Cvg         | 21       | 23  | 40.1 | +46   | 23  | 56        | 16.14 | ( 0.         | .01     | )        | B      | DSCTC     | 298  | 298          |     |
| 781630 | V2454       | Cvg         | 21       | 23  | 46.4 | +46   | 26  | 00        | 17.41 | (0)          | 06      | ý        | B      | DSCTC     | 298  | 298          |     |
| 781631 | V399        | °J8<br>Peσ  | 21       | 25  | 44 1 | +16   | 02  | 11        | 11 1  | <1.3         | 0       | <i>,</i> | *      | M         | 319  | 2MASS        | 332 |
| 781632 | V716        | Cen         | 21       | 27  | 03 5 | +59   | 24  | 43        | 12 0  | <17          | . •     |          | *      | M         | 006  | 2MASS        | 040 |
| 781633 | V400        | Pav*        | 21       | 27  | 04 4 | -62   | 20  | 14        | 9 18  | ۰ <u>۱</u> ۰ | २२      |          | v      | FR        | 011  | DM           | 010 |
| 781634 | ¥7          |             | 21       | 27  | 40 0 | -31   | Δ7  | 11        | 7 73  | 2.<br>8      | 12      |          | v      | FW        | 011  | М            |     |
| 781635 | VO/EE       | Cua         | 21       | 21  | 24 6 | +16   | 10  | 77<br>21  | 8 53  | 0.<br>Q      | 07      |          | v      | DSCT      | 200  | DM           |     |
| 701626 | 72400<br>CU | Uyg<br>Trd* | 21<br>01 | 20  | 10 G | -50   | 20  | 20        | 7 50  | 0.<br>0      | 10      |          | v      |           | 011  | DM           |     |
| 701627 | VO/E6       | Cura*       | 21       | 20  | 42.0 | T33   | 57  | 5Z<br>94  | 11 2  | 11           | 0       |          | V<br>V | EA<br>ED  | 012  | 200          |     |
| 701620 | V2400       | Cyg*        | 21       | 30  | 43.0 | +33   | 10  | 24        | 12.0  | 11.          | .9<br>1 |          | ≁<br>- | CD.       | 013  | 300<br>2MAGG |     |
| 701620 | V2407       | Cyg         | 21       | 3Z  | 29.7 | +49   | 43  | 24<br>E 0 | 13.1  | 14.          | .4      |          | ≁<br>  | SR:<br>CD | 000  | ZMAGG        | 040 |
| 701640 | V2458       | Cyg         | 21       | 33  | 58.2 | +53   | 10  | 00<br>1 1 | 13.2  | 14.          | . 2     | `        | *<br>v | DR<br>LD. | 000  | ZMASS        | 040 |
| 701040 | V400        | Peg         | 21       | 34  | 47.0 | +19   | 50  | 11        | 0.90  | (0.          | .02     | )        | V      | LD:       | 010  |              |     |
| 781641 | V/1/        | Сер         | 21       | 43  | 33.1 | +57   | 25  | 25        | 13.2  | 16.          | .3      |          | *      | M:        | 006  | 2MASS        |     |
| 781642 | V2459       | Cyg         | 21       | 43  | 55.6 | +42   | 55  | 25        | 12.5  | 13.          | .5      |          | *      | SR:       | 006  | 2MASS        |     |
| 781643 | V2460       | Cyg         | 21       | 46  | 20.0 | +49   | 54  | 23        | 12.1  | 15.          | .0      |          | *      | M:        | 006  | 2MASS        |     |
| 781644 | V718        | Сер         | 21       | 48  | 54.8 | +59   | 80  | 17        | 13.6  | 15.          | .8      |          | *      | SR:       | 006  | 2MASS        |     |
| 781645 | V401        | Peg         | 21       | 50  | 05.4 | +31   | 50  | 52        | 7.34  | (0.          | .01     | )        | V      | BY:       | 018  | DM           |     |
| 781646 | V2461       | Cyg         | 21       | 50  | 38.7 | +49   | 16  | 45        | 11.5  | 14.          | .3 :    |          | R      | M:        | 040  | 2MASS        |     |
| 781647 | V719        | Сер         | 21       | 51  | 25.3 | +59   | 28  | 45        | 12.9  | 16.          | .0      |          | *      | M:        | 006  | 2MASS        |     |
| 781648 | V402        | Peg         | 21       | 54  | 45.0 | +32   | 19  | 43        | 7.73  | (0.          | .01     | )        | V      | BY        | 018  | DM           |     |
| 781649 | V720        | Сер         | 21       | 56  | 00.9 | +56   | 19  | 28        | 13.1  | <15.         | .2      |          | *      | SR:       | 006  | 2MASS        |     |
| 781650 | V2462       | Cyg         | 21       | 56  | 15.4 | +55   | 00  | 24        | 13.0  | 14.          | .6      |          | *      | SR:       | 006  | 2MASS        |     |
| 781651 | V2463       | Cyg         | 21       | 56  | 50.4 | +55   | 14  | 22        | 12.5  | 14.          | .6      |          | *      | SR:       | 006  | 2MASS        |     |
| 781652 | V721        | Cep         | 21       | 57  | 20.4 | +55   | 35  | 40        | 13.8  | <15.         | .2      |          | *      | SR        | 006  | 2MASS        | 040 |
| 781653 | V722        | Cep         | 21       | 59  | 12.4 | +58   | 58  | 52        | 12.5  | 13.          | . 3     |          | *      | SR        | 006  | 2MASS        | 040 |
| 781654 | V723        | Сер         | 22       | 00  | 12.4 | +59   | 31  | 16        | 11.4  | 14.          | .4      |          | *      | M:        | 006  | 2MASS        |     |
| 781655 | V2464       | Cyg         | 22       | 00  | 50.9 | +52   | 51  | 55        | 12.7  | <15.         | .4      |          | *      | M:        | 006  | 2MASS        |     |
| 781656 | V2465       | Cyg         | 22       | 02  | 04.9 | +53   | 17  | 25        | 12.7  | 13.          | .8      |          | *      | SR:       | 006  | 2MASS        |     |
| 781657 | V443        | Lac         | 22       | 02  | 05.4 | +44   | 20  | 35        | 7.96  | (0.          | .02     | )        | V      | BY:       | 018  | DM           |     |
| 781658 | V2466       | Cyg         | 22       | 02  | 41.8 | +46   | 39  | 07        | 15.7  | <21.         | .0      |          | В      | UGSU:     | 297  | 297          |     |
| 781659 | CI          | Ind*        | 22       | 04  | 10.5 | -56   | 46  | 58        | 15.60 | 15.          | . 67    |          | Ic     | *         | 153  | 2MASS        |     |
| 781660 | V724        | Cep         | 22       | 04  | 31.1 | +59   | 30  | 59        | 13.1  | 14.          | .7      |          | *      | SR:       | 006  | 2MASS        |     |
| 781661 | CK          | Ind*        | 22       | 04  | 38.4 | -64   | 43  | 42        | 7.36  | 7.           | .44     |          | Hр     | GDOR      | 301  | DM           |     |
| 781662 | V725        | Сер         | 22       | 05  | 16.1 | +59   | 07  | 55        | 13.0  | 14.          | .7      |          | *      | SR        | 006  | 2MASS        | 040 |
| 781663 | NT          | Aqr         | 22       | 06  | 05.3 | -05   | 21  | 29        | 7.57  | (0.          | .06     | )        | V      | ВҮ        | 018  | DM           |     |
| 781664 | V444        | Lac         | 22       | 06  | 19.7 | +49   | 08  | 20        | 11.7  | 12.          | .9      |          | *      | SR:       | 006  | 2MASS        |     |
| 781665 | V445        | Lac         | 22       | 07  | 38.5 | +49   | 02  | 59        | 12.6  | 14.          | .5      |          | *      | M:        | 040  | 2MASS        |     |
| 781666 | V726        | Сер         | 22       | 80  | 02.5 | +58   | 48  | 47        | 12.2  | <15.         |         |          | R      | М         | 006  | 2MASS        | 040 |
| 781667 | V446        | Lac         | 22       | 11  | 11.9 | +36   | 15  | 23        | 7.23  | (0.          | .02     | )        | V      | ВҮ        | 018  | DM           |     |
| 781668 | V727        | Cep*        | 22       | 12  | 25.9 | +54   | 53  | 22        | 14.12 | 14           | .56     | -        | V      | EA        | 027  | USNO         |     |
| 781669 | V447        | Lac         | 22       | 15  | 54.1 | +54   | 40  | 22        | 7,50  | ( 0          | .03     | )        | V      | BY        | 018  | DM           |     |
| 781670 | V728        | Cen         | 22       | 17  | 49.2 | +59   | 16  | 10        | 11.0  | 12           | .5      | 1        | *      | SR:       | 006  | 2MASS        |     |
| 781671 | V448        | Lac         | 22       | 24  | 31.4 | +43   | 43  | - v<br>11 | 11.22 | 11           | .72     |          | U      | SRD       | 302  | DM           |     |
| 781672 | V729        | Cen         | 22       | 24  | 08 7 | +57   | 15  | 48        | 12.7  | 14           | 0       |          | *      | SR:       | 006  | 2MASS        |     |
| 781673 | DR          | Gru         | 22       | 34  | 18 7 | -54   | 17  | 53        | 7.44  | 7            | 51      |          | Η'n    | DSCTC     | 037  | DM           |     |
| 781674 | V449        | Lac         | 22       | 36  | 18.8 | +48   | 39  | 16        | 14.1  | 17           | .2      |          | ***    | M:        | 006  | 2MASS        |     |

| No.    | Name  |      | R./ | Α., | Decl | ., 20 | 000 | . 0 | Max   | Min    |     |     |   | Туре | Refe | erences | 5   |
|--------|-------|------|-----|-----|------|-------|-----|-----|-------|--------|-----|-----|---|------|------|---------|-----|
|        |       |      | h   | m   | S    | 0     | ,   | "   | m     | m      |     |     |   |      |      |         |     |
| 781675 | NU    | Aqr  | 22  | 37  | 53.2 | -13   | 22  | 15  | 8.72  | ( 0.02 | 2   | )   | V | LB:  | 018  | DM      |     |
| 781676 | NV    | Aqr  | 22  | 39  | 34.6 | -12   | 36  | 55  | 7.74  | ( 0.02 | 2   | )   | V | ВҮ   | 018  | DM      |     |
| 781677 | V403  | Peg  | 22  | 39  | 50.8 | +04   | 06  | 58  | 8.48  | ( 0.03 | 3   | )   | V | ВҮ   | 018  | DM      |     |
| 781678 | V450  | Lac* | 22  | 39  | 58.9 | +47   | 20  | 16  | 13.50 | 14.8   |     |     | * | EA   | 006  | GSC     |     |
| 781679 | V451  | Lac  | 22  | 42  | 20.7 | +52   | 03  | 34  | 11.1  | 13.1   |     |     | * | M:   | 006  | 2MASS   |     |
| 781680 | DS    | Gru  | 22  | 43  | 11.6 | -41   | 31  | 58  | 9.6   | 15.0   |     |     | V | М    | 090  | GSC     | 130 |
| 781681 | V452  | Lac  | 22  | 45  | 27.3 | +46   | 09  | 05  | 12.0  | 13.5   |     |     | * | SR   | 006  | GSC     | 040 |
| 781682 | NW    | Aqr  | 22  | 49  | 43.0 | +00   | 46  | 01  | 13.2  | ( 0.90 | )   | )   | V | EW   | 017  | GSC     |     |
| 781683 | V730  | Cep  | 22  | 54  | 03.7 | +58   | 54  | 01  | 12.6  | 15.9   |     |     | V | ISA  | 304  | 304     |     |
| 781684 | V404  | Peg  | 22  | 56  | 30.9 | +33   | 55  | 12  | 10.47 | 10.77  | 7   |     | V | EW   | 305  | GSC     |     |
| 781685 | V992  | Cas  | 23  | 01  | 24.6 | +59   | 12  | 25  | 13.0  | 16.2   |     |     | * | M:   | 006  | 2MASS   |     |
| 781686 | V993  | Cas  | 23  | 01  | 49.8 | +59   | 19  | 02  | 11.3  | 12.2   |     |     | * | SR:  | 006  | 2MASS   |     |
| 781687 | EP    | Psc  | 23  | 06  | 22.4 | +02   | 09  | 06  | 16.23 | ( 0.04 | ł   | )   | V | RPHS | 169  | 009     |     |
| 781688 | V405  | Peg* | 23  | 09  | 49.1 | +21   | 35  | 17  | 15.6  | ( 0.3  |     | )   | V | NL:  | 039  | 039     |     |
| 781689 | V994  | Cas  | 23  | 18  | 33.8 | +57   | 37  | 38  | 12.7  | 15.0   |     |     | * | SR:  | 006  | 2MASS   |     |
| 781690 | V452  | And  | 23  | 18  | 59.2 | +48   | 31  | 30  | 13.7  | 15.2   |     |     | * | EB   | 214  | 214     |     |
| 781691 | V453  | And  | 23  | 21  | 36.5 | +44   | 05  | 52  | 7.36  | ( 0.04 | ł   | )   | V | ВҮ   | 018  | DM      |     |
| 781692 | NX    | Aqr  | 23  | 24  | 06.3 | -07   | 33  | 03  | 7.62  | ( 0.02 | 2   | )   | V | BY:  | 018  | DM      |     |
| 781693 | V995  | Cas  | 23  | 33  | 31.9 | +59   | 18  | 32  | 14.1  | 16.4   |     |     | * | LB:  | 006  | 2MASS   |     |
| 781694 | EQ    | Psc* | 23  | 34  | 34.6 | -01   | 19  | 37  | 13.06 | ( 0.02 | 2 R | , ) | V | *    | 116  | GSC     |     |
| 781695 | V406  | Peg  | 23  | 35  | 25.6 | +31   | 09  | 41  | 7.90  | ( 0.01 | L   | )   | V | ВҮ   | 018  | DM      |     |
| 781696 | V407  | Peg* | 23  | 36  | 55.4 | +15   | 48  | 06  | 9.28  | 9.75   | 5   |     | V | EW   | 307  | DM      |     |
| 781697 | V731  | Cep  | 23  | 37  | 43.3 | +64   | 18  | 12  | 10.53 | ( 0.85 | 5 * | )   | V | EA   | 003  | 308     |     |
| 781698 | V454  | And  | 23  | 37  | 58.5 | +46   | 11  | 58  | 6.58  | ( 0.02 | 2   | )   | V | ВҮ   | 309  | DM      |     |
| 781699 | V408  | Peg  | 23  | 40  | 04.2 | +12   | 38  | 01  | 14.8  | 16.0   |     |     | V | RRAB | 312  | 312     |     |
| 781700 | V996  | Cas  | 23  | 41  | 34.0 | +59   | 35  | 28  | 11.8  | 13.3   |     |     | * | SR   | 006  | 2MASS   | 040 |
| 781701 | V997  | Cas  | 23  | 44  | 43.6 | +61   | 16  | 58  | 14.8  | 15.8   |     |     | В | DCEP | 313  | GSC     |     |
| 781702 | V998  | Cas  | 23  | 46  | 40.8 | +59   | 26  | 34  | 12.6  | 13.9   |     |     | * | SR:  | 006  | 2MASS   |     |
| 781703 | V999  | Cas  | 23  | 47  | 03.9 | +59   | 15  | 57  | 13.2  | 14.4   |     |     | * | SR:  | 040  | 2MASS   |     |
| 781704 | V1000 | Cas  | 23  | 49  | 43.7 | +57   | 13  | 12  | 12.5  | 15.2   |     |     | * | М    | 006  | 2MASS   |     |
| 781705 | V409  | Peg  | 23  | 49  | 53.5 | +13   | 06  | 13  | 15.9  | ( 0.03 | 3 * | )   | В | ZZA  | 314  | 315     |     |
| 781706 | V1001 | Cas* | 23  | 50  | 17.1 | +51   | 11  | 29  | 13.6  | 14.7   |     |     | * | EA   | 333  | 333     |     |

|               |                      | Table 2. | nename               | u variabi | e stars                 |               |                      |  |
|---------------|----------------------|----------|----------------------|-----------|-------------------------|---------------|----------------------|--|
| Old N         | ame                  | New 1    | Vame                 | Old N     | ame                     | New N         | lame                 |  |
| SX            | Ant                  | DI       | Pyx                  | SW        | Oct                     | CL            | Ind                  |  |
| V597          | Aql                  | V487     | $\operatorname{Sct}$ | V392      | Pav                     | CM            | Ind                  |  |
| V1500         | Aql                  | V488     | $\operatorname{Sct}$ | HI        | $\operatorname{Peg}$    | $\mathbf{ER}$ | $\mathbf{Psc}$       |  |
| BG            | Aur                  | V1240    | Tau                  | CT        | $\operatorname{Per}$    | V1003         | Cas                  |  |
| SU            | CVn                  | NR       | UMa                  | VV        | Pyx                     | V596          | Pup                  |  |
| VY            | Cap                  | NY       | Aqr                  | MX        | Sge                     | V1705         | Aql                  |  |
| V577          | Cen                  | V423     | Hya                  | V1024     | $\operatorname{Sgr}$    | V489          | $\operatorname{Sct}$ |  |
| R             | $\operatorname{Cep}$ | UZ       | UMi                  | V1049     | $\operatorname{Sgr}$    | V490          | $\operatorname{Sct}$ |  |
| CY            | $\operatorname{Cep}$ | V1002    | Cas                  | V1050     | $\operatorname{Sgr}$    | V491          | $\operatorname{Sct}$ |  |
| V683          | $\operatorname{Cyg}$ | V453     | Lac                  | V3917     | $\operatorname{Sgr}$    | V404          | Ser                  |  |
| V1523         | $\operatorname{Cyg}$ | V732     | $\operatorname{Cep}$ | Υ         | $\operatorname{Sco}$    | V2613         | Oph                  |  |
| WX            | Eri                  | V1241    | Tau                  | V384      | $\operatorname{Sco}$    | V5557         | $\operatorname{Sgr}$ |  |
| QV            | Her                  | V635     | Lyr                  | V1124     | $\operatorname{Sco}$    | V2614         | Oph                  |  |
| IP            | Hya                  | V1064    | Cen                  | CZ        | $\operatorname{Sct}$    | V1706         | Aql                  |  |
| $\mathbf{RR}$ | Hyi                  | DV       | Oct                  | EK        | Tau                     | V1798         | Ori                  |  |
| Т             | Lac                  | V410     | Peg                  | ER        | Tau                     | V554          | Aur                  |  |
| Т             | Leo                  | QZ       | Vir                  | ES        | Tau                     | V555          | Aur                  |  |
| ΗK            | Lup                  | V1279    | $\operatorname{Sco}$ | AS        | $\mathrm{Tr}\mathrm{A}$ | V389          | Nor                  |  |
| $\mathbf{EG}$ | Nor                  | NQ       | $\mathrm{TrA}$       | BM        | Vul                     | V411          | Peg                  |  |

Table 2. Renamed variable stars

## References

- 001. Sorokin, P., Antipin, S., & Samus, N. 2003, IBVS, No. 5409.
- 002. Hoffmeister, C. 1967, AN, **290**, H. 1/2, 43.
- 003. Zejda, M. 2005, B.R.N.O. Catalogue of Eclipsing Binaries BRKA 2005 (http://var.astro.cz/brno/uk/index.html).
- 004. Hoffmeister, C. 1959, AN, 284, H. 6, 275.
- 005. Gaidos, E.J., Henry, G.W., & Henry, S.M. 2000, AJ, 120, No. 2, 1006.
- 006. Yoshida, S., Ohkura, N., & Kadota, K.-i. 2004, *Misao Project Variable Stars Catalogue* (www.aerith.net/misao/public/MisV.dat).
- 007. Gelino, Ch.R., Marley, M.S., Holtzman, J.A., et al. 2002, ApJ, 577, No. 1, 433.
- 008. Brassard, P., Fontaine, G., Billères, M., et al. 2001, ApJ, 563, No. 2, 1013.
- 009. Green, R.F., Schmidt, M., & Liebert, J. 1986, ApJ Suppl, 61, No. 2, 305.
- 010. González-Rojas, D., Castellano-Roig, J., Dueñas-Becerril, M., et al. 2003, *IBVS*, No. 5437.
- 011. Otero, S.A. 2003, *IBVS*, No. 5480.
- 012. Otero, S.A. 2003, vsnet-gcvs, 378, 421, 447 (http://vsnet.kusastro.kyoto-u.ac.jp/vsnet/Mail/vsnet-gcvs/).
- 013. Vandenbroere, J. 2001, GEOS NC, No. 944, 1.
- 014. Hoffmeister, C. 1963, AN, 287, H. 1/2, 59.
- 015. Ivezić, Ž., Goldston, J., Finlator, K., et al. 2000, AJ, **120**, No. 2, 963.
- 016. Percy, J.R., Dunlop, H., Kassim, L., & Thompson, R.R. 2001, IBVS, No. 5041.
- 017. García-Lastra, A., Salas-Borrajo, E., Gómez-Forrellad, J.M., et al. 2003, *IBVS*, No. 5455.
- 018. Strassmeier, K.G., Washuettl, A., Granzer, Th., et al. 2000, *AsAp Suppl*, **142**, No. 2, 275.
- 019. Božić, H., Harmanec, P., Yang, S., et al. 2004, AsAp, 416, No. 2, 669.
- 020. Maxted, P.F.L., Marsh, T.R., Heber, U., et al. 2002, MN, 333, No. 1, 231.
- 021. MVS, 1957, No. 316.
- 022. Zwintz, K., Weiss, W.W., Kuschnig, R., et al. 2000, AsAp Suppl, 145, No. 3, 481.
- 023. Balona, L.A., Engelbrecht, C.A., & Marang, F. 1987, MN, 227, No. 1, 123.
- 024. Handler, G. & Shobbrook, R.R. 2002, MN, 333, No. 2, 251.
- 025. Kubiak, M. & Pietrzyński, G. 1995, AA, 45, No. 4, 771.
- 026. Pigulski, A., Kopacki, G., & Kolaczkowski, Z. 2001, AsAp, 376, No. 1, 144.
- 027. Nakajima, K., Yoshida, S., Ohkura, N., & Kadota, K. 2006, IBVS, No. 5700.
- 028. Koff, R.A., Henden, A.A., Kaiser, D.H., et al. 2002, IBVS, No. 5257.
- 029. Smith, D.A., Akerlof, C., Ashley, M.C.B., et al. 2002, IBVS, No. 5226.
- 030. Schmidt, G.D., Szkody, P., Homer, L., et al. 2005, ApJ, 620, No. 1, 422.
- 031. van den Berg, M. & Verbunt, F. 2001, AsAp, **375**, No. 2, 387.
- 032. Martinez, P., Girish, V., Joshi, S., et al. 2000, *IBVS*, No. 4853.
- 033. Rodríguez, E., García, J.M., & Mkrtichian, D.E. 2002, IBVS, No. 5238.
- 034. Eyer, L. & Aerts, C. 2000, AsAp, **361**, No. 1, 201.
- 035. Martinez, P., Kurtz, D.W., Ashoka, B.N., et al. 2001, AsAp, 371, No. 3, 1048.
- 036. Lacy, C.H.S. 2002, *IBVS*, No. 5357.
- 037. Paunzen, E., Handler, G., Weiss, W.W., et al. 2002, AsAp, 392, No. 2, 515.

- 038. de Winter, D., van den Ancker, M.E., Maira, A., et al. 2001, AsAp, 380, No. 2, 609.
- 039. Schwope, A.D., Brunner, H., Buckley, D., et al. 2002, AsAp, **396**, No. 3, 895.
- 040. Kazarovets, E.V., Pastukhova, E.N., & Samus, N.N. 2005, Manuscript.
- 041. Benedict, G.F., McArthur, B.E., Franz, O.G., et al. 2000, AJ, 119, No. 5, 2382.
- 042. Zejda, M. 2002, *IBVS*, No. 5287.
- 043. Downes, R.A., Webbink, R.F., Shara, M.M., et al. 2006, A Catalog and Atlas of Cataclysmic Variables, Archival Edition (http://archive.stsci.edu/prepds/cvcat/).
- 044. Messina, S. 2001, AsAp, **371**, No. 3, 1024.
- 045. Greaves, J. & Wils, P. 2003, *IBVS*, No. 5458.
- 046. Cutispoto, S., Pastori, L., Tagliaferri, G., et al. 1999, AsAp Suppl, 138, No. 1, 87.
- 047. Bernasconi, L. & Behrend, R. 2002, IBVS, No. 5234.
- 048. Marilli, E., Catalano, S., & Frasca, A. 1997, Mem SAIt, 68, 895.
- 049. Kim, S.-L., Kwon, S.-G., & Youn, J.-H. 2002, IBVS, No. 5244.
- 050. Martín, S. & Rodríguez, E. 2000, AsAp, 358, No. 1, 287.
- 051. Herbst, W., Masey, J.A., & Williams, E.C. 2000, AJ, **120**, No. 1, 349. Coordinates correction: AJ, 2004, **127**, No. 4, 1602.
- 052. Herbig, G.H. 1998, ApJ, 497, No. 2, 736.
- 053. Ripepi, V., Palla, F., Marconi, M., et al. 2002, AsAp, 391, No. 2, 587.
- 054. Trullols, E. & Jordi, C. 1997, AsAp, 324, No. 2, 549.
- 055. Cohen, R.E., Herbst, W., & Williams, E.C. 2003, ApJ, 596, No. 2, L243.
- 056. Hertzsprung, E. 1947, Leiden Ann, 19, part 1A.
- 057. Li, Z.P., Michel, E., Fox Machado, L., et al. 2002, AsAp, 395, No. 3, 873.
- 058. Munari, U., Dallaporta, S., Siviero, A., et al. 2004, AsAp, 418, No. 3, L31.
- 059. Jeon, Y.-B., Kim, Ch., & Lee, H. 2002, IBVS, No. 5340.
- 060. Rinner, C., Starkey, D., Demeautis, Ch., et al. 2003, IBVS, No. 5428.
- 061. Wils, P. & Greaves, J. 2004, IBVS, No. 5512.
- 062. Miroshnichenko, A.S., Chentsov, E.L., Klochkova, V.G., et al. 2000, AsAp Suppl, 147, No. 1, 5.
- 063. Waelchli, N., Rinner, C., Revaz, Y., et al. 2003, IBVS, No. 5429.
- 064. Robb, R.M., Ingraham, P.J., & Wright, N.H. 2003, IBVS, No. 5408.
- 065. Lloyd, C., Frank, P., Bernhard, K., & Moscher, W. 2002, IBVS, No. 5260.
- 066. Gutiérrez-Moreno, A., Moreno, H., & Costa, E. 1999, PASP, 111, No. 759, 571.
- 067. Wils, P., Van Cauteren, P., & Lampens, P. 2002, IBVS, No. 5267.
- 068. Schuh, S.L., Handler, G., Drechsel, H., et al. 2003, AsAp, 410, No. 2, 649.
- 069. BBSAG Bull, 2002, No. 128, 1.
- 070. Koff, R.A., Robb, R.M., Thanjavur, K., et al. 2002, IBVS, No. 5271.
- 071. Budding, E., Heckert, P., Soydugan, F., et al. 2003, IBVS, No. 5451.
- 072. Rebull, L.M. 2001, AJ, **121**, No. 3, 1676.
- 073. Pojmanski, G. 2005, IAU Circ, No. 8540.
- 074. Nitschelm, C., Lecavelier des Etangs, A., Vidal-Madjar, A., et al. 2000, AsAp Suppl, 145, No. 2, 275.
- 075. McNeil, J.W. 2004, IAU Circ, No. 8284.
- 076. Bull AFOEV, 2004, No. 107, 9.

- 077. Schmidtke, P.C., Cowley, A.P., Hutchings, J.D., & Cowley, D. 2002, AJ, **123**, No. 6, 3210.
- 078. Kato, T., Nelson, P., Stockdale, C., et al. 2004, MN, 347, No. 3, 861.
- 079. Pojmanski, G. 2005, IAU Circ, No. 8617.
- 080. Kiss, L.L., Szabó, Gy.M., Sziládi, K. et al. 2001, AsAp, 376, No. 2, 561.
- 081. Gáspár, A., Kiss, L.L., Bedding, T.R., et al. 2003, AsAp, 410, No. 3, 879.
- 082. Garcia-Melendo, E. & Juan-Samso, J. 2002, IBVS, No. 5278.
- 083. Hoffmeister, C. 1966, AN, **289**, H. 3, 139.
- 084. Liller, W. 2006, *IAU Circ*, No. 8673.
- 085. Kozhevnikov, V.P. 2003, AsAp, 398, No. 1, 267.
- 086. Kazarovets, E.V., Pastukhova, E.N., & Samus, N.N. 2003, IBVS, No. 5435.
- 087. Staude, A., Schwope, A.D., Krumpe, M., et al. 2003, AsAp, 406, No. 1, 253.
- 088. Kato, T. 2003, vsnet-newvar, 1805, 1806 (http://vsnet.kusastro.kyoto-u.ac.jp/vsnet/Mail/vsnet-newvar/).
- 089. IAU Circ, 2005, No. 8607.
- 090. Wils, P. 2003, *IBVS*, No. 5457.
- 091. Martin, S., Bossi, M., & Zerbi, F.M. 2003, AsAp, 401, No. 3, 1077.
- 092. Gomez-Forrellad, J.M., & García-Melendo, E. 2002, IBVS, No. 5277.
- 093. Kim, S.-L., Chun, M.-Y., Park, B.-G., et al. 2001, AsAp, 371, No. 2, 571.
- 094. Wils, P. & Dvorak, S.W. 2003, IBVS, No. 5425.
- 095. Bernhard, K. 2004, BAV Rund, 53, Nr. 3, 108.
- 096. Dreizler, S., Schuh, S.L., Deetjen, J.L., et al. 2002, AsAp, 386, No. 1, 249.
- 097. Lloyd, C., Moscher, W., Kiyota, S., et al. 2003, *IBVS*, No. 5366.
- 098. Collins, M. & James, N. 2002, The Astronomer, **39**, No. 458, 46.
- 099. Barthès, D., Lèbre, A., Gillet, D., & Mauron, N. 2000, AsAp, 359, No. 1, 168.
- 100. Van Eck, S. & Jorissen, A. 2002, AsAp, 396, No. 2, 599.
- 101. Oliveira, A.S., Steiner, J.E., & Cieslinski, D. 2003, MN, 346, No. 3, 963.
- 102. Schwartz, R.D., Persson, S.E., & Hamann, F.W. 1990, AJ, 100, No. 3, 793.
- 103. Wils, P. 2003, *IBVS*, No. 5401.
- 104. Maciejewski, G., Czart, K., Niedzielski, A., & Karska, A. 2003, IBVS, No. 5431.
- 105. Ramsay, G., Hakala, P., & Cropper, M. 2002, MN, 332, No. 1, L7.
- 106. G.W. Henry, G.W. 2002, *IBVS*, No. 5348.
- 107. Morgenroth, O. 1934, AN, 252, Nr. 6048, 389.
- 108. Couch, P.A., Lloyd Evans, T., & Sarre, P.J. 2003, MN, 346, No. 1, 153.
- 109. Liller, W. 2005, IAU Circ, No. 8559.
- 110. Udry, S., Mayor, M., Clausen, J.V., et al. 2003, AsAp, 407, No. 2, 679.
- 111. Lawson, W.A., Crause, L.A., Mamajek, E.E., & Feigelson, E.D. 2002, MN, 329, No. 2, L29.
- 112. Otero, S.A. 2004, *IBVS*, No. 5532.
- 113. Stassun, K.G., van den Berg, M., Mathieu, R.D., & Verbunt, F. 2002, AsAp, 382, No. 3, 899.
- 114. The Heavens, 2005, No. 5, 294.
- 115. van den Berg, M., Stassun, K.G., Verbunt, F., & Mathieu, R.D. 2002, AsAp, 382, No. 3, 888.

- 116. Green, E.M., Fontaine, G., Reed, M.D., et al. 2003, ApJ, 583, No. 2, L31.
- 117. Pojmanski, G. 2006, IAU Circ, No. 8671.
- 118. Bouchy, F., Pont, F., Melo, C., et al. 2005, AsAp, 431, No. 3, 1105.
- 119. Maas, T., Van Winckel, H., Lloyd Evans, T., et al. 2003, AsAp, 405, No. 1, 271.
- 120. Bauernfeind, H. 1969, Bamb Veröff, 8, Nr. 84.
- 121. Hoffmeister, C. 1963, VSS, 6, Nr. 1.
- 122. Bernasconi, L. & Behrend, R. 2003, *IBVS*, No. 5411.
- 123. Woudt, P.A. & Warner, B. 2003, MN, 345, No. 4, 1266.
- 124. Hoffmeister, C. 1933, AN, 247, Nr. 5919, 281.
- 125. Hoffmeister, C. 1967, AN, 289, H. 5, 205.
- 126. Ott, H. & Knigge, R. 1968, Bamb Veröff, 7, Nr. 73.
- 127. Adelman, S.J. 2000, AsAp, 357, No. 2, 548.
- 128. Strohmeier, W. & Knigge, R. 1975, Bamb Veröff, 10, Nr. 116.
- 129. MVS, 1957, No. 317.
- 130. Pojmanski, G. 2005, ASAS-3 (http://www.astrouw.edu.pl/~gp/asas/asas.html).
- 131. Pandey, J.C., Singh, K.P., Sagar, R., & Drake, S.A. 2002, *JApAs*, 23, Nos. 1–2, 9.
- 132. MVS, 1957, No. 318.
- 133. Knigge, R. 1967, Bamb Veröff, 7, Nr. 59.
- 134. Udalski, A., Žebruń, K., Szymański, M., et al. 2002, AA, 52, No. 2, 115.
- 135. Demeautis, Ch., Bernasconi, L., & Behrend, R. 2002, IBVS, No. 5329.
- 136. Handler, G., Shobbrook, R.R., Vuthela, F.F., et al. 2003, MN, 341, No. 3, 1005.
- 137. Woudt, P.A. & Warner, B. 2003, MN, **339**, No. 3, 731.
- 138. Tappert, C., Thorstensen, J.R., Fenton, W.H., et al. 2001, AsAp, 380, No. 2, 533.
- 139. Pojmanski, G. 2005, IAU Circ, No. 8574.
- 140. Bernhard, K. 2003, *vsnet-newvar*, 2053 (http://vsnet.kusastro.kyoto-u.ac.jp/ vsnet/Mail/vsnet-newvar/).
- 141. Fekel, F.C. & Henry, G.W. 2000, AJ, **120**, No. 6, 3265.
- 142. Williams, P.F. 2002, NZAS Publ, No. 25, 35.
- 143. Clarke, R.J., Oppenheimer, B.R., & Tinney, C.G. 2002, MN, 335, No. 4, 1158.
- 144. Kehoe, R., Akerlof, C., Balsano, R., et al. 2002, ApJ, 577, No. 2, 845.
- 145. Martí, J., Mirabel, I.F., Duc, P.-A., & Rodríguez, L.F. 1997, AsAp, 323, No. 1, 158.
- 146. Hillwig, T.C., Honeycutt, R.K., & Robertson, J.W. 2000, AJ, 120, No. 2, 1113.
- 147. Beltrame, M. & Poretti, E. 2002, AsAp, 386, No. 1, L9.
- 148. Kato, T. 2002, vsnet-alert, 7228 (http://vsnet.kusastro.kyoto-u.ac.jp/vsnet/Mail/ alert7000/msg00228.html).
- 149. Bull AFOEV, 2003, No. 104, 7.
- 150. Strohmeier, W. & Patterson, I. 1969, *IBVS*, No. 330.
- 151. Robb, R.M., Thanjavur, K., & Clem, J.L. 2002, IBVS, No. 5305.
- 152. Joshi, S., Girish, V., Sagar, R., et al. 2002, Comm. in Asteroseismology, 142, 50.
- 153. Koen, C. 2003, MN, **346**, No. 2, 473.
- 154. Koppelman, M.D. & Terrell, D. 2002, IBVS, No. 5299.
- 155. Kinman, T.D. 2002, IBVS, No. 5311.
- 156. Tabur, V. 2003, IAU Circ, No. 8184.
- 157. Vidal-Sáinz, J., Gomez-Forrellad, J.M., García-Melendo, E., et al. 2002, *IBVS*, No. 5331.
- 158. Blättler, E. & Diethelm, R. 2004, *IBVS*, No. 5541.
- 159. Nelson, R.H. 2002, *IBVS*, No. 5224.
- 160. Strassmeier, K.G., Serkowitsch, E., & Granzer, Th. 1999, AsAp Suppl, 140, No. 1, 29.
- 161. Jin, H., Kim, S.-L., Kwon, S.-G., et al. 2003, AsAp, 404, No. 2, 621.
- 162. Stankov, A., Handler, G., Hempel, M., & Mittermayer, P. 2002, MN, 336, No. 1, 189.
- 163. Clarke, F.J., Tinney, C.G., & Hodgkin, S.T. 2003, MN, 341, No. 1, 239.
- 164. Blättler, E. & Diethelm, R. 2003, *IBVS*, No. 5403.
- 165. Mathias, P., Le Contel, J.-M., Chapellier, E., et al. 2004, AsAp, 417, No. 1, 189.
- 166. Allen, W.H. 2003, Southern Stars, 42, No. 3, 14.
- 167. Blättler, E. & Diethelm, R. 2002, *IBVS*, No. 5269.
- 168. Szkody, P., Anderson, S.F., Schmidt, G., et al. 2003, ApJ, 583, No. 2, 902.
- 169. Silvotti, R., Østensen, R., Heber, U., et al. 2002, AsAp, 383, No. 1, 239.
- 170. O'Donoghue, D., Koen, C., Kilkenny, D., et al. 2003, MN, 345, No. 2, 506.
- 171. Kawka, A., Vennes, S., Koch, R., & Willams, A. 2002, AJ, **124**, No. 5, 2853.
- 172. Behrend, R., Bernasconi, L., Deluz, D., et al. 2002, *IBVS*, No. 5320.
- 173. Maciejewski, G. & Niedzielski, A. 2002, IBVS, No. 5308.
- 174. Mayall, M.W. 1951, HB, No. 920, 32.
- 175. Preston, G.W. & Sneden, C. 2000, AJ, **120**, No. 2, 1014.
- 176. Martinez, P. 2002, Obs, 122, No. 1171, 359.
- 177. Liller, W. 2003, *IAU Circ*, No. 8219.
- 178. Haberl, F., Motch, C., Zickgraf, F.-J. 2002, AsAp, 387, No. 1, 201.
- 179. Tovmassian, G., Greiner, J., Zharikov, S.V., et al. 2001, AsAp, 380, No. 2, 504.
- 180. GEOS Circ RR, 2003, No. 19.
- 181. Weber, R. 1961, *IBVS*, No. 6.
- 182. Blättler, E. & Diethelm, R. 2002, *IBVS*, No. 5295.
- 183. Reid, M.D., Green, E.M., Callerame, K., et al. 2004, ApJ, 607, No. 1, 445.
- 184. Comerón, F., Fernández, M., Baraffe, I., et al. 2003, AsAp, 406, No. 3, 1001.
- 185. Woudt, P.A. & Warner, B. 2004, MN, 348, No. 2, 599.
- 186. Wils, P., Lampens, P., Robertson, C.W., & Van Cauteren, P. 2003, *IBVS*, No. 5442.
- 187. Bonanno, A., Catalano, S., Frasca, A., et al. 2003, AsAp, 398, No. 1, 283.
- 188. Robb, R.M., Vincent, J., & Thanjavur, K. 2003, IBVS, No. 5449.
- 189. Balona, L.A. & Laney, C.D. 1995, MN, 276, No. 2, 627.
- 190. Frandsen, S., Balona, L.A., Viskum, M., et al. 1996, AsAp, **308**, No. 1, 132.
- 191. Häussler, K., Berthold, T., & Kroll, P. 2003, *IBVS*, No. 5424.
- 192. Häussler, K. & Berthold, T. 2003, *IBVS*, No. 5363.
- 193. Mickaelian, A.M., Balayan, S.K., Ilovaisky, S.A., et al. 2002, AsAp, 381, No. 3, 894.
- 194. Häussler, K., Berthold, T., & Kroll, P. 2003, *IBVS*, No. 5446.
- 195. Arentoft, T., Sterken, C., Knudsen, M.R., et al. 2001, AsAp, 380, No. 2, 599.
- 196. Pastukhova, E.N., Samus, N.N., & Hazen, M.L. 2002, IBVS, No. 5297.
- 197. Fu, J.N., Sterken, C., Duerbeck, H.W., et al. 2003, AsAp, 412, No. 1, 97.

- 198. Morgenroth, O. 1935, AN, **254**, Nr. 6094, 369.
- 199. Samus, N.N. & Hazen, M.L. 2003, IBVS, No. 5450.
- 200. Kiss, L.L. 2002, *IBVS*, No. 5355.
- 201. Hoffmeister, C. 1968, AN, 290, H. 5/6, 277.
- 202. Whitelock, P., Feast, M., & Catchpole, R. 1991, MN, 248, No. 2, 276.
- 203. Fu, J.N., Bouzid, M.Y., & Sterken, C. 2005, AN, 326, No. 5, 349.
- 204. MVS, 1957, No. 319.
- 205. Pojmanski, G. 2004, IAU Circ, No. 8369.
- 206. The Heavens, 2004, No. 8, 477.
- 207. Takao, A. 2003, IAU Circ, No. 8166.
- 208. Kimeswenger, S. & Lechner, M.F.M. 2003, AsAp, 411, No. 2, L461.
- 209. Kurochkin, N.E. & Karitskaya, E.A. 1995, AsAp Trans, 8, No. 2, 157.
- 210. Nagata, T., Kato, D., Baba, D., et al. 2003, PAS Japan, 55, No. 6, L73.
- 211. Blättler, E. & Diethelm, R. 2002, *IBVS*, No. 5306.
- 212. IAU Circ, 2004, No. 8381.
- 213. The Heavens, 2004, No. 10, 609.
- 214. Nakajima, K., Yoshida, S., Ohkura, N., & Kadota, K. 2005, IBVS, No. 5600.
- 215. IAU Circ, 2004, No. 8324.
- 216. The Heavens, 2004, No. 5, 297.
- 217. Chaty, S., Mirabel, I.F., Goldoni, P., et al. 2002, MN, 331, No. 4, 1065.
- 218. Terzan, A. & Ounnas, Ch. 1988, AsAp Suppl, 76, No. 2, 205.
- 219. Rucinski, S.M. & Paczynski, B. 2002, IBVS, No. 5321.
- 220. Udalski, A., Paczyński, B., Zebruń, K., et al. 2002, AA, 52, No. 1, 1.
- 221. Häussler, K., Berthold, T., & Kroll, P. 2003, IBVS, No. 5481.
- 222. Konacki, M., Torres, G., Jha, S., & Sasselov, D.D. 2003, Nature, 421, No. 6922, 507.
- 223. Alard, C., Blommaert, J.A.D.L., Cesarsky, C., et al. 2001, ApJ, 552, No. 1, 289.
- 224. Kato, T. 2003, *vsnet-gcvs*, 483 (http://vsnet.kusastro.kyoto-u.ac.jp/vsnet/Mail/vsnet-gcvs/).
- 225. Otero, S.A. & Wils, P. 2005, *IBVS*, No. 5644.
- 226. Blanco, V.M., McCarthy, M.F., & Blanco, B.M. 1984, AJ, 89, No. 5, 636.
- 227. Glass, I.S. & Schultheis, M. 2002, MN, 337, No. 2, 519.
- 228. Blättler, E. & Diethelm, R. 2002, IBVS, No. 5333.
- 229. Bond, I.A., Abe, F., Dodd, R.J., et al. 2001, MN, 327, No. 3, 868.
- 230. Maffei, P. & Tosti, G. 1999, Perugia Pubbl, 4.
- 231. Brown, N.J. 2003, IAU Circ, No. 8204.
- 232. The Heavens, 2003, No. 11, 725.
- 233. Krauss, M.I., Wang, Z., Dullighan, A., et al. 2005, ApJ, 627, No. 2, 910.
- 234. Pejcha, O., Hájek, P., Koss, K., et al. 2003, IBVS, No. 5362.
- 235. Bandyopadhyay, R.M., Charles, P.A., Shahbaz, T., & Wagner, R.M. 2002, ApJ, 570, No. 2, 793.
- 236. Samus, N.N., Goranskii, V.P., Durlevich, O.V., et al. 2003, Astronomy Letters, 29, 468.
- 237. Gieles, M., Orosz, J.A., Hulleman, F., et al. 2002, *IBVS*, No. 5289.
- 238. Gieles, M., Orosz, J.A., Hulleman, F., et al. 2002, *IBVS*, No. 5274.

- 239. Gieles, M., Orosz, J.A., Hulleman, F., et al. 2002, *IBVS*, No. 5291.
- 240. Orosz, J.A., Gieles, M., Bailyn, C.D., & Tourtellotte, S.W. 2003, IBVS, No. 5384.
- 241. Nishimura, H. & Liller, W. 2004, IAU Circ, No. 8306.
- 242. Blätter, E. & Diethelm, R. 2002, IBVS, No. 5232.
- 243. Clark, J.S., Reig, P., Goodwin, S.P., et al. 2001, AsAp, 376, No. 2, 476.
- 244. Koppelman, M.D., West, D., & Price, A. 2002, IBVS, No. 5327.
- 245. Clark, J.S., Egan, M.P., Crowther, P.A., et al. 2003, AsAp, 412, No. 1, 185.
- 246. Hughes Boyce, E. 1942, *HA*, **109**, No. 2.
- 247. Price, A., Gary, B., Bedient, J., et al. 2004, PASP, 116, No. 826, 1117.
- 248. Kato, T., Dubovsky, P.A., Stubbings, R., et al. 2002, AsAp, 396, No. 3, 929.
- 249. Woolf, V.M., Aznar Cuadrado, R., Pandey, G., & Jeffery, C.S. 2001, AsAp, 371, No. 2, 638.
- 250. Nakajima, K., Yoshida, S., & Kadota, K. 2004, *IBVS*, No. 5500.
- 251. Schwarz, R., Greiner, J., Tovmassian, G.H., et al. 2002, AsAp, 392, No. 2, 505.
- 252. Thorstensen, J.R. & Fenton, W.H. 2002, PASP, 114, No. 791, 74.
- 253. Munari, U., Jurdana-Šepić, R., & Moro, D. 2001, AsAp, 370, No. 2, 503.
- 254. Nishimura, H. 2003, IAU Circ, No. 8190.
- 255. The Astronomer, 2003, No. 473, cover 3.
- 256. Hoffmeister, C. 1966, AN, **289**, H. 1/2, 1.
- 257. Ueta, T., Meixner, M., Dayal, A., et al. 2001, ApJ, 548, No. 2, 1020.
- 258. Bernhard, K., Frank, P., & Lloyd, C. 2004, IBVS, No. 5500.
- 259. Antipin, S.V., Shugarov, S.Yu., & Kroll, P. 2002, IBVS, No. 5246.
- 260. Pejcha, O. 2003, vsnet-newvar, 1835 (http://vsnet.kusastro.kyoto-u.ac.jp/vsnet/Mail/vsnet-newvar/).
- 261. Liller, W. 2005, IAU Circ, No. 8596.
- 262. Allen, D.A. 1984, Proc ASA, 5, No. 3, 369.
- 263. Vidal-Sáinz, J., García-Melendo, E., & Wils, P. 2002, *IBVS*, No. 5332.
- 264. Akerlof, C., Amrose, S., Balsano, R., et al. 2000, AJ, 119, No. 4, 1901.
- 265. Mochejska, B.J., Stanek, K.Z., Sasselov, D.D., & Szentgyorgyi, A.H. 2002, AJ, 123, No. 6, 3460.
- 266. Kaluzny, J. & Ruciński, S.M. 1993, MN, 265, No. 1, 34.
- 267. Bruntt, H., Grundahl, F., Tingley, B., et al. 2003, AsAp, 410, No. 1, 323.
- 268. Nelson, R.H., Robb, R.M., Kaiser, D.H., & Billings, G.B. 2002, IBVS, No. 5285.
- 269. Sokoloski, J.L. & Stone, R.P.S. 2000, *IBVS*, No. 4983.
- 270. Hildebrandt, G. 1992, AN, **313**, H. 4, 233.
- 271. Sorokin, P., Antipin, S., & Samus, N. 2002, IBVS, No. 5270.
- 272. Bernhard, K., Kiyota, S., & Pejcha, O. 2002, *IBVS*, No. 5318.
- 273. Spogli, C., Fiorucci, M., Dolci, M., & Raimondo, G. 2003, IBVS, No. 5474.
- 274. Pejcha, O., Zejda, M., & Sobotka, P. 2003, IBVS, No. 5469.
- 275. Street, R.A., Horne, K., Lister, T.A., et al. 2003, MN, 340, No. 4, 1287.
- 276. Street, R.A., Horne, K., Lister, T.A., et al. 2002, MN, 330, No. 3, 737.
- 277. Greaves, J. 2003, IBVS, No. 5472.
- 278. Bedient, J.R. 2002, *IBVS*, No. 5288.
- 279. Nelson, R.H. 2004, *IBVS*, No. 5493.

- 280. Tabur, V. 2003 (http://www.tip.net.au/~vello/novae/ncru03/ncru03.htm).
- 281. Arkhipova, V.P., Ikonnikova, N.P., Noskova, R.I., & Komissarova, G.V. 2002, Astronomy Letters, 28, No. 4, 257.
- 282. Alonso, R., Belmonte, J.A., & Brown, T. 2003, ApSS, 284, No. 1, 13.
- 283. Otero, S. 2003 (http://ar.geocities.com/varsao/Curva\_Brh\_V138.htm).
- 284. Stark, M.A. & Taylor, J.M. 2002, IBVS, No. 5247.
- 285. Miroshnichenko, A.S., Bjorkman, K.S., Chentsov, E.L., et al. 2002, AsAp, 383, No. 1, 171.
- 286. Richmond, M.W. 2002, IBVS, No. 5221.
- 287. IAU Circ, 2005, No. 8483.
- 288. Otero, S. & Pojmanski, G. 2005, *IBVS*, No. 5599.
- 289. Friedrich, D. & Schöffel, E. 1971, IBVS, No. 558.
- 290. Otero, S. 2003 (http://ar.geocities.com/varsao/Carta\_HD\_97671.htm).
- 291. Hájek, P., Koss, K., Kudrnácová, J., & Motl, D. 2002, IBVS, No. 5242.
- 292. Haseda, K. 2002, *vsnet-unknown*, 78 (http://vsnet.kusastro.kyoto-u.ac.jp/vsnet/Mail/vsnet-unknown/msg00078.html).
- 293. Kaluzny, J., Olech, A., & Stanek, K.Z. 2001, AJ, 121, No. 3, 1533.
- 294. Munari, U. & Jurdana-Šepić, R. 2002, AsAp, 386, No. 1, 237.
- 295. Margoni, R. & Stagni, R. 1984, AsAp Suppl, 56, No. 1, 87.
- 296. Hurst, G.M. 1999, The Astronomer, 35, No. 419, 284.
- 297. Antipin, S. & Kroll, P. 2003, IBVS, No. 5461.
- 298. Freyhammer, L.M., Arentoft, T., & Sterken, C. 2001, AsAp, 368, No. 2, 580.
- 299. Wils, P., Van Cauteren, P., & Lampens, P. 2003, IBVS, No. 5475.
- 300. Strohmeier, W. & Knigge, R. 1959, Bamb Veröff, 5, Nr. 4.
- 301. Handler, G., Balona, L.A., Shobbrook, R.R., et al. 2002, MN, 333, No. 2, 262.
- 302. Arkhipova, V.P., Noskova, R.I., Ikonnikova, N.P., & Komissarova, G.V. 2003, Astronomy Letters, 29, No. 7, 480.
- 303. Liller, W. 2005, *IAU Circ*, No. 8497.
- 304. Uemura, M., Kato, T., Ishioka, R., et al. 2004, PAS Japan, 56, No. SP1, S183.
- 305. Maciejewski, G., Karska, A., & Niedzielski, A. 2003, *IBVS*, No. 5370.
- 306. Bernhard, K., Frank, P., Moschner, W., & Proksch, W. 2005, *IBVS*, No. 5599.
- 307. Maciejewski, G., Karska, A., & Niedzielski, A. 2002, IBVS, No. 5343.
- 308. Bakiş, V., Erdem, A., Budding, E., & Demircan, O. 2003, IBVS, No. 5381.
- 309. Cutispoto, S., Pastori, L., Guerrero, A., et al. 2000, AsAp, 364, No. 1, 205.
- 310. Woudt, P.A. & Warner, B. 2003, *ApSS*, **288**, No. 4, 573.
- 311. Sandquist, E.L. & Shetrone, M.D. 2003, AJ, 126, No. 6, 2954.
- 312. Henden, A.A., Linnolt, M.A., & Simonsen, M. 2004, IBVS, No. 5521.
- 313. Antipin, S. 2002, *IBVS*, No. 5265.
- 314. Mukadam, A.S., Kepler, S.O., Winget, D.E., & Bergeron, P. 2002, ApJ, 580, No. 1, 429.
- 315. Giclas, H.L., Slaughter, & Burnham Jr., C.D.R. 1959, Lowell Bull, No. 102 (IV, No. 14), 136.
- 316. IAU Circ, 2005, Nos. 8500, 8501.
- 317. IAU Circ, 2005, No. 8505.

- 318. Cohen, R., Herbst, W., & Williams, E.C. 2004, AJ, 127, No. 3, 1602.
- 319. Bernhard, K. 2003, BAV Rund, 52, Nr. 4, 168.
- 320. IAU Circ, 2004, No. 8443.
- 321. Strohmeier, W. & Knigge, R. 1974, Bamb Veröff, 10, Nr. 110.
- 322. Otero, S.A., Wils, P., & Dubovsky, P.A. 2004, IBVS, No. 5570.
- 323. Sandquist, E.L. & Shetrone, M.D. 2003, AJ, 125, No. 4, 2173.
- 324. IAU Circ, 2006, No. 8700.
- 325. IAU Circ, 2006, No. 8697.
- 326. The Heavens, 2006, No. 5, 295.
- 327. The Heavens, 2005, No. 9, 552.
- 328. The Heavens, 2006, No. 4, 237.
- 329. The Heavens, 2005, No. 8, 487.
- 330. The Heavens, 2005, No. 11, 678.
- 331. The Heavens, 2005, No. 12, 740.
- 332. Kazarovets, E.V., Pastukhova, E.N., & Samus, N.N. 2005, PZ, 25, No. 2.
- 333. Nakajima, K., Yoshida, S., & Ohkura, N. 2005, IBVS, No. 5600.

#### ERRATUM FOR IBVS 5721

In IBVS No. 5721 ("The 78th Name-List of Variable Stars"), erroneous coordinates of V2609 Oph were given. The coordinates of this variable should correctly be  $17^{h}53^{m}34^{s}.1 + 05^{\circ}24'58''(2000.0)$ .

#### ERRATUM FOR IBVS 5721

See IBVS 5969 - NL 80/I for information on V423 Hya/V577 Cen.

Number 5722

Konkoly Observatory Budapest 29 August 2006 *HU ISSN 0374 - 0676* 

# RV Aps: A UNIQUE ECLIPSING BINARY FOR GRAVITY-DARKENING STUDIES

KHALIULLIN, KH.F.<sup>1</sup>; KHALIULLINA, A.I.<sup>1</sup>; PASTUKHOVA, E.N.<sup>2</sup>; SAMUS, N.N.<sup>2,1</sup>

<sup>1</sup> Sternberg Astronomical Institute, 13, University Ave., 119992 Moscow, Russia

<sup>2</sup> Institute of Astronomy, Russian Academy of Sciences, 48, Pyatnitskaya Str., Moscow 119017, Russia; e-mail: samus@sai.msu.ru

In the process of our work aimed at improving astrophysical information for GCVS stars in southern constellations (cf. Pastukhova et al., 2004; Antipin et al., 2005), we found an interesting case of the eclipsing star RV Aps.

The eclipsing binary RV Aps (HV 5079) was discovered by Swope (1931) who had published the variability range between 10<sup>m</sup>.6 and 15<sup>m</sup>.2 pg and the light elements Min = 2425360.4 + 34<sup>d</sup>.074 × E. To our knowledge, no photometric studies of the star have been published since, probably because of no finding chart available. Stock & Wroblewski (1971) estimated the variable's spectral type as AF. This information refers to the correct star, as confirmed by a good coincidence of the coordinates published by Stock and Wroblewski with those we now find for the confirmed RV Aps (14<sup>h</sup>24<sup>m</sup>17<sup>s</sup>0, -73°17'27", J2000.0; GSC 9269.00545). Our confirmation is based on the ASAS-3 data (Pojmanski, 2002): though the star is not listed in the ASAS-3 catalog of variable stars, about 300 Vband observations can be retrieved from the ASAS-3 photometric catalog. These data show the star to be an Algol eclipsing variable with the light elements (derived by us) Min I = HJD 2453574.517(18) + 34<sup>d</sup>.07502(06) × E, 12<sup>m</sup>1-14<sup>m</sup>0: V, D = 0<sup>p</sup>.08. The light curve is shown in Fig. 1, it demonstrates a noticeable wave outside eclipses. Our analysis of the outside-eclipse observations reveals no other periods except the orbital one.

Table 1 presents the results of our preliminary analysis of the system's light curve using the iteration method described in Khaliullin & Khaliullina (2006). The method is based on the "sphere-ellipsoid" model, quite applicable to the star. We use the following notation in the table and in the text: *i* is the orbital inclination;  $r_{1,2} = R_{1,2}/A$ ,  $R_{1,2}$ being the components' radii and *A*, the radius of the relative orbit; Sp<sub>1,2</sub>, their spectral types;  $M_{1,2}$ , masses;  $T_{1,2}$ , effective temperatures;  $u_{1,2}$ , limb-darkening coefficients; BC<sub>1,2</sub>, bolometric corrections;  $L_{1,2}$ , relative luminosities;  $E_{1,2}$ , luminous efficiencies;  $Y_{1,2}$ , the gravity-darkening coefficients respectively for the primary and secondary;  $a_{1,2}$  and  $b_{1,2}$ , the major and minor axes of the components' apparent disks in quadratures (phase 0P25). When searching for the optimal parameters, only  $b_{1,2}$  were considered independent values, and  $a_{1,2}$  were computed at each step of the iteration process on the base of  $b_{1,2}$  using known analytic relations resulting from computations of equilibrium shapes of binaries' components (Chandrasekhar, 1933). It is the values of  $b_{1,2}$  that are given in Table 1 as  $r_{1,2}$ . At all the iteration stages, the secondary was assumed to fill its critical Roche lobe. The optimal spectral types of the components,  $\text{Sp}_{1,2}$ , and the corresponding absolute parameters were found in the iterations using the following observational restrictions. First, we took into account the spectral type A-F from Stock & Wroblewski (1971). Second, we know the outside-eclipse magnitude,  $V = 12^{\text{m}}12$ , from the ASAS-3 light curve, and the 2MASS PSC infrared magnitudes:  $J = 10^{\text{m}}35$ ,  $H = 9^{\text{m}}70$ ,  $K_S = 9^{\text{m}}50$ . The main contribution to the IR range comes from the secondary, and these magnitudes, after taking into account the interstellar reddening and subtracting the small contribution from the primary in the iteration process, restrict  $\text{Sp}_2$  rather seriously. (Our estimate of the interstellar extinction, from the  $V - K_S$  and  $J - K_S$  color indices, is  $A_V \approx 0^{\text{m}}6$ , in no contradiction to that expected from the maps in Burstein & Heiles, 1982.) Our computer code makes use of the empirical relations between stellar spectral types and absolute parameters from Popper (1980) and Straizys (1982).

| $\operatorname{Parameter}$ | Primary                    | $\operatorname{Secondary}$ |
|----------------------------|----------------------------|----------------------------|
| $_{\rm Sp}$                | A2V                        | K4III                      |
| M                          | $2.20M_\odot~{ m (fixed)}$ | $0.26~M_{\odot}$           |
| R                          | $2.72R_{\odot}$            | $13.1R_{\odot}$            |
| T                          | $8750~{ m K}$              | $3900~{ m K}$              |
| BC                         | -0.008                     | -0.190                     |
| r                          | 0.0455                     | 0.219                      |
| L                          | $0.7\pm0.02$               | $0.3\pm0.02$               |
| u                          | $0.48 \; (fixed)$          | 0.90 ~(fixed)              |
| Y                          | $0.79 \; (fixed)$          | $0.88 \pm 0.012$           |
| $\beta$                    | $0.25 ~({\rm fixed})$      | $0.076 \pm 0.011$          |
| i                          | 83°.                       | 8                          |
| A                          | 59.7 .                     | $R_{\odot}$                |

Table 1. Parameters of the components

The physical and geometrical characteristics of RV Aps presented in Table 1 show that the system is unique for determination of the secondary's gravity-darkening coefficient,  $Y_2$ . To compute this coefficient in the first approximation, we write the system's brightness outside eclipses (in intensities) as (Kopal, 1950, 1959):

$$l = A_0 + A_1 \cos\theta + A_2 \cos^2\theta, \tag{1}$$

where  $\theta$  is the phase angle. By least squares, we derive the coefficients  $A_0 = 1.054(5)$ ,  $A_1 = -0.011(5)$ ,  $A_2 = -0.107(10)$ . The unity here is the brightness of a star with  $V_0 = 12^{\text{m}}12$ . The  $A_2$  coefficient in (1) is known to be related to reflection and photometric ellipticity effects:

$$A_2 = (0.2(G_1 + G_2) - 0.5L_1N_1\varepsilon_1^2 - 0.5L_2N_2\varepsilon_2^2)\sin^2 i, \qquad (2)$$

where

$$G_i = L_{3-i}r_i^2 \times E_i/E_{3-i}, \ \varepsilon_i^2 = (a_i^2 - b_i^2)/a_i^2, \ N_i = \frac{15 + u_i}{15 - 5u_i}(1 + Y_i).$$
(3)

Here Y is the gravitational limb darkening coefficient for the *i*-th component, determined from the expression (Kopal, 1968):

$$J = J_0 \left( 1 + Y \left( \frac{g - g_0}{g_0} \right) \right),$$

J being the surface brightness in the direction of the normal; g, gravity; and  $J_0$  and  $g_0$ , the corresponding values on the surface of an undeformed star. The first term in the right side of (2) is the combined reflection effect for the components; the second one is the primary's contribution to the photometric ellipticity; and the third one is the secondary's



Figure 1. The ASAS-3 V-band light curve of RV Aps. The solid curve is the model one

contribution. The luminous efficiencies in (3) can be estimated from  $E_i = 10^{0.4 \text{BC}_{\lambda}(T_i)}$ (Khaliullin & Khaliullina, 2006). Substituting the parameters from Table 1 into (2) and (3) and using the theoretical value,  $Y_1 = 0.79$ , computed using eq. (5) below, we find  $Y_2 = 0.88 \pm 0.12$ . Note that the third term in (2), due solely to photometric ellipticity of the secondary, contributes 97% (!) of  $A_2$ , this is one of the unique features of the studied system. If we now describe the secondary's spectral energy distribution,  $J_{\lambda}$ , with the Planck  $B_{\lambda}$  function, then, according to Kopal (1968),

$$Y = \beta \frac{c_2}{\lambda T (1 - e^{-c_2/\lambda T})},\tag{4}$$

where  $c_2 = 1.439 \text{ cm} \times \text{K}$ ,  $\lambda$  (for the V band) is  $0.55 \times 10^{-4}$  cm, and  $\beta$  is the exponent in the known gravity-darkening law,  $T = g^{\beta}$ , T and g being respectively the local effective temperature and gravity on the undeformed star's surface. Substituting the derived  $Y_2$ into (4), we find:  $\beta(B_{\lambda}) = 0.131$ . However,  $J_{\lambda}$  can differ from  $B_{\lambda}$  significantly, and it is preferable to use the relation (Khaliullin & Khaliullina, 2006):

$$Y = 4\beta \left( 1 + \frac{d(\mathrm{BC}_{\lambda})}{10 \times d(\log T)} \Big|_{T=T_0} \right),$$
(5)

where  $T_0$  is the undeformed-surface temperature, and the relation  $BC_{\lambda}(T_e)$  and its derivatives (for the corresponding spectral band of observations) can be found using the compilations of empirical data from Popper (1980) and Straizys (1982). The resulting value,  $\beta_2 = 0.076 \pm 0.011$ , is close to that expected from the theory for stars with convective envelopes,  $\beta_2^{th} = 0.08$  (Lucy, 1967). Thus, despite the information currently available for RV Aps being rather limited, the system's unique characteristics permitted us to determine  $\beta$  for its secondary quite accurately. According to Kitamura & Nakamura (1983), the relations (1)–(3) we have used can result in errors up to 10% in  $\beta$ . However, at this first-approximation stage, such uncertainties are quite acceptable. To verify and improve our results, spectroscopy and accurate multicolor light curves, especially near Min I, are needed for the system.

This study was supported, in part, by a grant from the Russian Foundation for Basic Research (grant No. 05-02-16289) and by a grant from the "Origin and Evolution of Stars and Galaxies" Program of the Presidium of the Russian Academy of Sciences.

#### References:

- Antipin, S.V., Pastukhova, E.N., Samus, N.N., 2005, Inform. Bull. Var. Stars, No. 5613
- Burstein, D., Heiles, C., 1982, Astron. J., 87, 1165
- Chandrasekhar, S., 1933, MNRAS, 93, 539
- Khaliullin, Kh.F., Khaliullina, A.I., 2006, Astronomy Reports, in press
- Kitamura, M., Nakamura, Y., 1983, Ann. Tokyo Astron. Obs., 2nd Series, 19, 413
- Kopal, Z., 1950, The Computation of Elements of Eclipsing Binary Systems, Cambridge, MA, pp. 121–147
- Kopal, Z., 1959, Close Binary Systems, London: Chapman & Hill, Sections VI.11 and VI.12
- Kopal, Z., 1968, Astrophys. and Space Sci., 2, 23
- Lucy, L.B., 1967, Zeitschrift für Astrophys., 65, 89
- Pastukhova, E.N., Antipin, S.V., Samus, N.N., 2004, Inform. Bull. Var. Stars, No. 5522
- Pojmanski, G., 2002, Acta Astronomica, 52, 397
- Popper, D.M., 1980, Ann. Rev. Astron. & Astrophys., 18, 115
- Stock, J., Wroblewski, H., 1971, Publ. Obs. Astron. Cerro Calan, 2, No. 3, 59
- Straizys, V., 1982, Zvezdy s Defitsitom Metallov (Metal-Deficient Stars), Vilnius: Mokslas, p. 296
- Swope, H.H., 1931, Harvard Obs. Bull., No. 883, 23

Number 5723

Konkoly Observatory Budapest 30 August 2006 *HU ISSN 0374 - 0676* 

## DETECTION OF A LARGE FLARE IN THE RS CVn STAR WY Cnc

KOZHEVNIKOVA, A.V.<sup>1</sup>; ALEKSEEV, I.YU.<sup>2</sup>; HECKERT, P.A.<sup>3</sup>; KOZHEVNIKOV, V.P.<sup>1</sup>

<sup>1</sup> Astronomical Observatory, Ural State University, 620083, Lenin Av. 51, Ekaterinburg, Russia, e-mail: kozhevnikova-a@yandex.ru

<sup>2</sup> Crimean Astrophysical Observatory, Crimea, 98409, Nauchnyj, Ukraine, e-mail: ilya@crao.crimea.ua

<sup>3</sup> Dept. of Chem. & Physics, Western Carolina University, Cullowhee, NC 28723 USA,

e-mail: heckert@wcu.edu

As a part of our ongoing study of RS CVn stars, we obtained new optical photometry of WY Cnc in 2005 and 2006. Here we report on a flare detected on WY Cnc in February 2006. We calculated the flare characteristics and analyzed the WY Cnc spot activity before and during the flare. WY Cnc (G5V+M2V, P = 0.83 d) is a short-period eclipsing RS CVn system (N 82 in the catalogue of Strassmeier et al., 1993). WY Cnc has been studied since 1965 (Chambliss, 1965). It shows starspot activity with the hotter primary star being the active one. Recently Heckert et al. (1998), Heckert (2001), and Kjurkchieva et al. (2004) noted secular luminosity increases of nearly 0.1 mag in 1988, 1997 and 2001.

We observed WY Cnc at three observatories. We obtained Johnson-Cousins BVRIphotometry with the 61-cm telescope at San Diego State University's Mount Laguna Observatory in May 2005 and January 2006, Johnson UBVRI photometry with the 1.25m telescope and Piirola photometer at Crimean Astrophysical Observatory in February 2006 and at Ural State University's Kourovka Observatory in January 2005 and February 2006. The Mount Laguna and Crimean data were transformed to the standard system using data reduction methods described by Heckert et al. (1998) and by Alekseev & Gershberg (1996). At Kourovka Observatory we used a three-channel photometer attached to the 70-cm telescope. The program and comparison stars and the sky were observed simultaneously. The data were collected with 4-s sampling times. Because the angular separation between the program and comparison stars is only 17', the differential magnitudes are only corrected for the first order atmospheric extinction. The second order atmospheric extinction is small in the V and R bands but can play a role in the B band. However, we compared our data obtained during several consecutive nights and made sure that the points of the individual lightcurves with the same orbital phases and different air masses are in range  $\pm 0.01$  mag. Thus, the second order atmospheric extinction during our observations in the B band was small too. Moreover, its influence is cancelled out to some extent when data from different nights are averaged.

Simultaneous measurements of the program and comparison stars are advantageous because they provide more confidence in the reality of the observed brightness variations. However, such observations are difficult to transform to the standard system because we do not know the program and comparison star magnitudes corrected for atmospheric extinction separately. Therefore at Kourovka observatory we used standard Johnson filters, but the data were not transformed. Nonetheless, we compared the Kourovka data to the data obtained at the Mount Laguna and Crimean observatories during the overlapping time intervals in January and February 2006 and found that the Kourovka data are brighter than the Mt. Laguna data only by 0.01 mag. Also the Crimean data are brighter than the Mt. Laguna data by 0.02–0.03 mag (in different bands). Therefore we shifted the Kourovka and Crimean data towards the Mount Laguna data to diminish these deviations. We used HD 77173 as a comparison star at Mt. Laguna and CrAO, and BD+26°1883 at Kourovka. The data points have a statistical accuracy of 0.01 mag or better. Phases were calculated from the ephemeris of Hall & Kreiner (1980): HJD = 2426352.3895 + 0.82937112 × E. Figures 1a, 1b, 1c show WY Cnc V band lightcurves.



Figure 1. WY Cnc lightcurves in the V band, 2005–2006

Each point of the Kourovka Observatory lightcurves is an average of 31 individual 4-s integrations. The lightcurves show the out-eclipse distortion wave caused by starspots.

The flare was detected on 19.02.2006 during BVR observations at Kourovka observatory (see Fig. 1c). The flare occurred at phase 0.10 near the minimum of the distortion wave. After the initial rapid flaring, the brightness decayed slowly. The star remained 0.025 mag brighter for at least an hour after the flare began.

Figure 2 shows small portions of BVR lightcurves near phase 0.10 with both individual 4-s integrations and averages plotted. Since each color was observed sequentially, some points of the flare may be seen in different colors. The flare peaked at 21:50 UT and had a maximum amplitude of 0.134 mag in the *B* band. The time required for the flare to peak (impulse phase) is about 3 min. The flare duration is 64 min.

The intensity of the flare was calculated as  $I_f/I_0 = (I_{0+f}/I_0) - 1$ , where  $I_0$  is the mean intensity of the quiescent star level in one of the B, V, R bands. By numerical integration of the flare intensity over the flare duration, the relative energy of the flare was defined by  $RE = \int I_f(t)/I_0 dt$ . We estimated the absolute energy output  $E_f$  of the flare using the relation:  $E_f = RE \times E_q^X$ , where  $E_q^X$  is the quiescent star luminosity in X band, which we calculated using: V = 9.467, B - V = 0.73, V - R = 0.63 and a distance of 85 pc to the system. We used the Hipparcos parallax (11.76 mas) of WY Cnc as the most accurate

|      | Table 1: Flare properties |                              |                        |  |  |  |  |
|------|---------------------------|------------------------------|------------------------|--|--|--|--|
| Band | Amplitude, mag            | Flare flux/system flux, $\%$ | Integrated energy, erg |  |  |  |  |
| B    | 0.134                     | 5                            | $10.24 	imes 10^{34}$  |  |  |  |  |
| V    | 0.062                     | 3                            | $5.63	imes10^{34}$     |  |  |  |  |
| R    | 0.045                     | 2.6                          | $0.96	imes10^{34}$     |  |  |  |  |

Table 2: WY Cnc spot parameters

|             |               |            |           | -                | L L        |       |       |                 |
|-------------|---------------|------------|-----------|------------------|------------|-------|-------|-----------------|
| Obs. period | $V_{\rm max}$ | $\Delta V$ | $arphi_0$ | $\Delta \varphi$ | $f_{\min}$ | $S_1$ | $S_2$ | Observatory     |
| 2005 Jan    | 9.496         | 0.069      | 0         | 8.3              | 0.51       | 6.3   | 4.5   | Kourovka        |
| 2005 May    | 9.430         | 0.087      | 0         | 6.7              | 0.20       | 4.7   | 2.3   | Mt. Laguna      |
| 2006 Jan    | 9.456         | 0.056      | 0         | 6.5              | 0.45       | 4.8   | 3.3   | Mt. Laguna      |
| 2006 Feb    | 9.461         | 0.026      | 0         | 5.1              | 0.67       | 4.1   | 3.4   | Kourovka + CrAO |

(http://simbad.u-strasbg.fr/sim-fid.pl). We also used the luminosity of the star with an absolute magnitude of 0 mag from Johnson's calibration (Johnson, 1966).



Figure 2. The flare of WY Cnc: lightcurves in B, V, R bands with individual 4-s integrations (left) and averages of 31 points (right) plotted

To study the spot activity before and during the flare, we analyzed all our lightcurves using the Zonal Spottedness Model, developed by Alekseev & Gershberg (1996). Results are given in Table 2.  $V_{\text{max}}$  is the maximal star brightness and  $\Delta V$  is the amplitude of the distortion wave. According to the Zonal Model, two spotted belts located symmetrically about the equator can represent spotted regions on cool stars. These belts occupy regions with the latitudes (in degrees) from  $\pm \varphi_0$  to  $\pm (\varphi_0 + \Delta \varphi)$  and have a spot coverage that varies linearly with the longitude from 1 at the minimum brightness phase to some value  $f_{\min}$  at the maximum brightness phase.  $S_1$  and  $S_2$  are the spotted areas of the dark and bright hemispheres of the stellar surface that are symmetric to the phase of the brightness minimum, in percents. The analysis of our observations allows us to make the following conclusions. 1. Both before and during the flare minima of the distortion waves were at phases of 0.87–0.03. This means, that the "face side" hemisphere of the primary star (the side facing the secondary component) was more spotted than the "back side" hemisphere (we took into account that WY Cnc is a tidally locked system).

2. In May 2005 the brightness of WY Cnc increased by 0.07 mag compared to January 2005 (see Fig. 1a). Note that this brightness difference is larger than the differences found between the light curves from the two different observatories as discussed earlier in this paper. Hence the difference is real rather than a calibration error. This secular increase is similar to those observed in 1988 and 1997 by Heckert et al. (1998) in that the brightness increases outside of the primary eclipse but remains approximately the same during the primary eclipse. The fact that the primary eclipse portions of the light curves match well is also evidence that this is a real luminosity increase rather than a calibration error resulting from different observatories and instruments. While the luminosity increased, the total spotted area became less with the more asymmetric spots concentrated on the hemisphere facing the secondary:  $S_1/S_2 = 2.0$ . So we may suppose, that this luminosity jump might be caused by several new bright active regions (analogous to solar plages) with some small-sized spots (spot coverage  $f_{\min} = 0.20$ ) which appeared at the back side hemisphere.

3. In January 2006 and in February 2006 the brightness of the system and the amplitude of the distortion wave began to decrease, and spots began to fill the bright hemisphere in a more homogeneous way ( $f_{\min} = 0.67$ ). The flare occurred at the time when the amplitude of the distortion wave was minimal (0.026 mag) and the spotted areas of face and back sides hemispheres became almost equal ( $S_1/S_2 = 1.2$ ), i.e. during the flare, the spots filled both hemispheres in an almost homogeneous way.

A flare in WY Cnc was detected for the first time. A similar flare has been reported by Zeilik et al. (1983) for another RS CVn system XY UMa. However, its energy was one order of magnitude smaller than that of the flare reported here. Another similar system SV Cam was reported to show flares too (Patkós, 1981). The strongest of these flares had a duration of 43 minutes and an amplitude of 0.12 mag in U band. In the very active RS CVn star II Peg optical flares had energy from  $10^{33}$  to  $2 \times 10^{35}$  erg (Mathioudakis, 1992). So, compared to other flares on RS CVn stars, we conclude that the flare we detected is a large one. All of these other flares occurred on the spotted hemisphere, just as in our observations.

Acknowledgements: PAH was supported by the AAS Small Grants program and by a WCU Faculty Research grant, and he would like to thank Paul Etzel for scheduling very generous amounts of telescope at MLO.

#### References:

Alekseev, I.Yu., Gershberg, R.E., 1996, Astrophysics, 39, 33
Chambliss, C.R., 1965, Astron. J., 70, 741
Hall, D.S., Kreiner J.M., 1980, Acta Astron., 30, 387
Heckert, P.A., et al., 1998, Astron. J., 115, 1145
Heckert, P.A., 2001, Astron. J., 121, 1076
Johnson, H.L., 1966, Ann. Review Astron. Astrophys., 4, 193
Kjurkchieva, D.P., et al., 2004, Astron. & Astrophys., 415, 231
Mathioudakis, M., et al., 1992, Mon. Not. R. Astron. Soc., 255, 48
Patkós, L., 1981, Astrophys. Lett., 22, 131
Strassmeier, K., et al., 1993, Astron. & Astrophys. Suppl., 100, 173
Zeilik, M., et al., 1983, Astron. J., 88, 532

Number 5724

Konkoly Observatory Budapest 1 September 2006 *HU ISSN 0374 - 0676* 

# GSC 3576-0170: A NEW NEAR-CONTACT SOLAR-TYPE BINARY, PERIOD ANALYSIS AND CLASSIFICATION

NELSON, R.H.<sup>1</sup>; ROBB, R.M.<sup>2</sup>; HENDEN, A.A.<sup>3</sup>; KRAJCI, T.<sup>4</sup>; QUESTER, W.<sup>5</sup>

<sup>1</sup> 1393 Garvin Street, Prince George, BC, Canada, V2M 3Z1, e-mail: bob.nelson@shaw.ca

<sup>2</sup> Department of Physics and Astronomy, Univ. of Victoria, Victoria, B.C., Canada, V8P 5C2, e-mail: robb@uvic.ca

<sup>3</sup> U.S. Naval Observatory, P.O. Box 1149, Flagstaff, AZ, 86002-1149, USA, e-mail: aah@nofs.navy.mil

<sup>4</sup> P.O. Box 1351, Cloudcroft, NM 88317, USA, e-mail: tom\_krajci@tularosa.net

 $^5$  Wilhelmstr. 96, D-73730 Esslingen, BAV, Germany, e-mail: wquester@aol.com

GSC 3576-0170 (at  $20^{h}23^{m}38^{s}$ ,  $+46^{\circ}55'52''$ , J2000.0) was discovered to be variable by one of us (RHN) while doing CCD observations of ZZ Cyg at his private observatory (see Nelson, 2003) in early June 2003. Several stars were included in the aperture photometry to serve as check stars and one of them displayed the features of an eclipsing binary. During that period, RMR obtained a full light curve in  $R_C$  (525 points) (see Robb & Greimel, 1999) and four times of minima. The light curves shown in Figure 1 show that the system is a close binary. Since the maxima are of different height, we expect spots on one or both stars.



Figure 1.

| Star         | GSC         | Phase | V         | B-V      | $V - R_C$ | $R_C - I_C$ |
|--------------|-------------|-------|-----------|----------|-----------|-------------|
| Var          | 3576-0170   | 0.39  | 12.496(5) | 0.737(3) | 0.438(3)  | 0.398(5)    |
| Var          | 3576 - 0170 | 0.68  | 12.484(5) | 0.735(3) | 0.432(3)  | 0.411(5)    |
| $\mathbf{C}$ | 3576-0964   | na    | 11.014(3) | 0.138(6) | 0.090(1)  | 0.100(2)    |
| Κ            | 3576-0702   | na    | 11.561(6) | 0.432(8) | 0.265(4)  | 0.256(5)    |

Table 1: Positions and magnitudes

Table 2: Observed minima of GSC 3576-0170

| Observer              | HJD —      | Error  | Type | Cycle  | O - C   |
|-----------------------|------------|--------|------|--------|---------|
|                       | 2400000    | (days) |      |        | (days)  |
| Nelson                | 52794.863  | 0.0040 | II   | -2.5   | 0.0009  |
| Nelson                | 52795.8716 | 0.0005 | Ι    | 0      | -0.0030 |
| $\operatorname{Robb}$ | 52799.9230 | 0.0005 | Ι    | 10     | -0.0016 |
| $\mathbf{Quester}$    | 52802.554  | 0.0020 | II   | 16.5   | -0.0032 |
| $\operatorname{Robb}$ | 52806.8076 | 0.0003 | Ι    | 27     | -0.0021 |
| $\operatorname{Robb}$ | 52807.821  | 0.0010 | II   | 29.5   | -0.0012 |
| $\mathbf{Quester}$    | 52812.478  | 0.0020 | Ι    | 41     | -0.0018 |
| Nelson                | 52826.860  | 0.0010 | II   | 76.5   | 0.0025  |
| Krajci                | 53263.8659 | 0.0005 | II   | 1155.5 | 0.0081  |
| Krajci                | 53264.6735 | 0.0002 | II   | 1157.5 | 0.0057  |
| $\operatorname{Robb}$ | 53305.7787 | 0.0004 | Ι    | 1259   | 0.0029  |
| Krajci                | 53837.9506 | 0.0002 | Ι    | 2573   | -0.0018 |
| Krajci                | 53852.937  | 0.0002 | Ι    | 2610   | -0.0006 |
| Krajci                | 53900.7278 | 0.0002 | Ι    | 2728   | -0.0004 |
| $\operatorname{Robb}$ | 53939.8099 | 0.0005 | II   | 2824.5 | -0.0012 |
| $\operatorname{Robb}$ | 53941.8337 | 0.0004 | II   | 2829.5 | -0.0025 |
| Robb                  | 53943.8605 | 0.0008 | II   | 2834.5 | -0.0007 |

At the USNO Flagstaff Station 1.00-m telescope (see Nelson, 2002), AAH observed the GSC 3576-0170 and ZZ Cyg field in the standard Johnson–Cousins  $BVR_CI_C$  passbands on 2003-08-10 (UT). This photometry is summarized in Table 1 with magnitude errors, in millimagnitudes, appearing in brackets.

All known times of minima were collected (Table 2) and an O - C plot constructed (Fig. 2).

Assigning equal weights, the following ephemeris (in days) was obtained, and the above tabular O - C values were calculated from the linear least squares best fit relation:

Min. I = HJD 2452795.8746(22) + 
$$0.40500(1) \times E$$
.

It is clear from Figure 2 that deviations from the line of best fit far exceed the internal error estimates and we suspect there is some systematic effect(s). A quadratic fit can be invoked; however that still leaves the rms error at 0.0020 days. Clearly more times of minima are required to sort out the true period and any period variation and we will reserve a full discussion of the subject to a future paper. Therefore although the period is quoted to five figures, the last figure is uncertain. The error in the period has been



Figure 2.



Figure 3.

estimated by the difference in period between the period obtained from the first (2003) and second (2004) groups of data only, and the period from all the data.

A spectrum of GSC 3576-0170 observed with 1.8-m telescope of the Herzberg Institute of Astrophysics (by RMR) is shown in Figure 3. The dispersion was 0.96 Å per pixel. By comparing the H $\gamma$  to the FeI 4384 and the H $\delta$  to the CaI 4227 lines we classify this star as G1V with an uncertainty of one sub class. Therefore we estimate its temperature to be 5865 K (Cox, 2000).

Wilson-Devinney modelling (Wilson & Devinney, 1971) was attempted, but since (based on the low depths of the minima) the eclipses were obviously partial, it was not possible to determine the mass ratio based on photometric data alone (Terrell & Wilson, 2005).

Nevertheless, modelling runs were made for a range of mass ratios using detached, overcontact, semi-detached with a bright spot on star 2, and double contact. However, detached consistently gave smaller residuals by 100.15 < q < 0.35 (because of steeply rising residuals outside this range) giving an inclination in the range of 65–70. The temperature of the secondary is 4800-4900 K, giving it a spectral type of K2  $\pm$  one subclass. One G1V and one K2V star would have an absolute magnitude of V = 4.37 with a  $(B-V)_0$  of 0.67. Therefore the reddening or colour excess,  $E(B-V) = (B-V)-(B-V)_0$  would be 0.07 and, assuming an R of 3.0, the absorption would be  $A_V = 0.21$  and the distance becomes approximately 400 parsecs.

Acknowledgements. Thanks are due to Environment Canada for the website satellite images (see Satellite images below) that were essential in predicting clear times for observing runs in this cloudy locale. Thanks are also due to Attilla Danko for his Clear Sky Clocks, (see below).

References:

Cox, A.N., ed., 2000, Allen's Astrophysical Quantities, 4th ed., (Athlone Press, London) Danko, A., Clear Sky Clocks, http://cleardarksky.com/
Nelson, R.H. et al., 2002, *IBVS*, No. 5228
Nelson, R.H., 2003, *IBVS*, No. 5371
Robb, R.M., Greimel, R., 1999, *ASP Conf. Ser.*, 189, 198
Satellite images for North America, http://www.cmc.ec.gc.ca/cmc/htmls/satellite.html
Terrell, D., Wilson, R.E., 2005, *Ap&SS*, 296, 221
Wilson, R.E., Devinney, E.J., 1971, *ApJ*, 166, 605

#### ERRATA FOR IBVS 5557, 5586

Sebastian Otero reported the following errors:

| IBVS No. | item                  | printed       | correct          |
|----------|-----------------------|---------------|------------------|
| 5557     | identifier (NSV 233)  | GSC 0013-0919 | GSC 0013-0976    |
| 5586     | filter (NSV $15024$ ) | 13.20(12.80)  | $13.20(12.80)^*$ |

Number 5725

Konkoly Observatory Budapest 11 September 2006 *HU ISSN 0374 - 0676* 

## THE BRIGHT CEPHEID V411 LACERTAE

SZABADOS, L.

Konkoly Observatory of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest XII, Hungary; e-mail: szabados@konkoly.hu

Photometric variability of V411 Lacertae (HD 213233, HIP 110968, SAO 34498) was first detected by the Tycho instrument during the Hipparcos project (Woitas, 1997). Surprisingly enough, variability of such a bright star had escaped the observers' attention before. There are three such bright (between 7-8 mag. in V) Cepheids discovered from the photometric data of this astrometric satellite: CK Cam, V898 Cen, and V411 Lac. While the first two have been observed more or less regularly since then, no more recent observational data are available on V411 Lac. There exist, however, several earlier photometric data obtained between October 1981 and January 1982 whose mean value (averaged from two to four observations) is V = 9<sup>m</sup>80 (Scharlach and Craine, 1983). Because the real value is 7<sup>m</sup>80, this figure is either a typographic error or the result of a misidentification (both the V - R and V - I colour indices assigned to SAO 34498 are too red for a Cepheid).

In the discovery paper, Woitas (1997) reported a 2<sup>d</sup>91 periodicity. This value was then refined in the Hipparcos Catalogue (ESA, 1997) to be 2.90816 days. In order to have more information (light curve in more than one colour, precise pulsation period and its possible changes), V411 Lacertae was put on the photometric observational program of monitoring bright northern Cepheids in the Konkoly Observatory.

The new photometric observations were obtained with the 50 cm Cassegrain telescope located at Piszkéstető Mountain Station, equipped with a refrigerated photoelectric photometer. The observations were made through UBV filters of Johnson's system. 34 observations were obtained on 31 nights between 1997 and 2004. HD 213159 served as the comparison star whose constancy was regularly checked against the brightness of HD 213243. Moreover, Hipparcos photometry also testifies photometric constancy of this star (HIP 110924). The instrumental magnitude differences have been converted into the standard photometric system using the average transformation coefficients determined for the V magnitude, B - V and U - B colour indices by observing photometric standard stars. The following magnitudes were used for the comparison star, HD 213159:  $V = 7^{\text{m}}_{\text{m}}73, B - V = 0^{\text{m}}_{\text{m}}0, \text{ and } U - B = -0^{\text{m}}_{\text{m}}34$  (Scharlach and Craine, 1983). The individual observational data are listed in Table 1. The internal accuracy of the photometric data is better than  $0^{m}_{..}01$  in V and B bands and is about  $0^{m}_{..}01$  in U. The phased light curve in V band, the B - V and U - B phase curves are shown plotted in Figures 1-3, respectively. The photometric data have been folded on the period value of 2.908269, obtained from the O - C diagram as discussed below.

| m JDHel.   | V     | B - V | U - B | m JDHel.   | V     | B - V | U - B |
|------------|-------|-------|-------|------------|-------|-------|-------|
| 2400000+   | [mag] | [mag] | [mag] | 2400000+   | [mag] | [mag] | [mag] |
| 50749.2969 | 7.709 | 0.697 | -     | 52198.3900 | 7.826 | 0.788 | 0.341 |
| 50749.3804 | 7.720 | 0.686 | -     | 52199.4228 | 7.855 | 0.785 | 0.321 |
| 50750.2973 | 7.865 | 0.764 | -     | 52200.3657 | 7.681 | 0.708 | 0.286 |
| 50750.3841 | 7.877 | 0.794 | -     | 52589.2790 | 7.831 | 0.752 | 0.319 |
| 50751.2700 | 7.836 | 0.748 | -     | 52618.3074 | 7.839 | 0.760 | 0.324 |
| 50751.3396 | 7.810 | 0.736 | -     | 52619.2581 | 7.705 | 0.702 | 0.294 |
| 50832.2514 | 7.918 | 0.769 | -     | 52620.2554 | 7.806 | 0.807 | 0.372 |
| 51052.4423 | 7.810 | 0.762 | -     | 52673.2423 | 7.928 | 0.780 | 0.365 |
| 51758.4083 | 7.674 | 0.704 | 0.289 | 52901.4175 | 7.697 | 0.688 | 0.313 |
| 51759.4032 | 7.845 | 0.794 | 0.358 | 52902.3468 | 7.844 | 0.799 | 0.362 |
| 51838.3429 | 7.955 | 0.821 | 0.363 | 52903.3790 | 7.821 | 0.754 | 0.315 |
| 51839.3167 | 7.741 | 0.724 | 0.287 | 52904.3444 | 7.683 | 0.713 | 0.299 |
| 51840.3195 | 7.719 | 0.723 | 0.318 | 52906.3452 | 7.802 | 0.740 | 0.314 |
| 52194.4521 | 7.700 | 0.705 | 0.285 | 52948.3702 | 7.747 | 0.732 | 0.336 |
| 52195.3596 | 7.788 | 0.771 | 0.332 | 53266.3669 | 7.900 | 0.815 | 0.387 |
| 52197.3657 | 7.695 | 0.705 | 0.291 | 53286.3753 | 7.868 | 0.795 | 0.370 |

Table 1. New photometric observations of V411 Lacertae

Table 2. O - C residuals for V411 Lacertae

| Normal Max                 | E    | O - C   | Band                      | Source       |
|----------------------------|------|---------|---------------------------|--------------|
| ${ m JD}_{\odot}~2400000+$ |      | [day]   |                           |              |
| 47995.0192                 | -210 | +0.0181 | $\mathrm{H}_{\mathrm{P}}$ | Hipparcos    |
| 48256.7478                 | -120 | +0.0026 | $\mathrm{H}_{\mathrm{P}}$ | Hipparcos    |
| 48605.7357                 | 0    | -0.0018 | $\mathrm{H}_{\mathrm{P}}$ | Hipparcos    |
| 48969.2470                 | 125  | -0.0241 | $\mathrm{H}_{\mathrm{P}}$ | Hipparcos    |
| 50798.5727                 | 754  | +0.0004 | V                         | present pape |
| 52031.6791                 | 1178 | +0.0007 | V                         | present pape |
| 52860.5396                 | 1463 | +0.0046 | V                         | present pape |



Figure 1. The V light curve of V411 Lacertae



Figure 2. The B - V colour index curve of V411 Lacertae



Figure 3. The U - B colour index curve of V411 Lacertae

Availability of the Hipparcos photometric data covering about three years as well as our new data distributed in almost a decade, allow the construction of an O-C diagram. The seasonal normal maxima were determined using the well covered Hipparcos normal light curve. The O-C residuals obtained are listed in Table 2 with respect to the ephemeris:

$$\begin{aligned} C &= 2448605.7375 + 2^{\text{d}}908269 \times E. \\ &\pm .0064 \quad \pm .000008 \end{aligned}$$

The value of the period appearing in this ephemeris was obtained from the least squares fit to the O - C residuals (using equal weights). The new value of the pulsation period is somewhat longer and more precise than that deduced from the Hipparcos data alone.

Future observations of V411 Lac are important, since as is seen in Fig. 1, the light curve shows some excessive scatter which cannot be explained by observational uncertainties. The pulsation period of V411 Lac is well within the range where double-mode pulsation occurs among Galactic Cepheids. Therefore, observers having an access to small photometric telescopes in the northern hemisphere are urged to monitor closely V411 Lacertae already in this observing season.

Acknowledgements: This work was supported by the Hungarian OTKA grant T 046207.

References:

ESA, 1997, The Hipparcos Catalogue, ESA SP-1200 Scharlach, W.W.G., Craine E.R., 1983, *PASP*, **95**, 876 Woitas, J., 1997, *IBVS*, No. 4444

## ERRATA FOR IBVS 5425, 5431, 5455, 5458, 5489, 5500, 5532, 5586, 5700

| IBVS No. | $\operatorname{item}$             | $\operatorname{printed}$         | correct                       |
|----------|-----------------------------------|----------------------------------|-------------------------------|
| 5425     | identifier (BD $-4^{\circ}2739$ ) | 1RXS J0950391.1-053029           | 1 RXS J095039.1-053029        |
| 5431     | $RA (BD + 20^{\circ}2890)$        | $13^{ m h}53^{ m m}53^{ m s}848$ | $13^{ m h}53^{ m m}13 m .848$ |
| 5455     | Decl. (GSC 4709-1250)             | -00 18 05.4                      | $-01 \ 18 \ 05.4$             |
| 5458     | identifier (FASTT 1195)           | GSC 0449-0455                    | GSC 0449-0456                 |
| 5458     | Epoch column header               | 2400000                          | 2450000                       |
| 5489     | identifier                        | GSC 7758-1126                    | GSC 7758-1162                 |
| 5500     | identifier $(\# 5)$               | GSC 3328-0163                    | GSC 6328-0163                 |
| 5532     | identifier $(NSV 14532)$          | HD $214505$                      | HD 220345                     |
| 5586     | identifier (NSV 20599)            | HIP 80022                        | HIP 80222                     |
| 5586     | identifier (NSV 1916)             | GSC 8959-0532                    | $GSC \ 1859-0532$             |
| 5700     | identifier $(\# 44)$              | $GSC \ 4207-1658$                | GSC 4433-1658                 |

Geert Hoogeveen reported the following errors in various IBVS issues:

Number 5726

Konkoly Observatory Budapest 12 September 2006 *HU ISSN 0374 - 0676* 

# PHOTOMETRIC ANALYSIS OF THE W UMa TYPE BINARY V566 OPHIUCHI

DEĞİRMENCİ, Ö.L.

Ege University Observatory, 35100, Bornova, İzmir, Turkey, e-mail: omer.degirmenci@ege.edu.tr

The variability of V566 Ophiuchi (BD +05°3547) was discovered by Hoffmeister (1935). According to Binnendijk (1970), the system is an A-type W UMa eclipsing binary. Important photoelectric light curves exist in the literature are: B, V light curves obtained by Binnendijk (1959), Bookmyer (1969, 1976) and Niarchos et al. (1993) and ultraviolet ( $\lambda$  2585–3200 band) light curve obtained with IUE satellite by Eaton (1986).

The photometric solutions of the system were given by Binnendijk (1965), Bookmyer (1969, 1976), Mochnacki & Doughty (1972), Hutchings & Hill (1973), Berthier (1975), Nagy (1977), Van Hamme & Wilson (1985), Eaton (1986), Niarchos et al. (1993) and Niarchos & Manimanis (2003). These solutions give the values of photometric mass ratio in the range  $0.23 < q_{\rm ptm} < 0.24$ .

Radial velocities of the system were published by Heard (1965), McLean (1983), Hill et al. (1989) and Pribulla et al. (2006). The first spectroscopic mass ratio of the system was given by Heard (1965) as  $q_{\rm sp} = 0.34$  but McLean (1983) found  $q_{\rm sp} = 0.24 \pm 0.03$  which agrees well with the photometric mass ratio derived previously. Later Van Hamme & Wilson (1985) reanalyzed the radial velocity curves of McLean by taking into account the proximity and eclipsing effects and obtained  $q_{\rm sp} = 0.216 \pm 0.018$ . Hill et al. (1989) obtained new radial velocity curves based on reticon observations and found  $q_{\rm sp} = 0.266 \pm 0.006$ . They obtained the mean spectral type of the system as F2 and mean effective temperature as 6700 K using the mean reddening in the field. Lastly, Pribulla et al. (2006) obtained  $q_{\rm sp} = 0.263 \pm 0.012$  using the BF (broadening function) extraction technique and the rotational-profile fitting. They also obtained the spectral classification of the system as F4V, indicates a slightly later spectral type than that found by Hill et al. (1989).

The observations of V566 Oph were carried from June 18 to 21 (four nights) at the TÜBITAK National Observatory (TUG) using 40-cm (F/12.5) reflector and on July 24 at the Ege University Observatory (EUO) with the 48-cm (F/13) Cassegrain telescope in 1997. The SSP5 photometers were used at both observatory; the observations were made in U, B, V, R filters at TUG and in B, V, R filters at EUO. A total of 201, 232, 234 and 233 observational points were obtained in U, B, V and R filters, respectively. Differential measurements were made using BD+04°3553 as a comparison and BD+04°3556 as a check star. The differential magnitudes, in the sense variable minus comparison, were corrected for atmospheric extinction and the times of individual observations were reduced to the Sun's center. The extinction coefficients were determined for each night from the

observations of the comparison and the color effect on the atmospheric extinction was taken into account.

The unpublished differential magnitudes in U, B, V and R filters are available on request from the author. The instrumental differential U - B, B - V and V - R color and the U, B, V, R light curves of the system are also plotted against the orbital phases in Fig. 1. As seen from the figure the levels of maxima I and II are almost equal to each other in B, V, R light curves while in U band the system is slightly brighter at maximum II than that at maximum I.



Figure 1. Observed differential (a) color and (b) light curves of V566 Oph. The upper panel shows the observed U - B, B - V and V - R color curves while the bottom panel shows computed light curves among the observations

We used the Wilson-Devinney method (Wilson & Devinney, 1971; Wilson, 1994) to analyze the light curves. The analyses were made in MODE 3 which corresponds to over-contact configurations. The temperature of the primary component was taken from Popper (1980) as 7000 K, corresponding to F2 spectral type (Hill et al., 1989). The logarithmic limb darkening coefficients were used in the computations. Assuming a solar chemical composition and log g = 4.25, bolometric and monochromatic limb darkening coefficients were taken from Claret (2000). The bolometric albedos  $A_h$  and  $A_c$  were set to be equal to 0.5 and synchronized rotation ( $F_h = F_c = 1.0$ ) was assumed. The solutions were obtained with model atmosphere approximation and multiple reflections were assumed. The results are given in Table 1 and the agreements of the computed curves with the observed light curves are shown in Fig. 1. For comparison, the results obtained by Van Hamme & Wilson (1985) (H&W85), in which they also used the Wilson-Devinney method, are also presented in Table 1. The parameters obtained in the solution are in good agreement with those of van Hamme and Wilson.

| Parameter               | This study                                 | H&W85                        |
|-------------------------|--------------------------------------------|------------------------------|
| Dahift                  | $\frac{1}{0.0015 \pm 0.0002}$              | 0.0001                       |
| FSIIII                  | $-0.0015 \pm 0.0002$                       | 0.0001                       |
| $i ({ m degree})$       | $80.8\pm0.2$                               | $80.32\pm0.17$               |
| $x_h = x_c$             | 0.786~(U),~0.770~(B),~0.674~(V),~0.596~(R) | $0.564 \ (B), \ 0.452 \ (V)$ |
| $A_h = A_c$             | 0.5                                        | 0.5                          |
| $g_h = g_c$             | $0.39\pm0.06$                              | $0.399 \pm 0.030$            |
| $T_h$                   | 7000 K                                     | $7000 { m K}$                |
| $T_c$                   | $6902\pm19~{\rm K}$                        | $6881\pm9~{\rm K}$           |
| $\Omega_h = \Omega_c$   | $2.288\pm0.004$                            | $2.2575 \pm 0.0026$          |
| q                       | $0.2389 \pm 0.0007$                        | $0.23686 \pm 0.00084$        |
| $L_h/(L_h+L_c)_U$       | $0.792 \pm 0.005  (U)$                     | -                            |
| $L_h/(L_h+L_c)_B$       | $0.792 \pm 0.004~(B)$                      | $0.7901 \pm 0.0023$          |
| $L_h/(L_h+L_c)_V$       | $0.789 \pm 0.003~(V)$                      | $0.7879 \pm 0.0019$          |
| $L_h/(L_h+L_c)_R$       | $0.788 \pm 0.002~(R)$                      | -                            |
| $r_h \ (\mathrm{mean})$ | $0.519\pm0.001$                            | $0.5278 \pm 0.0010$          |
| $r_c ~({\rm mean})$     | $0.275 \pm 0.002$                          | $0.2848 \pm 0.0014$          |
| $\sum W(O-C)^2$         | 0.0020                                     | <u> </u>                     |

Table 1: Comparison of the photometric results with those of Van Hamme & Wilson (1985)

Table 2: The absolute parameters of the components

| Parameter                   | Present work   | H&W85 | NEA93 |
|-----------------------------|----------------|-------|-------|
| $M_h/M_{\odot}$             | $1.41\pm0.18$  | 1.40  | 1.56  |
| $M_c/M_{\odot}$             | $0.34\pm0.08$  | 0.33  | 0.41  |
| $R_h/R_{\odot}$             | $1.45\pm0.07$  | 1.47  | 1.51  |
| $R_c/R_{\odot}$             | $0.77\pm0.04$  | 0.79  | 0.86  |
| $(T_e)_h$ (K)               | $7000\pm100$   | 7000  | —     |
| $(T_e)_c$ (K)               | $6902 \pm 100$ | 6881  | -     |
| $\log(L_h/L_{\odot})$       | $0.65\pm0.04$  | 0.66  | 0.62  |
| $\log(L_c/L_{\odot})$       | $0.09\pm0.04$  | 0.10  | 0.12  |
| $\log g_h \ (\mathrm{cgs})$ | $4.26\pm0.10$  | _     | —     |
| $\log g_c \ (\mathrm{cgs})$ | $4.19\pm0.10$  | _     |       |

Van Hamme & Wilson (1985) solved the radial velocity curves of McLean (1983) and found the semi-major axis of the relative orbit of V566 Oph as  $2.788 \pm 0.097 R_{\odot}$ . Using this value and the photometric parameters given in Table 1 (column 2), the absolute parameters of the components were obtained and presented in Table 2 together with those given by Van Hamme & Wilson (1985) and Niarchos et al. (1993) (NEA93). According to the Hipparcos Catalogue, the B - V color of the system is  $0.449 \pm 0.025$ . So, I have estimated the errors on the temperatures of the components as about 100 K using the above value in Popper (1980) table. The large errors in the absolute parameters are due to uncertainties in the determination of radial velocities. If we take into account Kopal's theoretical approach (Kopal, 1978) for W UMa systems,  $L \sim M^{2\beta}$  with  $\beta = 0.49$ , our results seem to be more acceptable.

References:

Berthier, E., 1975, *A&A*, **40**, 237 Binnendijk, L., 1959, *AJ*, **64**, 65 Binnendijk, L., 1965, *AJ*, **70**, 209

- Binnendijk, L., 1970, Vistas in Astr., 12, 217
- Bookmyer, B.B., 1969, AJ, 74, 1197
- Bookmyer, B.B., 1976, PASP, 88, 473
- Claret, A., 2000, A&A, **363**, 1081
- Eaton, J.A., 1986, AcA, 36, 275
- Heard, J.F., 1965, *JRASC*, 59, 258
- Hill, G., Fisher, W.A., Holmgren, D., 1989, A&A, 218, 152
- Hoffmeister, C., 1935, AN, 255, 401
- Hutchings, J.B., Hill, G., 1973, ApJ, 179, 539
- Kopal, Z., 1978, Astrophysics and Space Science Library, 68, 1, Dynamics of Close Binary Systems, Dordrecht, D. Reidel Publishing Co.
- McLean, B.J., 1983, MNRAS, 204, 817
- Mochnacki, S.W., Doughty, N.A., 1972, MNRAS, 156, 51
- Nagy, T.A., 1977, PASP, 89, 366
- Niarchos, P.G., Manimanis, V.N., 2003, A&A, 405, 263
- Niarchos, P.G., Rovithis-Livaniou, H., Rovithis, P., 1993, Ap&SS, 203, 197
- Popper, D.M., 1980, ARA&A, 18, 115
- Pribulla, T., Rucinski, S.M., Lu, W., Mochnacki, W., Conidis, G., Blake, R.M., DeBond, H., Thomson, J.R., Pych, W., Ogloza, W., Siwak, M., 2006, astro-ph/0605357
- Van Hamme, W., Wilson, R.E., 1985, A&A, 152, 25
- Wilson, R.E., 1994, PASP, 106, 921
- Wilson, R.E., Devinney, E.J., 1971, ApJ, 166, 605

#### ERRATUM FOR IBVS 5714

The true shape of the eclipsing binary light curve and the modified, correct period of V1898 Cyg was already published in IBVS 5699/76 (2005, July 20) by Caton & Smith (http://www.konkoly.hu/cgi-bin/IBVS?5699#76).

Number 5727

Konkoly Observatory Budapest 19 September 2006 *HU ISSN 0374 - 0676* 

# $BVR_CI_C$ OBSERVATIONS OF THE DWARF NOVA AH Her DURING 2005

SPOGLI, C.<sup>1,2</sup>; CIPRINI, S.<sup>1,3</sup>; FIORUCCI, M.<sup>1</sup>; CAPEZZALI, D.<sup>1,2</sup>; MANCINELLI, V.<sup>2</sup>; BRUNOZZI, P.<sup>2</sup>; FAGOTTI, P.<sup>2</sup>; NUCCIARELLI, G.<sup>1</sup>; TOSTI, G.<sup>1</sup>; ROCCHI, G.<sup>2</sup>

<sup>1</sup> Physics Dept and Astronomical Observatory, University of Perugia, Via A. Pascoli, 06123 Perugia, Italy

<sup>2</sup> Porziano Astronomical Observatory, Via Santa Chiara 2, 06081 Assisi, PG, Italy

<sup>3</sup> Tuorla Astronomical Observatory, University of Turku, Väisäläntie 20, 21500 Piikkiö, Finland

AH Her belongs to the subclass of dwarf novae (DNe) named by the group prototype Z Cam. DNe in general are cataclysmic variable stars characterized by the presence of sudden increases of brightness (2–5 mag, outbursts) in the optical light curve, and consist of a white dwarf (primary) star accreting matter from a red dwarf (mass donor), which is in contact with its Roche lobe. Outburst intervals for each object are quasi-periodic, but within the DN family, intervals can range from days to decades. In particular stars like AH Her (Z Cam subclass) display intervals of outbursts as well as phases of steady brightness (known as standstill stages). AH Her varies in magnitude between V = 14.7 to V = 13.9 at minimum, while in the outburst the star may reach the value of V = 11.3. During the standstill stages the brightness value is swinging about V = 12.0 magnitude (Ritter & Kolb, 1998). The recurrence time  $(T_c)$  between two outbursts varies of 7–27 days (for a review see Spogli et al., 2001, and references therein). In particular an increase of  $T_c$  accompanied by a slow brightening of the mean V magnitude was reported recently by Šimon (2004), while accurate radial velocity determinations of the AH Her system can be found in North et al. (2002).

| Table 1                 |                |                |                |                |  |  |
|-------------------------|----------------|----------------|----------------|----------------|--|--|
|                         | B              | V              | $R_C$          | $I_C$          |  |  |
| Maximum outburst        | $11.77\pm0.08$ | $11.84\pm0.05$ | $11.74\pm0.05$ | $11.67\pm0.04$ |  |  |
| Minimum of light        | $15.07\pm0.12$ | $14.52\pm0.05$ | $14.09\pm0.05$ | $13.48\pm0.05$ |  |  |
| Mean values at minimum  | $14.2\pm0.3$   | $13.9\pm0.3$   | $13.5\pm0.2$   | $13.1\pm0.1$   |  |  |
| Mean values at maximum  | $12.1\pm0.2$   | $12.0\pm0.1$   | $11.9\pm0.1$   | $11.8\pm0.1$   |  |  |
| Outburst amplitude      | 3.2            | 2.6            | 2.4            | 1.8            |  |  |
| Decay rates $(mag/day)$ | $0.27\pm0.12$  | $0.22\pm0.05$  | $0.18\pm0.05$  | $0.16\pm0.05$  |  |  |
|                         | B - V          | $V - R_C$      | $R-I_c)$       | $V - I_C$      |  |  |
| Mean values at Maximum  | -0.03          | 0.08           | 0.14           | 0.23           |  |  |
| Mean Values at Minimum  | 0.36           | 0.34           | 0.49           | 0.83           |  |  |



Figure 1.  $BVR_CI_C$  light curves of AH Her from 25 May 2005 to 30 September 2005 assembled with our original data (filled circle symbols). The available V-band data from the AFOEV database are also reported for a comparison (open square symbols). Time expressed in Julian Days is reported in the X-axis



Figure 2. The V - I colour index variations of AH Her plotted against the V magnitude. The star appears to be redder in quiescence and data are well represented by a simple linear trend



Figure 3. The B - V colour index variations of AH Her plotted against the V magnitude. The scattering in the data (owed to the smaller precision in B data when the star is faint, and possibly to some loop patterns) is evident, even if the bluer when brighter general trend is still identifiable

In this brief paper we present results of our intermittent observations of AH Her made in the year 2005 at the Astronomical Observatory of the Perugia University and the Porziano amateur observatory. Observations were performed in the B, V (Johnson), and  $R_C$ ,  $I_C$  (Cousins) photometric bands. Instruments and photometric techniques used at the Perugia Observatory are already described in Spogli et al. (1998), while the calibration stars are reported in Spogli et al. (2001). In the Porziano Observatory we used a 0.30-m Schmidt–Cassegrain f/6.5 telescope, equipped with an AP-32ME CCD camera (Kodak 3200-ME, 2184 × 1470 pixels). AH Her was monitored from 26/05/2005 to 30/09/2005 for a total of 48 photometric nights (Figure 1). Our data are reported in Table 2, which is available electronically through the IBVS website as file 5727-t2.tex, while in Table 1 the main characteristics of our dataset (improving the values reported in our previous publications) are outlined. We computed the continuum spectral slope using the same procedure described in Spogli et al. (1998). We found a value ranging from 0.6 to 1.1, with a mean value equal to  $0.7 \pm 0.2$ .

The results presented here are part of a project devoted to gain multi-band light curves of a sample of DNe, with the goal of increasing the historical database and information on this class of cataclysmic variables which can help to constrain theoretical models. Figure 2 and Figure 3 show the colour-indices versus magnitude diagrams for AH Her: obviously the star is bluer during the outburst and redder in quiescence stages, but it is worth to note that the data seem to be well represented by a linear regression (at least for the V-Iplot, characterized by higher precision photometric data), and there is not a loop typical of other DNe (see, for example, Spogli et al., 2000a, 2000b). On the other hand the larger scattering in the B-V plot might also be produced by few loop patterns produced during outburst. A study of this behaviour is underway, even if the statistics is poor.

References:

- North, R.C., Marsh, T.R., Kolb, U., Dhillon, V.S., Moran, C.K.J., 2002, MNRAS, 337, 1215
- Ritter, H., Kolb, U., 1998, A&AS, 129, 83
- Šimon, V., 2004, Balt. Astron., 13, 101
- Spogli, C., Fiorucci, M., Tosti, G., 1998, A&AS, 130, 485
- Spogli, C., Fiorucci, M., Raimondo, G., 2000a, IBVS, No. 4977
- Spogli, C., Fiorucci, M., Raimondo, G., 2000b, IBVS, No. 4978
- Spogli, C., Fiorucci, M., Tosti, G., Raimondo, G., 2001, IBVS, No. 5147

Number 5728

Konkoly Observatory Budapest 11 October 2006 *HU ISSN 0374 - 0676* 

# TIMES OF MINIMA OF THE ECLIPSING BINARY SYSTEM EG CEPHEI

DIAMOND, B.<sup>1,4</sup>; TRI, L.<sup>2,4</sup>; SIEVERS, J.<sup>2</sup>; ANGIONE, R.<sup>3</sup>

<sup>1</sup> California State University, Chico

 $^2$ San Diego Mesa College

<sup>3</sup> Astronomy Department, San Diego State University; e-mail: angione@mintaka.sdsu.edu

 $^4$  NSF REU student

#### Observatory and telescope:

Mount Laguna Observatory, 0.4-m and 0.6-m reflectors

**Detector:** 

Photoelectric (see Remarks)

#### Method of data reduction:

Standard photoelectric differential photometry reduction

## Method of minimum determination:

Kwee–van Woerden algorithm

| Observed star(s): |      |                        |                      |                                   |  |  |  |
|-------------------|------|------------------------|----------------------|-----------------------------------|--|--|--|
| Star name         | GCVS | Coordinates (J2000)    |                      | $\operatorname{Comp./check}$      |  |  |  |
|                   | type | $\mathbf{R}\mathbf{A}$ | Dec                  | $\operatorname{star}(\mathrm{s})$ |  |  |  |
| EG Cep            | EB   | $20^{h}15^{m}56.8$     | $+76^{\circ}48'36''$ | HD 193834, HD 194400              |  |  |  |

| Times of a | minima:             |       |      |        |      |
|------------|---------------------|-------|------|--------|------|
| Star name  | Time of min.        | Error | Type | Filter | Rem. |
|            | ${ m HJD}~2400000+$ |       |      |        |      |
| EG Cep     | 2439004.7837        | 3     | Р    | UBV    |      |
|            | 2439137.6721        | 4     | Р    | UBV    |      |
|            | 2439290.7096        | 3     | Р    | UBV    |      |
|            | 2439292.8882        | 5     | Р    | UBV    |      |
|            | 2439297.7895        | 3     | Р    | UBV    |      |
|            | 2447732.8995        | 3     | Р    | uvb    |      |
|            | 2448067.8419        | 3     | Р    | uvby   |      |
|            | 2448121.7603        | 3     | Р    | uvby   |      |

#### **Remarks:**

The first five times of minima were determined from data in an unpublished master's thesis (Cochran, 1967). Cochran's observations were made at Mount Laguna Observatory using a 0.4-meter reflecting telescope with a dry ice cooled 1P21 photomultiplier, the UBV system, and a charge-integrating photometer. His comparison and check stars were HD 193834 and BD+76°787 respectively. EG Cephei was also observed during 1989 and 1990 at Mount Laguna Observatory with the 24-inch Smith reflector. The 1989 observations were made using a photometer employing an EMI 6256 photomultiplier, while the 1990 observations were made with a Hammamatsu R943-02 tube, both were thermoelectrically cooled. This photometry was carried out in pulse-counting mode using the Strömgren uvby system. Comparison and check stars were HD 194400 (F8, V = 9.72) and HD 194130 (F2, V = 8.87) respectively.

## Acknowledgements:

Acknowledgements: This work was supported by the NSF Research Experience for Undergraduates (REU) Program. Use was made of the SIMBAD data base.

Reference:

Cochran, G.V., 1967, Masters Thesis, San Diego State University

#### ERRATUM FOR IBVS 5607

The correct identifier for NSV 10478 is USNO 0900-12232367.

The Editors

#### ERRATUM FOR IBVS 5681

One of the eccentric eclipsers in IBVS 5681 is wrongly identified as GSC 3682-0837 =USNO-A2.0 1425-02073759 = 2MASS J01315922+5926474.

The eclipsing binary with a period of 6.1772 d is actually GSC 3682-0736 = UCAC250208296 = 2MASS J01215916+5833136 at  $01^{h}21^{m}59^{s}16 + 58^{\circ}33^{m}13''_{...}6$  (2000.0). The spectral type is B0.

P. Dubovsky, S. Otero

Number 5729

Konkoly Observatory Budapest 11 October 2006 *HU ISSN 0374 - 0676* 

# NEW TIMES OF MINIMA OF SOME ECLIPSING BINARY STARS

ÇAKIRLI, Ö.; GÜNGÖR, C.; PINAR, A.; ÇAMURDAN, C.M.

Ege University Observatory, Bornova, TR-35100, İzmir, Turkey; e-mail: omur.cakirli@ege.edu.tr

#### Observatory and telescope:

TUG 40-cm Cassegrain–Schmidt telescope of the Turkish National Observatory, (TUG40);

EUO A35-cm Fork-Mounts telescope of the Ege University Observatory, (A35)

| Detector: | Apogee camera, Peltier cooling, Ap7p chip, $12''_{3} \times 12''_{3}$ |
|-----------|-----------------------------------------------------------------------|
|           | FOV, $512 \times 512$ pixels;                                         |
|           | Apogee camera, Peltier cooling, KAF1600E2 chip, 9".0 $\times$         |
|           | 13''.8 FOV, $1024 \times 1536$ pixels                                 |

## Method of data reduction:

Reduction of the CCD frames was made with  $IRAF^{\dagger}$  software

#### Method of minimum determination:

Kwee-van Woerden method (Kwee & van Woerden, 1956)

#### Remarks:

We present 23 minima times of 4 eclipsing binaries. In the Remarks column of Times of Minima table, telescopes used in the observations are given.

## Acknowledgements:

We are grateful to TÜBİTAK National Observatory and Ege University Observatory for use of the telescope time allocation and other facilities.

<sup>&</sup>lt;sup>†</sup>IRAF is distributed by National Optical Astronomy Observatory, which is operated by the Association of University for Research in Astronomy, inc. (AURA) under cooperative agreement with the NSF (National Science Foundation).

| Times of minima: |              |        |      |        |       |  |
|------------------|--------------|--------|------|--------|-------|--|
| Star name        | Time of min. | Error  | Type | Filter | Rem.  |  |
|                  | HJD 2400000+ |        |      |        |       |  |
| TT Cet           | 53271.3394   | 0.0002 | Ι    | BVR    | TUG40 |  |
|                  | 53271.5839   | 0.0002 | II   | BVR    | TUG40 |  |
|                  | 53272.3117   | 0.0002 | Ι    | BVR    | TUG40 |  |
|                  | 53273.5278   | 0.0002 | II   | BVR    | TUG40 |  |
|                  | 53274.5002   | 0.0002 | II   | BVR    | TUG40 |  |
|                  | 53275.4714   | 0.0003 | II   | BVR    | TUG40 |  |
|                  | 53276.4449   | 0.0002 | II   | BVR    | TUG40 |  |
| MZ Del           | 53213.3062   | 0.0006 | Ι    | BV     | TUG40 |  |
|                  | 53214.4165   | 0.0003 | II   | BV     | TUG40 |  |
|                  | 53215.5123   | 0.0005 | Ι    | BV     | TUG40 |  |
|                  | 53217.3404   | 0.0002 | II   | BV     | TUG40 |  |
|                  | 53218.4438   | 0.0004 | Ι    | BV     | TUG40 |  |
| CP Psc           | 53258.4313   | 0.0007 | Ι    | UBV    | A35   |  |
|                  | 53264.5859   | 0.0004 | Ι    | UB     | A35   |  |
|                  | 53265.2682   | 0.0002 | Ι    | UBV    | A35   |  |
|                  | 53279.2917   | 0.0007 | II   | UBV    | A35   |  |
|                  | 53287.5058   | 0.0005 | II   | UBV    | A35   |  |
|                  | 53290.2337   | 0.0005 | II   | UBV    | A35   |  |
| MX Del           | 53208.5316   | 0.0001 | Ι    | V      | A35   |  |
|                  | 53232.3124   | 0.0006 | II   | BV     | A35   |  |
|                  | 53237.5008   | 0.0004 | II   | BV     | A35   |  |
|                  | 53254.3537   | 0.0005 | Ι    | BV     | A35   |  |
|                  | 53267.3259   | 0.0005 | Ι    | UBV    | A35   |  |

Reference:

Kwee, K.K., & van Woerden, H., 1956, Bull. Astron. Inst. Neth., 12, 327

# ERRATUM FOR IBVS 5709

The times of observations of BH Aur were erroneously given in IBVS 5709. The normal maximum time of BH Aur in Table 2 should correctly read as 2453755.264 [HJD].

The light curve data files have also been corrected and are available from the IBVS website.

The authors

Number 5730

Konkoly Observatory Budapest 20 October 2006 *HU ISSN 0374 - 0676* 

#### GSC 02799-00902: A NEW $\delta$ Sct VARIABLE

ZHANG, X.B.; ZHANG, R.X.

National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China

GSC 02799-00902 ( $\alpha_{2000} = 01^{h}01^{m}26^{s}55$ ,  $\delta_{2000} = +38^{\circ}03'13''_{0}$ ) is a never-studied faint star ( $V \simeq 11.1 \text{ mag}$ ) in the field of the eclipsing binary WZ And. In the 2004 observation season, we have made a time-series CCD photometry of WZ And (Zhang & Zhang, 2006). GSC 2799-902 was observed as one of the reference stars. Nelson (2000) also used this star as comparison for WZ And. During data reductions, we found that it could be a new pulsating variable star. To identify its spectral type as well as the variation classification, spectroscopy of the star was performed later. In this paper, we report the discovery of this new variable. A preliminary discussion on the properties and pulsating nature of the star is given.

Our photometric observations were carried out at the Xinglong Station of NAOC on three nights between 12 and 14 October, 2004. The data were collected using the 85-cm reflector with a AP7P 512 × 512 CCD camera. A single Johnson V filter was used. The exposure time was 60 seconds for each measurement. The star GSC 02799-00396 was used as the comparison star. The spectroscopy was made on 25 Oct., 2004 with the 2.16-m telescope at the Xinglong Station of NAOC. A Zeiss universal spectrograph was used with a Tektronix 1 k × 1 k CCD and a 200 Å mm<sup>-1</sup> grating. A He-Ar lamp was used for wavelength calibration.

The light curves obtained for the star are shown in Fig. 1. It shows that GSC 02799-00902 is obviously an oscillating variable with an observed total V amplitude of about 0.04 mag. The spectrum presented in Fig. 2 suggests a spectral type of F0-F2 for the star. Therefore we conclude that GSC 02799-00902 could be a new  $\delta$  Scuti variable.

To search for periodicity of the light variations, a Fourier analysis was performed by using the algorithm Period98 (Sperl, 1998). The step-by-step amplitude spectra produced from the data are shown in Fig. 3. The Fourier analysis reveals a dominant pulsating frequency  $f_1$  at 9.9046 c/d. Another frequency could be detected at  $f_2 = 5.3804$  c/d, though the S/N ratio is relatively low. It seems that this star could be oscillating with multi-period. The main results of the frequency analysis are given in Table 1. With the 2-frequency model, a fitting to the observed light curve is made as shown in Fig. 1.



Figure 1. Observed V-band light curve of GSC 02799-00902, fitted with a 2-frequency model



Figure 2. The 1-D spectrum of GSC 02799-00902



Figure 3. The spectral window and amplitude spectrum of GSC 02799-00902 photometric data


|   | Table 1. | Results | of the | frequency | analysis |   |
|---|----------|---------|--------|-----------|----------|---|
| - | (        | (1)     | 1      | 10 (      |          | _ |

| $\operatorname{Name}$ | Frequency $(c/d)$ | Ampl./2 (mmag) | Phase     | S/N |
|-----------------------|-------------------|----------------|-----------|-----|
| $f_1$                 | 9.9046            | 7.84           | 0.5962629 | 8.4 |
| $f_2$                 | 5.3804            | 4.12           | 0.5564623 | 3.8 |

References:

Nelson, R.H., 2000,  $I\!BV\!S\!\!$  No. 4840

- Sperl, M., 1998, Manual for Period98 (V1.0.4). A period search-program for Windows and Unix, http://www.univie.ac.at/tops/Period98/
- Zhang, X.B., Zhang, R.X., 2006, New A., 11, 339

## COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 5731

Konkoly Observatory Budapest 13 November 2006 *HU ISSN 0374 - 0676* 

# PHOTOELECTRIC MINIMA OF SELECTED ECLIPSING BINARIES AND MAXIMA OF PULSATING STARS

(BAV MITTEILUNGEN NO. 178)

#### HÜBSCHER, J.; PASCHKE, A.; WALTER, F.

Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. (BAV), Munsterdamm 90, 12169 Berlin, Germany

In this 55th compilation of BAV results, photoelectric observations obtained in the years 2005 till 2006 are presented on 915 variable stars giving 1722 minima and maxima. All moments of minima and maxima are heliocentric. The errors are tabulated in column ' $\pm$ '. The values in column 'O - C' are determined without incorporation of non-linear terms. The references are given in the section 'Remarks'. All information about photometers and filters are specified in the column 'Rem'. The observations were made at private observatories. The photoelectric measurements and all the lightcurves with evaluations can be obtained from the office of the BAV for inspection.

| Table 1: | Eclipsing | binaries |
|----------|-----------|----------|
|----------|-----------|----------|

|          |            |       | F6                  |              |              |         |     |     |
|----------|------------|-------|---------------------|--------------|--------------|---------|-----|-----|
| Variable | Min JD 24  | ±     | Obs                 | 0 <b>–</b> C |              |         | Fil | Rem |
| RT And   | 53661.3525 | .0005 | $_{ m JU}$          | -0.0074      |              | GCVS 85 |     | 2)  |
|          | 53716.3829 | .0026 | $_{ m JU}$          | -0.0083      | $\mathbf{s}$ | GCVS 85 |     | 2)  |
| TT And   | 53662.4564 | .0006 | RAT RCR             | -0.0791      |              | GCVS 85 | -Ir | 1)  |
| WZ And   | 53658.5125 | .0001 | RAT RCR             | +0.0358      |              | GCVS 85 | -Ir | 1)  |
| XZ And   | 53335.2573 | .0002 | MON                 | +0.1427      |              | GCVS 85 | V   | 1)  |
|          | 53681.3712 | .0003 | $_{ m JU}$          | +0.1507      |              | GCVS 85 |     | 2)  |
|          | 53715.3055 | .0002 | RAT RCR             | +0.1530      |              | GCVS 85 | -Ir | 1)  |
| AA And   | 53657.4414 | .0003 | $\operatorname{AG}$ | -0.0965      |              | GCVS 85 | -Ir | 1)  |
| AB And   | 53612.5591 | .0019 | $\mathbf{PC}$       | -0.0165      |              | GCVS 85 | -Ir | 7)  |
|          | 53613.5531 | .0022 | $\mathbf{PC}$       | -0.0182      |              | GCVS 85 | -Ir | 7)  |
|          | 53619.5285 | .0022 | $\mathbf{PC}$       | -0.0168      |              | GCVS 85 | -Ir | 7)  |
|          | 53631.4768 | .0029 | $\mathbf{PC}$       | -0.0166      |              | GCVS 85 | -Ir | 7)  |
|          | 53633.4678 | .0006 | $_{ m JU}$          | -0.0170      |              | GCVS 85 |     | 2)  |
|          | 53649.3968 | .0016 | $\mathbf{PC}$       | -0.0188      |              | GCVS 85 | -Ir | 7)  |
|          | 53656.3685 | .0004 | $\operatorname{AG}$ | -0.0169      |              | GCVS 85 | V   | 1)  |
|          | 53656.5353 | .0007 | $\operatorname{AG}$ | -0.0160      | $\mathbf{s}$ | GCVS 85 | V   | 1)  |
| AD And   | 53653.3470 | .0010 | $_{ m JU}$          | -0.0294      |              | GCVS 85 |     | 2)  |
| AP And   | 53618.4586 | .0004 | $\operatorname{AG}$ |              |              |         | -Ir | 1)  |
|          | 53660.5213 | .0002 | RAT RCR             |              |              |         | -Ir | 1)  |
| BD And   | 49646.5962 | .0013 | ${ m MS}$           | +0.0094      |              | GCVS 85 |     | 1)  |
|          | 49688.2583 | .0013 | MS                  | +0.0103      |              | GCVS 85 |     | 1)  |
|          | 49948.4109 | .0013 | MS                  | +0.0118      |              | GCVS 85 |     | 1)  |
|          | 49954.4298 | .0013 | ${ m MS}$           | +0.0130      |              | GCVS 85 |     | 1)  |
|          | 50081.2650 | .0008 | ${ m MS}$           | +0.0130      |              | GCVS 85 |     | 1)  |

Table 1: (cont.)

| Variable               | Min ID 94                            | 1     |                     | <u> </u>                     |              |                         | E:1        | Dam        |
|------------------------|--------------------------------------|-------|---------------------|------------------------------|--------------|-------------------------|------------|------------|
| Variable               | $\frac{\text{Min JD 24}}{502465002}$ | ±     | UDS<br>MS           | $\frac{U - U}{142}$          |              | COVE of                 | F11        | 1)         |
| DD Allu                | 50340.3092                           | .0002 | MS                  | +0.0142                      |              | GCVS 85                 |            | 1)         |
|                        | 52055 4210                           | 0003  | BAT BCB             | +0.0147                      |              | GCVS 85                 | Īr         | 1)         |
|                        | 53268 3486                           | 0002  | MS FR               | $\pm 0.0033$<br>$\pm 0.0142$ |              | GCVS 85                 | -11        | 6)         |
|                        | 53406 2942                           | 0017  | SCI                 | +0.0142<br>+0.0150           |              | GCVS 85                 |            | 2)         |
| BL And                 | 53657 6266                           | 0040  | AG                  | -0.0032                      |              | GCVS 85                 | -Ir        | 1)         |
| DK And                 | 52929.5210                           | .0007 | MZ                  | -0.0002                      |              | BAVR 55.106ff           | V          | 18)        |
| DS And                 | 53619.3284                           | .0006 | DIE                 | +0.0013                      |              | GCVS 85                 | •          | 11)        |
|                        | 53706.2323                           | .0008 | DIE                 | +0.0005                      |              | GCVS 85                 |            | 11)        |
| EP And                 | 53612.5360                           | .0001 | RAT RCR             | +0.0694                      |              | GCVS 85                 | -Ir        | $1)^{'}$   |
|                        | 53746.2958                           | .0002 | WTR                 | +0.0696                      |              | GCVS 85                 | -Ir        | 12)        |
| EX And                 | 53618.5298                           | .0004 | AG                  |                              |              |                         | -Ir        | 1)         |
| GZ And                 | 53701.2770                           | .0009 | $_{ m JU}$          | -0.0049                      |              | GCVS 85                 |            | 2)         |
| LO And                 | 53618.3704                           | .0007 | AG                  | +0.0879                      | $\mathbf{s}$ | GCVS 85                 | -Ir        | 1)         |
|                        | 53618.5617                           | .0003 | $\operatorname{AG}$ | +0.0888                      |              | GCVS 85                 | -Ir        | 1)         |
|                        | 53637.5844                           | .0002 | RAT RCR             | +0.0689                      |              | GCVS 85                 | -Ir        | 1)         |
|                        | 53655.4633                           | .0002 | RAT RCR             | +0.0477                      |              | GCVS 85                 | -Ir        | 1)         |
| QW And                 | 53662.2684                           | .0001 | $\operatorname{AG}$ |                              |              |                         | -Ir        | 1)         |
|                        | 53662.5172                           | .0020 | $\operatorname{AG}$ |                              |              |                         | -Ir        | 1)         |
| QX And                 | 53600.5261                           | .0004 | RAT RCR             |                              |              |                         | -Ir        | 1)         |
|                        | 53601.5559                           | .0003 | RAT RCR             |                              |              |                         | -Ir        | 1)         |
| V376 And               | 53655.3697                           | .0080 | $_{ m JU}$          |                              |              |                         |            | 2)         |
| V404 And               | 53683.3742                           | .0004 | $_{ m JU}$          |                              |              |                         |            | 2)         |
|                        | 53706.3588                           | .0008 | $_{ m JU}$          |                              |              |                         |            | 2)         |
| AF Aps                 | 53544.368                            | .002  | HND                 |                              |              |                         | -Ir        | 19)        |
| BH Aps                 | 53923.378                            | .002  | HND                 |                              |              |                         | -Ir        | 19)        |
| CX Aqr                 | 53681.3462                           | .0021 | DIE                 | +0.0028                      |              | GCVS 85                 |            | 11)        |
| OO Aql                 | 53173.5372                           | .0022 | MON                 | +0.0286                      | $\mathbf{s}$ | GCVS 85                 | V          | 1)         |
|                        | 53530.5719                           | .0001 | SIR                 | +0.0308                      |              | GCVS 85                 | -lr        | 8)         |
| 1794C A 1              | 53609.3790                           | .0004 | MON                 | +0.0323                      | $\mathbf{s}$ | GCVS 85                 | V          | 1)         |
| V 340 Aql<br>V 417 Aql | 53548.4012                           | .0001 | DC                  | -0.0106                      | -            | GUVS 80<br>DAVD 22 1590 | - 11<br>Tm | 8)<br>7)   |
| V417 Aql               | 52610 207                            | .0033 |                     | -0.0313                      | s            | CCVS %                  | -11<br>In  | 1)         |
| V640 Aql               | 40160 5463                           | 0013  | MS                  | -0.040                       |              | GCVS 85                 | - 11       | 1)         |
| V040 Aqi               | 49109.5405                           | 0013  | MS                  | +0.0819<br>$\pm0.1315$       | e            | GCVS 85                 |            | 1)         |
|                        | 49895 4832                           | 0012  | MS                  | +0.1286                      | 5            | GCVS 85                 |            | 1)         |
|                        | 49897 4461                           | 0011  | MS                  | +0.1266<br>+0.1266           | s            | GCVS 85                 |            | 1)         |
|                        | 49898.5709                           | .0013 | MS                  | +0.1286                      | s            | GCVS 85                 |            | 1)         |
|                        | 49952.4479                           | .0013 | MSR                 | +0.1200<br>+0.1112           | s            | GCVS 85                 |            | 1)         |
|                        | 49997.3483                           | .0013 | MS                  | +0.0996                      | s            | GCVS 85                 |            | 1)         |
|                        | 50667.4408                           | .0014 | MS                  | -0.1195                      | s            | GCVS 85                 |            | 1)         |
|                        | 51432.3804                           | .0005 | MS                  | -0.0874                      |              | GCVS 85                 |            | 1)         |
| V724 Aql               | 53921.4554                           | .0006 | AG                  | -0.0240                      | $\mathbf{s}$ | IBVS 3555               | -Ir        | 1)         |
| V1341 Agl              | 53654.3613                           | .0010 | QU                  |                              |              |                         | V          | 2)         |
| V1355 Aql              | 53555.4517                           | .0005 | ĂG                  |                              |              |                         | -Ir        | 1)         |
| V1430 Aql              | 53621.3933                           | .0004 | $\mathbf{QU}$       | -0.0055                      |              | AJ 119,2391             | V          | 3)         |
| 1                      | 53635.3723                           | .0004 | QU                  | -0.0061                      |              | AJ 119,2391             | V          | 3)         |
|                        | 53653.2834                           | .0010 | QU                  | -0.0063                      | $\mathbf{s}$ | AJ 119,2391             | V          | 2)         |
|                        | 53918.4579                           | .0003 | QU                  | -0.0068                      |              | AJ 119,2391             | V          | 3)         |
| V1542 Aql              | 53612.3523                           | .0005 | WTR                 | +0.0040                      |              | IBVS 5161               | -Ir        | 12)        |
| -                      | 53613.3998                           | .0005 | WTR                 | +0.0077                      | $\mathbf{s}$ | IBVS $5161$             | -Ir        | 12)        |
| G472 Aql               | 53633.4375                           | .0010 | $\mathrm{QU}$       |                              |              |                         | V          | 3)         |
|                        | 53635.3950                           | .0010 | $\mathrm{QU}$       |                              |              |                         | V          | <b>3</b> ) |
| CU Ara                 | 53572.404                            | .003  | HND                 |                              |              |                         | -Ir        | 19)        |
|                        | 53576.562                            | .003  | HND                 |                              |              |                         | -Ir        | 19)        |
| RafV057 Ara            | 53152.391                            | .004  | HND DVY             |                              |              |                         |            | 15)        |
| SS Ari                 | 53330.3190                           | .0004 | MON                 | -0.0125                      |              | GCVS 85                 | V          | 1)         |
|                        | 53409.2829                           | .0014 | ATB                 | -0.0144                      | $\mathbf{S}$ | GCVS 85                 |            | 1)         |
|                        | 53681.2900                           | .0002 | RAT RCR             | -0.0230                      | $\mathbf{s}$ | GCVS 85                 | -Ir        | 1)         |
|                        | 53683.3202                           | .0003 | DIE                 | -0.0228                      | $\mathbf{s}$ | GCVS 85                 |            | 11)        |

Table 1: (cont.)

| Variable        | Min ID 94   | 1       | Oha                      | <u>,</u>     |              |             | E:1       | Dama                    |
|-----------------|-------------|---------|--------------------------|--------------|--------------|-------------|-----------|-------------------------|
|                 | MIII JD 24  | ±       |                          | 0 - 0        |              | COVC of     | F 11      | $\frac{\text{Rem}}{11}$ |
| ss An           | 53707.2731  | .0004   | DIE                      | -0.0236      | s            | GCVS 85     | 37        | 11)                     |
| DI A            | 53764.3131  | .0006   | MON                      | -0.0256      |              | GCVS 85     | V         | 1)                      |
| RY Aur          | 53426.4116  | .0003   | RATRCR                   | +0.0270      |              | GCVS 85     | -lr       | 1)                      |
| RZ Aur          | 53755.3392  | .0006   | AG                       | -0.1607      |              | GCVS 85     | -lr       | 1)                      |
|                 | 53764.3694  | .0004   | $\overline{\mathrm{AG}}$ | -0.1624      |              | GCVS 85     | -Ir       | 1)                      |
| WW Aur          | 53759.2722  | .0016   | $_{ m JU}$               | -0.0005      |              | GCVS 85     |           | 2)                      |
| ZZ Aur          | 53813.3343  | .0002   | $\operatorname{AG}$      | +0.0150      |              | GCVS 85     | -Ir       | 1)                      |
| AP Aur          | 53440.3615  | .0011   | $_{ m JU}$               | +0.0526      | $\mathbf{s}$ | IBVS 3942   |           | 2)                      |
|                 | 53745.5477  | .0037   | $\mathbf{PC}$            | +0.0573      | $\mathbf{s}$ | IBVS 3942   | -Ir       | 7)                      |
| BC Aur          | 53755.4890: | .0020   | $\overline{\mathrm{AG}}$ | -0.6651      |              | GCVS 85     | -Ir       | 1)                      |
| CG Aur          | 53411.3446  | .0010   | JU                       | -0.0005      |              | GCVS 85     |           | 2)                      |
| 001101          | 53716 3652  | 0021    | SCI                      |              |              | GCVS 85     |           | 2)                      |
| CI Aur          | 53764 4389  | 0005    | FR                       | +0.1193      |              | CCVS 85     | Īr        | $\frac{2}{10}$          |
|                 | 52760 2844  | .0005   | FD                       | $\pm 0.1120$ |              | 001505      | -11<br>Tn | 10)                     |
| DO Aui          | 53709.2044  | .0104   | гn<br>Mon                | + 0.0911     | _            | A A E 4 907 | -11       | 10)                     |
| EM Aur          | 53658.6012  | .0018   | MON                      | +0.0311      | s            | AA 54.207   | V         | 1)                      |
|                 | 53659.5118  | .0020   | MON                      | +0.0308      |              | AA 54.207   | V         | 1)                      |
|                 | 53671.3383  | .0062   | $\mathbf{FR}$            | +0.0147      | $\mathbf{s}$ | AA $54.207$ | -Ir       | 10)                     |
| EO Aur          | 53744.3353  | .0080   | $_{ m JU}$               | +0.0365      |              | GCVS 85     |           | 2)                      |
| FN Aur          | 53764.3737  | .0011   | $\operatorname{AG}$      | -0.7076      |              | GCVS 85     | -Ir       | 1)                      |
| FO Aur          | 53765.5973  | .0036   | $\mathbf{FR}$            | -0.0778      | $\mathbf{s}$ | GCVS 85     | -Ir       | 10)                     |
| FP Aur          | 53755.3590  | .0014   | $\operatorname{AG}$      | -0.0690      |              | GCVS 85     | -Ir       | 1)                      |
| FW Aur          | 53762.4667  | ,0002   | AG                       | -0.0410      |              | GCVS 85     | -Tr       | 1)                      |
| GX Aur          | 53750 5010  | .0080   | PC                       | +0.0429      |              | BAVM 69     | _Tr       | 7)                      |
| HII Aur         | 53683 4075  | 0005    | BAT BCB                  | -0.0261      |              | CCVS 85     | Ir        | 1)                      |
|                 | 53083.4073  | .0000   | MC ED                    | -0.0201      |              |             | -11       | 1)<br>C)                |
| nw Aur          | 55052.0229  | .0003   | MSFR                     | +0.0146      |              | IDVS 5010   | Ŧ         | 0)<br>7)                |
|                 | 53750.3625  | .0058   | PC                       | +0.0127      |              | IBVS 5016   | -1r       | ()                      |
| KU Aur          | 53335.3754  | .0013   | MON                      | +0.0252      |              | GCVS 85     | V         | 1)                      |
|                 | 53360.4476  | .0005   | MON                      | +0.0254      |              | GCVS 85     | V         | 1)                      |
|                 | 53633.5996  | .0005   | MON                      | +0.0250      |              | GCVS 85     | V         | 1)                      |
|                 | 53715.4124  | .0002   | RAT RCR                  | +0.0240      |              | GCVS 85     | -Ir       | 1)                      |
| MO Aur          | 53765.5486  | .0044   | $\mathbf{FR}$            | +0.0886      |              | BAVM 68     | -Ir       | 10)                     |
| MU Aur          | 53765.3680  | .0004   | $\operatorname{AG}$      |              |              |             | -Ir       | 1)                      |
| NN Aur          | 50153.3582  | .0003   | AG                       |              |              |             |           | 1)                      |
|                 | 50488.4731  | .0001   | AG                       |              |              |             |           | 1)                      |
|                 | 51576 5111  | 0003    | AG                       |              |              |             |           | 1)                      |
|                 | 51576 5113  | 0010    | FB                       |              |              |             |           | <b>a</b> )              |
|                 | 51057 3251  | 0000    |                          |              |              |             |           | 1)                      |
|                 | 51957.5251  | .0002   | AG                       |              |              |             | т.,       | 1)                      |
|                 | 52253.2720  | .0002   | FR                       |              |              |             | -1r       | 9)                      |
|                 | 52279.3843  | .0004   | AG                       |              |              |             | -1r       | 1)                      |
|                 | 52340.3130  | .0002   | $\overline{AG}$          |              |              |             | -lr       | 1)                      |
|                 | 52651.4926  | .0004   | $\mathbf{FR}$            |              |              |             |           | 9)                      |
|                 | 52947.4392  | .0010   | $\operatorname{AG}$      |              |              |             |           | 1)                      |
|                 | 52947.4407  | .0006   | $\mathbf{FR}$            |              |              |             |           | 10)                     |
|                 | 52949.6148  | .0006   | $\operatorname{AG}$      |              |              |             |           | 1)                      |
|                 | 52949.6186  | .0005   | $\mathbf{FR}$            |              |              |             |           | 10)                     |
|                 | 53082.3540  | .0010   | AG                       |              |              |             | -Jr       | 1)                      |
| V364 Aur        | 53683 3554  | 0002    | MS FB                    |              |              |             |           | 6)                      |
| $V432 \Delta m$ | 53377 3165  | 0025    | MON                      | _0.0013      |              | IBVS 5210   | V         | 1)                      |
| SS Boo          | 53863 5330  | 0040    |                          | 1 0 0 9 0 9  |              | CCAG &      | ۷<br>۲۰۰  | 1)                      |
|                 | 00002,000U  | .0012   | AG                       | +0.0303      |              | GOVD 00     | -11       | 1)<br>2)                |
| 00 D00<br>DU D  | 00004.4490  | .0010   |                          | +0.0229      |              | GUV 5 85    | т         | ∠)<br>1)                |
| I U B00         | 03401.4464  | .0002   | KAT KCK                  | +0.0499      |              | GUVS 85     | -1r       | 1)                      |
|                 | 53519.5458  | .0018   | AG                       | +0.0490      |              | GCVS 85     | -Ir       | 1)                      |
|                 | 53765.5145  | .0003   | MS FR                    | +0.0462      | $\mathbf{s}$ | GCVS 85     |           | 1)                      |
| ГҮ Воо          | 53450.5406  | .0002   | RAT RCR                  | -0.0151      | $\mathbf{s}$ | BAVM 68     | -Ir       | 1)                      |
|                 | 53862.3554  | .0001   | $\operatorname{AG}$      | -0.0206      |              | BAVM 68     | -Ir       | 1)                      |
|                 | 53862.5126  | .0005   | $\operatorname{AG}$      | -0.0220      | $\mathbf{s}$ | BAVM 68     | -Ir       | 1)                      |
| TZ Boo          | 53862.3726  | ,0012   | AG                       | -0.0537      | s            | BAVM 68     | -Tr       | 1)                      |
| 00              | 53862 5216  | .0006   | AG                       | -0.0533      | ~            | BAVM 68     | _Tr       | 1)                      |
|                 | 53898 4775  | 0003    | AG                       | -0.0534      |              | BAVM 68     | _Tr       | 1)                      |
|                 | 50000.4110  | .0000   | MCED                     | 10.4060      |              | DUANT OF    | -11       | -)<br>6)                |
| IIW Boo         | 53767 / X2/ | 101.010 |                          |              |              |             |           |                         |

Table 1: (cont.)

| Variable                  | Min JD 24                              | ±                       | Obs                 | O - C   |              |               | Fil                | Ren              |
|---------------------------|----------------------------------------|-------------------------|---------------------|---------|--------------|---------------|--------------------|------------------|
| YY Boo                    | 53849.4673                             | .0020                   | AG                  | -0.1035 |              | GCVS 85       | -Ir                | 1)               |
| AC Boo                    | 53464.4246                             | .0002                   | RAT RCR             | +0.0803 |              | GCVS 85       | -lr                | 1)               |
|                           | 53541.4350                             | .0005                   | QU                  | -0.0914 |              | GCVS 85       | В                  | 3)               |
|                           | 53566.4588                             | .0002                   | QU                  | -0.0900 |              | GCVS 85       | В                  | 3)               |
|                           | 53620.3832                             | .0004                   | QU                  | -0.0873 |              | GCVS 85       | V                  | 3)               |
|                           | 53895.4705                             | .0004                   | QU                  | -0.0712 | $\mathbf{s}$ | GCVS 85       | V                  | 3)               |
|                           | 53898.4647                             | .0003                   | QU                  | -0.0727 |              | GCVS 85       | V                  | 3)               |
|                           | 53901.4619                             | .0005                   | QU                  | -0.0711 | $\mathbf{s}$ | GCVS 85       | В                  | 3)               |
| AD Boo                    | 53461.4575                             | .0004                   | RAT RCR             | +0.0244 |              | GCVS 85       | -Ir                | 1)               |
|                           | 53522.4864                             | .0020                   | SCI                 | +0.0236 |              | GCVS 85       |                    | 2)               |
| AR Boo                    | 53351.5425                             | .0016                   | MS FR               |         |              |               |                    | 6)               |
|                           | 53351.7109                             | .0002                   | MS FR               |         |              |               |                    | 6)               |
|                           | 53463.4508                             | .0002                   | MS FR               |         |              |               |                    | 6)               |
|                           | 53813.4999                             | .0018                   | $\operatorname{AG}$ |         |              |               | -Ir                | 1)               |
| BG Boo                    | 53509.5285                             | .0083                   | SCI                 |         |              |               |                    | 2)               |
|                           | 53510.4660                             | .0083                   | SCI                 |         |              |               |                    | 2)               |
| BW Boo                    | 53897.4777                             | .0017                   | $_{ m JU}$          | -0.0110 |              | GCVS 85       | -Ir                | 2)               |
| CV Boo                    | 52415.4396                             | .0010                   | MZ                  | -0.0091 | $\mathbf{s}$ | BAVR 49,117   | -Ir                | 3)               |
|                           | 53764.6989                             | .0005                   | MON                 | -0.0104 | $\mathbf{s}$ | BAVR 49,117   | V                  | 1)               |
| DU Boo                    | 53509.4731                             | .0025                   | $_{ m JU}$          |         |              |               |                    | 2)               |
|                           | 53814.6006                             | .0031                   | SCI                 |         |              |               |                    | 2)               |
| EF Boo                    | 53911.4751                             | .0013                   | $_{\rm JU}$         |         |              |               |                    | 2)               |
| ET Boo                    | 53860.4049                             | .0020                   | $\operatorname{AG}$ |         |              |               | -Ir                | 1)               |
| EW Boo                    | 53862.4740                             | .0048                   | $\operatorname{AG}$ |         |              |               | -Ir                | 1)               |
| FY Boo                    | 53813.4963                             | .0016                   | $\operatorname{AG}$ |         |              |               | -Ir                | 1)               |
|                           | 53813.6148                             | .0009                   | $\operatorname{AG}$ |         |              |               | -Ir                | 1)               |
| GT Boo                    | 53862.5191                             | .0018                   | $\operatorname{AG}$ |         |              |               | -Ir                | 1)               |
| U1200-07442402 Boo        | 52722.3765                             | .0011                   | $\operatorname{AG}$ |         |              |               |                    | 1)               |
|                           | 52723.3911                             | .0022                   | $\operatorname{AG}$ |         |              |               |                    | 1)               |
|                           | 52724.4064                             | .0015                   | $\operatorname{AG}$ |         |              |               |                    | 1)               |
|                           | 52725.4133                             | .0021                   | AG                  |         |              |               |                    | 1)               |
|                           | 52726.4155:                            | .0034                   | $\operatorname{AG}$ |         |              |               |                    | 1)               |
|                           | 52730.4701                             | .0017                   | $\operatorname{AG}$ |         |              |               |                    | 1)               |
|                           | 52820.5252                             | .0012                   | AG                  |         |              |               |                    | 1)               |
|                           | 52858.4779                             | .0001                   | $\operatorname{AG}$ |         |              |               |                    | 1)               |
|                           | 53110.4247                             | .0025                   | AG                  |         |              |               |                    | 1)               |
|                           | 53151.4015                             | .0030                   | AG                  |         |              |               |                    | 1)               |
| Y Cam                     | 53867.4840                             | .0009                   | AG                  | +0.3015 |              | GCVS 85       | -Ir                | 1)               |
| AK Cam                    | 53867.4460                             | .0006                   | $\operatorname{AG}$ | +0.0217 |              | BAVM 69       | -Ir                | 1)               |
| AO Cam                    | 53760.3358                             | .0007                   | JU                  | -0.0200 |              | GCVS 85       |                    | $2^{-})$         |
| AT Cam                    | 53767,3818                             | .0035                   | JU                  | -0.0197 |              | BAVR 32. 36ff |                    | $\frac{2}{2}$    |
| FN Cam                    | 53846.3928                             | .0005                   | AG                  |         |              | ,,            | -Ir                | 1)               |
| TX Cnc                    | 53408.4319                             | ,0002                   | RAT RCB             | +0.0343 | s            | GCVS 85       | -Tr                | 1)               |
| WW Cnc                    | 53752.5475                             | .0024                   | PC                  | -0.0649 |              | BAVR 32. 36ff | -Ir                | $\frac{1}{7}$    |
| XZ Cnc                    | 53764.4691                             | .0090                   | HMB                 | 510010  |              |               | v                  | 4)               |
|                           | 53764.4692                             | .0040                   | HMB                 |         |              |               | $\dot{\mathbf{C}}$ | 4)               |
|                           | 53764 4795                             | 0050                    | HMR                 |         |              |               | ۳                  | 4)               |
|                           | 53807 3556                             | 0050                    | HMR                 |         |              |               | C                  | ±)<br>⊿)         |
|                           | 53807 3566                             | 0000                    | HMR                 |         |              |               | Re                 | ±)<br>/)         |
|                           | 53807 3797                             | 0000                    |                     |         |              |               | $\frac{115}{V}$    | 1)<br>1          |
|                           | 53808 4927                             | 0090                    | нир                 |         |              |               | č                  | 1)<br>1          |
|                           | 5000.4201                              | .0030                   |                     |         |              |               |                    | 4)<br>4)         |
|                           | 0000.4272                              | .0040                   | пмв                 |         |              |               | кs<br>V            | 4)               |
| VV Cno                    | 0000.4002                              | .0040                   |                     |         |              |               | V<br>T.            | 4)               |
|                           | 03403.4057<br>F 201 F 445C             | .0015                   | KAT KCK             | 0 1 455 |              | IDVG 90F0     | -1r                | 1)               |
|                           | 53515,4456                             | .0005                   | FK<br>MO ED         | -0.1455 | $\mathbf{s}$ | 1BVS 3859     | -1r                | 10)              |
|                           | 53406.2904                             | .0006                   | MS FR               | -0.0041 | $\mathbf{s}$ | IBVS 5260     |                    | 6)               |
| HN Unc                    | F0400 1075                             | <i>,</i> , <i>,</i> ,   | 11111/              | 0 0059  |              | IRVS 5260     |                    | 2)               |
| HN Chc                    | 53463.4055                             | .0002                   | PKK                 | -0.0055 |              | 10 05 0200    |                    | ~                |
| HN Cnc<br>GSC1927.862 Cnc | 53463.4055<br>53464.4323               | .0002<br>.0002          | PRK                 | -0.0055 |              | 1015 0200     |                    | 2)               |
| HN Cnc<br>GSC1927.862 Cnc | 53463.4055<br>53464.4323<br>53721.4698 | .0002<br>.0002<br>.0004 | PRK<br>QU           | -0.0055 |              | 11 15 0200    | V                  | $2) \\ 2) \\ 2)$ |

Table 1: (cont.)

|           |                          |       |                     | com.,        |              |                    |             |                   |
|-----------|--------------------------|-------|---------------------|--------------|--------------|--------------------|-------------|-------------------|
| Variable  | Min JD 24                | ±     | Obs                 | 0 – C        |              |                    | Fil         | Rem               |
| RV CVn    | 53534.4131               | .0017 | SCI                 |              |              |                    |             | 2)                |
| RY CMi    | 53765.4132               | .0001 | $\operatorname{AG}$ | -0.2439      |              | BAVM 127           | -Ir         | 1)                |
| TT CMi    | 53768.5081               | .0010 | $\operatorname{AG}$ |              |              |                    | -Ir         | 1)                |
| TU CMi    | 53768.4826               | .0016 | $\operatorname{AG}$ |              |              |                    | -Ir         | 1)                |
| TX CMi    | 53768.3487               | .0009 | AG                  |              |              |                    | -Ir         | 1)                |
|           | 53768.5416               | .0011 | AG                  |              |              |                    | -Ir         | 1)                |
| XZ CMi    | 53813 3672               | 0003  | AG                  | -0.0107      |              | GCVS 85            | _Ir         | 1)                |
| AC CMi    | 53408 3550               | 0000  | BAT BCB             | 10.1566      |              | CCVS 85            | -11<br>Tr   | 1)                |
| AU CM:    | 55400.5555<br>E9769 EE11 | .0002 |                     | +0.1300      | a            | GCVD 85            | -11<br>Tm   | 1)                |
| AK OMI    | 55706.5511               | .0021 | AG                  | +0.2771      |              | GCVS 65            | -11'<br>T   | 1)                |
| BB CMI    | 53813.4100               | .0006 | AG                  | -0.0860      |              | GUVS 85            | -1r         | 1)                |
| BF CMi    | 53768.4321               | .0017 | AG                  |              |              |                    | -1r         | 1)                |
| CX CMi    | 51924.4334               | .0004 | MS FR               | +0.0001      |              | IBVS 5366          |             | 6)                |
|           | 51965.3861               | .0001 | MS FR               | +0.0010      | $\mathbf{S}$ | 1BVS 5366          |             | 6)                |
|           | 53673.5785               | .0004 | MS FR               | -0.0029      |              | IBVS 5366          |             | 6)                |
| TW Cas    | 53633.4997               | .0024 | SCI                 | -0.0166      |              | GCVS 85            |             | 2)                |
|           | 53746.3402               | .0005 | $\mathrm{QU}$       | -0.0137      |              | GCVS 85            | V           | 2)                |
| ZZ Cas    | 53653.4972               | .0008 | $\operatorname{AG}$ | -0.0162      |              | GCVS 85            | -Ir         | 1)                |
|           | 53660.3368               | .0010 | $\mathbf{AG}$       | -0.0160      | $\mathbf{s}$ | GCVS 85            | -Ir         | 1)                |
| AT Cas    | 53660.2965               | .0011 | $\operatorname{AG}$ |              |              |                    | -Ir         | 1)                |
| AX Cas    | 53215.3644               | .0002 | MS FR               | -0.0771      |              | GCVS 85            |             | 6)                |
| BH Cas    | 53717 3954               | 0020  | AG                  | 5.5111       |              | 20.000             | _Tr         | 1)                |
| BS Cas    | 53745 4700               | 0056  | PC                  | _0.0140      |              | IBVS 4778          | -11<br>. Tr | 1)<br>7)          |
| BW Cas    | 53670 9707               | 0010  |                     | -0.0140      |              | 1019 4110          | -11         | 1)<br>9)          |
| DW Cas    | 00070.0797<br>E98E0 9711 | .0010 | JU                  | 10.0510      |              | COMO or            | т.          | ∠)<br>1)          |
| UW Cas    | 53052.3711               | 1000. | KAT KCR             | +0.0516      |              | GUVS 85            | -1r         | 1)                |
|           | 53660.3435               | .0005 | AG                  | +0.0529      |              | GCVS 85            | -lr         | 1)                |
|           | 53660.5028               | .0009 | $\mathbf{AG}$       | +0.0528      | $\mathbf{S}$ | GCVS 85            | -lr         | 1)                |
|           | 53660.6620               | .0006 | $\operatorname{AG}$ | +0.0526      |              | GCVS 85            | -Ir         | 1)                |
|           | 53675.3292               | .0001 | RAT RCR             | +0.0529      |              | GCVS 85            | -Ir         | 1)                |
| DN Cas    | 53657.4062               | .0035 | $_{ m JU}$          | -0.0249      |              | GCVS 85            |             | 2)                |
| DO Cas    | 53632.5148               | .0031 | SCI                 | -0.0022      |              | GCVS 85            |             | 2)                |
| DZ Cas    | 53656.4984               | .0028 | $\operatorname{AG}$ | -0.1567      | $\mathbf{s}$ | GCVS 85            | -Ir         | 1)                |
| EN Cas    | 53673.2776               | .0014 | MS FR               | +0.2779      |              | GCVS 85            |             | 6)                |
| EP Cas    | 53656 4759               | 0020  | AG                  | -0.0348      | s            | GCVS 85            | -Ir         | 1)                |
| GU Cas    | 53613 / 901              | 0003  | OU                  | -0.3063      | 5            | GCVS 85            | v           | 3)                |
| IS Cos    | 52652 2125               | 0000  | ÅC                  | 10.0585      |              | CCVS 85            | v<br>Tr     | 1)                |
| IS Cas    | 52654 2078               | 0010  | AG                  | $\pm 0.0385$ |              | GCVS 85            | -11<br>In   | 1)                |
| KL Cas    | 55054.2976               | .0010 | AG                  | -0.0142      | s            | GCVS 65<br>CCVS 65 | -11<br>T    | 1)                |
| KR Cas    | 53054.3712               | .0023 | AG                  | -0.1428      |              | GUVS 85            | -1r         | 1)                |
| MM Cas    | 53654.4119               | .0034 | AG                  | +0.0203      |              | BAVE $32, 36$ ff   | -1r         | 1)                |
| MN Cas    | 53654.5697               | .0010 | AG                  | +0.0194      | $\mathbf{s}$ | GCVS 85            | -fr         | 1)                |
|           | 53659.3537               | .0044 | $\operatorname{AG}$ | +0.0111      |              | GCVS 85            | -Ir         | 1)                |
| MR Cas    | 53220.5596               | .0008 | MS FR               |              |              |                    |             | 6)                |
| MS Cas    | 53653.4542               | .0146 | $\operatorname{AG}$ |              |              |                    | -Ir         | 1)                |
|           | 53717.3739               | .0009 | $\operatorname{AG}$ |              |              |                    | -Ir         | 1)                |
|           | 53768.3888               | .0021 | $\operatorname{AG}$ |              |              |                    | -Ir         | 1)                |
| MT Cas    | 53759.3698               | .0022 | $\operatorname{AG}$ |              |              |                    | -Ir         | 1)                |
| MV Cas    | 53660.3515               | .0011 | $\mathbf{AG}$       |              |              |                    | -Jr         | 1)                |
| NN Cas    | 53654 5647               | 0018  | AG                  |              |              |                    | _]r         | 1)                |
| NU Cas    | 53671 5389               | 0000  |                     |              |              |                    | _Tr         | 1)                |
| OR Cas    | 53660 2275               | 0010  |                     | 0.0107       |              | CCVS of            | -11<br>T    | ⊥ <i>)</i><br>1 \ |
| Un Cas    | 00000.00/0<br>59671 5405 | .0012 | AG                  | -0.0197      |              | GOAD 05<br>GOAD 05 | -1Г<br>т.   | 1)<br>1)          |
| OVC       | 03071.5495               | 0100. | AG                  | -0.0191      |              | GUVS 85            | -1r         | 1)                |
| UA Cas    | 53671.5437               | .0018 | AG                  | +0.0029      |              | GUVS 85            | -1r         | 1)                |
| PV Cas    | 53661.3827               | .0003 | $\mathbf{QU}$       | +0.0318      | $\mathbf{s}$ | AA 54.207          | V           | 3)                |
| QQ Cas    | 53768.3251               | .0012 | $\operatorname{AG}$ | +0.0965      | $\mathbf{s}$ | BAVR $35, 1$ ff    | -Ir         | 1)                |
| V336 Cas  | 53768.4501               | .0022 | $\operatorname{AG}$ |              |              |                    | -Ir         | 1)                |
| V350 Cas  | 53657.4335               | .0017 | $\operatorname{AG}$ |              |              |                    | -Ir         | 1)                |
| V359 Cas  | 53656.4147               | .0011 | $\mathbf{AG}$       | -0.0110      |              | IBVS 5016          | -Ir         | 1)                |
| V360 Cas  | 53613.5771               | .0090 | $\mathbf{PC}$       |              |              |                    | -Ir         | 7)́               |
|           | 53619.5793               | .0101 | $\mathbf{PC}$       |              |              |                    | -Ir         | 7)́               |
| V361 Cas  | 53656 3510               | .0017 | ÂĞ                  | -0.1892      |              | GCVS 85            | _Tr         | 1)                |
| , 331 Ous | E9669 E174               | 0005  |                     | _0.0210      | c            | GCVS 85            | _Tr         | <i>±)</i><br>1)   |
| V 367 Con |                          |       |                     |              | -            | NIN / N (1) (1) /  |             |                   |

Table 1: (cont.)

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |            |       |                     | )        |              |                  |     |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------|-------|---------------------|----------|--------------|------------------|-----|-----|
| $ \begin{array}{c} \mbox{Ya66} Cas \\ \hline 33666.5723 & -0003 & RAT RCR & -0.0852 & RWS 4798 & -1r & 1) \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Variable                              | Min JD 24  | ±     | Obs                 | <u> </u> |              |                  | Fil | Rem |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V366 Cas                              | 53656.5723 | .0003 | RAT RCR             | -0.0882  |              | IBVS 4798        | -Ir | 1)  |
| V368 Cas         5376.3400         .0080         JU         -0.0854         GCVS 85         -1         1           V375 Cas         53662.3582         .0011         AC         +0.177         BAVR 82, 367         -1         1           V385 Cas         53662.3582         .0011         AC         +0.2074         GCVS 85         -1         1           V416 Cas         53675.4038         .0015         AC         -1         1         1           V440 Cas         53654.5437         .0000         AG         -0.0137         BAVM 69         -1         1           V471 Cas         53716.6534         .0004         AG         -0.0135         GCVS 85         -1         1           V473 Cas         53654.5637         .0016         AG         -0.0135         BVX 4669         -1         1           V473 Cas         53654.5637         .0007         AG         -0.0135         BVX 4669         -1         1           53654.5637         .0037         AG         -0.0135         BVX 4669         -1         1           53654.5637         .0017         AG         -0.0135         BVX 4669         -1         1           53654.5637         .0037 <t< td=""><td></td><td>53671.5226</td><td>.0008</td><td><math>\operatorname{AG}</math></td><td>-0.0880</td><td><math>\mathbf{S}</math></td><td>IBVS 4798</td><td>-Ir</td><td>1)</td></t<> |                                       | 53671.5226 | .0008 | $\operatorname{AG}$ | -0.0880  | $\mathbf{S}$ | IBVS 4798        | -Ir | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V368 Cas                              | 53764.3400 | .0080 | JU                  | -0.0354  |              | GCVS 85          |     | 2)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V375 Cas                              | 53653.4421 | .0057 | $\operatorname{AG}$ | +0.1779  |              | BAVR $32, 36$ ff | -Ir | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V389 Cas                              | 53662.3582 | .0011 | $\operatorname{AG}$ | +0.2074  |              | GCVS 85          | -Ir | 1)  |
| V411 Cas         53759.4058         .0015         AG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 53672.3393 | .0002 | MS FR               | +0.2095  |              | GCVS 85          |     | 6)  |
| V446 Cas         53667.2575         .0002         MS FR         -0.0137         BAV.M 69         61           V440 Cas         536716.2534         .0006         AG         -0.0194         GCVS 85         -Ir         1)           V471 Cas         53716.6523         .0005         AG         +0.0126         s         GCVS 85         -Ir         1)           V473 Cas         53665.6687         .0016         AG         -0.0131         IBVS 4669         -Ir         1)           53665.1642         .0005         AG         -0.0131         IBVS 4669         -Ir         1)           53665.4373         .0007         AG         -0.0139         IBVS 4669         -Ir         1)           53665.6383         .0011         AG         -0.0139         IBVS 4669         -Ir         1)           53716.4584         .0019         AG         -0.0123         s         IBVS 4669         -Ir         1)           53716.4585         .0019         AG         -0.0123         s         IBVS 4669         -Ir         1)           53716.6291         .0007         AG         -0.0130         GCVS 85         -Ir         1)           54648.6237         .0017         PC <td>V411 Cas</td> <td>53759.4058</td> <td>.0015</td> <td><math>\operatorname{AG}</math></td> <td></td> <td></td> <td></td> <td>-Ir</td> <td>1)</td>                          | V411 Cas                              | 53759.4058 | .0015 | $\operatorname{AG}$ |          |              |                  | -Ir | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V445 Cas                              | 53697.2575 | .0002 | MS FR               | -0.0137  |              | BAVM 69          |     | 6)  |
| V471 Cas       53716.6533       .0004       AG       -0.0194       CCVS 85       -Ir       1)         V473 Cas       53766.6523       .0005       AG       +0.0435       GCVS 85       -Ir       1)         V473 Cas       53666.6422       .0005       AG       -0.0132       IBVS 4669       -Ir       1)         53666.6423       .0005       AG       -0.0131       IBVS 4669       -Ir       1)         53665.64509       .0007       AG       -0.0137       IBVS 4669       -Ir       1)         53656.5653       .0003       AG       -0.0137       IBVS 4669       -Ir       1)         53616.6211       .0007       AG       -0.0137       IBVS 4669       -Ir       1)         53716.6221       .0007       AG       -0.0137       IBVS 4669       -Ir       1)         53716.6323       .0016       PC       -0.05013       GCVS 85       -Ir       1)         53716.6485       .0007       AG       -0.0131       IBVS 4669       -Ir       1)         53765.653771       .0016       PC       -0.0613       GCVS 85       -Ir       1)         5364.6237       .0017       PC       -0.0613       G                                                                                                                                                                                                                                                          | V449 Cas                              | 53654.5437 | .0018 | $\operatorname{AG}$ |          |              |                  | -Ir | 1)  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V471 Cas                              | 53716.2534 | .0006 | $\operatorname{AG}$ | -0.0194  |              | GCVS 85          | -Ir | 1)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 53716.4534 | .0004 | $\operatorname{AG}$ | +0.0126  | $\mathbf{s}$ | GCVS 85          | -Ir | 1)  |
| $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 53716.6523 | .0005 | $\operatorname{AG}$ | +0.0435  |              | GCVS 85          | -Ir | 1)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V473 Cas                              | 53636.5087 | .0016 | AG                  | -0.0132  |              | IBVS 4669        | -Ir | 1)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 53651.4642 | .0005 | AG                  | -0.0143  |              | IBVS 4669        | -Ir | 1)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 53654.3736 | .0005 | $\operatorname{AG}$ | -0.0131  |              | IBVS 4669        | -Ir | 1)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 53654.5809 | .0017 | AG                  | -0.0135  | $\mathbf{s}$ | IBVS 4669        | -Ir | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 53659.3583 | .0011 | AG                  | -0.0139  |              | IBVS 4669        | -Ir | 1)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 53659.5653 | .0033 | AG                  | -0.0147  | $\mathbf{s}$ | IBVS 4669        | -Ir | 1)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 53716.2768 | .0007 | AG                  | -0.0135  |              | IBVS 4669        | -Ir | 1)  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | 53716.4858 | .0019 | AG                  | -0.0123  | $\mathbf{s}$ | IBVS 4669        | -Ir | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 53716.6921 | .0007 | $\operatorname{AG}$ | -0.0137  |              | IBVS 4669        | -Ir | 1)  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V520 Cas                              | 53656.5173 | .0015 | $\operatorname{AG}$ | +0.0462  | $\mathbf{s}$ | GCVS 85          | -Ir | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V523 Cas                              | 53648.5080 | .0016 | $\mathbf{PC}$       | -0.0502  | $\mathbf{s}$ | GCVS 85          | -Ir | 7)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 53648.6237 | .0017 | $\mathbf{PC}$       | -0.0513  |              | GCVS 85          | -Ir | 7)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 53650.3771 | .0001 | RAT RCR             | -0.0506  | $\mathbf{s}$ | GCVS 85          | -Ir | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 53661.4767 | .0001 | RAT RCR             | -0.0513  |              | GCVS 85          | -Ir | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 53661.5948 | .0002 | RAT RCR             | -0.0501  | $\mathbf{s}$ | GCVS 85          | -Ir | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 53662.2965 | .0021 | $\operatorname{AG}$ | -0.0494  | $\mathbf{s}$ | GCVS 85          | -Ir | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 53662.4097 | .0066 | $\operatorname{AG}$ | -0.0531  |              | GCVS 85          | -Ir | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 53662.5295 | .0007 | $\operatorname{AG}$ | -0.0501  | $\mathbf{s}$ | GCVS 85          | -Ir | 1)  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 53745.2570 | .0017 | $\mathbf{PC}$       | -0.0491  | $\mathbf{s}$ | GCVS 85          | -Ir | 7)  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 53745.3730 | .0019 | $\mathbf{PC}$       | -0.0500  |              | GCVS 85          | -Ir | 7)  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 53745.4916 | .0024 | $\mathbf{PC}$       | -0.0482  | $\mathbf{s}$ | GCVS 85          | -Ir | 7)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V541 Cas                              | 53650.5248 | .0002 | RAT RCR             | +0.0270  | $\mathbf{s}$ | GCVS 85          | -Ir | 1)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V702 Cas                              | 53652.4537 | .0021 | $\operatorname{AG}$ |          |              |                  | -Ir | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U1425-02081650 Cas                    | 53382.3901 | .0005 | $\operatorname{AG}$ |          |              |                  | -Ir | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 53388.3683 | .0017 | $\operatorname{AG}$ |          |              |                  | -Ir | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 53388.5297 | .0018 | $\operatorname{AG}$ |          |              |                  | -Ir | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 53409.3823 | .0013 | $\operatorname{AG}$ |          |              |                  | -Ir | 1)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 53716.3454 | .0005 | $\operatorname{AG}$ |          |              |                  | -Ir | 1)  |
| 53716.6642         .0013         AG         -Ir         1)           GSC3679.1920 Cas         53636.5414         .0002         AG         -Ir         1)           53651.3058         .0003         AG         -Ir         1)           53651.3058         .0003         AG         -Ir         1)           53654.5008         .0010         AG         -Ir         1)           53659.2893         .0012         AG         -Ir         1)           53716.3656         .0015         AG         -Ir         1)           53716.3656         .0015         AG         -Ir         1)           53716.3656         .0017         AG         1)         1)           51867.4964         .0007         AG         1)         1)           51867.4964         .0007         AG         1)         1)           52171.4348         .0012         AG         1)         1)           52179.303<:                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 53716.5052 | .0003 | $\operatorname{AG}$ |          |              |                  | -Ir | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 53716.6642 | .0013 | $\operatorname{AG}$ |          |              |                  | -Ir | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\mathrm{GSC3679.1920}\ \mathrm{Cas}$ | 53636.5414 | .0002 | $\operatorname{AG}$ |          |              |                  | -Ir | 1)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 53651.3058 | .0003 | $\operatorname{AG}$ |          |              |                  | -Ir | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 53654.5008 | .0010 | $\operatorname{AG}$ |          |              |                  | -Ir | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 53659.2893 | .0012 | $\operatorname{AG}$ |          |              |                  | -Ir | 1)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 53716.3656 | .0015 | AG                  |          |              |                  | -Ir | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GSC3675.1186 Cas                      | 51867.3498 | .0008 | AG                  |          |              |                  |     | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 51867.4964 | .0007 | AG                  |          |              |                  |     | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 51867.6458 | .0015 | AG                  |          |              |                  |     | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 52171.4348 | .0012 | $\operatorname{AG}$ |          |              |                  |     | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 52179.303: | .001  | $\operatorname{AG}$ |          |              |                  |     | 1)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | 52179.449: | .004  | $\operatorname{AG}$ |          |              |                  |     | 1)́ |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 52183.4626 | .0017 | $\operatorname{AG}$ |          |              |                  |     | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 52183.6054 | .0017 | $\operatorname{AG}$ |          |              |                  |     | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 52193.4171 | .0006 | $\operatorname{AG}$ |          |              |                  |     | 1)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 52193.5635 | .0008 | AG                  |          |              |                  |     | 1)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 52205.2993 | .0007 | $\operatorname{AG}$ |          |              |                  |     | 1)  |
| 52224.6100 .0011 AG 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | 52224.4639 | .0013 | $\operatorname{AG}$ |          |              |                  |     | 1)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | 52224.6100 | .0011 | AG                  |          |              |                  |     | 1)  |

Table 1: (cont.)

| Variable                                 | Min JD 24   | ±     | Obs                      | O - C        |              |           | Fil       | Rem           |
|------------------------------------------|-------------|-------|--------------------------|--------------|--------------|-----------|-----------|---------------|
| GSC3675.1186 Cas                         | 52308.3953  | .0005 | AG                       |              |              |           | -Tr       | 1)            |
|                                          | 52618.271   | .001  | AG                       |              |              |           | -Tr       | 1)            |
|                                          | 52618 4176  | 0006  | AG                       |              |              |           | -Tr       | 1)            |
|                                          | 52618 5681  | 0008  | AG                       |              |              |           | _Tr       | 1)            |
|                                          | 52898 /3/3  | 0007  | AG                       |              |              |           | _Ir       | 1)            |
|                                          | 52808 5821  | 0016  | AG                       |              |              |           | -11<br>Tr | 1)            |
|                                          | 52280 2620  | .0010 |                          |              |              |           | -11<br>Tn | 1)            |
|                                          | 53362.2020  | .0002 | AG                       |              |              |           | -11<br>Tm | 1)            |
|                                          | 00002.4090  | .0013 | AG                       |              |              |           | -11<br>T  | 1)            |
|                                          | 53388.3500  | .0010 | AG                       |              |              |           | -1r<br>T  | 1)            |
|                                          | 53388.4992  | .0008 | AG                       |              |              |           | - 1r      | 1)            |
|                                          | 53409.2992  | .0008 | AG                       |              |              |           | - 1r      | 1)            |
|                                          | 53636.4324  | .0024 | AG                       |              |              |           | -lr       | 1)            |
|                                          | 53636.5836  | .0002 | AG                       |              |              |           | -lr       | 1)            |
|                                          | 53651.4393  | .0020 | $\overline{\mathrm{AG}}$ |              |              |           | -Ir       | 1)            |
|                                          | 53651.5855  | .0017 | $\operatorname{AG}$      |              |              |           | -Ir       | 1)            |
|                                          | 53654.4094  | .0012 | $\operatorname{AG}$      |              |              |           | -Ir       | 1)            |
|                                          | 53654.5535  | .0015 | $\operatorname{AG}$      |              |              |           | -Ir       | 1)            |
|                                          | 53659.3089  | .0014 | $\operatorname{AG}$      |              |              |           | -Ir       | 1)            |
|                                          | 53659.4604  | .0012 | $\operatorname{AG}$      |              |              |           | -Ir       | 1)            |
|                                          | 53659.6041  | .0019 | $\operatorname{AG}$      |              |              |           | -Ir       | 1)            |
|                                          | 53716.3542  | .0008 | $\overline{\mathrm{AG}}$ |              |              |           | -Ir       | 1)            |
|                                          | 53716.5032  | .0003 | AG                       |              |              |           | -Tr       | 1)            |
|                                          | 53716.6482  | .0012 | AG                       |              |              |           | -Tr       | 1)            |
| GSC4030 2020 Cas                         | 53215 4410  | 0004  | MS FB                    |              |              |           |           | 6)            |
| 0501000.2020 005                         | 53215.5786  | 0004  | MS FR                    |              |              |           |           | 6)            |
|                                          | 53254 4031  | 0004  | MS FR                    |              |              |           |           | 6)            |
|                                          | 52627 4522  | 0002  | MS FR                    |              |              |           |           | 6)            |
| SV Con                                   | 53037.4322  | .0002 | IND                      |              |              |           |           | 4)            |
|                                          | 53660.307   | .002  |                          | 0.0111       | _            | a ava er  | т.,       | 4)<br>7)      |
| v w Cep                                  | 55012.4447  | .0075 | PC                       | -0.0111      | s            | GCVS 85   | -11<br>T  | ()            |
|                                          | 53648.3452  | .0044 | PC                       | -0.0132      | $\mathbf{s}$ | GCV 5 85  | - 1r      | ()            |
| WW Cep                                   | 53683.5828  | .0007 | AG                       | +0.0001      |              | IBVS 4131 | -lr       | 1)            |
| WZ Cep                                   | 53657.3424  | .0001 | WTR                      | -0.0636      | $\mathbf{s}$ | GCVS 85   | -lr       | 12)           |
|                                          | 53672.3705  | .0003 | WTR                      | -0.0636      | $\mathbf{s}$ | GCVS 85   | -lr       | 12)           |
| DW Cep                                   | 53639.3021  | .0005 | $\overline{\mathrm{AG}}$ | +0.4240      |              | GCVS 85   | -Ir       | 1)            |
| $\operatorname{EG}$ $\operatorname{Cep}$ | 53933.4229  | .0001 | DIE                      | +0.0139      |              | GCVS 85   |           | 19)           |
| EK Cep                                   | 53614.4469  | .0041 | $\mathbf{PC}$            | +0.0073      |              | GCVS 85   | -Ir       | 7)            |
|                                          | 53683.2620: | .0010 | $\operatorname{AG}$      | -0.0076      | $\mathbf{s}$ | GCVS 85   | -Ir       | 1)            |
| EO Cep                                   | 49939.5599  | .0008 | MS                       | +0.1644      | $\mathbf{s}$ | GCVS 85   |           | 1)            |
|                                          | 49940.4658  | .0006 | ${ m MS}$                | +0.1535      |              | GCVS 85   |           | 1)            |
|                                          | 50048.6562  | .0007 | MS                       | +0.1581      |              | GCVS 85   |           | 1)            |
|                                          | 50314.5272  | .0004 | ${ m MS}$                | +0.1487      |              | GCVS 85   |           | 1)            |
|                                          | 50679.4204  | .0009 | MS                       | +0.1439      |              | GCVS 85   |           | 1)            |
|                                          | 53257.5076  | .0002 | MS FR                    | +0.1080      |              | GCVS 85   |           | 6)            |
| IM Cep                                   | 53635.3370  | .0004 | MS FR                    |              |              |           |           | 6)            |
| 1                                        | 53671.2772  | .0003 | MS FR                    |              |              |           |           | 6)            |
| IP Cep                                   | 53683.4691  | .0026 | AG                       | -0.0091      | s            | IBVS 5016 | -Tr       | 1)            |
| LP Cep                                   | 53544 4710  | 0004  | AG                       |              |              |           | - Ir      | 1)            |
| NN Cen                                   | 53934 4529  | 0050  | JU                       | +0.0127      |              | GCVS 85   |           | $\frac{1}{2}$ |
| NS Cen                                   | 53639 6134  | 0011  | AG                       | $\pm 0.0121$ | e            | GCVS 85   | _ Ir      | 1)            |
| V338 Cen                                 | 53544 4962  | 0017  | AG                       | $\pm 0.1259$ | 5            | GCVS 85   | Ir        | 1)            |
| BW Com                                   | 53464 3613  | 0001  | BAT BCB                  | -0.0200      | e            | GCVS 85   | -11<br>Tr | 1)            |
|                                          | 52840 4277  | 0001  | ILLI ILUIL               | -0.0214      | 6            | CCVS 85   | -11       | 1)<br>2)      |
|                                          | 53863 3493  | .0000 | J U<br>F D               | 0.0190       | ~            | CCAS OF   | T         | 4)<br>10)     |
|                                          | 53603.3423  | .0011 | FR                       | -0.0188      | s            | GCVS 85   | -11<br>T  | 10)           |
|                                          | 03803.40UU  | .0005 | FK                       | -0.0198      |              | GUVS 85   | -1r       | 10)           |
|                                          | 53863.5800  | .0010 | FR<br>MG FF              | -0.0185      | $\mathbf{s}$ | GUVS 85   | -1r       | 10)           |
| UX Com                                   | 53768.4843  | .0005 | MS FR                    | -0.0776      |              | BAVM 69   | -         | 6)            |
| CC Com                                   | 53446.4060  | .0001 | RAT RCR                  | -0.0125      | $\mathbf{S}$ | GCVS 85   | -Ir       | 1)            |
|                                          | 53818.3717  | .0004 | DIE                      | -0.0135      |              | GCVS 85   |           | 11)           |
|                                          | 53847.3921  | .0001 | WTR                      | -0.0134      | $\mathbf{s}$ | GCVS 85   | -Ir       | 12)           |
| EK Com                                   | 53406.6017  | .0001 | RAT RCR                  |              |              |           | -Ir       | 1)            |

Table 1: (cont.)

| Variable           | Min JD 24                | ±     | Obs                 | O - C              |              |                        | Fil        | Rem                 |
|--------------------|--------------------------|-------|---------------------|--------------------|--------------|------------------------|------------|---------------------|
| EK Com             | 53408.6027               | .0002 | RAT RCR             |                    |              |                        | -1r        | 1)                  |
| EQ Com             | 53462.4654               | .0004 | MS FR               |                    |              |                        |            | 6)                  |
| LO Com             | 53450.4120               | .0004 | RAT RCR             |                    |              |                        | -Ir        | 1)                  |
|                    | 53863.3444               | .0003 | $\mathbf{FR}$       |                    |              |                        | -Ir        | 10)                 |
|                    | 53863.4874               | .0015 | $\mathbf{FR}$       |                    |              |                        | -Ir        | 10)                 |
| LP Com             | 53845.3888               | .0019 | $_{ m JU}$          |                    |              |                        |            | 2)                  |
|                    | 53863.4641               | .0022 | $\mathbf{FR}$       |                    |              |                        | -Ir        | 10)                 |
| NSV5740 Com        | 53863.4106               | .0012 | $\mathbf{FR}$       |                    |              |                        | -Ir        | 10)                 |
| RW CrB             | 53446.4878               | .0004 | RAT RCR             | -0.0080            |              | GCVS 85                | -Ir        | 1)                  |
|                    | 53859.4583               | .0043 | $\mathbf{FR}$       | -0.0024            | $\mathbf{s}$ | GCVS 85                | -Ir        | 10)                 |
| TU CrB             | 53408.5173               | .0017 | MS FR               |                    |              |                        |            | 6)                  |
| TW CrB             | 53463.4983               | .0001 | RAT RCR             | +0.0051            |              | SAC $70$               | -Ir        | 1)                  |
| YY CrB             | 53919.4113               | .0010 | $_{ m JU}$          |                    |              |                        |            | 2)                  |
|                    | 53931.4598               | .0024 | $_{ m JU}$          |                    |              |                        |            | 2)                  |
| UW Cyg             | 53614.5040               | .0001 | RAT RCR             | +0.0238            |              | GCVS 85                | -Ir        | 1)                  |
|                    | 53928.5256               | .0009 | $\operatorname{AG}$ | +0.0244            |              | GCVS 85                | -Ir        | 1)                  |
| VV Cvg             | 53601.4970               | .0007 | AG                  | +0.0047            |              | GCVS 85                | -Ir        | 1)                  |
| -78                | 53621.4464               | .0022 | AG                  | +0.0139            | s            | GCVS 85                | -Ir        | 1)                  |
| WZ Cyg             | 53612 4780               | 0038  | PC                  | +0.0580            | 5            | GCVS 85                | -Ir        | 7)                  |
| ZZ Cyg             | 53612.3577               | 0003  | AG                  | -0.0445            |              | GCVS 85                | _Ir        | 1)                  |
| LL CJE             | 53637 5028               | 0006  | AG                  | -0.0441            |              | GCVS 85                | _Ir        | 1)                  |
|                    | 53001 5207               | 0000  | AG                  | -0.0441            |              | GCVS 85                | -11<br>Ir  | 1)                  |
| AF Cum             | 52671 2842               | 0010  | SCI                 | -0.0451            |              | GCVS 85                | -11        | 1)<br>2)            |
| RE Cyg<br>PO Cym   | 52071.3043               | .0010 | MON                 | -0.0053            |              | GCVS 85                | v          | 2)<br>1)            |
| DU Cyg             | 55220.5625               | .0014 | NON                 | +0.0914            |              | GCV5 60<br>A 4 5 4 907 | v          | 1)<br>2)            |
| CV Cyg             | 53030.5237               | .0056 | SUI                 | +0.0065            |              | AA 54.207              | т          | 2)                  |
| DK Cyg             | 53600.4554               | .0004 | RATROR              | +0.0433            | s            | BAVR 35, Iff           | -1r        | 1)                  |
| DU C               | 53637.4063               | .0015 | JU                  | +0.0449            |              | BAVR $35, 1ff$         | -          | 2)                  |
| DX Cyg             | 53227.5392               | .0006 | FR                  |                    |              |                        | -lr        | 10)                 |
| GG Cyg             | 53656.4096               | .0005 | RAT RCR             | +0.1234            |              | GCVS 85                | -lr        | 1)                  |
|                    | 53656.4103               | .0015 | $\mathbf{FR}$       | +0.1241            |              | GCVS 85                | -Ir        | 10)                 |
|                    | 53658.4057               | .0036 | SCI                 | +0.1112            |              | GCVS 85                |            | 2)                  |
|                    | 53658.4143               | .0007 | $\operatorname{AG}$ | +0.1198            |              | GCVS 85                | -Ir        | 1)                  |
|                    | 53660.4218               | .0008 | $\operatorname{AG}$ | +0.1189            |              | GCVS 85                | -Ir        | 1)                  |
| KR Cyg             | 53601.4563               | .0041 | $\mathbf{PC}$       | +0.0116            |              | GCVS 85                | -Ir        | 7)                  |
|                    | 53639.4865               | .0014 | $\operatorname{AG}$ | +0.0100            |              | GCVS 85                | -Ir        | 1)                  |
| MY Cyg             | 53661.2630:              | .0010 | $\operatorname{AG}$ | -0.0056            |              | GCVS 85                | -Ir        | 1)                  |
|                    | 53673.2849               | .0013 | SCI                 | +0.0008            |              | GCVS 85                |            | 2)                  |
| NZ Cyg             | 53555.4420               | .0010 | $\operatorname{AG}$ |                    |              |                        | -Ir        | 1)                  |
| 20                 | 53614.5076               | .0029 | SCI                 |                    |              |                        |            | 2)                  |
| PV Cvg             | 53619.5236               | .0020 | SCI                 |                    |              |                        |            | $2)^{-}$            |
| OW Cvg             | 53555.4445               | .0013 | AG                  |                    |              |                        | -Tr        | -)<br>1)            |
| OX Cyg             | 53612 5263               | 0037  | SCI                 |                    |              |                        | *1         | $\frac{1}{2}$       |
| ₩1 ~y5<br>V3/5 Crα | 51032 5716               | 0021  | FR                  | ⊥ <u>0</u> 0022    |              | IBVS 5016              |            | ( <u>–</u> )<br>(a) |
| voto Oyg           | 53630 4754               | 0021  |                     | ±0.0044<br>±0.096⊑ |              | IBVS 5010              | Īr         | <i>9)</i><br>1)     |
|                    | 53669 2011               | 0012  | RCI                 | +0.0200            |              |                        | -11        | 1)<br>2)            |
| V246 C             | 52655 2479               | .0033 |                     | $\pm 0.0243$       |              |                        | T          | ∠)<br>1)            |
| v 340 Uyg          | 00000.3472<br>5001 4500  | .0007 | AG                  | +0.1001            |              | GUVB 80<br>GOVE 95     | -1ľ        | 1)                  |
| 11970 C            | 53921.4536               | .0010 | AG                  | +0.1081            |              | GUVS 85                | -1r        | 1)                  |
| v 370 Cyg          | 53534.5097<br>Faroa azac | .0006 | FK                  | -0.0193            |              | GUVS 85                | -1r        | 10)                 |
|                    | 53593.3736               | .0008 | WTR                 | -0.0208            |              | GCVS 85                | -1r        | 12)                 |
|                    | 53639.4615               | .0036 | FR                  | -0.0182            | $\mathbf{S}$ | GUVS 85                | -lr        | 10)                 |
|                    | 53650.3119               | .0002 | $\operatorname{AG}$ | -0.0114            | $\mathbf{S}$ | GCVS 85                | -fr        | 1)                  |
|                    | 53656.4974               | .0012 | $\mathbf{FR}$       | -0.0223            | $\mathbf{S}$ | GCVS 85                | -Ir        | 10)                 |
|                    | 53657.2719               | .0012 | $\mathbf{FR}$       | -0.0223            | $\mathbf{S}$ | GCVS 85                | -Ir        | 10)                 |
| V382 Cyg           | 53655.3070:              | .0050 | $\operatorname{AG}$ | +0.0628            | $\mathbf{s}$ | GCVS 85                | -Ir        | 1)                  |
| V401 Cyg           | 53517.5235               | .0003 | $\operatorname{AG}$ | +0.0471            | $\mathbf{S}$ | GCVS 85                | -Ir        | 1)                  |
|                    | 53578.4199               | .0023 | $\operatorname{AG}$ | +0.0491            |              | GCVS 85                | -Ir        | 1)                  |
|                    | 53613.3802               | .0017 | $\operatorname{AG}$ | +0.0460            |              | GCVS 85                | -Ir        | 1)                  |
|                    |                          |       |                     |                    |              | a atta at              | -          | 1                   |
|                    | 53655.3377               | .0002 | RAT RCR             | +0.0476            |              | GCVS 85                | -Ir        | 11                  |
|                    | 53655.3377<br>53661.4599 | .0002 | RAT RCR<br>FR       | +0.0476 +0.0512    | s            | GCVS 85<br>GCVS 85     | -1r<br>-Tr | 1)<br>10)           |

Table 1: (cont.)

|                                         |                          |              | •                   | ,                  |              |               |             |                 |
|-----------------------------------------|--------------------------|--------------|---------------------|--------------------|--------------|---------------|-------------|-----------------|
| Variable                                | Min JD 24                | ±            | Obs                 | O - C              |              |               | Fil         | Rem             |
| V453 Cyg                                | 53662.426                | .002         | $_{\rm FR}$         |                    |              |               | -Ir         | 10)             |
| V454 Cyg                                | 53655.2350:              | .0010        | $\operatorname{AG}$ |                    |              |               | -Ir         | 1)              |
| V463 Cyg                                | 53519.5221               | .0005        | $\operatorname{AG}$ | -0.0011            |              | AA 54.207     | -Ir         | 1)              |
|                                         | 53660.307                | .007         | $\mathbf{FR}$       | -0.064             | $\mathbf{s}$ | AA 54.207     | -Ir         | 10)             |
| V466 Cyg                                | 53621.5057               | .0014        | $\operatorname{AG}$ | +0.0048            | $\mathbf{s}$ | GCVS 85       | -Ir         | 1)              |
| 10                                      | 53637.5097               | .0015        | $\operatorname{AG}$ | +0.0058            |              | GCVS 85       | -Ir         | 1)              |
|                                         | 53656.2953               | .0018        | FB.                 | +0.0053            | s            | GCVS 85       | -Ir         | 10)             |
|                                         | 53658 3831               | 0015         | AG                  | +0.0057            | 5            | GCVS 85       | _Ir         | 1)              |
|                                         | 53660 4725               | 0015         | AG                  | $\pm 0.0001$       | c            | GCVS 85       | Ir          | 1)              |
| V460 Cur                                | 53656 2778               | 0010         | SCI                 | +0.0010            | G            |               | -11         | 2)              |
| v409 Oyg                                | 53030.2778               | .0021        |                     |                    |              |               | T.,         | ∠)<br>1)        |
| 11488 0                                 | 55921.4072               | .0011        | AG                  |                    |              | A A E 4 005   | -11         | 1)              |
| V477 Cyg                                | 53561.4780               | .0030        | JU                  | +0.6963            |              | AA 54.207     | -           | 2)              |
|                                         | 53612.4164               | .0052        | PC                  | +0.0010            |              | AA 54.207     | -lr         | ()              |
|                                         | 53655.3644               | .0008        | AG                  | +0.7033            |              | AA 54.207     | V           | 1)              |
| V488 Cyg                                | 53618.4404               | .0011        | $\overline{AG}$     | +0.0767            | $\mathbf{s}$ | GCVS 85       | -lr         | 1)              |
|                                         | 53636.3782               | .0003        | $_{\rm FR}$         | +0.0781            | $\mathbf{S}$ | GCVS 85       | -Ir         | 10)             |
|                                         | 53639.4608               | .0011        | $\operatorname{AG}$ | +0.0779            |              | GCVS 85       | -Ir         | 1)              |
| V490 Cyg                                | 53660.3244               | .0005        | $\operatorname{AG}$ |                    |              |               | -Ir         | 1)              |
| V493 Cyg                                | 53655.2922               | .0022        | $\operatorname{AG}$ | +0.1078            |              | GCVS 85       | -Ir         | 1)              |
|                                         | 53660.3888               | .0014        | $\operatorname{AG}$ | +0.1041            |              | GCVS 85       | -Ir         | 1)              |
|                                         | 53920.5081               | .0025        | $\operatorname{AG}$ | +0.1065            |              | GCVS 85       | -Ir         | 1)              |
| V496 Cvg                                | 53600.4092               | .0024        | $\mathbf{SCI}$      |                    |              |               |             | 2)              |
| V502 Cvg                                | 53928.4670:              | .0020        | AG                  |                    |              |               | -Jr         | 1)              |
| V508 Cvg                                | 53579 3945               | 0003         | AG                  |                    |              |               | -Ir         | 1)              |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 53612 5275               | 0000         | AG                  |                    |              |               | _Ir         | 1)              |
|                                         | 53621 /031               | 0005         | AG                  |                    |              |               | Ir          | 1)              |
|                                         | 59627 4756               | .0000        |                     |                    |              |               | -11<br>Tn   | 1)              |
| V500 Cmm                                | 52621 5846               | .0013        | AG                  |                    |              |               | -11<br>In   | 1)              |
| V509 Cyg                                | 55021.5640<br>F9FCF 4499 | .0019        | AG                  | 0 2024             |              | COVC of       | -11         | 1)              |
| v 513 Cyg                               | 53505.4433               | .0008        | JU                  | -0.3234            |              | GCVS 85       |             | 2)<br>2)        |
|                                         | 53657.3330               | .0035        | SCI                 | -0.3228            |              | GCVS 85       | -           | 2)              |
| $V519 \mathrm{Cyg}$                     | 53601.4683               | .0009        | AG                  |                    |              |               | -lr         | 1)              |
|                                         | 53621.4022               | .0012        | $\operatorname{AG}$ |                    |              |               | -Ir         | 1)              |
| V526 Cyg                                | 53601.4359               | .0011        | $\operatorname{AG}$ | +0.0464            |              | GCVS 85       | -Ir         | 1)              |
|                                         | 53622.4063               | .0033        | $\operatorname{AG}$ | +0.0480            |              | GCVS 85       | -Ir         | 1)              |
| $V534 \mathrm{~Cyg}$                    | 53619.4066               | .0018        | $\operatorname{AG}$ |                    |              |               | -Ir         | 1)              |
| V587 Cyg                                | 53619.5305               | .0012        | $\operatorname{AG}$ |                    |              |               | -Ir         | 1)              |
|                                         | 53621.4891               | .0019        | $\operatorname{AG}$ |                    |              |               | -Ir         | 1)              |
| V628 Cyg                                | 53619.4272               | .0087        | $\operatorname{AG}$ | -0.0053            | $\mathbf{s}$ | IBVS 4381     | -Ir         | 1)              |
| 10                                      | 53631.5121               | .0004        | RAT RCR             | -0.0028            |              | IBVS 4381     | -Ir         | 1)              |
| V680 Cvø                                | 53618.5660               | .0002        | RAT RCR             | +0.0191            |              | BAVR 32. 36ff | -Tr         | 1)              |
| V687 Cvo                                | 53519.4213               | .0013        | AG                  | -0.0077            |              | GCVS 85       | -Tr         | 1)              |
|                                         | 53613 3298               | 0006         | AG                  | $\pm 0.0031$       |              | GCVS 85       | _]r         | 1)              |
| V700 Cwa                                | 53648 3030               | 0037         | PC                  | -0.0235            |              | GCVS 85       | _Tr         | -)<br>7)        |
| , ioo oyg                               | 53657 2190               | 0007         | B VI BUB            | _0.0233<br>_0.0248 | 0            | GCVS 85       | -11<br>. Tr | 1)              |
| V704 C~                                 | 53637,3128               | 0002         | AC                  | -0.0240            | ð            | CCVS %        | -11<br>Tn   | 1)              |
| v 104 Uyg<br>Uzar O                     | 00044.0004<br>59017 5051 | .0027        |                     | $\pm 0.0200$       |              | GU V D OD     | -11         | 1)<br>6)        |
| v 1 20 Uyg                              | 16061 1610               | .0004        | MSFR                |                    |              | a ave         | т           | U)<br>1)        |
| v 787 Cyg                               | 53901.4612               | .0004        | AG                  | +0.0028            |              | GUVS 85       | -1r         | 1)              |
| v 822 Cyg                               | 53658.2974               | .0024        | AG                  | -0.1417            |              | GCVS 85       | -1r         | 1)              |
| V824 Cyg                                | 53658.3893               | .0014        | AG                  |                    |              |               | -Ir         | 1)              |
| V836 Cyg                                | 53927.4402               | .0015        | $\operatorname{AG}$ | +0.0147            |              | GCVS 85       | -Ir         | 1)              |
| V841 Cyg                                | 53517.4066               | .0027        | $\operatorname{AG}$ | +0.0070            | $\mathbf{s}$ | GCVS 85       | -Ir         | 1)              |
|                                         | 53614.4541               | .0015        | $\operatorname{AG}$ | +0.0096            |              | GCVS 85       | -Ir         | 1)              |
| V856 Cyg                                | 53516.5277               | .0002        | $\operatorname{AG}$ |                    |              |               | -Ir         | 1)              |
|                                         | 53614.3415               | .0010        | $\operatorname{AG}$ |                    |              |               | -Ir         | 1)              |
| V859 Cvg                                | 53517.4520               | .0011        | $\operatorname{AG}$ | -0.0087            |              | GCVS 85       | -Ir         | 1)              |
| -20                                     | 53519.4766               | 0005         | RAT RCB             | -0.0091            |              | GCVS 85       | -Ir         | 1)              |
|                                         | 53612 4268               | 0014         | AG                  | -0.0067            | s            | GCVS 85       | _]r         | 1)              |
| V865 Cvg                                | 53516 /006               | 0001         | AG                  | 0.0001             | J            | 30,000        | _Tr         | 1)              |
| V860 Cvg                                | 53620.4000               | 0011         |                     |                    |              |               | -11<br>. Tr | <i>⊥)</i><br>1) |
| v oog Oyg                               | 55020.5010               | .0011        | AG                  |                    |              |               | -11<br>Tn   | 1)              |
| V870 C                                  | 53612 1116               | 1 11 1 1 1 1 | / · · -             |                    |              |               |             |                 |

Table 1: (cont.)

| 37 11         | M. ID 04                              |           |                     | <u> </u> |              |                    | 1.11       | D         |
|---------------|---------------------------------------|-----------|---------------------|----------|--------------|--------------------|------------|-----------|
| Variable      | $\frac{\text{Min JD 24}}{52612,2010}$ | ±<br>0018 |                     | O = C    |              |                    | F'11       | Rem<br>1) |
| V880 Curr     | 53510 4017                            | 0124      | AG                  |          |              |                    | -11<br>Ir  | 1)        |
| v 880 Cyg     | 55519.4017                            | .0124     | AG                  |          |              |                    | -11        | 1)<br>2)  |
| V004 C        | 0001.0009<br>E9E70 44E1               | .0031     |                     |          |              |                    | T.,        | 2)<br>1)  |
| v 884 Cyg     | 53576.4451                            | .0022     | AG                  |          |              |                    | -11<br>Tm  | 1)        |
| VOOL C        | 53020.4490                            | .0015     | AG                  | 0.0957   | -            | COVC of            | -11<br>Tm  | 1)        |
| v 885 Cyg     | 53549.4497                            | .0004     | AG<br>ED            | -0.0691  | 5            | GCV5 85            | -11<br>Tn  | 10)       |
| V007 C        | 03001.3234<br>F2661 2006              | .0007     | FR                  | -0.0685  | s            | GC V 5 85          | -11        | 10)       |
| V 887 Cyg     | 03001.3920<br>F9611 F099              | .0080     | FR                  | 0.0109   |              | DAVD 47 Of         | т.,        | 9)<br>1)  |
| v 909 Cyg     | 53011.3030                            | .0002     | AG<br>WTD           | -0.0198  | -            | DAVIN 47, 21       | -11<br>Tm  | 1)<br>19) |
| V019 C        | 00021.0290<br>52600 2547              | .0000     | WIR<br>AC           | -0.0131  | s            | DAVIN 47, 21       | -11<br>Tm  | 12)       |
| v 912 Cyg     | 53020.3347                            | .0002     | AG                  | -0.0975  |              | GCV5 65            | -11<br>T., | 1)        |
|               | 03008.2770<br>F96F9 9790              | .0015     |                     | -0.0980  |              | GUVS 85<br>GOVE of | -11<br>T., | 1)        |
| 14091 C       | 53658.2780                            | .0006     | RATROR              | -0.0970  |              | GUVS 85            | -1r        | 1)        |
| V 931 Cyg     | 53578.4719                            | .0019     | AG                  | -0.0434  | $\mathbf{s}$ | GCVS 85            | -1r        | 1)        |
|               | 53602.3761                            | .0005     | AG                  | -0.0436  | $\mathbf{s}$ | GCVS 85            | -1r        | 1)        |
|               | 53613.4755                            | .0026     | AG                  | -0.0426  |              | GCVS 85            | -1r        | 1)        |
| Tropp G       | 53681.2624                            | .0017     | SCI                 | -0.0418  | $\mathbf{s}$ | GCVS 85            | -          | 2)        |
| V932 Cyg      | 53659.3722                            | .0011     | AG                  | 0.0=1.0  |              | a atta er          | -lr        | 1)        |
| V934 Cyg      | 53516.4601                            | .0009     | AG                  | -0.0716  |              | GCVS 85            | -lr        | 1)        |
|               | 53578.4716                            | .0009     | AG                  | -0.0720  | $\mathbf{s}$ | GCVS 85            | -lr        | 1)        |
|               | 53613.5064                            | .0023     | AG                  | -0.0722  | $\mathbf{s}$ | GCVS 85            | -lr        | 1)        |
| V941 Cyg      | 53569.4677                            | .0015     | AG                  |          |              |                    | -lr        | 1)        |
|               | 53578.4323                            | .0010     | AG                  |          |              |                    | -lr        | 1)        |
|               | 53612.4781                            | .0017     | AG                  |          |              |                    | -lr        | 1)        |
|               | 53621.4377                            | .0020     | AG                  |          |              |                    | -lr        | 1)        |
| V947 Cyg      | 53660.3590                            | .0008     | $\mathbf{FR}$       |          |              | 0.0770             | -lr        | 10)       |
| V957 Cyg      | 50189.5694                            | .0013     | MS                  | +0.1205  |              | GCVS 85            | _          | 1)        |
|               | 53661.3301                            | .0012     | AG                  | +0.1534  | $\mathbf{s}$ | GCVS 85            | -lr        | 1)        |
| V961 Cyg      | 53639.2822                            | .0018     | FR                  | +0.9314  | $\mathbf{s}$ | GCVS 85            | -lr        | 10)       |
|               | 53650.4910                            | .0008     | AG                  | +0.9424  |              | GCVS 85            | -lr        | 1)        |
|               | 53920.5015                            | .0008     | AG                  | -0.0754  |              | GCVS 85            | -lr        | 1)        |
| V963 Cyg      | 53519.4764                            | .0007     | AG                  | -0.0005  |              | GCVS 85            | -lr        | 1)        |
|               | 53549.4611                            | .0007     | AG                  | -0.0012  |              | GCVS 85            | -lr        | 1)        |
|               | 53637.3265                            | .0004     | RAT RCR             | +0.0001  |              | GCVS 85            | -lr        | 1)        |
|               | 53658.2450                            | .0008     | AG                  | -0.0014  |              | GCVS 85            | -lr        | 1)        |
|               | 53660.3378                            | .0002     | RAT RCR             | -0.0006  |              | GCVS 85            | -lr        | 1)        |
|               | 53660.3379                            | .0004     | FR                  | -0.0005  |              | GCVS 85            | -lr        | 10)       |
| V964 Cyg      | 53618.4732                            | .0014     | $\mathbf{AG}$       |          |              |                    | -lr        | 1)        |
|               | 53657.4274                            | .0012     | $\mathbf{FR}$       |          |              |                    | -Ir        | 10)       |
| V965 Cyg      | 53549.4917                            | .0034     | AG                  |          |              |                    | -Ir        | 1)        |
|               | 53658.3901                            | .0004     | $\operatorname{AG}$ |          |              |                    | -Ir        | 1)        |
| V974 Cyg      | 53635.3598                            | .0013     | $\mathbf{FR}$       | -0.1142  | $\mathbf{S}$ | GCVS 85            | -Ir        | 10)       |
|               | 53656.2815                            | .0003     | $\mathbf{FR}$       | -0.1431  |              | GCVS 85            | -Ir        | 10)       |
| V975 Cyg      | 53660.3599                            | .0008     | $\operatorname{AG}$ |          |              |                    | -Ir        | 1)        |
| V979 Cyg      | 53534.4593                            | .0010     | $_{\rm FR}$         | +0.0376  |              | GCVS 85            | -Ir        | 10)       |
|               | 53656.2856                            | .0043     | $_{\rm FR}$         | +0.0354  |              | GCVS 85            | -Ir        | 10)       |
|               | 53656.4696                            | .0024     | $\mathbf{FR}$       | +0.0325  | $\mathbf{s}$ | GCVS 85            | -Ir        | 10)       |
| $V1004 \ Cyg$ | 53620.5218                            | .0007     | $\operatorname{AG}$ | -0.1472  | $\mathbf{s}$ | GCVS 85            | -Ir        | 1)        |
|               | 53621.5583                            | .0004     | $\operatorname{AG}$ | -0.1393  |              | GCVS 85            | -Ir        | 1)        |
|               | 53637.3239                            | .0020     | $\operatorname{AG}$ | -0.1448  |              | GCVS 85            | -Ir        | 1)        |
|               | 53660.3012                            | .0025     | $\operatorname{AG}$ | -0.1384  | $\mathbf{S}$ | GCVS 85            | -Ir        | 1)        |
|               | 53661.3222                            | .0009     | $\operatorname{AG}$ | -0.1460  |              | GCVS 85            | -Ir        | 1)        |
|               | 53661.3233                            | .0007     | RAT RCR             | -0.1449  |              | GCVS 85            | -Ir        | 1)        |
|               | 53662.3499                            | .0023     | $\mathbf{FR}$       | -0.1468  | $\mathbf{s}$ | GCVS 85            | -Ir        | 10)       |
| V1009 Cyg     | 53659.2835                            | .0004     | $\operatorname{AG}$ |          |              |                    | -Ir        | 1)        |
| m V1023~Cyg   | 50682.5985                            | .0018     | $\mathbf{FR}$       |          |              |                    | -Ir        | 9)        |
|               | 53661.3337                            | .0018     | $\operatorname{AG}$ |          |              |                    | -Ir        | 1)        |
| $V1034 \ Cyg$ | 53612.3987                            | .0072     | $\mathbf{PC}$       | -0.0084  |              | GCVS 85            | -Ir        | 7)        |
|               | 53614.3547                            | .0022     | $\mathbf{FR}$       | -0.0063  |              | GCVS 85            | -Ir        | 10)       |
|               | 53636.3591                            | .0022     | $\mathbf{FR}$       | +0.0172  | $\mathbf{s}$ | GCVS 85            | -Ir        | 10)       |

Table 1: (cont.)

| Variable           | Min ID 94  | +     | Obe                 | $\frac{1}{0-C}$    |   |                 | Fil  | Bem            |
|--------------------|------------|-------|---------------------|--------------------|---|-----------------|------|----------------|
| V1034 Cyg          | 53655 3866 | 0012  | AG                  | -0.0055            |   | GCVS 85         | V    | $\frac{1}{1}$  |
| V1066 Cyg          | 53619 3491 | 0029  | AG                  | 0.0000             |   |                 | -Ir  | 1)             |
| V 1000 C/B         | 53622 4487 | 0016  | AG                  |                    |   |                 | - Ir | 1)             |
| V1083 Cvg          | 53611 4820 | 0038  | SCI                 | -0.0630            |   | GCVS 85         | 11   | 2)             |
| V1136 Cyg          | 53899 4658 | 0010  | AG                  | +0.0763            |   | GCVS 85         | -Ir  | -)<br>1)       |
| V1147 Cyg          | 53534 4634 | 0002  | FB                  | 1010100            |   |                 | -Ir  | 10)            |
|                    | 53656 4776 | 0040  | FB                  |                    |   |                 | -Ir  | 10)            |
| V1171 Cvg          | 50702.3652 | .0086 | FR.                 | +0.6834            |   | GCVS 85         |      | 9)             |
| 1111 0/8           | 53621 4903 | 0029  | SCI                 | -0.0529            |   | GCVS 85         |      | 2)             |
| V1191 Cvg          | 53612.4622 | .0062 | PC                  | +0.0614            |   | GCVS 85         | -Ir  | 2)<br>7)       |
| V1193 Cvg          | 53639.4604 | .0009 | ÂĠ                  | 1010011            |   |                 | - Ir | 1)             |
| V1256 Cyg          | 53517 3797 | 0008  | AG                  |                    |   |                 | -Ir  | 1)             |
| 1200 0,8           | 53578.4425 | .0016 | AG                  |                    |   |                 | -Ir  | 1)             |
|                    | 53614.3828 | .0021 | AG                  |                    |   |                 | - Ir | 1)             |
| V1356 Cvg          | 53569.3926 | .0010 | AG                  | +0.0954            |   | GCVS 85         | - Ir | 1)             |
| 1 1000 0,8         | 53611 4650 | 0014  | FB                  | +0.0989            | s | GCVS 85         | -Ir  | 10)            |
|                    | 53612 4582 | 0007  | FB                  | +0.0000<br>+0.1138 | 5 | GCVS 85         | - Ir | 10)            |
|                    | 53659.4118 | .0026 | AG                  | +0.1068            |   | GCVS 85         | - Tr | 1)             |
|                    | 53661.3759 | .0037 | AG                  | +0.1142            |   | GCVS 85         | - Ir | 1)             |
|                    | 53661.3773 | .0063 | SCI                 | +0.1156            |   | GCVS 85         |      | 2)             |
| V1417 Cvg          | 53716.2493 | .0010 | SCI                 | 1 0.1100           |   | 20.200          |      | $\frac{-}{2}$  |
| V1425 Cvg          | 53920.4691 | .0038 | JU                  | +0.0074            |   | GCVS 85         |      | $\frac{-7}{2}$ |
| V2150 Cyg          | 53600.4884 | .0095 | JU                  | 10.0011            |   |                 |      | 2)             |
| V2181 Cvg          | 53618.6082 | .0002 | ÅĠ                  | +0.0079            |   | BAVR 50, 45f    | -Ir  | 1)             |
| 101 0,8            | 53621 4738 | 0013  | AG                  | +0.0061            |   | BAVR 50 45f     | -Ir  | 1)             |
|                    | 53636.3873 | .0004 | FR.                 | +0.0090            |   | BAVR 50, 45f    | -Ir  | 10)            |
|                    | 53654.4569 | .0014 | FR                  | +0.0140            | s | BAVR 50, 45f    | -Ir  | 10)            |
| V2239 Cvg          | 53655.4754 | .0022 | ÂG                  | 1010110            | 5 | 2111 10 00, 101 | -Ir  | 1)             |
| V2240 Cvg          | 53655.4463 | .0024 | AG                  |                    |   |                 | -Ir  | 1)             |
| GCS3576.170 Cvg    | 52802.5543 | .0010 | QU                  |                    |   |                 | -Ic  | 3)             |
|                    | 52812.4781 | .0010 | QU                  |                    |   |                 | -Ic  | 3)             |
|                    | 52829.4887 | .0017 | ÃG                  |                    |   |                 | -Ir  | 1)             |
|                    | 52831.5151 | .0007 | $\mathbf{AG}$       |                    |   |                 | -Ir  | 1)             |
|                    | 52863.5105 | .0016 | $\overline{AG}$     |                    |   |                 | -Ir  | 1)             |
|                    | 52864.5304 | .0065 | $\overline{AG}$     |                    |   |                 | -Ir  | 1)             |
|                    | 52867.5607 | .0047 | $\mathbf{AG}$       |                    |   |                 | -Ir  | 1)             |
|                    | 52868.3701 | .0036 | $\overline{AG}$     |                    |   |                 | -Ir  | 1)             |
|                    | 52946.3385 | .0015 | $\overline{AG}$     |                    |   |                 | -Ir  | 1)             |
|                    | 53215.4640 | .0006 | $\mathbf{AG}$       |                    |   |                 | -Ir  | 1)             |
|                    | 53216.4767 | .0009 | $\mathbf{AG}$       |                    |   |                 | -Ir  | 1)             |
|                    | 53217.4888 | .0011 | $\mathbf{AG}$       |                    |   |                 | -Ir  | 1)             |
|                    | 53221.5370 | .0013 | $\operatorname{AG}$ |                    |   |                 | -Ir  | 1)             |
|                    | 53612.3645 | .0008 | $\operatorname{AG}$ |                    |   |                 | -Ir  | 1)             |
|                    | 53612.5733 | .0006 | $\operatorname{AG}$ |                    |   |                 | -Ir  | 1)             |
|                    | 53621.4824 | .0022 | $\operatorname{AG}$ |                    |   |                 | -Ir  | 1)             |
|                    | 53637.4781 | .0015 | $\operatorname{AG}$ |                    |   |                 | -Ir  | 1)             |
|                    | 53901.5371 | .0019 | $\operatorname{AG}$ |                    |   |                 | -Ir  | 1)             |
| U1275-15134722 Cyg | 52863.5507 | .0008 | $\operatorname{AG}$ |                    |   |                 |      | 1)             |
|                    | 52898.4615 | .0022 | $\operatorname{AG}$ |                    |   |                 |      | 1)             |
|                    | 52899.4624 | .0006 | $\operatorname{AG}$ |                    |   |                 | -Ir  | 1)             |
|                    | 52901.4984 | .0006 | $\operatorname{AG}$ |                    |   |                 | -Ir  | 1)             |
|                    | 52903.4967 | .0063 | $\operatorname{AG}$ |                    |   |                 | -Ir  | 1)             |
|                    | 52907.5548 | .0040 | $\operatorname{AG}$ |                    |   |                 | -Ir  | 1)             |
|                    | 52913.3772 | .0014 | $\operatorname{AG}$ |                    |   |                 | -Ir  | 1)             |
|                    | 52928.5470 | .0016 | $\mathbf{AG}$       |                    |   |                 | -Ir  | 1)             |
|                    | 52929.3058 | .0020 | $\operatorname{AG}$ |                    |   |                 | -Ir  | 1)             |
|                    | 52929.5538 | .0031 | $\operatorname{AG}$ |                    |   |                 | -Ir  | 1)             |
|                    | 53619.5514 | .0008 | $\mathbf{AG}$       |                    |   |                 | -Ir  | 1)             |
|                    | 53621.5722 | .0012 | $\operatorname{AG}$ |                    |   |                 | -Ir  | 1)             |
|                    | 53622.5816 | .0024 | $\operatorname{AG}$ |                    |   |                 | -Ir  | 1)             |
|                    |            |       |                     |                    |   |                 |      | ·              |

Table 1: (cont.)

| Variable           | Min JD 24  | ±     | Obs                 | O - C   |              |         | Fil | Rem      |
|--------------------|------------|-------|---------------------|---------|--------------|---------|-----|----------|
| U1275-15124020 Cyg | 52864.4067 | .0012 | AG                  |         |              |         |     | 1)       |
|                    | 52902.5326 | .0024 | $\mathbf{AG}$       |         |              |         | -Ir | 1)       |
|                    | 53619.5945 | .0002 | $\operatorname{AG}$ |         |              |         | -Ir | 1)       |
| U1200-12680286 Cyg | 53569.4763 | .0018 | $\mathbf{AG}$       |         |              |         | -Ir | 1)       |
|                    | 53578.4043 | .0007 | $\operatorname{AG}$ |         |              |         | -Ir | 1)       |
|                    | 53611.5377 | .0013 | $\operatorname{AG}$ |         |              |         | -Ir | 1)       |
|                    | 53612.5305 | .0011 | $\mathbf{AG}$       |         |              |         | -Ir | 1)       |
|                    | 53613.5221 | .0017 | $\operatorname{AG}$ |         |              |         | -Ir | 1)       |
|                    | 53614.3154 | .0010 | $\operatorname{AG}$ |         |              |         | -Ir | 1)       |
|                    | 53614.5132 | .0002 | $\mathbf{AG}$       |         |              |         | -Ir | 1)       |
|                    | 53618.4820 | .0008 | $\operatorname{AG}$ |         |              |         | -Ir | 1)       |
|                    | 53620.4654 | .0002 | $\operatorname{AG}$ |         |              |         | -Ir | 1)       |
|                    | 53621.4574 | .0007 | $\mathbf{AG}$       |         |              |         | -Ir | 1)       |
|                    | 53637.3294 | .0019 | $\operatorname{AG}$ |         |              |         | -Ir | 1)       |
|                    | 53637.5269 | .0023 | $\operatorname{AG}$ |         |              |         | -Ir | 1)       |
|                    | 53650.4249 | .0035 | $\mathbf{AG}$       |         |              |         | -Ir | 1)       |
|                    | 53659.3546 | .0005 | $\operatorname{AG}$ |         |              |         | -Ir | 1)       |
|                    | 53920.4486 | .0010 | $\operatorname{AG}$ |         |              |         | -Ir | 1)       |
| GSC3575.3593 Cyg   | 52886.4397 | .0029 | $\operatorname{AG}$ |         |              |         |     | 1)       |
|                    | 53579.5168 | .0007 | $\operatorname{AG}$ |         |              |         | -Ir | 1)       |
|                    | 53601.5283 | .0011 | $\operatorname{AG}$ |         |              |         | -Ir | 1)       |
|                    | 53612.5385 | .0012 | $\operatorname{AG}$ |         |              |         | -Ir | 1)       |
|                    | 53619.5080 | .0006 | $\operatorname{AG}$ |         |              |         | -Ir | 1)       |
|                    | 53621.3446 | .0021 | $\operatorname{AG}$ |         |              |         | -Ir | 1)       |
|                    | 53637.4891 | .0017 | $\mathbf{AG}$       |         |              |         | -Ir | 1)       |
| U1200-13084491 Cyg | 53233.4810 | .0034 | $\mathbf{FR}$       |         |              |         | -Ir | 10)      |
|                    | 53245.4929 | .0011 | $\mathbf{FR}$       |         |              |         | -Ir | 10)      |
|                    | 53534.5218 | .0010 | $\mathbf{FR}$       |         |              |         | -Ir | 10)      |
| Z Dra              | 53862.3793 | .0001 | WTR                 | -0.1758 |              | GCVS 85 | -Ir | 12)      |
| RR Dra             | 53900.4166 | .0004 | $\operatorname{AG}$ | +0.0503 |              | GCVS 85 | -Ir | 1)       |
| TZ Dra             | 53523.4260 | .0017 | $_{ m JU}$          | -0.0190 |              | GCVS 85 |     | 2)       |
|                    | 53542.4817 | .0009 | $_{ m JU}$          | -0.0161 |              | GCVS 85 |     | 2)       |
|                    | 53614.3596 | .0001 | RAT RCR             | -0.0190 |              | GCVS 85 | -Ir | 1)       |
|                    | 53627.3511 | .0004 | RAT RCR             | -0.0181 |              | GCVS 85 | -Ir | 1)       |
| AU Dra             | 53813.4700 | .0005 | MS FR               |         |              |         |     | 6)       |
| BH Dra             | 53894.4099 | .0010 | $_{ m JU}$          | -0.0048 |              | GCVS 85 |     | 2)       |
| BV Dra             | 53634.3578 | .0017 | $\mathbf{SCI}$      |         |              |         |     | 2)       |
|                    | 53634.5220 | .0022 | SCI                 |         |              |         |     | 2)       |
| BW Dra             | 53813.4144 | .0014 | SCI                 |         |              |         |     | 2)       |
|                    | 53813.5905 | .0011 | SCI                 |         |              |         |     | 2)       |
| DW Dra             | 53716.5707 | .0019 | $\mathbf{SCI}$      |         |              |         |     | 2)       |
| HP Dra             | 53656.5277 | .0045 | $\mathbf{SCI}$      |         |              |         |     | 2)       |
| SX Gem             | 53670.6087 | .0011 | $\mathbf{FR}$       | -0.0582 |              | GCVS 85 | -Ir | 10)      |
|                    | 53766.2905 | .0002 | MS FR               | -0.0578 |              | GCVS 85 |     | 6)       |
| TX Gem             | 53381.3563 | .0003 | RAT RCR             | -0.0234 |              | GCVS 85 | -Ir | 1)       |
| TZ Gem             | 53760.4599 | .0014 | $\mathbf{FR}$       |         |              |         | -Ir | 10)      |
| WW Gem             | 53433.3603 | .0042 | ATB                 | +0.0255 | $\mathbf{S}$ | GCVS 85 |     | 1)       |
| AC Gem             | 53755.4517 | .0021 | $\mathbf{FR}$       | -0.2736 |              | GCVS 85 | -Ir | 10)      |
| AV Gem             | 53746.3226 | .0007 | MS FR               |         |              |         |     | 6)       |
| AY Gem             | 53670.6431 | .0013 | $\mathbf{FR}$       | -0.0488 |              | GCVS 85 | -Ir | 10)      |
| AZ Gem             | 53655.5850 | .0004 | MS FR               | +0.0812 |              | GCVS 85 |     | <b>6</b> |
| DP Gem             | 50012.6779 | .0013 | $_{\mathrm{MS}}$    | -0.1393 |              | GCVS 85 |     | 1)       |
|                    | 50043.3859 | .0013 | $_{\mathrm{MS}}$    | -0.1433 |              | GCVS 85 |     | 1)       |
|                    | 50072.4249 | .0013 | $_{\mathrm{MS}}$    | -0.1411 |              | GCVS 85 |     | 1)       |
|                    | 50113.4707 | .0013 | $_{\mathrm{MS}}$    | -0.4169 |              | GCVS 85 |     | 1)       |
|                    | 50369.5211 | .0013 | $_{\mathrm{MS}}$    | -0.1137 |              | GCVS 85 |     | 1)       |
|                    | 51185.4134 | .0006 | $_{\mathrm{MS}}$    | -0.0438 |              | GCVS 85 |     | 1)       |
|                    | 53035.2722 | .0004 | $\operatorname{AG}$ | +0.1150 | $\mathbf{S}$ | GCVS 85 | -Ir | 1)       |
|                    | 53635.616: | .002  | MS FR               | -0.101  |              | GCVS 85 |     | 6)       |
|                    | 53764.3291 | .0005 | MS FR               | -0.0985 | $\mathbf{S}$ | GCVS 85 |     | 6)       |

Table 1: (cont.)

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     | Variable        | Min JD 24   | +     | Obs                 | $\frac{0}{0-C}$ |              |                         | Fil  | Rem |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|-------|---------------------|-----------------|--------------|-------------------------|------|-----|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     | DP Gem          | 53765.4457  | .0006 | AG                  | -0.0987         | S            | GCVS 85                 | -Ir  | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     | EL Gem          | 50425.4404  | .0013 | MS                  | -0.1826         | 5            | GCVS 85                 |      | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     | EE Com          | 50463 2872  | 0013  | MS                  | -0.1865         | s            | GCVS 85                 |      | 1)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                      |                 | 50752.5223  | .0013 | MS                  | -0.1879         | 5            | GCVS 85                 |      | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 53670.5735  | .0008 | FR                  | -0.2121         |              | GCVS 85                 | - Ir | 10) |
|                                                                                                                                                                           | FT Gem          | 53759.4276  | .0005 | FR                  | -0.0301         | s            | GCVS 85                 | - Ir | 10) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 53762.3685  | .0012 | FR.                 | -0.0273         | s            | GCVS 85                 | - Ir | 10) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     | GM Gem          | 53408.3347  | .0002 | MS FR               | 0.02.0          | 2            |                         |      | 6)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     | HI Gem          | 53780.4468  | .0013 | AG                  |                 |              |                         | -Ir  | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 53813.3338  | .0020 | FR                  |                 |              |                         | -Ir  | 10) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     | HR Gem          | 53706.4742  | .0001 | MS FR               |                 |              |                         |      | 6)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     | KV Gem          | 53408.5014  | .0016 | ATB                 | -0.0037         |              | BAVR 52, 95ff           |      | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 53410.4736  | .0011 | ATB                 | -0.0034         | $\mathbf{s}$ | BAVR $52, 95 \text{ff}$ |      | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 53745.5109  | .0033 | PC                  | -0.0067         |              | BAVR 52, 95ff           | -Ir  | 7)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 53752.5055  | .0091 | $\mathbf{PC}$       | -0.0034         | $\mathbf{s}$ | BAVR $52, 95 \text{ff}$ | -Ir  | 7)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 53760.3910  | .0001 | AG                  | -0.0054         | s            | BAVR 52, 95ff           | -Ir  | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 53760.5708  | .0002 | AG                  | -0.0048         |              | BAVR $52, 95 \text{ff}$ | -Ir  | 1)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                      | LO Gem          | 53794.3580  | .0011 | AG                  |                 |              | )                       | -Ir  | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     | MU Gem          | 53759.5548  | .0018 | $\mathbf{FR}$       | +0.0178         |              | GCVS 85                 | -Ir  | 10) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                      |                 | 53762.4595  | .0006 | $\mathbf{FR}$       | +0.0177         |              | GCVS 85                 | -Ir  | 10) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     | OQ Gem          | 53056.4122  | .0013 | $\mathbf{FR}$       |                 |              |                         | -Ir  | 10) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     | GSC1330.287 Gem | 52359.4159  | .0069 | ATB                 | -0.0025         | $\mathbf{s}$ | BAVR 54,105ff           |      | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 52690.3392  | .0010 | AG                  | -0.0003         | $\mathbf{s}$ | BAVR 54,105ff           | -Ir  | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 52690.5116  | .0011 | AG                  | -0.0022         |              | BAVR 54,105ff           | -Ir  | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 52691.3847  | .0002 | AG                  | -0.0009         | $\mathbf{s}$ | BAVR 54,105ff           | -Ir  | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 52692.2576  | .0037 | AG                  | +0.0003         |              | BAVR 54,105ff           | -Ir  | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 52692.4307  | .0003 | AG                  | -0.0010         | $\mathbf{s}$ | BAVR 54,105ff           | -Ir  | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 52694.3485  | .0006 | AG                  | -0.0011         |              | BAVR 54,105ff           | -Ir  | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 52694.5234  | .0006 | AG                  | -0.0005         | $\mathbf{s}$ | BAVR 54,105ff           | -Ir  | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 52697.4853  | .0009 | AG                  | -0.0026         |              | BAVR 54,105ff           | -Ir  | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 52707.4253  | .0005 | AG                  | -0.0007         | $\mathbf{s}$ | BAVR 54,105ff           | -Ir  | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 52713.3551  | .0021 | ATB                 | +0.0011         | $\mathbf{s}$ | BAVR 54,105ff           |      | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 52716.3170  | .0024 | $\operatorname{AG}$ | -0.0010         |              | BAVR 54,105ff           | -Ir  | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 52721.3747  | .0007 | AG                  | +0.0005         | $\mathbf{s}$ | BAVR 54,105ff           |      | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 52722.4219  | .0014 | ATB                 | +0.0016         | $\mathbf{s}$ | BAVR 54,105ff           |      | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 52735.3237  | .0028 | ATB                 | +0.0013         | $\mathbf{s}$ | BAVR 54,105ff           |      | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 53007.4879  | .0013 | AG                  | +0.0012         |              | BAVR 54,105ff           | -Ir  | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 53028.4116  | .0017 | $\operatorname{AG}$ | +0.0026         |              | BAVR $54,105$ ff        | -Ir  | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 53055.4366  | .0007 | AG                  | +0.0030         | $\mathbf{s}$ | BAVR 54,105ff           | -Ir  | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 53070.4299  | .0009 | AG                  | +0.0020         | $\mathbf{S}$ | BAVR $54,105$ ff        | -Ir  | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 53088.3831  | .0021 | ATB                 | -0.0031         |              | BAVR $54,105$ ff        |      | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 53407.4501  | .0014 | ATB                 | -0.0012         |              | BAVR $54,105$ ff        |      | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 53408.4977  | .0021 | ATB                 | +0.0003         |              | BAVR $54,105$ ff        |      | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 53410.4142  | .0005 | $\operatorname{AG}$ | -0.0011         | $\mathbf{s}$ | BAVR $54,105$ ff        | -Ir  | 1)  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                    |                 | 53410.4194  | .0042 | ATB                 | +0.0041         | $\mathbf{S}$ | BAVR $54,105$ ff        |      | 1)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                      |                 | 53760.3386  | .0008 | $\operatorname{AG}$ | -0.0022         |              | BAVR $54,105$ ff        | -Ir  | 1)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                      |                 | 53760.5120  | .0004 | $\operatorname{AG}$ | -0.0031         | $\mathbf{S}$ | BAVR $54,105$ ff        | -Ir  | 1)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                      | SZ Her          | 53894.4210  | .0003 | $\operatorname{AG}$ | -0.0194         |              | GCVS 85                 | -Ir  | 1)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                      | TU Her          | 53920.4811  | .0005 | $\operatorname{AG}$ | -0.1661         |              | GCVS 85                 | -Ir  | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     | UX Her          | 53621.3582  | .0007 | DIE                 | +0.0555         |              | GCVS 85                 |      | 11) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                      | BV Her          | 53622.326   | .003  | SCI                 |                 |              |                         |      | 2)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     | CC Her          | 53814.5223  | .0003 | MS FR               | +0.1610         |              | GCVS 85                 |      | 6)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     | ES Her          | 53636.364   | .001  | SCI                 |                 |              |                         |      | 2)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 53818.5804  | .0003 | MS FR               |                 |              |                         |      | 6)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     |                 | 53894.4361  | .0013 | $\operatorname{AG}$ |                 |              |                         | -Ir  | 1)  |
| HS Her $53542.442:$ .001SCI $-0.021$ GCVS 852) $53555.542:$ .001SCI $-0.021$ GCVS 852)IK Her $53565.5663$ .0011SCI2)LT Her $53408.6264$ .0048MS FR $-0.0303$ BAVM 696)    | FN Her          | 53518.4246  | .0010 | $\operatorname{AG}$ | +0.0982         |              | GCVS 85                 | -Ir  | 1)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                     | HS Her          | 53542.442 : | .001  | SCI                 | -0.021          |              | GCVS 85                 |      | 2)  |
| IK Her         53565.5663         .0011         SCI         2)           LT Her         53408.6264         .0048         MS FR         -0.0303         BAVM 69         6) |                 | 53555.542 : | .001  | SCI                 | -0.021          |              | GCVS 85                 |      | 2)  |
| LT Her $53408.6264$ .0048 MS FR $-0.0303$ BAVM 69 6)                                                                                                                      | IK Her          | 53565.5663  | .0011 | SCI                 |                 |              |                         |      | 2)  |
|                                                                                                                                                                           | L'I' Her        | 53408.6264  | .0048 | MS FR               | -0.0303         |              | BAVM 69                 |      | 6)  |

Table 1: (cont.)

| Variable   | Min JD 24                | ±     | Obs                      | 0 <b>–</b> C      |              |             | Fil        | Rem             |
|------------|--------------------------|-------|--------------------------|-------------------|--------------|-------------|------------|-----------------|
| MS Her     | 53932.4100               | .0013 | $\operatorname{AG}$      | +0.0953           |              | GCVS 85     | -Ir        | 1)              |
| MX Her     | 53593.3858               | .0022 | SCI                      | -0.5004           |              | GCVS 85     |            | 2)              |
| V338 Her   | 53621.340                | .001  | SCI                      | +0.069            |              | GCVS 85     |            | 2)              |
| V357 Her   | 53569.4730               | .0007 | SCI                      |                   |              |             |            | 2)              |
| V359 Her   | 53860.3678               | .0002 | $\operatorname{AG}$      | +0.1613           |              | GCVS 85     | -Ir        | 1)              |
|            | 53895.4833               | .0014 | $_{ m JU}$               | +0.1621           |              | GCVS 85     |            | 2)              |
| V381 Her   | 53566.4359               | .0007 | $\operatorname{AG}$      |                   |              |             | -Ir        | 1)              |
| V387 Her   | 49810.5137               | .0009 | MS                       | +0.1217           | $\mathbf{S}$ | GCVS 85     |            | 1)              |
|            | 49839.3969               | .0011 | MS                       | +0.1207           | $\mathbf{s}$ | GCVS 85     |            | 1)              |
|            | 49841.4594               | .0006 | MS                       | +0.1201           |              | GCVS 85     |            | 1)              |
|            | 49843.5250               | .0005 | MS MSR                   | +0.1225           | $\mathbf{s}$ | GCVS 85     |            | 1)              |
|            | 50199.5612               | .0009 | MS                       | +0.1177           | $\mathbf{s}$ | GCVS 85     |            | 1)              |
|            | 50592.4411               | .0007 | MS                       | +0.1146           |              | GCVS 85     |            | 1)              |
|            | 50896.6041               | .0009 | MS                       | +0.1101           |              | GCVS 85     |            | 1)              |
|            | 51299 5023               | 0001  | BAT BCB                  | +0.1043           | s            | GCVS 85     |            | 1)              |
|            | 51302 4528               | 0005  | MS                       | +0.1074           | ç            | GCVS 85     |            | 1)              |
|            | 51345 4834               | 0003  | KI<br>MI2                | +0.1074           | о<br>С       | CCVS 85     | Tr         | 1)              |
|            | 51678 5220               | .0003 |                          | +0.1005           | 5            | GCV5 85     | -11<br>Tn  | 1)              |
|            | 51078.5520               | .0004 |                          | +0.1033           | 5            | GCV2 65     | -11        | 1)              |
|            | 52043.4110               | .0003 | KAI KUK                  | +0.0994           | s            | GUVS 85     |            | 1)<br>C)        |
|            | 52308.5020               | .0004 | MS                       | +0.0972           |              | GCVS 85     | Ŧ          | (0)<br>1        |
|            | 53524.4460               | .0015 | AG                       | +0.0863           |              | GCVS 85     | -1r        | 1)              |
|            | 53764.6520               | .0004 | MS FR                    | +0.0825           | $\mathbf{s}$ | GCVS 85     | _          | 6)              |
| V450 Her   | 53631.3622               | .0011 | RAT RCR                  | +0.1425           | $\mathbf{s}$ | GCVS 85     | -lr        | 1)              |
|            | 53860.4467               | .0012 | $\overline{\mathrm{AG}}$ | +0.1320           | $\mathbf{S}$ | GCVS 85     | -Ir        | 1)              |
|            | 53860.4621               | .0015 | $\mathbf{FR}$            | +0.1474           | $\mathbf{S}$ | GCVS 85     | -Ir        | 10)             |
| V502 Her   | 53601.3888:              | .0067 | $\mathbf{PC}$            |                   |              |             | -Ir        | 7)              |
|            | 53863.3991               | .0017 | $\operatorname{AG}$      |                   |              |             | -Ir        | 1)              |
|            | 53894.4196               | .0008 | $\operatorname{AG}$      |                   |              |             | -Ir        | 1)              |
|            | 53920.4549               | .0009 | $\operatorname{AG}$      |                   |              |             | -Ir        | 1)              |
| V719 Her   | 53847.4493               | .0015 | $\operatorname{AG}$      |                   |              |             | -Ir        | 1)              |
| V728 Her   | 53817.4733               | .0003 | MS FR                    | +0.0451           |              | IBVS 3234   |            | 6)              |
|            | 53849.5198               | .0021 | $\operatorname{AG}$      | +0.0440           |              | IBVS 3234   | -Ir        | 1)              |
| V731 Her   | 53515.4604               | .0016 | $\operatorname{AG}$      |                   |              |             | -Ir        | 1)              |
|            | 53518.4479               | .0016 | AG                       |                   |              |             | -Ir        | 1)              |
|            | 53847.4224               | .0018 | $\operatorname{AG}$      |                   |              |             | -Ir        | 1)              |
| V732 Her   | 53849.4764               | .0060 | AG                       |                   |              |             | -Ir        | 1)              |
| V733 Her   | 53849.4712               | .0012 | AG                       |                   |              |             | -Ir        | 1)              |
| V742 Her   | 53515 4699               | 0042  | AG                       |                   |              |             | -Ir        | 1)              |
| V829 Her   | 53860 4227               | 0032  | AG                       | $\pm 0.0081$      |              | IBVS 5496   | _Ir        | 1)              |
| 1020 1101  | 53033 /021               | 0022  | IU                       | +0.0001           |              | IBVS 5496   |            | 2)              |
| V8/19 Hor  | 53453 5100               | 0001  | BAT BCB                  | +0.0143           |              | BAVE 49 180 | Ir         | 1)              |
| V 042 1101 | 52599 4522               | 0014  |                          | -0.0231           |              | BAVE 49,180 | -11        | 1)<br>2)        |
|            | 52691 2/51               | 0014  | BAT BOD                  | -0.0219           | 3<br>5       | BAVR 40 190 | T۳         | <i>∠)</i><br>1\ |
|            | 00021.0401<br>50076 9611 | .0002 | AC AC                    | -0.0237<br>0.023r | s<br>c       | DAVE 49,180 | -11<br>T., | 1)<br>1         |
| V956 TT    | 00040.0011<br>52516 2055 | .0007 | AG                       | -0.0323           | ទ            | DAVA 49,180 | -1f<br>T   | 1)<br>1         |
| VOUD HER   | 00010.0900               | .0003 | AG                       |                   |              |             | -11°<br>T. | 1)<br>1)        |
| vððí Her   | 53510.4427               | .0012 | AG                       |                   |              |             | -1r        | 1)              |
| V878 Her   | 53932.4204               | .0009 | JU                       |                   |              |             |            | 2)              |
| v972 Her   | 53440.474                | .008  | SCI                      |                   |              |             |            | 2)              |
|            | 53900.5242               | .0028 | JU                       |                   |              |             | _          | 2)              |
| V1005 Her  | 53846.4682               | .0007 | AG                       |                   |              |             | -Ir        | 1)              |
| V1032 Her  | 53860.5107               | .0027 | $\operatorname{AG}$      |                   |              |             | -Ir        | 1)              |
| V1033 Her  | 53565.4408               | .0008 | $\operatorname{AG}$      |                   |              |             | -Ir        | 1)              |
| V1034 Her  | 53518.5010               | .0012 | $\operatorname{AG}$      |                   |              |             | -Ir        | 1)              |
| V1036 Her  | 53565.4684               | .0007 | $\operatorname{AG}$      |                   |              |             | -Ir        | 1)              |
| V1042 Her  | 53519.4176               | .0001 | RAT RCR                  |                   |              |             | -Ir        | 1)              |
| V1047 Her  | 53863.3834               | .0013 | $\operatorname{AG}$      |                   |              |             | -Ir        | 1)              |
|            | 53863.5489               | .0003 | AG                       |                   |              |             | -Ir        | 1)              |
|            | 53020 4758               | 0020  | AG                       |                   |              |             | -Ir        | 1)              |
|            | 00020.4100               | 10040 | 110                      |                   |              |             |            | - /             |
| V1053 Her  | 53863.4685               | .0015 | AG                       |                   |              |             | -Ir        | 1)              |

Table 1: (cont.)

| Variable               | Min JD 24                | ±     | Obs                 | 0 – C                        |              |                | Fil          | Rem      |
|------------------------|--------------------------|-------|---------------------|------------------------------|--------------|----------------|--------------|----------|
| V1055 Her              | 53849.4677               | .0027 | AG                  |                              |              |                | -Ir          | 1)       |
| V1057 Her              | 53524.4828               | .0011 | $\operatorname{AG}$ |                              |              |                | -Ir          | 1)       |
| V1062 Her              | 53515.4461               | .0006 | $\operatorname{AG}$ |                              |              |                | -Ir          | 1)       |
|                        | 53518.4611               | .0019 | $\operatorname{AG}$ |                              |              |                | -Ir          | 1)       |
|                        | 53847.4685               | .0020 | $\operatorname{AG}$ |                              |              |                | -Ir          | 1)       |
| V1064 Her              | 53863.4480               | .0015 | $\mathbf{AG}$       |                              |              |                | -Ir          | 1)       |
| V1067 Her              | 53515.4957               | .0008 | $\mathbf{AG}$       |                              |              |                | -Ir          | 1)       |
|                        | 53847.4259               | .0037 | AG                  |                              |              |                | -Tr          | 1)       |
|                        | 53847.5546               | .0015 | AG                  |                              |              |                | -Tr          | 1)       |
| AV Hva                 | 53808.3342               | .0003 | MS FR               | -0.0855                      |              | GCVS 85        |              | 6)       |
| SW Lac                 | 53632.4353               | .0010 | $_{ m JU}$          | +0.0631                      |              | GCVS 85        |              | 2)       |
|                        | 53636.4450               | .0008 | JU                  | +0.0638                      | s            | GCVS 85        |              | 2)       |
|                        | 53656.3297               | .0004 | AG                  | +0.0638                      | s            | GCVS 85        | V            | 1)       |
|                        | 53656.4906               | .0003 | AG                  | +0.0643                      | 2            | GCVS 85        | v            | 1)       |
|                        | 53656.6507               | .0017 | AG                  | +0.0641                      | s            | GCVS 85        | v            | 1)       |
|                        | 53683 4298               | 0007  | ATB                 | +0.0630                      | 2            | GCVS 85        | •            | 1)       |
|                        | 53687 2775               | 0003  | DIE                 | +0.0620                      |              | GCVS 85        |              | 11)      |
| VX Lac                 | 53650 3181               | 0003  | DIE                 | +0.0524                      |              | GCVS 85        |              | 11)      |
| ZZ Lac                 | 53928 4250               | 0031  | AG                  | 10.0021                      |              |                | -Ir          | 1)       |
| AG Lac                 | 53657 6487               | 0033  | AG                  |                              |              |                | -Ir          | 1)       |
| 110 100                | 53928 4319               | 0004  | AG                  |                              |              |                | _Ir          | 1)       |
| AW Lac                 | 53657 3460               | 0010  | AG                  | $\pm 0.0292$                 |              | BAVB 35 1ff    | _Ir          | 1)       |
| CG Lac                 | 53657 4763               | 0014  | AG                  | 10.0202                      |              | Ditt it 60, in | _Ir          | 1)       |
| CG Lac                 | 53658 2942               | 0008  | AG                  |                              |              |                | -11<br>-Tr   | 1)       |
| CO Lac                 | 53165 5471               | 0000  | MON                 | -0.0033                      |              | SAC 74         | V            | 1)       |
| CO Lac                 | 53223 4051               | 0000  | MON                 | $\pm 0.0033$<br>$\pm 0.0218$ | c            | SAC 74         | v            | 1)       |
|                        | 53225,4051               | 0003  | MON                 | +0.0210<br>+0.0212           | 0<br>9       | SAC 74         | v            | 1)       |
|                        | 53600 4516               | 0006  | MON                 | -0.0212                      | 5            | SAC 74         | v            | 1)       |
| DG Lac                 | 53657 4667               | 0000  | AG                  | -0.2103                      |              | GCVS 85        | _Tr          | 1)       |
| EK Lac                 | 53653 3499               | 0013  | AG                  | -0.0053                      |              | GCVS 85        | -11<br>Ir    | 1)       |
| EK Lac<br>FM Lac       | 53614 4204               | 0013  | AG                  | -0.0003                      |              | GCVS 85        | -11<br>Ir    | 1)       |
| EWI Lac                | 53657 4180               | .0020 | AG                  | +0.0004                      |              | GCVS 85        | -11<br>Ir    | 1)       |
|                        | 53657 6130               | 0019  | AG                  | +0.0581                      | G            | GCVS 85        | -11<br>Ir    | 1)       |
| FDIAG                  | 52028 4485               | .0021 | AG                  | +0.0001                      |              | GCVS 85        | -11<br>In    | 1)       |
| EI Lac                 | 52658 2491               | .0013 | AG                  | -0.3010                      |              | GCVS 85        | -11<br>Ir    | 1)       |
| EQ Lac<br>FY Loc       | 53657 5715               | 0009  | AG                  | +0.0040                      |              | GCV5 65        | -11<br>Ir    | 1)       |
| EA Lat                 | 53657 5797               | .0021 | AG                  |                              |              |                | -11<br>Ir    | 1)       |
| II Inc                 | 53805 4540               | .0007 | AG                  |                              |              |                | -11<br>Ir    | 1)       |
| IL Lat                 | 52022 4249               | .0008 | AG                  |                              |              |                | -11<br>In    | 1)       |
| ID I ac                | 53653 3704               | 0013  | AG                  |                              |              |                | -11<br>Ir    | 1)       |
| II Lat                 | 52022 4101               | .0012 | AG                  |                              |              |                | -11<br>Ir    | 1)       |
| III Lac                | 53614 5804               | .0001 | AG                  |                              |              |                | -11<br>Ir    | 1)       |
| IU Lat                 | 53653 3444               | .0023 | AG                  |                              |              |                | -11<br>Ir    | 1)       |
|                        | 53033.3444               | .0015 | AG                  |                              |              |                | -11<br>Ir    | 1)       |
| IZ Lac                 | 53653 5105               | 0010  | AG                  |                              |              |                | -11<br>Ir    | 1)       |
|                        | 53614 3853               | .0027 | AG                  |                              |              |                | -11<br>Ir    | 1)       |
| LZ Lac<br>MW Lac       | 52014.3633               | .0019 | AG                  |                              |              |                | -11<br>In    | 1)       |
| MW Lac                 | 00090.4741<br>E26E0 2402 | .0014 | AG                  |                              |              |                | -11<br>Tm    | 1)       |
| INA Lac                | 52659 6276               | .0020 | AG                  |                              |              |                | -11<br>In    | 1)       |
|                        | 22020.0370<br>52620.0897 | .0005 | AG<br>MC ED         | 0 0 1 9 9                    |              | COVC of        | - 11         | 1)<br>6) |
| PP Lac                 | 55052.2001               | .0001 | MSFL                | -0.0488                      |              | GCV 5 65       | T.,          | 1)       |
| v 544 Lac<br>V244 Lac  | 53632 YEUY               | .0030 |                     |                              |              |                | - 11'<br>T., | 1)       |
| v 544 Lac              | 00007.4094<br>52020 4052 | .0003 | AAI KUK             |                              |              |                | -11'<br>T.:  | 1)<br>1) |
| 1794E T                | 00902.4200<br>52020 4500 | .0008 | AG                  | 10.0019                      |              | Uantha Mitt 19 | -11'<br>T.:  | 1)<br>1) |
| ү 540 Lac<br>үзс∕т     | 00902.4022<br>52656 2711 | .0020 | AG                  | +0.0813                      | ~            | DAVD 47 222    | -11<br>V     | 1)<br>1) |
| v э04 Lac<br>V 4 4 1 т | 0000.3711<br>E9614 E041  | .0023 | AG                  | +0.0108                      | s<br>-       | DAV N 47, 331  | V<br>т.      | 1)<br>1) |
| v 441 Lac              | 03014.0U41<br>E26E2 4010 | .0015 | AG                  | -0.0302                      | s            | IDVS 5024      | -1r<br>т.    | 1)<br>1) |
|                        | 03003.421U<br>52020 5020 | .0032 | AG                  | -0.0400                      | $\mathbf{s}$ | IDVS 5024      | -1r<br>т.    | 1)<br>1) |
| VI                     | 00902.0202<br>59445 4900 | .0010 | AG<br>MON           | -0.0205                      |              |                | -1ľ<br>V     | 1)<br>1) |
| т гео                  | JJ44J.4J90<br>52750 6100 | 0000  |                     | $\pm 0.0043$                 |              | CCAR SE        | V<br>T.,     | 1)<br>7) |
|                        | 99190.0188               | .0037 | гu                  | -0.0001                      |              | GO 60 GU DE    | - 11         | ()       |

Table 1: (cont.)

|                    |                          |       |                     | com.)        |              |              |             |                 |
|--------------------|--------------------------|-------|---------------------|--------------|--------------|--------------|-------------|-----------------|
| Variable           | Min JD 24                | ±     | Obs                 | O - C        |              |              | Fil         | Rem             |
| RT Leo             | 53814.4020:              | .0050 | AG                  |              |              |              | -Ir         | 1)              |
|                    | 53814.4141               | .0042 | $\mathbf{SCI}$      |              |              |              |             | 2)              |
| UZ Leo             | 53406.4350               | .0002 | RAT RCR             | -0.1502      |              | GCVS 85      | -Ir         | 1)              |
| VZ Leo             | 53387.4371               | .0005 | MS FR               | -0.0622      |              | GCVS 85      |             | 6)              |
|                    | 53752.5433               | .0045 | $\mathbf{PC}$       | -0.0746      |              | GCVS 85      | -Ir         | 7)              |
| WZ Leo             | 53706.6603               | .0010 | MS FR               | -0.4797      | $\mathbf{s}$ | GCVS 85      |             | 6)              |
|                    | 53814.3876               | .0004 | $\operatorname{AG}$ | -0.2785      |              | GCVS 85      | -Ir         | 1)              |
| XX Leo             | 53814.3369               | .0002 | $\operatorname{AG}$ | +0.1708      | $\mathbf{s}$ | GCVS 85      | -Ir         | 1)              |
| XY Leo             | 53814.3220               | .0021 | $\operatorname{AG}$ | +0.0164      | $\mathbf{s}$ | GCVS 85      | -Ir         | 1)              |
| XZ Leo             | 53381.5166               | .0002 | RAT RCR             | +0.0370      | $\mathbf{s}$ | GCVS 85      | -Ir         | 1)              |
|                    | 53683.6714               | .0001 | MS FR               | +0.0399      |              | GCVS 85      |             | 6)              |
|                    | 53814.3850               | .0007 | AG                  | +0.0405      |              | GCVS 85      | -Ir         | 1)              |
| AG Leo             | 53815.4502               | .0014 | AG                  | +0.0837      |              | GCVS 85      | -Ir         | 1)              |
| 3W Leo             | 53813.3657               | .0002 | MS FR               |              |              |              |             | 6)              |
| CE Leo             | 53386.5654               | .0002 | RAT RCR             |              |              |              | -Ir         | 1)              |
|                    | 53463.3314               | .0002 | RAT RCR             |              |              |              | -Ir         | 1)              |
|                    | 53766.4570               | .0002 | MS FR               |              |              |              |             | 6)              |
| ET Leo             | 53833.3687               | .0020 | WTR                 |              |              |              | -Tr         | 12)             |
| RT LMi             | 53752.6205               | .0042 | PC                  | -0.0054      |              | GCVS 85      | -Tr         | 7)              |
| (Q Lib             | 53465 5329               | .0003 | PRK                 | +0.0135      |              | IBVS 5148    | **          | 2)              |
| RY Lun             | 53470 / 301              | 0000  | III                 | -0.0404      |              | GCVS 85      |             | 2)<br>2)        |
| III Lyn            | 53386 /6//               | 0000  | JU<br>MS FR         | -0.0434      |              | GCVS 85      |             | 4)<br>6)        |
| ло цуп             | 53761 4167               | 0010  | III<br>MIS L IL     |              |              | CCVS 85      |             | 0)<br>9)        |
|                    | 52462 2547               | .0010 | JU                  | -0.0071      |              | GCV5 85      |             | 2)<br>2)        |
| 137 Т              | 53402.3347               | .0008 | JU                  | -0.0000      |              | GCVD 65      |             | 2)<br>2)        |
| JV Lyn             | 00400.4207<br>5000.0007  | .0020 | JU                  | +0.0548      | _            | GUVS 89      | 17          | 2)<br>1)        |
| D Lyn              | 53360.3327               | .0017 | MON                 | -0.0027      | $\mathbf{s}$ | IBVS 4911    | V           | 1)              |
| JE Lyn             | 53403.3838               | .0008 | JU                  | . 0 0101     |              | a ava er     | <b>T</b> 7  | 2)              |
| l"T Lyr            | 53927.4478               | .0005 | AG                  | +0.0131      |              | GCVS 85      | V           | 1)              |
| L'Z Lyr            | 53517.4618               | .0021 | AG                  | +0.0051      |              | GCVS 85      | -lr         | 1)              |
|                    | 53688.2719               | .0003 | RAT RCR             | +0.0041      |              | GCVS 85      | -lr         | 1)              |
| AA Lyr             | 53672.3109               | .0016 | FR                  |              |              |              | -Ir         | 10)             |
| EW Lyr             | 53618.3597               | .0003 | RAT RCR             | +0.2334      |              | GCVS 85      | -Ir         | 1)              |
| FH Lyr             | 53524.4804               | .0007 | $\operatorname{AG}$ |              |              |              | -Ir         | 1)              |
| FL Lyr             | 53612.3871               | .0049 | $\mathbf{PC}$       | -0.0044      |              | GCVS 85      | -Ir         | 7)              |
|                    | 53673.3777               | .0009 | $_{ m JU}$          | -0.0021      |              | GCVS 85      |             | 2)              |
| IY Lyr             | 53861.3563               | .0029 | $\mathbf{FR}$       |              |              |              | -Ir         | 10)             |
|                    | 53861.5461               | .0016 | $\mathbf{FR}$       |              |              |              | -Ir         | 10)             |
| W Lyr              | 53517.4465               | .0028 | $\operatorname{AG}$ | -0.0819      |              | GCVS 85      | -Ir         | 1)              |
| IY Lyr             | 53612.3849               | .0050 | $\mathbf{PC}$       | +0.1014      | $\mathbf{s}$ | GCVS 85      | -Ir         | 7)              |
|                    | 53648.3102               | .0044 | $\mathbf{PC}$       | +0.1018      |              | GCVS 85      | -Ir         | 7)              |
| PS Lyr             | 53658.2966               | .0010 | $\mathbf{FR}$       | +0.0094      |              | GCVS 85      | -Ir         | 10)             |
| V Lyr              | 53516.4579               | .0011 | $\operatorname{AG}$ |              |              |              | -Ir         | 1)              |
| Y Lyr              | 53517.3796               | .0008 | $\operatorname{AG}$ |              |              |              | -Ir         | 1)              |
| v                  | 53520.4675               | .0021 | $\operatorname{AG}$ |              |              |              | -Ir         | 1)              |
| )U Lyr             | 53524.4685               | .0016 | $\operatorname{AG}$ | -0.0006      | $\mathbf{s}$ | GCVS 85      | -Ir         | 1)              |
| 400 Lvr            | 53462.5794               | .0001 | MS FR               |              |              | -            | -           | 6)              |
|                    | 53515.4181               | .0003 | AG                  |              |              |              | -Tr         | 1)              |
|                    | 53515.5475               | .0003 | AG                  |              |              |              | _Tr         | 1)              |
| 7401 Lyr           | 53515 4609               | .0005 | AG                  |              |              |              | _Tr         | +)<br>1)        |
| 404 Lyr            | 53515 4065               | 0014  | AG                  | $\pm 0.0032$ | s            | IBVS 5017    | _]r         | +)<br>1)        |
| 7563 Lyr           | 53517 /076               | 0013  | AG                  | 10.0002      | 5            | 1010 0011    | _]r         | 1)              |
| 572 T              | 53517 1968               | 0010  | AC                  |              |              |              | -11<br>. Tr | 1)              |
| ото цуг<br>7574 Т  | 53017 4501               | 0012  |                     |              |              |              | -11         | 1)<br>9)        |
| 7574 Lyr<br>7590 T | 00911.4001<br>52501 1055 | .0000 | JU                  |              |              |              | T.          | <i>2)</i><br>1) |
| USOU LYP           | 00024.4000<br>52620 4052 | .0020 |                     |              |              |              | -1Г<br>т.   | 1)              |
| 089 Lyr            | 03032.4253<br>F9790 2017 | .0008 | KAT KCK             |              |              |              | -1r         | 1)<br>1)        |
| JU Mon             | 53780.3957               | .0023 | AG                  |              |              |              | -1r         | 1)              |
| JV Mon             | 53755.3407               | .0013 | AG                  |              |              |              | -1r         | 1)              |
| X Mon              | 53683.5352               | .0003 | MS FR               | 0.0000       |              |              | -           | 6)              |
| AU Mon             | 53755.2720:              | .0030 | AG                  | -0.0200      |              | BAVR 51, 38f | -1r         | 1)              |
| BM Mon             | 53755.4695               | .0011 | $\mathbf{AG}$       | -0.5859      |              | GCVS 85      | -lr         | 1)              |

Table 1: (cont.)

| Variable          | Min JD 24                | ±     | Obs                 | ,<br>0 – C   |              |                    | Fil       | Rem      |
|-------------------|--------------------------|-------|---------------------|--------------|--------------|--------------------|-----------|----------|
| GG Mon            | 53755.3909               | .0009 | AG                  |              |              |                    | -Ir       | 1)       |
|                   | 53765.3329               | .0010 | MS FR               |              |              |                    |           | 6)       |
| HM Mon            | 53780.3419               | .0004 | $\operatorname{AG}$ | -0.0018      |              | GCVS 85            | -Ir       | 1)       |
| IX Mon            | 53650.5772               | .0012 | MS FR               |              |              |                    |           | 6)       |
| V395 Mon          | 53780.4310               | .0017 | $\operatorname{AG}$ |              |              |                    | -Ir       | 1)       |
| V396 Mon          | 53672.6266               | .0010 | MS FR               | -0.0684      |              | GCVS 87            |           | 6)       |
| V448 Mon          | 53715.5324               | .0038 | SCI                 | +0.0488      |              | GCVS 85            |           | 2)       |
|                   | 53780.4065               | .0011 | $\operatorname{AG}$ | +0.0519      |              | GCVS 85            | -Ir       | 1)       |
| V453 Mon          | 52690.2955               | .0001 | MS FR               | -0.1620      | $\mathbf{s}$ | GCVS 87            |           | 6)       |
| V456 Mon          | 53780.3307               | .0006 | $\operatorname{AG}$ |              |              |                    | -Ir       | 1)       |
| V498 Mon          | 53780.3713               | .0010 | $\operatorname{AG}$ |              |              |                    | -Ir       | 1)       |
| V514 Mon          | 53780.4035               | .0041 | $\operatorname{AG}$ | +0.0096      |              | GCVS 85            | -Ir       | 1)       |
| V527 Mon          | 53755.4275               | .0016 | $\operatorname{AG}$ | -0.0242      |              | GCVS 85            | -Ir       | 1)       |
| V528 Mon          | 53769.3412               | .0004 | MS FR               |              |              |                    |           | 6)       |
| V530 Mon          | 53763.3920               | .0005 | MS FR               | -0.1334      | $\mathbf{s}$ | GCVS 85            |           | 6)       |
| WZ Oph            | 53901.4151               | .0002 | $\operatorname{AG}$ | +0.0034      |              | GCVS 85            | -Ir       | 1)       |
| V449 Oph          | 53483.5444               | .0001 | RAT RCR             | +0.0675      |              | GCVS 85            | -Ir       | 1)       |
| V839 Oph          | 53520.5035               | .0006 | AG                  | -0.0133      | $\mathbf{s}$ | GCVS 85            | -Ir       | 1)       |
| CQ Ori            | 53386.3425               | .0002 | MS FR               | +0.0007      |              | GCVS 85            |           | 6)       |
| EF Ori            | 53717.4081               | .0014 | $\operatorname{AG}$ |              |              |                    | -Ir       | 1)       |
| ER Ori            | 53031.328                | .002  | HND                 |              |              |                    |           | 19)      |
| FH Ori            | 53671.5463               | .0028 | SCI                 | -0.3163      |              | GCVS 85            |           | $2)^{'}$ |
| FK Ori            | 53780.2890               | .0004 | WTR                 | +0.0039      |              | GCVS 85            | -Ir       | 12)      |
| FT Ori            | 53701.4728               | .0009 | MON                 | +0.0122      |              | GCVS 85            | V         | 1)       |
|                   | 53760 3602               | 0011  | MON                 | +0.1077      | s            | GCVS 85            | v         | 1)       |
|                   | 53764 4813               | 0005  | MON                 | +0.0124      | 5            | GCVS 85            | v         | 1)       |
| GG Ori            | 53809 2944               | 0006  | MON                 | -2.8065      |              | A A 54 207         | v         | 1)       |
| GU Ori            | 53717 3759               | 0001  | AG                  | 2.0000       |              | 1111 0 1.201       | _Ir       | 1)       |
| OS Ori            | 53671 4638               | 0002  | MS FB               | -0.0181      |              | GCVS 85            | 11        | 6)       |
| OV Ori            | 53673 5542               | 0020  | SCI                 | 0.0101       |              | 001000             |           | 2)       |
| V3/3 Ori          | 53407 3614               | 0020  | BAT BCB             | $\pm 0.1734$ | c            | GCVS 85            | _Ir       | 1)       |
| V540 Ori          | 53766 2706               | 0005  | AG                  | $\pm 0.1194$ | G            | 001505             | -11<br>Ir | 1)       |
| V647 Ori          | 40752 2124               | .0005 | MS                  | 0 1065       |              | CCVS 85            | -11       | 1)       |
| 1041 011          | 49702.0104               | .0013 | MS                  | 0.1969       | c.           | CCVS 85            |           | 1)       |
|                   | 50042 6481               | 0013  | MS                  | 0.1080       | G            | CCVS 85            |           | 1)       |
|                   | 50863 3057               | .0013 | MS                  | -0.1989      | c.           | GCV5 85<br>CCVS 85 |           | 1)       |
|                   | 51180 2000               | .0002 |                     | -0.2079      | 5            | GCVS 85            |           | 1)       |
|                   | 52621 4287               | .0004 | MC MC               | -0.2097      |              | GCVS 85            |           | 1)<br>6) |
|                   | 52021.4567               | .0001 | MC ED               | -0.2274      |              | GCV5 65            |           | 0)<br>C) |
|                   | 53301.4507               | .0004 | MS FR<br>MC ED      | -0.2329      | _            | GUVS 85            |           | 0)<br>C) |
| VGAO O!           | 03037.0U85               | .0010 | MS FR               | -0.2375      | $\mathbf{s}$ | GUVS 85            |           | 0)<br>1) |
|                   | 00700.0090<br>50760.0100 | .0013 | MS                  | +0.0330      |              | 9012 82            | 17        | 1)<br>2) |
| GSU1296.975 Ori - | 53768.3182               | .0010 | QU<br>DC            | 0.0100       |              |                    | V<br>T    | 2)       |
| U Peg             | 53648.4401               | .0022 | PC                  | -0.0100      |              | BAVR $45, 3$       | -1r       | 7)       |
|                   | 53655.3783               | .0004 | QU                  | -0.0052      | $\mathbf{s}$ | BAVR $45, 3$       | V         | 3)       |
| UX Peg            | 53661.2961               | .0007 | AG                  | -0.0060      |              | GCVS 87            | -1r       | 1)       |
| ZZ Peg            | 53688.3601               | .0029 | SCI                 | +0.1253      |              | GCVS 87            |           | 2)       |
| A'I' Peg          | 53657.2813               | .0001 | DIE                 | +0.0106      |              | GCVS 87            | _         | 11)      |
| BB Peg            | 53661.3569               | .0004 | AG                  | -0.0002      | $\mathbf{S}$ | GCVS 87            | -Ir       | 1)       |
|                   | 53661.5390               | .0005 | AG                  | +0.0011      |              | GCVS 87            | -Ir       | 1)       |
|                   | 53675.2769               | .0008 | DIE                 | +0.0019      |              | GCVS 87            |           | 11)      |
| BN Peg            | 53653.2872               | .0039 | DIE                 | -0.0068      |              | GCVS 87            |           | 11)      |
| BO Peg            | 53648.3473               | .0056 | $\mathbf{PC}$       | -0.0304      |              | GCVS 87            | -Ir       | 7)       |
| BX Peg            | 53601.4569               | .0006 | $\operatorname{AG}$ | +0.0651      | $\mathbf{S}$ | GCVS 87            | -Ir       | 1)       |
|                   | 53613.3741               | .0006 | $\operatorname{AG}$ | +0.0644      |              | GCVS 87            | -Ir       | 1)       |
|                   | 53613.5159               | .0028 | $\operatorname{AG}$ | +0.0660      | $\mathbf{S}$ | GCVS 87            | -Ir       | 1)       |
|                   | 53614.4970               | .0024 | $\mathbf{PC}$       | +0.0656      |              | GCVS 87            | -Ir       | 7)       |
|                   | 53648.4272               | .0024 | $\mathbf{PC}$       | +0.0649      |              | GCVS 87            | -Ir       | 7)       |
|                   | F96F1 9714               | 0028  | $\Delta G$          | $\pm 0.0647$ | s            | GCVS 87            | -Ir       | 1)       |
|                   | 53051.3714               | .0020 | 110                 | 1010011      |              | 0.0.00.            |           | -)       |
|                   | 53651.3714<br>53651.5111 | .0028 | AG                  | +0.0642      | -            | GCVS 87            | -Ir       | $1)^{-}$ |

Table 1: (cont.)

| Variable           | Min JD 24                | ±             | Obs                 | 0 – C                        |              |             | Fil       | Ren            |
|--------------------|--------------------------|---------------|---------------------|------------------------------|--------------|-------------|-----------|----------------|
| BX Peg             | 53659.5033               | .0006         | $\mathbf{FR}$       | +0.0644                      | $\mathbf{s}$ | GCVS 87     | -Ir       | 10)            |
| BY Peg             | 53601.5250               | .0010         | $\operatorname{AG}$ |                              |              |             | -Ir       | 1)             |
|                    | 53659.3142               | .0017         | $\mathbf{FR}$       |                              |              |             | -Ir       | 10)            |
| BZ Peg             | 53651.3615               | .0012         | $\mathbf{AG}$       |                              |              |             | -Ir       | 1)             |
| -                  | 53659.4081               | .0088         | $\mathbf{FR}$       |                              |              |             | -Ir       | 10)            |
| CC Peg             | 53601.4767               | .0018         | $\operatorname{AG}$ | -0.0076                      |              | IBVS 5017   | -Ir       | 1)             |
| 0                  | 53613.5916               | .0006         | $\operatorname{AG}$ | -0.0047                      |              | IBVS $5017$ | -Ir       | 1)             |
|                    | 53651.4458               | .0013         | $\operatorname{AG}$ | -0.0007                      | $\mathbf{s}$ | IBVS $5017$ | -Ir       | 1)             |
|                    | 53659.3272               | .0035         | $\mathbf{FR}$       | +0.0078                      | $\mathbf{s}$ | IBVS 5017   | -Ir       | 10)            |
| CE Peg             | 53613.5379               | .0007         | $\mathbf{AG}$       |                              |              |             | -Ir       | $1)^{\prime}$  |
| 0                  | 53651.4164               | .0006         | AG                  |                              |              |             | -Ir       | 1)             |
| CF Peg             | 53659.3689               | .0026         | FR.                 |                              |              |             | -Ir       | 10)            |
| CZ Peg             | 53613.4253               | .0011         | AG                  |                              |              |             | -Ir       | 1)             |
| DI Peg             | 53634 3450               | 0005          | DIE                 | -0.0194                      |              | GCVS 87     |           | $\frac{1}{11}$ |
| DK Peg             | 53614 5317               | 0049          | PC                  | +0.0705                      |              | GCVS 87     | _Ir       | 7)             |
| DIVICE             | 53673 2886               | 00045         | DIE                 | $\pm 0.0109$<br>$\pm 0.0822$ |              | GCVS 87     | -11       | 11)            |
|                    | 53636 4943               | 0000          |                     | $\pm 0.0022$                 |              | 001501      | Ir        | 1)             |
| FP Deg             | 52656 2400               | 0004          |                     |                              |              |             | -11       | 1)<br>2)       |
| ER Feg             | 53050.3490               | .0023         | 10                  |                              |              |             | v         | 2)<br>1)       |
| TP Dog             | 53630 K040               | .0041         |                     | 0.0405                       |              | COVE 07     | V<br>T    | 1)<br>1)       |
| JP Peg             | 53032.5373               | .0002         | RAI RCR             | -0.0405                      |              | GCVS 87     | -1r       | 1)             |
|                    | 53638.3865               | .0007         | RATRCR              | -0.0450                      |              | GCVS 87     | -lr       | 1)             |
| KW Peg             | 53601.5201               | .0012         | AG                  |                              |              |             | -lr       | 1)             |
|                    | 53613.3551               | .0010         | AG                  |                              |              |             | -lr       | 1)             |
|                    | 53659.4834               | .0009         | FR                  |                              |              |             | -1r       | 10)            |
| MQ Peg             | 53651.3333               | .0008         | RAT RCR             |                              |              |             | -Ir       | 1)             |
|                    | 53683.3916               | .0018         | $\mathbf{FR}$       |                              |              |             | -Ir       | 10)            |
|                    | 53716.4029               | .0042         | $_{\rm FR}$         |                              |              |             |           | 9)             |
|                    | 53717.3523               | .0053         | $_{\rm FR}$         |                              |              |             |           | 9)             |
| U1125-18642389 Peg | 52505.4982               | .0003         | $\operatorname{AG}$ |                              |              |             |           | 1)             |
|                    | 52510.4333               | .0012         | $\operatorname{AG}$ |                              |              |             |           | 1)             |
|                    | 52878.4247               | .0018         | $\operatorname{AG}$ |                              |              |             |           | 1)             |
|                    | 52887.4157               | .0026         | $\operatorname{AG}$ |                              |              |             |           | 1)             |
|                    | 53217.5026               | .0032         | $\operatorname{AG}$ |                              |              |             |           | 1)             |
|                    | 53221.5535               | .0004         | $\operatorname{AG}$ |                              |              |             |           | 1)             |
|                    | 53226.4927               | .0020         | $\mathbf{AG}$       |                              |              |             |           | 1)             |
|                    | 53233.3726               | .0047         | $\operatorname{AG}$ |                              |              |             |           | 1)             |
|                    | 53233.5454               | .0019         | $\operatorname{AG}$ |                              |              |             |           | 1)             |
|                    | 53242.3641               | .0035         | $\operatorname{AG}$ |                              |              |             |           | 1)             |
|                    | 53250.4743               | .0036         | $\mathbf{AG}$       |                              |              |             |           | 1)             |
|                    | 53251.3561               | .0002         | AG                  |                              |              |             |           | 1)             |
|                    | 53253.4708               | .0011         | AG                  |                              |              |             |           | 1)             |
|                    | 53255.4116               | ,0017         | AG                  |                              |              |             |           | 1)             |
|                    | 53255 5857               | .0039         | AG                  |                              |              |             |           | 1)             |
|                    | 53256 4698               | .0019         | AG                  |                              |              |             |           | 1)             |
|                    | 53257 3524               | 0042          | AG                  |                              |              |             |           | 1)             |
|                    | 53257 5291               | 0012          | AG                  |                              |              |             |           | 1)             |
|                    | 53267 4023               | 0005          | AG                  |                              |              |             |           | 1)             |
|                    | 53201.4025               | .0020<br>0020 |                     |                              |              |             | . Tr      | 1)             |
|                    | 53981 3965               | .0032<br>0010 |                     |                              |              |             | -11<br>Tw | 1)<br>1)       |
|                    | JJZ04,JZUJ<br>52084 5070 | 0019          |                     |                              |              |             | -11<br>T  | 1)<br>1)       |
|                    | 00204.0079<br>52601 5469 | .0020         | AG                  |                              |              |             | -11<br>T  | 1)<br>1)       |
|                    | 03001.0403               | .0023         | AG                  |                              |              |             | -1r       | 1)             |
|                    | 53613.3605               | .0058         | AG                  |                              |              |             | -1r       | 1)             |
|                    | 53613.5374               | .0030         | AG                  |                              |              |             | -lr       | 1)             |
| ~                  | 53651.4471               | .0019         | AG                  |                              |              | ~ ~ ~ ~ ~   | -Ir       | 1)             |
| ST Per             | 53652.3960               | .0012         | $\operatorname{AG}$ | +0.1940                      |              | GCVS 87     | -Ir       | 1)             |
| XZ Per             | 53654.4681               | .0001         | RAT RCR             | -0.0576                      |              | GCVS 87     | -Ir       | 1)             |
| BO Per             | 53683.4171               | .0026         | $\mathbf{SCI}$      |                              |              |             |           | 2)             |
|                    | 53681 3741               | .0035         | SCI                 | -0.0242                      |              | GCVS 87     |           | 2)             |
| BP Per             | 00001.0141               |               |                     |                              |              |             |           |                |
| BP Per<br>BY Per   | 53636.4174               | .0007         | AG                  |                              |              |             | -Ir       | 1)             |

Table 1: (cont.)

| Variable        | Min JD 24                | ±     | Obs                 | O - C             |              |               | Fil       | R      |
|-----------------|--------------------------|-------|---------------------|-------------------|--------------|---------------|-----------|--------|
| BY Per          | 53659.4699               | .0010 | AG                  |                   |              | 0.0770        | -Ir       | 1      |
| HW Per          | 53632.5114               | .0003 | MS FR               | +0.0229           |              | GCVS 87       |           | 6      |
| II Per          | 53633.5764               | .0010 | MS FR               |                   |              |               |           | 6      |
| IM Per          | 53635.5494               | .0005 | MS FR               | +0.0823           |              | GCVS 87       |           | 6      |
| IQ Per          | 53257.5312               | .0007 | MON                 | +0.0041           |              | GCVS 87       | V         | 1      |
| IU Per          | 53674.3375               | .0012 | DIE                 | +0.0093           |              | GCVS 87       |           | 1      |
|                 | 53705.6226               | .0064 | $\operatorname{AG}$ | +0.0130           | $\mathbf{s}$ | GCVS 87       | -Ir       | 1      |
| KN Per          | 53765.3100               | .0006 | WTR                 | +0.0016           |              | BAVR 52, 93ff | -Ir       | 1      |
| KW Per          | 53633.4634               | .0002 | MS FR               | +0.0123           |              | GCVS 87       |           | 6      |
| PS Per          | 53705.5937               | .0008 | AG                  | ·                 |              |               | -Ir       | 1      |
| V366 Per        | 53652 4446               | 0026  | AG                  |                   |              |               | -Ir       | 1      |
| V432 Per        | 53683 3202               | 0008  | BAT BCB             | _0.0093           |              | IBVS 3797     | _Ir       |        |
| V402 1 CI       | 53701 3355               | .0000 | RAT RCR             | 0.0095            |              | IBVS 3707     | -11<br>Ir | -      |
|                 | 53701.3355               | .0003 | NAI NON             | -0.0097           |              | IDVS 3797     | -11<br>Tm |        |
| V440 D          | 05700.5520<br>40560 5520 | .0009 | AG                  | -0.0090           |              | IDV 5 3/9/    | -11       |        |
| V449 Per        | 49569.5532               | .0013 | MS                  | +0.0262           |              | GCVS 87       | -         |        |
|                 | 53651.4936               | .0006 | RAT RCR             | +0.0426           |              | GCVS 87       | -1r       |        |
|                 | 53652.4395               | .0023 | $\operatorname{AG}$ | +0.0423           |              | GCVS 87       | -Ir       |        |
| V450 Per        | 53673.4553               | .0003 | MS FR               | +0.0760           |              | GCVS 87       |           | (      |
| beta Per        | 53750.3288               | .0040 | $_{ m JU}$          | +0.0787           |              | GCVS 87       | -Ir       |        |
| RV Psc          | 53662.3761               | .0020 | $\operatorname{AG}$ | -0.0450           | $\mathbf{s}$ | GCVS 87       | -Ir       |        |
|                 | 53662.6509               | .0021 | $\operatorname{AG}$ | -0.0472           |              | GCVS 87       | -Ir       |        |
|                 | 53700.3250               | .0008 | DIE                 | -0.0445           |              | GCVS 87       |           | 1      |
| CP Sge          | 53900.4492               | .0011 | AG                  |                   |              |               | -Ir       |        |
| CU Sge          | 53555 4362               | 0006  | AG                  | +0.0163           |              | GCVS 87       | -Ir       |        |
| CW Sge          | 53565 3005               | 0000  | AG                  | -0.0103           | e            | GCVS 87       | Ir        |        |
| Ow bge          | 52626 2008               | 0000  | WTD                 | -0.0125           | a            | CCVS 87       | -11<br>Tn | 1      |
|                 | 53030.3900               | .0000 | WIN                 | -0.0084           |              | GCVS 87       | -11<br>Tm | 1      |
| DUC             | 53038.3730               | .0000 | WIR                 | -0.0072           |              | GCV5 87       | -1r       | 1      |
| DK Sge          | 53592.3968               | .0011 | AG                  |                   |              |               | -1r       |        |
| El Sge          | 53565.3891               | .0002 | AG                  |                   |              |               | -1r       |        |
| FX Sge          | 53566.4722               | .0005 | AG                  |                   |              |               | -Ir       |        |
| AU Ser          | 53482.4294               | .0001 | RAT RCR             | +0.0079           |              | SAC $73$      | -Ir       |        |
| BI Ser          | 53451.6485               | .0010 | RAT RCR             | +0.1134           |              | GCVS 87       | -Ir       |        |
| CC Ser          | 53462.6007               | .0007 | RAT RCR             | +0.0607           | $\mathbf{s}$ | GCVS 87       | -Ir       |        |
| CX Ser          | 53814.5349               | .0018 | $\mathbf{FR}$       | -0.0805           | $\mathbf{s}$ | GCVS 87       | -Ir       | 1      |
| GSC2038.293 Ser | 53545.4095               | .0005 | $\mathbf{FR}$       |                   |              |               | -Ir       | 1      |
|                 | 53555.5366               | .0008 | $\mathbf{FR}$       |                   |              |               | -Ir       | ]      |
|                 | 53557.5168               | .0010 | FR.                 |                   |              |               | -Ir       | 1      |
|                 | 53566 4349               | 0012  | FB                  |                   |              |               | _Ir       | 1      |
|                 | 53560 4137               | 0010  | FR                  |                   |              |               | Ir        | 1      |
|                 | 52816 2196               | 0006  | FD                  |                   |              |               | -11<br>Tw | 1      |
| DW To:-         | 00040.0400<br>52406 0040 | .0000 | rn<br>cf            | 0.0100            |              | DAVD 18 194   | -11<br>T  | ן<br>ד |
| NW Tau          | 00400.2040               | .0000 |                     | -0.0120           |              | DAV R 45,124  | -11<br>T  | 1      |
| ov rau          | 030/4.0217               | 10001 | KAT KCK             | -0.0123           |              | GUV 3 8/      | -1r       |        |
|                 | 53765.5328               | .0017 | AG                  | -0.0112           |              | GUVS 87       | -1r       |        |
| WY Tau          | 53683.5188               | .0002 | RAT RCR             | +0.0529           |              | GCVS 87       | -fr       |        |
|                 | 53706.3802               | .0024 | SCI                 | +0.0533           |              | GCVS 87       |           |        |
|                 | 53794.3604               | .0010 | $\operatorname{AG}$ | +0.0531           |              | GCVS 87       | -Ir       |        |
| AQ Tau          | 53381.2737               | .0003 | MS FR               | -0.0828           |              | GCVS 87       |           |        |
| BV Tau          | 53387.3898               | .0004 | RAT RCR             |                   |              |               | -Ir       |        |
| CF Tau          | 53683.5127               | .0006 | $\operatorname{AG}$ | +0.0106           | $\mathbf{s}$ | BAVR 35, 1ff  | -Ir       |        |
| CT Tau          | 53765.3660               | .0003 | $\operatorname{AG}$ | -0.0447           | $\mathbf{s}$ | GCVS 87       | -Ir       |        |
|                 | 53794.3741               | .0005 | AG                  | -0.0437           | ~            | GCVS 87       | -Ir       |        |
| CU Tau          | 53752 3026               | 0037  | PC                  | -0.0785           | c            | GCVS 87       | _Tr       |        |
| EN Tau          | 53766 3500               | 0007  |                     | _0.0100<br>_0.016 | 3            |               | -11<br>V  |        |
| LIN LAU         | 59766 9516               | .0003 | UU<br>MON           | 0.0010            |              | DAVIN 02, 491 | v<br>17   |        |
|                 | 03700.3510               | .0011 | MON                 | -0.0009           |              | BAVK 52, 49ff | v         |        |
| EQ Tau          | 51498.2838               | .0010 | HSR                 | -0.0219           |              | GUVS 87       | -         |        |
|                 | 53652.5286               | .0002 | RAT RCR             | -0.0274           |              | GCVS 87       | -fr       |        |
|                 | 53683.4206               | .0006 | $\operatorname{AG}$ | -0.0274           | $\mathbf{s}$ | GCVS 87       | -Ir       |        |
|                 | 53683.5912               | .0005 | $\operatorname{AG}$ | -0.0275           |              | GCVS 87       | -Ir       |        |
|                 |                          | 0000  | MC ED               |                   |              |               |           |        |
| GQ Tau          | 53672.4789               | .0003 | MS FR               |                   |              |               |           |        |

Table 1: (cont.)

| Variable<br>CB Tay | Min JD 24                | ±             | Obs                 | O - C              |              |                  | Fil        | Rem            |
|--------------------|--------------------------|---------------|---------------------|--------------------|--------------|------------------|------------|----------------|
| Gr Tau             | 53683.3695<br>52682 5027 | .0008         | AG                  | -0.0315            | ~            | BAVK 35, 1ff     | -1r<br>T   | 1)<br>1)       |
| CW Ton             | 00000.0901<br>59766 2007 | .0005         | AG                  | -0.0291            | s            | DAV R 39, 1П     | -1r        | 1)<br>a)       |
| GW IAU             | 00100.0297<br>E2660 4001 | .0013         | JU                  | 10.0170            |              | COVE 07          |            | 2)<br>2)       |
| HU Iau             | 53002.4891<br>52765 2012 | .0009         | 501                 | +0.0178            |              | GCV5 87          |            | $\frac{2}{2}$  |
| V701 m             | 53765.3013<br>F9765 9769 | .0050         | JU                  | +0.0150            | _            | GUVS 87          | T.,        | 2)             |
| V781 Tau           | 53765.3763               | .0005         | AG                  | -0.0444            | s            | GCVS 87          | -1r        | 1)             |
|                    | 53765.5497               | .0011         | AG                  | -0.0435            |              | GCVS 87          | -lr        | 1)             |
|                    | 53794.3477               | .0014         | AG                  | -0.0454            | $\mathbf{s}$ | GCVS 87          | -1r        | 1)             |
| V1061 Tau          | 53706.5924               | .0024         | SCI                 |                    |              |                  |            | 2)             |
| V1123 Tau          | 53716.3052               | .0009         | AG                  |                    |              |                  | V          | 1)             |
|                    | 53716.5067               | .0008         | AG                  |                    |              |                  | V          | 1)             |
| V1128 Tau          | 53706.3658               | .0001         | RAT RCR             |                    |              |                  | -Ir        | 1)             |
| V Tri              | 53662.6093               | .0012         | $\operatorname{AG}$ | -0.0004            |              | GCVS 87          | -Ir        | 1)             |
| X Tri              | 53403.2847               | .0004         | ATB                 | -0.0612            |              | GCVS 87          |            | 1)             |
|                    | 53631.5926               | .0022         | $\mathbf{PC}$       | -0.0641            |              | GCVS 87          | -Ir        | 7)             |
|                    | 53745.2592               | .0020         | $\mathbf{PC}$       | -0.0671            |              | GCVS 87          | -Ir        | 7)             |
| RS Tri             | 53662.3597               | .0013         | $\operatorname{AG}$ | -0.0234            |              | GCVS 87          | -Ir        | 1)             |
|                    | 53706.2661               | .0002         | RAT RCR             | -0.0223            |              | GCVS 87          | -Ir        | 1)             |
| WW Tri             | 53613.490:               | .001          | RAT RCR             |                    |              |                  | -Ir        | 1)             |
| TY UMa             | 53844.3853               | .0008         | $_{ m JU}$          | +0.0515            | $\mathbf{s}$ | GCVS 87          |            | 2)             |
| UY UMa             | 53834.3601               | .0009         | $\mathbf{AG}$       | -0.0908            | $\mathbf{s}$ | GCVS 87          | -Ir        | 1)             |
| VV UMa             | 53745.5890               | .0023         | $\mathbf{PC}$       | -0.0506            |              | GCVS 87          | -Tr        | 7)             |
| ZZ UMa             | 53814,4330               | .0004         | AG                  | -0.0019            |              | GCVS 87          | -Ir        | 1)             |
| AA UMa             | 53814 3351               | 0020          | WTB                 | +0.0305            | s            | GCVS 87          | -Ir        | $\frac{1}{12}$ |
|                    | 53846 4029               | 0007          | III                 | +0.0303<br>+0.0317 | 5            | GCVS 87          | 11         | 2)             |
| AC IIMa            | 53866 4970               | 0007          |                     | $\pm 0.0011$       |              | 001501           | Tr         | 2)<br>1)       |
| AC UMa<br>AF UMa   | 53704 4583               | 0010          | AG                  | +0.5134            |              | CCVS 87          | -11<br>Tr  | 1)             |
| DW IMa             | 52407 4068               | .0012         |                     | $\pm 0.5154$       |              | 9012.01          | -11<br>Tn  | 1)             |
| DW UMa             | 53407.4008               | .0002         | LAI LOL             |                    |              |                  | -11<br>T., | 1)             |
| ES UMA             | 53794.4755               | .0003         | AG                  |                    |              |                  | -1r        | 1)             |
| HH UMA             | 53834.3182               | .0030         | WIR                 |                    |              |                  | -1r        | 12)            |
| KM UMa             | 53446.361 :              | .001          | RAT RCR             |                    |              |                  | -1r        | 1)             |
| LP UMa             | 53407.4475               | .0009         | RAT RCR             |                    |              |                  | -lr        | 1)             |
|                    | 53814.3457               | .0011         | $\mathbf{AG}$       |                    |              |                  | -lr        | 1)             |
| RU UMi             | 53833.4039               | .0009         | JU                  | -0.0117            |              | GCVS 87          |            | 2)             |
| NSV8499 UMi        | 53462.4168               | .0004         | RAT RCR             |                    |              |                  | -Ir        | 1)             |
| AW Vir             | 53863.3824               | .0001         | WTR                 | +0.0176            |              | GCVS 87          | -Ir        | 12)            |
| AX Vir             | 53860.3887               | .0001         | WTR                 | +0.0092            |              | BAVR $32, 36$ ff | -Ir        | 12)            |
| NY Vir             | 53867.4118               | .0002         | $\operatorname{AG}$ |                    |              |                  | -Ir        | 1)             |
| VY Vul             | 53579.4120:              | .0020         | $\operatorname{AG}$ |                    |              |                  | -Ir        | 1)             |
| AT Vul             | 53542.4565               | .0015         | $\operatorname{AG}$ | -0.0793            |              | GCVS 87          | -Ir        | 1)             |
| AW Vul             | 53619.3241               | .0004         | $\operatorname{AG}$ | -0.0100            |              | GCVS 87          | -Ir        | 1)             |
| AZ Vul             | 53549.4914               | .0012         | $\operatorname{AG}$ | +0.0239            |              | GCVS 87          | -Ir        | 1)             |
| BE Vul             | 53620.4243               | .0004         | WTR                 | +0.0523            |              | GCVS 87          | -Ir        | 12)            |
|                    | 53655.3601               | .0021         | $\mathbf{FR}$       | +0.0671            | $\mathbf{S}$ | GCVS 87          | -Ir        | 10)            |
| BG Vul             | 53636.4302               | .0005         | $\operatorname{AG}$ |                    |              |                  | -Ir        | 1)             |
| BI Vul             | 53601.4017               | .0032         | $\operatorname{AG}$ |                    |              |                  | -Ir        | 1)             |
|                    | 53601.5288               | .0007         | $\operatorname{AG}$ |                    |              |                  | -Ir        | 1)             |
| BK Vul             | 53601.4088               | .0003         | $\operatorname{AG}$ | +0.0456            | $\mathbf{s}$ | GCVS 87          | -Ir        | 1)             |
|                    | 53648.3420               | .0067         | $\mathbf{PC}$       | +0.0446            |              | GCVS 87          | -Ir        | 7)             |
| BM Vul             | 53601.5496               | .0007         | ĀĠ                  |                    |              |                  | -Tr        | 1)             |
|                    | 53613.4278               | .0022         | AG                  |                    |              |                  | -Tr        | -)             |
|                    | 53636 4252               | 0015          | AG                  |                    |              |                  | _Tr        | 1)             |
|                    | 53651 5068               | 0025          | AG                  |                    |              |                  | -11<br>_Tr | 1)             |
| BP Vul             | 53808 5109               | .0020<br>∩∩91 |                     | _0.000             |              | CCVS 87          | -11<br>Tr  | 1)             |
|                    | 52544 4502               | .0021         |                     | 0.0093             |              | CCVS 07          | -11<br>T., | 1)<br>1)       |
| DS VUI             | 00044.4003               | .0040         | AG                  | -0.0199            |              | GUVD 07          | -1r        | 1)<br>1)       |
|                    | 03079.4300               | .0036         | AG                  | -0.0175            | $\mathbf{s}$ | GCV2 87          | -1r        | 1)             |
|                    | 53615.3710               | .0002         | WTR                 | -0.0190            |              | GUVS 87          | -1r        | 12)            |
| B'I' Vul           | 53549.5448               | .0003         | AG                  | +0.0024            |              | GUVS 87          | -1r        | 1)             |
| BU Vul             | 53549.4537               | .0020         | $\operatorname{AG}$ | +0.0194            | $\mathbf{s}$ | GCVS 87          | -Ir        | 1)             |
|                    |                          |               |                     |                    |              | 0.077            |            |                |

Table 1: (cont.)

|                                     |                          | Tuble 1  | . (001              | ,            |              |           |           |                 |
|-------------------------------------|--------------------------|----------|---------------------|--------------|--------------|-----------|-----------|-----------------|
| Variable                            | Min JD 24                | <u>±</u> | Obs                 | 0 <b>–</b> C |              |           | Fil       | Rem             |
| CD Vul                              | 53619.3617               | .0001    | $\operatorname{AG}$ | -0.0010      |              | GCVS 87   | -Ir       | 1)              |
| DR Vul                              | 53674.3637               | .0020    | JU                  | -0.0103      | $\mathbf{s}$ | AA 54.207 |           | 2)              |
| EO Vul                              | 53639.3161               | .0007    | $\mathbf{AG}$       |              |              |           | -Ir       | 1)              |
|                                     | 53655.2886               | .0018    | $\mathbf{FR}$       |              |              |           | -Ir       | 10)             |
| EQ Vul                              | 53920.4116               | .0015    | $\operatorname{AG}$ |              |              |           | -Ir       | 1)              |
| EU Vul                              | 53542.5112               | .0018    | $\operatorname{AG}$ |              |              |           | -Ir       | 1)              |
|                                     | 53592.4010:              | .0020    | $\mathbf{AG}$       |              |              |           | -Ir       | 1)              |
| EY Vul                              | 53619.5669               | .0007    | $\mathbf{AG}$       |              |              |           | -Ir       | 1)              |
| FF Vul                              | 53549.4878               | .0020    | $\overline{AG}$     |              |              |           | -Ir       | 1)              |
|                                     | 53619.3470               | .0013    | $\overline{AG}$     |              |              |           | -Ir       | 1)              |
|                                     | 53619.5668               | .0005    | AG                  |              |              |           | -Ir       | 1)              |
| FM Vul                              | 53517 5431               | 0013     | AG                  | $\pm 0.0268$ | S            | GCVS 87   | _Tr       | 1)              |
|                                     | 53612 4840               | 0028     | AG                  | +0.0262      | s            | GCVS 87   | _Ir       | 1)              |
| FO Vul                              | 53899 4506               | 0020     | AG                  | 10.0202      | 5            |           | _Ir       | 1)              |
| FO Vul                              | 53658 4544               | 0041     | FB                  |              |              |           | _Ir       | $\frac{1}{10}$  |
| FR Vul                              | 53544 4840               | 0010     |                     | 0.0063       |              | CCVS 87   | -11<br>Tr | 1)              |
| rit vui                             | 52502 5170               | .0010    | AG                  | -0.0003      |              | CCVS 87   | -11<br>In | 1)              |
|                                     | 53592.5179               | .0009    | AG<br>ED            | -0.0072      |              | GCVS 87   | -11<br>Tm | 10)             |
| EXX V.                              | 00000.400 <i>1</i>       | .0004    | гñ<br>ла            | +0.0005      |              | 9012 01   | -11<br>T  | 10)             |
| CI V.                               | 03000.3000               | .0020    | AG                  |              |              |           | -1r       | 1)<br>1)        |
| GI VUI                              | 03899.4000               | .0007    | AG                  |              |              |           | -1r       | 1)              |
| GN VUI                              | 53650.3419               | .0022    | AG                  | 0.00.10      |              | a ava     | -1r       | 1)              |
| GP Vul                              | 53612.3738               | .0014    | AG                  | -0.0349      | $\mathbf{s}$ | GUVS 87   | -1r       | 1)              |
|                                     | 53659.3529               | .0005    | AG                  | -0.0553      |              | GCVS 87   | -lr       | 1)              |
|                                     | 53661.4191               | .0015    | AG                  | -0.0541      |              | GCVS 87   | -lr       | 1)              |
|                                     | 53899.4038               | .0003    | $\mathbf{AG}$       | -0.5454      | $\mathbf{s}$ | GCVS 87   | -Ir       | 1)              |
| GR Vul                              | 53612.3933               | .0006    | $\mathbf{AG}$       |              |              |           | -Ir       | 1)              |
|                                     | 53920.5068               | .0015    | $\operatorname{AG}$ |              |              |           | -Ir       | 1)              |
| GU Vul                              | 53544.4447               | .0007    | $\operatorname{AG}$ | +0.0253      |              | GCVS 87   | -Ir       | 1)              |
|                                     | 53614.5149               | .0027    | $\operatorname{AG}$ | +0.0280      | $\mathbf{S}$ | GCVS 87   | -Ir       | 1)              |
|                                     | 53899.4278               | .0010    | $\mathbf{AG}$       | +0.0253      | $\mathbf{s}$ | GCVS 87   | -Ir       | 1)              |
| HS Vul                              | 53569.4385               | .0022    | $\operatorname{AG}$ |              |              |           | -Ir       | 1)              |
|                                     | 53592.5192               | .0010    | $\operatorname{AG}$ |              |              |           | -Ir       | 1)              |
| IW Vul                              | 53612.3404               | .0004    | $\mathbf{AG}$       |              |              |           | -Ir       | 1)              |
|                                     | 53614.4735               | .0017    | $\operatorname{AG}$ |              |              |           | -Ir       | 1)              |
|                                     | 53658.3009               | .0012    | $\mathbf{FR}$       |              |              |           | -Ir       | 10)             |
| KN Vul                              | 53592.4261               | .0009    | $\mathbf{AG}$       | +0.0469      | $\mathbf{s}$ | GCVS 87   | -Ir       | 1)              |
| NO Vul                              | 53544.5268               | .0035    | $\mathbf{AG}$       |              |              |           | -Ir       | 1)              |
|                                     | 53555.4627               | .0009    | $\mathbf{AG}$       |              |              |           | -Ir       | 1)              |
|                                     | 53565.4741               | .0007    | AG                  |              |              |           | -Ir       | 1)              |
| GSC2192.1283 Vul                    | 53209.4327               | .0083    | AG                  |              |              |           |           | 1)              |
| ; , , , , , , , , , , , , , , , , , | 53216.4943               | .0006    | ĀĞ                  |              |              |           |           | 1)              |
|                                     | 53217.4502               | ,0029    | AG                  |              |              |           |           | 1)              |
|                                     | 53222.4143               | .0020    | AG                  |              |              |           |           | 1)              |
|                                     | 53250 4779               | .0030    | AG                  |              |              |           |           | +)<br>1)        |
|                                     | 53251 4357               | .0014    | AG                  |              |              |           |           | 1)              |
|                                     | 53253 3445               | .0007    | AG                  |              |              |           |           | +)<br>1)        |
|                                     | 53254 4002               | 0027     | AC                  |              |              |           |           | <i>⊥)</i><br>1) |
|                                     | 53955 4417               | 0007     | AC                  |              |              |           |           | 1)              |
|                                     | 53956 5871               | 0000     |                     |              |              |           |           | 1)              |
|                                     | 53257 9515<br>53957 9515 | .0009    | AG                  |              |              |           |           | 1)<br>1         |
|                                     | 00201.0010<br>E20E7 E440 | .0002    | AG                  |              |              |           |           | 1)<br>1)        |
|                                     | 53257.5448               | .0004    | AG                  |              |              |           | -         | 1)              |
|                                     | 53282.3663               | .0038    | AG                  |              |              |           | -1r       | 1)              |
|                                     | 53282.5561               | .0002    | AG                  |              |              |           | -lr       | 1)              |
|                                     | 53284.4623               | .0012    | AG                  |              |              |           | -Ir       | 1)              |
|                                     | 53601.3911               | .0009    | $\operatorname{AG}$ |              |              |           | -Ir       | 1)              |
|                                     | 53601.5844               | .0001    | $\operatorname{AG}$ |              |              |           | -Ir       | 1)              |
|                                     | 53613.4192               | .0007    | $\mathbf{AG}$       |              |              |           | -Ir       | 1)              |
|                                     | 53613 6102               | .0001    | $\mathbf{AG}$       |              |              |           | -Ir       | 1)              |
|                                     | 00010.0102               |          |                     |              |              |           |           |                 |
|                                     | 53636.5217               | .0007    | $\operatorname{AG}$ |              |              |           | -Ir       | 1)              |

Table 1: (cont.)

|    |                 | Table       | ; <b>1</b> . (CO |                     |       |     |     |
|----|-----------------|-------------|------------------|---------------------|-------|-----|-----|
| Va | riable          | Min JD 24   | ±                | Obs                 | O - C | Fil | Rem |
| GS | SC2140.1485 Vul | 53569.4746  | .0014            | AG                  |       | -Ir | 1)  |
|    |                 | 53579.4149  | .0019            | $\operatorname{AG}$ |       | -Ir | 1)  |
|    |                 | 53579.5684  | .0006            | $\mathbf{AG}$       |       | -Ir | 1)  |
|    |                 | 53584.3864  | .0005            | $\mathbf{AG}$       |       | -Ir | 1)  |
|    |                 | 53592.5200: | .0050            | $\mathbf{AG}$       |       | -Ir | 1)  |
|    |                 | 53611.4950  | .0008            | $\operatorname{AG}$ |       | -Ir | 1)  |
|    |                 | 53612.3978  | .0031            | $\mathbf{AG}$       |       | -Ir | 1)  |
|    |                 | 53612.5481  | .0011            | $\operatorname{AG}$ |       | -Ir | 1)  |
|    |                 | 53614.3544  | .0023            | $\mathbf{AG}$       |       | -Ir | 1)  |
|    |                 | 53614.5074  | .0046            | $\mathbf{AG}$       |       | -Ir | 1)  |
|    |                 |             |                  |                     |       |     |     |

Table 2: Pulsating stars

|          |            | Ia    | ble 2: Pulsa  | ting stars |               |     |              |
|----------|------------|-------|---------------|------------|---------------|-----|--------------|
| Variable | Max JD 24  | ±     | Obs           | O - C      |               | Fil | Rem          |
| XX And   | 53410.3281 | .0035 | ATB           | +0.0066    | BAVR 48,189   |     | 1)           |
| XY And   | 53662.6580 | .0030 | AG            |            |               | -Ir | 1)           |
| ZZ And   | 53697.3651 | .0002 | MZ            |            |               | -Ir | 2)           |
| BK And   | 53619.5450 | .0049 | $\mathbf{PC}$ | +0.0017    | BAVR 49, 41   | -Ir | 7)           |
|          | 53649.4795 | .0051 | $\mathbf{PC}$ | +0.0023    | BAVR 49, 41   | -Ir | 7)           |
| CC And   | 53662.2951 | .0035 | $_{ m JU}$    | +0.0291    | GCVS 85       |     | 2)           |
| CI And   | 53407.3639 | .0022 | ATB           | -0.0017    | BAVR 53, 87ff |     | 1)           |
| GP And   | 53217.5431 | .0011 | MON           | +0.0035    | GCVS 85       | V   | 1)           |
|          | 53217.6218 | .0011 | MON           | +0.0036    | GCVS 85       | V   | 1)           |
|          | 53265.3833 | .0011 | MON           | +0.0047    | GCVS 85       | V   | 1)           |
|          | 53265.4613 | .0011 | MON           | +0.0040    | GCVS 85       | V   | 1)           |
|          | 53265.5387 | .0011 | MON           | +0.0027    | GCVS 85       | V   | 1)           |
|          | 53609.5417 | .0012 | MON           | +0.0049    | GCVS 85       | V   | 1)           |
|          | 53622.3659 | .0012 | MON           | +0.0038    | GCVS 85       | V   | 1)           |
|          | 53622.4447 | .0012 | MON           | +0.0040    | GCVS 85       | V   | 1)           |
|          | 53622.5238 | .0012 | MON           | +0.0044    | GCVS 85       | V   | 1)           |
|          | 53638.3399 | .0007 | $\mathbf{SG}$ | +0.0053    | GCVS 85       | V   | 3)           |
|          | 53673.2748 | .0005 | $\mathbf{SG}$ | +0.0050    | GCVS 85       | -Ir | 3)           |
| WY Ant   | 53849.369  | .003  | HND           |            |               | -Ir | 19)          |
| TY Aps   | 53091.424  | .004  | HND DVY       |            |               |     | 14)          |
| UW Aps   | 53538.3720 | .0040 | PS DVY        | -0.0651    | BAVR 53, 96f  |     | 2)           |
| UY Aps   | 53083.384  | .004  | HND DVY       |            |               |     | 13)          |
| -        | 53111.367  | .004  | HND DVY       |            |               |     | 13)          |
| VX Aps   | 53116.368  | .004  | HND DVY       |            |               |     | 13)          |
| XZ Aps   | 53174.423  | .004  | HND DVY       |            |               |     | 13)          |
| YZ Aps   | 53093.425  | .004  | HND DVY       |            |               |     | 15)          |
| -        | 53927.525  | .002  | HND           |            |               | -Ir | 19)          |
| ZZ Aps   | 53549.398  | .002  | HND           |            |               | -Ir | 19)          |
| -        | 53580.359  | .002  | HND           |            |               | -Ir | 19)          |
|          | 53598.482  | .003  | HND           |            |               |     | 19)          |
|          | 53925.420  | .002  | HND           |            |               | -Ir | 19)          |
| BS Aps   | 53547.419  | .002  | HND           |            |               | -Ir | 19)          |
| -        | 53548.584  | .002  | HND           |            |               | -Ir | 19)          |
|          | 53928.409  | .002  | HND           |            |               | -Ir | <b>1</b> 9)  |
| DI Aps   | 53109.318  | .004  | HND DVY       |            |               |     | 14)          |
| -        | 53122.321  | .004  | HND DVY       |            |               |     | 14)          |
|          | 53124.409  | .004  | HND DVY       |            |               |     | 14)          |
| EV Aps   | 53108.371  | .004  | HND DVY       |            |               |     | 14)          |
| EX Aps   | 53089.421  | .004  | HND DVY       |            |               |     | 14)          |
| V341 Aal | 53936.4250 | .0005 | QU            | +0.0050    | BAVR 45, 74   | V   | 3)           |
| V672 Aal | 53585.4941 | .0036 | $\tilde{MZ}$  |            | ,             | -Ir | 2)           |
| -1-      | 53636.3514 | .0020 | MZ            |            |               | -Ir | 2)           |
| CS Ara   | 53572.435  | .002  | HND           |            |               | -Ir | 19)          |
|          | 53576.381  | .002  | HND           |            |               | -Ir | $19^{\circ}$ |
|          | 53608.451  | .002  | HND           |            |               | -Ir | 19)          |
|          |            |       |               |            |               |     | )            |

Table 2: (cont.)

| Variable           | May ID 94   |          | Oba                 | 0 0          |                  | E:I           | Dom      |
|--------------------|-------------|----------|---------------------|--------------|------------------|---------------|----------|
|                    | 101aX JD 24 | T<br>002 |                     | 0-0          |                  | ГП<br>ТД-     | 10)      |
| DL AIa             | 55500.420   | .005     |                     |              |                  | Inc           | 19)      |
|                    | 53567.327   | .002     | HND                 |              |                  | -1r           | 19)      |
|                    | 53577.304   | .002     | HND                 |              |                  | -1r           | 19)      |
| <b>D</b> 0 1       | 53610.412   | .002     | HND                 |              |                  | -lr           | 19)      |
| DO Ara             | 53587.482   | .003     | HND                 |              |                  | -lr           | 19)      |
|                    | 53599.487   | .003     | HND                 |              |                  | -lr           | 19)      |
| ${ m EI}~{ m Ara}$ | 53245.363   | .004     | HND DVY             |              |                  |               | 15)      |
|                    | 53246.378   | .004     | HND DVY             |              |                  |               | 15)      |
| ${ m EZ}$ Ara      | 53205.494   | .004     | HND DVY             |              |                  |               | 15)      |
| FM Ara             | 53166.377   | .004     | HND DVY             |              |                  |               | 15)      |
| FO Ara             | 53202.423   | .004     | HND DVY             |              |                  |               | 15)      |
| ${ m MS}$ Ara      | 53590.560   | .003     | HND                 |              |                  | -Ir           | 19)      |
|                    | 53600.535   | .003     | HND                 |              |                  | -Ir           | 19)      |
| QT Ara             | 53584.387   | .003     | HND                 |              |                  | -Ir           | 19)      |
|                    | 53592.556   | .002     | HND                 |              |                  | -Ir           | 19)      |
|                    | 53609.520   | .003     | HND                 |              |                  | -Ir           | 19)      |
| V414 Ara           | 53569.505   | .003     | HND                 |              |                  | -Ir           | 19)      |
|                    | 53611.436   | .003     | HND                 |              |                  | -Ir           | 19)      |
| V430 Ara           | 53574.432   | .003     | HND                 |              |                  | -Ir           | 19)      |
|                    | 53575.489   | .003     | HND                 |              |                  | -Ir           | 19)      |
|                    | 53594.504   | .003     | HND                 |              |                  | -Ir           | 19)      |
| V431 Ara           | 53574 352   | 003      | HND                 |              |                  | -Ir           | 19)      |
| V453 Ara           | 53563 490   | 002      | HND                 |              |                  | -Ir           | 19)      |
| V455 Ara           | 53552 420   | 002      | HND                 |              |                  | _Ir           | 19)      |
| V739 Ara           | 53566 439   | 003      | HND                 |              |                  | _Ir           | 10)      |
| v105 ma            | 53567 498   | 003      | HND                 |              |                  | -11<br>_Tr    | 10)      |
| X Ari              | 53340 3281  | 0010     | MON                 | $\pm 0.0395$ | BAVB 48 180      | -11<br>V      | 1)       |
| RV Ari             | 53966 5519  | 0010     | MON                 | $\pm 0.0033$ | CCVS 85          | v             | 1)       |
| Itt All            | 53200.5512  | 0015     | MON                 | -0.0035      | GCVS 85          | v             | 1)       |
|                    | 53340.2007  | .0015    | MON                 | -0.0030      | GCVD 65          | v             | 1)       |
|                    | 53340,3000  | .0010    | MON                 | +0.0034      | GCV2 85          | v             | 1)       |
|                    | 53031.5233  | .0015    | MON                 | +0.0013      | GCV2 85          | v             | 1)       |
|                    | 55051.0120  | .0015    | MON                 | -0.0047      | GCV5 65          | v             | 1)<br>2) |
|                    | 53749.2340  | .0007    | JU                  | -0.0037      | GUVS 85          |               | 2)<br>2) |
|                    | 53749.3290  | .0008    | JU                  | -0.0024      | GUVS 85          | т.            | 2)       |
|                    | 53750.2609  | .0019    | PC                  | -0.0018      | GUVS 85          | -1r           | ()       |
|                    | 53751.2916  | .0007    | JU                  | +0.0045      | GCVS 85          | т.            | 2)       |
|                    | 53752.3163  | .0014    | PC                  | +0.0048      | GCVS 85          | -1r           | 7)       |
|                    | 53759.2960  | .0007    | SCI                 | -0.0001      | GCVS 85          |               | 2)       |
|                    | 53759.3808  | .0004    | SCI                 | -0.0085      | GCVS 85          |               | 2)       |
| TZ Aur             | 53654.6123  | .0019    | MON                 | +0.0116      | GCVS 85          | V             | 1)       |
|                    | 53745.4823  | .0022    | PC                  | +0.0131      | GCVS 85          | -lr           | 7)       |
|                    | 53751.3555  | .0005    | $\mathrm{QU}$       | +0.0112      | GCVS 85          | V             | 2)       |
|                    | 53751.3556  | .0012    | HNS                 | +0.0113      | GCVS 85          | -Ir           | 17)      |
|                    | 53752.5340  | .0024    | $\mathbf{PC}$       | +0.0147      | GCVS 85          | -Ir           | 7)       |
|                    | 53760.3658  | .0030    | HMB                 | +0.0130      | GCVS 85          | $\mathbf{Rs}$ | 4)       |
|                    | 53760.3674  | .0020    | HMB                 | +0.0146      | GCVS 85          | $\mathbf{C}$  | 4)       |
|                    | 53760.3682  | .0030    | HMB                 | +0.0154      | GCVS 85          | V             | 4)       |
| BH Aur             | 53764.3829  | .0020    | $\mathbf{FR}$       | +0.0023      | SAC $73$         | -Ir           | 10)      |
| PY Aur             | 53750.4311  | .0056    | $\mathbf{PC}$       |              |                  | -Ir           | 7)       |
| RS Boo             | 53540.4548  | .0017    | $\mathbf{SE}$       | +0.0211      | BAVR $36,157$ ff | -Ir           | 14)      |
|                    | 53849.4850  | .0002    | $\mathbf{KRS}$      | +0.0111      | BAVR $36,157$ ff | V             | 2)       |
| RU Boo             | 53509.4445  | .0004    | MZ                  |              |                  | -Ir           | 2)       |
| ST Boo             | 53862.4310  | .0030    | $\operatorname{AG}$ | -0.0215      | BAVR 49,105      | -Ir           | 1)       |
| SW Boo             | 53088.5674: | .0057    | $_{\mathrm{HSR}}$   | +0.0736      | BAVR 53, 1ff     |               | 5)       |
|                    | 53482.4580  | .0012    | $_{ m JU}$          | +0.1115      | BAVR 53, 1ff     |               | 2)       |
|                    | 53483.4977  | .0022    | HSR                 | +0.1242      | BAVR 53, 1ff     |               | 2)       |
|                    | 53502.4866  | .0007    | $_{ m JU}$          | +0.1137      | BAVR $53, 1$ ff  |               | 2)       |
|                    | 53518.4090  | .0021    | HSR                 | +0.1176      | BAVR $53, 1$ ff  |               | 2)       |
|                    | 53540.4900  | .0007    | $_{ m JU}$          | +0.1182      | BAVR $53, 1$ ff  |               | 2)       |
|                    | 53898.4314  | .0010    | $_{ m JU}$          | +0.1518      | BAVR 53, $1$ ff  |               | 2)       |

Table 2: (cont.)

| Variable            | Max JD 24                 | ±     | Obs                 | 0 – C        |               | Fil     | Rem       |
|---------------------|---------------------------|-------|---------------------|--------------|---------------|---------|-----------|
| TV Boo              | 53483.5029                | .0026 | HSR                 | -            |               |         | 2)        |
| UU Boo              | 53759.6444                | .0013 | MON                 | +0.1787      | GCVS 85       | V       | 1)        |
| WW Boo              | 53897.4157                | .0003 | MZ                  |              |               | -Ir     | 2)        |
| YZ Boo              | 53056.6101                | .0012 | MON                 | +0.0027      | GCVS 85       | V       | 1)        |
|                     | 53462.4632                | .0012 | MON                 | +0.0028      | GCVS 85       | V       | 1)        |
|                     | 53462.5665                | .0012 | MON                 | +0.0020      | GCVS 85       | V       | 1)        |
|                     | 53483.3853                | .0012 | MON                 | +0.0025      | GCVS 85       | v       | 1)        |
|                     | 53483.4891                | .0012 | MON                 | +0.0022      | GCVS 85       | v       | 1)        |
| CG Boo              | 53746 6034                | 0033  | MS FR               | 1010022      | 001000        | •       | 6)        |
| CC DOO              | 53763 5499                | 0030  | MS FR               |              |               |         | 6)        |
| CO Boo              | 53809 6592                | 0015  | MON                 | -0.0083      | BAVB 48 189   | V       | 1)        |
| CS Boo              | 53808 5243                | 0010  | MON                 | -0.0026      | IBVS 2855     | v       | 1)        |
| CU Boo              | 53540 4404                | .0022 | MZ                  | -0.0020      | IDV5 2000     | v       | 18)       |
| 00 000              | 53540,4404                | 0040  | MZ                  |              |               | P       | 18)       |
| 111900 07449979 Dee | 50700 947                 | .0040 |                     |              |               | Б       | 10)       |
| 01200-07442272 D00  | 52122.341                 | .005  | AG                  |              |               |         | 1)        |
|                     | 52723.404                 | .005  | AG                  |              |               |         | 1)        |
|                     | 52724.426 :               | .010  | AG                  |              |               |         | 1)        |
|                     | 52725.490                 | .002  | AG                  |              |               |         | 1)        |
|                     | 52726.532                 | .005  | AG                  |              |               |         | 1)        |
|                     | 52747.448                 | .010  | AG                  |              |               |         | 1)        |
|                     | 52784.431                 | .003  | AG                  |              |               |         | 1)        |
|                     | 52793.507 :               | .010  | $\operatorname{AG}$ |              |               |         | 1)        |
|                     | 52858.395                 | .001  | $\operatorname{AG}$ |              |               |         | 1)        |
|                     | 53097.358                 | .003  | $\operatorname{AG}$ |              |               |         | 1)        |
|                     | 53145.4910                | .0005 | $\operatorname{AG}$ |              |               |         | 1)        |
|                     | 53475.4760                | .0100 | $\operatorname{AG}$ |              |               | -Ir     | 2)        |
| UY Cam              | 53867.4340                | .0030 | $\operatorname{AG}$ | +0.0579      | BAVR 49, 41   | -Ir     | 1)        |
| AH Cam              | 53796.3173                | .0008 | MZ                  | -0.0052      | GCVS 85       | -Ir     | 2)        |
|                     | 53807.3772                | .0008 | MZ                  | -0.0073      | GCVS 85       | -Ir     | 2)        |
| RW Cnc              | 53472.3195                | .0127 | $\mathbf{SE}$       | +0.1878      | GCVS 85       | -Ir     | (14)      |
| SS Cnc              | 51498.4711                | .0010 | HSR                 | -0.0038      | BAVR 49, 41   | -Ir     | 2)        |
|                     | 53460.4226                | .0017 | ATB                 | -0.0113      | BAVR 49, 41   |         | 1)        |
| TT Cnc              | 53432.3018                | .0013 | MON                 | +0.0099      | BAVR 47, 67   | V       | 1)        |
|                     | 53745.5948                | .0032 | $\mathbf{PC}$       | +0.0239      | BAVB. 47, 67  | -Ir     | 7)        |
| VZ Cnc              | 53752 5462                | 0047  | PC                  | +0.0074      | GCVS 85       | -Ir     | 7)        |
| AN Cnc              | 53752 5321                | 0064  | PC                  | 1010011      | 001000        | -Ir     | 7)        |
| AO Cnc              | 53430 3311                | 0019  | MON                 | -0.0652      | GCVS 85       | v       | 1)        |
|                     | 53815 3894                | 0013  | JU                  | -0.0675      | GCVS 85       | •       | 2)        |
| AS Cnc              | 53752 5080                | 00015 | PC                  | 0.0010       | 001500        | Īr      | 2)<br>7)  |
| Z CVn               | 53544 4759                | 0030  | SCI                 | $\pm 0.2495$ | GCVS 85       | -11     | 2)        |
| BR CVn              | 53750 6851                | 00/13 | PC                  | 10.2400      |               | . Tr    | 4)<br>7)  |
| RZ CVn              | 50607 540                 | 0040  |                     | $\pm 0.007$  | BAVE 48 180   | -11     | 1)<br>2)  |
|                     | 50007,540 ;<br>59/55 /069 | 001   | TTT TTT             |              | DAVIL 40,109  |         | 4)<br>2)  |
|                     | JJ4JJ,4U0J<br>59517 7167  | .0010 | JU                  | +0.0001      | DAV R 48,189  |         | 4)<br>2)  |
|                     | 00014.4104<br>59760 6740  | .0010 | JU<br>Mon           | +0.0800      | DAV 1. 48,189 | 17      | <i>2)</i> |
| UZ CVn              | 00100.0749<br>E1607 2046  | .0019 | MON                 | +0.0927      | DAVIG 48,189  | V<br>т. | 1)<br>2)  |
|                     | 01027.3240                | .0019 | HSK                 | -0.0099      | BAVK 49, 41   | -1r     | 2)        |
|                     | 52368.3804                | .0036 | HSR                 | -0.0145      | BAVR 49, 41   | -       | 3)        |
|                     | 53750.7001                | .0054 | PC                  | -0.0307      | BAV R 49, 41  | -1r     | 7)        |
| BN CVn              | 52345.5704                | .0092 | PC                  | +0.0340      | BAVM 75       | -lr     | 4)        |
| AD CMi              | 53056.3058                | .0010 | MON                 | +0.0122      | GCVS 85       | V       | 1)        |
| HU Cas              | 53631.5614                | .0038 | $\mathbf{PC}$       |              |               | -Ir     | 7)        |
| PS Cas              | 53636.4950                | .0030 | $\operatorname{AG}$ |              |               | -Ir     | 1)        |
|                     | 53651.5810                | .0020 | $\operatorname{AG}$ |              |               | -Ir     | 1)        |
|                     | 53659.5660                | .0030 | $\operatorname{AG}$ |              |               | -Ir     | 1)        |
|                     | 53716.3610                | .0030 | $\operatorname{AG}$ |              |               | -Ir     | 1)        |
| V470 Cas            | 53651.5430                | .0030 | $\operatorname{AG}$ | +0.2643      | IBVS 4332     | -Ir     | 1)        |
|                     | 53659.3900                | .0050 | $\operatorname{AG}$ | +0.2411      | IBVS 4332     | -Ir     | 1)        |
| U1425-00752967 Cas  | 53654.4880                | .0010 | $\operatorname{AG}$ | -            |               |         | 1)        |
|                     |                           |       |                     |              |               | -       |           |
|                     | 53671.2750                | .0010 | AG                  |              |               | -1r     | 1)        |

Table 2: (cont.)

| Variable           | Max JD 24   | ±     | Obs       | 0 – C                  |                | Fil        | Rem                                       |
|--------------------|-------------|-------|-----------|------------------------|----------------|------------|-------------------------------------------|
| U1425-00752967 Cas | 53671.4210  | .0010 | AG        |                        |                | -Ir        | 1)                                        |
|                    | 53671.4950  | .0010 | AG        |                        |                | -Ir        | 1)                                        |
|                    | 53671.5680  | .0010 | AG        |                        |                | -Ir        | 1)                                        |
|                    | 53717.2350  | .0010 | AG        |                        |                | - Ir       | 1)                                        |
|                    | 53717.3080  | .0010 | AG        |                        |                | -Ir        | 1)                                        |
|                    | 53744.2850  | .0010 | AG        |                        |                | - Ir       | 1)                                        |
|                    | 53759.4580  | .0010 | AG        |                        |                | -Ir        | 1)                                        |
| V444 Cen           | 53916.396   | .002  | HND       |                        |                | - Ir       | 19)                                       |
| V499 Cen           | 53919.375   | .003  | HND       |                        |                | - Ir       | 19)                                       |
| V501 Cen           | 53924.427   | .002  | HND       |                        |                | - Ir       | 19)                                       |
| EL Cen             | 53631.6063  | .0036 | PC        |                        |                | - Ir       | 7)                                        |
| 22 oop             | 53649 5290  | 0049  | PC        |                        |                | -Ir        | 7)                                        |
|                    | 53683.2670  | .0030 | AG        |                        |                | - Ir       | 1)                                        |
| EZ Cen             | 53750.3441  | .0037 | PC        | +0.0797                | SAC 74         | -Ir        | 7)                                        |
| S Com              | 53863 3977  | 0010  | FB        | +0.0076                | SAC 73         | -Ir        | 10)                                       |
| DL Com             | 53903 4239  | 0008  | MZ        | 1 01001 0              | 5110 10        | -Ir        | 2) red                                    |
| BU CrB             | 53529 5532  | 0012  | JU        | $\pm 0.1021$           | GCVS 85        | 11         | 2) 100                                    |
|                    | 53541 4933  | 0014  | JU        | +0.1021<br>+0.1058     | GCVS 85        |            | $(2)^{-1}$                                |
|                    | 53544 4771  | 0016  | JU        | +0.1050<br>+0.1055     | GCVS 85        |            | 2) 21) 21) 2) 21) 2) 21) 2) 21) 2) 21) 21 |
|                    | 53639 340   | 001   | SG        | +0.1000<br>+0.140      | GCVS 85        | V          | 3)                                        |
| TV CrB             | 53464 4288  | 0018  | MS FR     | -0.0085                | BAVB 49 105    | •          | 6)                                        |
| W Crt              | 53467 358   | 003   | HND       | -0.020                 | GCVS 85        | -Ir        | 19)                                       |
| UV Cyg             | 53220 3946  | 0014  | MON       | +0.0502                | GCVS 85        | V          | 1)                                        |
| or cyg             | 53599 4307  | 0013  | JU        | +0.0002<br>+0.0499     | GCVS 85        | •          | 2)                                        |
|                    | 53631 3943  | 0040  | PC        | +0.0199<br>+0.0533     | GCVS 85        | _Ir        | 2)<br>7)                                  |
|                    | 53649 3345  | 0040  | PC        | +0.0555 $+0.0510$      | GCVS 85        | -11<br>_Ir | 7)                                        |
| XX Cyg             | 53165 3911  | 0015  | MON       | +0.0010<br>$\pm0.0030$ | GCVS 85        | V          | 1)                                        |
| AA Oyg             | 53216 3703  | 0015  | MON       | +0.0030<br>+0.0032     | GCVS 85        | v          | 1)                                        |
|                    | 53463 4431  | 0015  | MON       | $\pm 0.0032$           | GCVS 85        | v          | 1)                                        |
|                    | 53463 5780  | 0015  | MON       | $\pm 0.0031$           | GCVS 85        | v          | 1)                                        |
|                    | 53601 /123  | 0017  | PC        | +0.0051<br>$\pm0.0053$ | GCVS 85        | -Ir        | 7)                                        |
|                    | 53601.5466  | 0011  | PC        | +0.0000                | GCVS 85        | -11<br>_Ir | 7)                                        |
|                    | 53613 /160  | 0010  | PC        | +0.0041<br>+0.0060     | GCVS 85        | -11<br>_Ir | 7)                                        |
|                    | 53613 5402  | 0015  | PC        | +0.0000                | GCVS 85        | -11<br>Ir  | 7)                                        |
|                    | 53648 3478  | 0024  | PC        | +0.0043                | GCVS 85        | -11<br>_Ir | 7)                                        |
|                    | 53648.4788  | 0015  | PC        | $\pm 0.0011$           | GCVS 85        | -11<br>_Ir | 7)                                        |
|                    | 53648 6120  | 0013  | PC        | +0.0000                | GCVS 85        | -11<br>_Ir | 7)                                        |
|                    | 53649 2894  | 0018  | PC        | +0.0022<br>$\pm0.0053$ | GCVS 85        | -11<br>_Ir | 7)                                        |
|                    | 53649.4257  | 0010  | PC        | +0.0055<br>$\pm0.0067$ | GCVS 85        | -11<br>Ir  | 7)                                        |
|                    | 53649.5585  | 0017  | PC        | +0.0007                | GCVS 85        | -11<br>_Ir | 7)                                        |
| XZ Cyg             | 53614 5264  | 0038  | PC        | +0.0041<br>$\pm0.0320$ | BAVB 48 189    | -11<br>_Ir | 7)                                        |
| DM Cyg             | 53613 4451  | 0033  | PC        | +0.0020                | BAVR 51 98ff   | -11<br>_Ir | 7)                                        |
| NS Cyg             | 53555 4660  | 0030  | AG        | 1 0.0000               | Dirvit oi, oon | _Ir        | 1)                                        |
| V882 Cyg           | 53578 4700  | 0050  | AG        |                        |                | -11<br>_Ir | 1)                                        |
| V939 Cyg           | 509/3 39/   | 001   | AG        | -0.018                 | BAVM 92        | -11        | 1)                                        |
| v 565 Cyg          | 53613 5283  | 0100  | PC        | $\pm 0.010$            | BAVM 92        | _Ir        | 7)                                        |
| V1719 Cyg          | 53649 3526  | 0060  | PC        | -0.0510                | GCVS 85        | _Ir        | 7)                                        |
| V1949 Cyg          | 5361/1 5098 | 0000  | PC        | 0.0010                 |                | -11<br>_Ir | 7)                                        |
| v 1545 Oyg         | 53619 5081  | 0031  | PC        |                        |                | -11<br>_Ir | 7)                                        |
| CH Del             | 53640.470   | 003   | HND       |                        |                | -11<br>_Ir | 19)                                       |
| DX Del             | 52835 5470  | 0025  | HSR       |                        |                | -11        | 2)                                        |
| DA DO              | 53614 4981  | 0020  | PC        |                        |                | _ Ir       | 2)<br>7)                                  |
| SW Dra             | 53451 4470  | 0018  | IU<br>IU  | $\pm 0.0073$           | BAVR 47 67     | - 11       | 2)                                        |
|                    | 53541 4559  | 0010  | SE        | +0.0013<br>+0.0064     | BAVR 47 67     | _ Ir       | <br>1.4)                                  |
| VZ Dra             | 53041.4554  | 0037  | MON       | -0.0004                | CCVS &         | -11<br>V   | 14 <i>j</i>                               |
| VZ Dra             | 53502.0000  | 0019  |           | -0.1202                | CCVS &         | v          | 1)<br>9)                                  |
| RD Dra             | 53636 2755  | 0022  | JU<br>HMB | -0.0094                |                | Re         | 4)<br>4)                                  |
| אות תם             | 53636 2769  | 0034  | HMB       |                        |                | TUS<br>V   | 1)<br>4                                   |
|                    | 53647 5988  | 0030  | HMB       |                        |                | v<br>V     | 1)<br>4                                   |
|                    | 53647 5309  | 0040  | HMR       |                        |                | ۲<br>Re    | т)<br>Л)                                  |
|                    | 000110004   | .0000 | TIMD      |                        |                | 113        | ±)                                        |

Table 2: (cont.)

| 37 11                                 | M ID 04                   | 1     | 01                  | <u> </u> |                                     | <b>D</b> .1   | ъ              |
|---------------------------------------|---------------------------|-------|---------------------|----------|-------------------------------------|---------------|----------------|
| Variable                              | Max JD 24                 | ±     | Ubs                 | 0-0      |                                     | FII           | Rem            |
| BD Dra                                | 53682.3191                | .0052 | HMB                 |          |                                     | V             | 4)             |
|                                       | 53682.3200                | .0033 | HMB                 |          |                                     | $\mathbf{Rs}$ | 4)             |
|                                       | 53683.4957                | .0030 | HMB                 |          |                                     | V             | 4)             |
|                                       | 53693.4593                | .0047 | HMB                 |          |                                     | V             | 4)             |
|                                       | 53693.4644                | .0037 | HMB                 |          |                                     | $\mathbf{Rs}$ | 4)             |
|                                       | 53733.5541                | .0029 | HMB                 |          |                                     | $\mathbf{Rs}$ | 4)             |
|                                       | 53733.5552                | .0037 | HMB                 |          |                                     | V             | 4)             |
|                                       | 53743.5430                | .0064 | HMB                 |          |                                     | Rs            | 4)             |
|                                       | 53743 5458                | 0094  | HMB                 |          |                                     | V             | 4)             |
|                                       | 53745 3135                | 0047  | HMB                 |          |                                     | Re.           | 4)             |
|                                       | 59745 9155                | 0046  |                     |          |                                     | V             | 4)             |
|                                       | 55745.5155                | .0040 |                     |          |                                     | v<br>D        | 4)             |
|                                       | 53759.4042                | .0045 | HMB                 |          |                                     | RS            | 4)             |
|                                       | 53759.473                 | .010  | HMB                 |          |                                     | V             | 4)             |
|                                       | 53762.3896                | .0054 | HMB                 |          |                                     | V             | 4)             |
|                                       | 53762.3923                | .0050 | HMB                 |          |                                     | $\mathbf{Rs}$ | 4)             |
| BK Dra                                | 53406.6370                | .0012 | MON                 | +0.0472  | BAVR 46, 1                          | V             | 1)             |
|                                       | 53601.4358                | .0033 | $\mathbf{PC}$       | +0.0542  | BAVR 46, 1                          | -Ir           | 7)             |
| CY Dra                                | 53613.4502                | .0099 | $\mathbf{PC}$       |          |                                     | -Ir           | 7)             |
|                                       | 53614.5145                | .0078 | $\mathbf{PC}$       |          |                                     | -Ir           | 7)             |
|                                       | 53649.2789                | .0076 | $\mathbf{PC}$       |          |                                     | -Ir           | 7)             |
| DD Dra                                | 53601 4006                | 0061  | PC                  | _0.0900  | BAVB 49 6                           | _Ir           | 7)             |
| DD DIa                                | 53610 3543                | 0052  | PC                  | 0.0000   | BAVE 40, 6                          | -11<br>Tr     | 7)             |
|                                       | 53019.3343<br>E2000 4080  | .0032 |                     | -0.1099  | DAVIC 49, 0                         | -11<br>Tm     | 1)             |
| av E ·                                | 53900.4960                | .0030 | AG                  | -0.0085  | DAVE 49,0                           | -11'<br>T     | 10)            |
| SV Eri                                | 53730.400                 | .003  | HND                 | -0.006   | BAVR 52, 62ff                       | -Ir           | 19)            |
| BB Eri                                | 53725.456                 | .002  | HND                 |          |                                     | -lr           | 19)            |
| $\operatorname{RR}\operatorname{Gem}$ | 53301.6299                | .0012 | MON                 | +0.0020  | BAVR 47, 67                         | V             | 1)             |
|                                       | 53407.3104                | .0065 | SE                  | +0.0027  | BAVR 47, 67                         | -Ir           | 14)            |
|                                       | 53463.3293                | .0025 | SE                  | +0.0034  | BAVR 47, 67                         | -Ir           | 14)            |
|                                       | 53661.5758                | .0015 | MON                 | +0.0010  | BAVR 47, 67                         | V             | 1)             |
|                                       | 53751.3636                | .0012 | HNS                 | +0.0007  | BAVR 47, 67                         | -Ir           | 17)            |
|                                       | 53759.3127                | .0016 | MON                 | +0.0040  | BAVR 47, 67                         | V             | 1)             |
|                                       | 53780 3680                | 0030  | AG                  | +0.0028  | BAVB 47 67                          | -Ir           | 1)             |
|                                       | 53813 3395                | 0018  | FB                  | -0.0010  | BAVB 47 67                          | _Ir           | $\frac{1}{10}$ |
| S7 Com                                | 53780 2686                | 0015  | MON                 | 10.0068  | BAVE 48 65                          | v             | 1)             |
|                                       | 53780.2080                | .0015 | ED                  | +0.0008  | COVE SE                             | v<br>Tm       | 10)            |
| AK Gem                                | 53739.3099                | .0020 | FN                  | -0.0491  | GCVS 65                             | -11<br>T.,    | 10)            |
|                                       | 53702.3399                | .0020 | FR                  | +0.0742  | GUV 5 85                            | -1r           | 10)            |
| ER Gem                                | 53766.3382                | .0035 | FR                  |          |                                     | -1r           | 10)            |
| GI Gem                                | 53737.3988                | .0009 | ΜZ                  | -0.0085  | $\mathrm{BAVR}\ 51,\ 40\mathrm{ff}$ | -lr           | 2)             |
| IV Gem                                | 53813.4206                | .0020 | $\mathbf{FR}$       |          |                                     | -Ir           | 10)            |
| AQ Gru                                | 53680.443                 | .002  | HND                 |          |                                     | -Ir           | 19)            |
| TW Her                                | 53516.4303                | .0016 | MON                 | -0.0088  | GCVS 85                             | V             | 1)             |
|                                       | 53894.4560                | .0030 | $\operatorname{AG}$ | -0.0048  | GCVS 85                             | -Ir           | 1)             |
| VX Her                                | 53081.5793                | .0012 | MON                 | +0.0805  | GCVS 85                             | V             | 1)             |
|                                       | 53531.4754                | .0007 | JU                  | +0.0682  | GCVS 85                             |               | 2)             |
| VZ Her                                | 53636.3443                | .0014 | ATB                 | +0.0609  | GCVS 85                             |               | 1)             |
| AB Her                                | 53516 4586                | 0020  | JU                  | +0.0270  | BAVB 52 3ff                         |               | $\frac{-}{2}$  |
| CT Hor                                | 53860 3520                | 0020  |                     | 10.0210  | Dirv it 02, 01                      | Tr            | 1)             |
|                                       | 53800.3520<br>E 2860 2020 | .0030 | AG                  |          |                                     | -11<br>Tm     | 1)             |
| ID II.                                | 53600.3920                | .0030 | AG                  |          |                                     | -11           | 1)             |
| IP Her                                | 53635.3068                | .0035 | ATB                 |          |                                     |               | 1)             |
|                                       | 53655.3088                | .0049 | ATB                 |          |                                     |               | 1)             |
| V458 Her                              | 53566.4760                | .0100 | AG                  |          |                                     | -Ir           | 1)             |
| V469 Her                              | 53524.4590                | .0030 | $\operatorname{AG}$ |          |                                     | -Ir           | 1)             |
| V545 Her                              | 53565.5460                | .0030 | $\operatorname{AG}$ |          |                                     | -Ir           | 1)             |
| V633 Her                              | 53600.4062                | .0040 | MZ                  |          |                                     | -Ir           | 2)             |
| V635 Her                              | 53846.4880                | .0030 | $\operatorname{AG}$ |          |                                     | -Ir           | 1)             |
| V716 Her                              | 53849.5270                | .0030 | AG                  |          |                                     | -Ir           | 1)             |
| V734 Her                              | 53518 4710                | 0030  | AG                  |          |                                     | _Ir           | 1)             |
| V752 Uor                              | 538/0 /890                | 0020  |                     |          |                                     | -11<br>Tw     | 1)             |
|                                       | 53043,4020                | .0030 | AG<br>UND           | 0.004    | C CVS or                            | -11<br>T.,    | 10)            |
| w⊿ пуа<br>от н                        | 00404.079<br>50010 0005   | .003  |                     | -0.004   | 60 6 9 0 0                          | -11<br>T      | та)<br>та)     |
| GL Hya                                | 53813.3865                | .0007 | ΜZ                  |          |                                     | -1r           | 2)             |

Table 2: (cont.)

| Variable                             | Max JD 24                              | ±                       | Obs              | O - C                   |                 | Fil       | Rem            |
|--------------------------------------|----------------------------------------|-------------------------|------------------|-------------------------|-----------------|-----------|----------------|
| GSC6730.109 Hya                      | 53125.334                              | .003                    | HND              |                         |                 |           | 19)            |
|                                      | 53134.351                              | .003                    | HND              |                         |                 |           | 19)            |
| SU Hyi                               | 53727.440                              | .002                    | HND              |                         |                 | -Ir       | 19)            |
| SX Hyi                               | 53346.465                              | .003                    | HND              |                         |                 | -Ir       | 19)            |
| SW Ind                               | 53665.466                              | .003                    | HND              |                         |                 | -Ir       | 19)            |
| TW Ind                               | 53663.466                              | .003                    | HND              |                         |                 | -Ir       | 19)            |
| CQ Lac                               | 53649.4742                             | .0051                   | $\mathbf{PC}$    | +0.0274                 | SAC $74$        | -Ir       | 7)             |
| CZ Lac                               | 53649.3757                             | .0051                   | $\mathbf{PC}$    | -0.0113                 | BAVR 53, 12f    | -Ir       | 7)             |
| DE Lac                               | 53209.4394                             | .0012                   | MON              | +0.0341                 | GCVS 85         | V         | 1)             |
|                                      | 53601.3963                             | .0012                   | MON              | +0.0347                 | GCVS 85         | V         | 1)             |
|                                      | 53613.3210                             | .0014                   | MON              | +0.0358                 | GCVS 85         | V         | 1)             |
|                                      | 53614.3343                             | .0012                   | MON              | +0.0343                 | GCVS 85         | V         | 1)             |
|                                      | 53633.3628                             | .0012                   | MON              | +0.0358                 | GCVS 85         | V         | 1)             |
|                                      | 53636.4089                             | .0012                   | MON              | +0.0376                 | GCVS 85         | V         | 1)             |
|                                      | 53661.2737                             | .0012                   | MON              | +0.0404                 | GCVS 85         | V         | 1)             |
| PW Lac                               | 53612.5686                             | .0034                   | $\mathbf{PC}$    | +0.0492                 | BAVM 75         | -Ir       | 7)             |
|                                      | 53631.5259                             | .0032                   | $\mathbf{PC}$    | +0.0489                 | BAVM 75         | -Ir       | 7)             |
|                                      | 53649.4613                             | .0032                   | $\mathbf{PC}$    | +0.0514                 | BAVM 75         | -Ir       | 7)             |
| BT Leo                               | 53814.3277                             | .0010                   | MZ               | -                       |                 | -Ir       | 2)             |
| DL Leo                               | 53750.5819                             | .0105                   | $\overline{PC}$  | +0.0477                 | IBVS 2533       | -Ir       | 7)             |
| DM Leo                               | 53462.3324                             | .0010                   | MZ               |                         | > 0             | V         | 18)            |
|                                      | 53462.3344                             | .0060                   | MZ               |                         |                 | B         | 18)            |
| V LMi                                | 53068 5178                             | 0086                    | PC               | $\pm 0.1526$            | SAC 72          | -Ir       | 7)             |
|                                      | 53752 6483                             | 0053                    | PC               | +0.0334                 | SAC 72          | _Ir       | 7)             |
| ту Ць                                | 53564 4351                             | 0000                    | MZ               | 10.0001                 | 5110 12         | Ir        | 2)             |
| FH Lib                               | 53503 3789                             | 0019                    | MON              | $\pm 0.0031$            | CCVS 85         | -11<br>V  | 2)<br>1)       |
|                                      | 53503.3782                             | 0012                    | MON              | +0.0031                 | GCVS 85         | v         | 1)             |
| PW Lup                               | 53430 4415                             | 0012                    | ATR              | +0.0031                 | BAVB 47 35      | v         | 1)             |
| Itw Lyn                              | 52745 5402                             | 0022                    | PC               | -0.0011                 | BAVR 47, 35     | Īr        | 1)<br>7)       |
|                                      | 53745.5495                             | .0020                   | FC<br>DC         | -0.0108                 | DAVIN 47, 55    | -11<br>In | 7)             |
|                                      | 53750.5339                             | .0071                   | PC               | -0.0119                 | BAVR 47, 35     | -11<br>T  | ()             |
| а <b>л</b> т                         | 53152.5210                             | .0038                   | PU               | -0.0124                 | BAVR 47, 35     | -1r       | ()             |
| SZ Lyn                               | 53397.2734                             | .0012                   | MON              | +0.0160                 | GCVS 85         | V         | 1)             |
|                                      | 53397.3933                             | .0012                   | MON              | +0.0153                 | GCVS 85         | v         | 1)             |
|                                      | 53750.5677                             | .0044                   | PC               | +0.0224                 | GCVS 85         | -lr       | (7)            |
|                                      | 53752.4994                             | .0027                   | PC               | +0.0256                 | GCVS 85         | -1r       | (7)            |
|                                      | 53752.6108                             | .0025                   | PC               | +0.0164                 | GCVS 85         | -lr       | 7)             |
|                                      | 53752.6160                             | .0025                   | PC               | +0.0216                 | GCVS 85         | -lr       | 7)             |
|                                      | 53766.2372                             | .0011                   | MON              | +0.0224                 | GCVS 85         | V         | 1)             |
|                                      | 53808.3052                             | .0012                   | MON              | +0.0237                 | GCVS 85         | V         | 1)             |
| AN Lyn                               | 53096.4139                             | .0042                   | $\mathbf{PC}$    |                         |                 | -Ir       | 7)             |
|                                      | 53463.3733                             | .0015                   | MON              |                         |                 | V         | 1)             |
| BE Lyn                               | 53349.4617                             | .0011                   | MON              | +0.0050                 | Rev Mex $20,37$ | V         | 1)             |
|                                      | 53349.5569                             | .0011                   | MON              | +0.0043                 | Rev Mex $20,37$ | V         | 1)             |
|                                      | 53349.6526                             | .0012                   | MON              | +0.0042                 | Rev Mex $20,37$ | V         | 1)             |
| Y Lyr                                | 53631.314 :                            | .006                    | $\mathbf{PC}$    |                         |                 | -Ir       | 7)             |
| RR Lyr                               | 53601.4581                             | .0060                   | $\mathbf{PC}$    | +0.0321                 | SAC $73$        | -Ir       | 7)             |
|                                      | 53631.5230                             | .0035                   | ATB              | +0.0556                 | SAC 73          |           | 1)             |
| RZ Lyr                               | 53619.3843                             | .0030                   | $\mathbf{PC}$    | -0.0112                 | BAVR 48,189     | -Ir       | 7)             |
|                                      | 53662.3467                             | .0021                   | ATB              | +0.0069                 | BAVR 48,189     |           | 1)             |
|                                      | 53683.3049                             | .0024                   | ATB              | +0.0041                 | BAVR 48,189     |           | 1)             |
| AQ Lyr                               | 53614.4173                             | .0024                   | $\mathbf{PC}$    |                         | ,               | -Ir       | 7)             |
| CG Lyr                               | 53575.4865                             | .0008                   | MZ               |                         |                 | -Ir       | 2)             |
| CN Lyr                               | 53164.4595                             | .0015                   | MON              | +0.0034                 | BAVR 43.57      | v         | 1)             |
| —J -                                 | 53659.3649                             | .0042                   | ATB              | +0.0154                 | BAVR 43. 57     | ,         | 1)             |
| DI Lvr                               | 53536 4420                             | .0004                   | MZ               | 1 3.0101                |                 | V         | $\frac{1}{18}$ |
|                                      | 5361/ 385                              | 007                     | PC               | ±0.020                  | BAVB 3/ 1/5#    | _Tr       | 7)             |
| EZ Lyr                               | 00017-000 ·                            | 0001                    |                  | +0.023<br>+0.0917       | GCVS 85         | -11       | ·)<br>1)       |
| EZ Lyr<br>FN Lyr                     | 53618 1816                             | 101.71                  |                  | <b>THUMA11</b>          | XIX/V(1)(1))    |           | 1.1            |
| EZ Lyr<br>FN Lyr<br>IO Lyr           | 53648.4816 $53627.4023$                | .0021                   | ATB<br>ATB       | -0.0304                 | GCVS 85         |           | 1)             |
| EZ Lyr<br>FN Lyr<br>IO Lyr<br>KX Lyr | 53648.4816<br>53627.4023<br>53601.3650 | .0021<br>.0021<br>.0031 | ATB<br>ATB<br>PC | -0.0304<br>$\pm 0.0483$ | GCVS 85         | . Ir      | 1)<br>7)       |

Table 2: (cont.)

| Variable  | Max JD 24   | ±     | Obs                 | O - C   |             | Fil | Rem |
|-----------|-------------|-------|---------------------|---------|-------------|-----|-----|
| NR Lyr    | 53672.3031  | .0042 | ATB                 |         |             |     | 1)  |
| EM Mus    | 53920.400   | .002  | HND                 |         |             | -Ir | 19) |
| AX Oph    | 53520.4570  | .0030 | $\operatorname{AG}$ |         |             | -Ir | 1)  |
| V430 Oph  | 53560.5190  | .0040 | PS DVY              |         |             |     | 2)  |
| V1640 Ori | 53744.4441  | .0007 | MZ                  | +0.0881 | BAVM 149    | -Ir | 2)  |
| SW Pav    | 53644.316   | .002  | HND                 |         |             | -Ir | 19) |
| BN Pav    | 53289.355   | .002  | HND                 |         |             | -Ir | 19) |
|           | 53649.476   | .002  | HND                 |         |             | -Ir | 19) |
| BP Pav    | 53641.398   | .002  | HND                 |         |             | -Ir | 19) |
| DN Pav    | 53652.492   | .002  | HND                 |         |             | -Ir | 19) |
| FO Pav    | 53636.344   | .003  | HND                 |         |             | -Ir | 19) |
|           | 53642.410   | .002  | HND                 |         |             | -Ir | 19) |
| HV Pav    | 53634.402   | .002  | HND                 |         |             | -Ir | 19) |
| QR Pav    | 53643.406   | .005  | HND                 |         |             | -Ir | 19) |
| VV Peg    | 53601.5116  | .0032 | $\mathbf{PC}$       | -0.0270 | GCVS 87     | -Ir | 7)  |
| 0         | 53648.3978  | .0026 | $\mathbf{PC}$       | -0.0260 | GCVS 87     | -Ir | 7)  |
|           | 53649.3743  | .0030 | $\mathbf{PC}$       | -0.0262 | GCVS 87     | -Ir | 7)  |
| AO Peg    | 53696.2796  | .0035 | ATB                 | -0.0091 | BAVR 49, 41 |     | 1)  |
| AV Peg    | 53658.3048  | .0016 | MON                 | +0.0250 | BAVR 47, 67 | V   | 1)  |
| BH Peg    | 53648.438 : | .005  | $\mathbf{PC}$       | +0.009  | BAVR 47, 67 | -Ir | 7)  |
| BP Peg    | 53222.4192  | .0016 | MON                 | -0.0122 | BAVR 48,189 | V   | 1)  |
| 0         | 53222.5333  | .0015 | MON                 | -0.0077 | BAVR 48,189 | V   | 1)  |
|           | 53612.5039  | .0993 | $\mathbf{PC}$       | -0.0146 | BAVR 48,189 | -Ir | 7)  |
|           | 53614.4790  | .0035 | $\mathbf{PC}$       | -0.0113 | BAVR 48,189 | -Ir | 7)  |
|           | 53617.3233  | .0015 | MON                 | -0.0151 | BAVR 48,189 | V   | 1)  |
|           | 53617.4395  | .0016 | MON                 | -0.0085 | BAVR 48,189 | V   | 1)  |
|           | 53631.4597  | .1067 | $\mathbf{PC}$       | -0.0099 | BAVR 48,189 | -Ir | 7)  |
| BT Peg    | 53613.5620  | .0030 | $\operatorname{AG}$ | +0.0850 | BAVR 49,105 | -Ir | 1)  |
| CG Peg    | 52503.6156: | .0016 | $\mathbf{PC}$       | -0.0200 | SAC 72      | -Ir | 4)  |
| 0         | 53217.4027  | .0012 | MON                 | -0.0201 | SAC $72$    | V   | 1)  |
|           | 53614.4729  | .0040 | $\mathbf{PC}$       | -0.0174 | SAC $72$    | -Ir | 7)  |
|           | 53635.4895  | .0021 | ATB                 | -0.0221 | SAC $72$    |     | 1)  |
|           | 53657.4452  | .0005 | $\mathbf{QU}$       | -0.0219 | SAC $72$    | V   | 3)  |
|           | 53658.3781  | .0005 | QU                  | -0.0232 | SAC $72$    | V   | 3)  |
|           | 53659.3124  | .0016 | MON                 | -0.0232 | SAC $72$    | V   | 1)  |
| CQ Peg    | 53613.5570  | .0030 | $\operatorname{AG}$ |         |             | -Ir | 1)  |
| DH Peg    | 53648.4296  | .0028 | $\mathbf{PC}$       | +0.0263 | GCVS 87     | -Ir | 7)  |
| DY Peg    | 53216.4666  | .0011 | MON                 | -0.0046 | GCVS 87     | V   | 1)  |
| _         | 53216.5392  | .0011 | MON                 | -0.0050 | GCVS 87     | V   | 1)  |
|           | 53216.6129  | .0011 | MON                 | -0.0042 | GCVS 87     | V   | 1)  |
|           | 53257.4510  | .0012 | MON                 | -0.0048 | GCVS 87     | V   | 1)  |
|           | 53283.3402  | .0011 | MON                 | -0.0044 | GCVS 87     | V   | 1)  |
|           | 53283.4128  | .0012 | MON                 | -0.0048 | GCVS 87     | V   | 1)  |
|           | 53599.4743  | .0012 | MON                 | -0.0058 | GCVS 87     | V   | 1)  |
|           | 53599.5473  | .0012 | MON                 | -0.0058 | GCVS 87     | V   | 1)  |
|           | 53599.6209  | .0012 | MON                 | -0.0051 | GCVS 87     | V   | 1)  |
|           | 53612.3823  | .0012 | MON                 | -0.0058 | GCVS 87     | V   | 1)  |
|           | 53612.5279  | .0012 | MON                 | -0.0060 | GCVS 87     | V   | 1)  |
|           | 53614.4250  | .0012 | MON                 | -0.0050 | GCVS 87     | V   | 1)  |
|           | 53631.4167  | .0012 | MON                 | -0.0052 | GCVS 87     | V   | 1)  |
|           | 53648.410 : | .001  | $\mathbf{PC}$       | -0.004  | GCVS 87     | -Ir | 7)  |
|           | 53648.4819  | .0009 | $\mathbf{PC}$       | -0.0047 | GCVS 87     | -Ir | 7)  |
|           | 53654.3156  | .0012 | MON                 | -0.0051 | GCVS 87     | V   | 1)  |
|           | 53654.3880  | .0012 | MON                 | -0.0056 | GCVS 87     | V   | 1)  |
|           | 53701.2070  | .0015 | MON                 | -0.0053 | GCVS 87     | V   | 1)  |
|           | 53701.2796  | .0013 | MON                 | -0.0056 | GCVS 87     | V   | 1)  |
| DZ Peg    | 53612.5333  | .0039 | $\mathbf{PC}$       | -0.0225 | SAC $74$    | -Ir | 7)  |
| AR Per    | 53752.5048  | .0044 | $\mathbf{PC}$       | +0.0592 | GCVS 87     | -Ir | 7)  |
| ET Per    | 53654.3150  | .0040 | $\operatorname{AG}$ | -0.0196 | BAVR 49, 41 | -Ir | 1)  |
| KV Per    | 53651.5600  | .0050 | $\operatorname{AG}$ |         |             | -Ir | 1)  |

Table 2: (cont.)

| Variable        | Max JD 24              | ±     | Obs                 | 0 <b>–</b> C |             | Fil      | Rem        |
|-----------------|------------------------|-------|---------------------|--------------|-------------|----------|------------|
| NN Per          | 53766.3430             | .0050 | AG                  |              |             | -Ir      | 1)         |
| RV Phe          | 53681.499              | .002  | HND                 |              |             | -Ir      | 19)        |
|                 | 53687.463              | .003  | HND                 |              |             | -Ir      | 19)        |
| TZ Phe          | 53682.429              | .002  | HND                 |              |             | -Ir      | 19)        |
| SS Psc          | 53649.5022             | .0126 | $\mathbf{PC}$       | -0.0061      | BAVR 47, 67 | -Ir      | 7)         |
|                 | 53750.2447             | .0081 | $\mathbf{PC}$       | +0.0105      | BAVR 47, 67 | -Ir      | 7)         |
| SY Psc          | 53648.5304             | .0050 | $\mathbf{PC}$       | +0.1000      | GCVS 87     | -Ir      | 7)         |
| DP Sge          | 53565.5510             | .0030 | $\operatorname{AG}$ |              |             | -Ir      | 1)         |
|                 | 53566.5230             | .0030 | $\operatorname{AG}$ |              |             | -Ir      | 1)         |
|                 | 53569.4520             | .0030 | AG                  |              |             | -Ir      | 1)         |
| m V703~Sco      | 52065.5969             | .0008 | HSR                 | +0.0200      | GCVS 87     | V        | 5)         |
|                 | 52066.5175             | .0020 | HSR                 | +0.0188      | GCVS 87     | V        | 5)         |
|                 | 52066.6363             | .0008 | HSR                 | +0.0224      | GCVS 87     | V        | 5)         |
|                 | 52073.6629             | .0010 | HSR                 | +0.0207      | GCVS 87     | V        | 5)         |
|                 | 52075.6214             | .0013 | HSR                 | +0.0205      | GCVS 87     | V        | 5)         |
| RW Scl          | 53694.401              | .002  | HND                 |              |             | -Ir      | 19)        |
| SV Scl          | 53705.423              | .002  | HND                 |              |             | -Ir      | 19)        |
| TX Scl          | 53715.446              | .003  | HND                 |              |             | -Ir      | 19)        |
| UZ Scl          | 53689.425              | .002  | HND                 |              |             | -Ir      | 19)        |
| VW Scl          | 53724.492              | .003  | HND                 |              |             | -Ir      | 19)        |
| VX Scl          | 53721.463              | .002  | HND                 |              |             | -Ir      | 19)        |
| WY Scl          | 53690.475              | .002  | HND                 |              |             | -Ir      | 19)        |
| AE Scl          | 53688.444              | .002  | HND                 |              |             | -Ir      | 19)        |
| BU Sct          | 53563.4966             | .0030 | MZ                  |              |             | -Ir      | 2)         |
| CF Ser          | 53561.4288             | .0013 | MZ                  |              |             | -Ir      | 2)         |
| CS Ser          | 53530.4936             | .0006 | MZ                  |              |             | V        | 18)        |
| DY Ser          | 53518.4410             | .0006 | MZ                  | +0.0307      | GCVS 87     | -Ir      | 2)         |
| T Sex           | 53451.3773             | .0016 | MON                 | -0.0461      | BAVR 51,247 | V        | 1)         |
| BR Tau          | 53797.3145             | .0003 | MZ                  |              |             | -Ir      | 2)         |
| GR Tel          | 53633.298              | .002  | HND                 |              |             | -Ir      | 19)        |
| GZ Tel          | 53654.462              | .005  | HND                 |              |             | -Ir      | 19)        |
| HY Tel          | 53662.369              | .003  | HND                 |              |             | -Ir      | 19)        |
| U Tri           | 53649.5949             | .0033 | $\mathbf{PC}$       | -0.0028      | BAVR 49,105 | -Ir      | 7)         |
|                 | 53662.5640             | .0030 | $\operatorname{AG}$ | -0.0040      | BAVR 49,105 | -Ir      | 1)         |
|                 | 53745.3036             | .0026 | $\mathbf{PC}$       | -0.0060      | BAVR 49,105 | -Ir      | 7)         |
| UX Tri          | 52250.4183             | .0023 | HSR                 |              |             |          | 5)         |
|                 | 52257.3982             | .0018 | HSR                 |              |             |          | 5)         |
|                 | 53221.566:             | .025  | HSR                 |              |             |          | 5)         |
|                 | 53272.4951             | .0025 | HSR                 |              |             | -Ir      | 2)         |
|                 | 53316.3906             | .0020 | HSR                 |              |             |          | 2)         |
|                 | 53317.3223             | .0031 | HSR                 |              |             |          | 5)         |
|                 | 53318.2571             | .0017 | HSR                 |              |             |          | 5)         |
|                 | 53321.5262             | .0018 | HSR VMR             |              |             |          | 5)         |
|                 | 53323.3871             | .0023 | HSR                 |              |             |          | 5)         |
|                 | 53617.5488             | .0012 | HSR                 |              |             |          | 4)         |
|                 | 53619.4175             | .0026 | HSR                 |              |             |          | 5)         |
|                 | 53631.5531             | .0063 | $\mathbf{PC}$       |              |             | -Ir      | 7)         |
|                 | 53653.4541             | .0015 | HSR                 |              |             |          | 16)        |
|                 | 53654.3815             | .0024 | HSR                 |              |             |          | 16)        |
|                 | 53658.608              | .007  | HSR                 |              |             | -        | 16)        |
|                 | 53662.3800             | .0030 | AG                  |              |             | -1r      | 1)         |
|                 | 53673.5742             | .0016 | HSR                 |              |             |          | 5)         |
|                 | 53674.5086             | .0012 | HSR                 |              |             |          | 5)         |
|                 | 53701.5590             | .0041 | HSR                 |              |             |          | 16)        |
|                 | 53702.519              | .007  | HSR                 |              |             | -        | 16)        |
| W Tuc           | 53345.346              | .002  | HND                 |              |             | -1r      | 19)        |
| <b>XXX</b> (17) | 53720.414              | .002  | HND                 |              |             | -1r      | 19)        |
| YY TUC          | 03/23.377<br>E9947 204 | .002  | HND                 |              |             | -1r      | 19)        |
| AL IUC          | 00041.084<br>52686 467 | .002  |                     |              |             | -1r<br>T | 19)<br>10) |
|                 | ə <b>3080.4</b> 07     | .002  | HND                 |              |             | -1r      | 19)        |

Table 2: (cont.)

| Variable        | Max JD 24  | $\pm$ | Obs                 | O - C   |             | Fil | Rem        |
|-----------------|------------|-------|---------------------|---------|-------------|-----|------------|
| AG Tuc          | 53711.499  | .003  | HND                 |         |             | -Ir | 19)        |
| AM Tuc          | 53706.476  | .002  | HND                 |         |             | -Ir | 19)        |
| BK Tuc          | 53726.385  | .002  | HND                 |         |             | -Ir | 19)        |
| TU UMa          | 53746.5235 | .0005 | QU                  | -0.0249 | GCVS 87     | V   | 2)         |
|                 | 53813.4426 | .0005 | QU                  | -0.0249 | GCVS 87     | V   | <b>3</b> ) |
|                 | 53847.4590 | .0007 | QU                  | -0.0257 | GCVS 87     | V   | <b>3</b> ) |
| AE UMa          | 53110.3619 | .0019 | $\mathbf{PC}$       | +0.0071 | BAVR 48,189 | -Ir | 7)         |
|                 | 53427.3272 | .0011 | MON                 | -0.0004 | BAVR 48,189 | V   | 1)         |
|                 | 53427.4181 | .0012 | MON                 | +0.0044 | BAVR 48,189 | V   | 1)         |
|                 | 53427.5031 | .0012 | MON                 | +0.0034 | BAVR 48,189 | V   | 1)         |
| GSC4416.214 UMi | 53904.4805 | .0020 | MZ                  |         |             | -Ir | 2)         |
| AF Vel          | 53864.369  | .002  | HND                 |         |             | -Ir | 19)        |
| AN Vel          | 53850.337  | .003  | HND                 |         |             | -Ir | 19)        |
| ST Vir          | 53847.5720 | .0030 | $\operatorname{AG}$ | +0.0332 | GCVS 87     | -Ir | 1)         |
| AV Vir          | 50953.4435 | .0013 | BK                  | +0.0054 | BAVR 48,189 |     | 2)         |
| RV Vol          | 53853.342  | .002  | HND                 |         |             | -Ir | 19)        |
| SV Vol          | 53857.318  | .002  | HND                 |         |             | -Ir | 19)        |
| BN Vul          | 53653.3929 | .0007 | QU                  | -0.0225 | SAC $73$    | V   | 3)         |
| CE Vul          | 53544.4670 | .0030 | $\operatorname{AG}$ |         |             | -Ir | 1)         |
| FH Vul          | 53649.2763 | .0028 | $\mathbf{PC}$       | -0.0449 | BAVR 49, 41 | -Ir | 7)         |
| FK Vul          | 53617.4082 | .0006 | MZ                  |         |             | -Ir | 2)         |
| HL Vul          | 53566.5150 | .0030 | $\operatorname{AG}$ |         |             | -Ir | 1)         |
| HR Vul          | 53579.5360 | .0030 | AG                  |         |             | -Ir | 1)         |

#### Remarks:

| AG : | Agerer, F., Tiefenbach       | ATB:     | Achterberg, Dr. H., Norde  |
|------|------------------------------|----------|----------------------------|
| BK : | Birkner, C., Hagen           | DIE:     | Dietrich, M., Radebeul     |
| DVY: | Dreveny, R.,                 | FR:      | Frank, P., Velden          |
| HMB: | Hambsch, Dr. F., Mol (B)     | HND:     | Hund, F., Windhoek (Nan    |
| HSR: | Husar, Dr. D., Hamburg       | JU :     | Jungbluth, Dr. H., Karlsru |
| KI : | Kleikamp, W., Marl           | KRS:     | Kersten, Dr. P., Weissach  |
| KRW: | Krawietz, A., Kurort Hartha  | MON:     | Monninger, Dr. G., Gemm    |
| MS : | Moschner, W., Lennestadt     | MSR:     | Moschner, J., Lennestadt   |
| MZ : | Maintz, G., Bonn             | PC:      | Poschinger, K., Hamburg    |
| PRK: | Proksch, W., Winhöring       | PS:      | Paschke, A., Rüti (CH)     |
| QU : | Quester, W., Esslingen       | RAT:     | Rätz, M., Herges-Hallenbe  |
| RCR: | Rätz, Ch., Herges-Hallenberg | SCI:     | Schmidt, U., Karlsruhe     |
| SE : | Schlereth, B., Hassfurth     | SG:      | Sterzinger, Dr. P., Wien ( |
| SIR: | Schirmer, J., Willisau (CH)  | VMR:     | Vanmunster, T., Landen (   |
| TUTT | TTT 1/ TT 1/1 1              | 77 A T T |                            |

WTR: Walter, F., München

- derstedt
- amibia)
- $\operatorname{sruhe}$
- $\mathbf{h}$
- nmingen
- lt
- $\mathbf{berg}$
- (A)
- $(\mathbf{B})$
- ZAU: Zaunick, H., Radebeul

| Remarks (             | cont.):                                                                                   |
|-----------------------|-------------------------------------------------------------------------------------------|
| :                     | = uncertain                                                                               |
| s                     | = secondary minimum                                                                       |
| Ε                     | = CCD- or photoelectric observation                                                       |
| $\operatorname{red}$  | = reduced results                                                                         |
| 1)                    | = CCD camera ST-6 chip $375 \times 242$ uncoated                                          |
| 2)                    | = CCD camera ST-7                                                                         |
| 3)                    | = CCD camera ST-7E                                                                        |
| 4)                    | = CCD camera ST-8E                                                                        |
| 5)                    | = CCD camera ST-8E chip KAF1602E                                                          |
| 6)                    | = CCD camera ST-9 chip $512 \times 512$                                                   |
| 7)                    | = CCD camera ST-10 XMR/XME                                                                |
| 8)                    | = CCD camera Alpha Maxi chip KAF401e                                                      |
| 9)                    | = CCD camera OES-LcCCD11                                                                  |
| 10)                   | = CCD camera OES-LcCCD12                                                                  |
| 11)                   | = CCD camera Pictor 1616XT                                                                |
| 12)                   | = CCD camera Pictor 416XT                                                                 |
| 13)                   | $=$ CCD camera Starlight Xpress chip $510 \times 256$                                     |
| 14)                   | $=$ CCD camera Starlight Xpress chip $752 \times 580$                                     |
| 15)                   | = CCD camera Starlight Xpress 716                                                         |
| 16)                   | = CCD camera Starlight Xpress SVX M25C                                                    |
| 17)                   | = CCD camera Starlight Xpress SXV H9                                                      |
| 18)                   | = CCD camera HoLiCam                                                                      |
| 19)                   | = CCD camera MX716                                                                        |
| 20)                   | = CCD camera Canon EOS D60                                                                |
| 21)                   | = determination of time for the first maximum                                             |
| GCVS $yy$             | = General Catalogue of Variable Stars, 4th ed. 19yy                                       |
| IBVS nnn              | n = Information Bulletin on Variable Stars No. $nnnn$                                     |
| SAC $vv$              | = Rocznik Astronomiczny No. $vv$ , Krakow (SAC)                                           |
| BAVM nn               | n = BAV Mitteilungen No. nnn                                                              |
| BAVR                  | = BAV Rundbrief                                                                           |
| U                     | = USNO A 2.0 Catalogue                                                                    |
| $\operatorname{RafV}$ | = Dreveny, R., Paschke, A., Hund, F., 2006, RafV catalog of newly detected variable stars |
|                       |                                                                                           |

## Reference:

Dreveny, R., Paschke, A., Hund, F., 2006, http://var.astro.cz/newrafv.php?lang=en

### ERRATUM FOR IBVS 5643

#### Correction to BAVM 172

RU Scl 52994.3474 HND correct time: 52994.384

## ERRATA FOR IBVS 5731

### 

## ERRATA FOR IBVS 5731 (BAVM 178)

| V463 Cyg       | $54660.307~\mathrm{FR}$ | must be deleted           |
|----------------|-------------------------|---------------------------|
| GSC 0192700862 | $53721.4698  { m QU}$   | correct value: 52721.4698 |

## COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 5732

Konkoly Observatory Budapest 21 November 2006 *HU ISSN 0374 - 0676* 

#### ELEMENTS FOR 8 RR LYRAE VARIABLES

HÄUSSLER, K.<sup>1</sup>; BERTHOLD, T.<sup>1,2</sup>; KROLL, P.<sup>2</sup>

<sup>1</sup> Bruno-H.-Bürgel-Sternwarte, Töpelstr. 46, D-04746 Hartha, Germany, email: sternwartehartha@lycos.de

<sup>2</sup> Sternwarte Sonneberg, Sternwartestr. 32, D-96515 Sonneberg, Germany,

email: tb@4pisysteme.de, pk@4pisysteme.de

These stars were reported to be variable by Hoffmeister (1949, 1966, 1967, 1968) and Boyce & Huruhata (1942). Except in the cases of V871 Oph, V950 Oph and V961 Oph (see details noted in the remarks below), no further observations or ephemeris have been published until today. Photographic plates of a field centered at 67 Oph, taken with the Sonneberg Observatory 40-cm Astrographs during three intervals spread over the years from 1938 to 1994, were used to investigate the behaviour of these objects (see Table 1).

The given elements were obtained by means of least-squares solutions. Photographic amplitudes were derived with respect to magnitudes of the comparison stars given in Table 2. An extensive list holding the times of maxima derived can be retrieved as 5732-t3.txt, using the link in the HTML version of this paper. Individual data are available upon request.

| $\operatorname{Star}$ | Type                  | $\operatorname{Epoch}$ | Period        | Max.                       | Min.                       | M - m                      | No. of |
|-----------------------|-----------------------|------------------------|---------------|----------------------------|----------------------------|----------------------------|--------|
|                       |                       | 2400000 +              | (day)         |                            |                            |                            | plates |
| V809 Oph              | RRab                  | 48802.512              | 0.4456105     | 14 <sup>m</sup> 4          | $16.^{\mathrm{m}}0$        | $0^{p}_{.}17$              | 148    |
|                       |                       | $\pm 6$                | $\pm 3$       |                            |                            |                            |        |
| V871  Oph             | RRab                  | 47591.678              | 0.4581308     | $14.^{\rm m}2$             | $15^{\mathrm{m}}_{\cdot}3$ | $0^{\mathrm{p}}_{\cdot}12$ | 209    |
|                       |                       | $\pm 5$                | $\pm 3$       |                            |                            |                            |        |
| V950 Oph              | RRab                  | 48801.492              | 0.6098288     | $15^{\rm m}_{\cdot}1$ :    | $15.^{\mathrm{m}}9$        | $0^{\mathrm{p}}_{\cdot}21$ | 197    |
|                       |                       | $\pm 16$               | $\pm 7$       |                            |                            |                            |        |
| V961  Oph             | RRab                  | 49127.468              | 0.5220792     | $13^{\rm m}_{\cdot}6$      | $15.^{\mathrm{m}}2$        | $0^{\mathrm{p}}_{\cdot}16$ | 241    |
|                       |                       | $\pm 4$                | $\pm 2$       |                            |                            |                            |        |
| V1094  Oph            | $\operatorname{RRab}$ | 48747.455              | 0.6460529     | $15^{m}_{}3$               | $16^{\rm m}_{\cdot}2$      | $0^{\rm p}_{\cdot}20$      | 165    |
|                       |                       | $\pm 14$               | $\pm 10$      |                            |                            |                            |        |
| EP Ser                | $\operatorname{RRab}$ | 49154.471              | 0.6032100     | $15^{\mathrm{m}}_{\cdot}3$ | $17^{\rm m}_{\cdot}0$      | $0^{\mathrm{p}}_{\cdot}17$ | 134    |
|                       |                       | $\pm 12$               | $\pm 7$       |                            |                            |                            |        |
| $NSV \ 9517$          | $\operatorname{RRab}$ | 48839.332              | 0.7238664     | $14^{\rm m}_{\cdot}7$      | $15.^{\mathrm{m}}7$        | $0^{p}_{\cdot}21$          | 149    |
|                       |                       | $\pm 13$               | $\pm 9$       |                            |                            |                            |        |
| NSV 10061             | $\operatorname{RRab}$ | 49154.517              | $0,\!5644590$ | $15^{m}_{.}6$              | $16^{\mathrm{m}}_{\cdot}5$ | $0^{\rm p}_{\cdot}23$      | 142    |
|                       |                       | $\pm 14$               | $\pm7$        |                            |                            |                            |        |

Table 1. Summary of this paper

|                     | V809 Oph                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V871 Oph                               |                                          |
|---------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------|
|                     | HV 11012                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S 4183                                 |                                          |
|                     | USNO 0900-10274067                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | USNO 0900-10615121                     |                                          |
| Comp. No.           | $\operatorname{GSC}$                   | $m^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | USNO                                   | $m^*$                                    |
| 1                   | 0900 - 10271285                        | $14.^{m}3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0900-10608371                          | 14.0                                     |
| 2                   | 0900 - 10287295                        | $14.^{\mathrm{m}}9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0900 - 10600153                        | $14.^{\mathrm{m}}4$                      |
| 3                   | 0900 - 10280680                        | $15.^{\mathrm{m}}1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0900 - 10622420                        | 14·m6                                    |
| 4                   | 0900 - 10278316                        | $16 \cdot 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0900 - 10618462                        | $15.^{\mathrm{m}}5$                      |
|                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                          |
|                     | m V950~Oph                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V961  Oph                              |                                          |
|                     | S $4201$                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ${ m S}$ 4214                          |                                          |
|                     | USNO 0900-11371358                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | USNO 0900-11995376                     |                                          |
| Comp. No.           | USNO                                   | $m^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | USNO                                   | $m^*$                                    |
| 1                   | 0900 - 11361747                        | $15.^{m}8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0900 - 12007595                        | $13 \stackrel{\mathrm{m}}{\cdot} 7$      |
| 2                   | 0900 - 11365177                        | $16 \cdot 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0900 - 12003470                        | $14 \cdot 6$                             |
| 3                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0900 - 12011821                        | $15.^{\mathrm{m}}4$                      |
|                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                          |
|                     | $V1094 { m ~Oph}$                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EP Ser                                 |                                          |
|                     | $\mathbf{S}$ 9865                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ${f S}$ 9851                           |                                          |
|                     | USNO 0900-11727474                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | USNO 0825-11738616                     |                                          |
| Comp. No.           | USNO                                   | $m^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | USNO                                   | $m^*$                                    |
| 1                   | $0900 {	cdot} 11739495$                | $14.^{\mathrm{m}}9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0825 	extrm{-}11742658$               | 14.9                                     |
| 2                   | 0900 - 11727384                        | $15.^{\mathrm{m}}7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0900 - 11261581                        | $15.^{\mathrm{m}}4$                      |
| 3                   | 0900 - 11728679                        | $16.^{\mathrm{m}}0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0900 - 11269383                        | $15.^{\mathrm{m}}8$                      |
| 4                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0825 	ext{-} 11741216$                | $17 \stackrel{\mathrm{m}}{\cdot} 1$      |
|                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                          |
|                     | NSV 9517                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NSV 10061                              |                                          |
|                     | HV 11016                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S 9854                                 |                                          |
|                     | USNO 0900-10298218                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | USNO 0900-11331091                     |                                          |
|                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                          |
| Comp. No.           | USNO                                   | $m^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | USNO                                   | $\underline{m^*}$                        |
| Comp. No.           | USNO<br>0900-10296357                  | $\frac{m^*}{14.5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | USNO<br>0900-11331153                  | $\frac{m^*}{15.2}$                       |
| Comp. No.<br>1<br>2 | USNO<br>0900-10296357<br>0900-10298639 | $\frac{m^{*}}{14.5} \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8 \\ 14.8$ | USNO<br>0900-11331153<br>0900-11327442 | $\frac{m^*}{15 \cdot 2}$<br>$15 \cdot 9$ |

Table 2. Comparison stars and cross references

\* Magnitudes refer to the B values of the USNO–A2.0 catalogue

#### **Remarks**:

 $V871 \ Oph$  — Possible Blazhko effect; the height of maxima varies considerably. The period previously published by of Götz et al. (1957) and cited in the GCVS is erroneous. See also the paper of Layden (1998).

 $V950 \ Oph$  — The period previously published by of Götz et al. (1957) and cited in the GCVS is a spurious period. The published maxima from Götz et al. (only those after J.D. 2429786, times before this date were rejected due to large scatter) were included in this period analysis.

 $V961 \ Oph$  — The period previously published by of Götz et al. (1957) and cited in the GCVS is a spurious period.

 $NSV\ 10061$  — Hoffmeister (1967) erroneously assumed this star to be an eclipsing variable.

This research made use of the SIMBAD data base, operated by the CDS at Strasbourg, France.



Figure 1. Light curve of V809 Oph



Figure 2. Light curve of V871 Oph



Figure 3. Light curve of V950 Oph



Figure 4. Light curve of V961 Oph



Figure 5. Light curve of V1094 Oph



Figure 6. Light curve of EP Ser



Figure 7. Light curve of NSV 9517

Figure 8. Light curve of NSV 10061

## References:

Boyce, H.E., Huruhata, M., 1942, Harvard Annals, 109, 19
Götz, W., Huth, H., Hoffmeister, C., 1957, Veröff. Sternw. Sonneberg, 4, 123, (H2)
Hoffmann, M., 1981, Inf. Bull. Var. Stars, No. 1979
Hoffmeister, C., 1949, Erg. Astron. Nachr., 12, 1
Hoffmeister, C., 1966, Astron. Nachr., 289, 139
Hoffmeister, C., 1967, Astron. Nachr., 290, 43
Hoffmeister, C., 1998, Astron. Nachr., 115, 193
Number 5733

Konkoly Observatory Budapest 21 November 2006 *HU ISSN 0374 - 0676* 

### PHOTOMETRY OF RS Oph AFTER THE 2006 OUTBURST<sup>†</sup>

ZAMANOV, R.<sup>1</sup>; BOËR, M.<sup>2</sup>; LE COROLLER, H.<sup>2</sup>; PANOV, K.<sup>1</sup>

<sup>1</sup> Institute of Astronomy, Bulgarian Academy of Sciences, 72 Tsarighradsko Shousse Blvd, 1784 Sofia, Bulgaria

<sup>2</sup> Observatoire de Haute-Provence (CNRS), 04870 Saint Michel l'Observatoire, France

In February 2006, the recurrent nova RS Oph has undergone its first outburst for this century. On February 14th, 2006 it reached 4<sup>m</sup>.<sup>4</sup> (Narumi et al., 2006) and began to decline. In late May, the brightness of the star had already returned to its pre-outburst level of  $V = 10^{\text{m}}5-11^{\text{m}}5$  (see O'Brien et al., 2006, and AAVSO light curves for more details).

CCD photometry of this recurrent nova has been secured with the 120-cm telescope at OHP. With an  $1024 \times 1024$  CCD, the field of view is  $11.8 \times 11.8$ . Our aim was to investigate the variability on time scales from minutes to days after the 2006 recurrent nova outburst.

Our B, V, R (Johnson-Cousins) measurements are summarized in Table 1. As comparison stars we have used SAO 141899 (HD 162215, V = 9.307, B = 10.513, R = 8.601) and GSC 0509400061 (USNO 0825-11335145, V = 11.494, B = 12.199, R = 11.040). The reduction was done in a way similar to Chevalier & Ilovaisky (1991) using average extinction from June 2006. In order to search for rapid variability, we performed time-resolved differential CCD photometry in B band. This procedure involved the repeated measurement of RS Oph relative to our main comparison stars SAO 141899 and set of stars in the field. Each observational run consisted of a series of exposures in B band, with exposure time ~ 40 sec. In Table 2 we give the start of the run, its duration, number of the points obtained, the minimal and maximal value of B magnitude, the mean B magnitude, and the standard deviation ( $\sigma_B = \sqrt{\frac{1}{(N-1)}\sum_i (B_i - \overline{B})^2}$ ) calculated from all points in the run. In Fig. 1 we plot time-resolved B magnitudes. The behaviour of  $\sigma_B$  for the stars in the field is illustrated in Fig. 2.

Table 1. BVR magnitudes of RS Oph. Typical error of our measurement is  $\pm 0.015$  mag

| Date of obs. | UT    | JD 24     | B      | V      | R      |
|--------------|-------|-----------|--------|--------|--------|
| yyyy/dd/mm   |       |           |        |        |        |
| 2006/06/06   | 22.92 | 53893.454 | 12.702 | _      | 10.241 |
| 2006/06/09   | 0.53  | 53895.522 | 12.732 | 11.373 | 10.224 |
| 2006/06/09   | 2.02  | 53895.584 | 12.734 | 11.404 | 10.222 |
| 2006/06/09   | 23.99 | 53896.499 | 12.734 | 11.396 | 10.221 |
| 2006/06/10   | 23.44 | 53897.477 | 12.722 | 11.405 | 10.232 |
| 2006/06/11   | 1.73  | 53897.571 | 12.734 | 11.394 | 10.230 |

<sup>†</sup>Based on observations obtained with the 120-cm telescope at the Observatoire de Haute-Provence.

Date of obs. UT-start BB $N_{\rm pt\,s}$ length  $\sigma_B$ min/max yyyy/mm/dd h [h]meanmag 2006/06/06 21.2585.1612.680/12.73812.7080.0141362006/06/08 20.7045.2814412.680/12.73012.7060.0112006/06/09 4.2812.702/12.74720.55810012.7270.0122006/06/10 23.5156612.710/12.74512.7300.0082.47

Table 2. Time-resolved B band photometry



Figure 1. Time resolved CCD photometry of RS Oph obtained in June 2006 with the 120-cm telescope of OHP in *B* band. The date when the observation started is displayed in YYYY/MM/DD format. No short term variability (flickering) with total amplitude  $\Delta B > 0$ .<sup>m</sup>06 has been detected on minute-to-hour time scale. The behaviour of the check star is plotted in Fig. 3

From Table 2 and Fig. 1, we derive upper limits of the variability:  $\Delta B \leq 0^{\text{m}}06$ , and according to Table 1:  $\Delta V \leq 0^{\text{m}}035$ , and  $\Delta R \leq 0^{\text{m}}02$ . To the best of our knowledge, these are the first observations when the minute-to-day photometric variability of RS Oph in the optical is so low.



Figure 2. The standard deviation for the stars in the CCD field. Left panel: 2006/06/06 — crosses, 2006/06/08 — circles. Right panel: 2006/06/09 — crosses, 2006/06/10 — squares. The three brightest objects including RS Oph, are indicated on the right panel only. There is no clear departure of RS Oph from the behaviour expected for a star of constant brightness. SAO 141899 has been used as comparison star and its  $\sigma_B \equiv 0$ 

Our *B* band light curves (see Fig. 1) are considerably different from those obtained with similar setup between the 1985 and 2006 outbursts (examples of the flickering of RS Oph can be seen in Dobrzycka et al., 1996, and Sokoloski et al., 2001). The flickering of RS Oph is known since a long time. However, no systematic investigations of its properties have been made to date. The previous observations in *B* band (see Table 3), revealed strong variability on the minute-to-hour time scale.

| , <b>-</b>   |            |            | • • •                  |
|--------------|------------|------------|------------------------|
| Date of obs. | $\Delta B$ | $\sigma_B$ | Reference              |
| yyyy/mm/dd   | [mag]      | [mag]      |                        |
| 1983/07/14   | 0.32       | 0.07       | Bruch, 1992            |
| 1983/07/18   | 0.38       | 0.06       | Bruch, 1992            |
| 1983/08/14   | 0.34       | 0.07       | Bruch, 1992            |
| 1993/06/06   | 0.19       | 0.07       | Dobrzycka et al., 1996 |
| 1993/06/07   | 0.28       | 0.06       | Dobrzycka et al., 1996 |
| 1993/06/09   | 0.24       | 0.05       | Dobrzycka et al., 1996 |
| 1997/09/02   | 0.36       |            | Sokoloski et al., 2001 |
| 2002/16/06   | 0.330      | 0.057      | Gromadzki et al., 2006 |
| 2002/08/27   | 0.275      | 0.047      | Gromadzki et al., 2006 |
| 2006/June    | < 0.05     | < 0.020    | this paper             |

Table 3. Observations of RS Oph in B band on minute-to-hour time scale. In the table are given the date of observations, the amplitude of the B band variability,  $\sigma_B$ , and the reference.

Usually, the variability of RS Oph on flickering time scale has an amplitude of  $\Delta B \sim 0^{\text{m}}20-0^{\text{m}}35$  and typical  $\sigma_B \sim 0^{\text{m}}05-0^{\text{m}}07$ . During our June 2006 observations, we did not detect such a variability. On the panels for 2006/06/06 and 2006/06/08 in Fig. 1, one can see fading of RS Oph with  $0^{\text{m}}05$  during both nights. Our experiments have shown that this trend is probably real, although part of it can be due to the extinction. Is this fading real or not does not change our main result that the flickering of RS Oph is absent.

The disappearance of the flickering of RS Oph indicates that the accretion disk around the white dwarf has been demolished by the 2006 outburst. We can compute the approximate time to rebuild it, as the time needed the matter to cross the accretion disk (viscous time scale). An estimation of this time is  $\Delta t = 2(R/H)^2 R^{3/2}/3\alpha \sqrt{GM}$ , where R is the outer radius of the accretion disk, and M is the white dwarf mass. For a typical Shakura–Sunyaev accretion disk, we can use  $\alpha \approx 0.1-0.2$ ,  $(R/H) \approx 10$ . Using parameters appropriate for RS Oph,  $R \approx 10-20 R_{\odot}$ ,  $M \approx 1.4 M_{\odot}$ , we derive  $\Delta t \sim 160-800$  days.

It will be very interesting: (1) to follow the re-appearance of flickering; (2) to detect whether it will appear first on minutes or on hour time scale; (3) to compare the behaviour of the accretion disk after a nova explosion (RS Oph) and after a jet-ejection as observed in CH Cyg (Sokoloski & Kenyon, 2003).

Acknowledgements: We have used IRAF for data processing, and AAVSO data during the interpretation of these results. This program has been supported by the Centre National de la Recherche Scientifique (CNRS, Division des Relations Internationales). We thank Dr. S. Ilovaisky and Mr. D. Gravallon for their help and support during these observations.



Figure 3. To illustrate the quality of our data, we plot the behaviour of the check star HD 162215 obtained in the same way as RS Oph's data in Fig. 1

References:

Bruch, A., 1992, A&A, 266, 237

Chevalier, C., Ilovaisky, S.A., 1991, A&AS, 90, 225

Dobrzycka, D., Kenyon, S.J., Milone, A.A.E., 1996, AJ, 111, 414

- Gromadzki, M., Mikolajewski, M., Tomov, T., Bellas-Velidis, I., Dapergolas, A., Galan, C., 2006, Acta Astronomica, 56, 97
- Narumi, H., Hirosawa, K., Kanai, K., Renz, W., Pereira, A., Nakano, S., Nakamura, Y., Pojmanski, G., 2006, *IAU Circ.*, No. 8671, 2

Sokoloski, J.L., Bildsten, L., Ho, W.C.G., 2001, MNRAS, 326, 553

Sokoloski, J.L., Kenyon, S.J., 2003, ApJ, 584, 1021

O'Brien, T.J., Bode, M.F., Porcas, R.W., et al., 2006, Nature, 442, 279

Number 5734

Konkoly Observatory Budapest 22 November 2006 *HU ISSN 0374 - 0676* 

# FIRST COMPLETE BVRI LIGHT CURVES OF THE SHORT-PERIOD ALGOL-TYPE BINARY DF Pup

### MANIMANIS, V.N.; NIARCHOS, P.G.

Dept. of Astrophysics, Astronomy and Mechanics, Faculty of Physics, National & Kapodistrian University of Athens, Athens, Greece. e-mail: vmaniman@phys.uoa.gr

| DF Pup |  |
|--------|--|

| Equatorial coordinates:                                               | Equinox: |
|-----------------------------------------------------------------------|----------|
| <b>R.A.</b> = $07^{h}53^{m}50^{s}$ <b>DEC.</b> = $-19^{\circ}41'00''$ | 2000     |

### Observatory and telescope:

South African Astronomical Observatory Sutherland Station, 1.0-m Cassegrain telescope

| Detector: | CCD camera, liquid nitrogen cooled at 180.5 K, 1024 $\times$                   |
|-----------|--------------------------------------------------------------------------------|
|           | 1024 imaging pixels binned to $512 \times 512$ , $5'_{.3} \times 5'_{.3}$ FOV. |

Filter(s):

BVRI

Date(s) of the observation(s): 2006.01.10, 2006.01.14, 2006.01.15, 2006.01.19, 2006.01.23

**Comparison star(s):** Uncatalogued star 208" SW to the variable

Transformed to a standard system:

No

### Availability of the data:

Available at the IBVS website, after 2007.03.27

Type of variability: EA

### **Remarks:**

The period of the system is 0.7714568 days. The heights of the two maxima are equal within the observational error in all bands. The secondary minimum is shallow and deepens considerably at longer wavelengths; this fact indicates a large temperature difference between the components. DF Pup is known to have a spectral type of A7+[G5IV].



Figure 1.  $14' \times 14'$  finding chart with the comparison (C) and check (K) stars marked; DF Pup is marked with a V

### Acknowledgements:

This research was included in the project for the support of research groups in the universities, co-funded by the European Social Fund (ESF) and National Resources (EPEAEK II) — *PYTHAGORAS*. This paper uses observations made at the South African Astronomical Observatory (SAAO).



Figure 2. The complete B (upper) and V (lower) light curves of DF Pup



Figure 3. The complete R (upper) and I (lower) light curves of DF Pup

Reference:

Budding, E., Erdem, A., Çiçek, C., Bulut, I., Soydugan, F., Soydugan, E., Bakış, V., Demircan, O., 2004,  $A \mathscr{C} A, \, {\bf 417}, \, 263$ 

Number 5735

Konkoly Observatory Budapest 22 November 2006 *HU ISSN 0374 - 0676* 

### IV CASSIOPEIAE: A PROBABLE PHOTOMETRIC TRIPLE STAR

WOLF, M.<sup>1</sup>; ZEJDA, M.<sup>2</sup>; KIYOTA, S.<sup>3</sup>; MAEHARA, H.<sup>4</sup>; NAGAI, K,<sup>5</sup>; NAKAJIMA, K.<sup>6</sup>

<sup>1</sup> Astronomical Institute, Charles University Prague, V Holešovičkách 2, CZ-180 00 Praha 8, Czech Republic, e-mail: wolf@cesnet.cz

 $^2$ Institute of Theoretical Physics and Astrophysics, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic

 $^3$  VSOLJ, 4-405-1003 Matsushiro, Tsukuba 305-0035, Japan

<sup>4</sup> VSOLJ, 1-13-4 Namiki, Kawaguchi, Saitama 332-0034, Japan

 $^5$  VSOLJ, 5-9-3 B-305 Honson, Chigasaki, Kanagawa 253-0042, Japan

<sup>6</sup> VSOLJ, 124 Teratani, Isato, Kumano, Mie 519-4673, Japan

The semi-detached eclipsing binary IV Cassiopeiae (GSC 4001.1104, SVS 948, FL 3529;  $\alpha_{2000} = 23^{h}49^{m}31^{s}5$ ,  $\delta_{2000} = +53^{\circ}08'05''$ , Sp. A4,  $V_{max} = 11.0$  mag) is a relatively frequently observed binary with an orbital period almost exactly one day. This system was selected as a possible candidate for the study of the pulsating component and thus it was also included to our new observational project. IV Cas was discovered to be a variable star on Moscow plates by Faddeejeva in 1940 (Meshkova, 1940). Later Florja (1946) derived the first light elements

Pri. Min. = HJD2428991.302 +  $0^{d}$ 9985232 × E

and confirmed the eclipsing character of light changes. Due to the relatively short orbital period and rapid magnitude changes this variable was often observed visually. Recently, Kim et al. (2005) in their photometric study discovered a short-periodic pulsating component with a frequency of 37.672 cycles per day (period about 38 min). The current linear light elements are also given in the database of Kreiner (2004)<sup>†</sup>:

Pri. Min. = HJD2452500.3506 +  $0.9985120 \times E$ .

This variable is also included in the latest catalogue of close binaries with  $\delta$  Scuti component (Soydugan et al., 2006).

Our new CCD photometry of IV Cas was carried out during several nights in October 2005 and November 2006 at the Brno observatory, Czech Republic, and three private observatories in Japan. Different telescopes, CCD cameras, filters and exposure times were used (see Table 1). The nearby stars GSC 4001.0776 (V = 12.05 mag) on the same frame as IV Cas served as a primary comparison star during observations in Brno. See also http://nyx.asu.cas.cz/~lenka/dbvar/ for more information about these observations. The new times of primary minimum and their errors were determined using the least squares fit of the data, by the bisecting chord method or by the Kwee-van Woerden

<sup>&</sup>lt;sup>†</sup>http://www.as.ap.krakow.pl/ephem/

| JD Hel. –  | Epoch   | Error  | N   | Telescope,              |
|------------|---------|--------|-----|-------------------------|
| 24  00000  |         | (days) |     | camera, filter          |
| 52464.4044 | 11627.0 | 0.0007 | 26  | 40-cm, ST-7, clear      |
| 53671.6040 | 12836.0 | 0.0001 | 180 | 20-cm, ST-7, $R$        |
| 54045.0455 | 13210.0 | 0.002  | 201 | 20-cm SC, ST-9XE, $V$   |
| 54045.0464 | 13210.0 | 0.001  | 455 | 20-cm, ST-7E, $V$       |
| 54047.0437 | 13212.0 | 0.002  | 205 | 20-cm SC, ST-9XE, $I_c$ |
| 54047.0440 | 13212.0 | 0.0005 | 279 | 25-cm SC, CV-04, $B$    |

Table 1: New times of primary minimum of IV Cas

algorithm. These times of minimum are presented in Table 1. In this table, N stands for the number of observations used in the calculation of the minimum time. The epochs were calculated according to the light elements given in the GCVS catalogue. Figure 1 shows the differential B magnitudes during the primary minimum observed at JD 24 54047.



Figure 1. A plot of differential B magnitudes obtained during the primary eclipse of IV Cas on November 7, 2006 by K. Nakajima

The change of period and possible light-time effect of IV Cas were studied by means of an O - C diagram analysis. We took in consideration all older visual and photographic times of minima found in special databases of AAVSO and BRNO<sup>†</sup> observers as well as new photoelectric times given in Diethelm (2003), Demircan et al. (2003), Dworak (2004), Cook et al. (2005) and our own results. The sinusoidal deviations of the O - C values are well remarkable and could be caused by a light-time effect. For its solution we used all these times with different weights. A preliminary analysis of the third body gives the following parameters:

<sup>&</sup>lt;sup>†</sup>http://www.aavso.org/observing/programs/eclipser/ebtom.shtml, http://var.astro.cz/ocgate

| P (period)                      | $= 21800 \pm 500 \text{ days}$      |
|---------------------------------|-------------------------------------|
|                                 | $= 59.7 \pm 1.4$ years              |
| T (time of periastron)          | $=$ J.D. 24 43455 $\pm$ 50          |
| A (semi-amplitude)              | $= 0.0336 \pm 0.0008  \mathrm{day}$ |
| $\omega$ (length of periastron) | $= 341.1 \pm 2.5$ degrees           |
| e (eccentricity)                | $= 0.09 \pm 0.03$                   |

These values were obtained by the least squares method together with the mean light elements

Pri. Min. = HJD2440854.6280(5) +  $0^{d}$ 99851658(12) × E.

The O - C diagram is plotted in Fig. 2.



Figure 2. O - C diagram for IV Cas. The numerous visual and photographic times are denoted by dots, the photoelectric and CCD times by circles. The sinusoidal curve corresponds to the third body orbit with a period of about 60 years and a semi-amplitude about 48 minutes

Assuming a coplanar orbit  $(i_3 = 90^\circ)$  and adopting a total mass of the eclipsing pair with A4 primary to be  $M_1 + M_2 \simeq 3.0 \ M_{\odot}$ , we can obtain a lower limit for the mass of the third component  $M_{3,\min}$ . The mass function has a value  $f(M) = 0.056 \ M_{\odot}$ , from which the minimum mass of the third body follows as  $0.96 \ M_{\odot}$ . A possible third component of spectral type about G9 with the bolometric magnitude of  $m_3 \simeq 5.0$  mag (Harmanec, 1988) produces a detectable third light of  $L_3 \simeq 4.5 \ \%$  of total light.

Our result indicates, that IV Cas is probably next member of a small group of triple systems with pulsating primary component deserving a regular monitoring (Y Cam – Broglia & Marin, 1974; DG Leo – Lampens et al., 2005; HD 207651 – Henry et al., 2004). Only a relatively small part of the third body orbit is well-covered by the precise photoelectric observations. Therefore, new high-accuracy timings of this eclipsing system

are necessary in order to confirm the light-time effect and to improve its parameters given above.

Acknowledgements. This investigation was supported by the Grant Agency of the Czech Republic, grants No. 205/04/2063 and No. 205/06/0217. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and of NASA's Astrophysics Data System.

References:

Broglia, P., Marin, F., 1974, A&A, 34, 89

Cook, J.M., Divoky, M., Hofstrand, A., Lamb, J., Quarderer, N., 2005, IBVS, No. 5636

Demircan, O., Erdem, A., Ozdemir, S., Cicek, C., et al., 2003, IBVS, No. 5364

Diethelm, R., 2003,  $\mathit{IBVS},$  No. 5438

Dworak, S.W., 2004, *IBVS*, No. 5502

Florja, N.F., 1946, Variable Stars,  $\mathbf{6}$ , 4

Harmanec, P., 1988, Bull. Astr. Inst. Czech., 39, 329

Henry, G.W., Fekel, F.C., Henry, S.M., 2004, AJ, 127, 1720

Kim, S.-L., Lee, C.-U., Koo, J.-R., et al., 2005, IBVS, No. 5669

Kreiner, J.M., 2004, Acta Astronomica, 54, 207

Lampens, P., Frèmat, Y., Garrido, R., Peña, J.H., et al., 2005, A&A, 438, 201

Meshkova, T.S., 1940, Variable Stars, 5, 304

Soydugan, E., Soydugan, F., Demircan, O., Ibanoglu, C., 2006, MNRAS, 370, 2013

Number 5736

Konkoly Observatory Budapest 27 November 2006 *HU ISSN 0374 - 0676* 

## NEW TIMES OF MINIMA OF SOME ECLIPSING BINARY SYSTEMS

CSIZMADIA, SZ.<sup>1</sup>; KLAGYIVIK, P.<sup>2</sup>; BORKOVITS, T.<sup>3</sup>; PATKÓS, L.<sup>1</sup>; KELEMEN, J.<sup>1</sup>; MARSCHALKÓ, G.<sup>2</sup>; MARTON, G.<sup>2</sup>

 $^1$ Konkoly Observatory of the Hungarian Academy of Sciences, Budapest, Pf. 67, H–1525, Hungary e-mail: csizmadia@konkoly.hu

<sup>2</sup> Department of Astronomy, Eötvös Loránd University, Budapest, Pf. 32, H–1518 Hungary

<sup>3</sup> Baja Astronomical Observatory of Bács-Kiskun County, Baja, Szegedi út, Kt. 766, H–6500 Hungary

| Observatory | and | telescope: |
|-------------|-----|------------|
|-------------|-----|------------|

50-cm f/15 Cassegrain telescope (Pi50),

60/90/180 Schmidt telescope (Pi90),

1<br/>m $f/13.3~{\rm RCC}$ telescope (Pi100) of the Konkoly Observatory at Piszké<br/>stető Mountain Station (Hungary) and

40-cm f/8.9 Ritchey-Chrétien telescope (E40) of the Department of Astronomy, Eötvös Loránd University (Hungary)

| D         |                                                        |
|-----------|--------------------------------------------------------|
| Detector: | uncooled UBV Photometer (P150u)                        |
|           | $1536 \times 1024$ Photometrics CCD-camera (Pi90)      |
|           | $1340 \times 1300$ Princeton Instr. CCD camera (Pi100) |
|           | $4008 \times 2672$ SBIG STL-11K CCD Camera (E40)       |

### Method of data reduction:

Reduction of CCD frames was made with a customly developed IRAF<sup>†</sup> package.

### Method of minimum determination:

The minima times were computed with parabolic fitting (in case of PV Cas and SV Cam), and Kwee-van Woerden method (Kwee & van Woerden, 1956).

### Acknowledgements:

KP thanks the hospitality of Konkoly Observatory. Csz thanks the hospitality of Dept. of Astronomy of Eötvös University.

<sup>&</sup>lt;sup>†</sup>IRAF is distributed by the National Optical Astronomical Observatories, operated by the Association of the Universities for Research in Astronomy, inc., under cooperative agreement with the National Science Foundation

| Star name    | Time of min.     | Error    | Type     | Filter                                          | Rem.                          |
|--------------|------------------|----------|----------|-------------------------------------------------|-------------------------------|
|              | HJD 2400000+     |          | . 1      |                                                 |                               |
| CN And       | 53991.4618       | 1        | Ι        | С                                               | KP/E40                        |
| EP And       | 54036.4396       | 1        | Ι        | V                                               | Csz/E40                       |
| GZ And       | 54059.3677       | 1        | Ι        | R                                               | KP/E40                        |
| V376 And     | 54018.3694       | 1        | Ι        | V                                               | Csz/E40                       |
| FP Aur       | 54039.5304       | 2        | Ι        | V                                               | Csz/E40                       |
| IM Aur       | 54027.4125       | 3        | II       | RI                                              | $\mathrm{KP}^{'}\mathrm{E40}$ |
| SV Cam       | 44635.3717       | 2        | Ι        | BV                                              | PL/Pi50                       |
|              | 44830.4934       | 2        | Ι        | BV                                              | PL/Pi50                       |
|              | 45273.5175       | 1        | Ι        | BV                                              | PL/Pi50                       |
|              | 45645.3749       | 1        | Ι        | BV                                              | PL/Pi50                       |
| CW Cas       | 53989.4045       | 1        | Ι        | C                                               | KP' E40                       |
|              | 54025.4389       | 5        | Ι        | BRI                                             | KP' E40                       |
| PV Cas       | 53351.5484       | 2        | Ι        | BV                                              | KJ/Pi90                       |
|              | 53400.5572       | 2        | Ι        | BVR                                             | KJ/Pi90                       |
|              | 53989.5652       | 3        | II       | B                                               | Csz/Pi100                     |
| V523 Cas     | 53985.3774       | 1        | II       | C                                               | KP'E40                        |
|              | 54019.3796       | 1        | Ι        | R                                               | Csz'/E40                      |
| V776 Cas     | 54039.4274       | 4        | Ι        | V                                               | Csz'/E40                      |
| CQ Cep       | 54042.2816       | 31       | Ι        | BVRI                                            | MG/E40                        |
| EV Cnc       | 52244.6052       | 9        | T        | V                                               | Csz/Pi100                     |
| -            | 52246.6091       | 9        | Ι        | V                                               | Csz/Pi10                      |
|              | 52271.4941       | 7        | Ι        | V                                               | Csz/Pi10                      |
| CE Leo       | 53765.5474       | 3        | II       | BVRI                                            | KP/Pi100                      |
|              | 53767.5186       | 3        | II       | BVRI                                            | KP/Pi100                      |
|              | 53835.4868       | 5        | Ι        | BVRI                                            | Bor/Pi10                      |
| PY Lyr       | 53990.3345       | 2        | Ι        | C                                               | KP'E40                        |
| U Peg        | 54043.2691       | 1        | Ι        | V                                               | Csz/E40                       |
| BB Peg       | 53986.3485       | 4        | II       | BVRI                                            | Csz/Pi100                     |
| 0            | 53987.4330       | 3        | Ι        | BVRI                                            | Csz/Pi10                      |
|              | 53988.3352       | 2        | Ι        | BVRI                                            | Csz/Pi10                      |
|              | 53988.5175       | 4        | II       | BVRI                                            | Csz/Pi100                     |
|              | 53990.3248       | 2        | Ι        | BVRI                                            | Csz/Pi100                     |
|              | 53990.5040       | 1        | II       | BVRI                                            | Csz/Pi10                      |
|              | 54037.3178       | 9        | Ι        | V                                               | KP/E40                        |
| V432 Per     | 53992.4620       | 1        | Ī        | V                                               | Csz/Pi10                      |
| UV Psc       | 53990.5121       | 1        | T        | $\overset{\cdot}{C}$                            | KP/E40                        |
| DZ Psc       | 53992.4205       | 3        | Ī        | $\tilde{C}$                                     | KP/E40                        |
| AH Tau       | 54050.42407      | 8        | Ι        | V                                               | Csz'/E40                      |
| EQ Tau       | 54026.4781       | 2        | Ī        | $\overset{\cdot}{RI}$                           | Csz/E40                       |
| WZ Sge       | 53654.2757       | 1        | T        | $\overline{V}$                                  | Csz/Pi10                      |
| NO Vul       | 53251.434        | 4        | Ī        | VRI                                             | $C_{sz}/Pi100$                |
|              | 53252.3592       | 1        | Ī        | VRI                                             | $C_{sz}/Pi100$                |
|              |                  | -        |          | , 101                                           | 0.02/1110                     |
| nation of th | he remarks in th | he table | e:       | <u>a ·                                     </u> |                               |
| vers: Bor:   | Tamas Borkovits  | Usz:     | Szilárd  | Usizmad                                         | ıa                            |
| KJ: .        | Janos Kelemen    | KP:      | Peter K  | lagyivik                                        |                               |
| MG:          | Gábor Marschalk  | O PL:    | László I | atkos                                           |                               |

Filters: C means a 'clear' filter while BVRI are Johnson–Cousins ones.

# Reference:

Kwee, K.K., van Woerden, H., 1956, Bull. Astron. Inst. Neth.,  $\mathbf{12},\,327$ 

Number 5737

Konkoly Observatory Budapest 27 November 2006 *HU ISSN 0374 - 0676* 

# THE OPTICAL COUNTERPART OF THE POSSIBLE BRIGHTEST TRANSIENT X-RAY SOURCE IN M31 IS FOUND

SMIRNOVA, O.<sup>1</sup>; ALKSNIS, A.<sup>1</sup>; ZHAROVA, A.V.<sup>2</sup>

 $^1$ Institute of Astronomy, University of Latvia, Raina bulv. 19, Riga LV-1586, Latvia; e-mail: o.smirnova@inbox.lv

<sup>2</sup> Sternberg Astronomical Institute, University of Moscow, 13, University Ave., Moscow 119992, Russia

Having found a nova in M31 on plates of the Baldone Schmidt telescope plate archive (Smirnova & Alksnis, 2006), which occurred to be the optical counterpart of the supersoft X-ray source [PFH2005] 191 (Pietsch et al., 2005a), we started to inspect the positions of known M31 supersoft X-ray sources on scans of other plates of M31 taken in the years 2001-2002.

An object was found at the position of the supersoft X-ray source [PFH2005] 543 (Pietsch et al., 2005a) on the plate No. 248 taken on November 12, 2001. Its coordinates R.A. =  $00^{h}44^{m}14^{s}52$ , Decl. =  $+41^{\circ}22'4''.3$  (equinox 2000.0; estimated maximal error radius 0''.7) determined from the scanned discovery plate, on which the nova is the brightest, with respect to the positions of field stars from UCAC2, agree with those of the [PFH2005] 543 within 0''.5. So it is highly probable that the newly found object is the optical counterpart of the X-ray source [PFH2005] 543.

The X-ray source, designated as XMMU J004414.0+412204, was discovered on January 5, 2002 by Trudolyubov et al. (2002), confirmed on January 8, 2002 by Garcia et al. (2002), observed on highest luminosity level on February 6, 2002 and included in the catalog of transient X-ray sources in M31 (Williams et al., 2006) as object n1-86. Williams et al. (2006) did not exclude the possibility that the X-ray source n1-86 is in M31 and might have the highest X-ray luminosity of any transients yet observed in M31. Trudolyubov et al. (2005) did not succeed in search for optical counterparts of the X-ray source, but according to them the transient behavior of the source hints that it may be a classical nova in supersoft X-ray spectral phase.

A finding chart of the nova from the discovery plate is given in Figure 1. Times of the middle of exposures in Julian days and blue magnitudes  $(m_B)$  of the nova based on the secondary standard stars from the BVRI catalogue of M31 (Magnier et al., 1992) are given in Table 1. The light curve of the nova is presented in Figure 2.

The object was first observed when it was near the outburst maximum, which evidently occurred within a day before or after our first observation. The estimated light decay rate dB/dt > 0.2 m/d during observation period suggests that probably the nova was very fast. Thus according to our observations the photometric behavior of the object seems to be typical for novae in M31.



Figure 1. Finding chart for the discovered nova. The cross shows the position of the X-ray source [PFH2005] 543



Figure 2. The light curve of the nova in M31. Filled circles: confident measurements; open circle: uncertain measurement; triangles: brightness upper limits

| Table     | 1                    |
|-----------|----------------------|
| JD        | $m_B$                |
| 2452200 + | $\operatorname{mag}$ |
| 25.216    | > 19.1               |
| 26.208    | 17.1                 |
| 28.238    | 18.2                 |
| 33.327    | 19.3:                |
| 34.292    | 19.2                 |
| 48.188    | > 19.4               |

Possibly because of its high X-ray luminosity the nova is also unique in another aspect: the time separation between its optical outburst and detection as supersoft X-ray source is the shortest known for novae in M31 — only 53 days, followed by WeCaPP-N2001-12 with 63 days (Pietsch et al., 2005b) and the optical counterpart of the X-ray source [PFH2005] 191 with 84 days (Smirnova & Alksnis, 2006).

**Corrigendum.** In the paper by Smirnova & Alksnis (2006), third paragraph from the end, instead of 1/10/2001 should be 1/10/1992. Our thanks are due to W. Pietsch for pointing out this error.

#### References:

- Garcia, M.R., Kong, A.H.K., McClintock, J.E., Primini, F.A., Kaaret, P., Murray, S.S., 2002, *The Astronomer's Telegram*, No. 82
- Magnier, E.A., Lewin, W.H.G., van Paradijs, J., Hasinger, G., Jain, A., Pietsch, W., Truemper, J., 1992, A&AS, 96, 379
- Pietsch, W., Freyberg, M., Haberl, F., 2005a, A&A, 434, 483
- Pietsch, W., Fliri, J., Freyberg, M.J., Greiner, J., Haberl, F., Riffeser A., Sala, G., 2005b,  $A \mathscr{C} A$ , 442, 879
- Smirnova, O., Alksnis, A., 2006, IBVS, No. 5720
- Trudolyubov, S., Kotov, O., Priedhorsky, W., Cordova, F., Mason, K., 2005, ApJ, 634, 314
- Trudolyubov, S., Priedhorsky, W., Borozdin, K., Mason, K., Cordova, F., 2002, IAUC, No. 7798
- Williams, B.F., Naik, S., Garcia, M.R., Callanan, P.J., 2006, ApJ, 643, 356

Number 5738

Konkoly Observatory Budapest 6 December 2006 *HU ISSN 0374 - 0676* 

# PLATE ARCHIVE SEARCH FOR THE PROGENITOR OF NOVA Cyg 2006

JURDANA-SEPIC, R.<sup>1</sup>; MUNARI, U.<sup>2</sup>

<sup>1</sup> Physics Department, University of Rijeka, Omladinska 14, HR 51000 Rijeka, Croatia

<sup>2</sup> INF Osservatorio Astronomico di Padova, Sede di Asiago, I-36032 Asiago (VI), Italy

Name of the object:

Nova Cyg 2006 = V2362 Cyg

| Equatorial coordin                  | Equinox:                             |      |
|-------------------------------------|--------------------------------------|------|
| $\mathbf{R.A.} = 21^{h}11^{m}32.35$ | $DEC. = +44^{\circ}48'03''_{\cdot}7$ | 2000 |

Observatory and telescope:

67/92 cm and 40/50 cm Asiago Schmidt telescopes

| Detector:                                | Photographic plates |  |  |  |
|------------------------------------------|---------------------|--|--|--|
|                                          |                     |  |  |  |
| Filter(s):                               | $UBVR_CI_C$         |  |  |  |
|                                          |                     |  |  |  |
| Date(s) of the observation(s):           |                     |  |  |  |
| From November 2, 1962 to August 27, 1997 |                     |  |  |  |

Table 1: Asiago archival plates imaging the field of the progenitor of Nova Cyg 2006. The progenitor is invisible on all plates, and its magnitude (fourth column) is given in terms of the faintest star visible close to the position of the progenitor (for identification of R3, R4, R5 reference stars see text)

| Date             | UT        | Band              | Plate no. | Telescope | Date             | UT        | Band              | Plate no. | Telescope |
|------------------|-----------|-------------------|-----------|-----------|------------------|-----------|-------------------|-----------|-----------|
| $02 \ 11 \ 1962$ | 20  52    | B > R3            | 3274      | 40/50     | $18\ 10\ 1973$   | $18 \ 44$ | $U > \mathrm{R4}$ | 6708      | 67/92     |
| $10\ 07\ 1967$   | 00  50    | $R_C > R5$        | 741       | 67/92     | $18\ 10\ 1973$   | 19  09    | V > R5            | 6709      | 67/92     |
| $13 \ 07 \ 1967$ | $23 \ 27$ | $R_C > R5$        | 754       | 67/92     | $18\ 09\ 1982$   | 21  18    | V > R5            | 11682     | 67/92     |
| $17 \ 07 \ 1967$ | 00  51    | B > R4            | 768       | 67/92     | $15 \ 10 \ 1982$ | 21  17    | $V > \mathrm{R3}$ | 14982     | 40/50     |
| 25  03  1971     | 03  05    | $B > \mathrm{R4}$ | 4262      | 67/92     | $16\ 10\ 1982$   | 21  17    | V > R3            | 14994     | 40/50     |
| 25  03  1971     | $03 \ 21$ | V > R5            | 4263      | 67/92     | $04 \ 06 \ 1984$ | 23  54    | $B > \mathrm{R5}$ | 12519     | 67/92     |
| 25  03  1971     | $03 \ 42$ | $R_C > R5$        | 4264      | 67/92     | $13\ 08\ 1985$   | $00 \ 00$ | $B > \mathrm{R5}$ | 16379     | 40/50     |
| 30  03  1971     | $03 \ 38$ | V > R4            | 4281      | 67/92     | $09 \ 09 \ 1985$ | 22  08    | $B > \mathrm{R5}$ | 16461     | 40/50     |
| 18  09  1971     | 21  43    | $V > \mathrm{R3}$ | 9022      | 40/50     | $22 \ 11 \ 1995$ | $20 \ 22$ | $B > \mathrm{R5}$ | 16003     | 67/92     |
| 18  10  1971     | 22  50    | $B > \mathrm{R3}$ | 9122      | 40/50     | $27 \ 08 \ 1997$ | 23  54    | $B > \mathrm{R5}$ | 16467     | 67/92     |
| $17 \ 12 \ 1971$ | 19  10    | V > R3            | 9312      | 40/50     | $23\ 07\ 1985$   | 23  50    | $B > \mathrm{R5}$ | 16362     | 40/50     |
| 28  09  1973     | $22 \ 33$ | U > R3            | 6654      | 67/92     | $25 \ 06 \ 1984$ | $02 \ 05$ | $B > \mathrm{R5}$ | 12510     | 67/92     |
| 28  09  1973     | 23  12    | $I_C > R4$        | 6665      | 67/92     |                  |           |                   |           |           |

#### **Remarks**:

Nova Cyg 2006 was discovered at unfiltered magnitude 10.5 by H. Nishimura (Nakano, 2006) on panchromatic photographic images obtained on 2.807 April UT. Its precise position was determined by Yamaoka (2006) as R.A. =  $21^{h}11^{m}32^{s}346$  ( $\pm$  0<sup>s</sup>010), Decl. =  $+44^{\circ}48'03''.66$  ( $\pm$  0''.14) (equinox 2000.0). At this position the IPHAS  $r'i'H\alpha$  survey of the galactic plane recorded previous to the outburst — on August 3, 2004 — an H $\alpha$  emitting source at magnitudes  $r' = 20.30(\pm 0.05)$  and  $i' = 19.76(\pm 0.07)$ , which has been identified as the progenitor of the Nova by Steeghs et al. (2006). CCD photometry secured by the ANS (Asiago Novae and Symbiotic stars) Collaboration measured a peak brightness for the nova  $R_C = 7.5$  and  $I_C = 7.2$  that sets the outburst amplitude to  $\Delta R_C \sim \Delta I_C \sim 12.7$  mag.

Nova Cyg 2006 has so far displayed a weird lightcurve. After an initial normal exponential slope, the decline has been slowing until a minimum brightness was reached around July 21 when the nova was shining at  $B = 12.30, B-V = +0.16, V - I_C = +1.28, R_C - I_C = +0.02$  (Munari et al., 2006a). After that the nova has been *increasing* its brightness, reaching  $B = 11.18, B - V = +0.36, V - I_C = +1.10, R_C - I_C = +0.42$  by November 12.8 UT (Munari et al., 2006b). Similarity to the lightcurve of Nova Aql 1999a (= V1493 Aql) has been noted by Goranskij et al. (2006).

To the aim of better constraining the nature of this peculiar nova, we have searched the plate archive of the Asiago 67/92 and 40/50 cm Schmidt telescopes looking for patrol plates covering the position of the Nova. We found 25 plates variously exposed in the  $UBVR_CI_C$  bands between 2 November, 1962 and 8 August, 1997. A listing of the plates and date of exposure is given in Table 1. In none of the plates the progenitor is bright enough to be detected. With a typical limiting magnitude fainter than B = 18.5, these negative detections and those on the first and second Palomar surveys suggest that the progenitor has been living long and quietly in quiescence for several decades before the 2006 eruption.

The stars reported in Table 1 to identify the plate limiting magnitude are: R3 = USNO-B1.0 1347-0415159 ( $B = 18.0, V = 16.4, R_C = 16.2, I_C = 15.9$ ), R4 = USNO-B1.0 1347-0415150 ( $B = 18.1, V = 16.1, R_C = 15.5, I_C = 15.0$ ) and R5 = USNO-B1.0 1347-0415197 ( $B = 18.6, R_C = 16.9, I_C = 16.3$ ). The magnitudes are taken from the USNO-B1.0 (Monet et al., 2003) and NOMAD (Zacharias et al., 2004) catalogues.

References:

Goranskij, V.P., Metlova, N.V., Burenkov, A.N., 2006, ATel, No. 928
Monet, D.G., et al., 2003, AJ, 125, 984
Munari, U., et al., 2006a, CBET, No. 671
Munari, U., et al., 2006b, CBET, No. 739
Nakano, S., 2006, IAUC, No. 8697
Steeghs, D., Greimel, R., Drew, J., et al., 2006, ATel, No. 795
Yamaoka, H., 2006, IAUC, No. 8702
Zacharias, N., et al., 2004, AAS, 205, 4815

Number 5739

Konkoly Observatory Budapest 8 December 2006 *HU ISSN 0374 - 0676* 

### DISCOVERY OF 19 NEW HISTORICAL NOVA CANDIDATES IN M31

HENZE, M.<sup>1</sup>; MEUSINGER, H.<sup>1</sup>; PIETSCH, W.<sup>2</sup>

<sup>1</sup> Thüringer Landessternwarte Tautenburg, D-07778 Tautenburg, Germany

<sup>2</sup> Max Planck Institute for Extraterrestrial Physics, D-85748 Garching, Germany

We have conducted a systematic search for historical novae in M31 on digitized archival plates. A comprehensive description of the data material, the method, and the results will be given in a separate paper (Henze et al., 2007). Here we present a brief summary of the attempt and announce, as the most important result, 19 new nova candidates.

The M31 field is the most frequently observed field in the archive of the Tautenburg Schmidt telescope (134/200/400). Our search is based upon 306 selected plates in the UBV bands taken in the years 1960 to 1996. A single plate covers an unvignetted field of  $3^{\circ}.3 \times 3^{\circ}.3$  with a plate scale of 51.4 arcsec/mm. The limits of the *B* plates are typically in the range  $B_{\text{lim}} = 19^{\text{m}} \dots 21^{\text{m}}$ . Although the majority of these plates were not taken as a part of a systematic survey, they constitute a valuable observational material suited to search for bright variables in our neighbour galaxy.

All plates have been digitized with the Tautenburg Plate Scanner (Brunzendorf & Meusinger, 1999) and were reduced using the software package Source Extractor (Bertin & Arnouts, 1996). For the astrometric and photometric calibration of one selected reference plate per filter band we used the USNO-B1.0 catalogue (Monet et al., 2003) and the Local Group Survey catalogue (Massey et al., 2006), respectively. Special care was taken to consider the strongly fluctuating background surface brightness. All plates of the same filter band were transformed into the system of the corresponding reference plate which results in an overall astrometric uncertainty of  $\sim 0.5$  arcsec and a relative photometric uncertainty of 0.2-0.3 mag. The absolute photometric uncertainties on the reference plates are about 0.5 mag over the magnitude interval 16–20 mag. Finally, the data set for every single plate was cross-correlated with the data sets from all other plates to create two catalogues: (a) the multi-detection table of  $\sim 3 \times 10^5$  objects detected on at least two plates of the same colour and (B) the single-detection table of  $\sim 1.1 \times 10^6$ objects detected on only one plate. Since we decided to use a low detection limit for the object detection, in order to reach a high completeness at faint magnitudes, the tables are substantially contaminated by noise detections. This has to be considered for the selection of novae candidates: single-detections were used only to *confirm* multi-detections or singledetections in other filter bands. For the multi-detection objects light curves were created and searched for typical nova features.

Typical features of nova light curves were modeled using novae in M31 which were previously discovered on Tautenburg plates by Moffat (1967) and Börngen (1968):

- Short time span of observability: Due to the distance of M31 and the plate limit of  $\sim 20^{\text{m}}$ , novae have a typical time of observability of 20–30 days. The parameter value applied for the search was 50 days (U, V) and 70 days (B) respectively.
- **Prominent peak:** A nova light curve should show a significant peak which must be brighter than the plate limit and be outside the  $1\sigma$  error range of the modified light curve *without* the peak.
- Singular event: Classical novae do not recur on a timescale less than 100 years. Therefore every nova event in our data base should be unique. We also searched for recurrent novae, namely such that show repeated outbursts on a timescale less than 100 years, but we did not find any.

Every promising candidate was individually checked on the original plates to decide whether it could be a nova or not. The spatial distribution of the 19 objects classified as formerly unknown nova candidates is shown in Fig. 1. The mapped area is a cutout from the field of the astrometric reference plate corresponding to the area containing the new candidates. The key data are summarized in Table 1. Another 32 previously catalogued novae were established by our program. This is the reason why the consecutive numbering in Table 1 starts with 33. The full set of data will be provided in Henze et al. (2007).



Figure 1. Distribution of the new 19 Tautenburg nova candidates over the galaxy M31. Black dots indicate the objects detected on the reference plate. The outer spiral arms of the galaxy are clearly recognizable by their overabundance of detected objects. Big filled squares mark the new nova candidates

| ID  | $\alpha$ [°]                                          | δ [°]    | mag      | ID           | vear |
|-----|-------------------------------------------------------|----------|----------|--------------|------|
| (1) | $\left[ \begin{array}{c} \alpha \end{array} \right] $ | (2)      | (4)      | (5)          | (6)  |
| (1) | (2)                                                   | (3)      | (4)      | ( <b>0</b> ) | (0)  |
| 33  | 11.90747                                              | 41.75843 | 19.4 (B) | 2437913      | 1962 |
| 34  | 10.01956                                              | 40.62433 | 18.5 (V) | 2438373      | 1963 |
| 35  | 11.43947                                              | 41.75058 | 17.7~(U) | 2439417      | 1966 |
| 36  | 9.33152                                               | 40.52856 | 18.9~(B) | 2440917      | 1970 |
| 37  | 10.38148                                              | 40.87432 | 17.7~(B) | 2441328      | 1972 |
| 38  | 9.81823                                               | 40.52356 | 18.9~(B) | 2441680      | 1972 |
| 39  | 10.36907                                              | 40.88704 | 18.7 (V) | 2442741      | 1975 |
| 40  | 10.44820                                              | 40.95410 | 18.2 (U) | 2442775      | 1975 |
| 41  | 11.47816                                              | 40.92837 | 19.3 (B) | 2444194      | 1979 |
| 42  | 10.14823                                              | 41.32396 | 17.8 (U) | 2444490      | 1980 |
| 43  | 10.47874                                              | 41.01253 | 18.1 (U) | 2444490      | 1980 |
| 44  | 10.74837                                              | 41.28688 | 18.0 (U) | 2444490      | 1980 |
| 45  | 11.08057                                              | 41.60674 | 19.4~(B) | 2445940      | 1984 |
| 46  | 11.51205                                              | 41.73243 | 18.9 (U) | 2446299      | 1985 |
| 47  | 11.58009                                              | 41.97954 | 18.5 (U) | 2446299      | 1985 |
| 48  | 12.51510                                              | 41.42756 | 18.8 (U) | 2446299      | 1985 |
| 49  | 10.43303                                              | 41.07269 | 16.9(B)  | 2448893      | 1992 |
| 50  | 10.76761                                              | 40.40784 | 17.5(B)  | 2450316      | 1996 |
| 51  | 11.54533                                              | 41.61147 | 19.4~(B) | 2450317      | 1996 |

Table 1: Basic data for the new nova candidates: identification number (1), right ascension and declination for J2000 (2,3), magnitude of the detected maximum and filter band (4), Julian date (5), and year of the outburst (6).

Finally, we would like to emphasize that the good astrometric accuracy of this "new historical" novae makes them suitable for the correlation with previously found ones in order to search for recurrent novae. With the only exception of nova 39, none of our new nova candidates could be identified on POSS II plates, in the SIMBAD database, or in the GCVS (Artyukhina et al., 1995). The position of nova 39 coincides, with a position difference of 1 arcsec, with the nova number 32 in Table 4 of Baade & Arp (1964) discovered between the years 1945–1949. Therefore, nova 39 is a good candidate for a recurrent nova with repeated outbursts on a timescale less than 100 years. Unfortunately, Baade & Arp do not report the epoch of their observation and thus the recurrence time can be estimated only roughly to 26–30 years. Additional information on the actual epoch of the Baade & Arp nova 32 / Table 4 would be useful. Because the 1975 outburst of nova 39 has not been reported so far, we list it as a new nova candidate, even though it is probably a recurrent nova.

Acknowledgments: This research has made use of the SIMBAD database and of the Aladin sky atlas which are operated at CDS, Strasbourg, France, and the General catalogue of Variable Stars Volume V Extragalactic Variable Stars (GCVS Vol. V) which is operated at Sternberg Astronomical Institute, Moscow, Russia.

#### References:

Artyukhina, N.M., Durlevich, O.V., Frolov, M.S., et al., 1995, General catalogue of Variable Stars, 4th ed., vol. V. Extragalactic Variable Stars, "Kosmosinform", Moscow Baade, W., Arp, H., 1964, ApJ, 139, 1027 Bertin, E., Arnouts, S., 1996, A&ASS, 117, 393
Börngen, F., 1968, Mitteilungen des Karl-Schwarzschild-Observatoriums Tautenburg, 40
Brunzendorf, J., Meusinger, H., 1999, ACHA, 6, 55
Henze, M., Meusinger, H., Pietsch, W., 2007, in preparation
Massey, P., Olsen, K.A.G., Hodge, P.W., 2006, AJ, 131, 2478
Moffat, A.F.J., 1967, AJ, 72, 1356
Monet, D.G., Levine, S.E., Casian, B., et al., 2003, AJ, 125, 984

### **ERRATUM FOR IBVS 5701**

The star listed as V2028 Cyg in IBVS 5701 should be V2088 Cyg.

Geir Klingenberg

Number 5740

Konkoly Observatory Budapest 13 December 2006 *HU ISSN 0374 - 0676* 

# FIRST SIMULTANEOUS PHOTOMETRIC AND SPECTROSCOPIC ANALYSIS OF THE ACTIVE STAR IT Com

BIAZZO, K.<sup>1</sup>; FRASCA, A.<sup>1</sup>; MARILLI, E.<sup>1</sup>; HENRY, G.W.<sup>2</sup>; SOYDUGAN, F.<sup>1,3</sup>; ERDEM, A.<sup>3</sup>; BAKIS, H.<sup>3</sup>

<sup>1</sup> INAF — Catania Astrophysical Observatory, via S. Sofia 78, 95123 Catania, Italy, e-mail: kbiazzo@oact.inaf.it

 $^2$  Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Blvd., Box 9501, Nashville, TN 37209

<sup>3</sup> Çanakkale Onsekiz Mart University Observatory, 17040 Çanakkale, Turkey

IT Comae Berenicis (HD 118234) was discovered to be a single-lined spectroscopic binary by Griffin (1988), who determined the orbital period  $P_{\rm orb} = 59^{4}054$  and eccentricity e = 0.59. From existing multicolor photometry, he deduced the primary to be a K0 or K1 giant and suggested the secondary might be of earlier spectral class. Strassmeier (1994) observed CaII H&K emission lines well above the nearby stellar continuum, demonstrating a very high level of chromospheric activity. From time series photometry with an automated photometric telescope (APT), Henry et al. (1995) discovered brightness variability in HD 118234 with an amplitude of about 0<sup>m</sup>20 caused by rotational modulation in the visibility of photospheric spots. They determined the star's rotation period to be  $P_{\rm rot} = 64 \pm 1$  days and noted two unequal minima per rotation cycle, indicating that HD 118234 had large spotted regions on opposite hemispheres of the star. Moreover, by combining their  $v \sin i$  measurement with the rotation period, Henry et al. (1995) found a minimum radius of 7.0  $R_{\odot}$ , confirming the giant classification. They also noted that, while the star's orbital and photometric periods are similar, rotation in IT Com is far from the pseudosynchronous rotation period of 15<sup>d</sup>.1 days predicted from the orbital eccentricity.

In this brief paper, we present the results of a coordinated photometric and spectroscopic observing campaign conducted during 2004 April–June at the Fairborn Observatory (FO), Çanakkale Onsekiz Mart University Observatory (ÇOMÜ), and Catania Astrophysical Observatory (OACt). The photometric observations were made with the T3 0.4-m APT at FO and with the 0.4-m Schmidt–Cassegrain telescope at ÇOMÜ and the reduction was performed correcting for atmospheric extinction with nightly extinction coefficients and transformed to the Johnson system with yearly mean transformation coefficients. The spectroscopic observations were made with the FRESCO spectrograph at OACt at a resolution  $R = 22\,000$  and the reduction was performed following the standard steps of background subtraction, division by a flat field spectrum, wavelength calibration, and normalization to the continuum through a polynominal fit. The main goal of these observations was to study active regions at photospheric and chromospheric levels, as we have done previously for other RS CVn binaries and single active stars (Frasca et al., 2000; Frasca et al., 2002; Biazzo et al., 2006a; Biazzo et al., 2006b). For photospheric diagnostics, we used the Johnson V and B light curves and the hemisphere-averaged effective temperature curve derived from line-depth ratios (LDRs) of metal weak lines (Gray & Johanson, 1991; Catalano et al., 2002). We converted seven specific combinations of LDRs to temperatures with LDR– $T_{\rm eff}$  calibrations that we have previously developed (Catalano et al., 2002). The V and B light curves and the resulting  $T_{\rm eff}$  values are plotted in the first three panels of Figure 1 as a function of rotational phase computed from the ephemeris

$$HJD_{\omega=0} = 2\,453\,063.0 + 64.0 \times E,\tag{1}$$

where the initial epoch is arbitrary (2004 February 27) and the rotational period of 64<sup>d</sup>. is adopted from Henry et al. (1995). Both the light curves and the temperature plot exhibit a maximum around  $\varphi = 0^{\text{P}}30$  and a subsequent minimum near  $\varphi = 0^{\text{P}}60$ . The V and B light curves also show a second maximum, not visible in the  $\langle T_{\text{eff}} \rangle$  curve due to a phase gap, and a further minimum at  $\varphi \simeq 0^{\text{P}}05$ , perhaps present also in the temperature modulation but not clearly visible due to the scarce phase coverage. This double-wave behaviour, found earlier by Henry et al. (1995) in their 1993 photometry, is thus in our 2004 data, indicating again the presence of spots on opposite hemispheres. The peak-topeak amplitudes of the top three panels in Figure 1 are  $\Delta V = 0^{\text{m}}077$ ,  $\Delta B = 0^{\text{m}}075$ , and  $\Delta \langle T_{\text{eff}} \rangle = 77$  K.



Figure 1. From top to bottom. V and B magnitudes, averaged  $T_{\text{eff}}$  and  $EW_{\text{H}\alpha}$  as a function of rotational phase. In the light curves, the filled circles are FO data, while the empty squares are ÇOMÜ photometry. For the photometric observations, HD 117816 ( $V = 8^{\text{m}}48$ ,  $B = 10^{\text{m}}05$ ) was used as comparison star, while HD 119126 ( $V = 5^{\text{m}}58$ ,  $B = 6^{\text{m}}59$ ) was chosen as check star (Yoss & Griffin, 1997). A shift has been applied to the few ÇOMÜ data in order to adequately match those ones from FO

For a chromospheric diagnostic, we used the net H $\alpha$  emission as derived from the spectral synthesis method (e.g., Barden, 1985; Frasca & Catalano, 1994). With this technique, the difference between the observed spectrum and a "non-active" template gives, as residuals, the net H $\alpha$  chromospheric emission. We have used a well-exposed spectrum of  $\beta$  Gem (K0IIIb, B - V = 1, 00) as our H $\alpha$  template. This spectrum has not been rotationally broadened since IT Com has a  $v \sin i = 6.5$  km s<sup>-1</sup> (Fekel, 1997), i.e. lower than the resolution of the spectrograph. The H $\alpha$  equivalent widths ( $EW_{H\alpha}$ ) integrated across the residuals in the observed-minus-template spectra suggests only marginal modulation with rotational phase (Figure 1, bottom). The most evident feature in the H $\alpha$  plot is an increase in equivalent width around phase 0.5 (the second minimum in the light curve) of a factor  $\approx 2$  just over the  $3\sigma$  level.

The values of the averaged temperature and the net equivalent width  $EW_{H\alpha}$  of IT Com are listed in the Table 1, while the photometric data are reported in Tables 2 and 3, which are available electronically through the IBVS website as files 5740-t2.txt and 5740-t3.txt. The typical precision of the T3 observations, about 0<sup>m</sup>004, has not been reported in Table 2.

| ab | ic i. remperature | and neo | na equivaten                  |                         |
|----|-------------------|---------|-------------------------------|-------------------------|
|    | HJD               | Phase   | $\langle T_{\rm eff} \rangle$ | $EW_{\mathrm{H}\alpha}$ |
|    | (+2400000)        |         | (K)                           | (Å)                     |
|    | 53108.438         | 0.710   | $4654{\pm}15$                 | $0.08 {\pm} 0.05$       |
|    | 53110.457         | 0.742   | $4673 {\pm} 15$               | $0.14{\pm}0.05$         |
|    | 53124.512         | 0.961   | $4639{\pm}10$                 | $0.17{\pm}0.04$         |
|    | 53127.477         | 0.007   | $4655 \pm 9$                  | $0.18 {\pm} 0.05$       |
|    | 53139.520         | 0.196   | $4684{\pm}26$                 | $0.13{\pm}0.11$         |
|    | 53143.430         | 0.257   | $4691{\pm}20$                 | $0.16 {\pm} 0.07$       |
|    | 53151.453         | 0.382   | $4681{\pm}17$                 | $0.11 {\pm} 0.05$       |
|    | 53152.457         | 0.398   | $4670\pm6$                    | $0.17 {\pm} 0.08$       |
|    | 53154.441         | 0.429   | $4650{\pm}23$                 | $0.23 {\pm} 0.08$       |
|    | 53156.438         | 0.460   | $4638{\pm}17$                 | $0.28 {\pm} 0.04$       |
|    | 53158.488         | 0.492   | $4650\pm8$                    | $0.19 {\pm} 0.05$       |
|    | 53161.508         | 0.539   | $4635{\pm}18$                 | $0.19 {\pm} 0.06$       |
|    | 53166.391         | 0.616   | $4614{\pm}26$                 | $0.13 {\pm} 0.06$       |
|    | 53168.457         | 0.648   | $4645{\pm}~2$                 | $0.15 {\pm} 0.07$       |
|    | 53171.402         | 0.694   | $4630{\pm}17$                 | $0.13 {\pm} 0.06$       |
|    |                   |         |                               |                         |

Table 1. Temperature and net H $\alpha$  equivalent width of IT Com

The results presented here are part of a project devoted to obtain both spectroscopic and photometric observations of a sample of magnetically active stars with different spectral types, ages, masses, rotational periods and activity levels. The ultimate goal is to investigate possible dependences of active region parameters (i.e. temperature and filling factor) on global parameters (such as mass and radius).

Acknowledgements: This study was supported by the Italian *Ministero dell'Istruzione*, Università e Ricerca and the Turkish TUBITAK under the grant n. 105T083.

References:

Barden, S.C., 1985, *ApJ*, **295**, 162 Biazzo, K., Frasca, A., Catalano, S., Marilli, E., 2006a, *A&A*, **446**, 1129 Biazzo, K., Frasca, A., Henry, G.W., Catalano, S., Marilli, E., 2006b, *ApJ*, in press

- Catalano, S., Biazzo, K., Frasca, A., Marilli, E., 2002, A&A, 394, 1009
- Fekel, F.C., 1997, *PASP*, **109**, 514
- Frasca, A., Catalano, S., 1994, A&A, 284, 883
- Frasca, A., Freire Ferrero, R., Marilli, E., Catalano, S., 2000, A&A, 364, 179
- Frasca, A., Çakirli, Ö., Catalano, S., Ibanoğlu, C., Marilli, E., Evren, S., Taş, G., 2002, A&A, 388, 298
- Gray, D.F., Johanson, H.L., 1991, PASP, 103, 439
- Griffin, R.F., 1988, JApA, 9, 75
- Henry, G.W., Fekel, F.C., Hall, D.S., 1995, AJ, 110, 2926
- Strassmeier, K.G., 1994, A&ASS, 103, 413
- Yoss, K.M., Griffin, R.F., 1997, JApA, 18, 161

Number 5741

Konkoly Observatory Budapest 13 December 2006 *HU ISSN 0374 - 0676* 

# CCD TIMES OF MINIMA OF SELECTED ECLIPSING BINARIES

ZEJDA, M.<sup>1</sup>; MIKULÁŠEK, Z.<sup>1</sup>; WOLF, M.<sup>2</sup>

<sup>1</sup> Institute of Theoretical Physics and Astrophysics, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic, e-mail: zejda@physics.muni.cz, mikulas@physics.muni.cz

 $^2$  Astronomical Institute, Charles University Prague, Czech Republic, e-mail: wolf@cesnet.cz  $\,$ 

The given list of minima from 2004-2005 is one of the results of our long-term observational program, which is devoted to eclipsing binaries (EB) worthy of our attention — EB with eccentric orbits, apsidal motions, spots or simply rarely observed EB.

### Observatory and telescope:

N. Copernicus Observatory and Planetarium in Brno, Czech Republic

-16'' Newtonian telescope (f/1750 mm) (RL400)

-8'' Newtonian telescope (f/1000 mm) (RL200)

 $-3^{\prime\prime}$  refractor (f/340 mm)(RF80)

Ulupinar Observatory, Çanakkale Onsekiz Mart University, Canakkale, Turkey – 12"Newtonian telescope (f/3048 mm) (RL300)

| Detector: | $765 \times 510 + $ SBIG ST7 CCD camera (RL400)     |
|-----------|-----------------------------------------------------|
|           | $640 \times 480 + $ SBIG ST237 CCD camera (RL300)   |
|           | $765 \times 510 + $ SBIG ST7XMEI CCD camera (RL200) |
|           | $1530 \times 1020 + $ SBIG ST8 CCD camera (RF80)    |
|           |                                                     |

### Method of data reduction:

Reduction of the CCD frames was made with a software package C-Munipack<sup>†</sup>

### Method of minimum determination:

The minima times were computed using several procedures written by Gaspani (1995) based on artificial neural networks, software AVE based on Kwee–van Woerden method (Barber, 1999) and new mathematical method developed by Mikulášek (2005)

| Times of minima: |                     |        |      |                         |                |
|------------------|---------------------|--------|------|-------------------------|----------------|
| Star name        | Time of min.        | Error  | Type | $\operatorname{Filter}$ | Rem.           |
|                  | ${ m HJD}~2400000+$ |        |      |                         |                |
| BX And           | 53612.5779          | 0.0001 | Ι    | $R_{ m C}$              | MZ, RL200; 386 |
| DO And           | 53674.4210          | 0.0004 | Ι    | $R_{ m C}$              | MZ, RL400; 25  |
| EP And           | 53611.5274          | 0.0002 | II   | $R_{ m C}$              | MZ, RL400; 19  |
| GZ And           | 53255.4958          | 0.0001 | II   | $V(RI)_{ m C}$          | MZ, RL400; 146 |
| GZ And           | 53344.2570          | 0.0002 | II   | $V(RI)_{ m C}$          | MZ, RL400; 160 |
| GZ And           | 53344.4088          | 0.0001 | Ι    | $V(RI)_{\rm C}$         | MZ, RL400; 149 |
| V 440 And        | 53254.6016          | 0.0002 | Ι    | $(RI)_{\rm C}$          | MZ, RL400; 112 |

 $^{\dagger}\,Motl,\,D.,\,2004,\,C\text{-}Munipack,\,\texttt{http://integral.sci.muni.cz/cmunipack/}$ 

| Times of minin                         |                   |        |         |                           |                         |
|----------------------------------------|-------------------|--------|---------|---------------------------|-------------------------|
| Star name                              | Time of min.      | Error  | Type    | Filter                    | Rem.                    |
|                                        | HJD 2400000 +     |        |         |                           |                         |
| UU Aar                                 | 53222.5539        | 0.0008 | T       | $(RI)_{C}$                | MZ.RL400:39             |
| CX Agr                                 | 53656 3300        | 0.0003 | T       | (101)C<br>Ra              | MZ BL200.45             |
| DV Age                                 | E 2000 2728       | 0.0000 | т       | C                         | MZ,10200,40             |
| DI Aqr                                 | 00299.0700        | 0.0009 | 1       | C                         | MZ, RL500;1099          |
| GK Aqr *                               | 53656.3817        | 0.0002 | 1       | $R_{ m C}$                | MZ, RL400; 52           |
| V 407 Aql                              | 53222.4193        | 0.0042 | Ι       | C                         | MZ, RL400; 20           |
| V 417 Aql                              | 53222.4121        | 0.0039 | Ι       | $R_{ m C}$                | MZ, RL400; 20           |
| V 479 Aql                              | 53612.3607        | 0.0002 | Ι       | $R_{ m C}$                | MZ,RL400;28             |
| V 699 Aal                              | 53613.3913        | 0.0004 | Ι       | $R_{\rm C}$               | MZ.RL400:39             |
| V 761 A d                              | 53233 3578        | 0.0002 | т       | Č                         | MZ BL400.25             |
| V 770 Agl                              | 59619 9574        | 0.0002 | T       | D                         | MZ DI 400.27            |
|                                        | 55015.5574        | 0.0003 | 1       |                           | MZ, RL400;27            |
| V 784 Aql                              | 53224.5805        | 0.0018 | 1       | $V(RI)_{\rm C}$           | MZ,RL400;74             |
| V 784 Aql                              | 53612.4560        | 0.0006 | 1       | $R_{ m C}$                | MZ, RL400; 24           |
| V 803 Aql                              | 53222.4938        | 0.0055 | II      | C                         | MZ, RL400; 11           |
| V 873 Aql                              | 53611.3942        | 0.0004 | Ι       | $R_{ m C}$                | MZ,RL400;36             |
| V1168 Agl                              | 53613.4246        | 0.0002 | Ι       | $R_{\rm C}$               | MZ.RL400:41             |
| V1355 A d                              | 53612 $4457$      | 0.0003 | T       | $\overrightarrow{R_{C}}$  | MZ BL400 14             |
| HD Aur                                 | 53600 6144        | 0.0000 | T       | Ra                        | M7 BI 400,113           |
|                                        | 53009.0144        | 0.0002 | 1       |                           | MZ, RL400;115           |
| IU Aur                                 | 53380.3889        | 0.0011 | 1       | $R_{\rm C}$               | MZ, RL200; 308          |
| KO Aur                                 | 53715.5735        | 0.0001 | 1       | $R_{ m C}$                | MZ, RL200; 408          |
| QT Aur                                 | 53705.4253        | 0.0006 | Ι       | $R_{ m C}$                | MZ, RL400; 27           |
| V 364 Aur                              | 53360.4067        | 0.0002 | Ι       | C                         | MZ, RL200; 240          |
| V 523 Aur                              | 53442.4606        | 0.0011 | T       | $V(RI)_{\rm C}$           | MZ.RL400:65             |
| V 523 A ur                             | 53450 3912        | 0.0003 | T       | $V(RI)_{\rm C}$           | MZ BL400 116            |
| TT Dee                                 | E9449 4969        | 0.0000 | TT I    |                           | MZ,111400,110           |
|                                        | 55442.4000        | 0.0009 | 11      |                           | MZ, RL200;240           |
| TZ B00                                 | 53442.6342        | 0.0011 | 1       | $V R_{\rm C}$             | MZ, RL200; 214          |
| TZ Boo                                 | 53462.3956        | 0.0004 | II      | $VR_{ m C}$               | $\mathrm{MZ,RL200;271}$ |
| TZ Boo                                 | 53462.5428        | 0.0002 | Ι       | $VR_{ m C}$               | MZ, RL200; 257          |
| FY Boo *                               | 53463.4535        | 0.0001 | Ι       | $V(RI)_{\rm C}$           | MZ, RL400; 95           |
| FY Boo *                               | 53463.5751        | 0.0002 | П       | $V(RI)_{C}^{-}$           | MZ.RL400:96             |
| LR Cam                                 | 53684 3758        | 0.0002 | T       | R <sub>G</sub>            | MZ BL200 152            |
| SW Cna                                 | 59464 9190        | 0.0002 | т       | P.                        | MZ DI 400.12            |
| SW Chc                                 | 55404.5159        | 0.0003 | 1       |                           | MZ, RL400;15            |
| WY Cnc                                 | 53410.5986        | 0.0016 | 1       | $R_{\rm C}$               | MZ, RL400; 12           |
| WY Cnc                                 | 53465.3369        | 0.0001 | 1       | $R_{ m C}$                | MZ, RL200; 389          |
| AC Cnc                                 | 53463.2819        | 0.0003 | Ι       | $R_{ m C}$                | MZ, RL400; 23           |
| 08161907 Cnc *                         | 53464.3923        | 0.0009 | II      | $R_{ m C}$                | MZ, RL400; 31           |
| TU CMi *                               | 53344.5768        | 0.0005 | II      | $V(RI)_{\rm C}$           | MZ.RL400:183            |
| TU CMi *                               | 53410 4582        | 0.0005 | T       | Ra                        | MZ BL400.32             |
| TV CM:                                 | 52410.2601        | 0.0000 | TT      | D                         | MZ DI 400.15            |
| TA OMI                                 | 53410.2031        | 0.0001 | 11<br>T |                           | MZ,RL400,15             |
|                                        | 53410.4045        | 0.0001 | 1       | $R_{\rm C}$               | MZ,RL400;27             |
| TX CMi                                 | 53464.3712        | 0.0004 | 11      | $R_{ m C}$                | MZ, RL400; 25           |
| XZ CMi                                 | 53388.5179        | 0.0002 | Ι       | $VR_{ m C}$               | MZ, RL200; 158          |
| XZ CMi                                 | 53409.3565        | 0.0003 | Ι       | $R_{ m C}$                | MZ, RL400; 19           |
| AG CMi                                 | 53381.4065        | 0.0003 | Ι       | $V(RI)_{\rm C}$           | MZ,RL200;161            |
| AO CMi                                 | 53409 3188        | 0.0001 | т       | $R_{C}$                   | MZ BL400 15             |
| AV CMi                                 | 53410 5008        | 0.0004 | T       | Ra                        | MZ BL400-36             |
| 07700592 CM: *                         | E 2 4 1 0 2 9 1 4 | 0.0004 | т       |                           | MZ,101400,00            |
| 07700523 CM1 *                         | 53410.3814        | 0.0048 | 1       | $R_{\rm C}$               | MZ,RL400;43             |
| CzeV062 CM1 *                          | 53410.3376        | 0.0002 | 11      | $R_{ m C}$                | MZ, RL400; 21           |
| CzeV062 CMi *                          | 53410.4915        | 0.0005 | Ι       | $R_{ m C}$                | MZ, RL400; 21           |
| CzeV062 CM<br>i $\ast$                 | 53464.3143        | 0.0009 | II      | $R_{ m C}$                | MZ, RL400; 18           |
| AB Cas                                 | 53671.4052        | 0.0001 | Ι       | $R_{ m C}$                | MZ,RL200;412            |
| AH Cas                                 | 53344.5795        | 0.0008 | Т       | $\tilde{C}$               | MZ.RL200.630            |
| CW Cas                                 | 53361 2508        | 0.0006 | Ī       | Ŭ<br>V                    | MZ BL200,000            |
| OW Cas                                 | 59961 4115        | 0.0000 | 11<br>T |                           | MZ,111200,400           |
| CW Cas                                 |                   | 0.0008 | 1       | $B(RI)_{\rm C}$           | MZ,RL200;292            |
| CW Cas                                 | 53612.5143        | 0.0001 | 1       | $R_{ m C}$                | MZ, RL200; 173          |
| $\operatorname{EI} \operatorname{Cas}$ | 53256.5902        | 0.0011 | Ι       | $R_{ m C}$                | MZ, RL400; 18           |
| EY Cas                                 | 53256.6101        | 0.0006 | II      | $R_{ m C}$                | MZ, RL400; 23           |
| IV Cas                                 | 53671.6040        | 0.0001 | Ι       | $R_{ m C}$                | MZ, RL200; 207          |
| KL Cas                                 | 53256.5960        | 0.0007 | T       | $\tilde{R_{C}}$           | MZ.RL400 22             |
| KT Cas                                 | 53252 5624        | 0.0019 | Ť       | Ra                        | MZ RL/00/40             |
| MM Coc                                 | 53202.0024        |        | т<br>Т  | D                         | M7 DI 900.97            |
| with Cas                               | 99109'9800        | 0.0001 | 1       | $\mathbf{n}_{\mathrm{C}}$ | MZ, RL200;275           |

-

| Times of minim | ia:                      |                  |         |                               |                |
|----------------|--------------------------|------------------|---------|-------------------------------|----------------|
| Star name      | Time of min.             | Error            | Type    | Filter                        | Rem.           |
|                | HJD 2400000+             |                  |         |                               |                |
| V 541 Cas      | 53609.5863               | 0.0001           | T       | Rc                            | MZ.RL200:140   |
| V 775 Cas      | 53674 6113               | 0.0003           | Ī       | Ra                            | MZ BL200,285   |
| V 700 Cas      | 52956 4775               | 0.0000           | TT      | R.                            | MZ,RE200,200   |
| V 199 Cas      | 55250.4775               | 0.0003           | 11<br>T |                               | MZ, NF 60;175  |
| V 851 Cas      | 53250.0002               | 0.0003           | 1       | R <sub>C</sub>                | MZ,RL400;18    |
| 42971664 Cas   | 53613.4050               | 0.0002           | 11      | $R_{\rm C}$                   | MZ,RL200;264   |
| WY Cep         | 53611.5699               | 0.0003           | I       | $R_{\rm C}$                   | MZ, RL200; 194 |
| ZZ Cep         | 53651.4587               | 0.0001           | Ι       | $R_{ m C}$                    | MZ, RL200; 212 |
| BE Cep         | 53653.5005               | 0.0005           | Ι       | $R_{ m C}$                    | MZ, RL400; 41  |
| EK Cep         | 53388.6311               | 0.0001           | Ι       | $V(RI)_{\rm C}$               | MZ, RL200; 593 |
| IO Cep         | 53653.5083               | 0.0003           | Ι       | $R_{ m C}$                    | MZ, RL400; 41  |
| OT Cep         | 53613.6059               | 0.0004           | Ι       | $R_{ m C}$                    | MZ,RL400;59    |
| V 698 Cep      | 53684.3591               | 0.0012           | Ι       | $R_{\rm C}$                   | MZ.RL400.91    |
| TV Cet         | 53301 4041               | 0.0012           | T       | $\widetilde{C}$               | MZ BL300.963   |
| SS Com         | 53451 4652               | 0.0012           | TT I    | Ba                            | MZ BL400:37    |
| DC Com         | 59410 6191               | 0.0000           | T       |                               | MZ,101400,57   |
| DG Com         | 53410.0121               | 0.0030           | 1<br>TT |                               | MZ,RL400;15    |
| EK Com         | 53484.3432               | 0.0002           | 11      | V RC                          | MZ,RL400;79    |
| LL Com         | 53451.4807               | 0.0023           | 1       | $R_{ m C}$                    | MZ, RL400; 37  |
| LO Com         | 53410.6087               | 0.0005           | 1       | $R_{ m C}$                    | MZ, RL400; 12  |
| TU CrB         | 53517.4374               | 0.0002           | Ι       | $V(RI)_{\rm C}$               | MZ, RL400; 246 |
| TW CrB         | 53388.7121               | 0.0001           | Ι       | $VR_{ m C}$                   | MZ, RL200; 112 |
| CG Cyg         | 53255.3664               | 0.0001           | Ι       | $R_{ m C}$                    | MZ, RL200; 116 |
| GV Cyg         | 53246.5307               | 0.0002           | Ι       | $R_{ m C}$                    | MZ,RL400;43    |
| V 388 Cvg      | 53226.4211               | 0.0035           | Ι       | $(RI)_{C}$                    | MZ.RF80:131    |
| V 388 Cvg      | 53290.4231               | 0.0025           | П       | $VR_{C}$                      | MZ.RF80.77     |
| V 401 Cyg      | 53256 4735               | 0.0013           | II      | Ra                            | MZ BL400-35    |
| V 442 Cyg      | 53227 4168               | 0.0010           | Т       | $V(RI)_{\alpha}$              | MZ RE80.147    |
| V 442 Cyg      | 520227.4100              | 0.0020           | TT I    | V(RI)                         | MZ,RI 00,147   |
| V 442 Oyg      | 53233.3020<br>E2246 E0E0 | 0.0017           | 11<br>T | V(III)C<br>V(DI)              | MZ,RF 80,130   |
| V 442 Cyg      | 55240.5050               | 0.0007           | 1       | $V(\mathbf{n}I)_{\mathrm{C}}$ | MZ, NF 60;164  |
| V 442 Cyg      | 53252.4709               | 0.0012           | 11      | $V(RI)_{\rm C}$               | MZ,RF80;179    |
| V 456 Cyg      | 53609.4294               | 0.0001           | 1       | $R_{\rm C}$                   | MZ,RL200;174   |
| V 500 Cyg      | 53613.5285               | 0.0003           | I       | $R_{\rm C}$                   | MZ, RL400; 28  |
| V 509 Cyg *    | 53613.5407               | 0.0012           | Ι       | $R_{ m C}$                    | MZ, RL400; 28  |
| V 635 Cyg      | 53246.5214               | 0.0002           | Ι       | $R_{ m C}$                    | MZ, RL400; 43  |
| V 700 $Cyg$    | 53290.3923               | 0.0002           | II      | $R_{ m C}$                    | MZ, RL400; 17  |
| V 706 Cyg      | 53256.4150               | 0.0003           | Ι       | $R_{ m C}$                    | MZ, RL400; 36  |
| V 711 Cyg *    | 53259.3820               | 0.0003           | Ι       | $R_{ m C}$                    | MZ, RL400; 20  |
| V 711 Cvg *    | 53674.3937               | 0.0007           | Ι       | $R_{ m C}$                    | MZ.RL400:23    |
| V 787 Cvg      | 53609.5153               | 0.0001           | Т       | $\overrightarrow{R_C}$        | MZ.RL200.162   |
| V 822 Cvg      | 53256 4180               | 0.0016           | T       | $R_{C}$                       | MZ BL400.33    |
| V 850 Cyg      | 53255 4252               |                  | T       | Ra                            | MZ BL400.31    |
| V 870 Cur      | 5205.4202                | 0.0003           | T       |                               | MZ,101400,31   |
| V 870 Cyg      | 52200.3009               | 0.0010           | T       |                               | MZ,RL400,25    |
| V OTT Cyg      | 53290.2912               | 0.0030           | I<br>T  | $n_{\rm C}$                   | MZ,RL400;28    |
| V 959 Cyg      | 53229.4398               | 0.0004           | I       | $V(RI)_{\rm C}$               | MZ,RL400;140   |
| V1004 Cyg      | 53290.3672               | 0.0003           | 1       | $R_{\rm C}$                   | MZ,RL400;30    |
| V1019 Cyg      | 53290.4086               | 0.0027           | 1       | $R_{ m C}$                    | MZ, RL400; 24  |
| V1147 Cyg      | 53229.4395               | 0.0013           | Ι       | $R_{ m C}$                    | MZ, RL400; 47  |
| V1414 Cyg      | 53246.5197               | 0.0011           | Ι       | $R_{ m C}$                    | MZ, RL400; 43  |
| CzeV052 Cyg *  | 53256.4021               | 0.0034           |         | $R_{ m C}$                    | MZ, RL400; 26  |
| CzeV053 Cyg *  | 53256.3472               | 0.0009           |         | $R_{ m C}$                    | MZ, RL400; 21  |
| CzeV053 Cyg *  | 53290.3164               | 0.0047           |         | $R_{ m C}$                    | MZ,RL400;25    |
| 26850099 Cvg * | 53226.4262               | 0.0021           | Ι       | $V(RI)_{\rm C}$               | MZ, RF80; 95   |
| 26850099 Cvg * | 53228.5036               | 0.0009           | T       | $V(RI)_{C}$                   | MZ.RF80:144    |
| 26850099 Cvg * | 53252 3847               | 0.0016           | T       | $V(RI)_{C}$                   | MZ BE80.90     |
| 26850000 Cyg   | 53255 5031               | 0.0010           | T       | $V(RI)_{\alpha}$              | MZ BE80.74     |
| 20050055 Cyg   | 52000 4459               | 0.0000           | T       | $(\mathbf{P}\mathbf{I})$      | MZ,ICF 00,14   |
| 20001100 Uyg   | 53222,4400               | 0.0020<br>0.002¢ | т<br>Т  | (111)C<br>(D1)                | M7 DE00.101    |
| 20001100 Uyg ' | 00220.4941<br>52007 4075 | 0.0020           | 1<br>T  | $(\mathbf{n}I)C$              | MZ DE90 116    |
| 20001100 Uyg * | 00227.4270               | 0.0029           | 1       | $(\pi I)_{\rm C}$             | MZ,RF80;110    |
| 20851186 Cyg * | 53228.3636               | 0.0065           | 1       |                               | MZ,RF80;32     |
| 26851186 Cyg * | 53246.4245               | 0.0025           | 1       | $(RI)_{\rm C}$                | MZ,RF80;76     |
| 26851453 Cyg * | 53226.4666               | 0.0055           | 1       | $I_{\rm C}$                   | MZ, RF80; 45   |

| Times of minima:                      |                          |         |         |                              |                 |
|---------------------------------------|--------------------------|---------|---------|------------------------------|-----------------|
| Star name                             | Time of min.             | Error   | Type    | Filter                       | Rem.            |
|                                       | HID $2400000 \pm$        | <u></u> | -) P°   | 1 110 01                     |                 |
| 26851452 Cure *                       | 53227 3800               | 0.0023  | т       | $(\mathbf{PI})$ =            | M7 BE80.00      |
| 20051455 Cyg                          | 53221.3090               | 0.0023  | T       | $(III)_{\rm C}$              | MZ,RF 80,90     |
| 20651455 Cyg                          | 53220.4977               | 0.0025  | I<br>T  | $(\mathbf{n}I)_{\mathrm{C}}$ | MZ, NF 60; 64   |
| 26851453 Cyg *                        | 53233.4792               | 0.0027  | 1       | $(RI)_{\rm C}$               | MZ,RF80;69      |
| HD226957 Cyg                          | 53233.5167               | 0.0003  | II      | $V(RI)_{ m C}$               | MZ, RL400; 331  |
| YY Del                                | 53612.3375               | 0.0002  | Ι       | $R_{ m C}$                   | MZ, RL400; 27   |
| FZ Del                                | 53268.3394               | 0.0005  | Ι       | $R_{ m C}$                   | MZ, RL400; 119  |
| TW Dra                                | 53254.3796               | 0.0003  | II      | $V(RI)_{\rm C}$              | MZ, RL400; 1196 |
| TW Dra                                | 53387.7016               | 0.0002  | Ι       | $BV(RI)_{\rm C}$             | MZ,RL200;1091   |
| TW Dra                                | 53407.3492               | 0.0001  | T       | $BV(RI)_{C}$                 | MZ.RL200.1365   |
| TW Dra                                | 53463 4867               | 0.0001  | T       | $BV(BI)_{C}$                 | MZ BL200 2725   |
| TW Dra                                | 53581 3738               | 0.0001  | T       | $(RI)_{C}$                   | MZ BL400 537    |
| FF Dra                                | 53410 2776               | 0.0001  | T       | V                            | MZ BL200,001    |
| WY En:                                | 50410.2170<br>52955 6124 | 0.0000  | T       | v<br>D                       | MZ DE200,117    |
| WA ERI                                | 55255.0154               | 0.0003  | I<br>T  | n <sub>C</sub>               | MZ, NF 60 ;04   |
| BL Eri                                | 53299.5321               | 0.0003  | 1       |                              | MZ,RL300;556    |
| TX Gem                                | 53451.3600               | 0.0002  | 1       | $R_{\rm C}$                  | MZ, RL400; 37   |
| AV Gem                                | 53451.2949               | 0.0009  | 11      | $R_{ m C}$                   | MZ, RL400; 34   |
| $\operatorname{EL}\operatorname{Gem}$ | 53451.3268               | 0.0003  | II      | $R_{ m C}$                   | MZ, RL400; 34   |
| FG Gem                                | 53451.2929               | 0.0005  | Ι       | $R_{ m C}$                   | MZ, RL400; 23   |
| FT Gem                                | 53465.3371               | 0.0008  | Ι       | $R_{ m C}$                   | MZ, RL400; 41   |
| HR Gem                                | 53705.4063               | 0.0003  | Ι       | $R_{ m C}$                   | MZ,RL400;34     |
| KO Gem                                | 53715.4792               | 0.0005  | T       | $\stackrel{\circ}{R_C}$      | MZ.BL400:31     |
| KV Gem                                | 53329 4482               | 0.0004  | TT -    | $V(BI)_{C}$                  | MZ BL400.91     |
| KV Gem                                | 53320 6271               | 0.0004  | T       | V(RI)                        | MZ BL 400,152   |
| KV Gem                                | 53529.0271               | 0.0002  | I<br>TT | V(nI)C                       | MZ,RL400;152    |
| KV Gem                                | 53451.3404               | 0.0002  | 11      | R <sub>C</sub>               | MZ,RL400;37     |
| KV Gem                                | 53465.3281               | 0.0001  | 11      | $R_{\rm C}$                  | MZ, RL400; 41   |
| KV Gem                                | 53715.3974               | 0.0004  | 1       | $R_{ m C}$                   | MZ, RL400; 31   |
| KV Gem                                | 53715.5759               | 0.0004  | II      | $R_{ m C}$                   | MZ, RL400; 32   |
| AK Her                                | 53465.5586               | 0.0002  | Ι       | $VR_{ m C}$                  | MZ, RL200; 485  |
| V 789 Her *                           | 53252.4305               | 0.0021  | Ι       | $V(RI)_{ m C}$               | MZ, RL400; 97   |
| WY Hya                                | 53410.4270               | 0.0003  | Ι       | $R_{ m C}$                   | MZ, RL400; 24   |
| TW Lac                                | 53656.5342               | 0.0002  | Ι       | $R_{ m C}$                   | MZ, RL400; 137  |
| TZ Lac                                | 53259.3761               | 0.0008  | Ι       | $R_{ m C}$                   | MZ, RL400; 28   |
| VY Lac                                | 53612.3376               | 0.0001  | Ι       | $R_{ m C}$                   | MZ,RL200;170    |
| AU Lac                                | 53259.3324               | 0.0003  | Ι       | $R_{ m C}$                   | MZ,RL400;19     |
| EM Lac                                | 53228.5894               | 0.0002  | T       | $V(RI)_{C}$                  | MZ.RL400:116    |
| EM Lac                                | 53259 3313               | 0.0002  | T       | $R_{C}$                      | MZ BL400 19     |
| EM Lac                                | 53259 5272               | 0.0003  | TT I    | Ra                           | MZ BL400.30     |
| CH Lac                                | 53250 3400               | 0.0005  | T       | $R_{-}$                      | MZ BL 400,96    |
|                                       | 53253.3400               | 0.0000  | T       |                              | MZ DI 400.20    |
| GП Lac                                | 55055.4770               | 0.0009  | 1       | n <sub>C</sub>               | MZ,RL400;22     |
| IP Lac                                | 53246.5407               | 0.0004  | 1       | $R_{\rm C}$                  | MZ,RL400;35     |
| PP Lac                                | 53259.4099               | 0.0005  | 11      | $R_{ m C}$                   | MZ, RL400; 23   |
| PP Lac                                | 53259.6108               | 0.0002  | 1       | $R_{ m C}$                   | MZ, RL400; 23   |
| PP Lac                                | 53674.4109               | 0.0004  | Ι       | $R_{ m C}$                   | MZ, RL400; 25   |
| V 344 Lac                             | 53259.3397               | 0.0007  | II      | $R_{ m C}$                   | MZ, RL400; 23   |
| V 344 Lac                             | 53259.5344               | 0.0004  | Ι       | $R_{ m C}$                   | MZ, RL400; 29   |
| V 364 Lac                             | 53656.3650               | 0.0003  | II      | $R_{ m C}$                   | MZ,RL200;765    |
| Y Leo                                 | 53445.4401               | 0.0002  | II      | $R_{ m C}$                   | MZ,RL400;21     |
| WZ Leo                                | 53445.4458               | 0.0004  | T       | $\stackrel{\circ}{R_C}$      | MZ.BL400.20     |
| AP Leo                                | 53/10 5865               | 0.0007  | TT -    | Ra                           | MZ BL400.13     |
| AP Loo                                | 53465 4579               | 0.0001  | T       | $VB_{-}$                     | MZ RI 200,485   |
|                                       | 53405.4572               | 0.0001  | T       |                              | MZ,RL200,405    |
| AF Leo                                | 55464.5926               | 0.0002  | I<br>T  |                              | MZ,RL200;276    |
| BL Leo                                | 53445.5331               | 0.0010  | 1       | $VR_{\rm C}$                 | MZ, RL400; 44   |
| BW Leo                                | 53445.4618               | 0.0025  | 11      | $VR_{\rm C}$                 | MZ, RL400; 38   |
| RR Lep                                | 53409.3062               | 0.0008  | Ι       | $R_{ m C}$                   | MZ, RL400; 15   |
| SS Lib                                | 53450.6372               | 0.0005  | Ι       | $VR_{ m C}$                  | MZ, RL400; 108  |
| TY Lib                                | 53442.5582               | 0.0002  | Ι       | $VR_{ m C}$                  | MZ, RL400; 122  |
| VZ Lib                                | 53450.5387               | 0.0004  | Ι       | $VR_{ m C}$                  | MZ, RL400; 72   |
| FL Lyr                                | 53684.2691               | 0.0001  | Ι       | $R_{ m C}$                   | MZ, RL200; 401  |
| V 361 Lyr                             | 53520.3794               | 0.0001  | Ι       | $R_{ m C}$                   | MZ, RL400; 76   |
| V 361 Lyr                             | 53651.3461               | 0.0003  | Ι       | $VR_{\rm C}$                 | MZ, RL400; 78   |

| Times of minim   | a:           |        |         |                         |                 |
|------------------|--------------|--------|---------|-------------------------|-----------------|
| Star name        | Time of min. | Error  | Type    | $\operatorname{Filter}$ | Rem.            |
|                  | HJD 2400000+ |        | • -     |                         |                 |
| IIII Mon         | 53462 3005   | 0.0006 | т       | Ba                      | MZ BL/00-19     |
| DD Mon           | 52407 4780   | 0.0000 | T       |                         | MZ DI 400.20    |
|                  | 53407.4709   | 0.0022 | 1       |                         | MZ,RL400;20     |
| BB Mon           | 53410.4118   | 0.0008 | 1       | $R_{\rm C}$             | MZ,RL400;15     |
| BM Mon           | 53409.3787   | 0.0024 | 11      | $R_{ m C}$              | MZ, RL400; 34   |
| BM Mon           | 53462.2861   | 0.0010 | Ι       | $R_{ m C}$              | MZ, RL400; 18   |
| GH Mon           | 53407.2646   | 0.0014 | Ι       | $R_{ m C}$              | MZ, RL400; 23   |
| HM Mon           | 53407.3374   | 0.0003 | Ι       | $R_{ m C}$              | MZ, RL400; 52   |
| NN Mon *         | 53407.4316   | 0.0002 | Ι       | $R_{ m C}$              | MZ,RL400;68     |
| V 396 Mon        | 53407.4759   | 0.0011 | Т       | $\overline{R_C}$        | MZ.RL400:19     |
| V 396 Mon        | 53409 4576   | 0.0007 | T       | Ro                      | MZ BL400.24     |
| V 453 Mon        | 53410 2071   | 0.0001 | т       | $R_{-}$                 | MZ BL 400.21    |
| V 405 MOII       | 53410.2971   | 0.0001 | I<br>TT |                         | MZ DI 400,21    |
|                  | 55071.0010   | 0.0009 | 11      |                         | MZ, RL400; 120  |
| 48162749 Mon *   | 53407.3998   | 0.0034 | 1       | $R_{\rm C}$             | MZ,RL400;42     |
| CzeV085 Mon *    | 53409.4463   | 0.0015 | 1       | $R_{ m C}$              | MZ, RL400; 31   |
| CzeV087 Mon *    | 53409.3593   | 0.0041 | Ι       | $R_{ m C}$              | MZ, RL400; 29   |
| V 913 Oph        | 53611.4055   | 0.0002 | Ι       | $R_{ m C}$              | MZ, RL400; 42   |
| V 981 Oph        | 53611.3850   | 0.0003 | Ι       | $R_{ m C}$              | MZ, RL400; 45   |
| EF Ori           | 53445.3406   | 0.0010 | T       | $R_{C}$                 | MZ.RL400:71     |
| EO Ori           | 53409 3487   | 0.0001 | T       | $R_{\rm C}$             | MZ BL400.22     |
| CU Ori           | 53400 3106   | 0.0001 | Т       | V(BI)                   | MZ RL400;60     |
| CUOni            | 53403.3130   | 0.0004 | TT I    |                         | MZ DI 400.71    |
| GUON             | 55445.5257   | 0.0002 | 11      |                         | MZ, KL400;71    |
| GU Ori           | 53674.5457   | 0.0005 | 11      | $R_{ m C}$              | MZ, RL400; 38   |
| QV Ori           | 53409.4907   | 0.0027 | Ι       | $R_{ m C}$              | MZ, RL400; 25   |
| V 392 Ori        | 53450.3752   | 0.0001 | Ι       | $R_{ m C}$              | MZ, RL200; 420  |
| V 392 Ori        | 53674.5337   | 0.0009 | Ι       | $R_{ m C}$              | MZ, RL400; 38   |
| V 392 Ori        | 53715.4091   | 0.0001 | Ι       | $R_{ m C}$              | MZ,RL200;240    |
| V 645 Ori        | 53674.5770   | 0.0002 | T       | $R_{C}$                 | MZ.RL400:39     |
| V1633 Ori        | 53671 6572   | 0.0002 | T       | Rg                      | MZ BL400.81     |
| BX Per           | 53360 2074   | 0.0002 | Т       | C                       | MZ BL200,332    |
| DX Leg           | 59619 5150   | 0.0001 | T       | D                       | MZ DI 400.99    |
| DA Feg           | 53013.5150   | 0.0003 | 1       |                         | MZ,RL400;28     |
| BY Peg           | 53609.5597   | 0.0002 | 1       | $R_{\rm C}$             | MZ,RL400;63     |
| CE Peg           | 53613.5381   | 0.0006 | I       | $R_{ m C}$              | MZ, RL400; 28   |
| KW Peg           | 53360.2722   | 0.0001 | II      | C                       | MZ, RL200; 281  |
| XZ Per           | 53290.5507   | 0.0000 | Ι       | C                       | MZ, RL200; 509  |
| AG Per           | 53259.4459   | 0.0017 | Ι       | $R_{ m C}$              | MZ, RF80; 178   |
| II Per *         | 53611.5057   | 0.0011 | Ι       | $R_{ m C}$              | MZ,RL400;20     |
| IU Per           | 53361.5223   | 0.0003 | T       | $BV(RI)_C$              | MZ.RL200:283    |
| PS Per           | 53656 4422   | 0.0003 | T       | $R_{C}$                 | MZ BL400 37     |
| V 680 Per        | 53290 6198   | 0.0003 | Ť       | $VR_{c}$                | MZ BL400.85     |
| V 680 Dem        | 50230.0130   | 0.0003 | т       | (DI)                    | MZ DI 400,00    |
| V 080 Per        | 53713.3030   | 0.0004 | 1       | $(RI)_{C}$              | MZ,RL400;102    |
| 37081325 Per     | 53381.2520   | 0.0012 | 1       | $V(RI)_{\rm C}$         | MZ,RL200;171    |
| Y Psc            | 53656.3281   | 0.0002 | 1       | $R_{ m C}$              | MZ, RL400; 131  |
| Y Psc            | 53671.3900   | 0.0001 | Ι       | $R_{ m C}$              | MZ, RL400; 169  |
| RV Psc           | 53611.4077   | 0.0002 | II      | $R_{ m C}$              | MZ,RL200;192    |
| RV Psc           | 53651.5738   | 0.0002 | Ι       | $R_{ m C}$              | MZ,RL200;230    |
| RV Psc           | 53684.2606   | 0.0002 | Ι       | $R_{ m C}$              | MZ,RL400;63     |
| RV Psc           | 53705.3121   | 0.0001 | T       | $\overrightarrow{R_C}$  | MZ.RL400:81     |
| DL Sge           | 53612 3465   | 0.0003 | T       | Rg                      | MZ BL400 27     |
| VV Set           | 52051 4027   | 0.0000 | т       | $(\mathbf{PI})$         | MZ DI 400.89    |
| XI SU            | 53251.4057   | 0.0010 | 1       | (nI)C                   | MZ,RL400;62     |
| AY SCL           | 53255.3304   | 0.0002 | 1       | $V(RI)_{\rm C}$         | MZ,RL400;139    |
| FG Sct           | 53224.4151   | 0.0016 | 11      | $V(RI)_{\rm C}$         | MZ,RL400;115    |
| FG Sct           | 53228.3381   | 0.0001 | 1       | $V(RI)_{ m C}$          | MZ, RL400; 90   |
| FG Sct           | 53228.4735   | 0.0002 | II      | $V(RI)_{ m C}$          | MZ, RL400; 93   |
| LX Ser           | 53465.6313   | 0.0003 | Ι       | $R_{ m C}$              | MZ, RL400; 28   |
| AL Tau           | 53705.4514   | 0.0005 | Ι       | $R_{ m C}$              | MZ,RL400;38     |
| GR Tau           | 53611.5859   | 0.0005 | Ι       | $R_{C}^{-}$             | MZ,RL400:28     |
| HD285166 Tau     | 53388.3758   | 0.0019 | T       | $VB_{C}$                | MZ.RL200.129    |
| V Tri            | 52684 2617   | 0 0000 | Ť       | . 100<br>R~             | MZ RI 400.69    |
| v = 111<br>V Tu; | 52004.2011   | 0.0002 | T T     |                         | M7 DE00.150     |
|                  | 00290.0000   | 0.0001 | 1       | n <sub>C</sub>          | WIZ, RF 80; 190 |
| KW In            | 53671.6945   | 0.0002 | 1       | $\kappa_{ m C}$         | MZ, RL200; 32   |

| Times of minima:                                                        |                                                                    |                                           |            |                    |                             |
|-------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------|------------|--------------------|-----------------------------|
| Star name                                                               | Time of min.                                                       | Error                                     | Type       | Filter             | Rem.                        |
|                                                                         | HJD 2400000+                                                       |                                           |            |                    |                             |
| RW Tri                                                                  | 53705.3169                                                         | 0.0001                                    | Ι          | $R_{ m C}$         | MZ, RL200; 55               |
| ST Tri                                                                  | 53713.2041                                                         | 0.0005                                    | Ι          | $(RI)_{ m C}$      | MZ, RL400; 61               |
| UX UMa                                                                  | 53290.6236                                                         | 0.0001                                    | Ι          | C                  | MZ, RL200; 55               |
| XZ UMa                                                                  | 53387.3717                                                         | 0.0001                                    | Ι          | $V(RI)_{ m C}$     | MZ, RL200; 200              |
| HW Vir                                                                  | 53410.7014                                                         | 0.0000                                    | Ι          | $R_{ m C}$         | MZ, RL400; 52               |
| BT Vul                                                                  | 53613.4524                                                         | 0.0002                                    | Ι          | $R_{ m C}$         | MZ, RL400; 24               |
| BU Vul                                                                  | 53612.3247                                                         | 0.0002                                    | Ι          | $R_{ m C}$         | MZ, RL400; 28               |
| IM Vul *                                                                | 53612.3355                                                         | 0.0003                                    | Ι          | $R_{ m C}$         | MZ, RL400; 25               |
| HD350731 Vul                                                            | 53612.4138                                                         | 0.0001                                    | Ι          | $R_{ m C}$         | MZ, RL200; 250              |
| HD350731 Vul                                                            | 53653.2919                                                         | 0.0001                                    | Ι          | $R_{ m C}$         | MZ, RL200; 242              |
| Remarks:                                                                |                                                                    |                                           |            |                    |                             |
| The timings of mi                                                       | nima presented ir                                                  | this sixt                                 | n list we  | re obtained        | from 25781 CCD              |
| observations. The                                                       | e last column "Re                                                  | emarks" co                                | ontains i  | nitial of o        | bserver, used tele-         |
| scope and numbe                                                         | r of measurement                                                   | s used for                                | determi    | nation of t        | imings of minima            |
| CzeV = variabilit                                                       | v of the star was (                                                | discovered                                | by Czec    | h astronor         | ners                        |
| http://var.astro.c                                                      | 7                                                                  | aibeoverea                                | 5, 0200    |                    |                             |
| GK Agr — prima                                                          | ry minimum could                                                   | l be a seco                               | ondary o   | ne                 |                             |
| FY Boo — new e                                                          | phemeris 53032.98                                                  | 623(14) +                                 | 0.24115    | $879(11) \times$   | E                           |
| GSC 08161907 Cr                                                         | 1c - 51397.2637(3)                                                 | $(11)^{-1}$<br>$(11)^{-1}$<br>$(11)^{-1}$ | 6105(15)   | $\times E$         |                             |
| TU CMi — new e                                                          | phemeris 52900.5                                                   | 133(5) + 0                                | 4334439    | $(5) \times E$     |                             |
| GSC 770 523 = C                                                         | 2 eV 90 - type of                                                  | minimum                                   | uncerta    | in                 |                             |
| CzeV62 CMi — n                                                          | ew ephemeris 526                                                   | 11.6147(2)                                | + 0.307    | 55495(7) >         | $\langle E$                 |
| V851 Cas - new                                                          | period $P = 0.960^\circ$                                           | 276(1) day                                | , ,        |                    |                             |
| V509 Cyg - 5286                                                         | 38.4906(19) + 1.60                                                 | 91738(18)                                 | $\times E$ |                    |                             |
| V711 Cvg — 5213                                                         | 33.400(3) + 0.8267                                                 | $17(2) \times E$                          |            |                    |                             |
| CzeV052 Cvg - c                                                         | only 1 minimum                                                     | (-)                                       |            |                    |                             |
| CzeV053 Cvg — n                                                         | ew ephemeris 522                                                   | 55.2469(7)                                | +0.4020    | $(4) \times E$     | , type of minimum           |
| uncertain                                                               |                                                                    | (-)                                       |            | (-)··=             | , ., p                      |
| GSC 26850099 Cv                                                         | g = CzeV48 - EA                                                    | A, new epł                                | nemeris 5  | 33228.505(2        | $(2) + 1.03832(7) \times E$ |
| GSC 26851186 = 0                                                        | ÖzeV13 — EW. ne                                                    | ew epheme                                 | eris 5299' | 7.3074(3) +        | $0.6227889(10) \times E$    |
| GSC 26851453 Cv                                                         | g = CzeV47 - EV                                                    | N, primar                                 | y minim    | um could b         | e a secondary one,          |
| new ephemeris 53                                                        | 238.6459(8) + 0.36                                                 | 59190(18)                                 | $\times E$ |                    | <i>v</i> )                  |
| V789 Her — new                                                          | ephemeris 52296.4                                                  | 4653(2) +                                 | 0.320041   | $.94(13) \times B$ | 3                           |
| NN Mon — new 1                                                          | period 0.9123629(7                                                 | 7) dav                                    |            | ( )                |                             |
| GSC 48162749 Mon - type of minimum uncertain                            |                                                                    |                                           |            |                    |                             |
| CzeV085 Mon — EA:, only 1 minimum                                       |                                                                    |                                           |            |                    |                             |
| CzeV087 Mon — EW, new ephemeris $51397.2197(6) + 0.4019464(3) \times E$ |                                                                    |                                           |            |                    |                             |
| II Per — new ephemeris $52438.0281(2) + 0.4798508(2) \times E$          |                                                                    |                                           |            |                    |                             |
| IM Vul — new ep                                                         | IM Vul — new ephemeris $53277.07615(11) + 0.45427781(14) \times E$ |                                           |            |                    |                             |
| Aaknowladaera                                                           | onte:                                                              |                                           |            | . /                |                             |
| This investigation                                                      | was supported I                                                    | by the Ca                                 | ech Scie   | nce Found          | lation grants No            |
| 205/04/2063 and                                                         | No $205/06/0217$                                                   | by the UZ                                 |            | nce roulle         | iaulon, grants 110.         |
| This research has                                                       | made use of the ST                                                 | MBADda                                    | tabase (   | nerated at         | CDS Strasbourg              |
| France, and of NA                                                       | ASA's Astrophysic                                                  | s Data Sv                                 | stem Bil   | oliographic        | Services.                   |

We are grateful to Prof. O. Demircan and V. Bakiş for their assistance with observations in Çanakkale.

### References:

Barber, R., 1999, http://www.astrogea.org/soft/ave/introave.htm

Gaspani, A., 1995, 3rd GEOS workshop on variable star data acquisition and processing techniques, 13-14 May 1995, S. Pellegrino Terme, Italy

Kholopov, P.N., et al., 1985, General Catalog of Variable Stars, 4th Edition

Mikulášek, Z., Wolf, M., Zejda, M., Pecharová, P., 2006, Astrophys & Space Sci., 304, 113

Zejda, M., 2005, BRNO catalogue of eclipsing binaries BRKA 2005,

http://var.astro.cz/brno

Number 5742

Konkoly Observatory Budapest 15 December 2006 *HU ISSN 0374 - 0676* 

### PHOTOMETRY OF THE ALGOL-TYPE BINARY Z DRACONIS

TERRELL, D.

Dept. of Space Studies, Southwest Research Institute, 1050 Walnut St., Suite 400, Boulder, CO 80302, USA, e-mail: terrell@boulder.swri.edu

Ceraski (1903) first reported the eclipsing nature of Z Draconis, concluding that it was an Algol-type binary. Russell & Shapley (1914) analyzed the photoelectric observations of Dugan (1912) and gave a rough estimate of a distance of 1000 light years for the system. No other published light curves since that of Dugan appear to exist, although the system's times of minimum have been reasonably well observed, as can be seen in the O - C diagram given by Kreiner et al. (2001) based on available times of minimum. Struve (1947) measured radial velocities of the primary.

Z Dra was observed with a 0.25-m Schmidt-Cassegrain telescope and a Santa Barbara Instrument Group ST-7XE CCD camera with  $BVR_CI_C$  filters. Calibration (bias, dark, flat) and aperture photometry were done with IRAF (Tody, 1993).

Differential photometric observations were made on seven nights in the period 2005 February to 2005 March. GSC 4396-1170 was used as the comparison star and GSC 4396-0455 was the check star. The Johnson B - V values, based on Tycho  $B_T - V_T$  values transformed according to Bessell (2000), are  $0.52 \pm 0.05$  for the comparison star and  $0.80 \pm 0.12$  for the check star. The Johnson B - V for the variable, again based on Tycho data, is  $0.45 \pm 0.06$ . The standard deviation for comparison minus check observations was 0.02 magnitudes in B and 0.01 magnitudes in V,  $R_C$  and  $I_C$ . The instrumental differential magnitudes for Z Dra are available from the IBVS web site as 5742-t2.txt (B), 5742-t3.txt (V), 5742-t4.txt ( $R_C$ ) and 5742-t5.txt ( $I_C$ ).

The new photometric data and the radial velocities of Struve (1947) were analyzed simultaneously with the PHOEBE program (Prša & Zwitter, 2005) which uses the most recent release of the 2003 version the Wilson–Devinney program (WD; Wilson & Devinney, 1971; Wilson, 1979). WD's mode 5 was employed, as appropriate for Algol-type binaries. The gravity darkening exponents were fixed at 0.32 and the bolometric albedos were set to 0.5 for both stars. The logarithmic limb darkening law was used with coefficients from Van Hamme (1993). The mean effective temperature of of the primary was initially set equal to 8083 K based on the A5 spectral type given by Struve (1947) and the calibrations of Flower (1996). The reader should note that the temperatures are not accurate to 1 K as this figure might imply but are uncertain by approximately 200 K. The resulting mass and radius of the primary were 1.49  $M_{\odot}$  and 1.49  $R_{\odot}$ , values that are significantly lower than expected for an A5 V star and more in line with an F4 V star, which is the classification given in the GCVS. The Tycho and 2MASS colors of the system are also in better agreement with the later spectral type, so another solution assuming  $T_1 = 6725 K$ 

was performed and the results are presented in Table 1. The derived value for the time derivative of the orbital period  $(\dot{P})$  was adjusted to allow for a period difference over the nearly six decades of time between the photometric and spectroscopic observations. The O - C diagram of times of minimum (Kreiner et al., 2001) shows complex behavior so the derived value of  $\dot{P}$  is useful only as an indicator of the long-term trend of the period changes.

Knowing the magnitude differences in B and V between the two components from the light curve solution, we can compute the intrinsic B - V of the system assuming the intrinsic B - V of the primary (viz. Terrell et al., 2005). An F4 star should have a B - Vvalue of about 0.40. The resulting B - V of the binary is 0.45, in excellent agreement with the observed value, so the interstellar reddening toward Z Dra is small. The estimated distance to the system is  $312 \pm 28$  pc, consistent with the value of  $236 \pm 80$  pc determined by Hipparcos.

| Parameter             | Value                       | Std. $\operatorname{error}^{\dagger}$ |
|-----------------------|-----------------------------|---------------------------------------|
| a                     | $6.38~R_{\odot}$            | $0.06~R_{\odot}$                      |
| $V_{\gamma}$          | $-31.3 \text{ km sec}^{-1}$ | $0.3 \rm ~km~sec^{-1}$                |
| i                     | $87^{\circ}_{\cdot}00$      | $0^{\circ}.09$                        |
| $T_2$                 | $4149~{\rm K}$              | $12 \mathrm{K}$                       |
| q                     | 0.294                       | 0.002                                 |
| $\Omega_1$            | 4.64                        | 0.02                                  |
| $\mathrm{HJD}_{0}$    | 2453430.71662               | 0.00009                               |
| P                     | $1^{ m d}.3574179$          | $0^{\mathrm{d}}_{\cdot}000007$        |
| $\dot{P}$             | $-1.7 \times 10^{-9}$       | $6.5 	imes 10^{-11}$                  |
| $L_1/(L_1 + L_2)_B$   | 0.958                       | 0.002                                 |
| $L_1/(L_1+L_2)_V$     | 0.912                       | 0.002                                 |
| $L_1/(L_1+L_2)_{R_C}$ | 0.866                       | 0.003                                 |
| $L_1/(L_1+L_2)_{I_C}$ | 0.820                       | 0.003                                 |
| $M_1$                 | $1.47~M_{\odot}$            | $0.04~M_{\odot}$                      |
| $M_2$                 | $0.43~M_{\odot}$            | $0.01  M_{\odot}$                     |
| $R_1$                 | $1.48~R_{\odot}$            | $0.01 \; R_{\odot}$                   |
| $R_2$                 | $1.78~R_{\odot}$            | $0.02~R_{\odot}$                      |

Table 1. Parameters for the light/velocity curve Sslution with  $T_1 = 6725 \ K$ 

 $^\dagger$  Formal errors from the differential corrections solution

All of the light curves show a slightly elevated light level compared to the theoretical curves before the ingress of the secondary eclipse. The mean light curve of Dugan (1912), gathered over approximately 3.5 years, appears to show the same asymmetry, perhaps indicating that this is a persistent feature. The fit to the secondary eclipse in the B light curve is poor and the fit to both eclipses in the  $I_C$  curve is also poor. The  $I_C$  light curve shows a strong asymmetry between the two maxima. The portion of the light curve between phases 0.6 and 0.9 is noticeably flatter than that between phases 0.1 and 0.4. Some attempts at fitting a variety of single hot and cool spots were made but none appeared to satisfactorily fit the asymmetries of all the light curves, indicating that a single spot model is insufficient.

A high-resolution spectroscopic study of the system is sorely needed. Since the eclipses are partial, the photometric mass ratio is questionable (viz. Terrell & Wilson, 2005) thus making this a preliminary solution. Measurement of the radial velocities of the



Figure 1.  $BVR_CI_C$  light curves of Z Dra and the fits from the Wilson–Devinney solution. The curves have been shifted vertically for clarity.

secondary is crucial to alleviating the concern about the mass ratio. Further photometric observations would reveal any temporal variability of the light curve asymmetries.

This work was supported by funding from the American Astronomical Society's Small Research Grants Program.

References:

Bessell, M. S. 2000, PASP, 112, 961
Ceraski, A.V., 1903, Astron. Nach., 161, 159
Dugan, R.S., 1912, Contr. Princeton Obs., 2
Flower, P.J., 1996, ApJ, 469, 355
Kreiner, J.M., Kim, C.-H., Nha, I.-S., 2001, An Atlas of O - C Diagrams of Eclipsing Binary Stars, Cracow, Poland: Wydawnictwo Naukowe Akademii Pedagogicznej
Prša, A., Zwitter, T., 2005, ApJ, 628, 426
Struve, O., 1947, ApJ, 106, 92
Terrell, D., Munari, U., Zwitter, T., Wolf, G., 2005, MNRAS, 360, 583
Terrell, D., Wilson, R.E., 2005, ApSpSc, 296, 221
Tody, D., 1993, ASP Conf. Ser., 52, 173
Van Hamme, W., 1993, AJ, 106, 2096
Wilson, R.E., 1979, ApJ, 234, 1054
Wilson, R.E., Devinney, E.J., 1971, ApJ, 166, 605

Number 5743

Konkoly Observatory Budapest 21 December 2006 *HU ISSN 0374 - 0676* 

# CCD PHOTOMETRY OF THE MULTI-MODE $\delta$ SCUTI STAR GSC 1730-1858

BERNHARD, K.<sup>1,2</sup>; KLIDIS, S.<sup>3</sup>; HAMBSCH, F. J.<sup>2,4,5</sup>; WILS, P.<sup>4,6</sup>

<sup>1</sup> A-4030 Linz, Austria; e-mail: klaus.bernhard@liwest.at

 $^2$ Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. (BAV), Germany

<sup>3</sup> Zagori Observatory, Epirus, Greece; e-mail: steliosklidis@gmail.com

 $^{\rm 4}$  Vereniging Voor Sterrenkunde, Belgium

 $^{5}$  e-mail: hambsch@telenet.be

<sup>6</sup> e-mail: patrickwils@yahoo.com

The star ASAS 001856+2239.6 = GSC 1730-1858 (coordinates for equinox 2000.0:  $\alpha = 00^{h}18^{m}55^{s}87$ ,  $\delta = +22^{\circ}39'40''_{2}$ ) was found to be a new  $\delta$  Scuti variable by the All Sky Automated Survey (ASAS-3; Pojmanski & Maciejewski, 2005) with a period of 0.0960 days. The phase plot of the ASAS-3 data at this period shows an unusual amount of scatter. A close investigation of the available data as well as data from the Northern Sky Variability Survey (NSVS; Wozniak et al., 2004), showed two more excited modes with periods of 0.0920 and 0.0937 days, both close to the original period and amplitudes somewhat larger than half the main amplitude.

Follow-up observations of this object were then started at three private observatories. A total of 5109 data points in V were obtained during 46 different nights from September to November 2006. In addition, the star was observed simultaneously in B by SK, while FJH also observed in  $I_c$ . The observation log of the data is presented in Table 1, while the number of data points is given in Table 2. Schuler filters were used for all observations. All data are available electronically.

The comparison stars used were GSC 1730-2105 (adopted magnitude V = 12.46 from the YB6 catalogue; USNO, unpublished), GSC 1730-1709 and GSC 1730-2179. Unfortunately, all three are about two magnitudes fainter than the variable, limiting the precision of the observations. The average nightly standard deviation for the check stars was 0.02 mag in V. To remove small differences in the magnitudes of the variable between observers, the instrumental V magnitudes were shifted by a constant value.

Fig. 1 presents a sample of data from 15 nights showing obvious variations in the amplitude from night to night.

The data were then analysed using Period04 (Lenz & Breger, 2005). In addition to the three frequencies already found in the survey data, two more independent frequencies were found with a much smaller semi-amplitude of 7-8 mmag. Fig. 2 gives the frequency spectrum after prewhitening for the first three frequencies, together with the spectral window. All five frequencies lie between 10 and 11 c/d, with one very close pair: the main frequency  $f_1$  and the frequency  $f_4$ , separated by only 0.03 c/d. The occurrence of


Figure 1. V light curve of GSC 1730-1858 on 15 nights. Also shown is a model plot with the nine frequencies found

| Table 1: Observation log |                                         |                    |          |                |                         |        |  |  |  |  |
|--------------------------|-----------------------------------------|--------------------|----------|----------------|-------------------------|--------|--|--|--|--|
| Observer                 | Telescope                               | CCD camera Filters |          | Timespan       | No. of                  | No. of |  |  |  |  |
|                          |                                         |                    |          | (JD - 2450000) | $\operatorname{nights}$ | hours  |  |  |  |  |
| KB                       | 20-cm C8                                | SX Starlight       | V        | 3984 - 4064    | 22                      | 68.3   |  |  |  |  |
| $_{\rm FJH}$             | $35\text{-}\mathrm{cm}\ \mathrm{C14}$   | SBIG ST-8          | $V, I_c$ | 4017 - 4066    | 10                      | 57.8   |  |  |  |  |
| $_{\rm SK}$              | $30\text{-}\mathrm{cm}\ \mathrm{LX200}$ | SBIG ST-7XMEI      | B, V     | 3984 - 4068    | 21                      | 124.1  |  |  |  |  |



Figure 2. Frequency spectrum of GSC 1730-1858 after prewhitening for  $f_1$  to  $f_3$  (top panel) and spectral window (bottom panel)

| Table | e 2: Numb    | er of da | ta poir | nts per | $\operatorname{filter}$ |
|-------|--------------|----------|---------|---------|-------------------------|
| -     | Observer     | В        | V       | $I_c$   | _                       |
| -     | KB           | -        | 671     | -       | -                       |
|       | $_{\rm FJH}$ | -        | 1347    | 1109    |                         |
| -     | SK           | 2975     | 3091    | -       | _                       |

| Table 3: Detected frequencies in $V$ |              |      |                       |  |  |  |  |  |  |
|--------------------------------------|--------------|------|-----------------------|--|--|--|--|--|--|
| Fr                                   | requency     | S/N  | Semi-ampl. $V$        |  |  |  |  |  |  |
|                                      | $\rm c/d$    |      | $\operatorname{mmag}$ |  |  |  |  |  |  |
| $f_1$                                | 10.41632(5)  | 90.0 | 58.0                  |  |  |  |  |  |  |
| $f_2$                                | 10.86918(7)  | 57.6 | 36.4                  |  |  |  |  |  |  |
| $f_3$                                | 10.67766(7)  | 52.8 | 33.9                  |  |  |  |  |  |  |
| $f_4$                                | 10.44804(34) | 12.4 | 8.0                   |  |  |  |  |  |  |
| $f_5$                                | 10.00745(38) | 11.0 | 7.2                   |  |  |  |  |  |  |
| $2f_1$                               | 20.83264(9)  | 8.4  | 5.9                   |  |  |  |  |  |  |
| $f_1 + f_2$                          | 21.28550(9)  | 7.9  | 5.5                   |  |  |  |  |  |  |
| $f_1 + f_3$                          | 21.09398(9)  | 7.8  | 5.5                   |  |  |  |  |  |  |
| $2f_3$                               | 21.35532(15) | 7.3  | 5.1                   |  |  |  |  |  |  |

|             | P             | <u>F</u>      |                   |                   |
|-------------|---------------|---------------|-------------------|-------------------|
| Frequency   | Ampl. ratio   | Ampl. ratio   | $\phi_B - \phi_V$ | $\phi_V - \phi_I$ |
|             | B/V           | $V/I_c$       | degrees           | degrees           |
| $f_1$       | $1.31\pm0.02$ | $1.66\pm0.08$ | $0.8\pm0.7$       | $7\pm~3$          |
| $f_2$       | $1.22\pm0.03$ | $1.50\pm0.09$ | $-2.5 \pm 1.3$    | $1\pm~3$          |
| $f_3$       | $1.33\pm0.03$ | $1.78\pm0.12$ | $-3.7 \pm 1.3$    | $2\pm4$           |
| $f_4$       | $1.32\pm0.12$ | $2.40\pm1.16$ | $27.6\pm5.3$      | $-34 \pm 25$      |
| $f_5$       | $1.14\pm0.13$ | $1.15\pm0.25$ | $18.9\pm6.5$      | $-1 \pm 12$       |
| $2f_1$      | $1.74\pm0.18$ | $2.60\pm1.42$ | $1.4\pm5.9$       | $-51 \pm 25$      |
| $f_1 + f_2$ | $1.17\pm0.17$ | $0.80\pm0.17$ | $-22.3 \pm 8.6$   | $-10 \pm 13$      |
| $f_1 + f_3$ | $1.06\pm0.17$ | $0.78\pm0.15$ | $-1.3 \pm 9.1$    | $-21 \pm 10$      |
| $2f_{3}$    | $1.09\pm0.18$ | $1.22\pm0.44$ | $4.9\pm9.6$       | $22\ \pm 19$      |
|             |               |               |                   |                   |

Table 4: Amplitude ratios and phase differences for B and  $I_c$ 

close frequencies may be an artifact resulting from the use of inhomogeneous data sets, especially when observations from different instruments are combined. This is not the case here however, because all frequencies found in the aggregated data set were also found in the three longest data sets separately. In addition the data for the check star do not show any frequency with an amplitude above the noise at 2 mmag in the frequency range concerned (at low frequencies the noise is somewhat larger). Four linear combinations of the independent modes were found as well in the frequency spectrum of GSC 1730-1858. These are centered around 21 c/d in Fig. 2. In the low frequency range (less than 3 c/d), none of the frequencies rise significantly above the noise.

An overview of all frequencies found in the V data, is presented in Table 3. The uncertainties of the frequencies given in the table are the errors of the least squares solution. The real uncertainties may be larger. The uncertainties of the V semi-amplitudes are all of the order of 0.4 mmag. No additional frequencies with semi-amplitudes above 2 mmag, other than those listed, could be detected up to 25 c/d. All independently excited frequencies are therefore situated in a narrow band between 115 and 125  $\mu$ Hz. Most other  $\delta$  Scuti stars with many excited modes show a much broader range of independent modes. At higher frequencies, near 30 c/d, again multiples of the independent frequencies are found. However, their signal to noise ratio is small and they are hard to distinguish from their 1-day aliases. They were therefore not included here.

After fitting the 9 detected frequencies, the average residual is 18 mmag, which may be compared to the standard deviation of the check star. A model plot using those 9 frequencies is shown in Fig. 1.

Amplitude ratios and phase differences for the frequencies in B and  $I_c$ , compared to V are presented in Table 4. Because there were less data points for these filters, the amplitudes and phases were calculated using the frequencies obtained from the V data. This table may assist in the identification of the excited modes.

Acknowledgements: This research made use of the SIMBAD and VizieR databases operated at the *Centre de Données Astronomiques (Strasbourg)* in France.

#### References:

Lenz, P., Breger, M., 2005, Comm. in Asteroseismology, 146, 53

Pojmanski, G., Maciejewski, G., 2005, Acta Astron., 55, 97

Wozniak, P.R., Vestrand, W.T., Akerlof, C.W., Balsano, R., Bloch, J., Casperson, D., Fletcher, S., Gisler, G., Kehoe, R., Kinemuchi, K., Lee, B.C., Marshall, S., Mc-Gowan, K.E., McKay, T.A., Rykoff, E.S., Smith, D.A., Szymanski, J., Wren, J., 2004, AJ, 127, 2436

Number 5744

Konkoly Observatory Budapest 2 January 2007 *HU ISSN 0374 - 0676* 

# NEWLY DISCOVERED VARIABLE STARS IN THE GLOBULAR CLUSTER NGC 1261

SALINAS, R.<sup>1,2</sup>; CATELAN, M.<sup>2</sup>; SMITH, H.A.<sup>3</sup>; PRITZL, B.J.<sup>4</sup>

<sup>1</sup> Grupo de Astronomía, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción, Chile; email: rsalinas@astro-udec.cl

<sup>2</sup> Pontificia Universidad Católica de Chile, Departamento de Astronomía y Astrofísica, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile; email: mcatelan@astro.puc.cl

 $^3$  Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA; email: smith@pa.msu.edu

<sup>4</sup> Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105, USA; email: pritzl@macalester.edu

NGC 1261 (RA  $03^{h}12^{m}15^{s}3$ , DEC  $-55^{\circ}13'01''$ , J2000) is a distant ( $R_{GC} = 18.2$  kpc; Harris, 1996) globular cluster with an intermediate metallicity ([Fe/H] = -1.35) and horizontal branch (HB) morphology not unlike NGC 1851's, with evidence of an HB bimodality — i.e., with fewer known RR Lyrae variables than either red HB or blue HB stars (Ferraro et al., 1993).

The RR Lyrae population in the cluster was discovered in photographic studies by Laborde & Fourcade (1966), Bartolini et al. (1971), Wehlau & Demers (1977), and Wehlau et al. (1977). To the best of our knowledge, no CCD study tackling the variable star populations in this cluster has ever appeared in the literature. In the present note, we report on the discovery of additional variable stars in the cluster. This work is part of a larger effort to bring to light the variable star population properties of several globular clusters that have not been properly investigated with modern CCD images (Catelan et al., 2006).

The cluster images were obtained using the Danish 1.54-m telescope at La Silla, Chile, from September 17 to September 22, 2005. The 2048  $\times$  2048 RINGO CCD was used. Given its 0''.395 pixels, the total observed field was  $13'.5 \times 13'.5$ . The time series data consist in 104 B, V pairs, with typical exposure times of 100 sec in B and 35 sec in V. Here we report the results based on the B data only.

To search for variability in our data, we have adopted the image subtraction technique (ISIS v2.1; Alard, 2000). In recent years, this technique has provided the most powerful tools for finding variable stars in crowded regions without the need of large apertures (e.g., Olech et al., 1999; Contreras et al., 2005). Its main drawback is the difficulty to reliably transform relative fluxes into calibrated magnitudes, and even to derive accurate pulsation amplitudes (Corwin et al., 2006, and references therein).

Making use of ISIS we were able to re-discover 19 out of the 21 variables listed in the Clement et al. (2001) catalog, confirming the non-variability of V1 already noted by Wehlau & Demers (1977), but not finding any variability for V18. The latter appears rather surprising, given that Wehlau et al. (1977) found a very precise period (P = 0.33653 d) for V18. However, taking the original data for V18 from Table 1 in Wehlau et al. (1977), we do not find any period that phases the data correctly (Fig. 1). Considering that the position of this variable is only 25" from the cluster center, and that the magnitudes of Wehlau et al. (1977) were derived by eye, we are confident to discard it as an RR Lyrae star. In the case of V19, Wehlau et al. (1977) do not give a period; we estimate it to be near 0.653 d. For the rest of the known variables we agree with the periods listed in the Clement et al. (2001) catalog.



Figure 1. Light curve of V18, using data from Wehlau et al. (1977), with a period of 0.33653 d

Also we have found nine new variables of different types: one long period variable (LPV), three SX Phoenicis and five RR Lyrae stars (3 RRc and 2 RRab). The location, classification and tentative periods for these new variables are given in Table 1. In this table, the x and y coordinates are in arcseconds with respect to the cluster center, as given in the online Clement et al. (2001) catalog. Also a finding chart with all the new variables can be seen in Figure 2.

Due to the relatively small time coverage, it is not possible to give an estimate of the period of V23. For the RR Lyrae stars we think periods are good only up to the third



Figure 2. Finding chart for the innermost variable stars in NGC 1261. The field size is approximately  $3' \times 2'$ . North is up and East to the left

|          |          | r        |            |                       |
|----------|----------|----------|------------|-----------------------|
| Variable | x $('')$ | y $('')$ | Period (d) | Type                  |
| V22      | 4.1      | -41.3    | 0.302      | RRc                   |
| V23      | -2.3     | 15.9     | —          | LPV                   |
| V24      | -13.1    | -37.8    | 0.626      | $\operatorname{RRab}$ |
| V25      | 11.2     | 94.3     | 0.0535     | SX Phe                |
| V26      | 9.5      | 12.9     | 0.0799     | SX Phe                |
| V27      | -11.6    | -9.5     | 0.341      | $\operatorname{RRc}$  |
| V28      | -20.9    | -3.6     | 0.287      | $\operatorname{RRc}$  |
| V29      | -25.3    | -23.4    | 0.593      | RRab                  |
| V30      | 4.9      | 3.0      | 0.0591     | SX Phe                |

Table 1: Locations and tentative periods for new variable stars in NGC 1261



Figure 3. B-band differential light curves for previously known variable stars in NGC 1261

ISIS B relative flux



**Figure 4.** *B*-band differential light curves for the known variables V19, V20 and V21; and for all the newly identified variables. Note that the light curves of V15 and V23 are not phased

decimal place, and for the SX Phe variables we can determine periods to four significant figures.

With our new discoveries, and assuming the new RR Lyrae stars to be cluster members, the value of  $\langle P_{ab} \rangle$  changes slightly with respect to Wehlau et al. (1977), from 0.555 d to 0.568 d, and  $N_c/(N_c + N_{ab})$  changes from 0.26 to 0.30. In addition, one finds  $\langle P_c \rangle = 0.319$  d,  $P_{ab}^{\min} = 0.49286$  d, and  $P_c^{\max} = 0.341$  d. These results do not change NGC 1261's classification as an Oosterhoff type I cluster.

Acknowledgements. We thank R. Leiton for helping us with the data transfer from Concepción to Santiago. R.S. acknowledges support by a CONICYT Doctoral Fellowship. M.C. acknowledges support by Proyecto FONDECYT Regular No. 1030954. H.A.S. acknowledges the NSF for support under grant AST 02-05813.

References:

Alard, C., 2000, A&AS, 144, 363

- Bartolini, C., Grilli, F., Robertson, J.W., 1971, IBVS, No. 594
- Catelan, M., et al., 2006, MmSAI, 77, 202
- Clement, C.M., et al., 2001, AJ, **122**, 2587
- Contreras, R., Catelan, M., Smith, H.A., Pritzl, B.J., Borissova, J., 2005, *ApJL*, **623**, L117
- Corwin, T.M., Sumerel, A.N., Pritzl, B.J., Smith, H.A., Catelan, M., Sweigart, A.V., Stetson, P.B., 2006, AJ, in press (astro-ph/0605569)
- Ferraro, F.R., Clementini, G., Fusi Pecci, F., Vitiello, E., Buonanno, R., 1993, MNRAS, 264, 273
- Harris, W.E., 1996, AJ, 112, 1487
- Laborde, J.R., Fourcade, C.R., 1966, MmSAI, 37, 251
- Olech, A., Woźniak, P.R., Alard, C., Kaluzny, J., Thompson, I.B., 1999, *MNRAS*, **310**, 759
- Wehlau, A., Demers, S., 1977, A&A, 57, 251
- Wehlau, A., Flemming, T., Demers, S., Bartolini, C., 1977, IBVS, No. 1361

Number 5745

Konkoly Observatory Budapest 2 January 2007 *HU ISSN 0374 - 0676* 

# PRECISE TIMES OF MINIMUM LIGHT OF NEGLECTED ECLIPSING BINARIES

SMITH, A.B.; CATON, D.B.

Dark Sky Observatory, Dept. of Physics and Astronomy, Appalachian State University, Boone, North Carolina 28608, U.S.A., email: catondb@appstate.edu, adam.blythe.smith@gmail.com

We present 102 times of minimum light for 60 mostly neglected eclipsing binaries, as a continuation of an ongoing program of monitoring eccentric orbit, apsidal motion and other type systems. This is the first publication in our goal to also release all of our previously unpublished minimums in our archives. As part of this project we are including times of minimum light from CCDs as well as from photoelectric photometers.

These stars were observed during several seasons and are presented for their long-term value as well as for planning new observations. All data were obtained at Appalachian State University's Dark Sky Observatory. The CCD observations include measurements made with the 32-inch DFM Engineering telescope and Photometrics CH250 CCD camera with a Tek 1024<sup>2</sup> chip and Bessell filter set. Other data were obtained with the 18-inch telescope with a Photometrics CH350 CCD camera and SITe 1024<sup>2</sup> chip and Bessell filter set. Some other data were obtained with an SBIG ST-9E CCD on the 16-inch DFM telescope. These are noted in the table as 32, 18, and 16, respectively. The filters are the Johnson equivalents in the Bessell set, with 'C' representing a clear or no filter.

The photoelectric times of minimum light were observed with the 18-inch telescope with a Kitt Peak National Observatory single-channel design employing a thermoelectrically cooled EMI 9865QB photomultiplier tube with matching UBVR filters. One eclipse's data (U Oph) was obtained on the 32-inch with an Optec SSP-3 PIN-diode photomultiplier with Johnson filters, and in fact was the first scientific data obtained with that telescope.

The CCD data in this publication were reduced using Mira AP software.<sup>†</sup> All of our times of minimum and their standard errors, including the photoelectric data and its errors, were calculated using the method of Kwee & van Woerden (1956), using an algorithm by Ghedini (1982).

We are grateful for references provided by Greg Shelton and Brenda Corbin at the U.S. Naval Observatory Library. Other references were obtained at the NASA Astrophysics Data System. This work also made use of the SIMBAD data base and the Space Telescope Science Institute's Digitized Sky Survey. We thank Joe Pollock and Stephen Davis for the development of PMIS macros used in automatic data acquisition, and Lee Hawkins for instrumentation support. We especially thank the other people who observed or reduced the data including Wanda Burns, Brain Walls, Jeff Deal, and Nathan Bergey.

<sup>&</sup>lt;sup>†</sup>The Mira AP software is produced by Mirametrics Inc., formerly Axiom Research Inc.

| Star                | Type                        | Filters | HJD - 2400000            | Error     | Tel              | Instr.         |
|---------------------|-----------------------------|---------|--------------------------|-----------|------------------|----------------|
| RT And              | $\operatorname{pri}$        | V       | 47770.8088               | 0.0008    | 18               | KPmt           |
|                     | $\mathbf{sec}$              | V       | 48159.8005               | 0.0004    | 18               | KPmt           |
|                     | $\operatorname{pri}$        | V       | 48191.5596               | 0.0002    | 18               | KPmt           |
| RX Ari              | $\operatorname{pri}$        | V       | 47855.7043               | 0.0004    | 18               | KPmt           |
| WW Aur              | $\operatorname{pri}$        | V       | 47893.6516               | 0.0001    | 18               | KPmt           |
|                     | sec                         | V       | 48225.6955               | 0.0002    | 18               | KPmt           |
| AR Aur              | sec                         | V       | 48699.5808               | 0.0004    | 18               | KPmt           |
| CL Aur              | pri                         | V       | 53388.6336               | 0.0001    | 32               | CCD            |
| EO Aur              | pri                         | v       | 53341 8412               | 0.0002    | 18               | CCD            |
| HL Aur              | pri                         | v       | 50110 7977               | 0.0002    | 32               | CCD            |
| IIL Hui             | Sec.                        | v       | 53017 5775               | 0.0002    | 32               | CCD            |
| VZ Aal              | nri                         | v       | 51071 6657               | 0.0001    | 32               | CCD            |
| 12 Aqi<br>V1189 Aql | pri                         | v       | 52210 7055               | 0.0005    | 20               | CCD            |
| 41: Doo             | pri<br>nr:                  | V       | 49257 9176               | 0.0007    | 0⊿<br>10         | UOD<br>VDmt    |
| 441 D00             | pri                         | V       | 40597.0170               | 0.0003    | 10               |                |
| BW B00              | sec                         | VBRI    | 52815.0880               | 0.0015    | 18               | CCD            |
| UW Boo              | $\operatorname{pr}_{\cdot}$ | V       | 50512.7317               | 0.0002    | 18               | CCD            |
|                     | pri                         | V       | 50518.7590               | 0.0002    | 18               | CCD            |
|                     | $\mathbf{sec}$              | VBRI    | 52757.7543               | 0.0009    | 32               | CCD            |
|                     | $\operatorname{pri}$        | V       | 53470.5926               | 0.0001    | 32               | CCD            |
| AW Cam              | $\operatorname{pri}$        | V       | 47919.7904               | 0.0002    | 18               | KPmt           |
|                     | sec                         | V       | 47972.6246               | 0.0008    | 18               | KPmt           |
|                     | $\operatorname{pri}$        | V       | 47994.6094               | 0.0002    | 18               | KPm            |
| CV CMa              | $\operatorname{pri}$        | V       | 53442.6562               | 0.0007    | 32               | CCD            |
|                     | sec                         | V       | 53451.5749               | 0.0006    | 32               | CCD            |
| CC Cas              | pri                         | V       | 53016.6817               | 0.0006    | 18               | CCD            |
| IT Cas              | sec                         | v       | 52592.5766               | 0.0001    | $\frac{-}{32}$   | CCD            |
| V527 Cas            | pri                         | v       | 53344 5257               | 0.0002    | 32               | CCD            |
| GK Cen              | pri                         | v       | 48521 6067               | 0.0002    | 18               | KPmi           |
| un cep              | PL1<br>SOC                  | V       | 48526 7500               | 0.0000    | 18               | KPmt           |
|                     | set<br>nri                  | V       | 48020.1090               | 0.0003    | 10               | KI III<br>KDmi |
|                     | pri<br>mi                   | V       | 40902.0232<br>E1EE1 7019 | 0.0003    | 10               |                |
|                     | pri                         | V       | 51551.7012               | 0.0008    | ა∠<br>ეე         | CCD            |
| IV Cet              | sec                         | V       | 50110.0454               | 0.0005    | 32               | CCD            |
| WW Cyg              | $\operatorname{pr}_{\cdot}$ | V       | 51024.6271               | 0.0000    | 32               | CCD            |
| DX Cyg              | pri                         | V       | 50685.5730               | 0.0009    | 32               | CCD            |
|                     | $\operatorname{pri}$        | V       | 50726.6848               | 0.0002    | 32               | CCD            |
|                     | $\mathbf{sec}$              | V       | 52911.6830               | 0.0017    | 32               | CCD            |
| V463 Cyg            | sec                         | V       | 53577.7470               | 0.0003    | 16               | CCD            |
|                     | $\operatorname{pri}$        | V       | 53578.8125               | 0.0002    | 16               | CCD            |
| V469 Cyg            | $\operatorname{pri}$        | V       | 53594.5918               | 0.0004    | 32               | CCD            |
| V490 Cyg            | sec                         | V       | 51491.5776               | 0.0004    | 32               | CCD            |
|                     | pri                         | V       | 51495.5994               | 0.0002    | 32               | CCD            |
| V498 Cvg            | sec                         | V       | 53584.6639               | 0.0003    | 32               | CCD            |
| V512 Cvg            | sec                         | V       | 53619.5818               | 0.0003    | 32               | CCD            |
| , 0                 | pri                         | v       | 53625.6438               | 0.0001    | $32^{$           | CCD            |
| V541 Cvg            | pri                         | v       | 53578.7911               | 0.0001    | 16               | CCD            |
| V873 Cyg            | pri<br>nri                  | v       | 53598 7008               | 0.0001    | 32               | CCD            |
| V050 Cyg            | pri<br>pri                  | v       | 50664 7335               | 0.0002    | 30               | CCD            |
| v 303 Oyg           | pri                         | v<br>V  | 50594 7979               | 0.0004    | ป⊿<br>วา         | CCD            |
| v 914 Oyg           | sec                         | V<br>V  | 50067 7604               | 0.0010    | <b>ა</b> ⊿<br>ეი | COD            |
| 11100 0             | $\Pr_{\cdot}$               | V       | 50967.7694               | 0.0001    | 32               | CCD            |
| v1136 Cyg           | $\mathbf{pr_1}$             | V       | 53594.7403               | 0.0002    | 32               | CCD            |
|                     | $\mathbf{sec}$              | V       | 53603.7318               | 0.0003    | 32               | CCD            |
| V1326 Cyg           | sec                         | V       | 50661.6760               | 0.0010    | 32               | CCD            |
|                     | $\operatorname{pri}$        | V       | 53588.8343               | 0.0005    | 32               | CCD            |
| V1436 Cyg           | $\operatorname{pri}$        | VBR     | 52845.7191               | 0.0004    | 32               | CCD            |
|                     |                             |         | <b>MAAA M</b>            | 0 0 0 0 0 | 0.0              | ~ ~ -          |

| Star                | Type                 | Filters      | HJD - 2400000 | Error  | Tel | Instr. |
|---------------------|----------------------|--------------|---------------|--------|-----|--------|
| Z Dra               | pri                  | V            | 52708.5681    | 0.0000 | 32  | CCD    |
|                     | sec                  | VBR          | 52710.6064    | 0.0011 | 32  | CCD    |
|                     | $\operatorname{pri}$ | V            | 52769.6520    | 0.0001 | 32  | CCD    |
|                     | sec                  | VBRI         | 52771.6911    | 0.0011 | 32  | CCD    |
|                     | $\mathbf{pri}$       | VBRI         | 52773.7243    | 0.0001 | 32  | CCD    |
|                     | $\operatorname{pri}$ | VBRI         | 53502.6609    | 0.0001 | 18  | CCD    |
| ${ m RR}~{ m Dra}$  | $\mathbf{pri}$       | V            | 51043.6183    | 0.0000 | 32  | CCD    |
| BF Dra              | $\operatorname{pri}$ | V            | 53341.5523    | 0.0001 | 32  | CCD    |
| CM Dra              | $\operatorname{pri}$ | $\mathbf{R}$ | 53478.6467    | 0.0001 | 32  | CCD    |
| DI Her              | sec                  | V            | 52812.7354    | 0.0001 | 18  | CCD    |
|                     | $\operatorname{pri}$ | V            | 52899.5675    | 0.0001 | 32  | CCD    |
| VZ Hya              | $\operatorname{pri}$ | V            | 47971.5876    | 0.0003 | 18  | KPmt   |
|                     | $\operatorname{pri}$ | V            | 52702.6936    | 0.0001 | 32  | CCD    |
| CM Lac              | sec                  | V            | 48210.6531    | 0.0002 | 18  | KPmt   |
|                     | $\mathbf{pri}$       | V            | 48530.7850    | 0.0004 | 18  | KPmt   |
| MZ Lac              | pri                  | V            | 50422.6427    | 0.0002 | 32  | CCD    |
|                     | sec                  | V            | 50686.6745    | 0.0008 | 32  | CCD    |
|                     | $\operatorname{pri}$ | V            | 50722.7286    | 0.0004 | 32  | CCD    |
|                     | $\operatorname{pri}$ | V            | 53025.5097    | 0.0002 | 32  | CCD    |
| V345 Lac            | $\operatorname{pri}$ | V            | 50373.8088    | 0.0006 | 32  | CCD    |
|                     | $\mathbf{pri}$       | V            | 50403.7826    | 0.0009 | 32  | CCD    |
|                     | $\mathbf{pri}$       | V            | 51377.7229    | 0.0002 | 32  | CCD    |
|                     | $\mathbf{pri}$       | VB           | 51849.7155    | 0.0003 | 32  | CCD    |
|                     | $\operatorname{pri}$ | V            | 53572.8447    | 0.0002 | 32  | CCD    |
| V412 Lyr            | $\operatorname{pri}$ | V            | 50666.7391    | 0.0001 | 32  | CCD    |
|                     | sec                  | V            | 50672.7933    | 0.0010 | 32  | CCD    |
| V431 Lyr            | $\operatorname{pri}$ | V            | 53499.7379    | 0.0003 | 32  | CCD    |
|                     | $\mathbf{sec}$       | V            | 53576.7384    | 0.0006 | 32  | CCD    |
|                     | $\operatorname{pri}$ | VBRI         | 53587.6718    | 0.0004 | 32  | CCD    |
| RU Mon              | $\operatorname{pri}$ | С            | 50138.6517    | 0.0002 | 32  | CCD    |
| TV Mon              | $\operatorname{pri}$ | V            | 51489.8738    | 0.0001 | 32  | CCD    |
| ${ m U}~{ m Oph}^*$ | $\operatorname{pri}$ | V            | 49862.7335    | 0.0001 | 32  | SSP3   |
| WZ Oph              | sec                  | V            | 48004.7536    | 0.0002 | 18  | KPmt   |
|                     | $\mathbf{sec}$       | V            | 53476.7886    | 0.0001 | 32  | CCD    |
| $V451 { m ~Oph}$    | $\mathbf{sec}$       | V            | 53575.7235    | 0.0001 | 18  | CCD    |
| EW Ori              | $\mathbf{sec}$       | V            | 50431.6804    | 0.0001 | 32  | CCD    |
|                     | $\operatorname{pri}$ | V            | 52973.8223    | 0.0001 | 32  | CCD    |
| DV Peg              | $\operatorname{pri}$ | V            | 53604.6143    | 0.0002 | 32  | CCD    |
| IQ Per              | $\operatorname{pri}$ | V            | 51937.6525    | 0.0006 | 18  | CCD    |
| KX Pup              | $\operatorname{pri}$ | V            | 53077.5933    | 0.0006 | 32  | CCD    |
| ${ m ER}$ Sct       | sec                  | V            | 53224.7529    | 0.0001 | 16  | CCD    |
| AN Tau              | $\operatorname{pri}$ | V            | 53344.7797    | 0.0001 | 32  | CCD    |
| DR Vul              | sec                  | V            | 50376.7009    | 0.0002 | 32  | CCD    |
| FQ Vul              | $\operatorname{pri}$ | VBR          | 53595.8065    | 0.0005 | 32  | CCD    |
| GP Vul              | sec                  | V            | 50985.7005    | 0.0001 | 32  | CCD    |
|                     | $\operatorname{pri}$ | V            | 51061.5885    | 0.0001 | 32  | CCD    |
| MN Vul              | pri                  | V            | 53492.7941    | 0.0012 | 32  | CCD    |

\* The comparison star used for U Oph is designated as variable star V2368 Oph. From our own measurments it seems likely that this star is not significantly variable. Also, this same comparison star was used by Jordi et al. (1996) and Wolf et al. (2002), without problems reported. We are also grateful for support received from the National Science Foundation, the ASU Research Council and Office of Undergraduate Research, and the Dunham Fund for Astrophysical Research. Also, we thank the American Astronomical Society's Small Research Grant program for providing instrumentation for the photoelectric research.

References:

Ghedini, S., 1982, Software for Photometric Astronomy, Willmann-Bell, U.S.A., 47

Jordi, C., Ribas I., Garcia, J.M., 1996, IBVS, No. 4300

Kwee, K.K., van Woerden, H., 1956, Bull. Astron. Inst. Neth., 12, 327

Wolf, M., Harmanec, P., Diethelm, R., Hornoch, K., Eenens, P., 2002, Astron. Astrophys., **383**, 533

#### ERRATUM FOR IBVS 5707

Time of minimum of RZ Com was given as 52849.4809, but it should be 53849.4809.

S. Serkan Doğru

Number 5746

Konkoly Observatory Budapest 2 January 2007 *HU ISSN 0374 - 0676* 

## NEW TIMES OF MINIMA OF SOME ECLIPSING BINARY STARS

DOĞRU, S.S.; DÖNMEZ, A.; TÜYSÜZ, M.; DOĞRU, D.; ÖZKARDEŞ, B.; SOYDUGAN, E.; SOYDUGAN, F.

Department of Physics, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University and Çanakkale Onsekiz Mart University Observatory, Terzioğlu Campus, TR-17100, Çanakkale, Turkey; e-mail: dogru@comu.edu.tr

| Observatory and telescope:                                                    |                                                           |  |  |  |  |  |  |
|-------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|--|
| 30-cm Cassegrain–Schmidt telescope of the Çanakkale University Observatory    |                                                           |  |  |  |  |  |  |
|                                                                               |                                                           |  |  |  |  |  |  |
| <b>Detector:</b> ST237 camera, Peltier cooling, TC237 chip, $11' \times 8'$ F |                                                           |  |  |  |  |  |  |
|                                                                               | $640 \times 480$ pixels, (ÇUG301);                        |  |  |  |  |  |  |
|                                                                               | ST10XME camera, Peltier cooling, KAF 3200ME chip,         |  |  |  |  |  |  |
|                                                                               | $17' \times 12'$ FOV, $2184 \times 1472$ pixels, (QUG302) |  |  |  |  |  |  |

## Method of data reduction:

Reduction of the CCD frames was made with C-MUNIPACK software (Motl, 2004)

### Method of minimum determination:

Kwee-van Woerden method (Kwee & van Woerden, 1956)

| Times of r | ninima:        |        |      |                         |           |
|------------|----------------|--------|------|-------------------------|-----------|
| Star name  | Time of min.   | Error  | Type | $\operatorname{Filter}$ | Rem.      |
|            | HJD $2400000+$ |        |      |                         |           |
| WZ And     | 53982.3315     | 0.0002 | II   | С                       | ÇUG301    |
|            | 53987.5624     | 0.0002 | Ι    | $\mathbf{C}$            | ÇUG $301$ |
| RT And     | 53983.3656     | 0.0003 | Ι    | $\mathbf{C}$            | ÇUG $301$ |
|            | 54016.3838     | 0.0004 | II   | $\mathbf{C}$            | CUG301    |
|            | 54055.3795     | 0.0002 | II   | $\mathbf{C}$            | ÇUG $301$ |
| AB And     | 53981.2904     | 0.0001 | Ι    | $\mathbf{C}$            | CUG301    |
|            | 54016.3037     | 0.0002 | II   | $\mathbf{C}$            | CUG301    |
| LO And     | 53982.4468     | 0.0003 | Ι    | $\mathbf{C}$            | CUG301    |
|            | 53987.3992     | 0.0001 | Ι    | С                       | CUG301    |
| KO Aql     | 53985.2901     | 0.0003 | Ι    | $\mathbf{C}$            | ÇUG301    |
| OO Aql     | 53995.3022     | 0.0001 | Ι    | $\mathbf{C}$            | ÇUG301    |
| CX Aqr     | 53984.3647     | 0.0003 | Ι    | $\mathbf{C}$            | ÇUG301    |
| IM Aur     | 53982.5077     | 0.0008 | Ι    | С                       | CUG301    |
| CL Aur     | 54054.3794     | 0.0001 | Ι    | С                       | CUG301    |
| SX Aur     | 54044.3888     | 0.0005 | Ι    | $\mathbf{C}$            | ÇUG301    |
| AB Cas     | 53995.3590     | 0.0002 | Ι    | $\mathbf{C}$            | ÇUG301    |
| BZ Cas     | 53998.3172     | 0.0002 | Ι    | $\mathbf{C}$            | ÇUG301    |
| CW Cas     | 53998.3347     | 0.0002 | Ι    | $\mathbf{C}$            | ÇUG301    |
| TV Cas     | 54013.4270     | 0.0005 | Ι    | $\mathbf{C}$            | ÇUG301    |
| TW Cas     | 54013.4354     | 0.0005 | Ι    | $\mathbf{C}$            | ÇUG301    |

| Times of r              | ninima:            |         |      |              |                             |
|-------------------------|--------------------|---------|------|--------------|-----------------------------|
| Star name               | Time of min.       | Error   | Type | Filter       | Rem.                        |
|                         | $\rm HJD~2400000+$ |         |      |              |                             |
| V523 Cas                | 53987.3632         | 0.0001  | Ι    | С            | ÇUG301                      |
|                         | 54055.4858         | 0.0002  | II   | С            | $\overline{ m C} UG301$     |
| EG Cep                  | 53657.29724        | 0.00006 | Ι    | $BVR_c$      | $\overline{ m C}{ m UG302}$ |
| DK Cyg                  | 54014.4274         | 0.0003  | Ι    | $\mathbf{C}$ | m CUG301                    |
| KR Cyg                  | 53984.3076         | 0.0003  | Ι    | $\mathbf{C}$ | m CUG301                    |
| WZ Cyg                  | 53985.3679         | 0.0001  | Ι    | $\mathbf{C}$ | m CUG301                    |
| ZZ Cyg                  | 53685.27620        | 0.00007 | Ι    | $BVR_c$      | m CUG302                    |
|                         | 53985.4359         | 0.0005  | II   | $\mathbf{C}$ | m CUG301                    |
|                         | 54054.2720         | 0.0002  | Ι    | $\mathbf{C}$ | m CUG301                    |
| $V456 \ Cyg$            | 54024.2818         | 0.0002  | II   | $\mathbf{C}$ | m CUG301                    |
| $V700 \ Cyg$            | 54013.3378         | 0.0001  | Ι    | $\mathbf{C}$ | m CUG301                    |
| TY Del                  | 54014.3387         | 0.0002  | Ι    | $\mathbf{C}$ | m CUG301                    |
| UX Eri                  | 54054.5423         | 0.0004  | II   | $\mathbf{C}$ | m CUG301                    |
| SW Lac                  | 53993.4066         | 0.0001  | Ι    | $\mathbf{C}$ | m CUG301                    |
| TW Lac                  | 53981.5538         | 0.0002  | Ι    | $\mathbf{C}$ | m CUG301                    |
| Y Leo                   | 54057.4833         | 0.0002  | Ι    | $\mathbf{C}$ | m CUG301                    |
| TZ Lyr                  | 53998.4246         | 0.0005  | II   | $\mathbf{C}$ | m CUG301                    |
| $V839 { m ~Oph}$        | 53983.2994         | 0.0002  | II   | $\mathbf{C}$ | m CUG301                    |
| $\operatorname{ER}$ Ori | 54055.5439         | 0.0006  | II   | $\mathbf{C}$ | m CUG301                    |
| U Peg                   | 53685.3553         | 0.0001  | II   | $BVR_c$      | m CUG302                    |
|                         | 53985.5537         | 0.0002  | II   | $\mathbf{C}$ | m CUG301                    |
|                         | 53991.3630         | 0.0003  | Ι    | $\mathbf{C}$ | m CUG301                    |
| BB Peg                  | 53991.4089         | 0.0008  | II   | $\mathbf{C}$ | m CUG301                    |
| BO Peg                  | 53991.3807         | 0.0011  | Ι    | $\mathbf{C}$ | m CUG301                    |
| ${ m BX}$ Peg           | 53985.4890         | 0.0010  | II   | $\mathbf{C}$ | m CUG301                    |
| DI Peg                  | 53991.3226         | 0.0003  | II   | $\mathbf{C}$ | m CUG301                    |
| DK Peg                  | 53991.4908         | 0.0010  | Ι    | $\mathbf{C}$ | m CUG301                    |
| Z Per                   | 53984.4171         | 0.0005  | Ι    | $\mathbf{C}$ | m CUG301                    |
| RT Per                  | 53983.4158         | 0.0002  | Ι    | $\mathbf{C}$ | m CUG301                    |
| ST Per                  | 53983.4459         | 0.0007  | Ι    | $\mathbf{C}$ | m CUG301                    |
| V432 Per                | 53983.4548         | 0.0003  | Ι    | $\mathbf{C}$ | m CUG301                    |
| UV Psc                  | 53984.4866         | 0.0004  | Ι    | $\mathbf{C}$ | m CUG301                    |
| RZ Tau                  | 54058.3560         | 0.0002  | II   | $\mathbf{C}$ | m CUG301                    |
| AH Tau                  | 54057.4103         | 0.0002  | II   | $\mathbf{C}$ | m CUG301                    |
| V781 Tau                | 54013.5775         | 0.0005  | Ι    | $\mathbf{C}$ | m CUG301                    |
| V Tri                   | 54055.2800         | 0.0002  | Ι    | $\mathbf{C}$ | m CUG301                    |
| X Tri                   | 53995.4322         | 0.0003  | II   | $\mathbf{C}$ | CUG301                      |

## **Remarks:**

We present 57 minima times of 47 eclipsing binaries. In the Remarks column of Times of Minima table, telescopes used in the observations are given.

## Acknowledgements:

This work was partly supported by the Research Found of Çanakkale Onsekiz Mart University.

References:

Kwee, K. K., van Woerden, H., 1956, *Bull. Astron. Inst. Neth.*, **12**, 327 Motl, D., 2004, C-MUNIPACK, http://integral.sci.muni.cz/cmunipack/

Number 5747

Konkoly Observatory Budapest 9 January 2007 *HU ISSN 0374 - 0676* 

# REMARKABLE ABSORPTION STRENGTH VARIABILITY OF THE $\varepsilon$ AURIGAE H $\alpha$ LINE OUTSIDE ECLIPSE

#### SCHANNE, L.

Hohlstrasse 19, D-66333 Völklingen (Germany); e-mail: schanne@t-online.de

In April and May 2005 the H $\alpha$  line of  $\varepsilon$  Aur was observed in an exceptional 'weak absorption phase'. In the period October 2005 to November 2006 the normal line profile was registered again, with a variable absorption and a weak red-shifted emission component. The time variations of the line profile and a comparison with former observations outside eclipse are presented.

 $\varepsilon$  Aur is a binary system, consisting of a yellow supergiant (F0Ia) and an enormous dusty gas disk, that eclipses every 27 years the primary component for approximately two years. From the eclipsing light curve it is concluded that within the dust disk one or two (B?) stars exist, which have so far never been observed directly (Stencel, 1985). The first contact of the next eclipse is expected in August 2009. Castelli (1978) lists the characteristic parameters of the primary component (F0Ia). The H $\alpha$  line of  $\varepsilon$  Aur is reported in the literature to be variable, but the line always shows a strong photospheric absorption and mostly weak emission components on the edges of the absorption.

The observations cover the period from 1 April, 2005 to 15 November 15, 2006 (out of eclipse, phase  $\approx 0.9$ ). The used amateur equipment consists of a Maksutov Newton telescope (127 mm of aperture, f 1/8) and a slitless reflecting grating spectrograph (grating 25 mm  $\times$  25 mm, 1200 lines/mm, collimator f = 135 mm, camera objective f = 135mm). The CCD camera (Audine, KAF 401E) is water-cooled. The chip temperature was, depending on the ambient temperature, between -10 and -30 °C. The dispersion is 41 A/mm or 0.38 A/pixel within the range of the H $\alpha$  line. The resolution was measured from the FWHM of terrestrial lines to 0.8 Å (R = 8,000). The quality of the adjustment and the mechanical stability of the system limit the exposure times for a single exposure between 30 and 60 sec. For each sum spectrum, between 10 and 80 single photographs were taken. The data were reduced using ESO MIDAS and the OPA scripts of G. Gebhardt (www.spektros.de). The single photographs are corrected by the median of 10 darks and the background of the sky before extraction of the spectra and their registering. No flatfield correction is performed. The final S/N of the continuum is between 120 and 400 (Table 1). The slitless spectra were wavelength calibrated by using 3 to 6 photospheric absorption lines from the following list: FeII: 6416.90 Å, 6430.84 Å, 6456.38 Å, 6516.05 Å, Si II: 6347.10 Å, 6371.36 Å as reference lines. The quality of EW measurements is demonstrated by comparison of the EW-integration results of this lines with the data given by Castelli (1978) and the integrations of a reference spectrum of  $\varepsilon$  Aur (20031101) given in ELODIE (Table 2).

| $\mathrm{H}\alpha$ line measurements of $\varepsilon$ Aur |                    |                           | Equi | ivalent width | [Å]                      |          |
|-----------------------------------------------------------|--------------------|---------------------------|------|---------------|--------------------------|----------|
| Date                                                      | $_{ m JD}$         | $\operatorname{Exposure}$ | S/N  | Blue wing     | $\operatorname{Central}$ | Red wing |
|                                                           |                    | $time \ [min]$            |      |               | absorption               |          |
| April 1, 2005                                             | $2,\!453,\!462.42$ | 5                         | 140  | -0.13         | 0.01                     | -0.15    |
| April 11, $2005$                                          | $2,\!453,\!472.40$ | 10                        | 170  | -0.18         | 0.06                     | -0.17    |
| April 21, $2005$                                          | $2,\!453,\!482.40$ | 10                        | 150  | -0.07         | 0.06                     | -0.15    |
| May 10, 2005                                              | $2,\!453,\!501.40$ | 10                        | 120  | -0.14         | 0.06                     | -0.24    |
| May 11, 2005                                              | $2,\!453,\!502.40$ | 10                        | 270  | -0.06         | 0.08                     | -0.15    |
| October 30, 2005                                          | $2,\!453,\!674.48$ | 30                        | 300  | 0.00          | 0.66                     | 0.00     |
| December 10, $2005$                                       | $2,\!453,\!715.50$ | 18                        | 280  | 0.00          | 1.07                     | -0.05    |
| January 23, 2006                                          | $2,\!453,\!759.31$ | 27                        | 300  | 0.00          | 0.99                     | 0.00     |
| January 24, 2006                                          | $2,\!453,\!760.32$ | 25                        | 400  | 0.00          | 1.04                     | 0.00     |
| January 30, 2006                                          | $2,\!453,\!766.36$ | 30                        | 350  | 0.00          | 1.02                     | 0.00     |
| February 1, 2006                                          | $2,\!453,\!768.32$ | 30                        | 320  | 0.00          | 1.02                     | -0.04    |
| March 12, 2006                                            | $2,\!453,\!807.33$ | 42                        | 270  | 0.00          | 0.78                     | -0.07    |
| March 13, 2006                                            | $2,\!453,\!808.42$ | 25                        | 390  | 0.00          | 0.82                     | -0.04    |
| April 7, $2006$                                           | $2,\!453,\!833.42$ | 15                        | 160  | -0.06         | 0.69                     | -0.04    |
| April 19, 2006                                            | $2,\!453,\!844.34$ | 15                        | 160  | 0.00          | 0.60                     | -0.10    |
| May 2, 2006                                               | $2,\!453,\!858.40$ | 50                        | 370  | 0.00          | 0.55                     | -0.12    |
| September 10, 2006                                        | $2,\!453,\!988.48$ | 30                        | 200  | 0.00          | 0.70                     | 0.00     |
| September 21, 2006                                        | $2,\!454,\!000.53$ | 27                        | 190  | 0.00          | 0.66                     | 0.00     |
| October 7, 2006                                           | $2,\!454,\!016.42$ | 60                        | 360  | 0.00          | 0.54                     | -0.01    |
| November 15, $2006$                                       | $2,\!454,\!055.46$ | 52                        | 210  | -0.02         | 0.49                     | -0.06    |

Table 1: List of spectra and equivalent widths of components of  $\varepsilon$  Aur H $\alpha$  line

In Fig. 1 the observed spectra and the reference spectrum are plotted. Between 1 April (JD 2453462) and 11 May, 2005 (JD 2453502), the H $\alpha$  line shows a nearly symmetrical shell spectrum with small variations of the V/R ratio of the emission components and an exceptionally small absorption component in the line core. On 30 October, 2005 (JD 2453674) the H $\alpha$  line was detected in pure absorption. Until the end of the 2006 observing season, the line was observed in normal absorption, with an occasional variable red shifted emission component. Two types of line profiles can be distinguished: The 'weak absorption phase' from the beginning of the observations (1 April to 11 May, 2005), and the 'normal absorption phase' later. The emission components of the 'weak absorption phase' are symmetrically shifted towards the blue and red, respectively, by about 80 km/s relative to the absorption minimum. In the 'normal absorption phase' the red wing maximum is red-shifted by about 100 to 160 km/s. The equivalent widths of the blue wing, the red wing and the absorption core in the spectra were calculated (F/Fc > 1 emission, F/Fc < 1 absorption, Table 1). Fig. 2 shows these EW's as time series. The variability of the absorption component is the most dominant effect.

Because of the unusual eclipsing behaviour, which is caused by a dusty cloud every 27.08 years, the star has been observed intensively. The investigations focus on those approximately 2 years of the eclipsing events. Castelli (1977, 1978) also published two measurements out of eclipse (1971). The variable H $\alpha$  lines consisted of a central absorption (F/Fc 0.45 and 0.55) and two weak emission components which are shifted relative to the core of the absorption by -72 km/s and +61 km/s, respectively. Radial outward flows are attributed to instabilities in the star producing the blue-shifted emission component. Gas from behind the star causes the red-shifted emission component. The last eclipse of 1982 to 1984 is summarized by Stencel (1985). The H $\alpha$  line profiles of 1984 (Ferluga & Heck in Stencel, 1985) resemble the normal absorption phase, whereby partly also more intensive



Figure 1. H $\alpha$  line profiles of  $\varepsilon$  Aur (measurements April 2005–November 2006 and a reference spectrum ELODIE of November 2003



Figure 2. Equivalent widths of  $\varepsilon$  Aur H $\alpha$  line components outside eclipse April 2005–November 2006



Figure 3. Equivalent widths of  $\varepsilon$  Aur H $\alpha$  line components outside eclipse, including data of Castelli (1978), Ferro (1985), Cha et al. (1995) and ELODIE (20031101)

|                       |                      | Reference | Reference spectra [Å] |         | Measurements [Å] |              |          | Differences [Å] |  |
|-----------------------|----------------------|-----------|-----------------------|---------|------------------|--------------|----------|-----------------|--|
| $\operatorname{Line}$ | $\operatorname{Ion}$ | Castelli  | ELODIE                | Average | Std. dev.        | No. of meas. | Castelli | ELODIE          |  |
| 6347                  | SiII                 | 0.694     | 0.627                 | 0.596   | 0.027            | 5            | -0.098   | -0.031          |  |
| 6371                  | SiII                 | 0.531     | 0.538                 | 0.529   | 0.024            | 7            | -0.002   | -0.009          |  |
| 6416                  | ${\rm FeII}$         | 0.245     | 0.191                 | 0.190   | 0.030            | 14           | -0.055   | -0.001          |  |
| 6432                  | ${\rm FeII}$         | 0.178     | 0.158                 | 0.170   | 0.027            | 17           | -0.008   | 0.012           |  |
| 6456                  | ${\rm FeII}$         | 0.539     | 0.533                 | 0.513   | 0.034            | 17           | -0.026   | -0.020          |  |
| 6613                  | ?                    | —         | 0.120                 | 0.120   | 0.012            | 13           | —        | 0.000           |  |

Table 2: Comparison of EW differences of measured spectra and reference spectra of  $\varepsilon$  Aur

blue wings were registered. However, one year earlier the spectra showed the absorption with stable red wings and variable blue wings (Boehm & Ferluga, 1983). 15 spectra, measured between September 1980 and May 1981 by Ferro (1985), just one year before the eclipse of 1982 to 1984, showed a 'normal absorption phase' similar to Fig. 1 with stable red wing and variable blue wing. H $\alpha$  line profiles measured by Cha et al. (1994) in November 1989 until April 1992 also resemble the profiles of the normal absorption phase in Fig. 1. The radial velocities of the absorption centers vary between +0.4 and -39.1 km/s, the emission components vary parallel to it around -60 and +60 km/s, respectively. The equivalent widths of the absorption move between 296 and 650 mÅ, the emission components between 0 and 343 mÅ (blue wing) and 0 and 295 mÅ (red wing). Additional measurements of Cha et al. (1995) in the year 1993 show absorption with a clear blue emission wing (EW approx. 200 to 300 mÅ), but only a weak red wing. The absorption line has an EW of approx. 550 mÅ in this period. The authors discuss their observations using a model, which explains the emissions with a rotating inhomogenous gas ring around the primary F0Ia component. UV-spectroscopy with the HST taken on 16 February, 1996 are described by Sheffer & Lambert (1999). The split resonance lines are attributed to a gas disk rotating in the orbit around the invisible secondary component. The rotation speed of the disk was determined from the distance of the emission maxima to 103 km/s. The origin of the emissions from a gas disk around the secondary component is not confirmed, however.

Published spectra could be digitized (Castelli: spectrum February 1971; Ferro: spectra 1980-1981)). The calculated component equivalent widths of the published spectra, of the ELODIE reference spectrum (2003) and the results of Cha et al. (1994, Table 2) are shown in Fig. 3 together with the equivalent widths of Table 1. The time series demonstrate the exceptionally small central absorption in spring 2005. The star shows a remarkable variability in absorption strength of the core of the H $\alpha$  line outside eclipse, also in former observations.

It remains to conclude:

- H $\alpha$  line in predominant emission and vanishing core absorption like in spring 2005 is an exceptional phenomenon of  $\varepsilon$  Aur.
- The absorption components EW of the H $\alpha$  line show a remarkable variability outside eclipse.

The line profile variations in the optical spectrum outside of the eclipsing phase, e.g. the presented observation of an exceptionally weak absorption phase in  $H\alpha$ , are still not satisfactorily explained. The interpretation of the  $H\alpha$  line in eclipse has to take the out-of-eclipse variations into account. Further observations, also far from eclipse, are needed.

Acknowledgements: I thank Dr. Petr Harmanec, Dr. Otmar Stahl and Dr. Andreas Kaufer for helpful discussions and assistance during the preparation of the manuscript.

References:

Boehm, C., Ferluga, S., 1983, *IBVS*, No. 2326

Castelli, F., 1977, Astrophysics and Space Science, 49, 179

Castelli, F., 1978, Astron. Astrophys., 69, 23

Cha, G., Li, Y., Xu J., 1995, *IBVS*, No. 4149

Cha, G., Tan, H., Xu, J., Li, Y., 1994, Astron. Astrophys., 284, 874

Ferro, A.A., 1985, Rev. Mexicana Astron. Astrof., 11, 113

Sheffer, Y., Lambert, D.L., 1999, PASP, 111, 829

Stencel, R.E., 1985, NASA Conference Publication, No. 2384, 1982–1984 eclipse of  $\varepsilon$  Aur

Number 5748

Konkoly Observatory Budapest 22 January 2007 *HU ISSN 0374 - 0676* 

# DETECTION OF A LARGE FLARE IN FR Cnc (=1RXS J083230.9+154940)

GOLOVIN, A.<sup>1,2,4</sup>; PAVLENKO, E.<sup>3</sup>; KUZNYETSOVA, YU.<sup>2</sup>; KRUSHEVSKA, V.<sup>2</sup>

<sup>1</sup> Kyiv National Taras Shevchenko University, Kyiv, Ukraine e-mail: astronom\_2003@mail.ru, astron@mao.kiev.ua

 $^2$  Main Astronomical Observatory of National Academy of Science of Ukraine, Kyiv, Ukraine

<sup>3</sup> Crimean Astrophysical Observatory, Crimea, Nauchnyj, Ukraine

<sup>4</sup> Visiting astronomer of the Crimean Astrophysical Observatory, Crimea, Nauchnyj, Ukraine

FR Cnc (= BD+16°1753 = MCC 527 = 1ES 0829+15.9 = 1RXS J083230.9+154940 = HIP 41889 = GSC 01392-02634 = TYC 1392-2634-1) ( $\alpha_{2000}$  = 08<sup>h</sup>32<sup>m</sup>30<sup>s</sup>5287 and  $\delta_{2000}$  = +15°49′26″.193) was first mentioned as a probable active star when it was identified as the optical counterpart of a soft X-ray source 1ES 0829+15.9 in the Einstein Slew Survey. It has  $V = 10^{\text{m}}43$ , spectral type K8V, the X-ray flux is of  $\approx 10^{-11} \text{ erg} \cdot \text{s}^{-1} \cdot \text{cm}^{-2}$ (Elvis et al., 1992; Schachter et al., 1996).

It was classified as BY Dra type star (i.e. its variability is caused by rotational modulation of starspots) and given the name FR Cnc by Kazarovets et al. (1999). The presence of Ca II H, K and H<sub> $\alpha$ </sub> emission lines in the spectra indicates high chromospheric activity in FR Cnc (Pandey et al., 2002; Pandey, 2003). The other details concerning history of investigation of this object can be found in Pandey et al. (2005)

Flares in FR Cnc were not previously reported.

FR Cnc was observed on 23 November, 2006 quasi-simultaneously in  $B, V, R_j, I_j$  bands at Crimean Astrophysical Observatory (Ukraine) by Alex Golovin, using 38-cm Cassegrain telescope, which is equipped with SBIG ST-9 CCD camera, cooled by a Peltier system to about -30 °C. The exposure times were 20 s, 13 s, 8 s and 17 s for  $B, V, R_j, I_j$ bands respectively. Data reduction was done using "Maxim DL" package. Reduction included bias, dark-frame subtraction and flat field correction using twilight sky exposures. Since the field of FR Cnc is not crowded, the technique of aperture photometry was applied to extract the differential magnitudes. The total number of useful frames was 89 for each band. The brightness of FR Cnc was measured with respect to GSC 1392-2636 ( $\alpha_{2000} = 08^{h}32^{m}23^{s}698; \delta_{2000} = +15^{\circ}46'50''.15$ ), while GSC 01392-02708 ( $\alpha_{2000} = 08^{h}32^{m}38^{s}.2271; \delta_{2000} = +15^{\circ}44'22''.095$ ) served as a check star. Since the magnitudes of the comparison star in all bands are not known, here we present just differential magnitudes.

The data points have a statistical accuracy of 0.01 or better (determined from the difference *check star-comparison star*). To rule out the possibility of observing brightness variations caused by the comparison star, an independent photometry of GSC 1392-2636 (comp. star) was performed with respect to the check star (GSC 01392-02708).



Figure 1. The flare of FR Cnc: shifted differential lightcurves in B, V, R and I bands as well as the difference check star – comparison star ('Ch' on the plot)

The flare of FR Cnc was detected on 23 November, 2006 with the maximum at 00:19 (UT). After the initial rapid flaring, the brightness of FR Cnc decreased slowly. The time between the flare began and reached its maximum was about 4 minutes, while the total duration of the flare was about 41 minutes.

The flare had a maximum amplitude  $(1^{\text{m}}_{\cdot}02)$  in the *B* band. In other bands the amplitudes were  $0^{\text{m}}_{\cdot}49$ ,  $0^{\text{m}}_{\cdot}21$  and  $0^{\text{m}}_{\cdot}14$  for  $V, R_j$  and  $I_j$  bands respectively.

Noteworthy, in 8 minutes after the flare's maximum a notable "spike" was observed in B and V bands (in other bands the amplitude was probably too low) during the brightness decline. Remarkable, that FR Cnc remained to be about 0<sup>m</sup>.05 brighter for at least an hour after the flare began comparing with brightness before flare.

Following the idea, described at Kozhevnikova et al. (2006), we calculated the intensity of the flare and the *absolute* energy output. The relative intensity of the flare was determined via the following relation:  $\frac{I_f}{I_0} = (\frac{I_0 + I_f}{I_0}) - 1$ , where  $I_0 + I_f$  is the intensity of the object, integrated over the duration of the flare,  $I_0$  is the intensity of the star in quiescent level in one of the bands (corrected to the flare duration). For calculation of the *absolute* energy output, we assume for FR Cnc's quiescent level the following magnitude and colour indices: V = 10.43, B - V = 1.35, V - R = 1.15, V - I = 1.93. We used  $30.24 \pm 2.03$  mas parallax (Perryman et al., 1997) that imply distance  $33 \pm 2$  pc.

Similar calculations of the flare intensity and energy output were also done by Moffett (1973) and by Panov et al. (2000).

So, we get the values listed in Table 1. Fig. 1 shows differential lightcurves in  $B, V, R_j$  and  $I_j$  bands of FR Cnc during our observations on 23 November, 2006.

However, the observed rotational period  $(0.8267 \pm 0.0004 \text{ from Pandey et al., } 2005)$  is

| Band | Amplitude [mag] | Flare flux/quiescent flux [%] | Flare energy [erg / Å] |
|------|-----------------|-------------------------------|------------------------|
| B    | 1.02            | 38.63                         | $1.73 \times 10^{31}$  |
| V    | 0.49            | 14.05                         | $1.14 	imes 10^{31}$   |
| R    | 0.21            | 8.25                          | $0.89 	imes 10^{31}$   |
| Ι    | 0.14            | 2.9                           | $0.29 	imes 10^{31}$   |

Table 1. Flare properties

unusually short for such type of stars, which implies that this star should manifest strong flaring activity (see Dorren et al., 1994). We detected a flare of FR Cnc for the first time. Further monitoring of this object is highly desirable.

Acknowledgements: First of all, it is a great pleasure for the authors to express here sincere thanks to Galvez Mari Cruz (Depto. Astrofisica, Universidad Complutense de Madrid, Madrid, Spain) for pointing our interest to this object. Authors are very grateful to R. Gershberg, A. Kozhevnikova and I. Alekseev for valuable comments. Alex Golovin indebted to Jevgeniy Kachalin for his great help with preparation this manuscript and for the proof-reading. It is a great pleasure for Alex Golovin to express personal thankfulness to Maksim Andreev (Terskol Branch of the RAS Institute of Astronomy, Terskol, Russia) for useful discussions and suggestions during preparation of this paper.

#### References:

Dorren, J.D., Guinan, E.F., Dewarf, L.E., 1994, ASPCS, 64, 399 (Cool stars, stellar systems, and the Sun, ed. J.-P. Caillault)
Elvis, M., et al., 1992, ApJS, 80, 257
Kazarovets, A.V., et al., 1999, IBVS, No. 4659
Kozhevnikova, A.V., Alekseev, I.Yu., et al., 2006, IBVS, No. 5723
Moffett T.J., 1973, Mon. Not. R. Astr. Soc., 164, 11
Pandey, J.C., et al., 2002, IBVS, No. 5351
Pandey, J.C., et al., 2005, AJ, 130, 1231
Panov, K., Goranova, Yu., Genkov, V., 2000, IBVS, No. 4917
Perryman, M.A.C., et al., 1997, A&A, 323, L49
Schachter, J.F., et al., 1996, ApJ, 463, 747

Number 5749

Konkoly Observatory Budapest 22 January 2007 *HU ISSN 0374 - 0676* 

#### BVRI PHOTOMETRY OF VW Vul AND NEW COMPARISON STARS

CAPEZZALI, D.<sup>1,2</sup>; SPOGLI, C.<sup>1,2</sup>; FIORUCCI, M.<sup>1</sup>; CIPRINI, S.<sup>1</sup>; NUCCIARELLI, G.<sup>1</sup>; MANCINELLI, V.<sup>2</sup>; BRUNOZZI, P.<sup>2</sup>; FAGOTTI, P.<sup>2</sup>; BRANDONI, L.<sup>2</sup>; ROCCHI, G.<sup>2</sup>

<sup>1</sup> Physics Department and Astronomical Observatory, University of Perugia, Perugia, Italy

<sup>2</sup> Porziano Astronomical Observatory, Via Santa Chiara 2 Assisi, Italy

The dwarf nova VW Vulpeculae is classified as Z Cam (UGZ) in the GCVS (Kholopov et al., 1985–1990), with B magnitudes ranging from 13.1 to 16.27. Shafter (1985) published a spectroscopic study and reported a period of 0.0731 day. However, Thorstensen et al. (1998) computed an orbital period of 0.1687 day from the measurement of H $\alpha$  radial velocities in quiescence. Only a few photometric data are available for this source. Wenzel (1985) found a 19 ± 5 days cycle length on 40 years of archival plates. Bruch & Engel (1994) report B - V = 0.12 during the outburst, and B - V = 0.35 in quiescence. More recently, Kato (1999) gives the light curve of VW Vul during the 1995 standstill.

With the aim to increase the multi-band photometric database of VW Vul, we observed this source at the Porziano Astronomical Observatory during the summers of 2004 and 2005. The photometric system consists of an 0.35-m Schmidt-Cassegrain telescope, equipped with an HiSIS 23 CCD camera (Kodak Kaf 401E of  $762 \times 512$  pixels) and B, V,  $R_c$ ,  $I_c$  Johnson-Cousins broad-band filters. The exposure time was 120–300 s depending on the brightness of the object. The frames were first corrected for bias and flat-field, and then processed by a PC-based aperture photometry package developed by one of the authors using DAOPHOT routines (Stetson, 1987).

Few other observations were obtained with the AIT at the Perugia University Observatory (see Spogli et al., 1998 for a description of instruments and data-reduction). There is no evaluable difference between the reduced data obtained with the two different telescopes.

All the data of VW Vul here reported were obtained in differential photometry using the calibration stars given by Misselt (1996) with the numbers M2, M3, M6, M7. Moreover, we calibrated these comparison stars with the  $I_c$  filter by observing, on different photometric nights, several standard stars (Landolt, 1992) having B - V from -0.2 to 1.4, over a wide range of airmass. The weighted averages are:  $I_c(M2) = 12.33 \pm 0.05$ ,  $I_c(M3) = 13.61 \pm 0.05$ ,  $I_c(M6) = 13.82 \pm 0.05$ ,  $I_c(M7) = 12.01 \pm 0.05$ . All these stars are placed in the East direction of VW Vul, so we included more comparison objects to the sequence. Figure 1 shows the finding chart for the new reference stars that we have found near VW Vul, numbered from C1 to C6. Table 1 gives the V,  $R_c$ ,  $I_c$  data of these new reference stars. The first column gives the number (see Fig. 1), the second and the third columns are the J2000.0 coordinates of the objects, the last column is the number of different nights each new reference star has been calibrated to give the average values reported in columns 4–6.

| No. | J2000.0 coord.                             |                               | V              | $R_c$          | $I_c$          | Obs.                    |  |  |
|-----|--------------------------------------------|-------------------------------|----------------|----------------|----------------|-------------------------|--|--|
|     | $\alpha$                                   | $\delta$                      | [mag]          | [mag]          | [mag]          | $\operatorname{nights}$ |  |  |
| C1  | $20^{\rm h}57^{\rm m}32^{\rm s}\!.82$      | $+25^{\circ}30'20''_{\cdot}3$ | $14.26\pm0.02$ | $13.86\pm0.02$ | $13.44\pm0.03$ | 17                      |  |  |
| C2  | $20^{ m h}57^{ m m}28\stackrel{ m s}{.}48$ | $+25^{\circ}33'27''.8$        | $15.17\pm0.05$ | $14.59\pm0.02$ | $14.03\pm0.04$ | 16                      |  |  |
| C3  | $20^{ m h}57^{ m m}18\overset{ m s}{.}30$  | $+25^{\circ}29'49''_{\cdot}0$ | $15.39\pm0.03$ | $14.92\pm0.01$ | $14.44\pm0.03$ | 10                      |  |  |
| C4  | $20^{ m h}57^{ m m}20\stackrel{ m s}{.}95$ | $+25^{\circ}28'52''_{\cdot}5$ | $13.53\pm0.03$ | $12.49\pm0.02$ | $11.58\pm0.03$ | 14                      |  |  |
| C5  | $20^{ m h}57^{ m m}14 m s35$               | $+25^{\circ}29'36''_{\cdot}3$ | $16.02\pm0.05$ | $15.64\pm0.02$ | $15.27\pm0.03$ | 5                       |  |  |
| C6  | $20^{\rm h}57^{\rm m}21 lap{.}^{ m s}35$   | $+25^{\circ}26'34''_{\cdot}6$ | $15.41\pm0.04$ | $14.90\pm0.03$ | $14.41\pm0.03$ | 9                       |  |  |

Table 1: New comparison stars of VW Vul

Table 2: Photometric data of VW Vulpeculae

| UT Date    | JD         | B              | V              | $R_c$          | $I_c$          |
|------------|------------|----------------|----------------|----------------|----------------|
|            | (2453000+) |                |                |                |                |
| 25/06/2004 | 181.526    | $15.19\pm0.08$ | $14.77\pm0.02$ | $14.49\pm0.02$ | $14.33\pm0.03$ |
| 26/06/2004 | 182.556    | $15.08\pm0.08$ | $14.72\pm0.04$ | $14.48\pm0.03$ | $14.24\pm0.03$ |
| 27/06/2004 | 184.421    | $14.79\pm0.08$ | $14.50\pm0.02$ | $14.28\pm0.02$ | $14.10\pm0.03$ |
| 28/06/2004 | 185.413    | $14.64\pm0.09$ | $14.28\pm0.03$ | $14.11\pm0.02$ | $13.90\pm0.03$ |
| 01/07/2004 | 188.485    | $14.34\pm0.07$ | $13.99\pm0.03$ | $13.85\pm0.03$ | $13.59\pm0.04$ |
| 02/07/2004 | 189.457    | $14.56\pm0.07$ | $14.25\pm0.05$ | $14.05\pm0.03$ | $13.81\pm0.04$ |
| 05/07/2004 | 192.411    | $15.11\pm0.08$ | $14.76\pm0.03$ | $14.48\pm0.02$ | $14.27\pm0.04$ |
| 06/07/2004 | 193.417    |                | $14.84\pm0.03$ | $14.54\pm0.04$ | $14.24\pm0.05$ |
| 07/07/2004 | 194.437    |                | $14.97\pm0.03$ | $14.70\pm0.04$ | $14.37\pm0.04$ |
| 09/07/2004 | 196.475    |                | $15.19\pm0.04$ | $14.85\pm0.02$ | $14.50\pm0.03$ |
| 10/07/2004 | 197.473    | $15.38\pm0.08$ | $14.96\pm0.02$ | $14.64\pm0.02$ | $14.38\pm0.03$ |
| 13/07/2004 | 200.437    |                | $15.30\pm0.10$ | $14.98\pm0.04$ | $14.55\pm0.04$ |
| 15/07/2004 | 202.406    | $15.28\pm0.10$ | $14.79\pm0.02$ | $14.52\pm0.02$ | $14.18\pm0.02$ |
| 17/07/2004 | 204.471    | $13.93\pm0.07$ | $13.71\pm0.02$ | $13.57\pm0.02$ | $13.44\pm0.02$ |
| 21/07/2004 | 208.426    | $14.88\pm0.08$ | $14.53\pm0.02$ | $14.30\pm0.02$ | $14.08\pm0.02$ |
| 23/07/2004 | 210.443    | $14.68\pm0.08$ | $14.47\pm0.05$ | $14.34\pm0.05$ | $13.99\pm0.04$ |
| 14/08/2005 | 596.525    |                | $15.77\pm0.03$ | $15.39\pm0.03$ | $15.02\pm0.04$ |
| 15/08/2005 | 597.534    | $15.77\pm0.10$ | $15.40\pm0.04$ | $15.01\pm0.04$ | $14.61\pm0.04$ |
| 16/08/2005 | 599.441    | $15.63\pm0.10$ | $15.15\pm0.02$ | $14.86\pm0.02$ | $14.64\pm0.03$ |
| 09/09/2005 | 623.420    | $15.84\pm0.05$ | $15.32\pm0.02$ | $15.03\pm0.03$ | $14.66\pm0.03$ |
| 10/09/2005 | 624.428    | $15.65\pm0.05$ | $15.22\pm0.03$ | $15.06\pm0.02$ | $14.71\pm0.04$ |
| 23/09/2005 | 637.415    |                | $15.36\pm0.05$ | $15.06\pm0.05$ | $14.75\pm0.04$ |
| 26/09/2005 | 640.398    |                | $14.61\pm0.05$ |                | $14.24\pm0.04$ |
| 29/10/2005 | 673.379    |                | $15.17\pm0.03$ | $14.92\pm0.02$ | $14.57\pm0.05$ |
| 19/11/2005 | 694.261    | $14.68\pm0.07$ | $14.34\pm0.02$ | $14.16\pm0.03$ | $13.97\pm0.03$ |
| 10/11/2005 | 695.230    | $14.95\pm0.05$ | $14.57\pm0.02$ | $14.30\pm0.02$ | $14.10\pm0.04$ |



Figure 1. New comparison stars to be added to the Misselt (1996) sequence. North is up and East to the left. The frame is  $11' \times 8'$ 



Figure 2. V light curve of VW Vul in summer 2004. Filled circles are our data, while small crosses are visual estimates available from AFOEV (cdsweb.u-strsbg.fr/afoev). The variable was observed during the rise to a low-amplitude outburst, the successive decline and the following fast burst. Error bars show the standard deviations

All the stars have been observed for a minimum of 15 months to a maximum of 19 months, so they can be considered stable.

In 2004, VW Vul has been monitored from June 25 to July 23, for a total of 16 nights (see Figure 2). More observations have been collected in 2005, from August 14 to November 10, so the overall database consists of 26 nights for a total of 95 photometric measurements (Table 2). From these data we can see that VW Vul varies between  $V = 13.71 \pm 0.02$  and  $15.77 \pm 0.03$ .

We know that the UV emission of VW Vul during quiescence is dominated by the accretion disk, plus the white dwarf contribution (Henry & Sion, 2001; Urban & Sion, 2006). The strong emission of the disk is evident also in the optical B band, with a relatively low difference in the average B-V color-index: it varies between 0<sup>m</sup>.30 during the outburst and 0<sup>m</sup>.45 in quiescence. On the other side, in the infrared part of the spectrum, the emission is usually dominated by the late-type secondary star. The average value of  $V - I_c$  varies between 0<sup>m</sup>.39 and 0<sup>m</sup>.65, but the complete variation goes from  $V - I_c = 0^m.27$  to 0<sup>m</sup>.79.

References:

- Bruch, A., Engel, A., 1994, A&AS, 104, 79
- Henry, C.K., Sion, E.M., 2001, PASP, 113, 970
- Kato, T., 1999, *IBVS*, No. 4769
- Kholopov, P.N., et al., 1985–1990, General Catalogue of Variable Stars, 4th ed., Nauka, Moscow
- Landolt, A.U., 1992, AJ, **104**, 340
- Misselt, K.A., 1996, PASP, 108, 146
- Shafter, A.W., 1985, AJ, 90, 643
- Spogli, C., Fiorucci, M., Tosti, G., 1998, A&AS, 130, 485
- Stetson, P.B., 1987, PASP, 99, 191
- Thorstensen, J.R., Taylor, C.J., Kemp, J., 1998, PASP, 110, 1405
- Urban, J.A., Sion, E.M., 2006, ApJ, 642, 1029
- Wenzel W, 1985, *IBVS*, No. 2757

Number 5750

Konkoly Observatory Budapest 22 January 2007 *HU ISSN 0374 - 0676* 

## A NEW LONG-PERIOD U Gem VARIABLE IDENTIFIED WITH THE X-RAY SOURCE 1RXS J224342.3+305526

BERNHARD, K.<sup>1,7</sup>; LLOYD, C.<sup>2</sup>; BOYD, D.<sup>3,8</sup>; PIETZ, J.<sup>4,7</sup>; JONES, J.L.<sup>5,9</sup>; RENZ, W.<sup>6,7</sup>

<sup>1</sup> A-4030 Linz, Austria; e-mail: klaus.bernhard@liwest.at

<sup>2</sup> Department of Physics and Astronomy, Open University, Milton Keynes MK7 6AA, UK; e-mail: C.Lloyd@open.ac.uk

<sup>3</sup> 5 Silver Lane, West Challow Oxon OX12 9TX UK; e-mail: drsboyd@dsl.pipex.com

<sup>4</sup> D-50374 Erftstadt, Rostocker Str. 62, Germany; e-mail: j.pietz@arcor.de

<sup>5</sup> 3190 Douglas Circle, Lake Oswego, OR 97035, USA: e-mail: nt7t@comcast.net

<sup>6</sup> D-76227 Karlsruhe Durlach, Germany; e-mail: w\_renz@onlinehome.de

 $^7$ Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. (BAV), Munsterdamm 90, D–12169 Berlin, Germany

<sup>8</sup> BAA, Variable Star Section, Burlington House, Piccadilly, London W1J 0DU, UK

<sup>9</sup> AAVSO, 25 Birch Street, Cambridge, MA 02138, USA

During a programme of optical identification of X-ray sources the uncatalogued variable, NSVS 8915780 at  $22^{h}43^{m}40^{s}7 + 30^{\circ}55'22''$  in the ROTSE1 database (Woźniak et al., 2004), has been found to be coincident the X-ray source 1RXS J224342.3+305526 from the ROSAT all-sky survey faint source catalogue (Voges et al., 1999). The separation between the two sources is 22'', which is consistent with the uncertainty of 19'' in the position of the X-ray source. The star is also identified as GSC 02736-01067 and is catalogued by 2MASS at  $22^{h}43^{m}40^{s}71 + 30^{\circ}55'20''.1$  (2000).

The ROTSE1 light curve is shown in Figure 1 and is available from the Northern Sky Variability Survey (NSVS) website (see reference Woźniak et al., 2004). The data show a cyclical variation between  $R \sim 16.0$  and 13.5, with a period  $\sim 16$  days. However, the data are better fitted by a period of twice this value, with alternate maxima having slightly different magnitudes. The large amplitude and short time scale, and the possible association with a X-ray source suggest that this is a U Gem type cataclysmic variable (CV). The 2MASS colours of  $J - H = 0.09 \pm 0.02$  and  $H - K = 0.06 \pm 0.02$  (Cutri et al., 2003) suggest a star with a spectral type of mid-to-late A. While in general the IR colours of CVs tend to match later-type main sequence stars, these colours are consistent with the bluest CVs seen in the 2MASS data (Hoard et al., 2002). The optical colours from the USNO-B1.0 (Monet et al., 2003) of  $b - r \sim 0.6$  although approximate, are consistent with this. Although these are not particularly blue they are again consistent with those of CVs. The pattern of variability is similar to that seen in several well-observed U Gem stars, e.g., AH Her, RX And, HL CMa, SY Cnc, CN Ori and Z Cam. All vary in a relatively periodic way on time scales of  $\sim 20$  days with amplitudes of 2–3 magnitudes. All of these are UGZ stars, possibly indicating that the new variable also belongs to this class.



Figure 1. All the ROTSE1 data showing the 16 day outburst cycle with the 32 day period fitted. Flagged (suspect) data, open circles; unflagged data, filled circles



Figure 2. The recent data with different observers shown as different symbols. Small offsets have been applied to each data set as part of the fitting process

The X-ray source was observed by the ROSAT PSPC with a count rate of  $0.0195 \pm 0.00771$  cts/s so assuming optical magnitudes V = 16 and V = 13 this leads to  $F_X/F_{opt} = -0.9$  and -2.1 respectively. Despite this uncertainty the  $F_X/F_{opt}$  ratio is consistent with the less X-ray bright grouping of CVs. The hardness ratios are poorly defined with HR1 =  $0.55 \pm 0.40$  and HR2 =  $0.78 \pm 0.46$  and these are consistent with both of the main groupings of CVs in the hardness ratio plane (see Motch et al., 1998).

Further optical observations have been made between September and December 2005 by Bernhard, using a 20-cm SCT with a Starlight Xpress SX CCD-camera unfiltered



Figure 3. The phase diagram showing the averaged C and V data when the system is bright (top; expanded by a factor of 4), in mid range, and at the minimum of the outburst cycle. The bottom plot show the orbital variation of V - I at the minimum of the outburst cycle.

(C[lear]) and in B, V and R; Boyd, using a 35-cm SCT with a Starlight Xpress SXV-H9 CCD-camera in C, V and I; Pietz using a 28-cm SCT with an ST-6B CCD camera unfiltered and Jones using a 28-cm SCT with an ST-7 CCD camera and V filter. All these observations are shown in Figure 2. The filtered observations have been reduced using a calibration provided by Henden (private communication) while the C observations have either been reduced as V or in the natural system.



**Figure 4.** The V - I data showing the change with V

The new observations mirror the ROTSE1 data with a slightly longer cycle at 18 days again with alternately bright and faint maxima. The minimum magnitude is relatively constant from cycle to cycle. The variation is very sinusoidal (e.g., AH Her, RX And) and not triangular (SY Cnc) or saw toothed (Z Cam). On a seasonal time scale the variation also seems to be remarkably repeatable, both within the ROTSE1 and recent data.

The nightly runs of observations have been subjected to a wavelet analysis and the results have been used to construct scalegrams that are widely used to examine flickering in CVs (see Fritz & Bruch, 1998). The scalegrams show the behaviour typical of flickering which is usually taken as direct evidence of accretion processes. By itself this confirms the variable as a CV and strengthens the identification with the X-ray source.

The new observations also reveal a sinusoidal variation with a period of about 5 hours that is consistent with an orbital hump. While this type of variation is seen in many CVs the amplitude seen here is particularly large, reaching as much as  $0^{m}_{0}6$  at minimum of the outburst cycle and reducing to  $< 0^{m}_{0}04$  at maximum. The range of variation is entirely consistent with the orbital variation being diluted as the system brightens. However, differences between alternate cycles suggest that the system shows a double orbit hump with the ephemeris of

$$HJD_{MinI} = 2453679.90(1) + 0.42234(3) \times E$$

for the data in the middle of the range. The light curve (Figure 3) appears to migrate to later phases as the system brightens, in particular the primary minimum and the following maximum. The secondary minimum appears to be relatively stable in phase but flattened, possibly suggesting a partial eclipse. The orbital variation in V-I at minimum brightness (also shown in Figure 3) shows a dramatic increase near secondary minimum, presumably when the cool star dominates the light curve.

Multi-colour photometry reveals a dramatic increase in temperature as the object brightens with  $V - I \sim 1.0$  at minimum and  $B - V \sim 0.05$ ,  $V - R \sim 0.06$  and  $V - I \sim 0.1$  at maximum (Figure 4).

The system probably contains a relatively massive cool star which dominates at the minimum of the outburst cycle, and the large orbital variation suggests that the system is seen at high inclination. The shape of the secondary minimum possibly hints at a grazing eclipse of the accretion disc by the cool star. The changing shape of the light curve can probably be explained by changes in the brightness and distribution of emission from the accretion disc and hot spot as the outburst progresses.

Acknowledgements. It is a pleasure the acknowledge Arne Henden for providing the sequence and many other observers including Peter Frank, John Greaves, Gary Poyner, Mike Simonsen for their thoughts and comments.

#### References:

Cutri, R.M., et al., 2003, 2MASS All-Sky Catalog of Point Sources, University of Massachusetts and IPAC/California Institute of Technology
Fritz, T., Bruch, A., 1998, Astron. Astrophys., 332, 586
Hoard, D.W., Wachter, S., Clark, L.L., Bowers, T.P., 2002, Astrophys. J., 565, 511
Monet D.G., et al., 2003, The USNO-B1.0 Catalogue, US Naval Observatory
Motch, C., et al., 1998, Astron. Astrophys. Suppl. Ser., 132, 341
Voges, W., et al., 1999, http://vizier.u-strasbg.fr/viz-bin/Cat?IX/29
Woźniak, P.R., et al., 2004, Astron. J., 127, 2436
http://skydot.lanl.gov/nsvs/star.php?num=8915780

Number 5751

Konkoly Observatory Budapest 22 January 2007 *HU ISSN 0374 - 0676* 

# SPECTROSCOPY OF THE FAINT OLD NOVAE V Per AND V500 Aql

HAEFNER, R.; FIEDLER, A.

Universitäts-Sternwarte München, Scheinerstr. 1, D-81679 München, Germany

Results of time-resolved spectroscopy of the faint old novae V Per and V500 Aql are reported for the first time. The observations were performed using the Low Resolution Spectrograph (LRS) at the 9.2-m Hobby-Eberly Telescope (HET) and the FORS1 instrument at the ESO Very Large Telescope (VLT) Unit No. 1. Table 1 lists the observing log for each object. All spectra were reduced with IRAF<sup>†</sup> standard tools. Radial velocities were measured applying the double-Gaussian convolution method (see e.g. Shafter et al., 1986). The corresponding code was written using the yorick language.

Table 1: Journal of observations. UT times refer to the start of the first and last exposure, respectively

| Object   | Date         | First exp.      | Last exp. | Indiv. exp. | No.  | Res.               | Tel. |
|----------|--------------|-----------------|-----------|-------------|------|--------------------|------|
|          |              | $(\mathrm{UT})$ | (UT)      | time $(s)$  | exp. | $(\text{\AA/pix})$ |      |
| V Per    | 2001 Oct. 14 | 04:21:34        | 05:48:42  | 500         | 8    | 2                  | HET  |
|          | 2001 Oct. 14 | 09:13:47        | 10:01:15  | 500         | 5    | 2                  | HET  |
|          | 2001 Nov. 25 | 06:30:38        | 07:38:39  | 500         | 8    | 2                  | HET  |
| V500 Aql | 1999 June 11 | 06:47:12        | 10:24:54  | 420/720     | 20   | 1.2                | VLT  |

V Per (Nova Persei 1887) is a faint ( $V \approx 18$ ) eclipsing ( $\Delta V \approx 1.3$ ) classical nova. The orbital period of the system is 2.571 hr, thus placing it near the middle of the period gap of cataclysmic variables (Shafter & Abbott, 1989). In their recent eclipse analysis Shafter & Misselt (2006) investigated the structure of the accretion disk and estimated the masses of the components to be most likely  $M_1 = 0.85 M_{\odot}$  and  $M_2 = 0.17 M_{\odot}$ . The only spectrum of the postnova known so far is that published by Shafter & Abbott (1989). The exposure time was around 1 hr thus covering nearly half an orbital cycle. Besides the Balmer emissions ( $H_{\alpha}$ ,  $H_{\beta}$ ,  $H_{\gamma}$ ) the spectrum shows the high excitation lines He II  $\lambda 4686$  is stronger than  $H_{\beta}$  led the authors to suggest that V Per might be a magnetic system. But the object was not detected as an X-ray source in the ROSAT All Sky Survey (Verbunt et al., 1997) and shows no circular polarization (Stockman et al., 1992) which would have strengthened this interpretation.

<sup>&</sup>lt;sup>†</sup>IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.



Figure 1. Grey-scale representation of the He II  $\lambda 4686$  and  $H_{\beta}$  lines (left) and the  $H_{\alpha}$  line (right) of V Per. The spectra are folded on the orbital period and averaged into 11 phase bins. A velocity scale is given on top: the central large tick represents zero velocity for each line and the smaller ticks to the left and right follow in steps of  $\pm 1000$  km/s. The double-peaked structure of  $H_{\alpha}$  and  $H_{\beta}$  around phase 0.5 is clearly recognisable whereas the He II line remains single-peaked

V500 Aql (Nova Aquilae 1943) is a faint (~ 18 mag) old nova which shows eclipses (~ 0.4 mag) repeating with a period of 3.485 hr (Haefner, 1999). No spectroscopic information on the postnova is known in the literature.

The phases for our 21 time-resolved spectra of V Per (wavelength range  $\lambda\lambda4500$ – 7000 Å) were computed using the new ephemeris given by Shafter & Misselt (2006). The spectra cover the phase interval  $\varphi = 0.31$ –0.97 with respect to the eclipse time. Between  $\varphi = 0.39$  and  $\varphi = 0.60$  the H<sub> $\alpha$ </sub> and H<sub> $\beta$ </sub> emissions exhibit a moderate doublepeaked structure whereas the strong He II  $\lambda$ 4686 line remains single-peaked at all times, a phenomenon shared with the SW Sex stars. Since the spectra are unevenly distributed over the phase, they were averaged into 11 almost evenly spaced phase bins for better presentation of the effect (Fig. 1). Because the high-velocity wings of all lines seemed to be undisturbed an attempt was made to determine radial velocities. The resulting radial velocity curve for  $H_{\alpha}$  ( $K_1 = 308 \pm 21$  km/s,  $\gamma = 56 \pm 18$  km/s) is convincing (Fig. 2). However, the pronounced phase lag of  $75^{\circ} \pm 4^{\circ}$  relative to the photometric ephemeris shows that  $H_{\alpha}$  does not follow the motion of the white dwarf. The same holds true for the H<sub> $\beta$ </sub> and He II  $\lambda$ 4686 lines. But, whereas a (full) Gaussian separation of 1400 km/s was essential to obtain the  $H_{\alpha}$  radial velocity curve showing the least scatter, separations of 1800 km/s and 1960 km/s were required for an optimal solution in the case of  $H_{\beta}$  and He II, respectively. The corresponding radial velocity curves though being of suboptimal quality show lower semi-amplitudes  $(K_1 \sim 235 \text{ km/s})$  and phase lags on the order of some  $60^{\circ}$ . Therefore, there must be severe departures from symmetric line emission across the whole accretion disk or the system really harbours a magnetic white dwarf. Though the incomplete phase coverage might have some influence on the resulting radial velocity curves, their amplitudes constitute in any case no reliable quantity to derive e.g.



Figure 2. Radial velocity curve of the  $H_{\alpha}$  line in V Per along with the best-fitting sinusoid. The velocities were measured using a (full) Gaussian separation of 1400 km/s. Note the large phase lag of 75°. A separation of e.g. 1960 km/s (He II) would reduce the phase lag only marginally by 3° but would increase the scatter of the radial velocity curve



Figure 3. Orbital emission line variations of V500 Aql. The spectra are normalised to continuum level and separated vertically by constant offsets. Phase zero is arbitrarily assigned to the first spectrum of the series. The spectrum for phase 0.97 (actually an average of three) shows larger scatter since the data suffer from large air mass and a possible partial coverage of the shallow eclipse



Figure 4. Radial velocity curve of the  $H_{\beta}$  line in V500 Aql along with the best-fitting sinusoid  $(K_1 = 65 \pm 13 \text{ km/s}, \gamma = -72 \pm 10 \text{ km/s})$ . The velocities were measured using a (full) Gaussian separation of 1890 km/s and folded on the orbital period (3.485 hr). Note that phase zero is arbitrary

the mass of the primary. In view of this it rather becomes redundant to mention that the measured large values of  $K_1$  would result in an unrealistically small mass for the white dwarf  $(M_1 \ll M_2)$ .

Our 20 time-resolved spectra of V500 Aql (wavelength range  $\lambda\lambda4000-5000$  Å) cover one orbital revolution and show the typical emission line features of old novae. The Balmer lines, as compared with V Per, are quite weak with He II  $\lambda4686$  being less prominent than H<sub> $\beta$ </sub>. The C III/N III  $\lambda4640-4650$  complex, however, exhibits the same intensity as the He II line. Since the individual spectra are rather noisy (in particular the first three and last four of the series with individual exposure times of 420 s) the data were averaged resulting in nine spectra which are nearly equally spaced in phase. Complex changes especially in the Balmer line profiles can be recognized (Fig. 3). Nevertheless, at least the H<sub> $\beta$ </sub> line seemed to be suitable for radial velocity measurements. The resulting radial velocity curve (Fig. 4) exhibits a moderate amplitude, but disallows any reliability check since the photometric ephemeris is not known with the required precision to establish a possible phase lag.

#### References:

Haefner, R., 1999, IBVS, No. 4706

Shafter, A.W., Szkody, P., Thorstensen, J., 1986, ApJ, 308, 765

- Shafter, A.W., Abbott, T.M.C., 1989, ApJ, 339, L75
- Shafter, A.W., Misselt, K.A., 2006, ApJ, 644, 1104
- Stockman, H.S., Schmidt, G.D., Berriman, G., Libert, J., Moore, R.L., Wickramasinghe, D.T., 1992, ApJ, 401, 628

Verbunt, F., Bunk, W. H., Ritter, H., Pfeffermann, E., 1997, A&A, 327, 602
Number 5752

Konkoly Observatory Budapest 22 January 2007 *HU ISSN 0374 - 0676* 

# PHOTOMETRY OF 39 PMS VARIABLES IN THE TAURUS-AURIGA REGION

GRANKIN, K.N.; ARTEMENKO, S.A.; MELNIKOV, S.Y.

Astronomical Institute, Uzbek Akademy of Sciences, 33 Astronomicheskaya str., Tashkent 100052, Uzbekistan email: kn@astrin.uzsci.net, sveta@astrin.uzsci.net, stas @astrin.uzsci.net

The previous studies have shown that most of the well known Pre-Main Sequence (PMS) stars in the Tau-Aur region demonstrate some periodic light variations (Grankin, 1997). Such periodicities can be interpreted as the rotational modulation of the stellar flux by a group of dark surface spots. Thus, the photometric observations of spotted PMS stars allow to measure their rotational periods with high accuracy. The aim of our research is an extension of PMS stars sample with known rotational periods, which are fundamental stellar parameters. Unfortunately, most of the spotted PMS stars show the periodic light variations very seldom, when spots are disposed on a star surface extremely inhomogeneously (Grankin, 2005). Therefore, it is necessary to make some long-term observations of such PMS star to discover its rotational period with confidence. In this connection, we have made long-term observations of representative sample of new PMS stars in Tau-Aur region.

We present a photometric study of 39 PMS stars discovered in the Taurus-Auriga starforming region, based on high-resolution echelle spectroscopy and proper motion data (Wichmann et al., 2000). Photometric data were collected with three 60-cm telescopes at the Mt. Maidanak Observatory (Uzbekistan) during several runs from 2000 to 2006. Each telescope was equipped with a pulse counting FEU-79 photomultiplier tube and a set of standard BV Johnson and R Kron-Cousins filters.

The light curves obtained during our campaign were analyzed with use the stringlength algorithm (Dworetsky, 1983). The spacing of our observations in time (one day) causes so-called false periods (Tanner, 1948). Both true and false periods produce fully equivalent folded light curves. In order to determine the true period it is necessary to carry out some intensive monitorings within several nights. Unfortunately, we could make such intensive observations only for several objects from our list.

In Table 1 we present first detection of periodic light variations for 15 PMS stars, for which a few monitorings have been made. Their phased light curves in V band are shown in Figure 1. We found periodic variations for other seven PMS stars, without any monitorings. Therefore, we could not select the true period for them. These seven PMS stars are listed in Table 2 and their phased light curves are displayed in Figure 2. In Table 2 only the two most probable periods for these stars are presented. At last, we could not discover any periodicity for 17 PMS stars from our list. All these stars are the



Figure 1. Light curves of new regular PMS stars with a few monitorings



Figure 2. Light curves of new regular PMS stars without any monitorings

**Table 1.** List of new regular PMS stars with a few monitorings. Columns are: star's name, Right<br/>Ascension and Declination of the star calculated for J2000.0, SpT – spectral type,  $N_s$  – number of<br/>observational seasons,  $\Delta m_V$  – observed maximal amplitude of variation in Johnson V band for one of<br/>observational seasons, range V – photometric range in the V band for all observational seasons, P –<br/>period of variation in days

| $\operatorname{Star}$ Name | RA(2000)          | Dec~(2000)       | $_{\rm SpT}$  | $N_s$ | $\Delta m_V$ | $\operatorname{range} V$ | $P  [\mathrm{days}]$ |
|----------------------------|-------------------|------------------|---------------|-------|--------------|--------------------------|----------------------|
| $HD \ 285281$              | $04 \ 00 \ 31.07$ | $19 \ 35 \ 20.8$ | K1            | 4     | 0.16         | 10.12 - 10.29            | 1.1683               |
| HD 283323                  | $04 \ 05 \ 12.34$ | $26 \ 32 \ 43.6$ | K2            | 6     | 0.12         | 11.21 - 11.49            | 1.9610               |
| $HD \ 284135$              | $04 \ 05 \ 40.58$ | $22 \ 48 \ 12.0$ | G3            | 5     | 0.06         | 9.29 - 9.44              | 0.8160               |
| HD 284149                  | $04 \ 06 \ 38.80$ | $20\ 18\ 11.2$   | G1            | 5     | 0.07         | 9.62 - 9.75              | 1.0790               |
| RXJ0424.8 + 2643A          | $04 \ 24 \ 48.18$ | $26 \ 43 \ 16.0$ | K1            | 6     | 0.17         | 11.22 - 11.42            | 3.2100               |
| $HD \ 28150$               | $04 \ 27 \ 04.86$ | $18 \ 12 \ 27.2$ | G5            | 6     | 0.12         | 9.30 - 9.51              | 0.6962               |
| HD 284503                  | $04 \ 30 \ 49.19$ | $21 \ 14 \ 10.7$ | G8            | 4     | 0.13         | 10.26 - 10.40            | 0.7360               |
| GSC 01274-01076            | $04 \ 38 \ 13.04$ | $20\ 22\ 47.0$   | K2            | 5     | 0.15         | 12.12 - 12.28            | 2.9600               |
| $HD \ 283798$              | $04 \ 41 \ 55.16$ | $26\ 58\ 49.4$   | G7            | 5     | 0.05         | 9.61 - 9.69              | 0.6000               |
| RXJ0446.8 + 2255           | $04 \ 46 \ 53.22$ | 22  55  13.1     | M1            | 3     | 0.14         | 12.80 - 12.97            | 3.7620               |
| GSC 01292-00639            | $04 \ 50 \ 00.18$ | $22 \ 29 \ 57.7$ | K1            | 4     | 0.15         | 11.15 - 11.31            | 0.4778               |
| GSC 01284-00930            | $04 \ 52 \ 30.76$ | $17 \ 30 \ 25.8$ | K4            | 6     | 0.09         | 12.00 - 12.11            | 0.8204               |
| GSC 01281-00398            | 04  56  13.56     | $15 \ 54 \ 22.0$ | m K7          | 3     | 0.14         | 12.58 - 12.76            | 5.6400               |
| GSC 01289-00513            | $04 \ 57 \ 30.63$ | $20\ 14\ 28.6$   | $\mathbf{K3}$ | 4     | 0.19         | 10.96 - 11.20            | 1.4600               |
| GSC 00697-00960            | 04  59  46.14     | $14 \ 30 \ 55.2$ | K4            | 7     | 0.26         | 11.56 - 11.89            | 1.2308               |

**Table 2.** List of new regular PMS stars without any monitorings. Columns are: star's name, Right Ascension and Declination of a star calculated for J2000.0, SpT – spectral type,  $N_s$  – number of observational seasons,  $\Delta m_V$  – observed maximal amplitude of variation in Johnson V band for one of observational seasons, range V – photometric range in the V band for all observational seasons, P – period of variation in days

| Star Name         | RA (2000)         | Dec (2000)       | $\operatorname{SpT}$ | $N_s$ | $\Delta m_V$ | range $V$     | P [days]          |
|-------------------|-------------------|------------------|----------------------|-------|--------------|---------------|-------------------|
| GSC 01258-00338   | $04 \ 05 \ 19.61$ | $20 \ 09 \ 25.2$ | K1                   | 4     | 0.16         | 10.31 - 10.54 | 2.86(0.741)       |
| RXJ0409.8 + 2446  | 04  09  51.11     | $24 \ 46 \ 21.5$ | M1.5                 | 3     | 0.20         | 13.38 - 13.59 | 5.58(1.214)       |
| GSC 01274-01491   | $04 \ 33 \ 34.68$ | $19 \ 16 \ 48.6$ | G6                   | 3     | 0.10         | 13.08 - 13.20 | 1.41 (0.585)      |
| GSC 01266-01121   | $04 \ 38 \ 27.63$ | $15 \ 43 \ 38.2$ | $\mathbf{K3}$        | 4     | 0.10         | 13.22 - 13.50 | $2.54\ (1.651)$   |
| RXJ0439.4 + 3332A | $04 \ 39 \ 25.47$ | $33 \ 32 \ 44.8$ | $\mathbf{K5}$        | 5     | 0.16         | 11.39 - 11.56 | $2.43 \ (0.708)$  |
| RXJ0451.9 + 2849A | $04 \ 51 \ 56.90$ | $28 \ 49 \ 42.7$ | K4                   | 2     | 0.20         | 13.25 - 13.45 | $0.921 \ (11.66)$ |
| GSC 01281-01906   | 04  56  56.54     | 16  00  24.8     | M1                   | 2     | 0.25         | 14.23 - 14.50 | 0.884 $(7.62)$    |

irregular variables. These seventeen irregular PMS stars are listed in Table 3. The original photometric data for all 39 PMS stars is available at the IBVS website as 5752-t4.txt.

Previously to our study the rotational periods for 24 PMS stars from the Wichmann's list were known (Bouvier et al., 1997; Broeg et al., 2006). Now the sample of the PMS stars with known periods in this star-forming region has increased almost twice. We hope that this result will allow to study the evolution of an angular moment of young stars in the Tau-Aur region more carefully.

**Table 3.** List of new irregular PMS stars. Columns are: star's name, Right Ascension and Declination of a star calculated for J2000.0, SpT – spectral type,  $N_s$  – number of observational seasons,  $\Delta m_V$  – observed maximal amplitude of variation in Johnson V band for one of observational seasons, range V – photometric range in the V band for all observational seasons, P – period of variation in days

| $\operatorname{Star}$ Name | RA(2000)          | Dec~(2000)       | $_{\rm SpT}$  | $N_s$ | $\Delta m_V$ | $\operatorname{range} V$ | $P  [\mathrm{days}]$ |
|----------------------------|-------------------|------------------|---------------|-------|--------------|--------------------------|----------------------|
| GSC 01259-00232            | $04 \ 12 \ 50.65$ | 19  36  58.0     | ${ m K6}$     | 4     | 0.10         | 12.51 - 12.65            | 1.569?               |
| $HD \ 285579$              | $04 \ 12 \ 59.87$ | $16 \ 11 \ 47.8$ | G1            | 5     | 0.07         | 10.95 - 11.12            | -                    |
| GSC 02371-02073            | $04 \ 15 \ 51.42$ | 31  00  36.0     | G6            | 4     | 0.12         | 12.34 - 12.47            | 0.414?               |
| GSC 01270-00735            | $04 \ 32 \ 53.22$ | $17 \ 35 \ 34.0$ | M2            | 2     | 0.07         | 13.64 - 13.77            | 0.857?               |
| GSC 01270-00230            | $04 \ 33 \ 42.01$ | $18 \ 24 \ 27.4$ | G6            | 3     | 0.06         | 12.04 - 12.12            | 1.122?               |
| RXJ0435.9 + 2352           | $04 \ 35 \ 56.81$ | $23 \ 52 \ 05.4$ | M1.5          | 2     | 0.16         | 13.31 - 13.49            | -                    |
| GSC 02373-00920            | $04 \ 37 \ 16.87$ | 31  08  19.8     | K4            | 3     | 0.09         | 13.12 - 13.31            | 1.429?               |
| V1117 Tau                  | $04 \ 38 \ 15.59$ | $23 \ 02 \ 28.1$ | M1            | 2     | 0.12         | 13.74 - 13.90            | 1.185?               |
| GSC 01838-00189            | $04 \ 41 \ 24.00$ | $27 \ 15 \ 13.2$ | G8            | 3     | 0.05         | 13.05 - 13.15            | -                    |
| GSC 01267-00362            | $04 \ 43 \ 25.98$ | $15 \ 46 \ 03.6$ | G7            | 6     | 0.13         | 12.81 - 12.97            | 1.11?                |
| GSC 01275-00669            | $04 \ 44 \ 26.78$ | 19  52  17.5     | M1            | 4     | 0.11         | 12.53 - 12.64            | -                    |
| HD 283782                  | $04 \ 44 \ 54.40$ | $27 \ 17 \ 45.5$ | K1            | 4     | 0.07         | 9.48 - 9.55              | -                    |
| GSC 01284-01283            | $04 \ 51 \ 54.24$ | 17  58  28.1     | M1.5          | 2     | 0.18         | 13.89 - 14.08            | 1.348?               |
| GSC 01843-00400            | $04 \ 51 \ 56.52$ | $28 \ 49 \ 26.2$ | K2            | 2     | 0.12         | 14.08 - 14.20            | -                    |
| GSC 01288-00790            | $04 \ 52 \ 57.07$ | 19  19  50.1     | $\mathbf{K5}$ | 6     | 0.09         | 12.05 - 12.29            | -                    |
| GSC 02391-00494            | $04 \ 53 \ 08.69$ | $33 \ 12 \ 01.6$ | G8            | 2     | 0.14         | 13.69 - 13.88            | -                    |
| HD 31281                   | 04  55  09.62     | $18\ 26\ 31.1$   | G1            | 4     | 0.07         | 9.16 - 9.27              | -                    |

References:

- Broeg, C., Joergens, V., Fernandez, M., Husar, D., Hearty, T., Ammler, M., Neuhauser, R., 2006, Astron. Astrophys., 450, 1135
- Bouvier, J., Wichmann, R., Grankin, K., Allainet, S., Covino, E., Fernandez, M., Martin, E.L., Terranegra, L., Catalano, S., Marilli, E., 1997, Astron. Astrophys., 318, 495
- Dworetsky, M.M., 1983, MNRAS, 203, 917
- Grankin, K.N., 1997, IAU Symposium, 182, 281
- Grankin, K.N., 2005, LPI Contributions, No. 1286
- Tanner, R.W., 1948, *JRASC*, **42**, 177
- Wichmann, R., Torres, G., Melo, C.H.F., Frink, S., Allain, S., Bouvier, J., Krautter, J., Covino, E., Neuhauser, R., 2000, Astron. Astrophys., **359**, 181

Number 5753

Konkoly Observatory Budapest 31 January 2007 *HU ISSN 0374 - 0676* 

# NEW TIMES OF MINIMA OF ECLIPSING BINARY SYSTEMS

BÍRÓ, I.B.<sup>1</sup>; BORKOVITS, T.<sup>1,7</sup>; HEGEDÜS, T.<sup>1</sup>; KISS, Z.T.<sup>1</sup>; KOVÁCS, T.<sup>2,7</sup>; LAMPENS, P.<sup>3</sup>; REGÁLY, ZS.<sup>4</sup>; ROBERTSON, C.W.<sup>5</sup>; VAN CAUTEREN, P.<sup>6</sup>

<sup>1</sup> Baja Astronomical Observatory of Bács-Kiskun County, Baja, Szegedi út, Kt. 766, H–6500 Hungary; e-mail: borko@alcyone.bajaobs.hu

<sup>2</sup> Department of Astronomy, Eötvös Loránd University, Budapest, Pf. 32, H–1518 Hungary

<sup>3</sup> Koninklijke Sterrenwacht van België, B–1180 Brussel, Belgium

<sup>4</sup> Konkoly Observatory of the Hungarian Academy of Sciences, Budapest, Pf. 67, H–1525, Hungary

<sup>5</sup> Setec Observatory, Kansas, USA

<sup>6</sup> Beersel Hills Observatory, Belgium

<sup>7</sup> Guest observer at Piszkéstető Observatory of Konkoly Observatory

### Observatory and telescope:

50-cm f/8.4 Ritchey–Chrétien telescope (Ba50) of the Baja Astronomical Observatory (Hungary)

50-cm f/6 modified Cassegrain telescope (Baja Astronomical Robotic Telescope – BART1) of the Baja Astronomical Observatory (Hungary)

50-cm f/15 Cassegrain telescope (Pi50) of the Konkoly Observatory at Piszkéstető Mountain Station (Hungary)

25, and 40-cm Newton telescopes (Be25, Be40, respectively; Belgium) 30-cm Cassegrain telescope of Setec Observatory, Kansas (Se30)

| Detector: | $512 \times 512$ Apogee AP-7 CCD camera (Ba50)             |
|-----------|------------------------------------------------------------|
|           | $765 \times 510$ SBIG ST-7 CCD camera (Ba50ST7)            |
|           | $4096 \times 4096$ Apogee Alta U16 CCD camera (BART1)      |
|           | cooled UBVRI Photometer (Pi50)                             |
|           | $2184 \times 1472$ SBIG ST10XME with filterwheel (filters  |
|           | Bessell specifications) $(Bexx)$                           |
|           | SBIG ST8 with filterwheel (filters Bessell specifications) |
|           | (Se30)                                                     |

### Method of data reduction:

Reduction of Baja CCD frames was made with a customly developed  $IRAF^{\dagger}$  package, while the others were reduced by Mira-AP (6) and (7)\*softwares.

<sup>&</sup>lt;sup>†</sup>IRAF is distributed by the National Optical Astronomical Observatories, operated by the Association of the Universities for Research in Astronomy, inc., under cooperative agreement with the National Science Foundation

<sup>\*</sup>Mira software is produced by Mirametrics Inc.

# Method of minimum determination:

The minima times were computed with parabolic fitting, and in some cases with linearized Pogson-method or Kwee-van Woerden method (Kwee & van Woerden, 1956).

| Times of m     |                         |         |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------|-------------------------|---------|---------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Time of min             | Danaa   | T       | D:14       | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Star name      | Time of min.            | Error   | Tybe    | Filter     | Rem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <u></u>        | HJD 2400000+            | -       | -       | <b>T</b> 7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XZ And         | 54012.5539              | 2       | 1       | V          | Bor/BARTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AB And         | 53936.4859              | 1       | l       | V          | Bor/Ba50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| EP And         | 54048.3612              | 1       | 11      | V          | Heg/BART1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | 54048.5641              | 1       | 1       | V          | Heg/BART1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| OO Aql         | 53613.4327              | 2       | 11      | V          | Bor/Ba50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | 53881.5279              | 5       | II      | R          | Bor/Ba50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| V889 Aql       | 53255.392               | 1       | Ι       | B,V,R      | Bor/Ba50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SS Ari         | 54056.4176              | 1       | Ι       | V          | $\mathrm{Heg}/\mathrm{BART1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CL Aur         | 53675.4626              | 3       | II      | R          | $\mathrm{Bor}/\mathrm{Ba50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| IM Aur         | 53326.4270              | 2       | Ι       | V          | $\mathrm{Bor}/\mathrm{Ba50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | 53447.411               | 1       | Ι       | V          | $\mathrm{Bor}/\mathrm{Ba50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | 53790.4257              | 2       | Ι       | V, R       | m Reg+Bor/Pi50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                | 54015.5599              | 1       | II      | V          | Bor/BART1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | 54043.6266              | 2       | Ι       | V          | Bor/BART1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| IU Aur         | 52957.4095              | 12      | II      | B, V, R    | Bir/Ba50ST7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                | 53035.3063              | 15      | II      | V, R       | Heg/Ba50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | 53764.4187              | 3       | Ι       | B          | Be40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                | 53773.4739              | 3       | Ι       | R          | Kis/Ba50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | 53780.7217              | 3       | Ι       | V          | $\operatorname{Se30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                | 53789.7804              | 26      | T       | V          | Se30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                | 53800.6456              | 3       | Ţ       | V          | Se30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                | 53803 3690              | 2       | II      | V          | Bor/Ba50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | 53813 3244              | -<br>11 | T       | ,<br>V     | Be25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                | 54003 5350              | 14      | T       | V R        | Bor+Beg+Kov/Pi50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | 54043 3875              | 1       | T       | V          | Bor/BABT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TZ Boo         | 53802 4037              | т<br>9  | I       | VR         | Bor/Ba50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 12 000         | 53802.400               | 2       | T       | VR         | Bor/Ba50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | 53803 5348              | ວ<br>າ  | T       | V, R       | Bor/Ba50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| V Cam          | 52824 5101              | 2       | T       | V, N<br>D  | B01/Da50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| i Calli        | 53624.5101              | 5<br>6  | T       |            | $\frac{N}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}{D} \frac{D}$ |
| AS Cam         | 54039.3640<br>E2020 40E | 1       | I<br>TT | V<br>D     | DOI/DANII<br>Via/Dato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AS Cam<br>DN C | 53630.405               | 1       | 11<br>T | n<br>V     | RIS/ Da50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DN Cas         | 54000.4437              | 4       | 1       | V          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PV Cas         | 53183.5042              | 3<br>-  | 11      | V          | Bor/Ba50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| vw Cep         | 53608.4033              | 1       | 11<br>T | B, V, R    | Bor/Babu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | 53848.4473              | 2       | 1       | V          | Bor/Ba50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | 53848.5869              | 1       | 11      | V          | Bor/Ba50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | 53892.4210              | 9       | 1       | B, V, R    | Reg+Bor/P150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | 53947.385               | 1       | 11      | V, R       | Kov+Reg/Pi50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| XX Cep         | 54004.4338              | 4       | 1       | V, R       | Bor+Kov+Reg/Pi50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | 54018.4576              | 2       | Ι       | V          | Bor/BART1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| EK Cep         | 53745.2544              | 19      | II      | V          | Be25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LS Del         | 53937.530:              | 3       | Ι       | B,V,R      | $\mathrm{Heg}/\mathrm{Ba50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | 53938.4305              | 3       | II      | V          | Bír/ $BART1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DI Her         | 53933.4810              | 4       | Ι       | V          | $\mathrm{Bor}/\mathrm{Ba50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| HS Her         | 53935.4277              | 4       | Ι       | V          | $\mathrm{Bor}/\mathrm{Ba50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| V994 Her       | 53206.365               | 2       | ?       | V, R       | $\mathrm{Bor}/\mathrm{Ba50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $SW Lac^a$     | 53596.5127              | 1       | II      | R          | $\mathrm{Bor}/\mathrm{Ba50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | 53596.5136              | 1       | II      | V          | $\operatorname{Bor}/\operatorname{Ba50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | 54015.3755              | 1       | II      | V          | Bor/BART1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AR Lac         | 54001.4618              | 8       | II      | B, V, R    | Reg+Bor/Pi50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| AU Lac         | 53745.2926              | 2       | Ι       | Ń          | Be40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| Times of r               | ninima:            |       |      |                         |                              |
|--------------------------|--------------------|-------|------|-------------------------|------------------------------|
| Star name                | Time of min.       | Error | Type | $\operatorname{Filter}$ | Rem.                         |
|                          | $\rm HJD~2400000+$ |       |      |                         |                              |
| UV Leo                   | 53459.3746         | 3     | II   | R                       | Bor/Ba50                     |
|                          | 53797.5236         | 3     | Ι    | V, R                    | Bor/Pi50                     |
|                          | 53828.4280         | 2     | II   | R                       | $\mathrm{Bor}/\mathrm{Ba50}$ |
| U Peg                    | 54000.544          | 1     | II   | V, R                    | Bor/Pi50                     |
| AG Per                   | 54034.429          | 1     | Ι    | V, R                    | Kov+Bor+Reg/Pi50             |
|                          | 54039.5241         | 5     | II   | $\dot{V}$               | Bor/BART1                    |
| $\beta \ \mathrm{Per}^b$ | 54084.360          | 3     | II   | (V,R) + N               | Bor+Reg/Pi50                 |
| EQ Tau                   | 53802.3811         | 4     | Ι    | V, R                    | Bor/Ba50                     |
| -                        | 53815.3525         | 2     | Ι    | R                       | Bor/Ba50                     |
| TW UMa                   | 53813.4281         | 8     | Ι    | _                       | Be25                         |
| VV UMa                   | 53765.5233         | 1     | Ι    | V                       | Be40                         |
| ZZ UMa                   | 53814.4329         | 1     | Ι    | V                       | Be25                         |
| DW UMa                   | 53080.5071         | 1     | Ι    | R                       | $\mathrm{Bor}/\mathrm{Ba50}$ |
|                          | 53080.6434         | 1     | Ι    | R                       | Bor/Ba50                     |
|                          | 53437.3241         | 1     | Ι    | V                       | Bor/Ba50                     |
|                          | 53443.4711         | 2     | Ι    | R                       | Bor/Ba50                     |
|                          | 53443.6082         | 2     | Ι    | R                       | Bor/Ba50                     |
|                          | 53451.3942         | 1     | Ι    | V                       | Bor/Ba50                     |
|                          | 53767.3656         | 2     | Ι    | R                       | Bor/Ba50                     |
|                          | 53815.4506         | 1     | Ι    | R                       | Bor/Ba50                     |
|                          | 53815.5869         | 1     | Ι    | R                       | Bor/Ba50                     |
|                          | 53822.4174         | 2     | Ι    | R                       | Bor/Ba50                     |
|                          | 53861.3504         | 1     | Ι    | R                       | Bor/Ba50                     |
|                          | 53861.4875         | 2     | Ι    | R                       | Bor/Ba50                     |
| LP UMa                   | 53080.5012         | 3     | II   | R                       | Bor/Ba50                     |
|                          | 53443.5454         | 7     | Ι    | V, R                    | Bor/Ba50                     |
|                          | 53451.4473         | 4     | II   | $\dot{V}$               | Bor/Ba50                     |
|                          | 53767.393          | 2     | Ι    | R                       | Bor/Ba50                     |
|                          | 53815.5834         | 4     | II   | R                       | Bor/Ba50                     |
|                          | 53819.4545         | 2     | Ι    | V                       | Bor/Ba50                     |
|                          | 53822.4011         | 3     | II   | R                       | Bor/Ba50                     |
|                          | 53861.4435         | 4     | П    | R                       | Bor/Ba50                     |

### Explanation of the remarks in the table:

Observer(s)/Instrument

<sup>a</sup>: SW Lac: On the night 53596 the discrepancy between the mid-eclipse time in V and R band is supposed to be real.

<sup>b</sup>:  $\beta$  Per: Due to the brightness of the system we had to use an additional neutral filter (denoted by N).

### Acknowledgements:

P.L. and P.V.C. thank Patrick Wils for providing us with software. Part of these data were acquired with equipment purchased thanks to a research fund financed by the Belgian National Lottery (1999).

T.B., Zs.R. and T.K. thank Dr. Miklós Rácz for supporting us with the neutral filter in order to make it possible to observe Algol itself with Pi50 telescope.

Reference:

Kwee, K. K., van Woerden, H., 1956, Bull. Astron. Inst. Neth., 12, 327

Number 5754

Konkoly Observatory Budapest 2 February 2007 *HU ISSN 0374 - 0676* 

# PHOTOELECTRIC MINIMA OF SOME ECLIPSING BINARY STARS

ŞENAVCI, H.V.; TANRIVERDI, T.; TÖRÜN, E.; ELMASLI, A.; KILIÇOĞLU, T.; ÇINAR, D.; SIPAHIOĞLU, S.; ALAN, N.; ÇOLAK, T.; YILMAZ, M.; ULUŞ, N.D.; BAŞTÜRK, Ö.; ÇALIŞKAN, Ş.; AYDIN, G.; EKMEKÇI, F.; ALBAYRAK, B.; SELAM, S.O.

Ankara University Observatory, 06837, Ahlatlıbel, Ankara, TURKEY e-mail: volkan@astro1.science.ankara.edu.tr

| Observatory and t   | telescope:             |                 |            |            |
|---------------------|------------------------|-----------------|------------|------------|
| 30-cm Maksutov tele | escope of the Ankara U | niversity Obser | rvatory    |            |
|                     |                        |                 |            |            |
| Detector:           | OPTEC SSP-5A           | photoelectric   | photometer | (uncooled) |

| ector: | OPTEC                      | SSP-5A      | photoelectric | $\operatorname{photometer}$ | (uncooled)  |
|--------|----------------------------|-------------|---------------|-----------------------------|-------------|
|        | $\operatorname{containin}$ | ıg a side-o | on R1414 Ham  | amatsu photo                | multiplier. |

### Method of data reduction:

Reduction of the observations were made in the usual way (Hardie, 1962).

### Method of minimum determination:

The minima times were calculated using Kwee & van Woerden's (1956) method.

| Times of 1 | minima:      |        |      |        |                        |
|------------|--------------|--------|------|--------|------------------------|
| Star name  | Time of min. | Error  | Type | Filter | Rem.                   |
|            | HJD 2400000+ |        |      |        |                        |
| AB And     | 53555.4740   | 0.0002 | Ι    | BV     | Çkr-At                 |
|            | 53644.4205   | 0.0003 | Ι    | BV     | $\operatorname{Kh-Sp}$ |
|            | 53650.3913   | 0.0002 | Ι    | BV     | Çf-Bk                  |
|            | 53651.3874   | 0.0007 | Ι    | BV     | $\operatorname{Sp-Sr}$ |
|            | 53666.3254   | 0.0001 | Ι    | BV     | Trn-Kly                |
|            | 53683.2521   | 0.0003 | Ι    | BV     | Çl-Blb                 |
|            | 53683.4181   | 0.0003 | II   | BV     | Ün-Tg                  |
| BX And     | 53339.2474   | 0.0006 | Ι    | UBV    | Yld-Sğ                 |
| V363 And   | 53640.3931   | 0.0005 | Ι    | BV     | Cv-Çkr                 |
|            | 53649.3501   | 0.0006 | Ι    | BV     | Dm-Kl                  |
| OO Aql     | 53544.5103   | 0.0002 | II   | BV     | Yld-Öz                 |
|            | 53569.3419   | 0.0003 | II   | BV     | Ak-Ev                  |
|            | 53588.3462   | 0.0001 | Ι    | BV     | Ylk-Sp                 |
| XZ Aql     | 53641.2863   | 0.0004 | Ι    | BV     | Dm-Cv                  |
| AH Aur     | 53752.4448   | 0.0006 | Ι    | BV     | Özg-Blg                |
| AP Aur     | 54079.4942   | 0.0006 | Ι    | BV     | Çl-Ün                  |
| AR Aur     | 54070.4924   | 0.0003 | II   | BV     | Dv-Şnd                 |
|            | 54093.2344   | 0.0002 | Ι    | BV     | Trn-Alt                |
| TT Aur     | 53073.2932   | 0.0002 | Ι    | UBV    | HAk-Blt                |

| Times of : | minima:             |        |      |                 |         |
|------------|---------------------|--------|------|-----------------|---------|
| Star name  | Time of min.        | Error  | Type | Filter          | Rem.    |
|            | ${ m HJD}~2400000+$ |        |      |                 |         |
| V410 Aur   | 53652.5615          | 0.0005 | Ι    | BV              | Cv-Kly  |
|            | 53682.6025          | 0.0005 | Ι    | BV              | Öz-Blg  |
| AC Boo     | 53782.5082          | 0.0004 | Ι    | BV              | Dm-Çkn  |
|            | 53798.5466          | 0.0004 | II   | BV              | Kh-Tn   |
|            | 53884.3565          | 0.0004 | Ι    | BV              | Trz-At  |
|            | 53904.4562          | 0.0004 | Ι    | BV              | Trn-Sk  |
| CK Boo     | 53804.5019          | 0.0004 | Ι    | BV              | Şn-Pr   |
|            | 53874.4676          | 0.0003 | Ι    | BV              | Ňs-Pr   |
| EL Boo     | 53149.4506          | 0.0014 | Ι    | UBV             | El-Gl   |
|            | 53177.3796          | 0.0009 | Ι    | UBV             | Çn-Gl   |
| TZ Boo     | 53471.3090          | 0.0005 | Ι    | BV              | Çrk-Çkr |
|            | 53471.4581          | 0.0004 | Π    | BV              | Çrk-Çkr |
| TX Cnc     | 54063.5440          | 0.0004 | Π    | BV              | Şn-Bğ   |
| WY Cnc     | 53702.5370          | 0.0002 | Ι    | BV              | Åt-Av   |
| BI CVn     | 53729.5475          | 0.0003 | Ι    | BV              | Ak-Km   |
| CG Cvg     | 53568.4154          | 0.0003 | Ι    | BV              | Trn-Sn  |
| ,0         | 53977.3963          | 0.0002 | Ι    | BV              | Al-Klc  |
| GO Cvg     | 53590.3825          | 0.0018 | II   | UBV             | Ul-Ckr  |
| KR Cvg     | 53269.3084          | 0.0002 | Ι    | UBV             | Trn-Atm |
| - 78       | 53978.3920          | 0.0002 | Ι    | BV              | Al-Dv   |
| AK Her     | 53869.3779          | 0.0009 | Ι    | BV              | Trn-Sk  |
|            | 53879.4943          | 0.0005 | Ι    | BV              | Cl-Al   |
|            | 53881.3910          | 0.0004 | ĪĪ   | $\overline{BV}$ | Pr-Grl  |
|            | 53885.3941          | 0.0002 | Ι    | BV              | Klc-Klc |
| SZ Her     | 53197.3994          | 0.0002 | Ι    | UBV             | Kr-Ylm  |
| TT Her     | 53912.3873          | 0.0002 | Ι    | BV              | Trz-At  |
| TX Her     | 53888.3880          | 0.0006 | II   | BV              | Ns-Sn   |
| UX Her     | 53164.4420          | 0.0002 | Ι    | UBV             | Atm-Blt |
| SW Lac     | 53280.2854          | 0.0002 | II   | BV              | Tn-Cv   |
|            | 53622.3326          | 0.0002 | Ι    | BV              | Bk-Uğ   |
|            | 53622.4942          | 0.0002 | II   | BV              | Bk-Tp   |
|            | 53623.4566          | 0.0003 | II   | BV              | Tn-Sp   |
|            | 53624.4171          | 0.0002 | II   | UBV             | Trn-Şn  |
|            | 53624.5760          | 0.0002 | Ι    | UBV             | Trn-Şn  |
|            | 53648.4719          | 0.0001 | Π    | BV              | Sl-At   |
|            | 53658.2549          | 0.0003 | Ι    | BV              | Sl-Ak   |
|            | 53665.3107          | 0.0002 | Ι    | BV              | Tn-Sp   |
|            | 53665.4692          | 0.0002 | Π    | BV              | Ylk-Sp  |
|            | 53994.3690          | 0.0002 | Ι    | BV              | Tn-Erd  |
|            | 54068.2946          | 0.0004 | II   | BV              | Çl-Ym   |
| AM Leo     | 53821.4172          | 0.0002 | Ι    | BV              | Ýlm     |
| AP Leo     | 53407.5726          | 0.0003 | II   | UBV             | Em-Erg  |
| FK Leo     | 53085.4121          | 0.0005 | Ι    | UBV             | Ylm-Kr  |
|            | 53105.3902          | 0.0006 | II   | BV              | Sp-Krk  |
| UV Leo     | 53447.3739          | 0.0002 | II   | BV              | Tp-At   |
|            | 53823.3265          | 0.0005 | Ι    | BV              | Klç-Al  |

| Times of r | ninima:      |        |      |        |                        |
|------------|--------------|--------|------|--------|------------------------|
| Star name  | Time of min. | Error  | Type | Filter | Rem.                   |
|            | HJD 2400000+ |        |      |        |                        |
| XY Leo     | 53380.5079   | 0.0003 | Ι    | BV     | Kö-Ak                  |
|            | 53783.3590   | 0.0004 | Ι    | BV     | Bk-Ns                  |
|            | 53799.4098   | 0.0003 | II   | BV     | Trn-Erd                |
|            | 53799.5520   | 0.0004 | Ι    | BV     | Trn-Erd                |
|            | 53814.4676   | 0.0003 | II   | BV     | Çn-Ak                  |
| XZ Leo     | 53826.3363   | 0.0005 | II   | BV     | Eld-Çlk                |
| SW Lyn     | 53739.4319   | 0.0002 | Ι    | BV     | Çl-AÇk                 |
| V451  Oph  | 53528.4892   | 0.0002 | Ι    | BV     | Sğ-Özy                 |
| V456 Oph   | 53894.4647   | 0.0002 | Ι    | BV     | Ylm-Çkn                |
| V502  Oph  | 53537.4733   | 0.0003 | II   | BV     | Özg-Klç                |
|            | 53905.3952   | 0.0003 | Ι    | BV     | Dv-Çn                  |
| V508 Oph   | 53549.4226   | 0.0005 | II   | UBV    | Özg-Erg                |
| V566  Oph  | 53886.5249   | 0.0004 | Ι    | BV     | Çl-Gl                  |
|            | 53893.4883   | 0.0004 | Ι    | BV     | Klç-Blg                |
|            | 53913.3570   | 0.0002 | II   | BV     | Ay-Gl                  |
|            | 53906.3937   | 0.0004 | II   | BV     | Klç-Ps                 |
| V839 Oph   | 53533.3896   | 0.0004 | II   | BV     | Bş-Ylm                 |
| DI Peg     | 54059.3020   | 0.0003 | Ι    | BV     | $\operatorname{Sp-Er}$ |
|            | 54070.3254   | 0.0004 | II   | BV     | Bğ-Şnv                 |
| U Peg      | 53963.4420   | 0.0006 | II   | BV     | Gl-Ay                  |
|            | 53971.4999   | 0.0003 | Ι    | BV     | Bb-Çkn                 |
|            | 53995.4867   | 0.0007 | Ι    | BV     | Sk-Trn                 |
| AQ Psc     | 53642.5405   | 0.0013 | Ι    | BV     | Özg-Öz                 |
|            | 53709.3197   | 0.0004 | II   | BV     | Ay-Av                  |
| VZ Psc     | 53259.3266   | 0.0004 | Ι    | BV     | Çn-Klç                 |
|            | 53259.4661   | 0.0003 | II   | BV     | Çn-Klç                 |
|            | 53260.3717   | 0.0005 | Ι    | BV     | Çn                     |
|            | 53261.2961   | 0.0006 | II   | UBV    | Çn-At                  |
|            | 53261.4206   | 0.0005 | Ι    | UBV    | Çn-At                  |
|            | 53262.3438   | 0.0004 | II   | UBV    | Çn-Atm                 |
|            | 53262.4650   | 0.0004 | Ι    | UBV    | Çn-Atm                 |
|            | 53263.3902   | 0.0004 | II   | UBV    | Çn-Alp                 |
|            | 53263.5103   | 0.0004 | Ι    | UBV    | Çn-Alp                 |
|            | 53264.2935   | 0.0003 | Ι    | UBV    | Çn-Öz                  |
|            | 53264.4339   | 0.0006 | II   | UBV    | Çn-Öz                  |
|            | 53265.3358   | 0.0005 | Ι    | BV     | Çn-Sğ                  |
|            | 53265.4764   | 0.0008 | II   | BV     | Çn-Sğ                  |
|            | 53329.2229   | 0.0011 | II   | BV     | Çn                     |
|            | 53620.3896   | 0.0007 | II   | BV     | Çn-Dm                  |
|            | 53620.5187   | 0.0006 | II   | BV     | Çn-Dm                  |
|            | 53621.3176   | 0.0004 | II   | BV     | Çn-Öz                  |
|            | 53621.4362   | 0.0007 | Ι    | BV     | Çn-Öz                  |
|            | 53674.3429   | 0.0005 | II   | BV     | Çn-Av                  |

| Times of 1 | minima:             |        |      |        |         |
|------------|---------------------|--------|------|--------|---------|
| Star name  | Time of min.        | Error  | Type | Filter | Rem.    |
|            | ${ m HJD}~2400000+$ |        |      |        |         |
| V781 Tau   | 53305.5771          | 0.0004 | II   | UBV    | Yld-Gr  |
|            | 53426.3293          | 0.0007 | II   | BV     | At-Ay   |
|            | 53666.3886          | 0.0006 | II   | BV     | Trn-Kly |
|            | 53666.5603          | 0.0002 | Ι    | BV     | Trn-Kly |
|            | 53674.4932          | 0.0003 | Ι    | BV     | At-Av   |
|            | 53708.2940          | 0.0002 | Ι    | BV     | Trn-Kly |
|            | 53708.4677          | 0.0002 | II   | BV     | Trn-Kly |
|            | 53729.3312          | 0.0005 | Ι    | BV     | Trn-Kly |
| BF Vir     | 53852.4025          | 0.0006 | Ι    | BV     | Ylm-Çkn |
| ER Vul     | 53599.2997          | 0.0006 | II   | BV     | Ko-Cv   |
| Z Vul      | 53604.3394          | 0.0004 | Ι    | BV     | At-Ev   |

### Explanation of the remarks in the table:

Observers: ACk: A. Cakan, Ak: O. Aksu, Akk: A. Akkaya, Al: N. Alan, Alp: I. Alpay, Alt: B. Altuntaş, Ar: S. Aras, At: O. Atlagan, Atm: E. Ataman, Av: Z. Avcı, Ay: G. Aydın, Bb: B. Babaoğlu, Bğ: N. Bağıran, Bk: M. Bakırcı, Blb: B. Bülbül, Blg: D. Bilgiç, Blt: F. Bulut, Bş: G. Başlangıç, Cv: E. Civelek, Çf: N. Çiftçi, Çkn: D. Çakan, Çkr: D. Çoker, Çl: T. Çolak, Çlk: L. Çelik, Çn: D. Cinar, Crk: C. Cirakoğlu, Dm: U. Demirhan, Dv: O. Deveci, El: A. Elmasli, Eld: Y. Eldemir, Em: B. Eminoğlu, Er: F. Eriş, Erd: E. Erdogan, Erg: I. Ergün, Ev: B. Evin, Gl: G. Gülnaz, Gr: G. Gürkan, Grl: S. Güral, HAk: H. Ak, Kh: A.S. Kahraman, Kl: C. Kılıç, Klç: T. Kılıçoğlu, Kly: G. Kalyoncu, Km: N. Kemer, Ko: S. Kocazeybek, Kö: S. Kösemen, Kr: A. Kara, Krc: M. Kırca, Krk: T.Karakaş, Ns: M. Nas, Oy: O. Yılmaz, Oz: I. Ozavcı, Ozg: E. Ozgür, Ozy: D. Ozuyar, Pk: E. Peker, Pr: G. Parmaksız, Ps: C. Püsküllü, Sğ: U. Sağır, Sk: S. Sakallı, Sl: G. Salman, Sp: S. Sipahioğlu, Sr: G. Saral, Sn: H.T. Sener, Snd: Y. Sendağ, Snv: H. V. Senavci, Tg: O. Tagay, Tn: T. Tanriverdi, Tp: S. Topal, Trn: E. Törün, Trz: Z. Terzioğlu, Uğ: B. Uğurluoğlu, Ul: N.D. Uluş, Un: B. Unal, Yld: Y. Yıldıran, Ylk: K. Yelkenci, Ylm: M. Yılmaz, Ym: S. Yaman

## Acknowledgements:

We would like to thank all observers at the Ankara University Observatory.

References:

Hardie, R.H., 1962, in Astronomical Techniques, Chicago University Press, ed. Hiltner, W.A.

Kwee, K.K., van Woerden, H., 1956, BAN, 12, 327

Number 5755

Konkoly Observatory Budapest 12 February 2007 *HU ISSN 0374 - 0676* 

# SPECTROSCOPIC DETECTION OF A SPECTACULAR FLARE ON DX Cnc

### MEUSINGER, H.<sup>1</sup>; SCHOLZ, R.-D.<sup>2</sup>; JAHREISS, H.<sup>3</sup>

 $^1$  Thüringer Landessternwarte Tautenburg, D-07778 Tautenburg, Germany, e-mail: meus@tls-tautenburg.de

<sup>2</sup> Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany, e-mail: rdscholz@aip.de

<sup>3</sup> Astronomisches Rechen-Institut am Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, 69120 Heidelberg, Germany, e-mail: hartmut@ari.uni-heidelberg.de

We announce the serendipitous spectroscopic detection of a spectacular flare event on DX Cnc. To our knowledge, this is the first spectroscopically detected strong flare on this star. DX Cnc, classified as a UV Ceti star (Samus et al., 2004), is one of the most nearby stars (GJ1111, LHS248) at a distance of 3.6 pc. Because of its proximity and late spectral type (M6.5) it has been used as a spectroscopic comparison star in various studies (e.g., Basri & Marcy, 1995; Teegarden et al., 2003; Caballero et al., 2006). In a similar sense we used DX Cnc for the classification of late-type stars in a systematic search for so far unidentified candidates for members of the immediate solar neighbourhood (Scholz & Meusinger, 2002; Scholz et al., 2005). In this context DX Cnc has been repeatedly observed with the low-resolution long-slit Nasmyth spectrograph NASPEC at the Tautenburg 2-m telescope and with the faint-object spectrograph CAFOS at the 2.2-m telescope on Calar Alto, Spain. The grisms V200 (Tautenburg) and B400 (Calar Alto) were used resulting in nominal resolutions (FWHM) of about 12 Å (Tautenburg) and 3500 to 8000 Å (Calar Alto).

|                |              |                             | -                 |                   |
|----------------|--------------|-----------------------------|-------------------|-------------------|
| year-month-day | J.D. (start) | $\operatorname{instrument}$ | $t_{\rm exp}$ [s] | $EW(H\alpha)$ [Å] |
| 2006 - 09 - 24 | 2454002.6479 | NASPEC V200                 | 300               | $3.2\pm0.2$       |
| 2006 - 09 - 24 | 2454002.6443 | NASPEC V200                 | 60                | $2.7\pm0.3$       |
| 2006 - 09 - 23 | 2454001.6556 | NASPEC V200                 | 180               | $86.9\pm9.9$      |
| 2006 - 09 - 23 | 2454001.6529 | NASPEC V200                 | 180               | $82.2\pm9.9$      |
| 2006 - 09 - 22 | 2454000.6553 | NASPEC V200                 | 180               | $4.2 \pm 1.0$     |
| 2006 - 09 - 22 | 2454000.6540 | NASPEC V200                 | 60                | $4.0\pm0.6$       |
| 2003 - 03 - 03 | 2452702.3248 | CAFOS B400                  | 60                | -                 |
| 2002 - 03 - 18 | 2452352.3622 | CAFOS B400                  | 120               | -                 |
| 1999 - 03 - 24 | 2451293.3266 | CAFOS B400                  | 120               | -                 |

Table 1. Table of observations and measured  $H\alpha$  equivalent widths



Figure 1. Series of 9 low-resolution spectra of DX Cnc at different epochs normalized at 7500 Å. The Balmer lines in the two flare spectra were truncated for lucidity



**Figure 2.** Average (a) and difference (b) of the two normalized flare spectra (relative flux) of DX Cnc from 2006 Sep 23 in the wavelength range of the Balmer lines. The scales of the two panels are different

The flare was detected on two spectra taken at the end of the night of 2006 September 22/23. Actually, the target of these observation was the star USNO-B1.0 1167-0167382 at a distance of about 10 arcsec from DX Cnc. Although the spectrograph slit was not positioned on DX Cnc, the stray light from DX Cnc passing through the long-slit was bright enough to enable the extraction of useful spectra, however with poor S/N below  $\sim 5000$  A. The time-lag between the end of the first exposure and the beginning of the second exposure was 50 s, hence the two spectra cover a time interval of 430 s. Unfortunately, no other spectra could be taken in the same night because of the break of dawn. The series of all available spectra is shown in Fig. 1. All other spectra of DX Cnc do not show substantial flare activity. The star was obviously in its quiescence stage on the spectra observed in the night before the flare as well as on the spectra from the night after the flare. The two flare spectra do not significantly differ. This is most likely explained by the assumption that the duration of the flare was longer than the time interval covered by the observations. It appears hence useful to compute an average flare spectrum with reduced S/N from the two single spectra. Both the difference spectrum and the average spectrum are shown in Fig. 2. In addition to very strong Balmer lines, HeI emission lines at  $\lambda\lambda$  5876, 6678 and metal lines (Na, Mg) are clearly identified; the identification of the lines HeI  $\lambda$  4471 and HeII  $\lambda$  5412 is not safe.

Weak H $\alpha$  emission is seen in all other Tautenburg spectra. The higher Balmer lines, the He lines, and the metal lines, on the other hand, are usually not seen in emission. For H $\alpha$  we measure an equivalent width of EW(H $\alpha$ ) = 3...4 Å in the quiescence stage around the epoch of the flare, in good agreement with the data found in the literature (Liebert, 1976; Martín et al., 1996; Mohanty & Basri, 2003; Fuhrmeister et al., 2005). With their lower resolution, the Calar Alto spectra do not allow to measure H $\alpha$  in quiescence. From the average flare spectrum we derive EW(H $\alpha$ ) = 95 ± 10 Å. To measure the equivalent width of H $\beta$ , the continuum was estimated by fitting a mean spectrum from the quiescence stage which yields EW(H $\beta$ ) = 580 ± 10 Å. For the higher Balmer lines it is not possible to estimate the continuum from our spectra.

Finally, it is worth mentioning that both flare spectra seem to indicate an enhanced blue continuum. Such a behaviour has been found for other late-type stars by e.g., Liebert et al. (1999) and Scholz et al. (2004). However, the quality of our flare spectra is not sufficient for a clear-cut statement on the continuum variation during the flare of DX Cnc.

#### References:

Basri, G., Marcy, G.W., 1995, AJ, 109, 762
Caballero, J.A., Martín, E.L., Zapatero Osorio, M.R., et al., 2006, A&A, 445, 143
Fuhrmeister, B., Schmitt, J.H.M.M., Hauschildt, P.H., 2005, A&A, 439, 1137
Liebert, J., 1976, PASP, 88, 232
Liebert, J., Kirkpatrick, J.D., Reid, I.N., et al., 1999, ApJ, 519, 345
Martín, E.L., Rebolo, R., Zapatero Osorio, M.R., 1996, ApJ, 469, 706
Mohanty, S., Basri, G., 2003, ApJ, 583, 451
Samus, N.N., Durlevich, O.V., 2004, Combined General Catalogue of Variable Stars, CDS/ADC Collection of Electronic Catalogues, 2250, 0
Scholz, R.-D., Meusinger, H., 2002, MNRAS, 336, L49
Scholz, R.-D., Lodieu, N., Ibata, R., et al., 2004, MNRAS, 347, 685
Scholz, R.-D., Meusinger, H., Jahreiß, H., 2005, A&A, 442, 211

Number 5756

Konkoly Observatory Budapest 12 February 2007 *HU ISSN 0374 - 0676* 

# LONG-TERM OPTICAL LIGHT VARIATIONS OF THE PECULIAR MASSIVE RUNAWAY STAR HD 108

BARANNIKOV, A.A.<sup>1,2</sup>

<sup>1</sup> Sternberg Astronomical Institute, University Avenue 13, 119899 Moscow, Russia, e-mail: albardon@mail.ru

<sup>2</sup> South-Russia State University of Economics and Service, Shevchenko str. 147, Shakhty 346500, Rostov region, Russia, e-mail: albar@sssu.ru

| Name of the object:                   |                                  |               |                         |
|---------------------------------------|----------------------------------|---------------|-------------------------|
| Name of the object:                   |                                  |               |                         |
| $HD \ 108 = NSV \ 25 = S_{2}$         | $AO \ 10973 = BD + 62^{\circ}23$ | 363           |                         |
| Equatorial as andimat                 |                                  |               | <b>D</b>                |
| Equatorial coordinat                  | es:                              |               | Equinox:                |
| $\mathbf{R.A.} = 00^{h}06^{m}03.3861$ | $DEC. = +63^{\circ}40'46''.76$   | 53            | 2000                    |
|                                       |                                  |               |                         |
| Observatory and tele                  | escope:                          |               |                         |
| Crimean Laboratory, St                | ernberg Astronomical I           | nstitute, 60- | cm Cassegrain telescope |
|                                       |                                  |               |                         |
| Detector:                             | photometer: one chan             | nel           |                         |
|                                       |                                  |               |                         |
| Filter(s):                            | BVR                              |               |                         |
|                                       |                                  |               |                         |
| Date(s) of the observ                 | ation(s):                        |               |                         |
| 1989.07/2006.08                       |                                  |               |                         |
|                                       |                                  |               |                         |
| Comparison star(s):                   | HD 134                           |               |                         |
|                                       |                                  | NT            |                         |
| Transformed to a sta                  | ndard system:                    | No            |                         |
| Availability of the de                |                                  |               |                         |
| Availability of the da                | 114.                             |               |                         |
| upon request                          |                                  |               |                         |
| Damaarka                              |                                  |               |                         |
| Kemarks:                              |                                  |               |                         |

HD 108 is a well-known Ofp star which is placed in a list of runaway stars by Bekenstein & Bowers (1974) with a peculiar velocity  $V_p > 98$  km/s and the height above the Galactic plane z = 80 pc (Cruz-Gonzalez et al., 1974; Stone, 1979). The star belongs to the association Cas OB5 (Humphreys, 1978). One of the interesting aspects of investigation of the star is its long-term optical variability which has been found by Barannikov (1999). According to the newest observation data the brightness of the star was constant from 1989 until 1994, then, it began to decline monotonically till now (Fig. 1). Total amplitude of brightness diminution reached ~ 0<sup>m</sup>06. Variations of colour indexes B - V and V - R were small (Fig. 2). This result confirms independent deductions about long-term variability of HD 108 in the optical domain (Nazé et al., 2004).



Figure 1. Long-term light curves of HD 108 in the B, V and R bands (yearly averages)



Figure 2. Long-term colour curves of HD 108 (yearly averages)

# Acknowledgements:

The author thanks for the hospitality of A. Merkulova for the help in the observations at Crimean Laboratory of Sternberg Astronomical Institute.

Reference:

Barannikov, A.A., 1999, AstL, 25, 169
Bekenstein, J.D., Bowers, R.L., 1974, ApJ, 190, 653
Cruz-Gonzalez, C., Recillas-Cruz, E, Costero, R., et al., 1974, RevMexAA, 1, 211
Humphreys, R.M., 1978, ApJSS, 38, 309
Nazé, Y., Rauw, G., Vreux, J.-M., De Becker, M., 2004, A&A, 417, 667
Stone, R.C., 1979, ApJ, 232, 520

Number 5757

Konkoly Observatory Budapest 23 February 2007 *HU ISSN 0374 - 0676* 

# FR SCUTI: A TRIPLE VV CEPHEI-TYPE SYSTEM OF PARTICULAR INTEREST

#### PIGULSKI, A.; MICHALSKA, G.

Instytut Astronomiczny Uniwersytetu Wrocławskiego, Kopernika 11, 51-622 Wrocław, Poland e-mail: pigulski@astro.uni.wroc.pl, michalska@astro.uni.wroc.pl

The VV Cephei-type binaries form a small but interesting group of massive binaries consisting of an M-type supergiant and a late O or an early B-type star (Bidelman, 1954; Cowley, 1969). They are related to, but distinct from two other classes of stars with composite spectra: symbiotic stars and  $\zeta$  Aurigae systems. The optical spectra of VV Cephei stars are characterized by emission lines of hydrogen and [Fe II]. In addition, weaker emission lines, mostly forbidden, of the other single-ionized elements are observed. Because of the large radius of the M-type supergiant, the orbital periods in VV Cephei systems might be decades long, like for the prototype, VV Cep (20.4 yr), or KQ Gem (26.7 yr). In a few of them, including VV Cep itself, eclipses are observed. The VV Cephei systems are very rare; less than twenty are known in the Galaxy. This rarity comes from the fact that systems with very massive components evolve very fast.

FR Sct (HIP 90115) is a relatively poorly studied VV Cephei system. Its composite spectrum was discovered by Bidelman & Stephenson (1956). In contrast to the other VV Cephei systems, it showed emission lines of [Fe III] and [O III]. The photometric variability was discovered by Shajn (1934). Although Shajn (1935) noted that the star exhibits variability with a short period (of unknown length), the observations made so far (Tsessevich, 1952; Burchi, 1980, Hipparcos data) showed no more than erratic or semi-regular variations in the range of a few tenths of magnitude.

FR Sct is also known as a radio source (Florkowski et al., 1985). The radiation in the radio domain is probably due to a thermal emission of a cloud of plasma. The plasma originated probably as a result of ioniziation of the cool wind coming from M supergiant by the ultraviolet radiation of the OB component. The radio and optical positions of FR Sct were frequently used to define or compare astrometric reference frames (e.g., Johnston et al., 1985; Walter et al., 1997).

The star was also observed by the ASAS survey (Pojmański, 1997) where it is recognized as ASAS 182323-1240.9. Surprisingly, automatic classification applied by the authors of the ASAS catalogue to this star resulted in an ESD/ED classification, i.e., semi-detached or detached eclipsing binary, with a period of only 3.535 d (Pojmański & Maciejewski, 2005). What seemed to be at a first glance an incorrect classification, has been confirmed during our analysis, carried out according to the procedure described by Pigulski (2005). The only difference was that the search for periodic variations we present here was made using eclipse-freed light curves. This was a part of a much wider search for pulsating components of eclipsing binaries (Michalska & Pigulski, 2007). The original ASAS light curve (Fig. 1) does not show the eclipses in an obvious way, because they are contaminated by the quasi-periodic variations originating probably in the M-type supergiant. However, as these long-term variations could be well represented by means of a series of sinusoidal terms with frequencies smaller than  $0.01 \, d^{-1}$ , we were able to separate them from eclipses. The contributions from the long-term variations and the eclipses are shown in Figs. 2 and 3, respectively. As can be seen in Fig. 2, the long-term changes, presumably due to the variability of the cool supergiant, have a range of about 0.4 mag and a mean V magnitude of about 10.28. The larger scatter after HJD 2453300 is due to the change of the exposure time to smaller value around this date in the ASAS observations. In consequence, the mean accuracy of a single measurement amounts to about 0.02 mag for observations made prior and 0.06 mag for observations made after that date.



Figure 1. The V-filter ASAS light curve of FR Sct. The data cover the interval between February 2001 and June 2006. Data plotted as crosses are of lower quality



Figure 2. The same as in Fig. 1, but freed from the contribution from the eclipses

IBVS 5757

On the other hand, the eclipse light-curve (Fig. 3) shows two minima of unequal depth; about 0.23 mag for the primary and 0.13 mag for the secondary eclipse. The epochs of the primary minimum, as derived from the ASAS data, can be represented by the following ephemeris:

$$T_{\min I} = \text{HJD } 2452082.802 \pm 0.006 + (3.53405 \pm 0.00004) \times E, \tag{1}$$

where E is the number of cycles elapsed from the initial epoch.



Figure 3. The eclipses in FR Sct. The light curve was folded with the orbital period of 3.53405 d. Like in Figs. 1 and 2, the data obtained prior to HJD 2453300 are plotted with dots, after that date, with crosses. The data were freed from the long-term changes seen in Fig. 2

The immediate conclusion coming from the length of the orbital period is that the eclipses cannot occur between the hot component and the cool M-type supergiant. In that case we would expect the orbital period of at least a few years. Consequently, the most plausible explanation is that the hot component of FR Sct is itself a binary, and what we see are the eclipses in this system. Thus, FR Sct would be a hierarchical triple system consisting of very massive stars. This makes it a very interesting star for the follow-up study and unique among VV Cephei stars.

It has to be pointed out that the separation of the eclipsing light curve (Fig. 3) and the long-term changes (Fig. 2) we made does not mean that Figs. 2 and 3 represent the light changes of the M-type supergiant and the hot binary as if they were seen separately. First, in both cases the contribution from the other component(s) leads to the reduction of the amplitude of the light curve. Next, we cannot exclude that some erratic changes seen in Fig. 2 come from the hot components. The presence of the [Fe III] and [O III] emission lines in the spectra of FR Sct (Bidelman & Stephenson, 1956) may be related to the duplicity of the hot component. The other possibility is that the hot components in FR Sct are hotter than usually the case in VV Cephei systems. Acknowledgement. The work was supported by the MNiI grant 1 P03D 016 27.

References:

Bidelman, W.P., 1954, ApJS, 1, 175
Bidelman, W.P., Stephenson, C.B., 1956, PASP, 68, 152
Burchi, R., 1980, IBVS, No. 1813
Cowley, A.P., 1969, PASP, 81, 297
Florkowski, D.R., Johnston, K.J., Wade, C.M., de Vegt, C., 1985, AJ, 90, 2381
Johnston, K.J., de Vegt, C., Florkowski, D.R., Wade, C.M., 1985, AJ, 90, 2390
Michalska, G., Pigulski, A., 2007, Comm. in Asteroseismology, in press
Pigulski, A., 2005, Acta Astron., 55, 219
Pojmański, G., 1997, Acta Astron., 47, 467
Pojmański, G., Maciejewski, G., 2005, Acta Astron., 55, 97
Shajn, P.T., 1934, Perem. Zvezdy, 4, 342
Shajn, P.T., 1935, Poulkovo Obs. Circ., 13, 30
Tsessevich, V.P., 1952, Perem. Zvezdy, 8, 412
Walter, H.G., Hering, R., de Vegt, C., 1997, A&AS, 122, 529

Number 5758

Konkoly Observatory Budapest 6 March 2007 *HU ISSN 0374 - 0676* 

### **ELEMENTS FOR 7 PULSATING VARIABLES**

HÄUSSLER, K.<sup>1</sup>; BERTHOLD, T.<sup>1,2</sup>; KROLL, P.<sup>2</sup>

<sup>1</sup> Bruno-H.-Bürgel-Sternwarte, Töpelstr. 46, D-04746 Hartha, Germany

 $^2$  Sternwarte Sonneberg, Sternwartestr<br/>. 32, D-96515 Sonneberg, Germany

email: sternwartehartha@lycos.de, tb@4pisysteme.de, pk@4pisysteme.de

These stars were reported to be variable by Boyce & Huruhata (1942), Hoffmeister (1931, 1943, 1966, 1967) and Götz et al. (1957). Except in the cases of V565 Oph and V943 Oph (see details noted in the remarks below), no further observations or ephemeris have been published until today. Photographic plates of a field centered at 67 Oph, taken with the Sonneberg Observatory 40-cm Astrographs during three intervals spread over the years from 1938 to 1994, were used to investigate the behaviour of these objects (see Table 1).

The given elements were obtained by means of least-squares solutions. Photographic amplitudes were derived with respect to magnitudes of the comparison stars given in Table 2. An extensive list holding the times of maxima derived can be retrieved as 5758-t3.txt, using the link in the HTML version of this paper. Individual data are available upon request.

|               |                       | Table 1. Sur           | nmary of th | is paper            | •                          |                       |        |
|---------------|-----------------------|------------------------|-------------|---------------------|----------------------------|-----------------------|--------|
| Star          | Type                  | $\operatorname{Epoch}$ | Period      | Max.                | Min.                       | M - m                 | No. of |
|               |                       | 2400000 +              | (day)       |                     |                            |                       | Plates |
| V565  Oph     | $\operatorname{Cep}$  | 47736.504              | 1.8997213   | $14.^{\mathrm{m}}0$ | $15.^{\mathrm{m}}0$        | $0^{\rm p}_{\cdot}20$ | 242    |
|               |                       | $\pm 23$               | $\pm 56$    |                     |                            |                       |        |
| V943  Oph     | $\operatorname{RRc}$  | 49475.526              | 0.2718626   | $15.^{m}7$          | $16^{\mathrm{m}}_{\cdot}1$ |                       | 105    |
|               |                       | $\pm 8$                | $\pm 2$     |                     |                            |                       |        |
| V1066 Oph     | CWB                   | 48832.363              | 1.9202194   | $15.^{\mathrm{m}}5$ | $16^{\rm m}_{\cdot}2$      | $0^{\rm p}_{\cdot}20$ | 114    |
|               |                       | $\pm 66$               | $\pm 121$   |                     |                            |                       |        |
| V1079  Oph    | RR/DSC                | 49488.532              | 0.2493961   | $15.^{m}4$          | $16^{\rm m}_{\cdot}3$      | $0^{\rm p}_{\cdot}25$ | 141    |
|               |                       | $\pm 6$                | $\pm 1$     |                     |                            |                       |        |
| V2034  Oph    | $\operatorname{RRab}$ | 49124.461              | 0.6933048   | $15.^{\mathrm{m}}5$ | $16^{\mathrm{m}}_{\cdot}5$ | $0^{\rm p}_{\cdot}20$ | 168    |
|               |                       | $\pm 7$                | $\pm 5$     |                     |                            |                       |        |
| $NSV \ 9519$  | $\operatorname{RRab}$ | 48362.569              | 0.6477471   | $14^{m}_{.}4$       | $15^{m}_{.}5$              | $0^{\rm p}_{\cdot}32$ | 140    |
|               |                       | $\pm 13$               | $\pm 7$     |                     |                            |                       |        |
| $NSV \ 10069$ | $\operatorname{RRab}$ | 49475.523              | 0.2917116   | $14^{m}_{.}1$       | $15.^{m}4$                 | $0^{\rm p}_{\cdot}30$ | 219    |
|               |                       | $\pm 5$                | $\pm 2$     |                     |                            |                       |        |

| Ta        | able 2. Comparise | on stars an                         | d cross references       |                                     |
|-----------|-------------------|-------------------------------------|--------------------------|-------------------------------------|
|           | $V565 { m ~Oph}$  |                                     | V943  Oph                |                                     |
|           | 238.1931          |                                     | S $4192$                 |                                     |
|           | USNO 0900-109465  | 581                                 | USNO 0825-11559850       | 0                                   |
| Comp. No. | USNO              | $m^*$                               | USNO                     | $m^*$                               |
| 1         | 0900 - 10928684   | $13^{\mathrm{m}}_{\cdot}6$          | $0825 	ext{-} 11549978$  | $15.^{\mathrm{m}}5$                 |
| 2         | 0900 - 10938160   | $14 \cdot 1$                        | $0825 	ext{-} 11557631$  | $15.^{\mathrm{m}}8$                 |
| 3         | 0900 - 10942877   | 14 <sup>m</sup> 7                   | $0825 	ext{-} 11555176$  | $16 \cdot 4$                        |
| 4         | 0900 - 10943881   | $15 \stackrel{\mathrm{m}}{\cdot} 2$ |                          |                                     |
|           |                   |                                     |                          |                                     |
|           | V1066 Oph         |                                     | $V1079 { m ~Oph}$        |                                     |
|           | ${ m S}$ 9835     |                                     | ${ m S}$ 9845            |                                     |
|           | USNO 0900-103088  | 821                                 | USNO 0900-1085795        | 5                                   |
| Comp. No. | USNO              | $m^*$                               | USNO                     | $m^*$                               |
| 1         | 0900 - 10305081   | $15.^{m}6$                          | 0900 - 10861783          | $15.^{\mathrm{m}}5$                 |
| 2         | 0900 - 10306618   | 15 <sup>m</sup> 9                   | 0900 - 10857822          | $16^{\mathrm{m}}_{\cdot}2$          |
| 3         |                   |                                     | 0900 - 10854899          | $16 \stackrel{\mathrm{m}}{\cdot} 5$ |
|           |                   |                                     |                          |                                     |
|           | V2034  Oph        |                                     | NSV 9519                 |                                     |
|           | S $9281$          |                                     | HV 11018                 |                                     |
|           | USNO 0900-112531  | 134                                 | USNO 0975-09544608       | 8                                   |
| Comp. No. | USNO              | $m^*$                               | USNO                     | $m^*$                               |
| 1         | 0900 - 11261755   | $15^{m}_{\cdot}3$                   | $0975 \hbox{-} 09548857$ | $14.^{m}4$                          |
| 2         | 0900 - 11259056   | $15.^{\mathrm{m}}9$                 | $0975 \hbox{-} 09541815$ | $15 \stackrel{\mathrm{m}}{.} 1$     |
| 3         | 0900 - 11253836   | $16 \stackrel{\mathrm{m}}{\cdot} 6$ | $0975 \hbox{-} 09545937$ | 15.55                               |
|           |                   |                                     |                          |                                     |
|           |                   | NSV 1006                            | <u>i9</u>                |                                     |
|           |                   | S $9285$                            |                          |                                     |
|           | US                | NO 0900-11                          | 358051                   |                                     |
|           | Comp. No.         | USNO                                | $m^*$                    |                                     |
|           | 1                 | 0900-113610                         | $520 13.^{m}8$           |                                     |
|           | 2                 | 0900-113498                         | $14^{m}$                 |                                     |
|           | 3                 | 0900-113529                         | $15^{m}_{}1$             |                                     |
|           |                   |                                     |                          |                                     |

\* Magnitudes refer to the B values of the USNO–A2.0 catalogue

### Remarks:

V565 Oph

Both type and period previously published by of Hoffmeister (1943) and cited in the GCVS are erroneous. The variable is situated very near a bright star on the plates. Most of the timings given by Hoffmeister obviously represent brightenings. Only the visual timing (J.D. 2429438.500) has been included in this period analysis.

V943 Oph

Both type and period previously published by of Götz et al. (1957) and cited in the GCVS are erroneous.

V2034 Oph

A spurious period of 0.4094386 is possible, but the light curve is better represented with the period given above.



Figure 1. Light curve of V565 Oph



Figure 3. Light curve of V1066 Oph



Figure 5. Light curve of V2034 Oph



Figure 2. Light curve of V943 Oph



Figure 4. Light curve of V1079 Oph



Figure 6. Light curve of NSV 9519



Figure 7. Light curve of NSV 10069

This research made use of the SIMBAD data base, operated by the CDS at Strasbourg, France.

References:

Boyce, E.H., Huruhata, M., 1942, Harvard Annals, 109, 19
Götz, W., Huth, H., Hoffmeister, C., 1957, Veröff. Sternw. Sonneberg, 4, 123, (H2)
Hoffmeister, C., 1931, Astron. Nachr., 242, 129
Hoffmeister, C., 1943, Kleine Veröff. Berlin-Babelsberg, 28
Hoffmeister, C., 1966, Astron. Nachr., 289, 139
Hoffmeister, C., 1967, Astron. Nachr., 290, 43

Number 5759

Konkoly Observatory Budapest 26 March 2007 *HU ISSN 0374 - 0676* 

# ELEVEN MORE ECLIPSING SYSTEMS WITH APSIDAL MOTION IN THE LARGE MAGELLANIC CLOUD

#### MICHALSKA, G.

Instytut Astronomiczny Uniwersytetu Wrocławskiego, Kopernika 11, 51-622 Wrocław, Poland e-mail: michalska@astro.uni.wroc.pl

With the bulk of time-series photometric data coming from the long-term, mainly microlensing surveys (OGLE, MACHO, EROS, ASAS, NSVS and others), different properties of eclipsing binaries can be studied statistically and confronted with the theory of binary star formation and evolution. As these surveys cover both our Galaxy and Magellanic Clouds, the properties of eclipsing binaries in the environment of different metallicity can be examined. There are already many examples of the use of the large photometric databases for binary star studies (e.g., Paczyński et al., 2006; Derekas et al., 2007b) but the information included in these databases is still far from being exploited.

Apsidal motion, a phenomenon observed in eccentric systems, can be used to test internal structure of components (Claret & Gímenez, 1993; Claret, 1999) or even to derive their parameters (e.g., Benvenuto et al., 2002). Typically, apsidal periods are at least decades long and thus require very long observing runs. Photometric surveys we listed above, many of them still ongoing, are therefore ideal for detection and monitoring of this phenomenon.

In our study of detached eclipsing binaries in the Large Magellanic Cloud (LMC) that are suitable for distance determination (Michalska & Pigulski, 2005, hereafter Paper I), 98 systems were presented, of which fourteen showed apsidal motion clearly. However, a more detailed analysis led us to the detection of eleven more systems in the sample we studied. In these new systems, the apsidal motion is not so well pronounced as in those found earlier albeit still detectable. Thus, in the present paper, we update the list of eclipsing binaries with apsidal motion in the LMC. A discovery of about 40 systems with apsidal motion in the LMC was also recently announced by Derekas et al. (2007a). They used MACHO microlensing survey as the source of data.

Like in Paper I, the main source of the data we used was the OGLE-II *I*-band photometry of Żebruń et al. (2001) supplemented by the two-colour photometry from the MACHO (Allsman & Axelrod, 2001) and EROS (Grison et al., 1995) sources for stars in common. The light curves in all bands were analyzed simultaneously by means of the improved version of the Wilson–Devinney (WD) program (Wilson & Devinney, 1971; Wilson, 2001).

The detection of the apsidal motion was made in the same way as in Paper I. First, the data were divided into several subsets. For each subset the inclination, the phase shift, the eccentricity, e, the longitude of periastron,  $\omega$ , the temperature of the secondary,



Figure 1. The O - C diagrams for 11 systems with apsidal motion. The filled and open circles denote the primary and secondary times of minimum, respectively



Figure 2. The eccentricities of EA-type binaries in the LMC plotted against: the logarithm of orbital period (a), the sum of fractional radii (b), and longitude of periastron,  $\omega$  (c). Systems with apsidal motion we found are plotted as open circles (14 systems from Paper I) and open squares (this paper). The remaining points are for systems in which apsidal motion was not detected

|      | OGLE                        | e     | ω   | $\dot{\omega}$           | $P_{\mathrm{mean}}$ | $T_{0,\mathrm{mean}}$ |
|------|-----------------------------|-------|-----|--------------------------|---------------------|-----------------------|
| Star | designation                 |       | [°] | $[^{\circ}/\text{year}]$ | [d]                 | [HJD 244]             |
| #8   | 05350218-6944178            | 0.081 | 323 | $4.16 \pm 0.26$          | 2.989470            | 9292.7814             |
| #19  | 05371417 - 7020015          | 0.083 | 150 | $4.40 \pm 0.29$          | 3.256681            | 9184.2182             |
| #20  | 05164453- $6932333$         | 0.202 | 280 | $0.62\pm0.04$            | 5.603488            | 9053.8272             |
| #39  | 05250946 - 7004226          | 0.069 | 63  | $3.0\pm0.3$              | 3.625506            | 9021.9995             |
| #40  | 05404159 - 6959014          | 0.094 | 229 | $8.6\pm0.7$              | 2.009973            | 9668.2172             |
| #67  | $05312473 \hbox{-} 6925281$ | 0.124 | 440 | $4.34\pm0.25$            | 2.536666            | 9048.9340             |
| #78  | 05121869 - 6858325          | 0.048 | 215 | $4.9\pm0.7$              | 2.390521            | 9102.2382             |
| #84  | 05221500 - 6938483          | 0.322 | 257 | $1.17\pm0.05$            | 4.722937            | 9054.2332             |
| #85  | $05203518 {-} 6934378$      | 0.119 | 151 | $3.5\pm0.4$              | 2.117476            | 9120.6445             |
| #90  | $05264527 \hbox{-} 6944045$ | 0.399 | 262 | $0.20\pm0.03$            | 6.536149            | 9069.1179             |
| #96  | 05181271-6935245            | 0.107 | 157 | $3.8\pm0.4$              | 2.575571            | 9071.1041             |

Table 1: Parameters for eleven new systems with apsidal motion

surface potentials and the luminosity of the primary component were adjusted with the WD program. Then, the mean values of the e and  $\omega$  were calculated. Next, the WD program was run separately for each subset with e and  $\omega$  fixed and the phases of primary and secondary minimum were derived from the best fit. These phases were transformed into times of minimum closest to the mean epoch of all observations in a given subset. The individual times of minimum were used in the same way as explained in Paper I to derive mean orbital period,  $P_{\text{mean}}$ , and initial epoch,  $T_{0,\text{mean}}$ , which are listed in Table 1 for all eleven systems. In Fig. 1, the O - C values calculated using  $P_{\text{mean}}$  and  $T_{0,\text{mean}}$ , are plotted. The numbers in the first column of Table 1 follow designation of stars used in Paper I. The longitudes of periastron passage,  $\omega$ , are given for epoch HJD 2450500.0.

In Fig. 2 we also show how the parameters of systems with apsidal motion compare with those of all sample of 98 stars studied in Paper I. As expected, for a given eccentricity, they usually have the shortest orbital period (Fig. 2a) or the largest sum of relative radii (Fig. 2b). We have already explained in Paper I that the selection effects cause systems with detected apsidal motion tend to group around  $\omega \sim 90^{\circ}$  and  $270^{\circ}$ .

Acknowledgement. The work was supported by the MNiI grant 1 P03D 016 27.

References:

Allsman, R.A., Axelrod, T.S., 2001, astro-ph/0108444

- Benvenuto, O.G., Serenelli, A.M., Althaus, L.G., Barbá, R.H., Morrell, N.I., 2002, *MN*-*RAS*, **330**, 435
- Claret, A., 1999, A&A, **350**, 56
- Claret, A., Gímenez, A., 1993, A&A, 277, 487
- Derekas, A., Kiss, L.L., Bedding, T.R., 2007a, Proc. I.A.U. Symp., 240, in press (astroph/0611656)
- Derekas, A., Kiss, L.L., Bedding, T.R., 2007b, ApJ, in press (astro-ph/0703137)
- Grison, P., Beaulieu, J.-P., Pritchard, J.D., et al., 1995, A&AS, 109, 447
- Michalska, G., Pigulski, A., 2005, A&A, 434, 89
- Paczyński, B., Szczygieł, D., Pilecki, B., Pojmański, G., 2006, MNRAS, 368, 1311
- Wilson, R.E., 2001, ftp://ftp.astro.ufl.edu/pub/wilson/
- Wilson, R.E., Devinney, E.J., 1971, ApJ, 166, 605
- Zebruń, K., Soszyński, I., Woźniak, P.R., et al., 2001, Acta Astron., 51, 317

Number 5760

Konkoly Observatory Budapest 26 March 2007 *HU ISSN 0374 – 0676* 

# CCD MINIMA FOR SELECTED ECLIPSING BINARIES IN 2006

NELSON, R.H.

1393 Garvin Street, Prince George, BC, Canada, V2M 3Z1, e-mail: bob.nelson@shaw.ca

### Observatory and telescope:

Sylvester Robotic Observatory (SRO): 33-cmf/4.5Newtonian on Paramount ME mount

| Detector: | SRO: SBIG ST-7XME, 1".25 pixels, $15'.8 \times 10'.5$ FO | )V, |
|-----------|----------------------------------------------------------|-----|
|           | cooled $-30 < T < -10$ °C                                |     |

### Method of data reduction:

Aperture photometry using MIRA, by Axiom Research

### Method of minimum determination:

Digital tracing paper method, bisection of chords, curve fitting, and (occasionally) Kwee & van Woerden (1956)

| Times of m | ninima:      |        |      |        |      |
|------------|--------------|--------|------|--------|------|
| Star name  | Time of min. | Error  | Type | Filter | Rem. |
|            | HJD 2400000+ |        |      |        |      |
| DS And     | 53795.663    | 0.001  | II   | R      |      |
| EP And     | 54091.6016   | 0.0002 | II   | R      |      |
| HS And     | 54097.6881   | 0.0002 | Ι    | R      |      |
| V0376 And  | 54011.9868   | 0.0005 | II   | B      |      |
| SS Ari     | 54033.886    | 0.0002 | II   | R      |      |
| AH Aur     | 54097.8243   | 0.0003 | Ι    | R      |      |
| HL Aur     | 54012.9621   | 0.0002 | II   | R      |      |
| V0404 Aur  | 53738.8679   | 0.0001 | Ι    | R      |      |
| V0404 Aur  | 53814.6748   | 0.0005 | II   | R      |      |
| V0410 Aur  | 54096.5910   | 0.0003 | Ι    | R      |      |
| SU Boo     | 53738.9772   | 0.0001 | Ι    | R      |      |
| TZ Boo     | 53799.8198   | 0.0003 | II   | R      |      |
| XY Boo     | 53857.8897   | 0.0001 | Ι    | R      |      |
| AQ Boo     | 53815.7686   | 0.0001 | Ι    | R      |      |
| AR Boo     | 53821.7770   | 0.0003 | II   | R      |      |
| AY Cam     | 54018.9537   | 0.0002 | Ι    | R      |      |
| LR Cam     | 54091.8210   | 0.0003 | II   | R      |      |

| Times of m       | ınıma:                   |        |          |         |      |
|------------------|--------------------------|--------|----------|---------|------|
| Star name        | Time of min.             | Error  | Type     | Filter  | Rem. |
|                  | HJD 2400000+             |        |          |         |      |
| AE Cas           | 54031.8730               | 0.0001 | Ι        | R       |      |
| DN Cas           | 53980.9378               | 0.0002 | Ι        | R       |      |
| MT Cas           | 53738.6533               | 0.0001 | Ι        | R       |      |
| V0364 Cas        | 54025.9097               | 0.0001 | Ι        | V, R, I |      |
| V0364 Cas        | 54019.7353               | 0.0002 | II       | V, R, I |      |
| V0374 Cas        | 54030.773                | 0.0010 | Ι        | R       |      |
| V0385 Cas        | 54060.8386               | 0.0002 | I?       | R       |      |
| V0776 Cas        | 54093.6015               | 0.0003 | II       | R       |      |
| VZ Cep           | 54009.7691               | 0.0001 | Ι        | V, R, I |      |
| AV CMi           | 54093.9819               | 0.0001 | Ι        | R       |      |
| WX Cnc           | 53790.8289               | 0.0001 | Ι        | R       |      |
| YY Cnc           | 54100.861                | 0.001  | Ι        | R       |      |
| AH Cnc           | 54060.9837               | 0.0003 | II       | R       |      |
| HN Cnc           | 54096.8741               | 0.0003 | Ι        | clear   |      |
| RW Com           | 53826.7905               | 0.0005 | ĪĪ       | R       |      |
| RZ Com           | 53806.8301               | 0.0001 | II       | R       |      |
| SS Com           | 53791.8356               | 0.0001 | I        | R       |      |
| LO Com           | 53813 8045               | 0.0001 | Ī        | R       |      |
| DI CVn           | 53815 6842               | 0.0001 | Ī        | clear   |      |
| V0488 Cvg        | 53823 0259               | 0.0001 | I        | R       |      |
| V0628 Cvg        | 53981 9015               | 0.0001 | Î        | R       |      |
| V1187 Cvg        | 54049 6475               | 0.0002 | I        | R       |      |
| V1101 Cyg        | 54049 6383               | 0.0001 | I        | R       |      |
| V1305 Cyg        | 53821 0080               | 0.0001 | T        | R       |      |
| V1005 Cyg        | 53080 7026               | 0.0000 | I        | clear   |      |
| V1417 Cyg        | 53806.0416               | 0.0002 | I<br>II  | R       |      |
| V1910 Cyg        | 54028 6078               | 0.0002 | II<br>II | R       |      |
| AB Dro           | 53785 7961               | 0.0000 | II<br>T  | R<br>R  |      |
| AT DIa<br>AY Dra | 53898 7918               | 0.0001 | I<br>T   | R<br>R  |      |
| AA Dia<br>DV Dra | 52020.1210               | 0.0001 | I<br>TT  |         |      |
| DA DIa<br>EU Dra | 52010 0177               | 0.0002 |          | n<br>D  |      |
| r U Dia          | 5019.0177                | 0.0003 | 11<br>T  | n<br>D  |      |
| V0245 Com        | 53741.0795               | 0.0005 |          | n<br>D  |      |
| V0545 Gem        | 54029.0759<br>E2055 0207 | 0.0005 | 11<br>T  | n<br>D  |      |
| V0502 Her        | 03800.8287               | 0.0001 | I<br>T   | R       |      |
| V0719 Her        | 03814.9702               | 0.0001 | I<br>T   | clear   |      |
| V0728 Her        | 53784.0115               | 0.0001 |          | R<br>D  |      |
| V0732 Her        | 53815.940                | 0.001  |          | R $V$   |      |
| V0842 Her        | 53813.8891               | 0.0001 | l        | V       |      |
| V0842 Her        | 53829.8126               | 0.0001 | l        | R       |      |
| V0857 Her        | 53822.8000               | 0.0002 | 1        | R       |      |
| V0921 Her        | 53821.8693               | 0.0003 | II<br>T  | R       |      |
| V1069 Her        | 53807.9635               | 0.0001 | II       | R       |      |
| V0339 Lac        | 54068.635                | 0.0020 | 1        | R       |      |
| XX Leo           | 53814.8274               | 0.0005 | II       | R       |      |
| AL Leo           | 53859.7539               | 0.0001 | Ι        | V       |      |
| VW LMi           | 54093.9820               | 0.0001 | II       | R       |      |
| SW Lyn           | 54067.9038               | 0.0001 | Ι        | R       |      |

| Times of m | inima:       |        |      |        |      |
|------------|--------------|--------|------|--------|------|
| Star name  | Time of min. | Error  | Type | Filter | Rem. |
|            | HJD 2400000+ |        |      |        |      |
| UV Lyn     | 53816.7447   | 0.0002 | II   | R      |      |
| V0404 Lyr  | 53981.7443   | 0.0002 | II   | R      |      |
| V0582 Lyr  | 53822.9076   | 0.0001 | II   | R      |      |
| V0496 Mon  | 53784.6559   | 0.0003 | II   | R      |      |
| ER Ori     | 53807.6393   | 0.0001 | Ι    | R      |      |
| V0343 Ori  | 54096.756    | 0.0010 | II   | clear  |      |
| V0392 Ori  | 54068.7870   | 0.0020 | Ι    | R      |      |
| V1363 Ori  | 54091.698    | 0.001  | Ι    | R      |      |
| BP Per     | 53738.7623   | 0.0003 | Ι    | R      |      |
| II Per     | 53791.6894   | 0.0002 | II   | R      |      |
| IK Per     | 54006.8531   | 0.0002 | Ι    | R      |      |
| V0432 Per  | 54016.802    | 0.001  | Ι    | R      |      |
| CU Sge     | 53983.7327   | 0.001  | Ι    | V      |      |
| CU Sge     | 54006.6913   | 0.0005 | Ι    | V      |      |
| AQ Tau     | 54059.7436   | 0.0002 | Ι    | R      |      |
| CT Tau     | 53799.7082   | 0.0001 | Ι    | R      |      |
| CU Tau     | 54074.887    | 0.001  | II   | R      |      |
| GQ Tau     | 54093.7159   | 0.0002 | Ι    | R      |      |
| GW Tau     | 54067.7525   | 0.0002 | II   | R      |      |
| TY UMa     | 53783.7573   | 0.0001 | Ι    | R      |      |
| UY UMa     | 53785.8517   | 0.0001 | Ι    | R      |      |
| XZ UMa     | 53807.8435   | 0.0001 | Ι    | R      |      |
| BG UMa     | 53807.729    | 0.001  | Ι    | R      |      |
| BS UMa     | 53821.6682   | 0.0005 | I?   | R      |      |
| HH UMa     | 54085.894    | 0.0003 | Ι    | R      |      |
| HN UMa     | 53806.7112   | 0.0003 | II   | R      |      |
| AX Vir     | 53816.8319   | 0.0002 | Ι    | R      |      |
| CG Vir     | 53864.7835   | 0.0003 | Ι    | R      |      |
| BK Vul     | 54031.7419   | 0.0002 | II   | R      |      |
| G2532-0514 | 53831.924    | 0.001  | II   | R      |      |

# Acknowledgements:

Thanks are due to Environment Canada for the website satellite views (see reference below) that were essential in predicting clear times for observing runs in this cloudy locale. Thanks are also due to Attilla Danko for his Clear Sky Clocks, (see below). This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France.

References:

Danko, A., Clear Sky Clocks, http://cleardarksky.com/ Kwee, K.K., van Woerden, H., 1956, B.A.N. **12**, (464), 327 Nelson, R.H., Bob Nelson's O - C Files, http://binaries.boulder.swri.edu/binaries/omc/ Satellite Images for North America, http://gfx.weatheroffice.ec.gc.ca/

### **ERRATUM FOR IBVS 4840**

In IBVS 4840, the correct time of minimum for AG Vir should be  $51281.8282 \pm 0.0006$  (the original value reported was out by one hour).

### ERRATUM FOR IBVS 5760

The original title erroneously indicated year 2007.

The Author

Number 5761

Konkoly Observatory Budapest 28 March 2007 *HU ISSN 0374 - 0676* 

# PHOTOELECTRIC MINIMA OF SELECTED ECLIPSING BINARIES AND MAXIMA OF PULSATING STARS

(BAV MITTEILUNGEN NO. 183)

### HÜBSCHER, J.; WALTER, F.

Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. (BAV), Munsterdamm 90, 12169 Berlin, Germany

In this 57th compilation of BAV results, photoelectric observations obtained in the year 2006 are presented on 389 variable stars giving 611 minima on eclipsing binaries and maxima on pulsating stars. All moments of minima and maxima are heliocentric. The errors are tabulated in column ' $\pm$ '. The values in column 'O - C' are determined without incorporation of nonlinear terms. The references are given in the section 'Remarks'. All information about photometers and filters are specified in the column 'Rem'. The observations were made at private observatories. The photoelectric measurements and all the lightcurves with evaluations can be obtained from the office of the BAV for inspection.

Table 1: Eclipsing binaries

|          |     |            |       | 1                   | 0       |              |               |     |     |                      |
|----------|-----|------------|-------|---------------------|---------|--------------|---------------|-----|-----|----------------------|
| Variable | M/m | JD 24      | ±     | Obs                 | O - C   |              | Bibliography  | Fil | n   | $\operatorname{Rem}$ |
| RT And   | Min | 54124.2454 | .0001 | WN                  | -0.0066 |              | GCVS 85       | V   | 89  | 21)                  |
| AB And   | Min | 53751.2888 | .0007 | ATB                 | -0.0177 |              | GCVS 85       |     | 87  | 3)                   |
| AC And   | Max | 53649.6028 | .0087 | $\mathbf{PC}$       |         |              |               | -Ir | 110 | $9) \ 32)$           |
| AD And   | Min | 54026.6176 | .0042 | $\operatorname{AG}$ | -0.0280 | $\mathbf{s}$ | GCVS 85       | -Ir | 30  | 3)                   |
| AM And   | Min | 54026.4049 | .0022 | $\operatorname{AG}$ |         |              |               | -Ir | 52  | 3)                   |
| AP And   | Min | 54017.6636 | .0005 | $\operatorname{AG}$ |         |              |               | -Ir | 78  | 3)                   |
|          | Min | 54026.3903 | .0006 | $\operatorname{AG}$ |         |              |               | -Ir | 28  | 3)                   |
| BD And   | Min | 54024.2705 | .0005 | $\operatorname{AG}$ | +0.0167 |              | GCVS 85       | -Ir | 39  | 3)                   |
| CO And   | Min | 54029.4488 | .0010 | $\operatorname{AG}$ | +0.0094 |              | GCVS 85       | -Ir | 33  | 3)                   |
| DK And   | Min | 54024.4039 | .0010 | $\operatorname{AG}$ | -0.0001 |              | BAVR 55,106ff | -Ir | 33  | 3)                   |
|          | Min | 54024.4060 | .0050 | WTR                 | +0.0020 |              | BAVR 55,106ff | -Ir | 122 | 14)                  |
| DS And   | Min | 54094.2714 | .0034 | SCI                 | +0.0004 |              | GCVS 85       |     | 101 | 4)                   |
| EX And   | Min | 54026.6553 | .0004 | $\operatorname{AG}$ |         |              |               | -Ir | 30  | 3)                   |
| LM And   | Min | 54056.2857 | .0003 | $\operatorname{AG}$ |         |              |               | -Ir | 21  | 3)                   |
| LO And   | Min | 54026.3966 | .0015 | $\operatorname{AG}$ | +0.0312 |              | GCVS 85       | -Ir | 29  | 3)                   |
|          | Min | 54026.5844 | .0004 | $\operatorname{AG}$ | +0.0286 | $\mathbf{s}$ | GCVS 85       | -Ir | 29  | 3)                   |
| QX And   | Min | 54024.4412 | .0049 | SCI                 |         |              |               |     | 96  | 4)                   |
|          | Min | 54024.6577 | .0042 | SCI                 |         |              |               |     | 54  | 4)                   |
|          | Min | 54026.4950 | .0023 | SCI                 |         |              |               |     | 70  | 4)                   |
| V404 And | Min | 54050.4633 | .0026 | SCI                 |         |              |               |     | 40  | 4)                   |
| V412 And | Min | 54026.3010 | .0043 | $\operatorname{AG}$ |         |              |               | -Ir | 28  | 3)                   |
| AF Aps   | Min | 53974.2880 | .0050 | HND                 |         |              |               |     | 91  | 7)                   |
| GK Aps   | Max | 53123.4892 | .0040 | HND DVY             |         |              |               |     | 173 | (15)(24)             |
| HO Aps   | Max | 53926.5030 | .0030 | HND                 |         |              |               | -Ir | 504 | (18)(22)             |

Table 1: (cont.)

| Variable              | M/m                  | JD 24                    | ±             | Obs                 | $\overline{O-C}$ |              | Bibliography            | Fil        | n                 | Rem          |
|-----------------------|----------------------|--------------------------|---------------|---------------------|------------------|--------------|-------------------------|------------|-------------------|--------------|
| no aps                | Max                  | 53936.4270               | .0030         | HND                 |                  |              |                         | -1r        | 591               | 18) 22)      |
| <u>የ</u> ጠ ለ          | IVIAX                | 03907.300U<br>52001.4000 | .0030         |                     | 0.0201           |              | a ava or                | т          | 38<br>11          | () 22)<br>a) |
| SI Aqr<br>CV Acr      | Min                  | 00991.4923<br>52001 2752 | .0012         | AG                  | -0.0381          |              | GUV 3 89                | -1r<br>T., | 44<br>11          | ತ)<br>೨\     |
| GV AQI                | Min                  | 22221.2722<br>22001 2762 | .0020<br>0014 | AG<br>AC            |                  |              |                         | -11<br>Tm  | 44<br>11          | 3)<br>9)     |
|                       | Min                  | 52066 4150               | .0014         | AG                  | 10.0259          |              | COVE of                 | -11<br>V   | 44<br>59          | 3)<br>6)     |
|                       | Min                  | 53900.4130<br>E2026 E129 | .0007         |                     | +0.0556          |              | GCVD 65                 | V<br>Tm    | 00<br>96          | 0)<br>2)     |
| QIAQI<br>V417 Acl     | Min                  | 00900.0100<br>E2022 412E | .0013         | AG                  | -0.1504          |              | GUVD 00<br>DAVD 00 150G | -11<br>Tm  | 30<br>91          | 3)<br>2)     |
| V417 Aqi<br>V600 Aqi  | Min                  | 54092 2504               | .0013         | AG                  | -0.0524          | s            | COVS SE                 | -11<br>Tn  | 21<br>19          | 3)<br>2)     |
| V009 Aqi<br>V007 Aqi  | Min                  | 54025.5594<br>52025 4474 | .0018         | AG<br>MC ED         | -0.0552          |              | GCV3 60                 | -11        | 220               | 3)<br>8)     |
| V997 AQI<br>V1006 Agl | Min                  | 55955.4474               | .0017         | MSFR                | 10 9729          |              | COVE of                 | Т.,        | 330               | 0)<br>2)     |
| V1096 Aql             | MIIII                | 54023.3529               | .0015         | AG                  | +0.2732          |              | GUV 5 85                | -1r        | 10                | 3)           |
| V1097 Aqi             | Min                  | 53936.4650               | .0007         | AG                  |                  |              |                         | -1r        | 18                | 3)<br>2)     |
|                       | Min                  | 54001.4044               | .0014         | AG<br>MG DD         |                  |              | IDVG F161               | -1r        | 23                | 3)<br>2)     |
| V1542 Aql             | Min                  | 53910.4756               | .0003         | MS FR               | +0.0065          |              | IBVS 5161               |            | 322               | 8)           |
| V628 Ara              | Min                  | 53975.3750               | .0040         | HND                 | 0.0054           |              | C CTTC OF               |            | 40                | ()           |
| SS Ari                | Min                  | 53763.2983               | .0014         | ATB                 | -0.0254          | $\mathbf{s}$ | GCVS 85                 |            | 71                | 3)           |
| OT A                  | Min                  | 54116.2986               | .0045         | WN                  | -0.0366          |              | GCVS 85                 | V          | 60                | 21)          |
| UL Aur                | Min                  | 54085.4892               | .0006         | AG                  | +0.1173          |              | GCVS 85                 | -1r        | 36                | 3)           |
| DO Aur                | Min                  | 53671.5139               | .0011         | FR                  |                  |              |                         | -1r        | 46                | 12)          |
|                       | Min                  | 54039.4182               | .0012         | FR<br>==            |                  |              |                         | -1r        | 39                | 12)          |
| EM Aur                | Min                  | 54017.5123               | .0023         | $_{}^{\rm FR}$      | +0.0212          | $\mathbf{s}$ | AA 54.207               | -Ir        | 41                | 12)          |
|                       | Min                  | 54018.4278               | .0037         | $\mathbf{FR}$       | +0.0258          |              | AA 54.207               | -Ir        | 41                | 12)          |
|                       | Min                  | 54019.3299:              | .0040         | $\mathbf{FR}$       | +0.0169          | $\mathbf{S}$ | AA 54.207               | -Ir        | 43                | 12)          |
|                       | Min                  | 54038.4765               | .0028         | JU                  | +0.0332          |              | AA 54.207               |            | 51                | 4)           |
|                       | Min                  | 54039.3661               | .0032         | $\mathbf{FR}$       | +0.0118          | $\mathbf{S}$ | AA 54.207               | -Ir        | 39                | 12)          |
| FN Aur                | Min                  | 54056.3886               | .0016         | $\mathbf{FR}$       | -0.7105          |              | GCVS 85                 | -Ir        | 34                | 12)          |
|                       | Min                  | 54085.5748               | .0054         | $\operatorname{AG}$ | -0.7261          | $\mathbf{s}$ | GCVS 85                 | -Ir        | 35                | <b>3</b> )   |
|                       | $\operatorname{Min}$ | 54085.5829               | .0021         | $\mathbf{FR}$       | -0.7180          | $\mathbf{s}$ | GCVS 85                 | -Ir        | 50                | 12)          |
| FO Aur                | $\operatorname{Min}$ | 54056.4647               | .0032         | $\mathbf{FR}$       | +0.0995          |              | GCVS 85                 | -Ir        | 38                | 12)          |
|                       | Min                  | 54085.7265               | .0050         | $\mathbf{FR}$       | +0.0788          |              | GCVS 85                 | -Ir        | 50                | 12)          |
| FP Aur                | Min                  | 53397.3051               | .0020         | JU                  | -0.0677          |              | GCVS 85                 |            | 60                | 4)           |
| FR Aur                | Min                  | 54092.6891               | .0008         | $\mathbf{FR}$       | +0.7880          |              | GCVS 85                 | -Ir        | 61                | 12)          |
| HP Aur                | Min                  | 54085.5516               | .0023         | AG                  | -0.6574          |              | GCVS 85                 | -Ir        | 36                | 3)           |
| IY Aur                | Min                  | 54080.3520               | .0038         | JU                  | -0.1190          |              | GCVS 85                 |            | 83                | 4)           |
| KU Aur                | Min                  | 53818.3388               | .0010         | ATB                 | +0.0234          |              | GCVS 85                 |            | 95                | 3)           |
| NN Aur                | Min                  | 54085.5281               | .0018         | $\operatorname{AG}$ |                  |              |                         | -Ir        | 36                | 3)           |
| TY Boo                | Min                  | 53861.4042               | .0005         | MS FR               | -0.0204          |              | BAVM 68                 |            | 196               | 8)           |
| AC Boo                | Min                  | 53817.40:                | .01           | MS FR               | +0.00            |              | AA 54.207               |            | 259               | 8)           |
|                       | Min                  | 53904.4553               | .0010         | QU                  | +0.0063          |              | AA 54.207               | В          | 59                | 6)           |
|                       | Min                  | 53919.4375               | .0004         | QU                  | +0.0096          | $\mathbf{s}$ | AA 54.207               | V          | 59                | 6)           |
|                       | Min                  | 53932.4785               | .0004         | QU                  | +0.0102          | $\mathbf{s}$ | AA 54.207               | В          | 55                | 6)           |
|                       | Min                  | 53934.4142               | .0003         | QU                  | +0.0074          |              | AA 54.207               | V          | 60                | 6)           |
|                       | Min                  | 53935.4711               | .0004         | ລັບ                 | +0.0070          |              | AA 54.207               | B          | 59                | 6)           |
| GN Boo                | Min                  | 53808.4440               | ,0005         | MS FR               | , 5.0010         |              |                         | 2          | 430               | 8)           |
|                       | Min                  | 53808.5950               | .0005         | MS FR               |                  |              |                         |            | 430               | 8)           |
|                       | Min                  | 53862.4298               | .0003         | MS FR               |                  |              |                         |            | $\frac{100}{342}$ | 8)           |
| GO Boo                | Min                  | 53863 /100               | 0000          | MS FR               |                  |              |                         |            | 301               | 8)           |
| AW Cam                | Min                  | 53966 3670               | 0011          | DIE                 | _0.0136          |              | GCVS 85                 |            | - 001<br>- 08     | 10)          |
| CD Cam                | Min                  | 54091 6160               | 0010          | AG                  | 0.0100           |              |                         | _Tr        | 20<br>58          | 2)<br>2)     |
| XZ Cnc                | Min                  | 54031,0103               | 0018          | SCI                 |                  |              |                         | -11        | 929<br>929        | 3)<br>4)     |
| AC Cnc                | Min                  | 54004.0039               | 0010          | SCI                 |                  |              |                         |            | 202<br>/1         | 94)<br>1)    |
| AU UIU                | 11111                | 04092.4770               | .0010         | 100                 |                  |              |                         |            | 41                | 4)           |
| U900-05269593         | λτ:-                 | 29760 9997               | 0009          | 10                  |                  |              |                         | т          | 90                | 4)           |
| UMI                   | IVIIII               | 53108.3327               | .0003         | AG                  |                  |              |                         | -1r        | 3U<br>20          | 4)           |
|                       | Min                  | 53768.4862               | .0004         | AG                  |                  |              |                         | -1r        | 30                | 4)           |
|                       | Min                  | 53813.3886               | .0005         | AG                  |                  |              |                         | -1r        | 28                | 3)           |
| XX Cas                | Min                  | 54096.4264               | .0016         | AG                  | +0.0158          |              | GCVS 85                 | -1r        | 26                | 3)           |
| ZZ Cas                | Min                  | 54085.6273               | .0015         | AG                  | -0.0118          | $\mathbf{S}$ | GCVS 85                 | -Ir        | 30                | 3)           |
| AB Cas                | Min                  | 54096.5090               | .0010         | WN                  | +0.0882          |              | GCVS 85                 |            | 163               | 21)          |
| AE Cas                | Min                  | 54000.4498               | .0024         | SCI                 |                  |              |                         |            | 45                | 4)           |
| AX Cas                | Min                  | 54085.2962               | .0013         | JU                  | -0.0901          |              | GCVS 85                 |            | 80                | 4)           |
Table 1: (cont.)

| Variable | M/m                  | JD 24                   | ±                  | Obs                      | O - C   |              | Bibliography          | Fil        | n               | Rem        |
|----------|----------------------|-------------------------|--------------------|--------------------------|---------|--------------|-----------------------|------------|-----------------|------------|
| AX Cas   | Min                  | $54092.\overline{4997}$ | $.00\overline{13}$ | $\overline{\mathrm{AG}}$ | -0.0911 |              | GCVS $85$             | -Ir        | $3\overline{7}$ | 3)         |
| BH Cas   | $\operatorname{Min}$ | 53990.3612              | .0016              | $\operatorname{AG}$      |         |              |                       | -Ir        | 74              | 3)         |
|          | $\operatorname{Min}$ | 53990.5592              | .0017              | $\operatorname{AG}$      |         |              |                       | -Ir        | 74              | 3)         |
|          | $\operatorname{Min}$ | 54019.5868              | .0028              | $\operatorname{AG}$      |         |              |                       | -Ir        | 33              | 3)         |
| BS Cas   | $\operatorname{Min}$ | 53745.2594              | .0039              | $\mathbf{PC}$            | -0.0142 | $\mathbf{S}$ | IBVS 4778             | -Ir        | 117             | 9)         |
|          | $\operatorname{Min}$ | 54092.3483              | .0023              | $\operatorname{AG}$      | -0.0156 | $\mathbf{S}$ | IBVS 4778             | -Ir        | 36              | 3)         |
|          | Min                  | 54092.5684              | .0010              | $\operatorname{AG}$      | -0.0158 |              | $\mathrm{IBVS}\ 4778$ | -Ir        | 36              | <b>3</b> ) |
| BU Cas   | Min                  | 53988.4819              | .0034              | SCI                      | -0.0194 |              | GCVS 85               |            | 64              | 4)         |
|          | Min                  | 54049.3705              | .0016              | JU                       | -0.0212 |              | GCVS 85               |            | 80              | 4)         |
| DN Cas   | $\operatorname{Min}$ | 54050.2669              | .0059              | SCI                      | -0.0265 |              | GCVS 85               |            | 103             | 4)         |
| DO Cas   | Min                  | 53984.4290              | .0010              | JU                       | -0.0064 |              | GCVS 85               |            | 76              | 4)         |
| DZ Cas   | Min                  | 52180.5128              | .0013              | $\operatorname{AG}$      | -0.1537 |              | GCVS 85               |            | 30              | 3)         |
|          | Min                  | 54017.5467              | .0018              | $\operatorname{AG}$      | -0.1586 | $\mathbf{s}$ | GCVS 85               | -Ir        | 39              | 3)         |
| EG Cas   | Min                  | 54017.3491              | .0006              | $\operatorname{AG}$      | +0.1253 | $\mathbf{S}$ | GCVS 85               | -Ir        | 39              | 3)         |
| EL Cas   | Min                  | 54085.5495              | .0019              | $\operatorname{AG}$      |         |              |                       | -Ir        | 30              | 3)         |
| EY Cas   | Min                  | 54019.6025              | .0011              | $\operatorname{AG}$      | +0.0214 |              | GCVS 85               | -Ir        | 35              | 3)         |
|          | Min                  | 54034.3008              | .0010              | $\operatorname{AG}$      | +0.0194 | $\mathbf{s}$ | GCVS 85               | -Ir        | 34              | 3)         |
|          | Min                  | 54034.5420              | .0031              | $\operatorname{AG}$      | +0.0196 |              | GCVS 85               | -Ir        | 34              | 3)         |
| GH Cas   | Min                  | 54026.4600              | .0075              | $\operatorname{AG}$      |         |              |                       | -Ir        | 23              | 3)         |
| GK Cas   | Min                  | 54073.3021              | .0002              | $\operatorname{AG}$      | -0.3145 |              | GCVS 85               | -Ir        | 6               | 3)         |
|          | Min                  | 54096.3400              | .0067              | AG                       | -0.3138 |              | GCVS 85               | -Ir        | 25              | 3)         |
| GT Cas   | Min                  | 54019.6202              | .0018              | AG                       | +0.1741 |              | GCVS 85               | -Ir        | 35              | 3)         |
|          | Min                  | 54034.5664              | .0013              | AG                       | +0.1713 |              | GCVS 85               | -Ir        | 36              | 3)         |
| IL Cas   | Min                  | 54096.4450              | .0019              | AG                       | +0.0060 |              | BAVR 51,1             | -Ir        | 25              | 3)         |
| IT Cas   | Min                  | 54026.5438              | .0009              | AG                       | +0.0001 | s            | AA 54.207             | -Tr        | 30              | 3)         |
| IV Cas   | Min                  | 54026.5806              | .0062              | AG                       | +0.4469 | 2            | GCVS 85               | -Ir        | 30              | 3)         |
| KL Cas   | Min                  | 54092.3935              | .0022              | AG                       | -0.0077 | s            | GCVS 85               | -Ir        | 36              | 3)         |
| MM Cas   | Min                  | 54056.4088              | .0003              | AG                       | +0.0271 | 2            | BAVB 32.36ff          | -Ir        | 184             | 3)         |
| MN Cas   | Min                  | 54026.4416              | .0021              | AG                       | +0.0075 | s            | GCVS 85               | -Ir        | 22              | 3)         |
| MR Cas   | Min                  | 54019 4099              | 0056               | SCI                      | 10.0010 | 5            |                       |            | 17              | 4)         |
| MIIC Cas | Min                  | 54049 4406              | 0049               | SCI                      |         |              |                       |            | 20              | 4)         |
|          | Min                  | 54049 6560              | 0045               | SCI                      |         |              |                       |            | 20              |            |
|          | Min                  | 54080 3354              | 0020               | SCI                      |         |              |                       |            | 24              |            |
|          | Min                  | 54085 3371              | 0020               | SCI                      |         |              |                       |            | 21              |            |
|          | Min                  | 54085.5561              | 0021               | SCI                      |         |              |                       |            | 44<br>18        | 4)         |
|          | Min                  | 54001 4079              | 0038               | SCI                      |         |              |                       |            | 10              | 4)         |
|          | Min                  | 54091.4072              | 0024               | SOL                      |         |              |                       |            | 44<br>99        | 4)         |
| MS Cas   | Min                  | 52000 6201              | .0020              |                          |         |              |                       | Tn         | 22<br>75        | 4)<br>2)   |
| ms Cas   | Min                  | 53990.0201              | .0010              | AG                       |         |              |                       | -11<br>T., | 10              | 3)<br>2)   |
|          | Min<br>Min           | 54002.3470              | .0035              | AG                       |         |              |                       | -1r<br>T., | 30<br>69        | 3)<br>2)   |
|          | Min<br>Min           | 54003.5209              | .0007              | AG                       |         |              |                       | -1r<br>T., | 02<br>91        | 3)<br>2)   |
| MUC      | MIII<br>M            | 54020.5289              | .0032              | AG                       |         |              |                       | -1r        | 31              | 3)<br>2)   |
| MU Cas   | Min                  | 53990.5805              | .0029              | AG                       |         |              |                       | -1r        | 75              | 3)<br>N    |
| MV Cas   | Min                  | 54002.3723              | .0013              | AG                       |         |              |                       | -lr        | 35              | 3)         |
| NN Cas   | Min                  | 54019.4230              | .0002              | AG                       |         |              |                       | -lr        | 34              | 3)         |
| NU Cas   | Min                  | 54019.6148              | .0009              | AG                       | 0.0000  |              | a atta er             | -lr        | 35              | 3)         |
| OR Cas   | Min                  | 54020.3476              | .0019              | AG                       | -0.0203 |              | GCVS 85               | -1r        | 32              | 3)         |
|          | Min                  | 54092.5996              | .0011              | AG                       | -0.0195 |              | GCVS 85               | -lr        | 36              | 3)         |
| OX Cas   | Min                  | 54067.3492              | .0021              | JU                       | +0.0029 |              | GCVS 85               |            | 70              | 4)         |
| PV Cas   | Min                  | 54026.3249              | .0010              | JU                       | +0.0022 |              | AA 54.207             |            | 69              | 4)         |
|          | Min                  | 54096.3436              | .0020              | WN                       | +0.0023 |              | AA 54.207             | _          | 100             | 21)        |
| V336 Cas | Min                  | 54002.5868              | .0007              | $\operatorname{AG}$      |         |              |                       | -Ir        | 36              | 3)         |
|          | Min                  | 54035.4366              | .0007              | $\operatorname{AG}$      |         |              |                       | -Ir        | 46              | 3)         |
|          | Min                  | 54085.6064              | .0033              | $\operatorname{AG}$      |         |              |                       | -Ir        | 30              | <b>3</b> ) |
| V337 Cas | Min                  | 54034.6197              | .0023              | $\operatorname{AG}$      |         |              |                       | -Ir        | 36              | 3)         |
| V345 Cas | Min                  | 54023.5552              | .0024              | SCI                      |         |              |                       |            | 110             | 4)         |
| V357 Cas | Min                  | 54017.4381              | .0012              | $\operatorname{AG}$      | -0.1712 | $\mathbf{s}$ | GCVS 85               | -Ir        | 39              | 3)         |
| V359 Cas | Min                  | 52180.4351              | .0013              | $\operatorname{AG}$      | -0.0033 |              | $\rm IBVS~5016$       |            | 31              | 3)         |
|          | Min                  | 54017.5906              | .0005              | $\operatorname{AG}$      | -0.0086 |              | $\rm IBVS~5016$       | -Ir        | 39              | 3)         |
|          |                      |                         |                    |                          |         |              |                       |            | 0.1             | 2)         |
| V360 Cas | Min                  | 52180.5173              | .0009              | $\operatorname{AG}$      |         |              |                       |            | 31              | 3)         |

Table 1: (cont.)

| Variable            | M/m                  | JD 24                    | ±             | Obs                 | O - C              |              | Bibliography       | Fil          | n        | $\operatorname{Rem}$ |
|---------------------|----------------------|--------------------------|---------------|---------------------|--------------------|--------------|--------------------|--------------|----------|----------------------|
| V374 Cas            | $_{\rm Min}$         | 54034.4298               | .0027         | $\operatorname{AG}$ |                    |              |                    | -Ir          | 29       | 3)                   |
| V381 Cas            | $\operatorname{Min}$ | 54029.3903               | .0013         | $\operatorname{AG}$ | +0.0196            | $\mathbf{s}$ | BAVR $32,36$ ff    | -Ir          | 29       | 3)                   |
|                     | $_{\rm Min}$         | 54084.3585               | .0014         | JU                  | -0.0094            |              | BAVR $32,36$ ff    |              | 60       | 4)                   |
|                     | $_{\rm Min}$         | 54126.2635               | .0003         | WN                  | -0.0071            |              | BAVR $32,36$ ff    |              | 96       | 21)                  |
| V411 Cas            | $_{\rm Min}$         | 54034.5074               | .0037         | $\operatorname{AG}$ |                    |              |                    | -Ir          | 21       | 3)                   |
| V449 Cas            | $_{\rm Min}$         | 54092.3808               | .0021         | $\operatorname{AG}$ |                    |              |                    | -Ir          | 36       | 3)                   |
| V459 Cas            | Min                  | 54020.4937               | .0029         | $\operatorname{AG}$ | -0.0108            |              | IBVS 4737          | -Ir          | 32       | 3)                   |
|                     | Min                  | 54092.3224               | .0009         | $\operatorname{AG}$ | -0.0776            | $\mathbf{s}$ | IBVS 4737          | -Ir          | 37       | 3)                   |
| V473 Cas            | $_{\rm Min}$         | 54026.4171               | .0019         | $\operatorname{AG}$ | -0.0147            | $\mathbf{s}$ | IBVS 4669          | -Ir          | 24       | 3)                   |
| V520 Cas            | Min                  | 52180.4088               | .0023         | $\mathbf{AG}$       | +0.0516            | $\mathbf{s}$ | GCVS 85            |              | 30       | 3)                   |
|                     | Min                  | 54017.5233               | .0004         | $\operatorname{AG}$ | -0.0204            |              | GCVS 85            | -Ir          | 39       | 3)                   |
| V541 Cas            | Min                  | 54031.3014               | .0004         | $\operatorname{AG}$ | -0.0783            | $\mathbf{s}$ | GCVS 85            | -Ir          | 34       | 3)                   |
| V608 Cas            | Min                  | 54071.3191               | .0024         | SCI                 |                    |              |                    |              | 67       | (4)                  |
| V651 Cas            | Min                  | 54017.5327               | .0018         | $\mathbf{AG}$       | +0.0021            | $\mathbf{s}$ | IBVS 3554          | -Ir          | 39       | 3)                   |
| V654 Cas            | Min                  | 54035.3761               | .0015         | AG                  |                    | -            |                    | -Ir          | 47       | 3)                   |
| GSC3679.1920        |                      | 0 1000101 01             |               |                     |                    |              |                    |              |          | 3)                   |
| Cas GSC3675.1186    | Min                  | 54026.4926               | .0005         | $\operatorname{AG}$ |                    |              |                    | -Ir          | 24       | 3)                   |
| Cas<br>GSC4030.2020 | Min                  | 54026.3835               | .0025         | $\operatorname{AG}$ |                    |              |                    | -Ir          | 24       | 3)                   |
| Cas                 | Min                  | 54085.3015               | .0015         | $\mathbf{JU}$       |                    |              |                    |              | 80       | 4)                   |
| TV Cen              | Min                  | 540014597                | 0005          | ÅG                  |                    |              |                    | -Tr          | 63       | 3)                   |
| VW Cen              | Min                  | 53941 4037               | 0010          | DIE                 | -0.0200            | c            | GCVS 85            | - 11         | 00<br>27 | 19)                  |
| CW Cep              | Min                  | 54024 3051               | .0010         |                     | $\pm 0.0200$       | 5            | A A 54 207         |              | 59       | 4)                   |
| ew eep              | Min                  | 54024.0001               | 0075          | <u>л</u>            | 0.0033             |              | AA 54 207          |              | 71       | 1)<br>1              |
| DK Con              | Min                  | 52002 4484               | .0073         | 10                  | -0.0033            | G            | CCVS %             | Tm           | 12       | 4)<br>2)             |
| DK Cep              | Min                  | 53992.4404               | .0043         | AG                  | -0.4010            |              | GCVS 85            | -11<br>Tn    | 40<br>69 | 3)<br>9)             |
| DN Can              | Min                  | 54001.5257               | .0007         | AG                  | -0.4393            |              | GCV5 65            | -11<br>Tm    | 02       | ට)<br>2)             |
| DN Cep              | Min<br>M:            | 54031.3402               | .0039         | AG                  | -0.0417            |              | GCV5 89            | - 11<br>T.,  | 11       | 3)<br>2)             |
| ЕЧ Сер              | Min                  | 54080.5424               | .0008         | AG                  | 0.01.11            |              |                    | -1r          | 44       | 3)<br>2)             |
| GW Cep              | Min                  | 54080.2461               | .0004         | AG                  | -0.0141            | $\mathbf{s}$ | BAVR 33,160ff      | -1r          | 45       | 3)                   |
|                     | Min                  | 54080.4036               | .0003         | AG                  | -0.0160            |              | BAVR 33,160ff      | -lr          | 45       | 3)                   |
| a                   | Min                  | 54080.5650               | .0014         | AG                  | -0.0140            | $\mathbf{s}$ | BAVR $33,160$ ff   | -lr          | 45       | 3)                   |
| IW Cep              | Min                  | 54000.5939               | .0011         | $\mathbf{AG}$       |                    |              |                    | -lr          | 31       | 3)                   |
| KP Cep              | Min                  | 54018.3839               | .0010         | $\mathbf{AG}$       |                    |              |                    | -Ir          | 37       | 3)                   |
| NU Cep              | $\operatorname{Min}$ | 53992.4319               | .0011         | $\operatorname{AG}$ |                    |              |                    | -Ir          | 46       | <b>3</b> )           |
| V358 Cep            | $\operatorname{Min}$ | 54080.3232               | .0028         | $\operatorname{AG}$ |                    |              |                    | -Ir          | 44       | <b>3</b> )           |
|                     | $_{\rm Min}$         | 54080.5564               | .0013         | $\operatorname{AG}$ |                    |              |                    | -Ir          | 44       | 3)                   |
| Y Cyg               | $_{\rm Min}$         | 54025.4082               | .0034         | JU                  | +0.0404            | $\mathbf{S}$ | GCVS 85            |              | 100      | 4)                   |
| DL Cyg              | Min                  | 54062.3438               | .0021         | $\operatorname{AG}$ |                    |              |                    | -Ir          | 25       | 3)                   |
| GV Cyg              | Min                  | 54006.3710               | .0014         | SCI                 |                    |              |                    |              | 19       | 4)                   |
|                     | Min                  | 54062.3514               | .0024         | $\mathbf{AG}$       |                    |              |                    | -Ir          | 24       | 3)                   |
| KR Cyg              | Min                  | 52840.3829               | .0003         | $\mathbf{FR}$       | -0.0027            | $\mathbf{s}$ | GCVS 85            | -Ir          | 62       | 12) red              |
|                     | Min                  | 53636.495                | .000          | $\mathbf{FR}$       | -0.023             | $\mathbf{s}$ | GCVS 85            | -Ir          | 61       | (12)                 |
|                     | Min                  | 53991.4921               | .0007         | $\mathbf{FR}$       | +0.0099            | $\mathbf{s}$ | GCVS 85            | -Ir          | 44       | 12)                  |
| V345 Cvg            | Min                  | 53942.5061               | .0008         | $\mathbf{AG}$       | +0.0282            |              | IBVS 5016          | -Ir          | 15       | 3)                   |
| V401 Cvg            | Min                  | 53932.4252               | .0008         | $\mathbf{FR}$       | +0.0507            | $\mathbf{s}$ | GCVS 85            | -Ir          | 32       | 12)                  |
| 20                  | Min                  | 53992.4486               | .0009         | AG                  | +0.0538            | s            | GCVS 85            | -Tr          | 29       | 3)                   |
| V463 Cvg            | Min                  | 53934.5700               | .0013         | FR                  | +0.0033            |              | AA 54.207          | - Ir         | 37       | 12)                  |
| V466 Cvg            | Min                  | 53992.3590               | .0005         | ĀĢ                  | +0.0057            |              | GCVS 85            | - Tr         | 35       | 3)                   |
| V488 Cvg            | Min                  | 53654 3145               | .0003         | FR                  | +0.0780            | s            | GCVS 85            | - Tr         | 60       | 12)                  |
| . 100 0/6           | Min                  | 53900 3718               | 0025          | FR                  | +0.0701            | S<br>S       | GCVS 85            | _ Tr         | 39       | $\frac{12}{12}$      |
|                     | Min                  | 53935 /0/7               | 0006          |                     | $\pm 0.0700$       | 5            | GCVS 85            | _Tr          | 14       | - <i>)</i><br>२)     |
|                     | Min                  | 53933.4047<br>53000 6909 | .0000<br>000¤ | ло<br>FP            | +0.0709<br>+0.0750 |              | CCVS 85            | -11<br>Tw    | 14<br>19 | 19) rod              |
|                     | M:                   | 52001 4572               | .0000         | гл<br>FD            | $\pm 0.0739$       | ъ            | CCVS of            | - 11'<br>T., | 40<br>49 | 12) red              |
|                     | 1V1111<br>\/T:       | 00991.40/0<br>54001 5996 | .0010         | r fi<br>FD          | $\pm 0.0722$       |              | CCAS 05<br>CCAS 05 | - 11<br>T    | 40<br>10 | 14)<br>19)           |
| TIFOO C             | IVI IN               | 04001,0380               | .0059         | гĸ                  | +0.0043            |              | GU V S 89          | - 1r         | 48       | 12)                  |
| V508 Cyg            | Min                  | 54073.3021               | .0002         | AG                  |                    |              |                    | -Ir          | 15       | 3)                   |
| V548 Cyg            | Min                  | 53966.4702               | .0019         | ٦U                  | +0.0070            |              | GCVS 85            | -            | 68       | 4)                   |
| V616 Cyg            | Min                  | 54018.4433               | .0035         | AG                  |                    |              |                    | - lr         | 33       | 3)                   |
| V635 Cyg            | Min                  | 54018.2831               | .0001         | AG                  |                    |              |                    | - lr         | 33       | 3)                   |
|                     |                      | F 4000 9045              | 0000          | A ( 1               |                    |              |                    | Γ            | 05       | •••                  |

Table 1: (cont.)

| Variable    | M/m                  | JD 24                    | ±             | Obs                 | O - C        |              | Bibliography       | Fil        | n           | Rem               |
|-------------|----------------------|--------------------------|---------------|---------------------|--------------|--------------|--------------------|------------|-------------|-------------------|
| V680 Cyg    | Min                  | 54018.4906               | .0041         | $\operatorname{AG}$ | +0.0302      | $\mathbf{s}$ | BAVR 32,36ff       | -Ir        | 37          | 3)                |
| V711 Cyg    | Min                  | 53917.4408               | .0013         | MS FR               |              |              |                    |            | 207         | 8)                |
|             | Min                  | 54018.3036               | .0022         | $\operatorname{AG}$ |              |              |                    | -lr        | 33          | 3)                |
| V725 Cyg    | Min                  | 50753.3225               | .0043         | $\mathbf{FR}$       | +0.1888      | $\mathbf{s}$ | GCVS 85            |            | 25          | 11)               |
|             | Min                  | 53942.5022               | .0014         | AG                  | +0.2369      |              | GCVS 85            | -lr        | 15          | 3)                |
| V729 Cyg    | Min                  | 53985.4928               | .0015         | JU                  |              |              |                    |            | 15          | 4)                |
| V753 Cyg    | Min                  | 54002.4808               | .0006         | AG                  | +0.0030      |              | BAVM 69            | -Ir        | 30          | 3)                |
| m V796~Cyg  | Min                  | 54002.3148:              | .0004         | $\operatorname{AG}$ |              |              |                    | -Ir        | 28          | 3)                |
| V836 Cyg    | Min                  | 53980.3672               | .0001         | WTR                 | +0.0153      |              | GCVS 85            | -Ir        | 68          | 14)               |
| V841 Cyg    | Min                  | 53934.5086               | .0007         | $\operatorname{AG}$ | +0.0064      | $\mathbf{s}$ | GCVS 85            | -Ir        | 20          | 3)                |
|             | Min                  | 53990.4529               | .0007         | $\operatorname{AG}$ | +0.0071      |              | GCVS 85            | -Ir        | 29          | <b>3</b> )        |
| m V853~Cyg  | Min                  | 53920.4701               | .0010         | $\mathbf{FR}$       |              |              |                    | -Ir        | 20          | 12)               |
|             | Min                  | 53992.3841               | .0035         | $\mathbf{FR}$       |              |              |                    | -Ir        | 43          | 12)               |
| m V856~Cyg  | Min                  | 53990.3720               | .0016         | $\operatorname{AG}$ |              |              |                    | -Ir        | 29          | 3)                |
| m V859~Cyg  | Min                  | 53934.4063               | .0001         | $\operatorname{AG}$ | -0.0032      | $\mathbf{s}$ | GCVS 85            | -Ir        | 19          | <b>3</b> )        |
| V865 Cyg    | Min                  | 53941.5383               | .0101         | $\mathbf{FR}$       |              |              |                    | -Ir        | 23          | 12)               |
|             | Min                  | 53985.3643               | .0024         | SCI                 |              |              |                    |            | 28          | 4)                |
|             | $\operatorname{Min}$ | 53985.5428               | .0032         | SCI                 |              |              |                    |            | 32          | 4)                |
| V866 Cyg    | Min                  | 53936.4997               | .0027         | $\mathbf{FR}$       |              |              |                    | -Ir        | 33          | 12)               |
|             | Min                  | 54035.4097               | .0025         | $\mathbf{FR}$       |              |              |                    | -Ir        | 48          | 12)               |
| V871 Cyg    | Min                  | 53941.4900               | .0044         | $\mathbf{FR}$       |              |              |                    | -Ir        | 19          | 12)               |
| V873 Cyg    | Min                  | 54002.4467               | .0032         | $\mathbf{FR}$       |              |              |                    | -Ir        | 32          | 12)               |
| V874 Cyg    | Min                  | 53934.4021               | .0003         | $\operatorname{AG}$ |              |              |                    | -Ir        | 19          | 3)                |
| V877 Cyg    | Min                  | 53920.5225               | .0026         | $\mathbf{FR}$       | +0.0055      | $\mathbf{s}$ | GCVS 85            | -Ir        | 32          | 12)               |
|             | Min                  | 53992.3461               | .0008         | $\mathbf{FR}$       | +0.0293      |              | GCVS 85            | -Ir        | 44          | 12)               |
|             | Min                  | 54002.4182               | .0020         | $\mathbf{FR}$       | +0.0242      |              | GCVS 85            | -Ir        | 33          | 12)               |
| V884 Cyg    | Min                  | 53932.4790               | .0021         | $\mathbf{FR}$       |              |              |                    | -Ir        | 31          | 12)               |
| V885 Cyg    | Min                  | 53932.4440               | .0028         | $\mathbf{FR}$       | -0.1151      | $\mathbf{s}$ | GCVS 85            | -Ir        | 32          | 12)               |
| V889 Cyg    | Min                  | 53992.4076               | .0043         | $\operatorname{AG}$ | -0.1778      | $\mathbf{s}$ | GCVS 85            | -Ir        | 31          | 3)                |
| V891 Cyg    | Min                  | 54003.3732               | .0008         | $\mathbf{FR}$       | +0.0434      |              | GCVS 85            | -Ir        | 27          | 12)               |
| V902 Cvg    | Min                  | 54029.3098               | .0058         | $\mathbf{FR}$       |              |              |                    | -Ir        | 26          | 12)               |
| V907 Cyg    | Min                  | 53930.5013               | .0013         | MS FR               |              |              |                    |            | 330         | 8)                |
| 20          | Min                  | 53933.4788               | .0008         | MS FR               |              |              |                    |            | 451         | 8)                |
|             | Min                  | 54003.3165               | .0022         | $\mathbf{FR}$       |              |              |                    | -Tr        | 31          | 12)               |
|             | Min                  | 54029.3020               | .0010         | FR.                 |              |              |                    | -Ir        | 25          | 12)               |
| V909 Cvg    | Min                  | 53942.5452               | .0003         | AG                  | -0.0140      |              | BAVR 47.2f         | -Ir        | 16          | 3)                |
| V910 Cvg    | Min                  | 53942.4846               | .0017         | AG                  | 0.0110       |              | 211110 11,21       | -Ir        | 16          | 3)                |
| V931 Cvg    | Min                  | 53992.3853               | .0002         | AG                  | -0.0177      | s            | GCVS 85            | -Ir        | 33          | 3)                |
|             | Min                  | 53992 5529               | 0012          | AG                  | -0.0209      | 5            | GCVS 85            | -Ir        | 33          | 3)                |
|             | Min                  | 54023 2919               | 0030          | FR                  | -0.0161      |              | GCVS 85            | _Ir        | 24          | 12)               |
| V934 Cyg    | Min                  | 53935 4781               | 0008          | AG                  | -0.0718      |              | GCVS 85            | _Ir        | 12          | 3)                |
| т у в       | Min                  | 54023 4268               | 0034          | FR                  | -0.0608      | s            | GCVS 85            | _Tr        | 28          | 12)               |
| V941 Cyra   | Min                  | 53092 3710               | 0004          | AG                  | 0.0000       | 5            |                    | _Tr        | 35          | 3)                |
| V947 Cura   | Min                  | 53934 4262               | 0008          | FR                  |              |              |                    | -11<br>_Tr | 90<br>20    | 19)               |
| V957 Cura   | Min                  | 53813 5886               | 0030          | MS FR               | $\pm 0.1911$ | c            | GCVS 85            | -11        | 29<br>309   | 14)<br>R)         |
| V963 Cwa    | Min                  | 53034 3801               | 0022          | EB<br>MO LU         | -0.0211      | 3            | GCVS 85            | _Tr        | 25          | 19)               |
| V965 Cyg    | Min                  | 53035 1919               | 0009          |                     | -0.0010      |              |                    | -11<br>Tw  | 10<br>10    | 1 <i>∆)</i><br>2) |
| V905 Cyg    | Min                  | 52625 2570               | .0024         | AG<br>FD            | 10.0252      |              | CCVS %             | -11<br>In  | 12          | 3)<br>19)         |
| vərə Oyg    | IVIIII<br>Miro       | 54055 4011               | .0000<br>0020 | гл<br>FD            | $\pm 0.0352$ |              | CCAR or<br>CCAR or | -11<br>T., | 40<br>49    | 12)<br>19)        |
| VOOF C      | IVI III<br>M:        | 54055.4011<br>59867 5471 | .0030         | гñ<br>Me fid        | +0.0317      |              | GO V 3 89          | -11        | 43<br>5 6 1 | 1 <i>2)</i>       |
| v эээ Суд   | 1VI 111<br>M:        | 0007.0471<br>54000 4901  | .0002         |                     |              |              |                    | Т          | 001<br>97   | 0)<br>2)          |
| 171010 C    | Min                  | 54020.4801               | .0012         | AG                  | 0.0000       |              | a atta er          | -1r        | 35          | 3)<br>11)         |
| v 1018 Cyg  | Min                  | 50693.4812               | .0066         | FK                  | -0.0686      | $\mathbf{s}$ | GUVS 85            | -          | 42          | 11)               |
| THORS C     | Min                  | 54025.2570               | .0025         | FR                  | -0.0735      | $\mathbf{s}$ | GCVS 85            | -lr        | 42          | 12)               |
| V1019 Cyg   | Min                  | 53935.4484               | .0045         | AG                  |              |              |                    | -Ir        | 14          | 3)                |
|             | Min                  | 53992.4382               | .0008         | AG                  |              |              | 0.07               | -Ir        | 34          | 3)                |
| V1023 Cyg   | Min                  | 53942.4676               | .0021         | $\operatorname{AG}$ | -0.0447      |              | GCVS 85            | -Ir        | 15          | 3)                |
| V1034 Cyg   | Min                  | 52955.4181               | .0008         | $\mathbf{FR}$       | -0.0029      | $\mathbf{S}$ | GCVS 85            | -Ir        | 83          | 12) red           |
|             | Min                  | 53991.4580               | .0015         | $\mathbf{FR}$       | +0.0017      |              | GCVS 85            | -Ir        | 45          | 12)               |
| V1142 $Cyg$ | Min                  | 53942.4627               | .0078         | $\mathbf{FR}$       |              |              |                    | -Ir        | 26          | 12)               |
|             |                      |                          |               |                     |              |              |                    | -          | 00          | 1 0 )             |

Table 1: (cont.)

| Variable       | M/m                  | JD 24       | ±     | Obs                 | $O - \overline{C}$           |              | Bibliography        | Fil        | n               | Ren        |
|----------------|----------------------|-------------|-------|---------------------|------------------------------|--------------|---------------------|------------|-----------------|------------|
| V1256 Cyg      | Min                  | 54035.3660  | .0032 | FR                  |                              |              |                     | -1r        | 29              | 12)        |
| V1321 Cyg      | Min                  | 52836.4196  | .0011 | AG                  |                              |              | a atra ar           | -          | 13              | 3)         |
| V1356 Cyg      | Min                  | 54024.3538  | .0061 | FR                  | +0.1257                      | $\mathbf{s}$ | GCVS 85             | -1r        | 23              | 12)        |
| V1411 Cyg      | Min                  | 53919.4850  | .0005 | MS FR               | -0.1766                      | $\mathbf{s}$ | GCVS 85             | _          | 396             | 8)         |
|                | Min                  | 54031.3366  | .0024 | AG                  | -0.1755                      | $\mathbf{s}$ | GCVS 85             | -Ir        | 12              | 3)         |
| V1417 Cyg      | Min                  | 54080.3600  | .0011 | AG                  |                              |              |                     | -Ir        | 46              | 3)         |
| V1580 Cyg      | Min                  | 54020.3689  | .0012 | $\operatorname{AG}$ |                              |              |                     | -Ir        | 33              | 3)         |
| V1815 $Cyg$    | Min                  | 52876.4673  | .0014 | $\operatorname{AG}$ | -0.0048                      | $\mathbf{s}$ | $_{ m BAVR}$ 55,1ff | -Ir        | 21              | 3)         |
|                | Min                  | 53619.610 : | .006  | $\mathbf{PC}$       | -0.007                       |              | $_{ m BAVR}$ 55,1ff | -Ir        | 46              | 9)         |
| V2181 Cyg      | $\operatorname{Min}$ | 53900.4735  | .0031 | $\mathbf{FR}$       | +0.0071                      | $\mathbf{s}$ | BAVR 50,45f         | -Ir        | 31              | 12)        |
|                | $\operatorname{Min}$ | 53935.4542  | .0037 | $\operatorname{AG}$ | +0.0054                      | $\mathbf{s}$ | BAVR 50,45f         | -Ir        | 14              | 3)         |
|                | $\operatorname{Min}$ | 53990.5111  | .0016 | $\mathbf{FR}$       | +0.0081                      | $\mathbf{s}$ | BAVR 50,45f         | -Ir        | 42              | 12)        |
|                | Min                  | 53991.3724  | .0011 | $\mathbf{FR}$       | +0.0092                      |              | BAVR 50,45f         | -Ir        | 43              | 12)        |
|                | Min                  | 54001.4031  | .0011 | $\mathbf{FR}$       | +0.0039                      | $\mathbf{s}$ | BAVR 50,45f         | -Ir        | 47              | 12)        |
| V2280 Cyg      | Min                  | 54002.4708  | .0028 | AG                  |                              |              |                     | -Ir        | 31              | 3)         |
|                | Min                  | 54020.3167  | .0017 | AG                  |                              |              |                     | -Ir        | 36              | 3)         |
|                | Min                  | 54020.4929  | .0030 | AG                  |                              |              |                     | -Ir        | 36              | 3)         |
| V2284 Cyg      | Min                  | 54002.4270  | .0027 | AG                  |                              |              |                     | -Ir        | 30              | 3)         |
|                | Min                  | 54002.5810  | .0004 | AG                  |                              |              |                     | -Ir        | 30              | 3)         |
|                | Min                  | 54020.3863  | .0021 | AG                  |                              |              |                     | -Ir        | 35              | 3)         |
|                | Min                  | 54020.5382  | .0009 | AG                  |                              |              |                     | -Ir        | 35              | 3)         |
| V2290 Cvg      | Min                  | 54002.4665  | .0024 | AG                  |                              |              |                     | -Ir        | 29              | 3)         |
| V2294 Cvg      | Min                  | 54020.4244  | .0008 | AG                  |                              |              |                     | -Ir        | 36              | 3)         |
| G3576.0170 Cvg | Min                  | 54073.2580  | .0008 | AG                  |                              |              |                     | -Ir        | 15              | 3)         |
| U1200-12680286 |                      |             |       |                     |                              |              |                     |            |                 | -)         |
| Cvø            | Min                  | 53992.4697  | .0014 | AG                  |                              |              |                     | -Ir        | 35              | 3)         |
| U1200-13084491 |                      |             |       |                     |                              |              |                     |            | 00              | •)         |
| Cvg            | Min                  | 54055 3951  | 0028  | $\mathbf{FB}$       |                              |              |                     | -Ir        | 41              | 12)        |
| YY Del         | Min                  | 53966.4618  | .0063 | AG                  | +0.0197                      | s            | GCVS 85             | -Ir        | 25              | 3)         |
|                | Min                  | 53991 4346  | 0002  | AG                  | +0.0101                      | 5            | GCVS 85             | -Ir        | 37              | 3)         |
|                | Min                  | 53999 3664  | 0002  | WTR                 | +0.0101<br>+0.0110           |              | GCVS 85             | _Ir        | 107             | 14)        |
|                | Min                  | 54001 3466  | .0000 | AG                  | $\pm 0.0110$<br>$\pm 0.0084$ | c            | GCVS 85             | -11<br>_Tr | 24              | 3)         |
|                | Min                  | 54001.3400  | 0030  | WTR                 | $\pm 0.0034$<br>$\pm 0.0191$ | 0<br>0       | CCVS 85             | -11<br>Ir  | 24<br>199       | 14)        |
|                | Min                  | 54001.5505  | .0000 |                     | +0.0121                      | 6            | CCVS 85             | -11<br>In  | 20              | 24)<br>2)  |
|                | Min                  | 52066 4120  | .0003 | AG                  | $\pm 0.0102$                 |              | GC ( ) 65           | -11<br>In  | - <i>59</i><br> | 3)<br>2)   |
|                | Min                  | 53900.4120  | .0014 | AG                  |                              |              |                     | -11<br>Tu  | 22              | 3)<br>2)   |
|                | Min                  | 53991.3091  | .0003 | AG                  |                              |              |                     | -11<br>Tu  | 20              | 3)<br>2)   |
| DN Del         | Min                  | 54005.4204  | .0004 | AG                  |                              |              |                     | -11<br>Tm  | 39<br>94        | 3)<br>2)   |
|                | MIII                 | 54001.3087  | .0015 | AG                  |                              |              |                     | -1r<br>T   | 24              | 3)<br>2)   |
| FK Del         | Min                  | 53966.4425  | .0032 | AG                  |                              |              |                     | -lr        | 25              | 3)         |
|                | Min                  | 53991.4293  | .0010 | AG                  |                              |              |                     | -lr        | 36              | 3)         |
|                | Min                  | 54001.4271  | .0016 | AG                  |                              |              | a atta er           | -lr        | 24              | 3)         |
| UZ Dra         | Min                  | 53984.4316  | .0004 | QU<br>act           | +0.0010                      | $\mathbf{s}$ | GUVS 85             | V          | 65              | 6)         |
| GQ Dra         | Min                  | 54055.6459  | .0024 | SCI                 |                              |              | a atra ar           | -          | 124             | 4)         |
| WX Eri         | Min                  | 54033.6014  | .0003 | AG                  | +0.0176                      |              | GCVS 85             | -lr        | 80              | 3)         |
| TZ Gem         | Min                  | 54092.6542  | .0019 | AG                  |                              |              |                     | -1r        | 32              | 3)         |
| BT Gem         | Min                  | 54091.6009  | .0025 | $\mathbf{FR}$       |                              |              |                     | -Ir        | 54              | 12)        |
| CK Gem         | Min                  | 54092.3441  | .0041 | $\operatorname{AG}$ |                              |              |                     | -Ir        | 32              | 3)         |
| CP Gem         | Min                  | 54083.4195  | .0007 | $\mathbf{FR}$       |                              |              |                     | -Ir        | 56              | 12)        |
| CW Gem         | Min                  | 54092.6818  | .0005 | $\operatorname{AG}$ | +0.0036                      |              | BAVM 69             | -Ir        | 34              | <b>3</b> ) |
| CX Gem         | $\operatorname{Min}$ | 54092.6143  | .0033 | $\operatorname{AG}$ | -0.0134                      | $\mathbf{s}$ | GCVS 85             | -Ir        | 34              | 3)         |
| EF Gem         | $\operatorname{Min}$ | 54092.3977  | .0024 | $\operatorname{AG}$ |                              |              |                     | -Ir        | 35              | <b>3</b> ) |
| FQ Gem         | Min                  | 54092.6508  | .0019 | AG                  |                              |              |                     | -Ir        | 35              | <b>3</b> ) |
| FT Gem         | Min                  | 54096.4274  | .0033 | $\mathbf{FR}$       | -0.0258                      |              | GCVS 85             | -Ir        | 37              | 12)        |
| KQ Gem         | Min                  | 54092.4605  | .0008 | AG                  |                              |              |                     | -Ir        | 34              | 3)         |
| -              | Min                  | 54092.6727  | .0049 | AG                  |                              |              |                     | -Ir        | 34              | 3)         |
| KV Gem         | Min                  | 54092.3841  | .0012 | AG                  | -0.0055                      | $\mathbf{s}$ | BAVR 52.95ff        | -Ir        | 35              | 3)         |
|                | Min                  | 54092.5623  | .0017 | AG                  | -0.0066                      | ~            | BAVR 52.95ff        | -Jr        | 35              | 3)         |
| T 0 0          | Min                  | 54006 4600  | 0013  | AC                  |                              |              |                     | <br>Ir     |                 | 3)         |
| LO Gem         | 10.111               | 04030.4000  | ,0010 | AU                  |                              |              |                     |            | <u> </u>        |            |

Table 1: (cont.)

| Variable                             | M/m                                    | 1D 94                                                                                          | -                                         |                              |                                                     |              | Dibliggraphy                                                   | <b>D</b> ;1              | n                                | Dom                                                                                  |
|--------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------|-----------------------------------------------------|--------------|----------------------------------------------------------------|--------------------------|----------------------------------|--------------------------------------------------------------------------------------|
| GSC1330.0287                         | 101 / 111                              | JD 44                                                                                          | _۲                                        | UUS                          | 0-0                                                 |              | Dibilography                                                   | 1,11                     | 11                               | rtem                                                                                 |
| Gem                                  | Min                                    | 54092.4798                                                                                     | .0015                                     | AG                           | -0.0025                                             | s            | BAVR 54.105ff                                                  | -Ir                      | 35                               | 3)                                                                                   |
| 0.0111                               | Min                                    | 54092.6554                                                                                     | .0048                                     | AG                           | -0.0012                                             | 5            | BAVR 54.105ff                                                  | -Ir                      | 35                               | 3)                                                                                   |
| HS Her                               | Min                                    | 54017.2944                                                                                     | .0019                                     | SCI                          | -0.0255                                             |              | GCVS 85                                                        |                          | 238                              | 4)                                                                                   |
| PW Her                               | Min                                    | 50314 5315                                                                                     | 0015                                      | AG                           | -0.0137                                             |              | BAVM 68                                                        | в                        | 65                               | 2)                                                                                   |
| 1 11 1101                            | Min                                    | 50314 $5324$                                                                                   | 0015                                      | AG                           | -0.0128                                             |              | BAVM 68                                                        | V                        | 66                               | 2)                                                                                   |
| V501 Her                             | Min                                    | 53963 4443                                                                                     | 0013                                      | AG                           | 0.0120                                              |              | DITUM                                                          | -Ir                      | 43                               | 3)                                                                                   |
| V502 Her                             | Min                                    | 53063 4795                                                                                     | 0015                                      | AG                           |                                                     |              |                                                                | -11<br>Ir                | 40<br>46                         | 3)                                                                                   |
| V878 Hor                             | Min                                    | 53941 4914                                                                                     | 0010                                      | ло<br>Ш                      |                                                     |              |                                                                | -11                      | 50                               | 4)                                                                                   |
| AC Lac                               | Min                                    | 54018 3186                                                                                     | .0013                                     | AG                           |                                                     |              |                                                                | Ir                       | 37                               | 4)<br>2)                                                                             |
| AG Lac                               | Min                                    | 54010.3100                                                                                     | .0004                                     | AG                           |                                                     |              |                                                                | -11<br>Ir                | 46                               | 3)                                                                                   |
| AW Inc                               | Min                                    | 54030.3098                                                                                     | .0004                                     | AG                           | 10.0260                                             |              | DAVD 25 14                                                     | -11<br>Tn                | 40<br>90                         | 2)<br>2)                                                                             |
| CN Lac                               | Min                                    | 52025 5706                                                                                     | .0011                                     | AG<br>MC ED                  | +0.0300                                             |              | COVS 85                                                        | -11                      | 517                              | 3)<br>9)                                                                             |
| ON Lac                               | Min                                    | 52027 4018                                                                                     | .0000                                     | MGED                         | -0.0181                                             |              | GCVS 85                                                        |                          | 517                              | 8)<br>8)                                                                             |
|                                      | Min                                    | 54018 2205                                                                                     | .0004                                     |                              | -0.0180                                             |              | GCVS 85                                                        | Tn                       | 220                              | 0)<br>2)                                                                             |
|                                      | Min                                    | 54018.3205                                                                                     | .0030                                     | AG                           | -0.0152                                             | 5            | GCVD 65                                                        | -11<br>In                | 32<br>20                         | 3)<br>2)                                                                             |
| 00 I                                 | MIII<br>M:                             | 54010.0591                                                                                     | .0002                                     | AG                           | -0.0155                                             |              | GUVS 60<br>GAO 74                                              | -11<br>17                | 32<br>50                         | ರ)<br>೧1)                                                                            |
| JU Lac                               | Min<br>Min                             | 54125.2030                                                                                     | .0034                                     | W IN                         | -0.0006                                             |              | SAC 74                                                         | V                        | 59<br>74                         | 21)<br>91)                                                                           |
| FV Lee                               | IVIIN                                  | 54120.3404                                                                                     | .0002                                     |                              | -0.0010                                             |              | DAU 14                                                         | V<br>T                   | (4<br>96                         | ⊿1)<br>2)                                                                            |
| ER LaC                               | 1V11n<br>M:                            | 54062.2709<br>54018.2490                                                                       | .0029                                     | AG                           | -0.0026                                             |              |                                                                | -1r<br>T.                | 20                               | <i>చ)</i>                                                                            |
| EM Lac                               | Min                                    | 54018.3439                                                                                     | .0007                                     | AG                           | +0.0634                                             |              | GCVS 85                                                        | -1r                      | 37                               | 3)<br>N                                                                              |
|                                      | Min                                    | 54018.5387                                                                                     | .0032                                     | AG                           | +0.0636                                             | $\mathbf{s}$ | GCVS 85                                                        | -lr                      | 37                               | 3)                                                                                   |
| EP Lac                               | Min                                    | 54000.4011                                                                                     | .0011                                     | AG                           | -0.3623                                             |              | GCVS 85                                                        | -lr                      | 32                               | 3)                                                                                   |
| ES Lac                               | Min                                    | 54035.5841                                                                                     | .0032                                     | AG                           |                                                     |              | C CT IC AN                                                     | -lr                      | 33                               | 3)                                                                                   |
| FL Lac                               | Min                                    | 54035.4253                                                                                     | .0053                                     | AG                           | -0.0506                                             | $\mathbf{s}$ | GCVS 85                                                        | -lr                      | 35                               | 3)                                                                                   |
| IL Lac                               | Min                                    | 54080.3486                                                                                     | .0016                                     | AG                           |                                                     |              |                                                                | -Ir                      | 44                               | 3)                                                                                   |
| IM Lac                               | Min                                    | 54080.4254                                                                                     | .0016                                     | AG                           | -0.1732                                             | $\mathbf{s}$ | GCVS 85                                                        | -Ir                      | 44                               | 3)                                                                                   |
| IP Lac                               | Min                                    | 54080.2361                                                                                     | .0020                                     | AG                           |                                                     |              |                                                                | -Ir                      | 45                               | 3)                                                                                   |
|                                      | $\operatorname{Min}$                   | 54080.6594                                                                                     | .0002                                     | AG                           |                                                     |              |                                                                | -Ir                      | 45                               | 3)                                                                                   |
| IU Lac                               | $\operatorname{Min}$                   | 54031.2787                                                                                     | .0009                                     | AG                           |                                                     |              |                                                                | -Ir                      | 12                               | <b>3</b> )                                                                           |
| MW Lac                               | Min                                    | 54035.3875                                                                                     | .0005                                     | $\operatorname{AG}$          |                                                     |              |                                                                | -Ir                      | 35                               | 3)                                                                                   |
| NW Lac                               | Min                                    | 54035.5448                                                                                     | .0022                                     | $\operatorname{AG}$          |                                                     |              |                                                                | -Ir                      | 35                               | 3)                                                                                   |
| OS Lac                               | $\operatorname{Min}$                   | 54035.4630                                                                                     | .0008                                     | $\operatorname{AG}$          |                                                     |              |                                                                | -Ir                      | 35                               | 3)                                                                                   |
| V339 Lac                             | $\operatorname{Min}$                   | 54000.4657                                                                                     | .0011                                     | $\operatorname{AG}$          |                                                     |              |                                                                | -Ir                      | 32                               | <b>3</b> )                                                                           |
| V441 Lac                             | Min                                    | 54031.3758                                                                                     | .0017                                     | $\operatorname{AG}$          | -0.0170                                             |              | $\rm IBVS~5024$                                                | -Ir                      | 12                               | 3)                                                                                   |
| AH Lyr                               | Min                                    | 53963.4960                                                                                     | .0009                                     | $\operatorname{AG}$          |                                                     |              |                                                                | -Ir                      | 38                               | 3)                                                                                   |
| AK Lyr                               | Min                                    | 53963.3965                                                                                     | .0011                                     | $\operatorname{AG}$          |                                                     |              |                                                                | -Ir                      | 40                               | 3)                                                                                   |
|                                      | Min                                    | 53990.5028                                                                                     | .0042                                     | $\operatorname{AG}$          |                                                     |              |                                                                | -Ir                      | 24                               | 3)                                                                                   |
| PV Lyr                               | Min                                    | 53963.5352                                                                                     | .0018                                     | $\operatorname{AG}$          |                                                     |              |                                                                | -Ir                      | 40                               | 3)                                                                                   |
| PY Lyr                               | Min                                    | 53934.3963                                                                                     | .0029                                     | AG                           |                                                     |              |                                                                | -Ir                      | 20                               | 3)                                                                                   |
| V411 Lyr                             | Max                                    | 53515.4890                                                                                     | .0050                                     | AG                           |                                                     |              |                                                                | -Ir                      | 26                               | 3) (23)                                                                              |
| v                                    | Max                                    | 53524.5220                                                                                     | .0050                                     | $\operatorname{AG}$          |                                                     |              |                                                                | -Ir                      | 21                               | 3) 23)                                                                               |
| EF Ori                               | Min                                    | 54091.4990                                                                                     | .0011                                     | $\operatorname{AG}$          |                                                     |              |                                                                | -Ir                      | 33                               | 3)                                                                                   |
| ET Ori                               | Min                                    | 54067.4207                                                                                     | .0018                                     | SCI                          | -0.0038                                             |              | GCVS 85                                                        |                          | 52                               | 4)                                                                                   |
| GG Ori                               | $_{\rm Min}$                           | 54094.4465                                                                                     | .0017                                     | SCI                          | -2.8088                                             |              | AA 54.207                                                      |                          | 83                               | 4)                                                                                   |
| GU Ori                               | Min                                    | 54091.3295                                                                                     | .0016                                     | AG                           |                                                     |              |                                                                | -Ir                      | 33                               | 3)                                                                                   |
|                                      | Min                                    | 54091.5641                                                                                     | .0025                                     | AG                           |                                                     |              |                                                                | -Ir                      | 33                               | 3)                                                                                   |
| OV Ori                               | Min                                    | 54091.5320                                                                                     | .0010                                     | AG                           |                                                     |              |                                                                | -Ir                      | 38                               | 3)                                                                                   |
| v<br>343 Ori                         | Min                                    | 54091.4978                                                                                     | .0008                                     | AG                           | +0.1937                                             |              | GCVS 85                                                        | -Ir                      | 32                               | 3)                                                                                   |
| V392 Ori                             | Min                                    | 54091.5327                                                                                     | .0036                                     | AG                           | +0.0067                                             | s            | GCVS 85                                                        | -Ir                      | 35                               | 3)                                                                                   |
| U Peg                                | Min                                    | 53752.2555                                                                                     | .0014                                     | ATB                          | -0.0080                                             |              | BAVR 45.3                                                      |                          | 50                               | 3)                                                                                   |
| 0108                                 | Min                                    | 54000.3563                                                                                     | .0020                                     | HNS                          | -0.0100                                             |              | BAVR 45.3                                                      | -Tr                      | 64                               | 16)                                                                                  |
|                                      | Min                                    | 54024 3416                                                                                     | 0006                                      | AG                           | -0.0104                                             |              | BAVB 45.3                                                      | -Ir                      | 50                               | 3)                                                                                   |
|                                      | Min                                    | 54024 5315                                                                                     | .0010                                     | AG                           | -0.0079                                             | s            | BAVB 45.3                                                      | _Tr                      | 50                               | 3)                                                                                   |
|                                      |                                        | 5 102 10010                                                                                    | 0022                                      | SCI                          | -0.0106                                             | J            | GCVS 87                                                        | **                       | 71                               | 4)                                                                                   |
| UX Peg                               | Min                                    | 141197 / 1911                                                                                  | .0044                                     | 001                          | 0.0100                                              |              | CCVS 87                                                        | Tn                       | 1 L<br>97                        | <i>±)</i><br>२)                                                                      |
| UX Peg<br>BK Peg                     | Min<br>Min                             | 54092.2390                                                                                     | 0028                                      | $\Delta C$                   | $\pm$ (1) (more                                     |              | 1 71 / 1 / 2 / 2 /                                             |                          | 3.7                              |                                                                                      |
| UX Peg<br>BK Peg<br>BN Peg           | Min<br>Min<br>Mir                      | 54092.2390<br>54000.4181<br>54026.2402                                                         | .0028                                     | AG<br>DIF                    | +0.0091<br>$\pm0.0002$                              |              | GCVS 87                                                        | -11                      | 37<br>99                         | 12)                                                                                  |
| UX Peg<br>BK Peg<br>BN Peg<br>BX Peg | Min<br>Min<br>Min<br>Mir               | 54000.4181<br>54026.3492<br>53066 4202                                                         | .0028<br>.0008                            | AG<br>DIE<br>AC              | +0.0091<br>+0.0003                                  |              | GCVS 87<br>GCVS 87                                             | -11<br>T                 | 37<br>22<br>25                   | 13)                                                                                  |
| UX Peg<br>BK Peg<br>BN Peg<br>BX Peg | Min<br>Min<br>Min<br>Min               | 54092.2390<br>54000.4181<br>54026.3492<br>53966.4203<br>53066 5507                             | .0028<br>.0008<br>.0017                   | AG<br>DIE<br>AG              | +0.0091<br>+0.0003<br>+0.0608                       | -            | GCVS 87<br>GCVS 87<br>GCVS 87<br>CCVS 87                       | -11<br>-Ir<br>T=         | 37<br>22<br>25                   | 13)<br>3)<br>2)                                                                      |
| UX Peg<br>BK Peg<br>BN Peg<br>BX Peg | Min<br>Min<br>Min<br>Min<br>Min        | 54092.2390<br>54000.4181<br>54026.3492<br>53966.4203<br>53966.5597<br>52002.2574               | .0028<br>.0008<br>.0017<br>.0048          | AG<br>DIE<br>AG<br>AG        | +0.0091<br>+0.0003<br>+0.0608<br>+0.0600            | s            | GCVS 87<br>GCVS 87<br>GCVS 87<br>GCVS 87                       | -II<br>-Ir<br>-Ir        | 37<br>22<br>25<br>25<br>78       |                                                                                      |
| UX Peg<br>BK Peg<br>BN Peg<br>BX Peg | Min<br>Min<br>Min<br>Min<br>Min<br>Min | 54092.2590<br>54000.4181<br>54026.3492<br>53966.4203<br>53966.5597<br>53992.3574<br>54002.4524 | .0028<br>.0008<br>.0017<br>.0048<br>.0001 | AG<br>DIE<br>AG<br>AG<br>WTR | +0.0091<br>+0.0003<br>+0.0608<br>+0.0600<br>+0.0590 | S<br>S       | GCVS 87<br>GCVS 87<br>GCVS 87<br>GCVS 87<br>GCVS 87<br>GCVS 87 | -II<br>-Ir<br>-Ir<br>-Ir | 37<br>22<br>25<br>25<br>78<br>78 | $     \begin{array}{c}       3) \\       3) \\       14) \\       4)   \end{array} $ |

Table 1: (cont.)

| Variable                                      | M/m                      | JD 24                                                | ±                                | Obs                  | O - C                |              | Bibliography       | Fil                      | n                                                                         | Rem                       |
|-----------------------------------------------|--------------------------|------------------------------------------------------|----------------------------------|----------------------|----------------------|--------------|--------------------|--------------------------|---------------------------------------------------------------------------|---------------------------|
| BZ Peg                                        | Min                      | 53966.4844                                           | .0016                            | AG                   |                      |              |                    | -Ir                      | 26                                                                        | 3)                        |
| UE Peg                                        | Min                      | 53936.4777                                           | .0006                            | MS FR                | 0.010                |              |                    | -                        | 429                                                                       | 8)                        |
| DI Peg                                        | Min                      | 54024.4239                                           | .0005                            | AG                   | -0.0161              |              | GCVS 87            | -lr                      | 49                                                                        | 3)                        |
| DM Peg                                        | Min                      | 54024.3808                                           | .0008                            | AG                   | +0.0997              |              | GCVS 87            | -Ir                      | 51                                                                        | 3)                        |
| GP Peg                                        | Min                      | 53992.5386                                           | .0022                            | SCI                  | -0.0422              |              | GCVS 87            | -                        | 112                                                                       | 4)                        |
| KW Peg                                        | Min                      | 53966.4520                                           | .0011                            | AG                   |                      |              |                    | -lr                      | 25                                                                        | 3)                        |
|                                               | Min                      | 54002.3717                                           | .0026                            | SCI                  |                      |              |                    |                          | 78                                                                        | 4)                        |
| √357 Peg                                      | Min                      | 54000.5137                                           | .0029                            | $\operatorname{AG}$  |                      |              |                    | -Ir                      | 25                                                                        | 3)                        |
| √375 Peg                                      | Min                      | 52974.3270                                           | .0010                            | ENS                  |                      |              |                    |                          | 99                                                                        | $20)  \operatorname{red}$ |
| V396 Peg                                      | Min                      | 54025.3911                                           | .0006                            | $\operatorname{AG}$  | -0.0017              |              | BAVM 139           | -Ir                      | 54                                                                        | <b>3</b> )                |
|                                               | Min                      | 54025.5654                                           | .0016                            | $\operatorname{AG}$  | +0.0014              | $\mathbf{S}$ | BAVM 139           | -Ir                      | 54                                                                        | <b>3</b> )                |
| U1125 - 18642389                              | $\operatorname{Min}$     | 52137.5046                                           | .0028                            | $\operatorname{AG}$  |                      |              |                    |                          | 25                                                                        | <b>3</b> )                |
|                                               | $\operatorname{Min}$     | 53966.3774                                           | .0017                            | $\operatorname{AG}$  |                      |              |                    | -Ir                      | 23                                                                        | <b>3</b> )                |
| RT Per                                        | Min                      | 54091.2898                                           | .0003                            | $_{ m JU}$           | +0.0565              |              | GCVS 87            |                          | 80                                                                        | 4)                        |
| V Per                                         | Min                      | 54055.6156                                           | .0006                            | AG                   | -0.0079              |              | GCVS 87            | -Ir                      | 50                                                                        | <b>3</b> )                |
| ST Per                                        | $\operatorname{Min}$     | 53750.3852                                           | .0009                            | ATB                  | +0.1955              |              | GCVS 87            |                          | 94                                                                        | 3)                        |
|                                               | Min                      | 54097.3223                                           | .0001                            | WTR                  | +0.2034              |              | GCVS 87            | -Ir                      | 135                                                                       | 14)                       |
| AB Per                                        | Min                      | 54033.5650                                           | .0200                            | AG                   |                      |              |                    | -Ir                      | 58                                                                        | 3)                        |
| AG Per                                        | Min                      | 54092.2705                                           | .0035                            | JU                   | +0.0247              | $\mathbf{s}$ | AA 54.207          |                          | 77                                                                        | 4)                        |
| DM Per                                        | Min                      | 54094.3678                                           | .0023                            | JU                   | -0.0022              |              | GCVS 87            |                          | 123                                                                       | 4)                        |
| IM Per                                        | Min                      | 54025.5320                                           | .0023                            | $\mathbf{SCI}$       | +0.0849              |              | GCVS 87            |                          | 92                                                                        | 4)́                       |
| KL Per                                        | Min                      | 54056.3813                                           | .0011                            | AG                   |                      |              |                    | -Ir                      | 21                                                                        | 3)                        |
| KN Per                                        | Min                      | 53791.3049                                           | .0035                            | ATB                  | +0.0025              |              | BAVR 52,93ff       |                          | 89                                                                        | 3)                        |
| KW Per                                        | Min                      | 54056.2537                                           | .0002                            | AG                   | +0.0111              |              | GCVS 87            | -Ir                      | 21                                                                        | 3)                        |
| NP Per                                        | Min                      | 54055.2868                                           | .0008                            | AG                   |                      |              |                    | -Ir                      | 49                                                                        | 3)                        |
| V462 Per                                      | Min                      | 54084.4599                                           | .0007                            | AG                   |                      |              |                    | -Ir                      | 52                                                                        | 3)                        |
| V482 Per                                      | Min                      | 54055.3865                                           | .0022                            | JU                   | +0.2287              |              | BAVM 68            |                          | 100                                                                       | 4)                        |
| Y Psc                                         | Min                      | 54025 3713                                           | 0002                             | ÅG                   | +0.0014              |              | GCVS 87            | -Ir                      | 54                                                                        | 3)                        |
| SU Psc                                        | Min                      | 54019 4090                                           | 0022                             | AG                   | -0.2962              |              | GCVS 87            | -Ir                      | 72                                                                        | 3)                        |
| IW Psc                                        | Min                      | 53705 6220                                           | 0022                             | AG                   | 0.2002               |              |                    | V                        | 55                                                                        | 3)                        |
|                                               | Min                      | 54010 4730                                           | 0010                             | AG                   |                      |              |                    | v<br>Ir                  | 72                                                                        | 3)                        |
| VZ Dec                                        | Min                      | 54025 3459                                           | 0010                             | AG                   | -0.0550              | 0            | CCVS 87            | -11<br>Ir                | 14                                                                        | 3)                        |
| VZ 150                                        | Min                      | 54025.3459                                           | .0012                            | AG                   | -0.0555              | G            | GCVS 87            | -11<br>Ir                | 44                                                                        | 3)                        |
|                                               | Min                      | 54025.4700                                           | .0018                            | AG                   | -0.0000              |              | GC 15 61           | -11<br>Tn                | 19                                                                        | 3)<br>2)                  |
|                                               | Min                      | 54025.4156                                           | .0002                            | AG                   |                      |              |                    | -11<br>Tu                | 10                                                                        | 3)<br>2)                  |
| OF Sge                                        | Min                      | 53935.4093                                           | .0029                            | AG                   |                      |              |                    | -11<br>Tm                | 19                                                                        | 3)<br>2)                  |
| DK Sge                                        | Min<br>M:                | 53934.3998                                           | .0007                            | AG                   |                      |              |                    | -11<br>T.,               | 10                                                                        | 3)<br>2)                  |
| FF 5ge                                        | Min<br>M:                | 53934.4512                                           | .0021                            | AG<br>MC ED          |                      |              |                    | -1r                      | 18                                                                        | 3)                        |
|                                               | Min                      | 53934.4514                                           | .0003                            | MSFR                 |                      |              |                    | Ŧ                        | 462                                                                       | 8)                        |
|                                               | Min<br>M                 | 54023.3558                                           | .0012                            | AG                   |                      |              |                    | -1r                      | 18                                                                        | 3)                        |
| FF Sge                                        | Min                      | 53936.4651                                           | .0002                            | AG                   | 1 0 000 <del>-</del> |              | COVC OF            | -1r                      | 22                                                                        | 3)                        |
| GIN Sge                                       | Min                      | 53935.5131                                           | .0029                            | AG                   | +0.0027              | $\mathbf{s}$ | GUVS 87            | -lr                      | 18                                                                        | 3)                        |
|                                               | Min                      | 53979.3587                                           | .0002                            | WTR                  | +0.0015              |              | GUVS 87            | -1r                      | 88                                                                        | 14)                       |
| KW Tau                                        | Min                      | 54123.3946                                           | .0041                            | WN                   | -0.0112              |              | BAVR 45,124        | V                        | 101                                                                       | 21)                       |
| WY Tau                                        | Min                      | 54096.4036                                           | .0028                            | AG                   | +0.0537              |              | GCVS 87            | -Ir                      | 22                                                                        | 3)                        |
| BN Tau                                        | Min                      | 54055.5954                                           | .0004                            | AG                   |                      |              |                    | -Ir                      | 49                                                                        | 3)                        |
| BV Tau                                        | Min                      | 54055.4514                                           | .0039                            | $\mathbf{SCI}$       |                      |              |                    |                          | 71                                                                        | 4)                        |
| CF Tau                                        | Min                      | 54084.4860                                           | .0007                            | $\operatorname{AG}$  | +0.0034              |              | BAVR $35,1$ ff     | -Ir                      | 47                                                                        | <b>3</b> )                |
| EQ Tau                                        | Min                      | 54084.5071                                           | .0006                            | $\operatorname{AG}$  | -0.0254              | $\mathbf{s}$ | GCVS 87            | -Ir                      | 43                                                                        | <b>3</b> )                |
| GR Tau                                        | Min                      | 54084.4219                                           | .0008                            | $\operatorname{AG}$  | -0.0315              |              | BAVR $35,1$ ff     | -Ir                      | 47                                                                        | <b>3</b> )                |
| V781 Tau                                      | Min                      | 54096.4785                                           | .0004                            | $\operatorname{AG}$  | -0.0558              | $\mathbf{s}$ | GCVS 87            | -Ir                      | 18                                                                        | <b>3</b> )                |
| V1123 Tau                                     | Min                      | 54016.4684                                           | .0023                            | $\mathbf{SCI}$       |                      |              |                    |                          | 79                                                                        | 4)                        |
| V1128 Tau                                     | Min                      | 54083.4987                                           | .0014                            | JU                   |                      |              |                    |                          | 46                                                                        | 4)                        |
| V Tri                                         | Min                      | 54026.3146                                           | .0027                            | $\mathbf{FR}$        | -0.0004              | $\mathbf{s}$ | GCVS 87            | -Ir                      | 86                                                                        | 12)                       |
|                                               | Min                      | 54026.6067                                           | .0002                            | $\mathbf{FR}$        | -0.0009              |              | GCVS 87            | -Ir                      | 86                                                                        | 12)                       |
|                                               | Min                      | 54115.4115                                           | .0007                            | WN                   | -0.0697              |              | GCVS 87            | V                        | 79                                                                        | 21)                       |
| X Tri                                         | TATIT                    |                                                      |                                  | 10                   |                      |              |                    | τ.,                      | 16                                                                        | 3)                        |
| X Tri<br>AB Vul                               | Min                      | 53942.4907                                           | .0012                            | AG                   |                      |              |                    | -1r                      | 10                                                                        | 01                        |
| X Tri<br>AB Vul<br>BK Vul                     | Min<br>Min               | $53942.4907 \\53966.4427$                            | .0012<br>.0006                   | AG<br>AG             | +0.0361              | $\mathbf{s}$ | GCVS 87            | -1r<br>-Ir               | 10<br>26                                                                  | 3)                        |
| X Tri<br>AB Vul<br>BK Vul<br>FM Vul           | Min<br>Min<br>Min        | 53942.4907<br>53966.4427<br>53933.3940               | .0012<br>.0006<br>.0010          | AG<br>AG<br>FR       | +0.0361 +0.0182      | s<br>s       | GCVS 87<br>GCVS 87 | -Ir<br>-Ir<br>-Ir        | $\frac{10}{26}$                                                           | 3)<br>12)                 |
| X Tri<br>AB Vul<br>BK Vul<br>FM Vul<br>FQ Vul | Min<br>Min<br>Min<br>Min | 53942.4907<br>53966.4427<br>53933.3940<br>53921.4630 | .0012<br>.0006<br>.0010<br>.0017 | AG<br>AG<br>FR<br>FR | +0.0361 +0.0182      | s<br>s       | GCVS 87<br>GCVS 87 | -Ir<br>-Ir<br>-Ir<br>-Ir | $   \begin{array}{c}     10 \\     26 \\     23 \\     24   \end{array} $ | $3) \\ 12) \\ 12)$        |

Table 1: (cont.)

|              |     |            | 14    |               | 5110.)  |              |                      |     |                      |
|--------------|-----|------------|-------|---------------|---------|--------------|----------------------|-----|----------------------|
| Variable     | M/m | JD 24      | ±     | Obs           | O - C   | Bibliography | $\operatorname{Fil}$ | n   | $\operatorname{Rem}$ |
| FR Vul       | Min | 53933.4789 | .0022 | $\mathbf{FR}$ | +0.0009 | GCVS 87      | -Ir                  | 25  | 12)                  |
|              | Min | 53934.4107 | .0041 | AG            | -0.0091 | GCVS 87      | -Ir                  | 19  | 3)                   |
| HI Vul       | Min | 53935.4488 | .0019 | AG            | -0.0565 | GCVS 87      | -Ir                  | 12  | <b>3</b> )           |
| HS Vul       | Min | 53934.4022 | .0031 | AG            |         |              | -Ir                  | 17  | 3)                   |
| NO Vul       | Min | 54023.3686 | .0013 | AG            |         |              | -Ir                  | 17  | 3)                   |
| GSC2140.1485 |     |            |       |               |         |              |                      |     |                      |
| Vul          | Min | 53934.3812 | .0003 | AG            |         |              | -Ir                  | 17  | 3)                   |
|              | Min | 53934.5316 | .0013 | AG            |         |              | -Ir                  | 17  | 3)                   |
| GSC2161.0917 |     |            |       |               |         |              |                      |     |                      |
| Vul          | Min | 53861.5920 | .0002 | MS FR         |         |              |                      | 259 | 8)                   |
|              | Min | 53863.5168 | .0003 | MS FR         |         |              |                      | 333 | 8)                   |

Table 2: Pulsating stars

| Variable | M/m | JD 24      | ±     | Obs   | 0 – C   | Bibliography | Fil | n   | Rem          |
|----------|-----|------------|-------|-------|---------|--------------|-----|-----|--------------|
| SW And   | Max | 53764.2890 | .0028 | ATB   | -0.0378 | IBVS 4143    |     | 92  | 3)           |
| CC And   | Max | 53988.4122 | .0038 | HNS   | +0.0120 | GCVS 85      | -Ir | 57  | $1\acute{6}$ |
| CI And   | Max | 54024.4215 | .0006 | MZ    | +0.0002 | BAVR 53,87ff | -Ir | 56  | 4)           |
| FI And   | Max | 54049.3720 | .0009 | MZ    |         | ,            | -Ir | 108 | 4)           |
| GP And   | Max | 53987.4544 | .0007 | HNS   | +0.0046 | GCVS 85      | -Ir | 160 | 16)          |
|          | Max | 53988.3985 | .0008 | HNS   | +0.0045 | GCVS 85      | -Ir | 55  | 16)          |
|          | Max | 54000.3591 | .0010 | HNS   | +0.0054 | GCVS 85      | -Ir | 64  | 16)          |
|          | Max | 54069.3633 | .0007 | WN    | +0.0048 | GCVS 85      |     | 130 | 21)          |
| OV And   | Max | 53745.2931 | .0028 | ATB   | -0.0174 | MVS 11,133   |     | 77  | 3)           |
|          | Max | 54000.3455 | .0015 | HNS   | -0.0199 | MVS 11,133   | -Ir | 64  | 16)          |
| SY Aps   | Min | 53546.416  | .003  | HND   |         | ,            | -Ir | 585 | (18)(26)     |
| XZ Aps   | Max | 53968.4110 | .0030 | HND   |         |              |     | 26  | 7)           |
| BS Aps   | Max | 53967.4430 | .0020 | HND   |         |              |     | 82  | 7)           |
| EV Aps   | Max | 53969.4960 | .0050 | HND   |         |              |     | 100 | 7)           |
| -        | Max | 53971.4800 | .0030 | HND   |         |              |     | 80  | 7)           |
|          | Max | 53973.4620 | .0020 | HND   |         |              |     | 46  | 7)́          |
|          | Max | 53975.4470 | .0040 | HND   |         |              |     | 110 | 7)           |
| EX Aps   | Max | 53951.3970 | .0020 | HND   |         |              | -Ir | 480 | 18)          |
| -        | Max | 53967.4420 | .0030 | HND   |         |              |     | 60  | 7)           |
|          | Max | 53968.3820 | .0030 | HND   |         |              |     | 18  | 7)           |
|          | Max | 53969.3290 | .0030 | HND   |         |              |     | 60  | 7)           |
|          | Max | 53975.4600 | .0020 | HND   |         |              |     | 76  | 7)           |
|          | Max | 53976.4040 | .0020 | HND   |         |              |     | 140 | 7)           |
| UU Aqr   | Min | 53250.3625 | .0004 | MS FR |         |              |     | 186 | 8)(31)       |
| HH Aqr   | Max | 53991.4157 | .0008 | MZ    |         |              | -Ir | 56  | 4)           |
|          | Max | 53991.4180 | .0030 | AG    |         |              | -Ir | 46  | 3)           |
| CV Ara   | Max | 53972.4730 | .0030 | HND   |         |              |     | 105 | 7)           |
|          | Max | 53977.4900 | .0050 | HND   |         |              |     | 36  | 7)           |
| DL Ara   | Max | 53951.4430 | .0030 | HND   | +0.1415 | GCVS 85      |     | 119 | 7)           |
|          | Max | 53971.3960 | .0030 | HND   | +0.1405 | GCVS 85      |     | 92  | 7)           |
|          | Max | 53976.3850 | .0020 | HND   | +0.1410 | GCVS 85      |     | 75  | 7)           |
| DO Ara   | Max | 53972.3480 | .0040 | HND   |         |              |     | 79  | 7)           |
| MS Ara   | Max | 53966.4510 | .0030 | HND   |         |              |     | 86  | 7)           |
|          | Max | 53975.3740 | .0040 | HND   |         |              |     | 43  | 7)           |
|          | Max | 53976.4250 | .0040 | HND   |         |              |     | 31  | 7)           |
| QT Ara   | Max | 53973.3560 | .0020 | HND   |         |              |     | 69  | 7)           |
| -        | Max | 53978.3810 | .0030 | HND   |         |              |     | 85  | 7)           |
| V414 Ara | Max | 53951.4900 | .0030 | HND   |         |              |     | 96  | 7)           |
|          | Max | 53970.4450 | .0030 | HND   |         |              |     | 75  | 7)           |
| V430 Ara | Max | 53966.4270 | .0050 | HND   |         |              |     | 62  | 7)           |
|          | Max | 53984.3950 | .0050 | HND   |         |              |     | 74  | 7)           |
| V455 Ara | Max | 53977.3880 | .0030 | HND   |         |              |     | 53  | 7)           |
| V532 Ara | Min | 53550.4770 | .0020 | HND   |         |              | -Ir | 496 | (18)(25)     |
|          | Min | 53551.4850 | .0020 | HND   |         |              | -Ir | 438 | (18) (25)    |

Table 2: (cont.)

| Variable                                | M/m                  | JD 24                    | ±     | Obs                 | O - C                        | Bibliography       | Fil        | n                     | Rem           |
|-----------------------------------------|----------------------|--------------------------|-------|---------------------|------------------------------|--------------------|------------|-----------------------|---------------|
| V532 Ara                                | Min                  | 53565.5770               | .0030 | HND                 |                              |                    | -1r        | 545                   | 18) 25)       |
| VY Boo                                  | Max                  | 53920.4941               | .0008 | MZ                  |                              |                    | -1r        | 72                    | 4)            |
| AV Boo                                  | Min                  | 53069.6868               | .0033 | PC                  |                              |                    | -1r        | 22                    | 9) 33)        |
| CG Boo                                  | Max                  | 53814.3896               | .0002 | MS FR               |                              |                    |            | 351                   | 8)            |
| EL Boo                                  | Min                  | 53913.4729               | .0024 | JU                  |                              |                    |            | 43                    | 4) 29)        |
| UY Cam                                  | Max                  | 54091.4780               | .0030 | AG                  | +0.0557                      | BAVR 49,41         | -Ir        | 58                    | <b>3</b> )    |
| EW Cam                                  | Max                  | 54091.4920               | .0030 | $\operatorname{AG}$ |                              |                    | -Ir        | 52                    | 3)            |
| IU Cas                                  | Max                  | 54055.2950               | .0030 | $\operatorname{AG}$ |                              |                    | -Ir        | 26                    | 3)            |
| KM Cas                                  | Max                  | 53648.6006               | .0069 | $\mathbf{PC}$       |                              |                    | -Ir        | 108                   | $9) \ 30)$    |
| PS Cas                                  | Max                  | 54026.4740               | .0030 | AG                  |                              |                    | -Ir        | 24                    | 3)            |
| U1425-00752967                          |                      |                          |       |                     |                              |                    |            |                       |               |
| $\operatorname{Cas}$                    | Max                  | 54019.5380               | .0010 | AG                  |                              |                    |            | 34                    | <b>3</b> )    |
| DL Com                                  | Max                  | 53899.4242               | .0008 | MZ                  |                              |                    | -Ir        | 0                     | 4)            |
|                                         | Max                  | 53903.4239               | .0008 | MZ                  |                              |                    | -Ir        | 83                    | 4) red        |
| RV CrB                                  | Max                  | 53858.5877               | .0050 | MS FR               | -0.1075                      | GCVS 85            |            | 675                   | 8)            |
| DM Cyg                                  | Max                  | 54070.2531               | .0015 | WN                  | -0.0028                      | BAVR 51,98ff       |            | 100                   | 21)           |
| V791 Cyg                                | Max                  | 54002.3512               | .0020 | $\mathbf{FR}$       |                              | ,                  | -Ir        | 33                    | 12)           |
| V881 Cyg                                | Max                  | 53936.5051               | .0008 | $\mathbf{FR}$       |                              |                    | -Ir        | 33                    | 12)           |
| 20                                      | Max                  | 54003.4963               | .0015 | $\mathbf{FR}$       |                              |                    | -Ir        | 32                    | 12) rec       |
|                                         | Max                  | 54035.2944               | .0020 | $\mathbf{FR}$       |                              |                    | -Ir        | 25                    | 12) red       |
| V882 Cvg                                | Max                  | 53936.4829               | .0020 | FR.                 |                              |                    | -Ir        | 33                    | (12)          |
| V1719 Cvg                               | Max                  | 53601 4938               | 0081  | PC                  | -0.0632                      | GCVS 85            | -Ir        | 32                    | 9)            |
| ZZ Del                                  | Max                  | 53613 4041               | 0095  | PC                  | 010002                       | 001000             | _Ir        | 32                    | 9)            |
| BK Del                                  | Max                  | 53966 5720               | 0030  | AG                  |                              |                    | _Ir        | 24                    | 3)            |
|                                         | Max                  | 53066 3710               | 0030  | AC                  |                              |                    | -11<br>In  | 2 <del>1</del><br>9 1 | 3)            |
| OD Dei                                  | Max                  | 54001 3440               | .0030 | AG                  |                              |                    | -11<br>Ir  | 21                    | 3)            |
|                                         | Mor                  | 54001.3440               | .0030 | AG                  |                              |                    | -11<br>In  | 20                    | 2)            |
|                                         | Mor                  | 52024 4702               | .0030 | AG<br>M7            | 10.0228                      | COVS of            | -11<br>In  | 110                   | 3)<br>4)      |
| EG Dei<br>VV Der                        | Max                  | 00904.4700<br>E4101 2510 | .0013 |                     | +0.0558                      | GC v 5 65          | -11        | 119<br>57             | $\frac{4}{7}$ |
| VI Dor                                  | IVIIII<br>N 4        | 54121.5510               | .0030 |                     | 0 15 45                      | a ava or           | т          | 57                    | () 2()        |
| VZ Dra                                  | Max                  | 53910.4151               | .0008 | MZ                  | -0.1545                      | GUVS 85            | -1r        | 100                   | 4)            |
| DD Dra                                  | Max                  | 52930.4688               | .0051 | PC                  | -0.1149                      | BAVR 49,6          | -1r        | 103                   | 9)            |
| RX Eri                                  | Max                  | 54121.3830               | .0020 | HND                 | -0.0068                      | GUVS 85            |            | 54                    | (1)           |
| UZ Eri                                  | Max                  | 54120.3550               | .0030 | HND                 |                              |                    |            | 50                    | 7)            |
| BY Eri                                  | Max                  | 54118.4080               | .0050 | HND                 |                              |                    |            | 31                    | 7)            |
| DT Eri                                  | Max                  | 54121.3840               | .0020 | HND                 |                              |                    |            | 58                    | 7)            |
| RX For                                  | Max                  | 54117.3250               | .0020 | HND                 |                              |                    |            | 50                    | 7)            |
| SS For                                  | Max                  | 54120.3430               | .0030 | HND                 |                              |                    |            | 40                    | 7)            |
| SW For                                  | Max                  | 54118.4080               | .0030 | HND                 |                              |                    |            | 58                    | 7)            |
| SX For                                  | Max                  | 54117.4260               | .0020 | HND                 |                              |                    |            | 53                    | 7)            |
| TX For                                  | Max                  | 54119.3450               | .0030 | HND                 |                              |                    |            | 48                    | 7)            |
| IV Gem                                  | $\operatorname{Min}$ | 53780.4264               | .0013 | AG                  |                              |                    | -Ir        | 83                    | 4) 25)        |
| TW Her                                  | Max                  | 53992.3517               | .0013 | $\mathbf{SCI}$      | -0.0111                      | GCVS 85            |            | 56                    | 4)            |
| UU Hor                                  | Max                  | 54116.4120               | .0030 | HND                 |                              |                    |            | 22                    | 7)            |
|                                         | Max                  | 54118.3460               | .0030 | HND                 |                              |                    |            | 77                    | 7)            |
| SX Hyi                                  | Max                  | 54120.3690               | .0030 | HND                 |                              |                    |            | 130                   | 7)            |
| BB Hyi                                  | Max                  | 54117.4110               | .0050 | HND                 |                              |                    |            | 29                    | 7)́           |
| -                                       | Max                  | 54119.4210               | .0050 | HND                 |                              |                    |            | 138                   | 7)            |
| CH Lac                                  | Max                  | 54024.5190               | .0050 | AG                  |                              |                    | -Ir        | 34                    | 3)            |
| CZ Lac                                  | Max                  | 54096.227 :              | .002  | WN                  | -0.038                       | BAVR 53.12f        |            | 100                   | 21)           |
|                                         | Max                  | 54115.2318               | .0009 | WN                  | -0.0496                      | BAVR 53.12f        | V          | 129                   | $21^{-}$      |
|                                         | Max                  | 54124.3287               | .0005 | WN                  | -0.0285                      | BAVR 53.12f        | v          | 80                    | 21)           |
| BO Leo                                  | Max                  | 53867.4643               | 0030  | MZ                  |                              |                    | -Tr        | 70                    | 4)            |
| SZ Lyn                                  | Max                  | 54067 5800               | 0002  | KRS                 | +0.0279                      | GCVS 85            | V          | 665                   | 4)            |
| ~ = = = = = = = = = = = = = = = = = = = | Mav                  | 54067 7015               | 0002  | KBS                 | +0.0219                      | GCVS 85            | v          | 665                   | т)<br>Л)      |
|                                         | Mov                  | 54085 2000               | 0002  | KBC                 | $\pm 0.0209$<br>$\pm 0.0209$ | CCVS 85            | v          | 571                   | (±)<br>(1)    |
|                                         | Ma                   | 54000.2999               | 0001  | NDO                 | $\pm 0.0292$                 | CCAS 05<br>CCAS 05 | v<br>17    | 011<br>571            | 4)<br>1)      |
|                                         | M                    | 04000.4200<br>E400E E6E0 | .0001 | NRS                 | +0.0292                      |                    | V<br>V     | 0/1<br>601            | 4)            |
|                                         | Max                  | 54085.5652<br>F4001 8386 | .0001 | KKS                 | +0.0534                      |                    | V<br>17    | 091                   | 4)            |
|                                         | Max                  | 54091.3232               | .0001 | KRS                 | +0.0257                      | GUVS 85            | V          | 691<br>691            | 4)            |
|                                         | Max                  | 54091.4482               | .0001 | KRS                 | +0.0302                      | GUVS 85            | V          | 691                   | 4)            |
|                                         | <b>n</b> <i>e</i>    | F 1004 F 202             | 0001  | T7D ~               |                              | <u> </u>           | <b>T T</b> |                       | 4.5           |

Table 2: (cont.)

|          |     |             |       | I ubic 1            | . (como.) |                      |     |     |            |
|----------|-----|-------------|-------|---------------------|-----------|----------------------|-----|-----|------------|
| Variable | M/m | JD 24       | ±     | Obs                 | O - C     | Bibliography         | Fil | n   | Rem        |
| SZ Lyn   | Max | 54116.277 : | .002  | KRS                 | +0.029    | GCVS 85              | V   | 362 | 4)         |
|          | Max | 54116.3962  | .0001 | KRS                 | +0.0274   | GCVS 85              | V   | 362 | 4)         |
|          | Max | 54116.5168  | .0001 | KRS                 | +0.0275   | GCVS 85              | V   | 362 | 4)         |
| TW Lyn   | Max | 53817.4174  | .0021 | ATB                 | +0.0507   | GCVS 85              |     | 91  | 3)         |
| AN Lyn   | Max | 45441.5220  | .0013 | $\operatorname{AG}$ |           |                      | V   | 64  | 1)         |
| CG Lyr   | Max | 53999.4494  | .0009 | MZ                  |           |                      | -Ir | 80  | 4)         |
| DD Lyr   | Max | 53251.4537  | .0003 | MZ                  |           |                      | V   | 26  | 17)        |
| DI Lyr   | Max | 53938.4429  | .0009 | MZ                  |           |                      | -Ir | 59  | 4)         |
| NR Lyr   | Max | 52140.4590  | .0030 | $\operatorname{AG}$ |           |                      |     | 19  | 3)         |
| ET Mus   | Max | 53922.3960  | .0030 | HND                 |           |                      | -Ir | 480 | 18)(28)    |
|          | Min | 53922.5130  | .0020 | HND                 |           |                      | -Ir | 480 | 18) 28)    |
| NSV2724  |     |             |       |                     |           |                      |     |     |            |
| Ori      | Max | 54075.9106  | .0029 | HMB                 |           |                      |     | 294 | 10)        |
|          | Max | 54076.8702  | .0027 | HMB                 |           |                      |     | 288 | 10)        |
|          | Max | 54079.7370  | .0012 | HMB                 |           |                      |     | 125 | 10)        |
| NSV2724  |     |             |       |                     |           |                      |     |     |            |
| Ori      | Max | 54085.9456  | .0010 | HMB                 |           |                      |     | 332 | 10)        |
|          | Max | 54104.6630  | .0020 | HMB                 |           |                      |     | 294 | 10)        |
|          | Max | 54110.8659  | .0008 | HMB                 |           |                      |     | 384 | 10)        |
|          | Max | 54114.6854  | .0012 | HMB                 |           |                      |     | 238 | 10)        |
|          | Max | 54126.6041  | .0017 | HMB                 |           |                      |     | 120 | 10)        |
| VZ Peg   | Max | 54000.3920  | .0050 | $\operatorname{AG}$ | -0.0037   | BAVR 49,41           | -Ir | 74  | 3)         |
| AV Peg   | Max | 54085.3810  | .0005 | MZ                  | +0.0275   | BAVR 47,67           | -Ir | 0   | 4)         |
| BH Peg   | Max | 53991.3771  | .0024 | SCI                 | +0.0198   | BAVR 47,67           |     | 116 | 4)         |
|          | Max | 54000.3396  | .0014 | SCI                 | +0.0085   | BAVR 47,67           |     | 100 | 4)         |
|          | Max | 54016.3358  | .0017 | SCI                 | -0.0200   | BAVR 47,67           |     | 112 | 4)         |
|          | Max | 54025.3452  | .0026 | SCI                 | +0.0156   | BAVR 47,67           |     | 144 | 4)         |
|          | Max | 54039.4166  | .0020 | SCI                 | -0.0147   | $_{ m BAVR} 47,\!67$ |     | 89  | 4)         |
| CY Peg   | Max | 53998.4411  | .0009 | MZ                  |           |                      | -Ir | 138 | 4)         |
|          | Max | 54024.3583  | .0040 | MZ                  |           |                      | -Ir | 126 | $4) \ red$ |
| DY Peg   | Max | 53932.4553  | .0002 | $\mathbf{KRS}$      | -0.0063   | GCVS 87              | V   | 276 | 5)         |
|          | Max | 53932.5272  | .0002 | $\mathbf{KRS}$      | -0.0074   | GCVS 87              | V   | 276 | 5)         |
|          | Max | 53991.3069  | .0002 | $\mathbf{KRS}$      | -0.0062   | GCVS 87              | V   | 151 | 5)         |
|          | Max | 53991.3798  | .0002 | $\mathbf{KRS}$      | -0.0062   | GCVS 87              | V   | 151 | 5)         |
|          | Max | 53991.4519  | .0002 | $\mathbf{KRS}$      | -0.0071   | GCVS 87              | V   | 151 | 5)         |
|          | Max | 53992.3264  | .0002 | $\mathbf{KRS}$      | -0.0077   | GCVS 87              | V   | 162 | 5)         |
|          | Max | 53992.4010  | .0002 | $\mathbf{KRS}$      | -0.0060   | GCVS 87              | V   | 162 | 5)         |
|          | Max | 53992.4722  | .0002 | $\mathbf{KRS}$      | -0.0077   | GCVS 87              | V   | 162 | 5)         |
|          | Max | 53992.5468  | .0002 | $\mathbf{KRS}$      | -0.0061   | GCVS 87              | V   | 162 | 5)         |
| ET Peg   | Max | 54041.3784  | .0005 | MZ                  |           |                      | -Ir | 105 | 4)         |
| GV Peg   | Max | 54047.3724  | .0002 | MZ                  |           |                      | -Ir | 90  | 4)         |
| AR Per   | Max | 54115.4906  | .0014 | WN                  | +0.0518   | GCVS 87              | V   | 130 | 21)        |
| NN Per   | Max | 54034.4800  | .0030 | $\operatorname{AG}$ |           |                      | -Ir | 72  | 3)         |
| NY Per   | Max | 54034.3720  | .0030 | $\operatorname{AG}$ |           |                      | -Ir | 74  | 3)         |
| V375 Per | Max | 54033.6720  | .0030 | $\operatorname{AG}$ |           |                      | -Ir | 58  | 3)         |
| V378 Per | Max | 54055.6210  | .0030 | $\operatorname{AG}$ |           |                      | -Ir | 49  | 3)         |
|          | Max | 54084.3300  | .0020 | $\operatorname{AG}$ |           |                      | -Ir | 53  | 3)         |
| SS Psc   | Max | 54019.6080  | .0050 | $\operatorname{AG}$ | +0.0039   | BAVR $47,67$         | -Ir | 66  | 3)         |
| BT Ser   | Max | 53985.4307  | .0020 | MZ                  |           |                      | -Ir | 180 | $4) \ red$ |
| AI Tau   | Max | 54084.4270  | .0030 | $\operatorname{AG}$ |           |                      | -Ir | 35  | 3)         |
| BO Tau   | Max | 54096.3133  | .0002 | MZ                  |           |                      | -Ir | 89  | 4)         |
| UX Tri   | Max | 53285.5619  | .0028 | ATB                 | +0.0031   | ATB 2006             |     | 60  | 3)         |
|          | Max | 53291.6246  | .0021 | ATB                 | -0.0039   | ATB 2006             |     | 81  | 3)         |
|          | Max | 53350.4293  | .0044 | ATB                 | -0.0292   | ATB 2006             |     | 77  | 3)         |
|          | Max | 53387.3198  | .0024 | ATB                 | -0.0242   | ATB 2006             |     | 80  | 3)         |
|          | Max | 53408.3683  | .0027 | ATB                 | +0.0136   | ATB 2006             |     | 84  | 3)         |
|          | Max | 53659.5706  | .0056 | ATB                 | +0.0213   | ATB 2006             |     | 70  | 3)         |
| UZ UMa   | Max | 54091.5550  | .0030 | $\operatorname{AG}$ |           |                      | -Ir | 51  | 3)         |
| AE UMa   | Max | 53765.3803  | .0002 | KRS                 | +0.0057   | BAVR 48,189          | V   | 209 | 5)         |
|          | Max | 53765.4660  | .0002 | $\mathbf{KRS}$      | +0.0054   | BAVR 48,189          | V   | 209 | 5)         |

Table 2: (cont.)

|          |     |            |       |                | · /     |              |     |     |                      |
|----------|-----|------------|-------|----------------|---------|--------------|-----|-----|----------------------|
| Variable | M/m | JD 24      | ±     | Obs            | O - C   | Bibliography | Fil | n   | $\operatorname{Rem}$ |
| AE UMa   | Max | 53765.5462 | .0002 | $\mathbf{KRS}$ | -0.0004 | BAVR 48,189  | V   | 209 | 5)                   |
|          | Max | 53766.3278 | .0002 | $\mathbf{KRS}$ | +0.0070 | BAVR 48,189  | V   | 185 | 5)                   |
|          | Max | 53766.4079 | .0002 | $\mathbf{KRS}$ | +0.0011 | BAVR 48,189  | V   | 185 | 5)                   |
|          | Max | 53766.4943 | .0002 | $\mathbf{KRS}$ | +0.0015 | BAVR 48,189  | V   | 185 | 5)                   |
|          | Max | 53766.5849 | .0002 | $\mathbf{KRS}$ | +0.0061 | BAVR 48,189  | V   | 185 | 5)                   |
|          |     |            |       |                |         |              |     |     |                      |

Remarks:

|    | Ju: J                                                                                     | ung                                                                                                                                                                                                                                                                                                                                                                                                                                                               | bluth, Dr. H., Karlsruhe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t  | KRS: K                                                                                    | \erst                                                                                                                                                                                                                                                                                                                                                                                                                                                             | en, Dr. P., Weissach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | MS: N                                                                                     | vlose                                                                                                                                                                                                                                                                                                                                                                                                                                                             | chner, W., Lennestadt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | MZ: N                                                                                     | Main                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tz, G., Bonn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | PC: P                                                                                     | osci                                                                                                                                                                                                                                                                                                                                                                                                                                                              | hinger, K., Hamburg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | QU: QU: QU: QU: QU: QU: QU: QU: QU: QU:                                                   | Jues                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ter, W., Esslingen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | SCI: S                                                                                    | chm                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hidt, U. Karlsruhe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | WN: V                                                                                     | Nisc                                                                                                                                                                                                                                                                                                                                                                                                                                                              | hnewski, M. Wennigsen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | WTR: V                                                                                    | Nalt                                                                                                                                                                                                                                                                                                                                                                                                                                                              | er, F., München                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9) | $= \operatorname{ccd-can}$                                                                | nera                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ST-10 XMR/XME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10 | $) = \operatorname{ccd-can}$                                                              | nera                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , STL-11K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11 | $) = \operatorname{ccd-can}$                                                              | nera                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OES-LCCCD11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12 | $) = \operatorname{ccd-can}$                                                              | nera                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , OES-LcCCD12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13 | $) = \operatorname{ccd-can}$                                                              | nera                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pictor 1616XT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14 | ) = ccd-can                                                                               | nera                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pictor 416XT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 15 | ) = ccd-can                                                                               | nera                                                                                                                                                                                                                                                                                                                                                                                                                                                              | starlight Xpress chip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | 752x580                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 16 | $) = \operatorname{ccd-can}$                                                              | nera                                                                                                                                                                                                                                                                                                                                                                                                                                                              | starlight Xpress SXV H9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17 | $) = \operatorname{ccd-can}$                                                              | nera                                                                                                                                                                                                                                                                                                                                                                                                                                                              | holicam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18 | $) = \operatorname{ccd-can}$                                                              | nera                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , MX716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19 | $) = \operatorname{ccd-can}$                                                              | nera                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Canon EOS D60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20 | $) = \operatorname{ccd-can}$                                                              | nera                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , CB245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21 | $) = \operatorname{ccd-can}$                                                              | nera                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , Meade DSI Pro II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | $\Delta \Delta uu nn$                                                                     | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - Acta Astronomica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | $AA \ vv, pp$                                                                             | p                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - Acta Astronomica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - A chtorborg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | AID                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - Active being (member of the BAV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | BAVM nn                                                                                   | <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - BAV Mitteilungen No <i>nnn</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | BAVR nn                                                                                   | ເມ<br>ກາກາ                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = BAV Bundbrief No. $nn$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | Dirivite non                                                                              | , <i>PP</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                       | p = Bitty itellability itellity, page nnn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | GCVS uu                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | — General Catalogue of Variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | acts yy                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stars 4th ed $19uu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | IBVS nnn                                                                                  | nn.                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = Information Bulletin on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | 12                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Variable Stars No <i>nnn</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | MVS vv.n                                                                                  | nn                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = Mitteilungen über                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | 111 × 11,p                                                                                | PP                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Veränderl. Sterne:volume.pages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    | SAC $vv$                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = Rocznik Astronomiczny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No. $vv$ , Krakow (SAC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | U                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = USNO A 2.0 Catalogue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | n                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = Number of measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| F  | OR IB                                                                                     | $\overline{VS}$                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5296, 5731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | t<br>9)<br>10)<br>11)<br>12)<br>13)<br>14)<br>15)<br>16)<br>17)<br>18)<br>20)<br>21)<br>F | Ju: JJ<br>Ju: JU: J<br>KRS: H<br>MS: M<br>MZ: M<br>PC: H<br>QU: G<br>SCI: S<br>WN: W<br>WTR: W<br>9) = ccd-can<br>10) = ccd-can<br>11) = ccd-can<br>12) = ccd-can<br>13) = ccd-can<br>14) = ccd-can<br>15) = ccd-can<br>16) = ccd-can<br>17) = ccd-can<br>19) = ccd-can<br>19) = ccd-can<br>20) = ccd-can<br>21) = ccd-can<br>AA $vv, pp$<br>ATB<br>BAVM $nn$<br>BAVM $nn$<br>BAVR $nn$<br>GCVS $yy$<br>IBVS $nnn$<br>MVS $vv, H$<br>SAC $vv$<br>U<br>n<br>FOR IB | Ju: Jung<br>Ju: Jung<br>t KRS: Kerst<br>MS: Mosc<br>MZ: Main<br>PC: Poscl<br>QU: Ques<br>SCI: Schm<br>WN: Wisc<br>WTR: Walt<br>9) = ccd-camera<br>10) = ccd-camera<br>12) = ccd-camera<br>13) = ccd-camera<br>14) = ccd-camera<br>15) = ccd-camera<br>16) = ccd-camera<br>17) = ccd-camera<br>18) = ccd-camera<br>20) = ccd-camera<br>20) = ccd-camera<br>21) = ccd-camera<br>21) = ccd-camera<br>21) = ccd-camera<br>AA $vv, ppp$<br>ATB<br>BAVM $nnn$<br>BAVM $nnn$<br>BAVR $nn, ppp$<br>GCVS $yy$<br>IBVS $nnnn$<br>MVS $vv, ppp$<br>SAC $vv$<br>U<br>n<br>FOR IBVS |

| Correction | to | IBVS                               | 5296 = | BAVM  | 152 |
|------------|----|------------------------------------|--------|-------|-----|
| COLLCCTION | υU | $\mathbf{D} \mathbf{v} \mathbf{D}$ | 0400 - | DAVIN | 104 |

ER Vul 52141.424 AG correct starname: ER Peg

#### Corrections to IBVS 5731 = BAVM 178

G472 Aql 53633.4375 QU 53635.3950 QU correct starname: GSC 472.2473

### **ERRATUM FOR IBVS 5761**

Corrections to BAVM 183 AE Cas 54000.4498 SCI correct value: 54017.4498

Number 5762

Konkoly Observatory Budapest 2 April 2007 *HU ISSN 0374 - 0676* 

# RAPID CHANGES IN THE LIGHT CURVE OF THE ACTIVE, LATE-TYPE SUBGIANT CF OCTANTIS

INNIS, J.L.<sup>1</sup>; COATES, D.W.<sup>2</sup>; KAYE, T.G.<sup>3</sup>

<sup>1</sup> Brightwater Observatory, 280 Brightwater Rd., Howden, TAS, 7054, Australia, email: brightwater@iraf.net

<sup>2</sup> School of Physics, Building 27, Monash University, VIC, 3800, Australia

<sup>3</sup> Spectrashift, 404 Hillcrest, Prospect Heights, IL 60090, USA

CF Octantis (HD 196818) is a very active late-type (K0) subgiant showing strong Ca II emission (e.g. Hearnshaw, 1979; Innis et al., 1997) and a 20.15-d spot wave of varying amplitude (Innis et al., 1983; Lloyd Evans & Koen, 1987; Pollard et al., 1989; Innis et al., 1997). The radial velocity data of Lloyd Evans (1986), Balona (1987), Collier Cameron (1987a) and Innis et al. (1997) show no evidence for binarity. The star is active at radio wavelengths (Slee et al., 1987a, 1987b; Vaughan & Large, 1987), indeed it appeared as one of the stronger flaring microwave sources seen in the Parkes survey. It also appears in the ROSAT bright source catalogue (Schwope et al., 2000).

Apart from the work mentioned above, CF Oct has not been well studied, probably in part due to its high southern declination. It was first noted as a variable star on the Bamberg Southern Sky Survey photographic plates (Strohmeier, 1967). A recent reanalysis of the Bamberg material recovered the spot-wave light curve for the years 1964–1969, with some data from 1970, 1971, and 1976, showing the overall light variation of the star from that time (Innis et al., 2004). This photographic material, and the photoelectric photometry noted above, showed that while the spot wave was variable, the changes were slow, and often data from many rotations, or even at times from different seasons, could be combined to produce reasonably well defined light curves. In contrast, our recent data, presented here, reveal the star underwent a rapid change in the form of its spot wave in a very short interval, possibly also showing a low level of continuous change.

We commenced observations of CF Oct in mid 2006. We used an ST7 CCD and motorised BVR filter wheel on a 70-mm diameter, 480-mm focal length refractor. The field of view of the CCD was  $0.8 \times 0.55$  degrees. (See Innis et al., 2007, for more details of the equipment and method.) CF Oct and the comparison star HD 196520 could be obtained on the same frame. HD 196520 was also used as a comparison star by Lloyd Evans et al. (1983), Collier Cameron (1987b), Pollard et al. (1989) and Innis et al. (1997), and has not been seen to vary. CF Oct and HD 196520 are almost identical in B - V, so that colour transformation corrections are negligible. We use B - V = 1.07 and V = 7.60 (Innis et al., 1997) for HD 196520.

CF Oct was observed for a total of 38 nights between 2006 July and 2007 March. We collected four 45-second B and four 30-second V exposures in succession and averaged

the measurements, so that each resultant data point represents an equivalent 180- or 120-second integration in B and V respectively. We typically repeated this sequence at least four times on a given night. We have in total around 240 measurements (each composed of a 4-point average as noted) in each of B and V. The resulting V-light phase plot, using the period of 20.15 d (from Pollard et al., 1989; Innis et al., 1997) is shown in Figure 1. On any given night the scatter in the data is not much greater than the nominal  $\pm 0.01$  mag error bar shown in the top left of the Figure. We have inspected the magnitude differences between the comparison star HD 196520 and several fainter field stars, and find no evidence for long-term change greater than 0.01 or 0.02 mag. (We had originally intended using the star CPD -80 966 as the check star, but our data have shown this to be a red semiregular star, Innis et al., 2006.) We conclude that the scatter seen in the phase plot was due to real changes in CF Oct.



Figure 1. CF Octantis V light curve for 2006 July–2007 March, phased with the known 20.15 d rotation period. The symbol in the top left of the plot represent a typical error bar per point of  $\pm 0.01$  mag. The scattered nature of the plot is due to a real variation in the star

The changes in CF Oct are more easily seen in Figure 2, where we plot V magnitude versus HJD. We also show two least-squares fitted sine waves to better illustrate the changes. These are not intended to be fits to the data (the star clearly does not have a pure sinusoidal variation) but are to assist in judging the phasing of the data when inspecting the plot. We fixed the periods of the sine waves to be 20.15 d, and allowed the amplitudes, mean levels and phases to be determined in the fit. We arbitrarily split the data at HJD 2454040 when fitting the two sine waves.

The amplitude of the first segment of data (pre HJD 2454040) is about 0.12 mag peakto-peak, which is around twice that of the later data. It appears that both maximum and minimum light have changed over the course of the observations, with maximum light being several hundredths of a magnitude fainter at the end of the data set compared to the start. The change in maximum light has the appearance of a step-like decrease near HJD 2454040. Minimum light appears to have brightened, but possibly in a more gradual manner, and may have been continually variable.



Figure 2. CF Octantis V light curve versus HJD for 2006 July-2007 March (circles). The lines represent two least-squares fitted sine curves, as a schematic representation of the data before and after HJD 2454040. It is clear that the light curve is variable, possibly continually variable, but that a significant change occurred near the above noted date. The symbol in the top left of the plot represent

a typical error bar per point of  $\pm 0.01$  mag



Figure 3. Top panel: CF Octantis B - V light curve versus HJD. These are nightly averaged points. Lower panel: Nightly averaged B - V versus V

Such rapid changes in the light curve of CF Oct have not been previously reported. Possibly the starspots are currently undergoing an interval of rapid change. It is also possible that the earlier published observations represented an unusually stable interval of spot behaviour, although the photoelectric data cover the interval  $\sim 1979$  to  $\sim 1989$ .

Changes in the light curve of the fast-rotating, active star FK Com have been interpreted as being due to either *phase jumps*, when a new spot (or spot group) first appears around 90° in longitude away from an existing spot, or as *flip-flops* when a new spot first appears 180° away from a decaying spot (Oláh et al., 2006). The recent behaviour of CF Oct, with a contemporaneous variation in minimum and maximum light, may be suggestive of similar types of changes. Further analysis is planned.

Our nightly averaged B - V data are shown in Figure 3. The top panel shows B - V versus HJD, while the lower panel shows B - V versus V. A clear gradient is seen in the lower panel, which is similar to the spot-induced colour change reported in Pollard et al. (1989) and Innis et al. (1997). These new data suggest CF Oct may be slightly bluer at a given V magnitude compared to the 1980s-era photoelectric photometry, but small errors in the transformations may equally well account for the differences.

We will continue to monitor this star. It would be of interest to obtain new spectroscopic observations of the Ca II and  $H\alpha$  lines, and also see if the possible increased activity is manifested in the radio and X-ray spectral regions.

Acknowledgments: We thank D. Partridge, S. Norris, and T. Moon for assistance with the construction of the observatory. We thank Doug George of Diffraction Limited for data-acquisition software support. This work has made use of the SIMBAD database of the Stellar Data Centre (CDS) Strasbourg, the NASA ADS abstract database, and the data-reduction packages IRAF (NOAA, USA) and MUNIWIN (by David Motl).

#### References:

- Balona, L.A., 1987, SAAO Circ., 11, 1
- Collier Cameron, A., 1987a, SAAO Circ., 11, 13
- Collier Cameron, A. 1987b, SAAO Circ., 11, 57
- Hearnshaw, J.B., 1979, Proc. IAU Colloq., 46, 371
- Innis, J.L., Coates, D.W., Dieters, S.W.B., Moon, T.T., Thompson, K., 1983, *IBVS*, No. 2386
- Innis, J.L., Coates, D.W., Thompson, K., 1997, MNRAS, 289, 515
- Innis, J.L., Borisova, A.P., Coates, D.W., Tsvetkov, M.K., 2004, MNRAS, 355, 591
- Innis, J.L., Coates, D.W., Kaye, T.G., 2006, PZP, 6, 29
- Innis, J.L., Coates, D.W., Kaye, T.G., 2007, PZ, 27, 1
- Lloyd Evans, T., Koen, M.C.J., Hultzer, A.A., 1983, SAAO Circ., 7, 82
- Lloyd Evans, T., 1986, SAAO Circ., 10, 11
- Lloyd Evans, T., Koen, M.C.J., 1987, SAAO Circ., 11, 21
- Oláh, K., Korhonen, H., Kővári, Zs., Forgács-Dajka, E., Strassmeier, K.G., 2006, A&A, 452, 303
- Pollard, K.R., Hearnshaw, J.B., Gilmore, A.C., Kilmartin, P.M., 1989, J. Astrophys. Astron., 10, 139
- Schwope, A.D., et al., 2000, AN, **321**, 1
- Slee, O.B., et al., 1987a, *PASAu*, 7, 55
- Slee, O.B., et al., 1987b, MNRAS, 229, 659
- Strohmeier, W., 1967, *IBVS*, No. 178
- Vaughan, A.E., Large, M.I., 1987, PASAu, 7, 42

Number 5763

Konkoly Observatory Budapest 10 April 2007 *HU ISSN 0374 - 0676* 

#### SDSS J102146.44+234926.3: NEW WZ SGE-TYPE DWARF NOVA

GOLOVIN, A.<sup>1,2,3</sup>; AYANI, K.<sup>4</sup>; PAVLENKO, E.P.<sup>5</sup>; KRAJCI, T.<sup>6</sup>; KUZNYETSOVA, YU.<sup>2,7</sup>; HEN-DEN, A.<sup>8</sup>; KRUSHEVSKA, V.<sup>2</sup>; DVORAK, S.<sup>9</sup>; SOKOLOVSKY, K.<sup>10,11</sup>; SERGEEVA, T.P.<sup>2</sup>; JAMES, R.<sup>12</sup>; CRAWFORD, T.<sup>13</sup>; CORP, L.<sup>14</sup>

<sup>1</sup> Kyiv National Taras Shevchenko University, Kyiv, Ukraine e-mail: astronom\_2003@mail.ru, astron@mao.kiev.ua

<sup>2</sup> Main Astronomical Observatory of National Academy of Science of Ukraine, Kyiv, Ukraine

<sup>3</sup> Visiting astronomer of the Crimean Astrophysical Observatory, Crimea, Nauchnyj, Ukraine

<sup>4</sup> Bisei Astronomical Observatory, Ibara, Okayama, Japan

<sup>5</sup> Crimean Astrophysical Observatory, Crimea, Nauchnyj, Ukraine

<sup>6</sup> AAVSO, Cloudcroft, New Mexico, USA

<sup>7</sup> International Center of Astronomical and Medico-Ecological Researches, Kyiv, Ukraine

<sup>8</sup> AAVSO, Clinton B. Ford Astronomical Data and Research Center, Cambridge, MA, USA

<sup>9</sup> Rolling Hills Observatory, Clermont, FL, USA

<sup>10</sup> Sternberg Astronomical Institute, Moscow State University, Moscow, Russia

<sup>11</sup> Astro Space Center of the Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia

 $^{12}$  AAVSO, Las Cruses, NM, USA

<sup>13</sup> AAVSO, Arch Cape Observatory, Arch Cape, OR, USA

<sup>14</sup> AAVSO, Rodez, France

The cataclysmic variable SDSS J102146.44+234926.3 (SDSS J1021 hereafter;  $\alpha_{2000} = 10^{h}21^{m}46^{s}44; \delta_{2000} = +23^{\circ}49'26''.3$ ) was discovered in outburst having a V magnitude of 13<sup>m</sup>9 by Christensen on CCD images obtained in the course of the Catalina Sky Survey on October 28.503 UT 2006. In an archival image there is a star with  $V \sim 21^{m}$  at this position (Christensen, 2006) and there is an object in the database of the *Sloan Digital Sky Survey* Data Release 5 (Adelman-McCarthy et al., 2007; SDSS DR5 hereafter) with the following magnitudes, measured on January 17.455 UT, 2005: u = 20.83, g = 20.74, r = 20.63, i = 20.84, z = 20.45. In the USNO-B1.0 catalog this object is listed as USNO-B1.0 1138-0175054 with magnitudes  $B_{2mag} = 20.79$  and  $R_{2mag} = 20.35$ . The large amplitude and the blue color imply that the object could be a dwarf nova of SU UMa or WZ Sge type (Waagen, 2006).

Fig. 1 (left) shows the  $8' \times 8'$  image of the SDSS J1021 vicinity, generated from SDSS DR5 Finding Chart Tool (http://cas.sdss.org/astrodr5/en/tools/chart/chart.asp).

Time resolved CCD photometry has been carried out from different sites by the authors since November 21, 2006 (the first night after the discovery was reported) until 2006 December 06 (Data available for download at http://www.aavso.org/data/download and from IBVS server; See Table 1 for log of observations). The photometry was done in the V and  $R_c$  bands as well as unfiltered; this did not affect the following period analysis. The error of a single measurement can be typically assumed to be  $\pm 0^{\circ}.02$ . Fig. 1 (right) shows the overall light curve of the object. Here we assume  $m_R = m_{\text{unfiltered}}$ . The light curve could be divided into three parts, denoting the plateau stage, dip and long-lasting echo-outburst (rebrightening).

Before carrying out Fourier analysis for the presence of short-periodic signal in the light curve (superhumps), each observer's data set was individually transformed to a uniform zero-point by subtracting a linear fit from each night's observations. This was done to remove the overall trend of the outburst and to combine all observations into a single data set.

From the periodogram analysis (Fig. 2, left) the value of the superhump period  $P_{\rm sh} = 0.05633 \pm 0.00003$  was determined. Such a value is typical for the WZ Sge-type systems and is just 58.7 seconds shorter than  $P_{\rm sh}$  of another WZ Sge-like system: ASAS 002511+1217.2 (Golovin et al., 2005).

The superhump light curve (with 15-point binning used) folded with 0<sup>d</sup>05633 period is shown on Fig. 2 (right). It is plotted for two cycles for clarity. Only JD 2454061.0-2454063.6 data was included. Note the 0<sup>m</sup>1 amplitude of variations and the doublehumped profile of the light curve. There remain many questions concerning the nature of a double-humped superhumps in the WZ Sge-type stars. The explanation of a doublehumped light curve could lie in a formation of a two-armed precessional spiral density wave in the accretion disk (Osaki, 2003) or a one-armed *optically thick* spiral wave, but with the occurrence of a self-eclipse of the energy emitting source in the wave (Bisikalo, 2006).

Other theories concerning a double-peaked superhumps can be found in Lasota et al. (1995), Osaki & Meyer (2002), Kato (2002), Patterson et al. (2002), Osaki & Meyer (2003).

Applying the method of "sliding parabolas" (Marsakova & Andronov, 1996) we deter-

| JD<br>(mid of<br>obs. run) | Duration of<br>observational<br>run [minutes] | Observatory              | Telescope                    | CCD             | Filter       |
|----------------------------|-----------------------------------------------|--------------------------|------------------------------|-----------------|--------------|
|                            |                                               |                          |                              |                 |              |
| 2454060.9                  | 214                                           | Rolling Hills, FL, USA   | Meade LX200-10               | SBIG ST-9       | V            |
| 2454061.0                  | 158                                           | Cloudcroft, NM, USA      | C-11                         | SBIG ST-7       | none         |
| 2454062.0                  | 259                                           | Cloudcroft, NM, USA      | C-11                         | SBIG ST-7       | none         |
| 2454062.9                  | 288                                           | Cloudcroft, NM, USA      | C-11                         | SBIG ST-7       | none         |
| 2454063.6                  | 115                                           | CrAO, Ukraine            | K-380                        | SBIG ST-9       | $\mathbf{R}$ |
| 2454064.6                  | 222                                           | CrAO, Ukraine            | K-380                        | SBIG ST-9       | $\mathbf{R}$ |
| 2454066.7                  | S.D.P. *                                      | Pic du Midi, France      | T-60                         | Mx516           | None         |
| 2454067.6                  | 90                                            | CrAO, Ukraine            | K-380                        | Apogee $47p$    | $\mathbf{R}$ |
| 2454067.9                  | S.D.P.                                        | Las Cruses, NM, USA      | Meade LX200                  | SBIG ST-7       | V            |
| 2454069.0                  | S.D.P.                                        | Arch Cape, USA           | SCT-30                       | SBIG ST-9       | V            |
| 2454069.0                  | S.D.P.                                        | Las Cruses, NM, USA      | Meade LX200                  | SBIG ST-7       | V            |
| 2454069.6                  | 63                                            | CrAO, Ukraine            | K-380                        | Apogee $47p$    | $\mathbf{R}$ |
| 2454071.9                  | S.D.P.                                        | Las Cruses, NM, USA      | Meade LX200                  | SBIG ST-7       | V            |
| 2454072.9                  | S.D.P.                                        | Las Cruses, NM, USA      | Meade LX200                  | SBIG ST-7       | V            |
| 2454073.9                  | S.D.P.                                        | Las Cruses, NM, USA      | Meade LX200                  | SBIG ST-7       | V            |
| 2454074.9                  | S.D.P.                                        | Las Cruses, NM, USA      | Meade LX200                  | SBIG ST-7       | V            |
| 2454075.9                  | S.D.P.                                        | Las Cruses, NM, USA      | Meade LX200                  | SBIG ST-7       | V            |
| 2454166.8                  | S.D.P.                                        | Sonoita Observatory, USA | $0.35 \mathrm{~m}$ telescope | SBIG STL-1001XE | V            |
| 2454167.7                  | S.D.P.                                        | Sonoita Observatory, USA | $0.35 \mathrm{~m~telescope}$ | SBIG STL-1001XE | V            |

Table 1. Log of observations

\* S.D.P. - Single Data Point



Figure 1. Left: SDSS image of the SDSS J1021 vicinity. Right: Light curve of SDSS J1021 during the outburst

mined, when it was possible (JD 2454061.0–2454063.6), the times of maxima of superhumps (with mean  $1\sigma$  error of 0<sup>d</sup>.0021) and calculated O - C residuals based on founded period. The moments of superhump maximua are given in Table 2. No period variations reaching the  $3\sigma$  level were found during the time of observations.

Another prominent feature of the SDSS J1021 light curve is the echo-outburst (or *rebrightening* — another term for this event) that occurs during the declining stage of the superoutburst. On Nov. 27/28 2006 (i.e. JD 2454067.61-2454067.68) a rapid brightening with the rate of  $0^{m}$ 13 per hour was detected at Crimean Astrophysical Observatory (Ukraine; CrAO hereafter), that most probably was the early beginning of the echo-outburst. Judging from our light curve, we conclude that rebrightening phase lasted at least 8 days. Similar echo-outbursts are classified as "type-A" echo-outburst according to classification system proposed by Imada et al. (2006) as observed in the 2005 superoutburst of TSS J022216.4+412259.9 and the 1995 superoutburst of AL Com (Imada et al., 2006; Patterson et al., 1996).

Rebrightenings during the decline stage are observed in the WZ Sge-type dwarf novae (as well as in some of the WZ Sge-type candidate systems). However, their physical mechanism is still poorly understood. In most cases, just one rebrightening occurs (also observed sometimes in typical SU UMa systems), though a series of rebrightenings are also possible, as it was manifested by WZ Sge itself (12 rebrightenings), SDSS J0804 (11) and EG Cnc (6) (Pavlenko et al., 2007). There are several competing theories concerning what causes an echo-outburst(s) in such systems, though all of them predict that the disk must be heated over the thermal instability limit for a rebrightening to occur. See papers by Patterson et al. (1998), Buat-Menard & Hameury (2002), Schreiber & Gansicke (2001), Osaki, Meyer & Meyer-Hofmeister (2001) and Matthews et al. (2005) for a discussion of the physical reasons for echo-outbursts.

Recent CCD-V photometry manifests that SDSS J1021 has a magnitude of  $19^{m}.72\pm0.07$  and  $19^{m}.59\pm0.07$  as of 06 March and 07 March, 2007 (HJD = 2454165.80 and HJD = 2454167.74) respectively, at Sonoita Research Observatory (Sonoita, Arizona, USA) using a robotic 0.35 meter telescope equipped with an SBIG STL-1001XE CCD camera.

Spectroscopic observations were carried out on November 21.8 UT with the CCD spectrograph mounted on the 1.01-m telescope of Bisei Astronomical Observatory (Japan).



Figure 2. Left: Power spectrum, revealing the  $P_{\rm sh}$  of SDSS J1021. Right: Superhump profile of SDSS J1021

| HJD           | $\mathbf{E}$ | O-C      | $\sigma_{(O-C)}$ |
|---------------|--------------|----------|------------------|
| 2454061.03380 | 0            | 0        | 0.00120          |
| 2454061.88103 | 15           | 0.00228  | 0.00130          |
| 2454061.93507 | 16           | -0.00001 | 0.00368          |
| 2454061.99121 | 17           | -0.00020 | 0.00099          |
| 2454062.89325 | 33           | 0.00056  | 0.00179          |
| 2454062.94709 | 34           | -0.00193 | 0.00214          |
| 2454063.00533 | 35           | -0.00002 | 0.00156          |
| 2454063.62385 | 46           | -0.00113 | 0.00464          |

Table 2. Times of superhump maximums

The preliminary discussion of the spectra can be found in (Ayani & Kato, 2006). The spectral range is 400–800 nm, and the resolution is 0.5 nm at  $H_{\alpha}$ . HR 3454 ( $\alpha_{2000} = 08^{h}43^{m}13^{s}475; \delta_{2000} = +03^{\circ}23'55''.18$ ) was observed for flux calibration of the spectra. Standard IRAF routines were used for data reduction.

Spectrum (Fig. 3) shows blue continuum and Balmer absorption lines (from  $H_{\epsilon}$  to  $H_{\alpha}$ ) together with K CaII 3934 in absorption. Very weak HeI 4471, Fe 5169, NII 5767 absorption lines may be present.  $H_{\epsilon}$  3970 is probably blended by H Ca II 3968. The FeIII 5461 line resembles weak P-Cygni profile. Noteworthy, FeIII 5461 and NII 5767 may be artifacts caused by imperfect subtraction of city lights: HgI 5461 and 5770 (spectrum of the sky background which was subtracted, is available upon request). The HeI 5876 line (mentioned for this object in Rau et al., 2006) is not detectable on our spectrum. It is remarkable that  $H_{\alpha}$  manifests a "W-like" profile: an emission component embedded in the absorption component of the line.

Table 3 represents EWs (equivalent widths) of detected spectral lines. EW was calculated by direct numerical integration over the area under the line profile.

The archive photographic plates from the Main Astronomical Observatory Wide Field Plate Archive (Kyiv, Ukraine; MAO hereafter) and Plate Archive of Sternberg Astronomical Institute of Moscow State University (Moscow, Russia; SAI hereafter) and plate from Crimean Astrophysical Observatory archive (Ukraine) were carefully scanned and inspected for previous outbursts on the plates dating from 1978 to 1992 from MAO, 1913– 1973 from SAI and 1948 from CrAO archives. The number of plates from each archive

| Line                            | EW [Å] |
|---------------------------------|--------|
| K CaII 3934                     | -5.8   |
| $H_\epsilon$ 3970 / H CaII 3968 | -8.7   |
| $H_{\delta}$ 4101               | -6.4   |
| $H_\gamma  4340$                | -8.5   |
| $H_{eta}$ 4861                  | -6.4   |
| $H_{lpha}$ 6563                 | -7.7   |
| $H_{\alpha}$ 6563 (emission)    | 2.3    |
| $\operatorname{HeI}\ 4471$      | -0.95  |
| FeII 5169                       | -0.65  |
| NII 5767                        | -0.7   |

Table 3. Equivalent widths of spectral lines

is 22 for SAI, 6 for MAO and 1 for CrAO archives. For all plates the magnitude limit was determined (this data as well as scans of plates are available upon request). The selection of plates from MAO archive was done with the help of the database developed by L.K. Pakuliak, which is accessible at *http://mao.kiev.ua/ardb/* (Sergeeva et al., 2004; Pakuliak, L.K. & Sergeeva, T.P., 2006;). No outbursts on the selected plates from the MAO, SAI and CrAO archives were detected. This implies that outbursts in SDDS J1021 are rather rare, which is typical for the WZ Sge-type stars.



Figure 3. Spectra of SDSS J1021 obtained on November 21.8 UT on 1.01-m telescope of Bisei Astronomical Observatory (Japan)

Table 4 (available only electronically from IBVS server or via AAVSO ftp-server at ftp://ftp.aavso.org/public/calib/varleo06.dat) represents  $BVR_cI_c$  photometric calibration of 52 stars in SDSS J1021 vicinity, which have a V-magnitude in the range of 11<sup>m</sup>.21–17<sup>m</sup>.23 and can serve as a comparison stars. Calibration (by AH<sup>8</sup>) was done at Sonoita Research Observatory (Arizona, USA).

The large amplitude of the SDSS J1021 outburst of 7<sup>m</sup>, superhumps with a period below the "period gap", rebrightening during the declining stage of superoutburst, rarity

of outbursts and obtained spectrum allow to classify this object as a WZ Sge type dwarf nova.

Acknowledgements: AG is grateful to Aaron Price (AAVSO, MA, USA) for his great help and useful discussions during the preparation of this manuscript. Authors are thankful to A. Zharova and L. Sat (both affiliated at SAI MSU, Moscow, Russia) for the assistance on dealing with SAI Plate Archive and to V. Golovnya for the help concerning MAO Plate Archive (Kyiv, Ukraine). It is a great pleasure to express gratefulness to Dr. N. A. Katysheva, Dr. S. Yu. Shugarov (SAI MSU both) and Dr. D. Bisikalo (Institute of Astronomy RAS, Moscow, Russia) for useful discussions concerning the nature of SDSS J1021. IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

#### References:

- Adelman-McCarthy, J., et al., 2007, submitted to ApJ Supplements
- Ayani, K., Kato, T., 2006, CBET, 753, 1
- Bisikalo, D.V., et al., 2006, Chinese Journal of Astronomy and Astrophysics, Supplement, 6, 159
- Buat-Menard, V., Hameury, J.-M., 2002, A&A, 386, 891
- Christensen, E.J., 2006, CBET, 746, 1
- Golovin, A., et al., 2005, *IBVS* No. 5611
- Imada, A., et al., 2006, *PASJ*, **58**, L23
- Kato, T., 2002, PASJ, 54, L11
- Lasota, J.P., Hameury, J.M., Hure, J.M., 1995, A&A, 302, L29
- Marsakova, V., Andronov, I.L., 1996, Odessa Astronom. Publ., 9, 127
- Matthews, O.M., et al., 2005, ASPC, **330**, 171, in The Astrophysics of Cataclysmic Variables and Related Objects, Eds. J.-M. Hameury and J.-P. Lasota. San Francisco: Astronomical Society of the Pacific
- Osaki, Y., Meyer, F., Meyer-Hofmeister, E., 2001, A&A, 370, 488
- Osaki, Y., Meyer, F., 2002, A&A, 383, 574
- Osaki, Y., Meyer, F., 2003, A&A, 401, 325
- Osaki, Y., 2003, PASJ, 55, 841
- Pakuliak, L.K., Sergeeva, T.P., 2006, in Virtual Observatory: Plate Content Digitization, Archive Mining and Image Sequence Processing, Eds.: Tsvetkov, M., et al., Sofia, p. 129
- Patterson, J., et al., 1996, PASP, 108, 748
- Patterson, J., et al., 1998, PASP, 110, 1290
- Patterson, J., et al., 2002, PASP, 114, 721
- Pavlenko, E., et al., 2007, In Proc. of the 15th European White Dwarf Workshop "EU-ROWD06", in press
- Rau, A., et al., 2006, The Astronomer's Telegram, No. 951
- Schreiber, M.R., Gansicke, B.T., 2001, A&A, 375, 937
- Sergeeva, T.P., et al., 2004, Baltic Astronomy, 13, 677
- Templeton, M.R., et al., 2006, PASP, 118, 236
- Waagen, Elizabeth, O., 2006, AAVSO Special Notice, No. 25

Number 5764

Konkoly Observatory Budapest 10 April 2007 *HU ISSN 0374 - 0676* 

## NEW TIMES OF MINIMA OF SOME ECLIPSING VARIABLES

LACY, C.H.S.

Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA; e-mail: clacy@uark.edu

| Observatory and telescope: |                                                                                 |  |  |  |  |  |  |
|----------------------------|---------------------------------------------------------------------------------|--|--|--|--|--|--|
| URSA: URSA Observato       | URSA: URSA Observatory at the University of Arkansas (ursa.uark.edu); 10-inch   |  |  |  |  |  |  |
| Schmidt-Cassegrain refle   | ector.                                                                          |  |  |  |  |  |  |
| NFO: NFO WebScope n        | ear Silver City, NM, USA (www.nfo.edu); 24-inch classical                       |  |  |  |  |  |  |
| Cassegrain.                |                                                                                 |  |  |  |  |  |  |
| Detector:                  | URSA: $1020 \times 1530$ pixels SBIG ST8EN CCD cooled to                        |  |  |  |  |  |  |
|                            | (typ.) $-20^{\circ}$ C; 1.15 arcsec square pixels; $20'$ (N-S) $\times 30'$ (E- |  |  |  |  |  |  |
|                            | W) field of view.                                                               |  |  |  |  |  |  |
|                            | NFO: $2102 \times 2092$ pixels Kodak KAF 4300E CCD cooled                       |  |  |  |  |  |  |
|                            | to (typ.) $-20^{\circ}$ C; 0.78 arcsec square pixels; 27' square field          |  |  |  |  |  |  |
|                            | of view.                                                                        |  |  |  |  |  |  |

### Method of data reduction:

Virtual measuring engine (Measure 2.0) written by C.H.S. Lacy (2005).

## Method of minimum determination:

Kwee & van Woerden (1956)

| Times of minima: |                |        |      |        |      |  |  |
|------------------|----------------|--------|------|--------|------|--|--|
| Star name        | Time of min.   | Error  | Type | Filter | Rem. |  |  |
|                  | m HJD~2400000+ |        |      |        |      |  |  |
| AP And           | 53733.5372     | 0.0001 | 1    | V      | URSA |  |  |
|                  | 53736.7119     | 0.0004 | 1    | V      | NFO  |  |  |
|                  | 53916.8694     | 0.0003 | 2    | V      | NFO  |  |  |
|                  | 53998.6147     | 0.0002 | 1    | V      | NFO  |  |  |
|                  | 54009.7256     | 0.0002 | 1    | V      | NFO  |  |  |
|                  | 54017.6619     | 0.0002 | 1    | V      | URSA |  |  |
|                  | 54021.6303     | 0.0002 | 2    | V      | URSA |  |  |
|                  | 54021.6302     | 0.0002 | 2    | V      | NFO  |  |  |
|                  | 54028.7733     | 0.0001 | 1    | V      | URSA |  |  |
|                  | 54029.5670     | 0.0001 | 2    | V      | URSA |  |  |
|                  | 54032.7414     | 0.0001 | 2    | V      | URSA |  |  |
|                  | 54048.6143     | 0.0002 | 2    | V      | URSA |  |  |
|                  | 54051.7892     | 0.0002 | 2    | V      | URSA |  |  |
|                  | 54052.5824     | 0.0002 | 1    | V      | NFO  |  |  |
|                  | 54059.7253     | 0.0002 | 2    | V      | NFO  |  |  |
|                  | 54063.6939     | 0.0001 | 1    | V      | URSA |  |  |
|                  | 54067.6620     | 0.0003 | 2    | V      | NFO  |  |  |
|                  | 54071.6304     | 0.0003 | 1    | V      | URSA |  |  |
|                  | 54071.6299     | 0.0002 | 1    | V      | NFO  |  |  |

| Times of minima: |                    |        |      |                         |      |  |  |  |
|------------------|--------------------|--------|------|-------------------------|------|--|--|--|
| Star name        | Time of min.       | Error  | Type | $\operatorname{Filter}$ | Rem. |  |  |  |
|                  | $\rm HJD~2400000+$ |        |      |                         |      |  |  |  |
| AP And           | 54075.5982         | 0.0003 | 2    | V                       | NFO  |  |  |  |
|                  | 54082.7410         | 0.0001 | 1    | V                       | NFO  |  |  |  |
|                  | 54086.7091         | 0.0001 | 2    | V                       | NFO  |  |  |  |
|                  | 54094.6458         | 0.0001 | 2    | V                       | NFO  |  |  |  |
|                  | 54110.5186         | 0.0002 | 2    | V                       | URSA |  |  |  |
| CO And           | 53731.5451         | 0.0002 | 2    | V                       | URSA |  |  |  |
|                  | 53751.6494         | 0.0003 | 1    | V                       | URSA |  |  |  |
|                  | 54016.6612         | 0.0004 | 1    | V                       | URSA |  |  |  |
|                  | 54027.6270         | 0.0003 | 1    | V                       | NFO  |  |  |  |
|                  | 54038.5924         | 0.0005 | 1    | V                       | URSA |  |  |  |
|                  | 54045.9039         | 0.0003 | 1    | V                       | NFO  |  |  |  |
|                  | 54047.7310         | 0.0002 | 2    | V                       | NFO  |  |  |  |
|                  | 54067.8365         | 0.0006 | 1    | V                       | NFO  |  |  |  |
|                  | 54080.6281         | 0.0002 | 2    | V                       | NFO  |  |  |  |
|                  | 54100.7342         | 0.0002 | 1    | V                       | NFO  |  |  |  |
| CG Aur           | 54063.8508         | 0.0004 | 2    | V                       | URSA |  |  |  |
|                  | 54071.9252         | 0.0005 | 1    | V                       | URSA |  |  |  |
|                  | 54109.8242         | 0.0003 | 1    | V                       | URSA |  |  |  |
|                  | 54109.8241         | 0.0002 | 1    | V                       | NFO  |  |  |  |
|                  | 54110.7769         | 0.0005 | 2    | V                       | URSA |  |  |  |
|                  | 54110.7750         | 0.0006 | 2    | V                       | NFO  |  |  |  |
|                  | 54138.6998         | 0.0003 | 1    | V                       | NFO  |  |  |  |
| HP Aur           | 53735.5350         | 0.0003 | 2    | V                       | URSA |  |  |  |
|                  | 53764.7023         | 0.0003 | 1    | V                       | NFO  |  |  |  |
|                  | 53771.8161         | 0.0002 | 1    | v                       | NFO  |  |  |  |
|                  | 53776.7970         | 0.0003 | 2    | v                       | NFO  |  |  |  |
|                  | 53779.6425         | 0.0002 | 2    | V                       | URSA |  |  |  |
|                  | 53781.7770         | 0.0002 | 1    | V                       | NFO  |  |  |  |
|                  | 53786.7573         | 0.0002 | 2    | V                       | NFO  |  |  |  |
|                  | 53811.6569         | 0.0002 | 1    | V                       | URSA |  |  |  |
|                  | 53995.9131         | 0.0003 | 2    | V                       | NFO  |  |  |  |
|                  | 54022.9466         | 0.0003 | 2    | V                       | URSA |  |  |  |
|                  | 54032.9059         | 0.0002 | 2    | V                       | URSA |  |  |  |
|                  | 54049.9798         | 0.0001 | 2    | V                       | NFO  |  |  |  |
|                  | 54059.9401         | 0.0001 | 2    | V                       | NFO  |  |  |  |
|                  | 54069.8998         | 0.0003 | 2    | V                       | NFO  |  |  |  |
|                  | 54077.7262         | 0.0003 | 1    | V                       | NFO  |  |  |  |
|                  | 54091.9536         | 0.0002 | 1    | V                       | NFO  |  |  |  |
|                  | 54094.7994         | 0.0002 | 1    | V                       | NFO  |  |  |  |
|                  | 54109.7384         | 0.0004 | 2    | V                       | URSA |  |  |  |
|                  | 54131.7931         | 0.0003 | 1    | V                       | URSA |  |  |  |
|                  | 54134.6376         | 0.0002 | 1    | V                       | URSA |  |  |  |
|                  | 54134.6378         | 0.0002 | 1    | V                       | NFO  |  |  |  |
|                  | 54136.7722         | 0.0002 | 2    | V                       | NFO  |  |  |  |
| V456 Cyg         | 53900.8502         | 0.0001 | 1    | V                       | URSA |  |  |  |
|                  | 54004.6746         | 0.0002 | 2    | V                       | NFO  |  |  |  |
| V974 Cyg         | 53838.9325         | 0.0004 | 1    | V                       | NFO  |  |  |  |
| V1136 Cyg        | 53866.9000         | 0.0007 | 2    | V                       | NFO  |  |  |  |
|                  | 53873.8239         | 0.0009 | 2    | V                       | URSA |  |  |  |

| Times of 1 | minima:        |        |      |        |                 |
|------------|----------------|--------|------|--------|-----------------|
| Star name  | Time of min.   | Error  | Туре | Filter | Rem.            |
|            | m HJD~2400000+ |        |      |        |                 |
| BF Dra     | 54019.6359     | 0.0006 | 2    | V      | NFO             |
|            | 54036.6322     | 0.0002 | 1    | V      | NFO             |
| GX Gem     | 53733.8903     | 0.0004 | 2    | V      | URSA            |
|            | 53733.8889     | 0.0007 | 2    | V      | NFO             |
|            | 53741.9658     | 0.0006 | 2    | V      | NFO             |
|            | 53808.5921     | 0.0006 | 1    | V      | $\mathbf{URSA}$ |
|            | 53818.6871     | 0.0003 | 2    | V      | NFO             |
|            | 54042.7918     | 0.0004 | 1    | V      | $\mathbf{URSA}$ |
|            | 54044.8142     | 0.0004 | 2    | V      | NFO             |
|            | 54046.8303     | 0.0003 | 1    | V      | NFO             |
|            | 54048.8492     | 0.0004 | 2    | V      | URSA            |
|            | 54050.8679     | 0.0007 | 1    | V      | NFO             |
|            | 54052.8871     | 0.0005 | 2    | V      | NFO             |
|            | 54058.9444     | 0.0003 | 1    | V      | NFO             |
|            | 54060.9613     | 0.0005 | 2    | V      | NFO             |
|            | 54062.9824     | 0.0005 | 1    | V      | URSA            |
|            | 54125.5673     | 0.0005 | 2    | V      | URSA            |
|            | 54129.6067     | 0.0004 | 2    | V      | URSA            |
|            | 54135.6650     | 0.0004 | 1    | V      | NFO             |
|            | 54137.6834     | 0.0003 | 2    | V      | NFO             |
|            | 54139.7025     | 0.0003 | 1    | V      | NFO             |
|            | 54147.7777     | 0.0003 | 1    | V      | NFO             |
| LV Her     | 53870.8866     | 0.0002 | 2    | V      | NFO             |
|            | 53907.7573     | 0.0002 | 2    | V      | URSA            |
|            | 53928.7308     | 0.0003 | 1    | V      | NFO             |
| RW Lac     | 54052.6655     | 0.0011 | 2    | V      | NFO             |
| V506  Oph  | 53880.9280     | 0.0001 | 1    | V      | NFO             |
|            | 53905.8481     | 0.0002 | 2    | V      | URSA            |
|            | 53913.8012     | 0.0002 | 1    | V      | URSA            |
|            | 53914.8613     | 0.0002 | 1    | V      | URSA            |
|            | 53914.8613     | 0.0002 | 1    | V      | NFO             |
|            | 54007.6489     | 0.0002 | 2    | V      | NFO             |
|            | 54137.0212     | 0.0004 | 2    | V      | NFO             |
|            | 54179.9684     | 0.0001 | 1    | V      | NFO             |
| V530 Ori   | 54104.7112     | 0.0009 | 2    | V      | NFO             |
| IM Per     | 53734.7371     | 0.0004 | 1    | V      | $\mathbf{URSA}$ |
|            | 53734.7368     | 0.0005 | 1    | V      | NFO             |
|            | 53760.6667     | 0.0003 | 2    | V      | $\mathbf{URSA}$ |
| IM Per     | 54010.8849     | 0.0006 | 2    | V      | NFO             |
|            | 54028.9216     | 0.0008 | 2    | V      | $\mathbf{URSA}$ |
|            | 54037.9356     | 0.0005 | 2    | V      | $\mathbf{URSA}$ |
|            | 54037.9354     | 0.0002 | 2    | V      | NFO             |
|            | 54053.7154     | 0.0005 | 2    | V      | NFO             |
|            | 54061.6011     | 0.0003 | 1    | V      | $\mathbf{URSA}$ |
|            | 54070.6165     | 0.0002 | 1    | V      | NFO             |
|            | 54107.8150     | 0.0003 | 2    | V      | NFO             |
|            | 54124.7191     | 0.0002 | 1    | V      | NFO             |
|            | 54176.5689     | 0.0004 | 1    | V      | URSA            |

| Times of 1 | ninima:            |        |      |        |      |
|------------|--------------------|--------|------|--------|------|
| Star name  | Time of min.       | Error  | Type | Filter | Rem. |
|            | $\rm HJD~2400000+$ |        |      |        |      |
| NP Per     | 54021.8587         | 0.0003 | 1    | V      | URSA |
|            | 54021.8589         | 0.0001 | 1    | V      | NFO  |
|            | 54108.7723         | 0.0002 | 1    | V      | URSA |
| V482 Per   | 53739.7567         | 0.0003 | 1    | V      | URSA |
|            | 53744.6506         | 0.0003 | 1    | V      | URSA |
|            | 53766.6715         | 0.0002 | 1    | V      | URSA |
|            | 53793.5857         | 0.0003 | 1    | V      | URSA |
|            | 54057.8341         | 0.0003 | 1    | V      | URSA |
|            | 54073.7380         | 0.0003 | 2    | V      | URSA |
| V514 Per   | 53799.6571         | 0.0006 | 2    | V      | NFO  |
|            | 54081.6271         | 0.0006 | 2    | V      | NFO  |
|            | 54130.7458         | 0.0007 | 2    | V      | NFO  |
| AQ Ser     | 53740.0003         | 0.0011 | 2    | V      | URSA |
| -          | 53766.9983         | 0.0003 | 2    | V      | NFO  |
|            | 53777.9660         | 0.0005 | 1    | V      | NFO  |
|            | 53788.9354         | 0.0003 | 2    | V      | NFO  |
|            | 53837.8704         | 0.0002 | 2    | V      | NFO  |
|            | 53842.9333         | 0.0004 | 2    | V      | NFO  |
|            | 53843.7773         | 0.0006 | 1    | V      | URSA |
|            | 54171.9817         | 0.0004 | 2    | V      | NFO  |
| CF Tau     | 53738.6338         | 0.0004 | 2    | V      | URSA |
|            | 53742.7627         | 0.0005 | 1    | V      | URSA |
|            | 53749.6548         | 0.0005 | 2    | V      | URSA |
|            | 53753.7858         | 0.0006 | 1    | V      | NFO  |
|            | 54041.7705         | 0.0005 | 2    | V      | URSA |
|            | 54041.7675         | 0.0004 | 2    | V      | NFO  |
|            | 54085.8649         | 0.0004 | 2    | V      | NFO  |
| BP Vul     | 53987.7740         | 0.0001 | 1    | V      | NFO  |
|            | 54026.5809         | 0.0001 | 1    | V      | URSA |
| BT Vul     | 53867.9405         | 0.0002 | 1    | V      | NFO  |
|            | 53875.9294         | 0.0002 | 1    | V      | NFO  |
|            | 53887.9115         | 0.0003 | 2    | V      | NFO  |
|            | 53895.7740         | 0.0002 | 1    | V      | URSA |
|            | 53902.7463         | 0.0004 | 2    | V      | URSA |
|            | 53914.7286         | 0.0002 | 1    | V      | URSA |
|            | 53915.8699         | 0.0002 | 1    | V      | NFO  |
|            | 54015.7258         | 0.0009 | 2    | V      | URSA |
|            | 54031.7022         | 0.0002 | 2    | V      | NFO  |
|            | 54042.5445         | 0.0003 | 1    | V      | URSA |
| EQ Vul     | 53901.8290         | 0.0008 | 1    | V      | URSA |

### **Remarks:**

A sample of the observations has been published by Lacy et al. (2001). Mean deviations between independently timed eclipses by the two telescopes are not significantly larger than expected, implying that the estimated timing uncertainties are realistic.

## References:

Kwee, K.K., van Woerden, H., 1956, BAN, 12, 327
Lacy, C.H.S., 2005, http://ursa.uark.edu
Lacy, C.H.S., Hood, B., Straughn, A., 2001, IBVS, No. 5067

Number 5765

Konkoly Observatory Budapest 12 April 2007 *HU ISSN 0374 - 0676* 

### A SUDDEN PERIOD CHANGE IN THE RRc VARIABLE GSC 6199-0755

WILS, P.<sup>1</sup>; OTERO, S.A.<sup>2</sup>; HAMBSCH, F.-J.<sup>1,3</sup>

<sup>1</sup> Vereniging Voor Sterrenkunde, Belgium; e-mail: patrickwils@yahoo.com

<sup>2</sup> Grupo Wezen 1 88, Centro de Estudios Astronómicos (CEA); e-mail: varsao@fullzero.com.ar

<sup>3</sup> Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. (BAV), Germany; e-mail: hambsch@telenet.be

The All Sky Automated Survey (ASAS-3; Pojmanski & Maciejewski, 2004) found the star ASAS 155552-2148.6 = GSC 6199-0755 to be a new first overtone RR Lyrae (RRc) variable with a period of 0.254144 days (coordinates for equinox 2000.0:  $\alpha = 15^{h}55^{m}51^{s}59$ ,  $\delta = -21^{\circ}48'32''_{\cdot}8$ ). However, phase plots show that it is impossible to find one single fixed period to fit the ASAS-3 data for the years 2001–2006 and the data from the Northern Sky Variability Survey (NSVS; Wozniak et al., 2004) for the years 1999 and 2000. This indicates that the period has changed in the interval. In general, the study of period changes in variable stars is based on O - C diagrams. These studies are often hindered by large gaps between observations, as they cause difficulties to obtain unambiguous cycle counts. For GSC 6199-0755 this is not a problem since eight years of nearly continuous data exist.

To further investigate the period of this star, the two NSVS data sets were shifted by 0.14 magnitude to align them with the ASAS-3 data set. Heliocentric correction of the NSVS times of observations were taken into account. No attempt was made to convert the red sensitive NSVS magnitudes to the V system of ASAS-3. The amplitude of the star in the NSVS data is therefore slightly less than in V. In addition FJH collected data of this star with a 50-cm Ritchey–Chrétien telescope with an unfiltered STL11000XM CCD camera during 11 nights early 2007. Fig. 1 gives the phase plot of all available data using the average period for the total observing interval. The data have been plotted for clarity) are generally of the order of 0.03 magnitude for the survey data, and about 0.01 mag for the data of FJH. The latter are presented in the plot as averages of 5 consecutive data points. It is obvious that there is a considerable phase shift over the years.

The period change was studied in more detail in two ways. First normal maxima were calculated for each of the eight available years. The light curve of GSC 6199-0755 shows a hint of a short pre-maximum hump that is often seen in other RRc stars as well. This is fairly obvious from our recent data. There is an indication that the magnitude of this hump varies from cycle to cycle, but this has to be investigated further. This hump also makes it difficult to get a reliable time of maximum for the years with less data. Since there is no indication that the general shape of the light curve has changed over the



**Figure 1.** Phase plot of GSC 6199-0755 with one fixed period for the years 1999–2000 (*NSVS*), 2001–2006 (*ASAS-3*), 2007 (HMB)

years, a model curve (a Fourier series with the main frequency and two harmonics) was therefore calculated from the ASAS-3 data for 2002. This model was then fitted to the data of the other years to get a time of maximum (allowing for differences in amplitude for the unfiltered data), giving a consistent set of maxima timings over the years. The calculated times of maxima are presented in Table 1. Uncertainties of these times are of the order of 0.01 days or better.

| 1110 9450000  | E     | O $C$ (1) | O $C$ $(2)$   | O $C$ $(2)$   | O $C$ $(1)$ | Courses |
|---------------|-------|-----------|---------------|---------------|-------------|---------|
| HJD = 2430000 | L     | U = U(1)  | $U = U_{(2)}$ | $U = U_{(3)}$ | U = U (4)   | Source  |
| 1313.554      | -2912 | -0.062    | -0.011        | +0.000        |             | NSVS    |
| 1614.752      | -1727 | -0.022    | -0.005        | -0.000        |             | NSVS    |
| 2053.713      | 0     | +0.037    | +0.018        | +0.000        |             | ASAS-3  |
| 2396.567      | 1349  | +0.054    | +0.019        |               | -0.003      | ASAS-3  |
| 2834.948      | 3074  | +0.040    | +0.001        |               | +0.007      | ASAS-3  |
| 3129.477      | 4233  | +0.019    | -0.013        |               | +0.002      | ASAS-3  |
| 3518.032      | 5762  | -0.009    | -0.020        |               | -0.005      | ASAS-3  |
| 3812.566      | 6921  | -0.025    | -0.011        |               | -0.006      | ASAS-3  |
| 4174.964      | 8347  | -0.033    | +0.022        |               | +0.005      | HMB     |

Table 1: Normal times of maximum of GSC 6199-0755

Using these times of maximum a linear and a parabolic ephemeris were calculated. These are given below with formal uncertainties on the last digit between brackets.

$$HJD(Max) = 2452053.677(15) + 0.254142(3) \times E,$$
(1)

$$HJD(Max) = 2452053.695(7) + 0.254157(3) \times E - 2.9(4) \times 10^{-9} E^2.$$
(2)

The O - C values for both sets of elements are given in Table 1, those for the linear ephemeris are also plotted in Fig. 2, together with the calculated parabolic elements.



Figure 2. O - C plot for GSC 6199-0755 with the period of equation (1). Also given are the parabolic elements (dashed line) and line segments (solid lines) corresponding to the elements with a sudden period change

From the latter a period decrease  $dP/dt = 0.72 \pm 0.11$  s/yr would follow, much higher than what is expected from evolutionary considerations (Smith, 1995). However, neither the linear nor the parabolic ephemeris gives a good fit to the available times. Fig. 2 rather suggests an abrupt period change at the end of 2001. Fitting linear elements for these two intervals results in the following equations:

$$HJD(Max) = 2452053.713(1) + 0.2541756(1) \times E$$
(3)

before JD 2452258 and

$$HJD(Max) = 2453129.476(2) + 0.2541281(9)(E - 4233)$$
(4)

after JD 2452258.

These are also plotted in Fig. 2, and O - C values for the relevant maxima are given in Table 1. From these it follows that the period decreased by  $4.1 \pm 0.1$  seconds around HJD =  $2452258 \pm 12$ .

The above calculations only make use of the times of extrema, and not of all data points. To make sure that all the data fit the suggested change in period, the following procedure was followed. A time of period jump  $t_0$  was chosen, and all observation times after  $t_0$  were transformed from t to  $t' = t_0 + q(t - t_0)$ , with q a parameter denoting the fractional period change. For times before  $t_0$ , t' = t was taken. With these modified times t' a new period may be calculated, based on all the data. Using the downhill simplex minimization method (Nelder & Mead, 1965), the values of  $t_0$  and q were determined for which a Fourier series with two harmonics gave the best fit. This resulted in a calculated period decrease of 4.0 seconds at  $t_0 = 2452272$ , in excellent agreement with the results found above. The phase plot taking into account this sudden period decrease is presented in Fig. 3 (with a period 0.254174 days, as determined before the change). A similar procedure as above, but with  $t' = rt^2$ , where r represents a constant rate of change of the period (for parabolic elements) yielded a worse fit. The sudden period jump is therefore favoured to a constant rate of change. At this moment cyclic period changes cannot be entirely excluded.



Figure 3. Phase plot of GSC 6199-0755 with the same data as Fig. 1 but taking into account a sudden period decrease of 4.0 seconds at HJD = 2452272

Similar period jumps are seen in other RR Lyrae stars as well (see e.g. Smith, 1995, and Schmidt & Lee, 2000), although some are poorly documented. One example is the RRc star HY Com (Oja, 1995), which is known to undergo frequent abrupt period changes. The explanation for these period jumps are yet unclear.

It is important to follow GSC 6199-0755 in the coming years to see whether other changes will occur like in HY Com or whether the period changes are cyclic. Also an archival plate search would be worthwhile to study the early period history.

Acknowledgements: This research made use of the SIMBAD and VizieR databases operated at the *Centre de Données Astronomiques (Strasbourg)* in France.

References:

Nelder, J.A., Mead R., 1965, Computer Journal, 7, 308

Oja, T., 1995, *IBVS*, No. 4276

Pojmanski, G., Maciejewski, G., 2004, Acta Astron., 54, 153

Schmidt, E.G., Lee, K.M., 2000, PASP, 112, 1262

Smith, H., 1995, RR Lyrae Stars, Cambridge University Press

Wozniak, P.R., Vestrand, W.T., Akerlof, C.W., Balsano, R., Bloch, J., Casperson, D., Fletcher, S., Gisler, G., Kehoe, R., Kinemuchi, K., Lee, B.C., Marshall, S., Mc-Gowan, K.E., McKay, T.A., Rykoff, E.S., Smith, D.A., Szymanski, J., Wren, J., 2004, AJ, 127, 2436

Number 5766

Konkoly Observatory Budapest 16 April 2007 *HU ISSN 0374 - 0676* 

### A LESSON OF Y SCORPII

SAMUS, N.N.<sup>1</sup>; WATSON, C.<sup>2</sup>

<sup>1</sup> Institute of Astronomy, Russian Academy of Sciences, 48, Pyatnitskaya Str., Moscow 119017, Russia and Sternberg Astronomical Institute, 13, University Ave., 119992 Moscow, Russia; e-mail: samus@sai.msu.ru

 $^2$  American Association of Variable Star Observers, 49 Bay State Rd., Cambridge, MA 02138, USA; e-mail: vsx@aavso.org

Table 2 of the 78th Name-List of Variable Stars (Kazarovets et al., 2006) introduces new GCVS names for 38 variable stars with old GCVS names in wrong constellations. While working on integrating this list into the International Variable Star Index (VSX; Watson, 2006), one of us (Ch.W.) noticed that Y Sco was actually in the constellation of Scorpius and did not need the new name "V2613 Oph". The GCVS team agrees with this correction and will continue to use the name Y Sco as the main GCVS name for the star.

The GCVS team uses thoroughly tested software to determine constellations, and thus it seems important to exactly identify the causes of the error. We could trace it down to a mistake in the widely used table of constellation boundaries (Roman, 1987). There exist two differences between the published paper (in its printed form as well as in its version available as .gif or .pdf files from the ADS) and the electronic table provided by the international data centers. Namely, line 229 of the electronic table reads:

229 16.2667 16.3750 -19.2500 Sco

— whereas the corresponding line of the printed paper suggests the constellation of Ophiuchus. This difference affects a small sky region (less than 1.5 square degrees) between right ascensions  $16^{h}16^{m}$  and  $16^{h}22^{m}.5$ , declinations  $-18^{\circ}15'$  and  $-19^{\circ}15'$  (equinox 1875.0, the official IAU equinox for constellation boundaries). Comparison to earlier published tables (see, for example, Schlesinger & Jenkins, 1940) confirms the correctness of the electronic table. Only one GCVS variable, Y Sco, is in this region.

Then, line 267 of the electronic table reads:

#### 267 0.0000 1.6667 -40.0000 Scl

— while the printed paper has two lines with the same coordinates here, the first one referring to Sculptor and the second one, to Phoenix. Thus, the electronic table has 357 lines and the printed table, 358. Since the algorithm suggested in Roman (1987) scans the table from north to south, this difference does not affect any sky regions.

We are not aware of any errata published to Roman (1987). However, the readme file accompanying the electronic table in the international data centers contains the following remark:

"History: \* 30-Dec-1999: one line (#229) was corrected by Nancy G. Roman".

Variable stars are probably the only field of modern astronomy where constellations are still widely used. We would like to warn the variable-star community about this problem with constellation boundaries.

The GCVS studies are supported, in part, by grants from the Russian Foundation for Basic Research (05-02-16289), from the Program "Origin and Evolution of Stars and Galaxies" of the Presidium of Russian Academy of Sciences, and from the Program of Support for Leading Scientific Schools of Russia (NSh 5290.2006.2).

#### References:

Kazarovets, E.V., Samus, N.N., Durlevich, O.V., et al., 2006, Inform. Bull. Var. Stars, No. 5721

Roman, N.G., 1987, Publ. Astron. Soc. Pacific, 99, 695

- Schlesinger, F., Jenkins, L.F., 1940, *Catalogue of Bright Stars*, 2nd edition, New Haven: the New Haven Printing Co.
- Watson, C.L., 2006, The International Variable Star Index (VSX), The 25th Annual Proceedings of the Society for Astronomical Sciences, ed. Warner, B.D., Foote, J., Kenyon, D., and Mais, D., Society for Astronomical Sciences

Number 5767

Konkoly Observatory Budapest 26 April 2007 *HU ISSN 0374 - 0676* 

### THE GEOS RR Lyr SURVEY

Sixth list of maxima of RR Lyr stars observed by the automated telescopes TAROT

(GEOS Circular RR 29)

LE BORGNE, J.F.<sup>1,2</sup>; KLOTZ, A.<sup>3</sup>; BOËR, M.<sup>4</sup>

<sup>1</sup> GEOS (Groupe Européen d'Observations Stellaires), 23 Parc de Levesville, 28300 Bailleau l'Évêque, France

 $^2$ Laboratoire d'Astrophysique, Observatoire Midi-Pyrénées, Toulouse, France

<sup>3</sup> Centre d'Etude Spatiale des Rayonnements, Observatoire Midi-Pyrénées, Toulouse, France

<sup>4</sup> Observatoire de Haute-Provence, France

We present here the sixth list of light maxima of RR Lyrae stars from the GEOS RR Lyr Survey, a GEOS program (http://www.upv.es/geos/) (Boninsegna et al., 2002) of automated observations of RR Lyr stars started in January 2004.

We are using the 25-cm automatic telescopes TAROT (http://tarot.obs-hp.fr) (Boër et al., 2001, Bringer et al., 1999). One of the telescopes is located in the northern hemisphere in Calern Observatory (Observatoire de la Côte d'Azur, Nice University, France). A second identical telescope in the southern hemisphere, located in ESO La Silla Observatory, Chile, is in operation since 2006 September. Images are obtained by  $2048 \times 2048$  Marconi 42-40 thin back illuminated CCDs. Field of view of both telescopes is  $1.86^{\circ} \times 1.86^{\circ}$ . Data reduction, from bias subtraction and flatfielding to photometry using SExtractor (Bertin & Arnouts, 1996), is performed automatically. The aim of this legacy project for the study of period variations of RR Lyr stars is to monitor maxima of light of these stars in order to feed the GEOS RRLyr web database (http://dbRR.ast.obs-mip.fr).

The present list contains 587 maxima observed with no filter between July and December 2006 (Table 1). The maxima are determined by fitting a polynomial function on the data points. The uncertainties on individual maxima are estimated from the data sampling of each maximum. The nominal sampling (two consecutive 30-s exposures taken every 10 minutes on a time baseline of 2 hours centered around the predicted maximum time) may be altered by local events (weather or telescope operation). This results uncertainties from 0.002 to 0.010 day. For a well observed star, the mean uncertainty on maxima is about 0.003 day (4.3 minutes). The O - C's are computed with the GCVS elements (Kholopov et al., 1985) and are displayed in Table 1 in column 'O - C'. The column 'E' contains the cycle number. Note that this cycle number takes into account the shifts induced by the elements when the period of the elements is very different from the actual one, the absolute value of O - C becoming greater than 1 period. When no elements are available in the GCVS, the reference of the elements, if exists, is given as a footnote of Table 1. The fifth column in Table 1 gives the abbreviation of the name of the observatory where the star was observed.

Table 1: Maxima of RR Lyrae stars

| Variable            | Maximum                                        | 0 – C  | E               | Obs.*                | Variable  | Maximum                                        | 0 – C  | E               | Obs.                    |
|---------------------|------------------------------------------------|--------|-----------------|----------------------|-----------|------------------------------------------------|--------|-----------------|-------------------------|
|                     | HJD 24                                         | (days) |                 |                      |           | HJD 24                                         | (days) |                 |                         |
| SW And              | $53946.501{\pm}0.002$                          | -0.754 | 80977.          | С                    | SX Aqr    | $53961.574{\pm}0.005$                          | -0.107 | 26442.          | С                       |
| SW And              | $53950.480{\pm}0.002$                          | -0.755 | 80986.          | $\mathbf{C}$         | SX Aqr    | $53988.357{\pm}0.002$                          | -0.110 | 26492.          | $\mathbf{C}$            |
| SW And              | $53957.557{\pm}0.003$                          | -0.755 | 81002.          | $\mathbf{C}$         | SX Aqr    | $53999.607{\pm}0.002$                          | -0.110 | 26513.          | LS                      |
| SW And              | $53985.420{\pm}0.002$                          | -0.755 | 81065.          | $\mathbf{C}$         | SX Aqr    | $54017.288{\pm}0.003$                          | -0.107 | 26546.          | $\mathbf{C}$            |
| SW And              | $54022.573{\pm}0.002$                          | -0.754 | 81149.          | $\mathbf{C}$         | SX Aqr    | $54018.356{\pm}0.002$                          | -0.111 | 26548.          | $\mathbf{C}$            |
| SW And              | $54024.340{\pm}0.002$                          | -0.756 | 81153.          | $\mathbf{C}$         | TZ Aqr    | $53952.470{\pm}0.004$                          | 0.012  | 28718.          | $\mathbf{C}$            |
| SW And              | $54034.514{\pm}0.002$                          | -0.754 | 81176.          | $\mathbf{C}$         | TZ Aqr    | $53968.459{\pm}0.002$                          | 0.008  | 28746.          | $\mathbf{C}$            |
| SW And              | $54053.529{\pm}0.002$                          | -0.757 | 81219.          | $\mathbf{C}$         | TZ Aqr    | $53972.461{\pm}0.005$                          | 0.011  | 28753.          | $\mathbf{C}$            |
| SW And              | $54059.277{\pm}0.003$                          | -0.759 | 81232.          | $\mathbf{C}$         | TZ Aqr    | $53976.463{\pm}0.004$                          | 0.015  | 28760.          | $\mathbf{C}$            |
| SW And              | $54061.487{\pm}0.002$                          | -0.760 | 81237.          | $\mathbf{C}$         | TZ Aqr    | $54000.446{\pm}0.002$                          | 0.008  | 28802.          | $\mathbf{C}$            |
| SW And              | $54081.391{\pm}0.002$                          | -0.759 | 81282.          | $\mathbf{C}$         | TZ Aqr    | $54017.586{\pm}0.002$                          | 0.012  | 28832.          | $\mathbf{LS}$           |
| SW And              | $54093.332{\pm}0.002$                          | -0.760 | 81309.          | $\mathbf{C}$         | TZ Aqr    | $54023.298{\pm}0.003$                          | 0.012  | 28842.          | $\mathbf{C}$            |
| XX And              | $53967.579 {\pm} 0.005$                        | 0.224  | 20588.          | $\mathbf{C}$         | WZ Aqr    | $53998.699 {\pm} 0.002$                        | 0.070  | 67289.          | $\mathbf{LS}$           |
| XX And              | $53980.588{\pm}0.002$                          | 0.223  | 20606.          | $\mathbf{C}$         | YZ Agr    | $53996.599 {\pm} 0.002$                        | 0.053  | 33758.          | $\mathbf{LS}$           |
| XX And              | $53986.372{\pm}0.002$                          | 0.225  | 20614.          | $\mathbf{C}$         | BN Agr    | $53970.562{\pm}0.005$                          | 0.538  | 34276.          | $\mathbf{C}$            |
| XX And              | $53999.376 {\pm} 0.002$                        | 0.220  | 20632.          | С                    | BN Aar    | $53979.485{\pm}0.005$                          | 0.538  | 34295.          | $\mathbf{C}$            |
| XX And              | $54001.542{\pm}0.004$                          | 0.218  | 20635.          | С                    | BO Aar    | $54027.665 {\pm} 0.001$                        | 0.137  | 17876.          | LS                      |
| XX And              | $54012.390 \pm 0.002$                          | 0.225  | 20650.          | С                    | BR Aar    | $53997.769 {\pm} 0.003$                        | -0.153 | 33954.          | $\mathbf{LS}$           |
| XX And              | $54035.514 \pm 0.001$                          | 0.221  | 20682.          | Ĉ                    | BR Aar    | $54035.357 \pm 0.002$                          | -0.151 | 34032.          | $\overline{\mathbf{C}}$ |
| XX And              | $54051.417 \pm 0.002$                          | 0.223  | 20704.          | Ĉ                    | BR Aar    | $54048.367 \pm 0.002$                          | -0.152 | 34059.          | Ċ                       |
| XX And              | $54067.320 \pm 0.002$                          | 0.226  | 20726.          | Ĉ                    | CP Aar    | $53933.500 \pm 0.002$                          | -0.104 | 34633.          | Ċ                       |
| XX And              | $54090.447 \pm 0.002$                          | 0.225  | 20758.          | Ĉ                    | CP Aar    | $53945.547 \pm 0.002$                          | -0.105 | 34659           | Ċ                       |
| XX And              | $54093.338\pm0.002$                            | 0.225  | 20762.          | Č                    | CP Aar    | $53960.375\pm0.002$                            | -0.106 | 34691.          | $\tilde{\mathbf{C}}$    |
| AT And              | $53952.522\pm0.002$                            | 0.000  | 18818.          | $\tilde{\mathbf{C}}$ | CP Agr    | $53971.497 \pm 0.002$                          | -0.106 | 34715.          | č                       |
| AT And              | $53957 \ 461\pm0 \ 004$                        | 0.003  | 18826           | č                    | CP Agr    | $53978449\pm0.002$                             | -0.105 | 34730           | č                       |
| AT And              | $53973483\pm0.002$                             | -0.014 | 18852           | č                    | CP Agr    | $53997 447 \pm 0.002$                          | -0.107 | 34771           | Č                       |
| AT And              | $53981510\pm0.002$                             | -0.007 | 18865           | C                    | CP Agr    | $54017 \ 374\pm0 \ 002$                        | -0.106 | 34814           | č                       |
| AT And              | $53999408\pm0.002$                             | 0.001  | 18894           | C                    | CP Agr    | $54018302 \pm 0.002$                           | -0.105 | 34816           | č                       |
| AT And              | $54012,358\pm0,003$                            | -0.005 | 18915           | C                    | DN Agr    | $54017558\pm0.002$                             | 0.100  | 40382           | LS                      |
| AT And              | $54018527\pm0.004$                             | -0.005 | 18925           | C                    | GP Agr    | $53970455\pm0.002$                             | 0.021  | 10002.          | C                       |
| AT And              | $54033333\pm0.004$                             | -0.005 | 180/0           | c                    | CP Agr    | $54022 310\pm0.005$                            |        |                 | C                       |
| AT And              | $54035.335\pm0.004$<br>$54036.422\pm0.001$     | -0.000 | 18054           | C                    | GP Agr    | $54022.310\pm0.003$<br>$54024.342\pm0.002$     |        |                 | C                       |
| AT And              | $54030.422\pm0.001$<br>$54030.502\pm0.002$     | -0.001 | 18050           | C                    | GP Agr    | $54024.342\pm0.002$<br>$54033.262\pm0.003$     |        |                 | C                       |
| AT And              | $54039.502\pm0.002$<br>$54046.297\pm0.005$     | 0.005  | 18070           | C                    | HH Agr    | $53072 464\pm0.007$                            |        |                 | C                       |
| AT And              | $54040.237 \pm 0.003$<br>54062 335 $\pm 0.006$ | 0.004  | 18006           | C                    | HH Agr    | $53972.404\pm0.007$<br>53080 502±0 002         |        |                 | C                       |
| AT And              | $54002.335\pm0.000$<br>54081 447 $\pm0.003$    | 0.002  | 10097           | C                    | HH Aqr    | $53980.502\pm0.002$<br>54018 418±0.005         |        |                 | C                       |
| CI And              | $54081.447 \pm 0.003$<br>54040 622 $\pm 0.003$ | 0.010  | 27818           | C                    | HH Aqr    | $54018.418\pm0.003$<br>$54022.435\pm0.002$     |        |                 | C                       |
| CI And              | $54049.022\pm0.003$<br>54084 525±0.002         | 0.090  | 37800           | C                    | HH Aqr    | $54022.435\pm0.002$<br>$54027.604\pm0.001$     |        |                 | TS                      |
| CI And              | $54084.525\pm0.002$<br>54087 440±0 002         | 0.095  | 37806           | C                    | HH Aqr    | $54027.004\pm0.001$<br>$54033.352\pm0.005$     |        |                 | цэ<br>С                 |
| NV And <sup>1</sup> | $54001.440\pm0.002$<br>54001.555±0.005         | 0.100  | 01090.<br>02700 | C                    |           | $54035.352\pm0.005$<br>$54027.274\pm0.004$     |        |                 | C                       |
| NX And <sup>1</sup> | $54001.355\pm0.005$<br>54051 452 $\pm0.005$    | 0.015  | 23702.          | C                    |           | $54037.374\pm0.004$<br>54048 282 $\pm0.002$    |        |                 | č                       |
| EV And              | $54051.452\pm0.005$<br>54014 610±0 002         | 0.012  | 20119.<br>55990 | T C                  |           | $54048.285 \pm 0.003$<br>52022 540 $\pm 0.002$ | 0.020  | 01775           | C                       |
| EX Aps              | $54014.019\pm0.002$                            | 0.012  | 55260.<br>EE900 | LO                   |           | $53932.349\pm0.003$                            | 0.030  | 01110.          | C                       |
| CW Ass              | $54025.562\pm0.002$                            | 0.011  | 00299.<br>60700 | C C                  |           | $53944.491\pm0.002$                            | 0.000  | 01000.          | d                       |
| SW Aqr              | $53930.504 \pm 0.002$                          | 0.000  | 02189.          | d                    |           | $53900.407 \pm 0.002$                          | 0.031  | 01002.<br>01000 | c                       |
| SW Aqr              | $53942.530\pm0.002$                            | 0.001  | 02802.          | d                    |           | $53973.435\pm0.002$                            | 0.034  | 01000.          |                         |
| SW Aqr              | $53948.500 \pm 0.003$                          | 0.000  | 02810.          | d                    | AA AQI    | $53990.590 \pm 0.002$                          | 0.035  | 81992.          |                         |
| SW Aqr              | $53900.440\pm0.002$                            | -0.002 | 02841.          | d                    | V 341 Aql | $53933.530 \pm 0.002$                          | 0.024  | 22030.          | c                       |
| SW Aqr              | $53970.553\pm0.003$                            | 0.000  | 02803.          | C                    | V 341 Aql | $53940.475\pm0.002$                            | 0.027  | 22048.          | C                       |
| SW Aqr              | $54000.407 \pm 0.002$                          | -0.001 | 02928.<br>60065 | C                    | V 341 Aql | $53947.411 \pm 0.002$                          | 0.027  | 22060.          | U<br>C                  |
| SW Aqr              | $54017.401\pm0.004$                            | -0.001 | 02905.          | U<br>C               | V 341 Aql | $53902.440\pm0.002$                            | 0.027  | 22086.          | U<br>a                  |
| SW Aqr              | $54018.321\pm0.002$                            | 0.001  | 02907.          | U<br>C               | V 341 Aql | $53909.378 \pm 0.002$                          | 0.029  | 22098.          | U<br>a                  |
| SW Aqr              | $54023.372 \pm 0.002$                          | -0.001 | 62978.<br>06965 | U<br>C               | V 341 Aql | $53977.464 \pm 0.003$                          | 0.023  | 22112.          | C                       |
| SX Aqr              | $53937.468 \pm 0.002$                          | -0.106 | 26397.          | U<br>C               | V 341 Aql | $53988.450 \pm 0.004$                          | 0.026  | 22131.          | C                       |
| SX Aqr              | $53944.432 \pm 0.004$                          | -0.106 | 26410.          | C                    | V 341 Aql | $53999.433 \pm 0.005$                          | 0.027  | 22150.          | C                       |
|                     |                                                |        |                 |                      |           |                                                |        |                 |                         |

| Variable | Maximum                                        | O - C  | E               | Obs.       | Variable | Maximum                                        | O - C          | E               | Obs.        |
|----------|------------------------------------------------|--------|-----------------|------------|----------|------------------------------------------------|----------------|-----------------|-------------|
|          | HJD 24                                         | (davs) | _               |            |          | HJD 24                                         | (davs)         | _               |             |
| X Ari    | $54011.564 \pm 0.005$                          | 0.317  | 25229.          | С          | AA CMi   | $54093.748 \pm 0.002$                          | 0.055          | 36776.          | LS          |
| X Ari    | $54024.586 \pm 0.002$                          | 0.316  | 25249.          | Ċ          | AA CMi   | $54096.605 \pm 0.002$                          | 0.054          | 36782.          | C           |
| X Ari    | $54037.605 \pm 0.003$                          | 0.313  | 25269.          | Ċ          | AL CMi   | $54092.691 \pm 0.002$                          | 0.445          | 31780.          | LS          |
| X Ari    | $54039.564 \pm 0.002$                          | 0.318  | 25272.          | Ċ          | AL CMi   | $54098.744 \pm 0.002$                          | 0.442          | 31791.          | LS          |
| X Ari    | $54058.449 \pm 0.005$                          | 0.320  | 25301           | Ċ          | EE Car   | $54101.680 \pm 0.005$                          | 0.022          | 43536.          | LS          |
| X Ari    | $54062.355 \pm 0.005$                          | 0.319  | 25307.          | Č          | IU Car   | $54065.681 \pm 0.002$                          | 0.241          | 16781.          | LS          |
| X Ari    | $54067564\pm0.002$                             | 0.319  | 25315           | č          | IU Car   | $54093.695\pm0.002$                            | 0.244          | 16819           | LS          |
| X Ari    | $54079.286 \pm 0.004$                          | 0.321  | 25333.          | Č          | V363 Cas | $53957.417 \pm 0.003$                          | 0.507          | 32595.          | $\tilde{C}$ |
| X Ari    | $54084.495\pm0.002$                            | 0.320  | 25341.          | Č          | V363 Cas | $53980.383 \pm 0.004$                          | 0.518          | 32637.          | č           |
| X Ari    | $54086449\pm0002$                              | 0.321  | 25344           | Č          | V363 Cas | $54012625\pm0.005$                             | 0.515          | 32696           | Č           |
| X Ari    | $54090.356\pm0.002$                            | 0.321  | 25350           | Č          | V363 Cas | $54015, 362\pm0.005$                           | 0.519          | 32701           | č           |
| X Ari    | $54092 \ 310\pm0 \ 002$                        | 0.322  | 25353           | č          | V363 Cas | $54016471\pm0.005$                             | 0.535          | 32703           | č           |
| X Ari    | $54094262 \pm 0.002$                           | 0.320  | 25356           | C          | V363 Cas | $54035593\pm0.005$                             | 0.528          | 32738           | č           |
| TZ Aur   | $54034537\pm0.003$                             | 0.020  | 20000.<br>87144 | C          | V363 Cas | $54039402\pm0.002$                             | 0.520          | 32745           | C           |
| TZ Aur   | $54034.001\pm0.000$<br>$54036.495\pm0.002$     | 0.012  | 87149           | C          | V363 Cas | $54035.402 \pm 0.002$<br>$54046.522 \pm 0.005$ | 0.012<br>0.527 | 32740.          | C           |
| TZ Aur   | $54030.430\pm0.002$<br>$54039.630\pm0.002$     | 0.012  | 87157           | C          | V363 Cas | $54040.522 \pm 0.000$<br>$54067.287 \pm 0.002$ | 0.521          | 32706           | C           |
| TZ Aur   | $54035.050\pm0.002$<br>$54045.505\pm0.005$     | 0.010  | 87179           | C          | AO Cen   | $54007.201 \pm 0.002$<br>$54079.490 \pm 0.005$ | 0.020          | 39836           | C           |
| TZ Aur   | $54049.000\pm0.000$<br>$54058.426\pm0.002$     | 0.010  | 87205           | C          | R& Cet   | $53078586\pm0.003$                             | 0.001          | 37606           | c           |
| TZ Aur   | $54053.420\pm0.002$<br>54061 561 $\pm0.003$    | 0.009  | 87200.          | C          | RR Cot   | $53978.580\pm0.003$<br>53083 565 $\pm0.002$    | 0.000          | 37600.          | C           |
| TZ Aur   | $54001.501\pm0.003$<br>54081 537 $\pm0.002$    | 0.010  | 87964           | C          | RR Cot   | $53983.505 \pm 0.002$<br>53008 403 $\pm 0.004$ | 0.008          | 37649           | C           |
| TZ Aur   | $54031.557 \pm 0.002$<br>54001 320 $\pm 0.002$ | 0.011  | 87204.          | C          | RR Cot   | $53998.495 \pm 0.004$<br>54023 376 $\pm 0.004$ | 0.004          | 37687           | C           |
| TZ Aur   | $54091.529\pm0.002$<br>54100 338 $\pm0.002$    | 0.011  | 87219           | C          | RR Cot   | $54025.570\pm0.004$<br>$54034.436\pm0.002$     | 0.000          | 37707           | C           |
|          | $54100.338\pm0.002$<br>54012 746±0.002         | 0.012  | 07312.<br>46096 | С<br>те    | RR Cet   | $54034.430\pm0.002$<br>54020 410±0.002         | 0.000          | 37707.<br>27716 | C           |
|          | $54013.740\pm0.002$<br>54021 725±0.001         | -0.097 | 40920.          | те         | RR Cet   | $54039.419\pm0.002$<br>54000 205±0.002         | 0.000          | 27202           | C           |
|          | $54021.725\pm0.001$<br>54040 610±0.001         | -0.094 | 40945.          | те         | RI Cet   | $54090.295 \pm 0.002$<br>54095 612 $\pm 0.002$ | 0.003          | 94910           | T C         |
|          | $54040.010\pm0.001$<br>54045 652 $\pm0.002$    | 0.100  | 40990.          | те         | RU Cet   | $54025.013\pm0.003$<br>54046 711 $\pm0.001$    | 0.007          | 24219.          | цэ<br>те    |
| U Cae    | $54045.052\pm0.003$                            | -0.090 | 47002.          | цо<br>те   | RU Cet   | $54040.711\pm0.001$                            | 0.079          | 24200.<br>02000 | цо<br>те    |
| U Cae    | $54064.067 \pm 0.004$<br>54087 621 $\pm 0.002$ | -0.101 | 47095.          | LS         | RV Cet   | $54011.041\pm0.005$<br>$54024.742\pm0.004$     | 0.195          | 20090.<br>02010 | LS          |
| U Cae    | $54067.051\pm0.002$<br>54080.721 \ 0.002       | -0.090 | 47102.          | LS         | RV Cet   | $54024.745\pm0.004$                            | 0.204          | 23919.<br>32050 | LO          |
|          | $54089.751\pm0.002$<br>54004 760±0.002         | -0.095 | 47107.          | те         | RV Cet   | $54049.075\pm0.002$<br>54054.678±0.010         | 0.200          | 23939.<br>92067 | цэ<br>те    |
| U Cae    | $54094.709\pm0.002$                            | -0.094 | 47119.          | цо<br>те   | RV Cet   | $54054.078\pm0.010$                            | 0.215          | 20907.<br>02002 | цо<br>те    |
| U Cae    | $54100.042\pm0.002$                            | -0.099 | 41133.          | LS         | RV Cet   | $54004.044\pm0.002$                            | 0.207          | 20900.<br>20274 | LS<br>C     |
| v Cae    | $54011.059\pm0.003$                            | 0.210  | 34494.<br>94597 | LS         | RZ Cet   | $54011.559\pm0.005$                            | -0.140         | 39374.<br>20492 | U<br>T C    |
| v Cae    | $54004.045\pm0.005$<br>54076 501 $\pm 0.002$   | 0.130  | 34307.<br>24600 | LS         | RZ Cel   | $54050.509\pm0.005$                            | -0.130         | 39423.<br>19050 | LO          |
| v Cae    | $54070.591\pm0.002$                            | 0.099  | 34008.<br>24699 | LS         | RI Col   | $54049.052\pm0.001$                            | -0.247         | 40900.          | LO          |
| V Cae    | $54064.564\pm0.003$                            | 0.101  | 24620           | цо<br>те   | DT Col   | $54003.803\pm0.002$                            | -0.240         | 40904.          | цо<br>те    |
| v Cae    | $54000.579\pm0.002$<br>54007 714 \ 0.002       | 0.100  | 34029.<br>24645 | LS         | RI Col   | $54003.002\pm0.002$                            | -0.249         | 49020.          | LO          |
| v Cae    | $54097.714\pm0.002$<br>54101 710 L 0.002       | 0.102  | 34043.<br>24659 | LS         | DW Cal   | $54092.776\pm0.002$                            | -0.249         | 49030.          | LO          |
| V Cae    | $54101.710\pm0.005$                            | 0.103  | 34032.<br>41949 | LS<br>C    | RW Col   | $54046.097 \pm 0.002$                          | 0.231          | 49001.          | LO          |
|          | $53975.493\pm0.005$                            | -0.403 | 41340.          | C          | DW Col   | $54005.597 \pm 0.002$                          | 0.190          | 49013.          | цо<br>те    |
| AH Cam   | $53978.470\pm0.005$                            | -0.370 | 41330.          | C          | RW Col   | $54083.009\pm0.002$                            | 0.214          | 49047.          | LS          |
| AH Cam   | $53999.489\pm0.002$                            | -0.375 | 41413.          | d          | RW Col   | $54101.015\pm0.000$                            | 0.220          | 49081.          | LS          |
| AH Cam   | $54013.492 \pm 0.002$                          | -0.384 | 41451.          | d          | RY Col   | $54010.841\pm0.003$                            | -0.130         | 41155.          | LS          |
| AH Cam   | $54010.425\pm0.005$                            | -0.401 | 41459.          | d          | RY Col   | $54028.802 \pm 0.001$                          | -0.141         | 411/8.          | LS          |
| ALLO     | $54023.440\pm0.002$                            | -0.380 | 41478.          | C          | RY Col   | $54039.810\pm0.001$                            | -0.140         | 41201.          |             |
| AH Cam   | $54058.408 \pm 0.004$                          | -0.394 | 41573.          | C          | RY Col   | $54052.748 \pm 0.002$                          | -0.138         | 41228.          |             |
| AH Cam   | $54079.494 \pm 0.004$                          | -0.385 | 41030.          | C          | RY Col   | $54063.767 \pm 0.002$                          | -0.132         | 41251.          |             |
| TT One   | $54080.497 \pm 0.003$                          | 0.114  | 20099.<br>05115 | d          | RY Col   | $54074.780\pm0.004$                            | -0.127         | 41274.          | LS          |
| TT Unc   | $54095.504 \pm 0.002$                          | 0.105  | 25115.          | C          | RY Col   | $54097.767 \pm 0.002$                          | -0.131         | 41322.          |             |
|          | $54099.447 \pm 0.005$                          | 0.104  | 20122.          | C          |          | $54098.010\pm0.002$                            | -0.097         | 22919.<br>22974 | C           |
| TT Unc   | $54100.574\pm0.002$                            | 0.104  | 25124.          | C<br>C     | HY Com   | $54093.004\pm0.005$                            | 0.055          | 22374.          | C           |
| UZ UVN   | $54092.019\pm0.003$                            | 0.240  | 39647           | C          | UY Cyg   | $53923.517 \pm 0.003$                          | 0.049          | 50161.<br>FC177 | C           |
|          | $54099.005\pm0.010$                            | 0.248  | 39057.          | C          | UY Cyg   | $53932.494 \pm 0.005$                          | 0.055          | 50177.<br>Ecios | C           |
| AA CM1   | 54054.687±0.002                                | 0.052  | 30694.          | U          | UY Cyg   | $53941.468 \pm 0.003$                          | 0.057          | 50193.<br>F6262 | C           |
| AA UMI   | 54082.792±0.001                                | 0.054  | 30753.          | $\Gamma 2$ | UYCyg    | 53946.513±0.002                                | 0.056          | 56202.          | U           |
|          |                                                |        |                 |            |          |                                                |                |                 |             |

Table 1 (cont.): Maxima of RR Lyrae stars

| Variable            | Maximum                   | 0 – C  | E      | Obs.         | Variable | Maximum                 | 0 – C  | E      | Obs.          |
|---------------------|---------------------------|--------|--------|--------------|----------|-------------------------|--------|--------|---------------|
|                     | HJD 24                    | (days) |        |              |          | HJD 24                  | (days) |        |               |
| UY Cyg              | $53968.378 {\pm} 0.005$   | 0.053  | 56241. | С            | BC Dra   | $54097.560{\pm}0.003$   | 0.081  | 16425. | С             |
| UY Cyg              | $53973.426{\pm}0.002$     | 0.055  | 56250. | $\mathbf{C}$ | BD Dra   | $53925.576{\pm}0.006$   | 0.759  | 20627. | $\mathbf{C}$  |
| UY Cyg              | $53987.437 {\pm} 0.005$   | 0.049  | 56275. | $\mathbf{C}$ | BD Dra   | $53938.524{\pm}0.002$   | 0.748  | 20649. | $\mathbf{C}$  |
| UY Cyg              | $54000.341 {\pm} 0.004$   | 0.056  | 56298. | $\mathbf{C}$ | BD Dra   | $53954.416{\pm}0.004$   | 0.736  | 20676. | $\mathbf{C}$  |
| UY Cyg              | $54023.333 {\pm} 0.003$   | 0.059  | 56339. | $\mathbf{C}$ | BD Dra   | $53958.521{\pm}0.004$   | 0.717  | 20683. | $\mathbf{C}$  |
| UY Cyg              | $54024.447 {\pm} 0.002$   | 0.052  | 56341. | $\mathbf{C}$ | BD Dra   | $53984.456{\pm}0.002$   | 0.734  | 20727. | $\mathbf{C}$  |
| UY Cyg              | $54037.342 {\pm} 0.002$   | 0.051  | 56364. | $\mathbf{C}$ | BD Dra   | $53985.635{\pm}0.002$   | 0.735  | 20729. | $\mathbf{C}$  |
| XZ Cyg <sup>2</sup> | $53935.544{\pm}0.002$     | 0.005  | 11498. | $\mathbf{C}$ | BD Dra   | $53988.600{\pm}0.003$   | 0.755  | 20734. | $\mathbf{C}$  |
| XZ Cyg <sup>2</sup> | $53956.531 {\pm} 0.002$   | -0.005 | 11543. | $\mathbf{C}$ | BD Dra   | $54013.341{\pm}0.002$   | 0.756  | 20776. | $\mathbf{C}$  |
| XZ Cyg <sup>2</sup> | $53962.600{\pm}0.004$     | -0.002 | 11556. | $\mathbf{C}$ | BD Dra   | $54017.465{\pm}0.002$   | 0.756  | 20783. | $\mathbf{C}$  |
| XZ Cyg <sup>2</sup> | $53976.605 {\pm} 0.002$   | 0.005  | 11586. | $\mathbf{C}$ | BD Dra   | $54033.345{\pm}0.003$   | 0.732  | 20810. | $\mathbf{C}$  |
| XZ Cyg <sup>2</sup> | $53983.607 {\pm} 0.002$   | 0.008  | 11601. | $\mathbf{C}$ | BD Dra   | $54036.312{\pm}0.002$   | 0.754  | 20815. | $\mathbf{C}$  |
| XZ Cyg <sup>2</sup> | $53998.528{\pm}0.002$     | -0.002 | 11633. | $\mathbf{C}$ | BD Dra   | $54046.327{\pm}0.003$   | 0.755  | 20832. | $\mathbf{C}$  |
| DM Cyg              | $53927.502 {\pm} 0.003$   | 0.059  | 27021. | $\mathbf{C}$ | BD Dra   | $54053.360{\pm}0.003$   | 0.719  | 20844. | $\mathbf{C}$  |
| DM Cyg              | $53950.594{\pm}0.003$     | 0.059  | 27076. | $\mathbf{C}$ | BD Dra   | $54079.272{\pm}0.004$   | 0.713  | 20888. | $\mathbf{C}$  |
| DM Cyg              | $53956.474{\pm}0.002$     | 0.061  | 27090. | $\mathbf{C}$ | BD Dra   | $54094.625{\pm}0.002$   | 0.750  | 20914. | $\mathbf{C}$  |
| DM Cyg              | $53961.512 {\pm} 0.002$   | 0.060  | 27102. | $\mathbf{C}$ | BK Dra   | $53936.554{\pm}0.004$   | -0.150 | 47989. | $\mathbf{C}$  |
| DM Cyg              | $54011.471{\pm}0.002$     | 0.056  | 27221. | $\mathbf{C}$ | BK Dra   | $53942.472{\pm}0.005$   | -0.153 | 47999. | $\mathbf{C}$  |
| DM Cyg              | $54016.511{\pm}0.003$     | 0.058  | 27233. | $\mathbf{C}$ | BK Dra   | $53952.537{\pm}0.002$   | -0.153 | 48016. | $\mathbf{C}$  |
| DM Cyg              | $54022.389{\pm}0.002$     | 0.058  | 27247. | $\mathbf{C}$ | BK Dra   | $53958.459{\pm}0.003$   | -0.152 | 48026. | $\mathbf{C}$  |
| DM Cyg              | $54024.490{\pm}0.002$     | 0.059  | 27252. | $\mathbf{C}$ | BK Dra   | $53984.509{\pm}0.002$   | -0.154 | 48070. | $\mathbf{C}$  |
| DM Cyg              | $54033.307 {\pm} 0.003$   | 0.059  | 27273. | $\mathbf{C}$ | RX Eri   | $54022.716{\pm}0.004$   | -0.016 | 55054. | LS            |
| DM Cyg              | $54035.405 {\pm} 0.002$   | 0.058  | 27278. | $\mathbf{C}$ | RX Eri   | $54032.707{\pm}0.003$   | -0.009 | 55071. | LS            |
| DX Del              | $53933.442{\pm}0.003$     | 0.054  | 30820. | $\mathbf{C}$ | RX Eri   | $54042.692{\pm}0.002$   | -0.007 | 55088. | LS            |
| DX Del              | $53940.535 {\pm} 0.003$   | 0.058  | 30835. | $\mathbf{C}$ | RX Eri   | $54049.737{\pm}0.002$   | -0.009 | 55100. | LS            |
| DX Del              | $53948.569{\pm}0.002$     | 0.058  | 30852. | $\mathbf{C}$ | RX Eri   | $54066.765 {\pm} 0.002$ | -0.011 | 55129. | LS            |
| DX Del              | $53960.385 {\pm} 0.002$   | 0.058  | 30877. | $\mathbf{C}$ | RX Eri   | $54079.692{\pm}0.003$   | -0.003 | 55151. | LS            |
| RT Dor              | $54091.639 {\pm} 0.002$   | -0.040 | 48307. | LS           | RX Eri   | $54089.671{\pm}0.002$   | -0.007 | 55168. | LS            |
| RT Dor              | $54100.811 {\pm} 0.002$   | -0.042 | 48326. | LS           | RX Eri   | $54096.716{\pm}0.003$   | -0.009 | 55180. | LS            |
| VW Dor              | $54038.630{\pm}0.001$     | -0.073 | 27443. | LS           | SV Eri   | $53998.777 {\pm} 0.005$ | 0.741  | 25842. | LS            |
| VW Dor              | $54094.551{\pm}0.002$     | -0.072 | 27541. | LS           | XY Eri   | $54024.718{\pm}0.005$   | -0.257 | 52794. | LS            |
| RW Dra              | $53922.496{\pm}0.004$     | 0.154  | 32839. | $\mathbf{C}$ | XY Eri   | $54029.710{\pm}0.010$   | -0.253 | 52803. | LS            |
| RW Dra              | $53926.482 {\pm} 0.005$   | 0.153  | 32848. | $\mathbf{C}$ | XY Eri   | $54039.720{\pm}0.001$   | -0.219 | 52821. | LS            |
| XZ Dra              | $53935.526{\pm}0.002$     | -0.096 | 25199. | $\mathbf{C}$ | XY Eri   | $54049.696{\pm}0.001$   | -0.220 | 52839. | LS            |
| XZ Dra              | $53945.535 {\pm} 0.005$   | -0.093 | 25220. | $\mathbf{C}$ | XY Eri   | $54054.661{\pm}0.002$   | -0.243 | 52848. | LS            |
| XZ Dra              | $53975.549{\pm}0.002$     | -0.099 | 25283. | $\mathbf{C}$ | XY Eri   | $54064.618{\pm}0.001$   | -0.263 | 52866. | LS            |
| XZ Dra              | $53984.595 \!\pm\! 0.002$ | -0.106 | 25302. | $\mathbf{C}$ | XY Eri   | $54080.701{\pm}0.005$   | -0.253 | 52895. | LS            |
| BC Dra              | $53925.575 {\pm} 0.006$   | 0.075  | 16186. | $\mathbf{C}$ | XY Eri   | $54085.704{\pm}0.002$   | -0.238 | 52904. | LS            |
| BC Dra              | $53933.495 \!\pm\! 0.006$ | 0.080  | 16197. | $\mathbf{C}$ | XY Eri   | $54090.722{\pm}0.010$   | -0.208 | 52913. | LS            |
| BC Dra              | $53938.528{\pm}0.008$     | 0.075  | 16204. | $\mathbf{C}$ | XY Eri   | $54095.719{\pm}0.003$   | -0.200 | 52922. | LS            |
| BC Dra              | $53943.569{\pm}0.005$     | 0.079  | 16211. | $\mathbf{C}$ | BB Eri   | $54049.735{\pm}0.003$   | 0.217  | 25426. | LS            |
| BC Dra              | $53946.455 {\pm} 0.005$   | 0.087  | 16215. | $\mathbf{C}$ | BB Eri   | $54053.726{\pm}0.002$   | 0.219  | 25433. | LS            |
| BC Dra              | $53956.523{\pm}0.010$     | 0.081  | 16229. | $\mathbf{C}$ | BB Eri   | $54065.693{\pm}0.001$   | 0.218  | 25454. | LS            |
| BC Dra              | $53959.410{\pm}0.010$     | 0.090  | 16233. | $\mathbf{C}$ | BB Eri   | $54085.643{\pm}0.002$   | 0.222  | 25489. | LS            |
| BC Dra              | $53969.472 {\pm} 0.004$   | 0.078  | 16247. | $\mathbf{C}$ | BB Eri   | $54089.630{\pm}0.003$   | 0.220  | 25496. | LS            |
| BC Dra              | $53982.423{\pm}0.003$     | 0.076  | 16265. | $\mathbf{C}$ | BB Eri   | $54093.617{\pm}0.002$   | 0.217  | 25503. | LS            |
| BC Dra              | $53984.580{\pm}0.005$     | 0.075  | 16268. | $\mathbf{C}$ | RX For   | $54030.687{\pm}0.003$   | -0.048 | 23772. | LS            |
| BC Dra              | $53987.461 {\pm} 0.004$   | 0.077  | 16272. | $\mathbf{C}$ | RX For   | $54033.670{\pm}0.005$   | -0.052 | 23777. | LS            |
| BC Dra              | $54013.379{\pm}0.005$     | 0.091  | 16308. | С            | RX For   | $54042.657{\pm}0.002$   | -0.025 | 23792. | LS            |
| BC Dra              | $54018.407 {\pm} 0.005$   | 0.082  | 16315. | С            | RX For   | $54048.645 {\pm} 0.002$ | -0.010 | 23802. | $\mathbf{LS}$ |
| BC Dra              | $54036.393{\pm}0.003$     | 0.078  | 16340. | $\mathbf{C}$ | RX For   | $54064.728{\pm}0.002$   | -0.054 | 23829. | LS            |
| BC Dra              | $54046.473{\pm}0.010$     | 0.084  | 16354. | $\mathbf{C}$ | RX For   | $54067.724{\pm}0.005$   | -0.045 | 23834. | LS            |
| BC Dra              | $54059.421{\pm}0.003$     | 0.080  | 16372. | $\mathbf{C}$ | RX For   | $54073.711{\pm}0.002$   | -0.031 | 23844. | LS            |
| BC Dra              | $54067.333{\pm}0.008$     | 0.076  | 16383. | $\mathbf{C}$ | RX For   | $54088.640{\pm}0.001$   | -0.035 | 23869. | LS            |
|                     |                           |        |        |              |          |                         |        |        |               |

| Variable | Maximum                                        | O - C  | E               | Obs.      | Variable | Maximum                                        | O - C          | E               | Obs.         |
|----------|------------------------------------------------|--------|-----------------|-----------|----------|------------------------------------------------|----------------|-----------------|--------------|
|          | HJD 24                                         | (days) | _               |           |          | HJD 24                                         | (days)         | _               |              |
| BX For   | 54091 619+0 002                                | -0.042 | 23874           | LS        | VX Ind   | 54018 621+0 005                                | 0.020          | 28150           | LS           |
| SS For   | $54080\ 705\pm0\ 003$                          | -0.145 | 31108           | LS        | BR Leo   | $54084607\pm0.002$                             | 0.020<br>0.077 | 23849           | C            |
| SW For   | $54014720\pm0.000$                             | 0.397  | 24474           | LS        | BB Leo   | $54093.656\pm0.002$                            | 0.078          | 23869           | č            |
| SW For   | $54030799\pm0.005$                             | 0.001  | 24494           | LS        | BR Leo   | $54098.631\pm0.002$                            | 0.077          | 23880           | č            |
| SW For   | $54039.640\pm0.002$                            | 0.101  | 24505           | LS        | SS Leo   | $54099.669\pm0.002$                            | -0.049         | 19667           | č            |
| SW For   | $54033.040\pm0.002$<br>$54043.661\pm0.001$     | 0.401  | 24000.<br>24510 | LS        | ST Leo   | $54095.005 \pm 0.005$<br>$54094.649 \pm 0.004$ | -0.021         | 54754           | c            |
| SW For   | $54045.001 \pm 0.001$<br>$54051.696 \pm 0.003$ | 0.404  | 24010.<br>24520 | LS        | AX Leo   | $54094.658\pm0.004$                            | -0.021         | 30603           | c            |
| SW For   | $54067.769\pm0.000$                            | 0.401  | 24020.<br>24540 | LS        | AX Leo   | $54094.000\pm0.000$<br>$54097.578\pm0.010$     | -0.025         | 39697           | c            |
| SW For   | $54001.109\pm0.004$<br>$54080.629\pm0.002$     | 0.000  | 24546           | LS        | V LMi    | $54061.592\pm0.005$                            | 0.010          | 63/86           | c            |
| SW For   | $54080.023\pm0.002$<br>$54084.643\pm0.004$     | 0.400  | 24000.<br>24561 | LS        | V LMi    | $54067.582 \pm 0.005$                          | 0.020          | 63407           | C            |
| SW For   | 54084.045±0.004                                | 0.335  | 24501.          |           | V LMI    | $54001.502\pm0.003$<br>$54001.504\pm0.002$     | 0.000          | 63541           | C            |
| SW For   | $54000.000\pm0.002$<br>$54002.688\pm0.004$     | 0.533  | 24500.<br>24571 |           | V LMI    | $54091.504\pm0.002$<br>$54097.491\pm0.002$     | 0.020          | 63552           | C            |
| SW For   | $54092.083\pm0.004$<br>54006 704 $\pm0.005$    | 0.402  | 24571.          | LS        |          | $54097.491\pm0.002$<br>$54022.760\pm0.004$     | 0.029          | 03552.<br>91700 | TS           |
| SV For   | $54090.704\pm0.005$<br>$54012.708\pm0.010$     | 0.400  | 24570.          | LD<br>T C | U Lep    | $54022.700\pm0.004$<br>54020.724±0.001         | 0.048          | 21790.          | LS           |
| SA FUI   | $54012.708\pm0.010$<br>54026.622±0.002         | 0.040  | 24009.<br>94569 | LO<br>TC  | U Lep    | $54029.734\pm0.001$<br>54026 710±0.005         | 0.044          | 21002.<br>91914 | LO<br>TC     |
| SA FUI   | $54020.022\pm0.003$<br>54028 726±0.002         | 0.037  | 24502.          | LO        | U Lep    | $54030.710\pm0.003$<br>$54040.781\pm0.003$     | 0.042          | 21014.<br>01001 | LO<br>TC     |
| SA FUI   | $54056.720\pm0.002$<br>54055.680±0.001         | 0.034  | 24002.<br>94610 | LO        | U Lep    | $54040.781\pm0.002$<br>54042 600±0.001         | 0.043          | 21021.<br>91996 | LO<br>TC     |
| SX FOI   | $54055.080\pm0.001$<br>54075 656 $\pm0.002$    | 0.039  | 24010.          | LD<br>T C | U Lep    | $54043.090\pm0.001$<br>54047 750±0.001         | 0.044          | 21020.<br>01029 | LS           |
| SA FOF   | $54075.050\pm0.002$                            | 0.039  | 24045.<br>94659 | LS        | U Lep    | $54047.759\pm0.001$                            | 0.045          | 21000.<br>01060 | LS           |
| SA FOF   | $54064.752\pm0.005$                            | 0.035  | 24008.          | LS        | U Lep    | $54004.020\pm0.001$                            | 0.041          | 21002.<br>01001 | LS           |
| SA FOF   | $54095.020\pm0.001$                            | 0.035  | 24070.          | LS        | U Lep    | $54075.070\pm0.002$<br>54070.742 \ 0.002       | 0.045          | 21001.<br>01000 | LS           |
| DD Cam   | $54096.057 \pm 0.005$                          | 0.037  | 24001.          | LS        | U Lep    | $54079.742 \pm 0.002$                          | 0.045          | 21000.<br>21002 | LS           |
| nn Geill | $54044.505\pm0.005$                            | -0.557 | 31934.<br>21060 | d         | о Lep    | $54062.040\pm0.002$                            | 0.042          | 21095.<br>91005 | LS           |
| RR Gem   | $54058.472 \pm 0.004$                          | -0.300 | 31909.<br>20097 | C         | U Lep    | $54089.020\pm0.002$                            | 0.044          | 21905.<br>21012 | LS           |
| RR Gem   | $54081.510\pm0.002$                            | -0.302 | 32027.<br>F967F | C         | U Lep    | $54093.094 \pm 0.002$                          | 0.042          | 21912.          | LS           |
| SZ Gem   | $54092.477 \pm 0.002$                          | -0.052 | 53075.<br>F9697 | C         | U Lep    | $54096.605\pm0.002$                            | 0.045          | 21917.          |              |
| SZ Gem   | $54098.488 \pm 0.002$                          | -0.054 | 53087.<br>F9601 | C         | о сер    | $54100.074\pm0.002$                            | 0.044          | 21924.          | LS           |
| SZ Gem   | $54100.491 \pm 0.002$                          | -0.050 | 53691.          | C         | TT Lyn   | $54082.001 \pm 0.005$                          | -0.037         | 29177.          | C            |
| GIGem    | $54044.587 \pm 0.002$                          | 0.070  | 54090.<br>54791 | C         | TT Lyn   | $54084.457 \pm 0.003$                          | -0.033         | 29180.          | C            |
| GI Gem   | $54081.410\pm0.002$                            | 0.072  | 54781.<br>54702 | C         | TI Lyn   | $54087.448\pm0.003$                            | -0.030         | 29180.          | d            |
| GIGem    | $54086.613 \pm 0.002$                          | 0.069  | 54793.<br>54016 | C         | TT Lyn   | $54090.426\pm0.005$                            | -0.039         | 29190.          | C            |
| GIGEM    | $54090.578\pm0.002$                            | 0.069  | 54810.<br>5100C |           | TT Lyn   | $54096.406 \pm 0.002$                          | -0.033         | 29200.          | C            |
| AP Gru   | $54014.044 \pm 0.002$                          | 0.033  | 51220.<br>01094 |           | TT Lyn   | $54099.400\pm0.005$                            | -0.026         | 29205.          | C            |
| TW Her   | $53946.398 \pm 0.002$                          | -0.011 | 81084.          | C         | TW Lyn   | $54081.479 \pm 0.002$                          | 0.053          | 18800.          | C            |
| TW Her   | $53954.391 \pm 0.002$                          | -0.010 | 81104.          | C         | TW Lyn   | $54096.417 \pm 0.002$                          | 0.053          | 10095           | C            |
| TW Her   | $53970.375\pm0.002$                            | -0.010 | 81144.          | C         | TW Lyn   | $54098.345 \pm 0.002$                          | 0.054          | 18835.          | C            |
| VX Her   | $53919.442 \pm 0.003$                          | -0.398 | 70644.          | C         | RZ Lyr   | $53919.501 \pm 0.003$                          | 0.007          | 24912.          | C            |
| VZ Her   | $53937.528 \pm 0.002$                          | 0.060  | 38945.          | C         | RZ Lyr   | $53920.525 \pm 0.002$                          | 0.008          | 24914.          | C            |
| VZ Her   | $53945.450 \pm 0.002$                          | 0.062  | 38903.          | C         | RZ Lyr   | $53959.364 \pm 0.003$                          | -0.007         | 24990.          | C            |
| VZ Her   | $53952.500 \pm 0.003$                          | 0.061  | 38979.          | C         | RZ Lyr   | $53982.370\pm0.002$                            | -0.007         | 25035.          | C            |
| VZ Her   | $53967.471 \pm 0.002$                          | 0.061  | 39013.          | C         | RZ Lyr   | $53983.393 \pm 0.002$                          | -0.006         | 25037.          | C            |
| DL Her   | $53931.557 \pm 0.003$                          | 0.027  | 26576           | C         | AW Lyr   | $53916.460 \pm 0.002$                          | 0.027          | 57463           | C            |
| UU Hor   | $54079.724 \pm 0.002$                          | 0.141  | 45608.          |           | AW Lyr   | $53923.424 \pm 0.006$                          | 0.027          | 57477.          | C            |
| UU Hor   | $54088.732 \pm 0.002$                          | 0.137  | 45622.          |           | CN Lyr   | $53923.462 \pm 0.005$                          | 0.018          | 22940.          | C            |
| UU Hor   | $54099.678 \pm 0.002$                          | 0.141  | 45639.          | LS        | CN Lyr   | $53927.579 \pm 0.005$                          | 0.021          | 22950.          | C            |
| DD Hya   | $54059.619 \pm 0.003$                          | -0.147 | 24641.          | С         | CN Lyr   | $53972.418 \pm 0.002$                          | 0.019          | 23059.          | C            |
| DD Hya   | $54092.735 \pm 0.001$                          | -0.149 | 24707.          | LS        | CN Lyr   | $53979.405 \pm 0.002$                          | 0.013          | 23076.          | C            |
| DD Hya   | $54098.761 \pm 0.003$                          | -0.144 | 24719.          |           | CN Lyr   | $53981.473 \pm 0.003$                          | 0.024          | 23081.          | C            |
| DG Hya   | $54098.761 \pm 0.003$                          | 0.036  | 39729.          | LS        | IK Lyr   | $53926.462 \pm 0.005$                          | -0.196         | 59547.          | C            |
| GO Hya   | $54067.630 \pm 0.010$                          | -0.062 | 44652.          | С         | IK Lyr   | $53940.490 \pm 0.005$                          | -0.187         | 59581.          | С            |
| GO Hya   | $54090.528 {\pm} 0.003$                        | -0.076 | 44688.          | С         | IK Lyr   | $53973.475 {\pm} 0.004$                        | -0.187         | 59661.          | С            |
| GO Hya   | $54095.611 \pm 0.005$                          | -0.084 | 44696.          | С         | IK Lyr   | $53985.395 {\pm} 0.005$                        | -0.224         | 59690.          | C            |
| TW Hyi   | $54066.555 \pm 0.002$                          | 0.009  | 21619.          | LS        | 10 Lyr   | $53938.470 \pm 0.004$                          | -0.032         | 24812.          | C            |
| TW Hyi   | $54072.634 {\pm} 0.001$                        | 0.009  | 21628.          | LS        | 10 Lyr   | $53979.444 \pm 0.004$                          | -0.034         | 24883.          | С            |
| TW Hyi   | $54093.571 {\pm} 0.003$                        | 0.010  | 21659.          | LS        | IO Lyr   | $53983.489 {\pm} 0.002$                        | -0.028         | 24890.          | $\mathbf{C}$ |
|          |                                                |        |                 |           |          |                                                |                |                 |              |

Table 1 (cont.): Maxima of RR Lyrae stars

| Variable | Maximum                                        | O = C  | F               | Obs      | Variable          | Maximum                                        | O = C            | F               | Obe      |
|----------|------------------------------------------------|--------|-----------------|----------|-------------------|------------------------------------------------|------------------|-----------------|----------|
| variable | HID 24                                         | (davs) | Ľ               | 0.05.    | variable          | HID 24                                         | (davs)           | L               | 0.05.    |
| IO Lur   | $54001 378 \pm 0.002$                          | -0.030 | 2/021           | С        | BH Deg            | $53060500\pm0.010$                             | -0.075           | 22784           | C        |
| V340 Lyr | $53082,368\pm0.002$                            | -0.030 | 24321.<br>11101 | C        | BH Per            | $53909.390\pm0.010$<br>54048 392±0.004         | -0.015           | 22104.          | C        |
| Z Mic    | $53932.500 \pm 0.003$<br>54015 612 ± 0.004     | -0.001 | 91159<br>91158  | LS       | BH Per            | $54048.392 \pm 0.004$<br>$54059.290 \pm 0.002$ | -0.113           | 22301.          | C        |
| DV Mon   | $54013.012 \pm 0.004$<br>$54073.780 \pm 0.002$ | 0.114  | 69733           | LS       | CG Peg            | $53926516\pm0.002$                             | -0.044           | 31734           | C        |
| DV Mon   | $54019.100 \pm 0.002$<br>$54080.808 \pm 0.002$ | 0.076  | 60750           | LS       | CG Peg            | $53920.510 \pm 0.002$<br>$53947.535 \pm 0.002$ | -0.044           | 31770           | C        |
| DV Mon   | $54085.760\pm0.002$                            | 0.070  | 60762           |          | CG Peg            | $53941.555\pm0.002$<br>53961 550 $\pm0.002$    | -0.040           | 31800           | C        |
| BS Oct   | $54035.700\pm0.002$<br>$54015.671\pm0.002$     | 0.000  | 38615           |          | CG Peg            | $53901.550\pm0.002$<br>53974 630±0.005         | -0.045           | 31837           | C        |
| RS Oct   | $54017.071 \pm 0.002$<br>$54037.651 \pm 0.001$ | 0.120  | 38663           | LS       | CG Peg            | $53989576\pm0.000$                             | -0.040           | 31860           | C        |
| RS Oct   | $54037.001 \pm 0.001$<br>$54048.642 \pm 0.002$ | 0.117  | 38687           | LS       | CG Peg            | $53997520\pm0.004$                             | -0.041           | 31886           | C        |
| RS Oct   | $54043.042 \pm 0.002$<br>$54054.595 \pm 0.002$ | 0.116  | 38700           |          | CG Peg            | $53991.520\pm0.002$<br>54026.481±0.003         | -0.049           | 31000.          | C        |
| RS Oct   | $54054.595 \pm 0.002$<br>54065 570 $\pm 0.002$ | 0.110  | 38794           | LS<br>IS | CG Peg            | $54020.481\pm0.003$<br>$54034.425\pm0.002$     | -0.040           | 31940.<br>31065 | C        |
| SS Oct   | $54005.579\pm0.002$<br>$54042.670\pm0.002$     | -0.070 | 11848           |          | CG Peg            | $54034.425\pm0.002$<br>$54043.297\pm0.002$     | -0.044<br>-0.047 | 3108/           | C        |
| IW Oct   | $54042.070\pm0.002$<br>$54012.752\pm0.005$     | 0.070  | 41040.          | LS<br>IS | CU Peg            | $54045.297 \pm 0.002$<br>54001 455 ± 0.002     | -0.047           | 51904.<br>51077 | C        |
| UW Oct   | $54012.752 \pm 0.005$<br>54022.642 \pm 0.10    | -0.007 | 44200.          | цс       |                   | $54001.455\pm0.002$<br>52054 472±0.002         | -0.059           | 99094           | C        |
| UW Oct   | $54035.043 \pm 0.010$<br>54045 642 $\pm 0.001$ | 0.007  | 44312.          | LS<br>IS | DZ I eg           | $53954.472\pm0.003$<br>53070 360 $\pm0.002$    | 0.155            | 33034.          | C        |
| UW Oct   | $54045.042 \pm 0.001$<br>54053 630 $\pm 0.002$ | -0.009 | 44009.          | LS<br>IS | DZ I eg           | $53979.309\pm0.002$<br>53082 408±0.002         | 0.155            | 33080           | C        |
| UW Oct   | $54055.039 \pm 0.002$<br>54066 538 $\pm 0.004$ | -0.013 | 44337.          |          | DZ Peg            | $53982.408\pm0.002$<br>54022 496 $\pm0.003$    | 0.157            | 33146           | C        |
| UW Oct   | $54000.538 \pm 0.004$<br>$54074.534 \pm 0.002$ | 0.004  | 44360.          | LS<br>IS | DZ I eg           | $54022.490\pm0.003$<br>$54033.425\pm0.002$     | 0.100            | 22164           | C        |
| AB Oct   | $54074.554\pm0.002$<br>$54002.545\pm0.002$     | -0.009 | 44404.          | LS<br>IS | DZ I eg           | $54035.425\pm0.002$<br>54036.462±0.002         | 0.157            | 22160           | C        |
| V455 Oph | $54092.545\pm0.002$<br>53038 405±0.003         | 0.134  | 43029.<br>26660 | цэ<br>С  | DZ Feg            | $54050.402 \pm 0.002$<br>54058 322 ± 0.002     | 0.150            | 33109.          | C        |
| V455 Oph | $53938.495 \pm 0.003$<br>53043 480 $\pm 0.002$ | 0.235  | 20009.<br>26680 | C        | DZ I eg           | $54058.522 \pm 0.002$<br>54061 362 ± 0.004     | 0.155            | 33200.<br>33910 | C        |
| V455 Oph | $53943.489\pm0.002$<br>53048 482±0.004         | 0.235  | 20080.<br>26601 | C        | AB Por            | $54001.502 \pm 0.004$<br>53007 616 ± 0.002     | 0.150            | 62885           | C        |
| CM Ori   | $53948.482 \pm 0.004$<br>54000 782 \pm 0.002   | -0.235 | 42806           | T C      | AR I er           | $53997.010\pm0.002$<br>54022 575±0.004         | 0.054            | 62005.          | C        |
| CM Ori   | $54090.782 \pm 0.002$<br>$54004.710 \pm 0.002$ | -0.023 | 43090.<br>43009 | LS       | AR Per            | $54023.575 \pm 0.004$<br>54050 386 ± 0.002     | 0.055            | 02940.<br>63000 | C        |
| V064 Ori | $54094.719\pm0.002$<br>$54037.700\pm0.001$     | -0.022 | 43902.<br>44660 | LS       | AR Per            | $54050.380 \pm 0.002$<br>$54053.361 \pm 0.002$ | 0.050            | 63016           | C        |
| V964 Ori | $54037.709\pm0.001$<br>54080.601±0.001         | -0.370 | 44000.          | LS       | AR Per            | $54053.301 \pm 0.002$<br>$54070.323 \pm 0.002$ | 0.052            | 63077           | C        |
| DN Dov   | $54030.001 \pm 0.001$<br>54012 567 $\pm 0.001$ | 0.002  | 44740.          | цс       | AR I er           | $54079.323\pm0.002$<br>54084 427±0.005         | 0.050            | 62020           | C        |
| BN Pav   | $54013.507 \pm 0.001$<br>54030 570 $\pm 0.001$ | 0.002  | 45272.          | LS       | AR Per            | $54084.427 \pm 0.003$<br>54080 530 $\pm 0.002$ | 0.055            | 63101           | C        |
| BN Day   | $54030.579 \pm 0.001$<br>$54047.503 \pm 0.002$ | 0.005  | 45302.          | LS<br>IS | AR Por            | $54089.550\pm0.002$<br>$54002.515\pm0.002$     | 0.050            | 62102           | C        |
| BN Pav   | $54041.535\pm0.002$<br>$54051.563\pm0.003$     | -0.000 | 45332.          |          | AR Per            | $54092.513\pm0.002$<br>$54095.401\pm0.002$     | 0.050            | 63115           | C        |
| BN Day   | $54051.505\pm0.003$<br>$54055.533\pm0.002$     | 0.007  | 45346           | IS       | BV Dho            | $54035.431\pm0.002$<br>$54043.516\pm0.005$     | 0.000            | 20225           | TS       |
| BD Dav   | $54055.553 \pm 0.002$<br>$54013.553 \pm 0.001$ | -0.007 | 45540.          |          | RV Phe            | $54043.510\pm0.003$<br>$54053.659\pm0.002$     | -0.173<br>-0.160 | 20335.          |          |
| BD Dav   | $54013.555 \pm 0.001$<br>$54032.529 \pm 0.001$ | -0.049 | 477810          |          | II Pic            | $54035.059\pm0.002$<br>54046 654 $\pm0.002$    | -0.109           | 20352.          |          |
| BD Dav   | $54052.523\pm0.001$<br>$54052.561\pm0.002$     | 0.110  | 47856           |          | U Pic             | $54040.054\pm0.002$<br>$54053.701\pm0.001$     | 0.055            | 20110.          |          |
| VV Peg   | $53080500\pm0.002$                             | -0.027 | 20876           | C        | U Pic             | $54035.701\pm0.001$<br>$54075.710\pm0.002$     | 0.050            | 20129.          |          |
| VV Peg   | $54022 502 \pm 0.002$                          | -0.021 | 20010.          | C        | U Pic             | $54083 645\pm0.001$                            | 0.055            | 20115.          | LS       |
| VV Peg   | $54022.502 \pm 0.002$<br>$54046.431 \pm 0.002$ | -0.020 | 29902.          | C        | U Pic             | $54085.045 \pm 0.001$<br>$54090.691 \pm 0.002$ | 0.055            | 20197.          |          |
| VV Peg   | $54040.431\pm0.002$<br>$54048.389\pm0.003$     | -0.028 | 30011.          | C        | U Pic             | $54090.091 \pm 0.002$<br>$54094.655 \pm 0.002$ | 0.055            | 20210.          |          |
| VV Peg   | $54048.389\pm0.003$<br>$54052.201\pm0.003$     | -0.024 | 30013.          | C        | U Pic             | $54094.005\pm0.002$<br>$54101.701\pm0.002$     | 0.050            | 20222.<br>28228 |          |
| AV Pog   | $53035.477\pm0.003$                            | 0.1023 | 25088           | C        | BV Dec            | $54101.701\pm0.002$<br>54028 578±0.001         | 0.000            | 20200.          | LS<br>IS |
| AV Peg   | $53930.411 \pm 0.002$<br>53940 550 $\pm 0.002$ | 0.103  | 26001           | C        | RV Psc            | $54028.578\pm0.001$<br>$54037.574\pm0.001$     | 0.000            | 21421.<br>91/38 |          |
| AV Peg   | $53940.000 \pm 0.002$<br>53969 /39 ± 0.002     | 0.101  | 26001.          | C        | XX Pup            | $54031.514\pm0.001$<br>54083 653 $\pm0.003$    | 0.451            | 23802           |          |
| AV Peg   | $53909.459 \pm 0.002$<br>54001 451 $\pm 0.002$ | 0.103  | 26157           | C        | XX Pup            | $54005.005\pm0.005$<br>$54007.616\pm0.002$     | 0.450            | 23002.          |          |
| AV Peg   | $54001.451\pm0.002$<br>$54017.456\pm0.003$     | 0.104  | 26107.          | C        | HH Pup            | $54072,670\pm0.002$                            | 0.400            | 20853           |          |
| AV Pog   | $54017.400\pm0.003$<br>$54035.413\pm0.003$     | 0.104  | 20130.          | C        | нн г цр<br>нн рир | $54072.010\pm0.002$<br>54070 704 $\pm0.001$    | 0.010            | 30871           | LS<br>IS |
| AV Peg   | $54035.415\pm0.003$<br>$54037.366\pm0.004$     | 0.103  | 26244.          | C        | HH Pup            | $54079.704\pm0.001$<br>54083 611 $\pm0.002$    | 0.010            | 30881           |          |
| AV Peg   | $54037.300\pm0.004$<br>$54044.301\pm0.002$     | 0.104  | 26249.          | C        | HH Pup            | $54005.011\pm0.002$<br>$54005.725\pm0.003$     | 0.010            | 30012           |          |
| AV Per   | $54048.295\pm0.002$                            | 0.103  | 26277           | č        | HK Pun            | 54097 699+0 003                                | -0.238           | 23820           |          |
| AV Per   | $54051 421 \pm 0.002$                          | 0.100  | 26285           | č        | HK Pun            | $54100.638\pm0.003$                            | -0.236           | 23824           | LS       |
| AV Dec   | $54051.421\pm0.002$<br>$54053.379\pm0.002$     | 0.105  | 26200.          | č        | V9970 Sam         | $54014 680 \pm 0.002$                          | 0.200            | 25024.          | LG       |
| AV Dec   | $54060.012\pm0.002$<br>54060.400 $\pm0.002$    | 0.100  | 26200.          | Ċ        | UZ Sel            | $54014.009\pm0.000$<br>$54021.772\pm0.000$     | 0.098            | 33120.          | LS       |
| BH Dog   | $54000.400\pm0.002$<br>53037 521 $\pm$ 0.004   | _0.100 | 20300.<br>22724 | č        |                   | 54021.775±0.002                                | 0.030            | 22910           | ы<br>LS  |
| BH Dog   | $53937.521\pm0.004$<br>53944 586 $\pm0.005$    | -0.094 | 44104.<br>99745 | c        |                   | $54031.000\pm0.002$<br>54011 692±0.001         | 0_1_2            | 51985           | цо<br>LS |
| BH Dog   | 53953 550±0.000                                | -0.000 | 22140.<br>99750 | c        | VW Sel            | $54011.025\pm0.001$<br>54032 574 $\pm0.004$    | -0.015           | 51200.<br>51296 | LG       |
| DILLER   | 00900.009±0.009                                | -0.001 | 44109.          | U        |                   | 04002.014±0.004                                | -0.015           | 01020.          | ы        |
|          |                                                |        |                 |          |                   |                                                |                  |                 |          |
| Variable    | Maximum                 | 0 – C     | E      | Obs.          | Variable | Maximum               | 0 – C  | Ε      | Obs.          |
|-------------|-------------------------|-----------|--------|---------------|----------|-----------------------|--------|--------|---------------|
|             | HJD 24                  | (days)    |        |               |          | HJD 24                | (days) |        |               |
| VW Scl      | $54033.593{\pm}0.005$   | -0.018    | 51328. | LS            | AE Tuc   | $54053.739{\pm}0.001$ | 0.060  | 47737. | LS            |
| VX Scl      | $54012.615{\pm}0.002$   | -0.435    | 19454. | LS            | AE Tuc   | $54083.585{\pm}0.001$ | 0.072  | 47809. | LS            |
| VX Scl      | $54033.635{\pm}0.005$   | -0.447    | 19487. | LS            | AE Tuc   | $54095.606{\pm}0.002$ | 0.077  | 47838. | LS            |
| VX Scl      | $54038.726{\pm}0.002$   | -0.454    | 19495. | $\mathbf{LS}$ | AE Tuc   | $54100.579{\pm}0.002$ | 0.077  | 47850. | LS            |
| VX Scl      | $54047.650{\pm}0.002$   | -0.453    | 19509. | LS            | AG Tuc   | $54067.626{\pm}0.001$ | 0.047  | 23690. | LS            |
| VX Scl      | $54052.746{\pm}0.001$   | -0.456    | 19517. | $\mathbf{LS}$ | AG Tuc   | $54093.537{\pm}0.002$ | 0.047  | 23733. | $\mathbf{LS}$ |
| VX Scl      | $54075.689{\pm}0.002$   | -0.457    | 19553. | $\mathbf{LS}$ | AG Tuc   | $54096.550{\pm}0.002$ | 0.047  | 23738. | LS            |
| RU Sex $^3$ | $54093.594{\pm}0.005$   | 0.057     | 32770. | $\mathbf{C}$  | BK Tuc   | $54011.868{\pm}0.003$ | -0.017 | 31400. | LS            |
| RU Sex $^3$ | $54100.581{\pm}0.003$   | 0.039     | 32790. | $\mathbf{C}$  | BK Tuc   | $54024.521{\pm}0.001$ | -0.019 | 31423. | LS            |
| SS Tau      | $54022.763{\pm}0.002$   | 0.478     | 43420. | LS            | BK Tuc   | $54030.572{\pm}0.001$ | -0.020 | 31434. | LS            |
| SS Tau      | $54039.774{\pm}0.002$   | 0.473     | 43466. | $\mathbf{LS}$ | BK Tuc   | $54041.574{\pm}0.001$ | -0.022 | 31454. | $\mathbf{LS}$ |
| SS Tau      | $54049.756{\pm}0.002$   | 0.467     | 43493. | $\mathbf{LS}$ | BK Tuc   | $54085.579{\pm}0.002$ | -0.033 | 31534. | LS            |
| SS Tau      | $54055.674{\pm}0.002$   | 0.467     | 43509. | $\mathbf{LS}$ | BK Tuc   | $54096.579{\pm}0.003$ | -0.037 | 31554. | LS            |
| SS Tau      | $54065.659{\pm}0.001$   | 0.464     | 43536. | $\mathbf{LS}$ | TU UMa   | $54095.617{\pm}0.002$ | -0.026 | 20199. | $\mathbf{C}$  |
| SS Tau      | $54079.712{\pm}0.002$   | 0.460     | 43574. | $\mathbf{LS}$ | TU UMa   | $54096.729{\pm}0.002$ | -0.029 | 20201. | $\mathbf{C}$  |
| SS Tau      | $54082.675 {\pm} 0.002$ | 0.464     | 43582. | $\mathbf{LS}$ | AB UMa   | $54094.547{\pm}0.005$ | 0.112  | 29799. | $\mathbf{C}$  |
| W Tuc       | $54012.636{\pm}0.001$   | 0.154     | 26679. | $\mathbf{LS}$ | AB UMa   | $54100.544{\pm}0.010$ | 0.113  | 29809. | $\mathbf{C}$  |
| W Tuc       | $54041.533{\pm}0.001$   | 0.151     | 26724. | $\mathbf{LS}$ | BN Vul   | $53922.533{\pm}0.005$ | 0.059  | 14125. | $\mathbf{C}$  |
| W Tuc       | $54073.645{\pm}0.002$   | 0.151     | 26774. | $\mathbf{LS}$ | BN Vul   | $53956.400{\pm}0.003$ | 0.060  | 14182. | $\mathbf{C}$  |
| W Tuc       | $54075.574{\pm}0.004$   | 0.154     | 26777. | $\mathbf{LS}$ | BN Vul   | $53959.375{\pm}0.003$ | 0.065  | 14187. | $\mathbf{C}$  |
| W Tuc       | $54084.566{\pm}0.004$   | 0.154     | 26791. | $\mathbf{LS}$ | BN Vul   | $53972.444{\pm}0.002$ | 0.063  | 14209. | $\mathbf{C}$  |
| W Tuc       | $54091.628{\pm}0.002$   | 0.152     | 26802. | $\mathbf{LS}$ | BN Vul   | $54000.365{\pm}0.004$ | 0.060  | 14256. | $\mathbf{C}$  |
| W Tuc       | $54100.621{\pm}0.003$   | 0.154     | 26816. | LS            | BN Vul   | $54016.412{\pm}0.005$ | 0.065  | 14283. | $\mathbf{C}$  |
| AE Tuc      | $54011.872{\pm}0.001$   | 0.044     | 47636. | LS            |          |                       |        |        |               |
|             | * C = Calern, I         | .S = La S | illa   |               | l        |                       |        |        |               |
|             | 1 Meinunger, 19         | 84        |        |               |          |                       |        |        |               |
|             | 2 Baldwin and S         | amolyk,   | 2003   |               |          |                       |        |        |               |
|             | 3 Williams, 199         | 3         |        |               |          |                       |        |        |               |

Table 1 (cont.): Maxima of RR Lyrae stars

References:

Baldwin, M.E., Samolyk, G., 2003, AAVSO RR Lyrae Monographs, 1, (2)

- Bertin, E., Arnouts, S., 1996, A&AS, 117, 393
- Boër, M., Atteia, J.L., Bringer, M., Gendre, B., Klotz, A., Malina, R., de Freitas Pacheco, J.A., Pedersen, H., 2001, A&A, **378**, 76
- Boninsegna, R., Vandenbroere, J., Le Borgne, J.F., The Geos Team, 2002, ASP Conf. Ser., 259, 166, IAU Colloq. 185, "Radial and Nonradial Pulsations as Probes of Stellar Physics"

Bringer, M., Boër, M., Peignot, C., Fontan, G., Merce, C., 1999, A&AS, 138, 581

Kholopov, P.N., et al., 1985, General Catalogue of Variable Stars, Moscow: Nauka Publishing House, 1988, 4th ed., edited by Kholopov, P.N.; and 2006 web edition (http://www.sai.msu.su/groups/cluster/gcvs/).

Meinunger L., 1984, *MVS*, **10**, 56

Williams, D.B., 1993, JAAVSO, 22, 116

Number 5768

Konkoly Observatory Budapest 4 May 2007 *HU ISSN 0374 - 0676* 

# 13 NEW ECLIPSING BINARIES WITH ADDITIONAL VARIABILITY IN THE ASAS CATALOGUE

#### PILECKI, B.; SZCZYGIEŁ, D.M.

Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Al.Ujazdowskie 4, 00-478 Warszawa, Poland, e-mail: pilecki@astrouw.edu.pl, dszczyg@astrouw.edu.pl

The All Sky Automated Survey has already collected over 6 years of observations for the majority of the sky (declinations  $\langle +28^{\circ}\rangle$ ), down to 14th magnitude. Semi-automatic classification of variable stars resulted in the ASAS Catalogue of Variable Stars — ACVS (Pojmański et al., 2006). For details on the classification procedure see Pojmański (2002). A big part of ACVS consists of eclipsing binaries, among them are 5384 contact (EC), 2957 semidetached (ESD), and 2758 detached (ED) binaries. Recently a sub-sample of these has been searched for period changes (Pilecki et al. 2007). During this investigation a side analysis was performed which resulted in 16 (13 new) binaries which are suspect to additional periodic behaviour of various origin; secondary variability may be due to spots, pulsations, or second eclipsing binary in the system. Two of them, namely 115143-6253.2 and 164802-6715.2, were found by D. Fabrycky, who pointed out (private comm.) that these stars showed eclipses with another period.

The search for second periodicity was performed on residual lightcurves of all EC and ESD binaries in ACVS (8,341 objects). After detecting an additional frequency for each object, all the lightcurves were sorted by amplitude of the frequency and the ones with a significant signal strength were inspected visually. This left us with 14 objects for which (together with additional two stars mentioned above) a more detailed analysis was performed.

In order to separate the lightcurves for both kinds of variability we applied an iterative method. In the first step the best fitting model of an eclipsing binary  $M_1$  with orbital period  $P_1$  was removed from the original lightcurve. Then we analysed the residual lightcurve in the search for secondary period  $P_2$ , which was used to construct the model  $M_2$  of additional variability. This model was then subtracted from the original lightcurve and the residual lightcurve was again investigated to find a refined  $M_1$ . After subtracting the new  $M_1$  from the raw lightcurve, the new  $M_2$  was once again determined. In some cases one more step was performed to get a better model  $M_1$ .

Using residual lightcurves of models  $M_1$  and  $M_2$ , variability was then classified with periods  $P_1$  and  $P_2$  using the same procedure as in Pojmański (2002). However, all pulsating types were combined into one PULS category and, when it was plausible, we changed automatic classification to 'Spot' type.

In Table 1 we listed both periods  $(P_1 \text{ and } P_2)$ , separate variability types and the possible degree of blending (0 for none, 1 for small and 2 for large) listed in two columns,



Figure 1. Two examples of double periodic behaviour. Original and residual lightcurves are showed. Plots of the rest of the light curves are given electronically

| ASAS ID               | $V_{\rm max}$ | $P_1$    | Type           | $P_2$             | Туре                  | Blend   | Other        | Other ID        |
|-----------------------|---------------|----------|----------------|-------------------|-----------------------|---------|--------------|-----------------|
| (RA-DEC)              | [mag]         | [days]   |                | [days]            |                       | ΙA      | data         |                 |
| 174848 - 3503.5       | 7.45          | 7.71215  | ESD            | 253.4             | PULS                  | 0 0     | B3III        | V393 Sco        |
| 103209 - 5905.7       | 10.50         | 0.953307 | ESD            | 1.110270          | ESD = ED              | $2 \ 1$ | $\mathbf{F}$ | HD 302992       |
| $153713 \cdot 1820.1$ | 8.38          | 6.86170  | ESD            | 6.87811           | $\operatorname{Spot}$ | $0 \ 0$ | K1III, X     | IV Lib          |
| 172738 - 3808.6       | 11.56         | 0.378603 | ESD            | 0.423350          | EC/PULS               | $2 \ 2$ |              |                 |
| 115143 - 6253.2       | 9.93          | 0.876114 | ESD            | $19.11(\times 2)$ | ED                    | $2 \ 1$ | B5           | BV 729          |
| 164802 - 6715.2       | 10.43         | 0.422509 | EC = ESD       | 1.593378          | ED/ESD                | $2 \ 2$ |              | TYC 9050-298-1  |
| 144001 - 1959.5       | 10.00         | 0.354445 | EC = ESD       | 0.334349          | ESD/EC                | $0 \ 1$ | G0, X        | BD-19 3931      |
| 031509-5144.2         | 9.61          | 21.4105  | EC/ESD         | 21.1067           | $\operatorname{Spot}$ | 1  0    | K1, X        | CD-52 646       |
| 125523 - 7322.2       | 9.74          | 206.1    | $\mathbf{EC}$  | 250.2             | ?                     | 1  0    |              | TYC 9253-1392-1 |
| 103513 - 1206.5       | 11.43         | 0.384647 | $\mathbf{EC}$  | 0.353901          | ESD/EC                | 0 0     |              |                 |
| 131055 - 4844.0       | 10.80         | 7.06562  | $\mathrm{EC}?$ | 3.537421          | Spots?                | $2 \ 0$ | ——, X        |                 |
| 103308 - 7133.8       | 10.58         | 0.816190 | $\mathbf{EC}$  | 0.388607          | ESD = ED              | $0 \ 0$ |              | TYC 9219-3329-1 |
| 190004-2741.4         | 12.24         | 0.439555 | EC             | 0.537903          | ESD/EC                | $2 \ 2$ |              | V395 Sgr        |

Table 1. ASAS eclipsing binaries exhibiting additional periodic variability

Table 2. Objects examined independently by Pigulski & Michalska

| ASAS ID         | 2nd type                   | Blend   | Other ID |
|-----------------|----------------------------|---------|----------|
| (RA-DEC)        |                            | ΙA      |          |
| 182323 - 1240.9 | PULS                       | $2 \ 0$ | FR Sct   |
| 234520 - 3100.5 | EC/PULS                    | 0 0     |          |
| 084350 - 4607.2 | $\mathrm{ESD}/\mathrm{EC}$ | $2 \ 2$ | ALS 1135 |

designated by I and A. The first one (I) is the degree of blending evaluated subjectively by an examination of higher resolution images from Digitized Sky Survey, whereas A is the result of brightness comparison in different apertures of ASAS photometry. The radius of the smallest aperture is 1 pixel and for the largest 3 pixels, so two faint stars close to each other are separated when using small aperture and counted as one object when using a large aperture, significantly increasing the brightness. Some additional information from the SIMBAD database is given (if available) such as an other identifier, spectral type, and whether the star might be an X-ray source (X).

Two stars were found in the WDS catalogue of astrometric doubles and multiples (Mason et al., 2001). 234520-3100.5 was identified as a double star (11.58 mag + 11.94 mag) with a separation of 1" and 125523-7322.2 (10.6 mag + 11.5 mag) with a separation of 2.4''.

In the course of this analysis 7 out of 13 objects turned out to be double eclipsing binaries (ie. quadruples that consist of two doubles), whereas one exhibits additional pulsations. For one object we have not been able to determine which of the above two scenarios is more probable. There are also 2 stars whose secondary periods have values close to that of primary periods. This kind of behaviour is believed to be due to spots on one of the binary's components. For the remaining two we have no plausible explanation.

Three stars listed in Table 2 were independently found and recently analysed by Pigulski & Michalska (2007a, 2007b). They found FR Sct to be a triple VV Cephei-type system, 234520-3100.5 to show additional  $\delta$  Scuti behaviour, and 084350-4607.2 to exhibit  $\beta$  Cephei-type variations. For them we quote only our second variability type and an estimation of a degree of blending.

One star, namely 131055-4844.0, has a secondary period value close to (but not the same as) half the value of the primary variation period. Moreover, a residual lightcurve of the second variability has an eclipsing-like shape with two minima of different depth. This cautions, that the primary period may be two times smaller and the primary variability may be due to pulsations rather than eclipses.

Acknowledgements. We would like to thank D. Fabrycky for pointing out two stars with additional periodic behaviour. Our analysis made use of the Digitized Sky Survey images made available by the STScI. This work was supported by the MNiSW grant N203 007 31/1328.

References:

Mason, B.D., et al. 2001, AJ, **122**, 3466

Pigulski, A., Michalska, G., 2007a, IBVS, No. 5757

- Pigulski, A., Michalska, G., 2007b, AcA, 57, 61
- Pilecki, B., Fabrycky, D., Poleski, R., 2007, astro-ph/0703705, Accepted to MNRAS
- Pojmański, G., 2002, AcA, 52, 397

Pojmański, G., Maciejewski, G., Pilecki, B., Szczygiel, D., 2006, VizieR On-line Data Catalog II/264.,

Number 5769

Konkoly Observatory Budapest 4 May 2007 *HU ISSN 0374 - 0676* 

# PHOTOMETRIC SEQUENCES AND ASTROMETRIC POSITIONS FOR NOVA Cyg 2007 AND NOVA Oph 2007

#### HENDEN, A.<sup>1</sup>; MUNARI, U.<sup>2</sup>

 $^1$  AAVSO, American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138, USA

 $^2$ INAF Osservatorio Astronomico di Padova, Sede di Asiago, I-36032 Asiago (VI), Italy

Nova Cyg 2007 (= V2467 Cyg) was discovered by A. Tago at ~ 7.4 mag on CCD images exposed on March 15.79 UT (cf. Nakano, 2007a). It was confirmed spectroscopically on March 16.8 UT by Ayani (2007) and Naito & Sakamoto (2007). A detailed quantitative description of the optical spectra of the nova for March 18.16 UT was given by Munari et al. (2007a). The nova belongs to the "FeII" class defined by Williams (1992). Steeghs et al. (2007) described the identification of the progenitor at  $r' = 18.46(\pm 0.01)$  and i' = $17.49(\pm 0.01)$  mag on IPHAS survey images obtained on August 8 and 9, 2004. According to AAVSO database, Nova Cyg 2007 was already declining when it was discovered and the true maximum occured between the last negative observation ( $V \geq 12$ , cf. Nakano 2007a) on Mar 12.80 and the discovery one on Mar. 15.79 UT.

Nova Oph 2007 (= V2615 Oph) was discovered by H. Nishimura at ~ 10 mag on photographic film exposed on March 19.81 UT (cf. Nakano 2007b), and confirmed spectroscopically by Naito & Narusawa (2007) on March 20.84 UT as a FeII type of nova. Das et al. (2007) reported infrared spectroscopy showing strong CO molecular bands in emission on March 28.93 UT, and a detailed quantitative description of the optical spectra of the nova on Mar. 22.17 and 24.18 UT was provided by Munari et al. (2007b). According to AAVSO database, Nova Oph 2007 reached maximum around March 27.0 at  $V \sim 9.0$ .

In this note we present  $BVR_{\rm C}I_{\rm C}$  photometric sequences around both novae. All stars have been checked in SIMBAD for published previous reports on variability. To calibrate the sequences, we obtained CCD photometry with the Sonoita Research Observatory 0.35-m robotic telescope on four distinct photometric nights, using  $BVR_{\rm C}I_{\rm C}$  filters and an SBIG STL-1001E CCD camera. Pixel size is  $1.25''/{\rm pix}$  and the field of view is  $20' \times 20'$ . Observations on each photometric night included following an extinction star from low to high airmass, along with  $BVR_{\rm C}I_{\rm C}$  exposures of Landolt standard fields (Landolt 1983, 1992). The photometric sequences are presented in Figures 1 and 2.

Astrometry was performed using SLALIB (Wallace, 1994) linear plate transformation routines in conjunction with the UCAC2 reference catalog. Errors in coordinates were typically under 0.1 arcsec in both coordinates, referred to the mean coordinate zero point of the reference stars in each field. The coordinates we derived for Nova Cyg 2007 are:

 $\alpha_{J2000} = 20\ 28\ 12.492\ (\pm 0.058)$   $\delta_{J2000} = +41\ 48\ 36.33\ (\pm 0.044),$ 

| Nova Cyg 2007 | $\alpha_{\rm J2000} = 20\ 28\ 12.492$ | $\delta_{\rm J2000} = +41 \ 48 \ 36.33$ |
|---------------|---------------------------------------|-----------------------------------------|
|---------------|---------------------------------------|-----------------------------------------|

|                | $\alpha_{J2000}$ (= | ±")   | $\delta_{J2000}$ (: | ±")   | Ν | V (    | (±)   | B-V   | $(\pm)$ | $V–R_{\rm C}$ | $(\pm)$ | $R$ – $I_{\rm C}$ | $(\pm)$ |
|----------------|---------------------|-------|---------------------|-------|---|--------|-------|-------|---------|---------------|---------|-------------------|---------|
| а              | 307.085679          | 0.074 | 41.828942           | 0.049 | 4 | 11.292 | 0.014 | 0.507 | 0.020   | 0.329         | 0.043   | 0.277             | 0.032   |
| b              | 307.115075          | 0.068 | 41.799538           | 0.063 | 4 | 12.140 | 0.027 | 1.310 | 0.005   | 0.690         | 0.020   | 0.698             | 0.029   |
| с              | 307.000743          | 0.041 | 41.794607           | 0.180 | 4 | 13.151 | 0.008 | 0.546 | 0.015   | 0.341         | 0.039   | 0.311             | 0.075   |
| d              | 306.999448          | 0.095 | 41.837653           | 0.220 | 4 | 13.679 | 0.050 | 0.645 | 0.011   | 0.387         | 0.069   | 0.385             | 0.069   |
| е              | 307.047839          | 0.106 | 41.859748           | 0.079 | 4 | 13.049 | 0.030 | 1.306 | 0.031   | 0.756         | 0.048   | 0.633             | 0.076   |
| f              | 307.066378          | 0.085 | 41.793821           | 0.161 | 4 | 13.344 | 0.033 | 1.185 | 0.046   | 0.612         | 0.113   | 0.516             | 0.049   |
| g              | 307.110764          | 0.063 | 41.821186           | 0.292 | 3 | 13.629 | 0.034 | 0.632 | 0.049   | 0.323         | 0.049   |                   |         |
|                |                     |       |                     |       |   |        |       |       |         |               |         |                   |         |
| $\alpha$       | 307.117452          | 0.091 | 41.957211           | 0.052 | 4 | 8.571  | 0.082 | 0.780 | 0.026   | 0.421         | 0.034   | 0.352             | 0.020   |
| $\beta$        | 306.877339          | 0.041 | 41.901431           | 0.025 | 4 | 9.071  | 0.101 | 0.199 | 0.036   | 0.002         | 0.015   | 0.063             | 0.013   |
| $\gamma$       | 306.824865          | 0.096 | 41.980019           | 0.113 | 4 | 9.892  | 0.009 | 1.155 | 0.037   | 0.583         | 0.010   | 0.520             | 0.030   |
| $\delta$       | 306.820622          | 0.117 | 41.789043           | 0.067 | 4 | 9.979  | 0.023 | 0.051 | 0.033   | -0.018        | 0.047   | 0.038             | 0.031   |
| $\epsilon$     | 307.109590          | 0.046 | 41.721316           | 0.036 | 4 | 10.816 | 0.018 | 0.300 | 0.017   | 0.160         | 0.022   | 0.159             | 0.020   |
| ζ              | 306.854831          | 0.089 | 41.869731           | 0.036 | 4 | 11.071 | 0.007 | 0.285 | 0.026   | 0.157         | 0.036   | 0.113             | 0.052   |
| η              | 307.220886          | 0.054 | 41.838218           | 0.059 | 4 | 11.351 | 0.015 | 0.931 | 0.023   | 0.519         | 0.017   | 0.412             | 0.027   |
| $\dot{\theta}$ | 307.119788          | 0.068 | 41.936323           | 0.034 | 4 | 11.462 | 0.019 | 1.212 | 0.026   | 0.677         | 0.028   | 0.598             | 0.040   |
| ι              | 306.970465          | 0.124 | 41.735072           | 0.125 | 4 | 12.139 | 0.039 | 1.646 | 0.017   | 1.127         | 0.052   | 1.156             | 0.037   |
| $\kappa$       | 307.223231          | 0.091 | 41.852592           | 0.051 | 4 | 12.571 | 0.015 | 0.644 | 0.014   | 0.397         | 0.033   | 0.377             | 0.017   |



Figure 1.  $BVR_{\rm C}I_{\rm C}$  photometric comparison sequence around Nova Cyg 2007. The cross indicates the nova. N is the number of nights in which the given star has been measured in the given band. The error in  $\alpha$  and  $\delta$  are in arcsec. The panel on the left covers a  $20' \times 20'$  area centered on the nova and shows stars down to V = 16.5. The dashed  $6' \times 6'$  area is zoomed in on the right panel.  $a = \text{TYC} 3160\text{-}1716\text{-}1, \alpha = \text{BD}\text{+}41.3764, \beta = \text{BD}\text{+}41.3757, \gamma = \text{TYC} 3160\text{-}1572\text{-}1, \delta = \text{TYC} 3160\text{-}1841\text{-}1, \epsilon = \text{BD}\text{+}41.3763, \zeta = \text{TYC} 3160\text{-}1645\text{-}1$ 

|                  | iova Of             | ph 20 | $007 \alpha$        | J2000 | = | 17 42  | 44.0  | 13 <i>b</i> | $\delta_{\mathrm{J}2000}$ | = -              | 23 40 | ) 35.0           | )5    |
|------------------|---------------------|-------|---------------------|-------|---|--------|-------|-------------|---------------------------|------------------|-------|------------------|-------|
|                  |                     |       |                     |       |   |        |       |             |                           |                  |       |                  |       |
|                  | $\alpha_{J2000}$ (= | ±")   | $\delta_{J2000}$ (H | =")   | Ν | V (    | ±)    | B–V         | (±)                       | V–R <sub>C</sub> | ; (±) | $R$ – $I_{ m C}$ | (±)   |
| a :              | 265.665733          | 0.056 | -23.708134          | 0.112 | 4 | 13.152 | 0.029 | 0.845       | 0.014                     | 0.492            | 0.043 | 0.539            | 0.021 |
| b 1              | 265.733692          | 0.065 | -23.642616          | 0.120 | 4 | 13.948 | 0.035 | 0.888       | 0.026                     | 0.542            | 0.049 |                  |       |
| c ź              | 265.708289          | 0.074 | -23.679742          | 0.427 | 3 | 14.988 | 0.066 | 1.257       | 0.000                     |                  |       |                  |       |
| α :              | 265.605326          | 0.077 | -23.736586          | 0.136 | 4 | 9.287  | 0.014 | 0.710       | 0.022                     | 0.451            | 0.018 | 0.467            | 0.010 |
| $\beta$ :        | 265.750569          | 0.065 | -23.510333          | 0.105 | 4 | 11.183 | 0.013 | 0.658       | 0.023                     | 0.407            | 0.029 | 0.496            | 0.039 |
| $\gamma$ :       | 265.662570          | 0.065 | -23.753022          | 0.124 | 4 | 11.765 | 0.020 | 0.817       | 0.026                     | 0.506            | 0.022 | 0.548            | 0.028 |
| $\delta$ :       | 265.854080          | 0.074 | -23.830975          | 0.102 | 4 | 12.498 | 0.006 | 0.566       | 0.023                     | 0.351            | 0.026 | 0.390            | 0.030 |
| $\epsilon$ 2     | 265.809502          | 0.060 | -23.576961          | 0.090 | 4 | 12.528 | 0.026 | 0.951       | 0.038                     | 0.582            | 0.026 | 0.594            | 0.043 |
| $\zeta$ :        | 265.797109          | 0.084 | -23.546070          | 0.113 | 4 | 12.609 | 0.012 | 0.767       | 0.021                     | 0.485            | 0.022 | 0.573            | 0.023 |
| $\eta$ $f$       | 265.744712          | 0.033 | -23.565366          | 0.093 | 4 | 12.805 | 0.027 | 1.593       | 0.015                     | 0.925            | 0.043 | 0.928            | 0.019 |
| $\dot{\theta}$ : | 265.504715          | 0.127 | -23.536622          | 0.164 | 4 | 13.149 | 0.009 | 0.722       | 0.030                     | 0.442            | 0.040 | 0.525            | 0.036 |
| ι :              | 265.642594          | 0.147 | -23.760569          | 0.170 | 4 | 13.664 | 0.015 | 1.123       | 0.020                     | 0.651            | 0.048 | 0.661            | 0.054 |
| $\kappa$ :       | 265.715803          | 0.094 | -23.604210          | 0.132 | 4 | 14.107 | 0.044 | 1.062       | 0.043                     | 0.634            | 0.084 | 0.640            | 0.095 |
| $\lambda$ :      | 265.776500          | 0.608 | -23.638827          | 0.421 | 3 | 15.077 | 0.064 | 1.292       | 0.063                     |                  |       |                  |       |



Figure 2.  $BVR_{\rm C}I_{\rm C}$  photometric comparison sequence around Nova Oph 2007. The cross indicates the nova. N is the number of nights in which the given star has been measured in the given band. The error in  $\alpha$  and  $\delta$  are in arcsec. The panel on the left covers a 20' × 20' area centered on the nova and shows stars down to V = 15.8. The dashed 6' × 6' area is zoomed in on the right panel.  $\alpha = \text{HD } 160704$  (B0 II)

close to the coordinates derived by Nishiyama & Sakamoto (2007) at position end figures 12.52 and 36.5, and by Steeghs et al. (2007) at end figures 12.47 and 36.4. The USNO-A2.0 star closest to this position is object 1275-13944467 at position end figures 12.505 and 36.69, with B = 20.0 and R = 18.5.

The coordinates we derived for Nova Oph 2007 are:

 $\alpha_{\rm J2000} = 17\ 42\ 44.013\ (\pm 0.032)$   $\delta_{\rm J2000} = -23\ 40\ 35.05\ (\pm 0.072),$ 

close to the coordinates derived by Kadota (2007) at position end figures 44\*00 and 35''.1, and by Itagaki (2007) at position end figures 43\*99 and 35''.0. Our position is roughly halfway between that of USNO-A2.0 0600-28293794 (position end figures 44\*0.14 and 40''.80, B = 15.6 and R = 12.3) and that of USNO-A2.0 0600-28294416 (position end figures 44\*353 and 28''.29, B = 18.6 and R = 16.4), the closest two USNO-A2.0 stars.

We would like to thank J. Gross, W. Cooney and D. Terrell for their help in setting up the SRO observations and relinquishing their observing time.

References:

Ayani, K., 2007, IAUC, No. 8821
Das, R.K., et al. 2007, CBET, No. 925
Itagaki, K., 2007, IAUC, No. 8824
Kadota, K., 2007, IAUC, No. 8824
Landolt, A.U., 1983, AJ, 88, 439
Landolt, A.U., 1992, AJ, 104, 340
Munari, U., et al. 2007a, CBET, No. 897
Munari, U., et al. 2007b, CBET, No. 906
Naito, H., Sakamoto, M. 2007, IAUC, No. 8821
Naito, H., Narusawa, S., 2007, IAUC, No. 8824
Nakano, S., 2007a, IAUC, No. 8824
Nakano, S., 2007b, IAUC, No. 8824
Nishiyama, K., Sakamoto, T., 2007, IAUC, No. 8821
Steeghs, D., et al., 2007, ATel, No. 1031
Wallace, P., 1994, ASP Conf. Ser., 61, 481, in "Astronomical Data Analysis Software and

Williams, R.E., 1992, AJ, 104, 725

Systems III",

Number 5770

Konkoly Observatory Budapest 7 May 2007 *HU ISSN 0374 - 0676* 

### ELEMENTS FOR 10 RR LYRAE STARS

HÄUSSLER, K.<sup>1</sup>; BERTHOLD, T.<sup>1,2</sup>; KROLL, P.<sup>2</sup>

<sup>1</sup> Bruno-H.-Bürgel-Sternwarte, Töpelstr. 46, D-04746 Hartha, Germany

<sup>2</sup> Sternwarte Sonneberg, Sternwartestr. 32, D-96515 Sonneberg, Germany

email: sternwartehartha@lycos.de, tb@4pisysteme.de, pk@4pisysteme.de

These stars were discovered and reported to be of RR Lyrae type by Boyce & Huruhata (1942) and Hoffmeister (1966, 1967, 1968). Except for V552 Her and V659 Her (see details noted in the remarks below), no further observations or ephemeris have been published until today. Photographic plates of a field centered at alpha Oph, taken with the Sonneberg Observatory 40-cm Astrographs during three intervals spread over the years from 1964 to 1994, were used to investigate the behaviour of these objects (see Table 1).

|           |                       | Table 1. S | Summary of | this pap                   | ber                                 |                            |        |
|-----------|-----------------------|------------|------------|----------------------------|-------------------------------------|----------------------------|--------|
| Star      | Type                  | Epoch      | Period     | Max.                       | Min.                                | M-m                        | No. of |
|           |                       | 2400000 +  | (day)      |                            |                                     |                            | Plates |
| V550 Her  | RRab                  | 49475.463  | 0.5603952  | $15.^{m}1$                 | $16.^{\mathrm{m}}4$                 | $0^{\mathrm{p}}_{\cdot}19$ | 203    |
|           |                       | $\pm 9$    | $\pm 8$    |                            |                                     |                            |        |
| V551 Her  | $\operatorname{RRab}$ | 49076.570  | 0.4365392  | 14.5                       | $16.^{\mathrm{m}}4$                 | $0^{\mathrm{p}}_{\cdot}21$ | 235    |
|           |                       | $\pm 8$    | $\pm 5$    |                            |                                     |                            |        |
| V552 Her  | $\operatorname{RRab}$ | 49124.456  | 0.3785196  | $11^{\mathrm{m}}_{\cdot}2$ | $12^{\text{m}}_{\cdot}8$            | $0^{\rm p}_{\cdot}17$      | 297    |
|           |                       | $\pm 4$    | $\pm 2$    |                            |                                     |                            |        |
| V555 Her  | $\operatorname{RRab}$ | 49213.346  | 0.5839040  | $15^{\mathrm{m}}_{\cdot}3$ | $16^{\mathrm{m}}_{\cdot}5$          | $0^{\mathrm{p}}_{\cdot}20$ | 240    |
|           |                       | $\pm 7$    | $\pm 6$    |                            |                                     |                            |        |
| V556 Her  | $\operatorname{RRab}$ | 47265.573  | 0.4775347  | $14.^{\mathrm{m}}5$        | $15.^{\mathrm{m}}4$                 | $0^{\rm p}_{\cdot} 19$     | 265    |
|           |                       | $\pm 8$    | $\pm 7$    |                            |                                     |                            |        |
| V557 Her  | $\operatorname{RRab}$ | 49488.536  | 0.6114131  | $13^{\rm m}_{\cdot}5$      | $14^{\rm m}_{\cdot}2$               | $0^{\rm p}_{\cdot}18$      | 287    |
|           |                       | $\pm 9$    | $\pm 9$    |                            |                                     |                            |        |
| V562 Her  | $\operatorname{RRab}$ | 49484.471  | 0.4653154  | $14.^{\mathrm{m}}1$        | $15.^{\mathrm{m}}5$                 | $0^{\mathrm{p}}_{\cdot}20$ | 199    |
|           |                       | $\pm 7$    | $\pm 7$    |                            |                                     |                            |        |
| V626 Her  | $\operatorname{RRab}$ | 49076.609  | 0.5871079  | $14.^{\mathrm{m}}5$        | $15.^{m}5$                          | $0^{\rm p}_{\cdot}18$      | 194    |
|           |                       | $\pm 10$   | $\pm 13$   |                            |                                     |                            |        |
| V659 Her  | $\operatorname{RRab}$ | 53891.711  | 0.5164255  | $13.^{\mathrm{m}}8$        | $15.^{m}1$                          | $0^{\mathrm{p}}.19$        | 276    |
|           |                       | $\pm 9$    | $\pm 4$    |                            |                                     |                            |        |
| V763  Oph | $\operatorname{RRab}$ | 49076.563  | 0.4439681  | $14^{\mathrm{m}}_{\cdot}7$ | $16 \stackrel{\mathrm{m}}{\cdot} 0$ | $0^{\rm p}_{\cdot}16$      | 254    |
|           |                       | $\pm 7$    | $\pm 5$    |                            |                                     |                            |        |

The given elements were obtained by means of least-squares solutions. Photographic amplitudes were derived with respect to magnitudes of the comparison stars given in Table 2. An extensive list holding the times of maxima derived can be retrieved as 5770-t3.txt, using the link in the HTML version of this paper. Individual data are available upon request.

| Γ         | Cable 2. Comparison s    | stars an                            | d cross references           |                                     |
|-----------|--------------------------|-------------------------------------|------------------------------|-------------------------------------|
|           | V550 Her                 |                                     | V551 Her                     |                                     |
|           | S 9802                   |                                     | S $9804$                     |                                     |
|           | USNO 1050-08668833       |                                     | USNO 0975-09236295           |                                     |
| Comp. No. | USNO                     | $m^*$                               | USNO                         | $m^*$                               |
| 1         | 1050 - 08669099          | 14.9                                | 0975 - 09240518              | $14.^{\mathrm{m}}6$                 |
| 2         | 1050 - 08671787          | $15.^{\mathrm{m}}2$                 | 0975 - 09231390              | $14.^{\mathrm{m}}8$                 |
| 3         | 1050 - 08671790          | $15.^{\mathrm{m}}6$                 | $0975 \hbox{-} 09237192$     | $15.^{\mathrm{m}}6$                 |
| 4         | 1050-08670689            | $16.^{\mathrm{m}}8$                 | 0975 - 09236592              | $16.^{m}8$                          |
|           | V559 Hor                 |                                     | V555 Hor                     |                                     |
|           | V 352 Her<br>S 0806      |                                     | \$ 8623                      |                                     |
|           | CSC 1004 002             |                                     | 5 0025<br>USNO 1050 08060873 |                                     |
| Comp. No. | USNO                     | m*                                  | USNO 1050-08909875           | *                                   |
| <u> </u>  | <u>CSC 1004 602</u>      | 10m67                               | 1050 08072384                | 15m1                                |
| 1         | CSC 1004 003             | 10.07<br>11m55                      | 1050-06972364                | 15. I<br>15m5                       |
| 2         | GSC 1004 2003            | 11.00<br>19m55                      | 1050-08971209                | 10.0<br>16m1                        |
| ა<br>4    | GSC 1004 1092            | 12700<br>19m67                      | 1050-00970920                | 1071<br>16m6                        |
| 4         | GSU 1004 1855            | 12.07                               | 1050-08909012                | 100                                 |
|           | V556 Her                 |                                     | V557 Her                     |                                     |
|           | S 8627                   |                                     | S 9824                       |                                     |
|           | USNO 0975-09653264       |                                     | USNO 1050-09117461           |                                     |
| Comp. No. | USNO                     | <i>m</i> *                          | USNO                         | <i>m</i> *                          |
| 1         | 0975 - 09660147          | $14^{m}_{.}5$                       | 1050-09116433                | 13 <sup>m</sup> 3                   |
| 2         | 0975 - 09653655          | $14^{ m m}_{ m \cdot}7$             | 1050-09121021                | $13^{\mathrm{m}}_{\cdot}7$          |
| 3         | 0975 - 09653142          | $15^{\mathrm{m}}_{\cdot}1$          | 1050 - 09117300              | $13 \stackrel{\mathrm{m}}{\cdot} 9$ |
| 4         | $0975 	extrm{-}09652715$ | $15 \stackrel{\mathrm{m}}{\cdot} 4$ | 1050-09116424                | 14.5                                |
|           |                          |                                     |                              |                                     |
|           | V562 Her                 |                                     | V626 Her                     |                                     |
|           | S 9830                   |                                     | S 10350                      |                                     |
|           | USNO 1050-09311278       |                                     | USNO 0975-09955355           |                                     |
| Comp. No. | USNO                     | <u>m*</u>                           | USNO                         | <u></u>                             |
| 1         | 1050-09309572            | 13.9                                | 0975 - 09957358              | 14.2                                |
| 2         | 1050-09312674            | 14.0                                | 0975 - 09948638              | 14.5                                |
| 3         | 1050 - 09312330          | $14.^{m}8$                          | $0975 	extrm{-}09955218$     | $15.^{m}3$                          |
| 4         | 1050-09311285            | $15.^{m}6$                          | 0975-09956666                | 15 <sup>m</sup> 7                   |
|           | V659 Her                 |                                     | V763 Oph                     |                                     |
|           | S 8619                   |                                     | HV 10945                     |                                     |
|           | USNO 0975-09311040       |                                     | USNO 0975-09245600           |                                     |
| Comp. No. | USNO                     | $m^*$                               | USNO                         | $m^*$                               |
| 1         | 0975 - 09305418          | $13.^{m}7$                          | 0975 - 09244389              | 14 <sup>m</sup> 6                   |
| 2         | $0975 \hbox{-} 09318049$ | 14.2                                | 0975 - 09243330              | $15.^{\mathrm{m}}2$                 |
| 3         | $0975 \hbox{-} 09312948$ | $14.^{\mathrm{m}}6$                 | 0975 - 09248801              | $15.^{\mathrm{m}}5$                 |
| 4         | 0975 - 09310612          | $15.^{\mathrm{m}}5$                 | 0975 - 09244653              | $16 \cdot 2$                        |

\* Magnitudes refer to the B values of the USNO-A2.0 catalogue



Figure 1. Light curve of V550 Her



Figure 3. Light curve of V552 Her



Figure 2. Light curve of V551 Her



Figure 4. Light curve of V555 Her



Figure 6. Light curve of V557 Her

#### Remarks:

14.00

14.5

15.00

15.50

16.00

-0.2

0.0

0.2

Figure 5. Light curve of V556 Her

0.6

0.4 Phase 0.8

1.0

1.2

B(pg)

V552 Her

First elements were derived from Northern Sky Variability Survey data (NSVS 10885457, Max (hel) = J.D. 2451338.78 +  $0^{d}$ 37854) by Wils et al., 2006.

#### $V659 \ Her$

In addition to our observations three further maximum times were derived from ASAS data (ASAS 173053+1421.9, J.D. hel. 2453817.862, 2453832.835 and 2453891.700) and used for this period analysis.



Figure 7. Light curve of V562 Her

Figure 8. Light curve of V626 Her



Figure 9. Light curve of V659 Her

Figure 10. Light curve of V763 Oph

This research made use of the SIMBAD data base, operated by the CDS at Strasbourg, France.

References:

Boyce, E.H., Huruhata, M., 1942, Harvard Annals, 109, 19
Hoffmeister, C., 1966, Astron. Nachr., 289, 1
Hoffmeister, C., 1967, Astron. Nachr., 290, 43
Hoffmeister, C., 1968, Astron. Nachr., 290, 277
The All Sky Automated Survey, http://archive.princeton.edu/~asas
Wils, P., Lloyd, C., Bernhard, K., 2006, Mon. Not. R. Astron. Soc., 368, 1757

Number 5771

Konkoly Observatory Budapest 9 May 2007 *HU ISSN 0374 - 0676* 

# PHOTOMETRIC SEQUENCES AND ASTROMETRIC POSITIONS OF NOVA Sco 2007 N.1 AND N.2

#### HENDEN, A.<sup>1</sup>; MUNARI, U.<sup>2</sup>

<sup>1</sup> AAVSO, American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138, USA
 <sup>2</sup> INF Osservatorio Astronomico di Padova, Sede di Asiago, I-36032 Asiago (VI), Italy

Nova Sco 2007 N.1 (= V1280 Sco) was discovered by Y. Nakamura and Y. Sakurai at ~ 9.6 mag on CCD images exposed on Feb 4.85 UT (cf. Yamaoka 2007a). It was confirmed spectroscopically on Feb. 5.87 UT by Naito & Narusawa (2007a). Further optical spectra were described by Yamaoka (2007b) for Feb. 14.86 UT, by Buil (2007) for Feb. 20.20 UT, and infrared spectra for Feb. 14–16 by Rudy et al. (2007). Negative X-ray detection by RXTE and SWIFT on Feb. 21 and corresponding flux upper limits were given by Swank (2007) and Osborne et al. (2007), respectively. A detailed quantitative description of early post-maximum high resolution optical spectroscopy for Feb. 20.24 UT was presented by Munari et al. (2007). According to the AAVSO International Database, maximum brightness was reached on Feb. 16.7 at  $V \sim 4.0$ .

Nova Sco 2007 N.2 (= V1281 Sco) was discovered by Y. Nakamura at ~ 9.3 mag on CCD images exposed on Feb. 19.86 UT (cf. Yamaoka 2007c), and confirmed spectroscopically by Naito & Narusawa (2007b) on Feb. 21.84 UT. A negative X-ray detection by SWIFT on Feb. 21 is reported by Osborne et al. (2007). It is not possible to accurately determine the date of maximum with the available data. Data reported in IAUC 8810 and 8812 indicate the latest negative detection was on Feb 18.85 and the first entries in the AAVSO database are for Feb. 22.7 UT at  $V \sim 9.1$  mag when the nova was already on the declining branch of the light-curve. An extrapolation of the available data supports a maximum around Feb 20.5 UT at  $V \sim 8.5$  mag.

In this note we present a  $BVR_{\rm C}I_{\rm C}$  photometric sequence around both novae. To calibrate the sequences, we obtained CCD photometry with the Sonoita Research Observatory 0.35-m robotic telescope on several distinct photometric nights, using  $BVR_{\rm C}I_{\rm C}$  filters and an SBIG STL-1001E CCD camera. Pixel size is  $1.25''/{\rm pix}$  and the field of view is  $20' \times 20'$ . Observations on each photometric night included following an extinction star from low to high airmass, along with  $BVR_{\rm C}I_{\rm C}$  exposures of Landolt standard fields (Landolt, 1983, 1992). The photometric sequences are presented in Figures 1 and 2.

Astrometry was performed using SLALIB (Wallace, 1994) linear plate transformation routines in conjunction with the UCAC2 reference catalog. Errors in coordinates were typically under 0.1 arcsec in both coordinates, referred to the mean coordinate zero point of the reference stars in each field. The coordinates we derived for Nova Sco 2007 N.1 are:

 $\alpha_{\rm J2000} = 16\ 57\ 41.217(\pm 0.052)$   $\delta_{\rm J2000} = -32\ 20\ 35.63(\pm 0.028)$ 

| Nova Sco 2007 N.1 | $\alpha_{\rm J2000} = 16\ 57\ 41.217$ | $\delta_{\rm J2000} = -32\ 20\ 35.63$ |
|-------------------|---------------------------------------|---------------------------------------|
|-------------------|---------------------------------------|---------------------------------------|

|            | $\alpha_{J2000}$ (= | ±")   | $\delta_{J2000}$ (± | =")   | Ν  | V (    | (±)   | B-V   | $(\pm)$ | $V-R_{C}$ | $(\pm)$ | $R-I_{\rm C}$ | $(\pm)$ |
|------------|---------------------|-------|---------------------|-------|----|--------|-------|-------|---------|-----------|---------|---------------|---------|
| а          | 254.407340          | 0.091 | -32.365394          | 0.047 | 22 | 10.759 | 0.039 | 1.401 | 0.036   | 0.710     | 0.063   | 0.699         | 0.040   |
| b          | 254.455661          | 0.054 | -32.366616          | 0.051 | 22 | 12.098 | 0.038 | 0.531 | 0.043   | 0.303     | 0.035   | 0.319         | 0.029   |
| с          | 254.427132          | 0.091 | -32.306776          | 0.093 | 19 | 12.493 | 0.048 | 1.798 | 0.034   | 1.059     | 0.038   | 1.152         | 0.033   |
| d          | 254.360533          | 0.062 | -32.294085          | 0.108 | 22 | 12.923 | 0.045 | 1.211 | 0.038   | 0.676     | 0.046   | 0.639         | 0.040   |
| е          | 254.389346          | 0.051 | -32.393890          | 0.065 | 22 | 13.511 | 0.062 | 1.156 | 0.036   | 0.636     | 0.059   | 0.594         | 0.036   |
| f          | 254.429934          | 0.090 | -32.373744          | 0.050 | 20 | 13.936 | 0.064 | 0.937 | 0.053   | 0.506     | 0.046   | 0.487         | 0.042   |
| g          | 254.425857          | 0.056 | -32.379776          | 0.070 | 17 | 14.637 | 0.053 | 0.760 | 0.070   | 0.438     | 0.078   | 0.442         | 0.037   |
| h          | 254.451915          | 0.095 | -32.374468          | 0.146 | 16 | 15.395 | 0.052 | 0.828 | 0.050   | 0.408     | 0.060   | 0.432         | 0.058   |
| i          | 254.458309          | 0.164 | -32.303689          | 0.241 | 7  | 16.325 | 0.059 | 1.092 | 0.057   | 0.673     | 0.060   | 0.636         | 0.038   |
| j          | 254.425956          | 0.511 | -32.341853          | 0.116 | 2  | 17.319 | 0.071 | 0.988 | 0.073   |           |         |               |         |
|            |                     |       |                     |       |    |        |       |       |         |           |         |               |         |
| $\alpha$   | 254.240999          | 0.082 | -32.337911          | 0.130 | 6  | 7.576  | 0.027 | 0.154 | 0.040   | 0.076     | 0.033   | 0.057         | 0.033   |
| $\beta$    | 254.261365          | 0.099 | -32.480897          | 0.066 | 20 | 9.791  | 0.067 | 0.194 | 0.054   | 0.110     | 0.054   | 0.137         | 0.042   |
| $\gamma$   | 254.270053          | 0.123 | -32.422711          | 0.057 | 22 | 9.935  | 0.069 | 0.016 | 0.049   | 0.057     | 0.058   | 0.031         | 0.039   |
| $\delta$   | 254.535466          | 0.063 | -32.375566          | 0.042 | 22 | 10.264 | 0.073 | 1.672 | 0.046   | 0.807     | 0.102   | 0.880         | 0.042   |
| $\epsilon$ | 254.579693          | 0.058 | -32.403422          | 0.047 | 22 | 10.475 | 0.041 | 0.428 | 0.036   | 0.233     | 0.037   | 0.262         | 0.038   |
| ζ          | 254.357711          | 0.075 | -32.247917          | 0.088 | 22 | 11.461 | 0.040 | 0.673 | 0.040   | 0.379     | 0.039   | 0.363         | 0.027   |
|            |                     |       |                     |       |    |        |       |       |         |           |         |               |         |



Figure 1.  $BVR_CI_C$  photometric comparison sequence around Nova Sco 2007 N.1. The cross indicates the nova. N is the number of nights in which the given star has been measured in the given band. The errors in  $\alpha$  and  $\delta$  are in arcsec. The panel on the left covers a  $20' \times 20'$  area centered on the nova and

shows stars down to V = 18.0. The dashed 6' × 6' area is zoomed in on the right panel. a = TYC 7364-1316-1,  $\alpha =$  HD 152805 (A3V),  $\beta =$  HD 152806 (A0V),  $\gamma =$  HD 152819 (B4IV),  $\epsilon =$  TYC 7364-1321-1

| Ν                     | Iova Sco          | 2007  | N.2                 | $\alpha_{ m J200}$ | )0 = | = 16 5 | 6 59. | 353   | $\delta_{ m J20}$ | = 00  | -35   | 21 50            | ).40  |
|-----------------------|-------------------|-------|---------------------|--------------------|------|--------|-------|-------|-------------------|-------|-------|------------------|-------|
|                       |                   |       |                     |                    |      |        |       |       |                   |       |       |                  |       |
|                       | $lpha_{J2000}$ (= | ±")   | $\delta_{J2000}$ (= | ±")                | Ν    | V      | (±)   | B–V   | (±)               | V-Ro  | c (±) | $R$ – $I_{ m C}$ | (±)   |
| a                     | 254.309520        | 0.050 | -35.316804          | 0.067              | 10   | 12.601 | 0.039 | 1.092 | 0.048             | 0.656 | 0.047 | 0.657            | 0.051 |
| b                     | 254.211325        | 0.063 | -35.371121          | 0.117              | 10   | 12.877 | 0.043 | 1.688 | 0.044             | 0.903 | 0.042 | 0.833            | 0.052 |
| с                     | 254.214301        | 0.092 | -35.365098          | 0.070              | 10   | 13.503 | 0.071 | 0.977 | 0.052             | 0.573 | 0.066 | 0.568            | 0.055 |
| d                     | 254.232278        | 0.065 | -35.360077          | 0.124              | 10   | 13.353 | 0.053 | 1.341 | 0.041             | 0.783 | 0.046 | 0.765            | 0.051 |
| е                     | 254.210946        | 0.144 | -35.382090          | 0.144              | 9    | 14.362 | 0.036 | 0.859 | 0.044             | 0.530 | 0.038 | 0.554            | 0.046 |
| f                     | 254.217448        | 0.104 | -35.368745          | 0.155              | 7    | 15.030 | 0.074 | 1.049 | 0.050             | 0.599 | 0.112 | 0.666            | 0.068 |
| g                     | 254.281649        | 0.311 | -35.369735          | 0.117              | 3    | 15.993 | 0.016 | 1.270 | 0.059             | 0.644 | 0.140 | 0.762            | 0.081 |
| α                     | 254.036042        | 0.113 | -35.450088          | 0.059              | 10   | 9.931  | 0.037 | 0.669 | 0.052             | 0.357 | 0.046 | 0.376            | 0.052 |
| ß                     | 254.073794        | 0.195 | -35.544186          | 0.352              | 3    | 10.086 | 0.039 | 1.409 | 0.036             | 0.692 | 0.018 | 0.010            | 0.00  |
| $\gamma$              | 254.200979        | 0.120 | -35.511953          | 0.170              | 10   | 10.958 | 0.073 | 1.760 | 0.064             | 0.879 | 0.062 | 0.844            | 0.053 |
| $\overset{'}{\delta}$ | 254.303689        | 0.105 | -35.277839          | 0.094              | 10   | 11.818 | 0.047 | 0.704 | 0.045             | 0.379 | 0.039 | 0.434            | 0.039 |
| $\epsilon$            | 254.212949        | 0.096 | -35.224904          | 0.042              | 10   | 12.057 | 0.038 | 0.553 | 0.039             | 0.320 | 0.045 | 0.361            | 0.048 |



Figure 2.  $BVR_{\rm C}I_{\rm C}$  photometric comparison sequence around Nova Sco 2007 N.2. The cross indicates the nova. N is the number of nights in which the given star has been measured in the given band. The errors in  $\alpha$  and  $\delta$  are in arcsec. The panel on the left covers a 20' × 20' area centered on the nova and shows stars down to V = 16.8. The dashed 6' × 6' area is zoomed in on the right panel.  $\alpha = \text{HD} 152663 \text{ (A4II/III)}, \beta = \text{CD-35.11195}$ 

3

close to the coordinates measured by Kadota (2007) at position end figures 41\*20 and 35''.8. Nearest cataloged field stars are GSC2.2 S222213212743 at position end figures 40\*908, 43''.59 and V = 15.9, R = 15.1, and GSC2.2 S222213213017 at position end figures 41\*101, 30''.82 and V = 17.4, R = 16.5.

Our coordinates for Nova Sco 2007 N.2 are:

 $\alpha_{\rm J2000} = 16\ 56\ 59.353(\pm 0^{\prime\prime}.183)$   $\delta_{\rm J2000} = -35\ 21\ 50.40(\pm 0^{\prime\prime}.093)$ 

close to the coordinates measured by Itakagi (2007) at position end figures 59<sup>s</sup>.35 and 50".2. Nearest cataloged field star is USNO-A2.0 0525-24996449 at position end figures 58<sup>s</sup>.656, 44".41 and B = 17.7, R = 15.9.

We would like to thank J. Gross, W. Cooney and D. Terrell for their help in setting up the SRO observations and relinquishing their observing time.

References:

Buil, C., 2007, *IAUC*, No. 8812
Itakagi, K., 2007, *IAUC*, No. 8810
Kadota, K., 2007, *IAUC*, No. 8803
Landolt, A.U., 1983, *AJ*, 88, 439
Landolt, A.U., 1992, *AJ*, 104, 340
Munari, U., et al., 2007, *CBET*, No. 852
Naito, H., Narusawa, S., 2007a, *IAUC*, No. 8803
Naito, H., Narusawa, S., 2007b, *IAUC*, No. 8812
Osborne, J.P., et al., 2007, *ATel*, No. 1011
Rudy, R.J., et al., 2007, *IAUC*, No. 8809
Swank, J.H., 2007, *ATel*, No. 1010
Wallace, P., 1994, *ASP Conf. Ser.*, 61, 481, in: Astronomical Data Analysis Software and Systems III
Yamaoka, H., 2007a, *IAUC*, No. 8803

Yamaoka, H., 2007b, *IAUC*, No. 8807

Yamaoka, H., 2007c, *IAUC*, No. 8810

Number 5772

Konkoly Observatory Budapest 17 May 2007 *HU ISSN 0374 - 0676* 

# GSC 3377-0296 IS A NEW SHORT-PERIOD ECLIPSING RS CVn VARIABLE

LLOYD, C.<sup>1</sup>; BERNHARD, K.<sup>2,4</sup>; MONNINGER, G.<sup>3,4</sup>

<sup>1</sup> Department of Physics and Astronomy, Open University, Milton Keynes MK7 6AA, UK; e-mail: C.Lloyd@open.ac.uk

<sup>2</sup> A-4030 Linz, Austria; e-mail: klaus.bernhard@liwest.at

<sup>3</sup> D-75050 Gemmingen, Germany; e-mail: gerold.monningerConline.de

 $^4$ Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. (BAV), Munsterdamm 90,

D–12169 Berlin, Germany

During a programme of optical identification of X-ray sources the uncatalogued variable, NSVS 4620766 in the ROTSE1 database (Wozniak et al., 2004), has been found to be coincident the variable X-ray source 1RXS J064117.0+464904 from the ROSAT all-sky survey bright source catalogue (Voges et al., 1999, Fuhrmeister & Schmitt 2003). The variable lies within the 10" uncertainty in the position of the X-ray source. The star is also identified as GSC 3377-0296 and is catalogued by 2MASS at  $06^{h}41^{m}16^{s}.76 + 46^{\circ}49'09'.0$  (2000). Further details of the programme are presented in Bernhard et al. (2005) and Bernhard & Frank (2006). GSC 3377-0296 has V = 12.32 and B - V = 0.83 transformed from the Tycho-2 catalogue (Høg et al., 2000), the Tycho Input Catalogue, revised version gives V = 11.80 (Egret et al., 1992), the 2MASS catalogue gives J - K = 0.676 (Cutri et al., 2003). The star is a high proper-motion object (Kislyuk et al., 1999; Zacharias et al., 2004).

Further observations were made using both a 20-cm Schmidt–Cassegrain telescope and a Starlight XPress SX CCD camera with BVR filters in Linz, Austria and a 34cm Cassegrain telescope with a CCD camera SBIG ST-6 and a V filter in Gemmingen, Germany. The comparison star used was GSC 3377-0179. No reliable magnitude estimates exist for this star. The Tycho-2 magnitudes are most probably wrong, as these contradict other available photometric information. The check stars were GSC 3377-0285 and GSC 3377-0811, which were found to be constant within < 0.02 mag.

The following primary minima were observed in 2006 and 2007:

| Table 1: Times of primary minima | of GSC 3377-0296 (1 | HJD $245$ ) |
|----------------------------------|---------------------|-------------|
|----------------------------------|---------------------|-------------|

| minimum time | filter | observer                  | O - C (d) |
|--------------|--------|---------------------------|-----------|
| 4085.5907(2) | V      | Monninger                 | -0.0003   |
| 4092.3513(2) | V      | Monninger                 | +0.0008   |
| 4096.5776(2) | V      | Monninger                 | +0.0024   |
| 4171.3497(3) | V      | $\operatorname{Bernhard}$ | -0.0021   |



Figure 1. ROTSE1 light curve of GSC 3377-0296 folded with a period 0.4224672 days

Figures in brackets denote rms errors in units of the last decimal, O - C values were calculated with the ephemeris given below.

A Fourier analysis of all the available data including TASS (http://www.tass-survey.org/) and ROTSE1 was performed to search for periodicity of the light variations. The following ephemeris can be derived from the analysis with the algorithm Period04 (Lenz & Breger, 2005):

$$\begin{aligned} \text{HJD}_{\text{MinI}} &= 2454085.591 + 0^{\text{d}}.422467 \times E. \\ &\pm 3 \qquad \pm 1 \end{aligned}$$

The folded ROTSE1 light curve is shown in Figure 1, which identifies GSC 3377-0296 with a very short period and heavily spotted RS CVn type star. The ROTSE1 dataset (April 1999–March 2000) was divided into two parts of equal length to search for secondary variations (April 1999–October 1999: filled circles; November 1999–March 2000: open circles). It can be seen, that the shape of the light curve varies between phase 0.2 and 0.5 due to the changing activity of star spots.

The folded light curve of our observations with V filters (G. Monninger: 15-27 December 2006, filled circles; K. Bernhard: 4-15 March 2007) is given in Figure 2. Small offsets have been applied to G. Monningers data set as part of the fitting process.

It shows distinct variations within the time span of four months from phase 0.4 to 0.8. Changes of the light curve were noticed even within a week near phase 0.7 (see filled circles). Considering the ROTSE1 data, large parts of the light curve (phase 0.2 to 0.8) are affected by stellar activity, which suggests, that there could be two active longitudes similar to other RS CVn variables (e.g. Berdyugina and Tuominen, 1998).

The folded  $\Delta V, \Delta(B - V), \Delta(V - R_C)$  light curves, relative to GSC 3377-0179, of the filtered observations in March 2007 are shown in Fig 3. The B - V and  $V - R_C$  colour differences between the variable and the comparison are relatively small, and indicate a slight reddening of the star, when it enters the minimum of the spotted light curve at phase 0.63.

The magnitude difference between the maximum and this minimum, determined by low order polynomial fitting, is for the B band about 0.14 mag, for the V and  $R_C$  band



Figure 2. Our V-band observations from 15 December 2006–15 March 2007 relative to GSC 3377-0179



Figure 3. Folded  $\Delta V, \Delta (B-V)$  and  $\Delta (V-R_C)$  light curves of GSC 3377-0296, March 2007

only 0.12 and 0.10 mag. This is in good agreement with data from literature, where a  $\Delta R/\Delta V$  value of 0.90 for active stars has been determined (Drake, 2006).

The median magnitude of the NSVS data of the variable is 0.87 mag brighter than of the comparison star GSC 3377-0179, which is similar to the respective value of our observations in  $R_C$  band (0.96 mag) and V band (0.89 mag).

The variability type RS CVn is also supported by the X-ray identification and the 2MASS colours J - H = 0.54 and H - K = 0.14, which suggest a spectral type of K3.

The period of 0.4224672 days is very short for an RS CVn star. It is shorter than the periods of all 206 binary systems listed in the second edition of the catalogue of chromospherically active binary stars (shortest period: XY UMa, 0.4789944 days; Strassmeier et al., 1993).

Although the period is similar to that of XY UMa the light curve is rather different (Collier Cameron & Hilditch 1997), and suggests a smaller, near-contact system. The light curve is similar to the near-contact binary GR Tau (P=0.42985 days Zhang et al., 2002), although this class of star is limited to spectral types A–F and does not show RS CVn-like chromospheric activity. GSC 3377-0296 clearly shows evidence of cool spots, probably at two opposite longitudes, but is also probably a near-contact system.

Acknowledgements: This research has made use of the SIMBAD and VizieR databases operated at the Centre de Données Astronomiques (Strasbourg) in France.

#### References:

Berdyugina, S., Tuominen, I., 1998, Astron. Astrophys., 336, L25

- Bernhard, K., Lloyd, C., Berthold, T., Kriebel, W., Renz, W., 2005, IBVS, No. 5620
- Bernhard, K., Frank, P., 2006, IBVS, No. 5719
- Collier Cameron, A., Hilditch, R., 1997, MNRAS, 287, 567
- Cutri, R.M., et al., 2003, 2MASS All-Sky Catalog of Point Sources, University of Massachusetts and IPAC/California Institute of Technology
- Drake, A.J., 2006, AJ, **131**, 1044
- Egret, D., Didelon, P., McLean, B.J., Russell, J.L., Turon, C., 1992, Astron. Astrophys., 258, 217
- Fuhrmeister, B., Schmitt, J.H.M.M., 2003, Astron. Astrophys., 403, 247
- Høg, E., Fabricius, C., Makarov, V.V., Urban, S., Corbin, T., Wycoff, G., Bastian, U., Schwekendiek, P., Wicenec, A., 2000, A&A, 355, L27
- Kislyuk, V., Yatsenko, A., Ivanov, G., Pakuliak, L., Sergeeva, T., 1999, The FON Astrographic Catalogue, Version 1.0 Main Astronomical Observatory of National Academy of Science of Ukraine, http://vizier.u-strasbg.fr/viz-bin/Cat?I/261
- Lenz, P., Breger, M., 2005, Comm. in Asteroseismology, 146, 53
- Strassmeier, K.G., Hall, D.S., Fekel, F.C., Scheck, M., 1993, Astron. Astrophys. Suppl., 100, 173
- Voges, W., et al., 1999, Astron. Astrophys., **349**, 389, The ROSAT all-sky survey bright source catalogue
- Woźniak, P.R., et al., 2004, Astron. J., **127**, 2436, Northern Sky Variability Survey: Public Data Release
- Zacharias, N., Urban, S.E., Zacharias, M.I., Wycoff, G.L., Hall, D.M., Germain, M.E., Holdenried, E.R., Winter, L., 2004, Astron. J., 127, 3043, The Second U.S. Naval Observatory CCD Astrograph Catalog (UCAC2)
- Zhang, X.B., Zhang, R.X., Fang M.J., 2002, Astron. Astrophys., 395, 587

Number 5773

Konkoly Observatory Budapest 23 May 2007 *HU ISSN 0374 - 0676* 

#### LONG-TERM SPECTROSCOPIC VARIABILITY OF TWO Oe STARS

RAUW, G.<sup>1,2</sup>; NAZÉ, Y.<sup>1,2</sup>; MARIQUE, P.X.<sup>1</sup>; DE BECKER, M.<sup>1,2</sup>; SANA, H.<sup>3</sup>; VREUX, J.-M.<sup>1</sup>

 $^1$ Institut d'Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août, Bât B5c, 4000 Liège, Belgium, e-mail: rauw@astro.ulg.ac.be

<sup>2</sup> Fonds National de la Recherche Scientifique, Belgium

<sup>3</sup> European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago 19, Chile

The Oe spectral category was first introduced by Conti & Leep (1974) to classify those O-stars exhibiting emission in the hydrogen Balmer lines, but not in He II  $\lambda$  4686 nor N III  $\lambda\lambda$  4634-40. These objects are quite rare (see e.g. Negueruela et al., 2004) and most of them have not been studied in detail. Oe stars have rather large rotational velocities and their emission lines frequently display a double-peaked morphology. As for Be stars, these emission lines are interpreted as the signature of a circumstellar disk of matter expelled by the star. Oe stars are thus believed to represent the earliest representatives of the Be phenomenon. Indeed, Negueruela et al. (2004) argued that many Oe stars had previously been classified too early because of the infilling of He I classification lines.

In this paper, we present the results of a spectroscopic monitoring of HD 45314 and HD 60848, which have been reclassified as B0 IVe and O9.5 IVe respectively by Negueruela et al. (2004). Spectra of these stars were collected with the Aurélie spectrograph at the 1.52-m telescope of the Observatoire de Haute Provence (OHP, France) and echelle spectra were taken with the FEROS instrument at the 1.5 and 2.2-m telescopes at La Silla (ESO, Chile; see Table 1). All the data were reduced with the MIDAS software developed at ESO and with private routines designed for the specific reduction of Aurélie and FEROS data. Special attention was paid to ensure a homogeneous normalisation of the spectra.

|                        |                                  |                 |                           |                   | 0                    |
|------------------------|----------------------------------|-----------------|---------------------------|-------------------|----------------------|
| $\operatorname{Epoch}$ | Instrument                       | Resolving power | Wavelength range          | Number of spectra |                      |
|                        |                                  |                 |                           | HD~45314          | $\mathrm{HD}\:60848$ |
| Feb. 1997              | $\operatorname{Aur\acute{e}lie}$ | 20000           | $6510  6710 \text{ \AA}$  | 11                | 6                    |
| Nov. 1998              | $\operatorname{Aur\acute{e}lie}$ | 30000           | $6500 {-} 6620$ Å         | 7                 | 6                    |
| Nov. 1998              | $\operatorname{Aur\acute{e}lie}$ | 30000           | $4795 {-} 4925 { m ~\AA}$ | 1                 | 1                    |
| May 1999               | FEROS                            | 48000           | 3900–7100 Å               | 10                | 10                   |
| May 2000               | FEROS                            | 48000           | $3900  7100 \text{ \AA}$  | 4                 | 6                    |
| Sep. 2000              | $\operatorname{Aur\acute{e}lie}$ | 10000           | $4460  4900 \text{ \AA}$  | 3                 | 2                    |
| May 2001               | FEROS                            | 48000           | 3900–7100 Å               | 3                 | 3                    |
| Sep. 2001              | $\operatorname{Aur\acute{e}lie}$ | 10000           | $6350  6770 \text{ \AA}$  | 3                 | -                    |
| Sep. 2001              | $\operatorname{Aur\acute{e}lie}$ | 10000           | $4460  4900 \text{ \AA}$  | 1                 | -                    |
| Mar. 2002              | FEROS                            | 48000           | 3900–7100 Å               | 3                 | 3                    |

Table 1. Journal of the observations of HD 45314 and HD 60848

In addition to the strong hydrogen Balmer emission lines (mainly H $\gamma$ , H $\beta$  and H $\alpha$ ), the optical spectrum of HD 45314 displays double-peaked emission in many FeII lines (e.g.  $\lambda\lambda$  5169, 5198, 5235, 5275, 5319, 5363, 6318, 6346, 6370, 6384...) as well as some HeI lines ( $\lambda\lambda$  5876, 6678, 7065 being the strongest ones). We further note the existence of weak (but definite) HeII absorption lines at  $\lambda\lambda$  4200, 4542, 4686 and 5412, but also some lines of CIII, N III and SiIV. These features are broadly consistent with an O9.5-B0 spectral type. We note that Fremat et al. (2006) inferred  $T_{\rm eff} = 31092 \pm 557$  K and  $\log g = 3.97 \pm 0.05$  for HD 45314 which corresponds to an O9.5 V spectral type, but does not rule out a B0 classification.

The spectrum of HD 60848 is dominated by emissions in H $\alpha$ , H $\beta$ , He I  $\lambda\lambda$  5876, 6678 and 7072. During some campaigns, the emission lines (with the exception of H $\alpha$ ) appear shell-like with a strong central absorption that reaches below the continuum level. There are a number of strong absorption lines, including amongst others He I  $\lambda$  4471 and He II  $\lambda\lambda$  4200, 4542, 4686 and 5412, as well as lines of C III, C IV, N III, O II, O III, Si III and Si IV. There is no indication of Fe II emissions with a strength comparable to those seen in the spectrum of HD 45314.

We have analysed the variability of the various spectral features using the tools described by Rauw et al. (2001). All emission lines were found to display significant variations. Here, we focus on the changes seen in the hydrogen Balmer lines (see Figs. 1, 2) as well as the FeII lines.



**Figure 1.** Line profile variations of the H $\alpha$  and H $\beta$  emission lines of HD 45314

HD 45314 presents important variations of the strengths of its emission features: the equivalent width (EW) of the H $\alpha$  emission increased from  $\sim -20$  to  $\sim -35$  Å between 1997 and 2002 (Fig. 3). During our campaign, the H $\alpha$  emission was hence much stronger than the EWs of -7.4 and -4.7 Å reported by Andrillat et al. (1982) and Andrillat (1983) from observations obtained in February 1981 and October 1981 respectively. The EW variations obviously occur on time scales of more than five years and our data do not allow to detect any periodicity. Simultaneously, we note prominent variations of the V/R ratio (see Fig.3). Significant variations of this ratio sometimes occur over the typical duration of our observing campaigns (see the top panels of Fig.3) tentatively suggesting a time scale of order a few months. The V/R variations of the H $\beta$  line are less clear cut, though they qualitatively agree with the trends seen in H $\alpha$ . We have also measured the radial velocity of the He II  $\lambda$  4686 absorption line. On average, we obtain



Figure 2. Same as Fig. 1 but for the H $\alpha$  and H $\beta$  emission lines of HD 60848



Figure 3. Variations of the spectral characteristics of HD 45314. Left, top panel: radial velocities of the He II  $\lambda$  4686 absorption and average of the RVs of the violet and red peaks of the H $\beta$  and Fe II  $\lambda$  5319 emissions. Left, bottom panel: equivalent width of the H $\alpha$  line as a function of time as measured on our spectra. The filled square corresponds to the January 2002 measurement of Negueruela et al. (2004). Right:  $V/R = (I_V - I_c)/(I_R - I_c)$  ratio (where  $I_V$  and  $I_R$  are the intensities of the violet and red peaks respectively and  $I_c$  is the intensity of the continuum) of the H $\alpha$  and H $\beta$  lines. The top panels zoom in on those campaigns where significant trends were observed

 $-2.9 \pm 11.2 \,\mathrm{km \, s^{-1}}$  with the RV increasing progressively from a minimum of -22.1 to a maximum of  $+22.3 \,\mathrm{km \, s^{-1}}$  between May 1999 and March 2002. The violet and red peaks of the H $\beta$  and FeII emissions also shift in RV with time, although it is not fully clear whether these RV variations are correlated with those of the absorption line (see Fig. 3).

HD 60848 also displays strong variations of the strengths of its emission features. The EW of the H $\alpha$  emission varies between ~ -5.5 and ~ -14.5 Å, with a maximum occurring between May 2000 and May 2001 (Fig. 4). The EW apparently increased at a rather slow rate between 1998 and 2001 and subsequently decreased dramatically back to its initial level in 2002. It is interesting to note that a similar decrease in the H $\alpha$  EW from about -17 to -7 Å was observed between early 1981 and early 1983 (Divan et al. 1983, Andrillat et al. 1982). This suggests that the EW variations might be cyclic with a recurrence time of order five years. Contrary to HD 45314, the V/R ratio remains close to unity and displays no large variations (see Fig. 4). The radial velocity of the He II  $\lambda$  4686 absorption line is found to be 22.7 ± 6.2 km s<sup>-1</sup> on average with a minimum of +13.1 and a maximum of +41.3 km s<sup>-1</sup> with no clear trend during our campaign.



Figure 4. Variations of the spectral characteristics of HD 60848. Left: equivalent width of the H $\alpha$  line as a function of time. The filled square corresponds to the May 2002 measurement of Negueruela et al. (2004). Right: V/R ratio of the H $\alpha$  and H $\beta$  lines

In summary, HD 45314 and HD 60848 both display strong long-term spectroscopic variations. Part of these variations could be recurrent. Monitoring these stars over several months and/or several years could help to specify the origin of the Oe phenomenon.

Acknowledgements. The authors acknowledge the support from the FNRS (Belgium), the 'Communauté Française' (Belgium), as well as through the XMM and INTE-GRAL PRODEX contract (Belspo).

References:

Andrillat, Y., 1983, A&AS, 53, 319

Andrillat, Y., Vreux, J.-M., Dennefeld, M., 1982, *IAU Symp.*, **98**, 229, Be Stars, eds. M. Jaschek & H.-G. Groth

Conti, P.S., Leep, E.M., 1974, ApJ, 193, 113

Divan, L., Zorec, J., Andrillat, Y., 1983, A&A, 126, L8

Fremat, Y., Zorec, J., Hubert, A.-M., Floquet, M., 2005, A&A, 440, 305

Negueruela, I., Steele, I.A., Bernabeu, G., 2004, Astron. Nachr., 325, 749

Rauw, G., Morrison, N.D., Vreux, J.-M., Gosset, E., Mulliss, C.L., 2001, A&A, 366, 585

Number 5774

Konkoly Observatory Budapest 31 May 2007 *HU ISSN 0374 - 0676* 

### AD CMi

HURTA, ZS.<sup>1,2</sup>; PÓCS, M.D.<sup>2</sup>; SZEIDL, B.<sup>2</sup>

<sup>1</sup> Eötvös Loránd University, Department of Astronomy, P.O. Box 32, H-1518 Budapest, Hungary; e-mail: zhurta@gmail.com

<sup>2</sup> Konkoly Observatory of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest, Hungary; e-mail: pocs@konkoly.hu, szeidl@konkoly.hu

The variability of AD CMi was discovered by Hoffmeister (1934). Abhyankar (1959) observed the star during five nights in 1959 and showed the star to be a short period pulsating variable with a period of 0.12297 day.

Since the correct identification of the type of variability of AD CMi a great number of photoelectric and CCD observations have been obtained by different observers and more than seventy times of maximum light are given in the literature (Abhyankar, 1959; Agerer & Hübscher, 1997, 1998, 2000, 2003; Agerer et al., 2001; Anderson & McNamara, 1960; Balona & Stobie, 1983; Breger, 1975; Burchi et al., 1993; Epstein & Epstein, 1973; Fu & Jiang, 1996; Hübscher, 2005; Hübscher et al., 1994; Jiang, 1987; Klingenberg et al., 2006; Langford, 1976; Rodríguez et al., 1988, 1990; Yang et al., 1992). The period change of AD CMi was studied by Jiang (1987), Rodríguez et al. (1988, 1990), Yang et al. (1992) and Fu & Jiang (1996). Fu & Jiang remarked that the groups of data points distributed above and below the parabolic fit curve which seemed to suggest a trigonometric function type period variation. They came to the conclusion that light time effect caused by orbital motion might explain the sine like variation and deduced a period of  $P_B = 10965$  days  $\approx 30$  years and eccentricity e = 0.59 of the elliptical orbital motion and a rate of increase in the pulsation period  $(1/P)(dP/dt) = 1.1 \times 10^{-8} \text{ yr}^{-1}$ .

Radial velocity measurements could give further evidence for binary nature. Abhyankar (1959) and Balona & Stobie (1983) published radial velocity curves of AD CMi. Abhyankar (1959) gave mean radial velocity of the star as 34.5 km/s, while from the radial velocity data of Balona & Stobie (1983) obtained in 1977 and 1978 Rodríguez et al. (1988) deduced a mean value of 38.8 km/s. Recently, Derekas et al. (2006) reported new radial velocity measurements and deduced 35 km/s for the mean radial velocity of AD CMi.

During the past thirty-five years AD CMi was observed with the different instruments of the Konkoly Observatory on 11 nights. Different combination of the  $UBVR_CI_C$  filters were used. Throughout the photoelectric observations the comparison star was GSC 00181-00490 (except for the nights 2453451 and 2453452 when GSC 00184-00604 was used) while for the CCD photometry the comparison star was GSC 00181-00708. All the photometric observations are given electronically through the IBVS website as files 5774-t3.txt, 5774-t4.txt, 5774-t5.txt, 5774-t6.txt and 5774-t7.txt.

On the whole 10 times of maximum light (Table 1) could be determined from our observations. Each light maximum was derived as an average over the B and V bands

| times of maximum   | telescope        | detector             | observation               |  |
|--------------------|------------------|----------------------|---------------------------|--|
| $\rm HJD~2400000+$ |                  |                      | $\operatorname{duration}$ |  |
| 41681.5258         | 50-cm Cassegrain | pe                   | .45375860                 |  |
| 41682.5090         | 50-cm Cassegrain | $\mathbf{pe}$        | .45895277                 |  |
| 42461.4291         | 60-cm Newton     | $\mathbf{pe}$        | .34854492                 |  |
| 43572.3810         | 60-cm Newton     | $\mathbf{pe}$        | .34803838                 |  |
| 43936.2635         | 60-cm Newton     | $\mathbf{pe}$        | .26583322                 |  |
| 46775.6235         | 1-m RCC          | $\mathbf{pe}$        | .51596498                 |  |
| 48254.5171         | 1-m RCC          | $\mathbf{pe}$        | .44106281                 |  |
| 53452.2795         | 1-m RCC          | $\mathbf{pe}$        | .26733880                 |  |
| 54165.2862         | 60-cm Newton     | $\operatorname{CCD}$ | .23434510                 |  |
| 54172.2961         | 60-cm Newton     | CCD                  | .23434186                 |  |

Table 1. Observations at Konkoly Observatory

since the times of maximum for these colour bands are not perceptibly shifted to each other. The typical error of maximum times derived from our observations is about 1 minute.

From the ASAS (Pojmanski, 2005) and NSVS (Woźniak et al., 2004) datasets normal maxima were derived through third order Fourier fits (The NSVS observations have been subject to heliocentric correction).

The Hipparcos database provides one useful time of maximum light. Since heliocentric corrections have not been applied to these data we determined a new epoch of maximum taking the heliocentric correction into account.

Kilambi & Rahman (1993) and Kim & Joner (1994) published photometry of AD CMi, which made the determination of ten further times of maximum light possible.

All the published and newly determined times of maximum light are given in Table 2 (available only in the electronic version on the IBVS website as 5774-t2.txt.) The O - C values have been calculated by the formula:

$$C = \text{J.D.} \ 2436601.82736 + 0.12297451 \times E.$$

We attempted to fit the O - C diagram by the sum of a quadratic and a trigonometric function, assuming that the O - C diagram is a product of a slow linear period change and light time effect caused by binary motion:

$$O - C = a + bE + cE^2 + A\sin\varphi + B\cos\varphi.$$

 $\varphi$  is the solution of the Kepler equation:

$$\varphi - e\sin\varphi = 2\pi P_{\rm orb}^{-1}(PE - T)$$

where e is the eccentricity, T the time of the periastron of the assumed elliptical orbit and  $P_{\text{orb}}$  is the orbiting period. The deduced parameters are:

$$\begin{split} a &= -0.00002 \pm 0.00018, \qquad b = (-2.95 \pm 0.02) \times 10^{-7}, \qquad c = (1.93 \pm 0.03) \times 10^{-12}, \\ A &= -0.00440 \pm 0.00012, \qquad B = 0.00056 \pm 0.00042, \qquad e = 0.71 \pm 0.05, \\ P_{\rm orb} &= 15660 \pm 300, \qquad T = 13870 \pm 150. \end{split}$$

Figure 1 shows the O - C diagram fitted by the above formula.

After subtracting the quadratic function the O - C residual is presented in Figure 2 fitted only with the trigonometric term. The satisfactory approximation indicates that the O - C diagram of AD CMi can be interpreted by a slow increase in the pulsation



Figure 1. O - C diagram of AD CMi



Figure 2. O - C diagram of AD CMi after the subtraction of the quadratic function. The arrows indicate when radial velocity data were obtained

period with a rate of  $(1/P)(dP/dt) = (9.32 \pm 0.11) \times 10^{-8} \text{ yr}^{-1}$  and by the light time effect caused by binary motion on an elliptical orbit with orbiting period  $P_{\text{orb}} = 42.88 \pm 0.83 \text{ yr}$ , eccentricity  $e = 0.71 \pm 0.05$ , projected semi major axis  $a \sin i = 1.092 \pm 0.080$  AU and the longitude of the periastron passage  $\omega = 175^{\circ} \pm 4^{\circ}$ .

The slow increase in the pulsation period is in accord with evolutionary theories (Breger & Pamyatnykh, 1998).

The spectroscopic observations did not show any sign of a companion, therefore on the one hand an upper limit can be given for the mass of the companion, on the other hand the mass function provides a lower limit. The mass function is  $f(M) \approx 7.2 \times 10^{-4} M_{\odot}$ . If we assume that the mass of AD CMi is around 2  $M_{\odot}$ , the mass of the companion should be between 0.15 and 1  $M_{\odot}$ . For the radial velocity (semi) amplitude  $K \approx 1.1$  km/s can be deduced. This value is not in conflict with the radial velocity data.

The authors express their gratitude to Dr. Johanna Jurcsik for her assistance. The financial support of OTKA grants T-046207 and T-048961 is acknowledged.

## References:

- Abhyankar, K.D., 1959, ApJ, **130**, 834
- Agerer, F., Hübscher, J., 1997, IBVS, No. 4472
- Agerer, F., Hübscher, J., 1998, *IBVS*, No. 4562
- Agerer, F., Hübscher, J., 2000, *IBVS*, No. 4912
- Agerer, F., Hübscher, J., 2003, IBVS, No. 5485
- Agerer, F., Dahm, M., Hübscher, J., 2001, IBVS, No. 5017
- Anderson, L.R., McNamara, D.H., 1960, PASP, 72, 506
- Balona, L.A., Stobie, R.S., 1983, South African Astron. Obs. Circ., 7, 19
- Breger, M., 1975, ApJ, **201**, 653
- Breger, M., Pamyatnykh, A.A., 1998, A&A, **332**, 958
- Burchi, R., de Santis, R., di Paolantonio, A., Piersimoni, A.M., 1993, A&AS, 97, 827
- Derekas, A., Kiss, L.L., Csák, B., et al., 2006, MmSAI, 77, 517
- Epstein, J., Epstein, A.E.A., 1973, AJ, 78, 83
- ESA, 1997, The Hipparcos and Tycho Catalogues, ESA SP-1200
- Fu, J.N., Jiang, S.Y. 1996, IBVS, No. 4325
- Hoffmeister, C., 1934, AN, 253, 195
- Hübscher, J., 2005, IBVS, No. 5643
- Hübscher, J., Agerer, F., Frank, P., Wunder, E., 1994, BAV Mitt., No. 68
- Jiang, S.Y., 1987, Chin. Astron. Astrophys., 11, 343
- Kilambi, G.C., Rahman, A., 1993, Bull. Astr. Soc. India, 21, 47
- Kim, C., Joner, M.D., 1994, Ap&SS, 218, 113
- Klingenberg, G., Dvorak, S.W., Roberts, C.W., 2006, IBVS, No. 5701
- Langford, W.R., 1976, Ph. Thesis, Brigham Young Univ.
- Pojmanski, G., 2005, Acta Astr., 55, 275
- Rodríguez, E., Rolland, A., Lopez de Coca, P., 1988, Rev. Mex. Astron. Astrofis., 16, 7
- Rodríguez, E., Rolland, A. & Lopez de Coca, P., 1990, IBVS, No. 3427
- Woźniak, P.R., Vestrand, W.T., Akerlof, C.W., et al., 2004, AJ, 127, 2436
- Yang, D.W., Tang, Q.Q., Jiang, S.Y., 1992, IBVS, No. 3770

Number 5775

Konkoly Observatory Budapest 31 May 2007 *HU ISSN 0374 - 0676* 

# THE ULTRA-COMPACT BINARY CANDIDATE KUV 23182+1007 IS A BRIGHT QUASAR

SOUTHWORTH, J.<sup>1</sup>; SCHWOPE, A.<sup>2</sup>; GÄNSICKE, B. T.;<sup>1</sup> SCHREIBER, M.<sup>3</sup>

<sup>1</sup> Department of Physics, University of Warwick, Coventry, CV4 7AL, UK, email: j.k.taylor@warwick.ac.uk, Boris.Gaensicke@warwick.ac.uk

<sup>2</sup> Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany

<sup>3</sup> Departamento de Fisica y Astronomia, Universidad de Valparaiso, Avenida Gran Bretana 1111, Valparaiso, Chile

The Kiso Ultraviolet Survey (Noguchi et al., 1980; Kondo et al., 1984) identified 1186 objects with blue colours in a set of fields observed using the 1.0-m Schmidt telescope of Kiso Observatory. Classification-dispersion spectroscopy of these objects were presented in a series of papers by Wegner and colleagues. The spectra of three objects, KUV 01584-0939, KUV 23182+1007 KUV 23061+1229, were given by Wegner et al. (1987) and Wegner & McMahan (1988). All three of these showed an interesting strong emission in the region of the He II 4686 Å spectral line.

However, confusion arose between the objects KUV 23182+1007 and KUV 23061+1229 in Wegner & McMahan (1988). In that work, both objects were found to have He II 4686 Å emission lines (with some night-to-night variability noted), but the names in the figure titles and figure captions were in mutual disagreement. Koester et al. (2001) have since found that KUV 23061+1229 is a white dwarf of type DA.

Strong He II emission is a characteristic of the rare AM CVn class of cataclysmic variable stars (Warner, 1995; Southworth et al., 2006). These objects are particularly interesting ultra-short period helium-rich systems which are thought to be interacting binaries composed of two degenerate objects, the mass donor being a helium white dwarf. KUV 01584-0939 has since been confirmed to be an AM CVn star (Warner & Woudt, 2002; Espaillat et al., 2005), and is included in the *General Catalogue of Variable Stars* under the name ES Ceti.

As very few AM CVn systems are known we have obtained a spectrum of the second of the objects, KUV 23182+1007, in order to investigate its classification as a cataclysmic variable. We also obtained a spectrum of KUV 23061+1229 in order to confirm that it is a white dwarf and to fully clear up the confusion over the identities of these two objects. For these observations we adopted the object identifications and sky co-ordinates as given by the CDS Simbad tool<sup>1</sup>.

Two consecutive long-slit spectra of KUV 23182+1007, immediately followed by one spectrum of KUV 23061+1229, were obtained on the night of 2007 May 19. We used the LDSS3 spectrograph attached to the 6.5-m Magellan Clay telescope at Las Campanas

<sup>&</sup>lt;sup>1</sup>http://simbad.u-strasbg.fr/simbad/sim-fid

Observatory, Chile. The VPH\_Blue grism was used along with a slit width of 0.75'', giving a useful wavelength coverage of 4000–6130 Å (depending on brightness) at a reciprocal dispersion of 0.68 Å/pixel. From the arc lamp and sky lines we estimate a resolution of approximately 2 Å. Wavelength and flat-field calibration was achieved using observations of helium/neon/argon and quartz lamps, taken immediately after the science spectra and at the same sky position. The two science spectra of KUV 23182+1007 have been combined and rebinned to increase the signal-to-noise ratio, resulting in a single spectrum with a reciprocal dispersion of 2 Å/pixel. The effective midpoint of this observation is HJD 2 454 240.88628. The midpoint of the spectrum of KUV 23061+1229 occurred at HJD 2 454 240.90236.



Figure 1. Magellan/LDSS3 spectrum of the second AM CVn candidate, KUV 23061+1229, confirming that this object is a DA white dwarf

The spectrum of KUV 23061+1229 (Fig. 1) is clearly that of a DA white dwarf, in agreement with the results of Koester et al. (2001) and its inclusion in the white dwarf catalogue of McCook & Sion (1999). We have therefore adopted the atmospheric parameters found by Koester et al. (2001) to calculate a model spectrum (Gänsicke et al., 1995) of KUV 23061+1229 and used this to divide out the wavelength-dependent response function of the spectrograph from the spectrum of KUV 23182+1007.

The KUV 23182+1007 spectrum is plotted in Fig. 2 and shows a strong emission line at 4660 Å which we identify to be the Mg 2800 Å line which is a characteristic feature of quasar spectra. In Fig. 2 we have also plotted a template quasar spectrum<sup>2</sup> from the *Sloan Digital Sky Survey* to which we have applied a redshift of z = 0.665. It can be seen that several additional quasar emission lines match the spectrum of KUV 23182+1007, confirming that this object is a bright (B = 16.8) quasar with a redshift of z = 0.665.

<sup>&</sup>lt;sup>2</sup>The spectrum was obtained from http://www.sdss.org/dr5/algorithms/spectemplates/spDR2-029.fit

As active galactic nuclei are often X-ray sources we have investigated the XMM-Newton and ROSAT databases for sources at the position of KUV 23182+1007. This region of sky has not been observed using pointed observations by these satellites. However, the ROSAT All-Sky Survey<sup>3</sup> (Voges et al., 1999, 2000) includes an exposure of 444 s of this position, in which a source RXS J232044.6+102354 is detected with a count rate of  $0.0249 \pm 0.0094$  counts s<sup>-1</sup>. This is within 6" of the position of KUV 23182+1007, and over 35' from the next nearest X-ray source. Given the quoted ROSAT positional error of 15", this is a strong detection. The detected X-ray emission is consistent with our identification of KUV 23182+1007 as a quasar.



Figure 2. Magellan/LDSS3 spectrum of the main AM CVn candidate, KUV 23182+1007 (upper solid line), after combining and rebinning. A template quasar spectrum from the SDSS is also shown (lower solid line) after applying a redshift of z = 0.665 to the wavelength scale. The stronger quasar emission lines are labelled with their rest wavelengths, taken from Vanden Berk et al. (2001)

We have therefore clearly identified that KUV 23182+1007 is an X-ray emitting quasar with a redshift of z = 0.665, and confirmed that KUV 23061+1229 is a normal DA white dwarf. The classification of KUV 23182+1007 in *Simbad* and catalogues of cataclysmic variables (Downes et al., 2001; Ritter & Kolb, 2003) should be corrected. This report is intended to avoid other researchers using valuable telescope time to investigate the basic properties of KUV 23182+1007.

<sup>&</sup>lt;sup>3</sup>The ROSAT All-Sky Survey catalogue can be accessed using the CDS *VizieR* service at http://cdsweb.u-strasbg.fr/viz-bin/VizieR-2?-source=IX/29

References:

- Downes, R.A., Webbink, R.F., Shara, M.M., Ritter, H., Kolb, U., Duerbeck, H.W., 2001, PASP, 113, 764
- Espaillat, C., Patterson, J., Warner, B., Woudt, P., 2005, PASP, 117, 189
- Gänsicke, B.T., Beuermann, K., de Martino, D., 1995, A & A, 303, 127
- Koester, D., et al., 2001, A&A, 378, 556
- Kondo, M., Noguchi, T., Maehara, H., 1984, Ann. Tokyo Astron. Obs., 20, 130
- McCook, G.P., Sion, E.M., 1999, ApJS, 121, 1
- Noguchi, T., Maehara, H., Kondo, M., 1980, Ann. Tokyo Astron. Obs., 18, 55
- Ritter, H., Kolb, U., 2003, A&A, 404, 301
- Southworth, J., et al., 2006, MNRAS, 373, 687
- Vanden Berk, D.E., et al., 2001, AJ, 122, 549
- Voges, W., et al., 1999, A&A, **349**, 389
- Voges, W., et al., 2000, IAU Circ., No. 7432
- Warner, B., 1995, Cataclysmic Variable Stars, Cambridge University Press
- Wegner, G., Boley, F.I., Swanson, S.R., McMahan, R.K., 1987, IAU Coll., 95, 501, Second Conference on Faint Blue Stars, eds. A.G.D. Philip, D.S. Hayes & J.W. Liebert, L. Davis Press Inc.
- Wegner, G., McMahan, R. K., 1988, AJ, 96, 1933
- Woudt, P., Warner, B., 2002, PASP, 114, 129

Number 5776

Konkoly Observatory Budapest 1 June 2007 *HU ISSN 0374 - 0676* 

#### Hα OBSERVATIONS OF THE GALACTIC MICROQUASAR LSI+61°303

ZAMANOV, R.K.; STOYANOV, K.A.; TOMOV, N.A.

Institute of Astronomy, Bulgarian Academy of Sciences, Tsarigradsko shosse Blvd. 72, 1784 Sofia, Bulgaria e-mail: rkz@astro.bas.bg; kstoyanov@astro.bas.bg

LSI+61°303 (V615 Cas, GT0236+610) is a Be/X-ray binary star at a distance of 2.3 kpc (Steele et al., 1998) and with radio outbursts every 26.496 d (Gregory, 2002, and references therein) which is assumed to be the orbital period. The variable radio counterpart of the system was resolved at milliarcsecond scales as a rapidly processing relativistic compact jet (Massi et al., 2004), so LSI+61°303 joined the group of Galactic microquasars. It is also a variable  $\gamma$ -ray source (Albert et al., 2006). The compact object is probably a black hole orbiting around a Be star in a highly eccentric orbit (Casares et al., 2005). Spectral observations show that the H $\alpha$  emission is variable on time scales days-years (see Grundstrom et al., 2007, and references therein). Here we present the results of our H $\alpha$  spectroscopy during the period January 2000–April 2007.

We have secured 53 spectra with the Coudé spectrograph of the 2-m RCC telescope at the Bulgarian National Astronomical Observatory Rozhen and Photometrics AT200 CCD. The wavelength coverage is from 6500 Å to about 6700 Å at resolution 0.2 Å/pixel. For each spectrum, we have measured the equivalent width (EW) of the H $\alpha$  emission line and the separation between the blue and red humps ( $\Delta V$ ). The measured quantities are given in Table 1. The typical error of our measurements is  $\pm 10\%$  in EW, and  $\pm 10$  km s<sup>-1</sup> in  $\Delta V$ .

In Fig. 1 (left panel) we show a few examples of the H $\alpha$  line. From up to down are plotted our spectra 20000127, 20000820, and 20000623. In all our spectra the H $\alpha$  line is in emission with two peaks and EW(H $\alpha$ ) is always > 8 Å. We have not observed a third peak in the emission, as visible in the September 2001 observations of Liu & Yan (2005), nor very weak emission in H $\alpha$  as detected by Grundstrom et al. (2007) at JD2451468.

In Fig. 1 (right panels) we plot the long-term variability of EW(H $\alpha$ ) and  $\Delta V$ . We also use data from Paredes et al. (1991), Zamanov et al. (1999, 2001), Liu & Yan (2005), and Grundstrom et al. (2007). EW(H $\alpha$ ) achieved values  $\approx 18$  Å during the two prominent maxima at JD2448800 and at JD2450000. It seems that there are three minima of EW(H $\alpha$ ) at about JD2449200, JD2451200, and JD2453270, when EW(H $\alpha$ ) was  $\sim 7$  Å. During the last 2000 days, there is not a prominent maximum. After JD2451000, the EW(H $\alpha$ ) is always < 14 Å. We see a clear minimum in  $\Delta V$  at JD2451900, when  $\Delta V$  dropped to  $\Delta V \leq 280$  km s<sup>-1</sup>, values similar to those observed during the maximum of EW(H $\alpha$ ) at JD2450000.

The distance between the blue and red peak ( $\Delta V$ ) is connected with the outer size of the H $\alpha$  emitting disk:  $\Delta V/(2v \sin i) = (R_{out}/R_*)^{-1/2}$  for a Keplerian disk (Huang, 1972).

Adopting for a typical B0 star radius  $R_* = 10 R_{\odot}$ , and  $v \sin i = 360 \text{ km s}^{-1}$  (Hutchings & Crampton, 1981), we obtain that  $R_{\text{out}}$  varies from 3.7  $R_*$  (37  $R_{\odot}$ ) to 7.7  $R_*$  (77  $R_{\odot}$ ). These values are in the range 1.2–100  $R_*$  as derived by Hanuschik et al. (1988) in other Be stars.

It deserves noting that the sudden drop on 1 week scale of the EW(H $\alpha$ ) observed by Grundstrom et al. (2007) at JD2451468 is not accompanied with dramatic changes in  $\Delta V$ , indicating that the disk size does not change on such time scale.

Using the PDM method (Stellingwerf, 1978), we did not detect a clear periodicity in H $\alpha$  line parameters in the interval 200–3000 days. However, when we plot the data folded with the radio period P = 1667 days (Gregory, 2002) we see that the modulation is clearly visible (Fig. 2). All of the data (and the subsets of data when EW < 12 Å and EW  $\geq 12$  Å) show signs of the 1667 day modulation in EW(H $\alpha$ ) and  $\Delta V$ . The maximum of EW(H $\alpha$ ) and the minimum of  $\Delta V$  are at phase  $0.25 \pm 0.10$ . At the minimum  $\Delta V \approx 260$  km s<sup>-1</sup>, and at phase 0.75 it achieves  $\sim 370$  km s<sup>-1</sup>.

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | date     | JD        | $EW(H\alpha)$ | $\Delta V$                      | date     | JD        | $EW(H\alpha)$ | $\Delta V$                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|---------------|---------------------------------|----------|-----------|---------------|---------------------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | yyyymmdd | 2400000 + | [Å]           | $[\mathrm{km} \mathrm{s}^{-1}]$ | yyyymmdd | 2400000 + | [Å]           | $[\mathrm{km} \mathrm{s}^{-1}]$ |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20000127 | 51571.29  | 13.1          | 351                             | 20010206 | 51947.40  | 8.8           | 307                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20000621 | 51717.48  | 8.6           | 325                             | 20010207 | 51948.29  | 9.7           | 307                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20000621 | 51717.51  | 8.3           | 338                             | 20010208 | 51949.29  | 10.3          | 299                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20000621 | 51717.52  | 10.0          | 313                             | 20010317 | 51986.23  | 9.7           | 281                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20000623 | 51718.50  | 7.8           | 325                             | 20010317 | 51986.24  | 10.2          | 294                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20000623 | 51718.51  | 8.8           | 401                             | 20010407 | 52007.24  | 10.5          | 319                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20000623 | 51718.52  | 9.6           | 338                             | 20010709 | 52100.57  | 11.8          | 345                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20000623 | 51719.48  | 8.1           | 313                             | 20010727 | 52118.53  | 10.8          | 256                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20000623 | 51719.50  | 8.5           | 363                             | 20010903 | 52156.44  | 13.4          | 332                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20000623 | 51719.51  | 9.5           | 338                             | 20010904 | 52157.36  | 12.4          | 332                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20000817 | 51774.38  | 9.4           | 313                             | 20011003 | 52186.55  | 12.0          | 331                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20000817 | 51774.39  | 9.0           | 300                             | 20020123 | 52298.34  | 9.2           | 280                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20000818 | 51775.39  | 9.4           | 275                             | 20020622 | 52448.54  | 8.6           | 332                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20000818 | 51775.40  | 9.5           | 288                             | 20020624 | 52450.55  | 9.7           | 357                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20000819 | 51776.39  | 10.4          | 325                             | 20021020 | 52568.46  | 11.0          | 332                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20000820 | 51777.39  | 10.3          | 325                             | 20021112 | 52591.45  | 10.3          | 306                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20000820 | 51777.40  | 12.3          | 300                             | 20030717 | 52838.58  | 9.3           | 390                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20000821 | 51778.35  | 9.8           | 300                             | 20030718 | 52838.58  | 11.8          | 362                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20000821 | 51778.36  | 10.2          | 325                             | 20031205 | 52979.46  | 11.4          | 312                             |
| 2000082251779.3611.03382003120852982.4012.83752000091751805.5010.13382004100153280.5010.63002000091751805.5210.53512006011653752.4012.43612000120551884.4311.43322006120254072.4610.03002000120651885.4811.82992007040154192.2510.63372000120851887.4310.22812007040254493.249.53402001020451945.3212.0332332332332332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20000822 | 51779.35  | 10.3          | 338                             | 20031208 | 52982.39  | 12.4          | 349                             |
| 2000091751805.5010.13382004100153280.5010.63002000091751805.5210.53512006011653752.4012.43612000120551884.4311.43322006120254072.4610.03002000120651885.4811.82992007040154192.2510.63372000120851887.4310.22812007040254493.249.53402001020451945.3212.0332332332332332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20000822 | 51779.36  | 11.0          | 338                             | 20031208 | 52982.40  | 12.8          | 375                             |
| 2000091751805.5210.53512006011653752.4012.43612000120551884.4311.43322006120254072.4610.03002000120651885.4811.82992007040154192.2510.63372000120851887.4310.22812007040254493.249.53402001020451945.3212.0332332332332332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20000917 | 51805.50  | 10.1          | 338                             | 20041001 | 53280.50  | 10.6          | 300                             |
| 2000120551884.4311.43322006120254072.4610.03002000120651885.4811.82992007040154192.2510.63372000120851887.4310.22812007040254493.249.53402001020451945.3212.0332332332332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20000917 | 51805.52  | 10.5          | 351                             | 20060116 | 53752.40  | 12.4          | 361                             |
| 2000120651885.4811.82992007040154192.2510.63372000120851887.4310.22812007040254493.249.53402001020451945.3212.0332332332332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20001205 | 51884.43  | 11.4          | 332                             | 20061202 | 54072.46  | 10.0          | 300                             |
| 20001208         51887.43         10.2         281         20070402         54493.24         9.5         340           20010204         51945.32         12.0         332         332         332         332         332         332         332         332         332         332         332         332         332         332         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340         340 <t< td=""><td>20001206</td><td>51885.48</td><td>11.8</td><td>299</td><td>20070401</td><td>54192.25</td><td>10.6</td><td>337</td></t<> | 20001206 | 51885.48  | 11.8          | 299                             | 20070401 | 54192.25  | 10.6          | 337                             |
| 20010204 51945.32 12.0 332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20001208 | 51887.43  | 10.2          | 281                             | 20070402 | 54493.24  | 9.5           | 340                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20010204 | 51945.32  | 12.0          | 332                             |          |           |               |                                 |

Table 1. Parameters of the H $\alpha$  line in the spectrum of LSI+61°303

Possible origins of 4.5 year modulation are:

- (1) precessing relativistic jet (Gregory et al., 1989);
- (2) quasi-cyclic Be star envelope variations (Gregory et al., 1989);
- (3) precession of the Be star (Lipunov & Nazin, 1994);
- (4) outward-moving density enhancement in the equatorial disk (Gregory & Neish, 2002);
- (5) variability of the Be star mass loss;



Figure 1. Profiles of the H $\alpha$  emission line in the spectrum of LSI+61°303 (left panel). Long-term variability of the EW(H $\alpha$ ) and  $\Delta V$  (right panels). Squares indicate the previous data, and crosses indicate our new observations



Figure 2. Variability of the EW(H $\alpha$ ) and  $\Delta V$  folded with period P = 1667 days. Filled squares indicate EW(H $\alpha$ )  $\geq 12$  Å, open squares indicate EW(H $\alpha$ ) < 12 Å
• (6) variability of the size of the circumstellar disk.

The circumstellar disks in Be/X-ray binaries are truncated by the gravitational influence of the compact object (Okazaki & Negueruela, 2001). Very likely in LSI+61°303 a precession of the Be star leads to variations of the truncation radius, which combined with variable mass-loss rate of the Be star, creates the 4.5 year modulation in H $\alpha$  and radio emission.

To conclude, the main results of our spectral observations of the Be/X-ray binary and galactic microquasar LSI+61°303 are:

- (i) In our observations the equivalent width of the H $\alpha$  emission line varied from 8 Å to 14 Å.
- (ii) The separation of the H $\alpha$  peaks varied from 250 to 400 km s<sup>-1</sup>.
- (iii) The signs of 1667 day modulation are visible in the H $\alpha$  parameters, even during the time of lower EW(H $\alpha$ ).

#### References:

- Albert, J., Aliu, E., Anderhub, H., et al., 2006, Science, 312, 1771
- Casares, J., Ribas, I., Paredes, J.M., Martí, J., Allende Prieto, C., 2005, MNRAS, 360, 1105
- Gregory, P.C., Neish, C., 2002, ApJ, 580, 1133
- Gregory, P.C., 2002, ApJ, 575, 427
- Gregory, P.C., Xu, H.J., Backhouse, C.J., Reid, A., 1989, ApJ, 339, 1054
- Grundstrom, E.D., Caballero-Nieves, S.M., Gies, D.R., et al., 2007, ApJ, 656, 437
- Hanuschik, R.W., Kozok, J.R., Kaiser, D., 1988, A&A, 189, 147
- Huang, S.S., 1972, ApJ, 171, 549
- Hutchings, J.B., Crampton, D., 1981, PASP, 93, 486
- Liu, Q.Z., Yan, J.Z., 2005, New Astronomy, 11, 130
- Lipunov, V.M., Nazin, S.N., 1994, A&A, 289, 822
- Massi, M., Ribó, M., Paredes, J.M., Garrington, S.T., Peracaula, M., Martí, J., 2004, *A&A*, **414**, L1
- Okazaki, A.T., Negueruela, I., 2001, A&A, 377, 161
- Paredes, J.M., Martí, J., Estalella, R., Sarrate, J., 1991, A&A, 248, 124
- Steele, I.A., Negueruela, I., Coe, M.J., Roche, P., 1998, MNRAS, 297, L5
- Stellingwerf, R.F., 1978, ApJ, 224, 953
- Zamanov, R.K., Martí, J., Paredes, J.M., et al., 1999, A&A, 351, 543
- Zamanov, R.K., Reig, P., Martí, J., et al., 2001, A&A, 367, 884

Number 5777

Konkoly Observatory Budapest 11 June 2007 *HU ISSN 0374 - 0676* 

## NEW MINIMA TIMES OF SELECTED ECLIPSING BINARIES

PARIMUCHA, Š.<sup>1</sup>; VAŇKO, M.<sup>2,3</sup>; PRIBULLA, T.<sup>2</sup>; HAMBÁLEK, L.<sup>2</sup>; DUBOVSKY, P.<sup>4</sup>; BALUĎANSKÝ, D.<sup>5</sup>; PETRÍK, K.<sup>6,7</sup>; CHRASTINA, M.<sup>7,8</sup>; URBANČOK, L.<sup>7,9</sup>

<sup>1</sup> Institute of Physics, Faculty of Natural Sciences, University of P.J. Šafárik, 040 01 Košice, The Slovak Republic; e-mail: stefan.parimucha@upjs.sk

 $^2$ Astronomical Institute of the Slovak Academy of Sciences, 059 60 Tatranská Lomnica, The Slovak Republic; e-mail: (vanko,pribulla,lhambalek)@ta3.sk

<sup>3</sup> Astrophysikalisches Institut, Universität Jena, Schillergässchen 2-307745 Jena, Germany

<sup>4</sup> Kolonica Observatory, The Slovak Republic; e-mail: var@kozmos.sk

 $^5$ Roztoky Observatory, 090 01 Vyšný Orlík, The Slovak Republic; e-mail: bdaniel@pobox.sk

<sup>6</sup> Department of Physics, Faculty of Education, Trnava University, Priemyselná 4, 918 43 Trnava, The Slovak Republic; e-mail: kpetrik@astronyx.sk

 $^7$ Hlohovec Observatory and Planetarium, Sládkovičova 41, 920<br/> 01 Hlohovec, The Slovak Republic, e-mail: chrastina@kozmos.sk

<sup>8</sup> Institute of Theoretical Physics and Astrophysics, Faculty of Science Masaryk University, Brno, The Czech Republic

<sup>9</sup> Slovak Union of Amateur Astronomers, Organisation Rimavská Sobota, Tomašovská 63, 979 01, The Slovak Republic; e-mail: astrosid@szm.sk

## Observatory and telescope:

50-cm Newtonian (G1) and 60-cm Cassegrain (G2) telescopes at Stará Lesná, 256/1360 Newton telescope (K1) and 5.6/400 Zeiss Objective (K2) at Kolonica Observatory, 40-cm Cassegrain telescope at Roztoky Observatory (RO), 600/2400 Cassegrain telescope (H1) and 5,6/1000 Zeiss Spiegelobjektiv (H2) at Hlohovec Observatory, 15-cm refractor at David Dunlap Observatory, University of Toronto (DDO)

| _         |                                                   |
|-----------|---------------------------------------------------|
| Detector: | SBIG ST-10XME CCD camera (G1), photoelectric pho- |
|           | tometer (G2), Meade DSI Pro CCD camera (K1, K2),  |
|           | SBIG ST-8 CCD camera (RO), SBIG ST-9XE camera     |
|           | (H1,H2), SBIG ST-6 and SBIG ST-402 camera (DDO)   |

## Method of data reduction:

G1 and DDO data were analysed by scripts written under the MIDAS reduction package (http://www.eso.org/projects/esomidas/) by one of the authors (TP) while at K1, K2, RO and HL the C-Munipack package (http://integral.physics.muni.cz/cmunipack/) has been used. Part of the photoelectric photometry was performed with neutral filter (N). Photometric observations at DDO were performed simultaneously with medium-dispersion spectroscopy using the main telescope.

## Method of minimum determination:

The minima times were computed by Kwee & van Woerden method

| Times of 1 | ninima:       |                  |         |                  |          |
|------------|---------------|------------------|---------|------------------|----------|
| Star name  | Time of min.  | Error            | Type    | Filter           | Rem.     |
|            | HJD 2400000+  |                  | 01      |                  |          |
| AB And     | 53935.4904    | 0.0001           | Ι       |                  | K2       |
| EP And     | 53944.5054    | 0.0001           | II      |                  | K1       |
|            | 53945.5155    | 0.0001           | Ι       |                  | K1       |
|            | 53005.3233    | 0.0001           | Ι       | V                | K1       |
| GZ And     | 53943.4620    | 0.0001           | Ī       | V                | K1       |
|            | 53947.4616    | 0.0001           | T       | V                | K1       |
|            | 54027.3420    | 0.0002           | Ī       | V                | K1       |
| LO And     | 53919.4921    | 0.0001           | ĪĪ      | V                | K1       |
| 201110     | 53935.4702    | 0.0001           | II      | $\dot{V}$        | K1       |
|            | 53966 4748    | 0.0001           | T       | ,<br>V           | K1       |
| QR And     | 53991 5901    | 0.0002           | Ţ       | $BVR_{C}$        | H1       |
| git ind    | 54003 4696    | 0.0002           | Ī       | $BVR_C$          | H1       |
|            | 54009 4160    | 0.0001           | Ī       | $BVR_C$          | H1       |
|            | $54025\ 2708$ | 0.0002           | Ī       | $BV(BI)_{C}$     | H1       |
|            | 54026 5804    | 0.0001           | Ī       | $BV(RI)_C$       | H1       |
| AH Aur     | 53768 2584    | 0.0001           | Ī       | $V(RI)_{C}$      | G1       |
| TY Boo     | 53932 4444    | 0.0001           | T       | V                | K1       |
| TZ Boo     | 53934 4327    | 0.0001           | Ī       | v                | K1       |
| 12 200     | 53947 3621    | 0.0000           | T       |                  | K1       |
|            | 54178 8486    | 0.0001           | T       |                  |          |
| AO Cam     | 53746 6428    | 0.0001           | T       | R                | BO       |
| no cam     | 54020 4641    | 0.0000           | II      | V                | K1       |
|            | 54027 5584    | 0.0001<br>0.0004 | T       | V<br>V           | K1       |
| BS Cas     | 53988 3972    | 0.0004           | II      | $V(RI)_{\alpha}$ | G1       |
| DO Cas     | 53990 5998    | 0.0001           | II      | $V(RI)_C$        | G1       |
| CW Cas     | 53854 5284    | 0.0001<br>0.0002 | T       | V (101)C         | K1       |
| evv cas    | 53021 /002    | 0.0002<br>0.0002 | T       | V                | K1       |
|            | 53026 4327    | 0.0002<br>0.0002 | II      | V<br>V           | K1       |
|            | 53030 /183    | 0.0002           | T       | V<br>V           | K1       |
|            | 53942 4711    | 0.0001           | T       | V<br>V           | K1       |
|            | 53044 4477    | 0.0001           | T       | V<br>V           | K1       |
| V523 Cas   | 53030 4502    | 0.0001           | I<br>II | V<br>V           | K1       |
| V 020 Cas  | 530/3 /20/    | 0.0001           | T       | V                | K1       |
|            | 53043 5460    | 0.0001           | I<br>II |                  | K1       |
|            | 53047 5188    | 0.0001           | II      |                  | K1       |
| V776 Cas   | 53066 5385    | 0.0001<br>0.0007 | T       |                  | K1<br>K2 |
| FC Con     | 53761 3173    | 0.0001           | T       | P                | RO<br>RO |
| GW Cop     | 53747 9927    | 0.0000           | ı<br>T  |                  | RO       |
| Gin Och    | 53763 4836    | 0.0003           | TI      |                  | RO       |
|            | 53763 6436    | 0.0001           | T T     |                  | RO       |
|            | 53767 2813    | 0.0002<br>0.0002 | TI<br>T |                  | RO       |
|            | 53764 4405    | 0.0002           | II<br>T |                  | RO<br>RO |
|            | 53765 2075    | 0.0002           | T<br>T  |                  | RO<br>RO |
|            | 53765 5577    | 0.0000           | 1<br>TT | I<br>T           | RO<br>RO |
|            | 00100.0011    | 0.0000           | 11      | 1                | πO       |

| Times of n | ninima:                          |        |         |            |                     |
|------------|----------------------------------|--------|---------|------------|---------------------|
| Star name  | Time of min.<br>HJD 2400000+     | Error  | Type    | Filter     | Rem.                |
| GW Cep     | 53866.4409                       | 0.0007 | Ι       | Ι          | RO                  |
|            | 53895.4816                       | 0.0001 | Ι       |            | K1                  |
|            | 53929.4367                       | 0.0001 | II      | V          | K1                  |
| WZ Cep     | 53791.3402                       | 0.0002 | Ι       | RI         | RO                  |
|            | 53795.3050                       | 0.0003 | Ι       | RI         | RO                  |
|            | 53922.4157                       | 0.0001 | II      | V          | K1                  |
|            | 53965.4127                       | 0.0001 | II      |            | K1                  |
| CC Com     | 53823.7849                       | 0.0003 | II      |            | DDO                 |
|            | 53824.7758                       | 0.0002 | Ι       |            | DDO                 |
| RZ Com     | 53845.4203                       | 0.0001 | II      |            | K1                  |
| RW Com     | 53760.5710                       | 0.0001 | II      | $BV(RI)_C$ | G1                  |
|            | 53760.6892                       | 0.0001 | Ι       | $BV(RI)_C$ | G1                  |
|            | 53818.4821                       | 0.0002 | Ι       | RI         | RO                  |
|            | 53818.5996                       | 0.0003 | II      | R          | RO                  |
|            | 53830.3059                       | 0.0004 | Ι       | RI         | RO                  |
|            | 53847.4787                       | 0.0005 | Ι       | RI         | RO                  |
|            | 54167.3830                       | 0.0003 | Ι       | RI         | $\operatorname{RO}$ |
|            | 54174.3836                       | 0.0005 | Ι       | RI         | RO                  |
|            | 54182.3341                       | 0.0002 | Ι       | VRI        | RO                  |
| GO Cyg     | 53650.3114                       | 0.0001 | Ι       | $BV(RI)_C$ | G1                  |
| V401 Cyg   | 53550.4480                       | 0.0001 | Ι       | $V(RI)_C$  | G1                  |
|            | 53584.5375                       | 0.0001 | II      | $V(RI)_C$  | G1                  |
|            | 53617.4605                       | 0.0001 | Ι       | $V(RI)_C$  | G1                  |
|            | 53620.3740                       | 0.0001 | Ι       | $V(RI)_C$  | G1                  |
|            | 53651.2584                       | 0.0001 | I       | $V(RI)_C$  | G1                  |
|            | 53653.2997                       | 0.0001 | 11      | $V(RI)_C$  | G1                  |
|            | 53900.3758                       | 0.0001 | II      | $V(RI)_C$  | G1                  |
|            | 53920.4796                       | 0.0001 | l       | V          | K1                  |
|            | 53927.4714                       | 0.0001 | l       | V          | K1                  |
| TTI I GI   | 53941.4586                       | 0.0002 | l       | V          | K1                  |
| V1191 Cyg  | 53915.5113                       | 0.0005 | l       | V          | Kl<br>K1            |
|            | 53921.4649                       | 0.0002 | l       | V          | KI<br>Ka            |
| V1010 C    | 53934.4683                       | 0.0004 |         | τ.7        | K2                  |
| V 1918 Cyg | 53924.4905                       | 0.0003 | l       | V          | KI<br>1/1           |
| BE Dra     | 53834.5354                       | 0.0002 |         |            | KI<br>Vo            |
| EF Dra     | 53848.5136                       | 0.0003 |         |            | K2                  |
|            | 53911.4791                       | 0.0006 |         |            | KI<br>Ko            |
| FU Dra     | 53939.4375                       | 0.0002 |         |            | K2<br>1/1           |
| AK Her     | 53867.4823                       | 0.0002 |         | V(DI)      | KI<br>C1            |
| V829 Her   | 53944.4123                       | 0.0001 |         | $V(RI)_C$  | GI<br>V1            |
|            | 53945.4914                       | 0.0002 |         | V          | KI<br>V1            |
|            | 00947.4010<br>52062 2007         |        | 1<br>TT | V<br>TZ    | NI<br>V1            |
| Vor7 II    | 00900.098 <i>(</i><br>52027 4604 | 0.0004 | 11<br>T | V          | NI<br>V1            |
| voər ner   | 00907.4094<br>52065 2720         | 0.0004 | L<br>T  | T/         | NI<br>V1            |
|            | JJYUJ.J/JY<br>52044 2015         |        | 1<br>T  | V          | K1<br>K1            |
|            | 53964 4400                       |        | T       | V          | K1                  |
|            |                                  | 0.0001 | т       | v          | <b>T Y T</b>        |

| Times of a | minima:      |        |      |            |      |
|------------|--------------|--------|------|------------|------|
| Star name  | Time of min. | Error  | Type | Filter     | Rem. |
|            | HJD 2400000+ |        |      |            |      |
| PP Lac     | 54001.3565   | 0.0001 | Ι    |            | K1   |
| V344 Lac   | 53928.5027   | 0.0001 | II   |            | K1   |
|            | 53939.4857   | 0.0001 | II   |            | K1   |
|            | 54004.4019   | 0.0001 | Ι    |            | K1   |
|            | 54018.5225   | 0.0002 | Ι    | V          | K1   |
|            | 54068.3360   | 0.0003 | Ι    |            | K1   |
| CE Leo     | 54085.6639   | 0.0001 | Ι    |            | K1   |
| XY Leo     | 53842.5981   | 0.0003 | Ι    |            | DDO  |
| UV Lyn     | 54067.6037   | 0.0002 | Ι    | V          | K2   |
|            | 54068.6367   | 0.0005 | Ι    | V          | K2   |
| V361 Lyr   | 53814.5114   | 0.0001 | Ι    | $V(RI)_C$  | G1   |
|            | 53990.3713   | 0.0001 | Ι    | $BV(RI)_C$ | G1   |
|            | 54003.3748   | 0.0001 | Ι    | $BV(RI)_C$ | G1   |
|            | 54004.3037   | 0.0001 | Ι    | $BV(RI)_C$ | G1   |
| BB Peg     | 54039.3068   | 0.0001 | Ι    | $V(RI)_C$  | G1   |
| DI Peg     | 53967.4772   | 0.0001 | Ι    |            | K2   |
| V351 Peg   | 53945.4657   | 0.0001 | II   |            | K2   |
| V357 Peg   | 54005.4320   | 0.0001 | Ι    |            | K2   |
| V432 Per   | 54003.3866   | 0.0001 | Ι    | V          | K1   |
|            | 54017.5696   | 0.0001 | Ι    | V          | K1   |
| DV Psc     | 53618.5659   | 0.0001 | Ι    | $BV(RI)_C$ | G1   |
|            | 53637.3862   | 0.0001 | Ι    | $BV(RI)_C$ | G1   |
|            | 53640.4720   | 0.0001 | Ι    | $BV(RI)_C$ | G1   |
|            | 53648.3397   | 0.0002 | II   | $BV(RI)_C$ | G1   |
|            | 53648.4938   | 0.0001 | Ι    | $BV(RI)_C$ | G1   |
|            | 53671.3290   | 0.0001 | Ι    | $BV(RI)_C$ | G1   |
|            | 53963.5049   | 0.0001 | Ι    |            | K1   |
|            | 53965.5111   | 0.0004 | II   |            | K1   |
|            | 53972.4523   | 0.0001 | Ι    |            | K1   |
|            | 53974.4580   | 0.0001 | II   |            | K1   |
|            | 53995.4397   | 0.0001 | II   |            | K1   |
|            | 54026.2961   | 0.0001 | II   | $BV(RI)_C$ | G1   |
|            | 54026.4530   | 0.0001 | Ι    | $BV(RI)_C$ | G1   |
|            | 54027.3771   | 0.0001 | Ι    | $BV(RI)_C$ | G1   |
|            | 54035.3992   | 0.0001 | Ι    | $BV(RI)_C$ | G1   |
| CW Sge     | 53935.5438   | 0.0005 | II   |            | K1   |
|            | 53936.5269   | 0.0002 | Ι    |            | K1   |
|            | 53942.4714   | 0.0003 | Ι    |            | K1   |
|            | 53967.5616   | 0.0003 | Ι    | V          | K1   |
|            | 54019.4057   | 0.0003 | Ι    | V          | K1   |
| V Sge      | 53515.4940   | 0.0002 | Ι    | V          | H2   |
|            | 53579.5023   | 0.0001 | Ι    | $VR_C$     | H2   |
|            | 53580.5293   | 0.0002 | Ι    | $BV(RI)_C$ | H2   |
|            | 53581.5574   | 0.0003 | Ι    | $B(RI)_C$  | H2   |
|            | 53596.4716   | 0.0004 | Ι    | $V(RI)_C$  | H2   |
|            | 53615.5040   | 0.0001 | Ι    | $BV(RI)_C$ | H2   |
|            | 53619.3585   | 0.0003 | II   | $(RI)_C$   | H2   |

| Times of m | inima:              |        |      |            |      |
|------------|---------------------|--------|------|------------|------|
| Star name  | Time of min.        | Error  | Type | Filter     | Rem. |
|            | ${ m HJD}~2400000+$ |        |      |            |      |
| V Sge      | 53900.3619          | 0.0001 | Ι    | V          | K1   |
|            | 53902.4117          | 0.0001 | Ι    | V          | K1   |
|            | 53940.4648          | 0.0003 | Ι    | V          | K1   |
|            | 53967.4877          | 0.0006 | II   | $BVR_C$    | H1   |
|            | 53972.3476          | 0.0005 | Ι    | V          | K1   |
|            | 53975.4324          | 0.0002 | Ι    |            | K1   |
|            | 53991.3636          | 0.0002 | Ι    | $BVR_C$    | H1   |
|            | 53992.4066          | 0.0001 | Ι    | $BVR_C$    | H1   |
|            | 53993.4375          | 0.0001 | Ι    | $VR_C$     | H1   |
|            | 53993.4427          | 0.0006 | Ι    | V          | K1   |
|            | 53999.3319          | 0.0003 | II   | $BVR_C$    | H1   |
|            | 54000.3932          | 0.0003 | II   | $BVR_C$    | H1   |
|            | 54007.3107          | 0.0001 | Ι    | V          | K1   |
|            | 54018.3713          | 0.0005 | II   | V          | H1   |
|            | 54023.2561          | 0.0001 | Ι    | $BVI_C$    | H1   |
|            | 54024.2779          | 0.0001 | Ι    | $BV(RI)_C$ | H1   |
|            | 54026.3407          | 0.0003 | Ι    | V          | K1   |
| EQ Tau     | 54022.5508          | 0.0001 | Ι    | V          | K1   |
| V781 Tau   | 53767.2730          | 0.0003 | Ι    | RI         | RO   |
| XY UMa     | 53833.3711          | 0.0001 | II   | $BV(RI)_C$ | G1   |
|            | 53834.3295          | 0.0001 | II   | $BV(RI)_C$ | G1   |
| TV UMi     | 53848.3990          | 0.0008 | Ι    |            | K1   |
|            | 53860.4463          | 0.0001 | Ι    |            | K1   |
|            | 53865.4388          | 0.0002 | Ι    |            | K1   |
|            | 53866.4750          | 0.0006 | II   |            | K1   |
| AG Vir     | 53450.4496          | 0.0002 | II   | N          | G2   |
|            | 53451.4089          | 0.0002 | Ι    | N          | G2   |
|            | 53285.3871          | 0.0001 | II   | V          | G1   |
| PY Vir     | 54201.7944          | 0.0001 | Ι    |            | DDO  |
| ER Vul     | 53936.4766          | 0.0004 | II   |            | K2   |
| BD+7 3142  | 54188.8663          | 0.0001 | Ι    |            | DDO  |

# **Explanation of the remarks in the table:** Remark gives observatory

## Remarks:

Times of minima are weighted averages from all filters used

IBVS 5777

## Acknowledgements:

Part of data published in this paper was obtained at the David Dunlap Observatory, University of Toronto. This work was also supported by the following grants: VEGA grants od the Slovak Academy of Sciences No. 7010 and 7011, grant of Šafárik University VVGS 10/2006, APVV grant LPP-0049-06, Bilateral APVV grant SK-UK-01006, INTERREG IIIA SR-ČR 143-13-36 grant, KEGA grant 3/4128/06 and grant of GA ČR 205/06/0217. M. Vanko's research is supported by a Maria Curie "Transfer of Knowledge" Fellowship within the 6th European Community Framework Programme. Support (of the stay of TP at the DDO) from the grant of the Natural Sciences and Engineering Council of Canada to S.M. Rucinski is acknowledged with gratitude.

#### ERRATUM FOR IBVS 5777

The following corrections for the paper "New Minima Times of Selected Eclipsing Binaries" by Parimucha et al. were communicated by the authors after the publication:

| Sta | ar  | Original   |       | Correct | ed      |         |
|-----|-----|------------|-------|---------|---------|---------|
| EP  | And | 53005.3233 | <br>I | 54005.3 | <br>233 |         |
| UV  | Lyn | 54068.6367 | I     | 54068.6 | 367     | II      |
| GΖ  | And | 53947.4616 |       | should  | be      | deleted |
| CW  | Cas | 53942.4711 |       | should  | be      | deleted |
| GW  | Cep | 53866.4409 |       | should  | be      | deleted |
| RW  | Com | 53830.3059 |       | should  | be      | deleted |
| R₩  | Com | 53847.4787 |       | should  | be      | deleted |
| AG  | Vir | 53285.3871 |       | should  | be      | deleted |
|     |     |            |       |         |         |         |

Number 5778

Konkoly Observatory Budapest 19 June 2007 *HU ISSN 0374 - 0676* 

### $H\alpha$ OBSERVATIONS OF THE BINARY SYSTEM HR 2142

POLLMANN, E.

Email: ErnstPollmann@aol.com

HR 2142 (HD 41335, V696 Mon) is a Be star of visual magnitude 5.2 mag. In the past 50 years it was the subject of many studies. Its projected rotational velocity  $(v \sin i)$  is very high (350–400 km/s) (Peters, 1972; Slettebak, 1982). The extreme width of the emission lines made it difficult to classify the spectrum, but today HR 2142 is classified as B2IVe. The most remarkable characteristics of its spectrum are the Balmer emission lines with a central reversal or absorption feature from the circumstellar envelope. Since the discovery of periodic profile variations in the Balmer lines HR 2142 has been considered to be a binary system with an orbital period of 80.86 days (Peters, 1983, 2001; Peters & Gies, 2002). The circular orbital solution was obtained from RV measurements based upon measurements of the wings of the broad Balmer and He lines (Peters, 1983). The ephemeris from that paper:

$$T = JD 2441990.5 \pm 1.1, \qquad P = 80.860 \pm 0.005 days$$

was used for calculation of the phases here. The periodic behaviour mainly pertains the appearance of primary and secondary shell phases (Peters, 1972). This is indicated by the appearance of shell (absorption) lines in the emission Balmer profiles and by periodic  $H\alpha V/R$  variations.

Since the azimuthal distribution of this plasma material is complex and the H $\alpha$  profile comes from extended disk regions, a tomographic study for mapping the V/R-variations is considered particularly useful. It may contribute to clarify whether the variability is further strictly periodic or whether there are references of disturbances by disk instability (completely without companions) or tidal disturbances. Therefore Monika Maintz and Thomas Rivinius, then staff astronomers from the Landessternwarte Heidelberg in Germany, suggested a collaboration with amateur astronomers who could provide line profile observations with a more frequent coverage than it is possible at large observatories. In general the strength of central reversal depends on the inclination of the binary's orbital plane to the line of sight. High inclination causes a strong central absorption, because the infalling gas intersects the line of sight. With a dispersion of at least 35 Å/mm and  $R \sim 12000$  these V/R variations can be observed with instruments now available to amateurs.

The spectra discussed here were obtained with a 20-cm (f/4) Schmidt–Cassegrain telescope at the observatory of the Vereinigung der Sternfreunde, Köln, connected with a slitless spectrograph: dispersion = 27 Å/mm,  $R \sim 14000$ . Fig. 1 illustrates my findings with 30 individual H $\alpha$  spectra that were obtained from September 2003 to April 2006.





Figure 1.a–c. The three panels show the H $\alpha$  profiles arranged according to the orbital phase. It can be seen that the V/R ratios during the orbital period are mostly less than 1, while between phases 0.75 and 0.07 the V/R ratios larger than 1 are more common. During the shell phase the absorption component in H $\alpha$  is flanked by the emission. On the other hand, we do not see any strict periodic behaviour of the V/R ratio like in some (but not all) other binary systems. This fact can be an indication of a complicated behaviour in the circumstellar matter in the system of HR 2142

Depending on the orbital phase, we see the enhanced emission either red- or blueshifted as V/R variation. The central reversal develops around phase 0.0 or 1.0, when an additional plasma material infall is in front of the Be primary. At this phase the companion is between the observer and the Be star. The extent, to which the disk is symmetrically distributed with respect to the line of sight, affects the observed strength of the V and R peaks.

Within the three observational periods different orbits are phasedly represented. Fig. 1 shows variations with the orbital phase and some changes from cycle to cycle. The legend at right identifies the orbital phase of each spectrum. The phase-dependent V/R behavior derived from these spectra is shown in Fig. 2.

The uncertainties on EW and V/R were determined by measurements of standard stars on three nights for a total of 8 hours of observation. For both values uncertainty was less than 3% for individual measurements at one night. A sharp decrease in V/Rbetween phases 0.9–1.04 is clearly visible. The derived V/R ratios of the spectra between 09/2003–04/2006 have maximum values of 1.07 at phase 0.85 (2003/2004), 1.22 at phase 0.93 (2004/2005) and 1.16 at phase 0.9 (2005/2006). In addition there is a remarkable V/R change between phases 0.5 and 0.6. At these phases, the companion is behind the primary component. The V/R change is also observable here, similar to the situation at phase 1.0, although it is less pronounced because of the eclipse of the primary.



Figure 2. V/R variation of H $\alpha$  based on observations from 09/2003–04/2004, 09/2004–01/2005, 10/2005–04/2006

Acknowledgment. The author thanks Dr. Monika Maintz and Dr. Thomas Rivinius (both formerly from Landessternwarte Heidelberg) for encouraging this study, and Dr. Reinhard Hanuschik (European Southern Observatory) and Dr. Anatoly Miroshnichenko (University of North Carolina at Greensboro) for carefully reading the manuscript.

References:

Peters, G.J., 1972, PASP, 84, 334
Peters, G.J., 1983, PASP, 95, 311
Peters, G.J., 2001, Publications of the Astron. Inst. Acad. Sci. Czech Republ., 89, 30
Peters, G.J., Gies, D.R., 2002, ASP Conference Series, 279, 149, in: Exotic Stars as Challenges to Evolution, ed. Christopher A. Tout & Walter Van Hamme, ASP, San Francisco (= Proc. IAU Coll., 187, 149)
Slettebak, A., 1982, ApJS, 50, 55

Number 5779

Konkoly Observatory Budapest 19 June 2007 *HU ISSN 0374 - 0676* 

## V2467 CYG — A NOVA WITH EXTREMELY STRONG O I 8446 Å EMISSION

#### TOMOV, T.; MIKOŁAJEWSKI, M.; RAGAN, E.; CIKAŁA, M.; ŚWIERCZYŃSKI, E.; BROŻEK, T.; KARSKA, A.; WYCHUDZKI, P.; WIĘCEK, M.; GAŁAN, C.; KOZIATEK, P.; LEWANDOWSKI, M.; RADOMSKI, T.; CZART, K.; ZAJCZYK, A.; KONORSKI, P.; NIEDZIELSKI, A.

Centrum Astronomii, Uniwersytet Mikołaja Kopernika, ul. Gagarina 11, Pl-87100 Toruń, Poland

V2467 Cyg  $\equiv$  Nova Cyg 2007 was discovered by Tago (see Nakano et al., 2007) at 7<sup>n</sup>.4 on March 15.8 already declining from the maximum. The brightness maximum occurred somewhere between this date and Tago's last negative observation on March 12.8 (Nakano et al., 2007). The nova was confirmed spectroscopically on March 16.8 with an expansion velocity of ~ 1200 km s<sup>-1</sup>, measured for the P Cyg absorption component of H $\alpha$  (Nakano et al., 2007). Kubat & Niemczura (2007) reported a velocity of 968 km s<sup>-1</sup> on March 17.1 and 900 km s<sup>-1</sup> on March 17.2. Munari et al. (2007) presented a detailed quantitative description of the optical spectrum on March 18.2 and concluded that V2467 Cyg belongs to Williams's (1992) "FeII" class. They reported the presence of two P Cyg absorption components in the H $\alpha$  and H $\beta$  profiles with velocities 913 km s<sup>-1</sup> and 1900 km s<sup>-1</sup>. Steeghs et al. (2007) identified the progenitor as an early A spectral type object with IPHAS magnitudes  $r' = 18^{m}.46 \pm 0^{m}.01$  and  $i' = 17^{m}.49 \pm 0^{m}.1$  They estimated the distance to V2467 Cyg in the range 1.5–4 kpc and an outburst amplitude ~ 12<sup>m</sup> typical for "Fe II" type galactic novae.

Photometric and spectral observations of V2467 Cyg at the Toruń Observatory began on March 24, about ten days after the maximum brightness. Photometric data were recorded with the 60-cm Cassegrain and 60/90-cm Schmidt–Cassegrain telescopes and the SAVS equipment (Niedzielski et al., 2003), all of them equipped with CCD cameras. We used the Henden & Munari (2007) photometric sequence to reduce our observational data. Additionally, we carried out rapid brightness variation monitoring, mainly in Vand  $R_{\rm C}$ . The photometric data are listed in Table 1, the monitoring data are available electronically.

Spectra with  $R \sim 3000$ ,  $\sim 1500$  and  $\sim 750$  covering different regions in the spectral interval 4000 Å-8800 Å were recorded with the Canadian Copernicus Spectrograph (CCS) attached to the 60/90-cm Schmidt–Cassegrain telescope. Additionally, with the same telescope, we obtained prismatic spectra in the range 4300 Å-10500 Å with a resolution of about  $\sim 5$  Å,  $\sim 20$  Å and  $\sim 60$  Å at H $\gamma$ , H $\alpha$  and 9000 Å, respectively.

The nova light curve and the color indices after April 12, 2007 are shown in Fig. 1. The star is already  $\sim 4^{\rm m}$  fainter than at maximum, one month earlier. During the following month the V2467 Cyg brightness in V decreased by about 0<sup>m</sup>. The most remarkable variation is a dip between JD 2454206 and JD 2454214. The colors U - B and B - V

Table 1. Toru<br/>ń $UBVR_{\rm C}I_{\rm C}$  photometric observations of V2467 Cyg

| 1005        |       | un o b i | P     |            | 110 0.00    |                         | 101 0 98                                                                        |
|-------------|-------|----------|-------|------------|-------------|-------------------------|---------------------------------------------------------------------------------|
| HJD         | U     | B        | V     | $R_{ m C}$ | $I_{\rm C}$ | Telescope               | Monitoring*                                                                     |
| 2454184.611 |       |          | 9.56  |            |             | SAVS                    |                                                                                 |
| 2454185.615 |       |          | 9.70  |            |             | SAVS                    |                                                                                 |
| 2454203.458 |       | 12.40    | 11.42 |            |             | $90\text{-}\mathrm{cm}$ | $3^{ m h}_{\cdot}6~(V)$                                                         |
| 2454203.595 | 12.87 | 12.45    | 11.37 | 8.92       | 7.84        | $60\text{-}\mathrm{cm}$ | $0^{ m h}_{\cdot}3~(B),~0^{ m h}_{\cdot}9~(R_{ m C})$                           |
| 2454204.508 | 12.95 | 12.47    | 11.42 | 8.93       | 7.87        | $60\text{-}\mathrm{cm}$ | $2^{ m h}_{\cdot}3~(B),~2^{ m h}_{\cdot}2~(R_{ m C})$                           |
| 2454206.483 | 13.09 | 12.64    | 11.60 | 9.10       | 8.07        | $60\text{-}\mathrm{cm}$ | $2^{ m h}_{\cdot} 8~(B),~2^{ m h}_{\cdot} 7~(R_{ m C})$                         |
| 2454207.481 | 13.43 | 12.82    | 11.84 | 9.34       | 8.37        | $60\text{-}\mathrm{cm}$ |                                                                                 |
| 2454207.549 |       |          | 11.79 |            |             | SAVS                    |                                                                                 |
| 2454209.551 |       |          | 12.11 |            |             | SAVS                    |                                                                                 |
| 2454211.598 | 13.23 | 12.80    | 11.81 | 9.39       | 8.46        | $60\text{-}\mathrm{cm}$ | $3^{ m h}_{\cdot}4~(V),~3^{ m h}_{\cdot}3~(R_{ m C})$                           |
| 2454212.544 |       |          | 11.71 |            |             | SAVS                    |                                                                                 |
| 2454216.503 | 13.09 | 12.73    | 11.71 | 9.37       | 8.52        | $60\text{-}\mathrm{cm}$ | $1^{ m h}_{ m \cdot \cdot 6} \; (V), 1^{ m h}_{ m \cdot \cdot 7} \; (R_{ m C})$ |
| 2454217.475 | 13.18 | 12.72    | 11.71 | 9.34       | 8.48        | $60\text{-}\mathrm{cm}$ | $2^{ m h}_{-}6~(V,R_{ m C})$                                                    |
| 2454218.588 | 13.12 | 12.79    | 11.76 | 9.41       | 8.57        | $60\text{-}\mathrm{cm}$ | $2^{ m h}_{+}7~(V,R_{ m C})$                                                    |
| 2454221.455 | 13.25 | 12.89    | 11.84 | 9.53       | 8.75        | $60\text{-}\mathrm{cm}$ | $3^{\rm h}0~(R_{ m C})$                                                         |
| 2454222.430 | 13.29 | 12.75    | 11.76 | 9.49       | 8.73        | $60\text{-}\mathrm{cm}$ | $2^{h}9 (V), 3^{h}5 (R_{C})$                                                    |
| 2454224.433 | 13.37 | 12.80    | 11.77 | 9.52       | 8.75        | $60\text{-}\mathrm{cm}$ | $3^{h}5 (V, R_{C})$                                                             |
| 2454226.457 | 13.45 | 12.91    | 11.88 | 9.65       | 8.91        | $60\text{-}\mathrm{cm}$ | $1^{\rm h}0~(R_{\rm C})$                                                        |
| 2454230.501 |       | 12.99    | 12.04 | 9.82       | 9.17        | $60\text{-}\mathrm{cm}$ |                                                                                 |
| 2454240.560 |       |          | 12.13 | 9.98       | 9.42        | $60\text{-}\mathrm{cm}$ |                                                                                 |
| 2454241.419 | 13.17 | 13.01    | 12.12 | 9.96       | 9.37        | $60\text{-}\mathrm{cm}$ | $3^{ m h}_{\cdot}5~(V,R_{ m C})$                                                |
| 2454244.554 | 13.06 | 12.96    | 11.99 | 9.92       | 9.30        | $60\text{-}\mathrm{cm}$ |                                                                                 |
| 2454245.397 |       | 13.05    | 12.04 | 9.94       | 9.34        | $60\text{-}\mathrm{cm}$ |                                                                                 |
| 2454246.392 |       | 13.12    | 12.21 | 10.06      | 9.54        | $60\text{-}\mathrm{cm}$ |                                                                                 |
| 2454249.421 | 13.80 | 13.19    | 12.32 | 10.19      | 9.66        | $60\text{-}\mathrm{cm}$ |                                                                                 |

\* Available at the IBVS website for B, V, R<sub>C</sub> filters as files 5779-t1.txt, 5779-t2.txt, 5779-t3.txt, respectively



Figure 1. The V light curve and the color variations of V2467 Cyg. In the two bottom panels, the flux ratio OI 8446 Å/H $\alpha$  and the H $\alpha$  flux from our objective prism spectra are shown



Figure 2. Examples of the rapid brightness variations of V2467 Cyg in V and  $R_{\rm C}$  filters

vary around  $0^{\text{m}}_{\cdot}4$  and  $1^{\text{m}}_{\cdot}$ , respectively. Stronger variations are apparent in the V - R and V - I colors. V - R became bluer by about  $0^{\text{m}}_{\cdot}40$  and V - I changed from  $3^{\text{m}}_{\cdot}6$  to  $2^{\text{m}}_{\cdot}7$ .



Figure 3. The power spectra and the light curves in V and  $R_{\rm C}$ , phased with the corresponding periods marked by arrows

In Fig. 2 examples of our V and  $R_{\rm C}$  monitoring are shown. Similar short time variability is obvious in both filters with a significantly larger amplitude in V. Fourier analysis cannot distinguish a single coherent frequency in both V and  $R_{\rm C}$  bands. We have analyzed residuals from each night's mean brightness for 18.4 hours and 1220 observational points in V, and 17.3 hours and 983 points in the  $R_{\rm C}$  band, obtained during the period April 12–May 5. The resulting power spectra are shown in Fig. 3 and look like a superposition of two quasi periodic oscillations (QPO)  $P_1 \geq 3^{\rm h}$  and  $P_2 \leq 2^{\rm h}$ , just above and below the period gap for cataclysmic variables. The most probable period lies between the peaks at 6.24 d<sup>-1</sup> for  $R_{\rm C}$  and at 6.72 d<sup>-1</sup> for V, both marked in Fig. 3. The light curves corresponding to these frequencies are presented in the right panels of the same figure. The light curves for any other strong aliases look similar.



Figure 4. The lower curve shows the objective prism spectrum of V2467 Cyg obtained on April 13, 2007. The same spectrum multiplied by 8 is also plotted

Since the beginning of our observations, V2467 Cyg followed a normal "FeII" nova spectral evolution. At the end of March, the spectrum was dominated by Balmer and FeII emission lines. Two P Cyg absorption components were obvious in the Balmer lines and the slowest one was easily visible in the FeII lines as well. Their velocities were about 2290 km s<sup>-1</sup> and 1300 km s<sup>-1</sup> on March 24 and increased to  $\sim 2590$  km s<sup>-1</sup> and  $\sim 1405$  km s<sup>-1</sup> on April 1.

Between April 1 and 13 the nova spectrum changed significantly. The [OI] lines 6300 Å and 6364 Å, visible as weak emissions since the beginning of our observations, increased significantly during this period. Many new emission lines appeared in the spectrum. The most intensive among them were [OIII] 5007 Å, [OI] 5577 Å, [NII] 5755 Å, He I 5876 Å, 6678 Å, 7065 Å, CII 7234 Å, [OII] 7325 Å. However, the strongest emission line was OI 8446 Å (Fig. 4). We started our objective prism observations covering this region on April 13 but the line was probably present in the spectrum during all the time of our observations. The reason why we think this relates to the other O I line at 7774 Å visible at the red edge of our CCS spectrum obtained on March 26. In the later spectra, both OI lines were visible together and the 8446 Å one was much stronger. In Fig. 1 the changes in the H $\alpha$  flux as well as the flux ratio OI 8446 Å/H $\alpha$  are shown. The H $\alpha$  flux decreases from  $\sim 4.9 \times 10^{-10} \text{ erg cm}^{-2} \text{ sec}^{-1}$  in mid April to  $\sim 2.0 \times 10^{-10} \text{ erg cm}^{-2} \text{ sec}^{-1}$  in mid May. During the same time the flux ratio OI 8446 Å/H $\alpha$  changes from ~ 1.2 to ~ 0.5. The O I 8446 Å flux larger than H $\alpha$  is probably exceptional. However, this O I line is produced in a fluorescent cascade as a result of pumping by  $Ly\beta$  H I photons (Kastner & Bhatia, 1995), so such a strong OI flux could indicate an extremely high oxygen overabundance.

Acknowledgements. This work was supported by the Polish MNiSW Grant N203 018 32/2338. We are grateful to Boud Roukema for the improvement of English.

References:

Henden, A., Munari, U., 2007, *IBVS*, No. 5769
Kastner, S.O., Bhatia, A.K., 1995, *ApJ*, **439**, 346
Kubat, J., Niemczura, E., 2007, *CBET*, No. 894
Munari, U., Dalla Via, G., Valisa, P., Dallaporta, S., Castellani, F., 2007, *CBET*, No. 897
Nakano, S., Tago, A., Nishiyama, K., Sakamoto, T., 2007, *IAUC*, No. 8821
Niedzielski, A., Maciejewski, G., Czart, K., 2003, *AcA*, **53**, 281
Steeghs, D., Drew, J., Greimel, R., et al., 2007, *ATel*, No. 1031
Williams, R.E., 1992, *AJ*, **104**, 725

Number 5780

Konkoly Observatory Budapest 21 June 2007 *HU ISSN 0374 - 0676* 

#### CL AURIGAE: A TRIPLE SYSTEM WITH MASS TRANSFER

WOLF, M.<sup>1</sup>; KOTKOVÁ, L.<sup>2</sup>; BRÁT, L.<sup>3</sup>; HANŽL, D.<sup>4</sup>; HORNOCH, K.<sup>5</sup>; LEHKÝ, M.<sup>6</sup>; ŠMELCER, L.<sup>7</sup>; ZASCHE, P.<sup>1</sup>

<sup>1</sup> Astronomical Institute, Charles University Prague, V Holešovičkách 2, CZ-180 00 Praha 8, Czech Republic, e-mail: wolf@cesnet.cz

<sup>2</sup> Astronomical Institute, Academy of Sciences, CZ-251 65 Ondřejov, Czech Republic, e-mail: lenka@asu.cas.cz

<sup>3</sup> Private Observatory, Velká Úpa 193, CZ-542 21 Pec pod Sněžkou, Czech Republic, e-mail: brat@snezkou.cz

<sup>4</sup> Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic

<sup>5</sup> Private Observatory, CZ-664 31 Lelekovice 393, Czech Republic, e-mail: k.hornoch@centrum.cz

<sup>6</sup> Observatory and Planetarium, Zámeček 456, CZ-500 08 Hradec Králové, Czech Republic

<sup>7</sup> Observatory, Vsetínská 78, CZ-575 01 Valašské Meziříčí, Czech Republic, e-mail: lsmelcer@astrovm.cz

The semi-detached eclipsing binary CL Aurigae (GSC 2393.1455, FL 439, HV 6886;  $B_{\rm max} = 11.7$  mag) is a relatively faint but frequently observed binary with a short orbital period about 1.24 days. CL Aur was discovered to be a variable star photographically by Hoffleit (1935). Later Kurochkin (1951) derived the first light elements

Pri. Min. = HJD 24 32967.262 +  $1^{d}$ 2443666 × E.

Next visual observations were made by Szafraniec (1960), the spectral type was determined by Götz & Wenzel (1968). Wolf et al. (1999) in their period study predicted a third body in eccentric orbit (e = 0.4) with a period of about 22.5 years. To our knowledge this star has not been measured spectroscopically since discovery.

We observed eclipses of CL Aur regularly every year and obtained 18 new precise times of minimum light. Our CCD photometry was carried out from 2001 until March 2007 at six observatories: Brno, Lelekovice, Hradec Králové, Ondřejov, Pec pod Sněžkou and Valašské Meziříčí observatories, Czech Republic. Different telescopes, CCD cameras and filters were used (see Table 1). The nearby star GSC 2393.1532 (V = 11.4 mag) on the same frame as CL Aur served as a primary comparison star during these observations. See also http://nyx.asu.cas.cz/~lenka/dbvar/ for more information. The new times of primary minimum and their errors were determined using the least squares fit of the data by the bisecting chord method. These times of minimum are presented in Table 1. In this table, N stands for the number of observations used in the calculation of the minimum time, the others are self-evident. The epochs were calculated according to the new ephemeris given in the text.

The change of period of CL Aur was studied by means of an O - C diagram analysis. We took in consideration all older visual and photographic times of minima found in

| JD Hel. –  | Epoch  | Error  | N   | Observatory                            |
|------------|--------|--------|-----|----------------------------------------|
| 2400000    |        | (days) |     | Telescope, camera, filter              |
| 51901.6065 | 1450.0 | 0.0002 | 107 | Hradec Králové 40-cm, ST-7, $V$        |
| 51901.6070 | 1450.0 | 0.0003 | 89  | Lelekovice 35-cm, ST-6V, $R$           |
| 52017.3345 | 1543.0 | 0.0003 | 52  | Lelekovice 35-cm, ST-6V, $R$           |
| 52252.5171 | 1732.0 | 0.0001 | 80  | Ondřejov 65-cm, AP7p, $R$              |
| 52333.4014 | 1797.0 | 0.0001 | 88  | Ondřejov 65-cm, AP7p, $R$              |
| 52522.5455 | 1949.0 | 0.0001 | 46  | Ondřejov 65-cm, AP7p, $R$              |
| 52684.3143 | 2079.0 | 0.0001 | 77  | Ondřejov 65-cm, AP7p, $R$              |
| 52899.5915 | 2253.0 | 0.0002 | 31  | Ondřejov 65-cm, AP7p, $R$              |
| 52964.2991 | 2304.0 | 0.0001 | 90  | Ondřejov 65-cm, AP7p, $R$              |
| 53425.3416 | 2674.5 | 0.0001 | 98  | Ondřejov 65-cm, AP7p, $R$              |
| 53713.4178 | 2906.0 | 0.0001 | 83  | Ondřejov 65-cm, AP7p, $R$              |
| 53746.3945 | 2932.5 | 0.0002 | 73  | Ondřejov 65-cm, AP7p, $R$              |
| 53769.4149 | 2951.0 | 0.0001 | 64  | Ondřejov 65-cm, AP7p, $R$              |
| 54070.5565 | 3193.0 | 0.0002 | 65  | Pec pod Sněžkou 20-cm, ST-8, $R$       |
| 54141.4868 | 3250.0 | 0.0002 | 104 | Brno 20-cm, ST-6V, $R$                 |
| 54171.3516 | 3274.0 | 0.0001 | 137 | Brno 20-cm, ST-6V, $R$                 |
| 54176.3298 | 3278.0 | 0.0001 | 33  | Valašské Meziříčí 28-cm, ST-7, $V\!,R$ |
| 54186.2843 | 3286.0 | 0.0002 | 16  | Valašské Meziříčí 28-cm, ST-7, $V, R$  |

Table 1: New times of minimum light of CL Aur



Figure 1. The complete O - C diagram for CL Aur. The numerous visual and photographic times are denoted by dots, the primary and secondary CCD times are denoted by circles and triangles, resp. The sinusoidal curve corresponds to the third body orbit, the dashed curve denotes a period increase of about 1.3 seconds per century

special databases of AAVSO<sup>1</sup> and BRNO<sup>2</sup> observers, all times given in Wolf et al. (1999, their Table 1), as well as current numerous CCD timings given in Hübscher et al. (2005, 2006), Nelson (2006), Bíró et al. (2007), Dogru et al. (2007), Hübscher & Walter (2007) and Smith & Caton (2007). The period increase and sinusoidal deviations of the O - C values caused by a light-time effect are well remarkable. Our analysis of the third body gives the following parameters:

| $P_3$ (period)                  | $= 7910 \pm 80 \text{ days}$      |
|---------------------------------|-----------------------------------|
|                                 | $= 21.7 \pm 0.2$ years            |
| T (time of periastron)          | $=$ J.D. 24 43880 $\pm$ 80        |
| A  (semi-amplitude)             | $= 0.0138 \pm 0.0012 \text{ day}$ |
| $\omega$ (length of periastron) | $= 209.2 \pm 1.2$ degrees         |
| $e_3$ (eccentricity)            | $= 0.32 \pm 0.02$                 |

These values were obtained by the least squares method together with the quadratic light elements

Pri. Min. = HJD 2450097.2712(5) +  $1^{d}$  24437505(18) × E +  $2^{d}$  52(4) ×  $10^{-10}$  ×  $E^{2}$ .

The period increase resulting from these elements is  $5.04 \times 10^{-10}$  day/cycle or  $1.48 \times 10^{-7}$  day/year or 1.3 seconds per century, respectively. For this solution all times were used with different weights, their list is given in an electronic table available through the IBVS website as file 5780-t2.txt. The corresponding O - C diagrams are plotted in Fig. 1 and Fig. 2.



Figure 2. The O - C diagram of CL Aur based on current CCD measurements. Primary and secondary times are denoted by circles and triangles, resp. The sinusoidal curve corresponds to the third body orbit with a short period of about 22 years and a semi-amplitude about 20 minutes

<sup>&</sup>lt;sup>1</sup>http://www.aavso.org/observing/programs/eclipser/ebtom.shtml

<sup>&</sup>lt;sup>2</sup>http://var.astro.cz/ocgate

Assuming a coplanar orbit  $(i_3 = 90^\circ)$  and adopting a total mass of the eclipsing pair with A1 primary to be  $M_1 + M_2 \simeq 3.0 \ M_{\odot}$ , we can obtain a lower limit for the mass of the third component  $M_{3,\min}$ . The mass function has a value  $f(M) = 0.034 \ M_{\odot}$ , from which the minimum mass of the third body follows as 0.79  $M_{\odot}$ . A possible third component of spectral type about K2 with the bolometric magnitude of  $m_3 \simeq 5.7$  mag (Harmanec, 1988) produces a hardly detectable third light of  $L_3 \simeq 1.5\%$  of the total light.

Our result indicates, that CL Aur is probably the next member of a group of triple systems with mass transfer deserving a regular monitoring (e.g. RR Dra, TZ Eri; Zasche, 2007). Approx. 50% of the third-body orbit is well-covered by the precise photoelectric and CCD observations. Therefore, new high-accuracy timings of this eclipsing system are necessary in order to cover the third-body orbit and to improve parameters given above.

Acknowledgements. This investigation was supported by the Grant Agency of the Czech Republic, grants No. 205/04/2063 and No. 205/06/0217. We also acknowledge the support from the Research Program MSM0021620860 of the Ministry of Education. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and of NASA's Astrophysics Data System.

#### References:

Bíró, I.B., Borkovits, T., Hegedüs, T., et al., 2007, *IBVS*, No. 5753
Dogru, S.S., Donmez, A., Tuysuz, M., et al., 2007, *IBVS*, No. 5746
Götz, W., Wenzel, 1968, *Mitteilungen Ver. Sterne*, 5, 5
Harmanec, P., 1988, *Bull. Astr. Inst. Czech.*, 39, 329
Hoffleit, D., 1935, *Harvard Bulletin*, 901, 20
Hübscher, J., Walter, F., 2007, *IBVS*, No. 5761
Hübscher, J., Paschke, A., Walter, F., 2005, *IBVS*, No. 5657
Hübscher, J., Paschke, A., Walter, F., 2006, *IBVS*, No. 5731
Kurochkin, N.E., 1951, *Variable Stars*, 8, 351
Nelson, R.H., 2006, *IBVS*, No. 5672
Smith, A.B., Caton D.B., 2007, *IBVS*, No. 5745
Szafraniec, R., 1960, *Acta Astronomica*, 10, 99
Wolf, M., Šarounová, L., Brož, M., Horan, R., 1999, *IBVS*, No. 4683
Zasche, P., 2007, *AJ*, submitted

#### ERRATUM FOR IBVS 4683

CL Aur is not BD  $+33^{\circ}0975$ .

The Editors

Number 5781

Konkoly Observatory Budapest 2 July 2007 *HU ISSN 0374 - 0676* 

## 166. LIST OF TIMINGS OF MINIMA ECLIPSING BINARIES BY BBSAG OBSERVERS

(BBSAG Bulletin No. 133)

#### DIETHELM, ROGER

BBSAG, Bahnhofstrasse 3, CH-4118 Rodersdorf, Switzerland

The following Table lists timings of minima of eclipsing binaries secured by photoelectrical means by BBSAG observers, primarily obtained between July 2006 and June 2007. The given O - C values generally refer to the linear elements of the GCVS (Kholopov et al., 1985), except for the cases stated in the remarks. All times given are heliocentric UTC.

| Variable        | Type         | HJD 24     | ±      | O - C   | n  | Obs | Remarks                             |
|-----------------|--------------|------------|--------|---------|----|-----|-------------------------------------|
| DS And          | р            | 54096.2943 | 0.0004 | +0.0022 | 29 | RD  | V                                   |
| KN And          | р            | 54090.3058 | 0.0005 | +0.0012 | 18 | RD  | V; el.: BAV Mitt. 36, 11            |
| GSC2808-139 And | $\mathbf{S}$ | 54097.2513 | 0.0009 |         | 12 | RD  | V                                   |
| V557 Aql        | р            | 53919.5378 | 0.0009 | +0.4546 | 12 | RD  | V                                   |
| V737 Aql        | р            | 53933.4849 | 0.0002 | -0.1271 | 26 | RD  | V                                   |
| V760 Aql        | р            | 53934.4143 | 0.0003 | -0.0225 | 22 | RD  | V                                   |
| V770 Aql        | р            | 53933.5302 | 0.0004 | +0.3455 | 18 | RD  | V                                   |
| V917 Aql        | р            | 53919.4687 | 0.0002 | +0.1154 | 35 | RD  | V; $d=0.06$ days                    |
|                 | р            | 53941.4566 | 0.0002 | +1.1145 | 27 | RD  | V                                   |
| NSV12008 Aql    | $\mathbf{S}$ | 53918.4289 | 0.0008 | -0.0076 | 15 | RD  | V; el.: IBVS, No. 5644              |
| ZZ Aur          | $\mathbf{S}$ | 54165.3516 | 0.0009 | +0.0206 | 21 | EBl | С                                   |
| AP Aur          | $\mathbf{S}$ | 54172.303  | 0.003  | +0.003  | 8  | RD  | V                                   |
| EM Aur          | s            | 54172.3949 | 0.0013 | -0.1716 | 12 | RD  | V                                   |
| GX Aur          | р            | 54172.3759 | 0.0005 | +0.0581 | 17 | RD  | V; el.: BAV Mitt. 69                |
| HP Aur          | $\mathbf{S}$ | 54172.3419 | 0.0005 | +0.0527 | 23 | RD  | V                                   |
| IZ Aur          | р            | 54097.5126 | 0.0003 |         | 30 | RD  | V                                   |
| V365 Aur        | р            | 54172.3323 | 0.0003 | -0.0075 | 21 | RD  | V; el.: MVS 10, 153                 |
| V523 Aur        | р            | 54172.3952 | 0.0011 |         | 9  | RD  | V                                   |
| GSC2393-680 Aur | $\mathbf{S}$ | 54130.3887 | 0.0015 | +0.0070 | 10 | EBl | C; el.: IBVS No. 5699               |
| GSC2903-237 Aur | $\mathbf{S}$ | 54130.4206 | 0.0005 | +0.0019 | 17 | EBl | C; el.: IBVS No. 5699               |
| GSC2915-212 Aur | р            | 54165.4772 | 0.0005 | +0.0021 | 25 | EBl | C; el.: IBVS No. 5700               |
| GSC3751-178 Aur | $\mathbf{S}$ | 54097.5513 | 0.0003 | -0.0071 | 27 | RD  | V; el.: $2453285.2664 + 0.3286 * E$ |
|                 | $\mathbf{S}$ | 54172.3345 | 0.0002 | -0.0079 | 21 | RD  | V                                   |
| GM Boo          | $\mathbf{S}$ | 53936.4531 | 0.0008 | +0.0313 | 13 | EBl | R; el.: IBVS No. 5125               |
|                 | $\mathbf{S}$ | 54174.4301 | 0.0011 | +0.0355 | 13 | EBl | С                                   |
| GN Boo          | $\mathbf{S}$ | 53936.4724 | 0.0011 | +0.0100 | 10 | EBl | R; el.: IBVS No. 5125               |
|                 | $\mathbf{S}$ | 54174.4349 | 0.0006 | +0.0094 | 12 | EBI | С                                   |
| GQ Boo          | р            | 53936.493  | 0.004  | -0.008  | 11 | EBl | R; el.: IBVS No. 5125               |
|                 | s            | 54197.4751 | 0.0014 | -0.0046 | 25 | EBl | С                                   |

| Variable          | Type   | HJD 24     | ±      | 0 – C   | n               | Obs                  | Remarks                                 |
|-------------------|--------|------------|--------|---------|-----------------|----------------------|-----------------------------------------|
| GR Boo            | p      | 53936.4397 | 0.0014 | +0.0052 | 16              | EBl                  | R; el.: IBVS No. 5125                   |
|                   | p      | 54174.4916 | 0.0003 | +0.0016 | 16              | $\mathbf{EBl}$       | C                                       |
| GSC2013-288 Boo   | p      | 53936.4179 | 0.0017 | -0.0069 | 14              | $\mathbf{EBl}$       | R; el.: IBVS No. 5699                   |
|                   | p      | 54174.3699 | 0.0007 | -0.0034 | 16              | $\operatorname{EBl}$ | C                                       |
|                   | s      | 54174.5203 | 0.0008 | -0.0045 | 14              | $\mathbf{EBl}$       | С                                       |
| AO Cam            | р      | 54173.3745 | 0.0003 | -0.0313 | 29              | RD                   | V; el.: PASP 97, 648                    |
| CD Cam            | р      | 54173.3819 | 0.0009 | +0.0999 | 31              | RD                   | V; el.: IBVS No. 3753                   |
| HW Cam            | p      | 54173.4001 | 0.0008 | +0.0563 | 22              | RD                   | V; el.: IBVS No. 4526                   |
| MT Cam            | s      | 54173.3388 | 0.0003 | -0.0157 | 29              | RD                   | V; el.: IBVS No. 5600                   |
| GSC3715-1039 Cam  | р      | 54173.3517 | 0.0006 | -0.0469 | 37              | RD                   | V; el.: IBVS No. 5700                   |
| NSV3715 Cam       | p      | 54173.278  | 0.005  |         | 6               | RD                   | V                                       |
| DF CVn            | s      | 54170.4856 | 0.0004 | +0.0443 | 22              | $\mathbf{EBl}$       | C; el.: IBVS No. 5021                   |
| DH CVn            | р      | 54170.3917 | 0.0006 | -0.0134 | 12              | $\mathbf{EBl}$       | C; el.: IBVS No. 5149                   |
| DQ CVn            | p      | 54170.337  | 0.003  | -0.001  | 10              | $\mathbf{EBl}$       | C; el.: IBVS No. 5541                   |
| DX CVn            | s      | 54172.4590 | 0.0007 | +0.0051 | 16              | $\mathbf{EBl}$       | C; el.: IBVS No. 5403                   |
| DY CVn            | q      | 54172.2952 | 0.0003 | -0.0041 | 9               | EBl                  | C; el.: IBVS No. 5403                   |
|                   | s      | 54172.4138 | 0.0015 | -0.0085 | 13              | $\mathbf{EBl}$       | C                                       |
| EE CVn            | s      | 53979.3337 | 0.0010 | -0.0187 | 15              | EBl                  | R; el.: IBVS No. 5403                   |
|                   | s      | 54172.3757 | 0.0010 | -0.0040 | 10              | EBl                  | Ċ                                       |
| EF CVn            | s      | 54172.4335 | 0.0010 | -0.0003 | 19              | EBl                  | C; el.: IBVS No. 5269                   |
| EG CVn            | s      | 54172.4727 | 0.0005 | +0.0220 | 16              | EBl                  | C; el.: IBVS No. 5269                   |
| EI CVn            | g      | 54172.4083 | 0.0009 | -0.0043 | 11              | EBl                  | C; el.: IBVS No. 5403                   |
| GSC2534-1121 CVn  | s      | 54170.3640 | 0.0008 | +0.0031 | 14              | EBl                  | C; el.: IBVS No. 5541                   |
| m GSC2537-520~CVn | g      | 54170.3811 | 0.0009 | -0.0061 | 19              | EBl                  | C; el.: IBVS No. 5541                   |
| GSC2544-1007 CVn  | r<br>D | 53936.3887 | 0.0008 | -0.0009 | 10              | EBI                  | R: el.: IBVS No. 5541                   |
|                   | D      | 54170.3973 | 0.0002 | +0.0054 | 11              | EBl                  | Ċ                                       |
| GSC2544-1090 CVn  | r<br>S | 53979.381  | 0.003  | -0.002  | 10              | EBI                  | R: el.: IBVS No. 5699                   |
|                   | D      | 54174.4864 | 0.0007 | +0.0085 | 18              | EBl                  | Ċ                                       |
| GSC2545-970 $CVn$ | S      | 53936.5091 | 0.0014 | +0.0004 | 10              | EBl                  | R: el.: IBVS No. 5699                   |
|                   | D      | 54174.4923 | 0.0004 | -0.0069 | 11              | EBl                  | Ċ                                       |
| GSC3034-299 CVn   | D      | 53936.4936 | 0.0003 | -0.0023 | 9               | EBl                  | R: el.: IBVS No. 5699                   |
|                   | S      | 54174.4898 | 0.0008 | +0.0004 | 18              | EBl                  | Ċ                                       |
| AX Cas            | g      | 54097.3037 | 0.0003 | -0.0901 | 27              | RD                   | V                                       |
| DP Cas            | g      | 54097.256  | 0.003  | +0.049  | 16              | RD                   | V                                       |
| GH Cas            | g      | 54090.2659 | 0.0002 | -0.4710 | 24              | RD                   | V                                       |
| KT Cas            | p      | 54097.3096 | 0.0004 | -0.1208 | 29              | RD                   | V                                       |
| MS Cas            | g      | 54090.3051 | 0.0006 | +0.0397 | 19              | RD                   | V                                       |
| NU Cas            | D      | 54096.2857 | 0.0009 | +0.2315 | 24              | RD                   | V                                       |
| V374 Cas          | D      | 54090.3276 | 0.0005 | +0.0165 | 10              | RD                   | V                                       |
| V419 Cas          | D      | 54097.3637 | 0.0013 | +0.0393 | 14              | RD                   | V                                       |
| V423 Cas          | -      | 54090.3323 | 0.0012 | -0.1386 | 9               | RD                   | V                                       |
| V651 Cas          | s      | 54090.3002 | 0.0007 | +0.0025 | 16              | RD                   | V; el.: IBVS No. 3554                   |
| V775 Cas          | D      | 54172.364  | 0.003  | -0.004  | 18              | RD                   | V: el.: IBVS No. 5557                   |
| NSV517 Cas        | D      | 54096.361  | 0.008  | +0.043  | 11              | RD                   | V: el.: IBVS No. 5609                   |
| CO Cep            | D      | 53918.4686 | 0.0006 | -0.1795 | 33              | RD                   | V: eccentric orbit                      |
| EO Cep            | r<br>D | 54097.2971 | 0.0007 | +0.0821 | 29              | RD                   | V: $d = 0.09 d$                         |
| GG Cep            | r<br>D | 54096.2931 | 0.0004 | -0.0809 | 26              | RD                   | v                                       |
| GW Cep            | r<br>D | 54097.3022 | 0.0007 | -0.0069 | 20              | RD                   | V: el.: IBVS No. 4293                   |
| IW Cep            | D      | 54096.3551 | 0.0007 | +0.0260 | 9               | RD                   | V <sup>'</sup>                          |
| NSV43 Cep         | S      | 53932.534  | 0.005  | +0.169  | 18              | RD                   | V; el.: IBVS, No. 5630; eccentric orbit |
| VY Com            | D      | 54200.4174 | 0.0018 | +0.0491 | 35              | RD                   | V                                       |
| LL Com            | r<br>D | 54200.4087 | 0.0004 | -0.0322 | $27^{-1}$       | RD                   | V: el.: IBVS No. 4386                   |
| LO Com            | r<br>S | 54170.4664 | 0.0005 | +0.0071 | $\frac{-}{21}$  | EBI                  | C: el.: IBVS No. 5052                   |
|                   | n      | 54200.3953 | 0.0010 | +0.0113 | $\frac{-1}{20}$ | RD                   | V                                       |
| LP Com            | р<br>р | 54170.4792 | 0.0004 | -0.0159 | $\frac{-0}{20}$ | EBI                  | C. el.: IBVS No. 5052                   |
|                   | ч<br>s | 54200 3910 | 0.0007 | -0.0113 | 17              | RD.                  | V                                       |
| MR Com            | ت<br>م | 54172.4182 | 0.0006 | -0.0250 | $\frac{-}{20}$  | EBl                  | C; el.: IBVS No. 5269                   |

| Variable         | Type         | HJD 24                  | ±      | O - C              | n  | Obs                  | Remarks                           |
|------------------|--------------|-------------------------|--------|--------------------|----|----------------------|-----------------------------------|
| AR CrB           | s            | 54197.4971              | 0.0009 | +0.0013            | 15 | $\operatorname{EBl}$ | C; el.: IBVS No. 5295             |
| AS CrB           | р            | 54197.4022              | 0.0012 | +0.0049            | 16 | $\operatorname{EBl}$ | C; el.: IBVS No. 5295             |
| AV CrB           | s            | 54197.4513              | 0.0006 | -0.0080            | 22 | $\operatorname{EBl}$ | C; el.: IBVS No. 5295             |
| GG Cyg           | р            | 53919.5050              | 0.0007 | +0.1230            | 24 | RD                   | V; $d=0.05 \text{ days}$          |
| PQ Cyg           | р            | 53941.4343              | 0.0012 | +0.0273            | 22 | RD                   | V; $d=0.04 \text{ days}$          |
| V346 Cyg         | р            | 53932.4276              | 0.0002 | +0.1090            | 23 | RD                   | V                                 |
| V385 Cyg         | р            | 53934.4300              | 0.0008 | -0.1270            | 25 | RD                   | V                                 |
| V501 Cyg         | р            | 53918.377               | 0.005  | -0.202             | 8  | RD                   | V                                 |
| V635 Cyg         | р            | 53941.4878              | 0.0003 | -0.0452            | 27 | RD                   | V                                 |
| V753 Cyg         | р            | 53932.4807              | 0.0001 | +0.0026            | 27 | RD                   | V; el.: BAV M., 69                |
| V824 Cyg         | р            | 53934.4227              | 0.0005 | +0.0163            | 19 | RD                   | V                                 |
| V853 Cyg         | p            | 53932.4625              | 0.0005 | +0.0223            | 28 | RD                   | V                                 |
| V869 Cyg         | s            | 53932.4396              | 0.0011 | +0.0096            | 21 | RD                   | V                                 |
| V910 Cyg         | p            | 53934.4333              | 0.0005 | -0.0257            | 25 | RD                   | V                                 |
| V961 Cvg         | p            | 53918.4636              | 0.0002 | +0.0013            | 18 | RD                   | V: el.: IBVS, No. 4278            |
| V964 Cvg         | r<br>D       | 53919.4529              | 0.0009 | +0.0396            | 25 | RD                   | V                                 |
| V1066 Cvg        | r<br>D       | 53941.4587              | 0.0005 | +0.0730            | 23 | RD                   | V: $d=0.06$ days                  |
| V1083 Cvg        | р<br>р       | 53946.4098              | 0.0002 | -0.0603            | 23 | RD                   | V: $d=0.03$ days                  |
| V1411 Cvg        | r<br>n       | 53919 4873              | 0.0007 | +0.2141            | 18 | BD                   | V                                 |
| V2280 Cvg        | P<br>S       | 540194317               | 0.0006 | +0.0403            | 25 | EBI                  | B. el · IBVS No 4996              |
| V2282 Cyg        | S            | 54019 3294              | 0.0004 | -0.0374            | 24 | EBI                  | $\mathbf{R}$ ; el : IBVS No. 4996 |
| V2284 Cyg        | S            | 54019 3126              | 0.0001 | +0.0011            | 19 | EBI                  | B: el : IBVS No. 4985             |
| V2201 Cyg        | s            | 54019 3626              | 0.0000 | +0.0022<br>+0.0187 | 20 | EBI                  | $\mathbf{R}$ ; el : IBVS No. 4995 |
| CSC3150 1247 Cug | n            | 53034 5494              | 0.0011 | $\pm 0.0107$       | 11 | BD                   | $V_{\rm rel}$ : IBVS No. 5600     |
| Z Dra            | P<br>n       | 54200 3792              | 0.0014 | -0.1825            | 30 | RD                   | V                                 |
| MII Dro          | P<br>n       | 54018 268               | 0.0002 | 0.1025             | 8  | FBI                  | Real BVS No. 5232                 |
|                  | р            | 54018.208               | 0.000  | -0.010             | 19 | EDI                  | D                                 |
| DW Dro           | 5            | 52022 4125              | 0.002  | -0.021             | 10 |                      | $\mathbf{N}$                      |
| UN DIA<br>VD Dro | p            | 53352.4125              | 0.0007 | $\pm 0.0070$       | 10 |                      | $V_{1}$ el. IDVS No. 5500         |
| CEC2522 FOF Dre  | р            | 53940.3934              | 0.0003 | -0.0257            | 10 |                      | V; eI.: IDVS, NO. 5599            |
| G5C5525-505 Dra  | 5            | 55964.409               | 0.002  | -0.008             | 9  |                      | R; eL: IDVS NO. 5099              |
| CCOLLO 201 Dro   | p            | 00904.000<br>50004 4656 | 0.002  | +0.002             | 17 | EDI<br>EDI           | R<br>D. al. IDVS No. 5600         |
| GSC3552-321 Dra  | р            | 53984.4050              | 0.0014 | +0.0034            | 17 | EBI                  | $\mathbf{R}$ ; el.: IBVS No. 5099 |
| GSC3905-60 Dra   | р            | 53984.5007              | 0.0008 | -0.0075            | 22 | EBI                  | R; el.: IBVS No. 5699             |
| AV Gem           | s            | 54097.5400              | 0.0005 | -0.0307            | 35 | RD                   | V                                 |
| EG Gem           | р            | 54097.5907              | 0.0005 | +0.2632            | 22 | RD                   | V                                 |
| LO Gem           | s            | 54097.5786              | 0.0003 | +0.0145            | 29 | RD                   | V; el.: IBVS No. 5020             |
| DI Her           | р            | 53933.4817              | 0.0004 | -0.0022            | 31 | RD                   | V; eccentric orbit                |
| V1033 Her        | р            | 54210.4238              | 0.0003 | -0.0127            | 13 | EBI                  | C; el.: IBVS 5146                 |
|                  | s            | 54210.5733              | 0.0003 | -0.0122            | 14 | EBI                  | C                                 |
| V1036 Her        | s            | 54210.5591              | 0.0002 | +0.0029            | 19 | EBI                  | C; el.: IBVS No. 5146             |
| V1038 Her        | р            | 54210.4519              | 0.0005 | +0.0049            | 10 | EBI                  | C; el.: IBVS No. 5146             |
| V1039 Her        | s            | 54210.5300              | 0.0004 | +0.0022            | 19 | EBl                  | C; el.: BBSAG Bull. 128, 10       |
| V1044 Her        | р            | 53992.308               | 0.003  | -0.005             | 8  | EBl                  | R; el.: IBVS No. 5192             |
|                  | s            | 53992.4266              | 0.0008 | -0.0067            | 10 | EB1                  | R                                 |
|                  | $\mathbf{S}$ | 54202.5078              | 0.0003 | -0.0051            | 19 | EB1                  | С                                 |
| V1047 Her        | р            | 53992.3248              | 0.0011 | -0.0088            | 10 | $\operatorname{EBl}$ | R; el.: IBVS No. 5192             |
|                  | р            | 54202.410               | 0.002  | -0.006             | 10 | EBl                  | С                                 |
|                  | $\mathbf{s}$ | 54202.5686              | 0.0009 | -0.0080            | 18 | EBl                  | С                                 |
| V1053 Her        | р            | 53992.406               | 0.004  | +0.010             | 8  | EBl                  | R; el.: BBSAG Bull., 128, 10      |
|                  | р            | 54202.4899              | 0.0006 | +0.0030            | 13 | EBl                  | С                                 |
| V1055 Her        | p            | 53992.3522              | 0.0006 | +0.0004            | 12 | EBl                  | R; el.: IBVS No. 5192             |
|                  | p            | 54202.4118              | 0.0012 | -0.0017            | 16 | EBl                  | C                                 |
|                  | s            | 54202.5752              | 0.0004 | +0.0040            | 17 | EBl                  | С                                 |
|                  | c            | 53992.423               | 0.003  | -0.005             | 10 | EBI                  | R; el.: IBVS No. 4965             |
| V1062 Her        | D D          |                         |        |                    |    |                      |                                   |
| V1062 Her        | ь<br>р       | 54202.4958              | 0.0009 | -0.0063            | 14 | EBI                  | Ċ                                 |

| Variable         | Type         | HJD 24                  | ±      | O - C                   | n        | Obs                  | Remarks                             |
|------------------|--------------|-------------------------|--------|-------------------------|----------|----------------------|-------------------------------------|
| V1067 Her        | s            | 53992.363               | 0.003  | +0.010                  | 11       | $\operatorname{EBl}$ | R; el.: IBVS No. 4966               |
|                  | р            | 53992.482               | 0.004  | 0.000                   | 11       | $\operatorname{EBl}$ | R                                   |
|                  | $\mathbf{s}$ | 54202.4550              | 0.0010 | +0.0011                 | 11       | $\operatorname{EBl}$ | С                                   |
|                  | р            | 54202.5873              | 0.0002 | +0.0043                 | 14       | $\operatorname{EBl}$ | С                                   |
| V1073 Her        | s            | 53992.3194              | 0.0006 | +0.0083                 | 10       | $\mathbf{EBl}$       | R; el.: IBVS No. 4975               |
|                  | р            | 53992.4685              | 0.0010 | +0.0102                 | 12       | $\mathbf{EBl}$       | R                                   |
|                  | s            | 54202.4408              | 0.0008 | +0.0137                 | 12       | $\mathbf{EBl}$       | С                                   |
|                  | p            | 54202.5892              | 0.0015 | +0.0149                 | 15       | EBl                  | С                                   |
| V1094 Her        | s            | 54000.3477              | 0.0004 | +0.0019                 | 16       | EBl                  | R; el.: IBVS No. 5306               |
|                  | s            | 54210.5274              | 0.0005 | +0.0032                 | 19       | EBl                  | Ċ                                   |
| V1095 Her        | р            | 54002.3187              | 0.0007 | -0.0094                 | 24       | EBI                  | R: el.: IBVS No. 5306               |
|                  | p            | 54210.4235              | 0.0007 | -0.0104                 | 16       | EBI                  | Ċ                                   |
| V1096 Her        | r<br>s       | 54002 3346              | 0.0010 | +0.0047                 | 14       | EBI                  | B. el · IBVS No. 5306               |
| 1000 1101        | s            | 54210446                | 0.003  | +0.0016                 | 12       | EBI                  | C                                   |
| V1097 Her        | n            | 54002 4182              | 0.0010 | -0.0010                 | 18       | EBI                  | B. el · IBVS No. 5306               |
| 1001 1101        | Р<br>S       | 54210 4505              | 0.0002 | +0.0029                 | 13       | EBI                  | C                                   |
| V1101 Hor        | 0            | 54000 277               | 0.0002 | $\pm 0.0025$            | 19       | EBI                  | B el IBVS No. 5333                  |
| VIIOI IIEI       | 5<br>D       | 54000.277               | 0.004  | +0.004                  | 14       | EBI                  | C C                                 |
| V1109 Hor        | p<br>n       | 54217.4545              | 0.0005 | +0.0042                 | 14       | EDI<br>FDI           | D. al. IDVS No. 5222                |
| V 1102 Hel       | p            | 55941.454<br>E4917 2726 | 0.002  | +0.000                  | 0        | EDI                  | $\mathbf{R}_{i}$ etc. IDVS NO. 5555 |
| 171109 II        | р            | 54217.5750              | 0.0008 | +0.0043                 | 9        |                      | U DUGN Kaaa                         |
| V1103 Her        | р            | 54000.3242              | 0.0003 | -0.0010                 | 17       | EBI                  | R; el.: IBVS No. 5333               |
|                  | р            | 54217.3771              | 0.0009 | -0.0061                 | 11       | EBI                  | C                                   |
| 171104 11        | s            | 54217.5251              | 0.0008 | -0.0038                 | 12       | EBI                  | U DUG N KAAA                        |
| V1104 Her        | р            | 54000.3333              | 0.0006 | -0.0005                 | 19       | EBI                  | R; el.: IBVS No. 5333               |
|                  | s            | 54217.3833              | 0.0006 | -0.0029                 | 1        | EBI                  | C                                   |
|                  | р            | 54217.4962              | 0.0011 | -0.0039                 | 15       | EBI                  | C .                                 |
| GSC963-246 Her   | s            | 53858.4941              | 0.0003 | 0.0000                  | 21       | EBI                  | R; el.: IBVS No. 5799               |
|                  | s            | 53877.386               | 0.004  | +0.003                  | 8        | EBI                  | R                                   |
|                  | р            | 53894.5374              | 0.0008 | -0.0003                 | 18       | EBI                  | R                                   |
|                  | $\mathbf{p}$ | 53896.4629              | 0.0013 | -0.0023                 | 15       | EBl                  | R                                   |
|                  | р            | 53898.3971              | 0.0011 | +0.0045                 | 13       | $\operatorname{EBl}$ | R                                   |
|                  | s            | 53898.5831              | 0.0016 | -0.0023                 | 14       | EBl                  | R                                   |
|                  | s            | 53900.5100              | 0.0006 | -0.0029                 | 23       | $\mathbf{EBl}$       | R                                   |
|                  | р            | 53906.4903              | 0.0007 | +0.0023                 | 24       | EBl                  | R                                   |
|                  | $\mathbf{s}$ | 53910.5352              | 0.0007 | -0.0005                 | 12       | EBl                  | R                                   |
| GSC1518-913 Her  | р            | 53858.4569              | 0.0018 | +0.0019                 | 18       | EBl                  | R; el.: IBVS No. 5799               |
|                  | р            | 53877.4043              | 0.0017 | +0.0011                 | 9        | $\mathbf{EBl}$       | R                                   |
|                  | $\mathbf{s}$ | 53894.583               | 0.003  | -0.002                  | 8        | $\mathbf{EBl}$       | R                                   |
|                  | $\mathbf{s}$ | 53896.5096              | 0.0008 | -0.0024                 | 22       | $\operatorname{EBl}$ | R                                   |
|                  | $\mathbf{s}$ | 53898.4382              | 0.0009 | -0.0007                 | 17       | $\operatorname{EBl}$ | R                                   |
|                  | р            | 53900.5267              | 0.0007 | +0.0003                 | 24       | $\mathbf{EBl}$       | R                                   |
|                  | s            | 53906.4678              | 0.0006 | 0.0000                  | 16       | $\mathbf{EBl}$       | R                                   |
|                  | р            | 53910.4837              | 0.0004 | +0.0015                 | 15       | $\mathbf{EBl}$       | R                                   |
| GSC2587-289 Her  | s            | 53858.4640              | 0.0008 | +0.0039                 | 22       | $\mathbf{EBl}$       | R; el.: IBVS No. 5799               |
|                  | p            | 53877.5007              | 0.0013 | -0.0023                 | 11       | EBl                  | R                                   |
|                  | s            | 53894.5214              | 0.0010 | -0.0023                 | 15       | EBl                  | R                                   |
|                  | р            | 53896.383               | 0.003  | +0.006                  | 7        | EBI                  | R                                   |
|                  | s            | 53896.5437              | 0.0008 | -0.0023                 | 22       | EBI                  | R.                                  |
|                  | n            | 53898 3969              | 0.0008 | -0.0028                 | 15       | EBI                  | B                                   |
|                  | P<br>S       | 53898 5664              | 0.0008 | -0.0018                 | 16       | EBI                  | B                                   |
|                  | n            | 53900 4244              | 0.0009 | +0.0010                 | 18       | EBI                  | B                                   |
|                  | P<br>D       | 53906 4910              | 0.0006 | +0.0021                 | 17       | EBI                  | B                                   |
|                  | P<br>n       | 53910 5300              | 0.0011 | -0.0020                 | 13       | EBI                  | R                                   |
| GSC2587-1888 Hor | P            | 53858 5160              | 0.0011 | $\pm 0.0023$            | 17       | EBI                  | B. el · IRVS No. 5700               |
| GDC2001-1000 HEI | P            | 53877 /660              | 0.0000 | -0.0010                 | 11       | EBI                  | R                                   |
|                  | P<br>P       | 53804 5649              |        | -0.0034<br>$\pm 0.0040$ | 17<br>17 | EDI<br>FDI           | R                                   |
|                  | Р            | 52006 4026              | 0.0010 | T 0.0049                | 10<br>10 | וסיד<br>וסיד         | ιι<br>D                             |
|                  | p            | 00090,4200              | 0.0019 |                         | 1U<br>95 | EBI<br>EDi           | n<br>D                              |
|                  | s            | 53898.4438              | 0.0011 | +0.0004                 | 25       | EBI                  | л<br>D                              |
|                  | р            | 53900.4655              | 0.0010 | +0.0024                 | 19       | EBI                  | к<br>D                              |
|                  | s            | 53906.5196              | 0.0012 | -0.0027                 | 14       | EBI                  | к<br>D                              |
|                  | р            | 53910.4047              | 0.0018 | +0.0017                 | 13       | EBI                  | к                                   |

| Variable           | Type         | HJD 24                   | ±      | 0 – C              | n        | Obs                  | Remarks                                |
|--------------------|--------------|--------------------------|--------|--------------------|----------|----------------------|----------------------------------------|
| GSC2614-1369 Her   | р            | 53988.4691               | 0.0006 | +0.0009            | 17       | EBl                  | R; el.: IBVS No. 5516                  |
|                    | р            | 54217.4103               | 0.0005 | -0.0001            | 14       | $\operatorname{EBl}$ | C                                      |
| GSC2615-1821 Her   | s            | 53988.3813               | 0.0008 | -0.0009            | 22       | $\operatorname{EBl}$ | R; el.: IBVS No. 5516                  |
|                    | р            | 54217.4371               | 0.0006 | +0.0029            | 17       | $\operatorname{EBl}$ | C                                      |
| GSC2618-1385 Her   | p            | 53988.3350               | 0.0003 | -0.0056            | 21       | $\operatorname{EBl}$ | R; el.: IBVS No. 5516                  |
|                    | s            | 54217.4258               | 0.0004 | -0.0056            | 16       | $\operatorname{EBl}$ | С                                      |
| GSC3097-1297 Her   | $\mathbf{s}$ | 53941.360                | 0.004  | +0.002             | 10       | EBl                  | R; el.: IBVS No. 5564                  |
| GSC3101-547 Her    | s            | 53941.3920               | 0.0010 | +0.0038            | 12       | $\operatorname{EBl}$ | R; el.: IBVS No. 5564                  |
| GSC3106-1368 Her   | s            | 53941.435                | 0.003  | -0.061             | 14       | $\operatorname{EBl}$ | R; el.: IBVS No. 5564                  |
| GSC3510-5 Her      | $\mathbf{s}$ | 53984.4057               | 0.0012 | +0.0132            | 20       | EBl                  | R; el.: IBVS No. 5564                  |
| GSC3510-1283 Her   | р            | 53988.3923               | 0.0013 | -0.0065            | 17       | EBl                  | R; el.: IBVS No. 5516; pulsator?       |
|                    | s            | 54217.335                | 0.003  | -0.007             | 8        | $\operatorname{EBl}$ | C                                      |
|                    | р            | 54217.4758               | 0.0014 | -0.0053            | 11       | $\operatorname{EBl}$ | С                                      |
| GSC3532-553 Her    | s            | 53984.3035               | 0.0010 | +0.0034            | 9        | EBl                  | R; el.: IBVS No. 5699                  |
|                    | р            | 53984.4578               | 0.0006 | -0.0010            | 16       | EBl                  | R                                      |
| NSV10870 Her       | s            | 53918.4067               | 0.0021 | -0.0065            | 19       | RD                   | V; el.: IBVS, No. 5630                 |
| TZ Lac             | р            | 53946.5332               | 0.0007 | +0.3197            | 16       | RD                   | V                                      |
| CO Lac             | s            | 54096.2892               | 0.0004 | +0.0055            | 29       | RD                   | V; eccentric orbit                     |
| MZ Lac             | р            | 53941.567                | 0.002  | -0.003             | 11       | RD                   | V; el.: JAAVSO 19, 12; eccentric orbit |
|                    | s            | 53946.4775               | 0.0004 | +0.1684            | 34       | RD                   | V                                      |
|                    | р            | 54096.3501               | 0.0003 | -0.0029            | 10       | RD                   | V                                      |
| NW Lac             | р            | 53946.3998               | 0.0006 | -0.1058            | 19       | RD                   | V; $d=0.03$ days                       |
| EW Lyr             | р            | 53918.4628               | 0.0002 | +0.2332            | 31       | RD                   | V                                      |
| V336 Lyr           | р            | 53933.4464               | 0.0012 | -0.0053            | 27       | RD                   | V                                      |
| V400 Lyr           | р            | 54018.3454               | 0.0004 | -0.0306            | 11       | EBl                  | R; el.: IBVS No. 4995                  |
| $V574 \ Lyr$       | $\mathbf{s}$ | 54018.3694               | 0.0009 | -0.0036            | 15       | EBl                  | R; el.: IBVS No. 4976                  |
| V579 Lyr           | $\mathbf{s}$ | 54018.3642               | 0.0009 | -0.0090            | 15       | EBl                  | R; el.: IBVS No. 4982                  |
| V580 Lyr           | р            | 54018.332                | 0.003  | -0.016             | 14       | EBl                  | R; el.: IBVS No. 4982                  |
| V582 Lyr           | р            | 54018.2872               | 0.0019 | +0.0326            | 10       | EB1                  | R; el.: IBVS No. 4985                  |
|                    | s            | 54018.4202               | 0.0020 | +0.0377            | 9        | EBl                  | R                                      |
| V591 Lyr           | s            | 54014.3130               | 0.0011 | -0.0024            | 15       | EBl                  | R; el.: IBVS No. 5232                  |
| V592 Lyr           | s            | 54017.2705               | 0.0008 | +0.0073            | 15       | EBl                  | R; el.: IBVS No. 5232                  |
| V596 Lyr           | $\mathbf{S}$ | 54017.2704               | 0.0005 | +0.0075            | 15       | EBl                  | R; el.: IBVS No. 5232                  |
| GSC3108-57 Lyr     | $\mathbf{S}$ | 54018.2698               | 0.0010 | -0.0031            | 12       | EBl                  | R; el.: IBVS No. 5525                  |
|                    | р            | 54018.4562               | 0.0006 | -0.0009            | 11       | $\operatorname{EBl}$ | R                                      |
| m GSC3109-859~Lyr  | $\mathbf{p}$ | 54014.3153               | 0.0003 | -0.0027            | 21       | EBl                  | R; el.: IBVS No. 5525                  |
| m GSC3526-1995 Lyr | $\mathbf{p}$ | 54014.3175               | 0.0013 | -0.0133            | 15       | EBl                  | R; el.: IBVS No. 5525                  |
| m GSC3526-2369 Lyr | $\mathbf{S}$ | 54017.3537               | 0.0005 | +0.0183            | 17       | EBl                  | R; el.: IBVS No. 5525                  |
| AL Oph             | р            | 53933.4090               | 0.0013 | -0.0324            | 13       | RD                   | V; el.: IBVS, No. 4452                 |
| FH Ori             | р            | 54097.4627               | 0.0003 | -0.3295            | 28       | RD                   | V                                      |
| FT Ori             | $\mathbf{s}$ | 54097.4483               | 0.0005 | +0.6106            | 21       | RD                   | V; eccentric orbit                     |
| V1202 Ori          | р            | 54097.4807               | 0.0002 | -0.0297            | 32       | RD                   | V; el.: IBVS No. 3544                  |
| GSC107-596 Ori     | р            | 54066.4295               | 0.0003 | -0.0007            | 18       | EBl                  | el.: IBVS No. 5799                     |
|                    | $\mathbf{s}$ | 54066.5655               | 0.0008 | +0.0021            | 18       | EBI                  | _                                      |
|                    | s            | 54083.3477               | 0.0014 | +0.0043            | 13       | EBI                  | R                                      |
|                    | $\mathbf{p}$ | 54083.4719               | 0.0010 | -0.0047            | 14       | EBl                  | R                                      |
|                    | $\mathbf{s}$ | 54083.6122               | 0.0010 | +0.0025            | 15       | EBI                  | R                                      |
|                    | р            | 54085.3375               | 0.0006 | -0.0035            | 14       | EBI                  | R                                      |
|                    | s            | 54085.4762               | 0.0011 | +0.0020            | 13       | EBI                  | R                                      |
|                    | р            | 54085.6085               | 0.0012 | +0.0011            | 15       | EBI                  | ĸ                                      |
|                    | р            | 54090.4017               | 0.0006 | 0.0000             | 14       | EBI                  | ĸ                                      |
|                    | s            | 54090.5353               | 0.0003 | +0.0005            | 15       | EBI                  | κ<br>D                                 |
|                    | p            | 54097.3229               | 0.0008 | -0.0039            | 12       | EBI                  | n<br>D                                 |
|                    | s            | 04097.4020<br>54007 5040 | 0.0011 | +0.0027            | 10<br>17 | ם<br>נתק             | n<br>D                                 |
|                    | p<br>ĩ       | 04097.0949<br>54114.0400 | 0.0015 | +0.0018            | 15<br>11 | EBI<br>FDI           | n<br>D                                 |
|                    | 5            | 04114.242U<br>54114 9697 | 0.0010 | +0.0020            | 11<br>17 | EDI<br>EDI           | ι.<br>B                                |
|                    | р<br>Р       | 54114.3007<br>57117 5071 |        | -0.0044<br>-0.0099 | 10       | EBI                  | R                                      |
|                    | 8            | 04114.0041               | 0.0000 | -0.0022            | 10       | ĽDI                  | 11                                     |

| Variable                          | Type         | HJD 24     | ±      | 0 – C   | n  | Obs                  | Remarks                          |
|-----------------------------------|--------------|------------|--------|---------|----|----------------------|----------------------------------|
| GSC702-1892 Ori                   | p            | 54066.3455 | 0.0009 | +0.0002 | 13 | EBl                  | el.: IBVS No. 5799               |
|                                   | s            | 54066.4841 | 0.0004 | +0.0003 | 17 | $\mathbf{EBl}$       |                                  |
|                                   | р            | 54066.6197 | 0.0011 | -0.0026 | 12 | $\mathbf{EBl}$       |                                  |
|                                   | s            | 54083.3803 | 0.0005 | +0.0029 | 18 | $\mathbf{EBl}$       | R                                |
|                                   | р            | 54083.5170 | 0.0003 | +0.0011 | 16 | $\mathbf{EBl}$       | R                                |
|                                   | s            | 54083.6523 | 0.0012 | -0.0011 | 13 | $\mathbf{EBl}$       | R                                |
|                                   | s            | 54085.3181 | 0.0004 | +0.0024 | 13 | $\mathbf{EBl}$       | R                                |
|                                   | р            | 54085.4516 | 0.0008 | -0.0029 | 16 | $\mathbf{EBl}$       | R                                |
|                                   | s            | 54085.5966 | 0.0010 | +0.0036 | 16 | $\mathbf{EBl}$       | R                                |
|                                   | s            | 54090.3000 | 0.0009 | -0.0011 | 14 | $\mathbf{EBl}$       | R                                |
|                                   | q            | 54090.4428 | 0.0006 | +0.0033 | 16 | $\mathbf{EBl}$       | R                                |
|                                   | s            | 54090.5764 | 0.0008 | -0.0016 | 19 | $\mathbf{EBl}$       | R                                |
|                                   | q            | 54097.3646 | 0.0005 | +0.0014 | 13 | $\mathbf{EBl}$       | R                                |
|                                   | s            | 54097.4984 | 0.0015 | -0.0032 | 16 | $\mathbf{EBl}$       | R                                |
|                                   | q            | 54114.2573 | 0.0004 | +0.0005 | 14 | $\mathbf{EBl}$       | R                                |
|                                   | s            | 54114.3927 | 0.0011 | -0.0026 | 13 | EBl                  | R                                |
| GSC706-845 Ori                    | q            | 54066.4689 | 0.0013 | +0.0019 | 20 | $\mathbf{EBl}$       | el.: IBVS No. 5799               |
|                                   | s            | 54083.4375 | 0.0011 | +0.0033 | 15 | $\mathbf{EBl}$       | R                                |
|                                   | р            | 54083.6050 | 0.0011 | -0.0006 | 22 | $\mathbf{EBl}$       | R                                |
|                                   | p            | 54085.3187 | 0.0006 | -0.0007 | 16 | $\mathbf{EBl}$       | R                                |
|                                   | s            | 54085.4945 | 0.0009 | +0.0037 | 15 | $\mathbf{EBl}$       | R                                |
|                                   | s            | 54090.306  | 0.002  | +0.016  | 10 | $\mathbf{EBl}$       | R                                |
|                                   | р            | 54090.4555 | 0.0011 | -0.0055 | 18 | $\mathbf{EBl}$       | R                                |
|                                   | s            | 54090.6329 | 0.0010 | +0.0005 | 12 | $\mathbf{EBl}$       | R                                |
|                                   | q            | 54097.3261 | 0.0014 | +0.0097 | 16 | $\mathbf{EBl}$       | R                                |
|                                   | s            | 54097.4906 | 0.0011 | +0.0028 | 18 | EBl                  | R                                |
|                                   | s            | 54114.2786 | 0.0013 | -0.0050 | 19 | $\mathbf{EBl}$       | R                                |
|                                   | р            | 54114.4545 | 0.0010 | -0.0005 | 15 | $\mathbf{EBl}$       | R                                |
| GSC1283-53 Ori                    | s            | 54066.3849 | 0.0008 | -0.0014 | 22 | $\mathbf{EBl}$       | el.: IBVS No. 5799               |
|                                   | р            | 54066.5781 | 0.0002 | +0.0003 | 23 | $\mathbf{EBl}$       | R                                |
|                                   | p            | 54083.4277 | 0.0009 | -0.0023 | 20 | $\mathbf{EBl}$       | R                                |
|                                   | s            | 54083.6169 | 0.0012 | -0.0046 | 19 | $\mathbf{EBl}$       | R                                |
|                                   | р            | 54085.3511 | 0.0010 | +0.0061 | 17 | $\mathbf{EBl}$       | R                                |
|                                   | s            | 54085.5383 | 0.0006 | +0.0018 | 14 | $\mathbf{EBl}$       | R                                |
|                                   | р            | 54090.3238 | 0.0009 | -0.0002 | 17 | $\operatorname{EBl}$ | R                                |
|                                   | $\mathbf{s}$ | 54090.5181 | 0.0006 | +0.0026 | 24 | $\operatorname{EBl}$ | R                                |
|                                   | $\mathbf{s}$ | 54097.4085 | 0.0002 | -0.0011 | 19 | $\mathbf{EBl}$       | R                                |
|                                   | р            | 54097.5996 | 0.0004 | -0.0015 | 18 | $\operatorname{EBl}$ | R                                |
|                                   | $\mathbf{s}$ | 54114.2636 | 0.0004 | +0.0018 | 18 | $\mathbf{EBl}$       | R                                |
|                                   | р            | 54114.4514 | 0.0005 | -0.0019 | 18 | $\mathbf{EBl}$       | R                                |
| ${ m FF} Sge$                     | р            | 53934.4540 | 0.0006 | +0.0355 | 27 | RD                   | V                                |
| FL Sge                            | р            | 53918.4879 | 0.0006 | +0.1051 | 26 | RD                   | V                                |
| GO Sge                            | р            | 53933.4194 | 0.0012 | +0.0024 | 22 | RD                   | V; el.: $2451426.88 + 3.401 * E$ |
| V384 Ser                          | р            | 54197.3869 | 0.0009 | +0.0038 | 10 | $\mathbf{EBl}$       | C; el.: IBVS No. 5295            |
| $\operatorname{GSC1830-1432}$ Tau | р            | 54130.2911 | 0.0010 | +0.0069 | 16 | EBl                  | C; el.: IBVS No. 5699            |
|                                   | s            | 54130.4169 | 0.0011 | -0.0032 | 21 | $\mathbf{EBl}$       | С                                |
| GSC1848-1264 Tau                  | s            | 54130.3697 | 0.0005 | -0.0016 | 15 | $\mathbf{EBl}$       | C; el.: IBVS No. 5699            |
| UX UMa                            | р            | 54200.4268 | 0.0007 | +0.0031 | 9  | RD                   | V                                |
| AA UMa                            | s            | 54173.3929 | 0.0005 | +0.0360 | 28 | RD                   | V                                |
| IW UMa                            | р            | 54200.3845 | 0.0003 | +0.0120 | 25 | RD                   | V                                |

#### **Observers:**

| EB1: | E. Blättler | Wald, Switzerland       |
|------|-------------|-------------------------|
| RD : | R. Diethelm | Rodersdorf, Switzerland |

## Reference:

Kholopov, P. N., Samus, N. N., Frolov, M. S., Goranskij, V. P., Gorynya, N. A., Kireeva, N. N., Kukarkina, N. P., Kurochkin, N. E., Medvedeva, G. I., Perova, N. B., Shugarov, S. Yu., 1985, *General Catalogue of Variable Stars*, Moscow

Number 5782

Konkoly Observatory Budapest 30 July 2007 *HU ISSN 0374 - 0676* 

## ORBITAL EFFECTS ON THE LIGHT CURVES OF $\eta$ Car, BP Cru, AND OTHER ECCENTRIC BINARIES

VAN GENDEREN, A. M.<sup>1</sup>; STERKEN, C.<sup>2</sup>

<sup>1</sup> Leiden Observatory, P.B. 9513, NL-2300RA Leiden, The Netherlands, genderen@strw.leidenuniv.nl

<sup>2</sup> Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium

The very eccentric and massive binary  $\eta$  Carinae shows at each periastron passage a light peak  $(0^{m}_{..}1-0^{m}_{..}2)$  in the optical as well as in the near-infrared. Thereafter, a short lasting eclipse-like dip occurs, followed by a so-called 'egress-maximum' that subsequently fades away (see Fig. 1). Van Genderen et al. (2006, 2007) suggested that the peaks may well be the result of an enhancement of the deformation by tidal forces on the primary, and that the egress-maximum is the continuation of the peak (after interruption by the dip, which has another cause) until it disappears some months after the periastron passage.



Figure 1. V light curves of the events of 2003.5 (•; magnitudes on the right, JD axis at the top) and 1981.3 (squares; magnitude scale on the left, JD axis at the bottom). Vertical dash-dotted line: periastron passages. The dotted lines are spline fits. Based on Fig. 1 of van Genderen et al. (2006).

The first aim of this paper is to provide additional support for these two suggestions. Therefore, the literature on photometrically well-observed eccentric detached binaries was surveyed. Among the dozens of suitable eccentric binaries, five show a clear bump, in the literature called the periastron effect (Table 1). One of these is BP Cru = WRA 977, a B-type hypergiant with an X-ray pulsar (GX301-2), in which the effect was first noticed by Pakull (1982). The second purpose of this note is to supplement Pakull's light curve with more photometric evidence.

It should be noted that eccentric detached binaries are important for the study of the internal structure of stars. Tidal distortion depends on the internal structure (though modified by stellar rotation), i.e. the density concentration. The more evolved a star is, the larger the effect of the tidal pull during the periastron passages will be. Due to tidal distortion – together with rotational flattening – these binaries show an apsidal motion, mostly in advance of the orbital motion. General Relativity also predicts a certain amount of secular apsidal motion, usually of a much smaller, though often non-negligible quantity.

Apart from the observable periastron effect in the light curves, the periodic variability of the tidal pull can also modulate the pulsational behaviour when one of the components is a pulsating star. Examples are the  $\beta$  Cep primaries of Spica ( $\alpha$  Vir = HD 116658, Dukes 1974; Smith 1985; Claret & Giménez 1993) and  $\sigma$  Sco (= HD 142669, Chapellier & Valtier 1992). The S Dor-phases of  $\eta$  Car (which are a kind of slow pulsation) appear to reach maximum light during most of the periastron passages (van Genderen et al. 2001; Whitelock et al. 2004), and the quasi-period of the  $\alpha$  Cyg-type variations of the primary of BP Cru (van Genderen & Sterken 1996) is about a quarter of the orbital revolution (Kaper et al. 2006). Something similar seems to be the case for the eccentric X-ray binary Vela X-1 (= HD 77581, Quaintrell et al. 2003).

Since the intrinsic variations of the hypergiant primary of BP Cru are relatively strong (showing a quasi-period of  $11^{4}9$ , van Genderen & Sterken 1996), the light curve is folded with the binary period. We used the data sets of Bord et al. (1976, UBV), Hammerschlag-Hensberge et al. (1976, uvby) and van Genderen (1977, VBLUW, also used by Pakull 1982), and a new larger VBLUW data set (63 nightly averages). The latter was obtained in 1976, 1977 and 1978 (van Genderen & Sterken 1996). However, we could not get hold of the three other data sets used by Pakull (1982).

As three different photometric systems are involved, the  $V_{UBV}$  and y(uvby) light curves were matched with the  $V_{VBLUW}$  light curve by shifting them along the magnitude scale, until a good fit was obtained. Then, the data points of the two first mentioned photometric systems were transformed to the relative magnitude scale of the  $V_{VBLUW}$  system. The comparison star is HD 109164 (B2II). Averages in ten phase-bins were computed, yielding an average mean error of 0<sup>m</sup>007. Phases were computed with the ephemeris JD<sub>0</sub> = 2443 451.55 + 41<sup>d</sup>498, where the period is from Kaper et al. (2006) and the zero point for the periastron is taken from Watson et al. (1984). This choice is justified because of the close proximity of JD<sub>0</sub> to all the data sets used by Pakull (1982), and to the new one in this paper.

Fig. 2 shows the phase diagram based on 169 nightly averages. The periastron effect – a small modulation (~ 3%) of the optical brightness around phase zero – is obvious as in the case of the Pakull (1982) curve, though obtained from a different combination of data sets. The amplitude of the periastron effect is of the order of 0<sup>m</sup>.03, and the duration of the effect is about 6 days (~ 0.15 × P).

Table 1 lists six eccentric binaries (including  $\eta$  Car and BP Cru), and gives the spectral types, masses, eccentricities (e), orbital periods (P), the amplitude of the periastron effect in magnitudes, and its duration in phase units ( $\Delta \phi$ ). The six binaries are listed in order of increasing eccentricity. It should be noted that spectral types, masses and eccentricity of  $\eta$  Car are uncertain and based on current estimates (Davidson 1999; Corcoran et al. 2001). The period, first discovered by Damineli (1996), is an average from various authors. The stellar parameters of the four other binaries are taken from the compilations by Claret & Giménez (1993) and Claret & Willems (2002), including the references to the original papers.

To illustrate the subtle character of the periastron effect, we show in Figs. 3 and 4 two examples of phase diagrams. The V 380 Cyg case (based on data from Guinan et al. 2000) shows a periastron effect near phase 0.15. For V 346 Cen (extracted from Giménez



Figure 2. The differential orbital phase-diagram of BP Cru = WRA 977. Phase 0.0 corresponds to the periastron passage, and  $P = 41^{d}.498$ .

et al. 1986), the periastron effect is visible as a point-like maximum near phase -0.2. These authors point to "a persistent, though small, discrepancy between the predicted and observed light curves around periastron" that cannot be removed by changing the model parameters. Their Figure 5d clearly illustrates the very small amplitude of the associated colour variations, and implicitly underlines the fact that only high-quality and homogeneous data sets can reveal the presence of a periastron effect. The difficulty of detection is emphasised by the counter example of  $\beta$  Ari – one of the most eccentric orbits ( $e \sim 0.9$ , as for  $\eta$  Car) known among spectroscopic binaries – where Lovell and Hall (1971) found a very weak (0<sup>m</sup>01) effect, though Ogata (1973) subsequently reports no photometric evidence supporting an appreciable periastron effect.



Figure 3. Phase diagram of V 380 Cyg (based on differential V data from Guinan et al. (2000).

The  $\Delta \phi$  of  $\eta$  Car and BP Cru are uncertain because the effect occurs on top of cyclic, or quasi-periodic light oscillations. It should be noted that in most cases a small part of the periastron effect can be attributed to reflection and/or ellipticity (distortion by rotation). Furthermore, the amplitude of the periastron effect possibly depends on the viewing angle to the tidally distorted star, thus on how much of the distortion is seen.

It is perhaps not surprising that  $\eta$  Car shows the strongest periastron effect, amongst



Figure 4. Phase diagram of V 346 Cen (differential B, extracted from Giménez et al. (1986).

| ±                    |                     |                    |      |      |           |                 |           |
|----------------------|---------------------|--------------------|------|------|-----------|-----------------|-----------|
| Object               | $\operatorname{Sp}$ | $M_1 + M_2$        | e    | P    | peri.eff. | $	riangle \phi$ | Ref. l.c. |
|                      |                     | $({ m M}_{\odot})$ |      | (d)  | (mag)     |                 |           |
| V 380 Cyg            | B1.5II–III          | 14.3 + 8.0         | 0.23 | 12.4 | 0.03      | 0.15            | 1         |
| $(= HD \ 187879)$    | + B2V               |                    |      |      |           |                 |           |
| V346 Cen             | B0.5-1V             | 11.8 + 8.4         | 0.29 | 6.3  | 0.03      | 0.2             | 2         |
| $(= HD \ 101837)$    | + B0.5-1V           |                    |      |      |           |                 |           |
| $V1647~\mathrm{Sgr}$ | A1V + A2V           | 2.2 + 2.0          | 0.41 | 3.3  | 0.015     | 0.1             | 3         |
| $(= HD \ 163708)$    |                     |                    |      |      |           |                 |           |
| V560 Car             | O3V + O8V           | 45 + 20            | 0.46 | 6.08 | 0.02      | 0.15            | 4         |
| (= HD 93205)         |                     |                    |      |      |           |                 |           |
| BP Cru               | $B1.5Ia^+ + NS$     | 43 + 1.85          | 0.46 | 41.5 | 0.03      | 0.15            | 5         |
| (=WRA977)            |                     |                    |      |      |           |                 |           |
| $\eta  { m Car}$     | B + O               | 80 + 30            | 0.9  | 2023 | 0.1 - 0.2 | 0.1             | 6         |
| (= HD 93308)         |                     |                    |      |      |           |                 |           |

Table 1: The six eccentric binaries showing the periastron effect

References light curve: 1. Guinan et al. (2000); 2. Giménez et al. (1986);
3. Clausen et al. (1977); 4. Antokhina et al. (2000), van Genderen (2003);
5. Pakull (1982), this paper; 6. van Genderen et al. (2006).

others because of its extreme eccentricity and its highly evolved state. There are spectroscopic indications for a shell ejection, or at least a mass-ejection event during the 2003.5 periastron passage (Stahl et al. 2005). Corcoran et al. (2001), moreover, needed a substantial increase of the mass-loss rate to properly explain the X-ray light curve of the 1997.9 periastron passage. It is quite well thinkable that  $\eta$  Car's primary exceeds its Roche Lobe during the periastron passage, enabling an increase of mass flow into the system.

The eclipse-like dip interrupting the periastron effect of  $\eta$  Car appears to be a short intermezzo and we speculate that it is due to some obscuration process of the emitting material associated with the secondary (van Genderen et al. 2006). A similar type of attenuation process was suggested earlier by Whitelock and Laney (1999) as an explanation for the dip. In the light of the evidence offered by the examples in Table 1, it seems to be justified to assume that in the case of  $\eta$  Car, the egress-maximum is also part of the periastron effect that finally fades away after a couple of months. We conclude that  $\eta$  Car's optical and near-infrared 'light peak' around the periastron passages are in various respects similar to the periastron effects exhibited by other eccentric binaries, and therefore may well have the same physical cause.

Acknowledgements. A. M. van Genderen thanks J. V. Clausen for discussions on the periastron computation of V346 Cen. C. Sterken is indebted to K. Oláh for helpful suggestions that enhanced the readability of the manuscript.

#### References:

- Antokhina E.A., Moffat A.F.J., Antokhin I.I., et al., 2000, ApJ, 529, 463
- Bord, D.J. Mook, D.E. Petro, L. Hiltner W.A., 1976, ApJ, 203, 689
- Chapellier E., Valtier J.C., 1992, A&A, 257, 587
- Claret A., Giménez A., 1993, A&A, 277, 487
- Claret A., Willems B., 2002, A&A, 388, 518
- Clausen J.V., Gyldenkerne K., Grønbech B., 1977, A&A, 58, 121
- Corcoran M.F., Ishibashi K., Swank J.H., Petre R., 2001, ApJ, 547, 1034
- Damineli A., 1996, ApJ, 460, L49
- Davidson K., 1999, ASPC, 179, 304, (eds. Morse J.A., Humphreys R.M., Damineli A.)
- Dukes R.J., 1974, ApJ, **192**, 81
- van Genderen A.M., 1977,  $A \mathscr{C} A, \, {\bf 54}, \, 733$
- van Genderen A.M., 2003,  $A \mathscr{C} A, \, \mathbf{397}, \, 921$
- van Genderen A.M., Sterken C., 1996, A&A, **308**, 763
- van Genderen A.M., de Groot M., Sterken C., 2001, ASPC, 233, 59, (eds. de Groot M., Sterken C.)
- van Genderen A.M., Sterken C., Allen W.H., Walker W.S.G., 2006, J. Astron. Data, 12, 3
- van Genderen A.M., Sterken C., Allen W.H., Walker W.S.G., 2007, J. Astron. Data, 13, 1
- Giménez A., Clausen J.V., Andersen J., 1986, A & A, 160, 310
- Guinan E.F., Ribas I., Fitzpatrick E.L., et al., 2000, ApJ, 544, 409
- Hammerschlag-Hensberge G., Zuiderwijk E.J., van den Heuvel E.P.J., 1976, A&A, 49, 321
- Kaper L., van der Meer A., Najarro F., 2006, A&A, 457, 595
- Lovell L.P., Hall, D.S., 1971, *PASP*, 83, 360
- Ogata H., 1973, IBVS, 784
- Pakull M.W., 1982, in Accreting Neutron Stars, Proc. Workshop M. Planck Inst. 177, Garching, Brinkmann W., Trümper J., (eds), p. 53
- Quaintrell H., Norton A.J., Ash T.D.C., et al., 2003, A&A, 401, 313
- Smith M.A., 1985, ApJ, 297, 206
- Stahl O., Weis K., Bomans D.J., et al., 2005, A&A, 435, 303
- Watson M.G., Warwick R.S., Corbet R.H.D., 1982, MNRAS, 199, 915
- Whitelock P., Feast M.W., Marang F., Breedt E., 2004, MNRAS, 352, 447
- Whitelock P., Laney D., 1999, ASPC, **179**, 258, (eds. Morse J.A., Humphreys R.M., Damineli A.)

Number 5783

Konkoly Observatory Budapest 30 July 2007 *HU ISSN 0374 - 0676* 

## QUIESCENT PHOTOMETRY OF V5115 SGR

HENDEN, A.<sup>1</sup>; DI SCALA, G.<sup>2</sup>

 $^1$  AAVSO, 49 Bay State Road, Cambridge, MA 02138 USA, e-mail: arne@aavso.org

<sup>2</sup> Carnes Hill Obs., 34 Perisher St., Horningsea Park, NSW, Sydney Australia, e-mail: lgdiscala@aapt.net.au

V5115 Sgr (Nova Sgr 2005) was independently discovered by Nishimura (2005) and Sakurai (2005). At peak, it reached a visual magnitude of 7.8 on March 29.7, in 2005. The AAVSO light curve for this nova is given in Figure 1.



Figure 1. AAVSO light curve of V5115 Sgr. Points are a mixture of visual observations and CCD V-band observations.

Kiss and Derekas (2005) confirmed the nova classification based on H-alpha emission with a strong P-Cyg profile with full-width-zero-intensity exceeding 5000 km/s. The Na D doublet was saturated, indicating high interstellar reddening. Rudy et al. (2005) indicate that the reddening derived from the NIR O I lines was E(B - V) = 0.53. Likewise, the Schlegel et al. (1998) galactic extinction maps give E(B - V) = 0.586mag, and a total extinction of 1.942mag at V-band. The light curve looks like a typical fast nova, with the time to drop 3 magnitudes ( $t_3$ ) of about 12 days.

Several independent astrometric positions were given for the nova, as given in Table 1. Three additional measurements are given there, based on new astrometric measurements of *B*-band images taken by Di Scala (DSI), reduced using the UCAC2 astrometric catalog (Zacharias et al. 2004), and also recent imagery from the U.S. Naval Observatory, Flagstaff Station (NOFS) as described later.

| Observer       | $\operatorname{Epoch}$ | RA(J2000)   | DEC(J2000)  |
|----------------|------------------------|-------------|-------------|
| Nakano (2005a) | 2005.33                | 18:16:59.04 | -25:56:38.8 |
| Nakano (2005b) | 2005.33                | 18:16:58.96 | -25:56:38.9 |
| Nakano (2005b) | 2005.33                | 18:16:58.97 | -25:56:39.1 |
| DSI            | 2005.58                | 18:16:58.95 | -25:56:39.7 |
| DSI            | 2005.66                | 18:16:58.96 | -25:56:39.6 |
| NOFS           | 2007.40                | 18:16:58.96 | -25:56:39.6 |

Table 1. V5115 Sgr astrometric positions

As this is a very crowded region near the center of the Galaxy (galactic longitude 6.0464 degrees; latitude -4.5674 degrees) and is heavily reddened, no progenitor was identified in the IAUC. Yamaoka (2005) noted that there was a nearby bright infrared source in the 2MASS catalog.

Other than these initial reports, no additional information has been published on this nova. Hans-Guenter Diederich asked on the BAV mail list on May 8, 2007, about the proper identification for V5115 Sgr now that it has faded. In addition, late-time photometry for novae is often neglected. For these reasons, we made further observations of V5115 Sgr at NOFS in May, 2007.

DSI observed V5115 Sgr during the outburst, using a 30cm telescope, SBIG ST-6 CCD camera and Custom Scientific  $BVR_c$  filters. Standard dark subtraction and flatfielding were performed. Stars were extracted using AIP4WIN software. First order extinction corrections as well as transformation coefficients were applied. Since this field was not yet calibrated, the DSI observations are all-sky, using SA109-747 as the primary standard. Table 2 gives the  $BVR_c$  photometry during outburst.

The field of V5115 Sgr was also observed at  $BVR_cI_c$  on May 26, 2007 (UT) and at BV on May 28, 2007, using the 1.0m R/C telescope at NOFS. Conditions were photometric. A  $BVR_cI_c$  calibration of the field was obtained, with results given in Table 3 (available through the IBVS website as 5783-t3.txt). For each night, multiple Landolt (1983, 1992) fields were observed to both obtain the transformation coefficients as well as extinction. As this field is at -25 degrees declination, it transits at relatively high airmass, so the quality of the calibration is not as high as for other fields. In addition, the high airmass results in poorer image quality; the typical seeing on these two nights was about 2.5arcsec for this field. Note that automated starfinding routines were used to generate Table 3, and that many spurious objects will be present due to blending. Take care when using this table to identify isolated objects.

Each image was bias subtracted and flatfielded using standard procedures. The images were then psf-fit using DAOPHOT (Stetson, 1987) as implemented in IRAF. The photometry was calculated using inhomogeneous ensemble photometry techniques similar to Honeycutt (1992). Astrometry was performed using the SLALIB astronomical library (Wallace, 2002) along with UCAC2.

This is a very crowded region and exposures were shorter than necessary for highprecision photometry. However, we report the new photometry for V5115 Sgr also in Table 2.

Yamaoka (2005) noted that there was a nearby bright infrared source in the 2MASS

| JD           | V     | $\operatorname{err}$ | (B-V) | $\operatorname{err}$ | $(V-R_c)$ | $\operatorname{err}$ | Observer |
|--------------|-------|----------------------|-------|----------------------|-----------|----------------------|----------|
| 2453498.2049 | 12.05 | 0.05                 | 0.25  | 0.10                 | 1.40      | 0.10                 | DSI      |
| 2453505.2479 | 12.40 | 0.02                 | —     | _                    | 1.18      | 0.04                 | DSI      |
| 2453519.1458 | 12.83 | 0.02                 | 0.07  | 0.04                 | 1.16      | 0.04                 | DSI      |
| 2453525.1417 | 12.94 | 0.02                 | 0.05  | 0.03                 | 1.06      | 0.03                 | DSI      |
| 2453533.1875 | 12.99 | 0.02                 | 0.18  | 0.04                 | 0.85      | 0.04                 | DSI      |
| 2453539.1188 | 13.11 | 0.02                 | 0.10  | 0.04                 | 0.97      | 0.04                 | DSI      |
| 2453555.0451 | 13.27 | 0.02                 | 0.32  | 0.04                 | 0.80      | 0.04                 | DSI      |
| 2453582.0090 | 13.60 | 0.02                 | 0.36  | 0.04                 | 0.50      | 0.04                 | DSI      |
| 2453595.0833 | 13.87 | 0.03                 | —     | —                    | 0.55      | 0.05                 | DSI      |
| 2453595.9507 | 13.90 | 0.02                 | 0.29  | 0.04                 | 0.58      | 0.04                 | DSI      |
| 2453621.0278 | 14.06 | 0.02                 | 0.43  | 0.04                 | 0.69      | 0.04                 | DSI      |
| 2454246.9038 | 18.50 | 0.06                 | 0.50  | 0.08                 | _         | _                    | NOFS     |
| 2454248.9211 | 18.42 | 0.08                 | 0.29  | 0.09                 | _         | -                    | NOFS     |

Table 2. V5115 Sgr multifilter data from DSI and NOFS

catalog. The recent  $BVR_cI_c$  images make it clear that V5115 Sgr has a red companion about 4.2arcsec due west of the variable. The  $BVR_cI_c$  photometry for the red companion is given in Table 4. Table 5 gives the astrometry for the companion from existing catalogs as well as from the recent NOFS images. The NOFS astrometry has internal errors around 50mas. Based on the astrometry shown in the Table, there is no detectable proper motion for the red companion.

| -        | V         | err (       | B - V)     | err      | (V-I)                | $R_c)$  | err                  | $(R_c -$ | $I_c)$               | err   |                      |
|----------|-----------|-------------|------------|----------|----------------------|---------|----------------------|----------|----------------------|-------|----------------------|
| -        | 17.154    | 0.022       | 2.409      | 0.086    | 2.49                 | 1 (     | 0.023                | 2.35     | 8                    | 0.015 |                      |
| -        |           |             | Table 5.   | Red con  | mpanion i            | informa | tion                 |          |                      |       |                      |
| Source   | Epoch     | RA(J2000)   | Dec(J2000  | ) i'     | $\operatorname{err}$ | J       | $\operatorname{err}$ | Н        | $\operatorname{err}$ | Κ     | $\operatorname{err}$ |
| USNO-B   | 1969.7    | 18:16:58.63 | -25:56:38. | 6 –      | -                    | —       | -                    | —        | -                    | —     | -                    |
| GSC2.3.2 | 2 1996.70 | 18:16:58.65 | -25:56:39. | 1 –      | -                    | -       | -                    | -        | -                    | -     | -                    |
| DENIS    | 1999.52   | 18:16:58.62 | -25:56:38. | 3 12.263 | 0.03                 | 9.297   | 0.06                 | -        | -                    | 7.764 | 0.09                 |
| 2MASS    | 2000.82   | 18:16:58.67 | -25:56:39. | 0 – 0    | -                    | 9.243   | 0.048                | 8.142    | 0.036                | 7.690 | 0.026                |
| NOFS     | 2007.40   | 18:16:58.66 | -25:56:39. | 2 –      | -                    | -       | -                    | -        | -                    | -     | _                    |

Table 4. Red companion optical photometry

The MACHO and OGLE databases were searched for progenitor photometry, with none found. Likewise, ASAS does not show any outbursts of this nova, including the 2005 outburst to V=8. This may be due to the continuing hard drive failures that the system is having. No CFHT, Gemini, HST, AAT or ING images were found during CADC searches that covered the field of V5115 Sgr.

We examined available Schmidt plate material from the PMM archive at NOFS, and see no progenitor for V5115 Sgr to their plate limit (about 21mag). These plate searches indicate that any progenitor must have been V=21 or fainter, indicating that the full amplitude of the outburst is greater than 13 magnitudes.

Figure 2 is a *B*-band image from NOFS identifying V5115 Sgr and its red companion. Figure 3 is the corresponding field from a POSS-I survey plate, showing the red companion and the lack of a progenitor.



**Figure 2.** NOFS 1.0m *B* image of field. FOV  $2 \times 2$  arcmin. V=variable; C=companion



**Figure 3.** POSS-I O(blue) image of field.FOV  $2 \times 2 \text{arcmin}$ 

V5115 Sgr appears to be a typical fast nova, with an amplitude exceeding 13 magnitudes. No progenitor is known. It currently is at V=18.5, still above the quiescent level, but any new photometry must account for the nearby bright red companion and the otherwise extremely crowded field.

This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This research made use of the facilities of the U.S. Naval Observatory, Flagstaff, Arizona USA. The astronomical catalog facility of VizieR (Ochsenbein et al. 2000) was also used.

References:

Honeycutt, R. K., 1992, PASP, 104, 435
Kiss, L., Derekas, A., 2005, IAUC, 8501
Landolt, A. U. 1992, AJ, 104, 340
Landolt, A. U., 1983, AJ, 88, 439
Nakano, S., 2005a, IAUC, 8500
Nakano, S., 2005b, IAUC, 8501
Nishimura, H., 2005, IAUC, 8500
Ochsenbein, F., Bauer, P., Marcout, J. 2000, A&AS, 143, 23
Rudy, R. J., Russell, R. W., Lynch, D. K., 2005, IAUC, 8523
Schlegel, D. J., Finkbeiner, D. P., Davis, M., 1998, ApJ, 500, 525
Sakurai, Y., 2005, IAUC, 8500
Stetson, P., 1987, PASP, 99, 191
Wallace, P. T., 1994, ASPC, 61, 481, (eds. D. R. Crabtree, R. J. Hanisch, J. Barnes)
Yamaoka, H., 2005, IAUC, 8500
Zacharias, N., Urban, S. E., Zacharias, M. I., et al., 2004, AJ, 127, 3043

Number 5784

Konkoly Observatory Budapest 1 August 2007 *HU ISSN 0374 - 0676* 

## CCD TIMES OF MINIMA OF SOME ECLIPSING BINARIES FROM THE SAVS SKY SURVEY

#### LEWANDOWSKI, MARCIN; NIEDZIELSKI, ANDRZEJ; MACIEJEWSKI, GRACJAN

Centrum Astronomii, Uniwersytet Mikołaja Kopernika, Pl-87100 Toruń, Poland; e-mail: mlewandowski@astri.uni.torun.pl

## Observatory and telescope:

Piwnice Observatory of the Nicholas Copernicus University,

135 mm f/2.8 semi-automatic CCD camera

Detector:

SBIG ST-8XE CCD Camera

## Method of data reduction:

Reduction of the CCD frames was performed with a software developed for the Semi-Automatic Variability Search<sup>1</sup> sky survey.

## Method of minimum determination:

The minima times were computed with Kwee-van Woerden method (Kwee, van Woerden 1956).

| Times of 1 | Times of minima: |        |      |        |      |  |  |
|------------|------------------|--------|------|--------|------|--|--|
| Star name  | Time of min.     | Error  | Type | Filter | Rem. |  |  |
|            | HJD 2400000+     |        |      |        |      |  |  |
| V444 And   | 53966.6965       | 0.0014 | Ι    | V      |      |  |  |
|            | 53966.9314       | 0.0009 | II   | V      |      |  |  |
| V344 Cas   | 53761.3077       | 0.0003 | Ι    | V      |      |  |  |
| WX Cnc     | 53049.9535       | 0.0018 | Ι    | V      |      |  |  |
|            | 53050.5530       | 0.0012 | II   | V      |      |  |  |
| WY Cnc     | 53046.5072       | 0.0007 | Ι    | V      |      |  |  |
| LL Com     | 53055.9547       | 0.0010 | Ι    | V      |      |  |  |
|            | 53056.1590       | 0.0012 | II   | V      |      |  |  |
| LT Com     | 53056.2297       | 0.0034 | Ι    | V      |      |  |  |
|            | 53056.4913       | 0.0011 | II   | V      |      |  |  |
| MM Com     | 53056.2653       | 0.0005 | Ι    | V      |      |  |  |
|            | 53056.4207       | 0.0005 | II   | V      |      |  |  |
| AU Dra     | 53817.5930       | 0.0012 | Ι    | V      |      |  |  |
|            | 53817.8509       | 0.0016 | II   | V      |      |  |  |
|            | 53999.4852       | 0.0016 | Ι    | V      |      |  |  |
|            | 53999.7487       | 0.0012 | II   | V      |      |  |  |
|            | 54150.9664       | 0.0031 | Ι    | V      |      |  |  |
|            | 54151.2131       | 0.0051 | II   | V      |      |  |  |

<sup>1</sup>For further information on SAVS see http://www.astri.uni.torun.pl/~gm/SAVS/.

| Times of minima:           |              |        |      |        |      |
|----------------------------|--------------|--------|------|--------|------|
| Star name                  | Time of min. | Error  | Type | Filter | Rem. |
|                            | HJD 2400000+ |        |      |        |      |
| RZ Dra                     | 53818.4493   | 0.0011 | Ι    | V      |      |
|                            | 53818.7297   | 0.0011 | II   | V      |      |
|                            | 54000.2280   | 0.0008 | Ι    | V      |      |
|                            | 54000.5077   | 0.0025 | II   | V      |      |
| VY Lac                     | 53967.2486   | 0.0003 | Ι    | V      |      |
| UV Lyn                     | 53046.1202   | 0.0013 | Ι    | V      |      |
|                            | 53046.3268   | 0.0005 | II   | V      |      |
| V563 Lyr                   | 53851.9636   | 0.0009 | Ι    | V      |      |
|                            | 53852.2430   | 0.0021 | II   | V      |      |
| V576 Lyr                   | 53851.2646   | 0.0007 | Ι    | V      |      |
|                            | 53851.5297   | 0.0008 | II   | V      |      |
| XY UMa                     | 53817.8032   | 0.0010 | Ι    | V      |      |
|                            | 53818.0377   | 0.0021 | II   | V      |      |
| GSC 03109-00859            | 53851.6401   | 0.0010 | Ι    | V      |      |
|                            | 53851.8762   | 0.0012 | II   | V      |      |
| GSC 04428-01574            | 53819.2119   | 0.0011 | Ι    | V      |      |
|                            | 53819.4636   | 0.0008 | II   | V      |      |
|                            | 53999.4219   | 0.0008 | Ι    | V      |      |
|                            | 54026.5768   | 0.0017 | Ι    | V      |      |
|                            | 54026.8350   | 0.0008 | II   | V      |      |
| ROTSE1 J131228.30+251426.1 | 53056.2726   | 0.0008 | Ι    | V      |      |
| ROTSE1 J183824.48+423643.1 | 53850.6825   | 0.0009 | Ι    | V      |      |
|                            | 53850.8617   | 0.0013 | II   | V      |      |

Reference:

Kwee, K. K., van Woerden, H. 1956, Bull. Astr. Inst. Netherlands, 12, No. 464, 327

## ERRATUM FOR IBVS 5777

The following corrections for the paper "New Minima Times of Selected Eclipsing Binaries" by Parimucha et al. were communicated by the authors after the publication:

| Sta | ar  | Original   |   | Corrected         |
|-----|-----|------------|---|-------------------|
|     |     |            |   |                   |
| EΡ  | And | 53005.3233 | T | 54005.3233 1      |
| UV  | Lyn | 54068.6367 | Ι | 54068.6367 II     |
| GΖ  | And | 53947.4616 |   | should be deleted |
| CW  | Cas | 53942.4711 |   | should be deleted |
| GW  | Cep | 53866.4409 |   | should be deleted |
| R₩  | Com | 53830.3059 |   | should be deleted |
| R₩  | Com | 53847.4787 |   | should be deleted |
| AG  | Vir | 53285.3871 |   | should be deleted |
|     |     |            |   |                   |
Number 5785

Konkoly Observatory Budapest 14 August 2007 *HU ISSN 0374 - 0676* 

#### ASAS 122801-2328.4 - A NEW GALACTIC FIELD RRd STAR

PILECKI, B.; SZCZYGIEŁ, D. M.

Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Al.Ujazdowskie 4, 00-478 Warszawa, Poland e-mail:pilecki@astrouw.edu.pl, dszczyg@astrouw.edu.pl

There are 27 double mode RR Lyrae (RRd) stars known in the field of our Galaxy, without including fainter objects in the Galactic Bulge or Sagittarius dwarf galaxy (Szczygieł & Fabrycky 2007, and references therein). The incidence ratio defined as a number of RRd divided by number of RRc is much lower for the Galactic field than for LMC which might suggest that there are still many RRd undiscovered.

Recently there have been several attempts to search for RRd variables in the ASAS database of RR Lyrae stars, but the number of these objects is still very small. This may be a result of misclassification between some of the classes of stars with similar light curve shapes, eg. RRc and EC (Eclipsing Contact) binaries, especially at the dimmer end of the catalogue. Such a possibility is even higher for RRd stars, because ASAS uses only one period in the classification process (for details see Pojmański 2002) and another periodicity just increases apparent observational errors.

The newly discovered RRd, namely ASAS 122801-2328.4, is such a case. In the ACVS (ASAS Catalogue of Variable Stars) it is classified as EC/RRc object with the period of 0.721272 d and the maximum brightness of V=13.19 mag. Multiperiodic light curve analysis of ASAS 122801-2328.4 reveals two pulsation modes with periods  $P_0 = 0.484820d$  (fundamental) and  $P_1 = 0.360634d$  (first overtone) and full amplitudes  $Amp_0 = 0.28mag$  and  $Amp_1 = 0.44mag$ . The dominant pulsation mode is the first overtone, which is the usual behaviour among double pulsators. The period ratio  $P_1/P_0 = 0.74385$  is also representative of this group of variables.

All the numbers are summarized in Table 1, and the light curves phased with both pulsation periods are shown in Figure 1. These light curves were obtained in iterative process of subtracting one mode while searching for the other. Blue (solid) lines are fits used in that process.

| $V_{max} [mag]$     | 13.19               |
|---------------------|---------------------|
| 2MASS J, H, K [mag] | 12.42, 12.17, 12.10 |
| $P_0 [days]$        | 0.484820            |
| $P_1$ [days]        | 0.360634            |
| $Amp_0 [mag]$       | 0.28                |
| $Amp_1 [mag]$       | 0.44                |

Table 1. Characteristics of the star ASAS 122801-2328.4



Figure 1. Separated light curves for an overtone (top) and a fundamental (bottom) pulsation mode.

Acknowledgements. This work was supported by the MNiSW grant N203 007 31/1328.

References:

Pojmański, G., 2002, AcA, **52**, 397 Szczygieł, D.M., Fabrycky, D.C., 2007, MNRAS, **377**, 1263

Number 5786

Konkoly Observatory Budapest 14 August 2007 *HU ISSN 0374 - 0676* 

# V963 CYGNI IS AN ACTIVE DETACHED BINARY WITH A 33.5 HOUR PERIOD

SAMEC, RONALD G.<sup>1,4</sup>; BRANNING, JEREMY<sup>1</sup>; JONES, STEPHANIE M.<sup>1</sup>; FAULKNER, DANNY R.<sup>2,4</sup>; HAWKINS, NATHAN C.<sup>3,4</sup>; VAN HAMME, WALTER<sup>5</sup>

<sup>1</sup> Astronomy program, Department of Physics, Bob Jones University, Greenville, SC 29614

 $^{2}$  University of South Carolina, Lancaster

 $^{3}$  University of Oklahoma

 $^4$  Visiting Astronomer, Lowell Observatory, Flagstaff, AZ

 $^{5}$ Florida International University, Miami, Florida

As a part of our study of observationally neglected eclipsing binaries we observed the eclipsing binary V963 Cygni, [GSC 2656-1995,  $\alpha(2000) = 19^{h}44^{m}4^{s}92$ ,  $\delta(2000) = 31^{\circ}41'50''_{2}$ ]. Wachmann (1961) discovered this variable and reported 21 times of minimum light and the ephemeris

HJD Tmin I = 
$$2434629.397 + 0.6973d \times E.$$
 (1)

From his photographic light curves he classified this as an Algol. Sixteen subsequent times of minimum light have appeared in the literature (Safár and Zejda 2000, and 2002, Agerer and Hübscher 2000, Dvorak 2005, Hübscher 2005, Hübscher, Paschke, and Anton 2005, Hübscher, Paschke, and Walter 2005 and 2006, Hübscher, Paschke, and Walter 2007).

Our UBVRI light curves were taken on 19-25, July, 2004 by NCH, RGS, and DRF with the Lowell 31 inch reflector in Flagstaff, AZ through the National Undergraduate Research Observatory (NURO). The CCD camera was liquid nitrogen cooled, and the chip was a metachrome coated TEK 512×512. Sixty-nine observations were taken in U, 94 in B, 125 in V, 105 in R and 96 in I. Our observations, variable minus comparison delta magnitudes are given in electronic Table 1 (available through the IBVS-website as 5786-t1.txt). The stars [GSC 2656-3363,  $\alpha(2000) = 19^{h}44^{m}03^{s}64$ ,  $\delta(2000) = 31^{\circ}41'13''.3$ ], and [GSC 2656-2055,  $\alpha(2000) = 19^{h}44^{m}16^{s}91$ ,  $\delta(2000) = 31^{\circ}41'31''.6$ ], were used as comparison and check respectively. A finding chart of V963 Cyg (V), the comparison (C), and the check star, (K) are given in Figure 1.

Early in the observing run we discovered that the two consecutive deep eclipses were of different depths,  $\sim 0.78$  and  $\sim 0.67$  magnitudes in V, respectively. There was no hint of a shallow secondary eclipse as expected in an Algol light curve. Rather, there is a fairly flat maximum between the eclipses. Evidently this system had been mistakenly classified. Instead of two dissimilar stars in a semidetached mode, there are two similar stars in a detached configuration. The period, consequently, needs to be doubled. Three



Figure 1. Finder Chart, V963 Cygni, comparison (C) and Check (K). V' is V965 Cygni.

mean epochs of minimum light were determined from UBVRI timings of one primary and two secondary eclipses, HJD I = 2453207.7686 ± 0.003, HJD II = 2453209.8607 ± 0.0010, 2453211.9540 ± 0.0031. The following ephemeris reflects this finding:

HJD Tmin I = 
$$2453209.8609 \pm 0.0007 + 1.39466785 \pm 0.00000016d \times E.$$
 (2)

This was arrived at from 38 available times of minimum light (including ours) covering some 15000 orbits. Very recent timings seem to be forming a pattern, possible a negative parabola, but further observations are needed to verify the effect. All times of minimum light are shown in electronic Table 2 (available through the IBVS-website as 5786-t2.txt). The next equation was calculated by the ephemeris option of the Wilson code (van Hamme and Wilson, 1998):

HJD Tmin I = 
$$2453209.8585 \pm 0.0003 + 1.3945 \pm 0.0002 d \times E..$$
 (3)

Standard magnitudes were calculated from our observations and 6 and 7 Landolt standard stars taken on July 20 and 24, respectively. They reveal that V963 Cyg is of spectral type F6.5  $\pm$  1.0. Values for the comparison and check star are both F5  $\pm$  0.5. Our standard magnitudes and color indices are given in electronic Table 3 (available through the IBVS-website as 5786-t3.txt).

A UBVRI synthetic solution was calculated. We first used Binary Maker 3.0 (Bradstreet, 2002) to provide an initial fit to each of the V, R, and I light curves. The fits were all detached. The main difficulty encountered in fitting the light curves were the irregularities in the out-of-eclipse portions, which evidently is due to several large spot regions. Thus, V963 Cyg has strong magnetic activity. The eclipse shoulders have somewhat different shapes in each effective wavelength. Particularly, the R curve is much different from the B curve in the shoulder of the secondary eclipse. This is believed be due to roving star magnetic spots arising from nonsynchronous rotation of each component. Our Binary Maker fits all gave a mass ratios of about 0.9.

Using our starting values, we proceeded to compute a simultaneous five color light curve solution with the updated Wilson Code (Wilson and Devinney, 1971; Wilson, 1990, 1994; Van Hamme and Wilson, 1998), which includes Kurucz stellar atmospheres, rather than black body, and a detailed reflection treatment along with 2-D limb darkening coefficients. The main mode of calculation is differential corrections. In addition to spot modeling, we tried adjusting the F parameter (non-synchronous rotation, Wilson 1979, Limber 1963), and third-light. It was found that the F parameter is the key to successfully modeling of the system. The system is evidently young and the stars are not yet gravitationally locked. This gives further evidence that the period is  $\sim 1.4$  d rather than  $\sim 0.7$ . An 0.7 day system in a nonsynchronous orbit would be exceptionally rare. Our solution indicates that the binary is a detached system with a mass ratio,  $m_2/m_1 \sim 0.9$ . The component temperature difference was only about 300 K. The solution reported here has 2 large spot regions. This indicates the magnetically active nature of this binary. The light curve solutions are given in electronic Table 4 (available through the IBVSwebsite as 5786-t4.txt), and the calculated synthetic light curves are shown overlying the normalized light curve in Figure 2 and 3. The star surfaces are shown in Figure 4 (from Binary Maker). Due to the fact that the eclipses are partial, our model is preliminary. But a mass ratio near one is strongly suggested due to the deep and fairly equal eclipse depths. Radial velocity curves are needed for a complete solution. In this regard, we note here that errors given in the table are model dependent standard errors.



**Figure 2.** *UBVRI* Light curves compared with WD solution.



**Figure 3.** *UBVRI* Light curves compared with WD solution.



Figure 4. Star surfaces, V963 Cygni.

We wish to thank NURO for their allocation of observing time, and a small research grant from the American Astronomical Society and an Arizona Space Grant which supported this observing run.

References:

Bradstreet, D. H., 2002, BAAS, 34, 1224
Dvorak, S.W., 2005, IBVS, 5603
Hübscher, J., 2005, IBVS, 5643
Hübscher, J., Paschke, A., & Walter, F., 2005, IBVS, 5657
Hübscher, J., Paschke, A., & Walter, F., 2006, IBVS, 5731
Hübscher, J. & Walter, F., 2007, IBVS, 5761
Limber, D.N., 1963, ApJ, 138, 1112
Safár, J., Zejda, M., 2000, IBVS, 4888
Safár, J., Zejda, M., 2002, IBVS, 5263
Van Hamme, W. V., Wilson, R. E, 1998, BAAS, 30, 1402
Wachmann, A. A. 1961, Astron. Abh. Hamburg. Sternw., 6, 1
Wilson, R. E., 1979, ApJ, 234, 1054
Wilson, R. E., 1990, ApJ, 356, 613
Wilson, R. E., 1994, PASP, 106, 921

Number 5787

Konkoly Observatory Budapest 17 August 2007 *HU ISSN 0374 - 0676* 

#### DISCOVERY OF 6-MINUTE OSCILLATIONS IN HD 151878

TIWARI, S. K.; CHAUBEY, U. S.; PANDEY, C. P.

Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital - 263129 India

The rapidly oscillating Ap (roAp) stars are cool, magnetic, chemically peculiar A-type stars, pulsate with periods ranging from 4-21 minutes, and have pulsation amplitudes  $\leq 16$  mmag in Johnson B. Some of the roAp stars are of great significance to astrophysics because they allow us to study pulsation and chemical diffusion in presence of magnetic fields. Till 2006, of the 35 roAp stars known, 30 are in the southern hemisphere, and thus inaccessible with most of the astronomers from the northern hemisphere. To discover northern roAp stars, we are carrying out a survey programme entitled "Search for pulsation in chemically peculiar stars".

HD 151878 is classified as a F2 star in HD catalogue. The Strömgren indices of the star HD 151878 are b - y = 0.225,  $m_1 = 0.234$ ,  $c_1 = 0.684$ ,  $\beta = 2.759$  (Hauck & Mermilliod, 1998) which indicate a strong metallicity which is generally found in Ap and Am stars. On the basis of these peculiar colours, we observed the star HD 151878 on May 30, 2007 with 104-cm Sampurnanand telescope of ARIES, Nainital, equipped with high-speed fast photometer. We were rewarded with the discovery of 6-min oscillations in the star. Further, we observed the star HD 151878 on June 01 and 03, 2007 (corresponding JDs 2454253, and 2454255) and noted the same 6-min oscillations.

As we were searching for variations in the 4-21 min range and also due to the absence of any suitable comparison star in the field, we did not observe any comparison star. The data were acquired as continuous single channel 10s integrations through a Johnson B filter. A diaphragm of 2-mm in diameter which corresponds to 30 arcsec was used to minimize the light losses arising from seeing effect and tracking drifts. The observations were interrupted, nearly every 20-30 minutes, for sky background measurements to take account of changes of sky brightness during the night as well as to check the centering of the programme star in the diaphragm. The observed data were corrected for coincidence counting losses due to the dead time of the photon counting electronics, sky background and atmospheric extinction. Because of the absence of any comparison star observations, the observed data have been normalized in the mean to zero on a nightly basis. There is always some degree of contamination of single channel high-speed photometry by sky transparency variations. The normalized nightly data were prewhitened due to some mild sky transparency variations on time scale  $\geq 0.5$  hr with caution, as they do not discriminate between the sky transparency variations and real variations in the star.

The nightly observed light curves of HD 151878 are plotted in Figure 1. Figure 2 shows the nightly amplitude spectrum of the light curve depicted in Figure 1. The amplitude spectrum of the light curve peaks strongly at 2.78 mHz (Period = 6 min) for all the three dates. It is evident from Figures 1 and 2 that the nightly observed mean amplitude of the oscillations of all the three dates are different from each other. This amplitude modulation

may be either due to excitation of different modes or due to rotation of the star. Further observations will be carried out to study rotational and multi-pulsational behaviour of this star.



Figure 1. Discovery and confirming light curves of HD 151878 observed in Johnson B filter.



Figure 2. Amplitude spectrum of the nightly light curves depicted in Figure 1.

Acknowledgments: Thanks are due to Prof. Ram Sagar for the useful suggestions. This survey programme is supported by DST Govt.of India, Grant No. SR/S2/HEP-20/2003.

### Reference:

Hauck, B., Mermilliod, M., 1998, A&AS, 129, 431

Number 5788

Konkoly Observatory Budapest 17 August 2007 *HU ISSN 0374 - 0676* 

# EVIDENCE FOR A THIRD BODY IN THE ECLIPSING BINARY DI HERCULIS

KHODYKIN, S. A.

Volgograd Pedagogical University, 12, Academicheskaja St., Volgograd 400001, Russia; khodykin@avtlg.ru

The detached eclipsing binary DI Herculis (HD 175227, B3V+B4V,  $P = 10^{d}.55$ ) exhibits a significant discrepancy between the theoretically expected apsidal motion rate and the rate measured based on observations of the difference between the primary and secondary eclipse periods  $\Delta P$ .

The hypotheses of a third star in a highly inclined orbit can explain the observed apsidal motion (Martynov, and Khaliullin, 1980; Guinan, and Maloney, 1985; Khaliullin, Khodykin, and Zakharov, 1991). However, observational evidence of a third body in DI Her has hitherto escaped detection. We collected observed times of photo-visual and photoelectric minima spanning an interval of 75 years (Semeniuk, 1968; Martynov, and Khaliullin, 1980; Guinan, and Maloney, 1985; Khodykin, and Volkov, 1989; Guinan, Marshall, and Maloney, 1994; Dariush, Afroozeh, and Riazi, 2001; Smith, and Caton, 2007). Cyclic variations in O - C residuals can provide indirect evidence for an invisible third companion as in the case of AS Cam (Kozyreva, and Khaliullin, 1999).

This bulletin reports the discovery of cyclic variations in O - C residuals, consistent with the light-time effect on eclipse timing, for DI Her. These variations provide the first indirect evidence of a third body presence in DI Herculis.

The linear ephemerides were calculated according to Khodykin and Volkov (1989):

Min I  $JD_{hel} = 2447371.27914(8) + 10^{d} 5501680(2) \times N$ 

Min II  $JD_{hel} = 2447379.39548(9) + 10.5501749(2) \times N$ 

The primary (17) and secondary (20) minima (available electronically as 5788-t1.txt) were analyzed separately to eliminate the small phase variation caused by the apsidal motion  $\dot{\omega}$  and/or possible secular decreasing of orbital eccentricity  $\dot{e}$  due to third body perturbations. Several photoelectric timings were removed because of unreasonably large residuals: 5 determined by Koch, 4 - by Biro and Hegedus, 2 secondary minima found by Battistini and Scarfe (the errors 0<sup>d</sup>.003 are too large). We rejected two low accuracy timings obtained with the Fine-Error Sensor on board the IUE satellite, and 3 dubious timings determined by Guinan and Maloney from UBV data of Martynov and Khaliullin, which based on 12, 11, and 24 points only.

Plots of O-C residuals versus orbital phase of the third body were examined for various trial values of the third body period. Generally, the points in the  $(O-C)_{I,II}$  diagrams appeared chaotically, indicating random phases relative to the hypothetical orbital period of a third body.



Figure 1. Photoelectric O - C residuals for primary (•) and secondary (•) timings of minima of DI Her convolved with period P' = 260P(7.51 yr).

A unique solution, shown in Fig. 1, was found that provided synchronous deviations for both primary and secondary photoelectric timings of minima with respect to phase:  $P' = 260 P = 2743^{d} = 7.51 \text{ yr}$ . This periodic signal seems to be a light term caused by orbit of a third body. It is interesting to note that the low-precision photographic and visual timing tend to vary with the same period, albeit with more scatter (Fig. 2).



Figure 2. The symbols are the same as in Fig. 1, but for low-precision visual and photographic O - C residuals. A weak tendency for (O - C)s to vary with the same period as in Fig. 1 occurs, although the deviations are large.

The asymmetric non-sinusoidal shape of the points (narrow peak, with an abrupt slope change and shallow extended bottom) indicates a large eccentricity e'. The curve corresponding to approximate values of the eccentricity e' = 0.7 and the longitude of periastron  $\omega' = 330^{\circ}$  is shown in Fig. 3.

The O - C residuals of the primary and secondary minima vary synchronously with an amplitude about 0<sup>d</sup>0028, or 240<sup>s</sup>, consistent with displacement of the binary along the line of sight at 0.485 AU

The perturbations in the orbital elements of a close binary were found by Khaliullin, Khodykin, and Zakharov (1991) to vary at twice the frequency of the third body orbit. As a result, additional O - C variations of twice the orbiting frequency should occur; moreover, they must be in opposite phase for primary and secondary minima. The residuals between photoelectric O - C residuals and the theoretical curve describing the effect



Figure 3. Photoelectric O - C residuals, computed by linear ephemerides from Khodykin and Volkov (1989), versus minima numbers and years. The theoretical light-term curve (dotted) for third body period P' = 7.51 yr, eccentricity e' = 0.7 and argument of periastron  $\omega' = 330^{\circ}$  is shown.

of the third body  $\Delta_{I,II} = (O - C)_{I,II} - LT$  (as shown in Fig. 3) were plotted versus phase assuming a period 0.5P' = 130P = 3.76 yr (Fig. 4).

There is a weak evidence of approximately sinusoidal oscillations of  $(O - C)_I$  and  $(O - C)_{II}$  in opposing phase. Altogether, these anomalies in the O - C curve seem to provide convincing evidence of the presence of a third body in DI Her.

Consider now the properties of the third companion. Assuming the total mass of the close binary system (CBS) is  $m_1 + m_2 = 9.67 M_{\odot}$  and a partial luminosity of a third body  $L' \leq 0.03$ , Guinan and Maloney (1985) obtained the restrictions to its mass:  $0.8 M_{\odot} \leq m' \leq 2.5 M_{\odot}$ . Let  $D^+$  and  $D^-$  are the maximal distances of CBS to the visual plane. Then the light-term effect is  $LT = (D^+ + D^-)/c$ , where c is a light velocity. The projection of an elliptical orbit of the binary onto the line of sight is given by formula (Kopal, 1978)

$$D^{+} + D^{-} = a'(1 - e'^{2})\sin i' \frac{m'}{m_{1} + m_{2} + m'} \sqrt{1 - e'^{2}\cos 2\omega'}$$

Substituting the amplitude of a theoretical curve  $0^{d}$ 0028 (Fig. 3), and using the third Kepler's law we obtained the relation:

$$\frac{a'm'\sin i'}{m_1 + m_2 + m'} = \frac{P'^{2/3}m'\sin i'}{(m_1 + m_2 + m')^{2/3}} = 0.3045, \quad \text{or} \quad \sin i' = \frac{0.0794(9.67 + m')^{2/3}}{m'}.$$

For minimal mass  $m' = 0.8 M_{\odot}$  the semimajor axis a' = 8.39 AU and i' = 28°.4, then the mutual inclination of orbits is  $\varepsilon \ge 90^{\circ} - i' = 61$ °.6. For maximal mass  $m' = 2.5 M_{\odot}$  we have a' = 8.82 AU, i' = 9°.6, and  $\varepsilon \ge 80^{\circ}$ . The space orientation of the third body orbits with masses mentioned above providing observed period difference  $\Delta P = P_2 - P_1$  consistent with Khaliullin, Khodykin, and Zakharov (1991). All stellar and orbital parameters presented above are in a good accord with those considered in the numerical predictions of a hierarchical triple model of DI Her. It should be noted that the hypothetical third body perturbs all the orbital elements of close binary, and because of the orientation of its highly inclined orbit with relative to the line of apsides the perturbations in  $\omega$  are positive



Figure 4. Differences between the observed photoelectric residuals (O - C)s and theoretical light-term curve (see Fig. 3.) convolved with a half-period of a third body. The symbols are the same as in the previous figures. The primary and secondary timings of minima seem to vary in opposing phase with double frequency of the third body, in agreement with theoretical predictions for third body perturbations in the framework of the once-averaged three-body problem.

or are close to zero:  $(d\omega/dt)_{tb} \geq 0$ . The third body seems not to affect considerably to the apsidal motion of the close pair. It turns out that the secondary minima phase's shift in DI Her is provided mainly by slow decreasing of the orbital eccentricity:  $(de/dt)_{tb} < 0$ , as it was determined by Khodykin and Vedeneyev (1997) on the basis of comparison of two light curve solutions. Therefore, further observations of this unique eclipsing system are needed to improve both the values of the orbital elements and their possible long-term or secular perturbations.

The most reliable and direct confirmation of a third body presence in DI Herculis would be the observations of a faint companion. As it was noted in Khodykin, Zakharov and Andersen (2004), interferometric observations in the infrared range (H and K bands) are more preferable in this case.

I am grateful to V. Kozyreva for providing me the recent photometric data.

### References:

Dariush, A., Afroozeh, A., Riazi, N., 2001, *IBVS*, 5136 Guinan, E.F. and Maloney, F.P., 1985, *Astron. J.*, **90**, 1519

Guinan, E.F. and Matoney, F.I., 1905, Astron. 5., 50, 1515

Guinan, E.F., Marshall, J.J., Maloney, F.P., 1994, *IBVS*, 4101

Khaliullin, Kh.F., Khodykin, S.A., Zakharov, A.I., 1991, Astrophys. J., 375, 314

Khodykin, S.A. and Volkov, I.M., 1989, IBVS, 3293

Khodykin, S.A. and Vedeneyev, V.G., 1997, Astrophys. J., 475, 798

Khodykin, S.A., Zakharov, A.I., and Andersen, W.L., 2004, Astrophys. J., 615, 506

Kopal, Z., 1978, *Dynamics of Close Binary Systems* (Reidel, Dordrecht)

Kozyreva, V.S. and Khaliullin, Kh.F., 1999, IBVS, 4690

Martynov, D.Ya. and Khaliullin, Kh.F., 1980, Astrophys. Space Sci., 71, 147

Semeniuk, I., 1968, Acta Astr., 18, 1.

Smith, A.B. and Caton, D.B., 2007, IBVS, 5745

Number 5789

Konkoly Observatory Budapest 27 August 2007 *HU ISSN 0374 - 0676* 

# AN INCREASE IN STELLAR ACTIVITY IN THE ECLIPSING BINARY CM Dra

NELSON, T. E.; CATON, D. B.

Dark Sky Observatory, Dept. of Physics and Astronomy, Appalachian State University, Boone, North Carolina 28608 U.S.A.

CM Draconis is a system of interest for many reasons. It is one of the few known M-dwarf eclipsing binary systems. Although these types of systems may form a large percentage of stellar systems in our galaxy, their low luminosity limits their detection to nearby systems. Thus, study of these few systems may provide insight into an important subset of the stellar population. As a UV-Cet type system, CM Dra is prone to violent flare activity. UV-Cet stars can produce flares 10-1000 times as energetic as solar flares (Shakhovskaya, 1989), and can occur at a rate greater than 2 flares/hour (Lacy et al., 1976). Presented in this paper are six such flare events, observed at Appalachian State University's Dark Sky Observatory in May 2006.

Despite the presence of strong flares, which emit large amounts of UV radiation, Mdwarf stars are suitable hosts for life supporting planets (Heath et al., 1999). In the case of CM Dra, its low luminosity and its nearly edge on inclination make it a suitable target for ground based planet transit searches as shown by the efforts of the TEP (Transits of Extrasolar Planets) network (Deeg et al., 1998). While the TEP group initially reported several transit events, follow-up observations failed to confirm the events as planet transits.

A transiting planet search program is currently underway at Appalachian State University. To follow up the results of the TEP network, we decided to include CM Dra in our target list. To date, we have amassed 105 hours of observation time on the system. These observations were obtained using the 32-inch main telescope at Appalachian's Dark Sky Observatory, located 20 miles northeast of Boone, NC, at an elevation of 1km. The 32-inch Richey-Chretien is equipped with a Photometrics CH250 CCD camera with a Tektronix 1024-square chip, thinned and thermoelectrically cooled. All data were taken in the *R*-band at 120 second exposures, and were reduced using MIRA 6 and comparison and check stars as shown in Figure 1 (C: V=12<sup>m</sup>7,  $B - V=0^m54$ ; K1:  $V=13^m1$ ,  $B - V=0^m52$ ; K2:  $V=13^m7$ ,  $B - V=0^m66$ ). These are a subset of the standard stars used in the TEP project (Deeg et al., 1998).

Over the course of three nights of observations in May 2006, six flares in CM Dra were observed: one on JD2453878 with a magnitude change of 0.23 and a duration of one hour, three on JD2453879 with a magnitude change of 0.04, 0.08, and 0.09 respectively, with the whole event lasting well over two hours, and two on JD2453883 with magnitude changes of 0.02, and both events lasting over 30 minutes. The fact that all of the flares were observed in the R-band speaks to the highly energetic nature of these flares, as flares are most readily observed in the U, B, and V, respectively (Oláh et al., 1991).



Figure 1. Finding chart for CM Dra. (13 arc-min square.)

All six events display the classic shape of a stellar impulsive flare, with the maximum brightening occurring during a single exposure, and each subsequent point tailing off gradually back towards the quiescent magnitude of the system. The three flares on JD2453879 are a special case because they occurred in such proximity chronologically to each other. The second flare event began before the first subsided, and likewise with the third. Also, each successive flare was more powerful than the proceeding. These flares are an instance of sympathetic flaring. All of the flares are plotted by night in Figure 2.

| Table 1. | Observation | Log |
|----------|-------------|-----|
|----------|-------------|-----|

| Obs. Dates | Obs. Period             | Airmass     | Phase         |
|------------|-------------------------|-------------|---------------|
| May 2006   |                         |             |               |
| 22-23      | 2453878.62 - 2453878.88 | 1.27 - 1.25 | 0.336 - 0.543 |
| 23 - 24    | 2453879.61 - 2453879.88 | 1.26 - 1.26 | 0.124 - 0.330 |
| 27-28      | 2453883.64 - 2453883.88 | 1.18 - 1.29 | 0.294 - 0.483 |

Phase determined from P = 1.2683897 (Lacy, 1977) and E = 53478.6467 (Smith et al., 2007)

| Flare | Date        | Phase | Variation   | Duration    |
|-------|-------------|-------|-------------|-------------|
|       | (H.J.D.)    |       | (mags in R) | (hrs)       |
| 1     | 2453878.848 | 0.519 | 0.23        | 1.00        |
| 2     | 2453879.784 | 0.257 | 0.04        | $\geq 2.25$ |
| 3     | 2453879.808 | 0.276 | 0.08        | $\geq 2.25$ |
| 4     | 2453879.836 | 0.298 | 0.09        | $\geq 2.25$ |
| 5     | 2453883.702 | 0.346 | 0.02        | 0.57        |
| 6     | 2453883.853 | 0.465 | 0.02        | $\geq 0.67$ |

Table 2. Observed Flare Events

Phase determined from P = 1.2683897 (Lacy, 1977) and Epoch = 53478.6467 (Smith et al., 2007)



Figure 2. Six flare events were observed in CM Dra over three nights in May 2006.

Flares on CM Dra have been recorded before (Eggen et al., 1967; Lacy, 1977; Metcalfe et al., 1996; Kim et al., 1997; and Kozhevnikova et al., 2004), with magnitude increases ranging from 0.02 to 0.7 mag (in different filters) and most lasting on the order of one hour. Although, as Lacy (1977) points out, the rate of flaring observed from CM Dra is much lower than other Population I, UV-Cet type flare stars. From this, he hypothesized that CM Dra is actually an evolved Population II star system. Since then there has been little to refute this hypotheses. Observed flare rates are still much lower than would be expected from a Pop. I system, which could exceed two flares per hour. Lacy (1997) estimated a rate of less than 0.05 flares/hour, Metcalfe et al. (1996) estimated a rate of 0.02 flares/hour, Kim et al. (1997) estimated less than 0.04 flares/ hour, and Kozhevnikova et al. estimated 0.026 flares/hour.

From these new data, we are estimating a rate of 0.057 flares/hour, higher than any previous determination, but still well below the expected rate of a Pop. I UV-Cet type flare star.

However, even though our overall flare rate is fairly low, all six observed flares were observed during one week, giving an estimated localized rate of 0.33 flares/hour during that span. The previous observed flare events occurred apparently randomly in the phase of the system, as well as randomly in time. Not only did the flare observations presented here occur in a short time span, they also occupy a localized section of the system's phase. All of the flares occurred shortly before or after the secondary minimum. In fact, flare 1 began before a secondary eclipse ended, and flare 6 was still occurring when an eclipse began. With the system inclination nearly 90 degrees, it is very likely that flare 1 and 6 erupted from the secondary component. It is also possible that all six flares stemmed from a very large region of activity on the secondary star, one that covered a quarter of the star's surface in longitude.

On our own sun, we observe an eleven year cycle of solar activity, with flares and sunspots observed more often near the peak of the cycle. These new data may suggest just such a cycle on CM Dra, with such high activity in a short period of time. Of course, further observation is needed to detect any periodicity in flare activity. We can use these data, however, as direct evidence of a localized period of time of high surface activity, including spots and flares, in CM Dra.

We are grateful for support for this work provided by National Science Foundation grant AST-0520812. Also, one of us (TEN) was supported by a North Carolina Space Grant Fellowship during this work. We would like to thank the editor, Katalin Oláh, for her contribution to this paper. This research has made use of the SIMBAD database maintained and operated at CDS, Strasbourg, France.

#### References:

- Deeg, H.J., et al., 1998, A&A, **338**, 479
- Eggen, O.J., Sandage, A., 1967, ApJ, 148, 911
- Haisch, B., Strong, K.T., Rodono, M., 1991, Ann. Rev. Astron. Astrophys., 29, 275-324
- Heath, M.J., Doyle, L.R., Joshi, M.M., Haberle, R.M., 1999, Origins of Life and Evolution of the Biosphere, 29, 405
- Kim, S.-L., Chun, M.-Y., Lee, W.-B., Doyle, L., 1997, *IBVS*, 4462, 1
- Kozhevnikov, V.P., Kozhevnikova, A.V., 2002, IBVS, 5252, 1
- Kozhevnikova, A.V., Kozhevnikov, V.P., Zakharova, P.E., Polushina, T.S., Svechnikov, M.A., 2004, *IAUS*, **223**, 687
- Kunkel, W.E., 1975, IAUS, 67, 15
- Lacy, C.H., 1977, ApJ, 218, 444
- Lacy, C.H., Moffett, T.J., Evans, D.S., 1976, ApJS, 30, 85
- Metcalfe, T.S., Mathieu, R.D., Latham, D.W., Torres, G., 1996, ApJ, 456, 356
- Oláh, K., Pettersen, B.R., 1991, A&A, 242, 443
- Panagi, P.M., Andrews, A.D., 1995, MNRAS, 277, 423
- Smith, A.B., Caton, D.B., 2007, IBVS, 5745, 1
- Shakhovskaya, N.I., 1989, SoPh, 121, 375

Number 5790

Konkoly Observatory Budapest 27 August 2007 *HU ISSN 0374 - 0676* 

### THE GEOS RR Lyr SURVEY

Seventh list of maxima of RR Lyr stars observed by the automated telescopes TAROT

(GEOS Circular RR 31)

LE BORGNE, J. F.<sup>1,2</sup>; KLOTZ, A.<sup>3</sup>; BOËR, M.<sup>4</sup>

<sup>1</sup> GEOS (Groupe Européen d'Observations Stellaires), 23 Parc de Levesville, 28300 Bailleau l'Évêque, France

 $^{2}$ Laboratoire d'Astrophysique, Observatoire Midi-Pyrénées, Toulouse, France

<sup>3</sup> Centre d'Etude Spatiale des Rayonnements, Observatoire Midi-Pyrénées, Toulouse, France

<sup>4</sup> Observatoire de Haute-Provence, France

We present here the seventh list of light maxima of RR Lyrae stars from the GEOS RR Lyr Survey, a GEOS program (http://www.upv.es/geos/) (Boninsegna et al., 2002) of automated observations of RR Lyr stars started in January 2004.

We are using the 25-cm automatic telescopes TAROT (http://tarot.obs-hp.fr) (Boër et al., 2001, Bringer et al., 1999). One of the telescopes is located in the northern hemisphere in Calern Observatory (Observatoire de la Côte d'Azur, Nice University, France). A second identical telescope in the southern hemisphere, located in ESO La Silla Observatory, Chile, is in operation since 2006 September. Images are obtained by  $2048 \times 2048$  Marconi 42-40 thin back illuminated CCDs. Field of view of both telescopes is  $1.86^{\circ} \times 1.86^{\circ}$ . Data reduction, from bias subtraction and flatfielding to photometry using SExtractor (Bertin & Arnouts, 1996), is performed automatically. The aim of this legacy project for the study of period variations of RR Lyr stars is to monitor maxima of light of these stars in order to feed the GEOS RR Lyr web database (http://dbRR.ast.obs-mip.fr).

The present list contains 974 maxima observed with no filter between January and June 2007 (Table 1). The maxima are determined by fitting a polynomial function on the data points. The uncertainties on individual maxima are estimated from the data sampling of each maximum. The nominal sampling (two consecutive 30-s exposures taken every 10 minutes on a time baseline of 2 hours centered around the predicted maximum time) may be altered by local events (weather or telescope operation). This results uncertainties from 0.002 to 0.010 day. For a well observed star, the mean uncertainty on maxima is about 0.003 day (4.3 minutes). The O - C's are computed with the GCVS elements (Kholopov et al., 1985) and are displayed in Table 1 in column 'O - C'. The column 'E' contains the cycle number. Note that this cycle number takes into account the shifts induced by the elements when the period of the elements is very different from the actual one, the absolute value of O - C becoming greater than 1 period. When no elements are available in the GCVS, the reference of the elements, if exists, is given as a footnote of Table 1. The fifth column in Table 1 gives the abbreviation of the name of the observatory where the star was observed.

Table 1: maxima of RR Lyrae stars

| Variable | Mavimum                                        | 0 0              | Б               | Oba           | Variable | Maximum                                     | 0 0              | Б               | Oba                  |
|----------|------------------------------------------------|------------------|-----------------|---------------|----------|---------------------------------------------|------------------|-----------------|----------------------|
| variable |                                                | (dawa)           | Ľ               | Obs.          | variable | Maximum<br>HID 94                           | (dawa)           | Ľ               | Obs.                 |
| XX And   | $54106 347 \pm 0.002$                          | 0.224            | 20780           | С             | SW Aar   | $54277 826 \pm 0.002$                       | -0.001           | 63532           | LS                   |
| CI And   | $54100.347 \pm 0.002$<br>$54103.429 \pm 0.002$ | 0.224            | 20100.          | C             | TZ Agr   | $54271.520\pm0.002$<br>$54021.585\pm0.002$  | 0.001            | 00002.<br>28830 |                      |
| CI And   | $54106, 338\pm 0.002$                          | 0.094            | 37935           | C             | AA Aar   | $54021.500\pm0.002$<br>$54028.578\pm0.002$  | -0.113           | 54657           | LS                   |
| CI And   | $54107 \ 307\pm0.005$                          | 0.001            | 37937           | č             | BN Aar   | $54016589\pm0.002$                          | 0.540            | 34374           | LS                   |
| WY Ant   | $54114714 \pm 0.005$                           | 0.000            | 23452           |               | BN Agr   | $54023 634 \pm 0.002$                       | 0.540<br>0.540   | 34389           | LS                   |
| WY Ant   | $54125.628 \pm 0.005$                          | 0.203            | 23471.          | LS            | BR Aar   | $54026.682 \pm 0.002$                       | -0.152           | 34014.          | LS                   |
| WY Ant   | $54129.647 \pm 0.004$                          | 0.202            | 23478.          | LS            | CP Aar   | $54277.806\pm0.002$                         | -0.109           | 35376.          | LS                   |
| WY Ant   | $54140.561 \pm 0.003$                          | 0.204            | 23497.          | LS            | FX Aar   | $54016.647 \pm 0.003$                       | 0.120            | 14932.          | LS                   |
| WY Ant   | $54156.641 \pm 0.002$                          | 0.202            | 23525.          | LS            | HH Aar   | $54016.697 \pm 0.002$                       |                  |                 | LS                   |
| WY Ant   | $54160.661{\pm}0.002$                          | 0.202            | 23532.          | $\mathbf{LS}$ | HH Agr   | $54031.627{\pm}0.002$                       |                  |                 | $\mathbf{LS}$        |
| WY Ant   | $54171.577{\pm}0.005$                          | 0.206            | 23551.          | $\mathbf{LS}$ | AA Aql   | $54278.782 {\pm} 0.002$                     | 0.033            | 82732.          | $\mathbf{LS}$        |
| WY Ant   | $54206.611{\pm}0.005$                          | 0.206            | 23612.          | $\mathbf{LS}$ | V341 Aql | $54268.795{\pm}0.002$                       | 0.031            | 22616.          | $\mathbf{LS}$        |
| TY Aps   | $54185.619{\pm}0.002$                          | 0.036            | 28821.          | LS            | S Ara    | $54231.903{\pm}0.004$                       | 0.184            | 28944.          | LS                   |
| TY Aps   | $54192.643{\pm}0.005$                          | 0.036            | 28835.          | LS            | IN Ara   | $54221.806{\pm}0.004$                       | 0.128            | 42715.          | LS                   |
| TY Aps   | $54193.647{\pm}0.004$                          | 0.037            | 28837.          | $\mathbf{LS}$ | IN Ara   | $54233.794{\pm}0.002$                       | 0.118            | 42734.          | $\mathbf{LS}$        |
| TY Aps   | $54199.672{\pm}0.002$                          | 0.041            | 28849.          | LS            | IN Ara   | $54276.729{\pm}0.004$                       | 0.111            | 42802.          | $\mathbf{LS}$        |
| TY Aps   | $54227.773 {\pm} 0.003$                        | 0.047            | 28905.          | LS            | MS Ara   | $54213.719{\pm}0.002$                       | -0.168           | 49959.          | LS                   |
| VX Aps   | $54177.786{\pm}0.005$                          | -0.021           | 41146.          | LS            | MS Ara   | $54234.722{\pm}0.002$                       | -0.163           | 49999.          | $\mathbf{LS}$        |
| VX Aps   | $54179.727{\pm}0.002$                          | -0.019           | 41150.          | LS            | X Ari    | $54105.334{\pm}0.002$                       | 0.323            | 25373.          | $\mathbf{C}$         |
| VX Aps   | $54205.903{\pm}0.002$                          | -0.010           | 41204.          | LS            | X Ari    | $54107.285{\pm}0.005$                       | 0.320            | 25376.          | $\mathbf{C}$         |
| VX Aps   | $54281.499{\pm}0.002$                          | -0.008           | 41360.          | LS            | TZ Aur   | $54108.562{\pm}0.002$                       | 0.010            | 87333.          | $\mathbf{C}$         |
| XZ Aps   | $54155.747{\pm}0.003$                          | -0.175           | 43308.          | LS            | TZ Aur   | $54192.385{\pm}0.002$                       | 0.015            | 87547.          | $\mathbf{C}$         |
| XZ Aps   | $54162.795{\pm}0.002$                          | -0.176           | 43320.          | LS            | TZ Aur   | $54194.338{\pm}0.002$                       | 0.010            | 87552.          | $\mathbf{C}$         |
| XZ Aps   | $54165.732{\pm}0.005$                          | -0.176           | 43325.          | LS            | RS Boo   | $54113.628{\pm}0.002$                       | 0.003            | 32711.          | $\mathbf{C}$         |
| XZ Aps   | $54168.666{\pm}0.002$                          | -0.179           | 43330.          | $_{ m LS}$    | RS Boo   | $54136.647{\pm}0.002$                       | 0.005            | 32772.          | $\mathbf{C}$         |
| XZ Aps   | $54178.649{\pm}0.002$                          | -0.183           | 43347.          | LS            | RS Boo   | $54147.585{\pm}0.002$                       | 0.000            | 32801.          | $\mathbf{C}$         |
| XZ Aps   | $54185.697{\pm}0.002$                          | -0.184           | 43359.          | $_{ m LS}$    | RS Boo   | $54164.566{\pm}0.005$                       | 0.001            | 32846.          | $\mathbf{C}$         |
| XZ Aps   | $54205.665{\pm}0.002$                          | -0.189           | 43393.          | $_{ m LS}$    | RS Boo   | $54189.470{\pm}0.002$                       | 0.000            | 32912.          | $\mathbf{C}$         |
| XZ Aps   | $54225.632{\pm}0.002$                          | -0.194           | 43427.          | LS            | RS Boo   | $54217.390{\pm}0.002$                       | -0.003           | 32986.          | $\mathbf{C}$         |
| XZ Aps   | $54272.618 {\pm} 0.005$                        | -0.203           | 43507.          | LS            | RS Boo   | $54240.408 {\pm} 0.004$                     | -0.003           | 33047.          | С                    |
| XZ Aps   | $54282.595{\pm}0.002$                          | -0.212           | 43524.          | LS            | RS Boo   | $54266.440{\pm}0.003$                       | -0.007           | 33116.          | С                    |
| YZ Aps   | $54218.790{\pm}0.005$                          | 0.002            | 35602.          | LS            | ST Boo   | $54135.617 {\pm} 0.005$                     | 0.063            | 56170.          | $\mathbf{C}$         |
| YZ Aps   | $54222.716 {\pm} 0.005$                        | 0.016            | 35610.          | LS            | ST Boo   | $54145.574 {\pm} 0.007$                     | 0.063            | 56186.          | $\mathbf{C}$         |
| BS Aps   | $54180.672 {\pm} 0.010$                        | 0.021            | 28771.          | LS            | ST Boo   | $54160.515 \pm 0.005$                       | 0.069            | 56210.          | С                    |
| BS Aps   | $54191.750 {\pm} 0.005$                        | 0.030            | 28790.          | LS            | ST Boo   | $54168.608 {\pm} 0.005$                     | 0.073            | 56223.          | С                    |
| BS Aps   | $54222.613 \pm 0.005$                          | 0.018            | 28843.          | LS            | ST Boo   | $54198.481 \pm 0.003$                       | 0.076            | 56271.          | C                    |
| BS Aps   | $54275.642 \pm 0.002$                          | 0.034            | 28934.          | LS            | ST Boo   | $54208.438 \pm 0.003$                       | 0.076            | 56287.          | C                    |
| BS Aps   | $54282.620 \pm 0.003$                          | 0.021            | 28946.          |               | ST Boo   | $54211.550 \pm 0.002$                       | 0.077            | 56292.          | C                    |
| CK Aps   | $54191.890 \pm 0.003$                          | -0.205           | 28070.          |               | ST Boo   | $54229.600 \pm 0.002$                       | 0.080            | 56321.          | C                    |
| CK Aps   | $54193.764 \pm 0.010$                          | -0.201           | 28073.          |               | TW Boo   | $54158.506 \pm 0.002$                       | -0.051           | 51228.<br>F10FC | C                    |
| CK Aps   | $54190.870\pm0.005$                            | -0.213           | 28078.          |               | TW Boo   | $54173.408 \pm 0.003$                       | -0.053           | 51250.<br>51971 | C                    |
| CK Aps   | $54218.712\pm0.002$                            | -0.193           | 28113.          | LS            | TW BOO   | $54181.395 \pm 0.003$                       | -0.050           | 01271.<br>E1006 | C                    |
| CK Aps   | $54225.090\pm0.005$                            | -0.197           | 20121.          | LS            |          | $54109.570\pm0.002$                         | -0.031           | 01200.<br>51916 | C                    |
| DD Aps   | $54278.580\pm0.002$                            | -0.181           | 28209.<br>97006 | LS            | TW BOO   | $54205.348\pm0.003$                         | -0.049           | 01010.<br>E1999 | C                    |
| DD Aps   | $54250.710\pm0.000$<br>54267 646 $\pm0.005$    | 0.101            | 27000.          | LS            |          | $54214.595\pm0.005$<br>54215 461 $\pm0.002$ | -0.031           | 01000.<br>51995 | C                    |
| DD Aps   | $54207.040\pm0.003$<br>$54282.567\pm0.002$     | 0.009            | 27003.<br>27086 | LO<br>IS      | TW Boo   | $54215.401\pm0.005$<br>$54220.413\pm0.005$  | -0.049           | 51380           | C                    |
| EL Aps   | $54282.507 \pm 0.002$<br>54196 840 $\pm 0.008$ | -0.102           | 27080.<br>45205 |               | TW Boo   | $54259.413\pm0.003$<br>$54256.443\pm0.002$  | -0.049<br>-0.052 | 51300.<br>51/12 | C                    |
| EL Aps   | $54207 847 \pm 0.003$                          | -0.104<br>0.171  | 45200.          | LS            | TW Boo   | $54250.445\pm0.002$<br>$54272.411\pm0.003$  | 0.052            | 51449           | C                    |
| EL Aps   | $54201.041\pm0.002$<br>$54224.667\pm0.005$     | -0.171<br>-0.163 | 45253           |               | TW Boo   | $54272.411\pm0.003$<br>$54274.540\pm0.003$  | -0.052           | 51442.<br>51446 | C                    |
| EL Aps   | 54235675+0010                                  | -0.170           | 45272           | LS            | UY Boo   | $54198421\pm0.003$                          | 0.082            | 18995           | č                    |
| EL Aps   | $54278573 \pm 0.010$                           | -0.172           | 45346           | LS            | XX Boo   | $54164\ 603\pm0\ 005$                       | 0.000            | 42652           | $\tilde{c}$          |
| EL Aps   | $54282624 \pm 0.002$                           | -0.179           | 45353           | LS            | XX Boo   | $54188 443 \pm 0.000$                       | 0.018            | 42693           | $\tilde{c}$          |
| EX Ane   | 54185885+0002                                  | 0.015            | 55643           | LS            | XX Boo   | $54199486\pm0.002$                          | 0.015            | 42719           | č                    |
| EX Ans   | $54210889 \pm 0.002$                           | 0.013            | 55696           | LS            | XX Boo   | $54207 629 \pm 0.002$                       | 0.018            | 42726           | $\tilde{c}$          |
| EX Aps   | $54218.909\pm0.002$                            | 0.013            | 55713           | LS            | XX Boo   | $54231.467\pm0.005$                         | 0.019            | 42767           | $\tilde{\mathbf{c}}$ |
| EX Aps   | $54235.894 \pm 0.002$                          | 0.013            | 55749.          | $\tilde{LS}$  | CM Boo   | $54119.632 \pm 0.002$                       | -0.100           | 29911           | č                    |
| LU Aps   | $54215.915 \pm 0.010$                          | 0.201            | 22410           | LS            | CM Boo   | $54127.552 \pm 0.004$                       | -0.098           | 29924.          | С                    |
| r        | 0                                              |                  |                 |               |          |                                             |                  |                 |                      |

| Variable                              | Maximum                 | O - C  | Е      | Obs.          | Variable | Maximum                 | O - C  | Е      | Obs.          |
|---------------------------------------|-------------------------|--------|--------|---------------|----------|-------------------------|--------|--------|---------------|
|                                       | HJD 24                  | (days) |        |               |          | HJD 24                  | (days) |        |               |
| CM Boo                                | $54130.598 {\pm} 0.005$ | -0.097 | 29929. | С             | RZ CVn   | $54142.549 \pm 0.002$   | -0.170 | 24319. | C             |
| CM Boo                                | $54152.528 \pm 0.005$   | -0.094 | 29965. | C             | RZ CVn   | $54158.436 \pm 0.002$   | -0.171 | 24347. | C             |
| CM Boo                                | $54155.573 \pm 0.002$   | -0.095 | 29970. | С             | RZ CVn   | $54168.647 \pm 0.003$   | -0.173 | 24365. | C             |
| CM Boo                                | $54172.625 \pm 0.002$   | -0.097 | 29998. | C             | RZ CVn   | $54171.483 \pm 0.002$   | -0.174 | 24370. | C             |
| CM Boo                                | $54197.598 \pm 0.003$   | -0.096 | 30039. | С             | RZ CVn   | $54187.377 \pm 0.005$   | -0.168 | 24398. | C             |
| CM Boo                                | $54205.514 \pm 0.002$   | -0.098 | 30052. | С             | RZ CVn   | $54196.450 \pm 0.002$   | -0.173 | 24414. | C             |
| CM Boo                                | $54213.432 \pm 0.004$   | -0.098 | 30065. | С             | RZ CVn   | $54213.478 \pm 0.004$   | -0.167 | 24444. | С             |
| CM Boo                                | $54216.477 \pm 0.005$   | -0.099 | 30070. | С             | RZ CVn   | $54238.438 {\pm} 0.003$ | -0.174 | 24488. | С             |
| CM Boo                                | $54227.443 \pm 0.002$   | -0.096 | 30088. | С             | RZ CVn   | $54242.413 \pm 0.004$   | -0.170 | 24495. | С             |
| CM Boo                                | $54238.405 \pm 0.003$   | -0.097 | 30106. | С             | RZ CVn   | $54259.431 {\pm} 0.005$ | -0.175 | 24525. | С             |
| U Cae                                 | $54102.740 {\pm} 0.004$ | -0.100 | 47138. | LS            | SS CVn   | $54119.633 {\pm} 0.005$ | 0.134  | 30295. | С             |
| U Cae                                 | $54108.617 \pm 0.002$   | -0.100 | 47152. | LS            | SS CVn   | $54120.584 {\pm} 0.005$ | 0.128  | 30297. | C             |
| U Cae                                 | $54121.635 \pm 0.002$   | -0.095 | 47183. | $\mathbf{LS}$ | SS CVn   | $54130.622 \pm 0.005$   | 0.117  | 30318. | С             |
| U Cae                                 | $54126.667 \pm 0.002$   | -0.101 | 47195. | LS            | SS CVn   | $54133.497 {\pm} 0.004$ | 0.121  | 30324. | С             |
| V Cae                                 | $54121.692 \pm 0.004$   | 0.107  | 34687. | LS            | SS CVn   | $54141.668 \pm 0.010$   | 0.157  | 30341. | C             |
| V Cae                                 | $54129.686 \pm 0.002$   | 0.110  | 34701. | LS            | SS CVn   | $54168.474 \pm 0.002$   | 0.166  | 30397. | C             |
| AH Cam                                | $54105.279 {\pm} 0.003$ | -0.412 | 41700. | С             | SS CVn   | $54189.524 {\pm} 0.003$ | 0.161  | 30441. | С             |
| AH Cam                                | $54106.394 {\pm} 0.002$ | -0.403 | 41703. | С             | SS CVn   | $54199.567 {\pm} 0.004$ | 0.155  | 30462. | С             |
| AH Cam                                | $54107.513 {\pm} 0.005$ | -0.390 | 41706. | С             | SS CVn   | $54214.378 {\pm} 0.004$ | 0.132  | 30493. | С             |
| AH Cam                                | $54108.261 {\pm} 0.003$ | -0.380 | 41708. | С             | SS CVn   | $54248.389 {\pm} 0.003$ | 0.168  | 30564. | С             |
| AH Cam                                | $54109.371 {\pm} 0.005$ | -0.376 | 41711. | С             | SS CVn   | $54268.484 \pm 0.004$   | 0.165  | 30606. | С             |
| AH Cam                                | $54111.570 {\pm} 0.002$ | -0.389 | 41717. | С             | UZ CVn   | $54113.553 {\pm} 0.005$ | 0.240  | 39677. | С             |
| $\operatorname{AH}\operatorname{Cam}$ | $54119.321{\pm}0.002$   | -0.382 | 41738. | $\mathbf{C}$  | UZ CVn   | $54120.529 {\pm} 0.002$ | 0.238  | 39687. | С             |
| $\operatorname{AH}\operatorname{Cam}$ | $54134.419 {\pm} 0.002$ | -0.402 | 41779. | $\mathbf{C}$  | UZ CVn   | $54127.511 {\pm} 0.002$ | 0.243  | 39697. | С             |
| TT Cnc                                | $54112.399 {\pm} 0.003$ | 0.097  | 25145. | $\mathbf{C}$  | UZ CVn   | $54129.603 {\pm} 0.005$ | 0.241  | 39700. | С             |
| TT Cnc                                | $54143.380{\pm}0.002$   | 0.088  | 25200. | $\mathbf{C}$  | UZ CVn   | $54148.444 {\pm} 0.005$ | 0.242  | 39727. | С             |
| TT Cnc                                | $54183.396{\pm}0.005$   | 0.099  | 25271. | $\mathbf{C}$  | UZ CVn   | $54155.419 {\pm} 0.002$ | 0.239  | 39737. | $\mathbf{C}$  |
| W CVn                                 | $54121.624{\pm}0.002$   | -0.128 | 59300. | $\mathbf{C}$  | UZ CVn   | $54157.518 {\pm} 0.004$ | 0.245  | 39740. | $\mathbf{C}$  |
| W CVn                                 | $54147.554{\pm}0.005$   | -0.131 | 59347. | $\mathbf{C}$  | UZ CVn   | $54159.611 {\pm} 0.003$ | 0.245  | 39743. | $\mathbf{C}$  |
| W CVn                                 | $54152.526{\pm}0.003$   | -0.125 | 59356. | $\mathbf{C}$  | UZ CVn   | $54229.389 {\pm} 0.004$ | 0.244  | 39843. | С             |
| W CVn                                 | $54157.486 {\pm} 0.004$ | -0.131 | 59365. | С             | AA CMi   | $54108.512 {\pm} 0.002$ | 0.053  | 36807. | С             |
| W CVn                                 | $54162.455 {\pm} 0.004$ | -0.128 | 59374. | $\mathbf{C}$  | AA CMi   | $54113.752 {\pm} 0.002$ | 0.053  | 36818. | LS            |
| W CVn                                 | $54188.387 {\pm} 0.003$ | -0.128 | 59421. | С             | AA CMi   | $54115.657 {\pm} 0.005$ | 0.053  | 36822. | $\mathbf{LS}$ |
| W CVn                                 | $54199.423 {\pm} 0.002$ | -0.128 | 59441. | С             | AA CMi   | $54121.374 {\pm} 0.002$ | 0.054  | 36834. | $\mathbf{C}$  |
| W CVn                                 | $54215.420 {\pm} 0.005$ | -0.132 | 59470. | С             | AA CMi   | $54124.707 \pm 0.003$   | 0.053  | 36841. | LS            |
| W CVn                                 | $54236.389 \pm 0.004$   | -0.129 | 59508. | С             | AA CMi   | $54135.663 \pm 0.002$   | 0.053  | 36864. | $\mathbf{LS}$ |
| WCVn                                  | $54242.456 {\pm} 0.002$ | -0.132 | 59519. | С             | AA CMi   | $54136.616 \pm 0.001$   | 0.054  | 36866. | LS            |
| Z CVn                                 | $54095.686 {\pm} 0.007$ | 0.291  | 23193. | С             | AA CMi   | $54139.473 {\pm} 0.002$ | 0.053  | 36872. | С             |
| Z CVn                                 | $54103.536 {\pm} 0.005$ | 0.295  | 23205. | С             | AA CMi   | $54142.335 \pm 0.005$   | 0.057  | 36878. | С             |
| Z CVn                                 | $54114.648 \pm 0.003$   | 0.292  | 23222. | С             | AA CMi   | $54145.667 \pm 0.001$   | 0.054  | 36885. | LS            |
| Z CVn                                 | $54120.535 \pm 0.004$   | 0.295  | 23231. | C             | AA CMi   | $54149.474 \pm 0.002$   | 0.051  | 36893. | С             |
| Z CVn                                 | $54139.490 \pm 0.003$   | 0.289  | 23260. | С             | AL CMi   | $54109.752 \pm 0.004$   | 0.441  | 31811. | LS            |
| Z CVn                                 | $54143.416 \pm 0.003$   | 0.292  | 23266. | C             | AL CMi   | $54114.706 \pm 0.003$   | 0.440  | 31820. |               |
| Z CVn                                 | $54194.424 \pm 0.005$   | 0.302  | 23344. | C             | AL CMi   | $54124.620 \pm 0.005$   | 0.445  | 31838. |               |
| Z CVn                                 | $54198.338 \pm 0.005$   | 0.293  | 23350. | C             | AL CM1   | $54141.683 \pm 0.002$   | 0.442  | 31869. |               |
| Z CVn                                 | $54211.421 \pm 0.002$   | 0.300  | 23370. | C             | AL CMi   | $54146.639 \pm 0.003$   | 0.444  | 31878. |               |
| RU CVn                                | $54108.705 \pm 0.005$   | 0.004  | 34235. | C             | AL CMi   | $54151.594 \pm 0.001$   | 0.444  | 31887. |               |
| RU CVn                                | $54127.625 \pm 0.002$   | 0.006  | 34268. | C             | RV Cap   | $54275.761 \pm 0.003$   | -0.002 | 45545. |               |
| RU CVn                                | $54135.651 \pm 0.004$   | 0.007  | 34282. | C             | TX Car   | $54125.624 \pm 0.005$   | 0.123  | 49172. | $\mathbf{LS}$ |
| KU CVn                                | $54181.513 \pm 0.002$   | 0.009  | 34362. | C             | TX Car   | $54134.645 \pm 0.002$   | 0.127  | 49187. |               |
| RU CVn                                | $54196.417 \pm 0.002$   | 0.008  | 34388. | C             | TX Car   | $54137.654 \pm 0.002$   | 0.130  | 49192. |               |
| RU CVn                                | $54200.432 \pm 0.004$   | 0.011  | 34395. | C             | TX Car   | $54140.659 \pm 0.002$   | 0.129  | 49197. |               |
| RU CVn                                | $54235.400 \pm 0.002$   | 0.010  | 34456. | C             | TX Car   | $54146.670 \pm 0.003$   | 0.129  | 49207. |               |
| RU CVn                                | $54243.424 \pm 0.002$   | 0.009  | 34470. | C             | TX Car   | $54152.674 \pm 0.002$   | 0.121  | 49217. | LS            |
| RU CVn                                | $54259.473 \pm 0.003$   | 0.007  | 34498. | C             | TX Car   | $54161.694 \pm 0.002$   | 0.124  | 49232. | LS            |
| RZ CVn                                | $54113.613 \pm 0.002$   | -0.168 | 24268. | C             | TX Car   | $54164.704 \pm 0.002$   | 0.129  | 49237. | LS            |
| RZ CVn                                | $54121.557 \pm 0.002$   | -0.168 | 24282. | C             | TX Car   | $54167.707 \pm 0.004$   | 0.126  | 49242. |               |
| RZ CVn                                | $54130.628 \pm 0.003$   | -0.175 | 24298. | C             | TX Car   | $54179.724 \pm 0.002$   | 0.120  | 49262. | $\mathbf{LS}$ |
|                                       |                         |        |        |               |          |                         |        |        |               |

Table 1 (cont.): maxima of RR Lyrae stars

| Variable         | Marinauna                                      | 0 0            | Ē               | Oba      | Variable            | Marinauna                                      | 0 0            | Ē               | Oha     |
|------------------|------------------------------------------------|----------------|-----------------|----------|---------------------|------------------------------------------------|----------------|-----------------|---------|
| variable         |                                                | (daya)         | E               | Obs.     | variable            |                                                | (daya)         | E               | Obs.    |
| TV Can           | E 41 9E 744   0 002                            | (uays)         | 40979           | те       | V671 Can            | $\frac{1110}{54100} \frac{124}{504} + 0.010$   | (uays)         | 45940           | те      |
| TA Car<br>TX Car | $54165.744\pm0.005$<br>54101 752 $\pm0.002$    | 0.129          | 49272.          | LS       | V671 Cen            | $54199.794\pm0.010$<br>54212 818 $\pm0.004$    | -0.017         | 45240.          | LS      |
| TA Car<br>TX Car | $54191.752 \pm 0.002$<br>54106 561 $\pm 0.002$ | 0.120          | 49202.          | LS       | V671 Cen            | $54215.010\pm0.004$<br>54228 625 $\pm0.002$    | 0.002<br>0.072 | 45272.          | LS      |
| TA Car<br>TX Car | $54190.501\pm0.002$<br>54100 566 $\pm0.002$    | 0.120          | 49290.          | LS       | V671 Cen            | $54226.025 \pm 0.005$<br>54225 622 $\pm 0.004$ | -0.072         | 45500.          | LS      |
| TA Car           | $54199.500 \pm 0.002$                          | 0.120          | 49290.<br>40295 | LO       | DV Cet              | $54255.055\pm0.004$                            | -0.007         | 40522.          | LS      |
| TA Car           | $54217.599\pm0.005$                            | 0.124          | 49520.<br>40220 | LS       | III Cet             | $54054.049\pm0.002$<br>$54018.576\pm0.005$     | 0.107          | 24279.<br>91196 | LS      |
| TX Car           | $54220.001\pm0.002$                            | 0.120          | 49330.          | LS       | UU Cet              | $54018.576 \pm 0.005$                          | -0.128         | 21130.<br>01146 | LS      |
| TA Car           | $54225.010\pm0.005$                            | 0.125          | 49333.          | LS       | DU Cel              | $54024.055\pm0.005$<br>54112 620 $\pm 0.004$   | -0.130         | 21140.<br>40075 | LS      |
| TX Car           | $54220.013\pm0.003$                            | 0.121<br>0.127 | 49340.          |          | RI Col              | $54112.030 \pm 0.004$<br>54120.678 ± 0.002     | -0.251         | 49075.          | LS      |
| IA Car           | $54232.031\pm0.003$                            | 0.127          | 49500.          | LS       | RI Col              | $54120.078\pm0.002$                            | -0.252         | 49090.          | LS      |
| EE Car           | $54103.703\pm0.004$                            | 0.009          | 43539.          |          | RI Col              | $54127.055 \pm 0.002$                          | -0.251         | 49103.          |         |
| EE Car           | $54118.035\pm0.003$                            | 0.009          | 43501.          | LS       | RW Col              | $54113.010\pm0.001$                            | 0.054          | 49704.          | LS      |
| EE Car           | $54120.001\pm0.002$                            | -0.001         | 43504.          | LS       | RW Col              | $54131.023\pm0.002$                            | 0.007          | 49738.          | LS      |
| EE Car           | $54126.774\pm0.004$                            | 0.004          | 43573.          | LS       | RW Col              | $54137.028 \pm 0.003$                          | 0.251          | 49749.          | LS      |
| EE Car           | $54128.811\pm0.005$                            | 0.004          | 43570.          | LS       | RA Col              | $54108.805 \pm 0.004$                          | 0.105          | 42083.          | LS      |
| EE Car           | $54135.001\pm0.005$                            | 0.007          | 43580.          | LS       | RY Col              | $54109.727 \pm 0.004$                          | -0.143         | 41347.          | LS      |
| EE Car           | $54139.073\pm0.002$                            | 0.007          | 43592.          | LS       | RY Col              | $54110.090 \pm 0.010$                          | -0.137         | 41349.          | LS      |
| EE Car           | $54160.715\pm0.002$                            | 0.009          | 43023.          | LS       | RY COL              | $54121.090 \pm 0.002$                          | -0.145         | 41372.          | цэ<br>С |
| EE Car           | $54162.751\pm0.002$                            | 0.009          | 43020.          |          | S Com               | $54105.050 \pm 0.002$                          | -0.096         | 22931.          | C       |
| EE Car           | $54164.786\pm0.007$                            | 0.008          | 43629.          |          | S Com               | $54118.562 \pm 0.003$                          | -0.095         | 22953.          | C       |
| EE Car           | $54166.822 \pm 0.005$                          | 0.008          | 43032.          |          | S Com               | $54131.409 \pm 0.005$                          | -0.093         | 22975.          | C       |
| EE Car           | $54108.857 \pm 0.002$                          | 0.007          | 43035.          | LS       | S Com               | $54141.437 \pm 0.004$                          | -0.097         | 22992.          | C       |
| EE Car           | $54192.015\pm0.005$                            | 0.010          | 43070.          | LS       | S Com               | $54145.541 \pm 0.003$                          | -0.100         | 22999.          | C       |
| EE Car           | $54207.542 \pm 0.006$                          | 0.006          | 43692.          |          | S Com               | $54148.479 \pm 0.005$                          | -0.094         | 23004.          | C       |
| EE Car           | $54209.586 \pm 0.005$                          | 0.014          | 43695.          |          | S Com               | $54168.420 \pm 0.002$                          | -0.098         | 23038.          | C       |
| IU Car           | $54110.650\pm0.010$                            | 0.244          | 16842.          |          | S Com               | $54209.480 \pm 0.002$                          | -0.099         | 23108.          | C       |
| IU Car           | $54121.708 \pm 0.002$                          | 0.245          | 10857.          |          | ST Com              | $54128.572 \pm 0.005$                          | -0.029         | 18206.          | C       |
| IU Car           | $54124.652\pm0.002$                            | 0.241          | 10801.          |          | ST Com              | $54134.508 \pm 0.005$                          | -0.022         | 18210.          | C       |
| IU Car           | $54132.766 \pm 0.004$                          | 0.246          | 16872.          |          | ST Com              | $54155.529 \pm 0.004$                          | -0.024         | 18251.          | C       |
| IU Car           | $54152.007 \pm 0.001$                          | 0.244          | 16007           |          | ST Com              | $54206.434 \pm 0.002$                          | -0.028         | 18330.          | C<br>C  |
| IU Car           | $54158.500 \pm 0.002$                          | 0.240          | 16907.          |          | ST Com              | $54212.425 \pm 0.002$                          | -0.026         | 18340.          | C       |
| IU Car           | $54103.728\pm0.003$                            | 0.248          | 10914.          | LS       | SICom               | $54230.393 \pm 0.005$                          | -0.020         | 103/0.          | C       |
| IU Car           | $54100.074\pm0.005$<br>54170.574±0.001         | 0.245          | 10918.          | LS       | SI Com              | $54230.381 \pm 0.004$                          | -0.027         | 18380.          |         |
| IU Car           | $54172.574\pm0.001$                            | 0.240          | 16064           | LS       | WW CrA              | $54217.627 \pm 0.002$<br>54221.806 ± 0.002     | -0.039         | 40980.          | LS      |
| IU Car<br>DI Can | $54200.580\pm0.005$                            | 0.240          | 10904.<br>20495 | LS       | WW CrA              | $54251.600 \pm 0.002$<br>$54272.664 \pm 0.005$ | -0.047         | 41011.          | LS      |
| DI Cen           | $54105.620\pm0.005$                            | 0.039          | 30420.<br>20400 | LS       | WW OrA              | $54272.004\pm0.005$<br>54227 707 $\pm 0.008$   | -0.031         | 41004.          | LS      |
| DI Cell          | $54130.863\pm0.002$                            | 0.020          | 30490.<br>20500 | те       | V415 CIA            | $54237.797 \pm 0.008$                          | 0.044          | 21013.          | LO      |
| BI Cen           | $54141.808\pm0.004$<br>54161.815 $\pm0.002$    | 0.020<br>0.027 | 30509.<br>20552 | цо<br>те | TV C <sub>2</sub> P | $54255.740\pm0.002$<br>54156 625±0.005         | 0.192          | 09101.<br>29559 | Lo<br>C |
| BI Cen           | $54101.815\pm0.002$<br>$54162.627\pm0.001$     | 0.027          | 20222.<br>20557 | цо<br>те | TV CrB              | $54150.025\pm0.005$<br>54150 546 $\pm0.002$    | 0.030          | 90557<br>90557  | C       |
| BI Cen           | $54103.027 \pm 0.001$<br>54168 610 $\pm 0.002$ | 0.020          | 20557.          | цо<br>те | TV CrB              | $54159.540 \pm 0.003$<br>54162 621 $\pm 0.002$ | 0.028          | 20007.<br>20564 | C       |
| BI Cen           | $54108.019\pm0.002$<br>$54172.608\pm0.002$     | 0.033          | 28570           | цо<br>те | TV CrB              | $54103.031\pm0.003$<br>54221 440 $\pm0.002$    | 0.020          | 26660           | C       |
| BI Cen           | $54173.008 \pm 0.002$<br>$54178.503 \pm 0.002$ | 0.037          | 38500           | LO<br>IS | TV CrB              | $54231.449\pm0.002$<br>54248 408±0.004         | 0.023          | 38700           | C       |
| BI Cen           | $54178.595 \pm 0.002$<br>$54188.567 \pm 0.005$ | 0.037          | 38619           |          | W Crt               | $54248.408 \pm 0.004$<br>$54125.759 \pm 0.005$ |                | 35148           |         |
| BI Cen           | $54103.507 \pm 0.003$<br>$54103.548 \pm 0.002$ | 0.041          | 38623           |          | W Crt               | $54125.759\pm0.005$<br>$54130.700\pm0.002$     | -0.019         | 35140.          |         |
| BI Cen           | $54195.548\pm0.002$<br>$54216.643\pm0.002$     | 0.037          | 38674           |          | W Crt               | $54130.700\pm0.002$<br>$54132.761\pm0.002$     | -0.022         | 35165           |         |
| BI Cen           | $54210.043\pm0.002$<br>$54217.553\pm0.002$     | 0.020          | 38676           |          | W Crt               | $54132.701\pm0.002$<br>$54144.700\pm0.002$     | -0.021         | 35103.          | IS      |
| BI Cen           | $54217.555\pm0.002$<br>54280 560 $\pm0.003$    | 0.023          | 38815           | LO<br>IS | W Crt               | $54144.709\pm0.002$<br>$54153.773\pm0.002$     | -0.021         | 35194.<br>35916 | LS      |
| V400 Cen         | $54280.500\pm0.003$<br>$54149.747\pm0.004$     | 0.038          | 24087           |          | W Crt               | $54155.775\pm0.002$<br>54156.658 $\pm0.002$    | -0.022         | 35210.          |         |
| V499 Cen         | $54143.747\pm0.004$<br>$54161.737\pm0.002$     | 0.025<br>0.027 | 24307.          |          | W Crt               | $54190.000 \pm 0.002$<br>$54181.789 \pm 0.003$ | -0.021         | 35284           |         |
| V499 Cen         | $54163.822\pm0.002$                            | 0.021          | 25010.          |          | W Crt               | $54101.705\pm0.005$<br>$54106.624\pm0.002$     | -0.020         | 353204.         |         |
| V499 Cen         | $54172 684 \pm 0.002$                          | 0.027          | 25014.          | LS       | X Crt               | $54132725\pm0.002$                             | 0.020          | 16831           | LS      |
| V499 Cen         | $54184671\pm0.002$                             | 0.028          | 25051.          | LS       | X Crt               | $54143713\pm0.003$                             | 0.065          | 16846           | LS      |
| V499 Cen         | $54207 \ 604\pm0 \ 005$                        | 0.020<br>0.027 | 25004.          | LS       | X Crt               | $54151 778 \pm 0.004$                          | 0.000          | 16857           | LS      |
| V400 Cen         | 54218 550±0.000                                | 0.021          | 25030.<br>25110 | LS       | X Crt               | $54173747 \pm 0.002$                           | 0.009          | 16887           | LS      |
| V499 Cen         | $54268585\pm0.002$                             | 0.020<br>0.027 | 25115.          | LS       | X Crt               | $54198676\pm0.004$                             | 0.000          | 16021           | LS      |
| V671 Cen         | $54174\ 867\pm0.003$                           | 0.021          | 45183           | LS       | X Crt               | $54209672 \pm 0.005$                           | 0.000          | 16026           | LS      |
| V671 Cen         | $54178750\pm0.002$                             | -0.044         | 45109           | LS       | SW Cru              | $54107 815 \pm 0.003$                          | 0.003          | 85659           | LS      |
| V671 Cen         | $54189672\pm0.002$                             | -0.079         | 45217           | LS       | SW Cru              | $54135670\pm0.003$                             | 0.054          | 85744           |         |
|                  | 311001012101000                                | 0.012          | 105111          | 10       | 5.1. Jiu            | 5 1155101 0 ± 01000                            | 0.001          | 00,11,          | 10      |
|                  |                                                |                |                 |          |                     |                                                |                |                 |         |

| Variable               | Maximum<br>HID 24                           | O - C  | Е               | Obs.          | Variable | Maximum<br>HJD 24                           | O - C          | Е               | Obs.         |
|------------------------|---------------------------------------------|--------|-----------------|---------------|----------|---------------------------------------------|----------------|-----------------|--------------|
| SW Cru                 | $54181570\pm0.010$                          | 0.068  | 85884           | LS            | BC Dra   | $54215571\pm0.010$                          | 0.082          | 16589           | С            |
| SW Cru                 | $54183.860\pm0.005$                         | 0.000  | 85891           | LS            | BC Dra   | $54218.011\pm0.010$<br>$54218.444\pm0.005$  | 0.002<br>0.076 | 16593           | C            |
| SW Cru                 | $54196.649\pm0.010$                         | 0.069  | 85930           | LS            | BC Dra   | $54236439\pm0.010$                          | 0.010          | 16618           | č            |
| SW Cru                 | $54219589\pm0.004$                          | 0.005  | 86000           | LS            | BC Dra   | $54272 423 \pm 0.010$                       | 0.002          | 16668           | č            |
| SW Cru                 | $54220.570\pm0.004$                         | 0.000  | 86003           |               | BC Dra   | $54277.459\pm0.004$                         | 0.001          | 16675           | c            |
| SW Cru                 | $54220.570\pm0.010$<br>54221 552 $\pm0.005$ | 0.002  | 86005.<br>86006 | LS            | BD Dra   | $54277.459\pm0.004$<br>54107 560 $\pm0.005$ | 0.030<br>0.735 | 20026           | C            |
| SW Cru                 | $54221.552\pm0.005$<br>54222 525 $\pm0.010$ | 0.001  | 86019<br>86019  | цо<br>те      | BD Dra   | $54107.509\pm0.005$<br>54114.655±0.002      | 0.755          | 20930.          | C            |
| SW Cru                 | $54225.525\pm0.010$                         | 0.007  | 00012.<br>86015 | LS            | DD Dra   | $54114.055\pm0.005$                         | 0.705          | 20940.          | C            |
| SW Cru                 | $54224.500\pm0.005$                         | 0.005  | 00010.<br>06010 | LO            | DD Dia   | $54120.555\pm0.005$<br>$54127570\pm0.005$   | 0.742          | 20958.          | C            |
| SW Cru                 | $54225.469\pm0.005$                         | 0.005  | 00010.          | LS            | DD Dra   | $54127.570\pm0.002$                         | 0.709          | 20970.          | C            |
| SW Cru                 | $54227.780\pm0.004$                         | 0.061  | 86025.          |               | BD Dra   | $54133.494 \pm 0.002$                       | 0.742          | 20980.          | C            |
| SW Cru                 | $54278.589 \pm 0.005$                       | 0.064  | 80180.          |               | BD Dra   | $54189.449 \pm 0.004$                       | 0.737          | 21075.          | C            |
| SW Cru                 | $54281.537 \pm 0.004$                       | 0.062  | 80189.          |               | BD Dra   | $54192.393 \pm 0.005$                       | 0.736          | 21080.          | C            |
| SW Cru                 | $54282.524 \pm 0.005$                       | 0.066  | 86192.          |               | BD Dra   | $54193.555 \pm 0.003$                       | 0.720          | 21082.          | C            |
| UY Cyg                 | $54269.475 \pm 0.003$                       | 0.052  | 56778.          | C             | BD Dra   | $54219.474 \pm 0.005$                       | 0.720          | 21126.          | C            |
| UY Cyg                 | $54274.523 \pm 0.003$                       | 0.054  | 56787.          | C             | BK Dra   | $54273.444 \pm 0.002$                       | -0.154         | 48558.          | C            |
| UY Cyg                 | $54278.445 \pm 0.005$                       | 0.051  | 56794.          | С             | BT Dra   | $54148.547 \pm 0.005$                       | -0.008         | 39774.          | C            |
| V939 Cyg <sup>-1</sup> | $54235.542 \pm 0.002$                       | 0.024  | 11475.          | С             | BT Dra   | $54164.440 \pm 0.002$                       | -0.009         | 39801.          | С            |
| RT Dor                 | $54103.707 {\pm} 0.002$                     | -0.043 | 48332.          | $\mathbf{LS}$ | BT Dra   | $54207.409 \pm 0.003$                       | -0.013         | 39874.          | С            |
| RT Dor                 | $54114.813 {\pm} 0.005$                     | -0.042 | 48355.          | $_{\rm LS}$   | BT Dra   | $54217.415 {\pm} 0.002$                     | -0.015         | 39891.          | $\mathbf{C}$ |
| VW Dor                 | $54103.671 {\pm} 0.002$                     | -0.082 | 27557.          | $_{ m LS}$    | BT Dra   | $54230.370{\pm}0.002$                       | -0.010         | 39913.          | $\mathbf{C}$ |
| VW Dor                 | $54111.663{\pm}0.002$                       | -0.078 | 27571.          | $\mathbf{LS}$ | BT Dra   | $54237.442{\pm}0.005$                       | -0.002         | 39925.          | $\mathbf{C}$ |
| VW Dor                 | $54115.656{\pm}0.002$                       | -0.080 | 27578.          | $\mathbf{LS}$ | BT Dra   | $54240.379{\pm}0.005$                       | -0.009         | 39930.          | $\mathbf{C}$ |
| VW Dor                 | $54127.640{\pm}0.002$                       | -0.078 | 27599.          | $_{\rm LS}$   | BT Dra   | $54267.455{\pm}0.002$                       | -0.012         | 39976.          | $\mathbf{C}$ |
| VW Dor                 | $54132.774{\pm}0.002$                       | -0.080 | 27608.          | $_{\rm LS}$   | RR Gem   | $54108.526{\pm}0.002$                       | -0.363         | 32095.          | $\mathbf{C}$ |
| VW Dor                 | $54139.622{\pm}0.004$                       | -0.079 | 27620.          | $\mathbf{LS}$ | RR Gem   | $54113.297{\pm}0.003$                       | -0.359         | 32107.          | $\mathbf{C}$ |
| VW Dor                 | $54159.590{\pm}0.002$                       | -0.083 | 27655.          | LS            | RR Gem   | $54136.338{\pm}0.002$                       | -0.362         | 32165.          | $\mathbf{C}$ |
| VW Dor                 | $54163.586{\pm}0.001$                       | -0.081 | 27662.          | $_{\rm LS}$   | SZ Gem   | $54109.514{\pm}0.002$                       | -0.053         | 53709.          | $\mathbf{C}$ |
| VW Dor                 | $54167.583{\pm}0.002$                       | -0.078 | 27669.          | $\mathbf{LS}$ | GI Gem   | $54136.440{\pm}0.002$                       | 0.071          | 54908.          | $\mathbf{C}$ |
| VW Dor                 | $54183.556{\pm}0.002$                       | -0.082 | 27697.          | $_{\rm LS}$   | GI Gem   | $54149.437{\pm}0.004$                       | 0.070          | 54938.          | $\mathbf{C}$ |
| VW Dor                 | $54191.546{\pm}0.001$                       | -0.081 | 27711.          | $\mathbf{LS}$ | RW Gru   | $54275.826{\pm}0.002$                       | -0.136         | 36190.          | LS           |
| VW Dor                 | $54199.542{\pm}0.003$                       | -0.073 | 27725.          | $\mathbf{LS}$ | TW Her   | $54194.550{\pm}0.002$                       | -0.010         | 81705.          | $\mathbf{C}$ |
| RW Dra                 | $54193.606{\pm}0.003$                       | 0.198  | 33451.          | С             | TW Her   | $54218.526{\pm}0.002$                       | -0.011         | 81765.          | $\mathbf{C}$ |
| RW Dra                 | $54209.509{\pm}0.004$                       | 0.156  | 33487.          | С             | TW Her   | $54266.477{\pm}0.003$                       | -0.012         | 81885.          | $\mathbf{C}$ |
| RW Dra                 | $54217.486{\pm}0.002$                       | 0.161  | 33505.          | С             | TW Her   | $54268.474{\pm}0.005$                       | -0.013         | 81890.          | С            |
| RW Dra                 | $54268.449{\pm}0.005$                       | 0.188  | 33620.          | С             | TW Her   | $54274.469{\pm}0.002$                       | -0.012         | 81905.          | С            |
| SU Dra                 | $54109.545 \pm 0.002$                       | 0.047  | 15456.          | $\mathbf{C}$  | TW Her   | $54276.466 {\pm} 0.002$                     | -0.013         | 81910.          | С            |
| SU Dra                 | $54111524 \pm 0.005$                        | 0.044  | 15459           | Ċ             | VX Her   | $54172621\pm0002$                           | -0.406         | 71200           | Ċ            |
| SU Dra                 | 54131343+0002                               | 0.051  | 15489           | č             | VX Her   | $54188561\pm0.002$                          | -0.405         | 71235           | Č            |
| SU Dra                 | $54135 304\pm0.003$                         | 0.049  | 15495           | Č             | VX Her   | $54219524\pm0.005$                          | -0.407         | 71303           | č            |
| SU Dra                 | $54164 \ 362\pm0.002$                       | 0.049  | 15539           | Č             | VX Her   | $54261 415\pm0.004$                         | -0.410         | 71395           | č            |
| SU Dra                 | $54168 325\pm0.003$                         | 0.049  | 15545           | Č             | VX Her   | $54271432\pm0.002$                          | -0.411         | 71/17           | č            |
| SU Dra                 | $54228 423 \pm 0.003$                       | 0.049  | 15636           | c             | VX Her   | $54276.444\pm0.004$                         | -0.408         | 71498           | c            |
| SW Dra                 | $54129.358\pm0.002$                         | 0.049  | 18080.          | c             | VZ Her   | $54210.531\pm0.002$                         | 0.400          | 39565           | c            |
| SW Dra                 | $54129.398\pm0.002$<br>$54134.488\pm0.006$  | 0.055  | 40304.          | C             | VZ Her   | $54240.476\pm0.002$                         | 0.000          | 30633           | C            |
| SW Dra                 | $54134.488\pm0.000$<br>$54137.330\pm0.002$  | 0.002  | 40995.          | C             | VZ Her   | $54240.470\pm0.003$<br>54266 455 $\pm0.002$ | 0.005          | 30603           | C            |
| SW Dia                 | $54137.330\pm0.002$                         | 0.000  | 40990.          | C             |          | $54200.455\pm0.002$                         | 0.002          | 20717           | C            |
| SW Dra                 | $54141.525\pm0.005$                         | 0.000  | 49005.          | C             |          | $54277.405\pm0.005$                         | 0.004          | 39717.<br>20796 | C            |
| SW Dra                 | $54102.399 \pm 0.005$                       | 0.059  | 49042.          | C             | VZ Her   | $54281.428\pm0.003$                         | 0.004          | 39720.          | C            |
| SW Dra                 | $54187.401 \pm 0.003$                       | 0.055  | 49080.          | C             | AG Her   | $54219.302 \pm 0.010$                       | -0.013         | 40892.          | C            |
| SW Dra                 | $54207.401 \pm 0.004$                       | 0.057  | 49121.          | C             | AR Her   | $54164.577 \pm 0.002$                       | 0.203          | 27041.          | C            |
| SW Dra                 | $54211.389 \pm 0.002$                       | 0.057  | 49128.          | C             | AR Her   | $54188.549 \pm 0.003$                       | 0.203          | 27092.          | C            |
| SW Dra                 | $54215.382 \pm 0.003$                       | 0.062  | 49135.          | C             | AR Her   | $54196.546 \pm 0.003$                       | 0.210          | 27109.          | C            |
| XZ Dra                 | $54219.500 \pm 0.005$                       | -0.114 | 25795.          | C             | DL Her   | $54218.494 \pm 0.005$                       | 0.024          | 27061.          | C            |
| XZ Dra                 | $54221.407 \pm 0.004$                       | -0.113 | 25799.          | C             | DL Her   | $54241.587 {\pm} 0.005$                     | 0.044          | 27100.          | С            |
| BC Dra                 | $54102.601{\pm}0.006$                       | 0.085  | 16432.          | $\mathbf{C}$  | SV Hya   | $54151.859{\pm}0.003$                       | 0.113          | 30997.          | LS           |
| BC Dra                 | $54112.675 {\pm} 0.010$                     | 0.085  | 16446.          | $\mathbf{C}$  | SV Hya   | $54174.593{\pm}0.001$                       | -0.123         | 31045.          | LS           |
| BC Dra                 | $54133.535{\pm}0.006$                       | 0.077  | 16475.          | $\mathbf{C}$  | SV Hya   | $54213.591{\pm}0.004$                       | 0.113          | 31126.          | LS           |
| BC Dra                 | $54164.482{\pm}0.005$                       | 0.083  | 16518.          | $\mathbf{C}$  | SV Hya   | $54234.637{\pm}0.003$                       | 0.103          | 31170.          | LS           |
| BC Dra                 | $54213.408{\pm}0.005$                       | 0.077  | 16586.          | $\mathbf{C}$  | SZ Hya   | $54103.807{\pm}0.002$                       | -0.164         | 24988.          | LS           |
|                        |                                             |        |                 |               |          |                                             |                |                 |              |

Table 1 (cont.): maxima of RR Lyrae stars

| Variable       | Maximum                                        | 0 C             | F      | Obs           | Variable       | Movimum                                    | 0 C    | F               | Obs           |
|----------------|------------------------------------------------|-----------------|--------|---------------|----------------|--------------------------------------------|--------|-----------------|---------------|
| vallable       | HID 94                                         | (dave)          | Ľ      | Obs.          | variable       | H ID $24$                                  | (dave) | Ľ               | Obs.          |
| \$7 Um         | $54114408\pm0.005$                             | (uays)<br>0.917 | 25008  | C             | EV Um          | 54226 572±0 002                            | 0.024  | 17009           | TC            |
| SZ Hya<br>SZ H | $54114.496 \pm 0.005$<br>54191 526 $\pm 0.003$ | -0.217          | 25008. | C             | гл пуа<br>БУ Ц | $54220.575\pm0.002$<br>54241 500 ± 0.002   | 0.024  | 47000.          | LS            |
| SZ Hya<br>SZ H | $54121.550\pm0.002$                            | -0.104          | 25021. | U<br>TC       | гл пуа<br>БУ Ц | $54241.599 \pm 0.005$<br>54152 760 ± 0.002 | 0.025  | 47919.<br>20510 | LS            |
| SZ Hya<br>SZ H | $54125.065\pm0.002$                            | -0.104          | 25025. | LS            | гі пуа<br>БУ П | $54152.700\pm0.002$<br>54172 772 + 0.004   | 0.007  | 20019.          | LS            |
| SZ Hya         | $54128.519 \pm 0.002$                          | -0.105          | 25034. |               | F i Нуа        | $54173.772\pm0.004$                        | 0.010  | 20552.          | L2            |
| SZ Hya         | $54130.008 \pm 0.002$                          | -0.105          | 25038. |               | FY Hya         | $54215.787 \pm 0.002$                      | 0.006  | 20618.          |               |
| SZ Hya         | $54138.699 \pm 0.005$                          | -0.192          | 25053. |               | FY Hya         | $54226.614 \pm 0.005$                      | 0.010  | 20635.          |               |
| SZ Hya         | $54142.434 \pm 0.005$                          | -0.218          | 25060. | C             | GO Hya         | $54102.622 \pm 0.008$                      | -0.074 | 44707.          | C             |
| SZ Hya         | $54149.472 \pm 0.003$                          | -0.104          | 25073. |               | GO Hya         | $54111.525 \pm 0.007$                      | -0.081 | 44721.          | U             |
| SZ Hya         | $54151.619\pm0.001$                            | -0.166          | 25077. |               | GO Hya         | $54114.718 \pm 0.005$                      | -0.070 | 44726.          |               |
| SZ Hya         | $54166.617 \pm 0.004$                          | -0.211          | 25105. |               | GO Hya         | $54121.707 \pm 0.004$                      | -0.082 | 44737.          |               |
| SZ Hya         | $54180.625 \pm 0.002$                          | -0.171          | 25131. |               | GO Hya         | $54142.717 \pm 0.004$                      | -0.074 | 44770.          |               |
| SZ Hya         | $54194.557 \pm 0.006$                          | -0.207          | 25157. |               | GO Hya         | $54155.441 \pm 0.002$                      | -0.079 | 44790.          | C             |
| UU Hya         | $54113.749 \pm 0.002$                          | 0.027           | 27936. | $\mathbf{LS}$ | GO Hya         | $54165.629 \pm 0.005$                      | -0.074 | 44806.          | $\mathbf{LS}$ |
| UU Hya         | $54123.713 \pm 0.002$                          | 0.038           | 27955. | LS            | GO Hya         | $54172.628 \pm 0.003$                      | -0.076 | 44817.          | $\mathbf{LS}$ |
| UU Hya         | $54144.651 \pm 0.002$                          | 0.021           | 27995. | LS            | GO Hya         | $54179.635 \pm 0.005$                      | -0.070 | 44828.          | LS            |
| UU Hya         | $54166.671 \pm 0.004$                          | 0.039           | 28037. | $\mathbf{LS}$ | GS Hya         | $54161.682 \pm 0.002$                      | -0.085 | 23663.          | $\mathbf{LS}$ |
| UU Hya         | $54176.604 \pm 0.002$                          | 0.018           | 28056. | LS            | GS Hya         | $54172.649 \pm 0.004$                      | -0.104 | 23684.          | LS            |
| UU Hya         | $54197.578 {\pm} 0.003$                        | 0.037           | 28096. | LS            | GS Hya         | $54228.605 \pm 0.003$                      | -0.125 | 23791.          | $_{ m LS}$    |
| WZ Hya         | $54118.771 {\pm} 0.004$                        | -0.011          | 26950. | LS            | GS Hya         | $54272.530 {\pm} 0.005$                    | -0.144 | 23875.          | $_{\rm LS}$   |
| WZ Hya         | $54125.771{\pm}0.005$                          | -0.002          | 26963. | LS            | TW Hyi         | $54103.701 {\pm} 0.002$                    | 0.009  | 21674.          | $_{\rm LS}$   |
| WZ Hya         | $54131.689{\pm}0.003$                          | 0.002           | 26974. | $\mathbf{LS}$ | TW Hyi         | $54120.585 {\pm} 0.002$                    | 0.008  | 21699.          | LS            |
| WZ Hya         | $54140.828 {\pm} 0.004$                        | -0.001          | 26991. | LS            | TW Hyi         | $54126.659 {\pm} 0.002$                    | 0.004  | 21708.          | $_{\rm LS}$   |
| WZ Hya         | $54145.662 {\pm} 0.001$                        | -0.006          | 27000. | LS            | TW Hyi         | $54143.548{\pm}0.004$                      | 0.008  | 21733.          | LS            |
| WZ Hya         | $54152.649{\pm}0.002$                          | -0.009          | 27013. | LS            | V Ind          | $54275.782 {\pm} 0.005$                    | -0.137 | 29520.          | $_{\rm LS}$   |
| WZ Hya         | $54159.639{\pm}0.004$                          | -0.010          | 27026. | LS            | RR Leo         | $54103.608 {\pm} 0.002$                    | 0.078  | 23891.          | $\mathbf{C}$  |
| WZ Hya         | $54167.708{\pm}0.005$                          | -0.006          | 27041. | LS            | RR Leo         | $54119.445 \!\pm\! 0.005$                  | 0.081  | 23926.          | $\mathbf{C}$  |
| WZ Hya         | $54180.617 {\pm} 0.002$                        | -0.002          | 27065. | LS            | RR Leo         | $54124.419 {\pm} 0.002$                    | 0.079  | 23937.          | $\mathbf{C}$  |
| WZ Hya         | $54194.598{\pm}0.002$                          | -0.002          | 27091. | LS            | RR Leo         | $54129.395 \!\pm\! 0.002$                  | 0.078  | 23948.          | $\mathbf{C}$  |
| WZ Hya         | $54208.577 {\pm} 0.002$                        | -0.004          | 27117. | LS            | RR Leo         | $54175.541{\pm}0.002$                      | 0.080  | 24050.          | $\mathbf{C}$  |
| WZ Hya         | $54209.652 {\pm} 0.005$                        | -0.004          | 27119. | LS            | RR Leo         | $54209.471 {\pm} 0.003$                    | 0.081  | 24125.          | $\mathbf{C}$  |
| WZ Hya         | $54222.562{\pm}0.005$                          | 0.001           | 27143. | LS            | RX Leo         | $54112.607 {\pm} 0.005$                    | 0.088  | 27251.          | $\mathbf{C}$  |
| XX Hya         | $54123.716{\pm}0.002$                          | 0.090           | 28146. | LS            | RX Leo         | $54120.453{\pm}0.005$                      | 0.093  | 27263.          | $\mathbf{C}$  |
| XX Hya         | $54179.565 {\pm} 0.001$                        | 0.085           | 28256. | LS            | RX Leo         | $54205.388{\pm}0.004$                      | 0.085  | 27393.          | $\mathbf{C}$  |
| BI Hya         | $54144.656 {\pm} 0.002$                        | 0.219           | 49848. | LS            | SS Leo         | $54141.636 {\pm} 0.003$                    | -0.047 | 19734.          | $\mathbf{C}$  |
| BI Hya         | $54173.612 {\pm} 0.002$                        | 0.219           | 49903. | LS            | SS Leo         | $54198.626 {\pm} 0.002$                    | -0.055 | 19825.          | $_{\rm LS}$   |
| BI Hya         | $54183.615 \!\pm\! 0.002$                      | 0.219           | 49922. | LS            | SS Leo         | $54200.503 {\pm} 0.005$                    | -0.057 | 19828.          | $\mathbf{C}$  |
| BI Hya         | $54223.625 \!\pm\! 0.002$                      | 0.218           | 49998. | LS            | SS Leo         | $54208.655 {\pm} 0.002$                    | -0.047 | 19841.          | $_{\rm LS}$   |
| DD Hya         | $54127.364 {\pm} 0.005$                        | -0.142          | 24776. | С             | SS Leo         | $54212.412 {\pm} 0.003$                    | -0.048 | 19847.          | $\mathbf{C}$  |
| DD Hya         | $54128.362 \!\pm\! 0.003$                      | -0.148          | 24778. | С             | SS Leo         | $54213.660 {\pm} 0.002$                    | -0.053 | 19849.          | LS            |
| DG Hya         | $54113.849 {\pm} 0.002$                        | 0.075           | 39764. | LS            | ST Leo         | $54141.493{\pm}0.002$                      | -0.020 | 54852.          | $\mathbf{C}$  |
| DG Hya         | $54126.674 {\pm} 0.002$                        | 0.000           | 39794. | LS            | ST Leo         | $54159.656 {\pm} 0.003$                    | -0.020 | 54890.          | $\mathbf{C}$  |
| DG Hya         | $54138.735 \!\pm\! 0.002$                      | 0.022           | 39822. | LS            | SW Leo         | $54130.743{\pm}0.002$                      | -0.055 | 48688.          | LS            |
| DG Hya         | $54141.754 {\pm} 0.002$                        | 0.031           | 39829. | LS            | SW Leo         | $54145.702 {\pm} 0.002$                    | -0.058 | 48715.          | $_{\rm LS}$   |
| $\rm DH~Hya$   | $54111.789 {\pm} 0.002$                        | 0.062           | 46903. | LS            | SW Leo         | $54150.690 {\pm} 0.002$                    | -0.057 | 48724.          | $_{\rm LS}$   |
| $\rm DH~Hya$   | $54115.696 {\pm} 0.002$                        | 0.057           | 46911. | LS            | SW Leo         | $54155.674{\pm}0.002$                      | -0.060 | 48733.          | LS            |
| DH Hya         | $54138.681 {\pm} 0.002$                        | 0.060           | 46958. | LS            | SW Leo         | $54200.561 {\pm} 0.002$                    | -0.060 | 48814.          | LS            |
| DH Hya         | $54157.754{\pm}0.005$                          | 0.062           | 46997. | LS            | SW Leo         | $54205.550{\pm}0.003$                      | -0.058 | 48823.          | LS            |
| $\rm DH~Hya$   | $54183.671{\pm}0.003$                          | 0.062           | 47050. | LS            | SZ Leo         | $54140.868 {\pm} 0.004$                    | -0.112 | 16241.          | $\mathbf{LS}$ |
| IK Hya         | $54188.759{\pm}0.010$                          | -0.151          | 24196. | LS            | SZ Leo         | $54147.813 {\pm} 0.005$                    | -0.110 | 16254.          | $\mathbf{LS}$ |
| IK Hya         | $54235.549{\pm}0.005$                          | -0.161          | 24268. | $\mathbf{LS}$ | SZ Leo         | $54148.874{\pm}0.005$                      | -0.117 | 16256.          | $\mathbf{LS}$ |
| IV Hya         | $54123.732 {\pm} 0.002$                        | 0.124           | 20809. | $\mathbf{LS}$ | SZ Leo         | $54168.636 {\pm} 0.005$                    | -0.115 | 16293.          | $\mathbf{LS}$ |
| IV Hya         | $54129.585 {\pm} 0.005$                        | 0.029           | 20820. | $\mathbf{LS}$ | SZ Leo         | $54176.627 {\pm} 0.004$                    | -0.135 | 16308.          | $\mathbf{LS}$ |
| IV Hya         | $54156.727 {\pm} 0.007$                        | 0.134           | 20870. | $\mathbf{LS}$ | SZ Leo         | $54183.580{\pm}0.003$                      | -0.125 | 16321.          | $\mathbf{LS}$ |
| FX Hya         | $54144.774{\pm}0.002$                          | 0.026           | 47687. | $\mathbf{LS}$ | SZ Leo         | $54199.595 {\pm} 0.002$                    | -0.131 | 16351.          | $\mathbf{LS}$ |
| FX Hya         | $54149.782 {\pm} 0.002$                        | 0.026           | 47699. | $\mathbf{LS}$ | SZ Leo         | $54222.529{\pm}0.005$                      | -0.162 | 16394.          | $\mathbf{LS}$ |
| FX Hya         | $54162.723{\pm}0.004$                          | 0.029           | 47730. | $\mathbf{LS}$ | TV Leo         | $54142.718 {\pm} 0.002$                    | 0.106  | 25416.          | $\mathbf{LS}$ |
| FX Hya         | $54190.682 {\pm} 0.005$                        | 0.025           | 47797. | $\mathbf{LS}$ | TV Leo         | $54148.775 {\pm} 0.002$                    | 0.108  | 25425.          | $\mathbf{LS}$ |
| FX Hya         | $54200.698 {\pm} 0.002$                        | 0.025           | 47821. | $\mathbf{LS}$ | TV Leo         | $54183.764{\pm}0.002$                      | 0.108  | 25477.          | $\mathbf{LS}$ |
| v              |                                                |                 |        |               |                |                                            |        |                 |               |

| Variable            | Maximum<br>H.ID 24                             | O - C<br>(days)  | Е               | Obs.                 | Variable         | Maximum<br>HJD 24                              | O - C<br>(days)  | Е               | Obs.            |
|---------------------|------------------------------------------------|------------------|-----------------|----------------------|------------------|------------------------------------------------|------------------|-----------------|-----------------|
| TV Leo              | $54198.566 \pm 0.003$                          | 0.108            | 25499.          | LS                   | TW Lyn           | $54201.465 \pm 0.005$                          | 0.056            | 19049.          | С               |
| WW Leo              | $54113.796 {\pm} 0.004$                        | 0.035            | 31901.          | LS                   | RZ Lyr           | $54214.470 {\pm} 0.005$                        | -0.011           | 25489.          | Ċ               |
| WW Leo              | $54130.675 {\pm} 0.004$                        | 0.034            | 31929.          | LS                   | RZ Lyr           | $54235.436 {\pm} 0.002$                        | -0.006           | 25530.          | С               |
| WW Leo              | $54139.718 {\pm} 0.005$                        | 0.035            | 31944.          | LS                   | RZ Lyr           | $54256.408 {\pm} 0.003$                        | 0.005            | 25571.          | С               |
| WW Leo              | $54148.762 {\pm} 0.005$                        | 0.036            | 31959.          | LS                   | RZ Lyr           | $54279.416 {\pm} 0.005$                        | 0.007            | 25616.          | С               |
| WW Leo              | $54156.595 {\pm} 0.003$                        | 0.032            | 31972.          | LS                   | CN Lyr           | $54234.473 {\pm} 0.004$                        | 0.024            | 23696.          | С               |
| WW Leo              | $54168.659{\pm}0.002$                          | 0.039            | 31992.          | LS                   | CN Lyr           | $54241.459 {\pm} 0.005$                        | 0.016            | 23713.          | С               |
| WW Leo              | $54171.667 {\pm} 0.002$                        | 0.033            | 31997.          | $\mathbf{LS}$        | CN Lyr           | $54246.401{\pm}0.004$                          | 0.022            | 23725.          | $\mathbf{C}$    |
| AA Leo              | $54141.518 {\pm} 0.002$                        | -0.076           | 24296.          | $\mathbf{C}$         | CN Lyr           | $54269.436 {\pm} 0.005$                        | 0.019            | 23781.          | С               |
| AX Leo              | $54102.635 \!\pm\! 0.004$                      | -0.047           | 39704.          | $\mathbf{C}$         | IO Lyr           | $54212.604{\pm}0.003$                          | -0.031           | 25287.          | $\mathbf{C}$    |
| AX Leo              | $54129.548{\pm}0.003$                          | -0.027           | 39741.          | $\mathbf{C}$         | IO Lyr           | $54234.537 {\pm} 0.005$                        | -0.029           | 25325.          | $\mathbf{C}$    |
| AX Leo              | $54142.620{\pm}0.010$                          | -0.037           | 39759.          | $\mathbf{C}$         | IO Lyr           | $54256.467 {\pm} 0.004$                        | -0.030           | 25363.          | $\mathbf{C}$    |
| AX Leo              | $54145.527 {\pm} 0.003$                        | -0.038           | 39763.          | $\mathbf{C}$         | IO Lyr           | $54267.430{\pm}0.003$                          | -0.032           | 25382.          | $\mathbf{C}$    |
| AX Leo              | $54180.417 {\pm} 0.005$                        | -0.036           | 39811.          | $\mathbf{C}$         | IO Lyr           | $54271.472 {\pm} 0.002$                        | -0.030           | 25389.          | С               |
| AX Leo              | $54196.409 {\pm} 0.005$                        | -0.034           | 39833.          | $\mathbf{C}$         | IO Lyr           | $54275.512{\pm}0.003$                          | -0.030           | 25396.          | С               |
| AX Leo              | $54201.498 {\pm} 0.005$                        | -0.033           | 39840.          | $\mathbf{C}$         | V340 Lyr         | $54235.433{\pm}0.004$                          | -0.042           | 41627.          | $\mathbf{C}$    |
| AX Leo              | $54209.490{\pm}0.005$                          | -0.036           | 39851.          | $\mathbf{C}$         | XZ Mic           | $54018.653 {\pm} 0.002$                        | 0.063            | 25334.          | $_{\rm LS}$     |
| V LMi               | $54103.477 {\pm} 0.004$                        | 0.032            | 63563.          | $\mathbf{C}$         | XZ Mic           | $54268.834{\pm}0.002$                          | 0.035            | 25891.          | $_{\rm LS}$     |
| V LMi               | $54111.636 {\pm} 0.002$                        | 0.032            | 63578.          | $\mathbf{C}$         | XZ Mic           | $54273.770 {\pm} 0.005$                        | 0.029            | 25902.          | $_{\rm LS}$     |
| V LMi               | $54127.408 {\pm} 0.002$                        | 0.030            | 63607.          | $\mathbf{C}$         | XZ Mic           | $54277.816 {\pm} 0.002$                        | 0.033            | 25911.          | $\mathbf{LS}$   |
| V LMi               | $54170.375 \!\pm\! 0.002$                      | 0.028            | 63686.          | $\mathbf{C}$         | DV Mon           | $54107.674 {\pm} 0.001$                        | 0.072            | 69815.          | $\mathbf{LS}$   |
| V LMi               | $54176.362 {\pm} 0.002$                        | 0.032            | 63697.          | $\mathbf{C}$         | DV Mon           | $54138.679 {\pm} 0.004$                        | 0.072            | 69890.          | $\mathbf{LS}$   |
| V LMi               | $54201.381 {\pm} 0.002$                        | 0.030            | 63743.          | $\mathbf{C}$         | DV Mon           | $54145.708 {\pm} 0.002$                        | 0.074            | 69907.          | $\mathbf{LS}$   |
| V LMi               | $54207.367 {\pm} 0.005$                        | 0.033            | 63754.          | $\mathbf{C}$         | TX Mus           | $54134.648 {\pm} 0.004$                        | 0.100            | 63129.          | $\mathbf{LS}$   |
| Y LMi               | $54134.701 {\pm} 0.005$                        | -0.199           | 35424.          | $\mathbf{C}$         | TX Mus           | $54157.832 {\pm} 0.002$                        | 0.096            | 63178.          | LS              |
| Y LMi               | $54141.514{\pm}0.002$                          | -0.204           | 35437.          | $\mathbf{C}$         | TX Mus           | $54165.876 {\pm} 0.002$                        | 0.095            | 63195.          | LS              |
| Y LMi               | $54170.360{\pm}0.001$                          | -0.204           | 35492.          | $\mathbf{C}$         | TX Mus           | $54167.768 {\pm} 0.002$                        | 0.094            | 63199.          | $_{\rm LS}$     |
| Y LMi               | $54172.459 {\pm} 0.002$                        | -0.203           | 35496.          | $\mathbf{C}$         | TX Mus           | $54189.540 {\pm} 0.003$                        | 0.098            | 63245.          | LS              |
| Y LMi               | $54173.508 {\pm} 0.002$                        | -0.203           | 35498.          | $\mathbf{C}$         | TX Mus           | $54192.848 {\pm} 0.002$                        | 0.093            | 63252.          | $_{ m LS}$      |
| Y LMi               | $54181.375 \pm 0.002$                          | -0.203           | 35513.          | $\mathbf{C}$         | TX Mus           | $54211.781 {\pm} 0.004$                        | 0.097            | 63292.          | $\mathbf{LS}$   |
| U Lep               | $54107.652 {\pm} 0.001$                        | 0.044            | 21936.          | LS                   | TX Mus           | $54220.770 \pm 0.002$                          | 0.095            | 63311.          | LS              |
| U Lep               | $54114.623 {\pm} 0.002$                        | 0.037            | 21948.          | LS                   | TX Mus           | $54225.509 {\pm} 0.005$                        | 0.101            | 63321.          | $\mathbf{LS}$   |
| TV Lib              | $54176.775 \pm 0.001$                          | -0.004           | 126693.         | LS                   | EM Mus           | $54137.685 \pm 0.002$                          | -0.149           | 33387.          | LS              |
| TV Lib              | $54200.772 \pm 0.002$                          | -0.003           | 126782.         | LS                   | EM Mus           | $54151.704 \pm 0.003$                          | -0.148           | 33417.          | LS              |
| TV Lib              | $54233.666 \pm 0.003$                          | -0.004           | 126904.         | LS                   | EM Mus           | $54165.725 \pm 0.002$                          | -0.146           | 33447.          | LS              |
| TV Lib              | $54267.638 \pm 0.002$                          | -0.004           | 127030.         | LS                   | EM Mus           | $54189.555 \pm 0.001$                          | -0.149           | 33498.          | LS              |
| UX Lib              | $54184.814 \pm 0.002$                          | 0.001            | 57972.          |                      | EM Mus           | $54193.760 \pm 0.002$                          | -0.149           | 33507.          |                 |
| UX Lib              | $54200.756 \pm 0.002$                          | -0.001           | 58005.          |                      | EM Mus           | $54221.798 \pm 0.002$                          | -0.149           | 33567.          |                 |
| UX Lib              | $54212.836 \pm 0.002$                          | 0.000            | 58030.          |                      | EM Mus           | $54225.537 \pm 0.002$                          | -0.148           | 33575.          |                 |
| UA LID              | $54217.007 \pm 0.002$                          | -0.001           | 08040.<br>04402 |                      | EM Mus           | $54281.008 \pm 0.002$                          | -0.103           | 33095.<br>76961 | LS              |
| VY LID              | $54184.789 \pm 0.002$                          | -0.027           | 24423.<br>04426 |                      | VY NOT           | $54193.751 \pm 0.005$                          | -0.103           | 70301.<br>76401 |                 |
| VY LID              | $54191.729\pm0.002$                            | -0.028           | 24430.          |                      | VY Nor<br>VV Nor | $54208.743 \pm 0.005$                          | -0.183           | 76491.          |                 |
| VI LID<br>VV Lib    | $54230.703\pm0.003$<br>54227 647 $\pm0.002$    | -0.030           | 24009.          | LS                   | VI NOF           | $54220.705 \pm 0.005$<br>54222 785 $\pm 0.006$ | -0.175           | 70455.<br>76465 | LS              |
| VI LID<br>VV Lib    | $54257.047 \pm 0.005$<br>54268 612 $\pm 0.005$ | -0.029           | 24022.          | LS                   | VI NOF           | $54252.765\pm0.000$<br>54267 688±0.010         | -0.101           | 76559           | LS              |
| VI LID<br>VVI:b     | $54208.012 \pm 0.003$<br>$54175.811 \pm 0.010$ | -0.033           | 24000.          | LO<br>TC             | V I NOI<br>V Oct | $54207.088 \pm 0.010$<br>54101.765 $\pm 0.005$ | -0.101           | 20020           | цо<br>те        |
| XX LID              | $54175.811 \pm 0.010$<br>54182 804 $\pm 0.005$ | -0.002           | 07042.<br>27559 | LO<br>TC             | I Oct            | $54191.705 \pm 0.005$<br>54222 706 $\pm 0.002$ | -0.195           | 20062           | LO<br>TQ        |
| AZ LID              | $54182.804 \pm 0.003$<br>54212 840 $\pm 0.002$ | 0.007            | 3733⊿.<br>40966 | LO<br>IS             | I Oct            | $54222.790\pm0.002$<br>54224 747 $\pm0.005$    | -0.202           | 39908.<br>30071 | LS              |
| TT Lyn              | $54212.849\pm0.002$<br>$54109.549\pm0.002$     | -0.103           | 40200.          | C LS                 | V Oct            | $54224.747 \pm 0.003$<br>$54223.788 \pm 0.002$ | -0.191           | 30085           |                 |
| TT Lyn              | $54109.549\pm0.002$<br>$54114,330\pm0.003$     | -0.034           | 20222.          | C                    | V Oct            | $54281.637\pm0.002$                            | -0.203<br>-0.204 | 40050           |                 |
| TT Lyn              | $54128665\pm0.005$                             | -0.032<br>-0.036 | 29250.          | c                    | BS Oct           | $54281.057 \pm 0.004$<br>54280 850 $\pm 0.003$ | 0.11/            | 3010/           | LS              |
| TT Lyn              | $54148 381 \pm 0.002$                          | -0.035           | 20287           | č                    | BV Oct           | $54135750\pm0.003$                             | 0.114            | 68315           | LS              |
| TT Lyn              | $54173 475 \pm 0.002$                          | -0.033           | 29329           | $\tilde{c}$          | BV Oct           | $54139750\pm0.005$                             | 0 1 2 1          | 68322           | LS              |
| TT Lyn              | $54194 384 \pm 0.002$                          | -0.035           | 2022.2.         | č                    | BV Oct           | $54147748 \pm 0.003$                           | 0.121<br>0.122   | 68336           |                 |
| TW Lvn              | $54108 463 \pm 0.004$                          | 0.054<br>0.053   | 18856           | $\tilde{c}$          | BV Oct           | $54163735\pm0.004$                             | 0.122<br>0.117   | 68364           |                 |
| TW Lyn              | $54136\ 413\pm0\ 002$                          | 0.005            | 1801/           | $\tilde{c}$          | BV Oct           | $54166595\pm0.005$                             | 0.191            | 68360           |                 |
| TW Lyn              | $54137 373 \pm 0.002$                          | 0.051            | 18916           | $\tilde{\mathbf{c}}$ | BV Oct           | $54174\ 593\pm0.001$                           | 0 1 2 3          | 68383           | $\mathbf{LS}$   |
| TW Lvn              | $54172.550\pm0.003$                            | 0.052            | 18989           | $\tilde{\mathbf{c}}$ | RV Oct           | $54178.589\pm0.002$                            | 0.120            | 68390           | $\overline{LS}$ |
| <b>_</b> , <b>1</b> |                                                |                  |                 | -                    |                  |                                                | - /              |                 |                 |

Table 1 (cont.): maxima of RR Lyrae stars

| Variable | Maximum                 | 0 – C  | Е      | Obs.          | Variable     | Maximum                 | 0 – C  | Е      | Obs.          |
|----------|-------------------------|--------|--------|---------------|--------------|-------------------------|--------|--------|---------------|
|          | HJD 24                  | (days) |        |               |              | HJD 24                  | (days) |        |               |
| RV Oct   | $54186.586{\pm}0.002$   | 0.121  | 68404. | LS            | U Pic        | $54108.745 {\pm} 0.004$ | 0.054  | 28254. | $\mathbf{LS}$ |
| RV Oct   | $54192.874{\pm}0.002$   | 0.127  | 68415. | $\mathbf{LS}$ | U Pic        | $54112.708 {\pm} 0.004$ | 0.053  | 28263. | $\mathbf{LS}$ |
| RV Oct   | $54194.584{\pm}0.003$   | 0.123  | 68418. | LS            | U Pic        | $54120.637 {\pm} 0.001$ | 0.056  | 28281. | $\mathbf{LS}$ |
| RV Oct   | $54220.856{\pm}0.003$   | 0.122  | 68464. | LS            | U Pic        | $54124.599 {\pm} 0.002$ | 0.054  | 28290. | $\mathbf{LS}$ |
| RV Oct   | $54222.571{\pm}0.002$   | 0.123  | 68467. | $\mathbf{LS}$ | U Pic        | $54131.647 {\pm} 0.002$ | 0.056  | 28306. | $\mathbf{LS}$ |
| RV Oct   | $54224.857{\pm}0.002$   | 0.124  | 68471. | LS            | XX Pup       | $54112.615 {\pm} 0.002$ | 0.456  | 23858. | $_{\rm LS}$   |
| RV Oct   | $54226.572{\pm}0.005$   | 0.126  | 68474. | $\mathbf{LS}$ | XX Pup       | $54127.616{\pm}0.002$   | 0.458  | 23887. | $\mathbf{LS}$ |
| RV Oct   | $54238.563{\pm}0.005$   | 0.123  | 68495. | $\mathbf{LS}$ | XX Pup       | $54141.579 {\pm} 0.003$ | 0.458  | 23914. | $\mathbf{LS}$ |
| RV Oct   | $54278.545{\pm}0.002$   | 0.123  | 68565. | $\mathbf{LS}$ | XX Pup       | $54157.610 {\pm} 0.001$ | 0.456  | 23945. | $\mathbf{LS}$ |
| RV Oct   | $54282.543{\pm}0.002$   | 0.123  | 68572. | LS            | XX Pup       | $54171.574{\pm}0.002$   | 0.456  | 23972. | $\mathbf{LS}$ |
| SS Oct   | $54275.860{\pm}0.002$   | -0.064 | 42223. | LS            | BB Pup       | $54164.748{\pm}0.004$   | 0.111  | 31951. | $_{\rm LS}$   |
| SS Oct   | $54280.837{\pm}0.005$   | -0.062 | 42231. | $\mathbf{LS}$ | BB Pup       | $54192.620 {\pm} 0.002$ | 0.111  | 32009. | $\mathbf{LS}$ |
| SS Oct   | $54282.702{\pm}0.002$   | -0.062 | 42234. | $\mathbf{LS}$ | HH Pup       | $54108.619{\pm}0.002$   | 0.010  | 39945. | $\mathbf{LS}$ |
| UV Oct   | $54179.686{\pm}0.005$   | -0.103 | 36584. | LS            | HH Pup       | $54115.653{\pm}0.002$   | 0.011  | 39963. | $_{\rm LS}$   |
| UV Oct   | $54192.705{\pm}0.003$   | -0.107 | 36608. | LS            | HH Pup       | $54120.733{\pm}0.001$   | 0.011  | 39976. | $_{\rm LS}$   |
| UV Oct   | $54200.850{\pm}0.003$   | -0.101 | 36623. | LS            | HH Pup       | $54135.581{\pm}0.002$   | 0.011  | 40014. | $\mathbf{LS}$ |
| UV Oct   | $54223.636{\pm}0.010$   | -0.106 | 36665. | LS            | HH Pup       | $54140.660 {\pm} 0.002$ | 0.010  | 40027. | $\mathbf{LS}$ |
| UV Oct   | $54224.725{\pm}0.010$   | -0.102 | 36667. | LS            | HH Pup       | $54160.590{\pm}0.001$   | 0.012  | 40078. | $\mathbf{LS}$ |
| UV Oct   | $54235.579{\pm}0.003$   | -0.100 | 36687. | LS            | HH Pup       | $54167.622 {\pm} 0.002$ | 0.011  | 40096. | $\mathbf{LS}$ |
| UV Oct   | $54281.686{\pm}0.003$   | -0.117 | 36772. | LS            | HH Pup       | $54174.656{\pm}0.001$   | 0.011  | 40114. | $\mathbf{LS}$ |
| UW Oct   | $54281.671{\pm}0.003$   | -0.004 | 44870. | LS            | HK Pup       | $54108.712{\pm}0.002$   | -0.238 | 23835. | $\mathbf{LS}$ |
| AR Oct   | $54280.893{\pm}0.005$   | -0.042 | 44308. | LS            | HK Pup       | $54136.614{\pm}0.005$   | -0.238 | 23873. | $\mathbf{LS}$ |
| ST Oph   | $54213.813{\pm}0.002$   | -0.023 | 57260. | LS            | HK Pup       | $54147.631{\pm}0.005$   | -0.234 | 23888. | $\mathbf{LS}$ |
| ST Oph   | $54218.768 {\pm} 0.002$ | -0.022 | 57271. | LS            | X Ret        | $54150.639 {\pm} 0.002$ | 0.207  | 29903. | $\mathbf{LS}$ |
| ST Oph   | $54241.740{\pm}0.007$   | -0.018 | 57322. | LS            | V675 Sgr     | $54209.909 {\pm} 0.005$ | 0.066  | 40204. | $\mathbf{LS}$ |
| V445 Oph | $54237.786{\pm}0.002$   | 0.021  | 67236. | LS            | $V675 \ Sgr$ | $54218.901{\pm}0.005$   | 0.066  | 40218. | $\mathbf{LS}$ |
| V455 Oph | $54244.420{\pm}0.005$   | -0.247 | 27343. | С             | $V675 \ Sgr$ | $54231.740{\pm}0.002$   | 0.059  | 40238. | $\mathbf{LS}$ |
| V455 Oph | $54268.480{\pm}0.004$   | -0.244 | 27396. | С             | $V675 \ Sgr$ | $54238.826{\pm}0.010$   | 0.080  | 40249. | $\mathbf{LS}$ |
| V455 Oph | $54278.466{\pm}0.002$   | -0.244 | 27418. | С             | V756 Sgr     | $54207.883{\pm}0.005$   | 0.093  | 47280. | $\mathbf{LS}$ |
| V816 Oph | $54215.821{\pm}0.002$   | -0.099 | 46926. | LS            | V756 Sgr     | $54237.762 {\pm} 0.005$ | 0.106  | 47337. | $\mathbf{LS}$ |
| V816 Oph | $54220.770{\pm}0.002$   | -0.099 | 46939. | $\mathbf{LS}$ | $V756 \ Sgr$ | $54268.667 {\pm} 0.005$ | 0.096  | 47396. | $\mathbf{LS}$ |
| TX Pav   | $54184.806{\pm}0.002$   | -0.165 | 58761. | LS            | V1025 Sgr    | $54275.775 {\pm} 0.003$ | -0.016 | 46399. | $\mathbf{LS}$ |
| TX Pav   | $54189.867{\pm}0.002$   | -0.163 | 58772. | LS            | V1130 Sgr    | $54223.868{\pm}0.002$   | 0.041  | 47290. | $\mathbf{LS}$ |
| TX Pav   | $54206.885{\pm}0.005$   | -0.160 | 58809. | $\mathbf{LS}$ | V1130 Sgr    | $54272.722 {\pm} 0.003$ | 0.042  | 47376. | $\mathbf{LS}$ |
| TY Pav   | $54221.792{\pm}0.005$   | 0.285  | 17862. | LS            | V1130 Sgr    | $54277.833{\pm}0.002$   | 0.040  | 47385. | $\mathbf{LS}$ |
| TY Pav   | $54231.737{\pm}0.005$   | 0.285  | 17876. | $\mathbf{LS}$ | V494 Sco     | $54231.687 {\pm} 0.004$ | -0.137 | 30668. | $\mathbf{LS}$ |
| TY Pav   | $54241.679{\pm}0.005$   | 0.281  | 17890. | LS            | V494 Sco     | $54234.677 {\pm} 0.004$ | -0.139 | 30675. | $\mathbf{LS}$ |
| WY Pav   | $54213.820{\pm}0.003$   | 0.073  | 46460. | $\mathbf{LS}$ | V494 Sco     | $54275.695 {\pm} 0.002$ | -0.144 | 30771. | $\mathbf{LS}$ |
| BH Pav   | $54223.795{\pm}0.003$   | 0.220  | 54886. | $\mathbf{LS}$ | V690 Sco     | $54205.848{\pm}0.004$   | -0.018 | 25207. | $\mathbf{LS}$ |
| BN Pav   | $54231.907{\pm}0.002$   | -0.024 | 45657. | $\mathbf{LS}$ | V765 Sco     | $54189.760 {\pm} 0.002$ | 0.136  | 52589. | $\mathbf{LS}$ |
| BN Pav   | $54234.743{\pm}0.002$   | -0.024 | 45662. | $\mathbf{LS}$ | V765 Sco     | $54201.820{\pm}0.002$   | 0.141  | 52615. | $\mathbf{LS}$ |
| BN Pav   | $54267.637{\pm}0.003$   | -0.026 | 45720. | LS            | RU Scl       | $54017.600{\pm}0.002$   | -0.105 | 46408. | $\mathbf{LS}$ |
| BP Pav   | $54230.731{\pm}0.002$   | 0.020  | 48188. | LS            | RU Scl       | $54046.712 {\pm} 0.002$ | -0.100 | 46467. | $\mathbf{LS}$ |
| BP Pav   | $54276.591{\pm}0.002$   | 0.201  | 48273. | LS            | AE Scl       | $54025.665 {\pm} 0.002$ | 0.190  | 23283. | $\mathbf{LS}$ |
| DN Pav   | $54028.657{\pm}0.002$   | 0.095  | 27421. | LS            | AE Scl       | $54031.720{\pm}0.002$   | 0.194  | 23294. | $\mathbf{LS}$ |
| DN Pav   | $54052.548{\pm}0.001$   | 0.096  | 27472. | LS            | AE Scl       | $54036.674{\pm}0.005$   | 0.197  | 23303. | $\mathbf{LS}$ |
| DN Pav   | $54217.910{\pm}0.003$   | 0.098  | 27825. | $\mathbf{LS}$ | AE Scl       | $54047.680{\pm}0.003$   | 0.201  | 23323. | $\mathbf{LS}$ |
| DN Pav   | $54232.900{\pm}0.003$   | 0.097  | 27857. | LS            | AE Scl       | $54052.628 {\pm} 0.001$ | 0.198  | 23332. | $\mathbf{LS}$ |
| HV Pav   | $54013.635{\pm}0.004$   | 0.176  | 30722. | LS            | AE Scl       | $54063.631 {\pm} 0.003$ | 0.199  | 23352. | $\mathbf{LS}$ |
| HV Pav   | $54268.887{\pm}0.004$   | -0.257 | 31178. | $\mathbf{LS}$ | VY Ser       | $54182.787 {\pm} 0.005$ | 0.043  | 32149. | $\mathbf{LS}$ |
| HV Pav   | $54272.813{\pm}0.005$   | -0.256 | 31185. | $\mathbf{LS}$ | VY Ser       | $54213.499 {\pm} 0.002$ | 0.049  | 32192. | $\mathbf{C}$  |
| HV Pav   | $54277.863{\pm}0.004$   | -0.252 | 31194. | $\mathbf{LS}$ | VY Ser       | $54217.781{\pm}0.005$   | 0.047  | 32198. | $\mathbf{LS}$ |
| AR Per   | $54105.278{\pm}0.002$   | 0.052  | 63138. | $\mathbf{C}$  | VY Ser       | $54218.492 {\pm} 0.003$ | 0.043  | 32199. | $\mathbf{C}$  |
| AR Per   | $54106.556 {\pm} 0.002$ | 0.054  | 63141. | $\mathbf{C}$  | VY Ser       | $54228.496{\pm}0.005$   | 0.050  | 32213. | $\mathbf{C}$  |
| AR Per   | $54109.534{\pm}0.003$   | 0.053  | 63148. | $\mathbf{C}$  | VY Ser       | $54233.493{\pm}0.005$   | 0.048  | 32220. | $\mathbf{C}$  |
| AR Per   | $54113.367{\pm}0.002$   | 0.056  | 63157. | $\mathbf{C}$  | VY Ser       | $54270.622 {\pm} 0.005$ | 0.045  | 32272. | $\mathbf{LS}$ |
| AR Per   | $54124.436{\pm}0.005$   | 0.061  | 63183. | $\mathbf{C}$  | AN Ser       | $54187.488{\pm}0.005$   | 0.004  | 75619. | $\mathbf{C}$  |
| AR Per   | $54135.494{\pm}0.002$   | 0.054  | 63209. | $\mathbf{C}$  | AN Ser       | $54199.494{\pm}0.002$   | 0.003  | 75642. | $\mathbf{C}$  |
|          |                         |        |        |               |              |                         |        |        |               |

| Variable                    | Maximum                                    | O - C  | Е               | Obs.          | Variable | Maximum                                        | 0 – C            | Е               | Obs.                 |
|-----------------------------|--------------------------------------------|--------|-----------------|---------------|----------|------------------------------------------------|------------------|-----------------|----------------------|
|                             | HJD 24                                     | (days) |                 |               |          | HJD 24                                         | (days)           |                 |                      |
| AN Ser                      | $54233.428{\pm}0.002$                      | 0.002  | 75707.          | $\mathbf{C}$  | AB UMa   | $54232.446{\pm}0.005$                          | 0.108            | 30029.          | $\mathbf{C}$         |
| AN Ser                      | $54244.394{\pm}0.002$                      | 0.004  | 75728.          | С             | AB UMa   | $54241.445 \pm 0.010$                          | 0.114            | 30044.          | С                    |
| AN Ser                      | $54269.447 \pm 0.002$                      | -0.002 | 75776.          | C             | AB UMa   | $54247.434 \pm 0.005$                          | 0.107            | 30054.          | C                    |
| AV Ser                      | $54192.788 \pm 0.002$                      | 0.135  | 53018.          | LS            | EX UMa   | $54157.429 \pm 0.005$                          | 0.024            | 9477.           | C                    |
| AV Ser                      | $54201.553 \pm 0.002$                      | 0.124  | 53036.          | C             | EX UMa   | $54158.516 \pm 0.005$                          | 0.026            | 9479.           | C                    |
| AV Ser                      | $54218.630 \pm 0.003$                      | 0.136  | 53071.          | C             | EX UMa   | $54159.608 \pm 0.002$                          | 0.032            | 9481.           | C                    |
| AV Ser                      | $54231.789 \pm 0.002$                      | 0.131  | 53098.          |               | EX UMa   | $54176.436\pm0.005$                            | 0.032            | 9512.           | C                    |
| AV Ser                      | $54241.550\pm0.005$                        | 0.141  | 53118.          | C             | EX UMa   | $54190.549 \pm 0.005$                          | 0.032            | 9538.           | C                    |
| AW Ser                      | $54216.398 \pm 0.005$                      | -0.037 | 43330.          | U<br>LC       | EX UMa   | $54201.399 \pm 0.005$                          | 0.025            | 9558.           | C                    |
| CS Ser                      | $54184.769 \pm 0.002$                      | 0.001  | 43676.          |               | AF Vel   | $54141.785 \pm 0.010$                          | -0.256           | 24099.          |                      |
| CS Ser                      | $54212.705\pm0.000$                        | 0.017  | 43729.          |               | AF Vel   | $54157.011\pm0.002$                            | -0.252           | 24129.          |                      |
| CS Ser                      | $54241.079\pm0.003$                        | 0.017  | 43184.          |               | AF Vel   | $54170.013\pm0.004$                            | -0.230           | 24105.<br>24194 | L5<br>19             |
| $C_{5}$ Ser                 | $54209.590\pm0.002$                        | 0.014  | 40007.<br>20050 | LS            | AF Vel   | $54160.051\pm0.002$                            | -0.239           | 24104.          | LS<br>TC             |
| $RU Sex^2$                  | $54124.751\pm0.010$<br>$54120.704\pm0.010$ | 0.025  | 32609.<br>22009 | LS            | AF Vel   | $54205.000 \pm 0.002$<br>54224 601 $\pm 0.002$ | -0.250           | 24220.          | LS                   |
| $RU Sex^2$                  | $54159.794\pm0.010$<br>$54159.419\pm0.003$ | 0.020  | 32902.          | Lo<br>C       | AF Vel   | $54224.001\pm0.002$<br>$54224.632\pm0.004$     | -0.242           | 24250.<br>24975 | LS                   |
| $RU Sex^2$                  | $54152.412\pm0.005$<br>$54156.623\pm0.005$ | 0.030  | 32938.          |               | FS Vol   | $54234.052\pm0.004$<br>$54195.586\pm0.005$     | -0.231<br>-0.170 | 24275.<br>30764 |                      |
| $RU Sex^2$                  | $54160.525\pm0.005$<br>$54160.575\pm0.005$ | 0.044  | 32330.          |               | FS Vel   | $54223655\pm0.003$                             | -0.170<br>-0.160 | 30893           |                      |
| $\frac{100 \text{ Sex}}{2}$ | $54105.575\pm0.005$<br>$54197.598\pm0.005$ | 0.037  | 33067           |               | FS Vel   | $54223.003\pm0.002$<br>$54224.603\pm0.002$     | -0.103<br>-0.172 | 30825           |                      |
| RV Sex                      | $54197.595\pm0.005$<br>$54129.713\pm0.002$ | 0.042  | 48646           |               | ST Vir   | $54224.005\pm0.002$<br>$54200.469\pm0.004$     | 0.029            | 30020.<br>32773 | C LS                 |
| RV Sex                      | $54120.710\pm0.002$<br>$54140.780\pm0.002$ | 0.004  | 48668           |               | ST Vir   | $54200.409\pm0.004$<br>$54207.449\pm0.003$     | 0.025<br>0.025   | 32790           | C                    |
| BV Sex                      | $54185584\pm0.001$                         | 0.056  | 48757           |               | ST Vir   | $54215658\pm0.002$                             | 0.020<br>0.017   | 32810           | LS                   |
| BV Sex                      | $54197.666\pm0.005$                        | 0.056  | 48781           |               | ST Vir   | $54216486\pm0.005$                             | 0.024            | 32812           | $\mathbf{\tilde{C}}$ |
| HY Tel                      | $54223.771 \pm 0.005$                      | -0.026 | 63357.          | LS            | ST Vir   | $54244.417\pm0.002$                            | 0.018            | 32880.          | C                    |
| RW TrA                      | $54177.814 \pm 0.002$                      | -0.166 | 33923.          | LS            | UU Vir   | $54206.503 \pm 0.002$                          | -0.008           | 26091.          | č                    |
| RW TrA                      | $54186.788 \pm 0.002$                      | -0.169 | 33947.          | LS            | UV Vir   | $54119.695 \pm 0.010$                          | 0.011            | 24063.          | č                    |
| RW TrA                      | $54189.783 \pm 0.002$                      | -0.166 | 33955.          | LS            | UV Vir   | $54129.668 \pm 0.003$                          | 0.004            | 24080.          | Ċ                    |
| RW TrA                      | $54192.778 {\pm} 0.003$                    | -0.164 | 33963.          | LS            | UV Vir   | $54143.761 {\pm} 0.002$                        | 0.007            | 24104.          | $\mathbf{LS}$        |
| RW TrA                      | $54211.850{\pm}0.002$                      | -0.168 | 34014.          | $\mathbf{LS}$ | UV Vir   | $54150.815 {\pm} 0.002$                        | 0.016            | 24116.          | $\mathbf{LS}$        |
| W Tuc                       | $54102.543{\pm}0.005$                      | 0.149  | 26819.          | LS            | UV Vir   | $54153.753{\pm}0.005$                          | 0.018            | 24121.          | $\mathbf{LS}$        |
| W Tuc                       | $54109.611 {\pm} 0.007$                    | 0.152  | 26830.          | LS            | UV Vir   | $54155.518{\pm}0.002$                          | 0.022            | 24124.          | $\mathbf{C}$         |
| W Tuc                       | $54118.606{\pm}0.005$                      | 0.156  | 26844.          | LS            | UV Vir   | $54159.628{\pm}0.004$                          | 0.023            | 24131.          | С                    |
| W Tuc                       | $54127.596{\pm}0.002$                      | 0.155  | 26858.          | LS            | UV Vir   | $54160.800{\pm}0.002$                          | 0.020            | 24133.          | $\mathbf{LS}$        |
| AE Tuc                      | $54102.653{\pm}0.002$                      | 0.080  | 47855.          | $\mathbf{LS}$ | UV Vir   | $54182.521 {\pm} 0.002$                        | 0.019            | 24170.          | $\mathbf{C}$         |
| AE Tuc                      | $54112.601{\pm}0.002$                      | 0.083  | 47879.          | LS            | UV Vir   | $54186.621 {\pm} 0.002$                        | 0.010            | 24177.          | $\mathbf{LS}$        |
| AE Tuc                      | $54117.576{\pm}0.002$                      | 0.086  | 47891.          | LS            | UV Vir   | $54198.361 {\pm} 0.005$                        | 0.008            | 24197.          | $\mathbf{C}$         |
| AE Tuc                      | $54122.550{\pm}0.001$                      | 0.087  | 47903.          | LS            | UV Vir   | $54200.707 {\pm} 0.005$                        | 0.006            | 24201.          | $\mathbf{LS}$        |
| AG Tuc                      | $54102.573 {\pm} 0.004$                    | 0.045  | 23748.          | LS            | UV Vir   | $54213.632 {\pm} 0.004$                        | 0.015            | 24223.          | $\mathbf{LS}$        |
| AG Tuc                      | $54108.602{\pm}0.004$                      | 0.048  | 23758.          | LS            | UV Vir   | $54233.592 {\pm} 0.005$                        | 0.014            | 24257.          | $_{\rm LS}$          |
| BK Tuc                      | $54107.582{\pm}0.002$                      | -0.038 | 31574.          | $\mathbf{LS}$ | WW Vir   | $54172.673{\pm}0.004$                          | 0.293            | 26781.          | $\mathbf{LS}$        |
| RV UMa                      | $54133.521{\pm}0.002$                      | 0.113  | 19352.          | $\mathbf{C}$  | WW Vir   | $54198.738 {\pm} 0.003$                        | 0.294            | 26821.          | $\mathbf{LS}$        |
| RV UMa                      | $54162.533{\pm}0.005$                      | 0.105  | 19414.          | $\mathbf{C}$  | XZ Vir   | $54227.674{\pm}0.003$                          |                  |                 | $\mathbf{LS}$        |
| RV UMa                      | $54198.581{\pm}0.003$                      | 0.113  | 19491.          | $\mathbf{C}$  | XZ Vir   | $54230.537 {\pm} 0.002$                        |                  |                 | $\mathbf{LS}$        |
| TU UMa                      | $54147.479 {\pm} 0.002$                    | -0.026 | 20292.          | $\mathbf{C}$  | XZ Vir   | $54231.492 {\pm} 0.003$                        |                  |                 | $\mathbf{LS}$        |
| TU UMa                      | $54175.364{\pm}0.002$                      | -0.024 | 20342.          | $\mathbf{C}$  | XZ Vir   | $54232.444 {\pm} 0.003$                        |                  |                 | $\mathbf{C}$         |
| TU UMa                      | $54209.375 {\pm} 0.003$                    | -0.030 | 20403.          | $\mathbf{C}$  | XZ Vir   | $54233.394{\pm}0.005$                          |                  |                 | $\mathbf{C}$         |
| TU UMa                      | $54234.473 {\pm} 0.005$                    | -0.027 | 20448.          | $\mathbf{C}$  | XZ Vir   | $54238.651{\pm}0.010$                          |                  |                 | $_{\rm LS}$          |
| AB UMa                      | $54103.554 {\pm} 0.006$                    | 0.125  | 29814.          | С             | XZ Vir   | $54239.603 {\pm} 0.004$                        |                  |                 | LS                   |
| AB UMa                      | $54112.540 {\pm} 0.010$                    | 0.118  | 29829.          | С             | AF Vir   | $54155.659 {\pm} 0.002$                        | -0.103           | 28572.          | С                    |
| AB UMa                      | $54124.518 \pm 0.003$                      | 0.104  | 29849.          | C             | AF Vir   | $54180.807 \pm 0.003$                          | -0.110           | 28624.          | LS                   |
| AB UMa                      | $54148.510 \pm 0.003$                      | 0.113  | 29889.          | C             | AF Vir   | $54198.712 \pm 0.002$                          | -0.104           | 28661.          | LS                   |
| AB UMa                      | $54157.504 \pm 0.005$                      | 0.113  | 29904.          | C             | AF Vir   | $54208.388 \pm 0.004$                          | -0.104           | 28681.          | C                    |
| AB UMa                      | $54187.482 \pm 0.010$                      | 0.113  | 29954.          | C             | AF' Vir  | $54232.571 \pm 0.005$                          | -0.109           | 28731.          | C                    |
| AB UMa                      | $54199.479 \pm 0.010$                      | 0.118  | 29974.          | C             | AS Vir   | $54172.775 \pm 0.002$                          | 0.148            | 27136.          | LS                   |
| AB UMa                      | $54205.469 \pm 0.006$                      | 0.112  | 29984.          | C             | AS Vir   | $54177.756 \pm 0.002$                          | 0.149            | 27145.          | $_{\rm LS}$          |
| AB UMa                      | $54211.462 \pm 0.005$                      | 0.109  | 29994.          | C             | AS Vir   | $54182.741 \pm 0.002$                          | 0.153            | 27154.          | $_{\rm LS}$          |
| AB UMa                      | $54214.462 \pm 0.005$                      | 0.112  | 29999.          | C             | AS Vir   | $54207.637 \pm 0.002$                          | 0.145            | 27199.          |                      |
| АВ ∪Ма                      | $54229.448 \pm 0.006$                      | 0.108  | 30024.          | C             | AS Vir   | $54228.669 \pm 0.003$                          | 0.147            | 27237.          | $\mathbf{LS}$        |
|                             |                                            |        |                 |               |          |                                                |                  |                 |                      |

| Variable | Maximum               | O - C     | $\mathbf{E}$ | Obs.          | Variable Maximum |                       | O - C  | $\mathbf{E}$ | Obs.          |  |  |  |  |  |
|----------|-----------------------|-----------|--------------|---------------|------------------|-----------------------|--------|--------------|---------------|--|--|--|--|--|
|          | HJD 24                | (days)    |              |               |                  | HJD 24                | (days) |              |               |  |  |  |  |  |
| AS Vir   | $54233.653{\pm}0.005$ | 0.150     | 27246.       | LS            | BC Vir           | $54233.621{\pm}0.002$ | 0.130  | 60780.       | $\mathbf{LS}$ |  |  |  |  |  |
| AT Vir   | $54146.773{\pm}0.005$ | 0.262     | 27517.       | LS            | BQ Vir           | $54230.640{\pm}0.005$ | -0.058 | 54052.       | LS            |  |  |  |  |  |
| AT Vir   | $54155.714{\pm}0.002$ | -0.261    | 27535.       | $\mathbf{LS}$ | BQ Vir           | $54237.632{\pm}0.005$ | -0.061 | 54063.       | LS            |  |  |  |  |  |
| AT Vir   | $54171.487{\pm}0.002$ | -0.262    | 27565.       | $\mathbf{C}$  | DO Vir           | $54211.702{\pm}0.005$ | 0.212  | 51853.       | LS            |  |  |  |  |  |
| AT Vir   | $54175.691{\pm}0.005$ | 0.262     | 27572.       | LS            | DO Vir           | $54234.606{\pm}0.002$ | 0.209  | 51896.       | LS            |  |  |  |  |  |
| AT Vir   | $54181.477{\pm}0.002$ | -0.262    | 27584.       | $\mathbf{C}$  | SV Vol           | $54136.662{\pm}0.002$ | -0.127 | 32746.       | LS            |  |  |  |  |  |
| AT Vir   | $54184.631{\pm}0.002$ | -0.263    | 27590.       | LS            | SV Vol           | $54139.714{\pm}0.005$ | -0.103 | 32754.       | LS            |  |  |  |  |  |
| AT Vir   | $54225.643{\pm}0.003$ | -0.262    | 27668.       | LS            | SV Vol           | $54153.741{\pm}0.004$ | -0.080 | 32791.       | $\mathbf{LS}$ |  |  |  |  |  |
| AT Vir   | $54234.582{\pm}0.002$ | -0.262    | 27685.       | LS            | SV Vol           | $54164.715{\pm}0.005$ | -0.083 | 32820.       | LS            |  |  |  |  |  |
| AV Vir   | $54129.599{\pm}0.005$ | 0.023     | 19271.       | $\mathbf{C}$  | SV Vol           | $54166.543{\pm}0.004$ | -0.148 | 32825.       | $\mathbf{LS}$ |  |  |  |  |  |
| AV Vir   | $54180.834{\pm}0.003$ | 0.019     | 19349.       | $\mathbf{LS}$ | SV Vol           | $54167.763{\pm}0.002$ | -0.063 | 32828.       | $\mathbf{LS}$ |  |  |  |  |  |
| AV Vir   | $54186.743{\pm}0.004$ | 0.016     | 19358.       | $\mathbf{LS}$ | SV Vol           | $54186.670{\pm}0.010$ | -0.081 | 32878.       | $\mathbf{LS}$ |  |  |  |  |  |
| AV Vir   | $54198.569{\pm}0.003$ | 0.017     | 19376.       | $\mathbf{C}$  | SV Vol           | $54200.695{\pm}0.003$ | -0.061 | 32915.       | $\mathbf{LS}$ |  |  |  |  |  |
| BB Vir   | $54172.792{\pm}0.002$ | -0.221    | 30905.       | LS            | SV Vol           | $54208.626{\pm}0.002$ | -0.078 | 32936.       | LS            |  |  |  |  |  |
| BB Vir   | $54180.802{\pm}0.002$ | -0.220    | 30922.       | LS            | SV Vol           | $54211.677{\pm}0.005$ | -0.055 | 32944.       | LS            |  |  |  |  |  |
| BB Vir   | $54198.703{\pm}0.002$ | -0.221    | 30960.       | LS            | SV Vol           | $54216.559{\pm}0.002$ | -0.093 | 32957.       | LS            |  |  |  |  |  |
| BB Vir   | $54200.587{\pm}0.004$ | -0.221    | 30964.       | $\mathbf{C}$  | SV Vol           | $54222.662{\pm}0.005$ | -0.047 | 32973.       | LS            |  |  |  |  |  |
| BB Vir   | $54232.626{\pm}0.003$ | -0.217    | 31032.       | $\mathbf{LS}$ | SV Vol           | $54224.492{\pm}0.005$ | -0.109 | 32978.       | LS            |  |  |  |  |  |
| BB Vir   | $54234.504{\pm}0.002$ | -0.223    | 31036.       | $\mathbf{C}$  | SV Vol           | $54227.540{\pm}0.005$ | -0.089 | 32986.       | LS            |  |  |  |  |  |
| BC Vir   | $54178.859{\pm}0.002$ | 0.126     | 60683.       | $\mathbf{LS}$ | SV Vol           | $54233.640{\pm}0.003$ | -0.045 | 33002.       | LS            |  |  |  |  |  |
| BC Vir   | $54182.812{\pm}0.002$ | 0.127     | 60690.       | $\mathbf{LS}$ | BN Vul           | $54250.499{\pm}0.003$ | 0.065  | 14677.       | С             |  |  |  |  |  |
| BC Vir   | $54199.748{\pm}0.002$ | 0.128     | 60720.       | $\mathbf{LS}$ | BN Vul           | $54275.453{\pm}0.005$ | 0.066  | 14719.       | С             |  |  |  |  |  |
| BC Vir   | $54207.652{\pm}0.002$ | 0.128     | 60734.       | $\mathbf{LS}$ | BN Vul           | $54278.418{\pm}0.004$ | 0.060  | 14724.       | С             |  |  |  |  |  |
|          |                       |           |              |               |                  |                       |        |              |               |  |  |  |  |  |
|          | * C = Calern, LS      | = La Sil  | lla          |               | 1                |                       |        |              |               |  |  |  |  |  |
|          | 1 Agerer and Mos      | chner, 19 | 996          |               |                  |                       |        |              |               |  |  |  |  |  |
|          | 2 Williams 1993       | -         |              |               | 2 Williams 1993  |                       |        |              |               |  |  |  |  |  |

Table 1 (cont.): maxima of RR Lyrae stars

References:

Agerer, F., Moschner, W., 1996, IBVS, 4391

- Bertin, E., Arnouts, S., 1996, A&AS, 117, 393
- Boër, M., Atteia, J.L., Bringer, M., Gendre, B., Klotz, A., Malina, R., de Freitas Pacheco, J.A., Pedersen, H., 2001, A&A, **378**, 76
- Boninsegna, R., Vandenbroere, J., Le Borgne, J.F., The Geos Team, 2002, ASP Conf. Ser., 259, 166, IAU Colloq. 185, "Radial and Nonradial Pulsations as Probes of Stellar Physics"

Bringer, M., Boër, M., Peignot, C., Fontan, G., Merce, C., 1999, A&AS, 138, 581

Kholopov, P.N., et al., 1985, General Catalogue of Variable Stars, Moscow: Nauka Publishing House, 1988, 4th ed., edited by Kholopov, P.N.; and 2006 web edition (http://www.sai.msu.su/groups/cluster/gcvs/).

Williams, D.B., 1993, JAAVSO, 22, 116

Number 5791

Konkoly Observatory Budapest 28 August 2007 *HU ISSN 0374 - 0676* 

## MINIMA TIMES OF SOME ECLIPSING BINARY STARS

GÜROL, B.; DERMAN, E.; MÜYESSEROĞLU Z.; GÜRDEMİR, L.; GÖKAY, G.; ÖZBEK, N.; SAĞIR, U.; KALCI, R.; SALMAN, G.; ÇOKER, D.; EMİNOĞLU, B.; DEMİRCAN, Y.; TERZİOĞLU, Z.

Ankara University, Faculty of Science, Astronomy and Space Sciences Department 06100, Tandoğan, Ankara, TÜRKİYE; e-mail: gurol@science.ankara.edu.tr

### Observatory and telescope:

AUO1 and AUO2: 30-cm Maksutov telescope of the Ankara University Observatory. TUG1: 40-cm Cassegrain-Schmidt telescope of the Turkish National Observatory. TUG2: 40-cm Meade LX200-GPS telescope of the Tubitak National Observatory.

| Detector: | Before 29 September 1992 the observations made with |
|-----------|-----------------------------------------------------|
|           | EMI9789QB photomultiplier tube. After that time we  |
|           | used OPTEC SSP-5A photometer containing a side-on   |
|           | R1414 Hamamatsu photomultiplier for AUO1 and AUO2   |
|           | respectively. Ap7p and ST8-E CCD cameras were used  |
|           | for TUG1 and TUG2 respectively.                     |

### Method of data reduction:

Reduction of the AUO observations were made in the usual way (Hardie 1962). We used the MaxIm DL software for the reduction of the TUG data.

### Method of minimum determination:

The minima times were computed by Kwee & van Woerden (1956) method.

### Acknowledgements:

We are grateful to TÜBİTAK National Observatory and Ankara University Observatory for use of the telescope time allocation and other facilities.

| Times of 1 | Times of minima:             |        |      |        |             |  |  |  |  |  |  |
|------------|------------------------------|--------|------|--------|-------------|--|--|--|--|--|--|
| Star name  | Time of min.<br>HJD 2400000+ | Error  | Type | Filter | Rem.        |  |  |  |  |  |  |
| LO And     | 53215.4797                   | 0.0003 | Ι    | BV     | AUO2, BG    |  |  |  |  |  |  |
| 44i Boo    | 47634.4403                   | 0.0005 | Ι    | UBV    | AUO1, ZM    |  |  |  |  |  |  |
|            | 47635.5157                   | 0.0002 | Ι    | UBV    | AUO1, SOS   |  |  |  |  |  |  |
|            | 47635.3826                   | 0.0002 | II   | UBV    | AUO1, SOS   |  |  |  |  |  |  |
|            | 47640.4683                   | 0.0004 | II   | UBV    | AUO1, ZM    |  |  |  |  |  |  |
|            | 47691.3562                   | 0.0008 | II   | UBV    | AUO1, SOS   |  |  |  |  |  |  |
|            | 47692.4247                   | 0.0004 | II   | BV     | AUO1, FFÖ   |  |  |  |  |  |  |
|            | 47697.3767                   | 0.0003 | Ι    | UBV    | AUO1, GK    |  |  |  |  |  |  |
|            | 47697.5125                   | 0.0004 | II   | UBV    | AUO1, GK    |  |  |  |  |  |  |
|            | 47960.3747                   | 0.0001 | Ι    | UBV    | AUO1, BG    |  |  |  |  |  |  |
|            | 47960.5099                   | 0.0005 | II   | UBV    | AUO1, BG    |  |  |  |  |  |  |
|            | 47962.5213                   | 0.0008 | Ι    | BV     | AUO1, GK    |  |  |  |  |  |  |
|            | 47988.4949                   | 0.0004 | Ι    | BV     | AUO1, SOS   |  |  |  |  |  |  |
|            | 48019.4285                   | 0.0004 | II   | UBV    | AUO1, ZM    |  |  |  |  |  |  |
|            | 48049.4262                   | 0.0006 | II   | UBV    | AUO1, GK    |  |  |  |  |  |  |
|            | 48049.2943                   | 0.0004 | Ι    | UBV    | AUO1, GK    |  |  |  |  |  |  |
|            | 48050.3625                   | 0.0002 | Ι    | UBV    | AUO1, SOS   |  |  |  |  |  |  |
|            | 48050.4949                   | 0.0003 | II   | BV     | AUO1, SOS   |  |  |  |  |  |  |
|            | 48051.4327                   | 0.0003 | Ι    | BV     | AUO1, FFÖ   |  |  |  |  |  |  |
|            | 48430.3967                   | 0.0007 | Ι    | BV     | AUO1, BA    |  |  |  |  |  |  |
|            | 48431.3377                   | 0.0002 | II   | BV     | AUO1, BG    |  |  |  |  |  |  |
|            | 48431.4695                   | 0.0004 | Ι    | BV     | AUO1, BG    |  |  |  |  |  |  |
|            | 48433.3444                   | 0.0004 | Ι    | BV     | AUO1, AA    |  |  |  |  |  |  |
|            | 48727.4089                   | 0.0001 | Ι    | UBV    | AUO1, HD    |  |  |  |  |  |  |
|            | 48727.5438                   | 0.0002 | II   | UBV    | AUO1, HD    |  |  |  |  |  |  |
|            | 48730.4898                   | 0.0003 | II   | UBV    | AUO1, ZM    |  |  |  |  |  |  |
|            | 48761.4220                   | 0.0001 | Ι    | UBV    | AUO1, FE    |  |  |  |  |  |  |
|            | 49109.5898                   | 0.0001 | Ι    | UBV    | AUO2, ZM    |  |  |  |  |  |  |
|            | 49139.4487                   | 0.0002 | II   | UBV    | AUO2, SOS   |  |  |  |  |  |  |
|            | 49139.3165                   | 0.0001 | Ι    | UBV    | AUO2, SOS   |  |  |  |  |  |  |
|            | 49142.3936                   | 0.0001 | II   | UBV    | AUO2, ZM    |  |  |  |  |  |  |
|            | 49944.3826                   | 0.0004 | Ι    | BV     | AUO2, SOS   |  |  |  |  |  |  |
|            | 49945.3209                   | 0.0001 | II   | BV     | AUO2, BG    |  |  |  |  |  |  |
|            | 50206.3100                   | 0.0002 | Ι    | BV     | AUO2, BG    |  |  |  |  |  |  |
|            | 50245.4112                   | 0.0003 | Ι    | UBV    | AUO2, SOS   |  |  |  |  |  |  |
|            | 50246.4824                   | 0.0002 | Ι    | BV     | AUO2, BG    |  |  |  |  |  |  |
|            | 50248.4898                   | 0.0002 | II   | BV     | AUO2, ZM    |  |  |  |  |  |  |
|            | 52031.5014                   | 0.0001 | Ι    | BV     | AUO2, LG-UA |  |  |  |  |  |  |
|            | 52052.5184                   | 0.0001 | II   | BV     | AUO2, LG-UA |  |  |  |  |  |  |
|            | 52073.4135                   | 0.0004 | II   | BV     | AUO2, LG-UA |  |  |  |  |  |  |
|            | 52108.3639                   | 0.0001 | Ι    | UBV    | AUO2, LG-UA |  |  |  |  |  |  |
|            | 52318.4627                   | 0.0001 | II   | BV     | AUO2, LG-MK |  |  |  |  |  |  |
|            | 52500.3167                   | 0.0003 | II   | BV     | AUO2, MK-LG |  |  |  |  |  |  |
|            | 52745.5027                   | 0.0001 | Ι    | BV     | AUO2, AT-MK |  |  |  |  |  |  |
|            | 52759.5605                   | 0.0001 | II   | UBV    | AUO2, AT-TE |  |  |  |  |  |  |

| Times of minima:  |                     |        |      |        |              |  |  |  |  |
|-------------------|---------------------|--------|------|--------|--------------|--|--|--|--|
| Star name         | Time of min.        | Error  | Type | Filter | Rem.         |  |  |  |  |
|                   | ${ m HJD}~2400000+$ |        |      |        |              |  |  |  |  |
| FG Hya            | 53445.4428          | 0.0003 | II   | BVR    | TUG1, GG-RK  |  |  |  |  |
| XX LMi            | 53474.4515          | 0.0003 | Ι    | BVR    | TUG1, US-NÖ  |  |  |  |  |
| DI Peg            | 52843.5166          | 0.0002 | Ι    | BV     | AUO2, LG-TE  |  |  |  |  |
| CU Sge            | 53169.4984          | 0.0002 | II   | BV     | AUO2, BG-ZM  |  |  |  |  |
| AU Ser            | 53215.3608          | 0.0002 | Ι    | BV     | AUO2, BG     |  |  |  |  |
| HD 65498          | 53446.4341          | 0.0002 | Ι    | BVR    | TUG1, YD-GG  |  |  |  |  |
|                   | 53448.4039          | 0.0002 | II   | BVR    | TUG1, YD-GG  |  |  |  |  |
| $BD+42\ 2782$     | 54215.5055          | 0.0000 | II   | BVR    | TUG2, DC-BE  |  |  |  |  |
|                   | 54216.4314          | 0.0001 | Ι    | BR     | TUG2, DC-BE  |  |  |  |  |
| GSC 1174-0344     | 54045.4107          | 0.0002 | Ι    | BVR    | TUG2, GG-GGl |  |  |  |  |
|                   | 54046.3821          | 0.0002 | II   | BVR    | TUG2, GG-GGl |  |  |  |  |
| $GSC \ 2765-0348$ | 53302.3008          | 0.0003 | II   | BVR    | TUG1, NÖ-GS  |  |  |  |  |
|                   | 53302.4426          | 0.0002 | Ι    | BVR    | TUG1, NÖ-GS  |  |  |  |  |
|                   | 53302.5844          | 0.0003 | II   | VR     | TUG1, NÖ-GS  |  |  |  |  |
| GSC 2751-1007     | 53300.4014          | 0.0002 | Ι    | BVR    | TUG1, NÖ-GS  |  |  |  |  |
|                   | 53301.2365          | 0.0001 | Ι    | BVR    | TUG1, NÖ-GS  |  |  |  |  |
|                   | 53301.4443          | 0.0001 | II   | BVR    | TUG1, NÖ-GS  |  |  |  |  |

# Explanation of the remarks in the table:

Remark gives observatory and the observers as BG: B. Gürol, ZM: Z. Müyesseroğlu, SOS: S.O. Selam, FFÖ: F.F. Özeren, GK: G. Kahraman, BA: B. Albayrak, AA: A. Akalın, HD: H. Dündar, FE: F. Ekmekçi, LG: L. Gürdemir, MK: M. Kırca, UA: U. Akçay, AT: A. Tunç, TE: T. Elmas, GG: G. Gökay, GGl: G. Gülnaz, NÖ: N. Özbek, RK: R. Kalcı, US: U. Sağır, YD: Y. Demircan, GS: G. Salman, DÇ: D. Çoker, BE: B. Eminoğlu.

### **Remarks**:

The times of minima are weighted averages from all filters observed.

References:

- Hardie, R., 1962, Astr. Tech.: Stars and Stellar Systems, Vol. II, Univ. of Chicago Press, Chicago
- Kwee, K. K., & van Woerden, H., 1956, Bull. Astron. Inst. Neth., 12, 327.

Number 5792

Konkoly Observatory Budapest 28 August 2007 *HU ISSN 0374 - 0676* 

### UBVRI PHOTOMETRY OF DX And: THE 2006 OUTBURST

SPOGLI, C.<sup>1,2</sup>; FIORUCCI, M.<sup>1</sup>; ROCCHI, G.<sup>2</sup>; CAPEZZALI, D.<sup>1,2</sup>

<sup>1</sup> Physics Department, University of Perugia, Via A. Pascoli, 06123 Perugia, Italy

<sup>2</sup> Porziano Astronomical Observatory, Via Santa Chiara 2, Assisi, Italy

The dwarf nova DX And is one of the few cataclysmic variables with the orbital period length near the upper limit of the range (10.6 hours), together with an exceptional long cycle length (270-330 days), a secondary star probably evolved off the main sequence, and a very low mass-transfer rate (Šimon, 2000). For all these reasons, DX And can be considered representative of the upper limit of the distribution of dwarf novae, and a detailed study of its activity can help to constrain theoretical models. Nevertheless, only a few outbursts have been studied in detail, and rarely with multi-colors photometry (see Šimon 2000 for an overview of the scarce database available in literature).

In the contest of a long-term variability study of a sample of dwarf novae, we are monitoring DX And since 1994 and we have already obtained photometric data in the  $BVR_CI_C$  bands during two outbursts, in 1994 and 2005 (Spogli et al., 1998, 2006). In this brief paper we present the results of our observations done in 2006, that includes also the U broad band together with the usual  $BVR_CI_c$  Johnson-Cousins filters. These are the firsts U data during the rise and the maximum of the outburst, since we know only two other data reported in literature obtained during the descending phase (Echevarria, 1984). The telescope we used was a 0.30-m f/6.5 Schmidt-Cassegrain reflector, equipped with an AP-32ME CCD camera (Kodak 3200-ME, 2184×1470 pixels) and Schuler  $UBVR_CI_C$ filters, located on Mt. Subasio, Assisi (PG), Italy. The exposure time was 120-600 s depending on the brightness of the object and the filter used. The frames were first corrected for bias and flat-field, and then processed by a PC-based aperture photometry package developed by one of the authors using DAOPHOT routines (Stetson, 1987).

All the data here reported were obtained in differential photometry using the photometric comparison sequence around DX And tabulated in Table 1. The  $UBVR_CI_C$ magnitudes have been calibrated with CCD observations obtained in July-August 2006 during three different photometric nights with respect to a selected sample of standard stars (Landolt 1983, 1992). Color transformation equations were characterized by slopes always within the margins 0.9–1.1. The photometric stability of the comparison stars can be guaranteed for C1 and C2 because they have been checked by repeated observations since 1994 (Spogli et al., 1998), while for the other stars we can only say that they were stable during the four months reported in this paper.

DX And has been monitored from July 23 to November 15, for a total of 40 different nights (Table 2). During the minimum we used only the  $R_C$  broad-band, because we already knew that in quiescence the emission of DX And is dominated by the secondary star (Spogli et al., 2006). Our data confirm that in this phase of activity the  $R_C$  magnitude oscillate between 14.4 and 14.6, probably ellipsoidal variations superimposed to additional variability, a typical pattern for long-period cataclysmic binaries (Hilditch, 1995). The precedent outburst occurred at the end of September 2005 (Spogli et al., 2006), so our aim was to observe the rise to the new outburst with the  $UBVR_CI_C$  filters, and the outburst effectively went up at the middle of September 2006 (Fig. 1). We obtained data in all the photometric range during the rise up to the maximum, observed in the night of September 23. Unfortunately, soon after the outburst we were not able to use the U filter for technical problems, so we followed the decline with the  $BVR_CI_C$  bands.

Fig. 2 shows the spectral flux distribution of DX And during the rise. The magnitudes have been converted in  $f(\lambda)$  using the flux calibrations reported by Bessell (2000). The increasing rate is more or less the same in all the filters, with the remarkable exception in the U, where the brightness continues to increase when in the other bands the maximum is already reached. This feature is quite common in outside-in outbursts, i.e. when the thermal instability (that gives rise to the outburst) starts in the outer part of the accretion disk and propagates inwards, producing an asymmetric light curve with a rapid rise and slow decay. The figure shows the progressive increase of the disk emission, theoretically represented - in a first approximation - as a power-law  $f(\lambda) \propto \lambda^{-7/3}$ , during the final steps of the outburst.



Figure 1.  $R_C$  light curve of DX And in July–October 2006. The maximum occurred in Sept.23

|    | Table 1. Magnitudes and then errors for the stars in the photometric sequence. |                        |                 |                    |                    |                    |                    |                    |  |  |  |
|----|--------------------------------------------------------------------------------|------------------------|-----------------|--------------------|--------------------|--------------------|--------------------|--------------------|--|--|--|
| Id | GSC id                                                                         | $\mathbf{R}\mathbf{A}$ | DEC             | U                  | В                  | V                  | $R_C$              | $I_C$              |  |  |  |
|    | 03242 -                                                                        | (J2000)                |                 |                    |                    |                    |                    |                    |  |  |  |
| C1 | 00510                                                                          | $23 \ 29 \ 42.7$       | $+43 \ 45 \ 42$ | $13.65 {\pm} 0.07$ | $13.42 {\pm} 0.04$ | $12.72{\pm}0.03$   | $12.26 {\pm} 0.03$ | $11.90 {\pm} 0.03$ |  |  |  |
| C2 | 00216                                                                          | $23 \ 29 \ 50.5$       | +43 44 49       | $13.98 {\pm} 0.07$ | $13.90 {\pm} 0.04$ | $13.33{\pm}0.03$   | $12.95 {\pm} 0.03$ | $12.64 {\pm} 0.03$ |  |  |  |
| C3 | 00856                                                                          | $23 \ 30 \ 01.2$       | +43 48 41       | $13.4{\pm}0.1$     | $12.71 {\pm} 0.05$ | $11.68 {\pm} 0.04$ | $11.10 {\pm} 0.04$ | $10.58{\pm}0.04$   |  |  |  |
| C4 | 00562                                                                          | $23 \ 29 \ 40.2$       | $+43 \ 50 \ 04$ | $13.2{\pm}0.1$     | $12.21 {\pm} 0.05$ | $11.03 {\pm} 0.04$ | $10.36 {\pm} 0.04$ | $9.84 {\pm} 0.04$  |  |  |  |
| C5 | 00990                                                                          | $23\ 29\ 24.5$         | $+43 \ 43 \ 27$ | $12.6 {\pm} 0.1$   | $12.58 {\pm} 0.05$ | $12.12{\pm}0.04$   | $11.80 {\pm} 0.04$ | $11.55 {\pm} 0.04$ |  |  |  |

Table 1: Magnitudes and their errors for the stars in the photometric sequence.

Table 2:  $UBVR_CI_C$  magnitudes of DX And during the 2006 outburst

| UT date    | J.D.      | U                  | B                  | V                  | $R_C$              | $I_C$              |
|------------|-----------|--------------------|--------------------|--------------------|--------------------|--------------------|
|            | 2453000 + |                    |                    |                    |                    |                    |
| 23/07/2006 | 939.534   |                    |                    |                    | $14.60 {\pm} 0.02$ |                    |
| 27/07/2006 | 944.401   |                    |                    |                    | $14.58 {\pm} 0.02$ |                    |
| 30/07/2006 | 947.378   |                    |                    |                    | $14.48 {\pm} 0.03$ |                    |
| 04/08/2006 | 952.359   |                    |                    |                    | $14.63 {\pm} 0.02$ |                    |
| 05/08/2006 | 953.391   |                    |                    |                    | $14.52{\pm}0.02$   |                    |
| 15/08/2006 | 963.369   |                    |                    |                    | $14.67 {\pm} 0.03$ |                    |
| 18/08/2006 | 966.354   |                    |                    |                    | $14.45 {\pm} 0.02$ |                    |
| 21/08/2006 | 969.335   |                    |                    |                    | $14.47 {\pm} 0.02$ |                    |
| 24/08/2006 | 972.353   |                    |                    |                    | $14.55 {\pm} 0.01$ |                    |
| 27/08/2006 | 975.329   |                    |                    |                    | $14.51 {\pm} 0.01$ |                    |
| 02/09/2006 | 981.325   |                    |                    |                    | $14.43 {\pm} 0.02$ |                    |
| 03/09/2006 | 982.327   |                    |                    |                    | $14.62 {\pm} 0.02$ |                    |
| 05/09/2006 | 984.352   |                    |                    |                    | $14.45 {\pm} 0.05$ |                    |
| 06/09/2006 | 985.375   |                    |                    |                    | $14.67 {\pm} 0.03$ |                    |
| 07/09/2006 | 986.343   |                    |                    |                    | $14.58 {\pm} 0.03$ |                    |
| 10/09/2006 | 989.316   |                    |                    |                    | $14.55 {\pm} 0.02$ |                    |
| 11/09/2006 | 990.335   |                    |                    |                    | $14.50 {\pm} 0.02$ |                    |
| 13/09/2006 | 992.342   |                    |                    |                    | $14.39 {\pm} 0.02$ |                    |
| 15/09/2006 | 994.345   |                    |                    |                    | $14.38{\pm}0.03$   |                    |
| 19/09/2006 | 998.371   | $12.70 {\pm} 0.10$ | $13.31 {\pm} 0.03$ | $13.12 {\pm} 0.03$ | $12.91 {\pm} 0.02$ | $12.80 {\pm} 0.06$ |
| 20/09/2006 | 999.305   | $12.38{\pm}0.08$   | $12.94 {\pm} 0.03$ | $12.79 {\pm} 0.02$ | $12.62 {\pm} 0.02$ | $12.49 {\pm} 0.03$ |
| 21/09/2006 | 1000.304  | $12.05 {\pm} 0.03$ | $12.60 {\pm} 0.08$ | $12.53 {\pm} 0.03$ | $12.33 {\pm} 0.03$ | $12.23 {\pm} 0.02$ |
| 22/09/2006 | 1001.309  | $11.75 {\pm} 0.05$ | $12.28 {\pm} 0.04$ | $12.21 {\pm} 0.02$ | $12.05 {\pm} 0.02$ | $11.97 {\pm} 0.03$ |
| 23/09/2006 | 1002.309  | $11.58 {\pm} 0.10$ | $12.23 {\pm} 0.03$ | $12.14{\pm}0.03$   | $11.95 {\pm} 0.03$ | $11.85 {\pm} 0.02$ |
| 24/09/2006 | 1003.336  |                    | $12.40 {\pm} 0.04$ | $12.21{\pm}0.04$   | $12.05 {\pm} 0.03$ | $11.92 {\pm} 0.02$ |
| 29/09/2006 | 1008.306  |                    | $12.54 {\pm} 0.03$ | $12.39 {\pm} 0.02$ | $12.19{\pm}0.02$   | $12.00 {\pm} 0.03$ |
| 30/09/2006 | 1009.284  |                    | $12.66 {\pm} 0.05$ | $12.45 {\pm} 0.02$ | $12.23{\pm}0.03$   | $12.09 {\pm} 0.03$ |
| 06/10/2006 | 1015.376  |                    | $14.73 {\pm} 0.03$ | $14.33 {\pm} 0.02$ | $14.03 {\pm} 0.02$ | $13.68 {\pm} 0.01$ |
| 08/10/2006 | 1017.288  |                    | $15.59 {\pm} 0.03$ | $14.77 {\pm} 0.02$ | $14.29 {\pm} 0.02$ | $13.77 {\pm} 0.03$ |
| 13/10/2006 | 1022.321  |                    |                    |                    | $14.45 {\pm} 0.02$ |                    |
| 14/10/2006 | 1023.278  |                    |                    |                    | $14.54{\pm}0.02$   |                    |
| 15/10/2006 | 1024.298  |                    |                    |                    | $14.53 {\pm} 0.03$ |                    |
| 27/10/2006 | 1036.305  |                    |                    |                    | $14.52 {\pm} 0.03$ |                    |
| 28/10/2006 | 1037.391  |                    |                    |                    | $14.60 {\pm} 0.03$ |                    |
| 29/10/2006 | 1038.227  |                    |                    |                    | $14.52 {\pm} 0.02$ |                    |
| 02/11/2006 | 1042.337  |                    |                    |                    | $14.51 {\pm} 0.03$ |                    |
| 03/11/2006 | 1043.267  |                    |                    |                    | $14.49 {\pm} 0.02$ |                    |
| 10/11/2006 | 1050.383  |                    |                    |                    | $14.54{\pm}0.03$   |                    |
| 14/11/2006 | 1054.302  |                    |                    |                    | $14.51 {\pm} 0.01$ |                    |
| 15/11/2006 | 1055.295  |                    |                    |                    | $14.52{\pm}0.04$   |                    |



Figure 2. Spectral flux distribution of DX And during the rise to the outburst. The data have been obtained during the nights of September 19 (circle), 20 (diamond), 21 (triangle), 22 (cross) and 23 (box). The dotted line represents a generic power-law function  $f(\lambda) \propto \lambda^{-7/3}$ .

References:

Bessell, M., 2000, Magnitude Scales and Photometric Systems, in "Encyclopedia of Astronomy and Astrophysics", P. Murdin (Ed.), Bristol Inst. of Physics Publishing Echevarria, J., 1984, Rev. Mex. Astron. Astrofis., 9, 99 Hilditch, R.W., 1995, MNRAS, 273, 675 Landolt, A.U., 1983, AJ, 88, 439 Landolt, A.U., 1992, AJ, 104, 340 Šimon, V., 2000, A&A, 364, 694 Spogli, C., Fiorucci, M., Tosti, G., 1998, A&AS, 130, 485 Spogli, C., Fiorucci, M., Capezzali, D., et al., 2006, IBVS, 5716 Stetson, P.B., 1987, PASP, 99, 191

Number 5793

Konkoly Observatory Budapest 29 August 2007 *HU ISSN 0374 - 0676* 

### MULTICOLOUR CCD PHOTOMETRY OF THREE RRab STARS

SÓDOR, Á.<sup>1</sup>; JURCSIK, J.<sup>1</sup>; NAGY, I.<sup>2</sup>; VÁRADI, M.<sup>1</sup>; DÉKÁNY, I.<sup>1</sup>; VIDA, K.<sup>2,4</sup>; HURTA, ZS.<sup>2,4</sup>; POSZTOBÁNYI, K.<sup>2</sup>; VITYI, N.<sup>2</sup>; SZING, A.<sup>3</sup>; DOBOS, V.<sup>2</sup>; KUTI, A.<sup>2</sup>

<sup>1</sup> Konkoly Observatory of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest, Hungary; e-mail: sodor@konkoly.hu

<sup>2</sup> Eötvös Loránd University, Department of Astronomy, P.O. Box 32, H-1518 Budapest, Hungary

<sup>3</sup> University of Szeged, Dept. of Exp. Physics and Astron. Obs., H-6720 Szeged, Dóm tér 9, Hungary

<sup>4</sup> Visiting Astronomer, Konkoly Observatory of the Hungarian Academy of Sciences

We present multicolour CCD photometric observations of the three monoperiodic fundamental mode RR Lyrae variables BK Cas, EZ Cep, and ET Per. These stars were targets of our survey of brighter, northern, short period fundamental mode RR Lyrae variables (Sódor, 2007). The observations of all the three stars span two seasons, that is about 200-400 days. During these intervals none of them showed light curve variation exceeding our photometric accuracy which was somewhat less than 0.01 mag. Our light curves consist typically of 350-600 data points in each band.

Earlier photometric observations of BK Cas were published by Goranskij et al. (1973) and Schmidt & Seth (1996). NSVS (Wozniak et al., 2004) and Hipparcos (ESA, 1997) photometry is available of EZ Cep. ET Per was observed by Schmidt & Reiswig (1993) and by the NSVS (Wozniak et al., 2004). The few number of data points and/or the large errors of these observations do not allow to study the light curve stability of these variables and provide Fourier parameters only with large uncertainty.

Our observations were made with the 60 cm automatic telescope of Konkoly Observatory, Svábhegy, Budapest, equipped with a Wright 750x1100 CCD camera using  $BVI_{\rm C}$ filters. ET Per was also observed with a Photometrics AT 200 CCD camera and  $BVR_{\rm C}I_{\rm C}$ filters attached to the 60/90 cm Schmidt telescope of Konkoly Observatory, Piszkéstető mountain station. Log of observations are summarized in Table 1.

| $\operatorname{Star}$ | Comparison         | $V_{ m comp}$ * | Observation period | No. of nights | $\operatorname{filters}$ | telescope                |
|-----------------------|--------------------|-----------------|--------------------|---------------|--------------------------|--------------------------|
|                       |                    | [mag]           |                    |               |                          |                          |
| BK Cas                | GSC 4025-01395     | 12.74           | 2453991 - 2454328  | 11            | $VI_{ m C}$              | $60\mathrm{cm}$          |
| EZ Cep                | $GSC \ 4521-00784$ | 13.63           | 2453964 - 2454166  | 26            | $BVI_{\rm C}$            | $60\mathrm{cm}$          |
| ET Per                | GSC 3671-01241     | 11.90           | 2453728 - 2453751  | 4             | $BVR_{ m C}I_{ m C}$     | $\operatorname{Schmidt}$ |
| ET Per                | $GSC \ 3671-01241$ | 11.90           | 2453988 - 2454171  | 8             | $BVI_{\rm C}$            | $60\mathrm{cm}$          |

#### Table 1. Log of observations

\* V magnitudes of the comparison stars from the NOMAD catalogue (Zacharias et al., 2004).

CCD reduction and photometry was performed using standard IRAF<sup>†</sup>packages. Instrumental magnitudes were transformed to the standard  $BVR_{\rm C}I_{\rm C}$  system by observing photometric standards in M67 (Chevalier & Ilovaisky, 1991) with both telescopes.

<sup>&</sup>lt;sup>†</sup>IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.



Figure 1. Differential V and  $V - I_{\rm C}$  light and colour curves of BK Cas.

Our photometric data available electronically from the IBVS website (5793-t5.txt-5793-t16.txt) list the relative  $BVR_{\rm C}I_{\rm C}$  magnitude and relative  $B-V, V-R_{\rm C}$  and  $V-I_{\rm C}$  colour time series with respect to the comparison stars. The constancy of the brightness of the comparisons was checked by measuring magnitude differences to several check stars in our field of view. The *r.m.s.* scatter of these data is between 0.006 and 0.01 mag in each band in accordance with the *r.m.s.* scatter of the Fourier fit of the light curves of the variables. The V light curves and the colour curves of the three stars are plotted in Figs. 1-3.

Fourier parameters of the V light curves are listed in Table 2. Normal and discrete maximum timings are given in Table 3.

Spectroscopic [Fe/H] values from the literature (transformed to the metallicity scale used by Jurcsik & Kovács, 1996) and [Fe/H] calculated from the Fourier parameters according to the formula derived in Jurcsik & Kovács (1996) are given in Table 4. The

| $\operatorname{Star}$ | P              | $A_1$ | $R_{21}$ | $R_{31}$ | $R_{41}$ | $R_{51}$ | $\phi_{21}^{\ *}$ | $\phi_{31}$ * | $\phi_{41}$ * | $\phi_{51}$ * |
|-----------------------|----------------|-------|----------|----------|----------|----------|-------------------|---------------|---------------|---------------|
|                       | $[\mathbf{d}]$ | [mag] |          |          |          |          | [rad]             | [rad]         | [rad]         | [rad]         |
| BK Cas                | 0.3902700(2)   | 0.306 | 0.539    | 0.301    | 0.167    | 0.095    | 2.612             | 5.461         | 1.978         | 4.647         |
| EZ Cep                | 0.3790035(1)   | 0.393 | 0.572    | 0.349    | 0.231    | 0.137    | 2.431             | 5.266         | 1.675         | 4.421         |
| ET Per                | 0.3940135(1)   | 0.439 | 0.542    | 0.369    | 0.239    | 0.166    | 2.320             | 5.042         | 1.346         | 4.098         |

**Table 2.** Fourier parameters of the V light curves.

\* Phase differences are given according to sine term decomposition.



Figure 2. Differential V, B - V and  $V - I_{\rm C}$  light and colour curves of EZ Cep.



Figure 3. Differential  $V, B - V, V - R_{\rm C}$  and  $V - I_{\rm C}$  light and colour curves of ET Per.
metallicity of EZ Cep given by Mendes de Oliveira & Smith (1990) seems to be erroneous, as it differs significantly from the other two [Fe/H] determinations.

Table 3. Normal and discrete maximum timings of the V light curves.

| $\operatorname{Star}$ | $T_{ m max}$ - $2450000$ | type     |
|-----------------------|--------------------------|----------|
|                       | [HJD]                    |          |
| BK Cas                | 54019.4667               | Normal   |
|                       | 54327.1793               | Normal   |
| $\mathbf{EZ}$ Cep     | 54005.4023               | Normal   |
|                       | 54166.478                | Discrete |
| ET Per                | 53733.9048               | Normal   |
|                       | 54000.2585               | Normal   |
|                       | 54171.262                | Discrete |

Table 4. Spectroscopic and photometric [Fe/H] values.

| $\operatorname{Star}$ | $[{ m Fe}/{ m H}]_{ m phot}$ | $[{ m Fe}/{ m H}]_{ m spect}$ |
|-----------------------|------------------------------|-------------------------------|
| BK Cas                | +0.21                        |                               |
| EZ Cep                | 0.00                         | $-0.01^{a}$                   |
|                       |                              | $-0.92^{b}$                   |
| ET Per                | -0.38                        |                               |
| a: Fernley            | & Barnes (199'               | 7)                            |
| b: Mendes             | de Oliveira & S              | Smith(1990)                   |

We thank Béla Szeidl for his many helpful comments on this work. The financial support of OTKA grants T-048961, and T-068626 is acknowledged.

#### References:

Chevalier, C. & Ilovaisky, S.A., 1991, A&A Suppl. Ser., 90, 225
ESA, 1997, The Hipparcos Catalogue, ESA SP-1200
Fernley, J. & Barnes, T.G., 1997, A&AS, 125, 313
Goranskij, V.P., Kazarovets, E.V. & Shugarov, S.Y., 1973, PZP, 1, 477
Jurcsik, J., & Kovács, G., 1996, A&A, 312, 111
Mendes de Oliveira, C. & Smith, H.A., 1990, PASP, 102, 652
Schmidt, E.G. & Reiswig, D.E., 1993, AJ, 106, 2429
Schmidt, E.G. & Seth, A., 1996, AJ, 112, 2769
Sódor, Á, 2007, AN, in press, arXiv/0704.3341
Wozniak, P. R. et al., 2004, AJ, 127, 2436
Zacharias, N., Monet, D.G., Levine et al., 2004, AAS, 205, 4815

#### ERRATUM FOR IBVS 5793

In IBVS 5793 Table 3 the 2nd line on the maximum timings of BK Cas gives erroneous  $T_{\text{max}}$  value. This line should correctly be: "BK Cas 54321.1434 normal".

Number 5794

Konkoly Observatory Budapest 3 September 2007 *HU ISSN 0374 - 0676* 

#### DISCOVERY OF RAPID OSCILLATIONS IN HD 218994

GONZÁLEZ, J. F.<sup>1</sup>; HUBRIG, S.<sup>2</sup>; SAVANOV, I.<sup>3</sup>

<sup>1</sup> Complejo Astronómico El Leoncito, Casilla 467, 5400 San Juan, Argentina; e-mail: fgonzalez@casleo.gov.ar

 $^2$  European Southern Observatory, Casilla 19001, Santiago, Chile

<sup>3</sup> Armagh Observatory, College Hill, Armagh, BT61 9DG, Northern Ireland

Asteroseismology has the potential to provide new insights into the physics of stellar interiors. Among the most promising objects that can be studied through this technique are the rapidly oscillating Ap (roAp) stars. These pulsate in high-overtone, low-degree, nonradial p-modes, with periods in the range 6-21 min. Our previous study (Hubrig et al., 2000) discussed the relationship between the roAp stars and the non-oscillating Ap (noAp) stars and concluded that the noAp stars are, in general, slightly more evolved than the roAp stars. The Ap Sr star HD 218994 was checked photometrically for the presence of rapid oscillations in the Cape Survey, but no oscillations have been detected by Martinez & Kurtz. This star was previously included in the sample of non-pulsating binary Ap stars studied by Hubrig et al. (2000). We have been granted one hour of UVES high time resolution observations of this star at ESO VLT on Cierro Paranal on November 15, 2006 and were able to obtain 15 spectra with exposure times of 3 min and a sampling of 3.7 min, taking into account the CCD readout time. To search for pulsational line variability, we calculated the average spectrum of the observed 15 spectra and subtracted it from the original spectra. In Fig. 1 we present the behaviour of the spectral profile of the Nd III line at  $\lambda$  6327 and its standard deviations. Similar variations were also found for the Pr III lines at  $\lambda$  6053 and  $\lambda$  6090.

It was already shown in numerous studies that rare elements have higher amplitudes in roAp stars compared to lines of Fe-peak elements (e.g. Kurtz, Elkin & Mathys 2005). We also note that the mean RV for different elements is different, indicating the presence of chemical inhomogeneities on the stellar surface. Our analysis of RV variations of the Nd III line indicates two pulsation periods: one period of 5.1 min with an amplitude of 516 m/s and another one of 13.9 min and an amplitude of 497 m/s. It is very likely that one of these peaks is an alias. The amplitude spectrum of the radial velocity variations is presented in Fig. 2.

We note that a longer time series with better temporal resolution is needed for a careful identification of the principal frequency and a search for the presence of other pulsation frequencies. To confirm the detected spectroscopic variation period, we searched for a periodicity in the photometric data using Hipparcos and ASAS photometric databases. Indeed, also the photometric data show a sinusoidal variation with a period identical to the spectroscopic period, P=5.1 min, and an amplitude of 0.005 mag. In Fig. 3 we present both the RV variations of the Nd III line and the ASAS light curve.

The star HD 218994 becomes now the 36th star known to be a roAp star.



Figure 1. The behaviour of the profile of the Nd III line at  $\lambda$  6327. In the top part we present the standard deviation and in the bottom the observed variations of this line.



Figure 2. The amplitude spectrum of the radial velocity variations of the Nd III line at  $\lambda$  6327.



Figure 3. RV curve of the Nd III line at  $\lambda$  6327 (upper panel) and photometric data from the ASAS database phased with the period P=5.1 min (lower panel).

References:

Hubrig, S., Kharchenko, N. Mathys, G., North, P., 2000, A&A, **355**, 1031 Kurtz, D.W., Elkin, V.G., Mathys, G., 2006, MNRAS, **370**, 1274 Martinez, P., Kurtz, D.W., 1994, MNRAS, **271**, 129

Number 5795

Konkoly Observatory Budapest 17 September 2007 *HU ISSN 0374 - 0676* 

## NEW TIMES OF MINIMA OF SOME ECLIPSING BINARY STARS

DOĞRU, S. S.; DOĞRU, D.; DÖNMEZ, A.

Department of Physics, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University and Çanakkale Onsekiz Mart University Observatory, Terzioğlu Campus, TR-17100, Çanakkale, Turkey; e-mail: dogru@comu.edu.tr

 Observatory and telescope:

 30-cm Cassegrain-Schmidt telescope of the Çanakkale University Observatory

| Detector: | -ST237 camera, Peltier cooling, TC237 chip, $11' \times 8'$ FOV, |
|-----------|------------------------------------------------------------------|
|           | $640 \times 480$ pixels, (QUG301).                               |
|           | -ST10XME camera, Peltier cooling, KAF 3200ME chip,               |
|           | $17' \times 12'$ FOV, $2184 \times 1472$ pixels, (ÇUG302).       |

| Method of data reduction:                                                   |  |
|-----------------------------------------------------------------------------|--|
| Reduction of the CCD frames was made with C-MUNIPACK <sup>1</sup> software. |  |

#### Method of minimum determination:

Kwee – van Woerden method (Kwee & van Woerden, 1956).

| Times of minima: |                     |        |      |              |          |  |
|------------------|---------------------|--------|------|--------------|----------|--|
| Star name        | Time of min.        | Error  | Type | Filter       | Rem.     |  |
|                  | ${ m HJD}~2400000+$ |        |      |              |          |  |
| SX Aur           | 54084.3175          | 0.0007 | Ι    | С            | ÇUG301   |  |
| ZZ Aur           | 54184.2922          | 0.0002 | Ι    | $\mathbf{C}$ | m CUG301 |  |
| GX Aur           | 54116.3510          | 0.0003 | Ι    | $\mathbf{C}$ | ÇUG301   |  |
| TU Boo           | 54211.4025          | 0.0002 | Ι    | $\mathbf{C}$ | ÇUG301   |  |
| TZ Boo           | 54198.4612          | 0.0002 | Ι    | $\mathbf{C}$ | ÇUG301   |  |
| VW Boo           | 54201.4855          | 0.0002 | II   | $\mathbf{C}$ | ÇUG301   |  |
| BI CVn           | 54184.4517          | 0.0008 | Ι    | $\mathbf{C}$ | ÇUG301   |  |
|                  | 54211.3464          | 0.0002 | Ι    | $\mathbf{C}$ | ÇUG301   |  |
| XZ CMi           | 54085.4095          | 0.0009 | Ι    | $\mathbf{C}$ | ÇUG301   |  |
|                  | 54184.3868          | 0.0003 | Ι    | С            | ÇUG301   |  |

 $<sup>^{1}</sup>Motl,\,D.,\,2004,\,C\text{-}MUNIPACK,\,\texttt{http://integral.sci.muni.cz/cmunipack/}$ 

| Times of minima: |              |        |      |              |                            |  |
|------------------|--------------|--------|------|--------------|----------------------------|--|
| Star name        | Time of min. | Error  | Type | Filter       | Rem.                       |  |
|                  | HJD 2400000+ |        |      |              |                            |  |
| BS Cas           | 54074.2906   | 0.0005 | II   | С            | ÇUG301                     |  |
| V366 Cas         | 54086.4929   | 0.0008 | Ι    | С            | m CUG301                   |  |
| V389 Cas         | 54076.5044   | 0.0008 | Ι    | С            | m CUG301                   |  |
|                  | 54161.3283   | 0.0005 | Ι    | $\mathbf{C}$ | m CUG301                   |  |
| V523 Cas         | 54086.4499   | 0.0001 | Ι    | $\mathbf{C}$ | m CUG301                   |  |
| VW Cep           | 54076.3909   | 0.0012 | Ι    | $\mathbf{C}$ | m CUG301                   |  |
| WZ Cep           | 54086.2622   | 0.0003 | II   | $\mathbf{C}$ | m CUG301                   |  |
| BE Cep           | 54086.3805   | 0.0002 | Ι    | $\mathbf{C}$ | $\overline{\text{CUG301}}$ |  |
| EG Cep           | 54067.4001   | 0.0003 | Ι    | $\mathbf{C}$ | ÇUG301                     |  |
| _                | 54213.3582   | 0.0001 | Ι    | С            | ÇUG301                     |  |
| GI Cep           | 54086.3182   | 0.0003 | Ι    | $\mathbf{C}$ | $\overline{\text{CUG301}}$ |  |
| GW Cep           | 54211.2857   | 0.0002 | II   | С            | ÇUG301                     |  |
| RW Com           | 54201.4419   | 0.0002 | Ι    | С            | ÇUG301                     |  |
| RZ Com           | 54201.5286   | 0.0002 | II   | С            | ÇUG301                     |  |
| CC Com           | 54198.3907   | 0.0001 | Ι    | $\mathbf{C}$ | ÇUG301                     |  |
|                  | 54213.3979   | 0.0003 | Ι    | $\mathbf{C}$ | $\overline{\text{CUG301}}$ |  |
| TW CrB           | 54213.4330   | 0.0002 | II   | $\mathbf{C}$ | $\overline{\text{CUG301}}$ |  |
| YY Eri           | 54067.4528   | 0.0002 | II   | С            | ÇUG301                     |  |
| DF Hya           | 54161.4093   | 0.0001 | Ι    | $\mathbf{C}$ | $\overline{\text{CUG301}}$ |  |
| SW Lac           | 54067.3324   | 0.0004 | II   | $\mathbf{C}$ | $\overline{\text{CUG301}}$ |  |
| UZ Leo           | 54255.3401   | 0.0003 | Ι    | V            | $\overline{\text{CUG302}}$ |  |
| AP Leo           | 54211.4842   | 0.0004 | II   | С            | ÇUG301                     |  |
| FZ Ori           | 54117.2571   | 0.0005 | Ι    | С            | ÇUG301                     |  |
| RZ Tau           | 54111.3552   | 0.0002 | II   | С            | ÇUG301                     |  |
|                  | 54138.3745   | 0.0002 | II   | С            | ÇUG301                     |  |
| EQ Tau           | 54116.4222   | 0.0003 | Ι    | $\mathbf{C}$ | ÇUG301                     |  |
| BM UMa           | 54211.4417   | 0.0002 | Ι    | $\mathbf{C}$ | CUG301                     |  |

#### **Remarks:**

We present 37 minima times of 31 eclipsing binaries. In the Remarks column of Times of Minima table, telescopes used in the observations are given.

# Acknowledgements:

This work was partly supported by the Research Found of Çanakkale Onsekiz Mart University.

# Reference:

Kwee, K. K., & van Woerden, H., 1956, Bull. Astron. Inst. Neth., 12, 327.

Number 5796

Konkoly Observatory Budapest 18 September 2007 *HU ISSN 0374 - 0676* 

# MINIMA TIMES FOR SELECTED CLOSE BINARY STARS

KRUSPE, R.; SCHUH, S.; TRAULSEN, I.

Institute of Astrophysics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany; e-mail: schuh@astro.physik.uni-goettingen.de

# Observatory and telescope:

50cm LOMO Cassegrain N 274 500 f/10 telescope, University of Göttingen, Physics building (51° 33′ 38″.5 N, 09° 56′ 41″.3 E, elevation 201 m)

| Detector: | SBIG STL-6303E, KAF-6303E chip, Peltier cooling,   |
|-----------|----------------------------------------------------|
|           | $18.9 \times 12.6$ FOV, $3072 \times 2048$ pixels. |

## Method of data reduction:

Reduction of the CCD frames was made with the custom-made  $IDL^1$  aperture photometry package TRIPP (Schuh et al. 2003).

## Method of minimum determination:

The minima times were determined with a linear combination of a Gaussian and a quadratic function.

| Times of minima:           |              |        |         |                        |                     |  |
|----------------------------|--------------|--------|---------|------------------------|---------------------|--|
| Star name                  | Time of min. | Error  | Type    | Filter                 | Rem.                |  |
|                            | HJD 2400000+ |        |         |                        |                     |  |
| PX And                     | 53752.3519   | 0.0018 | Ι       | V                      | RDD; TMA            |  |
|                            | 53759.3799   | 0.0011 | Ι       | V                      | DJ; WS              |  |
|                            | 54085.3082   | 0.0014 | Ι       | $\mathbf{R}$           | AR; GS; HT; WA      |  |
|                            | 54085.4551   | 0.0014 | Ι       | $\mathbf{R}$           | AR; GS; HT; WA      |  |
| EX Dra                     | 53863.5422   | 0.0023 | Ι       | $\mathbf{R}$           | BB; BP              |  |
|                            | 53896.5007   | 0.0014 | Ι       | $\mathbf{R}$           | HI; KR              |  |
|                            | 53899.4405   | 0.0013 | Ι       | $\mathbf{R}$           | BrS; DT; TI         |  |
| $\operatorname{HS0705+67}$ | 54126.4097   | 0.0011 | Ι       | $\mathbf{R}$           | BC; BeS; KN; KT; TI |  |
|                            | 54126.4580   | 0.0011 | II      | $\mathbf{R}$           | BC; BeS; KN; KT; TI |  |
|                            | 54126.5049   | 0.0011 | Ι       | $\mathbf{R}$           | BC; BeS; KN; KT; TI |  |
|                            | 54126.5533   | 0.0011 | II      | $\mathbf{R}$           | BC; BeS; KN; KT; TI |  |
|                            | 54126.6007   | 0.0024 | Ι       | R                      | BC; BeS; KN; KT; TI |  |
| AI Tri                     | 54049.4686   | 0.0011 | unknown | $\operatorname{clear}$ | TI; WS              |  |

<sup>1</sup>Interactive Data Language by http://www.ittvis.com

# Explanation of the remarks in the table:

Observers: AR = Anderson, R.; BB = Beeck, B.; BC = Bergmann, C.; BP = Bittihn, P.; BeS = Becker, S.; BrS = Brandert, S.; DD = Dauber, D.; DJ = Dobschinski J.; DT = Dabrowski T.; GS = Grünheit, S.; HI = Heinze, I.; HT = Hattermann, T.; KN = Kurz, N.; KR = Kruspe, R.; KT = Kresse, T.; NN = Nolte, N.; RDD = Röhrs, D.D.; TI = Traulsen, I.; TMA = Tyra, M.A.; WA = Wiesbaum, A.; WS = Wende, S. All observations (except for the AI Tri observation) were taken during the "Physikalisches Praktikum für Fortgeschrittene" under the supervision of S. Schuh.

## **Remarks:**

Exposure times were either 3 or 4 minutes. The time stamp uncertainty in the images was determined to be never any larger than 15 s. Typical photometric accuracies obtained were around 0.03 mag.

#### Acknowledgements:

We would like to thank K. Reinsch for providing technical support at the observatory whenever necessary, and S. Dreizler for having made possible this work.

Reference:

Schuh, S., Dreizler, S. Deetjen, J.L., Göhler, E., 2003, Baltic Astronomy, 12, 167

Number 5797

Konkoly Observatory Budapest 27 September 2007 *HU ISSN 0374 - 0676* 

# PHYSICAL PARAMETERS OF THE COMPONENTS OF THE VISUAL BINARY CCDM 11289–6256

KHALIULLIN, KH.F.<sup>1</sup>; KHALIULLINA, A.I.<sup>1</sup>; ANTIPIN, S.V.<sup>1,2</sup>, SAMUS, N.N.<sup>2,1</sup>

<sup>1</sup> Sternberg Astronomical Institute, 13, University Ave., 119992 Moscow, Russia

<sup>2</sup> Institute of Astronomy, Russian Academy of Sciences, 48, Pyatnitskaya Str., Moscow 119017, Russia; e-mail: antipin@sai.msu.ru, samus@sai.msu.ru

Recently (Fabricius et al., 2002), the star HD 99898 was discovered to be a visual binary (CCDM 11289–6256) with  $V_A=9^{m}9$ ,  $V_B=10^{m}3$ , and  $\rho = 0$ ".8. Somewhat earlier, it was found to be an eclipsing system with  $P = 5^{d}.048912$  (Pojmanski, 2000). Otero and Wils (2006) reported fast apsidal motion of the eclipsing binary's elliptic orbit, with the period  $U_{obs} = 135 \pm 10$  years.

Earlier the star, which is a member of the young association Cru OB1, was considered a single object. Its brightness variability was first noticed from outside-atmosphere ultraviolet observations by Wesselius et al. (1982), and it entered the Supplement to the NSV catalog as NSV 18773. From Strömgren and  $H_{\beta}$  photometry, Kaltcheva and Georgiev (1994) estimated the star's absolute parameters. However, the discovery of the star being a visual binary and of its eclipsing variability makes it necessary to revise the parameters determined earlier.

Figures 1 and 2 present the V-band and I-band light curves of NSV 18773, respectively from ASAS-3 (Pojmanski, 2002) and ASAS-2 (Pojmanski, 2000) data. To plot the curves, the phases of the observations near MinI and MinII were calculated with the same epoch, MinI = HJD 2452068.1717(22), which corresponds to the primary minimum epoch in the middle of the available observations, but with different periods,  $P_I$  and  $P_{II}$  respectively for MinI (phases between 0.75 and 0.25) and MinII (phases between 0.25 and 0.75), derived from our analysis of all the observations:

$$P_{\rm I} = 5.049164(10), \quad P_{\rm II} = 5.049833(12).$$

It appears from the figures that the V-band and I-band light curves are very similar and that the primary minimum is twice wider than the secondary one, evidencing a large orbital eccentricity. We determined the photometric elements from our analysis of these light curves applying the iterative method of differential corrections (Khaliullina and Khaliullin, 1984), they are presented in the figures using the standard notation. Table 1 contains the V- and I-band magnitudes of all the components of the system, found from the derived  $L_1$ ,  $L_2$ , and  $L_3$  and the combined outside-eclipse V and I magnitudes of the system. The physical parameters of the components computed from our photometric elements are collected in Table 2.

The following remarks to the tables are needed.

1. The contribution of the third light to the V-band and I-band light curves is the same,  $L_3 \equiv L_A = 0.61$  of the visual system's combined brightness. Thus, it is the fainter B component of the visual system that is the eclipsing binary,  $L_B \equiv L_1 + L_2 = 0.39$ .

2. The minima being shallow, the light curves do not permit to find the components' radius ratio precisely enough without additional assumptions. Thus we used the natural assumption that the components are of equal age. The ages of the components were determined by comparison of  $\log g_1$  and  $\log g_2$  to the stellar evolutionary models from Claret and Gimenez (1992).

3. Since it is the A component that mainly contributes to the system's light, the spectral type estimate Sp = O9V (Jaschek, 1978) must refer to this particular component. In such a case, we are able to estimate the spectral type of the primary of the eclipsing binary as  $\text{Sp}_1 = \text{B0V}$  and of its secondary, as  $\text{Sp}_2 = \text{B1V}$  from the V-magnitude differences of all the components (equivalent to the differences of their absolute magnitudes,  $M_V$ ) and the ratio of surface brightnesses,  $J_2/J_1$ .

4. No radial velocity curves were published for the system. We thus adopted  $M_1 = (20 \pm 1.5)M_{\odot}$  and  $T_1 = (31\,500 \pm 1\,500)$  K for Sp<sub>1</sub> = B0V, in agreement with the known empirical relations between stellar parameters. The rest of the absolute parameters in Table 2 are derived from  $M_1$ ,  $T_1$ , and the photometric elements.

5. The color excess,  $E_{B-V} = 0.5^{m}65$ , and the extinction,  $A_V = R \cdot E_{B-V} = 2.5^{m}02$  for R = 3.1, were calculated using the UBV magnitudes of HD 99898:  $V = 9.5^{m}35$ ,  $B-V = 0.5^{m}34$ ,  $U-B = -0.5^{m}63$  (Nicolet, 1978) and  $(B-V)_0 = -0.5^{m}31$  for Sp = O9V. IR photometry of HD 99898 is known from the 2MASS Point Source Catalog:  $J = 8.5^{m}421$ ,  $H = 8.5^{m}352$ , and  $K = 8.5^{m}287$ . The value R = 3.1 used to calculate  $A_V$  is based on the agreement of  $(V-K)_0^{obs}$  with the mean  $(V-K)_0 = -0.5^{m}90$  for OV and B0V stars.

The age we derive for the system,  $t = (2.8 \pm 0.5) \cdot 10^6$  years, is twice lower than that found by Kaltcheva and Georgiev (1994), whereas our distance to the system,  $d = (3.3 \pm 0.3)$  kpc, is larger by a factor of 1.5. This is obviously due to multiplicity of HD 99898 not taken into account in the cited paper.

With the derived parameters of the system, we can use the known theoretical relations (Kopal, 1978) and models of stellar evolution (Claret and Gimenez, 1992) to compute the theoretically expected apsidal-motion period:

$$U_{\rm th} = 169 \pm 15$$
 years.

 $U_{\rm th}$  somewhat exceeds  $U_{\rm obs} = 135 \pm 10$  years, as found in Otero and Wils (2006). To improve the system parameters, spectroscopic observations permitting to obtain the radial velocity curves and to determine the axial-rotation angular velocities of the components are needed.

This study was supported, in part, by a grant from the Russian Foundation for Basic Research (grant No. 05-02-16289) and by a grant from the "Origin and Evolution of Stars and Galaxies" Program of the Presidium of the Russian Academy of Sciences.

#### References:

Claret, A. and Gimenez, A., 1992, Astron. and Astrophys. Suppl. Ser., 96, 255
Fabricius, C., Høg, E., Makarov, V.V., et al., 2002, Astron. and Astrophys., 384, 180
Jaschek, M., 1978, Bull. Inform. CDS, 15, 121
Kaltcheva, N.T. and Georgiev, L.N., 1994, MNRAS, 269, 289
Khaliullina, A.I. and Khaliullin, Kh.F., 1984, Soviet Astronomy, 28, 228

- Kopal, Z., 1978, Dynamics of Close Binary Systems, Dordrecht: D. Reidel Publishing Co. Nicolet, B., 1978, Astron. and Astrophys. Suppl. Ser., 34, 1
- Otero, S., Wils, P., 2006, IBVS, No. 5680
- Pojmanski, G., 2000, Acta Astron., 50, 177
- Pojmanski, G., 2002, Acta Astron., 52, 397
- Wesselius, P.R., van Duinen, R.J., de Jonge, A.R.W., et al., 1982, Astron. and Astrophys. Suppl. Ser., 49, 427

Table 1. Magnitudes and spectral types of the components of the visual binary CCDM 11289-6256 (A + B), the eclipsing binary NSV 18773 (B = Pr + Sec), and the whole system of HD 99898 (A + Pr + Sec)

|                  | Α                          | B = Pr + Sec                | Primary                      | Secondary                   | HD 99898                   |
|------------------|----------------------------|-----------------------------|------------------------------|-----------------------------|----------------------------|
|                  |                            |                             |                              |                             | A + Pr + Sec               |
| V                | $9^{\mathrm{m}}_{\cdot}89$ | $10^{\mathrm{m}}_{\cdot}37$ | $10$ <sup>m</sup> $\cdot 80$ | $11^{\mathrm{m}}_{\cdot}58$ | $9^{\rm m}_{\cdot}35$      |
| Ι                | $9^{\mathrm{m}}_{\cdot}37$ | $9^{\rm m}_{\cdot}85$       | $10^{\mathrm{m}}_{\cdot}27$  | $11^{\rm m}_{.}09$          | $8^{\mathrm{m}}_{\cdot}83$ |
| $^{\mathrm{Sp}}$ | O9V                        | —                           | B0V                          | B1V                         | —                          |

Table 2. Physical parameters for the eclipsing binary NSV 18773

| Parameter                         | Primary                                       | Secondary                                    |
|-----------------------------------|-----------------------------------------------|----------------------------------------------|
| Mass $M/M_{\odot}$                | $20 \pm 1.5$                                  | $14 \pm 1.0$                                 |
| Radius $R/R_{\odot}$              | $6.5\pm0.2$                                   | $5.0 \pm 0.2$                                |
| Effective temperature $T_e$ , K   | $31500\pm 1500$                               | $27000 \pm 1000$                             |
| ${ m Luminosity}\log L/L_{\odot}$ | $4.57\pm0.08$                                 | $4.08\pm0.06$                                |
| Gravity $\log g$                  | $4.11\pm0.03$                                 | $4.18\pm0.03$                                |
| Abs. visual magnitude $M_V$       | $-3^{\rm m}_{\cdot}79\pm 0^{\rm m}_{\cdot}21$ | $-3^{\rm m}_{\cdot}00\pm0^{\rm m}_{\cdot}17$ |





Figure 1. The ASAS-3 V-band light curve of NSV 18773. The solid curve is the theoretical light curve with the photometric elements given in the figure



Figure 2. The ASAS-3 I-band light curve of NSV 18773. The solid curve is the theoretical light curve with the photometric elements given in the figure

Number 5798

Konkoly Observatory Budapest 2 October 2007 *HU ISSN 0374 - 0676* 

# $\delta$ SCUTI COMPONENT DISCOVERED IN ECLIPSING BINARY SYSTEM BO Her

SUMTER, G. C.; BEAKY, M. M.

Truman State University, Kirksville, MO

BO Her (HD 336759) is listed as a likely semidetached eclipsing binary system in the catalog of Budding et al. (2004). The General Catalogue of Variable Stars (GCVS), 4th Edition (Kholopov, 1985) describes BO Her as having a period of 4.272843 days, magnitude of V=10.8, and depth of primary minimum of 2.1. An O - C diagram for this system spanning 60 years shows subtle variations that have not yet been examined (Kreiner et al., 2001).

In a recent publication, E. Soydugan et al. (2006) identified the primary component of BO Her (spectral type A7) as lying in the  $\delta$  Scuti region of the Cepheid instability strip and have placed it on a list of eclipsing binary systems that might contain pulsating components. At present there are only about three dozen known binary systems with one or more  $\delta$  Scuti components (E. Soydugan et al., 2006; Pigulski & Michalska, 2007; E. Soydugan & F. Soydugan, 2007; Christiansen et al., 2007). Most are semidetached systems; such stars are also called oscillating eclipsing Algol (oEA) stars.

We chose to conduct multifilter photometry of BO Her as part of an ongoing project to determine complete light curves of selected Algol-type (semidetached) binary systems, initially unaware of its potential to contain a pulsating component. We observed BO Her during ten nights between June 14 and July 25, 2007 at the Truman State University Observatory using a 20-cm Meade LX200-GPS telescope. We used both a SBIG ST-7XME CCD camera with B and V filters, and a SBIG ST-402ME CCD camera with B, V, and I filters. The stars HD 336745, HD 336750 and a third uncatalogued star were used as comparisons. MPO Connections was used to control the telescope and CCD camera; MPO Canopus was used for image reduction and data analysis.<sup>1</sup> At present, the light curve for BO Her is about 50% complete, and is shown in Figure 1.

There is some confusion in the literature about the period of BO Her. The GCVS gives a period of 4.272843 days, but the Budding catalog (2004) lists two periods, the GCVS value and 3.087357 days, citing Kreiner et al. (2001). This shorter period is further quoted by E. Soydugan et al. (2006). Our observations show a period of 4.2731 days, in agreement with the GCVS value. The erroneous period of 3.087357 days actually belongs to BC Her, which appears immediately before BO Her in Kreiner's list.

Upon inspection of a single night's worth of data where an eclipse is not present, it became apparent that the binary nature of BO Her was not the only source of variability.

<sup>&</sup>lt;sup>1</sup>Bdw Publishing, Colorado Springs, CO, http://www.minorplanetobserver.com



Figure 1. Phased B, V, and I light curves of BO Her.



Figure 2. Light curve of BO Her on July 25, 2007 (B filter), showing short-period oscillations.

Figure 2 shows 6.5 hours of data from the night of July 25, 2007, which reveals a rapid, low amplitude variation that we attribute to the presence of a  $\delta$  Scuti component in this system. On one night we were able to observe about half of the shallow secondary eclipse, which is most clearly seen in the V-filter light curve of Figure 1. Because the short-period variability is present during the secondary eclipse, we can identify the primary star of the system as the  $\delta$  Scuti component.

After removing the nightly trends in the data due to the binary nature of the system, we performed a period analysis on the short-period variability using Peranso.<sup>2</sup> Figure 3 shows the power spectrum generated using the Lomb-Scargle method, which reveals only a single period, suggesting that the  $\delta$  Scuti component pulsates in a single mode. Using the discovered period of P =  $1.7871^{\text{h}}\pm0.0007$ , the data set was folded to reveal the characteristic light curve of a  $\delta$  Scuti star with an amplitude of approximately 0.12 in *B*, 0.08 in *V*, and 0.05 in *I*; see Figure 4.



Figure 3. Lomb-Scargle power spectrum of small-amplitude oscillations (V filter). The insert shows the residual power spectrum after prewhitening and removal of dominant period of  $1.7871^{\text{h}}$ .

Acknowledgments. This material is based upon work supported by the National Science Foundation under Grant No. 0431664

<sup>&</sup>lt;sup>2</sup>T. Vanmunster, Landen, Belgium, http://www.peranso.com



Figure 4. B, V, and I light curves for BO Her with variations due to eclipses removed. Data has been folded with a period of 1.7871 hours.

References:

- Budding, E., Erdem, A., Çiçek, C., Bulut, I., Soydugan, F., Soydugan, E., Bakiş, V., and Demircan, O., 2004, A&A, 417, 263
- Christiansen, J.L., Derekas, A., Ashley, M. C. B., Webb, J. K., Hidas, M. G., Hamacher, D. W., and Kiss, L. L., 2007, arXiv:0707.4540v2.
- Kholopov, P.N., et al., 1985, *General Catalogue of Variable Stars*, Moscow: Nauka Publishing House, 1988, 4th ed., edited by Kholopov, P.N.; and 2006 web edition
- Kreiner, J.M., Kim, C.H., Nha, I.S., 2001, An Atlas of O C Diagrams of Eclipsing Binary Stars, Wydawnictwo Naukowe Akademii Pedagogicznej
- Soydugan, E., Soydugan, F., Demircan, O., Ibanoğlu, C., 2006, MNRAS, 370, 2013
- Soydugan, E., Soydugan, F., 2007, ASP Conf. Ser., **370**, 344, "Solar and Stellar Physics Through Eclipses"

Pigulski, A. and Michalska, G., 2007, AcA, 57, 61

Number 5799

Konkoly Observatory Budapest 11 October 2007 *HU ISSN 0374 - 0676* 

# **OBSERVATIONS OF VARIABLES**

The last but one issue of the volume publishes new observations, and results on known variable stars. Figures and data files are available electronically.

Previous reports can be found in IBVS No. 5699.

The Editors

| Date: 7 November 2006                                     |
|-----------------------------------------------------------|
| Reported by:                                              |
| Blättler, E BBSAG, Switzerland, blaettler-wald@bluewin.ch |
| Diethelm, R BBSAG, Switzerland, rdiethelm@gmx.ch          |

Blättler has performed CCD observations in the V and R bands on the following stars with a SBIG ST-7 camera attached to his 0.15-m Starfire refractor in Wald, Switzerland, during 8 nights between JD 2453858 and JD 2453910.

#### Name of the object:

GSC 1518-913 = NSVS 10695152 = ASAS 162446+2139.1

#### **Remarks:**

A total of 166 measurements in both colours were obtained, using GSC 1518-635 (10.50 mag) as comparison and GSC 1518-649 (10.75 mag) as check star. A linear regression of the 8 times of minimum with the ROTSE1 data yields the following results: Type: EW; JD (min I, hel) = 2453900.5264 + 0.321156 × E;  $\Delta R(\text{prim.}) = 0.18 \text{ mag}; \Delta R(\text{sec}) = 0.15 \text{ mag}.$  The V - R colour curve shows no variation exceeding the accuracy of the photometry.

#### Name of the object: GSC 2587-1888 = NSVS 7913634

#### Remarks:

A total of 169 measurements in both colours were obtained, using GSC 2587-918 (11.02 mag) as comparison and GSC 2587-610 (11.03 mag) as check star. A linear regression of the 8 times of minimum with the ROTSE1 data yields the following results: Type: EW; JD(min I, hel) = 2453877.4694 + 0.310726 × E;  $\Delta R(\text{prim.}) = 0.17 \text{ mag}; \Delta R(\text{sec}) = 0.17 \text{ mag}.$  The V - R colour curve shows no

variation exceeding the accuracy of the photometry.

#### Name of the object:

GSC 2587-289 = NSVS 7912995

#### **Remarks:**

A total of 214 measurements in both colours were obtained, using SAO 65316 (10.39 mag) as comparison and SAO 65330 (10.06 mag) as check star. A linear regression of the 10 times of minimum with the ROTSE1 data yields the following results: Type: EW; JD(min I, hel) = 2453898.3997 + 0.337043 × E;  $\Delta R(\text{prim.}) = 0.41 \text{ mag}; \Delta R(\text{sec}) = 0.36 \text{ mag}.$  The V - R colour curve shows no

 $\Delta R(\text{prim.}) = 0.41 \text{ mag}; \Delta R(\text{sec}) = 0.36 \text{ mag}.$  The V - R colour curve shows no variation exceeding the accuracy of the photometry.

#### Name of the object:

GSC 963-246 = NSVS 10670664 = NSVS 10732160 = ASAS 162745+1103.6

#### Remarks:

A total of 195 measurements in both colours were obtained, using GSC 963-370 (10.41 mag) as comparison and GSC 963-108 (11.32 mag) as check star. A linear regression of the 9 times of minimum with the ROTSE1 data yields the following results: Type: EW;  $JD(min I, hel) = 2453906.4880 + 0.385493 \times E$ ;

 $\Delta R(\text{prim.}) = 0.33 \text{ mag}; \Delta R(\text{sec}) = 0.30 \text{ mag}.$  The V - R colour curve shows no variation exceeding the accuracy of the photometry.

Date: 8 November 2006

## Reported by:

Zboril, M. - Astronomical Institute, Tatranská Lomnica, 059 60, Slovakia, zboril@astro.sk

### Name of the object:

FY Boo

#### **Remarks**:

FY Boo was observed in V and R colors with the 0.5m telescope / SBIG ST10 CCD camera of the Stará Lesná observatory, on May 3rd 2006. The comparison and check stars were GSC 1999-854 and GSC 1999-388, respectively.

#### Name of the object:

V523 Cas

#### **Remarks:**

V523 Cas was observed in V and R colors with the 0.5m telescope / SBIG ST10 CCD camera of the Stará Lesná observatory, on September 5th 2006. The comparison and check stars were GSC 3257-1068 and USNO-A2.0 1350-00691230, respectively.

#### Date: 31 January 2007

**Reported by:** Bedient, J. - Honolulu, Hawaii, jbedient@gmail.com

# Name of the object:

# V2362 Cyg

# Remarks:

The field of V2362 Cyg was checked on 237 RH series plates in the Harvard College Observatory Plate Archive. The star was not detected on these plates, dating from 20 April 1928 to 5 August 1962. The mean limiting magnitude of these blue plates was 13.22. The comparison sequence used was that published by Frigo et al. (2006).

**Date:** 9 March 2007

## Reported by:

Blättler, E. - BBSAG, Switzerland, blaettler-wald@bluewin.ch Diethelm, R. - BBSAG, Switzerland, rdiethelm@gmx.ch

Blättler has performed CCD observations in the V and R bands on four EW stars with a SBIG ST-7 camera attached to his 0.15-m Starfire refractor in Wald, Switzerland. The observations were made during 6 nights between JD 2454066 and JD 2454114.

# Name of the object:

GSC 107-596 Ori = NSVS 12310076 = ASAS 050837 + 051218

## **Remarks:**

A total of 221 measurements in both colours were obtained, using GSC 107-1120 (10.85 mag) as comparison and GSC107-165 (10.69 mag) as check star. A linear regression of the 16 times of minima with the ROTSE1 data yields the following results: Type: EW; JD(min I, hel) = 2454066.4302 + 0.2663496 × E;  $\Delta R(\text{prim.}) = 0.60 \text{ mag}; \Delta R(\text{sec}) = 0.54 \text{ mag}.$  The V - R colour curve shows no

variation exceeding the accuracy of the photometry.

# Name of the object:

GSC 1283-53 Ori = NSVS 9553026 = ASAS 051305 + 155812

# Remarks:

A total of 236 measurements in both colours were obtained, using SAO 94388 (9.18 mag) as comparison and GSC 1283-239 (11.01 mag) as check star. A linear regression of the 12 times of minima with the ROTSE1 data yields the following results: Type: EW; JD(min I, hel) = 2454066.5778 + 0.383004 × E;

 $\Delta R(\text{prim.}) = 0.42 \text{ mag}; \Delta R(\text{sec}) = 0.39 \text{ mag}.$  The V - R colour curve shows no variation exceeding the accuracy of the photometry.

## Name of the object: GSC 702-1892 Ori = Brh V43 = NSVS 9512770 = ASAS 051245+101512

## Remarks:

A total of 221 measurements in both colours were obtained, using GSC 702-2174 (11.03 mag) as comparison and GSC 702-2730 (12.42 mag) as check star. A linear regression of the 16 times of minima with the ROTSE1 data and the minimum reported by Nelson (2004) yields the following results: Type: EW;

 $JD(min I, hel) = 2454083.5159 + 0.276945 \times E; \Delta R(prim.) = 0.67 mag;$ 

 $\Delta R(\text{sec}) = 0.64 \text{ mag}$ . The V - R colour curve shows no variation exceeding the accuracy of the photometry.

# Name of the object:

GSC 706-845 Ori = NSVS 9508259 = ASAS 050830 + 113148

# Remarks:

A total of 227 measurements in both colours were obtained, using GSC 706-30 (10.77 mag) as comparison and GSC 706-238 (11.13 mag) as check star. A linear regression of the 12 times of minimum with the ROTSE1 data yields the following results: Type: EW; JD(min I, hel) = 2454090.4610 + 0.342271 × E;  $\Delta R(\text{prim.}) = 0.27 \text{ mag}; \Delta R(\text{sec}) = 0.24 \text{ mag}.$  The V - R colour curve shows no

variation exceeding the accuracy of the photometry.

# Date: 13 July 2007

# Reported by:

Arranz Heras, T., Observatorio "Las Pegueras", Navas de Oro, Segovia, Spain Sánchez-Bajo, F., Departamento de Física Aplicada, Escuela de Ingenierías Industriales, Universidad de Extremadura, Avda de Elvas s/n, 06071 Badajoz, Spain, fsanbajo@unex.es

## Name of the object: TX Cnc

# Remarks:

785 measurements in the Johnson V filter have been obtained by Arranz Heras using a 0.35 m Schmidt-Cassegrain telescope and a Starlight MX916 CCD camera, during 8 nights between JD 2454144 and JD 2454163. Comparison star was GSC 1395-1090 (V = 9.78). A parabolic fit using 5 new minima timings along with other 70 obtained from the bibliography provide the following ephemeris:  $HID(Min I) = 2424426.4850(28) + 0.28288048(24) E + 2.20(20) \times 10^{-11} E^2$ 

 $HJD(Min I) = 2434426.4859(28) + 0.38288048(24) E + 3.20(39) \times 10^{-11} E^{2}$ 

References:

Frigo, A. et al., 2006, IBVS, No. 5711 Nelson, R.H., 2004, IBVS, No. 5493

Number 5800

Konkoly Observatory Budapest 11 October 2007 *HU ISSN 0374 - 0676* 

#### NSVS 14256825: A NEW HW Vir TYPE SYSTEM

WILS, PATRICK<sup>1</sup>; DI SCALA, GIORGIO<sup>2</sup>; OTERO, SEBASTIÁN A.<sup>3</sup>

<sup>1</sup> Vereniging voor Sterrenkunde, Belgium, email: patrickwils@yahoo.com

<sup>2</sup> Carnes Hill Obs., 34 Perisher St., Horningsea Park, NSW, Sydney Australia, e-mail: lgdiscala@aapt.net.au

<sup>3</sup> Grupo Wezen 1 88, Centro de Estudios Astronómicos (CEA), e-mail: varsao@fullzero.com.ar

The object NSVS 14256825 = 2MASS J20200045+0437564 = UCAC2 33483055 = USNO-B1.0 0946-0525128 at position  $\alpha_{2000} = 20^{h}20^{m}00^{s}458$ ,  $\delta_{2000} = +04^{\circ}37'56''.50$  (UCAC2; Zacharias et al., 2004), has been found to be a new eclipsing binary in the public data release from the Northern Sky Variability Survey (NSVS, Wozniak et al., 2004). A very short period of 0.1104 days was found, revealing the peculiar nature of the system, also justified by the extremely blue colour measured by the 2MASS survey (Cutri et. al, 2003):  $J - K_s = -0.29$  and  $H - K_s = -0.15$ .

Multi-band CCD observations of NSVS 14256825 were carried out with a 12" LX200 GPS Schmidt-Cassegrain telescope located at Carnes Hill Observatory. The CCD employed was primarily a SBIG ST9XE camera coupled to a CFW8A filter wheel.  $BVR_CI_C$  Custom Scientific Photometric filters were used with this camera. Some observations were also performed with a SBIG ST402ME camera utilising the internal filter wheel and SBIG supplied  $BVI_C$  filters.

All images were reduced by applying bias, dark and flat fields before instrumental magnitudes were extracted using AIP4WIN 1.4 software (Berry & Burnell, 2000). This was done using typical aperture photometry techniques. The observation log is given in Table 1.

On two occasions, all sky photometry was performed under photometric conditions to measure the targets and surrounding field stars so that accurate photometric data could be obtained. For the all sky data, the Landolt standards SA111 717, SA111 2009 and SA111 2522 were the primary standards employed. First order extinction coefficients were applied to the instrumental magnitudes. Typical first order extinction values in Sydney at that time of year are 0.28, 0.16, 0.12 and 0.09 for  $BVR_CI_C$  respectively. Extinction values were measured using a scatter technique by observing a number of E and Landolt standards at a variety of air masses (typically ranging from ~ 1.0 to ~ 1.9). Second order extinction corrections were partially applied by using standards that were close in colour to the targets. Transformation coefficients were applied to produce properly standardised magnitudes (see Table 2 for a summary of the photometry for all stars). For the differential time series photometry, the bright field star UCAC2 33483104 was used as the comparison and UCAC2 33483048 was used as the check star. The full range of variation for NSVS 14256825 thus obtained is 13.22-14.03V, the magnitude of secondary minimum is 13.34V. All data are available in the electronic edition and from the AAVSO.

Table 1: Observation log for NSVS 14256825.

| Filter | JD - 2400000  | Nights | Hours | Points |
|--------|---------------|--------|-------|--------|
| B      | 54280 - 54294 | 4      | 13.2  | 962    |
| V      | 54274 - 54326 | 16     | 41.0  | 3010   |
| $I_C$  | 54317 - 54318 | 2      | 5.5   | 464    |

Table 2: Absolute photometry of the variables and comparison stars.

| $\operatorname{Star}$ | JD-2400000 | V              | B - V            | $V - R_C$        | $V - I_C$        |
|-----------------------|------------|----------------|------------------|------------------|------------------|
| NSVS                  | 54274.14   | $13.24\pm0.02$ | $-0.18 \pm 0.03$ | $-0.06 \pm 0.03$ | $-0.20 \pm 0.03$ |
| 14256825              | 54316.66   | $13.24\pm0.03$ | $-0.16 \pm 0.04$ |                  | $-0.24\pm0.04$   |
|                       |            |                |                  |                  |                  |
| NSVS                  | 54274.14   | $14.25\pm0.02$ | $+0.44\pm0.03$   | $+0.20\pm0.02$   | $+0.54\pm0.03$   |
| 14256492              | 54316.66   | $14.29\pm0.03$ | $+0.41\pm0.04$   |                  | $+0.47\pm0.04$   |
|                       |            |                |                  |                  |                  |
| UCAC2                 | 54274.14   | $11.23\pm0.02$ | $+0.75\pm0.01$   | $+0.42\pm0.01$   | $+0.80\pm0.02$   |
| 33483104              | 54316.66   | $11.23\pm0.02$ | $+0.76\pm0.02$   |                  | $+0.78\pm0.02$   |
|                       |            |                |                  |                  |                  |
| UCAC2                 | 54274.14   | $11.50\pm0.02$ | $+1.10\pm0.01$   | $+0.59\pm0.02$   | $+1.14\pm0.02$   |
| 33483048              |            |                |                  |                  |                  |

Table 3: List of primary minima of NSVS 14256825. O - C values are derived from Eq. 1.

|             |             | $\frac{10023.0}{2}$ | values at |        |
|-------------|-------------|---------------------|-----------|--------|
| Epoch       | Uncertainty | O - C               | Points    | Filter |
| HJD-2400000 | [days]      | [days]              | used      |        |
| 54274.2081  | 0.0001      | +0.0000             | 16        | V      |
| 54282.1552  | 0.0002      | +0.0002             | 20        | B/V    |
| 54282.2654  | 0.0002      | +0.0000             | 21        | B/V    |
| 54286.1284  | 0.0001      | -0.0001             | 18        | V      |
| 54293.1925  | 0.0001      | +0.0000             | 21        | B      |
| 54294.0755  | 0.0001      | +0.0000             | 24        | B      |
| 54294.1859  | 0.0001      | +0.0001             | 24        | B      |
| 54295.1792  | 0.0001      | -0.0000             | 17        | V      |
| 54309.0863  | 0.0001      | +0.0000             | 17        | V      |
| 54309.1966  | 0.0001      | -0.0000             | 19        | V      |
| 54310.0797  | 0.0001      | +0.0001             | 21        | V      |
| 54314.1635  | 0.0001      | -0.0000             | 15        | V      |
| 54316.1502  | 0.0001      | -0.0001             | 18        | V      |
| 54318.0267  | 0.0001      | +0.0001             | 22        | $I_C$  |
| 54319.0199  | 0.0001      | -0.0001             | 20        | $I_C$  |
| 54319.1305  | 0.0001      | +0.0002             | 22        | $I_C$  |
| 54323.1038  | 0.0001      | -0.0001             | 18        | V      |
| 54324.0972  | 0.0001      | -0.0000             | 22        | V      |
| 54366.0394  | 0.0001      | +0.0000             | 21        | V      |
|             |             |                     |           |        |

From the CCD data twenty one times of primary eclipse could be determined. These are listed in Table 3. The given uncertainties are those derived from fitting a second degree polynomial through the data around the minimum. From these timings and single data points showing the star in eclipse from NSVS and the All Sky Automated Survey (ASAS3; Pojmanski, 2002), the following ephemeris could be derived:

$$HJD = 2451288.9198(5) + 0.11037410(2)E.$$
 (1)

The short orbital period in the period gap for cataclysmic variables, blue colour and strong reflection effect seen in its light curve suggest that the system is made up of a hot subdwarf and a red dwarf showing a large reflection effect. The period and light curve are strikingly similar to that of the other short period eclipsing sdOB+dM systems HW Vir (0.1167 d, Wood et al., 1993), NY Vir (0.1010 d, Kilkenny et al., 1998) and HS 0705+6700 (0.0956 d, Drechsel et al., 2001).

To determine the photometric parameters of the system, the 2003 version of the WD program (Wilson & Devinney, 1971) was used. Calculations were done in mode 2 (for detached systems). As is usual when only photometric data is available and no radial velocity curves, it is very difficult to obtain a precise value for the mass ratio q. Furthermore, the secondary is so faint compared to the primary, that it practically does not contribute to the total brightness, unless through reflection of the light from the primary. Therefore it is hard to determine a precise value of the surface temperature  $T_2$  of the secondary. This means that when using the differential correction program dc of WD, convergence is not easily obtained. To remedy this, a large range of values for  $T_1$ ,  $T_2$  and q were tried, and the resulting residual values compared. The values used ranged between 20 000 and 50 000K for  $T_1$  (in line with the B - V and  $J - K_s$  colours), between 2400 and 6500K for  $T_2$  and between 0.3 and 0.9 for q. Within this range of parameters a shallow minimum for the residuals was obtained. The final parameters obtained in this case are given in Table 4. The phased light curve with the model curve is given in Fig. 1. The uncertainties for the assumed parameters are those for when the resulting residual curve began to show systematic differences, especially near secondary minimum. The uncertainties for the calculated parameters are those based on their extreme values calculated with dcconsidering the range of assumed parameters. Values for the limb darkening coefficients (not listed) were taken from the tables of van Hamme (1993).

Assuming an absolute magnitude of  $M_V = 4.0$  for the hot subdwarf, a distance of about 570 pc can be derived taking into account an interstellar extinction value E(B-V) = 0.14 and A(V) = 0.46 (from the NASA/IPAC Extragalactic Database, see also Schlegel et al. 1998). The mass of slightly less than 0.5  $M_{\odot}$  for the hot subdwarf thus obtained, and the radius of 0.2  $R_{\odot}$  do then agree very well with those found for the three other similar eclipsing binaries mentioned above.

Because of its low surface temperature, the secondary has a convective atmosphere. Its bolometric albedo  $A_2$  is then normally assumed to be 0.5. However none of the combinations of the other parameters then gave a secondary minimum deep enough to fit the observations. Making  $A_2$  an adjustable parameter resulted in a value slightly larger than 1, which it physically cannot be. Therefore  $A_2$  was assumed to be 1. Fitting the individual light curves independently also indicated that much more light is absorbed at shorter wavelengths and re-emitted at longer wavelengths than is assumed by the WD code.

Pulsations of the subdwarf, known to occur in other hot subdwarfs such as NY Vir (Kilkenny et al., 1998), were not observed in NSVS 14256825. Any variations due to such pulsations should have an amplitude of less than 0.01 magnitude (which is the semi-

| Table 4: System parameters for NSVS 14256825. |                               |                             |                                 |  |  |  |  |
|-----------------------------------------------|-------------------------------|-----------------------------|---------------------------------|--|--|--|--|
| Assumed                                       | l parameters                  | Calculated parameters       |                                 |  |  |  |  |
| Eccentricity $e$                              | 0                             | Semi-major axis $a$         | $0.85 \pm 0.10 \ R_{\odot}$     |  |  |  |  |
| Mass ratio $q$                                | $0.45\substack{+0.15\\-0.10}$ | i                           | $81.9 \ ^{+0.5}_{-0.8}$ $\odot$ |  |  |  |  |
| Effective tempe                               | eratures                      | $\Omega_1$                  | $4.7 \pm 0.2$                   |  |  |  |  |
| $T_1$                                         | $35\ 000\ \pm\ 5000\ {\rm K}$ | $\Omega_2$                  | $3.7 \ ^{+0.8}_{-0.6}$          |  |  |  |  |
| $T_2$                                         | $3500^{+500}_{-800}{ m K}$    | Mass $M_1$                  | $0.46 M_{\odot}$                |  |  |  |  |
| Bolometric albe                               | edos                          | Mass $M_2$                  | $0.21  M_{\odot}^{\odot}$       |  |  |  |  |
| $A_1$                                         | 1.0                           | $\operatorname{distance}$   | $570  \mathrm{pc}$              |  |  |  |  |
| $A_2$                                         | 1.0                           | Surface gravity (cgs units) |                                 |  |  |  |  |
| Gravitational d                               | arkening exponents            | $log(g_1)$                  | $5.50 {\pm} 0.02$               |  |  |  |  |
| $g_1$                                         | 1.0                           | $log(g_2)$                  | $5.35 {\pm} 0.11$               |  |  |  |  |
| $g_2$                                         | 0.32                          | Mean radii                  |                                 |  |  |  |  |
| Absolute magn                                 | itude                         | $R_1$                       | $0.20{\pm}0.03~R_{\odot}$       |  |  |  |  |
| $M_{V,1}$                                     | 4.0                           | $R_2$                       | $0.16{\pm}0.03~R_{\odot}$       |  |  |  |  |
|                                               |                               | Absolute magnitude          |                                 |  |  |  |  |
|                                               |                               | $M_{V,2}$                   | $12.9 \ ^{+3.1}_{-1.0}$         |  |  |  |  |



Figure 1. Phase plots of NSVS 14256825: from top to bottom respectively in B, V and  $I_C$ . The B and  $I_C$  light curves have been shifted vertically so as to not interfere with the V light curve. Note that the secondary eclipse is deeper for longer wavelengths.

amplitude of the pulsations in NY Vir). It is worthwhile to follow NSVS 14256825 further to study its period stability and to perform spectroscopic observations to determine the physical parameters more accurately.

When observing NSVS 14256825 care should be taken not to use NSVS 14256492 = UCAC2 33482998 = USNO-B1.0 0945-0527099, at position  $\alpha_{2000} = 20^{h}19^{m}47.737$ ,  $\delta_{2000} = +04^{\circ}34'01''.81$  (UCAC2), as a comparison star as it is a semi-detached eclipsing binary with a full range of 14.25-14.7V, amplitude of the secondary minimum about 0.1V, and the following ephemeris:

$$HJD = 2454326.04 + 0.963627E.$$
 (2)

Acknowledgements: The authors thank Prof. Robert Wilson for making the WD code publicly available. The IBVS editors and John Greaves are acknowledged for suggestions improving the paper. This study made use of NASA's Astrophysics Data System, and the SIMBAD and VizieR databases operated at the Centre de Données Astronomiques (Strasbourg) in France.

## References:

Berry R., Burnell J., 2000, The Handbook of Astronomical Image Processing

- Cutri R.M., Skrutskie M.F., Van Dyk S., Beichman C.A., Carpenter J.M., Chester T., Cambresy L., Evans T., Fowler J., Gizis J., Howard E., Huchra J., Jarrett T., Kopan E.L., Kirkpatrick J.D., Light R.M, Marsh K.A., McCallon H., Schneider S., Stiening R., Sykes M., Weinberg M., Wheaton W.A., Wheelock S., Zacharias N., 2003, The 2MASS All-Sky Catalog of Point Sources
- Drechsel H., Heber U., Napiwotzki R., Østensen R., Solheim J.-E.; Johannessen F., Schuh S.L., Deetjen J., Zola S., 2001, A&A, **379**, 893
- Kilkenny D., O'Donoghue D., Koen C., Lynas-Gray A.E., van Wyk F., 1998, *MNRAS*, **296**, 329
- Pojmanski G., 2002, Acta Astron., 52, 397
- Schlegel D.J., Finkbeiner D.P., Davis M., 1998, ApJ, 500, 525
- van Hamme W., 1993, AJ, 106, 2096
- Wilson R.E., Devinney E.J. 1971, ApJ, 166, 605
- Wood J.H., Zhang E.-H., Robinson E.L., 1993, MNRAS, 261, 103
- Wozniak P.R., Vestrand W.T., Akerlof C.W., Balsano R., Bloch J., Casperson D., Fletcher S., Gisler G., Kehoe R., Kinemuchi K., Lee B.C., Marshall S., McGowan K.E., McKay T.A., Rykoff E.S., Smith D.A., Szymanski J., Wren J., 2004, AJ, 127, 2436
- Zacharias N., Urban S. E., Zacharias M. I., Wycoff G. L., Hall D. M., Monet D. G., Rafferty T. J., 2004, AJ, 127, 3043