COMMISSIONS 27 AND 42 OF THE I. A. U.

INFORMATION BULLETIN ON VARIABLE STARS

Nos. 5801 - 5900

2007 October – 2009 August

EDITORS: K. OLÁH, J. JURCSIK TECHNICAL EDITOR: A. HOLL TYPESETTING, SUBSCRIPTIONS: O. RIBÁRIK

EDITORIAL BOARD: B. Gänsicke, G. Handler (chair),
L. Kiss, S.S. Saar, M. Schreiber, D. Sasselov, B. Skiff,
C. Aerts (Comm. 27.), J. Christensen-Dalsgaard (Div. V.), A. Giménez (Comm. 42.),
D. Kurtz (advisor), N.N. Samus (advisor), C. Sterken (advisor), L. Szabados (advisor)

H–1525 BUDAPEST XII, Box 67, HUNGARY URL http://www.konkoly.hu/IBVS/IBVS.html HU ISSN 0374–0676

COPYRIGHT NOTICE

IBVS is published on behalf of Commissions 27 and 42 of the IAU, by the Konkoly Observatory, Budapest, Hungary.

Individual issues may be downloaded for scientific and educational purposes free of charge. Bibliographic information of the recent issues can be entered to indexing systems. No IBVS issues may be stored in a public retrieval system, in any form or by any means, electronic or otherwise, without the prior written permission of the publishers. Prior written permission of the publishers is required to enter IBVS issues 1-4000 to an electronic indexing or bibliographic system too.

CONTENTS

2007

5801 KILIÇOĞLU, T.; BAŞTÜRK, Ö.; ŞENAVCI, H. V.; YILMAZ, M.; TANRI-
VERDİ, T.; ALAN, N.; SİPAHİOĞLU, S.; AYDIN, G.; ÇELİK, L.; ÇALIŞ-
KAN, Ş.; ELMASLI, A.; GÖKAY, G.; ÇAKAN, D.; DEMİRCAN, Y; EK-
MEKÇÎ, F.; SELAM, S. O.; YÜCE, K.; ALBAYRAK, B.:
Photoelectric Minima of Some Eclipsing Binary Stars $\dots \dots
5802 HÜBSCHER, JOACHIM :
Photoelectric Minima of Selected Eclipsing Binaries and Maxima of Pulsa-
ting Stars $\dots \dots
5803 HENDEN, ARNE; MUNARI, ULISSE:
Photometric Sequences and Astrometric Positions of Nova Sgr 2007 and
Nova Vul 2007 $1-4$
5804 MADERAK, RYAN M.; HONEYCUTT, R. K.:
Analysis of the Light Curve of the RV Tauri Star LV Del $\dots 1 - 4$
5805 KINMAN, T. D.; HARMER, D. L.; SAHA, A.; WILLMARTH, D. W.:
A Study of the Bright RR Lyrae Star CN Cam $\dots 1 - 4$
5806 KRAJCI, TOM:
Photoelectric Minima of Some Eclipsing Binary Stars $\dots \dots
5807 TARASOVA, T. N.:
Early Spectral Evolution of Nova Vul 2007=V458 Vul $\dots 1 - 3$
5808 MANIMANIS, V. N.; NIARCHOS, P. G.:
The First $BVRI$ Light Curves and Analysis of the Short-Period Algol-Type
Binary DI Hya $\dots 1 - 4$
5809 SOBOTKA, P.:
236 Minima Timings of Eclipsing Binaries Observed by Integral OMC \dots 1 – 8

5810 DOROSHENKO, V. T.; SERGEEV, S. G.; EFIMOV, YU. S.; KLIMANOV,
S. A.; NAZAROV, S. V.:
New Variable Star in the Field of the Seyfert Galaxy Mrk 290 $\dots 1-6$
5811 HÄUSSLER, K.; BERTHOLD, T.; KROLL, P.:
Elements for 10 RR Lyrae Stars $\dots \dots
5812 ZASCHE, P.; WOLF, M.; KOTKOVÁ, L.:
The First Light Curve Analysis of Two Overcontact Binaries: EY Cas and
NO Vul 1-4
5813 POLLMANN, E.; RIVINIUS, TH.:
$H\alpha$ Observations of ζ Tauri $1-7$
5814 DVORAK, S. W.:
Times of Minima for Neglected Eclipsing Binaries 2006–2007 $\dots 1 - 2$
5815 UEMURA, M.; ARAI, A.; SASADA, M.; SCHMEER, P.; MILLER, I.; OH-
SUGI, T.; YAMASHITA, T.; KAWABATA, K. S.; ISOGAI, M.; SATO, S.;
KINO, M.:
Outburst of a WZ Sge-type Dwarf Nova, AL Com in 2007 $\dots 1-4$

5816 SZAKÁTS, R.; SZABÓ, GY. M.; SZATMÁRY, K.:
Does the Period of BE Lyncis Really Vary? $\dots \dots
5817 JEFFERY, C. SIMON:
Variable Star Designations for Extreme Helium Stars $\dots \dots
5818 SOUTHWORTH, J.; REBASSA-MANSERGAS, A.:
Identification of Two ROTSE Transients as Cataclysmic Variables in Out-
burst $\dots \dots
5819 KÓSPÁL, Á.; NÉMETH, P.; ÁBRAHÁM, P.; KUN, M.; HENDEN, A.;
JONES, A. F.:
The Extreme Outburst of EX Lup in 2008: Optical Spectra and Light Curve $1-4$
5820 NELSON, ROBERT H.:
CCD Minima for Selected Eclipsing Binaries in 2007 $\dots 1-3$
5821 KIZILOGLU, U.; KIZILOGLU, N.; BAYKAL, A.; YERLI, S. K.; OZBEY, M.:
Detection of Increase in the Optical Light of Be/X-Ray Binary System
GRO J2058+42 1 – 4
5822 HENDEN, ARNE; MUNARI, ULISSE:
Photometric Sequences and Astrometric Positions of Nova Vul 2007 N.2 and
Nova Cyg 2008 \dots $1-4$
5823 LE BORGNE, J. F.; KLOIZ, A.; BOER, M.:
The GLOS KK Lyr Survey $\dots 1 - \delta$ 5924 CADE77ALL DANIELE, FIODUCCI MASSIMO, SDOCLL CODDADO.
Photometric Analysis of a New W UMa System in Vulnesula 1 4
1 notometric Analysis of a New W OMa System in Vulpecula
BN IIMa and CF Del: Two New Galactic Field Double Mode BB Lyrae Stars 1 – 4
Solo multicle Delle Tenne Considerer Fild Double filde Delle Filde Statis T
5826 TUBCU V POP A MOLDOVAN D ·
5826 TURCU, V.; POP, A.; MOLDOVAN, D.: Discovery of Short-Periodic Pulsating Component in the Eclipsing Binary
5826 TURCU, V.; POP, A.; MOLDOVAN, D.: Discovery of Short-Periodic Pulsating Component in the Eclipsing Binary Y Leonis
 5826 TURCU, V.; POP, A.; MOLDOVAN, D.: Discovery of Short-Periodic Pulsating Component in the Eclipsing Binary Y Leonis
 5826 TURCU, V.; POP, A.; MOLDOVAN, D.: Discovery of Short-Periodic Pulsating Component in the Eclipsing Binary Y Leonis
 5826 TURCU, V.; POP, A.; MOLDOVAN, D.: Discovery of Short-Periodic Pulsating Component in the Eclipsing Binary Y Leonis
 5826 TURCU, V.; POP, A.; MOLDOVAN, D.: Discovery of Short-Periodic Pulsating Component in the Eclipsing Binary Y Leonis
 5826 TURCU, V.; POP, A.; MOLDOVAN, D.: Discovery of Short-Periodic Pulsating Component in the Eclipsing Binary Y Leonis
 5826 TURCU, V.; POP, A.; MOLDOVAN, D.: Discovery of Short-Periodic Pulsating Component in the Eclipsing Binary Y Leonis
 5826 TURCU, V.; POP, A.; MOLDOVAN, D.: Discovery of Short-Periodic Pulsating Component in the Eclipsing Binary Y Leonis
 5826 TURCU, V.; POP, A.; MOLDOVAN, D.: Discovery of Short-Periodic Pulsating Component in the Eclipsing Binary Y Leonis
 5826 TURCU, V.; POP, A.; MOLDOVAN, D.: Discovery of Short-Periodic Pulsating Component in the Eclipsing Binary Y Leonis
 5826 TURCU, V.; POP, A.; MOLDOVAN, D.: Discovery of Short-Periodic Pulsating Component in the Eclipsing Binary Y Leonis
 5826 TURCU, V.; POP, A.; MOLDOVAN, D.: Discovery of Short-Periodic Pulsating Component in the Eclipsing Binary Y Leonis
 5826 TURCU, V.; POP, A.; MOLDOVAN, D.: Discovery of Short-Periodic Pulsating Component in the Eclipsing Binary Y Leonis
 5826 TURCU, V.; POP, A.; MOLDOVAN, D.: Discovery of Short-Periodic Pulsating Component in the Eclipsing Binary Y Leonis
 5826 TURCU, V.; POP, A.; MOLDOVAN, D.: Discovery of Short-Periodic Pulsating Component in the Eclipsing Binary Y Leonis
 5826 TURCU, V.; POP, A.; MOLDOVAN, D.: Discovery of Short-Periodic Pulsating Component in the Eclipsing Binary Y Leonis
 5826 TURCU, V.; POP, A.; MOLDOVAN, D.: Discovery of Short-Periodic Pulsating Component in the Eclipsing Binary Y Leonis
 5826 TURCU, V.; POP, A.; MOLDOVAN, D.: Discovery of Short-Periodic Pulsating Component in the Eclipsing Binary Y Leonis
 5826 TURCU, V.; POP, A.; MOLDOVAN, D.: Discovery of Short-Periodic Pulsating Component in the Eclipsing Binary Y Leonis
 5826 TURCU, V.; POP, A.; MOLDOVAN, D.: Discovery of Short-Periodic Pulsating Component in the Eclipsing Binary Y Leonis
5826 TURCU, V.; POP, A.; MOLDOVAN, D.: Discovery of Short-Periodic Pulsating Component in the Eclipsing Binary Y Leonis
$\begin{array}{llllllllllllllllllllllllllllllllllll$

5835 BORKOVITS, TAMÁS; VAN CAUTEREN, PAUL; LAMPENS, PATRICIA	;	
DUFOER, SJOERD; KLEIDIS, STELIOS; VAN LEENHOVE, MAARTEN;		
CSIZMADIA, SZILÁRD; REGÁLY, ZSOLT; PATKÓS, LÁSZLÓ; KLAGYI	_	
VIK, PÉTER; BÍRÓ, IMRE BARNA; HEGEDÜS, TIBOR; KISS, ZOLTÁN		
TAMÁS:		
New and Archive Times of Minima of Eclipsing Binary Systems	1 -	- 4
5836 ROSARIO, M. J.: MEKKADEN, M. V.: RAVEENDRAN, A. V.:		
UX Ari: New Photometry and Longitudinal Asymmetry in Spot Activity		
Fixed in Orbital Reference Frame	1 -	- 4
5837 DIETHELM ROGER	-	-
166 List of Timings of Minima Eclipsing Binaries by BBSAG Observers	1 _	_ 3
5838 INNIS I L \cdot COATES D W \cdot	-	0
Observations of the Active Southern BSCVn Binary V841 Cen in 2007 and		
2008 - 2 Large Long-Lived Spot Wave	1_	_ 1
5830 IURDANA SEPIC BAIKA: MUNARI IUISSE:	T	т
Plate Archive Photometry of the Progenitors of New Cyg 2008 N 2 and		
Nova Sgr 2008	1 _	_ 🤈
5940 HAMPSCH FRANZ IOSFE WILS DATRICK.	т –	- 2
Confirmation of the BBd Nature of V458 Her	1	າ
$Commation of the fifth Nature of V456 her \dots $	Τ –	- 2
5041 DE DECKER, M., EINDER, N., RAUW, G	1	4
EVIDENCE IOF SHOT-TERM VARIATIONS IN TWO U-Type Stars	1 -	- 4
Short period Oscillations Found in the Algel Two System CSC 4550 1408	1	4
Short-period Oscillations Found in the Algol-Type System GSC 4550-1406	1 -	- 4
5845 OGLOZA, W.; NIEWIADOMSKI, W.; DARNACKA, A.; DISKUP, M.; MALEV, K.; COVOLOWSKI, M.;		
MALEK, K.; SOKOLOWSKI, M.: Times of Minima Observed by "Discitle Cher"	1	c
Times of Minima Observed by Profile Sky $\dots \dots \dots \dots \dots$	Ι-	- 0
5644 JURUSIK, J.; SODOR, A.; HURIA, ZS.; KOVARI, ZS.; VIDA, K.; HAIDH G. NAGY L. DÉVÁNY L. DOCZTODÁNYL V. KODONYÁG		
$\Pi AJDU, G.; NAGI, I.; DEKANI, I.; POSZIODANII, K.; KOPONIAS, D. VÁDADI M. VITVI N.$		
D., VARADI, M., VIIII, N Multicolour CCD Dectometry of Three PDeb Store	1	4
5945 CAMEC DONALD C. DDANNING IEDEMV. IONES STEDUANIEM.	Τ-	- 4
5045 SAMEC, RONALD G.; DRANNING, JEREM I; JONES, SIEPRANIE M.; EALLENED DANNY D. HAWKING NATUAN C.		
FAULKNER, DANNY R.; HAWKINS, NATHAN C.: V065 Currison A and E Trme Very High Fill out Binery with Strong		
V905 Cygni, an A and F Type very high Fin-out binary with Strong	1	c
$\mathbf{Magnetic Activity} = \dots = \mathbf{Magnetic Activity} = \mathbf{Magnetic Activity} = \mathbf{Magnetic Activity} = \dots = \mathbf{Magnetic Activity} = Mag$	Τ-	- 0
5640 JURUSIK, J.; SUDUR, A.; HURIA, ZS.; KUVARI, ZS.; FUSZIUDAN II, V : VIDA = V : HAIDH = C : NACY = L : VODONYÁC = D :		
K.; VIDA, K.; HAJDU, G.; NAGY, I.; KOPONYAS, B.: Multiculary CCD Distance of Free DDate Chang	1	4
Multicolour UCD Photometry of Four KRab Stars	1 -	- 4
5847 HAUSSLER, K.; BERTHOLD, T.; KROLL, P.:	1	4
Elements for 8 Eclipsing Binaries	1 -	- 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	c
V/12 Cas: an Intrinsically Variable BpSi Star in an Eclipsing Binary?	1 -	- 0
5849 SAMEC, RONALD G.; MCKENZIE, ROB; HAWKINS, NATHAN C.;		
VAN HAMME, WALTER; FAULKNER, DANNY R.:	4	-
The Cool Dwarf Interacting Eclipsing Binary, HH95-79	1 -	- 5
5850 KUN, M.:		
Early Spectroscopy and Photometry of the New Outburst of V1647 Ori	1 -	- 4
5851 ELKIN, V. G.; FREYHAMMER, L. M.; KUDRYAVTSEV, D. O.;		
ROMANYUK, I. I.:		
The Longitudinal Magnetic Field of the roAp Star HD 99563	1 -	- 4

5852 ROBB, R. M.; VINCENT, J.; HENDERSON, H.; GREIMEL, R.; DREW,	
J. E.; GONZALEZ-SOLARES E. A.:	
The New Contact Binary GSC 2414-0797 1	-4
5853 LE BORGNE, J. F.; KLOTZ, A.; BOËR, M.:	
The GEOS RR Lyr Survey 1	-4
5854 LE BORGNE, J. F.; VANDENBROERE, J.; HENDEN, A. A.; BUTTER-	
WORTH, N.; DVORAK, S.:	
Maxima of RR Lyr Stars from AAVSO International Database 1	- 6
5855 MUNARI, U.; SIVIERO, A.; OCHNER, P.; TOMASONI, S.; MOSCHINI,	
F.; FRIGO, A.; MORETTI, S.; TOMASELLI, S.; BALDINELLI, L.; MAI-	
TAN, A.; VAGNOZZI, A.; BACCI, S.:	
$Long Term BVR_CI_C$ Photometry of Carbon and Symbiotic Stars in the	
Draco Dwarf Galaxy 1	- 3
5856 DIMITROV, D.; KRAICHEVA, Z.; POPOV, V.:	
Short-period Oscillations in the Algol-Type Systems II: Newly Discovered	
Variable GSC 3889-0202 1	- 4
5857 BUKOWIECKI, ŁUKASZ; MACIEJEWSKI, GRACJAN:	
Variable Stars in the Field of the Open Cluster King 7 1	- 6
5858 HÄUSSLER, K.; BERTHOLD, T.; KROLL, P.:	
Elements for 10 RR Lyrae Stars 1	- 4
5859 KUN, E.; SÓDOR, Á.; JURCSIK, J.; HURTA, ZS.; NAGY, I.; KŐVÁRI,	
ZS.; POSZTOBÁNYI, K.; KOVÁCS, G.; VIDA, K.; BELUCZ, B.:	
Multicolour CCD Photometry of Three RRab Stars 1	- 4
5860 KLEIDIS, STELIOS; ROBERTSON, C. W.; WILS, PATRICK:	
BVR_CI_C Photometry of the Eccentric Eclipsing Binary HD 350731 1	- 4
5861 HALEVIN, A. V.; HENDEN, A. A.:	
Eclipse Mapping of RW Tri in the Low Luminosity State 1	- 5
5862 SHUGAROV, S. YU.; VOLKOV, I. M.; CHOCHOL, D.:	
Dwarf Nova Trianguli 2008 as a WZ Sge-Type object 1	- 4
5863 KAZAROVETS, E. V.; SAMUS, N. N.; DURLEVICH, O. V.; KIREEVA,	
N. N.; PASTUKHOVA, E. N.:	
The 79th Name-List of Variable Stars	- 16
5864 MACIEJEWSKI, G.; BUKOWIECKI, L.; BROZEK, T.; GEORGIEV, TS.;	
BOEVA, S.; KACHAROV, N.; MIHOV, B.; LATEV, G.; OVCHAROV, E.;	
VALCHEVA, A.:	
Variable Stars in the Field of the Open Cluster NGC 457 1	-7
5865 KIZILOGLU, U.; KIZILOGLU, N.; BAYKAL, A.; YERLIS. K.; OZBEY, M.:	
Long-Term Optical Observations of the Be/X-Ray Binary System V0332+53 1	- 4
5866 GALAN, C.; MIKOLAJEWSKI, M.; TOMOV, T.; CIKALA, M.:	
The 2008/2009 Eclipse of EE Cep will Soon Begin 1	- 4
5867 SPOGLI, CORRADO; FIORUCCI, MASSIMO; CAPEZZALI, DANIELE;	
NUCCIARELLI, GIULIANO; MANCINELLI, VANNIO; BRUNOZZI, PA-	
OLO; FAGOTTI, PAOLO:	_
A Multicolor Photometric Study of CN Orionis	- 5
5868 OFIR, A.:	~
Two Pairs of Interacting EBs towards the LMC in the OGLE Database $\dots 1$	- 2

 5869 YUAN, F.; QUIMBY, R. M.; CHAMARRO, D. C.; UECKER, A.; SISSON, M. D.; AKERLOF, C. W.; SCHAEFER, B. E.; WHEELER, J. C.: POTSE III Observations of New M21 2008 08d (POTSE2 1004548 2+ 420222) 1 4
ROISE-IIIODSEIVATIOUS OF NOVA IVIST 2006-060 (ROISES J004546.5+450222) I = 4
Distribution of Colored Folio in a Disories in 2008
Photoelectric Minima of Selected Eclipsing Binaries in 2008 $\dots 1 - 2$
5871 DIETHELM, ROGER:
Timings of Minima of Eclipsing Binaries $\dots \dots
5872 KIM, DONGHYEON; JEON, YOUNG-BEOM; LEE, UIRYEOL; JANG,
HYE-EUN; CHO, SUNGYOON; PARK, YOON-HO:
CCD Photometry of New Variable Stars and BX Dra $\dots 1 - 4$
5873 WILS, PATRICK:
Double-Mode RR Lyrae Stars in SDSS Stripe 82 $\dots 1 - 4$
5874 HUBSCHER, JOACHIM; STEINBACH, HANS-MEREYNTJE; WALTER,
FRANK:
BAV-Results of Observations - Photoelectric Minima of Selected Eclipsing
Binaries and Maxima of Pulsating Stars 1 – 13
5875 NELSON, ROBERT H.:
CCD Minima for Selected Eclipsing Binaries in 2008 $\dots 1-4$
5876 MAUCHE, C. W.; BRICKHOUSE, N. S.; HOOGERWERF, R.; LUNA,
G. J. M.; MUKAI, K.; STERKEN, C.:
Updated Spin Ephemeris for the Cataclysmic Variable EX Hydrae $\dots 1 - 4$
5877 LE BORGNE, J. F.; KLOTZ, A.; BOER, M.:
The GEOS RR Lyr Survey $\dots 1-6$
5878 WILS, PATRICK; KLEIDIS, STELIOS; HAMBSCH, FRANZ-JOSEF;
VIDAL-SAINZ, JOAQUIN; VANLEENHOVE, MAARTEN; LAMPENS,
PATRICIA; VAN CAUTEREN, PAUL; ROBERTSON, C. W.; STAELS,
BART; PICKARD, ROGER D.; ROZAKIS, IOANNIS ; DUFOER,
SJOERD; GROENENDAELS, ROGER; GOMEZ-FORRELLAD, JOSEP M.;
GARCIA-MELENDO, ENRIQUE; HAUTECLER, HUBERT; VAN DER
LOOY, JOHAN:
Photometric Observations of High-Amplitude Delta Scuti Stars 1 – 8
5879 TAŞ, GUNAY; EVREN, SERDAR; OZDARCAN, ORKUN; DAL, HASAN
A.; SIPAHI, ESIN:
New Photometry of Blue Stragglers in Four Galactic Open Clusters \dots 1 – 4
5880 NELSON, ROBERT H.:
MW UMa, A Detached Binary: Observations and Analysis 1 – 7
5881 JURCSIK, J.; SODOR, A.; HAJDU, G.:
HD 190336 a New β Cep star \ldots $1-4$
5882 HAJDU, G.; JURCSIK, J.; SODOR, A.:
Three New Galactic Double-Mode Pulsating Stars $\dots \dots
5883 DIMITROV, D.; KRAICHEVA, Z.; POPOV, V.:
Short-Period Oscillations in the Algol-Type Systems III: Newly Discovered
Variable GSC 4588-0883 $1-4$
5884 NELSON, ROBERT H.:
V364 Cas – An Evolved Detached Eclipsing Binary $\dots 1 - 4$

5885 MUNARI, ULISSE:
Plate Archive Photometry of Candidate Variable Stars in Cepheus OB3
Association $1-3$
5886 PRIBULLA, T.; VAŇKO, M.; HAMBÁLEK, L.:
ASAS J071829-0336.7: Short-Period End for Contact Binaries Redefined . $1-4$
5887 YILMAZ, M.; BAŞTÜRK, Ö.; ALAN, N.; ŞENAVCI, H. V.; TANRIVERDİ,
T.; KILIÇOĞLU, T.; ÇALIŞKAN, Ş.; ÇELİK, L.; AYDIN, G.; ÇAKAN,
D.; BILGIÇ, D.; ULUŞ, N. D.; ELMASLI, A.; SELAM, S. O.; ALBAYRAK,
B.; EKMEKÇİ, F.:
New Times of Minima of Some Eclipsing Binary Stars and Maxima of Pul-
sating Stars $\ldots 1-7$
5888 HÄUSSLER, K.; BERTHOLD, T.; KROLL, P.:
Elements for 10 RR Lyrae Stars $\dots 1 - 4$
5889 HUBSCHER, JOACHIM; STEINBACH, HANS-MEREYNTJE; WALTER,
FRANK:
BAV-Results of Observations - Photoelectric Minima of Selected Eclipsing
Binaries and Maxima of Pulsating Stars $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$
5890 HAUSSLER, K.; BERTHOLD, T.; KROLL, P.:
NSV 11154 - A Possible New R CrB Star $\dots 1 - 2$
5891 HINTZ, E. G.; BUGNO, J. L.; JONER, M. D.:
A Period Analysis of the δ Scuti Variable GSC 03973-01698 $1-4$
5892 DIMITROV, D.; KRAICHEVA, Z.; POPOV, V.:
Short-Period Oscillations in the Algol-Type Systems IV: Newly Discovered
Variable GSC 4293-0432 $\ldots 1 - 4$
5893 DOGRU, S. S.; ERDEM, A.; DONMEZ, A.; BULUT, A.; AKIN, T.;
DOGRU, D.; ÇIÇEK, C.; SOYDUGAN, F.:
New Times of Minima of Some Eclipsing Binary Stars $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$
5894 DIETHELM, ROGER:
Timings of Minima of Eclipsing Binaries 1 – 10
5895 LE BORGNE, J. F.; KLOTZ, A.; BOER, M.:
The GEOS RR Lyr Survey $\dots 1-8$
5896 MUNARI, U.; SIVIERO, A.; DALLAPORTA, S.; MORETTI, S.; FRIGO, A.:
IRAS 19015+1625: A Multi-Periodic, Highly Reddened M6III SR Variable $1-4$
5897 LIAKOS, A.; NIARCHOS, P.:
148 UCD Times of Minima of 47 Eclipsing Binaries $\dots 1 - 4$
5898 PARIMUCHA, S.; DUBOVSKY, P.; BALUDANSKY, D.; PRIBULLA, T.;
HAMBALEK, L.; VANKO, M.; OGLOZA, W.:
Minima Times of Selected Eclipsing Binaries $\dots 1 - 10$
1 - 2 1 - 2
3900: Reports on New Discoveries $1-6$

AUTHOR INDEX

Ábrahám, P.			5819	Demircan, Y				5801
Akerlof, C. W.			5869	Diethelm, Roger		5837,	5871,	5894
Akin, T.			5893	Dimitrov, D.	5842,	5856,	5883,	5892
Alan, N.		5801,	5887	Doğru, D.				5893
Albayrak, B.		5801,	5887	Doğru, S. S.				5893
Arai, A.		,	5815	Dönmez, A.				5893
Avdin, G.		5801.	5887	Doroshenko, V. T.				5810
Bacci. S.		,	5855	Drew, J. E.				5852
Baldinelli. L.			5855	Dubovský, P.				5898
Baluďanský. D.			5898	Dufoer, Sjoerd			5835,	5878
Barnacka, Å.			5843	Durlevich, O. V.				5863
Bastürk. Ö.		5801.	5887	Dvorak, S. W.		5814,	5854,	5870
Baykal A		5821	5865	Efimov, Yu. S.				5810
Belucz B		00=1,	5859	Ekmekçi, F.			5801,	5887
Berthold T	5811 5847	5858	5888	Elkin, V. G.				5851
Derthold, 1.	0011, 0011,	00000,	5890	Elmasli, A.			5801,	5887
Bilgic D			5887	Erdem, A.				5893
Biró Imre Barna			5835	Evren, Serdar				5879
Biekup M			58/3	Fagotti, Paolo				5867
Boör M	5893 5853	5877	5805	Faulkner, Danny R	•		5845,	5849
Boom S	5625, 5655,	5611,	5964	Fiorucci, Massimo			5824,	5867
Borkovita Tomás			5004	Freyhammer, L. M				5851
Dorkovits, Tamas			5015	Frigo, A.			5855,	5896
Draining, Jeremy			0040 E076	Galan, C.				5866
Drickhouse, N. S.			0070 E064	Gandet, T. L.				5848
Drozek, I.			0804 F067	Garcia, Jose Garcia	a			5829
Brunozzi, Paolo			0807 5020	Garcia-Melendo, E	nrique			5878
Budding, E.			0832 5001	Georgiev, Ts.				5864
Bugno, J. L.			5891	Gökay, G.				5801
Bukowiecki, Łukasz	2	5857,	5864	Gómez-Forrellad, J	osep N	Л.		5878
Bulut, A.			5893	Gonzalez-Solares, H	E. A.			5852
Butterworth, N.		K 001	5854	Greimel, R.				5852
Çakan, D.		5801,	5887	Groenendaels, Roge	er			5878
Çalışkan, Ş.		5801,	5887	Hajdu, G.	5844,	5846,	5881,	5882
Capezzalı, Daniele		5824,	5867	Halevin, A. V.			5833,	5861
Çelik, L.		5801,	5887	Hambálek, L.			5886,	5898
Chamarro, D. C.			5869	Hambsch, Franz-Jo	sef		5840,	5878
Cho, SungYoon			5872	Harmer, D. L.				5805
Chochol, D.			5862	Häussler, K.	5811,	5847,	5858,	5888,
Çiçek, C.			5893					5890
Cikala, M.			5866	Hautecler, Hubert				5878
Coates, D. W.		5832,	5838	Hawkins, Nathan C	2.		5845,	5849
Csizmadia, Szilárd			5835	Hegedüs, Tibor				5835
Dal, Hasan A.			5879	Henden, A. A.	5803,	5819,	5822,	5833,
Dallaporta, S.			5896			5834,	5854,	5861
De Becker, M.			5841	Henderson, H.				5852
Dékány, I.			5844	Hintz, E. G.				5891

Honeycutt, R. K. 5804	Liakos, A. 5897
Hoogerwerf, R. 5876	Linder, N. 5841
Hübscher, Joachim 5802, 5830, 5874, 5889	Luna, G. J. M. 5876
Hurta, Zs. 5844, 5846, 5859	Maciejewski, Gracian 5857, 5864
Innis J L 5832 5838	Maderak Ryan M 5804
Isogai M 5815	Małek K 5843
Iang Hye-Eun 5872	Maitan Δ 5855
Järvinon S D 5822	Mancinolli Vannio 5867
Lefform C. Simon 5917	Manimonia V N 5007
$\begin{array}{cccc} \text{Jenery, C. Simon} & \text{5817} \\ \text{L} & \text{V} & \text{D} & \text{5979} \end{array}$	Mahimanis, V. N. 5000
Jeon, Young-Beom 5872	Mauche, U. W. 5876
Joner, A. F. 5819	McClusky, J. V. 5825
Joner, M. D. 5891	McKenzie, Rob 5849
Jones, Stephanie M. 5845	Mekkaden, M. V. 5836
Jurcsik, J. 5844, 5846, 5859, 5881,	Messina, S. 5832
5882	Mihov, B. 5864
Jurdana-Sepic, Rajka 5839	Mikolajewski, M. 5866
Kacharov, N. 5864	Miller, I. 5815
Kawabata, K. S. 5815	Moldovan, D. 5826
Kave, T. G. 5832	Moretti, S. 5855, 5896
Kazarovets E V 5863	Moschini F 5855
Kilicoğlu T 5801 5887	Mukai K 5876
Kim DongHuoon 5872	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
King T D 5972	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{ccc} \text{Kinnan, 1. D.} & 5005 \\ \text{Vinc. M} & 5015 \end{array}$	No 1 5944 5946 5950
KIIIO, MI. 5815	Nagy, I. 5844, 5840, 5859
Kireeva, N. N. 5803	Nazarov, S. V. 5810
Kiss, Zoltán Tamás 5835	Nelson, Robert H. 5820, 5875, 5880, 5884
Kiziloğlu, <u>N</u> . 5821, 5865	Németh, P. 5819
Kiziloğlu, U. 5821, 5865	Niarchos, P. G. 5808, 5897
Klagyivik, Péter 5835	Niewiadomski, W. 5843
Kleidis, Stelios 5835, 5860, 5878	Nucciarelli, Giuliano 5867
Klimanov, S. A. 5810	Ochner, P. 5855
Klotz, A. 5823, 5853, 5877, 5895	Ofir, A. 5868
Koponyás, B. 5844, 5846	Ogłoza, W. 5843, 5898
Kóspál, Á. 5819	Ohsugi, T. 5815
Kotková, L. 5812	Oláh, K. 5832
Kovács, G. 5859	Ovcharov, E. 5864
Kővári Zs 5844 5846 5859	\ddot{O} zbev M 5821 5865
Kraicheva Z 5842 5856 5883 5892	\ddot{O} zdarcan Orkun 5879
Kraici Tom 5806	Parimucha Š 5808
$K_{roll} D = 5811 5847 5858 5888$	Park Voon Ho
K (01, 1. 5011, 5047, 5656, 5666, 58066, 5806, 5806, 5806, 5806, 5806, 5806, 5806, 5806, 5806,	Darcomion Filmo C 5072
0090 Verdenseteren D. O	Destable and E. N. 5029
Kudryavtsev, D. O. 5851	Pastuknova, E. N. 5803
Kun, E. 5859	Patkos, Laszlo 5835
Kun, M. 5819, 5850	Peneva, S. P. 5831
Lampens, Patricia 5835, 5878	Pickard, Roger D. 5878
Latev, G. 5864	Pollmann, E. 5813
Le Borgne, J. F. 5823, 5853, 5854, 5877,	Pop, A. 5826
5895	Popov, V. 5842, 5856, 5883, 5892
Lee, UiRyeol 5872	Posztobányi, K. 5844, 5846, 5859

Pribulla, T.	5886, 3	5898	Turcu, V.			5826
Quimby, R. M.	ļ	5869	Uecker, A.			5869
Rauw, G.	ļ	5841	Uemura, M.			5815
Raveendran, A. V.	ļ	5836	Uluş, N. D.			5887
Rebassa-Mansergas, A.	Ę	5818	Vagnozzi, A.			5855
Regály, Zsolt	ţ	5835	Valcheva, A.			5864
Rivinius, Th.	Į	5813	Van Cauteren, Paul		5835,	5878
Robb, R. M.	Į	5852	Vandenbroere, J.			5854
Robertson, C. W.	5860, 3	5878	Van der Looy, Johan			5878
Romanyuk, I. I.	į	5851	Van Hamme, Walter			5849
Rosario, M. J.	į	5836	Vaňko, M.		5886,	5898
Rozakis, Ioannis	ļ	5878	Van Leenhove, Maarten		,	5835
Saha A	1	5805	Vanleenhove. Maarten		5835.	5878
Samec Bonald G	5845 !	5849	Váradi. M.		,	5844
Samus N N	0010, 0	5863	Vida, K.	5844.	5846.	5859
Sasada M	, 1	5815	Vidal-Sáinz Joaquin	0011,	0010,	5878
Sato S	ر ا	5815	Vincent J			5852
Sato, S. Sabofar B F	، ۱	5960	Vitvi N			5844
Schwaer D	ر ا	5009 E01E	Volkov I M			5862
Schmeer, P.	F001 1	0010	Walter Frank	5830	5874	5880
Selam, S. U.	5801, 3	5887	Wheeler I C	5050,	5014,	5960
Semkov, E. H.		5831	Willmarth D.W.			5009
Şenavcı, H. V.	5801, 3	5887	Wile \mathbf{D}_{i} to \mathbf{D}_{i} w.	FOCO	5079	0000
Sergeev, S. G.	ł	5810	$W_{\rm HS}$, Fatrick 3840 , W_{-16} M	5800,	3873,	0010
Shugarov, S. Yu.	•	5862	Wolf, M.			0812 F01F
Sipahi, Esin	ļ	5879	Yamashita, T.		5001	5815
Sipahioğlu, S.	[5801	Yerli, S. K.		5821,	5865
Sisson, M. D.	į	5869	Yılmaz, M.		5801,	5887
Siviero, A.	5855, 5	5896	Yuan, F.			5869
Sobotka, P.	į	5809	Yüce, K.			5801
Sódor, Á. 5844, 5846,	5859, 5	881,	Zasche, P.		5812,	5827
	Ę	5882				
Sokołowski, M.	ţ	5843				
Southworth, J.	Į	5818				
Soydugan, F.	Į	5893				
Spogli, Corrado	5824, 3	5867				
Staels, Bart	į	5878				
Steinbach, Hans-Merevntie	5830.5	874.				
	, - !	5889				
Sterken C	1	5876				
Svoboda P		5827				
Szabó Gy M		5816				
Szakáts B	1	5816				
Szetméry K		5816				
Tanrivardi T	5801	5887				
Tamiverui, T. Taracom T. N	5001, 6	5001				
Tatabuva, 1.1V.	0007,8	5020 5070				
Taş, Gunay Tomocolli, C	÷	0019 5055				
Tomasem, 5.	÷.	0000				
Tomasoni, S.		5855				
Tomov, T.	[•	5866				

INDEX OF VARIABLES

Star	IBVS No.	Y Cam	5835
		RZ Cam	5846
		SV Cam	5835
26 And	5827	AO Cam	5814
BK And	5844	$\operatorname{AS}\operatorname{Cam}$	5835
CN And	5814	BQ Cam	5865
DS And	5814	CN Cam	5805
GK And	5802	CV Cam	5809
GP And	5878	TX Cnc	5814
KP And	5802		0011
LO And	5814	SW CVn	5846
V348 And	5827	BI CVn	5814
V460 And	5878	DF CVn	5814, 5870
XY Ant	5809	XZ CMi	5870
CX Aqr	5802	ST Car	5809
DY Aqr	5809	SW Car	5809
GK Aqr	5802	$\operatorname{AS}\operatorname{Car}$	5809
GS Aqr	5802	$\operatorname{CO}\operatorname{Car}$	5809
MU Aqr	5802	DQ Car	5809
FK Aal	5809	DV Car	5809
V0341 Aal	5899	${ m EZ}$ Car	5809
V0342 Agl	5809	$\operatorname{GL}\operatorname{Car}$	5809
V0346 Agl	5802	77 Car	5800
V0417 Agl	5801 5802	DZ Cas	5809
V0917 Agl	5800	DS Cas	5009
V0964 Agl	5800	ET Cas	0012 E02E
V1426 A al	5809	II Cas VI Cas	0000 1000
V1420 Aqi	0009	KL Cas	0809 5014
X Ari	5899	MI Cas	5814 5925
UX Ari	5836	OA Cas	0830 F00F
XX Aur	5802	PV Cas	5835
AP Aur	5835	VU363 Cas	5882
CG Aur	5802 5870	V0364 Cas	5870
CL Aur	5835	V0384 Cas	5870
EP Aur	5870	V0459 Cas	5809
HP Aur	5835	V0466 Cas	5864
IM Aur	5835	V0523 Cas	5814
	5835	V0646 Cas	5809
IO Au	0000	V0654 Cas	5809
44i Boo	5835	V0723 Cas	5803
TY Boo	5870	V0765 Cas	5864
TZ Boo	5801	V0772 Cas	5848
UU Boo	5844	V0785 Cas	5809
AC Boo	5801, 5814	V0821 Cas	5870
FI Boo	5814	SS Cen	5809
		SV Cen	5809

BD Cen MN Cen V379 Cen V380 Cen V676 Cen V677 Cen V685 Cen V700 Cen V841 Cen VW Cep XX Cep BB Cep CM Cep	5809 5809 5809 5809 5809 5809 5809 5809 5835 5835 5809	V0490 Cyg V0689 Cyg V0809 Cyg V0822 Cyg V0836 Cyg V0961 Cyg V0965 Cyg V1011 Cyg V1034 Cyg V2150 Cyg V2455 Cyg V2468 Cyg V2491 Cyg	5809 5809 5809 5809 5801 5835 5845 5809 5809 5809 5801 5878 5822 5834, 5839
EE Cep GK Cep V733 Cep	$5866 \\ 5835 \\ 5831$	CF Del DN Del HR Del LV Del	5825 5801 5804 5804
FG Cet	5873	LV Del	5804 5832
AT Cir	5809	AB Dor	
BB Cir	5809	RX Dra	5835
BD Cir	5809	TZ Dra	5870
RZ Com	5809	BX Dra	5872
AL Com	5815	EF Dra	5835
CC Com	5835, 5870	EX Dra	5833
EK Com	5809, 5814	GM Dra	5814
LP Com	5814	LW Dra	5878 5814
V Crt	5870	AA Eri	
AC Cru AN Cru AR Cru AY Cru UW Cyg	5809 5809 5809 5809 5809 5809	SX Gem AF Gem AZ Gem BD Gem GI Gem QW Gem	5809 5809 5870 5814 5846 5814
WZ Cyg XX Cyg CV Cyg DM Cyg GG Cyg KR Cyg MR Cyg V0370 Cyg V0388 Cyg V0442 Cyg V0453 Cyg	5809 5878 5809 5899 5809 5801 5835 5809 5809 5809 5809 5809 5809 5809 5809	TU Her TX Her AK Her CT Her DY Her V387 Her V458 Her V829 Her V842 Her V899 Her	$5835 \\ 5801 \\ 5801, 5835 \\ 5835 \\ 5878 \\ 5814 \\ 5840 \\ 5809 \\ 5801 \\ 5870$
V0456 Cyg	5870	AS Hya	5809
V0466 Cyg	5809, 5870	DI Hya	5808
V0477 Cyg	5835	EX Hya	5876
V0478 Cyg	5835	EZ Hya	5809

FG Hya	5870	V0808 Oph	5811
FO Hya	5809	V0813 Oph	5811
SW Loc	5901	V0821 Oph	5858
	JOU1 5025	V0826 Oph	5811
AU Lac	0000 5014	V0864 Oph	5811
	0014 5070	V0947 Oph	5847
NZ Lac	0070 E014	V0968 Oph	5847
PP Lac	0814	V1062 Oph	5858
RW Leo	5835	V1064 Oph	5858
SU Leo	5846	V1074 Oph	5858
UV Leo	5870	V2023 Oph	5858
VZ Leo	5870	V2026 Oph	5858
WY Leo	5870	V2028 Oph	5858
XY Leo	5801, 5835	V2312 Oph	5811
Y Leo	5826		FORT
AM Leo	5801	CN Ori	5867
AP Leo	5814	DZ Ori	5809
DU Leo	5814	EF Ori	5835
	F014	FK Ori	5870
KI LMI	5814	FL Ori	5814
UW LM1	5809	F'T' Ori	5809, 5870
VW LM1	5870	GU Ori	5835
EX Lup	5819	V0343 Ori	5809
	CO14	V1118 Ori	5829
	0014	V1647 Ori	5850
UV Lyn DE L	0830, 0870 5016	AV Peg	5899
BE Lyn	0186	BB Peg	5814
${ m TZ}~{ m Lyr}$	5870	BG Peg	5814
CN Lyr	5859	BO Peg	5870
V593 Lyr	5878	CG Peg	5859
V201 Mon	5800	DI Peg	5801, 5814
V306 Mon	5870	DY Peg	5878
V530 Mon	5814 5870		F00F
V/14 MIOII	3014, 3070	AG Per	5835
RR Nor	5809	IQ Per	5870
TV Nor	5809	V378 Per	5844
GK Nor	5809	V432 Per	5835
IT Nor	5809	V721 Per	5857
V0415 Oph	58/17	$54 \mathrm{Psc}$	5852
V0415 Oph V0451 Oph	5801	DZ Psc	5814
V0451 Oph V0456 Oph	5800	OV D	F000
V0400 Oph V0502 Oph	5809	GI Pup OZ Dar	5809
V0502 Oph V0508 Oph	5870	GZ Pup	5809
V0566 Oph	5801	$\operatorname{RS}\operatorname{Sgr}$	5809
V0760 Oph	5001	$V0767~\mathrm{Sgr}$	5882
V0781 Oph	5047	V2157~Sgr	5882
V0787 Oph	5011	$V5558 \ \mathrm{Sgr}$	5803
V0702 Oph	JOII 5011	$V5579 \ \mathrm{Sgr}$	5834, 5839
v0795 Opii V0801 Oph	0011 2011		FOUU
νυσυτ Ορπ	1166	V401 BCU	0009

V562 Sco		5809	HW Vir	5814,	5870
V569 Sco		5809	Z Vul		5801
$A \cap Sor$		5835			5835
AS Sor		5814			5850
CO Sor		5800			5819
OU Ser	5914	5825	V459 Vil	5802	5807
OU Sel	3014,	9099	V450 Vul	5005,	5001
Y Sex		5809	V459 VUI		3622
(Тан		5813	2MASS J09065133-1231368		5808
RZ Tau		5809	2MASS J01110892+6107448		5900
SV Tau		5835	2MASS 12321003+1420153		5815
WY Tau		5814	2MASS 19543947+3256027		5900
AH Tau	5814	5870	2MASS 23355022+4843428		5900
BV Tau	0011,	5809	4U 1249-028		5876
CT Tau		5814	4U 2206 + 543		5891
CII Tau		5870			
HY Tau		5809	ALS 7963		5900
V781 Tau	5801	5814	AN 072.1934		5811
101 100	0001,	0011	AN 847.1933		5825
RS Tri	5835,	5870			FOOG
RW Tri		5861	ASAS J071829-0336.7		5880
VZ Tri		5814	ASAS J113031-0101.9		5880
EG TrA		5809	ASAS J085128+2527.9		5870
			AUID 000-BBS-916		5815
VV UMa		5835	$BD + 36^{\circ}3317$		5000
W UMa		5835	$DD + 30 \ 3317$ $DD + 27^{\circ} 2310$		5900
XY UMa		5835	$BD + 42^{\circ} 4207$		5000
AA UMa		5814	DD + 42 4207 $DD + 47^{\circ} 1014$		5900
AW UMa		5814	DD + 47 1914 $DD + 48^{\circ} 1008$		5900
BM UMa		5814	$DD + 40^{\circ}0226$		5900
BN UMa		5825	DD + 49 0220 $DD + 51^{\circ}0570$		5004
DW UMa		5835	DD + 51 0579 $DD + 55^{\circ}0524$		5941
HN UMa		5814	$DD + 55^{\circ}9602$		5066
HX UMa		5835	DD + 55 2093		0000
LP UMa		5835	C $0115 + 580$		5864
MW UMa		5880	C $0355+516$		5857
RT UMi		5835	CI* NGC 752 PLA758		5900
XX7 X7 1		F000	Cl* NGC 752 Stock 238		5900
AY Vel		5809	CI 1100 102 Stock 200		0000
AU Vel		5809	$CPD - 59^{\circ}5634$		5838
AT Vel		5809	CXOU J205847.5+414637		5821
AW Vel		5809			5000
AZ Vel		5809	FAS11 433		5899
UK Vel		5809	GSC 00384-01931		5888
		5809	GSC 01387-00475		5886
FU Vel		5809	GSC 01539-00959		5840
r vv Vel		5809	GSC 01539-01173		5840
AH Vir	5801,	5809	GSC 01624-00493		5860
AZ Vir		5814	GSC 01874-00399		5849

GSC 02336-02105	5862	GSC 04588-00781	5883
GSC 02414-00371	5852	GSC 04588-00883	5883
GSC 02414-00797	5852	GSC 04588-01313	5883
GSC 02414-01093	5852	GSC 04588-02368	5883
GSC 02566-01398	5878	GSC 04589-02999	5900
GSC 02656-02055	5845		
GSC 02656-03363	5845	GSC2 S9JJ000329	5803
GSC 02656-04286	5900	GSC2.2 N11301003473	5872
GSC 02673-01583	5900	CCC2 2 NCL LOOGATI	F 040
GSC 02977-00238	5878	GSC2.3 NCLJ026451	5862
GSC 03010-02100	5825	GSC2.3 N320092280	5824
GSC 03010-02126	5825	GSC 2.3.2 N078000076	5844
GSC 03010-02127	5825	GSC 2.3.2 N24S000237	5859
GSC 03012-00837	5825	GSC 2.3.2 N2MC000574	5859
GSC 03074-00114	5878	GSC 2.3.2 N2P8000417	5859
GSC 03101-00683	5899	GSC 2.3.2 N6AZ000508	5844
GSC 03333-01755	5900	GSC 2.3.2 N6WV000233	5846
GSC 03641-00359	5900	GSC 2.3.2 N7T2000280	5846
GSC 03660-00401	5812	GSC 2.3.2 N8N9000652	5846
GSC 03755-00845	5878	GSC 2.3.2 NCGO000977	5844
GSC 03832-00152	5878		5001
GSC 03863-00740	5878	GRO J2058+42	5821
GSC 03889-00120	5856	HD 001082	5827
GSC 03889-00202	5856	HD 001185	5827
GSC 03889-00202	5856	HD 001448	5827
GSC 03880 00006	5856	HD 001848	5827
GSC 03002 00700	5856	HD 001438	5827
GSC 03902-00709 GSC 03934 01904	5878	HD 010260	5848
CSC 03934-01904	5801	HD 013268	5841
CSC 03973 01608	5801	HD 015137	5841
CSC 03973-01098	5801	HD 021242	5836
CSC 0.04153 0.0634	5880	HD 0.36705	5832
CSC 04135-00034	5870	HD 037202	5813
GSC 04189-00542	0072 5970	HD 000563	5851
GSC 04109-00021	0072 E970	HD 103/08	5000
GSC 04192-00466	0072 E970	HD 197535	5838
GSC 04192-00879	0872 5800	$\frac{11D}{4D} \frac{127555}{198167}$	5805
GSC 04293-00050	5892 5892	HD 128107 HD 198997	5000
GSC 04293-00105	5892	$\begin{array}{c} \text{IID} \ 126227 \\ \text{IID} \ 126202 \end{array}$	1000 1000
GSC 04293-00424	5892	ПD 130202 ПD 166145	5000
GSC 04293-00432	5892	HD 100140	5803
GSC 04293-00603	5892	HD 100189	5803
GSC 04519-01078	5878	ПЛ 100240 UD 166222	5003
GSC 04550-01408	5842	ПЛ 100322 UD 100326	5803
GSC 04550-01520	5842	HD 190330	5881
GSC 04552-01498	5878	HD 207331	5900
GSC 04556-01113	5878	HD 312750	5803
GSC 04588-00164	5883	HD 312752	5803
GSC 04588-00521	5883	HD 325367	5819
GSC 04588-00579	5883	HD 345256	5803

HD 345257 HD 345264	$5803 \\ 5803$	NAME Draco C2 NAME Draco C3	$5855 \\ 5855$
HD 345266	5803	NGC 0457	5864
HD 345267	5803	NGC 0752 170	5900
HD 345268	5803	NGC 1342	5879
HD 350730	5860	NGC 3227	5810
HD 350731	5860	NGC 3516	5810
HH95-79	5849	NGC 4051	5810
UID 001999	5997	NGC 4501 11	5815
IIF 001200	0821 5907	NGC 5548	5810
HIP 001502	5927	NGC 6871	5879
HIF 001301 HID 047178	5926		F010
HID 107557	5000	NOMADI 1478-0314015	5810
HIF 107557	5900	Nova Cas 1995	5803
HR 0070	5827	Nova Cyg 2008	5822
HR 0481	5840	Nova Cyg 2008 N.2	5834, 5839
HR 7679	5807	Nova Sgr 2007	5803
HV 10937	5847	Nova Sgr 2008	5834, 5839
HV 10948	5847	Nova Tri 2008	5862
HV 10950	5888	Nova Vul 2007	5803, 5807
HV 10956	5847	Nova Vul 2007 N.2	5822
HV 10958	5811	Nova M31 2008-08d	5869
HV 10959	5888	NSV 05256	5805
HV 10962	5888	NSV 05250 NSV 08671	5888
HV 10972	5811	NSV 08071 NSV 08744	5888
HV 10981	5811	NSV 08744 NSV 08860	5847
HV 10988	5811	NSV 08887	5888
HV 10955	5811	NSV 08870	5847
HV 10997	5888	NSV 08970 NSV 09004	5811
HV 11004	5811	NSV 09004 NSV 09027	5888
HV 11010	5811	NSV 09027	5888
HV 11013	5888	NSV 09298	5888
HV 11022	5811	NSV 09320	5888
HV 11039	5858	NSV 09480	5888
HV 11040	5858	NSV 09539	5888
HV 11049	5811	NSV 09545	5888
IC 4725	5879	NSV 09576	5858
IRAS 19015 ± 1625	5896	NSV 09592	5858
King 7	5857	NSV 09642	5858
	5001	NSV 09740 NSV 09840	5847 5847
LBvar010 Cas	5900	NSV 11154	5890
M25	5879	NSV 24674	5896
McClure C3	5855	NSVS 4265168	5900
Melotte 111	5879	NSVS 4287647	5900
Mrk 290	5810	OGLE J051343.14-691837.1	5868
NAME Draco C1	5855	Parenago 1492	5829

Parenago 1518	5829	TYC 2977-0238-1	5878
Parenago 1540	5829	TYC 3270-0096-1	5884
Parenago 1600	5829	TYC 3270-0612-1	5884
Parenago 1641	5829	TYC 3270-1606-1	5884
DDM 47109	5000	TYC 3755-0845-1	5878
PPM 47103	9900	TYC 3832-0152-1	5878
ROTSE1 J183751.21+472324.5	5890	TYC 3863-0740-1	5878
BOTSE3 1004548 3+430222	5869	TYC 3889-0202-1	5856
ROTSE3 $I0310314 + 4311150$	5818	TYC 3934-1904-1	5878
ROTSE3 $11137090+5134511$	5818	TYC 4293-0432-1	5892
	0010	TYC 4519-1078-1	5878
RXJ 114302+603435	5880	TYC 4550-1408-1	5842
S 4199	5847	TYC 4556-1113-1	5878
S 4226	5847	TYC 4588-0883-1	5883
S 8615	5888	UCC 10899	5955
S 8616	5888	060 10822	2022
S 8618	5858	USNO 0900-11244760	5847
S 8621	5858	USNO 0900-11245022	5847
S 8624	5888	USNO 0900-11246767	5847
S 8625	5858	USNO 0900-11252628	5847
S 9323 Lvr	5890	USNO 0900-11255289	5847
S 9815	5888	USNO 0900-10650673	5847
S 9818	5888	USNO 0900-10654081	5847
S 9829	5858	USNO 0900-10655451	5847
S 9831	5847	USNO 0900-10656993	5847
S 9838	5847	USNO 0900-12423939	5847
S 10339	5858	USNO 0900-12425730	5847
S 10343	5858	USNO 0900-12429616	5847
S 10346	5858	USNO 0900-12436022	5847
CDCC 1010000 04 011010 F	F0 79	USNO 0958-00324686	5847
SDSS J210309.24-011210.5	5873 5979	USNO 0958-00324901	5847
SDSS J212029.38-002054.2	5873 5979	USNO 0958-00324966	5847
SDSS J220054.28-010515.0	5873 5079	USNO 0975-09039898	5811
SDSS J224200.05-004222.0	5873	USNO 0975-09046689	5811
SDSS J014305.32+010549.2	5873	USNO 0975-09042642	5811
SDSS J020314.89+011220.6	5873	USNO 0975-09043053	5811
SDSS J031333.11+004254.7	5873	USNO 0975-09174322	5847
SDSS J142625.71+575218.3	5900	USNO 0975-09175192	5847
SDSS J212046.86+001236.4	5873	USNO 0975-09177416	5847
SDSS J215623.95+005630.2	5873	USNO 0975-09177551	5847
SDSS J222214.29+010059.9	5873	USNO 0975-09180391	5847
SDSS J232147.14+001408.0	5873	USNO 0975-09204518	5888
SN 2007 gr	5828	USNO 0975-09208491	5888
SAO 07402	5949	USNO 0975-09208744	5888
SAO 67556	5000	USNO 0975-09209323	5888
SAO 80027	5800 5806	USNO 0975-09209389	5888
5110 00321	0040	USNO 0975-09230081	5888
TYC 2566-1398-1	5878	USNO 0975-09230699	5888
TYC 2651-0802-1	5900	USNO 0975-09233260	5888

USNO 0975-09236057

USNO 0975-09255998

USNO 0975-09256163

USNO 0975-09258315

USNO 0975-09260589

USNO 0975-09265427 USNO 0975-09267386

USNO 0975-09268884 USNO 0975-09269261

USNO 0975-09270705

USNO 0975-09284030

USNO 0975-09284917

USNO 0975-09285269

USNO 0975-09285925

USNO 0975-09286902

USNO 0975-09287344

USNO 0975-09287755

USNO 0975-09289484

USNO 0975-09290674

USNO 0975-09292729

USNO 0975-09296368

USNO 0975-09297760

USNO 0975-09298413

USNO 0975-09299654

USNO 0975-09301834

USNO 0975-09304132

USNO 0975-09304972

USNO 0975-09307002

USNO 0975-09309205

USNO 0975-09309459

USNO 0975-09324780

USNO 0975-09325117

USNO 0975-09325882

USNO 0975-09326486

USNO 0975-09350557

USNO 0975-09351873

USNO 0975-09351879

USNO 0975-09352592

USNO 0975-09382102

USNO 0975-09383928

USNO 0975-09384928

USNO 0975-09385167

USNO 0975-09390228

USNO 0975-09393013

USNO 0975-09393505

USNO 0975-09393539

USNO 0975-09393991

USNO 0975-09415442 USNO 0975-09418617

J	JSNO	0975-09419077	5811
J	JSNO	0975-09419570	5811
J	JSNO	0975-09421686	5811
J	JSNO	0975-09451418	5888
J	JSNO	0975-09453484	5888
J	JSNO	0975-09457655	5888
J	JSNO	0975-09458804	5888
J	JSNO	0975-09459171	5888
J	JSNO	0975-09461015	5811
J	JSNO	0975-09461116	5811
J	JSNO	0975-09461268	5811
J	JSNO	0975 - 09461784	5811
J	JSNO	0975 - 09463250	5811
J	JSNO	0975 - 09467795	5888
J	JSNO	0975 - 09469966	5888
J	JSNO	0975 - 09474144	5888
J	JSNO	0975 - 09484358	5811
J	JSNO	0975 - 09484926	5811
J	JSNO	0975 - 09485291	5811
J	JSNO	0975 - 09486724	5811
J	JSNO	0975 - 09489563	5811
J	JSNO	0975 - 09519973	5811
J	JSNO	$0975 \hbox{-} 09520205$	5811
J	JSNO	$0975 \hbox{-} 09524016$	5811
J	JSNO	$0975 \hbox{-} 09525734$	5811
J	JSNO	0975 - 09527020	5811
J	JSNO	$0975 \hbox{-} 09528437$	5888
Ţ	JSNO	0975-09530343	5888

USNO 0975-09530465

USNO 0975-09530506

USNO 0975-09537477

USNO 0975-09535757

USNO 0975-09536233

USNO 0975-09537864

USNO 0975-09542893

USNO 0975-09555186

USNO 0975-09561877

USNO 0975-09563863

USNO 0975-09564432

USNO 0975-09565058

USNO 0975-09567070

USNO 0975-09567576

USNO 0975-09568033

USNO 0975-09568785

USNO 0975-09569476

USNO 0975-09570224

USNO 0975-09574756

USNO 0975-09575791

USNO 0975-09577141

5888

5847

5847

5847

5847 5888

5888 5888

5888

5888

5858

5858

5847

5858

5847

5858

5858

5847

5847

5847

5811

5811

5811

5811

5811

5888

5888

5888

5888

5888

5811

5811

5811

5811

5811

5811

5811

5811

5858

5858

5858

5858

5858

5811

5811

5858, 5888

5858, 5888

5858, 5888

5858, 5888

5888

5888

5858

5858

5858

5858

5858

5811

5811

5811

5811

5811

5888

5888

5888

5888

5888

5888

5888

5888

USNO 0975-09578372	5888	USNO-A2.0 0975-18802001	5825
USNO 0975-09596234	5858	USNO-A2.0 0975-18802602	5825
USNO 0975-09598276	5858	USNO-A2.0 0975-18805217	5825
USNO 0975-09599125	5858	USNO-A2.0 0975-18808454	5825
USNO 0975-09605746	5858	USNO-A2.0 1125-17542302	5824
USNO 0975-09606051	5858	USNO-A2.0 1275-09025494	5878
USNO 0975-09612849	5858	USNO-A2.0 1350-09802429	5890
USNO 0975-09614978	5858	USNO-A2.0 1650-01520656	5878
USNO 0975-09616192	5858	USNO-B1 0 0774-0251554	5808
USNO 0975-09617524	5858	USNO-B1.0 1108-0460435	5803
USNO 0975-09648330	5858	USNO-B1.0 1112-0430634	5822
USNO 0975-09649101	5858	USNO-B1 0 1198-0459968	5822
USNO 0975-09649513	5858	USNO-B1 0 1208-0386457	5900
USNO 0975-09650550	5858	USNO-B1.0 1223-0042965	5830
USNO 0975-09656802	5858	USNO-B1.0 1369-0180384	5000
USNO 0975-09663688	5858	USNO-B1.0 1508-0029126	5900
USNO 0975-09664470	5858	USNO-B1 0 1511-0041416	5900
USNO 0975-09664766	5858	USNO-B1 0 1525-0418196 583	1 5885
USNO 0975-09666335	5858	USNO-B1 0 1525-0418333 583	1 5885
USNO 0975-09667180	5858	USNO-B1 0 1525-0418386 583	1 5885
USNO 0975-09668186	5858		1 0000
USNO 0975-09670349	5858	V0332+53	5865
USNO 0975-09670412	5858	Minima of Selected Eclipsing	
USNO 0975-09671874	5858	Binaries and Maxima of	
USNO 0975-09748201	5858	Pulsating Stars 5802	2, 5884
USNO 0975-09750824	5858	Minima of Some Eclipsing	
USNO 0975-09754043	5858	Binary Stars 5806	5809
USNO 0975-09754904	5858	Dinary Stars 5000;	5893
USNO 0975-09761494	5811		0000
USNO 0975-09763558	5811	CCD Minima for Selected	
USNO 0975-09763780	5811	Eclipsing Binaries 5820	, 5875
USNO 0975-09766323	5811	BAV Photoelectric Minima	
USNO 0975-09767534	5811	of Selected Eclipsing	
USNO 0975-09803952	5858	Binaries and Maxima of	
USNO 0975-09915079	5847	Pulsating Stars 5830,	5874,
USNO 0975-09916596	5847		5889
USNO 0975-09921950	5847	Times of Minima Observed	
USNO 0975-09923676	5847	by "Pi of the sky"	5843
USNO 0975-09924115	5847		0010
USNO 1350-09796351	5890	The GEOS RR Lyr Survey 5823,	5853,
USNO 1350-09803396	5890	5877	7, 5895
USNO 1350-09804973	5890	Maxima of RR Lyr stars from	
USNO 1350-09805484	5890	AAVSO International Database	5854
USNO A 0825-04506649	5886	The 79th Name-List of	
USNO A 0825-04514810	5886	Variable Stars	5863
USNO A 0825-07480282	5886	Timings of Minima of Eclipsing	
USNO-A201/1	5891	Binaries 5837	5871
$USNO_{42.0} 13.0$	5021	5894, 5897	5898
$0010^{-}12.010.3$	0041	0001,0001	,

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 5801

Konkoly Observatory Budapest 11 October 2007 *HU ISSN 0374 - 0676*

PHOTOELECTRIC MINIMA OF SOME ECLIPSING BINARY STARS

KILIÇOĞLU, T.; BAŞTÜRK, Ö.; ŞENAVCI, H. V.; YILMAZ, M.; TANRIVERDİ, T.; ALAN, N.; SİPAHİOĞLU, S.; AYDIN, G.; ÇELİK, L.; ÇALIŞKAN, Ş.; ELMASLI, A.; GÖKAY, G.; ÇAKAN, D.; DEMİRCAN, Y; EKMEKÇİ, F.; SELAM, S. O.; YÜCE, K.; ALBAYRAK, B.

Ankara University Observatory, 06837, Ahlatlıbel, Ankara, TURKEY e-mail: tolgahan@astro1.science.ankara.edu.tr

Observatory and telescope:
30-cm Maksutov telescope of the Ankara University Observatory

Detector:	OPTEC	SSP-5A	photoelectric	photometer	(uncooled)
	$\operatorname{containin}$	g a side-o	on R1414 Ham	amatsu photo	multiplier.

Method of data reduction:

Reduction of the observations were made in the usual way (Hardie, 1962).

Method of minimum determination:

The minima times were calculated using Kwee & van Woerden's (1956) method.

Times of minima:					
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD $2400000 +$				
V417 Aql	54297.4312	0.0003	II	BV	Sbş-Çlş
	54299.4671	0.0003	Ι	BV	Ul-Er
AC Boo	54189.4124	0.0001	Ι	BV	Cv-Sy
TZ Boo	54194.4432	0.0007	Ι	BV	Çl-Çv
	54228.3272	0.0004	Ι	BV	Ps-Klç
	54235.4587	0.0010	Ι	BV	Gr-Blg
MR Cyg	54343.3918	0.0006	II	BV	Gk-Iş
V2150 Cyg	54278.4673	0.0008	Ι	BV	Ul-Svm
	54286.4548	0.0007	Ι	BV	Çt-Çkn
	54310.4339	0.0007	II	BV	Ay-Alt
	54331.4269	0.0004	Ι	BV	Bn-Ay
	54344.4355	0.0016	Ι	BV	Cv-Erd
	54366.3528	0.0005	Ι	BV	Tr-Ay

Times of a	Times of minima:							
Star name	Time of min.	Error	Type	Filter	Rem.			
	HJD 2400000+							
V836 Cyg	54306.4192	0.0005	Ι	BV	Svm-Er			
	54336.4772	0.0003	Ι	BV	Bş- Sv			
DM Del	54289.3915	0.0004	Ι	BV	Dm-Dmr			
	54316.4224	0.0004	Ι	BV	Sp-Kl			
AK Her	54245.3765	0.0003	Ι	BV	Ak-Şn			
	54274.4626	0.0003	Ι	BV	Bş-El			
	54296.3785	0.0005	Ι	BV	Bn-Ay			
	54300.3867	0.0004	II	BV	Çöl-Şn			
TX Her	54302.4079	0.0004	II	BV	Cv-Kl			
V842 Her	54157.4921	0.0005	Ι	BV	Çlk-Aln			
	54207.3614	0.0010	Ι	BV	Klç-Blg			
	54212.3870	0.0004	Ι	BV	$\operatorname{Trn-Dmr}$			
	54292.4257	0.0005	Ι	BV	Svm-Ul			
SW Lac	54338.5017	0.0005	Ι	BV	Alt-Dm			
	54346.3565	0.0002	II	BV	Şnv-Tn			
	54346.5184	0.0001	Ι	BV	Tn-Gr			
	54351.4887	0.0002	II	BV	$\operatorname{Sp-Erd}$			
	54357.4225	0.0002	Ι	BV	Çk-Ür			
	54363.3555	0.0002	II	BV	Bş-Çk			
	54363.5163	0.0001	Ι	BV	Ylm-Tn			
	54364.3168	0.0002	II	BV	Şnv-Bğ			
	54364.4785	0.0001	Ι	BV	Tn-Bğ			
AM Leo	54184.4644	0.0003	II	BV	Ylm-Trn			
	54195.4391	0.0004	II	BV	Şh-Çt			
	54226.3504	0.0004	Ι	BV	Alt-Bn			
XY Leo	54098.5661	0.0003	II	BV	$\operatorname{Trn-Dv}$			
	54198.4287	0.0003	Ι	BV	Alt-Dmr			
V451 Oph	54253.3641	0.0005	Ι	BV	Ul-Erd			
	54265.4574	0.0006	II	BV	Çkn-Bb			
V566 Oph	54279.3865	0.0003	Ι	BV	Çt-Şhn			
	54290.4463	0.0004	Ι	BV	Çlş-Çlk			
	54305.3994	0.0003	II	BV	Klç-Gr			
	54351.4659	0.0005	Ι	BV	Gr-Ylm			
DI Peg	54335.4878	0.0002	Ι	BV	Çkn-Şa			
V781 Tau	54166.3319	0.0004	Ι	BV	Çl-Ays			
AH Vir	54285.3108	0.0005	Ι	BV	El-Ays			
Z Vul	54284.3550	0.0003	Ι	BV	Çl-Çkr			
	54322.4097	0.0007	II	BV	Iş-Sv			

Explanation of the remarks in the table:

Observers: Ak: M. Akdamar, Aln: N. Alan, Alt: B. Altuntaş, Ay: G. Aydın, Ays: G. Aysan, Bb: B. Babaoğlu, Bğ: N. Bağıran, Blg: D. Bilgiç, Bn: A.K. Bingöl, Bş: Ö. Baştürk, Cv: E. Civelek, Çk: A. Çelik, Çkn: D. Çakan, Çkr: T.D. Çakır, Çl: T. Çolak, Çlk: L. Çelik, Çlş: Ş. Çalışkan, Çöl: E. Çöl, Çt: Y. Çetni, A.Ö. Çavuş, Dm: E. Demirci, Dmr: U. Demirhan, Dv: O. Deveci, El: A. Elmaslı, Er: G. Ergan, Erd: G. Erdoğan, Gk: G. Gökay, Gr: H. Gürsoytrak, Iş: E. Işık, Kl: C. Kılıç, Klç: T. Kılıçoğlu, Ps: Ç. Püsküllü, Sbş: B. Subaşı, Sp: S. Sipahioğlu, Sv: B. Savran, Svm: S. Sevim, Sy: S. Saydam, Şa: Ş. Şahin, Şh: Z.S. Şahin, Şhn: E. Şahiner, Şn: Y. Şendağ, Şnv: H. V. Şenavcı, Tn: T. Tanrıverdi, Tr: Z. Terzioğlu, Trn: E. Törün, Ul: N.D. Uluş, Ür: Y. Üre, Ylm: M. Yılmaz.

Acknowledgements:

We would like to thank all observers at the Ankara University Observatory.

References:

Hardie, R.H., 1962, in Astronomical Techniques, Chicago University Press, ed. Hiltner, W.A.

Kwee, K.K., van Woerden, H., 1956, BAN, 12, 327

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 5802

Konkoly Observatory Budapest 25 October 2007 HU ISSN 0374 – 0676

PHOTOELECTRIC MINIMA OF SELECTED ECLIPSING BINARIES AND MAXIMA OF PULSATING STARS

(BAV MITTEILUNGEN NO. 186)

HÜBSCHER, JOACHIM

Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. (BAV), Munsterdamm 90, 12169 Berlin, Germany

In this 58th compilation of BAV results, photoelectric observations obtained in the years 2006 and 2007 are presented on 473 variable stars giving 735 minima and maxima on eclipsing binaries and pulsating stars. All moments of minima and maxima are heliocentric. The errors are tabulated in column ' \pm '. The values in column 'O - C' are determined without incorporation of nonlinear terms. The references are given in the section 'Remarks'. All information about photometers and filters are specified in the column 'Rem'. The observations were made at private observatories. The photoelectric measurements and all the light curves with evaluations can be obtained from the office of the BAV for inspection.

				· · · · ·	0						
Variable	M/m	HJD 24	±	Obs	O-C		Bibliography	Fil	n	Rem	
GK And	Min	53966.5641	.0010	RAT RCR	-0.2834		GCVS 85	-Ir	97	1)	
KP And	Min	54025.5598	.0003	RAT RCR				-Ir	179	1)	
CX Aqr	Min	53931.5448	.0001	RAT RCR	+0.0076		GCVS 85	-Ir	110	1)	
GK Aqr	Min	53932.5567	.0001	RAT RCR				-Ir	104	1)	
GS Aqr	Min	53943.488	.002	RAT RCR				-Ir	93	1)	
MU Aqr	Min	53934.5075	.0002	RAT RCR				-Ir	92	1)	
V346 Aql	Min	53954.4973	.0002	FLG	-0.0098		GCVS 85	0	66	12)	
	Min	54307.4266	.0003	QU	-0.0103		GCVS 85	V	52	3)	
V417 Aql	Min	53910.4523	.0001	RAT RCR	-0.0541	\mathbf{S}	BAVR 33,152ff	-Ir	98	1)	
XX Aur	Min	54116.3561	.0019	AG	-0.4749		GCVS 85	-Ir	37	1)	
ZZ Aur	Min	54116.3480	.0006	AG	+0.0161		GCVS 85	-Ir	36	1)	
	Min	54171.3625	.0017	AG	+0.0194	\mathbf{s}	GCVS 85	-Ir	53	1)	
AH Aur	Min	54148.4708	.0009	AG	+0.0610		BAVR 35,41ff	-Ir	30	1)	
AP Aur	Min	53759.5025	.0002	RAT RCR	+0.0625		IBVS 3942	-Ir	155	1)	
	Min	54114.5094	.0015	AG	+0.0681	\mathbf{S}	IBVS 3942	-Ir	81	1)	
BC Aur	Min	54164.444 :	.002	\mathbf{FR}	-0.659		GCVS 85	-Ir	34	8)	
CG Aur	Min	54115.2369	.0006	AG	-0.0017		GCVS 85	-Ir	45	1)	
CL Aur	Min	54115.3547	.0010	AG	+0.1180		GCVS 85	-Ir	45	1)	
	Min	54171.3512	.0009	SCI	+0.1181		GCVS 85	0	43	2)	
EM Aur	Min	54172.3883	.0004	WN	+0.0329	\mathbf{S}	AA 54.207	V	108	11)	
GI Aur	Min	54148.2957	.0019	AG				-Ir	31	1)	
HL Aur	Min	53780.4594	.0003	RAT RCR	-0.0103		GCVS 85	-Ir	51	1)	
HP Aur	Min	54115.4290	.0008	AG	-0.6591		GCVS 85	-Ir	45	1)	
HW Aur	Min	53990.5597	.0004	MS FR	+0.0169		IBVS 5016	0	594	5)	

Table 1: Eclipsing binaries

Table 1: (cont.)

Variable	M/m	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
lZ Aur	Min	53999.5766	.0003	MS FR				0	328	5)
1711 A	Min	54115.2510	.0003	MS FR	10,0000		a ava or	0	469	5)
KU Aur	Min	53814.3799	.0001	RATRCR	+0.0232		GCVS 85	-lr	75	1)
MN Aur	Min	52619.6790	.0020	AG	-0.0573		GCVS 85	-Ir	130	1)
	Min	54154.4351	.0004	AG	-0.1241		GCVS 85	-Ir	234	1)
MO Aur	Min	54176.3557	.0052	AG	+0.0941		BAVM 68	-Ir	24	1)
V364 Aur	Min	54024.4794	.0002	MS FR				0	354	5)
V402 Aur	Min	54115.5200	.0060	AG				-Ir	45	1)
V404 Aur	Min	53991.5634	.0003	MS FR				0	432	5)
	Min	54116.4121	.0022	AG				-lr	36	1)
	Min	54171.4847	.0032	AG				-lr	53	1)
V410 Aur	Min	54115.2750	.0025	AG				-lr	45	1)
	Min	54115.4596	.0001	AG				-Ir	45	1)
NSV 1998	Min	52688.3872	.0008	FR			0.07.00	0	30	8)
SU Boo	Min	54185.4972	.0006	AG	+0.0301		GCVS 85	-lr	31	1)
ΓU Boo	Min	53867.5026	.0003	RAT RCR	+0.0461		GCVS 85	-lr	117	1)
ГҮ Воо	Min	54185.3719	.0023	AG	-0.0222	\mathbf{s}	BAVM 68	-Ir	30	1)
	Min	54185.5302	.0039	AG	-0.0224		BAVM 68	-Ir	30	1)
	Min	54240.3966	.0001	WTR	-0.0231		BAVM 68	-Ir	70	10)
TZ Boo	Min	53818.5391	.0003	RAT RCR	-0.0566		BAVM 68	-Ir	117	1)
	Min	53862.3720	.0001	RAT RCR	-0.0543	\mathbf{S}	BAVM 68	-Ir	81	1)
	Min	54259.5269	.0007	AG	-0.0493		BAVM 68	-Ir	42	1)
XY Boo	Min	53813.4192	.0004	RAT RCR	+0.0868	\mathbf{S}	GCVS 85	-Ir	67	1)
	Min	54239.3957	.0002	WTR	-0.0654	\mathbf{S}	GCVS 85	-Ir	59	10)
YY Boo	Min	54203.4437	.0009	AG	-0.1056		GCVS 85	-Ir	27	1)
AC Boo	Min	53860.4008	.0001	RAT RCR	+0.0074		AA 54.207	-Ir	63	1)
	Min	54170.5550	.0004	QU	+0.0103		AA 54.207	V	44	3)
	Min	54210.3819	.0004	QU	+0.0109		AA 54.207	Ic	46	3)
	Min	54218.4880	.0005	$_{ m JU}$	+0.0108		AA 54.207	0	63	2)
	Min	54220.4258	.0005	FLG	+0.0102	\mathbf{S}	AA 54.207	0	150	12)
CV Boo	Min	53863.3731	.0002	RAT RCR	-0.0109		BAVR 49,117	-Ir	52	1)
	Min	54206.4062	.0003	QU	-0.0102		BAVR 49,117	V	47	3)
ET Boo	Min	54186.4736	.0022	SCI				0	152	2)
	Min	54219.3721	.0014	$_{ m JU}$				0	53	2)
EW Boo	Min	54200.5408	.0020	SCI				0	156	2)
	Min	54259.4568	.0010	AG				-Ir	43	1)
FI Boo	Min	54221.4135	.0058	$_{ m JU}$				0	88	2)
GM Boo	Min	53815.4769	.0004	RAT RCR				-Ir	150	1)
	Min	54186.5265	.0009	AG				-Ir	21	1)
	Min	54201.5136	.0012	AG				-Ir	31	1)
	Min	54213.4318	.0027	AG				-Ir	21	1)
GN Boo	Min	53858.3579	.0004	RAT RCR				-Ir	68	1)
	Min	54185.4454	.0015	AG				-Ir	30	1)
	Min	54185.5960	.0021	AG				-Ir	30	1)
	Min	54201.4298	.0027	AG				-Ir	31	1)
	Min	54213.3446	.0004	AG				-Ir	21	1)
	Min	54213.4947	.0008	AG				-Ir	21	1)
GQ Boo	Min	54186.5145	.0031	AG				-Ir	22	1)
-	Min	54201.5208	.0012	AG				-Ir	31	1)
	Min	54213.4402	.0022	AG				-Ir	21	1)
GR Boo	Min	54186.3574	.0044	AG				-Ir	25	1)
	Min	54186.5449	.0028	AG				-Ir	25	1)
	Min	54201.4224	.0008	AG				-Ir	31	1)
	Min	54213.4770	.0035	AG				-Ir	21	1)
GS Boo	Min	54185.4351	.0011	AG				-Ir	28	1)
Boo	Min	54197 5025	.0035	SCI	-0.0109		GCVS 85	0	84	$\frac{1}{2}$
	Min	54217 4410	0018	JU	-0.0237	s	GCVS 85	0	68	$\frac{2}{2}$
[]1200-07449409	Min	54185 5916	0010 8200	ΔG	0.0201	a		_Ir	30	<i>∠)</i> 1)
V Cam	Min	53758 3011	0000	BAT RCR	± 0.2042		GCVS 85	_Tr	02	1)
1 Jam	TATTT	00100.0311	.0004	TUTT TOT	10.4344			-11	34	1)

Table 1: (cont.)

Variablo	M/m	H ID 94	+		$\frac{0-C}{0}$		Bibliography	Fil	n	Rom
SV Cam	Min	54209 3444	0019	WN	+0.0473		GCVS 85	V	97	11)
AO Cam	Min	53809.3529	.0001	BAT BCB	+0.0044	s	GCVS 85	-Ir	65	1)
RY Cnc	Min	54150.3621	.0020	AG	+0.0574	s	GCVS 85	-Ir	16	1)
TU Cnc	Min	54202.4358	.0007	AG	+0.0325		AA 54.207	-Ir	19	1)
FX Cnc	Min	54150.2674	.0001	AG	+0.0368		GCVS 85	-Ir	16	1)
	Min	54172.4725	.0064	AG	+0.0348		GCVS 85	-Ir	34	1)
WW Cnc	Min	54175.4928	.0007	AG	-0.0689		BAVR 32,36ff	-Ir	53	1)
WY Cnc	Min	54179.4232	.0001	WN	-0.0295		GCVS 85	V	113	11)
XZ Cnc	Min	54174.3388	.0001	WTR				-Ir	100	10)
AB Cnc	Min	54202.4113	.0011	AG				-Ir	21	1)
AC Cnc	Min	54202.4573	.0003	AG				-Ir	17	1)
AD Cnc	Min	54202.3869	.0053	AG				-Ir	18	1)
EH Cnc	Min	54150.2490:	.0040	AG				-Ir	16	1)
GW Cnc	Min	54172.2949	.0044	AG				-Ir	41	1)
	Min	54172.4346	.0019	AG				-Ir	41	1)
	Min	54172.5766	.0019	AG				-Ir	41	1)
OH CVn	Min	54205.5088	.0008	AG				-Ir	46	1)
DI CVn	Min	54205.4860	.0005	AG				-Ir	47	1)
RS CMi	Min	54149.4416	.0012	AG				-Ir	25	1)
RW CMi	Min	54153.2996	.0009	AG				-Ir	18	1)
ΓX CMi	Min	54149.3936	.0027	AG				-Ir	22	1)
	Min	54153.2860	.0006	AG				-Ir	15	1)
	Min	54200.3820	.0002	AG				-Ir	17	1)
UZ CMi	Min	54149.3431	.0014	AG				-lr	23	1)
	Min	54200.3433	.0002	AG				-lr	17	1)
XZ CMi	Min	54149.3702	.0020	AG	+0.2828		GCVS 85	-lr	22	1)
Y CMi	Min M'	54148.3517	.0002	WTR	+0.0143		GCVS 85	-lr	79	10)
AK CMI	Min	54149.3824	.0022	AG	+0.2594	_	GCVS 85	-1r	20	1)
AM CMI PF CMi	Min	04149.4407 54153 3300	.0071	AG	+0.1711	s	GC V 5 65	-11 Ir	21 18	1)
T10000 05260503	Min	54155.5509	.0030	AG				-11 Ir	10	1)
AL Cas	Min	53740 3051	.0033	BAT BCB	_0.0024	c	GCVS 85	-11 _Tr	80	1)
TW Cas	Min	53942 5350	0001	BAT BCB	± 0.0024 ± 0.0667	5	GCVS 85	-11 -Tr	73	1)
DZ Cas	Min	54019.5003	.0004	RAT RCR	-0.1672		GCVS 85	-Ir	152	1)
EG Cas	Min	54026.5209	.0003	RAT RCR	+0.1253	s	GCVS 85	-Ir	200	1)
EN Cas	Min	54192.4773	.0118	SCI	+0.2624	U	GCVS 85	0	145	2)
GK Cas	Min	54212.5234	.0026	SCI	+0.6839		GCVS 85	0	42	$2)^{-)}$
GR Cas	Min	54024.3345	.0003	MS FR				0	333	5)
MR Cas	Min	54115.3740	.0019	JU				0	72	2)
	Min	54122.3382	.0009	$_{ m JU}$				0	59	2)
	Min	54126.4695	.0040	$_{ m JU}$				0	41	2)
	Min	54147.3599	.0028	SCI				0	31	2)
	Min	54147.3610	.0019	$_{ m JU}$				0	75	2)
	Min	54147.5779	.0028	SCI				0	31	2)
MT Cas	Min	54205.3900	.0014	SCI				0	33	2)
OR Cas	Min	54025.3303	.0002	MS FR	-0.0204		GCVS 85	0	356	5)
V374 Cas	Min	54024.5056	.0002	RAT RCR				-Ir	171	1)
V375 Cas	Min	53992.3255	.0003	MS FR	+0.1841		BAVR 32,36ff	0	484	5)
	Min	54218.4929	.0018	AG	+0.1878	\mathbf{S}	BAVR 32,36ff	-Ir	44	1)
V381 Cas	Min	54084.3582	.0005	QU	-0.0097		BAVR 32,36ff	V	88	3)
1479 C	Min M	54091.3426	.0010	QU	-0.0091		BAVR 32,36ff	V	77	3)
v 473 Cas	Min	54115.3212	.0016	AG	-0.0192	\mathbf{S}	IBVS 4669	-lr	45	1)
VEFA Cos	Min	04110.5334 54102 5106	.0006	AG	-0.0147		1BV5 4009 115	-1r	45 959	1)
V 004 Uas	Min	04193.0120 54115 9661	.0028	SUL				0 T	208 50	<i>2)</i>
GSC 3073.1180	Min	04110.0001 54115 5194	.0013	AG				-11 T.,	00 50	1) 1)
AV Cen	Min	54993 4870.	0012	AG				-11 _Tr	146	1)
DK Cen	Min	54241 3003	.0030 2000	AG	+0.0318		GCVS 85	-11 _Tr	140 58	1)
EG Cep	Min	54213 3592	.0003	AG	+0.0146		GCVS 85	-11 -Tr	56	1)
GI Cep	Min	54216.5438	.0022	AG	1 0:01:10		20.000	-Ir	33	1)
Gr Och	11111	01210.0400	.0044	ло				~11	55	1)

Table 1: (cont.)

					com.)					
Variable	M/m	HJD 24	\pm	Obs	O - C		Bibliography	Fil	n	Rem
HI Cep	Min	54260.4249	.0030	AG				-Ir	29	1)
IO Cep	Min	54216.4172	.0037	AG	-0.6163		GCVS 85	-Ir	34	1)
IW Cep	Min	54244.4210	.0006	AG				-Ir	38	1)
LP Cep	Min	54216.3937	.0011	AG				-Ir	33	1)
NS Cep	Min	54221.5140	.0057	AG	+0.1453		GCVS 85	-Ir	43	1)
NU Cep	Min	54241.4615	.0005	AG				-Ir	58	1)
NW Cep	Min	54244.4674	.0014	AG	-0.4350		GCVS 85	-Ir	38	1)
RW Com	Min	53764.6054	.0003	RAT RCR	-0.0198	s	GCVS 85	-Ir	104	1)
	Min	53817.4154	.0001	RAT RCR	-0.0193		GCVS 85	-Ir	64	1)
	Min	54154.5647	.0011	AG	-0.0199	s	GCVS 85	-Ir	13	1)
	Min	54174.5026	.0007	AG	-0.0190	s	GCVS 85	-Ir	34	1)
	Min	54174.6226	.0026	AG	-0.0177		GCVS 85	-Ir	34	1)
	Min	54186.3700	.0004	JU	-0.0189	s	GCVS 85	0	61	$\frac{-}{2}$
	Min	54216.3932	.0014	SCI	-0.0200		GCVS 85	õ	88	$\frac{-}{2}$
	Min	54216.3941	.0003	JU	-0.0191		GCVS 85	0	48	$\frac{-}{2}$
	Min	54216.5117	.0013	SCI	-0.0201	s	GCVS 85	0	126	$\frac{-}{2}$
BZ Com	Min	54174 4486	0007	AG	+0.0201	S	GCVS 85	-Ir	35	1)
112 0011	Min	54174 6182	0019	AG	+0.0409	5	GCVS 85	-Ir	35	1)
	Min	541754650	00010	AG	+0.0403 +0.0414	S	GCVS 85	-Ir	31	1)
	Min	54175,6352	0007	AG	+0.0411 +0.0423	5	GCVS 85	-Ir	31	1)
UX Com	Min	54176 4175	.0001	AG	-0.0955		BAVM 69	-Ir	30	1)
CC Com	Min	53765 5180	00020	BAT BCB	-0.0120	e	CCVS 85	Ir	102	1)
00 000	Min	54175 4396	0002	AG	-0.0120	5	GCVS 85	-11 _Ir	31	1)
	Min	54175 5505	0002	AG	-0.0100	c	GCVS 85	-11 _Ir	31	1)
	Min	54202 3634	.0003	WTR	-0.0159	5	GCVS 85	-11 Ir	60	10
	Min	54202.3034	.0001	DIF	-0.0133		CCVS 85	-11	10	(10)
	Min	54204.3331	.0010	DIE	-0.0124		CCVS 85	0	19	9) 0)
	Min	54200.3338	.0004	SCI	-0.0159		CCVS 85	0	20 60	9) 2)
	Min	54209.4245 54200.5347	.0009	SCI	-0.0108	0	CCVS 85	0	53	$\frac{2}{2}$
CM Com	Min	54209.5547	.0007		-0.0109	5	GC V 5 65	U In	00 91	2) 1)
CM Com	Min	54175.0062 E417E E200	.0052	AG				-11 I.,	01 91	1)
CN Com	Min	54175.5299	.0014	AG ED				-1r	31	1)
EV Com	Min	54200.5549 E4174 E99E	.0010					-11 L.	42	0 <i>)</i> 1)
EK Com	Min	54174.5265 E4176 2050	.0008	AG				-11 L.	04 91	1)
	MIII Min	54170.5950	.0018	AG				-11 T.,	01 01	1)
	Min	54170.5505	.0012	AG				-1r	31	1)
	Min	54187.4637	.0005	AG				-lr	23	1)
	Min	54187.5955	.0006	AG				-1r	23	1)
	Min	54220.3980	.0024	SCI	0.0007		IDVG 4900	0	102	2)
LL Com	Min	54176.4052	.0007	AG	-0.0287		IBVS 4386	-lr	24	1)
TOG	Min	54187.5945	.0006	AG	-0.0291	\mathbf{s}	IBVS 4386	-lr	22	1)
LO Com	Min	54154.5761	.0008	AG				-lr	13	1)
	Min	54174.4773	.0001	AG				-lr	34	1)
	Min	54174.6205	.0027	AG				-lr	34	1)
LP Com	Min	54174.5358	.0007	AG				-lr	34	1)
LT Com	Min	54187.3672	.0006	AG	0.0050		a ara ar	-lr	23	1)
RW CrB	Min	54221.5715	.0014	AG	-0.0053		GCVS 85	-Ir	31	1)
TW CrB	Min	54199.5934	.0014	SCI	+0.0068		SAC 70	0	105	2)
YY CrB	Min	54201.4502	.0016	SCI				0	102	2)
	Min	54201.6343	.0017	SCI				0	53	2)
	Min	54259.4387	.0009	JU				0	61	2)
AV CrB	Min	53990.3456	.0003	RAT RCR	-0.0080	\mathbf{s}	GCVS 2007	-lr	60	1)
VZ Cru	Min	54277.274	.003	HND				0	72	4)
XY Cru	Min	54276.453	.005	HND			~ ~ ~	0	57	4)
Y Cyg	Min	54296.4600	.0010	QU	-0.0759		GCVS 85	V	66	3)
WW Cyg	Min	53904.4980	.0001	RAT RCR	+0.0678		GCVS 85	-Ir	130	1)
	Min	54259.5020	.0002	AG	+0.0705		GCVS 85	-Ir	30	1)
WZ Cyg	Min	53920.4919	.0001	RAT RCR	+0.0584		GCVS 85	-Ir	114	1)
	Min	54003.4867	.0001	RAT RCR	+0.0591		GCVS 85	-Ir	161	1)
ZZ Cyg	Min	52862.4194	.0005	AG	-0.0434		GCVS 85	-Ir	51	1)
AE Cyg	Min	53227.4971	.0003	AG	-0.0048		GCVS 85	0	34	1)

Table 1: (cont.)

Variable	M/m	HJD 24	±	Obs	O-C		Bibliography	Fil	n	Rem
BR Cyg	Min	54297.4348	.0004	\overline{QU}	+0.0002		GCVS 85	V	61	$\overline{3)}$
CV Cyg	Min	53966.4496	.0048	FLG	-0.0019	\mathbf{S}	AA 54.207	0	123	12)
	Min	54034.3030	.0005	RAT RCR	-0.0038	\mathbf{S}	AA 54.207	-Ir	107	1)
DL Cyg	Min	53999.5466	.0010	RAT RCR				-Ir	190	1)
V370 Cyg	Min	54252.5087	.0005	AG	-0.0225		GCVS 85	-Ir	31	1)
V443 Cyg	Min	54259.4781	.0006	AG				-Ir	30	1)
V453 Cyg	Min	54222.572 :	.005	\mathbf{FR}				-Ir	42	8)
V454 Cyg	Min	53993.5051	.0002	RAT RCR				-Ir	130	1)
V496 Cyg	Min	54271.4984	.0007	AG				-Ir	33	1)
V498 Cyg	Min	54262.4536	.0017	AG	+0.1515		GCVS 85	-Ir	20	1)
V505 Cyg	Min	53989.4862	.0003	RAT RCR	+0.0769	\mathbf{s}	GCVS 85	-Ir	125	1)
	Min	53991.4904	.0003	RAT RCR	+0.0781	\mathbf{s}	GCVS 85	-Ir	168	1)
V508 Cvg	Min	52862.5056	.0016	AG				-Ir	52	1)
20	Min	53607.4575	.0012	AG				-Ir	30	1)
V512 Cvg	Min	54241.5050	.0009	AG				-Ir	28	1)
V513 Cvg	Min	54262.5267	.0016	AG	-0.3294		GCVS 85	-Ir	21	1)
V525 Cyg	Min	52831 4230	0003	AG	0.0201		001500	0	32	1)
V524 Cyg	Min	52898 5005	.0005	AG				0	- <u>52</u> - 22	1)
V628 Cyg	Min	53035 5048	0002	BAT BCB	-0.0030	e	IBVS 4381	Ir	124	1)
V028 Cyg V726 Cyg	Min	54250 5370	.0005	AG	-0.0050	ъ	ID V 5 4501	-11 Ir	30	1)
V120 Oyg	Min	54271 4800	.0011					-11 In	22	1)
V798 Curr	Min	54271.4099	.0015	AG	10.0546		COVS of	-11 In		1)
V720 Cyg	Min	04200.4000 50006 5060	.0005	AG	+0.0340		GC V 5 85	-11 L.	29 10	1)
v 749 Cyg	Min	52830.5209	.0007	AG				-1r	19	1)
	Min	54239.4873	.0023	AG	0.0041		a ava er	-Ir	37	1)
V787 Cyg	Min	53985.5308	.0002	RATRCR	+0.0041		GCVS 85	-lr	144	1)
V828 Cyg	Min	53990.5232:	.0009	RAT RCR	+0.3250	\mathbf{S}	GCVS 85	-lr	105	1)
V841 Cyg	Min	54245.4324	.0011	AG	+0.0060		GCVS 85	-lr	30	1)
V912 Cyg	Min	54252.3968	.0013	AG	-0.1060		GCVS 85	-lr	31	1)
V963 Cyg	Min	54252.3746	.0011	AG	-0.0003		GCVS 85	-Ir	32	1)
V1004 Cyg	Min	54252.3868	.0013	AG	-0.1547		GCVS 85	-Ir	31	1)
V1019 Cyg	Min	54024.3730	.0067	FR				-Ir	29	8)
V1048 Cyg	Min	54241.4999	.0023	AG				-Ir	29	1)
V1188 Cyg	Min	54239.4283	.0020	AG				-Ir	36	1)
V1189 Cyg	Min	54241.5048	.0009	AG				-Ir	29	1)
V1191 Cyg	Min	54025.3548	.0003	RAT RCR	+0.0798	\mathbf{s}	GCVS 85	-Ir	83	1)
V1193 Cyg	Min	54221.5631	.0013	AG				-Ir	42	1)
V1196 Cyg	Min	52836.4858	.0018	AG				-Ir	18	1)
	Min	54260.5287	.0006	AG				-Ir	29	1)
V1305 Cvg	Min	54019.2940	.0007	RAT RCR				-Ir	118	1)
V1326 Cvg	Min	54239.4193	.0006	AG				-Ir	37	1)
V1411 Cvg	Min	53940.4569	.0002	RAT RCR	-0.1767	\mathbf{S}	GCVS 85	-Ir	135	1)
V1787 Cvg	Min	52836.5217	.0025	AG				-Ir	18	1)
~~/0	Min	54239.3648	.0003	AG				-Ir	37^{-0}	1)
V2240 Cvg	Min	53993.5326	.0007	RAT RCB				-Ir	130	1)
V2277 Cvg	Min	54024 3827	.0003	RAT RCR				-Ir	143	1)
V2280 Cvg	Min	54240 4651	.0011	AG				-Ir	33	1)
V2284 Cvg	Min	54240 4094	0010	AG				_Ir	32	+) 1)
GSC 3776 0170	Min	52862 5033	00020	AG				_Tr	51	+) 1)
EX Dol	Min	52002.0000	.0008	RAT RCP			CCVS 85	-11 Tr	72 12	1)
Z Dra	Min	53813 5191	0002	RAT ROR	-0.0001 -0.1746		CCAR 82	-11 T.,	40 101	1)
D Dia DD Dro	Min	54200 5241	.0004		-0.1740		CCAR 05 CCAR 05	-11 T.,	101	1) 1)
nn Dra DV Dra	1VIIII 1	04200.0041 54106 2521	.0001	AG	± 0.0477		GCVS 00	-1ľ T.:	90 90	1) 1)
na Dra DZ Dra	IVIIN	04190.3031 F2860 F110	.0013	AG DAT DOD	+0.0502		GCVS 85	-1r	38 50	1)
к⊿ Dra	Min	53862.5110	.0003	KAT KCK	+0.0432		GUVS 85	-1r	56	1)
	Min	54196.3404	.0007	AG	+0.0431		GCVS 85	-lr	$\frac{39}{-}$	1)
	Min	54206.5343	.0017	AG	+0.0458	\mathbf{S}	GCVS 85	-Ir	79	1)
	Min	54217.5500	.0010	AG	+0.0441	\mathbf{S}	GCVS 85	-Ir	73	1)
SX Dra	Min	54217.4787	.0009	AG	+0.1029		GCVS 85	-Ir	74	1)
UZ Dra	Min	54204.5710	.0002	AG	+0.0025		GCVS 85	-Ir	153	1)
WW D	Min	54136 5301	0026	SCI	10 1596		CCVS 85	0	152	2)
ww Dra	IVIIII	04100.0001	.0020	501	+0.4350		GCVB 65	0	100	2)

Table 1: (cont.)

Variable	M/m	HJD 24	±	Obs	O-C		Bibliography	Fil	n	Rem
AK Dra	Min	54208.4380	.0003	AG				-Ir	42	1)
AX Dra	Min	53758.5549	.0003	RAT RCR	-0.0017	\mathbf{S}	BAVR 32,36ff	-Ir	135	1)
	Min	53809.4038	.0001	RAT RCR	-0.0035		BAVR 32,36ff	-Ir	40	1)
	Min	53864.5162	.0001	RAT RCR	-0.0029		BAVR 32,36ff	-Ir	88	1)
	Min	53866.5060	.0004	RAT RCR	-0.0017	\mathbf{s}	BAVR 32,36ff	-Ir	126	1)
BE Dra	Min	53993.3712	.0002	RAT RCR	+0.1293		GCVS 85	-Ir	68	1)
BS Dra	Min	54187.4820	.0003	AG	+0.0004		GCVS 85	-Ir	76	1)
BU Dra	Min	54199.3627	.0006	AG	+0.0201		MVS 12,4	-Ir	209	1)
FU Dra	Min	53809.5421	.0002	RAT RCR			,	-Ir	150	1)
GQ Dra	Min	54262.4470	.0023	AG				-Ir	49	1)
GV Dra	Min	54171.5447	.0028	SCI	-0.0080		IBVS 4990	0	140	2)
KK Dra	Min	54202.5301	.0005	AG				-Ir	75	1)
LZ Dra	Min	54187,4947	.0008	AG				-Ir	76	1)
MU Dra	Min	53991 3318	0003	BAT BCB				-Ir	63	1)
BU Gem	Min	54141 5204	0016	AG				-Ir	34	1)
RW Gem	Min	54141 4307	.0010	AG	± 0.0022		GCVS 85	_Ir	52	1)
WW Com	Min	54141 3087	0012	AG	± 0.0022	e	CCVS 85	-11 Ir	50	1)
AC Com	Min	54173 4345	.0012	FB	+0.0300 -0.2305	а с	GCVS 85	-11 Ir	20	8)
AE Com	Min	54175.4545 54141.9071	.0007		-0.2330	5	CCVS 85	-11 Ir	23	1)
AI Com	Min	54141.2971	.0007	AG	-0.0039		CCVS 85	-11 In	91	1)
AL Gem	Min	54141.5400	.0009	AG	± 0.0033		GC V 5 65	-11 In	01 00	1)
Av Gem	MIII M:	54110.4649	.0007	AG				-11 T.,	22	1)
AV C	Min	54149.4705	.0011	AG DATE DOD	0.0505		COVO OF	-1r	20	1)
AY Gem	Min	53765.3025	.0002	RATROR	-0.0525		GCVS 85	-1r	68	1)
	Min	54165.3331	.0013	JU	-0.0501		GCVS 85	0	64	2)
D 0 <i>G</i>	Min	54171.4391	.0002	FR	-0.0514		GCVS 85	-1r	30	8)
BO Gem	Min	54136.3830	.0012	AG				-Ir	43	1)
0.5.5.0	Min	54136.3848	.0003	FR				-lr	37	8)
CK Gem	Min	54171.4664	.0025	FR				-lr	29	8)
CP Gem	Min	54148.2791	.0019	FR			0.07.00	-lr	32	8)
CX Gem	Min	54116.4074	.0031	\mathbf{FR}	-0.0210	\mathbf{S}	GCVS 85	-lr	39	8)
DP Gem	Min	54019.535 :	.001	MS FR	-0.081	\mathbf{S}	GCVS 85	0	250	5)
FG Gem	Min	54141.4104	.0020	AG	-0.0283	\mathbf{S}	GCVS 85	-Ir	31	1)
FT Gem	Min	54116.4089	.0012	AG	-0.0231		GCVS 85	-Ir	22	1)
	Min	54149.3157	.0011	\mathbf{FR}	-0.0226		GCVS 85	-Ir	37	8)
GM Gem	Min	54149.3615	.0022	AG				-Ir	20	1)
GP Gem	Min	54116.4624	.0034	AG				-Ir	22	1)
	Min	54148.3673	.0010	JU				0	89	2)
GW Gem	Min	54085.4471	.0002	RAT RCR	+0.0250		GCVS 85	-Ir	35	1)
GZ Gem	Min	54115.2717	.0010	\mathbf{FR}				-Ir	33	8)
HR Gem	Min	54093.4396	.0006	RAT RCR				-Ir	35	1)
IM Gem	Min	54116.2781	.0016	\mathbf{FR}				-Ir	61	8)
KQ Gem	Min	54150.3953	.0009	\mathbf{FR}				-Ir	34	8)
KV Gem	Min	54150.2843	.0002	\mathbf{FR}	-0.0069		BAVR 52,95ff	-Ir	46	8)
MU Gem	Min	54149.5246	.0027	\mathbf{FR}	+0.0182		GCVS 85	-Ir	39	8)
GSC 1375.1085	Min	54147.4593	.0003	SIR				-Ir	138	7)
	Min	54148.4665	.0003	SIR				-Ir	189	7)
	Min	54173.3694	.0003	SIR				-Ir	100	7)
TU Her	Min	54217 4525	0017	AG	-0.1717		GCVS 85	-Ir	19	1)
TX Her	Min	54268 4193	0053	WTB	-0.0058		GCVS 85	-Ir	63	10)
BC Her	Min	53889 5219	0002	BAT BCB	-0.3814		GCVS 85	-Ir	133	1)
CC Her	Min	54251 5038	0001	AG	± 0.0019		GCVS 85	_Tr	7/	1)
DD Her	Min	54271 4623	0023	AG	+0.3620		SAC 63	_Ir	44	1)
DK Hor	Min	54230 /661	0023	AG	-0.1180		GCVS 85	-11 _Tr	3U	1)
DP How	Min	54920 4050	0002		0.1100			-11 T.	-00 -00	1)
FF Hor	Min	54233.4030 54910 5161	.0005					-11 T.,	29 10	1)
FS How	Min	54219.0101 54990 E499	0004	AG				-11 T	19 11	1) 1)
CL Her	Min Min	54220.3422	.0038	AG			COVE of	-11	11	1)
GL Her	IVIIN	04221.0804	.0015	SCI	+0.0709		GUVS 85	О Т.	<u>ა</u> კ	∠) 1)
OU U	IVIIN	54282.5576	.0007	AG	+0.0728		GUVS 85	-1r	32	1)
GU Her	Min M	54210.5128	.0026	AG	+0.7494		GUVS 85	-1r	30	1)
L1 Her	Min	54218.4095	.0021	SCI	-0.0231		BAVM 69	0	84	2)

Table 1: (cont.)

					, one,					
Variable	M/m	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
LT Her	Min	54244.4224	.0008	AG	-0.0271		BAVM 69	-Ir	47	1)
MT Her	Min	53861.4976	.0002	RAT RCR	+0.0147		GCVS 85	-Ir	127	1)
MX Her	Min	54262.4442	.0006	AG	-0.5233		GCVS 85	-Ir	43	1)
V338 Her	Min	54245.4916	.0005	AG	+0.0778		GCVS 85	-Ir	33	1)
	Min	54296.4149	.0001	WTR	+0.0773		GCVS 85	-Ir	83	10)
V342 Her	Min	54282.4613	.0006	AG	+0.0141		GCVS 85	-Ir	32	1)
V387 Her	Min	54219.4276	.0025	AG	+0.0805		GCVS 85	-Ir	19	1)
V450 Her	Min	54205.4528	.0014	AG	+0.1266	s	GCVS 85	-Ir	36	1)
V643 Her	Min	54222.4676	.0030	AG				-Ir	19	1)
	Min	54282.3983	.0010	AG				-Ir	32	1)
V687 Her	Min	54217.4927	.0023	SCI				0	42	2)
V719 Her	Min	54240.5550	.0001	AG				-Ir	26	1)
V728 Her	Min	53116.4350	.0099	AG	+0.0459	s	IBVS 3234	0	16	1)
	Min	53858.4766	.0003	RAT RCR	+0.0464		IBVS 3234	-Īr	127	1)
	Min	54240.4604	.0011	AG	+0.0522	s	IBVS 3234	-Ir	26	1)
V731 Her	Min	54222.4375	.0035	SCI	1 010011			0	84	$2)^{-)}$
V740 Her	Min	53116.4894	.0002	AG				0	13	1)
V742 Her	Min	54212.4039	.0011	SCI				0	23	2)
V829 Her	Min	54204.4342	.0019	SCI	+0.0164	s	IBVS 5496	0	113^{-3}	$\frac{-}{2}$
1020 1101	Min	54204.6116	.0014	SCI	+0.0147	5	IBVS 5496	0	102	2)
	Min	54217.5082	.0045	AG	+0.0179		IBVS 5496	-Īr	12	1)
	Min	54223.4189	.0001	AG	+0.0191	s	IBVS 5496	-Ir	27	1)
V842 Her	Min	54297.4523	.0004	JU	-0.0386	5	BAVR 49.180	0	55	2)
V856 Her	Min	54218.5711	.0014	SCI	0.0000		211/10/10,100	0	41	$\frac{-}{2}$
V857 Her	Min	54218.4067	.0020	AG				-Ir	21	1)
V1033 Her	Min	54210.4231	.0014	AG				-Ir	28	1)
1 1000 1101	Min	54210.5730	.0002	AG				-Ir	28 28	1)
	Min	54217 4281	0012	AG				-Ir	17	1)
V1034 Her	Min	54200.4918	.0009	AG				-Ir	26	1)
V1038 Her	Min	54000.3326	.0002	RAT RCR				-Ir	71	1)
1 10000 1101	Min	54217 4252	0013	AG				-Ir	16	1)
	Min	54217 5588	0002	AG				-Ir	16	1)
	Min	54218 4999	0054	AG				-Ir	20	1)
	Min	54223.4586	.0016	AG				-Ir	20 32	1)
V1039 Her	Min	542194172	0017	AG				-Ir	19	1)
V1047 Her	Min	54217,4796	0028	AG				-Ir	16	1)
V1054 Her	Min	54219 5206	0029	AG				-Ir	18	1)
V1055 Her	Min	54240.4255	.0011	AG				-Ir	26	1)
V1057 Her	Min	54219.3895	.0061	AG				-Ir	17	1)
V1062 Her	Min	53116.4174	.0001	AG				0	16	1)
1 1002 1101	Min	54245.4916	.0009	AG				-Ir	31	1)
V1067 Her	Min	54245.4315	.0009	AG				-Ir	34	1)
	Min	54245.5597	.0023	AG				-Ir	34	1)
V1073 Her	Min	53897.4145	.0001	RAT RCR				-Ir	42	1)
	Min	54220.5370	.0002	AG				-Ir	11	1)
TY Hva	Min	54171.4597	.0002	AG				-Ir	58	1)
AV Hva	Min	54136.3655	.0011	AG	-0.0891		GCVS 85	-Ir	55	1)
DF Hva	Min	54202.4026	.0036	AG	+0.0161		GCVS 85	-Ir	19	1)
DI Hva	Min	54172.3965	.0003	WTR	,			-Ir	116	10)
AW Lac	Min	53614.4933	.0026	AG	+0.0336	\mathbf{s}	BAVR 35.1ff	-Ir	29	1)
	Min	54282.4964	.0010	AG	+0.0380	-	BAVR 35.1ff	-Ir	$\overline{28}$	1)
CN Lac	Min	54019.2717	.0010	MS FR	-0.0201		GCVS 85	0	380	5)
FI Lac	Min	54222.5178	.0017	AG				-Ir	16	1)
IP Lac	Min	54266,4009	.0020	AG				-Ir	15	1)
LY Lac	Min	54244.4170	.0013	AG	+0.2271		GCVS 85	-Ir	36	1)
V339 Lac	Min	53966.3832	.0007	RAT RCB	,			-Ir	80	1)
RW Leo	Min	54207.4032	.0019	SCI	-0.1031		GCVS 85	0	$\frac{28}{28}$	$\frac{2}{2}$
200	Min	54207.4065	.0003	ĂĞ	-0.0998		GCVS 85	-Ir	48	1)
UU Leo	Min	53764.388	.001	RAT RCR	+0.140		GCVS 85	-Ir	60	1)
	Min	54199.4466	.0012	SCI	+0.1483		GCVS 85	0	77	2^{\prime}
		-								

Table 1: (cont.)

				Table 1. (com.)					
Variable	M/m	JD H24	±	Obs	O - C		Bibliography	Fil	n	Rem
UU Leo	Min	54199.4478	.0013	AG	+0.1495		GCVS 85	-Ir	26	1)
UV Leo	Min	54204.3933	.0019	WN	+0.0128		IBVS 5338	\mathbf{V}	118	11)
	Min	54207.3828	.0016	WN	+0.0019		IBVS 5338	\mathbf{V}	149	11)
	Min	54207.3829	.0001	SIR	+0.0020		IBVS 5338	-Ir	677	7)
	Min	54207.3842	.0008	AG	+0.0033		IBVS 5338	-Ir	49	1)
	Min	54213.3840	.0010	WN	+0.0022		IBVS 5338	\mathbf{V}	175	11)
UZ Leo	Min	54207.4404	.0005	AG	-0.1283		GCVS 85	-Ir	50	1)
	Min	54216.4035	.0005	QU	-0.1268	s	GCVS 85	V	74	3)
VZ Leo	Min	54199.4152	.0012	ĂĞ	-0.0641	~	GCVS 85	-Ir	25	1)
12 100	Min	54211 3999	0010	SCI	-0.0684		GCVS 85	0	<u>-</u> 0	2)
XX Leo	Min	54199 3939	0029	AG	+0.2500		GCVS 85	-Ir	25	1)
XX Leo	Min	54174 4229	0011	AG	+0.2000 +0.0245		GCVS 85	_Ir	54	1)
AT LCO	Min	54174 5644	.0011	AG	± 0.0249	c	CCVS 85	-11 Ir	54	1)
	Min	54100 4922	.0009	AG	+0.0239	ъ	CCVS 85	-11 In	04 96	1)
V7 Las	Min	54199.4255 52740 5127	.0045	AG DAT DOD	+0.0244		GUVS 65	-11 T.,	20 116	1)
AZ Leo	Min	55749.5157	.0002	nai nun	+0.0380	_	GUVS 85	-11 T.,	110 FC	1)
	Min	54174.5850	.0030	AG	+0.0481	s	GCVS 85	-1r	00 00	1)
	Min	54199.4564	.0011	AG	+0.0450	\mathbf{s}	GCVS 85	-lr	26	1)
AL Leo	Min	54174.4343	.0060	AG	+0.0104		IBVS 3401	-lr	28	1)
AM Leo	Min	54173.3091	.0007	DIE	+0.0092		GCVS 85	0	22	9)
	Min	54192.3301	.0005	DIE	+0.0086		GCVS 85	0	22	9)
	Min	54196.3536	.0001	WTR	+0.0084		GCVS 85	-Ir	71	10)
	Min	54200.3772	.0005	$_{ m JU}$	+0.0082		GCVS 85	0	88	2)
	Min	54202.3890	.0008	$_{ m JU}$	+0.0081	\mathbf{S}	GCVS 85	0	90	2)
	Min	54207.3301	.0001	DIE	+0.0109		GCVS 85	0	22	9)
	Min	54207.5131	.0011	AG	+0.0111	\mathbf{S}	GCVS 85	-Ir	49	1)
AP Leo	Min	54173.3974	.0007	QU	-0.0369		GCVS 85	V	51	3)
BL Leo	Min	54172.3430	.0021	SCI				0	23	2)
	Min	54172.4862	.0010	SCI				0	35	2)
	Min	54172.6295	.0014	SCI				0	25	2)
ET Leo	Min	54193.3893	.0060	$_{ m JU}$				0	52	2)
EX Leo	Min	54209.4219	.0020	JU				0	80	2)
BT LMi	Min	54199 3339	0003	WTB	-0.0068	s	GCVS 85	-Ir	79	$\frac{-}{10}$
VW LMi	Min	54185 4263	0009	III	0.0000	5	001000	0	73	2)
RZ Lyn	Min	54200 3218	0003	WTB	-0.0995		GCVS 85	-Ir	50	$\frac{-}{10}$
SW Lyn	Min	53864 3788	.0000	BAT BCB	± 0.0394		CCVS 85	Ir	56	1)
Svv Lyn	Min	54150 3488	0024	DIE	± 0.0354 ± 0.0452		CCVS 85	-11	22	0)
	Min	54172 5224	00024		+0.0492		CCVS 85	Ir	68	<i>3)</i> 1)
TV Lun	Min	54910 4685	.0003		± 0.0420 ± 0.0644		CCVS 85	-11 In	101	1)
⊥⊥⊥yn IIIITvm	Min	54175 9510	0004		T0.0044		CCAR 65	-11 T	191	10)
	Min	54179.3012 54179.4005	.0001		0.0009			-11 T.,	92	1)
OD Lyn	Min	54172.4095 54999 5109	.0007	AG	-0.0088		10134911	-11 Le	94 10	1) 1)
DU Lyr L7 L	IVIIN	04222.0192	.0010					-1ľ	19	1)
ьz Lyr	IVIIN	03899.4200	.0004	RAT KCK				-1r	121	1)
OT T	Min	53999.3173	.0006	KAT KCK				-Ir	78	1)
OT Lyr	Min	54222.4568	.0005	AG				-1r	19	1)
V411 Lyr	Max	52147.475	.005	AG				0	25	1) 13)
V412 Lyr	Min	54245.5069	.0007	AG				-Ir	31	1)
V563 Lyr	Min	53898.4535	.0003	RAT RCR				-Ir	88	1)
	Min	53900.4740	.0003	RAT RCR				-Ir	96	1)
	Min	53985.3918	.0003	RAT RCR				-Ir	73	1)
V574 Lyr	Min	54295.4577	.0006	$_{ m JU}$				0	37	2)
V580 Lyr	Min	54300.4479	.0016	$_{ m JU}$				0	23	2)
V596 Lyr	Min	54003.3377	.0003	RAT RCR				-Ir	78	1)
CF Mon	Min	54154.3158	.0002	AG				-Ir	17	1)
GU Mon	Min	53769.3520	.0008	RAT RCR	-0.0060		GCVS 85	-Ir	64	1)
IU Mon	Min	54116.3729	.0010	AG				-Ir	22	1)
IZ Mon	Min	53768.334	.001	RAT RCB				-Ir	74	1)
V395 Mon	Min	54154 3438	0017	AG				_Ir	17	1)
V396 Mon	Min	54154 2896	0005	AG	-0.0607	c	GCVS 85	_Ir	17	1)
V449 Mon	Min	53764 960 .	.0000	BAT BOD	-0.0097 -0.0097	3	CCVS 85	-11 In	10	1)
v + + + z = v 0	IVIIII	00104.209 :	.002	nai non	± 0.030		001000	-11	40	1)
112 1000	۸/:	541E4 9000	0011	10	10.0207		COVE OF	T.	1 77	1)

Table 1: (cont.)

			1		10.)					
Variable	M/m	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
V496 Mon	Min	54154.3478	.0024	AG	-0.0339		GCVS 85	-Ir	17	1)
V514 Mon	Min	54154.4178	.0031	AG	+0.0271		GCVS 85	-Ir	16	1)
V530 Mon	Min	54026.684:	.001	MS FR	+0.131		GCVS 85	0	27	5)
	Min	54085.5429	.0003	MS FR	+0.1308		GCVS 85	0	291	5)
V532 Mon	Min	54096.4545	.0003	RAT RCR	+0.0120		GCVS 85	-Ir	76	1)
V536 Mon	Min	54150.3514	.0040	WTR	-0.0066		BAVR 52.165 ff	-Ir	78	10)
V714 Mon	Min	54024.6114	.0002	MS FR				0	297	5)
	Min	54154.3184	.0012	AG				-Ir	17	1)
V843 Mon	Min	54116.4529	.0022	AG	-0.0706	\mathbf{S}	BAVM 147	-Ir	22	1)
	Min	54149.3343	.0013	AG	-0.0829		BAVM 147	-Ir	20	1)
WZ Oph	Min	54244.4632	.0006	AG	+0.0040		GCVS 85	-Ir	47	1)
	Min	54288.3893	.0030	WTR	+0.0033	\mathbf{S}	GCVS 85	-Ir	48	10)
AL Oph	Min	54219.3956	.0053	AG				-Ir	19	1)
V449 Oph	Min	53503.4349	.0015	AG	+0.0688		GCVS 85	-Ir	24	1)
V501 Oph	Min	53860.5221	.0002	RAT RCR	-0.0089		GCVS 85	-Ir	81	1)
V2553 Oph	Min	53503.4509	.0016	AG				-Ir	24	1)
	Min	54219.3874	.0001	AG				-Ir	19	1)
	Min	54239 5251	0015	AG				-Ir	29	1)
CO Ori	Min	54016 5780	0028	MS FB	-0.0006		GCVS 85	0	121	5)
FZ Ori	Min	54114 4574	0013	AG	-0.0629		GCVS 85	-Ir	36	1)
OT Ori	Min	54114 3236	0025	AG	0.0025		001505	_Ir	30	1)
V343 Ori	Min	53744 3740	0004	BAT BCB	10 1850		CCVS 85	-11 Ir	06	1)
V 343 OII	Min	54006 3535	.0004	RAT RCR	+0.1850		CCVS 85	-11 Ir	90 56	1)
V202 Ori	Min	52758 2506	.0008	DAT DCD	+0.1947		GCVS 85	-11 In	50	1)
V 392 OII	Min	53736.2390	.0000	DAT DOD	+0.0010		GCVS 65 CCVS 67	-11 T.,	101	1)
DU Peg	MIII M.	55941.4080	.0004	nai nun	-0.0205		GCV5 01	-11	101	1)
BY Peg	Min	53250.5212	.0028	AG DATE DOD				0	22	1)
CE Peg	Min	53936.4783	.0003	RAT RCR				-lr	119	1)
MQ Peg	Min	53938.5321	.0011	RAT RCR				-Ir	98	1)
BY Per	Min	53992.5824	.0005	MS FR				0	485	5)
	Min	53995.464 :	.004	MS FR				0	196	5)
00 D	Min	54115.3481	.0058	AG				-lr	49	1)
CC Per	Min	54115.4269	.0016	AG				-Ir	54	1)
IK Per	Min	54001.4451	.0017	MS FR	-0.1490		GCVS 87	0	611	5)
KL Per	Min	53987.4646	.0011	MS FR				0	594	5)
	Min	54085.2823	.0004	RAT RCR				-Ir	82	1)
KR Per	Min	53780.3702	.0003	RAT RCR	-0.0154		GCVS 87	-Ir	60	1)
NZ Per	Min	53751.2817	.0005	RAT RCR	+0.0357		GCVS 87	-Ir	61	1)
V432 Per	Min	54093.2740	.0003	RAT RCR	-0.0081	\mathbf{S}	IBVS 3797	-Ir	65	1)
UZ Sge	Min	53913.4436	.0005	RAT RCR				-Ir	37	1)
AQ Ser	Min	54207.4151	.0006	\mathbf{FR}	-0.2585		GCVS 87	-Ir	59	8)
AU Ser	Min	53817.5223	.0001	RAT RCR	+0.0097		SAC 73	-Ir	160	1)
CX Ser	Min	54207.4727	.0004	\mathbf{FR}	-0.0757	\mathbf{S}	GCVS 87	-Ir	59	8)
GSC 2038.0293	Min	54192.6353	.0010	\mathbf{FR}	+0.0011		BAVM 177	-Ir	53	8)
	Min	54213.4447	.0006	\mathbf{FR}	+0.0033		BAVM 177	-Ir	57	8)
	Min	54221.3725	.0004	\mathbf{FR}	+0.0046		BAVM 177	-Ir	57	8)
Y Sex	Min	53769.4429	.0005	RAT RCR	+0.0010		BAVR 32,36ff	-Ir	39	1)
	Min	54173.3127	.0029	AG	+0.0015		BAVR 32,36ff	-Ir	30	1)
	Min	54173.5234	.0018	AG	+0.0023	\mathbf{s}	BAVR 32.36ff	-Ir	30	1)
AL Tau	Min	54026.528 :	.002	MS FR)	0	330	5)
AS Tau	Min	54115.3795	.0011	AG				-Ir	45	1)
CR Tau	Min	54141.3427	.0004	AG	-0.0048		IBVS 4778	-Ir	34	1)
GW Tau	Min	54136.3755	.0014	.IU	5.0010			0	83	$\frac{1}{2}$
V471 Tau	Min	54136 3401	.0030	SCI	+0.0113		GCVS 87	õ	81	$\frac{2}{2}$
TW IIMa	Min	54203 4204	0000		-0.2428		GCVS 87	_Ir	83) 1)
I W UMa	Min	54203.4304	0009		-0.2420 -0.9441		CCVS 87	-11 In	172	1)
$TV IIM_{0}$	Min	54105 2005	0002		-0.2441 10 0625	c	CCVS 87	-11	213 113	1) 9)
$IIV IIM_{\odot}$	M:	54139.9909 54115 6190	.0004	JU	± 0.0000	8	COVE 07	Û	0U 7E	2) 2)
UI UMa VV UMa	M:	54110.013U 54100.9700	.0024	501	± 0.0902		COVE 07	0	10 74	∠) 2)
лт ОМа	IVIIN	04192.3790 E4107 4095	.0008	JU	+0.0289	_	GUVD 81	0	(4	∠) 2)
A A TIN <i>E</i>	IVIIN	04197.4085	.0012		+0.0284	\mathbf{S}	GUVS 81	О т	80	∠) 1)
AA UMa	Min	53765.4204	.0002	KAT KCR	+0.0349		GUVS 87	-1r	55	1)

Table 1: (cont.)

Variable	M/m	HJD 24	±	Obs	O-C		Bibliography	Fil	n	Rem
AA UMa	Min	54186.4986	.0003	AG	+0.0342	\mathbf{S}	GCVS 87	-Ir	100	1)
	Min	54206.3923	.0006	$_{ m JU}$	+0.0325		GCVS 87	0	100	2)
AW UMa	Min	54201.4057	.0030	$_{ m JU}$	-0.0654		GCVS 87	0	100	2)
IW UMa	Min	54186.4386	.0004	AG				-Ir	89	1)
RT UMi	Min	54207.5026	.0004	AG	+0.1106		GCVS 87	-Ir	217	1)
TV UMi	Min	54222.3944	.0012	$_{ m JU}$				0	77	2)
NSV 8499	Min	53863.4756	.0001	RAT RCR				-Ir	137	1)
AW Vir	Min	53818.4245	.0001	RAT RCR	+0.0173		GCVS 87	-Ir	32	1)
AX Vir	Min	54219.3808	.0005	\mathbf{FR}	+0.0105		BAVR 32,36ff	-Ir	79	8)
	Min	54220.4306	.0042	\mathbf{FR}	+0.0065	\mathbf{s}	BAVR 32,36ff	-Ir	44	8)
BH Vir	Min	54206.4974	.0008	AG	-0.0070	\mathbf{S}	GCVS 87	-Ir	58	1)
CM Vir	Min	54204.5302	.0006	AG				-Ir	68	1)
NY Vir	Min	54206.3214	.0015	AG				-Ir	60	1)
	Min	54206.4221	.0015	AG				-Ir	60	1)
	Min	54206.5228	.0015	AG				-Ir	60	1)
GSC 0278.0814	Min	54185.4915	.0031	\mathbf{FR}				-Ir	50	8)
	Min	54186.5042	.0032	\mathbf{FR}				-Ir	50	8)
	Min	54187.4817	.0054	\mathbf{FR}				-Ir	42	8)
Z Vul	Min	54306.4498	.0004	QU	-0.0075		GCVS 87	V	70	3)
AW Vul	Min	53931.4193	.0001	RAT RCR	-0.0115		GCVS 87	-Ir	44	1)
	Min	54289.4837	.0003	SIR	-0.0115		GCVS 87	-Ir	110	7)
AZ Vul	Min	53897.5087	.0003	RAT RCR	+0.0273		GCVS 87	-Ir	100	1)
BK Vul	Min	53927.4440	.0004	RAT RCR	+0.0359	\mathbf{s}	GCVS 87	-Ir	130	1)
BM Vul	Min	53250.5223	.0012	AG				0	21	1)
	Min	53255.4244	.0027	AG				0	29	1)
	Min	53255.6126	.0008	AG				0	29	1)
BP Vul	Min	53933.4432	.0001	RAT RCR	-0.0116		GCVS 87	-Ir	126	1)
IM Vul	Min	53921.4692	.0003	RAT RCR				-Ir	111	1)

Table 2: Pulsating stars

M/m	HJD 24	\pm	Obs	O - C	Bibliography	Fil	n	Rem
Max	54136.3723	.0010	QU	+0.0119	GCVS 85	V	66	3)
Max	54174.3650	.0013	WN	+0.0121	GCVS 85	V	97	11)
Max	54203.3488	.0018	WN	+0.0120	GCVS 85	V	87	11)
Min	53386.307	.000	AG			-Ir	38	1) 14)
Min	53386.612	.001	AG			-Ir	38	1) 14)
Min	53387.539	.002	AG			V	61	1) 14)
Min	53388.470	.002	AG			V	38	1) 14)
Min	53410.363	.001	AG			V	23	1) 14)
Max	54176.383	.005	AG			-Ir	25	1)
Max	54171.456	.003	AG			-Ir	53	1)
Max	54185.324	.003	AG	+0.019	BAVR 36,157ff	-Ir	30	1)
Max	54213.476	.003	AG			-Ir	21	1)
Max	54186.418	.005	AG	+0.008	SAC 73	-Ir	21	1)
Max	54201.579	.003	AG	+0.007	SAC 73	-Ir	31	1)
Max	54222.3767	.0007	QU	-0.0264	BAVR 48,189	V	51	3)
Max	54213.484	.003	AG			-Ir	20	1)
Max	54186.493	.005	AG			-Ir	20	1)
Max	54185.532	.005	AG	+0.014	GCVS 85	-Ir	30	1)
Max	54213.443	.005	AG	+0.018	GCVS 85	-Ir	21	1)
Max	54199.4190	.0005	QU	-0.1024	GCVS 85	\mathbf{V}	75	3)
Max	54216.4031	.0010	MZ	-0.0223	BAVR 48,189	-Ir	112	2)
Max	54185.386	.003	AG			-Ir	30	1)
Max	54222.3877	.0018	WN	-0.0707	GCVS 85	V	89	11)
Max	54172.520	.002	AG	-0.014	BAVR 49,41	-Ir	40	1)
Max	54172.380	.003	AG		,	-Ir	41	1)
Max	54175.3577	.0028	SCI			0	105	2)
Max	54205.396	.005	AG			-Ir	47	1)
	M/m Max Max Max Min Min Min Min Max Max Max Max Max Max Max Max Max Max	M/mHJD 24Max54136.3723Max54174.3650Max54203.3488Min53386.307Min53386.612Min53387.539Min53388.470Min53388.470Min53410.363Max54176.383Max54171.456Max54171.456Max54185.324Max54213.476Max54201.579Max54222.3767Max54223.484Max54186.493Max54185.532Max54213.443Max54213.443Max54216.4031Max54216.4031Max54185.386Max54222.3877Max54172.520Max54172.380Max54105.396	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M/mHJD 24 \pm Obs $O-C$ BibliographyMax54136.3723.0010QU ± 0.0119 GCVS 85Max54174.3650.0013WN ± 0.0121 GCVS 85Max54203.3488.0018WN ± 0.0120 GCVS 85Min53386.307.000AGMin53386.612.001AGMin53387.539.002AGMin53388.470.002AGMin53388.470.002AGMax54176.383.005AGMax54171.456.003AGMax54185.324.003AGMax54186.418.005AGMax54201.579.003AGMax54213.476.003AGMax54213.484.003AGMax54213.484.003AGMax54186.493.005AGMax54186.493.005AGMax54186.493.005AGMax54186.493.005AGMax54186.493.005AGMax54186.493.005AG <td< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></td<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 2: (cont.)

Variable	M/m	H.ID 24	+	Obs	O - C	Bibliography	Fil	n	Rem
BZ CVn	Max	54205 5304	0019	WN	± 0.1069	BAVE /8 189	V	102	11)
	Mox	54221 4100	0007	OU	+0.1003	BAVE 48,189	v	66	2)
CW CV	Mar	54221.4190	.0007		± 0.1003	DAVIT 40,109	V Tm	49	1)
SW CVII	Max	53060.366	.002	AG			-11 T.,	42	1)
	Max	54205.521	.003	AG			-1r	40	1)
TZ CVn	Max	54176.364	.005	AG			-lr	25	1)
AP CVn	Max	54187.439	.005	AG			-Ir	23	1)
BN CVn	Max	54208.4145	.0009	ΜZ	+0.0602	BAVM 75	-Ir	78	2)
AD CMi	Max	54187.298:	.002	WN	+0.010	GCVS 85	V	62	11)
IU Car	Max	54178.470	.003	HND			0	57	4)
BI Cen	Max	54258.358	.002	HND			0	90	4)
	Max	54277.387	.002	HND			0	57	4)
KS Cen	Max	54259.306	.002	HND			0	65	4)́
V480 Cen	Max	54275.454	.002	HND			0	53	4)
V595 Cen	Max	54254 425	003	HND			0	60	4)
V753 Cen	Max	54258 447	.000	HND			0	85	4)
v 105 CCII	Mox	54250.333	.003	HND			0	75	
	Mar	54259.555	.003	IIND			0	15 65	4)
	Max	54202.431	.003	HND			0	60	4)
DR G	Max	54263.316	.003	HND	0.014	a ara ar	0	82	4)
RZ Cep	Max	54219.393	.003	AG	-0.014	GCVS 85	-Ir	79	1)
GZ Cep	Max	54213.476	.003	AG			-Ir	55	1)
RT Col	Max	54145.364	.002	HND			0	87	4)
RW Col	Max	54165.448	.003	HND			0	53	4)
	Max	54170.360	.003	HND			0	20	4)
	Max	54171.455	.003	HND			0	24	4)
U Com	Max	54187.562	.005	AG	-0.002	BAVR 49,41	-Ir	23	1)
V Com	Max	54203.3503	.0020	\mathbf{FR}	+0.0372	GCVS 85	-Ir	50	8)
AC Com	Max	54201 4222	0020	FR	1 0.001-		-Ir	49	8)
AE Com	Max	54201 4702	0030	FR			-Ir	48	8)
AG Com	Max	54175 434	.0050	AC			Ir	21	1)
AG Colli	Mox	54202 5172	.005	FP			-11 Ir	50	1) 8)
AO Com	Mar	54202.5172	.0020	FD			-11 T.,	16	8)
AU Com	Max	54200.5784	.0040	гn ED			-11 ⁻	40	0) 0)
CU Com	Max	54201.4618	.0015	FK			-1r	50	8)
CW Com	Max	54201.5021	.0030	FR			-lr	48	8)
CY Com	Max	54202.5749	.0025	\mathbf{FR}			-lr	48	8)
CZ Com	Max	54202.4769	.0020	\mathbf{FR}			-Ir	50	8)
GH Com	Max	54203.5912	.0030	\mathbf{FR}			-Ir	46	8)
GR Com	Max	54203.4474	.0040	\mathbf{FR}			-Ir	34	8)
HY Com	Max	54218.3918	.0030	\mathbf{FR}			-Ir	79	8)
IQ Com	Max	54203.5835	.0045	\mathbf{FR}			-Ir	44	8)
IS Com	Max	54176.434	.005	AG			-Ir	28	1)
RV CrB	Max	54205.465	.005	AG	-0.047	GCVS 85	-Ir	37	1)
	Max	54210.435	.005	AG	-0.051	GCVS 85	-Ir	29	1)
UY CrB	Max	54221.529	.005	AG	0.001	0.01.000	-Ir	30	1)
X Crt	Max	54254 375	005	HND			0	52	4)
SW Cru	Mox	54275 310	.000	HND			0	55	4)
SW OIU	Mar	54275.510	.002	IIND			0	61	4)
VV C	Max	54270.292	.002			COMP. OF	0	197	$\frac{4}{10}$
XX Cyg	Max	53975.5248	.0001	FLG	+0.0020	GUVS 85	0	137	12)
DM Cyg	Max	54001.3979	.0015	FLG	-0.0004	BAVR 51,98ff	V	135	12)
V882 Cyg	Max	53935.3968	.0030	\mathbf{FR}			-lr	33	8)
	Max	54003.2741	.0030	\mathbf{FR}			-Ir	33	8)
	Max	54029.4622	.0030	\mathbf{FR}			-Ir	27	8)
	Max	54035.4604	.0030	\mathbf{FR}			-Ir	30	8)
RT Dor	Max	54167.436	.004	HND			0	45	4)
	Max	54170.334	.002	HND			0	29	4)
VW Dor	Max	54166.437	.002	HND			0	71	4)
	Max	54170.437	.003	HND			0	89	4)
	Max	54178 423	.004	HND			0	28	4)
VX Dor	May	54166 507	005	HND			0	57	1) (1)
111 101	Mav	54170 /50	003	HND			0	50	
XX Dor	Mov	54144 207	.003	HND			0	00	
AA D01	wida	04144.091	.005	mnD			0	30	ч)

Table 2: (cont.)

Variable	M/m	HJD 24	±	Obs	O-C	Bibliography	Fil	n	Rem
XX Dor	Max	54170.383	.005	HND			0	27	4)
	Max	54171.344	.005	HND			0	70	4)
AE Dra	Max	54201.382	.005	AG			-Ir	88	1)
DD Dra	Max	54196.500	.003	AG	-0.081	BAVR 49,6	-Ir	39	1)
	Max	54200.425	.003	AG	-0.078	BAVR 49,6	-Ir	90	1)
	Max	54202.385	.003	AG	-0.079	BAVR 49,6	-Ir	80	1)
	Max	54206.623	.005	AG	-0.089	BAVR 49,6	-Ir	80	1)
RR Gem	Max	54192.3603	.0022	WN	+0.0029	BAVR 47,67	V	159	11)
	Max	54196.3250	.0011	WN	-0.0054	BAVR 47,67	V	112	11)
	Max	54198.3154	.0009	WN	-0.0014	BAVR 47,67	V	84	11)
	Max	54209.4368	.0008	WN	-0.0042	BAVR 47,67	V	96	11)
117 0	Max	54217.3825	.0013	WN	-0.0044	BAVR 47,67	V	122	11)
AK Gem	Max	54161.6889	.0010	HMB	-0.2285	GCVS 85	0	220	6)
	Max	54162.7277	.0010	HMB	-0.2484	GCVS 85	0	220	6)
	Max	54163.7661	.0011	HMB	+0.2606	GCVS 85	0	330	6)
	Max	54164.8046	.0010	HMB	+0.2405	GCVS 85	0	225	6)
	Max	54168.614 :	.001	HMB	-0.185	GCVS 85	0	45	6)
	Max	54169.6546	.0010	HMB	-0.2029	GCVS 85	0	178	6)
	Max	54187.6645	.0004	HMB	-0.1906	GCVS 85	0	191	6)
	Max	54188.7033	.0004	HMB	-0.2105	GCVS 85	0	225	6)
ara	Max	54195.6303	.0009	HMB	-0.1649	GCVS 85	0	120	6)
GI Gem	Max	54149.440	.003	AG	-0.004	BAVR 51,40ff	-lr	20	1)
GU Gem	Max	54141.369	.003	AG	0.007	a ara or	-lr	30	1)
TW Her	Max	54220.527	.003	AG	-0.007	GCVS 85	-lr	11	1)
AR Her	Max	54203.578	.003	AG	+0.029	BAVR $52,3$ ff	-lr	27	1)
EP Her	Max	54271.427	.003	AG			-lr	44	1)
GS Her	Max	54205.472	.005	AG			-lr	37	1)
HM Her	Max	54210.341	.003	AG			-Ir	29	1)
IT Her	Max	54219.3947	.0026	SCI			0	65 70	2)
	Max	54219.5690	.0021	SCI			0	72	2)
V447 Her	Max	54203.541	.003	AG			-lr	27	1)
V552 Her	Max	54239.380	.003	AG			-lr	30	1)
V596 Her	Max	54210.529	.003	AG			-lr	30	1)
UU Hya	Max	54171.364	.003	AG			-Ir	56	1)
TTX7 TT	Max	54173.458	.003	AG			-Ir	30	1)
UV Hya	Max	54171.357	.003	AG			-Ir	59	1)
	Max	54175.475	.003	AG			-1r	30 C0	1)
DI Hya	Max	54259.314	.003	HND			0	02 E 4	4)
гл нуа СЦ Ц	Max	54275.401	.002	HND M7			0 1	54	$\frac{4}{2}$
GL Hya	Max	54197.5944	.0020				-11	05 06	(2)
RR Loo	Max	04144.400 54105 4457	.002 0005		10.0207	BAUR 47.67	0 V	90 67	4) 9)
KK Leo	Max	54195.4497 54105 4479	.0000	WN	±0.0397 ±0.0419	DAVIN 47,07 BAVR 47.67	v	07 195	э) 11)
	Max	54205 2001	0010	WN	± 0.0412 ± 0.0404	BAVR 47,07	v	1/0	11)
ST Leo	Max	54175 4901	.0013	OII	T0.0404	CCVS 85	v	149 61	2) 11 <i>)</i>
	Max	54107 4149	0004	QU OU	-0.0190	CCVS 85	v	65	<i>२)</i>
AE Loo	Max	54187 2545	.0005	MZ	± 0.0222 ± 0.2105	CCVS 85	v _Tr	00 78	3) 2)
DM Loo	Max	54910 4176	0007	MZ	10.2100		-11 _Tr	195	2) 2)
V LMi	Max	54210.4170 54202 2405	.0007	MZ	± 0.0141	BAVR 40 41	-11 _Tr	104	∠) 2)
	Max	54145 450	0010		± 0.0141	CCVS 85	-11	104 87	∠)
SZ Lyn	Max	5/173 /08	.003		±0.040	CCVS 85	_Ir	07 21	1)
ыл пуш	Mav	54180 /001	0010	WN	+0.020 +0.0279	GCVS 85	-11 V	104	11)
	Mav	54185 3/01	0009	WN	± 0.0213 ± 0.0254	GCVS 85	v	104 06	11)
	Mor	54186 4967	0012	VV IN VAZINI	± 0.0204 ± 0.0279	CCAR 82	v V	90 111	11)
	Mar	04100.4207 5/187 2010	0011	VV IN VAZINI	± 0.0272 ± 0.0290	CCAS 82	v	111 116	11)
	Max	5/188 25/8	0017	WIN	± 0.0200 ± 0.0267	CCVS 85	v	110 01	11)
	Mar	54101 2600	.0010	VV IN VAZINI	±0.0207 ±0.0279	CCAR 82	v V	92¤ 92¤	11)
	Max	54191.0000 54101 4990	0010	WIN	+0.0273 +0.0260	CCVS 85	v	∠əə ?२६	11)
	MAN	54191.4009	.0010	WN	± 0.0209	GCVS 85	v	200 57	11)
	VIAV	<u>14 47 - 50 51 </u>					v		

Table 2: (cont.)

Variable	M/m	$\overline{\text{HJD } 24}$	±	Obs	O-C	Bibliography	Fil	n	Rem
SZ Lyn	Max	54203.4208	.0008	WN	+0.0258	GCVS 85	V	68	11)
-	Max	54223.4278	.0007	WN	+0.0240	GCVS 85	\mathbf{V}	135	11)
TV Lyn	Max	54172.555	.003	AG	+0.016	GCVS 85	-Ir	119	1)
TW Lyn	Max	53098.484	.004	AG	+0.052	GCVS 85	-Ir	51	1)
BE Lyn	Max	54221.3942	.0009	WN			\mathbf{V}	111	11)
	Max	54222.4490	.0008	WN			V	70	11)
CR Lyr	Max	53891.8176	.0023	HMB			-Ir	38	6)
	Max	53893.7974	.0032	HMB			-Ir	37	6)
	Max	53894.7811	.0047	HMB			-Ir	24	6)
EZ Lyr	Max	53948.4515	.0006	FLG	+0.0276	BAVR 34,145ff	0	55	12)
MW Lyr	Max	53926.5133	.0022	HMB		,	V	13	6)
U	Max	53930.4884	.0099	HMB			V	71	6)
	Max	53932.4773	.0012	HMB			V	77	6)
	Max	53934.4539	.0009	HMB			-Ir	71	6)
NR Lvr	Max	53898.7392	.0050	HMB			0	71	6)
RV Men	Max	54165.399	.004	HND			0	38	4)
	Max	54171.356	.004	HND			0	130	4)
	Max	54178.410	.003	HND			0	31	4)
GM Mon	Max	54084.8782	.0019	HMB			-Ir	226	6)
TX Mus	Max	54262.417	.003	HND			0	 91	4)
	Max	54264.311	.003	HND			õ	68	4)
EM Mus	Max	54277.406	.002	HND			õ	96	4)
V452 Oph	Max	53503 483	003	AG			-Ir	24	1)
V785 Oph	Max	53503 519	.005	AG	-0.007	GCVS 85	-Ir	24	1)
BT Peg	Max	53607 440	.000	AG	+0.087	BAVB 49 105	-Ir	21	1)
DV Peg	Max	53977 4504	.000	FLG	-0.0068	GCVS 87	0	114	$\frac{1}{12}$
ST Pic	Max	54167 358	.0005	HND	-0.0008	001501	0	40	12) 4)
HH Pup	Max	54170 345	.003	HND			0	34	4)
iiii i up	Max	54188 331	.003	HND			0	45	4)
T Sev	Max	54173 500	.002	AG	-0.074	BAVR 51 247	_Ir	30	1)
V Sex	Max	54173 409	.000	AG	0.011	DIIVIC 01,211	_Ir	30	1)
U Tri	Max	54126 3537	.005	MZ	-0.0148	BAVB 40 105	-11 Ir	100	$\frac{1}{2}$
BV IIMa	Max	54120.3357	.0004	OU	-0.0148 ± 0.0076	BAVR 48,100	-11 V	74	2) 3)
SX UMa	Max	54203 573	.0005	AC	+0.0070 -0.152	SAC 73	v Ir	84	1)
TU UMa	Max	54159 4075	.005	OU	-0.152	CCVS 87	-11 V	60	1) 2)
10 UMa	Mox	54152.4975	.0005	QU OU	-0.0205	CCVS 87	V	65	3)
	Mox	54170.3439	.0007	QU OU	-0.0251	CCVS 87	V	80	3)
	Mox	54171.4579	.0005	QU OU	-0.0205	CCVS 87	V	65	3)
	Mor	54105.4000	.0005	SCI	-0.0258	CCVS 87	v	169	3) 2)
	Max	54195.4559	.0015	WN	-0.0278	GCVS 87	V	102	<i>2)</i> 11)
	Max	54205.4725 54210 4157	.0010		-0.0290	GCVS 87	V	106	11) 19)
AF UMa	Mor	54171 4664	.0010	WN	-0.0273	DAVD 49 190	V	100	$\frac{12}{11}$
AL UMA	Max	54171.4004	.0023	WIN	+0.0055	DAVIN 40,109	V	103	11) 11)
	Max	54174.4010	.0002	WIN	+0.0100	DAVIN 40,109	V	110 95	11) 11)
	Mar	54175.4200	.0013		+0.0027	DAVID 40,109	V	00 E0	11)
	Max	54190.4970	.0009		+0.0056	DAVR 48,189	V	58 69	11)
	Max	54197.559	.002		+0.007	DAVIN 40,109	V	02	11)
	Max	04197.4402 54108.2050	.0006	VV IN	+0.0020	DAVK 48,189	V	92	11)
	Max	54198.3850	.0009	VV IN	+0.0006	BAVR 48,189	V	103	11)
	Max	54198.4741	.0007	WIN	+0.0037	BAVR 48,189	V	163	11)
000 4100 0000	Max	54202.4288	.0007	WN	+0.0016	BAVR 48,189	V	52	11)
GSC 4139.0289	Max	54192.3685	.0010	MZ			-Ir	120	2)
AF Vel	Max	54258.351	.002	HND			0	64	4)
AN Vel	Max	54188.407	.002	HND			0	59	4)
S'Γ Vir	Max	54204.574	.003	AG	+0.026	GCVS 87	-Ir	70	1)
XZ Vir	Max	54211.4539	.0010	MZ			-Ir	92	2)
DNT 171	Mox	53056 4045	0011	FLG	-0.0206	SAC 73	0	135	12)
Remarks:

AG:	Agerer, F., Tiefenbach	MZ:	Maintz, G., Bonn
DIE:	Dietrich, M., Radebeul	QU:	Quester, W., Esslingen
FLG:	Flechsig, Dr. G., Teterow	RAT:	Rätz, M., Herges-Hallenberg
FR:	Frank, P., Velden	RCR:	Rätz, C., Herges-Hallenberg
HMB:	Hambsch, Dr. F., Mol (B)	SCI:	Schmidt, U. Karlsruhe
HND:	Hund, F., Windhoek (Namibia)	SIR:	Schirmer, J., Willisau (CH)
Ju:	Jungbluth, Dr. H., Karlsruhe	WN:	Wischnewski, M. Wennigsen
MS:	Moschner, W., Lennestadt	WTR:	Walter, F., München

- : = uncertain
- s = secondary minimum
- red = reduced results
- C = CCD-camera
- o = without filter
- V = V-filter
- -Ir = -Ir-filter
- 1) = ccd-camera ST-6 chip 375^*242 uncoated
- 2) = ccd-camera ST-7
- 3) = ccd-camera ST-7E
- 4) = ccd-camera ST-8E
- 5) = ccd-camera ST-9 chip
- 6) = ccd-camera STL-11K
- 7) = ccd-camera Alpha Maxi chip KAF401e
- 8) = ccd-camera OES-LcCCD12
- 9) = ccd-camera pictor 1616XT
- 10) = ccd-camera Pictor 416XT
- 11) = ccd-camera Meade DSI Pro 2
- 12) = ccd-camera SIGMA 402 chip

Variables which possibly require a new classification

- 13) = GCVS-type EW:/KE: possibly RR
- 14) = GCVS-type RRC possibly EW
- MVS vv,ppp = Mitteilungen über Veränderl. Sterne; volume,pages
- SAC vv = Rocznik Astronomiczny No. vv, Krakow (SAC)
- BAVM nnn = BAV Mitteilungen No. nnn
- BAVR nn, ppp = BAV Rundbrief No. nn, page ppp
- AA vv, ppp = Acta Astronomica volume nn, page ppp
- U = USNO A 2.0 Catalogue

ERRATUM FOR IBVS 5657

Corrections to BAVM 173

V699 Cyg 53258.5458 AG must be deleted

ERRATA FOR IBVS 5802

Corrections to BAVM 186

 AO Cam
 53809.3529 RAT RCR
 correct value: 53809.3259

 GK Cas
 54212.5234 RAT RCR
 correct value: 54211.5234

ERRATUM FOR IBVS 5802 (BAVM 186)

GSC 0137501085 SIR all results must be deleted

ERRATUM FOR IBVS 5802 (BAVM 186)

GSC 03776.00170 52862.5033 AG has to be deleted

Number 5803

Konkoly Observatory Budapest 25 October 2007 *HU ISSN 0374 - 0676*

PHOTOMETRIC SEQUENCES AND ASTROMETRIC POSITIONS OF NOVA Sgr 2007 AND NOVA Vul 2007

HENDEN, ARNE¹; MUNARI, ULISSE²

¹ AAVSO, American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138, USA
 ² INF Osservatorio Astronomico di Padova, Sede di Asiago, I-36032 Asiago (VI), Italy

Nova Sgr 2007 (= V5558 Sgr) was discovered by Y. Sakurai at ~10.3 mag on Apr 14.777 UT (cf. Nakano 2007a). It was recovered on prediscovery images by K. Haseda at mag 11.2 on Apr. 11.792 UT (cf. Yamaoka 2007). On April 20, spectroscopic confirmation was provided by Iijima (2007a), who argued that the object could be a rather peculiar nova seen in the pre-maximum phase, and by Naito et al. (2007), who concluded the object is probably not a classical nova. Later, Iijima (2007b) recapped the spectroscopic evolution until mid July and concluded the object is indeed a nova with a very peculiar behaviour. A detailed description of the first three months of photometric and spectroscopic evolution of Nova Sgr 2007 was provided by Munari et al. (2007a), that also highlighted the similarity with Nova Cas 1995 (V723 Cas) and reported about their positive detection of the nova in the X-rays with the SWIFT satellite. Further evolution in optical and infrared spectra were reported by Kiss and Sarneczky (2007a) and Lynch et al. (2007). According to Munari et al. (2007a), maximum brightness occurred around July 10.0 UT with V = 6.53, B - V = +0.96, $V - I_{\rm C} = +1.22$. According to the AAVSO International Database, Nova Sgr 2007 went through five further progressively fainter maxima.

Nova Vul 2007 (= V458 Vul) was discovered on August 8.54 UT by H. Abe at 9.5 mag (cf. Nakano 2007b). Spectroscopic confirmation was obtained on the following day by Munari et al. (2007b), Buil (2007) and Fujii (2007). A description of the spectrum for August 18 was reported by Kiss and Sarneczky (2007b). According to the AAVSO International Database, Nova Vul 2007 went through three distinct maxima of similar ~ 8.2 mag brightness on August 9, 13 and 19, before entering a stable decline.

In this note we present a $BVR_{\rm C}I_{\rm C}$ photometric sequence around both novae. These sequences are based on the visual sequences used by the AAVSO, with a wider color range for CCD calibration. To calibrate the sequences, we obtained CCD photometry with the Sonoita Research Observatory 0.35-m robotic telescope on several distinct photometric nights, using $BVR_{\rm C}I_{\rm C}$ filters and an SBIG STL-1001E CCD camera. Pixel size is 1".25/pix and the field of view is 20'×20'. Observations on each photometric night included following an extinction star from low to high airmass, along with $BVR_{\rm C}I_{\rm C}$ exposures of Landolt standard fields (Landolt 1983, 1992). The photometric sequences are presented in Figures 1 and 2.

Astrometry was performed using SLALIB (Wallace 1994) linear plate transformation routines in conjunction with the UCAC2 reference catalog. Errors in coordinates were less than 0.1 arcsec in both coordinates, referred to the mean coordinate zero point of the reference stars in each field. The coordinates we derived for Nova Sgr 2007 are $\alpha_{J2000} = 18^{h}10^{m}18^{s}.258 \ (\pm 0^{s}.046), \delta_{J2000} = -18^{\circ}46'51''.95 \ (\pm 0''.047)$, close to the coordinates reported by Nakano (2007a) at position end figures $18^{s}.27$ and 52''.1, and by Koff (2007) at position end figures $18^{s}.21$ and 51''.8. No progenitor is visible on POSS plates within a few arcsec from this position, which would set the outburst amplitude to $\Delta B \geq 13.4$ mag. 7.2 arcsec north of the nova lies field star GSC2 S9JJ000329, for which we measured psf-fit magnitudes as given in Table 1 and position (J2000) $\alpha = 18^{h}10^{m}17^{s}.99, \delta = -18^{\circ}46'46''.0$.

Table 1. Nova optical companions

companion to:	V	(B-V)	$(V - R_c)$	$(R_c - I_c)$
$V5558 \ Sgr$	12.25 ± 0.05	$+1.39 \pm 0.05$	$+0.77 \pm 0.08$	$+0.73 \pm 0.06$
V458 Vul	$15.96\ {\pm}0.05$	$+1.80 \pm 0.08$	$+1.01\ \pm 0.05$	$+ 0.97 \pm 0.08$

Our coordinates for Nova Vul 2007 are: $\alpha_{J2000} = 19^{h}54^{m}24^{s}.628 \ (\pm 0^{s}.061),$ $\delta_{J2000} = +20^{\circ}52'52''.02 \ (\pm 0''.049),$ close to the coordinates reported by Nakano (2007b) at position end figures 24^{s}.64 and 51''.9. Within 0.61 arcsec from our position of the nova lies USNO-B1.0 1108-0460444, at catalog B=18.2 and R=17.8 mag. The blue color and $\Delta B=10.5$ mag outburst amplitude make this object a viable progenitor for the nova. 7.4 arcsec south of the nova lies USNO-B1.0 1108-0460435, for which we measured psf-fit magnitudes as given in Table 1 and position (J2000) $\alpha=19^{h}54^{m}24^{s}.52, \delta=+20^{\circ}52'44''.8$

We would like to thank J. Gross, W. Cooney and D. Terrell for their help in setting up the SRO observations and relinquishing their observing time.

References:

Buil, C., 2007, *IAUC*, 8862 Fujii, M., 2007, IAUC, 8862 Iijima, T., 2007a, CBET, 934 Iijima, T., 2007b, CBET, 1006 Kiss L., Sarneczky, K., 2007a, CBET, 1039 Kiss L., Sarneczky, K., 2007b, CBET, 1038 Koff, R., 2007, IAUC, 8832 Landolt, A. U., 1983, AJ, 88, 439 Landolt, A. U., 1992, AJ, **104**, 340 Lynch D. et al., 2007, *IAUC*, 8874 Munari, U. et al., 2007a, CBET, 1010 Munari, U. et al., 2007b, CBET, 1029 Nakano, S., 2007a, IAUC, 8832 Nakano, S., 2007b, IAUC, 8861 Naito, H., Matsuda K., Yamaoka H., 2007, CBET, 934 Wallace, P., 1994, ASP Conf. Ser., 61, 481, in Astronomical Data Analysis Software and Systems III, Yamaoka, H., 2007, IAUC, 8832

	Nova	Vul	2007	$lpha_{ m J}$	200	$_{0} = 1$	19 54	1 24.	63	$\delta_{ m J20}$	$_{00} =$	+20) 52	52.0	
	(. ")	5 (1	")	N	17. ((1)	DV	(1)	VD	(1)	ד ת	(1)	17 T	(1)
	α_{J2000} (=	±")	$o_{J_{2000}}$ (±	·)	IN	V ((±)	B-V	(\pm)	V-RC	; (±)	$R_{\rm C} - I_{\rm C}$; (±)	$V-I_{\rm C}$	(±)
\mathbf{a}	298.643151	0.040	+20.927677	0.020	3	11.548	0.015	1.221	0.080	0.678	0.016	0.651	0.016	1.333	0.012
b	298.651372	0.023	+20.906116	0.041	3	12.522	0.018	0.623	0.003	0.377	0.012	0.406	0.014	0.788	0.012
с	298.636528	0.040	+20.925733	0.077	3	13.054	0.023	1.948	0.015	1.153	0.020	1.162	0.030	2.331	0.025
d	298.623639	0.040	+20.857857	0.020	3	13.148	0.022	0.431	0.012	0.251	0.025	0.282	0.033	0.536	0.023
е	298.561497	0.053	+20.878355	0.143	3	14.089	0.026	1.319	0.045	0.744	0.041	0.780	0.037	1.535	0.034
f	298.585079	0.117	+20.880976	0.088	3	14.376	0.026	0.795	0.024	0.459	0.042	0.463	0.032	0.925	0.036
g	298.648972	0.117	+20.887449	0.150	3	14.522	0.019	0.902	0.080	0.510	0.040	0.498	0.042	1.009	0.049
h	298.619093	0.185	+20.838994	0.220	3	15.310	0.016	1.706	0.069	0.919	0.037	0.976	0.040	1.912	0.024
i	298.654575	0.348	+20.831294	0.299	2	16.103	0.008	0.719	0.037						
α	298.668638	0.081	+20.950372	0.022	3	9.826	0.017	1.167	0.006	0.624	0.008	0.590	0.013	1.216	0.016
β	298.776093	0.139	+20.865219	0.065	3	10.020	0.018	1.169	0.008	0.628	0.012	0.570	0.017	1.197	0.010
γ	298.663720	0.089	+20.762015	0.027	3	10.138	0.025	0.061	0.003	0.062	0.008	0.083	0.017	0.143	0.016
δ	298.780210	0.118	+20.991291	0.052	3	10.266	0.032	0.165	0.007	0.096	0.009	0.151	0.015	0.250	0.014
ϵ	298.741060	0.104	+21.016166	0.051	3	10.804	0.028	0.982	0.011	0.542	0.011	0.504	0.009	1.045	0.005
ζ	298.513049	0.083	+20.806158	0.020	3	11.154	0.023	0.164	0.007	0.109	0.006	0.141	0.015	0.250	0.012
η	298.616811	0.051	+20.781844	0.035	3	11.444	0.019	0.510	0.005	0.304	0.009	0.318	0.011	0.624	0.010
θ	298.609665	0.043	+20.978029	0.026	3	11.959	0.020	1.363	0.014	0.756	0.008	0.698	0.015	1.455	0.015

Figure 1. $BVR_{\rm C}I_{\rm C}$ photometric comparison sequence around Nova Vul 2007. The cross indicates the nova. N is the number of nights in which the given star has been measured in the given band. The error in α and δ are in arcsec. The panel on the right covers a $20' \times 20'$ area centered on the nova and shows stars down to V=16.5. The dashed $6' \times 6'$ area is zoomed in on the left panel. $\alpha = \text{HD } 345257 \text{ (K5)}, \beta = \text{HD } 345267 \text{ (K2)}, \gamma = \text{HD } 345266 \text{ (B5)}, \delta = \text{HD } 345268 \text{ (B8)},$ $\epsilon = \text{HD } 345256 \text{ (G5)}$ and $\zeta = \text{HD } 345264 \text{ (A2)}.$

	Nova	. Sgr	2007	α	J20	= 00	18 1	0 18	.26	$\delta_{ m J20}$	$_{00} =$	-18	46	51.9	
	α_{J2000} (=	±")	δ_{J2000} (=	±")	Ν	V ((±)	B–V	(±)	V–Rc	; (±)	$R_{ m C}$ – $I_{ m C}$	e (±)	$V-I_{\rm C}$	(\pm)
a	272.538878	0.034	-18.796609	0.057	4	11.732	0.023	1.716	0.019	0.973	0.014	0.916	0.020	1.888	0.024
b	272.611939	0.042	-18.768947	0.040	4	12.330	0.035	0.489	0.018	0.337	0.032	0.337	0.020	0.674	0.021
с	272.568396	0.037	-18.766809	0.040	4	12.790	0.030	1.554	0.015	0.854	0.023	0.751	0.014	1.597	0.027
d	272.561203	0.028	-18.791726	0.051	4	12.795	0.028	0.555	0.014	0.337	0.026	0.360	0.016	0.700	0.022
е	272.531353	0.039	-18.763034	0.055	4	13.076	0.029	0.653	0.025	0.407	0.031	0.446	0.014	0.858	0.024
f	272.627226	0.050	-18.804664	0.034	4	13.196	0.032	1.308	0.025	0.829	0.031	0.796	0.019	1.625	0.037
g	272.623339	0.044	-18.755838	0.033	4	13.471	0.029	0.785	0.024	0.491	0.033	0.455	0.016	0.943	0.030
ĥ	272.551990	0.098	-18.765991	0.108	4	13.768	0.047	0.625	0.025	0.403	0.057	0.502	0.020	0.917	0.036
i	272.606784	0.103	-18.759362	0.079	4	14.010	0.043	0.720	0.043	0.415	0.049	0.414	0.043	0.830	0.054
j	272.524881	0.155	-18.756105	0.146	4	14.644	0.041	0.922	0.037	0.493	0.040	0.606	0.050	1.114	0.066
1	272.574081	0.246	-18.773926	0.207	4	14.993	0.048	0.831	0.094	0.510	0.087	0.569	0.029	1.087	0.076
α	272.645233	0.039	-18.700251	0.045	4	8.726	0.028	1.181	0.013	0.628	0.038	0.516	0.064	1.134	0.101
β	272.742383	0.039	-18.824034	0.035	4	9.163	0.030	0.138	0.011	0.071	0.020	0.095	0.014	0.167	0.022
γ	272.547984	0.044	-18.931866	0.067	4	9.397	0.029	1.149	0.012	0.626	0.021	0.580	0.009	1.203	0.017
δ	272.715511	0.028	-18.728065	0.037	4	9.864	0.032	0.262	0.019	0.162	0.026	0.167	0.020	0.328	0.019
ϵ	272.578128	0.046	-18.659235	0.036	4	10.079	0.033	0.209	0.012	0.138	0.030	0.164	0.012	0.304	0.021
ζ	272.699868	0.014	-18.675985	0.037	4	10.601	0.030	0.509	0.010	0.328	0.028	0.324	0.020	0.651	0.016
η	272.426442	0.046	-18.681610	0.028	4	11.127	0.024	0.554	0.016	0.350	0.033	0.393	0.020	0.748	0.017
θ	272.609916	0.028	-18.868806	0.059	4	11.180	0.025	1.678	0.012	1.005	0.020	0.947	0.010	1.951	0.018
ι	272.678816	0.020	-18.748600	0.025	4	11.392	0.034	1.561	0.026	0.848	0.037	0.755	0.012	1.596	0.024
κ	272.634969	0.031	-18.713396	0.047	4	11.718	0.030	0.369	0.008	0.200	0.021	0.243	0.014	0.447	0.013
λ	272.679044	0.048	-18.647745	0.028	4	12.026	0.036	0.535	0.009	0.335	0.030	0.328	0.020	0.662	0.025
μ	272.499717	0.048	-18.771681	0.049	4	12.602	0.027	0.402	0.020	0.214	0.023	0.287	0.033	0.509	0.036
	-					0		δ	•	°8°°	· · · ·	° °0	ů °		·
,	5		0				-	L	°°°`	°°°°	۰.	0	80.00	· · ·	٥
	í – ° "			c)		-		۶°q	∘ິ ∧໌ ໍ່	° °	° •°.	۰° .	°°°.	
Ľ	<u>ר</u> י	0					-		°. °	° • ••	°_8	୍ଚ୍ଚ୍ଚ୍ଚ୍ଚ୍୍ର୍୍୍୍୍୍୍୍୍୍୍୍୍୍୍୍୍୍୍୍୍୍୍୍୍	, č	°°°°	°.8
a	o –	0					. –	2.7	୍ୟ	८ ०, ००,	°°° °	•	0 0 0	$ ho \circ \circ \eta^{\prime}$	
-	ī⊢ ∰	i°	v			j	-	₹F	0 7 8 8	۰ ° ° ° <u>°</u>	x . ° °	°°	ŏ	<u> </u>	•
	F	•				е	-	' F	°°°,	° ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	κ¯∘	•	° °	, °°°	° ,
	-	5	(n •	•	-	F	ୢୄୄୄୄୄୄ	°°, 🍝 °°	ຈົຈ	č o	- (~ ~	° 0
	-		1	•			-	F	· · ·			. 0 0	°	°°°	• 0
			-						ത.	0		\searrow	· · · · · · ·	·	

Figure 2. $BVR_{\rm C}I_{\rm C}$ photometric comparison sequence around Nova Sgr 2007. The cross indicates the nova. N is the number of nights in which the given star has been measured in the given band. The error in α and δ are in arcsec. The panel on the right covers a $20' \times 20'$ area centered on the nova and shows stars down to V=16.2. The dashed $6' \times 6'$ area is zoomed in on the left panel. $\alpha = \text{HD 166240}$ (K0III), $\beta = \text{HD 166322}$ (B9IV), $\gamma = \text{HD 166145}$ (G5/G6III), $\delta = \text{HD 312752}$ (A0), $\epsilon =$ HD 166189 (B9II) and $\zeta =$ HD 312750.

- 18.

-18.9

272.7

272.6

272.5

α 272.4

X

272.60

d

0

272.55

α

-18.80

Number 5804

Konkoly Observatory Budapest 9 November 2007 *HU ISSN 0374 - 0676*

ANALYSIS OF THE LIGHT CURVE OF THE RV TAURI STAR LV Del

MADERAK, RYAN M.; HONEYCUTT, R. K.

¹ Department of Astronomy, Indiana University, Bloomington, Indiana 47405-7105, USA

The RV Tauri star LV Del was observed by the Indiana University 0.41 meter automated photometric telescope (a.k.a., Roboscope) from 1990 to 2003, and was first noted by Honeycutt et al. (1992). The V magnitude light curve of LV Del is presented in Figure 1, and consists of 1263 data points acquired from JD 2448420 through JD 2452919. We have reduced the light curve using the method of ensemble photometry on an inhomogeneous data set (Honeycutt, 1992), and the error bars represent the uncertainty of the differential photometry. The zero point has an uncertainty (standard deviation of the mean) of 0.006 mag, determined using standards from the field of HR Del (Henden & Honeycutt, 1997), in which LV Del lies.

Figure 1.

Figure 2.

A Fourier transform of the data, presented in the top panel of Figure 2, gives 96.2d as the dominate period. To demonstrate spectral leakage and aliasing, in the bottom panel we present a FT of a sine wave having the same period and amplitude; this wave has been evaluated at the same JDs as the actual light curve. Visual inspection of the light curve indicates that the 96.2d signal is not the "formal" RV Tauri period, but rather is the first harmonic, implying a value of 192.4d for the formal period. Visual inspection also suggests that the traditional RV Tauri "double hump" feature corresponding to the formal period is poorly expressed after about 1996 - 1997. The appearance of the light curve after this point is "Cepheid-like", which is one of the typical irregularities exhibited by RV Tauri stars (Tsesevich, 1975); this apparent behavior is quantitatively supported by the dominance of the first harmonic in the FT, while no significant peak corresponding to the predicted formal period appears to present.

In order to test for any systematic changes in the period (another irregularity noted by Tsesevich, 1975), we have applied Fourier transforms to the light curve in two year overlapping windows (i.e., 12 such windows were used). A least squares fit to the resulting values of the first harmonic period versus time gives a rate of 0.10 ± 0.27 day/year, indicating no significant change in period.

Visual inspection of the light curve of LV Del suggests two other phenomena of interest: first, there appears to be a long term systematic variation of the mean brightness; second, there appears to be variation in the amplitude of the first harmonic, on a similarly long time scale. We examine the first in the top panel of Figure 3, which plots the mean brightness for one whole cycle out of each year of data (with error bars representing the standard deviation of the mean), along with a sinusoidal fit. Note that points for 1997 and 1999 have been omitted due to the data being more sparse in those years. The variations are larger than the errors, thus substantiating the presence of this signal, and identifying LV Del as a member of RVb photometric subclass (i.e., those exhibiting such long term variations; see, e.g., Tsesevich, 1975). The fitted sinusoid has a period of 1636.3d, a mean magnitude of 14.79, and an overall amplitude of 0.24 mag. Visual inspection suggests that these variations are not in fact strictly periodic, which is not uncommon for RVb stars (Tsesevich, 1975; Fokin, 1994). Two low frequency peaks, at 1762d and 1017d, also suggest the presence and irregularity of such a signal. It has been proposed (Tsesevich, 1975; Fokin 1994) that the secondary variability of the RVb class may be due to their being a member of a binary system in which they are periodically eclipsed by the ejection shell of the companion star.

Figure 3.

To examine the apparent variation in pulsational amplitude, in the bottom panel of Figure 3 we plot the average amplitude for the same cycles as used for the top panel (in magnitudes; again, 1997 and 1999 have been omitted), with typical errors, and again with a sinusoidal fit. The errors are significantly smaller than the variations, thus verifying the presence of this variation in amplitude. The sinusoid has a period 1369.3d, where as that in top panel has a period of 1636.3d, and lags that in bottom panel by a phase of 3.7 years. For some RVb stars, these two variations are in phase (Tsesevich, 1975). In the case of LV Del, if we compare the data points in the two panels, we see that they appear to be in phase only during roughly the first half of the data set; however, the sinusoid fits indicate that, on average, the two variations are not in phase. This apparent shift in the behavior of the light curve is roughly correlated with the shift to Cepheid-like behavior mentioned above. If the star is in fact a binary, this correlation could support the idea that RVb stars are close binary systems, as proposed by Fokin (1994), which might allow a physical correlation between the pulsation and the binary nature.

The chaotic nature of the light curves of the RV Tauri stars AC Her (RVa) and R Sct (RVb) has been established (Kolláth et al., 1998; Kolláth, 1990). We have tested for chaos in the light curve of LV Del using the TISEAN non-linear time analysis package (Hegger et al., 1999). Note that this analysis was performed using a spline-smoothed light curve, with one day spacing, in order to insure uniform spacing and to maximize the available information, given that the non-linear time series analysis is very sensitive to noise. Following the procedure of Kiss & Szatmáry (2002), we used the TISEAN package to generate a phase space reconstruction of the data, and used the resulting phase space vectors to generate Broomhead-King projections of the phase space. The presence of intersections and cusps appeared to be minimized for an embedding dimension of 4, and so we may take this as a tentative indicator of the embedding dimension of the phase space (see, e.g., Kolláth et al., 1998). However, the projections were quite noisy, and no significant structure was apparent. Given the high data density of both the real and smoothed light curves, this is an indication that the data set is simply too short to obtain informative results. In this regard, we may compare to the data of Kolláth (1990), Kolláth et al. (1998), and Kiss & Szatmáry (2002) who had data sets of 32 years, 150 years, and 100 years, respectively.

A quantitative measure of the chaos present in a signal can be achieved by calculating the maximal Lyapunov exponent, which is a measure of the exponential growth of the infinitesimal perturbations which lead to chaos (Hegger et al., 1999). If chaos is present the maximal exponent should be positive (e.g., Kiss & Szatmáry, 2002). Again using the procedure laid out by Kiss & Szatmáry (2002), we have used the TISEAN package to calculate the maximal Lyapunov exponent, finding a value of 0.0238 ± 0.0031 , which quantitatively indicates the presence of chaos. Again note that the spline-smoothed light curve was used.

The analysis herein has identified LV Del as an RV Tauri star of the RVb subclass. Although the formal period is poorly expressed, the irregularities exhibited by this star are typical of RV Tauri stars. The change in the behavior of the amplitude variations from being in phase to being out of phase with the long term variations in mean brightness may be correlated with the change to Cepheid-like behavior exhibited in the light curve, but we can only speculate as to the physical origin of either effect. The positive value of the maximal Lyapunov exponent indicates the presence of chaos in the light curve, but this must be taken with caution, as a longer data set would provide more certain results (see, e.g., Kiss et al., 1998). The Broomhead-King projections of the phase space trajectories suggest that the light curve is embedded in a low-dimension phase space with an embedding dimension of \sim 4, but this is only tentative.

References:

- Fokin, A.B., 1994, A&A, 292, 133
- Henden, A.A., & Honeycutt, R.K., 1997, PASP, 109, 441
- Hegger, R., Kantz, H., & Schreiber, T., 1999, Chaos, 9, 413
- Honeycutt, R.K., 1992, PASP, 104, 435.
- Honeycutt, R.K., Robertson, J.W., Vesper, D.N., Kern, B.D., Turner, G.W., & Peir, J.R., 1992, *IBVS*, **3795**, 1
- Kiss, L.L., & Szatmáry, K., 2002, A&A, **390**, 585
- Kolláth, Z., 1990, MNRAS, 247, 377
- Kolláth, Z. Buchler, J.R., Serre, T., & Mattei, J., 1998, A&A, 329, 147
- Tsesevich, V.P., 1975, in *Pulsating Stars*, Ch. 4, ed. Kukarkin, B.V., Wiley, New York.

Number 5805

Konkoly Observatory Budapest 23 November 2007 *HU ISSN 0374 - 0676*

A STUDY OF THE BRIGHT RR LYRAE STAR CN Cam

KINMAN, T. D.; HARMER, D. L.; SAHA, A.; WILLMARTH, D. W.

Kitt Peak National Observatory, NOAO,¹ P.O.Box 26732, Tucson, Arizona 85726, USA, email: kinman@noao.edu

Strohmeier and Knigge (1961) discovered that CN Cam is variable and classified it as an eclipsing system. It was shown to be a type ab RR Lyrae star by Campos-Cucarella, Nomen-Torres, Gomez-Forrellad and Garcia-Melendo (1996); they made CCD observations of the star in B and V for 12 nights between 16 December 1995 and 12 February 1996. Their precise light curves show that CN Cam is not only one of the brighter RRab $(V_{\rm max} = 9^{m}53)$ but also has one of the lowest amplitudes $(0^{m}350\pm0.005 \text{ and } 0^{m}474\pm0.004 \text{ magnitudes in } V$ and B respectively). They gave the following ephemeris:

$$HJD_{max} = 2450080.588 \pm 0.002 + 0.6214 \pm 0.0001 \times E$$
(1)

New photometric observations were needed, not only to improve the ephemeris but because Campos-Cucarella et al. only gave the PPM magnitude for their comparison star, SAO 001899; consequently the zero-points of their magnitudes need to be checked. We observed this comparison star on five nights and found $V = 10.201 \pm 0.003$ and $B - V = +0^{\text{m}}356 \pm 0.005$. The variable and this comparison star were observed in 1998, 1999 and 2004 (Fig. 1) and we found the following ephemeris:

$$HJD_{max} = 2450080.588 \pm 0.002 + 0.621445 \pm 0.000002 \times E$$
⁽²⁾

The photometric observations in 1998 and 1999 were made with the Kitt Peak 0.9-m telescope using a 512×512 Tektronix chip under the control of the CCDPHOT program (Tody & Davis 1992, Kinman 1998). The observations in 2004 were made with the commercial robotic f/7 0.8-m Ritchey-Chretien telescope at the Tenagra Observatory in Arizona (Schwartz, 2007). The detector on this telescope was a 1024×1024 SITe CCD. These data were reduced with standard IRAF routines (Tody, 1993).

Our photometric observations (Table 1) give $\langle V \rangle = 9^{\text{m}}_{..}64$ and a V_{max} of $9^{\text{m}}_{..}42$: this is about 0.1 mag brighter than the value found by Campos-Cucarella et al. although the amplitudes that we find ($0^{\text{m}}_{..}36$ and $0^{\text{m}}_{..}49$ in V and B respectively) are close to their values. Our range in (B - V) ($+0^{\text{m}}_{..}325$ to $+0^{\text{m}}_{..}454$) differs significantly from their range of $+0^{\text{m}}_{..}26$ to $+0^{\text{m}}_{..}38$.

Wils et al. (2004) used the data in the The Northern Sky Variability Survey (Woźniak et al., 2004) to give the following ephemeris for CN Cam:

$$HJD_{max} = 2451628.65 + 0.62149 \times E$$
(3)

¹The National Optical Astronomy Observatories are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation

This does not agree well with our ephemeris nor the epoch of maximum given by Campos-Cucarella et al. Our examination of the Northern Sky Variability Survey shows that the best defined maximum in this data is given by the three observations at

JD(hel) 2451311.6756, 2451311.6778 and 2451311.6787. If we take their epoch of maximum light to be the mean of these three epochs (JDhel 2451311.677), we find a phase of 0.010 with our ephemeris and a phase of 0.979 with the ephemeris of Wils et al. We therefore consider that there is no discrepancy between our ephemeris and the data of the Northern Sky Variability Survey, but that our ephemeris is to be preferred to that of Wils et al.

Radial velocities of CN Cam were obtained using the WIYN 3.5 m telescope and the Hydra fiber spectrograph in July, 1998. A spectral region of 510 Å centered on λ 4315 was used (0.26 Å per pixel or ~0.8 Å resolution). The velocity standard HD 136202 (Sp Type F8 III-IV, +54.4 km s⁻¹, Scarfe et al., 1990; Jeffery et al., 2007) was used as the template (using the whole spectrum including H γ) to measure the radial velocities. HD 128167 (Sp Type F2 V, +0.04 km s⁻¹, Fekel, 1999) was observed as a check. The phases of the spectra were derived from our ephemeris and the γ -velocities were derived following Liu (1991). The results are given in Table 1 where T is the UT time (start), t is the integration time, JD_{hel} is the heliocentric Julian date, ϕ is the phase, V_{hel} is the heliocentric radial velocity and V $_{\gamma}$ is the derived γ -velocity.

Star	Date (1998)	Т	t	$ m JD_{hel}$	ϕ	$\mathrm{V}_{\mathrm{hel}}$	V_{γ}
	(U.T)	h:m	\mathbf{S}	2450000.+		${\rm km~s^{-1}}$	$\rm km~s^{-1}$
CN Cam	Jul 12	05:15	300	1006.7181	0.270	-82.7	-98.9
CN Cam	Jul 12	05:25	600	1006.7269	0.284	-81.3	-98.4
HD 136202	Jul 12	05:42	100	1006.7405	•••	+54.2	• • •
HD 136202	Jul 12	05:49	300	1006.7467	•••	+54.4	• • •
HD 128167	Jul 14	03:52	60	1008.6615	•••	+0.9	• • •
HD 136202	Jul 14	$03:\!58$	90	1008.6686	•••	+54.4	• • •
CN Cam	Jul 14	04:12	900	1008.6775	0.424	-72.9	-98.8

Table 1. Radial velocities of CN Cam and Velocity standards.

Jurcsik & Kovács (1996), Kovács & Walker (2001) and Sandage (2004) have shown that the metallicity [Fe/H] can be derived from the shape of the light curve and period of an RR Lyrae star. A Fourier combination ϕ_{31} of 2.467 was derived from the V light curve given by Campos-Cucarella et al. (1996); this gave [Fe/H] = -1.095 using Sandage's equation (3). A visual amplitude of 0^m357 gave [Fe/H] = -1.013 with Sandage's equation (6) while a rise-time of 0.25 gave [Fe/H] = -1.135 with Sandage's equation (7). These agree well with the approximate [Fe/H] = -1.2 that Castelli (2004) derived from our 1998 Jul 14 spectrum by comparison with spectra derived from model atmospheres. If we assume [Fe/H] = -1.1 and the absolute magnitude relation:

$$M_v = 0.214 [Fe/H] + 0.86$$
(4)

of Clementini et al. (2003), we find $M_v = +0$. The extinction E(B - V) = 0. 047 (l = 126.4 and b = +35.3) was taken from Schlegel et al. (1998) to give a distance of 594 pc. If we assume a 10% error in the parallax (1.684 mas), and the TYCHO proper motions $\mu_{\alpha} = -113.2 \pm 1.1$ mas, $\mu_{\delta} = -81.5 \pm 1.1$ (Hog et al., 2000), we get the following heliocentric galactic coordinates in km s⁻¹:

$$U = -222 \pm 24$$
, $V = -338 \pm 24$ and $W = +27 \pm 8$

using the right-handed system which is positive towards the Galactic Centre, the direction of Galactic rotation and the North Galactic Pole (Johnson & Soderblom, 1987). CN Cam is therefore a halo RR Lyrae star with a significant retrograde galactic rotation and is consequently likely to belong to an *accreted* halo population (Kinman et al., 2007).

We are grateful to Francisco Campos-Cucarella for sending us their data so that the Fourier analysis could be made. We also thank Fiorella Castelli for deriving a metallicity from our spectrum of CN Cam.

References:

- Campos-Cucarella, F., Nomen-Torres, J., Gomez-Forrellad, J., Garcia-Melendo, E., 1996, *IBVS*, 4323
- Castelli, F., 2004, private communication
- Clementini, G., Gratton, R., Bragaglia, A. et al., 2003, AJ, 125, 1309
- Fekel, F.C., 1999, ASP Conf. Ser., 185, 378, IAU Coll. No. 170, ed. J.B. Hearnshaw & C.D. Scarfe (San Francisco: ASP)
- Hog, E., Fabricius, C., Makarov, V.V. et al., 2000, A&A, 355, L27 (Tycho Catalogue)
- Johnson, D.R., Soderblom, D.R., 1987, AJ, 93, 864
- Jurcsik, J. & Kovács, G., 1996, A&A, 312, 111
- Jeffery, E., Barnes, T.G., Skillen, I., Montemajor, T.J., 2007, ApJS, 171, 512
- Liu, T., 1991, Publ. A.S.P., 103, 205
- Kinman, T.D., 1998, Publ. A.S.P., 110, 1277
- Kinman, T.D., Cacciari, C., Bragaglia, A. et al., 2007, MNRAS, 375, 1381
- Kovács G. & Walker, A.R., 2001, A&A, 371, 579
- Sandage, A., 2004, AJ, 128, 858
- Scarfe, C.D., Batten, A.H., Fletcher, J.M., 1990, Publ. D.A.O, 18, 21
- Schlegel, D.J., Finkbeiner, D.P., Davis, M., 1998, ApJ, 500, 525
- Schwartz, M., 2007, "Tenagra Observatories, Ltd.", http://www.tenagraobservatories.com/
- Strohmeier, W., Knigge, R., 1961, Astronomische Nachrichten, 286, 133
- Tody, D., Davis, L.E., 1992, ASP Conf. Ser., 25, 484, Astronomical Data Analysis Software & Systems I, ed. D.W.Worrall, C.Biemesderfer, & J.Barnes (San Francisco: ASP)
- Tody, D., 1993, ASP Conf. Ser., 52, 173, Astronomical Data Analysis Software & Systems II, ed. R.J. Hanisch, R.J. Brissenden, & J.Barnes (San Francisco: ASP)
- Wils, P., Lloyd, C., Bernhard, K., 2006, MNRAS, 368, 1757
- Woźniak, P.R., Vestrand, W.T., Akerlof, C.W. et al., 2004, AJ, 127, 2436

Figure 1. Fig. 1 (above) The (B - V) colours and (below) the V magnitude of CN Cam as a function of phase (ϕ) . 1998 observation (triangles), 1999 observations (open circles) and 2004 observations (filled circles).

Number 5806

Konkoly Observatory Budapest 26 November 2007 *HU ISSN 0374 - 0676*

PHOTOELECTRIC MINIMA OF SOME ECLIPSING BINARY STARS

KRAJCI, TOM

PO Box 1351 Cloudcroft, New Mexico 83117; e-mail: tom_krajci@tularosa.net

Observatory and	l telescope:						
Observations were	e conducted	in	Cloudcroft,	New	Mexico.	$28 \mathrm{cm}$	Schmidt-
Cassegrain, 2640 r	ım focal leng	th.	German equa	atorial	mount.		

Detector:	SBIG ST-7E, -25 °C, covering 8×5 arcminutes, 18 micron
	pixels (binned 2×2). Unfiltered.

Method of data reduction:

All CCD frames calibrated with bias, dark, and flat frames using AIP4WIN software. Differential aperture photometry performed using AIP4WIN software[†].

Method of minimum determination:

Digital tracing paper method, bisection of chords, curve fitting, and (occasionally) Kwee and van Woerden (1956).

Times of a	minima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
HV Aqr	2454012.6534	0.0003	Ι	None	
V1647 Aql	2453930.6824	0.0003	II	None	
V1647 Aql	2453930.9199	0.0005	Ι	None	
DO Aur	2454048.8796	0.0003	Ι	None	
EM Aur	2454137.7738	0.0003	II	None	
S Cnc	2453876.9159	0.0010	Ι	None	
XZ Cnc	2454049.9853	0.0004	Ι	None	
BI CVn	2454137.9636	0.0002	Ι	None	
RR CMa	2454045.9819	0.0002	Ι	None	
AD CMa	2454055.9368	0.0002	Ι	None	
CV CMa	2454044.9377	0.0008	II	None	Apsidal motion
BQ Cap	2453994.7980	0.0015	Ι	None	Period 1.47409d
RZ Cas	2453989.8576	0.0003	Ι	None	
GK Cas	2454031.8360	0.0002	Ι	None	
NU Cas	2454078.6502	0.0002	Ι	None	
GW Cep	2453957.9704	0.0007	Ι	None	
GW Cep	2454137.6350	0.0002	II	None	
GW Cep	2454138.5914	0.0002	II	None	

 $^{\dagger}\mathrm{AIP4WIN}\ \mathrm{software}\ \mathrm{available}\ \mathrm{at:}\ \mathtt{http://www.willbell.com/aip/index.htm}$

Times of m	ninima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
NR Cep	2454047.8227	0.0002	II	None	
DY Cet	2453994.9419	0.0002	II	None	Period 0.440792d
EK Com	2454169.8621	0.0003	II	None	
NU Cyg	2453919.8921	0.0003	Ι	None	Period 0.281122d
NU Cyg	2454277.9001	0.0003	II	None	
QW Cyg	2453917.7304	0.0003	II	None	
V500 Cyg	2453977.6723	0.0001	Ι	None	
V704 Cyg	2453989.6342	0.0002	II	None	
V842 Cyg	2453941.8300	0.0003	Ι	None	
V884 Cyg	2453919.7626	0.0004	II	None	Period 0.480053d
V1189 Cyg	2453995.6313	0.0002	Ι	None	
V1901 Cyg	2453996.7451	0.0005	Ι	None	
V1902 Cyg	2453989.6812	0.0005	Ι	None	Period 0.450204d
V1902 Cyg	2453995.7584	0.0002	II	None	
V2150 Cyg	2453994.6667	0.0008	Ι	None	Period 0.591859d
V2197 Cyg	2453972.6656	0.0003	II	None	Period 0.465748d
V2197 Cyg	2453976.6248	0.0003	Ι	None	
V2290 Cyg	2453958.8123	0.0002	Ι	None	
BQ Eri	2454056.8743	0.0006	Ι	None	Period 0.821981d
WW Gem	2454176.6753	0.0002	Ι	None	
DQ Her	2454194.8589	0.0003	Ι	None	
V1050 Her	2453918.6933	0.0004	Ι	None	
$V1050~{ m Her}$	2453988.6435	0.0008	II	None	
$V1063~{ m Her}$	2453906.7337	0.0004	Ι	None	Period 1.65981d
RX Hya	2454109.8898	0.0001	Ι	None	
DI Hya	2454058.9801	0.0001	Ι	None	
KW Hya	2454108.7935	0.0010	II	None	
VX Lac	2453918.9449	0.0001	Ι	None	
CW Lib	2453929.7171	0.0003	Ι	None	
GI Lib	2454192.9117	0.0002	Ι	None	
GV Lib	2454176.9311	0.0002	Ι	None	
GV Lib	2454277.7088	0.0006	II	None	
Del Lib	2454138.9684	0.0006	Ι	None	
SW Lyn	2454169.6670	0.0002	Ι	None	
DF Lyr	2453933.6540	0.0002	Ι	None	
V429 Lyr	2453975.8341	0.0002	Ι	None	
EH Mon	2454179.6989	0.0006	Ι	None	
EW Mon	2454050.9209	0.0002	II	None	
EW Mon	2454078.8256	0.0003	Ι	None	
HM Mon	2454053.8793	0.0002	Ι	None	
V524 Mon	2454052.8766	0.0002	II	None	
V634 Mon	2454075.7686	0.0005	Ι	None	
V709 Oph	2453975.6722	0.0008	Ι	None	
V641 Ori	2454058.8514	0.0002	Ι	None	
V1027 Ori	2454076.7923	0.0002	II	None	

Times of minin	ma:				
Star name	Time of min.	Error	Type	Filter	Rem.
	${ m HJD}~2400000+$				
BQ Peg	2454012.7412	0.0002	Ι	None	
BY Peg	2453957.8253	0.0002	II	None	
CF Peg	2453917.8006	0.0004	Ι	None	Period 0.413498d
CW Peg	2454273.8879	0.0001	Ι	None	
DX Per	2454049.8828	0.0004	Ι	None	
$V364 \ Per$	2453988.9165	0.0003	II	None	
$V364 \ Per$	2454109.5937	0.0002	Ι	None	
BL Pup	2454138.7848	0.0002	Ι	None	
V1068 Sgr	2453928.7201	0.0003	II	None	
V1963 Sgr	2453918.8250	0.0002	II	None	Period 0.825080d
V1963 Sgr	2453930.7890	0.0002	Ι	None	
MX Ser	2453906.8760	0.0010	Ι	None	Period 0.30776d
MX Ser	2454169.9725	0.0003	Ι	None	
RW Tri	2453972.9106	0.0002	Ι	None	
XY UMa	2454076.9392	0.0002	Ι	None	
XY UMa	2454173.6989	0.0002	Ι	None	
DN UMa	2454166.7367	0.0005	Ι	None	
DV UMa	2454179.7820	0.0002	Ι	None	
DV UMa	2454179.8675	0.0002	Ι	None	
IY UMa	2453838.6023	0.0002	Ι	None	
IY UMa	2453838.6763	0.0002	Ι	None	
IY UMa	2453838.7502	0.0002	Ι	None	
IY UMa	2453838.8241	0.0002	Ι	None	
IY UMa	2453838.8981	0.0002	Ι	None	
CM Vir	2454173.9112	0.0003	Ι	None	
DM Vir	2453919.6710	0.0003	Ι	None	
FO Vir	2454194.7473	0.0007	Ι	None	
HP Vul	2454271.8414	0.0006	Ι	None	
$NSV \ 13635$	2453996.6262	0.0005	II	None	
NSV 13638	2454030.6114	0.0003	II	None	Period 0.427415d
GSC 0594-0324	2453958.9374	0.0003	Ι	None	Period 0.241202d
GSC 0594-0324	2453975.9427	0.0006	II	None	
GSC 0742-0237	2454031.9763	0.0005	Ι	None	
GSC 0742-0237	2454049.0089	0.0006	Ι	None	
GSC 2484-0592	2454057.9386	0.0009	II	None	
GSC 0742-0237	2454166.5979	0.0005	Ι	None	
GSC 3449-0680	2454075.9657	0.0002	Ι	None	
$GSC \ 3449-0680$	2454174.6384	0.0002	Ι	None	

Acknowledgements:

This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France (see references).

References:

Kwee, K. K., & van Woerden, H., 1956, *B.A.N.*, **12**, (464), 327-330 SIMBAD astronomical database, http://cdsweb.u-strasbg.fr/Simbad.html

Number 5807

Konkoly Observatory Budapest 14 December 2007 *HU ISSN 0374 - 0676*

EARLY SPECTRAL EVOLUTION OF NOVA Vul 2007=V458 Vul

TARASOVA, T. N.

Crimean Astrophysical Observatory, Nauchnyj, Crimea, 98409, Ukraine; email: taya@crao.crimea.ua

The star has been discovered as a bright nova on 2007 August 8.54 UT with the coordinates $\alpha = 19^{h}54^{m}24^{s}64$, $\delta = +20^{\circ}52'51''_{.9}$ J2000 and had brightness of about V = 8 mag (Abe, 2007; Nakamura et al. 2007). The nova has been given the official name V458 Vul (Samus, 2007). The light curve of V458 Vul based on AAVSO data (Henden, 2007a) is shown in Fig. 1. During the light fading the nova showed local flares up to 8th magnitude, and then declined to 11th magnitude (Nakano et al. 2007; Buil & Fujii, 2007).

We obtained five spectra on the 8th, 9th, 12th, 22nd and 24th day after the outburst (i.e. observed maximum magnitude) when the nova was at magnitude V=10.1, 10.2, 10.5, 11.2 and 11.3 respectively. The dates of our spectroscopic observations are marked on the light curve by arrows (see Fig.1).

Figure 1. Light curve of V458 Vul based on AAVSO data. Arrows indicated the time of our spectral observations

The spectral observation was carried out at the Crimean Astrophysical Observatory with the 2.6m Shajn telescope. The low resolution spectra, characterized by a dispersion of 2 Å pix^{-1} , were observed in the wavelength ranges 3700-6190 Å and 5600 -7600 Å and were combined. The medium resolution spectrum, obtained on Aug 17th, has a dispersion of 0.75 Å pix^{-1} and covers the spectral range 4200 - 5300 Å. The data were processed following standard procedures for CCD frames, including bias subtraction, flat field correction, wavelength calibration. The spectrophotometric standard HR 7679 (Kharitonov et al. 1988) was used for flux calibration of the observed star. Four short time exposures of the standard star have been obtained just before and after the nova observations.

All our spectra are shown in Fig. 2. The spectra are separated vertically by a constant offset. The first two spectra were obtained before the second maximum, the third spectrum was obtained at the end of the second maximum and the last two were taken during the phase of slow decline.

Figure 2. Spectroscopic evolution of V458 Vul. The lower four spectra are shifted downwards by one four units respectively in log (flux). Flux F_{λ} is in units of $erg \, cm^{-2}s^{-1} \mathring{A}^{-1}$

Data analysis shows that the first two spectra, obtained during two consecutive nights are quite similar. The H, FeII emission lines of the 27, 28, 37, 38, 42, 49, 74 multiplets, and HeI 5876, 6678, 7065 Å dominate the spectrum of the nova. The expansion velocity (FWHM) is about 2700 $km s^{-1}$ for H and about 3000 $km s^{-1}$ for HeI lines. The line profiles of H and FeII lines have the rounded-topped form. The profiles of the HeI lines (but the HeI 4471) are different as they show "flat-top" profiles with some "jags".

On the third spectrum the strongest lines are the same as in the previous ones. But the line profiles differ noticeably from two previous and subsequent spectra. The H emission lines have a complex profile showing a clear P Cyg absorption and a multicomponent emission. While, the HeI line profile has evolved in asymmetric saddle shaped profiles. It is possible that the profile of the H emission lines is also saddle shaped and that the multicomponent appearance results from blend with HeII multiplets (2 and 3). However, we discard this hypothesis as the flux of the isolated line HeII 5412Å is lower than that of the assumed blends. The analysis of the line profiles will be realized in detail in a

The last two spectra were obtained within two days and are very similar to each other. However, they differ noticeably from the previous spectrum. The line profiles of the HeI lines 5876, 6678, 7065 Å evolved back to "flat-top" with "jags" as in our first and second observations. While the profile of the H lines became very similar to that of the HeI lines. The width of the H and the HeI lines are FWHM $\approx 2900 \, km \, s^{-1}$ and FWHM $\approx 3000 \, km \, s^{-1}$, respectively. The flux of the H α lines became again almost same as on the first two spectra (increased by almost a factor of two). The flux of the other Balmer lines has practically not changed. The flux of the HeI 5876 and 7065 Å lines became noticeably greater than on the previous spectra while the flux of HeI 6678 Å line is almost not changed. The intensity of the metal emission lines decreased. The lines NI 5679 Å and [NII] 5755 Å , visible as weak emissions since the beginning of our observation, increased on the last spectrum. The blend of the [OI] 6300 Å and 6364 Å became appreciable on the last spectra also. The HeII 4686 Å line and the blend of the NIII 4640 Å lines became stronger and formed the broad blend centered at 4670 Å.

The nova showed several maxima near 8th magnitude, with minima near 10th magnitude between them. The spectra of the nova showed P Cyg profiles of Balmer and FeII lines when the magnitude was at maximum (see, for example, Henden, 2007b). Therefore, this star has been classified as a standard FeII-type nova in the Tololo system (Williams, 1992). However, our spectra, obtained between the 8th - 24th days after the outburst, show that the nova better fits in the He/N class. This is consistent with the observations by Skoda et al. (2007) and Kiss & Sarneczky (2007), who report broad and "flat-top" emission lines. We, thus, conclude that nova V458 Vul belongs to the hybrid nova class according to Williams' spectroscopic classification.

Acknowledgements: This work was partially supported by the Ukrainian Fund of Fundamental Research F25.2/139. I am grateful to the referee Dr. E. Mason for very useful comments.

References:

- Abe, H., 2007, CBET, 1027, 1
- Buil, C., Fujii, M., 2007, IAUC, No. 8862
- Henden, A.A., 2007a, Observations from the AAVSO International Database, private communication.
- Henden, A.A, 2007b, AAVSO Special Notice, No. 61
- Kharitonov, A. V. et al., 1988, Spectrophotometric Catalogue of Stars, Alma-Ata, Nauka, p. 484
- Kiss, L., Sarneczky, K., 2007, CBET, 1038, 1
- Nakamura, Y., Yamaoka, H., Dillon W. G., et al., 2007, CBET, 1029, 1
- Nakano, S., Kadota, K., Waagen E., et al., 2007, *IAUC*, No. 8861
- Samus, N. N., 2007, IAUC, No. 8863
- Skoda, P., Kubat, J., Votruba, V., et al., 2007, CBET, 1035, 1
- Williams, R.E., 1992, AJ, 104, 725

Number 5808

Konkoly Observatory Budapest 14 December 2007 *HU ISSN 0374 - 0676*

THE FIRST *BVRI* LIGHT CURVES AND ANALYSIS OF THE SHORT-PERIOD ALGOL-TYPE BINARY DI Hya

MANIMANIS, V. N.; NIARCHOS, P. G.

Dept. of Astrophysics, Astronomy and Mechanics, Faculty of Physics, National & Kapodistrian University of Athens, Athens, Greece. e-mail: vmaniman@phys.uoa.gr

Figure 1. $14' \times 14'$ finding chart with the comparison (C) star marked; DI Hya is marked with a V. North is up and east is to the left.

The eclipsing binary DI Hydrae (AN 203.1932), included by Budding et al. (2004) in their list of Algols was observed in our search for near-contact variables. The only published light curve of DI Hya before this work appears to be an unfiltered (visual) one by Brelstaff, presented by Isles (1988). The observations were made at the South African Astronomical Observatory Sutherland Station, using the 1.0 m Cassegrain telescope equipped with a CCD camera, liquid-nitrogen cooled at 180.5 K, with 1024 × 1024 imaging pixels binned to 512×512 . The field of view was $5'_{.3} \times 5'_{.3}$. The *BVRI* filters were used. The dates of the observations of DI Hya were 13, 21, 22 and 23 January 2006. The star 2MASS J 09065133-1231368 (USNO-B1.0 0774-0251554), located 172" WNW of the variable, was used as a comparison star.

Approximately 350 observational points were secured in each filter, namely 351 in blue, 349 in yellow, 349 in red and 348 in the infrared. The period of the system is 0.6147132 days. The heights of the two maxima are equal within the observational error in all bands. The secondary minimum is shallow and deepens considerably at longer wavelengths; this fact indicates a large temperature difference between the components. DI Hya is known to have a spectral type of A6+[G8IV].

-0 4

-0.2

0.2

Figure 3. The complete R (upper) and I (lower) light curves of DI Hya.

Two times of minimum were extracted from our data, the secondary minimum at $HJD2453757.45928 \pm 0.0008$ and the primary at $HJD2453758.38132 \pm 0.0007$. The latter was used as a basis for the ephemeris used, combined with the above orbital period of the system.

-0.4

-0.2

0.0

0.2

R

All the observational points of all filters were used in order to analyze the light curves with Wilson-Devinney program's PHOEBE 0.28 version (Prša & Zwitter 2005) and obtain a photometric solution of the light curves. We solved the light curves assuming that there are no spots on the components of the system, since no asymmetry indicative of spots is present. Since no double-line spectroscopy was available, initial values for the mass ratio (q = 0.42) and for the inclination $(i = 83^{\circ})$ were adopted from the tables by Budding et al. (2004). Initial values of the system's other parameters were derived from the LC part of the Wilson-Devinney programme. Also, the standard values for gravity darkening coefficients and bolometric albedos according to the spectral types of the components were used. The values of the limb darkening coefficients are automatically interpolated step-by-step by the PHOEBE program according to the Van Hamme (1993) tables. The results converged assuming semi-detached (with either star filling its Roche lobe), as well as detached configuration for the system. The minimum χ^2 rms value averaged for all filters was achieved with the mode in which the primary fills its Roche lobe (Mode 4) (these errors are reduced chi-squared values as they appear in the PHOEBE main programme). In particular, this mode gave an rms χ^2 of 0.1214, while the mode in which the secondary fills its Roche lobe gave an rms χ^2 of 0.1271 and the mode for a detached configuration 0.1232 (Mode 2). Table 1 shows the two best solutions we obtained (the Modes 4 and 2 of the original Wilson-Devinney program). The large difference between the mass ratios of the two solutions suggests a spectroscopic mass ratio is needed for a definite study of the system.

The theoretical light curves of our Mode 4 solution, along with the observed ones, are shown in Figure 4. A cross-sectional surface outline of the system is given in Figure 5 and a three-dimensional model of the system is shown in Figure 6. The relatively short distance between the two stars (the centre of mass of the system is inside the body of the primary) supports the assertion that this is a near-contact system, and therefore it was correctly included by Shaw (1994) in his second catalog of such binary systems.

Since no double-line spectroscopy is available, the only way to estimate absolute parameters is to make assumptions about the absolute magnitude or the mass of the primary and use the value of q obtained photometrically. Assuming that the primary has a mass of 2.01 solar masses, the value for a normal MS star of its spectral type, we get the following

Figure 4. The observational points and the theoretical light curve fitting for our model (Mode for semi-detached systems of the W-D program) and for the V light curve of DI Hya.

absolute elements for DI Hya in solar units from our Mode 4 solution's geometrical and physical characteristics:

$R_1 = 1.870 \pm 0.002$	$R_2 = 1.362 \pm 0.002$
$L_1 = 13.59 \pm 0.37$	$L_2 = 1.389 \pm 0.016$
$M_1 = 2.01 \text{ (assumed)}$	$M_2 = 1.42 \pm 0.070$

and the bolometric absolute magnitudes:

 $M_{bol(1)} = 1.92$ and $M_{bol(2)} = 4.39$

According to them, the primary component is located relatively close to the ZAMS line (for stars of solar metallicity) in the mass-radius diagram, indicating an only slightly evolved star, while the secondary component seems to have evolved slightly more. In the region occupied by the 16 near-contact systems studied by Niarchos & Manimanis (2002), these stars appear relatively unevolved, especially the secondary.

Figure 5. A cross-sectional surface outline of DI Hya at phase 0.75 (Max II) for our solution using Mode 4 of the W-D program.

Figure 6. Three-dimensional model of the system of DI Hya as it appears at phase 0.25 (at Max I). The centre of mass of the system (red cross) is inside the body of the primary.

Parameter	Mode 4	Mode 2
i (degrees)	82.14	84.38
T_1 (K)	8100^{*}	8100^{*}
T_2 (K)	5328	4558
g_1, g_2	$1.0^*, 0.32^*$	$1.0^*, 0.32^*$
A_1, A_2	$1.0^{*}, 0.5^{*}$	$1.0^*, 0.5^*$
$q = M_2/M_1$	0.7066	0.5151
Ω_1	3.2550^{*}	3.0851
Ω_2	3.5793	3.1052
$L_1/(L_1+L_2)$ (B)	0.9552	0.9787
$L_1/(L_1+L_2) (V)$	0.9088	0.9629
$L_1/(L_1+L_2)$ (R)	0.8708	0.9401
$L_1/(L_1+L_2)$ (I)	0.8237	0.9162
$r_1(\mathrm{back})$	0.436	0.422
$r_1(\text{side})$	0.407	0.402
$r_1(\text{pole})$	0.385	0.384
$r_1(\text{volume})$	0.408	0.402
$r_2(\mathrm{back})$	0.310	0.298
$r_2(\text{side})$	0.295	0.280
$r_2(\mathrm{pole})$	0.286	0.271
$r_2(\text{volume})$	0.297	0.283
χ^2	0.1214	0.1232

Table 1: Light curve solution of DI Hydrae

assumed

Acknowledgements. This research was included in the project for the support of research groups in the universities, co-funded by the European Social Fund (ESF) and National Resources (EPEAEK II) - *PYTHAGORAS*. This paper uses observations made at the South African Astronomical Observatory (SAAO).

References:

Budding, E., Erdem, A., Çiçek, C., Bulut, I., Soydugan, F., Soydugan, E., Bakis, V., Demircan, O., 2004, A& A, 417, 263

Isles, J.E., 1988, JBAA 98, 200

Niarchos, P.G., Manimanis, V.N.: A Photometric Study of Selected Near-Contact Binary Systems. In: Cheng, K.S., Leung, K.C., Li, T.P. (eds.), Proceedings of the 6th Pacific Rim Conference on Stellar Astrophysics, Xian (China), July 2002

Prša, A., Zwitter, T., 2005, *ApJ*, **628**, 426

Shaw, J.S., 1994, Mem.S.A.Ital., 65, 95

Van Hamme, W., 1993, AJ, **106**, 2096

Number 5809

Konkoly Observatory Budapest 14 December 2007 *HU ISSN 0374 - 0676*

236 MINIMA TIMINGS OF ECLIPSING BINARIES OBSERVED BY INTEGRAL OMC

SOBOTKA, P.

Astronomical Institute, Academy of Sciences of the Czech Republic, 251 65 Ondřejov, Czech Republic; e-mail: sobotka@astro.cz

This study uses data provided by the Optical Monitoring Camera (OMC) onboard the ESA INTEGRAL satellite (The International Gamma-Ray Astrophysics Laboratory). There are four co-aligned instruments onboard the INTEGRAL satellite: (1) gamma-ray imager IBIS (15 keV-10 MeV, field of view 9 deg), (2) gamma-ray spectrometer SPI (12 keV-8 MeV, field of view 16 deg), (3) X-ray monitor JEM-X (3-35 keV, field of view 4.8 deg), and (4) optical monitoring camera OMC (Johnson V-filter, field of view 5 deg) (Winkler et al., 2003).

While the main goal of INTEGRAL is to provide simultaneous observations of highenergy sources in all data bands, also the OMC data alone can provide important inputs for various analyses of astrophysical objects.

During the observations, OMC is pointed to the same astrophysical object as other INTEGRAL instruments. High priority INTEGRAL objects are gamma-ray bursts and other gamma-ray and X-ray sources. Optical data of the other variable objects are by-product.

But for short periodic variables, it seems to be an advantage. INTEGRAL often watch central object for a couple of days, so continuous light curves can be obtained. It allows analysing light changes of some short periodic variable stars as are eclipsing binaries.

In this study I present 236 times of minima of eclipsing binaries. OMC observations analyzed in this paper covers time span from October 2002 to October 2006. Photometric data were obtained through Johnson V filter. All times of minima were double checked.

Observatory and telescope:									
ESA INTEGRAL sa	tellite (The	International	Gamma-Ray	Astrophysics					
Laboratory)									
– 50 mm Optical Monitoring Camera (OMC)									
Detector: See technical details at (Mas–Hesse et al., 2003)									

Method of data reduction:

Data processing was done by Off-line Scientific Analysis package (OSA 6.0) on Laboratory for Space Astrophysics and Theoretical Physics (LAEFF) near Madrid, Spain.

Method of minimum determination:

The minima times were computed using software AVE version 2.5 based on Kwee– van Woerden method (Barberá 1996)

Times of minima:								
Star name	tar name Time of min.		Type	Filter	Rem.			
	${ m HJD}~2400000+$							
XY Ant	53327.6489	0.0007	Ι		2			
DY Aqr	52634.1942	0.0005	Ι		1			
FK Aql	52766.1200	0.0008			2			
FK Aql	52768.772	0.001			3			
V342 Aql	52966.705	0.002			2			
V342 Aql	53139.625	0.003			2			
V917 Aql	52739.378	0.002			3			
V917 Aql	53140.677	0.002			3			
V964 Aql	52962.9449	0.0007			2			
V1426 Aql	52709.1130	0.0004			1			
V1426 Aql	53083.420	0.007			3			
CV Cam	53377.1949	0.0006	Ι		2			
CV Cam	53394.709	0.002	Ι		3			
CV Cam	53410.779	0.001	II		2			
CV Cam	53411.755	0.001	II		3			
ST Car	53152.0927	0.0005			2			
ST Car	53154.7996	0.0003			$\overline{2}$			
SW Car	52824.837	0.004			3			
AS Car	52824.839	0.002			$\frac{3}{2}$			
AS Car	53145 676	0.001			3			
AS Car	53148.449	0.002			3			
AS Car	53159.522	0.002			3			
CO Car	53148.383	0.002			2			
DQ Car	53145.1508	0.0009			2			
DV Car	53143.478	0.002			2			
EZ Car	53161.698	0.001			2			
EZ Car	53152.1924	0.0008			2			
EZ Car	53167.6421	0.0008			2			
GL Car	53546.900	0.002			2			
ZZ Cas	53346.966	0.003	П		3			
ZZ Cas	53350.094	0.005	I		3			
BS Cas	53552 1143	0.0006	Ī		$\frac{3}{2}$			
BS Cas	53554 979	0.001	Ī		3			
BS Cas	53557 397	0.001	I		2			
KL Cas	53349 5960	0.001	1		$\frac{1}{2}$			
V459 Cas	53559 452	0.0000	II		2			
V646Cas	53005.402 53275.117	0.001	11		0 2			
V654 Cas	53348 417	0.001			2			
V785 Cas	53565 452	0.003	ΤT		ງ ົງ			
SS Con	53087 076	0.001	11		∠ 2			
	53530 884				∠ 2			
BD Car	00009.004 59025 491	0.001	тт		ე ე			
MN Car	02000.421 52526 441	0.002	11		ე ე			
win Gen	05050.441	0.008			3			

Times of minima:								
Star name	Time of min.	Error	Type	Filter	Rem.			
	HJD 2400000+							
V379 Cen	53989.826	0.001			3			
V380 Cen	53372.149	0.001			3			
V676 Cen	53028.5526	0.0004	Ι		2			
V676 Cen	53033.8140	0.0007	Ι		2			
V676 Cen	53035.131	0.001	II		2			
V677 Cen	52652.331	0.001	Ι		3			
V677 Cen	52652.8237	0.0006	Π		3			
V685 Cen	53536.810	0.002			2			
V685 Cen	53543.952	0.002			3			
V700 Cen	52839.7889	0.0007			2			
V700 Cen	52840.553	0.001			2			
XX Cep	53352.315	0.002			2			
BB Cep	53046.07	0.01			3			
CM Cep	53355.420	0.003	Ι		3			
CM Cep	53366.583	0.004	Ι		3			
AT Cir	53373.029	0.004			2			
BB Cir	53211.2621	0.0004			1			
BD Cir	53397.04	0.01	Ι		3			
RZ Com	53385.7292	0.0004	II		2			
RZ Com	53386.0668	0.0003	Π		2			
EK Com	52670.0214	0.0003	Ι		3			
EK Com	53381.9364	0.0007	II		2			
EK Com	53382.4716	0.0006	Π		2			
EK Com	53382.5968	0.0006	Ι		2			
EK Com	53509.8057	0.0006	Ι		3			
EK Com	53511.8135	0.0005	II		3			
EK Com	53513.8093	0.0006	Ι		3			
EK Com	53514.6147	0.0007	Ι		2			
EK Com	53531.4103	0.0006	Ι		3			
EK Com	53531.8114	0.0005	II		3			
EK Com	53531.9460	0.0007	Ι		2			
EK Com	53532.3460	0.0004	II		2			
AB Cru	53534.394	0.001			3			
AB Cru	53537.819	0.002			2			
AC Cru	53534.2800	0.0004	Ι		2			
AC Cru	53534.7251	0.0004	II		2			
AC Cru	53545.5768	0.0006	II		2			
AN Cru	53549.8031	0.0008			3			
AR Cru	53541.184	0.004			3			
AY Cru	53525.734	0.001			2			
AY Cru	53528.935	0.001			2			
AY Cru	53540.1222	0.0009			2			
AY Cru	53543.319	0.002			3			
AY Cru	53549.720	0.002			2			
UW Cvg	53207.3156	0.0007			1			
WZ Cvg	53040.2806	0.0008			3			
WZ Cvg	53202.7655	0.0005			2			
WZ Cvg	53206.2728	0.0003			2			
CV Cyg	52625.082	0.003	II		3			

Times of minima:					
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000 +				
GG Cyg	52595.972	0.002			2
GG Cyg	52606.018	0.001			2
GG Cvg	52608.0257	0.0006			1
GG Cvg	52610.036	0.001			1
GG Cyg	52612.0474	0.0006			$\frac{1}{2}$
KB Cyg	52612.6234	0.0000	Т		1
KR Cyg	52612.0204 52612.0512	0.0000	II		1 9
Min Oyg	52013.0312	0.0007	11		2
V 388 Cyg	02010.0782	0.0007			2
V 388 Cyg	52612.033	0.001	тт		2
V442 Cyg	52613.0385	0.0004	11		1
V466 Cyg	52604.9663	0.0006	T		1
V466 Cyg	52606.3585	0.0004	Ι		1
V466 Cyg	52607.7506	0.0003	Ι		1
V466 Cyg	52609.1429	0.0004	Ι		1
V466 Cyg	52613.3164	0.0004	Ι		1
V466 Cyg	52616.0996	0.0003	Ι		1
V466 Cvg	52604.2725	0.0004	II		1
V466 Cvg	52607.0531	0.0004	Π		1
V466 Cvg	52608 4450	0.0005	II		1
$V_{166} C_{yg}$	52600.1100	0.0000	II		1
V466 Cyg	52605.0054	0.0004	TT T		1
V400 Cyg	52011.2290	0.0003			1
V400 Cyg	52014.0118	0.0002			1
V466 Cyg	52615.4033	0.0004			1
V466 Cyg	52616.7950	0.0004	11		1
V466 Cyg	52623.062	0.001	1		3
V466 Cyg	52624.4484	0.0005	Ι		2
V490 Cyg	52613.024	0.002	II		2
V689 Cyg	52606.371	0.001			3
V689 Cyg	52607.829	0.001			3
V689 Cyg	52609.2822	0.0008			2
V689 Cyg	52610.731	0.001			3
V689 Cvg	52612.1899	0.0008			3
V689 Cvg	52613.6452	0.0007			3
V689 Cvg	52615 104	0.008			3
V689 Cyg	52616 557	0.000			3
V800 Cyg	52606 055	0.002	т		3
V809 Cyg V800 Cyg	52608.0108	0.001	T		ວ ົງ
V809 Cyg	52000.0190	0.0003	L T		2
V809 Cyg	52009.9838	0.0004	I T		2
V809 Cyg	52613.9121	0.0008	l		2
V809 Cyg	52615.8806	0.0008	1		2
V809 Cyg	52605.076	0.001	11		3
V809 Cyg	52607.0368	0.0008	II		3
V809 Cyg	52608.9952	0.0007	II		3
V809 Cyg	52610.9648	0.0008	II		3
V822 Cyg	52613.6636	0.0008			2
V822 Cyg	52616.1908	0.0009			2
V1011 Čvg	52607.071	0.001			1
V1011 Cyg	52610.308	0.004			2

m.

C

Times of minima:								
Star name	Time of min.	Error	Type	Filter	Rem.			
	$\rm HJD~2400000+$							
V1011 Cyg	52613.5486	0.0003			2			
V1011 Cyg	53342.442	0.004			3			
V1034 Cyg	52613.0006	0.0009	Ι		2			
SX Gem	53112.232	0.001	II		3			
SX Gem	53112.927	0.002	Ι		2			
AF Gem	53300.0698	0.0007	II		1			
AF Gem	53300.688	0.003	Ι		1			
AF Gem	53301.302	0.002	Π		1			
AF Gem	53301.9357	0.0003	I		1			
AF Gem	53303.1783	0.0003	Ī		1			
V829 Her	53573 9032	0.0009	-		3			
AS Hya	53499 568	0.0000			2			
EZ Hya	53496 4425	0.001			3			
FO Hya	53499 4290	0.0001			1			
IW LMi	53516 /313	0.0000			1			
BB Nor	53911 0976	0.0007			1			
TV Nor	52211.9270	0.0005	ΤT		∠ 1			
TV Nor	5242.4555	0.0000	11 T		1			
IV NOT	00400.070 5000 100	0.001	1		2			
GK NOT	53399.182	0.002			ა ი			
II NOT	53227.3334	0.0007			3			
IT Nor	53430.800	0.001	т		2			
V456 Oph	53089.7944	0.0003			2			
V456 Oph	53091.8267	0.0004			1			
V502 Oph	53402.5929	0.0003	l		1			
V502 Oph	53405.5412	0.0008	11		1			
DZ Ori	52689.9811	0.0007			2			
FT Ori	52939.0726	0.0004			1			
V343 Ori	52690.0619	0.0004			2			
GY Pup	52676.0519	0.0003	Ι		1			
GY Pup	52676.6707	0.0002	II		1			
GY Pup	52676.8749	0.0003	Ι		1			
GY Pup	52677.0817	0.0003	II		1			
GY Pup	52677.2881	0.0003	Ι		1			
GZ Pup	52676.0137	0.0002	II		1			
GZ Pup	52676.6538	0.0003	II		1			
GZ Pup	52676.8149	0.0002	Ι		1			
GZ Pup	52676.9754	0.0002	II		1			
GZ Pup	52677.1347	0.0007	Ι		1			
GZ Pup	52677.2953	0.0003	II		1			
RS Sgr	53799.627	0.001			2			
V457 Sco	52699.4299	0.0008	II		2			
V562 Sco	53427.360	0.005			3			
V569 Sco	53058.498	0.001	T		2			
V569 Sco	53060 0718	0.0006	Ī		2			
V569 Sco	53255 9086	0.0008	II		-3			
V569 Sco	53257 4725	0.0002	T		$\frac{1}{2}$			
V569 Sco	53426 081	0.001	Ť		$\frac{2}{2}$			
V569 Sco	53426.6035	0.0004	Î		-3			
	00120.0000	5.000 I	**		5			

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Y Sex 52598.988 0.001 II 2 Y Sex 52600.036 0.001 I 1 Y Sex 52600.2478 0.0008 II 1 Y Sex 52600.4547 0.0009 I 1 Y Sex 52600.665 0.002 II 2 Y Sex 52600.8759 0.0005 I 1 Y Sex 52601.0844 0.0007 II 1 Y Sex 52601.2982 0.0004 I 2 Y Sex 52602.1320 0.0006 I 1 Y Sex 52602.3443 0.0008 II 2 Y Sex 52602.9703 0.0008 I 3 Y Sex 52603.188 0.002 U 2
Y Sex 52600.036 0.001 I1Y Sex 52600.2478 0.0008 II1Y Sex 52600.4547 0.0009 I1Y Sex 52600.665 0.002 II2Y Sex 52600.8759 0.0005 I1Y Sex 52601.0844 0.0007 II1Y Sex 52601.2982 0.0004 I2Y Sex 52602.1320 0.0006 I1Y Sex 52602.3443 0.0008 II2Y Sex 52602.9703 0.0008 I3Y Sex 52603.188 0.002 II2
Y Sex 52600.2478 0.0008 II1Y Sex 52600.4547 0.0009 I1Y Sex 52600.665 0.002 II2Y Sex 52600.8759 0.0005 I1Y Sex 52601.0844 0.0007 II1Y Sex 52601.2982 0.0004 I2Y Sex 52602.1320 0.0006 I1Y Sex 52602.3443 0.0008 II2Y Sex 52602.9703 0.0008 I3Y Sex 52603.188 0.002 II2
Y Sex 52600.4547 0.0009 I1Y Sex 52600.665 0.002 II2Y Sex 52600.8759 0.0005 I1Y Sex 52601.0844 0.0007 II1Y Sex 52601.2982 0.0004 I2Y Sex 52602.1320 0.0006 I1Y Sex 52602.3443 0.0008 II2Y Sex 52602.9703 0.0008 I3Y Sex 52602.188 0.002 U2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Y Sex 52600.8759 0.0005 I1Y Sex 52601.0844 0.0007 II1Y Sex 52601.2982 0.0004 I2Y Sex 52602.1320 0.0006 I1Y Sex 52602.3443 0.0008 II2Y Sex 52602.9703 0.0008 I3Y Sex 52602.188 0.002 U2
Y Sex 52601.0844 0.0007 II 1 Y Sex 52601.2982 0.0004 I 2 Y Sex 52602.1320 0.0006 I 1 Y Sex 52602.3443 0.0008 II 2 Y Sex 52602.9703 0.0008 I 3 Y Sex 52603.188 0.002 II 2
Y Sex 52601.2982 0.0004 I 2 Y Sex 52602.1320 0.0006 I 1 Y Sex 52602.3443 0.0008 II 2 Y Sex 52602.9703 0.0008 I 3 Y Sex 52603.188 0.002 II 2
Y Sex 52602.1320 0.0006 I 1 Y Sex 52602.3443 0.0008 II 2 Y Sex 52602.9703 0.0008 I 3 V Sex 52603.188 0.002 II 2
Y Sex 52602.3443 0.0008 II 2 Y Sex 52602.9703 0.0008 I 3 V Sex 52603.188 0.002 II 2
Y Sex 52602.9703 0.0008 I 3
$1 V S_{OV}$ 52602 189 0.002 II 2
1 JCA J2003.100 0.002 II Z
Y Sex 52603.3950 0.0007 1 2
Y Sex 52603.6037 0.0006 II 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Y Sex 52604.0249 0.0006 II 1
RZ Tau 52867.6490 0.0004 II 1
RZ Tau 52867.8557 0.0004 I 1
RZ Tau 52868.0648 0.0003 II 1
BV Tau 52679.3175 0.0005 I I
BV Tau 52680.2469 0.0007 I 2
BV Tau 52681.176 0.001 I I
BV Tau 52688.6214 0.0006 I I
BV Tau 52690.478 0.004 I 3
BV Tau 52679.7755 0.0007 II 2
BV Tau 52081.0333 0.0008 II 2
$\begin{array}{ccccccc} HY & Iau & 52087.8320 & 0.0009 & 2 \\ EC & T_{TT} & 52007.6695 & 0.0005 & 1 \\ \end{array}$
EG Ira 55597.0085 U.0005 I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
AZ Vel 52810 418 0 001 2
CK Vel 53160 734 0 003 3
DL Vel 52814 8280 0 0008 1
FU Vel 53169 7491 0 0008 2
FW Vel 53163.475 0.003 3

Remarks:	
----------	--

The last column represents quality of data used to determine the time of the minimum (1 - best quality, 3 - bad quality). See for example Figures 1-3.

Figure 1.

Figure 2.

Figure 3.

Acknowledgements: The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) is an European Space Agency mission with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain, Switzerland), Czech Republic and Poland, and with the participation of Russia and the USA. This study was supported by the project ESA PECS INTEGRAL 98023. I acknowledge the collaboration with the OMC Team, INTA, Madrid, on use of INTEGRAL OMC data, as well as collaboration within the INTEGRAL Cataclysmic Variables Working Group. This research has made use of the SIM-BAD database, operated at CDS, Strasbourg, France. I am very grateful to Anton Paschke for checking my times of minima and Filip Munz.

References:

Barberá, R., 1996, AVE software home page http://www.astrogea.org/soft/ave/introave.htm Mas-Hesse, J.M., Gimnez, A., Culhane, J.L., et al., 2003, A&A, 411, L261 Off-line Scientific Analysis package, OSA home page,

http://heasarc.gsfc.nasa.gov/docs/integral/inthpanalysis.html Winkler, C., Courvoisier, T.J.-L., Di Cocco, G., et al., 2003, A&A, **411**, L1

Number 5810

Konkoly Observatory Budapest 8 January 2008 *HU ISSN 0374 - 0676*

NEW VARIABLE STAR IN THE FIELD OF THE SEYFERT GALAXY MRK 290

DOROSHENKO, V. T.^{1,2}; SERGEEV, S. G.²; EFIMOV, YU. S.²; KLIMANOV, S. A.²; NAZAROV, S. V.²

¹ Crimean Laboratory of Sternberg Astronomical Institute, Nauchny, 98409, Crimea, Ukraine; e-mail: vdorosh@sai.crimea.ua; dorvalen@mail.ru

² Crimean Astrophysical Observatory, Nauchny, 98409, Crimea, Ukraine; e-mail: sergeev@crao.crimea.ua; efimov@crao.crimea.ua; sergdave2004@mail.ru; nazarastron2002@mail.ru

We announce the discovery of a new variable star in the field of the Seyfert galaxy Mrk 290 (star 9 in Fig. 1). The CCD monitoring was made in the BVR_cI_c bands with the 70-cm telescope of the Crimean Astrophysical Observatory over 62 nights from 20.03.2007 to 17.07.2007. We used the CCD AP7p camera with a field size of 515×512 pixels. The field of view of our images was $15' \times 15'$. Typically, for each observational night we obtained four images in each filter with a sampling time of about 10 min. The BVR_cI_c photometry of objects in the Mrk 290 field was made with the aperture A = 12''. We also observed the Seyfert galaxies NGC 3227, NGC 3516, NGC 4051, and NGC 5548 over the same nights. Some stars in the fields of these galaxies were calibrated earlier by Doroshenko et al. (2005), and we used them as secondary standards for the stars around Mrk 290.

Figure 1. 14'×14' finding chart for the variable star 9 (marked by an open circle), the comparison star (No. 1), and control stars (No. 2, 3, 4, 6, 7). The Seyfert galaxy Mrk 290 is marked by two lines.

For accurate photometry it is important to search for possible variable stars among the reference star candidates. We used the χ^2 criterion to single out the variable stars.

Figure 2. The Lomb-Scargle periodogram (upper panel), Stellingwerf periodogram (middle panel), and the spectral window (bottom panel) obtained from the nightly average observational data on star 9 in the B band.

We computed the light curves for each selected star and calculated the χ^2 value per one degree of freedom as well as the confidence level for the $\chi^2 \leq 1$ hypothesis. If the star under consideration is not variable, χ^2 is close to 1 in each filter. For variable stars χ^2 should be significantly greater than 1. For star 9 χ^2 per dof was equal to 11.512, 20.174, 21.389, and 9.964 in the BVR_cI_c bands, respectively. So, star 9 turns out to be a variable with high confidence level. Stars 1, 2, 3, 4, 6, and 7 are not variable stars, as $\chi^2 \leq 1$. Star 5 is a possible variable star, since for this star χ^2 was equal to 2.552, 3.147, 3.015, and 1.666 in the B, V, R_c, I_c bands, respectively. Table 1 lists the BVR_cI_c magnitudes of stars 1-7. Stars 3, 4, 6, and 7 can be used as control stars in addition to star 2 inasmuch as they are not variables. Observations, processing, and photometric uncertainties were described in more detail by Doroshenko et al. (2005).

Table 1. BVR_cI_c photometry of stars in the field of Mrk 290

I	Star	В	$\mathrm{er.}B$	V	$\mathrm{er.}V$	R_c	$\operatorname{er.} R_c$	I_c	$\mathrm{er.}I_c$
l	1	14.926	0.008	14.078	0.015	13.600	0.009	13.188	0.011
	2	14.599	0.008	13.880	0.006	13.466	0.006	13.061	0.006
	3	15.616	0.010	15.075	0.008	14.731	0.007	14.431	0.007
	4	16.138	0.012	15.213	0.009	14.648	0.007	14.143	0.008
	5	14.514	0.009	13.461	0.008	12.836	0.007	12.328	0.006
	6	16.086	0.013	15.470	0.009	15.091	0.006	14.748	0.010
	7	16.094	0.012	15.454	0.010	15.059	0.006	14.675	0.008

Star 9 is listed as 1478-0314015, RA=15^h36^m22.56, D=+57°50′53″.9 (J2000.0), b=47.9 in the NOMAD1 catalog (Zacharias et al., 2004). The reddening map by Schlegel et al. (1998) implies that $E(B - V) \leq 0^{m}013$. Table 2 gives the photometry of star 9 in the Johnson-Cousins BVR_cI_c system. Figure 3 shows the observed light curves of star 9 and control star 2 (two upper plots).

The Lomb-Scargle periodogram analysis of the nightly average BVR_cI_c light curves (Fig. 2) revealed high peaks at the frequencies f=0.342, 0.659, 1.659, 2.659, etc. c/d. The most significant frequency is f=1.659 c/d, although the frequency peak at f=0.659 c/d is only a little bit lower. The spectral window shows peaks at the frequencies f=1.001, 2.001, 3.001, etc. c/d. If the actual period corresponds to f=1.659 c/d, the peaks with f=0.659 and 2.659 c/d can be considered as alias peaks due to resonance f=1.659 c/d with fw=1.001 c/d. However, if the actual frequency of variability is f=0.659 c/d, the resonance frequencies should be f=0.342 and f=1.659 c/d, respectively. Almost the same periods (Fig. 2) were revealed with the use of the Stellingwerf periodogram calculated by means of the software developed by Pelt (1992). The phased light curves with P=1.518 d (f=0.659 c/d) and P=0.603 d (f=1.659 c/d) are almost sinusoidal and have much in common (Fig. 3, two bottom plots). So, the true period is very difficult to determine. It is quite possible that the variable star belongs to short-period eclipsing binaries. In this case the orbital period is P=1.205 d, the hypothetic primary and secondary minima of this system have equal depths, and they are indistinguishable from each other in BVR_cI_c bands (see Fig. 4). The phase curve with P=1.518 d does not contradict the idea of a single fast-rotating spotted star.

Figure 3. Observed light curves for star 9 and control star 2 as well as phase curves of star 9 in the B band with the period P=1.518 d and P=0.603 d. Nightly average light curves and the points calculated from the sinusoidal model with P=0.603 d (open circles) are shown in the middle of the figure.

Figure 4. The nightly averaged observed light curve in B band (filled circles) and model fitting (open circles), and phase curves in the BVRI bands folded with the period P=1.205 d. Fluxes is in units 10^{-15} ergs cm⁻² s-1.

The mean V magnitude and color indices of star 9 are $V = 14^{\text{m}}758$, $B - V = 1^{\text{m}}245$, $V - R_c = 0^{\text{m}}835$, and $V - I_c = 1^{\text{m}}637$. The observed B - V color index is normal to the spectral K5 - K6 class. The variability amplitude derived from the average phase light curves slightly decreases from B to I: $\Delta B = 0^{\text{m}}106$, $\Delta V = 0^{\text{m}}098$, $\Delta R_c = 0^{\text{m}}078$, and $\Delta I_c = 0^{\text{m}}053$. Probably we observed a small blue flare (Fig. 5) with an amplitude of about $0^{\text{m}}1$ in B on July 30, 2007. This flare was not seen in the RI filters.

The observed dependence of the color indices on V (Fig. 6) can be comprehended in the framework of cold spots on star 9. When the brightness increases, the $(V - R_c)$ and $(V - I_c)$ color indices decrease. Such relationships were observed, in particular, in the spotted stars LQ Hya (Alekseev & Kozlova, 2002), in the star HBC 379 (Grankin 1998), and in V410 Tau (Petrov et al., 1994), and others. Such color changes are consistent with those seen in some RS CVn stars with spot activity, for example, in IN Com (Alekseev, Kozhevnikova, 2004).

The exact variability type is difficult to determine from only photometric data without reference to spectral data. Nevertheless, we found that this star belongs to the spectral class K5 - K6, its brightness varies with a period which is slightly greater than 1 day, the phase light curves are almost sinusoidal, and the variability amplitude is about $0^{\text{m}}1$. These results as well as the relationships between V and color indices and the possible presence of flares indicate that star 9 probably belongs to the class of fast-rotating spotted dwarf stars or to close/contact binaries with spot activities (W UMa or RS CVn type systems).

We wish to thank Dr. Katalin Oláh, Dr. Roald Gershberg, Dr. Konstantin Grankin, and the referee for useful discussions. This study was partially supported by the Russian Foundation for Basic Research (Grant No. 06-02-16843).

Figure 5. The flare on star 9 in B.

Figure 6. The relationships between the V magnitudes and color indices.
References:

Alekseev, I.Y., Kozhevnikova, A.V., 2004, Astrophysics, 47, 443

- Alekseev, I.Yu., Kozlova, O.V., 2002, Astron. Astrophys., 396, 203
- Doroshenko, V.T., Sergeev, S.G., Merkulova, N.I. et al., 2005, Astrophysics, 48, No 2, 156
- Grankin, K.N., 1998, Pis'ma Astron. Zh., 24, 54
- Pelt J., 1992, "Irregularly spaced data analysis User Manual", Helsinki Univ. Press, Helsinki
- Petrov, P.P., Shcherbakov, V.A. et al., 1994, Astron. Astrophys. Suppl. Ser., 107, 9
- Schlegel, D.J., Finkbeiner, D.P., Davis, M., 1998, Astrophys. J., 500, 525
- Zacharias, N., Monet, D.G., Levine, S.E. et al., 2004, American Astron. Soc. meeting, **205**, 48, 15

ERRATA FOR IBVS 5438, 5543, 5713

As Dr. Samus reported, the star erroneously labelled GSC 02850-01075 is really GSC 00285-01075.

The Editors

Number 5811

Konkoly Observatory Budapest 8 January 2008 *HU ISSN 0374 - 0676*

ELEMENTS FOR 10 RR LYRAE STARS

HÄUSSLER, K.¹; BERTHOLD, T.^{1,2}; KROLL, P.²

¹ Bruno-H.-Bürgel-Sternwarte, Töpelstr. 49, D-04746 Hartha, Germany

 2 Sternwarte Sonneberg, Sternwartestr
. 32, D-96515 Sonneberg, Germany

email: sternwartehartha@lycos.de, tb@4pisysteme.de, pk@4pisysteme.de

These stars were discovered and reported to be of RR Lyrae type by Boyce & Huruhata (1942), and Morgenroth (1934). Except for V864 Oph and V2312 Oph (see details noted in the remarks below), neither further observations nor ephemeris have been published until today. Photographic plates of a field centered at alpha Oph, taken with the Sonneberg Observatory 40-cm Astrographs during three intervals spread over the years from 1964 to 1994, were used to investigate the behaviour of these objects (see Table 1).

The given elements were obtained by means of least-squares solutions. Photographic amplitudes were derived with respect to magnitudes of the comparison stars given in Table 2. An extensive list holding the times of maxima derived can be retrieved as 5811-t3.txt, using the link in the HTML version of this paper. Individual data are available upon request.

Remarks:

V864 Oph

First elements were derived from Northern Sky Variability Survey data (NSVS 13682138, Max (hel) = J.D. 2451373.78 + 0^{d} 50969) by Wils et al. (2006). The initial epoch given in this paper was used for our period analysis.

V2312 Oph

First elements derived by Garrigos Sanchez (1996) could be established and refined. In addition to our observations, the CCD recorded maximum timing (J.D. hel. 2450241.467) published in his paper was included in this period analysis.

This research made use of the SIMBAD data base, operated by the CDS at Strasbourg, France.

References:

Boyce, E.H., Huruhata, M., 1942, Harvard Annals, 109, 19
Garrigos Sanchez, A., 1996, IAU Inform. Bull. Var. Stars, 4356
Morgenroth, O., 1934, Astron. Nachr., 252, 389
Wils, P., Lloyd, C., Bernhard, K., 2006, Mon. Not. R. Astron. Soc., 368, 1757

Figure 1. Light curve of V781 Oph

Figure 2. Light curve of V787 Oph

Figure 4. Light curve of V801 Oph

Figure 5. Light curve of V808 Oph

Figure 7. Light curve of V826 Oph

Figure 6. Light curve of V813 Oph

Figure 8. Light curve of V864 Oph

Figure 10. Light curve of NSV 9004

		Table 1. S	ummary of t	this pap	\mathbf{er}		
Star	Type	Epoch	Period	Max.	Min.	M - m	No. of
		2400000 +	(day)				Plates
V781 Oph	RRab	49488.525	0.6051615	$15.^{m}0$	$15.^{m}7$	$0^{p}_{.}15$	261
		± 7	± 7				
V787 Oph	RRab	49098.518	0.5703201	$15 \stackrel{\mathrm{m}}{.} 1$	$16^{\mathrm{m}}_{\cdot}3$	$0^{\mathrm{p}}_{\cdot}25$	258
		± 13	± 10				
V793 Oph	RRab	49154.488	0.5508803	$14^{\rm m}_{\cdot}2$	$15^{\mathrm{m}}_{\cdot}3$	$0^{\mathrm{p}}_{\cdot}21$	266
		± 8	± 6				
V801 Oph	RRab	49154.470	0.4396193	$14 \stackrel{\mathrm{m}}{\cdot} 0$	$15.^{\mathrm{m}}0$	$0^{\mathrm{p}}_{\cdot}18$	279
		± 7	± 6				
V808 Oph	RRab	49098.524	0.5674352	$14.^{\mathrm{m}}6$	$15^{\mathrm{m}}_{\cdot}3$	$0^{\mathrm{p}}_{\cdot}20$	190
		± 14	± 25				
V813 Oph	RRab	49214.384	0.4825801	$14^{\mathrm{m}}_{\cdot}5$	$15.^{\mathrm{m}}8$	$0^{\rm p}_{\cdot}23$	255
		± 6	± 5				
V826 Oph	RRab	49154.470	0.4987588	$14^{\rm m}_{\cdot}4$	$15.^{\mathrm{m}}6$	$0^{p}_{\cdot}22$	243
		± 11	± 8				
V864 Oph	RRab	51373.785	0.5096870	$13^{m}_{.}3$	$14^{\rm m}_{\cdot}4$	$0^{p}_{\cdot}20$	192
		± 11	± 9				
V2312 Oph	RRab	50241.467	0.6965889	$13^{\rm m}_{\cdot}6$	$14^{\rm m}_{\cdot}4$	$0^{p}_{\cdot}22$	290
		± 10	± 9				
NSV 9004	RRab	49482.488	0.4752510	$14.^{m}1$	$15.^{\mathrm{m}}7$	$0^{p}_{.}20$	256
		± 8	± 6				

Ta	able 2. Comparison s	tars ar	nd cross references	
	V781 Oph		V787 Oph	
	HV 10981		HV 10988	
	USNO 0975-09383928		USNO 0975-09419570	
Comp. No.	USNO	m^*	USNO	m^*
1	0975 - 09384928	$15.^{m}1$	0975 - 09421686	14.5
2	0975 - 09382102	$15.^{\mathrm{m}}5$	0975 - 09415442	$15^{\mathrm{m}}_{\cdot}5$
3	$0975 \hbox{-} 09385167$	15 ^m 9	0975 - 09418617	$15.^{\mathrm{m}}8$
4			0975 - 09419077	$16^{\mathrm{m}}_{\cdot}7$
	$V793 { m ~Oph}$		V801 Oph	
	$HV \ 10995$		HV 11004	
	USNO 0975-09461015		USNO 0975-09485291	
Comp. No.	USNO	m^*	USNO	m^*
1	0975-09461268	14.0	0975 - 09489563	$14 \cdot 1$
2	0975 - 09461784	$14 \cdot 2$	0975 - 09484358	14 ^m 5
3	$0975 \hbox{-} 09463250$	$15.^{\mathrm{m}}0$	0975 - 09486724	$14 \cdot 8$
4	$0975 \hbox{-} 09461116$	$15.^{\mathrm{m}}6$	0975 - 09484926	$15.^{\mathrm{m}}4$
	V808 Oph		V813 Oph	
	HV 11010		HV 11022	
	USNO 0975-09525734		USNO 0975-09563863	
Comp. No.	USNO	m^*	USNO	m^*
1	0975 - 09527020	$14.^{m}3$	0975 - 09565058	$14.^{\mathrm{m}}1$
2	0975 - 09519973	$14.^{\mathrm{m}}8$	0975 - 09555186	$14 \cdot 8$
3	0975 - 09520205	14.9	0975 - 09561877	$15 \stackrel{\mathrm{m}}{\cdot} 5$
4	$0975 \hbox{-} 09524016$	$15.^{\mathrm{m}}7$	0975 - 09564432	$16^{\mathrm{m}}_{\cdot}2$
	V826 Oph		V864 Oph	
	HV 11049		AN 72.1934	
	USNO 0975-09763780		USNO 0975-09046689	
Comp. No.	USNO	m^*	USNO	m^*
1	$0975 \hbox{-} 09767534$	$14.^{m}1$	0975 - 09042642	$13^{m}_{.}3$
2	0975 - 09766323	$14.^{\mathrm{m}}7$	0975 - 09043053	$13.^{\mathrm{m}}9$
3	0975 - 09761494	$15.^{\mathrm{m}}4$	0975 - 09039898	14.5
4	0975 - 09763558	$16.^{\mathrm{m}}0$		
	V2312 ~Oph		NSV 9004	
	HV 10972		HV 10958	
	USNO 0975-09350557		USNO 0975-09298413	
Comp. No.	USNO	m^*	USNO	m^*
1	0975 - 09351873	$13.^{m}2$	0975 - 09297760	$14^{m}5$
2	0975 - 09352592	$14.^{\mathrm{m}}0$	0975 - 09301834	$14 \cdot 8$
3	$0975 \hbox{-} 09351879$	$14.^{\mathrm{m}}4$	0975 - 09296368	$15.^{\mathrm{m}}5$
4			0975 - 09299654	$16 \cdot 4$

 * Magnitudes refer to the B values of the USNO–A2.0 catalogue

Number 5812

Konkoly Observatory Budapest 8 January 2008 *HU ISSN 0374 - 0676*

THE FIRST LIGHT CURVE ANALYSIS OF TWO OVERCONTACT BINARIES: EY Cas AND NO Vul

ZASCHE, P.¹; WOLF, M.¹; KOTKOVÁ, L.²

¹ Astronomical Institute, Faculty of Mathematics and Physics, Charles University Prague, CZ-180 00 Praha 8, V Holešovičkách 2, Czech Republic, e-mail: zasche@sirrah.troja.mff.cuni.cz

² Astronomical Institute, Academy of Sciences, CZ-251 65 Ondřejov, Czech Republic

Precise photometric observations of the two neglected and faint eclipsing binaries were carried out. All CCD measurements were obtained by the 65-cm telescope at the Ondřejov observatory, using Apogee AP-7 and Moravian Instruments[†] G-2 3200 ME CCD camera, only R filter was used. The observations were carried out from 2003 to 2007. New times of minima were also derived using the Kwee-van Woerden (1956) method, 4 and 3 for EY Cas and NO Vul, respectively (see Table 1.).

Table 1. New times of minima. Epochs and O - C values correspond to the linear ephemeris. N denotes the number of points, from which the minimum was computed.

Star	HJD	Error (d)	Epoch	O - C (d)	Ν
EY Cas	2453394.2190	0.0003	-0.5	0.0022	48
EY Cas	2453579.5457	0.0004	384.0	0.0030	46
EY Cas	2454000.3222	0.0001	1257.0	0.0006	77
EY Cas	2454027.5536	0.0001	1313.5	-0.0005	85
NO Vul	2453657.2381	0.0003	19718.5	0.0003	29
NO Vul	2453934.3847	0.0003	20466.0	-0.0001	41
NO Vul	2454364.2876	0.0002	21625.5	0.0007	106

EY Cas (= GSC 03660-00401, R.A.=00^h03^m23^s, Decl.=+57°44′54″, J2000.0, $V_{max} = 13.9$ mag) is a W UMa-type eclipsing binary system, with orbital period of about 0.48 days. The photometric variability of the star was discovered by C. Hoffmeister in 1936. Distance, spectral type as well as physical parameters of the components are known only with a low confidence level.

The PHOEBE programme (see e.g. Prša & Zwitter, 2005), based on the Wilson-Devinney algorithm (Wilson & Devinney, 1971), was used. The temperature of the secondary component was fixed at the value $T_2 = 6700$ K, according to the spectral type of F2 + F1.5 assumed by Svechnikov & Kuznetsova (1990). The results of the fit are presented in Table 2 and the light-curve with the theoretical fit is plotted in Fig. 1. The 3-D model of the system is in Fig. 2. Nevertheless, further observations are needed, spectroscopy in particular, to reveal the spectral types of the components and their respective masses.

[†]see http://ccd.mii.cz/

Figure 1. The R light curve of EY Cas, the solid curve stands for the model fit (with the parameters from Table 2), while the points represent the observed data.

One can see some distortion of the light curve near phase -0.15 and larger scatter near its maxima, which could be caused by the presence of spots, or by possible O'Connell effect. But these hypotheses could be confirmed only by another, more detailed analysis.

The period analysis of EY Cas was performed using 31 times of minima (listed in 5812-t1.txt, available through the IBVS website), the first one is from 1935. Four new minima were observed, see Table 1. The linear light elements suitable for the observations are the following

HJD Min I = 24 53394.4578 + 0^d.48199184 · E.

$$\pm 0.0009 \pm 0^{d}.00000023$$
 (1)

From a numerical point of view, there is a problem with fitting the temperature. The final fit remains nearly the same for a very wide range of values (6200 K $< T_1 < 8300$ K). In principle, the temperature could not be derived only on the basis of observations in one filter. The mass ratio q is also hardly derivable only from the photometry.

	EY Cas	NO Vul
Parameter	Va	lue
$i \; [m deg]$	77.61 ± 0.35	80.90 ± 0.32
$q_{ph} = M_2/M_1$	0.79 ± 0.10	0.71 ± 0.10
r_{1}/r_{2}	1.09	1.15
T_{1}/T_{2}	1.05	1.13
L_{1}/L_{2}	1.17 ± 0.11	1.78 ± 0.16
Ω	3.11 ± 0.20	3.08 ± 0.18
f	0.655	0.429

Table 2. The physical parameters of EY Cas and NO Vul.[†]

[†] T_i , r_i , and L_i denote the temperature, relative radius and luminosity for primary and secondary, respectively. f stands for the fill-out factor and Ω for the modified Kopal potential. The temperatures T_2 were fixed, see the text. The "Overcontact binary" mode was used for computing and the eccentricity was set to 0 (circular orbit). The limb-darkening coefficients were interpolated from van Hamme's tables (see van Hamme, 1993). The values of gravity brightening and bolometric albedo coefficients were set at their suggested values for convective atmospheres (see Lucy, 1968), i.e. $G_1 = G_2 = 0.32$, $A_1 = A_2 = 0.5$. Also the synchronous rotation was assumed for each star ($F_1 = F_2 = 1.0$). No third light was assumed: $l_3 = 0$.

The basic physical parameters (e.g. the individual masses) of the stars could not be derived only from the photometry. Therefore, detailed spectroscopic analysis is needed. Nevertheless, the results from the light-curve fit are in agreement with other analyses of similar overcontact systems. The high degree of the overcontactness f = 0.66 is comparable with other similar systems, such as GR Vir (f = 0.78, see Qian & Yang, 2004), or IK Per (f = 0.60, see Zhu et al., 2005).

Figure 2. The 3-D plots of EY Cas (left) and NO Vul (right) at the phase 0.25, primary is on the left.

NO Vul (R.A. = $19^{h}34^{m}38^{s}$, Decl.=+ $20^{\circ}37'14''$, $V_{max} = 12.83$ mag) is an eclipsing binary of W UMa type. The orbital period of NO Vul is about 0.37 days and the depth of the primary minimum is about 0.7 mag in R filter. Its photometric variability was discovered by Kalv & Leis (1973). However, the basic physical parameters of the system have not been derived so far. There is only one analysis of the period variations by Qian & Ma (2001).

The light curve was also analyzed by the PHOEBE code, the same fixed values were adopted as in the case of EY Cas. The light curve with its solution is plotted in Fig. 3 and the parameters are given in Table 1. From the spectral types F8 + F8.5 derived by Svechnikov & Kuznetsova (1990), we assumed the temperature $T_2 = 6100$ K (see e.g. Harmanec, 1988).

Figure 3. The R light curve of NO Vul, parameters of the fit are in Table 1.

Period analysis was done, using 108 times of minima, listed in 5812-t2.txt (available through the IBVS website). A few new times of minima were observed given in Table 1. The O-C diagram is plotted in Fig. 4, where the solid line represents the linear ephemeris, suitable for future observations,

HJD Min I = 24 46346.3049 +
$$0^{\circ}.37076516 \cdot E.$$
 (2)
± 0.0015 ± $0^{\circ}.00000018$

The previous period analysis (Qian & Ma, 2001), indicated quadratic term in the ephemeris, which describes the times of minima since 2001 (see the dash-dotted line in Fig. 4). Nevertheless, the recent times of minima deviate from this fit. Much better explanation of the period variation could be done using a light-time effect (see e.g. Mayer, 1990), this fit is plotted as a dashed line in Fig. 4. The period of such variation is about 64 years, with the semiamplitude of about 0.016 days and an eccentricity of 0.41. A predicted third body could have a minimum mass of about 0.36 M_{\odot}, corresponding to spectral type about M2 (according to Harmanec, 1988), and the contribution of the third light is only about 1%, which is undetectable in the present analysis. Further minimum observations in the upcoming years could prove or reject this hypothesis.

Figure 4. The O - C diagram of NO Vul, the dots denote the primaries, the circles the secondaries, small ones for visual and bigger ones for the CCD and photoelectric measurements, respectively. For the explanation of the lines, see the text.

Acknowledgements: This investigation was supported by the Grant Agency of the Czech Republic, grants No. 205/04/2063 and No. 205/06/0217. We also acknowledge the support from the Research Program MSMT 0021620860 of the Ministry of Education. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and of NASA's Astrophysics Data System Bibliographic Services.

References:

Harmanec, P., 1988, BAICz, 39, 329
Hoffmeister, C., 1936, AN, 259, 37
Kalv, P. & Leis, L., 1973, Astron. Tsirk, 793, 8
Kwee, K.K. & van Woerden, H., 1956, BAN, 12, 327
Lucy, L.B., 1968, ApJ, 151, 1123
Mayer, P., 1990, BAICz, 41, 231
Prša, A., & Zwitter, T. 2005, ApJ, 628, 426
Qian, S. & Ma, Y., 2001, PASP, 113, 754
Qian, S.-B. & Yang, Y.-G., 2004, AJ, 128, 2430
Svechnikov, M.A. & Kuznetsova, E.F., 1990, Approximate elements of eclipsing binaries, Izd-vo Ural'skogo universiteta, Sverdlovsk
van Hamme, W., 1993, AJ, 106, 2096
Wilson, R. E. & Devinney, E. J., 1971, ApJ, 166, 605

Zhu, L.-Y.; Qian, S.-B.; Soonthornthum, B. & Yang, Y.-G., 2005, AJ, 129, 2806

Number 5813

Konkoly Observatory Budapest 16 January 2008 *HU ISSN 0374 - 0676*

H α OBSERVATIONS OF ζ TAURI

POLLMANN, E.¹; RIVINIUS, TH.²

¹ Emil-Nolde-Str. 12, 51375 Germany

 2 ESO-Chile, Casilla 19001, Santiago de Chile

Be stars are well known to be variable on virtually all timescales, reaching from minutes to dozens of years. For the study of the latter, long term data collections as homogeneous as possible are necessary.

The professional astronomer, however, is often hampered in the study of intermediateto long-term time scale processes as in Be stars. The reasons are the observational practices usually employed at professional observatories, which typically are not suited for observing a bright object with execution times of a few minutes only about every other week for several seasons; as well as the funding timescales, making it hard to start the collection of a long-term database that does not promise a significant number of publications within the first few years.

On the other hand, the interpretation of time-limited observations with professional resources, such as interferometers, polarimeter, or high-resolution spectrographs, in almost all cases can profit from the knowledge of the disc state in the course of the long-term evolution.

The problems in long-term data acquisition for the professional astronomer, however, open a promising field for the dedicated amateur. Amateur spectrographs at relatively small telescopes of about 20 cm diameter, equipped with CCD-detectors meanwhile reach resolution powers well above 10 000 and and are sensitive enough to reach many of the brighter Be stars. This work describes a database worth of more than five years of observation of the Be star ζ Tau.

 ζ Tau is a well known frequently observed object. Observations of the H α emission line reach back many decades. This work amends those series by the results of H α -observations taken between late 2000 and early 2006, i.e. six full observing seasons. All observations were made with a 20 cm Schmidt-Cassegrain telescope. From Nov. 2000 to Apr. 2003, a slitless prism-spectrograph with a dispersion of 43 Å/mm was used ($R \approx 8000$), from Sep. 2003 to Apr. 2006 a slitless grating one with a dispersion of 27 Å/mm and $R \approx 14\,000$.

The spectra were normalized by hand-selecting a number of continuum points through out the spectrum from 6500 to 6700 Å and then applying a spline fit through those points. The wavelength calibration was derived using telluric features in the region of H α , reaching an accuracy of about 0.1Å on those features when compared to wavelengths derived with high resolution instruments (telluric wavelengths measured with UVES were kindly provided by R. Hanuschik, priv. comm.).

Figure 1. All H α profiles measure from late 2000 to early 2006. The vertical offset of the profiles is proportional to time and corresponds to 25 days per continuum unit. The lowermost spectra date from Nov. 1, 2000 (left), Sep. 9, 2002 (middle) and Aug. 23, 2004 (right), respectively.

The H α spectra obtained by EP will be published electronically together with this communication in the form of ASCII tables. (The files are available through the IBVS website as 5813-t1.txt and 5813-t2.txt.) The first column of each table is holding the wavelength, while the first row notes the Julian date (minus 2400000) at mid exposure.

Equivalent width. In the normalized and calibrated spectra, the H α equivalent width was measured by integrating the normalized spectrum in the range from 6520 to 6600 Å. Comparison of the data presented here with quasi-simultaneous spectra taken by Rivinius et al. (2006) confirm the scientific reliability of the present data, both in terms of profile shape (see Fig. 1 vs. Rivinius et al.) and equivalent width (see Figs. 2 and 3).

In theory, the measured equivalent width should be independent from dispersion. In practice, this is typically not the case, however: spectra with lower resolution, i.e. the ones with $43\text{\AA}/\text{mm}$, differ systematically from higher resolution data. In our observations, this can be seen from the available quasi-simultaneous observations with professional instruments. We attempt no correction of this effect, but rather point out its existence in order not to over-interpret the data.

In general, the accuracy of a mateur instruments for measuring equivalent widths currently is hardly better than about 5%.

To check the accuracy obtained, both for the equivalent width and the peak height ratio of the emission, a series of observations of standard stars was obtained in three nights, 8h worth of observations in total. For both quantities, the RMS-error of the individual measurements in a single night was below 3 %. No correction for the contamination due to telluric vapour lines to the total EW was attempted, as the effect is, with about 1 %, well below the measuring accuracy.

Fig. 2 shows the measurements of this work combined with various published values from about 1975 to 2006 to illustrate the longest variation time scale present in ζ Tau, while Fig. 3 shows a closeup centered on the data derived in this study. The EW currently is on a slow, but steady decline, similar to the one seen before 1990.

Peak height ratio. The H α -profile normally shows two emission peaks separated by a central absorption core. In ζ Tau, both peaks strengths vary in anti-phase respective to each other, so that the ratio of their violet to red heights, called V/R-ratio, cyclically changes from V > R to V < R and back. At times, however, the clear central absorption may weaken or even disappear, and the emission peaks then may have complicated appearance, split into sub-peaks and often called triple-peak profile. The origin of such triple-peak profiles is unclear. They generally appear at transitions from V < R to V > R, but not vice versa. In the observations reported here such triple-peak structures are seen from Dec. 2003 to Sept. 2004. The temporal evolution of the H α profile between 2000 and 2006 is shown in Fig. 1.

V/R-ratio have been measured in the spectra in which both peaks are apparent, and subjected to a formal period analysis using the time series tools introduced by Kaufer et al. (1996). Note that the following uncertainties are 1σ -errors. The first iteration reveals a V/R cycle time of 1471 ± 15 d, i.e. about 4.0 years (Fig. 4, left). While this is shorter than the 5 to 7 years in the list by Okazaki (1997) derived from 1960 to 1993, it is consistent with the 4.25 years cycle time given by Rivinius et al. (2006) for 1991 to 2003. Given that only a little more than one cycle is covered the main purpose of this exercise is to pre-whiten the data for the analysis of shorter variations.

The second iteration on the residuals, i.e. after removing the sine wave fit derived in the first step, reveals a 69.3 ± 0.2 d cycle (Fig. 4, right). This cycle is clearly present during

Figure 2. H α equivalent widths of ζ Tau since 1975. Data taken from the literature are plotted as open symbols: HEROS group (Rivinius et al., 2006, squares), Guo et al., 1995 (triangles), Fontaine et al., 1982 (plus), Slettebak & Reynolds, 1978 (crosses), Andrillat & Fehrenbach, 1982 (asterisks); data taken by various amateur observers as filled ones: Pollmann prism (filled triangle), Pollmann grating (filled square), Stober (filled circles), and Schanne (filled diamonds).

Figure 3. Enlargement of Fig. 2 (see there for symbols and data sources), showing the data presented in this work in greater detail, also for comparison between values taken with professional and amateur equipment.

Figure 4. H α V/R-ratio. Left: The measured values vs. Julian date (open symbols) and the sine wave with $\mathcal{P} = 1471$ d (plus signs). Right: The residuals of the left panel, folded with $\mathcal{P} = 69.3$ d and the respective sine fit. Shown are 1.4 cycles for clarification, i.e. 40% of the points are redundant.

the central part of the dataset, but it is not of constant amplitude. The variance seen in the right panel of Fig. 4 is well above the measuring uncertainty. In fact, looking at individual seasons, the 69.3 d cycle is not seen before JD=2452100, hardly visible until 53000, but then becoming very strong, and finally weakening again after JD=2453500.

The ephemeris of the residual V/R maximum is

 $2\,452\,996 + 69.3 \times E$

The cycle time of 69.3 days is about half of the orbital period of the system of 132.97 d (Harmanec, 1984), but a precise 1:2 ratio is well outside a 3σ uncertainty. As a check, sorting the data with the orbital period rather shows the properties of a scatter diagram than a meaningful phase curve.

Phase locking of the V/R ratio has been observed in a number of binaries. However, while Harmanec et al. (2002) attribute this to the property of the Roche lobe, e.g. for the case of 59 Cyg, Štefl et al. (2007, also Okazaki, priv. comm.) found in hydrodynamical simulations that a true phase lock will not happen for a density wave, usually thought to cause V/R variations. Rather, they attribute precise locks, as in 59 Cyg, to radiative effects (Maintz et al., 2005) which is not likely in ζ Tau, however. Instead of an exact tidal lock, the Štefl et al. mention that in eccentric binaries tidally induced disturbances may develop with a period slightly longer than the orbital one, and we may note that at least the double-wave period would qualify under this statement.

This small difference may also offer an explanation for the strongly variable amplitude: The orbital period, supposedly causing a tidal disturbance and the V/R variation cycle length as observed, would give rise to a long-term beating period in the excitation mechanism of about 9 years.

Discussion and Outlook. The data presented in this work extend the ζ Tau spectra shown by Rivinius et al., (2006, their Fig. A.4 in Appendix A). While their data cover the years 1991 to 2003, the data here cover 2000 to 2006, with the observations ongoing.

Long-term spectroscopic monitoring by dedicated amateurs can deliver important data for the professional community. For instance, one easily recognizes state of the V/R cycle due to the one-armed density wave, as well as maxima in equivalent width at 50150 and 52600, that do not coincide with the V/R cycle.

Figure 5. Strength of 69.3 d V/R-ratio cycles in individual data subsets.

The 69.3 d cycle in spectroscopy is another example of a phenomenon almost inaccessible to professional astronomers due to the observational timescales required, which on the other hand poses no problem to the dedicated amateur observer.

In the first few spectra of the 2006/2007 observing season, a sharp rise in equivalent width from about 18 to 26 Å is seen. At the same time, as the V/R ratio changes from V < R to V > R again, the emission has developed a triple-peak profile, entering a new cycle in its V/R variations.

Acknowledgements:

We are grateful to Petr Harmanec, the referee, who's detailed and critical comments lead to major extensions and improvements of this work.

References:

Andrillat, Y., Fehrenbach, C., 1982, A&AS, 48, 93

- Fontaine, G., Villeneuve, B., Landstreet, J. D., Taylor, R. H., 1982, ApJS, 49, 259
- Guo, Y., Huang, L., Hao, J., Cao, H., Guo, Z. & Guo, X., 1995, A&AS, 112, 201
- Harmanec, P., 1984, Bulletin of the Astronomical Institutes of Czechoslovakia, 35, 164

Harmanec, P. et al., 2002, A&A, 387, 580

Kaufer, A., Stahl, O., Wolf, B. et al., 1996, A&A 305, 887

Maintz, M., Rivinius, T., Stahl, O., Stefl, S. & Appenzeller, I., 2005, Publications of the Astronomical Institute of the ASCR, 93, 21

Okazaki, A, 1997, A&A, **318**, 548

Rivinius, Th., Stefl, S, Baade, D, 2006, A&A 459, 137

Slettebak, A., Reynolds, R. C., 1978, ApJS, 38, 205

Štefl, S., Okazaki, A. T., Rivinius, T. & Baade, D., 2007, ASP Conf. Series, 361, 274, Active OB-Stars: Laboratories for Stellar and Circumstellar Physics

Number 5814

Konkoly Observatory Budapest 26 January 2008 *HU ISSN 0374 - 0676*

TIMES OF MINIMA FOR NEGLECTED ECLIPSING BINARIES 2006–2007

DVORAK, S. W.

Rolling Hills Observatory, Clermont, FL USA; e-mail: sdvorak@rollinghillsobs.org

25cm catadioptric telescope at Rolling Hills Observatory (RHO)

Detector:	SBIG ST-9XE, Peltier cooling, Kodak KAF-0261 chip),
	$18'.5 \times 18'.5$ FOV, 512×512 pixels.	ļ

Method of data reduction:

Reduction of the CCD frames was done with sextractor and custom-written applications¹.

Method of minimum determination:

The times of minima were computed using the Kwee and van Woerden method as implemented in a custom-written C application.

Times of minima:						
Star name	Time of min.	Error	Type	Filter	Rem.	
	${ m HJD}~2400000+$					
CN And	54425.5629	0.0001	II	V		
DS And	54424.7131	0.0001	Ι	V		
LO And	54439.5544	0.0004	Ι	V		
AC Boo	54197.8699	0.0001	Ι	V		
FI Boo	53885.6150	0.0002	Ι	V		
AO Cam	53742.5213	0.0002	Ι	V		
TX Cnc	53776.5720	0.0001	Ι	V		
BI CVn	53883.6162	0.0002	Ι	V		
DF CVn	53882.6544	0.0001	Ι	V		
MT Cas	53767.5305	0.0001	Ι	V		
V523 Cas	54441.6632	0.0001	Ι	V		
EK Com	54138.9270	0.0001	Ι	V		
LP Com	53811.7679	0.0003	II	V		
	54149.7013	0.0002	II	V		

¹Sextractor is written by Emmanuel Bertin and is available from http://terapix.iap.fr

Times of minima:						
Star name	Time of min.	Error	Type	Filter	Rem.	
	HJD 2400000+					
GM Dra	53892.6388	0.0003	Ι	V		
AA Eri	53782.5389	0.0002	Ι	V		
BD Gem	54413.8433	0.0001	Ι	V		
QW Gem	54454.8445	0.0001	Ι	V		
V387 Her	53795.8946	0.0001	II	V		
EM Lac	54440.5584	0.0001	Ι	V		
PP Lac	54422.5770	0.0001	Ι	V		
AP Leo	54219.6596	0.0001	II	V		
DU Leo	53840.5874	0.0001	Ι	V		
RT LMi	54152.6574	0.0001	Ι	V		
UU Lyn	54166.6857	0.0002	II	V		
V714 Mon	53780.5293	0.0001	Ι	V		
FL Ori	54451.6986	0.0001	Ι	V		
BB Peg	54444.5506	0.0001	Ι	V		
$\operatorname{BG}\operatorname{Peg}$	54001.6770	0.0003	Ι	V		
DI Peg	54436.5670	0.0001	Ι	V		
DZ Psc	54415.6735	0.0001	Ι	V		
AS Ser	53893.7080	0.0001	Ι	V		
OU Ser	53840.8570	0.0004	Ι	V		
AH Tau	54145.5677	0.0002	II	V		
CT Tau	54415.8555	0.0001	Ι	V		
WY Tau	54172.6073	0.0001	Ι	V		
VZ Tri	54140.5376	0.0001	Ι	V		
V781 Tau	54409.8378	0.0001	Ι	V		
AA UMa	54159.5805	0.0001	Ι	V		
AW UMa	53868.6366	0.0001	II?	V		
BM UMa	53744.9418	0.0002	Ι	V		
AZ Vir	54121.8779	0.0001	II	V		
HN UMa	53874.6271	0.0003	Ι	V		
HW Vir	53773.9324	0.0001	Ι	V		
	53861.5886	0.0001	Ι	V		

Reference:

Kwee, K. K. & van Woerden, H., 1956, $BAN,\, {\bf 12},\, 327$

Number 5815

Konkoly Observatory Budapest 30 January 2008 *HU ISSN 0374 - 0676*

OUTBURST OF A WZ Sge-TYPE DWARF NOVA, AL Com IN 2007

UEMURA, M.¹; ARAI, A.²; SASADA, M.²; SCHMEER, P.³; MILLER, I.⁴; OHSUGI, T.^{1,2}; YAMASHITA, T.¹; KAWABATA, K. S.¹; ISOGAI, M.¹; SATO, S.⁵; KINO, M.⁵

¹ Astrophysical Science Center, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan. e-mail: uemuram@hiroshima-u.ac.jp

 2 Department of Physical Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan

³ Bischmisheim, Am Probstbaum 10, 66132 Saarbrücken, Germany

 4 Furzehill House, Ilston, Swansea, South Wales, SA2 7LE, UK

⁵ Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan

AL Com is a WZ Sge-type dwarf nova, which is a subclass of dwarf novae characterized by very long recurrence times of outbursts. In the case of AL Com, outbursts were observed in 1892, 1941, 1961, 1965, 1974, 1975 (Bertola, 1964; Richter, 1992), 1976, 1995 (Howell et al., 1996; Kato et al., 1996; Patterson et al., 1996; Nogami et al., 1997), and 2001 (Ishioka et al., 2002). Superhumps were detected for the first time in 1995, and again in 2001. The 1961, 1965, and 1975 outbursts also lasted more than 30 days, which were probably superoutbursts (Richter, 1992). The light curve of its superoutbursts is characterized by a "dip" which suddenly interrupts a plateau phase of the superoutbursts (Bertola, 1964; Richter, 1992; Howell et al., 1996; Ishioka et al., 2002). After the dip, AL Com experienced a rebrightening. Several types of rebrightening phenomena have been observed in WZ Sge stars just after main superoutbursts (Richter, 1992; Kato et al., 2004; Uemura et al. 2007). The mechanism of them and the origin of their diversity are poorly understood. The rebrightening light curve of AL Com is characterized by a long plateau lasting more than 10 days.

Here, we report a new outburst of AL Com in October—November 2007. We performed optical and near-infrared photometry at 3 observatories. Details of our observational equipments are shown in Table 1. Using the standard procedure of image reduction and aperture photometry, we obtained magnitudes of AL Com and comparison stars from our images. As the optical comparison star we used a neighbor star located at $12^{h}32^{m}10^{\circ}04$, $+14^{\circ}20'15''.3$ with the AAVSO V-band magnitude (V = 13.509, a star labeled as "AUID 000-BBS-916"¹) for the images obtained at Higashi-Hiroshima and Ilston. For the infrared data obtained at Higashi-Hiroshima we used the same comparison star with J-band magnitude from the 2MASS catalog (J = 12.032, 2MASS 12321003+1420153 ²). For the optical data obtained at Iowa, we used a comparison star located at $12^{h}32^{m}05^{\circ}.30$ $+14^{\circ}23'34''.0$ with the R_{c} -band magnitude presented in Skiff (2007) ($R_{c} = 13.09$, labeled as "NGC 4501 11").

¹http://www.aavso.org/

²http://www.ipac.caltech.edu/2mass/

Figure 1 shows the optical light curve of the outburst. While our observations are rather sparse due to a bad seasonal condition, the feature of the light curve is reminiscent of the past superoutbursts in 1995 and 2001; a main superoutburst until JD 2454405 and a subsequent rebrightening phase until about JD 2454425. We, hence, propose that this outburst is a superoutburst. On the basis of the latest 3 superoutbursts, the supercycle of AL Com is calculated to be ~ 6 yr. This is the shortest among WZ Sge stars (Kato et al., 2004), while the stability of the cycle should be checked by a long monitoring in the future.

A noteworthy feature of the 2007 superoutburst is the behavior during the rebrightening phase. As can be seen in Figure 1, the magnitude apparently oscillates in a range of V = 16.2—15.2 mag between JD 2454410 and 2454421. A clear short flare was, furthermore, observed on JD 2454425, just before the final fading stage. These large amplitude variations were not seen during the past rebrightenings of AL Com, in which the object exhibited only low amplitude (~ 0.1 mag) superhumps (Nogami et al., 1997). The lower panel of Figure 1 presents the V - J color variation. The color became bluer when the object was brighter. This is a typical behavior of dwarf nova outbursts, suggesting an appearance and disappearance of a hot, optically-thick accretion disk. We note that the V - J color is atypically red during the rebrightening phase, compared with typical colors at the maximum of dwarf nova outbursts ($V - J \sim 0$).

In order to find possible superhumps, we performed time-series observations during the rebrightening phase. The light curves are shown in Figure 2. The figure contains 4 sets of light curves, in each the left panel includes all observations and the right panel is a phase-averaged light curve using the superhump period of 0.05722 d (Kato et al., 1995). As can be seen in these figures, we cannot find significant periodic variation having amplitudes larger than $\sim 0.1 \text{ mag}$. The observed large oscillation is, hence, not attributed to superhumps. In conjunction with the color behavior, we conclude that the apparent oscillation is a sign of repetitive short rebrightenings with a cycle of 1—2 days, as observed in WZ Sge (Patterson et al., 2002).

As mentioned above, it is unclear what determines the rebrightening types in WZ Sge stars. In this paper, we revealed that AL Com exhibits not only long plateau type rebrightenings, but also short repetitive ones. This is the second case that different rebrightening behaviors were unambiguously observed in a WZ Sge star; WZ Sge itself exhibited no major rebrightening in the 1946 superoutburst, while short repetitive rebrightenings were observed in the 1978 and 2001 superoutbursts (Patterson et al., 1981). EG Cnc also experienced a hint of different types of rebrightenings (Kato et al., 2004). These facts indicate that the type of rebrightenings depends not directly on the physical parameters of the binaries and their components, for example, mass ratios or the strength of magnetic fields, but on the mass-accretion process of the outburst.

Site	Telescope	Camera	Filter	Exposure time (sec)
Higashi-Hiroshima	1.5-m (KANATA)	TRISPEC	V, J	63(V), 60(J)
Ilston	35-cm	SXVF-H16	no filter	30
Iowa	37-cm (Rigel)	FLI SITe-003	no filter	25

 Table 1. Details of instruments used for our observations.

Figure 1. Upper panel: Light curve of the 2007 superoutburst of AL Com. The abscissa and ordinate denote the time in JD and the magnitude, respectively. The filled circles are V-magnitudes obtained at Higashi-Hiroshima. The open triangles and squares indicate unfiltered CCD observation at Ilston and Iowa. The magnitudes of Ilston's data were calculated by adding the V-magnitude of the comparison star (V = 13.509) to its differential magnitudes. Those of Iowa's data were calculated by adding the R_c -magnitude of the comparison ($R_c = 13.09$) to its differential magnitudes. Errors of the magnitudes are indicated as vertical bars, while most of errors are smaller than the symbol size. Lower panel: Color variations. The ordinate denotes V - J.

Figure 2. Time-series light curves during the rebrightening phase. Observations were performed on JD 2454415 (upper left), 2454416 (upper right), 2454418 (lower left), and 2454419 (lower right). Each panel contains two light curves; the left ones show all data points and the right ones are phase-averaged light curves folded by the superhump period of 0.05722 d (Kato, et al., 1995).

We appreciate useful comments and discussions about this paper by T. Kato. This work was partly supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (17684004, 17340054, 18840032, 19740104).

References:

- Bertola, F., 1964, Annales d'Astrophysique, 27, 298
- Howell, S.B., Deyoung, J., Mattei, J.A., Foster, G., Szkody, P. & Cannizzo, J.K., 1996, *AJ*, **111**, 2367
- Ishioka, R., Uemura, M., Matsumoto, K., Ohashi, H., Kato, T., Masi, G., Novak, R. et al., 2002, A&A, 381, L41
- Kato, T., Nogami, D., Baba, H., Matsumoto, K., Arimoto, J., Tanabe, K., Ishikawa, K., 1996, *PASJ*, **48**, L21
- Kato, T., Nogami, D., Matsumoto, K., Baba, H., 2004, PASJ, 56, S109
- Nogami, D., Kato, T., Baba, H., Matsumoto, K., Arimoto, J., Tanabe, K., Ishikawa, K., 1997, ApJ, 490, 840
- Patterson, J., McGraw, J.T., Coleman, L., & Africano, J. L., 1981, ApJ, 248, 1067
- Patterson, J., Augusteijn, T., Harvey, D.A., Skillman, D.R., Abbott, T.M.C., Thorstensen, J., 1996, PASP, 108, 748
- Patterson, J., Masi, G., Richmond, M.W., Martin, B., Beshore, E., Skillman, D.R., Kemp, J., Vanmunster, T., 2002, PASP, 114, 721
- Richter, G.A., 1992, ASP Conf. Ser., 29, 12, Vina del Mar Workshop on Cataclysmic Variable Stars, ed. by Nikolaus Vogt, (ASP: San Francisco)
- Skiff, B.A., 2007, VizieR On-line Data Catalog: II/277
- Uemura, M., Arai, A., Krajci, T., Pavlenko, E., Shugarov, S.Yu., Katysheva, N.A., Goranskij, V.P., Maehara, H. et al., 2008, PASJ, accepted (arXiv:0711.2831)

Number 5816

Konkoly Observatory Budapest 4 February 2008 *HU ISSN 0374 - 0676*

DOES THE PERIOD OF BE LYNCIS REALLY VARY?

SZAKÁTS, R.; SZABÓ, GY. M.; SZATMÁRY, K.

¹ Dept. Experimental Physics & Astronomical Obs., Univ. of Szeged, 6720 Szeged Dóm tér 9, Hungary e-mail: szgy@titan.physx.u-szeged.hu

The first period variation analyses (Liu et al., 1991, Tang et al., 1992, Liu & Jiang., 1994) of the HADS star BE Lyncis ($m_V \approx 8.8 \text{ mag}$, P = 0.09586954) indicated a parabolic fit of the O - C. Kiss & Szatmáry (1995) suggested the presence of period variations possibly due to a companion. Derekas et al. (2003, D03) re-analysed the available data, and disproved the light-time hypothesis. They also noted that the scatter of the points in the O - C diagram was slightly higher than the accuracy of individual data points, which might refer to microvariability. However, both Rodríguez et al. (1996) and D03 failed to detect additional frequency components. Later, Fu & Yiang (2005) revived the binary hypothesis again. The purpose of this paper is to test whether there is cyclic phase modulation in the light curve of BE Lyn that may refer to a light-time effect. We present 6 times of maxima from the period between 2003–2006, and re-analyse the available light curve data with phase shift analysis (e.g. Jurcsik et al., 2001) using template curve fitting.

Date	HJD	length	number	instrument	filter
	(first point)	(hour)	of points		
2003.12.08	2452981.51	4.03	174	$1.0 \mathrm{RCC}$	V
2004.04.22	2453119.47	2.98	281	$1.0 \mathrm{RCC}$	V
2006.10.18	2454027.47	4.97	567	0.4 N	V
2006.10.19	2454028.42	5.90	668	0.4 N	V
2006.10.27	2454036.44	5.74	568	0.4 N	V
2006.10.30	2454039.42	6.47	833	0.4 N	V

Table 1: The log of new observations

We took new CCD observations of BE Lyn from two different sites. First, we used the the 1-meter RCC telescope of Konkoly Observatory, located at the Piszkéstető Mountain Station (1.0 RCC). The typical integration time was 8 s for Johnson V filter. In October, 2006 further observations were made with the 40 cm Newton telescope (0.4 N) of the University of Szeged, Dept. of Experimental Physics and Astronomical Observatory. Instrumental magnitudes were taken with Johnson V filter and with typically 10 seconds exposures. The log of observations is listed in Table 1, the light curves are shown in Fig. 1. The light curves are published electronically on the IBVS site (as 5816-t2.txt).

Figure 1. New light curves of BE Lyncis

In addition to the new observations, we collected light curves obtained between 1987 and 2007 from the literature. A template curve was determined by a 5-th order Fourier fit to all observations,

$$f(t) = a_0 + A \sum_{k=1}^{5} (a_k \sin k\phi + b_k \cos k\phi),$$

where A is the relative amplitude, a_0 is the mean brightness and $\phi = 2\pi t/P$. The resulted coefficients defining the template curve are: $a_0 = 8.8128$, $a_1 = 0.0740$, $b_1 = -0.1578$, $a_2 = 0.0523$, $b_2 = 0.0151$, $a_3 = 0$, $b_3 = 0.0207$, $a_4 = -0.0097$, $b_4 = 0$, $a_5 = -0.0034$, $b_5 = -0.0041$. If A = 1, this template curve has a total amplitude of 0.395 mag. The template curve was then fitted to the individual observing runs allowing a slight global phase shift. Because the observed light curve varied slightly, the A amplitude parameter and the a_0 mean brightness was also fitted as a free parameter. The time of maximum of the best-fit model light curve can be similarly evaluated as the O - C, using calculated moments of maxima as $C = 2449749.4651 + 0.09586952 \cdot E$. We determined a refined period as $P = 0.09586952 \pm 0.00000003$ at $3-\sigma$ confidence level.

Photometric data were available for us from Oja, 1987; Rodríguez et al., 1990, Kiss & Szatmáry, 1995; D03 and the measurements published here. We show the O - C diagram of maxima for all published data in the upper panel of Fig. 2. The lower panel shows the phase shift diagram (O - C of the fitted template curves) from the available photometries suitable for re-analysis (for comparison, these points are highlighted with filled circles in the upper panel). The errors were calculated from the correlation matrices of the parameters.

All new and re-determined times of maxima and amplitudes are available at the IBVS

site (as 5816-t3.txt). This table also includes the moments of maxima from the archive time series even if the data were not available for the present analysis, in this case the appropriate columns are vacant.

Figure 2. Upper panel: the O - C of BE Lyn from times of maxima. All published data are plotted, filled circles show photometries involved into phase shift analysis. Lower panel: The phase shift diagram of BE Lyncis. Note that the O - C axis has half scale as in the upper panel.

The re-determined times of maxima show only little variation, all data points are practically 0 within some 10 seconds accuracy. This strongly suggests that there is no variation in the global phase of the light curves. On the other hand, we confirm that the scatter of the classical O - C diagram is too high to be a single artefact (as also noted by D03). Thus, we suggest that the phase of the maximum brightness varies slightly, leading to the observed behaviour of the O - C of light maxima.

Amplitude variations are present in the data set with a range of about 0.03 mag (Fig. 3), as first noted by Rodríguez et al. (1996). We revisited the nature of the amplitude variation using Fourier-analysis, and we confirm that it is not periodic. The majority of the observed amplitudes is between 0.375 and 0.415 mag. This may be caused either by the different instrumental systems or simply by the extinction corrections, which lacks in some cases.

The correlated variation of the light curve shape and the amplitude is a known property of the Blazhko RR Lyrae stars (Jurcsik et al., 2005). The suspected variation of the amplitude and the light curve shape of BE Lyncis might suggest that they also vary in

Figure 3. The variation of the total amplitude of BE Lyncis from template fitting.

a correlated way. To test this in BE Lyn, we plotted the phase of the maximum vs. the amplitude, and we found them to be uncorrelated.

Acknowledgements The research was supported by the Hungarian OTKA Grant T042509. GyMSz was supported by the Bolyai János Research Fellowship of the Hungarian Academy of Sciences. The telescope time at the Konkoly Observatory is acknowledged.

References:

Derekas, A., Kiss, L.L., Székely, P., Alfaro, E.J., et al., 2003, A&A, 402, 733

- Fu, J.N., Jiang, S.Y., 2005, ASP Conf. Ser., 335, 293
- Hübscher, J., 2005, IBVS, No. 5643
- Hübscher, J., 2007, IBVS, No. 5802
- Hübscher, J., Paschke, A., Walter, F., 2005a, IBVS, No. 5657
- Hübscher, J., Lange, Th., Paschke, A., Vohla, F., Walter, F., 2005b, *BAV Mitteilungen*, Nr. 174
- Hübscher, J., Paschke, A., Walter, F., 2006, IBVS, No. 5731
- Jurcsik, J., Clement, C., Geyer, E. H., Domsa, I., 2001, AJ, 121, 951
- Jurcsik, J., Sódor, Á., Váradi, M., et al., 2005, A&A, 430, 1049
- Kiss, L.L., Szatmáry, K., 1995, *IBVS*, No. 4166
- Klingenberg, G., Dworak, S.W., Robertson, C.W., 2006, IBVS, No. 5701
- Liu, Y., Jiang, S., Cao, M., 1991, IBVS, No. 3607
- Liu, Zh., Jiang, S., 1994, IBVS, No. 4077
- Oja, T., 1987, A&A, 184, 215
- Rodríguez, E., López de Coca, P., Rolland, A., Garrido, R., 1990, Rev. Mex. Astron. Astrofis., 20, 37
- Rodríguez, E., López de Coca, P., Martín, S., 1996, A&A, 307, 539
- Tang, Q., Yang, D., Jiang, S., 1992, IBVS, No. 3771
- Wunder, E., Wieck, M., Garzarolli, M., 1992, IBVS, No. 3791

Number 5817

Konkoly Observatory Budapest 7 March 2008 *HU ISSN 0374 - 0676*

VARIABLE STAR DESIGNATIONS FOR EXTREME HELIUM STARS

JEFFERY, C. SIMON

Armagh Observatory, College Hill, Armagh BT61 9DG, N. Ireland, UK

Variability in hydrogen-deficient Bp supergiants was first established in $BD+13^{\circ}3224 = V652$ Her and HD 160641 = V2076 Oph by Landolt (1975). Reports of variability in other hydrogen-deficient Bp supergiants followed. Amongst these was the detection of small-amplitude variations in HD 168476 = PV Tel by Walker & Hill (1985). After establishing that several such stars were variable, the GCVS identified a new class with PV Tel as the prototype and a definition: "a helium supergiant Bp star with weak hydrogen lines and enhanced lines of He and C. They pulsate with periods of approximately 0.1 to 1 days, or vary in brightness with an amplitude of 0.1 mag in V during a time interval of about a year." (Kholopov et al., 1985–88). The GCVS contains twelve confirmed PV Tel variables, three unconfirmed PV Tel variables and V652 Her, which "resembles PV Tel type stars but is a helium rich subdwarf."

The PV Tel designation is useful because it identifies A- and B-type hydrogen-deficient stars which are also variable. It presents problems because it misrepresents the types of variability observed. We propose a revision of the PV Tel designation.

Why should the designation be changed? First, observations of the helium-rich Bp supergiant PV Tel (Walker & Hill, 1985) showed evidence for light and radial velocity changes over intervals of the order of a year. There is no doubt that the star is variable. However the Walker & Hill data are also consistent with variability on shorter timescales. Subsequent observations have shown PV Tel to vary quasi-periodically with an amplitude of about 0.1 mag on a timescale of 8 - 10 days (Jones et al., 1989; Lawson et al., 1993). Hence PV Tel is not a PV Tel variable – according to the definition.

Second, the inclusion of periods of approximately 0.1 to 1 d followed the detection of variability in V652 Her (P=0.108d, Landolt, 1975), V2076 Oph 0.7 - 1.1 d (Landolt, 1975; Lynas-Gray et al., 1987) and BD+10°2179 = 0.16 d (Bartolini et al., 1982). The light curves of V652 Her and V2076 Oph are easily distinguished from one another, the former is strictly regular, the latter is either multiperiodic, quasiperiodic or irregular. Which one is not yet clear. BD+10°2179 was shown to be non-variable (Hill et al., 1984; Grauer et al., 1984). Hence, simply changing the definition of the PV Tel class (*e.g.* by extending the period range) fails to use available information. A corollary would be the need for two classes of pulsating subdwarf B star, namely EC14026=V361 Hya and PG1716=V1093 Her variables, with periods of ~ 100 s and ~ 3000 s, respectively.

V*	Other	P[d]		Light curve
PVTELI				
${ m FQ}{ m Aqr}$	$BD+1^{\circ}4381$	19 - 22		Jeffery & Malaney, 1985
$\operatorname{NO}\operatorname{Ser}$	$BD - 1^{\circ}3438$	5 - 8		Jeffery et al., 1985
$\mathrm{PV}\mathrm{Tel}$	$\mathrm{HD}\:168476$	8 - 10		Walker & Hill, 1985; Jones et al., 1989
m V354Nor	$CPD-48^{\circ}7730,$	10 - 15		Lawson et al., 1993
	=LSS 3378			
$V2244\mathrm{Oph}$	$LSIV - 1^{\circ}2$	10 - 11		Morrison, 1987 ; Jones et al., 1989
m V4732Sgr	$LSIV - 14^{\circ}109$	~ 25		Lawson et al., 1993
V1920 Cyg	$HD 225642, = LS II + 33^{\circ}5$	3 - 4		Morrison & Willingale, 1987
	$\mathrm{LSS}4357$?		Lawson & Kilkenny, 1998
	$CoD-46^{\circ}11775,$ =LSE 78	?		Lawson & Kilkenny, 1998
${ m UpsSgr}$	HD 181616	~ 21	SB	Malcom & Bell, 1986
KS Per	$\mathrm{HD}30353$	~ 30	SB	Osawa et al., 1963; Morrison & Will- ingale, 1987
V426 Car	$CPD - 58^{\circ}2721,$ =LSS 1922	~ 20	SB	Morrison et al., 1987
m V1037Sco	HD 320156, -I SS 4300	15-20	SB	Jones et al., 1989; Frame et al., 1995
PV TEL II	-155 4300			
V2076 Oph	HD 160641	0.7 - 1.1		Landolt, 1975; Lynas-Gray et al., 1987; Wright et al., 2005
$\rm V2205Oph$	$BD-9^{\circ}4395$	3-9		Jeffery et al., 1985, Jeffery & Heber, 1992
$V5541\mathrm{Sgr}$	$\mathrm{LSS}5121$?		Lawson & Kilkenny, 1998; Woolf et al., 2001
BX CIR				2001
V652 Hor	BD±13°3994	0.1		Landolt 1975
BX Cir	LSS 3184	0.1		Kilkenny & Koen 1995
		0.1		Kirkenny & Roen, 1999
(V821 Con)	шg НD 194449			Loffory & Lynna Cray 1000
(V021Cen)	$RD \pm 10^{\circ}2170$	—		Hill of al 1084: Crouor of al 1084
(DIA LEO)	DD + 10 2179 HD 144041	_		Inn et al., 1904, Grauer et al., 1904 Joffery & Hill 1006
MVSor	11D 144941	_	BCB	De Marco et al 2002
DY Cen		—	RCB	De Marco et al., 2002
not known				
	LS IV+6°2 LSS 99 BD+37°442 BD+37°1977 LSE 153 LSE 250			Lawson & Kilkenny, 1998
	LSE 259 LSE 263			

Table 1: Types of light variation in hydrogen-deficient supergiants.

Proposed variability classes. The variability types exhibited by helium-rich Bp supergiants (referring to luminosity class, since these are all low-mass stars) can be quite clearly divided into sub-types. For continuity, we propose to preserve the PV TEL moniker for two of these, simply adding the principal spectral type for each group:

PV TEL I: Hydrogen-deficient A or late-B supergiants showing low-amplitude quasiperiodic light variations on a timescale of 5 - 30 days; radial velocity variations are also seen.

Theoretically, these variations are interpreted as due to radial pulsations driven by strange-mode instability (Saio & Jeffery, 1988). The prototype FQ Aqr = $BD+1^{\circ}4381$ (Jeffery & Malaney 1985) is the coolest EHe, other recognised members of the class include NO Ser, V354 Nor, V2244 Oph, V4732 Sgr, V1920 Cyg, up to the hottest PV Tel = HD 168476 itself. LSE 78 and LSS 4357 were reported variable by (Lawson & Kilkenny, 1998).

This proposed class definition also includes the hydrogen-deficient binaries v Sgr, KS Per, V426 Car and V1037 Sco (Table 1). These single-lined spectroscopic binaries are easily distinguished from EHes by other means. However, all show low-amplitude light variations in the 15 – 30 days range.

PV TEL II: Hydrogen-deficient O or early-B supergiants showing low-amplitude quasiperiodic light variations on a timescale of 0.5 - 5 days; radial velocity and line-profile variations are also seen.

Theoretically, these variations are interpreted as non-radial g-mode pulsations driven by strange-mode instability (Saio & Jeffery, 1988), since "periods" are much longer than the dynamical timescales in these stars. The prototype V2076 Oph = HD 160641 (Lynas-Gray et al., 1987) is the hottest EHe, other members of the class are V5541 Sgr (Lawson & Kilkenny, 1998; Woolf et al., 2001) and V2205 Oph = BD-9°4395 (Jeffery et al., 1985).

The third sub-type is quite distinct, and its designation should reflect this:

BX CIR: Hydrogen-deficient B stars showing low-amplitude variations in light (0.1 mag in V) and radial velocity with a unique and regular period of a few hours.

Theoretically, we ascribe the variation to radial pulsations driven by the κ mechanism through Z-bump instability (Saio, 1993). The class comprises V652 Her and BX Cir. Unlike the PV TEL variables described above, the pulsations are so regular that both stars can be used as clocks (Kilkenny et al., 2005).

V652 Her was originally classified as a helium-rich subdwarf; in fact its gravity is lower than that of the main-sequence (Jeffery et al., 2001), so it is a helium-rich Bp giant, with a well-defined period (as well as \dot{P} and \ddot{P} , Kilkenny et al., 1982, 1984, 1996) and an amplitude of 0.1 mag.

A minority of EHes are established as *not* varying on short timescales, including $BD+10^{\circ}2179$ (=DN Leo), HD 124448 (=V821 Cen) and the metal-poor HD144941 (Grauer et al., 1984; Hill et al., 1984; Jeffery & Lynas-Gray, 1990; Jeffery & Hill, 1996). These stars lie below the instability boundary for the appropriate metallicity (Fig. 1) (Jeffery & Saio, 1999). Variability in LS IV+6°2 and LSS 99 has not been confirmed. The hot R Coronae Borealis (RCB) stars DY Cen and MV Sgr strongly resemble EHe stars LSE 78 and HD 124448 respectively (Jeffery & Heber, 1993; Jeffery et al., 1988). They showed strong RCB-like variability in the past, but are not currently known to vary on short timescales (De Marco et al., 2002).

Table 1 summarises the principal variability characteristics for all known EHe stars. Approximate timescales P are given for PV TEL variables, but the term is used loosely. Major references are given for the definition of the light curve types and the estimate of periods. The proposed classes are sensible for several reasons. They can be simply established from the timescale, light curve and amplitude of the variation and from the spectral class of the variable (which was already required for the PV TEL classification). Figure 1 shows the $log \ g - log \ T_{\rm eff}$ diagram for extreme helium stars, including the position of the Eddington limit (assuming Thomson scattering: dashed) and the loci of stars with given luminosity-to-mass ratios (solar units: dotted). Stars above the boundaries shown for metallicities Z = 0.004, 0.01, 0.03 (dot-dash) are predicted to be unstable to pulsations (Jeffery & Saio, 1999). Ellipses (coloured in electronic version) identify three groups of pulsating helium stars. In the electronic version, PV TEL I variables are shown in purple and red (H-def binaries), PV TEL II variables in blue, and BX CIR variables in green. Non-variables are black. The values and sources for $T_{\rm eff}$ and $log \ g$ are given in Table 2. There has to be some question about the high value of log $\ g$ for NO Ser.

Figure 1. $\log g - \log T_{\text{eff}}$ diagram for H-deficient variable stars

Each type of variable has a different physical mechanism, and occupies a separate region of the Hertzsprung-Russell or $\log g - \log T_{\rm eff}$ diagram. Since these classes have been well established for over a decade (Saio & Jeffery, 1988; Saio, 1993), a revision to the single PVTEL designation is overdue. The suggested division into classes PVTEL types I and II and BX CIR reflects current knowledge.

V*	Other	Toff	$\log a$	Reference
PVTELI	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	– en	03	
FQ Aqr	$BD+1^{\circ}4381$	$8750{\pm}300$	$0.30 {\pm} 0.30$	Pandey et al., 2006
$V4732\mathrm{Sgr}$	$LSIV-14^{\circ}109$	$9500{\pm}250$	$1.00 {\pm} 0.20$	Pandey et al., 2006
$V354\mathrm{Nor}$	$CPD-48^{\circ}7730$,	$10400 {\pm} 500$	$*1.00{\pm}0.50$	Pandey & Reddy, 2006
	=LSS 3378			с с,
$\operatorname{NO}\operatorname{Ser}$	$BD - 1^{\circ}3438$	$11750 {\pm} 250$	$2.30 {\pm} 0.40$	Pandey et al., 2001
$V2244\mathrm{Oph}$	$LSIV-1^{\circ}2$	$12750 {\pm} 250$	$1.75 {\pm} 0.25$	Pandey et al., 2001
PV Tel	$\mathrm{HD}\:168476$	$13750 {\pm} 400$	$1.60 {\pm} 0.25$	Pandey et al., 2006
	$\mathrm{LSS}4357$	$16130{\pm}500$	$2.00 {\pm} 0.25$	Jeffery et al., 1998
V1920 Cyg	$HD\ 225642,$	$16300{\pm}900$	$1.70 {\pm} 0.35$	Pandey et al., 2006
	$=$ LSII $+33^{\circ}5$			
	$CoD-46^{\circ}11775,$	$18300 {\pm} 400$	$2.20 {\pm} 0.20$	Pandey et al., 2006
	=LSE 78			
${ m UpsSgr}$	$\mathrm{HD}\:181616$	$11750{\pm}750$	$1.5\ \pm 0.5$	Dudley, 1992
$\operatorname{KS}\operatorname{Per}$	${ m HD}30353$			
V426 Car	$CPD-58^{\circ}2721,$	14000 ± 800	$1.25{\pm}0.5$	Morrison, 1987
	=LSS 1922			
m V1037Sco	$\mathrm{HD}320156,$	$14500{\pm}800$	1.4 ± 0.5	Schönberner & Drilling, 1984
	=LSS 4300			
$\mathbf{PV}\mathbf{TEL}\mathbf{II}$				
$\mathrm{V2205Oph}$	$BD - 9^{\circ}4395$	22700 ± 1200	$2.55 {\pm} 0.10$	Jeffery and Heber, 1992
m V5541Sgr	$\mathrm{LSS}5121$	29800 ± 1830	$*3.00 \pm 0.50$	Jeffery et al., 2001
m V2076~Oph	$\mathrm{HD}\:160641$	34000	2.80	Rauch, 1996
$\mathbf{BX} \mathbf{CIR}$				
$\operatorname{BX}\operatorname{Cir}$	$\mathrm{LSS}3184$	$23390{\pm}90$	$3.38 {\pm} 0.02$	Woolf and Jeffery, 2002
V652 Her	$BD + 13^{\circ}3224$	$24550{\pm}500$	$3.68{\pm}0.05$	Jeffery et al., 1999
not pulsatir	າຍ			
MVSgr	0	$16000 {\pm} 500$	$2.48 {\pm} 0.30$	Jeffery et al., 1988
(V821 Cen)	$\mathrm{HD}124448$	$16100 {\pm} 300$	$2.30 {\pm} 0.25$	Pandey et al., 2006
(DN Leo)	$BD + 10^{\circ}2179$	$16900 {\pm} 500$	$2.55 {\pm} 0.20$	Pandey et al., 2006
DY Cen		$19500{\pm}500$	$2.15 {\pm} 0.10$	Jeffery & Heber, 1993
	$\mathrm{HD}144941$	$23200 {\pm} 500$	3.9 ± 0.1	Harrison & Jeffery, 1997
not known				
	$\mathrm{LSS}99$	$15330 {\pm} 500$	$1.90 {\pm} 0.25$	Jeffery et al., 1998
	$\mathrm{LSIV}{+}6^{\circ}2$	31800 ± 800	4.05 ± 0.10	Jeffery, 1997
	$BD + 37^{\circ}442$	53000	4.0	Heber et al., 1987
	$BD+37^{\circ}1977$	56000	4.1	Darius et al., 1979
	$\mathrm{LSE}153$	70000 ± 2000	$4.75 {\pm} 0.15$	Husfeld et al., 1989
	LSE259	70000 ± 3000	4.9 ± 0.25	Husfeld et al., 1989
	LSE263	70000 ± 7000	4.4 ± 0.3	Husfeld et al., 1989

Table 2: Surface properties for O, B and A type extreme-helium stars

*: estimated

Cool H-deficient variables. We conclude with a remark on designations for some related variables. Theoretically speaking (Saio & Jeffery, 1988), there is a probable physical

connection between PVTEL-type variations described above and the ~ 40 d pulsations observed in cool RCB variables such as RY Sgr (Alexander et al., 1980) and the late-type carbon-rich hydrogen-deficient giants such as HM Lib = HD 137613 (Kilkenny et al., 1988; Jones et al., 1989). RCB-type minima are definitive and, coupled with an appropriate spectral type, the designation needs little modification. Indeed, the RCB definition includes "cyclic pulsations with amplitudes up to several tenths of a magnitude and periods in the range 30-100 days". Of those hydrogen-deficient giants which do not show RCBtype minima, the GCVS tentatively describes HM Lib as a semi-regular variable ("SR:"). Three other variables are LV Tra = HD 148839, V4152 Sgr = HD 175893, and HD 173409 (Kilkenny et al., 1988; Jones et al., 1989). Only HD 182040 has not been proven to vary on these timescales (ibid.). Radial velocity variations have been observed on the same timescales (Lawson & Cottrell, 1997). While LV TrA is classified "RCB:", it is not clear that it has ever shown a deep RCB-type minimum. Meanwhile, there is increasing evidence for an evolutionary connection between all of these groups of stars (Saio & Jeffery, 2002; Pandey et al., 2006; Clayton, 2008). Perhaps the PV TEL designation should be further extended to include these cool giants:

PV TEL III: Hydrogen-deficient and carbon-rich F or G supergiants showing lowamplitude quasi-periodic light variations on a timescale of 30 - 100 days; radial velocity variations are also seen.

References:

- Alexander, J. B., Andrews, P. J., Catchpole, R. M., Feast, M. W., Lloyd Evans, T., Menzies, J. W., Wisse, P. N., & Wisse, M., 1972, MNRAS, 158, 305
- Bartolini, C., Bonifazi, A., Fusi Pecci, F., Oculi, L., Piccioni, A., Serra, R., & Dantona, F., 1982, Ap&SS, 83, 287
- Clayton, G. C., 2008. ASP Conf. Ser., Hydrogen-Deficient Stars, in press
- Darius, J., Giddings, J. R., & Wilson, R., 1979, The first year of IUE, p. 363
- De Marco, O., Clayton G. C., Herwig, F., Pollacco, D. L., Clark, J. S., & Kilkenny, D., 2002, AJ, 123, 3387
- Dudley, R. E., 1992, PhD Thesis, University of St Andrews
- Frame, D. J., Cottrell, P. L., Gilmore, A. C., Kilmartin, P. M., & Lawson, W. A., 1995, MNRAS, 276, 383
- Grauer, A. D., Drilling, J. S., & Schönberner, D., 1984, A&A, 133, 285
- Heber, U., Hunger, K., & Werner, K., 1988, *IAU Symp.*, **132**, 389, The Impact of Very High S/N Spectroscopy on Stellar Physics
- Hill, P. W., Lynas-Gray, A. E., & Kilkenny, D., 1984, MNRAS, 207, 823
- Husfeld, D., Butler, K., Heber, U., & Drilling, J. S., 1989, A&A, 222, 150
- Jeffery, C. S., 1998, MNRAS, 294, 391
- Jeffery, C. S., & Heber, U., 1992, A&A, 260, 133
- Jeffery, C. S., & Hill, P. W., 1996, The Observatory, 116, 156
- Jeffery, C. S., & Lynas-Gray, A. E., 1990, MNRAS, 242, 6
- Jeffery, C. S., & Malaney, R. A., 1985, *MNRAS*, **213**, 61P
- Jeffery, C. S., & Saio, H. 1999, MNRAS, 308, 221
- Jeffery, C. S., Skillen, I., Hill, P. W., Kilkenny, D., Malaney, R. A., & Morrison, K., 1985, MNRAS, 217, 701
- Jeffery, C.S., Hill, P.W., & Morrison, K., 1986, ASSL, 128, 95, IAU Colloq. 87: Hydrogen Deficient Stars and Related Objects

- Jeffery, C. S., Heber, U., Hill, P. W., & Pollacco, D., 1988, MNRAS, 231, 175
- Jeffery, C. S., Hamill, P. J., Harrison, P. M., & Jeffers, S. V., 1998, A&A, 340, 476
- Jeffery, C. S., Woolf, V. M., & Pollacco, D. L., 2001, A&A, 376, 497
- Jones, K., van Wyk, F., Jeffery, C. S., Marang, F., Shenton, M., Hill, P. W., Westerhuys, J., 1989, SAAO Circ., 13, 39
- Kholopov P.N., Samus N.N., Frolov M.S., et al., 1985-1988, General Catalogue of Variable Stars, 4th ed., vols. I-III, Nauka, Moscow
- Kilkenny, D., & Koen, C., 1995, MNRAS, 275, 327
- Kilkenny, D., & Lynas-Gray, A. E., 1982, MNRAS, 198, 873
- Kilkenny, D., & Lynas-Gray, A. E., 1984, MNRAS, 208, 673
- Kilkenny, D., Marang, F., & Menzies, J. W., 1988, MNRAS, 233, 209
- Kilkenny, D., Crause, L. A., & van Wyk, F., 2005, MNRAS, 361, 559
- Kilkenny, D., Lynas-Gray, A. E., & Roberts, G., 1996, MNRAS, 283, 1349
- Landolt, A.U., 1975, ApJ, 196, 789
- Lawson, W. A., & Cottrell, P. L., 1997, MNRAS, 285, 266
- Lawson, W. A., & Kilkenny, D., 1998, The Observatory, 118, 1
- Lawson, W. A., Kilkenny, D., van Wyk, F., Marang, F., Pollard, K., Ryder, S. D., 1993, MNRAS, 265, 351
- Lynas-Gray, A. E., Kilkenny, D., Skillen, I., & Jeffery, C. S., 1987, MNRAS, 227, 1073
- Malcolm, G. J., & Bell, S. A., 1986, MNRAS, 222, 543
- Morrison, K., 1987, MNRAS, 224, 1083
- Morrison, K., 1987, PhD Thesis, University of St Andrews
- Morrison, K, & Willingale, G. P. H., 1987, MNRAS, 228, 819
- Morrison, K., Hill, P. W., Jeffery, C. S., Marang, F. & Spencer Jones, J., 1987, MNRAS, 229, 269
- Osawa, K., Nishimura, S., & Nariai, K., 1963, PASJ, 15, 313
- Pandey, G. & Reddy, B. E., 2006, MNRAS, 369, 1677
- Pandey, G., Rao, N K., Lambert, D. L., Jeffery, C. S., & Asplund, M., 2001, MNRAS, 324, 937
- Pandey, G., Lambert, D. L., Jeffery, C. S., & Rao, N K. 2006, ApJ, 638, 454
- Rauch, T., 1986, ASP Conf. Ser., 96, 174, Hydrogen-Deficient Stars
- Saio, H., 1993, MNRAS, 260, 465
- Saio, H., & Jeffery, C. S., 1988, ApJ, 328, 714
- Saio, H., & Jeffery, C. S., 2002, MNRAS, 333, 121
- Schönberner, D., & Drilling, J. S., 1984, ApJ, 276, 229
- Walker, H. J., & Hill, P. W. 1985, A&AS, 61, 303
- Woolf, V. M., & Jeffery, C. S., 2002, A&A, 395, 535
- Woolf, V. M., Aznar Cuadrado, R., Pandey, G., & Jeffery, C. S., 2001, A&A, 371, 638
- Wright, D. J., Lynas-Gray, A. E., Kilkenny, D., et al., 2006, MNRAS, 369, 2049

Number 5818

Konkoly Observatory Budapest 7 March 2008 *HU ISSN 0374 - 0676*

IDENTIFICATION OF TWO ROTSE TRANSIENTS AS CATACLYSMIC VARIABLES IN OUTBURST

SOUTHWORTH, J.; REBASSA-MANSERGAS, A.

Department of Physics, University of Warwick, Coventry, CV4 7AL, UK, email: j.k.taylor@warwick.ac.uk

In 2007 November the ROTSE sky survey observed two optical transients, using the 0.45 m ROTSE-IIIb telescope at MacDonald Observatory (Yuan et al., 2007). The two transients were labeled ROTSE3 J031031.4+431115.0 and ROTSE3 J113709.0+513451.1 (hereafter ROTSE 0310 and ROTSE 1137, respectively). The brightness of ROTSE 0310 rose from below the detection limit to ROTSE (unfiltered) magnitude 16.4 (2007 November 8), before gradually fading over a period of one week. It had previously been observed twice at magnitude 17.0 (2007 September 7 and October 20). The brightness of ROTSE 1137 was observed to rise to magnitude 17.2 (2007 November 2) before decaying to magnitude 18.5 over the following week.

ROTSE 0310 has a counterpart in the USNO-B1.0 survey with magnitudes $B_2 = 18.32$ and $R_2 = 19.10$. ROTSE 1137 has a counterpart in the Sloan Digital Sky Survey (SDSS; York et al., 2000) with magnitudes g = 20.64 and r = 20.10. Based on the observed outbursts and the magnitudes of the counterparts in the USNO and SDSS surveys, Yuan et al. (2007) "tentatively" classified both objects as faint CVs which were observed by ROTSE-IIIb whilst in outburst.

It is becoming progressively more important to understand the characteristics of optical transients in monitoring surveys, as large-area deep variability studies become more common (e.g. OGLE, PanSTARRS and the LSST). We therefore obtained medium-resolution spectroscopy of ROTSE 0310 and ROTSE 1137 in order to determine their object types. The observations were obtained with the William Herschel Telescope and ISIS double-beam grating spectrograph, using a slit width of 1.0 arcsec and the standard 5300 Å dichroic. The blue arm was equipped with the R600B grating, giving a wavelength coverage of 3600–5100 Å and a resolution of 2 Å. In the red arm we used the R316R grating, obtaining a coverage of 6200–8800 Å with a resolution of 4 Å.

A spectrum of ROTSE 0310 was obtained on the night of 2007 December 31, with an exposure time of 900 s. Its brightness was roughly V = 19.5, indicating that it was in quiescence. ROTSE 1137 was observed on 2008 February 15 in poor conditions (seeing 2.5–3.5 arcsec), with a longer exposure time of 1800 s. Its brightness was consistent with its SDSS magnitudes, so it was also in quiescence. Data reduction was performed using optimal extraction (Marsh, 1989) and our usual procedures (see Southworth et al., 2007a, 2007b). Wavelength calibration was undertaken using copper-neon and copper-argon arc lamps. Flux calibration and corrections for telluric absorption was done using spectra of HD 84937).

Figure 1. WHT/ISIS spectrum of ROTSE3 J031031.4+431115.0 whilst in quiescence. The spectrum from the blue arm is shown on the left and that from the red arm on the right. The data have been smoothed slightly for display purposes.

The spectrum of ROTSE 0310 is plotted in Fig. 1. Its flux calibration is only approximate as it does not take account of slit losses; the flux level is appropriate for an object at magnitude $V \sim 19.5$ at the time of observation. The spectrum shows strong single-peaked emission at the hydrogen Balmer line wavelengths. The emission is strongest at H α and decreases to higher-order lines, which is the signature of an optically thin hydrogen-rich accretion disc (Williams, 1980). Emission is also seen at a number of He I lines, including $\lambda 4386$, $\lambda 4471$, $\lambda 4921$, $\lambda 5015$, $\lambda 6678$ and $\lambda 7065$. He II $\lambda 4686$ emission is also detectable. The spectrum of ROTSE 0310 displays the classical signatures of a cataclysmic variable (CV) in quiescence (Warner, 1995), unambiguously confirming the tentative identification ascribed by Yuan et al. (2007). As it is known to show outbursts, ROTSE 0310 can be further categorised into the dwarf nova subclass of CVs (Warner, 1995).

Our observation of ROTSE 1137 was obtained during poor seeing conditions, and has a very low flux level. A portion of the red spectrum is shown in Fig. 2, and only H α can clearly be identified. The rest of the spectrum is unusuable as slight inaccuracies in subtraction of the sky emission lines causes changes in flux at a similar level to the puny signal detected from the target. The ISIS blue spectrum has too low a continuum flux level to extract a spectrum, so we have taken the cosmologist's approach (A. Levan, priv. comm.) of measuring the positions of emission lines directly from the CCD image. By careful application of the correct wavelength calibration, we have been able to identify four emission lines with wavelengths $\lambda 4861$ (H β), $\lambda 4341$ (H γ) and $\lambda 4100$ (H δ). We have therefore detected emission from four Balmer lines. The Balmer emission and the light curve obtained by ROTSE point to the identification of ROTSE 1137 as a faint CV of dwarf nova type.

To summarise, ROTSE 0310 and ROTSE 1137 were both detected as transient objects by the ROTSE-III sky survey. Their magnitudes peaked at 16.4 and 17.2, respectively, before decaying to below the detection limit over roughly one week. There are faint counterparts of both objects, one in USNO-B1.0 and one in the SDSS. We have obtained

Figure 2. WHT/ISIS red spectrum of ROTSE3 J113709.0+513451.1 in quiescence. The data have been smoothed slightly for display purposes.

WHT medium-resolution spectroscopy of ROTSE0310 and ROTSE1137, and in both cases have detected the Balmer emission lines which are the dominant spectral characteristic of quiescent CVs. We therefore confirm the suggestion of Yuan et al. (2007) that the two objects are faint CVs which were caught in outburst by ROTSE. Neither system is mentioned in the CV catalogues of Downes et al. (2001) or Ritter & Kolb (2003; plus updates), so both are new discoveries.

This is not the first time that faint optical transients have turned out to be previously unknown CVs. Rau et al. (2007) followed up three faint optical transients and found that two of these were CVs, both of which were new discoveries. In the near future an increasing number of large-scale deep optical sky surveys will obtain observations of many thousands of transient objects. Becker (2008) discusses the various types of optical transients and predicts that the Large Synoptic Survey Telescope (LSST) may produce between 10^5 and 10^6 of these *per night*. A substantial proportion of these will be CVs, and follow-up observations similar to those presented here will likely lead to a huge increase in the known CV population.

References:

Becker, A. C., 2008, AN, in press (arXiv:0801.1503)
Downes, R. A., Webbink, R. F., Shara, M. M., Ritter, H., Kolb, U., Duerbeck, H. W., 2001, PASP, 113, 764
Marsh, T. R., 1989, PASP, 101, 1032
Rau, A., et al., 2007, ApJ, 664, 474
Ritter, H., Kolb, U., 2003, A&A, 404, 301
Southworth, J., et al., 2007a, MNRAS, 378, 635
Southworth, J., et al., 2007b, MNRAS, 382, 1145
Warner, B., 1995, Cataclysmic Variable Stars (Cambridge University Press, Cambridge, UK)
Williams, R. E., 1980, ApJ, 235, 939
York, D. G., et al., 2000, AJ, 120, 1579
Yuan, F., 2007, The Astronomer's Telegram, 1272
ERRATA FOR IBVS 5583

The following corrections were communicated to IBVS by Petr Zasche and the author, Miloslav Zejda. The times of minima for HT Vir were erroneously given in the article, and should be replaced by those given below.

Corrected time of min.
52751.5845
52751.3807
52765.4468
53068.5504

Number 5819

Konkoly Observatory Budapest 10 March 2008 *HU ISSN 0374 - 0676*

THE EXTREME OUTBURST OF EX Lup IN 2008: OPTICAL SPECTRA AND LIGHT CURVE

KÓSPÁL, Á.¹; NÉMETH, P.²; ÁBRAHÁM, P.¹; KUN, M.¹; HENDEN, A.³; JONES, A. F.⁴

¹ Konkoly Observatory, P.O.Box 67, 1525 Budapest, Hungary, e-mail: kospal@konkoly.hu

 2 Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA

³ American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138, USA

 4 31 Ranui Road, Stoke, Nelson 7011, New Zealand

EX Lup is the prototype of EXors, a class of pre-main sequence eruptive variables, exhibiting unpredictable brightenings lasting some months (Herbig, 1977; Herbig et al., 2001; Herbig, 2007). According to the current picture, eruptions of pre-main sequence stars are caused by enhanced accretion (Hartmann & Kenyon, 1996). In quiescent phase, EX Lup has typically $V \approx 13$ mag, while in outburst, it may brighten by 1–4 mag. The last known flare-up happened in 2002 (Herbig, 2007). As was announced by Jones (2008), EX Lup has been in outburst again since at least 2008 January 15. Based on visual estimates, the star reached a peak brightness of 8 mag, brighter than at any time before. We started an optical spectroscopic monitoring programme on 2008 January 25. In this paper we present our spectra collected until 2008 February 17, as well as the visual light curve for the same period.

Our spectroscopic observations were carried out during 13 nights in 2008 January and February with the newly installed 0.8 m f/8 Cassegrain telescope, equipped with a DFM Cassegrain Spectrograph and a 1024×1024 pixels Apogee Alta camera, at Florida Institute of Technology. Unfortunately, due to the location of the site, we were constrained to observe at extremely high airmasses (between 2.5 and 3.8). The 5" slit and 600 l/mm grating yielded a spectral resolution of $\lambda/\Delta\lambda = 730$ in the 4250–6050 Å wavelength range at a dispersion of 1.7 Å/pixel. The S/N for our spectra is typically 5-10. The data were reduced using IRAF *ccdred* tasks and spectra were extracted by using the *twodspec* package. The spectra were traced by a 5th order Legendre function using the *apall* task, and the background was sampled over a 25 pixel range on both sides of the spectra. Wavelength calibration was done using observations of a HgAr lamp. The positions of four identified HgAr lines were fitted by a 3rd order Legendre function with rms around 0.01, to obtain the dispersion axis. The log of observations can be seen in Tab. 1.

In order to increase the signal to noise ratio, we combined all 13 spectra, by first shifting them in wavelength and then by averaging them. The resulting averaged spectrum is plotted in Fig. 1. The spectrum is dominated by emission lines, of which many can be identified as metallic lines (Fe I, Fe II, Mg I, Ti II). In addition, a prominent H_{β} can be observed, however, H_{γ} is absent from all our spectra. No absorption lines seem to be present. The identified spectral features are marked in Fig. 1. In order to be able to quantitatively compare our spectra with each other and with others published in the literature, we selected three lines and measured their equivalent widths, see Tab. 1.

Table 1: Log of spectroscopic observations, and equivalent widths of selected emission lines of EX Lup. The first two columns show the date and JD when the exposure started; the third column gives the exposure time in seconds; the fourth column shows the number of spectra taken that night; and the last three columns display the equivalent widths in Å of selected emission lines. The uncertainties of the equivalent widths are about 10% and are dominated by the uncertainties in fitting the continuum level.

Date	JD-2450000	Exp. time	Nr.	H_{β}	Fe II $\lambda 4921$	Fe II $\lambda 5015$
2008 Jan 25	4490.959	600	1	-30.0	-12.1	-11.4
2008 Jan 26	4491.956	900	1	-13.4	-6.0	-5.4
2008 Jan 28	4493.949	900	1	-12.3	-4.7	-4.6
2008 Jan 29	4494.945	900	1	-6.5	-3.2	-3.4
2008 Jan 30	4495.956	600	3	-9.0	-3.9	-3.6
$2008 \ \mathrm{Jan} \ 31$	4496.945	900	2	-7.3	-3.6	-3.2
$2008 \ {\rm Feb} \ 1$	4497.938	900	1	-8.8	-3.7	-3.8
$2008 {\rm \ Feb} \ 5$	4501.936	900	1	-10.4	-6.3	-6.6
$2008 \ {\rm Feb} \ 6$	4502.936	900	1	-7.4	-4.2	-4.5
$2008 \ {\rm Feb} \ 9$	4505.967	900	1	-8.3	-4.8	-5.0
$2008 { m \ Feb} 11$	4507.915	600	1	-13.2	-5.8	-6.5
$2008 \ {\rm Feb} \ 14$	4510.912	900	1	-10.8	-5.7	-5.9
$2008 \ {\rm Feb} \ 17$	4513.913	900	1	-5.1	-3.1	-3.2

Figure 1. Average of our 13 normalised spectra of EX Lup. Identified spectral lines are marked.

Figure 2. Light curve of EX Lup in the period 2008 January 15 – 2008 February 19. Filled dots: visual estimates of A.F. Jones; open squares: V-band magnitudes from the AAVSO International Database. The vertical lines at the bottom mark the dates when spectra were obtained.

Figure 3. Profiles of the H_{β} line on 2006 January 25 (solid line), 26 (dashed line), and February 1 (dotted line).

Similar optical spectra were already published for EX Lup both in quiescent and in outburst phases (Appenzeller et al., 1983; Patten, 1994; Lehmann et al., 1995; Herbig et al., 2001; Herbig, 2007). All these spectra show prominent Balmer lines. H_{β} is clearly visible also in our spectra, and its equivalent width is similar to those published in the literature. Interestingly, H_{γ} is absent from all our spectra, though it was observed in all the previous studies. Weak He lines were reported in the literature. We found no He lines, but this might be due to our limited spectral resolution (some He lines might be blended with Fe lines). On the other hand, while Fe and other metallic lines were either weak or absent in previous spectra, they are very strong in ours, very likely the strongest ever observed.

Our 13 spectra cover a period of nearly one month around the peak brightness, as shown in the light curve in Fig. 2, which is a compilation of visual and V-band observations. In mid-January, the star already had a visual brightness of ≈ 10 mag, well above the usual quiescent brightness of 13 mag. It soon became even brighter, reaching a maximum of 8-9 mag, then started a slow fading. Checking the equivalent width values in Tab. 1, we found a trend: the equivalent widths were high on the first date, then became significantly reduced between 2008 January 25 and 28, and stayed more or less constant since then (see e.g. the H_{β} profiles in Fig. 3). The hydrogen and iron lines follow the same trend. Patten (1994) found that the equivalent widths of the Balmer lines did not appear to change much between the outburst and the quiescent phase. This is different in our results. The significant changes in our equivalent widths, however, might be due to the brightening of the object between the dates of our first and subsequent spectra. The lack of absorption features that would normally be present in an M-type dwarf suggests that the increased brightness of EX Lup is not due to variable photosphere but to the addition of a featureless continuum, probably the accretion luminosity.

In summary, our photometric and spectroscopic observations prove that EX Lup is in outburst, exhibiting the highest peak brightness ever observed. The spectra of the present outburst differ significantly from the previous ones in several aspects: the lack of the H_{γ} and He lines, and the extremely strong metallic features. The increased brightness of the system is probably due to increased accretion. Increased accretion, and consequently increased stellar wind, can also explain the wealth of metallic lines coming from infalling or ejected hot gas, similarly to the case of DR Tau (Beristain et al., 1998).

Acknowledgements. The Olin Observatory 0.8 m telescope at the Florida Institute of Technology was funded in part by a grant from the National Science Foundation (AST 0420753). We are grateful to the FIT Time Allocation Committee for a generous allocation of time. P. Németh also wishes to thank the help with the spectrograph and data reductions to S. Vennes and A. Kawka. This research was partly supported by the Hungarian Research Fund (OTKA) K62304.

References:

Beristain, G., Edwards, S., Kwan, J., 1998, ApJ, 499, 828
Hartmann, L, Kenyon, S.J., 1996, ARA&A, 34, 207
Herbig, G.H., 1977, ApJ, 217, 693
Herbig, G.H., Aspin, C., Gilmore, A.C., Imhoff, C.L., Jones, A.F., 2001, PASP, 113, 1547
Herbig, G.H., 2007, AJ, 133, 2679
Jones, A. F. A. L., 2008, CBET, 1217, 1

Number 5820

Konkoly Observatory Budapest 7 April 2008

 $HU\ ISSN\ 0374-0676$

CCD MINIMA FOR SELECTED ECLIPSING BINARIES IN 2007

NELSON, ROBERT H.

1393 Garvin Street, Prince George, BC, Canada, V2M 3Z1; e-mail: bob.nelson@shaw.ca

Observatory and telescope:
Sylvester Robotic Observatory (SRO): 33 cm f/4.5 Newtonian on Paramount GT-
1100s mount

Detector:

SRO: SBIG ST-7XME, 1.25 pixels, 15'8 \times 10'5 FOV, cooled $-10 < T < -30~^\circ\mathrm{C}$

Method of data reduction:

Aperture photometry using MIRA, by Axiom Research.

Method of minimum determination:

Digital tracing paper method, bisection of chords, curve fitting, and (occasionally) Kwee and van Woerden (1956).

Times of n	ninima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
WZ And	54452.6138	0.0002	II	R	
BL And	54409.6187	0.0004	Ι	\mathbf{R}	
GI Aur	54412.8176	0.0002	Ι	\mathbf{R}	
IZ Aur	54127.5901	0.0002	Ι	с	
MU Aur	54161.7816	0.0005	Ι	с	
V0402 Aur	54435.6811	0.0005	II	\mathbf{R}	
V0404 Aur	54398.8961	0.0002	Ι	R	
V0410 Aur	54378.8722	0.0003	II	R	
TY Boo	54155.8767	0.0002	II	R	
AC Boo	54131.9628	0.0005	Ι	R	
GQ Boo	54161.902	0.001	Ι	R	
GR Boo	54181.8356	0.0002	Ι	R	
GT Boo	54209.8456	0.0005	II	R	
AO Cam	54134.6098	0.0001	II	R	
DN Cam	54352.887	0.001	II	В	
MT Cam	54442.6343	0.0001	Ι	R	
V0445 Cas	54354.954	0.003	II	\mathbf{R}	
V0471 Cas	54356.7491	0.0002	II	с	
V0471 Cas	54357.7510	0.0002	Ι	\mathbf{R}	
V0471 Cas	54358.7535	0.0002	II	R	
V0471 Cas	54381.8075	0.0002	Ι	R	

Times of minim	a:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+		01		
V0471 Cas	54382.8096	0.0003	II	R	
V0520 Cas	54435.593	0.001	II	с	
NW Cep	54398.6343	0.0004	Ι	R	
EH Cnc	54441.8327	0.0003	II	R	
FF Cnc	54455.8268	0.0002	II	R	
HN Cnc	54399.0193	0.0002	Ι	\mathbf{R}	
RZ Com	54181.7267	0.0002	Ι	R	
LQ Com	54133.9190	0.0001	I?	R	
RW CrB	54220.8444	0.0001	Ι	R	
BI CVn	54177.7284	0.0001	II	R	
BO CVn	54131.8950	0.0002	II	R	
DF CVn	54153.814	0.001	II	R	
DH CVn	54187.7679	0.0002	II	R	
G2533-1563 CVn	54130.9201	0.0002	II	R	
G2534-1121 CVn	54180.8174	0.0002	Ι	R	
G2537-0520 CVn	54217.8755	0.0003	Ι	R	
V0680 Cyg	54357.833	0.003	II	BVR	
V0680 Cvg	54360.8332	0.0003	Ι	BVR	
V0700 Cyg	54210.9659	0.0004	Ι	R	
V0841 Cvg	54352.7540	0.0001	Ι	\mathbf{R}	
V1191 Cvg	54440.5940	0.0002	II	\mathbf{R}	
V1918 Cvg	54220.9430	0.0002	II	R	
V2282 Cvg	54225.9364	0.0003	II	\mathbf{R}	
BV Dra	54220.7367	0.0002	II	В	
BW Dra	54220.7163	0.0002	II	В	
FU Dra	54187.8788	0.0003	II	R	
RW Gem	54155.7573	0.0001	Ι	\mathbf{R}	
AC Gem	54381.9507	0.0002	Ι	R	
BD Gem	54127.6834	0.0002	Ι	R	
V0345 Gem	54155.6440	0.0003	Ι	В	
V0719 Her	54233.739	0.001	II	с	
V0728 Her	54233.8613	0.0001	II	\mathbf{R}	
V1055 Her	54229.8543	0.0002	Ι	R	
V1073 Her	54211.8555	0.0001	II	\mathbf{R}	
G3092-1291 Her	54219.8302	0.0003	Ι	\mathbf{R}	
V0390 Hva	54130.7676	0.0001	Ι	\mathbf{R}	
V0342 Lac	54403.7319	0.0002	Ι	R	
SW Lvn	54378.9910	0.0001	Ι	V	
SW Lvn	54440.8222	0.0002	Ī	Ŕ	
DZ Lvn	54405.9692	0.0003	Ī	R	
AH Lvr	54403.6053	0.0003	Ι	R	
V0411 Lvr	54218.899	0.001	Ī	c	
V0574 Lvr	54354.7252	0.0001	Ī	R.	
V0714 Mon	54153.6300	0.0003	ĪĪ	R	
DM Peg	54355.766	0.001	Ī	R	
DK Per	54441.599	0.001	Ī	R	
IU Per	54354.8190	0.0001	Ι	R	

Times of minima	a:				
Star name	Time of min.	Error	Type	Filter	Rem.
	${ m HJD}~2400000+$				
KR Per	54442.7613	0.0001	Ι	R	
KW Per	54443.673	0.001	Ι	\mathbf{R}	
V0432 Per	54131.6044	0.0005	II	VRI	
V0432 Per	54131.7959	0.0002	Ι	VRI	
V0432 Per	54133.7124	0.0002	Ι	VRI	
V0432 Per	54134.7123	0.0001	II	VRI	
V0432 Per	54185.6516	0.0005	II	\mathbf{R}	
V0432 Per	54418.7038	0.0002	II	VRI	
V0579 Per	54432.747	0.001	II	В	
RV Psc	54423.8347	0.0002	Ι	\mathbf{R}	
AU Ser	54225.8558	0.0001	II	\mathbf{R}	
OU Ser	54148.0127	0.0002	Ι	V	
RZ Tau	54353.9033	0.0003	Ι	\mathbf{R}	
SV Tau	54455.6836	0.0004	II	\mathbf{R}	
AH Tau	54126.6057	0.0001	II	\mathbf{R}	
AM Tau	54440.8236	0.0002	Ι	\mathbf{R}	
CR Tau	54415.7904	0.001	Ι	с	
CU Tau	54406.760	0.001	Ι	\mathbf{R}	
EQ Tau	54355.8789	0.0002	II	\mathbf{R}	
V0781 Tau	54382.9345	0.0005	Ι	\mathbf{R}	
UX UMa	54126.8701	0.0003	Ι	с	
XY UMa	54442.8964	0.0001	Ι	\mathbf{R}	
ZZ UMa	54455.9259	0.0001	Ι	\mathbf{R}	
AA UMa	54154.8989	0.0002	Ι	\mathbf{R}	
BM UMa	54419.0613	0.0002	II	с	
HH UMa	54418.9558	0.0003	Ι	\mathbf{R}	
G3449-0688 UMa	54435.9180	0.0001	Ι	с	
BG Vul	54415.6871	0.0003	II	с	
GI Vul	54217.964	0.001	II	\mathbf{R}	

Acknowledgements:

Thanks are due to Environment Canada for the website satellite views (see reference below) that were essential in predicting clear times for observing runs in this cloudy locale. Thanks are also due to Attila Danko for his 'Clear Sky Clock', (see below). This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France.

References:

Danko, A., Clear Sky Clocks, http://cleardarksky.com/ Kwee, K.K., & van Woerden, H., 1956, *B.A.N.*, **12**, (464), 327-330 Nelson, R.H., Bob Nelson's O-C Files, http://binaries.boulder.swri.edu/binaries/omc/ Satellite Images for North America, http://gfx.weatheroffice.ec.gc.ca/

Number 5821

Konkoly Observatory Budapest 8 April 2008 *HU ISSN 0374 - 0676*

DETECTION OF INCREASE IN THE OPTICAL LIGHT OF Be/X-RAY BINARY SYSTEM GRO J2058+42

KIZILOĞLU, Ü.; KIZILOĞLU, N.; BAYKAL, A.; YERLİ, S. K.; ÖZBEY, M.

 1 Physics Dept., Middle East Technical University, Ankara 06531, Turkey

² e-mail: umk, nil, altan, sinan, mehtap@astroa.physics.metu.edu.tr

The Be/X-ray binary GRO J2058+42 (CXOU J205847.5+414637) has an orbital period of 55.03 days (Corbet et al., 1997; Wilson et al., 2005). The optical counterpart of GRO J2058+42 was discovered by Reig et al. (2004). Its spectral type is O9.5-B0 IV-V (Wilson et al., 2005) with V=14.9 mag and R=14.2 mag. The spectra obtained by Reig et al. and Wilson et al. have shown a double peak H α emission line which was a signature of a Be star. They have calculated a mean equivalent width (EW) of 4.5 Å. The Be star has a disk in its equatorial plane which can give rise to X-ray outburst of its companion, the neutron star. When material from the disk of the Be star accretes to the neutron star X-rays are produced. This system is in X-ray quiescent state since 2002 according to the X-ray observations of RXTE/ASM¹.

The results of our optical observations of this system between JD 2453500 and 2454000 were published in Kızıloğlu et al. (2007). A non-radial pulsation with a frequency of 2.404 d⁻¹ has been found in our light curve from period analysis of the Be star. No long term variability has been observed. Therefore we expected a nearly stable disk around the Be star. We have calculated the EW of the H α emission line as 2.31 Å.

In this study further optical photometric and spectroscopic observations of this Be/Xray system are presented. The photometric observations were obtained by using 45 cm robotic reflecting telescope (ROTSE IIId, located at Bakırlıtepe, Turkey²) which operates without filters (Akerlof et al., 2003). The telescope was equipped with a 2048×2048 pixel CCD with pixel size of 3".3. Data reduction procedures are the same as in Baykal et al. (2005) and Kızıloğlu et al. (2007). The optical spectroscopic observations were obtained using medium resolution spectrometer TFOSC (TUBİTAK Faint Object Spectrometer and Camera; installed on the RTT150, 1.5 m Russian-Turkish telescope located at Bakırlıtepe). The camera is equipped with 2048×2048 , 15 micron pixel CCD. Grism G8 (5800-8300 Å) with average dispersion of 1.1 Å per pixel was used.

Figure 1 shows the differential light curve of the optical counterpart to GRO J2058+42. We adopted three nearby stars as the reference stars (Table 1) and we used their mean magnitudes in obtaining the differential magnitudes (K121loğlu et al., 2007). The X-ray light curve in the energy band 5-12 keV is also plotted in the same figure to see if there is any correlation with the optical light curve. However, no correlation was observed

¹http://xte.mit.edu

²http://www.tug.tubitak.gov.tr

between the optical and X-ray light curves after an increase of the optical brightness. The system is in X-ray quiescent phase in spite of the presence of the Be disk. Type I X-ray outbursts which are expected to occur at every periastron passage of neutron star were not observed after 2002. If the Be disk is truncated at a resonance radius which is smaller than the Roche Lobe radius, then Type I outbursts are not seen since there is no mass transfer to the neutron star from the disk of the Be star (Okazaki and Negueruela, 2001).

Figure 1. ROTSEIIId weekly averaged differential light curve of the Be/X-ray system GRO J2058+42 (CXOU J205847.5+414637) (top panel, a) and weekly averaged mean light curve of reference stars properly offsetted (top panel, b) for the period 2005-2007. X-ray light curve of the system obtained from RXTE/ASM observations (weekly average of 5.0-15.0 keV band light curve) is given in the lower panel. MJD = JD - 2400000.5.

No long-term variability is seen in the optical light curve up to JD 2454100. After JD 2454100 there is an increase in the light output of the system. The change is about 0.3 magnitude. Such an increase is also reflected in the EW of H α profile, obtained on 2007, June 14. The EW is found to be as 5.4 Å. This value is greater than the previous value of 2.3 Å. We suppose an increase in the disk density after JD 2454100, since H α EW is related with the disk density of the Be star rather than with its size (Wilson et al., 2005; Negueruela et al., 2001). There is a structural change in the disk of the Be star. The double peaked H α line profile is shown in Figure 2. The depth of the self absorption is not as deep as in the previously obtained H α line profiles (Kızıloğlu et al., 2007).

Star	lpha(J2000)	$\delta(J2000)$	USNO.A2.0
J205847.5+414637	$20^{h}58^{m}47.54$	$+41^{\circ}46'37''.3$	14.1
Star 1	$20^{h}58^{m}53^{s}.53$	$+41^{\circ}46'28''_{.}0$	13.9
Star 2	$20^{h}58^{m}45.85$	$+41^{\circ}45'06''_{\cdot}0$	13.9
Star 3	$20^{h}59^{m}05.50$	$+41^{\circ}44'20''_{\cdot}1$	14.1

Table 1. CXOU J205847.5+414637and the reference stars.

After JD 2454100, there are less observational data since we intended to follow only long-term variations. Nevertheless, we performed period analysis for the increasing part of the light curve, but we did not detect any periodic behavior. Folding the same data with the known pulsation periods of 0.4162 and 0.4218 d did not reveal strong indications for the presence of the pulsations.

An increase in the disk density may enhance the optical brightness of the system. A change of 0.3 mag corresponds to a disk luminosity of about 10^{36} erg/s with $T_{disk}=10000$ K and $R_{disk}=4R_{star}$ assuming a cylindrical disk with a vertical height of 0.1 R_{star} for the H α emitting region (Hanuschik et al., 1993). Rivinius et al. (2003) pointed out that enhancement in brightness is associated with mass loss from a Be star which is induced by non-radial pulsations. Such a mass loss will increase the disk density. We also know from our previous study that GRO J2058+42 has at least one non-radial pulsation mode.

Figure 2. H α profile observed on 2007 June 14 (JD 2454266.498).

It is also possible that the disk begins its precession with a sudden change in the structure of the Be disk. As the revealed part of the disk gets larger due to precession we get more light from the system and the H α EW will also be larger than our previous value (Kızıloğlu et al. 2007).

Further ROTSEIIId observations are needed to explain the long term variations. Collaborations are welcomed.

Acknowledgments:

This study was supported by TUG (Turkish National Observatory), TÜBİTAK (Turkish Scientific and Technological Research Council), through project 106T040.

References:

Akerlof, C.W., Kehoe, R.L., McKay, T.A., Rykoff, E.S., Smith, D.A., et al., 2003, PASP, 115, 132

Baykal, A., Kızıloğlu, U., Kızıloğlu, N., 2005, IBVS, 5615

Corbet, R., Peele, A., Remilliard, R., 1997, IAUC, 6556

Hanuschik, R.W., Dachs, J., Baudzus, M., Thimn, G., 1993, A&A, 274, 356

Kızıloğlu, U., Kızıloğlu, N., Baykal, A., Yerli, S.K., Ozbey, M., 2007, A&A, 470, 1023

Negueruela, I., Okazaki, A.T., Fabregat, J., et al., 2001, A&A, 369, 117

Okazaki, A.T., Negueruela, I., 2001, A&A, 377, 161

Reig, P., Kougenrakis, T., Papamastorakis, G., 2004, ATel, 308

Rivinius, Th., Baade, D., Stefl, S., 2003, A&A, 411, 229

Wilson, C.A., Weisskopf, M.C., Finger, M.H., et al., 2005, ApJ, 622, 1024

Number 5822

Konkoly Observatory Budapest 10 April 2008 *HU ISSN 0374 - 0676*

PHOTOMETRIC SEQUENCES AND ASTROMETRIC POSITIONS OF NOVA Vul 2007 N.2 AND NOVA Cyg 2008

HENDEN, ARNE¹; MUNARI, ULISSE²

 1 AAVSO, American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138, USA

 2 INAF Osservatorio Astronomico di Padova, Sede di Asiago, I-36032 Asiago (VI), Italy

Nova Vul 2007 N.2 (= V459 Vul) was discovered by H. Kaneda at ~8.7 mag on Dec 25.35 UT (cf. Nakano, 2007). Spectroscopic confirmation was provided by Yamaoka (2007) and Munari et al. (2007). The latter reported a peak brightness V = 7.58 and B-V = +1.10 on Dec. 27.75 UT. At that time the spectrum was characterized by strong absorptions, with feeble emission components visible only in H α and OI 7772 Å. A day later, the absorption spectrum weakened remarkably and a rich and strong emission line spectrum appeared, typical of novae soon after maximum.

Nova Cyg 2008 (= V2468 Cyg) was also discovered by H. Kaneda, at ~ 8.2 mag on Mar 7.80 UT (cf. Nakano, 2008), and spectroscopic confirmation was provided by Nogami et al. (2008). On Mar 8.8 UT, they observed a rich emission line spectrum, with velocities and P-Cyg profiles typical of novae close to maximum brightness.

In this note we present a $BVR_{\rm C}I_{\rm C}$ photometric sequence around both novae, optimized for CCD observations and their color corrections. To calibrate the sequences, we obtained CCD photometry with the Sonoita Research Observatory 0.35-m robotic telescope on several distinct photometric nights, using $BVR_{\rm C}I_{\rm C}$ filters and an SBIG STL-1001E CCD camera. Pixel size is 1".25/pix and the field of view is 20'×20'. Observations on each photometric night included following an extinction star from low to high airmass, along with $BVR_{\rm C}I_{\rm C}$ exposures of Landolt standard fields (Landolt, 1983, 1992). The photometric sequences are presented in Figures 1 and 2.

Some very red stars are included in these sequences for the purpose of extending over a wide color range the determination of the transformation coefficients. When intrinsic, such red colors are generally associated to variable cool stars. However, both fields suffer from large reddenings. In fact, both novae at maximum displayed colors reddened by $E(B-V) \ge 0.6$ and in both cases blue field stars are missing. Thus, the very red stars included in the sequences are such at least in part because of the large reddenings and not necessarily because they are intrinsically very cool. Nevertheless, these stars have not been observed sufficiently often to guard against possible variability.

Astrometry was performed using SLALIB (Wallace, 1994) linear plate transformation routines in conjunction with the UCAC2 reference catalog. Errors in coordinates were less than 0.1 arcsec in both coordinates, referred to the mean coordinate zero point of the reference stars in each field. The coordinates we derived for Nova Vul 2007 N.2 are $\alpha_{J2000} = 19^{h}48^{m}08^{s}.866 \ (\pm 0^{s}.026)$, $\delta_{J2000} = +21^{\circ}15'26''.67 \ (\pm 0''.027)$, close to the coordinates reported by Kaneda (2007) at position end figures 08^s.89 and 26''.8. Within 0.1 arcsec of this position there is the very faint star USNO-B1.0 1112-0430634, detected only on red POSS-II plates at R = 20 mag and with no counterpart in the 2MASS catalog. Its position end figures are 08^s.87 and 26''.8 (1 arcsec error). If this was the progenitor, the amplitude of the outburst in the *B* band exceeded 12.5 mag.

Our coordinates for Nova Cyg 2008 are: $\alpha_{J2000} = 19^{h}58^{m}33^{s}.36 \ (\pm 0^{s}.18), \ \delta_{J2000} = +29^{\circ}52'06''.6 \ (\pm 0''.31)$, close to the coordinates reported by Nakano (2008) at position end figures $33^{s}.39$ and 06''.5. Three arcsec away there is the very faint star USNO-B1 1198-0459968 (R = 18 mag) at position end figures $33^{s}.16$ and 06''.4 (1 arcsec error), visible only on POSS-II red plates and not on blue ones, with no counterpart in the 2MASS catalog. If this star was the progenitor, the amplitude of the outburst was larger than 12 mag in the *B* band.

We would like to thank J. Gross, W. Cooney and D. Terrell for their help in setting up the SRO observations and relinquishing their observing time.

References:

- Kaneda, H., 2008, IAUC, 8907
- Landolt, A.U., 1983, AJ, 88, 439
- Landolt, A.U., 1992, AJ, 104, 340
- Munari, U., Siviero, A., Valisa, P., Frigo, A., Dallaporta, S., Cherini, G., Dalla Via G., 2007, *CBET*, **1183**
- Nakano, S., 2008, IAUC, 8907
- Nakano, S., 2008, IAUC, 8927
- Wallace, P., 1994, ASP Conf. Ser., 61, 481, Astronomical Data Analysis Software and Systems III

Yamaoka, H., 2007, CBET, 1181

	Nova V	ul 20	007 N.2		$\alpha_{\mathrm{J}_{2}^{\mathrm{s}}}$	2000 =	= 19	48 ()8.87	$\delta_{ m J}$	2000	= +	-21 1	5 26	.7
	α_{J2000} (:	±")	δ_{J2000} (±	=")	Ν	V ((±)	B–V	(±)	$V-R_{C}$; (±)	$R_{ m C}$ – $I_{ m C}$	c (±)	$V–I_{\rm C}$	(±)
а	297.053417	0.019	+21.302438	0.018	3	12.963	0.015	0.700	0.009	0.411	0.020	0.436	0.018	0.849	0.007
b	297.033846	0.019	+21.283494	0.012	3	13.009	0.010	1.764	0.020	0.973	0.021	0.902	0.018	1.868	0.039
с	297.047833	0.032	+21.266738	0.021	3	13.278	0.015	1.965	0.025	1.133	0.015	1.048	0.030	2.173	0.043
d	297.022789	0.023	+21.284726	0.010	3	13.477	0.014	0.776	0.013	0.462	0.017	0.481	0.020	0.945	0.008
е	297.063279	0.019	+21.245797	0.023	3	13.898	0.015	0.532	0.008	0.297	0.020	0.362	0.020	0.665	0.005
f	297.015996	0.013	+21.279974	0.019	3	14.021	0.020	0.571	0.007	0.301	0.017	0.355	0.022	0.662	0.012
g	297.074160	0.059	+21.236478	0.016	3	14.091	0.016	1.485	0.016	0.838	0.021	0.834	0.018	1.671	0.007
h	297.039547	0.046	+21.298807	0.030	3	14.137	0.015	0.815	0.015	0.479	0.018	0.495	0.019	0.976	0.005
i	297.043746	0.078	+21.220482	0.115	3	14.573	0.017	0.912	0.021	0.514	0.022	0.492	0.017	1.003	0.006
j	297.008875	0.042	+21.236568	0.014	3	14.927	0.021	0.776	0.026	0.460	0.016	0.539	0.024	1.007	0.017
1	297.019181	0.085	+21.211302	0.047	3	15.542	0.015	1.053	0.063	0.609	0.030	0.586	0.018	1.193	0.019
α	297 168824	0.000	$+21\ 425196$	0.038	3	10583	0.017	0.238	0.023	0.083	0.045			0.384	0.013
ß	296 853879	0.035	+21288030	0.007	3	10.715	0.044	0.166	0.045	0.115	0.028	0.283	0.033	0.407	0.030
γ	296.984049	0.037	+21.427287	0.016	3	11.096	0.018	0.994	0.011	0.391	0.061	0.406	0.032	0.799	0.032
δ	296.940301	0.028	+21.315796	0.008	3	11.490	0.015	0.357	0.016	0.177	0.045	0.239	0.040	0.422	0.011
ϵ	297.090971	0.013	+21.172636	0.020	3	11.952	0.015	0.338	0.007	0.174	0.017	0.232	0.021	0.411	0.010
	0			0	1 1	1 1 1 1	-	δ			• -		2 .		
	°.1.3	č	a♥ h●			0	-	4	• α		°°° °°	ંં ઇ	, , -	00 °	° ° °
	∾ – 。			0			-	1.	ింం	0	•	Å.°°	. • °	•. 0	Ο.
	F	-				0	-	-	° °	• •	å		° ° °	° 8	å

Figure 1. BVR_CI_C photometric comparison sequence around Nova Vul 2007 N.2. The cross indicates the nova. N is the number of nights in which the given star has been measured in the given band. The error in α and δ are in arcsec. The panel on the right covers a $20' \times 20'$ area centered on the nova and shows stars down to V=17.0. The dashed $6' \times 6'$ area is zoomed in on the left panel.

	Nova	Cyg	2008	α_{c}	J20(= 00	19 5	8 33	.36	$\delta_{ m J20}$	$_{00} =$	+29	9 52	06.6	
	α_{J2000} (=	±")	$\delta_{J2000} \ (\pm$:")	Ν	V ((±)	B-V	(\pm)	$V-R_{C}$	(±)	$R_{ m C}$ – $I_{ m C}$; (±)	$V–I_{\rm C}$	(\pm)
a	299.608794	0.037	+29.838600	0.041	3	11.610	0.012	0.599	0.059	0.373	0.040	0.297	0.034	0.664	0.051
b	299.614562	0.052	+29.845833	0.015	3	11.670	0.009	0.205	0.013	0.142	0.015	0.107	0.024	0.247	0.033
с	299.678984	0.049	+29.840657	0.017	3	12.266	0.004	1.247	0.009	0.808	0.016	0.776	0.040	1.581	0.055
d	299.684122	0.069	+29.833979	0.015	3	12.620	0.010	0.931	0.016	0.548	0.016	0.407	0.022	0.942	0.029
е	299.620718	0.055	+29.870303	0.023	3	13.052	0.010	0.396	0.010	0.259	0.015	0.231	0.024	0.488	0.032
f	299.695823	0.054	+29.860969	0.014	3	13.161	0.007	0.768	0.010	0.459	0.014	0.366	0.023	0.817	0.028
g	299.595427	0.012	+29.906124	0.015	3	13.375	0.010	1.779	0.026	1.004	0.019	0.895	0.023	1.888	0.029
h	299.681125	0.052	+29.855634	0.022	3	13.884	0.013	0.448	0.018	0.280	0.018	0.241	0.027	0.517	0.038
i	299.622727	0.063	+29.865338	0.047	3	14.014	0.011	1.451	0.023	0.850	0.020	0.765	0.023	1.606	0.033
j	299.647902	0.068	+29.875127	0.023	3	14.366	0.011	0.548	0.019	0.379	0.016	0.350	0.035	0.727	0.037
l	299.590166	0.082	+29.898026	0.036	3	14.553	0.013	1.266	0.034	0.743	0.018	0.659	0.023	1.394	0.033

Figure 2. BVR_CI_C photometric comparison sequence around Nova Cyg 2008. The cross indicates the nova. N is the number of nights in which the given star has been measured in the given band. The error in α and δ are in arcsec. The panel covers a $6' \times 6'$ area centered on the nova and shows stars down to V=17.0. Star b is HD 33314.

Number 5823

Konkoly Observatory Budapest 10 April 2008 *HU ISSN 0374 - 0676*

THE GEOS RR Lyr SURVEY

Eighth List of Maxima of RR Lyr Stars Observed by the Automated Telescopes TAROT

(GEOS Circular RR 33)

LE BORGNE, J. F.^{1,2}; KLOTZ, A.³; BOËR, M.⁴

¹ GEOS (Groupe Européen d'Observations Stellaires), 23 Parc de Levesville, 28300 Bailleau l'Evêque, France

² LATT, Observatoire Midi-Pyrénées, Université de Toulouse, Toulouse, France

³ CESR, Observatoire Midi-Pyrénées, Université de Toulouse, Toulouse, France

⁴ Observatoire de Haute-Provence, France

We present here the eighth list of light maxima of RR Lyrae stars from the GEOS RR Lyr Survey (Le Borgne et al., 2007), a GEOS program (http://www.upv.es/geos/) (Boninsegna et al., 2002) of automated observations of RR Lyr stars started in January 2004.

We are using the 25-cm automatic telescopes TAROT (http://tarot.obs-hp.fr) (Boër et al., 2001; Bringer et al., 1999). One of the telescopes is located in the northern hemisphere in Calern Observatory (Observatoire de la Côte d'Azur, Nice University, France). A second identical telescope in the southern hemisphere is located in ESO La Silla Observatory, Chile. Images are obtained by 2048×2048 Marconi 42-40 thin back illuminated CCDs. Field of view of both telescopes is $1.86^{\circ} \times 1.86^{\circ}$. Data reduction, from bias subtraction and flatfielding to photometry using SExtractor (Bertin & Arnouts, 1996), is performed automatically. The aim of this legacy project for the study of period variations of RR Lyr stars is to monitor maxima of light of these stars in order to feed the GEOS RR Lyr web database (http://dbRR.ast.obs-mip.fr).

The present list contains 727 maxima observed with no filter mainly between July and December 2007 (Table 1). The maxima are determined by fitting a polynomial function on the data points. The uncertainties on individual maxima are estimated from the data sampling of each maximum. The nominal sampling (two consecutive 30-s exposures taken every 10 minutes on a time baseline of 2 hours centered around the predicted maximum time) may be altered by local events (weather or telescope operation). This results uncertainties from 0.002 to 0.010 day. For a well observed star, the mean uncertainty on maxima is about 0.003 day (4.3 minutes). The O - C's are computed with the GCVS elements (Kholopov et al., 1985) and are displayed in Table 1 in column 'O - C'. The column 'E' contains the cycle number. Note that this cycle number takes into account the shifts induced by the elements when the period of the elements is very different from the actual one, the absolute value of O - C becoming greater than 1 period. When no elements are available in the GCVS, the reference of the elements, if exists, is given as a footnote of Table 1. The fifth column in Table 1 gives the abbreviation of the name of the observatory where the star was observed.

Table 1: maxima of RR Lyrae stars

Variable	Maximum	0 – C	Е	Obs.*	Variable	Maximum	0 – C	Е	Obs.*
	HJD 24	(days)				HJD 24	(days)		
SW And	$54310.482{\pm}0.003$	-0.769	81800.	С	TY Aps	$54326.607{\pm}0.002$	0.048	29102.	LS
SW And	$54321.542{\pm}0.005$	-0.766	81825.	С	TY Aps	$54330.620{\pm}0.002$	0.047	29110.	LS
SW And	$54357.363{\pm}0.002$	-0.769	81906.	С	VX Aps	$54325.599{\pm}0.002$	-0.005	41451.	LS
SW And	$54376.380{\pm}0.002$	-0.770	81949.	\mathbf{C}	VX Aps	$54339.657{\pm}0.003$	0.001	41480.	\mathbf{LS}
SW And	$54390.533{\pm}0.002$	-0.770	81981.	С	XZ Aps	$54292.580{\pm}0.003$	-0.214	43541.	\mathbf{LS}
SW And	$54413.531{\pm}0.002$	-0.771	82033.	С	XZ Aps	$54329.576{\pm}0.002$	-0.226	43604.	LS
SW And	$54433.433{\pm}0.003$	-0.771	82078.	С	BS Aps	$54292.505{\pm}0.003$	0.003	28963.	LS
SW And	$54438.297{\pm}0.002$	-0.773	82089.	С	BS Aps	$54317.582{\pm}0.005$	0.030	29006.	LS
SW And	$54449.354{\pm}0.003$	-0.773	82114.	С	CK Aps	$54283.571{\pm}0.002$	-0.178	28217.	LS
XX And	$54340.521{\pm}0.002$	0.228	21104.	С	CK Aps	$54284.818{\pm}0.002$	-0.178	28219.	LS
XX And	$54351.366{\pm}0.003$	0.232	21119.	С	DD Aps	$54317.550{\pm}0.003$	0.082	27140.	\mathbf{LS}
XX And	$54358.589{\pm}0.003$	0.228	21129.	С	DI Aps	$54283.704{\pm}0.002$	-0.024	35116.	LS
XX And	$54366.542{\pm}0.005$	0.230	21140.	С	DI Aps	$54319.529{\pm}0.003$	-0.027	35185.	LS
XX And	$54379.550{\pm}0.005$	0.229	21158.	С	EL Aps	$54283.789{\pm}0.003$	-0.174	45355.	LS
XX And	$54385.332{\pm}0.003$	0.229	21166.	С	EL Aps	$54322.643{\pm}0.005$	-0.161	45422.	LS
XX And	$54395.451{\pm}0.003$	0.230	21180.	С	EX Aps	$54286.849{\pm}0.004$	0.013	55857.	\mathbf{LS}
XX And	$54405.567{\pm}0.003$	0.227	21194.	С	EX Aps	$54341.579{\pm}0.005$	0.015	55973.	\mathbf{LS}
XX And	$54408.461{\pm}0.003$	0.230	21198.	С	EX Aps	$54367.529{\pm}0.005$	0.016	56028.	LS
XX And	$54419.305{\pm}0.003$	0.233	21213.	С	LU Aps	$54283.863{\pm}0.005$	0.196	22500.	\mathbf{LS}
XX And	$54432.310{\pm}0.002$	0.228	21231.	С	SW Aqr	$54316.408{\pm}0.003$	0.000	63616.	С
XX And	$54434.488{\pm}0.005$	0.238	21234.	С	SW Aqr	$54343.510{\pm}0.005$	0.003	63675.	С
XX And	$54437.368{\pm}0.007$	0.227	21238.	С	SW Aqr	$54349.480{\pm}0.004$	0.002	63688.	\mathbf{C}
AT And	$54300.456{\pm}0.005$	-0.006	19382.	С	SW Aqr	$54355.449{\pm}0.002$	0.000	63701.	\mathbf{C}
AT And	$54337.480{\pm}0.005$	0.003	19442.	С	SW Aqr	$54356.370{\pm}0.005$	0.002	63703.	\mathbf{C}
AT And	$54366.465{\pm}0.002$	-0.007	19489.	С	SW Aqr	$54372.439{\pm}0.002$	-0.004	63738.	С
AT And	$54368.324{\pm}0.005$	0.001	19492.	С	SX Agr	$54356.388{\pm}0.005$	-0.114	27179.	С
AT And	$54387.442{\pm}0.004$	-0.005	19523.	С	SX Aqr	$54359.604{\pm}0.003$	-0.113	27185.	\mathbf{LS}
AT And	$54405.335{\pm}0.005$	-0.003	19552.	С	SX Aqr	$54371.393{\pm}0.003$	-0.109	27207.	С
AT And	$54406.570{\pm}0.006$	-0.002	19554.	С	SX Aqr	$54401.389{\pm}0.002$	-0.113	27263.	С
AT And	$54408.426{\pm}0.003$	0.004	19557.	С	TZ Aqr	$54317.470{\pm}0.005$	0.019	29357.	С
AT And	$54411.506{\pm}0.004$	-0.001	19562.	С	TZ Aqr	$54319.748{\pm}0.003$	0.012	29361.	\mathbf{LS}
AT And	$54432.477{\pm}0.003$	-0.005	19596.	С	TZ Aqr	$54327.742{\pm}0.002$	0.009	29375.	LS
AT And	$54447.286{\pm}0.004$	-0.002	19620.	С	TZ Aqr	$54329.459{\pm}0.002$	0.013	29378.	С
CI And	$54337.563{\pm}0.005$	0.108	38412.	С	TZ Aqr	$54345.449{\pm}0.005$	0.009	29406.	С
CI And	$54339.502{\pm}0.002$	0.108	38416.	С	TZ Aqr	$54378.582{\pm}0.005$	0.013	29464.	LS
CI And	$54340.469{\pm}0.002$	0.106	38418.	С	WZ Aqr	$54289.817{\pm}0.004$	0.068	67878.	LS
CI And	$54342.412{\pm}0.003$	0.110	38422.	С	WZ Aqr	$54351.602{\pm}0.004$	0.071	68003.	\mathbf{LS}
CI And	$54354.526{\pm}0.002$	0.106	38447.	С	YZ Aqr	$54358.666{\pm}0.002$	0.053	34414.	\mathbf{LS}
CI And	$54356.464{\pm}0.003$	0.105	38451.	С	AA Aqr	$54325.712{\pm}0.003$	-0.118	55145.	\mathbf{LS}
CI And	$54386.516{\pm}0.002$	0.104	38513.	С	AA Aqr	$54328.757{\pm}0.003$	-0.117	55150.	\mathbf{LS}
CI And	$54407.356{\pm}0.003$	0.102	38556.	С	AA Aqr	$54361.636{\pm}0.004$	-0.118	55204.	LS
CI And	$54416.565{\pm}0.003$	0.101	38575.	\mathbf{C}	AA Aqr	$54383.555{\pm}0.002$	-0.119	55240.	LS
CI And	$54422.3826{\pm}0.0018$	0.1018	38587.	\mathbf{C}	BN Aqr	$54299.801{\pm}0.002$	0.554	34977.	LS
CI And	$54423.348{\pm}0.003$	0.098	38589.	С	BN Aqr	$54330.801{\pm}0.002$	0.558	35043.	LS
CI And	$54432.558{\pm}0.002$	0.098	38608.	С	BN Aqr	$54344.420{\pm}0.003$	0.557	35072.	\mathbf{C}
CI And	$54435.466{\pm}0.002$	0.098	38614.	\mathbf{C}	BN Aqr	$54347.709{\pm}0.006$	0.558	35079.	LS
CI And	$54438.373{\pm}0.003$	0.097	38620.	\mathbf{C}	BN Aqr	$54375.420{\pm}0.002$	0.560	35138.	\mathbf{C}
DR And	$54351.476{\pm}0.002$	-0.019	30422.	\mathbf{C}	BN Aqr	$54380.586{\pm}0.005$	0.560	35149.	LS
DR And	$54368.360{\pm}0.003$	-0.028	30452.	С	BO Aqr	$54326.792{\pm}0.002$	0.141	18307.	LS
DR And	$54378.509{\pm}0.002$	-0.015	30470.	С	BO Aqr	$54358.716{\pm}0.003$	0.141	18353.	LS
DR And	$54396.535{\pm}0.002$	-0.009	30502.	\mathbf{C}	BR Aqr	$54328.816{\pm}0.002$	-0.156	34641.	\mathbf{LS}
DR And	$54405.540{\pm}0.003$	-0.014	30518.	\mathbf{C}	BR Aqr	$54329.780{\pm}0.002$	-0.156	34643.	\mathbf{LS}
DR And	$54412.290{\pm}0.003$	-0.022	30530.	\mathbf{C}	BR Aqr	$54349.539{\pm}0.002$	-0.154	34684.	\mathbf{C}
DR And	$54430.313{\pm}0.005$	-0.018	30562.	С	BR Aqr	$54350.499{\pm}0.002$	-0.158	34686.	\mathbf{C}
DR And	$54431.449{\pm}0.010$	-0.009	30564.	\mathbf{C}	BR Aqr	$54378.455{\pm}0.004$	-0.151	34744.	\mathbf{C}
DR And	$54448.3436{\pm}0.0015$	-0.0075	30594.	\mathbf{C}	BR Aqr	$54401.589{\pm}0.005$	-0.147	34792.	LS
TY Aps	$54298.501{\pm}0.005$	0.037	29046.	\mathbf{LS}	CP Aqr	$54307.463{\pm}0.002$	-0.110	35440.	\mathbf{C}
TY Aps	$54319.582{\pm}0.002$	0.046	29088.	\mathbf{LS}	CP Aqr	$54326.465{\pm}0.002$	-0.108	35481.	\mathbf{C}

Variable	Maximum	0 – C	Е	Obs.*	Variable	Maximum	0 – C	Е	Obs.*
	HJD 24	(days)				HJD 24	(days)		
CP Aqr	$54327.389 {\pm} 0.004$	-0.111	35483.	С	AH Cam	$54395.464{\pm}0.005$	-0.421	42487.	С
CP Agr	$54333.416{\pm}0.004$	-0.108	35496.	С	AH Cam	$54419.427 {\pm} 0.003$	-0.426	42552.	С
CP Aqr	$54352.413{\pm}0.002$	-0.111	35537.	С	AH Cam	$54433.466{\pm}0.006$	-0.399	42590.	С
CP Agr	$54358.438{\pm}0.003$	-0.110	35550.	С	AH Cam	$54434.571{\pm}0.002$	-0.400	42593.	С
CP Aar	54371.420 ± 0.005	-0.103	35578.	С	AH Cam	54436.4042 ± 0.0014	-0.4103	42598.	С
CP Aar	54372.340 ± 0.002	-0.110	35580.	Ċ	AH Cam	54441.565 ± 0.005	-0.412	42612.	Ċ
DN Agr	54328.752 ± 0.003	0.045	40873.	ĽS	AH Cam	54453.362 ± 0.005	-0.414	42644.	Č
DN Agr	54335.724 ± 0.006	0.045	40884.	LS	BW Cnc	54419.542 ± 0.003	0.209	27162.	Č
FX Aar	54320.756 ± 0.003	0.120	15449.	LS	SS Cnc	54419.544 ± 0.0014	0.051	85319.	Ċ
GP Aar	54328693 ± 0.003	01120	101101	LS	SS Cnc	544485627 ± 00010	0.0500	85398	Č
GP Agr	54352580 ± 0.010			LS	TT Cnc	54442589 ± 0.003	0 105	25731	č
GP Agr	54383390 ± 0.008			C	AN Cnc	54420.624 ± 0.003	0 143	29439	č
HH Aar	54336635 ± 0.005			ĽS	AN Cnc	544385495 ± 0.0019	0 1445	29472	č
	54323643 ± 0.003	0.033	82856	LS	AS Cnc	54414595 ± 0.0015	0.349	2/637	c
	54325.040 ± 0.003 54325.456 ± 0.003	0.035	82861	C	AS Cnc	54417.687 ± 0.003	0.343	24001.	c
	$54362, 450\pm0.005$ $54362, 356\pm0.005$	0.034	82963	C	AS Cnc	$54445 473 \pm 0.005$	0.351	24042. 24687	c
V3/1 A al	54302.300 ± 0.003 54288.447 ± 0.003	0.034	22650	C	AS Cnc	54453503 ± 0.003	0.351	24001.	c
V341 Aql	54200.441 ± 0.005 54202.403 ± 0.005	0.031	22000. 22657	C	$FZ Cnc^{-1}$	54447534 ± 0.003	-0.031	13364	c
V341 Aql	54232.435 ± 0.005 54330.639 ±0.002	0.031	22001.	LS	$EZ Chc^{-1}$	54454.626 ± 0.003	-0.031	13304. 13377	C
V341 Aql	54350.039 ± 0.002 54354.341 ± 0.003	0.027	22123.			54454.020 ± 0.002 54451.467 ±0.002	-0.034	27597	C
V341 Aql	54354.341 ± 0.003 54258 286 ±0.005	0.030	22704. 99771	C	AA CMI	54451.407 ± 0.002 54465 756 ± 0.002	0.055	97557	U Te
V 341 AQI	54338.380 ± 0.003 54227 602 ± 0.004	0.029 0.174	22111.	U TC	DD CM:	54405.750 ± 0.003 52754 541 ±0.010	0.034	70000	Lo C
OZ Arr	54527.092 ± 0.004	0.174	29100.	цо	DD CM:	53754.541 ± 0.010	0.112	70909.	d
CZ Ara	54280.700 ± 0.005	-0.156	37318. 27565	LS	BBCMI	53758.505 ± 0.010	0.111	17940	U TC
UL Ara	54320.545 ± 0.003	-0.159	37303. arear	LS	IU Car	54410.091 ± 0.005	0.200	17249.	L2 L2
A Ari	54380.030 ± 0.002	0.331	20800. 05017	C	IU Car	54432.810 ± 0.003	0.271	17279.	<u>г</u> э
X Ari	54394.452 ± 0.005	0.333	25817.	C	IU Cas	54321.558 ± 0.002	-0.107	39381.	C
X Ari	54396.406 ± 0.003	0.334	25820.	C	IU Cas	54377.405 ± 0.005	-0.107	39467.	C
X Ari	54407.478 ± 0.005	0.337	25837.	C	IU Cas	54386.500 ± 0.003	-0.104	39481.	C
X Ari	54411.383 ± 0.002	0.335	25843.	C	IU Cas	54397.539 ± 0.003	-0.104	39498.	C
X Ari	54410.593 ± 0.005	0.336	25851.	C	IU Cas	54401.435 ± 0.003	-0.105	39504.	C
X Ari	54431.569 ± 0.003	0.335	25874.	C	IU Cas	54412.474 ± 0.003	-0.105	39521.	C
X Arı	54435.476 ± 0.002	0.336	25880.	C	IU Cas	54418.319 ± 0.007	-0.105	39530.	C
X Ari	54450.453 ± 0.004	0.336	25903.	C	IU Cas	54429.362 ± 0.003	-0.101	39547.	C
TZ Aur	54383.520 ± 0.002	0.013	88035.	C	IU Cas	54438.449 ± 0.003	-0.105	39561.	C
TZ Aur	54408.586 ± 0.002	0.012	88099.	C	V 363 Cas	54338.388 ± 0.005	0.543	33292.	C
TZ Aur	54447.362 ± 0.002	0.012	88198.	C	V 363 Cas	54339.481 ± 0.003	0.543	33294.	C
BH Aur	54370.527 ± 0.002	-0.003	25475.	C	V363 Cas	54350.420 ± 0.005	0.551	33314.	C
BH Aur	$54385.581 {\pm} 0.005$	0.000	25508.	C	V 363 Cas	54358.624 ± 0.010	0.557	33329.	C
BH Aur	54397.436 ± 0.002	-0.003	25534.	C	V 363 Cas	54370.628 ± 0.005	0.537	33351.	C
BH Aur	54408.386 ± 0.002	0.001	25558.	C	V 363 Cas	54374.478 ± 0.005	0.561	33358.	C
BH Aur	54411.577 ± 0.002	-0.001	25565.	C	V 363 Cas	54385.410 ± 0.004	0.563	33378.	C
BH Aur	54452.621 ± 0.004	-0.005	25655.	C	V 363 Cas	54387.592 ± 0.004	0.559	33382.	C
ST Boo	$54287.489 {\pm} 0.005$	0.096	56414.	С	V 363 Cas	54396.345 ± 0.005	0.567	33398.	С
ST Boo	$54292.467{\pm}0.002$	0.096	56422.	С	V363 Cas	$54402.339 {\pm} 0.005$	0.549	33409.	С
U Cae	$54427.653 {\pm} 0.002$	-0.107	47912.	LS	V363 Cas	$54415.447 {\pm} 0.010$	0.540	33433.	С
U Cae	$54432.696 {\pm} 0.002$	-0.102	47924.	$_{ m LS}$	V363 Cas	$54416.560{\pm}0.005$	0.560	33435.	С
U Cae	54440.6681 ± 0.0018	-0.1056	47943.	$_{ m LS}$	V363 Cas	$54432.398{\pm}0.005$	0.549	33464.	С
U Cae	$54443.604{\pm}0.002$	-0.108	47950.	$_{ m LS}$	AQ Cep	$54102.291 {\pm} 0.002$	0.062	39871.	С
U Cae	$54445.7019 {\pm} 0.0015$	-0.1094	47955.	$_{\rm LS}$	RR Cet	$54011.768 {\pm} 0.002$	0.006	37666.	LS
U Cae	$54448.6388 {\pm} 0.0015$	-0.1110	47962.	LS	RR Cet	$54021.722 {\pm} 0.002$	0.006	37684.	LS
U Cae	$54450.7393{\pm}0.0010$	-0.1095	47967.	LS	RR Cet	$54026.699 {\pm} 0.002$	0.005	37693.	LS
U Cae	$54453.682{\pm}0.002$	-0.105	47974.	\mathbf{LS}	RR Cet	$54031.677 {\pm} 0.002$	0.006	37702.	\mathbf{LS}
U Cae	$54463.758{\pm}0.003$	-0.104	47998.	$_{\rm LS}$	RR Cet	$54036.653{\pm}0.002$	0.005	37711.	LS
U Cae	$54464.5965{\pm}0.0016$	-0.1055	48000.	LS	RR Cet	$54047.715\pm\!0.002$	0.006	37731.	\mathbf{LS}
U Cae	$54466.6925{\pm}0.0015$	-0.1085	48005.	\mathbf{LS}	RR Cet	$54051.587 {\pm} 0.002$	0.007	37738.	\mathbf{LS}
$\operatorname{AH} \operatorname{Cam}$	$54370.415{\pm}0.003$	-0.396	42419.	\mathbf{C}	RR Cet	$54358.518 {\pm} 0.002$	0.007	38293.	\mathbf{C}
$\operatorname{AH} \operatorname{Cam}$	$54378.529{\pm}0.003$	-0.394	42441.	\mathbf{C}	RR Cet	$54379.533{\pm}0.003$	0.007	38331.	\mathbf{C}
$\operatorname{AH} \operatorname{Cam}$	$54387.346{\pm}0.005$	-0.427	42465.	\mathbf{C}	RR Cet	$54381.744{\pm}0.003$	0.006	38335.	\mathbf{LS}

Table 1 (cont.): maxima of RR Lyrae stars

Variable	Maximum	O = C	E	Obs *	Variable	Maximum	O = C	E	Obs *
variable	HID 94	(days)	Ц	0.05.	variable	HID 94	(davs)	Ц	0.05.
BR Cet	$54412\ 714\pm0\ 003$		38301	LS	DM Cyg	54299500 ± 0.002	0.061	27907	С
BB Cet	$54419,353\pm0,004$	0.001	38403	C	DM Cyg	54328469 ± 0.002	0.001	27976	C
RR Cet	54435.388 ± 0.002	0.007	38432.	č	DM Cyg	54339.386 ± 0.002	0.060	28002.	$\tilde{\mathbf{C}}$
RR Cet	54440.364 ± 0.003	0.005	38441.	č	DM Cyg	54344.422 ± 0.002	0.058	28014.	č
BU Cet	54402.581 ± 0.003	0.077	24862.	LS	DM Cyg	54365.414 ± 0.002	0.057	28064.	Č
BU Cet	54416.657 ± 0.005	0.082	24886.	LS	DM Cyg	54394.3871 ± 0.0015	0.0597	28133.	Č
BU Cet	54419.586 ± 0.006	0.080	24891.	LS	DM Cyg	54402.365 ± 0.003	0.060	28152.	Č
RX Cet	54351.853 ± 0.006	0.218	24797.	LS	DM Cyg	54415.390 ± 0.005	0.070	28183.	Č
RX Cet	54374.807 ± 0.004	0.225	24837.	LS	DU Del	53215.575 ± 0.005	-0.273	42576.	č
BX Cet	54416.688 ± 0.005	0.226	24910.	LS	DX Del	54296.417 ± 0.005	0.060	31588.	Ĉ
RZ Cet	54379.680 ± 0.010	-0.150	40095.	LS	DX Del	54330.441 ± 0.002	0.055	31660.	Č
RZ Cet	54394.495 ± 0.004	-0.142	40124.	Č	DX Del	54374.396 ± 0.002	0.057	31753.	č
RZ Cet	54435.343 ± 0.002	-0.143	40204.	Ċ	DX Del	54375.341 ± 0.005	0.057	31755.	Ĉ
RZ Cet	$54436.3625 {\pm} 0.0016$	-0.1449	40206.	С	DX Del	$54400.387 {\pm} 0.003$	0.054	31808.	С
UU Cet	54330.707 ± 0.004	-0.129	21651.	\mathbf{LS}	DX Del	54401.335 ± 0.002	0.057	31810.	Ċ
UU Cet	$54375.552{\pm}0.005$	-0.134	21725.	LS	VW Dor	$54406.664{\pm}0.005$	-0.083	28088.	\mathbf{LS}
UU Cet	$54401.621{\pm}0.010$	-0.126	21768.	\mathbf{LS}	VW Dor	$54407.801{\pm}0.003$	-0.087	28090.	\mathbf{LS}
UU Cet	$54415.555 {\pm} 0.003$	-0.132	21791.	\mathbf{LS}	RW Dra	$54287.477 {\pm} 0.002$	0.171	33663.	С
RW Col	$54420.804 {\pm} 0.005$	-0.243	50285.	LS	RW Dra	$54291.454{\pm}0.002$	0.162	33672.	С
RW Col	$54426.803 {\pm} 0.004$	-0.065	50296.	LS	XZ Dra	$54311.474{\pm}0.002$	-0.104	25988.	С
RW Col	$54431.712 {\pm} 0.006$	0.081	50305.	LS	XZ Dra	$54312.423{\pm}0.002$	-0.108	25990.	С
RW Col	$54443.708 {\pm} 0.003$	-0.096	50328.	\mathbf{LS}	XZ Dra	$54339.580{\pm}0.004$	-0.111	26047.	С
RX Col	$54402.718{\pm}0.005$	-0.033	43078.	\mathbf{LS}	XZ Dra	$54342.436{\pm}0.003$	-0.114	26053.	С
RX Col	$54427.658{\pm}0.005$	-0.043	43120.	\mathbf{LS}	XZ Dra	$54350.539{\pm}0.005$	-0.112	26070.	С
RX Col	$54456.765 {\pm} 0.006$	-0.044	43169.	\mathbf{LS}	BC Dra	$53440.587 {\pm} 0.010$	0.081	15512.	С
RX Col	$54465.667 {\pm} 0.003$	-0.053	43184.	\mathbf{LS}	BC Dra	$53525.496{\pm}0.010$	0.080	15630.	\mathbf{C}
RY Col	$54379.776{\pm}0.010$	-0.169	41911.	\mathbf{LS}	BC Dra	$53941.410{\pm}0.010$	0.079	16208.	С
RY Col	$54402.787 {\pm} 0.004$	-0.143	41959.	\mathbf{LS}	BC Dra	$53961.557 {\pm} 0.010$	0.078	16236.	\mathbf{C}
RY Col	$54425.763{\pm}0.003$	-0.152	42007.	\mathbf{LS}	BC Dra	$54295.450{\pm}0.005$	0.088	16700.	С
RY Col	$54440.596{\pm}0.002$	-0.164	42038.	\mathbf{LS}	BC Dra	$54344.382 {\pm} 0.005$	0.089	16768.	С
S Com	$54454.674{\pm}0.003$	-0.100	23526.	С	BC Dra	$54372.455 {\pm} 0.014$	0.098	16807.	С
WW CrA	$54328.607 {\pm} 0.004$	-0.035	41184.	\mathbf{LS}	BC Dra	$54400.502{\pm}0.006$	0.082	16846.	С
V413 CrA	$54286.712 {\pm} 0.005$	0.044	21696.	\mathbf{LS}	BC Dra	$54411.296{\pm}0.008$	0.082	16861.	С
V592 CrA	$54340.610{\pm}0.005$	0.195	39311.	\mathbf{LS}	BC Dra	$54452.314{\pm}0.004$	0.084	16918.	С
SW Cru	$54283.510{\pm}0.005$	0.069	86195.	\mathbf{LS}	BD Dra	$54328.473{\pm}0.002$	0.745	21311.	С
UY Cyg	$54301.439{\pm}0.005$	0.056	56835.	С	BD Dra	$54331.410{\pm}0.002$	0.737	21316.	С
UY Cyg	$54311.530{\pm}0.002$	0.054	56853.	С	BD Dra	$54371.451{\pm}0.005$	0.722	21384.	С
UY Cyg	$54329.469{\pm}0.002$	0.051	56885.	С	BD Dra	$54372.633{\pm}0.005$	0.726	21386.	\mathbf{C}
UY Cyg	$54342.370{\pm}0.005$	0.055	56908.	С	BD Dra	$54378.529{\pm}0.002$	0.731	21396.	\mathbf{C}
UY Cyg	$54352.461 {\pm} 0.002$	0.054	56926.	С	BD Dra	$54397.372 {\pm} 0.002$	0.725	21428.	\mathbf{C}
UY Cyg	$54365.360{\pm}0.003$	0.056	56949.	С	BD Dra	$54401.493{\pm}0.002$	0.722	21435.	\mathbf{C}
UY Cyg	$54366.477 {\pm} 0.002$	0.052	56951.	С	BD Dra	$54407.386{\pm}0.005$	0.725	21445.	С
UY Cyg	$54370.402 {\pm} 0.002$	0.052	56958.	С	BD Dra	$54423.307 {\pm} 0.003$	0.741	21472.	С
UY Cyg	$54374.327 {\pm} 0.003$	0.052	56965.	\mathbf{C}	BD Dra	$54430.369{\pm}0.005$	0.735	21484.	\mathbf{C}
UY Cyg	$54375.449{\pm}0.002$	0.053	56967.	\mathbf{C}	BD Dra	$54450.401\!\pm\!0.003$	0.739	21518.	\mathbf{C}
UY Cyg	$54383.297 {\pm} 0.003$	0.051	56981.	\mathbf{C}	BK Dra	$54289.431{\pm}0.003$	-0.154	48585.	\mathbf{C}
UY Cyg	$54397.322{\pm}0.003$	0.058	57006.	\mathbf{C}	BK Dra	$54331.467 {\pm} 0.002$	-0.155	48656.	\mathbf{C}
UY Cyg	$54416.385 {\pm} 0.003$	0.057	57040.	\mathbf{C}	BT Dra	$54290.411 {\pm} 0.003$	-0.014	40015.	\mathbf{C}
XZ Cyg ²	$54285.490{\pm}0.005$	0.001	12248.	С	RT Equ	$54318.653{\pm}0.004$	0.035	36978.	LS
XZ Cyg ²	$54286.420{\pm}0.002$	-0.002	12250.	С	RT Equ	$54322.654{\pm}0.003$	0.033	36987.	$_{\rm LS}$
XZ Cyg ²	$54292.480 {\pm} 0.005$	-0.008	12263.	C	RT Equ	$54325.764{\pm}0.005$	0.030	36994.	\mathbf{LS}
XZ Cyg ²	54300.409 ± 0.003	-0.011	12280.	C	RT Equ	$54326.658 {\pm} 0.002$	0.034	36996.	\mathbf{LS}
$XZ Cyg^{2}$	$54335.417 {\pm} 0.002$	0.002	12355.	С	RT Equ	$54329.768{\pm}0.005$	0.031	37003.	LS
XZ Cyg ²	$54350.345 {\pm} 0.002$	-0.001	12387.	С	RT Equ	$54330.659{\pm}0.002$	0.032	37005.	LS
XZ Cyg ²	$54357.341 {\pm} 0.002$	-0.004	12402.	C	RX Eri	$54409.718 {\pm} 0.003$	-0.010	55713.	\mathbf{LS}
XZ Cyg ²	54368.541 ± 0.004	-0.002	12426.	C	RX Eri	$54416.763 {\pm} 0.003$	-0.012	55725.	LS
DM Cyg	54289.422 ± 0.003	0.060	27883.	C	RX Eri	54453.766 ± 0.005	-0.005	55788.	
DM Cyg	54294.456 ± 0.002	0.055	27895.	С	RX Eri	54466.686 ± 0.003	-0.005	55810.	\mathbf{LS}

Variable	Maximum	O - C	Е	Obs.*	Variable	Maximum	O - C	Е	Obs.*
SV Eri	$54415 641 \pm 0.007$	0.748	26426	LS	VZ Hor	54329 423+0.002	0.064	30835	
SV Eri	54410.041 ± 0.007 54430.634 ± 0.010	0.740	26420. 26447		AB Hor	54323.423 ± 0.002 54284.428 ± 0.006	-1.913	27200	C
SV Eri	$54445 625\pm0.007$	0.752 0.753	26468	LS	AB Her	54292.416 ± 0.005	-1210	27316	C
XV Eri	54432651 ± 0.005	-0.252	53530	LS	BD Her	$54317 432 \pm 0.005$	0 143	45767	C
XV Eri	54437.667 ± 0.010	-0.202	53530	LS	BD Her	54326413 ± 0.002	0.120	45786	C
XV Eri	54437.007 ± 0.010 54443.785 ± 0.004	-0.224	53550	LS	BD Her	$54327 354 \pm 0.002$	0.120	45788	C
XV Eri	54453722 ± 0.003	-0.202	53568	LS	BD Her	$54335 442\pm0.003$	0.110	45805	C
XV Eri	54463.6717 ± 0.0015	-0.242	53586	LS	BD Her	$54344\ 431\pm0\ 002$	0.144	45824	C
BB Eri	54408780 ± 0.003	0.2000	26056	LS	BD Her	$54345 376\pm 0.002$	0.126 0.126	45826	C
BB Eri	54452.662 ± 0.003	0.221 0.227	26000.	LS	UU Hor	54357709 ± 0.002 54357709 ± 0.002	0.120	46040	LS
BX For	54368804 ± 0.002	-0.011	20100.	LS	UU Hor	54379.686 ± 0.002	0.140 0.147	46074	LS
BX For	54374753 ± 0.004	-0.035	24000.	LS	UU Hor	54406722 ± 0.004	0.141	46116	LS
BX For	544105831 ± 0.0016	-0.0440	24408	LS	SZ Hya	544486918 ± 0.0016	-0.1870	25630	C
BX For	54417752 ± 0.003	-0.043	21100. 24420	LS	BI Hya	54232577 ± 0.002	0.1010	20000. 50015	LS
BX For	54417.732 ± 0.003 54423.738 ± 0.003	-0.040	24420.	LS	DD Hya	54232.577 ± 0.002 54445.489 ± 0.002	-0.143	25410	C
BX For	54429.730 ± 0.003 54429.731 ± 0.003	-0.010	24400.	LS	DD Hya	54448.503 ± 0.002 54448.503 ± 0.0016	-0.140	25416	C
BX For	544327095 ± 0.000	-0.0182	24445	LS	DD Hya	54450.505 ± 0.0010 54450.517 ± 0.003	-0.133	25420	C
BX For	54402.1000 ± 0.0010 54447.610 ± 0.005	-0.0102	24470	LS	DD Hya	54450.517 ± 0.003 54451.516 ± 0.003	-0.135	25420.	C
SS For	54340.821 ± 0.005	-0.031	24470.		DC Hya	54451.510 ± 0.003 54466.833 ± 0.003	0.051	40585	
SS For	54340.821 ± 0.005 54401.754 ± 0.005	-0.136	31055. 31756	LS	ET Hya	54400.853 ± 0.005 54120.6834 ± 0.0018	0.001	40505. 26548	LS
SS For	54401.754 ± 0.003 54407.699 ± 0.003	-0.136	31768	LS	ET Hya	54120.0034 ± 0.0013 54142.6166 ± 0.0017	0.1356	26580 26580	LS
SS For	54407.035 ± 0.003 54413.645 ± 0.003	-0.130 -0.135	31780	LS	ET Hya	54142.0100 ± 0.0017 54155.643 ± 0.002	0.1350	26500.	LS
SW For	$54362\ 757\pm0.005$	-0.135	94007	TS	CO Hyp	54135.045 ± 0.002 54445.658 ± 0.004	0.137	200 <i>00</i> . 459.46	C C
SW For	54302.757 ± 0.005 54411.785 ± 0.005	0.415 0.415	24907. 24968		V Ind	54445.058 ± 0.004 54348.681 ± 0.005	-0.078	45240. 20672	
SW For	54411.735 ± 0.005 54428.658 \pm 0.05	0.415	24908.	LS	V Ind	54348.081 ± 0.000 54372.657 ± 0.002	-0.130	29072.	LS
SW For	54428.038 ± 0.003 54440.722 ± 0.008	0.409 0.417	24909.	LS	COLoc	54372.007 ± 0.002 54328 437 ±0.002	-0.140	29122.	
SW FOI	54440.722 ± 0.003 54280.746 ± 0.004	0.417	25004.	LO TC	CQ Lac	54328.437 ± 0.002 54322 205 ± 0.002	0.120	01114. 91199	C
SX FOI	54380.740 ± 0.004 54408 500±0.004	0.038	25147.	LO TC		54333.395 ± 0.003 54220 505 ± 0.004	0.124 0.124	01122. 91199	C
SX For	54408.599 ± 0.004 54493.728 ± 0.003	0.045	20190. 95918	LO TS		54359.595 ± 0.004 $54377 422 \pm 0.006$	0.124	31132. 31103	C
SX FOI	54423.728 ± 0.003 54427.652 ± 0.002	0.040	20210. 95941	LO TC		54377.422 ± 0.000 54285 482 ± 0.002	0.128	21206	C
SX For	54457.005 ± 0.005 54463.686 ±0.006	0.045	25241.	LS		54305.403 ± 0.003 54305.402 ± 0.003	0.129 0.127	31200. 21220	C
DR Com	54403.030 ± 0.000 54204.578 ± 0.002	0.040	20204.	C C	CQ Lac	54395.402 ± 0.002 54405.2007 ± 0.0017	0.127 0.127	01222. 91999	C
RR Gem	54394.578 ± 0.002 54206 562 ±0.002	-0.374	22010. 22020	C		54405.3227 ± 0.0017 54416 487 ± 0.004	0.1272	01200. 21956	C
RR Gem	54390.503 ± 0.002 54417.621 ± 0.003	-0.370	32820. 39873	C		54410.487 ± 0.004 54453.603 ± 0.005	0.131	01200. 07773	C
RR Gem	54417.021 ± 0.003 54446.6187 ± 0.0010	-0.375	32073. 32046	C	WW Loo	54455.095 ± 0.005 54446.567 ± 0.003	0.095	21113.	C
RR Gem	54440.0107 ± 0.0010 54440.4007 ± 0.0015	-0.3813	32940. 32053	C	VIN Leo	54440.507 ± 0.005 54414.684 ± 0.005	0.035	02400. 00022	C
PP Com	54449.4007 ± 0.0010 54454.5655 ± 0.0010	-0.3803	32 <i>3</i> 00. 22066	C	X LMI X I M:	54414.034 ± 0.000 54428.628 ± 0.002	0.200	22200.	C
RR Gem	54454.5055 ± 0.0010 54455 2608 ±0.0015	-0.3807	32900. 22069	C		54436.028 ± 0.003 54411.769 ± 0.003	0.199	22200.	
CI Com	5440853008 ± 0.0013 54408531 ±0.002	-0.3801	55526	C		54411.702 ± 0.002 54425.718 ± 0.002	0.042	22409.	LS
GI Gem	54408.551 ± 0.002 54450 550 ± 0.002	0.071	55622	C		54425.718 ± 0.002 54428.617 ±0.005	0.043	22400. 00499	LO TC
GI Gem	54450.559 ± 0.005 54454.4561 ± 0.0015	0.073	55649	C		54426.017 ± 0.000 54426.760 ± 0.000	0.034	22400.	LS
BW Cru	54454.4501 ± 0.0015 54245 714 ±0.005	0.0703	26217	U TC		54450.709 ± 0.002 54450.709±0.002	0.040	22002.	LO TC
TW Hor	54345.714 ± 0.005 54384 460 ±0.002	-0.137	20317. 21020	LS C		54450.722 ± 0.003 54452 621 ±0.002	0.045	22020.	LO TC
TW Her	54284.400 ± 0.002 54200 451 ±0.002	-0.011	01930. 91045	C	U Lep VV Lib	54455.051 ± 0.005 54284 626 ±0.002	0.045	22001.	LO TC
TW Her	54290.451 ± 0.003 54206.447 ± 0.002	-0.014	81060	C		54284.030 ± 0.003 54416 630 ±0.003	-0.027	24010.	
TW Her	54290.447 ± 0.002 54208 425 ± 0.002	-0.012	81 <i>9</i> 00. 81000	C	TTI	54410.030 ± 0.003 54440.525 ± 0.005	-0.034	29730.	C
TW Her	54306.433 ± 0.003 54310 433 ±0.003	-0.012	81005	C	TT Lyn	54440.525 ± 0.005 54447.606 ± 0.002	-0.030	29110. 20788	C
TW Her	54310.433 ± 0.002 54312 431 ±0.003	-0.012	82000	C	TT Lyn	54447.090 ± 0.002 54455.462 ± 0.004	-0.035	29100. 20801	C
TW Her	54312.431 ± 0.003 54316.431 ± 0.002	-0.012	82000. 82010	C	TWIm	54405.402 ± 0.004 54305.653 ± 0.003	-0.053	29001.	C
	54394 418±0.002	-0.008	82010. 82020	c		54408 664±0.000	0.004	19402.	C
TW Her	54324.410±0.002 54340 402±0 002	-0.013	04030. 82070	C	TW Lyn	54400.004±0.002 54451 550±0.002	0.055	19479. 10560	C
TW Her	54340.403±0.003 54343 400±0 002	-0.012	04070. 8207⊑	C	TW Lyn	54451.550±0.002 54459 514±0.004	0.000	19908. 10570	C
т w пег VV Цат	54342.400±0.003 54386 460±0.003	-0.013	04070. 71450	C	TW Lyn	54452.314±0.004 54453 477±0.009	0.050	19970. 10579	C
VA HEr VV II	54260.400 ± 0.002	-0.411	71400. 71461	C	TW Lyn	54455.477 ± 0.002	0.055	19972.	C
VA Her	54291.409±0.003	-0.411	71401. 20749	C	IW Lyn	54455.404 ± 0.002	0.055	19970.	C
VZ Her	54288.473 ± 0.002	0.004	39742. 20767	C	KZ Lyr	04280.000±0.000 54294 287 - 0.004	0.000	20028. 95704	C
VZ Her	54299.480 ± 0.002 54207 406 ± 0.000	0.003	39101. 20705	C	RZ Lyr	04024.001±0.004 54225 408±0.002	-0.011	20704. 25706	C
v∠ ner VZ ⊔∽	54307.400±0.002 54318 415±0.005	0.003	39/80. 20010	C	RZ LYR	04020.400±0.000 54220 510±0.002	-0.013	20700. 95716	C
v 7 ner	04010.410±0.000	0.004	99910'	U	nd lyr	94990'91970009	-0.014	20710.	U

Table 1 (cont.): maxima of RR Lyrae stars

	M:	0 0	D	01-*	V ₂	M	<u> </u>	E .	01-*
variable	Maximum	O = C	E	Obs.	variable	Maximum	U = U	E	Ubs.
D7 I	ПJD 24	(days)	05745	a		ПJD 24	(days)	44455	та
RZ Lyr	54345.352 ± 0.003	-0.007	25745.	C	AR Oct	54338.813 ± 0.004	0.016	44455.	
RZ Lyr	54306.314 ± 0.002	-0.006	25780.	C	V445 Oph	54280.018 ± 0.002	0.019	07359.	
RZ Lyr	54368.361 ± 0.002	-0.004	25790.	C	V455 Oph	54288.451 ± 0.005	-0.245	27440.	C
RZ Lyr	54370.407 ± 0.002	-0.003	25794	C	V455 Oph	54298.431 ± 0.003	-0.251	27462.	U Ta
RZ Lyr	54371.431 ± 0.005	-0.001	25796	C	V816 Oph	54299.571 ± 0.002	-0.102	47146.	
AW Lyr	53217.573 ± 0.004	0.053	56058.	C	V964 Ori	54415.679 ± 0.002	-0.388	45409.	LS
AW Lyr	$53219.568 {\pm} 0.005$	0.058	56062.	С	V964 Ori	$54416.689 {\pm} 0.002$	-0.387	45411.	LS
AW Lyr	$53224.538 {\pm} 0.003$	0.054	56072.	С	V964 Ori	$54423.7549 {\pm} 0.0015$	-0.3864	45425.	LS
AW Lyr	$53245.435 {\pm} 0.005$	0.058	56114.	С	V964 Ori	$54465.640{\pm}0.002$	-0.388	45508.	LS
AW Lyr	$54285.556{\pm}0.005$	0.017	58205.	\mathbf{C}	TX Pav	$54284.595{\pm}0.002$	-0.168	58978.	LS
AW Lyr	$54299.475 {\pm} 0.005$	0.008	58233.	\mathbf{C}	TX Pav	$54285.515{\pm}0.002$	-0.168	58980.	LS
AW Lyr	$54308.435 {\pm} 0.005$	0.014	58251.	\mathbf{C}	TX Pav	$54330.583{\pm}0.002$	-0.167	59078.	LS
AW Lyr	$54311.415 {\pm} 0.002$	0.009	58257.	\mathbf{C}	TX Pav	$54342.538{\pm}0.005$	-0.168	59104.	LS
AW Lyr	$54325.345 {\pm} 0.005$	0.011	58285.	\mathbf{C}	TY Pav	$54285.718{\pm}0.002$	0.275	17952.	LS
CN Lyr	$54285.483{\pm}0.005$	0.022	23820.	\mathbf{C}	TY Pav	$54325.499{\pm}0.003$	0.274	18008.	LS
CN Lyr	$54297.412 {\pm} 0.005$	0.021	23849.	\mathbf{C}	TY Pav	$54347.523{\pm}0.005$	0.275	18039.	LS
CN Lyr	$54311.394{\pm}0.002$	0.016	23883.	\mathbf{C}	WY Pav	$54285.625{\pm}0.005$	0.071	46582.	LS
CN Lyr	$54318.394{\pm}0.005$	0.023	23900.	\mathbf{C}	BH Pav	$54284.827{\pm}0.002$	0.202	55014.	LS
CN Lyr	$54325.381{\pm}0.003$	0.016	23917.	\mathbf{C}	BH Pav	$54319.655{\pm}0.002$	0.212	55087.	LS
CN Lyr	$54327.434{\pm}0.005$	0.012	23922.	\mathbf{C}	BH Pav	$54339.674{\pm}0.003$	0.198	55129.	LS
CN Lyr	$54339.372 {\pm} 0.003$	0.020	23951.	С	BH Pav	$54340.632{\pm}0.005$	0.203	55131.	\mathbf{LS}
CN Lyr	$54353.358{\pm}0.004$	0.019	23985.	С	BN Pav	$54289.755 {\pm} 0.002$	-0.027	45759.	\mathbf{LS}
IO Lyr	$54312.449{\pm}0.002$	-0.028	25460.	С	BN Pav	$54319.811{\pm}0.002$	-0.031	45812.	LS
IO Lyr	$54357.461{\pm}0.003$	-0.032	25538.	С	BN Pav	$54348.733{\pm}0.004$	-0.035	45863.	LS
IO Lyr	$54368.422{\pm}0.003$	-0.036	25557.	\mathbf{C}	BN Pav	$54381.627{\pm}0.005$	-0.037	45921.	\mathbf{LS}
Z Mic	$54299.685 {\pm} 0.006$	-0.117	21642.	\mathbf{LS}	BP Pav	$54285.551{\pm}0.002$	0.025	48290.	\mathbf{LS}
Z Mic	$54323.753 {\pm} 0.010$	-0.113	21683.	\mathbf{LS}	BP Pav	$54319.816 {\pm} 0.002$	-0.104	48354.	\mathbf{LS}
Z Mic	54329.631 ± 0.004	-0.104	21693.	LS	BP Pav	54320.869 ± 0.005	-0.125	48356.	LS
Z Mic	54373.646 ± 0.009	-0.109	21768.	LS	BP Pav	54345.649 ± 0.005	-0.066	48402.	LS
EM Mus	54296.564 ± 0.002	-0.150	33727.	LS	BP Pav	54372.527 ± 0.005	-0.058	48452.	LS
Y Oct	54292.628 ± 0.003	-0.206	40076.	LS	BP Pav	54373.5822 ± 0.0014	-0.0774	48454.	LS
Y Oct	54296508 ± 0.004	-0.205	40082		BP Pav	54382545 ± 0.003	-0.250	48471	
Y Oct	54327543 ± 0.003	-0.208	40130		BP Pav	54412589 ± 0.005	0.230 0.237	48526	
RS Oct	$54318\ 847\pm0\ 004$	0.200	39277	LS	DN Pav	$54285 834 \pm 0.002$	0.201	40020. 27970	
RS Oct	54320.681 ± 0.005	0.001	30281	LS	DN Pav	54209.004 ± 0.002 54209.888 ± 0.002	0.091	28000	
RS Oct	54329.846 ± 0.003	0.000	30301	LS	DN Pav	54369.686 ± 0.002	0.098	20000. 28149	
BV Oct	54283.688 ± 0.005	0.100	68574		DN Pav	54370.624 ± 0.003	0.090	20145.	
RV Oct	54205.000 ± 0.000 54327.402 ± 0.004	0.120 0.117	46746	IC	VV Pog	54310.024 ± 0.003 54208 442 ±0.002	0.035	20101.	C LD
RI Ott	54327.492 ± 0.004 54228 617 ± 0.002	0.117	40740.	LS TC	VV Deg	54236.442 ± 0.002 54217 488 ±0.002	-0.025	20566	C
RI Oct	54328.017 ± 0.003 54408 625 ± 0.005	0.115	40740.	LO TC	VV Peg	54317.400 ± 0.003 54229 498 ±0.002	-0.020	20600.	C
RI Ott	54408.025 ± 0.005	0.111	40090.	LO TC	VV Feg	54330.400 ± 0.003	-0.027	20664	C
SS Oct	54265.610 ± 0.004 54217 522 ± 0.002	-0.005	42239.	LO	VV Peg	54505.551 ± 0.002	-0.023	30004. 20702	C
SS Oct	54517.552 ± 0.005	-0.054	42290.	LO	VV Peg	54364.595 ± 0.002	-0.028	30703. 20700	C
SS Oct	54325.013 ± 0.002	-0.057	42303.	LS	VV Peg	54387.330 ± 0.004	-0.023	30709. 20746	C C
SS Oct	54320.855 ± 0.002	-0.059	42305.	LS	VV Peg	54405.3990 ± 0.0017	-0.0242	30740.	C C
SS Oct	54335.559 ± 0.005	-0.060	42319.		VV Peg	54431.285 ± 0.003	-0.023	30799.	C
SS Oct	54341.774 ± 0.005	-0.063	42329.		AV Peg	54291.503 ± 0.003	0.108	26900.	C
SS Oct	54369.760 ± 0.003	-0.060	42374.		AV Peg	54307.509 ± 0.003	0.108	26941.	C
SS Oct	54371.627 ± 0.005	-0.058	42377.		AV Peg	54309.461 ± 0.002	0.108	26946.	C
SS Oct	54409.563 ± 0.005	-0.053	42438.		AV Peg	54327.418 ± 0.003	0.108	26992.	C
UV Oct	54330.521 ± 0.002	-0.118	36862.	LS	AV Peg	54345.377 ± 0.002	0.110	27038.	C
UW Oct	54283.888 ± 0.002	-0.010	44875.		AV Peg	54363.335 ± 0.003	0.111	27084.	C
UW Oct	54357.670 ± 0.003	-0.013	45041.		AV Peg	54400.4199 ± 0.0017	0.1099	27179.	C
UW Oct	$54365.675 {\pm} 0.003$	-0.009	45059.	LS	AV Peg	$54402.373 {\pm} 0.004$	0.111	27184.	\mathbf{C}
UW Oct	$54372.788{\pm}0.003$	-0.008	45075.	LS	AV Peg	$54407.448{\pm}0.003$	0.111	27197.	\mathbf{C}
UW Oct	$54418.566 {\pm} 0.002$	-0.012	45178.	LS	AV Peg	$54429.309{\pm}0.003$	0.111	27253.	\mathbf{C}
$\operatorname{AR}\operatorname{Oct}$	$54325.808 {\pm} 0.002$	0.000	44422.	LS	BH Peg	$54337.513{\pm}0.005$	-0.081	23358.	\mathbf{C}
$\operatorname{AR}\operatorname{Oct}$	$54328.569 {\pm} 0.002$	0.006	44429.	LS	BH Peg	$54405.416{\pm}0.005$	-0.124	23464.	\mathbf{C}
$\operatorname{AR}\operatorname{Oct}$	$54334.874 {\pm} 0.005$	0.013	44445.	LS	BH Peg	$54432.340{\pm}0.003$	-0.121	23506.	\mathbf{C}

 $54431.765{\pm}0.003$

 $54456.739 {\pm} 0.007$

 $54351.859{\pm}0.003$

HK Pup

X Ret

 $54355.592 {\pm} 0.005$

 $54364.583 {\pm} 0.004$

 $54367.795 \!\pm\! 0.003$

27227.

27232.

0.159

0.160

LS

LS

Variable Maximum O - CЕ Obs.* Variable Maximum O - CЕ Obs.* HJD 24... (days) HJD 24... (days) BH Peg 54441.326 ± 0.007 -0.10923520.С X Ret 54363.660 ± 0.005 0.19730336. LS CG Peg $54296.487 {\pm} 0.002$ -0.04632526. \mathbf{C} X Ret $54380.856 {\pm} 0.004$ 0.17330371. LSCG Peg $54297.417 {\pm} 0.004$ -0.05032528. \mathbf{C} X Ret $54381.849 {\pm} 0.005$ 0.18230373. LS \mathbf{C} CG Peg $54310.499 {\pm} 0.002$ -0.04832556.X Ret $54420.733 {\pm} 0.002$ 0.19930452.LS \mathbf{C} CG Peg $54326.383{\pm}0.002$ -0.04732590.X Ret 54425.656 ± 0.002 0.20230462. LS \mathbf{C} CG Peg $54330.585{\pm}0.002$ -0.04932599.X Ret $54445.825 \!\pm\! 0.002$ 0.20030503. LSCG Peg $54354.409 {\pm} 0.002$ -0.04932650. \mathbf{C} X Ret $54448.777 {\pm} 0.003$ 0.20030509. LSCG Peg -0.04732697. \mathbf{C} V675 Sgr 40322. $54376.367 {\pm} 0.002$ $54285.698 {\pm} 0.004$ 0.065LS $54389.446{\pm}0.002$ \mathbf{C} CG Peg -0.04832725.V675 Sgr $54287.625 \!\pm\! 0.005$ 0.06540325.LSCG Peg \mathbf{C} $54411.402{\pm}0.005$ -0.04732772.V756 Sgr 0.09747455.LS $54299.582 {\pm} 0.003$ \mathbf{C} CG Peg V756 Sgr -0.04732774.0.09747501.LS 54412.336 ± 0.002 54323.684 ± 0.005 \mathbf{C} DZ Peg V1130 Sgr 47406.LS $54330.419 {\pm} 0.003$ 0.16033653. $54289.763 {\pm} 0.005$ 0.041 \mathbf{C} DZ Peg $54350.460{\pm}0.002$ 0.15933686. V1176 Sgr $54322.685 \!\pm\! 0.005$ 0.009 92697. LSDZ Peg 0.15633742. \mathbf{C} V1645 Sgr $54320.585 \!\pm\! 0.005$ -0.04336333. $54384.469{\pm}0.002$ LSV1645 Sgr DZ Peg $54386.295{\pm}0.003$ 0.16033745. \mathbf{C} $54326.668 {\pm} 0.004$ -0.04136344. LSDZ Peg $54392.369 {\pm} 0.005$ 0.16133755. \mathbf{C} V1645 Sgr $54341.595 \!\pm\! 0.005$ -0.04136371. LSV494 Sco \mathbf{C} AR Per $54352.525 {\pm} 0.002$ 0.05563719. $54287.659 {\pm} 0.002$ -0.14630799. LS \mathbf{C} AR Per $54355.501{\pm}0.002$ 0.05363726.V690 Sco $54286.581 {\pm} 0.003$ -0.01525371.LS \mathbf{C} AR Per $54358.483{\pm}0.003$ 0.05663733. RU Scl 54334.832 ± 0.004 0.40347050.LS \mathbf{C} AR Per $54383.591{\pm}0.003$ 0.05663792. RU Scl $54336.800 {\pm} 0.005$ 0.39847054.LSAR Per 63794. \mathbf{C} RU Scl 0.40347133. $54384.440{\pm}0.002$ 0.054 $54375.779 {\pm} 0.002$ LS \mathbf{C} AR Per $54386.568{\pm}0.003$ 0.05563799. RU Scl $54418.701 \!\pm\! 0.002$ 0.40547220.LS63806. \mathbf{C} 47222. AR Per 0.056RU Scl $54419.686 {\pm} 0.004$ 0.403LS $54389.548 {\pm} 0.004$ \mathbf{C} $\rm UZ~Scl$ AR Per $54396.357 {\pm} 0.002$ 0.05663822. $54299.779 {\pm} 0.002$ 0.03633816.LS \mathbf{C} AR Per UZ SclLS $54415.504{\pm}0.002$ 0.05363867. $54352.776 {\pm} 0.003$ 0.03733934. \mathbf{C} $\rm UZ~Scl$ AR Per $54422.3139{\pm}0.0015$ 0.054363883. $54375.679 {\pm} 0.002$ 0.03533985.LSAR Per 63909. \mathbf{C} UZ Scl0.03734065. $54433.379{\pm}0.003$ 0.055 $54411.611 {\pm} 0.005$ LSVW Scl AR Per $54435.5078 {\pm} 0.0017$ 0.056263914. \mathbf{C} $54322.779 {\pm} 0.003$ -0.00951894.LSAR Per $54448.2739 {\pm} 0.0016$ 0.055963944. \mathbf{C} VW Scl $54323.800 {\pm} 0.005$ -0.01051896.LSLSVW Scl RV Phe $54329.796{\pm}0.003$ -0.17420815. 54346.787 ± 0.004 -0.01451941.LSLSVW SclLSRV Phe $54350.661 {\pm} 0.003$ -0.18320850. 54363.649 ± 0.005 -0.01351974.LSVW Scl RV Phe $54372.734{\pm}0.005$ -0.17820887. $54365.693 {\pm} 0.005$ -0.01251978.LSRV Phe $54384.662 {\pm} 0.005$ -0.17820907.LSVW Scl $54407.585 \!\pm\! 0.004$ -0.01552060.LSVX Scl -0.56519966. LSTZ Phe $54320.817 {\pm} 0.004$ LS $54338.800 {\pm} 0.003$ TZ Phe $54349.746{\pm}0.005$ LSVX Scl $54345.806 {\pm} 0.005$ -0.56919977.LSTZ Phe $54365.749{\pm}0.005$ LSVX Scl $54382.755 \!\pm\! 0.003$ -0.58620035.LSVX Scl -0.59720093.LSTZ Phe $54373.757 {\pm} 0.006$ LS $54419.709 {\pm} 0.003$ TZ Phe LSVX Scl -0.60320107.LS $54376.831 {\pm} 0.005$ $54428.626 {\pm} 0.003$ AE Scl TZ Phe $54402.690{\pm}0.006$ LS $54339.775 \!\pm\! 0.005$ 0.19823854.LSTZ Phe $54413.776{\pm}0.008$ LSAE Scl $54361.793 {\pm} 0.002$ 0.21323894.LSU Pic $54377.817 {\pm} 0.002$ 0.05928865.LSAE Scl $54381.596 {\pm} 0.003$ 0.21223930.LSU Pic $54407.761 {\pm} 0.003$ 0.05828933.LSAE Scl $54410.752 \!\pm\! 0.002$ 0.21423983.LSAF Sct 50988. U Pic $54444.7522{\pm}0.0013$ 0.057929017.LS $54326.602 \!\pm\! 0.002$ 0.097LS0.06129035.LSAT Ser 0.03216725.LSU Pic $54452.682{\pm}0.003$ $54284.601 {\pm} 0.005$ RU Sex 3 \mathbf{C} \mathbf{C} 0.51421993.0.04033798. RY Psc $54331.586{\pm}0.005$ $54453.616 {\pm} 0.007$ RU Sex 3 \mathbf{C} \mathbf{C} RY Psc $54338.472{\pm}0.002$ 0.51422006. $54455.721 {\pm} 0.006$ 0.04333804. RY Psc $54356.484{\pm}0.003$ 0.51522040. \mathbf{C} BI Tel $54319.754 {\pm} 0.005$ -0.15948912.LS22059. \mathbf{C} RY Psc $54366.546{\pm}0.005$ 0.513HY Tel $54289.816 {\pm} 0.005$ 0.009 63521.LSRY Psc 0.51522082.LSHY Tel $54327.672 \!\pm\! 0.004$ 0.03063615.LS $54378.731{\pm}0.002$ \mathbf{C} RY Psc 0.51722102.HY Tel 63677. $54389.328 {\pm} 0.003$ $54352.644{\pm}0.003$ 0.046LS \mathbf{C} RW TrA RY Psc 22136.-0.16634209. LS $54407.351 {\pm} 0.003$ 0.530 $54284.790 {\pm} 0.002$ RY Psc LS $54412.648 {\pm} 0.003$ 0.53022146.RW TrA $54292.646 {\pm} 0.003$ -0.16534230. LSRY Psc $54415.293{\pm}0.003$ 0.52622151. \mathbf{C} RW TrA -0.16934425.LS $54365.581 {\pm} 0.005$ RY Psc $54433.309{\pm}0.002$ 0.53222185. \mathbf{C} RW TrA $54368.574 {\pm} 0.005$ -0.16834433. LSXX Pup $54446.725{\pm}0.002$ 0.46724504. \mathbf{LS} W Tuc $54322.837 \!\pm\! 0.004$ 0.15827162.LS0.009 27213.HH Pup 40772.LSW Tuc 0.159LS

LS

LS

W Tuc

W Tuc

24309.

30312.

-0.240

0.204

Table 1 (cont.): maxima of RR Lyrae stars

Variable	Maximum	O - C	Е	Obs.*	Variable	Maximum	0 – C	Е	Obs.*
	HJD 24	(days)				HJD 24	(days)		
W Tuc	$54371.644{\pm}0.005$	0.156	27238.	LS	BK Tuc	$54318.809 {\pm} 0.002$	-0.088	31958.	LS
W Tuc	$54376.784{\pm}0.003$	0.158	27246.	\mathbf{LS}	BK Tuc	$54335.860{\pm}0.003$	-0.093	31989.	LS
W Tuc	$54423.666{\pm}0.002$	0.157	27319.	\mathbf{LS}	TU UMa	$54448.6135 {\pm} 0.0015$	-0.0272	20832.	\mathbf{C}
W Tuc	$54425.596{\pm}0.003$	0.160	27322.	LS	EX UMa	$54412.564{\pm}0.006$	0.028	9947.	С
YY Tuc	$54327.817{\pm}0.003$	0.244	19579.	\mathbf{LS}	EX UMa	$54413.658{\pm}0.007$	0.037	9949.	\mathbf{C}
YY Tuc	$54334.802{\pm}0.003$	0.244	19590.	\mathbf{LS}	EX UMa	$54449.477{\pm}0.005$	0.029	10015.	\mathbf{C}
YY Tuc	$54341.784{\pm}0.005$	0.240	19601.	LS	SV Vol	$54439.777 {\pm} 0.003$	0.188	33546.	LS
YY Tuc	$54355.753{\pm}0.002$	0.239	19623.	LS	BN Vul	$54291.490{\pm}0.005$	0.061	14746.	С
YY Tuc	$54376.704{\pm}0.002$	0.234	19656.	LS	BN Vul	$54294.461{\pm}0.003$	0.062	14751.	С
YY Tuc	$54411.624{\pm}0.005$	0.228	19711.	\mathbf{LS}	BN Vul	$54316.444{\pm}0.005$	0.062	14788.	\mathbf{C}
AE Tuc	$54336.862{\pm}0.003$	0.174	48420.	\mathbf{LS}	BN Vul	$54332.480{\pm}0.003$	0.056	14815.	\mathbf{C}
AE Tuc	$54346.811{\pm}0.002$	0.178	48444.	LS	BN Vul	$54335.456{\pm}0.003$	0.062	14820.	С
AE Tuc	$54357.587{\pm}0.002$	0.180	48470.	LS	BN Vul	$54351.500{\pm}0.002$	0.064	14847.	\mathbf{C}
AG Tuc	$54329.748{\pm}0.003$	0.046	24125.	\mathbf{LS}	BN Vul	$54354.470{\pm}0.003$	0.064	14852.	\mathbf{C}
AG Tuc	$54344.817{\pm}0.002$	0.051	24150.	\mathbf{LS}	BN Vul	$54385.367{\pm}0.005$	0.066	14904.	\mathbf{C}
BK Tuc	$54284.701{\pm}0.003$	-0.083	31896.	\mathbf{LS}					
	*C = Calern, LS	= La Sil	lla						
	1 Boninsegna, 19	90							
	2 Baldwin and Sa	molyk, 20	003						
	$3 \; \texttt{Williams}$, 1993								

Table 1 (cont.): maxima of RR Lyrae stars

References:

- Baldwin, M.E., Samolyk, G., 2003, AAVSO RR Lyrae Monographs, 1, (2)
- Bertin, E., Arnouts, S., 1996, A&AS, 117, 393
- Boër, M., Atteia, J.L., Bringer, M., Gendre, B., Klotz, A., Malina, R., de Freitas Pacheco, J.A., Pedersen, H., 2001, A&A, **378**, 76
- Boninsegna, R., 1990, *JAAVSO*, **19**, 126, (1)
- Boninsegna, R., Vandenbroere, J., Le Borgne, J.F., The Geos Team, 2002, ASP Conf. Ser., 259, 166, IAU Colloq. 185, "Radial and Nonradial Pulsations as Probes of Stellar Physics"
- Bringer, M., Boër, M., Peignot, C., Fontan, G., Merce, C., 1999, A&AS, 138, 581
- Kholopov, P.N., et al., 1985, General Catalogue of Variable Stars, Moscow: Nauka Publishing House, 1988, 4th ed., edited by Kholopov, P.N.; and 2006 web edition (http://www.sai.msu.su/groups/cluster/gcvs/).
- Le Borgne, J. F., Paschke, A., Vandenbroere, J., Poretti, E., Klotz, A., Boër, M., Damerdji, Y., Martignoni, M., Acerbi, F., 2007, A&A, 476, 307
- Williams, D.B., 1993, *JAAVSO*, **22**, 116, (3)

Number 5824

Konkoly Observatory Budapest 14 April 2008 *HU ISSN 0374 - 0676*

PHOTOMETRIC ANALYSIS OF A NEW W UMa SYSTEM IN VULPECULA

CAPEZZALI, DANIELE^{1,2}; FIORUCCI, MASSIMO¹; SPOGLI, CORRADO^{1,2}

¹ Physics Dept. University of Perugia, Via A. Pascoli, 06123, Perugia, Italy

² Porziano Astronomical Observatory, Piazza S. Chiara 2, 06081, Assisi, Italy

In the last few years we have repetitively observed the variability of GSC2.3 N32O092280 (J2000.0 $\alpha = 20^{h}58^{m}18^{s}8$, $\delta = +25^{\circ}28'14''$) during a program to study the dwarf nova VW Vul (Capezzali et al., 2007). After our accidental discovery, we soon noted that the variability of this source has been already reported in literature by Pojmanski et al. (2005) with the All Sky Automated Survey (ASAS), but the variability type and the period were quite uncertain and needed of a deeper investigation. Intrigued by the strange behaviour of this source, we began observing intra-night variability at the Porziano Astronomical Observatory, Mt. Subasio, Assisi (Italy). We used a 0.35 m Schmidt-Cassegrain telescope equipped with an HiSIS 23 CCD camera (Kodak Kaf 401E of 762×512 pixels) and standard BVR_CI_C Johnson-Cousins broad-band filters. The intra-night observations were taken on 7, 8, 14 and 15 July 2007, with a total of 256 photometric data with the R_C filter. Moreover we observed the variable during the night of September 15th 2007 in the V and I_C broad bands, and our archive contains BVR_CI_C data of sporadic observations done during the years 2004–2007. The total number of observations is 356 (Electronic table 1).

The CCD frames were first corrected for standard de-biasing and flat-fielding, then processed for aperture photometry and differential photometry using the comparison stars already calibrated for VW Vulpeculae (Capezzali et al., 2007). Every magnitude has been obtained by comparison with at least four stars and we have verified that the typical standard deviation is of the order of 0.01–0.02 magnitudes. The time has been converted in Heliocentric Julian Days.

From a preliminary analysis we noted that the intra-night light curves show a variability of a few tenths of magnitude in all the four bands (Table 1), and minima with a typical recurrence time of 0^d.192225, in agreement with Pojmanski et al. (2005). However, a deeper analysis soon revealed a small difference in magnitude between two consecutive minima, and a variability feature typical of W UMa systems, i.e. continually changing light levels through all phases with primary and secondary eclipses of almost equal depths. The total eclipse has a relatively long duration (0.1 phases) and suggests an extreme mass ratio system in a state of over-contact. The secondary eclipse is slightly less deep and is total, indicating that the inclination is close to 90°. The preliminary value of the orbital period has been obtained by means of the Fourier periodogram:

$$\begin{split} P &= 0.38451 \pm 0.00002 days (9^{h}13^{m}42^{s}) \\ \Phi_{0} &= HJD2454289.2333 \pm 0.0001 \end{split}$$

filter N data max \min В 13 13.59 ± 0.06 14.12 ± 0.05 V34 12.82 ± 0.02 13.29 ± 0.01 R_C 276 12.41 ± 0.01 12.86 ± 0.01 I_C 33 12.01 ± 0.02 12.43 ± 0.02

Table 1: Photometric parameters of the new variable system

To estimate the mean effective temperature of star 1 (the star eclipsed at primary minimum), we have initially noted that our BVR_CI_C data suggest a temperature of ~5200 K, while the JHK values reported by 2MASS (Cutri et al., 2003) are consistent with an higher average temperature (~5800 K). It is extremely probable that the star is reddened by the interstellar matter in the Vulpecula region, so we used the Galactic Extinction E(B - V) = 0.18 reported by Schlegel et al. (1998) to estimate $T_1 = 6100$ K, a value that now allows an agreement between optical and near-infrared dereddened color indices.

We analyzed our dereddened observations with the 2003 version of the Wilson-Devinney program (Wilson & Devinney, 1971; Wilson, 1979, 1990). We used mode 3, appropriate for over-contact binaries of this type, and adjusted the parameters shown in Table 2. As explained before, we set the mean effective temperature of star 1 equal to 6100 K. Unadjusted parameters such as the gravity darkening exponents and bolometric albedos were set to their theoretically expected values for this type of star. Limb darkening coefficients were taken from the tables presented by Van Hamme (1993). Only the principal parameters were iterated: phase of the primary conjunction ϕ_0 , inclination *i*, average temperature of the secondary star T_2 , surface potential $\Omega_1 = \Omega_2$, mass ratio *q*, and relative monochromatic luminosity of the primary star L_1 in the V, R_C and I_C bands. Figure 1 shows the best fit to the VR_CI_C normalized flux versus phase. The geometrical representation is given in Figure 2.

It is well established in literature that the Wilson–Devinney code underestimates the errors (see e.g. Maceroni & Rucinski, 1997), and spurious values can be obtained when fits of almost the same quality have been achieved for a large range of mass ratio values (Kreiner et al., 2003). However, in the favorable case of total-annular eclipses an overcontact photometric mass-ratio is very accurate and reliable (Wilson, 1994; Terrell & Wilson, 2005), and we have effectively verified that the fit is sensibly poorer when the mass ratio is changed.

In conclusion, the average parameters reported in Table 2 give effectively the best fit to our photometric data, while the errors should be at least doubled in order to be realistic. Our solution indicates that GSC2.3 N32O092280 is an A-type W UMa contact binary: the primary minimum corresponds to a transit eclipse of the smaller secondary in front of the larger primary component. These variables usually have surface temperatures greater than 6000 K, in agreement with the estimate obtained considering the interstellar extinction. The temperature difference between the two components is relatively small (\simeq 190 K) and this is in agreement with a good thermal contact. The primary component is over five times the mass of the secondary component ($M_2/M_1 = 0.195$).

Further photometric and spectroscopic observations could be useful since the system shows the night-to-night variability that is common for W UMa systems, and the maximum at phase 0.75 is slightly brighter than the maximum at 0.25 (O'Connell effect).

Figure 1. Finding chart of the new variable.

Figure 2. Comparison between theoretical (lines) and observed (circles) VR_CI_C phase diagrams of the new variable system in Vulpecula. The best fit is obtained with the Wilson-Devinney code for an A-type W UMa over-contact binary.

Parameter	Value	Std. Error*
i	89°	1°
T_1	$6100~{ m K}$	(assumed)
T_2	$5912~{ m K}$	$49 \mathrm{K}$
$q = M_2/M_1$	0.195	0.003
Ω_1	2.17	0.01
Ω_2	2.17	0.01
$L_1/(L_1 + L_2)V$	0.829	0.006
$L_1/(L_1 + L_2)R_C$	0.826	0.002
$L_1/(L_1 + L_2)I_C$	0.824	0.005
r_1^{pole}	0.500	0.001
r_2^{pole}	0.244	0.001
$r_1^{\overline{s}ide}$	0.549	0.001
r_2^{side}	0.256	0.001
$r_1^{\overline{b}ack}$	0.575	0.001
r_2^{back}	0.302	0.001

Table 2: Adjusted Parameters from the Wilson-Devinney code

* Formal errors from the differential corrections solution.

Figure 3. Geometrical representation of GSC2.3 N32O092280 during the maximum

References:

Capezzali, D., Spogli, C., Fiorucci., M., et al., 2007, IBVS, 5749

- Cutri, R. M., et al., 2003, 2MASS All Sky Catalog of point sources, NASA/IPAC Infrared Science Archive
- Kreiner, J.M., Rucinski S.M., Zola, S. et al., 2003, A&A, 412, 465
- Maceroni, C., Rucinski, S.M., 1997, PASP, 109, 782
- Pojmanski, G., Pilecki, B., Szczygiel, D., 2005, Acta Astronomica, 55, 275
- Schlegel, D.J., Finkbeiner, D.P., Davis, M., 1998, ApJ, 500, 525
- Terrell, D. & Wilson, R.E., 2005, *ApSpSc*, **296**, 221
- Van Hamme, W., 1993, AJ, 106, 2096
- Wilson, R.E., 1979, ApJ, 234, 1054
- Wilson, R.E., 1990, ApJ, **356**, 613
- Wilson, R.E., 1994, PASP, 106, 921
- Wilson, R.E. & Devinney, E.J., 1971, ApJ, 166, 605

Number 5825

Konkoly Observatory Budapest 7 May 2008 *HU ISSN 0374 - 0676*

BN UMa AND CF Del : TWO NEW GALACTIC FIELD DOUBLE MODE RR LYRAE STARS

McCLUSKY, J. V.

Department of Chemistry, Texas Lutheran University, Seguin, TX 78155

BN UMa and CF Del have been found to be the 30^{th} and 31^{st} known galactic field double mode RR Lyrae variables. Analysis of the light curve of BN UMa reveals a fundamental frequency of 1.865924 ± 0.000019 and a first overtone of 2.5021805 ± 0.0000076 . The deconvoluted light curves of BN UMa are shown in Figures 1 and 2. Successive prewhitening of the data (Period04) using both the fundamental and first overtone periods and their first three harmonics reveals several prominent combination bands, Table 1.

A similar analysis for CF Del indicates a fundamental frequency of 2.090090 ± 0.000020 and the first overtone at 2.808845 ± 0.000016 . The deconvoluted light curves of CF Del are shown in Figures 3 and 4, and the combination bands are listed in Table 2.

The ratio of the first overtone period P1 to the primary period P0, P1/P0, for BN UMa is 0.74572 ± 0.00002 and for CF Del is 0.74411 ± 0.00003 . These are typical values for RRd stars, Figure 5. It is interesting to note that the apparent outlier, GSC 3059-0636, is the only RRd in the galactic field known to have a much stronger fundamental mode pulsation than its overtone: A1/A0 = 0.52 (Oaster et al., 2006). In contrast to GSC 3059-0636, BN UMa and CF Del have typical amplitude ratios in which the first overtone has a larger amplitude than the fundamental: A1/A0 for BN UMa is 2.47, while that for CF Del is 1.24. Table 3 contains the characteristics of all 31 known galactic field RRd stars.

For BN UMa a total of 438 observations were obtained on 44 nights between JD 2454144 and 2454546, while for CF Del 239 observations were obtained on 34 nights between JD 2454349 and 2454576. Observations were taken approximately 20 minutes apart and were conducted with a robotic 0.45m f/4.5 Newtonian telescope located outside Seguin, Texas, USA using an unfiltered SBIG ST-10XME CCD camera. Stellar data were extracted from dark corrected and flat fielded images using Sextractor; magnitudes were derived differentially. For BN UMa GSC 3010-2100 was the comparison star and GSC 3010-2126 and GSC 3012-0837 were check stars. For CF Del USNO A20975-18805217 was the comparison star and USNO A2 0975-18802001, 0975-18808454, 0975-18802602 were check stars. The photometric accuracy varied by night, but was typically between 0.010 and 0.015 mag for both stars. Differential magnitudes of CF Del-comp and BN UMacomp are available in the electronic form of this document (through the IBVS-website as 5825-t4.txt and 5825-t5.txt) and will also be submitted to the AAVSO database at www.aavso.org.

Figure 1. Finding chart for BN UMa identifying the variable, comparison and check stars. The field is $25''.0 \times 16''.9$. The R magnitude of the comparison star is 14^{m} 1 according to the USNO A2 catalogue.

Figure 2. Finding chart for CF Del identifying the variable, comparison and check stars. The field is 25.0×16.9 . The GSC 2.3 V magnitude of the comparison star GSC 3010.2100 is 12.55.

Figure 3. Fundamental mode of BN UMa after removing the first overtone and its first three harmonics.

Figure 5. Fundamental mode of CF Del after removing the first overtone and its first four harmonics.

Figure 4. First overtone mode of BN UMa after removing the fundamental mode and its first three harmonics.

Figure 6. First overtone mode of CF Del after removing the fundamental mode and its first four harmonics.

Figure 7. Petersen diagram of the 31 known RRd galactic field variables.

Star	Period	Period	Period	Amplitude	ref
	F(d)	1O(d)	ratio	ratio $10/F$	
GSC 7411-1269	0.461255	0.342477	0.7425	0.98	Wils, 2006
V2493 Oph	0.463349	0.344234	0.7429	1.58	Wils, 2006
EM Dra	0.464727	0.345387	0.7432	1.18	Wils, 2006
GSC 8403-0647	0.467814	0.347778	0.7434	1.05	Wils, 2006
V372 Ser	0.471254	0.350791	0.7444	1.4	Wils, 2006
GSC 6368-0742	0.47302	0.35206	0.7443	1.5	Bernhard, 2006
$GSC \ 3047-0176$	0.474608	0.352983	0.7437	1.29	Wils, 2006
SW Ret	0.476624	0.354811	0.7444	2.73	Szczygiel, 2007
GSC 0526-0586	0.47722	0.35498	0.7438	1.3	Bernhard, 2006
CF Del	0.478448	0.356018	0.7441	1.24	current work
GSC 8758-1831	0.47907	0.35636	0.7439	1.5	Bernhard, 2006
ASAS $141539 + 0010.1$	0.481932	0.358842	0.7446	1.57	Szczygiel, 2007
V458 Her	0.483723	0.359971	0.7442	2.17	Wils, 2006
ASAS122801-2328.4	0.48482	0.360634	0.7439	1.57	Pilecki, 2007
BS Com	0.487817	0.363066	0.7443	1.42	Dékány, 2007
Z Gru	0.487995	0.363187	0.7442	1.3	Wils, 2006
GSC 9092-1397	0.491521	0.365738	0.7441	1.17	Wils, 2006
GSC 3059-0636	0.4940	0.3669	0.7427	0.52	Oaster, 2005
GSC 7509-0299	0.49785	0.37102	0.7452	1.6	Bernhard, 2006
ASAS 211848-3430.4	0.50486	0.376366	0.7455	2.12	Szczygiel, 2007
EN Dra	0.511849	0.381272	0.7449	2.03	Wils, 2006
GSC 8936-2145	0.517197	0.385208	0.7448	1.37	Wils, 2006
BN Uma	0.535786	0.39966	0.7459	2.48	current work
$GSC \ 4421-1234$	0.540804	0.403193	0.7456	2.25	Wils, 2006
CU Com	0.544158	0.405762	0.7457	2.00	Wils, 2006
GSC 6108-0220	0.54452	0.40644	0.7464	6.0	Bernhard, 2006
AQ Leo	0.549995	0.410357	0.746	1.65	Wils, 2006
ASAS040054-4923.8	0.558588	0.416671	0.7459	1.61	Szczygiel, 2007
GSC 4868-0831	0.56392	0.420805	0.7462	2.45	Wils, 2006
GSC 8833-1048	0.5668	0.42249	0.7454	1.9	Bernhard, 2006
GSC 7019-0641	0.58823	0.4386	0.7456	2.2	Bernhard, 2006

Table 3. All known galactic field double mode RR Lyrae stars excluding the galactic bulge

Assignment	Frequency	Amplitude (mag)
f_0	1.865924	0.0757
$2f_0$	3.731905	0.0055
$3f_0$	5.597857	0.0030
f_1	2.502180	0.1872
$2f_1$	5.004361	0.0362
$3f_1$	7.506544	0.0132
$4f_1$	10.008722	0.0045
$f_0 + f_1$	4.36809	0.0332
$f_1 - f_0$	0.63624	0.0259
$2f_1 - f_0$	3.13840	0.0106
$f_0 + 2f_1$	6.87025	0.0108
$f_0 + 3f_1$	9.37241	0.0036

Table 1. BN UMa Frequency Data

Table 2. CF Del Frequency Data

Assignment	Frequency	Amplitude (mag)
f_0	2.090089	0.1424
$2f_0$	4.180179	0.0278
$3f_0$	6.270270	0.0061
$4f_0$	8.360359	0.0063
f_1	2.808845	0.1768
$2f_1$	5.617691	0.0241
$3f_1$	8.426536	0.0073
$4f_1$	11.235382	0.0044
$f_0 + f_1$	4.898935	0.0655
$f_1 - f_0$	0.718756	0.0345
$2f_0 + f_1$	6.989025	0.0165
$f_0 + 2f_1$	7.707781	0.0221
$2f_0 + 2f_1$	9.797871	0.0169
$2f_1 - 2f_0$	1.437511	0.0057
$3f_0 - 2f_1$	0.652579	0.0036

Acknowledgements. The author greatfully acknowledges help and guidance from Horace A. Smith, Department of Physics and Astronomy, Michigan State University.

References:

Bernhard, K; Wils, P., 2006, *IBVS*, 5698, 1
Dékány, I., 2007, *Astron. Nachr.*, **328**, 833
Oaster, L.; Smith, H. A.; Kinemuchi, K., 2006, *PASP*, **118**, 405
Pilecki, B.; Szczygiel, D., 2007, *IBVS*, 5785, 1
Szczygiel, D.; Fabrycky, D., 2007, *MNRAS*, **377**, 1263
Wils, P., 2006, *IBVS*, 5685, 1

Number 5826

Konkoly Observatory Budapest 7 May 2008 *HU ISSN 0374 - 0676*

DISCOVERY OF SHORT-PERIODIC PULSATING COMPONENT IN THE ECLIPSING BINARY Y LEONIS

TURCU, V.; POP, A.; MOLDOVAN, D.

Cluj-Napoca Astronomical Observatory, Romanian Academy, Cluj-Napoca Branch, Str.Cireșilor 19, RO-400487 Cluj-Napoca, Romania, (e-mail: vladturcu@yahoo.com)

Y Leo (HIP 47178=SAO 80927) is a less studied Algol binary system with orbital period of 1.68610 d, and deep primary eclipses of about 3.1 magnitudes. Spectral type of the primary component is A3 according with Struve (1945). Based on Struve's radial velocity determinations and the most extensive photoelectric UBVI observational study of Y Leo, up to date, made by Johnson (1960), Giuricin et al. (1980) solved the system and determined mass of the primary $(M_h = 2.6M_{Sun})$.

We have observed Y Leo during winter-spring 2008 season. We present here observations made outside primary eclipse in three nights (orbital phase $0.764 \dots 0.922$ on JD 2454517, $0.680 \dots 0.877$ on JD 2454522, and $0.325 \dots 0.470$ on JD 2454545). The orbital phases were determined with following new ephemeris, based on our data:

 $t_n = HJD \ 2454509.35034 + 1.68610897 \cdot n$

The telescope used was a 16"Meade LX200 Schmidt-Cassegrain (D = 40 cm, F/D = 10) at Cluj-Napoca Astronomical Observatory, Feleacu Station (Long. = 23°35'37'.1 E, Lat. = 46°42'36'.3 N, Alt. = 756 m). The CCD camera were SBIG ST-8XMEI with V filter (from Custom Scientific UBVRI set). Integration time was 20 seconds in analog binning mode (18 μ m × 18 μ m, 765 × 510 binned pixels).

The calibration and photometric reductions were performed using AIP4WIN2 software (Berry & Burnell, 2005). Calibrations of CCD images were made with dark frame substraction and flat field correction. Photometric reduction was made in aperture photometry mode with 7".27 star aperture radius, and 10".91 to 14".55 sky annulus radii. Seeing was less than 2" on each night.

Table 1. Photometric parameters of observed stars from the Tycho-2 catalogue (ESA 1997) and ESO/ST-ECF GSC

ID	Name	RA (J2000)	Dec (J2000)	V_T	$(B_T - V_T)$
VAR	Y Leo	$9^{h}36^{m}51\stackrel{s}{.}807$	$+26^{\circ}13'57''_{\cdot}66$	$10^{\mathrm{m}}_{\cdot}090$	$0^{\rm m}_{\cdot} 296$
C1	GSC 01962 1289	$9^{h}37^{m}25^{s}_{\cdot}353$	$+26^{\circ}07'36''.34$	$10^{\mathrm{m}}_{\cdot}698$	$0^{\rm m}_{\cdot}670$
C2	GSC 01962 1118	$9^{h}37^{m}14.36$	$+26^{\circ}12'58''_{\cdot}6$	$(11^{\rm m}_{\cdot}53)^{\dagger}$	_
C3	GSC $01962 \ 1325$	$9^{h}37^{m}03.22$	$+26^{\circ}11'55''_{\cdot}4$	$(13^{\rm m}47)^{\dagger}$	—

[†]Photographic magnitudes

Figure 1. Light curve of Y Leo on February 20/21, 2008

Figure 2. Light curve of Y Leo on February 25/26, 2008

Figure 3. Light curve of Y Leo on March 19/20, 2008

The V time series in instrumental system for VAR-C1, C1- C2, and C3-C1, obtained during each night, were separately analyzed, taking into account the individual weights derived from the observational errors. Their amplitude spectra were analyzed using the methods of Kuschnig et al. (1997) and that proposed by Pop (2005), which was derived from the previous one [see also Pop (2005) and Pop & Vamoş (2007)].

The C2-C1 and C3-C1 observations performed during each of the three nights proved to be photometrically stable within the limits of the observational errors.

All the three VAR-C1 data sets (Figs. 1-3) obviously display rapid low-amplitude oscillations superposed on the eclipsing binary light curve. We analyzed the amplitude spectra of each of these data sets through the above mentioned methods after performing a preliminary detrending. For the first two nights we used second order polynomials, while for the third one, covering descending part of the shallow secondary eclipse, a fourth order polynomial was necessary.

Figure 4. Amplitude spectra of detrended and merged data

Figure 5. Power spectral window of merged data

The highest peak in three amplitude spectra appeared at about 35 c/d, i.e. a periodicity of about 41 minutes. In all cases it was found to be statistically significant at confidence levels of 100%. The application of Breger's et al. (1993) method, in the same frequency domain, supplied us the following values of the S/N ratio: 8.19, 6.61, and 3.91. These results agree with those obtained through the previously mentioned methods. In Fig. 4 we presented the amplitude spectrum of the three detrended and merged data sets, while in Fig. 5 we displayed the corresponding power spectral window.

The application of Pop's method (2005, 2007) [and also Pop & Vamoş (2007)] emphasized the presence of noise levels significantly higher than expected from the observational noise. We also note the presence of a cycle-to-cycle variability of the light curve, as well as the asymmetric shape of the highest peak in the amplitude spectrum (see the structure of window spectrum in Fig. 5). In order to clarify the actual character of the pulsations, more observations are needed and a proper decoupling of the pulsation and binarity, including frequency modulation due to the light-time effect (e.g. Pop & Turcu, 1993).

Considering the amplitude and period of its oscillations and also its spectral type and mass, this star is a δ Scuti pulsator with frequency of $34.48337(\pm 0.00056)$ c/d and semiamplitude $4.09(\pm 0.15)$ mmag. Yoon et al. (2004) found some H α line profile variations in Y Leo, probably related to the presence of mass transfer phenomena in the system, or that of some gas streams etc. Thus, Y Leo is a new candidate for the "oEA" (oscillating EA) stars group (Mkrtichian et al., 2004).

Acknowledgements The authors acknowledge the financial support of the Romanian National University Research Council (CNCSIS-PN-II/531/2007). This research has made use of NASA's Astrophysics Data System and ESO/ST-ECF GSC Online Server.

References:

- Berry, R., Burnell, J., 2005, *The Handbook of Astronomical Image Processing*, Second Edition, Willmann-Bell, Inc., Richmond, Virginia, USA
- Breger, M., Stich, J., Garrido, R., Martin, B., Shi-yang, J., Zhi-ping, L., Hube, D.P., Ostermann, W., Paparo, M., Scheck, M., 1993, A&A, 271, 482
- ESA, 1997, The Hipparcos and Tycho Catalogues, ESA SP-1200
- Johnson, H.J., 1960, ApJ, 131, 127
- Kuschnig, R., Weiss, W.W., Gruber, R., Bely, P.Y., Jenkner, H., 1997, A&A, 328, 544
- Giuricin, G., Mardirossian, F., Predolin, F., 1980, IBVS, 1786
- Mkrtichian, D.E., Kusakin, A.V., Rodriguez, E., Gamarova, A.Yu., Kim, C., Kim, S.-L., Lee, J.W., Youn, J.-H., Kang, Y.W., Olson, E.C., Grankin, K., 2004, A&A, 419, 1015
- Pop, A., 2005, in The light-time effect in astrophysics. Causes and cures of the O-C diagram, edited by C. Sterken, ASP Conf. Ser., Vol. 335, San Francisco: Astronomical Society of Pacific, p. 263
- Pop, A., 2007, *RoAJ*, **17**, 35
- Pop, A., Turcu, V., 1993, Ap&SS, 204, 233
- Pop, A., Vamoş, C., 2007, submitted to *RoAJ*
- Struve, O., 1945, ApJ, 102, 74
- Yoon, T.S., Lee, J.A., Byeon, J.G., Kim, K.M., Kim, J.H., Yoo, K.H., Kim, S.H., 2004, New Astron. Rev., 48, 759
Number 5827

Konkoly Observatory Budapest 7 May 2008 *HU ISSN 0374 - 0676*

THE UNCONFIRMED ECLIPSING NATURE OF V348 And AND DETECTION OF VARIABILITY OF HD 1438

ZASCHE, P.,¹; SVOBODA, P.²

¹ Astronomical Institute, Faculty of Mathematics and Physics, Charles University Prague, V Holesovickach 2, Praha 8, CZ-180 00 Czech Republic, e-mail: zasche@sirrah.troja.mff.cuni.cz

² Private observatory, Vypustky 5, Brno, CZ-614 00 Czech Republic, e-mail: tribase.net@volny.cz

Precise photometric observations in standard Johnson-Cousins BVR_c system of a neglected eclipsing binary V348 And were carried out. All the measurements were obtained with the 34-mm refractor at the Private observatory in Brno, using the SBIG ST-7XME CCD camera, and standard B, V and R_c filters by the specification by Bessell (1990). The field of view (FOV) is about $2^{\circ} \times 3^{\circ}$, see Fig. 1 left, or equivalently the angular pixel size is circa $14'' \times 14''$. The observations come from the time span from September 2007 to January 2008. The measurements were processed by the software C-MUNIPACK[†], which is based on aperture photometry.

V348 And. V348 And (= HD 1082 = HIP 1233, R.A.= $00^{h}15^{m}18^{s}$, Decl.=+44°12′12″, J2000.0, $V_{max} = 6.76$ mag, sp. B9V, according to Simbad database) is one member of an astrometric binary A 1256 (the second component is less then 1″ distant). The observations obtained by the Hipparcos satellite (see Peryman & ESA, 1997) indicate that the system is an Algol-type eclipsing binary with its orbital period 5.5392 days (Kruszewski & Semeniuk, 1999).

Figure 1. Left: Identification frame for the stars. Right: PDM spectrum for Hipparcos and our data. Also the different periods are plotted, the dashed one for 5.5392 days, the dash-dotted one for 6.06 days, and the dotted one for 5.876 days.

Since its discovery as an eclipsing binary, the photometric variation has not been confirmed so far. The Hipparcos observations of the two eclipses were the only ones, which were used for estimation of its light elements. Regrettably, two minima observed

[†]See http://integral.sci.muni.cz/cmunipack/

by the Hipparcos satellite were not covered by the data sufficiently, and only 8 points were used for estimation of these minima and its orbital period. According to a light curve observed by Hipparcos, a predicted depth of the primary minimum of the star should be at least 0.13 mag and its duration, D more than 10 hours.

Figure 2. The B, V and R_c light curves of V348 And. The shift ± 0.02 mag was applied to R_c and B observations for the better clarity of the plot.

Since September 2007, we have tried to reproduce the observations made by Hipparcos and using B, V and R_c filters, the star has been observed each clear night, until a phase light curve of the system was covered. The data files are available through the IBVS website as 5827-t1 - 5827-t3.txt. HD 1185 (= HIP 1302, R.A.=00^h16^m22^s, $Decl.=+43^{\circ}35'42''$, J2000.0, V=6.15 mag, sp. A2V, according to Simbad database) was used as a comparison star. As check stars to control the non-variability of this star we used the two following stars HD 1448 and HD 1848 (see Fig. 1 left). No visible variabilities between these three stars were observed. The final result is presented in Fig. 2, where the phase light curves in B, V and R_c filters are plotted (the period 5.5392 days was used). We assumed that the minimum is detectable in all filters, and the light curve is well covered at least in R_c filter. Despite the scatter in each filter is circa 0.01 mag, there has not been detected any observable photometric decrease. No minimum occurred during these 19 nights of observations (more than 100 hours of observations in total). The PDM spectrum of our observations as well as of Hipparcos data are plotted in Fig. 1 right. The result is that the orbital period of the system is different than presumed on the basis of the Hipparcos data. Using the Hipparcos photometry, the period could be also a different one, about 5.876 or 6.06 days (see the different minima in the PDM spectrum in Fig. 1 right and also the Hipparcos light curves in Fig. 3). According to our new observations only, one is not able to judge whether the orbital period is one of the suggested periods above or other one, further photometric observations are still needed.

Figure 3. The light curves of V348 And according to the Hipparcos data, the periods 5.5392, 5.876, and 6.06 days were used, respectively (from left to right).

HD 1438. Another interesting result from the observing campaign of V348 And was the discovery of a photometric variability of the star HD 1438 (= 26 And A = HR 70 = HIP 1501, R.A.=00^h18^m42^s, Decl.=+43°47′28″, J2000.0, V = 6.11 mag, sp. B8V, according to Simbad database). This star is about 30 arc minutes distant from V348 And.

The star is a primary component of an astrometric binary ADS 254, while the secondary (NSV 119) is about 4 magnitudes fainter and circa 6".2 distant. No changes in position angles of the two components have been detected yet, so its possible orbital period is more than a thousand years. Baize (1962) mentioned a possible long-term photometric variation of the secondary component. This variation is very slow (9.5 mag in 1845, 11.0 mag in 1913, 12.0 mag in 1934, 11.2 mag in 1959) and has not been explained so far. The spectral types were estimated as B8V+F3V (according to Lindroos, 1985 and Wyatt, 2003), while Soderblom et al. (1991) presented the spectral types B8V+dG0. Wyatt (2003) also derived a distance of the system about 212 pc, and investigated a possible presence of a dust disc around the star. The submillimeter observations of the star indicate presence of the disc with the temperature about 100 K with its total mass about 0.05 M_{\oplus} .

Our new photometric observations of the star from the same time epoch as V348 And indicate a shallow photometric variability (see Fig. 4). Such a variability has an amplitude about only 0.015 mag, but despite this fact, it is clearly visible in all B, V and R_c filters. Its period is about 1.6 days.

The nature of these variations could be explained by presence of a pulsating component in the system. Due to the small telescope used (because of the high brightness of the stars), the components A and B could not be resolved into separate stars and one is not able to judge, whether the variable component is the primary, or the secondary one.

There could be also an alternative explanation of the variability. Almost sinusoidal oscillations could be also described as ellipsoidal variations (close binary with tidally distorted stars, where the components are not eclipsing each other). This solution was presented in Fig. 4 with the theoretical fit, while the parameters of such fit are in Table 1. The final period of such variation is therefore doubled, about 3.16 days.

Figure 4. The B, V and R_c light curves of HD 1438.

Altogether there are 806 (B), 855 (V) and 1040 (R_c) observations, respectively. The data files are available through the IBVS website as 5827-t5 - 5827-t7.txt. For analysis the PHOEBE programme (see e.g. Prša & Zwitter, 2005), based on the Wilson-Devinney algorithm (Wilson & Devinney, 1971), was used. The value of the mass ratio was estimated via the "q-search" method, see Fig. 5 for the sums of squares in the individual passbands as a function of the mass ratio. This value results in $q = 0.7 \pm 0.2$. The temperature of the primary was fixed at the typical value for B8V stars (11600 K, see

Harmanec, 1988). The amount of the third light was also computed, but its contribution to the total light is only very small (below 1 percent) and such a low value is comparable with its respective error. The value of the third light reveals that the variable is the primary component. Nevertheless, further observations are still needed, especially the spectroscopic ones to confirm the nature of this system.

Figure 5. Sum of squares as a function of the mass ratio.

Table 1.	The	physical	$\operatorname{parameters}$	of HD	1438.
----------	-----	----------	-----------------------------	-------	-------

Parameter	Value	Parameter	Value
HJD_0	2454360.21 ± 0.05	T_{1}/T_{2}	> 2.68
$P [\mathrm{day}]$	3.163063 ± 0.000002	r_{1}/r_{2}	0.77
$i \mathrm{[deg]}$	38.8 ± 3.9	Ω^{L1}_{crit}	3.24
L_1/L_2 (B)	63 ± 3	Ω^{L2}_{crit}	2.84
L_1/L_2 (V)	343 ± 32	Ω_1	4.18 ± 0.16
L_1/L_2 (R_c)	188 ± 14	Ω_2	3.11 ± 0.24

Acknowledgements: This investigation was supported by the Grant Agency of the Czech Republic, grants No. 205/06/0304 and No. 205/06/0217. We also acknowledge the support from the Research Program MSMT 0021620860 of the Ministry of Education. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and of NASA's Astrophysics Data System Bibliographic Services.

References:

- Baize, P., 1962, JO, 45, 117
- Bessell, M. S., 1990, PASP, 102, 1181
- Harmanec, P., 1988, BAICz, 39, 329
- Kruszewski, A., Semeniuk, I., 1999, AcA, 49, 561
- Lindroos, K. P., 1985, A&AS, 60, 183
- Lucy, L.B., 1968, ApJ, 151, 1123
- Perryman, M. A. C. and ESA, 1997, *The HIPPARCOS and TYCHO catalogues*, ESA Publications Division, ESA SP Series 1200
- Prša, A., Zwitter, T., 2005, ApJ, 628, 426
- Soderblom, D. R., Duncan, D. K., Johnson, D. R. H., 1991, ApJ, 375, 722
- van Hamme, W., 1993, AJ, 106, 2096
- Wilson, R. E., Devinney, E. J., 1971, ApJ, 166, 605
- Wyatt, M. C., Dent, W. R. F., Greaves, J. S., 2003, MNRAS, 342, 876

Number 5828

Konkoly Observatory Budapest 7 May 2008 *HU ISSN 0374 - 0676*

OPTICAL SPECTROSCOPY SN 2007gr OF TYPE Ic

TARASOVA, T. N.

Crimean Astrophysical Observatory, Crimea, Nauchnyj, Ukraine; email: taya@crao.crimea.ua

SN 2007gr was discovered on 2007 August 15.51 UT (Li et al., 2007) in NGC 1058 which is a member of a group of nearby galaxies. The distance to this galaxy is 10.6 ± 1.3 Mpc (Pilyugin et al., 2004). Chornock et al. (2007) classified SN 2007gr as Type Ib/c based on the spectrum obtained on the night after the discovery. The later spectral evolution did not confirm the presence of He, therefore SN 2007gr was classified as Type Ic. This supernova is one of the nearest stripped-envelope SNe ever observed.

Figure 1. Light curve of SN 2007gr based on AAVSO data. Vertical bars indicate the time of our spectral observations

The spectral observations were carried out at the Crimean Astrophysical Observatory at the Nasmyth focus of the 2.6m Shajn telescope. The spectra with dispersion of 2 Å pix^{-1} were registered in two spectral regions 3700 - 6190 Å, 5600 - 7600 Å and were combined with the exception of the first spectrum. It was obtained on August 21.9 and covered the spectral region 5600 - 7600 Å. The spectral images were processed in standard fashion for CCD frames, including bias subtraction, flat-field corrections, wavelength calibration. The spectrophotometric standard HR 788 (Kharitonov et al., 1988) was used for flux calibration of the SN spectrum.

The light curve of SN 2007gr based on AAVSO data (Henden, 2007) is shown in Fig. 1. The observation span a period of ~ 56 days. A preliminary analysis of the light curve gives $V_{max}=12.6$ in period from 24 till 28 August. The dates when spectra were taken, are labeled by vertical bars. The first spectrum was obtained before the maximum, the second and the third spectra were taken in the phase of brightness fading. All our spectra are shown in Fig. 2. The spectra are separated vertically by a constant offset.

Figure 2. Spectral evolution of SN 2007gr. The lower two spectra are shifted downwards by the const in log (F_{λ}) . Flux F_{λ} is given in units of $erg \, cm^{-2}s^{-1} \mathring{A}^{-1}$. Epochs (days) are given relative to maximum brightness.

The first spectrum obtained for 6 days before the maximum brightness of the supernova shows shallow absorption features. The features centered at 5750 Å and 6200 Å are identified as NaID and SiII 6355 Å, respectively. The feature centered at 6430 Å is more likely identified as CII 6580 Å and the feature centered at 7550 Å is possibly identified as OI. The feature centered at 6430 Å was first identified by Chornock et al. (2007) as HeI. The later spectral evolution did not confirm the identification of this line as HeI. Therefore SN 2007gr was classified as SN Ic. This feature was investigated in detail by Valenti et al. (2008). These authors pointed out that the more likely identification for this line is CII 6580 Å at velocities ~ 11000 km/s.

The subsequent two spectra, obtained on 31st and 85th day after maximum bright-

ness of the supernova are quite similar. The NaID line dominates in the spectra. The absorption features in these spectra are CaII H and K centered at 3810 Å, FeII 4924 Å, 5018 Å, 5169 Å centered at 4830 Å, 4920 Å, 5070 Å, respectively. Moreover, we identified the features centered at 5450 Å, 6070 Å and 6160 Å as Sc 5552 Å, NeI 6217 Å, SiII 6355 Å +FeII 6316 Å, respectively.

Some broad absorption features are also present in the spectra at 6900 Å and the "W"-shaped absorption feature centered at ~ 4300 Å. However, we cannot tell whether the absorption feature centered at 6900 Å is real or it is a result of noise from the telluric bands at 6880 Å. The "W"-shaped absorption feature is observed in many Type I SNe around and after maximum. It is specified by Valenti et al. (2008) as a blend of two spectral lines TiII 4252 Å and MgII 4354 Å.

The spectral line SiII 6355 Å fades on the 31st day and apparently disappears on the 85th day after maximum brightness. It is possible that the SiII is filled by the forbidden lines of [O] 6300 Å, 6364 Å on the 85th day. Therefore we believe that the spectrum taken on the 85th day after maximum brightness of the supernova probably displays the first signs of the nebular stage.

Acknowledgements: This work was partially supported by the Ukrainian Fund of Fundamental Research F25.2/139 and by the CosmoMicroPhysics program of the National Academy of Sciences and National Space Agency of Ukraine.

References:

Chornock, R. et al., 2007, CBET, 1036, 1

- Henden, A.A., 2007, Observations from the AAVSO International Database, private communication
- Kharitonov, A. V. et al., 1988, Spectrophotometric Catalogue of Stars, Alma-Ata, Nauka, p. 484

Li, W. et al., 2007, CBET, 1041, 1

Pilyugin, L. S., Vilchez, J. M., Contini, T., 2004, A&A, 425, 849

Valenti S. et al., 2008, ApJ, 673, L155

Number 5829

Konkoly Observatory Budapest 7 May 2008 *HU ISSN 0374 - 0676*

NEW OUTBURST OF V1118 Ori (2007-2008)

GARCIA, JOSE GARCIA¹; PARSAMIAN, ELMA S.²

 1 Tamarindo, 5, 41089 Dos Hermanas, Sevilla, Spain e-mail: garciados@infonegocio.com

 2 V. Ambartsumian Byurakan Astrophysical Observatory, Armenia e-mail: elma@sci.am, eparsam@bao.sci.am

Name of the object: V1118Ori

Equatorial coordi	nates:	Equinox:
$R.A.=5^{h}34^{m}44^{s}.2$	$DEC. = -5^{\circ}33'40''$	2000

Observatory and telescope:

Private obs., Sevilla(Spain) with Schmidt-Cassegrain tel.

V

Detector:

CCD Camera

Filter(s):

Date(s) of the observation(s): 2007.02.09 - 2008.21.02

Comparison star(s): Parenago 1492,1518,1540,1600,1641

Availability of the data:

Available at the IBVS website (5829-t1.txt)

Type of variability: | EXor

Remarks:

Since 1983, the discovery, V1118 Ori became known as an EXor or Subfuor (Parsamian and Gasparian, 1987; Herbig, 1990). We have information concerning its outbursts the periods 1983-84 (Kosai, 1983; Hurst et al., 1984; Parsamian and Gasparian, 1987), 1988-90 (Parsamian et al., 1993; Parsamian et al., 1996), 1992-94 (Garcia Garcia, Mampaso and Parsamian, 1995; Parsamian et al., 2002), 1996-98 (Hayakawa et al., 1998; Garcia Garcia and Parsamian, 2000), 2004-06 (Waagen et al., 2005; Williams et al., 2005; Garcia Garcia et al., 2006). New observations show, that V1118 Ori started brightening at 12.10.2007 until reached its maximum of V=15^m3, then decreased. Some fluctuations of the brightness are observed. The last observation at 10.02.2008 is V=16^m11.

Figure 1.

Reference:

Garcia Garcia J., Mampaso, A., Parsamian E., 1995, *IBVS*, 4268
Garcia, Garcia, J., Parsamian, E. S., 2000, *IBVS*, 4925
Hayakawa T., Ueda T., Uemura M. et al., 1998, *IBVS*, 4615
Herbig, G.H., 1990, *Low Mass Star Formation and Pre-Main Sequence Objects*, ed. Bo Reipurth, Munchen, 223
Hurst, G.M., Chanal, R. et al., 1984, *IAU Circ.*, **3924**Kosai, H., 1983, *IAU Circ.*, **3763**Parsamian, E.S., Gasparian K.G., 1987, *Astrophysics*, **27**, 598
Parsamian, E.S., Ibragimov, M.A. et al., 1993, *Astrophysics*, **36**, 12
Parsamian, E.S., Gasparian, K.G. et al., 1996, *Astrophysics*, **39**, 201
Parsamian, E. S., Mujica, R., Corral L. et al., 2002, *Astrophysics*, **45**, 393

Waagen, E. O. et al, 2005, *IAU Circ.*, 8626

Williams, P. et al., 2005, IAU Circ., 8460

Number 5830

Konkoly Observatory Budapest 13 May 2008 *HU ISSN 0374 - 0676*

BAV-RESULTS OF OBSERVATIONS - PHOTOELECTRIC MINIMA OF SELECTED ECLIPSING BINARIES AND MAXIMA OF PULSATING STARS

(BAV MITTEILUNGEN NO. 193)

HÜBSCHER, JOACHIM; STEINBACH, HANS-MEREYNTJE; WALTER, FRANK

Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. (BAV), Munsterdamm 90, 12169 Berlin, Germany

In this 60th compilation of BAV results, photoelectric observations obtained in the years 2007 are presented on 292 variable stars giving 399 minima on eclipsing binaries and maxima on pulsating stars. All moments of minima and maxima are heliocentric. The errors are tabulated in column ' \pm '. The values in column 'O - C' are determined without incorporation of nonlinear terms. The references are given in the section 'Remarks'. All information about photometers and filters are specified in the column 'Rem'. The observations were made at private observatories. The photoelectric measurements and all the lightcurves with evaluations can be obtained from the office of the BAV for inspection.

Table 1: I	Minima of	' Eclipsing	binaries
------------	-----------	-------------	----------

				-	0				
Variable	Min HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
RT And	54304.4365	.0032	AG	-0.0038	\mathbf{S}	GCVS 85	-Ir	23	1)
TW And	54338.5491	.0040	\mathbf{FR}	+2.0333		GCVS 85	-Ir	15	7)
XZ And	54429.2461	.0002	JU	+0.1654		GCVS 85		93	2)
AD And	54360.4324	.0006	AG	-0.0464		GCVS 85	-Ir	37	1)
AP And	54360.5174	.0008	AG				-Ir	38	1)
BD And	54390.4269	.0016	AG	+0.0174		GCVS 85	-Ir	39	1)
BL And	54382.5480	.0021	\mathbf{AG}	+0.0139	\mathbf{S}	GCVS 85	-Ir	56	1)
	54390.4839	.0029	\mathbf{AG}	+0.0037	\mathbf{S}	GCVS 85	-Ir	37	1)
CU And	54390.6056	.0016	\mathbf{AG}				-Ir	37	1)
EX And	54360.4979	.0027	AG				-Ir	37	1)
GK And	54360.3951	.0012	\mathbf{AG}	-0.2879		GCVS 85	-Ir	39	1)
	54366.4259	.0005	AG	-0.2852		GCVS 85	-Ir	45	1)
GZ And	54433.3182	.0010	JU	-0.0069		GCVS 85		87	2)
LO And	54360.4212	.0018	AG	+0.0486		GCVS 85	-Ir	38	1)
	54360.6123	.0016	AG	+0.0492	\mathbf{s}	GCVS 85	-Ir	38	1)
V404 And	54380.3651	.0008	JU					86	2)
	54381.3781	.0011	JU					143	2)
V412 And	54360.3313	.0022	AG				-Ir	39	1)
	54423.3193	.0005	JU					100	2)
V425 And	54360.5331	.0005	\mathbf{AG}				-Ir	21	1)
	54390.3693	.0018	\mathbf{AG}				-Ir	36	1)
CD Aqr	54383.3949	.0027	\mathbf{FR}	+0.0591		GCVS 85	V	35	5)
CX Aqr	54410.2498	.0005	DIE	+0.0085		GCVS 85	0	23	8)
FK Aql	54327.4958	.0013	AG	-0.0494		GCVS 85	-Ir	27	1)

Table 1: (cont.)

V346 Aql V416 Aql V417 Aql	54380.4465	.0010	AG	-0.1025		GCV 5 65	-11	- 34	
V416 Aql V417 Aql	54500,4405		M/ NI	0.0103		CCVS 85	v	79	10)
V416 Aql V417 Aql		0005	VV IN	-0.0103		GCV5 65	V	101	10)
V416 Aql V417 Aql	54389.2972	.0005	W IN	-0.0106		GUV 5 85	V T	101	10)
v417 Aqi	54327.4707	.0004	AG	0.0504		D AVD 99 1596	-11 T.,	21	1)
	54320.5044	.0001	AG	-0.0504	_	DAVD 22 152ff	-11 T.,	30	1)
	54527.4272	.0005	AG	-0.0334	s	DAVIG S5,15211	-11 T	27	1)
V609 Aqi	54389.3821	.0022	AG	-0.0341	\mathbf{s}	GUVS 85	-1r	25	1)
V724 Aql	54297.4885	.0009	AG	-0.0275		IBVS 3555	-1r	44	1)
V761 Aqi	54314.4620	.0007	AG	+0.0961		GCVS 85	-lr	28	1)
	54375.4147	.0002	AG	+0.0962		GUVS 85	-1r	26	1)
	54389.3152	.0019	AG	+0.0953		GUVS 85	-1r	25	1)
V803 Aqi	54325.4462	.0006	AG				-1r	50	1)
V804 Aql	54325.4229	.0011	AG				-lr	53	1)
V829 Aql	54297.5404	.0012	AG				-lr	44	1)
V970 Aql	54327.4718	.0013	AG				-lr	27	1)
V1045 Aql	54312.5144	.0006	AG				-lr	35	1)
	54389.2953	.0035	AG				-lr	25	1)
V1075 Aql	54312.4118	.0006	AG				-Ir	35	1)
	54375.4020	.0031	AG				-Ir	26	1)
	54382.4545	.0025	\mathbf{AG}				-Ir	24	1)
V1096 Aql	54377.3405	.0005	AG	-0.2733		GCVS 85	-Ir	20	1)
	54382.3398	.0028	AG	-0.2752	\mathbf{s}	GCVS 85	-Ir	24	1)
V1097 Aql	54314.4436	.0017	AG				-Ir	28	1)
	54382.4512	.0030	AG				-Ir	24	1)
V1243 Aql	54296.3491	.0017	AG				-Ir	33	1)
V1299 Aql	54389.4095	.0034	AG				-Ir	47	1)
V1430 Aql	54389.3923	.0005	QU	-0.0091		AJ 119,2391	V	68	3)
V1538 Aql	54326.3882	.0008	AG	-0.0763		BAVM 140	-Ir	32	1)
	54327.4707	.0034	AG	-0.0656		BAVM 140	-Ir	27	1)
V1542 Aql	54314.4436	.0005	QU	+0.0083	\mathbf{s}	IBVS 5161	V	85	3)
SS Ari	54389.3208	.0004	DIE	-0.0450	\mathbf{s}	GCVS 85	0	22	8)
BC Aur	54406.355:	.002	\mathbf{FR}	-0.662		GCVS 85	V	122	5)
	54455.320:	.004	\mathbf{FR}	-0.656	\mathbf{S}	GCVS 85	V	33	5)
FR Aur	54164.3736	.0040	\mathbf{FR}	-0.5263		GCVS 85	-Ir	25	7)
V432 Aur	54389.670:	.001	\mathbf{FR}	+1.538		IBVS 5319	-Ir	74	7)
AC Boo	54313.4732	.0003	QU	-0.0498	\mathbf{S}	GCVS 85	Ic	59	3)
AM CMi	54491.3984	.0010	QU	+0.1839		GCVS 85	V	64	3)
AX Cas	54367.4688	.0005	AG	-0.0942		GCVS 85	-Ir	61	1)
	54388.4835	.0010	AG	-0.0927		GCVS 85	-Ir	45	1)
	54390.2831	.0012	JU	-0.0942		GCVS 85		80	2)
BN Cas	54308.5023	.0004	AG				-Ir	25	1)
BS Cas	54308.3991	.0010	AG	-0.0153		IBVS 4778	-Ir	21	1)
	54319.4105	.0011	AG	-0.0157		IBVS 4778	-Ir	20	1)
BU Cas	54367.3529	.0016	AG	-0.0218		GCVS 85	-Ir	61	1)
EN Cas	54374.4475	.0032	AG	+0.2854		GCVS 85	-Ir	26	1)
GU Cas	54374.4400	.0025	AG	-0.3306		GCVS 85	-Ir	25	1)
IR Cas	54382.5845	.0013	AG	+0.0087	\mathbf{s}	GCVS 85	-Ir	55	1)
IT Cas	54363.4056	.0005	QU	+0.0599		GCVS 85	V	76	3)
MV Cas	54374.4157	.0001	ÅG				-Ir	22	1)
NN Cas	54374.4781	.0006	AG				-Ir	22	1)
$OR \ Cas$	54388.4555	.0010	AG	-0.0201	\mathbf{s}	GCVS 85	-Ir	40	1)
OX Cas	54357.4099	.0007	QU	+0.0253	s	GCVS 85	V	86	3)
	54367.3670	.0010	QU	+0.0250	s	GCVS 85	V	68	3)
	54388.4781	.0017	JU	+0.0066	-	GCVS 85		84	2)
	54388.4815	.0010	ĀĢ	+0.0100		GCVS 85	-Tr	40	1)
PV Cas	54327.4053	.0004	QU	-0.0338		GCVS 85	v	56	3)
	54356 3195	0013	<u>"</u> с	± 0.0326	s	GCVS 85	, 0	60	$\frac{2}{2}$
	54453 4343	0005	0U	-0.0387	5	GCVS 85	v	66	$\frac{2}{3}$
	54454 2466	0005	ou ou	± 0.0334	ç	GCVS 85	v	85	3)
				1 1/11/11/17	1.7			00	

Table 1: (cont.)

Variable	Min HJD 24	±	Obs	$\frac{1}{O-C}$		Bibliography	Fil	n	Rem
V345 Cas	54382.3855	.0007	AG				-Ir	56	1)
V360 Cas	54374.3776	.0003	AG				-Ir	25	1)
V366 Cas	54388.4234	.0014	AG	-0.0651	\mathbf{s}	IBVS 4798	-Ir	24	1)
V374 Cas	54374.5153	.0043	AG				-Ir	27	1)
V375 Cas	54378.3655	.0047	JU	+0.1988		BAVR 32,36ff		21	2)
	54462.3479	.0025	QU	+0.1986		BAVR 32,36ff	V	80	3)
V381 Cas	54317.4657	.0007	QU	+0.0144	\mathbf{s}	BAVR 32,36ff	V	91	3)
	54366.3507	.0012	ÅG	+0.0130	\mathbf{s}	BAVR 32,36ff	-Ir	47	1)
	54455.3928	.0007	QU	+0.0120	\mathbf{s}	BAVR 32,36ff	V	95	3)
V387 Cas	54319.4450	.0012	ÅG	+0.0757		GCVS 85	-Ir	20	1)
	54388.6029	.0007	AG	+0.0806		GCVS 85	-Ir	45	1)
V396 Cas	54366.3791	.0022	AG				-Ir	33	1)
V427 Cas	54366.5402	.0016	AG				-Ir	34	1)
V459 Cas	54367.2818	.0009	AG	-0.0127		IBVS 4737	-Ir	77	1)
	54388.3609	.0006	AG	-0.0793	\mathbf{s}	IBVS 4737	-Ir	46	1)
V471 Cas	54388.4234	.0015	\mathbf{SCI}	-0.0134	\mathbf{s}	GCVS 85	0	29	2)
	54388.6253	.0014	\mathbf{SCI}	+0.0205		GCVS 85	0	25	2)
V523 Cas	54366.2982	.0026	AG	-0.0409		GCVS 85	-Ir	47	1)
	54366.4144	.0007	AG	-0.0416	\mathbf{s}	GCVS 85	-Ir	47	1)
	54366.5319	.0009	AG	-0.0409		GCVS 85	-Ir	47	1)
V860 Cas	54366.4445	.0002	AG				-Ir	47	1)
SU Cep	54382.4856	.0004	\mathbf{FR}	+0.0100		GCVS 85	-Ir	31	7)
WY Cep	54385.3619	.0010	AG	+0.0225	\mathbf{s}	GCVS 85	-Ir	55	1)
XX Cep	54364.3851	.0017	JU	-0.0230		GCVS 85		75	2)
XY Cep	54298.4091	.0007	AG	-0.0406		GCVS 85	-Ir	74	1)
ZZ Cep	54360.3942	.0007	JU	-0.0106		GCVS 85	0	32	2)
AI Cep	54382.4797	.0012	\mathbf{FR}	+0.1666		GCVS 85	-Ir	31	7)
BE Cep	54366.4791	.0008	AG				-Ir	34	1)
BU Cep	54385.3590	.0027	AG				-Ir	57	1)
CW Cep	54387.3616	.0016	\mathbf{FR}	-0.0064		GCVS 85	-Ir	60	7)
-	54432.3890	.0012	JU	-0.0098	\mathbf{s}	GCVS 85		70	2)
DW Cep	54384.3026	.0010	AG	+0.4339		GCVS 85	-Ir	46	1)
EF Cep	54375.3628	.0011	AG	-0.1519		GCVS 85	-Ir	110	1)
GS Cep	54366.3923	.0017	AG	+0.0647		GCVS 85	-Ir	33	1)
IM Cep	54338.4893	.0012	AG				-Ir	38	1)
NW Cep	54357.3526	.0015	AG	-0.4231		GCVS 85	-Ir	39	1)
Y Cyg	54314.4350	.0031	WTR	-0.0789		GCVS 85	-Ir	85	9)
	54314.4370	.0003	\mathbf{FR}	-0.0769		GCVS 85	-Ir	40	7)
	54410.320	.007	JU	-0.077		GCVS 85		48	2)
SY Cyg	54365.3278	.0006	AG				-Ir	58	1)
AE Cyg	54359.5073	.0004	AG	-0.0052		GCVS 85	-Ir	37	1)
	54363.3841	.0008	JU	-0.0052		GCVS 85		61	2)
BO Cyg	54367.3920	.0038	\mathbf{SCI}	+0.0847		GCVS 85	0	86	2)
	54367.3984	.0002	WTR	+0.0911		GCVS 85	-Ir	142	9)
	54388.4737	.0007	QU	+0.0917		GCVS 85	V	86	3)
	54388.4742	.0008	\overline{FR}	+0.0922		GCVS 85	-Ir	22	7)
CG Cyg	54338.4117	.0012	AG	+0.0589		GCVS 85	-Ir	36	1)
00	54388.2699	.0006	DIE	+0.0570		GCVS 85	0	22	8)
DK Cyg	54360.3930	.0015	AG	+0.0498		BAVR 35,1ff	-Ir	35	1)́
DO Cyg	54364.3655	.0003	AG			,	-Ir	65	1)
EN Cyg	54326.5230	.0011	AG				-Ir	21	1)
GG Cyg	54365.3636	.0012	AG	+0.1246		GCVS 85	-Ir	30	1)
, 0	54367.3791	.0036	\mathbf{FR}	+0.1318		GCVS 85	-Ir	12	7)
GV Cyg	54312.4833	.0006	AG				-Ir	25	1)
KR Cyg	54313.4927	.0036	\mathbf{FR}	+0.0077	\mathbf{s}	GCVS 85	-Ir	22	7)
	54338.4286	.0004	QU	+0.0116		GCVS 85	V	70	3)
KV Cyg	54366.4142	.0030	SCI	+0.0513		GCVS 85	0	126	2^{\prime}
LO Cyg	54356.3690	.0027	\mathbf{SCI}				0	42	2^{\prime}
.0	54360.4501	.0038	\mathbf{SCI}				0	72	2)
	54366.4243	.0013	JU					117	2)
									· · ·

Table 1: (cont.)

			Table	. (cont.)					
Variable	Min HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
LO Cyg	54367.3725	.0015	JU					85	2)
	54378.3580	.0021	SCI				0	36	2)
	54382.4737	.0047	SCI				0	85	2)
MR Cyg	54337.5270	.0013	AG	+0.0013		GCVS 85	-Ir	28	1)
NU Cyg	54380.3713	.0021	SCI				0	33	2)
V385 Cyg	54338.4560	.0011	AG	-0.1287		GCVS 85	-Ir	35	1)
V387 Cyg	54360.4336	.0017	AG	+0.0173	\mathbf{s}	GCVS 85	-Ir	37	1)
V388 Cyg	54316.5253	.0031	SCI	-0.1368		BAVR 32,36ff	0	175	2)
V398 Cyg	54307.4549	.0028	SCI				0	18	2)
$V445 \ Cyg$	54317.4805	.0013	SCI				0	29	2)
V447 Cyg	54365.4161	.0014	AG				-Ir	29	1)
$V466 \ Cyg$	54298.5030	.0002	AG	+0.0051		GCVS 85	-Ir	29	1)
V488 Cyg	54313.4696	.0037	\mathbf{FR}	+0.0698	\mathbf{s}	GCVS 85	-Ir	27	7)
$V493 \ Cyg$	54240.5680	.0030	SCI	+0.1205		GCVS 85	0	55	2)
$V496 \ Cyg$	54339.3447	.0013	AG				-Ir	32	1)
$V526 \ Cyg$	54357.5429	.0013	AG	+0.0423		GCVS 85	-Ir	56	1)
m V620~Cyg	54360.5110	.0010	AG				-Ir	38	1)
$V628 \ Cyg$	54357.4216	.0008	AG	-0.0033		IBVS 4381	-Ir	29	1)
V642 Cyg	54389.3947	.0030	SCI	+0.3097		GCVS 85	0	52	2)
m V680~Cyg	54364.4335	.0007	AG	+0.0209		BAVR 32,36ff	-Ir	64	1)
m V711~Cyg	54337.4126	.0048	AG				-Ir	28	1)
$V725 \ Cyg$	53991.5511	.0064	\mathbf{FR}	+0.2672	\mathbf{s}	GCVS 85	-Ir	40	7)
	54365.3803	.0004	AG	+0.2386		GCVS 85	-Ir	29	1)
m V743~Cyg	54296.4533	.0005	AG				-Ir	36	1)
	54298.4947	.0014	AG				-Ir	28	1)
m V873~Cyg	54360.3840	.0008	\mathbf{FR}				V	36	5)
V909 Cyg	54339.5051	.0016	AG	-0.0163	\mathbf{s}	BAVR $47,2f$	-Ir	23	1)
m V959~Cyg	54366.4486	.0008	\mathbf{FR}	-0.0455		GCVS 85	-Ir	21	7)
V961 Cyg	54298.5115	.0008	AG	-0.0887	\mathbf{s}	GCVS 85	-Ir	28	1)
V962 Cyg	54326.3665	.0007	AG				-Ir	18	1)
$V965 \ Cyg$	54366.5301	.0104	\mathbf{FR}				V	40	5)
m V975~Cyg	54339.5311	.0004	AG				-Ir	22	1)
m V979~Cyg	54327.4578	.0003	\mathbf{FR}	+0.0297		GCVS 85	0	52	7)
	54365.3892	.0006	\mathbf{FR}	+0.0298	\mathbf{s}	GCVS 85	V	93	5)
	54365.5703	.0014	\mathbf{FR}	+0.0240		GCVS 85	V	93	5)
	54367.4442	.0004	\mathbf{FR}	+0.0294		GCVS 85	V	53	5)
$V995 \ Cyg$	54365.4626	.0044	SCI				0	124	2)
$V1004 \ Cyg$	54339.4707	.0032	AG	-0.1547		GCVS 85	-Ir	19	1)
m V1013~Cyg	54298.5203	.0035	AG				-Ir	29	1)
V1018 Cyg	54339.4272	.0015	AG	-0.0844		GCVS 85	-Ir	23	1)
	54365.4057	.0021	AG	-0.0847		GCVS 85	-Ir	31	1)
V1136 Cyg	54365.5417	.0052	AG	+0.4102	\mathbf{s}	GCVS 85	-Ir	28	1)
V1147 Cyg	54327.5350	.0004	\mathbf{FR}				0	49	5)
	54367.3615	.0015	\mathbf{FR}				V	53	5)
V1171 Cyg	54298.4576	.0008	AG	-0.0490		GCVS 85	-Ir	28	1)
	54339.3941	.0023	AG	-0.0520		GCVS 85	-Ir	22	1)
V1411 Cyg	54312.5167	.0013	AG	-0.1749	\mathbf{s}	GCVS 85	-Ir	25	1)
	54337.3742	.0009	AG	-0.1730	\mathbf{s}	GCVS 85	-Ir	31	1)
V1414 Cyg	54312.4600	.0009	AG				-Ir	25	1)
V1508 Cyg	54367.4218	.0068	\mathbf{FR}	+0.1776	\mathbf{s}	GCVS 85	-Ir	21	7)
m V1723~Cyg	54360.5432	.0001	AG				-Ir	38	1)
V1815 Cyg	54405.3557	.0003	WTR	+0.0034	\mathbf{s}	$_{ m BAVR}$ 55,1ff	-Ir	124	9)
V1918 Cyg	54343.4492	.0004	QU				V	60	3)
V2181 Cyg	54296.4650	.0007	AG	+0.0097		BAVR 50,45f	-Ir	36	1)
	54312.5221	.0007	\mathbf{FR}	+0.0093		BAVR $50,45f$	-Ir	35	7)
RR Del	54308.4971	.0564	AG	+0.3272		GCVS 85	-Ir	17	1)
TY Del	54357.3902	.0001	WTR	+0.0520		GCVS 85	-Ir	113	9)
YY Del	54313.4304	.0005	AG	+0.0105		GCVS 85	-Ir	22	1)
	54375.2910	.0004	AG	+0.0099		GCVS 85	-Ir	27	1)
AL Del	54327.3837	.0018	AG				-1r	46	1)

Table 1: (cont.)

X7 ' 11	M' ILID 04	1				D'I I' I	D 11		
Variable	Min HJD 24	±	Obs	0 - C		Bibliography	F'11	n	Rem
AL Del	54385.3184	.0023	AG			a atta er	-lr	25	1)
AV Del	54313.4899	.0003	AG	+0.0684		GCVS 85	-lr	25	1)
BG Del	54381.4017	.0008	AG				-Ir	34	1)
BH Del	54313.3929	.0015	AG				-Ir	24	1)
BO Del	54327.4551	.0023	AG				-Ir	40	1)
BS Del	54385.3014	.0030	AG				-Ir	23	1)
BW Del	54308.5096	.0001	AG				-Ir	18	1)
	54325.4742	.0006	AG				-Ir	28	1)
BY Del	53991.3364	.0013	AG				-Tr	42	1)
D1 D01	54327 5372	0024	AG				_ Ir	55	1)
CB Del	54313 4391	0021	AC				Ir	22	1)
DM Del	54227 2088	0012		0 1061		COVS 85	- 11 Tn	40	1)
DM Dei TZ Dre	54527.5900	.0013	AG	-0.1001		GCVS 65	-11 W	40	1) 2)
IZ Dra	54516.4417	.0004		-0.0231		GCV5 65	v	110	3) 1)
BE Dra	54389.4211	.0007	AG	+0.1309		GCVS 85	-1r	110	1)
BF Dra	54389.5933	.0012	AG	+0.0435		GCVS 85	-1r	116	1)
BO Gem	54433.4070	.0008	\mathbf{FR}				V	34	5)
CW Gem	54454.3417	.0034	$_{\rm FR}$	+0.0190	\mathbf{S}	BAVM 69	V	48	5)
$\operatorname{IM}\operatorname{Gem}$	54454.5509	.0016	\mathbf{FR}				V	78	5)
ES Her	54368.3449	.0006	AG				-Ir	34	1)
LV Her	54297.4498	.0008	AG	-0.0146		GCVS 85	-Ir	34	1)
PW Her	54391.4184	.0050	AG	-0.2543		BAVM 68	-Tr	62	1)
V342 Her	54317 3829	0003	WTR	+0.0147		GCVS 85	_ Tr	76	<u>-</u>) 9)
V381 Hor	54997 4709	0025		10.0111			_Tr	21	1)
V287 Hor	54297.4702	0025	AG			COVS 85	-11 Tn	24	1)
V 307 Her	54297.5500	.0000	AG	+0.0779	s	GC (5 6)	-11	34	1)
V1052 Her	54297.5439	.0008	AG				-1r	34	1)
V1073 Her	54368.2663	.0003	AG				-lr	34	1)
AW Lac	54357.3499	.0036	AG	+0.0345	\mathbf{s}	BAVR $35,1$ ff	-Ir	38	1)
CG Lac	54390.4151	.0039	AG				-Ir	37	1)
CN Lac	54312.4526	.0012	AG	-0.0314		GCVS 85	-Ir	25	1)
CO Lac	54348.4255	.0011	JU	-0.0091		GCVS 85	о	77	2)
	54389.3097	.0011	JU	+0.0066	\mathbf{s}	GCVS 85		71	2)
CY Lac	54357.5236	.0018	AG				-Tr	39	1)
EK Lac	54337 4481	0025	AG	-0.0050		GCVS 85	-Tr	32	1)
EM Lac	54357 4775	0005	AG	± 0.0672	0	CCVS 85	Ir	38	1)
	54994 1767	0100		± 0.0012	G		-11 Tn	50	1)
EO Lac	54304.1707	.0100	AG	0.9691		a ave or	-11 T.,	10	1)
EP Lac	54506.5001	.0012	AG	-0.5081		GC (5 6)	-11° T	40	1)
ES Lac	54359.4243	.0032	AG				-1r	46	1)
	54368.3363	.0017	AG				-lr	33	1)
EY Lac	54000.5040	.0200	AG				-Ir	31	1)
	54384.3213	.0020	AG				-Ir	21	1)
FI Lac	54384.3232	.0024	AG				-Ir	19	1)
FL Lac	54390.3114	.0017	AG	-0.0615		GCVS 85	-Ir	39	1)
GX Lac	54366.4544	.0013	AG				-Ir	34	1)
IP Lac	54364.3813	.0008	AG				-Tr	65	1)
	54381 4290	0105	AG				_ Tr	27	1)
KS Lac	5/38/ /297	0017	ΔC				_Tr	20	+) 1\
M7 Lac	59150 4785	.0017		0 2260	c	CCVS or	-11	20 17	1)
ML Lac	00100.4700	.0020	AG	-0.3308	S	GUVD 80 GUVD 85	U T	1 /	1) 1)
	54303.4283	.0017	AG	-0.3623	\mathbf{s}	GUVS 85	- 1r -	17	1)
NW Lac	54357.3723	.0011	AG				- lr	38	1)
	54363.4165	.0009	AG				-Ir	16	1)
PP Lac	54359.3951	.0009	AG	-0.0504	\mathbf{s}	GCVS 85	-Ir	45	1)
	54359.5939	.0005	AG	-0.0522		GCVS 85	-Ir	45	1)
V339 Lac	54363.4373	.0014	AG				-Ir	16	1)
V345 Lac	54359.4912	.0026	AG	+0.0841		GCVS 85	-Ir	45	1)
TT Lvr	54357.4341	.0007	JU	+0.0138		GCVS 85	0	54^{-5}	$\frac{1}{2}$
UZ Lyr	5/3/3 /567	0008	III	-0.0230		GCVS 85	õ	70	-, 2)
BV L	54343.4307	0010	л. ТТ	-0.0209			0	60	2) 2)
DV LYF	54300.4330	.0010	JU	0 1100	_	COVE of	U 17	00	4) 2)
	54494.3957	.0007	ųυ	-0.1188	\mathbf{s}	GUVS 85	v	95	3)
FION	F 49F0 9010	0010	A T T T	0.0100				FFA	4
U Peg	54359.3910	.0016	ALH	-0.0122		BAVR 45,3	0	556	4)

Table 1: (cont.)

			Table	L: (COIL.)					
Variable	Min HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
AT Peg	54356.4011	.0007	ALH	+0.0238		GCVS 87	0	384	4)
BB Peg	54360.3206	.0004	DIE	-0.0008		GCVS 87	0	22	8)
BY Peg	54382.3404	.0012	\mathbf{FR}				V	41	5)
	54382.5125	.0017	\mathbf{FR}				V	41	5)
	54440.3001	.0004	\mathbf{FR}				V	40	5)
CC Peg	54388.4508	.0039	\mathbf{FR}	-0.0147	\mathbf{s}	IBVS 5017	V	42	5)
_	54440.2398	.0015	\mathbf{FR}	-0.0048		$\rm IBVS~5017$	V	63	5)
CU Peg	54367.5832	.0012	AG				-Ir	35	1)
DP Peg	54367.3956	.0016	AG				-Ir	33	1)
GH Peg	54381.4274	.0007	QU	+0.0054		GCVS 87	V	86	3)
RT Per	54452.2871	.0003	JU	+0.0587		GCVS 87		80	$\frac{-)}{2}$
AG Per	54450 3227	0016	JU	+0.1276		GCVS 87		87	2)
III Per	54453 3739	0006	л Ш	± 0.009		GCVS 87		99	2)
KN Por	54462 388	0000	WTR	± 0.0000	0	BAVE 52 03ff	Īr	191	2) 9)
IS Dor	54300 4651	.000		± 0.003	G	DAVIC 52,550	-11 Ir	121	<i>3)</i> 1)
	54590,4051	.0004	AG				-11 T.,	49	1)
V 300 Per	54390.4871	.0047	AG	100469		aava ez	-11 T.,	5U 49	1)
V449 Per	54390.4826	.0022	AG	+0.0462		GCVS 87	-1r	48	1)
v Sge	54388.3306	.0006	AG	-0.0456		GUVS 87	-1r	30	1)
Sr Sge	54325.5419	.0035	AG	+0.1527		GUVS 87	-1r	28	1)
UZ Sge	54314.4972	.0008	AG				-1r	28	1)
	54365.4585	.0002	AG				-1r	45_{-}	1)
	54375.4165	.0018	AG				-Ir	28	1)
CK Sge	54304.4361	.0015	AG				-Ir	30	1)
CW Sge	54375.3398	.0018	AG	+0.0112		GCVS 87	-Ir	27	1)
DK Sge	54304.3875	.0016	AG				-Ir	30	1)
	54388.3316	.0011	AG				-Ir	30	1)
DL Sge	54314.4553	.0009	JU				0	76	2)
FL Sge	54389.3930	.0024	AG				-Ir	25	1)
GN Sge	54365.3538	.0009	AG	+0.0010	\mathbf{S}	GCVS 87	-Ir	44	1)
GO Sge	54365.3434	.0031	AG				-Ir	46	1)
	54382.3486	.0015	AG				-Ir	24	1)
DK Sct	54319.4127	.0017	AG	+0.0169		GCVS 87	-Ir	27	1)
EY Sct	54319.5073	.0038	AG				-Ir	26	1)
CD Tau	54432.4747	.0003	SIR	+0.0062		GCVS 87	-Ir	787	6)
CF Tau	54387.6264	.0044	SCI	-0.0030		BAVR 35,1ff	о	99	2)
V Tri	54381.5324	.0009	\mathbf{FR}	-0.0025	\mathbf{s}	GCVS 87	V	57	5)
RV Tri	54390.3176	.0034	AG	-0.0212	\mathbf{s}	GCVS 87	-Ir	50	1)
RR Vul	54359.3461	.0012	AG	-0.0691		GCVS 87	-Ir	37	1)
	54364.3994	.0002	WTR.	-0.0665		GCVS 87	-Ir	151	9)
AT Vul	54374.3595	.0100	AG	-0.0778		GCVS 87	_Tr	32	1)
AW Vul	54388 2726	0018	AG	+0.3903		GCVS 87	_Tr	31	+) 1)
AX Vul	54388 3254	.0008	AG	-0.0296		GCVS 87	_]r	31	+) 1)
AY Vul	54325 3600	0004	AC	_0.0200		GCVS 87	_Tr	28	+) 1)
BC Vul	54325.5009	0004		-0.0719		301201	-11 Tr	40 25	⊥ <i>)</i> 1\
BM Vul	54367 3938	0000					-11 Tr	26 26	⊥ <i>)</i> 1\
	54367 5190	0021 0096					-11 Tw	26 20	⊥ <i>)</i> 1\
DD V-1	04007.0120 E420E 2020	.0020	AG	0.0114		aava o r	-1ľ T.	00 00	1) 1
DP VUI	04320.3939 54999 4179	.0021	AG	-0.0114			-1r	28	1) 1)
	54388.4173	.0009	AG	-0.0493	\mathbf{s}	GUVS 87	-1r	31	1)
bs vul	54318.3781	10001	WIR	-0.0217		GUVS 87	-1r	76	9)
в0 Vul	54338.3608	.0024	AG	+0.0177		GUVS 87	-1r	35	1)
	54359.4117	.0011	AG	+0.0159		GCVS 87	-1r	36	1)
~~	54387.2948	.0006	DIE	+0.0184		GCVS 87	0	22	8)
CD Vul	54339.3458	.0001	WTR	-0.0004		GCVS 87	-Ir	70	9)
EU Vul	54374.3440	.0005	AG				-Ir	33	1)
FM Vul	54339.4518	.0010	AG	+0.0244		GCVS 87	-Ir	20	1)
FO Vul	54339.4561	.0039	AG				-Ir	19	1)
FR Vul	54339.4133	.0012	AG	-0.0057		GCVS 87	-Ir	17	1)
GI Vul	54339.5355	.0009	AG				-Ir	30	1)
G2038.0293	54271.4084	.0001	\mathbf{FR}	+0.0041		BAVM 177	-Ir	49	7)
	54318.4708	.0012	\mathbf{FR}	+0.0025		BAVM 177	-Ir	42	7)
									· · · ·

Table 1: (cont.)

				· · ·					
Variable	Min HJD 24	±	Obs	O - C		Bibliography	\mathbf{Fil}	n	Rem
G2038.0293	54325.4076	.0005	\mathbf{FR}	+0.0036		BAVM 177	-Ir	28	7)
	54326.3998	.0009	\mathbf{FR}	+0.0049		BAVM 177	-Ir	21	7)
G2656.4286	53611.4344	.0021	AG	-0.0006		IBVS 5900	-Ir	22	1)
	53612.5615	.0031	AG	+0.0007		$\rm IBVS~5900$	-Ir	25	1)
	53620.4400	.0015	AG	-0.0015		$\rm IBVS~5900$	-Ir	30	1)
	53637.3236	.0068	AG	-0.0051		$\rm IBVS~5900$	-Ir	25	1)
	53992.5225	.0022	AG	-0.0009	\mathbf{s}	$\rm IBVS~5900$	-Ir	35	1)
G3089.1247	54252.3742	.0025	\mathbf{FR}				-Ir	46	7)
	54252.5172	.0006	\mathbf{FR}				-Ir	46	7)
	54337.4197	.0012	\mathbf{FR}				-Ir	48	7)
G3679.1920	54319.4570	.0016	AG				-Ir	18	1)
U1125 - 18642389	54388.3455	.0026	\mathbf{FR}				V	41	5)
	54440.3548	.0015	\mathbf{FR}				V	31	5)
U1200-13084491	54327.5197	.0012	\mathbf{FR}				0	35	5)
	54367.4664	.0020	\mathbf{FR}				V	53	5)
U1275 - 15124020	54312.4256	.0012	AG				-Ir	26	1)
	54357.4836	.0011	AG				-Ir	30	1)
U1275-15134722	54357.3494	.0041	AG				-Ir	30	1)

Table 2: Maxima of Pulsating stars

Variable	Max HJD 24	±	Obs	0 – C	Bibliography	Fil	n	Rem
GP And	54450.4247	.0010	WN	+0.0059	GCVS 85	V	51	10)
V341 Aql	54380.3507	.0012	WN	+0.0105	BAVR 45,74	V	85	10)
V525 Aql	54357.3730	.0010	MZ		,	-Ir	77	2)
V921 Aql	54365.3608	.0010	MZ			-Ir	63	2)
RU Boo	54218.4004	.0008	MZ			-Ir	77	2)
YZ Boo	54381.2786	.0008	WN	+0.0020	GCVS 85	V	68	10)
CU Boo	54203.5081	.0004	MZ			-Ir	113	2)
	54316.3729	.0030	MZ			-Ir	79	2)
RZ Cep	54338.523	.003	\overline{AG}	-0.037	GCVS 85	-Ir	40	1)
	54385.438	.003	AG	-0.042	GCVS 85	-Ir	55	1)
UY Cyg	54338.447	.003	AG	+0.057	GCVS 85	-Ir	36	1)
XX Cyg	54363.3973	.0012	WN	+0.0024	GCVS 85	V	72	10)
	54380.3901	.0013	WN	+0.0022	GCVS 85	V	41	10)
	54387.4041	.0011	WN	+0.0032	GCVS 85	V	135	10)
DM Cyg	54381.3710	.0014	WN	-0.0036	BAVR 51,98ff	V	87	10)
	54389.3471	.0013	WN	-0.0049	BAVR 51,98ff	V	55	10)
$V357 \ Cyg$	54359.598	.003	AG			-Ir	36	1)
m V791~Cyg	54339.387 :	.002	\mathbf{FR}			V	48	7)
	54360.3481	.0020	\mathbf{FR}			V	12	5)
V835 Cyg	54359.544	.003	AG			-Ir	37	1)
$V1344 \ Cyg$	54360.399 :	.005	\mathbf{FR}			V	15	5)
$V1962 \ Cyg$	54381.3434	.0005	MZ			-Ir	72	2)
BX Del	54325.564	.010	AG			-Ir	28	1)
CD Del	54327.535	.003	AG			-Ir	40	1)
CG Del	54381.366	.003	AG			-Ir	31	1)
DX Del	54384.3206	.0017	WN	+0.0566	GCVS 85	V	144	10)
EF Del	54385.460	.003	\overline{AG}			-Ir	23	1)
EG Del	54385.347	.002	\overline{AG}	+0.028	GCVS 85	-Ir	23	1)
EH Del	54385.372	.003	\overline{AG}			-Ir	23	1)
VX Her	54380.2641	.0009	WN	+0.0420	GCVS 85	V	53	10)
VZ Her	54348.3575	.0010	WN	+0.0639	GCVS 85	V	133	10)
	54359.3654	.0010	WN	+0.0636	GCVS 85	V	141	10)
	54363.3277	.0009	WN	+0.0630	GCVS 85	V	90	10)
	54366.4094	.0012	WN	+0.0623	GCVS 85	V	97	10)
V633 Her	53895.3857	.0002	MZ			-Ir	72	2)
CZ Lac	54381.4477	.0012	WN	-0.0589	BAVR $53,12f$	V	105	10)
	54404.3367	.0024	WN	-0.0758	BAVR 53,12f	V	154	10)

Table 2: (cont.)

				()				
Variable	Max HJD 24	\pm	Obs	O - C	Bibliography	Fil	n	Rem
Y Lyr	54299.3904	.0020	ΜZ			-Ir	72	2)
RZ Lyr	54366.3140	.0015	WN	-0.0066	BAVR 48,189	V	106	10)
	54388.3038	.0015	WN	-0.0002	BAVR 48,189	V	129	10)
AQ Lyr	54324.4286	.0010	MZ			-Ir	84	2)
CN Lyr	54381.3281	.0019	WN	+0.0019	BAVR 43,57	V	62	10)
CX Lyr	54362.4056	.0004	MZ	+0.1511	BAVR 49,41	-Ir	76	2)
DI Lyr	54366.3467	.0008	MZ			-Ir	80	2)
LX Lyr	54379.3806	.0004	MZ	+0.0044	BAVR 49,105	-Ir	87	2)
VV Peg	54450.3301	.0018	WN	-0.0253	GCVS 87	V	143	10)
BH Peg	54357.3610	.0012	ALH	+0.0000	BAVR 47,67	0	408	4)
	54387.4691	.0020	WN	-0.0183	BAVR 47,67	V	136	10)
CG Peg	54339.4611	.0005	QU	-0.0278	SAC 72	V	81	3)
CV Peg	54367.327	.003	AG			-Ir	36	1)
DY Peg	54450.3777	.0010	WN	-0.0065	GCVS 87	V	43	10)
SS Psc	54433.4504	.0007	QU	+0.0068	BAVR 47,67	V	69	3)
FI Sge	54381.325	.003	AG			-Ir	36	1)
BT Ser	54318.3878	.0040	MZ			-Ir	80	2)
	54326.3679	.0060	MZ			-Ir	36	2)
XZ Vir	54223.3750	.0003	MZ			-Ir	61	2)
DR Vir	54222.4139	.0040	MZ			-Ir	133	$2) \ red$

Remarks:

AG:	Agerer, F., Tiefenbach	\mathbf{QU} :	Quester, W., Esslingen					
ALH:	Alich, K., Schaffhausen (CH)	SCI:	Schmidt, U., Karlsruhe					
DIE:	Dietrich, M., Radebeul	SIR:	Schirmer, J., Willisau (CH)					
FR:	Frank, P., Velden	WN:	Wischnewski, M., Wennigsen					
Ju:	Jungbluth, Dr. H., Karlsruhe	WTR:	Walter, F., München					
MZ:	Maintz, G., Bonn							
:	uncertain							
s	secondary minimum							
red	Normal minimum/maximum							
С	CCD-camera							
0	without filter							
V	V-filter							
Ic	I-filter Cousins							
-Ir	-Ir-filter							
Unnnn	USNO A2.0 catalogue (U as first character of starname)							
Gnnnn	GSC (G as first character of starname)							
1)	ccd-camera ST-6 chip 375^*242 uncoated							
2)	ccd-camera ST-7							
3)	ccd-camera ST-7E							
4)	ccd-camera ST-8E							
5)	ccd-camera ST-9 chip							
6)	ccd-camera AlphaMaxi							
7)	ccd-camera OES-LcCCD12							
8)	ccd-camera pictor 1616XT							
9)	ccd-camera Pictor 416XT							
10)	ccd-camera Meade DSI Pro 2							
GCVS yy	General Catalogue of Variable	e Stars,4tl	n ed. $19yy$					
IBVS $nnnn$	Information Bulletin on Varia	ble Stars	No. nnn					
SAC vv	Rocznik Astronomiczny No. v	vv, Krako	w (SAC)					
AJ	Astronomical Journal							
BAVM nnn	BAV Mitteilungen No. nnn							
BAVR vv, ppp	p BAV Rundbrief Vol. vv , page	ppp						

Number 5831

Konkoly Observatory Budapest 21 May 2008 *HU ISSN 0374 - 0676*

BVR_CI_C PHOTOMETRIC OBSERVATIONS OF V733 Cep (PERSSON'S STAR)

SEMKOV, E. H.; PENEVA, S. P.

Institute of Astronomy, Bulgarian Academy of Sciences, 72, Tsarigradsko Shose blvd., BG-1784 Sofia, Bulgaria, e-mail: esemkov@astro.bas.bg, speneva@astro.bas.bg,

Photometric variability is a widespread characteristic of the pre-main sequence (PMS) stars. FU Orionis (FUor) outbursts are a very rare phenomenon but with an important role in stellar evolution (Herbig, 1977). An increase in optical brightness of the order of 4-5 magnitudes, an F-G supergiant spectrum with broad blue-shifted Balmer lines, strong infrared excess and connection with reflection nebulae are the main characteristics of FUors (Reipurth, 1990). According to Hartmann and Kenyon (1985) the FUor outburst is a result of a major increase of accretion from a circumstellar disk on the stellar surface. Another class of PMS objects with high amplitude variations has for a prototype the variable star UX Orionis (UXor). UXors are intermediate mass stars displaying sudden drops in brightness of up to 3 mag. probably caused by variable circumstellar extinction (Natta et al., 1997).

The PMS object V733 Cep (Persson's star) is located in the dark cloud L1216 near to Cepheus OB3 association. The variability of V733 Cep is discovered by Swedish amateur astronomer Roger Persson in 2004 (Persson, 2004). He noted the presence of the star on the red POSS-II image (1991) and its absence on the corresponding POSS-I image (1953). The star is visible also on a Palomar Quick-V plate from 1984. A *R*-band CCD image of V733 Cep was taken with the 88 inch telescope on Mauna Kea, Hawaii, on 2004 October 9. The magnitude, measured from this observation is about R = 17^m3 (Reipurth et al., 2007). Comparing this value with the data from USNO-B catalog, Reipurth et al. (2007) conclude that the star has faded by 1^m6 (*R*) over a time period of about 13 yr. The authors suspect a possible outburst in the period 1953-1984 and find great spectral similarities to FU Ori itself.

In this paper we present BVR_cI_c photometric data of V733 Cep obtained in the period February 2007 - February 2008. Our observations were performed at two observatories with three telescopes: the 2-m Ritchey-Chretien-Coude and 50/70/172 cm Schmidt telescopes of the National Astronomical Observatory Rozhen (Bulgaria) and the 1.3-m Ritchey-Chretien telescope of the Skinakas Observatory¹ of the Institute of Astronomy, University of Crete (Greece). Five different CCD cameras were used during the period of our photometric observations. The technical parameters and chip specifications for the CCD cameras used are summarized in Table 1. All frames were taken through a standard Johnson-Cousins set of filters. Aperture photometry was performed using IDL DAOPHOT routines. All frames obtained with the 2-m RCC, the 1.3-m RC the 50/70 cm Schmidt telescope were reduced using the same aperture of about 3".0 radius.

¹Skinakas Observatory is a collaborative project of the University of Crete, the Foundation for Research and Technology - Hellas, and the Max-Planck-Institut für Extraterrestrische Physik.

Telescope	CCD type	Size	Pixel size	Field	RON
2-m RCC 1.3-m RC 1.3-m RC Schmidt Schmidt	VersArray 1300B Photometrics CH360 ANDOR DZ436-BV ST 8 ST 11000	$\begin{array}{c} 1340 \times 1300 \\ 1024 \times 1024 \\ 2048 \times 2048 \\ 1530 \times 1020 \\ 4008 \times 2672 \end{array}$	$20 \mu m$ $24 \mu m$ $13.5 \mu m$ $9 \mu m$ $9 \mu m$	$5'.6 \times 5'.6$ $8'.5 \times 8'.5$ $9'.6 \times 9'.6$ $28' \times 18'.7$ $73' \times 49'$	2.8ADU/rms 2.6ADU/rms 5.3ADU/rms 6.2ADU/rms 13ADU/rms
			•		,

Table 1. CCD cameras and chip specifications

In order to facilitate transformation from instrumental measurements to the standard system a sequence of fifteen comparison stars in the field of V733 Cep was calibrated in BVR_cI_c bands. The standard stars used for comparison are of great importance for the correct magnitude estimation. In regions of star formation like the Cepheus L1216 dark cloud a great percentage of stars can be photometric variables. Calibrations were made with the 1.3-m RC telescope during four clear nights in June and July 2007. Standard stars from Landolt (1992) were used as a reference. The finding chart (R band images obtained with the 1.3-m RC telescope) of the comparison sequence is presented in Fig. 1. The field is 8.5×8.5 , centered on V733 Cep. North is at the top and east to the left. Table 2 (available through the IBVS website as 5831-t2.tex) contains our photometric data for the BVRI comparison sequence. The corresponding mean errors of the mean are listed, too.

Three stars from our list (C, G and N) were also measured by Pozzo et al. (2003) in BVI bands. Comparing our magnitudes with the data reported in Pozzo et al. (2003) we find a good agreement for I and V values. Only for B magnitudes there are differences at about 0^m₂. Three of stars primary selected for our comparison sequence appear to be photometric variables unknown to the present. The USNO-B1.0 identification number, the coordinates of the stars and the observed minimal and maximal values for I and V bands are summarized in Table 3. The stars are named Var. 1, Var. 2, and Var. 3 and they are also marked on Fig. 1. One of them Var. 1 show a very high amplitude of brightness variation ($\Delta V = 2^{m}98$) and it is probably a long period variable of Mira type. Var. 2 lie at about 4' south-east from V733 Cep in the same dark cloud and it is probably a PMS object.

Star	USNO-B1	RA J 2000	DE J 2000	$I_{\rm max}$	I_{\min}	$V_{\rm max}$	$V_{ m min}$
Var. 1 Var. 2 Var. 3	1525-0418386 1525-0418333 1525-0418196	$\begin{array}{c} 22:53:46.53\\ 22:53:36.22\\ 22:53:15.69\end{array}$	62:34:58.6 62:31:46.8 62:35:27.9	$13.88 \\ 13.87 \\ 13.06$	$16.24 \\ 14.54 \\ 13.33$	$16.28 \\ 16.36 \\ 15.26$	$19.26 \\ 17.38 \\ 15.61$

Table 3. New variable stars in the field of V733 Cep

The results from our CCD photometric observations are given in Table 4. The table contains Date, the Julian Date, the I_c , R_c , V and B magnitudes. Our photometric observations of V733 Cep in the period February 2007 - February 2008 show that the brightness of the star is almost steady. We observed only a low amplitude fluctuations of about $0^{\text{m}}1$ (I) around the middle values. Using our comparison sequence we measured the plate scans from POSS-II and Quick-V. The corresponding photometric values are: $V = 17^{\text{m}}75$ (Aug. 27, 1984), $I = 13^{\text{m}}77$ (Jul. 24, 1991), $R = 16^{\text{m}}00$ (Sep. 3, 1991) and $B = 20^{\text{m}}78$ (Aug. 9, 1991). The light curve of V733 Cep from all known observations is plotted on Fig. 4. On the figure the arrow marks the limit of the red plate from POSS-I (Oct. 31, 1953).

Our photometric data suggest that in the period Feb. 2007 - Feb. 2008 the star

Figure 1. A finding chart of the comparison sequence in the field of V733 Cep

brightness is similar to the measured from POSS-II and Quick-V plates (Fig. 4). Thus the photometric behavior of V733 Cep appears different from the well studied FUors. A main photometric characteristic of FUors is the slow decreases in brightness after the outburst (Clarke et al., 2005). The two observed minimums (on POSS-I and on Oct. 2004) can be explained by a variable extinction from the circumstellar environment - a UXor type of variability. On the other hand the observed amplitude of V733 Cep (\sim 5 mag. in red) is extremely high for this type of variability. Only a few UXors such as V1184 Tau have a similar photometric behavior (Semkov et al., 2008). The construction of the historical light curve of V733 Cep would be very important for a determination of the type of variability. The shape of the light curve will be a very strong evidence for FUor or UXor type of variability. We'll try to collect more data from the archiving photographic plates and new CCD observations to solve the problem with the exact classification of V733 Cep.

Acknowledgements: The authors thank the Director of Skinakas Observatory Prof. I. Papamastorakis and Prof. I. Papadakis for the telescope time. The Digitized Sky Survey was produced at the Space Telescope Science Institute under U.S. Government grant NAG W-2166. The images of these surveys are based on photographic data obtained using the Oschin Schmidt Telescope on Palomar Mountain and the UK Schmidt Telescope. The plates were processed into the present compressed digital form with the permission of these institutions.

Date	J.D.(245)	I_c	R_c	V	В	CCD	Tel.
2007 Feb 25	4157.212	14.06	16.35	18.19	_	ST-8	$\mathbf{Schmidt}$
$2007 { m Apr} 10$	4200.582	14.07	16.04	18.19	_	VersArray	$2 \mathrm{m} \mathrm{RCC}$
2007 Jun 27	4278.519	14.17	16.41	18.41	21.08	Photometrics	$1.3 \mathrm{m} \mathrm{RC}$
$2007 { m Jul} 04$	4285.525	14.11	16.33	18.34	21.08	Photometrics	$1.3 \mathrm{m} \mathrm{RC}$
2007 Jul 23	4305.494	14.02	16.25	18.22	20.75	ANDOR	$1.3 \mathrm{m} \mathrm{RC}$
2007 Jul 25	4306.512	14.04	16.27	18.27	20.81	ANDOR	$1.3 \mathrm{m} \mathrm{RC}$
$2007 { m Aug} 14$	4327.401	14.07	16.02	18.18	_	VersArray	$2 \mathrm{m} \mathrm{RCC}$
2007 Aug 15	4328.402	14.09	16.04	18.22	_	VersArray	$2 \mathrm{m} \mathrm{RCC}$
2007 Aug 17	4330.461	14.10	16.09	18.19	21.01	VersArray	$2 \mathrm{m} \mathrm{RCC}$
2007 Nov 06	4411.217	14.17	16.12	18.24	_	VersArray	$2 \mathrm{m} \mathrm{RCC}$
$2008 { m \ Feb} 12$	4509.235	14.29	16.25	18.38	_	$ST \ 11000$	$\operatorname{Schmidt}$
$2008 {\rm Feb} 29$	4526.220	14.19	16.13	18.09	_	$ST \ 11000$	$\operatorname{Schmidt}$

Table 4. Photometric observations of V733 Cep in the periodFebruary 2007 - February 2008

Figure 2. B, V, R_c and I_c light curves of V733 Cep

References:

Clarke, C., Lodato, G., Melnikov, S. Y., Ibrahimov M. A., 2005, MNRAS, 361, 942

Hartmann, L., Kenyon, S. J., 1985, *ApJ*, **299**, 462

Herbig, G. H., 1977, ApJ, 217, 693

Landolt, A. U., 1992, AJ, 104, 340

Natta, A., Grinin, V. P., Mannings, V., Ungerechts, H., 1997, ApJ, 491, 885

Persson, R., 2004, IAU Circ., 8441

Pozzo, M., Naylor, T., Jeffries, R. D., Drew, J. E., 2003, MNRAS, 341, 805

- Reipurth, B., 1990, *IAU Symp.*, **137**, 229, Flare Stars in Star Clusters, Associations and the Solar Vicinity, eds. B. Pettersen, L. Mirzoyan, M. Tsvetkov (Boston: Kluwer)
- Reipurth, B., Aspin, C., Beck, T., Brogan, C., Connelley, M. S., Herbig, G. H., 2007, AJ, 133, 1000
- Semkov, E. H., Tsvetkov, M. K., Borisova, A. P., Stavrev, K. Y., Kroll, P., Berthold, T., Birkle, K., Mandel, H. Mito, H., Tarusawa, K., 2008, A&A, 483, 537

Number 5832

Konkoly Observatory Budapest 26 May 2008 *HU ISSN 0374 - 0676*

RECENT CCD PHOTOMETRY OF AB Dor, AND A COMMENT ON THE LONG-TERM ACTIVITY CYCLE

INNIS, J. L.¹; BUDDING, E.^{2,3}; OLÁH, K.⁴; JÄRVINEN, S. P.^{5,6,7}; COATES, D. W.⁸; MESSINA, S.⁹; KAYE, T. G.¹⁰

¹ Brightwater Observatory, 280 Brightwater Rd., Howden, TAS, 7054, Australia. Email: brightwater@iraf.net

² Physics Department, University of Canakkale, TR 17020, Turkey

³ Carter Observatory, Wellington, New Zealand

⁴ Konkoly Observatory, H-1525 Budapest, P.O.Box 67, Hungary

⁵ Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany

⁶ Tuorla Observatory, University of Turku, FI-21500 Piikkiö, Finland

⁷ Astronomy Division, P.O. Box 3000, FI-90014 University of Oulu, Finland

⁸ School of Physics, Building 27, Monash University, VIC, 3800, Australia

⁹ INAF Catania Astrophysical Observatory, via S. Sofia 78, 95123 Catania, Italy

 10 Spectrashift, 404 Hillcrest, Prospect Heights, IL 60090, USA

AB Doradus (HD 36705) is a young, active, K-type dwarf. Recent work has shown the AB Dor system to consist of at least four stars (e.g. Guirado et al., 2006), but AB Dor itself is not a close binary. The rapid rotation and the high level of activity are a consequence of the star's relative youth. Activity signatures have been detected at radio, UV, and X-ray wavelengths.

AB Dor has been systematically observed since attention was drawn to it by Pakull (1981), who discovered the ~ 0.5 d rotation period, although in recent seasons optical coverage has decreased. An analysis of the photometric data to 2000 by Järvinen et al. (2005) noted evidence for a possible ~ 20 -year activity cycle.

We obtained CCD B and V data at the Brightwater Observatory, Tasmania, in 2007 March 03–April 13 and 2007 December 15–2008 March 22. See Innis et al. (2007) for more details of the photometric equipment and method. The CCD field of view is 0.80×0.55 , allowing us to observe both AB Dor and the comparison stars HD 36316 and HD 37082 simultaneously. Instrumental magnitudes were found using standard aperture photometry techniques. We corrected for extinction (including the second–order colour–dependent term in the B–band) and transformed our instrumental magnitudes to the standard Cousins system.

The mean and standard deviations for our observed V and B-V differences HD 37082 – HD 36316 were 1.72 ± 0.01 and -1.30 ± 0.03 respectively, which agree reasonably well with previous work (Grothues et al., 1997, HD 37082: V = 9.651, B - V = 0.169, HD 36316: V = 7.951, B - V = 1.451; Cutispoto, 1998, HD 36316: V = 7.95, B - V = 1.46). Our final magnitudes and colours for AB Dor have been derived relative to HD 37082 (using V = 9.651, B - V = 0.169, from Grothues et al., 1997).

Just over 1800 individual exposures were obtained in each of B (exposure time 45s) and V (exposure time 30s) filters, yielding around 450 data points in each filter as we average four consecutive exposures to reduce scintillation noise (datafiles are available through the IBVS website as 5832-t1.txt, 5832-t2.txt). We use the period and epoch of P=0.51479 d and HJD 2444296.575 (Innis et al., 1988) for the following phase plots.

In 2007 March–April AB Dor varied in V by approximately 0.08 mag, from V ~6.98 to V ~7.06, as shown in the top left panel of Figure 1. Minimum light is very nearly at phase zero. The top right panel shows the check–comparison star magnitude differences at the same scale.

Figure 1. Photometry from the Brightwater Observatory: Top left panel AB Dor V light curve for 2007 March–April; top right panel: check– comparison star V magnitude differences 2007 March–April. Middle left panel: 2007 December–2008 March V AB Dor light curve; middle right panel: check– comparison star V magnitude differences 2007 December–2008 March. Lower left panel: V light curve for AB Dor for aperture 4 of the ASAS data set (Pojmanski and Maciejewski, 2005) for 2006 February–July. Lower right: observed (small dots) and phase–binned B – V data (big dots: 2007, triangles: 2008) for the Brightwater photometry.

In 2007 December-2008 March (middle left panel of Figure 1) the light curve was less stable, with maximum light somewhat brighter, near 6.95, and with a clear shift in minimum to near phase 0.9. Minimum light at the two epochs are comparable. We show again the check-comparison star differences in the middle right panel to support the case that it is AB Dor which has changed – similar changes have of course been noted earlier.

The lower left panel of Figure 1 shows V data for AB Dor for 2006 February to July, taken in aperture 4 as part of the All Sky Automated Survey (ASAS, Pojmanski and Maciejewski, 2005). We include this to show that the amplitude of variation and the phasing of minimum light in mid 2006 was close to that seen in our 2007 March-April observations.

Our *B* data are somewhat more scattered than our *V* data, most likely due to the lower sensitivity of the CCD at shorter wavelengths. Small B - V changes were noted, however these were of comparable size to the observational noise. We have binned our B - V data in 0.1 phase bins to reduce noise. The lower right panel of Figure 1 shows the original and phase-binned B - V data. There is an indication that the star is about 0.02-0.03 mag redder when fainter in both seasons observed at Brightwater. The mean and sample standard deviation for our determination of B - V (for our entire CCD data, 2007 March-2008 March) is 0.86 ± 0.02 mag.

For interest, we performed a spot modeling analysis on our 2007 March–April data. Adopting maximum light observed at that epoch as the unspotted flux level, we find that a single, circular midlatitude spot of radius ~14° produces a good fit to the data. However, if we take the historical maximum (equivalent to $V \sim 6.74$) a polar spot near 40° in radius (some 11% by area) is required to reduce the overall flux, in addition to a midlatitude spot of around 12° needed to produce the rotational modulation. Supposing $T_{star} = 5000$ K and $T_{spot} = 3500$ K we get excellent simultaneous fits both to the *B* and *V* light curves. For the modeling technique see Ribárik et al., 2003.

Figure 2. Top panel: V-band data for AB Dor, from the compilation of Järvinen et al. (2005) (dots), with our recent data (extreme right, triangles), and ASAS aperture 4 data (crosses). The mean value of the ASAS data may be uncertain by 0.05 mag. Our new data support the \sim 20-year activity cycle proposed by Järvinen et al. (2005). Lower Panel: B - V data for AB Dor, from the unpublished compilation of Messina (in preparation) and including our new B - V data. A clear variation is seen.

In the top panel of Figure 2 we show the complete V history of AB Dor, as far as it is known, using the photometric compilation of Järvinen et al. (2005) and including our 2007–2008 data. We include all the currently available 'aperture 4' ASAS data as crosses. For bright stars like AB Dor the biggest 'aperture 4' photometry (diameter = 6 pixels, one pixel \approx 15 arcsecs, see Pojmanski, 2002) gives magnitudes with the lowest noise. These data cover a recent gap in the record, but we note there are systematic differences of ~0.05 mag between the various ASAS apertures. However, the ASAS data also suggest that AB Dor was at the fainter part of its brightness range over this interval (e.g. as seen in the data in the lower panel of Fig. 1). Järvinen et al. (2005) deduced the likely presence of two different cycles, one a 'flip-flop' (spot-longitude) cycle of about 5.5 years, and another, longer-term, mean-brightness cycle of near 20 years. Our recent data, showing the star to be even fainter than at the minimum recorded some 18 years ago, appears to support the ~20-year cycle proposed by Järvinen et al. (2005). Our new analysis, including the 2007-2008 data, yields a period of 19 ± 3 y, with a false alarm probability (FAP) of 1.4×10^{-4} , as determined using the Lomb method for unevenly sampled data (Press et al., 1992).

In the lower panel of Figure 2 we plot the B - V history of AB Dor, from published observations compiled by Messina (in preparation), also with our recent data. A clear, long-term, colour change is seen. Messina's analysis (in preparation) shows that the longterm B - V variations are in phase with the V variations, with the same cycle period, but with a smaller variation amplitude. The new B - V data seem to further support the cyclic color variation of AB Dor, with the star getting redder when it is fainter. We are continuing the analysis.

Acknowledgements: We thank D. Partridge, S. Norris, and T. Moon for assistance with the construction of the Brightwater observatory, and Doug George (Diffraction Limited) for data-acquisition software support. We made use of the SIMBAD database of the Stellar Data Centre (CDS) Strasbourg, the NASA ADS database, the ASAS-3 database, and the data-reduction packages IRAF (NOAA, USA), MUNIWIN (by David Motl), and OCTAVE (J. Eaton and colleagues). K. Oláh thanks J. Jurcsik for advice and acknowledges support from the Hungarian research grants OTKA-048961 and OTKA 068626. D. Coates thanks the Faculty of Science, Monash University, for the provision of an Honorary Research Fellowship. We also thank the many astronomers, too numerous to mention here, who have observed AB Dor over the years, which allows this work to be carried out.

References:

- Cutispoto, G., 1998, A.&A. Suppl. Ser., 131, 321
- Grothues, H.-G., Oestreicher, M.O., Gochermann, J., Tappert, C., Zaum, A., Brugger, H.R., Schmidt-Kaler, Th., 1997, A.&A. Suppl. Ser., 121, 247
- Guirado, J. C., Martí-Vidal, I., Marcaide, J. M., Close, L. M., Algaba, J. C., Brandner, W., Lestrade, J.-F., Jauncey, D. L., Jones, D. L., Preston, R. A., Reynolds, J. E., 2006, A.&A., 446, 733
- Innis, J.L., Thompson, K., Coates, D.W., Lloyd Evans, T., 1988, MNRAS, 235, 1411
- Innis, J.L., Coates, D.W., Kaye, T.G., 2007, Perem. Zvezdy, 27, 1
- Järvinen, S.P., Berdyugina, S.V., Tuominen, I., Cutispoto, G., & Bos. M., 2005, A.&A., 432, 657
- Pakull, M.W., 1981, A.&A., 104, 33
- Press, W.H., Teukolsky, S.A., Vetterling, W.T., & Flannery, B.P. 1992, in Numerical Recipes in FORTRAN - The Art of Scientific Computing, Second Edition, p. 569– 573, Cambridge University Press, New York, USA
- Pojmanski, G., Maciejewski, G., 2005, Acta. Astron., 55, 97
- Pojmanski, G., 2002, Acta. Astron., 52, 397
- Ribárik, G., Oláh, K., Strässmeier, K., 2003, AN, **324**, 202

Number 5833

Konkoly Observatory Budapest 27 May 2008 *HU ISSN 0374 - 0676*

ON THE ACCRETION STATE SWITCHING IN EX Dra

HALEVIN, A. V.¹; HENDEN, A. A.²

¹ Department of Astronomy, Odessa National University, T.G.Shevchenko Park, Odessa, 65014, Ukraine

² American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138, USA

Introduction. EX Dra is a long-period (5.04 h) dwarf nova with deep eclipses (1^m.5) and about 2^m - 3^m amplitude outbursts. It was classified as an eclipsing dwarf nova by Barwig et al. (1993). Baptista, Catalan and Costa (2000), using photometric observations, found that this system has a mass ratio q = 0.72 and an inclination angle $i = 85^{\circ}$. They estimated the white dwarf mass to be $M_1 = 0.75 \text{ M}_{\odot}$ and the red dwarf mass to be $M_2 = 0.54 \text{ M}_{\odot}$. Knigge (2006) determined the spectral class of the mass donor to be M1.5±0.5. Assuming that the flux densities at mid-eclipse are indicative of the secondary star, Baptista, Catalan and Costa (2000) estimated 290 pc as the lower limit for the distance. Following Knigge (2006), another estimate of the lower limit distance using 2MASS JHK photometry and the K-band magnitude of the red dwarf gives 216 pc. However, this value contradicts our eclipse mapping data, because during quiescent states the accretion disc becomes too cold to provide outbursts. A detailed discussion can be found in Halevin et al. (2008).

Figure 1. Long-term light curve of EX Dra for AAVSO visual and CCD observations.

Studies of eclipse timings show that the ephemeris is not described by a simple linear relationship. Baptista, Catalan and Costa (2000) found that the ephemeris must be modified by adding a sinusoidal term with a 1479^d period. Another estimate by Shafter and Holland (2003) gives a sinusoidal period of 1823^d. According to the previous investigators, EX Dra showed outbursts with a cycle of about 20 days and a duration of about 10 days.

Observations and data analysis. In our work we used 3500 visual and V band CCD observations of EX Dra, obtained by members of American Association of Variable Star Observers (AAVSO) during the time interval from 1995 to 2008.

One can see the long-term variability of EX Dra in the AAVSO light curve (Fig. 1). Visual inspection shows two different states of activity in the system: before and after JD 2452650. Significant change of the system behavior is clearly visible: before JD 2452650, EX Dra has a quiescent magnitude of about 15^{m} 5, and after this date, the quiescent magnitude is approximately 15^{m} . At the same time, the maximum brightness becomes lower, with outburst amplitudes reduced from 3^{m} to 2^{m} .

We used Fourier techniques on our data, divided into two sets, to analyze the outburst cycle length: before the state switching and after it. Power spectra for the two segments of the EX Dra light curve can be seen in Fig. 2.

Figure 2. Power spectra for EX Dra observations before JD 2452650 (top) and after (bottom) this date.

We see here that before JD 2452650 the periodogram shows one prominent peak corresponding to the cycle length of 23.9 days. For the later state of EX Dra, the power spectrum shows two peaks near 12.6 and 12.7 days. The last one is higher and we consider it as representing the new cycle length time-scale.

The information about photometric and time-scale changes of the system behavior is summarized in the Table 1.

Detailed light curve inspection shows that the last system state is described with a very unstable outburst behavior and in principle we cannot use the 12.7 day cycle length as the only outburst variability parameter.

Table 1. I notometric parameters of the two states of EX Dia.									
Parameter	$JD_{obs} < 2452650$	$JD_{obs} > 2452650$							
Visual magnitude in maximum	$(12.90 \pm 0.17)^m$	$(13.08 \pm 0.13)^m$							
Visual magnitude in minimum	$(15.41 \pm 0.23)^m$	$(14.78 \pm 0.18)^m$							
Outburst cycle, days	23.9	12.7							

Table 1: Photometric parameters of the two states of EX Dra.

To perform more detailed data analysis, we used wavelet analysis to search for possible evolution of outburst cycles. A detailed description of wavelet analysis principles can be found in Foster (1996). Here we used the code written by Foster to calculate the weighted wavelet Z-transform (WWZ) map (Fig. 3).

Figure 3. Weighted wavelet Z-transform map and the dominant cycle length evolution for Fig. 1 observations.

Fig. 3 shows the wavelet map for AAVSO data (top), and the curve (bottom) which represents evolution of the most prominent time-scales of the wavelet map. The wavelet map shows a dramatic switching of the outburst time-scale from the nearly regular 20-25 days cycle length before JD 2452650 to one with less prominent outbursts that have a time-scale of about 10-15 days.

The wavelet analysis also gives JD 2452665 as a more precise determination of the moment of state switching. Before this date we see smooth cycle length changes in the range from 18 to 30 days. These changes have two different timescales: a short one of about 225 days and a long one with 1280 days. The last time scale is close to the period of system ephemeris changes determined by Baptista, Catalan and Costa (2000). After the state switching the system behavior becomes more complicated. With the current

shorter outburst cycle, we now need more frequent observations of this star to achieve good time resolution in order to resolve variability details of the system.

Discussion. To explain the state switching of the system we analyzed the dependence of the outburst cycle length from the other system parameters. From the standard α -disc solutions we have the formula for the viscous time-scale (Frank, King and Raine, 2002):

$$t_{visc} \sim 3 \times 10^5 \alpha^{-4/5} \dot{M}_{16}^{-3/10} M_1^{1/4} R_{10}^{5/4} s \tag{1}$$

where \dot{M}_{16} is mass transfer rate in 10¹⁶ g s⁻¹ units, M_1 is white dwarf mass in solar masses and R_{10} is accretion disc radius in 10¹⁰ cm units.

One can see that simply increasing the mass transfer rate by the minimum system brightness increase factor (~ 1.7) in our case cannot explain the observed decrease of the outburst cycle by more than 1.8 times. To provide an additional decrease of the viscous time-scale, we would need to decrease the accretion disc size by a factor of 1.4. The other possible explanation is to increase the α parameter value in the disc.

Acknowledgements: We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research.

References:

Baptista R., Catalan M.S., Costa L., 2000, MNRAS, 316, 529

Barwig H., Fiedler H., Reimers D., Bade N., 1993, XXII GA of the IAU, Astronomy Posters Abstracts, 89, ed. H. van Woerden (Sliedrecht: Twin Press), S165.CV.84, (IAU Symp.: Compact Stars in Binary Systems)

Foster G., 1996, AJ, **112**, 1709

Frank J., King A., Raine D., 2002, Accretion Power in Astrophysics, Cambridge University Press.

Halevin A., Zissell R., Solovieva I., Tsybizov O., 2008, submitted to MNRAS

Knigge C., 2006, MNRAS, 373, 484

Shafter A., Holland J., 2003, *PASP*, **115**, 1105

Number 5834

Konkoly Observatory Budapest 28 May 2008 *HU ISSN 0374 - 0676*

PHOTOMETRIC SEQUENCES AND ASTROMETRIC POSITIONS OF NOVA Cyg 2008 N.2 AND NOVA Sgr 2008

HENDEN, ARNE¹; MUNARI, ULISSE²

¹ AAVSO, American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138, USA
 ² INAF Osservatorio Astronomico di Padova, Sede di Asiago, I-36032 Asiago (VI), Italy

Nova Cyg 2008 N.2 (= V2491 Cyg) was discovered by K. Nishiyama and F. Kabashima at ~ 7.7 mag on Apr. 10.728 UT (cf. Nakano, 2008a). Spectroscopic confirmation was provided by Ayani and Matsumoto (2008) on Apr. 11.72 UT, that observed a FWHM of 4500 km/s for the H α emission line. P-Cyg absorption components for Balmer lines at -4000 km/s were reported by Tomov et al (2008a) for Apr. 11.99 and 13.95 spectra, together with presence of an additional emission component at +2300 km/s and a classification as a FeII-type nova given the numerous FeII multiplets seen in emission. A classification as He/N-type nova was instead preferred by Lynch et al. (2008) on the base of their near-IR spectra of Apr. 12.56 UT that displayed a FWHM of 5500 km/s for the emission lines that included HeI, NI, NII and OI. From the intensity of OI emission lines at 0.84 and 1.13 μ m on Apr. 17.6 UT, Rudy et al. (2008) estimated a reddening $E_{B-V} \sim 0.43$. The FWHM of the emission lines in the near-IR spectra of Ashok et al. (2008) for Apr. 18 and 20 were $\sim 4100 \text{ km/s}$, while it ranged from 4200 to 5400 km/s depending from the given emission line in the optical spectra for Apr. 27.3 and 28.4 UT of Helton et al. (2008) who also remarked on the appearance of HeII and NIII emission lines in the spectra and the disappearance of P-Cyg absorption components from all emission lines. A detailed description of the spectral appearance on Apr 15 and 17 was presented by Tomov et al. (2008b), who revised their classification to that of a He/N-type nova.

Ibarra and Kuulkers (2008) were the first to note the positional coincidence of Nova Cyg 2008 N.2 with an X-ray source observed before outburst by Rosat, Swift and XMM-Newton satellites. A greater number of details of such pre-outburst X-ray observations were reported by Ibarra et al. (2008), that noted how the source was largely variable on time scales of ~ 4 days, sometimes displaying a very soft energy distribution. The only other nova detected in X-rays *before* the outburst is Nova Oph 1998 (=V2487 Oph, Hernanz and Sala, 2002). The nova was not-detected by Swift on Apr. 11 and instead positively observed by the X-ray satellite on Apr. 15, at a much lower count rate than before the outburst (Kuulkers et al., 2008).

Finally, Balman, Pekon and Kiziloglu (2008) reported that their serendipitous monitoring on the nova field from July to November 2007 failed to reveal any source at the nova position brighter than the $R_{\rm C}$ =18.2 mag limiting magnitude of their observations.

Nova Sgr 2008 (= V5579 Sgr) was also discovered by K. Nishiyama and F. Kabashima, at ~ 8.4 mag on Apr 18.784 UT (cf. Nakano et al., 2008b). Spectroscopic confirmation

was provided by M. Fujii on Apr. 19.82 UT (cf. Yamaoka, 2008) who noted a prominent P-Cyg profile for $H\alpha$.

In this note we present a $BVR_{\rm C}I_{\rm C}$ photometric sequence around both novae, optimized for CCD observations and their color corrections. To calibrate the sequences, we obtained CCD photometry with the Sonoita Research Observatory 0.35-m robotic telescope on several distinct photometric nights, using $BVR_{\rm C}I_{\rm C}$ filters and an SBIG STL-1001E CCD camera. Pixel size is 1"25/pix and the field of view is 20'×20'. Observations on each photometric night included following an extinction star from low to high airmass, along with $BVR_{\rm C}I_{\rm C}$ exposures of Landolt standard fields (Landolt, 1983, 1992). The photometric sequences are presented in Figures 1 and 2. Astrometry was performed using SLALIB (Wallace, 1994) linear plate transformation routines in conjunction with the UCAC2 reference catalog. Errors in coordinates were less than 0.1 arcsec in both coordinates, referred to the mean coordinate zero point of the reference stars in each field.

The coordinates we derived for Nova Cyg 2008 N.2 are $\alpha_{J2000} = 19^{h}43^{m}01^{s}.980 \ (\pm 0^{s}.030)$, $\delta_{J2000} = +32^{\circ}19'13''.55 \ (\pm 0''.017)$, close to the coordinates reported by Sostero and Guido (2008) at position end figures 01^s.98 and 13''.5. Within 0.9 arcsec of this position there is the very faint star USNO-B1.0 1223-0482965 (R=15.9 mag), with no counterpart in the 2MASS catalog. Its position end figures are 02^s.04 and 13''.8 (0.4 arcsec error). If this was indeed the progenitor, the amplitude of the outburst in the R band reached 9 mag.

Our coordinates for Nova Sgr 2008 are: $\alpha_{J2000} = 18^{h}05^{m}58^{s}92 \ (\pm 0^{s}.08)$, $\delta_{J2000} = -27^{\circ}13'55''.9 \ (\pm 0''.25)$, close to the coordinates reported by Nakano (2008b) at position end figures 58^s.88 and 56''.0. The field is extremely crowded, with several very faint field stars laying within 4 arcsec from nova position and not listed in USNO B1 or

References:

2MASS catalogs.

Ashok, N.M., Banerjee, D.P.K., Naik, S., 2008, CBET, 1354

- Ayani, K., Matsumoto, K., 2008, CBET, 1334
- Balman, S., Pekon, Y., Kiziloglu, U., 2008, ATel, 1504

Helton, L.A., Woodward, C.E., Vanlandingham, K., Schwarz, G.J., 2008, CBET, 1379

Hernanz, M., Sala, G., 2002, Science, 298, 393

Ibarra, A., Kuulkers, E., 2008, ATel, 1473

Ibarra, A. et al., 2008, *ATel*, **1478**

- Kuulkers, E. et al., 2008, *ATel*, **1480**
- Landolt, A.U., 1983, AJ, 88, 439
- Landolt, A.U., 1992, AJ, 104, 340
- Lynch, D.K., Russell, R.W., Rudy, R.J., Woodward, C.E., Schwarz, G.J., 2008, *IAUC*, 8935
- Nakano, S., 2008a, IAUC, 8934
- Nakano, S. et al., 2008b, IAUC, 8937
- Rudy, R.J., Lynch, D.K., Russell, R.W., Woodward, C.E., Covey, K., 2008, IAUC, 8938
- Sostero, G., Guido, E., 2008, *IAUC*, 8934
- Tomov, T. et al., 2008a, ATel, 1475
- Tomov, T. et al., 2008b, ATel, 1475
- Wallace, P., 1994, ASP Conf. Ser., 61, 481, in Astronomical Data Analysis Software and Systems III,
- Yamaoka, H., 2008, CBET, 1344

N	ova Cyg	g 200	08 N.2	($\alpha_{ m J2}$	$_{000} =$	= 19	43 0	1.98	0δ	J2000	= -	-32	19 13	3.55
	α_{J2000} (=	⊨")	δ_{J2000} (±")	Ν	V ((±)	B-V	(±)	$V-R_{C}$	(±)	$R_{ m C}$ – $I_{ m C}$	e (±)	$V - I_{\rm C}$	(\pm)
а	295.770766	0.000	32.337710	0.012	2	10.130	0.030	0.073	0.035	0.024	0.028	0.059	0.027	0.084	0.023
b	295.715457	0.023	32.295483	0.035	2	11.430	0.011	0.647	0.003	0.364	0.042	0.344	0.047	0.703	0.017
с	295.795501	0.068	32.339573	0.083	5	12.266	0.022	1.224	0.031	0.651	0.026	0.548	0.033	1.186	0.032
d	295.730632	0.029	32.371117	0.011	5	12.588	0.024	0.928	0.037	0.532	0.022	0.448	0.029	0.969	0.033
е	295.755898	0.035	32.292282	0.026	5	12.920	0.020	0.620	0.030	0.365	0.033	0.352	0.018	0.715	0.030
f	295.714856	0.058	32.369232	0.035	5	13.447	0.027	0.405	0.029	0.240	0.035	0.249	0.017	0.489	0.029
g	295.725640	0.109	32.279405	0.065	4	13.768	0.012	1.716	0.046	1.338	0.024	1.495	0.086	2.841	0.089
h	295.730676	0.067	32.282243	0.026	4	13.825	0.023	1.150	0.049	0.590	0.062	0.533	0.034	1.113	0.032
i	295.796389	0.027	32.298523	0.044	5	13.912	0.019	0.473	0.034	0.295	0.028	0.292	0.017	0.586	0.034
j	295.767954	0.085	32.356529	0.048	5	14.065	0.031	1.388	0.041	0.796	0.040	0.720	0.013	1.505	0.043
1	295.802322	0.044	32.340871	0.075	5	14.112	0.026	0.845	0.038	0.486	0.048	0.507	0.040	0.994	0.042
m	295.709392	0.120	32.367846	0.079	4	14.183	0.011	1.713	0.079	0.983	0.037	0.871	0.034	1.837	0.025
n	295.702940	0.061	32.343425	0.051	3	14.751	0.018	1.320	0.038	0.750	0.041	0.708	0.013	1.450	0.037
р	295.706523	0.086	32.310415	0.062	3	15.308	0.017	1.425	0.027	0.841	0.037	0.808	0.013	1.642	0.031
q	295.795897	0.096	32.319984	0.055	4	15.858	0.016	0.571	0.045	0.393	0.023	0.454	0.041	0.854	0.042
r	295.797462	0.087	32.351040	0.080	3	16.203	0.022	0.842	0.049	0.520	0.023	0.481	0.037	0.996	0.051
\mathbf{s}	295.739036	0.030	32.305966	0.146	3	16.897	0.039	0.935	0.025	0.565	0.061	0.529	0.039	1.088	0.060
t	295.761767	0.303	32.286087	0.076	3	17.680	0.034	0.815	0.116	0.639	0.028	0.566	0.053	1.194	0.061

Figure 1. $BVR_{\rm C}I_{\rm C}$ photometric comparison sequence around Nova Cyg 2008 N.2. The cross indicates the nova. N is the number of nights in which the given star has been measured in the given band. The error in α and δ are in arcsec. The panel covers a $6' \times 6'$ area centered on the nova and shows stars down to V=18.2. Star a is HD 331150.

	Nova	. Sgr	2008	α_{i}	J20	$_{00} =$	18 0	5 58	.92	$\delta_{ m J20}$	$_{00} =$	-27	' 13	55.9	
	$\alpha_{J2000} (=$	±")	δ_{J2000} (=	±")	Ν	V (±)	B-V	(\pm)	$V-R_{C}$	(±)	$R_{ m C}$ – $I_{ m C}$	e (±)	$V-I_{\rm C}$	(\pm)
a	271.498698 271.461207	0.013	-27.218845 -27.184760	0.068	3	12.181	0.029	1.274	0.013	0.670	0.019	0.593	0.033	1.253	0.036
c J	271.551541	0.022 0.105	-27.210843 -27.181444	0.003 0.072 0.076	3	12.535 12.535 12.652	0.026	1.433	0.030 0.037 0.020	0.300 0.824 0.261	0.044	0.928	0.041	1.761	0.040
ı e r	271.457383	0.028	-27.209712	0.070 0.139	3	12.052 12.860 12.001	0.020 0.025	1.700	0.014	0.916	0.030 0.035	0.307 0.822 0.278	0.040	1.725	0.044
g	271.520404	0.088 0.107 0.112	-27.204964	0.081 0.099 0.101	3	12.991 12.999 12.120	0.025 0.017	1.228	0.030 0.029	0.240 0.653 0.420	0.031 0.048	0.278	0.047 0.032	1.206	0.037
i ;	271.463180	$0.112 \\ 0.134 \\ 0.170$	-27.198303 -27.241061	0.101 0.175 0.278	3	13.129 13.213 13.463	0.022 0.027 0.026	0.851 0.254 0.667	0.014 0.034 0.035	0.439 0.156 0.402	0.032 0.043 0.030	0.420 0.211 0.400	0.034	0.805 0.391 0.814	0.043
J	271.211217	0.170	-27.241001	0.278	ა ე	10.799	0.020	0.007	0.035	0.402	0.039	0.409	0.049	0.014	0.000
х В	271.437136	0.028	-27.160220 -27.148808	0.009 0.032 0.100	3	10.728 11.226 11.377	0.021 0.026 0.025	1.171	0.027 0.020 0.014	0.047 0.630 0.824	0.023 0.030 0.037	0.050 0.557 0.706	0.020	1.178	0.039
δ	271.393885	0.103 0.049 0.022	-27.114685 -27.114685 27.248853	0.109 0.060 0.043	3	11.608	0.023 0.011 0.023	1.806	0.014 0.026 0.011	1.192	0.037 0.038 0.032	1.370	0.028	2.577	0.035
ζ	271.503831	0.022 0.033	-27.109669	$0.043 \\ 0.032$	3	11.372 12.159	0.023 0.023	0.079 0.825	0.011 0.027	0.379 0.463	0.032 0.033	0.309 0.390	0.020 0.035	0.747 0.844	0.033 0.043
		f •		000				δ	•••		· · · ·	, °	• • •	°°°°	
ð)	0	٥	•	0	_	27.1	° ° °	ಁಁಁಁಁಁಁೲ	0.000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	• • • • • • • • • • • • • • • • • • •	ింం	°°°
	-		0 0	u	b●	0	4	' -	° ° °	0	<u> </u>	• •••	° 6)• • ;	° 0

Figure 2. BVR_CI_C photometric comparison sequence around Nova Sgr 2008. The cross indicates the nova. N is the number of nights in which the given star has been measured in the given band. The error in α and δ are in arcsec. The panel on the right covers a $20' \times 20'$ area centered on the nova and shows stars down to V=16.0. The dashed $6' \times 6'$ area is zoomed in on the left panel.

Number 5835

Konkoly Observatory Budapest 30 May 2008 *HU ISSN 0374 - 0676*

NEW AND ARCHIVE TIMES OF MINIMA

OF ECLIPSING BINARY SYSTEMS

BORKOVITS, TAMÁS^{1,10}; VAN CAUTEREN, PAUL²; LAMPENS, PATRICIA³; DUFOER, SJOERD⁴; KLEIDIS, STELIOS⁵; VAN LEENHOVE, MAARTEN⁶; CSIZMADIA, SZILÁRD^{7,1,8}; REGÁLY, ZSOLT⁸; PATKÓS, LÁSZLÓ⁸; KLAGYIVIK, PÉTER⁹; BÍRÓ, IMRE BARNA¹; HEGEDÜS, TIBOR¹; KISS, ZOLTÁN TAMÁS¹

¹ Baja Astronomical Observatory of Bács-Kiskun County, Baja, Szegedi út, Kt. 766, H–6500 Hungary; e-mail: borko@alcyone.bajaobs.hu

² Beersel Hills Observatory, Beersel, Belgium

³ Royal Observatory of Belgium

⁴ Belgium

⁵ Zagori Observatory (ZPO), Epirus, Greece

⁶ Willebroek Observatory, Belgium

⁷ FÖMI Satellite Geodetic Observatory, Pf. 585, Budapest, H-1592 Hungary

⁸ Konkoly Observatory of the Hungarian Academy of Sciences, Budapest, Pf. 67, H–1525 Hungary

⁹ Department of Astronomy, Eötvös Loránd University, Budapest, Pf. 32, H–1518 Hungary

¹⁰ Guest observer at Piszkéstető Observatory of Konkoly Observatory

Observatory and telescope:

50-cm f/8.4 Ritchey–Chrétien telescope (Ba50) of the Baja Astronomical Observatory (Hungary)

50-cm f/15 Cassegrain telescope (Pi50) of the Konkoly Observatory at Piszkéstető Mountain Station (Hungary)

13-cm refractor, 25, and 40-cm Newton telescopes (BHO13, BHO25, BHO40, respectively); Beersel Hills Observatory (Belgium)

8-cm refractor and 20-cm reflector (Duf08, Duf20) of Sjoerd Dufoer (Belgium) 20-cm reflector and 30-cm SC telescope (ZPO20, ZPO30) of Zagori Observatory (ZPO), Epirus (Greece)

28-cm SC telescope (WOB28) of Willebroek Observatory (Belgium) 40-cm f/8.9 Ritchey-Chrétien telescope (IAO40) of the Izsák Astrophysical Obser-

vatory of the Eötvös Loránd University (Hungary)

Detector:	512×512 Apogee AP-7 CCD camera (Ba50)							
	cooled UBVRI Photometer (Pi50)							
	uncooled UBV Photometer (Pi50u)							
	2184×1472 SBIG ST-10XME with filter wheel (filters							
	Bessell specifications) $(BOHxx)$							
	SBIG ST-7 with filter wheel (filters Bessell specifications							
	(BHOxxST7)							
	2184×1472 SBIG ST-10XME (Dufxx)							
	SBIG ST-7XMEI with filter wheel (ZPO30)							
	FLI CM10 CCD camera (ZPO20)							
	2184×1472 SBIG ST-10XME (WOB28)							
	4008×2672 SBIG STL-11K (IAO40)							

Method of data reduction:

Reduction of Baja and IAO (Budapest) CCD frames was made with a customly developed IRAF¹ package. BHO observations were reduced by Mira-AP (7) software. Duf and WOB measurements by MaximDL4. ZPO observations: AIPWIN V1.25.

Method of minimum determination:

The minima times were computed with parabolic fitting, and in some cases with linearized Pogson-method or Kwee-van Woerden method (Kwee & van Woerden, 1956). ZPO minima calculations: Minima25 (developed: R.H. Nelson)

Times of minima:									
Star name	Time of min.	Error	Type	Filter	Rem.				
	$\rm HJD~2400000+$								
AP Aur	54133.2997	2	II	V	Csz/IAO40				
CL Aur	54487.4260	1	Ι	V	ZPO30				
	54510.4465	3	II	R	$\mathrm{Bor}/\mathrm{Ba50}$				
HP Aur	54172.3437	5	II	V	BHO25				
	54428.4489	3	II	V	WOB28				
	54487.4952	1	Ι	B	ZPO20				
IM Aur	53762.3599	5	II	R	$\mathrm{Bir}/\mathrm{Ba50}$				
	54078.5493	4	Ι	B,V,R	$\mathrm{Heg}/\mathrm{Ba50}$				
	54516.3425	1	Ι	V	$\operatorname{Kis}/\operatorname{Ba50}$				
IU Aur	54495.3575	2	II	B, V	ZPO30				
	54496.2615	1	Ι	B	ZPO20				
	54523.4332	4	Ι	V	ZPO30				
$44i \operatorname{Boo}^a$	54199.3577	7	II	U, B	$\operatorname{Reg}/\operatorname{Pi50}$				
	54199.3592	5	II	V, R	$\operatorname{Reg}/\operatorname{Pi50}$				
	54199.4926	6	Ι	U,B,V,R	$\operatorname{Reg}/\operatorname{Pi50}$				
	54222.5252	3	Ι	B,V,R	Bor/Pi50				
Y Cam	52558.3989	3	Ι	V	BHO40ST7				
	52687.3230	1	Ι	V	BHO40ST7				
	54201.3690	3	Ι	V	BHO40				
SV Cam	44661.4686	1	Ι	V, B	Pat/Pi50u				
	45613.3482	1	Ι	V, B	Pat/Pi50u				
	45766.3647	1	Ι	V, B	Pat/Pi50u				
	46362.4016	1	Ι	V, B	$\operatorname{Pat}/\operatorname{Pi50u}$				

¹IRAF is distributed by the National Optical Astronomical Observatories, operated by the Association of the Universities for Research in Astronomy, inc., under cooperative agreement with the National Science Foundation

Times of minima:									
Star name	Time of min.	Error	Type	Filter	Rem.				
	HJD 2400000+		J F						
AS Cam	54077.4252	5	II	R	Bor/Ba50				
110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	54525.3607	1	T	R	Bor/Ba50				
IT Cas	54445.2352	3	T	\overline{V}	ZPO30				
OX Cas	54342.4736	4	Ī	V	Duf08				
PV Cas	54454.3461	2	II	V	WOB28				
VW Cen	54190.4896	6	T	B. V. R	Bor+Reg/Pi50				
· · · · cop	54192 438	1	T	B, V, R	Beg/Pi50				
	54557 4398	10	Ī	B V B	Bor+Beg/Pi50				
$GK Cep^b$	54222 3977	6	II	B, 1, 10	Bor/Pi50				
on cop	54222 4014	6	II	VR	Bor/Pi50				
CC Com	54192 3224	2	II	V	$C_{sz}/IAO40$				
00 0011	54192 4325	2	T	, V	Csz/IAO40				
	54207 3290	2	Î	, V R	Bor/Ba50				
	54207 4393	-3	T	V R	Bor/Ba50				
	54207 5500	1	Î	V R	Bor/Ba50				
V370 Cvg	54397 3474	4	T	V	Duf20				
V453 Cvg	54366.4316	12	Ţ	_	Duf08				
V477 Cvg	54323.5483	1	T	V	Duf08				
V478 Cvg	54457 3028	11	T	V	Duf20				
V961 Cyg	54397 3462	3	T	, V	Duf20				
RX Dra	54192.5694	3	T	_	BHO13				
EF Dra	54570.4248	5	Ţ	V	Kla/IAO40				
TU Her	54192.5171	4	T	V	BHO40				
AK Her	54212.4950	6	Ţ	R	Bor/Ba50				
	54223.4556	9	T	V.R	Bor/Pi50				
CT Her	54174.5508	54	П	V	BHO40				
	54200.4662	2	I	B	BHO40				
AU Lac	54366.3163	3	T	_	Duf08				
RW Leo	54202.3591	2	Ī	_	BHO40				
XY Leo	54133.3698	2	Ι	V	Csz/IAO40				
UV Lyn	54442.5408	1	II	V	ZPO30				
EF Ori	54380.5720	9	II	_	BHO40				
GU Ori	54380.5621	2	II	_	BHO40				
AG Per	54452.3540	2	Ι	V	Duf20				
	54452.3542	3	Ι	V	WOB28				
V432 Per	54389.3808	1	Ι	V	Csz/IAO40				
AO Ser	54175.5429	3	Ι	V	BHO13				
	54186.5371	14	II	V	BHO13				
	54201.4835	7	II	V	BHO40				
	54211.5959	2	Ι	B	BHO40				
	54213.3545	1	Ι	B	BHO40				
	54244.5717	9	II	V	BHO40				
OU Ser	54234.3739	4	Ι	V	Csz/IAO40				
	54234.5152	3	II	V	Csz/IAO40				
SV Tau	54454.6025	3	Ι	V	Duf20				
RS Tri	54397.2910	8	Ι	V	WOB28				
W UMa	54556.5283	2	II	V	Kla/IAO40				
VV UMa	54192.3861	2	Ι	-	BHO13				
	54193.4220	11	II	-	BHO13				
	54203.3849	6	Ι	V	BHO13ST7				
	54388.6326	7	II	V	BHO40				
XY UMa	54556.4186	1	Ι	V	Kla/IAO40				
DW UMa	54176.3651	1	Ι	R	$\operatorname{Bor}/\operatorname{Ba50}$				
	54176.5016	1	Ι	R	$\mathrm{Bor}/\mathrm{Ba50}$				
	54176.6384	1	Ι	R	$\mathrm{Bor}/\mathrm{Ba50}$				
	54214.3420	3	Ι	V, R	$\mathrm{Bor}/\mathrm{Ba50}$				
	54214.4785	6	Ι	V, R	$\mathrm{Bor}/\mathrm{Ba50}$				
	54544.3831	1	Ι	R	$\mathrm{Bor}/\mathrm{Ba50}$				
	54544.5196	1	Ι	R	$\mathrm{Bor}/\mathrm{Ba50}$				
	54544.6563	2	Ι	R	$\mathrm{Bor}/\mathrm{Ba50}$				
HX UMa	54211.425	2	II	V	Csz/IAO40				
Times of r	ninima:								
------------	---------------------	-------	------	-------------------------	------------------------------				
Star name	Time of min.	Error	Type	Filter	Rem.				
	${ m HJD}~2400000+$								
LP UMa	54176.4566	8	Ι	R	$\mathrm{Bor}/\mathrm{Ba50}$				
	54176.621	1	II	R	$\mathrm{Bor}/\mathrm{Ba50}$				
	54214.4245	8	II	V,R	$\mathrm{Bor}/\mathrm{Ba50}$				
	54214.584	1	Ι	V	$\mathrm{Bor}/\mathrm{Ba50}$				
	54544.4768	5	II	R	$\mathrm{Bor}/\mathrm{Ba50}$				
	54544.629	1	Ι	R	$\mathrm{Bor}/\mathrm{Ba50}$				
RT UMi	54172.5058	3	Ι	V	BHO25				
DR Vul	54312.4591	3	Ι	V	Duf08				

Explanation of the remarks in the table:

[Observer(s)]/Instrument

^{*a*}: 44i Boo: On the night 2454199 the discrepancy between the secondary mideclipse times in U, B and V, R bands is supposed to be real.

^b: GK Cep: On the night 2454222 the discrepancy between the mid-eclipse times in B and V, R bands is supposed to be real.

Acknowledgements:

P.L., P.V.C., M.V.L., S.D. and S.K. thank Patrick Wils for providing them with software.

Part of BHO data were acquired with equipment purchased thanks to a research fund financed by the Belgian National Lottery (1999).

P.V.C thanks Astrotechniek (http://www.astrotechniek.net)

References:

Kwee, K. K., & van Woerden, H., 1956, Bull. Astron. Inst. Neth., 12, 327

Number 5836

Konkoly Observatory Budapest 20 June 2008 *HU ISSN 0374 - 0676*

UX Ari: NEW PHOTOMETRY AND LONGITUDINAL ASYMMETRY IN SPOT ACTIVITY FIXED IN ORBITAL REFERENCE FRAME

ROSARIO, M. J.¹; MEKKADEN, M. V.²; RAVEENDRAN, A. V.²

¹ Vainu Bappu Observatory, Indian Institute of Astrophysics, Kavalur 635701, India. e-mail: mjr@iiap.res.in

² Indian Institute of Astrophysics, Bangalore 560034, India. e-mail: mvm@iiap.res.in, avr@iiap.res.in

UX Ari (HD 21242) is one of the brightest member of RS CVn binaries, and has been observed photometrically almost every season since the discovery of its light variability in 1972 by Hall et al. (1975). It is a non-eclipsing, double-lined spectroscopic binary with a K0–K1 subgiant as the primary and a G5 dwarf as the secondary in a near-circular orbit (Carlos & Popper, 1971; Duemmler & Aarum, 2001).

We observed UX Ari photometrically in BV bands on 23 nights during January-March 2008 with the 34-cm telescope of Vainu Bappu Observatory, Kavalur. All the measurements were made with respect to the comparison 62 Ari. HR 999 was also observed on several nights along with the variable as the check star. Table 1 lists the results of our photometric observations. Each value given in the table is a mean of 3-4 independent measurements. The typical uncertainty in both the differential V and (B - V) values is ~ 0.01 mag.

The differential V and (B - V) values given in Table 1 are plotted in Fig. 1 after converting the Julian dates of observation to orbital phases with the ephemeris: $JD = 2450646.83 + 6^{d}4372703E$. The initial epoch corresponds to the conjunction with the more massive, cool primary in front. The orbital period and the epoch of maximum radial velocity of the active star from which the above time of conjunction is derived are from Duemmler & Aarum (2001). Figure 1 shows that the light variation during January-March 2008 was highly asymmetric with a broad minimum and a narrow maximum. The monotonic decrease in the brightness at light curve minimum observed during 2001–07 (Rosario et al., 2007) seems to be over and the light curve minimum seems to be getting brighter from this season onwards. The trend in (B - V) variation over the photometric cycle is not well-defined; however, there is some indication that the star is bluer at fainter visual magnitudes as reported by several observers earlier.

Aarum Ulvås & Henry (2003), who analysed the individual light curves of UX Ari, have reported that there is no clear correlation between the orbital phase of light minimum and time, except that during 1982–90 the orbital phase seemed to decrease linearly from about 0°.75 to 0°.40. They also reported that the migration rate of phase of light minimum varied from -0.1157 yr⁻¹ to +0.2605 yr⁻¹, and most of the time the rate had a negative value.

All the differential V magnitudes of UX Ari with respect to 62 Ari obtained during 1972-2008 (Aarum Ulvås & Henry, 2003; Rosario et al., 2007; Table 1) are plotted in

JD			JD		
2450000.0 +	V	(B - V)	2450000.0 +	V	(B - V)
4475.1170	1.204		4476.1592	1.089	-0.203
4477.1181	1.098	-0.225	4478.1951	1.211	-0.239
4480.1072	1.250	-0.257	4481.1188	1.239	-0.240
4485.1243	1.241	-0.253	4486.1181	1.255	-0.241
4487.1100	1.244	-0.262	4491.1278	1.214	
4502.1311	1.081	-0.232	4514.0905	1.182	-0.255
4515.0924	1.081	-0.211	4516.0944	1.148	-0.217
4517.0917	1.227	-0.230	4522.0912	1.103	-0.224
4525.1090	1.221	-0.244	4528.0953	1.093	-0.254
4529.0993	1.165	-0.248	4530.1026	1.245	
4531.1078	1.237		4532.1035	1.222	-0.235
4534.1023	1.126	-0.211			

Table 1: BV photometry of UX Ari.

Fig. 2 after converting the Julian dates of observation to orbital phases with the above ephemeris. The uncertainty in the orbital period quoted by Duemmler & Aarum (2001) is only 0^d0000069 and the accumulated error in orbital phase over 36 years, over which the V band observations of UX Ari span, is only 0^p.002. Figure 2 shows that the range in the observed differential V magnitudes of UX Ari has a clear orbital modulation, implying that the spot activity in the star has a longitudinal asymmetry that is fixed in the orbital frame of reference. The upper envelope of the ΔV values shows a maximum around 0^p.50. The lower boundary shows a minimum around the same phase and a maximum around 0^p0 where the upper envelope shows a minimum. It is remarkable that the total spread in ΔV magnitudes at 0.^p0 observed so far is only around 0.18 mag while that at 0^p.5 it is around 0.48 mag.

Figure 1. Plot of ΔV and $\Delta (B-V)$ values of UX Ari obtained during January–March 2008 against the corresponding orbital phase computed using the ephemeris JD = 2450646.83 + 6^d.4372703E.

The fainter secondary component of the binary system also shows a low level of chromospheric activity as indicated by the variation in the Ca II K core emission from it (Aarum Ulvås & Engvold, 2003). UX Ari appears bluer at fainter visual magnitudes, which is unusual for a spotted star. Rosario et al. (2007) have shown that the bluer colour of UX Ari at fainter V magnitudes results because of the increased fractional contribution to the total light in the blue spectral region by the hotter G5 companion as the cooler component becomes fainter. Hence, most of the light variation observed in UX Ari can be attributed to the intrinsic light variability of the cool primary component.

The active stars in RS CVn binaries are presumed to undergo highly enhanced solar-like activity. Starspots, which are analogues to sunspots, distributed asymmetrically across the stellar surface rotationally modulate the observed flux, thereby producing light variability observed in these objects. The variations in light curves are attributed to changes in sizes of spots or spot groups and their distribution on the stellar surface. The phases of light minimum in many of these objects are found to migrate along the orbital phases at different rates. In some of the objects the migration can be traced continuously for several years while in some it can be traced only for a few years. To account for this, in analogy with the sun, Hall (1972, 1991) proposed that there is differential rotation in the active stars and only a particular latitude co-rotates synchronously with the orbital motion, and hence spots present in different latitudes would produce light curves with slightly different periods. The existence of differential rotation in components of close binaries, especially in active stars of RS CVn systems, is not well-established observationally. Almost all information on the differential rotation of spotted stars is based on the migration of the phase of the minimum of light curves of these stars.

Figure 2. Plot of ΔV values of UX Ari obtained so far against the corresponding orbital phase computed using the ephemeris JD = 2450646.83 + 6^d4372703E.

Figure 2 clearly shows that there is enhanced spot activity, as indicated by a larger spread in observed magnitudes, in the hemisphere of the active star facing the hotter companion when compared to that away from it. The minimum and maximum of a light curve obtained during a particular epoch may occur over a large range of orbital phases (Aarum Ulvås & Henry, 2003). But the fainter light minima and brighter light maxima among them always occur at orbital phases close to 0.95. The orbital inclination of UX Ari is around 60° (Duemmler & Aarum, 2001). Hence, the existence of a significant orbital modulation in spot activity implies that the regions of enhanced spot activity are located closer to the equator rather than the poles and that these regions rotate in near-perfect synchronism with the orbit. Any slight difference in the rotational period would completely smear out the modulation when data spread over such a time interval as long as 35 years (~ 2000 photometric cycles) are combined.

The large spread of about 0.5 mag in V magnitudes close to 0°.5 requires that the regions that produce the enhanced activity have an appreciable latitudinal extent on the surface of the active star. The rotation of a large latitudinal zone in near-perfect synchronism with the orbit would mean that differential rotation in the active star is either absent or really small.

Another implication of the existence of the longitudinal asymmetry in spot activity, which is fixed in the orbital frame of reference, is that the spots do not appear and disappear with equal probability at all longitudes on the surface of the active star in the UX Ari system; the presence of the companion significantly affects the physical processes that produce spots and modulates the surface distribution of spots on the active star.

References:

Aarum Ulvås, V. & Henry, G. W., 2003, A&A, 402, 1033
Aarum Ulvås, V. & Engvold, O., 2003, A&A, 402, 1043
Carlos, R. C. & Popper, D. M., 1971, PASP, 83, 504
Duemmler, R. & Aarum, V., 2001, A&A, 370, 974
Hall, D. S., 1972, PASP, 84, 323
Hall, D. S., Montle, R. E. & Atkins, H. R., 1975, Acta Astron., 25, 125
Hall, D. S., 1991, IAU Coll., 130, 353, in: The Sun and Cool Stars: activity, magnetism, dynamos, ed.: I. Tuomien, D. Moss, G. Rudiger, Springer-Verlag
Rosario, M. J., Raveendran, A. V. & Mekkaden, M. V., 2007, A&A, 474, L41

Number 5837

Konkoly Observatory Budapest 4 July 2008 *HU ISSN 0374 - 0676*

166. LIST OF TIMINGS OF MINIMA ECLIPSING BINARIES BY BBSAG OBSERVERS

(BBSAG Bulletin No. 134)

DIETHELM, ROGER

BBSAG, Bahnhofstrasse 3, CH–4118 Rodersdorf, Switzerland

The following Table lists timings of minima of eclipsing binaries secured by photoelectrical means by BBSAG observers, obtained between July 2007 and June 2008. The given O - C values generally refer to the linear elements of the GCVS (Kholopov et al., 1985), except for the cases stated in the remarks. All times given are heliocentric UTC. This is the last installment of the BBSAG Bulletin. Since only two observer contributed to our lists in the last two years, we have decided to publish our results as personal contribution in the future.

Variable	Type	HJD 24	±	O-C	n	Obs	Remarks
V1075 Aql	р	54297.4395	0.0009	-0.0265	14	RD	V
V379 Aur	р	54505.2822	0.0012		17	RD	V
V523 Aur	р	54505.3974	0.0011		9	RD	V
GSC2393-680 Aur	р	54504.3716	0.0011	+0.0038	12	RD	V; el.: IBVS No. 5695
TX Boo	р	54633.6985	0.0001	-0.8673	235	RD	V
FY Boo	\mathbf{S}	54632.7167	0.0001	+0.0036	101	RD	V; el.: IBVS 5741
AK Cam	\mathbf{p}	54504.3143	0.0002	+0.0251	29	RD	V; el.: BAV Mitt. 69
DH CVn	р	54564.3642	0.0004	-0.0161	19	\mathbf{EBl}	C; el.: IBVS No. 5149
LO Com	р	54564.3606	0.0004	+0.0130	18	\mathbf{EBl}	C; el.: IBVS No. 5052
LP Com	\mathbf{S}	54564.3386	0.0005	-0.0199	16	EB1	C; el.: IBVS No. 5052
V385 Cyg	р	54295.4702	0.0004	-0.1214	39	RD	V
V469 Cyg	р	54925.4723	0.0003	-0.1094	40	RD	V
V809 Cyg	р	54295.4902	0.0003	+0.0374	31	RD	V
V853 Cyg	\mathbf{p}	54295.4566	0.0005	+0.0250	37	RD	V
V961 Cyg	\mathbf{p}	54295.4568	0.0001	+0.0017	30	RD	V; el.: IBVS No. 4278
$V974 \ Cyg$	\mathbf{S}	54295.4685	0.0004	-0.2413	42	RD	V; non-circular orbit
V2280 Cyg	р	54407.2568	0.0004	+0.0549	28	EB1	C; el.: IBVS No. 4996
V2282 Cyg	\mathbf{S}	54407.3458	0.0006	-0.0473	21	EB1	C; el.: IBVS No. 4996
V2284 Cyg	\mathbf{S}	54407.3514	0.0008	+0.0035	22	EB1	C; el.: IBVS No. 4985
V2294 Cyg	\mathbf{s}	54407.3468	0.0005	+0.0439	24	EB1	C; el.: IBVS No. 4995
MU Dra	\mathbf{s}	54387.3245	0.0006	-0.0281	13	EB1	C; el.: IBVS No. 5232

Table	1:	Eclipsing	bina	aries
10010		Lonpoing	~	

Table 1: Eclipsing binaries (cont.)

Variable	Type	HJD 24	±	O-C	n	Obs	Remarks
GSC3523-505 Dra	р	54388.2980	0.0007	-0.0019	15	EBl	C; el.: IBVS No. 5699
GSC3552-321 Dra	\mathbf{s}	54407.2234	0.0010	+0.0006	33	EBl	C; el.: IBVS No. 5699
GSC3888-464 Dra	\mathbf{s}	54288.4095	0.0008	+0.0114	17	\mathbf{EBl}	C; el.: IBVS No. 5505
GSC3905-60 Dra	\mathbf{s}	54388.2489	0.0011	-0.0020	16	$\mathbf{EB1}$	C; el.: IBVS No. 5699
TZ Gem	р	54505.380	0.003	+0.087	9	RD	V
AZ Gem	s	54504.3038	0.0008	+0.0846	27	RD	V
BD Gem	р	54504.3817	0.0007	-0.0279	17	RD	V
EN Gem	p	54504.3060	0.0011	-0.0429	26	RD	V
NSV3210 Gem	p	54504.3410	0.0009	-0.0031	31	RD	V; el.: IBVS No. 5630
NSV3346 Gem	p	54504.2644	0.0024	+0.0051	13	RD	V: el.: IBVS No. 5630
LT Her	p	54296.4520	0.0008	-0.0312	31	RD	V: el.: BAV Mitt. 69
LV Her	p	54297.4509	0.0004	+0.0333	31	RD	V: el.: IBVS No. 5201
V357 Her	r S	54296.4322	0.0011	-0.0072	16	RD	V: el.: IBVS No. 5280
V731 Her	s	54297 4938	0.0006	+0.0005	22	RD	V: el : IBVS No 5592
V732 Her	n	54297 536	0.0000	-0.088	21	RD	V
V733 Her	P S	542974393	0.0002	-0.0149	19	RD	V
V742 Her	S	54296 4560	0.0001	+0.0357	24	RD	V
V1088 Her	S	54296 3768	0.0000	-0.0567	10	RD	V. el : BOTSE1
GSC063-246 Her	n n	54295.3708	0.0011	+0.0007	23	EBI	C el : IBVS No. 5700
050505-240 1101	P	54318 3051	0.0000	+0.0038	20	FBI	С, сп. на конструкти. 5755
CSC1518 012 Hor	а С	54205 4460	0.0002	± 0.0078	10	EDI	C. al. IBVS No. 5700.
G901910-919 Her	5	04290.4409	0.0007		19	EDI	C, e. IDVS NO. 5799,
	n	5 491 9 41 49	0.0010		17	ГDI	
CQC1527 1557 How	р	04010.4142 E 4000 47E4	0.0010	0.0016	19		C. al. IDVS No. 5505
GSC1557-1557 Her CSC1540 2001 Her	5	54200.4754	0.0007	+0.0010	10 10	EDI EDI	$C_{\rm rel}$, IDVS No. 5505
GSC1049-0991 Her	p	54200.3991	0.0009	-0.0010	14		$C_{\rm r}$ el.: IDVS No. 5505
GSC2587-289 Her	p	04290.4303 5 4010 0566	0.0003	-0.0011	21	EDI	C; el.: IBV5 No. 5799
CCCOPECE AND T	р	54318.3500	0.0002	+0.0013	23	EBI	C I IDVG N 5700
GSC2587-4470 Her	р	54295.4470	0.0009		10	EBI	C; el.: IBVS No. 5799; revised period: 0.310764
CSC3007 1207 Hor	e	54288 3007	0.0007	± 0.0011	14	FBI	Col: IBVS No. 5564
CSC3097-1297 Her CSC3101 547 Her	s n	54266.3907	0.0007	± 0.0011	14	EDI	C, el. IBVS No. 5564
CSC3101-547 Her	P	54364 2074	0.0000	+0.0020	19 91	EDI FBI	C, etc. 1D v 5 100, 5504
G2C2100-1209 Her	6	54504.2974	0.0012	± 0.0049	41	EDI	C_{1} revised et
CSC2510 5 Hor	n	5 1900 1106	0 0000	10.0204	17	ГDI	$C_{1,0}$ IDVS No. 5564
GSC5510-5 Her CSC2525 552 Her	p	54200.4100	0.0009	+0.0204	11 01	EDI EDI	$C_{\rm r}$ el. IDVS No. 5504
G5C5552-555 Her DV I	5	54300.2794	0.0000	-0.0002	40		C; eL. IDVS NO. 5099
DV Lyr V400 L	p	54295.4560	0.0002	+0.0203	40 15		V C. al. IDVS No. 4005
V 400 Lyr V574 I	р	54584.2900	0.0004	-0.0391	10		C_{1} eI.: IDVS No. 4995
V 574 Lyr M570 L	s	54584.3001	0.0008	-0.0030	10	EDI	C; el.: IBVS No. 4970
V579 Lyr	р	54384.3040	0.0004	-0.0131	18	EBI	C; el.: IBVS No. 4982
V 580 Lyr	р	54384.2715	0.0004	-0.0203	22	EBI	C; eL: IBVS No. 4982
V 582 Lyr	s	54384.3010	0.0007	+0.0405	10	EBI	C; el.: IBVS No. 4985
V 591 Lyr	\mathbf{p}	54387.2562	0.0005	+0.0004	13	EBI	C; el.: IBVS No. 5232
TIKOO T	s	54387.4069	0.0014	+0.0010	7	EBI	C
V 592 Lyr	\mathbf{p}	54387.3600	0.0009	+0.0098	16	EBI	C; el.: IBVS No. 5232
V 596 Lyr	\mathbf{S}	54387.3162	0.0021	+0.0077	10	EBI	C; el.: IBVS No. 5232
GSC3108-57 Lyr	\mathbf{S}	54387.3904	0.0008	-0.0036	10	EBI	C; el.: IBVS No. 5525
GSC3109-859 Lyr	\mathbf{S}	54387.2559	0.0008	-0.0053	11	EBI	C; el.: IBVS No. 5525
GSC3526-1995 Lyr	\mathbf{S}	54387.3850	0.0017	-0.0131	11	EBl	C; el.: IBVS No. 5525
GSC3526-2369 Lyr	\mathbf{S}	54387.2505	0.0004	+0.0251	12	EB1	C; el.: IBVS No. 5525
	р	54387.412	0.003	+0.022	10	EBI	C

Variable	Type	HJD 24	±	O-C	n	Obs	Remarks
V2332 Oph	р	54297.4253	0.0004	-0.0718	24	RD	V; el.: IBVS No. 4345
GSC995-1646 Oph	\mathbf{S}	54364.3625	0.0013	+0.0119	22	EB1	C; el.: IBVS No. 5505
$\rm NSV8780~Oph$	\mathbf{S}	54296.415	0.003	-0.099	16	RD	V; el.: IBVS No. 5360
NSV9637 Oph	р	54296.4467	0.0005	-0.0164	29	RD	V; el.: IBVS No. 5644
GU Ori	\mathbf{S}	54505.2898	0.0005	-0.0434	22	RD	V; el.: JAAVSO 14, 12
GSC107-596 Ori	\mathbf{S}	54474.3452	0.0008	+0.0006	20	EB1	C; el.: IBVS No. 5799
GSC702-1892 Ori	р	54474.2846	0.0009	-0.0007	12	EB1	C; el.: IBVS No. 5493
GSC706-845 Ori	р	54474.3600	0.0019	-0.0045	22	EB1	C; el.: IBVS No. 5799
GSC1283-53 Ori	\mathbf{S}	54474.2857	0.0008	+0.0001	26	EB1	C; el.: IBVS No. 5799

 Table 1: Eclipsing binaries (cont.)

Observers:

EB1:	E. Blättler	Wald, Switzerland
RD :	R. Diethelm	Rodersdorf, Switzerland

References:

Kholopov, P. N., Samus, N. N., Frolov, M. S., Goranskij, V. P., Gorynya, N. A., Kireeva, N. N., Kukarkina, N. P., Kurochkin, N. E., Medvedeva, G. I., Perova, N. B., Shugarov, S. Yu., 1985, *General Catalogue of Variable Stars*, Moscow

Number 5838

Konkoly Observatory Budapest 4 July 2008 *HU ISSN 0374 - 0676*

OBSERVATIONS OF THE ACTIVE SOUTHERN RS CVn BINARY V841 Cen IN 2007 AND 2008 – A LARGE, LONG-LIVED SPOT WAVE

INNIS, J. L.¹; COATES, D.W.²

 1 Brightwater Observatory, 280 Brightwater Rd., Howden, TAS, 7054, Australia. Email: brightwater@iraf.net

 2 School of Physics, Building 27, Monash University, VIC, 3800, Australia

V841 Cen (HD 127535) is an active single-lined RS CVn binary of orbital period just under 6 d (Collier Cameron, 1987). The star is one of the more active southern RS CVn systems having been detected at microwave frequencies, both in short-term flare events and more slowly varying 'quiescent' emission (Slee et al., 1987a, 1987b). Photometric data have been presented by a number of workers – Udalski & Geyer (1984); Innis et al. (1985); Bopp et al. (1986); Collier Cameron (1987); Mekkaden & Geyer (1988); Strassmeier et al. (1994); and especially Cutispoto (1990, 1993, 1996, 1998a, & 1998b). These data show a ~6 d spot wave of varying amplitude, usually ~0.05 to ~0.25 mag in V, with smaller associated colour changes. The spot wave is highly variable (op cit.), changing at times within a few weeks (e.g. Innis et al., 1998).

We observed V841 Cen at the Brightwater Observatory in 2007 and 2008. A description of the observatory and techniques is given in Innis et al. (2007). In brief, a short-focus, 70-mm telescope and cooled CCD is used to obtain a field of view near 0.8×0.55 , allowing target and comparison stars to be observed simultaneously. The observations in *B* and *V* filters were transformed to the Cousins system. We used exposure times of 45 sec in *B* and 30 sec in *V*. We combine 4 such individual (and consecutive) exposures in each filter to form normal points. Usually 4 or more normal points in each of *B* and *V* were obtained on a given night.

We collected 38 nights of data between 2007 April–September (~ 180 normal points in each filter), and a further 9 nights of data between 2008 April and May (~ 130 normal points in each filter). We used HD 128227 as the comparison star and CPD -59° 5634 as the check star. For the normal points we find for these stars magnitude differences (and standard deviations) ΔV : 1.256 ± 0.016 for 2007; 1.263 ± 0.012 for 2008; ΔB : 0.985 ± 0.028 for 2007; 0.998 ± 0.042 for 2008. These results indicate no detectable variation in the comparison and check stars above observational scatter. For the comparison star HD 128277 we use V = 8.33 and B - V = 1.07 (which are average values from the work of Bopp et al., 1986; Collier Cameron 1987; Mekkaden & Geyer, 1988; and Cutispoto, 1990,1993,1996, 1998a, 1998b – all those authors report V and B - V values that closely agree).

Figure 1 shows the data for V841 Cen plotted against HJD. The top panel shows V data, the lower panel shows B - V. The dots represent the 2007 April–September data, and the crosses represent the 2008 April–May data. The range in V is very large, slightly over 0.4 mag.

Figure 1. Brightwater Observatory V data (top) and B - V (lower) data for V841 Cen. The dots represent the 2007 April–September data, and the crosses represent the 2008 April–May data.

We use the period of 5.988 d and epoch HJD 2444653.737 (Innis et al., 1998) for the phase plots shown in Figure 2. These observations show that, given the rapid changes the star has exhibited previously, the light curve has been remarkably stable over the \sim 13 month extent of the dataset. The lower panel of Figure 2 shows B - V versus V. A clear colour change of several hundredths of a magnitude is seen. The star appears to have been slightly redder in 2008 compared to 2007.

In Figure 3 we have collected the known V photometric range versus year for V841 Cen, obtained from the references listed above. The most recent data show that both maximum and minimum light are comparable to the historical extremes. What is unusual is that the 2007 and 2008 data show such a large range of ~0.4 mag in V, which is significantly larger than has been seen previously for this star. It is also among the largest spot waves seen for this class of object. That the spot wave has apparently maintained this amplitude over 13 months is of further interest.

Assuming a spot or spot group that contributes effectively no flux compared to the unspotted photosphere, at minimum light approximately 45% of the visible stellar disk must be covered to produce the ~0.4 mag spot wave. The data indicate that such a large spot or spot region remained relatively unchanged during the observing interval. An alternative hypothesis would be that the large amplitude is a consequence of a bright spot on one hemisphere, and a dark spot on the other. This would however require two spots (or spot regions) to stay relatively stable over a year. If so, by reference to the overall V variation in Figure 3, one may also need to conclude such a bright spot had been present previously to account for maximum light in the 1994 observations. The data do not allow us to determine if this was the case, but postulating a single long-lived spot or spot group requires fewer assumptions.

We intend to continue monitoring V841 Cen. We expect that, given the history of this star, the large amplitude spot wave is likely to exhibit significant changes in the near future.

Figure 2. Top panel: V light curve for V841 Cen using the period of 5.988 d and epoch HJD 2444653.737 (Innis et al., 1998). Lower Panel: B - V colour index curve of V841 Cen. In both panels the dots represent the 2007 April–September data, and the crosses represent the 2008 April–May data.

Figure 3. Range in V light for V841 Cen.

Acknowledgments: This work has made use of the SIMBAD database of the Stellar Data Centre (CDS) Strasbourg, the NASA ADS abstract database, the data-reduction packages IRAF (NOAA, USA) and Muniwin (D. Motl), and the numerical analysis program OCTAVE (J. Eaton and colleagues). D. Coates thanks the Faculty of Science, Monash University, for the provision of an Honorary Research Fellowship. We thank K. Oláh for assistance with this paper.

References:

- Bopp, B.W., Africano, J., & Quigley, R., 1986, AJ, 92, 1409
- Collier Cameron, A., 1987, SAAO Circ., 11, 57
- Cutispoto, G., 1990, A&AS, 84, 397
- Cutispoto, G., 1993, A&AS, 102, 655
- Cutispoto, G., 1996, A&AS, 119, 281
- Cutispoto, G., 1998a, A&AS, **127**, 207
- Cutispoto, G., 1998b, A&AS, 131, 321
- Innis, J.L., Thompson, K., & Coates, D.W., 1998, IBVS, 4570
- Innis, J.L., Coates, D.W., Thompson, K., Nelson, G.J., Slee, O.B., Wright, A.E., 1985, PASA, 6, 160
- Innis, J.L., Coates, D.W., & Kaye, T.G., 2007, Per. Zvezdy, 27, 1
- Mekkaden, M.V., & Geyer, E.H., 1988, A&A, 195, 214
- Slee, O.B., Nelson, G.J., Stewart, R.T., Wright, A.E., Jauncey, D.L., Vaughan, A.E., Large, M.I., Bunton, J.D., Peters, W.L., & Ryan, S.G., 1987a, *PASA*, 7, 55
- Slee, O.B., Nelson, G.J., Stewart, R.T., Wright, A.E., Innis, J.L., Ryan, S.G., Vaughan, A.E., 1987b, MNRAS, 229, 659
- Strassmeier, K.G., Paunzen, E., & North, P., 1994, *IBVS*, 4066
- Udalski, A., & Geyer, E.H., 1984, *IBVS*, 2594

ERRATUM FOR IBVS 5838

In IBVS 5838, first page, third paragraph, the comparison star of V841 Cen is mentioned with two different HD numbers. The correct name of the star is HD 128227.

The Editors

Number 5839

Konkoly Observatory Budapest 9 July 2008 *HU ISSN 0374 - 0676*

PLATE ARCHIVE PHOTOMETRY OF THE PROGENITORS OF NOVA CYG 2008 N.2 AND NOVA SGR 2008

JURDANA-SEPIC, RAJKA¹; MUNARI, ULISSE²

¹ Physics Department, University of Rijeka, Omladinska 14, HR 51000 Rijeka, Croatia

 2 INAF Osservatorio Astronomico di Padova, Sede di Asiago, I-36032 Asiago (VI), Italy

Nova Cyg 2008 N.2 (= V2491 Cyg) and Nova Sgr 2008 (= V5579 Sgr) were discovered on 10 April 10 and 18 April 2008, respectively. A summary of the discovery circumstances and early studies of these two novae has been presented by Henden and Munari (2008). To the aim of providing more information on the nature of these two novae, we have searched the archives of the Asiago Schmidt telescopes for photographic plates imaging their progenitors.

Henden and Munari (2008) found the position of Nova Cyg 2008 N.2 to be coincident with the faint star USNO-B1.0 1223-042965 (within 0.9 arcsec). We located 131 Asiago photographic plates covering the position of Nova Cyg 2008 N.2, 44 of which were later discarded for various reasons (too bright sky background, poor focus or guiding, too bright limiting magnitude, or other plate defects). A total of 87 good B and V plates (exposed between Oct 4, 1970 and Oct 10, 1986) were then retained, and the magnitude of the progenitor was eye-estimated at the microscope against the BVR_CI_C photometric calibration sequence of Henden and Munari (2008). The results are given in Table 1 (available electronic only) and plotted for the *B*-band in Figure 1. During the 16 years covered by the Asiago archive plates, no outburst or large variability was detected. The progenitor remained stable around the mean values:

- $\langle B \rangle = 17.88$ (dispersion 0.20 mag) (1)
- $\langle V \rangle = 17.06$ (dispersion 0.22 mag) (2)

$$< B - V > = +0.82$$
 (3)

$$< V > - R_{\rm C}^{POSS-II} = +0.73$$
 (4)

The $V - R_{\rm C}$ is obtained by comparison with POSS-II plate on which the progenitor shines at $R_{\rm C} \approx 16.33$ mag. Comparing with maximum brightness attended by the nova, the outburst amplitude has been $\Delta B = 8.9$, $\Delta V = 8.5$ mag and $\Delta R_{\rm C} = 8.7$. Such a limited amplitude is in sharp contrast with the rapid decline of Nova Cyg 2008 N.2. A 8.7 mag amplitude would correspond to a mean decline time $t_2 \approx 200$ days (cf. Warner 1995, his Figure 5.4), a dozen times slower than the observed $t_2 \sim 17$ days (Munari et al. 2008).

A serendipitous monitoring of the field of Nova Cyg 2008 N.2 was carried out by Balman et al. (2008) from July to November 2007. They failed to reveal any source at the nova

Figure 1. B band photometry of the progenitor of Nova Cyg 2008 N.2 from photographic plates of the Asiago Schmidt telescopes archives, showing its constancy in brightness over the period 1970-1986.

position brighter than the $R_{\rm C}$ =18.2 mag limiting magnitude of their observations. Balman et al. (2008) do not specify what is the astrometric position they assumed for the nova. They linked their magnitude scale to USNO-B1 $R_{\rm C}$ magnitudes of the surrounding stars. By comparing with the Henden and Munari (2008) photometric sequence, no systematic offset larger than 0.1 mag is likely to affect the USNO-B1 $R_{\rm C}$ values. This would imply that the progenitor of Nova Cyg 2008 N.2, which was photometrically stable over the period 1970-1986, should have turned fainter by $\Delta R_{\rm C} \geq 2$ mag for several months right before to erupt as a nova. This behavior would be highly peculiar and has no correspondence among other novae, which instead in some cases tend to show an *increase* in their luminosities in the years before the outburst (cf. Robinson 1975). It seems therefore worthwhile that Balman et al. (2008) specify the astrometric position they assumed for the nova and possibly publish a zoomed picture of the field from their piled-up CCD $R_{\rm C}$ observations.

Similarly for Nova Cyg 2008 N.2, we searched the Asiago Schmidt plate archives also for Nova Sgr 2008, and found 106 plates covering its position. After plate inspection, 58 good B and $I_{\rm C}$ band plates were finally retained. We adopted nova position and photometric comparison sequence from Henden and Munari (2008). The 58 good plates cover the period June 16, 1961 to 24 July, 1977, with an average limiting magnitude $B\sim18$, $I_{\rm C}\sim15.5$. They are listed in Table 2 (available electronic only). The progenitor was below limiting magnitude on all the plates.

References:

Balman, S., Pekon, Y., Kiziloglu, U. 2008, ATel 1504
Henden, A., Munari, U. 2008, IBVS 5834
Munari, U., et al. 2008, in preparation
Robinson, E.L. 1975, AJ 80, 515
Warner, B. 1995, Cataclysmic Variable Stars, Cambridge University Press

Number 5840

Konkoly Observatory Budapest 9 July 2008 *HU ISSN 0374 - 0676*

CONFIRMATION OF THE RRd NATURE OF V458 HER

HAMBSCH, FRANZ-JOSEF^{1,2}; WILS, PATRICK²

¹ Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. (BAV), Germany; e-mail: hambsch@telenet.be

² Vereniging Voor Sterrenkunde, Belgium; e-mail: patrickwils@yahoo.com

V458 Her was discovered to be variable by Hoffmeister (1936). It was classified as an RRc type variable with a period of 0.3599801 days. From data in the Northern Sky Variability Survey (*NSVS*; Woźniak et al., 2004), Wils et. al (2006) found it to be a double-mode RR Lyrae type variable (RRd), with a fundamental period of 0.48374 days and a period ratio of 0.7442 (with the first overtone period having the largest amplitude, common among RRd stars). Szczygieł & Fabrycky (2007) cast some doubt on this classification because a significant secondary frequency couldn't be found in data from the All Sky Automated Survey (*ASAS-3*; Pojmanski & Maciejewski, 2005).

CCD observations were therefore performed with a 35-cm C14 and an SBIG ST-8 camera on 10 nights in July-August 2007 (V and R_C data) and on 14 nights in April-May 2008 (only V data) to verify the classification. The comparison stars used were GSC 1539-0959 (adopted magnitude V = 12.45 and R = 12.37 from the Tycho2 catalogue) and GSC 1539-1173. The median nightly standard deviation for the check star measurements was 0.02 mag. All data are available electronically.

The data were analysed using Period04 (Lenz & Breger, 2005). The presence of an additional frequency (the fundamental mode) and some of its combination frequencies with the first overtone mode were readily identified. Table 1 gives an overview of the frequencies identified, together with their amplitudes and phases. The values for the R_C data were calculated using the frequencies derived from the V data. The uncertainties on the values were derived from Monte Carlo simulations. The top panel of Fig. 1 presents a phase diagram of the V data, plotted with the first overtone period, the period with the largest amplitude. The bottom panel shows a phase diagram of the V data, prewhitened with the first overtone period and its harmonics (but not with the combination frequencies), and plotted with the fundamental period. The period ratio P_1/P_0 for V458 Her can then be calculated to be 0.7443, the amplitude ratio $A_1/A_0 = 3.1$.

The extended ASAS-3 data set, including data from 2007 and 2008, now also clearly confirms the RRd nature of V458 Her. The frequencies derived from these data are $f_1 = 2.777932$ and $f_0 = 2.067709$, which again leads to $P_1/P_0 = 0.7443$, and also $A_1/A_0 = 3.7$.

This research made use of the SIMBAD and VizieR databases operated at the *Centre* de Données Astronomiques (Strasbourg) in France.

Fr	requency	Ampl. V	Phase V	Ampl. R_C	Phase R_C
	$\rm c/d$	mmag	degrees	mmag	degrees
f_1	2.777971(6)	208 ± 1	$158.8 {\pm} 0.3$	175 ± 3	161 ± 1
f_0	2.067729(20)	67 ± 1	$68.2{\pm}0.9$	50 ± 3	70 ± 4
$2f_1$	5.555942	27 ± 1	$142.1{\pm}1.9$	33 ± 3	165 ± 6
$f_1 + f_0$	4.845700	29 ± 1	$11.1 {\pm} 2.0$	13 ± 3	$354{\pm}11$
$f_1 - f_0$	0.710242	16 ± 1	$57.8 {\pm} 3.5$		
$3f_{1}$	8.333913	13 ± 1	137.2 ± 3.5	11 ± 3	$135 {\pm} 19$
$2f_1 + f_0$	7.623671	12 ± 1	$324.6 {\pm} 4.9$		
4f1	11.111883	6 ± 1	$140.7 {\pm} 8.6$		

Table 1: Frequencies detected in V458 Her

References:

Hoffmeister C., 1936, Astron. Nach., 259, 37

Lenz P., Breger M., 2005, Comm. in Asteroseismology, 146, 53

Pojmanski G., Maciejewski G., 2005, Acta Astron., 55, 97

Szczygieł D.M., Fabrycky D.C., 2007, MNRAS, 377, 1263

Wils P., Lloyd C., Bernhard K., 2006, MNRAS, 368, 1757

Woźniak P.R., Vestrand W.T., Akerlof C.W., Balsano R., Bloch J., Casperson D., Fletcher S., Gisler G., Kehoe R., Kinemuchi K., Lee B.C., Marshall S., McGowan K.E., McKay T.A., Rykoff E.S., Smith D.A., Szymanski J., Wren J., 2004, AJ, 127, 2436

Figure 1. Top: phase diagram of the V458 Her V data, plotted with the first overtone period of 0.359975 days. Bottom: V data, prewhitened with the first overtone period, and plotted with the fundamental period.

Number 5841

Konkoly Observatory Budapest 14 July 2008 *HU ISSN 0374 - 0676*

EVIDENCE FOR SHORT-TERM VARIATIONS IN TWO O-TYPE STARS

DE BECKER, M.^{1,2}; LINDER, N.¹; RAUW, G.^{1,2}

 1 Institut d'Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août, Bât B5c, 4000 Liège, Belgium, e-mail: debecker@astro.ulg.ac.be

 2 Fonds National de la Recherche Scientifique, Belgium

The study of spectral variability of O-type stars led, in a few cases, to the discovery of variations with periods of a fraction of a day (see e.g. ζ Pup, Baade 1991, and ζ Oph, Kambe et al. 1997). These variations are often considered to be the signature of non-radial pulsations. More recently, Rauw et al. (2008) investigated in detail the case of HD 93521 and reported on variations on time scales of 1.75 and 2.89 h. As only a handful of O-type stars displaying short-term variations are known, any new detection constitutes as significant improvement of the catalog of short-term varying massive stars.

In this paper, we present the results of a spectroscopic monitoring of two O-type stars. HD 13268 is an ON8V star that belongs to the Per OB1 association. HD 15137 (O9.5V) is a runaway SB1 system (P ~ 30 d) whose preliminary orbital parameters have been published by Boyajian et al. (2005) and McSwain et al. (2007). The former authors suggested that this star may have been ejected from the nearby cluster NGC 654 in the Perseus spiral arm. Both stars display broad absorption lines due to a rather high rotational velocity. Their projected rotational velocities are respectively estimated to be equal to $302 \,\mathrm{km \, s^{-1}}$ (Penny 1996) and 178 km s⁻¹ (Conti & Ebbets 1977).

Our analysis is based on data collected with the Aurélie spectrograph at the 1.52-m telescope of the Observatoire de Haute Provence (OHP, France). In the case of HD 13268, the time series is constituted of 62 spectra obtained between October 2004 and November 2007, but most of the data were obtained during 4 nights in autumn 2007 (see Table 1). We observed HD 15137 44 times during the same epoch, with 12 spectra obtained on the same night with a timespan of about 6 hours (on 2006, October 26th, see Table 2). Our spectra covered wavelengths between 4460 and 4890 Å, with a resolving power of about 8000. Exposure times were of the order of 25–45 minutes depending on the sky conditions. The signal-to-noise of our spectra – estimated in regions devoid of spectral lines – was higher than 200. The data were reduced following the procedure described by Rauw & De Becker (2004).

We applied the Time Variance Spectrum (TVS) analysis technique as described by Fullerton et al. (1996) to our spectral time series. In the case of HD 13268, we detected a significant – although weak – variability in the profile of He I λ 4471, He I $\lambda\lambda$ 4542,4686, and H β . This variability was present both in the complete data set, and in data sets of individual nights during which several spectra were collected. We analyzed our time series using the generalized Fourier technique of Heck et al. (1985) and revised by Gosset et al. (2001). This technique is especially adapted to the case of unequally spaced data. The power spectra are shown in Fig. 1 for He II λ 4686 and H β . Our results point to potential variability time scales of 14.5 and 6.7 h respectively for the two lines, even though significant residuals are still present after prewhitening (see middle panels of Fig. 1). Several factors are likely to contribute to these residuals: (i) the reported time scales may be incorrect (aliasing, ...), (ii) the low amplitude of the variations makes our temporal analysis very sensitive to noise, and (iii) more than one unidentified time scale may contribute to the detected variations. The studies of the other few examples of short-term varying O-type stars suggest indeed that multiperiodic variations are occurring.

#	HJD	Date	#	HJD	Date	#	HJD	Date
1	3286.512	2004/10/07	22	4396.484	2007/10/22	43	4421.454	2007/11/16
2	3289.595	2004/10/10	23	4396.505	2007/10/22	44	4421.475	2007/11/16
3	3290.490	2004/10/11	24	4396.551	2007/10/22	45	4421.499	2007/11/16
4	3294.634	2004/10/15	25	4396.574	2007/10/22	46	4421.549	2007/11/16
5	3295.482	2004/10/16	26	4396.595	2007/10/22	47	4421.573	2007/11/16
6	3295.672	2004/10/16	27	4407.364	2007/11/02	48	4421.598	2007/11/16
7	3296.597	2004/10/17	28	4407.381	2007/11/02	49	4422.356	2007/11/17
8	3648.620	2005/10/04	29	4407.399	2007/11/02	50	4422.373	2007/11/17
9	3652.586	2005/10/08	30	4407.418	2007/11/02	51	4422.388	2007/11/17
10	3654.456	2005/10/10	31	4407.436	2007/11/02	52	4422.402	2007/11/17
11	3982.621	2006/09/03	32	4407.454	2007/11/02	53	4422.439	2007/11/17
12	3984.575	2006/09/05	33	4407.473	2007/11/02	54	4422.454	2007/11/17
13	4034.408	2006/10/25	34	4407.490	2007/11/02	55	4422.469	2007/11/17
14	4034.466	2006/10/25	35	4407.553	2007/11/02	56	4422.484	2007/11/17
15	4034.524	2006/10/25	36	4407.570	2007/11/02	57	4422.516	2007/11/17
16	4034.585	2006/10/25	37	4407.691	2007/11/02	58	4422.533	2007/11/17
17	4035.386	2006/10/26	38	4421.613	2007/11/16	59	4422.557	2007/11/17
18	4396.369	2007/10/22	39	4421.350	2007/11/16	60	4422.570	2007/11/17
19	4396.392	2007/10/22	40	4421.370	2007/11/16	61	4422.594	2007/11/17
20	4396.414	2007/10/22	41	4421.393	2007/11/16	62	4422.608	2007/11/17
21	4396.462	2007/10/22	42	4421.433	2007/11/16			

Table 1. Journal of the observations of HD 13268. The heliocentric Julian date at mid-exposure is given as HJD - 2 450000, and the date (yyyy/mm/dd) is that of the beginning of the night.

Table 2. Journal of the observations of HD 15137.

#	HJD	Date	#	HJD	Date	#	HJD	Date
1	3652.642	2005/10/08	16	4035.545	2006/10/26	31	4409.528	2007/11/04
2	3654.538	2005/10/10	17	4035.568	2006/10/26	32	4410.475	2007/11/05
3	3980.585	2006/09/01	18	4035.588	2006/10/26	33	4411.551	2007/11/06
4	3982.552	2006/09/03	19	4035.611	2006/10/26	34	4412.504	2007/11/07
5	3984.545	2006/09/05	20	4035.632	2006/10/26	35	4413.584	2007/11/08
6	4033.406	2006/10/24	21	4035.655	2006/10/26	36	4414.530	2007/11/09
7	4033.495	2006/10/24	22	4396.438	2007/10/22	37	4415.546	2007/11/10
8	4033.602	2006/10/24	23	4397.516	2007/10/23	38	4416.453	2007/11/11
9	4034.670	2006/10/25	24	4400.646	2007/10/26	39	4417.467	2007/11/12
10	4035.413	2006/10/26	25	4401.598	2007/10/27	40	4418.383	2007/11/13
11	4035.437	2006/10/26	26	4402.588	2007/10/28	41	4419.412	2007/11/14
12	4035.458	2006/10/26	27	4405.599	2007/10/31	42	4421.525	2007/11/16
13	4035.480	2006/10/26	28	4406.590	2007/11/01	43	4422.421	2007/11/17
14	4035.502	2006/10/26	29	4407.532	2007/11/02	44	4423.322	2007/11/18
15	4035.524	2006/10/26	30	4408.591	2007/11/03			

In the case of HD 15137, our sampling of high frequencies is rather poor as this star

was intensively observed during only one night. However, the TVS indicates a significant line profile variability of at least He I λ 4471 and H β , i.e. the strongest absorption lines in the blue spectrum, during that particular night. The comparison of the line profiles obtained during a same night reveals indeed variations from one spectrum to the other, with time intervals of the order of 30–40 minutes between two consecutive observations. These variations can be seen in the line profiles plotted in the left part of Fig. 2. We note that it is unlikely that these variations be due to the orbital motion of the SB1 as its period is of the order of 30 d, i.e. much longer than the time scales investigated during a single night. The right part of Fig. 2 shows the power spectrum of the complete time series for H β . The wavelength position of the line profile has been corrected for the orbital motion before computing the power spectrum. The corrections were calculated on the basis of a SB1 orbital solution computed from our data and the radial velocities published by Boyajian et al. (2005) and McSwain et al. (2005), using the same method as De Becker et al. (2006). We note the presence of a family of peaks close to $2 d^{-1}$. Some power is also found at higher frequencies (see for instance a low amplitude family of peaks whose presence is suggested around $10 \, d^{-1}$). A much better sampling of high frequencies is however needed in order to clarify the situation and propose valuable values for the short variability time scale(s). We note that Boyajian et al. (2005) already suggested the occurrence of short-term variations for this star.

Figure 1. Fourier analysis of He II λ 4686 between 4682 and 4685 Å (*left part*) and H β between 4857 and 4860 Å (*right part*) in the case of HD 13268. *Upper panels:* mean power spectrum over the specified wavelength domain. *Middle panels:* prewhitened power spectrum using the specified frequency corresponding to the highest peak in the upper panel. Significant residual power is still present, but a much better sampling of higher frequencies is requested in order to determine accurately the variability time scales. *Lower panels:* spectral window related to the data sampling.

Considering (i) the low amplitude of the variations and (ii) their rather high frequency, intensive monitoring with large collecting area telescopes is really needed if one wants to investigate the short term behaviour of these stars. Typically, several complete nights on 4-m class telescopes, using rather high resolving power (at least 20000), should be devoted to these targets in order to characterize their short term variations in a way similar to that of HD 93521 (Rauw et al. 2008) or ζ Oph (Kambe et al. 1997).

Figure 2. Left part: Line profiles of HeI λ 4471 and H β in the case of HD15137. The selected spectra are those obtained during a single night (number #10 to #21 in Table 2, from the top to the bottom). Right part: Fourier analysis of the complete time series (44 spectra) for H β after correction for the SB1 orbital motion. We note that some residual power due to the orbital motion may still be present at low frequencies. The power spectrum suggests however the presence of frequencies likely related to time

scales of a fraction of a day.

In summary, we report on the detection of significant variations on time scales of a fraction of a day in the blue spectrum of two late-type main-sequence O stars: HD 13268 and HD 15137. The frequency sampling of our time series did not allow us to determine the variability time scale, but we claim that these stars should be considered as very valuable targets for future studies aiming at investigating rapid variations in O-type stars. Such variations may be the signature of non-radial pulsations, or of structures related to circumstellar rotating material. Intensive high spectral resolution spectroscopic campaigns are needed to investigate such a behaviour.

Acknowledgements. MD would like to thank Dr Hugues Sana for preparing and providing the orbital solution package. The authors acknowledge the support from the FNRS (Belgium), the 'Communauté Française' (Belgium), as well as through the XMM and INTEGRAL PRODEX contract (Belspo).

References:

Baade, D., 1991, in ESO Workshop on Rapid Variability of OB-Stars: Nature and Diagnostic Value, ed. D. Baade, 21

Boyajian, T.S., Beaulieu, T.D., Gies, D.R., et al., 2005, ApJ, 621, 978

Conti, P.S.& Ebbets, D., 1977, ApJ, 213, 438

De Becker, M., Rauw, G., Manfroid, J., Eenens, P., 2006, A&A, 456, 1121

Kambe, E., Hirata, R., Ando, H., et al., 1997, ApJ, 481, 406

McSwain, M.V., Boyajian, T.S., Grundstrom, E.D., Gies, D.R., 2007, ApJ, 655, 473

Penny, L.R., 1996, ApJ, **463**, 737

Rauw, G. & De Becker, M., 2004, A&A, **421**, 693

Rauw, G., De Becker, M., van Winkel, H., et al., 2008, $A \mathscr{C} A$, in press

Number 5842

Konkoly Observatory Budapest 21 July 2008 *HU ISSN 0374 - 0676*

SHORT-PERIOD OSCILLATIONS FOUND IN THE ALGOL-TYPE SYSTEM GSC 4550-1408

DIMITROV, D.; KRAICHEVA, Z.; POPOV, V.

¹ Institute of Astronomy, BAS, Tsarigradsko Shossee 72, 1784 Sofia, Bulgaria, e-mail: dinko@astro.bas.bg; zk@astro.bas.bg; vpopov@astro.bas.bg

GSC 4550-1408 was discovered as an eclipsing binary by Biyalieva and Khruslov (2007), in their search for new variables in the NSVS database (Wozniak et al. 2004). This star is suitable for more detailed study taking into consideration its period P = 1.23837 days, amplitude of primary minimum $A_R \simeq 0.4$ mag, and visual magnitude $V_T = 11.26$ mag.

The CCD photometry of GSC 4550-1408 was carried out with the 60cm Cassegrain telescope at NAO Rozhen, equipped with the CCD camera FLI PL09000 (3056x3056, 12μ pixel), and Bessell (1990) standard *UBVRI* filters. The standard IRAF procedures were used for the reduction of the photometric data.

The phased light curve is shown on Fig. 1. Light curves for several nights, acquired in the BVR passbands are shown in Fig. 3 and 4. Oscillations with a peak-to-peak amplitude up to 0.02 mag in R, and 0.04 mag in B, were detected in four of the observational runs (including secondary minimum). A preliminary analysis of the out-of-eclipse data shows a main periodicity about 37 c/d (~ 39 min.).

Spectral observations of GSC 4550-1408 were obtained with the Coudé spectrograph (resolution of 0.19 Å/pixel) with the 2m RC telescope at NAO Rozhen. The spectral domain covered three regions around H_{α} , H_{β} , and MgII 4481 lines. The data reduction of the spectra was made with the standard IRAF procedures. The corresponding radial velocities were measured with the cross-correlation technique using synthetic spectrum, calculated with the programme SPECTRUM (Gray & Corbally 1994) and a grid of LTE atmosphere models for a solar-type chemical composition (Castelli & Kurucz 2003), as a template spectrum. Comparing the synthetic and the observed spectra (Fig. 5), the parameters of the primary component were estimated (Table 4).

The preliminary orbital and physical parameters were computed using both Rozhen and NSVS data, with the PHOEBE software (Prśa & Zwitter 2005). The new ephemeris is as follows:

$$HJD(MinI) = 2451403.832(\pm 0.004) + 1.2383832(\pm 0.0000008)E$$
(1)

The amplitude of the RV curve is $A_{RV} = 15 \text{ kms}^{-1}$, and the γ velocity is -52.3 kms⁻¹ (Fig. 2). The physical parameters of the secondary component, computed with the PHOEBE, are shown in Table 4. The spectral types of the two components were estimated using Gray & Corbally (1994) calibration.

Acknowledgements We made use of the SIMBAD database from the *Centre de Données Astronomiques*, Strasbourg, France. D.D. acknowledges the DIVA-BG society for the partial financial support.

Table 1. Data of the variable, comparison, and check stars used for the CCD photometr	Table 1.	Data	of the	variable,	comparison,	and	check stars	s used	for	the	CCD	photomet	ry
---	----------	------	--------	-----------	-------------	-----	-------------	--------	-----	-----	-----	----------	----

ID	Name	RA (J2000)	DEC $(J2000)$	Spectral type
Var	GSC 4550-1408	$11^h \ 40^m \ 01.44^s$	$+75^{\circ} \ 09' \ 21.3''$	
C1	SAO 7402	$11^h \ 38^m \ 38.42^s$	$+75^{\circ} 10' 51.1''$	G5
C2	$GSC \ 4550-1520$	$11^h \ 37^m \ 15.62^s$	$+75^{\circ} \ 11' \ 50.6''$	F5

Date	$\mathrm{HJD}(\mathrm{start})$	Length	Filter	Exp. [s]	Ν	Phase
12.05.2008	2454599.4533	$03^{h} \ 19^{m}$	R	20	485	0.479 - 0.590
13.05.2008	2454600.2794	$01^{h} 53^{m}$	R	20	260	0.146 - 0.209
16.05.2008	2454603.4463	$02^{h} 22^{m}$	BVR	$120,\!60,\!20$	60	0.703 - 0.783
03.06.2008	2454621.3795	$00^{h} \ 33^{m}$	BVR	$120,\!60,\!20$	9	0.182 - 0.200
29.06.2008	2454647.3367	$02^{h} \ 38^{m}$	R	60	136	0.145 - 0.233
30.06.2008	2454648.3087	$03^{h} \ 44^{m}$	R	60	175	0.930 – 0.055
01.07.2008	2454649.3814	$01^{h} \ 35^{m}$	R	60	100	0.796 - 0.855

Table 2. Observational runs of GSC 4550-1408

Date	$\mathrm{HJD}(\mathrm{mid})$	S/N	Exp .	Exp. RV		Region	Phase
			$[\mathbf{s}]$	[km	$s^{-1}]$	[Å]	
13.05.2008	2454600.4071	28	1800	-73.7	± 2.7	4400-4600	0.251
13.05.2008	2454600.4282	28	1800	-67.8	± 6.8	4400 - 4600	0.268
13.05.2008	2454600.4516	33	1800	-45.6	± 6.6	4800-5000	0.287
13.05.2008	2454600.4727	31	1800	-73.0	± 4.4	4800-5000	0.304
13.05.2008	2454600.4953	38	1800	-71.1	± 5.4	6500 - 6700	0.322
13.05.2008	2454600.5166	38	1800	-78.4	± 6.3	6500 - 6700	0.340
10.06.2008	2454628.3810	29	1800	-42.8	± 4.9	4400 - 4600	0.840
10.06.2008	2454628.4041	37	1800	-43.9	± 4.3	4800-5000	0.859
10.06.2008	2454628.4268	46	1800	-49.5	± 3.6	6500 - 6700	0.877
11.06.2008	2454629.3406	26	1800	-31.8	± 4.7	4400 - 4600	0.615
11.06.2008	2454629.3641	33	1800	-34.2	± 5.1	4800-5000	0.634
$11.06\ 2008$	2454629.3870	33	1800	-38.2	± 7.4	6500 - 6700	0.653

Table 3. Rozhen spectra of GSC 4550-1408

References:

Bessell, M., S., 1990, PASP, 102, 1181
Biyalieva, N., Khruslov, A., 2007, PZP, 7, 17
Castelli, F., Kurucz, R., 2003, in IAU Symp., 210, 20
Gray, R., Corbally, C., 1994, AJ, 107, 742
Prśa, A., Zwitter, T. 2005, ApJ 628, 426
Wozniak, P., Vestrand, W., Akerlof, C., et al., 2004, AJ, 127, 2436

Figure 1. R band light curve of GSC 4550-1408 observed at NAO Rozhen (dots), and the synthetic light curve (solid line)

Figure 2. The Radial Velocity curve of GSC 4550-1408 (diamonds), and the best fit for the circular orbit assumption (solid line).

Table 4. Physical parameters of the primary and secondary components of GSC 4550-1408

Parameter		Primary star	Secondary star
$T_{\rm eff}$	[K]	8500	6900
$\log g$		4.0	3.6
$v \sin i$ []	cms^{-1}]	~ 60	
Spectral type	-	A3 V-IV	F2 III

Figure 3. Nightly light curves of GSC 4550-1408: differential magnitudes between the variable and comparison stars $\Delta R(\text{Var} - \text{C1})$, and between the check and comparison stars $\Delta R(\text{C2} - \text{C1})$

Figure 4. BVR light curves of GSC 4550-1408 and the check star observed on 16.05.2008

Figure 5. Rozhen combined spectra (thin line) of GSC 4550-1408 and the best synthetic spectra (thick line)

Number 5843

Konkoly Observatory Budapest 21 July 2008 *HU ISSN 0374 - 0676*

TIMES OF MINIMA OBSERVED BY "PI OF THE SKY"

OGLOZA, W.¹; NIEWIADOMSKI, W.¹; BARNACKA, A.¹; BISKUP, M.²; MAŁEK, K.³; SOKOŁOWSKI, M.⁴

 1 Mt. Suhora Observatory, Cracow Pedagogical University, Podchorazych 2, 30-086 Krakow, Poland, ogloza@ap.krakow.pl

² Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland

³ Center for Theoretical Physics PAS, Warsaw, Poland

⁴ Soltan Institute for Nuclear Studies, Warsaw, Poland

The following table lists CCD times-of-minima of several binaries recorded by the "Pi of the Sky" (http://grb.fuw.edu.pl/pi/) robotic telescope during GRB patrol observations (Burd et al. 2005) in 2004-2007.

The observations, made in white light with an infrared-blocking filter, were reduced in the usual way. Times of minima, determined with the method of Kwee and van Woerden (1956), were added to the database of minima described by Kreiner (2004).

Web access to the database with individual times of minima is available at http://www.as.ap.krakow.pl/miniauto.

We would like to thank the staff of Las Campanas Observatory for their help in installing and maintaining the "Pi of the Sky" telescope.

"Pi of the Sky" was financed by the Polish Ministry of Science in 2005–2007 as a research project.

References:

Burd A., Cwiok M., Czyrkowski M., et al, 2005, *New Astronomy*, **10**, 409 Kreiner, J.M., 2004, *Acta Astron.*, **54**, 207 Kwee K.K., van Woerden H., 1956, *BAN*, **12**, 327

Star	HJD 2450000 +	Error	Tvne	Star	HJD 2450000 +	Error	Type
ST Aar	3259 7033	0.0008	<u>-JPC</u> pri	AG Ari	3320 7312	0.0014	<u>-jrv</u>
ST Aar	3281.5646	0.0000	pri	AG Ari	3321 6776	0.0011	pri
SU Aar	$3250\ 8167$	0.0028	pri	AL Ari	3340 6998	0.0010 0.0007	sec
SU Agr	3251.8540	0.0020	pri	TU CMa	4070 6730	0.0001	nri
SU Agr	3974 7854	0.0010	pri	VW CMa	4064 7022	0.0000	pri
CW Agr	$3974\ 8142$	0.0000	pri	VW CMa	4069 7452	0.0001 0.0007	pri
CW Agr	3976 7327	0.0015	sec	VW CMa	4120 5647	0.0016	sec
CW Agr	3980.7923	0.0016	pri	CX CMa	4119.5907	0.0006	pri
CW Agr	4032 6475	0.0014	sec	FF CMa	$4122\ 6579$	0.0025	sec
CX Aar	$3251\ 5709$	0.0011	pri	FZ CMa	4048 7534	0.0004	pri
CX Aar	3253.7905	0.0007	pri	FZ CMa	4069.7594	0.0006	sec
CX Aar	3258.7970	0.0005	pri	FZ CMa	4120.6744	0.0004	sec
CX Aar	3259.6282	0.0007	sec	HY CMa	4073.6777	0.0016	pri
CX Aar	3281.5940	0.0003	pri	IQ CMa	4074.7232	0.0003	pri
CX Aar	3282.7088	0.0011	pri	IS CMa	4042.7249	0.0010	pri
CX Aar	3980.7490	0.0010	sec	IS CMa	4054.7579	0.0011	sec
CX Aar	3982.6956	0.0006	pri	IS CMa	4071.7239	0.0006	pri
DD Aar	3260.6574	0.0011	pri	KL CMa	4072.7344	0.0012	sec
DD Aar	3281.5667	0.0011	pri	LV CMa	4120.6850	0.0016	pri
DY Aar	4059.5686	0.0013	pri	YY CMi	3361.7474	0.0009	pri
EE Aar	3250.5730	0.0010	sec	YY CMi	3390.7434	0.0012	sec
EE Agr	3250.8282	0.0003	pri	YY CMi	3401.6850	0.0015	sec
EE Agr	3251.5880	0.0011	sec	YY CMi	3407.6955	0.0012	pri
EE Agr	3251.8477	0.0003	pri	BU CMi	3378.6805	0.0013	pri
EE Aar	3253.6299	0.0008	sec	RR Cen	3455.6494	0.0007	pri
EE Agr	3980.7258	0.0011	pri	V678 Cen	3509.7239	0.0013	pri
EE Agr	3982.7611	0.0003	pri	V700 Cen	3504.5353	0.0031	pri
$\overline{\text{EE Agr}}$	4032.6440	0.0002	pri	V757 Cen	3504.5693	0.0003	pri
EF Aqr	3974.7963	0.0004	pri	V757 Cen	3504.7453	0.0007	sec
EK Agr	4005.7181	0.0027	pri	V757 Cen	3509.5445	0.0004	sec
EK Aqr	4028.7013	0.0016	pri	V757 Cen	3509.7202	0.0007	pri
EL Aqr	3260.7514	0.0012	pri	V839 Cen	3504.6512	0.0003	pri
EL Aqr	3309.6208	0.0028	sec	TT Cet	3311.6685	0.0010	pri
EL Aqr	3310.5820	0.0016	sec	TV Cet	3328.7196	0.0005	pri
EL Aqr	4004.7676	0.0009	sec	TX Cet	3287.7168	0.0015	pri
EL Aqr	4005.7290	0.0013	sec	WY Cet	3311.6391	0.0015	pri
EL Aqr	4006.6899	0.0009	sec	XY Cet	3320.6722	0.0005	sec
EL Aqr	4011.7441	0.0014	pri	XY Cet	3338.7512	0.0011	pri
EL Aqr	4028.5967	0.0008	pri	YY Cet	4040.7737	0.0002	pri
EL Aqr	4038.6943	0.0015	pri	AA Cet	4040.7756	0.0005	pri
HV Aqr	3250.6336	0.0009	pri	DY Cet	3337.7258	0.0010	sec
HV Aqr	3280.5840	0.0009	pri	DY Cet	4040.7832	0.0029	sec
HV Aqr	3986.6397	0.0014	sec	TX Cnc	3387.7552	0.0016	sec
KX Aqr	3251.7534	0.0003	pri	TX Cnc	3388.7118	0.0011	pri
KX Aqr	3253.8255	0.0009	pri	WY Cnc	3390.6964	0.0011	pri
QR Ara	3426.8540	0.0025	pri	XZ Cnc	3399.6336	0.0016	pri
RX Ari	3340.5585	0.0003	pri	FF Cnc	3388.7447	0.0011	pri
RX Ari	3341.5820	0.0014	pri	FF Cnc	3400.6475	0.0010	pri
SS Ari	3326.6583	0.0013	sec	RS Col	4057.6405	0.0007	pri
SS Ari	3338.6450	0.0009	pri	RS Col	4060.6586	0.0008	sec

-5 -100 -1	Type
RS Col 4067.7185 0.0012 pri YY Eri 3306.7868 0.0002	sec
RS Col 4072.7520 0.0012 sec YY Eri 4024.6932 0.0003	sec
eps CrA 3991.5288 0.0013 pri YY Eri 4046.7155 0.0003	pri
RV Crv 3466.5913 0.0009 pri YY Eri 4047.6802 0.0002	pri
RV Crv 3469.5805 0.0005 pri YY Eri 4051.6990 0.0001	sec
RV Crv 3470.7091 0.0009 sec YY Eri 4055.7180 0.0001	pri
RV Crv 3473.6999 0.0007 sec YY Eri 4063.5940 0.0002	sec
RV Crv 3474.8161 0.0008 pri YY Eri 4063.7548 0.0001	pri
RV Crv 3475.5555 0.0006 pri YY Eri 4067.6134 0.0000	sec
RV Crv 3477.8022 0.0016 pri YY Eri 4067.7738 0.0002	pri
RV Crv 3478.5477 0.0005 pri AS Eri 3306.6756 0.0023	pri
RV Crv 3479.6751 0.0008 sec BC Eri 4024.7859 0.0009	sec
RV Crv 3504.7031 0.0006 pri BC Eri 4043.7663 0.0013	sec
RV Crv 3506.5658 0.0012 sec BC Eri 4057.7356 0.0017	pri
SX Crv 3466.6869 0.0006 pri BC Eri 4060.6407 0.0015	sec
SX Crv 3466.8389 0.0015 sec BC Eri 4067.7531 0.0005	pri
SX Crv 3468.5925 0.0013 pri BU Eri 4046.7405 0.0003	pri
SX Crv 3468.7486 0.0010 sec BU Eri 4052.6431 0.0003	pri
SX Crv 3469.6963 0.0005 sec BU Eri 4063.6037 0.0005	pri
SX Crv 3470.6523 0.0009 sec BV Eri 3306.6811 0.0011	pri
SX Crv 3471.5920 0.0010 sec BV Eri 4039.7283 0.0008	pri
SX Crv 3471.7570 0.0008 pri BV Eri 4051.6588 0.0001	pri
SX Crv 3473.6596 0.0009 pri BV Eri 4052.6739 0.0005	pri
SX Crv 3474.5999 0.0007 pri BW Eri 4051.6976 0.0010	sec
SX Crv 3474.7581 0.0012 sec BW Eri 4067.6478 0.0014	sec
SX Crv 3475.5533 0.0013 pri BZ Eri 3306.8076 0.0007	pri
SX Crv 3477.6074 0.0008 sec FO Eri 3305.5690 0.0017	pri
SX Crv 3477.7722 0.0013 pri FX Eri 3304.8383 0.0016	pri
SX Crv 3478.5634 0.0006 sec GH Eri 4023.8201 0.0005	pri
SX Crv 3478.7250 0.0004 pri GH Eri 4042.6048 0.0010	pri
SX Crv 3480.6236 0.0009 pri GK Eri 4047.7522 0.0006	pri
SX Crv 3480.7797 0.0005 sec GW Eri 4067.6099 0.0011	pri
SX Crv 3504.6844 0.0011 pri HN Eri 4024.7003 0.0006	pri
TW Crt 3466.6943 0.0005 pri HN Eri 4047.7812 0.0011	pri
TW Crt 3468.5808 0.0009 pri HN Eri 4063.6746 0.0005	sec
W Crv 3466.7679 0.0009 sec HN Eri 4067.7304 0.0003	pri
W Crv 3468.7075 0.0007 sec AE For 4039.7544 0.0003	sec
Y Cry 3473.6422 0.0038 pri AE For 4040.6730 0.0002	sec
BW Dor 4036.5947 0.0003 pri AE For 4052.6091 0.0002	sec
BW Dor 4036 7411 0.0008 sec AL Gem 4106 7526 0.0009	pri
BW Dor 40375995 0.0014 sec GW Gem 41276524 0.0003	pri
BW Dor 4037 7384 0.0004 pri OT Gem 3378 7173 0.0026	pri
BW Dor 4041 7335 0.0007 pri SX Hya 3471 7411 0.0017	pri
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	pri pri
BW Dor 4059 7177 0.0006 pri SX Hya 3497 7983 0.0039	pri pri
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	pri pri
AV Dor $4065.6784 = 0.0008$ pri WV Hva $3390.7408 = 0.0000$	P+1 Sec
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	nri
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	pri pri
YY Eri 3306.6253 0.0002 pri FG Hva 3387.7496 0.0006	sec

Star	m HJD~2450000 +	Error	Type	Star	HJD $2450000 +$	Error	Type
FG Hya	3388.7329	0.0010	sec	AP Leo	3445.6625	0.0005	pri
FG Hya	3389.7165	0.0010	sec	AP Leo	3446.7374	0.0010	sec
FG Hya	3400.6934	0.0007	pri	AP Leo	3447.5982	0.0008	sec
FG Hya	3404.6285	0.0018	pri	AP Leo	3448.6735	0.0007	pri
FG Hya	3404.7926	0.0016	sec	AP Leo	3449.7477	0.0006	sec
FG Hya	3405.6126	0.0003	pri	AP Leo	3458.5710	0.0007	pri
FG Hya	3405.7800	0.0009	sec	AP Leo	3459.6493	0.0005	sec
FG Hya	3406.7616	0.0006	sec	AP Leo	3462.6609	0.0004	pri
FG Hya	3409.7104	0.0018	sec	AP Leo	3476.6465	0.0006	pri
HU Hya	3404.6543	0.0009	pri	AP Leo	3489.5578	0.0006	pri
HU Hya	3409.6792	0.0004	pri	DU Leo	3418.7118	0.0006	sec
QY Hya	3466.6784	0.0003	pri	V Lep	4054.7643	0.0005	pri
QY Hya	3468.7232	0.0009	sec	V Lep	4069.7462	0.0005	pri
QY Hya	3470.7666	0.0011	sec	Z Lep	4043.7843	0.0016	pri
OY Hva	3477.6326	0.0005	pri	Z Lep	4055.7062	0.0015	pri
QY Hva	3477.7847	0.0013	sec	Z Lep	4057.6982	0.0006	pri
QY Hva	3478.6645	0.0021	sec	Z Lep	4060.6805	0.0007	pri
QY Hva	3480.7094	0.0007	sec	Z Lep	4067.6379	0.0017	pri
V340 Hva	3470 6329	0.0024	pri	BR Lep	4043 6978	0.0001	pri
V356 Hva	3497 7677	0.0001	pri	RS Lep	4060 6730	0.0003	pri
V358 Hya	3404 7641	0.0020	pri	VZ Lib	3509 8297	0.0006	Sec.
UX Leo	34596740	0.0020 0.0026	pri	VZ Lib	35116204	0.0000	sec
UZ Leo	34116875	0.0020	pri	VZ Lib	3511 7985	0.0010 0.0021	pri
UZ Leo	3415 6998	0.0011	sec	VZ Lib	3517 7113	0.0021 0.0013	sec
UZ Leo	3419 7261	0.0000	nri	ES Lib	3517.6814	0.0010	nri
UZ Leo	3413.7201	0.0001	pri	IR Lib	3511 6166	0.0001 0.0021	pri
UZ Leo	3446 6112	0.0000	sec	IR Lib	3511.0100 3511.7580	0.0021	pri
VZ Leo	3300 7585	0.0000	Sec	SX Lup	3038 6220	0.0000	Sec.
VZ Leo	3300 7340	0.0000	nri	SX Lup	39/1 6965	0.0021 0.0031	nri
XZ Loo	3300 7818	0.0000	PII	FS Lup	3463 8760	0.0001 0.0012	pri
AM Loo	3/1/ 6/35	0.0001	nri	FT Lup	3038 6103	0.0012	pri
AM Leo	3/31 6516	0.0001	pri soc	TV Mon	3081 7105	0.0000	pri
AM Leo	3433 6644	0.0004	nri	AN Mon	4066 6222	0.0005 0.0007	pri
AM Leo	3435.0044	0.0003 0.0007	pri	Z Nor	2028 6828	0.0007	pri
AM Leo	2440 6194	0.0007	pri	NS Mon	2270.0020	0.0010 0.0014	sec
AM Leo	2440.0124	0.0005	pri	IR Nor		0.0014 0.0014	set
AM Leo	2446.6406	0.0000	pri	V1010 Oph	2511 2652	0.0014 0.0015	pri
AM Leo	3440.0490	0.0003	set	V1010 Oph V2304 Oph	3511.0052 3511.6615	0.0015 0.0015	pri
	3414 6745	0.0005	pri	V_{2394} Opt	3311.0013 3343.7634	0.0015 0.0015	set pri
AP Loo	3414.0745	0.0005	pri	ET Ori		0.0010	pri
AD Leo	2420.0130 2421.6711	0.0000	sec		0044.7142 2257.6526	0.0009	pri pri
	0401.0711 2422 7515	0.0000	sec	$V_{1299} O_{m}$	0004.000 0075 6064	0.0007 0.0017	pri pri
	0402.7010 2422.6006	0.0007	pri ne	V 1500 Off	0070.0004 2062 7274	0.0017	pri
	0400.0090 2799.0070	0.0000	pri	U Leg U Dom	0400.1014 2064.6720	0.0007	sec
AF Leo ADI	0400.8242 2424 6000		sec	U Feg U Dec	5204.073U	0.0003	pri
AP LEO	5454.0880	0.0003	sec	U Peg U D	3205.0110	0.0003	sec
AP Leo	3430.0247	0.0007	pri	U Peg U D	3205.7957	0.0000	prı
AF Leo	5458.7776	0.0004	pri	U Feg U D	3200.7357	0.0004	sec
AP Leo	3439.0301	0.0005	pri	U Peg	3207.0703	0.0005	pr_1
AP Leo	3444.5849	0.0003	$\stackrel{\mathrm{sec}}{\cdot}$	∪ Peg U D	3272.7276	0.0006	sec ·
AP Leo	3444.7978	0.0013	pri	U Peg	3273.6644	0.0004	pri

Star	HJD 2450000 +	Error	Type	Star	HJD 2450000 +	Error	Type
U Peg	3282.6595	0.0003	pri	VZ Psc	4005.6224	0.0009	sec
U Peg	3283.6000	0.0003	sec	VZ Psc	4005.7542	0.0006	pri
U Peg	3294.6529	0.0006	pri	VZ Psc	4006.6691	0.0009	sec
U Peg	3295.5930	0.0008	sec	VZ Psc	4006.7950	0.0001	pri
U Peg	3296.7154	0.0005	sec	VZ Psc	4028.6134	0.0007	sec
U Peg	3298.5910	0.0006	sec	VZ Psc	4038.6641	0.0006	pri
U Peg	3300.6492	0.0005	pri	AQ Psc	3271.8084	0.0007	pri
U Peg	3301.5890	0.0007	sec	AQ Psc	3273.7106	0.0009	pri
TY Peg	3265.6978	0.0015	pri	AQ Psc	3274.6609	0.0008	pri
AT Peg	3260.7413	0.0007	pri	AQ Psc	3283.6975	0.0007	pri
BB Peg	3987.6129	0.0010	pri	AQ Psc	3286.7873	0.0007	sec
BB Peg	4008.5804	0.0013	pri	AQ Psc	3287.7417	0.0009	sec
BX Peg	3987.9119	0.0006	pri	AQ Psc	3288.6942	0.0011	sec
BX Peg	3989.6960	0.0004	pri	AQ Psc	3289.6437	0.0005	sec
DI Peg	3265.6239	0.0002	pri	AQ Psc	3302.7217	0.0011	pri
DI Peg	3267.7591	0.0005	pri	AQ Psc	3338.6295	0.0006	sec
DI Peg	3272.7415	0.0002	pri	AQ Psc	3994.7293	0.0006	pri
DI Peg	3282.7067	0.0005	pri	TY Pup	4120.6157	0.0012	pri
DK Peg	3263.6938	0.0006	pri	UZ Pup	4119.7152	0.0006	sec
DK Peg	3281.6377	0.0016	pri	EN Pup	4119.7125	0.0013	pri
DK Peg	3294.6972	0.0007	pri	EN Pup	4120.7216	0.0006	pri
DK Peg	3299.5934	0.0010	pri	MP Pup	4120.7522	0.0011	pri
OO Peg	3280.5699	0.0009	sec	UX Ret	4023.7521	0.0001	pri
V357 Peg	3266.7474	0.0007	pri	UX Ret	4037.7194	0.0002	sec
V357 Peg	3273.6884	0.0011	pri	UX Ret	4041.6420	0.0003	sec
AE Phe	3304.7990	0.0006	sec	V1055 Sco	3483.6384	0.0013	pri
AE Phe	3946.7458	0.0003	pri	V1055 Sco	3483.8200	0.0005	pri
AE Phe	4021.7574	0.0001	pri	V1055 Sco	3938.6120	0.0010	pri
AE Phe	4077.7443	0.0004	sec	V1055 Sco	3941.7053	0.0009	sec
RW PsA	4032.6553	0.0005	sec	V1084 Sco	3991.6479	0.0006	pri
Y Psc	3264.6854	0.0009	pri	V1084 Sco	3995.5929	0.0008	pri
Y Psc	4002.7795	0.0030	pri	U Sct	3950.7122	0.0012	pri
SZ Psc	3309.6047	0.0012	pri	RS Ser	3940.6797	0.0013	sec
$\rm UV \ Psc$	3273.6972	0.0002	sec	RS Ser	3944.5653	0.0012	pri
$\rm UV \ Psc$	3283.5936	0.0003	pri	CQ Ser	3944.6360	0.0012	pri
$\rm UV \ Psc$	3286.6058	0.0010	sec	Y Sex	3410.7111	0.0009	pri
$\rm UV \ Psc$	3288.7592	0.0004	pri	Y Sex	3411.7596	0.0014	sec
$\rm UV \ Psc$	3289.6211	0.0004	pri	Y Sex	3412.8075	0.0010	pri
$\rm UV \ Psc$	3294.7887	0.0006	pri	Y Sex	3413.6501	0.0011	pri
$\rm UV \ Psc$	3298.6607	0.0006	sec	VY Sex	3410.7003	0.0009	sec
$\rm UV \ Psc$	3307.7029	0.0002	pri	VY Sex	3411.8060	0.0007	pri
$\rm UV \ Psc$	3311.5756	0.0010	sec	VY Sex	3413.7982	0.0006	sec
VZ Psc	3260.6343	0.0007	pri	VY Sex	3459.6932	0.0010	pri
VZ Psc	3260.7736	0.0010	sec	YY Sgr	3940.7137	0.0005	sec
VZ Psc	3272.6548	0.0005	pri	$\operatorname{BN} \operatorname{Sgr}$	3983.5230	0.0021	pri
VZ Psc	3272.7931	0.0009	sec	DV Sgr	3940.6809	0.0007	pri
VZ Psc	3282.5822	0.0026	pri	$\operatorname{EG} \operatorname{Sgr}$	3945.7061	0.0023	pri
VZ Psc	3282.7139	0.0008	sec	$\operatorname{EG} \operatorname{Sgr}$	3950.6682	0.0016	pri
VZ Psc	3990.5990	0.0008	pri	$V164\widetilde{7}~\mathrm{Sgr}$	3983.5713	0.0010	sec
VZ Psc	4004.7015	0.0006	pri	$V4396 \ Sgr$	3994.6141	0.0014	pri

Star	HJD 2450000 +	Error	Type	Star	HJD 2450000 +	Error	Type
RW Tau	3353.6892	0.0012	pri	VV Vir	3497.6343	0.0006	pri
RZ Tau	3327.7995	0.0005	sec	AG Vir	3432.7710	0.0005	pri
RZ Tau	3329.6726	0.0007	pri	AG Vir	3459.7610	0.0006	pri
RZ Tau	3343.6058	0.0010	sec	AG Vir	3461.6926	0.0005	pri
RZ Tau	3344.6379	0.0007	pri	AG Vir	3462.6585	0.0005	sec
RZ Tau	3345.6759	0.0007	sec	AG Vir	3463.6184	0.0010	pri
RZ Tau	3349.6264	0.0006	pri	AG Vir	3501.5363	0.0012	pri
RZ Tau	3354.6103	0.0005	pri	BF Vir	3470.6330	0.0012	pri
RZ Tau	3355.6552	0.0007	sec	BF Vir	3475.7447	0.0005	pri
RZ Tau	3356.6901	0.0004	pri	BF Vir	3477.6703	0.0009	pri
RZ Tau	3370.6135	0.0008	sec	BF Vir	3495.6033	0.0004	pri
AH Tau	3328.7072	0.0001	pri	BH Vir	3473.7648	0.0005	sec
AH Tau	3347.6456	0.0009	pri	BH Vir	3492.5531	0.0003	sec
CD Tau	3348.6890	0.0004	sec	CX Vir	3490.6421	0.0010	pri
GR Tau	3328.7476	0.0009	pri	DM Vir	3515.7677	0.0007	sec
GR Tau	3347.6615	0.0014	pri	GR Vir	3490.6846	0.0002	pri
GR Tau	3353.6777	0.0008	pri	GR Vir	3492.5940	0.0003	sec
GR Tau	3356.6796	0.0014	pri	GR Vir	3492.7665	0.0002	pri
HU Tau	3343.7646	0.0006	pri	GR Vir	3496.7582	0.0002	sec
V781 Tau	3334.7661	0.0009	pri	GR Vir	3497.6240	0.0002	pri
V781 Tau	3343.7216	0.0013	pri	GR Vir	3497.7983	0.0004	sec
V781 Tau	3344.7576	0.0010	pri	HY Vir	3470.6966	0.0009	pri
V781 Tau	3348.7250	0.0005	sec	HY Vir	3492.5545	0.0018	pri
V781 Tau	3352.6900	0.0005	pri	IM Vir	3474.6294	0.0005	pri
V781 Tau	3353.7309	0.0005	pri	LU Vir	3490.8006	0.0014	pri
V781 Tau	3356.6609	0.0005	sec	LU Vir	3492.7543	0.0007	pri
V781 Tau	3357.6920	0.0004	sec	LU Vir	3496.6907	0.0005	pri
V781 Tau	3370.6283	0.0006	pri	LU Vir	3497.6759	0.0013	pri
V1061 Tau	3327.7339	0.0015	pri	MS Vir	3490.6006	0.0008	sec
V1121 Tau	3328.6906	0.0004	pri	MS Vir	3490.7528	0.0008	pri
V1121 Tau	3347.6461	0.0005	pri	MS Vir	3492.6323	0.0007	pri
V1121 Tau	3366.6087	0.0006	pri	MS Vir	3492.7890	0.0010	sec
V1128 Tau	3305.7179	0.0010	pri	MS Vir	3496.6932	0.0012	pri
V1128 Tau	3315.6411	0.0004	sec	MS Vir	3504.6621	0.0011	sec
V1128 Tau	3315.7964	0.0005	pri	MS Vir	3509.6613	0.0006	sec
V1128 Tau	3320.6811	0.0005	pri				
V1128 Tau	3321.7496	0.0002	sec				
V1128 Tau	3326.6372	0.0002	sec				
V1128 Tau	3326.7905	0.0006	pri				
V1128 Tau	3327.7054	0.0005	pri				
V1128 Tau	3328.6207	0.0004	pri				
V1128 Tau	3328.7742	0.0004	sec				
V1128 Tau	3329.6894	0.0005	sec				
V1128 Tau	3339.6151	0.0003	pri				
V1128 Tau	3347.7071	0.0005	sec				
V1128 Tau	3366.6353	0.0003	sec				
X Tri	3320.7036	0.0007	pri				
X Tri	3321.6746	0.0003	pri				
UW Vir	3480.7279	0.0030	pri				
VV Vir	3492.7257	0.0011	pri				

Number 5844

Konkoly Observatory Budapest 29 July 2008 *HU ISSN 0374 - 0676*

MULTICOLOUR CCD PHOTOMETRY OF THREE RRab STARS

JURCSIK, J.¹; SÓDOR, Á.¹; HURTA, ZS.^{2,3}; KŐVÁRI, ZS.¹; VIDA, K.^{2,3}; HAJDU, G.²; NAGY, I.²; DÉKÁNY, I.¹; POSZTOBÁNYI, K.⁴; KOPONYÁS, B.²; VÁRADI, M.⁵; VITYI, N.²

 1 Konkoly Observatory of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest, Hungary; e-mail: name@konkoly.hu

² Eötvös Loránd University, Department of Astronomy, P.O. Box 32, H-1518 Budapest, Hungary

³ Visiting Astronomer, Konkoly Observatory of the Hungarian Academy of Sciences

 4 AEKI, KFKI Atomic Energy Research Institute, Thermohydraulic Department, H–1525 Budapest 114, PO Box 49, Hungary

⁵ Observatoire de Genéve, Universite de Genéve, CH-1290, Sauverny, Switzerland

In the present paper we publish the third set of our observations of monoperiodic fundamental mode RR Lyrae stars. The first and second sets of RRab light curves were published in Jurcsik et al. (2006) and Sódor et al. (2007), respectively. CCD observations of short period (P < 0.5 d), northern variables are obtained in order to determine the true incidence rate of light curve modulation occurring in these stars.

Now light and colour curves of BK And, UU Boo, and V387 Per are presented. The observations were made with the 60 cm automatic telescope of Konkoly Observatory, Svábhegy, Budapest, equipped with a Wright 750x1100 CCD camera using $BVR_{\rm C}I_{\rm C}$ filters. Data reduction and aperture photometry were performed using standard IRAF[†]packages. Second order extinction correction of the B data were taken into account, with $\kappa^{"} = 0.02$ coefficient. Instrumental magnitudes were transformed to the $BVR_{\rm C}I_{\rm C}$ system by observing standard magnitude stars determined by A. Henden in the fields of CZ Lacertae and MW Lyrae (Jurcsik et al. 2008, and Sódor et al. in preparation). Log of observations and comparison stars' data are given in Table 1.

Light curves of BK And and V378 Per were previously published by Schmidt & Reiswig (1993) and Schmidt & Seth (1996), respectively. These observations contained, however only 10-20 V an R CCD data points, that are not enough for accurately describe the light variations of the stars. Observations of UU Boo were obtained by Sturch (1966) and Bookmeyer et al. (1977). This light curve is, however, incomplete and noisy. Our observations are the first complete, accurate, multicolour light curves of these variables. The time coverage of the data also allows us to conclude that the light curves of these stars are stable, no light curve modulation with amplitude larger than ~ 0.02 mag in maximum brightness occur.

The photometric data are available electronically from the IBVS website (5844-t5.txt - 5844-t16.txt). The Tables list the relative $BVR_{\rm C}I_{\rm C}$ magnitude and relative B - V, $V - R_{\rm C}$, $V - I_{\rm C}$ colour time series with respect to the comparison stars. We checked

[†]IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

the constancy of the brightness of the comparisons by measuring magnitude differences to several check stars in our respective field of views. The r.m.s. scatter of these data is between 0.006 and 0.012 mag in each band. This is in accordance with the r.m.s. scatter of the Fourier fits of the B, V, R_C, I_C light curves of BK And, UU Boo, and V378 Per, which are 0.012/0.008/0.009, 0.011/0.011/0.010/0.011, and -/0.010/0.010 mag, respectively. The V light curves and the colour curves of the three stars are plotted in Figs. 1-3.

Table 1.	Log	of	observations
----------	-----	----	--------------

Star		Compai	rison		Observation period		No. of
	GSC 2.3.2	RA(2000)	DEC(2000)	V * [mag]	JD $2400000 +$	nights	$B/V/R_C/I_C{ m data}$
BK And	N078000076	$23 \ 35 \ 08.29$	+41 04 09.1	13.16	54413 - 54512	20	$391 \ / \ 391 \ / \ 0 \ / \ 373$
UU Boo	N6AZ000508	$15 \ 17 \ 36.40$	+35 05 29.5	11.90	54171 - 54567	16	338 / 330 / 328 / 320
V378 Per	NCGO000977	03 55 02.99	$+32 \ 39 \ 10.6$	12.82	54413 - 54509	15	$0 \ / \ 578 \ / \ 0 \ / \ 573$

* V magnitudes of the comparison stars are from GSC 2.3.2

Figure 1. Differential V, B - V and $V - I_{\rm C}$ light and colour curves of BK And.

Star	$T_{\rm max}$ - 2400000
	[HJD]
BK And	54452.2082
UU Boo	54197.3875
	54491.653
V378 Per	54474.2780

Table 2. Normal maximum timings of the V light curves.

Figure 2. Differential $V, B - V V - R_{\rm C}$ and $V - I_{\rm C}$ light and colour curves of UU Boo.

Figure 3. Differential V and $V - I_{\rm C}$ light and colour curves of V378 Per.

Star	P	A_1	R_{21}	R_{31}	R_{41}	R_{51}	ϕ_{21} *	ϕ_{31} *	$\phi_{41} \ ^*$	$\phi_{51} \ ^*$
	$[\mathbf{d}]$	[mag]					[rad]	[rad]	[rad]	[rad]
BK And	0.4216093(8)	0.360	0.518	0.321	0.159	0.109	2.671	5.410	1.990	4.688
UU Boo	0.4569339(2)	0.454	0.458	0.341	0.228	0.161	2.244	4.707	1.037	3.687
V378 Per	0.3987208(5)	0.417	0.555	0.371	0.246	0.161	2.337	5.112	1.469	4.206

Table 3. Fourier parameters of the V light curves.

* Phase differences are given according to sine term decomposition.

Seasonal normal maximum timings and Fourier parameters of the V light curves of BK And, UU Boo, and V378 Per are listed in Table 2, and Table 3, respectively.

Table 4 compares the photometric metallicities calculated from the V light curves of the variables according to Eq. 3 of Jurcsik & Kovács (1996) to the results of spectroscopic metallicity measurements.

Table 4.	Spectros	copic and	l photometric	Fe	$/\mathrm{H}$	values.
----------	----------	-----------	---------------	----	---------------	---------

Star	$[{ m Fe}/{ m H}]_{ m phot}$	$[{\rm Fe}/{\rm H}]_{ m spect}$ ^a	ref.		
BK And	-0.04	0.10	Layden (1994)		
UU Boo	-1.17	-1.64	Layden (1994)		
		-1.00	Kinman & Carretta (1992)		
$V378 \ Per$	-0.31	—			
a: Spectroscopic metallicities are transformed to the [Fe/H] scale used					

a: Spectroscopic metallicities are transformed to the [Fe/H] scale used for the photometric metallicities according to Eq. 3, and Eq. 2 of Jurcsik (1995) and Jurcsik & Kovács (1996).

We thank Béla Szeidl for his many helpful comments on this work. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. The financial support of OTKA grants T-048961, and T-068626 is acknowledged. ZsK is a grantee of the Bolyai János fellowship of the HAS.

References:

Bookmeyer, B.B., Fitch, W.S., Lee, T.A., Wisniewski, W.Z. and Johnson, H.L. 1977, Rev. Mex. Astron. Astrofis., 2, 235

Jurcsik, J. 1995, Acta Astronomica, 45, 653

Jurcsik, J., & Kovács, G. 1996, A&A, 312, 111

Jurcsik, J., Sódor, A., Váradi, M., Vida, K. et al. 2006, IBVS No. 5709

Jurcsik, J., Sódor, Á., Hurta, Zs., Váradi, M., Szeidl, B., Smith, H. A., Henden, A. et al. 2008, *MNRAS*, in press, arXiv:0807.0534

Kinman, T. D. & Carretta, E. 1992, PASP, 104, 111

Layden, A. 1994, AJ, **108**, 1016

Schmidt, E.G. & Reiswig, D.E. 1993, AJ, 106, 2429

Schmidt, E.G. & Seth, A. 1996, AJ, 112, 2769

Sódor, A., Jurcsik, J., Nagy, I., Váradi, M. et al. 2007, IBVS No. 5793

Sturch, C. 1966, ApJ, 143, 774

Number 5845

Konkoly Observatory Budapest 29 July 2008 *HU ISSN 0374 - 0676*

V965 CYGNI, AN A AND F TYPE VERY HIGH FILL-OUT BINARY WITH STRONG MAGNETIC ACTIVITY?

SAMEC, RONALD G. $^{1,4};$ BRANNING, JEREMY $^1;$ JONES, STEPHANIE M. $^1;$ FAULKNER, DANNY R. $^{2,4};$ HAWKINS, NATHAN C. 3,4

 1 Astronomy program, Department of Physics, Bob Jones University, Greenville, SC 29614

 2 University of South Carolina, Lancaster

³ University of Oklahoma

 4 Visiting Astronomer, Lowell Observatory, Flagstaff, AZ

V965 Cygni $[\alpha(2000)=19^{h}44^{m}09^{s}3, \delta(2000)=+31^{\circ}42'37'']$ was observed as a part of our continuing study of neglected interacting eclipsing binaries. It was discovered by Wachmann (1964) and identified as a W UMa star with a period of 0.64 days or possibly as an RR Lyrae type c with ~ 1 magnitude amplitude. He reported 7 times of minimum light. We recalculated his early ephemeris using our computer program using his original minima:

HJD Tmin I =
$$2435047.295 (\pm 0.017) + 0.640575 (\pm 0.000009) d \times E.$$
 (1)

In addition, four other times of minimum light have been published by Zejda, (2004), Hubscher, Paschke, Walter (2007) and by Hubscher, Paschke and Walter (2006). There have been no further references.

Our U, B, V, R, I light curves were taken with the Lowell 31 inch reflector in Flagstaff with the LN cooled CCD camera with a metachrome coated TEK 512 × 512 chip and standard BVR_cI_c filters on July 19-25, 2004. Our individual observations include 83 in U, 94 in B, 112 in V, 77 in R and 92 in I. A finding chart of V965 Cyg (V), the comparison star (C) (GSC 2656 3363) [α (2000) = 19^h44^m03^s64, δ (2000) = 31°41′13″.25], and the check star, (K) (GSC 2656 2055) [α (2000) = 19^h44^m16^s91, δ (2000) =31°41′31″.64] are given in Figure 1. Our observations, Variable (V) minus Comparison (C) delta magnitudes are given in Table 1.

Standard magnitudes were determined from two nights of observations, July 20 and 24. V965 Cyg is found to have an apparent V magnitude range of ~ 14.0 - 14.5. Using a standard reddening line and a plot of U - B vs. B - V with a calibrated U - B vs. B - V main sequence plot (Cox, 2000) we determined a dereddened $(B - V)_0 \sim 0.07 \pm 0.02$. This is that of an A3-type main sequence star. From this we estimate the primary component to have a temperature of about 8725 K (Cox, 2000). The check and comp star are both of 11th magnitude and are of K4-K5V type. The standard magnitudes and color indices with uncertainties are given in Table 2.

We determined two times of minimum light from our present observations,

HJD I = 2453211.9135 ± 0.0005 and HJD II = 2453207.7440 ± 0.0036 .

Figure 1. Finding Chart, V965 Cyg Variable (V), Comparison (C) and Check (K), V' is V963 Cyg.

Figure 2. Quadratic fit overlying linear residuals from Equation 4.
The following ephemeris was calculated from all the available times of minimum light

HJD Tmin I =
$$2453211.9129 (\pm 0.0009) + 0.64056889 (\pm 0.00000010) d \times E$$
 (2)

A quadratic behavior is suggested by our timings. Our calculation gives:

Since we only have twelve times of minimum light (one outlier removed), and there are only six precision points (weighted 10 times that of the earlier points), we believe the quadratic ephemeris is still tentative. However, the early points do supply a useful contribution to this determination. In fact the latest points, covering only a brief period suggest only a linear fit. Continued monitoring of this system will result in a true picture of its period behavior. All times of minimum light are shown in Table 3 along with the linear and the quadratic residuals. Figure 2 shows the quadratic residuals.

A BVRI synthetic light curve solution was undertaken. We first used Binary Maker 3.0 (Bradstreet, 2002) to explore the character of our light curves and determine initial fits to each of our BVRI light curves. Using the average starting values from these fits, we proceeded to compute a simultaneous five color light curve solution with the 2004 version of the Wilson Code (Wilson and Devinney, 1971; Wilson, 1990, 1994; Van Hamme and Wilson, 1998), which includes Kurucz atmospheres, rather than black body, and a detailed reflection treatment along with 2-D limb darkening coefficients. We explored a range of mass ratios to find the best fit.

Figure 3. The q vs. sum of square residual plot of Mass Ratio Search for V965 Cyg.

Our first solution gave a contact binary with various characteristics which we will give below. The mass ratio was 0.55. Since the eclipses were partial (inclination 73 degrees), we conducted a q-search in parameter space to try to find the a better mass ratio. Our q-search is given in Figure 3. This curve is fairly shallow so the mass ratio is still not well determined. The lowest residual mass ratio was near 0.65. Taking this solution as a starting point, we determined a new solution allowing q to vary. The solution was essentially the same as that resulting from the q-search.

Our best solution and photometry reveals V965 Cyg as a hot, high fill-out contact binary (79%) (all our solutions gave high fill-outs) with a large polar spot region on the secondary (less massive) component. The spot would indicate V965 Cyg has strong magnetic activity. The high fill-out as well as its high rotation velocity would increase the convective activity. Also, with its high fill-out we would suspect that V965 Cyg will soon become unstable and coalesce into a FK Comae-type star. A decreasing period would help verify this scenario. Radial velocity curves are needed to give a solid determination of the mass ratio. The complete Wilson code solution is given in Table 4. The solution overlaying the UBVRI light curves are given in Figure 4, 5 and 6. Figure 7 shows the surface potential.

Figure 4. UBVRI light curves and U - B color curve overlaid on the Synthetic Light Curve Model.

Figure 5. UBVRI light curves and B - V color curves overlaid on the Synthetic Light Curve Model.

Figure 6. UBVRI light curves and R - I color curves overlaid on the Synthetic Light Curve Model.

Figure 7. Stellar surface of V965 Cyg.

Parameter	Best Fit Simultaneous solution
$\lambda_U, \lambda_B, \lambda_V, \lambda_R, \lambda_I \text{ (nm)}$	360, 440, 550, 640, 790
$x_{bol1,2}, y_{bol1,2}$	0.654,0.654,0.119,0.119
$x_{1I,2I}, y_{1I,2I}$	0.446,0.446,0.209,0.209
$x_{1R,2V}, y_{1V,2V}$	0.559, 0.559, 0.251, 0.251
$x_{1V,2B}, y_{1B,2B}$	0.660, 0.660, 0.281, 0.281
$x_{1B,2U}, y_{1U,2U}$	0.768, 0.768, 0.311, 0.311
g_1,g_2	$1.00, \ 1.00$
A_1, A_2	$1.0, \ 1.0$
$\operatorname{inclination}(^{\circ})$	71.5 ± 1.5
T_1, T_2 (K)	$8725 \pm 300^*, 7800 \pm 290^{**}$
Ω_1, Ω_2	$2.867 {\pm} 0.022$
$q(m_2/m_1)$	$0.65 {\pm} 0.05$
fill-out	76%
JD Zero	$2453211.9149 {\pm} 0.0007$
Period	$0.64100{\pm}0.00015$
$L_1/(L_1 + L_2)_I$	$0.64{\pm}0.05$
$L_1/(L_1+L_2)_R$	$0.65 {\pm} 0.06$
$L_1/(L_1+L_2)_V$	$0.67 {\pm} 0.06$
$L_1/(L_1 + L_2)_B$	$0.69{\pm}0.07$
$L_1/(L_1 + L_2)_U$	$0.69{\pm}0.07$
$r_1, r_2 $ (pole)	$0.440 \pm 0.012, 0.370 \pm 0.015$
$r_1, r_2 $ (side)	$0.478 {\pm} 0.013, 0.398 {\pm} 0.017$
$r_1, r_2 \text{ (back)}$	$0.539 {\pm} 0.014, 0.484 {\pm} 0.026$

 Table 4: Synthetic curve Parameters for V965 Cyg

* photometric + reddening estimate uncertainty.

 $\ast\ast$ error calculated from Wilson code. As a photometric uncertainty, this should be about 200K.

STAR	Colatitude (°)	Longitude (°)	Spot Radius (°)	Temp. Factor
2	$7.5 {\pm} 1.5$	$45.3 {\pm} 14.5$	$53{\pm}22$	$0.82{\pm}0.31$

References:

Cox, A.N., 2000, Allen's Astrophysical Quantities, AIP Press (Springer), New York Bradstreet, D. H., 2002, BAAS, 34, 1224
Hubscher, J., Paschke, A. and Walter, F., 2006, IBVS, 5731
Hubscher, Paschke, Walter, F., 2007, IBVS, 5761
Van Hamme, W. V., & Wilson, R.E, 1998, BAAS, 30, 1402
Wachmann, A. A., 1964, Astron. Abh. Hamburg Sternw., 6, 179
Wilson, R. E. & Devinney, E. J., 1971, ApJ, 166, 605
Wilson, R. E., 1994, PASP, 106, 921
Zejda, B.M., 2004, IBVS, 5583

Number 5846

Konkoly Observatory Budapest 30 July 2008 *HU ISSN 0374 - 0676*

MULTICOLOUR CCD PHOTOMETRY OF FOUR RRab STARS

JURCSIK, J.¹; SÓDOR, Á.¹; HURTA, ZS.^{2,3}; KŐVÁRI, ZS.¹; POSZTOBÁNYI, K.⁴; VIDA, K.^{2,3}; HAJDU, G.²; NAGY, I.²; KOPONYÁS, B.²

 1 Konkoly Observatory of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest, Hungary; e-mail: name@konkoly.hu

² Eötvös Loránd University, Department of Astronomy, P.O. Box 32, H-1518 Budapest, Hungary

³ Visiting Astronomer, Konkoly Observatory of the Hungarian Academy of Sciences

 4 AEKI, KFKI Atomic Energy Research Institute, Thermohydraulic Department, H–1525 Budapest 114, PO Box 49, Hungary

The fourth set of CCD light curves of monoperiodic fundamental mode RR Lyrae stars based on the observations of the 60 cm automatic telescope of Konkoly Observatory, Svábhegy, Budapest is published. The equipment and data reduction procedure were the same as in Jurcsik et al. (2008).

Observations of RZ Cam, SW CVn, GI Gem and SU Leo are presented, which are the first complete, accurate, multicolour light curves of these variables. Photometric data of the stars were published previously by Bookmeyer et al. (1977), Schmidt, Chab & Reiswig (1995) and Sturch (1966). These data were, however, either too noisy or scanty to define accurate light curves. Based on the time coverage of the data we conclude that the light curves of the stars are stable, there is no light curve modulation apparent with amplitude larger than 0.02 - 0.03 mag in the maximum brightness of any of the stars.

Star		Compari	son		Observation period		No. of
	GSC 2.3.2 / BD	RA(2000)	DEC(2000)	V * [mag]	JD 2400000 +	nights	$B/V/I_C$ data
RZ Cam	N7T2000280	$06 \ 34 \ 25.02$	+67 03 14.2	12.70	54510 - 54585	17	457 / 460 / 445
SW CVn	${ m BD}+37^{\circ}2310$	$12 \ 41 \ 23.02$	+37 01 00.3	9.99	54544 - 54602	10	400 / 387 / 377
GI Gem	N8N9000652	$07 \ 04 \ 59.14$	$+13 \ 27 \ 03.3$	12.81	54431 - 54523	22	$646 \ / \ 655 \ / \ 643$
SU Leo	N6WV000233	$09\ 53\ 37.66$	$+08 \ 01 \ 20.0$	12.83	54453 - 54576	12	$0 \ / \ 321 \ / \ 317$

Table 1. Log of observations

* V magnitudes of the comparison stars are from GSC 2.3.2

The photometric data are available electronically from the IBVS website (5846-t5.txt – 5846-t19.txt). The tables list the relative $BVI_{\rm C}$ magnitude and relative $B-V, V-I_{\rm C}$ colour time series with respect to the comparison stars. The brightnesses of the comparison stars remained constant during the observations. The r.m.s. scatter of their relative magnitudes measured to several check stars are about 0.006 and 0.012 mag. For comparison, the r.m.s. scatter of the Fourier fits to the B, V, I_C light curves of RZ Cam, SW CVn, GI Gem, and SU Leo are 0.014/0.009/0.010, 0.013/0.011/0.013, 0.013/0.010/0.010, and -/0.010/0.009 mag, respectively.

The V light curves and the colour curves of the three stars are plotted in Figs. 1-4.

Figure 1. Differential V, B - V and $V - I_{\rm C}$ light and colour curves of RZ Cam.

Figure 2. Differential V, B - V and $V - I_{\rm C}$ light and colour curves of SW CVn.

Figure 3. Differential V, B - V and $V - I_{\rm C}$ light and colour curves of GI Gem.

Table 2. Normal maximum timings of the V light curves.

Star	$T_{\rm max}$ - 2400000	Star	$T_{\rm max}$ - 2400000
	[HJD]		[HJD]
RZ Cam	54546.4615	SW CVn	54573.4340
$\operatorname{GI}\operatorname{Gem}$	54479.5847	SU Leo	54497.5215

Table 3. Fourier parameters of the V light curves.

Star	P	A_1	R_{21}	R_{31}	R_{41}	R_{51}	$\phi_{21} *$	ϕ_{31} *	ϕ_{41} *	ϕ_{51} *
	[d]	[mag]					[rad]	[rad]	[rad]	[rad]
RZ Cam	0.4804514(8)	0.444	0.453	0.351	0.229	0.167	2.251	4.751	1.118	3.736
SW CVn	0.441671(1)	0.461	0.480	0.342	0.223	0.152	2.264	4.807	1.135	3.744
${ m GI}~{ m Gem}$	0.4332664(6)	0.402	0.550	0.366	0.250	0.164	2.377	5.143	1.545	4.345
SU Leo	0.4722633(5)	0.454	0.458	0.347	0.221	0.163	2.239	4.724	1.104	3.702
	_			-						

* Phase differences are given according to sine term decomposition.

Seasonal normal maximum timings and Fourier parameters of the V light curves of RZ Cam, SW CVn, GI Gem, and SU Leo are listed in Table 2, and Table 3, respectively. Table 4 compares the photometric metallicities calculated from the V light curves of the variables according to Eq. 3 of Jurcsik & Kovács (1996) to the results of spectroscopic metallicity measurements.

We thank Béla Szeidl for his many helpful comments on this work. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. The financial support of OTKA grants T-048961, and T-068626 is acknowledged. ZsK is a grantee of the Bolyai János fellowship of the HAS.

Star	$[{ m Fe}/{ m H}]_{ m phot}$	$[{\rm Fe}/{\rm H}]_{ m spect}$ ^a	ref.
RZ Cam	-1.24	-0.77	Layden (1994)
SW CVn	-0.95	-1.26	Layden (1994)
		-1.65	Suntzeff et al. (1994)
$GI \ Gem$	-0.46	—	_
SU Leo	-1.23	-1.15	Layden (1994)

Table 4. Spectroscopic and photometric [Fe/H] values.

a: Spectroscopic metallicities are transformed to the [Fe/H] scale used for the photometric metallicities according to Eq. 3 and Eq. 2 of Jurcsik (1995) and Jurcsik & Kovács (1996).

Figure 4. Differential V and $V - I_{\rm C}$ light and colour curves of SU Leo.

References:

- Bookmeyer, B.B., Fitch, W.S., Lee, T.A., Wisniewski, W.Z. and Johnson, H.L., 1977, *Rev. Mex. Astron. Astrofis.*, **2**, 235
- Jurcsik, J., 1995, Acta Astronomica, 45, 653
- Jurcsik, J., & Kovács, G., 1996, A&A, **312**, 111
- Jurcsik, J., Sódor, Á., Hurta, Zs., Kővári, Zs., Vida, K. et al., 2008, IBVS, 5844
- Jurcsik, J., Sódor, Á., Hurta, Zs., Váradi, M., Szeidl, B., Smith, H. A., Henden, A. et al., 2008, *MNRAS*, in press, arXiv:0807.0534
- Layden, A., 1994, AJ, 108, 1016
- Schmidt, E.G., Chab, J. R., & Reiswig, D.E., 1995, AJ, 109, 1239
- Suntzeff, N.B., Kraft R.P., & Kinman T.D., 1994, ApJ., Suppl. Ser., 93, 271
- Sturch, C., 1966, ApJ, 143, 774

Number 5847

Konkoly Observatory Budapest 13 August 2008 *HU ISSN 0374 - 0676*

ELEMENTS FOR 8 ECLIPSING BINARIES

HÄUSSLER, K.¹; BERTHOLD, T.^{1,2}; KROLL, P.²

¹ Bruno-H.-Bürgel-Sternwarte, Töpelstr. 46, D-04746 Hartha, Germany

² Sternwarte Sonneberg, Sternwartestr. 32, D-96515 Sonneberg, Germany

email: sternwart ehart ha@lycos.de, tb@4pisysteme.de, pk@4pisysteme.de

These stars were discovered and reported to be variable by Boyce & Huruhata (1942) and Hoffmeister (1930, 1949, 1967). Photographic plates of fields centered around α Oph and 67 Oph resp., taken with the Sonneberg Observatory 40cm Astrographs during three intervals spread over the years from 1938–1994, were used to check the behaviour of these objects (see Table 1). The given elements were obtained by means of least-squares solutions. Photographic amplitudes were derived with respect to magnitudes of the comparison stars given in Table 2. An extensive list holding the times of minima derived can be retrieved as 5847-t3.txt, using the link in the HTML version of this paper. Individual data are available upon request.

Remarks:

V415 Oph

Published times of minimum light by Hoffmeister (1930, the faintest observation only), Meinunger (1966) and Paschke (see Diethelm, 2004) were included in our analysis.

V760 Oph

First elements (now contained in the GCVS) derived from four minima observed by Mandel and published by Tsessevich (1960) have been found to be wrong. The four times of minimum light published there were included in this analysis.

V947 Oph

First elements (now contained in the GCVS) published by Götz et al. (1957) have been found to be erroneous. The ASAS database contains only 97 measurements of this star. Three very faint ones were used as times of minimum light and included in this analysis.

V968 Oph

Both type and period previously published by of Götz et al. (1957) and cited in the GCVS are erroneous. The same applies to the values given in the paper of Kraus (2007).

The period varies. Elements valid for J.D. 2429100-2447500 and J.D. 2447500-2449500 (at least, end of observations) resp.

NSV 9840

Further investigation is needed to confirm the existence as well as the duration (d=0.04:) of a possible phase of constant brightness in the middle of the minimum.

Figure 1. Light curve of V415 Oph

Figure 3. Light curve of V947 Oph

Figure 2. Light curve of V760 Oph

Figure 4. Composite light curve of V968 Oph

Figure 5. Light curve of NSV 8869

Figure 7. Light curve of NSV 9740

Figure 6. Light curve of NSV 8970

Figure 8. Light curve of NSV 9840

Star	Type	Epoch	Period	Max.	Min.I	Min. II	D	No. of
		2400000 +	(day)					Plates
V415 Oph	EA	52825.470	2.5371464	$14^{m}_{.}5$	$15^{m}_{}5$		$0^{p}.16$	221
_		± 16	± 28					
m V760~Oph	$\mathbf{E}\mathbf{A}$	49193.468	1.5615272	$13^{\mathrm{m}}_{\cdot}2$	$16 \cdot 4$		$0^{\mathrm{p}}_{\cdot}13$	292
-		± 10	± 21					
V947 Oph	\mathbf{E}	53571.689	0.7977454	$15^{\mathrm{m}}_{\cdot}25$	$15.^{\mathrm{m}}60$	$15^{\mathrm{m}}45$		263
		± 4	± 2					
V968 Oph (1)	\mathbf{E}	46609.479	0.7233397	14····································	$15.^{\mathrm{m}}2$	$15.^{\mathrm{m}}2$		125
- 、 /		± 10	± 7					
V968 Oph (2)	\mathbf{E}	49215.440	0.7232656					32
- 、 /		± 22	± 199					
NSV 8869	\mathbf{EA}	49133.418	1.4340859	$13^{\mathrm{m}}_{\cdot}9$	$15.^{\mathrm{m}}0$		$0^{p}.17$	283
		± 8	± 19					
NSV 8970	\mathbf{EB}	49213.347	2.504273	14 ^m 9	$15^{\mathrm{m}}_{\cdot}7$	$15^{\mathrm{m}}_{\cdot}2$		268
		± 25	± 11					
NSV 9740	$\mathbf{E}\mathbf{A}$	47392.363	2.0421460	14 ^m 9	$15.^{\mathrm{m}}7$	$15.^{m}0:$	$0^{p}_{.}15$	202
		± 26	± 87					
NSV 9840	$\mathbf{E}\mathbf{A}$	49124.518	5.254049	$14.^{\mathrm{m}}7$	$16.^{\mathrm{m}}2$		$0^{p}.16$	196
		± 47	± 48					

Table 1. Summary of this paper

This research made use of the SIMBAD data base, operated by the CDS at Strasbourg, France.

References:

Boyce, E.H., Huruhata, M., 1942, Harvard Annals, 109, 19
Diethelm, R., 2004, IBVS, 5543
Götz, W. et al., 1957, Veröff. Sternw. Sonneberg, 4, 123, (H2)
Hoffmeister, C., 1930, Sonneberg Mitt., 17, 1
Hoffmeister, C., 1949, Astron. Abhandl. Erg. Astron. Nachr., 12, 1
Hoffmeister, C., 1967, Mitt. Veränd. Sterne, 4, 39, (H3)
Kraus, A.L. et al., 2007, AJ, 134, 1488
Meinunger, L., 1966, Mitt. Veränd. Sterne, 3, 137, (H5)
The All Sky Automated Survey, http://archive.princeton.edu/~asas
Tsessevich, V.P., 1960, Astron. Circ., 212, 16

	V415 Oph		V760 Oph	
	176 1020		10000	
	170.1929 UCNO 0000 11944760		HV 10937	
N	USINO 0900-11244760	*	USNO 0975-09180391	
Comp. No.	GSC		USNO	
1	0900 - 11246767	$14.^{m}2$	0975 - 09174322	$13^{\text{m}}_{\cdot}2$
2	$0900 ext{-} 11255289$	14.9	0975 - 09177551	14 ^m 3
3	0900 - 11252628	$15.^{m}2$	0975 - 09175192	14.9
4	0900 - 11245022	$15.^{m}8$	0975 - 09177416	$17^{\mathrm{m}}_{\cdot}3$
	V947 Oph		V968 Oph	
	${f S}$ 4199		${f S}$ 4226	
	USNO 0958-0324966		USNO 0900-12423939	
Comp. No.	USNO	m^*	USNO	m^*
1	0958-0324686	$15.^{m}35$	0900-12425730	$14.^{m}4$
2	0958 - 0324901	$15.^{m}76$	0900 - 12436022	$14^{\rm m}_{\cdot}5$
3			0900 - 12436022	$15 \stackrel{\mathrm{m}}{\cdot} 0$
4			0900 - 12429616	$15.^{\mathrm{m}}6$
	NSV 8869		NSV 8970	
	HV 10948		HV 10956	
	USNO 0975-09260589		USNO 0975-09289484	
Comp. No.	USNO 0975-09260589 USNO	*	USNO 0975-09289484 USNO	
Comp. No.	USNO 0975-09260589 USNO 0975-09256163	$\frac{m^{*}}{14.2}$	USNO 0975-09289484 USNO 0975-09285269	m* 15. ^m 0
Comp. No. 1 2	USNO 0975-09260589 USNO 0975-09256163 0975-09258315	$\frac{m^{*}}{14.2}$ 14.23	USNO 0975-09289484 USNO 0975-09285269 0975-09286902	m^* 15.°°0 15.°°1
Comp. No. 1 2 3	USNO 0975-09260589 USNO 0975-09256163 0975-09258315 0975-09255998	$\frac{m^{*}}{14 \stackrel{\rm m}{\cdot} 2} \\ 14 \stackrel{\rm m}{\cdot} 3 \\ 15 \stackrel{\rm m}{\cdot} 2$	USNO 0975-09289484 USNO 0975-09285269 0975-09286902 0975-09292729	m^* 15. ^m 0 15. ^m 1 15. ^m 5
Comp. No. 1 2 3 4	USNO 0975-09260589 USNO 0975-09256163 0975-09258315 0975-09255998	$\frac{m^{*}}{14\stackrel{\rm m}{\cdot}2}\\14\stackrel{\rm m}{\cdot}3\\15\stackrel{\rm m}{\cdot}2$	USNO 0975-09289484 USNO 0975-09285269 0975-09286902 0975-09292729 0975-09290674	m^* 15 ^m 0 15 ^m 1 15 ^m 5 15 ^m 9
Comp. No. 1 2 3 4	USNO 0975-09260589 USNO 0975-09256163 0975-09258315 0975-09255998	$\frac{m^{*}}{14^{m}_{\cdot}2} \\ 14^{m}_{\cdot}3 \\ 15^{m}_{\cdot}2$	USNO 0975-09289484 USNO 0975-09285269 0975-09286902 0975-09292729 0975-09290674	m^* 15 ^m 0 15 ^m 1 15 ^m 5 15 ^m 9
Comp. No. 1 2 3 4	USNO 0975-09260589 USNO 0975-09256163 0975-09258315 0975-09255998 NSV 9740	$\frac{m^{*}}{14^{m}2}$ 14 ^m 3 15 ^m 2	USNO 0975-09289484 USNO 0975-09285269 0975-09286902 0975-09292729 0975-09290674 NSV 9840	m^* 15 ^m 0 15 ^m 1 15 ^m 5 15 ^m 9
Comp. No. 1 2 3 4	USNO 0975-09260589 USNO 0975-09256163 0975-09258315 0975-09255998 NSV 9740 S 9838	m* 14 ^m 2 14 ^m 3 15 ^m 2	USNO 0975-09289484 USNO 0975-09285269 0975-09286902 0975-09292729 0975-09290674 NSV 9840 S 9831	m^* 15 ^m 0 15 ^m 1 15 ^m 5 15 ^m 9
Comp. No. 1 2 3 4	USNO 0975-09260589 USNO 0975-09256163 0975-09258315 0975-09255998 NSV 9740 S 9838 USNO 0900-10650673	m* 14 ^m 2 14 ^m 3 15 ^m 2	USNO 0975-09289484 USNO 0975-09285269 0975-09286902 0975-09292729 0975-09290674 NSV 9840 S 9831 USNO 0975-09921950	m^* 15 ^m 0 15 ^m 1 15 ^m 5 15 ^m 9
Comp. No. 1 2 3 4 Comp. No.	USNO 0975-09260589 USNO 0975-09256163 0975-09258315 0975-09255998 NSV 9740 S 9838 USNO 0900-10650673 USNO	m* 14 ^m 2 14 ^m 3 15 ^m 2	USNO 0975-09289484 USNO 0975-09285269 0975-09286902 0975-09292729 0975-09290674 NSV 9840 S 9831 USNO 0975-09921950	m^* 15 ^m 0 15 ^m 1 15 ^m 5 15 ^m 9
Comp. No. 1 2 3 4 Comp. No. 1	USNO 0975-09260589 USNO 0975-09256163 0975-09258315 0975-09255998 NSV 9740 S 9838 USNO 0900-10650673 USNO 0900-10654081	m* 14 ^m 2 14 ^m 3 15 ^m 2	USNO 0975-09289484 USNO 0975-09285269 0975-09286902 0975-09292729 0975-09290674 NSV 9840 S 9831 USNO 0975-09921950 0975-09915079	$\frac{m^{*}}{15\stackrel{\rm m}{\cdot}0}$ $\frac{15\stackrel{\rm m}{\cdot}1}{15\stackrel{\rm m}{\cdot}5}$ $\frac{15\stackrel{\rm m}{\cdot}9}{15\stackrel{\rm m}{\cdot}9}$ $14\stackrel{\rm m}{\cdot}5$
Comp. No. 1 2 3 4 Comp. No. 1 2	USNO 0975-09260589 USNO 0975-09256163 0975-09258315 0975-09255998 NSV 9740 S 9838 USNO 0900-10650673 USNO 0900-10654081 0900-10655451	$\begin{array}{c} m^{*} \\ 14^{m}2 \\ 14^{m}3 \\ 15^{m}2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	USNO 0975-09289484 USNO 0975-09285269 0975-09286902 0975-09292729 0975-09290674 NSV 9840 S 9831 USNO 0975-09921950 0975-09915079 0975-09916596	$\frac{m^{*}}{15\stackrel{\text{m}}{\cdot}0}$ $\frac{15\stackrel{\text{m}}{\cdot}1}{15\stackrel{\text{m}}{\cdot}5}$ $\frac{15\stackrel{\text{m}}{\cdot}9}{14\stackrel{\text{m}}{\cdot}5}$
Comp. No. 1 2 3 4 Comp. No. 1 2 3	USNO 0975-09260589 USNO 0975-09256163 0975-09258315 0975-09255998 NSV 9740 S 9838 USNO 0900-10650673 USNO 0900-10654081 0900-10655451 0900-10655993	m* 14 ^m 2 14 ^m 3 15 ^m 2	USNO 0975-09289484 USNO 0975-09285269 0975-09292729 0975-09290674 NSV 9840 S 9831 USNO 0975-09921950 0975-09915079 0975-09916596 0975-09924115	m^* $15^m 0$ $15^m 1$ $15^m 5$ $15^m 9$ $14^m 5$ $14^m 6$ $15^m 3$

Table 2. Comparison stars and cross references

* Magnitudes refer to the B values of the USNO-A2.0 catalogue except for V947 Oph. USNO-B1.0 was used for this star due to the lack of appropriate objects in the other catalogue

Number 5848

Konkoly Observatory Budapest 13 August 2008 *HU ISSN 0374 - 0676*

V772 Cas: AN INTRINSICALLY VARIABLE BpSi STAR IN AN ECLIPSING BINARY?

GANDET, T. L.

Lizard Hollow Observatory, P.O. Box 89175, Tucson, AZ 85752-9175, USA; e-mail: tlglhobs@comcast.net

V772 Cas (HD 10260, HR 481) was discovered to be variable by the *Hipparcos* team (ESA, 1997), who determined the amplitude to be 0.039 magnitudes (*Hp*). Kazarovets *et al.* (1999) classified it as an ACV: star and assigned the *GCVS* designation of V772 Cas. Hube (1970) announced the radial velocity (RV) to be variable, based on eleven spectra. An ongoing study, by the present author, of late–*B* stars whose RVs have been discovered to vary (e.g. by Hube, 1970), but which lack published orbits, has so far yielded orbital periods, P_{orb} , for several of them, including V772 Cas. Combining the RVs of Hube (1970) with the *Hipparcos* photometry of V772 Cas, we find that $P_{orb} = 5.0138$ days and confirm that it is an eclipsing binary, perhaps an Algol-type. We present a preliminary spectroscopic orbit and evidence for a possible modulation of the light curve, which may arise in intrinsic variability of the primary star, perhaps of the α^2 CVn type. The purpose of this note is to alert observers to the possibility of intrinsic variability of this chemically peculiar, slowly rotating, B8IIIpSi eclipsing binary star, in order that observations may be made as early as the coming observing season (2008–2009).

Otero (2007) announced that V772 Cas is an eclipsing binary, with an eccentric orbit and a period of 10.7269 days. At the same time, he cautioned that the star 'might be a small amplitude ACV (V = 6.68 - 6.69) star with a period of 3.5473 d'. We attempted to resolve this uncertainty in the period and to determine the type of variability by requiring that the photometric and RV data meet, as closely as possible, these conditions: the correct period must result in the maximum coherence in the phased velocity and light curves; the least squares solution for the spectroscopic orbital elements converges to a Keplerian one; the final orbit yields the minimum standard error (S.E.) of one RV observation, and that it predicts a naive proxy time of primary minimum. It should be emphasized that *Hipparcos* did not observe any eclipse throughout its entire length, so that there is no directly observed time of minimum for V772 Cas. As a simple proxy for it, we adopted T_{min} to be the JD of the faintest magnitude observed by *Hipparcos*.

Candidate periods were initially chosen from amongst those with the strongest signals in a period search of the *Hipparcos* data using various standard periodogram techniques. The resulting power spectra differed amongst themselves. However, the strongest peaks in the spectral window, between 0.9 and 12 days, are at 5.08, 5.67, 8.23, 9.08, 10.84 days, with a very weak one at 3.55 days, and there are no peaks at aliases of one year. Phase plots of the RV and *Hipparcos* photometry data for periods corresponding to the strongest peaks in the power spectra between 0.9 days and 12 days, focusing on the interval between 3 and 12 days, were ultimately relied upon to eliminate those candidate periods that gave clearly incoherent or extremely noisy light curves. No coherent phased light curves were found for periods between 10.1 and 12.5 days, although somewhat coherent and noisy light curves for periods of 3.461 and 10.026 days must be mentioned, as the former provides some support for the shorter period proposed by Otero (2007) and the latter is twice the period ultimately settled upon as being the correct one. The candidate period of 10.026 days yields a light curve with two clear minima separated by very nearly 0.5P, but it was eliminated because the resulting RV curve is double-waved, inconsistent with duplicity and evidence that this candidate period is twice the true period. While the 3.461-day period light curve is very noisy, it produces a very clean RV curve, which is nonetheless neither Keplerian nor convergent in the orbit solution.

As might be expected from such a small number of observations, the periodogram search of the RVs was not very helpful. However, none of the spectral window peaks in the RV data correspond to any of the candidate periods described above, nor do any of the strongest RV power spectrum peaks yield a coherent and Keplerian RV curve.

Combining the results from the periodogram and phase-plot period searches of the *Hipparcos* and RV data, it was found that light and RV curves that met the requirements described above could only be obtained by periods between about 5.012 and 5.014 days. Applying those criteria, we found that $P_{orb} = 5.0138$ days produces the minimum scatter in the light curve, a spectroscopic orbit solution that both converges to a Keplerian orbit and very closely predicts a simple proxy for T_{min} (see below).

However, the orbit solution converged to $P_{orb} = 5.01253$ days when all orbital elements were allowed to vary as unknowns. Eclipses will occur, assuming $i = 90^{\circ}$, at phases corresponding to $\nu + \omega = 90^{\circ}$ and 270° , where ν is the true anomaly and ω is the longitude of periastron in the orbit. $P_{orb} = 5.01253$ was rejected because T_{min} , as predicted from the orbit solution, is nearly one day different from our proxy T_{min} . Furthermore, $P_{orb} = 5.0138$ is only slightly more than 1σ longer while producing a more coherent light curve. We thus fixed the period in the orbit solution at 5.0138 days, and the resulting orbital elements are listed in Table 1, which also provides their standard errors. Orbital elements from the $P_{orb} = 5.01253$ solution differ from the one adopted here by no more than expected from the standard errors of each solution. We also emphasize that none of the other candidate periods resulted in both coherent light *and* velocity curves, and that the correctness of $P_{orb} = 5.0138$ days can be supported entirely by the photometry, without appeal to the RVs, as discussed below. Moreover, these combined results appear to exclude any period near 3.5 days, or between 10.0-12.0 days, from being the correct one. The RVs and *Hipparcos* data cover 387 and 233 cycles of the orbit, respectively.

Element Value	S.E.
P = 5.0138	\pm (fixed) days
T = JD 24397	$99.53{\pm}0.61~{ m days}$
$e{=}0.17$	± 0.10
$\omega{=}305^{\circ}$	$\pm 45^{\circ}$
$V_0 \!=\! -3.1$	$\pm 2.9~{ m km~sec^{-1}}$
K = 38.4	$\pm 4.7 \ {\rm km \ sec^{-1}}$

Table 1. Spectroscopic orbital elements of V772 Cas.

Figure 1 shows the eleven RVs of Hube (1970), phased on $P_{orb} = 5.0138$ days and referred to the time of periastron in Table 1. The small grey dots indicate the RV curve using those orbital elements. In view of the small number of RV measures of V772 Cas, this orbit must be considered preliminary.

Figure 1. Radial velocity curve of V772 Cas, $P_{orb} = 5.0138$ days, observations by Hube (1970). $\phi = 0.0$ is the time of periastron passage given in Table 1. The theoretical velocity curve is that from the orbital elements in Table 1.

Figure 2. Light curve of V772 Cas light curve (*Hipparcos* observations). The observations are phased on $P_{orb} = 5.0138$ days and $T_{min} = JD 2448099.08$.

Figure 2 shows the full light curve of the *Hipparcos* data, phased on $P_{orb}=5.0138$ days and the proxy $T_{min}=JD$ 2448099.08; the light curves in Figures 3 and 4 also are phased this way. Largely owing to the distortion of the light curve evident in Figure 2, we do not offer an estimate of the uncertainty of T_{min} , but point out that $T_{min}=JD$ 2448099.19 would be appropriate if the eclipse were total and the egress portion of the light curve were as short as the ingress portion. However, P_{orb} and the time of periastron passage given in Table 1 predicts T_{min} to occur only 0.002 day later than the proxy T_{min} given above. Notice that the time of periastron and time of minimum were determined by virtually independent methods, the period being fixed entirely from the photometry while the time of periastron is entirely from the orbit solution.

Figures 3 and 4 show detail from Figure 2 near primary eclipse, at $\phi=0.0$, and at $\phi=0.5$, respectively. The offset by ~0.06 in phase of the shallow 'secondary minimum', seen in Figure 3, is merely consistent with the poorly-determined eccentricity given in Table 1. It may, instead, be accounted for by a short-period modulation of the system's light that appears to be present throughout the entire orbit, and this putative modulation may also be responsible for the marked asymmetry of the light curve during primary eclipse $(0.10 < \phi < 0.25)$, visible in Figure 3, and for the 'third' minimum at $\phi\sim0.35$ seen in Figure 4. If it is accepted that the supposed minimum at $\phi\sim0.56$ is real and not merely an observational artifact, then it seems difficult to dismiss the minima at $\phi\sim0.35$ as occurring entirely by chance. It was not found possible to artificially force light minima to occur at precisely $\phi=0.0$ and 0.5 and to have both a convincingly coherent light curve and a convergent orbit solution. Since $v \sin i$ is only 20 km sec⁻¹ (Abt *et al.* 2002), variations owing to an ellipsoidal-shaped primary star do not seem likely.

This short-period modulation apparently persisted during the 233 orbital cycles covered by the *Hipparcos* observations, and its period must therefore be equal to an integer fraction of P_{orb} to have maintained coherence. A value for it very close to one day may be gleaned from the light curve, and we note, in passing, that $P_{orb}/5 = 1.00276$ days. (A referee, more alert than the present author, pointed out that this is very close to the length of the sidereal day in units of mean solar days. It is worth mentioning that the spectral window of the out-of-eclipse *Hipparcos* data set shows no signatures, above the noise level, between periods of 0.5-1.7 days.) An attempt to determine a more accurate value for this periodicity was made by removing from consideration all observations made during primary eclipse, construed narrowly, and then performing periodogram searches of the remaining data. None of the strongest peaks in the power spectrum of this out-of-eclipse data are very close to an integer fraction of P_{orb} , in the interval 0.5-7.0 days, and none of them produce a convincingly coherent light curve. A period of 1.609 days produces a convincing light curve, and $P_{orb}/3=1.671$. But this result is complicated by the choice of observations that are presumed to fall outside of eclipse. It is hoped that future observations will sort out this situation.

Because the modulation apparently remained coherent, it may be attributed to either intrinsic variability with a constant period, or to duplicity of one of the components. The primary star's spectral type, B8IIIpSi (Cowley 1972), and the distortion of the light curve at primary minimum suggest that intrinsic variability of the primary star is the more likely source of the modulation and that it is of the α^2 CVn type (ACV). That it is the primary star to which the variability should be assigned is indicated by the large Δm between the two components, which is inferred by the failure, so far, to detect the secondary's spectrum and by the shallow, 'secondary', minimum near $\phi \sim 0.56$.

Figure 3. Light curve of V772 Cas light curve (*Hipparcos* observations) showing detail near primary eclipse. Notice the light curve asymmetry during primary eclipse. The observations are phased on $P_{orb}=5.0138$ days and $T_{min}=JD$ 2448099.08.

Figure 4. Light curve of V772 Cas (*Hipparcos* observations) showing detail near $\phi=0.5$. A shallow minimum may occur at $\phi\sim0.56$. Another minimum, of about the same depth, is possible at $\phi\sim0.35$. The observations are phased on $P_{orb}=5.0138$ days and $T_{min}=JD$ 2448099.08.

This note proposes an orbital period of 5.0138 days for V772 Cas and that the light curve may be modulated by intrinsic light variations of the primary star with a period near 1 day. High-resolution spectra and time-series photometry of V772 Cas are highly desirable to determine the character of the putative modulation, especially of its period, and to clarify the nature of the eclipsing-spectroscopic binary system. Observations at sites separated by some distance in terrestrial longitude would be valuable.

Dr. P. Etzel, of the Mt. Laguna Observatory, kindly furnished the program with which the spectroscopic orbital elements were calculated. The assistance of the anonymous referee in the preparation of this paper is very much appreciated. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and of the Smithsonian Astrophysical Observatory/NASA Astrophysics Data System (ADS) hosted at CDS.

References:

Abt, H.A., Levato, H., Grosso, M., 2002, ApJ, 573, 359

Cowley, A., 1972, AJ, 77, 750

European Space Agency, 1997, The Hipparcos and Tycho Catalogues, ESA SP-1200

Hube, D.P., 1970, MemRAS, 72, 233

Kazarovets, A.V., Samus, N.N., Durlevich, O.V., Frolov, M.S., Antipin, S.V., Kireeva, N.N., Pastukhova, E.N., 1999, *IBVS*, No. 4659

Otero, S.A., 2007, Open European Journal on Variable Stars, 72, 1

Number 5849

Konkoly Observatory Budapest 22 August 2008 *HU ISSN 0374 - 0676*

THE COOL DWARF INTERACTING ECLIPSING BINARY, HH95-79

SAMEC, RONALD G.^{1,2}; MCKENZIE, ROB^{1,2}; HAWKINS, NATHAN C.^{1,2}; VAN HAMME, WALTER⁴; FAULKNER, DANNY R.^{2,3}

 1 Astronomy program, Department of Physics Bob Jones University, Greenville, SC 29614 USA

 2 Visiting Astronomer, SARA Observatory, Kitt Peak, AZ

³ U of South Carolina, Lancaster, SC

⁴ Florida International University, Miami, Fl

HH95-79 ([HH95] FS Aur-79) [Henden and Honeycutt, 1995; GSC 1874-399; $\alpha(2000) = 05^{h}48^{m}03^{s}82$, $\delta(2000) = 28^{\circ}30'48''.13$] was observed as a part of our study of near-contact, solar-type binaries with possible stream impacts. Also, its rare combination of an EB-type light curve and very short period indicated that the system was made up of dwarf components, possibly harboring a brown dwarf.

Figure 1. Finding chart, HH95-79, comparison star (C) and check star (K).

The system was discovered by Robertson et al. (2004) who gave the following ephemeris:

HJD Tmin I =
$$2452963.744(\pm 0.004) + 0.2508(\pm 0.0001)d \times E.$$
 (1)

After the initial presentation of the present work in May 2005 (McKenzie et al., 2005), Austin et al. (2007) took observations in December 2005 in UBV and obtained single line radial velocity curves of the primary and a spectroscopic identification of the primary of spectral type dM3e ($T \sim 4100$ K). A synthetic light curve solution was given indicating a mass ratio of 0.52. They found that emission features were present confirming chromospheric activity and possibly circumstellar material. However, they did no modeling of a third light as we do here. They indicated a near contact configuration. Since their absolute masses were based on single line curves, we can not regard these as definitive. The Center for Backyard Astrophysics observed 66 times of minimum light for the paper, some of which are duplicate epochs. They give an improved ephemeris:

HJD Tmin I =
$$2452963.74445 + 0.250816(\pm 0.000001)d \times E.$$
 (2)

No changes in the period over the rather brief period (~ 2 years) are indicated, which is expected. This does not indicate, however, that the period is not changing.

Our U, B, V, R, I light curves were taken at the taken Southeastern Association for Research in Astronomy (SARA) observatory on Kitt Peak using a 0.9-m reflector with the AP7 CCD camera and standard $UBVR_cI_c$ filters. The CCD observations were taken on 7, 8 December 2004 and 21 March 2005 in remote mode by RGS and NCH. More than 100 In the B, V, R, I passbands, 97, 90, 94 and 95 images were taken, respectively as well as a 7 in the U pass band (see Figure 1.). The stars [GSC 2336-0621, $\alpha(2000)=05^{h}48^{m}10^{s}29$, $\delta(2000)=28^{\circ}27'34''_{.38}$] and [GSC 1874-0609, $\alpha(2000)=05^{h}47^{m}47^{s}37$, $\delta(2000)=28^{\circ}29'46''_{.60}$] were used as the comparison (C) and check (K) stars, respectively. A finding chart of HH95-79 (V), the comparison star (C), and check star (K) is given in Figure 1. The light curves are given in Figure 2, as normalized flux versus phase. Our standardized observations are given in Table 1 (available through the IBVS website as 5849-t1.txt) as Variable-comp magnitudes.

Figure 2. B,V,R normalized flux light curves for HH95-79 with synthetic light curve solution overlaid.

Six mean epochs of minimum light were determined from eclipse timings in all pass bands, using parabola fits: HJD Tmin I = 2453348.7476 (± 0.0011), 2453349.0008 (± 0.0028) and HJD Tmin II = 2453347.8687 (± 0.0015), 2453348.8715 (± 0.0013), 2453441.6739 (± 0.0010), 2453450.7025 (± 0.0030).

From all available observations (we used only primary eclipses and thus well determined ones from the CBA observations), we calculated the following definitive improved linear ephemeris:

HJD TMin I = $2453348.7473(\pm 0.0001) + 0.25081621(\pm 0.00000008)d \times E$ (3)

The times of minimum light are given in Table 2 (available through the IBVS website as 5849-t2.txt). Further observations are needed to better characterize the period behavior of this system.

From standard star measurements taken on 7, 8 December 2004 we were able to obtain standard magnitudes at all quadratures, and of C and K. The results are given in Table 3 (available through the IBVS website as 5849-t3.txt). The photometrically determined spectral types for the variable ranged from K7 to K9 while the comparison was $K7\pm1$ and check, $G9\pm5$. The apparent magnitude range of the variable was V = 13.75 - 14.47 mags while the comparison was 10.05 ± 0.01 and check, 13.83 ± 0.02 mags in V.

Our light curves were premodeled with Binary Maker 2.0 (Bradstreet, 1992) and fits were obtained in B and V using semi-detached and contact configurations. The hand model parameters gave starting values for a simultaneous BVR synthetic light curve solution using the 2004 version of the Wilson Code (Wilson and Devinney, 1971; Wilson, 1990, 1994; Van Hamme and Wilson, 1998) which includes Kurucz atmospheres, and a detailed reflection treatment along with 2-D limb darkening coefficients and iterative spot modeling. We removed the I-curve since it was discrepant. We suppose this was due to local atmospheric effects, probably variable humidity.

Our BVR simultaneous solution yielded a mass ratio of 0.53 ± 0.01 , equal to that of Austin et al. (2007), within the errors. We list the parameters of that solution as Table 4, and display the light curve solution overlaying our data in Figure 2. The errors accompanying the corrected parameters in Table 4 are from the full set calculation, rather that subsets. Our displayed solution uses two hot spots two fit asymmetries. Our solutions show a hot spot with a temperature factor near 1.25 on the secondary component. Its location is that of a stream impact spot arising from a coming into contact binary. We believe the mass transfer is not vigorous at this time. The other spot is presumably magnetic in nature, arising from white light faculae. These may dominate the surfaces of short period, chromospherically active binaries (Guinan, 1990). Austin et al. (2007) used cool star spots, only, in their solution. Our Roche lobe model is given as Figure 3 and 4. All indications are that the secondary component is not a brown dwarf, but an early M-type main sequence star.

We wish to thank SARA for their allocation of observing time, and the American Astronomical Society for a small research grant which supported our observing runs.

Figure 3. Geometrical representation of HH95-79 at phase 0.24 with stream spot shown on component 2.

Figure 4. Geometrical representation of HH95-79 at phase 0.81 with second spot region shown on component 2.

	Parameter	Simult	aneous solution
	$\lambda_B, \lambda_V, \lambda_R \text{ (nm)}$	440, 55	50,640
	$x_{\mathrm{bol1,2}}, y_{\mathrm{bol1,2}}$	0.540,	0.464, 0.276, 0.290
	$x_{1\mathrm{R},2\mathrm{R}},y_{1\mathrm{R},2\mathrm{R}}$	0.724,	0.778, 0.219, 0.336
	$x_{ m 1V,2V},y_{ m 1V,2V}$	0.778,	0.824, 0.289, 0.362
	$x_{1\mathrm{B},2\mathrm{B}},y_{1\mathrm{B},2\mathrm{B}}$	0.822,	0.857, 0.213, 0.341
	g_1,g_2	0.32, 0	.32
	A_1, A_2	0.5, 0.5	5
	$inclination(^{\circ})$	$86{\pm}1$	
	T_1, T_2 (K)	4100, 3	3257 ± 25
	Ω_1,Ω_2	$2.927\pm$	$0.018, 3.045 \pm 0.038$
	$q(m_2/m_1)$	0.53 ± 0	0.01
	JD Zero	53448.'	$74716{\pm}0.00017$
	Period	0.2508	$1{\pm}0.00009$
	$L_1/(L_1+L_2)_R$	$0.917\pm$	0.004
	$L_1/(L_1+L_2)_V$	$0.932\pm$	0.004
	$L_1/(L_1+L_2)_B$	$0.947\pm$	0.004
	$r_1, r_2 \text{ (pole)}$	$0.410\pm$	$0.002, 0.285 \pm 0.006$
	$r_1, r_2 $ (point)	$0.565 \pm$	$0.005, 0.342 {\pm} 0.017$
	$r_1, r_2 \ (\text{side})$	$0.434\pm$	$0.002, 0.296 \pm 0.007$
	$r_1, r_2 \;(\mathrm{back})$	$0.463 \pm$	$0.002, 0.319 \pm 0.010$
	Spe	ot Paran	neters
AR	Colatitude (°) Longit	tude ($^{\circ}$)	Spot Radius (°)
2	88±9 27	6 ± 7	$14{\pm}2$

Table 4: Synthetic Curve Parameters for HH95-79

References:

Austin, S.J., Robertson, J.W., Tycner, C., Campbell, T., Honeycutt, R.K., 2007, AJ, 133, 1934

 15 ± 6

 $1.25 {\pm} 0.07$

 35 ± 6

- Bradstreet, D. H., 1992, BAAS, 24, 1125
- Guinan, E. F., 1990, ESA SP, **310**, 73, in: Proceedings of the International Symposium on Evolution in Astrophysics
- Henden, A.A., Honeycutt, R.K., 1995, PASP, 107, 324

 91 ± 15

Krajci, T., 2006, IBVS, 5690

ST.

2

- Robertson, J. W., Austin, S.J., Campbell T., Hoskins, J., 2004, IBVS, 5536
- McKenzie, R. T.; Samec, R. G.; Hawkins, N. C.; Faulkner, D. R.; Van Hamme, 2005, BAAS, **37**, 495
- Van Hamme, W. V., Wilson, R.E., 1998, BAAS, 30, 1402
- Wilson, R. E. & Devinney, E. J., 1971, ApJ, 166, 605
- Wilson, R. E., 1990, ApJ, 356, 613

Wilson, R. E., 1994, PASP, 106, 921

Number 5850

Konkoly Observatory Budapest 26 September 2008 *HU ISSN 0374 - 0676*

EARLY SPECTROSCOPY AND PHOTOMETRY OF THE NEW OUTBURST OF V1647 Ori

KUN, M.

Konkoly Observatory, H-1525 Budapest, P.O.Box 67, Hungary, e-mail: kun@konkoly.hu

V1647 Ori is a young eruptive variable star, illuminating a variable reflection nebula (McNeil's Nebula). The previous outburst of the star between 2004 January and 2005 October has been extensively documented in the literature (e.g. Briceño et al. 2004, Ojha et al. 2006, Acosta-Pulido et al. 2007, Fedele et al. 2007). Optical, near-, and mid-infrared observations of the star during the quiescent period following the outburst (Aspin et al. 2008) suggested a spectral type of $M0\pm0.2$, mass $0.8\pm0.2 M_{\odot}$, and age < 0.5 Myr for V1647 Ori. The observed properties of the outburst of V1647 Ori are different in several respects from both the EXor and FUor type outbursts, and suggest that this star probably represents a new type of eruptive young stars, younger and more deeply embedded than EXors, and exhibiting variations on shorter time scales than FUors.

A new outburst of the star was announced on 27th August 2008. Itagaki et al. (2008) detected the apparent brightening of V1647 Ori on 26 August. The flux-calibrated optical spectrum of the star, obtained by Aspin (2008) on Aug 30, showed strong H α emission line with P Cygni profile, the CaII triplet lines in emission, and suggested a Johnson R magnitude of 17.3, corresponding to a brightening of some 6 mag in the R-band with respect to the quiescent phase.

In order to compare the present brightness and emission line strengths of the star with those observed at the beginning of the outburst in 2004 I observed V1647 Ori between 28 August and 1 September 2008, using the CAFOS instrument on the 2.2-m telescope of Calar Alto Observatory (Spain). Spectra covering the wavelength region of 4800–7800 Å were obtained on Aug 29 and 31, using the grism G-100 whose dispersion is 2.12 Å/pix. Grism R-100, having a dispersion of 2.04 Å/pix, was used for observing the spectral region 5800–9000 Å on Aug 28, 30, and Sep 1. The exposure time was 1800 s for each spectrum. The spectrum of a He–Hg–Rb lamp was observed for wavelength calibration. Direct images, each with an exposure time of 60 s, were taken immediately after the spectroscopic observations, utilizing the central 1024×1024 pixel region of the SITe 2048×2048 chip. The image scale was 0.53''/pix. The 9-arcmin field of view included seven secondary standard stars published by Semkov (2004). Two $I_{\rm C}$ -band images were obtained on both August 28 and 29, and two images both in the $I_{\rm C}$ and $R_{\rm C}$ bands were taken on the remaining three nights. Data reduction and analysis were performed in IRAF. Onedimensional spectra were extracted from the spectroscopic images using the 'apextract' package of IRAF. The spectrum of the nebula was also extracted from the images obtained through grism G-100. The resulting spectra were wavelength-calibrated and analysed in

the 'onedspec' package of IRAF. The direct images, obtained through the same filter on each night, were coadded after bias subtraction and flatfield correction, using dome flat field images. The instrumental magnitudes of V1647 Ori and the comparison stars were determined on the coadded images by PSF-photometry using the 'daophot' package in IRAF. The preliminary aperture photometry, used for scaling the PSF magnitudes was obtained using 1.5 arcsec apertures in each image. The instrumental magnitudes were transformed into the standard photometric system as described by Acosta-Pulido et al. (2007).

The upper panel of Fig. 1 shows the spectrum of the star (thick line) and the nebula (thin line) in the green spectral region, normalized to the continuum. The most conspicuous feature of this spectral region, is the strong H α emission with P Cygni type absorption. Both spectra indicate a weak H β and NaI D absorption. The lower panel shows the red spectral region with strong H α and CaII triplet emissions. In addition to the strong atmospheric absorption bands around 6860, 7600, and 8280 Å the OI line at 7773 Å is clearly seen in absorption in each red spectrum. The left panel of Fig. 2 shows an I-band image, centred on V1647 Ori, obtained on 1 September. The right panel shows the H α line observed on three different nights.

The $R_{\rm C}$ and $I_{\rm C}$ magnitudes, as well as the equivalent widths of the H α , CaII, and OI lines are listed in Table 1. Values for both the emission and absorption components of the H α line are shown. The UT, given in Column 2, refers to the start of the spectroscopic exposure. The photometric uncertainties were computed as the quadratic sum of the formal errors of the instrumental magnitudes provided by IRAF and the uncertainties of the standard transformation. The uncertainties of the equivalent widths are around 6%, estimated from repeated measurements.

Date	UT	$R_{ m C}$	I _C	W(H	$\alpha)$	1	$W_{\lambda}(CaI)$	I)	OI
				$\mathop{\mathrm{em.}}_{\circ}$	abs.	(8498)	(8542)	(8662)	0
		(mag)	(mag)	(\mathbf{A})	(\mathbf{A})	(\mathbf{A})	(\mathbf{A})	(\mathbf{A})	(\mathbf{A})
2008 Aug 28	04:17		14.64(0.06)	-31.5	1.6	-7.46	-7.84	-6.24	1.6
2008 Aug 29	03:39	• • •	14.80(0.07)	-41.5	3.4	•••	•••	•••	
2008 Aug 30	$03:\!48$	17.02(0.07)	14.64(0.05)	-41.3	5.0	-8.45	-8.50	-6.79	2.2
2008 Aug 31	03:32	16.81(0.07)	14.66(0.07)	-41.5	6.0	• • •	• • •	• • •	
2008 Sep 01	03:51	17.11(0.05)	14.69(0.04)	-43.6	3.6	-7.97	-8.52	-6.36	2.0

Table 1. Results of the observations

Comparison of the image of McNeil's Nebula, the main apparent features of the spectrum of V1647 Ori, and the data listed in Table 1 with similar data obtained in February– March 2004 suggests that the initial conditions of the present outburst are largely the same as were in 2004. Walter et al. (2004) and Ojha et al. (2006) measured similar H α and CaII equivalent widths in February–March 2004, McGehee et al. (2004), Ojha et al. (2006), and Acosta-Pulido et al. (2007) report similar $R_{\rm C}$ and $I_{\rm C}$ magnitudes for the same period. The optical spectra obtained in February–March 2004 by Fedele et al. (2007) show P Cygni-type profile of the H β line with strong absorption and weak emission component, indicating that the source of the line is a strong stellar wind. Only the absorption component of the H β can be identified in the low S/N part of our spectra. The

Figure 1. Upper panel: The spectrum of V1647 Ori (thick line) and McNeil's Nebula (thin line), on the wavelength interval 4700–7100 Å, obtained on Aug 29. Lower panel: The 6400–8800 Å region of the spectrum of V1647 Ori obtained on Sep 01 2008.

Figure 2. Left: I-band image of the field centered on V1647 Ori, observed on September 1. Right: $H\alpha$ line profiles on three different nights.

OI λ 7773 Å absorption was also detected by Ojha et al. (2006) in the spectra obtained at the early phases of the outburst in 2004. The CaII line ratios $W_{\lambda}(8498)/W_{\lambda}(8542)$ and $W_{\lambda}(8662)/W_{\lambda}(8542)$ are useful tracers of the physical conditions at the origin of the emission (e.g. Hamann & Persson 1992). Our measured ratios, averaged for the three nights, are 0.95 and 0.78, whereas the same ratios obtained by Walter et al. (2004) in March–April 2004 are 1.10 and 0.63, respectively. Both measurements show that the λ 8662 Å line was the weakest component of the triplet. Ojha et al. (2006) reported on nearly equal equivalent widths of the triplet components in later phases of the outburst. The ratios measured in the quiescent phase by Aspin et al. (2008), 0.86 and 0.97, show a similar situation.

The simultaneous spectroscopic and photometric observations allow us to calculate line fluxes. The average observed fluxes of the H α , CaII(λ 8498), CaII(λ 8542), and CaII(λ 8662) emission lines are F(H α)=1.4×10⁻¹⁷ Wm⁻², F_{λ}(8498)=1.2×10⁻¹⁷ Wm⁻², F_{λ}(8542)=1.3× 10⁻¹⁷ Wm⁻², and F_{λ}(8662)=1.0×10⁻¹⁷ Wm⁻², respectively. These numbers indicate a 14fold increment of the H α flux with respect to the flux measured in 2007 February (Aspin et al. 2008). The observed emission line fluxes are affected by the increased accretion rate from the disk onto the star, the strong wind accompanying the enhanced accretion, and the decreasing circumstellar extinction associated with the outburst (Aspin et al. 2008). The contribution of these processes to the fluxes of various emission lines may be strongly different.

Acknowledgements: These results are based on observations obtained at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC). The observations were supported by the OPTICON project. OPTICON has received research funding from the European Community's Sixth Framework Programme under contract number RII3-CT-001566. Financial support from the Hungarian OTKA grant T49082 is acknowledged.

References:

Acosta-Pulido, J. A., Kun, M., Ábrahám, P. et al. 2007, AJ, 133, 2020

- Aspin, C. A. 2008, IAUC, 8969
- Aspin, C. A., Beck, T. L., Reipurth, B. 2008, AJ, 135, 423
- Briceño, C., Vivas, A. K., Hernández, J., et al. 2004, ApJ, 606, L123
- Fedele, D., van den Ancker, M. E., Petr-Gotzens, M. G., Rafanelli, P. 2007, A&A, 472, 207

Hamann, F., & Persson, S. E. 1992, ApJS, 82, 247

Itagaki, K., Nakano, S., Yamaoka, H. 2008, IAUC, 8968

- McGehee, P. M., Smith, J. A., Henden, A. A., et al. 2004, ApJ, 616, 1058
- Ojha, D.K., Ghosh, S. K., Tej, A. et al. 2006, MNRAS, 368, 825
- Semkov, E. H. 2004, *IBVS* **5578**
- Walter, F. M., Stringfellow, G. S., Sherry, W. H., Field-Pollatou, A. 2004, AJ, 128, 1872

Number 5851

Konkoly Observatory Budapest 26 September 2008 *HU ISSN 0374 - 0676*

THE LONGITUDINAL MAGNETIC FIELD OF THE ROAP STAR HD 99563

ELKIN, V.G.¹; FREYHAMMER L.M.¹; KUDRYAVTSEV D.O.²; ROMANYUK, I.I.²

¹ Centre for Astrophysics, University of Central Lancashire, Preston PR1 2HE, United Kingdom

² Special Astrophysical Observatory, Nizhniy Arkhyz, KChR, Russia

The chemically peculiar star HD 99563 is an important member of the class of rapidly oscillating Ap (roAp) stars and its monoperiodic rapid oscillation shows the highest known radial velocity amplitude among these (Elkin et al. 2005). The rapid pulsation was discovered photometrically by Dorokhova & Dorokhov (1998) and was comprehensively studied by Handler et al. (2006) in a multisite photometric campaign. The longitudinal magnetic field in HD 99563 was first detected by Hubrig et al. (2004) and later confirmed by Hubrig et al. (2006).

The roAp stars as a class are in general well-described by the oblique pulsator model, which assumes a dipole magnetic field axis that is aligned with the stellar pulsation axis. It is important to observe the longitudinal magnetic field over the stellar rotation period for HD 99563 to provide a geometrical model of the magnetic field structure.

We obtained observations of the magnetic field with the 6-m telescope BTA (Big Telescope Alt-azimuthal) of the Special Astrophysical Observatory in Russia. The observations and the data reduction were performed similarly to the procedures described by Kudryavtsev et al. (2006). The results of our magnetic field measurements together with those obtained by Hubrig et al. (2004, 2006) are given in Table 1.

Table 1: The longitudinal magnetic field measurements for HD 99563. The columns give: HJD of the middle of the exposure, rotational phase using the ephemeris of Handler et al. (2006), the longitudinal magnetic field B_l , the standard deviation of B_l and the observing place. The first three measurements were taken from Hubrig et al. (2004, 2006) who used ESO VLT and the other six are our observations with 6-m BTA.

Phase	B_l [G]	σ [G]	Telescope
0.0728	-688	145	VLT
0.0617	-235	73	VLT
0.0845	-670	84	VLT
0.5273	+580	100	BTA
0.4660	+680	100	BTA
0.8002	-320	280	BTA
0.1289	-110	120	BTA
0.8010	-750	160	BTA
0.7290	+270	120	BTA
	Phase 0.0728 0.0617 0.0845 0.5273 0.4660 0.8002 0.1289 0.8010 0.7290	$\begin{array}{c cccc} {\rm Phase} & B_l \ [{\rm G}] \\ \hline 0.0728 & -688 \\ 0.0617 & -235 \\ 0.0845 & -670 \\ 0.5273 & +580 \\ 0.4660 & +680 \\ 0.8002 & -320 \\ 0.1289 & -110 \\ 0.8010 & -750 \\ 0.7290 & +270 \end{array}$	$\begin{array}{c cccccc} {\rm Phase} & B_l \ [{\rm G}] & \sigma \ [{\rm G}] \\ \hline 0.0728 & -688 & 145 \\ 0.0617 & -235 & 73 \\ 0.0845 & -670 & 84 \\ 0.5273 & +580 & 100 \\ 0.4660 & +680 & 100 \\ 0.8002 & -320 & 280 \\ 0.1289 & -110 & 120 \\ 0.8010 & -750 & 160 \\ 0.7290 & +270 & 120 \\ \end{array}$

Figure 1. Variation of the longitudinal magnetic field in HD 99563 (filled circles - new observations from the 6-m telescope, triangles - results by Hubrig et al. 2004, 2006). A best-fit sine curve is shown with the full line, while the dotted line is for a sine curve including the first harmonic. Both curves fit the observations well, but several measurements with similar phases do show a scatter. The differences

in the two points at the phase near 0.8 may be explained by relatively large errors. Although the differences in the measurements from VLT, obtained at nearly equal rotational phases, are still not clear.

We have a total of nine points spread over the rotation period. Fig. 1 shows the variation of the longitudinal field with the stellar rotation period according to the ephemeris given by Handler et al. (2006):

$$HJD = 2452031.29627 + 2.91179E.$$

This rotation period is quite reliable and additionally supported by Doppler imaging and line profile variations (Freyhammer et al 2008). The number of magnetic field measurements is not sufficient to determine the rotation period independently. Least-squares sine fitting was performed with the program Period04 (Lenz & Breger 2004), which for a pure sine curve uses:

$$B_{l} = B_{0} + B_{1} \sin(2\pi(\omega_{1} t + \phi_{1})).$$

The observations are illustrated in Fig. 1 with the fitted curve shown as a solid line for the determined parameters: mean magnetic field $B_0 = 21 \pm 58$ G and amplitude $B_1 = 701 \pm 114$ G. Alternatively, for a least-squares sine fit that also includes the first harmonic, i.e.,

$$B_{l} = B_{0} + B_{1}\sin(2\pi(\omega_{1} t + \phi_{1})) + B_{2}\sin(2\pi(2\omega_{1} t + \phi_{2})),$$

we get the curve shown with a dotted line in the figure. This fit has the magnetic field parameters: $B_0 = 6 \pm 77 \,\text{G}$, $B_1 = 846 \pm 149 \,\text{G}$, $B_2 = 311 \pm 186 \,\text{G}$. The harmonic amplitude is significant only at the 1.7σ level, indicating that a purely sinusoidal fit is sufficient for the present observations.

The photometry by Handler et al. (2006) shows a double wave light variation with the rotation period, and maximum brightness in the U and B filters at phases 0.25 and 0.75 and minimum brightness at phases 0.0 and 0.50. The variations in the V, R, I filters are in antiphase to U and B and have lower amplitudes. This behaviour is typical for a dipole rotator where two opposing spots come into view over the rotation period.

The minima of the U and B filters thus coincide with the times when one of the magnetic poles is closest to the line-of-sight, i.e., the times of magnetic maxima and minima in Fig. 1. The fit to the magnetic measurements possibly suggests a minor phase offset of $\Delta \varphi_{\rm rot} = -0.046 \pm 0.027$ (units of fractional phase) as the magnetic minimum in Fig. 1 occurs near phase 0.95, while the positive extremum coincides with phase 0.45. This phase difference has, however, only a 1.7σ significance, and considering the uncertainties in the magnetic curve, more observations are needed at a higher precision.

Handler et al. (2006) calculated the radius of HD 99563 to be 2.38 R_{\odot}. Taking into account the longitudinal field variations and the projected rotation velocity of $v \sin i = 28.5 \pm 1.1 \,\mathrm{km \, s^{-1}}$ (Elkin et al. 2005), the geometrical parameters for an oblique rotator model are: inclination angle between rotation axis and line of sight $i = 43.^{\circ}5$ and magnetic obliquity (angle between rotation axis and the magnetic dipole axis) $\beta = 88.^{\circ}4$. These are similar to those determined by Handler et al. (2006).

References:

Dorokhova T. N., Dorokhov N. I., 1998, Contributions of the Astronomical Observatory Skalnaté Pleso, 27, 338

Elkin, V. G., Kurtz, D. W., Mathys, G., 2005, *MNRAS*, **364**, 864 Freyhammer, L.M. et al., 2008, in preparation Handler, G., Weiss, W. W., Shobbrook, R. R., Paunzen, E., Hempel, A., Anguma, S. K., Kalebwe, P. C., Kilkenny, D., Martinez, P., Moalusi, M. B., Garrido, R., Medupe, R., 2006, MNRAS, 366, 257

Hubrig, S., Szeifert, T., Schöller, M., Mathys, G., Kurtz D. W., 2004, A&A, 415, 685

Hubrig, S., North, P., Schöller, M., Mathys, G., 2006, AN, 327, 289

Kudryavtsev, D.O., Romanyuk, I.I., Elkin, V.G., Paunzen E., 2006, MNRAS, **372**, 1804 Lenz, P., Breger, M., 2005, Comm. in Asteroseismology, **146**, 53

Number 5852

Konkoly Observatory Budapest 1 October 2008 *HU ISSN 0374 - 0676*

THE NEW CONTACT BINARY GSC 2414-0797

ROBB, R.M.^{1,2}; VINCENT, J.²; HENDERSON, H.²; GREIMEL, R.³; DREW, J.E.⁴; GONZALEZ-SOLARES, E.A.⁵

¹ Guest Observer, Dominion Astrophysical Observatory, and Guest User, Canadian Astronomy Data Centre, which are operated by the Herzberg Institute of Astrophysics, National Research Council of Canada

 2 Dept. of Physics and Astronomy, University of Victoria, Victoria, BC, Canada, V8W 3P6, e-mail: robb@uvic.ca

³ Institut für Physik, Karl-Franzens Universität Graz, Universitätsplatz 5, 8010 Graz, Austria

⁴ Centre for Astrophysics Research, STRI, Univ. of Hertfordshire, College Lane Campus, Hatfield AL10 9AB

 5 Physics Department, Imperial College London, Exhibition Road, London SW7 2AZ

Contact binary stars are of great interest since it is not obvious how they came to be or what they will evolve to become. Because many of these interesting stars are bright enough to be observed with small telescopes from bright locations, they make an ideal project for amateur-professional collaboration. The star GSC 2414-0797 was suspected of variability in brightness from the IPHAS survey (Drew et al., 2005) data. GSC 2414-0797 can be found in the NOMAD catalog (Zacharias et al., 2004) which lists B = 13.96 mag, V = 13.41 mag, R = 12.58 mag and 2MASS measurements reveal that J = 11.77 mag, H = 11.33 mag and K = 11.18 mag with an uncertainty of approximately ± 0.15 due to brightness variations of the star.

Figure 1. Finder chart labelled with the GSC identification numbers from region 2414.

The University of Victoria (UVic) observations were made with our automated 0.5 m telescope, Star I CCD and reduced in a fashion similar to that described in Robb and

GSC	R.A.	Dec.	GSC	ΔR	σ	σ	ΔI	σ	σ
Id	J2000	J2000	Mag.	Mag	Nights	Hours	Mag.	Nights	Hours
0797	$05^{h}52^{m}55^{s}$	$35^\circ 16' 11''$	13.7	2.390	0.016	0.131	2.153	0.017	0.122
1093	$05^{h}53^{m}28^{s}$	$35^\circ 19' 30''$	10.7	-	-	-	-	-	-
0371	$05^{h}53^{m}25^{s}$	$35^\circ 20' 10''$	12.2	0.983	0.002	0.008	0.551	0.002	0.007
0611	$05^{h}53^{m}20^{s}$	$35^\circ 15' 37''$	13.8	2.622	0.007	0.027	2.593	0.003	0.026
1063	$05^{h}53^{m}15^{s}$	$35^\circ 15' 41''$	12.2	1.274	0.012	0.013	1.285	0.010	0.013
0549	$05^{h}53^{m}05^{s}$	$35^\circ 17' 36''$	14.8	3.022	0.010	0.046	2.811	0.024	0.030
1110	$05^{\rm h}52^{\rm m}54^{\rm s}$	$35^\circ 20' 22''$	13.3	1.618	0.014	0.013	0.949	0.002	0.007

Table 1: Stars observed in the field of GSC 2414-0797

Greimel (1999). All UVic observations were made using 120 second exposures and Cousins R and I filters. The field of stars, seen in Figure 1, was observed during the years 2005, 2006 and 2008 and Julian Dates of observation (-2450000) were 3385, 3409, 3411, 3416, 3776, 3777, 3780, 4487-4489, and 4514. Table 1 lists the stars' identification numbers and magnitudes from the Hubble Space Telescope Guide Star Catalogue (GSC) (Jenkner et al., 1990).

Our differential magnitudes are calculated in the sense of the star minus GSC 2414-1093. For each star the mean of the nightly means is shown as ΔR and ΔI in Table 1. Brightness variations on an hourly timescale were measured by the standard deviation of the differential magnitudes and are listed for the most photometric night in the column labelled " σ Hours". A " σ Hours" one night of 0.007 sets an upper limit on variations of an hourly timescale. The standard deviation of the means of each night is a measure of the night to night variations and is called " σ Nights" in Table 1. The smallest " σ Nights" is 0.002 magnitudes. This excellent photometry shows that night to night variations in GSC 2414-1093 and GSC 2414-0371 must be less than a few millimagnitudes. Only the 2008 data are included in the table since the mean values for the other years were different by a few hundredths of a magnitude due to slight differences in the flat fields. If we assume the flat fields are perfect the standard deviation of the ΔR nightly means for all 11 nights would be 0.011 magnitudes for the stars GSC 2414-1093 and GSC 2414-0371, so these stars remained constant at that level on the nights we observed them.

The star GSC 2414-0797 showed brightness variations during a night typical of a contact binary star. During the night 2454487 more than one orbit was observed allowing an unambiguous estimate of the period to be 0.340 ± 0.002 days. Times of minimum brightness listed in Table 2 were found using the method of Kwee and van Woerden (1956) on the data within 0.04 days of the minimum. The 2008 times of minima are the average of the times of minima determined from the R and I filtered data.

Year	HJD	(O-C)	Type	HJD	(O-C)	Type
2005	3385.7698(06)	-0.0010	II	3411.6583(06)	+0.0006	II
	3416.7659(04)	-0.0011	II			
2006	3777.6528(16)	+0.0014	Ι	3777.8226(03)	+0.0009	II
2008	4487.6677(07)	-0.0012	II	4487.8400(08)	+0.0008	Ι
	4488.0071(23)	-0.0024	II	4488.6905(11)	-0.0003	II
	4489.7126(16)	+0.0000	II	4489.8852(12)	+0.0023	Ι

Table 2: Times of Minimum Light HJD-2450000

From these times of minima our best estimate of the ephemeris is:

HJD of Primary Minimum = $2453385^{d}.6005(7) + 0^{d}.3406176(6) \times E$.

where the uncertainty in each final digit is given in brackets and the RMS deviation was 0.0014 days. There is no evidence for a changing orbital period.

Figure 2. Spectra of GSC 2414-0797 and the MK K0V spectral class standard star 54 Piscium

Spectra of GSC2414-0797 and 54 Piscium observed with the Dominion Astrophysical Observatory's 1.8 m telescope at 60 Å/mm are shown in Figure 2. The time of observation was 4:22 UT 18 Feb 2006, which corresponds to a phase of approximately 0.16. The strength of the G band, Calcium H&K lines and the Calcium I 4227 Å line are typical of a late G or early K spectrum and the H γ 4340 Å and Fe I 4326 Å lines indicate a K0V±1 spectral classification. All the catalog colour measurements listed in the first paragraph are consistent with a spectral class of K0V±3, if the V measurement is assumed to be too faint by 0.3 magnitudes, so henceforth we will assume that at maximum brightness V = 13.1 mag.

Comparison of plots of the individual years' data reveal no systematic offsets as might be expected from flat fielding errors or changes in active regions. Therefore the 1152 individual ΔR observations were averaged into 100 normal points and plotted in Figure 3. Using the Light Curve Synthesis software Binary Maker 3.0 (Bradstreet 2004) various models were fit to the data. Because there are no known radial velocity data and the eclipses seem to be partial, the mass ratio / inclination / fillout factor degeneracy cannot be broken (Terrell and Wilson 2005). We can however put limits on the inclination, mass ratio and fillout factor and show that the system can be described by astronomically reasonable parameters. The (mass ratio, inclination, fillout factors) limits were (0.22, 75° , 0.20) to (0.90, 66° , 0.05). Plotted in Figure 3 is the best fit found using a mass ratio of 0.3, an inclination of 71.3°, a fillout factor of 0.17, temperatures of 5150 and 5052 Kelvin. To model the difference in maxima a spot 90% of the photospheric temperature on the more massive star at colatitude of 55° and longitude of 275° and a radius of 13.5° was assumed. This fit gave mean residuals of 0.004. The 2008 data taken with both the I and R band filters were used to calculate 50 normal points and the differences are plotted in Figure 3 shifted by an arbitrary amount. As expected the color and thus temperature did not change as a function of phase.

Figure 3. Model of GSC 2414-0797 with the parameters given in the text

Assuming a K0 star, the PLC relation by Rucinski (2004) implies an absolute magnitude of about $M_V = 4.75 \pm 0.25$, so with an apparent magnitude of $V = 13.1 \pm 0.1$ an estimate of the distance is 470 ± 100 parsecs. Since the star seems to have a dark spot it might be expected to be an X-ray source but it is not included in the ROSAT Bright Source catalog (Voges, et al. 1999). GSC 2414-0797 seems to be a rapidly rotating late type contact binary star with active regions covering a significant part of its surface.

References:

Bradstreet, D., 2004, Binary Maker 3, http://www.binarymaker.com
Drew, Janet E., Greimel, R., Irwin, M. J., et al., 2005, MNRAS, 362, 753
Jenkner, H., Lasker, B., Sturch, C., et al., 1990, AJ, 99, 2082
Kwee, K.K., and van Woerden, H., 1956, BAN, 12, 327
Robb, R.M., and Greimel, R., 1999, ASP Conf. Ser., 189, 198
Rucinski, S., 2004, New Astronomy Reviews, 48, 703
Terrell, D., and Wilson, R.E., 2005, Ap&SS, 296, 221
Voges, W., Aschenbach, B., Boller, Th., et al., 1999, A&A, 349, 389
Zacharias, N., Monet, D. G., Levine, S. E., et al., 2004, BAAS, 36, 1418

Number 5853

Konkoly Observatory Budapest 16 October 2008 *HU ISSN 0374 - 0676*

THE GEOS RR Lyr SURVEY

Ninth list of maxima of RR Lyr stars observed by the automated telescopes TAROT

(GEOS Circular RR 35)

LE BORGNE, J. F.^{1,2}; KLOTZ, A.^{3,4}; BOËR, M.³

¹ GEOS (Groupe Européen d'Observations Stellaires), 23 Parc de Levesville, 28300 Bailleau l'Evêque, France

 2 LATT, Université de Toulouse, CNRS, Toulouse, France

³ Observatoire de Haute-Provence, Saint Michel l'Observatoire, France

⁴ CESR, Université de Toulouse, CNRS, Toulouse, France

We present here the ninth list of light maxima of RR Lyrae stars from the GEOS RR Lyr Survey (Le Borgne et al. 2007), a GEOS program (http://www.upv.es/geos/, Boninsegna et al., 2002) of observations of RR Lyr stars using the automatic telescopes TAROT (http://tarot.obs-hp.fr, Boër et al., 2001, Bringer et al., 1999). The present list contains 328 maxima observed mainly between January and June 2008 (Table 1). A description of the present list may be found in the former lists (for example Le Borgne et al. 2008). The data are also available in the GEOS RR Lyr web database (http://dbRR.ast.obs-mip.fr). The O - C's are computed with the GCVS elements (Kholopov et al., 1985) when available. Otherwise, the reference of the elements, if exists, is given as a footnote of Table 1.

References:

Agerer, F., Moschner, W., 1996, *IBVS*, **4391**

Baldwin, M.E., Samolyk, G., 2003, AAVSO RR Lyrae Monographs, 1

- Boër, M., Atteia, J. L., Bringer, M., Gendre, B., Klotz, A., Malina, R., de Freitas Pacheco, J. A., Pedersen, H., 2001, A&A, 378, 76
- Boninsegna, R., 1990, JAAVSO, 19, 126
- Boninsegna, R., Vandenbroere, J., Le Borgne, J. F., The Geos Team, 2002, ASP Conf. Ser., 259, 166, IAU Colloq. 185
- Bringer, M., Boër, M., Peignot, C., Fontan, G., Merce, C., 1999, A&AS, 138, 581
- Kholopov, P. N., et al., 1985, General Catalogue of Variable Stars, Moscow: Nauka Publishing House, 1988, 4th ed., edited by Kholopov, P. N.; and 2006 web edition (http://www.sai.msu.su/groups/cluster/gcvs/).
- Le Borgne, J. F., Klotz, A., Boër, 2008, IBVS, 5823
- Le Borgne, J. F., Paschke, A., Vandenbroere, J., Poretti, E., Klotz, A., Boër, M., Damerdji, Y., Martignoni, M., Acerbi, F., 2007, A&A, 476, 307
- Williams, D.B., 1993, JAAVSO, 22, 116
Table 1: maxima of RR Lyrae stars

Variable	Maximum	0 C	Б	Oba	Variable	Movimum	0 C	Б	Oba
variable		(daya)	Ľ	Obs.	variable		(daya)	Ľ	Obs.
CLAnd	TJD 24	(uays)	28600	C	AL CM:	111111111111111111111111111111111111	(uays)	20102	те
WV Ant	54472.309 ± 0.002 54522 648 ±0.002	0.102	04164	T C	AL OMI PV Cap	54479.095 ± 0.003 54617 849±0.004	0.440	32403. 46200	LO
	54525.048 ± 0.005	0.212	24104.	LO	RV Cap	54017.842 ± 0.004 54471.707 \ 0.006	0.003	40309. 20227	LO
TY Aps	54519.750 ± 0.005	0.039	29487.	LS	BI Cen	54471.797 ± 0.000	0.032	39237.	LS
IY Aps	54020.009 ± 0.004	0.037	29700. 42020	LS	BI Cen	54519.844 ± 0.002	0.041	39343. 20250	LS
AZ APS	54525.723 ± 0.003	-0.282	43938.	LS	BI Cen	54520.037 ± 0.002	0.030	39338. 20520	LS
V341 Aqi	54624.856 ± 0.003	0.032	23232.		BI Cen	54608.667 ± 0.002	0.040	39539.	
S Ara	54641.706 ± 0.003	-0.322	29852.		V499 Cen	54589.654 ± 0.003	0.030	25831.	
S Ara	54642.607 ± 0.003	-0.325	29854.		V499 Cen	54615.715 ± 0.002	0.031	25881.	
MS Ara	54590.659 ± 0.003	0.377	50676.		V499 Cen	54624.576 ± 0.003	0.031	25898.	
MS Ara	54641.582 ± 0.002	0.379	50773.		S Com	54527.411 ± 0.002	-0.100	23650.	C
TZ Aur	54474.387 ± 0.002	0.011	88267.	C	S Com	54541.491 ± 0.003	-0.098	23674.	C
TZ Aur	54478.304 ± 0.002	0.012	88277.	C	S Com	54581.379 ± 0.004	-0.098	23742.	C
TZ Aur	54548.417 ± 0.006	0.015	88456.	C	S Com	54605.427 ± 0.003	-0.101	23783.	C
TZ Aur	54557.424 ± 0.003	0.013	88479.	C	ST Com	54503.505 ± 0.005	-0.025	18832.	C
BH Aur	54474.518 ± 0.003	0.000	25703.	C	ST Com	54512.487 ± 0.005	-0.027	18847.	С
RS Boo	54499.643 ± 0.002	0.001	33734.	С	ST Com	$54551.417 {\pm} 0.005$	-0.027	18912.	С
RS Boo	$54539.645 {\pm} 0.003$	0.005	33840.	С	ST Com	$54582.565 {\pm} 0.004$	-0.024	18964.	С
RS Boo	$54569.453 {\pm} 0.002$	0.003	33919.	\mathbf{C}	V413 CrA	$54590.819 {\pm} 0.008$	0.052	22212.	LS
RS Boo	$54600.397{\pm}0.003$	0.005	34001.	\mathbf{C}	V413 CrA	$54623.814 {\pm} 0.004$	0.044	22268.	LS
RS Boo	$54609.454{\pm}0.002$	0.006	34025.	\mathbf{C}	TV CrB	$54539.544{\pm}0.002$	0.026	39207.	\mathbf{C}
RS Boo	$54629.450{\pm}0.003$	0.003	34078.	\mathbf{C}	TV CrB	$54542.466 {\pm} 0.003$	0.025	39212.	\mathbf{C}
RS Boo	$54632.467{\pm}0.002$	0.001	34086.	\mathbf{C}	TV CrB	$54635.419{\pm}0.002$	0.025	39371.	\mathbf{C}
ST Boo	$53165.502{\pm}0.010$	0.099	54611.	\mathbf{C}	TV CrB	$54642.432 {\pm} 0.003$	0.022	39383.	\mathbf{C}
ST Boo	$54504.649{\pm}0.002$	0.077	56763.	\mathbf{C}	W Crt	$54526.646 {\pm} 0.002$	-0.022	36121.	LS
ST Boo	$54519.594{\pm}0.003$	0.087	56787.	\mathbf{C}	W Crt	$54592.568{\pm}0.002$	-0.022	36281.	LS
TW Boo	$54521.514{\pm}0.002$	-0.053	51910.	\mathbf{C}	W Crt	$54606.578 {\pm} 0.004$	-0.021	36315.	LS
TW Boo	$54544.405{\pm}0.004$	-0.050	51953.	\mathbf{C}	X Crt	$54588.546{\pm}0.004$	0.068	17453.	LS
TW Boo	$54578.465{\pm}0.005$	-0.055	52017.	\mathbf{C}	UY Cyg	$54638.425 {\pm} 0.002$	0.058	57436.	\mathbf{C}
UY Boo	$54503.707{\pm}0.005$	0.782	19463.	\mathbf{C}	$\rm XZ \ Cyg^{-2}$	$54578.509{\pm}0.003$	-0.004	12876.	\mathbf{C}
UY Boo	$54554.495{\pm}0.005$	0.805	19541.	\mathbf{C}	$\rm XZ \ Cyg^{-2}$	$54635.436{\pm}0.002$	-0.002	12998.	\mathbf{C}
UY Boo	$54582.499{\pm}0.004$	0.823	19584.	\mathbf{C}	$\rm XZ \ Cyg^{-2}$	$54641.501 {\pm} 0.002$	-0.003	13011.	\mathbf{C}
CM Boo	$54540.503{\pm}0.002$	-0.103	30602.	\mathbf{C}	$\rm XZ \ Cyg^{-2}$	$54642.432 {\pm} 0.002$	-0.005	13013.	\mathbf{C}
AH Cam	$54472.522{\pm}0.002$	-0.429	42696.	\mathbf{C}	$V939 Cyg^{-3}$	$54642.448 {\pm} 0.005$	0.019	12525.	LS
AH Cam	$54473.258{\pm}0.002$	-0.429	42698.	\mathbf{C}	RW Dra	$54538.615 {\pm} 0.002$	0.175	34230.	\mathbf{C}
AH Cam	$54475.499{\pm}0.003$	-0.401	42704.	\mathbf{C}	RW Dra	$54546.565 {\pm} 0.005$	0.153	34248.	\mathbf{C}
AH Cam	$54499.464{\pm}0.002$	-0.404	42769.	\mathbf{C}	RW Dra	$54571.410{\pm}0.002$	0.194	34304.	\mathbf{C}
TT Cnc	$54551.334{\pm}0.002$	0.105	25924.	\mathbf{C}	RW Dra	$54586.436{\pm}0.003$	0.161	34338.	\mathbf{C}
AN Cnc	$54475.478{\pm}0.006$	0.138	29540.	\mathbf{C}	RW Dra	$54598.426{\pm}0.003$	0.192	34365.	С
AS Cnc	$54474.498{\pm}0.002$	0.352	24734.	\mathbf{C}	SU Dra	$54512.406{\pm}0.003$	0.051	16066.	\mathbf{C}
EZ Cnc 1	$54472.639{\pm}0.002$	-0.032	13410.	\mathbf{C}	SU Dra	$54518.356{\pm}0.004$	0.058	16075.	\mathbf{C}
W CVn	$54520.542{\pm}0.006$	-0.132	60023.	\mathbf{C}	SU Dra	$54527.597 {\pm} 0.004$	0.053	16089.	\mathbf{C}
W CVn	$54540.407{\pm}0.004$	-0.131	60059.	\mathbf{C}	SU Dra	$54539.483{\pm}0.003$	0.051	16107.	\mathbf{C}
W CVn	$54542.613{\pm}0.005$	-0.132	60063.	\mathbf{C}	SU Dra	$54551.371{\pm}0.002$	0.052	16125.	\mathbf{C}
W CVn	$54572.407{\pm}0.003$	-0.133	60117.	\mathbf{C}	SU Dra	$54584.392 {\pm} 0.003$	0.052	16175.	\mathbf{C}
W CVn	$54573.510{\pm}0.003$	-0.133	60119.	\mathbf{C}	SW Dra	$54502.495 {\pm} 0.003$	0.062	49639.	\mathbf{C}
$Z \ CVn$	$54553.427{\pm}0.003$	0.359	23893.	\mathbf{C}	SW Dra	$54518.439{\pm}0.002$	0.055	49667.	\mathbf{C}
$Z \ CVn$	$54570.425{\pm}0.005$	0.357	23919.	\mathbf{C}	SW Dra	$54519.581{\pm}0.002$	0.058	49669.	\mathbf{C}
RU CVn	$54502.537{\pm}0.003$	0.212	34922.	\mathbf{C}	SW Dra	$54547.493{\pm}0.003$	0.056	49718.	\mathbf{C}
RZ CVn	$54550.528{\pm}0.004$	-0.160	25038.	\mathbf{C}	XZ Dra	$54584.500{\pm}0.003$	-0.111	26561.	\mathbf{C}
RZ CVn	$54570.376{\pm}0.002$	-0.171	25073.	\mathbf{C}	BC Dra	$54538.662 {\pm} 0.006$	0.083	17038.	С
SS CVn	$54521.613{\pm}0.005$	0.157	31135.	\mathbf{C}	BC Dra	$54539.387 {\pm} 0.005$	0.089	17039.	\mathbf{C}
SS CVn	$54568.515{\pm}0.005$	0.164	31233.	\mathbf{C}	BC Dra	$54572.485 {\pm} 0.009$	0.086	17085.	\mathbf{C}
SS CVn	54570.424 ± 0.002	0.158	31237	\mathbf{C}	BC Dra	54587.598 ± 0.005	0.088	17106.	\mathbf{C}
SS CVn	54572.336 ± 0.002	0.156	31241	\mathbf{C}	BC Dra	54639.407 ± 0.005	0.087	17178.	\mathbf{C}
UZ CVn	54538.509 ± 0.004	0.246	40286	\mathbf{C}	BC Dra	54644.442 ± 0.005	0.085	17185	\mathbf{C}
AA CMi	54504.342 ± 0.003	0.058	37638	С	BD Dra	54517.536 ± 0.005	0.722	21632.	С

Variable	Maximum	O - C	Е	Obs.	Variable	Maximum	0 – C	Е	Obs.
	HJD 24	(days)				HJD 24	(days)		
BD Dra	$54537.525 {\pm} 0.005$	0.683	21666.	С	ST Leo	$54541.565{\pm}0.002$	-0.021	55689.	С
BD Dra	$54540.494{\pm}0.003$	0.707	21671.	\mathbf{C}	ST Leo	$54586.496{\pm}0.002$	-0.020	55783.	\mathbf{C}
BD Dra	$54570.551{\pm}0.004$	0.722	21722.	\mathbf{C}	SZ Leo	$54473.595{\pm}0.002$	0.429	16863.	\mathbf{C}
BD Dra	$54573.498{\pm}0.002$	0.724	21727.	\mathbf{C}	SZ Leo	$54523.784{\pm}0.002$	0.416	16957.	\mathbf{LS}
BD Dra	$54576.440{\pm}0.004$	0.721	21732.	\mathbf{C}	AX Leo	$54472.606{\pm}0.005$	-0.031	40213.	\mathbf{C}
BD Dra	$54609.381 {\pm} 0.005$	0.675	21788.	\mathbf{C}	AX Leo	$54512.575 {\pm} 0.005$	-0.038	40268.	\mathbf{C}
BK Dra	$54630.468{\pm}0.002$	-0.156	49161.	\mathbf{C}	AX Leo	$54550.375{\pm}0.005$	-0.033	40320.	\mathbf{C}
BK Dra	$54646.453{\pm}0.002$	-0.157	49188.	\mathbf{C}	AX Leo	$54558.362{\pm}0.003$	-0.041	40331.	\mathbf{C}
BT Dra	$54510.580{\pm}0.005$	-0.009	40389.	\mathbf{C}	V LMi	$54548.406{\pm}0.003$	0.035	64381.	\mathbf{C}
BT Dra	$54569.440{\pm}0.002$	-0.017	40489.	\mathbf{C}	V LMi	$54579.405{\pm}0.002$	0.031	64438.	\mathbf{C}
BT Dra	$54573.560{\pm}0.004$	-0.017	40496.	\mathbf{C}	U Lep	$54471.656{\pm}0.003$	0.044	22562.	\mathbf{LS}
$\operatorname{RR}\operatorname{Gem}$	$54503.434{\pm}0.002$	-0.382	33089.	\mathbf{C}	VY Lib	$54593.784{\pm}0.002$	-0.031	25189.	\mathbf{LS}
$SZ \ Gem$	$54502.403 {\pm} 0.003$	-0.055	54493.	\mathbf{C}	TT Lyn	$54499.672{\pm}0.005$	-0.035	29875.	\mathbf{C}
$SZ \ Gem$	$54521.446{\pm}0.002$	-0.055	54531.	\mathbf{C}	TT Lyn	$54528.347{\pm}0.004$	-0.037	29923.	\mathbf{C}
$SZ \ Gem$	$54527.458{\pm}0.002$	-0.057	54543.	\mathbf{C}	TT Lyn	$54547.466{\pm}0.003$	-0.036	29955.	\mathbf{C}
${ m GI}~{ m Gem}$	$54499.514{\pm}0.002$	0.069	55746.	\mathbf{C}	TT Lyn	$54550.452{\pm}0.003$	-0.037	29960.	\mathbf{C}
${ m GI}~{ m Gem}$	$54529.410{\pm}0.002$	0.069	55815.	\mathbf{C}	TW Lyn	$54502.626{\pm}0.003$	0.054	19674.	\mathbf{C}
VX Her	$54555.579{\pm}0.004$	-0.417	72041.	\mathbf{C}	TW Lyn	$54520.453{\pm}0.002$	0.052	19711.	\mathbf{C}
VX Her	$54556.490{\pm}0.005$	-0.417	72043.	\mathbf{C}	TW Lyn	$54547.443{\pm}0.004$	0.058	19767.	\mathbf{C}
VX Her	$54638.453{\pm}0.002$	-0.421	72223.	\mathbf{C}	RZ Lyr	$54579.494{\pm}0.002$	-0.014	26203.	\mathbf{C}
VZ Her	$54542.543{\pm}0.002$	0.065	40319.	\mathbf{C}	RZ Lyr	$54582.564{\pm}0.004$	-0.011	26209.	\mathbf{C}
VZ Her	$54576.450{\pm}0.002$	0.067	40396.	\mathbf{C}	RZ Lyr	$54600.459{\pm}0.002$	-0.010	26244.	\mathbf{C}
VZ Her	$54579.532 {\pm} 0.002$	0.066	40403.	\mathbf{C}	RZ Lyr	$54644.439{\pm}0.002$	0.003	26330.	\mathbf{C}
VZ Her	$54598.466{\pm}0.003$	0.066	40446.	\mathbf{C}	AW Lyr	$54584.514{\pm}0.005$	0.010	58806.	\mathbf{C}
VZ Her	$54613.437 {\pm} 0.002$	0.066	40480.	\mathbf{C}	CN Lyr	$54608.417{\pm}0.004$	0.021	24605.	\mathbf{C}
VZ Her	$54646.461 {\pm} 0.003$	0.065	40555.	\mathbf{C}	CN Lyr	$54638.445{\pm}0.007$	0.018	24678.	\mathbf{C}
AR Her	$54541.512 {\pm} 0.003$	-1.235	27846.	\mathbf{C}	CN Lyr	$54645.441{\pm}0.003$	0.021	24695.	\mathbf{C}
AR Her	$54644.427 {\pm} 0.003$	-1.256	28065.	\mathbf{C}	IO Lyr	$54586.579 {\pm} 0.004$	-0.032	25935.	\mathbf{C}
BD Her	$54642.454{\pm}0.003$	0.065	46453.	\mathbf{C}	IO Lyr	$54600.433{\pm}0.003$	-0.029	25959.	\mathbf{C}
DL Her	$54586.503{\pm}0.004$	0.041	27683.	\mathbf{C}	IO Lyr	$54608.508{\pm}0.005$	-0.033	25973.	\mathbf{C}
V542 Her	$54555.546{\pm}0.006$	0.128	24715.	\mathbf{C}	IO Lyr	$54630.440{\pm}0.003$	-0.032	26011.	\mathbf{C}
V593 Her	$54638.463{\pm}0.005$	-0.114	29935.	\mathbf{C}	IO Lyr	$54645.444{\pm}0.002$	-0.033	26037.	\mathbf{C}
V650 Her	$54638.469{\pm}0.003$	0.025	29283.	\mathbf{C}	MW Lyr	$53909.422{\pm}0.002$	0.132	44911.	\mathbf{C}
SV Hya	$54626.563{\pm}0.003$	0.102	31989.	LS	MW Lyr	$53911.401{\pm}0.002$	0.122	44916.	\mathbf{C}
SZ Hya	$54503.485 {\pm} 0.003$	-0.192	25732.	\mathbf{C}	MW Lyr	$53922.512{\pm}0.002$	0.093	44944.	\mathbf{C}
UU Hya	$54473.645 {\pm} 0.002$	0.026	28623.	\mathbf{C}	MW Lyr	$53926.512{\pm}0.002$	0.115	44954.	\mathbf{C}
UU Hya	$54507.690{\pm}0.002$	0.019	28688.	LS	MW Lyr	$53932.480{\pm}0.005$	0.115	44969.	\mathbf{C}
WZ Hya	$54509.700{\pm}0.002$	-0.001	27677.	LS	MW Lyr	$53936.440{\pm}0.003$	0.096	44979.	\mathbf{C}
BI Hya	$54512.663{\pm}0.002$	0.227	50547.	LS	MW Lyr	$53942.421 {\pm} 0.002$	0.110	44994.	\mathbf{C}
DD Hya	$54472.574{\pm}0.003$	-0.154	25464.	\mathbf{C}	MW Lyr	$53944.410{\pm}0.002$	0.109	44999.	\mathbf{C}
DD Hya	$54501.683{\pm}0.002$	-0.148	25522.	LS	MW Lyr	$53985.356{\pm}0.005$	0.077	45102.	\mathbf{C}
DD Hya	$54506.695 {\pm} 0.002$	-0.154	25532.	LS	V340 Lyr	$54582.612{\pm}0.005$	-0.030	42221.	\mathbf{C}
IK Hya	$54506.744{\pm}0.005$	-0.016	24685.	LS	RV Oct	$54588.691{\pm}0.004$	0.128	69108.	\mathbf{LS}
IK Hya	$54618.562{\pm}0.005$	0.002	24857.	LS	RV Oct	$54608.678 {\pm} 0.002$	0.124	69143.	\mathbf{LS}
GO Hya	$54499.756{\pm}0.005$	-0.077	45331.	LS	RV Oct	$54627.530{\pm}0.003$	0.128	69176.	\mathbf{LS}
GO Hya	$54521.393{\pm}0.005$	-0.079	45365.	\mathbf{C}	SS Oct	$54627.831{\pm}0.003$	-0.046	42789.	\mathbf{LS}
V Ind	$54616.776{\pm}0.004$	0.347	30230.	LS	SS Oct	$54642.750{\pm}0.002$	-0.051	42813.	\mathbf{LS}
V Ind	$54626.850{\pm}0.003$	0.350	30251.	LS	UV Oct	$54588.783{\pm}0.005$	-0.145	37338.	\mathbf{LS}
RR Leo	$54576.370{\pm}0.002$	0.089	24936.	\mathbf{C}	UV Oct	$54589.869{\pm}0.003$	-0.145	37340.	\mathbf{LS}
RX Leo	$54529.487 {\pm} 0.007$	0.091	27889.	\mathbf{C}	UV Oct	$54627.859{\pm}0.003$	-0.138	37410.	LS
SS Leo	$54501.779{\pm}0.004$	-0.052	20309.	LS	UV Oct	$54630.571{\pm}0.004$	-0.139	37415.	LS
SS Leo	$54523.695 {\pm} 0.003$	-0.058	20344.	LS	V445 Oph	$54586.776 {\pm} 0.003$	0.028	68115.	LS
SS Leo	$54554.388{\pm}0.003$	-0.056	20393.	\mathbf{C}	V445 Oph	$54594.711{\pm}0.003$	0.022	68135.	LS
SS Leo	$54569.419{\pm}0.002$	-0.057	20417.	\mathbf{C}	V445 Oph	$54611.787{\pm}0.004$	0.026	68178.	LS
SS Leo	$54579.441{\pm}0.003$	-0.057	20433.	\mathbf{C}	V445 Oph	$54641.558{\pm}0.002$	0.021	68253.	LS
ST Leo	$54474.654{\pm}0.005$	-0.014	55549.	\mathbf{C}	V445 Oph	$54643.542{\pm}0.003$	0.020	68258.	\mathbf{LS}
					-				

Table 1 (cont.): maxima of RR Lyrae stars

Variable	Maximum	O - C	E	Obs	Variable	Maximum	O - C	E	Obs
Variable	HJD 24	(days)	Б	0.65.	variable	HJD 24	(davs)	Ц	0.00.
V452 Oph	54643.438 ± 0.002	0.007	32281.	С	RV UMa	54558.520 ± 0.002	0.113	20260.	С
V455 Oph	54613.442 ± 0.004	-0.254	28156.	Ċ	RV UMa	54573.499 ± 0.002	0.114	20292.	Ċ
V455 Oph	$54642.483{\pm}0.003$	-0.263	28220.	С	RV UMa	$54640.433{\pm}0.002$	0.116	20435.	С
WY Pav	$54585.794{\pm}0.006$	0.065	47092.	\mathbf{LS}	TU UMa	$54539.510{\pm}0.002$	-0.029	20995.	С
WY Pav	$54595.798{\pm}0.003$	0.063	47109.	LS	TU UMa	$54553.456{\pm}0.003$	-0.025	21020.	С
WY Pav	$54598.744{\pm}0.005$	0.066	47114.	\mathbf{LS}	TU UMa	$54558.472{\pm}0.002$	-0.028	21029.	С
WY Pav	$54624.646{\pm}0.005$	0.070	47158.	\mathbf{LS}	AB UMa	$54473.493{\pm}0.016$	0.125	30431.	\mathbf{C}
WY Pav	$54641.710{\pm}0.003$	0.066	47187.	\mathbf{LS}	AB UMa	$54512.464{\pm}0.011$	0.124	30496.	С
BN Pav	$54594.864{\pm}0.003$	-0.057	46297.	LS	AB UMa	$54548.428{\pm}0.011$	0.113	30556.	С
BN Pav	$54598.834{\pm}0.002$	-0.058	46304.	\mathbf{LS}	AB UMa	$54578.413{\pm}0.006$	0.119	30606.	С
BN Pav	$54640.801{\pm}0.002$	-0.061	46378.	\mathbf{LS}	AB UMa	$54581.401{\pm}0.004$	0.109	30611.	\mathbf{C}
XX Pup	$54478.790{\pm}0.003$	0.467	24566.	\mathbf{LS}	EX UMa	$54473.364{\pm}0.006$	0.031	10059.	\mathbf{C}
XX Pup	$54503.616{\pm}0.003$	0.468	24614.	\mathbf{LS}	EX UMa	$54518.413{\pm}0.005$	0.025	10142.	С
BB Pup	$54472.778 {\pm} 0.002$	0.112	32592.	\mathbf{LS}	EX UMa	$54557.502{\pm}0.004$	0.030	10214.	С
BB Pup	$54476.624{\pm}0.002$	0.114	32600.	\mathbf{LS}	AF Vel	$54599.595{\pm}0.003$	0.300	24966.	\mathbf{LS}
HH Pup	$54480.610{\pm}0.003$	0.011	40897.	LS	FS Vel	$54597.606 {\pm} 0.002$	-0.143	31609.	\mathbf{LS}
HH Pup	$54514.607{\pm}0.003$	0.013	40984.	\mathbf{LS}	FS Vel	$54606.648 {\pm} 0.004$	-0.140	31628.	\mathbf{LS}
HH Pup	$54521.638 {\pm} 0.003$	0.010	41002.	\mathbf{LS}	ST Vir	$54554.586{\pm}0.002$	0.012	33635.	С
HH Pup	54523.592 ± 0.002	0.011	41007.	LS	ST Vir	54571.426 ± 0.002	0.008	33676.	č
V440 Sør	54605.828 ± 0.004	0.094	27428.	LS	ST Vir	54582.523 ± 0.002	0.013	33703.	č
V440 Sgr	54625876 ± 0.003	0.088	27470	LS	ST Vir	54588687 ± 0.002	0.014	33718	ĽS
V675 Sgr	54588.865 ± 0.005	0.071	40794.	LS	ST Vir	54595.666 ± 0.002	0.009	33735	LS
V675 Sgr	$54597 854 \pm 0.005$	0.068	40808	LS	ST Vir	54609640 ± 0.002	0.015	33769	LS
V675 Sgr	54599788 ± 0.005	0.000	40811	LS	ST Vir	54625.652 ± 0.003	0.015	33808	LS
V675 Sgr	54626759 ± 0.003	0.070	40853	LS	UII Vir	54512794 ± 0.003	-0.007	26735	LS
V675 Sgr	54642817 ± 0.003	0.070	40878	LS	UU Vir	54529439 ± 0.002	-0.007	26770	C
V1645 Sgr	54599788 ± 0.002	-0.024	36838	LS	UU Vir	$54557\ 503\pm0.003$	-0.005	26829	C
V1645 Sgr	$54625,773\pm0.002$	-0.024	36885	LS	UU Vir	54568.442 ± 0.003	-0.005	26852	C
V1045 Sg1	54595725 ± 0.005	-0.022	31520	LS	UU Vir	54595.554 ± 0.005	-0.005	260002.	LS
V494 Sco	54618793 ± 0.003	0.107	31520. 31574		UV Vir	54395.554 ± 0.005 54499.549 ± 0.005	-0.005	20303. 24710	C
V494 Sco	54621790 ± 0.004 54621790±0.003	-0.135	215.81		UV Vir	54499.549 ± 0.003 54507.748 ± 0.003	0.025	24710. 94794	LS
V600 Sco	54521.750 ± 0.003 54586 854 ±0.002	-0.103	25081	IG	UV Vir	54507.743 ± 0.005 54597.717 ± 0.005	0.005	24124. 94758	IS
V690 Sco	$54587 840\pm0.002$	-0.010	25901.		UV Vir	54521.111 ± 0.003 54586 432 ±0.003	0.011	24150.	C
V690 Sco	$54589,809\pm0.003$	-0.010	25985.		UV Vir	54580.452 ± 0.003 54597582 ± 0.003	0.013	24000. 24877	LS
V690 Sco	54617865 ± 0.003	-0.010	20901. 26044	IG	UV Vir	54617537 ± 0.005	0.013	24011.	LS
VV Ser	54517.809 ± 0.002 54555.550 ± 0.005	-0.019	20044.	C	AF Vir	54517.557 ± 0.003 54585.704 ± 0.003	0.007	24311.	
VI Ser VV Sor	54502.680 ± 0.000	0.043	20712	TS	AF VII AF Vir	54600.403 ± 0.003	0.120	29401.	с С
VI Ser	54612.678 ± 0.009	0.055	32723. 29751	IG	AF VII AF Vir	54009.405 ± 0.003 54616 650±0.003	-0.120	29510.	TS
ANSor	54012.073 ± 0.013 54637.511 ± 0.003	0.000	52751. 76481		AF VII AF Vir	54010.039 ± 0.003 54617.625 ± 0.003	-0.120	29020. 20527	LS
AN Sei	54037.511 ± 0.003 54640 711±0.002	0.001	17909	T C	AF VII AS Vin	54017.025 ± 0.003 54585.614 ±0.002	-0.120	29021. 97009	цо те
AUSer	54040.711 ± 0.003	0.039	17202. 59707	LS C	ASVII	54565.014 ± 0.002	0.133	27020	цо Го
AV Ser	54572.597 ± 0.005	0.137	00191. E9090	U T C		54011.007 ± 0.003	0.110	21929.	LS C
AV Ser	54567.717 ± 0.003 54602 822 ± 0.002	0.142	53020.	LO TC		545567.207 ± 0.003	-0.273	20203. 99919	C
AV Ser	54002.822 ± 0.002 54510 711 ± 0.000	0.133	22061 22061	LO TC		54507.597 ± 0.004 54611 558 ± 0.004	-0.274	20310.	С те
RU Sex 4	54510.711 ± 0.009	0.047	2200E	LS		54011.556 ± 0.004	-0.260	20402. 10054	LS C
nu sex	54522.025 ± 0.005	0.051	33990. 40270	LS		54512.577 ± 0.009	0.025	19004.	C
RV Sex	54498.707 ± 0.005	0.000	49379.		AV VII	54541.478 ± 0.000	0.020	19898.	d
RW IFA	54588.884 ± 0.003	-0.170	39022. 25107		AV VII	54508.415 ± 0.008	0.023	19939.	U TC
	54020.001 ± 0.000	-0.107	00107. 25100	LS	AV VII	54554.069±0.005	0.021	19919. 19919.	LS LC
AW IIA	54020.554 ± 0.002	-0.109	39128. 20145	LS C	AV VII DD V:	54025.504 ± 0.003	0.021	20020. 21746	цэ С
rv UMa	54504.093 ± 0.005	0.113	20145. 2022€	C	BB VII	54509.405 ± 0.002	0.260	31/40. 21000	
nv UMa DV UM-	54542.008 ± 0.006	0.115	20220.	C	BBVII DN V-1	54598.073 ± 0.003	0.200	31808. 15995	L2 C
KV UMA	54553.373±0.004	0.115	20249.	U	BN VUI	54641.439±0.002	0.068	15335.	U
	* C = Calern, LS	= La Si	lla		•				
	1 Boninsegna (19	90)	a (o)	1021					
	∠ Daluwill, M.E., 3 Agerer E Mo	samoryk	, ७. (२(พ. (१००४	3037					
	4 Williams, D.B.	(1993)	m. (1990	,,					

Number 5854

Konkoly Observatory Budapest 16 October 2008 *HU ISSN 0374 - 0676*

MAXIMA OF RR LYR STARS FROM AAVSO INTERNATIONAL DATABASE

LE BORGNE, J. F.^{1,2}; VANDENBROERE, J.¹; HENDEN, A. A.³; BUTTERWORTH³, N.; DVORAK, S.³

¹ GEOS (Groupe Européen d'Observations Stellaires), 23 Parc de Levesville, 28300 Bailleau l'Évêque, France

² LATT, Université de Toulouse, CNRS, Toulouse, France

³ AAVSO (American Association of Variable Star Observers), 49 Bay State Rd., Cambridge, MA 02138, USA

We present here a list of light maxima of RR Lyrae stars of ab and c types extracted from AAVSO International Database (http://www.aavso.org/, Henden, 2007). We have extracted the measurements of RR Lyrae stars made with CCDs and selected the time series which allow the determination of maximum times with an accuracy better than 0.005 day and which have not been used and published for such a purpose yet. These unpublished times of maximum were determined in order to supply the GEOS RR Lyr database (http://dbrr.ast.obs-mip.fr, Le Borgne et al., 2007).

The selected data were obtained by 20 observers (Table 1) who use telescopes of diameter from 20 to 40 cm. The time series contain from about 30 to 300 measurements obtained during a time interval from 2 to 6 hours. The present list contains 479 maxima observed with V, B, R or I filters between JD 2452654 and 2454452 (Table 2). Most of the measurements have been done through V filter. In Table 2, the filter is indicated in the last column when different from V. Some maxima have been obtained with more than 1 filter: the times of maximum were computed separately for each filter but the mean value is given since the differences are within errors in all cases. Only 3 maxima were obtained with no filter. The columns in Table 2 are self explanatory. The observers are identified by their AAVSO acronyms which identifies them in Table 1. The times of maximum are determined by fitting a polynomial function on the data points. O - Csare computed with GCVS elements (Kholopov et al., 1985), when available. Note that the cycle number 'E' takes into account the shifts induced by the elements when the period of the elements is very different from the actual one, the absolute value of O - Cbecoming then greater than 1 period. The uncertainty on the times of maximum depends on individual measurement uncertainties, the time sampling and the shape of the light curve; the sharp maximum of an RRab star is determined with a better accuracy than the flat one of an RRc though the period of an RRc is shorter. The typical uncertainty is about 0.002 day ($\sim 3 \min$). As noted above, the maxima of RRc stars are usually flat and may be even double. In this last case, we have measured the first occurring maximum. When relevant, this is noted as remarks in the last column of Table 2.

Acknowledgments

We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research.

References:

- Henden, A. A., 2007, Observations from the AAVSO International Database, private communication.
- Kholopov, P. N., et al., 1985, General Catalogue of Variable Stars, Moscow: Nauka Publishing House, 1988, 4th ed., edited by Kholopov, P. N.; and 2006 web edition (http://www.sai.msu.su/groups/cluster/gcvs/).
- Le Borgne, J. F., Paschke, A., Vandenbroere, J., Poretti, E., Klotz, A., Boër, M., Damerdji, Y., Martignoni, M., Acerbi, F., 2007, A&A, 476, 307

Observer	Number of maxima		Observer	Number of maxima	
M Banfi	5	BVN	M A Nicholas	1	NMI
N Butterworth	149	BIW	B Papini	1	PCC
C D: Seele	11	DGI	V. Detriew	4	
G. Di Scala	11	DSI	v. Petriew	8	PVA
S. Dvorak	291	DKS	H. Pulley	1	$_{\rm PHA}$
G. Hagen	1	HGH	W. Rauscher	1	RWA
R. Huziak	5	HUZ	C. W. Robertson	10	RCW
G. Klingenberg	2	KGE	D. R. Starkey	1	SDB
A. Marchini	2	MXI	D. Trowbridge	1	TDW
M. P. Nicholson	1	NMR	J. Waller	4	WAJ

Table 1: Observers

37 1 1		0 0		01	37 11		0 0			
Variable	Maximum	O = C	E	Obs.	Variable	Maximum	O = C	E	Obs.	
	HJD 24	(days)				HJD 24	(days)			
XX And	54126.579 ± 0.003	0.219	20808	DKS	BH Aur	$53396.774 {\pm} 0.002$	-0.004	23340	DKS	
ZZ And	53709.568 ± 0.003	0.022	52082	DKS	BH Aur	53698.707 ± 0.003	-0.002	24002	DKS	
AC And	54023423 ± 0.014	0.220	7766	PCC	BH Aur	53762560 ± 0.002	0.002	94149	DKS	
	54025.425 ± 0.014	-0.220	7700	PCC		53702.300±0.002	-0.002	24142	NMI	
AC And	54024.561 ± 0.008	0.207	1101	PUU	BH Aur	54124.095 ± 0.003	-0.002	24930	IN IVIT	
AC And	54056.576 ± 0.004	0.216	7812	DKS	RS Boo	53755.903 ± 0.003	-0.004	31763	DKS	
AC And	$54058.700 {\pm} 0.007$	0.206	7815	DKS	RS Boo	$53803.825 {\pm} 0.002$	-0.005	31890	DKS	
AC And	$54295.495 {\pm} 0.004$	0.158	8148	PCC	RS Boo	$54152.868 {\pm} 0.002$	-0.000	32815	DKS	
AC And	54308537 ± 0.009	-0.313	8167	BVN	BS Boo	54222.671 ± 0.002	-0.004	33000	DKS	
AC And	54208540 ± 0.008	0.210	8167	MVI	DS Doo	54202 855±0.002	0.006	22126	TDW	
	54508.540±0.008	-0.510	0170	MAXI		54292.855±0.002	-0.000	55100	NMD	
AC And	54316.490 ± 0.013	-0.184	8178	MAI	S1 B00	53467.927 ± 0.005	0.091	55097	NMR	
AT And	$53338.683 {\pm} 0.003$	-0.009	17823	DKS	SW Boo	$53006.910 {\pm} 0.003$	0.232	20322	DKS	
AT And	$54029.634 {\pm} 0.004$	-0.003	18943	DKS	SW Boo	$53041.832 {\pm} 0.003$	0.234	20390	DKS	
AT And	$54063.561 {\pm} 0.004$	-0.006	18998	DKS	SW Boo	$53474.755 {\pm} 0.002$	0.253	21233	DKS	
AT And	54278.865 ± 0.006	-0.005	19347	DKS	SW Boo	53479889 ± 0.003	0.252	21243	DKS	
CLAnd	54210.000 ± 0.000 52721 648 ± 0.002	0.000	27169	DKS	SW Boo	52511720 ± 0.002	0.252	21240	DKS	
OI And	53731,048±0.003	0.091	37102	DKS	SW DOO	53511.729±0.003	0.200	21303	DKS	
CI And	54008.917 ± 0.002	0.101	37734	DKS	SW Boo	53530.732 ± 0.002	0.255	21342	DKS	
CI And	$54033.635 {\pm} 0.003$	0.098	37785	DKS	SZ Boo	$53167.960 {\pm} 0.003$	0.007	48827	BIW	
CI And	$54044.781 {\pm} 0.003$	0.096	37808	DKS	SZ Boo	$53474.856 {\pm} 0.002$	0.008	49414	DKS	
CI And	54078.710 ± 0.002	0.094	37878	DKS	TV Boo	52654.895 ± 0.002	0.054	89728	DKS	
CLAnd	54120.610 ± 0.003	0.000	37083	DKS	TV Boo	5330601000 ± 0.003	0.062	02102	DKS	
	54129.010±0.003	0.099	01900	DKG		53390.919±0.003	0.002	92102	DRU	
DR And	53697.708 ± 0.002	-0.007	29261	DKS	TV Boo	53482.875 ± 0.003	0.064	92377	RCW	
DR And	$53745.571 {\pm} 0.003$	-0.009	29346	DKS	TV Boo	$53500.705 {\pm} 0.004$	0.078	92434	RCW	
DR And	$53754.583 {\pm} 0.002$	-0.007	29362	DKS	TV Boo	$53510.706 {\pm} 0.004$	0.077	92466	RCW	
DR And	$53763.592 {\pm} 0.003$	-0.008	29378	DKS	TV Boo	$53523.822 {\pm} 0.004$	0.066	92508	RCW	
DR And	54006843 ± 0.004	-0.024	29810	DKS	TV Boo	53540.706 ± 0.004	0.072	92562	BCW	
DP And	54028811 ± 0.002	0.019	20010	DKS	TV Boo	52544.762 ± 0.002	0.065	02575	PCW.	1
	54026.611±0.002	-0.018	29649	DKS		55544.705±0.005	0.005	92373	DOW	1
DR And	54066.532 ± 0.004	-0.025	29916	DKS	TV Boo	53545.704 ± 0.003	0.069	92578	RUW	1
DR And	$54075.533 {\pm} 0.004$	-0.034	29932	DKS	TV Boo	$54139.906 {\pm} 0.006$	0.095	94479	DKS	2
SW Aqr	$52893.026 {\pm} 0.002$	-0.002	60517	BIW	TV Boo	$54185.825 {\pm} 0.003$	0.068	94626	DKS	
SW Aar	53265.981 ± 0.003	-0.001	61329	BIW	TV Boo	54228.680 ± 0.002	0.102	94763	DKS	
SW Aar	53672.004 ± 0.002	0.002	62213	BIW	TV Boo	$54243 646 \pm 0.003$	0.066	0/811	DKS	
CW AQI	53072.004 ± 0.002	-0.002	02213	DIW		54245.040±0.005	0.000	49700	WAT	D
SW Aqr	54360.041 ± 0.002	-0.001	63711	BIW	TW Boo	52817.718 ± 0.005	-0.043	48709	WAJ	R
SX Aqr	53668.541 ± 0.002	-0.104	25895	DKS	TW Boo	$53073.742 {\pm} 0.002$	-0.043	49190	DKS	
TZ Aqr	$52898.040 {\pm} 0.003$	0.007	26872	BIW	TW Boo	$53469.750 {\pm} 0.002$	-0.046	49934	DKS	
TZ Aqr	$53640.029 {\pm} 0.004$	0.014	28171	BIW	UU Boo	$52658.891{\pm}0.002$	0.147	36274	DKS	
TZ Aar	54037577 ± 0.003	0.011	28867	DKS	UU Boo	53051.853 ± 0.002	0.157	37134	DKS	
V7 Aar	52806037 ± 0003	0.043	21764	BIW	UU Boo	53133645 ± 0.002	0 160	37313	DKS	
	52890.037±0.003	0.045	31704	DIW		55155.045±0.002	0.100	90105	DKS	
I Z Aqr	53245.960 ± 0.004	0.041	32398	BIW	UU B00	53504.674 ± 0.002	0.170	38125	DKS	
AA Aqr	$52903.972 {\pm} 0.003$	-0.099	52810	BIW	UU Boo	$53810.821 {\pm} 0.002$	0.180	38795	DKS	
AA Aqr	$53261.992 {\pm} 0.005$	-0.107	53398	BIW	UU Boo	$54241.709 {\pm} 0.002$	0.192	39738	DKS	
AA Aqr	$53687.605 {\pm} 0.002$	-0.107	54097	DKS	UY Boo	$53485.664{\pm}0.006$	-0.003	17900	DKS	
BO Aar	52895.002 ± 0.005	0.112	16244	BIW	UY Boo	53539.697 ± 0.003	0.010	17983	DKS	
BO Agr	$53267 001 \pm 0.003$	0.117	16780	BIW	UV Boo	54240.742 ± 0.003	0 104	10060	DKS	
	5 5 2 6 1 . C 4 2 L 0 . C 6 2	0.117	17069	DVC	VV D	54240.742±0.005	0.104	19000	DKG	
BO Aqr	54018.643 ± 0.003	0.137	17863	DKS	AA Boo	54172.738 ± 0.003	0.011	42666	DKS	
BR Aqr	52915.967 ± 0.003	-0.137	31709	BIW	AE Boo	54164.854 ± 0.002	0.093	75507	DKS	
BR Aqr	$53273.034 {\pm} 0.002$	-0.142	32450	BIW	AE Boo	$54242.637 {\pm} 0.008$	0.098	75754	DKS	
BR Aqr	53646.002 ± 0.001	-0.148	33224	BIW	AE Boo	$54248.614 {\pm} 0.008$	0.092	75773	DKS	
BR Aar	53697563 ± 0.002	-0 149	33331	DKS	U Cae	$53701\ 006\pm 0\ 004$	-0.091	46181	BIW	BVBI
DD Aan	54288 567±0.002	0.159	24765	DKS	U Caa	52740.046 ± 0.002	0.002	46274	DIW	D 7 101
DR Aqr	54588.507±0.002	-0.158	34703	DIN	UCae	53740.040±0.002	-0.092	40274	DIW	177
BR Aqr	54390.976 ± 0.002	-0.158	34770	BIW	U Cae	54446.962 ± 0.002	-0.109	47958	BIW	V I
BR Aqr	$54415.552 {\pm} 0.002$	-0.158	34821	DKS	U Cae	$54452.001 {\pm} 0.002$	-0.107	47970	BIW	VI
DN Aqr	$52911.022 {\pm} 0.003$	0.022	38636	BIW	UY Cam	$53808.421 {\pm} 0.010$	-0.082	68316	KGE	
DN Aar	$53277.965 {\pm} 0.005$	0.022	39215	BIW	AH Cam	$53669.839 {\pm} 0.005$	-0.376	40519	DKS	
AA Ad	53661.571 ± 0.002	0.031	81026	DKS	AH Cam	53670.936 ± 0.001	-0.386	40522	DKS	
S Are	53184.070 ± 0.002	0 170	26620	BIW	AH Com	53680 805±0.001	0.000	105 40	DKG	
o Ara	00104/010T0/000	-0.1/9	20020	DIW			-0.064	40549	DKG	
5 Ara	53625.983±0.003	-0.212	27604	BIW	AH Cam	53697.881±0.002	-0.358	40595	DKS	
TZ Aur	$53687.904 {\pm} 0.002$	0.011	86259	DKS	AH Cam	$53717.780 {\pm} 0.006$	-0.371	40649	DKS	
IN Ara	$53176.070 {\pm} 0.003$	0.141	41059	BIW	AH Cam	$53731.792 {\pm} 0.003$	-0.371	40687	DKS	
IN Ara	$54338.018 {\pm} 0.003$	0.146	42899	BIW	AH Cam	$53734.727 {\pm} 0.002$	-0.385	40695	DKS	
MS Ara	53198 925+0 003	-0.218	48026	BIW	AH Cam	53744693 ± 0.002	-0.375	40722	DKS	
DU A	501001020101000	0.001	01706	DKG		507 11000 10002	0.975	10776	DVG	
DII AUI	52000.040±0.003	-0.001	41/4U	DKC	All Cam	55704.005±0.002	-0.3/3	40//0	DKG	
BH Aur	53380.812±0.003	-0.003	23305	DKS	AH Cam	53785.631±0.004	-0.367	40833	DKS	
					1					

Table 2: maxima of RR Lyrae stars

Table 2 (cont.): maxima of RR Lyrae stars

Variable	Maximum HJD 24	O-C (days)	Ε	Obs.		Variable	Maximum HJD 24	O - C (days)	Ε	Obs.	
AH Cam	$54002.806 {\pm} 0.005$	-0.377	41422	DKS		AN Cap	$52849.050 {\pm} 0.005$	0.112	6035	BIW	
RW Cnc	52695.839 ± 0.003	0.183	24012	DKS		AN Cap	52854.043 ± 0.005	0.116	6047	BIW	
RW Cnc	53102.959 ± 0.003	0.187	24756	BIW		AN Cap	52883.991 ± 0.004	0.127	6119	BIW	
RW Cnc	53442.772 ± 0.003	0.189	25377	DKS		AN Cap	53226.999 ± 0.005	0.108	6944 7019	BIW	
RW Chc	53450.985 ± 0.005 52726 704 ±0.002	0.194	20392	DKS		AN Cap	53032.045 ± 0.005 52105.045±0.006	0.175	7918 15470	DIW	
RW Chc	53720.794 ± 0.005 53730.016 ±0.005	0.215	20090	DKS		BI Con	53103.945 ± 0.000 53163.886 ± 0.002	0.272	10479 36351	BIW	
BW Cnc	53735.910 ± 0.003 53745.925 ± 0.003	0.204 0.194	25920	DKS		V499 Cen	53161.011 ± 0.002	0.007	23090	BIW	
RW Cnc	53761.811 ± 0.003	0.134 0.211	25960	DKS		V674 Cen	53115.014 ± 0.002	-0.062	37825	BIW	
RW Cnc	53767.830 ± 0.003	0.211	25971	DKS		RR Cet	53718.661 ± 0.002	0.004	37136	DKS	
RW Cnc	53788.615 ± 0.004	0.202	26009	DKS		RU Cet	52931.010 ± 0.005	0.068	22352	BIW	
RW Cnc	53802.910 ± 0.004	0.270	26035	DKS		RU Cet	53273.996 ± 0.005	0.081	22937	BIW	
RW Cnc	$53829.662 {\pm} 0.004$	0.209	26084	DKS		RV Cet	$52968.037 {\pm} 0.004$	0.166	22224	BIW	
RW Cnc	$54075.892 {\pm} 0.003$	0.200	26534	DKS		RV Cet	$53401.947 {\pm} 0.005$	0.187	22920	BIW	
RW Cnc	$54081.920{\pm}0.003$	0.209	26545	DKS		RV Cet	$53673.741 {\pm} 0.005$	0.178	23356	DKS	
RW Cnc	$54087.940 {\pm} 0.003$	0.209	26556	DKS		RX Cet	$52933.028 {\pm} 0.006$	0.133	22324	BIW	
RW Cnc	$54126.797 {\pm} 0.003$	0.215	26627	DKS		RX Cet	$53286.973 {\pm} 0.002$	0.110	22941	BIW	
SS Cnc	$54100.692 {\pm} 0.002$	0.048	84451	DKS		RZ Cet	$52969.921 {\pm} 0.003$	-0.112	37334	BIW	
SS Cnc	$54150.649 {\pm} 0.002$	0.047	84587	DKS		RZ Cet	$53380.959 {\pm} 0.003$	-0.116	38139	BIW	
TT Cnc	$53000.700 {\pm} 0.003$	0.084	23172	DKS		RZ Cet	$54041.674 {\pm} 0.002$	-0.131	39433	DKS	
TT Cnc	$53455.978 {\pm} 0.003$	0.094	23980	BIW		UU Cet	52930.064 ± 0.004	-0.119	19340	BIW	
TT Cnc	53479.646 ± 0.002	0.098	24022	DKS		UU Cet	53264.011 ± 0.004	-0.122	19891	BIW	
TT Cnc	53698.813 ± 0.003	0.083	24411	DKS		RY Col	53097.960 ± 0.003	-0.084	39234	BIW	
TT Cnc	53707.835 ± 0.002	0.090	24427	DKS		RY Com	54151.821 ± 0.002	-0.007	31033	DKS	
TT Cnc	53734.897 ± 0.003	0.106	24475	DKS		WW CrA	53193.962 ± 0.003	-0.065	39156	BIW	1
TT Cnc	53742.782 ± 0.002	0.102	24489	DKS		RV CrB	54177.917 ± 0.003	-0.099	67768	DKS	1
TT Cnc	53755.735 ± 0.002	0.096	24512	DKS		RV CrB	54188.859 ± 0.002	-0.101	67801	DKS	-
TT Cnc	53764.739 ± 0.003	0.085	24528	DKS		TV C-P	54240.892 ± 0.003	-0.100	07970	DKS	
TT Che	53772.020 ± 0.002 53772.621 ± 0.002	0.078	24042	DKS		SW Cru	53480.030 ± 0.004 53001.035 ± 0.004	0.029	89557	BIW	
TT Che	53794.604 ± 0.002	0.079	24042	DKS		SW Cru	53835.008 ± 0.002	0.007	84897	DSI	
TT Che	53803.624 ± 0.003	0.087	24501	DKS		SW Cru	$54171 074 \pm 0.002$	0.000	85852	DSI	BVBI
TT Cnc	$54049 842 \pm 0.003$	0.032	25034	DKS		SW Cru	54175.007 ± 0.002	0.001	85864	DSI	BVRI
TT Cnc	54054.918 ± 0.007	0.088	25043	DKS		SW Cru	54214.012 ± 0.003	0.060	85983	BIW	D 7 101
TT Cnc	54058.865 ± 0.003	0.091	25050	DKS		RW Dra	52786.882 ± 0.003	0.179	30275	DKS	
TT Cnc	54167.615 ± 0.003	0.095	25243	DKS		RW Dra	53504.822 ± 0.002	0.150	31896	DKS	
TT Cnc	$54198.607 {\pm} 0.000$	0.097	25298	DKS		RW Dra	$53513.682 {\pm} 0.003$	0.152	31916	DKS	
AS Cnc	$54129.910 {\pm} 0.002$	0.340	24176	DKS		RW Dra	$53535.861 {\pm} 0.002$	0.185	31966	DKS	
W CVn	$54155.831{\pm}0.003$	-0.131	59362	DKS		RW Dra	$53822.879 {\pm} 0.002$	0.193	32614	DKS	
W CVn	$54176.797 {\pm} 0.003$	-0.131	59400	DKS		RW Dra	$53970.776 {\pm} 0.005$	0.156	32948	PHA	
$Z \ CVn$	$53519.626 {\pm} 0.003$	0.245	22312	DKS		XZ Dra	$52753.847 {\pm} 0.004$	-0.062	22719	DKS	
Z CVn	$53726.904 {\pm} 0.002$	0.263	22629	DKS		RX Eri	$53007.963 {\pm} 0.002$	-0.008	53326	BIW	
Z CVn	53743.892 ± 0.005	0.252	22655	DKS		RX Eri	53359.722 ± 0.003	-0.009	53925	DKS	
Z CVn	53762.853 ± 0.004	0.252	22684	DKS		RX Eri	53409.054 ± 0.004	-0.006	54009	BIW	
Z CVn	53794.897 ± 0.003	0.259	22733	DKS		RX Eri	53739.670 ± 0.002	-0.010	54572	DKS	
Z CVn Z CV	53813.858 ± 0.004	0.259	22762	DKS		BB Eri	53056.949 ± 0.003	0.194	23684	DKS	
Z CVn Z CVn	53830.864 ± 0.004	0.200	22788	DKS		BB Eri	53396.618 ± 0.003	0.204	24280	DKS	
Z UVn PV CVn	54197.087 ± 0.003 54208 705 ± 0.002	0.290	23349 97115	DKS		DD Eri	53415.995 ± 0.004 52022 606 ± 0.002	0.204	24314 22101	DKS	
SS CVn	54208.795 ± 0.003 53043.949 ±0.002	-0.040	27113	DKS		BX For	53032.000 ± 0.003 53373 064 ± 0.003	-0.018	22101	BIW	
	$54116\ 612\pm0\ 003$	0.100	26894	DKS		SS For	52964.991 ± 0.003	0.146	22071	BIW	
AL CMi	54141.678 ± 0.002	0.000 0.437	31869	DKS		SS For	53391563 ± 0.002	-0.141	20000	DKS	
RV Cap	52868.974 ± 0.003	0.023	42403	BIW		SS For	53398.995 ± 0.003	-0.140	29732	BIW	
RV Cap	53228.961 ± 0.003	0.024	43207	BIW		SS For	53400.975 ± 0.002	-0.142	29736	BIW	
RV Cap	$53596.970 {\pm} 0.003$	-0.013	44029	BIW		SX For	$53680.974 {\pm} 0.005$	0.038	23991	BIW	
RV Cap	$53613.981{\pm}0.002$	-0.016	44067	BIW		SX For	$53683.998 {\pm} 0.005$	0.036	23996	BIW	
RV Cap	$54003.536 {\pm} 0.003$	0.001	44937	$\rm DKS$		RR Gem	$52659.608 {\pm} 0.002$	-0.289	28448	WAJ	
VW Cap	$52860.003 {\pm} 0.005$	0.106	87349	BIW	1	RR Gem	$52669.545 {\pm} 0.004$	-0.285	28473	WAJ	
VW Cap	$53239.960 {\pm} 0.005$	0.123	88558	BIW	1	RR Gem	$52674.706 {\pm} 0.003$	-0.289	28486	DKS	
VW Cap	$53596.033 {\pm} 0.005$	0.139	89691	BIW	1	RR Gem	$52682.652 {\pm} 0.002$	-0.289	28506	DKS	
YZ Cap	$53221.990 {\pm} 0.005$	0.034	34712	BIW	1	RR Gem	52707.685 ± 0.003	-0.287	28569	WAJ	
YZ Cap	53639.013 ± 0.005	0.036	36237	BIW	T	RR Gem	52742.645 ± 0.003	-0.290	28657	WAJ	

Variable	Maximum	O - C	E	Obs.	Variable	Maximum	O - C	E	Obs.	
	HJD 24	(days)				HJD 24	(days)			
RR Gem	$53073.588 {\pm} 0.002$	-0.306	29490	DKS	SZ Hya	$53465.043 {\pm} 0.002$	-0.149	23799	BIW	
RR Gem	$53323.878 {\pm} 0.001$	-0.322	30120	DKS	SZ Hya	$53708.950 {\pm} 0.002$	-0.149	24253	DKS	
RR Gem	$53352.879 {\pm} 0.001$	-0.325	30193	DKS	SZ Hya	$53784.697 {\pm} 0.003$	-0.152	24394	DKS	
RR Gem	$53429.957 {\pm} 0.002$	-0.325	30387	BIW	SZ Hya	$54145.710 {\pm} 0.005$	-0.165	25066	DKS	
RR Gem	$53467.697 {\pm} 0.002$	-0.330	30482	PVA ³	SZ Hya	$54173.646 {\pm} 0.002$	-0.166	25118	DKS	
RR Gem	53482.396 ± 0.002	-0.331	30519	HGH	UU Hva	53065.993 ± 0.003	0.008	25936	BIW	
R.R. Gem	53687.800 ± 0.002	-0.337	31036	DKS	UU Hya	53112.629 ± 0.001	0.019	26025	DKS	
R.R. Gem	53730.706 ± 0.002	-0.341	31144	DKS	UU Hya	53421.701 ± 0.003	0.010	26615	DKS	
BB Gem	54138719 ± 0.001	-0.365	32171	DKS	UU Hya	53459946 ± 0004	0.012	26688	BIW	
BB Gem	54169710 ± 0.002	-0.364	32249	DKS	UII Hya	53464.658 ± 0.002	0.009	26697	DKS	
BB Gem	54175.667 ± 0.002	0.367	32245	DKS	DG Hya	53058.665 ± 0.002	0.005	20001	DKS	
SZ Gem	54178.579 ± 0.002 54138.579±0.002	0.054	53767	DKS	DG Hya	53069.000 ± 0.010 53069.973 ± 0.005	0.173	37336	BIW	
GIGem	53705773 ± 0.002	0.070	53014	DKS	DG Hya	53419941 ± 0.003	0.173	38150	BIW	
GIGem	54080.646 ± 0.002	0.070	54800	DKS		53413.341 ± 0.003 53043.806 ± 0.003	0.051	44710	DKS	
CICom	54039.040 ± 0.002 54148 570±0.002	0.009	54026	DKS		53043.800 ± 0.003	0.051	44713	DIW	
	54146.570 ± 0.002	0.070	04900	DIW		53030.031 ± 0.003	0.052	44744	DIV	
DD CDU	53009.000 ± 0.003					53377.793 ± 0.003	0.055	45402	DKS	
nn Gnu	54551.022 ± 0.005	0.169	F1661			53413.001 ± 0.002	0.055	40474	DIW	
55 Gru	53031.019 ± 0.003	0.103	51001	DVC		53705.910 ± 0.001	0.057	40073	DKS	
IW Her	52732.814 ± 0.002	-0.009	70010	DKS	VInd	53047.023 ± 0.002	-0.133	28209	DIW	
1 W Her	03120.820±0.001	-0.009	79018	DRS		04304.983±0.002	-0.140	29700	DIG	
IW Her	53203.942 ± 0.002	-0.010	19220	DIV	RR Leo	52787.572 ± 0.002	0.054	20982	DKS	
TW Her	54275.667 ± 0.002	-0.012	81908	DKS	RR Leo	53092.942 ± 0.002	0.059	21657	DKS	
V X Her	52757.819 ± 0.001	-0.365	68093	DKS	RR Leo	53463.007 ± 0.002	0.065	22475	BIW	
V X Her	53174.928 ± 0.002	-0.378	69009	BIW	RR Leo	53735.806 ± 0.002	0.071	23078	DKS	
VA Her	53509.619 ± 0.002	-0.386	69744	DKS	SS Leo	53478.968 ± 0.003	-0.043	18676	BIW	
V A Her	54249.577 ± 0.002	-0.409	71369	DKS	SILeo	53490.001 ± 0.002	-0.019	53489	BIW	
AR Her	52744.715 ± 0.005	-1.585	24024	DKS	SZ Leo	53440.687 ± 0.004	-0.138	14930	DKS	
AR Her	53489.693 ± 0.005	-1.601	25609	DKS	SZ Leo	53441.753 ± 0.003	-0.141	14932	DKS	
AR Her	53497.668 ± 0.002	-1.017	25626	DKS	SZ Leo	54078.893 ± 0.002	-0.130	16125	DKS	
AR Her	53505.635 ± 0.005	-1.640	25643	DKS	SZ Leo	54116.828 ± 0.001	-0.119	16196	DKS	
AR Her	53510.783 ± 0.005	-1.192	25653	DKS	SZ Leo	54148.876 ± 0.002	-0.115	16250	DKS	
AR Her	53519.704 ± 0.003	-1.012	20073	DKS	SZ Leo	54108.025 ± 0.003	-0.120	10293	DKS	
AR Her	53530.053 ± 0.004	-1.044	20709	DKS	I V Leo	52727.090 ± 0.004	0.093	23313	DKS	
AR HER	5 3 5 1 7 . 7 2 5 ± 0 . 002	-1.170	20300	F VA DVN	TVLeo	52757.114 ± 0.005	0.091	20021	DIW	
AR Her	54245.378 ± 0.004	-1.201	27210	BVN	I V Leo	53087.004 ± 0.003	0.098	23847	DIW	
AR Her	54200.402 ± 0.005	-1.200	27240	DVN		53477.932 ± 0.003	0.099	24420	DIW	
AR Her	54270.394 ± 0.000	-1.207	21202		WW Leo	53133.973 ± 0.003	0.027	20662	DIW	
AR Her	54270.390 ± 0.003 54200.202 ±0.003	-1.200	21202	PUU	WW Leo	53300.804 ± 0.002 52428 050±0 002	0.028	20765	DKS	
DI U	54300.392 ± 0.002	-1.230	21333		WW Leo	53426.939 ± 0.003	0.030	21020	DIV	
DL Her DL H	52671.942 ± 0.000	0.017	24700		WW Leo	53744.032 ± 0.003	0.032	01209 01410	DKS	
	53223.970 ± 0.000	0.027	20000	DIW		53822.019 ± 0.003 52764.610 ± 0.002	0.032	21006	DKS	
	53954.049 ± 0.005 54101.875±0.005	0.037	20014	DKS	AA Leo	52704.019 ± 0.003 52502.055±0.002	-0.007	21990 02021	DIW	
DL UL	54191.070±0.000 54040.847±0.004	0.029	27010	DKG	AA Leo	59710 079 L 0 009	-0.070	20201 02500	DVG	
DL U	54249.047±0.004 54274 714±0.009	0.021	27156 27156	DKG	AA Leo	57120019±0.003	-0.070	⊿əə90 94910	DKe	
S7 Um	59673 608±0.003	0.040	21100 20206	DKG	VIM:	54134.090±0.003 53784 005±0.004	-0.074	24010 24757	DKe	
од Пуа 97 Ц	52073.036±0.010 52720.040±0.005	0.165	22020 99717	BIM		53764.505 ± 0.004 54165.641 ± 0.009	0.119	25199	DKG	
52 Hya 57 Uwa	52720.349±0.003	0 100	22414 99790	BIW		54105.041 ± 0.002 54185 560 ±0.002	-0.200 0.205	25591	DKG	
од нуа 97 Ц	0⊿1⊿9.044⊥0.000 52736 035⊥0 002	0.129	44449 99449	BIW		59004 704±0.003	-0,200 0.049	00041 20021	DKG	
SZ Hya	52730.035 ± 0.002 52741 941 \pm 0.002	0.122	22442 22452	BIW		52072 066±0.002	0.042	20022	BIW	
од нуа 97 Ц	52755 0.08±0.003	0.120	42400 99470	BIW		53300 00/±0.002	0.041	20100	BIM	
52 Hya 57 Uwa	52756 086±0.003	-0.127	22419 99701	BIW		53355.534±0.002 54155 559±0.009	0.040	20119	DKG	
од пуа 97 Ц	52758 060±0.003	-0.120 0.194	22401 99709	BIW	TV I	54100.002±0.003 53806 531±0.002	-0.099 -0.099	49499 59490	RGE	3
SZ Hya	52763 071±0.003	0.124	22400 22400	BIW	TVI	5300.331 ± 0.003 54110.714 ± 0.003	0.044	54684	DKGE	
52 Hya 57 Uwa	52703.371±0.003	0.170	4494 99590	BIW		54110.714 ± 0.002 54197561 ± 0.002	0.022	54754	DKG	1
SZ Hya	52784 010±0 002	-0.170	44040 99599	BIW	TVI	54127.001 ± 0.002 54177.617 ± 0.002	0.024	54069	DKe	1
SZ Hya	52055 682±0.002	0.120	22000 93027	DKS	TWI	5417.017 ± 0.002 54088 705 ±0.002	0.024	18815	DKG	
SZ Hya	53389 899±0.002	-0.132	⊿əuə≀ 23646	DKS		53056 879±0.002	0.001	10/65	BCM	VI
52 Hya 57 Uwa	53380 830±0.000	0.172	23040	DKG	BBT	53084 684±0.003	0.040	10514	BCW	V I T
од нуа 97 Ц	JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ	0.147	23600 23003	DKS	B7 I	53073 001±0.007	0.000	10014 99950	DKG	1
SZ Hya	53410.784±0.000 53427 967±0.005	0.155	23090 23720	BIW	BZ Lyr	53538 633±0.002	0.002	20200	DKG	
SZ Hya	53431 686+0 002	-0.100	23737	DKS	BZ Lyr	53671546 ± 0.002	0.004	24497	DKS	
52 11ya	50401,000±0,002	0.131	20101	DIN	102 Ly1	500111040±01002	0.004	21121	DIIO	
					1					

Table 2	(cont.):	maxima	of RR	Lyrae	stars

	N.C. 1	0 0		01		37 1 1	·	0 0		01	
Variable	Maximum	O = C	E	Obs.		Variable	Maximum	O - C	E	Obs.	
	HJD 24	(days)				D II 0 1	HJD 24	(days)			
RZ Lyr	53821.842 ± 0.003	-0.005	24721	DKS		RU Scl	53284.970 ± 0.002	0.366	44922	BIW	
RZ Lyr	54014.587 ± 0.002	0.002	25098	DKS		RU Scl	54016.124 ± 0.004	0.392	46404	DSI	
RZ Lyr	54269.698 ± 0.002	0.003	25597	DKS		RU Scl	54021.056 ± 0.002	0.391	46414	DSI	
RZ Lyr	54275.835 ± 0.002	0.005	25609	DKS		CS Ser	53165.956 ± 0.002	0.012	41742	BIW	
CN Lyr	$53559.804 {\pm} 0.006$	0.022	22056	DKS		CS Ser	53561.048 ± 0.002	0.007	42492	BIW	
EZ Lyr	53557.654 ± 0.002	-0.118	37397	DKS		CS Ser	53567.893 ± 0.003	0.003	42505	BIW	
KS Lyr	$54002.587 {\pm} 0.002$			DKS		CS Ser	$53568.947 {\pm} 0.003$	0.004	42507	BIW	
Z Mic	$54358.966 {\pm} 0.002$	-0.116	21743	BIW		CS Ser	53570.001 ± 0.003	0.004	42509	BIW	
CM Ori	54140.633 ± 0.003	-0.022	43972	DKS		SS Tau	53671.721 ± 0.002	0.489	42471	DKS	
V964 Ori	$53668.819 {\pm} 0.002$	-0.357	43929	DKS		SS Tau	53734.607 ± 0.002	0.489	42641	DKS	
V964 Ori	$53707.676 {\pm} 0.002$	-0.358	44006	DKS		SS Tau	$54009.822 {\pm} 0.002$	0.485	43385	DKS	
BN Pav	$54368.017 {\pm} 0.003$	-0.035	45897	BIW		SS Tau	$54013.891 {\pm} 0.003$	0.484	43396	DKS	
AO Peg	$54269.790 {\pm} 0.003$	0.038	52546	DKS		SS Tau	$54020.917 {\pm} 0.002$	0.482	43415	DKS	
AV Peg	$52909.943 {\pm} 0.002$	0.083	23361	BIW		SS Tau	$54023.878 {\pm} 0.002$	0.483	43423	DKS	
AV Peg	$53267.923 {\pm} 0.002$	0.090	24278	BIW		SS Tau	$54088.594 {\pm} 0.002$	0.464	43598	DKS	
AV Peg	$53315.549 {\pm} 0.001$	0.090	24400	RWA	3	BI Tel	53201.144 ± 0.007	-0.051	46834	BIW	
AV Peg	$53645.031 {\pm} 0.002$	0.096	25244	BIW		HH Tel	$53627.980 {\pm} 0.002$	-0.187	52389	BIW	
AV Peg	$53680.556 {\pm} 0.001$	0.097	25335	DKS		HH Tel	$54381.007 {\pm} 0.002$	-0.170	53951	BIW	
AV Peg	$54020.579 {\pm} 0.002$	0.104	26206	DKS		U Tri	$54034.672 {\pm} 0.002$	-0.040	78109	DKS	
AV Peg	$54261.836 {\pm} 0.002$	0.109	26824	DKS		U Tri	$54050.773 {\pm} 0.003$	-0.040	78145	DKS	
BH Peg	$53538.832{\pm}0.004$	-0.085	22112	DKS		U Tri	$54063.743 {\pm} 0.002$	-0.041	78174	DKS	
BH Peg	$53678.553 {\pm} 0.004$	-0.101	22330	DKS		UX Tri	$53662.854 {\pm} 0.006$	0.036	3061	DKS	
BH Peg	$54001.622 {\pm} 0.004$	-0.092	22834	DKS		UX Tri	$53672.641 {\pm} 0.003$	0.018	3082	DKS	
BH Peg	$54015.710 {\pm} 0.003$	-0.106	22856	DKS		UX Tri	$53700.636 {\pm} 0.004$	-0.001	3142	DKS	
BH Peg	$54044.542 {\pm} 0.003$	-0.119	22901	DKS		UX Tri	$53735.645 {\pm} 0.004$	-0.010	3217	DKS	
BT Peg	$53677.588 {\pm} 0.003$	0.079	30929	DKS		UX Tri	$54032.627 {\pm} 0.002$	0.021	3853	DKS	
BT Peg	$54059.535 {\pm} 0.004$	0.082	31615	DKS		UX Tri	$54038.683 {\pm} 0.002$	0.007	3866	DKS	
CG Peg	$54023.681 {\pm} 0.005$	-0.043	31942	DKS		YY Tuc	$53644.015 {\pm} 0.003$	-0.276	18503	BIW	
CG Peg	$54248.838 {\pm} 0.002$	-0.047	32424	DKS		YY Tuc	$54424.960 {\pm} 0.002$	0.229	19732	BIW	
DZ Peg	$53728.537 {\pm} 0.002$	0.156	32662	DKS		RV UMa	$53223.593 {\pm} 0.002$	0.094	17408	DKS	
ET Peg	$54034.524{\pm}0.002$	-0.046	30681	DKS		RV UMa	$53506.770 {\pm} 0.003$	0.094	18013	DKS	
GY Peg	$54054.710 {\pm} 0.002$	-0.246	25499	DKS		RV UMa	$53507.705 {\pm} 0.005$	0.093	18015	SDB	B
GY Peg	$54100.536{\pm}0.003$	-0.234	25590	DKS		RV UMa	$53762.807 {\pm} 0.002$	0.102	18560	PVA	
TU Per	$54011.769 {\pm} 0.002$	-0.222	25103	DKS		RV UMa	$53827.867 {\pm} 0.003$	0.102	18699	DKS	
TU Per	$54031.806 {\pm} 0.002$	-0.219	25136	DKS		RV UMa	$54127.899 {\pm} 0.002$	0.108	19340	DKS	
TU Per	$54115.574 {\pm} 0.002$	-0.227	25274	DKS		RV UMa	$54255.676 {\pm} 0.003$	0.104	19613	DKS	
AR Per	$53661.855 {\pm} 0.002$	0.051	62096	DKS		SX UMa	$53480.861 {\pm} 0.002$	0.111	27258	PVA	13
AR Per	$53678.876 {\pm} 0.003$	0.050	62136	DKS		SX UMa	$53483.932 {\pm} 0.002$	0.111	27268	PVA	13
AR Per	$54089.533 {\pm} 0.002$	0.052	63101	DKS		SX UMa	$53492.840 {\pm} 0.002$	0.112	27297	PVA	13
ET Per	$53731.558 {\pm} 0.002$	0.064	64841	DKS		SX UMa	$53780.935 {\pm} 0.002$	0.131	28235	PVA	1
ET Per	$54014.837 {\pm} 0.002$	0.048	65560	DKS		SX UMa	$54061.040 {\pm} 0.002$	0.145	29147	PVA	1
FM Per	$53705.655 {\pm} 0.006$	0.007	40760	DKS	1	TU UMa	$54165.880 {\pm} 0.001$	-0.028	20325	DKS	
FM Per	$53727.682 {\pm} 0.003$	0.020	40805	DKS		AB UMa	$54191.679 {\pm} 0.004$	0.113	29961	DKS	
U Pic	$53715.051 {\pm} 0.003$	0.051	27360	BIW	B	AB UMa	$54236.643 {\pm} 0.006$	0.108	30036	DKS	
U Pic	$53715.051 {\pm} 0.002$	0.051	27360	BIW		AX UMa	$54140.874 {\pm} 0.004$	0.234	16373	DKS	
U Pic	$53715.931 {\pm} 0.003$	0.051	27362	BIW	B	AF Vel	$53114.922 {\pm} 0.003$	0.253	22151	BIW	
U Pic	$53715.932 {\pm} 0.002$	0.051	27362	BIW		AN Vel	$53093.959 {\pm} 0.002$	-0.127	68769	BIW	
RU Psc	$54019.652 {\pm} 0.006$	0.014	35545	DKS		CD Vel	$53090.911 {\pm}0.002$	-0.183	42494	BIW	
RU Psc	$54028.626 {\pm} 0.005$	0.010	35568	DKS		AE Vir	$53151.980{\pm}0.003$	0.086	39235	BIW	
RU Psc	$54064.526 {\pm} 0.006$	-0.006	35660	DKS		AE Vir	$53518.990 {\pm} 0.005$	0.093	39814	BIW	
HH Pup	$53737.017 {\pm} 0.002$	0.008	38994	BIW		BB Vir	$54256.648{\pm}0.002$	-0.221	31083	DKS	
$V796 \ Sgr$	$53202.988 {\pm} 0.004$	-0.059	30316	BIW		BC Vir	$53499.721 {\pm} 0.002$	0.099	59480	DKS	
V494~Sco	$53195.939 {\pm} 0.002$	-0.031	28244	BIW		FK Vul	$53698.560 {\pm} 0.003$	0.023	40599	DKS	
RU Scl	$52931.728 {\pm} 0.003$	0.355	44206	DKS							

¹ RRc, double maximum
 ² RRc, flat maximum
 ³ No filter

Number 5855

Konkoly Observatory Budapest 20 October 2008 *HU ISSN 0374 - 0676*

LONG TERM BVR_CI_C PHOTOMETRY OF CARBON AND SYMBIOTIC STARS IN THE DRACO DWARF GALAXY

MUNARI, U.¹; SIVIERO, A.¹; OCHNER, P.²; TOMASONI, S.²; MOSCHINI, F.²; FRIGO, A.²; MORETTI, S.²; TOMASELLI, S.²; BALDINELLI, L.²; MAITAN, A.²; VAGNOZZI, A.²; BACCI, S.²

¹ INAF Osservatorio Astronomico di Padova, Sede di Asiago, I-36032 Asiago (VI), Italy

² ANS Collaboration, c/o Osservatorio Astronomico, I-36032 Asiago (VI), Italy

The Draco dwarf galaxy (Ddg) is a satellite of the Milky Way Galaxy, characterized by low reddening ($E_{B-V} = 0.03$), low metallicity ([Fe/H] ≈ -2), high velocity dispersion ($\sigma_V = 10.5 \,\mathrm{km \, sec^{-1}}$), a tidal radius of 40 arcmin ($\approx 0.83 \,\mathrm{kpc}$), a total mass within the tidal radius of $3.5 \times 10^7 M_{\odot}$, and a distance modulus of $m - M = 19.3 \,\mathrm{mag}$. The overall light-to-mass ratio is $M/L = 146 \pm 42$ (in solar units), indicating a strongly dark-matter dominated, bound stellar system (Odenkirchen et al. 2001).

The first three carbon stars (named C1, C2, C3) were discovered in Ddg by Aaronson et al. (1982). Since then, other three were found (cf. Kinemuchi et al. 2008, and references therein). One of the carbon stars, C1, is a symbiotic binary (Belczynski et al. 2000). It displays a rich and high ionization emission line spectrum (Aaronson et al. 1982, Munari and Buson 1994) and it is a super-soft X-ray source (Bickert et al. 1996).

An extensive search for variable stars in Ddg was carried out by Baade and Swope (1961), during which they found 260 variables. They did not notice any of the carbon stars as a variable star, in spite the mean brightness of the variables they discovered and characterized (mainly RR Lyr) was three whole magnitudes fainter than the carbon stars themselves. Should any of the carbon stars have varied by more than 0.2 mag, Baade and Swope's survey would have detected them. The issue if any of the carbon stars in Ddg is indeed variable, of very low amplitude, is still an open issue given the contradicting results reported in the literature (see Kinemuchi et al. 2008 for a partial summary).

Over the last three years we have carried out a surveillance monitoring of C1, looking for active phases of this highly interacting and energetic binary.

Our $BVR_{\rm C}I_{\rm C}$ CCD photometric surveillance extended from 2006.30 to 2008.68. Together with C1, in the same field of view our CCD observations, we recorded also C2 and C3. We observed with several telescopes, all located in Italy: the 0.5 m of Museo Civico di Rovereto (Trento), the 0.5 m of Osservatorio Astronomico S. Lucia di Stroncone (Terni), the 0.4 m of Associazione Ravennate Astrofili Rheyta in Bastia (Ravenna), the 0.4 m of Osservatorio Astronomico Pizzinato (Bologna), and a 0.3 m located in Folgaria (Trento). All instruments were equipped with either Schuler, Optec, Custom Scientific or Omega standard $BVR_{\rm C}I_{\rm C}$ filters. All observations were reduced and corrected for color equations using the same photometric comparison sequence calibrated around C1 by Henden and

	< V	<pre> </pre>	$< I_0$	c >	< <i>B</i>	-V >	< V	$-I_{\rm C} >$	$< R_{\rm C}$	$_{\rm c}-I_{\rm C}>$	
$\begin{array}{c} \mathrm{C1} \\ \mathrm{C2} \\ \mathrm{C3} \end{array}$	17.17 17.36 17.53	$0.08 \\ 0.06 \\ 0.09$	$15.68 \\ 16.03 \\ 16.23$	$0.05 \\ 0.05 \\ 0.08$	$1.49 \\ 1.59 \\ 1.47$	$0.14 \\ 0.25 \\ 0.29$	$1.49 \\ 1.31 \\ 1.31$	$\begin{array}{c} 0.06 \\ 0.07 \\ 0.10 \end{array}$	$\begin{array}{c} 0.63 \\ 0.63 \\ 0.59 \end{array}$	$0.06 \\ 0.05 \\ 0.06$	
$\begin{array}{c} \mathrm{C1} \\ \mathrm{C2} \end{array}$	$\begin{array}{c} 17.15\\ 17.30\end{array}$	$\begin{array}{c} 0.08\\ 0.05\end{array}$	$\begin{array}{c} 15.66\\ 15.99 \end{array}$	$\begin{array}{c} 0.04 \\ 0.04 \end{array}$			$\begin{array}{c} 1.49 \\ 1.31 \end{array}$	$\begin{array}{c} 0.09 \\ 0.06 \end{array}$			a a
C1	17.19	0.05	15.82	0.07	1.45	0.03	1.41	0.05	0.65	0.02	b

Table 1: Median values (and errors) of our BVR_CI_C photometry of Draco C1, C2 and C3 covering the period from 2006.30 to 2008.68. Median values (and errors) from Skopal et al. (2007, coded b) and mean values (and errors) from Kinemuchi et al. (2008, coded a) are given for comparison.

Munari (2000). A total 121 $VR_{\rm C}I_{\rm C}$ runs were collected in separate nights, 33 of which included also observations in the *B* band.

Even if no outburst or bright phase of C1 has been recorded, the collected data allow to put constraints on the variability of C1, C2 and C3. Table 1 lists the median values of our observations, and for comparison the median values obtained by Skopal et al. (2007), who monitored C1 from 2003.9 to 2007.2, and by Kinemuchi et al. (2008), who monitored C1 and C2 from 1993 to 1996. The values in Table 1 agree well within the errors, indicating the absence of any long term trend affecting C1 and C2 over the last 15 years.

The program stars were faint, our telescopes of limited diameter and the observations were carried out in surveillance, short-exposure mode. Therefore, the error affecting the single photometric point is significant. To obtain meaningful light-curves is necessary to bin the data. A bi-monthly binning proved to be the most convenient in term of noise suppression and preservation of light-curve details. Such a bi-monthly binning provides the following results for the three program stars.

C3 is not variable, at least not with an amplitude larger than 0.05 mag.

C2 is a border-line case. The amplitude of any actual variability should not exceed 0.1 mag. Sherrone et al. (2001) listed C2 as a definite photometric variable, but they did not provide supporting details. An amplitude around 0.2 mag is listed for C2 by Kinemuchi et al. (2008), again with not details.

C1 is more confidently a true variable, as illustrated by Figure 1 which could also support feeble hints of an anti-correlation of brightness and color (C1 redder when fainter, bluer when brighter), as observed in pulsating stars. The amplitude is ≈ 0.2 mag, with a possible periodicity of the order of one year. Amplitude and period would be appropriate for either a reflection effect or an ellipsoidal distortion of the carbon star. It is worth noticing that Shetrone et al. (2001) asserted C1 to be not variable, while it is definitively a variable according to Kinemuchi et al. (2008).

The reflection effect is quite common in symbiotic binaries and it is caused by the very hot and luminous white dwarf illuminating the facing side of the cool giant companion. In this case the period of the reflection effect is also the orbital period. The ellipsoidal distortion of the mass donor cool giant is also frequently observed in symbiotic binaries, where the high mass transfer rate necessary to sustain the stable H-burning conditions on the white dwarf, requires Roche lobe filling conditions. In this case, the orbital period is twice longer than the period of photometric variability. Given its super-soft X-ray nature, both a reflection effect and the Roche lobe filling are highly probable to occur in C1, and the light-curve in Figure 1 could result from the combination of the two. The high-resolution spectroscopic observations by Munari (1991) proved C1 to be variable in both radial velocity and emission line profiles. Clearly, C1 is worth further observations, which we plan to carry out.

Figure 1. $V, V - I_C$ light-curve of carbon symbiotic binary C1 from our observations, binned into bi-monthly means. The size of the dots is proportional to the number of observations in that bin. The error bars are the errors of the mean.

References:

Aaronson, M., Liebert, J., Stocke, J., 1982, ApJ, 254, 507

- Baade, W., Swope, H. H., 1961, AJ, 66, 300
- Belczynski, K., Mikolajewska, J., Munari, U. et al., 2000, A&AS, 146, 407
- Bickert, K. F., Greiner, J., Stencel, R. E., 1996, Lecture Notes in Physics, 472, 225, in: Supersoft X-Ray Sources, J. Greiner ed., Springer-Verlag
- Henden, A., Munari, U., 2000, A&AS, 143, 343
- Kinemuchi, K., Harris, H. C., Smith, H. A. et al., 2008, AJ, 136, 1921
- Munari, U., 1991, A&A, 251, 103
- Munari, U., Buson, L. M., 1994, A&A, 287, 87
- Odenkirchen, M., Grebel, E. K., Harbeck, D. et al., 2001, AJ, 122, 2538
- Shetrone, M. D., Cote, P., Stetson, P. B., 2001, PASP, 113, 1122
- Skopal, A., Vanko, M., Pribulla, T. et al., 2007, AN, 328, 909

Number 5856

Konkoly Observatory Budapest 22 October 2008 *HU ISSN 0374 - 0676*

SHORT-PERIOD OSCILLATIONS IN THE ALGOL-TYPE SYSTEMS II: NEWLY DISCOVERED VARIABLE GSC 3889-0202

DIMITROV, D.; KRAICHEVA, Z.; POPOV, V.

Institute of Astronomy, BAS, Tsarigradsko Shossee 72, 1784 Sofia, Bulgaria, e-mail: dinko@astro.bas.bg; zk@astro.bas.bg; vpopov@astro.bas.bg

GSC 3889-0202 was discovered as a new eclipsing binary in our search for new variables in the NSVS database (Wozniak et al. 2004). According to the NSVS data the star was classified as Algol-type binary with period $P \simeq 2.71$ days, amplitude of primary minimum $A_R > 0.35$ mag, and the magnitude in maximum R'max $\simeq 10.6$ mag.

The CCD photometry (in BVR bands) of GSC 3889-0202 was carried out with the 60cm Cassegrain telescope at NAO Rozhen, equipped with the CCD camera FLI PL09000 (3056x3056, 12 μ pixel), and Bessell (1990) standard UBVRI filters. The standard IRAF procedures were used for the reduction of the photometric data. There are no suitable standards in the field (Fig. 1) and we apply the photometry method of Everett and Howell (2001). An ensemble standard star (COMP) was created using four stars (Table 1) with $\sigma < 0.013$ mag in all R band observations.

The phased light curves, based on the NSVS data and Rozhen observations, are shown on Fig. 2. The light curves for several nights, acquired in the BVR passbands are shown in Fig. 4 and Fig. 5. Short-period oscillations with a peak-to-peak amplitude of up to 0.045 mag in R (Table 2), 0.05 mag in V, and 0.07 mag in B (also present at the primary and the secondary minima) were detected. A preliminary periodogram analysis (Fig. 6) of the data shows a main periodicity of about 22.69 c/d (~ 63.47 minutes).

Spectral observations of GSC 3889-0202 were obtained with the Coudé spectrograph (resolution of 0.19 Å/pixel) of the 2m RC telescope at NAO Rozhen (Table 3). The spectral domain covered three regions around H_{α} , H_{β} , and MgII 4481 lines (Fig. 3). The data reduction of the spectra was made with the standard IRAF procedures. The corresponding radial velocities were measured by the cross-correlation technique using synthetic spectrum, calculated with the programme SPECTRUM (Gray & Corbally 1994) and a grid of LTE atmosphere models for a solar-type chemical composition (Castelli & Kurucz 2003), as a template spectrum. The physical parameters of the primary component were estimated by comparing the synthetic and the observed spectra. The parameters of the secondary were computed with the PHOEBE software (Prša & Zwitter 2005). The spectral types of the two components were determined using Gray & Corbally (1994) calibration (Table 4). The amplitude of the RV curve was estimated to be $A_{RV} \geq 60 \text{ kms}^{-1}$, and the γ velocity is -16.2 kms⁻¹ (Fig. 2).

The new ephemeris were computed using both Rozhen and NSVS data:

$$HJD(\text{MinI}) = 2454620.151(\pm 0.004) + 2.71066(\pm 0.00008)E \tag{1}$$

Acknowledgements This study made use of the SIMBAD, ADS, and VSX databases, and GCVS catalogue.

Table 1. Data for the variable,	comparison,	and check stars	used in the	CCD photometry	у
---------------------------------	-------------	-----------------	-------------	----------------	---

ID	Name	RA (J2000)	DEC (J2000)	$B_T - V_T$
VAR	GSC 3889-0202	$17^h \ 46^m \ 30.43^s$	$+53^{\circ} \ 11' \ 57.8''$	0.244
C1	GSC 3902-0709	$17^h \ 46^m \ 50.63^s$	$+53^{\circ} 12' 32.8''$	1.158
C2	GSC 3889-0120	$17^h \ 46^m \ 24.77^s$	$+53^{\circ} 12' 07.7''$	
C3	GSC 3889-0906	$17^h \ 46^m \ 38.61^s$	$+53^{\circ} \ 12' \ 27.6''$	
C4	GSC 3889-0216	$17^h \ 46^m \ 28.79^s$	$+53^{\circ} \ 09' \ 16.5''$	

Date	HJD(start)	Length	Filter	Exp. $[s]$	Ν	Phase	$A_R \max(\text{osc.})$
05.06.2008	2454623.50080	$01^{h} 44^{m}$	R	60	83	0.24 - 0.27	0.02
27.06.2008	2454645.48054	$02^{h} \ 18^{m}$	BVR	$120,\!60,\!30$	35	0.35 - 0.38	-
29.06.2008	2454647.45583	$01^{h} \ 45^{m}$	R	60	99	0.08 - 0.10	0.045
30.06.2008	2454648.47006	$02^{h} \ 38^{m}$	R	60	135	0.45 - 0.49	0.03
01.07.2008	2454649.45747	$01^{h} \ 45^{m}$	R	60	98	0.81 - 0.84	0.02
03.07.2008	2454651.46105	$02^{h} \ 10^{m}$	R	60	119	0.55 - 0.59	0.03
06.07.2008	2454654.40236	$02^{h} \ 21^{m}$	R	30	239	0.64 - 0.67	0.015
17.07.2008	2454665.48791	$01^{h} \ 33^{m}$	R	60	79	0.73 - 0.75	0.015
18.07.2008	2454666.44853	$01^{h} \ 46^{m}$	R	60	99	0.08 - 0.11	0.035
25.07.2008	2454673.32356	$00^{h} \ 20^{m}$	R	60	19	0.61 - 0.62	-
02.08.2008	2454681.40295	$03^{h} 18^{m}$	BVR	$120,\!60,\!30$	49	0.60 - 0.65	0.02
03.08.2008	2454682.52403	$00^{h} 54^{m}$	BVR	$120,\!60,\!30$	14	0.01 - 0.03	-
04.08.2008	2454683.51846	$01^{h} \ 19^{m}$	BVR	$120,\!60,\!30$	19	0.38 - 0.40	0.03
05.08.2008	2454684.51287	$01^{h} \ 15^{m}$	BVR	$120,\!60,\!30$	19	0.75 - 0.77	0.04
06.08.2008	2454685.26067	$05^{h} \ 31^{m}$	R	60	252	0.02 - 0.11	0.02
07.08.2008	2454686.31423	$05^{h} 42^{m}$	BVR	$120,\!60,\!30$	89	0.41 - 0.50	0.025
11.08.2008	2454690.29035	$07^{h} 42^{m}$	BVR	$120,\!50,\!20$	127	0.88 - 1.00	0.035
06.09.2008	2454716.28481	$04^{h} \ 31^{m}$	BVR	$120,\!60,\!30$	57	0.47 - 0.54	0.04

Table 2. Observational runs of GSC 3889-0202

Table 3. Rozhen spectra of GSC 3889-0202

Date	HJD(mid)	S/N	Exp.	R	V	Region	Phase
			$[\mathbf{s}]$	[kms	$5^{-1}]$	[Å]	
10.06.2008	2454628.5088	39	1800	-40.8	± 1.7	4400-4600	0.094
10.06.2008	2454628.4841	51	1800	-35.4	± 6.5	4800-5000	0.084
10.06.2008	2454628.4612	63	1800	-36.0	± 4.3	6500 - 6700	0.076
11.06.2008	2454629.4740	38	1800	-32.7	± 1.6	4400-4600	0.450
11.06.2008	2454629.4968	52	1800	-25.9	± 6.8	4800-5000	0.458
$11.06\ 2008$	2454629.5197	63	1800	-24.3	± 2.3	6500 - 6700	0.467
12.06.2008	2454630.5328	35	1800	+17.2	± 1.8	4400-4600	0.840
12.06.2008	2454630.5096	48	1800	+22.4	± 5.7	4800-5000	0.832
$12.06\ 2008$	2454630.4864	58	1800	+24.6	± 2.6	6500 - 6700	0.823

Table 4. Physical parameters of the primary and secondary components of GSC 3889-0202

Parame	ter	Primary star	Secondary star
$T_{\rm eff}$	[K]	7750	4500
$\log g$		3.9	3.2
$v \sin i$	$[\mathrm{kms}^{-1}]$	~ 60	
Spectral type		A7 V-IV	K III

Figure 1. Field of the eclipsing binary GSC 3889-0202 (size $15' \times 10'$). North is down and East is to the right.

Figure 2. Light and radial velocity curves of GSC 3889-0202. Upper panel - NSVS data, midlie panel - Rozhen R data (dots) and model (solid line), and lower panel - Rozhen RV data (diamonds) and model (solid line).

Figure 3. Rozhen combined spectra (thin line) of GSC 3889-0202 and the best synthetic spectra (thick line).

Figure 4. Sample ΔR light curves of GSC 3889-0202 (VAR–COMP, diamonds) and properly shifted C3 star (C3–COMP, crosses). Residuals between observations and the model near the primary minimum are presented on the lower panel. Dashed vertical lines indicate the beginning, middle, and the end of the eclipse.

Figure 5. Differential *BVR* light curves of GSC 3889-0202 (VAR–COMP, diamonds) around secondary minimum and shifted C3 star (C3–COMP, crosses). Dashed vertical lines indicate the middle of the secondary eclipse.

Figure 6. Power spectrum of GSC 3889-0202 Rozhen data after subtracting the synthetic light curve from the data.

References:

Bessell, M., S., 1990, PASP, 102, 1181
Castelli, F., Kurucz, R., 2003, IAU Symp., 210, 20
Everett, M., Howell, S., 2001, PASP, 113, 1428
Gray, R., Corbally, C., 1994, AJ, 107, 742
Prša, A., Zwitter, T. 2005, ApJ 628, 426
Wozniak, P., Vestrand, W., Akerlof, C., et al., 2004, AJ, 127, 2436

Number 5857

Konkoly Observatory Budapest 4 November 2008 HU ISSN 0374 - 0676

VARIABLE STARS IN THE FIELD OF THE OPEN CLUSTER KING 7

BUKOWIECKI, ŁUKASZ; MACIEJEWSKI, GRACJAN

Centrum Astronomii, Uniwersytet Mikołaja Kopernika, Pl-87100 Toruń, Poland; e-mail: gm@astri.uni.torun.pl

King 7 (C 0355+516) was discovered by King (1949) who described the cluster as a moderately rich group of stars fainter than 16 mag and spread in the area of $8' \times 4'$. Durgapal et al. (1996) collected *UBVRI* CCD photometry for the central ($6' \times 6'$) part of the cluster and obtained fundamental parameters such as the age of 600 Myr, the interstellar extinction E(B - V) = 1.37 mag, and the distance of 1.9 kpc. These authors also studied the mass function of the cluster. Durgapal et al. (1997) redetermined cluster's parameters and obtained the age of 600 – 800 Myr, the interstellar extinction E(B - V) = 1.25 mag, and the distance of $2.20 \pm 0.34 \text{ kpc}$. Durgapal & Pandey (2001) reported the limiting radius of the cluster $r_{\text{lim}} = 3'$. Sandhu et al. (2003) estimated the photometric binary content in the cluster for about 20%. In this report we present results of a dedicated CCD search for variable stars in the field of King 7.

The observations were gathered in B and V bands between January and April, 2008 with the 90/180 cm Schmidt-Cassegrain Telescope of the Nicolaus Copernicus University Astronomical Observatory in Piwnice near Toruń, Poland. The telescope was used in the imaging mode with a 60 cm correction plate and a field-flattening lens mounted near the focal plane. SBIG STL-11000 CCD camera (4008 \times 2672 pixels \times 9 μ m) was used as a detector. The field of view was 72 arcmin in declination and 48 arcmin in right ascension with the scale of 1.08 arcsec per pixel. The 2×2 binning was used to increase the signal-tonoise ratio. The exposure time was set to 20 s and 600 s. The typical seeing (FWHM) was 5–6". During about 31 hours of observations in total 277 images in V and 90 in B were obtained. About 5700 stars brighter than 18.5 mag in V were monitored. The collected observations were reduced with the software pipeline developed for the Semi-Automatic Variability Search sky survey (Niedzielski et al. 2003, Maciejewski & Niedzielski 2005). The BV magnitudes were obtained for the crowded cluster's core (r < 8') with the DAOPHOT package using the profile-fitting photometry. The calibration coefficients that transform instrumental magnitudes into standard ones were determined using 270 stars located in the field of the cluster for which photometry was taken from Durgapal et al. (1997). The (B - V) coverage was in range between 0.85 and 2.45 mag. The comparison of the observed (B - V) with the literature one is presented in Fig. 1. The instrumental coordinates of stars were transformed into equatorial ones based on positions of stars brighter than 16 mag and extracted from the Guide Star Catalog. The candidates for

new variable stars were selected from the V-band database using the analysis of variance method (ANOVA, Schwarzenberg-Czerny 1996).

The collected BV photometry allowed us to redetermine cluster's basic parameters. The procedure described in Maciejewski & Niedzielski (2007) in detail was applied. As a result the following parameters were derived: the central coordinates $RA = 03^{\rm h}59^{\rm m}09^{\rm s}$, $DEC = 51^{\circ}47'48''$, the limiting radius of $11.6 \pm 0.7 \operatorname{arcmin}$, $\log(age) = 9.00 \pm 0.05$, $E(B-V) = 1.07 \pm 0.05 \operatorname{mag}$, the apparent distance modulus of $14.7 \pm 0.1 \operatorname{mag}$, and the distance of $1.90 \pm 0.25 \operatorname{kpc}$. The radial density profile with the best-fit King's formula (King 1966) is plotted in Fig. 2. The central density $f_0 = 9.27 \pm 0.22$, the core radius $r_{\rm core} = 1.39 \pm 0.05$, and the density of the background stellar field $f_{\rm bg} = 1.08 \pm 0.04$ were derived. The cleaned colour-magnitude diagram (CMD) was constructed for the central part ($r < 3r_{\rm core}$) of King 7 and was plotted with the best-fit isochrone of solar metallicity in Fig. 3.

As a result of our survey 16 variable stars were detected in the field of King 7. They are listed in Table 1 and their light curves are presented in Fig. 4. V13 is known as V721 Per – a semi-regular pulsating star. The remaining 15 stars are previously unknown variables. Only 5 variables – V1, V2, V3, V4, and V5 – are located within or near to the limiting radius of the cluster and their membership can be discussed considering their location in the cluster's CMD. The remaining stars are treated as variables of the Galactic background.

V1 was classified as a pulsating variable of δ Cephei type. The star is situated near to the isochrone (Fig. 1). Assuming it belongs to the cluster, its absolute magnitude is $M_{\rm V} = +1.8 \,\mathrm{mag}$ and dereddened $(B-V)_0 = 0.30$. That locates the star in δ Scuti or γ Doradus area in the Hertzsprung-Russell diagram. However, the relatively long period of variance and the large amplitude in V are in disagreement with characteristics of both types. Therefore the membership of V1 is unlikely and the star seems to be a background Cepheid. V2 is a faint eclipsing system of EA type. The collected data did not allow to determine the period of variability because only one incomplete eclipse was observed. Its location in the CMD clearly indicates that it is a Galactic background star. V3 is a faint variable revealing long-time changes in the light curve. It was not detected in exposures in B filter that indicates the star is very red with (B - V) greater than 2.0 mag. Its location in the CMD clearly shows that the star is not a member of King 7. V4 was classified as a short-period EB system with unequal brightness in both maxima $(\Delta V_{\rm max} = 0.05 \text{ mag})$. The system is situated far from cluster's isochrone and is located in the outskirts of the cluster. That makes its membership unlikely. V5 is another variable star belonging to cluster's halo and it is situated just beyond the limiting radius. It was classified as a pulsating star of RR Lyrae type. The location of the variable in the CMD makes its membership unlikely.

To summarize, none of 5 variables detected in the field of King 7 can be treated as a likely cluster's member. This observation can be justified considering a relatively small number of stars that constitute the cluster. We estimate that only 150 the brightest stars of the cluster were monitored in our survey.

The original photometric data are available in electronic form on survey's web site¹ and will be also available at WEBDA².

¹http://www.astri.uni.torun.pl/~gm/OCS

²http://www.univie.ac.at/webda/

Figure 1. The comparison of the observed photometry with the literature one.

Figure 2. The radial density profile with the best-fit King's formula. The horizontal continuous line marks the background-star-density level and the dashed ones – 3-sigma error.

Table 1. The list of variable stars detected in the field of King 7. *d* denotes the distance from the cluster center, V_{max} – the maximal brightness in *V* band, ΔV – the amplitude of variation in *V*, (B - V) – the color index at the maximum of brightness, *P* – the period of variation, T_0 – the epoch of minimum brightness for eclipsing systems or maximum for pulsating stars, types of variability: EA – a detached binary, EB – a semidetached binary, EW – a contact system, RR – a pulsating star of RR Lyrae type, DCEP – a pulsating star of δ Cephei type, MISC – a miscellaneous variable of unresolved type.

	~ .				/= ==>			
ID	Coordinates	d	$V_{ m max}$	ΔV	(B-V)	P	T_0	Type
	J2000.0	(arcmin)	(mag)	(mag)	(mag)	(days)	HJD-2450000	
V1	$035848 {+} 514259$	5.8	16.54	0.35	1.37	4.3253	505.4001	DCEP
V2	$035931 {+} 515446$	7.7	17.39	0.58	1.26	—	—	\mathbf{EA}
V3	$035957 {+} 515700$	11.8	17.46	0.32	>2	—	—	MISC
V4	$035857 {+} 513540$	12.3	15.76	0.14	1.02	0.28785	499.8975	\mathbf{EB}
V5	040006 + 513902	12.5	17.52	0.47	1.10	0.57644	501.1083	RR:
V6	$035939 {+} 513337$	14.9	15.18	0.16	1.32	-	—	MISC
V7	$035911 {+} 520433$	16.8	11.49	0.08	1.88	_	—	MISC
V8	$040041 {+} 515659$	16.9	17.93	1.33	>2	_	—	MISC
V9	$035700 {+} 514409$	20.3	13.92	0.17	1.11	1.8667	503.1155	DCEP
V10	$035652 {+} 514850$	21.2	15.68	0.58	1.54	-	—	MISC
V11	$035652 {+} 515156$	21.5	12.63	0.18	0.84	3.9231	502.6295	$\mathbf{E}\mathbf{A}$
V12	$035751 {+} 520550$	21.6	16.20	1.18	2.26	_	—	MISC
V13	$040039 {+} 512101$	30.2	14.62	2.62	2.26	-	—	MISC
V14	$040105 {+} 512140$	31.8	16.05	0.14	1.18	0.36105	499.6698	\mathbf{EW}
V15	$035920 {+} 511424$	33.4	14.91	0.80	0.93	0.57001	500.1683	\mathbf{EB}
V16	040048 + 511144	39.3	16.53	0.26	1.18	0.28910	500.1716	\mathbf{EW}

Figure 3. The colour-magnitude diagram for King 7 with best-fit isochrone of solar metallicity. The open symbols denote variables stars located within the cluster's limiting radius. See text for discussion.

Figure 4. V-band light curves of variable stars discovered in the field of King 7.

Acknowledgements: We are indebted to the anonymous referee for helpful suggestions that have significantly improved this report. This research is supported by UMK grant 411-A and has made use of the WEBDA and SIMBAD data bases.

Reference:

King, I. 1949, Harvard College Observatory Bulletin, 919, 41

King I. 1966, AJ, **71**, 64

Durgapal, A. K., Mohan, V., Pandey, A. K., Mahra, H. S. 1996, Bull. Astr. Soc. India, 24, 701

Durgapal, A. K., Pandey, A. K., Mohan, V. 1997, Bull. Astr. Soc. India, 25, 489

Durgapal, A. K., Pandey, A. K. 2001, A&A, 375, 840

Maciejewski, G., Niedzielski, A. 2005, Baltic Astronomy, 14, 205

Maciejewski, G., Niedzielski, A. 2007, A&A, 467, 1065

Niedzielski, A., Maciejewski, G., Czart, K. 2003, AcA, 53, 281

Sandhu, T. S., Pandey, A. K., Sagar, R. 2003, A&A, 408, 515

Schwarzenberg-Czerny, A. 1996, *ApJ*, **460**, L107

Number 5858

Konkoly Observatory Budapest 4 November 2008 *HU ISSN 0374 - 0676*

ELEMENTS FOR 10 RR LYRAE STARS

HÄUSSLER, K.¹; BERTHOLD, T.^{1,2}; KROLL, P.²

¹ Bruno-H.-Bürgel-Sternwarte, Töpelstr. 46, D-04746 Hartha, Germany

 2 Sternwarte Sonneberg, Sternwartestr
. 32, D-96515 Sonneberg, Germany

email: info@sternwarte-hartha.de, tb@4pisysteme.de, pk@4pisysteme.de

These stars were discovered and reported to be of RR Lyrae type by Boyce & Huruhata (1942) and Hoffmeister (1966, 1967, 1968).

Except some remarks concerning the type of variability no further observations or ephemeris have been published until today.

Photographic plates of a field centered at α Oph, taken with the Sonneberg Observatory 40-cm Astrographs during three intervals spread over the years from 1964 to 1994, were used to investigate the behaviour of these objects (see Table 1).

The given elements were obtained by means of least-squares solutions. Photographic amplitudes were derived with respect to magnitudes of the comparison stars given in Table 2. An extensive list holding the times of maxima derived can be retrieved as 5858-t3.txt, using the link in the HTML version of this paper. Individual data are available upon request.

Remarks:

V1064 Oph, V1074 Oph, V2028 Oph Brightness in minimum light beyond the plate limit.

This research made use of the SIMBAD data base, operated by the CDS at Strasbourg, France.

References:

Boyce, E.H., Huruhata, M., 1942, Harvard Annals, 109, 19
Hoffmeister, C., 1966, Astron. Nachr., 289, 1
Hoffmeister, C., 1967, Astron. Nachr., 290, 43
Hoffmeister, C., 1968, Astron. Nachr., 290, 277

Figure 1. Light curve of V821 Oph

Figure 5. Light curve of V2023 Oph

Figure 7. Light curve of V2028 Oph

Figure 2. Light curve of V1062 Oph

Figure 4. Light curve of V1074 Oph

Figure 6. Light curve of V2026 Oph

Figure 8. Light curve of NSV 9576

Figure 10. Light curve of NSV 9642

		Table 1. S	Summary of	this pay	per		
Star	Type	Epoch	Period	Max.	Min.	M - m	No. of
		2400000 +	(day)				Plates
V821 Oph	RRab	49124.460	0.4678199	$14^{\rm m}_{\cdot}0$	$15.^{m}0$	$0^{\rm p}_{\cdot}15$	268
		± 6	± 4				
V1062 Oph	RRab	49488.510	0.5265861	$15^{\mathrm{m}}_{\cdot}6$	$16 \cdot 8$	$0^{\mathrm{p}}_{\cdot}22$	212
		± 10	± 8				
V1064 Oph	RRab	49484.515	0.4173550	$14.^{\mathrm{m}}8$	$> 16^{\rm m}_{.}2$	$0^{\mathrm{p}}_{\cdot}20$	225
		± 13	± 8				
V1074 Oph	RRab	46991.385	0.3451787	$14^{\rm m}_{\cdot}6$	$> 16^{m}_{\cdot}1$	$0^{\rm p}.14$	240
		± 5	± 4				
V2023 Oph	RRab	49482.471	0.4559190	$15^{m}_{.}2$	$16^{m}_{.}8$	$0^{\rm p}_{\cdot}12$	212
_		± 6	± 4				
V2026 Oph	RRab	49124.437	0.6650988	$15^{m}_{.}1$	$16^{m}_{.}3$	$0^{\rm p}_{\cdot} 18$	247
		± 8	± 8				
V2028 Oph	RRab	49193.401	0.4702531	$15^{\mathrm{m}}_{\cdot}9$	$> 16^{m}_{.}8$	$0^{\mathrm{p}}.20$	178
_		± 8	± 6				
NSV 9576	RRab	49475.471	0.5404488	$13^{\mathrm{m}}_{\cdot}7$	$15.^{m}1$	$0^{\rm p}_{\cdot}18$	283
		± 6	± 5				
NSV 9592	RRab	49482.446	0.5848983	$15.^{m}4$	$16^{\rm m}_{\cdot}2$	$0^{\mathrm{p}}_{\cdot}18$	217
		± 12	± 11				
NSV 9642	RRab	48839.403	0.4677834	$14^{\mathrm{m}}_{\cdot}5$	$15.^{\mathrm{m}}9$	$0^{\rm p}_{\cdot} 18$	238
		± 7	± 5				
-							

Т	able 2. Comparison s	tars ar	nd cross references	
	V821 Oph		V1062 Oph	
	HV 11039		S 8618	
	USNO 0975-09664766		USNO 0975-09287755	
Comp. No.	USNO	m^*	USNO	m^*
1	0975 - 09671874	$13.^{m}8$	0975 - 09287344	$15^{m}_{}3$
2	0975 - 09670349	$14.^{\mathrm{m}}0$	$0975 \hbox{-} 09284917$	$16 \cdot 1$
3	0975 - 09663688	$14.^{\mathrm{m}}8$	0975 - 09285925	$16 \stackrel{\mathrm{m}}{\cdot} 5$
4	0975 - 09666335	$15.^{\mathrm{m}}6$	0975 - 09284030	$16 \stackrel{\mathrm{m}}{\cdot} 9$
	V1064 Oph		V1074 Oph	
	${ m S}$ 8621		S 9829	
	USNO 0975-09393539		USNO 0975-09803952	
Comp. No.	USNO	m^*	USNO	m^*
1	0975 - 09393991	14.8	0975 - 09309205	13.77
2	0975 - 09393013	$15.^{m}3$	0975 - 09309459	$14.^{m}1$
3	0975 - 09390228	$15.^{m}8$	0975 - 09304972	14.8
4	0975 - 09393505	$16.^{m}4$	0975-09307002	$15^{m}_{}2$
	V2023 Oph		V2026 Oph	
	S 10339		S 10343	
	USNO 0975-09537477		USNO 0975-09650550	
Comp. No.	USNO	<u>m*</u>	USNO	<u>m*</u>
1	0975-09542893	15.11	0975-09649513	14. ^m 8
2	0975-09535757	15 ^m 5	0975-09656802	15 ^m 5
3	0975-09537864	16 ^m 2	0975-09649101	16 ^m 0
4	0975-09536233	169	0975-09648330	108
	V9099 O L		NOV OF 70	
	V 2028 Opn		INSV 9970	
	5 10340 LICNO 0075 0075 4049		5 8020 LICNO 0075 00509976	
N.	USINO 0970-09704040	*	USINO 0970-09090270	*
$\frac{\text{Comp. No.}}{1}$	USINU	15mo		1 2m 9
1	0975-09748201	158 16m9	0975-09000051	13. 2
2	0975-09750624	10.72 17m0	0975-09005740	147-1 15m0
3	0975-09754904	17:0	0975-09590234	15m6
4			0970-09099120	10.0
	NGV OFO9		NGV 0649	
	NSV 9092 C 0010		INSV 9042 IIV 11040	
	5 9010 USNO 0075 00619940		HV 11040 USNO 0075 00669196	
Comp. No.	USINO U970-U9012849	*	116NO 0919009190	···*
$\frac{0.0111}{1}$	0075-00617594	$\frac{m}{15^{m}1}$	0075-00670419	14m0
1	0973-09017324	15 1	0979-09070412 0075-00667180	1470 15m1
∠ 2	0979-09010192	10.0 16m0	0979-09007100	19. I 15mo
ა	0979-09014978	102	0973-09004470	109

 * Magnitudes refer to the B values of the USNO–A2.0 catalogue

Number 5859

Konkoly Observatory Budapest 7 November 2008 *HU ISSN 0374 - 0676*

MULTICOLOUR CCD PHOTOMETRY OF THREE RRab STARS

KUN, E.¹; SÓDOR, Á.²; JURCSIK, J.²; HURTA, ZS.^{3,4}; NAGY, I.³; KŐVÁRI, ZS.²; POSZTOBÁNYI, K.⁵; KOVÁCS, G.³; VIDA, K.^{3,4}; BELUCZ, B.³

¹ University of Szeged, Dept. of Exp. Physics and Astron. Obs., H-6720 Szeged, Dóm tér 9, Hungary

 2 Konkoly Observatory of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest, Hungary; e-mail: name@konkoly.hu

³ Eötvös Loránd University, Department of Astronomy, P.O. Box 32, H-1518 Budapest, Hungary

⁴ Visiting Astronomer, Konkoly Observatory of the Hungarian Academy of Sciences

 5 AEKI, KFKI Atomic Energy Research Institute, Thermohydraulic Department, H–1525 Budapest 114, PO Box 49, Hungary

The fifth set of CCD light curves of monoperiodic fundamental mode RR Lyrae stars based on the observations of the 60 cm automatic telescope of Konkoly Observatory, Svábhegy, Budapest is published. The equipment and data reduction procedure were the same as described in Jurcsik et al. (2008).

Observations of CN Lyr, CG Peg and FH Vul are presented here. Photometric data on these three variables were published previously by Oosterhoff (1960), Sturch (1966), Stepien (1972), Penston (1973), Schmidt & Reiswig (1993), and Castellani et al. (1998). The light curve of FH Vul was considered as a stable one and was used as a calibrator object for deriving the [Fe/H]-Fourier parameter relation by Jurcsik & Kovács (1996). Though no indication of light curve variation of any of these variables was evident, small amplitude Blazhko-modulation (e.g. found in Jurcsik et al. 2005, 2006) could not be excluded from the earlier observations.

Based on the accuracy and time coverage of our data we conclude that the light curves of these 3 stars are stable, indeed. There is no apparent light curve modulation with amplitude larger than 0.01 - 0.02 mag in the maximum brightness of any of the stars.

Star		Compai	rison		Observation period	Ν	o. of
	GSC 2.3.2	RA(2000)	DEC(2000)	$V \text{ [mag] }^*$	JD 2400000 $+$	nights	$B/V/I_C~{ m data}$
CN Lyr	N24S000237	$18 \ 41 \ 42.87$	+28 44 57.1	11.90	54642 - 54701	8	267 / 271 / 242
CG Peg	N2MC000574	$24 \ 41 \ 01.91$	+24 44 16.6	13.16	54656 - 54751	11	$333 \; / \; 292 \; / \; 295$
FH Vul	N2P8000417	$20\ 40\ 29.43$	$+22 \ 12 \ 24.3$	12.82	54633 - 54741	8	$218 \ / \ 234 \ / \ 227$

Table 1. Log of observations

* V magnitudes of the comparison stars are from GSC 2.3.2

The photometric data are available electronically from the IBVS website (5859-t5.txt – 5859-t16.txt). The tables list the relative $BVI_{\rm C}$ magnitude and relative B - V, $V - I_{\rm C}$ colour time series with respect to the comparison stars listed in Table 1. The brightnesses of the comparison stars remained constant during the observations. The *r.m.s.* scatter of their relative magnitudes measured to several check stars are between 0.005 and 0.015 mag.

For comparison, the r.m.s. scatter of the Fourier fits to the B, V, I_C light curves of CN Lyr, CG Peg, and FH Vul are 0.007/0.006/0.005, 0.010/0.007/0.006, and 0.016/0.009/0.009 mag, respectively.

The V light curves and the colour curves of the three stars are plotted in Figs. 1-3.

Normal maximum timings and Fourier parameters of the V light curves of CN Lyr, CG Peg, and FH Vul are listed in Table 2, and Table 3, respectively. Table 4 compares the photometric metallicities calculated from the V light curves of the variables according to Eq. 3 of Jurcsik & Kovács (1996) to the results of spectroscopic metallicity measurements.

Figure 1. Differential V, B - V and $V - I_{\rm C}$ light and colour curves of CN Lyr.

Figure 2. Differential V, B - V and $V - I_{\rm C}$ light and colour curves of CG Peg.

Star	$T_{\rm max} - 2400000$	Star	$T_{\rm max} - 2400000$
	[HJD]		[HJD]
CN Lyr	54671.3549	FH Vul	54640.5113
CG Peg	54703.8288	FH Vul	54717.5400

Table 2. Normal maximum timings of the V light curves.

Figure 3. Differential V, B - V and $V - I_{\rm C}$ light and colour curves of FH Vul.

			-				0			
Star	P	A_1	R_{21}	R_{31}	R_{41}	R_{51}	$\phi_{21} *$	ϕ_{31} *	ϕ_{41} *	$\phi_{51} *$
	$[\mathbf{d}]$	[mag]					[rad]	[rad]	[rad]	[rad]
CN Lyr	0.41138232^{**}	0.205	0.439	0.224	0.073	0.024	2.616	5.523	2.274	5.679
CG Peg	0.46713820^{**}	0.312	0.542	0.327	0.186	0.099	2.574	5.435	2.035	4.742
FH Vul	0.405413(4)	0.440	0.516	0.373	0.239	0.170	2.256	4.930	1.227	3.927

Table 3. Fourier parameters of the V light curves.

* Phase differences are given according to sine term decomposition.

** GCVS period.

Table 4. Spectroscopic and photometric [Fe/H] values.

Star	$[{\rm Fe}/{\rm H}]_{\rm phot}$	$[Fe/H]_{spect}$ ^a	ref.
CN Lyr	+0.17	-0.05	Layden (1994)
CG Peg	-0.25	-0.26	Layden (1994)
FH Vul	-0.59	-0.61	Layden (1994)

a: Spectroscopic metallicities are transformed to the $[{\rm Fe}/{\rm H}]$ scale

used for the photometric metallicities according to Eq. 3 and Eq. 2 of Jurcsik (1995) and Jurcsik & Kovács (1996), respectively.

We thank Béla Szeidl for his many helpful comments on this work. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. The financial support of OTKA grants T-048961, and T-068626 is acknowledged. ZsK is a grantee of the Bolyai János scholarship of the HAS.

References:

Castellani, V., di Paolantonio, A., Piersimoni, A. M., Ripepi, V. 1998, A&A, 333, 918
Jurcsik, J. 1995, Acta Astronomica, 45, 653
Jurcsik, J., Kovács, G. 1996, A&A, 312, 111
Jurcsik, J., Sódor, Á, Váradi, M., Szeidl, B., Washuettl, A., et al. 2005, A&A, 430, 1049
Jurcsik, J., Szeidl, B., Sódor, Á, Dékány, I., Hurta, Zs., et al. 2006, AJ, 132, 61
Jurcsik, J., Sódor, Á., Hurta, Zs., Kővári, Zs., Vida, K. et al. 2008, IBVS, 5844
Layden, A. 1994, AJ, 108, 1016
Oosterhoff, P. T. 1960, BAN, 15, 199
Penston, M. J. 1973, MNRAS, 164, 133
Schmidt, E. G., Reiswig, D. E. 1993, AJ, 106, 2429
Stepien, K. 1972, AcA, 22, 175

Sturch, C. 1966, ApJ, 143, 774

ERRATUM FOR IBVS 5793

In IBVS 5793 Table 3 the 2nd line on the maximum timings of BK Cas gives erroneous $T_{\rm max}$ value. This line should correctly be: "BK Cas 54321.1434 normal".

Number 5860

Konkoly Observatory Budapest 13 November 2008 *HU ISSN 0374 - 0676*

BVR_CI_C PHOTOMETRY OF THE ECCENTRIC ECLIPSING BINARY HD 350731

KLEIDIS, STELIOS^{1,2}; ROBERTSON, C. W.³; WILS, PATRICK⁴

 1 Zagori Observatory, Epirus, Greece, e-mail: steliosklidis@gmail.com

 2 Helliniki Astronomiki Enosi, Athens, Greece

³ SETEC Observatory, Goddard, KS, USA, e-mail: cwr@pixius.net

⁴ Vereniging voor Sterrenkunde, Belgium, e-mail: patrickwils@yahoo.com

The star HD 350731 = GSC 1624-0493 at position $\alpha_{2000} = 19^{h}53^{m}4526$, $\delta_{2000} = +20^{\circ}30'33''_{2}$ (UCAC2; Zacharias et al., 2004a), was found to be an eccentric eclipsing binary by Otero et al. (2004). It is an early type binary: Nesterov et al. (1995) give a spectral type B9, the AGK3 catalogue (Heckmann, 1975) lists A0.

CCD observations of the object were done on 7 nights in 2007 at SETEC Observatory (30-cm SCT, V only) and on 16 nights in 2008 at Zagori Observatory (30-cm LX200, $BVR_cI_c)$. The images were reduced with AIP4Win (Berry & Burnell, 2000). HD 350730, with a similar spectral type of A0 (Heckmann, 1975), was used as comparison star. Its magnitude V = 10.04 and colour B - V = 0.073 were taken from the Tycho catalogue (ESA, 1997), the R = 9.980 value from NOMAD (Zacharias et al., 2004b) and the $I_c = 9.974$ magnitude from TASS (Richmond, 2007). The data are available in the electronic edition of IBVS (5860-t3.txt - 5860-t7.txt).

The times of minima derived from our data are listed in Table 1. The following ephemeris was calculated using data from ASAS (Pojmanski, 2002), NSVS (Wozniak et al., 2004), and the minima from Zejda et al. (2006), Brát et al. (2007) and Table 1.

$$HJD Min I = 2454651.4603(14) + 1.635135(3)E$$
(1)

$$HJD Min II = 2454650.7235(20) + 1.635135(3)E$$
(2)

A phase plot of the data is given in Fig. 1. Note that Otero et al. (2004) reversed the primary and secondary eclipses. There is indeed only a small difference in the depth of the two eclipses, suggesting that both stars have a similar temperature. This is also supported by the B - V, $V - R_C$ and $V - I_C$ colour curves plotted in Fig. 2, showing only small variation.

The Phoebe program (Prša & Zwitter, 2005) was used to determine the orbital parameters of HD 350731. Calculations were done for a detached system. As is usual when radial velocity curves are absent, it is very difficult to obtain a precise value for the mass ratio q. Values in the range of 0.7 to 1.1 all give very good fits. We further took linear limb darkening coefficients from van Hamme (1993) and assumed periastron-synchronized rotation, albedo and gravity brightening values equal to 1 and a primary temperature of

					1
Epoch	Min	Uncertainty	O - C	Observer	Filter
HJD-2400000		[days]	[days]		
54299.9065	Ι	0.0002	0.0002	CWR	V
54340.7838	Ι	0.0002	-0.0009	CWR	V
54345.6896	Ι	0.0001	-0.0005	CWR	V
54628.5684	Ι	0.0002	0.0000	\mathbf{SK}	BVR_CI_C
54642.5482	Π	0.0002	0.0004	\mathbf{SK}	BVR_CI_C
54651.4605	Ι	0.0004	0.0002	\mathbf{SK}	BVR_CI_C
54665.4390	II	0.0002	-0.0007	SK	BVR_CI_C

Table 1: List of minima of HD 350731. O-C values are derived from Eqs. 1 and 2.

Figure 1. Phase plot of the HD 350731 data. The V, R_C and I_C data have been shifted in magnitude by resp. 0.25, 0.50 and 0.75 mag. for clarity.

Figure 2. Phase plot of the B - V, $V - R_C$ and $V - I_C$ colours of HD 350731. The latter two colours have been shifted for clarity by 0.1 and 0.2 mag. respectively.

	J 1		
q	0.9	±	0.2
i	82.3°	\pm	0.4°
e	0.078	\pm	0.001
ω	348°	\pm	3°
Ω_1/Ω_2	1.14	\pm	0.08
$T_1 - T_2$	320K	±	$60 \mathrm{K}$

|--|

 $T_1 = 10500$ K, based on the spectral type (Cox, 2000). Uncertainties on the calculated parameters were then derived by varying q in the range given above. The results obtained are presented in Table 2.

HD 350731 shows some scatter outside of eclipse, but no periodicity was found. Mainly because of the fairly short period of this eccentric eclipsing binary, apsidal motion will be dominated by general relativistic effects. With an estimate of 3 M_{\odot} for the mass of a main sequence primary (Cox, 2000), general relativity predicts an apsidal motion of $28 \pm 6^{\circ}$ per century (Gimenez, 1985), while classical effects are only responsible for less than one tenth of that amount (Claret & Gimenez, 1993). Because the argument of periastron ω is close to the ascending node, variations in the phase of the secondary minimum will however be almost negligible in the near future.

Acknowledgements: This study made use of NASA's Astrophysics Data System, and the SIMBAD and VizieR databases operated at the Centre de Données Astronomiques (Strasbourg) in France. References:

- Berry, R., Burnell, J. 2000, The Handbook of Astronomical Image Processing
- Brát, L., Zejda, M., Svoboda, P. 2007, OEJV, 74
- Claret, A., Gimenez, A. 1993, A&A, 277, 487
- Cox, A. N. 2000, Allen's astrophysical quantities, New York, AIP Press
- ESA 1997, The Tycho Catalogue, ESA SP-1200
- Gimenez, A. 1985, ApJ, 297, 405
- van Hamme, W. 1993, $AJ,\,{\bf 106},\,2096$
- Heckmann, O. 1975, AGK 3. Star catalogue of positions and proper motions north of -2.5 deg. declination
- Nesterov, V. V., Kuzmin, A. V., Ashimbaeva, N. T., Volchkov, A. A., Röser, S., Bastian, U. 1995, Astron. Astrophys. Suppl. Ser., 110, 367
- Otero, S. A., Wils, P., Dubovsky, P. A. 2004, IBVS, 5570
- Pojmanski, G. 2002, Acta Astron., 52, 397
- Prša, A., Zwitter, T. 2005, ApJ, 628, 426
- Richmond, M. W. 2007, PASP, 119, 1083
- Wozniak, P. R., Vestrand, W. T., Akerlof, C. W., Balsano, R., Bloch, J., Casperson, D., Fletcher, S., Gisler, G., Kehoe, R., Kinemuchi, K., Lee, B. C., Marshall, S., McGowan, K. E., McKay, T. A., Rykoff, E. S., Smith, D. A., Szymanski, J., Wren, J. 2004, AJ, 127, 2436
- Zacharias, N., Urban, S. E., Zacharias, M. I., Wycoff, G. L., Hall, D. M., Monet, D. G., Rafferty, T. J. 2004a, AJ, 127, 3043
- Zacharias, N., Monet, D. G., Levine, S. E., Urban, S. E., Gaume, R., Wycoff, G. L. 2004b, AAS Meeting, **205**, 4815
- Zejda, M., Mikulásek, Z., Wolf, M. 2006, IBVS, 5741

Number 5861

Konkoly Observatory Budapest 14 November 2008 *HU ISSN 0374 - 0676*

ECLIPSE MAPPING OF RW Tri IN THE LOW LUMINOSITY STATE

HALEVIN, A. V.¹; HENDEN, A. A.²

¹ Department of Astronomy, Odessa National University, T.G. Shevchenko Park, Odessa, 65014, Ukraine

² American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138, USA

RW Tri is a bright well known eclipsing nova-like system. It was discovered in 1937 (Protitch, 1937). Walker (1963) determined the orbital period to be 5.57 h. Africano et al. (1978) found that eclipse timings demand that the ephemeris has a cyclic term with a period of 2777 or 4980 days. Different authors give different values of the system inclination angle $i: 80^{\circ}$ (Longmore et al. 1981), 82° (Frank & King 1981), 70.5° (Smak 1995). Frank & King (1981) found that the disc size is about 0.4*a* where *a* is the orbital separation.

Horne & Stiening (1985) performed the first eclipse mapping of the system. They found that the temperature of the inner part of accretion disc is about 40000 K. Also using the eclipse mapping technique, Rutten et al. (1992) determined the mass accretion rate to be $3 \cdot 10^{-8}$ M_{\odot} year⁻¹.

Figure 1. Fragment of the AAVSO visual light curve of RW Tri. Eclipse observations are marked with an arrow.

Poole et al. (2003) estimated the range for the primary and secondary stellar masses as 0.4 - 0.7 and 0.3 - 0.4 M_{\odot} respectively. Groot et al. (2004) using spectral eclipse mapping found that the mass accretion rate is about $10^{-8} M_{\odot}$ year⁻¹.

In our paper we used AAVSO observations of RW Tri, obtained by Keith Graham with a Meade LX200 f/10 12" telescope and SBIG ST-9E CCD camera in V band. The exposure duration is 70 sec and the read time for this CCD is less than 1 sec. Observations were obtained during the low luminosity state (Fig. 1) on October 10, 2005 (JD 2453672). The star out-of-eclipse brightness dropped from 12^m6 to 13^m7 visual magnitudes for about 150 days. There are no outbursts observed during this state although the time interval between AAVSO visual measurements was sometimes longer than 25 days. This shows that the accretion disc temperature is high enough even in low state to hold the hydrogen in the ionized state and to prevent the appearance of the outbursts (this situation is typical for nova-like stars).

The eclipse light curve is shown in Fig. 2. For our observations, the out-of-eclipse brightness of the system was $13^{m}.74\pm0^{m}.06$ and in the mid-eclipse the magnitude was $15^{m}.83\pm0^{m}.04$. There is a small effect of the hotspot presence on the post eclipse light curve (0.05 - 0.1 phase interval). The light curve before the eclipse does not show the typical hump usually associated with a bright spot. This feature appears in cataclysmic variables due to anisotropic radiation of the hot spot in the place where the accretion flow shocks the accretion disc. Apparently the outer part of accretion disc is optically thin and we can see the hotspot structure from most directions.

Figure 2. Top: normalized light curve of RW Tri and the model fit. Fluxes were calculated using zero magnitude absolute fluxes, determined by Bessel et al. (1998). Below: residuals for the fit. One can see that large amplitude residuals correspond to the flickering on out-of-eclipse parts of the light curve.

In this paper we used zero magnitude absolute fluxes, determined by Bessel et al. (1998) to prepare our observations for the eclipse mapping procedures.

We applied a genetic algorithm eclipse mapping technique (see Halevin, 2007 for detailed description) to calculate the eclipse map of the RW Tri accretion disc. In our modification the accretion disc brightness is modeled with a distribution of radiating
points in the orbital plane inside the Roche lobe of the primary star. Our technique looks for an optimal spatial distribution of the points to fit the observed eclipse light curve. The system flux is reconstructed here by summing of the brightness of points visible at different phases.

To remove smooth orbital brightness variations we used a second-order polynomial approximation for the out-of-eclipse parts of the light curve. After that we divided the eclipse light curve by the approximation values and scaled the result with the polynomial value at zero phase.

In our models we used system parameters taken from Groot et al. (2004) ($M_{wd} = 0.7M_{\odot}$, $M_{rd} = 0.6M_{\odot}$, $i=75^{\circ}$). Eclipse models for other system parameters estimates show either shifted or highly asymmetric accretion disc eclipse maps (Halevin & Henden, 2008).

One can see the normalized phase light curve of the eclipse with the fit and residuals in Fig. 2. To estimate the errors of our observations we calculated the scattering of the residuals in the eclipse time range where the flickering is not significant. The error value was obtained is $\sigma_{me}=1.2\cdot10^{-27}$ erg s⁻¹ cm⁻² Hz⁻¹. So in the mid-eclipse the signal-tonoise rate is about 15. Because the mid-eclipse and out-of-eclipse flux are $f_{me}=2\cdot10^{-26}$ and $f_{oe}=1.2\cdot10^{-25}$ erg s⁻¹ cm⁻² Hz⁻¹ respectively, the error for the out-of-eclipse flux is $\sigma_{me}\sqrt{f_{oe}/f_{me}} \approx 2.94\cdot10^{-27}$ erg s⁻¹ cm⁻² Hz⁻¹ and therefore has a signal to noise of ≈ 40 .

Figure 3. Eclipse map for the JD 2453672 light curve of RW Tri calculated for the system parameters q = 0.86 and $i = 75^{\circ}$. The solid line is the ballistic trajectory of the accretion stream. Spatial coordinates are in orbital separation units.

To build the map of accretion disc we used a model with 300 radiating points. The corresponding smoothed map for the brightness distribution in the accretion disc is in Fig. 3. The solid line inside the Roche lobe shows a ballistic stream trajectory.

One can see that the brightest part of accretion disc is about 0.1a in radius and the hotspot distance is about 0.17a. We consider this value as the real size of accretion disc.

Figure 4. Azimuthally averaged radial intensity distribution in accretion disc for Fig. 3 eclipse map (top). Radial brightness temperature distribution in accretion disc. Solid lines are theoretical temperature distribution for steady state disc in the case of 10⁻⁸ and 10⁻⁹ M_☉ year⁻¹ mass accretion rate (bottom). Dashed line shows critical temperature above which gas is in steady accretion regime Warner (1995).

Trigonometric parallax determination with the Hubble Space Telescope gave a distance of 341 pc to RW Tri (McArthur et al. 1999). Using this distance estimate and the interstellar extinction $A_V = 7^{\text{m}} 8 \cdot 10^{-4} \text{ pc}^{-1}$ was taken using the value for the nearest object from Neckel et al. (1980), we calculated the radial brightness temperature distribution in the disc and compared it with predictions of accretion disc models. In the case of the $A_V=0$ one would obtain the temperature becomes about 13 percent lower. It shows the importance of the interstellar extinction accounting in our case.

In Fig. 4 the radial brightness temperature plot is shown. Here we compare the observed distribution with that predicted for steady state solutions for accretion rates of 10^{-8} and 10^{-9} solar masses per year. Our fit of the temperature distribution with that predicted from the steady state disc model gives the value $\dot{M} = (3.9 \pm 0.2) \cdot 10^{-9} \,\mathrm{M_{\odot}}$ year⁻¹. This result is close to that obtained from eclipse mapping by Rutten et al. (1992) value $\dot{M} = 3 \cdot 10^{-9} \,\mathrm{M_{\odot}}$ year⁻¹ (during the low luminosity state).

We fitted the observed temperature distribution with the function $T = T_0 R^{-b}$ and

found $b = 0.56(\pm 0.01)$. Our estimate of parameter b is far from that predicted in the steady state model 3/4 value. From Fig. 4 one can see that the temperature distribution consists of two different parts: for R less than 0.14a and for R greater than this radius. If we fit these parts separately, we obtain values $b = 0.52 \pm 0.04$ for R < 0.14a and $b = 0.74 \pm 0.03$ for R > 0.14a. This difference is typical for SW Sex type stars.

Our mass accretion rate estimate is less than that determined by the Horne & Stiening (1985) value of $\dot{M} = 10^{-7.9} \,\mathrm{M_{\odot}}$ year⁻¹, but during their observations the system was in the high luminosity state (V $\approx 12^{\mathrm{m}}5$) and the authors used lower distance value to be 300 pc. According to their data the temperature in the disc does not drop below the critical value, above which gas remains in the steady state accretion regime, typical for classical nova-like systems.

The dashed curve in Fig. 4. shows the critical temperature level Warner (1995), calculated for the RW Tri system parameters. One can see that the temperature drops below critical value immediately after the hotspot distance and, hence, the most probable accretion disc radius. It is enough for the accretion disc to remain in the steady state.

Using eclipse mapping techniques we calculated the radial brightness temperature distribution. For inner parts of accretion disc the slope of this distribution is close to the $R^{-1/2}$ law. For outer parts the temperature distribution corresponds to a steady state $R^{-3/4}$ law. We estimated the mass accretion rate in the system as $\dot{M} = (3.9 \pm 0.2) \cdot 10^{-9}$ M_{\odot} year⁻¹. Our results show that even during the low luminosity phase, disc remains in the hot steady state.

Acknowledgements: We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research.

References:

- Africano, J. L., Nather, E. R., Patterson, J., Robinson, E. L. & Warner, B. 1978, PASP, 90, 568
- Bessell, M. S., Castelli F. & Plez, B. 1998, A&A, 333, 231
- Frank, J., King, A. R. 1981, MNRAS, 195, 227
- Groot, P. J., Rutten, R. G. M. & Paradijs, J. van 2004, A&A, 417, 283
- Halevin, A. 2007, Odessa Astronomical Publications, 20, 70 (arXiv:0801.3059v1)

Halevin, A., Henden, A. 2008, submitted to OEJV.

Horne, K. & Stiening, R. F. 1985, MNRAS, 216, 933

- Longmore, A. J., Lee, T. J., Allen, D. A. & Adams, D. J. 1981, MNRAS, 195, 825
- McArthur, B. E., Benedict, G. F., Lee, J., et al. 1999, ApJLett., 520, 59

Neckel, Th., Klare, G. & Sarcander M. 1980, A&A Suppl., 42, 251

Poole, T., Mason, K. O., Ramsay, G., Drew, J. E. & Smith R. C. 2003, MNRAS, 340, 499

Protitch, M. 1937, Bull. Astr. Obs. Belgrade, 9-10, 38

Rutten R. G. M., van Paradijs, J., Tinbergen, J. 1992, A&A, 260, 213

- Smak J. 1995, AcA, 45, 259
- Walker, M. 1963, ApJ, 137, 485
- Warner, B. 1995, Cambr. Astrophys. Ser. 28, Cataclysmic Variable Stars. Cambridge Univ. Press, Cambridge

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 5862

Konkoly Observatory Budapest 20 November 2008 *HU ISSN 0374 - 0676*

DWARF NOVA TRIANGULI 2008 AS A WZ SGE-TYPE OBJECT

SHUGAROV, S. YU.^{1,2}; VOLKOV, I. M.^{1,2}; CHOCHOL, D.²

¹ Sternberg Astronomical Institute, Moscow University, Universitetsky Ave., 13, Moscow 119992, Russia; e-mail: shugarov@ta3.sk; imv@sai.msu.ru

 2 Astronomical Institute of the Slovak Academy of Sciences, 059 60 Tatranská Lomnica, Slovak Republic; e-mail: chochol@ta3.sk

On Oct. 26, 2008, Maehara (2008) reported outburst of the dwarf nova in Triangulum at the coordinates $\alpha = 02^{h}38^{m}39^{s}11$, $\delta = +35^{\circ}56'48''_{.3}$ J2000. The brightness of the nova at the time of discovery was 14^m12, measured with unfiltered CCD. A faint counterpart with J = 21.74 was found in GSC2.3. It indicates large amplitude super-outburst $\sim 8^{m}$, typical for WZ Sge-type dwarf novae. These objects are characterized by the "outburst orbital humps" or "early superhumps", which appear in the early phase of outburst with the binary orbital period. Nakajima (see Kato, 2008a) did not detect any clear superhumps larger than 0^m1 during the 7.5 hour observations of this dwarf nova before Oct. 28, 2008.

Our $UBV(RI)_{\rm C}$ observations of the superoutburst of the dwarf Nova Tri 2008 were obtained with the 0.5 m telescope of the Astronomical Institute of the Slovak Academy of Sciences at Stará Lesná Observatory from October 26, 2008 till November 7, 2008. The SBIG ST10-MXE CCD camera (2184x1472) was used. The part of our CCD frame with the object and comparison stars is presented in Fig. 1.

In this paper we analyse only our V observations. We used GSC 2336 2105 (V = 9.95 according to Hipparcos and Tycho Catalogues (ESA, 1997) and our own measurements) as a comparison star. (No. 1 in the finding chart shown in Fig. 1.) Its constancy was checked against a number of check stars in the field. (No. 2-4 in Fig. 1.)

The light curve of the outburst in V passband is presented in Fig. 2. The higher resolution of observational runs \mathbf{A} (early superhumps) and \mathbf{B} (ordinary superhumps) are shown in Fig. 3.

Fourier period analysis of our CCD observations taken from Oct. 26 till Nov. 1, 2008 (during the first 8 nights of the superoutburst), after trend removal, revealed the presence of small amplitude early superhumps (double-humped variations) with the period 76.46 ± 0.5 minutes (0^d.0531). This period was used to construct the phase diagram of the residuals. Their mean values with errors are given in Fig. 4. The observations taken from Nov. 2 till Nov. 7, 2008 revealed the presence of 77.33 ± 0.2 minutes (0^d.0537) superhumps. Their phase diagram is presented in Fig. 5. It is remarkable, that the superhump period of dwarf Nova Tri 2008 is the shortest one among WZ Sge-type objects.

Figure 1. $UBV(RI)_{\rm C}$ photometric comparison sequence around dwarf Nova Tri 2008.

Similar period values were obtained just recently by Maehara and Ohshima (see Kato, 2008b).

This research made use of the SIMBAD data base, operated by the CDS at Strasbourg, France.

Acknowledgements. This study was supported by the VEGA grant No. 7010 of the Slovak Academy of Sciences, SAI scholarship(VIM) and RFBR No. 08-02-01220(SSY).

References:

European Space Agency, 1997, The Hipparcos and Tycho Catalogues, ESA SP-1200 Kato, T., 2008a, vsnet-alert 10639 Kato, T., 2008b, vsnet-alert 10686 Maehara, H., 2008, vsnet-alert 10628

ERRATUM FOR IBVS 5862

In IBVS 5862, the discovery of the CV was incorrectly attributed to Maehara (2008). The variable was discovered by the Catalina Real Time Transient Survey and designated as CSS081026:023839+355648.

Reference:

Cataclysmic Variables detected by CSS, http://nesssi.cacr.caltech.edu/catalina/BrightCV.html The Editors

Figure 2. The light curve of dwarf Nova Tri 2008. The higher resolution of observational runs A and B are shown in Fig. 3.

Figure 3. The early superhumps (A) and ordinary superhumps (B).

Figure 4. The phase diagram of early superhumps (mean values).

Figure 5. The phase diagram of ordinary superhumps.

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 5863

Konkoly Observatory Budapest 27 November 2008 *HU ISSN 0374 - 0676*

THE 79TH NAME-LIST OF VARIABLE STARS

KAZAROVETS, E.V.¹; SAMUS, N.N.^{1,2}; DURLEVICH, O.V.²; KIREEVA, N.N.¹; PASTUKHOVA, E.N.¹

 1 Institute of Astronomy, Russian Academy of Sciences, 48, Pyatnitskaya Str., Moscow 119017, Russia [elena_k@sai.msu.ru, kireeva@sai.msu.ru, pastukhova@sai.msu.ru, samus@sai.msu.ru]

² Sternberg Astronomical Institute, University of Moscow, 13, University Ave., Moscow 119992, Russia [gcvs@sai.msu.ru]

The present 79th Name-List of Variable Stars contains data necessary for identifications of new variables finally designated in 2008. This list is special because it contains almost only stars earlier included into the NSV catalogue (Kholopov, 1982) or its Supplement (Kazarovets et al., 1998). Exceptions are several Novae and unusual variables named upon requests of the IAU Bureau of Astronomical Telegrams. With the 1270 stars of the current Name-List, the total number of named variable stars, not counting designated non-existing stars or stars subsequently identified with earlier-named variables, is now 41 483.

In order to keep the volume of this publication reasonable, we decided to separate the catalogue of newly designated variables (to be published elsewhere in the nearest future) from the Name-List proper. In accordance to this, Table 1 of the current Name-List, dealing with stars that were already catalogued, contains the NSV number, new GCVS name, equatorial coordinates (rounded to an accuracy sufficient for identification), and variability type for each star. The order of stars in Table 1 corresponds to the order of stars in the GCVS. The electronic version of the Name-List at http://www.sai.msu.su/gcvs/gcvs/nl79 additionally presents variability ranges, identifications with astronomical catalogues, and bibliographic references for the newly named variable stars. The remarks concerning the two unusual variables, V1710 Aql (type *) and V1129 Cen (type EB+*) follow Table 1.

The stars in Table 1 were selected in the course of our large-scale systematic revision of the NSV catalogue. For a part of them, studies by different authors have been published during the recent decades. For many other stars, we were able to properly study and classify them using publicly available data of modern automatic sky surveys, first of all, of the ASAS-3 survey (Pojmanski, 2002).

As usual, we continued naming Novae and other variables of astrophysical importance upon requests from the IAU Bureau of Astronomical Telegrams. Such stars, named since the 78th Name-List (Kazarovets et al., 2006), are listed in Table 2. It contains, for each star, its GCVS name, equatorial coordinates (rounded to an accuracy sufficient for identification), variability type, range of variation with the photometric system indicated (an asterisk means an instrumental CCD system), epoch of maximum brightness (for Novae), and two references. The first reference is to the discovery announcement and the second one, to the finding chart. "2MASS" instead of the second reference means that the star can be found using its coordinates in the 2MASS catalogue (Cutri et al., 2003).

This study was supported in part by Russian Foundation for Basic Research through grant 08-02-00375, by the Programme "Origin and Evolution of Stars and Galaxies" of the Presidium of Russian Academy of Sciences, and by the Support Programme for Leading Scientific Schools of Russia (grant NSh 433.2008.2). Our research has made extensive use of the excellent ASAS-3 data base. Effective software for period determination was kindly provided by Dr. V.P. Goranskij. Thanks are due to Dr. B. Reipurth for valuable suggestions.

References:

- Cutri, R.M., Skrutskie, M.F., Van Dyk, S., et al., 2003, The 2MASS All-Sky Catalog of Point Sources (Centre de Données Astronomiques de Strasbourg, VizieR On-line Data Catalog: II/246)
- Kazarovets, E.V., Samus, N.N., Durlevich, O.V., 1998, Inform. Bull. Var. Stars, No. 4655
- Kazarovets, E.V., Samus, N.N., Durlevich, O.V., et al., 2006, Inform. Bull. Var. Stars, No. 5721
- Kholopov, P.N. (ed.), 1982, The New Catalogue of Suspected Variable Stars, Moscow: Nauka
- Pojmanski, G., 2002, Acta Astronomica, 52, 397

ERRATUM FOR IBVS 5721

In IBVS No. 5721 ("The 78th Name-List of Variable Stars"), erroneous coordinates of V2609 Oph were given. The coordinates of this variable should correctly be $17^{h}53^{m}34.1^{s}+05^{\circ}24'58''(2000.0)$.

Table 1

NSV	Name		R. /	A.,	Decl	, 20	000	.0	Туре	NSV	Name		R. /	Α.,	Decl	., 20	000	0	Туре
00000		A]	n	m	S FO C	0	, 	- v	an	04007	114747	A 7	n 10	m	S	0	, 00	10	м
00098	V0456	And	00	13	52.6	+45	26	34	SR	24897	V1/1/	TDA A	19	49	01.5	+00	29	12	
00288	V0457	And	00	45	42.2	+40	11	58	M:	12461	V1/18	TDA	19	50	34.0	+00	54	38	SKB
00608	V0458	And	01	44	02.1	+48	02	43	EA	24909	V1/19	TDA	19	50	44.2	+01	45	50	EA
00854	V0459	And	02	33	57.9	+45	59	56	M	12510	V1720	Tby	19	52	54.1	+06	40	54	LB
00855	V0460	And	02	34	14.3	+42	14	28	DSCT	24910	alpha	Aqı	19	50	47.0	+08	52	06	DSCT
14453	V0461	And	23	11	59.0	+49	39	37	LB	20721	V0882	Ara	16	39	56.4	-61	09	28	EA
14500	V0462	And	23	19	32.6	+45	55	32	EA	07991	V0883	Ara	16	51	45.1	-50	1/	41	EA
14514	V0463	And	23	20	13.9	+37	08	40	EB	08110	V0884	Ara	17	02	41.0	-58	54	20	EA
26077	V0464	And	23	24	01.8	+46	52	12	SRB	08125	V0885	Ara	17	03	59.7	-63	24	36	EB
14/42	V0465	And	23	53	15.9	+46	53	06	LB	21540	V0886	Ara	17	21	56.2	-51	25	26	SKB
04537	BG	Ant	09	34	23.7	-25	33	13	EB	08629	V0887	Ara	17	27	10.1	-57	11	44	EB:
04565	BH	Ant	09	39	14.5	-24	40	37	SRB	08808	V0888	Ara	17	30	30.6	-61	46	25	EW
04593	BI	Ant	09	42	53.8	-40	12	54	SRA	09348	V0889	Ara	17	39	42.0	-52	38	03	EA
04604	BK	Ant	09	44	14.8	-39	39	41	RRAB	09472	V0890	Ara	17	41	34.5	-48	54	36	CWA
04649	BL	Ant	09	50	53.5	-27	07	18	EW	09482	V0891	Ara	17	41	50.2	-51	53	36	EB
04652	BM	Ant	09	51	08.6	-29	80	51	EW	09542	V0892	Ara	17	43	27.5	-52	21	43	EA
04681	BN	Ant	09	57	06.0	-39	17	26	RRAB	09650	V0893	Ara	17	47	03.3	-46	33	49	EA
04749	BO	Ant	10	07	53.8	-32	35	52	EB	09677	V0894	Ara	17	48	30.3	-51	13	36	EA
04766	BP	Ant	10	10	31.4	-36	32	13	M	10164	V0895	Ara	18	06	01.7	-47	31	27	RVA
04792	BQ	Ant	10	14	16.6	-33	43	22	SRB	10161	V0896	Ara	18	06	16.7	-56	02	13	EA
04801	BR	Ant	10	15	55.5	-30	57	52	LB	00930	BD	Ari	02	48	12.4	+16	16	28	SRB
04817	BS	Ant	10	17	53.4	-37	50	12	SRB	01707	V0556	Aur	04	45	18.8	+35	58	15	SR
04885	BT	Ant	10	32	02.6	-30	10	37	RR	01732	V0557	Aur	04	50	46.7	+42	40	32	SR:
04925	BU	Ant	10	39	10.2	-39	39	28	LB	01753	V0558	Aur	04	53	40.1	+37	18	44	SR:
05056	BV	Ant	11	01	25.5	-37	10	18	EA	01766	V0559	Aur	04	55	45.0	+41	52	27	SR:
06592	PT	Aps	14	15	33.0	-72	17	40	EA	16199	V0560	Aur	04	56	42.8	+39	17	24	EA
06722	PU	Aps	14	37	53.2	-74	21	57	EA	01813	V0561	Aur	05	03	54.2	+29	49	04	LB
06956	PV	Aps	15	11	28.5	-73	25	34	EA	01916	V0562	Aur	05	18	55.3	+29	38	21	EW
07039	PW	Aps	15	25	28.4	-78	26	55	SRB	01943	V0563	Aur	05	22	00.6	+32	53	53	LB
07907	PX	Aps	16	45	29.9	-/6	48	19	EB:	02072	V0564	Aur	05	32	05.0	+30	06	55	SRB
08251	PY	Aps	17	13	40.1	-73	53	43	SRB	02432	V0565	Aur	05	37	42.4	+39	15	30	EA
08564	PZ	Aps	17	24	47.0	-69	80	48	EA	02565	V0566	Aur	05	42	03.0	+41	03	48	SR
10349	ųų	Aps	18	17	01.8	-78	10	33	EA	02591	V0567	Aur	05	43	37.0	+33	54	14	EW
13281	NZ	Aqr	20	46	05.1	-04	31	07	LB	02590	V0568	Aur	05	43	55.5	+44	51	40	SRB
13331	00	Aqr	20	49	43.2	-13	07	36	EW	02621	V0569	Aur	05	46	34.2	+44	26	52	EB
13435	UP	Aqr	20	58	10.4	-03	07	31	LB	02645	V0570	Aur	05	49	27.8	+44	39	24	SKB
13526	ບບູ ດັກ	Aqr	21	06	09.1	-08	11	12	SRB	02651	V0571	Aur	05	49	41.9	+39	54	40	LB
25517	UR	Aqr	21	13	13.7	-04	20	10	EA ED	02735	V0572	Aur	05	50	51.0	+30	40	57	LB
13694	05	Aqr	21	20	39.2	-13	32	19	EB	02739	V0573	Aur	05	20	40.7	+40	48	11	
25913		Aqr	22	29	13.3	-09	02	54	SKB	02763	V0574	Aur	06	01	48.7	+51	45	03	RKAB
14437		Aqr	23	80	48.0	-12	20	40	LB	02828	V0575	Aur	06	10	30.9	+51	06	53	RKAB
26081		Aqr	23	26	10.6	-19	22	24		02850	V0576	Aur	06	10	11.3	+30	01	44	LA
14603	UW	Aqr	23	32	18.0	-17	23	51	RRAB	16/91	V0577	Aur	06	10	18.1	+32	03	11	SK:
14/44	UX	Aqr	23	54	01.3	-07	40	39	KKAB	02939	V0578	Aur	06	22	50.0	+30	19	52	
11441	V1707	TDA	18	52	03.7	+11	1/	26	EA	02951	V0579	Aur	06	25	46.5	+46	19	58	EA
11493	V1708	Tby	18	53	5/.5	+01	36	41	SR:	03008	V0580	Aur	06	32	14.1	+31	09	54	EA
24627	V1709	TDA V	10	54 00	54.4	+01	07	TQ	GDUK		ц	Б00 Даг	13	49	52.2 22 0	+12	22	29	KKAB EU
24661	V1/10	тра	13	02	00.3	+02	09	11	*	06813	нк	R00	14	48	33.0	+21	44	U1	比W DDAD
24/12	V1/11	TDA	19	13	15.2	+01	34	38	LR	06881	HS	ROO	15	00	06.3	+21	47	43	KKAB
12008	V1/12	⊥pa A	10	25	28.5	+11	23	39	EW EV	06940	HI	В00 В00	12	06	40.1	+21	26	11	KKAB
12215	V1/13	TDA	19	37	44.0	+01	49	36	EW	06948	HU	В00 В00	15 4 -	07	31.5	+25	03	07	KKC
12263	V1/14	TDA	19	39	39.5	+09	34	10	EA M	06969	HV	B00	15	09	49.8	+26	51	15	KKAB
12374	V1/15	AQT	19	45	39.2	-05	19	18	M	01698	5W GW	cae	04	41	41.9	-33	14	53	SKB
12433	V1716	тря	19	48	58.7	+12	34	06	SKB	01708	SX	Cae	04	43	56.5	-43	05	19	ЕA

NSV	Name		R./	A.,	Decl	, 20	000	. 0	Туре	NSV	Name		R.,	A.,	Decl	., 20	000	. 0	Туре
		a	h	m	S	0	,	"		00455		<i>a</i> 1 <i>t</i>	h	m	S	0	,	"	a
01403	MX	Cam	03	56	24.5	+69	02	28	EA	03475	V0395	СМа	07	14	20.3	-19	40	22	SRB
15852	MY	Cam	03	59	18.3	+57	14	14	ELL	03482	V0396	CMa	07	14	42.1	-17	25	41	LB
01444	MZ	Cam	04	05	15.9	+54	36	11	DCEPS	03489	V0397	CMa	07	15	18.3	-16	16	12	EA
01485	NN	Cam	04	12	38.2	+69	29	09	UG	17456	V0398	CMa	07	23	34.7	-31	18	00	EA
01495	NO	Cam	04	14	51.6	+75	20	41	EW	03434	DF	CMi	07	10	23.2	+06	29	12	SRB
02748	NP	Cam	06	02	05.2	+72	51	05	SRD:	03521	DG	CMi	07	18	33.4	+09	29	40	ΕA
03715	NQ	Cam	07	48	12.8	+72	29	17	EW	03522	DH	CMi	07	18	44.8	+10	21	53	SRB
03754	NR	\mathtt{Cam}	07	54	30.6	+78	06	45	EW	03594	DI	CMi	07	27	00.3	+03	58	27	LB
03771	NS	\mathtt{Cam}	07	55	39.7	+74	15	11	EB	03637	DK	CMi	07	33	14.2	+02	44	16	ΕA
04019	NT	\mathtt{Cam}	80	24	17.4	+74	30	25	DSCT	03710	DL	CMi	07	44	36.4	+07	16	52	EA
04638	NU	\mathtt{Cam}	09	54	47.4	+83	21	01	EB	17647	DM	CMi	07	53	59.9	+03	45	00	EA
04069	IR	Cnc	08	26	18.4	+23	15	13	EB	03927	DN	CMi	08	09	52.9	+05	03	37	SRB
04150	IS	Cnc	08	36	47.4	+06	59	22	LB	13698	CP	Cap	21	25	59.3	-15	03	05	RRC:
04207	IT	Cnc	08	42	42.6	+21	24	57	EW:	13702	CQ	Cap	21	26	32.7	-17	52	42	EB
04347	IU	Cnc	09	00	59.1	+12	58	52	EW	13710	CR	Cap	21	27	21.2	-19	07	59	RR(B)
06154	ΕK	CVn	13	14	32.5	+34	20	56	LB:	13967	CS	Cap	21	56	54.3	-12	12	50	SRB
19773	EL	CVn	13	23	57.0	+43	35	55	ΕA	17246	V0603	Car	06	55	10.1	-62	07	47	RRAB
06227	EM	CVn	13	24	22.8	+48	04	38	SR	03497	V0604	Car	07	14	50.6	-59	16	04	EW
06303	EN	CVn	13	32	05.3	+46	00	07	ΕA	03687	V0605	Car	07	39	50.2	-53	38	28	EB
02888	V0360	CMa	06	15	07.6	-14	55	04	RRAB	03725	V0606	Car	07	44	38.7	-56	42	32	E A
02956	V0361	CMa	06	25	01.2	-23	28	26	SRB	17677	V0607	Car	07	56	22.7	-61	17	02	ACV
02969	V0362	CMa	06	26	50.3	-23	15	06	EB	03920	V0608	Car	08	07	34 0	-55	19	37	EW
02985	V0363	CMa	06	20	41 3	-20	21	46	SBB	04408	V0609	Car	00	10	25 5	-57	30	22	FΔ
02000	V0364	CMa	00	20	47 7	-14	54	51	SBB	04476	V0610	Car	00	22	50.0	-59	<u>лл</u>	56	EV.
02027	V0304	CMa	00	22	17 0	_ 15	24	51	CD V	04470	V0010	Car	09	22	25.0	-65	44 51	05	EA EA
03037	V0305	CMa	00	25	лт.э лт.т	- 20	10	16	CDA	04525	V0011	Car	09	22	1/ 0	-64	01	03	ця М
03044	V0300	CMa	00	30 25	41.1	-29		40	OD.	04555	V0012	Car	09	22	14.2	-04	21	01	
03042	V0367	CMa GM-	00	35	40.9	-13	05	02	SK:	04546	V0613	Car	09	35	10.0	-60	21	28	EA
03046	V0368	Сма	06	30	39.5	-10	59	34	SKB	04559	V0614	Car	09	30	57.8	-65	50	07	SKB
03051	V0369	Сма	06	37	16.5	-29	50	02	SRB	04560	V0615	Car	09	37	35.8	-58	30	38	SRB
03084	V0370	Сма	06	40	05.5	-13	55	31	SRB	04591	V0616	Car	09	41	07.2	-72	53	19	LB
03169	V0371	СМа	06	41	08.1	-20	09	05	SRB	04589	V0617	Car	09	41	33.9	-61	39	03	M
03184	V0372	СМа	06	43	14.2	-15	56	12	SRB	04592	V0618	Car	09	42	11.8	-59	02	18	SRA
03209	V0373	CMa	06	46	33.0	-19	19	18	SRB	04610	V0619	Car	09	43	13.0	-72	06	38	LB
03242	V0374	CMa	06	51	23.2	-16	14	56	SRB	04603	V0620	Car	09	43	16.3	-66	03	52	LB
03251	V0375	CMa	06	52	05.7	-13	29	57	ΕA	04606	V0621	Car	09	43	41.4	-61	32	15	М
03267	V0376	CMa	06	54	04.7	-19	29	54	LB	04611	V0622	Car	09	43	47.1	-66	04	54	SRB
17233	V0377	CMa	06	55	16.1	-17	12	55	EA	04625	V0623	Car	09	45	33.8	-73	58	00	EA
03308	V0378	CMa	06	57	14.1	-31	24	58	EB	04626	V0624	Car	09	45	58.0	-72	12	38	SRB
03327	V0379	CMa	06	59	55.8	- 15	55	47	LB	04657	V0625	Car	09	50	47.8	-67	23	15	EW
03336	V0380	CMa	07	01	04.0	-18	51	36	LB	04659	V0626	Car	09	50	48.0	-69	06	03	LB
17283	V0381	CMa	07	01	32.1	-27	51	34	EB	04655	V0627	Car	09	51	08.6	-57	08	45	SRA:
03348	V0382	CMa	07	02	29.7	- 15	39	20	SRB	04666	V0628	\mathtt{Car}	09	51	33.2	-73	36	11	SRB
03357	V0383	CMa	07	03	11.0	-24	51	06	SRB	04670	V0629	Car	09	53	04.6	-65	48	10	E₩
03362	V0384	CMa	07	03	55.1	-17	52	48	DCEP	04679	V0630	Car	09	54	59.7	-61	57	40	M:
03361	V0385	CMa	07	04	04.7	-16	06	22	SRB	04687	V0631	Car	09	57	18.3	-67	10	09	SRB
03366	V0386	CMa	07	04	32.3	-19	37	46	LB	04686	V0632	Car	09	57	50.3	-58	15	33	EA
03384	V0387	CMa	07	05	36.1	-25	06	33	SRB	04700	V0633	Car	09	58	22.5	-72	29	37	EA
17336	V0388	CMa	07	06	07.4	-12	57	08	EA	04708	V0634	Car	10	00	19.4	-69	13	40	SRA:
03391	V0389	СМа	07	06	17.2	-24	36	58	LB:	04711	V0635	Car	10	00	30.0	-69	58	21	EB
03393	V0390	CMa	07	06	38.0	- 15	48	07	DCEP	04714	V0636	Car	10	01	03.4	-68	54	19	 M
03433	V0391	CMa	07	0.9	46.2	-20	05	35	EA	04716	V0637	Car	10	01	23.7	-71	17	01	RRC
03430	V0302	CMa	07	10	16 4	-16	15	<u>4</u> 9	SBB	04718	V0638	Car	10	02	08 6	-70	06	35	SPA
03466	10002 VU303	CMa	07	1२	18 0	-14	34	13 47	SBB	04700	V0630	Car	10	02	34 7	-75	00	37	BBC
03471	1020V	CMa	07	14	01 7	±± _1⊿	36	-±/ ∩1	IR	04707	V0640	Car	10	04	30 3	-58	30 30	50	TNA
55±11	10094	ona	01	14	0 T · I	14	50	ΟT	uu Uu	07121	10040	Jar	τU	04	50.5	50	03	02	TINH

NSV	Name		R.1	A.,	Decl	., 20	000	.0	Туре	NSV	Name		R.,	A.,	Decl	., 20	000	. 0	Туре
		a	n	m	s 	0	, 		.,			a	n	m	S	0	, ,	~~	D ADD
04728	V0641	Car	10	04	57.7	-60	04	56	M	14606	V1020	Cas	23	32	39.0	+63	04	09	DCEP
04735	V0642	Car	10	05	27.8	-67	36	59	M:	14638	V1021	Cas	23	35	24.0	+61	50	12	EA
04737	V0643	Car	10	06	09.0	-60	10	37	М	14773	V1022	Cas	23	57	08.5	+55	42	21	ΕA
04751	V0644	Car	10	06	47.5	-71	50	43	SR	18645	V1066	Cen	11	06	38.2	-49	18	00	SR
04754	V0645	Car	10	07	34.1	-63	09	49	М	05092	V1067	Cen	11	07	14.9	-44	11	34	М
04760	V0646	Car	10	09	14.3	-62	42	23	М	05095	V1068	Cen	11	07	25.4	-52	48	00	М
04769	V0647	Car	10	10	35.6	-61	51	48	SRB	05094	V1069	Cen	11	07	25.7	-42	46	31	М
04775	V0648	Car	10	11	02.9	-57	48	14	ZAND:	05130	V1070	Cen	11	11	39.7	-54	11	25	SRA:
04783	V0649	Car	10	12	46.3	-57	49	51	М	05128	V1071	Cen	11	12	07.6	-37	34	37	ΕA
04795	V0650	Car	10	14	12.1	-66	80	19	М	05131	V1072	Cen	11	12	13.3	-55	17	00	М
04830	V0651	\mathtt{Car}	10	21	23.9	-68	50	23	М	05135	V1073	Cen	11	12	32.6	-47	33	41	М
04853	V0652	Car	10	24	54.1	-63	52	14	SRA:	05136	V1074	Cen	11	12	37.1	-56	20	16	ΕA
04858	V0653	Car	10	25	39.6	-68	14	56	М	05141	V1075	Cen	11	13	39.4	-47	27	23	М
18424	V0654	Car	10	29	24.6	-60	05	16	ΕA	05145	V1076	Cen	11	14	22.4	-42	40	20	М
04881	V0655	Car	10	30	08.8	-66	59	05	EA	05148	V1077	Cen	11	14	59.9	-42	28	27	М
04910	V0656	Car	10	36	27.1	-62	11	33	DCEP	05156	V1078	Cen	11	16	41.6	-42	38	10	EA
04919	V0657	Car	10	38	27.3	-57	19	38	M	05164	V1079	Cen	11	17	35.4	-51	37	40	M
18470	V0658	Car	10	38	47.3	-58	43	32	EΔ	05167	V1080	Cen	11	18	06 6	-46	08	51	м
04944	V0659	Car	10	∆1	13.0	-71	33	15	м	05176	V1081	Con	11	21	58 3	-19	28	55	м
19/96	VOGEO	Car	10	13	30 6	-60	10	22	м.	05177	V1082	Con	11	21	05.5	-47	17	33	۲۱ ۲۸
10400	V0661	Car	10	43	00 4	-50	50	22 28	г. Ел	05107	V1002	Con	11	22	00.0	-60	11 21	00 00	IR
10497	VOCCI	Car	10	44	26 2	-09	0Z 40	20	EA ED	05194	V1003	Con	11	20	10.0	-00	01	20	בם ממיס
10010	VOCCO	Car	10	40	30.3	-59	40	23	сd м	05201	V1004	Cen	11	20	12.2	-51	47	30	SRD M
04984	V0663	car	10	48	40.4	-69	11	50	M	05207	V1085	Cen	11	20	40.2	-50	47	14	M
04991	V0664	Car	10	50	30.7	-72	44	36	M	05215	V1086	Cen	11	28	18.5	-49	15	00	M
04996	V0665	Car	10	51	52.0	-66	20	07	EA	18773	V1087	Cen	11	28	52.0	-62	55	52	EA
05001	V0666	Car	10	52	08.2	-73	36	39	SRB	05218	V1088	Cen	11	28	55.8	-53	43	00	SRB
05002	V0667	Car	10	52	44.3	-58	10	39	SRB	18786	V1089	Cen	11	31	48.7	-60	41	36	EA
05009	V0668	Car	10	52	55.3	-69	39	08	М	05239	V1090	Cen	11	32	02.0	-44	23	02	М
05010	V0669	Car	10	53	23.8	-59	35	12	SRA:	05250	V1091	Cen	11	33	29.1	-53	37	13	М
05027	V0670	Car	10	56	36.5	-71	32	27	М	05265	V1092	Cen	11	36	26.2	-61	19	10	LC
05039	V0671	Car	10	58	09.3	-72	14	46	М	05264	V1093	Cen	11	36	26.7	-59	30	57	ΕA
05046	V0672	Car	10	59	25.4	-58	12	18	М	05266	V1094	Cen	11	36	33.8	-46	30	07	EB
05084	V0673	Car	11	05	38.6	-73	15	48	М	05297	V1095	Cen	11	41	48.8	-51	52	29	M:
18655	V0674	Car	11	06	50.2	-59	50	48	ΕA	05302	V1096	Cen	11	42	48.4	-51	46	09	SRB
05098	V0675	\mathtt{Car}	11	07	42.1	-71	35	41	SRA:	18909	V1097	Cen	11	46	59.8	-62	28	29	EB
05112	V0676	Car	11	09	19.6	-71	48	11	SRB	05330	V1098	Cen	11	47	04.3	-62	28	55	SR:
05142	V0677	Car	11	13	28.9	-67	35	29	М	05335	V1099	Cen	11	47	20.2	-61	54	58	EB
05166	V0678	Car	11	17	29.0	-74	03	09	SRB	05340	V1100	Cen	11	47	53.8	-63	44	59	М
00042	V1004	Cas	00	07	19.1	+64	17	00	ΕA	05352	V1101	Cen	11	49	14.5	-46	13	23	ΕA
15024	V1005	Cas	00	07	25.3	+63	20	57	ΕA	05354	V1102	Cen	11	49	30.1	-35	46	54	SRB
15025	V1006	Cas	00	07	37.5	+53	31	36	GDOR	05363	V1103	Cen	11	51	13.6	-38	03	14	SRB
00049	V1007	Cas	00	08	03.3	+51	08	03	EW	05369	V1104	Cen	11	51	42.7	-62	53	11	EB
00135	V1008	Cas	00	21	16.2	+48	11	06	L.B	05381	V1105	Cen	11	54	08.7	-54	10	17	SRB
00320	V1009	Cas	00	51	10.2 09 9	+56	04	59	FB	05386	V1106	Cen	11	55	12 9	-56	52	21	FR
00353	V1010	Car	00	57	57 0	+60	04	15	ED EA	05300	V1107	Con	11	50	12.5	-52	35	06	GDV
00333	V1010	Cas	00	04	15 0	+60	20	16	EA ED	05405	V1107	Con	10	00	10.7	-40	10	00	CDV
15055	V1011	Cas	01	10	10.0 E2 0	102	26	10	CDOD	05411	V1100	Con	10	00	12.1	42	12	17	DILA E A
10700	VIO12	Cas	01	12 04	10.9	101 101	30 AC	07	DOED	00410	V11109	Cen	10	00	40.1	-40 _E2	10	Λ0 Τ1	са м
00481	V1013	Cas	01	2 I	42.4	101	40 27	20	DORL	05440	VIIIO	Cen Cen	10	03	41.0	-03	ль ТО	40 17	יים פ
00517	V1014	cas	01	28	30.5	+52	31	32	ER ER	05451	V1111	cen	12	05	40.0	-35	45	11	SKB
00587	V1015	cas	01	42	06.4	+/0	43	39	LA	05459	V1112	cen	12	06	31.7	-42	43	19	ЕW
15367	v1016	Cas	01	43	16.8	+59	59 	51	DCEP	05460	V1113	Cen	12	06	46.9	-50	19	26	M
00752	V1017	Cas	02	14	24.8	+65	35	58	DCEP	05471	V1114	Cen	12	80	21.7	-43	04	01	RRC
01009	V1018	Cas	03	01	19.4	+60	34	20	ΕA	05480	V1115	Cen	12	10	06.8	-53	25	40	М
14486	V1019	Cas	23	17	51.6	+62	80	05	DCEPS	05487	V1116	Cen	12	11	03.2	-50	40	23	ΕA

NSV	Name		R.4	۹., m	Decl	., 20	,000	.0	Туре	NSV	Name		R. <i>I</i>	۹., m	Decl	, 20)00.	.0	Туре
05497	V1117	Con	12	ш 11	576	-50	50	42	Ē٨	06187	V1171	Con	13	20	ы 355	-63	24	43	RF
103/5	V1110	Con	12	16	13 0	-45	50	12 03	EA EA	06200	V1170	Con	13	20	37 6	-61	27	15	IB
05525	V1110	Con	12	16	56 8	- 15	12	07	EA EA	00200	V1172	Con	13	21 01	12 0	-60	10	17	GDD
05525	V1110	Con	10	10	27 0	-52	12	10	ця М	06202	V1177	Con	12	21	42.9	-61	4 <i>3</i>	-11 -12	DE
05541	V1120	Cen	10	10	20.7	-00	00	12	г Г А	00203	V1175	Con	10	21	49.9	-01	57	20	
05564	VIIZI VIIZI	Cen	12	23	02 0	-34	24 40	10	CA	10754	V1176	Cen	10	22	20.1	-45	00	30	
05590	VIIZZ	Cen	12	24	03.0	-41	49	00	ond and	19754	VIIIO	Cen	10	23	10.0	-02	20	32	
05601	V1123	Cen	12	24	53.5	-47	09	08	SKD	06218	VII//	Cen	13	24	10.2	-37	11	01	EA DA
05620	V1124	cen	12	26	30.0	-52	25	25	M	06226	V11/8	Cen	13	24	53.5	-39	44	03	EA
05642	V1125	Cen	12	29	01.2	-47	57	39	SRB	06234	V1179	Cen	13	25	56.5	-40	18	19	RRC
05700	V1126	Cen	12	32	54.5	-54	38	54	LB	06237	V1180	Cen	13	26	29.2	-64	29	51	M
05723	V1127	Cen	12	33	52.8	-34	49	58	SRB	06255	V1181	Cen	13	27	45.4	-37	46	59	RRAB
05743	V1128	Cen	12	35	14.7	-35	36	50	LB	06256	V1182	Cen	13	28	10.1	-48	02	29	EA
19448	V1129	Cen	12	39	07.9	-45	33	44	EB+*	06263	V1183	Cen	13	28	51.5	-32	00	09	LB
05849	V1130	Cen	12	40	46.4	-34	51	35	RRC	06268	V1184	Cen	13	29	07.0	-35	52	41	RRC
05861	V1131	Cen	12	41	56.6	-50	16	12	М	06266	V1185	Cen	13	29	13.0	-64	06	41	LB:
05868	V1132	Cen	12	42	09.6	-43	55	03	Μ:	06262	V1186	Cen	13	29	14.0	-59	27	33	LB
05891	V1133	Cen	12	43	15.0	-33	41	02	EA	06269	V1187	Cen	13	29	14.4	-44	14	02	SRB
05922	V1134	Cen	12	44	54.1	-40	17	18	RRAB	06294	V1188	Cen	13	32	04.2	-38	36	32	RRAB
05946	V1135	Cen	12	48	00.5	-44	01	20	М	06318	V1189	Cen	13	34	59.4	-35	52	16	RRAB
05964	V1136	\mathtt{Cen}	12	49	33.0	-55	23	40	М	06279	V1190	\mathtt{Cen}	13	35	14.8	-43	50	22	SRB
05989	V1137	Cen	12	50	56.1	-31	19	19	LB:	06338	V1191	Cen	13	36	19.2	-34	25	12	RRAB
06001	V1138	Cen	12	52	03.8	-31	02	53	RRC	06344	V1192	Cen	13	37	36.8	-38	11	45	М
06003	V1139	Cen	12	52	23.8	-31	03	27	EW	06346	V1193	Cen	13	38	07.8	-39	29	53	SRA
06010	V1140	Cen	12	53	16.4	-37	21	02	EW	06354	V1194	Cen	13	38	34.6	-49	42	59	EB
06032	V1141	Cen	12	57	00.3	-33	30	07	LB	06358	V1195	Cen	13	39	39.4	-40	49	27	LB
06036	V1142	Cen	12	58	14.9	-62	58	08	EA	06360	V1196	Cen	13	40	02.1	-44	04	55	М
06045	V1143	Cen	12	59	08.5	-31	41	55	LB	19910	V1197	Cen	13	40	38.0	-63	22	30	DCEP
06047	V1144	Cen	12	59	14.9	-31	56	42	EA	19913	V1198	Cen	13	40	51.6	-62	52	47	EA
06048	V1145	Cen	12	59	47.8	-50	15	47	RRAB	06422	V1199	Cen	13	45	22.9	-35	56	16	SRA:
19569	V1146	Cen	13	00	50.2	-64	37	51	SRA	19977	V1200	Cen	13	52	17.5	-38	37	17	EA
06052	V1147	Cen	13	00	57.6	-49	12	12	UGSS:	06494	V1201	Cen	13	55	58.2	-30	29	36	SRB
06059	V1148	Cen	13	01	44.9	-50	42	17	М	20009	V1202	Cen	13	59	20.1	-62	27	37	EA
06061	V1149	Cen	13	01	54.9	-50	40	45	ΕA	20056	V1203	Cen	14	11	48.0	-62	01	35	EB
06065	V1150	Cen	13	02	38.4	-47	07	16	SRA	06584	V1204	Cen	14	13	48.4	-64	00	30	EA
06070	V1151	Cen	13	03	14 8	-48	30	29	м	06605	V1205	Cen	14	16	40 7	-36	56	18	SRA
06075	V1152	Cen	13	03	51 0	-64	06	00	LB	06624	V1206	Cen	14	19	29 1	-34	23	50	EΔ
06078	V1153	Cen	13	04	36 0	-61	40	17	FΔ	06635	V1200	Cen	14	21	03 2	-32	53	13	FΔ
06084	V1154	Cen	13	05	30.8	-52	06	56	SBS	06692	V1208	Cen	14	32	05 6	-63	31	30	м
19593	V1155	Cen	13	06	17 9	-48	27	46	BY	06714	V1200	Cen	14	36	03 1	-58	28	25	EΔ
06091	V1156	Cen	13	06	26 5	-38	27	17	FΔ	06728	V1210	Cen	14	36	55 6	-58	15	<u></u> Δ1	CFP(B)
06091	V1157	Con	13	00	20.0	-42	20	73 1	м	06746	V1210	Con	14	30	20.0	-42	27	08	FB.
06110	V1157	Con	12	10	21 7	- 15	10	17	ri CDD	00740	V1211 V0724	Con	14	07	29.4	+2 +76	21 00	00	БD. ЕА
06101	V1150	Cen	10	10	JI.1	-40	17	41	SRD M	12400	V0734	Cep	00	07	02.0	+10	00	20	
106121	V1159	Cen	10	11	44.1	-41	10	19		13492	V0735	Cep	21	102	23.9	+ 50	04	42	EA EU
19643	V1160	cen	13	11	06.7	-54	10	00	EA GDA	13635	V0736	Сер	21	10	29.1	+55	23	10	Ew Du
06134	V1161	Cen	13	12	09.1	-39	54	44	SRA	13695	V0737	Сер	21	23	48.3	+63	33	28	EW D.
06132	V1162	Cen	13	12	24.0	-57	06	44	M	25632	V0738	Сер	21	29	55.1	+58	56	16	EA
06135	V1163	Cen	13	12	25.6	-57	00	01	SRB	13796	V0739	Сер	21	34	54.6	+55	56	32	DCEP
06139	v1164	Cen	13	13	00.4	-48	30	50	LB	14038	V0740	Сер	22	04	32.9	+80	11	15	RRAB
06151	V1165	Cen	13	14	46.4	-55	58	53	SRB	25862	V0741	Сер	22	13	48.1	+67	10	26	ΕA
06157	V1166	Cen	13	15	51.3	-63	53	03	EA	14111	V0742	Сер	22	17	24.3	+70	53	42	RRAB
06159	V1167	Cen	13	15	53.0	-36	03	48	RRAB	14110	V0743	Сер	22	18	06.2	+55	54	16	ΕA
06167	V1168	Cen	13	17	17.7	-33	47	21	RRAB	14149	V0744	Сер	22	24	05.0	+68	44	59	EB
19703	V1169	Cen	13	18	30.8	-62	39	45	ΕA	14280	V0745	Сер	22	37	51.8	+85	06	15	ΕA
06178	V1170	Cen	13	19	02.6	-47	07	21	М	14288	V0746	Сер	22	42	20.5	+65	54	43	ΕA

NSV	Name		R. /	A.,	Decl	., 20	000	. 0	Туре	NSV	Name		R. /	A.,	Decl	., 20	000	.0	Туре
00004		a .	h	m	S	0	,			05740		a	h	m	S	0	,	45	
00201	FV	Cet	00	33	57.8	-13	31	19	RRAB	05749	WX	crv	12	35	17.4	-20	33	45	SKB
00252	FW	Cet	00	40	24.6	-21	34	34	RRAB	05901	WY	Crv	12	43	42.7	-13	51	13	RKAB
00285	FX	Cet	00	45	06.1	-18	54	15	RKAB	05914	WΖ	Crv	12	44	15.2	-21	25	35	EA
15337	FY	Cet	01	35	47.9	-11	22	29	SRB	05042	AC	Crt	10	59	21.8	-12	28	40	ΕW
00601	FZ	Cet	01	42	25.2	-22	15	57	UGSU	05159	AD	Crt	11	17	14.9	-23	36	06	SRB
00646	GG	Cet	01	53	01.0	-08	04	22	RRAB	05327	AE	Crt	11	46	47.1	-15	20	02	SRB
00675	GH	Cet	01	56	49.9	-21	11	44	ΕA	05359	AF	Crt	11	49	48.0	-08	17	20	SRB
15628	GI	Cet	03	03	13.1	+00	54	20	SR	05435	EK	Cru	12	02	58.5	-62	40	19	EB
04451	EW	Cha	09	14	02.6	-82	13	12	ΕA	19280	EL	Cru	12	11	11.7	-62	45	34	ΕA
04547	EX	Cha	09	33	25.7	-78	52	55	М	05594	EM	Cru	12	24	39.8	-62	45	50	М
04911	EY	Cha	10	35	25.0	-77	59	09	SRA:	05616	EN	Cru	12	26	06.2	-59	37	22	SRB
04933	EZ	Cha	10	39	09.0	-77	57	22	LB	05640	EO	Cru	12	29	00.8	-61	15	58	ΕA
04980	FF	Cha	10	46	44.9	-80	26	14	LB	05783	EP	\mathtt{Cru}	12	37	16.8	-56	47	17	ΕA
05004	FG	Cha	10	51	28.6	-80	46	40	SRA	19453	EQ	\mathtt{Cru}	12	40	24.3	-59	49	11	ΕA
05055	FH	Cha	11	00	14.1	-76	44	16	IT:	05870	ER	\mathtt{Cru}	12	42	21.3	-58	28	07	SRB
18674	FI	Cha	11	07	43.7	-77	39	41	INT	05930	ES	\mathtt{Cru}	12	46	13.2	-61	50	09	SRB
18675	FK	Cha	11	07	58.0	-77	38	44	INT	05978	ET	\mathtt{Cru}	12	50	28.0	-60	39	49	ΕA
18679	FL	Cha	11	80	39.0	-77	16	04	INT	11822	V2469	Cyg	19	12	16.1	+49	42	24	ΕA
05116	FM	Cha	11	09	53.4	-76	34	26	INT	11924	V2470	Cyg	19	19	58.0	+46	53	21	RRAB
18686	FN	Cha	11	10	04.7	-76	35	45	INT	12777	V2471	Cyg	20	04	31.5	+53	03	44	EW
05124	FO	Cha	11	10	49.6	-77	17	52	INT	24999	V2472	Cyg	20	05	02.6	+41	59	44	LB
05191	FP	Cha	11	24	05.9	-75	54	49	SRA	12860	V2473	Cyg	20	09	45.8	+48	52	07	EA
05228	FQ	Cha	11	30	11.0	-78	07	03	SRB	12870	V2474	Cyg	20	10	46.2	+33	48	05	EB:
05260	FR	Cha	11	35	22.8	-81	50	50	SRB	12928	V2475	Cvg	20	13	56.2	+35	19	41	DCEP
05366	FS	Cha	11	51	38.7	-78	11	54	М	12945	V2476	Cvg	20	14	39.7	+35	39	14	EB
05371	FT	Cha	11	51	53.9	-76	44	07	SRA	13016	V2477	Cvg	20	18	58.9	+56	36	19	EW
05423	FU	Cha	12	00	59.3	-79	46	00	SRB	25285	V2478	Cvg	20	42	24.6	+42	18	05	EW
05694	FV	Cha	12	33	33.9	-82	26	28	SBB	25325	V2479	Cvo	20	45	10 8	+36	48	42	LB
05918	FW	Cha	12	45	56 9	-81	00	08	м	13506	V2480	Cyg	21	04	05 9	+39	33	00	FΔ
05965	FX	Cha	12	50	57 1	-81	19	24	SBB	25452	V2400	Cyg	21	04	17 1	+37	51	07	м∙
06057	FV	Cha	13	02	10 3	-76	03	04	IR.	25482	V2401 V2482	Cyg	21	07	39 5	+40	40	02	м.
06069	F7	Cha	13	02	23 1	-79	27	38	LD. IR	25486	V2402	Cyg	21	07	00.0 00 4	+36	70 28	10	FR
06102	72 CC	Cha	13	01 01	57 3	-78	10	13	тв	25400	V2400	Cyg	21	15	$\frac{1}{2}$	+38	20	04	TB
06252	CH	Cha	13	21	27 8	-70	07		G B B	13625	V2404	Cyg	21	15	37 0	+38	07	07 20	ED ED
06212	CT	Cha	12	23	27.0	-70	22	04	CDD	12627	V2400	Curr	21	16	57.2	+40	10	20	ED EA
06312	GV	Cha	10	27	20.0	-19	55	21	SRD M	12021	V2400	Cyg C	21	10	59.4	+40	19	10	LA ID.
06334	GN	Cha	10	51	55.4 55.2	-15	5U 07	10	M	20040	V2407	Cyg	21	22 TO	20.7	139	04 94	10	LD: CDD
06421	GL		10	41	55.5	-70	07	10	M CDD	25074	V2400	Cyg C	21	22	32.7	+ 20	21	19	ono an
06592	л Л	Cir	10	42	35.I	-05	22 40	42	SRD EA	20097	V2409	Cyg	21	30 40	21.7	100	23 40	24 47	on ED
06516			14	47	49.5	-04	49	11	EA EA	12022	VZ490	Del	21	42	20.0	+20	49	41	
06792	DK		14	41	12.7	-57	40	38	EA DA	13112	05	Del	20	29	20.5	+09	35	44	RRAD
06800		Cir	14	48	08.1	-60	34	09	E A	13121		Det	20	31	31.9	+06	46	32	LA
07044	DM	Cir	15	24	08.5	-56	50	15	EW	13149	00	Del	20	34	14.3	+06	34	06	LB:
02740	AV	COL	05	56	50.6	-27	40	02	RRAB	13271	UV	Del	20	45	00.3	+16	48	05	LB
02826	AW	Col	06	05	11.3	-32	43	51	EA	13304	0 W	Del	20	48	14.3	+04	36	54	EA
03034	AX	Col	06	34	04.9	-41	32	32	SRA	25346	OX	Del	20	49	00.6	+16	13	48	EA
19199	MS	Com	12	06	00.8	+23	12	17	GDOR	01687	BD	Dor	04	38	19.1	-57	12	14	EA
19553	MT	Com	12	55	10.6	+26	42	27	NL+ZZ	04629	MW	Dra	09	50	17.1	+74	58	16	EA
06277	MU	Com	13	29	53.1	+25	39	04	SRB	05499	MX	Dra	12	12	15.1	+68	53	00	RS
10915	V0731	CrA	18	30	51.8	-37	16	49	EB	05631	MY	Dra	12	27	43.1	+67	58	06	ΕA
11217	V0732	CrA	18	42	51.2	-43	11	21	ΕA	05644	MZ	Dra	12	28	24.7	+74	14	07	ΕA
11335	V0733	CrA	18	47	37.7	-41	03	44	EA	06080	NN	Dra	13	04	03.0	+65	15	24	EW
11391	V0734	CrA	18	51	08.7	-43	11	06	ΕA	20276	NO	Dra	15	11	44.4	+63	37	19	ΕA
11767	V0735	CrA	19	10	12.9	-44	31	17	М	22984	NP	Dra	17	35	16.3	+55	00	12	ΕA
05526	WW	Crv	12	17	02.5	-24	18	50	LB	11317	NQ	Dra	18	44	13.2	+57	41	01	RRAB

NSV	Name		R.4	۹.,	Decl	., 20	,000	.0	Туре	NSV	Name		R. <i>1</i>	۹.,	Decl.	, 20)00.	0	Туре
12/02	ND	Dra	п 10	щ	53 0	-68	10	20		10970	V113/	Vor	10 10	ла Ш	5 1/ 5	10 110	10	Б1	FB
13510	ты <i>.</i>	Fau	19 01	49 05	02 4	+00	26	51	GDD	10070	V1134	Hor	10	20	13 0	+12 +19	17	04	ED
13663	TV	Equ	21 01	20	12.1	+05	20 // 1	13	E M	24405	V1136	Hor	10	30	17 0	- 12 - 12	10	15	CDOB
13003	IA TV	Equ	21	20	42.1 no n	-57	41 50	40	EA EU.	24495	V1130	uer uer	10	05	41.9 01 2	-50	40	40	GDUR
15570	11 T7	EII Emi	02	101	20.2	10	52	010		15020	AG	Hor	03	00 E0	11 1	-52	10	10	ond dud
155/8		Eri Eri	02	40	29.1	-13	57 40	03	RRAD	15830		HOL	03	0Z	14.4	-49	04	10	SKB M
15040	KK VI	EII E	03	11	57.0	-03	40	29	RRAD	03900	V0424	пуа	00	10	52.4	-01	50	49	
01284	KL VM	Eri Eri	03	45	25.4	-08	41	34	RRAD	04017	V0425	нуа	08	20	51.0	+06	20	24	RRAD
01564	KM KM	Eri Eri	04	20	33.1	- 15	54	50	SKB	04095	V0426	нуа	08	28	35.2	-13	51	14	EA CDA
01652	KN	Eri	04	34	17.9	-04	50	40	EW	04178	V0427	нуа	08	39	38.9	-05	58	52	SKA
01660	KU	Eri	04	35	38.9	-04	05	54	SKB	17960	V0428	нуа	08	41	46.1	+02	11	20	M
16154	KP	Eri	04	43	07.2	-07	24	42	EA	04312	V0429	Hya 	08	55	43.8	-19	13	28	SRB
01780	KQ	Eri	04	56	16.1	-08	58	14	LB	04369	V0430	Hya	09	04	48.6	+05	30	80	RRAB
01781	KR	Eri	04	56	51.9	-06	32	09	SRB	04412	V0431	Hya	09	11	39.4	-12	09	35	LB
16254	KS	Eri	05	09	02.9	-07	44	12	EB	18149	V0432	Hya	09	12	18.6	-11	04	44	EA
00763	AU	For	02	15	02.4	-33	51	05	EA	04647	V0433	Hya	09	50	16.5	-22	40	32	LB:
15483	AV	For	02	18	33.7	-29	40	16	ΕA	04653	V0434	Hya	09	51	16.1	-26	36	34	ΕA
01068	AW	For	03	11	00.2	-35	20	44	RRAB	04677	V0435	Hya	09	55	36.1	-19	41	27	ΕA
02837	V0378	Gem	06	80	17.5	+22	42	29	SR	04732	V0436	Hya	10	05	35.1	-12	35	15	SRB
02840	V0379	Gem	06	80	45.0	+25	51	18	SRB	04800	V0437	Hya	10	15	53.3	-26	29	06	LB
02889	V0380	Gem	06	16	12.8	+25	39	56	EW	04915	V0438	Hya	10	37	58.3	-20	11	09	LB
03029	V0381	Gem	06	34	00.0	+15	17	03	SR	04952	V0439	Hya	10	44	07.4	-27	26	42	М
03186	V0382	Gem	06	44	14.5	+16	24	04	ΕA	05033	V0440	Hya	10	58	28.5	-32	46	48	SRB
03210	V0383	Gem	06	47	42.1	+23	56	12	ΕA	05115	V0441	Hya	11	10	38.0	-28	54	02	EB
03230	V0384	Gem	06	50	56.7	+29	01	56	М	05122	V0442	Hya	11	11	30.7	-33	57	54	EW
03322	V0385	Gem	06	59	37.6	+16	40	39	SRB	05154	V0443	Hya	11	16	26.1	-33	17	13	ΕA
03346	V0386	Gem	07	02	49.6	+17	20	27	ΕA	05170	V0444	Hya	11	18	50.1	-30	28	25	SRB
03449	V0387	Gem	07	12	05.7	+17	22	48	RRAB	05187	V0445	Hya	11	23	58.2	-33	80	23	ΕA
03450	V0388	Gem	07	12	14.8	+18	23	50	EB	05223	V0446	Hya	11	29	58.7	-29	36	19	EW
17436	V0389	Gem	07	21	03.3	+25	40	80	EA	05288	V0447	Hya	11	40	14.8	-30	15	49	SRB
03728	V0390	Gem	07	47	03.1	+14	53	23	ΕA	05312	V0448	Hya	11	44	20.8	-28	29	04	SRA
13717	DT	Gru	21	28	18.1	-44	09	17	EA	05373	V0449	Hya	11	52	31.9	-25	46	55	LB
14003	DU	Gru	22	03	01.0	-39	21	23	EB	05406	V0450	Hya	11	59	19.1	-27	09	03	М
25852	DV	Gru	22	12	38.5	-54	17	27	EA	05414	V0451	Hya	12	00	12.1	-33	53	27	SRB
14193	DW	Gru	22	32	38.0	-47	42	47	ΕA	05421	V0452	Hya	12	01	02.6	-30	48	34	EW
14195	DX	Gru	22	32	59.2	-44	48	45	SRB	05488	V0453	Hya	12	11	06.7	-34	30	27	ΕA
14532	DY	Gru	23	23	14.3	-37	30	56	EW	05504	V0454	Hva	12	13	27.8	-32	39	25	EA
07777	V1116	Her	16	30	16.4	+16	55	06	DSCT	05741	V0455	Hva	12	35	04.3	-28	46	40	SRB
07883	V1117	Her	16	39	06.4	+09	47	55	IS	05754	V0456	Hva	12	35	33.6	-31	40	00	SRB
07891	V1118	Her	16	39	45.4	+09	16	37	SRA	05789	V0457	Hva	12	37	22.6	-28	02	40	SRB
07901	V1119	Her	16	40	22.4	+06	07	30	EB	05830	V0458	Hva	12	39	27.5	-33	17	26	LB
07913	V1120	Her	16	41	19.3	+08	28	02	SRB	05943	V0459	Hva	12	47	35.5	-27	35	14	LB
07928	V1121	Her	16	42	46.1	+09	53	29	SRB	06006	V0460	Hva	12	52	44.3	-26	00	13	SRB
07967	V1122	Her	16	46	37 8	+39	03	25	LB	06013	V0461	Hva	12	53	28 7	-28	42	02	EB·
07989	V1122	Hor	16	50	13 1	+08	59	11	SB	06068	V0462	Hva	13	02	45 5	-23	58	13	SXDHE
08170	V1123	Hor	17	04	32 0	+14	26	33 TT	BBAB	06249	V0463	Hua	13	02 27	17 A	-25	02	15	M
00170	V1124	ner	17	04	22.3	· 14	12	50	TD	06505	V0403	una Una	1/	27 17	21 0	-26	52	17	11 FU
00119	V1120	пет	17	05	20.0	- 14 - 15	10	ວອ ວາ		00090	V0404	пуа	14	14	21.0	-20	15	Ξ1	сw м
00200	V1120	ner	17	00	11 0	+ 26	10	10	CD	00166	0405	uni uni	14	40 26	24.0 56 6	_70	20 T0	54	ri CD
00105	V 1 1 2 (пет	17	01 24	TT'A	1 1 7	0.4 TΩ	10	SR ID	00320		пу1 11	00	20 ⊑ ⊑	00.00	-19	J∠ ⊿1	00	on add
09192	V1128	ner	17	34 4	29.1	+1/	2 I		LD	00350	שם עע	нуі П	00	00	23.0	-19	41 02	33	SKB
09631	V1129	неr	11	44	43.4	+15	01	55	KKAB	00502	DE DE	нуі П	01	23	41.2	-18	23	10	SKB
096/6	V1130	неr	11	46	44.1	+15	42	02	LR LR	00593	DF	нуі 	U1	40	49.2	-67	29	42	CWB
09697	V1131	неr	17	47	05.2	+38	33	30	KKAB	00620	DG	нуі	U1	44	38.1	-//	22	13	SKB
09696	v1132	Her	17	47	31.6	+16	49	49	ККАВ	15394	DH	Нуі	01	49	13.3	-63	31	00	EA
09853	V1133	Her	17	54	43.9	+15	53	17	EA	15526	DI	Hyi	02	27	34.9	-67	47	12	М

01071 DK Hyi 03 08 41.8 -75 47 24 SRB 06952 OV Lup 15 08 47.6 -41 59 49	SRA
01011 DK Ny1 05 06 41.6 -15 41 24 5RD 00352 UV Lup 15 06 41.6 -41 59 49	SUL
01100 DL HILL DO 00 E 71 96 10 000 060E0 0U Time 1E 00 99 6 99 40 90	гu
13263 (N Ind 20 45 30 2 -51 02 43 EV 06968 0X Inp 15 10 54 5 -42 35 46	E M
13203 CN Ind 20 45 39.2 31 02 45 EW 00308 UK Eup 15 10 34.5 42 35 40 13404 CD Ind 20 56 29 6 -47 50 43 EB 20263 DV Lup 15 11 40 0 -42 11 26	EA FA
13527 CP Ind 21 07 05 6 -54 04 53 FA 07070 07 Jup 15 26 14 3 -41 28 35	GBB
13749 CD Ind 21 07 03.0 54 04 55 EA 07070 02 Eup 15 20 14.5 41 20 35	F N
13766 CR Ind 21 33 45 1 -67 33 49 FW 07330 PD Jup 15 55 53 2 -40 41 44	RRAR
13983 CS Ind 21 59 54 6 -68 50 37 IIC 03878 FK I wn 08 04 17 1 +38 46 38	FΔ
14163 CT Ind 22 29 46 2 -71 31 09 FA 17878 FI I vn 08 25 22 7 +40 34 55	FΔ
1400 01 Ind 22 23 10.2 11 01 03 EK 11010 EE Eyn 00 20 22.1 10 04 00 14041 CH Ind 22 37 17 6 -69 29 09 FW 17902 FM I wn 08 30 41 7 +40 24 25	RRAR
14263 CV Ind 22 40 39 7 -68 14 17 M 18027 EN Lyn 08 46 07 0 +38 02 53	RRAR
14384 CW Ind 23 00 56 6 -69 16 42 BV: 11363 V0636 Lyr 18 47 52 8 +38 42 18	LB
25841 V0454 Lac 22 09 05 0 +45 30 29 LB 01196 AB Men 03 31 24 5 -75 27 20	SBA
14062 V0455 Lac 22 10 50 5 +50 19 37 E4 01675 AS Men 04 32 56 8 -78 07 41	SBB
25859 V0456 Lac 22 13 50 0 +43 54 39 E4 01770 AT Men 04 52 06 9 -70 43 52	EΔ
25928 V0457 Lac 22 36 23.0 +38 06 18 EA 02750 AU Men 05 55 00.7 -72 41 36	EW
14327 V0458 Lac 22 48 55.9 +45 45 08 EA 02947 AV Men 06 19 07.9 -78 35 09	RRAB
14332 V0459 Lac 22 50 54 5 +48 39 24 EA 03443 AW Men 07 06 16 3 -76 50 21	EA
18241 HM Leo 09 38 37 0 +07 14 55 HG 03534 AX Men 07 12 01 6 -82 00 24	SBB
18312 HN Leo 09 58 26 0 +27 45 32 GDOB 17537 AV Men 07 34 58 5 -76 57 47	SBB
04745 H0 Leo 10 08 13 9 +26 22 33 RBAB 13190 DF Mic 20 39 11 6 -37 55 48	SBB
05019 HP Leo 10 56 20.7 +14 29 31 RRAB 13605 DG Mic 21 14 19.3 -42 47 55	EA
05043 H0 Leo 10 59 40.4 +06 37 31 RRAB 02941 V0872 Mon 06 23 09.1 -10 05 31	M
18601 HR Leo 11 04 42 3 -02 58 20 EB 02962 V0873 Mon 06 26 10 1 +02 05 58	EΔ
05168 HS Leo 11 18 42 7 +27 31 50 EW 03014 V0874 Mon 06 32 07 9 +03 08 40	EΔ
01830 AL Lep 05 06 17 7 -20 07 53 EW 16906 V0875 Mon 06 33 00 1 +09 32 30	LB
16262 AM Lep 05 12 17 6 -11 51 58 BY 03057 V0876 Mon 06 38 24 6 -01 39 03	SBB
01875 AN Lep 05 13 44 3 -20 03 15 SBB 03180 V0877 Mon 06 43 01 5 -09 43 48	EΔ
01965 AD Lep 05 24 14 6 -14 06 03 BRAB 17227 V0878 Mon 06 54 48 9 -01 16 57	EB
01986 AP Lep 05 26 19.5 -15 27 30 EA 03282 V0879 Mon 06 55 34.0 -10 13 12	EA
02490 AQ Lep 05 37 50.1 -15 48 12 M 17236 V0880 Mon 06 55 37.7 -09 29 23	EW
02571 AR Lep 05 40 50.1 -23 35 07 FA 03300 V0881 Mon 06 57 33.6 +05 06 42	E.A
02575 AS Lep 05 41 11.8 -16 52 32 SRB 03305 V0882 Mon 06 57 39.5 -05 27 15	EA
02652 AT Lep 05 48 17.1 -25 02 31 EA 17258 V0883 Mon 06 58 11.9 -05 04 29	EA
02781 AU Lep 06 01 04.4 -12 12 21 M 03371 V0884 Mon 07 05 11.8 -11 06 02	EA
02795 AV Lep 06 01 50.8 -21 06 18 SRB 17388 V0885 Mon 071402.926 +00 03 25	SRB
16768 AW Lep 06 04 35.1 -14 01 57 GDOR: 03532 V0886 Mon 071917.227 -10 54 31	LB
20158 LL Lib 14 41 43.2 -20 50 26 RRAB 17440 V0887 Mon 072129.363 -10 20 20	EB
20245 LM Lib 15 07 52.9 -27 29 08 EA: 03645 V0888 Mon 073348.394 -09 40 53	ΕA
20247 LN Lib 15 08 06.3 -29 12 09 EA 03647 V0889 Mon 073423.061 -01 27 23	LB
20262 L0 Lib 15 10 38.0 -09 30 14 RRAB 03654 V0890 Mon 073540.460 -08 44 50	EA
06989 LP Lib 15 13 38.5 -20 26 32 EA 17552 V0891 Mon 074118.576 -01 32 30	EA
07072 LQ Lib 15 26 01.1 -15 32 46 RRAB 03692 V0892 Mon 074155.692 -01 16 35	SRB
07164 LR Lib 15 37 43.7 -26 35 50 EA 03719 V0893 Mon 074527.244 -05 13 12	SRB
20387 LS Lib 15 44 14.3 -22 55 32 SR 03730 V0894 Mon 074651.481 -07 52 26	LB
07222 LT Lib 15 44 34.6 -11 53 02 EA 03757 V0895 Mon 075021.429 -01 14 31	RRAB
07283 LU Lib 15 50 09.7 -17 23 50 EW 03844 V0896 Mon 075941.552 -07 50 13	EA
20174 00 Lup 14 45 46.2 -46 48 12 EA 03850 V0897 Mon 080007.789 -08 57 26	SRB
06799 OP Lup 14 47 34.8 -49 19 13 SRB 03866 V0898 Mon 080159.718 -06 46 46	RRAB
06842 0Q Lup 14 53 45.0 -54 38 14 EA 05175 MU Mus 112123.336 -72 33 51	M
20235 OR Lup 15 04 50.4 -53 21 36 EA 05180 MV Mus 112300.113 -72 48 10	М
06917 OS Lup 15 04 52.2 -37 57 39 EW 05186 MW Mus 112331.986 -71 36 12	М
06921 OT Lup 15 06 08.2 -42 55 27 EA 05216 MX Mus 112821.449 -70 24 06	М
06933 OU Lup 15 06 48.3 -35 04 57 EA 05233 MY Mus 113047.189 -72 58 39	EA

NSV	Name		R. /	A.,	Decl	., 20	000	. 0	Туре	NSV	Name		R. /	Α.,	Decl	., 20	000	.0	Туре
05000	MT	м	n	m	S 7 0 4 0	0	, م		an A	07700	110400	NT	n	m	S 40 0	0	~	~~	
05236	MZ	Mus	113	3057	040	-69	34	44	SKA	07763	V0400	Nor	10	30	48.2	-46	00	20	EA:
05247	NN	Mus	11	32	36.8	-70	07	52	SRB	00244	DW	UCT	00	37	52.9	-82	37	14	SKB
05275	NU	Mus	11	37	38.9	-72	11	10	M	01067	DX	Uct	02	50	25.3	-87	30	22	NL
05296	NP	Mus	11	40	47.6	-70	03	28	M	03694	DY	Uct	07	31	12.5	-84	32	18	RRAB
05300	NQ	Mus	11	42	29.2	-74	58	47	LB	04350	DZ	Oct	08	54	48.3	-83	16	57	RRAB
05301	NR	Mus	11	42	33.4	-67	52	09	М	04992	EE	Oct	10	47	26.9	-84	80	23	RRAB
05333	NS	Mus	11	47	05.9	-75	12	35	SRB	05065	EF	Oct	11	00	54.5	-84	05	27	М
05331	\mathbf{NT}	Mus	11	47	08.6	-70	13	52	М	05267	EG	Oct	11	35	37.7	-84	21	36	SRB
05343	NU	Mus	11	48	19.1	-68	38	51	SRB	05292	EH	Oct	11	39	25.2	-87	09	26	М
05342	NV	Mus	11	48	24.1	-67	53	47	М	05654	EI	Oct	12	32	42.9	-87	26	23	EW
05372	NW	Mus	11	52	47.0	-75	12	26	SRB	05959	ΕK	Oct	12	53	52.2	-87	27	21	LB
05377	NX	Mus	11	53	24.0	-72	24	43	М	06034	EL	Oct	12	59	56.0	-83	12	07	М
05409	NY	Mus	11	59	57.9	-74	12	39	SRB	06158	EM	Oct	13	20	30.8	-85	52	23	SRB
05412	NZ	Mus	12	00	04.5	-75	13	50	SRB	06150	EN	Oct	14	50	18.0	-89	46	58	EW
05439	00	Mus	12	03	37.9	-74	28	35	SRB	06749	EO	Oct	14	54	21.3	-87	21	05	SRB
05442	0P	Mus	12	03	48.4	-73	53	08	SRB	07038	EP	Oct	15	30	53.7	-84	48	29	EW
05443	OQ	Mus	12	03	52.0	-69	30	55	SRA	08042	EQ	Oct	17	10	29.0	-86	23	00	SRA
05466	OR	Mus	12	07	54.0	-67	53	01	EA:	12460	ER	Oct	19	54	17.2	-74	43	10	SRB
05473	05	Mus	12	80	46.3	-65	45	29	LB	13608	ES	Oct	21	17	51.8	-79	24	22	EB
05512	ОТ	Mus	12	15	38.0	-68	08	10	М	13979	ET	Oct	22	02	40.5	-84	15	54	EA
05533	OU	Mus	12	18	22.4	-70	57	05	SR:	14315	EU	Oct	22	48	41.0	-78	48	31	ΕA
05577	OV.	Mus	12	22	44.0	-70	28	27	SRB	07722	V2616	Οph	16	26	35.1	-05	58	03	SRB
05648	0₩	Mus	12	29	36.7	-75	04	32	ΕA	07730	V2617	0ph	16	27	07.2	-08	51	00	EB
05657	0 X	Mus	12	30	19 7	-66	57	08	м.	07750	V2618	Onh	16	28	32 9	-01	04	29	SB
05756	nv	Mile	12	36	03 6	-73	32	28	г. F Δ	07931	V2619	Onh	16	<u>4</u> 3	27 4	-12	10	47	FW
05769	07	Mug	12	37	02.4	-72	38	20	м	07001	V2620	Oph	16	51	06 0	+06	57	18	BBVB
05770		Mug	10	37	12 2	-67	16	20	SDD	07006	V2620	Oph	16	51	25 0	-20	07 01	-10 05	DDAD
05779		Mus	10	31 13	20.0	-07	10	22	SRD M.	01990	V2021	Oph	10	51	40 0	-20	12	03	NNAD
05092	Pų DD	Mus	12	43	50.2	-04	40	00		00003	VZOZZ	Oph	10	01	42.0	+07	12	07	RRAD CDD
05919	PR	Mus	12	44 55	10 0	-07	04	22	SKB	08131	V2023	Oph	17	01	50.0	+06	55	28	SKB
06021	P5 DT	Mus	12	55	10.2	-08	54 25	24		20892	V2624	0pn	17	03	53.7	-24	50	42	SKB
06033	PI	Mus	12	57	43.4	-67	35	09	SRB	08154	V2625	Upn	17	03	55.2	+12	33	21	LB
06051	P0	Mus	13	01	01.2	-69	19	34	M	20913	V2626	upn	17	05	32.0	+10	32	41	EA
06073	PV	Mus	13	04	15.3	-75	10	36	EA	08188	V2627	Uph	17	06	03.8	+01	43	21	SRB
06105	PW	Mus	13	80	46.7	-67	12	19	M:	08195	V2628	Oph	17	06	55.5	-23	33	05	CEP:
06126	РХ	Mus	13	11	57.5	-68	03	35	RVB:	08219	V2629	Oph	17	07	23.7	+10	52	41	EA:
06138	РҮ	Mus	13	13	10.9	-66	17	35	M:	21011	V2630	Oph	17	09	05.5	+11	27	43	LB
06189	ΡZ	Mus	13	20	57.9	-66	13	41	М	08256	V2631	Oph	17	10	22.1	-04	03	36	CWA
06222	QQ	Mus	13	25	32.3	-73	04	14	М	08269	V2632	Oph	17	11	52.0	-23	54	35	ΕA
06221	QR	Mus	13	25	43.7	-75	17	04	М	08286	V2633	Oph	17	11	56.5	+09	47	03	\mathtt{SR}
06241	QS	Mus	13	26	17.5	-67	09	13	М	08339	V2634	Oph	17	13	07.2	+09	45	31	SRB
06240	QT	Mus	13	27	03.1	-70	12	15	М	08441	V2635	Oph	17	16	29.8	-00	29	16	EW
06233	QU	Mus	13	27	19.4	-74	31	80	М	08472	V2636	Oph	17	18	10.0	-17	15	47	ΕA
06251	QV	Mus	13	28	51.5	-75	37	19	SR	08493	V2637	Oph	17	18	29.6	+05	16	31	EW
06285	QW	Mus	13	32	45.4	-74	59	46	М	08486	V2638	Oph	17	18	44.6	-18	56	15	ΕA
06420	QX	Mus	13	47	19.3	-75	34	41	М	08569	V2639	Oph	17	22	07.1	+03	09	35	RRAB
20323	V0391	Nor	15	31	52.6	-59	14	59	DCEPS	08780	V2640	Oph	17	28	01.5	+05	07	15	EW
07118	V0392	Nor	15	32	29.0	-52	52	11	ΕA	09159	V2641	Oph	17	33	57.2	-20	30	24	CEP
07274	V0393	Nor	15	50	26.8	-46	42	29	EB	09234	V2642	Oph	17	35	57.1	+11	50	41	ΕA
07355	V0394	Nor	15	58	14.7	-54	20	31	EB	09200	V2643	Oph	17	36	00.3	-20	31	25	М
07377	V0395	Nor	16	00	16.8	-45	07	36	EW	09226	V2644	Oph	17	36	44.9	-29	14	27	EA
07400	V0396	Nor	16	04	05.6	-60	12	59	EA	09504	V2645	Oph	17	40	38.6	+01	36	26	RRAB
07563	V0397	Nor	16	15	55.5	-51	07	15	DCEP	09517	V2646	0ph	17	40	54.9	+04	41	28	RRAB
07642	V0398	Nor	16	21	57.0	-49	09	24	EA	09550	V2647	-ր Որհ	17	42	20.3	+10	20	04	EA
20599	V0399	Nor	16	22	35.9	-50	32	38	EB	09569	V2648	0ph	17	43	02.9	+00	05	50	SRA:
			-	-			-	-				T		-			-	-	

NSV	Name		R. <i>I</i>	A., m	Decl	., 20	,000	.0	Туре	NSV	Name		R.I h	A., m	Decl.	, 20	,000	.0	Туре
09596	V2649	Ոսի	17	43	38.5	+13	55	18	LB	12268	V0408	Pav	19	42	07.9	-64	04	38	ΕA
09637	V2650	Onh	17	45	20.7	+08	10	20	FR	12440	V0409	Pav	19	53	08.9	-74	08	00	SBB
09727	V2651	Onh	17	10 19	10 6	+08	44	59	SBB	25617	V0412	Per	21	29	28.2	+07	15	45	SBB
007/8	V2652	Oph	17	10	50.0	+07	10	24		13969	V0412	Dog	21	15	10 5	+26	13	10	EB.
03740	V2052	Oph	17	49 50	17 2	+02	10	24		15000	V0413	Dog	21	40 0.1	10.5	+ 05	40	10	ED. EA
24021	V2000	Oph	17	52	41.5	+03	41 01	39	LA	20001	V0414	reg Dog	22	Z I / 1	10.0	+05	40	42	EA EA
09001	V2004	Oph	17	55	01.0 FC 4	+03	Z I E 4	20		20943	V0415	гед	22	41	00.0	+10	13	10	EA.
09866	V2000	0pn	17	55	50.4	+01	51	43		25992	V0416	Peg	23	01	05.9	+20	40	53	EA:
09872	V2656	upn	17	55	56.7	+12	02	01	KKAB	14520	V0417	Peg	23	21	14.1	+09	26	07	SRB
09905	V2657	Uph	17	57	42.7	+02	31	20	EA	26110	V0418	Peg	23	35	37.5	+14	35	37	GDUR
09902	V2658	Uph	17	57	45.8	+01	57	09	RRAB	14723	V0419	Peg	23	50	05.0	+17	53	44	RRAB
09919	V2659	Oph	17	58	13.7	+03	00	14	EA	00651	V0723	Per	01	53	59.7	+53	28	05	EB
09995	V2660	Oph	18	01	24.0	+00	00	80	EA	00709	V0724	Per	02	03	25.7	+51	47	39	SRB
10019	V2661	Oph	18	01	50.8	+04	11	00	RRAB	00733	V0725	Per	02	10	27.0	+48	46	40	ΕA
10061	V2662	Oph	18	02	29.7	+06	22	19	RRAB	00877	V0726	Per	02	38	10.8	+52	51	13	LB
10072	V2663	Oph	18	02	47.7	+07	54	01	EA	00880	V0727	Per	02	39	25.9	+52	43	52	SRB
10140	V2664	Oph	18	04	12.7	+01	51	58	RRAB	00901	V0728	Per	02	43	52.2	+46	03	44	ΕA
10202	V2665	Oph	18	06	05.4	+06	47	22	SRB	00953	V0729	Per	02	50	30.0	+45	54	56	LB
10287	V2666	Oph	18	09	33.9	+03	59	36	GDOR	00994	V0730	Per	02	58	35.5	+46	32	05	SRB
10439	V2667	Oph	18	15	14.0	+04	30	50	SR	01085	V0731	Per	03	15	48.2	+44	03	57	ΕA
10478	V2668	Oph	18	16	24.4	+01	32	47	RRAB	01114	V0732	Per	03	23	19.2	+51	23	29	EA
10595	V2669	Oph	18	18	48.8	+06	41	54	SR	01180	V0733	Per	03	31	48.5	+36	12	45	ΕA
01719	V1799	Ori	04	47	18.2	+06	40	56	EW	01210	V0734	Per	03	38	19.1	+32	03	13	SR:
01760	V1800	Ori	04	54	18.7	+11	10	44	М	01211	V0735	Per	03	38	29.5	+34	40	14	SR:
16225	V1801	Ori	05	01	38.0	+02	54	25	EA/RS	15730	V0736	Per	03	39	41.4	+37	47	32	ΕA
01809	V1802	Ori	05	02	21.2	+05	29	19	ш., М	01217	V0737	Per	03	40	20.2	+33	04	07	EW
01850	V1803	Ori	05	09	13 7	+01	21	31	SB	01371	V0738	Per	03	50	56.3	+47	14	35	SB
16296	V1804	Ori	05	23	05 5	+01	03	25	FΔ	15857	V0739	Por	03	59	46 4	+34	40	57	IR
01056	V1805	Ori	00	20	18 7	+ 1 2	БЛ	20	CDD	01447	V0740	Dor	0.0	0.0	10.1	-33 -04	57	25	ED EW
01930	V1005	Ori	05	20	40.7	-04	04	23 47		01447	V0740	Dor	04	04	49.0	+40	11	57	CDD
01970	V 1000	Ori	05	20	40.0	-04 +01	27	41 02	CD	15002	V0741	Per	04	03	22.0 57 6	-49 -10	12	10	ond cp.
01905	V 1007		05	20	39.Z	-01	12	20	on on	10903	V0742	Dom	04	01	10 0	191	20	19	on: ID
01990	V 1000		05	20	49.7	-09	13	01	on DD	01473	V0743	Per	04	10	40.0	- 44	30	54	
02001	V1809	Uri	05	21	53.9	+11	31	01	SKB	01481	V0744	Per	04	10	40.7	+44	20	50	LB
02064	V1810	Uri	05	31	15.8	+09	41	20	SKB	01528	V0745	Per	04	15	34.9	+33	49	46	M:
16352	V1811	Uri	05	34	12.4	+00	24	50	EA	01595	V0746	Per	04	26	18.9	+50	12	33	ΓB
02306	V1812	Ori	05	35	17.7	-05	58	27	INT(YY)	01646	V0747	Per	04	34	12.8	+47	15	36	М
02403	V1813	Ori	05	36	27.7	+14	03	59	EA	01686	V0748	Per	04	40	30.2	+43	11	52	LB
02456	V1814	Ori	05	37	09.5	-06	06	16	INT	01704	V0749	Per	04	44	47.0	+43	35	02	SR
02470	V1815	Ori	05	37	51.7	+08	51	32	EA	01714	V0750	Per	04	47	15.3	+42	50	01	LB
02597	V1816	Ori	05	43	26.3	+10	04	24	SRB	00329	CW	Phe	00	51	51.5	-55	50	24	LB
02603	V1817	Ori	05	44	17.0	+10	01	42	SRB	00470	CX	Phe	01	19	31.1	-48	17	41	EA
16725	V1818	Ori	05	53	42.6	-10	24	01	IN	00605	СҮ	Phe	01	42	24.0	-46	40	52	SRB
02715	V1819	Ori	05	54	28.8	+12	31	56	DCEP	14764	CZ	Phe	23	56	21.8	-53	29	22	RR(B)
02724	V1820	Ori	05	54	37.1	+04	54	11	RRAB	14769	DD	Phe	23	57	04.6	-52	13	19	LB
02769	V1821	Ori	06	00	31.6	+20	51	50	SRB	14780	DE	Phe	23	57	55.3	-41	55	43	ΕA
02894	V1822	Ori	06	17	07.9	+15	06	38	LB	01700	AL	Pic	04	41	30.8	-52	16	37	RRAB
02895	V1823	Ori	06	17	17.4	+15	42	28	EA	01887	AM	Pic	05	13	44.6	-49	32	48	SRA
02940	V1824	Ori	06	22	59.9	+16	39	03	EA	02813	AN	Pic	06	03	03.2	-43	01	38	SRB
09948	V0401	Pav	18	01	56.3	-66	01	49	EW	16801	AO	Pic	06	11	08.5	-58	17	16	ΕA
10425	V0402	Pav	18	17	28.5	-68	16	29	EA	03043	AP	Pic	06	33	56.8	-62	49	44	SRB
10827	V0403	Pav	18	29	36.4	-64	54	40	М	03075	AQ	Pic	06	38	16.5	-58	17	34	М
10858	V0404	Pav	18	30	47.4	-67	08	19	EA	00233	ES	Psc	00	38	02.4	+03	41	04	EB
24452	V0405	Pav	18	31	10.9	-64	07	31	EA	15208	ET	Psc	00	56	35.9	+10	40	25	EW
11686	V0406	-⊶∙ Pav	19	04	36.5	-57	25	42	SRB	15375	EU	Psc	01	44	53.5	+19	51	25	EA
11803	V0407	Pav	19	14	38.2	-61	15	40	RV	14745	EV	Psc	23	54	08.1	+00	57	49	RRC
		1.4.1	-0		2212	<u> </u>	-0				_ .		20	<u> </u>			01	10	

NSV	Name		R.1	A.,	Decl	., 20	,000	.0	Туре	NSV	Name		R.I	A.,	Decl	., 20	,	.0	Туре
13711	γγ	PsA	21	27	37.5	-33	45	18	ΕA	04245	ЛΜ	Pvx	08	46	05.8	-35	58	21	ΕA
13844	¥7.	PsA	21	42	06.2	-25	28	29	RRC	18183	DN	Pvx	09	22	10.2	-31	47	53	EA
13890	77	PsA	21	50	35 2	-27	48	35	EW	01162	VY	Ret	03	27	16 8	-61	15	33	EΔ
14176		Pel	21	30	07 5	-28	10	12	BBAB	01175	V7	Rot	03	21	36.8	-66	55	13	FA/RS
14301	٨R	Del	22	ΔA	41 5	-31	58	08	RRAR	01171	V 21 W W	Rot	03	20	45 8	-60	41	26	SBB
14301	NOE00	Dun	22 06	36	41.J	-45	10	13	CDD	01214	W W 1.7 Y	Ret	03	20	40.0	-55	73	20 //7	GBV
03050	V0600	Dup	00	51	11 /	_/9	10 01	56	SBB	11000	WA VO366	Sao	10	19	12 8	±17	20	1/	FR
03232	V0600	Dup	00	51	11.4	- 47	21	00	GDD	11012	V0300	Sac	10	10	10.0	· 17	1/	14	DCED
03234	VOGOI	Dup	00	00	10.0	_ 1 /	20	20	GDV	1051/	V0307	Sac	10	19	00.2	111 110	74	20	DOLF EW
03330	V0602	Pup	07	03	10.0	-44	29	20	CDD	12014	V0300	Sac	19	03	202.2	±10	20	55	EW EW
17406	V0003	Fup Dum	07	10	20 0	-37	10	30	ond ED	10770	V0309	Sge	20	01	29.2	+ 10	12	00	EW
17420	V0604	Pup	07	10	38.2	-31	13	30	EB	12772	V0370	Sge	20	04	59.9 25 5	+20	13	20 45	EA ED
03598	V0605	Pup	07	26	44.1	-44	33	39	LA	12845	V0371	Sge	20	09	35.5	+1/	34	45	FR
03612	V0606	Pup	07	28	44.8	-44	28	17	CEP	25022	V0372	Sge	20	09	39.6	+21	04	44	BCEP
17520	V0607	Pup	07	36	19.1	-14	35	32	EA DA	12971	V0373	Sge	20	16	54.0	+16	55	26	RRC
03682	V0608	Pup	07	39	37.2	-36	30	12	EA	12978	V0374	Sge	20	17	27.9	+16	53	04	EW
17570	V0609	Pup	07	42	53.2	-28	13	05	SRB	09816	V5559	Sgr	17	54	06.3	-28	39	10	EA
03702	V0610	Pup	07	43	00.6	-20	56	11	EA	09863	V5560	Sgr	17	56	21.5	-27	37	56	CEP:
17578	V0611	Pup	07	44	06.1	-16	55	58	EA	09957	V5561	Sgr	18	00	16.1	-24	02	06	SRC
03714	V0612	Pup	07	44	27.6	-24	17	19	DCEPS:	24084	V5562	Sgr	18	02	47.5	-29	21	59	EA
03736	V0613	Pup	07	47	18.8	-19	24	04	LB	24229	V5563	Sgr	18	04	34.2	-24	22	01	EW:
03759	V0614	Pup	07	50	21.4	-23	25	20	SRA	10368	V5564	Sgr	18	13	17.2	-26	32	14	SRB
17646	V0615	Pup	07	52	45.7	-48	01	52	EA	10456	V5565	Sgr	18	16	41.6	-35	38	10	ΕA
03802	V0616	Pup	07	53	57.6	-28	22	03	DCEP	10624	V5566	Sgr	18	19	57.8	-22	07	15	ΕA
03812	V0617	Pup	07	54	48.3	-33	03	04	ΕA	10660	V5567	Sgr	18	21	05.5	-18	27	20	DCEP
03822	V0618	Pup	07	55	43.2	-44	46	25	EA	10761	V5568	Sgr	18	25	24.6	-22	11	16	ΕA
03820	V0619	Pup	07	56	21.1	-13	54	39	LB	24607	V5569	Sgr	18	50	03.6	-26	24	15	ΕA
03832	V0620	Pup	07	57	49.9	-29	23	03	DCEP	11781	V5570	Sgr	19	10	56.8	-25	54	40	ΕA
03836	V0621	Pup	07	58	09.1	-46	48	30	EB	11807	V5571	Sgr	19	13	09.7	-32	16	01	ΕA
03842	V0622	Pup	07	59	12.2	-26	41	56	DCEP	12107	V5572	Sgr	19	32	03.1	-28	12	45	ΕA
03849	V0623	Pup	07	59	42.1	-20	53	27	ΕA	12236	V5573	Sgr	19	39	06.6	-20	49	14	CWA
17705	V0624	Pup	80	00	41.4	-32	50	25	SRC	12369	V5574	Sgr	19	45	44.6	-31	12	37	RRAB
03870	V0625	Pup	08	01	50.5	-40	29	20	EW	24926	V5575	Sgr	19	54	19.4	-29	54	40	EB
17723	V0626	Pup	08	03	10.4	-38	11	48	EA	12710	V5576	Sgr	20	02	22.5	-12	03	19	EA
03877	V0627	Pup	08	03	11.1	-17	56	33	EA	24979	V5577	Sgr	20	03	11.1	-22	07	39	SRB
03893	V0628	Pup	08	04	53.1	-20	15	58	SRB	12854	V5578	Sgr	20	11	23.5	-43	13	48	SRB
03895	V0629	Pup	80	04	58.8	-28	51	39	DCEP	07445	V1282	Sco	16	07	04.9	-29	16	48	EA
03898	V0630	Pup	80	05	32.8	-21	11	47	LB	20517	V1283	Sco	16	08	17.0	-17	80	05	EB
03913	V0631	Pup	08	07	40.2	-25	19	51	LB	20546	V1284	Sco	16	13	38.8	-41	20	51	EA
03921	V0632	Pup	80	80	37.9	-21	20	57	SRB	07638	V1285	Sco	16	21	02.6	-30	56	49	EA
03929	V0633	Pup	08	10	06.9	-20	18	29	SRB	07746	V1286	Sco	16	28	59.7	-32	07	34	EA
03975	V0634	Pup	80	15	48.8	-31	52	41	EA	20709	V1287	Sco	16	36	52.9	-28	05	34	CWB:
03994	V0635	Pup	08	18	00.8	-19	22	14	M	07847	V1288	Sco	16	37	00.0	-45	19	07	EA
04005	V0636	Pup	08	19	30.6	-20	05	08	SRB	07960	V1289	Sco	16	47	34.7	-29	36	12	CWA
04014	V0637	Pup	08	19	50.5	-39	28	54	EA	20782	V1290	Sco	16	50	01.4	-41	37	16	ΕA
04028	V0638	Pun	08	21	19 5	-22	24	37	SBB	08010	V1291	Sco	16	53	11 4	-36	38	07	EΔ
04036	V0639	Dun	00	21	02.8	-22	25	55	SBB	08017	V1201	Sco	16	53	55 6	-41	52	51	EV.
04050	V0640	Dun	00	22	28 4	-21	20 00	16	EV.	20802	V1292	Sco	16	53	57 6	-41	38	42	EV.
04054	V0641	- up Pun	08	20	34 0	-01	57	<u>1</u> 0	SBR	08020	V1204	Sco	16	54		-⊥1	40 40		EA
04057	V0640	Dur	00	20 22	20 1	_00	20	79 40	EV.	20827	V100F	900	16	54 57	35 9	_/1	74 25	22 22	EV.
04050	V0642	r up Dur	00	20 04	00.1	1	∠∪ ⊑0	40 06	CDD	20021	V1006	800	16	54 54	11 E	- 1 D	20 16	20 52	ыл FA
04059	V0043	rup Du-	00	24 25	02.0	-21	00	00	SRD TA	00029	V1290	000	10	54	44.0	-43	70 T0	50	CA FA
04070	V0044	rup D	υð	20 05	∠3.8 40 0	-20	20	04	ся ID	20059	V1297	000 000	10	00	00.2	-40	20	об Ог	CA CDD
17004	VU045	Pup D	00	25 20	40.0	-23	39	25 ⊑ -	LD	08099	V1298	200	17	01	02.3	-40	∠U 1 C	25 04	SKB EA
1/921	DK	Рух Р	08	33	24.1	-34	38 50	55	ĽА Га	08145	V1299	500	11	04	20.0	-39	70 70	04	LA LA
04237	DL	Рух	08	45	17.5	-33	58	21	ĽА	20894	v1300	200	17	04	58.4	-38	37	06	ĽА

NSV	Name		R.1	A.,	Decl	., 20)00	.0	Туре	NSV	Name		R.	A.,	Decl	., 20	,	. 0	Туре
08163	V1301	Sco	17	05	18 7	-34	56	00	EΔ	11359	V0360	Tel	18	49	38 0	-47	47	39	EΔ
08194	V1302	Sco	17	07	17 5	-37	36	23	EΔ	11425	V0361	Tel	18	52	52 6	-52	10	56	EΔ
08299	V1303	Sco	17	13	05.3	-34	45	10	EΔ	24620	V0362	Tel	18	54	04 9	-51	30	58	EΔ
08720	V1304	Sco	17	28	21 8	-38	40 41	10	EV.	11764	V0363		10	10	10 7	-47	42	10	EV.
22125	V1305	Sco	17	20	40 0	-33	34	58	FR.	1001	V0364	Tol	19	30	22.7	-52	37	48	ΓA
09018	V1306	Sco	17	20	34 2	-38	51	40	ED. FA	12222	V0365	Tol	19	42	17 1	-45	46	- <u>-</u> 0	IR
09245	V1307	Sco	17	37	<u>41</u> 7	-42	31	05	DSCT	12200	V0366	Tol	19	44	07 4	-54	38	22	FΔ
09708	V1308	Sco	17	<u>4</u> 9	16 4	- 38	11	35	FA	12020	V0367	Tol	19	50	44 Q	-51	20	20 43	IR
15234	CT	Sci	01	03	13 8	-30	23	55	EV.	12400	V0368		10	53	<u>ла</u> а	-50	03	- <u>1</u> 0 20	ED EW
00443	CK	Scl	01	13	30 1	-26	17	00 00	GBB	12002	V0369		20	18		-49	42	56	SBB
00501	CI	SCI	01	24	50.2	-34	30 T1	58		00573	V0000 ЛТ	Tri	01	38	20.0	733 72	- <u>-</u> 2	36	BBVB
26112	CM	SCI	03	36	03.6	-30	37	24	E V	00573		Tri	01	40	24 4	+33	00	53	E V
1/66/	CN	SCT SCT	23	10	00.0 22 a	-30	10	24 58		00303	AV	Tri	01	40 0.8	24.4 06 5	+35	00 23	53	ER.
10607	VOA02	SCT DCT	10	40 0.1	50 2	-05	20	16		06025	AV NC	111 T~A	15	07	200.0	-65	20	1/	ЕD. Ел
10097	V0492	80t	10	21	26 7	-05	50	40 51	RRAD	00925	ыл мт	TrA	15	40	29.0 51 0	-00	12	14	EA EA
10002	V0493	SCL Sct	10	20	10 0	- 12	17	04	EA EA	07055	IN I NTT		10	20	00.2	-01	43	40	EA EA
11201	V0494	SCL Sct	10	52	10.9	- 1 1	11	24	EA EA	07000	NU		10	39	09.3	-09	24	20	EA EA
11301	V0495	SCL Com	10	50	00.4	-11	109	55	CA M	0/0/1	INV	T	10	40	05.0	-02	22	20	CDD
00104	V0405	Ser	17	20	47 0	- 14	10	29	M.	14164	En	Tuc	00	21	23.8	-59	37	40	SRB
09124	V0406	Ser	17	32	47.9	-14	31	33	M:	14104	EI EV	Tuc	22	29	12.5	-50	52	12	EA ED
09248	V0407	Ser	17	31	01.3	- 15	06	34	M: GD	14254	EK NG	IUC	22	38	51.8	-60	39	09	EB DD AD
09457	V0408	Ser	17	40	21.9	-12	00	45	SR:	04034	NS NT	uma IM-	80	24	24.8	+05	43	03	RRAB
09938	V0409	Ser	17	59	8.00	-11	33	23	M	04029	NT	UMa	80	24	39.0	+/2	45	27	EA
10095	V0410	Ser	18	03	21.7	-00	25	52	LB	18546	NU	UMa	10	53	01.1	+57	42	80	EA
24327	V0411	Ser	18	12	24.7	-10	43	53	EA	05040	NV	UMa	10	59	41.4	+56	17	14	EA
10400	V0412	Ser	18	14	15.8	-09	20	21	DCEP	05155	NW	UMa	11	16	55.3	+28	33	34	RRAB:
24512	V0413	Ser	18	35	08.2	+00	02	35	EA	05171	NX	UMa	11	19	27.8	+58	18	53	RRAB
04902	ΥZ	Sex	10	35	43.9	-09	16	25	M	18787	NY	UMa	11	32	12.9	+38	55	33	GDOR
01226	V1242	Tau	03	41	26.7	+30	04	09	EA	19235	NZ	UMa	12	80	26.1	+48	58	07	GDUR
15791	V1243	Tau	03	48	51.6	+11	42	32	GDOR	05746	00	UMa	12	34	54.0	+53	37	59	RRAB
01343	V1244	Tau	03	49	06.3	+25	35	24	SRB	05787	0P	UMa	12	36	53.6	+57	58	80	LB
01387	V1245	Tau	03	51	47.4	+25	12	07	UV	20007	ΟQ	UMa	13	57	22.4	+56	26	07	EW
01383	V1246	Tau	03	51	52.5	+30	25	25	SR	19698	VV	UMi	12	57	34.6	+88	57	27	EA
01497	V1247	Tau	04	11	42.4	+26	27	18	SRB	07446	VW	UMi	15	54	46.8	+85	40	06	EW
16072	V1248	Tau	04	32	48.1	+22	39	53	SR:	08183	VX	UMi	17	01	40.1	+75	17	51	GDOR
01668	V1249	Tau	04	36	48.2	+06	57	06	EA	08499	VY	UMi	17	14	14.0	+76	42	14	EW
01677	V1250	Tau	04	38	25.8	+23	53	42	EA	03926	V0401	Vel	08	08	25.0	-48	36	45	SRB
01697	V1251	Tau	04	41	57.7	+05	36	34	EA/RS	17954	V0402	Vel	08	39	21.8	-46	33	43	LB
01845	V1252	Tau	05	09	07.4	+26	08	19	LB	04250	V0403	Vel	80	46	29.0	-40	49	28	EA
01885	V1253	Tau	05	15	07.6	+18	22	29	SR	18104	V0404	Vel	08	59	14.9	-48	49	49	EA
16275	V1254	Tau	05	17	08.6	+27	41	40	SR	18132	V0405	Vel	09	04	38.4	-41	03	53	EA
01976	V1255	Tau	05	26	10.6	+19	08	16	SRB	04387	V0406	Vel	09	07	23.3	-52	29	57	EA
01987	V1256	Tau	05	27	06.5	+16	56	11	CEP	04484	V0407	Vel	09	25	02.3	-55	29	20	EB
02181	V1257	Tau	05	34	41.2	+17	53	19	LB	04554	V0408	Vel	09	37	18.5	-43	22	05	SRB
02249	V1258	Tau	05	35	33.8	+23	53	18	М	04572	V0409	Vel	09	39	22.9	-54	24	55	EA
02442	V1259	Tau	05	37	26.7	+22	20	31	М	04639	V0410	Vel	09	49	11.2	-40	41	36	М
02503	V1260	Tau	05	39	03.9	+25	36	10	ΕA	04665	V0411	Vel	09	52	47.9	-43	59	31	М
02520	V1261	Tau	05	39	34.9	+18	52	38	SRB	04667	V0412	Vel	09	53	06.4	-44	20	17	SRB
02617	V1262	Tau	05	45	20.5	+19	07	53	LB	04707	V0413	Vel	10	01	25.5	-45	27	26	М
10789	V0354	Tel	18	27	18.7	-48	32	59	ΕA	04719	V0414	Vel	10	03	09.5	-47	24	03	ΕA
10845	V0355	Tel	18	29	11.9	-50	58	19	ΕA	04721	V0415	Vel	10	03	29.9	-46	49	14	SRA
11075	V0356	Tel	18	37	18.6	-51	54	33	ΕA	04724	V0416	Vel	10	04	20.3	-55	12	16	ΕA
11114	V0357	Tel	18	38	36.2	-48	48	26	ΕA	04746	V0417	Vel	10	07	08.8	-55	02	16	ΕA
11107	V0358	Tel	18	38	36.4	-53	52	28	ΕA	04756	V0418	Vel	10	80	27.1	-47	00	52	М
24564	V0359	Tel	18	44	23.7	-46	57	27	ΕA	04780	V0419	Vel	10	11	50.9	-48	51	19	М

NSV	Name		R.4	A.,	Decl	., 20	000	. 0	Туре	NSV	Name		R./	A.,	Decl	, 20	000.	0	Туре
			h	m	S	0	,	"					h	m	S	0	,	"	
04781	V0420	Vel	10	12	14.7	-46	10	11	RRAB	06127	V0338	Vir	13	11	17.4	-11	06	21	ΕA
04789	V0421	Vel	10	13	34.7	-49	36	30	M:	06128	V0339	Vir	13	11	20.8	-10	30	51	SRB
04794	V0422	Vel	10	14	46.9	-41	56	36	М	06144	V0340	Vir	13	13	24.2	-13	57	57	EW
04798	V0423	Vel	10	15	22.4	-47	54	49	М	06223	V0341	Vir	13	24	31.2	-15	53	31	RRAB
04805	V0424	Vel	10	16	16.1	-51	29	25	М	06250	V0342	Vir	13	27	10.2	-04	10	21	ΕA
04807	V0425	Vel	10	16	20.6	-55	35	51	ZAND:	06287	V0343	Vir	13	30	57.9	+10	13	32	LB
04815	V0426	Vel	10	17	11.9	-48	47	27	М	06396	V0344	Vir	13	42	24.6	-19	23	50	SRB
04855	V0427	Vel	10	25	21.7	-46	40	37	SRB	06411	V0345	Vir	13	44	06.5	-13	22	57	LB
04871	V0428	Vel	10	28	31.6	-49	28	12	EA:	06478	V0346	Vir	13	52	51.5	-13	50	37	RRAB
04900	V0429	Vel	10	35	03.9	-44	25	32	М	06488	V0347	Vir	13	54	41.8	-22	04	52	ΕA
04932	V0430	Vel	10	40	13.8	-44	19	45	М	06606	V0348	Vir	14	16	25.7	-17	05	29	RRAB
04941	V0431	Vel	10	41	40.8	-51	38	43	ΕA	20106	V0349	Vir	14	26	03.1	-00	41	30	ΕA
18480	V0432	Vel	10	42	06.5	-42	52	41	ΕA	17353	ΥZ	Vol	07	05	21.5	-69	09	40	ΕA
04931	V0433	Vel	10	43	11.6	-47	36	37	LB	03613	ZZ	Vol	07	27	01.1	-69	30	55	EW
04972	V0434	Vel	10	47	12.6	-43	55	07	SRA	03790	AA	Vol	07	51	05.5	-67	34	37	SRB
04974	V0435	Vel	10	47	46.6	-46	10	00	SRA	03951	AB	Vol	80	10	43.5	-72	32	45	ΕA
04989	V0436	Vel	10	50	36.3	-52	30	40	М	04205	AC	Vol	80	40	16.9	-65	47	58	ΕA
04993	V0437	Vel	10	51	05.6	-55	47	35	М	04249	AD	Vol	80	44	39.8	-71	07	41	М
04997	V0438	Vel	10	52	09.2	-56	55	27	SRB	04253	AE	Vol	80	45	39.4	-64	59	28	EW
05016	V0439	Vel	10	54	24.1	-56	15	27	LB	04309	AF	Vol	80	53	34.9	-70	28	80	EW
18553	V0440	Vel	10	54	43.6	-45	36	10	ΕA	04341	AG	Vol	80	57	43.9	-73	05	45	EA
05021	V0441	Vel	10	55	36.8	-56	10	31	M:	24837	V0460	Vul	19	39	18.1	+20	11	01	LB
05026	V0442	Vel	10	57	00.1	-53	45	58	SRA:	12428	V0461	Vul	19	48	51.6	+23	80	12	SRB
05029	V0443	Vel	10	57	19.2	-55	35	25	М	24986	V0462	Vul	20	03	08.2	+25	17	26	M:
05052	V0444	Vel	11	00	55.4	-48	00	56	М	12886	V0463	Vul	20	11	42.7	+21	51	06	SR:
05061	V0445	Vel	11	01	48.0	-56	10	31	М	13070	V0464	Vul	20	24	50.1	+28	01	16	LB
05467	V0335	Vir	12	07	52.2	-05	59	55	RRAB	13502	V0465	Vul	21	04	08.9	+26	47	50	LB
05617	V0336	Vir	12	26	08.7	+10	15	01	LB	13519	V0466	Vul	21	05	22.9	+28	17	49	RRAB
05987	V0337	Vir	12	50	35.0	+00	57	01	EW	13638	V0467	Vul	21	17	23.9	+21	53	34	EB

Remarks for unusual variable stars (type *).

V1710 Aql. Continuous brightness variations of a B8 star with a period of $68^{d}.132$. V1129 Cen. EB-type variations $(9^{m}.55-9^{m}.85 V)$ with brightenings to $9^{m}.1 V$, lasting for 40 days, each 357 days. HeII emission in the spectrum.

Table 2

Name		h	m	S	0	,	"	Туре	Max	Min		Epoch JD 24		Ref	ferences
V0455	And	23	34	01.4	+39	21	41	UG	8.7	16.6	V			01	02
V0466	And	02	00	25.4	+44	10	19	UGSU	12.8	<19.	V			03	
V1721	Aql	19	06	28.6	+07	06	44	Ν	14.0	<20.	*	54732:	(2008)	04	2MASS
V1065	Cen	11	43	10.2	-58	04	04	NA	8.5	<17.0	V	54126	(2007)	05	
V1212	Cen	14	35	02.5	-64	06	20	NA	8.38	<19.	V	54708	(2008)	06	
V0733	Cep	22	53	33.3	+62	32	24	FU:	15.7	<20.	R			07	2MASS
V2467	Cyg	20	28	12.5	+41	48	36	NA	7.3	<18.	V	54176	(2007)	80	09
V2468	Cyg	19	58	33.4	+29	52	06	NA	7.6	<18.	V	54535	(2008)	10	
V2491	Cyg	19	43	02.0	+32	19	14	NA:	7.4	<16.	V	54568	(2008)	11	12
QY	Mus	13	16	36.5	-67	36	48	N:	8.7:	<17.	V	54749:	(2008)	13	
V0390	Nor	16	32	11.5	-45	09	13	NA	9.8	<20.	V	54271	(2007)	14	
V2615	Oph	17	42	44.0	-23	40	35	NA	8.6	<20.	V	54182	(2007)	15	09
V2670	Oph	17	39	50.9	-23	50	01	NA	10.0	<19.	V	54614	(2008)	16	17
V2671	Oph	17	33	29.6	-27	01	14	NA	11.1	<19.	*	54618:	(2008)	18	17
V0597	Pup	80	16	18.0	-34	15	25	NA	7.0	<19.	V	54419	(2007)	19	
V0598	Pup	07	05	42.5	-38	14	39	XN	4.1	16.	V	54257:	(2007)	20	
V5558	Sgr	18	10	18.3	-18	46	52	NB	6.53	<20.	V	54292	(2007)	21	22
V5579	Sgr	18	05	58.9	-27	13	56	NA	6.7	<19.	V	54580	(2008)	23	24
V1280	Sco	16	57	41.2	-32	20	36	NA	3.8	<20.	V	54148	(2007)	25	26
V1281	Sco	16	56	59.4	-35	21	50	NA	9.0:	<20.	V	54154:	(2007)	27	26
V1309	Sco	17	57	32.9	-30	43	10	NA	7.9	<18.	V	54716	(2008)	28	
NR	TrA	16	18	48.2	-60	27	49	NA	8.5	<19.	V	54570		29	
V0458	Vul	19	54	24.6	+20	52	52	NA	8.1	18.	V	54322	(2007)	30	22
V0459	Vul	19	48	08.9	+21	15	27	NA	7.2	20.:	V	54462	(2007)	31	

References to Table 2

1. CBET, 2007, No. 1057

2. Araujo-Betancor, S., Gänsicke, B.T., Hagen, H.-J., et al., 2005, Astron. & Astrophys., 430, 629

- 3. IAU Circ., 2008, No. 8971
- 4. IAU Circ., 2008, No. 8989
- 5. IAU Circ., 2007, No. 8800
- 6. CBET, 2008, No. 1497
- 7. IAU Circ., 2004, No. 8441
- 8. IAU Circ., 2007, No. 8821
- 9. Henden, A. and Munari, U. 2007, Inform. Bull. Var. Stars, No. 5769
- 10. IAU Circ., 2008, No. 8927
- 11. IAU Circ., 2008, No. 8934
- 12. The Heavens, 2008, 89, 267
- 13. IAU Circ., 2008, No. 8990
- 14. IAU Circ., 2007, No. 8850
- 15. IAU Circ., 2007, No. 8824
- 16. IAU Circ., 2008, No. 8947
- 17. The Heavens, 2008, 89, 373
- 18. IAU Circ., 2008, No. 8950
- 19. IAU Circ., 2007, No. 8895
- 20. IAU Circ., 2007, No. 8899
- 21. IAU Circ., 2007, No. 8832
- 22. Henden, A. and Munari, U. 2007, Inform. Bull. Var. Stars, No. 5803

- IAU Circ., 2008, No. 8937
 The Heavens, 2008, 89, 320
 IAU Circ., 2007, No. 8803
 Henden, A. and Munari, U. 2007, Inform. Bull. Var. Stars, No. 5771
 IAU Circ., 2007, No. 8810
 IAU Circ., 2008, No. 8972
 IAU Circ., 2008, No. 8931
 IAU Circ., 2007, No. 8861
- 31. IAU Circ., 2008, No. 8907

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 5864

Konkoly Observatory Budapest 1 December 2008 HU ISSN 0374 - 0676

VARIABLE STARS IN THE FIELD OF THE OPEN CLUSTER NGC 457

MACIEJEWSKI, G.¹; BUKOWIECKI, L.¹; BROŻEK, T.¹; GEORGIEV, TS.²; BOEVA, S.²; KACHAROV, N.³; MIHOV, B.²; LATEV, G.³; OVCHAROV, E.³; VALCHEVA, A.³

¹ Centrum Astronomii Uniwersytetu Mikołaja Kopernika, Gagarina 11, Pl-87100 Toruń, Poland; e-mail: gm@astri.uni.torun.pl

² Institute of Astronomy, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse Blvd., 1784 Sofia, Bulgaria; e-mail: tsgeorg@astro.bas.bg

³ Department of Astronomy, University of Sofia, 5 James Baurchier Str., 1164 Sofia, Bulgaria

According to the WEBDA¹ data base (Mermilliod 1996), the open cluster NGC 457 is known as a relatively young stellar system of $\log(age) = 7.324$, the reddening E(B-V) = 0.472 mag, and the distance of 2.43 kpc. Its apparent diameter was estimated to be 20' (Dias et al. 2002). No search for variable stars in the cluster has been performed to date.

The field of NGC 457 was searched for variable stars in B and V bands with two Schmidt telescopes. The first campaign was performed between 2007 November and 2008 April with the 90/180 cm Schmidt-Cassegrain Telescope (TSC90) of the Nicolaus Copernicus University Astronomical Observatory in Piwnice near Toruń, Poland (see Bukowiecki & Maciejewski 2008 for details). In total 478 images in V and 142 in B were obtained during about 56 hours of observations. The second campaign was performed between 2007 December and 2008 March with the 70/172 cm Schmidt Telescope (ST70) of the National Astronomical Observatory (NAO) at Rozhen (Bulgaria), operated by the Institute of Astronomy of the Bulgarian Academy of Sciences (see Maciejewski et al. 2008 for details). During almost 19 hours of monitoring 218 images in V were acquired. About 14900 stars brighter than 19.0 mag in V band were monitored in total.

One of the detected bright variables (V3 = V765 Cas) was also observed with the TSC90 in the Cassegrain mode with the Richardson spectrograph and Wright CCD camera. We obtained spectra between 3500 and 5500 Å with 2 Å/pix reciprocal dispersion with 600 gr/mm grating for spectral classification.

Both data sets were reduced and analysed in the way described in Bukowiecki & Maciejewski (2008). The transformation of instrumental magnitudes into standard ones based on over 800 cluster stars which photometry was taken from Phelps & Janes (1994). The (B - V) coverage was in range between 0.25 and 2.0 mag. The residuals in observed and literature (B - V) are shown in Fig. 1.

As a result of the analysis the following parameters were derived: the central coordinates $RA = 01^{h}19^{m}38^{s}$, $DEC = 58^{\circ}16'48''$, the limiting radius of 14.7 ± 1.3 arcmin, $\log(age) = 7.40 \pm 0.05$, $E(B - V) = 0.48 \pm 0.05$ mag, the apparent distance modulus $m - M = 13.55 \pm 0.10$ mag, and the distance of 2.6 ± 0.3 kpc. The radial density

¹http://www.univie.ac.at/webda/

Figure 1. The comparison of the observed photometry with the literature one.

profile, plotted in Fig. 2, can be approximated with the King's formula (King 1966) with the following best-fit parameters: the central density $f_0 = 5.34 \pm 0.17$ stars/arcmin², the core radius $r_{\rm core} = 2.43 \pm 0.13$ arcmin, and the density of the background stellar field $f_{\rm bg} = 1.87 \pm 0.05$ stars/arcmin². The colour-magnitude diagram (CMD) constructed for NGC 457 with the best-fit isochrone of solar metallicity is presented in Fig. 3.

Figure 2. The radial density profile with the best-fit King's formula. The horizontal continuous line marks the background-star-density level and the dashed ones its 3-sigma error.

As a result of our survey 29 new and 2 known variable stars were detected in the field of NGC 457. They are listed in Table 1 and their light curves are presented in Figs. 4 and 5. Twelve variables (V1–V12) are located within the cluster limiting radius. They were marked with open symbols in cluster's CMD to discuss their membership. It is clear that 4 of them, i.e. V6, V7, V9, and V10 cannot belong to the cluster for sure because they are located far from the isochrone.

Figure 3. The colour-magnitude diagram for NGC 457 with best-fit isochrone of solar metallicity. The open symbols denote variable stars located within the cluster's limiting radius. See text for discussion.

V1 is a red and bright evolved star known as V466 Cas – an irregular pulsating variable. The star was found to be saturated in our short V band exposures, however its light curve was recorded in the B band database and plotted in Fig. 4. Its V magnitude and the (B - V) colour index were taken from the SIMBAD database. The star and NGC 457 share the common proper motions (Perryman et al. 1997, Loktin & Beshenov 2003) what allows to conclude that V1 (V466 Cas) is cluster's member.

V2 is a faint contact system located near the isochrone. Assuming it belongs to the cluster, its absolute magnitude is $M_V = 2.7$ mag. The same quantity calculated from the empirical formula of Ruciński & Duerbeck (1997) is 3.8 mag. Therefore, we conclude that V2 is a background star.

V3 is known as V765 Cas – an eclipsing system of EB type of spectral type B5. Our photometry clearly indicates that the variable is de facto a short period Algol-type system with a typical shape of minima and unequal brightness near the maxima. The variable is situated near the isochrone thus it can be treated as cluster's member. Additionally, the star was observed spectroscopically with the TSC90 in the Cassegrain mode to redetermine its spectral type. The spectrum is plotted in Fig. 6 where spectral lines that were used for classification are marked with arrows. The ratios of HeI[λ 4026]/HI[λ 4340] and HeI[λ 4471]/HI[λ 4340] were considered. As a result the spectral type of V3 (V765 Cas) was found to be slightly earlier, i.e. B2.5.

The light-curve variability of V4 indicates that it is a contact system. Assuming it belongs to the cluster, its absolute magnitude is $M_{\rm V} = 0.9$ mag. The same quantity calculated from the empirical formula of Ruciński & Duerbeck (1997) is much greater, i.e., 1.7 mag. Therefore, we conclude that the membership of V4 is unlikely.

Table 1. The list of variable stars detected in the field of NGC 457. $r_{\rm d}$ denotes the distance from the cluster center, $V_{\rm max}$ – the maximal brightness in V band, ΔV – the amplitude of variation in V,

(B-V) – the color index at the maximum of brightness, P – the period of variation, T_0 – the epoch of minimum brightness for eclipsing systems or maximum for pulsating stars in HJD, types of variability, and cluster membership.

ID	Coordinates	$r_{ m d}$	V _{max}	ΔV	B-V	Р	T_0	Type	Member.			
	J2000.0	(')	(mag)	(mag)	(mag)	(day)	2454400 +					
V1	011953 + 581830	2.7	_	_	_	_	_	MISC	Yes			
V2	011929 + 581340	3.4	16.33	0.21	0.97	0.297507	15.7227	\mathbf{EW}	No			
V3	$011909 {+} 581725$	3.9	10.63	0.41	0.32	1.716280	15.6925	$\mathbf{E}\mathbf{A}$	Yes			
V4	$012014 {+} 581435$	5.2	14.54	0.29	0.68	0.554334	15.8838	\mathbf{EW}	No			
V5	$011902 {+} 581920$	5.4	11.77	0.17	0.37	—	-	MISC	Likely			
V6	$011901\!+\!581009$	8.3	12.52	0.21	1.70	—	-	MISC	No			
V7	$011852 {+} 580930$	9.5	12.92	0.15	3.94	—	_	MISC	No			
V8	$011849 {+} 582353$	9.6	13.55	0.44	0.66	1.720430	39.2008	$\mathbf{E}\mathbf{A}$	Likely			
V9	$011841 {+} 580756$	11.6	13.39	0.23	1.83	—	_	MISC	No			
V10	$011908 {+} 580418$	13.1	14.61	0.26	1.07	1.824432	18.6319	DCEP	No			
V11	$011751 {+} 581523$	14.1	15.40	0.07	0.69	0.048419	15.3794	DSCT	Likely			
V12	012043 + 582821	14.3	16.72	0.17	0.78	1.58797	18.0380	$\mathbf{E}\mathbf{A}$	Likely			
V13	$011848 {+} 583138$	16.2	13.97	0.16	0.85	4.078303	28.0865	DCEP	—			
V14	011749 + 582430	16.2	14.73	0.85	1.09	0.260823	16.0161	\mathbf{EW}	—			
V15	012048 + 583112	17.1	15.27	0.20	1.27	14.44783	42.7258	DCEP:	—			
V16	$011757 {+} 582749$	17.2	15.83	0.16	0.98	0.283611	15.8081	\mathbf{EB}	—			
V17	$011811 {+} 583200$	19.0	16.71	0.36	1.06	0.374246	16.0459	\mathbf{EW}	—			
V18	$011733 {+} 580922$	19.2	15.68	0.29	0.84	0.381185	16.0145	\mathbf{EW}	—			
V19	$012038 {+} 583438$	19.5	14.95	0.72	0.88	0.552955	16.8896	\mathbf{EB}	—			
V20	$012023 {+} 575726$	20.3	15.15	0.62	0.72	0.602602	16.7453	RRAB	—			
V21	$012155 {+} 580611$	21.0	13.79	0.14	0.64	1.168862	39.5650	CWB	—			
V22	$011805 {+} 575752$	22.6	14.10	0.48	0.68	2.571928	19.8162	$\mathbf{E}\mathbf{A}$	—			
V23	$011708 {+} 582827$	22.8	16.54	0.13	0.66	0.171418	15.6109	DSCT	—			
V24	012223 + 582408	22.8	14.76	0.07	0.67	0.063837	15.4797	DSCT	_			
V25	$012145 {+} 580121$	22.8	16.21	0.44	0.91	0.320205	15.8258	\mathbf{EW}	—			
V26	011952 + 584457	28.2	15.34	0.11	0.68	0.888248	17.4587	RR:	—			
V27	$012204 {+} 583811$	28.6	13.86	0.52	0.83	3.953425:	18.7548	$\mathbf{E}\mathbf{A}$	—			
V28	$012038 {+} 574911$	28.8	13.54	0.26	1.80	_	_	MISC	—			
V29	$011702 {+} 575631$	29.0	15.71	0.12	1.09	7.845039	42.1188	DCEP:	-			
V30	$011917 {+} 574559$	30.9	15.70	0.13	0.77	0.194762	15.6996	DSCT	-			
V31	011712 + 584958	38.2	13.57	0.25	1.15	_		MISC	-			
Rema	Remarks: $V1 = V466$ Cas, $V3 = V765$ Cas											

V5 was found to be a blue pulsating variable of unresolved type, revealing brightness changes on long-time scale. It is situated in the bright part of cluster's CMD in the area of SPB variables, thus its membership is likely.

V8 is a detached eclipsing system. Its location in the CMD suggests that it can belong to the cluster.

V11 is a short-period pulsating variable of δ Scuti type. Assuming it belongs to the cluster, its absolute magnitude is $M_{\rm V} = 1.8 \text{ mag} - \text{a}$ typical value for variables of that type. This suggests that membership of V11 is likely.

V12 was classified as a faint detached eclipsing system. It is located near the isochrone, thus the variable can be treated as cluster's member.

Concluding, 6 variables detected in the field of NGC 457 are unquestionable or likely cluster members. The cluster is found to be rich in eclipsing systems represented by 3 detached binaries. More interestingly, brightness of the systems decreases with distance from the cluster centre. Assuming an eclipsing binary belonging to the cluster, its maximum brightness can be interpreted as a rough approximation of its total mass. As a result of the mass segregation, more massive (i.e. brighter) systems are expected to occupy the central part of a cluster while the less massive (i.e. fainter) ones – the outer region (e.g. Lamers et al. 2006 and references therein).

The original photometric data are available on the survey's web site: http://www.astri.uni.torun.pl/~gm/OCS.

Acknowledgments: This paper is a result of PAN/BAN exchange and joint research project Spectral and photometric studies of variable stars. The research is supported by UMK grant 411-A and Grants VU-F 201/06 and VU-NZ-01/06 of the Bulgarian Science Foundation. The research has made use of the WEBDA and SIMBAD data bases.

References:

Bukowiecki, Ł., Maciejewski, G. 2008, IBVS, 5857

Dias, W. S., Alessi, B. S., Moitinho, A., Lepine, J. R. D. 2002, A&A, 389, 871

King I. 1966, AJ, **71**, 64

Lamers, H. J. G. L. M., Anders, P., de Grijs, R. 2006, A&A, 452, 131

Loktin, A. V., Beshenov, G. V. 2003, ARep, 47, 6

Maciejewski, G., Georgiev, Ts., Niedzielski, A. 2008, Astron. Nachrichten, 329, 387

Mermilliod, J. C. 1996, ASP Conf. Ser., 90, 475, in The Origins, Evolution and Destinies of Binary Stars in Cluster, ed. E. F. Milone & J.-C. Mermilliod,

Perryman, M. A. C., Lindegren, L., Kovalevsky, J., et al. 1997, A&A, 323, L49

Phelps, R. L., Janes, K. A. 1994, ApJS, 90, 31

Ruciński, S. M., Duerbeck, H. W. 1997, PASP, 109, 1340

Figure 4. Light curves of variable stars discovered in the field of NGC 457.

Figure 5. Light curves of variable stars discovered in the field of NGC 457.

Figure 6. The optical spectrum obtained for V3 (V765 Cas) in the blue. Spectral lines that were used for classification are marked with arrows.

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 5865

Konkoly Observatory Budapest 1 December 2008 *HU ISSN 0374 - 0676*

LONG-TERM OPTICAL OBSERVATIONS OF THE BE/X-RAY BINARY SYSTEM V0332+53

KIZILOĞLU, Ü.; KIZILOĞLU, N.; BAYKAL, A.; YERLİ S. K.; ÖZBEY, M.

¹ Physics Dept., Middle East Technical University, Ankara 06531, Turkey e-mail: umk, nil, altan, sinan, mehtap@astroa.physics.metu.edu.tr

The Be/X-ray binary V0332+53 has an orbital period of 34.25 d with an eccentricity of 0.31 (Stella et al. 1985). The optical counterpart of this system, BQ Cam, is an O8-9Ve star at a distance of about 7 kpc, showing H α line emission (Negueruela et al. 1999). This emission is related to the circumstellar disk around the optical star.

Three optical brightening of BQ Cam have been detected. Two of them were reported by Goranskij (2001), one was in 1983 and the other was in 1989. The third one was reported by Goranskij and Barsukova (2004) in the beginning of 2004. About 300 days later, Swank et al. (2004) informed the first All Sky Monitor detection (on the Rossi X-Ray Timing Explorer (RXTE)) of the November 2004 X-ray outburst. The previous two optical brightenings were also accompanied by X-ray outbursts.

Recently, Krimm et al. (2008) reported a new X-ray activity starting at MJD 54756 detected by Swift/BAT¹ hard X-ray transient monitor. Hsiao et al. (2008) obtained an optical spectrum at MJD 54761 in which the H α emission line showed P-Cygni profile with FWHM ~12 Å.

We have been monitoring the binary system V0332+53 since 2004 using the 45 cm ROTSEIIId telescope (Robotic Optical Transient Experiment)² and RTT150 (Russian-Turkish 1.5 m Telescope)³ located at Bakirlitepe, Antalya, Turkey. ROTSEIII telescopes which operate without filters were described in detail by Akerlof et al. (2003). Details on the reduction of the data were described in Baykal et al. (2005) and Kızıloğlu et al. (2005). The reference stars for differential photometry were listed in a previous study of Baykal et al. (2005).

In our previous study (Baykal et al. 2005), we presented part of the optical light curve during the giant 2004 X-ray outburst. In this study we report on the long-term variability of the Be/X-ray binary system V0332+53 up to the present date. The differential optical light curve and X-ray light curve of Be/X-ray binary system V0332+53 are shown in Fig. 1. X-ray light curve was obtained from RXTE/ASM web site⁴.

A fading of 0.2 mag occurs in the light of BQ Cam after MJD 53 400. On the onset of the fading trend, the Type II X-ray outburst comes to an end. The X-ray activity ends accompanied by the fading of magnitudes. The fading in the light curve of BQ Cam

¹http://swift.gsfc.nasa.gov/docs/swift/results/

 $^{^{2} \}rm http://www.rotse.net$

³http://www.tug.tubitak.gov.tr

 $^{^{4}\}mathrm{http://xte.mit.edu}$

could be due to a decrease in the density or in the size of the circumstellar disk. After MJD 53600 the system brightened again but did not reach its previous value observed before the giant 2004 X-ray activity until about MJD 54700.

Figure 1. ROTSEIIId daily averaged differential light curve (upper panel) and X-ray light curve (lower panel) of the Be/X-ray system V0332+53 (MJD = JD - 2400000.5). Daily averages of RXTE/ASM 5.0-15.0 keV band light curve and 15-50 keV SWIFT/BAT light curve (properly scaled and shifted) are shown. Vertical line represents PAP and arrows denote spectroscopic observation times.

We presented optical spectroscopic observations obtained before (at MJD 54730) and during (at MJD 54768) the new X-ray activity reported by Krimm et al. (2008). The spectroscopic observations were performed with the RTT150 telescope using the medium resolution spectrometer TFOSC (TÜBİTAK Faint Object Spectrometer and Camera). The camera is equipped with a 2048 × 2048, 15 μ pixel Fairchild 447BI CCD. We used grism G8 (spectral range 5800-8300 Å) with average dispersion of ~1.1 Å pixel⁻¹. The reduction and analysis of spectra were made by using MIDAS⁵ and its packages: Longslit context and ALICE.

The observed H α line profiles (Fig. 2) were single-peaked and almost symmetric. Measurements of H α emission lines were made by fitting a Gaussian profile. For each spectrum the measured value of the equivalent width (EW) and full width at half maximum (FWHM) are given in Table 1. The EW and FWHM values for the present two H α emission profiles are almost the same. The calculated EW value of ~ 4.4 Åfor both profiles is less than the measured value of 10 Åwhich was obtained by Masetti et al. (2005) at MJD 53 377. It should be noted that the Be disk was denser at that time. According to

⁵http://www.eso.org/projects/esomidas/

Figure 2. H α profiles observed on Sep 21 and Oct 29, 2008, before and during the X-ray activity.

the present data, the disk is less dense and the system has almost reached the previous brightness observed before the giant X-ray flare.

The present EW values are found to be similar to the ones observed during the fading of infrared magnitudes of Negueruela et al. (1999). We did not confirm the result of Hsiao et al. (2008) since our detection showed single peaked H α emission line (obtained 7 days later than their observations). In addition to this, the present FWHM was weaker by a factor of 2.

The H α emission lines were found to be red-shifted by ~140 km/s which were larger than that of Corbet et al. (1986), who found a blue-shift of ~65 km/s in H α line and related this to V/R variability seen in Be type stars. In the present study, quite symmetric H α line profiles do not represent a perturbation in the disk. Because of the low inclination of this system, it is also possible that no variability is seen.

Okazaki and Negueruela (2001) pointed out the possibility of disc truncation by the neutron star which was not close to the mean critical Roche Lobe radius at periastron for the binary system V0332+53 since this system showed no Type I X-ray outburst for a long period of time. According to them, to have a temporary Type I X-ray outbursts, Be disk should be strongly disturbed. But, the H α emission line profile obtained during the 2008 Type I X-ray outburst does not show any variability which would indicate a disturbed disk. The line is quite symmetric.

We suggest that brightening of the disk after MJD 54700 may be due to the precession

Table 1. H α line profiles.

of the disk. When the disk is toward the periastron the material in the outer part of the disk falls on to the neutron star giving rise to the observed 2008 X-ray outburst. The new 2008 X-ray outburst coincides with the periastron passage (PAP) time of the neutron star (Type I outburst). We used the orbital period of 34.67 days and PAP time of 53367 given by Zhang et al. (2005).

We continue monitoring the system.

Acknowledgments: This project utilizes data obtained by the Robotic Optical Transient Search Experiment. ROTSE is a collaboration of Lawrence Livermore National Lab, Los Alamos National Lab and the University of Michigan (http://www.rotse.net). We thank the Turkish National Observatory of TÜBİTAK for running the optical facilities. This study was supported by TUG (Turkish National Observatory), TÜBİTAK (Turkish Scientific and Technological Research Council), through project 106T040.

References:

Akerlof, C. W., Kehoe, R. L., McKay, T. A., Rykoff, E. S., Smith, D. A., et al. 2003, PASP, 115, 132

Baykal, A., Kızıloğlu, U., Kızıloğlu, N. 2005, IBVS, 5615

Corbet, R. H. D., Charles, P. A., van der Klis, M. 1986, A&A, 162, 117

Goranskij, V. P. 2001, AstL, 27, 516

Goranskij, V., Barsukova, E. 2004, ATel, No. 245

Hsiao, E. Y., et al. 2008, ATel, 1803

Kızıloğlu, U., Kızıloğlu, N., Baykal, A. 2005, AJ, 130, 2766

Krimm, H. A., et al. 2008, *ATel*, No. 1792

Masetti, N., Orlandini, M., Marinoni, S., Santangelo, A. 2005, ATel, No. 388

Negueruela, I., Roche, P., Fabregat, J., Coe, M. J. 1999, MNRAS, 307, 695

Okazaki, A. T., Negueruela, I. 2001, A&A, 377, 161

Stella, L., White, N. E., Davelaar, J., et al. 1985, ApJ, 288, L45

Swank, J., remilliard, R., Smith, E. 2004, ATel, No. 349

Zhang, S., Qu, J. L., Song, L. M., Torres, D. F. 2005, ApJ, 630, L65

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 5866

Konkoly Observatory Budapest 5 December 2008 *HU ISSN 0374 - 0676*

THE 2008/2009 ECLIPSE OF EE CEP WILL SOON BEGIN

GALAN, C.¹; MIKOLAJEWSKI, M.¹; TOMOV, T.¹; CIKALA, M.^{1,2}

¹ Uniwersytet Mikolaja Kopernika, Centrum Astronomii, ul. Gagarina 11, Pl-87-100 Toruń, Poland; e-mail: cgalan@astri.uni.torun.pl (CG); mamiko@astri.uni.torun.pl (MM); tomtom@astri.uni.torun.pl (TT)

² Obserwatorium Astronomiczne im. T. Banachiewicza, Węglówka, PL-32-412 Wiśniowa, Poland; e-mail: cikala@astri.uni.torun.pl (MC)

EE Cep is a very long period (5.6 yr) eclipsing binary star, as bright as about 11 magnitude in the B and V passbands. The nature of the system still remains unclear. During different eclipses very large changes of the duration and the depth of particular minima are observed (Fig. 1). This variability indicates that the secondary is probably a complex object. The most attractive explanation of these observational facts seems to be the hypothesis that the secondary consists of a dark, opaque, relatively thick disc around a low luminosity central object: a low-mass single star or a close binary (Mikolajewski & Graczyk 1999, Graczyk et al. 2003).

Figure 1. Light curves in V passband of two last minima: left - 1997 eclipse (Mikolajewski & Graczyk 1999, + Cook's CCD data (Halbach 1999)), right - 2003 eclipse (Mikolajewski et al., 2005a).

Differences in the shape of the particular eclipses could be explained by precession, which changes both the inclination of the disc to the line of sight, and the tilt of its cross-section to the direction of motion. The majority of the eclipses have an asymmetrical shape, in which it is possible to distinguish five repeatable phases: atmospheric and real ingress, sloped-bottom transit and real and atmospheric egress. The unique eclipse with flat bottom observed in 1969 can be explained by a nearly edge-on and non-tilted projection of the disc.

Over five years have passed, since the last eclipse in the EE Cep system took place. The observational campaign, which has been organized during the last eclipse (Mikolajewski et al. 2003), brought the best multicolour photometric and spectroscopic data so far, in respect of the time coverage as well as the quality. Ten instruments from four countries took part in photometric measurements and seven instruments from six countries in spectroscopic observations. Results of that campaign was described by Mikolajewski et al., (2005ab) in two papers signed by forty four coauthors representing fifteen institutions.

Figure 2. Two models of the eclipse of the fast rotating Be star in EE Cep by a solid disc (left) and by a disc with a gap (right). A flat and circular disc with r^{-2} density distribution has been assumed. Top: projection of the system in the sky plane. Polar (hot) and equatorial (cool) areas of the star are shown by dark (blue) and light (green) shades respectively. Inner (opaque) and exterior (semitransparent) areas of the disc are shown by dark and light shades (black and red colours) respectively. Middle: B light curve (points) from Mikolajewski et al. (2005a) with corresponding synthetic curves (lines). Bottom: $B - I_{\rm C}$ colour index from the last 2003 eclipse (points) together with synthetic fits (lines).

The next eclipse is approaching and we hope to gather participants for the new observational campaign. The mid-eclipse moment should take place on about 14 January 2009 $(JD_{mid-eclipse} = 2454846)$. The longest eclipse observed in 1969, lasted for about 60 days, so the photometric campaign should begin at least 5 weeks before (7 Dec 2008) and finish
5 weeks after (22 Feb 2009) the mid-eclipse. The most important should be the period between 2 and 27 Jan 2009 because of an interesting colour evolution noticed in 2003. The colour indices from the last eclipse show two blue maxima about 9 days before and after the mid-eclipse moment. These maxima can be understood if (i) the eclipsed B star is rotationally darkened at the equator and brightened at the poles and (ii) the eclipsing disc is divided into two parts by a transparent gap (Fig. 2). Indeed, the spectroscopic observations during the last campaign showed that the eclipsed component is a rapidly rotating Be star (Mikolajewski et al., 2005b). The best fit to its Balmer absorptions (Fig. 3) gives $v \sin i \approx 350$ km/s. This velocity leads to a difference about 5-6 $\cdot 10^3 K$ between the polar and equatorial temperatures. The motion of the gapped disc on the background of this star could explain both blue maxima (at JD = 2452788, 2452805), when the star's pole is visible in the gap. A solid disc can give quite a good fit to the light curve but does not explain the colour changes (Fig. 2 – left). A disc with a circular gap gives a quite good fit to the colours, but a poor fit to the light curve (Fig. 2 – right). Most probably it is caused by different opacities in different parts of the disc.

Figure 3. Synthetic and observed profiles of the H10, H11 lines.

During the 2008/2009 eclipse, we recommend photometric observations in the standard Johnson-Cousins $UBV(RI)_{\rm C}$ systems. At least one measurement per night is needed, with accuracy near to about 0^m01. Some multicolour observations far from the eclipse should be made in order to calibrate systematic differences between observatories. We propose to use the same sequence of comparison stars as during the previous campaign, given by Mikolajewski et al. (2003), together with a finding chart.

Any infrared, photometric (at least JHK) and spectroscopic observations before, during and after the eclipse would be very useful. They could make it possible to detect the secondary companion of EE Cep (disc and/or central star/stars). During the last decade we observed variations in the I passband before and after the eclipses of about 0^{m} 2 (Fig. 4), which indicate a significant contribution of a dark body in this band. The variations can be connected with changes of the spatial orientation of the disc. In the JHK passbands, the cool component can dominate the observed fluxes.

Figure 4. Differential I magnitudes of EE Cep observed in Toruń observatory during last eleven years. The depths of eclipses in 1997 and 2003 exceed the scale: both are denoted by arrows with numerical values of its amplitude. The three series of observations have been made with two photomultipliers and a CCD camera, respectively. Nevertheless, the evident non-eclipsing changes are clearly visible.

As was shown during the 2003 eclipse, the shell lines of circumstellar matter were visible about 3-2.5 months before and after the mid-eclipse, so it is advisable to begin spectroscopic observations immediately and to continue until April 2009. Of course, significant changes in the profiles of absorption and emission lines during the photometric eclipse (between 14 Dec 2008 and 14 Feb 2009) can be expected from night to night. Low and high resolution spectra and spectral distributions would be very useful.

We invite all interested observers to participate in the current campaign. Please contact us: cgalan@astri.uni.torun.pl or mamiko@astri.uni.torun.pl.

Acknowledgements: This work was supported by MNiSW grant No. N203 018 32/2338 and UMK grant No. 412-A. We are very grateful to Dr B. Roukema for his language corrections.

References:

Graczyk, D., Mikolajewski, M., Tomov, T., et al. 2003, A&A, 403, 1089,

- Halbach, E.A., 1999, JAAVSO, 27, 35,
- Mikolajewski, M. & Graczyk, D., 1999, MNRAS, 303, 521,
- Mikolajewski, M., Tomov, T., Graczyk, D., et al. 2003, IBVS, No. 5412,
- Mikolajewski, M., Galan, C., Gazeas, K., et al., 2005a, *Ap&SS*, **296**, 445, (http://www.springerlink.com/content/v6t4630310j26300/fulltext.pdf)
- Mikolajewski, M., Tomov, T., Hajduk, M., et al., 2005b, *Ap&SS*, **296**, 451, (http://www.springerlink.com/content/w28t429p3446p615/fulltext.pdf)

Number 5867

Konkoly Observatory Budapest 15 December 2008 *HU ISSN 0374 - 0676*

A MULTICOLOR PHOTOMETRIC STUDY OF CN ORIONIS

SPOGLI, CORRADO^{1,2}; FIORUCCI, MASSIMO^{1,3}; CAPEZZALI, DANIELE^{1,2}; NUCCIARELLI, GIULIANO¹; MANCINELLI, VANNIO²; BRUNOZZI, PAOLO²; FAGOTTI, PAOLO²

¹ Physics Dept. and Astronomical Observatory, University of Perugia, Via A. Pascoli, 06123 Perugia, Italy

² Porziano Astronomical Observatory, Via Santa Chiara 2, 06081 Assisi, PG, Italy

³ INAF Osservatorio Astronomico di Padova, Via dell'Osservatorio 8, 36012 Asiago, VI, Italy

CN Ori is one of the brightest and most active dwarf novae (DNe), with a very short recurrence time between two consecutive outbursts ($\simeq 18$ days), and one of the few DNe with an orbital period above the 3-hour upper boundary of the period gap ($P = 0^{d}.163199$). The maximum reported brightness is V = 11.9. The minimum is extremely variable and ranges between V = 14.2 and V = 16.3, with a quasi-sinusoidal component of variability due to a partial eclipse (Mumford 1967), and other components superimposed that probably are the signature of an accretion disk out of the steady state (Mantel et al. 1988). Many photometric observations of CN Ori are reported in the literature, with time scales ranging from a few seconds to many days (see e.g., Petit 1960, Shoembs 1982). However, these data have been generally obtained in a single photometric band, and only sporadic multi-band observations are available (for example, Echevarria 1984).

We have observed this dwarf nova at the Perugia Astronomical Observatory since 2002. The instruments used and the photometric techniques applied was already described in Spogli et al. (1998). Other observations have been collected at the Porziano Astronomical Observatory, Mt. Subasio, Assisi (Italy), with a 0.35 m Schmidt–Cassegrain telescope equipped with an HiSIS 23 CCD Camera (Kodak Kaf 401E of 762×512 pixel) and standard BVR_CI_C Johnson–Cousins broad band filters. There is no evaluable difference between the reduced data obtained with the two telescopes.

The photometric data have been obtained in differential photometry using the calibration stars reported by Bailey & Howarth (1979) and Misselt (1996). With the principal aim to give the I_C magnitudes, we selected and re-calibrated a new sequence by observing, on three photometric nights, several standard stars (Landolt 1992) having B - V from -0.2 to 1.5 mag. Table 1 reports the weighted averages and the standard deviations for the selected comparison stars. Fig. 1 shows the finding chart. The BVR_C magnitudes are in general agreement with the results of Misselt (1996), while they are in average fainter by 0.07 mag compared with the B and V photoelectric estimates of Bailey & Howarth (1979), with an r.m.s. scatter of 0.08 mag around the offset. The I_C values are original results.

Table 2 gives the BVR_CI_C magnitudes of CN Ori. An important sample of our data has been obtained during the partial eclipse of the binary system, considering the orbital ephemeris reported by Barrera & Vogt (1989). Neglecting eclipse points, our data confirm

Figure 1. Finding chart of CN Ori, with the selected sequence.

the very short recurrence time between two consecutive outbursts (Fourier periodogram gives $P \simeq 18.76$ days), with a symmetric shape of the outburst profile characterized by a relatively fast rise and decline. Many variability patterns are superimposed on the outburst cycle, but our data-sampling is not applicable for an accurate investigation. Fig. 2 shows that the outburst amplitude changes at different filters. Fig. 3 shows the color-index versus magnitude diagram for CN Ori.

Table 1: BVR_CI_C magnitudes for the selected comparison stars

name(s)	$\mathbf{R}\mathbf{A}$	DEC	В	V	R_C	I_C
$C1, M1^{(1)}, L^{(2)}$	5:52:04.0	-5:25:40	$15.95 {\pm} 0.06$	$14.65 {\pm} 0.05$	$13.88{\pm}0.03$	$13.15 {\pm} 0.03$
$C2, M^{(2)}$	5:52:00.0	-5:26:42	$16.08 {\pm} 0.07$	$15.10 {\pm} 0.04$	$14.52 {\pm} 0.04$	$14.01 {\pm} 0.05$
C3	5:51:57.0	-5:27:40	$14.19 {\pm} 0.08$	$12.94{\pm}0.04$	$12.26{\pm}0.02$	$11.58 {\pm} 0.03$
$C4, M3^{(1)}$	5:52:10.7	-5:26:56	$12.93 {\pm} 0.03$	$12.48 {\pm} 0.03$	$12.19 {\pm} 0.03$	$11.97 {\pm} 0.03$
C5	5:52:10.5	-5:30:03	$10.32 {\pm} 0.05$	$9.81{\pm}0.03$	$9.50{\pm}0.05$	$9.24{\pm}0.03$
$C6, C^{(2)}$	5:52:38.8	-5:31:09	$13.15 {\pm} 0.10$	$11.93{\pm}0.03$	$11.12 {\pm} 0.04$	$10.34 {\pm} 0.03$
C7, $B^{(2)}$	5:52:31.3	-5:28:32	$11.78 {\pm} 0.07$	$11.34{\pm}0.04$	$10.98{\pm}0.03$	$10.76 {\pm} 0.04$
$C8, G^{(2)}$	5:52:21.4	-5:26:20	$14.90 {\pm} 0.05$	$13.68{\pm}0.04$	$12.92 {\pm} 0.02$	$12.19 {\pm} 0.03$
$C9, M5^{(1)}, H^{(2)}$	5:52:17.6	-5:26:18	$15.36 {\pm} 0.05$	$13.93{\pm}0.03$	$13.14{\pm}0.03$	$12.38 {\pm} 0.03$
C10, $M4^{(1)}$, $K^{(2)}$	5:52:12.1	-5:25:21	$15.45 {\pm} 0.05$	$14.21 {\pm} 0.04$	$13.48{\pm}0.03$	$12.74 {\pm} 0.03$
C11	5:52:18.5	-5:24:10	$14.88 {\pm} 0.09$	$13.92 {\pm} 0.04$	$13.33 {\pm} 0.04$	$12.85 {\pm} 0.04$
C12, $A^{(2)}$	5:51:58.1	-5:21:08	$11.76 {\pm} 0.03$	$10.61{\pm}0.02$	$9.94{\pm}0.03$	$9.29{\pm}0.03$

(1) Misselt (1986)

(2) Bailey & Howarth (1979)

During the rise to the outburst, and the subsequent decline, the emission is progressively dominated by the accretion disk and the color index follows the typical path well represented by a line. During quiescence the emission is generally dominated by the secondary, but our data show a large variation in the color-magnitude diagram, with a change in slope and curvature, and the color index is far from the expected color of an M4-5 star (Ritter & Kolb 1998). So we can conclude that the accretion disk remains relatively bright during the quiescence of CN Ori, and the large color variations are increased by the partial eclipse of the binary system.

Figure 2. The phase diagram of CN Ori shows a relatively stable outburst-cycle, with a quasi-sinusoidal trend (dashed line), and the outburst amplitude that changes at different wavelengths. Empty circles represent the data obtained during the partial eclipse of the binary system.

Figure 3. During the outburst the emission is dominated by the accretion disk and the color index is bluer; the emission of the secondary is progressively more important during quiescence and the color index is redder, with a complex behaviour like a curvature (dotted line).

Table 2: BVR_CI_C data of CN Ori

UT DATE	JD $(245+)$	В	V	R_C	I_C
11/02/2002	2317.327	$12.78 {\pm} 0.06$	$12.77 {\pm} 0.05$	$12.68 {\pm} 0.04$	$12.62{\pm}0.04$
22/02/2002	2328.339	$15.60 {\pm} 0.07$	$15.31 {\pm} 0.05$	$14.90 {\pm} 0.05$	$14.56 {\pm} 0.05$
24/02/2002	2330.332	$15.15 {\pm} 0.07$	$14.85 {\pm} 0.05$	$14.42 {\pm} 0.05$	$14.16 {\pm} 0.04$
04/03/2002	2338.326	$13.03 {\pm} 0.07$	$12.95 {\pm} 0.05$	$12.85 {\pm} 0.04$	$12.77 {\pm} 0.04$
10/03/2002	2344.361		$15.94 {\pm} 0.08$	$15.44 {\pm} 0.05$	$14.79 {\pm} 0.05$
19/12/2002	2628.458			$14.74 {\pm} 0.04$	
10/01/2003	2650.443			$14.48 {\pm} 0.05$	
10/01/2003	2650.485			$14.35 {\pm} 0.04$	
18/01/2003	2658.434			$14.21 {\pm} 0.05$	
12/03/2003	2711.385			$12.70 {\pm} 0.03$	
05/12/2003	2979.499	$13.53 {\pm} 0.06$	$13.45 {\pm} 0.04$	$13.39 {\pm} 0.04$	$13.27 {\pm} 0.04$
20/12/2003	2994.488		$12.81 {\pm} 0.05$	$12.71 {\pm} 0.05$	$12.63 {\pm} 0.05$
26/12/2003	3000.428	$15.61{\pm}0.08$	$15.11 {\pm} 0.03$	$14.72 {\pm} 0.04$	$14.31 {\pm} 0.03$
23/01/2004	3028.444	$12.88 {\pm} 0.07$	$12.74{\pm}0.04$	$12.62 {\pm} 0.04$	$12.52 {\pm} 0.03$
23/01/2004	3028.478	$12.99 {\pm} 0.07$	$12.80 {\pm} 0.05$	$12.69 {\pm} 0.04$	$12.60{\pm}0.04$
24/01/2004	3029.298	$13.05{\pm}0.06$	$12.85 {\pm} 0.04$	$12.73 {\pm} 0.04$	$12.66 {\pm} 0.04$
24/01/2004	3029.317	$12.95 {\pm} 0.06$	$12.79 {\pm} 0.04$	$12.65 {\pm} 0.04$	$12.60{\pm}0.04$
24/01/2004	3029.335	$12.88 {\pm} 0.06$	$12.77 {\pm} 0.04$	$12.68 {\pm} 0.04$	$12.62 {\pm} 0.04$
24/01/2004	3029.358	$12.85 {\pm} 0.06$	$12.75 {\pm} 0.04$	$12.66 {\pm} 0.04$	$12.57 {\pm} 0.04$
30/01/2004	3035.431	$15.28 {\pm} 0.08$	$14.77 {\pm} 0.05$	$14.50 {\pm} 0.04$	$14.17 {\pm} 0.04$
30/01/2004	3035.442	$15.09 {\pm} 0.06$	$14.63 {\pm} 0.04$	$14.44 {\pm} 0.04$	$14.16 {\pm} 0.03$
12/02/2004	3048.362	$12.93 {\pm} 0.06$	$12.89 {\pm} 0.04$	$12.82 {\pm} 0.04$	$12.79 {\pm} 0.03$
13/02/2004	3049.384	$13.35 {\pm} 0.04$	$13.34{\pm}0.03$	$13.20 {\pm} 0.04$	$13.10 {\pm} 0.03$
16/02/2004	3052.365	$15.21 {\pm} 0.07$	$14.82 {\pm} 0.05$	$14.50 {\pm} 0.05$	$14.11 {\pm} 0.04$
17/02/2004	3053.426	$15.82 {\pm} 0.08$	$15.24{\pm}0.05$	$14.85 {\pm} 0.05$	$14.49 {\pm} 0.05$
02/03/2004	3067.313	$13.10 {\pm} 0.06$	$12.99 {\pm} 0.04$	$12.89 {\pm} 0.03$	$12.82{\pm}0.03$
05/03/2004	3070.298		$14.64{\pm}0.05$	$14.39 {\pm} 0.04$	$14.03 {\pm} 0.05$
27/11/2005	3702.525	$12.46 {\pm} 0.06$	$12.43 {\pm} 0.04$	$12.41 {\pm} 0.04$	$12.39 {\pm} 0.04$
28/11/2005	3703.457	$12.58 {\pm} 0.05$	$12.50 {\pm} 0.05$	$12.49 {\pm} 0.05$	$12.48 {\pm} 0.04$
07/12/2005	3712.458		$15.59 {\pm} 0.07$	$15.19 {\pm} 0.05$	$14.76 {\pm} 0.05$
10/01/2006	3746.375	$13.06 {\pm} 0.06$	$12.93 {\pm} 0.05$	$12.86 {\pm} 0.05$	$12.75 {\pm} 0.05$
11/01/2006	3747.376	$13.17 {\pm} 0.06$	$13.06 {\pm} 0.05$	$13.04 {\pm} 0.05$	$12.96 {\pm} 0.05$
12/01/2006	3748.332	$13.56 {\pm} 0.06$	$13.46 {\pm} 0.05$	$13.40 {\pm} 0.05$	$13.32 {\pm} 0.05$
13/01/2006	3749.429	$14.52 {\pm} 0.06$	$14.39 {\pm} 0.06$	$14.25 {\pm} 0.05$	$14.05 {\pm} 0.05$
20/01/2006	3756.357		$15.02 {\pm} 0.05$	$14.65 {\pm} 0.05$	$14.25 {\pm} 0.05$
22/01/2006	3758.374	$13.38{\pm}0.07$	$13.23 {\pm} 0.05$	$13.18 {\pm} 0.05$	$13.08 {\pm} 0.05$
31/01/2006	3767.361	$14.16 {\pm} 0.07$	$14.02 {\pm} 0.05$	$13.92 {\pm} 0.05$	$13.75 {\pm} 0.05$
01/02/2006	3768.343		$14.68 {\pm} 0.06$	$14.38 {\pm} 0.05$	$14.12 {\pm} 0.05$
02/02/2006	3769.388		$15.52{\pm}0.06$	$15.10 {\pm} 0.06$	$14.57 {\pm} 0.05$

References:

Bailey, J., Howarth, F. D. 1979, J. British Astron. Assoc., 89, 265 Barrera, L. H., Vogt, N. 1989, A&A, 220, 99 Echevarria, J. 1984, Rev. Mexicana Astron. Astrof., 9, 99 Landolt, A. U. 1992, AJ, 104, 340 Mantel, K. H., Marschhausser, R. K., Shoembs, R., et al. 1988, A&A, 193, 101 Misselt, K. A. 1996, PASP, 108, 146 Mumford, G. S. 1967, PASP, 79, 283 Petit, M. 1960, JO, 43, 24 Ritter, H., Kolb, U. 1998, A&AS, 129, 83 Schoembs, R. 1982, A&A, 115, 190

Spogli, C., Fiorucci, M., Tosti, G. 1998, A&AS, 130, 485

Number 5868

Konkoly Observatory Budapest 17 December 2008 *HU ISSN 0374 - 0676*

TWO PAIRS OF INTERACTING EBS TOWARDS THE LMC IN THE OGLE DATABASE

OFIR, $A.^1$

¹ School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel

Manual browsing through the online OGLE LMC database¹ (Wyrzykowski *et al.* 2003) revealed that eclipsing binary OGLE 051343.14-691837.1 ($P_1 = 3.57798 \,\mathrm{d}$) is significantly more noisy than other stars with similar brightness, and indeed another EB was subsequently found in it's residuals $(P_2 = 5.36655 \,\mathrm{d})$. This second EB has a period of almost exactly 1.5 times the period of the first EB. To better disentangle the two signals we simultaneously fitted a truncated Fourier series with N terms (N = 22) for each period, plus a zero-point term, for a total of 45 fitted coefficients. We then rejected outliers and repeated until convergence. This allowed us to better visualize both EBs (see Fig. 1) and it is easy to see that the two signals are not different harmonics of the same system but rather two distinct EBs. Since OGLE's telescope PSF is rather small, and because of the apparent resonance between the two binaries, we believe it is highly unlikely that this is chance alignment, and that the more probable explanation is of a rather compact hierarchical system of two pairs of EBs in 3:2 resonance. Interestingly, it seems that all 4 stars are rather massive as both EBs show very significant ellipsoidal variation. With this scenario in mind, the fact that both pairs of stars are EBs means that some degree of co-planarity also exist - further supporting the interacting-pairs hypothesis.

Reference:

Wyrzykowski, L. et al. 2003, Acta Astron., 53, 1

¹http://ogle.astrouw.edu.pl/

Figure 1. The red solid lines are smoothed light curves using a truncated Fourier series - see text for details (for each EB the other EB signal is removed). Outliers are marked in red boxes.

Number 5869

Konkoly Observatory Budapest 12 January 2009 *HU ISSN 0374 - 0676*

ROTSE-III OBSERVATIONS OF NOVA M31 2008-08D (ROTSE3 J004548.3+430222)

YUAN, F.¹; QUIMBY, R. M.²; CHAMARRO, D. C.¹; UECKER, A.³; SISSON, M. D.¹; AKERLOF, C. W.¹; SCHAEFER, B. E.⁴; WHEELER, J. C.⁵ ON BEHALF OF THE ROTSE COLLABORATION

¹ University of Michigan, Ann Arbor, MI 48109, USA, e-mail: yuanfang@umich.edu

² California Institute of Technology, Pasadena, CA 91125, USA

 3 Indiana University of Pennsylvania, Indiana, PA 15705, USA

 4 Louisiana State University, Baton Rouge, LA 70803, USA

 5 University of Texas, Austin, TX 78712, USA

Nova M31 2008-08d (ROTSE3 J004548.3+430222), with a projected distance of ~25 kpc from the center of M31, was discovered in unfiltered CCD images taken with the 0.45m ROTSE-IIIb telescope at McDonald Observatory on August 25.23 UT, 2008. It was initially reported by Yuan et al. (2008) as an optical transient with unknown nature because of the multi-peaked early lightcurve atypical of a nova and its ambiguous correlation with an INT¹ V-band archive source. Spectroscopic observation by Chornock et al. (2008) identifies it as a classical nova of Fe II type with a radial velocity consistent with a location in M31.

We report in Table 1 the complete photometric observations of this nova by ROTSE-IIIb and ROTSE-IIId at the TUBITAK National Observatory in Turkey. The ROTSE-III images were bias-subtracted and flat-fielded by the automated pipeline. Initial object detections were performed by SExtractor. The images were then processed with our custom RPHOT photometry program based on the DAOPHOT PSF-fitting photometry package (Quimby et al. 2006). The response peak of ROTSE-III CCDs covers a similar range to R-band. The magnitude zero point for each image was estimated from median offset of the fiducial reference stars to the USNO-B1.0 R-band measurements.

The ROTSE-III detections are plotted in Figure 1 together with upper limits constraining the rise and decay of the transient. The overall decaying lightcurve shows significant amount of oscillation before dropping below our detection threshold at the end of October. It is not uncommon for nova lightcurves to show variations due to dust formation (Shafter 2008), but usually on longer time-scales than observed for this object.

¹The INT data were obtained from the Isaac Newton Group Archive which is maintained as part of the CASU Astronomical Data Centre at the Institute of Astronomy, Cambridge.

Figure 1. ROTSE-III lightcurve of Nova M31 2008-08d (ROTSE3 J004548.3+430222). The filled squares are detections from ROTSE-IIIb and the filled triangles are detections from ROTSE-IIId. All the upper limits (downward arrows) are from ROTSE-IIIb.

IBVS 5869

References:

Yuan, F., et al. 2008, The Astronomer's Telegram, 1702

- Chornock, R., Silverman, J. M., George, M. R., and Filippenko, A. V. 2008, *The Astronomer's Telegram*, **1708**
- Quimby, R. M., et al. 2006, *ApJ*, **636**, 400
- Shafter, A. W. 2008, Private Communication

MJD	Magnitude	Error	Upper Limit	ROTSE Telescope
54679.32			20.52	IIIb
54682.29			20.41	IIIb
54683.29			20.36	IIIb
54684.28			20.46	IIIb
54688.26			19.64	IIIb
54690.44			19.16	IIIb
54697.32			18.42	IIIb
54701.99	18.38	0.12		IIId
54703.23	18.31	0.05		IIIb
54704.43	18.02	0.04		IIIb
54704.91	18.21	0.09		IIId
54706.91	18.87	0.08		IIId
54707.90	18.88	0.11		IIId
54708.90	19.13	0.12		IIId
54710.92	18.68	0.10		IIId
54711.33	18.55	0.07		IIIb
54714.19	18.32	0.06		IIIb
54715.93	18.43	0.06		IIId
54716.89	18.66	0.05		IIId
54717.92	19.01	0.10		IIId
54719.93	18.76	0.12		IIId
54720.86	18.65	0.22		IIId
54723.31	19.13	0.38		IIIb
54729.16	18.50	0.07		IIIb
54730.17	18.80	0.07		IIIb
54731.33	18.67	0.06		IIIb
54732.33	18.76	0.07		IIIb
54735.24	19.57	0.17		IIIb
54736.16	19.80	0.18		IIIb
54737.18	20.14	0.22		IIIb
54738.16	20.12	0.21		IIIb
54739.88	19.43	0.18		llld
54740.16	19.41	0.07		IIIb
54741.16	19.05	0.08		
54742.10	19.20	0.08		
54745.29	19.40	0.10		
54740.10	19.89	0.20		
54747.10	20.20	0.17		
54740.10	20.55	0.42	20.22	IIID
54760 19	20.12	033	20.22	IIIb
54761 19	19.60	0.00		IIIb
54763.15	20.08	0.10 0.24		IIIb
54763.84	19.81	0.17		IIId
54768.15	10101	0.11	20.52	IIIb
54769.15			20.43	IIIb
54770.15			20.36	IIIb
54771.17			20.46	IIIb
54772.16			20.42	IIIb
54773.18			20.22	IIIb
54774.16			20.40	IIIb
54777.10			20.21	IIIb
54787.14			20.46	IIIb
54788.14			20.51	IIIb
54789.14			20.59	IIIb
54790.13			20.39	IIIb
54793.13			20.16	IIIb
54794.13			20.39	IIIb
54795.11			20.13	IIIb

 Table 1. Log of ROTSE-III observations

Number 5870

Konkoly Observatory Budapest 12 January 2009 *HU ISSN 0374 - 0676*

PHOTOELECTRIC MINIMA OF SELECTED ECLIPSING BINARIES IN 2008

DVORAK, S.W.

Rolling Hills Observatory, Clermont, FL USA; e-mail: sdvorak@rollinghillsobs.org

Observatory and telescope:
25cm catadioptric telescope at Rolling Hills Observatory (RHO)

Detector:	SBIG ST-9XE, Peltier cooling, Kodak KAF-0261 chi	p,
	$18.5' \times 18.5'$ FOV, 512×512 pixels.	

Method of data reduc	tion:						
Reduction of the CCD	frames	was	done	with	sextractor	and	custom-written
$applications^1$.							

1	Method of minimum determination:
	The times of minima were computed using the Kwee and van Woerden method
	(Kwee & van Woerden, 1956) as implemented in a custom-written C application.

Reference:

Kwee, K. K. & van Woerden, H., 1956, BAN, 12, 327

 $^{^{1}}$ sextractor is written by Emmanuel Bertin and is available from http://terapix.iap.fr/

Times of minima:					
Star name	Time of min.	Error	Type	Filter	Rem.
	$\rm HJD~2400000+$				
CG Aur	54794.8180	0.0001	Ι	V	
EP Aur	54514.6610	0.0001	Ι	V	
TY Boo	54595.6023	0.0001	Ι	V	
DF CVn	54503.7561	0.0002	Ι	V	
XZ CMi	54501.5743	0.0001	Ι	V	
V0364 Cas	54759.6380	0.0000	Π	V	
	54766.5818	0.0001	Ι	V	
	54741.8930	0.0001	Ι	V	
V0384 Cas	54797.6465	0.0001	Ι	V	
V0821 Cas	54825.5334	0.0002	Ι	B	
CC Com	54596.6184	0.0001	Π	V	
V Crt	54570.6878	0.0002	Π	V	
V0456 Cyg	54637.8682	0.0002	Ι	V	
V0466 Cyg	54624.8263	0.0001	II	V	
TZ Dra	54570.8839	0.0003	II	V	
	54573.9200	0.0003	Ι	V	
	54583.8782	0.0003	Π	V	
AZ Gem	54474.6207	0.0001	Ι	V	
	54498.7697	0.0001	Ι	V	
V0899 Her	54632.800	0.001	Ι	V	
FG Hya	54529.5808	0.0001	Ι	V	
UV Leo	54553.6343	0.0001	Ι	V	
VZ Leo	54528.5656	0.0002	Ι	V	
WY Leo	54568.667	0.002	Ι	V	
VW LMi	54574.6311	0.0001	Ι	V	
UV Lyn	54544.6278	0.0001	II	V	
TZ Lyr	54578.8170	0.0001	Ι	V	
V0396 Mon	54494.6405	0.0001	Ι	V	
V0714 Mon	54493.6578	0.0001	Ι	V	
V0508 Oph	54588.7907	0.0001	Ι	V	
FK Ori	54511.5714	0.0003	II	V	
FT Ori	54755.8755	0.0001	II	V	
BO Peg	54788.6056	0.0001	II	V	
	54793.5362	0.0001	Ι	V	
IQ Per	54791.873	0.0001	Ι	B	
AH Tau	54475.7472	0.0001	Ι	V	
	54475.5807	0.0001	II	V	
	54736.8952	0.0001	Ι	V	
CU Tau	54475.6496	0.0002	Ι	V	
RS Tri	54787.6679	0.0002	II	V	
	54790.5261	0.0002	Ι	V	
HW Vir	54498.8769	0.0001	Ι	V	
	54498.9353	0.0001	II	V	
ASAS 085128+2527.9	54477.7306	0.0001	?	V	

Number 5871

Konkoly Observatory Budapest 15 January 2009 *HU ISSN 0374 - 0676*

TIMINGS OF MINIMA OF ECLIPSING BINARIES

DIETHELM, ROGER

Bahnhofstrasse 3, CH-4118 Rodersdorf, Switzerland

The following Table lists timings of minima of eclipsing binaries secured by CCD photometry, obtained between July 2008 and December 2008. The given O-C values generally refer to the linear elements of the GCVS (Kholopov et al., 1985, 2008 edition) except for the cases stated in the remarks. All times given are heliocentric UTC.

			Table	e 1: Eclips	sing	binari	es
Variable	Type	HJD 24	±	O - C	n	Obs	Remarks
AD And	р	54774.6223	0.0004	-0.0587	23	RD	V
AS And	\mathbf{p}	54787.6587	0.0004	+0.0075	35	RD	V; el.: $2452548.5944 + 2.420602 * E$
CN And	s	54784.6882	0.0009	-0.0061	19	RD	V
DK And	р	54784.6604	0.0009	+0.0085	25	RD	V
DO And	р	54777.6750	0.0003	+0.0215	42	RD	V
DS And	р	54802.6448	0.0004	-0.0005	32	RD	V
EP And	р	54802.6338	0.0009	-0.0047	15	RD	V; el.: IBVS No. 5184
FL And	р	54784.6643	0.0005	+0.0108	26	RD	V
HR And	р	54769.649	0.005	-0.093	10	RD	V
LO And	s	54784.6166	0.0006	-0.0021	15	RD	V
MO And	р	54821.6514	0.0005	-0.0012	32	RD	V
NZ And	р	54800.6788	0.0004	-0.0218	15	RD	V
QR And	р	54792.711	0.003	-0.014	19	RD	V; el.: IBVS No. 5777;
							additional pulsations
QW And	s	54800.7044	0.0007	+0.0051	16	RD	V
V372 And	р	54762.8347	0.0011	+0.0515	28	RD	V
V404 And	\mathbf{s}	54783.6195	0.0002	+0.0034	20	RD	V
V412 And	р	54769.7531	0.0006	+0.0477	32	RD	V
V440 And	\mathbf{s}	54774.6632	0.0005	+0.0057	15	RD	V; el.: $2452900.1019 + 1.5825712 * E$
V441 And	\mathbf{s}	54768.7252	0.0004	-0.0146	31	RD	V
V444 And	р	54800.6573	0.0007	-0.0800	24	RD	V; el.: IBVS No. 5600
V449 And	\mathbf{s}	54821.7120	0.0001	+0.0294	22	RD	V
EL Aqr	\mathbf{s}	54769.726	0.003	+0.003	17	RD	V
SS Ari	р	54821.6936	0.0003	-0.0027	27	RD	V
AW Ari	р	54802.6809	0.0005	-0.0123	21	RD	V; el.: IBVS No. 5219
AH Aur	\mathbf{s}	54802.9070	0.0002	+0.1038	36	RD	V
AP Aur	\mathbf{s}	54821.9716	0.0003	+0.0856	17	RD	V
CL Aur	р	54774.8862	0.0008	+0.1364	27	RD	V
HS Aur	р	54811.8855	0.0006	+0.0028	32	RD	V; d=0.04 days
HU Aur	\mathbf{s}	54831.6360	0.0012	-0.0144	25	RD	V; el.: IBVS No. 3666
IZ Aur	р	54800.8208	0.0010	-0.0120	10	RD	V; IBVS No. 4586
KO Aur	р	54802.8680	0.0002	-0.0156	36	RD	V; el.: IBVS No. 3410
V404 Aur	р	54794.9111	0.0004	+0.0237	40	RD	V; el.: IBVS No. 4245
V410 Aur	s	54783.8838	0.0006	-0.0043	29	RD	V; el.: IBVS No. 5668
V523 Aur	\mathbf{s}	54821.8769	0.0007	+0.0070	12	RD	V; el.: 2451518.32 + 0.3304376 * E
V555 Aur	\mathbf{s}	54777.8994	0.0006	+0.0137	37	RD	V; formerly ES Tau

Table 1: Eclipsing binaries (continued)

Variable	Type	HJD 24	+	O - C	n	Obs	Remarks
GSC 2393-680	n n	54777 8594	0.0008	+0.0053	16	BD	V: el : IBVS No. 5699
GSC 3751-178	P D	54802 9093	0.0003	-0.0131	29	RD	V
UU Cam	P D	5/811 7390	0.0006	-0.0710	10	RD	V
WW Cam	Р 9	54774 8304	0.0000	-0.0352	20	RD	V V
AO Cam	s	54830 7036	0.0003	-0.0390	22	RD	V el · PASP 97 648
AV Cam	n	54802 9006	0.0004	-0.0693	37	RD	V
AV Cam	P D	5/1829 8685	0.0001	-0.0155	43	RD	Vel: IBVS No. 3005
MP Cam	P	54787 8734	0.0000	-0.0694	36	RD	V
MT Cam	P	54831 6560	0.0004	± 0.0004	25	RD	V el : 2452075 3307 \pm 0 366130 * E
GSC 3715-1039	Р 9	54811 7157	0.0000	-0.0000	16	RD	V: el IBVS No. 5700
050 5115-1055	o n	54831 7109	0.0012	-0.0033	10	RD	V, el. IDV5 No. 5700
TU Cne	P	54830.8810	0.0004	-0.0142	21	RD	V
TV Cnc	P	54820 8835	0.0007	-0.0781 ± 0.0382	28	RD	v V
YZ Cnc	P D	54825.8855	0.0005	+0.0382	20 91	RD	V V. al. IRVS No. 5502
VV Cnc	P D	54831.8424	0.0007	+0.0057	21	RD	$V_{\rm r}$ el. IBVS No. 5592 $V_{\rm r}$ ol : IBVS No. 5501
AB Cnc	P D	54830.8560	0.0012	-0.0075	$\frac{20}{97}$	RD	$V_{\rm r}$ of the BVS No. 5331
AD Che	P D	54830.8300	0.0004	± 0.0479	⊿ (วา		\mathbf{V}_{i} et. IDV5 NO. 5557
AU Che	р	54031.0929	0.0000	-0.0223	44 10		v V
FH Cne	5	54031.0300	0.0004	± 0.0833	19		V V. al. ASAS
CW Cre	s	04001.0071 E4021.00E0	0.0003	-0.0551	20 94		V; el.: ASAS
GW Chc	р	54831.9258	0.0004	-0.0191	24	RD DD	V; EL: ASAS
IL Cnc	s	54831.9068	0.0009	+0.0498	21	RD DD	V; eI.: IBVS No. 5248
IR Unc	р	54830.8627	0.0003	+0.0015	33	RD	V; e1.: $2452623.01 + 0.717767 * E;$
000 1007 000		F 4001 00C4	0.0000		49	DD	d=0.04 days
GSC 1927-862	s	54821.8864	0.0008	+0.0059	43	RD	V; e1.: $2452707.522 + 0.536435 * E$
NSV 4158	s	54831.8239	0.0003	-0.0001	16	RD	V; el.: $2452623.38 \pm 0.378385 * E$
NSV 4188	S	54830.9446	0.0005	+0.0032	21	RD	V; el.: $2452623.165 + 0.308026 * E;$ d=0.018 days
DF CVn	s	54682.4056	0.0004	+0.0015	13	EBl	C; el.: IBVS No. 5021
DQ CVn	q	54682.393	0.002	-0.005	11	EBl	C; el.: IBVS No. 5541
GSC 2537-520	q	54682.4151	0.0011	-0.0059	10	EBl	C; el.: IBVS No. 5541
GSC 2544-1007	s	54682.3999	0.0011	+0.0097	13	EBl	C; el.: IBVS No. 5541
BB CMi	q	54821.9225	0.0007	+0.0857	30	RD	V; el.: AJ 109, 1239
CW CMi	s	54821.8874	0.0002	+0.0051	32	RD	V; el.: $2452750.587 + 0.313192 * E$
ZZ Cas	D	54777.6503	0.0002	-0.0115	34	RD	V
AT Cas	D	54762.8238	0.0004	-0.0816	47	RD	V
BH Cas	g	54783.6764	0.0006	+0.0212	35	RD	V; el.: IBVS No. 4482
BS Cas	g	54783.6667	0.0004	+0.0050	34	RD	V; el.: IBVS No. 5668
BU Cas	D	54768.7793	0.0006	-0.0207	13	RD	v
BZ Cas	D	54761.7271	0.0005	+0.0660	39	RD	V
CV Cas	D	54756.7480	0.0003	+0.6312	36	RD	В
CW Cas	S	54756.7440	0.0002	-0.0468	38	RD	B; el.: JAAVSO 21, 34
DZ Cas	q	54777.6978	0.0002	-0.1749	35	RD	v
EY Cas	s	54787.6413	0.0003	+0.0308	27	RD	V
HQ Cas	q	54762.7914	0.0003	-0.5365	55	RD	V
IL Cas	g	54800.5942	0.0011	+0.0019	11	RD	V; BAV Mitt. 51.1
IT Cas	s	54774.7030	0.0005	+0.2004	29	RD	V; el.: AJ 114, 1206;
							non-circular orbit
KL Cas	р	54761.7626	0.0001	-0.0097	52	RD	V
KR Cas	p	54762.7341	0.0008	-0.1467	22	RD	V
LX Cas	p	54830.6537	0.0003	+0.0481	35	RD	V
LY Cas	g	54830.6737	0.0005	+0.1124	32	RD	V
MM Cas	p	54774.6676	0.0003	+0.0908	35	RD	V
MN Cas	s	54783.6377	0.0007	+0.0174	24	RD	V
MR Cas	s	54769.7288	0.0002	-0.0500	30	RD	V; el.: IBVS No. 5690
MT Cas	р	54792.6557	0.0004	+0.0122	21	RD	v
MY Cas	D	54792.6163	0.0010	+0.0264	15^{-1}	RD	V
NN Cas	s	54768.7611	0.0006	+0.1260	18	RD	V
	p	54800.638	0.002	+0.126	19^{-0}	RD	V
NT Cas	r D	54762.7376	0.0005	+0.0212	$\frac{-5}{37}$	RD	V
NV Cas	r D	54783.6831	0.0003	-0.1118	23	RD	V
	r	1.1.5.0001					

Table 1: Eclipsing binaries (continued)	
table 1: Eclipsing binaries (continued)	

Variable	Type	HJD 24	±	0 – C	n	Obs	Remarks
OR Cas	р	54787.7009	0.0006	-0.0253	25	RD	V
OX Cas	р	54811.6737	0.0007	+0.0139	27	RD	V
QQ Cas	р	54769.7426	0.0007	+0.1074	29	RD	V; el.: BAV Rdb. 35,1
V337 Cas	р	54802.6931	0.0003	-0.0653	31	RD	V; $d = 0.04 days$
V361 Cas	р	54774.7186	0.0008	-0.1979	18	RD	V
V366 Cas	s	54768.7520	0.0006	+0.0637	17	RD	V; el.: IBVS No. 4798
V374 Cas	р	54774.6777	0.0003	+0.0164	39	RD	V
V375 Cas	р	54777.6631	0.0005	+0.1382	38	RD	V
V381 Cas	s	54783.6287	0.0003	-0.0197	23	RD	V
V384 Cas	р	54777.6983	0.0005	-0.1411	35	RD	V
V385 Cas	р	54762.7344	0.0010	-0.8836	16	RD	V
V387 Cas	р	54761.7116	0.0008	+0.0851	33	RD	V
V445 Cas	s	54761.7645	0.0008	-0.0118	48	RD	V; el.; BAV Mitt. 69
V448 Cas	s	54761.8494	0.0004	+0.2090	36	RD	V
V471 Cas	р	54794.5718	0.0003	+0.0814	9	RD	V
V473 Cas	р	54802.7007	0.0005	-0.0195	27	RD	V; el.: IBVS No. 4669
$V520 \ Cas$	р	54783.6144	0.0006	+0.0544	15	RD	V; el.: BBSAG Bull. 117, 9
V541 Cas	p	54829.6901	0.0008	+0.0168	26	RD	V; el.: Chin AA 11, 237
V608 Cas	s	54812.7353	0.0005		15	RD	V
V952 Cas	s	54821.6584	0.0010	-0.0121	35	RD	V; el.: IBVS No. 5171
V1007 Cas	s	54756.6563	0.0003	-0.0042	17	RD	B; el.:2451415.83+0.332008 * E
V1009 Cas	р	54769.6745	0.0006	+0.0013	16	RD	V; el.: $2451486.57 + 0.784493 * E$
V1014 Cas	s	54769.7237	0.0008	+0.0016	25	RD	V; el. $2451497.062 + 0.855262 * E$
NR Cep	р	54774.6995	0.0004	-0.0488	27	RD	V
OT Cep	s	54756.7775	0.0007	+0.0053	23	RD	B; el.: IBVS No. 5212
V734 Cep	р	54762.8104	0.0004	+0.0645	45		V; el.: IBVS No. 5630
	s	54783.6376	0.0005	+0.1793	27	RD	V; non-circular orbit
$GSC \ 4502-138$	р	54794.6717	0.0004	+0.0301	29	RD	V; el.: IBVS No. 5700
RW Cet	р	54802.6401	0.0007	-0.0134	23	RD	V
TV Cet	р	54821.6607	0.0016	+0.0056	30	RD	V; non-circular orbit
YY Cet	р	54812.6640	0.0009	+0.1133	34	RD	V; el.: MN 218, 159
EV Cet	s	54794.6069	0.0009	-0.0529	19	RD	V; el. IBVS No. 5455
NSV 388		54787.7388	0.0003	+0.0011	14	RD	V; el.: $245169.04 + 0.321354 * E$
AR CrB	р	54684.4454	0.0006	-0.0053	17	\mathbf{EBl}	C; el.: IBVS No. 5295
AS CrB	s	54684.4528	0.0007	+0.0036	18	\mathbf{EBl}	C; el.: IBVS No. 5295
AV CrB	s	54684.3909	0.0003	-0.0133	21	\mathbf{EBl}	C; el.: IBVS No. 5295
UX Eri	s	54812.6442	0.0005	+0.1534	30	RD	V
ZZ Eri	р	54756.9746	0.0009	-0.0077	20	RD	В
AM Eri	р	54783.9093	0.0004	-0.0835	18	RD	V
BL Eri	р	54830.6743	0.0005	+0.0570	30	RD	V; el.: IBVS No. 4104
BZ Eri	p	54783.9268	0.0004	+0.0049	22	RD	V
GSC 4734-713	s	54832.7370	0.0009	+0.0603	10	RD	V; el.: ASAS
GSC 5305-396	р	54829.6129	0.0004	-0.0056	23	RD	V; el.: $2453047.57 + 1.721786 * E$
GSC 5305-1309	р	54787.8890	0.0005	+0.0071	35	RD	V; el.: 2454350.890 + 3.413999 * E
NSV 1864	s	54787.8658	0.0005	+0.00282	31	RD	V: el.: ASAS; $d=0.06$ days
BT Gem	р	54802.8376	0.0002	-0.0088	25	RD	V
DP Gem	р	54800.8123	0.0004	+0.0689	12	RD	V; el.: ASAS
FG Gem	p	54811.8692	0.0005	-0.0266	28	RD	V
FT Gem	s	54811.8431	0.0006	-0.0277	22	RD	V
MU Gem	\mathbf{s}	54812.9117	0.0009	+0.0216	28	RD	V
GSC 1356-2826	s	54811.8639	0.0013	-0.0154	20	RD	V; el. ASAS
GSC 1368-1411	s	54821.8662	0.0003	+0.0028	33	RD	V; el.: 2452639.717 + 1.292358 * E
V1033 Her	р	54697.4439	0.0011	-0.0096	12	EBl	C; el.: IBVS No. 5146
V1036 Her	s	54697.4127	0.0007	+0.0033	11	EBl	C; el.: IBVS No. 5146
V1038 Her	р	54697.463	0.002	+0.003	13	EBl	C; el.: IBVS No. 5146
V1039 Her	s	54697.473	0.002	+0.002	12	EBl	C; el.: BBSAG Bull. 128, 10
V1044 Her	р	54697.390	0.005	-0.001	7	EBl	C; el.: IBVS No. 5192
V1047 Her	s	54697.4642	0.0006	-0.0097	13	EBl	C; el.: IBVS No. 5192
V1053 Her	р	54697.501	0.002	+0.006	10	EBl	C; el.: BBSAG Bull. 128, 10
V1055 Her	s	54697.457	0.002	+0.010	10	EBl	C: el.: IBVS No. 5192

Table 1: Eclipsing binaries (continued)

Variable	Туре	HJD 24	±	0 – C	n	Obs	Remarks
WY Hya	s	54829.9123	0.0004	+0.0253	33	RD	V
DF Hya	s	54832.8694	0.0002	-0.0125	29	RD	V; el.: JAAVSO 21, 111
DI Hya	р	54832.8990	0.0002	-0.0281	55	RD	V
EU Hya	q	54832.8736	0.0009	-0.0332	27	RD	V
FG Hya	s	54829.8831	0.0008	-0.0575	18	RD	V; el.: IBVS No. 2811
GN Hya	s	54830.8744	0.0004	-0.1069	36	RD	v
GSC 196-894	s	54829.8333	0.0003	-0.173	29	RD	V; el.: IBVS No. 5700
GSC 4855-1725	р	54832.8708	0.0001	+0.0026	42	RD	V; el.: $2453416.634 + 0.931733 * E$
GSC 5428-504	q	54830.8739	0.0003	-0.0127	36	RD	V; el.: 2454413.846 + 1.774641 * E
RR Lep	p	54777.8607	0.0007	-0.0347	30	RD	V
GSC 5358-917	p	54794.9341	0.0008	-0.0031	33	RD	V; el.: 2454421.738 + 0.932998 * E
TY Lyn	p	54829.8921	0.0006	+0.0614	56	RD	v
DE Lyn	s	54829.8635	0.0004	+0.145	28	RD	V; el.: 2452368.560 + 0.408818 * E
UV Mon	q	54812.8163	0.0005	+0.1531	13	RD	v
V383 Mon	p	54812.8700	0.0004	+0.0284	27	RD	V
V392 Mon	p	54792.9036	0.0011	+0.0235	30	RD	V; el.: $2453655.862 + 6.767965$;
	Ľ						d = 0.12 days
V458 Mon	D	54811.8479	0.0002	+0.0663	25	RD	V
V460 Mon	p	54812.8610	0.0006	+0.2058	28	RD	V
V498 Mon	p	54802.8234	0.0010	-0.1311	18	RD	V
V514 Mon	s	54811.8535	0.0005	+0.0423	24	$\mathbf{R}\mathbf{D}$	V
V532 Mon	p	54812.793	0.002	-0.004	7	RD	V
V881 Mon	P S	54812.8467	0.0002	+0.0004	24	RD	V: el.: 2453045.632 + 1.698428 * E
GSC 4826-411	p	54811.8827	0.0004	+0.0014	$15^{$	RD	V: el.: $2452561.824 + 0.337593 * E$
	P D	54812.8933	0.0007	-0.0008	12	RD	V
GSC 4850-1736	P D	54831.8851	0.0005	-0.0009	19	RD	V: el.: 2453882.475 + 0.300399 * E
UW Ori	P D	54792.8746	0.0002	+0.0414	33	RD	V: el.: Ch. AA 14, 298
EF Ori	P D	54800.8159	0.0015	0.0000	11	RD	V: el.: AAVSO
ER Ori	P S	54777.8866	0.0003	+0.0729	$42^{$	RD	V
FL Ori	p	54792.9083	0.0004	+0.0309	30	RD	V
FO Ori	p	54794.8899	0.0002	-0.0459	52	RD	V
FZ Ori	p	54794.8384	0.0010	+0.0189	22	RD	V: IBVS No. 5554
GU Ori	S	54800.8748	0.0004	+0.0010	32	RD	V; el.: ASAS
V517 Ori	D	54787.8805	0.0005	-0.0095	33	RD	V: el.: $2454423.746 + 1.416903 * E$
V641 Ori	s	54800.8919	0.0002	+0.0639	29	RD	V; el.: ASAS
V647 Ori	D	54800.9211	0.0011	+0.0139	27	RD	V: el.: $2451985.543 + 0.977557 * E$
V667 Ori	p	54800.8202	0.0003	+0.0570	14	RD	v
V1353 Ori	s	54792.8620	0.0006	-0.0074	29	RD	V: el. IBVS No. 5313
V1824 Ori	D	54802.9251	0.0003	+0.0152	28	RD	V: el.: $2453399.565 + 1.5929 * E$
GSC 104-1999	p	54783.8666	0.0006	-0.0019	20	RD	V; el.: 2453044.595 + 0.829015 * E
GSC 107-596	s	54783.8437	0.0005	+0.0008	25	RD	V; el.: IBVS No. 5799
	q	54783.9709	0.0006	-0.0051	13	RD	v
GSC 702-1892	p	54777.8156	0.0003	-0.0014	16	RD	V; el.: IBVS No. 5493
	s	54777.9540	0.0005	-0.0015	17	RD	v
GSC 706-845	р	54794.8506	0.0005	-0.0048	18	RD	V; el.: IBVS No. 5799
GSC 1296-975	q	54794.8906	0.0003	+0.0312	51	RD	V; el.: 2453059.568 + 0.717359 * E
GSC 4753-984	p	54794.8331	0.0002	+0.0040	27	RD	V; el.: $2453469.502 + 1.818007 * E$
NSV 1955	q	54792.9131	0.0006	+0.0067	18	RD	V; el.: $2452621.94 + 0.343453 * E$
DI Peg	p	54774.6840	0.0006	-0.0109	25	RD	V
V357 Peg	s	54777.662	0.003	+0.022	31	RD	V; el.: IBVS No. 4855
RV Per	q	54783.8318	0.0008	-0.0105	22	RD	v
CH Per	p	54811.6310	0.0011	-0.0781	22	RD	V
DV Per	p	54811.6855	0.0010	+0.0856	24	RD	V
DZ Per	p	54821.7083	0.0009	+0.0277	25	RD	V
EQ Per	p	54829.6688	0.0003	+0.5350	35	RD	V
ий D		54774 8653	0.0002	+0.0874	15	RD	V
HK Per	р	04114.0000	0.000				
HW Per	р а	54774.8000 54787.9009	0.0004	+0.0033	34	RD	V; el.: IBVS No. 4516
HK Per HW Per II Per	р р р	54787.9009 54787.8539	0.0004	+0.0033 -0.0036	$\frac{34}{29}$	RD RD	V; el.: IBVS No. 4516 V; el.: IBVS No. 5741

Table 1:	Eclipsing	binaries	(continued)
----------	-----------	----------	-------------

Variable	Type	HJD 24	±	0 – C	n	Obs	Remarks
KN Per	р	54830.6476	0.0018	+0.2522	26	RD	V
KR Per	s	54787.9052	0.0006	-0.0142	30	RD	V
KW Per	s	54802.6575	0.0011	0.0110	28	RD	V
NZ Per	р	54832.7045	0.0012	+0.0381	19	RD	V
QW Per	p	54832.6689	0.0002	+0.0170	23	RD	V
V366 Per	s	54832.7306	0.0025	+0.1340	13	RD	V
V432 Per	р	54831.7196	0.0006	+0.0005	20	RD	V; el.: BAV Rb 43, 104
V434 Per	p	54831.7322	0.0005	+0.1840	17	RD	V
GSC 3708-1325	s	54812.6321	0.0002		30	RD	V; non-circular orbit
SX Psc	р	54769.7494	0.0003	-0.0008	35	RD	V
UW Psc	р	54761.7402	0.0007	+0.2644	36	RD	V
CP Psc	р	54768.7235	0.0010	-0.0464	14	RD	V; el.: Hipparchos
DS Psc	р	54761.6990	0.0004	+0.0605	27	RD	V; el.: IBVS No. 4424
	s	54761.8685	0.0003	+0.0588	25	RD	V
DV Psc	s	54792.720	0.002	+0.021	10	RD	V; el.: IBVS No. 5668; prob. pulsator
DZ Psc	р	54787.6653	0.0006	+0.0113	22	RD	V; el.: IBVS No. 4910
EM Psc	\mathbf{s}	54794.7402	0.0004	-0.0935	12	RD	V; el.: IBVS No. 5437
GSC 24-63	р	54794.6348	0.0006	-0.0030	27	RD	V; el.: $2452943.685 + 1.462048 * E$
KW Pup	р	54821.8279	0.0003	+0.0280	22	RD	V
NSV 4033	р	54830.9470	0.0014	0.0000	21	RD	V; el.: 2451869.85 + 3.084476 * E
V384 Ser	\mathbf{s}	54684.4597	0.0006	+0.0053	17	\mathbf{EBl}	C; el.: IBVS No. 5295
RZ Tau	s	54756.9028	0.0007	+0.0546	25	RD	В
TY Tau	р	54774.890	0.002	+0.247	11	RD	V
AN Tau	р	54831.6283	0.0003	+0.0002	29	RD	V; el.: IAU Symp. 151, 321
CC Tau	р	54831.6525	0.0003	-0.0036	36	RD	V; el.: ASAS
CR Tau	р	54800.8368	0.0004	+0.1349	19	RD	V
CU Tau	р	54831.6577	0.0005	+0.0102	33	RD	V; el.: AJ 130, 224
	s	54832.6906	0.0004	+0.0095	25	RD	V
EQ Tau	s	54829.6739	0.0005	-0.0223	22	RD	V
GR Tau	s	54756.9362	0.0007	-0.0214	33	RD	В
IV Tau	р	54756.9339	0.0008	-0.0102	32	RD	В
V781 Tau	s	54792.8637	0.0003	-0.0449	26	RD	V
V1022 Tau	s	54756.9987	0.0008	-0.0604	11	RD	B; el.: PASP 101, 177
	s	54832.6849	0.0009	-0.0585	20	RD	V
V1112 Tau	s	54756.9081	0.0007	+0.0181	24	RD	B; el.: $2451946.95 + 0.423854 * E$
	р	54774.919	0.003	+0.015	10	RD	V
V1188 Tau	\mathbf{s}	54830.6561	0.0012	-0.0217	31	RD	V; el.: ASAS
V1220 Tau	\mathbf{s}	54812.6708	0.0011	-0.0375	37	RD	V; el. IBVS No. 5455
V1222 Tau	s	54829.7029	0.0008	+0.0031	18	RD	V; el.: $2452265.857 + 0.291727 * E$;
							$d{=}0.03\mathrm{days}$
V1234 Tau	\mathbf{s}	54787.8075	0.0014	+0.1213	12	RD	V; el.: IBVS No. 5260
V1237 Tau	\mathbf{S}	54792.8416	0.0017	+0.0019	15	RD	V; el.: IBVS No. 5271
$GSC \ 1273-661$	\mathbf{s}	54756.9568	0.0009	+0.1417	20	RD	$\mathbf{B}; \; \mathbf{el.:} \; \mathbf{ASAS}$
GSC 1830-1732	\mathbf{s}	54783.8941	0.0009	+0.0057	26	RD	V; el.: IBVS No. 5699; likely RRc
NSV 1719	р	54756.9226	0.0011	+0.0062	11	RD	B; el.: $2451946.793 + 0.290302 * E$
V Tri	р	54792.6348	0.0008	-0.0071	19	RD	V
WW Tri	р	54821.6616	0.0002	-0.0093	35	RD	V; el.: $2451497.856 + 1.748456 * E$

Observers:

EBl : E. Blättler

er Wald, Switzerland

RD: R. Diethelm Rodersdorf, Switzerland;

R. Szafraniec Obs. operated at Astrokolkhoz Obs., Cloudcroft, N.M., USA

Reference:

Kholopov, P. N., Samus, N. N., Frolov, M. S., Goranskij, V. P., Gorynya, N. A., Kireeva, N. N., Kukarkina, N. P., Kurochkin, N. E., Medvedeva, G. I., Perova, N. B., Shugarov, S. Yu., 1985, General Catalogue of Variable Stars, Moscow

Number 5872

Konkoly Observatory Budapest 15 January 2009 *HU ISSN 0374 - 0676*

CCD PHOTOMETRY OF NEW VARIABLE STARS AND BX DRA

KIM, DONGHYEON¹; JEON, YOUNG-BEOM²; LEE, UIRYEOL¹; JANG, HYE-EUN¹; CHO, SUNGYOON¹; PARK, YOON-HO²

 1 Korea Science Academy, Busan, Korea. e-mail: dhkim
9206@hanmail.net

² Korea Astronomy & Space Science Institute, Daejeon, Korea. e-mail: ybjeon@kasi.re.kr

Observatory and telescope:

A 155mm Refracting Telescope (f=1050 mm) of the Bohyunsan Optical Astronomy Observatory (BOAO)

 $2k \times 3k$ CCD Camera, AP9E, FOV= $60' \times 90'$

Detector:

Filter(s):

Johnson B, V

Method of data reduction:

Aperture photometry using the IRAF/DAOPHOT package (Massey & Davis 1992).

Remarks:

We obtained time-series BV CCD images of BX Dra for 17 nights between April and August 2008 using a small refracting telescope ($\phi = 155$ mm, f = 1050mm) in Bohyunsan Optical Astronomy Observatory (BOAO). Most observation was carried out by remote-control system. We examined light variations of 760 stars in the observing field by eyes. As a result, we discovered five new field variable stars including two suspected variable stars around an eclipsing binary star BX Dra. They are two eclipsing binary stars, a long-term variable star and two RR Lyrae stars. One of the RR Lyrae stars, V1, shows Blazhko effect. We marked the variable stars in Figure 1. Light curves of the new variable stars and BX Dra are shown in Figure 2 and Figure 3. We were normalized the mean differential V magnitudes of the variable stars to 0.0. For B magnitudes, we added 1.5 mag for V1 and V3, 0.5 mag for V2 and BX Dra and 0.2 mag for V4 and V5, respectively. Photometric properties of the variable stars are listed in Table 1. We re-calculated the period of BX Dra using minima of Agerer & Dahm (1995; Eq. (2))

Acknowledgements:

This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and of NASA's Astrophysics Data System. This research was supported in part by the 2008 Research & Education (R&E) program of Korea Science Academy.

	R.A.+DEC	NOM	IAD1	Period	V Amp	
Name	(J2000.0; 2MASS)	В	V	(day)	(mag)	Type
V1	16082123 + 6229545	14.070	13.620	$0.5344(5)^1$	0.75	RRab^2
V2	$16092751 {+} 6251085$	14.900	14.370	0.4221(7)	0.22	\mathbf{EW}
V3	$16061479 {+} 6240149$	15.380	15.210	0.5637(4)	0.63	RRab
V4	$16104413 {+} 6226097$	12.428	10.982	_	_	LB
V5	16074242 + 6249357	12.284	12.016	—	_	EA
BX Dra	$16061736 {+} 6245460$	10.978	10.626	0.5790278	0.54	\mathbf{EW}
	1					

Table 1: Coordinates and physical properties of new variable stars and BX-Dra

 1 It is difficult to define period because of Blazhko effect. 2 Blazhko effect

Figure 1. Finding map of new variable stars and BX Dra

Figure 2. Light curves of three new variable stars and BX Dra

References:

Massey, P., Davis, L.E. 1992, A User's Guide to Stellar CCD photometry with IRAF Agerer, F., Dahm, M. 1995, IBVS, **4266**

Figure 3. Light curves of two suspected variable stars

Number 5873

Konkoly Observatory Budapest 26 January 2009 *HU ISSN 0374 - 0676*

DOUBLE-MODE RR LYRAE STARS IN SDSS STRIPE 82

WILS, PATRICK

Vereniging Voor Sterrenkunde, Belgium; e-mail: patrickwils@yahoo.com

The Sloan Digital Sky Survey (SDSS) obtained multiple images in its five colours of a region along the celestial equator in the South Galactic Cap, Stripe 82, lying between 20 and 4h right ascension and between -1.266 and 1.266 degrees declination. It contains more than 1 million sources with brightness between magnitude 14 and 22 r', measured between 62 and 134 times during the years 1998 to 2005 for the SDSS-I calibration (Ivezić et al., 2007) and the SDSS-II Supernova Survey (Frieman et al., 2008). Sesar et al. (2007) identified 634 RR Lyrae candidates in the data, based on the colour and magnitude distribution characteristics of the objects. To determine their classification, a period analysis of these stars has been performed on the SDSS data. This showed that the candidate list contains 245 RRab, 98 RRc, 12 RRd and 87 SX Phe stars. The remaining objects are eclipsing binaries, long period variables or not variable.

As double-mode pulsators are astrophysically important objects, details of the 12 RRd stars will be given in this paper. Table 1 contains the identification of the objects, their magnitude range (r'), average colours, dominant period of variation (in days), and a running number used as identification in Table 2. The latter table contains details about the detected frequencies and amplitude ratio of the first overtone mode to the fundamental mode. All these have been derived from the r' data. Uncertainties on the quantities, calculated by Monte Carlo simulations in Period04 (Lenz & Breger, 2005), are provided between parenthesis, in units of the last significant decimal. Because of the specific observing window of the data set, with the common 1-day alias ambiguities, there are strong yearly aliases. This is illustrated in a close-up view in Fig. 1 of the spectral window for SDSS J224200.05-004222.0, the star which has the largest uncertainty for the frequencies found (due to its faintness). Therefore it is sometimes difficult to pick the right 1-year alias, and the actual frequency may differ by 1/year from the listed frequencies. Fourier spectra for SDSS J224200.05-004222.0 are given in Fig. 2.

In all RRd stars found, the first overtone mode has the highest amplitude, as is usual for this type of variables. Note that the second star in this list, SDSS J015058.14-005051.3, has been classified as RRab by Ivezić et al. (2000) before. It has received the designation FG Cet. For illustration purposes, phase plots of the fundamental and first overtone mode, after prewhitening by the other frequency, are given in Fig. 3 and 4 for FG Cet.

The incidence rate of RRd stars among the first overtone RR Lyrae stars in Stripe 82 is therefore 11%. This is much lower than e.g. in the Sculptor galaxy (20%; Kovács, 2001) and the LMC (14%; Alcock et al., 2000), but comparable to the incidence rate in the Sagittarius dwarf galaxy (9%; Cseresnjes, 2001).

Star	r'	u' - g'	g'-r'	r' - i'	i'-z'	Period	Seq.
SDSS J014305.32+010549.2	16.8 - 17.3	1.17	0.10	0.04	0.01	0.353721	1
SDSS J015058.14-005051.3	17.4 - 18.2	1.14	0.15	0.03	-0.01	0.363189	2
SDSS J020314.89+011220.6	16.4 - 17.1	1.06	0.21	0.02	0.00	0.351255	3
SDSS J031333.11+004254.7	18.0 - 18.6	1.22	0.14	0.12	0.02	0.354149	4
SDSS J210309.24-011210.5	16.2 - 16.9	1.18	0.20	0.04	-0.04	0.361126	5
SDSS J212046.86+001236.4	16.0-16.7	1.16	0.09	0.05	0.02	0.358634	6
SDSS J212629.38-002054.2	19.7 - 20.2	1.15	0.14	-0.01	0.06	0.439661	7
SDSS J215623.95 $+005630.2$	18.3 - 18.9	1.12	0.12	0.05	0.04	0.413474	8
SDSS J220654.28-010515.6	17.7 - 18.2	1.28	0.19	0.05	0.05	0.356722	9
SDSS J222214.29+010059.9	17.1 - 17.6	1.15	0.23	0.07	0.07	0.395471	10
SDSS J224200.05-004222.0	20.0-20.6	1.14	0.11	0.05	0.00	0.3640	11
SDSS J232147.14+001408.6	19.8 - 20.6	1.10	0.12	0.01	0.09	0.348600	12

Table 1: Double-mode RR Lyrae stars in SDSS Stripe 82.

Table 2: Light curve parameters and detected frequencies of the double-mode RR Lyrae stars in SDSS Stripe 82.

Seq.	f_0	f_1	Freq.	Ampl.	$f_0 + f_1$	$f_0 - f_1$	$2f_0$	$2f_1$
	$\rm c/d$	$\rm c/d$	ratio	ratio				
1	2.102805(8)	2.827085(7)	0.7438	1.4(1)	\checkmark	-	\checkmark	\checkmark
2	2.04983(2)	2.75339(1)	0.7445	1.2(1)	\checkmark	-	-	-
3	2.11387(3)	2.84693(2)	0.7425	1.2(2)	\checkmark	-	-	-
4	2.09919(5)	2.82367(3)	0.7434	1.2(3)	\checkmark	-	-	-
5	2.05805(2)	2.76912(2)	0.7432	1.2(1)	\checkmark	-	-	-
6	2.07540(2)	2.788361(8)	0.7443	1.4(1)	\checkmark	\checkmark	-	\checkmark
7	1.6936(1)	2.27448(2)	0.7446	2.1(5)	-	-	-	-
8	1.80320(2)	2.41853(2)	0.7456	1.5(2)	-	-	-	-
9	2.08647(1)	2.80330(1)	0.7443	1.3(1)	\checkmark	\checkmark	-	-
10	1.88608(3)	2.52863(2)	0.7459	1.9(2)	\checkmark	-	-	-
11	2.041(2)	2.747(3)	0.7429	1.7(7)	-	-	-	-
12	2.13248(2)	2.86862(2)	0.7434	1.3(2)	\checkmark	-	\checkmark	-

Figure 1. Spectral window for SDSS J224200.05-004222.0 showing strong 1-year aliasing.

Figure 2. Fourier spectrum for star SDSS J224200.05-004222.0 before (top panel) and after (bottom) prewhitening for the dominant frequency.

Figure 3. Phased light curve for the fundamental period of FG Cet.

Figure 4. Phased light curve for the first overtone period of FG Cet.

Acknowledgements: John Greaves is acknowledged for drawing my attention to the Stripe 82 data set. This study made use of data provided by the Sloan Digital Sky Survey (SDSS). Funding for the SDSS has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Aeronautics and Space Administration, the National Science Foundation, the U.S. Department of Energy, the Japanese Monbuka-gakusho, and the Max Planck Society. The SDSS Web site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium (ARC) for the Participating Institutions. The Participating Institutions are The University of Chicago, Fermilab, the Institute for Advanced Study, the Japan Participation Group, The Johns Hopkins University, Los Alamos National Laboratory, the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, University of Pittsburgh, Princeton University, the United States Naval Observatory, and the University of Washington.

References:

Alcock C., Allsman R., Alves D. R. et al., 2000, ApJ, 542, 257
Cseresnjes P., 2001, A&A, 375, 909
Frieman J. A., Bassett B., Becker A., 2008, AJ, 135, 338
Ivezić Ž., Goldston J., Finlator K. et al., 2000, AJ, 120, 963
Ivezić Ž., Smith J.A., Miknaitis G. et al., 2007, AJ, 134, 973
Kovács G., 2001, A&A, 375, 469
Lenz P., Breger M., 2005, Comm. in Asteroseismology, 146, 53
Sesar B., Ivezić Ž., Lupton, R. H. et al., 2007, AJ, 134, 2236

Number 5874

Konkoly Observatory Budapest 27 January 2009 *HU ISSN 0374 - 0676*

BAV-RESULTS OF OBSERVATIONS - PHOTOELECTRIC MINIMA OF SELECTED ECLIPSING BINARIES AND MAXIMA OF PULSATING STARS

(BAV MITTEILUNGEN NO. 201)

HÜBSCHER, JOACHIM; STEINBACH, HANS-MEREYNTJE; WALTER, FRANK

Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. (BAV), Munsterdamm 90, 12169 Berlin, Germany

In this 61th compilation of BAV results, photoelectric observations obtained in the year 2008 are presented on 299 variable stars giving 655 minima on eclipsing binaries and maxima on pulsating stars. All moments of minima and maxima are heliocentric. The errors are tabulated in column ' \pm '. The values in column 'O - C' are determined without incorporation of nonlinear terms. The references are given in the section 'Remarks'. All information about photometers and filters are specified in the column 'Rem'. The observations were made at private observatories. The photoelectric measurements and all the lightcurves with evaluations can be obtained from the office of the BAV for inspection.

Variable	HJD 245	±	Obs	O - C		Bibliography	Fil	n	Rem
BD And	54295.5302	.0002	RAT RCR	+0.0156		GCVS 1985	0	82	5)
DK And	54384.4751	.0003	RAT RCR	+0.0023		BAVR 55,106	0	200	5)
DS And	54479.2812	.0012	DIE	+0.0025		GCVS 1985	0	22	11)
GK And	54388.5312	.0002	RAT RCR	-0.2829		GCVS 1985	0	200	5)
LO And	54296.5097	.0002	RAT RCR	-0.0702	\mathbf{s}	GCVS 1985	0	79	5)
SS Ari	54524.3112	.0013	WN	-0.0475		GCVS 1985	V	132	14)
ZZ Aur	54456.6376	.0001	RAT RCR	+0.0178		GCVS 1985	0	142	5)
EM Aur	54499.4277	.0005	QU	-0.1848		GCVS 1985	V	98	7)
	54500.3380	.0010	QU	-0.1855	\mathbf{s}	GCVS 1985	V	72	7)
EP Aur	54509.3380	.0002	$_{ m JU}$	+0.0093		GCVS 1985	0	54	6)

Table 1: Times of minima of eclipsing binaries

LO And	54296.5097	.0002	RAT RCR	-0.0702	\mathbf{s}	GCVS 1985	0	79	5)
SS Ari	54524.3112	.0013	WN	-0.0475		GCVS 1985	V	132	14)
ZZ Aur	54456.6376	.0001	RAT RCR	+0.0178		GCVS 1985	0	142	5)
EM Aur	54499.4277	.0005	QU	-0.1848		GCVS 1985	V	98	7)
	54500.3380	.0010	QU	-0.1855	\mathbf{S}	GCVS 1985	V	72	7)
EP Aur	54509.3380	.0002	$_{ m JU}$	+0.0093		GCVS 1985	0	54	6)
	54509.3407	.0015	SCI	+0.0120		GCVS 1985	0	140	6)
EQ Aur	54491.4593	.0010	AG				-Ir	99	5)
HL Aur	54186.3306	.0002	RAT RCR	-0.0129		GCVS 1985	-Ir	75	5)
HP Aur	54167.3622	.0001	RAT RCR	+0.0528		GCVS 1985	-Ir	89	5)
IM Aur	54531.3103	.0006	DIE	-0.1014		GCVS 1985	0	25	11)
IY Aur	54499.3610	.0002	WTR	-0.1200		GCVS 1985	-Ir	127	12)
KU Aur	54202.3359	.0002	RAT RCR	+0.0236		GCVS 1985	-Ir	64	5)
	54455.6959	.0003	AG	+0.0248		GCVS 1985	0	70	5)
V364 Aur	54187.3524	.0002	RAT RCR				-Ir	74	5)
V404 Aur	54115.2722	.0002	RAT RCR				-Ir	67	5)
	54164.3026	.0004	RAT RCR				-Ir	48	5)
	54176.3707	.0009	RAT RCR				-Ir	60	5)
V410 Aur	54168.3972	.0002	RAT RCR				-Ir	74	5)
	54175.3569	.0006	RAT RCR				-Ir	92	5)

Table 1: (cont.)

Variable	HJD 24	+	Obs	O - C		Bibliography	Fil	n	Bem
SS Boo	54596 5176	0020	AG	-3 7800		GCVS 1985	_Tr	92	18)
SU Boo	54149 5887	00020	BAT BCB	± 0.0303		GCVS 1985	-11 _Tr	118	5)
TH Boo	54224 3744	0001	BAT BCB	+0.0000	c	GCVS 1985	_Tr	110	5)
TV Boo	54586 4047	0002	SIR	-0.0265	5	BAVM 68	V	57	10)
TZ Boo	54596 5061	0002	AG	-0.0457		BAVM 68	-Ir	88	18)
XX Boo	54555 4948	0002	AG	-0.0425	c	GCVS 1985	-11 _Tr	41	5)
AT DOO	54508 4802	.0000		0.0425	5	CCVS 1985	-11 Ir	00	18)
	54556.4602	0004	BAT BCB	-0.0405	5	CCVS 1985	-11 Tr	90 60	5)
AC DOU	54185 5306	.0001	RAT RCR	-0.0348	G	CCVS 1985	-11 Tr	140	5)
	54165.5590	.0008		± 0.0255		6015 1965	-11 Tn	140	5)
AII DOU	54508 4300	0014	AG				-11 Tr	42	18)
CV Boo	54506 4478	0000	AC	0.0001		BAVB 40 117	-11 Tr	88	18)
	54590.4478	0002		-0.0091	G	DAVIT 49,117	-11	83	6)
EF Boo	54555 4941	0005					U Ir	49	5)
FI DOO	54555 5455	0011	AG				-11 Tr	42	5)
	54555.5455	.0011	AG				-11 Tn	42	19)
	54598.3529	.0010	AG				-11 Tr	88	18)
	54598.4727	.0003	AG				-11 Tn	00	10)
	54598.5871	.0002	AG				-11 Tn	00 25	10) 5)
GL D00 CM Baa	54570.3040 54570 2054	0007	AG				-11 Tw	ა ე ო	5) 5)
GINI DOO	545705776	.0010	AG				-11 T.,	ວບ ຈະ	5) E)
CN Paa	04070.0770 54570 4967	0019	AG				-11 T	პე ე∤	9) 5)
GN B00	54570.4307 54570 5876	.0022	AG				-1r	34 24	5) E)
	54570.5870 E 4E70 2868	.0008	AG				-1r	34 24	5) E)
GQ B00	54570.3808	.0011	AG				-1r	34	5) F)
	54570.5790	.0017	AG				-1r	34	5)
GR B00	54570.3716	.0010	AG				-1r	34	5)
	54570.5591	.0009	AG				-lr	34	5) 10)
GT Boo	54596.4277	.0004	AG			COM 2005	-lr	92	18)
HH Boo	54148.6406	8000.	RATRCR	+0.0544		GCVS 2007	-1r	108	5)
AL Cam	54516.3682	.0007	JU	-0.0318		GCVS 1985	0	80	6)
AO Cam	54472.2644	.0003	JU	-0.0523		GCVS 1985	0	80	6)
	54510.3667	.0010	JU	-0.0554	\mathbf{s}	GCVS 1985	0	84	6)
AV Cam	54476.3512	.0030	JU	-0.0675		GCVS 1985	0	79	6)
S Cnc	54474.4415	.0004	\mathbf{FR}	-0.1007		GCVS 1985	V	101	9)
~	54531.3466	.0003	\mathbf{FR}	-0.1029		GCVS 1985	-lr	325	(18)(2)
RY Cnc	54509.3965	.0013	AG	+0.0600		GCVS 1985	-lr	41	5)
TU Cnc	54508.3158	.0006	AG	-0.0688		GCVS 1985	-lr	39	5)
TX Cnc	54509.4073	.0016	AG	+0.0339		GCVS 1985	-lr	41	5)
	54509.6023	.0020	AG	+0.0374	\mathbf{s}	GCVS 1985	-Ir	41	5)
	54531.4267	.0004	FR	+0.0376	\mathbf{s}	GCVS 1985	-Ir	101	18)
	54531.6141	.0008	FR	+0.0335		GCVS 1985	-Ir	101	18)
WW Cnc	54126.3907	.0001	RAT RCR	-0.0687		BAVR 32,36	-Ir	59	5)
	54175.4917	.0001	RAT RCR	-0.0700		BAVR 32,36	-Ir	134	5)
	54535.3947	.0022	AG	-0.0644	\mathbf{S}	BAVR 32,36	-Ir	23	5)
WX Cnc	54535.3796	.0010	AG	+0.0119		GCVS 1985	-Ir	26	5)
XZ Cnc	54513.4504	.0003	\mathbf{FR}				-Ir	57	18)
AC Cnc	54508.3439	.0014	AG				-Ir	28	5)
	54508.4900	.0017	AG				-Ir	26	5)
AD Cnc	54508.4460	.0016	AG				-Ir	26	5)
AO Cnc	54508.3843	.0007	AG	-0.0784		GCVS 2007	-Ir	29	5)
EH Cnc	54509.3443	.0006	AG				-Ir	41	5)
	54509.5535	.0006	AG				-Ir	41	5)
FF Cnc	54509.4119	.0016	AG	-0.1698		IBVS $3859=BAVM 65$	-Ir	39	5)
	54513.3820	.0002	\mathbf{FR}	-0.1692		IBVS $3859=BAVM 65$	V	56	9)
	54544.4744	.0007	\mathbf{FR}	-0.1707	\mathbf{s}	IBVS $3859=BAVM 65$	-Ir	43	(18) (2)
DH CVn	54172.4041	.0004	RAT RCR				-Ir	63	5)
DR CVn	54221.5759	.0003	RAT RCR	+0.0366		GCVS 2007	-Ir	115	5)
R CMa	54500.4132	.0004	\mathbf{FR}	+0.0830		GCVS 1985	-Ir	48	18)
	54504.3895	.0009	\mathbf{FR}	+0.0836	\mathbf{s}	GCVS 1985	-Ir	28	18)
		0010	10				т	00	~ \`

Table 1: (cont.)

Variable	HJD 24	±	Obs	$O - \overline{C}$		Bibliography	Fil	n	R
RY CMi	54516.3391	.0007	AG	-0.2675		BAVM 127	-lr	28	;
SX CMi	54516.3937	.0020	AG	0.01.00		C CI I C 1 A A K	-lr	28	
AK CM1	54507.3201	.0009	DIE	-0.0160		GCVS 1985	0	23	1
TTT C	54516.3736	.0007	AG	-0.0169		GCVS 1985	-Ir	28	
TX Cas	54479.3795	.0028	JU	-0.0033		BAVR 32,36	0	100	(
IS Cas	54509.6233	.0025	SCI	+0.0660		GCVS 1985	0	96	(
IV Cas	54366.5668	.0001	RATRCR	-0.0637		GCVS 1985	0	119	į
KR Cas	54473.3795	.0030	JU	-0.1489		GCVS 1985	0	84	(
MS Cas	54454.4414	.0021	AG				-Ir	103	Ę
MT Cas	54432.3199	.0003	AG				-Ir	113	Į
	54432.4779	.0002	AG				-Ir	113	;
V336 Cas	54454.4354	.0010	AG				-Ir	101	Į
V345 Cas	54440.2419	.0011	AG				-Ir	62	Ę
V355 Cas	54389.5328	.0003	$\operatorname{RAT}\operatorname{RCR}$	-0.1239		GCVS 2007	0	198	ļ
WW Cep	54387.5148	.0001	$\operatorname{RAT}\operatorname{RCR}$	+0.0028		IBVS 4131 = BAVM 71	0	132	Į
WY Cep	54385.3619	.0010	AG	+0.0225	\mathbf{s}	GCVS 1985	-Ir	55	Į
EF Cep	54171.4079	.0002	RAT RCR	+0.1394		GCVS 1985	-Ir	70	Ę
SS Cet	54433.4874	.0006	AG	+0.0091		GCVS 1985	-Ir	82	Ę
TU Cet	54033.5735	.0008	AG	+0.4623		GCVS 1985	-Ir	159	Ę
RW Com	54207.3754	.0001	RAT RCR	-0.0186		GCVS 1985	-Ir	59	Ę
	54593.4173	.0002	JU	-0.0198	s	GCVS 1985	0	64	6
RZ Com	54531.4044	.0005	ÂĠ	+0.0417	2	GCVS 1985	0 0	15	1
	54583 3655	0001	WTB	+0.0421	s	GCVS 1985	-Tr	249	1
	545974137	0001	SIR	+0.0421 +0.0424	5	GCVS 1985	_Ir	$\frac{210}{127}$	1
SS Com	54544 4118	0013	AG	-0.0568	0	BAVB 33 152	-11 Ir	10	
VV Com	54555 4716	0013	FR	-0.0308	G	CCVS 2007	-11 V	57	(
CC Com	54555.4710	.0030		+0.0338	-	GCVS 2007	V Tri	57	:
	54205.5556	.0003	CID	-0.0100	5	GCVS 1965	-11 Tm	105	، 1
	54595.4190	.0001		-0.0164		GCVS 1965	-11 Tm	100	1
DO O	54595.4049	.0001		-0.0107		GCVS 1965	-11	11	1
DG Com	54531.4020	.0010	AG	-0.0482		GCVS 2007	0	15	1
LO Com	54185.3597	.0005	RATRCR				-lr	53	į
	54594.4268	.0006	JU	0.0044		C CI IC AND	0	68	(
MR Com	54148.4794	.0010	RATRCR	-0.0244		GCVS 2007	-lr	42	ţ
AV CrB	54207.4657	.0001	RATRCR	-0.0098		GCVS 2007	-Ir	141	į
WZ Cyg	54455.2815	.0001	RATRCR	+0.0617		GCVS 1985	0	84	ļ
$\rm ZZ \ Cyg$	54663.3963	.0003	QU	-0.0526		GCVS 1985	\mathbf{Ic}	35	
CV Cyg	54319.4895	.0007	$\operatorname{RAT}\operatorname{RCR}$	+0.2470		GCVS 1985	0	119	Į
	54388.3298	.0005	$\operatorname{RAT}\operatorname{RCR}$	+0.2471		GCVS 1985	0	98	Ę
V345 Cyg	54405.3553	.0007	$\operatorname{RAT}\operatorname{RCR}$	+0.0318		IBVS5016 = BAVM132	0	56	Ę
V385 Cyg	54349.5114	.0002	$\operatorname{RAT}\operatorname{RCR}$	-0.1258		GCVS 1985	0	150	Ę
V401 Cyg	54382.3010	.0002	$\operatorname{RAT}\operatorname{RCR}$	+0.0652	\mathbf{s}	GCVS 1985	0	85	Ę
V466 Cyg	54390.3470	.0019	\mathbf{SCI}	+0.0057		GCVS 1985	о	92	f
V474 Cyg	54619.74 :	.02	AG				B;V	38	18)
V504 Cyg	54299.4360	.0003	RAT RCR				Ó	74	į
V728 Cvg	54365.5524	.0002	RAT RCR	+0.0562		GCVS 1985	о	137	Ę
V841 Cvg	54600.5061	.0014	AG	+0.0097	s	GCVS 1985	-Ir	52	1
V859 Cvo	54631.4231	.0004	AG	+0.0063	s	GCVS 1985	-Tr	33	1
V874 Cyg	54631 5245	0011	AG	10.0000	U		_Tr	32	1
V884 Cyg	54631 / 305	0010	AG				-11 _Tr	32 22	1
V995 Crr~	54300 2508	0003	B V L BOB				-11	195 195	1
v 330 Oyg	54367 5066	.0003	RATRON	_0.0586		CCVS 1985	0	120 166	i I
VIDER C	54507.8000 54691 4999	.0002		-0.0000		00 V D 1909	U T	100 100	ं न
v 1250 Oyg	54031.4323	.0008	AG				-1r	33 49	Ţ
V1787 Cyg	54307.3980	.0004	RATRCR				0	43	4
v 1918 Cyg	54389.3122	.0001	RATRCR				0	106	
v2282 Cyg	54619.5005	.0009	AG				В	35	1
	54619.5006	.0004	AG				V	36	1
V2284 Cyg	54619.4825	.0006	AG				V	34	1
FZ Del	54297.4821	.0001	$\operatorname{RAT}\operatorname{RCR}$	-0.0389		GCVS 1985	о	95	ц.

Table 1: (cont.)

Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
RZ Dra	54601.5129	.0005	AG	+0.0479	\mathbf{s}	GCVS 1985	-Ir	59	18)
TW Dra	54597.4498	.0002	AG	+0.0360		GCVS 1985	-Ir	57	18)
AK Dra	54594.4256	.0003	SCI	+0.2231		GCVS 2007	0	126	6)
BV Dra	54597.3891	.0011	AG				-Ir	57	18)
	54597.5663	.0008	AG				-Ir	57	18)
BW Dra	54597.4793	.0001	AG				-Ir	57	18)
BX Dra	54597.4133	.0001	AG	+0.0169		IBVS 4266=BAVM 82	-Ir	55	18)
FU Dra	54597.4968	.0004	AG				-Ir	57	18)
GQ Dra	54599.4421	.0004	JU				0	80	6)
KK Dra	54601.5336	.0001	AG				-Ir	59	18)
U Gem	54147.5389	.0010	SIR				0	186	10) 4)
	54148.4226	.0005	SIR				0	200	10) 4)
	54173.3668	.0005	SIR				0	100	10) 4)
	54504.3584	.0005	SIR				-lr	61	10) 4)
	54504.5353	.0005	SIR				-lr	59	10) 4)
	54505.4198	.0005	SIR				-lr	70	10) 4)
	54506.3043	.0005	SIR				-lr	82	10) 4)
	54506.4809	.0005	SIR				-lr	78	10) 4)
	54507.3654	.0005	SIR				- 1r	82	10(4) 10(4)
	54509.4887	.0005	SIR				- 11 T.,	81 01	10(4) 10(4)
	54510.5732	.0005	SIR				- 11 Tm	81 76	10(4) 10(4)
	54510.5502	.0005	SIR				- 11 Tm	70 01	10(4) 10(4)
	54511.4540 54529 2112	.0005	SIR				-11 Tr	01 70	10(4) 10(4)
T7 Com	54552.5115	.0005	SCI				-11	21	10) 4) 6)
17 Gem	54505.3743	0013	AG				U Tr	42	5)
WW Gem	54508 4058	0000	AG	± 0.0321		GCVS 1985	-11 _Tr	42 72	5)
www.dem	54508 4060	0001	WN	+0.0323		GCVS 1985	V	206	14)
YY Gem	54500,3369	0010	ALH	-0.00 <u>2</u> 0		GCVS 1985	B	$\frac{200}{307}$	8)
11 0000	545105151	0010	ALH	-0.0069	s	GCVS 1985	T	629	8)
AC Gem	545074215	0066	AG	-0.2792	s	GCVS 1985	- Ir	31	5)
	54532.3370	.0032	FR	-0.2911	s	GCVS 1985	-Ir	38	18)
AY Gem	54507.3393	.0005	AG	-0.0526		GCVS 1985	-Ir	41	5)
AZ Gem	54476.6352	.0012	AG	+0.0861		GCVS 1985	-Ir	52	5)
BT Gem	54508.4478	.0005	AG				-Ir	74	5)
EF Gem	54507.3620	.0023	AG				-Ir	42	5)
$\operatorname{EL}\operatorname{Gem}$	54505.4241	.0004	AG	-0.2195	\mathbf{s}	GCVS 1985	-Ir	41	5)
$\operatorname{EN}\operatorname{Gem}$	54507.3307	.0039	AG	-0.0373	\mathbf{s}	GCVS 1985	-Ir	40	5)
$\mathbf{EY} \ \mathbf{Gem}$	54505.2343	.0007	AG	-0.2308		GCVS 1985	0	45	5) 2)
FG Gem	54505.5123	.0002	AG	-0.0293		GCVS 1985	-Ir	42	5)
GW Gem	54126.3321	.0001	RAT RCR	+0.0248		GCVS 1985	-Ir	49	5)
	54505.5137	.0013	WN	+0.0261		GCVS 1985	V	161	14)
$GZ \ Gem$	54532.3889	.0007	\mathbf{FR}				V	44	9)
KV Gem	54454.3086	.0004	AG	-0.0110		BAVR $52,95$	0	191	18)
	54454.4897	.0006	AG	-0.0091	\mathbf{s}	BAVR 52,95	0	191	18)
	54505.3990	.0004	QU	-0.0103	\mathbf{s}	BAVR 52,95	V	76	7)
	54507.3696	.0003	QU	-0.0115		BAVR 52,95	V	84	7)
	54509.3437	.0005	QU	-0.0093	\mathbf{S}	BAVR 52,95	V	96	7)
	54509.5203	.0010	QU	-0.0120		BAVR 52,95	V	96	7)
	54515.4374	.0005	QU	-0.0105	\mathbf{S}	BAVR 52,95	V	75	7)
	54510.3333	.0005	QU AU	-0.0109		BAVR 52,95	V 17	90	7) 7)
	54516.5128	.0007	QU OT	-0.0107	s	BAVR 52,95	V	90	7)
	5452U.4566	.0007	UU OU	-0.0107	\mathbf{s}	BAVR 52,95	V	75	7)
OW Com	04001.0910 54506 4120	.0005		-0.0107		DAVK 32,95	V	70 175	() 1.4)
Qw Gem с7 ц.,	04000.4138 54995 9759	.0001		0.0901		COVE 100F	v	140 EO	14) 5)
од пег тт ц _{от}	04000.0700 57620 7021	.0001	ALI KUK WTD	-0.0201		GCVS 1900 CCVS 1085	0 T.v.	00 77	9) 19)
TI Her	54036.4031 54917 450	.0001	WIR	+0.0357 0.174		GCVS 1900 CCVS 1085	- 11' Tm	() 170	1 <i>2)</i> 5)9)
10 ner	54360 3300 :	.001	RATRON	-0.174		GCVS 1965	-11	149 01	5) 5)
CC Her	54616 5961	0004		-0.1743 ± 0.1871	ç	GCVS 1985	_Tr	ઝ⊥ ૨૨	0) 18)
	01010.0401	.0040	лч	10.1011	G	COAD 1900	- 11	00	10)

Table 1: (cont.)

			Table 1	l: (cont.)					
Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
DH Her	54600.4570	.0007	AG	+0.0009		GCVS 2007	-Ir	52	18)
FN Her	54616.4527	.0003	AG	+0.0922		GCVS 1985	-Ir	134	18)
GU Her	54601.4088	.0007	AG	+0.7826		GCVS 1985	-Ir	79	18)
MS Her	54586.4870	.0038	SCI	-0.1166		GCVS 1985	0	105	6)
MT Her	54260.4522	.0001	RAT RCR	+0.0162		GCVS 1985	-Ir	105	5)
MX Her	54356.3497	.0003	RAT RCR	-0.5240		GCVS 1985	о	64	5)
V359 Her	54204.5004	.0007	RAT RCR	+0.1699		GCVS 1985	-Ir	106	5)
V366 Her	54597.4114	.0006	AG	-0.1220		GCVS 2007	-Tr	51	18)
V450 Her	54591.5342	.0042	SCI	-0.3328		GCVS 1985	0	135	6)
V719 Her	54211 4893	0003	BAT BCB	0.0020		0.01.01000	-Ir	136	5)
110 1101	54213 4940	0003	BAT BCB				_ Ir	128	5)
	5/329 3611	0003	BAT BCB				0	50	5)
V722 Hor	54502 4424	0000	SCI				0	44	6)
V820 Her	54595.4454	0050		10.0291		IDVS 5406	U Tr	44	19)
V829 Her	54597.5156	.0000	AG	+0.0281		IDV5 0490	-11	49	10) 16)
V842 Her	54610.4707	.0007	PGL	-0.0430		BAVR 49,180	0	302	10)
V861 Her	54596.3771	.0019	SCI				0	36	6)
	54596.5511	.0024	SCI				0	47	6)
V1032 Her	54601.5495	.0010	AG				-lr	64	18)
V1033 Her	54212.5116	.0002	RAT RCR				-Ir	124	5)
	54597.4445	.0004	AG				-Ir	52	18)
	54597.5951	.0015	AG				-Ir	52	18)
V1038 Her	54205.4890	.0002	RAT RCR				-Ir	144	5)
	54205.6254	.0002	RAT RCR				-Ir	144	5)
	54597.4349	.0009	AG				-Ir	51	18)
	54597.5680	.0003	AG				-Ir	51	18)
V1042 Her	54210.4956	.0001	RAT RCR				-Ir	125	5)
V1044 Her	54317.4143	.0001	RAT RCR				о	52	5)
	54367.3480	.0002	RAT RCR				0	97	5)
	54631.4518	.0002	AG				-Ir	70	18)
	54631.5705	.0010	AG				-Ir	70	18)
V1045 Her	54238 4499	0004	BAT BCB				_ Ir	124	5)
V1047 Her	54597 3955	0006	AG				_ Ir	47	18)
V1047 1101	54597.5559	.0000	AG				-11 Ir	47	18)
V1050 Hor	54691 4990	0000					-11 Tn	67	10)
V1050 Her	54051.4550	.0009	AG				-11 Tm	66	10)
V1055 Her	54051.4514	.0002					-11	50	10)
v1055 Her	54310.4412	.0003	RAI ROR				0	52 00	5) 5)
V1007 II	54337.4075	.0005	RAI ROR				0	92	5) 5)
V1067 Her	54331.3826	.0002	RATRCR				0	72	5)
V1073 Her	54319.4160	.0001	RAT RCR				0	47	5)
	54324.4182	.0004	RAT RCR				0	40	5)
V1103 Her	54349.3634	.0001	RAT RCR	-0.0027		GCVS 2007	0	49	5)
AV Hya	54506.4243	.0017	AG	-0.0948	\mathbf{s}	GCVS 1985	-Ir	59	5)
DI Hya	54535.3799	.0001	WTR				-Ir	96	12)
V409 Hya	54148.3945	.0003	RAT RCR	+0.0181	\mathbf{s}	GCVS 2007	-Ir	83	5)
TW Lac	54382.5153	.0002	RAT RCR	+0.2958		GCVS 1985	0	143	5)
CN Lac	53254.4569	.0030	PGL	+0.0144		GCVS 1985	-Ir	143	17)
	53263.3674	.0035	PGL	+0.0017		GCVS 1985	-Ir	97	17)
EM Lac	54307.4743	.0002	RAT RCR	+0.0677		GCVS 1985	0	102	5)
EO Lac	54384.1767	.0100	AG	+0.2457		GCVS 2007	-Ir	51	5)
V344 Lac	54453.3229	.0003	RAT RCR				0	130	5)
UV Leo	54507.4277	.0006	PGL	+0.0036		IBVS 5338	0	278	16)
	54579.4375	.0001	\overline{FLG}	+0.0030		IBVS 5338	V	149	15)
XX Leo	54531.5233	0020	AG	-0.1675	s	GCVS 1985	-Ir	46	5)
XY Leo	54531 3978	0022	AG	± 0.0316	s	GCVS 1985	_ Tr	47	5)
100	54531 5404	0016		±0.0010	5	GCVS 1985	_Tr		5)
X7 Loo	54140 4699	0000	B VL DOD	10.0344		CCVS 1005	-11 Tw	11 57	5)
VT TEO	54149,4042 54591 9501	.0002		+0.0437		GCVS 1005	- 11' T	01 17	5) 5)
	54591.0091	.0010	AG	± 0.0440	~	GOVS 1989	-11 T	41 17	9) E)
	54551.0054	.0014	AG	+0.0404	s	GUVS 1985	-1r	4/	э) с)
	- n / (n / 1)	0037	SCI	+0.1063		GUVS 1985	0	188	6)
AG Leo	54507.5424	0001		0.0000		COVC 1005	T 7		4 - 1

Table 1: (cont.)

Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
BL Leo	54564.3745	.0002	AG				0	160	18)
	54564.5143	.0002	AG				0	160	18)
CE Leo	54205.3667	.0001	RAT RCR				-Ir	59	5)
	54564.4740	.0001	AG				0	160	18)
	54564.6262	.0002	AG				0	160	18)
FM Leo	54514.4020	.0004	\mathbf{FR}	+0.0071		$\rm IBVS~5480$	-Ir	70	18)
T LMi	54221.3764	.0004	RAT RCR	-0.0956		GCVS 1985	-Ir	66	5)
	54532.4217	.0002	AG	-0.0984		GCVS 1985	-Ir	74	5)
RT LMi	54532.4483	.0002	AG	-0.0070		GCVS 1985	-Ir	71	5)
	54532.6362	.0004	AG	-0.0066	\mathbf{s}	GCVS 1985	-Ir	71	5)
XY LMi	54115.5254	.0005	RAT RCR	-0.0096	\mathbf{s}	GCVS 2007	-Ir	140	5)
	54195.4731	.0005	RAT RCR	-0.0127	s	GCVS 2007	-Tr	43	5)
RY Lyn	54222.3658	.0002	RAT RCR	-0.0474		GCVS 1985	-Ir	77	5)
-01 252	54516 5312	0030	SCI	-0.0546		GCVS 1985	0	67	6)
SW Lyn	54521 3320	0006	DIE	+0.0478		GCVS 1985	Ő	$\frac{3}{24}$	11)
SX Lyn	54532 4576	0003	AG	+0.017		GCVS 1985	Ő	170	18)
UII I un	54187 5311	0000	BAT BOB	+0.0017		GCVS 1985	U Ir	120	5)
OO Lyn	54107.0011	.0000	DAT DOD	-0.0039		GCVS 1985	-11 Tn	105	5)
	54219.3670	.0002	AC AC	-0.0047	-	GCVS 1965	-11	100	10)
	54555.5047	.0019	AG		s	GCVS 1965	0	103	10)
	54535.5979	.0006	AG	-0.0050		GCV5 1985	0	103	10)
DE Lyn	54532.4466	.0002	AG				0	167	18)
	54532.6498	.0005	AG			C CTTC + C CT	0	167	18)
UZ Lyr	54381.2804	.0001	RAT RCR	-0.0257		GCVS 1985	0	54	5)
AH Lyr	54600.4703	.0002	\mathbf{AG}				-lr	52	18)
BV Lyr	54639.4314	.0004	AG				-Ir	41	18)
DF Lyr	54600.5257	.0005	AG	+0.0356	\mathbf{s}	GCVS 2007	-Ir	52	18)
IP Lyr	54596.4694	.0004	AG				-Ir	55	18)
MN Lyr	54596.4385	.0007	AG	+0.0492		GCVS 2007	-Ir	46	18)
NV Lyr	54325.4946	.0002	RAT RCR				0	121	5)
PY Lyr	54600.4288	.0008	AG				-Ir	52	18)
	54631.4826	.0007	AG				-Ir	33	18)
QU Lyr	54387.3226	.0003	RAT RCR	+0.0014		GCVS 1985	о	141	5)
V574 Lyr	54350.3550	.0002	RAT RCR				о	71	5)
Ū.	54596.4425	.0002	AG				-Tr	55	18)
	54596.5790	.0034	AG				-Tr	55	18)
V580 Lyr	54596 4377	0012	AG				-Tr	43	18)
Voce Lji	54596 5812	0005	AG				_Tr	43	18)
V596 Lyr	54363 3487	0003	BAT BCB	± 0.0108	e	GCVS 2007	0	7/	5)
RW Mon	54507 3103	0000	WTP	0.0662	5	GCVS 1085	- Ur	120	12)
TU Mon	54506 5200	0005			a	CCVS 1985	-11 V	251	(12)
IU Mon	54500.5200	.0005	FIL	-0.0728		GCV5 1965	v	201	9) 6)
	54512.2790	.0024		0 01 41			0 T	30 95	0) 5)
	54507.2988	.0027	AG	-0.0141		DAVE 1005	-11	20	3) 0)
AT Mon	54500.4466	1000.	FR	+0.0087		GCVS 1985	V	54	9)
EP Mon	54507.3202	.0010	AG	+0.0344		GCVS 1985	-1r	25	5)
FS Mon	54514.4190	.0008	AG	-0.0116		GCVS 2007	-1r	45	5)
IL Mon	54514.3763	.0006	AG	-0.0482		GCVS 1985	-lr	67	5)
IX Mon	54513.3292	.0010	AG				-Ir	32	5)
IZ Mon	54513.4324	.0023	AG				-Ir	32	5)
MX Mon	54507.4964	.0013	AG	-0.1068	\mathbf{s}	GCVS 2007	-Ir	26	5)
V448 Mon	54506.2967	.0005	\mathbf{FR}	+0.0573		GCVS 1985	-Ir	76	18)
	54507.4142	.0002	WN	+0.0563		GCVS 1985	V	175	14)
V527 Mon	54507.4373	.0013	AG	-0.0262		GCVS 1985	-Ir	24	5)
V532 Mon	54115.3677	.0003	RAT RCR	+0.0123	\mathbf{s}	GCVS 1985	-Ir	79	5)
V843 Mon	54513.4085	.0009	AG	+0.0549	\mathbf{s}	BAVM 147	-Ir	33	5)
	54218.4864	.0001	RAT RCR	-0.0136		GCVS 1985	-Ir	139^{-1}	5)
V508 Oph									<u> </u>
V508 Oph	54223 4870	.0001	RAT BCB	-0.0125	S	GCVS 1985	_Tr	135	5)
V508 Oph Z Ori	54223.4870 54516 4311	.0001	RAT RCR	-0.0125 +0.0840	\mathbf{s}	GCVS 1985 BAVB 52 144	-Ir _Ir	135	5) 5)

Table 1: (cont.)

Variable113D 241005 $O = C$ DibitographyFititititemCQ Ori54504.3269.0037SCI -0.0002 GCVS 1985o606)EF Ori54500.4154.0023AG-Ir535)EG Ori54516.3986.0013AG -0.0838 GCVS 1985-Ir605)EW Ori54524.4188.0001WN $+0.0163$ sGCVS 1985V12514)FF Ori54500.3287.0001WTR $+0.0323$ GCVS 1985-Ir10412)FI Ori54476.5067.0028AG $+0.2270$ GCVS 1985-Ir515)FR Ori54513.3712.0001WTR $+0.0274$ GCVS 1985-Ir10212)FT Ori54494.3950.0030ALH $+0.1195$ sGCVS 1985V1458)GU Ori54476.3446.0019AG-Ir495)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
FR Ori 54513.3712 .0001 WTR $+0.0274$ GCVS 1985 -Ir 102 12) FT Ori 54494.3950 .0030 ALH $+0.1195$ s GCVS 1985 V 145 8) GU Ori 54476.3446 .0019 AG -Ir 49 5) 54476.5794 0010 AG -Ir 49 5)
FT Ori 54494.3950 .0030 ALH +0.1195 s GCVS 1985 V 145 8) GU Ori 54476.3446 .0019 AG -Ir 49 5) 54476.5794 .0010 AG -Ir 49 5)
GU Ori 54476.3446 .0019 AG -Ir 49 5)
544765794 0010 AG $_{\rm Jr}$ 49 5)
$54500 3478 0005 \Delta G$. In 53 5)
V302 Ω_{ri} 54476 5515 0033 AC ± 0.0036 c CCVS 1085 Ir 52 5)
V532 OII 54410.5515 .0055 AC ± 0.0050 S COV5 1505 ± 11 52 5)
V645 Ori 54516 2086 0012 AC Ir 60 5)
V1031 Ori 54516.2860 .0012 AG -11 00 5) V1031 Ori 54516.3804 0004 FR _0.4700 CCVS 1085 Ir 24 18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{1}{10000000000000000000000000000000000$
HV D_{0r} 54500 3180 0004 AC 0.2757 CCVS 2007 Ir 60 5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
KN Dor 54033 4005 0018 AC ± 0.0111 c RAVR 52.03 Ir 55 5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ND Dop 54476 4860 0004 AC $I_{0.0107}$ GOVS 1987 - II 56 5)
NF FEI 54470.4600 .0004 AG $-11 50 5$
V_{4} Per 54515 2726 0006 III + 0.0455 $O(V_{5})$ 1987 - II 94 5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$CW S_{rec} = 54206.4223 0.005 RAT RCR = 0.0409 GCVS 1987 0 122 5)$
All Sor 54206 5304 0001 \mathbf{PAT} \mathbf{PCP} in 146 5)
AU SEI 54200.5504 .0001 RAI ROR -II 140 5) DI S_{07} 54202.4780 0002 DAT DOD 10.0065 COVS 1027 I_{7} 140 5)
$V384 S_{07} = 54570 3803 -0002 = RAT ROL +0.0905 = GCVS 1987 - H = 140 - 5)$
$54583 4154 - 0003 = FR \pm 0.0031 = CCVS 2007 = V = 42 = 5)$
54583 5409 0003 FR ± 0.0035 CCVS 2007 ± 10.003
TV Top $54474.3084.0002$ III ± 0.9473 CCVS 1087 of 71 6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\Delta N T_{211} = 54455 4741 0010 AC = 0.1017 c CCVS 1087 Jr 20 5)$
$54476 4621 0.017 \qquad AC \qquad -0.1041 c CCVS 1987 Ir 62 5)$
$\Delta P T_{211} = 54300 6080 = 0.025 \qquad SCI = \pm 0.0131 \qquad CCVS 2007 \qquad o = 20 6)$
RN Tau 5455.0000 .0025 501 ± 0.0151 GCV5 2007 0 25 0) RN Tau 54455.4036 0012 AC Ir 28 5)
CD Tau 54404 3059 0027 SCI ± 0.0049 GCVS 1987 o 112 6)
CII Tau $544554389 0016$ AG ± 0.0166 GCVS 1987 Jr 33 5)
5447627060006 WTR ± 0.0312 s GCVS 1987 Jr 88 12
$54477, 3018, 0006, WTR \pm 0.0318, GCVS 1987, Jr 134, 12)$
54505 3520 0001 WN +0.0511 GCVS 1987 V 93 14)
ET T ₂₁₁ 54507 3004 0017 SCI -0.0892 GCVS 1987 0 96 6)
545133027 0042 SCI -0.0838 GCVS 1987 o 166 6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
V1128 Tau 54500 3313 0012 SCI $0.166 - 6$
X Tri 54457 3921 0001 WN -0.0695 GCVS 1987 V 237 14
TV IIMa 54206 3818 0001 RAT RCR ± 0.0641 s GCVS 1987 $_{\rm Jr}$ 50 5)
542225143 = 0002 RAT RCR + 0.0651 GCVS 1987 Jr 63 5)
54514 4867 0017 SCI +0.0749 s GCVS 1987 0 104 6
$54597 4527 0004$ JU ± 0.0789 s GCVS 1987 o 78 6)
UX UMa 54570 3643 0002 AG ± 0.0019 GCVS 1987 0 175 18)
$545705610 0004$ AG ± 0.0019 GCVS 1987 0 175 18)
UY UMa 54570.4193 .0003 AG -0.0829 GCVS 1987 0 173 18)
54570.6066 ,0003 AG -0.0836 s GCVS 1987 o 173 18)
54592.4164 .0007 JU -0.0827 s GCVS 1987 o 74 6)

Table 1: (cont.)

Variable	HID 24	+	Obs	$\frac{O - C}{O - C}$		Bibliography	Fil	n	Rem
VV UMa	54513 3936	0003	JU	-0.0494		GCVS 1987	0	90	<u>6)</u>
XZ UMa	541745332	0001	BAT BCB	-0.0888		GCVS 1987	-Ir	157	5)
	54514 3335	0002	JU	-0.0935		GCVS 1987	0	100	6)
ZZ UMa	54168 5188	0002	BAT BCB	-0.0000		GCVS 1987	_Ir	111	5)
	54191 5114	0002	BAT BCB	-0.0022		GCVS 1987	_Ir	123	5)
A A TIMa	54151.5114 54167 5372	0002	BAT BCB	± 0.0022		GCVS 1987	-11 _Tr	123	5)
III Oma	54591 4433	0002	III III	10.0310		CCVS 1987	-11	76	6)
AW UMp	54535 5013	0114	50 FB	+0.0330		CCVS 1987	U Tr	10	18)
RH UMa	54916 2925	0056	SCI	-0.0021	о С	GCVS 2007	-11	40 71	6)
DII Oma	54210.5255	0067	SCI	-0.0830	e a	GCVS 2007	0	120	6)
DW IIMa	54505 4735	.0007		-0.0850	G	GCV5 2007	0	80	6)
DW OMa	54595.4755	0004					U Tm	55	19)
ES IIMo	54090.4012	.0001					-11 Tn	40	10) 5)
ES UMA	54225.5750	.0003	DAT DOD				-11 Tn	49	5)
IW UMa	04100.4091 E4E9E 4E94	.0004	LAI NUN				-11	109	0) 19)
1/N# 11N#-	54555.4554	.0010					0 T	02	10)
KM UMa	54120.5015	.0001	RAI RUR				-1r T.,	97	5) 5)
LP UMa	54173.5223 F4F0F 4FF4	.0015	KAI KUK				-1r	90	5) C)
MO IM-	54595.4554 54109 5995	.0011		10.0694		COVE 2007	0 T	80 169	0) 5)
MQ UMa DZ IIM:	54192.5885	.0008	KAI KUK	+0.0624		GCV5 2007	-1r	103	5) C)
RZ UMi	54598.3988	.0004	JU	0.0000			0	44	0)
AG Vir	54555.4764	.0008	FR	-0.0082		GCVS 1987	-1r	107	18)
4337 37	54593.3845	.0019	WN	-0.0165		GCVS 1987	V	187	14)
AW Vir	54217.3800	.0001	RATRCR	+0.0182		GCVS 1987	-lr	50	5) 10)
AX Vir	54592.4239	.0001	SIR	+0.0121		BAVR 32,36	-lr	328	10)
	54597.3418	.0001	WTR	+0.0124		BAVR 32,36	-lr	94	12)
	54598.3946	.0003	WTR	+0.0114	s	BAVR 32,36	-lr	94	12)
AZ Vır	54218.3870	.0006	RATRCR	-0.0189	s	GCVS 1987	-lr	81	5)
00 TP	54600.3959	.0001	WN	-0.0191		GCVS 1987	V	75	14)
CG Vir	54172.4880	.0005	RATRCR	+0.1682	s	GCVS 1987	-lr	127	5)
VV Vul	54410.3899	.0017	AG	+0.3861		GCVS 2007	-lr	61	5)
XZ Vul	54639.4201	.0008	AG	+0.2899		GCVS 1987	-lr	41	18)
AX Vul	54313.4070	.0002	RAT RCR	-0.0289		GCVS 1987	0	42	5)
BU Vul	54410.3456	.0050	AG	-0.2596		GCVS 1987	-lr	67	5)
EV Vul	54671.4732	.0030	ALH	+0.4562		GCVS 1987	V	170	8)
GP Vul	54631.4487	.0004	AG	-0.0405	\mathbf{s}	GCVS 1987	-lr	31	18)
GR Vul	54639.4619	.0006	AG			0.0770	-lr	41	18)
HI Vul	54631.4745	.0006	AG	-0.0548		GCVS 1987	-lr	33	18)
GSC 0133000287	54454.4391	.0004	AG	+0.0010	\mathbf{s}	BAVR 54.105	0	208	18)
	54505.3493	.0005	QU	+0.0003	\mathbf{S}	BAVR 54.105	V	76	7)
	54507.4419	.0007	QU	+0.0007	\mathbf{s}	BAVR 54.105	V	84	7)
	54509.3602	.0010	QU	+0.0011		BAVR 54.105	V	96	7)
	54509.5339	.0010	QU	+0.0004	\mathbf{s}	BAVR 54.105	V	96	7)
	54515.288:	.004	QU	+0.001		BAVR 54.105	V	75	7)
	54515.4626	.0004	QU	+0.0012	\mathbf{S}	BAVR 54.105	V	75	7)
	54516.3342	.0005	QU	+0.0010		BAVR 54.105	V	90	7)
	54516.5090	.0005	QU	+0.0014	\mathbf{S}	BAVR 54.105	V	90	7)
	54520.3448	.0007	QU	+0.0015	\mathbf{S}	BAVR 54.105	V	75	7)
	54531.3273	.0005	QU	-0.0002		BAVR 54.105	V	70	7)
	54531.503 :	.004	QU	+0.001	\mathbf{S}	BAVR 54.105	V	70	7)
GSC 0137501085	54504.3247	.0006	SIR				-Ir	80	10)
	54504.4944	.0004	SIR				-Ir	80	10)
	54505.3355	.0005	SIR				-Ir	91	10)
	54505.5044	.0005	SIR				-Ir	71	10)
	54506.3418	.0007	SIR				-Ir	103	10)
	54506.5127	.0002	SIR				-Ir	128	10)
	54507.3483	.0004	SIR				-Ir	107	10)
	54507.5214	.0006	SIR				-Ir	113	10)
	54510.3834	.0004	SIR				-Ir	102	10)
	54544.3698	.0004	SIR				-Ir	102	10)
GSC 0162900788	54304.4128	.0009	AG				-Ir	31	5)

Table 1: (cont.)

17 : 11			01	0 0		ו יווים	T)'I		
Variable	HJD 24	±	Ubs	O = C		Bibliography	F11	n	Rem
GSC 0203800293	54516.6382	.0003	FR	+0.0059		BAVM 177	-1r	115	18)
	54570.3858	.0009	FR	+0.0015	\mathbf{s}	BAVM 177	-lr	115	18)
	54570.6366	.0004	FR	+0.0046		BAVM 177	-lr	115	18)
	54583.5195	.0002	FR	+0.0069		BAVM 177	-lr	90	18)
	54594.4188	.0010	FR	+0.0071		BAVM 177	-lr	64	18)
	54596.4004	.0004	FR	+0.0071		BAVM 177	-lr	66	18)
	54597.393	.001	\mathbf{FR}	+0.009		BAVM 177	-lr	56	18)
GSC 0236102410	54055.3620	.0006	AG				-lr	49	5)
	54055.5214	.0015	AG				-Ir	49	5)
	54055.6819	.0060	\mathbf{AG}				-Ir	49	5)
	54084.3232	.0006	AG				-Ir	53	5)
	54084.4819	.0012	AG				-Ir	53	5)
	54084.6411	.0004	AG				-Ir	53	5)
	54364.5419	.0007	\mathbf{AG}				-Ir	34	5)
	54364.5419	.0007	AG				-Ir	34	5)
	54455.3989	.0041	\mathbf{AG}				-Ir	29	5)
	54476.4061	.0008	\mathbf{AG}				-Ir	57	5)
	54476.5640	.0005	\mathbf{AG}				-Ir	57	5)
GSC 0265604286	54631.4159	.0013	\mathbf{AG}	-0.0075		IBVS 5900	-Ir	33	18)
GSC 0403002020	54092.2753	.0004	\mathbf{AG}				-Ir	37	5)
	54092.4111	.0004	\mathbf{AG}				-Ir	37	5)
	54092.5478	.0002	\mathbf{AG}				-Ir	37	5)
	54092.6810	.0012	AG				-Tr	37	5)
	54308.4086	.0013	AG				-Tr	21	5)
	54308 4086	0013	AG				-Tr	21	5)
	54367 3284	0005	AG				_Ir	61	5)
	54367 3284	0005	AG				_Ir	61	5)
	54367 4657	0005	AC				-11 Ir	61	5)
	54367 4657	0005					-11 Ir	61	5)
	54267 6015	0005					-11 Tn	61	5)
	54307.0015	.0005	AG				-11 Tm	61	5)
	54307.0013	.0005	AG				-11 Tm	45	5)
	54300.3799	.0012	AG				-11 T	40	3) E)
	04000.0799 F 4900 F 17F	.0012	AG				-11	40	3) E)
	54388.5175	.0009	AG				-1r	45	5)
	54388.5175	.0009	AG				-1r	45	5)
	54388.6539	.0011	AG				-lr	45	5)
TT	54388.6539	.0011	AG				-lr	45	5)
U-A2 1200-12680286	54631.5195	.0009	AG				-1r	33	18)
U-A2 1500-01208912	54092.2723	.0004	\mathbf{AG}				-Ir	37	5)
	54092.4269	.0013	AG				-Ir	37	5)
	54092.5782	.0003	AG				-Ir	37	5)
	54096.3584	.0024	AG				-Ir	26	5)
	54096.5023	.0011	\mathbf{AG}				-Ir	26	5)
	54308.3828	.0001	AG				-Ir	19	5)
	54308.3828	.0001	\mathbf{AG}				-Ir	19	5)
	54367.3132	.0012	AG				-Ir	61	5)
	54367.3132	.0012	AG				-Ir	61	5)
	54367.4639	.0013	AG				-Ir	61	5)
	54367.4639	.0013	AG				-Ir	61	5)
	54367.6141	.0010	\mathbf{AG}				-Ir	61	5)
	54367.6141	.0010	AG				-Ir	61	5)
	54388.3207	.0009	AG				-Ir	$\frac{-}{46}$	5)
	54388 3207	.0009	AG				-Tr	46	(5)
	54388 4678	0004	AG				_]r	46	5)
	54388 /678	0004	AC				-11 _Tr	-0 /6	5)
	54288 6109	0019					-11 1"	40 16	5)
	54300.0192	0012					-11 T	40 16	5) 5)
TI A 9 1508 0090196	52660 2009	.0012	AG				-11 T.,	40 ∡9	9) 5)
0-A2 1000-0029120	53000.3008	.0014	AG AC				-1ľ T	43 オウ	9) E)
	55000.4570	.0021	AG				-11 T	43 ∡9	9) E)
		10113	A L ≟				-Ir	43	51
Table 1: (cont.)

Variable	HJD 24	±	Obs	O - C	Bibliography	Fil	n	Rem
U-A2 1508-0029126	54002.4749	.0090	AG		0 1 /	-Ir	34	5)
	54002.6316	.0008	\overline{AG}			-Ir	34	5)
	54020.4391	.0013	\overline{AG}			-Ir	32	5)
	54020.6004	.0028	AG			-Ir	30	5)
	54092.3076	.0001	AG			-Ir	36	5)
	54092.4678	.0013	AG			-Ir	36	5)
	54092.6209	.0002	AG			-Ir	36	5)
	54388.3693	.0022	AG			-Ir	40	5)
	54388.3693	.0022	AG			-Ir	40	5)
	54388.5289	.0032	AG			-Ir	40	5)
	54388.5289	.0032	AG			-Ir	40	5)
U-B1 1500-0005759	53653.3460	.0020	AG			-Ir	33	5)
	53717.3230	.0024	AG			-Ir	46	5)
	53990.6117	.0014	AG			-Ir	75	5)
	54002.5100	.0018	AG			-Ir	35	5)
	54003.4707	.0020	AG			-Ir	60	5)
	54020.5166	.0108	AG			-Ir	31	5)
	54035.2984	.0025	AG			-Ir	44	5)
	54085.4625	.0015	AG			-Ir	30	5)
	54454.5489	.0011	AG			-Ir	98	5)

Table 2: Times of maxima of pulsating stars

Variable	HJD 24	±	Obs	0 – C	Bibliography	Fil	n	Rem
SW And	54472.3508	.0011	WN	-0.0012	A&A 476.307 2007	V	109	14)
	54507.2910	.0015	WN	+0.0003	A&A 476.307 2007	V	167	14)
XX And	54479.2945	.0019	WN	+0.0213	BAVR 48,189	V	101	14)
	54513.2616	.0013	WN	+0.0190	BAVR 48,189	V	79	14)
XY And	54388.3216	.0005	MZ			-Ir	74	6)
	54433.3794	.0020	MZ			-Ir	74	6)
	54453.3186	.0090	MZ			-Ir	74	6)
ZZ And	54338.4181	.0060	MZ			V	14	13)
BK And	54337.5375	.0002	MZ	+0.0034	BAVR 49,41	V	11	13)
	54342.6056	.0002	MZ	+0.0123	BAVR 49,41	V	15	13)
CC And	54472.4346	.0014	WN	+0.0167	GCVS 1985	V	97	14)
	54475.4358	.0026	WN	+0.0201	GCVS 1985	V	120	14)
	54510.2896	.0009	WN	+0.0246	GCVS 1985	V	104	14)
DM And	54451.3274	.0009	MZ	-0.0039	GCVS 2007	-Ir	80	6)
DU And	54428.4662	.0010	MZ	+0.1953	GCVS 1985	-Ir	59	6)
GM And	54338.4720	.0005	MZ	+0.0399	GCVS 2007	V	55	6) 2)
	54338.4727	.0003	MZ	+0.0406	GCVS 2007	В	46	6) 2)
GP And	54466.2393	.0006	WN	+0.0053	GCVS 1985	V	65	14)
	54472.2976	.0007	WN	+0.0050	GCVS 1985	V	50	14)
	54475.3674	.0006	WN	+0.0062	GCVS 1985	V	80	14)
	54479.2213	.0008	WN	+0.0046	GCVS 1985	V	53	14)
	54479.3796	.0007	WN	+0.0056	GCVS 1985	V	88	14)
	54482.2902	.0008	WN	+0.0049	GCVS 1985	V	50	14)
OV And	54457.2781	.0019	WN	-0.0215	MVS 11,133	V	75	14)
	54463.3955	.0013	WN	-0.0216	MVS 11,133	V	136	14)
	54464.3365	.0016	WN	-0.0218	MVS 11,133	V	101	14)
SX Aqr	54349.4251	.0004	FLG	+0.0192	BAVR 48,57	V	100	15)
CY Aqr	54381.4464	.0002	MZ	+0.0115	GCVS 1985	-Ir	60	6)
X Ari	54512.3137	.0018	WN	+0.0533	BAVR 48,189	V	116	14)
SY Ari	54479.3686	.0080	MZ			-Ir	76	6)
TZ Aur	54479.4802	.0011	WN	+0.0128	GCVS 1985	V	134	14)
	54512.3803	.0013	WN	+0.0122	GCVS 1985	V	78	14)
NU Aur	54456.3178	.0004	MZ	+0.2642	GCVS 2007	-Ir	109	6)
UU Boo	54512.6731	.0018	\mathbf{SCI}	+0.2024	GCVS 1985	0	71	6)
	54583.4985	.0017	\mathbf{SCI}	+0.2051	GCVS 1985	0	46	6)

Table 2: (cont.)

			Tab	10 2. (cont.)	/			
Variable	HJD 24	±	Obs	O - C	Bibliography	Fil	n	Rem
VY Boo	54587.5019	.0055	MZ			-Ir	121	6) 2)
CQ Boo	54583.3865	.0030	ALH	-0.0513	BAVR 48,189	0	223	8) 1)
	54583.4224	.0030	ALH	-0.0153	BAVR 48,189	0	223	8) 1)
	54639.4803	.0030	ALH	-0.0523	BAVR 48,189	0	289	8) 1)
	54639.5139	.0030	ALH	-0.0187	BAVR 48,189	0	289	8) 1)
UY Cam	54544.388	.004	AG	+0.067	BAVR 49,41	0	22	18)
TT Cnc	54513.5727	.0010	\mathbf{FR}	-0.0098	A&A 476.307 2007	-Ir	56	18)
AP Cnc	54508.379	.001	\mathbf{AG}	-0.040	GCVS 2007	-Ir	28	5)
AQ Cnc	54506.5188	.0017	WN	-0.0727	GCVS 1985	V	116	(14)
-	54521.3263	.0010	MZ	-0.0752	GCVS 1985	-Ir	59	6)
EF Cnc	54509.293	.002	AG			-Ir	40	5)
	54509.588	.002	AG			-Ir	40	5)
RZ CVn	54608.3985	.0015	WN	+0.1213	BAVR 48,189	V	82	14)
AD CMi	54479.3627	.0004	\mathbf{FLG}	+0.0091	GCVS 1985	V	145	15)
	54479.4861	.0005	\mathbf{FLG}	+0.0095	GCVS 1985	V	145	15)
HU Cas	54512.3576	.0010	MZ			-Ir	95	6)
IU Cas	54516.3760	.0015	MZ			-Ir	66	6)
NS Cvo	54396.3512	.0005	MZ			-Ir	86	6)
V939 Cvg	54356 4670	.0010	RAT BCB	+0.0381	BAVM 92	0	400	5)
VZ Dra	54652 5013	0030	ALH	+0.1291	GCVS 1985	v	90	8)
RR Gem	54474 4210	0030	ΔΤ.Η	-0.0031	BAVR 17 67	·	200	8) 81
THE OTH	54470 5056	0010	WN	_0.0031	BAVR 47 67	v	230 60	14)
	54505 4171	0010	WN	-0.0042	BAVR 47 67	v	0 <i>9</i> 75	14)
	54500.4171	.0013	DCI	-0.0007	DAVIC 47,07	v	547	14) 16)
SZ Cam	54509.4559	.0014	r G L C D	+0.0391	DAVIN 47,07	U Tm	047 197	15)
52 Gem	54500.4102	.0010		+0.0080	BAVR 48,00	-1r V	137	15)
ao a	54508.4151	.0030		+0.0084	BAVR 48,00	V T	290	0) 15)
GQ Gem	54513.4732	.0020	SD M7	-0.1958	GCVS 2007	-1r	117	15)
IV Gem	54454.3947	.0000		0.0110	COMUNA 1005	-1r	149	b)
TW Her	54646.4964	.0020	ALH	-0.0118	GCVS 1985	V	148	8)
VX Her	54593.3738	.0010	QU	+0.0372	GCVS 1985	V	42	7)
	54608.4007	.0007	PGL	+0.0368	GCVS 1985	0	287	16)
	54618.4211	.0020	ALH	+0.0390	GCVS 1985	0	252	8)
VZ Her	54598.4653	.0013	PGL	+0.0655	GCVS 1985	0	218	16)
	54631.492	.002	AG	+0.068	GCVS 1985	-Ir	68	18)
IT Her	54597.4840	.0024	SCI			0	108	6)
	54598.4990	.0023	SCI			0	73	6)
V633 Her	54387.3324	.0010	MZ			-Ir	76	6)
SZ Hya	54509.3611	.0048	FLG	-0.2259	GCVS 1985	V	135	15)
UU Hya	54506.641	.003	AG			-Ir	70	5)
UV Hya	54506.603	.002	AG			-Ir	70	5)
RR Leo	54512.5796	.0013	WN	+0.0016	A&A 476.307 2007	V	116	14)
	54594.4667	.0005	QU	+0.0041	A&A 476.307 2007	V	66	7)
ST Leo	54555.4284	.0020	ALH	-0.0188	GCVS 1985	V;B	168	8)
BP Leo	54564.529	.001	AG	-0.201	GCVS 2007	0	160	18)
BT Leo	54507.4528	.0006	MZ			-Ir	94	6)
DI Leo	54531.388	.002	AG	+0.250	GCVS 2007	-Ir	47	5)
SZ Lyn	54479.5591	.0008	WN	+0.0186	GCVS 1985	V	59	14)
-	54512.4658	.0009	WN	+0.0193	GCVS 1985	V	91	14)
Y Lyr	54380.3212	.0003	MZ			-Ir	58	6)
RR Lyr	52503.587	.004	ALH	+0.042	AC 1205.4 1982	о	999	19)
EN Lyr	54389.2908	.0080	MZ			-Ir	29	6)
EX Lyr	54364.4539	.0080	MZ	-0.1341	GCVS 1985	-Ir	105	6)
KM Lvr	54295.4626	.0060	MZ	+0.1183	GCVS 2007	-Ir	62	6)
	54297.4701	.0060	MZ	+0.1251	GCVS 2007	-Ir	53	6)
NQ Lvr	54390.3737	.0013	MZ	-0.0047	GCVS 1985	-Tr	68	6)
AI Mon	54507 605	.010	AG	-0.162	GCVS 2007	0	26	5)
EZ Mon	54513 3708	0016	MZ	± 0.0291	GCVS 2007	_Tr	101	6) 2)
CM Ori	54505 3954	0002	MZ	+0.0291 +0.0267	BAVR 49 105	-11 _Tr	70	6) 6)
AV Per	54456 9446	0012	WN	+0.0207	A & A 176 207 2007	-11 V	100	1/1)
114 T CR	01100.2440	.0010	VV IN	10.0001	11011 410.001 2001	v	103	14)

Table 2: (cont.)

Variable	HJD 24	±	Obs	O - C	Bibliography	Fil	n	Rem
AV Peg	54463.2717	.0018	WN	+0.0060	A&A 476.307 2007	V	101	14)
BH Peg	54466.3455:	.0050	WN	+0.0166	BAVR 47,67	V	166	14)
CD Peg	54457.2074	.0016	MZ	-0.2412	GCVS 2007	-Ir	123	$6) \ 2)$
CV Peg	54452.3141	.0040	MZ			-Ir	49	6)
DH Peg	54464.2750	.0031	WN	+0.0269	GCVS 1987	V	145	14)
DY Peg	53224.417	.001	PGL	-0.004	GCVS 1987	-Ir	174	17)
	53232.4379	.0003	PGL	-0.0042	GCVS 1987	-Ir	122	17)
	53256.3567	.0003	PGL	-0.0052	GCVS 1987	0	132	17)
	53350.4763	.0020	PGL	-0.0335	GCVS 1987	0	38	17)
	54080.3708	.0014	PGL	+0.0146	GCVS 1987	-Ir	77	17)
	54463.2118	.0005	WN	-0.0074	GCVS 1987	V	39	14)
	54479.3269	.0007	WN	-0.0090	GCVS 1987	V	39	14)
	54482.2454	.0005	WN	-0.0076	GCVS 1987	V	85	14)
GY Peg	54380.4512	.0025	MZ	-0.2392	GCVS 2007	-Ir	40	6)
AR Per	54387.4161	.0005	MZ	+0.0516	GCVS 1987	-Ir	53	6)
	54463.5937	.0022	WN	+0.0559	GCVS 1987	V	190	14)
	54464.4453	.0015	WN	+0.0564	GCVS 1987	V	173	14)
	54476.3590	.0030	ALH	+0.0547	GCVS 1987	0	460	8)
	54505.2957	.0011	WN	+0.0541	GCVS 1987	V	104	14)
	54508.2740	.0009	WN	+0.0536	GCVS 1987	V	112	14)
	54513.3825	.0011	WN	+0.0555	GCVS 1987	V	155	14)
ET Per	54455.3410	.0003	MZ	-0.0258	BAVR 49,41	-Ir	80	6) 2)
V375 Per	54509.281	.002	AG			-Ir	60	5)
V378 Per	54505.378	.002	AG			-Ir	92	5)
BO Tau	54452.4306	.0008	MZ			-Ir	80	6)
BR Tau	54457.4132	.0001	MZ			-Ir	62	6)
RV UMa	54531.371	.001	NIC	+0.009	BAVR 48,189	V	178	7)
TU UMa	54535.6079	.0015	\mathbf{FR}	-0.0276	GCVS 1987	-Ir	52	18)
	54591.3733	.0017	WN	-0.0281	GCVS 1987	V	91	14)
	54591.3747	.0005	QU	-0.0267	GCVS 1987	V	54	7)
	54596.3934	.0007	QU	-0.0269	GCVS 1987	V	59	7)
UZ UMa	54544.416	.004	AG			0	22	18)
AE UMa	54506.5887	.0006	WN	+0.0052	BAVR 48,189	V	67	14)
	54512.5199	.0002	WN	+0.0012	BAVR 48,189	V	50	14)
	54513.4650	.0009	WN	+0.0002	BAVR 48,189	V	182	14)
	54513.5559	.0009	WN	+0.0050	BAVR 48,189	V	182	14)
	54524.4815	.0008	WN	+0.0065	BAVR 48,189	V	64	14)
U-A2 1425-00752967	54432.296	.001	AG			-Ir	113	5)

Remarks:

- Agerer, F., Tiefenbach AG: QU: ALH: Alich, K., Schaffhausen (CH) RAT: DIE: Dietrich, M., Radebeul RCR: FLG: Flechsig, Dr. G., Teterow SB:Frank, P., Velden FR: SCI:JU: Jungbluth, Dr. H., Karlsruhe SIR: MZ: Maintz, Dr. G., Bonn WN: NIC: Nickel, O., Mainz
- PGL: Pagel, Dr. L., Klockenhagen

- Quester, W., Esslingen
- C: Rätz, M., Herges-Hallenberg
- R: Rätz, M., Herges-Hallenberg
- Steinbach, Dr. H., Neu-Anspach
- Schmidt, U., Karlsruhe
- Schirmer, J., Willisau (CH)
- : Wischnewski, M., Wennigsen
- WTR: Walter, F., München

Remarks (cont.):

:	= uncertain
s	= secondary minimum
С	= CCD-camera
0	= without filter
V	= V-filter
В	= B-filter
Ι	= I-filter
Ic	= I-filter cousins
-Ir	= -Ir-filter
GSC	= The HST Guide Star Catalogue 1.2
U-A2	= The USNO A2.0 Catalogue
U-B1	= The USNO B1.0 Catalog
1)	= double maximum
2)	= assembled from the observations of two nights
3)	= not much descend
4)	= eclipse of the hot spot
5)	= ccd-camera ST-6 chip 375*242 uncoated
6)	= ccd-camera ST-7
7)	= ccd-camera ST-7E
8)	= ccd-camera ST-8E
9)	= ccd-camera ST-9
10)	= ccd-camera Alpha Maxi chip KAF401e
11)	= ccd-camera pictor 1616XT
12)	= ccd-camera Pictor 416XT
13)	= ccd-camera holicam
14)	= ccd-camera Meade DSI Pro 2
15)	= ccd-camera SIGMA 402
16)	= ccd-camera Artemis 4021
17)	= ccd-camera Canon EOS 300D
18)	= ccd-camera Sigma 1603
19)	= photodiode S5972
20)	= this star has not been observed since 1959; reduced by adding half time of
	= expected total duration (0.014p) to time of second contact
A&A	= Astronomy & Astrophysics
AC	= Astronomical Circular
BAVM nnn	= BAV Mitteilungen No. nnn
BAVR vv,ppp	= BAV Rundbrief Vol. vv, page ppp
GCVS yy	= General Catalogue of Variable Stars, 4th edition,
IBVS nnnn	= Information Bulletin on Variable Stars No. nnnn
MVS vv,ppp	= Mitteilungen über Veränderliche Sterne; volume, pages

ERRATUM FOR IBVS 5657 (BAVM 173)

AO Cam 53360.4840 RAT RCR correct value: 53360.4940

ERRATUM FOR IBVS 5761 (BAVM 183)

AE Cas $54000.4498\;{\rm SCI}$ correct value: 54017.4498

ERRATA FOR IBVS 5802 (BAVM 186)

AO Cam	53809.3529 RAT RCR	correct value: 53809.3259
GK Cas	54212.5234 RAT RCR	correct value: 54211.5234

ERRATUM FOR IBVS 5874 (BAVM 201)

GSC 0137501085 $\,$ SIR $\,$ all results must be deleted $\,$

Number 5875

Konkoly Observatory Budapest 2 February 2009 HU ISSN 0374 - 0676

CCD MINIMA FOR SELECTED ECLIPSING BINARIES IN 2008

NELSON, ROBERT H.

1393 Garvin Street, Prince George, BC, Canada, V2M 3Z1 e-mail: bob . nelson @ shaw . ca

Observatory and telescope: Sylvester Robotic Observatory (SyRO): 33 cm f/4.5 Newtonian on Paramount ME mount

Detector:	SyRO: SBIG ST-7XME, 1.25" pixels, 15.8' x 10.5' FOV,
	cooled $-10 > T > -30 \deg C$

Method of data reduction:

Aperture photometry using MIRA, by Mirametrics, Inc.

Method of minimum determination:

Digital tracing paper method, bisection of chords, curve fitting, and (occasionally) Kwee and van Woerden (1956)

Times of minima:								
Star name	Time of min.	Error	Type	Filter	Rem.			
	$\rm HJD~2400000+$							
CN And	54802.7371	0.0002	II	R				
EP And	54723.8280	0.0001	Ι	\mathbf{R}				
V0441 And	54722.6977	0.0005	II	с				
V0444 And	54739.7129	0.0003	Ι	\mathbf{R}				
RX Ari	54803.6572	0.0001	Ι	\mathbf{R}				
AH Aur	54789.8208	0.0004	II	\mathbf{R}				
AP Aur	54739.9813	0.0002	Ι	\mathbf{R}				
BC Aur	54803.7684	0.0005	Ι	\mathbf{R}				
EP Aur	54725.9431	0.0005	II	\mathbf{R}				
GX Aur	54522.7930	0.0003	II	с				
HL Aur	54515.6406	0.0001	Ι	\mathbf{R}				
HL Aur	54803.8545	0.0002	Ι	с				
V0410 Aur	54726.9173	0.0003	II	\mathbf{R}				
GSC 2915-0212	54820.898	0.001	Ι	\mathbf{R}				
GSC 3751-0178	54823.7385	0.0002	II	R				

Times of minima:								
Star name	Time of min.	Error	Type	Filter	Rem.			
	HJD 2400000+							
XY Boo	54544.932	0.001	Ι	R				
AR Boo	54540.8442	0.0002	II	с				
GN Boo	54532.8879	0.0002	Ι	\mathbf{R}				
GR Boo	54541.9320	0.0001	Ι	\mathbf{R}				
GS Boo	54590.7593	0.0003	II	\mathbf{R}				
GT Boo	54515.9263	0.0003	II	\mathbf{R}				
$GSC \ 2013-0288$	54619.8025	0.0002	II	\mathbf{R}				
GQ Boo	54520.9612	0.0003	II	с				
DN Cam	54729.8559	0.0001	Ι	V				
GSC 3715-1039	54737.8706	0.0005	Ι	с				
GSC 4369-1506	54820.7111	0.0003	II	\mathbf{R}				
AX Cas	54704.8719	0.0001	Ι	с				
BH Cas	54722.7907	0.0005	Ι	\mathbf{R}				
CW Cas	54725.8155	0.0001	II	\mathbf{R}				
DZ Cas	54726.6808	0.0005	Ι	с				
EG Cas	54725.7052	0.0005	II	с				
KL Cas	54685.8913	0.0002	Ι	с				
V0366 Cas	54684.8838	0.0002	II	с				
V0375 Cas	54726.8282	0.0003	II	\mathbf{R}				
V0396 Cas	54729.7403	0.0003	Ι	\mathbf{R}				
V0541 Cas	54820.5954	0.0001	Ι	\mathbf{R}				
V0776 Cas	54819.6290	0.0002		R				
GSC 4030-2020	54704.8561	0.0002	II	с				
BB CMi	54517.8698	0.0005	Ι	\mathbf{R}				
TX Cnc	54516.6823	0.0002	Ι	\mathbf{R}				
TX Cnc	54802.8896	0.0003	II	R				
WW Cnc	54823.8582	0.0001	Ι	R				
YY Cnc	54811.876	0.001	Ι	\mathbf{R}				
HN Cnc	54821.8240	0.0003	Ι	\mathbf{R}				
RW Com	54556.7480	0.0001	Ι	с				
RW Com	54802.9951	0.0002	II	\mathbf{R}				
RW Com	54803.1139	0.0002	Ι	\mathbf{R}				
SS Com	54550.8092	0.0002	II	\mathbf{R}				
CC Com	54535.8200	0.0001	Ι	\mathbf{R}				
CC Com	54818.9608	0.0001	Ι	с				
CC Com	54819.0707	0.0001	II	с				
LP Com	54512.8055	0.0002	Ι	с				
MM Com	54804.023	0.001	II	с				
AM CrB	54547.8649	0.0002	Ι	с				
BO CVn	54557.7673	0.0001	II	\mathbf{R}				
DH CVn	54555.7694	0.0001	II	с				
DI CVn	54539.7536	0.0003	Ι	с				
DQ CVn	54516.7940	0.0003	Ι	\mathbf{R}				
DR CVn	54516.8980	0.0002	II	\mathbf{R}				
DR CVn	54551.7773	0.0005	II	с				
DR CVn	54821.1112	0.0002		\mathbf{R}				
DX CVn	54558.9649	0.0002	Ι	с				
EE CVn	54549.7320	0.0004	II	с				
EF CVn	54553.8428	0.0002	II	с				
EG CVn	54538.8661	0.0002	II	с				
EI CVn	54554.8178	0.0001	II	с				
EI CVn	54817.0176	0.0002	Ι	\mathbf{R}				

Times of minima:					
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
GSC 2537-0520	54520.8277	0.0002	II	с	
GSC 2534-1121	54541.8388	0.0002	II	с	
GSC 2544-1007	54544.7391	0.0002	Ι	\mathbf{R}	
GSC 3034-0299	54547.7692	0.0001	II	\mathbf{R}	
V0456 Cyg	54588.8528	0.0001	Ι	BVR	
V0628 Cyg	54814.6202	0.0003	Ι	с	
V0726 Cyg	54590.9341	0.0001	Ι	\mathbf{R}	
V0885 Cyg	54557.0042	0.0007	Ι	\mathbf{R}	
V1036 Cyg	54802.5994	0.0002	II	\mathbf{R}	
V1901 Cyg	54728.8039	0.0002	Ι	с	
V2364 Cyg	54551.0034	0.0003	II	\mathbf{R}	
V2364 Cyg	54617.9145	0.0003	II	\mathbf{R}	
BV Dra	54545.9288	0.0001	II	V	
BW Dra	54545.9127	0.0001	Ι	V	
BX Dra	54527.9296	0.0001	Ι	\mathbf{R}	
FU Dra	54588.7561	0.0002	II	\mathbf{R}	
GSC2.2 N311122119912	54683.9331	0.0003	II?	с	RHN-12
WW Gem	54796.8135	0.0003	Ι	\mathbf{R}	
AC Gem	54814.8452	0.001	II	с	
AL Gem	54515.8113	0.0002	Ι	\mathbf{R}	
AY Gem	54818.8104	0.0001	Ι	с	
GSC 1331-0726	54819.9195	0.0003	II	\mathbf{R}	
GW Gem	54824.0252	0.0001	Ι	\mathbf{R}	
QW Gem	54821.7408	0.0002	II	R	
TT Her	54602.8324	0.0002	Ι	VRI	
TT Her	54603.7442	0.0005	Ι	VRI	
TT Her	54618.7928	0.0002	II	VRI	
V0719 Her	54516.9943	0.0004	Ι	с	
V0728 Her	54539.026	0.001	Ι	\mathbf{R}	
V0742 Her	54517.9826	0.0002	Ι	с	
V1003 Her	54555.945	0.004	II	BVR	
V1024 Her	54555.8497	0.0001	II	с	
V1036 Her	54547.9875	0.0002	Ι	\mathbf{R}	
V1038 Her	54521.9409	0.0002	II	с	
V1042 Her	54550.9219	0.0001	II	с	
V1043 Her	54546.0269	0.0002	II	с	
V1047 Her	54540.9468	0.0002	Ι	с	
V1047 Her	54582.8019	0.0002	Ι	с	
V1055 Her	54553.9412	0.0002	II	\mathbf{R}	
V1065 Her	54565.8912	0.0001	II	с	
V1073 Her	54551.898	0.001	Ι	с	
V1097 Her	54591.8665	0.0001	II	с	
GSC 2056-0117	54556.9209	0.0001	Ι	с	
GSC 3510-1283	54557.8942	0.0001	Ι	с	
GSC 3097-1297	54595.7930	0.0001	II	с	
GSC 2615-1821	54613.8121	0.0001	II	\mathbf{R}	

Times of minima:							
Star name	Time of min.	Error	Type	Filter	Rem.		
	${ m HJD}~2400000+$						
FG Hya	54499.7477	0.0002	Ι	R			
XZ Leo	54527.7025	0.0003	II	с			
AM Leo	54816.0161	0.0001	Ι	R			
GV Leo	54814.9668	0.0002	Ι	с			
RT LMi	54556.8184	0.0001	Ι	с			
RZ Lyn	54538.657	0.001	Ι	R			
BG Lyn	54543.7764	0.0002	Ι	R			
BG Lyn	54796.9430	0.0001	Ι	R			
DZ Lyn	54811.7608	0.0005	Ι	с			
GSC 2495-1146	54559.7242	0.0005	Ι	с			
TZ Lyr	54519.0594	0.0001	Ι	R			
AH Lyr	54614.8980	0.0003	Ι	с			
DF Lyr	54533.0031	0.0004	II	с			
QU Lyr	54609.9126	0.0003	Ι	с			
V0400 Lyr	54522.0273	0.0001	II	с			
V0396 Mon	54512.6751	0.0002	II	с			
GSC 0143-1718	54797.8283	0.0005	Ι	R			
GSC 2751-1007	54723.7050	0.0002	Ι	с			
KW Per	54823.6113	0.0001	Ι	\mathbf{R}			
V0432 Per	54819.8346	0.0001		\mathbf{R}			
V0462 Per	54724.8549	0.0002	II	с			
V0579 Per	54816.644	0.001	Ι	\mathbf{R}			
V0680 Per	54793.8643	0.0002	II	с			
GSC 2366-3002	54821.5909	0.0002	II	R			
WY Tau	54530.7646	0.0002	Ι	R			
CT Tau	54723.9291	0.0001	Ι	\mathbf{R}			
GQ Tau	54793.7349	0.0003	Ι	с			
V0471 Tau	54797.7205	0.001	Ι	V			
GSC 1830-1432	54739.8574	0.0005	II	с			
XZ UMa	54521.6668	0.0001	Ι	R			
AA UMa	54498.7387	0.0002	II	\mathbf{R}			
AA UMa	54816.8320	0.0003	Ι	\mathbf{R}			
BM UMa	54527.8214	0.0001	II	с			
HN UMa	54521.8065	0.0004	II	R			
MQ UMa	54518.9277	0.0005	Ι	с			
GSC 3449-0688	54499.8744	0.0002	II	с			
GSC 3449-0688	54815.8735	0.0002	Ι	с			
RU UMi	54512.9199	0.0003	II	\mathbf{R}			
HW Vir	54554.9022	0.0005	Ι	BVR			
GSC 2140-1485	54619.9165	0.0004	II	\mathbf{R}			

Acknowledgements:

Acknowledgements: Thanks are due to Environment Canada for the website satellite views (see reference below) that were essential in predicting clear times for observing runs in this cloudy locale. Thanks are also due to Attilla Danko for his 'Clear Sky Clocks', (see below). This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France.

References:

Danko, A., Clear Sky Clocks, http://cleardarksky.com/ Kwee, K. K., & van Woerden, H., 1956, B.A.N. 12, (464), 327-330 Nelson, R. H., Bob Nelson's O-C Files, http://binaries.boulder.swri.edu/binaries/omc/ Satellite Images for North America, http://gfx.weatheroffice.ec.gc.ca/

Number 5876

Konkoly Observatory Budapest 10 February 2009 *HU ISSN 0374 - 0676*

UPDATED SPIN EPHEMERIS FOR THE CATACLYSMIC VARIABLE EX HYDRAE

MAUCHE, C.W.¹; BRICKHOUSE, N.S.²; HOOGERWERF, R.³; LUNA, G.J.M.²; MUKAI, K.⁴; STERKEN, C.⁵

¹ Lawrence Livermore National Laboratory, L-473, 7000 East Avenue, Livermore, CA 94550, USA, e-mail: mauche@cygnus.llnl.gov

 2 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-15, Cambridge, MA 02138, USA, e-mail: nbrickhouse@cfa.harvard.edu, gluna@cfa.harvard.edu

³ Interactive Supercomputing, Inc., 135 Beaver Street, Waltam, MA 02452, USA, e-mail: hoogerw@pobox.com

⁴ NASA GSFC, Code 662, Greenbelt, MD 20771, USA, e-mail: mukai@milkyway.gsfc.nasa.gov

⁵ Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, e-mail: csterken@vub.ac.be

Recent satellite observations demonstrate that the phase of maximum flux of the 67 min spin modulation of the white dwarf in the cataclysmic variable EX Hya is drifting away from the optical quadratic ephemeris of Hellier & Sproats (1992, hereafter HS92). Relative to that ephemeris, the peak of the spin-phase extreme ultraviolet (EUV) flux modulation measured with the *Extreme Ultraviolet Explorer* (*EUVE*) was $\phi_{67} = 0.040 \pm 0.002$ in 1994 May (Mauche 1999) and $\phi_{67} = 0.115 \pm 0.001$ in 2000 May (Belle et al. 2002). Similarly, the peak of the spin-phase X-ray flux modulation measured with the *Chandra X-ray Observatory* was $\phi_{67} \approx 0.1$ in 2000 May (Hoogerwerf, Brickhouse, & Mauche 2004) and $\phi_{67} \approx 0.2$ in 2007 May (Luna, Brickhouse, & Mauche 2008). Because the discrepancy between the observed *O* and calculated *C* phases of the spin-phase flux modulation of EX Hya is now approaching a significant fraction of a spin cycle, we have undertaken the task of updating the ephemeris.

Toward that end, we have have combined the optical data of Vogt, Krzeminski, & Sterken (1980, hereafter VKS80), Gilliland (1982), Sterken et al. (1983), Hill & Watson (1984), Jablonski & Busko (1985), Bond & Freeth (1988), HS92, Walker & Allen (2000), and Belle et al. (2005) with the optical, EUV, and X-ray data listed in Table 1. The first set of optical data in Table 1 was obtained by CS at the European Southern Observatory, La Silla, Chile using the Danish 1.5-m telescope and the DFOSC CCD camera. Differential V-band magnitudes were obtained by aperture photometry extracted from flat-fielded and bias-corrected CCD frames. The second set of optical data in Table 1 was obtained by Beuermann & Reinsch (2008, hereafter BR08) and is included here to clear up an ambiguity in the units of the timings in their Table 3, which are labeled as HJD, described as BJD, and treated as BJD(TT), whereas they are in fact BJD(UT); this change affects all the O - C values in their table. Other than the *EXOSAT*, *Ginga*, and BR08 data, which have been taken from the given references, all other times of spin maximum in the table have been derived by us from the various datasets. In the processes, we have corrected an error in the (spin and orbit) phases of the *ASCA* data published by Ishida,

Mukai, & Osborne (1994) and the RXTE data published by Mukai et al. (1998). We note that our result for the second EUVE observation agrees within the errors with the result derived independently by Belle et al. (2002). Table 1 lists the observed times of spin maximum in Barycentric Julian Date, the corresponding cycle number E derived from the HS92 quadratic ephemeris, and the O - C residuals in days relative to the VKS80 linear ephemeris, the HS92 quadratic ephemeris, and our cubic ephemeris (eqn. 1). Table 1. is available electronically at the IBVS website as 5876-t1.txt.

The task of combining optical, EUV, and X-ray data into a single ephemeris presents a number of challenges. First, the published times of optical flux maximum typically do not include error estimates. Second, the times of flux maximum are typically determined in different manners in the optical and higher-energy wavebands. In the optical, the *times* of the flux maxima are typically estimated directly from the light curves, whereas in the EUV and X-ray wavebands, where the event rates are often fairly low, the events are typically phase-folded to produce a mean light curve, from which the *phase offset* relative to the assumed ephemeris is calculated from an analytic (typically, sine) fit to the mean light curve. From this, the effective time of flux maximum is derived, typically referenced to the start or mid-point of the observation. This approach is capable of producing very high signal-to-noise ratio light curves and hence error values on the fit parameters, particularly the times of flux maxima, that are formally very small.

Table 2. Spin ephemeris constants: $T_{\text{max}} = \sum C_n E^n$.

Data Included	$C_0 - 2400000$	C_1	C_2	C_3
Optical	37699.89157	+0.046546478	-6.25×10^{-13}	
	± 0.00054	± 0.00000007	$\pm 0.22 \times 10^{-13}$	
EUV & X-ray	37699.88930	+0.046546477	-6.19×10^{-13}	• • •
	± 0.00165	± 0.00000011	$\pm 0.17 imes 10^{-13}$	
All	37699.89300	+0.046546454	$-5.85 imes 10^{-13}$	• • •
	± 0.00041	± 0.00000003	$\pm 0.05 \times 10^{-13}$	
All	37699.89165	+0.046546484	-7.34×10^{-13}	$+2.16 \times 10^{-19}$
	± 0.00056	± 0.00000009	$\pm 0.42 \times 10^{-13}$	$\pm 0.61 \times 10^{-19}$

Given these complications, we have taken a multi-step approach to calculate a revised spin ephemeris for EX Hya. First, we fit the optical data to a quadratic ephemeris without weights, producing the ephemeris constants listed in the first entry of Table 2. The standard deviation of this fit is 0.00360 days or 0.077 cycles (which, if used as a uniform error on the data, produces the same fit with a reduced $\chi^2 = 1$). Second, we fit the EUV and X-ray data to a quadratic ephemeris accounting for the errors listed in Table 1, producing the ephemeris constants listed in the second entry of Table 2. The two results, optical on one hand and EUV and X-ray on the other, are consistent within the errors and are as well close to (but different from) the optical quadratic ephemeris constants of HS92. Next, we fit the combined data sets, using 0.00360 days for the error on the optical data and the errors listed in Table 1 for the errors on the EUV and X-ray data, producing the ephemeris constants listed in the third entry of Table 2. The ephemeris constants are now significantly different from those of the previous fits, although it is apparent that the fit is not ideal (χ^2 per degree of freedom (dof) = 651.2/431 = 1.51), in part because the ephemeris rolls over too rapidly at early times. To remedy this deficiency, we fit the combined data sets to a cubic ephemeris, producing the ephemeris constants listed in the fourth entry of Table 2. The fit is now somewhat improved $(\chi^2/dof = 638.5/430 = 1.48)$, the fit parameters are closer to those of the earlier quadratic fits, the ephemeris is close to

that of HS92 through 1991 January (230,000 cycles; Fig. 1*a*), and it reproduces well all of the available EUV and X-ray data (Fig. 1*c*). Finally, by setting a lower limit of 0.02 cycles or 0.00093 days on the size of the timing errors on the EUV and X-ray data, the reduced χ^2 of the fit is reduced to a very reasonable $\chi^2/\text{dof} = 471.0/430 = 1.10$. Based on these results, we recommend that the following cubic ephemeris be used for recent past and future timings of the flux maxima of the spin modulation of the white dwarf in EX Hya:

$$T_{\rm max} = 2437699.8917(6) + 0.046546484(9) E - 7.3(4) \times 10^{-13} E^2 + 2.2(6) \times 10^{-19} E^3.$$
(1)

Figure 1. O - C residuals for the optical (filled circles) and EUV and X-ray (Xs) spin maxima of EX Hya relative to (a) the VKS80 linear spin ephemeris, (b) the HS92 quadratic spin ephemeris, and (c) the cubic spin ephemeris of equation 1. In the top panel, the HS92 quadratic and equation 1 cubic spin ephemerides are shown relative to the VKS80 linear spin ephemeris by the dashed and solid curves, respectively.

Acknowledgements: The ESO La Silla optical data used in the work were obtained with the Danish 1.5-m telescope, which is operated by the Astronomical Observatory, Niels Bohr Institute, Copenhagen University, Denmark. We thank K. Beuermann for clearing up the ambiguity in the optical timings of BR08 and for his rapid, positive, and helpful referee's report. This research has made use of data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA's Goddard Space Flight Center. Support for this work was provided in part by NASA through *Chandra* Award Number GO7-8026X issued by the *Chandra* X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060. NB acknowledges support from NASA contract NAS8-03060 to the *Chandra* X-ray Observatory Center. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

References:

- Belle, K.E., et al., 2005, AJ, 129, 1985
- Belle, K.E., Howell, S.B., Sirk, M.M., & Huber, M.E., 2002, ApJ, 577, 359
- Beuermann, K., & Reinsch, K., 2008, A&A, 480, 199 (BR08)
- Bond, I.A., & Freeth, R.V., 1988, MNRAS, 232, 753
- Córdova, F.A., Mason, K.O., & Kahn, S.M., 1985, MNRAS, 212, 447
- Gilliland, R.L., 1982, ApJ, 258, 576
- Hellier, C., & Sproats, L.N., 1992, *IBVS*, No. 3724 (HS92)
- Hill, K.M., & Watson, R.D., 1984, Proc. ASA, 5, 532
- Hoogerwerf, R., Brickhouse, N.S., & Mauche, C.W., 2004, ApJ, 610, 411
- Ishida, M., Mukai, K., & Osborne, J.P., 1994, PASJ, 46, L81
- Jablonski, F., & Busko, I.C., 1985, MNRAS, 214, 219
- Luna, G., Brickhouse, N., & Mauche, C., 2008, *HEAD*, **10**, #13.09
- Mauche, C.W., 1999, ApJ, **520**, 822
- Mukai, K., Ishida, M., Osborne, J., Rosen, S., & Stavroyiannopoulos, D., 1998, ASP Conf. Ser., 137, 554, in Wild Stars in the Old West, ed. S. Howell, E. Kuulkers, and C. Woodward (San Francisco: ASP)
- Rosen, S.R., Mason, K.O., & Córdova, F.A., 1988, MNRAS, 231, 549
- Rosen, S.R., Mason, K.O., Mukai, K., & Williams, O.R., 1991, MNRAS, 249, 417
- Sterken, C., et al., 1983, A&A, 118, 325
- Vogt, N., Krzeminski, W., & Sterken, C., 1980, A&A, 85, 106 (VKS80)
- Walker, W.S.G., & Allen, W.H., 2000, Southern Stars, 39, 29

Number 5877

Konkoly Observatory Budapest 20 February 2009 *HU ISSN 0374 - 0676*

THE GEOS RR Lyr SURVEY

Tenth list of maxima of RR Lyr stars observed by the automated telescopes TAROT

(GEOS Circular RR 37)

LE BORGNE, J. F.^{1,2}; KLOTZ, A.^{3,4}; BOËR, M.³

¹ GEOS (Groupe Européen d'Observations Stellaires), 23 Parc de Levesville, 28300 Bailleau l'Evêque, France

 2 LATT, Université de Toulouse, CNRS, Toulouse, France

³ Observatoire de Haute-Provence, Saint Michel l'Observatoire, France

 4 CESR, Université de Toulouse, CNRS, Toulouse, France

We present here the tenth list of light maxima of RR Lyrae stars from the GEOS RR Lyr Survey (Le Borgne et al. 2007), a GEOS program (http://www.upv.es/geos/, Boninsegna et al., 2002) of observations of RR Lyr stars using the automatic telescopes TAROT (http://tarot.obs-hp.fr, Boër et al., 2001, Bringer et al., 1999). The present list contains 453 maxima observed mainly between July and December 2008 (Table 1). A description of the present list may be found in the former lists (for example Le Borgne et al. 2008). The data are also available in the GEOS RR Lyr web database (http://dbRR.ast.obs-mip.fr). The O - C's are computed with the GCVS elements (Kholopov et al., 1985) when available. Otherwise, the reference of the elements, if exists, is given as a footnote of Table 1.

References:

Agerer, F., Moschner, W., 1996, *IBVS*, **4391**

Baldwin, M.E., Samolyk, G., 2003, AAVSO RR Lyrae Monographs, 1

Boër, M., Atteia, J. L., Bringer, M., Gendre, B., Klotz, A., Malina, R., de Freitas Pacheco, J. A., Pedersen, H., 2001, A&A, 378, 76

Boninsegna, R., 1990, JAAVSO, 19, 126

Boninsegna, R., Vandenbroere, J., Le Borgne, J. F., The Geos Team, 2002, ASP Conf. Ser., 259, 166, IAU Colloq. 185

Bringer, M., Boër, M., Peignot, C., Fontan, G., Merce, C., 1999, A&AS, 138, 581

Kholopov, P. N., et al., 1985, General Catalogue of Variable Stars, Moscow: Nauka Publishing House, 1988, 4th ed., edited by Kholopov, P. N.; and 2006 web edition (http://www.sai.msu.su/groups/cluster/gcvs/).

Le Borgne, J. F., Klotz, A., Boër, 2008, *IBVS*, 5823

Le Borgne, J. F., Paschke, A., Vandenbroere, J., Poretti, E., Klotz, A., Boër, M., Damerdji, Y., Martignoni, M., Acerbi, F., 2007, A&A, 476, 307

Meinunger L., 1984, MVS, 10, 56

Variable	Maximum	0 – C	Е	Obs.	Variable	Maximum	0 – C	Е	Obs.
star	HJD 24	(days)			star	HJD 24	(days)		
SW And	$54708.518{\pm}0.002$	-0.784	82700.	С	TZ Aqr	$54702.446 {\pm} 0.003$	0.010	30031.	С
SW And	$54712.499{\pm}0.003$	-0.784	82709.	\mathbf{C}	TZ Aqr	$54706.446 {\pm} 0.003$	0.012	30038.	С
SW And	$54736.380{\pm}0.001$	-0.786	82763.	\mathbf{C}	TZ Aqr	$54718.444 {\pm} 0.004$	0.015	30059.	\mathbf{C}
SW And	$54750.534{\pm}0.002$	-0.785	82795.	С	TZ Aqr	$54734.435 \!\pm\! 0.003$	0.012	30087.	\mathbf{C}
SW And	$54766.457{\pm}0.002$	-0.784	82831.	С	BN Aqr	$54708.421 {\pm} 0.004$	0.581	35847.	\mathbf{C}
SW And	$54802.279{\pm}0.004$	-0.787	82912.	\mathbf{C}	BR Aqr	$54708.532 {\pm} 0.002$	-0.160	35429.	\mathbf{C}
XX And	$54679.495{\pm}0.003$	0.234	21573.	С	BR Aqr	$54709.497 {\pm} 0.003$	-0.159	35431.	\mathbf{C}
XX And	$54692.504{\pm}0.002$	0.233	21591.	\mathbf{C}	BR Aqr	$54710.460{\pm}0.002$	-0.160	35433.	\mathbf{C}
XX And	$54705.513{\pm}0.003$	0.233	21609.	С	BR Aqr	$54736.483{\pm}0.002$	-0.158	35487.	\mathbf{C}
XX And	$54739.479{\pm}0.002$	0.230	21656.	С	BR Aqr	$54739.372 {\pm} 0.003$	-0.161	35493.	\mathbf{C}
XX And	$54744.544{\pm}0.004$	0.236	21663.	\mathbf{C}	BR Aqr	$54765.389{\pm}0.002$	-0.165	35547.	\mathbf{C}
XX And	$54750.329{\pm}0.003$	0.239	21671.	\mathbf{C}	BR Aqr	$54767.320{\pm}0.004$	-0.162	35551.	\mathbf{C}
XX And	$54786.465{\pm}0.004$	0.237	21721.	С	CP Aqr	$54674.479 {\pm} 0.002$	-0.112	36232.	\mathbf{C}
XX And	$54791.520{\pm}0.002$	0.233	21728.	\mathbf{C}	CP Aqr	$54681.429 {\pm} 0.002$	-0.114	36247.	\mathbf{C}
XX And	$54797.306{\pm}0.003$	0.237	21736.	\mathbf{C}	CP Aqr	$54688.381 {\pm} 0.003$	-0.113	36262.	\mathbf{C}
XX And	$54802.363{\pm}0.002$	0.235	21743.	\mathbf{C}	CP Aqr	$54699.502 {\pm} 0.003$	-0.113	36286.	\mathbf{C}
XX And	$54823.324{\pm}0.002$	0.236	21772.	С	CP Aqr	$54712.480 {\pm} 0.004$	-0.111	36314.	\mathbf{C}
XX And	$54828.381{\pm}0.003$	0.234	21779.	\mathbf{C}	AA Aql	$54672.407 {\pm} 0.002$	0.034	83820.	\mathbf{C}
ZZ And	$54750.428{\pm}0.002$	0.024	53959.	\mathbf{C}	AA Aql	$54677.472 {\pm} 0.004$	0.034	83834.	\mathbf{C}
AT And	$54677.396{\pm}0.005$	-0.001	19993.	С	AA Aql	$54681.453 {\pm} 0.002$	0.035	83845.	\mathbf{C}
AT And	$54709.470{\pm}0.003$	-0.007	20045.	\mathbf{C}	AA Aql	$54702.436{\pm}0.001$	0.035	83903.	\mathbf{C}
AT And	$54722.426{\pm}0.007$	-0.006	20066.	\mathbf{C}	V341 Aql	$54681.501 {\pm} 0.002$	0.031	23330.	\mathbf{C}
AT And	$54767.464{\pm}0.008$	-0.003	20139.	С	V341 Aql	$54688.438{\pm}0.003$	0.032	23342.	\mathbf{C}
AT And	$54790.286{\pm}0.004$	-0.006	20176.	С	V341 Aql	$54699.422 {\pm} 0.002$	0.033	23361.	\mathbf{C}
AT And	$54793.373{\pm}0.005$	-0.004	20181.	\mathbf{C}	V341 Aql	$54703.467 {\pm} 0.003$	0.032	23368.	\mathbf{C}
AT And	$54796.458{\pm}0.003$	-0.004	20186.	\mathbf{C}	V341 Aql	$54736.412 {\pm} 0.002$	0.030	23425.	\mathbf{C}
CI And	$54704.499{\pm}0.002$	0.112	39169.	\mathbf{C}	X Ari	$54752.598{\pm}0.005$	0.351	26367.	\mathbf{C}
CI And	$54705.469{\pm}0.003$	0.113	39171.	\mathbf{C}	X Ari	$54765.621 {\pm} 0.002$	0.351	26387.	\mathbf{C}
CI And	$54706.437{\pm}0.003$	0.111	39173.	С	X Ari	$54788.410{\pm}0.002$	0.350	26422.	\mathbf{C}
CI And	$54722.431{\pm}0.003$	0.109	39206.	\mathbf{C}	X Ari	$54807.294{\pm}0.004$	0.351	26451.	\mathbf{C}
CI And	$54751.513 {\pm} 0.002$	0.108	39266.	\mathbf{C}	SY Ari	$54751.377 {\pm} 0.003$	-0.057	32904.	\mathbf{C}
CI And	$54786.406{\pm}0.002$	0.102	39338.	С	TZ Aur	$54755.611 {\pm} 0.002$	0.013	88985.	\mathbf{C}
CI And	$54787.376 {\pm} 0.002$	0.102	39340.	\mathbf{C}	TZ Aur	$54818.670 {\pm} 0.003$	0.012	89146.	\mathbf{C}
CI And	$54806.279 {\pm} 0.002$	0.101	39379.	\mathbf{C}	TZ Aur	$54819.453 {\pm} 0.002$	0.012	89148.	\mathbf{C}
DM And	$54744.469{\pm}0.005$	0.007	30183.	\mathbf{C}	TZ Aur	$54825.328 {\pm} 0.002$	0.012	89163.	\mathbf{C}
DM And	$54749.506 {\pm} 0.004$	0.001	30191.	\mathbf{C}	BH Aur	$54743.613 {\pm} 0.002$	0.002	26293.	С
DR And	$54787.336 {\pm} 0.002$	-0.012	31196.	С	BH Aur	$54749.541 {\pm} 0.003$	0.001	26306.	\mathbf{C}
DR And	$54828.412{\pm}0.004$	-0.044	31269.	С	BH Aur	$54754.558 {\pm} 0.003$	0.001	26317.	\mathbf{C}
NX And ¹	$54791.516 {\pm} 0.004$	0.007	24921.	\mathbf{C}	BH Aur	$54766.418 {\pm} 0.002$	0.002	26343.	С
NX And ¹	$54797.350 {\pm} 0.005$	0.008	24930.	С	BH Aur	$54802.448 {\pm} 0.002$	0.001	26422.	С
NX And ¹	$54828.463 {\pm} 0.005$	0.015	24978.	С	BH Aur	$54808.376 {\pm} 0.003$	0.000	26435.	С
EX Aps	54650.608 ± 0.002	0.015	56628.	LS	U Cae	54804.622 ± 0.002	-0.113	48810.	LS
SW Aqr	54677.421 ± 0.002	0.001	64402.	С	U Cae	54809.652 ± 0.002	-0.121	48822.	LS
SW Aqr	54682.471 ± 0.003	-0.002	64413.	C	AH Cam	54752.389 ± 0.005	-0.431	43455.	C
SW Aqr	54699.468 ± 0.002	0.001	64450.	С	AH Cam	54788.514 ± 0.005	-0.442	43553.	С
SW Aqr	54700.385 ± 0.002	-0.001	64452.	С	AH Cam	54807.319 ± 0.005	-0.442	43604.	C
SW Aqr	$54705.437 {\pm} 0.001$	-0.001	64463.	С	AH Cam	54822.463 ± 0.003	-0.417	43645.	C
SW Aqr	54727.484 ± 0.003	-0.001	64511.	C	RW Cnc	54785.623 ± 0.003	0.214	27831.	C
SX Aqr	54672.457 ± 0.002	-0.117	27769.	C	RW Cnc	54796.568 ± 0.003	0.215	27851.	C
SX Aqr	54679.423 ± 0.003	-0.115	27782.	C	RW Cnc	54807.515 ± 0.003	0.218	27871.	C
SX Aqr	54686.386 ± 0.004	-0.116	27795.	C	SS Cnc	54807.455 ± 0.003	0.053	86375.	C
SX Aqr	54708.353 ± 0.005	-0.113	27836.	C	SS Cnc	54819.575 ± 0.002	0.051	86408.	C
SX Aqr	54739.420 ± 0.002	-0.118	27894.	C	SS Cnc	54825.451 ± 0.002	0.050	86424.	C
SX Aqr	$54746.386 {\pm} 0.001$	-0.116	27907.	C	TT Cnc	54820.662 ± 0.002	0.104	26402.	C
TZ Aqr	54678.460 ± 0.005	0.014	29989.	C	TT Cnc	54828.547 ± 0.004	0.101	26416	C
TZ Aqr	54682.456 ± 0.005	0.012	29996.	C	AN Cnc	$54785.631 {\pm} 0.002$	0.148	30111.	C
					1				

Variable	Maximum	0 – C	Е	Obs.	Variable	Maximum	0 – C	Е	Obs.
star	HJD 24	(days)			star	HJD 24	(days)		
AN Cnc	$54803.556{\pm}0.005$	0.149	30144.	С	RX Col	$54801.694{\pm}0.004$	-0.254	43750.	\mathbf{LS}
AN Cnc	$54828.539 {\pm} 0.002$	0.146	30190.	\mathbf{C}	RX Col	$54804.658{\pm}0.005$	-0.260	43755.	\mathbf{LS}
AS Cnc	$54827.731 {\pm} 0.003$	0.364	25306.	\mathbf{C}	RX Col	$54810.599{\pm}0.005$	-0.260	43765.	\mathbf{LS}
$\mathrm{EZ}\ \mathrm{Cnc}^2$	$54823.575 {\pm} 0.002$	-0.036	14053.	\mathbf{C}	RY Col	$54776.731{\pm}0.005$	-0.186	42740.	\mathbf{LS}
$\mathrm{EZ}\ \mathrm{Cnc}^2$	$54824.669 {\pm} 0.002$	-0.034	14055.	\mathbf{C}	RY Col	$54777.691{\pm}0.005$	-0.184	42742.	\mathbf{LS}
$Z \ CVn$	$54832.647 {\pm} 0.005$	0.398	24320.	\mathbf{C}	RY Col	$54778.646{\pm}0.004$	-0.187	42744.	\mathbf{LS}
UZ CVn	$54824.601 {\pm} 0.002$	0.248	40696.	\mathbf{C}	RY Col	$54789.657{\pm}0.007$	-0.190	42767.	\mathbf{LS}
AA CMi	$54791.567 {\pm} 0.002$	0.060	38241.	\mathbf{C}	RY Col	$54790.616{\pm}0.003$	-0.188	42769.	\mathbf{LS}
AA CMi	$54799.668 {\pm} 0.002$	0.064	38258.	\mathbf{C}	RY Col	$54801.644{\pm}0.002$	-0.174	42792.	\mathbf{LS}
AA CMi	$54802.527 {\pm} 0.004$	0.065	38264.	\mathbf{C}	RY Col	$54802.604{\pm}0.002$	-0.172	42794.	\mathbf{LS}
AA CMi	$54803.477 {\pm} 0.002$	0.062	38266.	\mathbf{C}	AV Col	$54810.627{\pm}0.003$			$_{\rm LS}$
AA CMi	$54821.579 {\pm} 0.003$	0.064	38304.	\mathbf{C}	S Com	$54823.642{\pm}0.003$	-0.097	24155.	\mathbf{C}
AA CMi	$54827.769 {\pm} 0.002$	0.062	38317.	LS	UY Cyg	$54661.409{\pm}0.002$	0.053	57477.	\mathbf{C}
AL CMi	$54799.546{\pm}0.005$	0.458	33064.	\mathbf{C}	UY Cyg	$54684.403{\pm}0.003$	0.058	57518.	С
EE Car	$54823.818{\pm}0.005$	0.017	44600.	LS	UY Cyg	$54704.586{\pm}0.003$	0.056	57554.	\mathbf{C}
IU Car	$54777.828 {\pm} 0.005$	0.303	17747.	LS	$XZ Cyg^3$	$54655.501{\pm}0.003$	-0.001	13041.	\mathbf{C}
IU Car	$54791.837 {\pm} 0.004$	0.307	17766.	LS	$XZ Cyg^3$	$54656.434{\pm}0.002$	-0.001	13043.	\mathbf{C}
IU Car	$54808.790{\pm}0.003$	0.305	17789.	LS	$XZ Cyg^3$	$54726.433{\pm}0.003$	0.008	13193.	\mathbf{C}
IU Cas	$54745.627 {\pm} 0.003$	-0.086	40034.	\mathbf{C}	$XZ Cyg^3$	$54727.369{\pm}0.003$	0.011	13195.	С
IU Cas	$54751.474{\pm}0.003$	-0.084	40043.	\mathbf{C}	DM Cyg	$54674.435{\pm}0.004$	0.061	28800.	\mathbf{C}
IU Cas	$54803.422{\pm}0.002$	-0.086	40123.	\mathbf{C}	DM Cyg	$54700.468{\pm}0.002$	0.063	28862.	\mathbf{C}
V363 Cas	$54696.408 {\pm} 0.006$	0.582	33947.	\mathbf{C}	DM Cyg	$54703.406{\pm}0.002$	0.062	28869.	\mathbf{C}
V363 Cas	$54702.412{\pm}0.008$	0.574	33958.	\mathbf{C}	DM Cyg	$54718.522{\pm}0.003$	0.063	28905.	\mathbf{C}
V363 Cas	$54720.455 {\pm} 0.010$	0.582	33991.	\mathbf{C}	DM Cyg	$54721.464{\pm}0.003$	0.066	28912.	\mathbf{C}
V363 Cas	$54749.425 {\pm} 0.005$	0.585	34044.	\mathbf{C}	DM Cyg	$54727.337{\pm}0.002$	0.061	28926.	\mathbf{C}
V363 Cas	$54790.404 {\pm} 0.005$	0.574	34119.	\mathbf{C}	$V939 Cyg^4$	$54656.399{\pm}0.006$	0.018	12561.	\mathbf{C}
V363 Cas	$54791.512 {\pm} 0.005$	0.589	34121.	\mathbf{C}	$V939 \ Cyg^4$	$54718.409{\pm}0.003$	0.023	12721.	С
AQ Cep	$54750.480 {\pm} 0.002$	0.062	40866.	\mathbf{C}	ZZ Del	$54745.334{\pm}0.002$	0.011	32786.	С
$\operatorname{RR}\operatorname{Cet}$	$54718.538 {\pm} 0.002$	0.006	38944.	\mathbf{C}	ZZ Del	$54758.336{\pm}0.006$	0.008	32811.	\mathbf{C}
$\operatorname{RR}\operatorname{Cet}$	$54749.506{\pm}0.002$	0.005	39000.	\mathbf{C}	BV Del	$54765.322{\pm}0.002$	0.021	69047.	С
$\operatorname{RR}\operatorname{Cet}$	$54776.603 {\pm} 0.002$	0.003	39049.	LS	DX Del	$54676.399{\pm}0.003$	0.058	32392.	\mathbf{C}
$\operatorname{RR}\operatorname{Cet}$	$54785.455 {\pm} 0.002$	0.007	39065.	\mathbf{C}	DX Del	$54684.435{\pm}0.002$	0.059	32409.	\mathbf{C}
$\operatorname{RR}\operatorname{Cet}$	$54787.665 {\pm} 0.002$	0.005	39069.	LS	DX Del	$54700.504{\pm}0.004$	0.059	32443.	С
$\operatorname{RR}\operatorname{Cet}$	$54790.434 {\pm} 0.002$	0.008	39074.	\mathbf{C}	DX Del	$54717.515{\pm}0.002$	0.056	32479.	С
$\operatorname{RR}\operatorname{Cet}$	$54792.644 {\pm} 0.003$	0.006	39078.	LS	DX Del	$54726.499{\pm}0.003$	0.061	32498.	\mathbf{C}
RR Cet	$54794.305 {\pm} 0.003$	0.008	39081.	\mathbf{C}	DX Del	$54729.334{\pm}0.003$	0.060	32504.	\mathbf{C}
$\operatorname{RR}\operatorname{Cet}$	$54820.295 {\pm} 0.002$	0.006	39128.	\mathbf{C}	DX Del	$54745.402{\pm}0.002$	0.059	32538.	С
RR Cet	$54825.274{\pm}0.002$	0.008	39137.	\mathbf{C}	DX Del	$54754.382{\pm}0.002$	0.059	32557.	\mathbf{C}
RR Cet	$54826.376{\pm}0.005$	0.004	39139.	\mathbf{C}	VW Dor	$54778.670{\pm}0.003$	-0.114	28740.	\mathbf{LS}
RV Cet	$54789.649 {\pm} 0.006$	0.194	25146.	LS	VW Dor	$54782.668{\pm}0.002$	-0.111	28747.	LS
RV Cet	$54794.634{\pm}0.003$	0.192	25154.	LS	VW Dor	$54794.660{\pm}0.002$	-0.101	28768.	$_{\rm LS}$
RV Cet	$54804.625 {\pm} 0.006$	0.208	25170.	LS	VW Dor	$54802.638{\pm}0.002$	-0.112	28782.	\mathbf{LS}
RZ Cet	$54787.657 {\pm} 0.005$	-0.151	40894.	LS	XZ Dra	$54696.480{\pm}0.002$	-0.108	26796.	\mathbf{C}
RZ Cet	$54788.683 {\pm} 0.005$	-0.146	40896.	LS	BC Dra	$54703.448{\pm}0.005$	0.086	17267.	\mathbf{C}
RZ Cet	$54797.363 {\pm} 0.002$	-0.146	40913.	\mathbf{C}	BC Dra	$54705.606{\pm}0.006$	0.085	17270.	\mathbf{C}
RZ Cet	$54819.325 {\pm} 0.005$	-0.140	40956.	\mathbf{C}	BC Dra	$54752.386{\pm}0.008$	0.093	17335.	\mathbf{C}
RZ Cet	$54820.339 {\pm} 0.002$	-0.148	40958.	\mathbf{C}	BC Dra	$54788.359{\pm}0.005$	0.087	17385.	\mathbf{C}
RT Col	$54809.651 {\pm} 0.005$	-0.265	50374.	LS	BD Dra	$54672.454{\pm}0.002$	0.719	21895.	\mathbf{C}
RT Col	$54825.748 {\pm} 0.002$	-0.266	50404.	LS	BD Dra	$54692.483{\pm}0.003$	0.721	21929.	\mathbf{C}
RW Col	$54778.724{\pm}0.006$	-0.085	50961.	LS	BD Dra	$54718.399{\pm}0.003$	0.718	21973.	\mathbf{C}
RW Col	$54790.726{\pm}0.004$	-0.255	50984.	LS	BD Dra	$54722.512{\pm}0.006$	0.708	21980.	\mathbf{C}
RW Col	$54801.633 {\pm} 0.003$	0.067	51004.	LS	BD Dra	$54752.516{\pm}0.010$	0.670	22031.	\mathbf{C}
RW Col	$54807.631 {\pm} 0.002$	0.243	51015.	LS	BD Dra	$54787.305{\pm}0.002$	0.705	22090.	\mathbf{C}
RW Col	$54825.641 {\pm} 0.003$	0.260	51049.	LS	BD Dra	$54788.482{\pm}0.002$	0.704	22092.	\mathbf{C}
RX Col	$54782.707 {\pm} 0.005$	-0.232	43718.	LS	BK Dra	$54659.481{\pm}0.003$	-0.155	49210.	С
RX Col	$54788.634 {\pm} 0.004$	-0.245	43728.	LS	BK Dra	$54662.443{\pm}0.002$	-0.153	49215.	\mathbf{C}

Table 1 (cont.): maxima of RR Lyrae stars

Variable	Maximum	0 C	F	Obs	Variable	Maximum	0 C	F	Obs
vallable		(days)	Е	Obs.	variable		(dawa)	Ľ	Obs.
DV Dro	F 4604 419 L 0 009	(uays)	40260	C			(uays)	46402	0
BK Dra	54094.412 ± 0.002	-0.150	49209.	d	BD Her	54001.409 ± 0.003	0.004	40493.	C
BK Dra	54704.477 ± 0.002	-0.157	49280. 50000		BD Her	54079.405 ± 0.000	0.051	40531.	
RX Eri	54776.743 ± 0.004	-0.014	56338.		UU Hor	54778.778 ± 0.004	0.157	46694.	
RX Eri	54779.683 ± 0.004	-0.010	56343.		UU Hor	54780.706 ± 0.004	0.154	46697.	
RX Eri	54793.780 ± 0.003	-0.007	56367.		UU Hor	54787.790 ± 0.004	0.158	46708.	
SV Eri	54779.705 ± 0.010	0.776	26936.		UU Hor	54791.652 ± 0.002	0.157	46714.	
SV Eri	54794.689 ± 0.008	0.770	26957.	\mathbf{LS}	UU Hor	54809.677 ± 0.005	0.159	46742.	
SV Eri	54804.686 ± 0.010	0.774	26971.	\mathbf{LS}	SZ Hya	54822.559 ± 0.003	-0.239	26326.	C
BB Eri	54778.652 ± 0.002	0.235	26705.	\mathbf{LS}	SZ Hya	54829.588 ± 0.002	-0.194	26339.	C
BB Eri	54779.794 ± 0.004	0.237	26707.	\mathbf{LS}	UU Hya	54802.643 ± 0.005	0.034	29251.	C
BB Eri	54787.768 ± 0.003	0.233	26721.	\mathbf{LS}	UU Hya	54813.630 ± 0.005	0.020	29272.	С
BB Eri	$54791.759 {\pm} 0.002$	0.234	26728.	LS	UU Hya	$54824.618 {\pm} 0.003$	0.007	29293.	С
BB Eri	$54794.605 {\pm} 0.003$	0.231	26733.	LS	FY Hya	$54650.617 {\pm} 0.003$	0.003	21301.	LS
BB Eri	$54803.730 {\pm} 0.004$	0.237	26749.	LS	TW Hyi	$54802.718 {\pm} 0.002$	0.008	22709.	LS
BB Eri	$54827.663 {\pm} 0.002$	0.235	26791.	LS	TW Hyi	$54806.774 {\pm} 0.004$	0.011	22715.	LS
RX For	$54776.768 {\pm} 0.004$	-0.013	25021.	\mathbf{LS}	TW Hyi	$54823.657 {\pm} 0.003$	0.010	22740.	LS
RX For	$54779.755 {\pm} 0.003$	-0.012	25026.	$_{\rm LS}$	CQ Lac	$54656.450 {\pm} 0.003$	0.138	31643.	\mathbf{C}
RX For	$54803.620{\pm}0.002$	-0.040	25066.	$_{\rm LS}$	CQ Lac	$54674.429 {\pm} 0.003$	0.136	31672.	\mathbf{C}
RX For	$54806.623 {\pm} 0.003$	-0.023	25071.	$_{\rm LS}$	CQ Lac	$54746.352{\pm}0.001$	0.135	31788.	\mathbf{C}
SS For	$54775.808 {\pm} 0.006$	-0.133	32511.	$_{\rm LS}$	CQ Lac	$54790.377 {\pm} 0.002$	0.137	31859.	\mathbf{C}
SS For	$54776.796 {\pm} 0.003$	-0.136	32513.	$_{\rm LS}$	PW Lac	$54765.419 {\pm} 0.002$	0.161	33661.	\mathbf{C}
SS For	$54787.693 {\pm} 0.003$	-0.138	32535.	\mathbf{LS}	RR Leo	$54796.690 {\pm} 0.002$	0.093	25423.	С
SS For	$54790.669 {\pm} 0.002$	-0.135	32541.	\mathbf{LS}	RR Leo	$54821.573 {\pm} 0.002$	0.094	25478.	\mathbf{C}
SS For	$54792.654{\pm}0.005$	-0.131	32545.	\mathbf{LS}	RX Leo	$54823.526 {\pm} 0.004$	0.095	28339.	С
SS For	$54793.643 {\pm} 0.004$	-0.133	32547.	$_{\rm LS}$	RX Leo	$54832.671 {\pm} 0.003$	0.092	28353.	\mathbf{C}
SS For	$54794.636 {\pm} 0.002$	-0.131	32549.	\mathbf{LS}	ST Leo	$54832.658 {\pm} 0.002$	-0.020	56298.	С
SW For	$54776.684 {\pm} 0.005$	0.416	25422.	\mathbf{LS}	WW Leo	$54824.555 {\pm} 0.003$	0.039	33080.	С
SW For	54780.704 ± 0.004	0.417	25427.	LS	AX Leo	$54823.663 {\pm} 0.005$	-0.032	40696.	С
SW For	$54792.764 {\pm} 0.006$	0.421	25442.	LS	V LMi	$54822.536 {\pm} 0.002$	0.030	64885.	С
SW For	$54805.622 {\pm} 0.006$	0.419	25458.	\mathbf{LS}	X LMi	$54796.542 {\pm} 0.003$	0.214	22791.	С
SX For	$54776.645 {\pm} 0.004$	0.044	25801.	\mathbf{LS}	X LMi	$54813.642 {\pm} 0.005$	0.206	22816.	С
SX For	$54779.673 {\pm} 0.004$	0.046	25806.	\mathbf{LS}	U Lep	$54775.768 {\pm} 0.003$	0.044	23085.	LS
SX For	$54788.750 {\pm} 0.005$	0.043	25821.	LS	U Lep	54778.673 ± 0.004	0.042	23090.	LS
SX For	$54791.780 {\pm} 0.006$	0.046	25826.	\mathbf{LS}	U Lep	$54789.727 {\pm} 0.005$	0.047	23109.	LS
SX For	$54825.678 {\pm} 0.004$	0.045	25882.	LS	U Lep	54792.629 ± 0.004	0.042	23114.	LS
RR Gem	$54808.549 {\pm} 0.002$	-0.401	33857.	С	U Lep	54803.680 ± 0.002	0.045	23133.	LS
RR Gem	$54820.470 {\pm} 0.002$	-0.399	33887.	С	U Lep	54824.612 ± 0.003	0.044	23169.	LS
RR Gem	$54822.455{\pm}0.001$	-0.401	33892.	\mathbf{C}	AZ Lib	$54650.580 {\pm} 0.002$	0.177	40938.	LS
RR Gem	$54826.431 {\pm} 0.002$	-0.398	33902.	С	TT Lyn	$54820.493 {\pm} 0.003$	-0.037	30412.	С
SZ Gem	$54807.593 {\pm} 0.001$	-0.057	55102.	C	TT Lyn	54821.687 ± 0.002	-0.037	30414.	C
SZ Gem	$54819.620 {\pm} 0.002$	-0.058	55126.	С	TT Lyn	$54823.483 {\pm} 0.003$	-0.034	30417.	С
SZ Gem	54825.633 ± 0.002	-0.058	55138.	С	TW Lyn	54756.569 ± 0.002	0.057	20201.	С
SZ Gem	54829.642 ± 0.002	-0.058	55146.	С	TW Lyn	54829.327 ± 0.002	0.054	20352.	C
GI Gem	$54765.539 {\pm} 0.002$	0.069	56360.	C	RZ Lyr	$54688.384 {\pm} 0.002$	-0.019	26416.	C
GI Gem	54824.464 ± 0.002	0.069	56496.	С	RZ Lyr	54694.520 ± 0.002	-0.018	26428.	C
TW Her	54664.477 ± 0.002	-0.013	82881.	C	AW Lyr	54703.390 ± 0.005	-0.004	59045.	C
TW Her	54678.465 ± 0.005	-0.011	82916.	С	AW Lyr	54696.426 ± 0.004	-0.004	59031.	C
TW Her	54682.460 ± 0.003	-0.012	82926.	C	CN Lyr	54659.425 ± 0.003	0.018	24729.	C
TW Her	54684.457 ± 0.004	-0.013	82931.	C	CN Lyr	54682.463 ± 0.005	0.018	24785.	C
TW Her	54704.439 ± 0.003	-0.011	82981.	C	CN Lyr	54696.454 ± 0.003	0.022	24819.	C
VZ Her	54661.433 ± 0.002	0.066	40589.	C	CN Lyr	54703.448 ± 0.003	0.023	24836.	C
VZ Her	54672.442 ± 0.004	0.067	40614.	C	CN Lyr	54717.429 ± 0.003	0.017	24870.	C
VZ Her	54687.413 ± 0.002	0.067	40648.	C	CN Lyr	54722.365 ± 0.004	0.016	24882.	C
VZ Her	54694.458 ± 0.002	0.067	40664.	C	CN Lyr	54729.360 ± 0.003	0.018	24899.	C
AK Her	54683.436 ± 0.002	-1.259	28148.	U C	CN Lyr	54736.353 ± 0.003	0.017	24916.	C
AK Her	54084.375±0.002	-1.260	28150.	U	10 Lyr	54004.489 ± 0.002	-0.033	26070.	U
					1				

Variable	Maximum	O - C	Е	Obs.	Variable	Maximum	0 – C	Е	Obs.
star	HJD 24	(days)			star	HJD 24	(days)		
IO Lyr	$54686.420{\pm}0.002$	-0.033	26108.	С	ET Peg	$54744.292{\pm}0.002$	-0.047	32130.	С
IO Lyr	$54694.498{\pm}0.003$	-0.035	26122.	\mathbf{C}	ET Peg	$54758.494{\pm}0.002$	-0.051	32159.	\mathbf{C}
IO Lyr	$54697.383{\pm}0.002$	-0.035	26127.	\mathbf{C}	AR Per	$54743.604{\pm}0.002$	0.055	64638.	\mathbf{C}
IO Lyr	$54712.389{\pm}0.004$	-0.035	26153.	\mathbf{C}	AR Per	$54752.545{\pm}0.005$	0.059	64659.	\mathbf{C}
IO Lyr	$54727.391{\pm}0.002$	-0.038	26179.	\mathbf{C}	AR Per	$54788.289{\pm}0.002$	0.057	64743.	\mathbf{C}
NR Lyr	$54669.423{\pm}0.004$	-0.024	27257.	\mathbf{C}	AR Per	$54797.649{\pm}0.003$	0.055	64765.	\mathbf{C}
NR Lyr	$54742.398{\pm}0.003$	-0.026	27364.	\mathbf{C}	AR Per	$54808.288{\pm}0.003$	0.056	64790.	\mathbf{C}
V340 Lyr	$54688.388{\pm}0.004$	-0.040	42402.	\mathbf{C}	AR Per	$54828.290{\pm}0.003$	0.057	64837.	\mathbf{C}
V340 Lyr	$54709.426{\pm}0.003$	-0.043	42438.	\mathbf{C}	TZ Phe	$54775.750{\pm}0.010$			$_{\rm LS}$
AV Men	$54810.632{\pm}0.004$			LS	TZ Phe	$54780.674{\pm}0.010$			\mathbf{LS}
DV Mon	$54823.676{\pm}0.002$	0.075	71547.	LS	TZ Phe	$54788.674{\pm}0.006$			\mathbf{LS}
DY Oct	$54808.728{\pm}0.003$			LS	U Pic	$54777.677 {\pm} 0.002$	0.062	29773.	\mathbf{LS}
DY Oct	$54809.841{\pm}0.002$			LS	U Pic	$54781.640{\pm}0.001$	0.061	29782.	\mathbf{LS}
DY Oct	$54823.795{\pm}0.003$			LS	U Pic	$54788.687{\pm}0.004$	0.063	29798.	\mathbf{LS}
DZ Oct	$54810.797{\pm}0.004$			LS	U Pic	$54802.777 {\pm} 0.002$	0.061	29830.	\mathbf{LS}
DZ Oct	$54824.646{\pm}0.003$			LS	U Pic	$54803.660{\pm}0.002$	0.063	29832.	\mathbf{LS}
DZ Oct	$54825.601{\pm}0.003$			LS	XX Pup	$54823.766{\pm}0.004$	0.483	25233.	\mathbf{LS}
V455 Oph	$54657.461{\pm}0.004$	-0.264	28253.	\mathbf{C}	CR Pup	$54807.677 {\pm} 0.006$	-0.321	38222.	$_{ m LS}$
V455 Oph	$54682.424{\pm}0.003$	-0.266	28308.	\mathbf{C}	HH Pup	$54787.736{\pm}0.003$	0.010	41683.	\mathbf{LS}
CM Ori	$54807.708 {\pm} 0.006$	-0.020	44989.	LS	HH Pup	$54807.664{\pm}0.002$	0.010	41734.	\mathbf{LS}
CM Ori	$54824.764{\pm}0.002$	-0.018	45015.	LS	HH Pup	$54823.686{\pm}0.002$	0.012	41775.	$_{ m LS}$
V964 Ori	$54790.626 {\pm} 0.002$	-0.401	46152.	LS	X Ret	$54783.827{\pm}0.002$	0.206	31190.	$_{ m LS}$
V964 Ori	$54791.635 {\pm} 0.003$	-0.401	46154.	LS	X Ret	$54787.765 {\pm} 0.003$	0.208	31198.	$_{ m LS}$
V964 Ori	$54792.644{\pm}0.004$	-0.401	46156.	LS	X Ret	$54788.751{\pm}0.003$	0.210	31200.	$_{\rm LS}$
V964 Ori	$54801.728 {\pm} 0.002$	-0.401	46174.	LS	X Ret	$54790.716 {\pm} 0.003$	0.207	31204.	\mathbf{LS}
V964 Ori	$54802.739{\pm}0.003$	-0.399	46176.	LS	X Ret	$54823.672{\pm}0.002$	0.200	31271.	\mathbf{LS}
TY Pav	$54650.846{\pm}0.005$	0.257	18466.	LS	m V756~Sgr	$54650.642{\pm}0.002$	0.098	48125.	$_{\rm LS}$
VV Peg	$54676.453 {\pm} 0.003$	-0.026	31301.	\mathbf{C}	VW Scl	$54781.574 {\pm} 0.002$	-0.016	52792.	$_{ m LS}$
VV Peg	$54717.478 {\pm} 0.001$	-0.025	31385.	\mathbf{C}	VW Scl	$54783.618 {\pm} 0.002$	-0.015	52796.	$_{ m LS}$
VV Peg	$54739.457 {\pm} 0.002$	-0.024	31430.	\mathbf{C}	VX Scl	$54793.675 {\pm} 0.003$	-0.746	20680.	$_{ m LS}$
VV Peg	$54767.296 {\pm} 0.002$	-0.023	31487.	С	AE Scl	$54777.673 {\pm} 0.005$	0.225	24650.	$_{ m LS}$
VV Peg	54787.318 ± 0.001	-0.024	31528.	С	AE Scl	54782.626 ± 0.003	0.227	24659.	LS
AV Peg	54676.420 ± 0.003	0.115	27886.	С	AE Scl	54788.677 ± 0.003	0.227	24670.	LS
AV Peg	$54683.448 {\pm} 0.002$	0.116	27904.	С	AE Scl	$54793.625 {\pm} 0.002$	0.224	24679.	\mathbf{LS}
AV Peg	54692.425 ± 0.002	0.115	27927.	С	SS Tau	54804.728 ± 0.005	0.416	42634.	LS
AV Peg	54702.579 ± 0.003	0.119	27953.	C	W Tuc	54775.613 ± 0.003	0.162	27867.	LS
AV Peg	54720.535 ± 0.004	0.118	27999.	C	W Tuc	54780.757 ± 0.005	0.168	27875.	LS
AV Peg	54754.497 ± 0.002	0.117	28086.	C	W Tuc	54782.682 ± 0.003	0.166	27878.	
AV Peg	54787.289 ± 0.002	0.118	28170.	C	W Tuc	54784.606 ± 0.002	0.164	27881.	
AV Peg	54794.317 ± 0.003	0.119	28188.	C	W Tuc	54807.724 ± 0.003	0.161	27917.	
BF Peg	54745.471 ± 0.003	-0.056	23767.	C	YY Tuc	54778.604 ± 0.002	0.166	20289.	
BH Peg	54678.519 ± 0.008	-0.084	23890.	C	AE Tuc	54776.676 ± 0.005	-0.066	49482.	
BH Peg	54791.310 ± 0.005	-0.108	24066.	C	AE Tuc	54779.578 ± 0.001	-0.065	49489.	
CG Peg	54687.479 ± 0.004	-0.049	33363.	C	AE Tuc	54781.650 ± 0.001	-0.065	49494.	
CG Peg	54702.427 ± 0.002	-0.049	33395.	C	AE Tuc	54790.770 ± 0.002	-0.060	49516.	
CG Peg	54717.377 ± 0.002	-0.048	33427.	C	AE Tuc	54791.598 ± 0.001	-0.061	49518.	
CG Peg	54744.476 ± 0.004	-0.043	33485.	C	AE TUC	54793.671 ± 0.002	-0.060	49523.	
CG Peg	54758.483 ± 0.002	-0.050	33515.	C	AB UMa	54820.657 ± 0.010	0.134	31010.	C
CU Peg	54706.379 ± 0.003	-0.051	33579. E 2200	C	AB UMa	04829.039±0.005	0.123	31025. 10645	C
UV Peg	54790.244 ± 0.003	-0.050	23389. 24021	C	EA UMA	04791.407 ± 0.005	0.035	10645.	C
DZ Peg	54081.405±0.002	0.151	34231. 94910	C	EA UMA	54515.597 ± 0.004	0.023	10095.	C
DZ Peg	54729.457 ± 0.005	0.173	3431U.	C C	KT UMa	54819.548 ± 0.004	0.042	9172. 24470	
DZ Peg	54740.447 ± 0.002	0.157	34338. 94971	C	SV VOI	54791.092 ± 0.003	0.098	34470. 24404	LS
DZ Peg	54700.490 ± 0.002	0.158	34371. 24407	C	SV VOI	54794.741 ± 0.003	0.119	34484. 24505	LS
DZ Peg	04100.001±0.003	0.101	344U7. 21060	C	SV VOI	54802.009±0.002	0.099	340UD. 97519	LS
ыгее	04000.402±0.004	-0.044	91909.	U	104 401	04000.120±0.003	0.124	94919,	ы
					1				

Variable star	Maximum HJD 24	O - C (days)	Е	Obs.	Variable star	Maximum HJD 24	O - C (days)	Е	Obs.
SV Vol	$54808.772{\pm}0.003$	0.145	34521.	LS	BN Vul	$54729.366{\pm}0.002$	0.064	15483.	С
SV Vol	$54824.635{\pm}0.002$	0.112	34563.	\mathbf{LS}	BN Vul	$54751.349{\pm}0.002$	0.064	15520.	\mathbf{C}
BN Vul	$54679.458{\pm}0.005$	0.063	15399.	С					
	* C = Calern, LS 1 Meinunger, 198 2 Boninsegna, 19 3 Baldwin and Sa 4 Agerer and Mos	= La Si 4 90 molyk, 2 chner, 1	11a 003 996						

Table 1 (cont.): maxima of RR Lyrae stars

Number 5878

Konkoly Observatory Budapest 25 February 2009 *HU ISSN 0374 - 0676*

PHOTOMETRIC OBSERVATIONS OF HIGH-AMPLITUDE DELTA SCUTI STARS

WILS, PATRICK¹; KLEIDIS, STELIOS^{2,3}; HAMBSCH, FRANZ-JOSEF^{1,4}; VIDAL-SÁINZ, JOAQUIN⁵; VANLEENHOVE, MAARTEN¹; LAMPENS, PATRICIA^{6,7}; VAN CAUTEREN, PAUL^{1,7}; ROBERTSON, C.W.⁸; STAELS, BART^{1,9}; PICKARD, ROGER D.¹⁰; ROZAKIS, IOANNIS^{2,3}; DUFOER, SJOERD¹; GROENENDAELS, ROGER; GÓMEZ-FORRELLAD, JOSEP M.⁵; GARCÍA-MELENDO, ENRIQUE¹¹; HAUTECLER, HUBERT¹; VAN DER LOOY, JOHAN¹

¹ Vereniging Voor Sterrenkunde, Belgium; e-mail: patrickwils@yahoo.com

² Zagori Observatory, Epirus, Greece

³ Helliniki Astronomiki Enosi, Athens, Greece

 4 Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. Germany

⁵ Grup d'Estudis Astronòmics, Spain

⁶ Royal Observatory of Belgium, Brussels, Belgium

⁷ Beersel Hills Observatory, Beersel, Belgium

⁸ SETEC Observatory, Goddard, Kansas, USA

⁹ Center for Backyard Astrophysics

 10 British Astronomical Association, UK

¹¹ Esteve Duran Observatory, Seva, Spain

The period evolution of High-Amplitude Delta Scuti Stars (HADS) is not well understood. Stellar evolution theory predicts an increasing period (Breger & Pamyatnykh, 1998), but also decreasing periods are possible during short times, and have been observed. Breger & Pamyatnykh (1998) suggest that most period changes in δ Scuti stars are caused by non-linear effects in pulsation and not to evolution. Furthermore it is not clear whether changes in period occur monotonously or in contrast abruptly with constant periods in between changes. The observational records are often too fragmented to decide between the two scenarios. Also detecting light time effects due to companions is of interest to better determine the pulsator's mass and understand its evolution. It is therefore important to regularly obtain accurate data to monitor the period behaviour of HADS.

In most cases times of maximum light are used for period studies. These are calculated from the observations using a variety of methods (often with polynomial fitting). The calculated times are usually based on data points close to maximum, while data from the rest of the cycle are ignored. Depending on the calculation method used (e.g. the degree of the fitted polynomial) and the selected data points, this often leads to a fairly large spread in the calculated times, larger than the quoted uncertainties. Higher accuracy can however be obtained when all the available observations are used, especially data from the ascending and descending branches of the light curve, as there the variation is largest per time unit.

Star	Position	n (2000)	Mag. NSVS	Epoch HJD	Period (d)
GSC 4519-1078	04:57:20.99	+79:20:58.7	11.8 - 12.2	2454823.415	0.140316(2)
GSC 3755-0845	$06:\!05:\!01.84$	+55:09:51.9	10.4 - 10.7	2454201.293	0.07609773(1)
GSC 2977-0238	08:19:17.58	+41:59:00.5	10.6 - 11.0	2454204.343	0.07593393(5)
GSC 4552-1498	11:24:25.47	+77:42:15.3	12.9 - 13.4	2453321.535	0.05581096(1)
GSC 3832-0152	11:48:42.04	+54:43:07.1	11.7 - 12.1	2453489.290	0.09134218(2)
GSC 4556-1113	12:03:17.41	+80:33:42.4	11.5 - 11.9	2453813.332	0.086337(3)
GSC 3863-0740	14:41:38.23	+56:26:17.3	11.4 - 11.7	2453795.423	0.197702(2)
GSC 2566-1398	15:22:21.52	+32:58:45.6	11.9 - 12.3	2453896.456	0.0907090(1)
GSC 3074-0114	16:41:06.83	+40:42:26.3	13.8 - 14.5	2454138.969	0.05130(1)
GSC 3934-1904	19:39:55.94	+52:35:09.8	10.9-11.2	2453924.403	0.1092685(1)

Table 1: Details on the observed HADS without GCVS designation.

The times of maximum light presented in this study are therefore calculated as follows. First an average light curve profile (Fourier series) for each star has been created using Period04 (Lenz & Breger, 2005), independently for each filter. As all the stars in the present study are single-mode radial pulsators, without noticeable changes in the light curve from cycle to cycle, these average light curve profiles can then be used to fit the observations of individual cycles, by shifting them in time (and magnitude if another comparison star has been chosen). Using this method a highly accurate and consistent determination of the time of maximum is possible, as data from at least half a cycle, and in the majority of cases a full cycle, are used in the fitting process.

The average profiles of the stars covered in this paper are available electronically. The uncertainty on the timings is measured by the average squared difference in time between the data points and the fitted light curve profile. This gives a measure of the width of the observed light curve. Changing the time of maximum by the quoted uncertainty makes the observations deviate clearly from the average profile, so that this uncertainty gives a realistic indication of the precision of the timing.

Some of the HADS for which observations are reported in this paper were found during a search for RR Lyrae stars (Wils, Lloyd & Bernhard, 2006) in the data of the Northern Sky Variability Survey (NSVS; Woźniak et al., 2004). Details of these stars are listed in Table 1. Uncertainties on the period are given between parentheses in units of the last decimal. It is impossible to distinguish between Population I and Population II (SX Phe) stars based on photometric data alone, so this distinction has not been made here. GSC 3074-0114 and GSC 4519-1078 were found independently by Khruslov (2006a,b), classifying the latter as an SX Phe star. GSC 4556-1113 was also found by Gregor Srdoc (AAVSO VSX). Phased light curves for the stars from Table 1 are shown in Fig. 1. GSC 3755-0845 has a fairly unusual light curve for a HADS with humps on both the ascending and the descending branch. GSC 3074-0114 has a peculiar bump near minimum.

The observers and their instruments are given in Table 2. The 271 times of maximum obtained for 19 HADS are listed in Table 3. When more than one filter was used, the times calculated per filter were averaged to get a single timing. One of the stars, GSC 2977-0238, seems to show a highly variable period. Its O-C curve is given in Fig. 3.

Figure 1. Phased V light curves for nine the stars from Table 1 and an unfiltered light curve of GSC 3074-0114. On the y axis differential magnitudes with respect to a comparison star are shown.

Initials	Telescope type	Aperture	Observatory	CCD
SK	Catadioptric	$30~{ m cm}$	Zagori Observatory	SBIG ST-7XMEI
HMB	Cassegrain	$35~\mathrm{cm}$	Mol, Belgium	SBIG ST-8
HMB2	Ritchey-Chrétien	$50~{ m cm}$	New Mexico, USA	STL11000XM
JVS	Newton	$41 \mathrm{cm}$	Monegrillo Observatory	SX Starlight
MVL	Catadioptric	$26~{ m cm}$	Willebroek Observatory	SBIG ST-10XME
PL&PVC (HO)	Refractor	$13~{ m cm}$	R.O.BHumain	SBIG ST-10XME
PL&PVC (BHO)	Newton	$40~{ m cm}$	Beersel Hills Observatory	SBIG ST-10XME
PL&PVC (BHO2)	Refractor	$18 \mathrm{cm}$	Beersel Hills Observatory	SBIG ST-10XME
CWR	Catadioptric	$30~{ m cm}$	SETEC Observatory	SBIG ST-8
SBL	Cassegrain	$28 \& 23.5 { m ~cm}$	Alan Guth Observatory	Starlight XPress MX-716
RP	Catadioptric	$30~{ m cm}$	Shobdon, UK	Starlight XPress MX7
IR	Catadioptric	$35~\mathrm{cm}$	Zagori Observatory	SBIG ST-7XMEI
SD	Refractor	8 cm	Oostkamp, Belgium	SBIG ST-10XME
RG	Catadioptric	$30~{ m cm}$	Dworp, Belgium	Hisis24

Table 2: List of instruments used for the observations.

Figure 2. O-C curve of GSC 2977-0238 with respect to the elements given in Table 3. The first point was derived from NSVS data (Woźniak et al., 2004).

Acknowledgements:

This work has made use of the SIMBAD database, operated at CDS, Strasbourg, France. PVC is grateful for support from Astrotechniek. PL thanks the directors of the Royal Observatory of Belgium for financing an optical telescope at the radio observatory site of the R.O.B. (Humain). The BHO and R.O.B.-Humain data were acquired with equipment purchased thanks to a research fund financed by the Belgian National Lottery (1999).

References:

Breger M., Pamyatnykh A.A., 1998, A&A, 332, 958

Khruslov A.V., 2006a, *PZP*, 6, 4

Khruslov A.V., 2006b, PZP, 6, 7

Lenz P., Breger M., 2005, Comm. in Asteroseismology, 146, 53

Wils P., Lloyd C., Bernhard K., 2006, MNRAS, 368, 1757

Woźniak P.R., Vestrand W.T., Akerlof C.W., Balsano R., Bloch J., Casperson D., Fletcher S., Gisler G., Kehoe R., Kinemuchi K., Lee B.C., Marshall S., McGowan K.E., McKay T.A., Rykoff E.S., Smith D.A., Szymanski J., Wren J., 2004, AJ, 127, 2436

Table 3: Observed times of maximum (Epoch = HJD - 2400000).

$ \begin{array}{c} \label{eq:constraints} \begin{array}{c} \mbox{CP} \ And \ \ 54713.4190 \ 0.0007 \ \ SK \ \ VL_{C} \\ \mbox{CP} \ And \ \ 5487.334 \ 0.0006 \ \ MVL \ \ V \ \ \ C \ 25661.1385 \ \ 53916.6127 \ \ 0.0000 \ \ SK \ \ \ VL_{C} \\ \mbox{CP} \ \ And \ \ \ 5487.3142 \ \ 0.0006 \ \ \ MVL \ \ \ \ V \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Star [*]	Epoch	Unc.	Obs.	Filter	Star	Epoch	Unc.	Obs.	Filter
CP Andl 5487.3243 0.0006 MVL V C 2266.1398 5301.6.329 0.0008 SK V.L_C GP Andl 5487.342 0.0006 MVL V G 2266.1398 5301.6.029 0.0009 SK V.L_C GP Andl 5487.74716 0.0006 MVL V G 2266.1398 54170.6878 0.0007 HIM B V V460 Andl 54135.5266 0.0007 SK V G 2266.1398 54171.7678 0.0006 HIM B V.L V460 Andl 54385.266 0.0007 SK V G 2266.1398 54171.7673 0.0006 HIM B V.L V460 Andl 54391.523 0.0008 SK V G 2266.1398 54172.6748 0.0007 HIM B V.L V460 Andl 54391.523 0.0008 SKL V G 2266.1398 54172.6748 0.0007 HM B V.L V4400 Andl 54391.524 0.0008 SKL V C 2277.0238 553	GP And	54713.4600	0.0007	HMB	V	G 2566-1398	53913.4191	0.0007	SK	V.Ic
$ \begin{array}{c} \label{eq:product} P \ And \\ stars, 3142 \ 0.0006 \ MVL \\ V \ C 2566-1398 \ 5016.5079 \ 0.0009 \ SK \\ V \ V \ C 266-1398 \ 5016.5079 \ 0.0007 \ HMB \\ V \ V \ C 266-1398 \ 5016.5079 \ 0.0007 \ HMB \\ V \ V \ V \ C 266-1398 \ 51170.488 \ 0.0007 \ HMB \\ V \ V \ V \ C 266-1398 \ 51170.688 \ 0.0007 \ HMB \\ V \ V \ V \ C 266-1398 \ 51170.687 \ 0.0006 \ HMB \\ V \ V \ V \ C 266-1398 \ 51170.687 \ 0.0006 \ HMB \\ V \ V \ V \ C 266-1398 \ 51170.687 \ 0.0006 \ HMB \\ V \ V \ V \ C 266-1398 \ 51170.687 \ 0.0006 \ HMB \\ V \ V \ V \ V \ C 266-1398 \ 51170.687 \ 0.0007 \ HMB \\ V \ V \ V \ V \ C 266-1398 \ 51170.687 \ 0.0006 \ HMB \\ V \ V \ V \ V \ C 266-1398 \ 51170.687 \ 0.0006 \ HMB \\ V \ V \ V \ V \ V \ V \ C 266-1398 \ 51170.687 \ 0.0006 \ HMB \\ V \ V \ V \ V \ V \ V \ V \ V \ V \ V$	GP And	54827 2354	0.0006	MVL	v	G 2566-1398	53916 3220	0.0008	SK	V La
GP And S4827.392 S4827.392 0.0000 MVL W G 2566-1398 C 2666-1398 S310.6029 S4170.688 0.0005 MVL V G 2666-1398 C 2666-1398 S4170.688 S4170.688 0.0005 MVL V G 2666-1398 S4170.688 S4170.688 S4170.688 0.0006 SK V V400 And S4135.5286 54135.5266 0.0007 RK V G 2666-1398 S4170.687 0.0006 HMB V V400 And S4335.5266 54303.424 0.0007 SK V G 2666-1398 S4171.6673 0.0006 HMB V.Le V400 And S4391.523 54391.523 0.0008 SK V G 2666-1398 54172.6748 0.0007 HMB V.Le V400 And S4391.523 54391.4691 0.0008 SKL V G 2666-1398 54172.6748 0.0007 HMB V.Le XX Cyg 54728.4479 0.0008 MVL V G 2977-0238 5331.4066 0.0006 BHO V XX Cyg 54729.4378 0.0008 MVL V G 2977-0238 53441.41680 0.0006	GP And	54827 3142	0.0006	MVL	v	C 2566 1398	53016 4127	0.0000	SK	VI_{α}
$ \begin{array}{c} \operatorname{CP} \ And \\ 3487, 4716 \\ 3487, 4716 \\ 3407, 470 \\ 3408, 4717 \\ 3400 \ And \\ 54135, 3308 \\ 34135, 3308 \\ 3400, 0006 \\ \mathrm{RP} \\ \mathrm{V} \\ \mathrm{C} 2566-1398 \\ 54170, 4888 \\ 54170, 4888 \\ 0.0006 \\ \mathrm{RP} \\ \mathrm{V} \\ \mathrm{C} 2566-1398 \\ 54170, 4886 \\ 0.0006 \\ \mathrm{RP} \\ \mathrm{V} \\ \mathrm{C} 2566-1398 \\ 54170, 4868 \\ 0.0006 \\ \mathrm{RP} \\ \mathrm{V} \\ \mathrm{C} 2566-1398 \\ 54171, 5476 \\ 0.0006 \\ \mathrm{RP} \\ \mathrm{V} \\ \mathrm{C} 2566-1398 \\ 54171, 5476 \\ 0.0008 \\ \mathrm{RP} \\ \mathrm{V} \\ \mathrm{C} 2566-1398 \\ 54171, 5476 \\ 0.0008 \\ \mathrm{RP} \\ \mathrm{V} \\ \mathrm{C} 2566-1398 \\ 54172, 5470 \\ 0.0008 \\ \mathrm{RP} \\ \mathrm{V} \\ \mathrm{C} 2566-1398 \\ 54172, 5470 \\ 0.0007 \\ \mathrm{RP} \\ \mathrm{V} \\ \mathrm{C} \\ \mathrm{C} 2566-1398 \\ 54172, 5470 \\ 0.0007 \\ \mathrm{RP} \\ \mathrm{V} \\ \mathrm{C} \\ $	GP And	54827 3020	0.0000	MVL	V	C 2566 1398	53016 5020	0.0000	SK	v, v
$ \begin{array}{c} \operatorname{Gr} A_{111} & \operatorname{S4267} + \operatorname{A110} & \operatorname{O0006} & \operatorname{RV} & \operatorname{V} & \operatorname{G} 2000 + \operatorname{S385} & \operatorname{S410} + \operatorname{S385} & \operatorname{O0006} & \operatorname{HAB} & \operatorname{V} \\ \operatorname{V400} A_{nd} & \operatorname{S4135} \cdot \operatorname{S380} & \operatorname{O0006} & \operatorname{RV} & \operatorname{V} & \operatorname{G} 2066 + \operatorname{S385} & \operatorname{S4170} \cdot \operatorname{G697} & \operatorname{O0006} & \operatorname{HAB} & \operatorname{V} \\ \operatorname{V400} A_{nd} & \operatorname{S4355} \cdot \operatorname{S560} & \operatorname{O0007} & \operatorname{SK} & \operatorname{V} & \operatorname{G} 2666 + \operatorname{S385} & \operatorname{S4171} + \operatorname{S66} & \operatorname{O0007} & \operatorname{HAB} & \operatorname{V} \\ \operatorname{V400} A_{nd} & \operatorname{S4355} \cdot \operatorname{S560} & \operatorname{O0007} & \operatorname{SK} & \operatorname{V} & \operatorname{G} 2566 + \operatorname{S385} & \operatorname{S1171} \cdot \operatorname{S767} & \operatorname{O0006} & \operatorname{HMB} & \operatorname{V} \\ \operatorname{V400} A_{nd} & \operatorname{S4391} \cdot \operatorname{S420} & \operatorname{O0008} & \operatorname{SK} & \operatorname{V} & \operatorname{G} 2566 + \operatorname{S385} & \operatorname{S1172} \cdot \operatorname{S748} & \operatorname{O0006} & \operatorname{HMB} & \operatorname{V} \\ \operatorname{V400} A_{nd} & \operatorname{S4391} \cdot \operatorname{S420} & \operatorname{O0008} & \operatorname{SK} & \operatorname{V} & \operatorname{G} 2566 + \operatorname{S385} & \operatorname{S1172} \cdot \operatorname{S748} & \operatorname{O0007} & \operatorname{HMB} & \operatorname{V} \\ \operatorname{V400} A_{nd} & \operatorname{S4391} \cdot \operatorname{S420} & \operatorname{O0008} & \operatorname{SHL} & \operatorname{V} & \operatorname{G} 2267 - \operatorname{G238} & \operatorname{S3211} \cdot \operatorname{606} & \operatorname{O0007} & \operatorname{HMB} & \operatorname{V} \\ \operatorname{XX} & \operatorname{Cyg} & \operatorname{S4729} \cdot \operatorname{S478} & \operatorname{O0008} & \operatorname{MVL} & \operatorname{V} & \operatorname{G} 2277 - \operatorname{G238} & \operatorname{S3211} \cdot \operatorname{606} & \operatorname{O0008} & \operatorname{BHO} & \operatorname{V} \\ \operatorname{XX} & \operatorname{Cyg} & \operatorname{S4729} \cdot \operatorname{S478} & \operatorname{O0008} & \operatorname{MVL} & \operatorname{V} & \operatorname{G} 2277 - \operatorname{G238} & \operatorname{S34142} + \operatorname{1080} & \operatorname{O0008} & \operatorname{SK} & \operatorname{V} \\ \operatorname{V2455} & \operatorname{Cyg} & \operatorname{S4729} \cdot \operatorname{S535} & \operatorname{O0008} & \operatorname{MVL} & \operatorname{V} & \operatorname{G} 2277 - \operatorname{G238} & \operatorname{S34142} + \operatorname{1080} & \operatorname{O0008} & \operatorname{SK} & \operatorname{V} \\ \operatorname{V2455} & \operatorname{Cyg} & \operatorname{S462} \cdot \operatorname{2350} & \operatorname{O0008} & \operatorname{SH} & \operatorname{V} \\ & \operatorname{V2455} & \operatorname{Cyg} & \operatorname{S462} \cdot \operatorname{2350} & \operatorname{O0008} & \operatorname{SH} & \operatorname{V} \\ & \operatorname{V2455} & \operatorname{Cyg} & \operatorname{S462} \cdot \operatorname{S260} & \operatorname{O0008} & \operatorname{SH} & \operatorname{V} & \operatorname{G} 2277 - \operatorname{G238} & \operatorname{S3414} + \operatorname{1080} & \operatorname{O0008} & \operatorname{SK} & \operatorname{V} \\ \\ \operatorname{V2455} & \operatorname{Cyg} & \operatorname{S469} \cdot \operatorname{S460} & \operatorname{O0000} & \operatorname{SD} & \operatorname{V} & \operatorname{G} 2277 - \operatorname{G238} & \operatorname{S4318} + \operatorname{2230} & \operatorname{O0008} & \operatorname{SK} & \operatorname{V} \\ \\ \operatorname{V2455} & \operatorname{Cyg} & \operatorname{S469} \cdot \operatorname{S460} & \operatorname{O0000} & \operatorname{SD} & \operatorname{V} & \operatorname{G} 2277 - \operatorname{G238} & \operatorname{S4318} + \operatorname{S230} & \operatorname{O0008} & \operatorname{SK} & \operatorname{V} \\ \\ \operatorname{V2455} & \operatorname{Cyg} & \operatorname{S479} \cdot \operatorname{S439} & \operatorname{O0006} & \operatorname{SD} & \operatorname{V} & \operatorname{G} 2277 - \operatorname{G238} & \operatorname{S4318} + \operatorname{S230} & \operatorname{O0008} & \operatorname{SK} & \operatorname{V} \\ \\ \operatorname{V2455} & \operatorname$	CD And	54027.3323	0.0000	MANT	V V	C 2500-1550	53310.3023 E4170 4999	0.0003	IIMD	v
V100 And S1135.383 0.0006 RP V C 2406-1308 S1170.6697 0.0006 HMB V. V400 And 54355.5605 0.0007 SK V C 2566-1308 5117.6667 0.0008 HMB V,Lo V400 And 54355.613 0.0007 SK V C 2566-1308 51172.6460 0.0008 NK V V400 And 54391.5180 0.0008 SK V C 2566-1308 51172.6470 0.0007 HMB V,Lo V400 And 54391.5203 0.0008 SK V C 2566-1308 51172.6470 0.0007 HMB V,Lo X Cyg 54729.5430 0.0008 MVL V C 2977-0238 53321.6166 0.0006 BHO V X Cyg 54729.4208 0.0008 MVL V C 2977-0238 53414.2143 0.0006 SK V V2455 Cyg 54624.2354 0.0001 SK B C 2977-0238 534172.3526 0.0008 SK V </td <td></td> <td>54627.4710</td> <td>0.0000</td> <td></td> <td>V</td> <td>G 2500-1598</td> <td>54170.4005</td> <td>0.0007</td> <td></td> <td>v</td>		54627.4710	0.0000		V	G 2500-1598	54170.4005	0.0007		v
V400 And 5415.5260 0.0007 RV G 2006-1398 54170.4669 0.0007 MIB V, J _G V400 And 5435.5260 0.0007 SK V G 2566-1398 54171.4567 0.0008 NK V G 2566-1398 54171.6573 0.0006 HMB V, J _G V400 And 54391.5420 0.0008 SK V G 2566-1398 54172.5480 0.0007 HMB V, L _C XX Cyg 54649.4590 0.0008 SEL V G 2566-1398 54172.5480 0.0007 HMB V, L _C XX Cyg 54728.4768 0.0008 SEL V G 2566-1398 54172.5480 0.0004 BHO V XX Cyg 54728.4768 0.0008 NUL V G 2977-0238 53414.1680 0.0008 K V V2455 Cyg 5462.5296 0.0008 NUL V G 2977-0238 53473.2506 0.0008 SK V V2455 Cyg 5462.5297 0.0006	V460 And	54135.3080	0.0006	RP	V	G 2506-1398	54170.5788	0.0006	HMB	V
V400 And 54355.6366 0.0007 SK V G 2666-1398 54171.576 0.0008 MLB V_L0 V460 And 54355.613 0.0008 SK V G 2666-1398 54171.567 0.0008 NL V V460 And 54391.5180 0.0008 SK V G 2666-1398 54172.4540 0.0007 HMB V_L0 XX Cyg 51649.5800 0.0008 SR V G 2666-1398 54172.4578 0.0007 HMB V_L0 XX Cyg 51491.5800 0.0008 SBL V C 2677-0238 53321.6106 0.0006 BHO V XX Cyg 54728.4780 0.0008 MVL V G 2977-0238 534412.4130 0.0008 KK V V2455 Cyg 5462.1575 0.0003 HO B C 2977-0238 53476.2117 0.0006 SK V V2455 Cyg 54692.4480 0.0006 SD V C 2977-0238 53476.2117 0.0006 SK V <td>V460 And</td> <td>54135.3831</td> <td>0.0006</td> <td>RP</td> <td>V</td> <td>G 2566-1398</td> <td>54170.6697</td> <td>0.0006</td> <td>HMB</td> <td>V</td>	V460 And	54135.3831	0.0006	RP	V	G 2566-1398	54170.6697	0.0006	HMB	V
V400 And 54331.424 0.0008 SK V G 2566-1398 54171.673 0.0006 HMB V V400 And 54391.6140 0.0008 SK V G 2566-1398 54172.6743 0.0007 HMB V.L V400 And 54391.592 0.0008 SK V G 2566-1398 54172.6748 0.0007 HMB V.L XX Cyg 54649.5360 0.0008 SEL V G 2977-0238 53321.6166 0.0001 BHO V XX Cyg 54728.4240 0.0008 MVL V G 2977-0238 53321.6166 0.0001 BHO V XX Cyg 54729.4278 0.0001 SK V G 2977-0238 53441.1680 0.0003 SK V V2455 Cyg 54425.206 0.0003 HO B G 2977-0238 53476.217 0.0008 SK V V2455 Cyg 54646.3660 0.0003 HO B G 2977-0238 53476.2875 0.0009 SK V	V460 And	54355.5266	0.0007	SK	V	$ m G2566{-}1398$	54171.4865	0.0007	HMB	V, I_C
V400 And 54391.424 0.0008 SK V G 2366-1398 54171.4673 0.0007 HMB V_LC V400 And 54391.5180 0.0008 SK V G 2366-1398 54172.8160 0.0007 HMB V_LC XX Cyg 54649.4590 0.0008 SK V G 2366-1398 54172.8160 0.0007 HMB V_L XX Cyg 54649.3806 0.0008 NUL V G 2977-0238 53321.697 0.0006 BHO V XX Cyg 54728.3768 0.0008 MVL V G 2977-0238 53441.2413 0.0008 SK V V2455 Cyg 5462.375.61 0.0001 SK B G 2977-0238 53473.266 0.0008 SK V V2455 Cyg 5462.4354 0.0006 SD V G 2977-0238 53470.2470 0.0007 SK V V2455 Cyg 5469.4383 0.0006 SD V G 2977-0238 53492.230 0.0007 SK V	V460 And	54355.6013	0.0007	SK	V	${ m G}2566\text{-}1398$	54171.5767	0.0008	HMB	$_{\mathrm{V,I}_C}$
V400 And 51391.5180 0.0008 SK V G 2566-1398 5417.25743 0.0007 HMB V, L _C XX Cyg 54649.4590 0.0008 SBL V G 2566-1398 54172.5743 0.0007 HMB V XX Cyg 54649.5806 0.0008 SBL V G 2977-0238 53321.6106 0.0008 BHO V XX Cyg 54728.420 0.0008 MVL V G 2977-0238 53321.6106 0.0009 SK V XX Cyg 54729.4768 0.0008 MVL V G 2977-0238 53441.680 0.0009 SK V V2455 Cyg 54642.4304 0.0001 SK B G 2977-0238 53473.376 0.0009 SK V V2455 Cyg 54642.4374 0.0006 SD V G 2977-0238 53472.376 0.0009 SK V V2455 Cyg 54642.4374 0.0007 SL V G 2977-0238 53472.376 0.0009 SK V	V460 And	54391.4424	0.0008	$_{\rm SK}$	V	${ m G}2566\text{-}1398$	54171.6673	0.0006	HMB	V
V400 And 5430.15923 0.0008 SK V G 2566-1398 54172.6748 0.0007 FMB V XX Cyg 54649.5866 0.0008 NEL V G 2566-1398 53321.5406 0.0007 FMB V XX Cyg 54728.470 0.0008 NVL V G 2977-0238 53321.6166 0.0001 BHO V XX Cyg 54728.478 0.0008 NVL V G 2977-0238 53414.1680 0.0008 SK V XX Cyg 54729.57561 0.0001 SK B G 2977-0238 53473.2107 0.0008 SK V V2455 Cyg 54642.596 0.0003 HO B G 2977-0238 53470.217 0.0008 SK V V2455 Cyg 54694.4330 0.0006 SD V G 2977-0238 53481.2412 0.0007 SK V V2455 Cyg 54694.4337 0.0006 SD V G 2977-0238 53481.2992 0.0007 SK V <td>V460 And</td> <td>54391.5180</td> <td>0.0008</td> <td>SK</td> <td>V</td> <td>${ m G}2566\text{-}1398$</td> <td>54172.4840</td> <td>0.0007</td> <td>HMB</td> <td>V,I_C</td>	V460 And	54391.5180	0.0008	SK	V	${ m G}2566\text{-}1398$	54172.4840	0.0007	HMB	V,I_C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V460 And	54391.5923	0.0008	SK	V	${ m G}2566\text{-}1398$	54172.5748	0.0007	HMB	V,I_C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	XX Cyg	54649.4459	0.0008	SBL	V	${ m G}2566\text{-}1398$	54172.6650	0.0007	HMB	v
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	XX Cyg	54649.5806	0.0008	SBL	V	G2977-0238	53321.5406	0.0003	BHO	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	XX Cyg	54728 3420	0.0008	MVL	V	G 2977-0238	53321 6166	0.0004	BHO	V
$ \begin{array}{c} 1.3 \times Cyg \\ 54729, 1200 \\ 54720 \\ 54729, 1200 \\ 54720 \\ 54720 \\ $	XX Cyg	54728 4768	0.0007	MVL	v	G 2977-0238	53321 6927	0.0006	BHO	v
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	XX Cyg	54720.4208	0.0001	MVI	v	C 2077 0238	53444 1680	0.0000	SK	v
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	XX Oyg	54729.4200	0.0008	IVI V LI NANZI	V V	G 2911-0238	53444.1080	0.0009	OIZ OIZ	v
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	AA Oyg	54729.5556	0.0008		V D	G 2977-0238	52444.2445	0.0008	on	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V2455 Cyg	54357.5561	0.0001	SN	В	G 2977-0238	53473.2502	0.0008	SN	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V2455 Cyg	54642.4354	0.0003	HO	B	G 2977-0238	53473.3266	0.0009	SK	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$V2455 \ Cyg$	54642.5296	0.0003	HO	В	m G2977-0238	53476.2117	0.0008	SK	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$V2455 \ Cyg$	54646.4860	0.0006	$^{\mathrm{SD}}$	V	${ m G}2977-0238$	53476.2875	0.0009	SK	V
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$V2455 \ Cyg$	54652.5157	0.0007	SBL	V	${ m G}2977\text{-}0238$	53481.2232	0.0008	SK	V
V2455 Cyg5499.53270.0006SDVG 2977.023853492.23360.0007SKVV2455 Cyg54702.48790.002SBLVG 2977.023853492.2040.0007SKVV2455 Cyg54730.42390.0004MVLVG 2977.023853499.2040.0005SKVV2455 Cyg54730.61260.0005MVLVG 2977.023853508.2570.0006SKVV2455 Cyg54730.61260.0005MVLVG 2977.023854172.45340.0005RPVV2455 Cyg54758.40310.0009MVLVG 2977.023854172.52930.0007RPVV2455 Cyg54759.4170.0008MVLVG 2977.023854204.34550.0009SKVV2455 Cyg54759.43890.0009MVLVG 2977.023854759.57060.0008BHO2VV2455 Cyg54759.53320.0007MVLVG 2977.023854827.45110.0008BHO2VUW Dra54369.40510.0008MVLVG 2977.023854827.63100.0008MVLVDY Her54645.6190.0008MVLVG 2977.023854827.63110.0008MVLVKZ Lac5224.49280.0008RG-G 2977.023854827.63130.0009MVLVKZ Lac5224.49280.0008RG-G 2977.023854827.60670.0009MVLV <td>V2455 Cyg</td> <td>54694.4383</td> <td>0.0006</td> <td>$^{\rm SD}$</td> <td>V</td> <td>${ m G}2977\text{-}0238$</td> <td>53481.2992</td> <td>0.0007</td> <td>SK</td> <td>V</td>	V2455 Cyg	54694.4383	0.0006	$^{\rm SD}$	V	${ m G}2977\text{-}0238$	53481.2992	0.0007	SK	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V2455 Cyg	54694.5327	0.0006	$^{\rm SD}$	V	${ m G}2977-0238$	53492.2336	0.0007	SK	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V2455 Cyg	54702.4879	0.0022	SBL	V	${ m G}2977-0238$	53492.3094	0.0009	SK	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V2455 Cvg	54730.3298	0.0003	MVL	V	G 2977-0238	53499.2204	0.0007	SK	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V2455 Cvg	54730 4239	0.0004	MVL	v	G 2977-0238	53499 2960	0.0010	SK	v
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V2455 Cyg	54730 5182	0.0001	MVL	v	C 2077 0238	53508 2557	0.0016	SK	v
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V2455 Cyg	54730.5102	0.0005	MVI	v	C 2977 0238	54179 4534	0.0000	DD D	v
$ \begin{array}{c} 12455 \ Cyg \\ 2455 \ Cyg \\ 54758.4973 \\ 0.0009 \\ MVL \\ V \\ V2455 \ Cyg \\ 54759.3447 \\ 0.0008 \\ MVL \\ V \\ V \\ V2455 \ Cyg \\ 54759.3447 \\ 0.0008 \\ MVL \\ V \\ V \\ V \\ V \\ V \\ V \\ V \\ V \\ V \\$	V2400 Cyg	54750.0120	0.0000	IVI V LI NANZI	V V	G 2911-0238	54172.4054	0.0005		v
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V2455 Cyg	54758.4031	0.0009		V	G 2977-0238	54172.5293	0.0007	RP	V
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V2455 Cyg	54758.4973	0.0009		V	G 2977-0238	54204.2692	0.0006	SN	V
V2455Cyg54759.43890.0009MVLVG 2977-023854759.57060.0008BHO2VV2455Cyg54759.53320.0007MVLVG 2977-023854768.60670.0009BHO2VLWDra54369.40510.0007SKVG 2977-023854827.37940.0007HMBVDYHer54648.56190.0008MVLVG 2977-023854827.53100.0008MWLVDYHer54672.49120.0008RG-G 2977-023854827.53130.0006HMBVKZLac52205.38420.0006RG-G 2977-023854827.60670.0009MVLVKZLac52224.49280.0008RG-G 2977-023854827.68310.0006HMBVV593Lyr54339.38190.0007HMBV,RG 2977-023854831.65190.0008MVLVV593Lyr54339.48400.0008HMBV,RG 2977-023854831.63190.0008MVLVV593Lyr5439.43300.0007HMBV,RG 2977-023854831.63190.0008MVLVV593Lyr54339.48400.0008HMBV,RG 2977-023854827.68310.0008MVLVDYPeg54729.39120.0006BHO2VG 3074-011454139.99520.0005HMB2-DYPeg54729.444 <td< td=""><td>V2455 Cyg</td><td>54759.3447</td><td>0.0008</td><td>MVL</td><td>V</td><td>G 2977-0238</td><td>54204.3455</td><td>0.0009</td><td>SK</td><td>V</td></td<>	V2455 Cyg	54759.3447	0.0008	MVL	V	G 2977-0238	54204.3455	0.0009	SK	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V2455 Cyg	54759.4389	0.0009	MVL	V	G 2977-0238	54759.5706	0.0008	BHO2	V
LW Dra 54369.4051 0.0007SKVG 2977-0238 54827.3794 0.0007HMBVDY Her 54648.5619 0.0008MVLVG 2977-0238 54827.4551 0.0008MMBVDY Her 54672.4912 0.0008MVLVG 2977-0238 54827.5310 0.0008MVLVKZ Lac 52145.5531 0.0006RG-G 2977-0238 54827.5313 0.0006HMBVKZ Lac 52225.3842 0.0006RG-G 2977-0238 54827.5070 0.0007HMBVKZ Lac 52224.4928 0.0008RG-G 2977-0238 54827.6070 0.0007HMBVV593 Lyr 54339.3819 0.0007HMBV,RG 2977-0238 54831.6556 0.0008MVLVV593 Lyr 54339.3840 0.0007HMBV,RG 2977-0238 54831.6319 0.0008MVLVV593 Lyr 54339.3840 0.0007HMBV,RG 2977-0238 54831.6319 0.0008MVLVDY Peg 54729.4443 0.0007HOVG 3074-0114 54138.9693 0.0005HMB2-DY Peg 54729.3644 0.0004BHO2VG 3074-0114 54139.9952 0.0005HMB2-DY Peg 54739.4528 0.0007SBLVG 3755-0845 53365.4353 0.0008SKVDY Peg 54739.4528 0.0007SBLVG 3755-0845 $53389.$	V2455 Cyg	54759.5332	0.0007	MVL	V	${ m G}2977-0238$	54768.6067	0.0009	BHO2	V
DY Her 54648.5619 0.0008 MVLV $G 2977-0238$ 54827.5510 0.0008 MMBVDY Her 54672.4912 0.0008 MVLV $G 2977-0238$ 54827.5310 0.0008 MVLVKZ Lac 52145.5531 0.0008 RG- $G 2977-0238$ 54827.5313 0.0006 HMBVKZ Lac 52205.3842 0.0006 RG- $G 2977-0238$ 54827.6070 0.0007 HMBVV593 Lyr 54339.3819 0.0007 HMBV,R $G 2977-0238$ 54827.6031 0.0006 HMBVV593 Lyr 54339.5861 0.0005 HMBV,R $G 2977-0238$ 54831.6319 0.0008 MVLVV593 Lyr 54339.5861 0.0005 HMBV,R $G 2977-0238$ 54831.6319 0.0008 MVLVV593 Lyr 54339.5861 0.0005 HMBV,R $G 2977-0238$ 54831.6319 0.0008 MVLVDY Peg 54729.3912 0.0006 BHO2V $G 3074-0114$ 54138.9693 0.0005 HMB2-DY Peg 54739.3530 0.0007 SBLV $G 3075-0845$ 53365.3601 0.0011 SKVDY Peg 54739.4258 0.0007 SBLV $G 3755-0845$ 53389.4825 0.0008 SKVDY Peg 54808.2977 0.0007 MVLV $G 3755-0845$ 53389.4825 0.0008 SKVG 2566-1398 538	LW Dra	54369.4051	0.0007	$_{\rm SK}$	V	${ m G}2977-0238$	54827.3794	0.0007	HMB	V
DY Her 54672.4912 0.0008 MVLV $G 2977.0238$ 54827.5310 0.0008 MVLVKZ Lac 52145.5531 0.0006 RG- $G 2977.0238$ 54827.5313 0.0006 HMBVKZ Lac 52225.3842 0.0006 RG- $G 2977.0238$ 54827.6067 0.0009 MVLVKZ Lac 52224.4928 0.0008 RG- $G 2977.0238$ 54827.6070 0.0007 HMBVV593 Lyr 54339.3819 0.0007 HMBV,R $G 2977.0238$ 54827.6631 0.0006 HMBVV593 Lyr 54339.5861 0.0008 HMBV,R $G 2977.0238$ 54831.6519 0.0008 MVLVV593 Lyr 54339.5861 0.0007 HMBV,R $G 2977.0238$ 54831.6319 0.0008 MVLVDY Peg 54729.4443 0.0007 HMBV,R $G 2977.0238$ 54831.6319 0.0005 HMB2-DY Peg 54729.4644 0.0004 BHO2V $G 3074.0114$ 54139.9952 0.0005 HMB2-DY Peg 54739.4528 0.0007 SBLV $G 3755.0845$ 53365.3601 0.0011 SKVDY Peg 54808.2977 0.0007 MULV $G 3755.0845$ 53389.4088 0.0008 SKVDY Peg 54808.3708 0.0009 SKV/LC $G 3755.0845$ 53389.4588 0.0008 SKVG 2566-1398 538	DY Her	54648.5619	0.0008	MVL	V	${ m G}2977\text{-}0238$	54827.4551	0.0008	HMB	V
KZ Lac 52145.5531 0.0008 RG $ G 2977-0238$ 54827.5313 0.0006 HMBVKZ Lac 52205.3842 0.0006 RG $ G 2977-0238$ 54827.6067 0.0009 MVLVKZ Lac 52224.4928 0.0007 HMBV,R $G 2977-0238$ 54827.6070 0.0007 HMBVV593 Lyr 54339.3819 0.0007 HMBV,R $G 2977-0238$ 54827.6831 0.0006 HMBVV593 Lyr 54339.4840 0.0008 HMBV,R $G 2977-0238$ 54831.6556 0.0008 MVLVV593 Lyr 54339.5861 0.0005 HMBV,R $G 2977-0238$ 54831.6319 0.0006 HM2VDY Peg 54728.4433 0.0007 HOV $G 3074-0114$ 54138.9693 0.0005 HMB2-DY Peg 54729.3912 0.0006 BHO2V $G 3074-0114$ 54139.9952 0.0005 HMB2-DY Peg 54739.3530 0.0007 SBLV $G 3755-0845$ 53365.3601 0.0011 SKVDY Peg 54808.2977 0.0007 MVLV $G 3755-0845$ 53389.4068 0.0008 SKVDY Peg 54808.3708 0.0009 MVLV $G 3755-0845$ 53389.4686 0.0008 SKVG 2566-1398 53903.3501 0.0007 SKV,L_C $G 3755-0845$ 53419.6915 0.0007 CWRVG 2566-1398 <td>DY Her</td> <td>54672.4912</td> <td>0.0008</td> <td>MVL</td> <td>V</td> <td>${ m G}2977\text{-}0238$</td> <td>54827.5310</td> <td>0.0008</td> <td>MVL</td> <td>V</td>	DY Her	54672.4912	0.0008	MVL	V	${ m G}2977\text{-}0238$	54827.5310	0.0008	MVL	V
KZ Lac 52205.3842 0.0006 RG $ G 2977-0238$ 54827.6067 0.0009 MVLVKZ Lac 52224.4928 0.0008 RG $ G 2977-0238$ 54827.6070 0.0007 HMBVV593 Lyr 54339.3819 0.0007 HMBV,R $G 2977-0238$ 54827.6831 0.0006 HMBVV593 Lyr 54339.4840 0.0008 HMBV,R $G 2977-0238$ 54831.5556 0.0008 MVLVV593 Lyr 54339.5861 0.0005 HMBV,R $G 2977-0238$ 54831.6319 0.0008 MVLVDY Peg 54728.4433 0.0007 HOV $G 3074-0114$ 54138.9693 0.0005 HMB2 $-$ DY Peg 54729.4644 0.0004 BHO2V $G 3074-0114$ 54139.9952 0.0005 HMB2 $-$ DY Peg 54739.3530 0.0007 SBLV $G 3074-0114$ 54140.9699 0.0005 HMB2 $-$ DY Peg 54739.4258 0.0007 SBLV $G 3755-0845$ 53365.4353 0.0008 SKVDY Peg 54808.2977 0.0007 MVLV $G 3755-0845$ 53389.4068 0.0008 SKVDY Peg 54808.3708 0.0009 MVLV $G 3755-0845$ 53389.4068 0.0008 SKVG 2566-1398 53896.5470 0.0011 SK V,L_C $G 3755-0845$ 53419.6952 0.0016 CWRVG 2566-	KZ Lac	52145.5531	0.0008	\mathbf{RG}	-	${ m G}2977\text{-}0238$	54827.5313	0.0006	HMB	V
KZ Lac 52224.4928 0.0008 RG- $G 2977-0238$ 54827.6070 0.0007 HMBVV593 Lyr 54339.3819 0.0007 HMBV,R $G 2977-0238$ 54827.6831 0.0006 HMBVV593 Lyr 54339.4840 0.0008 HMBV,R $G 2977-0238$ 54831.5556 0.0008 MVLVV593 Lyr 54339.5861 0.0005 HMBV,R $G 2977-0238$ 54831.6319 0.0008 MVLVDY Peg 54728.4433 0.0007 HOV $G 3074-0114$ 54138.9693 0.0005 HMB2-DY Peg 54729.4644 0.0004 BHO2V $G 3074-0114$ 54139.9952 0.0005 HMB2-DY Peg 54739.3530 0.0007 SBLV $G 3075-0845$ 53365.3601 0.0011 SKVDY Peg 54739.4258 0.0007 SBLV $G 3755-0845$ 53365.4353 0.0008 SKVDY Peg 54808.2977 0.0007 MVLV $G 3755-0845$ 53389.4068 0.0008 SKVDY Peg 54808.3708 0.0009 MVLV $G 3755-0845$ 53389.5588 0.0008 SKVG 2566-1398 53896.5470 0.0011 SK V,L_C $G 3755-0845$ 53419.6952 0.0016 CWRVG 2566-1398 53903.3501 0.0007 SK V,L_C $G 3755-0845$ 53419.6952 0.0006 CWRVG 2566-1	KZ Lac	52205.3842	0.0006	\mathbf{RG}	-	${ m G}2977-0238$	54827.6067	0.0009	MVL	V
V593 Lyr54339.38190.0007HMBV,RG 2977-023854827.68310.0006HMBVV593 Lyr54339.48400.0008HMBV,RG 2977-023854831.55560.0008MVLVV593 Lyr54339.58610.0005HMBV,RG 2977-023854831.63190.0008MVLVDY Peg54728.44330.0007HOVG 3074-011454138.96930.0005HMB2-DY Peg54729.39120.0006BHO2VG 3074-011454139.99520.0005HMB2-DY Peg54739.35300.0007SBLVG 3074-011454140.96990.0005HMB2-DY Peg54739.42580.0007SBLVG 3755-084553365.36010.0011SKVDY Peg54808.29770.0007MVLVG 3755-084553389.46880.0008SKVDY Peg54808.37080.0009MVLVG 3755-084553389.48250.0008SKVG 2566-139853896.54700.0011SKV,LcG 3755-084553496.569150.0007CWRVG 2566-139853903.35010.0008SKV,LcG 3755-084553419.69520.0016CWRVG 2566-139853903.344090.0007SKV,LcG 3755-084553419.69880.0009CWRVG 2566-139853903.3160.0007SKVG 3755-084553419.631400.0008 </td <td>KZ Lac</td> <td>52224.4928</td> <td>0.0008</td> <td>\mathbf{RG}</td> <td>_</td> <td>${ m G}2977-0238$</td> <td>54827.6070</td> <td>0.0007</td> <td>HMB</td> <td>V</td>	KZ Lac	52224.4928	0.0008	\mathbf{RG}	_	${ m G}2977-0238$	54827.6070	0.0007	HMB	V
V593 Lyr54339.48400.0008HMBV,RG 2977-023854831.55560.0008MVLVV593 Lyr54339.58610.0005HMBV,RG 2977-023854831.63190.0008MVLVDY Peg54728.44330.0007HOVG 3074-011454138.96930.0005HMB2-DY Peg54729.39120.0006BHO2VG 3074-011454139.99520.0005HMB2-DY Peg54729.46440.0004BHO2VG 3074-011454140.96990.0005HMB2-DY Peg54739.35300.0007SBLVG 3755-084553365.36010.0011SKVDY Peg54739.42580.0007SBLVG 3755-084553365.43530.0008SKVDY Peg54808.29770.0007MVLVG 3755-084553389.40680.0008SKVDY Peg54808.37080.0009MVLVG 3755-084553389.45880.0008SKVDY Peg54808.37080.0009SKV,L_CG 3755-08455349.55880.0008SKVG 2566-139853903.35010.0008SKV,L_CG 3755-084553419.69520.0016CWRVG 2566-139853903.53160.0007SKVG 3755-084553419.76980.0009CWRVG 2566-139853903.53160.0007SKVG 3755-084553419.84510.0008SK	V593 Lvr	54339.3819	0.0007	HMB	V.R	G2977-0238	54827.6831	0.0006	HMB	V
V593 Lyr54339.58610.0005HMBV,RG 2977-023854831.63190.0008MVLVDY Peg54728.44330.0007HOVG 3074-011454138.96930.0005HMB2-DY Peg54729.39120.0006BHO2VG 3074-011454139.99520.0005HMB2-DY Peg54739.35300.0007SBLVG 3074-011454140.96990.0005HMB2-DY Peg54739.35300.0007SBLVG 3755-084553365.36010.0011SKVDY Peg54808.29770.0007MULVG 3755-084553365.43530.0008SKVDY Peg54808.37080.0009MVLVG 3755-084553389.40680.0008SKVDY Peg54808.37080.0009MVLVG 3755-084553389.48250.0008SKVG 2566-139853896.45640.0009SKV,LcG 3755-084553405.69150.0007CWRVG 2566-139853903.35010.0008SKV,LcG 3755-084553419.69520.0016CWRVG 2566-139853903.33160.0007SKV,LcG 3755-084553419.69150.0009CWRVG 2566-139853903.33160.0007SKVG 3755-084553419.84510.0008CWRVG 2566-139853903.33600.0009SKVG 3755-084553419.84510.0008	V593 Lvr	54339.4840	0.0008	HMB	V.R.	G 2977-0238	54831.5556	0.0008	MVL	V
DY Peg 54728.4433 0.0007 HOV G G $3074-0114$ 54138.9693 0.0005 HMB2-DY Peg 54729.3912 0.0006 BHO2V G $3074-0114$ 54138.9693 0.0005 HMB2-DY Peg 54729.4644 0.0004 BHO2V G $3074-0114$ 54140.9699 0.0005 HMB2-DY Peg 54739.3530 0.0007 SBLV G $3074-0114$ 54140.9699 0.0005 HMB2-DY Peg 54739.4258 0.0007 SBLV G $3755-0845$ 53365.3601 0.0011 SKVDY Peg 54808.2977 0.0007 MVLV G $3755-0845$ 53389.4068 0.0008 SKVDY Peg 54808.3708 0.0009 MVLV G $3755-0845$ 53389.4068 0.0008 SKVDY Peg 54808.3708 0.0009 SKV, I_C G $3755-0845$ 53389.5588 0.0008 SKVG $2566-1398$ 53896.5470 0.0011 SKV, I_C G $3755-0845$ 53496.6915 0.0007 CWRVG $2566-1398$ 53903.3501 0.0007 SKV, I_C G G $3755-0845$ 53419.6952 0.0016 CWRVG $2566-1398$ 53903.5316 0.0007 SKV G $3755-0845$ 53419.8451 0.0008 CWRVG 2	V593 Lyr	54339 5861	0.0005	HMB	V R	G 2977-0238	54831 6319	0.0008	MVL	v
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DV Peg	54728 4433	0.0007	но	v,re v	G 2074 0114	5/138 9693	0.0005	HMB2	•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DI Teg	54720.4455	0.0007		v	$C_{2074-0114}$	54120.0052	0.0005	IIMD2 UMD9	-
DY Peg 54729.4644 0.0004 $BHO2$ V $G 3074-0114$ 54140.9699 0.0005 $HMB2$ -DY Peg 54739.3530 0.0007 SBLV $G 3755-0845$ 53365.3601 0.0011 SKVDY Peg 54739.4258 0.0007 SBLV $G 3755-0845$ 53365.4353 0.0008 SKVDY Peg 54808.2977 0.0007 MVLV $G 3755-0845$ 53389.4068 0.0008 SKVDY Peg 54808.3708 0.0009 MVLV $G 3755-0845$ 53389.4068 0.0008 SKVG 2566-1398 53896.4564 0.0009 SK V, I_C $G 3755-0845$ 53389.5588 0.0008 SKVG 2566-1398 53903.3501 0.0008 SK V, I_C $G 3755-0845$ 53405.6915 0.0007 CWRVG 2566-1398 53903.3501 0.0007 SK V, I_C $G 3755-0845$ 53419.6952 0.0016 CWRVG 2566-1398 53903.3516 0.0007 SK V, I_C $G 3755-0845$ 53419.7698 0.0009 CWRVG 2566-1398 53907.3409 0.0009 SK V $G 3755-0845$ 53426.3140 0.0008 SKVG 2566-1398 53909.3376 0.0009 SK V $G 3755-0845$ 53426.3140 0.0008 SKVG 2566-1398 53909.3376 0.0009 SK V, I_C $G 3755-0845$ 53426.3140 0.0007 CW	DI Feg	54729.3912	0.0000	DIIO2	V	$G_{2074-0114}$	54159.9952	0.0005	HMD2	-
DY Peg 54739.3530 0.0007 SBLV $G 3755-0845$ 53365.3601 0.0011 SKVDY Peg 54739.4258 0.0007 SBLV $G 3755-0845$ 53365.4353 0.0008 SKVDY Peg 54808.2977 0.0007 MVLV $G 3755-0845$ 53389.4068 0.0008 SKVDY Peg 54808.3708 0.0009 MVLV $G 3755-0845$ 53389.4068 0.0008 SKVG 2566-1398 53896.4564 0.0009 SK V, I_C $G 3755-0845$ 53389.5588 0.0008 SKVG 2566-1398 53896.5470 0.0011 SK V, I_C $G 3755-0845$ 53405.6915 0.0007 CWRVG 2566-1398 53903.3501 0.0008 SK V, I_C $G 3755-0845$ 53419.6952 0.0016 CWRVG 2566-1398 53903.4409 0.0007 SK V, I_C $G 3755-0845$ 53419.7698 0.0009 CWRVG 2566-1398 53903.5316 0.0007 SK V $G 3755-0845$ 53419.8451 0.0008 CWRVG 2566-1398 53907.3409 0.0009 SK V $G 3755-0845$ 53426.3140 0.0008 SKVG 2566-1398 53909.3376 0.0009 SK V, I_C $G 3755-0845$ 53426.3140 0.0009 SKVG 2566-1398 53909.3376 0.0009 SK V, I_C $G 3755-0845$ 53426.6189 0.0007 <	DI Peg	54729.4044	0.0004		V	G 3074-0114	54140.9099	0.0005		-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DY Peg	54739.3530	0.0007	SBL	V	G 3755-0845	53365.3601	0.0011	SN	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DY Peg	54739.4258	0.0007	SBL	V	G 3755-0845	53365.4353	0.0008	SK	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DY Peg	54808.2977	0.0007	MVL	V	m G~3755-0845	53389.4068	0.0008	SK	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DY Peg	54808.3708	0.0009	MVL	V	${ m G}~3755$ -0845	53389.4825	0.0008	SK	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	${ m G}2566\text{-}1398$	53896.4564	0.0009	$_{\rm SK}$	$_{\mathrm{V,I}_C}$	${ m G}~3755$ -0845	53389.5588	0.0008	SK	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	${ m G}2566\text{-}1398$	53896.5470	0.0011	SK	V,I_C	${ m G}~3755\text{-}0845$	53405.6915	0.0007	CWR	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	${ m G}25661398$	53903.3501	0.0008	SK	$_{\mathrm{V,I}_C}$	${ m G}~3755-0845$	53419.6952	0.0016	CWR	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	${ m G}2566\text{-}1398$	53903.4409	0.0007	$_{\rm SK}$	V, I_C	${ m G}3755-0845$	53419.7698	0.0009	CWR	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	${ m G}2566\text{-}1398$	53903.5316	0.0007	$_{\rm SK}$	v	m G~3755-0845	53419.8451	0.0008	CWR	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G 2566-1398	53907.3409	0.0009	SK	V	G 3755-0845	53426.3140	0.0008	SK	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G 2566-1398	53909 3376	0.0009	SK	V La	G 3755-0845	53426 3902	0.0009	SK	V
G 2566-1398 53909.5187 0.0009 SK V G 3755-0845 53426.7704 0.0007 CWR V	G 2566-1398	53909 4277	0.0007	SK	$V I_{\alpha}$	G 3755-0845	53426 6189	0.0007	CWB	V
	G 2566-1398	53909 5187	0 0009	SK	\mathbf{V}	G 3755-0845	53426 7704	0.0007	CWB	V

* G xxxx-xxxx denotes GSC identifiers.

Star^*	Epoch	Unc.	Obs.	Filter	Star	Epoch	Unc.	Obs.	Filter
${ m G}~3755\text{-}0845$	53426.8469	0.0011	CWR	V	G 3832-0152	53510.4814	0.0007	$_{\rm JVS}$	R
${ m G}~3755\text{-}0845$	53430.6517	0.0006	CWR	V	G 3832-0152	53513.3129	0.0008	SK	V
${ m G}~3755\text{-}0845$	53430.7276	0.0007	CWR	V	G 3832-0152	53518.4282	0.0007	$_{\rm JVS}$	R
${ m G}~3755\text{-}0845$	53430.8037	0.0006	CWR	V	G 3832-0152	53526.3747	0.0007	SK	V
${ m G}~3755\text{-}0845$	53433.6193	0.0004	CWR	V	G 3832-0152	53528.3843	0.0008	\mathbf{IR}	V
${ m G}~3755-0845$	53433.6972	0.0014	CWR	V	G 3832-0152	53529.3890	0.0007	$_{\rm JVS}$	\mathbf{R}
${ m G}~3755-0845$	53433.7732	0.0015	CWR	V	G 3832-0152	53529.4805	0.0008	$_{\rm JVS}$	\mathbf{R}
m G~3755-0845	53441.3060	0.0008	\mathbf{SK}	V	G 3832-0152	53530.3938	0.0008	$_{\rm JVS}$	\mathbf{R}
${ m G}~3755-0845$	53441.3812	0.0008	SK	V	G 3832-0152	53530.4851	0.0007	$_{\rm JVS}$	\mathbf{R}
${ m G}~3755-0845$	53468.6244	0.0004	CWR	V	G 3832-0152	53531.3071	0.0008	SK	V
m G~3755-0845	54137.2956	0.0012	\mathbf{RP}	V	G 3832-0152	53531.3983	0.0006	SK	V
m G~3755-0845	54137.3714	0.0009	\mathbf{RP}	V	G 3832-0152	53531.3986	0.0008	$_{\rm JVS}$	\mathbf{R}
G 3755-0845	54201.2933	0.0007	SK	B.V	G 3832-0152	53531.4898	0.0006	$_{\rm JVS}$	R.
G 3755-0845	54728.5743	0.0009	HO	V	G 3832-0152	53536.4221	0.0006	JVS	В
G 3755-0845	54827.2735	0.0009	HMB	v	G 3832-0152	53539.4368	0.0008	JVS	B
G 3755-0845	54827 3498	0.0008	HMB	v	G 3832-0152	53540 4411	0.0007	JVS	B
G 3755-0845	54827 3504	0.0008	SBL	v	G 3832-0152	53541 3550	0.0005	SK	V
G 3755-0845	54827.4265	0.0008	SBL	v	G 3832-0152	53541.4462	0.0006	SK	v
G 3755-0845	54827 5022	0.0000	HMB	v	$G_{3832-0152}$	53545 2820	0.0000	SK	V
G 3755-0845	54827 5025	0.0000	SBL	v	$G_{3832-0152}$	53545 3743	0.0001	SK	V
C 3755 0845	54827 5778		HMB	v	C 3832 0152	53553 4116		IVS	T
C 2755 0845	54027.5110	0.0003	UMD	v	C 2822 0152	59554 4179	0.0003	TVC	T
C 2755 0845	54827.0007	0.0008	UMD	v	C 2822 0152	53554.4175	0.0008	סס	I V
C 2755 0845	54020.2029	0.0009	IMD UMD	v	$G_{2822} = 0152$	54174.4470	0.0008	NF DD	V
C 2755 0845	54020.3301	0.0010	IMD UMD	v	$G_{2822} = 0152$	54174.5500	0.0000	NF SV	V
G 3733-0843	54626.4140	0.0008		V	G 3652-0152	54205.5114	0.0008	SK GV	V
G 3755-0845	54828.4910 54828.591	0.0008	нмв цмр	V	G 3803-0740	53795.4228	0.0007	SN GV	BV,I_C
G 3755-0845	54828.5071 F 4999 C 495	0.0008	нмв цмр	V	G 3803-0740	53795.0202		SN GV	B, V, I_C
G 3755-0845	54828.0425	0.0008	нмв цмр	V	G 3803-0740	53799.5740	0.0005	SN GV	B, V, I_C
G 3755-0845	54828.7190	0.0008	нмв	V	G 3803-0740	53815.3908	0.0000	5N GV	B,I_C
G 3755-0845	54830.2411	0.0008	HMB	V	G 3863-0740	53815.5884	0.0006	SK	B, V, I_C
G 3755-0845	54830.3169	0.0008	HMB	V	G 3863-0740	53821.5215	0.0006	SK	B, V, I_C
G 3755-0845	54830.6219	0.0009	HMB	V	G 3863-0740	53826.4626	0.0006	SK	B, V, I_C
G 3755-0845	54830.6976	0.0009	HMB	V	G 3863-0740	53835.7536	0.0007	CWR	V
G 3755-0845	54831.2302	0.0010	HMB	V	G 3863-0740	53838.7197	0.0006	CWR	V
G 3755-0845	54831.3064	0.0008	HMB	V	G 3863-0740	53842.6732	0.0008	CWR	V
G 3755-0845	54831.3827	0.0008	HMB	V	G 3863-0740	53842.8700	0.0006	CWR	V
G 3755-0845	54838.3074	0.0008	MVL	V	G 3863-0740	53843.6649	0.0006	CWR	V
G 3755-0845	54838.3834	0.0008	MVL	V	G 3863-0740	53843.8599	0.0006	CWR	V
G 3832-0152	53474.4005	0.0005	$_{\rm JVS}$	V	G 3863-0740	53845.6379	0.0008	CWR	V
G 3832-0152	53479.4247	0.0007	$_{\rm JVS}$	V	G 3863-0740	53845.8361	0.0007	CWR	V
G 3832-0152	53487.3715	0.0006	$_{\rm JVS}$	V	G 3934-1904	53924.4033	0.0008	SK	B,V,I_C
G 3832-0152	53487.4630	0.0009	$_{\rm JVS}$	V	G 3934-1904	53924.5124	0.0008	SK	B,V,I_C
G 3832-0152	53488.3764	0.0007	$_{\rm JVS}$	V	G 3934-1904	53931.3966	0.0007	SK	B,V,I_C
m G~3832-0152	53488.4679	0.0008	$_{\rm JVS}$	V	G 3934-1904	53931.5057	0.0008	SK	$_{\mathrm{B,V,I}_C}$
G 3832-0152	53488.5586	0.0008	$_{\rm JVS}$	V	G 3934-1904	53935.3304	0.0008	SK	$_{\mathrm{B,V,I}_C}$
G 3832-0152	53489.2894	0.0006	SK	V	G 3934-1904	53935.4395	0.0009	SK	$_{\mathrm{B,V,I}_C}$
${ m G}~3832\text{-}0152$	53489.3807	0.0007	SK	V	G 3934-1904	53941.3401	0.0008	SK	$^{\mathrm{B,V,I}_{C}}$
${ m G}~3832\text{-}0152$	53489.3810	0.0008	$_{\rm JVS}$	Ι	G 3934-1904	53941.4491	0.0007	SK	$^{\mathrm{B,V,I}_{C}}$
${ m G}~3832\text{-}0152$	53489.4720	0.0007	SK	V	G 3934-1904	53941.5586	0.0008	SK	$^{\mathrm{B},\mathrm{I}_C}$
${ m G}~3832\text{-}0152$	53489.4723	0.0009	$_{\rm JVS}$	Ι	G 3934-1904	53944.3994	0.0008	SK	$^{\mathrm{B,V,I}_{C}}$
${ m G}~3832\text{-}0152$	53489.5639	0.0006	$_{\rm JVS}$	Ι	G 3934-1904	53944.5084	0.0009	SK	$^{\mathrm{B,V,I}_{C}}$
$ \mathrm{G}\: 3832\text{-}0152 $	53489.5640	0.0006	SK	V	G 3934-1904	53944.6177	0.0005	SK	V
$ \mathrm{G}\: 3832\text{-}0152 $	53496.4141	0.0009	$_{\rm JVS}$	Ι	G 3934-1904	54368.6888	0.0009	HMB2	-
${ m G}3832\text{-}0152$	53496.5057	0.0008	$_{\rm JVS}$	Ι	G 3934-1904	54370.6557	0.0008	HMB2	-
${ m G}3832\text{-}0152$	53496.5973	0.0008	$_{\rm JVS}$	Ι	G 3934-1904	54376.6654	0.0008	HMB2	-
${ m G}3832\text{-}0152$	53497.4195	0.0008	$_{\rm JVS}$	Ι	G 3934-1904	54377.6487	0.0008	HMB2	-
$ \mathrm{G}3832\text{-}0152 \\$	53497.5107	0.0008	$_{\rm JVS}$	Ι	G 3934-1904	54379.6158	0.0007	HMB2	-
${ m G}3832\text{-}0152$	53497.6026	0.0007	$_{\rm JVS}$	Ι	G 3934-1904	54380.5989	0.0008	HMB2	-
${ m G}3832\text{-}0152$	53500.3420	0.0008	$_{\rm SK}$	V	G 3934-1904	54380.7083	0.0007	HMB2	-
${ m G}$ 3832-0152	53510.3902	0.0007	$_{\rm JVS}$	R	G 3934-1904	54649.5086	0.0008	HMB	V

Table 3: Observed times of maximum (continued).

* G xxxx-xxxx denotes GSC identifiers.

Table 3: Obse	erved times o	f maxim	um (con	.tinued).
Star^*	Epoch	Unc.	Obs.	Filter
G 3934-1904	54708.4470	0.0007	SBL	V
${ m G}\ 45191078$	54823.4146	0.0010	HMB	V
${ m G}\ 45191078$	54827.3435	0.0007	HMB	V
${ m G}\ 45191078$	54828.3257	0.0008	HMB	V
${ m G}\ 45191078$	54828.4660	0.0008	HMB	V
${ m G}\ 45191078$	54830.4304	0.0007	HMB	V
${ m G}\ 45191078$	54830.5709	0.0006	HMB	V
${ m G}\ 45191078$	54830.7109	0.0009	HMB	V
${ m G}\ 4552\text{-}1498$	53321.5354	0.0007	BHO	V
${ m G}\ 4552\text{-}1498$	53321.5912	0.0006	BHO	V
${ m G}\ 4552\text{-}1498$	53321.6474	0.0007	BHO	V
${ m G}\ 4552\text{-}1498$	53321.7025	0.0007	BHO	V
${ m G}\ 4552\text{-}1498$	53534.3983	0.0006	\mathbf{IR}	V
${ m G}\ 4552\text{-}1498$	53534.4543	0.0008	\mathbf{IR}	V
${ m G}\ 4552\text{-}1498$	53792.3008	0.0010	BHO	V
${ m G}\ 4552\text{-}1498$	53792.3566	0.0013	BHO	V
${ m G}\ 4552\text{-}1498$	53810.3273	0.0005	BHO	V
${ m G}\ 4552\text{-}1498$	53810.3832	0.0006	BHO	V
${ m G}\ 4552\text{-}1498$	53810.4388	0.0005	BHO	V
${ m G}\ 4552\text{-}1498$	54172.3734	0.0006	HMB	$_{\rm V,R}$
${ m G}\ 4552\text{-}1498$	54172.4290	0.0006	HMB	$_{\rm V,R}$
${ m G}\ 4552\text{-}1498$	54172.4855	0.0007	HMB	$_{\rm V,R}$
${ m G}\ 4552\text{-}1498$	54172.5407	0.0007	HMB	$_{\rm V,R}$
${ m G}\ 4552\text{-}1498$	54172.5965	0.0007	HMB	$_{\rm V,R}$
${ m G}\ 4552\text{-}1498$	54172.6521	0.0007	HMB	$_{\rm V,R}$
${ m G}\ 4552\text{-}1498$	54209.3203	0.0009	\mathbf{IR}	V
${ m G}\ 4552\text{-}1498$	54209.3764	0.0008	\mathbf{IR}	V
${ m G}\ 4556\text{-}1113$	53813.3316	0.0006	BHO	V
${ m G}\ 4556\text{-}1113$	53813.4178	0.0007	BHO	V
G 4556-1113	53814.3676	0.0006	BHO	V
G 4556-1113	53814.4539	0.0008	BHO	V

Table 3: Observed times of maximum (continued).

* G xxxx-xxxx denotes GSC identifiers.

Number 5879

Konkoly Observatory Budapest 4 March 2009 *HU ISSN 0374 - 0676*

NEW PHOTOMETRY OF BLUE STRAGGLERS IN FOUR GALACTIC OPEN CLUSTERS

TAŞ, GÜNAY; EVREN, SERDAR; ÖZDARCAN, ORKUN; DAL, HASAN A.; SİPAHİ, ESİN

Ege University Observatory, 35100 Bornova - İzmir - TURKEY

Blue straggler stars are very interesting subjects according to the stellar evolution theory. The appearance of the stars is not expected on the main-sequence and on the bluer side of the cluster turn-off point according to the standard evolution theory. Although there are some scenarios that have tried to clarify their locations on the H-R diagram, their origins are still considered as uncertain. In this context, the variation mechanisms of blue stragglers can provide a clue to explain their existence and to derive their physical parameters. Hrivnak (1977), Lapasset and Ahumada (1996), Mateo (1993), Maitzen et al. (1981) can be given as example studies to such attempts. The locations of stars in color-magnitude and color-color diagrams are significant to determine the photometrical cluster membership probability of the stars but a more accurate photometry is needed. Hence, we initiated an observation program for blue straggler stars of four galactic open clusters. The observations were carried out with a 48-cm Cassegrain telescope equipped with a three-channel photometer, using broad-band Johnson UBV filters, at Ege University Observatory during the 2006-2007 observing season. The blue straggler stars, which catalogued in WEBDA database for four open clusters, namely IC 4725, Melotte 111, NGC 1342 and NGC 6871, were observed with the comparison stars chosen from same clusters. The observations were reduced from the effects of atmospheric extinction; and then heliocentric corrections to the observing times were applied. The standard stars with appropriate color and brightness, taken from the lists of Landolt (1992) and Harmanec et al. (1994), were used for transformation to the standard system. The galactic and equatorial coordinates (from SIMBAD) and E(B-V) color excesses (from WEBDA) of the four open clusters can be seen in Table 1.

	Galactio	coordinates	Equatorial	coordinates	
Cluster	l	b	RA(2000)	DEC(2000)	E(B-V)
	$(^{\circ})$	$(^{\circ})$	(h m)	(° ′)	(mag)
IC 4725	13.69	-04.42	18 32	-19 07	0.476
Melotte 111	222.51	+83.40	$12 \ 22$	+25 50	0.013
NGC 1342	155.19	-15.12	$03 \ 33$	+37 25	0.319
NGC 6871	72.65	+02.05	20 06	+35 47	0.443

Table 1. Coordinates and B - V color excesses of the four open clusters.

We determined the interstellar reddening in the line of sight by the color-color diagram. The estimations of color excesses in U - B and B - V were made by using the sliding fit method and adopting the slope of the reddening line as 0.72. The results for both blue stragglers and the comparison stars are listed in Table 2. 'BS' in the fourth column (Star type) denotes blue straggler candidates listed in the WEBDA database.

Table 2. New photoelectric photometry of blue stragglers and comparison stars in four galactic open clusters.

Cluster	WEBDA	HD/BD	Star	V	B - V	U - B	E(B-V)	E(U-B)
	No.	No.	$_{\mathrm{type}}$	(mag)	(mag)	(mag)	(mag)	(mag)
m NGC1342	1	21773		8.490(6)	0.416(10)	-0.133(13)	0.59	0.43
m NGC1342	2	21728	BS	8.815(5)	0.235(10)	-0.142(13)	0.35	0.26
m NGC1342	3	21785	BS	9.273(5)	0.247(8)	0.141(10)	0.27	0.20
m NGC1342	4	275501		9.362~(6)	1.214(11)	1.108(16)	0.34	0.25
m NGC1342	6	275509		9.652(8)	1.109(12)	0.895~(20)	0.28	0.20
m NGC1342	7	275507		$10.160\ (6)$	$1.123\ (11)$	0.824~(19)	0.34	0.24
m NGC1342	8	275510		$10.356\ (5)$	$0.324\ (10)$	$0.203\ (17)$	0.35	0.26
m NGC1342	10	275502		10.719(7)	$0.430\ (11)$	$0.331\ (17)$	0.29	0.21
m NGC1342	11	275508		$10.669\ (7)$	$0.390\ (9)$	$0.224\ (11)$	0.20	0.14
m NGC1342		275495		9.364(5)	$0.446\ (9)$	-0.070(10)	0.60	0.44
NGC 6871	4	190864	BS	7.764(4)	0.155~(9)	-0.809(10)	0.48	0.34
NGC 6871	5	227634	BS	7.923(9)	$0.203\ (14)$	-0.676(11)	0.49	0.35
NGC 6871	7	227586	BS	8.803(6)	0.158(11)	-0.694(14)	0.45	0.32
NGC 6871	8	$+35^{\circ} 3956$	BS	8.833~(6)	$0.165\ (15)$	-0.627 (18)	0.43	0.31
NGC 6871	1163	227767		8.871(3)	$0.016\ (8)$	-0.816(11)	0.31	0.22
$\operatorname{NGC} 6871$	1866	191201		7.257(4)	$0.110\ (9)$	-0.808(10)	0.43	0.31
Melotte 111	89	107655		6.243~(6)	$0.009\ (10)$	-0.010(11)	0.04	0.03
Melotte 111	136	108449		8.271(7)	$0.263\ (11)$	$0.043\ (16)$	0.34	0.24
Melotte 111	139	108486		6.684(3)	0.170~(9)	$0.101\ (12)$	0.20	0.14
Melotte 111	146	108662	\mathbf{BS}	$5.311\ (3)$	-0.020 (8)	-0.150(10)	0.05	0.03
IC 4725	6	$-19^{\circ} 5032$		$9.553\ (7)$	$0.192\ (11)$	-0.140(12)	0.31	0.22
IC 4725	50	170682	BS	7.907~(8)	$0.290\ (19)$	-0.071 (23)	0.41	0.29
IC 4725	91	170719	BS	8.060(12)	$0.254\ (20)$	-0.056(22)	0.36	0.26
IC 4725	97	$-19^{\circ} 5044$	BS	$8.724\ (15)$	$0.320\ (22)$	-0.056(21)	0.44	0.32
IC 4725	163	170835	BS	8.765(11)	0.200(16)	-0.480(18)	0.43	0.31
IC 4725	167	170836	BS	8.952(12)	$0.267 \ (19)$	-0.120(24)	0.40	0.29
IC 4725	233	170763		$8.948\ (5)$	$0.261\ (8)$	-0.028(10)	0.36	0.26

Ahumada and Lapasset (2007) suggested new criteria to select the blue straggler stars in published data in WEBDA database; and accordingly, they excluded the stars NGC 1342 1 and 10. Both stars are also listed in Table 2 to present their new photometry. On the other hand, NGC 1342 4 (HD 275501) is tabulated by its photometric values, using Ahumada and Lapasset (2007)'s study, as $V = 9^{m}21$, $B - V = 0^{m}24$, $U - B = 0^{m}17$. The literature related to this star (Hoag et al. 1961, Jennens and Helfer 1975, Francic 1989, Svolopoulos 1961, Bersier 1996, Pena et al. 1994) and our observations showed that HD 275501 is a late type star. It is thought that there is a misprint; and the values mentioned above for this star were similar to those of NGC 1342 3. NGC 1342 3 is believed to be wrongly labeled as NGC 1342 4 in the catalogue of Ahumada and Lapasset (2007) since its location on the H-R diagram was more appropriate to be a blue straggler candidate. Thus, NGC 1342 3 was labeled as blue straggler star in Table 2. The means of the color excesses listed in Table 2 were calculated for each cluster and then adopted as cluster's color excess. NGC 1342 1, on the other hand, was excluded since its color excesses have a very different value than other blue stragglers in the same cluster. This can be a photometric evidence for NGC 1342 1 that it may not be a member of the cluster. Consequently, we determined E(B - V) reddenings of 0.40, 0.33, 0.46, and 0.05 mag for the clusters IC 4725, NGC 1342, NGC 6871, and Melotte 111, respectively.

The photometry of stars listed in Table 2 were checked for variability. As for the longterm observations of the blue stragglers included in this study; we detected that one of them, namely HD 21728, showed light variations.

Although HD 21728 has been classified as a chemically peculiar star (e.g. Svolopoulos 1961, Young and Martin 1973, Abt 1985, Renson 1992), its photometric variation was not identified up to now. We found a light variation with a period of 5.340 days, using the Phase Dispersion Minimization Technique of PERANSO period analysis program, for the star. The amplitude of the variation was 0.04 and 0.05 mag in B and V filters, respectively. We calculated the phases of the light and color curves presented in Figure 1 using the following light elements:

$HJD = 2454048.2562 + 5.340(28) \times E,$

where T_0 is the time of first observation point and P is the period determined from period analysis of V data. The star's light curve has asymmetric shape, while its color curve does not establish a clear variation as can be seen from Figure 1. It is known that the light curve shapes of the chemically peculiar stars can change in different filters (e.g. Maitzen 1989, Adelman 1997). The determination of physical parameters of blue stragglers is significant to test their formation scenarios and to comprehend their origin. Consequently, their photometric or spectral variability is a fairly useful tool. The magnetic peculiar stars, which are member of cluster, are also very valuable objects to study their evolution (North et al. 2008). In this context, additional multicolor broad and intermediate band photometry of HD 21728 is considered as necessary for future studies.

Figure 1. The first light and color curves of HD 21728.

The authors would like to thank to Ege Universitesi, Araştırma Fon Saymanlığı for supporting this study with the Project No. 2005 / FEN / 050.

References:

Abt, H. 1985, ApJ, 294, L103

- Adelman, S.J., 1997, PASP, 109, 9
- Ahumada, J.A., Lapasset, E., 2007, A&A, 463, 789
- Bersier, D., 1996, *A&A*, **308**, 514
- Francic, S.P., 1989, AJ, 98, 888
- Harmanec, P., Horn, J., Juza, K., 1994, A&AS, 104, 121
- Hoag, A.A., Johnson, H.L., Iriarte, B., Mitchell, R.I., Hallam, K.L., Sharpless, S., 1961, PUSNO, 17, 347
- Hrivnak, B.J., 1977, IBVS, No. 1293
- Jennens, P.A., Helfer, H.L., 1975, MNRAS, 172, 681
- Landolt, A. U., 1992, AJ, **104**, 340
- Lapasset, E., Ahumada, J.A., 1996, A&A, 314, 448
- Maitzen, H.M., Seggewiss, W., Tueg, H., 1981, A&A, 96, 174
- Maitzen, H.M., 1989, *RvMA*, 2, 205
- Mateo, M., 1993, ASPC, 53, 74
- North, P.L., Babel, J., Erspamer, D., 2008, Contributions of the Astronomical Observatory Skalnaté Pleso, **38**, 375
- Pena, J.H., Peniche, R., Bravo, H., Yam, O., 1994, RMxAA, 28, 7
- Renson, P., 1992, *BICDS*, **40**, 97
- SIMBAD database, http://simbad.u-strasbg.fr/simbad/sim-fid
- Svolopoulos, S.N., 1961, ApJ, 134, 612
- Young, A., Martin, A.E., 1973, ApJ, 181, 805
- WEBDA database, http://www.univie.ac.at/webda/navigation.html

Number 5880

Konkoly Observatory Budapest 16 March 2009 *HU ISSN 0374 - 0676*

MW UMA, A DETACHED BINARY: OBSERVATIONS AND ANALYSIS

NELSON, ROBERT H.^{1,2}

¹ 1393 Garvin Street, Prince George, BC, Canada, V2M 3Z1 e-mail: b-o-b.nelson@shaw.ca [remove dashes]
 ² Guest investigator, Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council of Canada

While studying the optical variability of ROSAT X-ray sources, Robb et al. (2002) found MW UMa (= GSC 4153-0634 = RXJ 114302+603435) to be a detached eclipsing binary of period 1.2347 days. They presented eight CCD times of minima, photometry, a light curve in $R_{\rm C}$ (Cousins), and a classification spectrum. The spectrum and the photometry yielded approximate spectral types of F6V +F9V. The full light curves in V, $R_{\rm C}$, and $I_{\rm C}$ were kindly forwarded to the author.

During April of 2006, the author took five high resolution (10 Å/mm reciprocal dispersion) spectra at the Dominion Astrophysical Observatory (DAO) in Victoria, British Columbia, Canada; he then used the Rucinski broadening functions (Rucinski, 2004) to obtain radial velocity (RV) curves (see Nelson, et al., 2006a for details). The spectral range was 5004-5267 Å and the reciprocal dispersion, 10 Å/mm. A log of DAO observations and RV results is presented in Table 1.

		Table 1:			
DAO	Mid Time	Exposure	Phase at	V_1	V_2
Image $\#$	(HJD-2400000)	(sec)	$\operatorname{Mid}\operatorname{-exp}$	$(\rm km/s)$	$(\rm km/s)$
3697	53847.9490	1422	0.778	122.2	-138.4
3720	53848.9623	3600	0.599	71.5	-84.5
3729	53849.7431	3600	0.231	-124.1	134.5
3731	53849.7853	3600	0.266	-122.9	138.0
3736	53849.8639	3600	0.329	-107.4	123.1

The following elements were used for phasing throughout (see Nelson, 2006b for the O-C relation):

JD Hel Min I = 52402.3277(1) + 1.23475(80)E

The author used the 2004 version of the Wilson-Devinney (WD) light curve and radial velocity analysis program with the Kurucz atmospheres (Wilson and Devinney, 1971, Wilson, 1990, Kallrath, et al., 1998) as implemented in the Windows software WDwint (Nelson, 2005) to analyze the data. To get started, a spectral type F6V mentioned above and a temperature $T_1 = 6514 \pm 240$ K were used; interpolated tables from Cox (2000)

which gave $\log g = 4.368$ were used; an interpolation program by Terrell (1994) gave the (van Hamme, 1993) limb darkening values; and finally, a logarithmic (LD = 2) law for the extinction coefficients was selected, appropriate for cooler stars (Bessell, 1979). Convective envelopes were chosen for both stars. (Radiative envelopes were later tried as a check but gave a poorer fit.)

Mode 2 (for detached stars) was chosen based on the general appearance of the light curves. Mindful that, for detached systems, stellar size is not well constrained by the light curves (Terrell, 2009), the author determined the flux ratio based on the areas under the (well-defined) peaks in the Rucinski broadening function (see Fig. 1). This is justified (Rucinski, 2008) because the Rucinski broadening functions (Rucinski, 2004) are linear. Values were taken for all the spectra; a mean value of $Flux_2/Flux_1 = 0.690 \pm 0.003$ (sd of mean) was obtained. (Note that this was for a wavelength band centred at 5136 Angstroms; it was taken to represent the V band, the closest available band.)

Figure 1. A Rucinski broadening function for MW UMa, image #3697.

During modelling, convergence was attained through the method of adjusting sets of uncorrelated parameters (fixed parameters are given in Table 2). In particular, the mass ratio $q = M_2/M_1$ was held fixed because this value (0.886 ± 0.003) was well determined from the RV curves; in contrast, it is not well constrained from the photometric data. Various starting values of Ω_1 were used and the DC procedure followed through to a best solution. The resultant flux ratios = L_2/L_1 were then found and compared to the required value of 0.690. In this way, the optimal value for Ω_1 was found and a consistent solution found.

To investigate the situation further, the author made use of a contour-plotting routine in WDwint in which the best model served as the starting point, after which the program varied two parameters – in this case, Ω_1 and Ω_2 (the surface potentials of stars 1 and 2, resp.) – over a matrix of 100 preset values. For each value of these two parameters, it searched for a best fit varying other selected parameters (in this case, L_1 , T_2 , and inclination *i*) over two iterations or loops (each loop varying one parameter, making the correction, then on to the next parameter, then on to the third). Mass ratio, *q*, was kept fixed, as mentioned above. A long 'rift valley' in $\Omega_1 - \Omega_2$ space resulted, in which low values of the sum of residuals ($\Sigma \omega_{\rm res}^2$) nearly equaled that of the best solution all the way along the trough. (See Fig. 2.) This result underscored the need for independent flux ratio determinations obtained from the spectra, else the solution would be truly indeterminate. The lines of constant flux ratio (not shown) are lines of positive slope; the one for the required value neatly intersected the imaginary line along the trough for the best (spotted) solution (marked by a cross).

The author then ran a set of runs using the square root law (LD = 3), interacting with

the above contour plot to get Ω_2 as a function of Ω_1 . The best solution yielded a sum of the residues indistinguishable from the solution with LD = 2; further, there was no significant change in any of the output values.

Runs with non-zero eccentricity were attempted, but with the formal errors close to the final value of 0.001, circular orbits were adopted. Two separate runs were made: Model 0: no spots, and Model 1: spots of star 1. The final results for both models are given in Table 4. It may be seen that Model 1 (spots on star 1) gives a significantly lower residual than the unspotted model and a much better fit visually; hence it is adopted (but the unspotted results given for comparison). Note that the quoted errors are formal errors produced by the WD program; actual errors may be larger. Also the quoted error in T_2 is relative to T_1 – that is, it is the error in $(T_2 - T_1)$. The absolute error in T_1 is much larger, corresponding to half one spectral sub-class (so obviously, the absolute error in T_2 will be of the same order). Third light was tested for, but no significant differences from zero were found.

The fundamental parameters, using the results from Model 1 are given in Table 3. Also, the interstellar coefficient, $A_V = 0.19 \pm 0.09$ was taken from Robb, et al. (2002) to yield an estimate of the distance.

Figure 2. A contour plot of $\Sigma \omega_{\text{res}}^2$ plotting Ω_1 versus Ω_1 .

	_	Quantity Value Err			Error				
		•	Star 1	Star 2					
	_	q	0.320	0.320	fixed]			
		Å	0.500	0.500	fixed	1			
		x (bol)	0.639	0.644	fixed	1			
		\dot{y} (bol)	0.241	0.225	fixed]			
		x(V)	0.710	0.741	fixed	1			
		u(V)	0.275	0.257	fixed	1			
		$x(R_{\rm C})$	0.637	0.669	fixed	1			
		$\frac{u}{R_{\rm C}}$	0.285	0.271	fixed	1			
		$x(I_{\rm C})$	0.553	0.585	fixed]			
		$y(I_{\rm C})$	0.276	0.264	fixed]			
	_	0 (- /	T -11-	0	L	<u> </u>			
<u> </u>	. 1	0, 1		3:	0	0 0	0.0		
Fundamental		Star 1	Star 1	Star 1	Star	2 Stai	Star 2 Star 2		
Quantity		Tabular	WD	error	Tabul	ar W.	D E	rror	
$\operatorname{Sp.}$ Type		F6 V	-	-	F9 V			_	
${ m Mass}(M_0)$		1.32	1.28	0.10	1.11	1.1	.4 ().09	
Radius (R_0)		1.26	1.23	0.01	1.14	1.1	.8 ().01	
$\log g$ ($\log q \; (\mathrm{cgs})$		4.36	0.004	4.37	4.3	5 0	.004	
Luminosity (L_0)		2.56	2.47	0.36	1.60	1.7	'5 (0.25	
Distance (pc)		_	159	11	_	_		_	
	(1)		Table	4.					
Quantity Model 0		Model 1	Error	4: Ouant	ity	Model 0	Mode	<u>-11</u>	Error
	(no spot)	(spot on 2) –			no spot)	(spot c	(n 2)	_
T_1 (K)	6514	6514	130	L_{2}/L_{1}	(V)	0.670	0.69) 0	-
T_2 (K)	6026	6112	22	a (solar)	radii)	6.48	6.4	9 (0.008
Ω_1	6.27	6.17	0.02	$V_{\gamma}~({ m km/s})$		-0.7	-0.'	7	0.3
Ω_1	5.89	5.95	0.02	r_1 (pole)		0.185	0.18	39 (0.001
q = M2/M1	0.886	0.886	0.005	$r_1 (\text{point})$		0.188	0.19)2 (0.001
i (deg)	82.90	82.78	0.05	r_1 (side)		0.186		<i>i</i> u (0.001
Spot Lat (deg)	$\mathbf{n}\mathbf{a}$	90	30	r_1 (ba	ck)	0.188	0.19	<u>и</u> (0.001
Spot Lng (deg)	$\mathbf{n}\mathbf{a}$	185	2	r_2 (pc	ole)	0.183	0.18	30 C	0.001
Spot Rad. (deg)	$\mathbf{n}\mathbf{a}$	74	5	r_2 (poi	int)	0.186	0.18	54 (U.001
Spot Temp fac	na	0.992	0.004	r_2 (side)		e) 0.186		52 (U.001
$L_1/(L_1+L_2)$ (V)	0.592	0.592	0.002	r_2 (back)		0.186 0		33 (0.001
$L_1/(L_1+L_2)$ (R)	0.578	0.581	0.002	$\Sigma \omega_{ m re}^2$	es	0.02140	0.018	532	-
$L_1/(L_1+L_2)(I)$	0.567	0.571	0.002						

The resultant V light curves are displayed in Figs. 3 and 4 together with the residuals, and the radial velocity curves, in Fig. 5. A 3-dimensional representation from Binary Maker 3 (Bradstreet, 1993) is displayed in Fig. 6. Fits for all colours are found in the on-line version in Figs. 7-8.

The validity of spots resulting from WD analysis is, in the opinion of the author, tenuous. Spots are added because they yield significant improvements to the fit (as happened here). One needs to use care, however, as the unrestrained addition of spots can, in principle, fit anything!

Figure 3. Photometric Data and WD Output (V, top panel), residual (bottom panel) – Model 0 (no spot)

Figure 4. Photometric Data and WD Output (V, top panel), residual (bottom panel) – Model 1 (with spot)

Figure 5. Radial Velocity Data and WD Output

Figure 6. Binary Maker depiction of the system at phases 0.75 and 0.97 respectively
In conclusion, MW UMa is a detached binary with temperatures of about 6500 and 6100 K, and luminosities of about 2.6 and 2.5 solar units respectively. Reference to the evolutionary tracks of Schaller et al. (1992) for Y = 0.300 and z = 0.020 reveals that both stars are unevolved from the main sequence.

Acknowledgements. It is a pleasure to thank Russ Robb, at the University of Victoria, for suggesting this star and for providing the photometric data. It is also a pleasure to thank the staff members at the DAO (especially Dmitry Monin and Les Saddlemyer) for their usual splendid help and assistance. Thanks are also due to an anonymous referee for pointing out problems with the original paper, and to Dirk Terrell for his advice in the modelling process and for reviewing the final manuscript.

References:

- Bessell, M.S., 1979, PASP, 91, 589
- Bradstreet, D.H.; 1993, Binary Maker 2.0, An Interactive Graphical Tool for Preliminary Light Curve Analysis, in Milone, E.F. (ed.) Light Curve Modelling of Eclipsing Binary Stars, pp 151-166 (Springer, New York)
- Cox, A.N., ed, 2000, Allen's Astrophysical Quantities, 4th ed., (Athlone Press, London).
- Kallrath, J., Milone, E.F., Terrell, D., and Young, A.T., 1998, ApJ, 508, 308.
- Nelson, R.H., 2005, Software, by Bob Nelson,
 - http://members.shaw.ca/bob.nelson/software1.htm
- Nelson, R.H., Terrell, D., & Gross, J., 2006a, IBVS, 5715
- Nelson, R.H., 2006b, Eclipsing Binary O-C Files,
 - http://www.aavso.org/observing/programs/eb/omc/nelson_omc.shtml
- Robb, R.M., Thanjavur, K., and Clem, J.L., 2002, IBVS, 5305
- Rucinski, S. M., 2004, IAUS, 215, 17, in: Stellar Rotation, ed.: A. Maeder, P. Eenens, San Francisco, ASP
- Rucinski, S. M. 2008, private communication
- Schaller, G., Schaerer, D., Meynet, G and Maeder, A., 1992, A&ASS, 96, 269
- Terrell, D., 1994, Van Hamme Limb Darkening Tables, vers. 1.1.
- Terrell, D., 2009, private communication
- van Hamme, 1993, AJ, 106, 2096
- Wilson, R.E., and Devinney, E.J., 1971, ApJ, 166, 605
- Wilson, R.E., 1990, ApJ, 356, 613

Number 5881

Konkoly Observatory Budapest 23 March 2009 *HU ISSN 0374 - 0676*

HD 190336 A NEW β Cep STAR

JURCSIK, J.¹; SÓDOR, Á.¹; HAJDU, G.²

¹ Konkoly Observatory of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest, Hungary; e-mail: name@konkoly.hu

² Eötvös Loránd University, Department of Astronomy, P.O. Box 32, H-1518 Budapest, Hungary

HD 190336 ($m_V \approx 8^{\text{m}6}$, $\alpha_{2000.0} = 20^{\text{h}03^{\text{m}}18^{\text{s}}68}$, $\delta_{2000.0} = +33^{\circ}26'59''.7$) was found to be an unsolved new variable with $f = 4.45732 \text{ cd}^{-1}$ frequency and 0.0247 mag amplitude by Koen and Eyer (2002) during the revision of the epoch photometry data of the Hipparcos catalogue. This star lies in the field that was observed by the HAT-5 telescope in June and July 2003 (Hartman et al. 2004). Based on these data the HATNET variability survey classified HD 190336 as a pulsating variable with P = 0.2244 d period ($f = 4.45633 \text{ cd}^{-1}$). Although the HAT-5 light curve of HD 190336 shows it definitely that the star is not monoperiodic (Fig. 1), no detailed analysis of the available photometric data of HD 190336 has been performed previously. Photometric time series of HD 190336 was also observed with the Optical Monitoring Camera (OMC, Mas-Hesse et al., 2003) on board the Integral satellite (Winkler et al., 2003). The FITS format OMC data were converted into ASCII tables using the OMC2ASCII program as described in Sokolovsky (2007).

Table 1 summarises the log of the photometric data available for HD 190336.

Source	Observation period [JD]	number of data [*]	filter
Hipparcos	$2447894{-}2449046$	138	Hip
OMC	24525952453961	296	V
HAT-5	$2452800{-}2452830$	756	I_C

 Table 1. Photometric observations of HD 190336

The most deviant data points are omitted

The spectral type of HD 190336 was classified to be B0.7 II-III (Walborn, 1971), its empirical temperature calibrations gave log $T_{\rm eff} = 4.37$ (Gulati et al., 1989). Based on its period, amplitude, shape and variability of the light curve, the star can be classified as a new β Cep variable. Although all these data were available previously, HD 190336 was not listed as a candidate β Cep star in the recent catalogue of galactic β Cep stars (Stankov & Handler, 2005).

The Fourier spectrum of the HAT-5 data shows 6 distinct frequencies in the $4-5 \text{ cd}^{-1}$ frequency range, forming two equidistant triplets with $\Delta f = 0.135 \text{ cd}^{-1}$ spacing. Three combination frequency components can also be detected. Cleaned spectra of the HAT-5 observations of HD 190336 are shown in Fig. 2. (See Roberts et al., 1987, on the application of the Clean algorithm on Fourier amplitude spectra of variable star time

series.) The positions of the equidistant triplets and their linear combination frequencies are marked in Fig. 2. The detected frequencies and their Fourier amplitudes and phases are listed in Table 2. Frequency triplets and doublets with the same frequency spacing were detected in other β Cep variables also (see e.g. Handler, 2005). A trivial explanation of equidistant triplets is rotational splitting, however e.g., Handler et al. (2006) interpreted the equidistant spacing of the triplet frequencies detected in the spectrum of 12 Lac as accidental because the components were found to belong to different order l modes.

Figure 1. HAT-5 light curve of HD 190336.

	frequency amplitude / error		phase [*] / error
	cd^{-1}	mag	rad
$f_1 \approx f_2 - \Delta f$	4.1894	0.0083 0.0003	4.04 0.08
f_2	4.3269	0.0134 0.0003	0.93 0.05
$f_3pprox f_2+\Delta f$	4.4576	0.0245 0.0003	3.94 0.03
$f_4 pprox f_5 - \Delta f$	4.5347	0.0064 0.0003	3.89 0.10
f_5	4.6665	0.0125 0.0003	4.37 0.05
$f_6 pprox f_5 + \Delta f$	4.8074	0.0054 0.0003	6.17 0.12
$f_7 \approx f_1 + f_6 = f_2 + f_5 = f_3 + f_4$	8.9908	0.0028 0.0004	3.50 0.24
$f_8\approx f_3+f_5=f_2+f_6$	9.1361	0.0017 0.0004	3.37 0.39
$f_9 pprox f_4 + f_5$	9.2040	0.0018 0.0004	3.44 0.36

 Table 2. Frequencies detected in the HAT-5 data of HD 190336

* Initial epoch $T_0 = 2\,452\,800.0$

Figure 2. Clean spectra of the HAT-5 observations of HD 190336. Marks show the positions of equidistant triplets with 0.135 cd^{-1} spacing, and the exact positions of the linear combination frequencies.

Figure 3. Hipparcos, Integral OMC and HAT-5 light curves of HD 190336 folded with the three main frequencies found in the data. In each plot the the signals belonging to the other frequencies has been removed.

The Hipparcos and OMC data of HD 190336 make it also possible to investigate the stability of the detected frequencies on longer time scale. Pigulski & Pojmanski (2008) detected both period and amplitude changes of the frequencies of multiperiodic β Cep variables using ASAS-3 observations spanning over 6 years.

Hipparcos, OMC and HAT-5 light curves of HD 190336 folded with the three main frequencies found in the data are plotted in Fig. 3. In each panel of this figure, the the signals belonging to the other frequencies has been removed.

In the Hipparcos data the three largest amplitude signals, f_3 , f_5 and f_2 also appear. Their amplitudes are 0.026, 0.022 and 0.019 mag, respectively, indicating either that the amplitudes of these frequencies are changing, or that there are significant differences between their amplitude ratios in different bands. The frequencies of the three signals found in the Hipparcos data agree within the error ranges with the frequencies of the three largest amplitude frequencies detected in the HAT-5 data.

The OMC V band data span over four years, overlapping with the 30 days interval of the HAT-5 observations. Although both systematic and random noise are the largest in this data set, f_3 and f_5 can be detected in the OMC data too. Their amplitudes are close the same; 0.021 mag. For comparison, the amplitudes of these frequencies are 0.025 and 0.013 mag in the HAT-5 data (I band). Removing f_3 and f_5 from the Integral data, the residual shows a frequency at 4.3354 cd⁻¹, close to the frequency of f_2 detected in the HAT-5 and Hipparcos data. The difference between the position of this frequency and f_2 is, however, much larger than it could be explained by the uncertainties of the frequencies. Therefore, most probably it is a different frequency.

The available photometric observations of HD 190336 do not allow to perform a more detailed asteroseismic study of the star and mode identification of the detected frequencies. They show, however, that HD 190336 is an ideal, interesting asteroseismic target which definitely deserves further attention. Both observational and theoretical efforts are needed in order to interpret its frequencies and their spacings.

Acknowledgements This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. The financial support of OTKA grant T-068626 is acknowledged. The Clean algorithm, as implemented by J. Lehár, has been used. These results are partially based on data from the OMC Archive at LAEFF, pre-processed by ISDC.

References:

Gulati R. K., Malagnini, M. L., Morossi, C. 1989, A&A Suppl. Ser., 80, 73
Hartman J. D., Bakos, G., Stanek, K. Z., Noyes, R. W. 2004, AJ, 128, 1761
Handler, G. 2005, IBVS, 5667
Handler, G. et al. 2006, MNRAS, 365, 327
Koen, C., Eyer, L. 2002, MNRAS, 331, 45
Mas-Hesse, J. M., Gimenez, A., Culhane, J.L., et al., 2003, A&A, 411, L261
Pigulski, A., Pojmanski, G. 2008, A&A, 477, 907
Roberts, D. H., Lehár, J., Dreher, J. W. 1987, AJ, 93, 968
Sokolovsky, K. V., 2007, PZP, 7, 30
Stankov, A., Handler, G. 2005, ApJ Suppl. Ser., 158, 193
Walborn, N. R. 1971, ApJ Suppl. Ser., 23, 257
Winkler, C., Courvoisier, T.J-L., Di Cocco, G., et al., 2003, A&A, 411, L1

Number 5882

Konkoly Observatory Budapest 7 April 2009 *HU ISSN 0374 – 0676*

THREE NEW GALACTIC DOUBLE-MODE PULSATING STARS

HAJDU, G.¹; JURCSIK, J.²; SÓDOR, Á.²

¹ Eötvös Loránd University, Department of Astronomy, P.O. Box 32, H-1518 Budapest, Hungary; e-mail: name@konkoly.hu

 2 Konkoly Observatory of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest, Hungary; e-mail: name@konkoly.hu

We report the discovery of the double-mode nature of three pulsating variable stars; V2157 Sgr, V767 Sgr and V363 Cas, observed with the Optical Monitoring Camera (Mas-Hesse et al., 2003) on board the Integral satellite (Winkler et al., 2003). The observations are available via the OMC Data Server (Gutierrez et al., 2004). We have used this database to analyse light curves of RR Lyrae variables observed by OMC for any sign of light curve variability (eg. Blazhko-effect or double-mode nature). The light curves are available as FITS tables which were converted into ASCII tables using the OMC2ASCII program as described by Sokolovsky (2007). We have analysed the light curves of all the variables down to $V \sim 17$ which were classified as RR Lyrae by the OMC Input Catalogue and which have more than 200 data points using the 630 second sampling of OMC observations. The result of our analysis is the identification of double-mode nature in three of the variables. Based on their period ratios, periods, and light curves' shape, two of the stars are pulsating simultaneously in the first and second overtones (FO/SO) and are in fact short period Cepheid stars, not RR Lyrae variables. The OMC observes through a Johnson V filter, allowing us to combine the observations of OMC with ASAS (Pojmansky, 2002) V lightcurves, when they are available. When combining the lightcurves, offsets of the zero-points were taken into account. During the analysis, some outlier points were removed manually. The log of observations of the three new double mode variables is shown in Table 1.

Star	Dataset	JD 2400000 $+$	No. of datapoints [*]	mean $V~{\rm mag}$
$V2157 \ Sgr$	OMC	53110 - 54051	541	14.483
$V2157 \ Sgr$	ASAS	51875 - 53894	271	14.121
$V767 \ Sgr$	OMC	52729 - 54763	640	12.532
$V767 \ Sgr$	ASAS	51940 - 53294	540	12.463
V363 Cas	OMC	52654 - 53956	1120	10.569

 Table 1. Log of observations

* After the rejection of outlying points.

V2157 Sgr ($\alpha_{2000.0} = 19^{h}40^{m}15^{s}, \delta_{2000.0} = -39^{\circ}21'42''$): The combined OMC and ASAS data revealed that this variable is a double-mode RR Lyrae. As it is common in RRd stars, the dominant mode is the first overtone, however, the fundamental mode has commensurable amplitude to that of the first overtone mode. In the Fourier spectrum of the light-curve, apart from the fundamental mode and the first overtone and their harmonics, linear combination terms of f_1 and f_0 also appear. The folded light curves, the Fourier-spectra and the spectral window of the observations are plotted in Fig. 1.

Figure 1. Light curves, Fourier spectra and the spectral window of V2157 Sgr. The light curves folded with the primary (top-left panel) and secondary (bottom-left panel) periods are prewhitened for the signals belonging to the other detected frequencies. The top and bottom panels in the middle show the

Fourier spectrum of the original data and the data prewhitened for the primary period and its harmonics, respectively. In the top-right panel the spectrum after prewhitening for both the primary and the secondary frequencies and their harmonics are shown. In this residual spectrum the linear combinations of the two main pulsation components appear. The spectral window is shown in the bottom-right panel.

V2157 Sgr	$P_1 = 0.371369$	$P_0 = 0.498952$	$P_1/P_0 = 0.7443$	
	frequency	amplitude / error	$phase^*/error$	
	cycle/day	magnitude	radian	
f_1	2.692739	0.2248 0.0063	2.15 0.06	
$2f_1$	5.385478	0.0646 0.0061	1.54 0.13	
$3f_1$	8.078217	0.0135 0.0062	4.83 0.45	
f_0	2.004201	0.1942 0.0062	2.85 0.08	
$2f_0$	4.008403	0.0376 0.0062	1.69 0.25	
$3f_0$	6.012604	0.0287 0.0061	2.20 0.33	
$4f_0$	8.016805	0.0204 0.0062	1.81 0.42	
$f_1 + f_0$	4.696940	0.0659 0.0061	1.24 0.13	
$f_1 - f_0$	0.688538	0.0527 0.0065	5.07 0.13	
	r.m.s	0.117 mag		

Table 2. Fourier parameters of the frequencies detected in the spectrum of V2157 Sgr.

* According to sine term decomposition. Initial epoch is 2452027.

V767 Sgr ($\alpha_{2000.0} = 19^{\text{h}}52^{\text{m}}28^{\text{s}}, \delta_{2000.0} = -26^{\circ}42'12''$): The main period of this star is 0.67 d ($f_1 = 1.49 \text{ c/d}$), that would correspond to the period of a fundamental mode RR Lyr variable. However, its secondary frequency is at $f_2 = 1.86 \text{ c/d}$ with a period ratio of 0.8, indicating that the star is pulsating simultaneously in the first and second radial mode overtones. Based on the period values of these modes the star is more probably a short period Cepheid than an RR Lyrae.

After prewhitening the light curve with the frequencies of the two radial modes and their linear combination term, a signal appears in the residual spectrum near the primary period, indicating period change during the observations (the observations are spanning almost eight years). The folded light curves, the Fourier-spectra and the spectral window of the observations are plotted in Fig. 2. Table 3 lists the Fourier parameters of the detected frequencies.

Figure 2. Same as Fig. 1, but for V767 Sgr. Note the different scales on the Y axes of the residual spectra.

Table 3. Fourier parameters of the	requencies detected	d in the spectrum o	of V767 Sgr.
------------------------------------	---------------------	---------------------	--------------

$V767 \ Sgr$	$P_1 = 0.670312$	$P_2 = 0.536335$	$P_2/P_1 = 0.8001$
	frequency	amplitude / error	phase [*] /error
	cycle/day	magnitude	radian
f_1	1.491842	0.1760 0.0024	3.97 0.02
$2f_1$	2.983684	0.0338 0.0023	3.87 0.08
$3f_1$	4.475526	0.0129 0.0024	3.93 0.50
f_2	1.864508	0.0624 0.0024	4.05 0.08
$f_1 + f_2$	3.356350	0.0233 0.0024	4.05 0.12
	r.m.s	0.057 mag	
			1 1 0 181 0 10

* According to sine term decomposition. Initial epoch is 2451940.

V363 Cas $(m_V \approx 10^{\text{m}}61, \alpha_{2000.0} = 00^{\text{h}}15^{\text{m}}14^{\text{s}}333, \delta_{2000.0} = +60^{\circ}20'11''_{.}99)$: This star is classified by the GCVS as type of RRab. Schmidt & Seth (1996) suggested to revise the type to RRc:, while Fernley et al. (1998) noted that this star is probably an Anomalous Cepheid. Despite being a moderately bright star, the double-mode nature of V363 Cas was not discovered by earlier studies due to the very small, 0.02 mag amplitude of its secondary mode. The analysis of the OMC data revealed that V363 pulsates in two radial modes with 0.802 period ratio corresponding to the first and second overtone periods. The periods of the identified modes support that instead of being an RR Lyrae, V363 Cas is also a short period Cepheid.

Figure 3. Same as Figs. 1 & 2, but for V363 Cas. Note the different scales on the y axes of the residual spectra.

Table 4. Fourier parameters of the frequencies detected in the spectrum of V363 Cas.

V363 Cas	$P_1 = 0.546556$	$P_2 = 0.438243$	$P_2/P_1 = 0.8018$
	frequency	amplitude / error	$phase^* / error$
	cycle/day	magnitude	radian
f_1	1.829638	0.1980 0.0011	5.77 0.02
$2f_1$	3.659276	0.0392 0.0011	0.85 0.04
$3f_1$	5.488915	0.0165 0.0011	2.60 0.08
f_2	2.281842	0.0196 0.0012	4.08 0.16
$f_1 + f_2$	4.111480	0.0080 0.0012	5.55 0.19
	r.m.s	0.026 mag	

 * According to sine term decomposition. Initial epoch is $2\,452\,654.$

Acknowledgements We thank Béla Szeidl for his many helpful comments on this work. The financial support of OTKA grant T-068626 is acknowledged. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This research is partially based on data from the OMC Archive at LAEFF, pre-processed by ISDC.

References:

Fernley, J., Barnes, T. G., Skillen, I., et al. 1998, A&A, 330, 515
Gutierrez, R., Solano, E., Domingo, A., Garcia, J., 2004, ASP Conf. Ser., 314, 153
Mas-Hesse, J. M., Gimenez, A., Culhane, J.L., et al. 2003, A&A, 411, L261
Pojmanski, G. 2002, Acta Astronomica, 52, 397
Schmidt, E. G., Seth, A. 1996, AJ, 112, 2769
Sokolovsky, K. V. 2007, PZP, 7, 30
Winkler, C., Courvoisier, T.J-L., Di Cocco, G., et al. 2003, A&A, 411, L1

ERRATUM FOR IBVS 5882

The correct coordinates of two variables discussed in this issue of the IBVS are as follows:

V767 Sgr: $\alpha_{2000.0} = 17^{h}52^{m}28^{s}4, \delta_{2000.0} = -26^{\circ}42'12''.5$ V363 Cas: $\alpha_{2000.0} = 00^{h}15^{m}14^{s}.3, \delta_{2000.0} = +60^{\circ}20'25''.7$ The Editors

Number 5883

Konkoly Observatory Budapest 7 April 2009 *HU ISSN 0374 - 0676*

SHORT-PERIOD OSCILLATIONS IN THE ALGOL-TYPE SYSTEMS III: NEWLY DISCOVERED VARIABLE GSC 4588-0883

DIMITROV, D.; KRAICHEVA, Z.; POPOV, V.

Institute of Astronomy, BAS, Tsarigradsko Shossee 72, 1784 Sofia, Bulgaria, e-mail: dinko@astro.bas.bg; zk@astro.bas.bg; vpopov@astro.bas.bg

GSC 4588-0883 was discovered as a new eclipsing binary in our search for new variables in the NSVS database (Wozniak et al., 2004). According to the NSVS data the star was classified as Algol-type binary with period $P \simeq 3.2582$ days, amplitude of primary minimum $A_R > 0.65$ mag, and the magnitude in maximum $R'_{\text{max}} \simeq 11.67$ mag. The astrometric and photometric data for the star (Table 1) are taken from NOMAD catalogue (Zacharias et al., 2004).

The CCD photometry (in BVR bands) of GSC 4588-0883 was carried out with the 60cm Cassegrain telescope at NAO Rozhen, equipped with the CCD camera FLI PL09000 (3056×3056, 12 μ pixel), and Bessell (1990) standard UBVRI filters. The standard IRAF procedures were used for the reduction of the photometric data. Using the method of Everett and Howell (2001) six stars with $\sigma < 0.005$ mag in all R band observations (Table 1) were selected to create an ensemble standard star.

The NSVS and Rozhen's light curves of GSC 4588-0883 are shown on Fig. 2. The light curves for 6 nights, obtained in R band are shown in Fig. 4 and Fig. 5. Short-period oscillations with a peak-to-peak amplitude of up to 0.015 mag in R (Table 2) were detected. The oscillations are smaller than in the previous discovered stars GSC 4550-1408 and GSC 3889-0202 (Dimitrov et al., 2008a,b). The oscillations are present at the primary and the secondary minima also. A preliminary periodogram analysis (Fig. 6) of the data shows a main periodicity in the interval $71 \div 78$ minutes.

Spectral observations of GSC 4588-0883 were obtained with the Coudé spectrograph (resolution of 0.19 Å/pixel) of the 2m RC telescope at NAO Rozhen (Table 3). The spectral domain covered three regions around H_{α} , H_{β} , and MgII 4481 lines (Fig. 3). The data reduction of the spectra was made with the standard IRAF procedures. The radial velocities were measured by the cross-correlation technique using synthetic spectrum, calculated with the programme SPECTRUM (Gray & Corbally, 1994) and a grid of LTE atmosphere models for a solar-type chemical composition (Castelli & Kurucz, 2003), as a template spectrum. The physical parameters of the primary component were estimated by comparing the synthetic and the observed spectra. The parameters of the secondary were computed with the PHOEBE software (Prśa & Zwitter, 2005). The spectral types of the components were determined using Straižys & Kuriliene (1981) calibration (Table 4).

The new ephemeris were computed using both Rozhen and NSVS data:

$$HJD(MinI) = 2451274.021(\pm 0.005) + 3.25855(\pm 0.00009)E$$
(1)

Acknowledgements This study made use of the SIMBAD, ADS, and VSX databases, and GCVS catalogue.

Table 1. Data for the variable, and standard stars used in the CCD photometry

ID		Name	RA (J	2000)	DEC (J	(2000)	V	B - V	V - R
VAR	GSC	4588-0883	19 ^h 27 ^r	ⁿ 53 ^s 70	$+77^{\circ}17$	7'41''.8	11.32	0.50	0.34
C1	GSC	4588-0579	$19^{h}25^{r}$	ⁿ 59 ^s 69	$+77^{\circ}25$	$5'47''_{9}$	11.38	0.46	0.31
C2	GSC	4588-2368	$19^{h}26^{r}$	ⁿ 12 ^s .00	$+77^{\circ}27$	7'25''.9	12.26	1.02	0.97
C3	GSC	4588-0521	$19^{h}28^{r}$	$^{n}07:31$	$+77^{\circ}20$)'51''.4	12.35	0.92	0.88
C4	GSC	4588-0164	$19^{h}30^{r}$	ⁿ 24 ^s 86	$+77^{\circ}17$	7'21''.8	12.20	1.01	0.63
C5	GSC	4588-0781	$19^{h}27^{r}$	ⁿ 30 ^s 51	$+77^{\circ}26$	$5'49''_{.}5$	13.15	0.41	0.31
C6	GSC	4588-1313	19 ^h 26 ^r	ⁿ 32 ^s .13	$+77^{\circ}25$	$5'42''_{}9$	13.02	0.54	0.32
		Table 2.	Observ	vational	runs of	GSC 45	88-088	3	
Date	;	HJD(start)	Length	Filter	Exp. [s]	Ν	Pha	se A_F	$_{l}\max(\mathrm{osc.})$
02.09.20	008 2	2454712.24749	$04^{h}40^{m}$	R	120	120	0.14 -	0.20	0.015
03.09.20	008 2	2454713.42091	$03^{h}57^{m}$	R	120	131	0.50 -	0.55	0.010
04.09.20	008 2	2454714.40448	$05^{n}24^{m}$	R	120	128	0.80 -	0.87	0.015
05.09.20	008 2 008 9	2454715.53156	01 51	R D	120	45 202	0.15 -	0.17	0.012
08.09.20	008 4 008 9	2454718.25881 2454773 45837	03.33 $04^{h}18^{m}$	n BV B	$\frac{120}{3 \times 120}$	202	0.98 -	0.09	0.013 0.012
31.10.20	000 - 2	2454771.18693	$00^{h}42^{m}$	R	120	20	0.23 -	0.24	0.012
01.11.20	008 2	2454772.35613	$03^{\rm h}18^{\rm m}$	R	120	89	0.59 -	0.63	0.015
02.11.20	008 2	2454773.39219	$01^{\mathrm{h}}25^{\mathrm{m}}$	R	120	38	0.59 -	0.63	
04.11.20	008 2	2454775.20502	$03^{ m h}05^{ m m}$	BVR	3×120	$26,\!23,\!23$	0.46 -	0.50	< 0.01
		Table	3. Rozh	ien spec	tra of G	SC 4588	8-0883		
Da	te	HJD(mid	1) S/	N Exp	Э.	RV	R	egion	Phase
		× ×	, ,	[s]	[k	ms^{-1}]		[Å]	
15.10.	2008	2454755.42	238 3	6 180	0 - 64	$.18 \pm 1.39$) 4400	0 - 4600	0.390
15.10.	2008	2454755.4	468 4	7 180	0 -61	$.35{\pm}2.58$	3 4800	0 - 5000	0.397
15.10.	2008	2454755.40	596 - 5	6 180	0 -49	$.87{\pm}2.18$	6500	0 - 6700	0.404
16.10.	2008	2454756.2	574 4	4 180	0 -17	$.52{\pm}1.50$) 4400	0 - 4600	0.646
16.10.	2008	2454756.2'	785 4	1 180	0 -16	$.71 \pm 1.12$	2 4400	0 - 4600	0.652
16.10.	2008	2454756.30	016 5	0 180	0 -12	$.89 \pm 3.01$	L 4800	0 - 5000	0.660
16.10.	2008	2454756.32	227 5	4 180	0 -12	$.61{\pm}2.03$	3 4800	0 - 5000	0.666
16.10.	2008	2454756.34	454 6	0 180	0 -11	$.10{\pm}2.55$	5 6500	0 - 6700	0.673
16.10.	2008	2454756.30	<u> </u>	1 180	0 -13	$.14 \pm 2.05$	5 6500	0 - 6700	0.679
Table	e 4. F	Preliminary J	ohysical	parame	eters of (GSC 458	38-0883	binary	system
		Paran	neter	Pi	rimary s	tar Sec	condary	y star	

	1 dramet	J.	i iiiiai y stai	Secondary star
	$T_{\rm eff}$	[K]	7650	4100
	$\log g$		3.9	3.2
Spec	tral type		A9 IV	K4 III
Λ	$I_{\rm S}/{ m M}_{ m P}$		().16
	$K_{ m P}$	$[\mathrm{kms}^{-1}]$	6	53.0
	γ	$[\mathrm{kms}^{-1}]$	—	-42.0
	i	[deg]	-	78.5
	$v \sin i$	$[\mathrm{kms}^{-1}]$	\sim	~ 60

Figure 1. Field of the eclipsing binary GSC 4588-0883.

1.0 0.8 0.6 0.4 S/N = 700.2 0.0E 4 4400 4450 4500 4550 4600 Hbeta Region S/N = 870.0 E._____ 4800 4900 4850 4950 5000 Halpha Region 1.0 0.8 0.6 0.4 S/N = 1020.2 0.0E 6500 6550 6600 6650 6700 Wavelength [A]

MgII 4481 Region

Figure 2. Light curves of GSC 4588-0883. Upper panel - NSVS data, lower panel - Rozhen R data (dots) and model (solid line).

Figure 3. Rozhen combined spectra (thin line) of GSC 4588-0883 and the best synthetic spectra (thick line).

718.7

713.60

end

718.6

713.55

Figure 4. R light curves of GSC 4588-0883 (diamonds) and C1 standard star (crosses).

HJD = 2454000.0 + **Figure 5.** Residuals between observations and the model near the primary and secondary minima (diamonds) and shifted C1 standard (crosses). Dashed vertical lines indicate the middle and the end of the eclipses.

713.50

718.4

GSC 4588-0883

Primary Minimum

718.5

Secondary Minimum

end

08.09.2008

middle

718.3

03.09.2008

713.45

-0.04

-0.02

0.00

0.02

0.04

-0.04

-0.02

0.00

0.02

0.04

713.40

718.2

middle

∆R (Residuals) [mag]

Figure 6. Power spectrum of GSC 4588-0883 Rozhen data after subtracting the synthetic light curve.

References:

Bessell, M., S., 1990, PASP, 102, 1181
Castelli, F., Kurucz, R., 2003, IAU Symp., 210, 20
Dimitrov, D., Kraicheva, Z., Popov, V., 2008a, IBVS, No 5842
Dimitrov, D., Kraicheva, Z., Popov, V., 2008b, IBVS, No 5856
Everett, M., Howell, S., 2001, PASP, 113, 1428
Gray, R., Corbally, C., 1994, AJ, 107, 742
Prśa, A., Zwitter, T., 2005, ApJ, 628, 426
Straižys, V., Kuriliene, G., 1981, ApSS, 80, 353
Wozniak, P., Vestrand, W., Akerlof, C. et al., 2004, AJ, 127, 2436
Zacharias, N., Monet, D., Levine, S. et al., 2004, AAS, 205, 4815

Number 5884

Konkoly Observatory Budapest 23 April 2009 *HU ISSN 0374 - 0676*

V364 CAS – AN EVOLVED DETACHED ECLIPSING BINARY

NELSON, ROBERT H.^{1,2}

¹ 1393 Garvin Street, Prince George, BC, Canada, V2M 3Z1 email: b-o-b.nelson@shaw.ca [remove dashes]

² Guest investigator, DAO, Herzberg Institute of Astrophysics, National Research Council of Canada

V364 Cas (= TYC 3270-1606-1 = BD 49 226, RA = $00^{h}52^{m}43^{s}009$, Dec = $+50^{\circ}28'10''.16$ (2000)) seems to have been discovered by Kippenhahn (1953 - earliest SIMBAD reference) but no further details are available. Perova (1957) discusses three variable stars – presumably with elements and light curves for V364 Cas, but again, no further details are available. Hilditch & Hill (1975) did Stromgren observations of V364 Cas, along with those of many other eclipsing systems. Chaubey (1984), using photoelectric observations in U, B and V did a set of two analyses – one based on the Russell and Merrill (Russell & Merrill, 1952) method, the other based on Kopal's method (Kopal, 1981). Clearly, an up-to-date analysis using a modern physical model is overdue.

During September of 2006 (and 2007), the author took nine high resolution (10 Å/mm reciprocal dispersion) spectra at the Dominion Astrophysical Observatory (DAO) in Victoria, British Columbia, Canada; he then used the Rucinski broadening functions (Rucinski, 2004) to obtain radial velocity (RV) curves (see Nelson et al., 2006a for details). The spectral range was 5004–5267 Å and the reciprocal dispersion, 10 Å/mm.

DAO	Mid Time	Exposure	Phase at	V1	V2
Image $\#$	(HJD-2400000)	(sec)	Mid-exp	$(\mathrm{km/s})$	$(\rm km/s)$
13087	53989.9690	3600	0.708	147.38	-120.22
13099	53990.7688	3600	0.227	-132.29	137.20
13101	53990.8146	3600	0.256	-134.71	137.94
13103	53990.8632	3600	0.288	-131.77	132.04
13114	53990.9920	3600	0.371	-101.29	105.34
13127	53991.7376	3600	0.854	114.33	-98.50
13142	53992.9787	2730	0.659	124.22	-97.79
13154	53994.8602	3600	0.878	105.39	-84.35
11257 (Taken in 2007)	54369.8310	3600	0.882	98.25	-84.63

 Table 1. A log of DAO observations and RV results

On 10 nights October of 2006, the author took a total of 350 CCD images of the field in V, 349 in R_C and 344 in I_C (both Cousins) at his private observatory in Prince George, British Columbia, Canada. The telescope was a 33 cm f/4.5 Newtonian on a Paramount ME mount; the detector was a SBIG ST-7XME CCD cooled to -20° C. Reduction software was MIRA by Mirametrics, Inc., and sky flats were used.

Table 2. A list of the Variable, Comparison and Check stars

Type	TYC	R.A.	Dec.	V	B - V
	3270-	J2000	J2000	Mags	Mags
Variable	1606	$0^{\rm h}52^{\rm m}43 .021$	$50^{\circ}28'10''_{\cdot}099$	11.2 - 11.9	A7
Comparison	612	$0^{ m h}52^{ m m}39 lap{.}^{ m s}557$	$50^{\circ}29'39''_{}557$	11.36	1.33
Check	96	$0^{ m h}52^{ m m}50^{ m s}.855$	$50^{\circ}28'32''_{\cdot}936$	12.38	0.14

The following elements were used for phasing throughout (see Nelson, 2008 for the O - C relation):

JD Hel Min I =
$$53732.727(4) + 1.5430670(2)E$$

There was some initial confusion as to which was the primary eclipse (since the eclipse depths are very close). However, modeling revealed that the star initially considered to be the secondary was in fact the hotter of the two. Therefore, even though it is smaller and has the lesser mass, it must be considered the primary star as, when eclipsed, it gives the deeper eclipse that is considered to be phase 0 (by photometric tradition). The above elements reflect that designation. The primary eclipse, then, is an occultation and is flat-bottomed as a result (see electronic Fig. 4); the other eclipse is a transit (see the V light curve in Fig. 1 and VRI light curves as electronic Fig. 5).

Figure 1. V364 Cas: V Light Curve – Data and WD Fit

The author used the 2004 version of the Wilson-Devinney (WD) light curve and radial velocity analysis program with the Kurucz atmospheres (Wilson and Devinney, 1971; Wilson, 1990; Kallrath et al., 1998) as implemented in the Windows software WDwint (Nelson, 2009a) to analyze the data. To get started, a spectral type A7 V (Brancewicz & Dworak, 1980) and a temperature $T_1 = 7816 \pm 240$ K were used; interpolated tables from Cox (2000) which gave log g = 4.282 were used; an interpolation program by Terrell (1994) gave the (van Hamme, 1993) limb darkening values; and finally, a square root (LD = 3) law for the extinction coefficients was selected, appropriate for hotter stars (Bessell, 1979). Radiative envelopes were chosen for both stars, again appropriate for hotter stars. The parameters are listed in Table 3.

Mode 2 (for detached stars) was chosen, based on the general appearance of the light curves. Convergence by the method of multiple subsets was reached in a small number of iterations. In particular, the mass ratio $q = M_2/M_1$ was held fixed because this value (1.080 ± 0.002) was well determined from the RV curves; in contrast, it is not well constrained from the photometric data.

The solution was very robust in that when one started with significantly different initial values for the important parameters (inclination, T_2 , and potentials 1 and 2), the iterations zeroed in on the same solution. Correlations between parameters were, except for one parameter, all less than 0.5. Therefore, varying almost all the parameters at once yielded rapid convergence.

Third light was tested for and found to be insignificant. Next, non-zero eccentricity was tested for; a value of 0.0006 ± 0.0003 resulted. This is a very low value and is worth ignoring.

A plot of the V light curve and WD fit are shown in Fig. 1; the RVs are shown in Fig. 2. A three dimensional representation from Binary Maker 3 (Bradstreet, 1993) is

shown in Fig. 3. The reader will note that the shapes are tidally distorted. This accounts for the fact that the light curves between eclipses are not flat and, as a result, are easy to model with no ambiguities in the potentials, as occurred with MW UMa (Nelson, 2009b).

Figure 2. V364 Cas: Radial Velocity Curves – Data and WD Fit.

Figure 3. Binary Maker 3 representation of the system – at phases 0.75 and 0.97.Table 3. Final WD output parameters

Quantity	Va	lue	Error	Quantity	Value	Error	Quantity	Value	Error
	Star 1	Star 2							
g	0.320	0.320	[fixed]	T_1 (K)	7816	86	$a \ (solar \ radii)$	8.32	0.01
A	0.500	0.500	[fixed]	T_2 (K)	7780	86	$V_{\gamma} (\rm km/s)$	6.2	0.1
$x \ (bol)$	0.194	0.330	[fixed]	Ω_1	5.349	0.006	r_1 (pole)	0.233	0.001
$y \;(\mathrm{bol})$	0.545	0.388	[fixed]	Ω_2	4.882	0.006	r_1 (point)	0.242	0.001
x (V)	0.076	0.202	[fixed]	$q = M_2/M_1$	1.080	[fixed]	r_1 (side)	0.236	0.001
$y \ (V)$	0.730	0.590	[fixed]	$i \; (deg)$	89.6	0.1	$r_1 (back)$	0.240	0.001
$x \ (R_c)$	0.039	0.105	[fixed]	$L_1/(L_1+L_2)$ (V)	0.424	0.0005	r_2 (pole)	0.273	0.001
$y \ (R_c)$	0.662	0.587	[fixed]	$L_1/(L_1+L_2)$ (R)	0.422	0.0005	r_2 (point)	0.291	0.001
$y~(R_c)$	0.662	0.587	[fixed]	$L_1/(L_1+L_2)$ (I)	0.421	0.0005	$r_2 \ ({ m side})$	0.279	0.001
$y(I_c)$	0.572	0.536	[fixed]	$\Sigma \omega_{res}^2$	0.00971	—	$r_2 (back)$	0.286	0.001

The WD output fundamental parameters are listed in Table 4 along with those from the properties of zero age main sequence stars (ZAMS; Cox, 2000). In estimating the distance, galactic extinction was allowed for using the formula $A_V = 3E(B - V) =$ $= 3((B - V)_{data} - (B - V)_{tables})$. This method is relatively crude in that neither star is on the main sequence (throwing in question the tabular value for (B - V)). Also, the value 3 is an approximation – it varies from place to place and many authors favour the value 3.1. This last uncertainty accounts for an error of only 4 pc and is therefore well within the error estimate of 45 pc.

As one will note from the table, both stars are over-luminous for the (solar abundant) ZAMS (Cox, 2000) by factors of about 1.5 and 2 (respectively).

Performing 2-dimensional interpolations (using the adopted temperatures and WD masses) in the under-abundant (Z = 0.004, Y = 0.252) evolutionary tracks of Charbonnel et al. (1993) yields close agreement for the luminosities of both stars (see Table 5).

Fundamental	S	Star 1		, C			
Quantity	Tabular	WD	error	Tabular	WD	Error	
Sp. Type	-	A7 V		A7 V			
Mass (M_{\odot})	1.80	1.57	0.10	1.80	1.69	0.11	
Radius (R_{\odot})	1.60	1.97	0.01	1.60	2.33	0.01	
M bol	2.12	2.00	0.17	2.12	1.66	0.17	
Log g (cgs)	4.28	4.04	0.004	4.28	3.93	0.004	
Luminosity (Lo)	8.80	13	2	8.80	18	3	
Distance (pc)		670	44		_		

Table 4.

The lesser-abundant (Z = 0.001) tracks of Schaller (1992), the greater-abundant (Z=0.008) tracks of Shaerer (1993), plus the solar-abundant (Z = 0.02) tracks of Schaller (1992) are added for comparison. Note that all the papers are by the same Swiss group and represent a homogeneous set of calculations.

Table 5. Luminosities (solar units)

Abundance	Z = 0.001	Z = 0.004	WD	Z = 0.008	Z = 0.02
	Schaller 1992	Charbonnel 1993	Result	Schaerer 1993	Schaller 1992
Star 1 Luminosity	30	14	13	9.1	4.7
Star 2 Luminosity	38	20	18	15	8.4

In conclusion, V364 Cas is detached binary with both stars evolved off the ZAMS; they also appear to be have sub-solar abundances. Reference to the data tables of Charbonnel (1993) reveals an apparent age of around 1.3×10^9 years (from the ZAMS). An abundance study for this system would be useful in order to test the evolutionary tracks for Z = 0.004.

Acknowledgements: It is a pleasure to thank the staff members at the DAO (especially Dmitry Monin and Les Saddlemyer) for their usual splendid help and assistance.

References:

Bessell, M.S., 1979, PASP, 91, 589

Brancewicz, H.K., Dworak, T.Z. 1980, Acta Astronomica, 30, 501

Chaubey, U.S., 1984, Astrophys. Space Sci., 106, 273-282

Charbonnel, C., Meynet, G., Maeder, A., et al., 1993, *A&AS*, **101**, 415.

Cox, A.N., ed, 2000, Allen's Astrophysical Quantities, 4th ed., (Athlone Press, London)

Hilditch, R.W., & Hill, G., 1975, Mem. R. Astron. Soc., 79, 101

Kallrath, J., Milone, E.F., Terrell, D., Young, A.T., 1998, ApJ, 508, 308

Kippenhahn, R., 1953, Astron. Nachr., 281, 153

Kopal, Z., 1981, Astrophys. Space Sci., 76, 187

Nelson, R.H., 2006, IBVS, 5715

Nelson, R.H., 2008, Eclipsing Binary O-C Files,

http://www.aavso.org/observing/programs/eb/omc/nelson_omc.shtml

Nelson, R.H., 2009a, Software, http://members.shaw.ca/bob.nelson/software1.htm

- Nelson, R.H., 2009b, *IBVS*, 5880
- Perova, N.B., 1957, Perem. Zvezdy, 12, 124
- Rucinski, S. M., 2004, IAUS, 215, 17, in Stellar Rotation
- Russell, H.N. & Merrill, J.E., 1952, Contr. Princeton Obs., No. 26
- Schaller, G., Schaerer, D., Meynet, G and Maeder, A., 1992, A&AS, 96, 269

Schaerer G., Meynet G., Maeder A., Schaller D., 1993, A&AS, 98, 523

Terrell, D., 1994, Van Hamme Limb Darkening Tables, vers. 1.1.

- van Hamme, 1993, AJ, **106**, 2096
- Wilson, R.E., and Devinney, E.J., 1971, ApJ, 166, 605

Wilson, R.E., 1990, ApJ, **356**, 613

Number 5885

Konkoly Observatory Budapest 4 May 2009 *HU ISSN 0374 - 0676*

PLATE ARCHIVE PHOTOMETRY OF CANDIDATE VARIABLE STARS IN CEPHEUS OB3 ASSOCIATION

MUNARI, ULISSE

INAF Osservatorio Astronomico di Padova, Sede di Asiago, I-36032 Asiago (VI), Italy

Name of the object:

USNO-B1.0 1525-0418386, USNO-B1.0 1525-0418333, USNO-B1.0 1525-0418196

Equatorial coordinates:	Equinox:
R.A. = $22^{h}53^{m}$ DEC. = $+62^{\circ}.5$	2000

Observatory and telescope:

Asiago 67/92 cm Schmidt Telescope

Detector:

plates

Filter(s):

 BVR_CI_C

Date(s) of the observation(s): From August 16, 1971 to November 1, 1978

Comparison star(s): surrounding BVR_CI_C photometric comparison sequence calibrated by Semkov and Peneva (2008)

Availability of the data:

Available at the IBVS website as 5885-t1.txt

Remarks:

While they were obtaining CCD photometry of the pre-main sequence object V733 Cephei, Semkov and Peneva (2008, hereafter SP08) noticed the possible variability of three nearby stars, USNO-B1.0 1525-0418386, USNO-B1.0 1525-0418333, and USNO-B1.0 1525-0418196 (for short Var.1, Var.2, and Var.3 hereafter). Their amplitudes of variability were reported by SP08 as $\Delta V = 2.98$ (19.26–16.28) and $\Delta I_C = 2.36$ (16.24–13.88) for Var. 1, $\Delta V = 1.02$ (17.38–16.36) and $\Delta I_C = 0.67$ (14.54–13.87) for Var. 2, and $\Delta V = 0.35$ (15.61–15.26) and $\Delta I_C = 0.27$ (13.33–13.06) for Var. 3. They observed the candidate variable stars on 12 dates distributed over the period February 2007 to February 2008, and suggested that Var. 1 could be a Mira and Var. 2 a pre-main sequence object.

Remarks:

To help shed light on the matter, we estimated the brightness of the three possible new variables on 40 plates that we found in the plate archive of the Asiago 67/92cm Schmidt telescope. The plates were exposed on Cep OB3 from August 16, 1971 to November 1, 1978. The filter + emulsion combinations corresponds to the B, V, R_C and I_C photometric bands. The magnitude of the three possible new variable stars was estimated at the microscope against the local BVR_CI_C photometric sequence calibrated by SP08. The measurements were repeated in an unbiased manner for all plates on different days. All measurements were found to repeat within 0.1 mag. The resulting magnitudes and observing details are given in Table 1 (Fig. 1).

<u>Var.1</u> (USNO-B1.0 1525-0418386). The mean values (and dispersion) we measured on the 1971-1978 Asiago plates are: $\langle B \rangle = 18.8$ ($\sigma = 0.9$), $\langle V \rangle = 16.93$ ($\sigma = 0.05$), $\langle I_C \rangle = 14.49$ ($\sigma = 0.15$). They are within the range of variability reported by SP08. The star is confirmed, beyond doubt, to vary on the B band plates we examined, while the variability at Ic is far less pronounced (much less than listed by SP08). SP08 suggested Var.1 to be a Mira variable. To lie within the Galaxy in that direction (9 kpc) and to shine at $\langle V \rangle = 16.9$, Var.1 must be extincted by $A_V \geq 1.1$ for an absolute magnitude $M_V = -1$, typical for Miras. It would correspond to $E_{V-I} \geq 0.5$ for a standard reddening law, and thus to an intrinsic ($V - I_C$) $_{\circ} \leq 2.5$ for the range of $V - I_C$ measured by SP08. Comparing with intrinsic colors by Bessell (1990) the corresponding spectral type would equal or earlier than M3III. Such an early spectral type would corresponds to a Mira with a short pulsation period and low amplitude, in agreement with our data. The $\Delta I_C = 2.36$ reported by SP08 (and not confirmed by our data) would be far too large for such a Mira.

<u>Var.2</u> (USNO-B1.0 1525-0418333). The star does not vary on the 1971-1978 plates we examined. The mean values (and dispersion) are: $\langle B \rangle = 17.68 \ (\sigma=0.04), \langle V \rangle = 16.40 \ (\sigma=0.00), \langle I_C \rangle = 13.83 \ (\sigma=0.11).$

<u>Var.3</u> (USNO-B1.0 1525-0418196). This star too does not vary on the 1971-1978 plates we examined. The mean values (and dispersion) are: $\langle B \rangle = 16.95$ (σ =0.05), $\langle V \rangle = 15.03$ (σ =0.12), $\langle I_C \rangle = 13.01$ (σ =0.12).

Our values for both Var.2 and Var.3 correspond to the the bright end of the range of variability reported by SP08. If they are indeed variable stars, their variability appears confined to rare episodes of drop in brightness from a protracted and stable bright state.

References:

Bessell, M., 1990, *PASP*, **102**, 1181 Semkov, E.H., Peneva, S.P., 2008, *IBVS*, 5831

N.	HJD	date		$\langle UT \rangle$	plate +	filter		Var.1	Var.2	Var.3
4577	2441180.42001	1971 08	16	22:03	103a-O	GG13	В	>19.5	17.6	17.0
4669	2441216.50252	$1971 \ 09$	21	24:00	0a-O	GG13	в	19.5	17.7	17.0
4709	2441240.35147	1971 10	15	20:22	0a-O	GG13	В	>17.7	17.7	17.0
4810	2441246.33759	1971 10	21	20:02	103a-O	GG13	В	19.0	17.6	16.9
4989	2441251.51882	$1971 \ 10$	26	24:23	103a-O	GG13	В	17.8	17.7	16.9
5012	2441293.23595	$1971 \ 12$	07	17:37	Ia-O	GG13	В	17.7	17.6	17.0
5065	2441298.24062	$1971 \ 12$	12	17:44	Ia-O	GG13	В	> 17.7	17.7	16.9
5097	2441301.25091	$1971 \ 12$	15	17:59	Ia-O	GG13	в	17.8	17.6	16.9
5656	2441596.45764	$1972 \ 10$	05	22:55	103a-O	GG13	в	19.3	17.7	16.9
5749	2441624.37154	$1972 \ 11$	02	20:51	103a-O	GG13	в	>19.5	17.7	16.9
5809	2441628.35829	$1972 \ 11$	06	20:32	103a-O	GG13	в	18.8	17.7	16.9
5935	2441651.24176	$1972 \ 11$	29	17:45	103a-O	GG13	в	18.6	17.7	16.9
9284	2443455.43327	$1977 \ 11$	07	22:20	103a-O	GG13	в		—	17.0
9348	2443480.38055	$1977 \ 12$	02	21:05	103a-O	GG13	В	17.8	17.7	16.9
9374	2443492.35648	$1977 \ 12$	14	20:31	103a-O	GG13	В	17.6	17.7	17.0
9713	2443814.34655	$1978 \ 11$	01	20:15	103a-O	GG13	В	>19.5	17.7	17.0
9796	2443837.37734	1978 11	24	21:00	104a-O	GG13	В	>17.7	17.7	17.0
4579	2441180.47349	1971 08	16	23:20	IN	RG5	Ic	14.3	13.6	13.1
4670	2441216.53030	$1971 \ 09$	21	24:40	IN	RG5	Ic	14.6	13.7	13.2
4710	2441240.38202	$1971 \ 10$	15	21:06	IN	RG5	Ic	14.7	13.9	12.9
4811	2441246.36606	$1971 \ 10$	21	20:43	IN	RG5	\mathbf{Ic}	14.6	13.6	13.1
5011	2441293.21165	$1971 \ 12$	07	17:02	IN	RG5	\mathbf{Ic}	14.6	13.9	12.9
5064	2441298.21354	$1971 \ 12$	12	17:05	IN	RG5	Ic	>14.3	13.8	12.9
5096	2441301.22383	$1971 \ 12$	15	17:20	IN	RG5	\mathbf{Ic}	14.6	13.9	13.1
5657	2441596.47987	$1972 \ 10$	05	23:27	IN	RG5	Ic	14.7	13.8	13.1
5748	2441624.35140	$1972 \ 11$	02	20:22	IN	RG5	Ic	14.6	13.8	12.9
5808	2441628.33815	$1972 \ 11$	06	20:03	IN	RG5	Ic	14.5	13.8	12.7
5934	2441651.22023	$1972 \ 11$	29	17:14	IN	RG5	Ic	14.3	13.8	13.1
5980	2441663.31632	$1972 \ 12$	11	19:33	IN	RG5	Ic	14.6	14.0	12.9
6025	2441676.21091	$1972 \ 12$	24	17:02	IN	RG5	Ic	14.3	13.9	12.9
9285	2443455.45758	$1977 \ 11$	07	22:55	IN	RG5	Ic	14.5	13.9	13.1
9296	2443458.34850	$1977 \ 11$	10	20:18	IN	RG5	Ic	14.3	13.8	13.1
9325	2443464.37893	$1977 \ 11$	16	21:02	IN	RG5	Ic	14.5	13.9	13.2
9349	2443480.40625	$1977 \ 12$	02	21:42	IN	RG5	Ic	14.3	13.9	12.9
9373	2443492.33010	$1977 \ 12$	14	19:53	IN	RG5	Ic	14.3	14.0	13.2
9714	2443814.37363	1978 11	01	20:54	IN	RG5	Ic	14.5	13.8	12.9
4578	2441180.44710	1971 08	16	22:42	103a-E	RG1	Rc	15.7	14.9	14.2
5982	2441663.38854	$1972 \ 12$	11	21:17	103a-D	GG14	V	16.9	16.4	14.9
6026	2441676.23104	$1972 \ 12$	24	17:31	103a-D	GG14	V	16.9	16.4	15.0
9795	2443837.35998	1978 11	24	20:35	103a-D	GG14	V	17.0	16.4	15.2

Figure 1. (Table 1) BVR_CI_C photometry of the suspected variables on 1971-1978 plates from the archive of the Asiago 67/92 Schmidt telescope.

Number 5886

Konkoly Observatory Budapest 4 May 2009 *HU ISSN 0374 - 0676*

ASAS J071829-0336.7: SHORT-PERIOD END FOR CONTACT BINARIES REDEFINED

PRIBULLA, T.^{1,2}; VAŇKO, M.^{1,2}; HAMBÁLEK, L.²

¹ Astrophysikalisches Institut und Universitäts-Sternwarte, Schillergässchen 2-3, D-07740 Jena, Germany, e-mail: pribulla@ta3.sk; vanko@astro.uni-jena.de

 2 Astronomical Institute of the Slovak Academy of Sciences, 05960 Tatranská Lomnica, The Slovak Republic, e-mail: lhambalek@ta3.sk

It is well known that classical W UMa-type binaries have spectral types A-K and we do not observe a single system with components of M spectral type. The spectral types and colors correlate with orbital periods due to the main-sequence state of the components, which results in sharp cut-off in the number of systems at short orbital periods. The physical reasons for the observed period cut-off are still not clear (see Rucinski, 1992).

The statistical data on the contact binaries have significantly been improved by the The All Sky Automated Survey (ASAS) (Pojmanski 1997, 2004; Paczynski et al., 2006) by discovery of several hundred new systems in the magnitude range 8-13 magnitudes. Analysis of their period distribution (Rucinski, 2007) showed that the maximum in the contact-binary numbers occurs at about P = 0.27 days with definite short-period cut-off at about 0.215-0.22 days. Rucinski (2007) indicated seven contact-binary candidates with P < 0.22 days in the ASAS sample and selected GSC 1387-475 as the best candidate. The photometric and spectroscopic investigation of Rucinski & Pribulla (2008) confirmed that GSC 1387-475 is genuine contact binary; at present being record holder for field systems with P = 0.2178 days. The only known contact binary having shorter period is V34 in globular cluster 47 Tuc with P = 0.2155 days (Weldrake et al., 2004).

In our investigation we focused on two other ASAS candidates listed in Table 3 of Rucinski (2007) observable from northern mid-latitudes: J071829-0336.7 ($P_{ASAS} = 0.211249$ days, $V_{max} = 13.75$), and J113031-0101.9 ($P_{ASAS} = 0.213135$ days, $V_{max} = 13.36$). Both stars are fainter than V = 13 in the maximum, therefore useful spectroscopic observations leading to sound analysis would require 8-10m class telescope because of very short orbital periods. While 2MASS infrared color of J071829-0336.7, (J - K) = 0.81 (K7V) is consistent with extremely short orbital period, J113031-0101.9 is too blue, (J - K) = 0.40 (G4-5V), to be contact binary with the orbital period given in the ASAS database.

Both targets were observed at the Stará Lesná Observatory of the Astronomical Institute of Slovak Academy of Sciences using 50cm Newton telescope equipped with SBIG ST10MXE CCD camera (see Pribulla & Chochol, 2003). Expecting both objects to be mid K-type binaries the observations were performed in the R_C and I_C filters only. The instrumental magnitudes of the targets have been obtained by the aperture photometry using the photometrically calibrated frames (dark frame subtraction and flat field division). The differential magnitudes have been left in the instrumental photometric system, very close to the Johnson-Cousins system. The part of typical CCD frames in the I_C passband for either of the targets showing the variable, comparison and check stars are shown in Figs. 1-2. The times of minimum light for both systems determined using Kwee & van Woerden's method are listed in Table 1. The preliminary light-curve (LC) analysis has been performed using code *ROCHE* (see Pribulla, 2004).

Figure 1. Field of the eclipsing binary ASAS J071829-0336.7. The size of the field is $11'.20 \times 8'.33$.

Figure 2. Field of the eclipsing binary ASAS J113031-0101.9. The size of the field is $11'.20 \times 8'.33$.

Table 1. Times of primary (I) and secondary (II) minima for both eclipsing binaries. Weighted averages from individual filters are given.

Star	HJD	Error	Filters	Type
J071829-0336.7	2454845.4267	0.0002	$(RI)_C$	Ι
	2454865.3905	0.0001	$(RI)_C$	II
	2454916.3039	0.0001	$(RI)_C$	II
J113031-0101.9	2454905.4210	0.0005	R_C	Ι
	2454917.4807	0.0002	$(RI)_C$	Ι

J071829-0336.7 Although this target has been observed during three nights (Jan 13/14, Feb 2/3 and Mar 25/26, 2009) only, thanks to the extremely short orbital period, full phase coverage has been achieved. The differential LC of J071829-0336.7 has been obtained with respect to USNO-A 0825.04506649 having similar color. The stability of this comparison has been checked using USNO-A 0825.04514810. Our new photometry (Fig. 3) definitely shows that the system is a close binary and not a pulsating variable. Very short orbital period given in the ASAS catalogue has been checked by fitting trigonometric polynomials of the 12th degree to the phase diagrams of our I_C data for test periods between 0.205 and 0.215 days. The best period was later optimized by non-linear least squares fitting of even trigonometric polynomials resulting in the following ephemeris for the primary minimum:

$$HJD (MinI) = 2454874.7916(3) + 0.2112594(6)E,$$
(1)

compatible with the ASAS result. When scrutinizing the CCD frames of the system a faint companion has been noticed west of the system which could not be separated during

the aperture photometry, but which adds unknown amount of third light. The minima of the system are partial, therefore geometric parameters cannot reliably be determined without spectroscopic mass ratio. The observed LC could be solved successfully for a large range of mass ratios between 0.55 and 0.85 (limited by rather large photometric amplitude, about 0.55 mag). Assumption of the W-type classification (less massive component slightly hotter) always resulted in better χ^2 . For the case of q=0.65, convective envelope, temperature of the hotter component 4020 K (K7V), marginal contact (fill-out = 0) the orbital inclination is i = 76°.8. The system sets the new short-period limit for contact binaries.

Figure 3. R_C (gray triangles) and I_C (black circles) LCs of J071829-0336.7.

J113031-0101.9 The LC of the variable (Fig. 4) has been obtained by aperture photometry with respect to GSC 4930-00167. The stability of the comparison has been checked using USNO-A 0825.07480282. The CCD photometry (Jan 25/26, Feb 2/3, Feb 29/Mar 1, Mar 14/15, 25/26, 26/27, 2009) showed that the orbital period given in the ASAS catalogue, $P_{ASAS} = 0.213135$ days, is spurious. This became evident from the observing run on March 14/15 which covered both minima and indicated orbital period substantially longer, being about 0.270 days. Unfortunately, ASAS photometry is too noisy to reliably determine/improve the orbital period. Therefore, the orbital period has been searched by fitting trigonometric polynomials of the 12th degree to the phase diagrams of our I_C data for test periods between 0.25 and 0.29 days. The best period was later optimized by non-linear least squares fitting of even trigonometric polynomials resulting in the following ephemeris for the minimum:

$$HJD(MinI) = 2\,454\,905.2867(3) + 0.270969(4)E.$$
(2)

The Stará Lesná data (Fig. 4) show that the system is totally eclipsing, but otherwise rather usual contact binary. Thanks to the total eclipses the geometric parameters, q = 0.15, $i = 88^{\circ}$, and fill-out f = 0.5 are rather reliable (unless there was third light). The system, however, requires photometric observations from at least 1m telescope.

Figure 4. $(RI)_C$ light curves of J113031-0101.9. The centered symbols as in Fig. 3.

Acknowledgements TP and MV acknowledge support from the EU in the FP6 MC ToK project MTKD-CT-2006-042514. This work was supported by GAV Grant no. 2/7010/7 of the Slovak Academy of Sciences.

References:

Paczynski, B., Szczygiel, D., Pilecki, B., Pojmanski, G., 2006, MNRAS, 368, 1311

Pojmanski, G., 1997, Acta Astr., 47, 467

- Pojmanski, G., 2004, Astron. Nachr., 325, 553
- Pribulla, T., 2004, ASPC, 318, 117, in In Spectroscopically and Spatially Resolving the Components of the Close Binary Stars, R.W. Hilditch et al. (eds.)
- Pribulla, T., Chochol, D., 2003, Baltic Astronomy, 12, 555

Rucinski, S.M., 1992, AJ, 103, 960

Rucinski, S.M., 2007, MNRAS, 382, 393

Rucinski, S.M., Pribulla, T., 2008, MNRAS, 388, 1831

Weldrake D.T.F., Sackett P.D., Bridges T.J., Freeman K.C., 2004, AJ, 128, 736

Number 5887

Konkoly Observatory Budapest 4 May 2009 *HU ISSN 0374 - 0676*

NEW TIMES OF MINIMA OF SOME ECLIPSING BINARY STARS AND MAXIMA OF PULSATING STARS

YILMAZ, M.; BAŞTÜRK, Ö.; ALAN, N.; ŞENAVCI, H. V.; TANRIVERDİ, T.; KILIÇOĞLU, T.; ÇALIŞKAN, Ş.; ÇELİK, L.; AYDIN, G.; ÇAKAN, D.; BİLGİÇ, D.; ULUŞ, N. D.; ELMASLI, A.; SELAM, S. O.; ALBAYRAK, B.; EKMEKÇİ, F.

Ankara University Observatory, 06837, Ahlatlıbel, Ankara, TURKEY e-mail: mesut@astro1.science.ankara.edu.tr

Observatory and telescope:

30-cm Maksutov-Cassegrain and 40-cm Schmidt-Cassegrain telescope of the Ankara University Observatory

Detector:	- OPTEC SSP-5A photoelectric photometer (uncooled)
	containing a side-on R1414 Hamamatsu photomultiplier.
	- Apogee ALTA U47+ CCD camera, 1024 \times 1024 pixels.

Method of data reduction:

Reduction of the photoelectric observations was made in the usual way (Hardie, 1962) and reduction of the CCD frames was made with $IRAF^1$ package.

Method of minimum determination:

The minima and maxima times were calculated using Kwee & van Woerden's (1956) method.

				r o		
Star name	Time of min.	Error	Type	Filter	Method	Obs.
	${ m HJD}~2400000+$					
V372 And	54733.4251	0.0002	Ι	BVR	ccd	DÇA-YÇE
	54758.4248	0.0001	II	BVR	ccd	LÇE-SKÖ
	54780.4826	0.0001	Ι	BVR	ccd	ÖBA-ŞHA
HS Aqr	54666.4121	0.0002	II	BVR	ccd	ZAV-SSA
	54667.4758	0.0001	Ι	BVR	ccd	ŞÇA-LKA
	54687.3616	0.0001	Ι	BVR	ccd	OBI- GER
	54720.3846	0.0003	II	BVR	ccd	\mathbf{ZTE} - \mathbf{EIM}
AP Aur	54401.4788	0.0006	Ι	$_{\rm BV}$	\mathbf{pe}	ETÖ-CTE
	54491.4441	0.0006	Ι	$_{\rm BV}$	\mathbf{pe}	ECİ-TKI
	54500.2695	0.0006	II	BV	\mathbf{pe}	TTA-HAS
	54527.3127	0.0004	Ι	$_{\rm BV}$	\mathbf{pe}	GÖA-KYİ
	54762.4656	0.0006	Ι	$_{\rm BV}$	\mathbf{pe}	MYI-BSİ

Table 1: Minima Times of Eclipsing binaries

 1 IRAF is distributed by the National Optical Astronomical Observatories, operated by the Association of the Universities for Research in Astronomy, inc., under cooperative agreement with the National Science Foundation

Table 1: (cont.)

Star name	Time of min. HJD 2400000+	Error	Type	Filter	Method	Obs.
AR Aur	54438.4782	0.0003	II	BV	pe	TKI-POR
	54777.5236	0.0005	II	BVR	ccd	ÖBA-AKA
IU Aur	54062.4016	0.0007	II	$_{\rm BV}$	pe	TTA-ZŞA
TZ Boo	54521.4731	0.0005	II	BV	pe	SSİ-HDU
	54600.3682	0.0004	Ι	BV	pe	NUL-HBO
	54614.3323	0.0003	Ι	BV	pe	TTA-YCE
	54614.4828	0.0003	II	BV	pe	ZŞA-YÇE
	54621.4701	0.0005	Ι	BV	pe	BSI-KTO
	54663.3708	0.0006	Ī	BV	pe	HBO-DCA
	54666.3404	0.0005	Ι	BV	pe	SSA-GYA
AC Boo	54491.6398	0.0003	II	BV	pe	EGÜ-GİA
	54643.3642	0.0004	I	BV	pe	HKA-KTO
	54671.3810	0.0005	Ī	BV	pe	MYI-SSA
CK Boo	54489.5903	0.0005	П	BV	pe	HSE-DSA
	54648.3426	0.0005	II	BV	pe	AEL-SAY
DU Boo	54227.4733	0.0002	I	BVR	ccd	NAL-SSU
00	54235.4138	0.0002	Ī	BVR	ccd	GGÖ-ADE
ET Boo	54207 4357	0.0001	II	BVR	ccd	TCA-HGÜ
	54226 4654	0.0001	T	BVR	ccd	GÖA ETÖ
TX Cnc	54466 5109	0.0001	I T	BVR	ne	BSA_GKA
INUIU	54501 3684	0.0000	т Т	BV	pe	MSE-SER
WY Cnc	54456 4350	0.0004	т Т	BV	pe	EES_GVA
WI One	54505 3680	0.0000	T	BV	pe ne	SCA-ZAV
	54507 4389	0.0002	TT	BV	pe	MÖZ ABİ
	54507,4505	0.0007	11 T		pe	CIA ECÜ
PO CVn	54519.4035	0.0003	T		pe	GIA-EGU MVI MCE
DO OVII	54050.5429	0.0002	I TT		and	
		0.0004	11 T	BVR	cca	DOZ-IIU ÖTTA GAIZ
	54671.3491	0.0002	1	BV	ccd	ÖTA-SAK
	54678.3377	0.0002	II T	BV	ccd	OTA-TKA
TIPPO O	54699.2940	0.0002	l	BVR	ccd	ZAY-GVA
V776 Cas	54788.3554	0.0002	1	BVR	ccd	KEY-IÇA
EG Cep	54668.3976	0.0002	11	BVR	ccd	NAL-LÇE
	54672.4814	0.0001	1	BVR	ccd	TYI-OBA
	54676.5650	0.0003	11	BVR	ccd	GER BSA
RW Com	54854.4996	0.0001	11	VRI	ccd	DRI-DOZ
	54854.6188	0.0001	1	VRI	ccd	DBI-DOZ
	54865.5361	0.0001	1	BVR	ccd	ADE-MŞE
	54865.6541	0.0001	II	BVR	ccd	GGO-TÇA
	54911.5823	0.0001	Ι	BVR	ccd	ZAV-EES
	54914.5486	0.0001	II	BVR	ccd	HGU-POR
	54930.3325	0.0001	Ι	BVR	ccd	HŞE-TKA
	54930.4503	0.0002	II	BVR	ccd	HŞE-ZAY
YY CrB	54604.3614	0.0001	Ι	BV	\mathbf{pe}	GOA-CKI
	54605.4910	0.0002	Ι	BV	\mathbf{pe}	LÇE-DÇA
	54688.3345	0.0003	Ι	BV	\mathbf{pe}	ŞÇA-EÖZ
ZZ Cyg	54673.4536	0.0001	Ι	BVR	ccd	TKI-AEL
	54674.3964	0.0003	II	BVR	ccd	GÖA-EÖZ
	54717.4570	0.0001	Ι	BVR	ccd	MPI-SSU
GO Cyg	54634.3658	0.0004	Ι	BV	\mathbf{pe}	GKA-SER
	54640.4689	0.0004	II	$_{\rm BV}$	\mathbf{pe}	LÇE-MPI
	54653.3903	0.0005	II	$_{\rm BV}$	\mathbf{pe}	ABI-CKI
	54667.3843	0.0003	Ι	$_{\rm BV}$	$\overline{\mathbf{p}}\mathbf{e}$	LKA-ZTE
	54677.4322	0.0003	Ι	$_{\rm BV}$	$\overline{\mathbf{p}}\mathbf{e}$	ŞŞA-YÇE
					-	· · ·

Table 1: (cont.)

Star name	'Time of min. HJD 2400000+	Error	Type	Filter	Method	Obs.
GO Cyg	54700.4003	0.0004	Ι	BV	pe	ÖBA-CTE
-	54705.4257	0.0003	Ι	$_{\rm BV}$	\mathbf{pe}	MYI-HBO
	54710.4500	0.0002	Ι	BV	\mathbf{pe}	NAL-MYA
MR Cyg	54374.4208	0.0003	Ι	BV	\mathbf{pe}	MYA-SKÖ
	54390.3593	0.0007	II	BV	pe	KEY-ŞHA
	54696.4114	0.0002	Ι	BV	pe	MÖZ-HAS
V477 Cyg	54654.4723	0.0002	Ι	BV	pe	HDU-SSI
V836 Cyg	54376.3361	0.0002	Ι	BV	pe	İTÜ-ADE
20	54393.3258	0.0003	Ι	BV	pe	AEL-GİA
	54429.2639	0.0004	Ţ	BV	pe	ETÖ-GÖA
	54649.4630	0.0004	Ī	BV	pe	TTA-MSE
	54752.3759	0.0007	П	BV	ne	ECÖ-BSİ
	54373 3945	0.0004	II	BV	pe pe	DBL BSA
V1073 Cvg	54697 3165	0.0002	II	BVRI	ccd	TKLSER
VIOLO CYB	54698 4943	0.0002 0.0002	T	BVRI	ccd	MYI-ZSA
	54720 5010	0.0004	Ī	BVRI	ccd	HSE-EES
V1191 Cyg	54653 3860	0.0001	т	BV	ccd	EIM-CTE
, 1101 Oyg	54654 4816	0 0001	T	BVB	ccd	SKÖ-HAS
	54654 2964	0.0001	т ТТ	BAU	eed	SKÖ SST
	54656 5204	0.0001	TT	BVR	ccd	SSA ECÖ
	54669 4744	0.0001	TT II	BVR	ccd	GEB GRV
V2150 Cum	54002.4744	0.0002	11 T		na	ÖBA ZAV
v 2150 Cyg	54414.2900	0.0005	I TT		pe	UDA-ZAV
	54074.4050	0.0004	11 T		pe	DGA ITII
	54079.4496	0.0000	1 11		pe	ÖDA TIV
	54093.3594	0.0008	11	BV	\mathbf{pe}	UBA-IYI DGÖ NUU
	54759.3441	0.0005	1	BV	$_{\mathrm{pe}}$	EÇO-NUL
DM Del	54404.2733	0.0010	1	BV	\mathbf{pe}	AKA-ŞHA
	54760.2868	0.0009	11	BV	\mathbf{pe}	TKI-BSA
LS Del	52562.3993	0.0003		BV	pe	GER-BSA
	53293.3382	0.0003	11 T	BV	pe	HŞE-NBA
	53558.3901	0.0005	1	BV	\mathbf{pe}	NUL-MYI
	53560.4026	0.0004	11	BV	\mathbf{pe}	TTA-ECI
	53589.3258	0.0006	1	BV	\mathbf{pe}	ETO-NBA
	53589.5074	0.0009	11	BV	\mathbf{pe}	TTA-GOA
	53606.4239	0.0008	1	BV	\mathbf{pe}	NAL-DBI
YY Eri	54373.3945	0.0004	11	BV	\mathbf{pe}	GOA-KYI
	54404.5444	0.0002	1	BV	\mathbf{pe}	DÇA-KEY
	54465.3069	0.0002	1	BV	\mathbf{pe}	LÇE-MPI
	54467.3951	0.0003	11	BV	\mathbf{pe}	ADE-ŞÇA
V345 Gem	54844.3680	0.0002	I	BVR	ccd	GGO-POR
	54844.5029	0.0001	II	BVR	ccd	SAY-TÇA
	54845.4695	0.0001	1	VR	ccd	MYI-MSE
	54845.6031	0.0002	II	VR	ccd	ŞŞA-BSI
	54851.5120	0.0002	Ι	BVR	ccd	BSA-HGU
	54851.6488	0.0002	II	BVR	ccd	DBI-MŞE
AK Her	54610.4137	0.0004	Ι	BV	$_{\mathrm{pe}}$	OBA-EES
	54616.3136	0.0004	Ι	BV	\mathbf{pe}	EES-CTE
	54620.3239	0.0006	II	BV	\mathbf{pe}	TKI-SAY
	54630.4391	0.0004	II	$_{\rm BV}$	\mathbf{pe}	DOZ-KTO
	54640.3419	0.0003	Ι	BV	\mathbf{pe}	MPI-HDU
HS Her	54685.3698	0.0003	Ι	$_{\rm BV}$	\mathbf{pe}	HŞE-HKA
V829 Her	54587.4809	0.0005	Ι	BV	\mathbf{pe}	DÇA-GVA
	54616.4969	0.0003	Ι	BV	\mathbf{pe}	AEL-TYI
	54662.5167	0.0008	II	BV	\mathbf{pe}	TKI-GKA
	54647.4809	0.0006	II	BV	\mathbf{pe}	SER-HGÜ
V842 Her	54593.4986	0.0005	II	BV	\mathbf{pe}	NAL-AKA
	54670 2877	0.0003	т	$\mathbf{B}\mathbf{V}$	ne	TTA SSA

Table 1: (cont.)

		Table 1	: (cont	•)		
Star name	Time of min. HJD 2400000+	Error	Type	Filter	Method	Obs.
V878 Her	54669.4497	0.0001	T	BVR	ccd	GIA-GER
	54683.4818	0.0002	Ī	BVR	ccd	TCA-POR
	54701.4879	0.0003	П	BVR	ccd	ECI-ZAY
SW Lac	54385.4827	0.0003	II	BV	ne	AEL-SAK
	54660 5022	0.0001	T	BV	pe ne	A Bİ-EÖZ
	54661 4639	0.0001	T	BV	pe ne	MÖZ-MYA
	54665 4721	0.0001	т П	BV	pe	GVA SSA
	54673 4010	0.0010	II	BV	pe	ZAV EFS
	54675 4145	0.0002	11 TT		pe	SKÖ SSİ
	54675.4145	0.0002	T	DV BV	pe	CKLLKV
	54681 5007	0.0002	TT	BV	pe	
	54686 2210	0.0002	TT	BV	pe	CCÖ DSA
	54080.5210	0.0004	11 TT		pe	MVI VCE
	54098.5059	0.0005	11 T		pe	DCA ICE
	54705.4790	0.0001	I TT		pe	DÇA-DÇE ZTE EİM
	54710.4079	0.0001	11 T		pe	
	54719.5151	0.0024	1	BV	\mathbf{pe}	ZŞA-HBU
	54756.3974	0.0003	1	BV	\mathbf{pe}	OBA-HGU
	54757.3583	0.0003	1	BV	\mathbf{pe}	AEL-GYA
XY Leo	54098.5661	0.0003	11	BV	\mathbf{pe}	SSA-GIA
	54498.5833	0.0005	II	BV	\mathbf{pe}	EGU-ECI
	54502.4188	0.0003	1	BV	\mathbf{pe}	TKA-SAK
	54523.4478	0.0002	Ι	BV	\mathbf{pe}	KYI-GVA
	54523.3058	0.0005	II	BV	\mathbf{pe}	BSA-ADE
	54530.5494	0.0004	Ι	BV	\mathbf{pe}	HGU-MŞE
	54530.4089	0.0003	II	BV	\mathbf{pe}	TYI-GGO
	54582.3292	0.0006	II	BV	\mathbf{pe}	OBA-ZAV
	54621.3142	0.0002	II	BV	\mathbf{pe}	KEY-ŞHA
XZ Leo	54499.4135	0.0003	II	BV	\mathbf{pe}	EÖZ-EİM
AP Leo	54501.5440	0.0009	II	BV	\mathbf{pe}	TKI-DBI
UV Leo	54465.4213	0.0003	Ι	BV	ре	SSİ-SKÖ
	54523.3299	0.0002	II	BV	pe	ŞHA-İYÜ
	54553.3349	0.0002	II	BV	pe	EES-CTE
CN Lyn	54518.3333	0.0008	Ι	BV	pe	NBA-ÖTA
V456 Oph	54649.3582	0.0004	Ι	$_{\rm BV}$	pe	NAL-ADE
V502 Oph	54577.5419	0.0006	II	BV	pe	LÇE-MÖZ
-	54641.4712	0.0006	II	BV	pe	GER-GKA
V508 Oph	54655.3364	0.0003	Ι	BV	pe	TÇA-TKA
	54656.3689	0.0009	Ι	BV	pe	SAY-EGÜ
V566 Oph	54641.3192	0.0005	II	BV	pe	AKA-HDU
	54642.3433	0.0004	Ι	BV	\mathbf{pe}	TTA-YÇE
	54646.4391	0.0001	Ι	BV	ре	ŞÇA-NBA
	54702.3565	0.0004	II	BV	ре	EİM-KYİ
V839 Oph	54576.5661	0.0004	Ι	BV	pe	ZTE-LKA
-	54625.4398	0.0002	II	BV	pe	LKA-ŞÇA
	54628.5035	0.0003	Ι	BV	pe	HBO-BSI
	54655.5025	0.0004	T	BV	pe	GGÖ-HGÜ
U Peg	54434.3465	0.0002	Ī	BV	ne	HSE-NBA
V351 Peg	54689 4655	0.0004	T	BV	r~ ne	SKÖ-MÖZ
V357 Peg	54702 4649	0.0001	T	BVR	ccd	SCA-EÖZ
7.001 ± 05	54714 3240	0 0001	т	BVR	ccd	HSF_TVI
	54723 2892	0 0002	T	BVR	ccd	CKLSCA
	54728 4046	0.0002	T	BAD	eed	ÖBADÖZ
	54748 4519		1 TT	BAD	and	
V407 Pag	54740.4010	0.0001	11 TT	DVR	and	TCE DCV
v407 Peg	54716 5600	0.0002	11 T	DVR DVD	and	SCV NDV
	54710.0090	0.0002	L T		ocd	gya-nda Cia ddi
	04/10.40U8	0.0003	1 TT	BVK	cca	GIA-DBI
	ə4721.3570	0.0002	11	BVR	ccd	BSA-ITU

Table 1: (cont.)

		Table 1:	cont.	.)		
Star name	Time of min. HJD 2400000+	Error	Type	Filter	Method	Obs.
V407 Peg	54746.5075	0.0003	Ι	BVR	ccd	GYA-MSE
0	54752.2351	0.0003	Ι	BVR	ccd	SSU-MPI
IQ Per	54421.2998	0.0006	II	$_{\rm BV}$	pe	TKI-GYA
•	54733.4028	0.0005	II	$_{\rm BV}$	pe	MYI-ŞŞA
ST Per	54428.3647	0.0006	Ι	$_{\rm BV}$	pe	EES-CTE
V482 Per	54400.3747	0.0006	Ι	$_{\rm BV}$	pe	CTE-NUL
	54433.4101	0.0006	II	$_{\rm BV}$	pe	MYI-YÇE
AQ Psc	54417.3032	0.0005	II	BV	pe	TTA-ECI
·	54763.3041	0.0006	Ι	BV	pe	CTE-DÖZ
	54764.4984	0.0007	Π	BV	pe	ZAV-SSA
RZ Tau	54769.5842	0.0002	Ι	BVR	ccd	HSE-GVA
	54770.4130	0.0001	T	BVR	ccd	EGÜ-DSA
	54778.3108	0.0001	Ι	BVR	ccd	TKI-AEL
	54778.5188	0.0001	Ī	BVR	ccd	POR-TYI
GR Tau	54371.5594	0.0006	I	BV	pe	CTE-GER
	54376.5064	0.0006	Ī	BV	pe	NAL-SHA
	54422.5039	0.0004	II	BV	pe	GÖA-ETÖ
	54520 2942	0.0002	T	BV	P° De	SSI ABI
V471 Tau	54718 4881	0.0002	T	BV	pe	SAY-BSA
V781 Tau	54436 5708	0.0003	Π	BV	pe pe	TTA-ZTE
VIOI Idu	54520 3817	0.0005	II	BV	pe	SCA-LKA
	54756 4728	0.0005	T	BV	pe	HSE-EES
	54757 5060	0.0003	T	BV	pe pe	GİA-SSA
V781 Tou	54760 6118	0.0000	T	BVB	pe ccd	DBICKA
VIOL Lau	54760 4426	0.0001	T	BVR	ccd	DBI DOR
	54700.4420	0.0001	11 T	DVA	and	DDI-FOR MVI SSA
	54775.4442 E477E 6177	0.0001	I TT	DVA	and	MII-şşa UDO ECÖ
V1109 The	54775.0177	0.0001	11 T	DVA	ccu	
v1125 1au	54719.5754	0.0001	1 11	DVA	ccu	ZŞA-DƏI
	54722.5754 54795 5795	0.0002	11 T	BVR	cca	I KI-G IA
	54725.5735 54796 5759	0.0001	1	BVR	cca	GGU-SER
	54720.5752 54720.5796	0.0002	11 TT	BVR	cca	I ÇE-ŞŞA
	54740.5720	0.0001	11 T	DVN	ccu	ŞŞA-MƏL DOĞ VIDO
	54747.5707	0.0001	1	BVR	cca	EÇU-KTU
	54753.5700	0.0001	1	BVR	cca	AEL-SAY
V1100 T	54753.3099	0.0002	11	BVR	cca	TÇA-MŞE
v1128 1au	54785.3952	0.0001	11	BVR	cca	I KI-ZAV
	54813.4891	0.0001	11 T	BVR	cca	PUR-EES
	54842.3404	0.0001	1	BVR	cca	CRI-EES
171100 T	54842.1940	0.0001	11	BVR	cca	ŞÇA-ZIE DOÜ OVA
V1130 Tau	54771.4260	0.0001	1	BVR	ccd	EGU-GYA
	54779.4153	0.0003	1	BVR	ccd	KYI-NBA
HH UMa	54833.4998	0.0002	1	BVR	ccd	DOZ-OBA
	54843.4501	0.0002	I	BVR	ccd	NAL-SSU
	54818.9856	0.0002	11	BVR	ccd	MPI-HAS
	54852.4627	0.0003	II	BVR	ccd	ZŞA-GVA
	54932.4452	0.0002	Ι	BVR	ccd	OBA-HGU
ZZ UMa	54920.3747	0.0001	I	BVR	ccd	LÇE-HAS
GR Vir	54647.3362	0.0003	Ι	BV	\mathbf{pe}	MYA-HDU
DR Vul	54617.5044	0.0004	II	BV	\mathbf{pe}	HKA-SAK
	54680.5335	0.0003	II	BV	pe	ZAY-HKA

Filter Method Obs. Star name Time of max. Error HJD 2400000+ OV And BV AEL-MYI 54048.34310.0005pe 54048.3431 0.0005BV AEL-MYI pe 0.0003 54056.3448 BV NUL-DCA \mathbf{pe} 54057.2851 0.0004ΒV NUL-TTA \mathbf{pe} 0.0004BVNUL-TTA 54064.3459 \mathbf{pe} NUL-GÖA 54065.2917 0.0009 BV pe 54088.3418 0.0005BVNUL-AEL pe 0.0003 \mathbf{pe} NUL-DÇA 54098.2293ΒV NUL-ÖBA 0.000154700.5654 BVR ccd RS Boo 0.0001NUL-NAL 53480.4586BV pe 53485.36020.0003BVNUL-LÇE pe 0.0004NUL-ETÖ 53505.3659 BV \mathbf{pe} BVR ST Boo 54216.5301 0.0001LÇE-GÖA ccd 54231.47340.0002BVR ccd LÇE-DÇA 0.0005BVLÇE-GÖA 54244.4847 \mathbf{pe} 0.0001LÇE-ETÖ 54284.3805BVR ccd LÇE-HŞE 0.0001BVR 54287.4903 ccd 54297.44820.0001BVR ccd LÇE-DÇA LÇE-GÖA 0.0001BVR 54307.4037 ccd 0.000154330.4271BVR ccd LÇE-HŞE 0.000154335.4003BVR LÇE-ETÖ ccd 0.000154350.3315BVR ccd LÇE-DÇA 54228.3646TV Boo 0.0002BVR NUL-DÇA ccd 54233.33120.0002BVR NUL-ETÖ ccd 0.0003BVR NUL-ETÖ 54247.4039 ccd 54271.4659 0.0002BVR NUL-NAL ccd 0.000254283.3396BVR NUL-GÖA ccd $4 \, \mathrm{CVn}$ 0.0004BVNUL-AEL 53452.4425pe 0.0013BVNUL-MYI 53466.5304pe 0.001353466.5304BV NUL-MYI pe 53829.4387 0.0007ΒV NUL-DÇA pe XZ Cyg 53985.4794 0.0005BVNUL-MYI pe 53992.4743 0.0005BVNUL-MYI pe 53993.3983 0.0002ΒV NUL-AEL pe 54306.4815 0.0001BVR NUL-DÇA ccd 54321.42170.0002BVR ccd NUL-MYI 54328.41600.0004BVR ccd NUL-MYI 0.0002NUL-ÖBA 54336.3504BVR ccd 0.0001NUL-ÖBA 54742.2881BVR ccd RR Leo 54181.43010.0003BVR ccd LÇE-HŞE 54200.4271 0.0005BV pe LÇE-ETÖ 54211.28780.0004BVpe LÇE-GÖA 54215.35910.0002BVR ccd LÇE-HŞE 54234.35550.0002BVR ccd LÇE-HŞE 54244.30880.0002BVR ccd LÇE-ETÖ RR Lyr 53927.38120.0003ΒV NUL-AEL pe 0.0004ΒV NUL-AEL 53948.3911pe 0.0004BVNUL-NAL 53956.3073pe 0.000453957.4458BVNUL-MYI pe 0.0004ΒV NUL-GÖA 53961.4032 pe 53969.3322 0.0003ΒV NUL-AEL \mathbf{pe} 0.0002BVR NUL-MYI 54258.4703 ccd 0.0002BVR NUL-DÇA 54291.3617 ccd NUL-LÇE 54304.37630.0005BVR ccd 0.0003NUL-ÖBA 54308.3323BVR ccd 0.0003 BVR NUL-ETÖ 54334.4387 ccd

 Table 2: Maxima Times of Pulsating Stars

Table 2: (cont.)

Star name	Time of max. HJD 2400000+	Error	Filter	Method	Obs.
T Sex	54167.3472	0.0002	BV	pe	LÇE-GÖA
	54168.2831	0.0002	$_{\rm BV}$	\mathbf{pe}	LÇE-GÖA
	54169.2815	0.0002	BV	\mathbf{pe}	LÇE-ETÖ
	54203.3771	0.0002	BV	\mathbf{pe}	LÇE-HŞE

Observers:			
ADE:	A. Demirtop	KEY:	K. Eyidoğan
AKA:	A. Karafil	LÇE:	L. Çelik
ABİ:	A. Bingöl	LKA:	L. Kalkan
AEL:	A. Elmaslı	MÖZ:	M. Öztürk
BSI:	B. Sivrilikaya	MSE:	M. Seki
BSA:	B. Savran	MYA:	M. Yazıcı
CKI:	C. Kılıç	MYI:	M. Yılmaz
CTE:	C. Tezcan	MŞE:	M. Şemuni
DBİ:	D. Bilgiç	MPI:	M. Pinarer
DÖZ:	D. Öztürk	NBA:	N. Bağıran
DÇA:	D. Çakan	NAL:	N. Alan
DSA:	D. Sabuncu	NUL:	N. Deniz Uluş
EÖZ:	E. Özel	ÖBA:	Ö. Baştürk
EİM:	E. İmdat	ÖTA:	Ö. Taşpınar
EES:	E. Esmer	POR:	P. Oruç
EÇÖ:	E. Çöl	SAK:	S. Aktaş
EGÜ:	E. Güneş	SAY:	S. Aydın
ECİ:	E. Civelek	SSA:	S. Saydam
ETÖ:	E. Törün	SKÖ:	S. Kösemen
GVA:	G. Varol	SSİ:	S. Sipahioğlu
GİA:	G. Aysan	SER:	S. Eryılmaz
GGÖ:	G. Gökay	SSU:	S. Suri
GKA:	G. Karagöz	ŞŞA:	Ş. Şahin
GÖA:	G. Aydın	ŞÇA:	Ş. Çalışkan
GYA:	G. Yazıcı	ŞHA:	Ş. Halıcı
GER:	G. Erdoğan	TTA:	T. Tanrıverdi
HŞE:	H. V. Şenavcı	TKA:	T. Karacaoğlu
HGÜ:	H. Gürsoytrak	TÇA:	T. Çakır
HBO:	H. Bozyel	TKI:	T. Kılıçoğlu
HAS:	H. Aslan	TYI:	T. Yılmaz
HDU:	H. Durmuş	ZTE:	Z. Terzioğlu
HKA:	H. Karaca	ZAV:	Z. Avcı
İTÜ:	İ. Türk	ZŞA:	Z. Şahin
KTO:	K. Topbaş	ZAY:	Z. Ay
KYİ:	K. Yiğit	YÇE:	Y. Çetni

Acknowledgements: We would like to thank all observers at the Ankara University Observatory.

References:

Hardie, R.H., 1962, in Astronomical Techniques, Chicago Univ. Press, ed. Hiltner, W.A. Kwee, K.K., van Woerden, H., 1956, BAN, **12**, 327

Number 5888

Konkoly Observatory Budapest 4 May 2009 *HU ISSN 0374 - 0676*

ELEMENTS FOR 10 RR LYRAE STARS

HÄUSSLER, K.¹; BERTHOLD, T.^{1,2}; KROLL, P.²

 1 Bruno-H.-Bürgel-Sternwarte, Töpelstr. 46, D-04746 Hartha, Germany

 2 Sternwarte Sonneberg, Sternwartestr
. 32, D-96515 Sonneberg, Germany

email: info@sternwarte-hartha.de, tb@4pisysteme.de, pk@4pisysteme.de

These stars were discovered and reported to be of RR Lyrae type by Boyce & Huruhata (1942), Hoffmeister (1966, 1967) and Nielsen (1932). Except some remarks concerning the type of variability (see details below), no further observations or ephemeris have been published until today. Photographic plates of a field centered at α Oph, taken with the Sonneberg Observatory 40-cm Astrographs during three intervals spread over the years from 1964 to 1994, were used to investigate the behaviour of these objects (see Table 1).

The given elements were obtained by means of least-squares solutions. Photographic amplitudes were derived with respect to magnitudes of the comparison stars given in Table 2. An extensive list holding the times of maxima derived can be retrieved as 5888-t3.txt, using the link in the HTML version of this paper. Individual data are available upon request.

Remarks:

NSV 9097

Type of variability (eclipsing) described by Boyce and Huruhata (1942) is erroneous.

NSV 9320

Right ascension coordinate given in the paper of Boyce & Huruhata (1942) is erroneous. The object is placed approximately 2 minutes westwards.

NSV 9539

Nielsen (1932) reported the star to be short periodic.

This research made use of the SIMBAD data base, operated by the CDS at Strasbourg, France.

References:

Boyce, E.H., Huruhata, M., 1942, *Harvard Annals*, **109**, 19 Hoffmeister, C., 1966, *Astron. Nachr.*, **289**, 1 Hoffmeister, C., 1967, *Astron. Nachr.*, **290**, 43 Nielsen, A.V., 1932, *Astron. Nachr.*, **244**, 255

Figure 1. Light curve of NSV 8671

Figure 2. Light curve of NSV 8744

Figure 4. Light curve of NSV 9027

Figure 5. Light curve of NSV 9097

Figure 7. Light curve of NSV 9320

Figure 6. Light curve of NSV 9298

Figure 8. Light curve of NSV 9480

Figure 10. Light curve of NSV 9545

Table 1. Summary of this paper							
Star	Type	Epoch	Period	Max.	Min.	M - m	No. of
		2400000 +	(day)				Plates
NSV 8671	RRab	49484.497	0.5440685	$15.^{\mathrm{m}}0$	$15^{\rm m}_{\cdot}7$	$0^{p}_{\cdot}21$	262
		± 8	± 7				
$NSV \ 8744$	RRab	48804.460	0.5780904	$15^{\mathrm{m}}_{\cdot}3$	$16 \stackrel{\mathrm{m}}{\cdot} 1$	$0^{\mathrm{p}}_{\cdot}19$	214
		± 7	± 7				
NSV 8887	RRab	49486.504	0.5155322	$14.^{\mathrm{m}}0$	$15.^{\mathrm{m}}0$	$0^{\mathrm{p}}_{\cdot}20$	271
		± 8	± 7				
NSV 9027	RRab	49193.454	0.5373109	$13^{\mathrm{m}}_{\cdot}7$	$15^{\mathrm{m}}_{\cdot}1$	$0^{\mathrm{p}}_{\cdot}18$	275
		± 10	± 8				
NSV 9097	RRc	49219.347	0.4688085	$14.^{m}4$	$14^{\rm m}_{\cdot}9$		264
		± 15	± 11				
NSV 9298	RRab	49213.325	0.4780908	$13^{\rm m}_{\cdot}3$	$14.^{\mathrm{m}}5$	$0^{\mathrm{p}}_{\cdot}18$	286
		± 8	± 6				
NSV 9320	RRc	49133.467	0.3888318	$14.^{\mathrm{m}}6$	$14.^{\mathrm{m}}9$		255
		± 10	± 5				
NSV 9480	RRab	49133.456	0.5901416	$14.^{\mathrm{m}}8$	$15^{\mathrm{m}}_{\cdot}3$	$0^{p}_{.}25$	254
		± 10	± 10				
NSV 9539	RRab	49482.464	0.4783094	$13^{\rm m}_{\cdot}9$	$15.^{\mathrm{m}}6$	$0^{\mathrm{p}}_{\cdot}22$	266
		± 6	± 5				
NSV 9545	RRab	49482.408	0.4767289	$14.^{\mathrm{m}}1$	$15.^{\mathrm{m}}6$	$0^{p}_{\cdot}22$	264
		± 6	± 4				

Table 1. Summary of this paper

Т	able 2. Comparison s	tars ar	nd cross references	
	NSV 8671		NSV 8744	
	S 8615		S 8616	
	USNO 0975-09209323		USNO 0975-09230699	
Comp. No.	USNO	m^*	USNO	m^*
1	0975 - 09208744	$14.^{m}8$	0975 - 09236057	$15.^{\mathrm{m}}0$
2	0975 - 09204518	14.9	0975 - 09230081	$15.^{\mathrm{m}}7$
3	0975 - 09208491	$15.^{\mathrm{m}}5$	0975 - 09233260	$15 \stackrel{\mathrm{m}}{\cdot} 9$
4	0975 - 09209389	$15.^{\mathrm{m}}7$		
	NSV 8887		NSV 9027	
	HV 10950		HV 10959	
	USNO 0975-09268884		USNO 0975-09304132	
Comp. No.	USNO	m^*	USNO	m^*
1	0975 - 09269261	$13.^{m}8$	0975 - 09309205	13 ^m 7
2	$0975 \hbox{-} 09265427$	$14.^{m}6$	0975 - 09309459	$14.^{m}1$
3	0975 - 09267386	$15.^{\mathrm{m}}0$	0975 - 09304972	14.8
4	0975-09270705	$15.^{m}5$	0975-09307002	$15^{m}_{\cdot}2$
	NSV 9097		NSV 0208	
	HV 10069		S 0815	
	USNO 0075 00296486		5 9019 HENO 0075 00459904	
Comp. No.	USINO 0975-09520480	***	USNO 0975-09458804	
$\frac{\text{Comp. No.}}{1}$	0075 00224790	14m9	0075-00450171	10mo
1	0975-09524760	14. Z	0975-09459171	10. 2 19me
2	0975-09525882	14.70 14m0	0975-09451418	1570 14m1
3	0975-09525117	148	0975-09457055	141
4			0975-09455484	14:4
	NSV 9320		NSV 9480	
	HV 10997		HV 11013	
	USNO 0975-09467795		USNO 0975-09528437	
Comp. No.	USNO	m^*	USNO	m^*
1	0975 - 09474144	$14.^{m}5$	0975 - 09530343	$14^{\rm m}_{\cdot}7$
2	0975 - 09469966	$15.^{\mathrm{m}}0$	0975 - 09530465	$15 \cdot 0$
3			0975 - 09530506	$15.^{\mathrm{m}}5$
	NSV 9539		NSV 9545	
	384.1931		S 8624	
	USNO 0975-09567576		USNO 0975-09574756	
Comp. No.	USNO	m^*	USNO	m^*
1	0975 - 09567070	$13.^{\mathrm{m}}8$	0975 - 09575791	$14.^{\mathrm{m}}4$
2	0975 - 09569476	$14.^{\mathrm{m}}5$	0975 - 09568785	$14.^{\mathrm{m}}6$
3	0975 - 09570224	$15.^{\mathrm{m}}1$	0975 - 09577141	$15.^{\mathrm{m}}2$
4	0975 - 09568033	$15^{\mathrm{m}}_{\cdot}8$	0975 - 09578372	$15^{\mathrm{m}}_{\cdot}8$

 * Magnitudes refer to the B values of the USNO–A2.0 catalogue
Number 5889

Konkoly Observatory Budapest 5 June 2009 HU ISSN 0374 - 0676

BAV-RESULTS OF OBSERVATIONS - PHOTOELECTRIC MINIMA OF SELECTED ECLIPSING BINARIES AND MAXIMA OF PULSATING STARS

(BAV MITTEILUNGEN NO. 203)

HÜBSCHER, JOACHIM; STEINBACH, HANS-MEREYNTJE; WALTER, FRANK

Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. (BAV), Munsterdamm 90, 12169 Berlin, Germany

In this 63rd compilation of BAV results, photoelectric observations obtained in the year 2008 are presented on 380 variable stars giving 591 minima on eclipsing binaries and maxima on pulsating stars. All moments of minima and maxima are heliocentric. The errors are tabulated in column ' \pm '. The values in column 'O - C' are determined without incorporation of nonlinear terms. The references are given in the section 'Remarks'. All information about photometers and filters are specified in the column 'Rem'. The observations were made at private observatories. The photoelectric measurements and all the light curves with evaluations can be obtained from the office of the BAV for inspection.

Table 1:	Times	of	minima	of	eclipsing	binarie	es
----------	-------	----	--------	----	-----------	---------	----

						0			
Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
RT And	54738.3976	.0010	QU	-0.0041	\mathbf{S}	GCVS 1985	V	85	5)
	54798.4570	.0041	AG	-0.0075		GCVS 1985	-Ir	33	18)
WZ And	54758.3592	.0003	JU	+0.0478		GCVS 1985	0	78	4)
	54765.3148	.0012	SCI	+0.0469		GCVS 1985	0	166	4)
XZ And	54779.4277	.0025	ALH	+0.1693		GCVS 1985	V	146	6)
	54824.2181	.0003	JU	+0.1695		GCVS 1985	0	27	4)
AB And	54697.3431	.0002	\mathbf{SG}	-0.0220	\mathbf{s}	GCVS 1985	m	50	4)
AD And	54784.4832	.0020	SCI	-0.0598		GCVS 1985	0	121	4)
	54798.2939	.0012	JU	-0.0558		GCVS 1985	0	85	4)
BD And	54379.3165	.0001	MS FR	+0.0166		GCVS 1985	0	300	8)
	54798.2421	.0026	AG	+0.0156		GCVS 1985	-Ir	33	18)
BL And	54798.2575	.0014	AG	-0.0040		GCVS 1985	-Ir	33	18)
DK And	54765.3314	.0040	WTR	-0.0021	\mathbf{s}	BAVR 55,106	-Ir	99	13)
KN And	54800.627	.000	\mathbf{FR}	+0.086		BAVR 39,19	-Ir	170	18)
QX And	54817.2538	.0008	AG	+0.0120	\mathbf{s}	GCVS 2008	-Ir	30	18)
V376 And	54757.5422	.0045	SCI	+0.0031		GCVS 2008	0	183	4)
V404 And	54831.2785	.0008	JU	+0.0020		GCVS 2008	0	60	4)
V412 And	54757.3436	.0038	SCI	+0.0448	\mathbf{s}	GCVS 2008	0	71	4)
CX Aqr	54748.2884	.0009	DIE	+0.0074		GCVS 1985	0	22	22)
KO Aql	54675.5401	.0010	AG	+0.0621		GCVS 1985	-Ir	67	18)
LT Aql	54706.4311	.0003	AG	+0.0784		GCVS 1985	-Ir	50	18)
OO Aql	54684.5386	.0003	AG	+0.0401		GCVS 1985	-Ir	51	18)
V416 Aql	54707.4818	.0100	AG	-0.0499		$GCVS \ 2007$	-Ir	36	18)
V417 Aql	54706.4446	.0002	AG	-0.0530		BAVR 33,152	-Ir	49	18)

Table 1: (cont.)

				(/			
Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
V417 Aql	54707.3698	.0003	\overline{AG}	-0.0536	\mathbf{S}	BAVR 33,152	-Ir	33	18)
V420 Aql	54707.4260	.0018	AG	+0.2765		GCVS 2007	-Ir	38	18)
V602 Aql	54719.3597	.0009	AG	+0.2662		GCVS 1985	-Ir	38	18)
V609 Aql	54663.3901	.0033	AG	-0.0445	\mathbf{S}	GCVS 1985	-Ir	42	18)
V694 Aal	54684.3820	.0050	AG	+0.0183	\mathbf{s}	IBVS 4481=BAVM 97	-Ir	52	18)
	54706 5408	0012	AG	+0.0215	s	IBVS $4481 = BAVM 97$	-Ir	93	18)
V699 Aal	54684 5145	0005	AG	+0.0213	D	GCVS 1985	-Ir	51	18)
1055 1141	54706 4370	.0000		+0.0215		CCVS 1965	-11 Ir	55	18)
V007 A al	54700.4570 E467E 46E6	.0003	AG	± 0.0215		GCV5 1965	-11 T.,	67	10)
VOCD And	54075.4050	.0011	AG	0 1010		COVE 2007	-11 T.,	07	10)
V962 Aqi	54675.4789	.0001	AG	+0.1019		GCVS 2007	-Ir	68	18)
V1045 Aql	54719.4572	.0013	AG	-0.0092	\mathbf{s}	GCVS 2007	-Ir	35	18)
V1075 Aql	54719.4250	.0006	AG	-0.0309		GCVS 2007	-Ir	38	18)
V1096 Aql	54663.5278	.0012	AG	-0.2694	\mathbf{S}	GCVS 1985	-Ir	42	18)
V1097 Aql	54703.4624	.0007	\overline{AG}	-0.0659		GCVS 2008	-Ir	40	18)
V1168 Aql	54706.5534	.0010	AG	+0.0029		GCVS 1985	-Ir	50	18)
V1184 Aql	54675.4214	.0007	AG	-0.0090		GCVS 2007	-Ir	68	18)
V1197 Aql	54707.3784	.0006	AG	-0.0125		GCVS 2007	-Ir	29	18)
V1299 Aal	54663.5426	.0019	AG	-0.0450	s	GCVS 2007	-Ir	42	18)
V1353 Ad	54001 3550	0014	MON	+0.0153		BAVB 44 62	V	93	3)
1000 1141	54675 5133	0007	AG	+0.0212	e	BAVB 44 62	_Ir	67	18)
	54607 4388	.0001	FR	+0.0212	6	BAVR 44.62	-11 Ir	54	18)
V1540 A.J	54097.4300	.0002	OU	+0.0172		DAVIC 51C1 DAVIM 199	-11	04	10) E)
V 1542 Aqi	54718.4090	.0007		+0.0076		IBVS 5101=BAVM 138	v	80) 11)
RS Ari	54831.4846	.0007	FR	-0.0859		GCVS 1985	-lr	38	11)
SS Ari	54085.2421	.0006	MON	-0.0345	\mathbf{S}	GCVS 1985	V	104	3)
	54512.3344	.0020	ATB	-0.0475	\mathbf{S}	GCVS 1985	0	60	3)
	54823.3145	.0021	PGL	-0.0585	\mathbf{S}	GCVS 1985	0	318	17)
	54843.2074	.0007	PGL	-0.0593	\mathbf{S}	GCVS 1985	0	170	17)
AL Ari	54800.3020	.0005	\mathbf{FR}	-0.0081		A&A 374,980	-Ir	38	11)
	54845.2724	.0005	SIR	-0.0073		A&A 374,980	-Ir	194	10)
CQ Aur	54861.4447	.0031	SCI	+1.2485		GCVS 1985	0	144	4)
EM Aur	54099.5170	.0015	MON	-0.1702	s	GCVS 1985	V	120	3)
	54365.5149	.0004	MS FR	-0.1819	s	GCVS 1985	0	663	8)
	54827 3788	0004	SIR	-0.1907	5	GCVS 1985	-Ir	155	10)
	5/837 39/8	0014	PGL	-0.1957	e	GCVS 1985	0	200	17)
IV Aur	54512 2254	0028	MON	0.1996	5	CCVS 1965	V	200	3)
	54515.5254 E4024 4147	.0028	DCI	-0.1220		COVE 1985	v	027	3) 17)
KU Aur	54654.4147	.0007	PGL MC ED	+0.0250		GCV5 1985	0	201	(1)
V 304 Aur	54452.2829	.0002	MS FR				0	231	8)
V379 Aur	54455.2871	.0003	MS FR				0	418	8)
UW Boo	54454.6987	.0032	MS FR	-0.0133	\mathbf{S}	GCVS 1985	0	451	8)
AC Boo	54204.3908	.0006	MON	-0.0553		GCVS 1985	V	145	3)
	54595.4321	.0007	QU	-0.0345	\mathbf{S}	GCVS 1985	\mathbf{Ic}	70	5)
	54597.5459	.0007	QU	-0.0352	\mathbf{S}	GCVS 1985	Ic	85	5)
			0.**				D	55	5)
	54598.4267	.0004	QU	-0.0355		GCVS 1985	В	00	
	54598.4267 54600.5411	.0004 $.0004$	$egin{array}{c} { m QU} \\ { m QU} \end{array}$	$-0.0355 \\ -0.0357$		GCVS 1985 GCVS 1985	В Ic	80	5)
	54598.4267 54600.5411 54637.5482	.0004 .0004 .0004	QU QU QU	-0.0355 -0.0357 -0.0337		GCVS 1985 GCVS 1985 GCVS 1985	В Ic B	$\frac{55}{80}$	5) 5)
	54598.4267 54600.5411 54637.5482 54639.4887	.0004 .0004 .0004 .0003	QU QU QU QU	-0.0355 -0.0357 -0.0337 -0.0315	s	GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985	В Ic B B		5) 5) 5)
	54598.4267 54600.5411 54637.5482 54639.4887 546484743	.0004 .0004 .0004 .0003 .0004	QU QU QU QU QU	-0.0355 -0.0357 -0.0337 -0.0315 -0.0329	s	GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985	В Ic B B Ic		5) 5) 5) 5)
	$54598.4267 \\ 54600.5411 \\ 54637.5482 \\ 54639.4887 \\ 54648.4743 \\ 54672.4404$.0004 .0004 .0004 .0003 .0004 .0005	QU QU QU QU QU QU	$\begin{array}{r} -0.0355 \\ -0.0357 \\ -0.0337 \\ -0.0315 \\ -0.0329 \\ -0.0320 \end{array}$	s	GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985	B Ic B Ic V		5) 5) 5) 5)
CN Dec	54598.4267 54600.5411 54637.5482 54639.4887 54648.4743 54672.4404 54172.4754	.0004 .0004 .0003 .0003 .0004 .0005	QU QU QU QU QU QU	$\begin{array}{r} -0.0355 \\ -0.0357 \\ -0.0337 \\ -0.0315 \\ -0.0329 \\ -0.0320 \end{array}$	S	GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985	B Ic B Ic V		5) 5) 5) 5) 5)
GN Boo	54598.4267 54600.5411 54637.5482 54639.4887 54648.4743 54672.4404 54172.4756	.0004 .0004 .0004 .0003 .0004 .0005 .0001	QU QU QU QU QU MS FR	$\begin{array}{c} -0.0355 \\ -0.0357 \\ -0.0337 \\ -0.0315 \\ -0.0329 \\ -0.0320 \end{array}$	S	GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985	B Ic B Ic V o		5) 5) 5) 5) 5) 8)
GN Boo GR Boo	54598.4267 54600.5411 54637.5482 54639.4887 54648.4743 54672.4404 54172.4756 54174.4911	.0004 .0004 .0003 .0004 .0005 .0001 .0004	QU QU QU QU QU MS FR MS FR	$\begin{array}{c} -0.0355 \\ -0.0357 \\ -0.0337 \\ -0.0315 \\ -0.0329 \\ -0.0320 \end{array}$	S	GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985	B Ic B Ic V o		5) 5) 5) 5) 5) 8) 8)
GN Boo GR Boo SV Cam	$\begin{array}{c} 54598.4267\\ 54600.5411\\ 54637.5482\\ 54639.4887\\ 54648.4743\\ 54672.4404\\ 54172.4756\\ 54174.4911\\ 54760.3081\\ \end{array}$.0004 .0004 .0003 .0004 .0005 .0001 .0004 .0003	QU QU QU QU QU MS FR MS FR SG	$\begin{array}{c} -0.0355 \\ -0.0357 \\ -0.0337 \\ -0.0315 \\ -0.0329 \\ -0.0320 \\ +0.0490 \\ \end{array}$	S	GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985	B Ic B Ic V o -Ir		5) 5) 5) 5) 5) 8) 8) 8)
GN Boo GR Boo SV Cam	$\begin{array}{c} 54598.4267\\ 54600.5411\\ 54637.5482\\ 54639.4887\\ 54648.4743\\ 54672.4404\\ 54172.4756\\ 54174.4911\\ 54760.3081\\ 54843.3387\\ \end{array}$.0004 .0004 .0003 .0004 .0005 .0001 .0004 .0003 .0042	QU QU QU QU QU MS FR MS FR SG PGL	$\begin{array}{c} -0.0355 \\ -0.0357 \\ -0.0337 \\ -0.0315 \\ -0.0329 \\ -0.0320 \\ +0.0490 \\ +0.0498 \end{array}$	S	GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985	B Ic B Ic V o o -Ir		5) 5) 5) 5) 5) 8) 8) 8) 5) 17)
GN Boo GR Boo SV Cam AO Cam	$\begin{array}{c} 54598.4267\\ 54600.5411\\ 54637.5482\\ 54639.4887\\ 54648.4743\\ 54672.4404\\ 54172.4756\\ 54172.4756\\ 54174.4911\\ 54760.3081\\ 54843.3387\\ 54842.4143\\ \end{array}$.0004 .0004 .0003 .0004 .0005 .0001 .0004 .0003 .0042 .0001	QU QU QU QU QU MS FR MS FR SG PGL WN	$\begin{array}{c} -0.0355 \\ -0.0357 \\ -0.0337 \\ -0.0315 \\ -0.0329 \\ -0.0320 \\ +0.0490 \\ +0.0498 \\ -0.0692 \end{array}$	S	GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985	B IC B IC V o o -Ir o V		5) 5) 5) 5) 5) 8) 8) 5) 17) 15)
GN Boo GR Boo SV Cam AO Cam	$\begin{array}{c} 54598.4267\\ 54600.5411\\ 54637.5482\\ 54639.4887\\ 54648.4743\\ 54672.4404\\ 54172.4756\\ 54172.4756\\ 54174.4911\\ 54760.3081\\ 54843.3387\\ 54842.4143\\ 54843.4044\\ \end{array}$.0004 .0004 .0003 .0004 .0005 .0001 .0004 .0003 .0042 .0001 .0001	QU QU QU QU QU MS FR MS FR SG PGL WN WN	$\begin{array}{c} -0.0355 \\ -0.0357 \\ -0.0337 \\ -0.0315 \\ -0.0329 \\ -0.0320 \\ \end{array}$ $\begin{array}{c} +0.0490 \\ +0.0498 \\ -0.0692 \\ -0.0689 \end{array}$	s	GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985	B IC B IC V o o -Ir o V V V		5) 5) 5) 5) 5) 8) 8) 5) 17) 15)
GN Boo GR Boo SV Cam AO Cam S Cnc	$\begin{array}{c} 54598.4267\\ 54600.5411\\ 54637.5482\\ 54639.4887\\ 54648.4743\\ 54672.4404\\ 54172.4756\\ 54174.4911\\ 54760.3081\\ 54843.3387\\ 54842.4143\\ 54843.4044\\ 54199.3914 \end{array}$.0004 .0004 .0003 .0004 .0005 .0001 .0004 .0003 .0042 .0001 .0001 .0013	QU QU QU QU QU MS FR MS FR SG PGL WN WN PRK	$\begin{array}{c} -0.0355 \\ -0.0357 \\ -0.0337 \\ -0.0315 \\ -0.0329 \\ -0.0320 \\ \end{array}$ $\begin{array}{c} +0.0490 \\ +0.0498 \\ -0.0692 \\ -0.0689 \\ -0.0988 \end{array}$	S	GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985	B IC B IC V o o -Ir o V V V o	80 61 65 65 44 232 270 53 564 134 179 52	5) 5) 5) 5) 5) 8) 8) 5) 17) 15) 15) 8)
GN Boo GR Boo SV Cam AO Cam S Cnc WW Cnc	$\begin{array}{c} 54598.4267\\ 54600.5411\\ 54637.5482\\ 54639.4887\\ 54648.4743\\ 54672.4404\\ 54172.4756\\ 54174.4911\\ 54760.3081\\ 54843.3387\\ 54842.4143\\ 54843.4044\\ 54199.3914\\ 54569.4236\end{array}$.0004 .0004 .0003 .0004 .0005 .0001 .0004 .0003 .0042 .0001 .0001 .0013 .0014	QU QU QU QU QU MS FR MS FR SG PGL WN WN PRK ATB	$\begin{array}{c} -0.0355 \\ -0.0357 \\ -0.0337 \\ -0.0315 \\ -0.0329 \\ -0.0320 \\ \end{array}$ $\begin{array}{c} +0.0490 \\ +0.0498 \\ -0.0692 \\ -0.0689 \\ -0.0988 \\ -0.0723 \end{array}$	S	GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 BAVR 32,36	B IC B IC V o o -Ir o V V V o o	80 61 65 65 44 232 270 53 564 134 179 52 53	5) 5) 5) 5) 5) 8) 8) 5) 17) 15) 15) 8) 3)
GN Boo GR Boo SV Cam AO Cam S Cnc WW Cnc WY Cnc	$\begin{array}{c} 54598.4267\\ 54600.5411\\ 54637.5482\\ 54639.4887\\ 54648.4743\\ 54672.4404\\ 54172.4756\\ 54174.4911\\ 54760.3081\\ 54843.3387\\ 54842.4143\\ 54843.4044\\ 54199.3914\\ 54569.4236\\ 54223 3794 \end{array}$.0004 .0004 .0003 .0004 .0005 .0001 .0004 .0003 .0042 .0001 .0001 .0013 .0014	QU QU QU QU QU MS FR MS FR SG PGL WN WN PRK ATB MON	$\begin{array}{c} -0.0355 \\ -0.0357 \\ -0.0337 \\ -0.0315 \\ -0.0329 \\ -0.0320 \\ \end{array}$ $\begin{array}{c} +0.0490 \\ +0.0498 \\ -0.0692 \\ -0.0689 \\ -0.0988 \\ -0.0723 \\ -0.0299 \end{array}$	S	GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 BAVR 32,36 GCVS 1985	B IC B IC V o o -Ir o V V V o o V	$\begin{array}{c} 33\\ 80\\ 61\\ 65\\ 65\\ 44\\ 232\\ 270\\ 53\\ 564\\ 134\\ 179\\ 52\\ 53\\ 89\end{array}$	5) 5) 5) 5) 5) 8) 8) 5) 17) 15) 15) 8) 3) 3)
GN Boo GR Boo SV Cam AO Cam S Cnc WW Cnc WY Cnc AD Cnc	54598.4267 54600.5411 54637.5482 54639.4887 54648.4743 54672.4404 54172.4756 54174.4911 54760.3081 54843.3387 54842.4143 54843.4044 54199.3914 54569.4236 54223.3794 54862.4326	.0004 .0004 .0003 .0004 .0005 .0001 .0004 .0003 .0042 .0001 .0001 .0013 .0014 .0003 .0015	QU QU QU QU QU MS FR MS FR SG PGL WN WN PRK ATB MON SCI	$\begin{array}{c} -0.0355 \\ -0.0357 \\ -0.0337 \\ -0.0315 \\ -0.0329 \\ -0.0320 \\ \end{array}$ $\begin{array}{c} +0.0490 \\ +0.0498 \\ -0.0692 \\ -0.0689 \\ -0.0988 \\ -0.0723 \\ -0.0299 \\ -0.0183 \end{array}$	S	GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985	B IC B IC V o o -Ir o V V v o o V v o o V	$\begin{array}{c} 33\\ 80\\ 61\\ 65\\ 65\\ 44\\ 232\\ 270\\ 53\\ 564\\ 134\\ 179\\ 52\\ 53\\ 89\\ 20\\ \end{array}$	5) 5) 5) 5) 5) 8) 8) 5) 17) 15) 15) 8) 3) 4)
GN Boo GR Boo SV Cam AO Cam S Cnc WW Cnc WY Cnc AD Cnc ZZ Cas	54598.4267 54600.5411 54637.5482 54639.4887 54648.4743 54672.4404 54172.4756 54174.4911 54760.3081 54843.3387 54842.4143 54843.4044 54199.3914 54569.4236 54223.3794 54862.4326 54776.4062	.0004 .0004 .0003 .0004 .0005 .0001 .0004 .0003 .0042 .0001 .0001 .0013 .0014 .0003 .0015 .0005	QU QU QU QU QU MS FR MS FR SG PGL WN WN PRK ATB MON SCI AC	$\begin{array}{c} -0.0355 \\ -0.0357 \\ -0.0337 \\ -0.0315 \\ -0.0329 \\ -0.0320 \\ \end{array}$ $\begin{array}{c} +0.0490 \\ +0.0498 \\ -0.0692 \\ -0.0689 \\ -0.0988 \\ -0.0723 \\ -0.0299 \\ -0.0183 \\ -0.0121 \end{array}$	S	GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 BAVR 32,36 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985	B IC B IC V o o -Ir o V V o o V o I	$\begin{array}{c} 33\\ 80\\ 61\\ 65\\ 65\\ 44\\ 232\\ 270\\ 53\\ 564\\ 134\\ 179\\ 52\\ 53\\ 89\\ 29\\ 48\end{array}$	5) 5) 5) 5) 5) 5) 8) 8) 5) 17) 15) 15) 8) 3) 3) 4)
GN Boo GR Boo SV Cam AO Cam S Cnc WW Cnc WY Cnc AD Cnc ZZ Cas AL Cac	54598.4267 54600.5411 54637.5482 54639.4887 54648.4743 54672.4404 54172.4756 54174.4911 54760.3081 54843.3387 54842.4143 54843.4044 54199.3914 54569.4236 54223.3794 54862.4326 54776.4062	.0004 .0004 .0003 .0004 .0005 .0001 .0004 .0003 .0042 .0001 .0013 .0014 .0003 .0015 .0005	QU QU QU QU WS FR MS FR SG PGL WN WN PRK ATB MON SCI AG	$\begin{array}{c} -0.0355\\ -0.0357\\ -0.0337\\ -0.0315\\ -0.0329\\ -0.0320\\ \end{array}$ $\begin{array}{c} +0.0490\\ +0.0498\\ -0.0692\\ -0.0689\\ -0.0988\\ -0.0723\\ -0.0299\\ -0.0183\\ -0.0121\\ +0.0232\\ \end{array}$	S	GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 1985	B IC B B IC V o o -Ir o V V o o V o o -Ir	$\begin{array}{c} 33\\ 80\\ 61\\ 65\\ 65\\ 44\\ 232\\ 270\\ 53\\ 564\\ 134\\ 179\\ 52\\ 53\\ 89\\ 29\\ 48\\ 90\\ \end{array}$	5) 5) 5) 5) 5) 5) 8) 8) 5) 15) 15) 15) 8) 3) 4) 18)

Table 1: (cont.)

Variable	HJD 24	±	Obs	O-C		Bibliography	Fil	n	Rem
AL Cas	54798.5712	.0010	SCI	+0.0087	\mathbf{S}	GCVS 1985	0	66	4)
AX Cas	54405.2919	.0001	MS FR	-0.0948		GCVS 1985	0	396	8)
	54752.3007	.0034	SCI	-0.1033		GCVS 1985	0	42	4)
	54776.3195	.0005	AG	-0.0996		GCVS 1985	-lr	48	18)
BN Cas	54776.4237	.0023	AG	+0.5141	\mathbf{s}	GCVS 2007	-Ir	48	18)
BS Cas	54673.5492	.0004	AG	-0.0148		IBVS 4778=BAVM 123	-Ir	30	18)
	54736.5336	.0017	SCI	-0.0176		IBVS 4778=BAVM 123	0	93	4)
	54760.3206	.0003	$_{\rm JU}$	-0.0159		IBVS 4778=BAVM 123	0	112	4)
EY Cas	54827.4083	.0023	SCI	+0.0347		GCVS 1985	0	89	4)
	54829.3338	.0021	SCI	+0.0323		GCVS 1985	0	53	4)
	54829.5663	.0021	SCI	+0.0238	\mathbf{S}	GCVS 1985	0	40	4)
GG Cas	54815.5474	.0033	AG	-0.0564		GCVS 1985	-Ir	60	18)
GR Cas	54453.3005	.0001	MS FR	-0.0406		GCVS 2008	0	477	8)
	54751.4811	.0025	SCI	-0.0446		GCVS 2008	0	27	4)
IL Cas	54776.4278	.0010	AG	-0.0023		BAVR 51,1	-Ir	48	18)
IR Cas	54776.3621	.0001	\mathbf{FR}	+0.0098		GCVS 1985	-Ir	57	18)
IS Cas	54684.5654	.0004	AG	+0.0644		GCVS 1985	-Ir	60	18)
T Cas	54737.4846	.0007	JU	+0.0617		GCVS 1985	0	63	4)
	54751.3216	.0011	JU	+0.0539	\mathbf{s}	GCVS 1985	0	80	4)
KL Cas	54776.4451	.0017	AG	-0.0117		GCVS 1985	-Ir	37	18)
MN Cas	54815.2684	.0017	AG	+0.0188		GCVS 1985	-Ir	60	18)
OR Cas	54776.4924	.0003	AG	-0.0224		GCVS 1985	-Ir	48	18)
OX Cas	54433 2879	.0004	MON	+0.0022		GCVS 1985	V	101	3)
On Cas	54673 5519	0015	AG	± 0.0002	S	GCVS 1985	_Ir	30	18)
	54744 4601	0010	IU	± 0.0200	6	CCVS 1985	-11	80	4)
	54764 3787	.0003	OU	+0.0120		CCVS 1985	V	106	4) 5)
	54090 2022	.0020		+0.0104	a	CCVS 1985	v	60	4)
DV Car	54050.5025	.0031	JU	+0.0220	s	CCVS 1985	v	02 80	4) E)
FV Cas	54700.4139	.0005		-0.2819	s	GCVS 1965 DAVD 25 1	V Tm	00 69	10)
QQ Cas	54718.3299	.0020	AG	+0.1038		BAVR 35,1	-1r	100	18)
1000 C	54779.3806	.0002	WIR	+0.1062	\mathbf{s}	BAVR 35,1	-1r	100	13)
V336 Cas	54718.4344	.0006	AG	-0.0164	\mathbf{s}	GCVS 2008	-lr	63	18)
V345 Cas	54798.3995	.0015	AG	-0.0186	\mathbf{S}	GCVS 2008	-Ir	33	18)
V357 Cas	54396.3116	.0060	MS FR	-0.1497	\mathbf{S}	GCVS 1985	0	351	8)
V361 Cas	54317.5419	.0002	MS FR	-0.1922		GCVS 1985	0	418	8)
V381 Cas	54827.2768	.0012	$_{\rm JU}$	+0.0101	\mathbf{S}	BAVR 32,36	0	105	4)
V449 Cas	54776.4247	.0015	AG				-Ir	37	18)
V459 Cas	54071.2432	.0006	MON	-0.0110		IBVS 4737	V	183	3)
V473 Cas	54815.3785	.0014	AG	-0.0132	\mathbf{S}	IBVS $4669=BAVM 115$	-Ir	60	18)
	54815.5824	.0003	AG	-0.0170		IBVS $4669=BAVM 115$	-Ir	60	18)
V523 Cas	54779.3502	.0003	JU	-0.0372	\mathbf{s}	GCVS 1985	0	80	4)
	54779.4666	.0002	JU	-0.0376		GCVS 1985	0	44	4)
V651 Cas	54684.3981	.0013	AG	+0.0019	\mathbf{S}	IBVS $3554=BAVM 55$	-Ir	63	18)
SU Cep	54798.4788	.0009	AG	+0.0066	\mathbf{s}	GCVS 1985	V	73	18)
VW Cep	54676.414	.002	MOO	-0.038	\mathbf{s}	GCVS 1985	0	14	20)
WW Cep	54700.3713	.0003	AG	+0.0018		IBVS 4131=BAVM 71	-Ir	29	18)
XX Cep	54752.3836	.0007	JU	-0.0207		GCVS 1985	0	76	4)
ZZ Cep	54738.4258	.0018	AG	-0.0067	\mathbf{s}	GCVS 1985	-Ir	133	18)
BR Cen	54738.6018	.0003	AG	+0.0106		GCVS 2007	-Ir	133	18)
CW Cep	54750.3458	.0015	JU	+0.0022		GCVS 1985	0	79	4)
en oop	54765 3332	.0008	JU	+0.0394	s	GCVS 1985	0	90	4)
DN Cen	54798 3753	.0017	AG	-0.0367	5	GCVS 1985	-Ir	74	18)
W Cen	54738 5147	0003	AG	+0 0208		GCVS 2008	_Ir	66	18)
KP Con	54708 9291	0000		±0.0290 ±0.0290		CCVS 2008	-11 Tr	74	19)
TT Cet	54000 2020	.0013	AG	± 0.0424			-11 T.:	14 01	10)
	04809.3839	.0006	AG MC ED	-0.0572		GCVS 1980	-1r	84 450	18)
DD Com	54455.5926	.0005	MS FR	-0.0585		GUVS 2008	0	450	8)
KW CrB	53834.3922	.0002	PRK	-0.0073		GUVS 1985	0	211	8)
YY CrB	54648.4194	.0010	JU				0	38	4)
VV Cyg	54737.3508	.0004	AG	+0.0094		GCVS 1985	-Ir	20	18)
WW Cyg	54697.4530	.0001	AG	+0.0760		GCVS 1985	-Ir	62	18)
WZ Cyg	54798.3641	.0001	\mathbf{FR}	+0.0628		GCVS 1985	-Ir	71	18)

Table 1: (cont.)

Variable	HJD 24	\pm	Obs	O - C		Bibliography	Fil	n	Rem
BR Cyg	54465.3367	.0005	BKN	-0.0010		GCVS 1985	V	63	$(15) \ 2)$
$\operatorname{CG}\operatorname{Cyg}$	54684.5900	.0012	\mathbf{FR}	+0.0564	\mathbf{s}	GCVS 1985	-Ir	39	11)
	54706.3689	.0002	DIE	+0.0609		GCVS 1985	0	22	12)
	54737.2942	.0003	DIE	+0.0603		GCVS 1985	0	22	12)
$ m CV \ Cyg$	53934.4858	.0025	MON	-0.2353		GCVS 1985	V	206	3)
DO Cyg	54718.3362	.0006	\overline{AG}	-0.0252		GCVS 2008	-Ir	74	18)
	54800.4181	.0004	AG	-0.0238		GCVS 2008	-Ir	67	18)
LO Cyg	54737.3485	.0012	AG	+0.0155	\mathbf{s}	GCVS 2008	-Ir	19	18)
	54760.3172	.0052	SCI	+0.0172		GCVS 2008	0	64	4)
MR Cyg	54706.4743	.0008	AG	+0.0012		GCVS 1985	-Ir	35	18)
${ m QU}~{ m Cyg}$	54663.4731	.0026	SCI	-0.0721		GCVS 2008	0	21	4)
V370 Cyg	54685.4783	.0004	AG	-0.0229		GCVS 1985	-Ir	29	18)
V387 Cyg	54688.4208	.0021	AG	+0.0192	\mathbf{s}	GCVS 1985	-Ir	91	18)
V388 Cyg	54719.4104	.0007	\mathbf{FR}	+0.0787		GCVS 1985	-Ir	43	11)
V393 Cyg	54697.4009	.0010	AG	+0.0218		GCVS 1985	-Ir	62	18)
V443 Cyg	54707.4437	.0015	AG	+0.0317		GCVS 2008	-Ir	19	18)
V444 Cyg	54707.4494	.0062	AG	+0.1742		GCVS 2008	-Ir	20	18)
	54709.5629	.0015	\mathbf{FR}	+0.1815	\mathbf{s}	GCVS 2008	-Ir	64	11)
V453 Cyg	54757.4007	.0018	\mathbf{FR}	+0.0289	\mathbf{s}	GCVS 2008	-Ir	45	18)
V456 Cyg	54707.3832	.0024	AG	+0.0455		GCVS 1985	-Ir	19	18)
20	54709.6020	.0017	\mathbf{FR}	-0.0203	\mathbf{s}	GCVS 1985	-Ir	64	11)
V463 Cvg	53896.4503	.0015	MON	+0.0424		GCVS 1985	V	151	3)
V478 Cvg	54709.4075	.0009	FR	+0.0317	s	GCVS 1985	-Ir	110	11)
V483 Cvg	54685.4798	.0015	AG	+0.0232	-	GCVS 2008	-Ir	29	18)
V490 Cvg	54685.4130	.0046	AG	+0.2060	s	GCVS 2008	-Ir	28	18)
V493 Cvg	54685 5691	0013	AG	+0.1177	5	GCVS 1985	-Ir	29	18)
V496 Cvg	54757 4771	0014	FB	+0.0032	s	GCVS 2008	-Ir	53	11)
V502 Cyg	54697 5555	0004	AG	+0.0002 +0.1203	ы	GCVS 2008	-Ir	60	18)
V505 Cyg	54697 5413	0012	AG	+0.1200 ±0.0658		GCVS 1985	_Ir	37	18)
V513 Cyg	54317 4456	00012	MS FR	± 0.0050	e	GCVS 1985	-11	520	8)
V628 Cyg	54704 4282	0002		-0.1354	a	IBVS 4381-BAVM 80	Ir	520 44	18)
V625 Cyg	54658 5052	.0008	AG	-0.0029		CCVS 2008	-11 Ir	44	18)
v055 Cyg	54008.0002	.0002	AG	-0.0475	a	CCVS 2008	-11 In	41	10)
	54704.3014	.0029	AG	-0.0331	5	GCVS 2008	-11 In	40 99	10)
VC49 C	54700.4001	.0032	AG	-0.0473		GCVS 2008	-11 T.,	55 74	10)
v 642 Cyg	04282.0780 54709 4741	.0010	AG	+0.3087		GCVS 1985	-1r	74	3) 19)
VCOD C	54798.4741	.0007	AG	+0.3142		GUV5 1985	-1r	70 70	18)
V680 Cyg	54798.5264	.0018	AG	+0.0248		BAVR 32,36	V	78 40	18)
V687 Cyg	54685.4605	.0005	AG	-0.0072		GCVS 1985	-1r	40	18)
V700 Cyg	54707.5050	.0007	AG	-0.0651		GCVS 1985	-lr	18	18)
V704 Cyg	54648.5139	.0004	AG	+0.0332		GCVS 1985	-Ir	45	18)
V711 Cyg	54704.4735	.0007	AG	-0.0066	\mathbf{s}	GCVS 2008	-lr	45	18)
	54706.5420	.0021	AG	-0.0050		GCVS 2008	-lr	34	18)
V725 Cyg	54697.5295	.0007	AG	+0.2323		GCVS 1985	-lr	38	18)
V726 Cyg	54697.5001	.0002	AG	+0.0426		GCVS 1985	-lr	62	18)
	54707.4602	.0012	AG	+0.0433		GCVS 1985	-Ir	18	18)
V841 Cyg	54720.3755	.0019	SCI	+0.0002		GCVS 1985	0	120	4)
V859 Cyg	54685.4919	.0005	AG	+0.0074		GCVS 1985	-Ir	41	18)
V874 Cyg	54708.4230	.0015	SCI	+0.0327		GCVS 2008	0	41	4)
V889 Cyg	54685.4651	.0010	AG	-0.1769		GCVS 1985	-Ir	41	18)
V957 Cyg	54685.5189	.0008	AG	+0.1448	\mathbf{s}	GCVS 1985	-Ir	40	18)
V1011 Cyg	54649.4842	.0005	\mathbf{FR}	+0.0384	\mathbf{s}	GCVS 2007	-Ir	53	18)
	54696.4608	.0026	AG	+0.0441		GCVS 2007	-Ir	94	18)
V1018 Cyg	54649.5479	.0007	\mathbf{FR}	-0.0856		GCVS 1985	-Ir	54	18)
	54697.4463	.0008	AG	-0.0856	\mathbf{s}	GCVS 1985	-Ir	39	18)
V1023 Cyg	54697.4204	.0013	AG	-0.0492		GCVS 1985	-Ir	38	18)
· · · · ·	54649.4340	.0008	\mathbf{FR}	+0.0146	\mathbf{s}	GCVS 1985	-Ir	88	11)
V1034 Cyg		000	SCI	-0.005		BAVM 141	0	38	4)
V1034 Cyg V1036 Cyg	54720.555	.002	SCI	-0.005				00	,
V1034 Cyg V1036 Cyg V1083 Cyg	54720.555 54658.5306	.002 .0011	AG	-0.0618		GCVS 1985	-Ir	46	18)
V1034 Cyg V1036 Cyg V1083 Cyg	54720.555 54658.5306 54706.4948	.002 .0011 .0025	AG AG	-0.0618 -0.0602	s	GCVS 1985 GCVS 1985	-Ir -Ir	$\frac{46}{34}$	18) 18)

Table 1: (cont.)

Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
V1171 Cvg	54763.4116	.0003	FR	-0.0504		GCVS 1985	-Ir	148	18)
V1188 Cvg	54736.3859	.0022	SCI	-0.0075		GCVS 2008	0	12	4)
V1321 Cvg	54707.4904	.0042	AG	+0.0790		GCVS 2008	-Ir	18	18)
V1326 Cvg	54715.3539	.0007	AG	+0.5055	\mathbf{s}	GCVS 2007	-Ir	30	18)
V1356 Cvg	54649.5438	.0010	FR	+0.1526		GCVS 1985	-Ir	45	11)
V1401 Cvg	54675.5118	.0010	AG	+0.2301		GCVS 2008	-Ir	46	18)
V1411 Cvg	54737.3998	.0004	AG	-0.1680	s	GCVS 1985	-Ir	21	18)
V1414 Cvg	54658 3999	0017	AG	+0.0461	D	GCVS 2008	-Ir	47	18)
V1417 Cvg	54658 5123	0087	AG	+0.1743		GCVS 2008	-Ir	47	18)
,111, 0,8	54682.4918	.0037	AG	+0.1703		GCVS 2008	-Ir	22	18)
	54737 3548	0005	AG	+0.1619	s	GCVS 2008	-Ir	21	18)
	54798 4027	0007	AG	+0.1608	S	GCVS 2008	-Ir	74	18)
V1877 Cvg	54663 5469	0013	FB	1012000	D	0.010 2000	-Ir	58	18)
11011 058	54682 5143	0004	FR				-Ir	83	18)
V2021 Cvg	54663 4503	0003	FR				-Ir	50	18)
v 2021 Oyg	54682 4706	0001	FR				-Ir	78	18)
V2422 Cyg	54096 2548	0013	SCI	_0.0921	c	GCVS 2007	0	17	4)
V 2422 Oyg	5/338 /519	0013	SCI	-0.1069	6	GCVS 2007	0	138	4)
	54673 5350	0026	SCI	± 0.1315	c	GCVS 2007	0	68	4)
	54707 4521	0020	SCI	-0.1192	6	GCVS 2007	0	32	4)
XX Del	54663 5118	0003	AG	-0.4116		GCVS 2007	_Ir	13 /13	18)
BW Dol	54703 4003	.0005	AC	± 0.3503		GCVS 2007	-11 Ir	40	18)
CB Dol	54705 3770	0017	AG	+0.3303 -0.1767	e	GCVS 2007 GCVS 2007	-11 Ir	34	18)
EX Del	54703.3779	.0017	AG	-0.1707	Б	GCVS 2007 CCVS 1085	-11 Ir	- 34 - 40	18)
CC Del	54705.4505	.0004	AG	-0.0932	G	GCVS 1985 CCVS 1985	-11 Ir	20	18)
UZ Dro	54204 5708	.0010	MON	-0.0220	Б	GCVS 1985 CCVS 1985	-11 V	117	2)
UZ DIa	54204.5708	.0005		+0.0023		GCVS 1985 CCVS 1985	v Ir	57	18)
AL Dro	54705.0010	.0010	AG SC	+0.0040		GCVS 1965	-11 In	45	10) 5)
AI DIa PE Dro	54750.5120	.0013		+0.0233	G	GCVS 1965	-11 In	40	19)
S Fau	54705.4445	.0004	AG DKM	-0.1241	8	GCVS 1965	-11 V	41 95	16)
WW Com	54590.3003	.0002	MON	± 0.0000		GCVS 1985 CCVS 1985	v	00 050	2)
w w Gem	54906.4007	.0008	WON	+0.0330		GCVS 1965	V	196	3) 15)
VV Com	54031.4714	.0002	MON	+0.0291		GCVS 1965	V	220	10) 2)
AF Com	54991.5001	.0002	SCI	-0.0003		GCVS 1965	v	320 199	3) 4)
AL Gem	54651.5521	.0052	DDV	+0.1017		GCVS 1965	0	120	4)
	53440.3874	.0004		+0.0022	~	GCVS 2008	0	120	4)
AV Com	55440.4050	.0000	PRA	+0.0511	s	GCVS 2008	0 I	120	4 <i>)</i> 19)
AT Gem	54609.0490	.0004	AG	-0.0557		GCVS 1965	-11 L.	04 E4	10)
AZ Gem	54609.0601	.0000	AG	+0.0844	_	GCVS 1965	-11 T.,	04 F 4	10)
EL Gem	54809.0543	.0005	AG	-0.2233	s	GCVS 1985	-1r	54 F0	18)
WV Com	54857.5040	.0029	SCI	-0.2220		GUVS 1985	0 1	58 59	4) 10)
KV Gem	54809.0021	.0004	AG ED	-0.0148		BAVR 52,95	-1r	52 47	18)
Z Her	54055.4222	.0011	FR III	-0.0333		GCVS 1985	-1r	47	18)
52 ner TV Har	54005.4526	.0005		-0.0200		GCVS 1965	0	41	4)
IA ner	54047.428	.001	JU	-0.002		GCVS 1985	0	20	$\frac{4}{20}$
UA Her DU Her	54071.4921	.0084	MOU	+0.0705		GCVS 1985	0	20	20)
DH Her Vego II	54000.4544	.0029	SCI	-0.0017		GUVS 2007	0	88 57	4)
V829 Her	54075.4412	.0015	JU	+0.0257		IBVS 5490	0	57	4)
V856 Her	54672.4221	.0015	JU				0	52	4)
V 857 Her	54599.4919	.0031	SCI				0 T	159	4)
V 1039 Her	54709.4056	.0004	AG			COVO 1005	-1r	(3	18)
VA Lac	54760.2852	.0003	DIE	+0.0670		GCVS 1985	0	22	12)
AG Lac	54/12.5/32	.0014	AG	-0.0003		GUVS 2008	-1r	37	18)
A T T T	54/37.3941	.0011	AG	-0.0013		GUVS 2008	-1r	44	18)
AU Lac	54675.4379	.0003	AG	-0.0253		GUVS 2008	-lr	49	18)
	54682.3993	.0008	AG	-0.0261		GUVS 2008	-lr	19	18)
DDI	54709.5510	.0060	AG	-0.0270	\mathbf{S}	GUVS 2008	-lr	40	18)
BB Lac	54709.3562	.0004	AG	-0.5518		GCVS 2007	-lr	122	18)
CF Lac	54663.5205	.0046	AG	+0.0077		GCVS 2007	-1r	22	18)
CN Lac	54704.4268	.0003	AG	-0.0424		GCVS 1985	-1r	39	18)
	54709.5265	.0002	AG	-0.0417		GCVS 1985	-Ir	122	18)

Table 1: (cont.)

V		1	Ob -		,	D:h l:	D :1		D
Variable	HJD 24	±	UDS	$\overline{O-C}$		Bibliography	F 11	n 101	Rem
CO Lac	54199.6189	.0006	MON	+0.0073	\mathbf{S}	GCVS 1985	V	121	3)
	54223.5046	.0004	MON	-0.0112		GCVS 1985	V	95	3)
DG Lac	54798.2347	.0004	AG	-0.2203		GCVS 1985	-Ir	49	$3) \ 18)$
EK Lac	54706.4054	.0008	AG	-0.0035		GCVS 1985	-Ir	35	18)
EP Lac	54738.4277	.0007	\mathbf{AG}	-0.3771		GCVS 1985	-Ir	66	18)
ER Lac	54712.4537	.0085	AG	-0.4991		GCVS 2007	-Ir	33	18)
ES Lac	54738.4747	.0010	AG	+0.6610	s	GCVS 2008	-Ir	66	18)
EU Lac	54738 4215	0004	AG	± 0.1963	D	GCVS 2007	_Ir	68	18)
EX Lac	54712 4638	0023	AG	± 0.1909	e	GCVS 2001	Ir	36	18)
IN Lac	54727 4089	.0023	AG	+0.2240	а С	GCVS 2008	-11 In	45	10)
	54757.4062 54719 5465	.0008	AG	-0.4200	s	GCVS 2007	-11 T.,	40	10)
'L Lac	54712.5405	.0004	AG	-0.0574		GCVS 1985	-1r	39	18)
	54738.5492	.0028	AG	-0.0768	\mathbf{S}	GCVS 1985	-1r	64	18)
	54798.3385	.0050	AG	-0.0829	\mathbf{S}	GCVS 1985	-lr	33	18)
HR Lac	54658.4963	.0011	AG	+0.1008	\mathbf{S}	GCVS 2008	-Ir	46	18)
	54682.5212	.0021	AG	+0.0977	\mathbf{S}	GCVS 2008	-Ir	18	18)
	54798.3772	.0006	\mathbf{AG}	+0.1042	\mathbf{s}	GCVS 2008	-Ir	74	18)
	54798.5884	.0019	AG	+0.1009		GCVS 2008	-Ir	74	18)
P Lac	54798.4829	.0005	AG	+0.0779	s	GCVS 2008	-Ir	74	18)
Z Lac	54738 4644	0022	AC	+0.0055	5	GCVS 2008	_Ir	67	18)
	54708 2721	0012	AC	-0.0000		GCVS 2008	_Ir	75	18)
17 I aa	54797 E016	.0013		-0.0010		CCVS 100E	-11 T	10	10)
ID L	54757.5910	.0024	AG	+0.1500		GCVS 1985	-11	40	10)
NR Lac	54663.5327	.0036	AG	+0.0665	\mathbf{S}	GCVS 2008	-Ir	32	18)
	54712.5249	.0009	AG	+0.0696	\mathbf{S}	GCVS 2008	-lr	38	18)
DS Lac	54737.4108	.0010	AG	+0.3241	\mathbf{S}	GCVS 2008	-Ir	45	18)
PP Lac	54737.4900	.0004	AG	-0.0516		GCVS 1985	-Ir	45	18)
	54798.2678	.0004	AG	-0.0500	\mathbf{S}	GCVS 1985	-Ir	33	18)
	54798.4681	.0031	\mathbf{AG}	-0.0503		GCVS 1985	-Ir	33	18)
/339 Lac	54738.3704	.0006	AG	+0.1308		GCVS 2008	-Ir	67	18)
V342 Lac	54738.6121	.0009	AG	-0.1047		GCVS 2008	-Ir	67	18)
	54798 5132	0009	AG	-0.1030	S	GCVS 2008	-Ir	75	18)
ZLoo	54174 3427	0003	MS FR	-0.0688	D	CCVS 1085	0	285	8)
	54919 2704	.0003	MON	-0.0088		GUVS 1965	v	200	2)
	54212.5794	.0019	MON MC ED	+0.0900	_	GCVS 1965	v	95	3) 0)
L Leo	54452.7290	.0030	MS FR	-0.0226	\mathbf{s}	GCVS 2008	0	170	8)
Y Lyn	54457.3667	.0005	MS FR	+0.0583		GCVS 1985	0	351	8)
	54509.3472	.0023	MON	+0.0589		GCVS 1985	V	271	3)
h H Lyn	54455.4200	.0001	MS FR				0	585	8)
L Lyr	54466.2261	.0003	BKN	-0.0019		GCVS 1985	\mathbf{V}	76	15)
W Lyr	54172.6324	.0002	MS FR	-0.0727	\mathbf{S}	GCVS 1985	0	396	8)
/579 Lvr	54671.4189	.0010	JU				0	52	4)
/580 Lvr	54738.3613	.0006	JU				0	69	4)
TV Mon	54457 4942	0002	MS FR	± 0.0108		GCVS 1985	õ	468	8)
III Mon	5/815 5169	0002		± 0.0100		GCVS 2008	. In	38	18)
	54148 4090	0007	MON	1 0.0142 0 000E		BAVR 59 144	V	190	10 <i>)</i> 9)
TA MOU	54519 4166	.0007	MON	0.0090		DAVD 50 144	v v	150	ວ <i>ງ</i>
	04012.4100	.0009	MON	-0.0098		DAVR 52,144	V	199	<i>3)</i>
3M Mon	54815.5465	.0006	AG	+0.0450		GCVS 1985	-lr	37	18)
DD Mon	54815.4187	.0007	AG	-0.1288	\mathbf{S}	GCVS 1985	-Ir	37	18)
L Mon	54510.348	.005	NIC	-0.050		GCVS 1985	0	128	5)
V448 Mon	54506.297	.003	NIC	+0.058		GCVS 1985	0	119	5)
		0014	AG	+0.0614	\mathbf{S}	GCVS 1985	-Ir	38	18)
	54815.5569	.0014		0.00=0		CICILIC DOOT	τ	20	18)
/507 Mon	54815.5569 54815.5177	.0014 .0031	AG	-0.0372		GUVS 2007	-1r	- 00	101
/507 Mon /514 Mon	54815.5569 54815.5177 54453.4562	.0014 .0031 .0002	AG MS FB	-0.0372 +0.0353	s	GCVS 2007 GCVS 1985	-1r 0	429	8)
V507 Mon V514 Mon	54815.5569 54815.5177 54453.4562 54815 4800	.0014 .0031 .0002	AG MS FR AC	-0.0372 +0.0353 +0.0459	\mathbf{s}	GCVS 2007 GCVS 1985 GCVS 1985	-1r 0 _1r	38 429 37	8) 18)
V507 Mon V514 Mon V515 Mon	54815.5569 54815.5177 54453.4562 54815.4800 54815.5002	.0014 .0031 .0002 .0006	AG MS FR AG	-0.0372 +0.0353 +0.0459 -0.0376	s	GCVS 2007 GCVS 1985 GCVS 1985 GCVS 1985	-Ir o -Ir Ir	$ \begin{array}{r} 38 \\ 429 \\ 37 \\ 37 \\ 37 \end{array} $	8) 18) 18)
V507 Mon V514 Mon V515 Mon	54815.5569 54815.5177 54453.4562 54815.4800 54815.5093 54875.093	.0014 .0031 .0002 .0006 .0007	AG MS FR AG AG	-0.0372 +0.0353 +0.0459 -0.0376	s	GCVS 2007 GCVS 1985 GCVS 1985 GCVS 1985	-Ir o -Ir -Ir	38 429 37 37	8) 18) 18)
V507 Mon V514 Mon V515 Mon AL Oph	54815.5569 54815.5177 54453.4562 54815.4800 54815.5093 54709.4350	.0014 .0031 .0002 .0006 .0007 .0100	AG MS FR AG AG AG	-0.0372 +0.0353 +0.0459 -0.0376	s	GCVS 2007 GCVS 1985 GCVS 1985 GCVS 1985	-Ir o -Ir -Ir -Ir	$ \begin{array}{r} 38 \\ 429 \\ 37 \\ 37 \\ 24 \\ 65 \end{array} $	8) 18) 18) 18)
V507 Mon V514 Mon V515 Mon AL Oph V573 Oph	54815.5569 54815.5177 54453.4562 54815.4800 54815.5093 54709.4350 54655.4555	$.0014 \\ .0031 \\ .0002 \\ .0006 \\ .0007 \\ .0100 \\ .0005$	AG MS FR AG AG AG	$\begin{array}{r} -0.0372 \\ +0.0353 \\ +0.0459 \\ -0.0376 \\ +0.0241 \end{array}$	s	GCVS 2007 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 2007	-Ir o -Ir -Ir -Ir -Ir	$ \begin{array}{r} 38 \\ 429 \\ 37 \\ 37 \\ 24 \\ 65 \\ \end{array} $	8) 18) 18) 18) 18) 18)
V507 Mon V514 Mon V515 Mon AL Oph V573 Oph V735 Oph	$54815.5569 \\ 54815.5177 \\ 54453.4562 \\ 54815.4800 \\ 54815.5093 \\ 54709.4350 \\ 54655.4555 \\ 54709.3402 \\$.0014 .0031 .0002 .0006 .0007 .0100 .0005 .0008	AG MS FR AG AG AG AG AG	$\begin{array}{r} -0.0372 \\ +0.0353 \\ +0.0459 \\ -0.0376 \\ +0.0241 \\ +0.0698 \end{array}$	S	GCVS 2007 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 2007 GCVS 2008	-Ir o -Ir -Ir -Ir -Ir -Ir -Ir	$ \begin{array}{r} 38 \\ 429 \\ 37 \\ 37 \\ 24 \\ 65 \\ 79 \\ \end{array} $	8) 18) 18) 18) 18) 18) 18)
V507 Mon V514 Mon V515 Mon AL Oph V573 Oph V735 Oph CP Ori	$\begin{array}{c} 54815.5569\\ 54815.5177\\ 54453.4562\\ 54815.4800\\ 54815.5093\\ 54709.4350\\ 54655.4555\\ 54709.3402\\ 54507.341\\ \end{array}$.0014 .0031 .0002 .0006 .0007 .0100 .0005 .0008 .001	AG MS FR AG AG AG AG AG BKN	$\begin{array}{r} -0.0372 \\ +0.0353 \\ +0.0459 \\ -0.0376 \\ +0.0241 \\ +0.0698 \\ +0.001 \end{array}$	S	GCVS 2007 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 2007 GCVS 2008 BAVR 57.153	-Ir o -Ir -Ir -Ir -Ir -Ir V	$ \begin{array}{r} 38 \\ 429 \\ 37 \\ 37 \\ 24 \\ 65 \\ 79 \\ 395 \\ \end{array} $	8) 18) 18) 18) 18) 18) 18) 15) 2)
V507 Mon V514 Mon V515 Mon AL Oph V573 Oph V735 Oph CP Ori ES Ori	$\begin{array}{c} 54815.5569\\ 54815.5177\\ 54453.4562\\ 54815.4800\\ 54815.5093\\ 54709.4350\\ 54655.4555\\ 54709.3402\\ 54507.341\\ 54858.3197 \end{array}$.0014 .0031 .0002 .0006 .0007 .0100 .0005 .0008 .001 .0023	AG MS FR AG AG AG AG AG BKN SCI	$\begin{array}{r} -0.0372 \\ +0.0353 \\ +0.0459 \\ -0.0376 \\ \end{array}$ $\begin{array}{r} +0.0241 \\ +0.0698 \\ +0.001 \\ +0.1477 \end{array}$	S	GCVS 2007 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 2007 GCVS 2008 BAVR 57.153 GCVS 2007	-Ir o -Ir -Ir -Ir -Ir -Ir V o	$ \begin{array}{r} 38 \\ 429 \\ 37 \\ 37 \\ 24 \\ 65 \\ 79 \\ 395 \\ 76 \\ \end{array} $	8) 18) 18) 18) 18) 18) 18) 15) 2) 4)
V507 Mon V514 Mon V515 Mon AL Oph V573 Oph V735 Oph CP Ori ES Ori EW Ori	$\begin{array}{r} 54815.5569\\ 54815.5177\\ 54453.4562\\ 54815.4800\\ 54815.5093\\ 54709.4350\\ 54655.4555\\ 54709.3402\\ 54507.341\\ 54858.3197\\ 54857.3868\end{array}$.0014 .0031 .0002 .0006 .0007 .0100 .0005 .0008 .001 .0023 .0010	AG MS FR AG AG AG AG AG BKN SCI SIR	$\begin{array}{r} -0.0372 \\ +0.0353 \\ +0.0459 \\ -0.0376 \\ \end{array}$ $\begin{array}{r} +0.0241 \\ +0.0698 \\ +0.001 \\ +0.1477 \\ +0.1840 \end{array}$	S	GCVS 2007 GCVS 1985 GCVS 1985 GCVS 1985 GCVS 2007 GCVS 2008 BAVR 57.153 GCVS 2007 GCVS 1985	-Ir o -Ir -Ir -Ir -Ir -Ir V o -Ir	$ \begin{array}{r} 38 \\ 429 \\ 37 \\ 37 \\ 24 \\ 65 \\ 79 \\ 395 \\ 76 \\ 166 \\ \end{array} $	8) 18) 18) 18) 18) 18) 18) 15) 2) 4) 10)

Table 1: (cont.)

				(****)					
Variable	HJD 24	±	Obs	O-C		Bibliography	Fil	n	Ren
V648 Ori	54452.4304	.0002	MS FR	+0.0627		GCVS 1985	0	315	8)
U Peg	54709.4307	.0005	QU	-0.0147		BAVR 45,3	V	65	5)
DVD	54843.2249	.0001	WIN	-0.0162		BAVR 45,3	V	100	15)
BX Peg	54757.3391	.0003	JU	+0.0528	\mathbf{s}	GCVS 1987	0	80	4)
DK Peg	54466.356	.002	BKN	+0.089		GCVS 1987	V	71	15)
	54763.3539	.0003	AG	+0.0973		GCVS 1987	V	108	18)
V396 Peg	53621.4940:	.0005	PRK	-0.0007		BAVM 139	0	180	8)
	54704.4853	.0005	AG	-0.0039		BAVM 139	-Ir	68	18)
	54763.3610	.0012	AG	-0.0015		BAVM 139	V	104	18)
RT Per	54784.4052	.0004	JU	+0.0612		GCVS 1987	0	80	4)
XZ Per	54830.2903	.0003	JU	-0.0538		GCVS 1987	0	55	4)
	54830.2909	.0014	SCI	-0.0532		GCVS 1987	0	67	4)
BY Per	54815.5647	.0003	AG	+0.0235		GCVS 2008	-Ir	59	18)
HS Per	54815.3007	.0007	AG				-Ir	59	18)
IQ Per	53991.5750	.0009	MON	+0.0049		GCVS 1987	\mathbf{V}	290	3)
	54433.5046	.0022	MON	-0.0606	\mathbf{s}	GCVS 1987	\mathbf{V}	345	3)
	54760.4886	.0002	\mathbf{FR}	+0.0040		GCVS 1987	-Ir	84	18)
KL Per	54765.5457	.0028	SCI	+0.1287		GCVS 2008	0	150	4)
KN Per	54504.4080	.0007	QU	+0.0049		BAVR 52.93	V	85	5)
	54507.4502	.0031	ATB	+0.0145	s	BAVR 52.93	0	110	3)
V482 Per	54816.3222	.0008	JU	+0.2561		BAVM 68	õ	69	4)
Y Psc	54763 4585	0001	ÅG	-0.0017		GCVS 1987	v	108	18)
VZ Psc	54763 2733	0006	AG	+0.0205	S	GCVS 1987	v	103	18)
V 2 1 50	54763 4013	0007	AG	+0.0209 +0.0179	5	GCVS 1987	v	103	18)
ER Psc	54704 4263	0007	AG	± 0.0179 ± 0.1922		GCVS 2007	-Ir	68	18)
V Sco	54658 5201	.0002	FD	+0.1522	0	GOVS 2007	-11 I.v	- 00 - 92	10)
V Sge	54718 2046	.0017		-0.0505	ъ	GCVS 1987	-11 V	20	10)
	54710.5940	.0020		+0.1308		GCVS 1967	V Tm	04 69	0) 10)
DI Sge	04/12.4190 54607 4005	.0000	AG ED	-0.0452	~	GCVS 2007	-11 T.,	60	10)
CU Sge	54097.4295	.0005		+0.0185	s	GUVS 1987	-11 T.,	02	10)
CW Sge	54712.4505	.0005	AG	+0.0201	s	GCVS 1987	-11 T	04	10)
DVC	54719.3907	.0013	AG	+0.0208		GCVS 1987	-Ir	37	18)
DK Sge	54658.5186	.0006	AG	+0.1524	\mathbf{s}	GCVS 2008	-1r	42	18
FL Sge	54388.3450	.0100	AG	+0.1062	\mathbf{s}	GCVS 2007	-1r	23	3) 10)
a 1 a	54663.5610	.0010	AG	+0.1058		GCVS 2007	-Ir	43	18)
GN Sge	54712.5393	.0010	AG	+0.0061		GCVS 1987	-lr	69	18
V384 Ser	54516.6359	.0005	FR	+0.0028		GCVS 2007	-lr	54	18)
	54594.4335	.0002	FR	+0.0033	\mathbf{s}	GCVS 2007	-lr	78	18
	54594.5664	.0002	FR	+0.0018		GCVS 2007	-Ir	78	18)
	54596.4472	.0002	\mathbf{FR}	+0.0015		GCVS 2007	-Ir	81	18)
	54596.5811	.0005	$_{}^{\rm FR}$	+0.0011	\mathbf{S}	GCVS 2007	-Ir	81	18)
	54597.3894	.0002	FR	+0.0032	\mathbf{S}	GCVS 2007	-Ir	84	18)
	54597.5232	.0002	\mathbf{FR}	+0.0026		GCVS 2007	-Ir	84	18)
	54610.4225	.0002	\mathbf{FR}	+0.0029		GCVS 2007	-Ir	70	18)
	54610.5568	.0004	\mathbf{FR}	+0.0029	\mathbf{S}	GCVS 2007	-Ir	70	18)
	54636.4897	.0002	\mathbf{FR}	+0.0034		GCVS 2007	-Ir	63	18)
	54703.4042	.0002	\mathbf{FR}	+0.0044		GCVS 2007	-Ir	50	18)
SV Tau	54815.3885	.0026	\mathbf{FR}	-0.0210	\mathbf{S}	GCVS 1987	-Ir	71	11)
AH Tau	54781.3074	.0002	AG	+0.0413		GCVS 2008	-Ir	42	18)
AN Tau	54820.3277	.0019	SCI	-0.1983	\mathbf{S}	GCVS 1987	0	52	4)
	54862.2986	.0019	SCI	-0.2081	\mathbf{S}	GCVS 1987	0	128	4)
CU Tau	54781.3292	.0003	AG	+0.0470	\mathbf{S}	GCVS 1987	-Ir	42	18)
EN Tau	54844.3060	.0010	SIR	-0.0015		BAVR 52,49	-Ir	207	10)
IV Tau	54830.4196	.0016	SCI	-0.0103		GCVS 2007	0	18	4)
V781 Tau	54815.2793	.0005	\mathbf{FR}	-0.0474	\mathbf{S}	GCVS 1987	-Ir	218	11)
	54815.4504	.0003	FR	-0.0488	~	GCVS 1987	-Ir	218	11
V1112 Tau	54814.3401	.0024	SCI	3.0 100			0	92	4)
BV Tri	54817 2602	0004	AC	-0.0305		GCVS 1087	_Ir	30	18
DV Vir	54861 5840	0018	SCI	-0 1399		GCVS 2007	-11	28	
AW Vul	54710 2912	0007	DIE	-0.1522		GCVS 1087	0	20 20	-+)
TTAN ANT	5115.0210	.0007	DID	0.0121		00101301	0	00	
	54799 2544	0016	DIF	-0.0117		CCVS 1097	0	20	11

Table 1: (cont.)

Variable	HJD 24	±	Obs	O-C		Bibliography	Fil	n	Rem
AW Vul	54723.3545	.0007	DIE	-0.0116		GCVS 1987	0	30	22)
AX Vul	54648.5160	.0019	AG	-0.0307	\mathbf{S}	GCVS 1987	-Ir	39	18)
	54648.5212	.0019	\mathbf{FR}	-0.0255	\mathbf{S}	GCVS 1987	-Ir	36	18)
AY Vul	54682.4003	.0004	AG	-0.0746		GCVS 1987	-Ir	46	18)
AZ Vul	54648.5460	.0003	AG	+0.0282		GCVS 1987	-Ir	39	18)
	54648.5461	.0004	\mathbf{FR}	+0.0283		GCVS 1987	-Ir	54	18)
BE Vul	54697.5555	.0009	AG	+0.0650		GCVS 1987	-Ir	37	18)
BP Vul	54648.4241	.0009	AG	+0.9209		GCVS 1987	-Ir	40	18)
	54682.4184	.0001	AG	+0.9591	\mathbf{S}	GCVS 1987	-Ir	46	18)
BS Vul	54658.4630	.0008	AG	-0.0185	\mathbf{S}	GCVS 1987	-Ir	41	18)
	54684.3989	.0001	WTR	-0.0230		GCVS 1987	-Ir	84	13)
	54712.4825	.0002	AG	-0.0217		GCVS 1987	-Ir	65	18)
BT Vul	54697.5933	.0013	AG	+0.0037		GCVS 1987	-Ir	39	18)
BU Vul	54709.3415	.0003	DIE	+0.0150		GCVS 1987	0	22	12)
CD Vul	54648.3957	.0005	AG	-0.0032		GCVS 1987	-Ir	49	18)
ER Vul	54682.3921	.0008	\mathbf{FR}	+0.0177		GCVS 2008	-Ir	53	11)
EV Vul	53991.3406	.0015	MON	+0.4256		GCVS 1987	V	119	3)
	54685.5816	.0016	AG	+0.4546		GCVS 1987	-Ir	39	18)
	54712.3953	.0016	AG	+0.4593	\mathbf{S}	GCVS 1987	-Ir	69	18)
	54719.4475	.0004	\mathbf{PRK}	+0.4565		GCVS 1987	V	205	8)
FF Vul	54682.3963	.0016	AG	-0.0611		GCVS 2008	-Ir	46	18)
FM Vul	54685.4793	.0004	AG	+0.0253		GCVS 1987	-Ir	41	18)
FQ Vul	54685.4865	.0009	AG	+0.2500		GCVS 2008	-Ir	41	18)
HI Vul	54697.4526	.0006	AG	-0.0567		GCVS 1987	-Ir	38	18)
HS Vul	54658.5216	.0004	AG	-0.0304		GCVS 2008	-Ir	42	18)
	54712.4845	.0007	AG	-0.0284	\mathbf{S}	GCVS 2008	-Ir	67	18)
IW Vul	54685.5125	.0006	AG	-0.0488	\mathbf{s}	GCVS 2008	-Ir	41	18)
KN Vul	54697.4554	.0005	AG	+0.0254		GCVS 1987	-Ir	37	18)
GSC 0137501089	54147.4707	.0003	SIR				-Ir	138	10)
	54148.4792	.0030	SIR				-Ir	189	10)
	54173.3791	.0030	SIR				-Ir	100	10)
	54504.3247	.0006	SIR				-Ir	80	10)
	54504.4944	.0004	SIR				-Ir	80	10)
	54505.3355	.0005	SIR				-Ir	91	10)
	54505.5044	.0005	SIR				-Ir	71	10)
	54506.3418	.0007	SIR				-Ir	103	10)
	54506.5127	.0002	SIR				-Ir	128	10)
	54507.3483	.0004	SIR				-Ir	107	10)
	54507.5214	.0006	SIR				-Ir	113	10)
	54510.3834	.0004	SIR				-Ir	102	10)
	54544.3698	.0004	SIR				-Ir	102	10)

Table 2: Times of maxima of pulsating stars

Variable	HJD 24	\pm	Obs	O - C	Bibliography	Fil	n	Rem
SW And	54507.2892	.0024	ATB	-0.0015	A&A 476.307 2007	0	70	3)
	54751.4179	.0015	ALH	-0.0013	A&A 476.307 2007	V	428	9)
	54840.3153	.0025	WN	+0.0014	A&A 476.307 2007	V	268	15)
XX And	54765.4996	.0032	ALH	+0.0163	BAVR 48,189	V	208	9)
	54828.3850:	.0026	WN	+0.0221	BAVR 48,189	V	129	15)
CC And	54718.3734	.0002	\mathbf{SG}	+0.0120	GCVS 1985	m	69	5)
CI And	53375.3689	.0002	MZ	-0.0048	BAVR 53,87	Sy	100	19)
GM And	53379.3981	.0002	MZ	+0.0373	GCVS 2007	Sy	86	19)
GP And	53985.4871	.0012	MON	+0.0044	GCVS 1985	V	80	3)
	53992.5691	.0011	MON	+0.0049	GCVS 1985	V	106	3)
	53992.6476	.0011	MON	+0.0048	GCVS 1985	V	106	3)
	54829.2037	.0003	DIE	+0.0064	GCVS 1985	0	85	22)
	54829.2814	.0003	DIE	+0.0054	GCVS 1985	0	85	22)
	54830.2255	.0003	DIE	+0.0053	GCVS 1985	0	86	22)

Table 2: (cont.)

Variable	HJD 24	±	Obs	O-C	Bibliography	Fil	n	Rem
GP And	54830.3055	.0002	DIE	+0.0066	GCVS 1985	0	86	22)
	54842.2631	.0011	WN	+0.0044	GCVS 1985	V	244	15)
	54842.3435	.0025	WN	+0.0061	GCVS 1985	V	244	15)
OV And	53376.3556	.0003	MZ	-0.0194	MVS 11,133	Sv	90	19)
-	54464.3370	.0032	ATB	-0.0213	MVS 11,133	0	48	3)
	54712.3348	.0002	SG	-0.0197	MVS 11.133	m	58	5)
CY Aar	53569.5167	.0005	PRK	+0.0136	GCVS 1985	0	185	4)
	53612.3657	.0006	PRK	+0.0137	GCVS 1985	õ	266	4)
	53612 4269	0004	PRK	+0.0139	GCVS 1985	0	266	4)
	53612.4209	0005	PRK	+0.0135 +0.0137	GCVS 1985	0	266	4)
	53612.5483	.0000	PRK	± 0.0137 ± 0.0132	GCVS 1985	0	266	4)
A A A al	53085 3724	0016	MON	± 0.0132	BAVM 78	V	200	3)
an ngi	54706 4146	.0010	FIC WTH	± 0.0033	BAVM 78	v	151	0) 21)
1766 A al	54694 414	.0004		+0.0031	CCVS 2007	V Tm	101	21) 19)
V1528 Acl	52200 522	.003	AG	± 0.047	GC V 5 2007	-11 In		2)
v 1558 Aqi	00099.020 E4206 E10	.004	AG			-11 L.	20 46	3) 2) 2)
	04020.012 54706 559	.003	AG			-1ľ T	40 40	ວ <i>j ∠)</i> 10_0\
V A:	04/00.003	.003	AG		DAVD 49 190	-1r	40	18) 2)
X Arl	04831.3852	.0016	VV IN	+0.0564	BAVK 48,189	V	107	10)
OY Ari	53375.4782	.0001	MZ	-0.0025	GUVS 2008	Sy	155	19) 2)
l Y Ari	54831.3410	.0030	SB	+0.0168	GCVS 2008	-lr	247	16)
	54840.2330	.0040	SB	+0.0052	GCVS 2008	-lr	265	16)
l'Z Aur	53376.5212	.0003	MZ	+0.0095	GCVS 1985	Sy	98	19)
	54834.3374	.0014	PGL	+0.0127	GCVS 1985	0	251	17)
3H Aur	53721.5081	.0010	MZ	+0.0000	SAC Vol.73	Sy	116	19)
ГW Boo	54197.3619	.0019	MON	-0.0045	A&A 476.307 2007	V	86	3)
YZ Boo	53846.3533	.0018	MON	+0.0033	GCVS 1985	V	45	3)
	54148.5309	.0015	MON	+0.0031	GCVS 1985	\mathbf{V}	162	3)
	54148.6350	.0015	MON	+0.0031	GCVS 1985	V	162	3)
	54592.3777	.0018	MON	+0.0035	GCVS 1985	V	90	3)
	54592.4813	.0018	MON	+0.0030	GCVS 1985	V	90	3)
	54594.3550	.0018	MON	+0.0030	GCVS 1985	\mathbf{V}	61	3)
	54595.3961	.0018	MON	+0.0032	GCVS 1985	\mathbf{V}	50	3)
CG Boo	54459.6542	.0035	MS FR			0	602	8)
CM Boo	54221.3484	.0018	MON	-0.0998	GCVS 1985	V	31	3)
CQ Boo	54596.3911	.0008	MZ	-0.0133	BAVR 48,189	-Ir	80	4)́
CS Boo	54202.5347	.0026	MON	-0.0030	IBVS 2855	V	33	3^{\prime}
RW Cnc	54512.5691	.0052	ATB	+0.2120	GCVS 1985	0	69	3)
FT Cnc	54552.4565	.0024	ATB	-0.0045	A&A 476.307 2007	0	82	3)
	54578.3569	.0042	ATB	-0.0231	A&A 476.307 2007	0	90	3)
AS Cnc	53377 7489	.0010	MZ	-0.2987	GCVS 2008	Sv	56	19)
1.5 0110	53379 6029	.0010	MZ	-0.2974	GCVS 2008	S_{v}	109	19(2)
RZ CVn	54196 4507	0019	MON	+0.1056	BAVB 48 189	V	102	3)
	54508 5349	0019	MON	± 0.1000	BAVR 48 189	v	52	3)
A CMi	53799 6800	0019	MZ	+0.1194 +0.0160	BAVR /0 /1	Sv	85	10) 9)
D CM:	54515 9790	0010	MON	± 0.0109 ± 0.0117	CCVS 1025	Jy M	916	1 <i>3 4)</i> 2\
	54915 209	.0008		± 0.0117	CC//2 2006 CC//2 1209	V T	410 60	ی) ۱۵۱
UATO Car	04010.302 54015 200	.003	AG	-0.197		-1ľ T.,	00 60	10)
v 470 Uas	04010.399 54700 4175	.000	AG	+0.207	$10 \times 5 4332 = BAV M 87$	-1r	00	18)
ъz Сер	54706.4175	.0020	ALH	-0.0951	GUVS 1985	V	320	9)
	54706.4481	.0020	ALH	-0.0646	GUVS 1985	V	320	9)
	54738.539	.001	AG	-0.077	GCVS 1985	-Ir	133	18)
W CrB	54170.645	.001	MS FR	-0.053	GCVS 1985	0	395	8)
JY Cyg	53941.4643	.0012	MON	+0.0536	GCVS 1985	V	200	3)
	54671.4974	.0024	SCI	+0.0491	GCVS 1985	0	150	4)
XX Cyg	54763.2723	.0001	WN	+0.0024	GCVS 1985	\mathbf{V}	97	15)
	54778.2414	.0001	WN	+0.0014	GCVS 1985	\mathbf{V}	51	15)
OM Cyg	53943.4558	.0019	MON	-0.0006	A&A 476.307 2007	V	135	3)
	54700.4687	.0020	ALH	-0.0019	A&A 476.307 2007	\mathbf{V}	164	9)
$V789 \ \mathrm{Cyg}$	54709.4569	.0037	SCI	-0.0815	GCVS 2007	0	71	4)
V838 Cyg	54737.4040	.0010	MZ	+0.0352	GCVS 2007	-Ir	117	4)
	54762.3762	.0008	MZ	+0.0330	GCVS 2007	-Ir	155	4)́

Table 2: (cont.)

Variable	HJD 24	±	Obs	O - C	Bibliography	Fil	n	Re
V1962 Cyg	54720.4285	.0010	MZ	10.0004		-lr	62	4
BV Del	54709.4290	.0010	SB	+0.0234	GCVS 1985	-lr	224	10
DX Del	54737.3661	.0014	WN	+0.0575	GCVS 1985	V	131	1
RW Dra	54594.4254	.0040	MZ	+0.1779	GCVS 1985	-Ir	63	4
AV Dra	54597.4970	.0040	MZ	+0.1594	GCVS 2007	-lr	77	4
BK Dra	54202.3928	.0016	MON	+0.0579	BAVR 46,1	V	93	3
	54512.6458	.0012	MON	+0.0651	BAVR $46,1$	V	192	
CY Dra	54592.3995	.0028	MZ			-Ir	76	4
	54593.4687	.0050	MZ			-Ir	86	4
	54600.4311	.0030	MZ			-Ir	68	4
DD Dra	53150.5278	.0018	MON	+0.0121	BAVR 49,6	V	132	
	53832.5714	.0015	MON	+0.0379	BAVR 49,6	V	133	;
RR Gem	53376.7189	.0010	MZ	+0.0028	BAVR 47,67	Sy	139	19
SZ Gem	53721.6288	.0003	MZ	-0.0005	BAVR 48,65	Sy	127	19
GI Gem	53378.6543	.0001	MZ	-0.0086	BAVR 51,40	Sy	36	1
TW Her	54218.5253	.0015	MON	-0.0112	GCVS 1985	V	81	
	54672.489	.002	MOO	+0.007	GCVS 1985	0	20	2
VX Her	54172.6207	.0012	MON	+0.0486	GCVS 1985	V	180	
	54737.2675	.0019	WN	+0.0331	GCVS 1985	v	63	1
VZ Her	54173 5464	0016	MON	+0.0630	GCVS 1985	v	142	-
AB Her	54674 5216	0003	PGL	+0.0479	BAVB 52.3	,	240	1
	54675 4577	0005	PCL	+0.0440	BAVE 52.3	0	210	1
	54676 4063	.0000	PCI	+0.0440	\mathbf{BAVR} 52.3	0	951	1
	54070.4005 E4708 2EC4	.0030	PGL	± 0.0327	DAVE 52.5	0	201	1
	54708.5504	.0015	PGL	+0.0456	DAV IL 52,5	0	494	1
DIVII	54746.4167	.0014	PGL	+0.0354	BAVR 52,3	0	405	1
DY Her	54593.4195	.0018	MON	-0.0037	BAVR 48,189	V	59	
	54709.3506	.0008	WN	-0.0050	BAVR 48,189	V	93	1
HN Her	54685.3812	.0002	SHT	-0.1427	GCVS 2008	-lr	23	4
LW Her	54680.4828	.0040	MZ	+0.1474	GCVS 2007	-Ir	79	
CH Lac	54663.434	.002	$\overline{\mathrm{AG}}$	+0.012	GCVS 2008	-Ir	25	1
CZ Lac	54737.5001	.0020	WN	-0.1262	BAVR 53,12	\mathbf{V}	213	1
	54763.4393	.0019	WN	-0.1180	BAVR 53,12	\mathbf{V}	212	1
	54831.3006	.0019	WN	-0.1096	BAVR 53,12	\mathbf{V}	209	1
	54837.3309	.0014	WN	-0.1299	BAVR 53,12	\mathbf{V}	206	1
RR Leo	54589.4878	.0014	ATB	+0.0016	A&A 476.307 2007	0	84	:
GP Leo	54172.370	.001	MS FR	-0.289	IBVS 5114=BAVM 136	0	315	:
Y LMi	54591.4508	.0042	ATB	-0.0138	BAVR 49.41	0	90	
EH Lib	54509.6094	.0010	MON	+0.0031	GCVS 1985	V	185	
	54509 6984	0010	MON	+0.0037	GCVS 1985	v	185	
	54513 5887	0010	MON	+0.0038	GCVS 1985	v	170	
	54513 6767	0010	MON	+0.0030	GCVS 1985	v	170	
	54508 2765	0010	MON	+0.0034	GCVS 1965	v	10	
SZ Lun	54858 5954	0010	SCI	±0.0000 ±0.0000	CCVS 1085	v	00	
52 Lyn	54000.0204 54859 6490	.0010	SOL	± 0.0231	CCVS 1900	0	94 169	4
	04000.0439	.0011	JOI	+0.0211	GUVB 1900 GCVB 1907	0	105	2
IV Lyn	54494.3143	.0015	MON	+0.0246	GUVS 1985 GOVG 1997	V	100	10
TW Lyn	53378.4380	.0010	MZ	+0.0457	GCVS 1985	Sy	121	19
BE Lyn	54433.6507	.0008	MON			V	171	
	54837.3550	.0014	PGL			0	160	1
RZ Lyr	54731.3370	.0010	MZ	-0.0107	BAVR 48,189	-Ir	90	4
CG Lyr	54760.3489	.0004	MZ	+0.1103	GCVS 2008	-Ir	98	,
CN Lyr	53846.5394	.0019	MON	+0.0052	A&A 476.307 2007	\mathbf{V}	100	2
	54196.6143	.0010	MON	-0.0067	A&A 476.307 2007	V	142	:
EX Lyr	54685.4431	.0060	MZ	-0.1209	GCVS 1985	-Ir	66	
EZ Lvr	53917.4620	.0015	MON	+0.0286	BAVR 34,145	V	79	
-, -	54729.515	.003	MOO	+0.024	BAVR 34.145	0	22	5
IO Lvr	54193 5610	.0015	MON	-0.0292	GCVS 1985	v	52	-
KM Lyr	54678 4141	0040	MZ	-0.0780	GCVS 2007	_Tr	22	
AI Mon	54010.4141	.0040		-0.0760	CCVS 2007	-11 T.,	აა 97	1
	04010.439 54790 4107	.003	AG	-0.104	GUVB 2007 CCVR 1007	-1ľ 17	37 07	1
v v reg	54720.4107	.0020	ALH	-0.0228	GUVB 1987	V T	97	
	, . ,	1 /1				• /	1 4 - 1	

Table 2: (cont.)

Variable	HJD 24	±	Obs	O - C	Bibliography	Fil	n	Rem
AO Peg	54409.3366	.0028	ATB	-0.0123	BAVR 49,41	0	84	3)
AV Peg	54765.4291	.0010	QU	+0.0086	A&A 476.307 2007	V	80	5)
	54815.3999	.0004	MOO	+0.0106	A&A 476.307 2007	0	21	20)
CG Peg	54709.4349	.0012	FLG	-0.0275	SAC Vol.72	V	294	16)
DH Peg	54718.4819	.0020	ALH	+0.0010	GCVS 1987	V	580	9) 1)
	54718.5104	.0020	ALH	+0.0295	GCVS 1987	V	580	9) 1)
DY Peg	53984.3798	.0012	MON	-0.0053	GCVS 1987	V	224	3)
	53984.4519	.0012	MON	-0.0062	GCVS 1987	V	224	3)
	53984.5241	.0012	MON	-0.0069	GCVS 1987	V	224	3)
	54000.2764	.0012	MON	-0.0067	GCVS 1987	V	109	3)
	54000.3496	.0012	MON	-0.0064	GCVS 1987	V	109	3)
	54359.4377	.0012	MON	-0.0074	GCVS 1987	V	165	3)
	54359.5111	.0012	MON	-0.0069	GCVS 1987	V	165	3)
	54359.5840	.0012	MON	-0.0069	GCVS 1987	V	165	3)
	54709.4830	.0014	PGL	-0.0083	GCVS 1987	0	155	17)
	54719.4733	.0014	PGL	-0.0089	GCVS 1987	0	170	17)
	54735.4440	.0007	PGL	-0.0091	GCVS 1987	0	141	17)
	54760.3851	.0014	PGL	-0.0087	GCVS 1987	0	388	17)
	54820.3296	.0007	PGL	-0.0096	GCVS 1987	0	161	17)
	54828.2802	.0004	WN	-0.0081	GCVS 1987	V	50	15)
AR Per	54067.4003	.0016	MZ	+0.0485	GCVS 1987	Sy	41	19)
	54834.2477	.0014	PGL	+0.0568	GCVS 1987	0	239	17)
	54839.3539	.0021	PGL	+0.0564	GCVS 1987	0	381	17)
FM Per	54760.5504	.0020	\mathbf{FR}	+0.1841	GCVS 2007	-Ir	146	18)
V375 Per	54817.253	.003	AG	-0.250	GCVS 2008	-Ir	30	18)
SS Psc	54839.232	.007	PGL	+0.007	BAVR 47,67	0	417	17)
BR Tau	54723.4862	.0010	MZ	+0.0886	GCVS 2008	Sy	45	19)
UX Tri	54464.5464	.0035	ATB	+0.0535	BAV ATB unpb.2006	0	26	3)
	54479.4616	.0031	ATB	+0.0278	BAV ATB unpb.2006	0	101	3)
RV UMa	54173.2988	.0013	MON	+0.0065	BAVR 48,189	\mathbf{V}	117	3)
	54661.499	.003	MOO	+0.015	BAVR 48,189	0	14	20)
BN Vul	53931.4481	.0012	MON	-0.0233	SAC Vol.73	V	201	3)

Remarks:

Rema	irks:	
AG:	Agerer, F., Tiefenbach	PGL:
ALH:	Alich, K., Schaffhausen (CH)	PRK:
ATB:	Achterberg, Dr. H., Norderstedt	QU:
BKN:	Bakan, Dr. S., Wedel	RAT:
DIE:	Dietrich, M., Radebeul	RCR:
FLG:	Flechsig, Dr. G., Teterow	SB:
FR:	Frank, P., Velden	SCI:
JU:	Jungbluth, Dr. H., Karlsruhe	SG:
MON:	Monninger, Dr. G., Gemmingen	SHT:
MOO:	Moos, C., Netphen	SIR:
MS:	Moschner, W., Lennestadt	WN:
MZ:	Maintz, Dr. G., Bonn	WTH:
NIC:	Nickel, Dr. O., Mainz	WTR:

- Pagel, Dr. L., Klockenhagen
- Proksch, W., Winhöring
- Quester, W., Esslingen
- Rätz, M., Herges-Hallenberg
- Rätz, M., Herges-Hallenberg
- Steinbach, Dr. H., Neu-Anspach
- Schmidt, U., Karlsruhe
- Sterzinger, Dr. P., Wien (A)
- Scharnhorst, D., Erfurt
- Schirmer, J., Willisau (CH)
- Wischnewski, M., Wennigsen
- Westerhoff, T., Kirchheim H:
- R:

Remarks (cont.):

:	= uncertain
S	= secondary minimum
С	= CCD-camera
В	= B-filter
Ic	= I-filter cousins
m	= multiple filter
0	= without filter
Sy	= Stroemgren y (Calar Alto) is equivalent to V-filter
V	= V-filter
-Ir	= -Ir-filter
1)	= double maxima, determination of time is difficult
2)	= normal result
3)	= ccd-camera ST-6 chip 375*242 uncoated
4)	= ccd-camera ST-7
5)	= ccd-camera ST-7E
6)	= ccd-camera ST-8E chip KAF1602E
7)	= ccd-camera ST-9 chip
8)	= ccd-camera ST-9E
9)	= ccd-camera ST-8 XMEI chip KAF1603e
10)	= ccd-camera Alpha Maxi chip KAF401e
11)	= ccd-camera OES-LcCCD12
12)	= ccd-camera pictor 1616XT
13)	= ccd-camera Pictor 416XT
14)	= ccd-camera holicam
15)	= ccd-camera Meade DSI Pro 2
16)	= ccd-camera SIGMA 402 chip
17)	= ccd-camera Artemis 4021
18)	= ccd-camera Sigma 1603
19)	= ccd-camera Busca
20)	= ccd-camera Canon EOS 350D
21)	= ccd-camera STL-6303E
22)	= ccd-camera Canon EOS D60
A&A	= Astronomy & Astrophysics
BAVM nnn	= BAV Mitteilungen No.nnn
BAVR vv, ppp	$\mathbf{p} = \mathbf{BAV}$ Rundbrief Vol. vv, page ppp
BAV unp	= unpublished
GCVS yyyy	= General Catalogue of Variable Stars, yyyy
GSC	= The HST Guide Star Catalogue 1.2
IBVS nnnn	= Information Bulletin on Variable Stars No. nnnn
MVS vv,ppp	= Mitteilungen über Veränderliche Sterne; volume,pages
SAC vv	= Rocznik Astronomiczny No. vv, Krakow (SAC)
U-A2	= The USNO A2.0 Catalogue

ERRATA FOR IBVS 5731 (BAVM 178)

V463 Cyg	$54660.307 \ FR$	must be deleted
GSC 0192700862	53721.4698 QU	correct value: 52721.4698

ERRATUM FOR IBVS 5802 (BAVM 186)

GSC 0137501085 $\,$ SIR $\,$ all results must be deleted $\,$

ERRATUM FOR IBVS 5874 (BAVM 201)

GSC 0137501085 SIR all results must be deleted

ERRATA FOR IBVS 5889 (BAVM 203)

SV Cam 54760.3081 SG correct value: 54760.3068 AI Dra 54758.3120 SG correct value: 54758.3134

ERRATUM FOR IBVS 5889 (BAVM 203)

BR Tau 54723.4862 MZ has to be deleted

Number 5890

Konkoly Observatory Budapest 11 June 2009 *HU ISSN 0374 - 0676*

NSV 11154 - A POSSIBLE NEW R CrB STAR

HÄUSSLER, K.¹; BERTHOLD, T.^{1,2}; KROLL, P.²

¹ Bruno-H.-Bürgel-Sternwarte, Töpelstr. 46, D-04746 Hartha, Germany

² Sternwarte Sonneberg, Sternwartestr. 32, D-96515 Sonneberg, Germany

email: info@sternwarte-hartha.de, tb@4pisysteme.de, pk@4pisysteme.de

NSV 11154 = USNO-A2.0 1350-09802429 = S9323 Lyr = ROTSE1 J183751.21+472324.5 has been discovered and reported to be a short periodic variable by Hoffmeister (1966).

Photographic plates (n=562) of a field centered around R Lyr, taken with the Sonneberg Observatory 40cm Astrograph between 1964-1996, were used to re-examine the behaviour of this star. Comparison stars are listed in Table 1.

The object is neither a short periodic variable nor a long periodic variable as surmised by Akerlof et al. (2000) according to the ROTSE1 data. Irregular variations with some conspicuous minima were found. The overall brightness varies between 13° and 17° (Fig. 1). The observed minima are variable in depth, with a mean duration of the order of 500° .

Individual data can be retrieved as 5890-t2.txt, using the link in the HTML version of this paper.

Comp. No.	USNO	m^*
1	1350 - 09796351	$13^{\mathrm{m}}_{\cdot}2$
2	1350-09805484	14 ^m 8
3	1350-09803396	$15.^{\mathrm{m}}7$
4	1350-09804973	$17.^{\mathrm{m}}5$

Table 1. Comparison stars

* Magnitudes refer to the B values of the USNO-A2.0 catalogue

This research made use of the SIMBAD data base, operated by the CDS at Strasbourg, France.

References:

Akerlof, C. et al., 2000, Astron. Journal, **119**, 1901 Hoffmeister, C., 1966, Astron. Nachr., **289**, 139, (H3)

Figure 1. Photographic light curve of NSV 11154

Number 5891

Konkoly Observatory Budapest 29 June 2009 *HU ISSN 0374 - 0676*

A PERIOD ANALYSIS OF THE δ SCUTI VARIABLE GSC 03973-01698

HINTZ, E. G.¹; BUGNO, J. L.¹; JONER, M. D.¹

¹ Brigham Young University, Dept. of Physics and Astronomy, Provo, UT 84602, USA e-mail: doctor@tardis.byu.edu; batgirl3220@aim.com; jonerm@forty-two.byu.edu

As part of an undergraduate summer research program, we examined the High Mass X-ray Binary system (HMXB) 4U 2206+543. On a finder chart for this system provided by the American Association of Variable Star Observers (AAVSO), they identify one of the comparison stars, GSC 3973-1698, as a δ Scuti variable with a period of 0.06 d. GSC 3973-1698 was present in our field of view on all nights of observations during our campaign; therefore we present an analysis of its light curves.

Our data consists of 20 nights of photometric observations on the field near 4U 2206+543. A finder chart is given in Fig. 1 which includes the δ Scuti, 4U 2206+543, and the five comparison stars. A total of 19 nights were obtained with the 0.41-m David Derrick Telescope of the Orson Pratt Observatory (OPO), which is located in the center of the BYU campus. Observations were made with an unbinned ST-10XME CCD. Six nights of data were obtained with the 0.31-m telescope of the BYU West Mountain Observatory (WMO) using another ST-10XME CCD which was binned 2×2 . These six nights overlapped with six of the nights secured on the OPO system. Finally we obtained two nights of data with the 0.51-m telescope at the BYU West Mountain Observatory using a SBIG STL-1001 CCD. One of these nights was in common with the OPO data, while the other provided our 20th night of data. All observations were made with a standard V filter (Bessell, 1990) and yielded an error per observation on the order of 0.004 mag. The observational dara are available on the IBVS website as 5891-t3.txt.

Differential magnitudes were determined relative to an ensemble of four comparison stars (Star 2 was not used since it is an eclipsing binary system). Apparent magnitudes were determined using GSC 3973-1066 (Star 3, $V = 11.946 \pm 0.013$) and GSC 3973-1906 (Star 4, $V = 11.837 \pm 0.008$). The magnitudes given were taken from the calibration of the field obtained by A. Henden[†]. In Fig. 2 we show simultaneous light curves from data taken at both observatory facilities. The light curves for all nights are presented in Fig. 3. The denser portions of the light curves indicate when simultaneous data were obtained.

Both a Fourier analysis using the Period04 (Lenz & Breger, 2005) program and a traditional time of maximum light argument were utilized to determine a period for GSC 3973-1698. We note that a time of maximum light analysis is not always reliable for low amplitude, multiperiodic stars. In Table 1 we present the 19 times of maximum light found for GSC 3973-1698. From this we find an ephemeris of

 $HJD = 2454630.942(\pm 0.003) + 0.06501(\pm 0.00001)E.$ (1)

[†]http://homepage.usask.ca/~ges125/Astronomy/LPH128_aavso.pdf ftp://ftp.aavso.org/public/calib/3a2206.dat

From the Fourier analysis we find four frequencies that have detection signal-to-noise values higher than four (Breger et al., 1993, 2007). The four main frequencies are reported in Table 2 and the power spectrum is shown in Fig. 4. Overlaid in Fig. 3 we show the four-frequency model generated from our Fourier solution. From the final panel in Fig. 4, and the fit in Fig. 3, it is clear that additional frequencies exist in GSC 3973-1698, but their detection level is too low from this data set. Our primary frequency of 15.3843 cycles/day corresponds to a period of 0.06500 days and is consistent with the value and errors found in Equation 1.

GSC 3973-1698 is a typical low amplitude δ Scuti variable with a complex frequency content. The thing that makes this star so interesting is that it is in the field of 4U 2206+543, which means that a great deal of data will be obtained in many filters as observations are taken of the HMXB.

Acknowledgements We would like to acknowledge the Brigham Young University Department of Physics and Astronomy for their continued support. We acknowledge a grant for the Theodore Dunham, Jr. Grant for Research in Astronomy. We finally acknowledge NSF grant PHY-0552795.

Figure 1. Finder chart for GSC 3973-1698 with 4U 2206+543 and comparison stars marked. The field is 20' wide and 15' high with North being up and East to the left.

Figure 2. Simultaneous light curves from the OPO (solid) and WMO (open) facilities.

Figure 3. All 20 nights of V photometry are presented on the same magnitude and time scales. The data from WMO and OPO are plotted together.

Cycle	HJD	Cycle	HJD	Cycle	HJD
0	2454630.9375	228	2454645.7687	398	2454656.8164
13	2454631.7871	229	2454645.8370	399	2454656.8795
14	2454631.8481	258	2454647.7103	551	2454666.7485
76	2454635.8808	259	2454647.7693	552	2454666.8103
77	2454635.9492	306	2454650.8319	752	2454679.8403
198	2454643.8204	322	2454651.8699		
199	2454643.8853	383	2454655.8394		

 Table 1. Times of Maximum Light for GSC 3973-1698

Table 2. Frequency Content of GSC 3973-1698

	Frequency	Amplitude	Detection
ID	(cycles/day)	(mag)	S/N
f_1	15.3843	0.010	12.5
f_2	16.3310	0.006	7.3
f_3	13.4091	0.005	6.2
f_4	6.0763	0.004	5.0

References:

Bessell, M., S., 1990, PASP, 102, 1181
Breger, M et al., 1993, A&A, 271, 482
Breger, M., Rucinski, S. M. & Reegen, P., 2007, AJ, 134, 1994
Lenz, P. & Breger, M., 2005, Commun. Asteroseismol., 146, 53

Figure 4. Power spectra of GSC 3973-1698. The spectral window in the top panel is scaled to the same frequency range as the individual power spectra.

Number 5892

Konkoly Observatory Budapest 29 June 2009 *HU ISSN 0374 – 0676*

SHORT-PERIOD OSCILLATIONS IN THE ALGOL-TYPE SYSTEMS IV: NEWLY DISCOVERED VARIABLE GSC 4293-0432

DIMITROV, D.; KRAICHEVA, Z.; POPOV, V.

Institute of Astronomy, BAS, Tsarigradsko Shossee 72, 1784 Sofia, Bulgaria, e-mail: dinko@astro.bas.bg; zk@astro.bas.bg; vpopov@astro.bas.bg

A new Algol-type system GSC 4293-0432 was extracted during our data-mining variability search in the NSVS database (Wozniak et al., 2004). The parameters of the system are as follows: period $P \simeq 4.3844$ days, amplitude of the primary minimum $A_R > 0.25$ mag, and magnitude in the maximum $R'_{\text{max}} \simeq 10.72$ mag. R'_{max} stands for the maximum in the light curve in the instrumental system of NSVS, which is similar, but not identical to the R color (hence, R'). The astrometric and photometric data for the stars (Table 1) are taken from NOMAD catalogue (Zacharias et al., 2004).

The CCD photometry of GSC 4293-0432 in BVR bands was carried out with the 60cm Cassegrain telescope at Rozhen NAO, equipped with the CCD camera FLI PL09000 (3056×3056, 12 μ pixel), and Bessell (1990) standard UBVRI filters. The standard IDL procedures were used for the reduction of the photometric data. Five stars from the field (Fig. 1) with $\sigma < 0.005$ mag in V band observations were selected to create an ensemble standard star (Everett & Howell, 2001).

The NSVS and Rozhen light curves of GSC 4293-0432 are shown in Fig. 2. The six V light curves of the star are shown in Fig. 4. During the campaign short-period oscillations (also present at the secondary minimum) with a peak-to-peak amplitude of up to 0.04 mag in B, 0.04 mag in V, and 0.035 mag in R (Table 2) were detected. The frequency analysis of the residual light curve, performed with the PERIOD-04 software based on the classical Fourier analysis (Lenz & Breger, 2005), revealed multi-periodic pulsation of the primary star. The main peaks in the power spectrum were observed at about 8 c/d and 22 c/d in V band (Fig. 5).

Spectral observations of GSC 4293-0432 were obtained with the Coudé spectrograph (resolution of 0.19 Å/pixel) of the 2m RC telescope at NAO Rozhen (Table 3). The spectral domain covered two regions around H_{β}, and MgII 4481 lines (Fig. 3). The data reduction of the spectra was made with standard IRAF procedures. The corresponding radial velocities (Table 3) were measured by the cross-correlation technique using synthetic spectrum, calculated with the programme SPECTRUM (Gray & Corbally, 1994) and a grid of LTE atmosphere models for a solar-type chemical composition (Castelli & Kurucz, 2003), as a template spectrum. The physical parameters of the primary component were estimated by comparing the synthetic and the observed spectra. The parameters of the secondary were computed with the PHOEBE software (Prśa & Zwitter, 2005). The spectral types of the two components were determined using Straižys & Kuriliene (1981) calibration (Table 4).

The new ephemeris were computed using both Rozhen and NSVS data:

$$HJD (MinI) = 2451271.7302(\pm 0.0013) + 4.38440(\pm 0.00019)E$$
(1)

Acknowledgements This study made use of the SIMBAD, ADS, and VSX databases, and GCVS catalogue.

 Table 1. Data for the variable and comparison stars used in the CCD photometry from NOMAD

ID	Name	RA (J2000)	DEC (J2000)	V	B-V	V-R	Sp. type
V1	GSC 4293-0432	$23^{h}45^{m}41\stackrel{s}{.}82$	$+66^{\circ}05'06''_{}5$	10.567	0.334	0.217	A2
C1	GSC 4293-0050	$23^{h}45^{m}46.11$	$+65^{\circ}59'45''.7$	10.067	0.336	0.217	A0
C2	GSC 4293-0424	$23^{h}46^{m}15.22$	$+66^{\circ}09'30''_{\cdot}8$	10.442	0.251	0.162	
C3	GSC 4293-0603	$23^{h}45^{m}11\stackrel{s}{.}23$	$+65^{\circ}59'00''_{\cdot}4$	11.798	0.608	0.408	
C4	GSC 4293-0424	$23^{h}46^{m}15.22$	$+66^{\circ}09'30''_{\cdot}8$	11.862	0.630	0.442	
C5	$GSC \ 4293-0105$	$23^{h}46^{m}16.47$	$+66^{\circ}05'27''_{\cdot}5$	12.148	0.584	0.338	

Table 2. Observational runs of GSC 4293-0432

Date	HJD(start)	Length	Filter	Exp.[s]	Ν	Phase	$A_{osc}(\max)$
06.11.2008	2454777.20962	$07^{ m h}06^{ m m}$	V	30	429	0.54 - 0.60	0.025
12.11.2008	2454783.26564	$07^{h}32^{m}$	V	60	360	0.92 - 0.99	0.020
13.11.2008	2454784.32173	$05^{h}42^{m}$	V	60	300	0.16 - 0.21	0.040
01.12.2008	2454802.21245	$07^{h}23^{m}$	BVR	$120,\!60,\!30$	100	0.24 - 0.31	0.04, 0.03, 0.025
05.12.2008	2454806.29740	$04^{\rm h}19^{\rm m}$	BVR	$120,\!60,\!60$	50	0.17 - 0.21	0.03, 0.03, 0.035
07.12.2008	2454808.43581	$01^{\rm h}30^{\rm m}$	BVR	$120,\!60,\!60$	20	0.66 - 0.67	~ 0.02
09.12.2008	2454810.27001	$05^{\rm h}34^{\rm m}$	BVR	$120,\!60,\!60$	70	0.08 - 0.13	0.035, 0.035, 0.03

Table 3. Rozhen spectra of GSC 4293-0432

Date	HJD(mid)	S/N	Exp.	R	V	Region	Phase
			$[\mathbf{s}]$	[kms	$s^{-1}]$	[Å]	
08.05.2009	2454960.55950	56	1800	-18.0	± 1.4	4400-4600	0.353
08.05.2009	2454960.58215	77	1800	-11.9	± 1.4	4800 - 4965	0.358
10.05.2009	2454962.56910	58	1200	18.9	± 1.5	4800 - 4965	0.812
10.05.2009	2454962.58534	61	1200	18.8	± 1.4	4400-4600	0.815

Table 4. Preliminary physical parameters of the GSC 4293-0432 components

Parameter		Primary star	Secondary star
$T_{\rm eff}$	[K]	7750	4300
$v \sin i$	$[\mathrm{kms}^{-1}]$	40	
Spectral type		A7	K3

References:

Bessell, M., S., 1990, PASP, 102, 1181
Castelli, F., Kurucz, R., 2003, IAU Symp., 210, 20
Everett, M., Howell, S., 2001, PASP, 113, 1428
Gray, R., Corbally, C., 1994, AJ, 107, 742
Lenz, P., Breger, M., 2005, CoAst, 146, 53
Prśa, A., Zwitter, T., 2005, ApJ, 628, 426
Straižys, V., Kuriliene, G., 1981, ApSS, 80, 353
Wozniak, P., Vestrand, W., Akerlof, C. et al., 2004, AJ, 127, 2436
Zacharias, N., Monet, D., Levine, S. et al., 2004, AAS, 205, 4815

Figure 1. Field of the eclipsing binary GSC 4293-0432.

Mgll 4481 Region 1.0 0.8 0.6 0.4 S/N = 820.2 Normalized Intensity 0.0 4450 4500 4600 4550 4400 Hbeta Region 1.0 0.8 0.6 0.4 S/N = 960.2 0.0 4850 4900 4800 4950 Wavelength [A]

Figure 2. Light curves of GSC 4293-0432. Upper panel - NSVS data, lower panel - Rozhen V data (dots) and model (solid line).

Figure 3. Rozhen combined spectra (thin line) of GSC 4293-0432 and the best synthetic spectra (thick line).

Figure 4. Sample V light curves of GSC 4293-0432 (diamonds), and shifted comparison star C2 (crosses).

Figure 5. Power spectrum of GSC 4293-0432 Rozhen data after subtracting the synthetic light curve from the data.

Number 5893

Konkoly Observatory Budapest 29 June 2009

HU ISSN 0374 - 0676

NEW TIMES OF MINIMA OF SOME ECLIPSING BINARY STARS

DOĞRU, S. S.; ERDEM, A.; DÖNMEZ, A.; BULUT, A.; AKIN, T.; DOĞRU, D.; ÇÍÇEK, C.; SOYDUGAN, F

Department of Physics, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University and Çanakkale Onsekiz Mart University Observatory, Terzioğlu Campus, TR-17020, Çanakkale, Turkey; e-mail: dogru@comu.edu.tr

Observatory and telescope:		
Two 30-cm Cassegrain-S	chmidt telescopes of the Çanakkale University Observatory	
Detector:	-ST237 camera, Peltier cooling, TC237 chip, $11' \times 8'$ FOV,	
	640×480 pixels, (ÇUG301).	
	-ST10XME camera, Peltier cooling, KAF 3200ME chip,	
	$17' \times 12'$ FOV, 2184×1472 pixels, (ÇUG302).	
	-STL1001E camera, Peltier cooling, KAF-1001E chip,	
	$28' \times 28'$ FOV, 1024×1024 pixels, (ÇUG303).	
	-ALTA U47 camera, Peltier cooling, E2V CCD47-10 chip,	
	$15' \times 15'$ FOV, 1024×1024 pixels, (ÇUG304).	

Method of data reduction:

Reduction of the CCD frames was made with C-MUNIPACK¹ software.

Method of minimum determination:

Kwee – van Woerden method (Kwee & van Woerden, 1956).

Times of 1	ninima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
KO Aql	54993.4578	0.0004	Ι	V	ÇUG 304
V602 Aql	54255.4377	0.0005	Ι	V	QUG302
Y Cam	54201.3678	0.0002	Ι	\mathbf{C}	$\mathbf{C}\mathbf{UG301}$
	54224.5087	0.0003	Ι	V	QUG302
	54925.3356	0.0001	Ι	\mathbf{C}	ÇUG301
	54991.4519	0.0002	Ι	\mathbf{C}	$\mathbf{C}\mathbf{U}\mathbf{G}303$
AB Cas	54930.3131	0.0001	Ι	\mathbf{C}	$\mathbf{C}\mathbf{UG301}$
OX Cas	54362.3890	0.0004	II	BVR_c	ÇUG302
	54367.3655	0.0002	II	BVR_c	$\mathbf{C}\mathbf{U}\mathbf{G}302$
	54428.3118	0.0004	Ι	BVR_c	$\mathbf{C}\mathbf{U}\mathbf{G}302$
CW Cep	54331.4020	0.0001	II	BVR_c	$\mathbf{C}\mathbf{U}\mathbf{G}302$
	54357.3533	0.0003	Ι	BVR_c	$\mathbf{C}\mathbf{U}\mathbf{G}302$
GI Cep	54086.3182	0.0003	Ι	\mathbf{C}	ÇUG301
AK Cmi	54932.3067	0.0001	Ι	\mathbf{C}	ÇUG301
TW Crb	54930.3888	0.0001	Ι	\mathbf{C}	ÇUG301
V370 Cyg	54932.5566	0.0002	Ι	\mathbf{C}	ÇUG301
V909 Cyg	54966.3708	0.0001	II	\mathbf{C}	ÇUG301
WW Cyg	54989.4204	0.0002	Ι	С	ÇUG301

¹Motl, D., 2004, C-MUNIPACK, http://integral.sci.muni.cz/munipack/

Times of r	ninima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
RZ Dra	54966.4644	0.0001	Ι	С	CUG301
TZ Eri	54084.4897	0.0003	Ι	\mathbf{C}	CUG301
BC Her	54275.4998	0.0002	I	V	CUG302
CT Her	54961 4629	0.0002	T	v	CUG304
GL Her	54261 4514	0.0002	T	v	CUG302
SZ Her	54955 4927	0.0001	T	v	QUG304
TI Her	54225 3030	0.0001	п	T	QUG303
I U HEI	54021 5280	0.0005	T	C	QUG303
TV Uor	54025 4008	0.0001	T	C	QUG301
V220 Hor	54925.4996	0.0005	I T	U V	ÇUG301
v 558 ner	54941.4599	0.0001	I T	V	QUG304
COT	54954.5176	0.0001		V DVD	QUG304
CO Lac	54298.3185	0.0002		$BV R_c$	ÇUG302
1737 T	54338.4150	0.0003	11	$BV R_c$	ÇUG302
VX Lac	54111.2814	0.0001	l	C	ÇUG301
	54861.2885	0.0003	1	C	ÇUG301
RW Leo	54138.4234	0.0002	1	С	ÇUG301
	54939.3062	0.0002	Ι	V	CUG304
UU Leo	54844.4787	0.0002	Ι	V	CUG303
UX Leo	54138.4862	0.0002	Ι	\mathbf{C}	ÇUG301
	54961.3398	0.0007	Ι	\mathbf{C}	ÇUG301
	54966.3708	0.0001	Ι	V	ÇUG304
VZ Leo	54067.5363	0.0003	Ι	С	ÇUG301
	54962.3451	0.0003	Ι	\mathbf{C}	ÇUG301
XZ Leo	54086.5432	0.0002	Ι	\mathbf{C}	CUG301
Y Leo	54111.4376	0.0001	Ι	С	CUG301
	54869.3226	0.0007	II	I_c	CUG303
	54906.4333	0.0005	П	$\vec{R_c}$	CUG304
	54955.3296	0.0001	П	R_{a}	CUG304
T LMi	54085 4845	0.0002	T	C	QUG301
1 11/11	54218 3594	0.0002	T	V	CUG303
SX Lyn	54166 3883	0.0002	T	Ċ	QUG301
EW Lyr	54994 4149	0.0002	T	V	QUG303
$T7 L_{\rm W}$	54020 4860	0.0001	T	Ċ	QUG303
12 Lyr	04900.4009 E4117 2027	0.0002	I T	C	QUG301
DW Mar	54117.5057	0.0001	I T	C	QUG301
KW MON	54117.5295	0.0001	I T	U V	QUG301
V839 Opn	54993.3433	0.0001	I T	V	ÇUG304
EQ Ori	54116.5019	0.0003	I	C	ÇUG301
	54867.3056	0.0004	l	C	ÇUG301
FH Ori	54166.2980	0.0001	l	C	ÇUG301
RT Per	54085.3438	0.0002	1	С	ÇUG301
XZ Per	54116.2733	0.0001	Ι	С	ÇUG301
	54868.2952	0.0001	Ι	\mathbf{C}	ÇUG301
AO Ser	54926.5017	0.0002	Ι	\mathbf{C}	ÇUG301
AM Tau	54138.3095	0.0001	Ι	\mathbf{C}	ÇUG301
	54841.4208	0.0003	Ι	V	ÇUG303
RV Tri	54110.3271	0.0002	Ι	\mathbf{C}	ÇUG301
	54138.2132	0.0001	Ι	\mathbf{C}	ÇUG301
V Tri	54117.3124	0.0001	Ι	\mathbf{C}	ÇUG301
VV UMa	54117.4620	0.0002	Ι	\mathbf{C}	ÇUG301
	54966.3794	0.0003	Ι	\mathbf{C}	ÇUG301
XZ UMa	54129.3080	0.0001	Ι	\mathbf{C}	CUG301
	54844.3556	0.0001	Ī	v	CUG303
	54954.3627	0.0004	Ī	V	CUG304
	54998.3666	0.0002	Ī	Ċ	CUG302
				-	· · · · –

Remarks:

We present 72 minima times of 46 eclipsing binaries. In the Remarks column of Times of Minima table, telescopes and detectors used in the observations are given.

Acknowledgements:

This study was supported by the Turkish *TUBITAK* under the grant no. 108T714, and it was also partly supported by the Research Found of Çanakkale Onsekiz Mart University.

Reference:

Kwee, K. K., & van Woerden, H., 1956, Bull. Astron. Inst. Neth., 12, 327.

Number 5894

Konkoly Observatory Budapest 30 July 2009 *HU ISSN 0374 - 0676*

TIMINGS OF MINIMA OF ECLIPSING BINARIES

DIETHELM, ROGER

Bahnhofstrasse 3, CH-4118 Rodersdorf, Switzerland

The following Table lists timings of minima of eclipsing binaries secured by CCD photometry, obtained between January and June 2009. The given O-C values generally refer to the linear elements of the 2008 electronic version of the GCVS (Kholopov et al., 1985, 2008 edition), except for the cases stated in the remarks, where the determination of current elements made use of the up-to-date ASAS data (http://www.astrouw.edu.pl/asas/) and the Lafler-Kinman algorithm of the PERANSO software (http://www.peranso.com/). All times given are heliocentric UTC.

Table 1: Minima of eclipsing binaries

Variable	Type	HJD 24	±	O - C	n	Obs	Remarks
ZZ Aur	р	54860.6524	0.0001	+0.0156	29	RD	V
CG Aur	р	54860.6527	0.0012	+0.0090	29	RD	V
DO Aur	р	54844.6296	0.0006	+0.0752	27	RD	V
EI Aur	s	54848.6089	0.0004	-0.1587	21	RD	V
EM Aur	р	54845.5981	0.0009	-0.1913	22	RD	V
EP Aur	р	54881.6784	0.0004	+0.0249	28	RD	V; IBVS 4099
EU Aur	р	54842.7516	0.0016	+0.5942	9	RD	V; $d=0.02 days$
FP Aur	р	54862.6756	0.0003	-0.0713	33	RD	V
FR Aur	р	54852.579	0.005	-0.595	13	RD	V
FW Aur	р	54860.6947	0.0001	-0.0402	31	RD	V
HP Aur	р	54844.6199	0.0003	+0.0515	20	RD	V
HW Aur	р	54860.6777	0.0004	+0.0239	39	RD	V; el.: IBVS 5016
II Aur	р	54862.6516	0.0004	+0.0145	31	RD	V
V364 Aur	р	54848.6302	0.0003	-0.0189	26	RD	V; el.: $2438849.342 + 0.699026 * E$
V576 Aur	р	54865.7028	0.0011	-0.2078	30	RD	$\mathrm{V;~el.:}$ www.astrouw.pl/asas/
GSC 2393-680	р	54862.6909	0.0004	+0.0055	27	RD	V; el.: IBVS 5699
SY Boo	р	54961.7850	0.0002	-0.0324	47	RD	V; el.: $2451273.62 + 0.71449 * E$;
							$d{=}0.038 days$
TU Boo	р	54961.7925	0.0003	+0.0064	33	RD	V; el.: A&AS 117, 105
AC Boo	р	54958.8099	0.0011	+0.1647	11	RD	V
AQ Boo	р	54948.7748	0.0006	-0.0201	15	RD	V; el.: IBVS 4871
	s	54948.9395	0.0007	-0.0221	12	RD	V
AR Boo	s	54891.9286	0.0016	+0.0313	11	RD	V; el.: IBVS 4601
CK Boo	s	54961.7578	0.0003	+0.1106	22	RD	V; el.: IBVS 3727
CV Boo	s	54965.7394	0.0006	+0.0026	25	RD	V; el.: IBVS 5535
EF Boo	р	54958.771	0.002	-0.181	9	RD	V; el.: IBVS 4811
EW Boo	р	54961.8778	0.0003	+0.3595	25	RD	V
FY Boo	р	54957.6806	0.0002	+0.0060	12	RD	V; el.: IBVS 5741
GK Boo	s	54958.8085	0.0007	-0.0628	14	RD	V; el.: IBVS 5060
GL Boo	р	54963.8410	0.0019	+0.0453	37	RD	V; el.: 2453425.805 + 3.197524 * E
GM Boo		54961.8511	0.0005	+0.0518	26	RD	V; el.: IBVS 5125
GQ Boo	р	54965.7952	0.0006	-0.0050	29	RD	V; el.: IBVS 5125

Table 1: Minima of eclipsing binaries (continued)

Variable	Type	HJD 24	±	O - C	n	Obs	Remarks
GU Boo	р	54965.7845	0.0005	+0.0402	14	RD	V; el.: $2451555.917 + 0.488724 * E$
HH Boo	\mathbf{S}	54958.6887	0.0009	+0.0162	10	RD	V
	р	54958.849	0.003	+0.017	13	RD	V
HR Boo	S	54963.7534	0.0005	+0.0020	15	RD DD	V; el.: www.astrouw.pl/asas/
	р	54905.9144	0.0008	+0.0050	10	RD DD	V V
	s	54905.0514	0.0017	+0.0042	20		V V
CSC 012 702	p p	54905.8097	0.0005	+0.0040 -0.002	20 6	RD RD	V V. el : 2453447 874 \pm 0.286482 * E
050 312-132	р s	54958 920	0.002 0.002	-0.002 -0.003	6	RD	V, et.: 2403447.074 \pm 0.200402 E
GSC 921-412	s	54958.663	0.002	+0.023	5	RD	V: el.: $2453859.742 \pm 0.356727 * E$
	D	54958.8403	0.0006	+0.020	9	RD	V
GSC 1478-669	p	54965.7839	0.0004	-0.0221	36	RD	V; el.: $2454204.822 + 0.428000 * E$
GSC 1484-525	р	54958.7985	0.0018	+0.0002	10	RD	V; el.: $2453093.610 + 0.33215 * E$
WW Cam	p	54839.6640	0.0004	-0.0211	41	RD	V
$AQ \ Cam$	р	54849.6809	0.0003	+0.0257	29	RD	V
AZ Cam	р	54839.8226	0.0012	+0.0254	13	RD	V
HW Cam	р	54833.9055	0.0004	+0.0712	23	RD	V; el.: IBVS 4526
LR Cam	р	54852.6506	0.0007	-0.0482	33	RD	V; el.: IBVS 5132
MP Cam	р	54842.6658	0.0004	-0.0702	36	RD	V
NO Cam	s	54833.6883	0.0004	+0.0037	30	RD	V; el.: 2451497.718 + 0.430753 * E
NR Cam	р	54891.7028	0.0009	+0.0058	15	RD	V; el.: $2451589.757 + 0.255885 * E$
GSC 4370-206	s	54862.6395	0.0003	-0.0469	29	RD	V; el.: $2453062.17715 + 0.442114 * E$
NSV 3715 NGV 4629	р	54889.0801	0.0007	+0.0008	23	RD DD	V; e1.: $2451489.223 + 0.362098 * E$
NSV 4038 WW Cpc	s	54849.8138	0.0014	-0.0470 0.5178	10	RD DD	V; e1.: 2451434.388 + 0.39005 · E
WX Cnc	p p	54848 8760	0.0005	-0.5178 ± 0.0135	21	RD RD	v V
WX Cnc	р р	54842 9174	0.0000	-0.0133	19	RD	v V
AO Cnc	р р	54848 9371	0.0006	-0.0525	20	RD	V V
GO Cnc	ч р	54839.8837	0.0011	+0.0558	19^{-3}	RD	V: el.: IBVS 4393
~	p	54842.8436	0.0005	+0.0596	24	RD	v
IN Cnc	р	54889.623	0.002	-0.002	10	RD	V; el.: IBVS 5428
IO Cnc	s	54848.8582	0.0006	-0.0099	21	RD	V; el.: IBVS 5428
	\mathbf{S}	54849.9018	0.0004	-0.0097	22	RD	V
IU Cnc	р	54833.9050	0.0004	-0.0081	36	RD	V; $d=0.03$ days
	р	54839.8092	0.0002	-0.0070	12	RD	V
$GSC \ 1407-222$	р	54849.9153	0.0003	-0.0179	23	RD	V; el.: www.astrouw.pl/asas/
NSV 4322	\mathbf{S}	54839.8659	0.0010	-0.0102	30	RD	V; el.: www.astrouw.pl/asas/
RV CVn	р	54950.7203	0.0010	+0.0252	11	RD	V
	s	54950.8540	0.0006	+0.0241	16	RD	
VV CVn VW CVn	p	54950.8920	0.0004	+0.0300	20 0		V; e1.: $2452308.095 + 0.5331238$ · E
BLCVn	p	54888 0012	0.0010	-0.0432 ± 0.0441	0 20	RD RD	V V. el · IBVS 4554
DI UVII	а е	54057 6763	0.0004	± 0.0441 ± 0.0463	23	RD	V, el.: 1DV5 4554
CI CVn	n	54950 8216	0.0001	-0.0200	26	RD	V: el · Hipparcos
DF CVn	Р D	54887.8543	0.0010	-0.0037	16	RD	V: el.: $2450571.199 + 0.3268958 * E$
	p	54888.8382	0.0005	-0.0005	8	RD	V
	p	54996.3841	0.0007	-0.0033	22	EBl	С
	s	54996.5516	0.0008	+0.0007	18	EBl	С
DH CVn	р	54881.8834	0.0007	-0.0182	24	RD	V; el.: IBVS 5149
	р	54996.3814	0.0006	-0.0181	12	EBl	\mathbf{C}
DI CVn	s	54882.8984	0.0009	-0.0036	17	RD	V; el.: IBVS 5224
	\mathbf{S}	54955.7171		-0.0050	19	RD	V
DQ CVn	р	54882.9012	0.0009	+0.0034	18	RD	V; el.: IBVS 5541
DR CVn	р	54884.9475	0.0008	+0.0376	15	RD	V
	р	54957.6656	0.0006	+0.0349	19	RD	
DU CVn DV CV	s	54889.8378	0.0012	-0.0026	9	RD DD	v; el.: $2451341.744 + 0.307261 * E$
DX CVn	р	54888.8299	0.0008	+0.0038	6	KD ED'	V; el.: IBVS 5403
	р	54972.4565	0.0008	+0.0030	21	EBI	0

Variable	Type	HJD 24	±	O - C	n	Obs	Remarks
DY CVn	s	54888.8673	0.0002	-0.0058	19	RD	V; el.: IBVS 5403
	р	54888.9895	0.0015	-0.0066	7	RD	V
	s	54972.4908	0.0004	-0.0051	13	EBl	С
EE CVn	р	54891.8782	0.0003	-0.0053	19	RD	V; el.: IBVS 5403
	\mathbf{s}	54996.3831	0.0017	-0.0102	12	EB1	С
	р	54996.5261	0.0006	-0.0075	18	EB1	С
EF CVn	р	54891.8628	0.0013	-0.0057	8	RD	V; el.: IBVS 5269
	\mathbf{p}	54957.6975	0.0005	-0.0069	20	RD	V
	р	55000.4110	0.0007	-0.0051	20	EBl	С
EG CVn	\mathbf{s}	54889.8873	0.0008	+0.0340	16	RD	V; el.: IBVS 5269
	р	55000.4356	0.0006	+0.0380	23	EBl	С
EH CVn	р	54891.8740	0.0009	-0.0422	17	RD	V
EI CVn	p	54972.4364	0.0008	-0.0125	17	EBl	C; el.: IBVS 5403
GSC 2537-520	g	55000.3955	0.0009	-0.0059	14	EBl	C; el.: IBVS 5541
GSC 2544-1007	n D	55000.4444	0.0003	+0.0065	18	EBI	C: el.: IBVS 5541
гт СМі	n D	54889.6617	0.0006	-0.2924	18	RD	v
ГХ СМі	r D	54888.7173	0.0005	+0.0069	23	RD	V: el. BBSAG Bull. 106-7
IZ CMi	Р N	54891 7538	0 0002	+0.0000	25	RD	$V el \cdot 2451925 4166 \pm 0.551361 * F$
Z CMi	р Р	54891 6902	0.0002	-0.0108	31	RD	V
CX CMi	Р Р	54888 6757	0.0000		30	RD	V. el · IBVS 5366
	Р	54888 7097	0.0007	10.0007 10.0464	10	BD TD	V_{1} al V_{2} IBVS 5366
	Ч	54000.1921 54000.6700	0.0002	± 0.0404	1U 96		V_{1} of V_{2} 0.00 V_{2} of V_{2} 0.00 V_{2} of V_{2} 0.00 V_{2} 0.
JL UMI	s	54009.0700	0.0000	+0.0002	20		V; e1.: 2451029.054 + 4.017282 + E
71010 0	р	54891.0847	0.0011	-0.0023	20	RD DD	
/1018 Cas	р	54833.7032	0.0018	-0.0002	27	RD	V; e1.: $2451601.625 + 4.127814 = E;$
							non-circular orbit
SF Cep	s	54839.6440	0.0009	+0.1811	33	RD	V
W Com	s	54874.9082	0.0008	-0.0212	14	RD	V
	р	54955.7293	0.0002	-0.0163	19	RD	V
RZ Com	р	54887.8522	0.0009	+0.0427	15	RD	V
S Com	р	54882.9253	0.0004	+0.1594	21	RD	V; el.: BAV Rb. 1984-4, 152
	р	54952.6911	0.0007	-0.1605	22	RD	V
Q Com	s	54881.8582	0.0004	-0.0098	15	RD	V; el.: IBVS 5684
	р	54957.6775	0.0011	-0.0094	23	RD	V
CC Com	s	54865.8558	0.0006	-0.0168	20	RD	V
	р	54865.9656	0.0005	-0.0174	11	RD	V
	s	54891.898	0.003	-0.015	11	RD	V
CM Com	s	54874.845	0.002	-0.012	10	RD	V: el.: $2452639.33 + 0.554515 * E$
CN Com	n	54888.9114	0.0007	+0.0638	18	RD	v
DD Com	r D	54881.8785	0.0005	+0.0742	16	RD	V
OG Com	Р D	54952 6863	0.0005	-0.0485	18	RD	V
EK Com	Р D	54882 8419	0.0007	-0.0505	$\frac{10}{21}$	RD	V. el.: IBVS 4167
	8	54882 9757	0.0007	-0.0499	$\frac{12}{12}$	RD	V
EO Com	0 0	5/880 0151	0.0007	± 0.0433	10	RD	· V
L Com	а С	54887 8079	0.0004	± 0.1119	17	BD	V. el · IBVS 4386
	5	54001.0912	0.0007		11 101	RD IUD	v, en. 10 vo 4500 V
O Com	Р	54901.0000 54901.0000	0.0004	± 0.0004	41 16		V V. al. IDVS 5059
JO Com	р	04800.8945	0.0005	+0.0097	10	κD DD	V; el.: IBVS 5052
	s	54955.6663	0.0011	+0.0076	13	KD	V C
D C	р	54996.4771	0.0007	+0.0120	22	EBI	
P Com	s	54874.908	0.002	-0.013	15	RD	V: el.: IBVS 5052
	\mathbf{S}	54955.6682	0.0006	-0.0191	11	RD	V
	р	54996.3853	0.0006	-0.0232	15	EBl	C
R Com	р	54884.9132	0.0006	-0.0207	25	RD	V; el.: $2449687.296 + 0.896299 * E$
AM Com	s	54888.8842	0.0007	-0.0103	17	RD	V; el.: IBVS 5224
AR Com	р	55000.387	0.003	-0.031	10	EBl	C; el.: IBVS 5269
GSC 881-218	s	54955.6990	0.0009	-0.0014	19	RD	V; el.: $2452525.822 + 0.324438 * E$
GSC 883-1116	р	54955.6898	0.0003	+0.0011	17	RD	V; el.: $2454622.622 + 0.363610 * E$
GSC 1445-866	p	54952.6808	0.0010	-0.0330	20	RD	V; el.: $2453439.709 + 0.373020 * E$
GSC 1446-1499	s	54955.7329	0.0011	+0.0100	10	RD	V; el.: $2454868.821 + 0.266162 * E$
0	-		0.0005	10.0024	17	- рр	V_{-1} , $9452420,700 + 0.207200 * E$

Table 1: Minima of eclipsing binaries (continued)

Table 1: Minima of eclipsing binaries (continued)

Variable	Type	HJD 24	+	O - C	n	Obs	Bemarks
GSC 1994-935	-jp-	54950.7439	0.0006	+0.0075	21	RD	V: el.: $2453818.687 \pm 0.347309 * E$
0.00 1001 000	p	54950.9209	0.0013	+0.0066	8	RD	V
BT CrB	P D	54984 7950	0.0007	-0.0180	49	RD	V
RW CrB	P D	54961 7884	0.0003	-0.0016	31	RD	V
YY CrB	P S	54983.7393	0.0006	-0.0979	30	RD	V: el.: IBVS 5152
AB CrB	s	54952 8582	0.0003	-0.0037	21	RD	V; el : IBVS 5295
AS CrB	s	54955 8638	0.0004	+0.0054	26	RD	V: el : IBVS 5295: $d=0.04$ days
GSC 880-55	s	54874 9167	0.0001	-0.0009	14	RD	V; el: $2452763558 \pm 0.582846 * E$
	s	54957 6772	0.0011	-0.0005	23	RD	V
W Crv	n	54874 9106	0.0010	+0.0171	10	RD	V
AC Crt	P S	54852 8566	0.0006	+0.0021	$\frac{10}{27}$	RD	V.el. www.astrouw.pl/asas/
AB Dra	n	54881 9380	0.0009	+0.0021 +0.0150	17	RD	V
AX Dra	P n	54884 9375	0.0003	-0.0573	20	RD	V
BX Dra	P n	54955 8323	0.0000	+0.0192	18	RD	V. el · IBVS 4266
FU Dra	P S	54952 8318	0.00012	-0.0112	20	RD	V: el : Hipparcos
IV Dra	s	54952 8335	0.0003	+0.0061	17	RD	V; el : 2450977 5005 \pm 0.268105 * E
BU Eri	n	54844 6313	0.0007	-0.0224	29	RD	V
TZ Eri	P n	54863 7252	0.0007	+0.2883	19	RD	V
WW Eri	P n	54844 6712	0.0001	+0.0597	17	RD	V
	P D	54845 6007	0.0005	+0.0697	24	RD	V V
BC Eri	P	54844 6561	0.0000	± 0.0385	20	RD	V el · IBVS 4937
DC EII	د م	54845 7137	0.0004	± 0.0303	20	RD	V, 61. 1D V 5 4957
GS C5207 074	a	54839 6730	0.0007	+0.0410 +0.0043	24	RD	V $ol \cdot 2454535 507 \pm 3.417547 * E$
SX Gem	n	54881 6613	0.0013	-0.0587	30	RD	V. 61. 2494999.901 \pm 9.411941 E
AI Com	Р	54884 6740	0.0000	-0.0001	02 26	RD	V
AT Gem	s n	54887 6615	0.0004	-0.0078	$\frac{20}{97}$	RD	V V
BD Com	p n	54882 6908	0.0003	-0.0307	21	RD	v V
DD Gem	Р	54840 6608	0.0003	-0.0529	20	RD	$V_{\rm r}$ of the sum patron $n^2/aaaa/t d=0.05$ days
EL Com	s n	54874 6458	0.0003	+0.0041	04 94	RD	V, el. www.astrouw.pr/asas/, u=0.05days
EL Gem	p n	54874.0458	0.0003	+0.0352	24 99		V V
EI Gem	p n	54001.0990	0.0000	-0.2223	20 26		V V
ET Com	р	54002.0330	0.0003	-0.2270	20 20		V V
CX Com	s n	54882 6810	0.0003	-0.0292	20	RD	V v v v v v v v v v v v v v v v v v v v
UV Com	Р	54852.0010	0.0002	-0.0323	10	RD	V , et.: 2451505.5040 \pm 4.057507 E
KO Com	s n	54892.0091	0.0013	0.0826	18	RD	V V
KQ Gem	Р	54884 7087	0.0003	-0.0820	15	RD	V = 0 + 2451876524 + 0.258510 * F
V380 Cem	o n	54862 7215	0.0007	+0.0211 +0.0001	10 91	RD	V_{1} el : 2451070.054 \pm 0.050013 E
NSV 2744	Р	54801 7252	0.0007	+0.0001	21	RD	V; el: www.astrouw.pl/asas/
IV Hor	s n	54091.7252	0.0003	+0.0273	20	RD	V, CI WWW.astrouw.pr/asas/
V381 Hor	p n	54954.8440	0.0004	± 0.2440 ± 0.1821	32 8	RD	v V
V651 Her	P n	54083 7800	0.0013	+0.1021 -0.0784	60	RD	V al · IBVS 5350 CSC 962 2150
V663 Her	P	55003 910	0.0000	-0.262	25	RD	V: el : BOTSE1
V681 Her	n	54984 8087	0.000	± 0.1195	16	RD	V: el : BOTSE1
V687 Her	P	54955 8694	0.0000	-0.1526	28	RD	V
V718 Her	n	54957 9194	0.0002	± 0.2873	15	RD	V
V728 Her	P S	54998 7765	0.0003	+0.2010 +0.0952	43	RD	V el · IBVS 3234
V742 Her	n	55003 7911		± 0.0384	1/	RD	V
V789 Her	P D	54994 7506	0.0005	+0.0304 +0.0117	20	RD	$V el \cdot IBVS 5741$
V861 Her	P D	54990 643	0.0000	-0.031	5	RD	V_{1} el : IBVS 4360
1001 1101	د ۲	54990 8080	0.0005	-0.0370	14	RD	V
V1005 Her	с Р	54990 7759	0.0004	-0.0794	15	RD	V. el·IBVS 4611
V1024 Her	5 9	54955 8300	0.0004	± 0.0104	1/	RD	$V \cdot el \cdot 245269947 \pm 0.530834 * E$
V1025 Her	n	54984 7367	0.0007	-0.0911	11 11	RD	$V \cdot el \cdot 2453503.687 \pm 0.563359 * E$
V1031 Her	P n	54994 8383	0.0007	± 0.0211	25 25	RD	$V \cdot el \cdot 2454599727 \pm 1.436751 * E$
V1036 Her	e P	54990 7779		± 0.0047	<u>1</u> 0	RD	V. el · IBVS 5146
V1041 Her	o n	54004 7078	0.0003	± 0.0024 ± 0.0016	30	RD	$V \cdot el \cdot 2451332.69 \pm 1.114112 * E$
V1042 Hor	P	54057 700	0.0004	± 0.0210	5	BD	V. al · IBVS 4998
V1044 Her	P	54908 6701	0.000	_0.021 _0.021	15	RD	V. el · IBVS 5109
4 TO 11 1101	د ۲	54998 7922	0.0002	-0.0017	14	RD	V
	n	54998 9089	0.0005	-0.0053	0	RD	V
	Ч	01000.0000	0.0000	0.0000	Э	нD	T

Variable	Type	HID 24	+	O - C	n	Obs	Remarks
V1049 Her	n n	5/008 8/13	0.0005	± 0.0028	42	BD	$\frac{V_{\rm C}}{V_{\rm C}} = \frac{1}{2453520} \frac{638 \pm 0.727327 * F}{100}$
V1045 Her V1007 Her	p	55003 7746	0.0000	± 0.0028	15	RD	$V_{1} \in I_{1}$ 2455525.050 \mp 0.121521 E
V1037 Her V1110 Her	p	53003.7740	0.0002	+0.0049	10		V_{1} el. IDVS 5500
V1119 Her V1122 Her	p	54955.6292	0.0010	-0.0289	10		V_{1} eI.: IDVS 50999; $d=0.054$ days
v1133 Her	р	55003.7302	0.0004	-0.0427	21	КD	$V; e1.: 2453229.008 + 2.407545 \cdot E;$
and ore ree		F 4000 0170	0.0009	0.005.9	9.4	חח	Non-circular orbit
GSC 950-560	р	54983.8172	0.0003	-0.0053	34	RD	V; e1.: $2454351.551 + 1.232498 + E$
GSC 965-581	р	54994.8254	0.0002	+0.0010	38	RD	V; el.: $2454546.848 + 0.443541 * E$
GSC 973-1212	р	54990.7758	0.0005	-0.0006	19	RD	V; el.: $2454722.504 + 0.267470 * E$
GSC 985-533	s	54994.8138	0.0007	+0.0146	27	RD	V; el.: $2454179.873 + 0.389451 * E$
GSC 990-480	р	54998.8064	0.0005	-0.0004	20	RD	V; el.: $2453872.797 + 0.332942 * E$
$GSC \ 1528-936$	р	54984.7582	0.0003	-0.0077	26	RD	V; el.: $2454190.832 + 1.301531 * E$
$GSC \ 1539-326$	р	54998.8197	0.0007	+0.0070	24	RD	V; el.: $2453833.639 + 0.387745 * E$
$GSC \ 2043-227$	р	54990.6598	0.0007	+0.0077	11	RD	V; el.: $2454938.867 + 0.313849 * E$
	s	54990.8157	0.0009	+0.0067	14	RD	V
UW Hya	р	54889.6548	0.0004	+0.0260	20	RD	V; el.: MVS 12, 48
VW Hya	р	54833.8695	0.0001	+0.2304	34	RD	V
VZ Hya	р	54848.9718	0.0003	+0.0046	12	RD	V
AV Hya	p	54849.8342	0.0004	-0.0940	17	RD	V; el.: Ap&SS 76, 173
CQ Hya	g	54833.9200	0.0003	+0.1760	32	RD	V
EZ Hva	p	54848.8496	0.0004	-0.1054	25	RD	V: $d=0.04$ days
FG Hya	n	54889.7014	0.0003	-0.0690	23	RD	V: el.: IBVS 2811
V404 Hya	r n	54833 8411	0.0005	+0.0121	$\frac{-3}{22}$	RD	V
V409 Hya	Р D	54842 8787	0.0005	+0.0278	31	RD	V d=0.04 days
V410 Hya	P D	5/8/9 981	0.005	-0.009	7	RD	V. el : $2452732712 \pm 3150711 * E$
CSC 220 1627	P n	54830 8780	0.0007	+0.0135	20	RD	V_{1} ol : 2452804 473 + 1.050856 * E
CSC 235-1627	p	54830 0420	0.0007	± 0.0155	10	RD RD	$V_{1} = 0.2453634413 \pm 1.053650 \pm 1.053650$
CSC 233-401	p n	54839.9429	0.0010	± 0.0301	20		$V_{1,0} = 0.2453303.03 + 1.173332 = 1.0560027 * E$
CSC 5447 040	р	54848.9070	0.0007	-0.0004	20 20		$V_{1,0} = 0.2453102.027 \pm 0.303337 = 1.05528 \pm 1.05588 \pm 1.05588 \pm 1.05588 \pm 1.05588 \pm 1.05588 \pm 1.05888 \pm 1.0588 \pm 1.0588 \pm 1.0588 \pm 1.0588 \pm 1.0588 \pm 1.05888 \pm 1.0$
GSU 5447-940	5	04042.0020	0.0003	± 0.0110	20	πD	V_{i} eI 2453650.369 + 1.05536 E;
000 5469 759	_	F 4049 0409	0.0000	0.0019	96	пп	u = 0.04 u ays
GSC 5405-755	5	54042.0492	0.0009	-0.0013	20		V; e1.: 2453790.702 + 1.04244 + E
GSC 5407-1483	р	54849.9109	0.0007	-0.0032	20	RD	V; e1.: $2454256.517 + 2.952224^{*}$ E;
			0.000		20	D D	d=0.02days
UU Leo	р	54852.8748	0.0007	+0.1573	20	RD	V
UX Leo	р	54890.5368	0.0006	+0.0498	30	RD	V; el.: BAV Mitt. 68, 21
UZ Leo	р	54862.8941	0.0014	+0.2000	39	RD	V
XX Leo	s	54887.924	0.002	-0.001	14	RD	V; el.: JAAVSO 28, 25
	s	54890.8383	0.0006	+0.0006	40	RD	V; $d = 0.066 \text{ days}$
XY Leo	\mathbf{s}	54852.8629	0.0012	+0.1832	21	RD	V
XZ Leo	\mathbf{s}	54860.8268	0.0004	+0.0467	20	RD	V
AM Leo	\mathbf{s}	54865.9488	0.0017	+0.0115	14	RD	V
AP Leo	s	54863.9100	0.0007	-0.0331	19	RD	V
BL Leo	s	54884.9255	0.0002	-0.0257	21	RD	V
BW Leo	s	54865.9660	0.0009	-0.1197	13	RD	V
CE Leo	s	54865.9361	0.0008	-0.0037	18	RD	V
DU Leo	р	54860.9186	0.0002	0.0000	34	RD	V; el.: IBVS 3999
GU Leo	p	54852.8794	0.0004	+0.0617	27	RD	V; el.: IBVS 5329
GV Leo	p	54863.9128	0.0002	-0.0859	18	RD	V: el.: IBVS 5697
HI Leo	p	54862.9147	0.0006	+0.0039	22	RD	V: el.: IBVS 5455: d=0.025days
HS Leo	p	54852.8914	0.0006	+0.0501	27	RD	V: el.: Per. Zv. 25, 2
GSC 262-948	r D	54881.9447	0.0005	+0.0381	16	RD	V: el.: $2453444.694 + 1.371386 * E$
GSC 263-585	r n	54863 8283	0.0004	-0.0028	17	RD	V: el : $2452706.698 \pm 1.297914 * E$
GSC 270-9	P	54952 6647	0.0015	± 0.0811	17	RD	V; el: $2454299594 \pm 0.581728 * E$
GSC 824-1304	n	54862 8851	0.0010	± 0.0011	22	RD	V; el : $245349256 \pm 0.885789 * E$
CSC 870 349	P n	54052.0001	0.0001	-0.0055	$\frac{55}{27}$	RD	V; el: $2453444.679 \pm 0.343277 * E$
RT I M;	p	54860 8760	0.0000	0.0066	24	RD RD	V , etc. 2400444.019 \pm 0.040211 E
XV IM;	ь Р	54860 8561	0.0003	-0.0000 -0.0197	44 97	BD	$V_{\rm v}$ el · IBVS 5411
	s r	5400.0001	0.0009		41 F		\mathbf{v}_{1} , \mathbf{U}_{1} , \mathbf{U}_{1} , \mathbf{U}_{2} , \mathbf{U}
тећ	p	04044.114 51015 7000	0.000	+0.058	0 00		V; CI.: JAAV SO 21, 111
090 5997 1744	р г	54045.7080 54840 7166	0.0002	+0.0391	49 17		V $V_{1,0} = 0.452000.567 \pm 1.000078 * E$
GSU 5337-1744	р	54849.7166	0.0002	-0.0019	17	кD	v; e1.: $2453009.567 + 1.092078 \text{ TE}$
GSU 5301-545	р	54881.0873	0.0003	+0.0056	20	ĸD	v; ei.: $2454421.804 + 0.797015 * E$

Table 1: Minima of eclipsing binaries (continued)

Variable	Type	HJD 24	+	O - C	n	Obs	Bemarks
NSV 1864	-jpo s	54852.6590	0.0003	+0.0274	37	RD	V: el.: www.astrouw.pl/asas/: d=0.045days
NSV 2698	p	54863.7504	0.0001	-0.0003	10	RD	V: el.: $2453399.588 + 0.806257 * E$
NSV 7292 Lib	P D	54957.8065	0.0019	-0.0136	9	RD	V: el.: www.astrouw.pl/asas/
NSV 7481	F S	54952.8774	0.0001	+0.0121	26	RD	V: el.: $2451926.215 + 0.293408 * E$
RV Lvn	D	54882.6328	0.0002	+0.8943	24	RD	V
RZ Lvn	p	54852.9053	0.0003	-0.1124	40	RD	V
UU Lvn	p	54842.9080	0.0006	-0.0048	21	RD	V
BG Lyn	P D	54891.7339	0.0006	-0.0014	$\frac{-}{29}$	RD	V: el.: AJ 87, 314
DY Lvn	P D	54889.609	0.002	+0.001	7	RD	V: el.: $2452704.488 + 1.313173 * E$
V573 Lvr	p	55014.7582	0.0006	+0.0003	26	RD	V: el.: $2451288.851 + 0.870539 * E$
UU Mon	p	54882.7018	0.0004	+0.0115	26	RD	v
BO Mon	p	54891.7542	0.0002	-0.0647	25	RD	V
CF Mon	p	54882.6455	0.0002	+0.0023	27	RD	V
EI Mon	p	54884.6382	0.0004	-0.0144	15	RD	V
EW Mon	S	54884.6191	0.0004	-0.1408	10	RD	V
GU Mon	s	54881.6418	0.0003	-0.0491	25	RD	V
KR Mon	p	54889.6774	0.0008	+0.0066	23	RD	V; el.: $2453427.651 + 1.150959 * E$
V396 Mon	p	54874.7337	0.0002	-0.0756	20	RD	v
V448 Mon	р	54887.7006	0.0015	+0.0641	30	RD	V; pulsator?
V453 Mon	р	54887.6042	0.0010	-0.3037	12	RD	V
V457 Mon	р	54882.6826	0.0004	-0.0098	30	RD	V
V458 Mon	р	54882.7011	0.0003	+0.1040	25	RD	V
V463 Mon	р	54887.7028	0.0006	-0.0907	28	RD	V
V494 Mon	p	54887.6592	0.0005	+0.1278	23	RD	V
V514 Mon	s	54887.6627	0.0005	+0.0489	25	RD	V
V524 Mon	s	54884.7231	0.0008	+0.1209	20	RD	V
V714 Mon	\mathbf{s}	54874.6818	0.0004	-0.0246	29	RD	V; el.: IBVS 4468
V864 Mon	\mathbf{s}	54888.7382	0.0004	-0.0283	23	RD	V; el.: IBVS 5425
GSC 4829-2025	\mathbf{s}	54888.6401	0.0012	-0.0161	18	RD	V; el.: $2453810.652 + 1.496189 * E$
GSC 4839-280	\mathbf{s}	54888.6658	0.0008	+0.0047	16	RD	V; el.: $2453356.736 + 1.130155 * E$
GSC 5397-1850	р	54888.6528	0.0005	-0.0155	21	RD	V; el.: $2453793.698 + 1.862163 * E$
GSC 5399-2407	s	54889.6789	0.0004	-0.0001	22	RD	V; el.: $2454162.622 + 1.444006 * E$
SX Oph	р	54983.7785	0.0003	+0.0005	62	RD	V
V947 Oph	р	55014.7857	0.0003	-0.0247	15	RD	V; el.: IBVS 5847
V954 Oph		55014.807	0.002		5	RD	V
V1016 Oph	р	54984.8212	0.0004	-0.1233	28	RD	V; el.: BBSAG Bull. 99, 9
V1022 Oph	s	54984.6958	0.0006	-0.1232	14	RD	V: el.: IBVS 5690
	р	54984.8139	0.0003	-0.1249	14	RD	V
V1120 Oph	s	54957.8228	0.0007	+0.0014	12	RD	V
GSC 398-1236	s	54998.7764	0.0002	+0.0048	35	RD	V; el.: $2453793.876 + 0.314471 * E$
GSC 403-1109	р	54994.7652	0.0006	-0.0028	22	RD	V; el.: $2454299.598 + 0.341104 * E$
GSC 418-2020	\mathbf{p}	55003.7668	0.0005	-0.0019	22	RD	V; el.: $2454228.802 + 1.205236 * E$
GSC 978-1292	s	54998.8493	0.0006	+0.0089	37	RD	V; el.: $2454542.871 + 0.896695 * E$
GSC 979-1273	р	54994.8242	0.0008	+0.0098	28	RD	V; el.: $2453560.616 + 0.389199 * E$
NSV 9699	р	55003.8371	0.0008	+0.0014	35	RD	V; el.: $2454358.506 + 0.706050 * E$
NSV 24049	р	55014.7245	0.0005	-0.0003	23	RD	V; el.: $2452161.3 + 3.96309 * E$
EG Ori	р	54874.6484	0.0003	-0.0891	31	RD	V
EW Ori	р	54860.6486	0.0010	-0.0230	29	RD	V; non-circular orbit
FF Ori	р	54860.6230	0.0003	+0.0323	25	RD DD	V
FK Ori	s	54842.0844	0.0015	+0.0222	32	RD DD	V
FZ Ori	р	54805.0328	0.0009	+0.0101	20	RD DD	V
	p	54803.0952	0.0002	+1.4209	27	RD DD	V; non-circular orbit
V 392 Ori	р	54881.0829	0.0004	+0.0320	27	RD DD	V; el.: BAS India 19
v 550 Ori V640 Ovi	S	04014.0941 54862 7145	0.0013	-0.1879 0.1955	21 94	RD RD	v V
V648 Ori	P	54860 6744	0.0001	TU U833	⊿4 ૧૬	RD	v V
$V1202 \Omegari$	P	54859 6589	0.0002	±0.0000 −0.0000	มม 21	BD	$V_{\rm el} = 18VS 3544$
V1626 Ori	P	54874 6374	0.0001	-0.0304	25 25	RD	V. el · IBVS 5339
V1642 Ori	Р Р	54863 6399	0.0004	± 0.0027 ± 0.0062	20 30	RD	V: el : $2453809575 + 3037633 * E$
. 1012 011	Ч	2 100010000	5.0000	1 010002	50	10	., an 21000001010 0.001000 E

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Variable	Type	HJD 24	±	0 – C	n	Obs	Remarks
	GSC 127-719	<u>р</u>	54849.7013	0.0002	+0.0149	22	RD	V; el.: 2453059.638 + 2.13101 * E
GSC 702-1820 s 54682.8667 0.0004 -0.0040 17 RD V. el.: IBVS 5433 GSC 1283-53 p 54483.6570 0.0005 -0.0183 27 RD V. el.: IBVS 5871 YZ. Per p 54483.6646 0.0007 -0.0537 24 RD V IM Per s 54433.6642 0.0003 -0.0537 24 RD V ISP Per p 54433.6620 0.0003 -0.0161 38 RD V. V482 Per p 54436.630 0.0003 -0.0161 78 RD V. V335 Set p 54436.528 0.0003 -0.0101 78 RD, V. el: 245135.6724 + 0.010633 * E AO Swr p 54661.7356 0.0001 -0.0024 RD V V384 Ser p 54661.7360 0.0001 27 RD V V384 Ser p 54693.8480 0.0001 28 RD V. el: 2454365.675 + 0.266729 * E		s	54865.6315	0.0006	-0.0374	23	RD	v
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GSC 702-1892	s	54862.6967	0.0004	-0.0040	17	RD	V; el.: IBVS 5493
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 1283-53	р	54848.6710	0.0006	-0.0010	27	RD	V; el.: IBVS 5799
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	NSV 1955	р	54863.6595	0.0005	+0.0018	25	RD	V; el.: IBVS 5871
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	XZ Per	р	54848.7164	0.0003	-0.0538	19	RD	v
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	FW Per	q	54842.6686	0.0007	-0.0537	24	RD	V
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	IM Per	s	54833.6742	0.0007	+0.0892	39	RD	V
	KR Per	s	54845.6758	0.0003	-0.0161	33	RD	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LS Per	р	54833.6262	0.0004	-0.4882	29	RD	V
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	NP Per	s	54848.6540	0.0003	-0.0545	32	RD	V
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V482 Per	р	54845.6826	0.0003	+0.2267	38	RD	V; el.: BAV Mit. 68, 21; d=0.02 days
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V737 Per	р	54833.7329	0.0007	-0.0004	17	RD	V; el.: $2451536.724 + 0.366538 * E$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GSC 5404-4206	р	54888.6740	0.0003	-0.0020	24	RD	V; el.: $2453765.63 + 0.610683 * E$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	AO Ser	q	54952.8851	0.0004	-0.0092	27	RD	v
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	AU Ser	s	54952.8579	0.0001	-0.1011	25	RD	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BI Ser	g	54963.7459	0.0005	+0.0839	36	RD	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V384 Ser	q	54961.6506	0.0005	+0.0022	9	RD	V; el.: $2452365.4575 + 0.268729 * E$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		s	54961.7836	0.0001	+0.0009	12	RD	v
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		р	54961.9198	0.0010	+0.0027	10	RD	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V385 Ser	a a	54952.9146	0.0005	+0.0392	16	RD	V; el.: IBVS 5455; d=0.024days
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GSC 357-162	s	54955.8611	0.0004	+0.0011	25	RD	V; el.: $2454641.656 + 0.375169 * E$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GSC 370-665	s	54983.8308	0.0002	+0.0293	27	RD	V; el.: $2454227.748 + 0.421552 * E$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GSC 378-1212	s	54955.8514	0.0009	+0.0001	23	RD	V; el.: $2453455.804 + 0.328202 * E$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GSC 930-267	D	54983.7647	0.0004	+0.0115	35	RD	V: el.: $2453601.532 + 0.352248 * E$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GSC 949-1089	р D	54984.8233	0.0016	+0.0040	13	RD	V: el.: $2454606.708 + 0.350103 * E$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 1499-834	S	54983.7507	0.0006	+0.0086	29	RD	V: el.: $2454273.672 + 0.321226 * E$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		g	549839096	0.0008	+0.0069	14	RD	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GSC 2034-1670	S	54955.8499	0.0004	+0.0006	21	RD	V; el.: 2454272.556 + 0.300944 * E;
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								d=0.01 days
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GSC 2038-293	g	54983.8090	0.0008	+0.0051	50	RD	V; el.: IBVS 5719
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GSC 5017-129	q	54965.7720	0.0003	-0.0061	24	RD	V; el.: $2454627.626 + 0.751449 * E$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 5037-866	q	54984.7803	0.0003	-0.0026	15	RD	V; el.: $2454203.796 + 0.406976 * E$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Y Sex	a a	54862.8687	0.0003	-0.2114	29	RD	V
$\begin{array}{llllllllllllllllllllllllllllllllllll$	WX Sex	S	54862.9108	0.0006	-0.0072	20	RD	V; el.: IBVS 5455
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	WZ Sex	р	54890.8727	0.0024	-0.0275	24	RD	V; el.: $2454852.77 + 1.059171 * E$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GSC 4908-1303	р	54860.8603	0.0003	+0.0061	32	RD	V; el.: $2453490.637 + 1.537842 * E$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GSC 4911-1235	р	54865.8134	0.0008	+0.0045	11	RD	V; el.: $2453140.597 + 0.424302 * E$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GSC 4916-292	р	54863.8559	0.0002	-0.0061	29	RD	V; el.: $2453773.724 + 1.919257 * E$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GSC 4918-1155	р	54849.7980	0.0013	-0.0133	11	RD	V; el.: $2453115.642 + 4.699646 * E;$
RZ Taup 54852.7188 0.0006 $+0.0575$ 20 RDVTY Taus 54848.6948 0.0007 $+0.2527$ 13 RDVWY Taus 54863.6341 0.0003 $+0.0542$ 30 RDVAH Taup 54833.7012 0.0006 $+0.0116$ 22 RDV; el.: IBVS 5554BN Taup 54842.6242 0.0005 -0.0789 30 RDVBV Taup 54862.6214 0.0020 -0.0163 20 RDV; el.: IBVS 4778CR Taup 54862.6678 0.0004 $+0.1983$ 38 RDVGQ Taup 54845.6732 0.0004 -0.0757 42 RDVGW Taup 54849.6919 0.0007 $+0.5515$ 24 RDVV407 Taup 54842.5950 0.0003 -0.009 7RDV; el.: 2451609.717 + 1.188245 * E; non-circular orbitGSC 1841-879p 54842.5950 0.0008 -0.1047 18RDVGSC 1848-1264s 54849.7205 0.0005 15 RDV; el.: IBVS 5699TW UMap 54890.6670 0.0006 -0.0579 25 RDV; el.: MNRAS 317, 111s 54890.6870 0.0006 -0.0579 25 RDV; el.: MNRAS 317, 111s 54890.8422 0.0007 -0.0601 18RDVUX UMap 54948.7582 0.0010 $+0.$		р	54863.9020	0.0002	-0.0083	38	RD	V; d=0days
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RZ Tau	р	54852.7188	0.0006	+0.0575	20	RD	V
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TY Tau	s	54848.6948	0.0007	+0.2527	13	RD	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	WY Tau	\mathbf{s}	54863.6341	0.0003	+0.0542	30	RD	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	AH Tau	р	54833.7012	0.0006	+0.0116	22	RD	V; el.: IBVS 5554
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BN Tau	р	54842.6242	0.0005	-0.0789	30	RD	V
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BV Tau	р	54862.6214	0.0020	-0.0163	20	RD	V; el.: www.astrouw.pl/asas/
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CR Tau	р	54852.7208	0.0003	-0.0038	20	RD	V; el.: IBVS 4778
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GQ Tau	р	54862.6678	0.0004	+0.1983	38	RD	v
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GW Tau	р	54845.6732	0.0004	-0.0757	42	RD	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V407 Tau	р	54849.6919	0.0007	+0.5515	24	RD	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V1249 Tau	s	54844.705	0.003	-0.009	7	RD	V; el.: 2451609.717 + 1.188245 * E;
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								non-circular orbit
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GSC 1841-879	р	54842.5950	0.0008	-0.1047	18	RD	V
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GSC 1848-1264	s	54849.7205	0.0005	+0.0055	15	RD	V; el.: IBVS 5699
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TW UMa	р	54948.7739	0.0004	-0.2869	62	RD	V
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TY UMa	р	54890.6670	0.0006	-0.0579	25	RD	V: el.: MNRAS 317, 111
$\begin{array}{llllllllllllllllllllllllllllllllllll$		s	54890.8422	0.0007	-0.0601	18	RD	V
m p = 54948.956 = 0.002 = 0.002 = 5 m RD = V	UX UMa	р	54948.7582	0.0010	+0.0003	7	RD	V
		p	54948.956	0.002	0.002	5	RD	V

Table 1: Minima of eclipsing binaries (continued)

Variable	Type	HJD 24	±	0 – C	n	Obs	Remarks
UY UMa	s	54957.7182	0.0005	+0.1075	24	RD	V
VV UMa	р	54890.7983	0.0005	-0.0464	29	RD	V
XY UMa	р	54842.8569	0.0003	+0.0316	19	RD	V
$\rm XZ~UMa$	p	54852.9131	0.0005	-0.0965	29	RD	V
ZZ UMa	р	54862.8951	0.0005	-0.0024	37	RD	V
AA UMa	р	54845.857	0.002	+0.038	8	RD	V
AC UMa	р	54839.8146	0.0003	-0.1184	60	RD	V; $d=0.063 days$
BM UMa	р	54845.8280	0.0004	+0.0090	13	RD	V
BS UMa	\mathbf{s}	54862.8610	0.0012	+0.0005	9	RD	V; el.: 2453134.7083 + 0.349510 * E
	р	54890.6479	0.0002	+0.0014	14	RD	V
	s	54890.8199	0.0004	-0.0014	11	RD	V
DW UMa	р	54863.906	0.001	0.000	7	RD	V; el.: AA 364, 573
ES UMa		54863.8117	0.0006		16	RD	V
IW UMa	р	54848.8248	0.0006	+0.0150	17	RD	V; el.: IBVS 4402
LO UMa	р	54860.8250	0.0008	+0.0179	19	RD	V; el.: IBVS 5084
${ m MS}~{ m UMa}$	р	54865.9317	0.0003	+0.0318	21	RD	V
RU UMi	s	54891.9122	0.0012	-0.0171	23	RD	V
AG Vir	р	54874.8688	0.0012	-0.0133	20	RD	V
AW Vir	р	54888.9170	0.0003	+0.0230	27	RD	V
AZ Vir	\mathbf{s}	54891.8386	0.0008	-0.0223	8	RD	V
BF Vir	\mathbf{s}	54948.7691	0.0010	+0.1052	27	RD	V
IR Vir	р	54882.8770	0.0007	+0.0048	17	RD	V; el.: $2453913.627 + 0.369377 * E$
PS Vir	р	54863.8671	0.0002	-0.0083	20	RD	V
QX Vir	р	54963.6849	0.0008	+0.0038	17	RD	V; el.: $2452025.629 + 0.242074 * E$
	s	54963.8074	0.0011	+0.0052	13	RD	V
	р	54963.930	0.002	+0.006	6	RD	V
V337 Vir	s	54889.8436	0.0010	-0.0400	9	RD	V; el.: 5630
GSC 286-631	s	54952.7330	0.0018	+0.0051	16	RD	V; el.: $2453866.584 + 0.315327 * E$
GSC 296-9	р	54955.6932	0.0005	+0.0002	18	RD	V: el.: $2454649.516 + 0.417704 * E$
GSC 303-36	\mathbf{p}	54888.8999	0.0003	-0.0062	28	RD	V; el.: $2454259.639 + 1.310973 * E$
GSC 303-65	р	54948.6339	0.0014	+0.0041	8	RD	V; el.: $2453186.769 + 0.372329 * E$
	s	54948.8211	0.0004	+0.0051	20	RD	V
GSC 303-735	р	54950.7032	0.0005	+0.0026	21	RD	V; el.: $2453079.772 + 0.288412 * E$
	s	54950.8487	0.0010	+0.0038	16	RD	
GSC 314-388	р	54948.6773	0.0006	+0.0024	22	RD	V; el.: $2454506.847 + 0.347896 * E$
000 010 00	s	54948.8499	0.0001	+0.0011	30	RD	
GSC 316-99	р	54963.8060	0.0005	-0.0006	17	RD	V; el.: $2454643.620 + 0.404276 * E$
GSC 318-1169	р	54963.6780	0.0011	-0.0012	11	RD	V; el.: $2453821.748 \pm 0.239499 ^{*}$ E
	s	54963.7985	0.0016	-0.0005	13	RD DD	V
000 220 250	р	54963.9173	0.0011	-0.0014	9	RD DD	
GSC 329-256	р	54963.7416	0.0014	-0.0460	17	RD DD	V; e1.: $2452788.307 + 0.259883 * E$
000 220 620	s	54903.8800	0.0011	-0.0370	10	RD DD	V = 1 + 0.450766,000 + 0.250054, * E
GSC 329-639	s	54963.7500	0.0005	-0.0375	24	RD DD	V; e1.: $2452766.289 \pm 0.350954 * E$
GSC 330-1394	р	54905.8311	0.0007	+0.0134	38	КD	V; e1.: 2453848.736 + 0.436872 * E; d=0.03days
GSC 878-260	p	54884.9351	0.0006	+0.0101	19	RD	V: el.: $2454620.606 + 0.964668 * E$
GSC 892-892	r n	54948.7758	0.0003	-0.0018	$\frac{-5}{23}$	RD	V: el.: $2453459.753 + 0.305943 * E$
	г S	54948.9276	0.0004	-0.0029	18	RD	V
GSC 897-470	n	54889.9065	0.0003	+0.0020	$\frac{10}{28}$	RD	V: el.: $2454575.685 + 1.441355 * E$
GSC 898-3	р р	54882.8642	0.0007	-0.0027	$\frac{-0}{12}$	RD	V: el.: $2454538.782 + 0.516644 * E$
222 0000	г S	54891.9068	0.0012	-0.0013	14	RD	V
GSC 4955-767	n	54887.8552	0.0005	+0.0012	13^{-1}	RD	V: el.: $2453871.595 + 0.683889 * E$
GSC 4958-415	r D	54950.8142	0.0005	-0.0008	19	RD	V; el.: $2453106.737 + 0.868210 * E$

Observers: EBl : E. Blättler RD :

Wald, Switzerland Rodersdorf, Switzerland;

R. Diethelm

R. Szafraniec Obs. operated at Astrokolkhoz Obs., Cloudcroft, N.M., USA

References:

Agerer, F., 1996, *IBVS*, No. 4406 Agerer, F., 1999, IBVS, No. 4778 Agerer, F., Dahm, M., 1995, IBVS, No. 4266 Agerer, F., Hübscher, J., 2001, *IBVS*, No. 5016 Agerer, F., Kamper, B.-C., Lichtenknecker, D., 1988, IBVS, No. 3234 Antipin, S. V., 1996, *IBVS*, No. 4360 Bernhard, K., Frank, P., 2006, *IBVS*, No. 5719 Bernasconi, L, Behrend, R., 2003, IBVS, No. 5411 Biro, I. B., 2000, A&A, 364, 573 Biro, I. B., et al., 2006, *IBVS*, No. 5684 Blättler, E., 2000, IBVS, No. 4871 Blättler, E., Diethelm, R., 2001a, IBVS, No. 5052 Blättler, E., Diethelm, R., 2001b, IBVS, No. 5125 Blättler, E., Diethelm, R., 2001c, IBVS, No. 5146 Blättler, E., Diethelm, R., 2001d, IBVS, No. 5192 Blättler, E., Diethelm, R., 2002a, IBVS, No. 5269 Blättler, E., Diethelm, R., 2002b, IBVS, No. 5295 Blättler, E., Diethelm, R., 2002c, IBVS, No. 5306 Blättler, E., Diethelm, R., 2003, IBVS, No. 5403 Blättler, E., Diethelm, R., 2004, IBVS, No. 5541 Blättler, E., Diethelm, R., 2006, *IBVS*, No. 5699 Blättler, E., Diethelm, R., 2007, IBVS, No. 5799 Bloomer, R., Kiser, M., Camenisch, K., Tuck, N., 2001, IBVS, No. 5149 Boistel, G., Boninsegna, R., Dumont, M., 1990, IBVS, No. 3544 Byboth, K. N., Markworth, N. L., Bruton, W. B., 2004, IBVS, No. 5554 Demeautis, C., Bernasconi, L., Behrend, R., 2002, IBVS, No. 5329 Derman, E., Kalci, R., 2003, *IBVS*, No. 5439 Diethelm, R., 1992, BBSAG Bull., 99, 9 Diethelm, R., 2001, *IBVS*, No. 5060 Diethelm, R., 2009, IBVS, No. 5871 Erdem, A. et al., 2001, *IBVS*, No. 5152 Frank, P., Moschner, J., Moschner, W., 1996, IBVS, No. 4386 Fuhrmeister, T., 1990, MVS, 12, 48 Garcia-Lastra, A. et al., 2003, IBVS, No. 5455 Haussler, K., Berthold, T., Kroll, P., 2002, IBVS, No. 5350 Haussler, K., Berthold, T., Kroll, P., 2008, IBVS, No. 5847 Hübscher, J., Agerer, F., Wunder, E., 1994, BAV Mitt., 68, 21 Jia, G., Liu, X., Huang, H., 1992, IBVS, No. 3727 Kämper, B., 1984, BAV Rb., 1984-4, 152 Kazarovets, E. V., Pastukhova, E. N., Samus, N. N., 2005, Per. Zv., 25, 2 Kholopov, P. N. et al., 1985, General Catalogue of Variable Stars, Moscow Khruslov, A. V., 2005, *IBVS*, No. 5699 Kinman, T. D., Mahaffey, C. T., Wirtanen, C. A., 1982, AJ, 87, 314 Krajci, T., 2006, IBVS, No. 5690 Lister, T. A., McDermid, R. M., Hilditch, R. W., 2000, MNRAS, 317, 111 Lloyd, C. et al., 2002, IBVS, No. 5339 Llovd, C. et al., 2003, IBVS, No. 5366 Lubcke, G.C. et al., 2000, *IBVS*, No. 4998

- Mahdy, H. A., Hamdy, M. A., Soliman, M. A., 1985, *IBVS*, No. 2811
- Moschner, W. et al., 1997, *IBVS*, No. 4468
- Nagai, K., Kiyota, S., 2000, IBVS, No. 4937
- Nelson, R. H., 2002, *IBVS*, No. 5224
- Nelson, R. H., 2004, *IBVS*, No. 5535
- Niarchos, P.G., Hoffmann, N., Dürbeck, H.W., 1996, A&AS, 117, 105
- Otero, S. A., Wils, P., 2005, *IBVS*, No. 5630
- Pascke, A., 1994, BBSAG Bull., 106, 7
- Pejcha, O., Lehky, M., Sobotka, P., Brat, L., Haltuf, M., Smelcer, L., 2001, *IBVS*, No. 5132
- Rinner, C., Starkey, D., Demeautis, Ch., Charbonnel, S., Bernasconi, L., Behrend, R., 2003, *IBVS*, No. 5428
- Samec, R. G., Carrigan, B., Padgen, E. E., 1995, *IBVS*, No. 4167
- Samec, R. G., Faulkner, D., 1998, *IBVS*, No. 4611
- Samec, R. G., Tuttle, J. P., Brougher, J. A., Moore, J. E., Faulkner, D. R., 1999, *IBVS*, No. 4811
- Samec, R. G. et al., 2006, *IBVS*, No. 5697
- Samolyk, G., 1992, JAAVSO, 21, 111
- Srivastava, J. B., Kandpal, C. D., 1981, Ap&SS, 76, 173
- Stark, M. A. et al., 2000, *JAAVSO*, 28, 25
- Vandenbroere, J., 1998, *IBVS*, No. 4554
- Vidal-Sainz, J., 1997, *IBVS*, No. 4526
- Vidal-Sainz, J., Garcia-Melendo, E., 1996, IBVS, No. 4393
- Williams, D. B., 1994, IBVS, No. 3999
- Williams, D. B., 2001, IBVS, No. 5084
- Wils, P., Dvorak, S. W., 2003, IBVS, No. 5425
- Wolf, M., Borovicka, J., Sarounova, L., Safar, J., Safarova, E., 1998, IBVS, No. 4601
- Zejda, M., Mikulasek, Z., Wolf, M., 2006, IBVS, No. 5741
- Zhang, R., Zhang, J., Zhai, D., 1994, IBVS, No. 4099
Number 5895

Konkoly Observatory Budapest 3 August 2009 HU ISSN 0374 - 0676

THE GEOS RR Lyr SURVEY

Eleventh list of maxima of RR Lyr stars observed by the automated telescopes TAROT

(GEOS Circular RR 39)

LE BORGNE, J. F.^{1,2}; KLOTZ, A.^{3,4}; BOËR, M.³

¹ GEOS (Groupe Européen d'Observations Stellaires), 23 Parc de Levesville, 28300 Bailleau l'Évêque, France

 2 LATT, Université de Toulouse, CNRS, Toulouse, France

³ Observatoire de Haute-Provence, Saint Michel l'Observatoire, France

 4 CESR, Université de Toulouse, CNRS, Toulouse, France

We present here the eleventh list of light maxima of RR Lyrae stars from the GEOS RR Lyr Survey (Le Borgne et al. 2007), a GEOS program (http://geos.webs.upv.es/, Boninsegna et al., 2002) of observations of RR Lyr stars using the automatic telescopes TAROT (http://tarot.obs-hp.fr, Klotz et al., 2009). The present list contains 685 maxima observed mainly between January and June 2009 (Table 1).

A description of the present list may be found in the former lists (for example Le Borgne et al. 2008). The data are also available in the GEOS RR Lyr web database (http://dbRR.ast.obs-mip.fr). The O - C's are computed with the GCVS elements (Kholopov et al., 1985) when available. Otherwise, the reference of the elements, if exists, is given as a footnote of Table 1.

References:

Baldwin, M.E., Samolyk, G., 2003, AAVSO RR Lyrae Monographs, 1

- Boninsegna, R., Vandenbroere, J., Le Borgne, J. F., The Geos Team, 2002, ASP Conf. Ser., 259, 166, IAU Colloq. 185
- Kholopov, P. N., et al., 1985, General Catalogue of Variable Stars, Moscow: Nauka Publishing House, 1988, 4th ed., edited by Kholopov, P. N.; and 2006 web edition (http://www.sai.msu.su/groups/cluster/gcvs/).

Klotz, A., Boër, M., Atteia, J. L., Gendre, B., 2009, AJ 137, 4100

Le Borgne, J. F., Klotz, A., Boër, 2008, *IBVS*, 5823

Le Borgne, J. F., Paschke, A., Vandenbroere, J., Poretti, E., Klotz, A., Boër, M., Damerdji, Y., Martignoni, M., Acerbi, F., 2007, A&A, 476, 307

Table 1: maxima of RR Lyrae stars

Variable	Maximum	O - C	E	Obs	Variable	Maximum	O = C	E	Obs
star	HID 24	(davs)	Ц	0.05.	star	HID 24	(davs)	Ц	0.05.
XX And	54833443 ± 0.003	$\frac{(aa)}{0.237}$	21786	С	BS Boo	$54975 461 \pm 0.003$	-0.006	34995	C
CI And	$54834 402\pm0.002$	0.111	39437	č	RS Boo	$54989\ 422\pm0\ 002$	-0.006	35032	C
WY Ant	54859641 ± 0004	0 2 2 1	24749	ĽS	RS Boo	$54992 442\pm0.002$	-0.005	35040	Č
WV Ant	54879745 ± 0.004	0.221	24145.	LS	ST Boo	54939.633 ± 0.002 54939.633 ±0.002	0.000	57462	C
WV Ant	54913.627 ± 0.003	0.224	24104.	LS	ST Boo	$54974\ 471\pm0\ 005$	0.000	57518	C
BK Ant	54864.635 ± 0.010	0.220	21010.	LS	ST Boo	54979.452 ± 0.004	0.005	57526	C
BK Ant	54896.661 ± 0.004			LS	ST Boo	54975.492 ± 0.004 54992.520 ± 0.003	0.072	57547	c
BK Ant	54930.001 ± 0.004 54912.673 ± 0.005				TW Boo	54352.520 ± 0.003 54852 583 ±0.002	0.072	59539	c
BN Ant	54912.075 ± 0.005 54004.720 ± 0.004			TC	TW Boo	54861.633 ± 0.002	0.057	52532.	C
BT Ant	54904.729 ± 0.004 54853 780 ±0.010			LS	TW Boo	54801.033 ± 0.002 54000 404 ±0.004	-0.057	52699. 59699	C
BT Ant	54861.716 ± 0.010			LS	TW Boo	54900.494 ± 0.004 54001 554 ±0.002	-0.052	52624	C
TV And	54014586 ± 0.003	0.049	30974	TC	TW Boo	54901.054 ± 0.002 54016 455 ±0.002	0.050	52652	C
TI Aps	54914.580 ± 0.003 54015 501 ±0.004	0.042	30274.	LS	TW Boo	54910.455 ± 0.002 54056 376 ±0.001	-0.059	52052. 52727	C
TI Aps	54910.591 ± 0.004 54010.603 ±0.004	0.044	30270.	LS	TW Boo	54950.570 ± 0.001 54058 506 ±0.002	-0.059	52721. 59731	C
TI Aps	54919.005 ± 0.004 54023 616 ±0.003	0.042	30284.	LS	TW Boo	54958.500 ± 0.002 54965 426 ±0.004	-0.058	52751.	C
TI Aps	54925.010 ± 0.003 54020 622 ±0.004	0.041	20292.	LS	TW Doo	54905.420 ± 0.004 54082 458±0.002	-0.057	52744.	C
TT Aps	54929.033 ± 0.004 54086 846 ±0.006	0.050	20304. 20419	LO	CM Poo	54962.436 ± 0.003 54852 568 ±0.003	-0.058	94110. 91116	C
VV Aps	54980.840 ± 0.000 54004 702 ±0.004	0.058	19646	LO	CM Boo	54893.508 ± 0.002 54884 628±0.002	-0.105	91167	C
VZ Aps	54904.793 ± 0.004 54885 710±0.005	0.119	44040.	LO	CM Boo	54004.020 ± 0.002 54017 518 ±0.002	-0.100	01107. 91991	C
XZ Aps	54000.719 ± 0.000	0.204	44000.	LS	CM Dee	54917.510 ± 0.005	-0.109	01221. 01020	C
XZ Aps	54902.748 ± 0.002	0.190	44079.	LS	CM Doo	54920.401 ± 0.003	-0.109	31239. 21280	C
AL Aps	54995.535 ± 0.005	0.170	44/37.	LS	CM Boo	54953.452 ± 0.002	-0.110	31280. 21201	C
BS Aps	54900.099 ± 0.003	0.009	30007.	LS		54978.425 ± 0.002	-0.110	31321. 49015	
BS Aps	54904.775 ± 0.005	0.007	30014.			54848.097 ± 0.002	-0.117	48915.	
BS Aps	54921.698 ± 0.006	0.036	30043.		AH Cam	54843.479 ± 0.005	-0.418	43702.	C
BS Aps	54992.743 ± 0.002	0.009	30165.		AH Cam	54847.525 ± 0.003	-0.429	43713.	C
EX Aps	54933.691 ± 0.004	0.019	57228.		AH Cam	54852.300 ± 0.003	-0.447	43726.	C
EX Aps	54938.877 ± 0.002	0.015	57239.		TT Cnc	54836.423 ± 0.002	0.088	26430.	C
EX Aps	54972.848 ± 0.002	0.016	57311.		TT Cnc	54849.382 ± 0.005	0.088	26453.	C
EX Aps	55005.874 ± 0.004	0.016	57381		TT Cnc	54862.346 ± 0.004	0.093	26476.	C
SX Aqr	55000.851 ± 0.004	-0.115	28382.		TT Cnc	54875.311 ± 0.005	0.098	26499.	C
TZ Aqr	55013.761 ± 0.005	0.024	30576		TT Cnc	54907.434 ± 0.002	0.105	26556.	C
BN Aqr	55004.782 ± 0.003	0.595	36478.		TT Cnc	54915.319 ± 0.002	0.101	26570.	C
BO Aqr	55011.803 ± 0.004	0.156	19294.		W CVn	54841.664 ± 0.004	-0.134	60605.	C
CP Aqr	55005.812 ± 0.004	-0.115	36947		W CVn	54861.528 ± 0.002	-0.134	60641.	C
CP Aqr	55006.737 ± 0.003	-0.117	36949.		W CVn	54877.530 ± 0.002	-0.133	60670.	C
DN Aqr	55006.853 ± 0.005	0.029	41943.		W CVn	54898.493 ± 0.003	-0.137	60708.	C
DN Aqr	55013.829 ± 0.005	0.034	41954.		W CVn	54915.596 ± 0.002	-0.138	60739.	C
AA Aql	54990.782 ± 0.002	0.037	84700.	LS	W CVn	54918.359 ± 0.002	-0.134	60744.	C
V341 Aql	55013.868 ± 0.002	0.036	23905.	LS	W CVn	54925.531 ± 0.003	-0.135	60757.	C
S Ara	55006.799 ± 0.003	-0.351	30660.		W CVn	54929.394 ± 0.005	-0.134	60764.	C
MS Ara	54950.799 ± 0.004	0.396	51362.		W CVn	54956.426 ± 0.003	-0.138	60813.	C
MS Ara	55008.545 ± 0.004	0.397	51472		W CVn	54973.529 ± 0.003	-0.140	60844.	C
MS Ara	55013.792 ± 0.005	0.394	51482.		Z CVn	54836.571 ± 0.003	0.399	24326.	C
X Ari	54844.408 ± 0.002	0.350	26508.	C	Z CVn	54893.456 ± 0.004	0.402	24413.	C
X Ari	54846.363 ± 0.002	0.352	26511.	C	ZCVn	54910.464 ± 0.005	0.410	24439.	C
X Ari	54848.316 ± 0.003	0.351	26514.	C	RU CVn	54909.547 ± 0.002	0.218	35632.	C
TZ Aur	54850.395 ± 0.004	0.012	89227.	С	RU CVn	54912.414 ± 0.002	0.218	35637.	C
TZ Aur	54875.462 ± 0.002	0.012	89291.	C	RU CVn	54951.393 ± 0.003	0.217	35705.	C
TZ Aur	54879.381 ± 0.001	0.014	89301.	C	RU CVn	54963.431 ± 0.003	0.217	35726.	C
TZ Aur	54908.365 ± 0.002	0.014	89375.	C	RU CVn	54971.456 ± 0.002	0.216	35740.	C
RS Boo	$54845.658 {\pm} 0.003$	-0.004	34651.	C	RU CVn	54975.468 ± 0.002	0.216	35747.	C
RS Boo	$54859.619 {\pm} 0.002$	-0.005	34688.	С	RZ CVn	$54870.547 {\pm} 0.003$	-0.160	25602.	С
RS Boo	$54884.523{\pm}0.002$	-0.005	34754.	С	RZ CVn	$54907.427 {\pm} 0.002$	-0.162	25667.	С
RS Boo	$54898.483{\pm}0.002$	-0.007	34791.	С	RZ CVn	$54962.463 {\pm} 0.002$	-0.165	25764.	С
RS Boo	$54926.408 {\pm} 0.003$	-0.005	34865.	\mathbf{C}	RZ CVn	$54970.413 {\pm} 0.002$	-0.159	25778.	\mathbf{C}
RS Boo	$54929.427{\pm}0.002$	-0.005	34873.	\mathbf{C}	RZ CVn	$54979.496 {\pm} 0.003$	-0.154	25794.	\mathbf{C}

Variable	Maximum	O - C	Е	Obs.	Variable	Maximum	O - C	Е	Obs.
star	HJD 24	(days)			star	HJD 24	(days)		
SS CVn	$54844.615 {\pm} 0.002$	0.157	31810.	\mathbf{C}	ST Com	$54885.618 {\pm} 0.002$	-0.029	19470.	\mathbf{C}
SS CVn	54845.575 ± 0.004	0.160	31812.	С	ST Com	$54917.359 {\pm} 0.003$	-0.031	19523.	\mathbf{C}
SS CVn	$54889.577 {\pm} 0.010$	0.138	31904.	С	ST Com	$54939.521 {\pm} 0.005$	-0.029	19560.	\mathbf{C}
SS CVn	$54890.534 {\pm} 0.004$	0.138	31906.	С	WW CrA	$54941.804 {\pm} 0.003$	-0.023	42280.	LS
SS CVn	$54902.519 {\pm} 0.002$	0.160	31931.	С	TV CrB	$54902.591 {\pm} 0.002$	0.028	39828.	С
SS CVn	$54928.362{\pm}0.002$	0.163	31985.	\mathbf{C}	TV CrB	$54963.394{\pm}0.002$	0.031	39932.	\mathbf{C}
SS CVn	$54959.445 {\pm} 0.006$	0.142	32050.	\mathbf{C}	TV CrB	$54998.474 {\pm} 0.005$	0.034	39992.	С
SS CVn	$54961.358 {\pm} 0.005$	0.141	32054.	С	W Crt	$54853.787 {\pm} 0.003$	-0.021	36915.	LS
SS CVn	$54970.427 {\pm} 0.003$	0.118	32073.	С	W Crt	$54860.788 {\pm} 0.002$	-0.024	36932.	LS
UZ CVn	$54859.496 {\pm} 0.004$	0.253	40746.	\mathbf{C}	W Crt	$54867.794{\pm}0.002$	-0.022	36949.	$_{ m LS}$
UZ CVn	$54887.398 {\pm} 0.002$	0.244	40786.	\mathbf{C}	W Crt	$54917.648 {\pm} 0.002$	-0.022	37070.	LS
UZ CVn	$54970.437 {\pm} 0.002$	0.247	40905.	С	W Crt	$54933.714 {\pm} 0.002$	-0.024	37109.	LS
AA CMi	$54834.438 {\pm} 0.002$	0.062	38331.	С	X Crt	$54908.794 {\pm} 0.007$	0.068	17890.	LS
AA CMi	54874.450 ± 0.002	0.063	38415.	С	X Crt	$54917.587 {\pm} 0.006$	0.067	17902.	LS
AA CMi	$54875.403 {\pm} 0.002$	0.063	38417.	\mathbf{C}	X Crt	$54950.584{\pm}0.007$	0.087	17947.	LS
AA CMi	$54880.645 {\pm} 0.003$	0.066	38428.	LS	SW Cru	$54855.819 {\pm} 0.004$	0.074	87941.	LS
AA CMi	$54887.312 {\pm} 0.002$	0.064	38442.	С	SW Cru	$54864.666 {\pm} 0.005$	0.071	87968.	LS
AL CMi	$54855.699 {\pm} 0.003$	0.460	33166.	LS	SW Cru	$54886.631 {\pm} 0.006$	0.075	88035.	LS
AL CMi	54865.610 ± 0.004	0.462	33184.	LS	SW Cru	$54901.702 {\pm} 0.005$	0.068	88081.	LS
RV Cap	$55011.831 {\pm} 0.003$	-0.023	47189.	LS	SW Cru	$54906.614 {\pm} 0.003$	0.063	88096.	LS
TX Car	$54848.793 {\pm} 0.004$	0.125	50375.	\mathbf{LS}	SW Cru	$54910.555 {\pm} 0.003$	0.071	88108.	$_{ m LS}$
EE Car	$54855.716 {\pm} 0.004$	0.016	44647.	\mathbf{LS}	SW Cru	$54929.562 {\pm} 0.006$	0.066	88166.	$_{ m LS}$
EE Car	$54885.574 {\pm} 0.004$	0.011	44691.	LS	SW Cru	$54935.796 {\pm} 0.005$	0.073	88185.	LS
IU Car	$54842.702 {\pm} 0.004$	0.308	17835.	LS	UY Cyg	$54999.516 {\pm} 0.002$	0.055	58080.	С
IU Car	$54848.596{\pm}0.005$	0.305	17843.	$_{\rm LS}$	UY Cyg	$55008.489 {\pm} 0.003$	0.057	58096.	\mathbf{C}
IU Car	$54862.604{\pm}0.003$	0.307	17862.	LS	XZ Cyg 1	$54942.464 {\pm} 0.004$	0.003	13656.	\mathbf{C}
IU Car	$54901.671 {\pm} 0.005$	0.306	17915.	\mathbf{LS}	XZ Cyg 1	$54956.464{\pm}0.003$	0.005	13686.	\mathbf{C}
IU Car	$54904.612 {\pm} 0.005$	0.298	17919.	LS	XZ Cyg ¹	$54976.522 {\pm} 0.002$	-0.000	13729.	С
IU Car	$54907.565 {\pm} 0.002$	0.302	17923.	LS	XZ Cyg 1	$54977.455 {\pm} 0.005$	-0.001	13731.	\mathbf{C}
BI Cen	$54858.823{\pm}0.003$	0.039	40091.	$_{\rm LS}$	XZ Cyg 1	$54990.512 {\pm} 0.002$	-0.008	13759.	\mathbf{C}
BI Cen	$54906.881 {\pm} 0.004$	0.060	40197.	$_{\rm LS}$	XZ Cyg ¹	$55012.454{\pm}0.003$	0.004	13806.	\mathbf{C}
BI Cen	$54911.861 {\pm} 0.005$	0.055	40208.	\mathbf{LS}	DX Del	$55012.435 {\pm} 0.005$	0.063	33103.	\mathbf{C}
BI Cen	$54992.534{\pm}0.005$	0.061	40386.	\mathbf{LS}	RT Dor	$54843.845 {\pm} 0.003$	-0.094	49865.	$_{ m LS}$
V499 Cen	$54886.744 {\pm} 0.002$	0.031	26401.	LS	VW Dor	$54859.698 {\pm} 0.004$	-0.113	28882.	LS
V499 Cen	$54937.824{\pm}0.002$	0.032	26499.	$_{\rm LS}$	VW Dor	$54879.670 {\pm} 0.005$	-0.112	28917.	LS
V499 Cen	$54945.644{\pm}0.002$	0.034	26514.	\mathbf{LS}	RW Dra	$54916.413 {\pm} 0.003$	0.165	35083.	\mathbf{C}
V499 Cen	$55004.539 {\pm} 0.005$	0.032	26627.	\mathbf{LS}	RW Dra	$54958.495{\pm}0.003$	0.170	35178.	\mathbf{C}
V671 Cen	$54915.732 {\pm} 0.010$	-0.107	46876.	LS	RW Dra	$54959.381{\pm}0.003$	0.170	35180.	\mathbf{C}
V671 Cen	$54919.645 {\pm} 0.005$	-0.133	46885.	LS	RW Dra	$54982.456 {\pm} 0.003$	0.213	35232.	\mathbf{C}
V671 Cen	$54940.674 {\pm} 0.010$	-0.112	46933.	\mathbf{LS}	RW Dra	$54997.471 {\pm} 0.002$	0.169	35266.	\mathbf{C}
RT Col	$54853.651 {\pm} 0.002$	-0.266	50456.	LS	RW Dra	$55013.442 {\pm} 0.002$	0.195	35302.	С
RW Col	$54855.647 {\pm} 0.002$	0.099	51106.	LS	SU Dra	54842.616 ± 0.003	0.051	16566.	С
RW Col	$54861.652{\pm}0.003$	-0.247	51118.	\mathbf{LS}	SU Dra	$54844.597 {\pm} 0.002$	0.051	16569.	\mathbf{C}
RX Col	$54842.680{\pm}0.008$	-0.257	43819.	LS	SU Dra	$54854.504{\pm}0.004$	0.052	16584.	\mathbf{C}
RX Col	$54848.615 {\pm} 0.005$	-0.263	43829.	\mathbf{LS}	SU Dra	$54858.469 {\pm} 0.005$	0.054	16590.	\mathbf{C}
RX Col	$54880.680 {\pm} 0.004$	-0.276	43883.	\mathbf{LS}	SU Dra	$54872.336 {\pm} 0.004$	0.053	16611.	\mathbf{C}
AV Col	$54847.661 {\pm} 0.004$			LS	SU Dra	$54874.314 {\pm} 0.003$	0.049	16614.	С
AV Col	$54855.629{\pm}0.005$			\mathbf{LS}	SU Dra	$54897.435 {\pm} 0.004$	0.056	16649.	\mathbf{C}
AV Col	$54862.659 {\pm} 0.001$			\mathbf{LS}	SU Dra	$54899.416 {\pm} 0.002$	0.055	16652.	С
S Com	$54843.586{\pm}0.005$	-0.097	24189.	С	SU Dra	$54901.392{\pm}0.002$	0.050	16655.	С
S Com	$54856.486{\pm}0.004$	-0.102	24211.	\mathbf{C}	SU Dra	$54928.473 {\pm} 0.003$	0.054	16696.	\mathbf{C}
S Com	$54893.446{\pm}0.004$	-0.098	24274.	\mathbf{C}	SW Dra	$54861.381{\pm}0.002$	0.056	50269.	\mathbf{C}
S Com	$54897.549{\pm}0.003$	-0.101	24281.	\mathbf{C}	SW Dra	$54871.638{\pm}0.002$	0.059	50287.	\mathbf{C}
S Com	$54934.505{\pm}0.003$	-0.100	24344.	\mathbf{C}	SW Dra	$54874.000 {\pm} 0.004$	0.142	50291.	\mathbf{C}
S Com	$54961.497{\pm}0.004$	-0.091	24390.	\mathbf{C}	SW Dra	$54886.452{\pm}0.004$	0.061	50313.	\mathbf{C}
ST Com	$54879.629{\pm}0.004$	-0.028	19460.	\mathbf{C}	SW Dra	$54890.437{\pm}0.003$	0.059	50320.	\mathbf{C}

Table 1 (cont.): maxima of RR Lyrae stars

Variable	Movimum	0 C	F	Obs	Variable	Maximum	0 C	F	Obs
vallable		(daya)	Ľ	Obs.	variable		(daya)	Е	Obs.
SUU Dro	E 4 909 499 10 005		50224	C	TW Here		$\frac{(uays)}{0.010}$	02749	0
SW Dra	54898.422 ± 0.005	0.008	50334. F02F0	d	TW Her	55008.535 ± 0.002	-0.010	83742.	C
SW Dra	54907.527 ± 0.002	0.058	00300. 07200	C	I W Her	55010.532 ± 0.002	-0.012	83/4/.	C
XZ Dra	54950.434 ± 0.002	-0.127	27329.	C	VX Her	54928.518 ± 0.002	-0.428	72860.	C
XZ Dra	54960.445 ± 0.005	-0.122	27350.	C	VX Her	54954.473 ± 0.001	-0.430	72917.	C
XZ Dra	54971.392 ± 0.001	-0.134	27373.	C	VX Her	54965.402 ± 0.003	-0.430	72941.	C
XZ Dra	54990.470 ± 0.002	-0.116	27413.	C	VX Her	54985.438 ± 0.002	-0.430	72985.	C
XZ Dra	55001.429 ± 0.003	-0.117	27436.	C	VX Her	54995.455 ± 0.002	-0.431	73007.	C
XZ Dra	55010.474 ± 0.003	-0.125	27455.	С	VZ Her	54952.492 ± 0.002	0.068	41250.	С
BC Dra	$54849.526 {\pm} 0.005$	0.090	17470.	С	VZ Her	$54960.418 {\pm} 0.002$	0.069	41268.	С
BC Dra	$54880.472 {\pm} 0.006$	0.095	17513.	С	VZ Her	$54971.426 {\pm} 0.001$	0.068	41293.	С
BC Dra	$54898.456 {\pm} 0.007$	0.089	17538.	С	VZ Her	$54974.510 {\pm} 0.002$	0.070	41300.	С
BC Dra	$54929.387{\pm}0.005$	0.078	17581.	\mathbf{C}	VZ Her	$54982.434{\pm}0.002$	0.068	41318.	С
BC Dra	$54934.440{\pm}0.005$	0.094	17588.	\mathbf{C}	VZ Her	$54985.515 {\pm} 0.002$	0.067	41325.	\mathbf{C}
BC Dra	$54952.434{\pm}0.005$	0.099	17613.	\mathbf{C}	VZ Her	$54989.479{\pm}0.002$	0.068	41334.	\mathbf{C}
BC Dra	$54980.482{\pm}0.003$	0.083	17652.	\mathbf{C}	VZ Her	$54993.442 {\pm} 0.001$	0.068	41343.	\mathbf{C}
BC Dra	$54990.558{\pm}0.005$	0.085	17666.	\mathbf{C}	VZ Her	$54996.526 {\pm} 0.002$	0.070	41350.	\mathbf{C}
BC Dra	$54993.438{\pm}0.005$	0.087	17670.	\mathbf{C}	AR Her	$54876.604{\pm}0.004$	-1.273	28559.	\mathbf{C}
BD Dra	$54842.679{\pm}0.005$	0.708	22184.	\mathbf{C}	AR Her	$54885.499{\pm}0.002$	-1.308	28578.	\mathbf{C}
BD Dra	$54845.598{\pm}0.005$	0.682	22189.	\mathbf{C}	AR Her	$54942.403{\pm}0.005$	-1.278	28699.	\mathbf{C}
BD Dra	$54871.502{\pm}0.005$	0.668	22233.	\mathbf{C}	AR Her	$54958.395 {\pm} 0.002$	-1.267	28733.	С
BD Dra	$54898.594{\pm}0.003$	0.663	22279.	\mathbf{C}	AR Her	$54995.521 {\pm} 0.002$	-1.273	28812.	С
BD Dra	$54927.487{\pm}0.005$	0.693	22328.	\mathbf{C}	AR Her	$54996.461 {\pm} 0.002$	-1.273	28814.	С
BD Dra	$54950.448{\pm}0.002$	0.681	22367.	\mathbf{C}	DL Her	$54954.488{\pm}0.003$	0.033	28305.	С
BD Dra	$54953.409{\pm}0.002$	0.697	22372.	\mathbf{C}	DL Her	$54993.544{\pm}0.005$	0.042	28371.	С
BD Dra	$54960.474{\pm}0.002$	0.693	22384.	\mathbf{C}	DL Her	$54996.503{\pm}0.002$	0.043	28376.	С
BD Dra	$54980.495{\pm}0.003$	0.686	22418.	\mathbf{C}	V542 Her	$54918.516{\pm}0.005$	0.127	25301.	С
BD Dra	$54990.485{\pm}0.002$	0.662	22435.	\mathbf{C}	V542 Her	$54954.444{\pm}0.005$	0.130	25359.	С
BD Dra	$54993.422{\pm}0.005$	0.654	22440.	\mathbf{C}	V542 Her	$54985.403{\pm}0.005$	0.118	25409.	С
BD Dra	$55010.533 {\pm} 0.002$	0.683	22469.	С	V591 Her	$54939.507 {\pm} 0.006$	0.295	22901.	С
BD Dra	$55013.469 {\pm} 0.004$	0.673	22474.	С	V650 Her	$54928.519 {\pm} 0.003$	0.028	29842.	С
BK Dra	54958.480 ± 0.002	-0.157	49715.	Ĉ	V650 Her	54954.464 ± 0.002	0.030	29892.	Ċ
BK Dra	55006.436 ± 0.002	-0.159	49796.	Ĉ	V650 Her	54995.453 ± 0.002	0.028	29971.	Ċ
BT Dra	54878.501 ± 0.004	-0.009	41014.	Ĉ	SV Hva	54866.801 ± 0.002	0.111	32491.	LS
BT Dra	$54901\ 455\pm0\ 003$	-0.014	41053	Ċ	SV Hya	54912748 ± 0004	0 1 1 7	32587	LS
BT Dra	54994.470 ± 0.002	-0.009	41211.	č	SV Hya	54913.712 ± 0.003	0.124	32589.	LS
BT Dra	$54997 407\pm0.002$	-0.016	41216	č	SV Hya	54935711 ± 0.004	0.110	32635	LS
BB Eri	$54847\ 609\pm0\ 003$	0.010 0.234	26826	ĽS	SV Hya	54993.616 ± 0.003	0.111	32756	LS
BB Gem	54846292 ± 0.002	-0.402	33952	C	SZ Hya	54836575 ± 0.001	-0.192	26352	C
BB Gem	$54847 488\pm0.001$	-0.399	33955	č	SZ Hya	54852.688 ± 0.010	-0.195	26382	LS
BB Gem	54849472 ± 0.001	-0.401	33960	č	SZ Hya	54853764 ± 0.005	-0 194	26384	
BB Gem	$54873 306\pm 0.002$	-0.406	34020	Č	SZ Hya	54878455 ± 0.005	-0.216	26001.	C
BB Gem	54874500 ± 0.002	-0 404	34023	Č	SZ Hya	54880.625 ± 0.004	-0.195	26434	LS
SZ Gem	$54907 318\pm0.001$	-0.059	55301	č	SZ Hya	54885461 ± 0.002	-0.194	26101.	C
SZ Gem	54909.322 ± 0.001 54909.322 ± 0.001	-0.059	55305	c	UII Hya	54809.401 ± 0.002 54848 745 ±0.005	0.134	20440.	LS
SZ Gem	54909.322 ± 0.001 54910.324 ± 0.002	-0.059	55307	C	UU Hya	54859.720 ± 0.005	0.030	20000.	
SZ Gem	54910.324 ± 0.002 54911.328 ± 0.002	-0.059	55300	C	UU Hya	54868.629 ± 0.003	0.010	23300.	
SZ Gem	54911.320 ± 0.002 54913.331 ± 0.001	0.050	55212	C	UU Hya	54003.029 ± 0.003 54011.500 ± 0.002	0.015 0.017	20150	
SZ Cem	54915.351 ± 0.001 54016 220 ±0.002	-0.059	55210	C		54911.090 ± 0.002 54012 626 ±0.002	0.017	20461	TC
SZ Gem	54910.339 ± 0.002 54822 562 ±0.002	-0.058	56517	C	UU Hya	54912.030 ± 0.002 54022 610±0.005	0.015	29401.	LO TC
CI Com	54836 505±0.002	0.070	56594	Ċ	00 пуа W7 Ц	54850 75210 004	0.030	29400. 98290	LC LC
CI Com	54846 560±0.001	0.070	56517 56517	Ċ	WZ Hya	54007 610±0.004	0.001	20020. 98117	LC LC
CICam	54640.000±0.002	0.009	56570	C	WZ II	54307.010 ± 0.002	-0.000	20411. 20410	сц рт
GI Gem	54000.424 ± 0.002	0.009	00079. 56501	C	wz ц.	54900.000±0.000 54014 505±0.000	-0.001	20419. 20420	цс
GI Gem	54001.291±0.002	0.009	00001. 56616	C	WZ Hya	54914.595±0.002	-0.000	2043U. 20442	LD TC
GI Gem	54070.400±0.002	0.070	00010. 56699	C	WZ Hya	54921.003±0.003 54025 568±0.004	-0.008	20443. 20460	LD
GI Gem	54003.369±0.003	0.071	30032. 56676	C	WZ Hya	54955.508±0.004 54042 550±0.002	-0.003	20409. 20409	LD
GI GGIII	04902,400±0,002	0.071	00070.	U	₩⊿ пуа	04942.009±0.002	-0.005	20402.	сц
					1				

Variable	Maximum	O - C	Е	Obs.	Variable	Maximum	O - C	Е	Obs.
star	HJD 24	(days)			star	HJD 24	(days)		
XX Hya	$54841.674{\pm}0.003$	0.065	29560.	\mathbf{LS}	SS Leo	$54914.527{\pm}0.002$	-0.065	20968.	С
XX Hya	$54848.779{\pm}0.002$	0.062	29574.	\mathbf{LS}	SS Leo	$54934.571{\pm}0.005$	-0.064	21000.	LS
XX Hva	$54906.662{\pm}0.003$	0.059	29688.	\mathbf{LS}	ST Leo	$54842.696{\pm}0.003$	-0.020	56319.	С
XX Hva	$54935.605 {\pm} 0.002$	0.059	29745.	\mathbf{LS}	ST Leo	$54856.560 {\pm} 0.004$	-0.017	56348.	\mathbf{C}
BI Hva	$54861.715 {\pm} 0.005$	0.234	51210.	\mathbf{LS}	ST Leo	$54879.502 {\pm} 0.002$	-0.019	56396.	\mathbf{C}
BI Hya	54899.618 ± 0.002	0.231	51282.	LS	ST Leo	54880.458 ± 0.002	-0.019	56398.	Ċ
BI Hya	54919.624 ± 0.003	0.232	51320.	LS	ST Leo	54889.542 ± 0.003	-0.016	56417.	$\tilde{\mathbf{C}}$
BI Hya	54938578 ± 0.002	0.232	51356	LS	ST Leo	54911527 ± 0.002	-0.019	56463	Č
BI Hya	54939631 ± 0003	0.232	51358	LS	ST Leo	54934469 ± 0.002	-0.020	56511	č
DD Hya	54847399 ± 0.002	-0.156	26211	C	ST Leo	54935425 ± 0.002	-0.020	56513	c
DD Hya DD Hya	54848402 ± 0.002	-0.156	26211.	C	ST Leo	54905.614 ± 0.002	0.020	17672	LS
DD Hya	54874507 ± 0.002	0.144	26265	Ċ	SZ Loo	54006.682 ± 0.007	0.000	17674	TS
DD Hya	54874.507 ± 0.002 54875 504 ±0.002	-0.144	20205.	C		54900.082 ± 0.007 54013 641 ±0.010	0.392	17687	LS
DD IIya DC Hya	54875.504 ± 0.002 54853 761 ±0.003	-0.130	41485	T S		54915.041 ± 0.010 54868 735 ±0.004	0.409	26405	LS
DG Hya DC Hya	54850.701 ± 0.005 54850.706 ±0.005	0.003	41405.	IS		54005.731 ± 0.004	0.113 0.114	20495. 26550	LS
DG IIya DC II	54059.790 ± 0.005	0.010	41499.	цо те		54905.741 ± 0.005	0.114	20550.	LO
DG Hya	54915.011 ± 0.003	-0.003	41029.	LO		54924.561 ± 0.002 54024.674 ± 0.004	0.115	20070.	LO
DG пуа DU Ц	54921.045 ± 0.002 54017 666 ± 0.004	-0.031	41045.	LO		54954.074 ± 0.004	0.110	20095. 22120	LO
ри пуа ри и	54917.000 ± 0.004	0.070	40001.	цо		54654.094 ± 0.004	0.030	00100. 00100	LO
рн пуа Бт н	54919.020 ± 0.002	0.008	40000.	цо		54000.044 ± 0.005	0.035	22102. 22006	LO
ЕТ Нуа	54803.794 ± 0.004	0.147	27032.	<u>го</u>	W W Leo	54912.500 ± 0.002	0.035	33220. 22220.	
ET Hya	54905.012 ± 0.003	0.148	27693.		WW Leo	54918.597 ± 0.003	0.038	33230. 40711	
FA Hya	54947.730 ± 0.003	-0.005	49011.		AA Leo	54834.561 ± 0.004	-0.037	40711.	C
FY Hya	54937.751 ± 0.003	0.007	21752.		AA Leo	54842.555 ± 0.009	-0.038	40722.	C
FY Нуа СО И	54944.751 ± 0.004	0.004	21763.		AA Leo	54906.519 ± 0.005	-0.035	40810.	C
GO Hya	54848.521 ± 0.005	-0.079	45879.	C	AX Leo	54917.418 ± 0.005	-0.038	40825.	C
GO Hya	54876.522 ± 0.004	-0.081	45923.	C	V LM1	54841.573 ± 0.003	0.030	64920.	C
GO Hya	54879.709 ± 0.005	-0.077	45928.		V LM1	54876.385 ± 0.002	0.031	64984.	C
GO Hya	54886.713 ± 0.005	-0.073	45939.		V LM1	54877.474 ± 0.002	0.032	64986.	C
GO Hya	54890.526 ± 0.004	-0.079	45945.	C	V LM1	54879.648 ± 0.002	0.031	64990.	C
GO Hya	54902.624 ± 0.006	-0.073	45964.		V LM1	54914.460 ± 0.002	0.031	65054.	C
GO Hya	54906.436 ± 0.005	-0.080	45970.	C	U Lep	54842.641 ± 0.004	0.047	23200.	
IK Hya	54908.631 ± 0.005	0.171	25303.		AO Lep	54848.661 ± 0.005			
IK Hya	54913.848 ± 0.006	0.188	25311.		AO Lep	54853.704 ± 0.004		100180	
IK Hya	54973.658 ± 0.006	0.198	25403.		TV Lib	54921.745 ± 0.002	-0.005	129456.	
IK Hya	54990.605 ± 0.010	0.245	25429.	LS	TV Lib	54929.834 ± 0.002	-0.005	129486.	LS
RR Leo	54860.479 ± 0.001	0.094	25564.	C	VY Lib	54924.829 ± 0.003	-0.029	25809.	
RR Leo	54877.670 ± 0.002	0.095	25602.	C	XX Lib	54900.839 ± 0.005	0.056	38580.	
RR Leo	54878.575 ± 0.002	0.095	25604.	С	XX Lib	54914.807 ± 0.009	0.055	38600.	\mathbf{LS}
RR Leo	$54885.361{\pm}0.002$	0.095	25619.	С	XX Lib	54937.853 ± 0.004	0.053	38633.	LS
RR Leo	54903.457 ± 0.002	0.095	25659.	C	XX Lib	55005.599 ± 0.006	0.051	38730.	LS
RR Leo	54913.410 ± 0.001	0.096	25681.	C	AZ Lib	54913.744 ± 0.004	0.185	41342.	LS
RR Leo	$54917.481 {\pm} 0.002$	0.096	25690.	С	AZ Lib	54924.817 ± 0.003	0.185	41359.	LS
RX Leo	$54834.638 {\pm} 0.004$	0.099	28356.	С	TT Lyn	$54859.328 {\pm} 0.004$	-0.035	30477.	С
RX Leo	$54861.423 {\pm} 0.003$	0.094	28397.	С	TT Lyn	54860.519 ± 0.004	-0.039	30479.	С
RX Leo	$54878.416 {\pm} 0.006$	0.098	28423.	С	TT Lyn	$54876.653 {\pm} 0.004$	-0.035	30506.	С
RX Leo	$54887.559 {\pm} 0.003$	0.093	28437.	С	TT Lyn	$54890.391{\pm}0.002$	-0.038	30529.	С
RX Leo	$54904.555 {\pm} 0.005$	0.101	28463.	С	TT Lyn	$54918.471 {\pm} 0.002$	-0.038	30576.	С
RX Leo	$54908.469 {\pm} 0.003$	0.094	28469.	\mathbf{C}	TW Lyn	$54848.603 {\pm} 0.003$	0.056	20392.	\mathbf{C}
RX Leo	$54914.354{\pm}0.004$	0.098	28478.	\mathbf{C}	TW Lyn	54880.405 ± 0.002	0.055	20458.	\mathbf{C}
RX Leo	54944.408 ± 0.004	0.095	28524.	С	TW Lyn	54904.499 ± 0.004	0.056	20508.	С
SS Leo	54862.544 ± 0.002	-0.062	20885.	C	RZ Lyr	54986.451 ± 0.002	-0.006	26999.	C
SS Leo	54868.804 ± 0.004	-0.065	20895.	LS	RZ Lyr	$54988.497 {\pm} 0.003$	-0.005	27003.	C
SS Leo	$54879.456 {\pm} 0.004$	-0.061	20912.	С	AW Lyr	$54979.461 {\pm} 0.004$	-0.016	59600.	С
SS Leo	$54884.465 {\pm} 0.002$	-0.063	20920.	\mathbf{C}	AW Lyr	$54986.427{\pm}0.002$	-0.014	59614.	С
SS Leo	$54905.757 {\pm} 0.005$	-0.066	20954.	\mathbf{LS}	CN Lyr	$54951.511{\pm}0.003$	0.022	25439.	С
SS Leo	$54911.397{\pm}0.002$	-0.063	20963.	\mathbf{C}	CN Lyr	$54986.478 {\pm} 0.002$	0.022	25524.	\mathbf{C}

Table 1 (cont.): maxima of RR Lyrae stars

Variable	Maximum	0 – C	Е	Obs.	Variable	Maximum	0 – C	Е	Obs.
star	HJD 24	(days)			star	HJD 24	(days)		
CN Lyr	$54995.527{\pm}0.002$	0.020	25546.	С	DY Oct	$54852.813 {\pm} 0.002$	()		\mathbf{LS}
CN Lyr	$55007.456 {\pm} 0.002$	0.019	25575.	\mathbf{C}	DY Oct	$54855.606{\pm}0.002$			\mathbf{LS}
IO Lvr	$54952.473 {\pm} 0.002$	-0.034	26569.	С	DY Oct	$54860.627{\pm}0.003$			\mathbf{LS}
IO Lyr	$54978.445 {\pm} 0.002$	-0.032	26614.	С	DY Oct	$54879.602{\pm}0.002$			\mathbf{LS}
IO Lyr	54986.524 ± 0.002	-0.033	26628.	Ĉ	DZ Oct	54879.608 ± 0.003			LS
IO Lyr	55008.454 ± 0.003	-0.034	26666.	Ĉ	ST Oph	54994.731 ± 0.003	-0.022	58994.	LS
IO Lyr	55012.494 ± 0.002	-0.033	26673.	Ĉ	ST Oph	55008.693 ± 0.003	-0.022	59025.	LS
V340 Lvr	54986.458 ± 0.002	-0.043	42912	Ċ	V455 Oph	54977.463 ± 0.005	-0.269	28958.	C
AV Men	54841705 ± 0.004	0.010	12012.	ĽS	V455 Oph	$54997 432 \pm 0.003$	-0.272	29002	Č
DV Mon	54852608 ± 0.002	0.070	71617	LS	V455 Oph	55002429 ± 0.004	-0.268	29013	Č
TX Mus	54847.801 ± 0.005	0.101	64636.	LS	TY Pav	54920.785 ± 0.004	0.244	18846.	LS
TX Mus	54868620 ± 0.005	0.098	64680	LS	TY Pav	54972638 ± 0.004	0.238	18919	LS
TX Mus	54899851 ± 0003	0.096	64746	LS	TY Pav	54974771 ± 0007	0.200	18922	LS
TX Mus	54900797 ± 0.003	0.096	64748	LS	TY Pav	54986843 ± 0004	0.235	18939	LS
TX Mus	54902689 ± 0003	0.095	64752	LS	WY Pav	54973675 ± 0.003	0.071	47751	LS
TX Mus	54913576 ± 0.005	0.000	64775	LS	BN Pay	$54995 820\pm0.004$	-0.093	47004	LS
TX Mus	54917.830 ± 0.009	0.000	64784	LS	BN Pay	55004889 ± 0.003	0.000	47090	
TX Mus	54917.050 ± 0.002 54929.668 ±0.004	0.035	64800		BP Pav	$54971 877 \pm 0.003$	0.090	41020.	
TX Mus	54929.008 ± 0.004 54030 500 ± 0.002	0.100	64830	IS	BDDov	54971.877 ± 0.004 54080 805 ±0.005	0.091	49507.	LS
TX Mus	54939.599 ± 0.002 54001.658 ±0.005	0.093	64040	IS	CC Pog	54989.805 ± 0.005 55013 542 ±0.002	-0.252	34061	C
TX Mus	54991.000 ± 0.000	0.098	64046	LO		55015.542 ± 0.002	-0.040	64940	C
IA Mus	54994.495 ± 0.005	0.095	04940.	LS	AR Per	54655.590 ± 0.002	0.050	04049. 64956	C
EM Mus	54804.787 ± 0.005	-0.100	34943.		AR Per	54830.375 ± 0.002	0.050	04890. CANTE	C
EM Mus	54885.809 ± 0.003	-0.100	34988.		AR Per	54844.461 ± 0.002	0.057	04875. C4009	C
EM Mus	54896.557 ± 0.002	-0.100	35011.		AR Per	54858.509 ± 0.004	0.062	64908.	C
EM Mus	54901.699 ± 0.005	-0.165	35022.		AR Per	54859.355 ± 0.002	0.056	64910.	C
EM Mus	54910.576 ± 0.003	-0.166	35041.		AR Per	54870.419 ± 0.002	0.056	64936.	C
EM Mus	54924.595 ± 0.002	-0.166	35071.		XX Pup	54864.624 ± 0.004	0.484	25312.	
EM Mus	54925.528 ± 0.002	-0.168	35073.		XX Pup	54910.651 ± 0.002	0.481	25401.	
EM Mus	54934.874 ± 0.003	-0.168	35093.		BB Pup	54855.776 ± 0.002	0.116	33389.	
EM Mus	54994.690 ± 0.005	-0.166	35221.		BB Pup	54859.624 ± 0.004	0.120	33397.	
VY Nor	54915.837 ± 0.005	-0.164	78285.	LS	BB Pup	54921.612 ± 0.002	0.118	33526.	\mathbf{LS}
Y Oct	54989.646 ± 0.005	-0.250	41154.	LS	BB Pup	54922.573 ± 0.004	0.118	33528.	\mathbf{LS}
Y Oct	$54991.588 {\pm} 0.005$	-0.248	41157.	\mathbf{LS}	CR Pup	54847.575 ± 0.010	-0.306	38279.	\mathbf{LS}
Y Oct	$54993.517 {\pm} 0.003$	-0.259	41160.	$_{ m LS}$	CR Pup	$54861.583{\pm}0.006$	-0.292	38299.	\mathbf{LS}
RV Oct	54901.692 ± 0.003	0.132	69656.	LS	HH Pup	54853.775 ± 0.004	0.013	41852.	LS
RV Oct	$54920.544 {\pm} 0.005$	0.136	69689.	LS	HH Pup	54900.663 ± 0.002	0.012	41972.	LS
RV Oct	$54924.538 {\pm} 0.002$	0.131	69696.	\mathbf{LS}	HH Pup	$54904.573 {\pm} 0.002$	0.014	41982.	LS
RV Oct	$54934.822 {\pm} 0.004$	0.134	69714.	$_{\rm LS}$	HK Pup	$54879.639 {\pm} 0.005$	-0.262	24885.	$_{ m LS}$
RV Oct	$54936.528{\pm}0.004$	0.127	69717.	\mathbf{LS}	V675 Sgr	$55009.571{\pm}0.006$	0.078	41449.	$_{ m LS}$
RV Oct	$54938.818 {\pm} 0.005$	0.132	69721.	$_{\rm LS}$	m V756~Sgr	$54971.840{\pm}0.005$	0.103	48738.	$_{ m LS}$
RV Oct	$54948.526{\pm}0.002$	0.131	69738.	$_{\rm LS}$	$V1176 \ Sgr$	$54942.817{\pm}0.005$	-0.075	94445.	$_{ m LS}$
RV Oct	$54988.507 {\pm} 0.005$	0.130	69808.	\mathbf{LS}	V1646 Sgr	$55012.854{\pm}0.005$	0.173	37999.	$_{ m LS}$
RV Oct	$54993.651 {\pm} 0.004$	0.134	69817.	\mathbf{LS}	V494 Sco	$54941.842{\pm}0.005$	-0.209	32330.	\mathbf{LS}
RV Oct	$55012.499 {\pm} 0.002$	0.133	69850.	\mathbf{LS}	V494 Sco	$54950.799{\pm}0.004$	-0.226	32351.	\mathbf{LS}
RY Oct	$54991.791 {\pm} 0.002$	0.086	47925.	\mathbf{LS}	V494 Sco	$55013.615{\pm}0.005$	-0.228	32498.	\mathbf{LS}
RY Oct	$54992.916{\pm}0.002$	0.085	47927.	\mathbf{LS}	V690 Sco	$54940.790{\pm}0.005$	-0.013	26700.	\mathbf{LS}
RY Oct	$55012.619{\pm}0.002$	0.066	47962.	LS	V765 Sco	$54950.637{\pm}0.004$	0.146	54230.	$_{ m LS}$
SS Oct	$54987.879 {\pm} 0.002$	-0.035	43368.	\mathbf{LS}	V765 Sco	$54993.756{\pm}0.004$	0.145	54323.	\mathbf{LS}
UV Oct	$54901.858 {\pm} 0.005$	-0.165	37915.	\mathbf{LS}	V765 Sco	$54995.609{\pm}0.004$	0.143	54327.	LS
UV Oct	$54906.749{\pm}0.005$	-0.157	37924.	\mathbf{LS}	UZ Scl	$55009.839{\pm}0.005$	0.039	35397.	LS
UV Oct	$54907.829 {\pm} 0.003$	-0.163	37926.	\mathbf{LS}	VY Ser	$54919.719{\pm}0.010$	0.030	33181.	\mathbf{LS}
UV Oct	$54918.682 {\pm} 0.005$	-0.162	37946.	\mathbf{LS}	VY Ser	$54970.432{\pm}0.004$	0.043	33252.	\mathbf{C}
UV Oct	$54988.675 {\pm} 0.003$	-0.168	38075.	\mathbf{LS}	VY Ser	$54975.433{\pm}0.006$	0.045	33259.	С
UW Oct	$54989.738{\pm}0.002$	-0.010	46463.	\mathbf{LS}	VY Ser	$54980.429{\pm}0.005$	0.042	33266.	С
UW Oct	$54992.845 {\pm} 0.003$	-0.014	46470.	\mathbf{LS}	AN Ser	$54944.493{\pm}0.002$	0.005	77069.	С
DY Oct	$54847.792 {\pm} 0.002$			LS	AN Ser	$54954.411{\pm}0.002$	0.004	77088.	С

Variable	Maximum	O - C	Е	Obs.	Variable	Maximum	O - C	Е	Obs.
star	HJD 24	(days)			star	HJD 24	(days)		
AN Ser	$54978.426{\pm}0.002$	0.004	77134.	С	AF Vel	$54861.710{\pm}0.005$	-0.230	25464.	LS
AN Ser	$54992.522 {\pm} 0.002$	0.004	77161.	\mathbf{C}	AF Vel	$54900.744{\pm}0.004$	-0.223	25538.	LS
AN Ser	$55002.443{\pm}0.004$	0.005	77180.	\mathbf{C}	AF Vel	$54901.800{\pm}0.005$	-0.222	25540.	LS
AT Ser	$54937.849{\pm}0.005$	0.052	17600.	LS	AF Vel	$54907.593{\pm}0.003$	-0.231	25551.	LS
AT Ser	$54994.592 {\pm} 0.006$	0.057	17676.	LS	AF Vel	$54937.674{\pm}0.004$	-0.211	25608.	LS
AV Ser	$54938.763 {\pm} 0.003$	0.147	54548.	LS	AF Vel	$54974.569{\pm}0.002$	-0.234	25678.	\mathbf{LS}
CS Ser	$54940.739 {\pm} 0.004$	0.019	45111.	LS	FS Vel	$54858.804{\pm}0.002$	-0.123	32158.	\mathbf{LS}
CS Ser	$54950.748 {\pm} 0.002$	0.019	45130.	LS	FS Vel	$54860.706{\pm}0.002$	-0.123	32162.	\mathbf{LS}
RV Sex	$54880.797 {\pm} 0.003$	0.056	50138.	LS	FS Vel	$54941.584{\pm}0.002$	-0.120	32332.	\mathbf{LS}
RV Sex	$54919.558 {\pm} 0.003$	0.054	50215.	LS	ST Vir	$54888.582{\pm}0.004$	0.005	34448.	\mathbf{C}
RV Sex	$54920.564{\pm}0.003$	0.053	50217.	LS	ST Vir	$54910.759{\pm}0.004$	-0.003	34502.	\mathbf{LS}
RV Sex	$54921.567 {\pm} 0.002$	0.050	50219.	LS	ST Vir	$54913.638{\pm}0.002$	0.001	34509.	\mathbf{C}
RW TrA	$54903.820 {\pm} 0.002$	-0.179	35864.	LS	ST Vir	$54917.748{\pm}0.003$	0.002	34519.	\mathbf{LS}
RW TrA	$54912.805 \!\pm\! 0.004$	-0.171	35888.	LS	ST Vir	$54950.609{\pm}0.003$	-0.003	34599.	\mathbf{LS}
RW TrA	$54974.894{\pm}0.003$	-0.173	36054.	LS	ST Vir	$54965.403{\pm}0.002$	0.001	34635.	\mathbf{C}
RW TrA	$54987.614{\pm}0.003$	-0.171	36088.	LS	UU Vir	$54889.476{\pm}0.003$	-0.006	27527.	\mathbf{C}
YY Tuc	$54993.839 {\pm} 0.003$	0.129	20628.	LS	UU Vir	$54909.452{\pm}0.002$	-0.005	27569.	\mathbf{C}
RV UMa	$54849.657 {\pm} 0.002$	0.117	20882.	\mathbf{C}	UU Vir	$54914.686{\pm}0.004$	-0.003	27580.	\mathbf{LS}
RV UMa	$54858.552 {\pm} 0.003$	0.119	20901.	\mathbf{C}	UU Vir	$54935.611{\pm}0.005$	-0.005	27624.	\mathbf{LS}
RV UMa	$54859.485 {\pm} 0.003$	0.116	20903.	\mathbf{C}	UU Vir	$54939.417{\pm}0.003$	-0.003	27632.	\mathbf{C}
RV UMa	$54871.655 {\pm} 0.003$	0.116	20929.	\mathbf{C}	UU Vir	$54946.546{\pm}0.002$	-0.008	27647.	\mathbf{LS}
RV UMa	$54908.631 {\pm} 0.003$	0.116	21008.	\mathbf{C}	UV Vir	$54853.558{\pm}0.005$	0.021	25313.	\mathbf{C}
RV UMa	$54927.359 {\pm} 0.003$	0.121	21048.	\mathbf{C}	UV Vir	$54870.569{\pm}0.005$	0.007	25342.	С
RV UMa	$54934.376 {\pm} 0.002$	0.117	21063.	\mathbf{C}	UV Vir	$54880.560{\pm}0.003$	0.017	25359.	С
RV UMa	$54976.501 {\pm} 0.002$	0.117	21153.	\mathbf{C}	UV Vir	$54908.742{\pm}0.005$	0.019	25407.	\mathbf{LS}
RV UMa	$54977.436{\pm}0.003$	0.116	21155.	\mathbf{C}	UV Vir	$54913.434{\pm}0.002$	0.015	25415.	\mathbf{C}
TU UMa	$54853.474{\pm}0.002$	-0.027	21558.	\mathbf{C}	UV Vir	$54938.678{\pm}0.005$	0.014	25458.	\mathbf{LS}
TU UMa	$54887.488{\pm}0.002$	-0.030	21619.	\mathbf{C}	UV Vir	$54944.551{\pm}0.002$	0.016	25468.	LS
TU UMa	$54897.525 {\pm} 0.002$	-0.031	21637.	\mathbf{C}	UV Vir	$54948.660{\pm}0.002$	0.016	25475.	LS
TU UMa	$54935.448{\pm}0.002$	-0.029	21705.	\mathbf{C}	UV Vir	$54950.418{\pm}0.002$	0.013	25478.	\mathbf{C}
AB UMa	$54841.643{\pm}0.010$	0.135	31045.	\mathbf{C}	AF Vir	$54870.621{\pm}0.005$	-0.138	30050.	\mathbf{C}
AB UMa	$54870.409{\pm}0.009$	0.121	31093.	\mathbf{C}	AF Vir	$54871.587{\pm}0.005$	-0.140	30052.	С
AB UMa	$54871.595 {\pm} 0.005$	0.108	31095.	\mathbf{C}	AF Vir	$54911.739{\pm}0.005$	-0.140	30135.	\mathbf{LS}
AB UMa	$54880.593{\pm}0.006$	0.113	31110.	\mathbf{C}	AF Vir	$54915.608{\pm}0.005$	-0.141	30143.	\mathbf{C}
AB UMa	$54889.586{\pm}0.010$	0.112	31125.	\mathbf{C}	AF Vir	$54916.582{\pm}0.003$	-0.134	30145.	\mathbf{C}
AB UMa	$54909.379 {\pm} 0.006$	0.119	31158.	\mathbf{C}	AF Vir	$54951.401{\pm}0.003$	-0.146	30217.	\mathbf{C}
AB UMa	$54918.376 {\pm} 0.007$	0.122	31173.	\mathbf{C}	AF Vir	$54965.434{\pm}0.004$	-0.142	30246.	С
AB UMa	$54952.546{\pm}0.009$	0.116	31230.	\mathbf{C}	AF Vir	$54972.687{\pm}0.002$	-0.145	30261.	\mathbf{LS}
EX UMa	$54834.344{\pm}0.004$	0.028	10724.	\mathbf{C}	AF Vir	$54974.620{\pm}0.002$	-0.147	30265.	\mathbf{LS}
EX UMa	$54847.374{\pm}0.005$	0.030	10748.	\mathbf{C}	AF Vir	$54980.419{\pm}0.002$	-0.154	30277.	\mathbf{C}
EX UMa	$54853.345 {\pm} 0.003$	0.030	10759.	\mathbf{C}	AF Vir	$54990.587{\pm}0.005$	-0.144	30298.	LS
$\mathbf{EX} \ \mathbf{UMa}$	$54860.400 {\pm} 0.002$	0.028	10772.	\mathbf{C}	AS Vir	$54937.571{\pm}0.004$	0.112	28518.	\mathbf{LS}
EX UMa	$54873.434{\pm}0.005$	0.034	10796.	\mathbf{C}	AT Vir	$54886.543{\pm}0.002$	-0.284	28925.	\mathbf{C}
EX UMa	$54885.375 {\pm} 0.005$	0.033	10818.	\mathbf{C}	AT Vir	$54915.459{\pm}0.003$	-0.287	28980.	\mathbf{C}
EX UMa	$54886.455 {\pm} 0.003$	0.027	10820.	\mathbf{C}	AT Vir	$54916.511{\pm}0.002$	-0.287	28982.	\mathbf{C}
EX UMa	$54893.516{\pm}0.005$	0.032	10833.	\mathbf{C}	AT Vir	$54925.450{\pm}0.002$	-0.286	28999.	\mathbf{C}
KT UMa	$54841.504{\pm}0.006$	0.043	9207.	\mathbf{C}	AT Vir	$54941.749{\pm}0.004$	-0.287	29030.	\mathbf{LS}
KT UMa	$54846.522 {\pm} 0.006$	0.042	9215.	\mathbf{C}	AT Vir	$54944.378{\pm}0.002$	-0.287	29035.	\mathbf{C}
KT UMa	$54848.399{\pm}0.007$	0.038	9218.	\mathbf{C}	AT Vir	$54989.591{\pm}0.002$	-0.292	29121.	\mathbf{LS}
KT UMa	$54875.380 {\pm} 0.005$	0.045	9261.	\mathbf{C}	AV Vir	$54862.699 {\pm} 0.006$	0.012	20387.	\mathbf{C}
KT UMa	$54876.634 {\pm} 0.007$	0.044	9263.	\mathbf{C}	AV Vir	$54910.660 {\pm} 0.004$	0.019	20460.	\mathbf{C}
KT UMa	54910.518 ± 0.007	0.054	9317.	С	AV Vir	$54939.564 {\pm} 0.004$	0.019	20504.	С
KT UMa	$54912.391 {\pm} 0.004$	0.045	9320.	\mathbf{C}	BB Vir	54910.548 ± 0.002	0.269	32470.	\mathbf{C}
AF Vel	$54843.784 {\pm} 0.002$	-0.224	25430	LS	BB Vir	54911.489 ± 0.002	0.267	32472	\mathbf{C}
AF Vel	54852.741 ± 0.002	-0.233	25447.	LS	BB Vir	54944.466 ± 0.002	0.268	32542.	\mathbf{C}
AF Vel	$54860.654 {\pm} 0.003$	-0.231	25462.	\mathbf{LS}	BB Vir	$54951.533 {\pm} 0.002$	0.268	32557.	С

Variable	Maximum	O - C	Е	Obs.	Variable	Maximum	O - C	Е	Obs.
star	HJD 24	(days)			star	HJD 24	(days)		
BC Vir	$54950.586{\pm}0.003$	0.161	62050.	LS	SV Vol	$54861.828{\pm}0.002$	-0.167	34662.	LS
DO Vir	$54913.833{\pm}0.003$	0.214	53171.	\mathbf{LS}	SV Vol	$54880.738 {\pm} 0.003$	-0.182	34712.	\mathbf{LS}
DO Vir	$54919.695{\pm}0.003$	0.216	53182.	\mathbf{LS}	SV Vol	$54902.699{\pm}0.003$	-0.174	34770.	\mathbf{LS}
DO Vir	$54920.759{\pm}0.004$	0.215	53184.	\mathbf{LS}	SV Vol	$54929.533{\pm}0.003$	0.165	34840.	\mathbf{LS}
DO Vir	$54991.609{\pm}0.003$	0.213	53317.	\mathbf{LS}	BN Vul	$54998.512{\pm}0.003$	0.069	15936.	С
DO Vir	$55006.533 {\pm} 0.004$	0.221	53345.	\mathbf{LS}	BN Vul	$55007.422 {\pm} 0.002$	0.067	15951.	С
SV Vol	$54841.710{\pm}0.004$	0.154	34608.	\mathbf{LS}					
	* C = Calern, LS	= La Si	lla		•				
	$1 \; {\tt Baldwin}$ and Sa	molyk, 2	003						

Table 1 (cont.): maxima of RR Lyrae stars

Number 5896

Konkoly Observatory Budapest 21 August 2009 *HU ISSN 0374 - 0676*

IRAS 19015+1625: A MULTI-PERIODIC, HIGHLY REDDENED M6III SR VARIABLE

MUNARI, U.¹; SIVIERO, A.¹; DALLAPORTA, S.²; MORETTI, S.²; FRIGO, A.²

¹ INAF Osservatorio Astronomico di Padova, Sede di Asiago, I-36032 Asiago (VI), Italy

² ANS Collaboration, c/o Osservatorio Astronomico, I-36032 Asiago (VI), Italy

Henden and Munari (2000, 2001, 2006) established accurate $UBVR_cI_c$ photometric sequences around more than 80 symbiotic stars. Inclusion of stars in the comparison sequences was based on several criteria, including among others (i) covering a wide brightness range (for estimation of brightness on archival photographic plates), (ii) extending over the larger possible color range (for calibration of color corrections in CCD and photoelectric photometry), and (iii) photometric stability over three, well separated in time, re-observations. The latter requirement intended to avoid the most obvious variables from entering the photometric sequences. However, Henden and Munari were well aware that three observations were not enough to prevent from some contamination to leak in, and it would have been only the protracted use of the sequences that would have ultimately pruned them.

The ANS (Asiago Novae and Symbiotic stars) Collaboration is monitoring intensively all symbiotic stars for which Henden and Munari calibrated the photometric sequences. While observing the symbiotic star AS 338 = V1413 Aql, we have noted that one of the reddest comparison stars, at RA:285.941467 and DEC:+16.497797, is indeed variable. This star is IRAS 19015+1625, and at the time Henden and Munari worked out their sequences, the coincidence with the suspected variable NSV 24674 was not noted, otherwise the star would not have been used.

Our BVR_cI_c photometry of IRAS 19015+1625 is presented in Table 1 (available electronic version only through the IBVS website as 5896-t1.txt) and in Figure 1. It was obtained with (a) the 0.42-m ARAR telescope in Bastia (Ravenna, Italy; identified as R120 in Table 1), equipped with an Apogee Alta 260e CCD camera, 512×512 array, 20 μ m pixels $\equiv 1''.83$ /pix, field of view of 16'×16' and Schuler $UBVR_cI_c$ filters; and (b) the AAVC 0.30-m telescope in Cembra (Trento, Italy; identified as R030 in Table 1). The CCD is an SBIG ST-9, 512×512 array, 20 μ m pixels $\equiv 1''.72$ /pix, with a field of view of 13'×13'. The *B* filter is from Omega and the VR_cI_c filters from Custom Scientific. IRAS 19015+1625 has been observed for a total of 78 nights: 49 in 2005 and other 49 in 2009.

IRAS 19015+1625 is a quite red star, as illustrated by the following mean values of the data in Table 1: $\langle V \rangle = 12.64$ (dispersion 0.20 mag), $\langle B - V \rangle = +1.86$ (0.11), $\langle V - R_c \rangle = +2.13$ (0.10), and $\langle V - I_c \rangle = +4.61$ (0.08). The corresponding mean values measured by Henden and Munari (2000) are: $\langle V \rangle = 12.26(\pm 0.06)$,

 $\langle B - V \rangle = +1.92(\pm 0.01), \langle V - R_c \rangle = +1.85(\pm 0.03) \text{ and } \langle V - I_c \rangle = +3.90(\pm 0.10),$ from three distinct observations collected on 1999 Oct 2, 6 and 13.

A low resolution, absolutely fluxed spectrum of IRAS 19015+1625 was obtained on 2009 July 28.99 UT, with the AFOSC imager+spectrograph of the Asiago 1.82m telescope. The spectrum is presented in Figure 2, that illustrates its perfect match with the M6III template spectrum taken from the reference atlas of Fluks et al. (1994), reddened by $E_{B-V} = 0.9$.

The amount of reddening affecting IRAS 19015+1625 seems contradictory defined. The fit to the observed spectrum requires precisely $E_{B-V} = 0.90$, while the match with the observed $V - I_c$ (see below) indicate $E_{B-V} = 1.05$. Conversely, the $\langle B - V \rangle = +1.86$ color when compared with intrinsic colors of M giants (Lee, 1970) corresponds to $E_{B-V} = 0.28$. Similarly, the 2MASS colors of IRAS 19015+1625 (Ks = 4.01, J - K = +1.463, H - Ks = +0.453), when compared with the intrinsic colors of M6III stars in the 2MASS system (J - Ks = 1.25; Straižys and Lazauskaite, 2009, with extrapolation scaled according to Lee, 1970) results in $E_{B-V} = 0.37$ (following Fiorucci and Munari, 2003 for a standard $R_V = 3.1$ reddening law).

Figure 1. The light curve of IRAS 19015+1625 from our 2005 (left panels) and 2009 (right panels) observations. Formal errors (Poissonian noise + uncertainty in the slope of the instantaneous color correction from local to Henden-Munari systems) do not exceed the size of the symbols.

The light-curve of IRAS 19015+1625 in Figure 1 is characterized by a limited amplitude and color variation, with a pattern highly reminiscent of multi-periodic SR vari-

ables, similar to IRC-10443 that we have recently investigated (Munari et al., 2008). A Fourier analysis shows that a shorter, about 50-day periodicity is clearly present in IRAS 19015+1625 superimposed with a longer one, unconstrained with the present set of data, possibly of the order of 250 days.

Figure 2. The absolutely fluxed spectrum of IRAS 19015+1625 for 2009 July 28.99 UT. The spectrum of a M6III star from the atlas of Fluks et al. (1994), reddened by $E_{B-V} = 0.90$, is plotted for comparison. The match is essentially perfect.

A pulsating nature of the observed variability is supported by Figure 3, that shows how the variability in the V band is strictly correlated with the $V - I_c$ color. When IRAS 19015+1625 is brightest, the color is the bluest, and when the star is faintest, the color is the redder, which is the behaviour of a black-body that expands and contracts at constant luminosity. The continuous line in Figure 3 represent the locus of MIII giants (with the actual excursion given of the right-hand ordinate axis) reddened by $E_{B-V} = 1.05$ (for a standard $R_V = 3.1$ reddening law) and scaled to the mean observed brightness for IRAS 19015+1625.

Figure 3. Variability of IRAS 19015+1625 on the $V/V - I_c$ plane from our observations. The line represents the locus of Fluks et al. (1994) spectra of class III M giants (see spectral scale at right), reddened by $E_{B-V} = 1.05$.

References:

Fiorucci, M., Munari, U., 2003, A&A, 401, 781

- Fluks, M. A., Plez, B., The, P. S., de Winter, D., Westerlund, B. E., Steenman, H. C., 1994, A&AS, 105, 311
- Henden, A., Munari, U., 2000, A&AS, 143, 343
- Henden, A., Munari, U., 2001, A&A, 372, 145
- Henden, A., Munari, U., 2006, A&A, 458, 339
- Lee, T.A., 1970, ApJ, **162**, 217

Munari, U., Siviero, A., Ochner, P., Dallaporta, S., Simoncelli, C., 2008, BaltA, 17, 223

Straižys, V., Lazauskaite, R., 2009, BaltA, 18, 19

Number 5897

Konkoly Observatory Budapest 21 August 2009 *HU ISSN 0374 - 0676*

148 CCD TIMES OF MINIMA OF 47 ECLIPSING BINARIES

LIAKOS, A.; NIARCHOS, P.

Department of Astrophysics, Astronomy and Mechanics, National and Kapodistrian University of Athens, GR 157 84 Zografos, Athens, Greece; e-mail: alliakos@phys.uoa.gr, pniarcho@phys.uoa.gr

Observatory and tele	scope:						
16" Cassegrain telescope	e at the University of Athens Observatory						
Detector:	ST-8XMEI CCD camera, Peltier cooling, KAF-1603ME						
chip, $15' \times 10'$ and $23' \times 15'$ (using a focal reducer) FOV							
	1530×1020 pixels, Bessell $BVRI$ filters						

Method of data reduction:

The reduction of the CCD frames was made using the software Muniwin v.1.1.23 (Hroch, 1998).

Method of minimum determination:

The minima times were computed using the Kwee & van Woerden (1956) method.

Times of a	minima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
AD And	54711.5097	0.0002	Ι	BVRI	
TT And	54298.4326	0.0001	Ι	V	
	54309.4931	0.0001	Ι	V	
RY Aqr	54297.4658	0.0001	Ι	VR	
	54361.3731	0.0003	II	VR	
	54362.3626	0.0001	Ι	VR	
AH Aur	54178.3628	0.0001	Ι	VRI	
	54203.3144	0.0001	II	VRI	
AC Boo	54572.3454	0.0002	Ι	BVRI	
	54572.5224	0.0002	II	BVRI	
TZ Boo	54099.6529	0.0001	Ι	R	
	54102.6259	0.0001	II	R	
	54605.4207	0.0002	Ι	BVRI	
	54608.3921	0.0002	Ι	BVRI	
	54608.5435	0.0003	II	BVRI	
	54624.4384	0.0002	II	BVRI	
UW Boo	54592.3568	0.0002	II	B	
AL Cam	54516.3669	0.0001	Ι	BV	
	54526.3292	0.0004	II	BV	

Times of minin	ma:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
SV Cam	54352.5745	0.0003	II	VRI	
	54359.3914	0.0002	Ι	VRI	
	54361.4719	0.0001	II	VR	
AV CMi	54107.4977	0.0002	Ι	R	
	54475.5015	0.0009	II	VRI	
	54492.4357	0.0003	Ι	VRI	
	54772.6025	0.0004	Ι	Ι	
YY CMi	54114.4364	0.0001	Ι	R	
RW Cap	54303.5221	0.0001	Ι	V	
TY Cap	54296.4612	0.0001	Ι	R	
	54363.3648	0.0001	Ι	R	
	54373.3282	0.0001	Ι	R	
	54716.3804	0.0004	Ι	BVRI	
WY Cet	54766.4518	0.0002	Ι	BVRI	
RZ Com	54566.2706	0.0001	Ι	VRI	
	54573.3789	0.0001	Ι	BVRI	
	54573.5489	0.0002	II	BVRI	
KR Cvg	54696.3480	0.0001	II	В	
RZ Dra	54201.5765	0.0001	II	R	
	54229.3945	0.0001	II	RI	
	54232.4247	0.0002	II	RI	
TZ Dra	54204.5621	0.0002	Π	BI	
	54214.5197	0.0001	Ι	BI	
	54658.3585	0.0004	ĪĪ	\overline{BV}	
	54661.3878	0.0001	Ι	\overline{BV}	
TZ Eri	54475.4092	0.0002	Ι	R	
	54479.3194	0.0003	II	\overline{BV}	
	54496.2583	0.0001	II	B	
UX Eri	54109.3134	0.0001	I	\overline{R}	
AL Gem	54491.4655	0.0003	Ī	VR	
	54544 3340	0.0003	II	VR	
	54887 3015	0.0001	I	BVRI	
	54919 3026	0.0001	Ī	V	
	54935 3010	0.0001	Ī	, BVRI	
GSC 3101-0683	54609 3997	0.0011 0.0002	Ī	B	
	54610 3475	0.0001	Ī	B	
	54610,5055	0.0001	Ī	B	
	54611 4540	0.0002	II	B	
	54699 3835	0.0002	II	BVRI	
	54700 3326	0.0000	II	BVRI	
	54701 2817	0.0000	II	BVRI	
	54701 4384	0.0004	Ī	BVRI	
	54702 2262	0.0004	I T	BVRI	
	54704 4422	0.0003	I TT	RVRI	
	54706 3491	0.0000	TT TT	RVRI	
	54707 4480	0.0003 0.0004	Ī	BVRI	
1	0 I I O I I I I O O	0.0001	1		

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	{em.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c cccccc} {\rm GSC} \ 4589\text{-}2999 & 54290.4167 & 0.0003 & {\rm II} & RI \\ & 54306.4601 & 0.0007 & {\rm I} & BVRI \\ & 54312.3603 & 0.0005 & {\rm II} & BV \end{array}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
54312.3603 0.0005 II BV	
54377.3822 0.0001 I R	
54399.3355 0.0001 I R	
54637.4327 0.0003 I $BVRI$	
54642.4998 0.0001 I V	
54691.4703 0.0002 I V	
GSC 4833-1209 54437.6234 0.0002 I R	
54791.6365 0.0008 I VR	
54797.5610 0.0006 II VR	
54798.6051 0.0004 I VR	
54824.3893 0.0009 I VR	
54883.2778 0.0017 II VR	
54886.4134 0.0006 I VR	
54906.2730 0.0015 II VR	
CC Her 54935.5805 0.0010 II I	
54988.4685 0.0001 I BVRI	
SZ Her $54367.2809 ext{ 0.0001 I} R$	
54376.2798 0.0001 I R	
54392.2324 0.0002 II VR	
V338 Her 54610.4418 0.0002 II B	
54706.4237 0.0002 I BVRI	
UU Leo 54200.2862 0.0003 II R	
54520.2829 0.0001 I R	
54891.5123 0.0002 I BVRI	
54907.4703 0.0024 I RI	
LZ Lvr $54595.4741 ext{ 0.0001 II} R$	
DD Mon 54551.2890 0.0001 I R	
54555.2650 0.0001 I R	
IL Mon $54410.3509 ext{ 0.0003}$ I VR	
KR Mon $54108.4508 ext{ 0.0001 I} R$	
54116.5072 0.0002 I R	
54165.4234 0.0003 II R	
54437.6262 0.0001 I R	
54486.5401 0.0004 II R	
54791.5462 0.0003 II VR	
54825.4988 0.0015 I VB	
V839 Oph 54262.4460 0.0001 I BVRI	
54263.4695 0.0001 II BVRI	
54268.3780 0.0002 I BVRI	
54269.3989 0.0001 II BVRI	
54287.3945 0.0001 I BVRI	
54288.4192 0.0001 II BVRI	
54299.4619 0.0002 II BVRI	
54300.4837 0.0002 I BVRI	
54315.4129 0.0001 II BVRI	
54316.4355 0.0002 I BVRI	

Times of minima:									
Star name	Time of min.	Error	Type	Filter	Rem.				
	HJD 2400000+								
	$5\overline{4}654.4801$	0.0001	II	\overline{BVRI}					
	54655.5019	0.0001	Ι	BVRI					
	54666.3412	0.0001	II	BVRI					
	54667.3625	0.0001	Ι	BVRI					
	54685.3586	0.0001	Ι	BVRI					
	54985.3669	0.0002	II	BVRI					
	54997.4323	0.0001	Ι	BVRI					
	54686.3825	0.0001	II	BVRI					
	54998.4554	0.0001	II	BVRI					
FT Ori	54457.5738	0.0001	II	VR					
$\operatorname{BB}\operatorname{Peg}$	54086.3022	0.0001	Ι	R					
KP Peg	54344.3843	0.0002	II	BVRI					
	54345.4728	0.0002	Ι	BVRI					
IU Per	54436.2332	0.0001	Ι	B					
	54800.4713	0.0001	Ι	B					
$V432 \ Per$	54117.2300	0.0001	Ι	R					
CR Sct	54305.3571	0.0002	Ι	R					
UZ Sge	54662.3688	0.0002	Ι	VR					
-	55021.3218	0.0007	Ι	BR					
	55022.4293	0.0008	II	R					
	55023.5389	0.0002	Ι	B					
$V505 \ Sgr$	54267.5471	0.0002	Ι	VI					
YY Sgr	54236.5696	0.0001	Ι	R					
_	54332.3573	0.0001	II	R					
${ m EQ}$ Tau	54108.2304	0.0001	Ι	R					
RV Tri	54348.4846	0.0001	Ι	R					
	54354.5141	0.0001	Ι	R					
	54368.4613	0.0001	II	R					
X Tri	54764.3948	0.0001	Ι	BVRI					
AZ Vir	54204.3995	0.0001	II	R					
	54217.3370	0.0001	II	R					
	54235.3448	0.0001	Ι	R					
DR Vul	54267.4424	0.0001	Ι	R					
	54275.3696	0.0001	II	R					

Acknowledgements:

This work has been financially supported by the Special Account for Research Grants No 70/4/5806 of the National & Kapodistrian University of Athens, Greece.

References:

Hroch, F., 1998, Proceedings of the 29th Conference on Variable Star Research, 30
Kwee, K., van Woerden, H., 1956, Bulletin of the Astronomical Institutes of the Netherlands, 12, 327

^{*}This version of the paper contains corrections, and differs from the one appeared on-line originally. Date of last modification: 20 October 2009

Number 5898

Konkoly Observatory Budapest 21 August 2009 *HU ISSN 0374 - 0676*

MINIMA TIMES OF SELECTED ECLIPSING BINARIES

PARIMUCHA, Š.¹; DUBOVSKÝ, P.²; BALUĎANSKÝ, D.³; PRIBULLA, T.^{4,5}; HAMBÁLEK, Ľ.⁴; VAŇKO, M.^{4,5}; OGLOZA, W.⁶

¹ Institute of Physics, Faculty of Natural Sciences, University of P.J. Šafárik, Košice, The Slovak Republic; e-mail: stefan.parimucha@upjs.sk

 2 Kolonica Observatory, The Slovak Republic; e-mail: var@kozmos.sk

³ Roztoky Observatory, The Slovak Republic; e-mail: bdaniel@pobox.sk

⁴ Astronomical Institute of the Slovak Academy of Sciences, Tatranská Lomnica, Stará Lesná, The Slovak Republic; e-mail: (pribulla, lhambalek)@ta3.sk

⁵ Astrophysikalisches Institut und Universitäts-Sternwarte, Jena, Germany; e-mail: vanko@astro.uni-jena.de

⁶ Mt. Suhora Observatory of the Pedagogical University Cracow, Poland; e-mail: sfogloza@cyf-kr.edu.pl

Observatory and telescope:

Kolonica Observatory: K1 - 2.8/180 mm photolense, K2 - 5.6/400 mm photolense, K3 - 256/1360 mm Newton, K4 - 280/1500 mm Newton, K5 - 1000/9000 mm RC, K6 - 300/2400 mm Cassegrain

Roztoky Observatory: R1 - photolense 2/200 mm, R2 - refractor 70/700 mm, R3 - 400/4000 mm Cassegrain

Astronomical Institute of the SAS: G1 - 500/2500 mm Newton, G2 - 600/6000 mm Cassegrain

David Dunlap Observatory, University of Toronto: DDO - 150 mm refractor University Observatory Jena: GSH - 250/2250 mm Cassegrain

Detector:	K1, K2, K3, K4, R1, R2 - Meade DSI Pro, K4, K6 - SBIG
	ST-9XE and FLI PL1001E, K5 - two channel photoelectric
	photometer, G1 - SBIG ST-10XME, G2 - photoelectric
	photometer, DDO - SBIG ST-402 and ST-6, GSH - back-
	illuminated SITe TK1024

Method of data reduction:

The part of Kolonica observations and Roztoky data were reduced using C-Munipack package (http://integral.physics.muni.cz/cmunipack/), G1 and DDO data were analysed by scripts written under the MIDAS reduction package (http://www.eso.org/projects/esomidas/) by (TP). The rest of Kolonica and Jena data were reduced by scripts using Sextrator code (Bertin & Arnouts, 1996) written by (SP).

Method of minimum determination:

The minima times were computed by Kwee & van Woerden (1956) method.

Times of a	minima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
RT And	54659.4634	0.0001	Ι		K1
AB And	54385.5325	0.0001	Ι		K1
	54680.4160	0.0002	II	V	K2
	54701.4912	0.0004	Ι	V	K2
CN And	54308.4784	0.0004	II		K1
	54385.3007	0.0001	II		K1
	54675.4675	0.0002	Π	V	K2
	54709.4821	0.0003	Ι	V	K2
	54714.3435	0.0009	II		R1
EP And	54799.3940	0.0005	Ι	V	K3
	55042.4743	0.0002	II	V	K3
GZ And	54779.2034	0.0005	Ι		R1
	54779.3566	0.0002	II		$\mathbf{R1}$
	55038.4709	0.0002	Ι	V	$\mathbf{K3}$
LO And	54300.5035	0.0002	Ι	V	K3
	54434.4167	0.0002	Ī	V	K3
	54679.4224	0.0002	Ī		K1
	54719.3703	0.0001	T		R.1
	55037.4174	0.0002	Ī	V	K3
V376 And	54752.3656	0.0002	Ī	, V	K2
	54774.3113	0.0002	I	, V	K2
OO Aal	53606.5916	0.0002	Ī	·	DDO
AH Aur	54433.5652	0.0003	Ī		K3
AR Aur	54469.4879	0.0002	Ī	V	K2
	54494.2967	0.0003	Ι		K2
	54715.4986	0.0002	II	V	K2
	54715.5004	0.0001	II		K2
	54748.5780	0.0001	Π	V	K2
	54773.3864	0.0002	II	V	K2
	54775.4536	0.0001	Ι	V	K2
	54831.2728	0.0001	II	V	K2
V402 Aur	54749.5030	0.0003	II	V	K2
TY Boo	54507.5943	0.0004	Π		K2
	54615.4260	0.0001	II	V	K3
	54912.5914	0.0005	II	V	K3
	54927.3378	0.0002	I	V	K3
TZ Boo	53868.7610	0.0003	II	·	DDO
	53874.7041	0.0003	Π		DDO
	54173.4984	0.0002	Ι		K3 ⁻
	54189.3978	0.0001	II	BVRI	K4
	54190.4375	0.0001	Ι	BVRI	K4
	54192.3696	0.0002	II	VRI	K4
	54192.5175	0.0001	Ι	VRI	K4
	54222.3822	0.0002	II	BVRI	K4
	54222.5230	0.0001	Ι	BVRI	K4

Times of 1	minima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
TZ Boo	54223.4218	0.0002	Ι	BVRI	K4
	54223.5730	0.0003	II	RI	K4
	54336.3451	0.0010	Ι		K1
	54469.6196	0.0001	II	V	K4
	54613.4445	0.0001	II	V	K4
	54883.5652	0.0002	II	V	K4
	54929.3273	0.0002	II	V	K3
	54938.5403	0.0002	II	V	K3
XY Boo	54964.4156	0.0002	Ι	V	K4
AC Boo	54192.4074	0.0001	Ι	V	K3
	54531.6382	0.0003	II		K2
	54533.4012	0.0003	II		R2
	54942.4166	0.0001	Ι	V	K3
FI Boo	54305.4473	0.0003	II		K1
	54581.3785	0.0003	Ι	V	K2
	54581.5654	0.0007	II	V	K2
	54616.4727	0.0003	Ι		K2
	54657.4272	0.0001	Ι		K1
SV Cam	54597.5162	0.0003	II		K1
	54752.5978	0.0002	Ι	V	K2
AO Cam	54544.3486	0.0001	II		R2
	54556.3903	0.0001	Ι		R2
	54706.4967	0.0003	Ι	V	K2
	54803.4862	0.0003	Ι		K1
CD Cam	54189.4308	0.0005	Ι	V	K3
	54190.5802	0.0005	II	V	K3
	54892.4839	0.0002	Ι	V	K3
	54941.3923	0.0001	Ι	V	K3
DN Cam	54753.2766	0.0002	Ι	V	K2
FN Cam	54500.5055	0.0004	Ι		K2
TX Cnc	54507.3114	0.0004	II		K2
	54782.5980	0.0002	II	V	K2
EH Cnc	54167.3931	0.0002	Ι	R	K4
	54167.3931	0.0003	Ι	V	K4
	54892.2636	0.0002	Ι	V	K3
BI CVn	54922.3271	0.0001	II	V	K4
	54937.5033	0.0002	Ι	V	K4
RZ Cas	54765.5744	0.0001	Ι	V	K2
~	54782.3076	0.0001	Ι	V	K2
BS Cas	54677.5122	0.0001	Ι		K3
-	54689.4053	0.0001	Ι		K3
	55042.4412	0.0001	II	V	K4
CW Cas	54213.4051	0.0002	II	R	R3
	54263.3048	0.0002	Ι	R	R3
	54264.4219	0.0002	II	R	R3

Times of a	minima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD $2400000 +$				
CW Cas	54271.4381	0.0004	II	R	R3
	54279.4098	0.0003	II	R	R3
	54315.4410	0.0001	II	V	K3
	54691.5374	0.0002	Ι		K3
V459 Cas	54773.2794	0.0004	Ι	V	K4
V523 Cas	54314.5347	0.0004	Ι	V	K3
	54509.3177	0.0001	II		R2
	54676.4082	0.0002	II		K1
	55017.4829	0.0002	Ι	V	K3
	55030.4532	0.0001	II	V	K3
V651 Cas	54335.5124	0.0002	II		K1
V651 Cas	54716.2946	0.0007	II	V	K2
V776 Cas	54700.4962	0.0004	II	V	K2
VW Cep	54307.3801	0.0002	Ι		K1
· ·	54384.4771	0.0001	Ι		K1
	54384.3291	0.0001	II		K1
	54677.3896	0.0002	II		K1
	54677.5289	0.0002	Ι		K1
WZ Cep	54433.3598	0.0008	II		K3
	55029.4650	0.0002	II	V	K3
GK Cep	53617.6425	0.0002	II	·	DDO
GW Cep	54500.3078	0.0003	Ι		K2
S	54964.5261	0.0001	Ī	V	K3
RW Com	52311.4482	0.0001	Ι	BV	G2
	52338.5060	0.0004	Ι	BV	G2
	52338.6212	0.0001	II	BV	G2
	52339.4524	0.0001	Ι	RI	R3
	52339.5700	0.0001	Π	VRI	R3
	52345.5055	0.0001	II	VRI	R3
	54149.5808	0.0002	II	V	K3
	54187.4373	0.0004	Ī	R	R3
	54187.5576	0.0007	Ī	\overline{R}	R3
	54189.3367	0.0005	Ţ	\overline{R}	R3
	54189.4556	0.0006	Ī	\overline{R}	R3
	54203.3413	0.0002	Ī	\overline{R}	R3
	54203.4593	0.0007	Ī	\overline{R}	R3
	54203.5762	0.0004	J	R	R3
	54209.6300	0.0002	Ī		DDO
	54209.7488	0.0002	T		DDO
	54211.5289	0.0008	Î	$R_{\rm c}$	R3
	54235 3797	0.0001	T	R	R3
	54235 4995	0.0002	Î	R	R3
	54513 5513	0.0001	T	V	K4
	54523 5205	0.0001	Ī	v	R2
	54883.4563	0.0001	Î	V	K4

Times of n	ninima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
RW Com	54891.4076	0.0001	Ι	V	K4
RZ Com	54582.3507	0.0001	II		$\mathbf{R1}$
SS Com	54500.6509	0.0002	Ι	V	K4
	54556.5894	0.0001	II		R2
CC Com	54162.4189	0.0007	Ι	V	K3
	54162.5294	0.0003	II	V	K3
CC Com	54887.3738	0.0002	Ι	V	K4
	54964.3937	0.0001	Ι	V	K3
YY CrB	54224.4154	0.0002	Ι		K1
-	54298.4116	0.0002	Π		K2
	54300.4821	0.0010	Ι		K2
	54308.3892	0.0002	T		K1
	54500.6202	0.0003	Ī		K2
	54504.5744	0.0008	I		K2
	54513 6124	0.0006	Ī		K2
	54628 4650	0.0000	Ī		K2
	546324137	0.0002	Î		K_2
	54648 4184	0.0000	I		K_2
	55017 4401	0.0000	I		K1
CC Cyg	54260 4664	0.0000	TI I		K1
UG Uyg	54657 4548	0.0002 0.0002	TT	V	K1 K2
	54658 4020	0.0002	T	V V	K2 K9
	54675 4449	0.0004	I T	V	K1
KP Cur	54075.4442	0.0001	I TT	BVDI	
V401 Curr	54677 4440	0.0002	II T	$\frac{DV M}{V}$	K4 K9
v401 Cyg	54670 4054	0.0004	I TT	V V	K2 K9
	54079.4954	0.0002	II T	V V	K2 K9
	54064.4577	0.0002	I TT	V IZ	
	04947.0000 E40E4 E97E	0.0004		V IZ	KO KO
	04904.0270 E4072 46E6	0.0002	II T	V IZ	KS V2
V1101 Crrm	04970.4000 E2070.700E	0.0001	L T	V	ND NDO
v1191 Cyg	00079.7000 E2002 7002	0.0002			
	00090.1200 54050.2004	0.0002	II T	D	0עע פע
	04208.0004 F400F 4F00	0.0000	I T	n D	nə Da
	54335.4533	0.0003		K V	K3 V9
	54620.4785	0.0001	11 T		KJ V9
	54941.5475	0.0002	I T		KJ V9
V1010 C	54940.5005	0.0002		V	К3 D1
V1918 Cyg	54620.4841	0.0001			KI K1
	54680.3929	0.0003		T 7	KI Vo
	54942.5533	0.0001	I T	V	K3 Vo
	54969.4097	0.0002			K3 V9
LS Del	54650.4699	0.0005	11	V	K2 Ve
CM Dra	53997.4177	0.0005	l	τ.	K3 Ve
	54020.2491	0.0001	l	V	K3
	54191.4819	0.0001	1	V	K3

Times of a	minima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
CM Dra	54309.4420	0.0002	Ι	V	K3
	54621.4660	0.0001	Ι	V	K3
FU Dra	54509.4701	0.0004	Ι		R2
	54509.6229	0.0005	II		K2
	54597.3436	0.0002	Π		K1
	54613.4462	0.0001	Ι	V	K3
	54893.4794	0.0001	Ι	V	K3
	54977.3681	0.0002	II	V	K3
HL Dra	53168.6961	0.0005	Ι		DDO
	54660.4646	0.0002	II		K1
AK Her	54309.4458	0.0003	Ι		K1
	54335.3687	0.0003	П		K1
	54346.3304	0.0001	II	V	K5
	54365.2989	0.0001	II	, V	K5
	54595 4526	0.0001	II	\dot{BV}	K6
	$54615\ 4727$	0.0003	I	Ξ,	K2
	54699 3556	0.0001	Ī	R	K6
	54706 3122	0.0003	Ī	10	K2
	54926 5551	0.0003	I	BVRI	K6
	54929.5064	0.0001	Ī	B	K6
V624 Her	54621 4195	0.0001	Ī	D	K2
V021 1101	54697 3858	0.0000	Ī	V	K_2
V728 Her	54936 5598	0.0002	Î	V	K3
V 120 Her	54938 4453	0.0002	II	V V	K3
	54959 4181	0.0001	Ī	V	K3
V829 Her	54195 4842	0.0001	Î	V	K3
1020 1101	54500 6311	0.0002	II	, V	K3
	54912 5088	0.0002	II	, V	K3
	54929 5190	0.0002	Ī	V	K3
	$54959 \ 4292$	0.0002	Î	V	K4
V857 Her	52049 4447	0.0003	II	\dot{BV}	G2
1001 1101	52119 3930	0.0003	II	\overline{BV}	G_2
	52320,6342	0.0004	I	\overline{BV}	G_2
	52348, 5389	0.0004	Ī	\overline{BV}	G_2
	52387 5201	0.0001	Ī	BI	R3
	$52401 \ 4672$	0.0002	Î	VRI	R3
	52402 4296	0.0002	I	VRI	R3
	52387 5203	0.0002	Ī	V	R3
	54709 3811	0.0001	Ī	V	K2
	54710 3397	0.0000	Ī	, V	K2
	54977 5181	0.0004	Ī	, V	K3
SW Lac	54749 3417	0 0001	Ī	, V	K2
PP Lac	54299 4201	0.0001	Ī	, V	K3
	55000 4517	0.0002	Ī	, V	K3
	55001.4536	0.0002	Ī	, V	K3
L	33001.1000	0.0004	-	*	

Times of minima:						
Star name	Time of min.	Error	Type	Filter	Rem.	
	HJD 2400000+		01			
V344 Lac	54615.5126	0.0002	II	V	K3	
	54627.4759	0.0001	Ι	V	K3	
	54691.4146	0.0004	Ī	V	K3	
	54978.5359	0.0005	Ī	, V	K3	
V398 Lac	54783.2979	0.0002	Ī	, V	K2	
UV Leo	54494.5256	0.0002	Ī	·	K2	
AM Leo	54149 5323	0.0002	T	V	K2	
1101 100	54513 5000	0.0002	Ī	r	K_2	
CE Leo	$54449\ 6271$	0.0000	Ī		K3	
CT TCO	54538 5313	0.0001	II		R2	
	54947 4012	0.0000	T	V	K3	
EX Leo	54506 4816	0.0001	T	v	K9	
BT LMi	54410 5000	0.0004	I II		K2 K3	
	54595 2952	0.0001	II TT		R0 R0	
	54525.5255	0.0001	T		Π2 D9	
	54520.0127	0.0001	T T		Π2 D9	
	54050.5000 54050 6225	0.0002	I TT	Ι.	Π2 1/2	
	04020.0002 54000.0005	0.0002	11 T	V	KƏ M2	
X7XX7 T X7 :	54895.5005	0.0001	I T	V	К3 1/1	
	54938.5253	0.0002	I T			
V (14 Mon	54424.5840	0.0001	I T	V	K4 1/1	
RV Oph	55002.3858	0.0002	l	R	KI KI	
V 508 Oph	54513.6267	0.0001	l	V	K4	
	54969.4403	0.0001	l	V	K4	
V2610 Oph	54618.5275	0.0003	1	$V(R)_C$	G1	
	54620.4424	0.0003	II		K2	
	54627.4764	0.0002	Ι	<i>.</i> .	K2	
	54667.3591	0.0002	II	$BV(R)_C$	G1	
V2612 Oph	54597.5346	0.0002	II	V	K2	
FZ Ori	54506.2466	0.0001	II	$V(RI)_C$	G1	
	54507.2462	0.0001	Ι	$BV(R)_C$	G1	
V1363 Ori	52618.63160	0.0004	II		DDO	
V1387 Ori	54480.3920	0.0012	II		K2	
	54506.3058	0.0003	Ι		K2	
	54533.3164	0.0012	Ι		K2	
U Peg	54737.3508	0.0002	II	V	K2	
AT Peg	54686.4720	0.0002	Ι	V	K2	
BB Peg	54298.5034	0.0001	Ι	V	K3	
-	55033.4355	0.0001	Ι	V	K3	
BX Peg	53928.4221	0.0002	Ι	V	K3	
<u> </u>	54297.4537	0.0002	Ι	V	K3	
	54678.4008	0.0002	II		K1	
	54690.4604	0.0002	II		R2	
DI Peg	54309.5089	0.0002	II		K1	
0	54738.3787	0.0002	Ι	V	K2	
KW Peg	53928.4864	0.0007	II	V	K3	

Times of m	inima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
KW Peg	54297.5015	0.0002	II	V	K3
V351 Peg	53972.4606	0.0010	Ι		K2
0	54328.4409	0.0002	Ι	V	K1
	54710.5267	0.0004	Ι	V	K2
V357 Peg	53607.7475	0.0002	II		DDO
0	53616.7127	0.0002	Ι		DDO
	54329.3641	0.0002	Ι	V	K1
	54676.4345	0.0005	Ι	V	K2
	54680.4845	0.0003	Ι		K1
V432 Per	54434.2272	0.0001	Ι		K3
	54480.4152	0.0005	Ī		R3
	54489.4239	0.0003	Ι		R3
DV Psc	53666.3867	0.0002	Ī	$BV(RI)_C$	G1
	53667.4640	0.0001	Ī	$BV(RI)_C$	G1
	53668.3987	0.0001	II	$BV(RI)_C$	G1
	54404.4076	0.0004	I	_ (_0_)0	K3
	54410.2698	0.0002	Ι		K3
	54410.4260	0.0002	Π		K3
	54433.2610	0.0002	II	$BV(RI)_C$	G1
	54715.4127	0.0001	Ι	$BV(RI)_C$	G1
	54715.5771	0.0002	II	$BV(RI)_C$	G1
	54716.4977	0.0002	II	$BV(RI)_C$	G1
	54737.3162	0.0002	Ι	I	R3
	54737.4691	0.0003	II	Ι	R3
	54739.3226	0.0002	II	R	R3
	54748.4252	0.0002	Ι	R	R3
GSC 8-901	54410.3290	0.0001	Ι		K3
	54433.1982	0.0002	II	$BV(RI)_C$	G1
	54433.3434	0.0003	Ι	$BV(RI)_C$	G1
	54715.4478	0.0005	II	$BV(RI)_C$	G1
	54715.5896	0.0005	Ι	$BV(RI)_C$	G1
	54716.4581	0.0004	Ι	$BV(RI)_C$	G1
AO Ser	54491.6646	0.0003	II	VRI	G1
AU Ser	54507.6122	0.0001	II	V	K4
	54508.5803	0.0001	Ι	V	K4
	54955.3711	0.0001	Ι	V	K3
OU Ser	54554.5940	0.0001	Ι		K2
	54594.4996	0.0001	II	V	K2
BD +7 3142	54211.7133	0.0001	II		DDO
	54211.8532	0.0001	Ι		DDO
Y Sex	54213.4053	0.0002	Ι	BVRI	K4
	54507.4968	0.0004	II		K2
CW Sge	54988.4833	0.0003	II	V	K4
	55027.4461	0.0003	II	V	K3
	55028.4405	0.0002	Ι	V	$\mathbf{K3}$

Times of 1	minima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	$\rm HJD~2400000+$				
AH Tau	52195.4372	0.0001	II	UBV	G2
	52195.6032	0.0001	Ι	UBV	G2
	52203.4208	0.0001	II	BV	G2
	52278.2731	0.0001	II	BV	G2
	52278.4389	0.0001	Ι	BV	G2
	54434.4958	0.0001	Ι		K3
	54720.5937	0.0002	Ι		$\mathbf{R1}$
EQ Tau	54508.2903	0.0004	Ι		K2
	54803.3890	0.0004	II		K1
V781 Tau	54751.4730	0.0002	II	V	K2
UX UMa	54433.6781	0.0003	Ι	$BV(RI)_C$	G1
	54508.6094	0.0001	Ι	$BV(RI)_C$	G1
	54509.5928	0.0001	Ι	$BV(RI)_C$	G1
	54521.5899	0.0001	Ι	$BV(RI)_C$	G1
	54651.3927	0.0001	Ι	BV	G1
XY UMa	54594.5000	0.0001	II		K1
AA UMa	54469.4804	0.0001	II	V	K4
	54937.3747	0.0002	Ι	V	K4
AW UMa	54887.5735	0.0001	Ι	BVRI	${ m K6}$
HH UMa	54424.5872	0.0002	Ι		$\mathbf{K3}$
	54532.3577	0.0002	Ι		R2
	54532.5416	0.0003	II		R2
	54912.3530	0.0002	Ι	V	$\mathbf{K3}$
	54922.3052	0.0002	II	V	$\mathbf{K3}$
TV UMi	53897.4349	0.0002	Ι		$\mathbf{K3}$
	54173.3534	0.0003	Ι	V	K2
	54190.3975	0.0005	Ι	V	K2
	54506.6337	0.0003	Ι		K2
	54508.5070	0.0003	II		K2
AG Vir	54479.6439	0.0003	Ι		K2
AH Vir	54595.4420	0.0001	Ι		K1
AZ Vir	54943.4170	0.0001	Ι	V	$\mathbf{K3}$
	54946.3894	0.0002	II	V	$\mathbf{K3}$
HW Vir	54925.4281	0.0003	II	VR	GSH
	54925.4870	0.0005	Ι	VR	GSH
	54947.4298	0.0002	Ι	R	GSH
PY Vir	54202.4175	0.0003	Ι	BVRI	K4
	54228.4062	0.0004	II	BVRI	K4
	54505.5802	0.0003	Ι		K2

Explanation of the remarks in the table:	
Observatory ID's are given	

Remarks:

Times of minima are weighted averages from all filters used. The minimum types are calculated according to Kreiner's (2004) up to date linear elements of eclipsing binaries (http://www.as.up.krakow.pl/ephem/). The elements for HL Del are taken from Pribulla et al. (2006), for V398 Lac from Cakirli et al. (2007), for V1387 Ori from Pribulla et al. (2009), for BD+7 3142 from Rucinski et al. (2008) and for GSC 8-901 from Parimucha et al. (2008).

Acknowledgements:

This work supported by VEGA grants of the Slovak Academy of Sciences No. 2/7010/7 and 2/7011/7 and APVV grant LPP-0049-06. TP and MV acknowledge support from the EU in the FP6 MC ToK project MTKD-CT-2006-042514. Part of data published in this paper was obtained at the David Dunlap Observatory, University of Toronto. Authors would like to acknowledge assistance of all observers and technicians during all these observations.

References:

Bertin, E., Arnouts, S., 1996, A&AS, 117, 393

- Cakirli, O., Frasca, A.; Ibanoglu, C., Soydugan, F.; Degirmenci, O., 2007, AN, 328, 536
- Kreiner, J. M., 2004, Acta Astronomica, 54, 207.
- Kwee, K. K., van Woerden, H., 1956, Bull. Astron. Inst. Netherlands, 12, 327
- Parimucha, S., Pribulla, T.; Vaňko, M., Dubovský, P.; Hambálek, L., 2008, $Ap \mathscr{CSS}, {\bf 313}, 419$
- Pribulla, T. et al., 2006, AJ, 132, 769
- Pribulla et al., 2009, AJ, 137, 3646
- Rucinski et al., 2008, AJ, 136, 586

ERRATUM FOR IBVS 5715

The orbital inclination of XZ UMa had been omitted from IBVS 5715. It should be $83.9^{\circ} \pm 0.1^{\circ}$.

Bob Nelson

^{*}This version of the paper contains corrections, and differs from the one appeared on-line originally. Date of last modification: 9 October 2009

Number 5899

Konkoly Observatory Budapest 24 August 2009 *HU ISSN 0374 - 0676*

OBSERVATIONS OF VARIABLES

The last but one issue of the volume publishes new observations, and results on known variable stars. Figures and data files are available electronically.

Previous reports can be found in IBVS No. 5799.

The Editors

Date: 28 May 2008

Reported by:

Udovichenko, S.N. - Astronomical Observatory of Odessa National University, udovich@farlep.net

Name of the object:

DM Cyg, V341 Aql, AV Peg, X Ari

Remarks:

For four RR Lyr type star: DM Cyg, V341 Aql, AV Peg and X Ari 11 new times of maxima were determined.

Date: 28 May 2008

Reported by:

Liakos, A. - National and Kapodistrian Univ. of Athens, Dept. of Astrophysics, Astronomy and Mechanics, alliakos@phys.uoa.gr

Niarchos, P. - National and Kapodistrian Univ. of Athens, Dept. of Astrophysics, Astronomy and Mechanics, pniarcho@phys.uoa.gr

Name of the object:

GSC 3101-0683

Remarks:

Detected in the FOV of V338 Her. Its variability was discovered by ROTSE1 experiment (Akerlof 2000), but no accurate period was given there. Pejcha (2005, 2006) published observations of the system. We report a new period. Min.I = $2454610.3476169 + 0.3162897d^*E$ Date: 30 December 2008

Reported by:

Liakos, A. - National and Kapodistrian Univ. of Athens, Dept. of Astrophysics, Astronomy and Mechanics, alliakos@phys.uoa.gr

Niarchos, P. - National and Kapodistrian Univ. of Athens, Dept. of Astrophysics, Astronomy and Mechanics, pniarcho@phys.uoa.gr

Name of the object:

GSC 4833-1209

Remarks:

Variability discovered by Henden and Stone (1998). In the field of KR Mon. Type: EA/EB, Ephemeris : Min. I = HJD 2454437.62373 + 0.6968758d * E

Date: 20 January 2009

Reported by:

Kinman, T.D. - NOAO, U.S.A., kinman@noao.edu

Name of the object:

V391 Mon

Remarks:

The GCVS describes V391 Mon as an RRab (phot. amp. 0.4 mag; period 0.4643 days) and identifies it with GSC 4824-01986. Simbad identifies V391 Mon with GSC 4824-00646. Photoelectric observations between 1988 and 1999 showed GSC 4824-01986 to be constant but with a colour ((B - V) = 0.376) appropriate for an RRab, while GSC 4824-00646 was slightly variable (12.70 < B < 12.84) but too red (< (B - V) > = 0.70). The correction for reddening is uncertain, however, so the interpretation of these colours is currently ambiguous. Forty six CCD observations on 11 nights in 2008 of GSC 4824-00646 gave 11.99 < V < 12.12. The star is probably a short period EW. There is no indication of the 0.4643 d periodicity in the data.

References:

Akerlof, C. et al., 2000, AJ, 119, 1901
Anonymous, 2006, IBVS, 5699, (report No. 75. by Pejcha, O.)
Henden, A.A., Stone, R.C., 1998, AJ, 115, 296
Pejcha, O., 2005, IBVS, 5645

Number 5900

Konkoly Observatory Budapest 24 August 2009 *HU ISSN 0374 - 0676*

REPORTS ON NEW DISCOVERIES

The last issue of the volume publishes a list of newly discovered variables. Figures (finding charts and light curves) and data files are available electronically. Previous reports can be found in IBVS 5700.

The Editors

Date: 24 October 2007
Observer(s) and affiliation(s):
Tiwari, S.K Aryabhatta Research Institute of Observational Sciences, Manora
Peak, Nainital - 263129, India
Chaubey, U.S Aryabhatta Research Institute of Observational Sciences, Manora
Peak, Nainital - 263129, India
Pandey, C.P Aryabhatta Research Institute of Observational Sciences, Manora
Peak, Nainital - 263129, India

HD 103498 is an A1 type magnetic star having surface magnetic field of about 2.5 kG and shows the lines of Sr, Eu and Cr in its spectrum (Cramer & Maeder, 1980). The Strömgren indices of HD 103498 are b-y = 0.003, m₁ = 0.196, c₁ = 1.010 and β = 2.858, (Hauck & Mermilliod, 1998). We observed this star on four nights between March and April 2007 with 104-cm telescope of ARIES Nainital, equipped with high-speed fast photometer and discovered 15-min oscillations. The observational and data reduction procedures are available in Tiwari, Chaubey & Pandey (2007).

The nightly observed mean amplitude of the oscillations are different from each other. The amplitude modulation may be due to either excitation of different modes or rotation of the star or both.

Acknowledgements: Dr. B.J. Medhi; DST Govt. of India, Grant No. SR/S2/HEP-20/2003.

RA(J2000)	$\mathrm{Dec}(\mathrm{J2000})$		type	Mag.
$11 \ 55 \ 11.33$	$+46\ 28\ 11.21$		DSCT	7.026
Period		Epoc	ch	
15.2 m		-		
Cross-identification	n(s):			
HD $103498 = BD + 4$	7 1914			

Date: 12 November 2007

Observer(s) and affiliation(s): Liakos, A. - Dept. of Astrophysics, Astronomy and Mechanics, Faculty of Physics, National & Kapodistrian University of Athens, Athens, Greece, alliakos@phys.uoa.gr Niarchos, P. - Dept. of Astrophysics, Astronomy and Mechanics, Faculty of Physics, National & Kapodistrian University of Athens, Athens, Greece,

pniarcho@phys.uoa.gr

RA(J2000)	Dec(J2000)		type	Mag.	
$20\ 15\ 00.22$	+76 54 18.28		EA	10.59 V (GSC)	
Period		Epo	Epoch		
$1.688778389 \mathrm{d}$		2454	377.38222		
Cross-identification(s):					
GSC 4589-2999					

Date: 12 November 2007

Observer(s) and affiliation(s):

Zhang, X.B. - National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012, China, xzhang@bao.ac.cn

Luo, C.Q. - Dept. of Physics, China West Normal University, Sichuan, 637002, China

Luo, Y.P. - Dept. of Physics, China West Normal University, Sichuan, 637002, China

Deng, L.C. - National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012, China, licai@bao.ac.cn

The new variable is a certain member of the intermediate age open cluster NGC752 (Platais, 1991).

RA(J2000)	Dec(J2000)	type	Mag.			
$01 \ 57 \ 17.29$	$+37 \ 40 \ 51.6$	Ε	13.10 (V)			
Period		Epoch				
-		-				
Cross-identification(s):						
NGC 752 170 = $Cl^* \stackrel{~}{NGC} 752 $ Stock 239 = $Cl^* $ NGC 752 PLA 758						

Date: 13 December 2007

Observer(s) and affiliation(s):

Agerer, F. - Bundesdeutsche Arbeitsgemeinschaft für veräderliche Sterne e.V., Munsterdamm 90, D-12169 Berlin, Germany, agerer.zweik@t-online.de

Remark: In the field of V941 Cyg

RA(J2000)	Dec(J2000)	type	Mag.		
$19 \ 41 \ 29.36$	+30 51 19.6	$\mathbf{E}\mathbf{A}$	12.93 (r USNO-B-		
			1.0)		
Period E _I		Epoch			
$1.125815 \ d$		2453611.435			
Cross-identification(s):					
$GSC \ 2656-4286 = USNO-B-1.0 \ 1208-0386457$					

Date: 9 January 2008

Observer(s) and affiliation(s): Agerer, F. - Bundesdeutsche Arbeitsgemeinschaft für veränderliche Sterne e.V. (BAV), Munsterdamm 90, D-12169 Berlin, Germany, agerer.zweik@t-online.de

Remark: South-east of OR Cas (very close).

RA(J2000)	Dec(J2000)	type	Mag.
$00 \ 48 \ 03.78$	60 51 28.5	EW	13.64 (USNO-B1.0
			R2mag)
Period		Epoch	
$0.318004 \ d$		2454002.631 (Min I)	
Cross-identification	ı(s):		
USNO-B1.0 1508-0029	9126		

Remark: In the field of V459 Cas. Already published by Brat (2006), but no period was given there.

RA(J2000)	Dec(J2000)		type	Mag.	
01 11 08.89	$61 \ 07 \ 45.1$		$_{\rm EW}$	14.45 (USNO-B1.0	
				R1mag)	
Period		Epo	och		
0.302240		245_{-}	4092.275 (Min I)		
Cross-identification(s):					
USNO-B1.0 1511-0041416 = 2MASS J01110892+6107448 = LBvar010 Cas			Bvar010 Cas		

Date: 14 January 2008
Observer(s) and affiliation(s):
Violat-Bordonau, Francisco - Caceres Astronomical Observatory, E10080, Caceres,
Spain, fviolat@yahoo.es
Arranz-Heras, Teofilo - "Las Pegueras" Observatotory, Navas de Oro, Segovia,
Spain

Remark: BD $+36\ 3317$ is an A5 type star (Anthony-Twarog, 1984) located in the open cluster Stephenson 1, near the Delta2 Lyrae variable.

RA(J2000)	Dec(J2000)	ty	/pe	Mag.	
18 54 22.23	36 51 07.4	$\mathbf{E}_{\mathbf{z}}$	А	8.77 V (SIMBAD)	
Period		Epoch	l		
4.30216 d		2454437.25921 (Min I)			
Cross-identification(s):					
BD +36 3317 = SAO 67556 = TYC 2651-802-1					

Date:	15	January	2008
-------	----	---------	------

Observer(s) and affiliation(s): Schuster, W.J. - Institute of Astronomy/Observatorio Astronómico Nacional, Universidad Nacional Autónoma de México, P.O. Box 439027, San Diego, CA, 92143-9027, U.S.A., schuster@astrosen.unam.mx Ochoa, J. - Institute of Astronomy/Observatorio Astronómico Nacional, UNAM, chico@astrosen.unam.mx Zurita, C. - Institute of Astronomy/Observatorio Astronómico Nacional, UNAM, czurita@astrosen.unam.mx Fox Machado, L. - Institute of Astronomy/Observatorio Astronómico Nacional, UNAM, lfox@astrosen.unam.mx

Remark: On the night of 26 September 2007 UT differential uvby photometry of two AO-type stars was carried out at the 1.5m telescope of the San Pedro Mártir Observatory, and HD 207331 proved to be variable (see 5900-f18). Confirming CCD observations were carried out on the night of 30 September 2007 UT at the 84cm telescope of the same observatory, and the light curve suggests strongly that this variable star is of the δ Scuti type with a period of about 1.17 hour (see 5900-f19). The position of this star in the $M_v, (B-V)$ diagram also confirms this classification (see 5900-f21).

The staff of the San Pedro Mártir Observatory, Baja Californ ia, México, is gratefully thanked.

RA(J2000)	Dec(J2000)	type	Mag.			
$21 \ 47 \ 02.32$	$43 \ 19 \ 18.6$	DSCT	8.51 (B)			
Period Ep		Epoch	poch			
0.04875 d		-				
Cross-identification(s):						
HD $207331 = BD + 424207 = HIP 107557$						

Date: 26 February 2008
Observer(s) and affiliation(s):
DeGennaro, S University of Texas at Austin
Williams, K University of Texas at Austin
Montgomery, M University of Texas at Austin

Remark: This object may represent a new class of variable star: the pulsating carbon atmosphere white dwarf, or DQV. The object found to pulsate with a single mode at 417.76 + -0.35 s with an amplitude of 1.7

The object was observed for 5 and 3 hours on two consecutive nights using the Argos high-speed photometer on the 2.1m Otto Struve reflector at McDonald Observatory. The period and amplitude were found to be stable between the two observations.

The figures show the light curves obtained for the two nights, smoothed by a Gaussian with a sigma of 1.25 observations (37.5 s), and the combined Fourier transform of the two data sets.

$\mathbf{RA}(\mathbf{J2000})$	$\mathrm{Dec}(\mathrm{J2000})$	type	Mag.
$14 \ 26 \ 25.7$	+57 52 18.4	DQV(?)	19.16 (g)
Period		Epoch	
417.76 s		-	
Cross-identifica	tion(s):		
SDSS J142625.71	+575218.3		

Date: 11 March 2008						
Observer(s) and affiliation(s):						
Cook, S.P 332 Weed Road, Weed, NM 88354-0499, USA						

Remark: This early-type, high luminosity emission line star (15' NE of Cepheid BM Persei) is an eclipsing binary (beta Lyr type?). Minima times were determined by Kwee and van Woerden (1956) method, and the period was determined by weighted least squares fitting of three best observed minima (Belserene, 1988a) and using DFT (Belserene, 1988b) on NSVS data (Wozniak et al., 2004).

RA(J2000)	Dec(J2000)	type	Mag.	
$04 \ 28 \ 39.623$	$48 \ 35 \ 55.03$	EB?	$9.72 \mathrm{~V} \mathrm{~(GSC)}$	
Period		Epoch		
21.65 d		2454516.1		
Cross-identification(s):				
$BD + 48 \ 1098 = GSC \ 3333 - 1755 = PPM \ 47103 = ALS \ 7963 = NSVS \ 4287647 = 1000$				
NSVS 4265168				

Date: 9 September 2008				
Observer(s) and affiliation(s):				
Liakos, A National and Kapodistrian Univ. of Athens, Dept. of Astrophysics,				
Astronomy and Mechanics, alliakos@phys.uoa.gr				
Niarchos, P National and Kapodistrian Univ. of Athens, Dept. of Astrophysics,				
Astronomy and Mechanics, pniarcho@phys.uoa.gr				
RA(J2000)	Dec(J2000)	type	Mag.	
$23 \ 35 \ 50$	$48 \ 43 \ 43$	DSCT	11.3 (GSC V)	
Period		Epoch		

Cross-identification(s): GSC 3641-0359 = 2MASS 23355022+4843428

RA(J2000) 19 54 39.5	Dec(J2000) 32 56 02.7	type DSCT	Mag. 10.8 (GSC V)	
Period		Epoch		
$0.0997415 \ d$		-		
Cross-identification(s):				
$GSC \ 2673-1583 = 2MASS \ 19543947 + 3256027$				

	00	Т	0000
Date:	29	January	2009

0.112625 d

Observer(s) and affiliation(s):

Monninger, G. - Bundesdeutsche Arbeitsgemeinschaft für veränderliche Sterne e.V. (BAV), Munsterdamm 90, DE-12169 Berlin, Germany, gerold.monninger@online.de

Remark: In the field of GSC 3377-0296, an RS CVn variable (Lloyd et al., 2007).

RA(J2000)	Dec(J2000)	type	Mag.	
$06 \ 39 \ 48.8$	46 57 15.1	DSCT	14.18 (R1mag -	
			USNO B1.0)	
Period		Epoch		
0.104430 d		2454840.4195		
Cross-identification(s):				
USNO-B1.0 1369-0	180384			

References:

Anthony-Twarog, B.J., 1984, AJ, 89, 655
Brat, L., 2006, OEJV, 23, 67
Belserene, E., 1988a, JAAVSO, 17, 123
Belserene, E., 1988b, Sky and Telescope, 76, 288
Cramer, N., Maeder, A., 1980, A&AS, 41, 111
Hauck, B., Mermilliod, M., 1998, A&AS, 129, 431
Kwee, K. K., van Woerden, H., 1956, B.A.N., 12, 327-330
Lloyd, C.; Bernhard, K.; Monninger, G., 2007, IBVS, 5772
Platais, I., 1991, A&AS, 87, 69
Tiwary, S.K., Chaubey, U.S., Pandey, C.P., 2007, IBVS, 5787
Wozniak, P.R., et al., 2004, Astron. J., 127, 2436

ERRATUM FOR IBVS 5700

The epoch reported in IBVS 5700 for GSC 3355-0394 should be 2451537.61909.